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SUMMARY

This thesis concerns the structure of quantum theory as the fundamental contemporary theo-
retical framework of physics. Prior to quantum theory, the underlying frameworks for most of
fundamental physics had been the frameworks of classical mechanics and classical statistics. In
a broad sense, such frameworks provide the means to describe and model situations that occur
in physics. They allow to study abstract systems like the harmonic oscillator, concrete systems
like the orbits of planets, or fundamental interactions as for the electromagnetic theory. The ma-
jor difference between classical physics and quantum physics is how such systems are modeled.
Most notably, while classical theory is centered around stable configurations and the description
of the dynamics of a system, quantum theory is much richer by adding the notion of a state of
the system and treating measurements in an explicit manner. Of course, the state of a system is a
notion that is also present in classical theory, for example, as a point in phase space. And it is also
possible to formulate a theory of measurements in classical physics. However, quantum states
and quantum measurements are central to quantum theory and both are those concepts that are
the least similar to classical theory. Quantum states describe the physical situation in an abstract
sense, but they are not a literal description of the properties of the system. Quantum measure-
ments are a theoretical concept that provides the interface between the formalism of quantum
theory and the direct observations in an experiment.

With this central role of states and measurements in quantum theory and the abstract na-
ture of them, enhancing our knowledge of the structure of both is an important endeavor. This
thesis focuses on the structure of what states and measurements are according to the formalism
of quantum theory itself. The most radical approach to quantum theory is the operational ap-
proach, particular predominant in the field of quantum information science and the neighboring
field of foundations of quantum theory. Here, abstract quantum systems are studied and the ex-
perimental realization of particular concepts are often a lesser concern. This situation coevolved
with the experimental advances in quantum optics, which nowadays provides us with control
over physical systems to a level that abstract concepts, for example qubits, are commonly avail-
able for experimentation. This also marks the exciting transition from a point, where quantum
theory is predominately used to describe physical phenomena to a theory that is ready to be
used in engineering—a step that is reminiscent to the transition from a naive understanding of,
for example, electromagnetic forces to the full fleshed theory of electromagnetism that allows us
to build and enhance sophisticated devices such as the electric motor.

Consequently, this thesis is focused on abstract notions of states and measurements. A very
general mathematical framework for a theory to capture both notions is the operational frame-
work of general probabilistic theories. This framework is so broad that it captures quantum
theory and classical probability theory as special cases. The generalization is achieved by con-
sidering an abstraction of the real vector space of Hermitian operators and an abstraction of the
concept of positive semidefiniteness. These two concepts are basically enough to recover the
skeleton of quantum theory, but general probabilistic theories generalize this to be applicable to
virtually any conceivable operational theory. One can now ask: What is the role of quantum the-
ory within this framework? Which concepts are native to quantum theory, and which concepts
are due to the fact that quantum theory is an instance of the general probabilistic theories? This
perspective is a central motivation for this thesis.

An important catalyst for the research in this thesis is the question, whether or not a theo-
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retical concept, for example quantum contextuality or entanglement, is experimentally relevant.
That is, whether a concept is experimentally testable, at least in principle. Eventually, this re-
quires to consider the data from experiments, and in the ideal case this is possible without going
into the details of the experimental realization. Having access to the experimental data, one can
ask surprisingly simple questions, for example, is the experimental data compatible with the ex-
istence of a quantum state and the assumed measurements? This brings basic statistical analysis
to the world of quantum optical experiments and enables us to study and dissect experiments on
the basis of raw data.

Quantum measurements

In quantum theory, observable quantities are represented by Hermitian operators on a Hilbert
space [1]. Let us consider the calculation of the expectation value of the energy 〈E〉. For this, we
need the state of the system, ρ, and the operator representing the energy observable, in this case
the Hamilton operator H. Then the simple formula

〈E〉 = tr(ρH) (1)

holds. Its right hand side has a clear mathematical meaning and involves the mathematical
representations of the quantum state and the energy observable. However, this does not yet
give a good interpretation of the left hand side. In order to obtain this, we use the spectral
decomposition of the Hamilton operator,1 H = ∑

n
j EjΠj with n distinct energy eigenvalues Ej

and Πj orthogonal projections, Πj = Π†
j = Π2

j . We can now write

〈E〉 =
n

∑
j

Ej tr(ρΠj) =
n

∑
j

Ej pj, (2)

with pj = tr(ρΠj). Born [2] identified pj to be the probability to observe the energy Ej. We hence
can understand the energy expectation value as a mean value in a Bernoulli-type experiment
with n outcomes, where to each outcome j the energy Ej is associated. These outcomes are conse-
quently in one-to-one correspondence with the projectors Πj. We refer to the family of projectors
(Πj)

n
j as a (sharp) quantum measurement and we identify the outcomes of the measurement

with the projectors Πj. The characteristic properties of such families are (i) all Πj are orthogonal
projections and (ii) they sum to identity, ∑j Πj = 1.

If we now implement a quantum measurement, what is the state after the measurement?
There are at least three possible answers to this question: (i) No sensible state can be associated.
(ii) The state depends on the implementation of the measurement apparatus. (iii) The state is
given according to Lüders’ rule. From a practical perspective, (i) is often the most reasonable
answer, for example, for a photon detected by a camera. In other situations, (ii) is the correct, but
the answer is too generic to provide further insights into the nature of quantum measurements.
Answer (iii) is the one that can be found in many textbooks and is in a certain sense the most con-
servative one. Specifically, Lüders’ rule [3] (also sometimes attributed to von Neumann) states
that if a system in state ρ is measured using the measurement (Πj)j and the measurement result
j is ignored, then the state after the measurement is computed according to the map

Λignore : ρ 7→ ∑
j

ΠjρΠj. (3)

If the measurement result is incorporated into the quantum state and the measurement result

1Here and in the following we always assume the underlying Hilbert space to be finite dimensional.
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was j, then the rule becomes reminiscent of a Bayesian update,

Λj : ρ 7→ ΠjρΠj

pj
, (4)

allowing for the relation Λignore = ∑j pjΛj.

Quantum states

General quantum states are conveniently represented by a density operator ρ. If ρ is of rank one,
then ρ is a pure state and often represented by a normalized vector |ψ〉, such that ρ = |ψ〉〈ψ|. In
general, pure states are superpositions |ψ〉 = ∑i ψi |i〉 of the basis states |i〉. This superposition
is one of the main features of quantum theory where it differs from classical theory. It becomes
particularly intriguing, when we consider situations where the quantum state describes a com-
posite system, composed of two or more distinguishable parties or degrees of freedom. Then,
the Hilbert space of the system has a natural tensor product structure, H = HA ⊗HB ⊗ · · · , and
it features entangled states. A pure state ρ = |ψ〉〈ψ| is entangled, if it is a superposition for any
product basis (|i, j, . . .〉)i,j,... of the Hilbert space. That is, |ψ〉 is entangled [4,5] if it is not a product
state, |ψ〉 6= |ψA〉⊗ |ψB〉⊗ · · · . For mixed states, a state is entangled if it is not separable, that is, if
it cannot be written as a convex combination of product states [6]. The structure of entanglement
has been analyzed in detail [7].

An important concept in relation to entanglement is the paradigm of local operations and
classical communication (LOCC) [7, 8]. This refers to a situation where parties can locally ma-
nipulate their part of the global system by adding and discarding auxiliary systems, perform-
ing unitary transformations, and performing measurements. In contrast, global operations that
would require an interaction between the parties are not allowed—with the exception of the ex-
change of classical information, for example the broadcast of measurement outcomes. An LOCC
protocol can consist of an arbitrary number of rounds of communication and local operations.
An important aspect in the analysis of quantum entanglement is to study of how states can be
transformed by means of LOCC, either deterministically or with nonvanishing probability. This
leads to the definition of entanglement classes and entanglement monotones [7].

Besides this theoretical analysis, there is also the practical concern how one can provide ev-
idence for the preparation of an entangled state [9]. This can be, for example, the mere proof
of entanglement, the verification of a state being in a particular entanglement class, or the full
measurement of the density operator. Entanglement detection can be used to prove good exper-
imental control over multipartite quantum systems, since for most scenarios, creating entangled
states is a difficult task and it is an important step towards full quantum control over a system.

In such an experiment, the state is subjected to different measurements, or measurement
settings. Typically, these measurements are chosen to be local measurements, such that party A

performs measurements (Πa,j)j from a family labeled by a, etc. This yields the correlations

p(i, j, . . . |a, b, . . . ) = tr[ρ(Πa,i ⊗ Πb,j ⊗ · · · )], (5)

for all combinations (a, b, . . . ) of measurements performed in the experiment. Depending on the
experimental situation, the correlations might not be fully available, but are coarse-grained due
to experimental limitations, for example, if only the total angular momentum can be measured.
In either way, in order to prove the entangled nature of an experimentally prepared state, meth-
ods are required that allow to infer this property from the obtained data. In the most extreme
case, the projectors in Eq. (5) span the full set of Hermitian operators. Then Eq. (5) can be inverted
to yield the full quantum state ρ. This is the case quantum state tomography.
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1 Quantum contextuality

Quantum contextuality is a notorious nonclassical feature of quantum measurements. It ex-
presses the fact that the outcomes of quantum measurements cannot be predetermined without
specifying a measurement context. More precisely, quantum contextuality is a property of a set
measurement outcomes {Πα | α ∈ A}. If this set is carefully chosen, then it is impossible to find
an assignment v : A → { 0, 1 }, such that

∑
α∈C

Πα = 1 implies ∑
α∈C

v(α) = 1 (6)

and2

∑
α∈C ′

Πα ≤ 1 implies ∑
α∈C ′

v(α) ≤ 1 (7)

for any subset C of A. Specifically, if C satisfies the first condition in Eq. (7), then it is specifies
a measurement context and (Πα)α∈C forms an incomplete measurement. If the first condition
in Eq. (6) is satisfied, then (Πα)α∈C defines a complete measurement. Both conditions together
enforce that v assigns exactly one outcome to a complete measurement and not more than one
outcome to an incomplete measurement. By assumption this is not true for all contexts simul-
taneously and therefore either the outcomes of some measurements are not predetermined or
the assignment must depend on the context, that is, v must depend on the context C. The first
example of a set where no assignment v exists is due to Kochen and Specker [10] and requires
|A| = 117 projectors and. The smallest possible such set has only 18 projectors [11].

In contrast, if an assignment v exists, then it constitutes a deterministic noncontextual model
for the according set of projectors [10]. This is very similar to the local hidden variable models
discussed by Bell [12]. For each such noncontextual model v, we obtain a vector ~p = [v(α)]α
and the set of all models for a specific set of projectors defines then the vertices of a polytope
P ⊂ R

|A|. The points in P correspond to statistical mixtures of noncontextual assignments, again
in close analogy to the considerations of Bell. It is now possible that there exists a quantum state
ρ, such that ~qρ = [tr(Παρ)]α is not in P . Then, this is an instance of quantum contextuality: One
can find an affine function I : R

|A| → R, such that I(~p) ≤ 0 holds for any ~p ∈ P but I(~qρ) > 0.
Consequently, the function I gives rise to the noncontextuality inequality I(~p) ≤ 0. The simplest
such inequality uses only 5 projectors [13]. There exist even cases where~qρ ∈ P does not hold for
any quantum state ρ. Then, this is an instance of a state-independent noncontextuality inequality,
the simplest of which uses 13 projectors [14].

The structure of state-independent quantum contextuality

A scenario for state-independent contextuality in particular exhibits contextual behavior for sys-
tems in the completely mixed quantum state, ρ = 1/ tr(1). In Publ. [P17] we give a counterex-
ample to the reverse statement, namely that there is a noncontextuality inequality that is violated
for the completely mixed quantum state, but not for all quantum states [P17].

The question arises, which sets of projectors allow for state-independent contextuality. This
is answered in Publ. [P17] where we present necessary and sufficient conditions for the case
where all projectors are of rank one. These conditions allow for an exhaustive search for state-
independent contextuality scenarios. We prove in Publ. [P17] that if the dimension of the under-
lying Hilbert space is d = 3, then the smallest such set must have 13 projectors. Dimension d = 3
is special, because the possible sets of projectors satisfy very limiting constraints. We extend this
result in Publ. [P18] to arbitrary dimensions. For this, new tools in graph theory are developed

2Here X ≤ Y for operators X and Y refers to Y − X being positive semidefinite.
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and in a computer based search we analyze the order of 1011 graphs. As result, we find that the
smallest set of rank-one projectors must still have 13 projectors [P18].

Conversely, given a set of projectors that exhibits state-independent contextuality, which is
the optimal inequality for which the statistical significance of a quantum violation can be maxi-
mal? This is addressed in Publ. [P8] and solved by reducing it to a linear optimization problem.
Using this method, it is shown that well-known inequalities are not optimal and new, optimal
inequalities are provided in Publ. [P8].

Contextuality as experimentally verifiable phenomenon

Contextuality as a property of quantum theory is a well-established concept, but is it also a
property that can be verified in an experiment? Such an experiment would test a prediction of
quantum theory itself, and not a particular model within quantum theory. Therefore, it is de-
sirable that the validity of quantum theory is not assumed in the evaluation of the experiment.
This, in turn, implies that the same measurement outcome α occurring in different measurement
contexts C1 and C2 can be identified as same projector [11, 15–18]. However, different measure-
ments tend to have very different implementations in an experiment and this is in conflict with
the assumption that the assignment v is noncontextual.

There are at least three approaches to resolve this conflict. First, it might be possible to find
situations where there is a convincing argument that a projector, albeit part of different measure-
ments, has to have the same physical implementation, for example, by representing an orienta-
tion in space [10, 18]. However, such a situation is difficult to achieve. Second, one can refrain to
a weak notion of equivalence, namely, if it is not possible to achieve a distinction in an experi-
ment between different implementations, then one infers that the corresponding classical model
assigns the same value to those implementations. This seemingly benign assumption leads to
a quite different notion of contextuality [19]. Thirdly, one can choose a sequential implementa-
tion. Here one implements a sequence of compatible measurements such that the effective joint
measurement yields the desired measurement. This method is used in the majority of the ex-
perimental implementations, for example in Refs. [P1, 20–25]. It requires two extra constraints
on the sequential measurements: The measurement apparatuses must follow Lüders’ rule and
all measurements within a sequence must be compatible. Neither of these assumptions is di-
rectly testable in an experiment and, even more concerning, neither of these assumptions can be
perfectly satisfied due to experimental imperfections.

In our approach to these problems we make plausible assumptions on the underlying reasons
for any discrepancy, by employing appropriate noncontextual models. In Publ. [P3], three ma-
jor models are worked out that can achieve this goal. One of these methods (“First Approach”)
was used in the first modern experimental verification of quantum contextuality [P1]. In this
experiment, two ions in a linear Paul trap are subjected to sequential measurements, according
to the Peres–Mermin scenario [26, 27]. We extend this model to include even more general non-
contextual models in Publ. [P12]. There we also show that a renewed evaluation of the data
from Publ. [P1] still gives strong evidence against these extended noncontextual models. Other
models are discussed in Refs. [28, 29]. Conversely, some experimental violations of noncontex-
tuality inequalities use implementations that are not suitable to provide convincing evidence for
quantum contextuality, as we point out in Publ. [P10].

Memory cost of quantum contextuality

In the realization of quantum contextuality as sequential measurements, it is worth to analyze
how quantum theory achieves the contextual behavior. In a measurement sequence the quantum
state undergoes a state change that depends on the measurement as well as on the measurement
outcome. In this sense, it seems that the quantum system is used as memory to store information
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in order to achieve the contextual behavior. This raises the question, whether quantum contex-
tuality in sequential measurements is merely due to the memory of the quantum system and
whether a classical machine with memory can exhibit contextual behavior.

It has to be noted that on the one hand, an n-level quantum systems cannot store more classi-
cal information than an n-state classical system [30], but on the other hand, simulating a qubit can
already require unbounded classical memory [31]. Therefore it is not clear, whether a classical
machine with n states would be able to simulate the contextual behavior of an n-level quantum
system. In Publ. [P6] we address this question. To this end we consider a variant of the Peres–
Mermin contextuality scenario, in which the contextual behavior is due to the deterministic cor-
relations between the measurements in a sequence. Using only these deterministic predictions,
we find that quantum contextuality cannot be simulated on a corresponding classical system.
This result relies on arbitrary sequences of measurements restricted such that any consecutive
pair is composed of compatible measurements. Hence, contextuality has a memory footprint if
quantum systems and classical systems are compared.

In the canonical scenario of quantum contextuality, only sequences of mutually jointly mea-
surable measurements are used. For this case and the deterministic predictions, no quantum
advantage is found [P6]. However, one can also consider all predictions, including also those
which occur only with a certain probability. For this we define in Publ. [P24] the memory of a
stochastic mixture of stochastic classical machines [32]. For the canonical Peres–Mermin scenario,
we proof that such a mixture can simulate any probabilistic prediction of quantum theory.

In order to go one step further, we connect the idea of memory cost with more general situ-
ations where repeatability and sharpness are not required. In Publ. [P13] we find that even then
one can make conclusions about the minimal dimension of the underlying Hilbert space. Fur-
ther methods to bound the dimension of the Hilbert space are discussed in Refs. [33–36]. In a
complementary approach, investigated in Publ. [P14], we analyze the situation where the mea-
surements are projective but the dimension of the Hilbert space is arbitrary. Although there is no
requirement on the compatibility of subsequent measurements, there are still nontrivial bounds
on the obtainable values of noncontextuality inequalities and related scenarios.

2 General probabilistic theories

So far we mostly considered sharp quantum measurements, that is, families of projectors that
are a resolution of identity. However, the set of valid quantum measurements on a given Hilbert
space is much larger and encompasses the set of generalized measurements [37, 38], defined as
families (Ej)j with Ej ≥ 0 and ∑j Ej = 1. The elements Ej are the effects of the generalized
measurement.

Interestingly, the set of effects is sufficient to describe the very core of quantum theory. To
see this, we describe only situations, where a system is in a state ρ and subject to a measurement
(Ej)j. We consider the real vectors space VQT of Hermitian operators and within this vectors
space we identify the cone V+

QT of positive semidefinite operators. We have (Ej)j ⊂ V+
QT and we

can write the quantum state as the linear map ω : A 7→ tr(ρA) on V. The characteristic prop-
erties of ω are positivity, A ≥ 0 implies ω(A) ≥ 0, and normalization, ω(1) = 1. These two
conditions are also sufficient for a linear map ω to be generated by a quantum state ρ. Hence the
structure of the quantum states is dictated by the structure of quantum effects and quantum the-
ory on a given Hilbert space is already characterized by the triple (VQT, V+

QT, uQT) with uQT = 1.
From a mathematical point of view, this triple forms an order unit vector space [39, 40]. From a
physics point of view, this language is tailored to capture the notion of a broad class of physical
theories [P15, 41–44]: There are much more order unit vector spaces then the ones constructed
from quantum theory and they all allow for a basic interpretation as a theory with states, mea-
surements and also general operations. The theories that arise from this mathematical formalism
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(and variants thereof) are the general probabilistic theories. The predictions within the general
probabilistic theories can vastly differ from those of quantum theory, for example, it is possible
to obtain correlations in a Bell-type experiment that cannot be reached with any quantum sys-
tem [45] and consequently have never been observed. The fact that general probabilistic theories
contain quantum theory only as a special case gives rise to a challenge for as well as a chance to
our understanding of quantum theory. This is linked to the question, why all physical systems
can be described by order unit vector spaces that arise from Hilbert spaces. Since, so far, we only
considered systems on a very basic level, it is conceivable that when we incorporate more and
more desiderata on a physical theory into the mathematical framework we can eventually arrive
at quantum theory. This program has a rich history and several lists of desiderata (or axioms)
have been found that narrow down the set of general probabilistic theories [41–43, 46–49].

In this thesis I take a different point of view. One can understand quantum theory as the
specific instance of general probabilistic theories that is relevant for formulating our current un-
derstanding of physics. This is in analogy to, for example, Maxwell’s theory of electromagnetism
being a particular theory within all possible field theories. In this setting, one can explore how
quantum theory is special, and which properties are characteristic to quantum theory.

Lüders’ rule

Sharp measurements play a central role in quantum theory and it is therefore desirable to trans-
late this concept to the language of general probabilistic theories. It can be shown that several
natural definition of sharpness can be defined, which all coincide in quantum theory but are
different in particular general probabilistic theories, cf. Publ. [P15], Section 2.2. One of the most
characteristic features of sharp quantum measurement is the existence of Lüders’ rule in analogy
to Eq. (4). This can be formulated in the Heisenberg picture, so that a measurement transforms all
future measurements. Then Lüders’ rule for an effect e can be formulated as the transformation
that is such that no finer effect f (that is, e − f ∈ V+) is disturbed by a preceding measurement
of e. This definition is introduced and studied in in Publ. [P15]. A similar concept is investigated
in Ref. [50].

Emergence of bipartite quantum correlations

Classical mechanics is a good approximation for most macroscopic phenomena. Hence it is no
surprise that quantum mechanics emerged when experimental access to microscopic phenom-
ena became available. If we now assume that quantum theory is not the ultimate theory of
physics, but is to be superseded by some of the general probabilistic theories, then why did we
not yet see any deviation from the predictions of quantum theory? Stated in a different way,
if in the future another fundamental theory is needed, why is quantum theory in such precise
agreement with our observations? In Publ. [P9] we provided a possible answer to this question:
Quantum theory could be the universal emerging theory of any general probabilistic theory. The
underlying assumption is that we do not have access to all possible measurements but only to
those, which span a low-dimensional subspace. Then, using Dvoretzky’s theorem [51], we show
that the emerging bipartite correlations are—with high probability—in arbitrary good agreement
with the correlations predicted by quantum theory.

The structure of n-outcome measurements

A central object in a general probabilistic theory is the set of effects, that is, the set

V+
u = {e ∈ V+ | u − e ∈ V+}. (8)
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It is important to realize that this set does not yet specify the set of allowed measurements. It is
true that for any allowed measurement (ej)j, each effect ej must be in V+

u . However, the converse
might not always hold true. From an operational point of view, there are two simple methods
that allow us to construct from one measurement another measurement. First, for a measurement
(ej)j, if η is a map from the indices { j } to another set of indices { k }, then the measurement ( fk)k

can be achieved by simple relabeling, yielding

fk = ∑
j : η(j)=k

ej. (9)

This guarantees, in particular, that if f is an effect of some measurement (ej)j, then also the
measurement ( f , u − f ) can be achieved. Second, it is possible to make convex combinations of
measurement with the same index set, that is, if (en,j)j are measurements labeled by n, then for
some arbitrary probability distribution (pn)n we obtain the measurement ( f j)j with

f j = ∑
n

pnen,j. (10)

If the set of all n-outcome measurements is known, then from these requirements one can
construct a minimal set of achievable m-outcome measurements for m > n, exactly by applying
the above two methods to the set of known measurements. Any such m-outcome measurement
is called n-ary. The binary measurements are generated from all measurements (e, u − e) with
e ∈ V+

u . This construction is operationally the smallest set conceivable. However, in quantum
theory, this is not how the set of m-outcome measurements is constructed. There, the set of
admissible measurements is given by any possible measurement (ej)j ⊂ V+

e and is hence the
largest set possible.

In Publ. [P19] we show that the maximal and minimal sets of quantum measurements are
different and that this difference can be tested in a bipartite Bell-type experiment. We identify
experiments that (inadvertently) already have provided evidence for the assertion. In Publ. [P21]
we show that it is even possible to find 3-outcome measurements on a qubit that are not binary
within quantum theory. This is also verified in an experiment using photons, cf. Publ. [P21]. In
Publ. [P19] we show that for any n, there are m-outcome quantum measurements that cannot
be explained by any n-ary measurements, not only from quantum theory, but from any general
probabilistic theory. An experimental test of this property would therefore constitute a theory in-
dependent test on the structure of measurements, but the results in Publ. [P19] are not yet exper-
imentally feasible. In Publ. [P25] we further elaborate on this topic and provide strong Bell-type
inequalities that allow to verify that the correlations obtained from (n + 1)-outcome quantum
measurements cannot have originated from any n-ary measurement even if from a general prob-
abilistic theory. A violation of one of these inequalities has been verified in an experiment using
photons, cf. Publ. [P26].

3 Entanglement characterization and detection

Entanglement is a feature of a composed quantum systems and a state is entangled if and only
if it cannot be obtained by means of an LOCC protocol from a product state. Before I discuss
my results directly on entanglement theory, let me first consider a family of mutually orthogonal
product states. Since each of these states can be produced locally, it should also be possible to
decide locally, or by means of LOCC, in which of the states a system is. Surprisingly, this is not
possible with unit probability and a counterexample was provided in Ref. [52]. The technical
difficulty in proving this result is that the number of rounds in an LOCC protocol can be un-
bounded. It might even be possible to find an infinite family of protocols (possible each with
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an unbounded number of rounds), such that the limiting protocol can achieve perfect discrim-
ination, while no protocol in the family can. In fact, it is known that the topological closure of
all LOCC protocols does not coincide with the set of protocols that can be implemented in a fi-
nite number of rounds [53]. This issue has already been discussed farsightedly in Ref. [52]. In
Publ. [P5] we provide a rigorous version of the proof in Ref. [52] and extend the technique to
work on almost arbitrary families of states.

Distance measures between states and entanglement classes

When we aim to quantify how entangled a quantum state |ψ〉 is, a natural idea is to measure the
distance between this state and the set of all product states. The geometric measure of entangle-
ment follows exactly this idea [54] and is given by

Eg(ψ) = 1 − max
φ

|〈ψ|φ〉|2, (11)

where the maximization is over all product states |φ〉. For mixed states this measure is extended
via the usual convex roof construction, cf. Ref. [9], Section 4.1.2. Already for pure states, the
maximization is a difficult nonlinear optimization problem. However, if the state is symmetric,
that is, invariant under permutation of the parties, this maximization simplifies dramatically. In
Publ. [P2] we prove that the product state yielding the maximal overlap is necessarily symmet-
ric. While at first sight this result might seem natural, there are counterexamples for the same
problem over real Hilbert spaces. We also extend our results to the maximization 〈φ|X|φ〉, when
the operator X is permutationally symmetric.

Entanglement detection with spin-observables

Entanglement has applications that reach beyond its mathematical definition and its operational
interpretation. A particular intriguing property of entangled states is that they can improve the
precision in metrological tasks; for a review, cf. Ref. [55]. The characteristic quantity to measure
the metrological usefulness of a state ρ with respect to a unitary Uθ = exp(−iAθ) is the quantum
Fisher information FQ(ρ, A), where larger values indicate better performance in determining the
phase parameter θ.

Typically, the generator A takes the form of a local Hamiltonian. An example are the compo-
nents of the total angular momentum Jℓ =

1
2 ∑k σ(k)

ℓ for n qubits, where σ(k)
ℓ is the Pauli operator

in (ℓ = x, y, z)-direction, acting on the kth qubit. Then Uθ represents the n-fold local evolution
of the system. If ρ is a suitably entangled state, then the metrological performance can be vastly
improved compared to a simple product state. For this reason, it is of practical relevance to deter-
mine the metrological usefulness of a system. On the one hand, there exist simple lower bounds
on the quantum Fisher information based on the components of the total angular momentum Jℓ,
in particular in form of the inequality [56]

FQ(ρ, Jy) ≥ 〈Jz〉2/(∆Jx)
2, (12)

where (∆Jx)2 denotes the variance of Jx. On the other hand, if the state has at most k-partite
entanglement, then

FQ[ρ, Jℓ] ≤ k n (13)

holds [56].
In Publ. [P22] we show how this entanglement criterion can be improved by a modification

of the quantum Fisher information. In Publ. [P23] we find a tight lower bound for the quantum
Fisher information that outperforms the bound in Eq. (12) and can be computed for many situ-
ations. We also show how our methods can be applied to realistic experimental scenarios and

9



we demonstrate this on existing experimental data. In Publ. [P27] we use related methods to
find an entanglement criterion tailored for a specific experiment with entangled clouds of ultra-
cold atoms. In this experiment, a Bose–Einstein condensate was prepared and then divided into
two spatially separated clouds. Using our methods, it was then possible to prove entanglement
between these two clouds by measuring the angular momentum observables for each cloud.

A conspicuous property of Eq. (12) is its occurrence of the variance in the denominator.
The fact that the variance of an operator cannot simply vanish is expressed in the Robertson–
Schrödinger inequality, (∆A)2(∆B)2 ≥ 1

4 |〈[A, B]〉|2. However, this inequality depends on the
quantum state and in finite dimensions it is always possible to have the right hand side equal to
zero, even if A and B do not commute. In order to overcome this dependence on the quantum
state, there exists a different class of uncertainty relations, the entropic uncertainty relations [57].
The archetypal entropic uncertainty relation is due to Maassen and Uffink and is expressed for
two measurement bases (|ai〉)i and (|bi〉)i. Using the Shannon entropy S[(pi)i] = −∑i pi log(pi),
this relation is given by [58]

S[(〈ai|ρ|ai〉)i] + S[(〈bi|ρ|bi〉)i] ≥ −2 log(max
i,j

|〈ai|bj〉|). (14)

In Publ. [P7] we show that this inequality is always tight if the two measurement bases are sta-
bilizer bases and that tightness occurs for any of the basis states. Stabilizer bases are a gener-
alization of graph states, a class of states with very distinct entanglement properties [59]. We
furthermore study a class of entropic uncertainty relations that are generalized to a collection of
anticommuting observables.

4 Evaluation of experimental data

Several publications included in this thesis contain an experimental demonstration of a theoret-
ical prediction [P1, P4, P21, P26, P27]. The data obtained in these experiments is typically very
clean in the sense that it depends only weakly on the experimental setup or only on parameters
that are very well known, for example the orientation of a polarization measurement for photons.
However, most of these experiments can only collect a rather low number of samples, so that the
statistical fluctuations dominate over the uncertainty originating in the lack of knowledge over
parameters in the experiment. For these reasons, the statistical evaluation of the data becomes
an important aspect.

Measurement schemes with improved statistical properties

It can be beneficial to already incorporate data evaluation concerns into the design of an exper-
iment. A powerful tool to verify the entanglement of a state are entanglement witnesses [9].
An entanglement witness is a Hermitian operator W with 〈W〉 ≥ 0 for all separable states, but
〈W〉 < 0 for some entangled states. In particular, Bell inequalities can be reformulated as en-
tanglement witnesses. In an experiment, the aim is to verify 〈W〉 < 0 with a high statistical
significance S = −〈W〉/(∆W). In Publ. [P4] we show that for pure quantum states, W can be
always improved to yield a higher significance, unless it is already an eigenstate of 〈W〉. Since in
many situations the target state is a pure state, this is a widely applicable result. However, one
also has to consider that the observable W is in most cases not directly accessible, but has to be
measured in a particular decomposition of local observables, such that W = ∑i Ai ⊗ Bi ⊗ · · · . In
an experiment, each term in the sum is measured separately, and hence each term suffers from
statistical fluctuations. We show that in this situation, even under different models for experi-
mental imperfections, a careful choice of the observable W and its decomposition can increase
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the statistical significance [P4]. This effect is also demonstrated in an experiment with photons
[P4].

In general, measuring a single observable is by far not enough to verify the properties of a
quantum state. A notoriously demanding case are bound entanglement states. Roughly speak-
ing, a bipartite quantum state is bound entangled if it is entangled, but even if both parties share
an arbitrary number of those bound entangled states, they cannot produce a single maximally
entangled state of the form |ψ〉 = (|01〉 − |10〉)/

√
2 using only local manipulations, cf. Ref. [7],

Section XII. Several experiments have been performed with the aim to demonstrate a prepara-
tion of such a state, cf. Publ. [P28] for a discussion. A main difficulty is that in low dimensional
Hilbert spaces, the set of bound entangled states is a rather small region within the set of density
operators. Hence one has to find a state that is particularly robust to experimental imperfections
and one needs to find a statistical hypothesis test that allows one to decide whether the experi-
mental data can provide evidence for the preparation of a bound entangled state. In Publ. [P28]
we develop methods to efficiently find bound entangled states that are particularly well-suited
for experimental detection. Based on the noncentral χ2-distribution we develop a statistically
robust hypothesis test and we find that a rigorous experiment is within current experimental
capabilities.

Statistical tools for quantum state tomography

Quite often, experiments obtain full tomographic data, however, with a rather low number of
samples. The data consists then of the relative frequencies of occurrence f (i, j, . . . |a, b, . . . ) for
each outcome and each measurement setting. The frequencies are distributed according to the
probabilities p(i, j, . . . |a, b, . . . ) in Eq. (5). Since p depends linearly on ρ, it is tempting to re-
place p by f in Eq. (5) and to invert the equation in order to obtain an estimate for ρ. Apart
from minor technical details, such a procedure is valid in principle and is called linear inversion
or unconstrained least squares [60]. A more sophisticated method is the maximum likelihood
reconstruction [61], where the estimated density operator is the operator that maximizes the
likelihood L(ρ| f ) = Prob( f |ρ). In order to ensure that the solution is a valid quantum state, the
optimization is restricted accordingly. The main criticism to this method is that it does not yield a
confidence region. This problem is most commonly overcome by the bootstrapping method [62],
where one simulates the experiment based on the data in order to approximate the distribution
of the reconstructed states. In turn, this allows one to estimate the variance. This method is the
most commonly used method for the evaluation of the data in quantum state tomography.

However, maximum likelihood estimation and bootstrapping do not yield reliable estimates:
In Publ. [P16] we show that in realistic scenarios this method is biased and the estimated error
bar does not even contain the true state. In addition, we observe a tendency of the method to
reconstruct states that are more entangled than the actual states in the experiment. We explain
and explore this phenomenon in Publs. [P16, P20]. As an alternative we suggest to use the lin-
ear inversion scheme and provide practical methods for computing confidence intervals. Other
computable error regions for density operators have been suggested recently [63–65].

The main assumption that enters the analysis of tomographic data is the characterization of
the measurements. To which extend this characterization is valid has to be estimated from the
experimental setup. However, one can use the experimental data in order verify this assumption.
There are two major reasons why this is possible. First, in most situations, the measurement
outcomes form an overcomplete set, that is, already a smaller subset of the projectors (or effect
operators) would span the set of Hermitian operators. Hence, there are certain linear relations
between the operators, which lead to linear relations between the probabilities p(i, j, . . . |a, b, . . . ).
These relations need to be satisfied by the observed frequencies within the error margin. This can
be tested, for example, using Hoeffding’s tail inequality [66] or Wilks theorem [67]. We introduce
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this method in Publ. [P11] and show that it can be successfully applied to experimental data.
Second, we can use that the two defining constraints of a density operator are normalization

and positive semidefiniteness. The former condition is automatically satisfied due to the normal-
ization of frequencies. The latter condition, however, is usually not satisfied for linear inversion,
in particular if the experimental state is close to a pure state. This is the case because then many
eigenvalues are close to zero and due to statistical fluctuations some of them can become nega-
tive [68]. However, within the statistical uncertainty, the experimental data has to be compatible
with a positive semidefinite operator. We show that this property is efficiently tested by testing
whether different fractions of the data yield a significant negative expectation value 〈η|ρ|η〉 for
the same vector |η〉 [P11]. This second test turns out to be even more efficient than the first one
and can detect already very small deviations in the alignment of the measurement settings.

Contributions to Publications

For all publications, I participated in the development of the results, verified the statements and
findings, and contributed to the writing of the manuscript. Below, I specify my main contri-
butions to each publication. [P1] I developed the model for the imperfect measurements and
contributed to the design of the experiment. [P2] I proved the main result and analyzed the
translationally invariant case. [P3] I developed the definitions, the first error model, and the
hidden variable model explaining all quantum-mechanical predictions. [P4] I proved the obser-
vation and developed the error model. [P5] I provided the definitions, developed and proved
the main theorem, and studied the examples. [P6] I developed the concept and definition of
memory cost, provided the automatons for the Peres–Mermin square, and proved the theorems.
[P7] I developed the proofs for the statements in Sections IV and V. [P8] I developed and for-
mulated the method for optimizing the inequalities and optimized the specific inequalities. [P9]
I developed the main result and the statement of the propositions and proved the propositions.
[P10] I analyzed the problems in the criticized experiment. [P11] I developed the central idea, the
witness tests, the discussion of the negative eigenvalues, the likelihood ratio test, and performed
the data analysis. [P12] I developed the problem statement and the hidden variable model. [P13]
I developed the concept, provided the “the simplified method,” and performed the according
numerical analysis. [P14] I proved the results in Sections II–IV. [P15] I am the sole author. [P16]
I developed the problem statement, analyzed the numerical results, and proved the proposition.
[P17] I proved the theorems, in particular Theorems 3 and 4 and I wrote the computer code for
proving Theorem 4. [P18] I developed the techniques to prove the main result, in particular
Lemmas 2 and 3 and I wrote the computer code for searching all graphs. [P19] I discovered
and proved the main theorem and performed the numerical analysis of the experiments. [P20]
I developed the results and the presentation of the section “Systematic Errors in Quantum Ex-
periments” (cf. also Publ. [P16]). [P21] I developed the inequality, was closely involved in the
design of the experiment, and analyzed the data. [P22] I derived Observation 2 and extended
the inequality to fluctuating particle numbers. [P23] I proofed the main result in Section II and
Observation 2 and developed the numerical analysis for the Dicke states. [P24] I developed the
problem statement, the definition of the mixtures of automatons, proved the main result, and
provided the methods in the appendix. [P25] I developed and implemented the concepts and
the methods to find the inequalities and analyzed the resulting inequalities. [P26] I provided the
theory part, was closely involved in the design of the experiment, and evaluated the data. [P27]
I improved the derivation of the entanglement criterion and contributed to the evaluation of the
data. [P28] I analyzed the problem, provided the methods for constructing the bound entangled
ball, and developed the methods for the statistical evaluation.
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The question of whether quantum phenomena can be explained by classical models with hidden
variables is the subject of a long lasting debate[1]. In 1964, Bell showed that certain types of
classical models cannot explain the quantum mechanical predictions for specific states of distant
particles[2]. Along this line, some types of hidden variable models have been experimentally ruled
out[3, 4, 5, 6, 7, 8, 9]. An intuitive feature for classical models is non-contextuality: the property
that any measurement has a value which is independent of other compatible measurements being
carried out at the same time. However, the results of Kochen, Specker, and Bell[10, 11, 12] show
that non-contextuality is in conflict with quantum mechanics. The conflict resides in the structure
of the theory and is independent of the properties of special states. It has been debated whether
the Kochen-Specker theorem could be experimentally tested at all[13, 14]. Only recently, first tests
of quantum contextuality have been proposed and undertaken with photons[15] and neutrons[16,
17]. Yet these tests required the generation of special quantum states and left various loopholes
open. Here, using trapped ions, we experimentally demonstrate a state-independent conflict with
non-contextuality. The experiment is not subject to the detection loophole and we show that,
despite imperfections and possible measurement disturbances, our results cannot be explained in
non-contextual terms.

PACS numbers:

Hidden variable models assert that the result v(A)
of measuring the observable A on an individual quan-
tum system is predetermined by a hidden variable λ.
Two observables A and B are mutually compatible, if
the result of A does not depend on whether B is mea-
sured before, after, or simultaneously with A and vice
versa. Non-contextuality is the property of a hidden
variable model that the value v(A) is determined, re-
gardless of which other compatible observable is mea-
sured jointly with A. As a consequence, for compati-
ble observables the relation v(AB) = v(A)v(B) holds.
Kochen and Specker showed that the assumption of non-
contextuality cannot be reconciled with quantum me-
chanics. A considerable simplification of the original
Kochen-Specker argument by Mermin and Peres[18, 19]
uses a 3× 3 square of observables Aij with possible out-
comes v(Aij) = ±1, where the observables in each row
or column are mutually compatible. Considering the
products of rows Rk = v(Ak1)v(Ak2)v(Ak3) and columns
Ck = v(A1k)v(A2k)v(A3k), the total product would be∏

k=1,2,3 RkCk = 1, since any v(Aij) appears twice in
the total product.

In quantum mechanics, however, one can take a four-
level quantum system, for instance two spin- 12 -particles,

∗Electronic address: christian.roos@uibk.ac.at

and the following array of observables,

A11 = σ
(1)
z A12 = σ

(2)
z A13 = σ

(1)
z ⊗ σ

(2)
z

A21 = σ
(2)
x A22 = σ

(1)
x A23 = σ

(1)
x ⊗ σ

(2)
x

A31 = σ
(1)
z ⊗ σ

(2)
x A32 = σ

(1)
x ⊗ σ

(2)
z A33 = σ

(1)
y ⊗ σ

(2)
y .

(1)

Here, σ
(k)
i denotes the Pauli matrix acting on the k-th

particle, and all the observables have the outcomes ±1.
Moreover, in each of the rows or columns of (1), the ob-
servables are mutually commuting and can be measured
simultaneously or in any order. In any row or column,
their measurement product Rk or Ck equals 1, except for
the third column where it equals −1. Hence, quantum
mechanics yields for the product

∏
k=1,2,3 RkCk a value

of −1, in contrast to non-contextual models.
To test this property, it has to be expressed as an in-

equality since no experiment yields ideal quantum mea-
surements. Recently, it has been shown that the inequal-
ity

〈XKS〉 = 〈R1〉+〈R2〉+〈R3〉+〈C1〉+〈C2〉−〈C3〉 ≤ 4 (2)

holds for all non-contextual theories[20], where 〈· · · 〉 de-
notes the ensemble average. Quantum mechanics pre-
dicts for any state that 〈XKS〉 = 6, thereby violating
inequality (2). For an experimental test, an ensemble
of quantum states Ψ needs to be prepared and each re-
alization subjected to the measurement of one of the
possible sets of compatible observables. Here, it is of
utmost importance that all measurements of Aij are
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FIG. 1: Experimental measurement scheme. a For the mea-
surement of the jth row (column) of the Mermin-Peres square
(1), a quantum state is prepared on which three consecutive
QND measurements Mk, k = 1, 2, 3, are performed measuring
the observables Ajk (Akj). Each measurement consists of a
composite unitary operation Uk that maps the observable of

interest onto one of the single-qubit observables σ
(1)

z or σ
(2)

z

which are measured by fluorescence detection. To this end,
the quantum state of the qubit that is not to be detected
is hidden[22] in the D5/2-Zeeman state manifold by a com-
posite π-pulse transferring the | ↓〉 state’s population to the
auxiliary state |a〉 ≡ |D5/2,m = 5/2〉 prior to fluorescence
detection. After the detection, the qubit state is restored.
In the lower line, σi, σ̃i symbolize the Hamiltonian acting
on the qubit or on the subspace spanned by {| ↓〉, |a〉}. The
unitary operations U are synthesized from single-qubit and
maximally entangling gates. b All mapping operations Uk

employed for measuring the five two-qubit spin correlations

σ
(1)

i ⊗ σ
(2)

j require an entangling gate. Here, we list the gate

decompositions of U [σ
(1)

i ⊗σ
(2)

j ] used in the experiments where
UX(θ) ≡ U(θ, φ = 0) and UY (θ) ≡ U(θ, φ = π/2).

context-independent[20], i.e., Aij must be detected with
a quantum non-demolition (QND) measurement that
provides no information whatsoever about any other co-
measurable observable.
Experiments processing quantum information with

trapped ions[21] are particularly well-suited for this pur-
pose as arbitrary two-qubit quantum states Ψ can be
deterministically generated by laser-ion interactions and
measured with near-unit efficiency[6]. Two ionic energy
levels are defined to represent the qubit basis states | ↑〉
and |↓〉, which are eigenstates of the observable σz . The
qubit is measured by electron shelving[21] projecting onto
|↑〉 or |↓〉. Measurement of any other observableAij is re-

duced to detecting σ
(k)
z , k=1 or 2, by applying a suitable

unitary transformation U to the state Ψ prior to measur-

ing σ
(k)
z , and its inverse U † after the measurement (see

Fig. 1 and Methods). With these basic tools, any set of
observables can be sequentially measured in an arbitrary
temporal order.
For the experiment, a pair of 40Ca+ ions is trapped in

a linear Paul trap with axial and radial vibrational fre-
quencies of ωax = (2π) 1.465MHz and ωr ≈ (2π) 3.4 MHz
and Doppler-cooled by exciting the S1/2 ↔ P1/2 and
P1/2 ↔ D3/2 dipole transitions. Optical pumping ini-

tializes an ion with a fidelity of 99.5% to the qubit state
| ↓〉 ≡ |S1/2,m = 1/2〉, the second qubit state be-
ing | ↑〉 ≡ |D5/2,m = 3/2〉. The qubit is coherently
manipulated[23] by an ultrastable, narrowband laser co-
herently exciting the S1/2 ↔ D5/2 quadrupole transition
in a magnetic field of B = 4 Gauss. Single-qubit light-

shift gates U
(1)
z (θ) = exp(−i

θ
2σ

(1)
z ) are realized by an

off-resonant beam impinging on ion 1 with a beam waist
of 3µm and a k-vector perpendicular to the ion string. A
second beam, illuminating both ions with equal strength
at an angle of 45◦ with respect to the ion crystal, serves
to carry out gate operations that are symmetric under
qubit exchange. Collective single-qubit gates U(θ, φ) =

exp(−i
θ
2 (σ

(1)
φ + σ

(2)
φ )), where σφ = cos(φ)σx + sin(φ)σy ,

are realized by resonantly exciting the qubit transition
and controlling the phase φ of the laser light. If in-
stead a bichromatic light field near-resonant with the up-
per and lower sideband transitions of the axial centre-of-
mass (COM) mode is used, a Mølmer-Sørensen gate[24]

UMS(θ, φ) = exp(−i
θ
2σ

(1)
φ ⊗σ

(2)
φ ) is implemented[23, 25].

We achieve a maximally entangling gate (θ = π/2) capa-
ble of mapping | ↓↓〉 to | ↓↓〉 + ie−i2φ| ↑↑〉 with a fidelity
of about 98% even for Doppler-cooled ions in a ther-
mal state with an average of n̄ax,COM ≈ 18 vibrational
quanta. This property is of crucial importance as the ex-
periment demands gate operations subsequent to quan-
tum state detection by fluorescence measurements which
do not preserve the motional quantum number. The set

of elementary gates[26] {U (1)
z (θ), U(θ, φ), UMS(θ, φ)} is

sufficient to construct the two-qubit unitary operations
needed for creating various input states Ψ and mapping

the observables Aij to σ
(k)
z for read-out (see Methods).

Equipped with these tools, we create the singlet
state Ψ = (| ↑↓〉 − | ↓↑〉)/

√
2 by applying the gates

U
(1)
z (π)U(π2 ,

3π
4 )UMS(π2 , 0) to the initial state | ↓↓〉 and

measure consecutively the three observables of a row or
column of the Mermin-Peres square. The results ob-
tained for a total of 6,600 copies of Ψ are visualized in
Fig. 2. The three upper panels show the distribution of
measurement results {v(Ai1), v(Ai2), v(Ai3)}, their prod-
ucts as well as the expectation values 〈Aij〉 for the ob-
servables appearing in the rows of (1), the three lower
panels show the corresponding results for the columns of
the square. All of the correlations have a value close to
+1 whereas 〈C3〉 = −0.913. By adding them up and sub-
tracting 〈C3〉, we find a value of 〈XKS〉 = 5.46(4) > 4,
thus violating equation (2).

To test the prediction of a state-independent viola-
tion, we repeated the experiment for nine other quantum
states of different purity and entanglement. Figure 3
shows that indeed a state-independent violation of the
Kochen-Specker inequality occurs, 〈XKS〉 ranging from
5.23(5) to 5.46(4). We also checked that a violation of (2)
occurs irrespective of the temporal order of the measure-
ment triples. Figure 4 shows the results for all possible
permutations of the rows and columns of (1) based on
39,600 realizations of the singlet state. When combining
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FIG. 2: Measurement correlations for the singlet state. a

This subplot visualizes the consecutive measurement of the

three observables A11 = σ
(1)

z , A12 = σ
(2)

z , A13 = σ
(1)

z ⊗ σ
(2)

z

corresponding to row 1 of the Mermin-Peres square. The
measurement is carried out on 1,100 preparations of the sin-
glet state. The volume of the spheres on each corner of the
cube represents the relative frequency of finding the measure-
ment outcome {v1, v2, v3}, vi ∈ {±1}. The color of the sphere
indicates whether v1v2v3 = +1 (green) or −1 (red). The mea-
sured expectation values of the observables A1j are indicated
by the intersections of the shaded planes with the axes of the
coordinate system. The average of the measurement prod-
uct 〈R1〉 is given at the top. b-f Similarly, the other five
subplots represent measurements of the remaining rows or
columns of the Mermin-Peres square. Subplot f demonstrates
that the singlet state is a common eigenstate of the observ-

ables σ
(1)

x ⊗ σ
(2)

x , σ
(1)

y ⊗ σ
(2)

y , σ
(1)

z ⊗ σ
(2)

z , as only one of the
spheres has a considerable volume. Taking into account all
the results, we find 〈XKS〉 = 5.46(4) in this measurement.
Error bars, 1σ.

the correlation results for the 36 possible permutations
of operator orderings in equation (1), we find an aver-
age of 〈XKS〉 = 5.38. Because of experimental imperfec-
tions, the experimental violation of the Kochen-Specker
inequality falls short of the quantum-mechanical predic-
tion. The dominating error source are imperfect unitary
operations, in particular the entangling gates applied up
to six times in a single experimental run.

All experimental tests of hidden-variable theories are
subject to various possible loopholes. In our experiment,
the detection loophole does not play a role, as the state of
the ions are detected with near-perfect efficiency. From
the point of view of a hidden variable theory, still objec-
tions can be made: In the experiment, the observables
are not perfectly compatible and since the observables
are measured sequentially, it may be that the hidden vari-
ables are disturbed during the sequence of measurements,
weakening the demand to assign to any observable a fixed
value independently of the context.

Nevertheless, it is possible to derive inequalities for
classical non-contextual models, wherein the hidden vari-
ables are disturbed during the measurement process (see
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FIG. 3: State-independence of the Kochen-Specker inequal-
ity. The Kochen-Specker inequality was tested for ten differ-
ent quantum states, including maximally entangled (Ψ1-Ψ3),
partially entangled (Ψ4) and separable (Ψ6-Ψ9) almost pure
states as well as an entangled mixed state (ρ5) and an al-
most completely mixed state (ρ10). All states are analysed
by quantum state tomography which yields for the experi-
mentally produced states Ψ1-Ψ4, Ψ6-Ψ9 an average fidelity
of 97(2)%. For all states, we obtain a violation of inequal-
ity (2) which demonstrates its state-independent character,
the dashed line indicating the average value of 〈XKS〉. Error
bars, 1σ (6,600 state realizations per data point).
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FIG. 4: Permutation within rows and columns of the Mermin-
Peres square. As the three observables of a set are commut-
ing, the temporal order of their measurements should have
no influence on the measurement results. The figure shows
the measured absolute values of the products of observables
for any of the six possible permutations. By combining the
results for the measurement of rows and columns, we obtain
36 values for the Kochen-Specker inequality ranging from 5.22
to 5.49, the average value given by 5.38. The scatter in the
experimental data is caused by experimental imperfections
that affect different permutations differently. For the mea-
surements shown here, in total 39,600 copies of the singlet
state were used.

Methods). More specifically, it can be proved that then
the probabilities of measurement outcomes obey the in-
equality

〈XDHV 〉 = 〈A12A13〉+ 〈A22A23〉+ 〈A12A22〉 − 〈A13A23〉
−2perr[A13A12A13]− 2perr[A23A22A23] (3)

−2perr[A22A12A22]− 2perr[A23A13A23] ≤ 2.
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Here, 〈AiAj〉 = 〈v(Ai)v(Aj)〉 denotes the ensemble aver-
age, if Ai is measured before Aj and perr[AiAjAi] denotes
the probability that measuring Aj introduces a change
on the value of Ai if the sequence AiAjAi is measured.
To test this inequality, we prepared the state Ψ ∝ | ↑↑
〉+iγ|↓↑〉+γ|↑↓〉+i|↓↓〉where γ =

√
2−1, and measured

the Mermin-Peres square with σy and σz exchanged. We
find for the whole square the value 〈XKS〉 = 5.22(10) > 4,
and for Eq. (3) the value 〈XDHV 〉 = 2.23(5) > 2. This
proves that even disturbances of the hidden variables for
not perfectly compatible measurements cannot explain
the given experimental data.
In principle, our analysis of measurement disturbances

and dynamical hidden variable models can be extended to
the full Mermin-Peres square, however, the experimental
techniques have to be improved to find a violation there.
Our findings show already unambiguously that the ex-
perimentally observed phenomena cannot be described
by non-contextual models. Remarkably, here the experi-
mental observation of counter-intuitive quantum predic-
tions did not require the preparation of specific entangled
states with non-local correlations. We expect this result
to stimulate new applications of quantum contextuality
for quantum information processing[27, 28, 29, 30].

Methods

Quantum state detection. The quantum state
of a single ion is detected by illuminating both ions
with light near the S1/2 ↔ P1/2 transition frequency
for 250µs. To prevent the quantum information of the
other ion from being read out, its | ↓〉 state population
is transferred to (from) the D5/2,m = 5/2 level before
(after) the fluorescence measurement. The parameters
of the read-out laser are set such that it keeps the
axial COM-mode in the Lamb-Dicke regime[21] with
n̄COM ≈ 18. By combining the counts of two pho-
tomultipliers, we observe a Poissonian distribution of
photon counts in the detection window with average
count numbers n↑ ≈ 7.8 and n↓ ≈ 0.07 in the bright and
dark state, respectively. Setting the detection threshold
to 1.5 counts, the conditional probabilities for wrong
quantum state assignments amount to p(↑ | ↓) ≈ 0.24%
and p(↓ | ↑) ≈ 0.39%. At the end of the detection
interval, the ion is optically pumped on the S1/2 ↔ P1/2

to prevent leakage of population from the qubit level |↓〉
to the state |S1/2,m = −1/2〉.

QND measurements of spin correlations.

Quantum non-demolition measurements of observables
Aij that measure spin correlations are carried out by
mapping the subspace H+

Aij
= {ψ|Aijψ = ψ} onto

the subspace H+

σ
(2)
z

= {ψ|σ(2)

z ψ = ψ} prior to the

fluorescence measurement of σ
(2)

z . This is achieved by
applying a unitary state transformation Uij satisfying

Aij = U
†

ijσ
(2)

z Uij to the two-qubit state of interest.

To decompose Uij into the elementary gate operations
available in our setup, we use a gradient-ascent based
numerical search routine[26]. After measurement of

σ
(2)

z , the inverse operation U
†

ij completes the QND
measurement.

Modeling imperfect measurements. To deal with
the case of imperfect measurements from a hidden vari-
able viewpoint, let us assume that there is a hidden vari-
able λ which simultaneously determines the probabilities
of the results of all sequences of measurements. Such
probabilities are written as p[A(1)+, B(2)−;AB] etc., de-
noting the probability for the result A(1) = +1 and
B(2) = −1 when measuring first A and then B. Then
the probabilities fulfill

p[(A(1)+;A) ∧ (B(1)+;B)] ≤ p[A(1)+
, B

(2)+;AB]

+p[(B(1)+;B) ∧ (B(2)−;AB)]. (4)

This inequality holds because if λ is such that it con-
tributes to p[(A(1)+;A) ∧ (B(1)+;B)], then either the
value of B stays the same when measuring A and λ

contributes to p[A(1)+, B(2)+;AB], or it is flipped and
it contributes to p[(B(1)+;B) ∧ (B(2)−, AB)]. The term
p[A(1)+, B(2)+;AB] is directly measurable and we esti-
mate the other term by assuming

p[(B(1)+;B) ∧ (B(2)−;AB)] ≤ p[B(1)+
, B

(3)−;BAB].
(5)

This inequality means that the disturbance of a pre-
determined value of B caused by the measurement of
B and A should be larger than the disturbance due to
measurement of A alone, as the former includes addi-
tional experimental procedures compared with the lat-
ter. The probability p[B(1)+, B(3)−;BAB] is experi-
mentally accessible and combining Eq. (4) and (5) we
obtain a measurable upper bound on p[(A(1)+;A) ∧
(B(1)+;B)]. Then, starting from the Clauser-Horne-
Shimony-Holt-type inequality[20] 〈AB〉+〈CD〉+〈AC〉−
〈BD〉 ≤ 2 which holds for simultaneous or undis-
turbed measurements, using the above bounds and
the notation perr[BAB] = p[B(1)+, B(3)−;BAB] +
p[B(1)−, B(3)+;BAB], one arrives at the inequality (3),
which then holds for sequences of measurements.
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The geometric measure of entanglement for symmetric states
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Is the closest product state to a symmetric entangled multiparticle state also symmetric? This

question has appeared in the recent literature concerning the geometric measure of entanglement.

First, we show that a positive answer can be derived from results concerning symmetric multilinear

forms and homogeneous polynomials, implying that the closest product state can be chosen to be

symmetric. We then prove the stronger result that the closest product state to any symmetric

multiparticle quantum state is necessarily symmetric. Moreover, we discuss generalizations of our

result and the case of translationally invariant states, which can occur in spin models.

PACS numbers: 03.67.Mn, 02.10.Xm, 03.67.-a

I. INTRODUCTION

Entanglement is a key phenomenon in quantum me-
chanics and its quantification is vital for the field of quan-
tum information theory. Many entanglement measures
have been proposed for the two-particle as well as for
the multiparticle case [1, 2]. Virtually all of the pro-
posed entanglement measures, however, suffer a serious
drawback: They are very difficult to compute as their
definition contains optimizations over certain states or
quantum information protocols [3]. Such optimizations
can be performed successfully for special cases only, for
instance, if the density matrix under investigation pos-
sesses a high symmetry or belongs to a special family,
e.g., with low rank [4].
An often-used entanglement measure for multiparticle

systems is the geometric measure of entanglement [5].
For a given multiparticle state |ψ〉, one first considers the
closest fully separable state |φ〉 = |a〉|b〉|c〉 · · · in terms of
the overlap

G(ψ) = max
|φ〉=|a〉|b〉|c〉···

|〈ψ|φ〉|, (1)

and then defines the geometric measure of the pure state
as

EG(|ψ〉) = 1−G(ψ)2. (2)

Sometimes, the geometric measure for pure states is also
taken as εG(|ψ〉) = −2 log2 G(ψ). Based on this defini-
tion, the geometric measure is extended to mixed states
via the convex roof construction: For a given density ma-
trix ̺ one minimizes over all possible decompositions of
̺ into pure states ̺ =

∑
k pk |φk〉〈φk|, where the pk form

a probability distribution,

EG(̺) = min
pk,|φk〉

∑

k

pkEG(|φk〉). (3)

Clearly, also this optimization is not straightforward to
compute.

The geometric measure has become one of the widely
used entanglement measures for the multiparticle case.
It fulfills all the desired properties of an entanglement
monotone [5]. Moreover, it has a physical interpretation
of quantifying the difficulty in distinguishing multiparti-
cle quantum states by local means [6]. It has also been
used to study quantum phase transitions in spin mod-
els [7, 8] and the usefulness of states as resources for mea-
surement based quantum computation [9]. The value of
EG has been computed for many pure states [10, 11, 12],
and the convex roof for some important cases has been
calculated in Refs. [5, 13].

If one considers the optimization problem in Eq. (1),
a natural question arises whether for a symmetric state
|ψ〉 the closest product state can be chosen symmetric,
i.e., |φ〉 = |a〉|a〉|a〉 · · · . If this is true, it drastically sim-
plifies the calculation of the geometric measure for pure
symmetric states, as the number of parameters in this
optimization then does not depend on the number of par-
ticles anymore. Recently this problem drew considerable
attention in quantum information theory and some ef-
fort was made to prove it. For example, it has been
used as a conjecture in Ref. [5]. In Ref. [11] it has been
proved for two particles that there is always a symmetric
state which gives the maximum value (but it can hap-
pen that also non-symmetric states yield the same value)
and a first attempt for the N -particle case was given.
Quite recently, special cases of this conjecture have been
verified [14], and related conjectures have been formu-
lated [15].

In this paper, we investigate the conjecture from
several perspectives. We show that a result on N -
homogeneous polynomials over Banach spaces can be ap-
plied to the above problem and proves that the maximum
in Eq. (1) can be achieved by a symmetric state. How-
ever, this result does not allow to conclude that only sym-
metric solutions exist. We then go on to show that the
optimal state maximizing G(ψ) is necessarily symmetric
for three or more particles. Finally, we will discuss con-
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III. DISCUSSION

A. Physical interpretation of the proof

An interpretation of the proof of Lemma 1 in physical
terms is the following. The matrices A,B,N and M in
Eq. (15) are representations of the state |ψ〉, after one site
has been measured out and the remaining state has been
projected onto a two-dimensional subspace. The values
ri correspond to Schmidt coefficients of this remaining
state and, as they are equal, the state corresponds to a
Bell state. The proof of Lemma 1 shows that for qubits
it is impossible to create a state of three particles that
is both symmetric and always results in a Bell-pair like
state after an arbitrary measurement on one site.

B. Translationally invariant states

It is interesting to ask whether also for translationally
invariant states the maximum is attained in a symmetric
state, as such states occur naturally in the analysis of
spin models. This has sometimes been assumed when
investigating the geometric measure in condensed matter
systems.
First, a counterexample for this conjecture is the state

|ψ〉 = 1√
2
(|0101〉+ |1010〉) (20)

for which the closest separable states are the non-
symmetric states |0101〉 and |1010〉. In fact, one can
find translationally invariant states which are orthogo-
nal to any symmetric product state, e.g., |ψ〉 ∼ (|0101〉−
|0011〉+ all translations).
This situation gets worse as the number of particles

increases. Let T denote the subspace of translationally
invariant states for N qukits and let S ⊂ T be the per-
mutationally symmetric subspace. Then any state in
X = T ∩ S⊥ – the orthocomplement of S in T – has
a vanishing overlap with any symmetric product state,
hence the closest product state is not symmetric. The
dimension of T is given by [23]

dim(T ) =
1

N

∑

j|N

ϕ(j) kN/j
, (21)

where ϕ denotes Euler’s totient function and the sum-
mation is over all divisors j of N . For S we have

dim(S) =
(
N + k − 1

k − 1

)

. (22)

Therefore, if N ≫ k then the dimension of the subspace
X is roughly given by (kN −Nk)/N and the fraction of
states where the conjecture holds shrinks rapidly as the
number of particles increases.
Concerning the analysis of entanglement in spin mod-

els, this shows that the assumption that the closest sep-
arable state to the ground state is symmetric, has to

be handled with care. For some models, it seems to be
true [8, 24], for other models (like the Majumdar-Ghosh
model [25]) one can directly check that it is wrong.

C. Operators of higher rank

We now consider generalizations of our results. Let
ΠS be the projector onto the symmetric subspace S. An
operator A is permutationally symmetric if it acts on the
symmetric subspace only, i.e., it fulfills A = ΠSAΠS .
A is called permutationally invariant if it is invariant
under permutation of the particles (the latter is a weaker
condition than the former [26]). We hence define for an
observable X

Ĝ(X) := max
|ϕ〉=|a〉|b〉|c〉···

|〈ϕ|X |ϕ〉|

ĜS(X) := max
|ϕ〉=|a〉···|a〉

|〈ϕ|X |ϕ〉|
(23)

Such optimizations occur naturally in the construction of
entanglement witnesses or in the estimation of entangle-
ment measures via Legendre transforms [2].
To study the relation of these quantities, we can write

〈ϕ|X |ϕ〉 = Tr [X |ϕ〉〈ϕ|] as an evaluation of a correspond-
ing N -linear form ξ over Hk (the Banach space of Her-
mitian matrices of dimension k equipped with the trace
norm) due to

ξ(A1, . . . , AN ) = Tr [XA1 ⊗ · · · ⊗AN ] . (24)

Then any permutationally invariant operator X cor-
responds to a symmetric N -linear form ξ and an N -

homogeneous polynomial ξ̂. We now define ‖ξ‖ and

‖ξ̂‖ analogously to Section II (using ‖A‖ = 1 as nor-
malization condition). It is straightforward to see that

Ĝ(X) = ‖ξ‖ and ĜS(X) = ‖ξ̂‖. As the polarization
constant can be shown to be [27]

c(N,H
k) = N

N
/N ! for N ≤ k, (25)

the quotient Ĝ(X)/ĜS(X) can get arbitrarily large as N
and k increase.
At the end of this section, we will provide a further

explicit example. Let us first discuss some cases where
symmetry assumptions do hold:

Corollary 5. (i) If X is a positive permutationally sym-

metric observable then Ĝ(X) can be attained by a sym-
metric state.
(ii) If X is a permutationally invariant N -qubit observ-

able that contains only full correlation terms, then Ĝ(X)
can be attained by a symmetric state.

Proof. (i) We note that

Ĝ(X) ≤ max
|ψ〉=|b1〉···|bn〉

max
|ϕ〉=|a1〉···|an〉

|〈ϕ|X |ψ〉|. (26)

Fixing |ψ〉, the (unnormalized) state X |ψ〉 = ΠSXΠS |ψ〉
is symmetric and by virtue of Lemma 1 the maximum
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A basic assumption behind the inequalities used for testing noncontextual hidden variable models
is that the observables measured on the same individual system are perfectly compatible. However,
compatibility is not perfect in actual experiments using sequential measurements. We discuss the
resulting “compatibility loophole” and present several methods to rule out certain hidden variable
models which obey a kind of extended noncontextuality. Finally, we present a detailed analysis of
experimental imperfections in a recent trapped ion experiment and apply our analysis to that case.

PACS numbers: 03.65.Ta, 03.65.Ud, 42.50.Xa

I. INTRODUCTION

Since the early days of quantum mechanics (QM), it
has been debated whether or not QM can be completed
with additional hidden variables (HVs), which would
eventually account for the apparent indeterminism of the
results of single measurements in QM, and may end into
a more detailed deterministic description of the world
[1–3]. The problem of distinguishing QM from HV the-
ories, however, cannot be addressed unless one makes
additional assumptions about the structure of the HV
theories. Otherwise, for a given experiment, one can
just take the observed probability distributions as a HV
model [4]. Moreover, there are explicit HV theories, such
as Bohmian mechanics [5, 6], which can reproduce all
experiments up to date.
In the 1960s, it was found out that HV models repro-

ducing the predictions of QM should have some peculiar
and highly nonclassical properties. The most famous re-
sult in this direction is Bell’s theorem [7]. Bell’s theorem
states that local HV models cannot reproduce the quan-
tum mechanical correlations between local measurements
on some entangled states. In principle, the theorem just
states a conflict between two descriptions of the world:
QM and local HV models. However, the proof of Bell’s
theorem by means of an inequality involving correlations
between measurements on distant systems, which is sat-
isfied by any local HV model, but is violated by some
quantum predictions [8], allows us to take a step further
and test whether or not the world itself can be described
by local HV models [9–13]. More recently, a similar ap-
proach has been used to test whether or not the world
can be reproduced with some specific nonlocal HV mod-
els [14–16].
A second seminal result on HV models reproducing

QM is the Kochen-Specker (KS) theorem [17–19]. To
motivate it, one first needs the notion of compatible mea-

surements: two or more measurements are compatible, if
they can be measured jointly on the same individual sys-
tem without disturbing each other (i.e., without altering
their results). Compatible measurements can be made
simultaneously or in any order, and can be repeated any
number of times on the same individual system and al-
ways must give the same result independently of the ini-
tial state of the system.

Second, one needs the notion of noncontextuality. A
context is a set of compatible measurements. A physical
model is called noncontextual if it assigns to a measure-
ment a result independently of which other compatible
measurements are carried out. There are some scenar-
ios where the assumption of noncontextuality is specially
plausible. For instance, in the case of measurements on
distant systems, or in the case that the measurements
concern different degrees of freedom of the same sys-
tem and the degrees of freedom can be accessed inde-
pendently.

In a nutshell, the KS theorem states that noncontex-
tual HV models cannot reproduce QM. This impossibility
occurs already for a single three-level system, so it is not
related to entanglement.

There have been several proposals to test the KS theo-
rem [20–24], but there also have been debates whether the
KS theorem can be experimentally tested at all [25–34].
Nevertheless, first experiments have been performed, but
these experiments required some additional assumptions
[35–37, 45]. Furthermore, the notion of contextuality has
been extended to state preparations [38] and experimen-
tally investigated [39].

Quite recently, several inequalities have been proposed
which hold for all noncontextual models, but are violated
in QM, potentially allowing for a direct test [40–43]. A
remarkable feature of some noncontextuality inequalities
is that the violation is independent of the quantum state
of the system [42, 43]. In this paper, we will call these
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inequalities KS inequalities, since the proof of the KS the-
orem in Ref. [19] is also valid for any quantum state of the
system. Very recently, several experiments have found vi-
olations of noncontextual inequalities [44–48]. Three of
these experiments have found violations of a KS inequal-
ity for different states [44, 46] or for a single (maximally
mixed) state [48]. In these experiments, compatible ob-
servables are measured sequentially.
The measurements in any experiment are never per-

fect. In tests of noncontextuality inequalities, these im-
perfections can be interpreted as a failure of the assump-
tion that the observables measured sequentially on the
same system are perfectly compatible. What if this com-
patibility is not perfect? We will refer to this problem
as the “compatibility loophole”. The main aim of this
paper is to give a detailed discussion of this loophole and
demonstrate that, despite of this loophole, still classes of
HV models which obey a generalized definition of non-
contextuality can be experimentally ruled out.
The paper is organized as follows: In Sec. II we give

precise definitions of compatibility and noncontextuality,
focusing on the case of sequential measurements. We
also review some inequalities which have been proposed
to test noncontextual HV models.
In Sec. III we discuss the case of not perfectly compati-

ble observables. We first derive an inequality which holds
for any HV model, however, this inequality is not experi-
mentally testable. Then, we consider several possible ex-
tensions of noncontextuality. By that, we mean replac-
ing our initial assumption of noncontextuality for per-
fectly compatible observables by a new one, which covers
also nearly compatible observables and implies the usual
noncontextuality if the measurements are perfectly com-
patible. We then present several experimentally testable
inequalities which hold for HV models with some general-
ized version of noncontextuality, but which are violated in
QM. One of these inequalities has already been found to
be violated in an experiment [44]. In Sec. IV we present
details of this experiment.
In Sec. V we present two explicit contextual HV models

which violate all investigated inequalities. These models,
which do not satisfy the assumptions of extended non-
contextuality, are useful to understand which counterin-
tuitive properties a HV model must have to reproduce
the quantum predictions. Other contextual HV mod-
els for contextuality experiments have been proposed in
Ref. [49]. Finally, in Sec. VI, we conclude and discuss
consequences of our work for future experiments.

II. HIDDEN VARIABLE MODELS AND

NONCONTEXTUALITY

A. Joint or sequential measurements

In the scenario originally used for discussing noncon-
textuality [19], a measurement device is treated as a
single device producing outcomes for several compati-

ble measurements (i.e., a context). When treating the
measurement device in this manner, the whole context is
needed to produce any output at all. In this joint mea-
surement, one of the settings of the measurement device
is always specifically associated with one of the outcomes,
in the sense that another measurement device exists that
takes only that setting as input and gives an identical out-
come as output. This is checked by repeatedly making
a joint measurement and the corresponding compatible
single measurements in any possible order. This is at the
basis of the noncontextuality argument. The argument
goes: precisely because another context-less device exists
that can measure the outcome of interest, there is good
reason to assume that this outcome is independent of the
context in the joint measurement.

In this paper we discuss sequential individual measure-
ments, rather than joint measurements. It might be ar-
gued that the version of the noncontextuality assump-
tion needed in this scenario is more restrictive on the HV
model than the version used for joint measurements. This
would mean that a test using a sequential setup would be
weaker than a test using a joint measurement setup, be-
cause it would rule out fewer HV models. However, the
motivation for assuming non-contextuality even in the
joint measurement setup is the existence of the individ-
ual measurements and their compatibility and repeatabil-
ity when combined with joint context-needing measure-
ments. Therefore, the assumptions needed in the sequen-
tial measurements setting are equally well-motivated as
the assumptions needed in the joint measurement setting.

In fact, the sequential setting is closer to the actual
motivation of assuming noncontextuality: there exist in-
dividual context-less measurement devices that give the
same results as the joint measurements, and we actu-

ally use them in experiment. Furthermore, from an ex-
perimental point of view, a changed context in the joint
measurement device corresponds to a physically entirely
different setup even for the unchanged setting within the
context, so it is difficult to maintain that the outcome for
the unchanged setting is unchanged from physical princi-
ples [18, 50]. Motivating physically unchanged outcomes
is much easier in the sequential setup, since the device
used is physically identical for the unchanged setting.

Therefore, in this paper we consider the situation
where sequences of measurements are made on an in-
dividual physical system. Throughout the paper, we
consider only dichotomic measurements with outcomes
±1, but the results can be generalized to arbitrary mea-
surements. The question is: under which conditions can
the results of such measurements be explained by a HV
model? More precisely, we ask which conditions a HV
model has to violate in order to reproduce the quantum
predictions.
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B. Notation

The following notation will be used in the discussed
HV models: λ is the HV, drawn with a distribution p(λ)
from a set Λ. The distribution summarizes all informa-
tion about the past, including all preparation steps and
all measurements already performed. Causality is as-
sumed, so the distribution is independent of any event
in the future. It rather determines all the probabilities
of the results of all possible future sequences of measure-
ments. We assume that, for a fixed value of the HV, the
outcomes of future sequences of measurements are deter-
ministic, hence all indeterministic behavior stems from
the probability distribution. This is similar to the in-
vestigation of Bell inequalities, where any stochastic HV
model can be mapped onto a deterministic one where the
HV is not known [4, 51].
In an experiment, one first prepares a “state” via cer-

tain preparation procedures (which may include measure-
ments). One always regards a state preparation as a pro-
cedure which can be repeated. At the HV level, it will
therefore lead to an experimentally accessible probability
distribution pexp(λ). The HV model hence enables the ex-
perimenter to repeatedly prepare the same distribution.
In a single instance of an experiment, one obtains a state
determined by a single value λ of the HV. The prob-
ability for this instance is distributed according to the
distribution pexp(λ), and reflects the inability of the ex-
perimenter to control which particular value of the HVs
has been prepared in a single instance.

Continuing, we denote by Ai the measurement of the
observable (or measurement device) A at the position
i in the sequence. For example, A1B2C3 denotes the
sequence of measuring A first, then B, and finally
C. An outcome from a measurement, e.g., B2 from
the above sequence, is denoted v(B2|A1B2C3). The
product of three outcomes is denoted v(A1B2C3) =
v(A1|A1B2C3)v(B2|A1B2C3)v(C3|A1B2C3). Given
a probability distribution p(λ), we write probabil-
ities p(B+

2
|A1B2C3) [or p(B+

2
C

−

3
|A1B2C3)] for the

probability of obtaining the value B2 = +1 (and
C3 = −1) when the sequence A1B2C3 is mea-
sured. One can also consider mean values like
〈B2|A1B2C3〉 = p(B+

2
|A1B2C3) − p(B−

2
|A1B2C3),

or the mean value of the complete sequence,
〈A1B2C3〉 = p[v(A1B2C3) = +1]− p[v(A1B2C3) = −1].

C. Compatibility of measurements

In the simplest case, compatibility is a relation be-
tween a pair of measurements, A and B. For that, let
SAB denote the (infinite) set of all sequences, which
use only measurements of A and B, that is, SAB =
{A1, B1, A1A2, A1B2, B1A2, . . .}. Then, we formulate:
Definition 1.—Two observables A and B are compat-

ible if the following two conditions are fulfilled:
(i) For any instance of a state (i.e. for any λ) and for

any sequence S ∈ SAB , the obtained values of A and B

remain the same,

v(Ak|S) = v(Al|S), (1a)

v(Bm|S) = v(Bn|S), (1b)

where k, l,m, n are all possible indices for which the con-
sidered observable is measured at the positions k, l,m, n

in the sequence S. [Equivalently, we could require that
p(A+

k
A

−

l
|S) = 0, etc., for all preparations corresponding

to some pexp(λ).]
(ii) For any state preparation [i.e., for any pexp(λ)], the

mean values of A and B during the measurement of any
two sequences S1, S2 ∈ SAB are equal,

〈Ak|S1〉 = 〈Al|S2〉, (2a)

〈Bm|S1〉 = 〈Bn|S2〉. (2b)

Clearly, conditions (i) and (ii) are necessary conditions
for compatible observables, in the sense that two observ-
ables which violate any of them cannot reasonably called
compatible.
It is important to note that the compatibility of two ob-

servables is experimentally testable by repeatedly prepar-
ing all possible pexp(λ). The fact that this set is infinite
is not a specific problem here, as any measurement de-
vice or physical law can only be tested in a finite number
of cases. A crucial point in a HV model is that the set
of all experimentally accessible probability distributions
pexp(λ) might not coincide with the set of all possible dis-
tributions p(λ). We will discuss this issue in Sec. IIID.
It should be noted that the conditions (i) and (ii) are

not minimal, cf. Appendix A for a discussion. In partic-
ular, we emphasize that (ii) does not necessarily follow
from (i), as we illustrate by the following example: Con-
sider a HV model where, for any λ, all v(Ak|S) are +1
when the first measurement in S is A1, while they are −1
when the first measurement is B1. The values v(Bm|S)
are always +1. Then, condition (i) is fulfilled, while (ii)
is violated, since 〈A〉 = 1 but 〈A2|B1A2〉 = −1.

Let us compare our definition of compatibility to
the notion of “equivalent measurements” introduced by
Spekkens in Ref. [38]. In this reference, two measure-
ments are called equivalent if, for any state prepara-
tion, the probability distributions of the measurement
outcomes for both measurements are the same. This is
similar to our condition (ii), but disregards repeated mea-
surements on individual systems as in (i). Interestingly,
using this notion and POVMs, one can prove the contex-
tuality of a quantum-mechanical two-level system [38].
Finally, it should be added that the notion of compat-

ibility is extended in a straightforward manner to three
or more observables. For instance, if three observables
A,B,C are investigated, one considers the set SABC of all
measurement sequences involving measurements of A,B,

or C and extends the conditions (i) and (ii) in an ob-
vious way. This is equivalent to requiring the pairwise
compatibility of A,B,C, cf. Appendix A.
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D. Definition of noncontextuality for sequential

measurements

Noncontextuality means that the value of any observ-
able A does not depend on which other compatible ob-
servables are measured jointly with A. For our models,
we formulate noncontextuality as a condition on a HV
model as follows:
Definition 2.—Let A and B be observables in a HV

model, where A is compatible with B. We say that the
HV model is noncontextual if it assigns, for any λ, an
outcome of A which is independent of whether B is mea-
sured before or after A, that is,

v(A1) = v(A2|B1A2). (3)

Hence, for these sequences we can write down v(A) as
being independent of the sequence. If the condition is
not fulfilled, we call the model contextual.
It is important to note that the condition (3) is an

assumption about the model and — contrary to the def-
inition of compatibility — not experimentally testable.
This is due to the fact that for a given instance of a state
(corresponding to some unknown λ) the experimenter has
to decide whether to measure A or B first.

From this definition and the time ordering, it follows
immediately that, if A is compatible with B and A is also
compatible with C, then for noncontextual models

v(A1|A1B2) = v(A2|B1A2) = v(A1|A1C2) = v(A2|C1A2).
(4)

holds. This is the often used definition of noncontextual
models, stating that the value of A does not depend on
whether B or C is measured before, jointly with, or after
it.
This definition can directly be extended to three or

more compatible observables. For instance, if {A,B,C}
are compatible, then noncontextuality means that for any
λ,

v(A1) = v(A2|B1A2) = v(A2|C1A2)

= v(A3|B1B2A3) = v(A3|B1C2A3)

= v(A3|C1B2A3) = v(A3|C1C2A3). (5)

Of course, the equalities in the second and third line fol-
low, if the first line holds for any λ and the HV model
allows to see the measurement of B1 or C1 as a prepa-
ration step. Again, if {A, a, α} is another set of compat-
ible observables, one can derive consequences similar to
Eq. (4).

E. Inequalities for noncontextual HV models

Here we will discuss several previously introduced
inequalities involving compatible measurements, which
hold for any noncontextual HV model, but which are vi-
olated for certain states and observables in QM. Later,
these inequalities are extended to the case where the ob-
servables are not perfectly compatible.

1. CHSH-like inequality

To derive a first inequality, consider the mean value

〈χCHSH〉 = 〈AB〉+ 〈BC〉+ 〈CD〉 − 〈DA〉. (6)

If the measurements in each average are compatible [i.e.,
the pairs (A,B), (B,C), (C,D), and (D,A) are compati-
ble observables)], then a noncontextual HV model has to
assign a fixed value to each measurement, and the model
predicts

|〈χCHSH〉| ≤ 2. (7)

In QM, on a two-qubit system, one can take the observ-
ables

A = σx ⊗ 11, B = 11⊗ (σz + σx)√
2

,

C = σz ⊗ 11, D = 11⊗ (σz − σx)√
2

, (8)

then, the measurements in each sequence are commuting
and hence compatible, but the state

|φ+〉 = (|00〉+ |11〉)/
√
2 (9)

leads to a value of 〈χCHSH〉 = 2
√
2, therefore not allowing

any noncontextual description. The choice of the observ-
ables in Eq. (8) is, however, by no means unique, if one
transforms all of them via the same global unitary trans-
formation, another set is obtained, and the state leading
to the maximal violation does not need to be entangled.
In fact, the two-qubit notation is only chosen for con-
venience and could be replaced by a formulation with a
single party using a four-level system. For example, if we
take the observables

A = σx ⊗ σx, B =
1√
2






1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1




 ,

C = σz ⊗ 11, D =
1√
2






1 −1 0 0
−1 −1 0 0
0 0 −1 −1
0 0 −1 1




 ,(10)

then, the measurements in each sequence are commuting
and hence compatible, but the product state

|Ψ〉 = |x+〉|0〉 = (|00〉+ |10〉)/
√
2 (11)

leads to a value of 〈χCHSH〉 = 2
√
2, therefore not allowing

any noncontextual description.

2. The KCBS inequality

As a second inequality, we take the pentagram inequal-
ity introduced by Klyachko, Can, Binicioğlu, and Shu-
movsky (KCBS) [41]. Here, one takes five dichotomic
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observables and considers

〈χKCBS〉 = 〈AB〉+ 〈BC〉+ 〈CD〉+ 〈DE〉+ 〈EA〉. (12)

If the observables in each mean value are compatible and
noncontextuality is assumed, it can be seen that

〈χKCBS〉 ≥ −3 (13)

holds. However, using appropriate measurements on a
three-level system, there are qutrit states which give a
value of 〈χKCBS〉 = 5 − 4

√
5 ≈ −3.94, also leading to

contradiction with noncontextuality.

3. An inequality from the Mermin-Peres square

For the third inequality, we take the one introduced in
Ref. [42]. Consider the mean value

〈χKS〉 =〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉
− 〈Ccγ〉. (14)

If the measurements in each expectation value are com-
patible, then any noncontextual HV model has to assign
fixed values to each of the nine occurring measurements.
Then, one can see that

〈χKS〉 ≤ 4. (15)

However, on a two-qubit system, one can choose the ob-
servables of the Mermin-Peres square [52, 53]

A = σz ⊗ 11, B = 11⊗ σz, C = σz ⊗ σz,

a = 11⊗ σx, b = σx ⊗ 11, c = σx ⊗ σx,

α = σz ⊗ σx, β = σx ⊗ σz, γ = σy ⊗ σy.

(16)

The observables in any row or column commute and are
therefore compatible. Moreover, the product of the ob-
servables in any row or column equals 11, apart from the
last column, where it equals −11. Hence, for any quantum
state,

〈χKS〉 = 6 (17)

holds. The remarkable fact in this result is that it shows
that any quantum state reveals nonclassical properties if
the measurements are chosen appropriately.

III. NOT PERFECTLY COMPATIBLE

MEASUREMENTS

In any real experiment, the measurements will not be
perfectly compatible. Hence, the notion of noncontextu-
ality does not directly apply. The experimental violation
of inequalities like (7), (13), and (15) proves that one
cannot assign to the measurement devices independent
outcomes ±1. However, a model that is not trivially in
conflict with QM also has to explain the measurement

results of sequences of incompatible observables, such as
e.g. the results from measuring A1C2 for the observables
of the CHSH-like inequality. Therefore, it is not straight-
forward to find out which are the implications of these vi-
olations on the structure of the possible HV models. The
reason is that the assumption that incompatible measure-
ments have predetermined independent outcomes is not
physically plausible.
To deal with this problem, we will derive extended ver-

sions of the inequalities (7), (13), and (15), which are
valid even in the case of imperfect compatibility. We will
first derive an inequality which is an extension of inequal-
ity (7) and which holds for any HV model. This inequal-
ity, however, contains terms which are not experimentally
accessible. Then, we investigate how these terms can be
connected to experimental quantities, if certain assump-
tions about the HV model are made. We will present
three types of testable inequalities, the first two start
from condition (i) of Definition 1, while the third one
uses condition (ii).
First we consider nearly compatible observables. We

show that, if the observables fulfill the condition (i) of
Definition 1 to some extent and if assumptions about the
dynamics of probabilities in a HV model are made, then
these HV models can be experimentally refuted.
In the second approach, we consider the case that a cer-

tain finite number of compatibility tests has been made.
For some runs of the experiment the tests are successful
[i.e., no error occurs when checking condition (i)], and in
some runs errors occur. We then assume that the subset
of HVs, where noncontextuality holds is at least as large
as the subset where the compatibility tests are success-
ful. We then show that HV models of this type can, in
principle, be refuted experimentally.
Finally, in the third approach, we also consider as-

sumptions about the possible distributions pexp(λ), and
show that if the condition (ii) of Definition 1 is nearly
fulfilled, then again this type of HV models can experi-
mentally be ruled out.
We will discuss these approaches using the CHSH-like

inequality (7). At the end of the section, we will also
explain how the inequalities (13) and (15) have to be
modified, in order to test these different types of HV
models.

A. CHSH-like inequality for all HV models

To start, consider a HV model with a probability distri-
bution p(λ) and let p[(A+

1
|A1) and (B+

1
|B1)] denote the

probability of finding A+ if A is measured first and B+

if B is measured first. This probability is well defined in
all HV models of the considered type, but it is impossible
to measure it directly, as one has to decide whether one
measures A or B first. Our aim is now to connect it to
probabilities arising in sequential measurements, as this
will allow us to find contradictions between HV models
and QM.
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First, note that

p[(A+
1 |A1) and (B+

1 |B1)] ≤ p[A+
1 , B

+
2 |A1B2]+

+ p[(B+
1 |B1) and (B−

2 |A1B2)]. (18)

This inequality is valid because if λ is such that it
contributes to p[(A+

1 |A1) and (B+
1 |B1)], then either the

value of B stays the same when measuring A1B2 (hence
λ contributes to p[A+

1 , B
+
2 |A1B2]) or the value of B is

flipped and λ contributes to p[(B+
1 |B1) and (B−

2 |A1B2)].
The first term p[A+

1 , B
+
2 |A1B2] is directly measurable as

a sequence, but the second term is not experimentally
accessible.
Let us rewrite

〈AB〉 = 1− 2p[(A+
1 |A1) and (B−

1 |B1)]

−2p[(A−

1 |A1) and (B+
1 |B1)], (19)

as the mean value obtained from the probabilities
p[(A±

1 |A1) and (B±

1 |B1)]. Then, using Eq. (18), it follows
that

〈A1B2〉−2pflip[AB] ≤ 〈AB〉 ≤ 〈A1B2〉+2pflip[AB], (20)

where we used pflip[AB] = p[(B+
1 |B1) and (B−

2 |A1B2)]+
p[(B−

1 |B1) and (B+
2 |A1B2)]. This p

flip[AB] can be inter-
preted as a probability that A flips a predetermined value
of B.
Furthermore, using Eqs. (6) and (7), we obtain

|〈XCHSH〉| ≤ 2(1 + p
flip[AB] + p

flip[CB]

+p
flip[CD] + p

flip[AD]), (21)

where

〈XCHSH〉 := 〈A1B2〉+ 〈C1B2〉+ 〈C1D2〉 − 〈A1D2〉. (22)

Inequality (21) holds for any HV model and is the gener-
alization of inequality (7). Note that for perfectly com-
patible observables, the flip terms in inequality (21) van-
ish if the assumption of noncontextuality is made. Then,
this results in inequality (7).

B. First approach: Constraints on the disturbance

and the dynamics of the HV

The terms pflip[AB], etc. in inequality (21) are not ex-
perimentally accessible. Now we will discuss how they
can be experimentally estimated when some assumptions
on the HV model are made.
In order to obtain an experimentally testable version

of inequality (21), we will assume that

p[(B+
1 |B1) and (B−

2 |A1B2)]

≤ p[(B+
1 |B1) and (B+

1 , B
−

3 |B1A2B3)]

≡ p[B+
1 , B

−

3 |B1A2B3]. (23)

This assumption is motivated by the experimental pro-
cedure: Let us assume that one has a physical state,
for which one surely finds B

+
1 if B1 is measured first,

but finds B
−

2 if the sequence A1B2 is measured. Phys-
ically, one would explain this behavior as a disturbance
of the system due to the experimental procedures when
measuring A1. The left-hand side of Eq. (23) can be
viewed as the amount of this disturbance. The right-
hand side quantifies the disturbance of B when the se-
quence B1A2B3 is measured. In real experiments, it can
be expected that this disturbance is larger than when
measuring A1B2, because of the additional experimental
procedures involved. Note that in real experiments, a
measurement of B will also disturb the value of B itself,
as can be seen from the fact that sometimes the values
of B1 and B2 will not coincide, if the sequence B1B2 is
measured.
It should be stressed, however, that we do

not assume that the set of HV values giving
[(B+

1 |B1) and (B−

2 |A1B2)] is contained in the set giving
(B+

1 , B
−

3 |B1A2B3), the assumption only relates the sizes
of these two sets.
In addition, by a similar reasoning, the assump-

tion (23) may be relaxed to

p[(B+
1 |B1) and (B−

2 |A1B2)] ≤ p[B+
1 , B

−

k
|B1SAk−1Bk],

(24)
where S is a given finite sequence of measurements from
SAB . Again, if the measurements are nearly compatible,
this type of HV models can be ruled out experimentally.
Assumption (23) gives an measurable upper bound to

pflip[AB]. One directly has

|〈XCHSH〉| ≤2(1 + p
err[B1A2B3] + p

err[B1C2B3]

+ p
err[D1C2D3] + p

err[D1A2D3]), (25)

where we used

p
err[B1A2B3] = p[B+

1 , B
−

3 |B1A2B3]+p[B−

1 , B
+
3 |B1A2B3],

(26)
denoting the total disturbance probability of B when
measuring B1A2B3.

The point of this inequality is that if the observable
pairs (A,B), (C,B), (C,D), and (A,D) fulfill approx-
imately the condition (i) in the definition of compati-
bility, the terms perr will become small, and a violation
of inequality (25) can be observed. In Ref. [44] it was
found that 〈XCHSH〉 − 2(perr[B1A2B3] + perr[B1C2B3] +
perr[D1C2D3] + perr[D1A2D3]) = 2.23(5). Hence this ex-
periment cannot be described by HV models which fulfill
Eq. (23), see also Section IV.

C. Second approach: Assuming noncontextuality

for the set of HVs where the observables are

compatible

Let us discuss a different approach to obtain exper-
imentally testable inequalities. For that, consider the
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case that the experimenter has measured a (finite) set of
sequences in SAB in order to test the validity of condition
(i) in the definition of compatibility. He finds that the
conditions are violated or fulfilled with certain probabil-
ities. In terms of the HV model, there is a certain subset
ΛAB ⊂ Λ of all HVs where all tests in the finite set of ex-
perimentally performed compatibility tests succeed and
through the observed probabilities the experimenter can
estimate the volume of this set.
In this situation, one can assume that, for each HV

λ ∈ ΛAB (where all the measured compatibility re-
quirements are fulfilled), the assumption of noncontex-
tuality is also valid. More precisely, one can assume
that v(A1|A1B2) = v(A2|B1A2) in Eq. (3) holds for all
λ ∈ ΛAB . One may support this assumption if one con-
siders noncontextuality as a general property of nature,
since this is the usual noncontextuality assumption for
the HV model where the HVs are restricted to ΛAB .

To see that this assumption leads to an experi-
mentally testable inequality, consider the case where
the experimenter has tested all sequences up to

length three, that is all sequences from S(3)

AB
=

{A1A2A3, A1A2B3, . . . , B1B2B3} and has determined,
for each of them, the probability perr(S) that some
measurement, which is performed two or three times
in the sequence is disturbed. For sequences like
B1A2B3, this is exactly perr[B1A2B3] defined in Eq. (26).
However, now we have additional error terms like
perr[B1B2A3] = p[B+

1 , B
−

2 |B1B2A3]+p[B−

1 , B
+
2 |B1B2A3]

and perr[B1B2B3] = 1 − p[B+
1 , B

+
2 B

+
3 |B1B2B3] −

p[B−

1 , B
−

2 B
−

3 |B1B2B3], etc. These probabilities are not
completely independent: due to the time ordering, a λ

that contributes to perr[B1B2A3] (or perr[A1A2B3]) will
also contribute to perr[B1B2B3] (or p

err[A1A2A3]). Con-
sequently, relations like perr[B1B2A3] ≤ perr[B1B2B3]
hold.
Let us define

p
err[S(3)

AB
] =

(∑

S∈S
(3)
AB

p
err[S]

)
−p

err[B1B2A3]−p
err[A1A2B3].

(27)
Here, we have excluded two perr in the sum, as the λ’s
which contribute to them are already counted in other
terms. With this definition, for a given distribution
pexp(λ), a lower bound to the probability of finding a
λ where condition (i) from Definition 1 is fulfilled, is

p[ΛAB ] ≥ 1− p
err[S(3)

AB
]. (28)

From that and the assumption that v(A1|A1B2) =
v(A2|B1A2) on ΛAB , it directly follows that

p
flip[AB] ≤ p

err(S(3)

AB
), (29)

giving a measurable upper bound to pflip[AB]. Finally,
the experimentally testable inequality

|〈XCHSH〉| ≤ 2(1 + p
err[S(3)

AB
] + p

err[S(3)

CB
]

+ p
err[S(3)

CD
] + p

err[S(3)

AD
]) (30)

holds. This inequality is similar to inequality (25), but
it contains more error terms. Nevertheless, a violation of
this inequality in ion-trap experiments might be feasible
in the near future (see Sec. IV).
This result deserves two further comments. First, in

the derivation we assumed a pointwise relation; namely,
for all λ ∈ ΛAB , the noncontextuality assumption
v(A1|A1B2) = v(A2|B1A2) holds. Of course, we could
relax this assumption by assuming only that the volume
of the set where v(A1|A1B2) = v(A2|B1A2) holds is not
smaller than the volume of ΛAB . Under this condition,
Eq. (30) still holds.
Second, when comparing the second approach with the

first one, one finds that the first one is indeed a special
case of the second one. In fact, from a mathematical
point of view, the first approach is the same as the sec-
ond one, if in the second approach only the compatibility
test S = B1A2B3 is performed. Consequently, inequal-
ity (25) is weaker than (30). However, note that the
first approach came from a different physical motivation.
Further, assuming a pointwise relation for the first ap-
proach is very assailable, as only one compatibility test
is made. But, as we have seen, a relation between the
volumes suffices. A pointwise relation can only be mo-
tivated if all experimentally feasible compatibility tests
are performed.

D. Third approach: Certain probability

distributions cannot be prepared

The physical motivation of the third approach is as fol-
lows: The experimenter can prepare different probability
distributions pexp(λ) and check their properties. For in-
stance, he can test to which extent the condition (ii) in
Definition 1 is fulfilled. However, in a general HV model
there might be probability distributions p(λ) that do not
belong to the set of experimentally accessible pexp(λ).
One might be tempted to believe that this difference is
negligible and that the properties that can be verified
for the pexp(λ) hold also for some of the p(λ). In this
approach we will show that this belief can be experimen-
tally falsified. More specifically, we show that if only
four conditional probability distributions have the same
properties as all pexp(λ), then a contradiction with QM
occurs.
So let us assume that the experimenter has checked

that the observables A and B fulfill condition (ii) in Def-
inition 1 approximately. He has found that

|〈B1|B1A2〉 − 〈B2|A1B2〉| ≤ εAB (31)

for all possible (or, at least, a large number of) pexp(λ).
This means that, for experimentally accessible distribu-
tions pexp(λ), one has that

|p(B+
1 |B1A2)− p(B+

2 |A1B2)| ≤ εAB/2,

|p(B−

1 |B1A2)− p(B−

2 |A1B2)| ≤ εAB/2, (32)
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as can be seen by direct calculation.
Let us consider the flip probability

pflip[AB] = p[(B+
1 |B1) and (B−

2 |A1B2)] +
p[(B−

1 |B1) and (B+
2 |A1B2)] again. Here, the prob-

ability p stems from the initial probability distribution
p(λ). One can consider the conditional probability
distributions q±(λ) which arise from p(λ) if the result
of B1 is known. Physically, the conditional distributions
describe the situation for an observer, who knows
that the experimenter has prepared p(λ) but has the
additional information that measurement of B1 will give
+1 or −1. With that, we can rewrite

p
flip[AB] = q

+(B−

2 |A1B2)p(B
+
1 |B1)

+ q
−(B+

2 |A1B2)p(B
−

1 |B1). (33)

Now let us assume that these conditional probability dis-
tributions have the same properties as all accessible dis-
tributions pexp(λ). Then, the bounds in Eq. (32) also
have to hold for q±. Since p(B+

1 |B1) + p(B−

1 |B1) = 1,
it follows directly that pflip[AB] ≤ εAB/2. Hence, under
the assumption that some conditional probability distri-
butions in the HV model have similar properties as the
preparable pexp(λ), the inequality

〈XCHSH〉 ≤ 2 + εAB + εCB + εCD + εAD (34)

holds. A violation of it implies that, in a possible
HV model, certain conditional probability distributions
have to be fundamentally different from experimentally
preparable distributions.
Again, this result deserves some comments. First,

note that the tested bound in Eq. (32) does not have
to hold for all probability distributions in the theory. In
an experiment testing Eq. (34) with some p̂exp(λ) only
assumptions about four conditional probability distri-
butions (corresponding to two possible second measure-
ments with two outcomes) have to be made. In fact,
assuming Eq. (32) for δ-distributions (i.e., a fixed HV λ)
is not very physical, as in this case the left-hand side of
these equations is 0 or 1.
Second, finding an experimental violation of Eq. (34)

shows that these four distributions have properties sig-
nificantly different from all preparable pexp(λ). In other
words, one may conclude that in a possible HV model
describing such an experiment, it must be forbidden to
prepare p̂exp(λ) with additional information about the
result of B or D.

To make this last point more clear, consider the situ-
ation where the experimenter has prepared p̂exp(λ) and
a second physicist has the additional knowledge that the
result of B1 will be +1, if it would be measured as a first
instance. Both physicists disagree on the probability dis-
tribution p̂exp and q+, but that is not the central problem
because this occurs in any classical model as well. The
point is that q+ cannot be prepared: If the experimenter
measures B1 and keeps only the cases where he finds +1
he obtains a new experimentally accessible probability
distribution p̃exp. But this will not be the same as the

probability distribution q+, because in this case, the first
measurement has already been made.

E. Application to the KCBS inequality and the KS

inequality (15)

In the previous discussion, we used the CHSH like in-
equality (7) to develop our ideas. Clearly, one could also
start from inequalities (13) and (15) to obtain testable
inequalities for the types of HV models discussed above.
For the KCBS inequality (12) this can be done with

the same methods as before, since the KCBS inequality
uses only sequences of two measurements, as the CHSH
inequality (7). A generalization of Eq. (34) is

〈XKCBS〉 := 〈A1B2〉+ 〈C1B2〉+ 〈C1D2〉+ 〈E1D2〉
+ 〈E1A2〉 ≥ −3− (εAB + εCB + εCD + εED + εEA).

(35)

Generalizations of Eqs. (25) and (30) can also be written
down in a similar manner.
Also for the KS inequality (15), one can deduce gen-

eralizations, which exclude certain types of HV mod-
els. The main problem here is to estimate a term like
〈A1B2C3〉. First, an inequality corresponding to Eq. (18)
is

p[(A+
1 |A1) and (B+

1 |B1) and (C+
1 |C1)]

≤ p[A+
1 , B

+
2 , C

+
3 |A1B2C3]+

+ p[(B+
1 |B1) and (B−

2 |A1B2)]

+ p[(C+
1 |C1) and (C−

3 |A1B2C3)], (36)

which holds again for any HV model. Then, a direct
calculation gives that one has

〈ABC〉 ≤ 〈A1B2C3〉+ 4pflip[AB] + 4pflip[(AB)C]

〈ABC〉 ≥ 〈A1B2C3〉 − 4pflip[AB]− 4pflip[(AB)C], (37)

where

p
flip[(AB)C] = p[(C+

1 |C1) and (C−

3 |A1B2C3)]

+ p[(C−

1 |C1) and (C+
3 |A1B2C3)]. (38)

Given these bounds, one arrives at testable inequalities,
provided assumptions on the HV model are made as in
the three approaches above. If Eq. (23) is assumed, one
can directly estimate pflip[AB] ≤ perr[A1B2] and

p
flip[(AB)C] ≤ p

err[(AB)C] (39)

= p[C+
1 C

−

4 |C1A2B3C4] + p[C−

1 C
+
4 |C1A2B3C4].

Then, if one writes down the generalized form of Eq. (15),
then there are more correction terms than in Eq. (25).
Moreover, they involve sequences of length four. On av-
erage, these perr terms have to be smaller than 2/48 ≈
0.0417 in order to allow a violation. Consequently, an
experimental test is very demanding (see also the discus-
sion in subsection IVC). Finally, generalizations in the
sense of Eqs. (30 and 34) can also be derived in a similar
manner.
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FIG. 1: Partial level scheme of 40Ca+ showing the relevant
energy levels and the laser wavelengths needed for coupling
the states. The D-states are metastable with a lifetime of
about 1s. A magnetic field of about 4 Gauss is applied to lift
the degeneracy of the Zeeman states. The states |0〉, |1〉 used
for encoding quantum information are indicated in the figure.

IV. EXPERIMENTAL IMPLEMENTATION

Experimental tests of noncontextual HV theories have
been carried out with photons [35–37, 45, 46], neutrons
[37, 45], laser-cooled trapped ions [44], and liquid-state
nuclear magnetic resonance systems [48]. In the exper-
iments with photons and neutrons, single particles were
prepared and measured in a four-dimensional state space
composed of two two-dimensional state spaces describing
the particle’s polarization and the path it was follow-
ing. In contrast, in a recent experiment with trapped
ions [44], a composite system comprised of two trapped
ions prepared in superpositions of two long-lived internal
states was used for testing the KS theorem. In the follow-
ing, we will describe this experiment and present details
about the amount of noncompatibility of the observables
implemented.

A. Experimental methods

Trapped laser-cooled ions are advantageous for these
kinds of measurements because of the highly efficient
quantum state preparation and measurement procedures
trapped ions offer. In Ref. [44], a pair of 40Ca+ ions was
prepared in a state space spanned by the states |00〉, |01〉,
|10〉, |00〉, where |1〉 = |S1/2,mS = 1/2〉 is encoded in a
Zeeman ground state and |0〉 = |D5/2,mD = 3/2〉 in a
long-lived metastable state of the ion (see Fig. 1).
A key element for both preparation and measurement

are laser-induced unitary operations that allow for ar-
bitrary transformations on the four-dimensional state
space. For this, the entangling operation UMS(θ, φ) =
exp(−i

θ
2σφ ⊗ σφ) where σφ = cos(φ)σx + sin(φ)σy is

realized by a bichromatic laser field off-resonantly cou-
pling to transitions involving the ions’ center-of-mass
mode along the weakest axis of the trapping potential
[54]. In addition, collective single-qubit gates U(θ, φ) =

exp[−i
θ
2 (σφ ⊗ 11 + 11 ⊗ σφ)] are realized by resonantly

coupling the states |0〉, |1〉. Finally, the single-qubit
gate Uz(θ) = exp(−i

θ
2σz) is implemented by a strongly

focused laser inducing a differential light-shift on the
states of the first ion. This set of operations, S =
{Uz(θ), U(θ, φ), UMS(θ, φ)}, which is sufficient for con-
structing arbitrary unitary operations, can be used for
preparing the desired input states |ψ〉.

A measurement of σz by a state projection onto the ba-
sis states |0〉, |1〉 on one of the ions is carried out by illu-
minating the ion with laser light coupling the S1/2 ground
state to the short-lived excited state P1/2 and detecting
the fluorescence emitted by the ion with a photomulti-
plier. Population in P1/2 decays back to S1/2 within a
few nanoseconds so that thousands of photons are scat-
tered within a millisecond if the ion was originally in the
state |1〉. If it is in state |0〉, it does not couple to the
light field and therefore scatters no photons. In the ex-
periment, we assign the state |1〉 to the ion if more than
one photon is registered during a photon collection pe-
riod of 250µs. In this way, the observables σz ⊗ 11 and
11⊗ σz can be measured.
To measure further observables like σi ⊗ 11, 11⊗ σj , or

σi ⊗ σj , the quantum state ρ to be measured is trans-
formed into UρU † by a suitable unitary transformation
U prior to the state detection. Measuring the value of
σz ⊗ 11 on the transformed state is equivalent to mea-
suring the observable A = U †(σz ⊗ 11)U on the original
state ρ. The measurement is completed by applying the
inverse operation U † after the fluorescence measurement.
The purpose of this last step is to map the projected state
onto an eigenstate of the observable A. In this way, any
observable A with two pairs of degenerate eigenvalues
can be measured. The complete measurement, consist-
ing of unitary transformation, fluorescence detection and
back transformation, constitutes a quantum nondemoli-
tion measurement of A. Each measurement of a quantum
state yields one bit of information which carries no infor-
mation about other compatible observables.

B. Measurement results

The measurement procedure outlined above is very
flexible and can be used to consecutively measure sev-
eral observables on a single quantum system as illus-
trated by the following example. To test inequal-
ity Eq. (14) for the observables of the Mermin-Peres

square (16), the quantum state |ψ〉 = |11〉/
√
2 +

ei
π

4 (|01〉+ |10〉)/2 is prepared by a applying the sequence
of gates UMS(−π/2, π/4)UMS(−π/2, 0)U(π/2, 0) to the
initial state |11〉. The correlations that are found for a
sequence of measurements A1B2C3, where A1 = σz ⊗σz,
B2 = σx⊗σx, and C3 = σy ⊗σy are shown in Fig. 2. For
this measurement, 1100 copies of the state were created
and measured. Each corner of the sphere corresponds
to a measurement outcome (v1, v2, v3) where vk = ±1
is the measurement result for the kth observable. The

39



10

FIG. 2: Measurement correlations for a sequence of mea-
surements A1B2C3 with A1 = σz ⊗ σz, B2 = σx ⊗ σx, and
C3 = σy ⊗ σy for a partially entangled input state. The
colors indicates whether v1v2v3 = +1 (yellow spheres) or
v1v2v3 = −1 (red spheres). The volume of a sphere is pro-
portional to the likelihood of finding the corresponding mea-
surement outcome (v1, v2, v3).

relative frequencies of the measurement outcomes are in-
dicated by the volume of the spheres attached to the
corners, and the colors indicates whether v1v2v3 = +1 or
v1v2v3 = −1. For perfect state preparation and measure-
ments, one would expect to observe always v1v2v3 = −1.
Due to experimental imperfections, the experiment yields
〈v1v2v3〉 = −0.84(2). Nevertheless, the experimental re-
sults nicely illustrate the quantum measurement process:
the first measurement gives 〈σz ⊗ σz〉 = 0.00(2), i.e. the
state |ψ〉 is equally likely to be projected onto |Ψ+〉 = |11〉
(v1 = +1) and onto |Ψ−〉 = (|01〉 + |10〉)/

√
2 (v1 = −1).

In the latter case, the projected state |Ψ−〉 is an eigen-
state of σx ⊗ σx and σy ⊗ σy so that these measurements
give definite results v2 = +1 and v3 = +1 (upper left
corner of Fig. 2). In the former case, the projected state
is not an eigenstate of σx⊗σx and v2 = +1 and v3 = −1
are found with equal likelihood. In this case, v2 and v3

are random but correlated with v2v3 = 1 (the other two
strongly populated corners of Fig. 2).
In Ref. [44], also the other rows and columns of the

Mermin-Peres square (16) were measured for the state
|ψ〉, and a violation of Eq. (14) was found with 〈χKS〉 =
5.36(4). Also different input states were investigated to
check that the violation is indeed state-independent. The
fact that the result falls short of the quantum mechan-
ical prediction of 〈χKS〉 = 6 is due to imperfections in
the measurement procedure. These imperfections could
be incorrect unitary transformations, but also errors oc-
curring during the fluorescence measurement.
An instructive test consists in repeatedly measuring

the same observable on a single quantum system and an-
alyzing the measurement correlations. Table I shows the
results of five consecutive measurements of A = σz ⊗ 11
on a maximally mixed state based on 1100 experimental
repetitions.
As expected, the correlations 〈AiAi+k|A1 . . . A5〉 are

TABLE I: Measurement correlations 〈AiAj |A1 . . . A5〉 be-
tween repeated measurements of A = σz ⊗ 11 for a maximally
mixed state. Observing a correlation of 〈AiAj |A1 . . . A5〉 =
αij means that the probability for the measurement results of
Ai and Aj to coincide equals (αij + 1)/2.

Measurement 2 3 4 5

1 0.97(1) 0.97(1) 0.96(1) 0.95(1)

2 0.97(1) 0.97(1) 0.96(1)

3 0.98(1) 0.98(1)

4 0.98(1)

TABLE II: Measurement correlations 〈AiAj |A1 . . . A5〉 be-
tween repeated measurements of A = σx⊗σx for a maximally
mixed state. Observing a correlation of 〈AiAj |A1 . . . A5〉 =
αij means that the probability for the measurement results of
Ai and Aj to coincide equals (αij + 1)/2.

Measurement 2 3 4 5

1 0.94(1) 0.88(1) 0.82(2) 0.80(2)

2 0.93(1) 0.87(2) 0.84(2)

3 0.90(1) 0.87(2)

4 0.93(1)

independent of the measurement number i within the
error bars. However, the correlations become smaller and
smaller the bigger k gets. Table II shows another set of
measurements correlations 〈AiAj |A1 . . . A5〉, where A =
σx ⊗σx. Here, the correlations are slightly smaller, since
entangling interactions are needed for mapping A onto
σz⊗11, which is experimentally the most demanding step.
It is also interesting to compare the correlations

〈A1A3|A1A2A3〉 with the correlations 〈A1A3|A1B2A3〉
for an observable B that is compatible with A.
For A = σx ⊗ σx and B = σz ⊗ σz, we find
〈A1A3|A1A2A3〉 = 0.88(1) and 〈A1A3|A1B2A3〉 =
0.83(2) when measuring a maximally mixed state; i.e.,
it seems that the intermediate measurement of B per-
turbs the correlations slightly more than an interme-
diate measurement of A. Similar results are found
for a singlet state, where 〈A1A3|A1A2A3〉 = 0.92(1),
〈B1B3|B1B2B3〉 = 0.91(1), but 〈A1A3|A1B2A3〉 =
0.90(1), and 〈B1B3|B1A2B3〉 = 0.89(1). Because of
〈B1B3|B1A2B3〉 = 1−2perr(B1A2B3), correlations of the
type 〈B1B3|B1A2B3〉 are required for checking inequality
(25) that takes into account disturbed HVs.

C. Experimental limitations

There are a number of error sources contributing to
imperfect state correlations, the most important being:
(i) Wrong state assignment based on fluorescence data.

During the 250 µs detection period of the current exper-
iment, the number of detected photons has a Poissonian
distribution with an average number of n

|1〉 = 8 photons
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if the ion is in state |1〉. If the ion is in state |0〉, it does
not scatter any light, however, light scattered from trap
electrodes gives rise to a Poissonian distribution with an
average number of n

|0〉 = 0.08 photons. These photon
count distributions slightly overlap. The probability of
detecting 0 or 1 photons even though the ion is in the
bright state, is 0.3%. The probability of detecting more
than one photon if the ion is in the dark state is also 0.3%.
Therefore, if the threshold for discriminating between the
dark and the bright state is set between 1 and 2, the prob-
ability for wrongly assigning the quantum state is 0.3%.
Making the detection period longer would reduce this er-
ror but increase errors related to decoherence of the other
ion’s quantum state that is not measured.

(ii) Imperfect optical pumping. During fluorescence
detection, the ion leaves the computational subspace
{|0〉, |1〉} if it was in state |1〉 and can also populate the
state |S1/2,mS = −1/2〉. To prevent this leakage, the ion
is briefly pumped on the S1/2 ↔ P1/2 transition with σ+-
circularly polarized light to pump the population back
to |1〉. Due to imperfectly set polarization and misalign-
ment of the pumping beam with the quantization axis,
this pumping step fails with a probability of about 0.5%.

(iii) Interactions with the environment. Due to the
non-zero differential Zeeman shift of the states used for
storing quantum information, superposition states de-
phase in the presence of slowly fluctuating magnetic
fields. In particular, while measuring one ion by fluo-
rescence detection, quantum information stored in the
other ion dephases. We partially compensate for this ef-
fect by spin-echo-like techniques [55] that are based on a
transient storage of superposition states in a pair of states
having an opposite differential Zeeman shift as compared
to the states |0〉 and |1〉. A second interaction to be taken
into account is spontaneous decay of the metastable state
|0〉 which however only contributes an error of smaller
than 0.1%.

(iv) Imperfect unitary operations. The mapping op-
erations are not error-free. This concerns in particular
the entangling gate operations needed for mapping the
eigenstate subspace of a spin correlation σi⊗σj onto the
corresponding subspaces of σz ⊗ 11. For this purpose, a
Mølmer-Sørensen gate operation UMS(π/2, φ) [54, 56] is
used. This gate operation has the crucial property of re-
quiring the ions only to be cooled into the Lamb-Dicke
regime. In the experiments, the center-of-mass mode
used for mediating the gate interaction is in a thermal
state with an average of 18 vibrational quanta. In this
regime, the gate operation is capable of mapping |11〉
onto a state |00〉 + eiφ|11〉 with a fidelity of about 98%.
Taking this fidelity as being indicative of the gate fidelity,
one might expect errors of about 4% in each measurement
of spin correlations σi⊗σj as the gate is carried out twice,
once before and once after the fluorescence measurement.

These error sources prevented us from testing a gen-
eralization of inequality (15) as discussed in subsection
III E. Measurement of the correlations 〈B1B3|B1A2B3〉
and 〈C1C4|C1A2B3C4〉 resulted in error terms perr that

were about 0.06 for sequences involving three measure-
ments and about 0.1 for sequences with four measure-
ments, i. e. twice as big as required for observing a viola-
tion of (15). However, the experimental errors were small
enough to demonstrate a violation of the CHSH-like in-
equality (25), valid for nonperfectly compatible observ-
ables [44]. A test of the inequality (30) would become
possible if the error rates could be further reduced.

V. CONTEXTUAL HV MODELS

In this section we will introduce two HV models which
are contextual in the sense of Eq. (3) and violate the in-
equalities discussed in Sec. II. We first discuss a simple
model which violates inequality (25), and then a more
complex one, which reproduces all measurement results
for a (finite-dimensional) quantum mechanical system.
These models are useful to point out which counterintu-
itive properties a HV model must have to reproduce the
quantum predictions, and which further experiments can
rule out even these models.

A. A simple HV model leading to a violation of

inequality (25)

We will show here that violation of inequality (25) can
be achieved simply by allowing the HV model to remem-
ber what measurements have been performed and what
the outcome was. The basic idea of the model is very
simple (cf. the more complicated presentation in [49]).
The task is to construct a simple HV model for our

four dichotomic observables A,B,C, and D. The HV
λ is taken to be a quadruple with entries taken from
the set {+,−,⊕,⊖}, the latter two cases will be called
“locked” in what follows, signifying that the value is un-
changed whenever a compatible measurement is made.
For convenience, we can write λ = (A+, B+, C+, D+) or
λ = (A+, B−, C⊕, D⊖), etc, and we take the initial distri-
bution to be probability 1/2 of either (A+, B+, C+, D+)
or (A−, B−, C−, D−). The measurement of an observable
is simply reporting the appropriate sign, and locking the
value in the position. To make the model contextual, we
add the following mechanism:

(a) If A is measured, then the sign of D is reversed and
locked unless it is locked.

(b) If D is measured, then the sign of A is reversed and
locked unless it is locked.

For the case λ = (A+, B+, C+, D+), the measurement
results when measuring inequality (25) will be as follows.

(i) Measurement of A1 will yield A
+

1
and λ =

(A⊕, B+, C+, D⊖), and for the next measurement
one obtains B+

2
or D−

2
.
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(ii) Measurement of B1 will yield B
+
1 and λ =

(A+, B⊕, C+, D+), and further one obtains A+
2 B

+
3

or C+
2 B

+
3 .

(iii) Measurement of C1 will yield C
+
1 and λ =

(A+, B+, C⊕, D+), and we’ll obtain B
+
2 or D+

2 af-
terwards.

(iv) Measurement of D1 will yield D
+
1 and λ =

(A⊖, B+, C+, D⊕), and we’ll obtain C
+
2 D

+
3 or

A
−

2 D
+
3 . The last is because a measurement of

A2 will not change D⊕ since it is locked. In
this case, after a measurement of A2 the HVs are
λ = (A⊖, B+, C+, D⊕).

The case λ = (A−, B−, C−, D−) is the same with re-
versed signs. This means that

〈A1B2〉 = 〈C1B2〉 = 〈C1D2〉 = −〈A1D2〉 = 1, (40)

and

p
err[B1A2B3] = p

err[B1C2B3] = p
err[D1C2D3]

= p
err[D1A2D3] = 0.

(41)

Hence, this model leads to the maximal violation of
Eq. (25).
In this model, the observables A and D are compatible

in the sense of Definition 1, but they maximally violate
the noncontextuality condition in Eq. (3). It is easy to
verify that pflip[AD] = 1, so that the assumption (23)
does not hold. We argue that in this model, the change
in the outcome D cannot be explained as merely due
to a disturbance of the system from the experimental
procedures when measuring A1. It should therefore be no
surprise that the inequality (25) is violated by the model.
Finally, note that a model behavior like this would create
problems in any argument to establish noncontextuality
via repeatability of compatible measurements, even for
joint measurements as discussed in Section IIA, and not
only in the sequential setting used here.

B. A HV model explaining all quantum mechanical

predictions

Let us now introduce a detailed HV model which re-
produces all the quantum predictions for sequences of
measurements. In a nutshell, this contextual HV model
is a translation of a machine that classically simulates a
quantum system.
We consider the case that only dichotomic measure-

ments are performed on the quantum mechanical sys-
tem. Therefore, any observable A decomposes into A =
ΠA

+ − ΠA
−

with orthogonal projectors Π+ and Π−. For
a mixed state ̺, a measurement of this observable pro-
duces the result +1 with probability p(A+) = tr(ΠA

+ρ),

and the result −1 with probability p(A−) = tr(ΠA
−
ρ).

In addition, the measurement apparatus will modify the
quantum state according to

̺ 7→ ΠA
±
̺ΠA

±

tr(ΠA
±
̺)

, (42)

depending on the measurement result ±1.
This behavior can exactly be mimicked by a HV model,

if we allow the value of the HV to be modified by the
action of the measurement. If H is the Hilbert space of
the quantum system, we use two types of HVs. First, we
use parameters 0 ≤ λA < 1, 0 ≤ λB < 1, etc. for each
observable A, B, etc. and second we use a normalized
vector |ψ〉 ∈ H.
Then, for given values of all these parameters, we asso-

ciate to any observable the measurement result as follows:
We define qA = 〈ψ|ΠA

−
|ψ〉 and let the model predict the

measurement result: −1 if λA < qA, and +1 if qA ≤ λA.

Furthermore, depending on the measurement result, the
values of the HVs λA and |ψ〉 change according to

λ
A 7→






λA

qA
if λA

< q
A
,

λA − qA

1− qA
if λA ≥ q

A
,

(43)

and

|ψ〉 7→






ΠA
−
|ψ〉

√
qA

if λA
< q

A
,

ΠA
+|ψ〉√
1− qA

if λA ≥ q
A
.

(44)

Let us now fix the initial probability distribu-
tion of the HVs. The experimentally accessible
probability distributions p(λA, λB , . . . ;ψ) shall not
depend on the parameters λA, λB , . . . , that is,

p(λA, λB , . . . ;ψ) = p(λ′A, λ′B , . . . ;ψ). Hence we write
p(ψ) =

∫
dλAdλB · · · p(λA, . . . ;ψ). The probability dis-

tribution p(ψ) and the measure dψ are chosen such that

̺p =

∫

dψ p(ψ)|ψ〉〈ψ| (45)

is the corresponding quantum state.
We now verify that this model indeed reproduces the

quantum predictions. If the initial distribution is p, then
the probability to obtain the result −1 for A is given by

p
A
−

=

∫

λA<qA
dλ

A
dψ p(ψ) =

∫

dψ 〈ψ|ΠA
−
|ψ〉 p(ψ)

= tr(ρpΠ
A
−
), (46)

and hence is in agreement with the quantum prediction.
Due to the transformations in Eq. (43) and Eq. (44),
the probability distribution changes by the action of the
measurement, p 7→ p′. The new distribution p′ again
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does not depend on λA and, in case of the measurement
result −1, we have

p
′(ψ) =

1

pA
−

∫

dψ
′

q
′A

δ

(

|ψ〉 − ΠA
−
|ψ′〉

√
q′

A

)

p(ψ′), (47)

where δ denotes Dirac’s δ-distribution and q′
A

=
〈ψ′|ΠA

−
|ψ′〉. The new corresponding mixed state is given

by

̺p′ =

∫

dψ p
′(ψ)|ψ〉〈ψ|

=
1

pA
−

∫

dψ
′

p(ψ′)ΠA

−
|ψ′〉〈ψ′|ΠA

−

=
ΠA

−
̺pΠ

A
−

tr(̺pΠA
−
)
. (48)

This demonstrates that the transformation in Eq. (42) is
suitably reproduced by ̺p 7→ ̺p′ . An analogous calcula-
tion can be performed for the measurement result +1.
Let us illustrate that this model is actually contextual,

as defined in Eq. (3). As an example, we choose two
commuting observables A = ΠA

+ − ΠA
−

and B = ΠB
+ −

ΠB
−

with the property that, for some pure state |ψ〉, we
have 〈ψ|A1B2|ψ〉 = +1, while 〈ψ|B|ψ〉 < 1. An example
would be A = σz ⊗ 11 and B = −11 ⊗ σz with |ψ〉 being
the singlet state. Then, after a measurement of A1, the
result of a subsequent measurement of B2 is fixed and
hence independent of λB . However, if B is measured
without a preceding measurement of A, then the result
of B will be −1 if λB < 〈ψ|ΠB

−
|ψ〉, and +1 else. Hence, in

our particular model, given the preparation of |ψ〉, v(B1)
depends on λB , while v(B2|A1B2) only depends on λA.
However, the model does not allow special correlations
between λA and λB and hence the model is contextual,
i.e., necessarily there are experimentally accessible values
of the HVs, such that Eq. (3) is violated.

VI. CONCLUSIONS

Experimental quantum contextuality is a potential
source of new applications in quantum information pro-
cessing, and a chance to expand our knowledge on
the reasons why quantum resources outperform classical
ones. In some sense, experimental quantum contextual-
ity is an old discipline, since most Bell experiments are
just experiments ruling out noncontextual HV models,
since they do not fulfill the required spacelike separa-
tion needed to invoke locality as a physical motivation
behind the assumption of noncontextuality. The possi-
bility of observing state-independent quantum contextu-
ality, however, is a recent development. It shows that the
power of QM is not necessarily in some particular states,
but also in some sets of measurements which can reveal
nonclassical behavior of any quantum state.

These experiments must satisfy some requirements
which are not explicitly needed for tests of Bell inequal-
ities. An important requirement is that one has to test
experimentally, to which extent the implemented mea-
surements are indeed compatible. In this paper, we have
discussed how to deal with the inevitable errors, prevent-
ing us from implementing perfectly compatible measure-
ments. The problem of not-perfectly compatible observ-
ables is not fatal, but should be taken into account with
care.

We have presented three approaches how additional re-
quirements can be used to exclude the possibility of non-
contextual explanations of the experimental results, and
we have applied them to three specific inequalities of par-
ticular interest: a CHSH-like noncontextuality inequal-
ity using sequential measurements on individual systems,
which can be violated by specific states of four or more
levels, a KCBS noncontextuality inequality using sequen-
tial measurements on individual systems, which can be
violated by specific states of three or more levels, and
a KS inequality coming from the Mermin-Peres square
which is violated by any state of a four-level system.
Similar methods can be applied to any noncontextuality
inequality, irrespective of the number of sequential mea-
surements or the dimensionality of the Hilbert space.

The main motivation was to provide experimentalists
with inequalities to rule out noncontextual HV models
unambiguously, if some additional assumptions are made.
We have shown that a recent experiment with trapped
ions already ruled out some of these HV models. By pro-
viding examples of HV models, we have seen that these
extra assumptions are not necessarily satisfied by very
artificial HV models. Nevertheless they lead to natural
extensions of the assumption of noncontextuality, and
allow us to reach conclusions about HV models in realis-
tic experiments with nonperfect devices. An interesting
line of future research will be to investigate how these ex-
tra assumptions can be replaced by fundamental physical
principles such as locality in experiments where the sys-
tem under observation is entangled with a distant system
on which additional measurements can be performed.
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Appendix

In Sec. II C we discussed the notion of compatibility
for subsequent measurements. In this Appendix we pro-
vide two examples which demonstrate that both parts
of Definition 1 are independent. We then show that the
statement of compatibility can be simplified to involve
sequences of length 2 only.
a. Mutual independence of Definition 1 (i) and Defi-

nition 1 (ii). For an example that (i) does not include
(ii), assume that the expectation value of A depends on
whether the first measurement in the sequence is A or
B. Then 〈A1|A1B2〉 6= 〈A2|B1A2〉 and hence condition
(ii) is violated. However, such a model is not in conflict
with condition (i), if once A was measured, the value of
A stays unchanged for the rest of the sequence.
For the converse, assume a HV model where the ex-

pected value 〈A〉 does not depend on the results of any
previous measurement. Then, for any sequence and any
k, 〈A〉 = 〈Ak|S〉 and, hence, condition (ii) is satisfied.
However, p(A+

1
A

−

2
|A2A2) > 0, unless 〈A1A2〉 = 1, and

thus condition (i) is violated.
b. Compatibility for sequences of length 2. Assume

that, for any preparation procedure, A and B obey

〈A1〉 = 〈A2|A1A2〉 = 〈A2|B1A2〉, (49)

i.e., condition (ii) of Definition 1 is satisfied for sequences
of length 2. Then, for a sequence S of length k we have

either S = S′B or S = S′A, where S′ is a sequence of
length k− 1. In a measurement of S, we can consider S′

to be part of the preparation procedure and then apply
Eq. (49). It follows that 〈Ak+1|SA〉 = 〈Ak|S′A〉 and
eventually 〈Ak+1|SA〉 = 〈A1〉 by induction.

In a similar fashion we reduce condition (i) of Defini-
tion 1 for dichotomic observables. For an experimentally
accessible probability distribution pexp(λ), we denote by
p̃exp(λ) the distribution obtained by a measurement of A
and a postselection of the result +1. Then, for a sequence
S of length k,

p(A+

1
A

−

k+2
|ASA) = p̃(A−

k+1
|SA) p(A+

1
|A1)

= p̃(A−

1
|A) p(A+

1
|A)

= p(A+

1
A

−

2
|A1A2), (50)

where for the second equality we used that 〈Ak+1|SA〉 =
〈A1〉 holds for p̃. It follows that a set of dichotomic ob-
servables Ξ is compatible if and only if, for any prepara-
tion and any A,B ∈ Ξ, 〈A1A2〉 = 1 and Eq. (49) holds.
In particular, this proves the assertion that pairwise com-
patibility of three or more observables is equivalent to an
extended definition of compatibility involving sequences
of all compatible observables.
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[21] A. Cabello and G. Garćıa-Alcaine, Phys. Rev. Lett. 80,

1797 (1998).
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Entanglement is often verified by a violation of an inequality like a Bell inequality or an entan-
glement witness. Considerable effort has been devoted to the optimization of such inequalities in
order to obtain a high violation. We demonstrate theoretically and experimentally that such an
optimization does not necessarily lead to a better entanglement test, if the statistical error is taken
into account. Theoretically, we show for different error models that reducing the violation of an in-
equality can improve the significance. Experimentally, we observe this phenomenon in a four-photon
experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore,
we provide a way to develop entanglement tests with high statistical significance.

PACS numbers: 03.65 Ud, 03.67 Mn

Introduction — Quantum theory is a statistical theory,
predicting in general only probabilities for experimen-
tal results. Consequently, in most experiments observing
quantum effects, several copies of a quantum state are
generated and individually measured to determine the
desired probabilities. As only a finite number of states
can be generated, this leads to an unavoidable statistical
error. The particularly low generation rate in certain ex-
periments demands a careful statistical treatment; a fact
that is well known from particle physics [1, 2].

In quantum information processing, many of today’s
experiments aim at the generation of entanglement,
which is considered to be a central resource [3, 4]. So
far, entanglement of up to ten qubits has been achieved
using trapped ions or photons [5, 6]. For the experimen-
tal verification of entanglement, often inequalities for the
correlations — such as Bell inequalities or entanglement
witnesses — are used [4], in which a violation indicates
entanglement. The maximization of this violation has
been investigated in detail, cf. Refs. [4, 7]. In fact, mak-
ing such inequalities more sensitive is a crucial step in
order to allow advanced experiments with more particles.

In this paper we demonstrate theoretically and exper-
imentally that such an optimization does not necessarily
lead to a better entanglement test, if the statistical na-
ture of quantum theory is taken into account. It was
already noted [8] that, when aiming at ruling out local
realism, highly entangled states do not necessarily deliver
a stronger test than weakly entangled states, but this
does not answer the question which inequality to use for
a given state and it remains unclear how to apply it to
actual error models used in experiments. Also, most of
the different entanglement detection methods compared
in Ref. [9] cannot be applied to multiparticle systems.

Theoretically, we show for different error models that
decreasing the violation of an inequality can improve the
significance. Also, we demonstrate this phenomenon in a
four-photon experiment, measuring the Mermin and the
Ardehali inequality. We find that the former inequality
leads to a higher significance than the latter, despite a
lower violation. Finally, we discuss the physical origin
of this phenomenon and provide methods to construct
entanglement tests with a high statistical significance.
Statement of the problem — A witness W is an ob-

servable which has a non-negative expectation value on
all separable states (i.e., states which can be written as a
mixture of product states, ̺ =

∑
k
pk|ak, bk〉〈ak, bk| with

some probabilities pk). Hence, a negative expectation
value of a witness signals entanglement. Similarly, a Bell
inequality 〈B〉 ≤ Clhv, where B is a sum of certain cor-
relation terms, holds if the measurement outcomes can
originate from a local hidden variable (LHV) model. As
separable states allow a description by LHV models, a
violation of a Bell inequality implies the presence of en-
tanglement.
In both cases, we define V as the violation of the cor-

responding inequality. That is, for a witness we have
V(W) = −〈W〉 while for a Bell inequality V(B) =
〈B〉 − Clhv. Then, the significance of an entanglement
test can be defined as

S =
V
E (1)

where E is the statistical error for the experiment.
Clearly, E depends on the particular experimental im-
plementation and on the error model used. Nevertheless,
in any experiment S is a well characterized quantity; its
notion is widely used in the literature, when the viola-
tion is expressed in terms of “standard deviations”, also
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in other fields of physics [1].
Previously, much effort has been devoted to improving

entanglement tests in order to achieve a higher violation.
For instance, for entanglement witnesses a mature theory
how to optimize witnesses has been developed [7]. Here,
for a given witness W one tries to find a positive operator
P , such that W ′ = W − P is still a witness. In order to
have a more significant result, however, one can either
increase V in Eq. (1) or decrease E . It is a central result
of this paper that decreasing E is often superior.
Variance as the error — Let us first consider a simple

model, in which we take the square root of the variance
as the error of a witness,

E(W) = ∆(W) =
√
〈W2〉 − 〈W〉2. (2)

An experimentally relevant model will be discussed be-
low. This simple model already demonstrates that the
standard optimization of witnesses is often not the ap-
propriate approach to increase the significance:
Observation. Let ̺ = |ψ〉〈ψ| be a pure state detected

by the witness W . Then, one can always increase the
significance of W at the expense of optimality (i.e., by
adding a positive operator). With this method one can
make the significance arbitrarily large.
Namely, one needs to find a positive observable P , such

that |ψ〉 is an eigenstate of W ′ = W + P ; then the error
vanishes. Indeed, such a P can be found (see Appendix).
Multi-photon experiments — Let us now consider a re-

alistic situation, in which other and more specific error
models are used. As our later implementation uses multi-
photon entanglement, we concentrate on this type of ex-
periments but our ideas can also be applied to other im-
plementations, such as trapped ions.
The basic experimental quantities are the numbers of

detection events ni of the different detectors i. From
these data, all other quantities such as correlations or
mean values of observables are derived.
In the standard error model for photonic experiments

[6, 10], the counts are assumed to be distributed accord-
ing to a Poissonian distribution, whose mean value is
given by the observed value. That is, for a certain mea-
surement outcome i one sets the mean value as 〈ni〉 = ni

and the error as E(ni) =
√
ni (being the standard devia-

tion of a Poissonian distribution). In general, for a func-
tion f = f(ni) of several counts, Gaussian error propa-
gation is applied to obtain the error (see below).
To give an example, consider a two-qubit correlation

M = αZ1Z2 + βZ1112 + γ111Z2. (3)

Here and in the following, Zk (or 11k) denotes the Pauli
matrix σz (or the identity matrix) acting on the kth qubit
and tensor product symbols are omitted. 〈M〉 can be
determined by measuring in the common eigenbasis of all
three terms in M, i.e., by projecting onto |00〉, |01〉, |10〉
and |11〉. Repeating this with many copies of the state

will lead to count numbers nkl with k, l = 0 or 1 and to
count rates pkl = nkl/ntot, where ntot = n00+n01+n10+
n11 is the total number of events. The mean value 〈M〉
can be written as a linear combination of pkl, namely
〈M〉 = λ00p00 + λ01p01 + λ10p10 + λ11p11 with λ00 =
α + β + γ, λ01 = −α + β − γ, λ10 = −α − β + γ, and
λ11 = α − β − γ. Then, according to Gaussian error
propagation, the squared error is given by [11]

E(M)2 =
∑

k,l

[
∂〈M〉
∂nkl

]2
E(nkl)

2 =
∑

k,l

[
λkl

ntot

− 〈M〉
ntot

]2
nkl.

(4)
Let us finally discuss the underlying assumptions of this
error model. The first main assumption is that the nkl

are Poisson distributed and their errors are uncorrelated.
This is well motivated by the experimental observations.
Moreover, Gaussian error propagation stems from a Tay-
lor expansion of the function f . Finally, if one inter-
prets the standard deviation as a confidence interval, one
tacitly assumes that the distribution is Gaussian, as for
other distributions the connection is not so direct. If
the number of events for all detectors is sufficiently large
(e.g. nkl & 10), however, the Poissonian distribution is
approximated well by a Gaussian distribution.
Bell inequalities for four particles — Let us now discuss

the Mermin and Ardehali inequality as experimentally
relevant examples. First, we consider

BM =X1X2X3X4 − [X1X2Y3Y4 + perm.] + Y1Y2Y3Y4,

(5)

where the bracket [. . . ] is meant as a sum over all permu-
tations of X1X2Y3Y4 that yield distinct operators. For
states allowing an LHV description, the Mermin inequal-
ity 〈BM〉 ≤ 4 holds [12]. We wrote BM with the Pauli
matrices as observables, since they are used later, how-
ever, one might replace them by arbitrary dichotomic
measurements.
Second, we consider the Ardehali inequality 〈BA〉 ≤

2
√
2 [13], where

BA = (X1X2X3A4 +X1X2X3B4

− [X1Y2Y3A4 + perm.]− [X1Y2Y3B4 + perm.]

− [X1X2Y3A4 + perm.] + [X1X2Y3B4 + perm.]

+Y1Y2Y3A4 − Y1Y2Y3B4) /
√
2. (6)

Here, the sums in square brackets include all distinct
permutations on the first three qubits. We set A4 =
(X4 + Y4) /

√
2 and B4 = (X4 − Y4) /

√
2, but again, the

observables can remain arbitrary [14].
The Mermin and Ardehali inequality reveal the non-

local correlations of the four-qubit GHZ state,

|GHZ4〉 =
1√
2
(|0000〉+ |1111〉). (7)

For this state we have 〈BM〉 = 〈BA〉 = 8. As the bound
for LHV models for the Ardehali inequality is smaller,
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FIG. 1: Significance S for the Mermin (red, solid) and the
Ardehali inequality (blue, dashed) for bit-flip noise. On the
horizontal axes, we show the bit-flip probability and the cor-
responding fidelity with respect to a perfect GHZ state. We
assumed that the experimenter prepares 8000 instances of a
GHZ state and chooses either to measure the eight terms of
the Mermin inequality (each term with 1000 realizations of
the state) or the 16 terms of the Ardehali inequality with 500
states per correlation term. See text for further details.

the violation V is larger. This may lead to the opinion
that the Ardehali inequality is “better” than the Mermin
inequality for the state |GHZ4〉.
However, this belief is easily shattered, if the signif-

icance S is considered as the relevant figure of merit.
This can be seen directly from Eq. (4). The GHZ state
is an eigenstate for each of the correlation measurements
in the Mermin inequality (they are so-called stabilizing
operators of the GHZ state). Hence, if the Mermin in-
equality for a perfect GHZ state is measured, we have in
the last term of Eq. (4) for each case k, l either λkl = 〈M〉
(since the mean value is an eigenvalue) or nkl = 0, hence
E(M) vanishes. The Ardehali inequality, however, does
not contain stabilizer terms and the error remains finite.

For an experimental application it is important that
the Mermin inequality leads to a higher significance than
the Ardehali inequality, even if noise is introduced [15].
To see this, we considered bit-flip noise, which can eas-
ily be simulated in experiment. Therefore, we used a
perfect GHZ state whose qubits are locally affected by
the bit-flip operation f with probability p, i.e. f(̺i) =
(1−p)̺i+pXi̺iXi for each qubit i. In Fig. 1, we plotted
the significance S versus the fidelity F of the noisy state
w.r.t. a perfect GHZ state, i.e. F = 〈GHZ4|̺exp|GHZ4〉,
and versus the bit-flip probability p. For F ≥ 0.70 the
Mermin inequality is more significant (for the 6-qubit
versions of these inequalities [12, 13], this changes to
F ≥ 0.40). As can be seen from Eq. (4), the fact that one
witness is more significant than the other one is indepen-
dent of the total particle number. Moreover, a calculation
for white noise yields very similar values (F ≥ 0.72 for
4 qubits, F ≥ 0.41 for 6 qubits). This suggests that the
effect does not depend on details of the noise. Note that
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FIG. 2: Scheme of the experimental setup. a. The setup to
generate the required four-photon GHZ state. Femtosecond
laser pulses (≈ 200 fs, 76 MHz, 788 nm) are converted to ultra-
violet pulses through a frequency doubler LiB3O5 (LBO) crys-
tal (not shown). The pulses go through two main β-barium
borate (BBO) crystals (2 mm), generating two pairs of pho-
tons. The observed two-fold coincidence count rates are about
1.6× 104/s with a visibility of 96% (94%) in the H/V (+/−)
basis. b. Setup for engineering the bit-flip noise. c. The
measurement setup.

the threshold value for white noise vanishes exponentially
fast for an increasing number of qubits.
Experimental setup — Spontaneous down conversion

has been used to produce the desired four-photon state
[see Fig. 2(a)]. With the help of polarizing beam split-
ters (PBSs), half-wave plates (HWPs) and conventional
photon detectors, we prepare a four-qubit GHZ state,
where |0〉 = |H〉 (|1〉 = |V 〉) denotes horizontal (ver-
tical) polarization. We have chosen the bit-flip noise
channel to demonstrate the theory introduced in this pa-
per. As shown in Fig. 2(b), the noisy quantum chan-
nels are engineered by one HWP sandwiched with two
quarter-wave plates (QWPs) [16]. The HWP is switched
randomly between +θ and −θ and the QWPs are set
at 0◦ with respect to the vertical direction. In this
way, the noise channel can be engineered with a bit-flip
probability p = sin2(2θ). The Pauli matrix measure-
ments required in the Bell test can be implemented by
a combination of HWP, QWP and PBS [see Fig. 2(c)].
The fidelity of the prepared GHZ state is obtained via
F = 1

2 (〈|0000〉 〈0000|+ |1111〉 〈1111|〉) + 1
16 〈BM 〉. With-

out added noise, its value is F = 0.84± 0.01.
Experimental results — For different noise levels, the

experimental results of the violation, the statistical er-
ror and the significance are shown in Table I. The first
observation is that, when there is no engineered noise,
the violation of the Mermin inequality is smaller than
the violation of the Ardehali inequality. Its significance,
however, is larger than that of the Ardehali inequality;
this proves that testing the Mermin inequality is a bet-
ter choice to characterize the entanglement in this case.
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θ p V(BM ) E(BM ) S(BM) V(BA) E(BA) S(BA)

±0◦ 0 2.37 0.05 44.3 3.65 0.10 35.0

±2◦ 0.005 2.00 0.06 33.4 3.14 0.11 29.2

±4◦ 0.019 1.57 0.07 23.7 2.48 0.11 21.8

±6◦ 0.043 1.13 0.07 16.2 2.05 0.11 17.8

±8◦ 0.076 0.67 0.08 8.8 1.63 0.12 13.7

TABLE I: Experimental values of the violation, the statistical
error and the significance for different values of θ (and the cor-
responding p). V(BM ), E(BM ), S(BM ) represent the values of
V, E and S in testing the Mermin inequality; V(BA), E(BA),
S(BA) represent the corresponding values for the Ardehali
inequality. Each setting X1X2X3X4 etc. in the Mermin in-
equality is measured for 800 s, while each setting X1X2X3A4

etc. in the Ardehali inequality is measured for 400 s. The
average total count number for each inequality is about 7500.

Secondly, when the noise level increases, the significance
in the Mermin inequality decreases more quickly. When
θ = ±6◦,±8◦, the significance for the Ardehali inequal-
ity is already larger than that for the Mermin inequal-
ity. Due to the experimental imperfections, the initial
state to which the noise is added is not the perfect GHZ
state. However, assuming an initial state like ̺(p =
0) = α|0000〉〈0000| + β|1111〉〈1111| + γ(|0000〉〈1111| +
|1111〉〈0000|) + λ

1611, where α = 0.362, β = 0.522, γ =
0.398, λ = 0.12 reproduces that for p ≤ 0.019 the Mer-
min inequality is more significant.
Discussion — We have proved that it can be favor-

able to use an entanglement witness or a Bell inequality
that results in a lower violation. We confirmed this ex-
perimentally using four-photon GHZ states. Our results
show that the usual way of optimizing witnesses will not
necessarily lead to more powerful tools for the analysis of
many-particle experiments. It is important to note that
when the number of photons in multi-photon experiments
is increased the count rates decrease; consequently, the
statistical error becomes more and more relevant.
Our results provide a direction to find powerful en-

tanglement tests for low count rates: the observed effect
relied on the fact that in the Mermin inequality only sta-
bilizer measurements were made. There are already pow-
erful approaches available to construct witnesses from
stabilizer observables [17] and also other Mermin-like or
Ardehali-like Bell inequalities have been explored [18].
Consequently, these approaches are promising candidates
for developing sensitive analysis tools. Further, inequali-
ties similar to witnesses have been proposed and used to
characterize quantum gate fidelities [19], which is another
application of our theory. Finally, we believe that results
on statistical confidence from other fields of physics (e.g.
[2]) can give new insights in advanced experiments on
quantum information processing.
We thank A. Cabello, R. Gill, O. Gittsovich, D.

James, J.-Å. Larsson and C. Roos for discussions and
acknowledge support by the FWF (START Prize), the

EU (SCALA, OLAQUI, QICS, Marie Curie Excellence
Grant), the NNSFC, the NFRP (2006CB921900), the
CAS, the ICP at HFNL, and the A. v. Humboldt Foun-
dation.

Appendix — To prove the Observation, we use as an
ansatz for the improved witness W ′ = W + γP , where
γ > 0 and P is a positive observable with unit trace. For

small γ, we expand − 〈W
′
〉

∆(W′) = − 〈W〉

∆(W)+γ
〈W〉

2∆3(W)

[
〈WP+

PW〉− 2 〈W
2
〉

〈W〉
〈P 〉

]
+O(γ2) . Maximizing this expression

over all positive P with Tr(P ) = 1 is equivalent to min-
imizing Tr(QP ), where Q = ̺W + W̺ − 2〈W2〉/〈W〉̺.
Hence the optimal P is a one-dimensional projector P =
|ϕ〉〈ϕ|, where |ϕ〉 is an eigenvector corresponding to the
minimal eigenvalue of Q. We still have to show that this
minimal eigenvalue is negative. To this end, we make
the ansatz |ϕ〉 = α|ψ〉 + β|ψ⊥〉, where 〈ψ|ψ⊥〉 = 0. We
then have to minimize Tr(QP ) = 2Re(α∗β〈ψ|W|ψ⊥〉) −
2|α|2 ∆2

ψ
(W)

〈ψ|W|ψ〉
. We can always choose the phases of α and

β such that Re(. . .) is negative. Therefore the optimal
|ψ⊥〉 is the vector orthogonal to |ψ〉 which maximizes
|〈ψ|W |ψ⊥〉|, i.e., |ψ⊥

opt〉 = [1−|ψ〉〈ψ|]W|ψ〉/∆ψ(W). Fur-
thermore, we can always choose the moduli of α and β

such that the negative term 2Re(. . .) dominates the posi-
tive second term. This shows that the minimal eigenvalue
of Q is negative.

For finite γ we can iterate this procedure. We always
find the same |ψ⊥

opt〉 (though α and β will be different
in each iteration step). Thus, we make the ansatz γP =
a|ψ〉〈ψ| + b|ψ⊥

opt〉〈ψ⊥

opt| + c|ψ〉〈ψ⊥

opt| + h. c. for the final
result of the iteration. If we choose c = −∆ψ(W), ab ≥
|c|2, and a, b > 0, then γP is positive, |ψ〉 is an eigenstate
of W ′, and ∆ψ(W ′) is zero, so S diverges. �
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G. Tóth et al., New J. Phys. 11, 083002 (2009).

[8] W. van Dam, R.D. Gill, and P. Grünwald, IEEE-
Transactions on Information Theory 51, 2812 (2005);
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Asymptotically perfect discrimination in the LOCC paradigm
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We revisit the problem of discriminating orthogonal quantum states within the local quantum
operation and classical communication (LOCC) paradigm. Our particular focus is on the asymptotic
situation where the parties have infinite resources and the protocol may become arbitrarily long. Our
main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application,
we prove that for complete product bases, unlimited resources are of no advantage. On the other
hand, we identify an example, for which it still remains undecided whether unlimited resources are
superior.

PACS numbers: 03.65.Ud, 03.67.Ac, 03.67.Hk

I. INTRODUCTION

An important concept in quantum information theory
is the paradigm known as “local operations and classi-
cal communication” (LOCC). It specifies the operational
power of two or more parties which only have local access
to a distributed quantum system but are equipped with
a classical communication channel. A typical question
now is, whether a certain task that usually is trivial to
perform with global access can be accomplished within
this restricted set of operations. Prominent such exam-
ples are entanglement distillation, entanglement transfor-
mations, or local state discrimination, and results from
such examples have strong influence on central topics in
quantum information theory, e.g. in entanglement classi-
fication and quantification or in quantum communication
theory [1, 2].

Here, we will focus on the local discrimination of or-
thogonal states, i.e., states, which can be discriminated
perfectly by a global measurement. This situation has
been studied extensively in the literature, cf. e.g. Ref. [3–
11], and some of the results are quite counter-intuitive.
For example, it is always possible to perfectly discrim-
inate two arbitrary orthogonal states [12], while there
exist product bases which cannot be discriminated per-
fectly by means of LOCC [13].

An LOCC discrimination protocol in general consists
of several rounds, where in each round one party per-
forms a measurement and communicates the results to
all parties. Due to the existence of “weak measurements”
[14, 15] it is not clear that perfect discrimination can be
achieved in a finite number of such rounds. From a phys-
ical point of view, the question of perfect distinguisha-
bility is not particularly meaningful, since unavoidable
experimental imperfections will always impede perfect
measurement results. Rather it would be interesting to
know, whether with increasing experimental effort, one
can get arbitrarily close to perfect discrimination. This
asymptotic case has already been noticed and approached
in Ref. [13], but to our knowledge only in Ref. [16] this

question has been considered again, while the majority
of the work on LOCC discrimination explicitly is limited
to perfect discrimination in a finite number of rounds (cf.
e.g. Ref. [7–11]) or to the more general class of stochastic
LOCC measurements (or separable measurements [17]),
cf. e.g. Ref. [3–6]. So far it is actually unclear whether
the asymptotic consideration may yield a different result
than the finite analysis.
In this contribution, we now revisit the problem of per-

fect discrimination by asymptotic LOCC. Our main re-
sult is a general necessary condition for such a discrimi-
nation to be possible, cf. Proposition 1. The proof of this
result uses a variant of the protocol splitting technique
introduced in Ref. [13]. We, however, do not rely on a
continuous measurement process, but rather show that a
finite enlargement of the protocol suffices in order to em-
ploy the protocol splitting. As an application of Proposi-
tion 1, we show that a product basis can be discriminated
asymptotically if and only if it can be discriminated by
finite means. This also gives an analytical proof of the
numerical findings in Ref. [13]. (A similar result regard-
ing unextendible product bases was stated in Ref. [16],
however we question the validity of this proof, cf. our Re-
mark below Proposition 2.) Finally, we study an example
provided by Duan et al. [18], for which it is known that
it cannot be discriminated by any finite protocol, while it
can be discriminated perfectly by stochastic LOCC. For
this example, using our result, we cannot exclude that
asymptotic LOCC could achieve perfect discrimination.
Our paper is organized as follows: In Sec. II we thor-

oughly define our notion of asymptotic LOCC discrimi-
nation and analyze possible generalizations. In Sec. III
we prove our main result, which is summarized in Propo-
sition 1. We then discuss two examples in Sec. IV before
we conclude in Sec. V.

II. ASYMPTOTIC LOCC DISCRIMINATION

In our scenario we aim at discriminating a certain
family of multipartite mixed states (ρµ), where ρµ are
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density operators on a finite-dimensional Hilbert space
H =

⊗
r H(r). We will first define a general notion of

finite LOCC measurements and then describe the tran-
sition from those finite measurements to the asymptotic
situation.

A. Finite LOCC measurements

The most general quantum measurement with n out-
comes is described by a positive operator valued measure
(POVM), i.e., a finite family (Ek) of n positive semi-
definite operators (or effects) on H obeying

∑
k Ek = 11.

The probability to obtain the outcome k for a state ρµ

is then given by tr(ρµEk). Hence a measurement can
be written as the mapping E : X 7→ (tr[XEk]) from the
set of operators into Cn, where 0 ≤ E(ρ)k ≤ 1 for any
state ρ.
Any POVM can be implemented by a physical mea-

surement device and vice versa, any such device corre-
sponds to a unique POVM. If the physical setup is lim-
ited to the LOCC paradigm then each effect Ek will be a
sum of positive semi-definite product operators [13, 19],

Ek =
∑

j

⊗

r

E
(r)

k,j with E
(r)

k,j ≥ 0. (1)

However, as first shown by Bennett et al. in Ref. [13],
the converse statement does not hold in general.
We call a measurement a finite LOCC measurement, if

it can be implemented by an LOCC protocol, using only
finite dimensional ancilla systems, measurements with a
finite number of outcomes and which is guaranteed to
terminate after a certain number of rounds. The intuition
behind this restriction is a realistic experimental setup,
where the effective dimension of the Hilbert space shall
be finite, the classical communication channel has limited
capacity, and the experiment cannot be kept stable for
an infinite time span.

B. Deviation from perfect discrimination

For our goal of perfect discrimination of orthogonal
states, we now measure the deviation from perfect dis-
crimination d(E) for an arbitrary measurement E. There-
fore we assume that for some fixed set of states (ρµ), d(E)
is a non-negative real number such that d(E) = 0 implies
that E achieves perfect discrimination of (ρµ). Then we

define the asymptotic deviation d̂ as the infimum of d over

all finite LOCC measurements. In particular, if d̂ = 0
then for any deviation ε > 0 we can find a finite LOCC
measurement Eε, such that d(Eε) < ε.
The deviation measure has to be chosen carefully, as a

trivial (but meaningful) choice for the deviation is e.g. the
measure dfinite, which yields 1 whenever the measurement
fails to achieve perfect discrimination and 0 in the case

of perfect discrimination. Then d̂finite = 0 if and only

if there exists a finite LOCC measurement that achieves
perfect discrimination.
Typically we would be rather interested, whether e.g.

the mean failure probability could approach zero as the
LOCC measurement becomes more and more expensive.
We thus define the deviation measure dmf(E) to be the
minimal mean failure probability over any possible clas-
sical post-processing of E, i.e.,

dmf(E) = 1−
∑

k

max
µ

(pµE(ρµ)k), (2)

with some arbitrary a priori probabilities pµ > 0 obey-
ing

∑
µ pµ = 1. (The interpretation of this measure is

as follows: Assume that the state ρµ is prepared with
probability pµ and we use the measurement E in order
to learn about the index µ. Given the measurement re-
sult k, the strategy which minimizes the probability of
a failure is the one in which we announce the index µ

maximizing pµE(ρµ)k.)
In Ref. [13], in contrast, an entropy based measure was

used for the deviation measure, namely the conditional
entropy

dce(E) = H(S|K) ≡ H(S,K)−H(K) (3)

where S is the random variable, determining the index
µ of the state ρµ, K is the random variable for the mea-
surement outcome k, and H(X) denotes the Shannon

entropy of a random variable X . However, d̂ce = 0 al-

ready implies d̂mf = 0 since dce(E) ≥ dmf(E) holds for
any measurement E [20].
— At this point the moderately impatient reader may

directly skip to our main result summarized in Proposi-
tion 1. Otherwise, allow us to introduce some additional
notation:
First we combine the a priori probabilities pµ and the

states ρµ to weighted states γµ ≡ pµρµ. For a moment
let us assume, that the measure d is defined for arbitrary
families of N weighted states with

∑
µ tr γµ = 1 (this

will be guaranteed by property (ia) of regular measures
we are about to define). Then we write d(E) ≡ d[E; (γµ)]
and let for an operator A

d(E|A) =
{
d[E; (AγµA

†/pA)]) if pA > 0

d[I; (γµ)] else,
(4)

where pA =
∑

µ tr(AγµA
†) and I : X 7→ tr[X ] is the

trivial measurement. (The operator A in this definition
shall correspond to the Kraus operator of a measurement
result, i.e. A†A is an effect of a POVM. Then d(E|A)
denotes the deviation, given that we have performed a
certain POVM and obtained the result with effect A†A.)
Although we will focus on the measure dmf , most parts

of our method apply to general regular deviation mea-
sures: We call a deviation measure d for N states regular,
if the following conditions are satisfied:
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(ia) The measure d[E; (γµ)] only depends on p(µ, k) ≡
E(γµ)k; d is well-defined for all probability distribu-
tions p(µ, k) with p(µ, k) ≥ 0 and

∑
µ,k p(µ, k) = 1.

(ib) For a fixed number of measurement outcomes, d is
bounded and continuous in p(µ, k).

(ii) A classical post-processing [21] Π acts non-
decreasing, i.e., d(Π ◦ E) ≥ d(E).

(iii) If a measurement is performed in two stages, then
optimal post-selection after the first stage acts non-
increasing. That is, if E is of the form E : ρ 7→
⊕

k Ek(AkρA
†

k) with
∑

k A
†

kAk = 11 and measure-
ments Ek, then d(E) ≥ mink d(Ek|Ak).

We mention, that condition (iii) is satisfied for dmf and
dce due to d(E) =

∑
k pAk

d(Ek|Ak) for either measure;
dmf and dce in particular are regular. On the other hand,
the measure dfinite satisfies all conditions but the conti-
nuity condition in (ib).

III. A NECESSARY CONDITION FOR

PERFECT ASYMPTOTIC DISCRIMINATION

In this section we will derive our main result, Proposi-
tion 1, which states a necessary condition for perfect dis-

crimination by asymptotic LOCC, d̂mf = 0. We present
this proof in four steps: As a prelude we will start with
pseudo-weak measurements, a technique that will become
important for the protocol splitting method. The proto-
col splitting (cf. Ref. [13]) then achieves a split of the
protocol into stage I and a continuation of stage I. This

in turn allows to genuinely bound d̂, cf. Eqns. (12) and
(13). Finally we specialize this intermediate result to the
regular deviation measure dmf , yielding Proposition 1.

A. Prelude: Pseudo-weak measurements

Given a POVM (Ek) we define for bk ≥ 0 and β ≡
1/(1+

∑
k bk) the POVM (Epw

k ) and the family of POVMs
(Erc

(k),ℓ) via

E
pw
k = β (bk11 + Ek), (5a)

E
rc
(k),ℓ = β (bk + δk,ℓ)(E

pw
k )−1/2

Eℓ(E
pw
k )−1/2

, (5b)

with δk,l = 1 if k = l and zero else — if bk = 0, we let
Erc

(k),l = δk,l11. A measurement of (Epw
k ) is a pseudo-weak

implementation of (Ek), while we will refer to (Erc
(k),ℓ) as

the recovery measurement for outcome k. Indeed, an ap-
plication of the recovery measurement after the pseudo-
weak measurement on |ψ〉 results in

Uk,ℓ

√
Erc

(k),ℓ

√
E

pw
k |ψ〉 =

√
β (bk + δk,l)

√
Eℓ |ψ〉, (6)

with Uk,ℓ a unitary originating from the polar decompo-
sition. In particular, if the outcome of the pseudo-weak

FIG. 1. Example of a 4-leveled tree graph which represents

an LOCC measurement with at most 4 steps. The branch

B(t) (thick green) connects the leaf t with the root node and

hence consists of the root node, node s and its child c and the

leaf t.

measurement is ignored, the (weighted) state for outcome
ℓ is identical to the state obtained by the original mea-
surement in the case of outcome ℓ.
Let us now consider a completely positive and trace

preserving (CPTP) map Λ described by Kraus operators

(Ak), Λ: ρ 7→ ∑
k AkρA

†

k. With Ak = Vk

√
Ek a po-

lar decomposition of Ak (where V
†

k Vk = 11), this map
corresponds to a measurement of the POVM (Ek) and
a subsequent application of Vk and hence we can use
the above method to obtain a pseudo-weak implemen-
tation (Apw

k ) of (Ak) via A
pw
k =

√
E

pw
k . The recovery

step is then a CPTP map described by (Arc
(k),ℓ) with

Arc
(k),ℓ = VℓUk,ℓ

√
Erc

(k),ℓ.

B. Protocol splitting

In general, a finite LOCC protocol consists of a cer-
tain number of steps, where in each step a particular
party applies a family (Λk) of local quantum operations

Λk : ρ 7→ AkρA
†

k with Λ =
∑

k Λk trace preserving.
These quantum operations depend on the course of the
protocol so far and the measurement result k is always
communicated to all parties. This situation can be de-
picted by a tree graph (cf. Fig. 1), where the children
of each node correspond to a particular operation Λk,
a level in the tree represents a particular protocol step,
and each branch corresponds to a particular course of the
protocol.
Hence, a finite LOCC protocol can be represented by

a tree graph with root element, where to each node s

of the tree, an operator A(s) is associated. (The associ-
ated operator for the root node is the identity operator.)
For each node, the associated child operators (A(c)) shall
form a family of Kraus operators of a local CPTP map,
i.e., all operators in (A(c)) act only non-trivially on some
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FIG. 2. Introduction of a pseudo-weak measurement and re-
covery step. Assume that d(I|AB(1)) ≤ d(I|AB(2)) < δ, while
δ ≤ d(I|AB(3)) ≤ d(I|AB(4)) in the original situation (a).
In (b) the pseudo-weak measurement was introduced with
b(1) and b(2) such that d(I|A

B(1̃)) = d(I|A
B(2̃)) = δ (thick

green), while the operators at nodes 3 and 4 remain —up to a
prefactor— unchanged. Then for the nodes 1̃ and 2̃ a recovery
step is introduced (thin red), such that —up to a prefactor—
in effect the original operators from the nodes 1 to 4 occur.
Finally the according parts of the original protocol are added
to the outcomes of the recovery measurements (dashed gray).

particular party. Then for any path P in this tree we
associate an operator AP as the product of the opera-
tors in reversed ordering: If P = (s1, . . . , sm), where sk

is the parent of sk+1, then AP = A(sm) · · ·A(s1). Note
that AP is a product operator. For a node s we then de-
note by B(s) the path connecting the root element with
s (including the root element and s).
For an arbitrary δ with 0 < δ < d(I) (again, I : X 7→

tr[X ]) we modify the protocol in an iterative procedure as
follows (cf. Fig. 2). For any node s we denote by Dδ(s)
the set of child nodes for which the deviation dropped
below δ, i.e.,

Dδ(s) = {c is child of s | d(I|AB(c)) < δ}. (7)

Let s be a node with non-empty set Dδ(s) but
d(I|AB(a)) > δ for any a ∈ B(s). For such a node,
the associated child operators (A(c)) are replaced by the
pseudo-weak implementation (Apw

(c)
) with the parameters

(b(c)) (cf. Sec. III A) chosen such that d(I|Apw

(c)
AB(s)) = δ

for all c ∈ Dδ(s) and b(c) = 0 else. This is always possi-
ble, since regular deviation measures are continuous and
the pseudo-weak measurement smoothly interpolates be-

tween A(c) ≡ V(c)

√
A

†

(c)
A(c) and V(c) for b(c) = 0 . . .∞.

For the nodes in Dδ(s) we add the recovery step as an
additional level (the recovery measurement for the re-
maining child nodes would be trivial). After the recovery

measurement, the according part of the original protocol
is appended.
This procedure is repeated, until for all nodes s ei-

ther Dδ(s) is empty or there exists an a ∈ B(s) with
d(I|AB(a)) = δ. It is important to note, that this pro-
cedure terminates after a finite number of steps. This
is the case, since the number of candidates subject to
modification decreases in each step of the procedure; the
recovery levels are only introduced when d(I|AB(s)) = δ.
We denote by stage I of the protocol the part that

does not enter the recovery steps, but rather terminates
as soon as d(I|AB(s)) = δ in the modified protocol.

C. Analysis of the best-case deviation

For the moment we only consider stage I of the mod-
ified protocol (with parameter δ). As an abbreviation
we define for each leaf k of this stage the shorthand
Ak := AB(k). Let us now define the set

Sδ = {k is leaf | d(I|Ak) = δ}. (8)

Due to our modification of the protocol, k /∈ Sδ only if k
was already a leaf in the original protocol with d(I|Ak) >
δ.
For each leaf k we let Ek be the continuation of

stage I of the modified protocol. With Π being the post-
processing that “forgets” all results of any pseudo-weak
measurement introduced by the protocol splitting (this
are those results with parameter b(c) > 0), the measure-
ment

E : ρ 7→ Π[
⊕

k Ek(AkρA
†

k)] (9)

is equivalent to the original protocol. Hence, due to prop-
erty (ii) and (iii) of regular measures d, we have

d(E) ≥ min
k

d(Ek|Ak) ≥ min[δ, min
k∈Sδ

d(Ek|Ak)]. (10)

We now consider the case of d̂ = 0, i.e., for any ε > 0
there exists a protocol Eε with d(Eε) < ε. Then for any
δ with 0 < δ < d(I) and any ε with 0 < ε < δ we have

ε > d(Eε) ≥ min
k∈Sδ

d(Ek|Ak). (11)

(Note that Ek and Ak depend on δ and Eε.) The right-
hand side of this inequality can be further lower bounded
by

yδ = inf{d(G|
√
E) | G is a finite LOCC

measurement, E ∈ Mδ}, (12a)

where

Mδ = {E is a product operator | E ≥ 0,
∑

µ tr(γµE) = 1, and d(I|
√
E) = δ}. (12b)
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This is a lower bound, since any Ek is a finite LOCC

measurement, A
†

kAk/pAk
∈ Mδ [cf. Eq. (4); the case

pAk
= 0 cannot occur due to δ < d(I)], and due to

property (ia) of regular deviation measures. We have an
intermediate result:

d̂ = 0 only if yδ = 0 for any 0 < δ < d(I). (13)

The main use of this result is the reverse statement,

where yδ > 0 for some δ shows that d̂ > 0. In this
case we are not interested in the actual value of yδ, and
we therefore now aim to eliminate the infimum in the
expression for yδ.

D. Specialization to dmf

The special property of the measure dmf , as defined in
Eq. (2), we are about to exploit is, that for the discrim-
ination of N states, it is never advantageous to choose
a measurement with more than N outcomes (for more
than N outcomes one could always combine the results
for which maxν pνE(ρν)k is achieved at µ = ν). There-
fore, in order to make the set of measurements in the def-
inition of yδ [cf. Eq. (12a)] a compact set, we extend the
allowed measurements to arbitrary global measurements
[22], but at the same time consider only measurements
with at most N outcomes.
We also assume that the kernels of the states (γµ)

do not share a product vector, i.e.,
⋂

µ ker γµ contains

no product vector (except 0). Let E ∈ Mδ, as de-
fined in Eq. (12b), have the spectral decomposition E =∑

j ej |j〉〈j|, where |j〉 are product vectors. Then with

R =
∑

µ γµ we have

1 = tr(RE) ≥ min
j

(〈j|R|j〉)max
j

ej ≥ ηR max
j

ej. (14)

where ηR = inf 〈ξ|R|ξ〉, with the infimum taken over
all product vectors |ξ〉. Since the kernel of R con-
tains no product vector, ηR > 0 and hence ej ≤ 1/ηR.
This in turn shows that we can replace the condition
E ≥ 0 by the compact condition 11/ηR ≥ E ≥ 0. Due

to the condition
∑

µ tr γµE = 1, we have d(I|
√
E) =

d[I; (
√
Eγµ

√
E)] which shows due to the continuity of d,

that the condition d(I|
√
E) = δ defines a compact set.

Hence Mδ as defined in Eq. (12b) itself is a compact set.
Together with the continuity of regular measures, it

follows that d̂mf = 0 only if there exists an operator E

in Mδ and a measurement G with d(G|
√
E) = 0. Hence

the states (
√
Eγµ

√
E) can be perfectly discriminated and

thus are mutually orthogonal, i.e. tr(γµEγνE) = 0 for
µ 6= ν.
Finally, our argument is independent of the a priori

probabilities pµ > 0, and we hence can choose them to
be all equal (this maximizes dmf(I) to 1/N and hence the
range of δ). The boundary cases δ = 0 and δ = dmf(I)
are trivial to fulfill. Letting χ = 1 − δ, we arrive at our
main result:

Proposition 1. Let (ρµ) be a family of N states, such
that

⋂
µ ker ρµ contains no product vector (except 0).

Then (ρµ) can be discriminated perfectly by asymptotic

LOCC, d̂mf = 0, only if for all χ with 1/N ≤ χ ≤ 1 there
exists a product operator E ≥ 0 obeying

∑
µ tr(Eρµ) = 1,

maxµ tr(Eρµ) = χ, and tr(EρµEρν) = 0 for µ 6= ν.

This necessary condition does not imply perfect dis-
crimination for finite LOCC, as we will demonstrate in
Section IVB. We mention, that the Proposition basically
holds for any regular deviation measure d, for which the
optimal general measurement strategy for N arbitrary
states can be achieved using at most a certain fixed num-
ber of effects.
Note, that the precondition in Proposition 1 is not ro-

bust under trivial local embeddings: If a local Hilbert
space H(s) is extended to H(s) ⊕ H′, this condition will
be violated. However, if E′ ∈ Mδ, then the projec-
tion onto the original space E′ 7→ E is still in Mδ and
d(G|

√
E) = d(G|

√
E′). Therefore, in the Proposition the

embedding Hilbert space H =
⊗

r H(r) should be chosen
as small as possible.

IV. EXAMPLES

A. Product bases

Let (|ψµ〉) be an orthonormal product basis of an N -

dimensional Hilbert spaceH =
⊗

r H(r). We assume that
the states (|ψµ〉〈ψµ|) can be discriminated by asymptotic
LOCC and hence for any χ with 1/N ≤ χ ≤ 1 there exists
an operator E obeying the conditions in Proposition 1.
For 1/N < χ < 1/(N−1), this operator E must be of full
rank, but cannot be a multiple of the identity operator.

We choose some decompositions |ψµ〉 =
⊗

r |ω
(r)
µ 〉 and

E =
⊗

r E
(r) with E(r) ≥ 0. Since 〈ψν |E|ψµ〉 = 0 if

and only if µ 6= ν, it follows that E|ψµ〉 = fµ|ψµ〉 with

fµ > 0. Hence for any r we have E(r)|ω(r)
µ 〉 = f

(r)
µ |ω(r)

µ 〉
with f

(r)
µ > 0. It follows that a local measurement of

the observable E(r) does not change any of the input
states. Since for some subsystem s, the observable E(s)

is not proportional to the identity operator, the measure-
ment of E(s) separates the set of states in at least two
non-empty subsets. Each of the subsets is again an or-
thonormal product basis of a subspace of H and each
of the subsets inherits the property that it can be dis-
criminated by asymptotic LOCC. By induction we arrive
at

Proposition 2. If a complete (product) basis can be dis-

criminated perfectly by asymptotic LOCC (d̂mf = 0) then
it can already be discriminated perfectly by a finite LOCC
measurement.

Since d̂mf > 0 implies d̂ce > 0 [cf. Eqns. (2) and (3)],
this Proposition in particular yields an analytical proof
of the result of Bennett et al. in Ref. [13]. Unfortunately,
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it is not straightforward to extend this type of argument
to the situation of an unextendible product basis (then
|ψµ〉 is not necessarily an eigenstate of E.).
Remark. In Ref. [16] a proof was given that un-

extendible product bases cannot be discriminated by
asymptotic LOCC. (Since a complete basis is also un-
extendible, this includes Proposition 2 as a special case.)
While the statement is likely to hold, the proof given
there is incomplete. In particular we question the
argument below Eq. (16), showing that the quotient
“MN/cN” converges to a constant for “N → ∞” (in this
expression N denotes the number of steps until the pro-
tocol is aborted). The argument for this convergence is
quite general and should hold whenever finite discrimi-
nation is not possible (more precisely, if any local mea-
surement either destroys orthogonality or is trivial). For
the example in Sec. IVB, however, the quotient would
diverge, since “cN” is zero in this case.

B. When Proposition 1 does not decide

The previous example showed that for a wide class of
examples, asymptotic LOCC does not provide an advan-
tage over LOCC with finite resources. In this section we
give an explicit example for which Proposition 1 does not
help to decide whether perfect discrimination via asymp-
totic LOCC can be performed.
We aim to discriminate the following three mutually

orthogonal states on a two-qubit system:

|ψ1〉 = |00〉,
|ψ2〉 ∝ 2|01〉 − (

√
3 + 1)|10〉 −

√
6

4
√
3|11〉,

|ψ3〉 ∝ 2|01〉 − (
√
3− 1)|10〉+

√
2

4
√
3|11〉.

(15)

In Ref. [18], Example 1 [23], it has been demonstrated,
that this set of vectors can be discriminated perfectly by
stochastic LOCC, while there exists no perfect discrimi-
nation strategy for LOCC in a finite number of steps. In
fact, a local effect that does not destroy orthogonality is
necessarily proportional to the identity operator.
The only state that is orthogonal to all |ψµ〉 is en-

tangled and hence we can apply Proposition 1. How-
ever, in the Appendix we construct an operator Eχ for
1
3 ≤ χ ≤ 1, which satisfies the conditions from Propo-
sition 1. Hence our necessary condition for perfect dis-
crimination by asymptotic LOCC is satisfied, but Propo-
sition 1 does not provide a sufficient criterion.

V. CONCLUSIONS

We considered the case of asymptotic local operations
and classical communication for the discrimination of
mutually orthogonal states and derived a necessary con-
dition for perfect asymptotic discrimination to be possi-
ble. Our analysis yielded a general necessary condition,

cf. Proposition 1, which consists of the existence of a cer-
tain product operator. As an example we showed, that
any complete basis of product states can be discriminated
perfectly by asymptotic LOCC if and only if they can al-
ready be discriminated in a finite number of rounds (cf.
Proposition 2).
Our result allows to relatively easily exclude whether

a family of states can be discriminated by asymptotic
LOCC, however it is still unclear whether infinite re-
sources can be of any advantage. Although the general
intuition might be, that for perfect discrimination the
asymptotic case is not superior, we identified an exam-
ple, which could be a counter-example for this case as our
necessary condition is fulfilled. However, as a sufficient
criterion is not available, this question remains open.
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Appendix: Construction of Eχ

In this Appendix we provide an operator Eχ for the
states defined in Eq. (15). This operator satisfies the
conditions from Proposition 1. We first define the local
qubit-operator Aχ via

〈0|Aχ|0〉 = −(12
√
3− 21)χ+ 3

√
3− 3,

〈1|Aχ|1〉 = (6
√
3− 12)χ− 2

√
3 + 6,

〈0|Aχ|1〉 =
√
2
√
3− 3[(5

√
3− 3)χ− 2

√
3],

〈1|Aχ|0〉 = 〈0|Aχ|1〉∗,

(A.1)

and the diagonal operators Bχ and Cχ via

〈0|Bχ|0〉 = 20χ+ 2χ̃− 4,

〈1|Bχ|1〉 = (12−
√
3)χ+ χ̃+

√
3− 1,

(A.2)

and

〈0|Cχ|0〉 = −(4 + 3
√
3)χ− χ̃+ 3

√
3 + 5,

〈1|Cχ|1〉 = 〈1|Bχ|1〉,
(A.3)

where

χ̃ =

√

(115− 8
√
3)χ2 − (46− 10

√
3)χ− 2

√
3 + 4.

(A.4)
Then with

Ẽχ =

{
Bχ ⊗ Cχ if χ < 1/2

Aχ ⊗ |1〉〈1| else.
(A.5)

we finally let Eχ = Ẽχ/
∑

µ 〈ψµ|Ẽχ|ψµ〉. One readily
verifies that Eχ has the desired properties.
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MEMORY COST OF QUANTUM CONTEXTUALITY

MATTHIAS KLEINMANN1,2, OTFRIED GÜHNE1,2,3, JOSÉ R PORTILLO4, JAN-ÅKE

LARSSON5 AND ADÁN CABELLO6,7

Abstract. The simulation of quantum effects requires certain classical re-

sources, and quantifying them is an important step in order to characterize

the difference between quantum and classical physics. For a simulation of the

phenomenon of state-independent quantum contextuality, we show that the

minimal amount of memory used by the simulation is the critical resource.

We derive optimal simulation strategies for important cases and prove that

reproducing the results of sequential measurements on a two-qubit system re-

quires more memory than the information carrying capacity of the system.

1. Introduction

According to quantum mechanics, the result of a measurement may depend
on which other compatible observables are measured simultaneously [1–3]. This
property is called contextuality and is in contrast to classical physics, where the
answer to a single question does not depend on which other compatible questions
are asked at the same time.

Contextuality can be seen as complementary to the well known nonlocality of
distributed quantum systems [4]. Both phenomena can be used for information
processing tasks, albeit the applications of contextuality are far less explored [5–
12]. Although contextuality and nonlocality can be considered as signatures of
nonclassicality, they can be simulated by classical models [3, 13–15]. However, while
nonlocal classical models violate a fundamental physical principle (the bounded
speed of information), it is not clear whether contextual classical models violate any
fundamental principle. Moreover, while the resources needed in order to imitate
quantum nonlocality have been extensively investigated [16–18], there is no similar
knowledge about the resources needed to simulate quantum contextuality.

In any model which exhibits contextuality in sequential measurements, the sys-
tem will eventually attain different internal states during certain measurement se-
quences. These states can be considered as memory — a model attaining the
minimal number of states is then memory-optimal and defines the memory cost.
In this paper we investigate the memory cost as the critical resource in a classical
simulation of quantum contextuality and we construct memory-optimal models for
relevant cases. The amount of required memory increases as we consider more and
more contextuality constraints. This can be used to quantify contextuality in a
given quantum setting. We show that certain scenarios breach the amount of two

1 Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wis-

senschaften, Technikerstr. 21A, A-6020 Innsbruck, Austria.
2 Universität Siegen, Fachbereich Physik, Walter-Flex-Straße 3, D-57068 Siegen, Germany.
3 Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck,

Austria.
4 Departamento de Mathemática Aplicada I, Universidad de Sevilla, E-41012 Sevilla, Spain.
5 Institutionen för Systemteknik och Matematiska Institutionen, Linköpings Universitet, SE-

581 83 Linköping, Sweden.
6 Departamento de F́ısica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain.
7 Department of Physics, Stockholm University, S-10691 Stockholm, Sweden.
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5. Contextuality conditions

Our definition of memory cost so far applies to arbitrary situations, even those
in which contextuality does not directly play a role. In contrast, contextuality
of sequential measurements corresponds to the particular feature, that certain se-
quences of mutually compatible observables cannot be explained by a model with
preassigned values (cf. Ref. [28] for a detailed discussion). The contextuality condi-
tions for observables X1, X2, . . . thus arise from the set of all sequences of mutually
compatible observables,

Qcontext = {X1X2 . . . | Xℓ mutually compatible}. (5)

If the choice of observablesX1, X2, . . . exhibits contextuality, then M(Qcontext) > 0.
— In the case of the PM square, Qcontext surely contains all the row and column
sequences that we included in Qrc. In addition, however, Qcontext contains e.g. the
sequences AA, ABA, and AαaA, for which QM predicts with certainty a repetition
of the value of A in the first and last instance. Note, that the set Qcontext also
contains more complicated sequences like ACABCA for which QM predicts with
certainty that the values of A (C) in the first, third and sixth (second and fifth)
measurement coincide, and that product of the outcome for ABC yields +1.

A particular feature of contextuality is that one can find observables that ex-
hibit contextuality independent of the actual preparation (the initial state) of the
quantum system. Consequently, one may consider an extended preparation proce-
dure of the automaton, where the experimenter performs additional measurements
between the initialization of the automaton and the actual sequence. The experi-
menter would e.g. measure the sequence bABC but consider the measurement of the
observable b to be actually part of the preparation procedure. We write ⌊b⌋ABC

for a sequence where we are not interested in the result of b. If Qall denotes the set
of all sequences with observables X1, X2, . . . , we write

Q
′

context = {⌊T ⌋S | S ∈ Qcontext, T ∈ Qall} (6)

for the set of all sequences in Qcontext, including arbitrary preparation procedures.
For the contextuality in the PM square, the automaton A3 obeys Qcontext, while

no automaton with less than 3 states can obey Qcontext, cf. Appendix A for details.
We did not specify an initial state for A3 and indeed the contextuality conditions
are obeyed for any initial state. We summarize:

Theorem 1. The memory cost for the contextuality correlations Q′

context in the PM

square is log2(3) ≈ 1.58 bits; M(Q′

context) = M(Qcontext) = log2(3). Consequently,

the automaton A3 is memory-optimal.

6. Compatibility conditions

The set Qcontext contains all sequences of mutually compatible observables, but
does not contain sequences like ABaA, for which QM also predicts that both occur-
ring values of A are the same. Sequences of this form enforce that all observables
compatible with an observable Y must not change the measurement result of Y .
This can be covered by the set of all compatibility conditions

Qcompat = {Y ⌊X1X2 . . .⌋Y | Xℓ compatible to Y }, (7)

and a convincing test of contextuality must also test the correlations due to this set
of sequences. Again we define Q′

compat to include arbitrary preparation procedures.
The automaton A3 does not obey Qcompat, since e.g. starting with state S1,

the sequence B⌊Cβ⌋B yields the record +1, ⌊+1,−1,⌋−1 and hence violates the
assumption of compatibility; similar sequences can be found for any initial state. We
show in Appendix D that no automaton with three states can obey simultaneously
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of A4 (cf. Appendix E, Proposition 5), but for A4 the sequence ⌊β⌋ab⌊C⌋c yields a
contradiction. This proves that M(Qall) > 2.

On the other hand, QM itself suggests an automaton for simulating contextuality.
If e.g. we choose the pure state |φ〉〈φ| defined by A|φ〉 = B|φ〉 = |φ〉 as initial state,
then this state and all the states occurring during measurement sequences define
an (nondeterministic) automaton. By a straightforward calculation one finds that
this automaton attains 24 different states if we consider the set of all sequences
Qall. By a suitable elimination of the nondeterminism, we can readily reduce the
number of states to 10 (cf. Appendix F) yielding an upper bound on the required
memory and hence 2 < M(Qall) ≤ log2(10) ≈ 3.32.

8. Conclusions

We have investigated the amount of memory needed in order to simulate quan-
tum contextuality in sequential measurements. We determined the memory-optimal
automata for important cases and have proven that the simulation of contextuality
phenomena for two qubits requires more than two classical bits of memory. How-
ever, the maximal amount of classical information that can be stored and retrieved
in two qubits is well known to be limited to two bits [19]. This implies that any
classical model of such a system either would allow to store and retrieve more than
two bits or would have inaccessible degrees of freedom. (An example of the lat-
ter is A3, since one cannot perfectly infer the initial state from the results of any
measurement sequence.)

It should be emphasized that our analysis is about the memory that is needed
to classically simulate the certain predictions from measurement sequences on a
quantum system. In contrast, one may ask how many different states are needed
to merely explain the observed expectation values [30–35]. However, the number of
states needed in this scenario measures the number of different initial configurations
of the system, while we have shown that even for a fixed initial configuration,
the system must eventually attain a certain number of states during measurement
sequences. Similarly, it has been demonstrated that a hybrid system of one qubit
and one classical bit of memory is on average superior to a classical system having
only access to a single bit of memory [36] – while we show in Theorem 1, that
for a two-qubit system, even the certain predictions cannot be simulated with one
classical bit of memory.

Our work provides a link between information theoretical concepts on the one
side and quantum contextuality and the Kochen-Specker theorem on the other side.
While for Bell’s theorem such connections are well explored and have given deep
insights into QM [18, 37, 38], for contextuality many questions remain open: If
an experiment violates some noncontextuality inequality up to a certain degree,
but not maximally, what memory is required to simulate this behavior? Can non-
deterministic machines help to simulate contextuality? What amount of memory
and randomness is required to simulate all quantum effects in the PM square, es-
pecially in the distributed setting [12]? Finally, for quantum non-locality it has
been extensively investigated why QM does not exhibit the maximal non-locality
[37, 38]. A similar situation occurs for quantum contextuality — can concepts
from information theory also help to understand the nonmaximal violation in this
situation?
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Appendix A. A3 is optimal

We already defined the set of row and column sequences Qrc in Eq. (4). Another
natural constraint is given by the set of repeated measurements

Qrepeat = {AA,BB,CC, aa, bb, cc, αα, ββ, γγ}, (9)

where we expect for any of these pairs that the results in the first and the second
measurement coincide. Both sets Qrc and Qrepeat obviously are subsets of the set
of contextuality sequences Qcontext of the PM square. Nevertheless, an automaton
that simultaneously obeys Qrc and Qrepeat already possesses more than two internal
states, i.e. M(Qrc and Qrepeat) > 1. In order to see this, assume that the automaton
has only two internal states and without loss of generality that it starts in state
S1. We consider the case where in the last column there must be a prescribed state
change in order to avoid a contradiction, i.e., in S1 the product of the assignments
of Ccγ is +1, contrary to the quantum prediction. Note that there always exists
at least one row or column with such a contradiction, and that the proof for any
row or column follows the same lines. If there is only one state change (say after a
measurement of γ), then, while measuring the sequence Ccγ, the automaton would
remain in S1 until after the last output and therefore yield a contradiction. If there
are two (or more) state changes in the last column (say c and γ), both must go
to S2. Then, the constraints from Qrepeat require that γ has the same values in
S1 and S2 (this is also true for c). But then the sequence Ccγ in Qrc will yield a
contradiction. Thus a two-state automaton cannot obey both, Qrc and Qrepeat.

On the other hand, A3 is an example of a 3 state automaton, which obeys Qrc

and Qrepeat. In fact A3 obeys Q′

context. In order to see this, it is enough to show,
that for any choice of the initial state, the automaton will obey Qcontext. So we
assume that S1 is the initial state; the reasoning for S2 and S3 is similar. If we
now measure a sequence with observables from the first row only, we may jump
between the states S1 and S2, but the output for all observables in the first row are
the same for either state. A similar argument holds for all rows and the first and
second column. For a sequence with measurements from the third column, assume
that the first observable in the sequence, that is not γ, is the observable c. Then
the state changes to S3, in which the last column does not yield a contradiction.
Since only the output C was changed, but C was not measured so far, we cannot
get any contradiction. A similar argument can be used for the case where the first
observable in the sequence, that is not γ, is the observable C.

In summary, since any automaton that obeys Qcontext has at least 3 states and
A3 is a 3 state automaton obeying the larger set Q′

context, we have shown that A3

is memory-optimal for either set.

Appendix B. A4 obeys Q′

context and Q′

compat

In this Appendix we demonstrate that the automaton A4 indeed obeys Q′

context

and Q′

compat. The proof for Q′

context is completely analogous to the one in Appen-
dix A.

For Q′

compat, we consider a fixed observable, e.g. B. Then S1 and S2 yield +1
while S3 and S4 give −1. However, using arbitrary measurements compatible to
B, (i.e., A, B, C, b, and β) we can never reach S3 or S4 if we start from S1 or
S2 and vice versa. Hence no contradiction occurs for any sequence of the type
⌊T ⌋B⌊X1X2 . . .⌋B. A similar argument holds for all observables, if we note in
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addition that e.g. after a measurement of C the automaton can only be in S2 or
S3.

Appendix C. Definitions and basic rules used in the optimality proofs

As we already did in the main text, we denote the observables from the PM
square by 


A B C

a b c

α β γ



 . (10)

Furthermore, we denote the rows of the square by Ri, and the columns by Ci. The
value table of each memory state i is denoted by Ti and the update table by Ui.
We write an entry of zero in Ui, if the state does not change for that observable.
Furthermore, we write measurement sequences as A+

1 B
−

2 C
−

2 a
+
3 meaning that when

the sequence ABCa was measured, the results were +,−,−,+, and the memory
was initially in state S1 and changed like S1 7→ S2 7→ S2 7→ S3.

It will be useful for our later discussion to note some rules about the structure
of the value and update tables.

1. Sign flips: Let us assume that we have an automaton obeying Q′

context and
Q′

compat (or some subset of those sets) and pick a 2×2 square of observables
(e.g., the set {A,B, a, b} or {A,B, α, β} or {A,C, α, γ}). Then, if we flip in
each Ti the signs corresponding to these observables, we will obtain another
valid automaton.

This holds true, because the mentioned sign flips do not change any of
the certain quantum predictions from Q′

context or Q′

compat. This rule will
allow us later to fix one or two entries in a given value table Ti.

2. Number of contradictions: Any table Ti contains either one, three, or five
contradictions to the row and column constraints.

This follows directly from that fact that any fixed assignment fulfills∏
k RkCk = +1, while the row and column constraints require

∏
k RkCk =

−1.
3. Condition for fixing the memory: Let us assume that we have an automaton

obeying Q′

context and let there be a table Ti which assigns to an observable
(say A) a value different from all other tables. Then, the update table Ui

must contain only zeroes in the corresponding row and column (here, R1

and C1).
The observables in the row and column correspond to compatible ob-

servables, which are not allowed to change the value of the first observable.
However, any change of the memory state would change the value, as Ti is
the only table with the initial assignment.

4. Contradictions and transformations: Let us assume that we have an au-
tomaton obeying Q′

context and let there be in Ti some contradiction in the
column Cj (or the row Rj). Then, in the update table Ui there cannot be
two zeroes in the the column Cj (or the row Rj).

If there were two zeroes, it could happen that one measures two entries of
Cj without changing the memory state. But then measuring the third one
will reveal the contradiction in Ti. (Note that the automaton first provides
the result and then updates its state.)

5. Contradictions and other tables: Let us assume that we have an automaton
obeying Q′

context and let there be in Ti a contradiction in the column Cj

(or the row Rj). Then, there must be two different tables Tk and Tl where
in both the column Cj has no contradictions anymore, but the assignments
of Tk and Tl differ in two observables of Cj . Furthermore, in the column
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Cj of the update table Ui there must be two entries leading to two different
states.

First, note that there must be at least one other table Tk where the
contradiction does not exist anymore. This follows from the fact that we
may measure Cj starting from the memory state i. After having made
these measurements, we arrive at some state k, and from the contextuality
correlations Q′

context it follows that Cj in Tk has no contradiction.
The table Tk differs from Ti in at least one observable X in Cj . On the

other hand, starting from Ti one might measure X as a first observable.
Then, making further measurements on Cj one must arrive at a table Tl

without a contradiction. Since Tk and Tl have both no contradiction, they
must differ in at least two places, one of them being X . Finally, if the
column Cj in Ui would only have entries of zero and k, then Cj in Tk

could not differ from Ti. This eventually leads to a contradiction and hence
proves the last assertion.

Appendix D. A4 is memory-optimal

Here, we proof the optimality of the 4-state automaton A4, in the sense of
obeying Q

′

context and Q
′

compat with a minimum number of states. We use the
definitions and rules as introduced in Appendix C.

Let us assume that we would have a three-state automaton obeying Q′

context. T1

has a contradiction, and we can assume, without loss of generality, that it is C3.
Then, according to Rule 1 we can, without loss of generality, assume that all entries
in C3 are “+”. Together with Rule 5 this leads to the conclusion that the three
states Ti are, without loss of generality, of the form:

T1 :




+
+
+



, T2 :




+
+
−



, T3 :




+
−
+



, (11a)

U1 :



 2
3



, U2 :




0
0

0 0 0



, U3 :




0

0 0 0
0



. (11b)

Here, empty places in the tables mean that the corresponding entries are not yet
fixed. The table U1 follows from Rule 5, and U2 and U3 follow from Rule 3.

Which can be the entries corresponding to the observables a and b in U2? Since
T3 assigns a different value to c than T2, there cannot be a “3” at these entries,
otherwise, a sequence like c

+
2 a

?
2c

−

3 would lead to a contradiction to the conditions
of Qcontext.

But there can also not be a “1” at these entries, because then the sequence
c
+
2 a

?
2γ

+
1 c

−

3 yields a contradiction to Qcompat, since a and γ are compatible with
c. So the entries of R2 in U2 must be zero, as there are only three states in the
memory. A similar argument can be applied to U3, showing that here R3 must be
zero.

So the tables have to be of the form

T1 :




+
+
+



, T2 :




+
+
−



, T3 :




+
−
+



, (12a)

U1 :



 2
3



, U2 :




0

0 0 0
0 0 0



, U3 :




0

0 0 0
0 0 0



. (12b)
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we can add a fourth table T4. For the last column of this table, there are 23 = 8
possible values. We will investigate all eight possibilities and show that either
we arrive directly at a contradiction, or that only an automaton similar to A4 is
possible, in which any table has only one contradiction. This proves the Lemma.

We will first deal with the four cases, where T4 has also a contradiction in C3.

This will lead to Observation 6, which will be useful in the following four cases.

Case 1: For T4 one has [C, c, γ] = [+ + +]:
In this case, a simple application of the previous rules implies that several entries
are fixed:

T :




+
+
+



,




+
+
−



,




+
−
+



,




+
+
+



, (15)

U :



 2
3



,




0

0 0 0
0 0 0



,




0

0 0 0
0 0 0



,



 2
3



. (16)

Here and in the following, we write the Ti and Ui just as a row for notational
simplicity, starting from T1 to T4. The entries in U1 and U4 are fixed from the
following reasoning: Let us assume that one measures c in T1, then, since the
values C(Ti) are the same in all Ti, one has to change immediately to a table
with no contradiction in C3, and where the value of c is still the same. The only
possibility is T2. Furthermore, R2 in U2 and R3 in U3 must be zero due to the same
argument which led to Eq. (12b).

It follows (Rule 4) that T2 and T3 have both exactly one contradiction, which
must be in R1. So, in R1 of U2 there must be the entries “1” and “4” [an entry
“3” would not solve the problem, because in R1(T3) has also a contradiction]. As
we can still permute the first and second column, we can without loss of generality
assume that the first row in U2 is [1 4 0]. Due to Rule 1, we can also assume,
without loss of generality, that A(T2) = +. Similarly, in R1(U3) there must be the
entries “1” and “4”, resulting in two different cases:

If R1(U3) = [1 4 0], we must have the following tables,

T :




+ +

+
+



,




+ − +

+
−



,




+ − +

−
+



,




− +

+
+



, (17)

U :



 2
3



,




1 4 0
0 0 0
0 0 0



,




1 4 0
0 0 0
0 0 0



,



 2
3



. (18)

where the added values in R1 of the Ti follow from R1(U2) and R1(U3).
Now, if we start from T2 and measure the sequence a2A2a1, we see that we

must have a(T1) = a(T2). Similarly, from T3 we can measure a3A3a1, implying
that a(T1) = a(T2) = a(T3). Similarly, we find that b(T2) = b(T3) = b(T4). But
this gives a contradiction: In R2(T2) and R2(T3) there is no contradiction and
c(T2) 6= c(T3). Therefore, it cannot be that a(T2) = a(T3) and at the same time
b(T2) = b(T3).

As the second case, we have to consider the possibility that R1(U3) = [4 1 0].
Then, also the values of R1(T3) must be interchanged, R1(T3) = [− + +]. Then,
starting from T2, the sequence α2A2γ1α3 shows directly that α(T2) = α(T3). Simi-
larly, starting from T3, the sequence a3A3c4a2 shows that a(T2) = a(T3). But since
A(T2) 6= A(T3), this is a contradiction.
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Case 2: For T4 one has [C, c, γ] = [+ −−]:
As in Case 1, one can directly see that several entries are fixed:

T :




+
+
+



,




+
+
−



,




+
−
+



,




+
−
−



, (19)

U :



 2
3



,




0

0 0 0
0 0 0



,




0

0 0 0
0 0 0



,



 3
2



. (20)

The zeroes in U2 and U3 come from the following argumentation: Starting from T1,
the measurement sequence c

+
1 X2c? with X compatible to c shows that in R2(U2)

and C3(U2) there can be no “3” or “4”. But there can be also no “1”, because
then the sequence c+1 X2γ1c

−

3 would lead to a contradiction. Therefore, R2(U2) and
C3(U2) have to be zero. Starting from T4 and measuring γ one can similarly prove
that the entries for R3(U2) have to be zero and analogous arguments prove also the
zeroes in U3.

It is now clear (Rule 4) that the contradictions in T2 and T3 have to be in R1

and the missing entries in U2 and U3 can only be “4” and “1”. As we still can
permute the first and second column, there are only two possibilities:

Case 2A: First, we consider the case that R1(U2) = R1(U3) = [1 4 0]. As in
Case 1, we can directly see that a(T2) = a(T1) = a(T3) and b(T2) = b(T4) = b(T3).
Hence, R2(T2) and R2(T3) differ exactly in the value of c, but in both cases there
is no contradiction in R2. This is not possible.

Case 2B: Second, we consider the case that the first rows of U2 and U3 differ,
and we take R1(U2) = [1 4 0] and R1(U3) = [4 1 0]. Then, we apply Rule 1 to fix
for A(T3) = a(T3) = +. Then, the tables have to be:

T :




− − +

− +
+ +



,




− + +

+
−



,




+ − +
+ − −
+ + +



,




+ + +
+ −
+ −



, (21)

U :



 2
3



,




1 4 0
0 0 0
0 0 0



,




4 1 0
0 0 0
0 0 0



,



 3
2



. (22)

Here, C2(T1) and C1(T4) come from measurement sequences like a+3 A
+
3 a

+
4 , starting

from T3.

Again, we have two possibilities for the value of b in T2. If we set b(T2) = −,
then all values in all Ti are fixed and each table has exactly one contradiction. This
is, up to some relabeling, the four-state automaton A4 from the main text (indeed,
this is the way how this solution was found). If we set b(T2) = +, then also all Ti

can be filled, and we must have:

T :




− − +
+ − +
− + +



,




− + +
+ + +
− + −



,




+ − +
+ − −
+ + +



,




+ + +
+ + −
+ + −



, (23)

U :



 3 2
2 3



,




1 4 0
0 0 0
0 0 0



,




4 1 0
0 0 0
0 0 0



,



 2 3
3 2



. (24)

Here, the tables T1 and T4 have three contradictions (two new ones in R2 and R3)
and the new entries in U1 and U4 must be introduced according to Rule 5 [note
that a(Ti) and β(Ti) are for all tables the same]. Then, however, starting from T1,
the sequence α

−

1 A
−

2 γ
+
1 α

+
3 shows that this is not valid solution.
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Case 3: For T4 one has [C, c, γ] = [− +−]:
In this case, a simple reasoning according to the usual rules fixes the entries:

T :




+
+
+



,




+
+
−



,




+
−
+



,




−
+
−



, (25)

U :





3



,







,




0

0 0 0
0



,




0 0 0

0
0



. (26)

Here we have an obvious contradiction in T4/U4: C3(T4) contains a contradiction,
but (due to Rule 3) one is not allowed to change the memory state when measuring
it. Therefore, the memory can never be in the state 4. But then, one would have
effectively a three-state solution, which is not possible, as we know already.

Case 4: For T4 one has [C, c, γ] = [− −+]:
This is the same as Case 3, where R2 and R3 have been interchanged.

Now we have dealt with all the cases, where T4 contains a contradiction in C3,

just as T1. We have seen that in this cases there can only be a solution if each
table contains exactly one contradiction, and this solution is unique, up to some
permutations or sign flips. Moreover, we could have made the same discussion
with rows instead of columns. Therefore from the first four cases we can state an
observation which will be useful in the remaining four cases:

Observation 6. If in any four-state solution two tables Ti and Tj have both a
contradiction in the same column Ck (or row Rk), then there has to be exactly one
contradiction in each value table of the automaton.

So, if there is a four-state solution where one table has three contradictions, then
it cannot be that two tables have both a contradiction in the same column or row.

Then we can proceed with the remaining cases.

Case 5: For T4 one has [C, c, γ] = [+ +−]:
This is the critical case, as it is difficult to distinguish the tables T2 and T4 here.
First, the following entries are directly fixed:

T :




+
+
+



,




+
+
−



,




+
−
+



,




+
+
−



, (27)

U :



 2
3



,




0|4

0|4 0|4 0|4

0|4



,




0

0 0 0
0 0 0



,



 0|2

0|2



. (28)

Here, c(U1) = 2 has been chosen without loss of generality. It is clear that c(U1) = 2
or c(U1) = 4, as T2 and T4 are equivalent at the beginning, we can choose T2

here. The entries of the type i|j in U2 and U4 mean that the numbers can be i

or j, but nothing else. The values of c(U2) [and c(U4)] cannot be 1, because then
the sequence c

+
2 γ

+
1 c

−

3 directly reveals a contradiction. Furthermore, the zeroes in
R3(U3) and R2(U3) follow similarly as Eq. (12b) or from Rule 3. In addition,
C(U2) 6= 1, because otherwise the sequence c

+
1 C

+
2 γ

+
1 reveals a contradiction to

the PM conditions. Also, C(U2) 6= 3, because of c+1 C
+
2 c

−

3 . Similarly, 1 and 3 are
excluded as values for a(U2) and b(U2), due to the sequences c

+
1 a2γ

+
1 c

−

3 and c
+
1 a

+
2 c

−

3 .

Furthermore, we can use our Observation 6: If in a four-state solution one column
has a contradiction in two of the Ti, then there can be only one contradiction in
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any Ti. Here we can use it as follows: It is clear that T3 has its contradiction
in R1. Since we aim to rule out a four-state solution where one table has three
contradictions, we can assume that there is no contradiction in R1 in all the other
Ti (especially in T2 and T3). Otherwise, we would already know that no solution
exists with three contradictions in a table. We can distinguish two cases:

Case 5A: Let us assume that γ(U2) = 0. Then, the tables must read:

T :




+
+
+



,




+
+
−



,




+
−
+



,




+
+
−



, (29)

U :



 2
3



,




0|4

0|4 0|4 0|4

0|4 0|4 0



,




0

0 0 0
0 0 0



,



 0|2

0|2



. (30)

The new entries in U2 follow from γ(U2) = 0 in combination with γ(T1) = γ(T3) 6=
γ(T2).

Due to Rule 5, the table T2 must have a contradiction in C1, C2, or R1. From
Observation 6, we can assume that it is not in R1. Due to possible permutations
of C1 and C2 we further assume without loss of generality that the contradiction
is in C1. Then we have:

U :



 2
3



,




1 0|4

4 0|4 0|4

0|4 0|4 0



,




0

0 0 0
0 0 0



,



 0|2

0|2



. (31)

We cannot have A(U2) = 3, since there is a contradiction in R1(T3) and C(Ti) = +
for all tables. In addition, due to Rule 5, it is not possible that A(U2) = 4. Finally,
we choose a(U2) = 4, the other option would be α(U2) = 4, this will be discussed
below.

From Observation 6 we can conclude thatC1(T1) andC1(T4) do not contain con-
tradictions, since C1(T2) contains already a contradiction. So C1(T1) and C1(T4)
must differ in two places (Rule 5). One of these places must be A(T1) 6= A(T4). Let
us assume that the second one is a(T1) 6= a(T4), the other case [α(T1) 6= α(T4)] will
be discussed below. Then, we can conclude that in R1(U1) and C1(U1) we cannot
have the entries “2” and “4”, and in R2(U4) and C1(U4) we cannot have the entries
“2” and “1”. To see this, note that we must have A(T2) = A(T1) 6= A(T4) and, if
B(U1) = 2, we can consider the measurement sequence A2B1a2A4 or, if B(U1) = 4,
the sequence A2B1A4 etc. Hence, we have:

U :




0 0 0
0|3 2
0|3 3



,




1 0|4

4 0|4 0|4

0|4 0|4 0



,




0

0 0 0
0 0 0



,




0|3

0|3 0|3 0
0|3 0|2



.

Here, we used in R1(U1) that R1(T3) has a contradiction and C(Ti) = + for all
tables, so it is not possible to go there.

Now, by Rule 1, we may fix A(T2) = a(T2) = +. Then we arrive at

T :




+ + +

+
+



,




+ + +
+ + +
− + −



,




+
−
+



,




− − +
+ +
− −



, (32)

U :




0 0 0
0|3 2
0|3 3



,




1 0|4

4 0|4 0|4

0|4 0|4 0



,




0

0 0 0
0 0 0



,




0|3 0|2

0 0 0
0|3 0|2



. (33)

Here, we must have A(T4) = α(T4) since C1(T4) has no contradiction. Further-
more, R1(T4) has no contradiction due to Observation 6. The values of R2(U4)
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are determined by considering sequences like c4a4c?; and C(U4) 6= 3, because of
c
+
4 C4c

−

3 , and C(U4) 6= 1, because of c+4 C4γ1c
−

3 .

In addition, we can conclude that A(U4) = 0 and B(U4) = 0, since R1(T3) has a
contradiction and C(Ti) = + for all tables, so it is not possible to go there. Then
we can fill T4 completely. Then, also C(U4) = 0, otherwise the sequence B−

4 C
+
4 B

+
2

gives a contradiction. If we had α(U4) = 3, then we must have A(T4) = A(T3) = −
and, consequently (Rule 5) B(U3) = 1 or 2, but then the sequence A

−

4 α
−

4 B
+
3 A

+
1|2

leads to a contradiction, so α(U4) = 0. In summary, we have:

T :




+ + +

+
+



,




+ + +
+ + +
− + −



,




+
−
+



,




− − +
+ + +
− − −



, (34)

U :




0 0 0
0|3 2
0|3 3



,




1 0|4

4 0|4 0|4

0|4 0|4 0



,




0

0 0 0
0 0 0



,




0 0 0
0 0 0
0 0|2



. (35)

Now T1 is the only candidate for a table with three contradictions. In order to obey
Observation 6, the only possibilities for contradictions are C2, C3, and R2, since
T4 has its contradiction in R3. Especially, there must be a contradiction in C2(T1).
Then, in order to obey Rule 5, we must have:

T :




+ + +

+
+



,




+ + +
+ + +
− + −



,




− + +

−
+



,




− − +
+ + +
− − −



, (36)

U :




0 0 0
0|3 2|3 2
0|3 2|3 3



.




1 0|4

4 0|4 0|4

0|4 0|4 0



,




4 1|2 0
0 0 0
0 0 0



,




0 0 0
0 0 0
0 0|2



. (37)

However, if b(U1) = 3, then the sequence B
+
1 b1A3B

−

4 leads to a contradiction,
while, if β(U1) = 3, then the sequence B

+
1 β1A3B

−

4 leads to a problem.
Finally, if we would have taken α(U2) = 4 or α(T1) 6= α(T4) the proof would

proceed along the same lines, but this time the contradiction in T4 would be in the
second row.

Case 5B: Let us assume that γ(U2) = 4. Then, many entries on U4 are fixed
and we have:

T :




+
+
+



,




+
+
−



,




+
−
+



,




+
+
−



, (38)

U :



 2
3



,




0|4

0|4 0|4 0|4

4



,




0

0 0 0
0 0 0



,




0|2

0|2 0|2 0|2

0|2 0|2 0|2



. (39)

Here we cannot have a(U4) = 1, due the sequences c2γ2a4c1 [if c(U2) = 0] or
c2a4c1 [if c(U2) = 4], and also not a(U4) = 3, due to similar sequences. The same
arguments apply to b(U4). The entries in R3(U4) and C3(4) come from possible
sequences like γ4α4γ? if γ(U4) = 0 or γ4γ2α4γ? if γ(U4) = 2.

But then the proof can proceed exactly as in the Case 5A, with T2 and T4

interchanged: The only significant difference comes from c(U1) = 2 6= 4, but this
was never used in the proof.

Case 6: For T4 one has [C, c, γ] = [+ −+]:
This is the same as the Case 5 with a permutation of R2 and R3.
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Case 7: For T4 one has [C, c, γ] = [− ++]:
In this case, the tables read:

T :




+
+
+



,




+
+
−



,




+
−
+



,




−
+
+



, (40)

U :



 2
3



,




0

0|4 0|4 0
0 0 0



,




0

0 0 0
0|4 0|4 0



,




0 0 0
0|2 0|2 0
0|3 0|3 0



. (41)

Here, the entries in U1 have been chosen without loss of generality: From Rule 4 and
5 it follows that one can restrict the attention to the cases where C3(U1) = [ , 2, 3],
C3(U1) = [ , 2, 4], or C3(U1) = [ , 4, 3]. We only consider the first possibility, in
the other cases the proof is analogous and is left to the gentle reader as an exercise.
The zeroes in U2, U3, and U4 come from Rule 3. The entries 0|2 in U4 come from
possible measurement sequences like c4a4c3 or c4a4γ1c3 which prove that there
cannot be the entries “3” or “1”. The other entries can be derived accordingly.

From Rule 5, it follows that in T4 the contradiction cannot be in the rows, so it
has to be in the first or second column. Let us assume, without loss of generality,
that it is in C1(T4). Further, we can assume without loss of generality, that the
values A and a in T4 are both “+”. Then, the tables can be more specified as

T :




+
+
+



,




+ +
+ + +
+ − −



,




+ +
− + −
− − +



,




+ − −
+ + +
− − +



, (42)

U :



 2
3



,




0|1 0
0 0|4 0
0 0 0



,




0|1 0
0 0 0
0 0|4 0



,




0 0 0
2 0|2 0
3 0|3 0



. (43)

To see this, one first fills T4, then, together with the entries of C1(U4), many values
of T2 and T3 are fixed. The entries 0|1 are justified similar to the reasoning above.

In T2 as well as in T3 the contradiction has to be either in R1 or C2. However,
there cannot be a contradiction in R1. To see this, assume that there were a con-
tradiction in R1(T2). Then, starting from T2 we may measure the sequence C2A2B

or C2B2A. According to Rule 5, we must end in two different Ti. But the memory
state can never change to T4 [because C(T4) = −]. So we must have B(U2) = 3,
but this will not escape the contradiction, since the values for A and C coincide in
T2 and T3. So there is only T1 left, and we arrive at a contradiction.

Consequently, the contradictions have to be both in C2(T2) and C2(T3). In
principle, our Observation 6 implies already that we cannot find a solution with
three contradictions in one table. But one can also directly prove that there is no
solution at all. We have:

T :




+ + +

+ +
− +



,




+ + +
+ + +
+ − −



,




+ + +
− + −
− − +



,




+ − −
+ + +
− − +



, (44)

U :



 2
3



,




0|1 1 0
0 4 0
0 0 0



,




0|1 1 0
0 0 0
0 4 0



,




0 0 0
2 0|2 0
3 0|3 0



. (45)

Here, we must have B(T1) = B(T2) = B(T3) = + due to measurement sequences
like B+

2 B
+
1 or B+

3 B
+
1 and β(T1) = β(T2) due to β

−

2 B
+
2 β

−

1 and b(T1) = b(T3) due to
b
+
3 B

+
3 b

+
1 . But then, starting from T2, the sequence β

−

2 B
+
2 b

+
1 reveals a contradiction

to the PM conditions.
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Case 8: For T4 one has [C, c, γ] = [− −−]:
In this case, we directly have:

T :




+
+
+



,




+
+
−



,




+
−
+



,




−
−
−



, (46)

U :



 2
3



,




0

0 0 0
0 0 0



,




0

0 0 0
0 0 0



,




0 0 0

0
0



. (47)

Starting from T2 we may measure the sequence C2A2B or C2B2A. According to
Rule 5, we must end in two different Ti. But the memory state can neither change
to T4 [because C(T4) = −] nor to T3 [as R1(T3) contains a contradiction]. So there
is only T1 left, and we arrive at a contradiction.

In summary, by considering all eight different cases we have shown that no four-
state solution exists in which one table has three contradictions. This proves the
claim.

Appendix F. A 10-state automaton obeying all sequences

In this Appendix we show an example of a 10-state automaton that obeys the
set of all sequences Qall. For that, we define 10 eigenstates of two compatible ob-
servables. We let |A−B+〉 be a quantum state with A|A−B+〉 = −|A−B+〉 and
B|A−B+〉 = +|A−B+〉. In this fashion we define the 10 states |A+B+〉, |A−B+〉,
|C+c+〉, |C−c+〉, |γ+β+〉, |γ−β+〉, |α+a+〉, |α−a+〉, |a+b+〉, and |B+b+〉. Any mea-
surement of an observable from the PM square projects with finite probability any
state of the set onto another state of the set. If e.g. the automaton is in state
|A−B+〉 and we measure c, QM predicts a chance of 50% to get the outcome +1
yielding the state |C−c+〉, and a 50% chance to obtain −1 and the state |C−c−〉.
The former state is in the set of the 10 states and hence our automaton would
return +1 and change to the state |C−c+〉. We furthermore define that, if both
states predicted by QM are in the set of the 10 states, then we prefer the state
corresponding to the output of +1. Together with an arbitrary choice of the ini-
tial state, this completes the definition of the automaton. By construction, this
automaton is deterministic and obeys Qall.
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Entropic uncertainty relations express the quantum mechanical uncertainty principle by quantifying uncer-
tainty in terms of entropy. Central questions include the derivation of lower bounds on the total uncertainty
for given observables, the characterization of observables that allow strong uncertainty relations, and the con-
struction of such relations for the case of several observables. We demonstrate how the stabilizer formalism
can be applied to these questions. We show that the Maassen–Uffink entropic uncertainty relation is tight
for the measurement in any pair of stabilizer bases. We compare the relative strengths of variance-based and
various entropic uncertainty relations for dichotomic anticommuting observables.

I. INTRODUCTION

In quantum mechanics, one cannot predict a measure-
ment outcome with certainty unless the system is in an
eigenstate of the observable being measured. It follows
that if two or more observables have no common eigen-
state, it is not possible to prepare the system such that for
each observable only one measurement outcome can oc-
cur. This is known as the uncertainty principle,1–4 which
is quantitatively formulated in terms of uncertainty rela-
tions.

Uncertainty relations not only describe a fundamental
quantum mechanical concept, but have also found appli-
cation, e. g., in quantum cryptography5–7 and entangle-
ment detection.8–10 Entropic uncertainty relations11–15

have turned out to be particularly useful. More recently,
the uncertainty principle has also been formulated in
terms of majorization relations.16 In Ref. 17, Berta et

al. derived an entropic uncertainty relation for a system
which is entangled to a quantum memory. Access to this
memory can then be used to lower the uncertainties of
measurements on the system. This relation has been the
subject of recent experiments.18,19

Historically, the first and still the most celebrated un-
certainty relation was given by Heisenberg1,2 and applies
to canonically conjugate observables such as position and
momentum, stating that ∆2(q)∆2(p) ≥ ~

2/4. It was gen-
eralized to arbitrary observables in the form of Robert-
son’s3 uncertainty relation ∆2(A)∆2(B) ≥ |〈[A,B]〉|2/4.
On closer inspection, the latter does not have all desir-
able properties of an uncertainty relation, in particular
since it is trivial for any eigenstate of either observable.
Robertson’s relation has also been generalized to the case
of more than two observables.20,21

A different approach is based on the idea of quantifying
uncertainty by the entropy of the probability distribution
for the measurement outcomes.11–15 As a consequence,
the resulting uncertainty relations depend only on the
eigenstates, but not on the eigenvalues of the observables.
That is, they are independent of the labelling of the mea-
surement results, which in finite dimensions is essentially

arbitrary. For this reason, entropic uncertainty relations
can be regarded as a more natural formulation of the un-
certainty principle, at least in the case of finitely many
measurement outcomes, which we consider here. For a re-
view of entropic uncertainty relations see, e. g., Ref. 15.

An entropic uncertainty relation [see Eq. (6) for an ex-
ample] gives a lower bound on the sum of the entropies
for the measurement outcomes of some observables on a
quantum state. This bound necessarily depends on the
observables, but preferably is independent of the state.
For the case of two observables, such bounds have been
determined, e. g., in Refs. 12–14. Finding the best bound
is in general not easy. Putting differently, the question
here is a characterization of observables which admit
strong uncertainty relations. So far, most results apply
to the case of two observables only,15,22 despite the gen-
eralization of the theory to several observables being an
interesting problem.

In this article, we demonstrate how the stabilizer for-
malism23 can be applied to these questions. This for-
malism provides an efficient description of certain many-
qubit states, including highly entangled ones. In the field
of quantum information theory, stabilizer stabilizer states
and the more special case of graph states are widely
used. For example, a particular class of graph states,
namely, cluster states, serve as a universal resource for
measurement-based quantum computation.24,25 Cluster
states are also interesting because they are particularly
robust against decoherence, independently of the system
size.26,27 Graph states have been employed as codewords
of error-correcting codes.28 Finally, the stabilizer formal-
ism has been used for entanglement detection.29

Using the stabilizer formalism, we first investigate the
question for which observables the Maassen–Uffink un-
certainty relation [see Eq. (6)] is tight. We show that
this is the case for the measurement in any two stabilizer
bases. We then turn our attention to the many-observable
setting, focussing on dichotomic anticommuting observ-
ables. Generalizing a result by Wehner and Winter,22

we provide a systematic construction of uncertainty rela-
tions. The family of uncertainty relations we obtain con-
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tains both entropic and variance-based ones. We compare
the relative strengths of these relations. Finally, we apply
them to the stabilizing operators of two stabilizer states.
This article is organized as follows: In Sec. II, we in-

troduce our notation and review previous results. This
includes a short introduction to stabilizers and graph
states. Section III contains our results on measurements
in stabilizer bases, and Sec. IV those on several di-
chotomic anticommuting observables. In Sec. V, the lat-
ter are applied to the stabilizing operators of two stabi-
lizer states. Finally, Sec. VI is devoted to a discussion of
the results.

II. STATEMENT OF THE PROBLEM

A. Entropic uncertainty relations

We consider the following general situation: when mea-
suring an observable A on a state ρ, the measurement
outcome ai occurs with probability pi = Tr(Πiρ), where
A =

∑m

i=1
aiΠi is the spectral decomposition of the ob-

servable and the ai are mutually distinct. For an entropy
function S, we denote by S(A|ρ) the entropy of this prob-
ability distribution P = (p1, . . . , pm). In this article, we
will use the Shannon entropy

S
S(P ) = −

m∑

i=1

pi log(pi) (1)

as well as the min-entropy

S
min(P ) = − log(max

i
pi) (2)

and the Tsallis entropy

S
T
q (P ) =

1−
∑m

i=1
(pi)

q

q − 1
, q > 1. (3)

In the limit q → 1, the Tsallis entropy gives the Shannon
entropy. We use the logarithm to base 2 throughout.
We are interested in uncertainty relations for a family

of observables {A1, . . . , AL} of the form

1

L

L∑

k=1

S(Ak|ρ) ≥ c{Ak}, (4)

where S is an entropy function. The lower bound c{Ak}

may depend on the observables, but shall be independent
of the state. For a given set of observables, an uncertainty
relation is called tight, if a state ρ0 exists that attains the

lower bound, 1/L
∑L

k=1
S(Ak|ρ0) = c{Ak}.

Clearly the entropy of an observable depends only
on its eigenstates and is independent of its eigenval-
ues, as long as they are nondegenerate. We will there-
fore not distinguish between a nondegenerate observable
A and its eigenbasis A. The Shannon entropy satisfies
0 ≤ SS(A|ρ) ≤ log(m), where m is the length of the

basis A. If we choose for ρ one of the basis states of

Ak, we have 1/L
∑L

k=1
S(Ak|ρ) ≤ log(m)(L − 1)/L, be-

cause in this case the entropy is zero for one basis and
upper bounded by log(m) for the remaining L− 1 bases.
This implies that for the Shannon entropy the right-hand
side of Eq. (4) cannot exceed log(m)(L − 1)/L. An un-
certainty relation that reaches this limit is called max-
imally strong, and the corresponding measurements are
called maximally incompatible.15 In other words, max-
imal incompatibility means that if the outcome of one
measurement is certain, the outcomes of the remaining
measurements are completely random.
A related notion is mutual unbiasedness. Two or-

thonormal bases |ai〉 and |bi〉, i = 1, . . . , d, are called
mutually unbiased if

∣
∣〈ai|bj〉

∣
∣ =

1√
d
, (5)

for all i and j. Pairwise mutual unbiasedness is a neces-
sary, but for more than two bases not a sufficient condi-
tion for the existence of a maximally strong uncertainty
relation.15

For the Shannon entropies of L = 2 measurement
bases, Maassen and Uffink14 have proven the following
result:

Maassen–Uffink uncertainty relation. For any two

measurement bases A = {|ai〉} and B = {|bi〉},

1

2
[SS(A|ρ) + S

S(B|ρ)] ≥ − log
(
max
i,j

|〈ai|bj〉|
)
. (6)

In the case of mutually unbiased bases the Maassen–
Uffink relation is maximally strong and thus tight, equal-
ity holding for any of the basis states. (Note that for two
arbitrary observables the entropy sum is in general not
minimized by an eigenstate of either of them.30)

B. The stabilizer formalism and graph states

As our main tool, we will employ the stabilizer for-
malism. This formalism allows to describe certain many-
qubit states, among them graph states, in an efficient
manner. For a review of this topic see, e. g., Ref. 23.
The n-qubit Pauli group consists of all tensor products

of n Pauli matrices, including the identity, with prefac-
tors ±1 and ±i. Any commutative subgroup of the Pauli
group that has 2n elements and does not contain −11 has
a unique common eigenstate with eigenvalue +1. This
state is called stabilizer state; the group is called the sta-
bilizer group and the group elements are called the stabi-
lizing operators of the state. The stabilizer group defines
in fact a complete basis of common eigenstates, the sta-
bilizer state being one of them. We refer to this basis as
stabilizer basis. Any basis state is again a stabilizer state,
whose stabilizer group is obtained from the original one
by flipping the signs of some of its elements.
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FIG. 1. Graphs of the graph states discussed in the text.

The most important examples of stabilizer states are
graph states. In fact, it can be shown that any stabilizer
state is equivalent to a graph state under a local unitary
operation (more specifically, a local Clifford operation).23

A graph state is described by a simple undirected graph,
whose vertices represent qubits and whose edges repre-
sent the interactions that have created the graph state
from a product state [see Fig. 1 for examples]. More pre-
cisely, with the completely disconnected n-vertex graph,
we associate the state |+〉⊗n, where |+〉 is the eigenvector
of σx with eigenvalue +1. An edge between two vertices
stands for the controlled phase gate applied to the corre-
sponding pair of qubits, which in the standard σz-basis
is C = diag(1, 1, 1,−1). The stabilizing operators of a
graph state can immediately be read off the graph: with
qubit i, we associate the operator

Ki = σ
(i)
x

∏

j∈N(i)

σ
(j)
z , (7)

the product being over the neighbourhood N(i) of vertex
i, that is, all vertices directly connected to it by an edge.

Here σ
(i)
x and σ

(i)
z denote the Pauli matrices σx and σz

acting on qubit i. The operators Ki generate the stabi-
lizer group. Any state of the stabilizer basis (here called
graph state basis) can be obtained from the graph state
by applying the operation σz on a subset of the qubits.
As an example, let us consider the graphs in Fig. 1

(a) and (b). The generators of the stabilizer group of
the first state are K1 = σx ⊗ σz ⊗ σz ⊗ σz, K2 = σz ⊗
σx ⊗ σz ⊗ σz , K3 = σz ⊗ σz ⊗ σx ⊗ σz , and K4 = σz ⊗
σz ⊗ σz ⊗ σx; for the second state, they are K1 = σx ⊗
σz ⊗ 11 ⊗ 11, K2 = σz ⊗ σx ⊗ σz ⊗ 11, K3 = 11 ⊗ σz ⊗
σx ⊗ σz , and K4 = 11⊗ 11⊗ σz ⊗ σx. Under local unitary
operations, the corresponding graph states are equivalent
to the 4-qubit Greenberger–Horne–Zeilinger (GHZ) state

|GHZ4〉 = (|0000〉 + |1111〉)/
√
2 and the 4-qubit linear

cluster state |C4〉 = (|0000〉+ |0011〉+ |1100〉− |1111〉)/2,
respectively.

III. A STRONG UNCERTAINTY RELATION FOR

STABILIZER BASES

In this section, we investigate the conditions under
which the Maassen–Uffink uncertainty relation is tight.
We show that this is the case for the measurement in any
two stabilizer bases.
We shall need the following lemma:

Lemma 1. If a pair of bases A = {|ai〉} and B = {|bi〉}
satisfies

∣
∣〈ai|bj〉

∣
∣ ∈ {0, r} ∀ i, j (8)

for some r, then the Maassen–Uffink relation Eq. (6) for
the measurement in these bases is tight. Equality occurs

for any of the basis states.

Proof. For ρ = |bj0〉〈bj0 | the Maassen–Uffink relation
reads

−
∑

i

pi log(pi) ≥ − log(max
i

pi) where pi =
∣
∣〈ai|bj0〉

∣
∣2.

(9)
Note that the right-hand side is the min-entropy of the
probability distribution pi. By assumption pi ∈ {0, r2}
for all i. It follows that equality holds.

The main result of this section is the following theorem:

Theorem 2. For the measurement in a pair of stabilizer

bases, the Maassen–Uffink uncertainty relation Eq. (6) is
tight. The bound is attained by any of the basis states.

The proof is based on a result on mutually unbiased
bases, which is due to Bandyopadhyay et al. (see the
proof of Theorem 3.2 in Ref. 31):

Theorem 3 (Ref. 31). Let C1 and C2 each be a set of d

commuting unitary d × d-matrices. Furthermore assume

that C1 ∩ C2 = {11} and that all matrices in C1 ∪ C2 are

pairwise orthogonal with respect to the Hilbert–Schmidt

scalar product. Then the eigenbases defined by either set

of matrices are mutually unbiased.

Proof of Theorem 2. Throughout the proof we consider
two stabilizing operators that differ only by a minus sign
as equal. Let S1 and S2 be the two stabilizer groups and
define C0 = S1 ∩ S2. Then C0 is a subgroup of both S1

and S2. We consider the factor groups C1 = S1/C0 and
C2 = S2/C0. The groups C0, C1, and C2 are all stabilizer
groups, though the spaces stabilized by them are in gen-
eral not one-dimensional. This gives us a decomposition
of the Hilbert space H = H0 ⊗H12, where C0 acts triv-
ially on H12 and C1 and C2 act trivially on H0. By the
previous theorem, C1 and C2 define mutually unbiased

bases |c(1)i 〉 and |c(2)i 〉 of H12. It follows that the stabi-

lizer bases can be written as |s(1)ij 〉 = |c(0)i 〉 ⊗ |c(1)j 〉 and

|s(2)ij 〉 = |c(0)i 〉⊗ |c(2)j 〉, respectively, where |c(0)i 〉 is the ba-
sis of H0 defined by C0. The stabilizer bases thus satisfy
the condition of Lemma 1 with r = (dimH12)

−1/2.

In Appendix A, we give an alternative proof that does
not require the result on mutually unbiased bases. In
Appendix B, we develop a method to calculate the right-
hand side of the uncertainty relation explicitly for certain
classes of graph states.
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IV. UNCERTAINTY RELATIONS FOR SEVERAL

DICHOTOMIC ANTICOMMUTING OBSERVABLES

Little is known about uncertainty relations for more
than two measurements15 (see, however, Ref. 32). Fol-
lowing Wehner and Winter,22 we will concentrate on di-
chotomic anticommuting observables. An observable is
called dichotomic if it has exactly two distinct eigen-
values. We will always normalize dichotomic observables
such that their eigenvalues are ±1. In other words, these
observables square to the identity.
The following result has been called a meta-uncertainty

relation,15,22 for reasons that soon will become apparent.

Lemma 4. Let A1, . . . , AL be observables which anti-

commute pairwise {Ak, Aℓ} = 0 for k 6= ℓ and which have

eigenvalues ±1. Then
∑L

k=1〈Ak〉2 ≤ 1, or equivalently,

L∑

k=1

∆2(Ak) ≥ L− 1, (10)

where ∆2(A) = 〈(A − 〈A〉)2〉 is the variance of A.

The following proof of this lemma was given in Ref. 29.
For an alternative proof, based on the Clifford algebra,
see Ref. 22.

Proof. Choose real coefficients λ1, . . . , λL with
∑L

k=1 λ
2
k = 1. Because of anticommutativity and A2

k = 11,

we have (
∑L

k=1 λkAk)
2 =

∑L

k=1 λ
2
kA

2
k =

∑L

k=1 λ
2
k11 = 11

and thus |∑L

k=1 λk〈Ak〉| = |〈∑L

k=1 λkAk〉| ≤ 1 for all
states, since for any observable 〈X〉2 ≤ 〈X2〉. Interpret-
ing the expression

∑L

k=1 λk〈Ak〉 as the euclidian scalar
product of the vector of coefficients λk and the vector
of expectation values 〈Ak〉, and noting that the vector
of coefficients λk is an arbitrary unit vector, we see that
the vector 〈Ak〉 has a length less than or equal to 1.

Observing
∑L

k=1〈A2
k〉 = L, we obtain the lemma.

The converse implication is also true in the following
sense, as was already shown in Ref. 22:

Lemma 5. Let A1, . . . , AL be dichotomic anticommuting

observables as above, and let a1, . . . , aL be real numbers

with
∑L

k=1 a
2
k ≤ 1. Then there exists a quantum state ρ

such that the numbers ak are the expectation values of

the observables, ak = Tr(Akρ).

Proof. Consider the state ρ = 1
d
(11 +

∑L

k=1 akAk), where
d is the dimension of the Hilbert space. Because of the
properties of the observables, Tr(AkAℓ) = dδkℓ. Fur-
thermore, the observables Ak are traceless: Tr(Ak) =
Tr(AkAℓAℓ) = Tr(AℓAkAℓ) = −Tr(AkAℓAℓ) =
−Tr(Ak). This shows that the state ρ has the desired
expectation values. It remains to show that ρ ≥ 0. But
in the proof of the previous lemma, we have already seen

that |∑L

k=1 ak〈Ak〉| ≤ 1.

The meta-uncertainty relation is thus the best possi-
ble bound on the expectation values of the observables.
Note that in the case of one qubit and the three Pauli
matrices, it reduces to the Bloch sphere picture. The re-
lation has also been used to study monogamy relations
for Bell inequalities.33 Generalizing Wehner and Winter’s
result for the Shannon entropy,22 we can derive entropic
uncertainty relations for various entropies from it.
Let A be an observable with eigenvalues ±1 and x =

[Tr(Aρ)]2 its squared expectation value. Then the proba-
bility distribution for the measurement outcomes of A is

given by P = (1+
√

x

2 ,
1−

√

x

2 ) or P = (1−
√

x

2 ,
1+

√

x

2 ). Any
entropy S, being invariant under permutation of P , is

thus a function of x, which we denote by S̃,

S̃(x) = S(A|ρ) = S
(
(
1±√

x

2
,
1∓√

x

2
)
)
. (11)

We say that the entropy S is concave in the squared ex-

pectation value if the function S̃ is concave. This property
is the crucial condition for the following entropic uncer-
tainty relation. We shall also assume that for the peaked
probability distribution, the entropy has the value zero,

S̃(1) = 0.

Theorem 6. Let A1, . . . , AL be observables which an-

ticommute pairwise {Ak, Aℓ} = 0 for k 6= ℓ and which

have eigenvalues ±1 and let S be an entropy which is con-

cave in the squared expectation value (that is, an entropy

for which the function S̃ defined in Eq. (11) is concave).

Then

min
ρ

1

L

L∑

k=1

S(Ak|ρ) =
L− 1

L
S0, (12)

where S0 = S
(
(12 ,

1
2 )
)
is the entropy value of the flat

probability distribution.

Proof. For the case of the Shannon entropy the proof was
given in Ref. 22. Let xk = [Tr(Akρ)]

2. Lemma 4 states

that ~x lies in the simplex defined by
∑L

k=1 xk ≤ 1 and

xk ≥ 0. As the function S̃ is concave on the interval [0, 1],

the function ~x 7→
∑

k S̃(xk) is concave on the simplex.
Thus it attains its minimum at an extremal point of the
simplex, that is, xk = 1 for one k and xℓ = 0 for ℓ 6= k. At

an extremal point, 1/L
∑L

k=1 S̃(xk) = S0(L− 1)/L.

Before commenting on the implications of this theo-
rem, we discuss which entropies satisfy the requirement
of being concave in the squared expectation value. For the
Shannon entropy, this was already shown in Ref. 22. The
Tsallis entropy can be treated analogously, though one
has to distinguish between different parameter ranges.

Lemma 7. The Tsallis entropy ST
q of a dichotomic ob-

servable is concave in the squared expectation value (that

is, the function S̃T
q defined as in Eq. (11) is concave on

the interval [0, 1]) for parameter values 1 < q < 2 and

3 < q, but convex for 2 < q < 3.
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Proof. Explicitly,

S̃
T
q (x) =

1

q − 1

[
1−

(1 +
√
x

2

)q

−
(1−√

x

2

)q ]
. (13)

For q = 2 and q = 3, this function is easily seen to be
linear. For the second derivative, we obtain

∂
2

xS̃
T
q (x) =

q

q − 1

1

2q+2

1

x3/2

{
(1+

√
x)q−2

[
1−

√
x(q−2)

]

− (1−
√
x)q−2

[
1 +

√
x(q − 2)

]}
. (14)

Substituting y =
√
x and omitting the prefactor (which

is always positive), we arrive at the function

fq(y) = (1+ y)q−2[1− y(q− 2)]− (1− y)q−2[1+ y(q− 2)].
(15)

Observing that fq(0) = 0, we note that fq(y) is positive
(negative) for all 0 < y ≤ 1 if its derivative f ′

q(y) is
positive (negative) for all 0 < y ≤ 1. The derivative is
given by

f
′

q(y) = −(q− 2)(q− 1)y
[
(1 + y)q−3 − (1− y)q−3

]
. (16)

For 1 < q < 2, the prefactor −(q−2)(q−1) is positive and
the term in the square brackets is negative; for 2 < q < 3,
the prefactor is negative and the term in the brackets is
still negative; for q > 3, the prefactor is negative and the
term in the brackets positive. This proves the lemma.

Let us add some remarks on the theorem. The Shan-
non entropy has the required concavity in the squared
expectation value, and the resulting uncertainty relation
is the one found by Wehner and Winter.22 For the Tsallis
entropy ST

q , we have to distinguish between different pa-
rameter ranges: for parameter values q = 2 and q = 3 this
entropy is, up to a constant factor, equal to the variance,
ST
2
(A|ρ) = 1/2∆2(A) and ST

3
(A|ρ) = 3/8∆2(A), and the

uncertainty relation is equivalent to the meta-uncertainty
relation itself. Thus it is the optimal uncertainty relation
for these observables. The relation based on the Shannon
entropy is strictly weaker.
In Lemma 7, we have shown that the Tsallis entropy

satisfies the condition of Theorem 6 for parameter values
1 < q ≤ 2 and 3 ≤ q. The entropy value for the flat
probability distribution, which determines the bound, is
S0 = (1 − 21−q)/(q − 1). In the special case of the ob-
servables σx and σy and parameter q ∈ [2n− 1, 2n] with
n ∈ N, the uncertainty relation was derived before in
Footnote 32 of Ref. 9.
As we remarked above, Lemmas 4 and 5 provide a com-

plete characterization of the set of expectation values of
dichotomic anticommuting observables which can orig-
inate from valid quantum states. Deriving uncertainty
relations from them means approximating this set from
the outside. This is illustrated in Fig. 2.
In the parameter range 2 < q < 3, the Tsallis en-

tropy does not satisfy the condition for the theorem (see

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5
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X A1\

X
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2
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FIG. 2. Bounds on the expectation values (〈A1〉, 〈A2〉) for two
dichotomic anticommuting observables provided by different
uncertainty relations. The black solid line corresponds to the
meta-uncertainty relation Lemma 4, which can also be un-
derstood as an entropic uncertainty relation for the Tsallis
entropy with parameter value q = 2 or q = 3. The red dashed
line and the blue dotted line correspond to the entropic un-
certainty relation Theorem 6 for the Shannon entropy and the
Tsallis entropy with q = 8, respectively.

Lemma 7). An exceptional behaviour of the Tsallis en-
tropy in this parameter range was also reported in Ref. 9.
The collision entropy or Rényi entropy of order 2 and the
min-entropy do not satisfy the condition either. The un-
certainty relations for these entropies given in Ref. 22 also
follow from the meta-uncertainty relation, but do not fit
into this scheme.

In the following section, we will apply Theorem 6 to
the stabilizing operators of two stabilizer states.

Uncertainty relations for several observables can also
be constructed without requiring anticommutativity: ap-
plying a result by Mandayam et al.

32 to a set of sta-
bilizer bases A1, . . . ,AL with basis vectors denoted by

Ak = {|a(k)i 〉}i, one finds for their min-entropies

1

L

L∑

k=1

S
min(Ak|ρ) ≥ − log

[1 + r(L − 1)

L

]
, (17)

where

r = max
k 6=ℓ

max
i,j

∣
∣〈a(k)i |a(ℓ)j 〉

∣
∣ (18)

is the maximal overlap of the basis states. We omit
the proof, since this relation readily follows from Ap-
pendix C.1 of Ref. 32.
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V. AN UNCERTAINTY RELATION FOR STABILIZING

OPERATORS

In this section, we will apply the uncertainty relation
for anticommuting dichotomic observables (Theorem 6)
to the elements of a pair of stabilizer groups.
Let S and T be two n-qubit stabilizer groups. Through-

out this section, we consider two operators as equal if

they differ only by a minus sign. Define S̃ = S \ T and

T̃ = T \S. Let M = S̃∪ T̃ be the symmetric difference of
S and T and denote its elements by A1, . . . , AL. In Theo-

rem 10, we will give a lower bound on 1/L
∑L

k=1 S(Ak|ρ).
We begin by proving the following lemma.

Lemma 8. Let S be a stabilizer group and g a Pauli

operator (that is, a tensor product of Pauli matrices and

the identity matrix) which anticommutes with an element

s0 ∈ S. Then g anticommutes with exactly half of the

elements of S.

Proof. Choose any s1 ∈ S with s1 6= s0 and let s2 = s0s1.
We will now show that g anticommutes with s2 if it com-
mutes with s1 and vice versa. Consider first the case
[s1, g] = 0. The identity {AB,C} = A[B,C] + {A,C}B
shows that {s2, g} = {s0s1, g} = s0[s1, g]+ {s0, g}s1 = 0.
Consider now the case {s1, g} = 0. Using the same
identity, we obtain s0[s2, g] = {s0s2, g} − {s0, g}s2 =
{s1, g}− {s0, g}s2 = 0 and thus [s2, g] = 0. We now iter-
ate this procedure by choosing s3 ∈ S \ {s0, s1, s2} and
using it in place of s1. (Note that s0s3 6= s1 and 6= s2.)
The operator s0 is kept fixed during the whole iteration.
In this way, S can be divided into pairs of observables,
each consisting of one element commuting with g and one
anticommuting with g. Note that s0 forms a pair with the
identity.

Excluding the trivial case S = T , any element of T
anticommutes with at least one element of S, since at
most 2n orthogonal (with respect to the Hilbert–Schmidt
scalar product) unitary 2n × 2n-matrices can commute
pairwise (see, e. g., Ref. 31). Thus L = |M | varies from
2n to 2(2n − 1).
We will now see, using only combinatorical reasoning,

that this lemma implies that M can be divided into an-
ticommuting pairs. We shall need the following combina-
torical result:

Marriage theorem. Consider a bipartite graph, that is,

two disjoint sets of vertices U and V and a collection of

edges, each connecting a vertex in U with a vertex in

V . We consider the case of |U | = |V |. Then the graph

contains a perfect matching, that is, the vertices can be

divided into disjoint pairs of connected vertices, if and

only if the following marriage condition is fulfilled: For

each subset U ′ of U , the set V ′ of vertices in V connected

to vertices in U ′ is at least as large as U ′.

This theorem was first proven in Ref. 34.

Lemma 9. The symmetric difference M of any two sta-

bilizer groups S and T can be divided into anticommuting

pairs of operators.

Proof. We show that the marriage condition is fulfilled.

Let S′ be any subset of S̃. Consider first the case |S′| >
2n−1. Then any t ∈ T anticommutes with at least one s ∈
S′, because any such t anticommutes with exactly 2n−1

elements of S̃. Thus the number of t ∈ T̃ anticommuting

with at least one s ∈ S′ is |T̃ | = |S̃| ≥ |S′|. Consider now
the case |S′| ≤ 2n−1. For any s ∈ S′, we then find 2n−1

elements of T̃ anticommuting with s. Thus the number of

t ∈ T̃ anticommuting with at least one s ∈ S′ is 2n−1 ≥
|S′|.

We are now ready to state the main result of this sec-
tion.

Theorem 10. Let M = {A1, . . . , AL} be the symmetric

difference of two stabilizer groups. Then

1

L

L∑

k=1

S(Ak|ρ) ≥
1

2
S0 (19)

holds, where S is an entropy which is concave in the

squared expectation value (that is, an entropy for which

the function S̃ defined in Eq. (11) is concave) and S0

is the entropy value of the flat probability distribution.

Any basis state of either stabilizer basis attains the lower

bound.

Proof. Due to Theorem 6 the uncertainty relation
S(Ak|ρ) + S(Aℓ|ρ) ≥ S0 holds for any anticommuting
pair Ak, Aℓ. Lemma 9 states that M consists of L/2
such pairs. This shows the uncertainty relation. The den-
sity matrix of the stabilizer state defined by the group
T = {Tk} is given by

ρT =
1

2n

2n∑

k=1

Tk (20)

(see, e. g., Ref. 23). Thus

Tr(AkρT ) =
1

2n

2n∑

ℓ=1

Tr(AkTℓ) = 0 for all Ak /∈ T,

(21)
showing S(Ak|ρT ) = S0 for L/2 observables Ak.

This relation is not maximally strong. This is due to
the fact that some of the observables commute.

VI. CONCLUSION

We demonstrated how the stabilizer formalism can be
combined with the theory of entropic uncertainty rela-
tions. We focussed on two problems: the characterization
of pairs of measurement bases which give rise to strong
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uncertainty relations and the generalization of the theory
to the many-observable setting.

Concerning the first question, we showed that for the
measurement in any two stabilizer bases the Maassen–
Uffink relation is tight (Theorem 2). We also demon-
strated how the stabilizer formalism can be used to com-
pute the overlap of the basis states, which gives the lower
bound on the entropy sum.

Concerning the second question, we generalized a re-
sult by Wehner and Winter on the Shannon entropy for
several dichotomic anticommuting observables to a larger
class of entropies (Theorem 6). Comparing the strengths
of these uncertainty relation, we saw that entropic re-
lations are not necessarily stronger than variance-based
ones. Indeed, in the case of dichotomic anticommuting
observables the variance-based uncertainty relation is op-
timal in the sense that it exactly describes the set of
expectation values which can originate from valid quan-
tum states. As an application of Theorem 6, we derived
an uncertainty relation for the elements of two stabilizer
groups (Theorem 10).
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Appendix A: Alternative proof of Theorem 2

In this appendix, we give an alternative proof of The-
orem 2, which is not based on any previous results on
mutually unbiased bases. Let S = {Sk} and T = {Tk}
be two n-qubit stabilizer groups with stabilizer states |S〉
and |T 〉. Define S+ = S ∩ T , where, unlike in the first
proof, we consider two operators as distinct if they dif-
fer by a minus sign. Also define S− = S ∩ −T . Both
S+ and S+ ∪ S− are easily seen to be subgroups of S.
By Lagrange’s theorem |S+| = 2p and |S+ ∪ S−| = 2q

with some p ∈ {1, 2, . . . , n} and q ∈ {p, p+1, . . . , n}. The
projectors onto the stabilizer states are given by

|S〉〈S| = 1

2n

2n∑

k=1

Sk (A1)

and similarly for |T 〉 (see, e. g., Ref. 23). Thus

∣
∣〈S|T 〉

∣
∣2 =

1

22n

2n∑

k,ℓ=1

Tr(SkTℓ)

=
1

2n
(
|S+| − |S−|

)

=
1

2n
(2p+1 − 2q)

=

{
2q−n for p = q,

0 for p = q − 1.

(A2)

The case p < q − 1 cannot occur since it would give a
negative value of |〈S|T 〉|2 and thus lead to a contradic-
tion.
Consider now another state |T ′〉 of the stabilizer basis

of T . This state is again a stabilizer state, whose stabiliz-
ing operators are equal to those of |T 〉 up to some minus
signs. In particular S+ ∪ S− and thus q are the same for
|T 〉 and for |T ′〉, and Lemma 1 applies.

Appendix B: A recurrence relation for the overlap of two

graph state bases

In this appendix, we derive a recurrence relation for

the scalar products 〈G(1)
i |G(2)

j 〉 of two graph state bases

|G(1)
i 〉 and |G(2)

i 〉 and use it to determine the Maassen–
Uffink bound for certain classes of graph states. Re-
call that any of these basis states is obtained from
the state |+〉⊗n by applying first controlled phase gates
C = diag(1, 1, 1,−1) and then local phases σz. Since all
these operations commute, we can move all phase gates

in the scalar product 〈G(1)
i |G(2)

j 〉 to the right and all local

phases to the left. This corresponds to replacing G(1) by
the empty or completely disconnected graph and G(2) by
the “sum modulo 2” of the graphs G(1) and G(2). Simi-

larly, it does not restrict the set of values of 〈G(1)
i |G(2)

j 〉
if we consider only one state of the basis |G(2)

j 〉, such as

the graph state |G(2)〉 itself. The graph state basis of the
empty graph consists of all tensor products of the eigen-
states of σx. We can write those states as H⊗n|~y〉, where
H = 1

√

2

(
1 1
1 −1

)
is the Hadamard gate and |~y〉 for ~y ∈ Fn

2

is a state of the standard basis in binary notation.
[As the Hadamard gate is a local Clifford operation,

the state H⊗n|G(2)〉 is a stabilizer state. This shows that

the scalar products 〈G(1)
i |G(2)〉 can be understood as the

coefficients of a stabilizer state with respect to the stan-
dard basis. It has been shown that for any stabilizer state
these coefficients are 0, ±1, and ±i, up to a global nor-
malization (see Theorem 5 and the paragraph below in
Ref. 35. For an alternative proof, see Ref. 36.) This con-
stitutes yet another proof of Theorem 2 for the case of
graph state bases.]
As an example, consider the graphs in Fig. 1 (a) and

(b). Up to local unitaries, the corresponding graph states
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are the 4-qubit GHZ state and the 4-qubit linear cluster
state, but the uncertainty relation is not invariant un-
der these local unitary operations. By the above remark
the Maassen–Uffink bound for the corresponding bases is
equal to the bound for the empty graph and the “sum” of
the graphs, which in our case is given by Fig. 1 (c). The
latter is again equal to the graph (b), up to a permutation
of vertices.
Let us return to the explicit calculation of the overlaps.

In the standard basis, we have

H
⊗n|~y〉 = 1

2n/2

∑

~x∈F
n
2

(−1)
∑

i
yixi |~x〉. (B1)

The adjacency matrix of an n-qubit graph is the sym-
metric n× n-matrix A whose entry Aij is 1 if there is an
edge between vertices i and j and 0 if there is not. It thus
provides a complete description of the graph state, which
we will therefore denote by |GA〉. The representation of

this state in the standard basis is (see Proposition 2.14
in Ref. 37)

|GA〉 =
1

2n/2

∑

~x∈F
n
2

(−1)
∑

i<j
xiAijxj |~x〉. (B2)

The scalar products are thus given by

Rn(~y,A) := 〈~y|H⊗n|GA〉

=
1

2n

∑

~x∈F
n
2

(−1)
∑

i
yixi+

∑
i<j

xiAijxj .
(B3)

To derive a recurrence relation, we write

~x =

(
ξ

~x ′

)

, ~y =

(
υ

~y ′

)

, A =

(
0 ~a′t

~a′ A′

)

(B4)

and obtain

Rn(~y,A) =
1

2n

∑

ξ∈{0,1}

∑

~x ′
∈F

n−1
2

(−1)υξ+
∑

i y
′

ix
′

i+ξ
∑

i a
′

ix
′

i+
∑

i<j x′

iA
′

ijx
′

j

=
1

2n

∑

~x ′
∈F

n−1
2

(−1)
∑

i
y′

ix
′

i+
∑

i<j
x′

iA
′

ijx
′

j +
1

2n
(−1)υ

∑

~x ′
∈F

n−1
2

(−1)
∑

i
(y′

i+a′

i)x
′

i+
∑

i<j
x′

iA
′

ijx
′

j

=
1

2
Rn−1(~y

′

, A
′) + (−1)υ

1

2
Rn−1(~y

′ + ~a
′

, A
′).

(B5)

This is the desired recurrence relation.
We already know that Rn−1(~y

′, A′) ∈ {0,±rA′,±irA′}
for all ~y for some rA′ Since the coefficients R are real,
Rn−1(~y

′, A′) ∈ {0,±rA′}. Thus we have Rn(~y,A) ∈
{0,± 1

2rA
′ ,±rA′}. This shows that either rA = 1

2rA
′ or

rA = rA′ , depending on ~a ′.
The Maassen–Uffink relation for the graph state bases

is maximally strong if and only if r = 2−n/2. On the other
hand, r is an integer multiple of 2−n (even 21−n). One
can see this by induction with the recurrence relation.
This shows that this uncertainty relation is never maxi-
mally strong for graph state bases with an odd number
of qubits.
We will now use the recurrence relation to compute r

for certain classes of states, and by doing so, construct
maximally strong uncertainty relations for all even num-
bers of qubits. We assume one graph to be empty and
vary only the other one. The application of the recur-
rence relation is particularly easy if Rn−1(~y

′, A′) is inde-
pendent of ~y ′, up to a sign.
First we show by induction that for the fully con-

nected graph with an even number n of qubits, we have
Rn(~y,A) = ±2−n/2 for all ~y. For n = 2, we have
r2 = 1/2. Assume the assertion to be true for n − 2.
Let A, A′, and A′′ be the fully connected adjacency ma-
trices for n, n − 1, and n − 2 qubits, respectively, and

~a ′ = (1, 1, . . . , 1) ∈ F
n−1
2 , ~a ′′ = (1, 1, . . . , 1) ∈ F

n−2
2 and

similarly for ~0. Then

Rn(~0, A) =
1

2
Rn−1(~0

′

, A
′) +

1

2
Rn−1(~a

′

, A
′)

=
1

2

[1

2
Rn−2(~0

′′

, A
′′) +

1

2
Rn−2(~a

′′

, A
′′)
]

+
1

2

[1

2
Rn−2(~a

′′

, A
′′)− 1

2
Rn−2(~0

′′

, A
′′)
]

=
1

2
Rn−2(~a

′′

, A
′′)

= ±1

2

1

2(n−2)/2
= ± 1

2n/2
.

(B6)

This implies that Rn(~y,A) ∈ {0,±2−n/2} for all ~y. But
because of normalization, Rn(~y,A) = 0 is not possible.
This shows the assertion. For the fully connected graph
with an odd number of qubits, we have

Rn(~y,A) =
1

2
Rn−1(~y

′

, A
′)± 1

2
Rn−1(~y

′ + ~a
′

, A
′)

∈
{
0,± 1

2(n−1)/2

}
.

(B7)

The generalization of the state in Fig. 1 (b), which
is equivalent under local unitary operations to the linear
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cluster state, can be treated in exactly the same way, and

we obtain the same results for rn.
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Contextuality is a natural generalization of nonlocality which does not need composite systems
or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in
quantum mechanics there exist scenarios where the contextual behavior is independent of the quan-
tum state. We show that the quest for an optimal inequality separating quantum from classical
noncontextual correlations in an state-independent manner admits an exact solution, as it can be
formulated as a linear program. We introduce the noncontextuality polytope as a generalization of
the locality polytope, and apply our method to identify two different tight optimal inequalities for
the most fundamental quantum scenario with state-independent contextuality.

PACS numbers: 03.65.Ta, 03.65.Ud

Introduction.—The investigation of the operational dif-
ferences between quantum mechanics and classical me-
chanics resulted 1964 in the discovery of Bell’s inequali-
ties [1]. Such inequalities constrain the correlations ob-
tained from spacelike-separated measurements and are
satisfied by any local hidden variable (HV) model but are
violated by quantum mechanics. For every measurement
scenario, there exists a minimal set of inequalities, called
tight Bell inequalities, which provide also sufficient con-
ditions: If all tight inequalities are satisfied, then there
exists a local HV model reproducing the corresponding
set of correlations [2, 3].

Mathematically speaking, each tight Bell inequality
corresponds to a facet of the locality polytope [3]. This
means that it is an (p − 1)-dimensional face of the p-
dimensional polytope obtained as a convex hull of the
vectors representing local assignments to the results of
the considered measurements. Such a polytope gives all
classical probabilities associated to a local model for a
given measurement scenario, and its facets give precisely
the boundaries of the polytope. In this sense, tight in-
equalities separate classical from nonclassical correlations
perfectly.

Similarly, noncontextuality inequalities [4–6] are con-
straints on the correlations among the results of compati-
ble observables, which are satisfied by any noncontextual
HV model. While the violation of Bell inequalities reveals
nonlocality, the violation of noncontextuality inequalities
reveals contextuality [7, 8], which is a natural generaliza-
tion of nonlocality privileging neither composite systems
(among other physical systems), nor spacelike-separated
measurements (among other compatible measurements),
nor entangled states (among other quantum states).

All Bell inequalities are noncontextuality inequalities,
but there are two features of noncontextuality inequal-
ities which are absent in Bell inequalities. One is that
noncontextuality inequalities may be violated by simple
quantum systems such as single qutrits [4]. These vio-
lations have recently been experimentally observed with

photons [9]. The other is that the violation can be inde-
pendent of the quantum state of the systems [5, 6], thus it
reveals state-independent contextuality (SIC). The latter
has been demonstrated recently with ququarts (four-level
quantum systems) using ions [10], photons [11], and nu-
clear magnetic resonance [12].

The notion of tightness naturally applies also to non-
contextuality inequalities. Tight noncontextuality in-
equalities are the facets of the correlation polytope of
compatible observables as we will explain below. Com-
pared with the locality polytope, the difference is in the
notion of compatibility, since now one no longer consid-
ers only collections of spacelike-separated measurements,
but admits more generally the measurement of a context,
i.e., a collection of mutually compatible measurements.
For a given contextuality scenario, the corresponding set
of tight inequalities gives necessary and sufficient condi-
tions for the existence of a noncontextual model.

For example, the three inequalities with state-
independent violation introduced in Ref. [5], are all tight.
These inequalities are only violated for ququarts (two of
the inequalities) and eight-level quantum systems (the
third inequality), but not for qutrits. Another example
of a tight inequality is the noncontextuality inequality for
qutrits of Klyachko et al. [4], which indeed was derived
by means of the correlation polytope method. However,
this latter inequality does not have a state-independent
quantum violation.

Obtaining all tight inequalities is, in general, a hard
task. The correlation polytope is characterized by the
number of settings and outcomes of the considered sce-
nario. While there are algorithms that find all the facets
of a given polytope, the time required to compute them
grows exponentially as the number of settings increases.
Therefore, this method can only be applied to simple
cases with a reduced number of settings [2, 4, 13]. Given
the facets of the polytope, in a next step one can try to
find quantum observables that exhibit a maximal gap be-
tween the maximal noncontextual value and the quantum
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prediction.

In this paper we approach the problem differently. For
many situations, the quantum observables are already
known, and it remains to find inequalities that are tight
and optimal and, in addition, may exhibit SIC. Thus we
first describe the noncontextuality polytope for a given
set of observables and a given list of admissible contexts.
A noncontextuality inequality is then an affine hyper-
plane that does not intersect this polytope. We then in-
troduce a method for maximizing the state-independent
quantum violation via linear programming. The resulting
linear program can be solved with standard optimization
routines, and the optimality of the solution is guaran-
teed. As an application we derive the optimal inequality
for several state independent scenarios, in particular an-
alyzing a recently discovered qutrit scenario [14]. Using
our method, we find noncontextuality inequalities with
state-independent violation and the fewest number of ob-
servables and contexts. These inequalities turn out to
be in addition tight and hence provide the most funda-
mental examples of inequalities with state-independent
violation.

Contextuality scenarios, the noncontextuality poly-

tope, and noncontextuality inequalities.—We start from
some given dichotomic [15] quantum observables
A1, A2, . . . , An. A context c is then a set of indices, such
that Ak and Aℓ are compatible whenever k, ℓ ∈ c, i.e.,
[Ak, Aℓ] = 0. For example if A1 and A2 are compatible,
then valid contexts would be {1}, {2}, and {1, 2}. As we
see below, it may be interesting to consider only a cer-
tain admissible subset C of the set of all possible contexts
{c}. The observables A1, . . . , An, together with the list
of admissible contexts C, form the contextuality scenario.

The set of all (contextual as well as noncontextual)
correlations for such a scenario can be represented by the
following standard construction. We first use that, if Ak

and Aℓ are compatible, then the expectation value of Ak

is not changed whether or not Aℓ is measured in the same
context. Thus, instead of considering all correlations, it
suffices to only consider the vector ~v = (vc | c ∈ C),
where vc is the expectation value of the product of the
values of the observables indexed by c. For example,
for the contexts {1}, {2}, {1, 2}, a contextual HV model
may with equal probability assign the values {+1}, {+1},
{−1,+1}, or {−1}, {−1}, {+1,−1}, respectively, yield-
ing ~v ≡ (v1, v2, v1,2) = (1/2, 1/2,−1).

In the simplest noncontextual HV model, however,
each observable has a fixed assignment ~a ≡ (a1, . . . , an) ∈
{−1, 1}n for the observables A1, . . . , An, and accordingly
each entry in ~v is exactly the product of the assigned val-
ues, i.e., vc =

∏
k∈c

ak. The most general noncontextual

HV model predicts fixed assignments ~a(i) with proba-
bilities pi, and hence the set of correlations that can be
explained by a noncontextual HV models is characterized
by the convex hull of the models with fixed assignments,

thus forming the noncontextuality polytope.
Then, a noncontextuality inequality is an affine bound

on the noncontextuality polytope, i.e., a real vector ~λ

such that η ≥ ~λ · ~v for all correlation vectors v that orig-
inate from a noncontextual model:

η ≥
∑

c∈C

λc

∏

k∈c

ak, (1)

for any assignment ~a ≡ (a1, . . . , an) ∈ {−1, 1}n.
In quantum mechanics, in contrast, the measurement

of the entry vc corresponds to the expectation value
〈∏k∈c

Ak〉ρ, where ρ specifies the quantum state. Thus

the value of ~λ·~v predicted by quantum mechanics is given
by 〈T (~λ)〉ρ, with

T (~λ) =
∑

c∈C

λc

∏

k∈c

Ak. (2)

If the expectation value exceeds the noncontextual limit
η, then the inequality demonstrates contextual behavior,
yielding the quantum violation

V =
maxρ 〈T (~λ)〉ρ

η
− 1. (3)

An inequality is optimal, if the violation is maximal for
the given contextuality scenario. In general, this opti-
mization is difficult to perform and it is not always clear
that an optimal inequality also yields the most significant
violation [16].
Optimal state independent violation and tight inequal-

ities.—However, if we require a state independent viola-
tion of the inequality, without loss of generality, T (~λ) = 11
and hence the optimization over the quantum state ̺

vanishes. Then, the coefficient vector ~λ and the noncon-
textuality bound η are optimal if η is minimal under the
constraint T (~λ) = 11 and if the inequalities in Eq. (1) are

satisfied. That is, we ask for a solution (η∗, ~λ∗) of the
optimization problem

minimize: η,

subject to: T (~λ) = 11 and

Eq. (1) holds for all ~a.

(4)

This optimization problem is a linear program and such
programs can be solved efficiently by standard numer-
ical techniques and optimality is then guaranteed. We
implemented this optimization using CVXOPT [17] for
Python, which allows us to study inequalities with up to
n = 21 observables and |C| = 131 contexts. Note that
this program also solves the feasibility problem, whether
a contextuality scenario exhibits SIC at all. This is the
case, if and only if the program finds a solution with
η < 1 and thus V > 0.
The optimal coefficients ~λ∗ are, in general, not unique

but rather form a polytope defined by Eq. (1) with η =
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standard deviations. We mention, however, that the par-
ticular experimental setup implements the same observ-
able in different context differently, thus easily allowing
a noncontextual HV model explaining the data [20]. A
setup avoiding such problems is described in Ref. [21].

The maximal contexts in the Yu-Oh scenario are of
size three, and hence it is possible to include also the
corresponding terms in the inequality, i.e., we extend the
contexts CYO by the contexts {1, 2, 3}, {1, 4, 7}, {2, 5, 8},
and {3, 6, 9}. Since this increases the number of param-
eters in the inequality, there is a chance that this case
allows an even higher violation. In fact, the maximal vi-
olation is V = 8/75 ≈ 10.7%. Again, it is possible to
find tight inequalities with vanishing coefficients, and in
particular the context {1, 2, 3} can be omitted; the list of
coefficients is given in Table I, column “opt3”.

Further examples.—Our method is applicable to all
SIC scenarios, providing the optimal inequality. We men-
tion two further examples: (i) The “extended Peres-
Mermin square” uses as observables all 15 products of
Pauli operators on a two-qubit system, (σµ ⊗ σν) [22].
The optimal violation is V = 2/3, where only contexts
of size three need to be measured and λc = 1/15, ex-
cept λxx,yy,zz = λxz,yx,zy = λxy,yz,zx = −1/15. Among
the optimal solutions no simpler inequality exists. (ii)
The 18 vector proof [23] of the Kochen-Specker theorem
uses a ququart system and 18 observables of the form
(5). For contexts up to size 2 the maximal violation is
V = 1/17 ≈ 5.9% (cf. [24]), while including all context
the maximal violation is V = 2/7 ≈ 28.6% (cf. [5]). The
situation where only contexts up to size 3 are admissi-
ble has not yet been studied and we find numerically a
maximal violation of V ≈ 14.3%.

Conclusions.—Contextuality is suspected to be one
of the fundamental phenomena in quantum mechanics.
While it can be seen as the underlying property of the
nonlocal behavior of quantum mechanics, so far no meth-
ods for a systematic investigation have been developed.
We here showed that Pitowsky’s polytope naturally gen-
eralizes to the noncontextual scenario and hence the
question of a full characterization of this noncontextu-
ality polytope arises. This can be done via the so-called
tight inequalities. On the other hand, among the most
striking aspects where contextuality is more general than
nonlocality is that the former can be found to be inde-
pendent of the quantum state. For this state-independent
scenario, we showed that the search for the optimal in-
equality reduces to a linear program, which can be solved
numerically with optimality guaranteed. We studied sev-
eral cases of this optimization and find that in all those
instances one can construct noncontextuality inequalities
with a state independent violation that are, in addition,
tight. This is in particular the case for the most funda-
mental scenario of state independent contextuality [14]
and we presented two essentially different inequalities—
one involves at most contexts of size two, the other of

size three. We hence lifted the Yu-Oh scenario to the
same fundamental status as the CHSH Bell inequality
[25], which is the simplest scenario for nonlocality. Our
state-independent tight inequalities are particularly suit-
able for experimental tests and hence we expect that they
stimulate experiments to finally observe SIC in qutrits
[21].
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What singles out quantum mechanics as the fundamental theory of Nature? Here we study
local measurements in generalised probabilistic theories (GPTs) and investigate how observational
limitations affect the production of correlations. We find that if only a subset of typical local
measurements can be made then all the bipartite correlations produced in a GPT can be simulated
to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation
of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by
quantum mechanics, however.

PACS numbers: 03.65.Ta, 03.65.Ud

Introduction.—The continued success of quantum me-
chanics (QM) strongly implies that it is the fundamental
description of Nature. However, it could still be that QM
is simply a very good effective theory which breaks down
if we are able to perform experiments with sufficiently
high energy and precision. In this case QM would need
to be replaced by a more general “post-quantum” theory.
In particular generalised probabilistic theories (GPTs) [1–
5] have received considerable attention recently, both as
a foil to better understand the features of QM, and as a
powerful abstract way to reason about correlations and
locality. These investigations have lead to many inter-
esting results, including simplified and improved crypto-
graphic schemes and primitives [6, 7].

If Nature is actually described by a theory other than
QM then the natural question arises: why is QM such a
good effective theory? A natural answer, which we inves-
tigate here, is that experimental imperfections prevent us
from observing any post-quantum phenomena.

Suppose that Nature is described by a GPT with a
high-dimensional state space and corresponding high-
dimensional set of all possible measurements. Observa-
tional limitations, such as detector resolution, mean that
it is impossible to access most of these theoretically pos-
sible measurements. If physically implementable mea-
surements are those chosen from some typical subset (a
precise definition is given in the sequel) then we show
that the bipartite correlations arising in any experiment
can be modelled, to a high degree of precision, by those
of QM. Note that the tripartite and multipartite corre-
lations could go beyond those exhibited by QM: a suffi-
ciently refined experiment involving three or more par-
ticles could exhibit behavior going beyond that possible
within QM.

It is interesting to contrast our setting with that of
decoherence, which models the passage from the micro-
scopic to the macroscopic classical world [8, 9]. The cru-
cial difference here is that decoherence arises from the

correlations developed between a given particle and many
other inaccessible particles (in the GPT framework it is
rather likely that decoherence will always leads to an ef-
fective classical theory). By way of contrast, we consider
only a few particles in isolation: roughly speaking, we
study the case where only the “local dimensions” are ef-
fectively truncated.

Our argument builds on several important prior ideas.
The first arises from the search [10–13] for an axiomatic
derivation of QM: it was realised that a reasonable phys-
ical theory should allow for the convex combination of
different possible measurements, and hence the under-
lying sets of both states and measurements should be
dual convex bodies. These developments have lead to
the identification of generalised probabilistic theories as
a general framework to study theories of physics going
beyond QM.

The second cornerstone of our argument is the concen-
tration of measure phenomenon [14, 15] epitomized by
Dvoretzky’s theorem which states, roughly, that a ran-
dom low-dimensional section of a high-dimensional con-
vex body looks approximately spherical. This powerful
result has already found myriad applications in quan-
tum information theory, e.g., in quantum Shannon theory
[16, 17], and quantum computational complexity theory
[18, 19]. Here we adapt the “tangible” version of Dvoret-
zky’s theorem for our purposes.

The final idea we exploit is the observation that spheri-
cal state spaces can be simulated by sections of quantum
mechanical state spaces [20]. As will become evident, our
approach owes much to the recent work [21, 22] showing
that bipartite correlations may be modelled by QM when
the constituents locally obey QM.

Here we exploit these three core ideas to obtain our

Main result. If the local measurements in a GPT are
chosen from a typical section of the convex body of all
possible measurements then, with a high degree of accu-
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racy, they do not yield any post-quantum prediction for

the bipartite scenario.

More specifically, we require that the physically imple-
mentable measurements are in essence given by the sec-
tion of the convex body of all measurements with a low-
dimensional O(n)-typical subspace. This means that the
accessible measurements span a subspace and the choice
of this subspace is not particular among all other sub-
spaces of the same dimension. This is a core assumption
in our argument. Although we restrict our attention here
to the case of a O(n)-typical subspaces, it is likely that
our result extends to a much wider variety of typicality
notions.

Our argument then implies that for most measure-
ments given by low-dimensional subspaces the outcomes
can be explained using quantum mechanics. Hence we ar-
gue that those measurement devices revealing any post-
quantum behavior are extremely difficult to build—since
the choice of the right subspace requires extreme fine
tuning.

Probabilistic physical theories, ordered vector spaces.—
It is useful to formulate GPTs in the mathematical lan-
guage of ordered vector spaces [2, 23, 24]: we begin with
the description of the single-party state space and local
measurements. The system is always assumed to be in a
state ω, which encodes the probabilities of each outcome
of all the possible measurements that may be performed.
The set of all possible states, state space, is denoted Ω.
Since any probabilistic combination of states is, in prin-
ciple, preparable, Ω is a convex set. We always assume
that Ω is represented as a subset of Rn.

A state ω ∈ Ω assigns a probability to each outcome

of any possible measurement; a measurement outcome
is represented by a map f : Ω → [0, 1]. This map
respects probabilistic mixtures of states, meaning that
f(pω1 + (1 − p)ω2) = pf(ω1) + (1 − p)f(ω2). Extending
each map linearly allows us to conclude that measure-
ment outcomes are elements of the dual space V to R

n.
Any such f is called an effect. A special effect is the unit
effect e defined by e(ω) = 1 for all ω ∈ Ω. The unit
effect represents a measurement with a single outcome:
this is certain to occur regardless of what the state is.
Convex combinations of effects are themselves assumed
to be legal effects, so the set of effects is a convex sub-
set of the dual vector space V . A measurement with
M outcomes is then a set of effects {fj}Mj=1 summing

to the unit effect e =
∑M

j=1 fj . This ensures that out-
come probabilities of measurements sum to one. It is
convenient to introduce the cone generated by the zero
effect, the unit effect, and all other effects, i.e., the set
V + ≡ {tf | t ≥ 0, f is an effect}.

The triple (V, V +, e) is known as an ordered unit vector

space and encodes all of the theoretically possible local
effects of a GPT. Throughout the following we regard
(V, V +, e) as the fundamental defining representation of

a GPT with state space as a derived concept (i.e., Ω is
henceforth defined as the set of all positive linear func-
tionals ω on V such that e(ω) = 1). It is convenient
to assume a further property, namely, that the triple
(V, V +, e) is Archimedean. This means that if te+f ∈ V +

for all t > 0, then f ∈ V +. Such Archimedean ordered

unit vector spaces are referred to as AOU spaces in the
sequel. The Archimedean axiom is a kind of closure as-
sumption which allows us, for example, to construct the
order norm ‖f‖+ ≡ inf{t | te ± f ∈ V +, t ≥ 0}. All
ordered vector spaces can be Archimedeanised [25], and
from now on we assume that the effects of a GPT are
suitably represented by an AOU space.
An important example of a GPT is that of quantum

mechanics itself: an n-level quantum system is described
by an AOU space where V ⊂ Mn(C) is the set of n×n

hermitian matrices. The effects are then the matrices
F ∈ V with 0 ≤ F ≤ 11 and the unit is e ≡ 11. The
cone V + generated by these effects is hence given by the
positive semidefinite matrices. One can verify that the
triple (V, V +, e) is Archimedean. State space Ω is given
by {F 7→ tr(ρF ) | ρ ∈ V +, tr(ρ) = 1} and the order norm
‖A‖+ is given by the largest singular value of A.
Sections of GPTs.—Here we study the effective theo-

ries arising from GPTs when only a subset of the possible
effects may be implemented. For this purpose it is use-
ful to introduce the notion of a linear map between AOU
spaces: we say that a linear map ϕ : V → W between two
AOU spaces (V, V +, eV ) and (W,W+, eW ) is positive if
ϕ(V +) ⊂ W+ and ϕ is unital when ϕ(eV ) = eW .
Our definition of a section of a GPT/AOU space W

is then motivated by the observation that if we can only
implement some subset of the effects in W+ then we can
implement any convex combination of them. A particular
example of such a restriction is the intersection of W+

with some subspace V ⊂ W . Since we can always apply
the “do nothing” measurement, we require the subspace
V to contain eW . Abstractly, a section of (W,W+, eW ) is
defined to be a positive unital injection φ : V →֒ W such
that φ(V +) = W+ ∩ imφ. This last condition has the
consequence that the left inverse φ−1 is also a positive
unital linear map.

When restricted to a section of a GPT (W,W+, eW )
the state space of the section (V, V +, eV ) is given by a
quotient of the state space of W , i.e., ΩV = ΩW / ∼,
where the equivalence relation is determined by ω ∼ σ if
f(ω) = f(σ) for all f ∈ V . This quotient is the shadow

of the convex body ΩW on the subspace V .
We now describe the AOU space playing the central

role in our argument. This space is given by triple
(Rn+1, C

+
n+1(c), (1,~0)) where C

+
n+1(c) denotes the (n+1)-

dimensional Euclidean cone with length-diameter ratio
c : 2, i.e.,

C
+
n+1(c) = {(t, ~x) ∈ R+ × R

n | t ≥ c‖~x‖2}, (1)

of which e = (1,~0) is the order unit.
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It is a nontrivial fact that this space can be embed-
ded into a quantum system, i.e., it is a section of QM.
The argument is due to Tsirelson [20] and proceeds as
follows. Let m = n/2 if n is even and m = (n + 1)/2
for odd n and define γ1, . . . , γ2m ∈ M2m(C) via γ2j−1 =

σ
(1)

z · · ·σ(j−1)

z σ
(j)
x and γ2j = σ

(1)

z · · ·σ(j−1)

z σ
(j)
y , where

we’ve employed the standard Pauli matrix notation and
juxtaposition indicates an implicit tensor product. Con-
sider the positive unital injection

ϕ : (t, ~x) 7→ t11 + c

∑

j

xjγj , (2)

(The positivity follows from 2t ϕ(t, ~x) = ϕ(t, ~x)2 + (t2 −
c2‖x‖2

2
) 11 ≥ 0, arising from γjγk + γkγj = 2δjk11). Since

ϕ is an injection, it has a left-inverse

ϕ
′ : A 7→ (trA, tr(Aγi)/c))/2

m
, (3)

which is again positive. (Let xi ≡ tr(Aγi), so that
tr(A)−c‖~x/c‖

2
= tr[Aϕ(1,−(~x/‖~x‖

2
)/c)] ≥ 0, since both

matrices in the trace are already positive.)
Multipartite systems.—We now discuss how to form

joint systems in the GPT framework. Suppose Alice and
Bob are each in possession of a GPT (VA, V

+

A , eA) and
(VB , V

+

B , eB), respectively, which describes the purely lo-

cal measurements for each party. The joint GPT is then
defined to be the AOU space (VA ⊗ VB , V

+

AB , eA ⊗ eB)
where, in order to proceed, we must specify how to
construct the cone V

+

AB ≡ “(VA ⊗ VB)
+”. There are

an infinite variety of possibilities, however, we may re-
strict our attention to the following two extremal defi-
nitions [26]. The first corresponds to the maximal ten-

sor product (VA ⊗max VB)
+ which is defined to be the

Archimedeanisation of the cone {∑k

j=1
fj ⊗ gj | fj ∈

V
+

A , gj ∈ V
+

B , k ∈ N} and the second to the minimal

tensor product (VA ⊗min VB)
+ ≡ {u ∈ VA ⊗ VB | (ωA ⊗

ωB)(u) ≥ 0, for all ωA ∈ ΩA and ωB ∈ ΩB}.
By way of contrast, the tensor product used in the for-

mation of joint systems in quantum mechanics is neither
the minimal nor maximal one, but is rather strictly in
between: (VA ⊗max VB)

+ ⊂ (VA ⊗QM VB)
+ ⊂ (VA ⊗min

VB)
+. The quantum mechanical tensor cone V

+

AB is
given by the set of positive semidefinite operators in
MnA

(C)⊗MnB
(C). The state space Ωmin

AB corresponding
to (VA ⊗min VB)

+ is precisely the set of separable states

and the state space Ωmax

AB corresponding to (VA⊗maxVB)
+

is given by the set of all positive semidefinite operators
W with tr(W ) = 1 which satisfy tr(WA ⊗ B) ≥ 0,
∀A,B ≥ 0. This set is dual to the set of entanglement

witnesses [27] and includes all legal density operators as
well as some operators with negative eigenvalues. Even
though the state space Ωmax

AB in the case where our local
GPTs are QM is strictly larger than quantum mechani-
cal state space, results of [21, 22] show that it does not
give rise to any bipartite correlations going beyond QM.

The following proposition is a slight generalization of this
statement, dealing with (local) sections of quantum sys-
tems.

Proposition 1. Consider two AOU spaces (VA, V
+

A , eA)
and (VB , V

+

B , eB) which are sections of quantum systems

with according positive unital injections ϕA and ϕB into

an nA-level (respectively, nB-level) quantum system. As-

sume, without loss of generality, that nA ≤ nB. Then

for any positive unital bilinear map ωAB : VA × VB → R

there exists a state σAB of the composite quantum system

AB and a positive unital automorphism ψ on B such that

ωAB(f, g) = tr(σAB ϕA(f)⊗ (ψ ◦ ϕB)(g)).

Proof. By assumption the map ω′

AB(MA,MB) 7→
ωAB(ϕ

−1

A (MA), ϕ
−1

B (MB)) is positive and unital on the
quantum systems A, B. Hence the statement reduces to
the case where ϕA and ϕB are both the identity map-
ping. A proof for this case was given by Barnum et al.
[21].

We stress that the existence of positive unital left in-
verse maps ϕ

−1

A and ϕ
−1

B is essential for this result to
hold. Indeed, in the case of a hypothetical nonlocal box
[28], it is impossible to find positive unital maps into
quantum such that there left inverse is also positive and
hence non-local boxes allow post-quantum behavior. It
is also important to note that Proposition 1 does not
generalize to more than two parties [22].
Typical sections, main result.—Consider an arbitrary

pair of n-dimensional GPTs A and B and suppose that
we are only able to access a typical section of the set of
local effects for A (respectively, B). This is modelled by
the intersection of V +

A (respectively, V +

B ) with a typical
k-dimensional subspace, k ≪ n. To do this abstractly
we choose a bijection T between V and R

n and con-
sider a random linear injection X : Rk →֒ R

n such that
the random variable X(~x) is distributed according to the
uniform measure on the Euclidean (n − 1)-sphere of ra-
dius ‖~x‖

2
. (That is, X is an O(n)-random rotation of an

embedded fiducial k-dimensional subspace.) We call

Q(t, ~x) = te+ TX(~x) (4)

a centered random section of Rk+1 into V and it ensures
that every subspace corresponding to a typical choice of
measurement settings contains the neutral effect e. Since
only convex combinations of e with TX(Rk) are feasible,
we now study the cone V + ∩Q(R+,R

k).
The following result captures the concentration of mea-

sure phenomenon for our setting.

Proposition 2. Let (V, V +, e) be an n-dimensional

AOU space and 0 < ε < 1. Then for k ≤ O(ε2 log n)
there exists a k+1 dimensional centered random section

Q of V , such that, with high probability,

Q(C+

k+1
(1+ε)) ⊂ V

+∩Q(R+,R
k) ⊂ Q(C+

k+1
(1−ε)). (5)
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Proof. At the heart of the proof is the following “tan-
gible” version of Dvoretzky’s theorem [14, 17, 29]: If
η : Sn−1 → R is a Lipschitz function with constant L

and central value 1 (with respect to the uniform spheri-
cal measure on Sn−1), then for every ε > 0, if E ⊂ R

n is
a random subspace of dimension k ≤ k0 = c0ε

2 n/L2, we
have, that

Prob

[

sup
Sn−1

∩E

|η(~x)− 1| > ε

]

≤ c1e
−c2k0 , (6)

where c0, c1, and c2 are absolute constants.
For our scenario, we use η(~z) = inf{t > 0 | te + T~z ∈

V +} with T chosen such that η has a mean (which is a
particular central value) of 1 on the (n− 1)-dimensional
Euclidean sphere and that the Lipschitz constant L of η
is bounded via L ≤ c′

√
n/ log n for some absolute con-

stant c′. This is always possible, as can be seen following
the proof of Theorem 4.3 in [29]: First, by a Lemma of
Dvoretzky and Rogers [14, Theorem 3.4], the bijection T

can be chosen such that for all canonical vectors ~ek with
k ≤ n/2 it holds that ‖T~ek‖+ ≥ ‖T‖/4. Without loss of
generality we may assume in addition that η has mean 1.
Then, for a vector of normal distributed variables ~g and
due to ‖T~z‖+ = max{η(~z), η(−~z)} and [29, Eqns. (4.14,
4.18)] we find,

2
√
n ≥ 2Eη(~g) ≥ E‖T~g‖+ ≥ Emax

k
|gk| ‖T~ek‖+

≥ E max
k≤n/2

|gk| ‖T~ek‖+ ≥ c
′′

√
log(n/2) ‖T‖/4. (7)

On the other hand, η is a sublinear function and thus

|η(~z1)− η(~z2)| ≤ max{η(~z1 − ~z2), η(~z2 − ~z1)}
= ‖T (~z1 − ~z2)‖+ ≤ ‖T‖ ‖~z1 − ~z2‖2, (8)

which eventually shows L ≤ c′
√

n/ log n.
Now, by virtue of Dvoretzky’s theorem, the following

holds with high probability. For all ~x 6= 0 with ξ ≡
‖~x‖2 ≤ 1/(1 + ε), we have η[X(~x/ξ)] ≤ 1 + ε ≤ 1/ξ, and
hence Q(1, ~x) = [e/ξ+ TX(~x/ξ)]ξ ∈ V +. Conversely, for
all ~x with ξ ≡ ‖~x‖2 > 1/(1 − ε), we have η[X(~x/ξ)] ≥
1− ε > 1/ξ, i.e., Q(1, ~x) /∈ V +. The converse statement
completes the proof.

Thus, with high accuracy, the effective theory corre-
sponding to a low-dimensional O(n)-typical section of a
local GPT looks like a Euclidean AOU space, cf. Fig. 1
for an illustration. The cones Q(C+

k+1(1± ε)) give a very
accurate description of the typical section, since by lin-
earity all observable probabilities may at most deviate by
O(ε). Combining this with our previous finding, namely
that Euclidean cones are sections of QM, and hence, in
view of Proposition 1, all bipartite correlations of their
maximal tensor product may be simulated within QM,
we arrive at our anticipated main result. Conversely, due
to an argument by Tsirelson [20], all bipartite dichotomic

FIG. 1. Typical two-dimensional sections of a hypercube and
of the effect space of a PR-Box in various dimensions. In both
cases an increasing rounding of the corners of the sections can
be observed. However in the case of a hypercube, which is the
extremal situation for Dvoretzky’s theorem, there is still an
appreciable probability for non-rounded sections, due to low
dimensionality.

correlations can be explained within an Euclidean cone
of appropriate dimension. Our result reduces to this di-
chotomic case, since already our description of a GPT
by an AOU space is essentially limited to the dichotomic
case.

Finally we briefly discuss the situation of a general-
ized Popescu-Rohrlich (PR) box, which exhibits (in some
sense) the “maximal” possible post-quantum correlations
[28]. Such boxes are locally described by an AOU vector
space over R

n with cone PR+ = {(t, ~x) | t ≥ ∑
i |xi|}

and neutral element (1,~0). By virtue of Proposition 2,
the fraction of 3-dimensional sections from a 55 × 106-
dimensional box with a post-quantum behavior of more
than ±3% is as low as 10−6[30].

Conclusions.—We have presented a mechanism
whereby observable bipartite correlations of an arbitrary
post-quantum theory could be, with high accuracy,
compatible with those exhibited by quantum mechan-
ics. Our argument exploited the concentration of
measure phenomenon and hence works for any typical
low-dimensional section of a generalised probabilistic
theory. We argued that such typical sections arise due
to a lack of ultra-precise experimental control, in which
case it would be virtually impossible to observe any
post-quantum behavior, even if the fundamental theory
of Nature wasn’t quantum mechanics. This is comple-
mentary to the emergence of classicality from quantum
mechanics via decoherence [8, 9], since we consider only
a pair of (microscopic) objects, rather than an ensemble
of objects. Our argument indicates that there is another
option for a refinement of today’s physics: we might
be missing hidden post-quantum structures due to an
ignorance of the correct measurement directions.
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1

Comment on “State-Independent Experimental

Test of Quantum Contextuality in an Indivisible

System”

In this Comment we argue that the experiment de-
scribed in the recent Letter [1] does not allow to make
conclusions about contextuality. Our main criticism is
that the measurement of the observables as well as the
preparation of the state manifestly depend on the cho-
sen context. Contrary to that, contextuality is about the
behavior of the same measurement device in different ex-
perimental contexts (cf. e.g. Ref. [2–4]).
The authors aim to experimentally demonstrate that

the noncontextuality assumption is violated by quantum
systems. Specifically, they report a violation of the non-
contextuality inequality recently introduced by Yu an Oh
[5], which is of the form

∑

k

〈Ak〉 −
1

4

∑

(k,ℓ)∈E

〈AkAℓ〉 ≤ 8. (1)

The notation 〈AkAℓ〉 is an abbreviation denoting the ex-
pectation value of the product of the outcomes of the
observables Ak and Aℓ. This inequality holds for any
noncontextual model, i.e., any model having preassigned
values for each observable Ak, irrespective of the mea-
surement context (the different pairs AkAℓ). Therefore,
the experimenter must convincingly argue that the as-
signment of the observables is independent of the context.
This is a central point in any experimental test of con-
textuality. For the argument leading to Eq. (1) it is thus
crucial that (i) the same symbol Ak always corresponds
to the same measurement and (ii) the expectation value
is evaluated always for the same state of the system.
In Table I, we list the different measurement proce-

dures that have been used in the experiment, as provided
by the supplementary material of the Letter. Clearly,
except for Az1 and Ay

−

3
, none of the observables is mea-

sured context independently. In particular, the observ-
ables Ahα

(α = 0, 1, 2, 3) are measured in each context
differently, violating condition (i). In addition the input
states are chosen differently for different contexts—an ap-
proach that has not been investigated before and directly
violates condition (ii).
Since no experimental data or discussion concerning

these issues is provided in the Letter, the only means to
conclude that those different procedures actually corre-
spond to the same physical observable is to invoke pre-
vious knowledge about the functioning of the optical de-
vices. However, since the setup is operated on a single
photon level, this actually requires to employ their quan-
tum mechanical description. But then the experiment
can merely be used to verify the predictions of quantum
mechanics within the framework of quantum mechanics,
rather than a to provide a proof of contextual behavior.

z1 z2 z3 y−

1
y−

2
y−

3
y+

1
y+

2
y+

3
h1 h2 h3 h0

z1 1 1 1 1 1

z2 1a ? 1a 3 3

z3 1a’ 1a’ ? 2a’ 2a’

y−

1
1b’ 1b’ 1b’ X2 X2

y−

2
3b’ 3b’ 3b’ Y2 Y2

y−

3
2 2 2 2 2

y+

1
1b 1b 1b X5 X4

y+

2
3b 3b 3b Y4 Y5

y+

3
2a 2a ? 4 5

h1 X2d Y4c 4c 4c

h2 Y2d X5c 5c 5c

h3 2d X4c Y5c 2d

h0 X2c Y2c 2c 2c

TABLE I. Different realizations of the 13 observables in the
different contexts. In each row k, the entries correspond to
the different experimental realizations of the observable Ak

depending on the context, i.e., for column ℓ in the context
〈AkAℓ〉, for ℓ = k in the single observable context 〈Ak〉. In
the entries, the number corresponds to the setting of HWP5
(1: 0◦, 2: 25.5◦, 3: 45◦, 4: −22.5◦, 5: 67.5◦) and the lower
case letter to the setting of HWP6 (a: 0◦, b: 22.5◦, c: 17.63◦,
d: −17.63◦). Where only the number occurs, the setting of
HWP6 does not influence the observable, since the observ-
able was measured using Detector 1; if Detector 3 was used,
a prime is added. An X denotes a change of the input state
prior to measurement by swapping |0〉 and |2〉, while Y de-
notes a swap of |1〉 and |2〉. For 〈Az2〉, 〈Az3〉, and 〈A

y+
3
〉 it

is not clear from the material which setting was used in the
experiment.
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Certifying experimental errors in quantum experiments

Tobias Moroder,1, 2 Matthias Kleinmann,1 Philipp Schindler,3 Thomas Monz,3 Otfried Gühne,1, 2 and Rainer Blatt2, 3
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When experimental errors are ignored in an experiment, the subsequent analysis of its results
becomes questionable. We develop tests to detect systematic errors in quantum experiments where
only a finite amount of data is recorded and apply these tests to tomographic data taken in an
ion trap experiment. We put particular emphasis on quantum state tomography and present three
detection methods: the first two employ linear inequalities while the third is based on the generalized
likelihood ratio.

PACS numbers: 03.65.Ta, 03.65.Wj, 06.20.Dk, 42.50.Dv

Introduction.—Measurements are central to acquiring
information about the underlying system in any quan-
tum experiment. However, for quantum systems of in-
creased complexity, the analysis of all measurement data
gets challenging when one deals with both statistical and
systematic errors. Statistical errors refer to the intrin-
sic problem that true probabilities are never accessible in
any experiment but are merely approximated from count
rates which lead to relative frequencies. A well-known
example where statistical effects play a dominant role is
quantum state tomography [1]: the task to determine an
unknown state by means of appropriate measurements.
Here the deviations between probabilities and relative
frequencies cause severe problems in the actual state re-
construction, since näıvely using the frequencies in Born’s
rule easily leads to unphysical “density operators,” mean-
ing that some eigenvalues are negative. This problem can
be circumvented by reconstruction principles that explic-
itly account for statistical effects [2, 3].

The analysis is generally further complicated because
of additional systematic errors, e.g., caused by drifts in
the state generation, misalignment in the measurements
or fluctuations of external parameters. To reconstruct
the state from the observed data one requires an operator
assignment for each classical outcome of the performed
measurements. This measurement model is essential, not
just for quantum state tomography, but also to certify
state characteristics like entanglement via entanglement
witnesses [4, 5] or applications as quantum key distribu-
tion to prove security in the calibrated device scenario [6].
However, in a real experiment the measured observables
might deviate from this employed description due to sys-
tematic errors. This mismatch can have severe impact on
the analysis and can lead to, for instance, spurious entan-
glement detection as exemplified in Ref. [7] or insecurity
in quantum key distribution [8, 9]. Though deviations of
this kind have been discussed and partially countermea-
sured by different techniques [10–14], it has not yet been
investigated how to distinguish them from statistical er-
rors. An exception is Ref. [15], where drifts in the source

are detected by measurements on subsequent states.

In this Letter we present experimentally and theoreti-
cally three methods to detect whether systematic errors
are statistically significant, i.e., if there is merely a small
probability that the observed results were generated by
statistical effects only. In that case, the model becomes
questionable and further analysis must involve a refined
model or include other means of treating systematic er-
rors. We emphasize that the techniques outlined below
can only falsify but never verify that systematic errors
are absent. Some errors, as, for example, depolariz-
ing noise, are not detectable without further calibration.
Still, we recommend that these tests are applied before
reconstructing actual quantum states since they serve as
additional systematic error checks after calibrating the
setup. Three procedures are presented in detail, the first
two use linear inequalities that are satisfied if no system-
atic errors are present, while the third is based on the
likelihood ratio [17, 18]. Note that other techniques from
hypothesis testing, like the prediction-based-ratio anal-
ysis [19] or the chi-square goodness-of-fit [20], provide
alternative procedures to test for systematic errors.

Tomography setting.—A common tomography proto-
col uses 3n possible combinations of Pauli operators on n

qubits and one measures locally the respective expecta-
tion values in the associated eigenbasis which provides 2n

distinct outcomes, yielding a total of 3n× 2n = 6n differ-
ent outcomes. Note that an n-qubit density operator is
already determined by 4n − 1 parameters, i.e., this mea-
surement scheme collects an overcomplete data set. This
tomography protocol is known as the Pauli measurement
scheme [3] which has been used for n-qubit systems in
ion traps [21] or photonic setups [22].

More generally, we consider a tomography protocol
with measurements for different settings labeled by s and
which registers the respective frequencies f s

k
= ms

k
/Ns,

where ms
k
denotes the counts of the specific outcome k

in Ns repetitions of this experiment. The repetitions Ns

are assumed to be equal for each setting. The observ-
ables M s

k
are the attributed measurement operators and
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they span the complete operator space in order to enable
a full reconstruction of the density operator. Most often
this set is overcomplete, i.e., the operators are not inde-
pendent of each other which can be expressed in terms
of linear identities

∑
cskM

s
k = 0 using real coefficients

csk. The set of probabilities consistent with this quantum
model are all distributions Pqm(k|s) = tr(ρM s

k) that can
be written using a density operator ρ.

Witness test.—The set of distributions consistent with
the assumed quantum model can be characterized by lin-
ear inequalities. This is in analogy to entanglement wit-
nesses [5, 16] for separable states or Bell inequalities [23]
for local hidden variable models. Consider a set of real
coefficients w = ws

k that define a positive semidefinite
operator via

∑
ws

kM
s
k = Zw � 0, i.e., all eigenvalues

are non-negative. Then for each such w the expectation
value of any probability distribution from the quantum
model Pqm satisfies

w · Pqm ≡
∑

s,k

w
s
kPqm(k|s) = tr(ρZw) ≥ 0. (1)

Thus a distribution P with w ·P < 0 is incompatible with
the assumed quantum model, and any such distribution
can be detected by a set of coefficients w of the described
form (even with partial information [24]). Thus we refer
to w as a witness for systematic errors, but note that its
associated operator Zw is not an entanglement witness.

Equation (1) is formulated on the level of probabilities
which are not accessible in the experiment. Nevertheless
one can replace the probabilities by the observed frequen-
cies f = f s

k and consider the sample mean w·f ≡ ∑
ws

kf
s
k

of the witness. Then w · f ≥ 0 does not need to hold
anymore because statistical effects can produce a neg-
ative value. However, the probability to observe large
deviations from the true mean is bounded and decreases
exponentially with the number of performed repetitions.
A quantitative statement is given by Hoeffding’s tail in-
equality [25], as similarly used for example in efficient
fidelity estimation [26, 27]. We emphasize that this in-
equality is even valid for small data sets containing only
few or no counts for certain outcomes.

Proposition 1.—Consider a witness w = ws
k obeying∑

ws
kM

s
k = Zw � 0. If the data are generated by the

quantum model Pqm(k|s) = tr(ρM s
k), then for all t > 0,

Prob[w · f ≤ −t] ≤ exp(−2t2Ns/C
2
w) (2)

with C2
w =

∑
s (w

s
max − ws

min)
2
, where ws

max/min
are the

optima for setting s over all outcomes k. A proof is given
in the appendix.

The interpretation is as follows: Suppose that one
carries out an experiment for a previously chosen wit-
ness w and fixed error probability α, which one still
tolerates before one announces a systematic error. Us-
ing Proposition 1 one computes the necessary violation

FIG. 1. The admissible probabilities from the quantummodel
Pqm typically form a convex, lower dimensional subset within
all possible probability distributions (dashed cube). This di-
mension reduction stems from additional linear relations that
a probability distribution from the quantum model must ful-
fil. These relations are checked by witnesses wL, while wP

verify positivity of the density operator.

tα =
√
−C2

w log(α)/2Ns. If one now registers frequen-
cies fobs with w · fobs ≤ −tα, then the probability that
any error-free experiment would produce such data is less
than α and one says that a systematic error is significant
at significance level α. However, for given data it is more
common to report the smallest α such that the system-
atic error is significant. This is also called the p-value
in hypothesis testing [17]. Proposition 1 states that this
p-value has an upper bound of exp[−2(w · fobs)2Ns/C

2
w]

if w · fobs < 0.
Witness structure.—Each witness w as defined above

can be decomposed into two conceptually different parts.
One that solely verifies positivity of an underlying den-
sity operator, denoted as wP, and into another part wL

that only checks the linear dependencies within the as-
sumed measurement operators, such that one obtains
w = wP + wL. It turns out that these two parts of
the witness are orthogonal. Note that the witness wP

uniquely describes the operator
∑

w s
PkM

s
k = Zw, while

the witness wL (and also −wL) vanishes due to the lin-
ear relations

∑
w s

LkM
s
k = 0. Figure 1 gives a schematic

picture of this situation.
Issue of negative eigenvalues.—The above framework

provides an answer to the issue of negative eigenvalues in
linear inversion, since it is connected to witnesses of the
type wP. Linear inversion refers to the state reconstruc-
tion process in which one estimates the unknown density
operator by using the observed frequencies in Born’s rule
tr(ρM s

k) = f s
k . Since this set of linear equations is typ-

ically not exactly solvable because of overcompleteness
one selects the operator ρls which minimizes the least
squares,

∑
[f s

k − tr(ρlsM
s
k)]

2. As one ignores the pos-
itivity constraint this operator ρls will often represent
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an invalid density operator because some eigenvalues are
negative, i.e., 〈ψ|ρls|ψ〉 < 0.
Proposition 2.—Let ρls be the linear inversion using

least squares and consider a given vector |ψ〉. If the
data are generated by the quantum model Pqm(k|s) =
tr(ρM s

k), then for all t > 0,

Prob[〈ψ|ρls|ψ〉 ≤ −t ] ≤ exp(−2t2Ns/C
2
w) (3)

with C2
w as given in Proposition 1 computed from the

unique wP satisfying
∑

w s
PkM

s
k = |ψ〉 〈ψ|. A proof is

given in the appendix.
This proposition shows that the probability to success-

fully guess a state |ψ〉, independently of the recorded
data, where ρls has a negative expectation value is ex-
ponentially suppressed.
Likelihood ratio test.—In addition to the attributed

quantum model Pqm(k|s) = tr(ρM s
k ) we can also describe

the observations with a more general model assumption
of independent distributions Pind(k|s) = psk ≥ 0 and∑

k p
s
k = 1 for each setting s. The question whether

the observed data set is compatible with the assumed
quantum model can now be addressed by comparing the
maximal likelihoods of either model [17].
For that, we start from the likelihood for a distri-

bution P given the observed frequencies f , which is
L(P ) =

∏
k,s P (k|s)Nsf

s
k ignoring the multinomial prefac-

tor. A quantum state ρml that maximizes the likelihood
L(P ) is considered to be a good estimate for the physical
state [1, 2]. In contrast, for the model with all inde-
pendent distributions, the optimum is given by psk = f s

k .
Since the quantum model is contained in this more gen-
eral model, the likelihood of any quantum model can at
best be equal to this optimal likelihood. Thus one finds
L(f) ≥ L[tr(ρmlM

s
k)] or equivalently, a non-negative log-

likelihood ratio λqm = 2 logL(f)− 2 logL[tr(ρmlM
s
k)].

The likelihood ratio test is based on the observation,
that if the data are indeed generated from the quantum
model then the probability for outcomes which satisfy
λqm ≥ t decreases rapidly if t exceeds a certain value.
Wilks’ theorem [28] states that this ratio is distributed
according to a chi-square distribution already for moder-
ately large samples. However this theorem does not di-
rectly apply to λqm because of the positivity constraint;
but it works for the slightly larger model where one per-
forms the optimization (rather than over quantum mod-
els) over probabilities Pnqm(k|s) = tr(XM s

k) that can be
written in terms of a Hermitian operator X . Note that
X can have negative eigenvalues, indicated by the sub-
script “n”, while still obeying the positivity constraints
tr(XM s

k) ≥ 0 for the measurements M s
k . With Xml

being a corresponding optimum we now study the log-
likelihood ratio

λnqm = 2 logL(f)− 2 logL[tr(XmlM
s
k)]. (4)

Proposition 3.—If the data are generated by the d-
dimensional quantum model Pqm(k|s) = tr(ρM s

k) with

K outcomes for each of the S settings, then for all t > 0,
as Ns → ∞,

Prob[λnqm ≥ t] → Q(∆/2, t/2), (5)

with the dimension deficit ∆ = (K − 1)S − (d2 − 1) and
the regularized incomplete gamma function Q [29]. A
proof is given in the appendix.
The interpretation and application is analogous to

Proposition 1. Though Proposition 3 is only a strict
statement in the asymptotic case Ns → ∞, Eq. (5) gives
reliable values already for moderately large Ns, as we will
demonstrate below.
Experimental setup—Experimentally, we study tomo-

graphic data from an ion trap quantum processor en-
coding qubits in the ground and the metastable state of
40Ca+ ions where each ion represents a qubit. Details on
the experimental setup can be found in Ref. [30]. Single
ions can be addressed with a tightly focused, off-resonant
beam. Here the ac-Stark effect induces an operation of
the form exp(−iΩlτσz,l/2) on ion l, with the Rabi fre-
quency Ωl determined by detuning and intensity, and
pulse duration τ . Combined with collective, resonant
operations on all qubits, state tomography according to
the Pauli measurement scheme can be implemented on
the trapped-ion quantum register.
In an experimental realization, the finite width of the

focused beam results in residual ion-light interaction on
next-neighbor qubits. The Rabi frequency of ion k when
addressing ion j can be described by the addressing ma-
trix Ωj,k. Thus the operation on the qubit register can
then be written as exp(−i

∑
k Ωj,kτσz,k/2). The address-

ing quality can be quantified with a cross-talk parameter
ǫ = maxj 6=k(Ωj,k/Ωj,j), which can be increased by defo-
cusing the addressed laser beam.
Using this setup we perform tomography on various

states and investigate whether the obtained data suf-
fer from any kind of systematic errors. This includes
data for Greenberger-Horne-Zeilinger states on 4 ions,
|GHZ〉 = (|0000〉 + |1111〉)/

√
2, where we intentionally

increased the cross-talk ǫ to test the presented tech-
niques, a large data set on a two-qubit Bell state |ψ−〉 =
(|01〉 − |10〉)/

√
2 and measurements on the ground state

|SSSS〉 = |1111〉. Moreover we re-analyse observations
on a W-state on 5 qubits, |W 〉 = (|00001〉 + |00010〉 +
|00100〉 + |01000〉+ |10000〉)/

√
5 and a bound-entangled

(BE) Smolin state [31].
Empirical findings.— At first we implement the wit-

ness test, see Table I. Let us stress that Proposition 1
does not allow us to determine and to evaluate the wit-
ness w from the same data. If one would do so then
one effectively employs minw w · f instead of w · f as re-
quired in Proposition 1. Because of that we divide the
observed data into two equally sized parts, yielding fre-
quencies f1 and f2. Afterwards we use the first part f1
to determine a reasonable witness w, which is evaluated
on the second part, w · f2. Here we choose either of the
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State n Ns ǫ wL wP LR LR∗

GHZ 4
750 0.20 ⋆ 97% 10−6% 10−10% 10−9%

750 0.12 ⋆ 100% 10−7% 0.024% 0.14%

600 < 0.03 79% 81% 0.91% 4.1%

Bell 2 61650 < 0.03 100% 100% 50% 49%

SSSS 4 2600 < 0.03† 48% 84% 0.037% 0.008%

BE 4 5200 < 0.03 99% 14% 35% 36%

W 5 100 0.04 49% 91% (0.081%) 5.5%

TABLE I. Systematic error analysis for various experimental
data according to different tests, i.e., wL and wP refer to the
witness test, while LR corresponds to the likelihood ratio test.
The values are upper bounds on the p-value of each test. The
specifications are: n number of qubits, Ns number of measure-
ments per setting, ǫ measured cross-talk parameter. LR∗ is
obtained using a parametric bootstrapping method [32] with
1000 samples. For data marked with ⋆ we manually increased
the cross-talk, while † have been intensity fluctuations.

two types of witnesses testing positivity wP or linear de-
pendencies wL. As witness wP we select the witness that
corresponds to the projector onto the smallest eigenvalue
on the linear inversion ρls using the first data set f1. For
the linear dependencies we use wL = −f1 + tr(ρlsM

s

k
),

because it gives the largest negative expectation value
wL · f1 on the first data. Note that the employed choices
are not necessarily optimal [33]. If the observed value
w · f2 is negative, we ask for the statistical significance
as explained after Proposition 1. If we choose a signif-
icance level of for instance α = 0.1%, the witness wP

reliably detects the artificially introduced cross-talk for
the GHZ-state experiments, while wL is less powerful for
these examples.
The likelihood ratio test, as a third method, is best

suited for a larger number of samples, since Proposition 3
makes only a strict statement for Ns → ∞. In Figure 2
we compare the empirical distribution between a two-
qubit Bell experiment using 150 samples per setting and
the predicted distribution according to Wilks’ theorem.
Hence for the two-qubit case this number might already
be sufficiently close to this limit. This observation is fur-
ther supported by a comparison with a bootstrapping
method [32] (see appendix) which produces similar re-
sults as the ones obtained from Proposition 3. Based
on these observations we are confident that the results
using Proposition 3 for finite Ns are trustworthy for all
data from Table I except for the W-state, which has a
too low number of samples. Evaluating the experimental
data we detect again the manually increased cross-talk
in the GHZ experiments, but now also some discrepan-
cies in the SSSS experiment, which occurred because of
intensity fluctuations during the experiment [34].
Conclusion and outlook.—Tomographic reconstruction

of quantum states can be problematic since nonphysi-
cal properties, such as negative eigenvalues, might occur.
One possible solution is to use reconstruction schemes,

FIG. 2. Fraction of runs with a log-likelihood ratio λnqm ≥ t
from a 411-fold repetition of the Bell-state experiment. In
the upper graph, the shaky blue line corresponds to the ex-
perimental data, while the smooth green line is the prediction
according to Wilks’ theorem. The lower graph shows the dif-
ference between both curves.

which by construction result in a valid state. Then, how-
ever, serious concerns remain, since negative eigenvalues
can also be a signature of systematic errors. We have pro-
vided tests which can be used to distinguish systematic
from statistical errors in quantum experiments. These
tests were shown to recognize systematic errors in real
tomographic data from ion trap experiments.

Though we formulated our result for the case of state
tomography, our methods can be applied to other as-
sumptions like the nonsignaling condition in Bell exper-
iments. From the more general perspective, many ex-
periments in physics aim to determine parameters in an
assumed theoretical model. Our results show that it is
possible to give rigorous estimates on whether the as-
sumed model class is inappropriate.
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Tests against noncontextual models with measurement disturbances
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The testability of the Kochen-Specker theorem is a subject of ongoing controversy. A central issue
is that experimental implementations relying on sequential measurements cannot achieve perfect
compatibility between the measurements and that therefore the notion of noncontextuality does not
apply. We demonstrate by an explicit model that such compatibility violations may yield a violation
of noncontextuality inequalities, even if we assume that the incompatibilities merely originate from
context-independent noise. We show, however, that this problem can be circumvented by combining
the ideas behind Leggett-Garg inequalities with those of the Kochen-Specker theorem.

PACS numbers: 03.65.Ta, 03.65.Ud

I. INTRODUCTION

Bell’s theorem [1] is a famous no-go result that pro-
vides constraints on the program of interpreting quan-
tum mechanics as an incomplete theory in the sense of
Einstein, Podolsky, and Rosen [2]. It is expressed via in-
equalities that are fulfilled by any local realistic theory,
but which are predicted to be violated by quantum me-
chanics. Experimentally, it is indeed found that quantum
mechanics violates these inequalities for certain entan-
gled states [3, 4]. Similar to Bell, Leggett and Garg [5]
have proposed inequalities that are fulfilled by theories
that satisfy a criterion of macroscopic realism, meaning
that a system always occupies one of the states accessi-
ble to it. Under the further assumption of measurement
non-invasiveness, the correlations between measurements
performed on the system at different points in time obey
a bound that is violated by quantum mechanics.

A third no-go result is provided by the Kochen-Specker
theorem [6, 7]. Essentially, it replaces Bell’s assumption
of locality with the condition of noncontextuality: the
outcome of a measurement on a system should not de-
pend on other compatible measurements performed on
the same system. Here, two measurements are called
compatible, if they can be measured simultaneously or
in a temporal sequence without any disturbance. The
Kochen Specker result contains Bell’s theorem as a spe-
cial case in which the measurements are performed at
spatial separation [8]. It is, however, also applicable to
single quantum systems; consequently, entanglement is
not necessary for violations of noncontextuality. In fact,
violations of Kochen-Specker inequalities occur for all
quantum systems of dimension d ≥ 3, independent of
the initial quantum state [6].

However, in contrast to Bell’s theorem, the Kochen-
Specker theorem does not readily lend itself to experi-

∗Electronic address: szangolies@thphy.uni-duesseldorf.de
†Electronic address: matthias.kleinmann@uni-siegen.de
‡Electronic address: otfried.guehne@uni-siegen.de

mental tests of quantum mechanics. The direct testabil-
ity is stymied by the fact that, during each experiment,
only one measurement context is accessible at any given
time. This limitation can be overcome, however, because
similarly to Bell’s theorem, the Kochen-Specker theorem
can be expressed using inequalities, though it was origi-
nally not cast into this form [9, 10]. This permits testing
quantum contextuality by using measurements that are
carried out sequentially.
But even in this formulation, the question of experi-

mental testability poses further difficulties. The reason
for this lies in the notion of contextuality, which only ap-
plies in the case of compatible observables. But in an
experiment, this condition cannot be fulfilled perfectly;
indeed, even measuring the same observable twice may
yield different results. This is due to the unavoidable
presence of noise during the measurement process, which
leads to disturbances of the state. It has been argued
that this inherent difficulty, together with a related is-
sue concerning the finite precision of real measurements,
nullifies the physical significance of the Kochen-Specker
theorem [11–13].
Different strategies have been proposed to overcome

this problem. In Ref. [13], the modification of Kochen-
Specker inequalities through the introduction of error
terms was considered (see also Ref. [14]). Given that
the measurement-induced disturbances are cumulative,
these terms compensate for the violations of compatibil-
ity. A related approach, addressing a similar loophole in
experimental tests of Leggett-Garg inequalities, was pro-
posed in Ref. [15]. On the other hand it was suggested
in Ref. [16] to perform experiments on separate qutrits
in order to forestall the possibility of violations of com-
patibility.
In this paper, we take a different approach. First, we

consider the question: what does an experimentally ob-
served violation of a noncontextuality inequality license
us to conclude? By proposing an explicit model captur-
ing the effects of noise-induced compatibility violations,
we argue that to conclude contextuality from the vio-
lation alone is difficult to justify: the model produces
violations of noncontextuality inequalities while being in-
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dependent of the measurement context, and thus, non-
contextual in this sense. In particular, we show that even
the introduction of error terms as proposed in Ref. [13]
cannot settle the issue.

We then propose a way to circumvent this problem by
taking into account the ideas of Leggett and Garg: im-
posing a suitable time-ordering onto the measurements,
it turns out to be possible to formulate inequalities that
cannot be violated within our framework, and thus, allow
to rule out more general hidden-variable models under
realistic experimental conditions.

This paper is organized as follows. In Section II, we
briefly recall the notions of compatibility and contextu-
ality. Then, we propose an explicit classical noise model
capable of inducing compatibility violation in such a way
as to violate contextuality inequalities. In Section III we
show that the model cannot be ruled out by previous
approaches. To remedy this problem, in Section IV we
propose new inequalities, utilizing ideas from Leggett and
Garg. These inequalities allow to rule out more general
hidden variable models.

II. NONCONTEXTUAL MODELS

As a basis for our investigations we take a variant of
the well-known Clauser-Horne-Shimony-Holt (CHSH) in-
equality [17]

〈χCHSH〉 = 〈AB〉+〈BC〉+〈CD〉−〈DA〉
NCHV

≤ 2
QM

≤ 2
√
2.
(1)

Each of the observables A, B, C, D has outcomes±1, and
〈AB〉 denotes the average over many repetitions obtained
by measuring first A, then B, and then multiplying the
results. If we assume that the observables in each con-
text 〈AB〉, etc., are compatible, then NCHV denotes the
classical (noncontextual hidden-variable) bound, i.e., the
value obtained if each of the observables is assumed to
have a fixed value independently of which context it is
measured in. The bound QM denotes the maximal value
achievable in quantum mechanics [18]. The question now
is: suppose one experimentally observes 〈χCHSH〉 > 2. Is
this sufficient to conclude contextual behavior?

First, we need to make the notions of compatibility
and noncontextuality precise. Consider some observ-
ables O = {A,B,C, . . .}. Compatibility then means that
within any sequence of measurements composed of these
observables, the observed value does not depend on the
point at which it is measured within the sequence. That
is, for any sequence of compatible measurements C, the
observed value of O at the ith point in the sequence,
vi(O|C), does not depend on i, i.e., vi(O|C) = vj(O|C) for
all i and j. This formalizes the notion that measurement
of one observable does not influence the measurement of
any other observable.

Then, any set of compatible observables C is called
a context. A theory is called noncontextual, if for all
observables O and for all contexts C, C′ the observed value

FIG. 1: Schematic representation of a sequence of measure-

ments. Measurements A and B are performed sequentially

on a system whose (hidden-variable) state λ evolves stochas-

tically as indicated. Time runs left to right.

is independent of the context, i.e., v(O|C) = v(O|C′).
Note that through the definition of a context, the notion
of noncontextuality explicitly depends on compatibility.
To approach the question, we construct a counterex-

ample given by a simple model for noise-induced distur-
bances of the hidden-variable states. These hidden states
λi are assumed to completely specify all possible exper-
imental outcomes. In the present case, they can thus
be indexed by the dichotomic outcomes of measurements
of the observables O = {A,B,C,D}: a given state is
specified uniquely by a set of values v(O) ∈ {±1} for all
O ∈ O. For ease of notation, this set of values may be
interpreted as a binary number, whose decimal value is
used to index the state, i.e., λ2 = λ(++−+) denotes the
state that produces the measurement results A = +1,
B = +1, C = −1 and D = +1. The model can be
generalized by considering states that are convex combi-
nations of the value attributions λi, such that the most

general state can be written as a mixture
∑(2n)−1

i=0 piλi,

where
∑(2n)−1

i=0 pi = 1 and n denotes the number of ob-
servables.
The dynamics of this model now is such that after ev-

ery measurement, the system may randomly execute a
transition to a different state. Note that this transition
does not depend on which measurement was carried out.
This models the effect of noise introduced during mea-
surement, i.e., after a noisy interaction with the system,
further measurements will in general yield different re-
sults. We will now show that this is equivalent to the
introduction of compatibility violations in a realistic ex-
periment, and, crucially, that these violations may lead
to false positives in Kochen-Specker tests.
Consider the evolution depicted in Fig. 1: a measure-

ment of the observable A is made on a system in the state
λ1, consequently producing the result +1. Subsequently,
the observable B is measured, yielding −1. Then, the
system undergoes a state transition to λ3, and a subse-
quent measurement of A yields −1. Thus, compatibility
is violated.
Of course, this model cannot suffice to capture all
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quantum mechanical effects; in particular, for a priori

incompatible observables, it is easy to show that its be-
havior differs from that of quantum mechanics: take a
measurement sequence such as AAA. Without distur-
bances, both quantum mechanics and the model predict
that the same result will be repeated three times; allow-
ing for noise influences, there will be a small probabil-
ity of disagreement. Measuring ACA, however, since A

and C are not compatible, quantum mechanics predicts
that the result for the second measurement of A must be
random, while in our model, it will agree with the first
result up to possible probabilistic state changes (i.e., in
our model, the probability distribution from which the
value of A is drawn will not differ whether it is the third
measurement in the sequence AAA or in the sequence
ACA). However, Kochen-Specker tests are always car-
ried out within compatible sets of observables, and, since
we are (for the moment) only investigating what can be
concluded from such a test alone, this is not our concern
here. Our main point is that this simple model can in-
validate some ideas to make Kochen-Specker tests robust
against noise.
Let us now consider what happens during a measure-

ment of the left-hand side of Eq. (1) if violations of com-
patibility are present. Then, if we denote by Ai the ob-
served value of A, given that the hidden variable state is
λi, 〈χCHSH〉 can be calculated as follows:

〈χCHSH〉 =
∑

i,j

(AiBj +BiCj + CiDj −DiAj)pij

≡
∑

i,j

Kijpij , (2)

where the pij denote the probability that the evolution
of the system is λi → λj , that is, that the state during
the first measurement was λi, which transitioned to λj

before the second one, and we have introduced the quan-
tity Kij = AiBj +BiCj +CiDj −DiAj . The maximum
Kmax of the coefficients Kij provides the upper bound

〈χCHSH〉 =
∑

i,j

Kijpij ≤ max
ij

{Kij} ≡ K
max

. (3)

Each Kij represents the value of χCHSH, given the hid-
den variable evolution λi → λj . It is easy to check that
K0,8 = 4: λ0 = (++++) and λ8 = (−+++), and thus,
〈AB〉 = 〈BC〉 = 〈CD〉 = +1, while 〈DA〉 = −1. Hence,
a simple model that after each measurement changes the
system’s state from λ0 to λ8 will maximally violate the
CHSH inequality; if the change happens only with a cer-
tain probability p, obviously any value between 2 and 4
can be achieved.

It should be noted that despite the evolution of the
hidden variable, this model is noncontextual in the sense
that whether or not a state transition is effected does not
depend on the measured context. It thus seems surprising
that this model can violate the CHSH inequality, appar-
ently indicating contextual behavior. However, strictly

speaking, noncontextuality simply does not apply in this
case, as it is defined only under the assumption of perfect
compatibility.

III. CONNECTION WITH PREVIOUS WORKS

An approach to rein in the effects of compatibility vi-
olations was proposed in Ref. [13]. There, several classes
of error terms were proposed, such that additional mea-
surements may be performed in order to quantify the
degree of failure of a priori compatible observables to
be compatible in the actual experiment, i.e., the degree
of influence a measurement of A has on the compati-
ble measurement B, for example. We will concentrate,
for the moment, on the first class of error terms from
Ref. [13], which are those that have been experimentally
implemented.

Based on an assumption of noise cumulation, that is,
an assumption that additional measurements always lead
to additional noise and thus a worse violation of compat-
ibility, the inequality

〈χCHSH〉 − p
err[BAB]− p

err[CBC]

−p
err[DCD]− p

err[ADA] ≤ 2, (4)

holds [13]. Here for instance perr[BAB] is the probability
that the second measurement of B in the sequence BAB

disagrees with the first one.
However, it is clear that the model we discuss does not

obey the assumption of cumulative noise: for an evolu-
tion such as λ0 → λ4 → λ0, clearly both measurements
of B in the sequence BAB agree, but if B were measured
in the second place of the sequence, then it would have
yielded a value opposite to the first. Thus, the model is
not necessarily constrained by Inequality (4); and in fact,
since the error terms all vanish for such an evolution, it
is clear that the model can violate it.

Alternatively, it may be noted that while the original
CHSH-inequality is only concerned with measurement
sequences of length 2, the error terms contain only se-
quences of length 3, and thus, can only provide informa-
tion about the system’s behavior during such sequences.
This criticism holds for the other two classes of error
terms in Ref. [13] as well.

IV. MODIFIED INEQUALITIES

However, another approach, which does not need any
additional measurements or further assumptions, is pos-
sible. This amounts to essentially applying the ideas of
Leggett and Garg to contextuality inequalities. Rather
than employing the original inequalities proposed in
Ref. [5], it is convenient for our purposes to use a
slightly different formulation. Consider two different
measurements C and C ′, performed at two points in
time. Then, C(C + C ′) + C ′(C − C ′) = ±2, and thus
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A = σz ⊗ 1 B = 1⊗ σz C = σz ⊗ σz

a = 1⊗ σx b = σx ⊗ 1 c = σx ⊗ σx

α = σz ⊗ σx β = σx ⊗ σz γ = σy ⊗ σy

TABLE I: The Peres-Mermin square, with the Pauli matrices
σi, and the 2 × 2 identity matrix 1. The observables in all
rows and columns commute, and the product of all rows and
the first two columns is equal to 1, while for the last column,
Ccγ = −1.

〈C ′C〉 + 〈CC〉 + 〈CC ′〉 − 〈C ′C ′〉 ≤ 2, where 〈CC ′〉 de-
notes the correlation between C, measured at t1, and C ′,
measured at t2.

We can now impose a similar time-ordering of observ-
ables on Eq. (1), to get

〈χCHSH〉 = 〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉 ≤ 2. (5)

It is not hard to see that for Eq. (5), Kij ≤ 2 for all
(i, j): if the first three terms are equal to +1, the fourth is
necessarily equal to +1, as well. Hence, our model cannot
violate Inequality (5), despite the violation of compatibil-
ity. Since in the case of a trivial evolution of the hidden
variables, i.e. an evolution that leaves the state invariant,
we recover the usual notion of (sequential) noncontextu-
ality, an experimental test of Eq. (5) constitutes a test of
quantum contextuality robust against the compatibility
loophole.

It should be noted that the CHSH-inequality is not
the only one that can be modified to hold in the case
of compatibility violations: another important inequality
proposed in Ref. [9] is based on the Peres-Mermin square
([19]; see Table I). Using the same reasoning as in the
CHSH-case, the inequality

〈χPM〉 = 〈ABC〉+ 〈cab〉+ 〈βγα〉
+ 〈Aaα〉+ 〈βBb〉 − 〈cγC〉 ≤ 4 (6)

holds also in the case of imperfect compatibility between
observables. In quantum mechanics, a value of 〈χPM〉 = 6
can be reached. Again, it is here the ordering of the mea-
surement sequences that matters: the original inequality
proposed in Ref. [9] followed the ordering indicated in
Table I; but in this form, it is not hard to see that the
inequality can be violated easily by our model. Inter-
estingly, the ordering proposed here is also useful if the
Mermin-Peres inequality should be used for estimating
the dimension of a quantum system [20].

The importance of this scenario is that this inequal-
ity is state-independent, that is, one does not require a
special quantum state for the violation (as is the case
for the CHSH-inequality). Furthermore, an experiment
using sequential measurements on trapped ions already
implemented this scenario by measuring the observables
in Table I in all possible permutations [14]. This ex-
periment focused on the violation of the inequality as
originally proposed in Ref. [9], and using this data, the
observed value for Eq. (6) is 〈χPM〉 = 5.35(4).

Not every noncontextuality inequality can be modi-
fied this straightforwardly, though. For example, the
Klyachko-Can-Binicioğlu-Shumovsky inequality [10]

〈χKCBS〉 =〈AB〉+ 〈BC〉+ 〈CD〉

+ 〈DE〉+ 〈EA〉
NCHV

≥ −3
QM

≥ 5− 4
√
5, (7)

which exhibits a quantum violation even for a sin-
gle qutrit system, as demonstrated experimentally in
Ref. [21], cannot be rearranged appropriately. Never-
theless, our approach can be generalized: the modified
inequality

〈AB〉+ 〈CB〉+ 〈CD〉+ 〈ED〉+ 〈EA〉 − 〈AA〉
NCHV

≥ −4
QM

≥ 4− 4
√
5 (8)

holds for any noncontextual hidden-variable evolution.
The reason for this is that it enforces the ordering con-
ditions as in Eq. (5): to maximize the left hand side of
Eq. (8), for instance Ai must equal Ej , as must Aj ; how-
ever, then Ai = Aj , and thus, 〈AA〉 = 1. This shows that
even in the case of a single qutrit a Kochen-Specker test
ruling out our model can be undertaken. However, one
should note that due to this modification, the relative
quantum violation shrinks, since the absolute violation
stays the same, while the absolute value of the classical
expectation increases. Finally, it should be noted that a
similar inequality like Eq. (8) has already been used in
Ref. [21] in order to compensate for the fact that in this
setup the observable A was implemented in two different
ways.
In fact, a recently proposed state-independent inequal-

ity violated by a single qutrit system [22] can be treated
in the same way. This inequality features 13 observables
{A1, . . . , A13}, and the form that yields the maximum
quantum violation is [23, 24]

∑

i

Γi〈Ai〉+
∑

ij

Γij〈Ai
A

j〉 ≤ 16, (9)

where the coefficients are as follows: Γi = 1 for i ∈
{4, 7, 10, . . . , 13}, Γi = 2 for i ∈ {1, 5, 6, 8, 9}, and Γi = 3
for i ∈ {2, 3}; Γij = −1 for (i, j) ∈ {(1, 2), (1, 3), (1, 4),
(1, 7), (4, 10), (8, 10), (9, 10), (5, 11), (7, 11), (9, 11),
(6, 12), (7, 12), (8, 12), (4, 13), (5, 13), (6, 13)}, Γij = −2
for (i, j) ∈ {(2, 3), (2, 5), (2, 8), (3, 6), (3, 9), (5, 8), (6, 9)},
and Γij = 0 else. By checking all possible hidden variable
evolutions one verifies that the modified inequality [25]

∑

i

Γi〈Ai〉+
∑

ij

Γij〈Ai
A

j〉+ 4
∑

i

〈Ai
A

i〉 ≤ 68 (10)

cannot be violated by noncontextually evolving models.
However, since the maximum quantum value in this case
is only 69 + 1

3 , the relative violation is reduced to 1
51 ≈

1.96%, compared to originally 1
12 ≈ 8.3%.
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V. CONCLUSION

We have provided a novel approach to the compatibil-
ity problem in Kochen-Specker experiments. Using the
idea of time-ordering, as first proposed by Leggett and
Garg, we have derived new inequalities violated by quan-
tum mechanics even in the case of imperfectly compatible
measurements. This shows that with a careful ordering
of the measurements classical models can be ruled out,
which cannot be excluded with existing approaches [13].
Nevertheless, we are not claiming that our modified in-

equalities allow a test of the Kochen-Specker theorem free
from the compatibility loophole. Our results, however,
show that with a simple reordering of the measurements
a significantly larger class of hidden-variable models can
be ruled out.
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Sequential measurements on a single particle play an important role in fundamental tests of
quantum mechanics. We provide a general method to analyze temporal quantum correlations,
which allows us to compute the maximal correlations for sequential measurements in quantum
mechanics. As an application, we present the full characterization of temporal correlations in the
simplest Leggett-Garg scenario and in the sequential measurement scenario associated with the most
fundamental proof of the Kochen-Specker theorem.
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Introduction.—The physics of microscopic systems is
governed by the laws of quantum mechanics and exhibits
many features that are absent in the classical world. The
best-known result showing such a difference is due to
Bell [1]. The assumptions of realism and locality lead
to bounds on the correlations—the Bell inequalities, and
these bounds are violated in quantum mechanics. In-
terestingly, this quantum violation is limited for many
Bell inequalities and does not reach the maximal possi-
ble value. For instance, the Bell inequality derived by
Clauser, Horne, Shimony, and Holt (CHSH) bounds the
correlation [2]

B = 〈A1⊗B1〉+ 〈A1⊗B2〉+ 〈A2⊗B1〉−〈A2⊗B2〉, (1)

where Ai and Bj are measurements on two different par-
ticles. On the one hand, local realistic models obey the
CHSH inequality B ≤ 2, which is violated in quantum
mechanics. On the other hand, the maximal quantum
value is upper bounded by B ≤ 2

√
2, a result known as

Tsirelson’s bound [3]. Whereas this bound holds within
quantum mechanics, it has turned out that hypothetical
theories that reach the algebraic maximum B = 4 with-
out allowing faster-than-light communication are possi-
ble [4]. This raises the question of whether the bounded
quantum value can be derived on physical grounds from
fundamental principles. Partial results are available, and
principles have been suggested that bound the correla-
tions: in a world where maximal correlations are ob-
served, the communication complexity is trivial [5], a
principle established as information causality is violated
[6], and there exists no reversible dynamics [7].
The question of how and why quantum correlations

are fundamentally limited has been discussed mainly in
the scenario of bipartite and multipartite measurements.
What happens, however, if we shift the attention from
spatially separated measurements to temporally ordered
measurements? There is no need to measure on distinct
systems as in Eq. (1), but rather, we may perform se-
quential measurements on the same system. Then, an
elementary property of quantum mechanics becomes im-
portant: the measurement changes the state of the sys-

tem. In fact, this allows us to temporally “transmit” a
certain amount of information [8], and one would expect
that the correlations in the temporal case can be larger
than in the spatial situation.

We stress that sequential measurements also have been
considered in the analysis of the question how quan-
tum and classical mechanics are different, the most well-
established results here are quantum contextuality (the
Kochen-Specker theorem [9]) and macrorealism (Leggett-
Garg inequalities [10]); cf. Fig. 1. The research in this
fields has triggered experiments involving sequential mea-
surements. For demonstrating such a contradiction be-
tween classical and quantum physics, e.g., the correlation

S5 =〈A1A2〉seq + 〈A2A3〉seq + 〈A3A4〉seq + 〈A4A5〉seq
− 〈A5A1〉seq (2)

has been considered [11, 12]. Here, 〈AiAj〉seq denotes a
sequential expectation value that is the average of the
product of the value of the observables Ai and Aj when
first Ai is measured, and afterwards Aj . One can show
that for macrorealistic theories as well as for noncontex-
tual models the bound S5 ≤ 3 holds, but in quantum
mechanics, this can be violated.

Here however, we are rather interested in the funda-
mental bounds on the temporal quantum correlations,
with no assumption about the compatibility of the ob-
servables. Special cases of this problem have been dis-
cussed before: for Leggett-Garg inequalities, maximal
values for two-level systems have been derived [11, 13],
and temporal inequalities similar to the CHSH inequality
have been discussed [8, 14].

We provide a method that allows us to compute the
maximal achievable quantum value for an arbitrary in-
equality and thus we solve the problem of bounding
temporal quantum correlations. First, we will discuss
a simple method, which can be used for expressions as
in Eq. (2), where only sequences of two measurements
are considered. Then, we introduce a general method
which can be used for arbitrary sequential measurements,
resulting in a complete characterization of the possible
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This bound holds for macrorealistic models, and it has
been shown that in quantum mechanics values up to
S = 3/2 can be observed [10, 11, 13]. Our methods
allow us not only to prove that this value is optimal for
any dimension and any measurement, but also to, for
instance, determine all values in the three-dimensional
space of temporal correlations 〈M(ti)M(tj)〉, which can
originate from quantum mechanics. The detailed descrip-
tion is given in Fig. 2, and the calculations are given in
the Appendix A1.

Second, we consider generalizations of the Eq. (2) with
a larger number of measurements, known as N -cycle in-
equality [20, 21],

SN =

N−2∑

i=0

〈AiAi+1〉seq − 〈AN−1A0〉seq. (10)

For this case, everything can be solved analytically (see
Appendix A2) leading to the bound

SN ≤ N cos
(
π

N

)
, (11)

which can be reached by suitably chosen measurements.
This value has already occurred in the literature [11, 19],
but only qubits have been considered. Our proof shows
that it is valid in arbitrary dimension. Note that the fact
that the maximal value is obtained on a qubit system is
not trivial, although the measurements are dichotomic.
For Kochen-Specker inequalities with dichotomic mea-
surements examples are known, where the maximum
value cannot be attained in a two-dimensional system
[19] and also for Bell inequalities this has been observed
[26, 27].

As a third application, we consider the noncontextu-
ality scenario recently discovered by S. Yu and C. H.
Oh [28]. There, thirteen measurements on a three-
dimensional system are considered, and a noncontextu-
ality inequality is constructed, which is violated by any
quantum state. It has been shown that this scenario is
the simplest situation where state-independent contextu-
ality can be observed [29], so it is of fundamental impor-
tance. We can directly apply our method to the origi-
nal inequality by Yu and Oh, as well as recent improve-
ments [30] and compute the corresponding Tsirelson-like
bounds. We recall that our results are not directly related
to the phenomenon of quantum contextuality, since no
compatibiliy of the measurements is assumed, but they
show the effectiveness of our method even on complex
scenarios, namely, inequalities containing 37 or 41 terms,
that involve sequential measurements. Our results are
summarized in Table 1.

Another class of inequalities is given by the guess-your-
neighbor’s-input inequalities [31], which if viewed as mul-
tipartite inequalities, show no quantum violation but a
violation with the use of postquantum no-signalling re-
sources. We calculate the sequential bound for the case of

Ineq. NCHV State-independent Algebraic Sequential

bound quantum value maximum bound

Yu-Oh 16 50/3 ≈ 16.67 50 17.794

Opt2 16 52/3 ≈ 17.33 52 20.287

Opt3 25 83/3 ≈ 27.67 65 32.791

TABLE I. Bounds on the quantum correlations for the
Kochen-Specker inequalities in the most basic scenario. Three
inequalities were investigated: First, the original inequal-
ity proposed in Ref. [28] and the optimal inequalities from
Ref. [30] with measurement sequences of length two (Opt2)
and length three (Opt3). For each inequality, the follow-
ing numbers are given: the maximum value for noncontex-
tual hidden variable (NCHV) models, the state-independent
quantum violation in three-dimensional systems (obtained in
Refs. [28, 30]), the algebraic maximum and the maximal value
that can be attained in quantum mechanics for the sequential
measurements. The latter bound is higher than the state in-
dependent quantum value, since the observables do not have
to obey the compatibility relations occurring in the Kochen-
Specker theorem. Notice that the sequential bound is ob-
tained as a maximization over the set of possible observables
and states, thus it is in general state-dependent. Interestingly,
in all cases the maximal quantum values are significantly be-
low the algebraic maximum.

measurement sequences of length three, instead of mea-
surement on three parties. We consider

P (000|000) + P (110|011) + P (011|101)
+P (101|110) ≤ ΩC,Q ≤ ΩS ≤ ΩNS ,

(12)

with the notation P (r1, r2, r3|s1, s2, s3) as before, and
possible results and settings ri ∈ {0, 1} and si ∈ {0, 1}.
We find that

ΩS ≈ 1.0225, (13)

while it is known that ΩC,Q = 1 and ΩNS = 4

3
, where

the indices C,Q, S,NS label, respectively, the classi-
cal, quantum, sequential and no-signalling bounds. So,
in this case, the bound for sequential measurements is
higher than the bound for spatially separated measure-
ments. This also highlights the greater generality of our
method in comparison with the results of Ref. [8]: there,
only temporal inequalities with sequences of length two
have been considered, where in addition the measure-
ments can be split in two separate groups. In this case
it turned out that the bounds were always reached with
commuting observables. Our examples show that this is
usually not the case, when longer measurement sequences
are considered.
Discussion and conclusions.—For interpreting our re-

sults, let us note that our scenario is more general
than the scenarios considered by Leggett and Garg and
Kochen and Specker. Leggett and Garg consider a special
time evolution ̺(t) = U(t)̺(0)U †(t), which is mapped in
the Heisenberg picture onto the observables. In our case,
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We show that the phenomenon of quantum contextuality can be used to certify lower bounds on
the dimension accessed by the measurement devices. To prove this, we derive bounds for different
dimensions and scenarios of the simplest noncontextuality inequalities. The resulting dimension
witnesses work independently of the prepared quantum state. Our constructions are robust against
noise and imperfections, and we show that a recent experiment can be viewed as an implementation
of a state-independent quantum dimension witness.

PACS numbers: 03.65.Ta, 03.65.Ud

I. INTRODUCTION

The recent progress in the experimental control and
manipulation of physical systems at the quantum level
opens new possibilities (e.g., quantum communication,
computation, and simulation), but, at the same time,
demands the development of novel theoretical tools of
analysis. There are already tools which allow us to rec-
ognize quantum entanglement and certify the usefulness
of quantum states for quantum information processing
tasks [1, 2]. However, on a more fundamental level, there
are still several problems which have to be addressed.
For example, how can one efficiently test whether mea-
surements actually access all the desired energy levels
of an ion? How to certify that the different paths of
photons in an interferometer can be used to simulate a
given multi-dimensional quantum system? Similar ques-
tions arise in the analysis of experiments with orbital an-
gular momentum, where high-dimensional entanglement
can be produced [3, 4], or in experiments with electron
spins at nitrogen-vacancy centers in diamond, where the
quantumness of the measurements should be certified [5].
The challenge is to provide lower bounds on the di-

mension of a quantum system only from the statistics
of measurements performed on it. More precisely, one
certifies lower bounds on the dimension of the underly-
ing Hilbert space, where the measurement operators act
on. Such bounds can be viewed as lower bounds on the
complexity and the number of levels accessed by the mea-
surement devices: If the measurement operators act non-
trivially only on a small subspace, then all measurements
results can be modeled by using a low-dimensional quan-
tum system only. Note that this is not directly related
to the rank of a density matrix. In fact, a pure quan-
tum state acting on a one-dimensional subspace only can
still give rise to measurement results, which can only be
explained assuming a higher-dimensional Hilbert space.
The problem of estimating the Hilbert space dimension

has been considered in different scenarios, and slightly
different notions of dimension were involved. Brunner
and coworkers introduced the concept of quantum “di-

mension witnesses” by providing lower bounds on the di-
mension of composite systems from the violation of Bell
inequalities [6, 7]. The nonlocal properties of the correla-
tions produced are clearly the resource used for this task.
As a consequence, even if the experimenter is able to ac-
cess and manipulate many levels of her systems locally,
but she is not able to entangle those levels, the above test
fails to certify such a dimension. Such a task can there-
fore be interpreted as a test of the type of entanglement
and correlations produced, namely, how many levels or
degrees of freedom the experimenter is able to entangle.
In a complementary scenario, several different states of

a single particle are prepared and different measurements
are carried out [8–10]. This approach has also recently
been implemented using photons [11, 12]. In this situa-
tion, the dimension of the system can be interpreted as
the dimension of the set of states the experimenter is able
to prepare.
As a third possibility, also the continuous time evolu-

tion can be used to bound the dimension of a quantum
system [13]. In this case, the relevant notion of dimen-
sion is that of the set of states generated by the dynamical
evolution of the system.
In this paper we focus on sequential measurements on

a single system, a type of measurements used in tests of
quantum contextuality, and we show how they can be
used for bounding the dimension of quantum systems.
Quantum contextuality is a genuine quantum effect lead-
ing to the Kochen-Specker theorem, which states that
quantum mechanics is in contradiction to non-contextual
hidden variable (NCHV) models [14–18]. In fact, already
in the first formulation of the theorem the dimension
plays a central role [14].
We derive bounds for the several important noncon-

textuality (NC) inequalities for different dimensions and
scenarios. The experimental violation of these bounds
automatically provides a lower bound on the dimension
of the system, showing that NC inequalities can indeed
be used as dimension witnesses. Remarkably, contextual-
ity can be used as a resource for bounding the dimension
of quantum systems in a state-independent way.
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This illustrates clearly the difference with the exist-
ing schemes: Dimension witnesses derived according to
Refs. [9, 10] certify the minimum classical or quantum
dimension spanned by a set of preparations. They distin-
guish between classical and quantum dimension d, but, in
general, not between quantum dimension d and classical
dimension d+1. They require at least d+1 preparations
to certify a dimension d. On the other side, dimension
witnesses based on Bell’s theorem or contextuality cer-
tify the minimum quantum dimension accessed by the
measurement devices acting on a system prepared in the
a single state. Contrary to the Bell scenario [6, 7], in
our approach the initial state and its nonlocal properties
play no role and the result of our test can directly be
interpreted as the minimal number of levels accessed and
manipulated by the measurement apparatus.
The paper is organized as follows. In Sec. I, we

discuss the case of state-dependent noncontextuality in-
equalities, specifically, Klyachko, Can, Binicioğlu, and
Shumovsky (KCBS) inequality [19]. In Sec. II, we
discuss what happens when the sequences of measure-
ments contain non-compatible measurements. In Sec. IV
and Sec. V, we apply the same analysis to the case of
state-independent noncontextuality inequalities, specifi-
cally, the Peres-Mermin (PM) inequality [20–22]. In Sec.
VI, we discuss the case of imperfect measurements, then
in Sec. VII we show how a recent experimental test of
contextuality can be viewed as an implementation of our
dimension witness.

II. THE KCBS INEQUALITY

We first turn to the state-dependent case. The simplest
system showing quantum contextuality is a quantum sys-
tem of dimension three [14]. The simplest NC inequality
in three dimensions is the one introduced by Klyachko,
Can, Binicioğlu, and Shumovsky (KCBS) [19]. For that,
one considers

〈χKCBS〉 = 〈AB〉+ 〈BC〉+ 〈CD〉+ 〈DE〉+ 〈EA〉, (1)

where A,B,C,D, and E are measurements with out-
comes−1 and 1, and the measurements in the same mean
value 〈. . .〉 are compatible [23], i.e., are represented in
quantum mechanics by commuting operators. The mean
value itself is defined via a sequential measurement: For
determining 〈AB〉, one first measures A and then B on
the same system, multiplies the two results, and finally
averages over many repetitions of the experiment.
The KCBS inequality states that

〈χKCBS〉
NCHV

≥ −3, (2)

where the notation “
NCHV

≥ −3” indicates that −3 is the
minimum value for any NCHV theory. Here, noncontex-
tuality means that the theory assigns to any observable
(say, B) a value independent of which other compatible
observable (here, A or C) is measured jointly with it.

In quantum mechanics, a value of 〈χKCBS〉 = 5−4
√
5 ≈

−3.94 can be reached on a three-dimensional system, if
the observables and the initial state are appropriately
chosen. This quantum violation of the NCHV bound does
not increase in higher-dimensional systems [18, 24], and
the violation of the KCBS inequality has been observed
in recent experiments with photons [25, 26].
Given the fact that quantum contextuality requires

a three-dimensional Hilbert space, it is natural to ask
whether a violation of Eq. (2) implies already that the
system is not two-dimensional. The following observation
shows that this is the case:
Observation 1. Consider the KCBS inequality where

the measurements act on a two-dimensional quantum sys-
tem and are commuting, i.e., [A,B] = [B,C] = [C,D] =
[D,E] = [E,A] = 0. Then, the classical bound holds:

〈χKCBS〉
2D,com.

≥ −3. (3)

Proof of Observation 1. First, if two observables A

and B are compatible, then |〈A〉 ± 〈AB〉| ≤ 1 ± 〈B〉.
This follows from the fact that A and B have common
eigenspaces and the relation holds separately on each
eigenspace. Second, in two dimensions, if [A,B] = 0 =
[B,C], then either B = ±11 or [A,C] = 0. The reason
is that, if B is not the identity, then it has two one-
dimensional eigenspaces. These are shared with A and
C, so A and C must be simultaneously diagonalizable.
Considering the KCBS operator χKCBS, the claim is

trivial if A, . . . , E are all compatible, because then the
relation holds separately on each eigenspace. It is only
possible that not all of them commute if there are two
groups in the sequence {A,B,C,D,E} of operators sep-
arated by identity operators. Without loss of generality,
we assume that the groups of commuting operators are
{E,A} and {C} so thatB = b11 = ±11 andD = d11 = ±11.
This gives

〈χKCBS〉 = b〈A〉+ b〈C〉+ d〈C〉+ d
(
〈E〉+ d〈EA〉

)

≥ b〈A〉+ b〈C〉+ d〈C〉 − 1− d〈A〉
= (b− d)〈A〉 + (b+ d)〈C〉 − 1 ≥ −3 (4)

and proves the claim. In this argumentation, setting ob-
servables proportional to the identity does not change the
threshold, but in general it is important to consider this
case, as this often results in higher values. �

It should be added that Observation 1 can also be
proved using a different strategy: Given two observables
on a two-dimensional system, one can directly see that
if they commute, then either one of them is proportional
to the identity, or their product is proportional to the
identity. In both cases, one has a classical assignment
for some terms in the KCBS inequality and then one can
check by exhaustive search that the classical bound holds.
Details are given in the Appendix A1.
Furthermore, Observation 1 can be extended to gen-

eralizations of the KCBS inequality with more than five
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observables [24]: For that, one considers

〈χN 〉 =
N−1∑

i=1

〈AiAi+1〉+ s〈ANA1〉, (5)

where s = +1 if N is odd and s = −1 if N is even. For
this expression, the classical bound for NCHV theories
is given by 〈χN 〉 ≥ −(N − 2). In fact, the experiment in
Ref. [25] can also be viewed as measurement of 〈χ6〉.
The discussion of the possible mean values 〈χN 〉 in

quantum mechanics differs for even and odd N . If N is
odd, the maximal possible quantum mechanical value is
〈χN 〉 = ΩN ≡ −[3N cos(π/N) − N ]/[1 + cos(π/N)] and
this value can already be attained in a three-dimensional
system [18, 24]. The proof of Observation 1 can be gen-
eralized in this case, implying that for two-dimensional
systems the classical bound 〈χN 〉 ≥ −(N − 2) holds. So,
for oddN , the generalized KCBS inequalities can be used
for testing the quantum dimension.
If N is even, the scenario becomes richer: First, quan-

tum mechanics allows to obtain values of 〈χN 〉 = ΩN ≡
−N cos(π/N), but this time this value requires a four-
dimensional system [24]. For two-dimensional quantum
systems, the classical bound 〈χN 〉 ≥ −(N−2) holds. For
three-dimensional systems, one can show that if the ob-
servables Ai in a joint context are different (Ai 6= ±Ai+1)
and not proportional to the identity, then still the classi-
cal bound holds (for details see Appendix A2). However,
if two observables are the same, e.g. A1 = −A2, then
〈A1A2〉 = −1 and 〈χN 〉 = −1+ 〈χN−1〉. In summary, for
even N , we have the following hierarchy of bounds

〈χN 〉
2D,com.

≥ −(N − 2)
3D,com.

≥ −1 + ΩN−1

4D,com.

≥ ΩN .

(6)

Here, the notation
2D,com.

≥ etc. means that this bound
holds for commuting observables in two dimensions. All
these bounds are sharp. This shows that extended KCBS
inequalities are even more sensitive to the dimension than
the original inequality.

III. THE KCBS INEQUALITY WITH

INCOMPATIBLE OBSERVABLES

In order to apply Observation 1 the observables must
be compatible. Since this condition is not easy to guaran-
tee in experiments [31], we should ask whether it is pos-
sible to obtain a two-dimensional bound for the KCBS
inequality when the observables are not necessarily com-
patible. We can state:
Observation 2. If the observables A, . . . , E are di-

chotomic observables but not necessarily commuting,
then, for any two-dimensional quantum system,

〈χKCBS〉
2D

≥ −5

4
(1 +

√
5) ≈ −4.04. (7)

This bound is sharp and can be attained for suitably
chosen measurements.

The strategy of proving this bound is the following: If
the observables are not proportional to the identity, one
can write A = |A+〉〈A+|−|A−〉〈A−| and B = |B+〉〈B+|−
|B−〉〈B−|, and express |A+〉〈A+| and |B+〉〈B+| in terms
of their Bloch vectors |a〉 and |b〉. Then, one finds that

〈AB〉 = 2|〈A+|B+〉|2 − 1 = 〈a|b〉. (8)

This property holds for all projective measurements on
two-dimensional systems and is, together with a general-
ization below [see Eq. (15)] a key idea for deriving dimen-
sion witnesses. Note that it implies that the sequential
mean value 〈AB〉 is independent of the initial quantum
state and also of the temporal order of the measurements
[27]. Eq. (8) allows us to transform the KCBS inequality
into a geometric inequality for three-dimensional Bloch
vectors. Additional details of the proof are given in Ap-
pendix A3.
Observation 2 shows that the bound for NCHV theo-

ries can be violated already by two-dimensional systems,
if the observables are incompatible. This demonstrates
that experiments, which aim at a violation of Eq. (2) also
have to test the compatibility of the measured observ-
ables, otherwise the violation can be explained without
contextuality.
It must be added that Observation 2 cannot be used

to witness the quantum dimension, since one can show
that Eq. (7) holds for all dimensions [32]. As we see
below, this difficulty can be surmounted by considering
NC inequalities in which quantum mechanics reaches the
algebraic maximum.

IV. THE PERES-MERMIN INEQUALITY

In order to derive the state-independent quantum di-
mension witnesses, let us consider the sequential mean
value [20],

〈χPM〉 =〈ABC〉+ 〈bca〉+ 〈γαβ〉+ 〈Aαa〉+ 〈bBβ〉
− 〈γcC〉, (9)

where the measurements in each of the six sequences are
compatible. Then, for NCHV theories the bound

〈χPM〉
NCHV

≤ 4 (10)

holds. In a four-dimensional quantum system, however,
one can take the following square of observables, known
as the Peres-Mermin square [21, 22]

A = σz ⊗ 11, B = 11⊗ σz, C = σz ⊗ σz ,

a = 11⊗ σx, b = σx ⊗ 11, c = σx ⊗ σx,

α = σz ⊗ σx, β = σx ⊗ σz , γ = σy ⊗ σy.

(11)

These observables lead for any quantum state to a value
of 〈χPM〉 = 6, demonstrating state-independent contex-
tuality. The quantum violation has been observed in sev-
eral recent experiments [28–30]. Note that the sequences
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in Eq. (9) are defined such that each observable occurs
either always in the first or always in the second or al-
ways in the third place of a measurement a sequence.
This difference to the standard version does not matter
at this point (since the observables in any row or column
commute), but it will become important below.
The PM inequality is of special interest for our program

since it is violated up to the algebraic maximum with
four-dimensional quantum systems and the violation is
state-independent. Therefore, this inequality is a good
candidate for dimension witnesses without assumptions
on the measurements. First, we can state:
Observation 3. If the measurements in the PM in-

equality are dichotomic observables on a two-dimensional
quantum system and if the measurements in each mean
value are commuting, then one cannot violate the classi-
cal bound,

〈χPM〉
2D, com.

≤ 4. (12)

If one considers the same situation on a three-dimensional
system, then the violation is bounded by

〈χPM〉
3D, com.

≤ 4(
√
5− 1) ≈ 4.94. (13)

These bounds are sharp.
The idea for proving this statement is the follow-

ing: If one considers the three commuting observables in
each mean value and assumes that they act on a three-
dimensional system, then three cases are possible: (a) one
of the three observables is proportional to the identity,
or (b) the product of two observables is proportional to
the identity, or (c) the product of all three observables is
proportional to the identity. One can directly show that
if case (c) occurs in some mean value, then the classical
bound 〈χPM〉 ≤ 4 holds. For the cases (a) and (b), one
can simplify the inequality and finds that it always re-
duces to a KCBS-type inequality, for which we discussed
already the maximal quantum values in different dimen-
sions [see Eq. 6]. Details are given in Appendix A4.

V. THE PM INEQUALITY WITH

INCOMPATIBLE OBSERVABLES

Let us now discuss the PM inequality, where the ob-
servables are not necessarily compatible. Our results al-
low us to obtain directly a bound:
Observation 4. Consider the PM operator in Eq. (9),

where the measurements are not necessarily commuting
projective measurements on a two-dimensional system.
Then we have

〈χPM〉
2D

≤ 3
√
3 ≈ 5.20. (14)

Proof. One can directly calculate as in the proof of Ob-
servation 2 that for sequences of three measurements on
a two-dimensional system

〈ABC〉 = 〈A〉〈BC〉 (15)

holds. Here, 〈A〉 = tr(̺A) is the usual expectation value,
and 〈BC〉 is the state-independent sequential expectation
value given in Eq. (8). With this, we can write:

〈χPM〉 =〈A〉(〈BC〉+ 〈αa〉) + 〈b〉(〈ca〉+ 〈Bβ〉)
+ 〈γ〉(〈αβ〉 − 〈cC〉). (16)

Clearly, this is maximal for some combination of 〈A〉 =
±1, 〈b〉 = ±1, and 〈γ〉 = ±1. But for any of these choices,
we arrive at an inequality that is discussed in Lemma 7
in Appendix A3. Note that due to Eq. (15) the order
of the measurements matters in the definition of 〈χPM〉
in Eq. (9). This motivates our choice; in fact, for some
other orders (e.g., 〈χ̃PM〉 = 〈ABC〉 + 〈bca〉 + 〈βγα〉 +
〈Aαa〉+ 〈βbB〉 − 〈γcC〉) Eq. (14) does not hold, and one

can reach 〈χ̃PM〉 = 1 +
√
9 + 6

√
3 ≈ 5.404. �

The question arises whether a high violation of the PM
inequality also implies that the system cannot be three-
dimensional and whether a similar bound as Eq. (14)
can be derived. While the computation of a bound is
not straightforward, a simple argument shows already
that measurements on a three-dimensional systems can-
not reach the algebraic maximum 〈χPM〉 = 6 for any
quantum state: Reaching the algebraic maximum im-
plies that 〈ABC〉 = 1. This implies that the value of C
is predetermined by the values of A and B and the value
A of determines the product BC. As this holds for any
quantum state, it directly follows that A,B,C (and all
the other observables in the PM square) are diagonal in
the same basis and commute, so the bound in Observa-
tion 3 holds. From continuity arguments it follows that
there must be a finite gap between the maximal value of
〈χPM〉 in three dimensions and the algebraic maximum.

VI. IMPERFECT MEASUREMENTS

In actual experimental implementations the measure-
ments may not be perfectly projective. It is therefore im-
portant to discuss the robustness of our method against
imperfections.
Notice that, since we are considering sequential mea-

surements, another possibility for maximal violation of
the above inequalities is the use of a classical device
with memory, able to keep track of the measurement per-
formed and adjust the outcomes of the subsequent mea-
surements accordingly in order to obtain perfect correla-
tions or anti-correlations. However, as proved in Ref. [27]
and also discussed in Ref. [32], such a classical device
cannot be simulated in quantum mechanics via projec-
tive measurements, more general positive operator valued
measures (POVMs) are necessary.
We therefore limit our analysis to some physically

motivated noise models. A noisy projective measure-
ment A may be modelled by a POVM with two ef-
fects of the type E+ = (1 − p)11/2 + p|A+〉〈A+| and
E− = (1−p)11/2+p|A−〉〈A−|. Then, the probabilities of
the POVM can be interpreted as coming from the follow-
ing procedure: With a probability of p one performs the
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projective measurement and with a probability of (1−p)
one assigns a random outcome. For this measurement
model, one can show that Observation 4 is still valid.
Details and a more general POVM are discussed in Ap-
pendix A5. We add that the proof strongly depends on
the chosen measurement order in 〈χPM〉 and that in any
case assumptions about the measurement are made, so
the dimension witnesses are not completely independent
of the measurement device.
The above discussion shows that it is extremely im-

portant to test the extent to which the measurements
are projective and whether they are compatible. This
can be achieved by performing additional tests. For in-
stance, one can measure observable A several times in
a sequence 〈AAA〉 to test whether the measurement is
indeed projective. In addition, one may measure the se-
quence 〈ABA〉 and compare the results of the two mea-
surements of A, to test whether A and B are compatible.
For NC inequalities it is known how this information can
be used to derive correction terms for the thresholds [31],
and similar methods can also be applied here.

VII. EXPERIMENTAL RESULTS

To stress the experimental relevance of our findings,
let us discuss a recent ion-trap experiment [28]. There,
the PM inequality has been measured with the aim to
demonstrate state-independent contextuality. For our
purpose, it is important that in this experiment also all
permutations of the terms in the PM inequality have
been measured. This allows also to evaluate our 〈χPM〉
with the order given in Eq. (9). Experimentally, a
value 〈χPM〉 = 5.36 ± 0.05 has been found. In view
of Observation 3, this shows that the data cannot be
explained by commuting projective measurements on a
three-dimensional system. Furthermore, Observation 4
and the discussion above prove that, even if the mea-
surements are noisy and noncommuting, the data cannot
come from a two-dimensional quantum system.

VIII. GENERALIZATIONS

Generalizations of our results to other inequalities
are straightforward: Consider a general noncontextual-
ity inequality invoking measurement sequences of length
two and three. For estimating the maximal value for
two-dimensional systems (as in Observations 2 and 4)
one transforms all sequential measurements via Eqs. (8)
and (15) into expressions with three-dimensional Bloch-
vectors, which can be estimated. Also noise robust-
ness for the discussed noise model can be proven, as
this follows also from the properties of the Bloch vec-
tors (cf. Proposition 12 in the Appendix). In addition,
if a statement as in Observation 3 is desired, one can
use the same ideas as the ones presented here, since
they rely on general properties of commuting observ-

ables in three-dimensional space. Consequently, our
methods allow to transform most of the known state-
independent NC inequalities (for instance, the ones pre-
sented in Refs. [20, 33–35]) into witnesses for the quan-
tum dimension.

IX. DISCUSSION AND CONCLUSION

We have shown that the two main noncontextuality
inequalities - the KCBS inequality (Observation 1) and
the Peres-Mermin inequality (Observation 3 and 4) - can
be used as dimension witnesses. In particular, Observa-
tion 4 shows that the the Peres-Mermin inequality can
be used to certify the dimension of a Hilbert space inde-
pendently of the state preparation and in a noise robust
way. Our methods allow the application of other inequal-
ities, showing that contextuality can be used as a resource
for dimension tests of quantum systems. Our tests are
state-independent, in contrast to the existing tests. This
can be advantageous in experimental implementations,
moreover it shows that one can bound the dimension of
quantum systems without using about the properties of
the quantum state. We hope that our results stimulate
further research to answer a central open question: For
which tasks in quantum information processing is quan-
tum contextuality a useful resource?

Acknowledgments

We thank Tobias Moroder and Christian Roos for
discussions. This work was supported by the BMBF
(Chist-Era network QUASAR), the EU (Marie Curie
CIG 293992/ENFOQI), the FQXi Fund (Silicon Valley
Community Foundation), the DFG, and the Project No.
FIS2011-29400 (Spain).

Appendix

A1: Alternative proof of Observation 1

For an alternative proof of Observation 1, we need the
following Lemma:
Lemma 5. If two dichotomic measurements on a two-

dimensional quantum system commute [Ai, Ai+1] = 0,
then either

(a) one of the observables is proportional to the iden-
tity, Ai = ±11 or Ai+1 = ±11 or,

(b) the product of the two observables is proportional
to the identity, AiAi+1 = ±11.

Proof of Lemma 5. This fact can easily be checked: the
observables Ai and Ai+1 are diagonal in the same basis
and the entries on the diagonal can only be ±1. Then,
only the two cases outlined above are possible. �
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Alternative proof of Observation 1. With the help of
Lemma 5 one can consider each term of the KCBS in-
equality and make there six possible replacements. For
instance, the term 〈AB〉 may be replaced by 〈AB〉 7→
±〈B〉 (if one sets A 7→ ±11) or 〈AB〉 7→ ±〈A〉 (if one sets
B 7→ ±11) or 〈AB〉 7→ ±1. This results in a finite set of
65 = 7776 possible replacements. Some of them are con-
tradictory and can be disregarded, e.g., if one sets B 7→ 11
from the term 〈AB〉 and C 7→ 11 from the term 〈CD〉,
then one cannot set 〈BC〉 7→ −1 anymore. For the re-
maining replacements, one can directly check with a com-
puter that the 〈χKCBS〉 reduces to the classical bound. �

A2: Detailed discussion of the generalized KCBS

inequalities

First, we prove the following statement:
Lemma 6. Consider the generalized KCBS operator

〈χN 〉 =
N−1∑

i=1

〈AiAi+1〉 − 〈ANA1〉 (17)

for N even, where the Ai are dichotomic observables on a
three-dimensional system, which are not proportional to
the identity. Furthermore, the commuting pairs should
not be equal, that is Ai 6= Ai+1. Then, the bound

〈χN 〉 ≥ −(N − 2) (18)

holds.
Proof of Lemma 6. From the conditions, it follows

that the observables have to be of the form Ai = ±(11 −
2|ai〉〈ai|) with 〈ai|ai+1〉 = 0. This implies that the se-
quential measurements can be rephrased via AiAi+1 =
±(11 − 2|ai〉〈ai| − 2|ai+1〉〈ai+1|). Let us first assume that
the signs in front of the Ai are alternating, that is,
Ai = +(11− 2|ai〉〈ai|) for odd i and Ai = −(11− 2|ai〉〈ai|)
for even i. Then, a direct calculation leads to

〈χN 〉 = −(N − 2) + 4〈
N−1∑

k=2

|ak〉〈ak|〉. (19)

From this, 〈χN 〉 ≥ −(N − 2) follows, since the operator
in the sum is positive semidefinite.
A general distribution of signs for the Ai results in

a certain distribution of signs for the AiAi+1. If I de-
notes the set of index pairs (k, k + 1), where AkAk+1 =
+(11 − 2|ak〉〈ak| − 2|ak+1〉〈ak+1|), then I has always an
odd number of elements. We can then write:

〈χN 〉 = −(N − 2) + 2(|I| − 1) + 4〈
N∑

k=1

αk|ak〉〈ak|〉 (20)

where αk = 1 if both (k, k + 1) /∈ I and (k − 1, k) /∈ I,
αk = 0 if either (k, k+1) ∈ I, (k−1, k) /∈ I or (k, k+1) /∈
I, (k − 1, k) ∈ I, and αk = −1 if both (k, k + 1) ∈ I and
(k − 1, k) ∈ I.

It remains to show that the last two terms are non-
negative. The main idea to prove this is to use the fact
that an operator like X = 11 − |ai〉〈ai| − |ai+1〉〈ai+1| is
positive semidefinite, since |ai〉 and |ai+1〉 are orthogonal.
More explicitly, let us first consider the case where the

index pairs in I are connected and distinguish different
cases for the number of elements in I. If |I| = 1, there are

no k with αk = −1, so 2(|I|−1)+4〈∑N

k=1 αk|ak〉〈ak|〉 ≥ 0.
If |I| = 2, then I = {(i − 1, i), (i, i + 1)} and there
is a single αi = −1. In this case, one has 2|I| +
4〈
∑N

k=1 αk|ak〉〈ak|〉 ≥ 0. This is not yet the desired
bound, but it will be useful later.

If |I| = 3, then I = {(i − 1, i), (i, i+ 1), (i + 1, i + 2)}
and we have αi = αi+1 = −1. But now, the fact that
X = 11 − |ai〉〈ai| − |ai+1〉〈ai+1| ≥ 0 directly implies that

2(|I| − 1) + 4〈∑N

k=1 αk|ak〉〈ak|〉 ≥ 0. If |I| = 4 there are
three αk = −1 and we can use X ≥ 0 two times, showing

that again 2|I| + 4〈∑N

k=1 αk|ak〉〈ak|〉 ≥ 0. All this can
be iterated, resulting in two different bounds, for |I| odd
and |I| even.
To complete the proof, we have to consider a general I

which does not necessarily form a single block. One can
then consider the different blocks and, since |I| is odd, at
least one of the blocks contains an odd number of index
pairs. Then, summing up the bound for the single blocks

leads to 2(|I| − 1) + 4〈∑N

k=1 αk|ak〉〈ak|〉 ≥ 0. �

Finally, in order to justify Eq. (6) in the main text
for the three-dimensional case, we have to discuss what
happens if one of the observables is proportional to the
identity. However, then the mean value 〈χN 〉 reduces to
inequalities which will be discussed later (see Lemma 9
in Appendix A4).

A3: Detailed proof of Observation 2

For computing the minimal value in two-dimensional
systems, we need the following Lemma. Note that the
resulting value has been reported before [36], so the main
task is to prove rigorously that this is indeed optimal.

Lemma 7. Let |ai〉 ∈ R3 be normalized real three-
dimensional vectors and define

χN =

N∑

i=1

〈ai|ai+1〉 for N odd, (21a)

χN = −〈a1|a2〉+
N∑

i=2

〈ai|ai+1〉 for N even. (21b)

Then we have

χN ≥ −N cos(
π

N
). (22)

Proof of Lemma 7. We write |ai〉 =
{cos(αi), sin(αi) cos(βi), sin(αi) sin(βi)} and then

128



7

we have

χN =
N∑

i=1

[±]
[
cos(αi) cos(αi+1)

+ cos(βi − βi+1) sin(αi) sin(αi+1)
]
, (23)

where the symbol [±] denotes the possibly changing sign
of the term with i = 1. Let us first explain why the
minimum of this expression can be obtained by setting all
the βi = 0.Without losing generality, we can assume that
|a1〉 points in the x-direction, i.e., α1 = 0 and sin(α1) =
0. Then, only N − 2 terms of the type sin(αi) sin(αi+1)
remain and all of them have a positive prefactor. For
given values of βi we can choose the signs of α2, . . . , αN−1

such that all these terms are negative, while the other
parts of the expression are not affected by this. Then,
it is clearly optimal to choose β2 = β3 = . . . = βN = 0.
This means that all the vectors lie in the x-y-plane.
Having set all βi = 0, the expression is simplified

to χN =
∑N

i=1[±] cos(αi − αi+1). We use the notation

δi = αi − αi+1 and minimize
∑N

i=1[±] cos(δi) under the

constraint
∑N

i=1 δi = 0. Using Lagrange multipliers, it
follows that [±] sin(δi) = λ for all i.
If N is odd, this means that we can express any δi as

δi = π/2 ± ϑ + 2πki with ϑ ≥ 0. From cos(π/2 + ϑ +
2πki) = − cos(π/2 − ϑ + 2πki), it follows that the sign
in front of the ϑ should be identical for all δi, otherwise,
the expression is not minimized. Let us first consider
the case that all signs a positive. From the condition
∑N

i=1 δi = 0, it follows that N(π/2) + Nϑ + 2πK = 0,

with K =
∑N

i=1 ki. Since we wish to minimize χN , the
angles δi should be as close as possible to π, which means
that |ϑ−π/2| should be minimal. This leads to the result
that one has to choose K = −(N ± 1)/2. Computing the
corresponding ϑ leads to ϑ = π/2 ± π/N, which results
in Eq. (22). If the signs in front of all ϑ are negative,
one can make a similar argument, but this time has to
minimize |δi + π| or |ϑ − 3π/2|. This leads to the same
solutions.
If N is even, one has for i = 2, . . . , N again δi = π/2±

ϑ+ 2πki and the first δ1 can be written as δ1 = −π/2±
ϑ + 2πk1. One can directly see that if the signs in front
of ϑ is positive (negative) for all i = 2, . . . , N it has to be
positive (negative) also for i = 1. A direct calculation as
before leads to ϑ = π/2 ± π/N and, again, to the same
bound of Eq. (22). �

Proof of Observation 2. Let us first assume that none
of the observables is proportional to the identity, and
consider a single sequential measurement 〈AB〉 of two
dichotomic noncommuting observables A = |A+〉〈A+| −
|A−〉〈A−| = PA

+ − PA
−

and B = |B+〉〈B+| − |B−〉〈B−| =
PB
+ − PB

−
. We can also express |A+〉〈A+| and |B+〉〈B+|

in terms of their Bloch vectors |a〉 and |b〉. Then, we have
that

〈AB〉 = 2|〈A+|B+〉|2 − 1 = 〈a|b〉. (24)

Note that this means that the mean value
〈AB〉 is independent of the initial quan-
tum state. To see this relation, we write
〈AB〉 = tr(PB

+ PA
+ ̺PA

+PB
+ ) − tr(PB

−
PA
+ ̺PA

+PB
−
) −

tr(PB
+ PA

−
̺PA

−
PB
+ ) + tr(PB

−
PA
−
̺PA

−
PB
−
). Us-

ing the fact that in a two-dimensional system
|〈A+|B+〉|2 = |〈A−|B−〉|2 and |〈A−|B+〉|2 = |〈A+|B−〉|2
holds, and tr(̺) = 1, this can directly be simplified to
the above expression. Using the above expression, we
can write 〈χKCBS〉 =

∑5
i=1〈ai|ai+1〉. Then, Lemma 7

proves the desired bound.
It remains to discuss the case where one or more ob-

servables in the KCBS inequality are proportional to the
identity. Let us first assume that only one observable,
say A1 is proportional to the identity. Then, if the Bloch
vector of ̺ is denoted by |r〉 a direct calculation shows
that the KCBS operator reads

〈χKCBS〉 = 〈r|a2〉+
4∑

i=2

〈ai|ai+1〉+ 〈a5|r〉, (25)

and Lemma 7 proves again the claim. If two observ-
ables Ai and Aj are proportional to the identity, the
same rewriting can be applied, if Ai and Aj do not oc-
cur jointly in one correlation term. This is the case if
j 6= i± 1. In the other case (say, A1 = 11 and A2 = −11),
one has 〈A1A2〉 = −1 and can rewrite

〈χKCBS〉 = −1− 〈r|a2〉+
4∑

i=3

〈ai|ai+1〉+ 〈a4|r〉, (26)

and Lemma 7 implies that 〈χKCBS〉 ≥ −4 cos(π/4)− 1 =

−2
√
2 − 1 > −5 cos(π/5) = −5(1 +

√
5)/4. If more

than two observables are proportional to the identity, the
bound can be proven similarly. �

A4: Proof of Observation 3

We need a whole sequence of Lemmata:
Lemma 8. If one has three dichotomic measurements

Ai, i = 1, 2, 3 on a three-dimensional quantum system
which commute pairwise [Ai, Aj ] = 0, then either

(a) one of the observables is proportional to the iden-
tity, Ai = ±11 for some i or,

(b) the product of two observables of the three observ-
ables is proportional to the identity, AiAj = ±11
for some pair i, j or,

(c) The product of all three observables is proportional
to the identity, A1A1A3 = ±11.

Note that these cases are not exclusive and that for a
triple of observables several of these cases may apply at
the same time.
Proof of Lemma 8. This can be proven in the same

way as Lemma 5, since all Ai are diagonal in the same
basis. �
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Lemma 9. For sequences of dichotomic measurements
the following inequalities hold:

ηN ≡ 〈A1〉+
N−1∑

i=1

〈AiAi+1〉 − 〈AN 〉 ≤ N − 1. (27)

Here, it is always assumed that two observables which
occur in the same sequence commute. Moreover, if we
define

ζN ≡
N∑

i=1

〈AiAi+1〉 − 〈ANA1〉, (28)

then we have

ζN ≤ N − 2 (29)

in two-dimensional systems, while for three-dimensional
systems.

ζ3 ≤ 1; ζ4 ≤ 2, (30)

ζ5 ≤
√
5(4 −

√
5), ζ6 ≤ 1 +

√
5(4−

√
5) = 4(

√
5− 1),

holds.
Proof of Lemma 9. If we consider ηN for N = 2 both

observables commute and the claim 〈A1〉 + 〈A1A2〉 −
〈A2〉 ≤ 1 is clear, as it holds for any eigenvector. The
bounds for general ηN follow by induction, where in each
step of the induction 〈ANAN+1〉 − 〈AN+1〉 ≤ 1 − 〈AN 〉
is used, but this is nothing but the bound for N = 2.
The bounds for ζN are just the ones derived for the

generalized KCBS inequalities, see Eq. (6) in the main
text and Appendix A2. �

Lemma 10. Consider the PM square with dichotomic
observables on a three-dimensional system, where for one
column and one row only the case (c) in Lemma 8 applies.
Then, one cannot violate the classical bound and one has
〈χPM〉 ≤ 4.
Proof of Lemma 10. Let us consider the case that the

condition holds for the first column and the first row,
the other cases are analogous. Then, none of the observ-
ables A,B,C, a, α is proportional to the identity since,
otherwise, case (a) in Lemma 8 would apply. These ob-
servables can all be written as

A = ±(11− 2|A〉〈A|), (31)

with some vector |A〉, and the vector |A〉 characterizes
the observable A up to the total sign uniquely. In this
notation, two observables X and Y commute if and only
if the corresponding vectors |X〉 and |Y 〉 are the same or
orthogonal. For our situation, it follows that the vectors
|A〉, |B〉, and |C〉 form an orthonormal basis of the three-
dimensional space, since if two of them were the same,
then for the first row also the case (b) in Lemma 8 would
apply. Similarly, the vectors |A〉, |a〉 and |α〉 form another
orthonormal basis of the three-dimensional space. We
can distinguish two cases:

Case 1: The vector |B〉 is neither orthogonal nor par-
allel to |a〉. From this, it follows that |B〉 is also neither
orthogonal nor parallel to |α〉 and similarly, |C〉 is neither
orthogonal nor parallel to |a〉 and |α〉 and vice versa.
Let us consider the observable b in the PM square.

This observable can be proportional to the identity, but
if this is not the case, the corresponding vector |b〉 has
to be parallel or orthogonal to |B〉 and |a〉. Since |B〉
and |a〉 are neither orthogonal nor parallel, it has to be
orthogonal to both, which means that it is parallel to
|A〉. Consequently, the observable b is either proportional
to the identity or proportional to A. Similarly, all the
other observables β, c, and γ are either proportional to
the identity or proportional to A.
Let us now consider the expectation value of the PM

operator 〈χPM〉 for some quantum state ̺. We denote
this expectation value as 〈χPM〉̺ in order to stress the
dependence on ̺. The observableA can be written asA =
P+ − P−, where P+ and P− are the projectors onto the
positive or negative eigenspace. One of these projectors is
one-dimensional and equals |A〉〈A|, the other other one
is two-dimensional. For definiteness, let us take P+ =
|A〉〈A| and P− = 11− |A〉〈A|.
Instead of ̺, we may consider the depolarized state

σ = p+̺+ + p−̺−, with ̺± = P±̺P±/p± and p± =
tr(P±̺P±). Our first claim is that, in our situation,

〈χPM〉̺=〈χPM〉σ = p+〈χPM〉̺+ + p−〈χPM〉̺−
. (32)

It suffices to prove this for all rows and columns sep-
arately. Since the observables in each column or row
commute, we can first measure observables which might
be proportional to A. For the first column and the first
row the statement is clear: We first measure A and the
result is the same for ̺ and σ. After the measurement
of A, however, the state ̺ is projected either onto ̺+

or ̺−. Therefore, for the following measurements it does
not matter whether the initial state was ̺ or σ. As an
example for the other rows and columns, we consider the
second column. Here, we can first measure β and then b

and finally B. If β or b are proportional to A, then the
statement is again clear. If both β and b are proportional
to the identity, then the measurement of 〈βbB〉̺ equals
±〈B〉̺. Then, however, one can directly calculate that
〈B〉̺ = 〈B〉σ, since B and A commute.
Having established the validity of Eq. (32), we proceed

by showing that for for each term 〈χPM〉̺+ and 〈χPM〉̺−

separately the classical bound holds. For 〈χPM〉̺+ this is
clear: Since P+ = |A〉〈A|, we have that ̺+ = |A〉〈A| and
|A〉 is an eigenvector of all observables occurring in the
PM square. Therefore, the results obtained in 〈χPM〉̺+

correspond to a classical assignment of ±1 to all observ-
ables, and 〈χPM〉̺+ ≤ 4 follows. For the other term
〈χPM〉̺−

, the problem is effectively a two-dimensional
one, and we can consider the restriction of the observ-
ables to the two-dimensional space, e.g., Ā = P−AP−,
etc. In this restricted space we have that Ā, b̄, β̄, c̄, and
γ̄ are all of them proportional to the identity and, there-
fore, result in a classical assignment ±1 independent of
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̺−. Let us denote these assignments by Â, b̂, β̂, ĉ, and γ̂.

Then, it remains to be shown that

Z = Â
[
〈B̄C̄〉̺−

+ 〈ᾱā〉̺−

]
+ b̂ĉ〈ā〉̺−

+β̂γ̂〈ᾱ〉̺−
+ b̂β̂〈B̄〉̺−

− ĉγ̂〈C̄〉̺−
≤ 4 (33)

for all classical assignments and for all states ̺−. For
observables B̄ and C̄ we have furthermore that B̄C̄ = ±11
(see Lemma 5), hence B̄ = ±C̄ and similarly ā = ±ᾱ. If

one wishes to maximize Z for the case Â = +1, one has
to choose B̄ = C̄ and ā = ᾱ. Then, the product of the
four last terms in Z equals −1, and Z ≤ 4 holds. For the
case Â = −1 one chooses B̄ = −C̄ and ā = −ᾱ, but still
the product of the four last terms in Z equals −1, and
Z ≤ 4. This finishes the proof of the first case.
Case 2: The bases |A〉, |B〉, |C〉 and |A〉, |a〉, |α〉 are (up

to some permutations or signs) the same. For instance,
we can have the case in which |B〉 = |a〉 and |C〉 = |α〉;
the other possibilities can be treated similarly.
In this case, since |B〉 and |α〉 are orthogonal, the ob-

servable β has to be either proportional to the identity
or proportional to A. For the same reason, c has to be
either proportional to the identity or to A.
Let us first consider the case in which one of the ob-

servables β and c is proportional to A, say β = ±A for
definiteness. Then, since |β〉 = |A〉 and |B〉 are orthog-
onal, b can only be the identity or proportional to C.

Similarly, γ can only be the identity or proportional to
C. It follows that all nine observables in the PM square
are diagonal in the basis |A〉, |B〉, |C〉, and all observables
commute. Then, 〈χPM〉 ≤ 4 follows, as this inequality
holds in any eigenspace.
Second, let us consider the case in which β and c are

both proportional to the identity. This results in fixed

assignments β̂ and ĉ for them. Moreover, B and a differ
only by a sign µ̂ (that is, a = µ̂B) and C and α differ
only by a sign ν̂ (i.e., α = ν̂C). So we have to consider

X = 〈ABC〉+ µ̂ν̂〈ABC〉+ β̂〈Bb〉
+µ̂ĉ〈Bb〉+ ν̂β̂〈Cγ〉 − ĉ〈Cγ〉. (34)

In order to achieve X > 4 one has to choose µ̂ = ν̂,

β̂ = µ̂ĉ, and ĉ = −ν̂β̂. However, the later is equivalent to

β̂ = −ν̂ĉ, showing that this assignment is not possible.
Therefore, X ≤ 4 has to hold. This finishes the proof of
the second case. �

Lemma 11. Consider the PM square with dichotomic
observables on a three-dimensional system, where for one
column (or one row) only the case (c) in Lemma 8 applies.
Then, one cannot violate the classical bound and one has
〈χPM〉 ≤ 4.
Proof of Lemma 11. We assume that the condition

holds for the first column. Then, none of the observables
A, a, and α are proportional to the identity, and the cor-
responding vectors |A〉, |a〉, and |α〉 form an orthonormal
basis of the three-dimensional space.
The idea of our proof is to consider possible other ob-

servables in the PM square, which are not proportional

to the identity, but also not proportional to A, a, or α.

We will see that there are not many possibilities for the
observables, and in all cases the bound 〈χPM〉 ≤ 4 can
be proved explicitly.
First, consider the case that there all nontrivial ob-

servables in the PM square are proportional to A, a, or
α. This means that all observables in the PM square are
diagonal in the basis defined by |A〉, |a〉, and |α〉, and all
observables commute. But then the bound 〈χPM〉 ≤ 4 is
clear.
Second, consider the case that there are several non-

trivial observables, which are not proportional to A, a,

or α. Without losing generality, we can assume that the
first of these observables is B. This implies that |B〉 is or-
thogonal to |A〉 and lies in the plane spanned by |a〉 and
|α〉, but |a〉 6= |B〉 6= |α〉. It follows for the observables b
and β that they can only be proportional to the identity
or to A (see Case 1 in Lemma 10). We denote this as

b = b̂[A], where [A] = A or 11, and b̂ denotes the proper

sign, i.e., b = b̂A or b = b̂11. Similarly, we write β = β̂[A].
Let us assume that there is a second nontrivial observ-

able which is not proportional to A, a, or α (but it might
be proportional to B). We can distinguish three cases:
(i) First, this observable can be given by C and C is

not proportional to B. Then, this is exactly the situation
of Case 1 in Lemma 10, and 〈χPM〉 ≤ 4 follows.
(ii) Second, this observable can be given by C. How-

ever, C is proportional to B. Then, c = ĉ[A] and γ = γ̂[A]
follows. Now the proof can proceed as in Case 1 of
Lemma 10. One arrives to the same Eq. (33), with the
extra condition that B̄ = ±C̄, which was deduced after
Eq. (33) anyway. Therefore, 〈χPM〉 ≤ 4 has to hold.
(iii) Third, this observable can be given by c. Then, it

cannot be proportional to B, since |B〉 is not orthogonal
to |a〉. It first follows that C = Ĉ[a] and γ = γ̂[a]. Com-

bined with the properties of B, one finds that C = Ĉ11

and b = b̂11 has to hold. Then, the PM inequality reads

Y = 〈Aαa〉+ 〈B(AĈ + b̂β̂[A])〉
+β̂γ̂〈α[A][a]〉+ 〈c(b̂a− Ĉγ̂[a])〉. (35)

In this expression, the observables B and c occur only
in a single term and a single context. Therefore, for any
quantum state, we can obtain an upper bound on Y by
replacing B 7→ ±11 and c 7→ ±11 with appropriately cho-
sen signs. However, with this replacement, all observ-
ables occurring in Y are diagonal in the basis defined by
|A〉, |a〉, and |α〉, and Y = 〈χPM〉 ≤ 4 follows.
In summary, the discussion of the cases (i), (ii), and

(iii) has shown the following: It is not possible to have
three nontrivial observables in the PM square, which are
all of them not proportional to A, a, or α. If one has two
of such observables, then the classical bound has been
proven.
It remains to be discussed what happen if one has only

one observable (say, B), which is not proportional to A, a,
or α. However, then the PM inequality can be written
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similarly as in Eq. (35), and B occurs in a single context.
We can set again B 7→ ±11 and the claim follows. �

Finally, we can prove our Observation 3:
Proof of Observation 3. Lemma 10 and Lemma 11

solve the problem, if case (c) in one column or row hap-
pens. Therefore, we can assume that in all columns and
all rows only the cases (a) or (b) from Lemma 8 apply.
However, in these cases, we obtain a simple replacement
rule: For case (a), one of the observables has to be re-
placed with a classical value ±1 and, for case (b), one of
the observables can be replaced by a different one from
the same row or column. In both cases, the PM inequal-
ity is simplified.
For case (a), there are six possible replacement rules,

as one of the three observables must be replaced by ±1.
Similarly, for case (b), there are six replacement rules.
Therefore, one obtains a finite number, namely (6 + 6)6

possible replacements. As in the case of the KCBS in-
equality (see the alternative proof of Observation 1 in
Appendix A1), some of them lead to contradictions (e.g.,
one may try to set A = +11 from the first column, but
A = −11 holds due to the rule from the first row). Tak-
ing this into account, one can perform an exhaustive
search of all possibilities, preferably by computer. For
all cases, either the classical bound holds trivially (e.g.,
because the assignments require already, that one row is
−1) or the PM inequality can be reduced, up to some
constant, to one of the inequalities in Lemma 8. In most
cases, one obtains the classical bound. However, in some
cases, the PM inequality is reduced to 〈χPM〉 = ζ5 +1 or
〈χPM〉 = ζ6. To give an example, one may consider the
square




A B C

a b c

α β γ



 =




A 11 C

a b 11
11 β γ



 , (36)

which results in 〈χPM〉 = ζ6 for appropriately chosen Ai.

Therefore, from Lemma 9 follows that in three dimen-
sions 〈χPM〉 = 4(

√
5− 1) ≈ 4.94 holds and can indeed be

reached. �

A5: Imperfect measurements

In this section we discuss the noise robustness of Ob-
servation 4. In the first subsection, we prove that Obser-
vation 4 also holds for the model of noisy measurements
explained in the main text. In the second subsection, we
discuss a noise model that reproduces the probabilities
of the most general POVM.

A5.1: Noisy measurements

In order to explain the probabilities from a noisy mea-
surement, we first consider the following measurement
model: Instead of performing the projective measure-
ment A, one of two possible actions are taken:

(a) with a probability pA the projective measurement
is performed, or

(b) with a probability 1−pA a completely random out-
come ±1 is assigned independently of the initial
state. Here, the results +1 and −1 occur with equal
probability.

In case (b), after the assignment the physical system is
left in one of two possible states ̺+ or ̺−, depending on
the assignment. We will not make any assumptions on
̺±.
Before formulating and proving a bound on 〈χPM〉 in

this scenario, it is useful to discuss the structure of 〈χPM〉
for the measurement model. A single measurement se-
quence 〈ABC〉 is split into eight terms: With a prefactor
pApBpC one has the value, which is obtained, if all mea-
surements are projective; with a prefactor pApB(1− pC)
one has the value, where A and B are projective, and C is
a random assignment, etc. It follows that the total mean
value 〈χPM〉 is an affine function in the probability pA (if
all other parameters are fixed) and also in all other prob-
abilities pX for the other measurements. Consequently,
the maximum of 〈χPM〉 is attained either at pA = 1 or
pA = 0, and similarly for all the measurements. There-
fore, for maximizing 〈χPM〉 it suffices to consider the fi-
nite set of cases where, for each observable, either always
possibility (a) or always possibility (b) is taken. We can
formulate:
Proposition 12. Consider noisy measurements as de-

scribed above. Then, the bound from Observation 4

〈χPM〉 ≤ 3
√
3 (37)

holds.
Proof. As discussed above, we only have to discuss

a finite number of cases. Let us consider a single term
〈ABC〉. If C is a random assignment, then 〈ABC〉 = 0,
independently how A and B are realized. It follows that
if C, β or a are random assignments, then 〈χPM〉 ≤ 4.
On the other hand, if A is a random assignment, then

〈ABC〉 = 0 as well: (i) If B and C are projective, then
the measurement of B and C results in the state indepen-
dent mean value 〈BC〉 [see Eq. (8) in the main text]. This
value is independent of the state ̺± remaining after the
assignment of A, hence 〈ABC〉 = 〈AB〉 − 〈AB〉 = 0. (ii)
If B is a random assignment, one can also directly calcu-
late that 〈ABC〉 = 0 and the case that (iii) C is a random
assignment has been discussed already. Consequently, if
A, b, or γ are random assignments, then 〈χPM〉 ≤ 4.
It remains to discuss the case that B, c, or α are ran-

dom assignments while all other measurements are pro-
jective. First, one can directly calculate that if A,C are
projective, and B is a random assignment, then

〈ABC〉 = tr(̺A)tr(CX), (38)

with X = (̺+ − ̺−)/2. If X is expressed in terms of
Pauli matrices, then the length of its Bloch vector does
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not exceed one, since the Bloch vectors of ̺± are subnor-
malized.
The estimate of 〈χPM〉 can now proceed as in the

proof of Observation 4, and one arrives at the situa-
tion of Lemma 7 in Appendix A3, where now the vec-
tors are subnormalized, and not necessarily normalized.
But still the bound from Lemma 7 is valid: If the small-
est vector in χ6 has a length ω, one can directly see that
χ6 ≥ ω[−N cos(π/N)]−(1−ω)4. This proves Proposition
12. �

A5.2: More general POVMs

Now we consider a general dichotomic positive oper-
ator valued measure (POVM) on a qubit system. This
is characterized by two effects E+ and E−, where E+ +
E− = 11 and the probabilities of the measurement results
are p+ = tr(̺E+) and p− = tr(̺E−).
These effects have to commute and one can write

E+ = α|0〉〈0| + β|1〉〈1| and E− = γ|0〉〈0| + δ|1〉〈1| in
an appropriate basis. We can assume that α ≥ β and
consequently δ ≥ γ. Furthermore, it is no restriction to
choose β ≤ γ. Then, the effects can be written as E+ =
β11+(α−β)|0〉〈0| and E− = β11+(γ−β)11+(α−β)|1〉〈1|.
This means that one can interpret the probabilities of the
POVM as coming from the following procedure: With a
probability of 2β one assigns a random outcome, with a
probability of γ − β one assigns the fixed value −1, and
with a probability of (α−β) one performs the projective
measurement.
This motivates the following measurement model: In-

stead of performing the projective measurement A, one
of three possible actions are taken:

(i) with a probability pA1 the projective measurement
is performed, or

(ii) with a probability pA2 a fixed outcome ±1 is as-
signed independently of the initial state. After this
announcement, the state is left in the correspond-
ing eigenstate of A, or

(iii) with a probability pA3 a completely random out-
come ±1 is assigned independently of the initial
state.

As above, in case (iii), the physical system is left in one
of two possible states ̺+ or ̺−, but we will not make
any assumptions on ̺±. For this measurement model,
we have:
Proposition 13. In the noise model described above,

the PM operator is bounded by

〈χPM〉 ≤ 1 +

√

9 + 6
√
3 ≈ 5.404. (39)

Proof. As in the proof of Proposition 12, we only have
to consider a finite set of cases. Let us first discuss the
situation, where for each measurement only the possibil-
ities (i) and (ii) are taken.

First, we have to derive some formulas for sequential
measurements. The reason is that, if the option (ii) is
chosen, then the original formula for sequential measure-
ments, Eq. (15) in the main text, is not appropriate any-
more and different formulas have to be used.
In the following, we write A = (±)A if A is a fixed

assignment as described in possibility (ii) above. If not
explicitly stated otherwise, the observables are measured
as projective measurements. Then one can directly cal-
culate that

〈ABC〉 = (±)A〈BC〉 if A = (±)A, (40a)

〈ABC〉 = tr(̺A)〈BC〉 if B = (±)B, (40b)

〈ABC〉 = (±)C〈AB〉 if C = (±)C , (40c)

Note that in Eq. (40b) there is no deviation from the
usual formula Eq. (15) in the main text. Furthermore,
we have

〈ABC〉 = (±)A(±)Btr(C|B±〉〈B±|) = (±)A〈BC〉
if A = (±)A and B = (±)B , (41a)

〈ABC〉 = (±)A(±)Ctr(B|A±〉〈A±|) = (±)C〈AB〉
if A = (±)A and C = (±)C , (41b)

〈ABC〉 = (±)B(±)Ctr(̺A)

if B = (±)B and C = (±)C . (41c)

In Eqs. (41a) and (41b), |B±〉 and |A±〉 denote the eigen-
states of B and A, which are left after the fixed assign-
ment.
Equipped with these rules, we can discuss the different

cases. First, from Eqs. (40a), (40b), and (41a) it follows
that the proof of Observation 4 does not change, if fixed
assignments are made only on the observables which are
measured at first or second position of a sequence (i.e.,
the observables A, b, γ, B, c, and α).
However, the structure of the inequality changes if one

of the last measurements is a fixed assignment. To give
an example, consider the case that the measurement β is
a fixed assignment [case (ii) above], while all other mea-
surements are projective [case (i) above]. Using Eq. (40c)
we have to estimate

X = 〈A〉〈BC〉+ 〈A〉〈αa〉+ 〈b〉〈ca〉
+ 〈bB〉(±)β + 〈γα〉(±)β − 〈γ〉〈cC〉. (42)

On can directly see that it suffices to estimate

X ′ = 〈B|C〉+ 〈α|a〉+ 〈̺|b〉〈c|a〉
+ 〈b|B〉+ 〈γ|α〉 − 〈̺|γ〉〈c|C〉, (43)

where all expressions should be understood as scalar
products of the corresponding Bloch vectors. Then, a
direct optimization over the three-dimensional Bloch vec-
tors proves that here

X ′ ≤ 1 +

√

9 + 6
√
3 ≈ 5.404 (44)

holds. In general, the observables β,C, or a are the possi-
ble third measurements in a sequence. One can directly
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check that, if one or several of them are fixed assign-
ments, then an expression analogue to Eq. (42) arises
and the bound of Eq. (44) holds. Finally, if some of the
β,C, or a are fixed assignments and, in addition, some
of the A, b, γ, B, c, and α are fixed assignments, then the
comparison between Eq. (40c) and Eqs. (41b) and (41c)
shows that no novel types of expressions occur.
It remains to discuss the case where not only the pos-

sibilities (i) and (ii) occur, but for one or more mea-
surements also a random assignment [possibility (iii)] is
realized. As in the proof of Proposition 12, one finds that
only the cases where the second measurements (B, c, and
α) are random are interesting. In addition to Eq. (38)
one finds that 〈ABC〉 = (±A)tr(CX) if B is random and
A is a fixed assignment, and 〈ABC〉 = 0 if B is random
and C is a fixed assignment. This shows that no new
expressions occur, and proves the claim. �

Finally, we would like to add two remarks. First,
it should be stressed that the presented noise model
still makes assumptions about the measurement, espe-
cially about the post measurement state. Therefore, it
is not the most general measurement, and we do not

claim that the resulting dimension witnesses are device-
independent.
Second, we would like to emphasize that the chosen

order of the measurements in the definition in Eq. (9) in
the main text is important for the proof of the bounds
for noisy measurements: For other orders, it is not clear
whether the dimension witnesses are robust against im-
perfections. In fact, for some choices one finds that
the resulting inequalities are not robust against imper-
fections: Consider, for instance, a measurement order,
where one observable (say, γ for definiteness) is the sec-
ond observable in one context and the third observable in
the other context. Furthermore, assume that γ is an as-
signment [case (iii) above], while all other measurements
are projective. Then, we have to use Eq. (40b) for the
first context of γ, and Eq. (40c) for the second context.
In Eq. (40b) there is no difference to the usual formula,
especially the formula does not depend on the value as-
signed to γ. Eq. (40c), however, depends on this value.
This means that, for one term in the PM inequality, the
sign can be changed arbitrarily and so 〈χPM〉 = 6 can be
reached.
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[7] T. Vértesi and K. F. Pál, Phys. Rev. A 79, 042106 (2009).
[8] S. Wehner, M. Christandl, and A.C. Doherty,

Phys. Rev. A 78, 062112 (2008).
[9] R. Gallego, N. Brunner, C. Hadley, and A. Aćın,
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We define a simple rule that allows to describe sequences of projective measurements
for a broad class of generalized probabilistic models. This class embraces quantum
mechanics and classical probability theory, but, for example, also the hypothetical
Popescu-Rohrlich box. For quantum mechanics, the definition yields the established
Lüders’s rule, which is the standard rule how to update the quantum state after a
measurement. In the general case it can be seen as the least disturbing or most coher-
ent way to perform sequential measurements. As example we show that Spekkens’s
toy model1 is an instance of our definition. We also demonstrate the possibility of
strong post-quantum correlations as well as the existence of triple-slit correlations
for certain non-quantum toy models.

I. INTRODUCTION

It is a fundamental property of quantum mechanics that any nontrivial measurement
disturbs the system it acts on. This disturbance is responsible for very particular phenom-
ena like the quantum Zeno effect2,3, where the time-evolution of a system is frozen due
to repeated measurements, or the contextual behavior of a quantum system4, where mea-
surement outcomes depend on the choice of previous compatible measurements. Compared
to the classical world, where a measurement—at least in principle—may leave the system
unchanged, this quantum property seems to be very particular and at the same time very
fundamental.

The most common formulation of the this disturbance is due to Lüders5,6 and determines
how the state of a system changes after a measurement: ρ 7→ ΠρΠ/ tr(ρΠ). But this is
only one out of many possible state changes that may occur in an experiment. In the most
general case the post-measurement state can be seen as the result of a coherent evolution
involving an auxiliary system and a destructive measurement on that auxiliary system. This
fundamental result by Ozawa7,8 does, however, not explain the special role of Lüders’s rule.
Conversely, Ozawa’s result gives a very particular model of a measurement and one might
argue that giving up Lüders’s rule as a fundamental entity might actually make too strong
assumptions on the peculiarities of the measurement process in quantum mechanics.

In this work we provide a very small set of assumptions that uniquely singles out Lüders’s
rule within quantum mechanics on the one hand, and on the other hand has many desirable
properties when applied to hypothetical non-quantum models. These two aspects have been
discussed for a long time9–12, and some consensus seems to exist that the mathematical
concept of a filter is an appropriate approach. We advertise that the axioms that we suggest
here are significantly simpler then those that have appeared before while at the same time
they imply more favorable physical properties.
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6

In quantum mechanics this already yields uniquely Lüders’s rule for rank-one projections.
Furthermore, any family (fk) ⊂ V +

e with
∑

fk ≤ e and fk-compatible projections φk enjoys
perfect repeatability, φk ◦ φℓ = δk,ℓφk, utilizing the Kronecker symbol δk,ℓ. This holds, since
for k 6= ℓ and any h ∈ V +

e we have 0 ≤ φkφℓh ≤ φkφℓe = φkfℓ = −φk(e− fk − fℓ) ≤ 0.
Unfortunately, projectivity does not sufficiently fix the choices for φ. For example, φ =

eω is an e-compatible projection, but any subsequent measurement will solely depend on
the arbitrary choice of ω ∈ S. Previously9–12, filters have been considered as a possible
extensions of Lüders’s rule to generalized probabilistic models. A filter is a neutral f -
compatible projection, but it is only called a filter if there also exists a neutral f -compatible
projection for e − f . Here, we study a different extension of Lüders’s rule, namely the
coherent Lüders’s rules.

Definition 3. A coherent Lüders’s rule (CLR) for f ∈ V +
e is a coherent f -compatible map.

We occasionally write f ♯ for a CLR of f , although this map is not necessarily uniquely
defined by the above condition.

A possible interpretation behind the definition of coherence is that the relation g ≤ f
indicates that the outcome g provides always a finer information than f in the sense that
independent of the state ω of the system, g is always less likely to be triggered than f . Thus
getting firstly the course grained information f and then the fine grained information g is
assumed not to influence g. Hence f preserves all the “coherences” of g. We also refer to
Proposition 5, Proposition 6, the example of a triple-slit experiment in Sec. IIIC, and the
Discussion in Sec. IV for further reasoning in favor of this definition. In Sec. IIC it is also
shown that neutral f -compatible projections and coherent f -compatible maps are different
concepts.

A. Basic properties of coherent Lüders’s rules

There are several equivalent ways of expressing Definition 3.

Lemma 4. For a positive map φ and an effect f ∈ V +
e , the following statements are

equivalent.

(i) φ(e) = f and φ(g) = g for all 0 ≤ g ≤ f .

(ii) φ(e) ≤ f and φ(g) ≥ g for all 0 ≤ g ≤ f .

(iii) a ≤ φ(g) ≤ f‖g‖ for all g ∈ V +, whenever 0 ≤ a ≤ f and a ≤ g.

(iv) a ≤ φ(g) ≤ f for all g ∈ V +
e , whenever 0 ≤ a ≤ f and a ≤ g.

Proof. In order to see that (i) implies (iii), note that φ(g) = φ(g− a)+ a ≥ a. Furthermore,
f‖g‖ − φ(g) ≥ 0 follows immediately when considering φ(‖g‖e − g) ≥ 0 and by fact that
‖g‖e ≥ g holds since e is Archimedean.

Obviously (iii) implies (iv), since for g ∈ V +
e we have ‖g‖ ≤ 1.

Statement (ii) follows from (iv) by letting g(iv) = e (yielding φ(e) ≤ f) and by choosing
g(iv) = g(ii) = a (yielding φ(g(ii)) ≥ g(ii)).

We finally show that (i) follows from (ii). We first use that φ(e − f) ≥ 0 and thus
f ≥ φ(e) ≥ φ(f) ≥ f , i.e., φ(e) = f = φ(f). Then φ(g) − g ≤ φ(f) − f ≡ 0, where the
inequality follows from f − g ≤ φ(f − g), which is due to 0 ≤ f − g ≤ f . But φ(g) ≤ g can
only be compatible with φ(g) ≥ g when φ(g) = g.
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Note, that with statement (iv) of this lemma, we have φ(h) = f for f ≤ h ≤ e, by letting
a = f and g = h.

From a physical perspective, a CLR for f describes exactly such a measurement that
does not disturb any other subsequent measurement with outcome f .

Proposition 5. Let C ⊃ (V + ⊗ S) be some cone of positive maps and let φ be an f -
compatible map for f ∈ V +

e . Then φ is coherent if and only if φ ◦ ψ = ψ holds for all
f -compatible maps ψ ∈ C.

Proof. If ψ is f -compatible, then ψ(h) ≤ ψ(e) = f for any h ∈ V +
e . It follows that φ◦ψ = ψ if

φ is a CLR. For the converse we consider ψ = (f−g)ω+gσ ∈ C with 0 ≤ g ≤ f and ω, σ ∈ S.
This map is clearly f -compatible and we define ∆ ≡ φ◦ψ−ψ = [φ(f)−f ]ω+[φ(g)−g](σ−ω).
From ∆(e) = 0 we obtain φ(f) = f and assuming σ 6= ω, also φ(g) = g must hold. Hence φ
is coherent.

A CLR in particular obeys repeatability and compatibility.

Proposition 6. Let f ♯ and g♯ be two CLRs for f, g ∈ V +
e , respectively. We have:

(i) f ♯ is projective.

(ii) If g ≤ f then f ♯g = g♯f .

(iii) If g ≤ f and g♯ is unique for g, then f ♯g♯ = g♯f ♯.

Proof. We implicitly use Lemma 4 (iv). Then f ♯h ≤ f for any h ∈ V +
e and hence f ♯(f ♯h) =

f ♯h. If g ≤ f then immediately f ♯g = g = g♯f (cf. also the remark after Lemma 4). If the
CLR for g is unique then f ♯g♯ = g♯f ♯, since f ♯g♯ = g♯ and on the other hand g♯f ♯ is a valid
CLR for g.

We mention that the property of being neutral or coherent is robust under sections.
A section24 is a positive unital injection τ from (W,W+, e′) to (V, V +, e), such that there
exists a positive surjection τ ′ : V → W with τ ′ ◦ τ = idW . If φ is a neutral/coherent τ(f)-
compatible map, then τ ′ ◦ φ ◦ τ is a neutral/coherent f -compatible map. An important
instance of this observation is the embedding of the classical events into quantum events
via τ : v 7→ diag(v). In contrast, general τ(f)-compatible projections do not always induce
f -compatible projections.

B. Conditions on elements with a coherent Lüders’s rule

Not all f ∈ V +
e admit a CLR as we see next. But the CLR for e is the identity mapping,

while for 0 it is the zero mapping. On the other hand, if f is extremal, f ∈ ∂+V +, then any
f -compatible projection is a CLR. For the general situation we have

Proposition 7. For f ∈ V +
e consider the following statements.

(i) f admits a CLR.

(ii) g ≤ f‖g‖ for all 0 ≤ g ≤ f .

(iii) 0 ≤ g ≤ f and g ≤ e− f only for g = 0.

Then (i) implies (ii) and (ii) implies (iii).
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In a quantum mechanical n-slit experiment the slits are described by projections Πk

obeying
∑

Πk ≤ 11. We let Πα =
∑

k∈αΠk and therefore

φα : X 7→ ΠαXΠα ≡
∑

β⊂α : |β|≤2

ηβ(X), (16)

that is, ηβ = 0 whenever |β| > 2. That is, in quantum mechanics all interference terms above
the second order vanish. We mention that in general this absence only occurs if the quantum
instrument follows Lüders’s rule, as a counterexample may serve φα : X 7→

√
AαX

√
Aα with

Aα =
∑

k Ak and A1 = 11/2, A2 = |0〉〈0|/2, A3 = |1〉〈1|/2. Such measurements, however, may
fail to have a proper physical interpretation as a triple-slit experiment, since the operators
Ak may act non-locally.

For generalized probabilistic models, though, we can easily have higher order correlations:
Consider the AOU space with V + = cone { a1, . . . , a5 }, where a1, . . . , a4 is a basis of V ,
a5 = a1 + a2 + a3 − a4, and e = a1 + a2 + a3 ≡ a4 + a5. We choose φα(e) =

∑
k∈α ak for

α ⊂ { 1, 2, 3} ≡ N . A brief calculation yields for α ( N ,

φα =
∑

k∈α

akω
α
k (17)

where ωα
k are arbitrary choices of states with ωα

k (ak) = 1. Since those states are not unique,
we can e.g. use this freedom to achieve commutativity, φα ◦φβ = φβ ◦φα, or to get vanishing
double-slit correlations, η{ k,ℓ} = 0. In contrast, the map for the triple-slit is the identity
mapping, φN = e♯ ≡ id. From Eq. (17) we see that a4 /∈ ηα(V ) except for α = N , i.e.,
nonvanishing triple-slit correlations occur.

IV. DISCUSSION

An important property of quantum systems is that the measurement necessarily changes
the state of the system—or in a Heisenberg type-of-picture that the description of a mea-
surement depends on previous measurements that have been performed. How this change
occurs in general depends on the actual implementation of the measurement. In quantum
mechanics, however, the change induced by projective measurements according to Lüders
is the least disturbing and least biased implementation of a projective measurement. We
re-derived this rule in quantum mechanics (cf. Sec. IIIA) solely from the coherence assump-
tion stated in Definition 3. This definition of coherent Lüders rules (CLRs) can be applied
to a wide class of hypothetical non-quantum models, namely the generalized probabilistic
models which can described by means of Archimedean ordered vector spaces.

We showed in Proposition 5 that CLRs are exactly those maps which do not disturb any
subsequent and possibly more “noisy” implementation of the same measurement. We also
showed that familiar results of repeatability and compatibility hold (Proposition 6, cf. also
Refs. 9 and 11).

In quantum mechanics, Lüders’s rule is directly linked to and singles out the projection
operators, which in turn play a key role e.g. in spectral theory. (Celebrated results for a
generalized spectral theory10,33,34 are, however, linked to neutral maps.) We find that for ex-
tremal measurement effects (a generalization of rank-one projections in quantum mechanics)
an CLR always exists, while necessary conditions for existence have been given in Proposi-
tion 7. Also, in certain pathological cases, the CLR is not unique. This ambiguity might be
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unsatisfactory, but for quantum mechanics and classical mechanics the conditions of being a
CLR are sufficient to achieve uniqueness, so that adding any further condition is of a rather
speculative kind.

Finally we demonstrated in Sec. III B that CLRs occurred already earlier in Spekkens’s
toy model1 and that this toy model can now be seen as an instance of a much wider class
of models with a natural notion of sequential measurements. For those models it is e.g.
straightforward to compute the upper limit for the Leggett-Garg inequality in Eq. (12). As
a last instance we discussed in Sec IIIC the triple-slit experiment, finding that generalized
probabilistic models with a CLR can easily have substantial triple-slit correlations, while it
is an important prediction of quantum mechanics that those are absent.
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Appendix A: Elements with a coherent Lüders’s rule in dichotomic norm cones

In a dichotomic norm cone (cf. Sec. IC), the set of effects admitting a CLR is given by
{ 0, e } ∪ ∂+V +, as stated in Sec. III B. For f = (t, f) ∈ V +

e we have ‖f‖ = 1 if and only
if t = 1 − ‖f‖ and ‖f‖ ≤ 1

2
. Assume now that f admits a CLR, but 0 6= f 6= e. By

virtue of Proposition 7 (ii) it follows that ‖f‖ = 1 and ‖f‖ = 1

2
. The first statement is

obtained by choosing g = f and the second statement by the choice 0 ≤ g = (1− 2‖f‖)e =
f − (‖f‖, f) ≤ f . If now a ∈ ∂+V + and p > 0, such that pa ≤ f , then also a ≤ f . This
reads 1

2
− 1

2
≥ ‖f − a‖ and therefore f = a.

Appendix B: Obtaining Eq. (12)

Under the result A♯B = (2β − 1)A+ 2(a′ · b)e [Eq. (10)] we bound the correlation term
〈LG′〉ω = ω(A♯B + B − A) [Eq. (11)] for dichotomic norm cones, assuming A = a − a¬ =
(0, 2a), and B = b− b¬ = (2β − 1, 2b). Writing ω = (1,w), this yields for b 6= 0,

1

2
〈LG′〉ω = a

′ · b+w · (b− a) + (2β − 1)(w · a+ 1

2
)

≤ ‖b‖[a′ · b+ ‖b− 2a‖ − 1] + 1

2

(B1)

with b = b/‖b‖. The inequality is due to β ≤ 1 − ‖b‖, ‖w‖
∗
≤ 1, and w · a ≥ −1

2
. The

bound is sharp, if β = 1 − ‖b‖ and w · (b − 2a) = ‖b− 2a‖. Using the conditions from
Eq. (9), we have ‖b− 2a‖ ≥ −a

′ · (b−2a) = 1−a
′ ·b and hence the term in square brackets

is never negative. This makes the choice ‖b‖ = 1

2
optimal and we arrive at the sharp bound

of Eq. (12).
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148



ar
X

iv
:1

3
1
0
.8

4
6
5
v
3
  
[q

u
an

t-
p
h
] 

 2
2
 J

u
l 

2
0
1
4

Systematic errors in current quantum state tomography tools
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Common tools for obtaining physical density matrices in experimental quantum state tomography
are shown here to cause systematic errors. For example, using maximum likelihood or least squares
optimization for state reconstruction, we observe a systematic underestimation of the fidelity and an
overestimation of entanglement. A solution for this problem can be achieved by a linear evaluation
of the data yielding reliable and computational simple bounds including error bars.

PACS numbers: 03.65.Ud, 03.65.Wj, 06.20.Dk

Introduction.—Quantum state tomography (QST) [1]
enables us to fully determine the state of a quantum
system and thereby to deduce all its properties. As
such QST is widely used to characterize and to evalu-
ate numerous experimentally implemented qubit states
or their dynamics, e.g., in ion trap experiments [2, 3],
photonic systems [4, 5], superconducting circuits [6], or
nuclear magnetic resonance systems [7, 8]. The increas-
ing complexity of todays multiqubit/qudit quantum sys-
tems brought new challenges but also progress. Now,
highly efficient methods allow an even scalable analysis
for important subclasses of states [9, 10]. The calculation
of errors of QST was significantly improved although the
errors remain numerically expensive to evaluate for larger
systems [11]. Moreover QST was used to detect system-
atic errors in the alignment of an experiment itself [12].
A central step in QST is to establish the state from the

acquired experimental data. A direct, linear evaluation
of the data returns almost for sure an unphysical den-
sity matrix with negative eigenvalues [13]. Thus, several
schemes have been developed to obtain a physical state
which resembles the observed data as closely as possible
[4, 14, 15].

In this Letter we test whether the näıve expectation
is met that QST delivers proper estimates for physical
quantities. We test this for the two most commonly used
reconstruction schemes—maximum likelihood (ML) [15]
and least squares (LS) [4]—using Monte Carlo simula-
tions. This expectation is not fulfilled: both schemes
return states which deviate systematically from the true
state, e.g., underestimate the fidelity as shown in Fig. 1.
For data sizes typical in multiqubit experiments the de-
viation from the true value is significant, in fact it is
larger than commonly deduced “error bars” [16]. We
show that the constraint of physicality necessarily leads
to systematic errors for the reconstruction scheme. The
size of these errors depends on the experimental noise
and unavoidable statistical fluctuations. We find that it
is advisable to evaluate linear operators directly on the
raw data. We also show how physical quantities that
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FIG. 1: (Color online) Histogram of the fidelity estimates
of 500 independent simulations of QST of a noisy four-party
Greenberger-Horne-Zeilinger (GHZ) state for three different
reconstruction schemes. The values obtained via maximum
likelihood (ML, blue) or least squares (LS, red) fluctuate
around a value that is lower than the initial fidelity of 80%
(dashed line). For comparison, we also show the result using
linear inversion (LIN, green), which does not suffer from such
a systematic error called bias.

are given by convex (concave) nonlinear functions of the
density matrix like the bipartite negativity etc., can be
linearized thereby providing a meaningful lower (upper)
bound, namely a directly computable error bar.

Standard state tomography tools.—The aim of QST is
to identify the initially unknown state ̺0 of a system via
appropriate measurements on multiple preparations of
this state. For an n-qubit system, the so-called Pauli to-
mography scheme consists of measuring in the eigenbases
of all 3n possible combinations of local Pauli operators,
each yielding 2n possible results [4]. In more general
terms, in a tomography protocol one repeats for each
measurement setting s the experiment a certain number
of times Ns and obtains csr times the result r. These num-
bers then yield the frequencies f s

r = csr/Ns. The proba-
bility to observe the outcome r for setting s is given by
P s
̺0
(r) = tr(̺0M

s
r ). Here, M s

r labels the measurement
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operator corresponding to the result r when measuring
setting s. The probabilities P s

̺0
(r) will uniquely identify

the unknown state ̺0, if the set of operators M s
r spans

the space of Hermitian operators.

Provided the data f , i.e., the set of experimentally
determined frequencies f s

r one requires a method to de-
termine the estimate ˆ̺ ≡ ˆ̺(f) of the unknown state ̺0.
Simply inverting the relations for P s

̺0
(r) we obtain

ˆ̺LIN =
∑

r,s

A
s
rf

s
r (1)

where As
r are determined from the measurement opera-

tors M s
r [8, 17]. Note that there is a canonical construc-

tion of As
r even for the case of an overcomplete set of M s

r ,
see SM1. This reconstruction of ˆ̺LIN is computationally
simple and has become known as linear inversion (LIN).

Yet, due to unavoidable statistical fluctuations the es-
timate ˆ̺LIN is not a physical density operator for typical
experimental situations, i.e., generally some eigenvalues
are negative. Besides the issues of a physical interpre-
tation of such a “state” this causes further problems in
evaluating interesting functions like the von Neumann
entropy, the quantum Fisher information or an entan-
glement measure like the negativity as these functions
are defined or meaningful only for valid, i.e., positive-
semidefinite, quantum states.

For this reason, different methods have been intro-
duced that mostly follow the paradigm that the recon-
structed state ˆ̺ = argmax

̺≥0
T (̺|f) maximizes a target

function T (̺|f) within the set of valid density operators.
This target function thereby measures how well a density
operator ̺ agrees with the observed data f . Two com-
mon choices are maximum likelihood (ML) [15] where
TML =

∑
r,s f

s
r log[P

s
̺ (r)], and least squares (LS) [4]

where TLS = −∑
r,s[f

s
r − P s

̺ (r)]
2/P s

̺ (r). We denote
the respective solutions by ˆ̺ML and ˆ̺LS. From these
estimates one then easily computes any physical quan-
tity of the observed state, like e.g. the fidelities F̂ML =
〈ψ| ˆ̺ML|ψ〉 and F̂LS = 〈ψ| ˆ̺LS|ψ〉 with respect to the tar-
get state |ψ〉.
Numerical simulations.—To enable detailed analysis of

the particular features of the respective state reconstruc-
tion algorithm and to exclude influence of systematic ex-
perimental errors we perform Monte Carlo simulations.
For a chosen state ̺0 the following procedure is used: i)
Compute the single event probabilities P s

̺0
(r), ii) toss a

set of frequencies according to a multinomial distribu-
tion, iii) reconstruct the state with either reconstruction
method and compute the functions of interest, iv) carry
out steps ii) and iii) 500 times. Note that the optimal-
ity of the maximizations for ML and LS in step (ii) is
certified by convex optimization [10, 18].

Exemplarily, we first consider the four-
qubit Greenberger-Horne-Zeilinger (GHZ) state
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FIG. 2: (Color online) The performance of ML, LS, and LIN
methods depending on the number of events Ns per setting
and for four different noisy initial states ̺0. Note that the
fidelity can only be calculated linearly if the reference state is
pure which is not the case for the Smolin state [19]. Therefore
only the curves for ML and LS are plotted for the Smolin
state.

|GHZ4〉 = (|0000〉 + |1111〉)/
√
2 mixed with white

noise, i.e., ̺0 = p |GHZ4〉 〈GHZ4|+ (1 − p)11/16 where p

is chosen such that the fidelity is 〈GHZ4|̺0|GHZ4〉 = 0.8.
This state is used to simulate the Pauli tomography
scheme. Fig. 1 shows an exemplary histogram of
the resulting fidelities for Ns = 100 measurement
repetitions which is a typical value used for various
multiqubit experiments. The fidelities obtained via
LIN reconstruction fluctuate around the initial value
(FLIN = 0.799 ± 0.012). (The values given there
are the mean and the standard deviation obtained
from the 500 reconstructed states). In stark contrast,
both ML (FML = 0.788 ± 0.010) and even worse LS
(FLS = 0.749 ± 0.010) systematically underestimate
the fidelity, i.e., are strongly biased. Evidently, the
fidelities of the reconstructed states differ by more than
one standard deviation for ML and even more than five
standard deviations for LS. The question arises how
these systematic errors depend on the parameters of the
simulation. Let us start by investigating the dependence
on the number of repetitions Ns. Fig. 2a shows the
mean and the standard deviations of histograms like the
one shown in Fig. 1. for different Ns. As expected, the
systematic errors are more profound for low number of
repetitions Ns per setting s and decrease with increasing
Ns. Yet, even for Ns = 500, a number hardly used
in multiqubit experiments, FLS still deviates by one
standard deviation from the correct value. The effect
is also by no means special for the GHZ state but
was equally observed for other prominent four-party
states, here also chosen with a true fidelity of 80%, see
Fig. 2b-2d and the Supplemental Material (SM).
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Parameter estimation by linear evaluation.—Here, we
demonstrate that starting from ˆ̺LIN it is straightforward
to provide a valid, lower/upper bound and an easily com-
putable confidence region for many quantities of interest.
For that we exploit the fact that many relevant functions
are either convex, like most entanglement measures or
the quantum Fisher information, or concave, like the von
Neumann entropy. We linearize these operators around
some properly chosen state in order to obtain a reliable
lower (upper) bound. Note that typically a lower bound
on an entanglement measure is often suited for evaluat-
ing experimental states whereas an upper bound does not
give much additional information.

Recall that a differentiable function g(x) is convex if
g(x) ≥ g(x′) +∇g(x′)T (x− x′) holds for all x, x′. In our
case we are interested in a function g(x) = g[̺(x)] where
x is a variable to parametrize a quantum state ̺ in a
linear way. From convexity it follows that it is possible
to find an operator L, such that

tr(̺0L) ≤ g(̺0) (4)

holds for all ̺0 (similarly an upper bound is obtained
for concave functions). This operator can be determined
from the derivatives of g(x) with respect to x at a suit-
able point x′. For cases where the derivative is hard to
compute such an operator can also be obtained from the
Legendre transformation [23] or directly inferred from the
definition of the function g(x) [24]. A detailed discussion
is given in the SM5.

For this bound a confidence region, i.e., the error bars
in the frequentistic approach, can be calculated. For
example a one-sided confidence region of level γ can
be described by a function Ĉ on the data f such that
Prob̺0 [Ĉ ≤ g(̺0)] ≥ γ holds for all ̺0 [20]. According
to Hoeffding’s tail inequality [25] and a given decomposi-
tion of L =

∑
lsrM

s
r into the measurement operators M s

r

a confidence region then is given by

Ĉ = tr(ˆ̺LINL)−
√

h2| log(1− γ)|
2Ns

, (5)

where h2 is given by h2 =
∑

s(l
s
max

− ls
min

)2, and ls
max/min

denotes the respective extrema of lsr over r for each set-
ting s. Although not being optimal, such error bars are
easy to evaluate and valid without extra assumptions.
Since we directly compute a confidence interval on g(x)
this is also generally a tighter error bar than those de-
duced from a “smallest” confidence region on density op-
erators which tend to drastically overestimate the error
(see SM4 for an example).

In the following we show how to use a linearized op-
erator on the example of the bipartite negativity [24].
(For the quantum Fisher information [26] and additional
discussion see SM5.) A lower bound on the negativity
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FIG. 4: (Color online) Lower bound LBLIN obtained by lin-
earizing bipartite negativity for a four-qubit product (left)
and the GHZ state (right) both mixed with white noise re-
sulting in 80% fidelity. The ML and LS reconstruction leads
to a systematic overestimation of the negativity, while the
lower bound yields a valid estimate.

N(̺AB) of a bipartite state ̺AB is given by

N(̺AB) ≥ tr(̺ABL) (6)

for any L satisfying 11 ≥ LTA ≥ 0, where the super-
script TA denotes partial transposition [27] with respect
to partyA. The inequality (6) is tight if L is the projector
on the negative eigenspace of ̺TA

AB. Using this linear ex-
pression one can directly compute the lower bound on the
negativity and by using Eq. (5) the one-sided confidence
region. Any choice of L is in principle valid, however for
a good performance L should be chosen according to the
experimental situation. We assume, however, no prior
knowledge and rather estimate L by the projector on the
negative eigenspace of ˆ̺TA

ML
deduced from an additional

tomography again withNs = 100 counts per setting. One
can, of course, also start with an educated guess of L mo-
tivated by the target state one wants to prepare. In any
case, in order to apply Eq. (5) and to assure a linear
evaluation of the data the operator L must be chosen
independently of the tomographic data [12].

Fig. 4 shows the distributions of the negativity be-
tween qubits A = {1, 2} and B = {3, 4} for the four-
qubit GHZ state and for the separable four-qubit state
|ψsep〉 ∝ (|0〉+ |+〉)⊗4, each mixed with white noise such
that the fidelity with the respective pure state is 80%. In
both cases we observe that ML and LS overestimate the
amount of entanglement. Even worse, if no entanglement
is present, ML and LS clearly indicate entanglement. In
contrast, the lower bound of the negativity, as given by
Eq. (6), does not indicate false entanglement.

Conclusion.—Any state reconstruction algorithm en-
forcing physicality of the result suffers from systematic
deviations. We have shown that for the commonly used
methods and the typical measurement schemes this bias
is significant for data sizes typical in current experiments.
It leads to systematically wrong statements about de-
rived quantities like the fidelity or the negativity which
can lead to erroneous conclusions particularly for the
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presence of entanglement. Equivalent statements can be
inferred for process tomography.

We have demonstrated that the simple method of lin-
ear inversion can be used to overcome these problems in
many cases. Expectation values being linear in ̺ do not
exhibit a bias at all even if ˆ̺LIN is not physical in the
overwhelming number of cases. A linearization of convex
(concave) nonlinear physical quantities yields meaning-
ful lower (upper) bounds together with easy to calculate
confidence intervals restoring the trust in quantum state
and process tomography.
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Supplemental Material

SM1: Quantum state reconstruction using linear

inversion

In [4] it is explained how to obtain the estimate ˆ̺LIN
for an n-qubit state from the observed frequencies of a
complete set of projection measurements, i.e. 4n results.
Yet, the scheme described there is more general and can
be used for any (over)complete set of projection measure-
ments.

In the standard Pauli basis {σ0, σx, σyσz} the density
matrix of the state ̺ is given by

̺ =
1

2n

∑

µ

TµΓµ (7)

where µ = 1...4n enumerates all possible n-fold tensor
products of Pauli matrices Γ1 = σ0 ⊗ σ0 ⊗ ... ⊗ σ0,
Γ2 = σ0 ⊗ σ0 ⊗ ... ⊗ σx, etc. and with correlations
Tµ = tr(̺Γµ). To simplify our notation we will use the
following mapping for a setting s with a respective out-
come r: (r, s) −→ ν = 2n(s−1) + r − 1, hence for the
projectors, M s

r −→ Mν , and for the As
r −→ Aν , etc.

Then the probabilities to observe a result r for setting s,
or ν respectively, are given by

Pν = tr(̺Mν) =
1

2n

∑

µ

tr(MνΓµ)Tµ. (8)

Introducing the matrix B̂ with elements

Bν,µ =
1

2n
tr(MνΓµ) (9)

Eq. (8) simplifies to

~P = B̂ ~T . (10)

Inverting Eq. (10), the correlations can be obtained from
the probabilities Pν , i.e., Tµ =

∑
ν(B̂

−1)µ,νPν . Note that
this is possible for any set of measurement operators. In
case of a tomographically overcomplete set, i.e. ν > µ

the inverse B̂−1 has to be replaced by the pseudo inverse
B̂−1 −→ B+ = (B†B)−1B†. Reinserting Tµ one obtains

̺ =
1

2n

∑

ν,µ

(B̂−1)µ,νΓµPν . (11)

For finite data sets, the Pν are replaced by the frequencies
fν and with

Aν =
1

2n

∑

µ

(B̂−1)µ,νΓµ (12)

Eq. (1) is obtained.

SM2: Bias for other prominent states

The occurrence of a bias for fidelity estimation based
on ML and LS state reconstruction is by no means a
special feature of the GHZ state. In Fig. 5 we show some
further examples of the corresponding dependencies of
the bias on the number of measurements per setting Ns

for the W and the fully separable state |ψ〉 ∝ (|0〉 +
|+〉)⊗4. For all these pure states we assume that they
are mixed with white noise for an overall initial fidelity
of 80%, so that the states are not at the border of the
state space.
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FIG. 5: The behavior of ML, LS and LIN depending on the
number of events Ns per setting for different noisy initial
states ̺0.

Furthermore we observed that the fidelity values as
inferred via LS are systematically lower than those ob-
tained using ML, see Fig. 6.
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FIG. 6: Here we show the differences of the respective fidelity
estimates evaluated for each single simulated tomography ex-
periment as shown in Fig. 1 of the main text. It shows that
the respective ML or LS estimate, with one rare exception,
is always lower than the LIN estimate. Comparing ML and
LS (gray) shows that not only on average but also for every
single data set LS delivers a smaller fidelity value than ML.

SM3: Bootstrapping

As already mentioned in the main text, in many pub-
lications where QST is performed the standard error bar
is calculated by bootstrapping based on Monte Carlo
methods. One can here distinguish between paramet-
ric bootstrapping, where f (i) are sampled according to
P̂ s(r) = tr(ˆ̺(fobs)M

s
r ), and non-parametric bootstrap-

ping, where P̂ s(r) = fobs is used instead.
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We solve the problem of whether a set of quantum tests reveals state-independent contextuality
and use this result to identify the simplest set of the minimal dimension. We also show that
identifying state-independent contextuality graphs [R. Ramanathan and P. Horodecki, Phys. Rev.
Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.
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Introduction.—Contextuality, i.e., that the result of a
measurement does not reveal a preexisting value that is
independent of the set of comeasurable measurements
jointly realized (i.e., the context of the measurement),
is one of the most striking features of quantum theory
and has been recently identified as a critical resource for
quantum computing [1–3]. The earliest manifestation of
contextuality in quantum theory is the Kochen-Specker
theorem [4, 5], which states that, if the dimension d of the
quantum system is greater than 2, there exists a finite set
of elementary tests (represented by rank-one projectors
in quantum theory) such that a value 1 or 0 (represent-
ing true or false, respectively) cannot be assigned to each
of them respecting that: (i) result 1 cannot be assigned
to two mutually exclusive tests (represented in quantum
theory by mutually orthogonal projectors), and (ii) result
1 must be assigned to exactly one of d mutually exclusive
tests. Sets of elementary tests in which this assignment
is impossible are called Kochen-Specker sets [6].
Assumptions (i) and (ii) are not needed for detecting

contextuality. It can be revealed by the violation of cor-
relation inequalities satisfied by any model with noncon-
textual results. These inequalities are called noncontex-
tuality (NC) inequalities [7]. Bell inequalities [8] are a
special case of them.

Remarkably, there are NC inequalities which are vio-
lated by any quantum state for a fixed set of measure-
ments [9]. A NC inequality with this property is called a
state-independent NC (SI-NC) inequality, whereas a set
of elementary tests which can be used for such a state-
independent violation is called a state-independent con-
textuality (SIC) set.

Every Kochen-Specker set is a SIC set [10, 11], but
there are SIC sets that are not Kochen-Specker sets
[12, 13]. This observation, together with the experimen-
tal implementation of SIC sets for testing SI-NC inequali-
ties [14–19] and the emergence of applications of SIC sets
(e.g., device-independent secure communication [20], lo-
cal contextuality-based nonlocality [21], Bell inequalities
revealing full nonlocality [22], state-independent quan-
tum dimension witnessing [23], and state-independent
hardware certification [24]) stimulated the interest in the

problem of identifying SIC sets.
In some cases, one can guess that a given set of ele-

mentary quantum tests is a SIC set. Then, to prove it, it
is sufficient to construct a SI-NC inequality violated by
these tests. For example, the set of elementary quantum
tests associated with the Peres-Mermin square [25, 26]
violates a SI-NC inequality [9]; therefore, it is a SIC set.
However, in general, one cannot follow this strategy and
it is convenient to adopt a more general point of view and
consider not a specific set of elementary quantum tests,
but all sets of elementary quantum tests with a given
exclusivity graph. In this graph, vertices correspond to
tests and edges occur when two tests are mutually ex-
clusive. Since elementary tests are represented by rank-
one projectors and two of them are mutually exclusive if
and only if the corresponding projectors are orthogonal,
the exclusivity graph is equivalent to the orthogonality
graph of the corresponding projectors. This approach us-
ing graphs has been very successful in investigating the
general properties of quantum contextuality [27, 28] and
the separation between quantum theory and other hypo-
thetical theories [29–33]. An open question is when, for
a given orthogonality graph, there exists a realization of
the graph which is a SIC set. Unfortunately, it has been
notoriously difficult to answer this question [34]. The aim
of this Letter is to provide a versatile tool that allows one
to approach this problem.
Recently, Ramanathan and Horodecki (RH) [35] have

presented a solution to a relaxation of the problem of
identifying SIC sets, namely of identifying “SIC graphs.”
That is, whether a given graph admits, for any given
state, a realization as a set of projectors (with orthogo-
nality relations corresponding to edges in the graph) such
that the correlations of such projectors on that state vio-
late some NC inequality. This definition fits neither with
the definition of a SIC set above nor with most of the
previous literature (cf. Refs. [9, 10, 12, 13, 21–24, 34]).
As far as we know, the only work where a similar defini-
tion has been used is Ref. [36]. Moreover, the definition
of a SIC set in Ref. [35] is not state independent on an
operational level. The issue is that, according to this
definition, the realization of a SIC graph may depend
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on the state; the set of measurements that violate the
NC inequality may be different for different initial states.
Therefore, the definition is not state independent on an
operational level. To make an analogy, adopting a similar
definition one will reach the conclusion that a pentagon
is a “SIC graph for pure states” since any pure state
will violate the Klyachko-Can-Binicioğlu-Shumovsky NC
inequality [37] for some five rank-one projectors whose
orthogonality graph is a pentagon. In contrast, the prob-
lem of identifying SIC sets not only has a long tradition
(cf. Refs. [6, 12, 13]), but also an immediate experimental
translation (cf. Refs. [17–19, 24]).
To prove that the result in Ref. [35] does not solve the

problem of identifying SIC sets, we begin by showing that
there exists a SIC graph for which no realization violates
a NC inequality for every quantum state (Theorem 1).
After that, we present a solution to the problem of iden-
tifying SIC sets (Theorem 3). Finally, we use it to prove
a conjecture formulated by Yu and Oh in Ref. [12] on the
simplest SIC set in d = 3 (Theorem 5).

From graph theory we will use the notions of the chro-
matic number and the fractional chromatic number of a
graph (cf. Ref. [38]). Given a graph G, i.e., a set of ver-
tices and the edges connecting them, a coloring of the
graph is an assignment of colors to vertices such that
vertices connected by an edge are associated with differ-
ent colors. The chromatic number χ(G) is the minimum
number of colors needed. Similarly, the fractional chro-
matic number χf (G) is the minimum of a

b
such that ver-

tices have b associated colors, out of a colors, where ver-
tices connected by an edge have associated disjoint sets
of colors. χf (G) can be computed as a linear program.

Results.—The operational state dependence of a SIC
graph as defined in Ref. [35] is apparent in the following
theorem.

Theorem 1. There exists a SIC graph for which no re-
alization is a SIC set.

Proof.—In Ref. [35] it is proven that a necessary and
sufficient condition for a graph G with a [d, r]-realization
(i.e., a realization in dimension d by means of rank-r pro-
jectors) to be a SIC graph is that the fractional chromatic
number χf (G) is strictly larger than d/r.
However, consider the 13-vertex graph of Yu and Oh

[12], GYO. This graph has a [3, 1]-realization and its
fractional chromatic number is χf (GYO) =

35
11 . Now con-

sider the 14-vertex graph GYO+1 constructed by adding
one vertex to GYO and linking this new vertex with the
13 vertices of GYO. Clearly, this graph has a [4, 1]-
realization and χf (GYO+1) = 35

11 + 1 > 4. It is true
that, for any state in d = 4, there is a realization which
violates a NC inequality. However, whatever the realiza-
tion, when the system is in the eigenstate corresponding
to the new vertex, there is an obvious noncontextual as-
signment of results, namely, one to the 14th projector
and zero to all others.

Now we will address the problem of identifying SIC
sets. We first recall a result from Ref. [39] that helps us
to identify sets of (not necessarily rank-one) projectors
for which there is a SI-NC inequality.

Theorem 2. A set of observables {A1, . . . , An } with
spectra {σ(A1), . . . , σ(An)}, and contexts C (i.e., the set
of sets of comeasurable observables) violates the SI-NC
inequality

∑

c∈C

λc〈
∏

k∈c

Ak〉 ≤ η (1)

with 0 ≤ η < 1 and real coefficients λc, if and only if

∑

c∈C

λc

∏

k∈c

ak ≤ η for all a and
∑

c∈C

λc

∏

k∈c

Ak ≥ 11, (2)

where the entries ak in a = (a1, . . . , an) assume any value
from σ(Ak).

Then, the necessary and sufficient condition for a set
of rank-one projectors to constitute a SIC set is given by
the following.

Theorem 3. A set of rank-one projectors S =
{Π1, . . . ,Πn } is a SIC set if and only if there are non-
negative numbers w = (w1, w2, . . . ) and a number 0 ≤
y < 1 such that

∑

j∈I

wj ≤ y for all I and
∑

i

wiΠi ≥ 11, (3)

where I is any set such that i, j ∈ I implies ΠiΠj 6= 0
(i.e., I is any independent set of the orthogonality graph
of S).
In particular, w gives rise to the SI-NC inequality

∑

i

wi〈Πi〉 −
∑

i

wi

∑

j∈N (i)

〈ΠiΠj〉 ≤ y, (4)

where N (i) = { j | ΠiΠj = 0 } is the orthogonality neigh-
borhood of i.

Proof.—For proving sufficiency, we will prove that, for
a given (y, w) satisfying conditions (3), with 0 ≤ y < 1,
inequality (4) is a valid NC inequality and it is violated
for every state. For that, it is enough to realize that
among the noncontextual assignments maximizing the
left-hand side of inequality (4) are those that respect
the orthogonality conditions; i.e., two orthogonal projec-
tors could not both have been assigned the value 1. Re-
specting the orthogonality conditions precisely amounts
to assign 1 to the elements of a set I appearing in con-
ditions (3) and, hence, the bound y holds for inequal-
ity (4). The proof goes as follows. Let us consider or-
thogonal projectors Πi and Πj and any noncontextual
assignment p ∈ {0, 1}n such that pi = 1 but pj = 0. By
changing the value of pj , i.e., violating the orthogonality
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condition, we get an extra contribution wj from the first
term and −

∑
k∈N (j)(wj +wk)pk ≤ −wj from the second

term, decreasing the total value of the left-hand side of
inequality (4). This proves that inequality (4) is a valid
NC inequality. By condition (3), it is violated by any
quantum state.

For proving necessity, we show that if {Πi} give rise
to a violation of a linear NC inequality for every state,
then conditions (3) are satisfied. Let us assume, for some
(λ, η), that the following inequality is violated by any
state

∑

C

λC〈
∏

k∈C

Πk〉 ≤ η, (5)

where the sum is over all cliques C different from the
empty set in the orthogonality graph of S, corresponding
to all possible contexts, and λC are real numbers. No-
tice that the use of a linear expression in inequality (5)
is not a restriction as it follows from the Hahn-Banach
theorem (cf., e.g., Ref. [40]). In fact, the set of quantum
correlations for all states and the set of noncontextual
correlations are (compact) convex sets, and hence the
sets either intersect or they can be separated by a hyper-
plane, i.e., distinguished via a linear inequality. Notice
also that inequality (5) contains all of the possible cor-
relations that are jointly measurable; i.e., it includes all
contexts C, with a generic coefficient λ.

Since inequality (5) holds, in particular, for all assign-
ments respecting orthogonality, we have

∑
k∈I

λ
{ k }

≤ η

for any independent set I. At the same time, we as-
sume a state-independent violation and hence, without
loss of generality,

∑
k λ{ k }

Πk ≥ 11 and η < 1. [In general
we have

∑
k λ{ k }

Πk ≥ ξ11 and η < ξ. But the assign-
ment p ≡ (0, 0, . . . ) yields 0 ≤ η < ξ, which allows us to
rescale λC → λC/ξ and η → η/ξ.] Eventually, we identify
wi = max { 0, λ

{ i } } and y = η. Indeed, inequality (5)
has to hold for any assignment p = (p1, . . . , pn) respect-
ing orthogonality and having pk = 0 for all λ

{ k }
< 0.

This way, the condition in Eq. (3) is obeyed by that iden-
tification.
We mention that the condition in Theorem 2 as well as
that in Theorem 3 can be verified by means of a semidef-
inite program. Semidefinite programs are a class of op-
timization problems that can be solved numerically with
a certificate of optimality [41].

At this point, it is interesting to point out the relation
between Theorem 3 and the results in Ref. [35]. Accord-
ing to Ref. [35], to conclude that a graph of orthogonality
is a SIC graph, it is sufficient to check the expectation
value of

∑
j wiΠi on the maximally mixed state ρ = 11/d.

Assuming rank-one projectors, we can substitute the con-
dition

∑
i wiΠi ≥ 11 with 1

d

∑
i wi ≥ 1, yielding RH’s re-

sult. In fact, the condition in Eq. (3) can be formulated
in terms of the existence of a solution greater than d for

the linear program

maximize:
∑

i

wi

subject to:
∑

j∈I

wj ≤ 1 for all I,

wi ≥ 0 for all i.

(6)

Every (w, y) obeying Eq. (3) with y < 1 can be used to
achieve

∑
i wi > d by rescaling all the weights by 1/y.

The linear program in Eq. (6) is the dual problem of the
fractional chromatic number χf (G) of the orthogonality
graph G (also known as the fractional clique number, cf.
Ref. [38]); hence, both yield the same optimal value.

Together with the fact that the chromatic number
χ(G) is lower bounded by the fractional chromatic num-
ber χf (G) [38], we have the following.

Theorem 4. Necessary conditions for a set of rank-one
projectors in dimension d to be a SIC set are that for the
orthogonality graph G, (i) χf (G) > d and (ii) χ(G) > d.

Condition (i) is also a direct consequence of the results
in Ref. [35], where it was demonstrated in addition that,
in general, condition (ii) is strictly weaker than condition
(i). However, condition (ii) has the advantage of being
solvable exactly by simple integer arithmetic, while con-
dition (i) is the solution to a linear program.
The minimal dimension in which SIC sets exist is d = 3

[5]. Therefore, identifying the smallest SIC set in d =
3 is a problem of fundamental importance. Using the
previous results we can prove a conjecture from Ref. [12].

Theorem 5. In dimension d = 3, there exists no SIC
set with less than 13 projectors. The set provided by Yu
and Oh in Ref. [12] is therefore the simplest for d = 3.

Proof.—The orthogonality graph of a SIC set has to
obey at least the following necessary conditions: (a) that
the graph has a [3, 1]-representation, and (b) that the
graph has a fractional chromatic number greater than 3.
From condition (a) it follows that the graph must be

square free, because for a projector represented by a ver-
tex of the square, the other two connected to it must be
in the orthogonal plane, and the fourth is orthogonal to
both, so it must be the same as the first.
The first step is to generate all nonisomorphic, i.e., not

obtained via a relabeling, square-free connected graphs
with 12 or fewer vertices and then calculate their chro-
matic number. It is sufficient to consider connected
graphs since for a disconnected graph the chromatic num-
ber is the largest chromatic number of its connected com-
ponents.
For this, we use the utility geng from the software

package nauty v2.5r9 [42], and we find 143 129 graphs
with such properties. Among them, there is only one
graph G with χ(G) > 3, which is depicted in Fig. 1(c).
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orthogonality principle, Phys. Rev. A 89, 032117 (2014).

[33] A. Cabello, Exclusivity principle and the quantum bound
of the Bell inequality, Phys. Rev. A 90, 062125 (2014).

[34] A. Cabello, State-independent quantum contextuality
and maximum nonlocality, arXiv:1112.5149v1.

[35] R. Ramanathan and P. Horodecki, Necessary and suf-
ficient condition for state-independent contextual mea-
surement scenarios, Phys. Rev. Lett. 112, 040404 (2014).
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We show that, regardless of the dimension of the Hilbert space, there exists no set of
rays revealing state-independent contextuality with less than 13 rays. This implies
that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 030402
(2012)] is actually the minimal set in quantum theory. This contrasts with the case
of Kochen–Specker sets, where the smallest set occurs in dimension four.

I. INTRODUCTION

Fifty years ago, Kochen and Specker1 answered the following question: Is it possible
that, independently of which is the quantum state, the quantum observables each possess a
definite single value, regardless of whether they are measured or not? The Kochen–Specker
(KS) theorem states that this is impossible if the dimension of the underlying Hilbert space
is larger than two. One consequence of this theorem is the impossibility of reproducing
quantum theory in terms of noncontextual hidden variable theories, defined as those in
which the outcomes are independent of the context. A context is a set of mutually compatible
quantum observables. In this sense, quantum theory is said to exhibit contextuality.

The original proof of the KS theorem had two other distinctive traits: (i) It only used a
finite set of observables with two outcomes, where one outcome is represented by a rank-one
projection onto a ray of the Hilbert space. Hereafter, as it is common in the literature, we
will use ray as synonym of self-adjoint rank-one projection. (ii) The set is KS-uncolorable,
i.e., it is impossible to assign values 1 or 0 to each ray while respecting that two orthogonal
rays cannot both have assigned 1, and 1 must be assigned to exactly one of d mutually
orthogonal rays. These restrictions are motivated by the observation that orthogonal rays
correspond to mutually exclusive outcomes of a sharp observable and d mutually orthogonal
rays correspond to an exhaustive set of mutually exclusive outcomes for a Hilbert space of
dimension d. KS-uncolorable sets of rays are called KS sets.2

The original KS set had 117 rays in d = 3, which can be grouped in 132 contexts. There
have been many efforts for finding simpler sets exhibiting state-independent contextuality
(SIC). For instance, Peres and Mermin realized that, by considering observables not repre-
sented by rank-one projections and replacing KS uncolorability by a similar condition, one
can find very compact sets of observables in d = 4 and d = 8.3,4 Still, these sets can be
rewritten in terms of KS sets.5,6 So far, it has been shown2 that the KS set of minimum
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cardinality occurs in d = 4 and has 18 rays.7 It also has been proved2 that, in d = 3, the
KS set with minimum cardinality has more than 22 and less than 32 rays.8 On the other
hand, the KS set with minimum number of contexts known occurs in d = 6 and has seven
contexts (and 21 rays).9

A big step was the observation that SIC based on rays does not need to rely on KS-
uncolorable sets. It is enough that they lead to a state-independent violation of a noncon-
textuality inequality. This substantially simplifies the methods for revealing SIC in d = 3.
Specifically, Yu and Oh singled out one set with 13 rays in d = 3.10 The optimal state-
independent noncontextuality inequalities for this set were identified in Ref. 11. Sets of rays
having a state-independent violation of a non-contextuality inequality are called SIC sets.

Recent experiments testing SIC12–20 and an increasing number of applications, such as
device-independent secure communication,21 local contextuality,22,23 Bell inequalities re-
vealing full nonlocality,24 state-independent quantum dimension witnessing,25 and state-
independent hardware certification,19 have stimulated the interest in the following question:
Which is the minimal set of rays needed for SIC? It is known that, for d = 3, the answer is
13,26 but it would be well possible that the minimal set occurs in some higher dimension, as
it happens for KS sets. Here we prove that this is not the case.

II. MAIN RESULT

The basis of our proof is a condition identified by Ramanathan and Horodecki26,27 to be
necessary for any SIC set in dimension d, namely that the orthogonality graph G of the
set of rays has fractional chromatic number χf (G) > d. The orthogonality graph of a SIC
set is the graph in which orthogonal rays are represented by adjacent vertices. A coloring
of G is an assignment of colors to the vertices such that adjacent vertices are associated
with different colors. χf (G) is the infimum of a

b
such that vertices have a set of b associated

colors, out of a colors, where adjacent vertices have associated disjoint sets of colors.
Instead of considering all possible SIC sets of size n, we rather investigate all graphs with

n vertices. Then, we consider the nondegenerate orthogonal representations (ORs) of any
graph G. An OR is an injection φ, mapping the vertices of G to rays, such that adjacent
vertices in G are mapped to orthogonal rays. The OR is faithful (FOR) if, conversely, any
two orthogonal rays correspond to an edge of G. We denote by Ξ(G) the smallest dimension
of the Hilbert space which still admits a FORs of G. It then follows from the Ramanathan–
Horodecki condition that G is the orthogonality graph of a SIC set only if χf (G) > Ξ(G).
Our main results is then as follows.

Theorem 1. Any graph G with 12 or less vertices has χf (G) ≤ Ξ(G).

Hence, according to quantum theory, no SIC set with less than 13 rays exists.

III. PROOF OF THEOREM 1

We proceed by an exhaustive search for a counterexample, examining all 166 122 463 890
nonisomorphic graphs with up to 12 vertices. Applying a cascade of filters we eventually
discard all graphs and prove this way Theorem 1. We start by introducing the criteria for
defining these filters and then explain our procedure providing intermediate results for each
of the filters.
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We denote by V (G) and E(G) the sets of vertices and edges of G, respectively. The
complement G of G is a graph that has the same vertices while the edges are the comple-
mented set, i.e., e ∈ E(G) if and only if e /∈ E(G). A subgraph S of G is any graph with
V (S) ⊂ V (G) and E(S) ⊂ E(G). A subgraph is induced if S is also a subgraph of G. It is
a simple observation that any (F)OR is also a (F)OR of any (induced) subgraph. Defining
ξ analogously to Ξ, but for ORs,1 this proves the following.

Lemma 2. By definition, ξ(G) ≤ Ξ(G). If S is a subgraph of G, then ξ(S) ≤ ξ(G).
Similarly, if S is an induced subgraph of G, then Ξ(S) ≤ Ξ(G).

The union of two graphs G1 ∪ G2 consists of the disjoint union of the respective vertex
sets and edge sets. The join G1 +G2 of two graphs is the union of both graphs adding one
edge between any pair (v1, v2) ∈ V (G1) × V (G2). The graph K1 with one vertex and no
edge takes a special role in the following simple relations.

Lemma 3. For two graphs G1 and G2 and f ∈ {χf ,Ξ, ξ }, we have f(G1 ∪ G2) =
max[f(G1), f(G2)] and f(G1 + G2) = f(G1) + f(G2), with the exceptions Ξ(K1 ∪K1) = 2
and ξ(K1 ∪K1) = 2.

Proof. For χf the relations are well-known, cf., e.g., Ref. 29, Sec. 3.10. For Ξ and ξ and the
first relation, the maximum is at least a lower bound, since any (F)OR of G1∪G2 must also
be a (F)OR of G1 and of G2. Conversely, if at least one of the graphs has more than one
vertex then also its (F)OR has at least dimension two. This (F)OR can then be transformed
by a unitary rotation, such that the image of the (F)ORs of G1 and G2 are disjoint and
also no rays are orthogonal. Hence one can combine any two (F)ORs of G1 and G2 to a
(F)OR in the larger of the dimensions of both (F)ORs. The second relation follows at once,
noting that { v1, v2 } ∈ E(G1 +G2) if and only if either v1 ∈ V (G1) and v2 ∈ V (G2), or vice
versa, or { v1, v2 } ∈ E(G1), or { v1, v2 } ∈ E(G2). Hence φ is a (F)OR for G1 + G2 if and
only if it is a (F)OR for G1 and G2, and the spans of φ[V (G1)] and φ[V (G2)] are mutually
orthogonal.

These relations are useful for our purposes since they imply that, if a graph or its comple-
ment is not connected and χf (G) > Ξ(G), then this must already be true for a subgraph of G.
Hence in our search we only need to consider connected graphs the complement of whose are
also connected. Another important consequence of Lemma 3 is that ξ(nK2+mK1) = 2n+m,
where Kℓ is the completely connected graph with ℓ vertices.30,31 This implies Ξ(G) ≥ 2n+m
as soon as nK2 +mK1 is a subgraph of G. A weaker form of this condition is that if Kℓ is
a subgraph of G, then Ξ(G) ≥ ℓ.

As a final ingredient to our proof, we use the seven graphs listed in Table I. If any of
those graphs is an induced subgraph S of G, then Ξ(G) ≥ Ξ(S) applies. The values of
Ξ(S) are obtained by construction, and due to Lemma 3 it is sufficient to study the five
graphs in Fig. 1. The construction is similar for all five graphs and we demonstrate the
method only for the most complicated case Ci11(1, 2, 3) \ { v }, cf. Fig. 1 (e). The vertices
{ 4, 5, 6, 7 } form the induced subgraph K4 and, without loss of generality, we can choose
φ(4) = (1, 0, 0, 0, 0), φ(5) = (0, 1, 0, 0, 0), φ(6) = (0, 0, 1, 0, 0), and φ(7) = (0, 0, 0, 1, 0). Since
vertex 3 is adjacent to the vertices { 4, 5, 6 } and not adjacent to vertex 7 or 8, and vertex
7 is adjacent to 8, we have φ(3) = (0, 0, 0, a, 1) with some a 6= 0. By similar arguments,

1 The orthogonal rank of a graph is also sometimes denoted by ξ,28 but there the minimum is taken without

the restriction that the OR is an injection. This yields slightly different properties.
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Graph name In Fig. 1 graph6 Ξ Filter Remaining

H (a) Ebtw 5 (3.1) 124 220

Ci8(1, 2) (b) Gbijmo 5 (3.2) 124 216

H +K1 — Fbvzw 6 (3.3) 4 722

Caterpillar3,2
2

(c) Fbtzw 6 (3.4) 569

Caterpillar2,1,1
3

(d) Fbuzw 6 (3.5) 400

Ci11(1, 2, 3) \ { v } (e) Ibgzmngjg 6 (3.6) 366

H +K2 — Gzznnk 7 (3.7) 0

TABLE I. List of graphs used for filtering via Lemma 2. The graphs Caterpillarn1,...,nk

k are linear

graphs of length k, where nv leafs are added to vertex v. H = Caterpillar2,2
2

, Cin(e1, . . . , em) is the

circulant graph, where each vertex is connected to its e1th-, . . . , emth-next neighbor. G \ { v } is

the graph G with one vertex removed. Selected graphs are displayed in Fig. 1. graph6 is a standard

graph data format widely used in computer software.37 The number Ξ is the smallest dimension of

any faithful nondegenerate orthogonal representation. The last column shows the number of graphs

remaining after filtering for the induced subgraph, cf. main text.

FIG. 1. Graphs from Table I. Graphs (a) and (b) have Ξ = 5 and graphs (c)–(e) have Ξ = 6. The

other two graphs from Table I are obtained by adding one or two vertices to graph (a) each being

connected to all other vertices.

φ(2) = (0, 0, b,−1/a∗, 1) with b 6= 0, and, by symmetry, φ(8) = (c, 0, 0, 0, 1) and φ(9) =
(−1/c∗, d, 0, 0, 1), with c, d 6= 0. Using, that vertex 1 is adjacent to the vertices { 4, 9, 3, 2 },
we have φ(1) = (0,−1/d∗,−x/b∗,−1/a∗, 1) with x = 1+ 1/|a|2, and, by symmetry, φ(10) =
(−1/c∗,−y/d∗,−1/b∗, 0, 1) with y = 1 + 1/|c|2. Eventually, vertex 1 and 10 are adjacent,
implying y/|d|2 + x/|b|2 + 1 = 0, which is a contradiction. However, it is straightforward to
find a FOR in dimension 6, proving Ξ[Ci11(1, 2, 3) \ { v }] = 6.
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order graphs (1) (2.1) (2.2)

1 1 1 0 0

2 2 0 0 0

3 4 0 0 0

4 11 1 0 0

5 34 8 1 0

6 156 68 2 0

7 1 044 662 28 0

8 12 346 9 888 456 0

9 274 668 247 492 15 954 3

10 12 005 168 11 427 974 957 882 98

11 1 018 997 864 994 403 266 99 869 691 5 765

12 165 091 172 592 163 028 488 360 19 715 979 447 560 500

TABLE II. Number of nonisomorphic graphs with 1–12 vertices. (1)–(2.2) after filtering, cf. main

text.

For all graphs with less than 13 vertices, we discard those graphs which satisfy at least
one of the following filter criteria:
(1) G or G is not connected.
(2.1) G has subgraph Kℓ, where χf (G) ≤ ℓ.
(2.2) G has subgraph nK2+mK1, where χf (G) ≤ 2n+m < χf (G)+1 and m ∈ { 0, 1 }.
(3.1)–(3.7) G has an induced subgraph S from Table I with χf (G) ≤ Ξ(S).

For obvious reasons, we fall back to a computer-based proof. We use geng from the
software package nauty32,33 to generate all nonisomorphic graphs. The fractional chromatic
number can be obtained by solving the linear program,29,34

maximize:
∑

v∈V (G)

xv

subject to:
∑

v∈I

xv ≤ 1, for all I of G

xv ≥ 0 for all v ∈ V (G),

(1)

where I are independent sets of G, i.e., sets of vertices where all vertices are mutually
nonadjacent. We find optimal solutions to this program using the software package GLPK35

and verify the correctness of the solution by applying the strong duality of linear programs,
using an accuracy threshold of ǫ = 10−12. We approximate the floating-point value obtained
for χf by a rational number with less than ǫ deviation, while constraining the denominator
to be not larger than nm, where n is the number vertices of G and m is the number of
maximal independent sets. This procedure always succeeds and ensures that the calculation
of χf is exact, despite floating-point arithmetic being used in intermediate steps.

We apply all filters (1)–(3.7) consecutively so that each filter reduces the number of
candidate graphs. The numbers of graphs remaining after each step are shown in Table II,
for filters (1), (2.1), and (2.2), and as a function of the number of vertices of the graph.
The list of 566 366 graphs remaining after filter (2.2) is available in graph6-format.36 For
the filters (3.1)–(3.7), we show in Table I the total number of remaining graphs after each
filter. No graph remains after applying all filters, which proves Theorem 1.
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IV. CONCLUSIONS

Contextuality is a fundamental feature of quantum observables and can be completely
detached from any features of the quantum state of the system. This state-independent
contextuality already occurs for the most elementary case of observables being sharp and
having only two outcomes, one of which is nondegenerate; such observables can be repre-
sented by rays in a Hilbert space. Here we have shown that state-independent contextuality
with elementary observables requires at least 13 different observables by performing an ex-
haustive search over all cases with less observables. The Yu–Oh set is an example of such 13
observables and is already realizable on a three-level quantum system, which is the smallest
quantum system allowing for contextuality. This is in contrast to the first instances of state-
independent contextuality, the Kochen–Specker sets, where the smallest set cannot be real-
ized on a three-level system. Therefore, fifty years after the discovery of state-independent
contextuality in quantum theory, we finally have the answer to the question of which is the
simplest way to reveal it, i.e., which is the smallest set of elementary observables exhibiting
state-independent contextuality.
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Quantum correlations are stronger than all nonsignaling correlations produced by

n-outcome measurements

Matthias Kleinmann∗

Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain

Adán Cabello†

Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain

We show that, for any n, there are m-outcome quantum correlations, with m > n, which are
stronger than any nonsignaling correlation produced from selecting among n-outcome measure-
ments. As a consequence, for any n, there are m-outcome quantum measurements that cannot be
constructed by selecting locally from the set of n-outcome measurements. This is a property of the
set of measurements in quantum theory that is not mandatory for general probabilistic theories.
We also show that this prediction can be tested through high-precision Bell-type experiments and
identify past experiments providing evidence that some of these strong correlations exist in nature.
Finally, we provide a modified version of quantum theory restricted to having at most n-outcome
quantum measurements.

Introduction.—The violation of Bell inequalities [1–6]

does not only show the impossibility of local realism

[7], but also demonstrates (i) the existence of entangled

states, i.e., states which cannot be produced by choos-

ing among states produced locally, and (ii) the existence

of incompatible measurements, i.e., measurements whose

outcomes cannot be obtained from a single joint measure-

ment. Remarkably, this holds not only assuming quan-

tum theory (QT) but also holds for the much broader set

of general probabilistic theories (GPTs) [8–11]. GPTs in-

clude classical probability theory and QT, and also the-

ories admitting supraquantum nonsignaling correlations,

such as, e.g., Popescu-Rohrlich boxes [12].

Svetlichny pointed out that (i) can be refined and that

for any number of parties n, there are correlations pre-

dicted by QT that cannot be explained by any GPT in

which all states are produced by choosing among (n−1)-
partite entangled states [13–15]. Hence, the violation

of n-partite Svetlichny inequalities [16–19] demonstrates

the existence of genuinely n-partite entangled states, and

therefore puts strong constraints on which GPTs are suit-

able to describe nature.

Here we address the problem of whether there is a sen-

sible way to go beyond (ii) and, assuming that QT is

correct, constrain more rigidly the structure of the set of

measurements in any GPT describing nature. Our main

result is the proof that, according to QT, nature does pro-

duce correlations which cannot be generated by shared

randomness (e.g., by means of local hidden variables) and

nonsignaling correlations for which the number of out-

comes is limited to n. In this sense, we show that quan-

tum correlations are not n-chotomic, for any n = 2, 3, . . . .
This implies that, the same way Bell inequality exper-

iments exclude all local realistic theories, QT predicts

that certain experiments can exclude all GPTs in which

∗ matthias_kleinmann001@ehu.eus
† adan@us.es

FIG. 1. Illustration of a three-outcome measurement which
can be explained as selecting one from three two-outcome
measurements. From the outside, the measurement appara-
tus (represented by the outer box) has three outcomes (rep-
resented by three lights of different colors). The state of a
physical system tested by the apparatus is described by ηα,
where α = 1, 2, 3 is a variable that is hidden to the experi-
menter but can be read off by the measurement apparatus (il-
lustrated by a robot inside the box using a magnifying glass),
without disturbing the state of the system. From the inside,
the measurement apparatus works as follows: based on the
value of α (here: α = 3) a corresponding two-outcome mea-
surement Dα is selected (as the robot does by operating the
switch selecting the measurement D3).

measurements are locally selected from n-outcome mea-

surements. A possible selection mechanism, in which all

measurements are produced from two-outcome measure-

ments with the help of hidden variables, is illustrated in

Fig. 1.

However, according to our analysis, such experiments

require visibilities beyond what is currently feasible. This

motivates us to consider a particular subclass of GPTs:

those in which measurements are locally selected from

n-outcome quantum measurements. We identify past ex-

periments which, for n = 2 and n = 3 and under some

assumptions, may be taken as experimental falsifications

of this subclass of GPTs. Finally, we take the possibility

seriously that QT does not account for correlations in na-
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ture and provide a modified version of QT restricted to

having at most n-outcome quantum measurements. This

theory shows that nonsignaling correlations for which the

number of outcomes is limited to n constitute an alter-

native that should be experimentally tested.

Quantum correlations are not n-chotomic.—For

m > n, the set of m-outcome measurements in QT is

strictly larger than the convex hull of the n-outcome

measurements [20]. Hence, there are, e.g., three-outcome

quantum measurements which cannot be implemented

by choosing one from a set of two-outcome quantum

measurements. Here we present a result which goes

beyond this observation. We demonstrate that if QT is

correct, then any GPT describing nature needs to share

this property. For this, we prove the yet more general

result that any GPT not having this property cannot

reproduce the correlations predicted by QT. This result

only depends on properties of correlations and does not

rely on how the preparation and measurement devices

work. Therefore, it enables us to exclude all those GPTs

in a device-independent way.

Suppose that two parties can perform several measure-

ments on a bipartite system and that each party can inde-

pendently choose among the measurement settings. For

a fixed measurement setting µ on the first party and ν on

the second party, we write Pµ,ν(k, ℓ) for the probability to

obtain the corresponding outcomes k and ℓ. A set of such

correlations is nonsignaling, if
∑

ℓ Pµ,ν(k, ℓ) ≡ Pµ, (k) is

independent of ν and
∑

k Pµ,ν(k, ℓ) ≡ P ,ν(ℓ) is inde-

pendent of µ. We are now interested in the case where

the number of measurement outcomes is limited to n,

i.e., the measurements are n-chotomic. An n-chotomic

local measurement obeys Pµ, (k) = 0 for all k, except

for a subset of size n, or, similarly, P ,ν(ℓ) = 0 for all

ℓ, except for a subset of size n. The set of nonsignaling

n-chotomic correlations Pn is then the convex hull of the

set of nonsignaling correlations where all measurements

are, at most, n-chotomic.

We address the question of whether the set of quan-

tum correlations contains correlations that are not in Pn

by considering the combinations of correlations in the

Collins–Gisin–Linden–Massar–Popescu inequalities [21]

in the formulation of Zohren and Gill [22], namely,

I
′(P ) = P2,2(k < ℓ) + P1,2(k > ℓ) + P1,1(k < ℓ)

+P2,1(k ≥ ℓ),
(1)

where P2,2(k < ℓ) =
∑

k<ℓ P2,2(k, ℓ), and similarly for

the other terms. I ′ can be evaluated for any set of bi-

partite correlations P which features at least two mea-

surement settings per party. We can now state our main

result.

Theorem 1. For any n, there is an m > n and quantum

correlations Q ∈ Pm, such that I ′(Q) < inf[I ′(Pn)].

Proof. It has been shown [23] that for any ε > 0, there

exists an m and some quantum correlations Q ∈ Pm

such that I ′(Q) < ε. In Appendix A we prove that qn ≡

inf[I ′(Pn)] > 0 for any n. Therefore, by choosing ε =
qn/2, the assertion follows.

This proves that, for any n, there are quantum corre-

lations which are not nonsignaling n-chotomic. For ex-

ample, the hypothetical Popescu–Rohrlich box [12] is a

GPT predicting correlations that are impossible accord-

ing to QT. However, this GPT only contains dichotomic

measurements. Hence, Theorem 1 reveals that QT con-

tains correlations that are impossible to achieve for a

Popescu–Rohrlich box.

Consequence 2. QT contains correlations that can-

not be explained by dichotomic GPTs, even if we admit

supraquantum correlations, such as Popescu–Rohrlich

boxes.

Experiments.—Theorem 1 gives rise to the question:

Is it feasible to experimentally demonstrate the existence

of correlations which cannot be explained by n-chotomic

GPTs with current quantum technology? As shown in

Theorem 1, in principle, we could use experiments aiming

to violate I ′ for this purpose. However, in practice, this

approach is rather unfeasible since, even for excluding

dichotomic GPTs, we would need to observe a value of I ′

below 1
2 , something that requires quantum measurements

with at least ten outcomes [22]. Further investigation

is therefore needed in order to identify inequalities with

more modest experimental demands.

As a first step in this direction, we explore whether

it is possible to experimentally exclude GPTs in which

measurements are produced by selecting from, at most,

n-outcome quantum measurements. These GPTs consti-

tute interesting variants of QT in which the sets of mea-

surements are arguably simpler than the one of QT, as

we discuss below. In addition, unlike most alternatives

to QT investigated in the past (e.g., local realistic theo-

ries), they share most of the predictions of QT, including

the violation of Bell inequalities.

For this purpose, we compute the upper bounds on

1 − I ′ for GPTs for dichotomic and trichotomic quan-

tum measurements when the outcomes k, l take values

1, 2, 3 (I3) or values 1, 2, 3, 4 (I4). We observe that

although violating the resulting inequalities is experi-

mentally demanding, there is already experimental ev-

idence [27, 28, 30] supporting that there are measure-

ments which cannot be explained choosing from quan-

tum dichotomic or quantum trichotomic measurements.

Interestingly, when we compute the upper bounds for

the bipartite all-versus-nothing Bell inequality with three

four-outcome measurements [26], we observe that the re-

sults of a previous experiment, show a clear violation

of the quantum trichotomic bound [29]. This suggests

that this inequality can be a powerful tool to provide

conclusive evidence of the existence of genuinely nontri-

chotomic quantum measurements. We also compute the

upper bounds of an inequality due to Vértesi and Bene

[24] which, so far, has not been tested experimentally.

However, it is a priori interesting for our considerations,
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VB [24] I3 [21, 25] I4 [21] AN [26]

2-outcome 21.068∗ 0.20711 0.20711 8.1962

3-outcome — — 0.30495 8.1962

Quantum 21.090∗ 0.30495∗ 0.36476∗ 9.0000∗

2-visibility 99.97% 90% 86% 92%

3-visibility — — 95% 92%

Experiment none Ref. [27] Ref. [28] Ref. [29]

2-violation 5.5σ 16σ 70σ

3-violation — — 4.3σ 70σ

TABLE I. Upper bounds on correlations, required visibility,
and experimental results. Values with an asterisk∗ have been
established in prior work. VB stands for the combination of
correlations in the Vértesi–Bene inequality [24], In for 1− I ′

with possible outcomes k, ℓ = 1, 2, . . . , n, and AN for the cor-
relations in an all-versus-nothing inequality [26]. The rows
“2-outcome,” “3-outcome,” and “Quantum” list upper bounds
when quantum measurements have only two, only three or an
unrestricted number of outcomes, respectively. In the rows
“2-visibility” and “3-visibility” the required visibility (absence
of white noise, i.e., minimal p if the prepared state is a mix-
ture of the target state and a completely depolarized state,
̺prepared = p̺target + (1 − p)̺depolarized) is shown, where the
former is for violating the two-outcome bound and the latter
for violating the three-outcome bound. In the last rows, ob-
served experimental violations of the two-outcome and three-
outcome bounds are shown, in terms of multiples of statistical
standard deviations.

since it can be violated by a two-qubit system. Unfortu-

nately, we find that the visibility required to falsify di-

chotomic quantum measurements using the Vértesi–Bene

inequality is too high for current experiments.

We have summarized all our calculations and the sig-

nificant experimental results in Table I. The methods

that we have used for calculating the upper bounds are

described in Appendix B. It is important to remark that

all mentioned experiments fail to satisfy several of the

conditions needed to extract loophole-free conclusions.

For example, all of them require the fair sampling as-

sumption due to the low detection efficiency. Further-

more, in all of these experiments, locality is assumed

rather than enforced by spacelike separation. Most

critically, in all studied cases, the n-outcome measure-

ments are actually implemented using dichotomic mea-

surements due to a limited number of detectors. But the

existing experiments suggest that a loophole-free version

of these experiments is within current experimental reach

and can demonstrate the existence of genuinely nondi-

chotomic and nontrichotomic quantum measurements.

At this point, the conclusion is that there is already ev-

idence that there are correlations in nature which cannot

be explained by GPTs with dichotomic and trichotomic

quantum measurements. However, more experimental ef-

fort is needed for a loophole-free confirmation of this re-

sult, and even more theoretical and experimental effort

is needed for demonstrating correlations which cannot be

explained by more general GPTs with dichotomic mea-

surements.

Probabilistic theories with n-chotomic measure-

ments.—Our main result, Theorem 1, establishes that

nonsignaling n-chotomic correlations P ∈ Pn cannot

explain all quantum correlations. In this section, we

take the possibility seriously that QT does not account

for correlations in nature and we argue how n-chotomic

measurements with fixed n may constitute a plausible

alternative to the construction used in QT.

The first argument is the observation that, even in the

everyday use of QT, we find situations in which the set

of actual measurements is only a subset of the set of

measurements possible a priori. One example is the su-

perselection rules arising from the nonexistence of certain

ways of manipulating a system and the constraints on its

time evolution [31]. Another example arises when quan-

tum systems can only be manipulated locally. There,

the standard paradigm is the paradigm of local opera-

tions and classical communication in which several sepa-

rated parties have access to a shared composite quantum

system but there is no quantum interaction between the

parts. Consequently, there are outcomes of two-outcome

measurements that cannot participate in certain mea-

surements with more than two outcomes [32, 33].

The second argument why n-chotomic measurements

may be a plausible alternative to QT is its simplic-

ity. From the perspective of GPTs, the fact that a the-

ory includes measurements which cannot be created by

choosing from two-outcome measurements is surprising:

Any measurement with more than two outcomes can be

coarse-grained to a two-outcome measurement (k, not k),
simply by only distinguishing between the outcome la-

beled k and any other outcome. Now, consider the con-

verse problem. Suppose that we have the set of all two-

outcome measurements of a GPT and we want to con-

struct the set of all measurements with any number of

outcomes. Then, the arguably simplest way to do it is

as it is illustrated in Fig. 1, i.e., by selecting from two-

outcome measurements. The fact that this is not the

case in QT tells us that QT is, in this sense, very special.

Fortunately, Theorem 1 shows that we can test whether

nature is special in this sense.

The third argument is that there is nothing a priori

problematic in a dichotomic theory. To illustrate this

point, we develop a dichotomic theory based on QT. For

this purpose, it is enough to consider experiments consist-

ing of two stages, the preparation stage and the measure-

ment stage. In standard QT, a preparation is described

by a density operator ̺ and a measurement by a family

of positive semidefinite operators (E1, E2, . . . ) summing

to 11, so that the probability to obtain outcome k is given

by tr(Ek̺).

A straightforward example where two-outcome mea-

surements are insufficient is a measurement which can

perfectly distinguish between more than two states so

that tr(̺ℓEk) = δℓ,k, where δℓ,k denotes the Kronecker

delta. However, there is nothing particularly character-

istic of QT in this example as already in our everyday
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classical experience we can easily distinguish different

preparations—for example, the six distinct outcomes of

a die. In order to be able to separate this trivial example

from the case we are interested in, we consider a modifi-

cation of QT. Imagine that the state preparation does not

only prepare the quantum state but, in addition, trans-

mits some information, e.g., an integer value α. In turn,

the measurement apparatus is sensitive to α and can ex-

hibit different behavior depending on α. This means that

α carries some classical information, e.g., which state ̺k

was prepared or which side of the die is up, covering the

aforementioned situation, cf. also Fig. 1. In fact, this sce-

nario is more realistic than it may seem. For example,

in a photon experiment, the halfwave plate used to pre-

pare different polarization states may introduce a slight

shift in momentum, and it may happen that the analyz-

ing setup is sensible to this shift and gives a different

response depending on the momentum.

A general formalism to capture this situation is to

modify the standard formulation of QT by replacing

the density operator ̺ by positive semidefinite operators

(η1, η2, . . . ) ≡ η obeying
∑

α tr(ηα) = 1 and to substi-

tute each operator Ek by positive semidefinite operators

(D1,k, D2,k, . . . ) ≡ D such that
∑

k Dα,k = 11 for each α.

If there is no other sensitivity to α, then outcome k will

have probability P (k) =
∑

α tr(ηαDα,k). If we restrict

the quantum part of the measurements to be trivial, i.e.,

all Dα,k are either 11 or 0, then, effectively, we would have

a hidden variable model. If, for each α, at most two op-

erators Dα,k are nonzero, then, on a fundamental level,

all measurements are dichotomic, and similarly for the

n-chotomic case.

Let us now use the above example to illustrate why at

least bipartite correlations are required to falsify these

GPTs. For a single party, we can always explain a poste-

riori any experiment in which the correlations of certain

states η(µ) and measurements D(ν) are considered. In-

deed, we may let D
(ν)
α,k = p

(α,ν)
k and η

(µ)
α = δα,µ, where

p
(µ,ν)
k are probability distributions that do not contradict

the observations. A way to inhibit such constructions is

to move into a setup in which a system is distributed

between two parties and each of them performs local

measurements. Then, instead of preparing states η(µ)

and performing measurements D(ν), both parties per-

form independent local measurements D′(µ) and D(ν),

respectively, on a fixed bipartite state η. The resulting

observations are then distributed according to the corre-

lations

Pµ,ν(k, ℓ) =
∑

α′,α

tr(ηα′,α D
′(µ)
α′,k ⊗D

(ν)
α,ℓ). (2)

When all local measurements are at most n-chotomic,

then, by construction, these correlations are nonsignaling

n-chotomic and are therefore subject to Theorem 1.

Conclusions.—Quantum theory (QT) is in agreement

with all existing experimental evidence. Therefore, when

exploring alternative theories to QT, it is sensible to fo-

cus on those giving similar predictions. In this Letter

we have studied a large class of such alternative theo-

ries. We have considered a class of general probabilistic

theories in which the set of measurements is constructed

by selecting from measurements with n outcomes. For

any n, these theories satisfy Bell-type inequalities which

are violated by QT. Testing this prediction is a funda-

mental challenge for the future, as it would demonstrate

that correlations in nature are stronger than those al-

lowed by theories which, in other experiments, produce

correlations exceeding those of QT, e.g., as it is the case

for Popescu–Rohrlich boxes. However, this challenge is

difficult and will require further efforts both in theory

and experiments.

Meanwhile, as an example of the kind of tools that will

be needed, we have considered theories with the same

set of n-outcome measurements than QT for a fixed n,

but such that any measurement with more outcomes is

constructed by selecting measurements with only n out-

comes. These theories share meany features with QT and

can, e.g., explain the violation of Bell inequalities. How-

ever, we have shown that these alternative theories satisfy

certain Bell-type inequalities which are violated by QT.

The violations predicted by QT are very small and test-

ing them requires high-precision experiments. We have

identified previous experiments which, up to some as-

sumptions, seem to rule out these theories for n = 2 and

n = 3.
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Appendix A: Proof of Theorem 1.

For the remaining step in the proof of Theorem 1 we

assume without loss of generality that all measurement

outcomes are labeled k, ℓ = 1, 2, . . . , and we define Pn,r

as the subset of Pn for which the maximal index k or ℓ is

at most r. We show that (a) inf[I ′(Pn,r)] ≥ 21−r for any

r and (b) I ′(Pn,r′) = I ′(Pn) for some r′. It follows that

inf[I ′(Pn)] = inf[I ′(Pn,r′)] ≥ 21−r′ > 0 holds, which is

the statement needed in order to complete the proof in

the main text.

(a) For arbitrary correlations P ∈ Pn,r we denote

by P ′ ∈ Pn,r−1 the correlations where in P the rth

outcomes are merged with the first outcomes. This
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implies P ′

µ,ν(k ≥ ℓ) = Pµ,ν(k ≥ ℓ) + P ,ν(r) −
Pµ, (r) + Pµ,ν(r, 1), and therefore, I ′(P ′) = I ′(P ) −
[P2,2(r, 1) + P1,2(1, r) + P1,1(r, 1) − P2,1(r, 1)] ≤
I ′(P ) + P2,1(r, 1) ≤ 2I ′(P ). By induction and due to

I ′(Pn,1) = { 1 }, we have 21−r ≤ I ′(P ).

(b) We consider the set P̃n of those correlations

which can be created from the correlations in Pn,n

by applying all changes of the labels of the outcomes

λ′

µ : { 1, . . . , n } → N, and similarly λν , via Pµ,ν(k, ℓ) 7→
Pµ,ν(λ

′

µ(k), λν(ℓ)), while all other correlation terms are

zero. This does not yield more than 4n2 logical relations

like λµ(k) < λν(l) in I ′ and hence, at most 24n
2

different

labelings are needed to reach all logical relations. Since

this is a finite set, there is an integer r′ denoting the

maximal resulting index in the labelings, and therefore

I ′(Pn,r′) ⊇ I ′(P̃n). By definition, Pn is the convex hull

of P̃n, so that I ′(P̃n) = I ′(Pn) follows from the fact that

I ′ is affine. Therefore, I ′(Pn,r′) = I ′(Pn) holds due to

Pn,r′ ⊆ Pn.

Appendix B: Quantum n-chotomic bounds in

Table I.

The maximal quantum value is known for some in-

equalities or it can be numerically approximated by a hi-

erarchy of semidefinite programs suggested by Navascués,

Pironio, and Acín [34]. For n-chotomic quantum mea-

surements, one can proceed similarly, since it is enough

to maximize the value of the inequality, but with the

additional assumption that at most n measurement out-

comes are nontrivial. By exploring all possible combi-

nations with n nontrivial outcomes and calculating the

maximal bound for each of these cases, we obtain the

n-chotomic bounds provided in Table I.

We used the third level of the hierarchy for the val-

ues in the rows “2-outcome” and “3-outcome.” Since this

is an upper approximation on the true value, these val-

ues are at most too pessimistic. For the values in the

row “Quantum,” the given values are for certain quan-

tum states and measurements. This value is optimal for

AN, and the value coincides with the bound from the sec-

ond level of the hierarchy for I3 and I4. Only for VB, the

third level of the hierarchy gives a slightly larger value,

21.092 > 21.090.
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Abstract. The analysis of multiparticle quantum states is a central problem in

quantum information processing. This task poses several challenges for experimenters

and theoreticians. We give an overview over current problems and possible solutions

concerning systematic errors of quantum devices, the reconstruction of quantum states,

and the analysis of correlations and complexity in multiparticle density matrices.

1. Introduction

The analysis of quantum states is important for the advances in quantum optics and

quantum information processing. Many experiments nowadays aim at the generation

and observation of certain quantum states and quantum effects. For instance, in

quantum simulation experiments thermal or ground states of certain spin models should

be observed. Another typical problem is the demonstration of advanced quantum

control by preparing certain highly entangled states using systems such as trapped ions,

superconducting qubits, nitrogen-vacancy centers in diamond, or polarized photons.

All these experiments require a careful analysis in order to verify that the desired

quantum phenomenon has indeed been observed. This analysis does not only concern

the final data reported in the experiment but in fact, many more questions have to be

considered in parallel. Did the experimenter align the measurement devices correctly?

Have the count rates been evaluated properly in order to obtain the mean values of the

measured observables? Such questions are relevant and, as we demonstrate below, ideas

from theoretical physics can help the experimenters answer them.

Many experiments in quantum optics can be divided in several steps (see also

Fig. 1). In the beginning, some experimental procedures are carried out and

measurements are taken. The results of the measurements are collected as data. These

data are then processed to obtain a quantum state or density matrix ̺, which is often

viewed as the best description of the “actual state” generated in the experiment. This

quantum state can then be further analysed, for instance, its entanglement properties

may be determined.

In this article, we show how ideas from statistics and entanglement theory can be

used for analysing the transitions between the four building blocks in Fig. 1. First, we
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Figure 1. The analysis of many experiments in quantum physics can be divided

into several steps, from the experimental procedures to the verification of quantum

mechanical properties of the generated states.

consider the transition from the experimental procedures to the data. We show that

applying statistical tests to the data can be used to recognize systematic errors in the

experimental procedures, such as a misalignment of the measurement devices. Then, we

consider the reconstruction of a quantum state from the experimental data. We explain

why many frequently used state reconstruction schemes, such as the maximum-likelihood

reconstruction, lead to a bias in the resulting state. This can, for instance, result in a

fake detection of entanglement, meaning that the reconstructed state is entangled, while

the original state, on which the measurements were carried out, was not entangled. We

also show how such a bias can be avoided. Finally, we discuss the characterization of

quantum states on a purely theoretical level. Assuming a multiparticle density matrix

̺ we show how its entanglement can be characterized and how the complexity of the

state can be quantified using tools from information geometry and exponential families.

2. Systematic errors in quantum experiments

In this first part of the article, we discuss what assumptions are typically used in

quantum experiments. The violation of these assumptions leads to systematic errors

and we show how these systematic errors can be identified using statistical methods and

hypothesis tests.

2.1. Assumptions underlying quantum experiments

Before explaining the assumptions, it is useful to discuss a simple example. Consider

a two-photon experiment, where a quantum state should be analysed by performing

state tomography. For that, Alice and Bob have to measure all the nine possible

combinations of the Pauli matrices σi ⊗ σj for i, j ∈ {x, y, z}. In practice, this can

be done as follows: Alice and Bob measure the three Pauli matrices σx, σy, σz by

measuring the polarization in different directions, getting the possible results + and

−. These results correspond to the projectors on the eigenvectors of the observable.

By combining the results, they obtain one of four possible outcomes from the set

{++,+−,−+,−−}. The measurement is repeated N times on copies of the state,

where the outcome ++ occurs N++|ij times etc. From that, one can obtain the relative

frequencies F++|ij = N++|ij/N and estimate the expectation values as 〈σi ⊗ σj〉exp =

(N++|ij−N+−|ij−N−+|ij+N−−|ij)/N. In addition, the expectation values of the marginals
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σi⊗σ0 (here and in the following, we set σ0 = 1) can be determined from the same data.

Given all the experimental results, Alice and Bob may then reconstruct the quantum

state via the formula

ˆ̺ =
1

4

∑

i,j∈{0,x,y,z}

λijσi ⊗ σj, where λij = 〈σi ⊗ σj〉exp. (1)

This simple quantum state reconstruction scheme is often called linear inversion. It

assumes that the observed frequencies equal the probabilities, we will discuss its

advantages and disadvantages below. For the moment, we just use it as an example

to illustrate the definitions and discussion concerning systematic errors in experiments.

Now we can formulate the assumptions that lead to the statistical model typically

used in quantum experiments. We consider a scenario where one actively chooses

between different measurements (e.g., the σi⊗σj), each having a finite number of results.

We use the label s to denote the measurement setting and r to denote the result. It is

important to note that, if in an experiment using the setting s one registers the result r,

then this outcome r|s is not just treated as a classical result. In addition, each outcome

is tied to an operator Mr|s (e.g., the projectors onto the eigenstates corresponding to the

results {++,+−,−+,−−} of σi⊗σj) that serves as the object to compute probabilities

within quantum mechanics: If the underlying quantum state is characterized by the

density operator ̺, then the probability to observe r|s is given by P (r|s; ̺) = tr(̺Mr|s).

Therefore, this quantum mechanical description is one of the essential ingredients to

connect the observed samples with the parameters of the system that one likes to infer.

Knowledge about this description can come from previous calibration measurements or

from other expertise that one has acquired with the equipment. But one thing should

be obvious: If one assumes a description Mr|s, which deviates from the true description

in the experiment M̃r|s, then things can go terribly wrong and these type of errors are

the ones that we like to address in the following.

Clearly, such deviations are presumably present in any model, but they are

usually assumed to be small. However, considering the increased complexity of present

experiments, one can ask the question, whether or not these deviations show up

significantly in the data. Well known examples, like different detection efficiencies

or dark-count rates in photo-detectors or non-perfect gate fidelities for single-qubit

rotations preceding the readout of a trapped ion, could support this scepticism.

However, these effects are hardly ever considered in the description of Mr|s.

Let us complete the list of assumptions. Most often each experiment of setting s

is repeated N times, which are assumed to be independent and identically distributed

trials. So one further assumes that one always prepares the same quantum state ̺,

measures the same observables Mr|s, and that both are completely independent ‡.

‡ This means that both, measurements and states are described by the corresponding N -fold tensor

products. While such a property can be inferred for the states with the help of the de Finetti theorem [1],

one should be aware that its exchangeability requirements do not apply to experiments where one

actively measures first all the s = 1 measurements, followed by all s = 2 measurements and so on.
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Clearly, also in all these steps there can be errors, for instance, due to drifts in the

measuring devices or dead-times in detectors coming from previous triggering events.

However, if everything works as planned, then it is not necessary anymore to keep track

of the individual measurement results, since every information that can be inferred

about the state parameters is already included in the count rates Nr|s of the individual

measurement results r|s. Their probability is then given by a multinomial distribution

Mult[N,P (r|s; ̺)] for each setting, which is the distribution characterizing N repetitions

of independent trials. Here, the single event probabilities P (r|s; ̺) = tr(̺Mr|s) are

calculated according to quantum mechanics and these are the only parameters that

depend on the quantum state.

Finally, the whole collection of distributions for all measurement settings is the

exact parametric model used for most quantum experiments. These distributions are

given by the set

PQM =
{
P ({Nr|s}r,s; ̺) =

∏

s

Mult
[
N, tr(̺Mr|s)

]
, for all ̺ with ̺ ≥ 0, tr(̺) = 1

}
,

(2)

and the observed probabilities are assumed to be an element of this set. In the following,

we discuss how the validity of this model can be tested.

2.2. Testing the assumptions

How can one test in this framework whether the assumed measurement description is

correct for the experiment? As a first try, we could intersperse the experiment with

test measurements, in which one prepares previously characterized states. But such an

option seems very cumbersome, independent of problems like how to characterize the

test states in the first place and to ensure that they are well prepared in between the

true experiment. In contrast, we want to do it more directly and this becomes possible,

at least partially, by exploiting that quantum states only allow a restricted set of event

probabilities.

Let us first discuss the idea for the case where one has access to the true

event probabilities P0(r|s) which can be attained from the relative frequencies Fr|s =

Nr|s/N → P0(r|s) in the limit N → ∞. We want to know whether these observed

probabilities are at all compatible with the assumed measurement description. This boils

down to the question whether there exists a quantum state ̺0 with P0(r|s) = tr(̺0Mr|s)

for all r, s. Since quantum states must respect the positivity constraint ̺ ≥ 0, not all

possible probabilities are accessible: For instance, if one measures a qubit along the

x, y, z directions, its corresponding probabilities will be constrained by the requirement

that the Bloch vector must lie within the Bloch ball. To make this more general, assume

that we have a certain set of numbers wr|s such that the observable
∑

r|s wr|sMr|s ≥ 0

has no negative eigenvalues and is, therefore, positive semidefinite. If the probabilities
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It is important to stress that this result uses no extra assumptions, like N being large,

at all.

For our case, we can use Hoeffding’s inequality to bound the probability of observing

data that violate positivity constraints as in Eq. (3). More precisely, we can derive the

following statement [6]: For all distributions compatible with quantum mechanics, the

probability to observe frequencies {Fr|s}r,s such that w · F < −ε is bounded by

ProbP

[
w · F < −ε

]
≡

∑

{nr|s}r,s:

w·F<−ε

P ({nr|s}r,s) ≤ exp
(
− 2ε2N

C2
w

)
, for all P ∈ PQM (5)

with C2
w =

∑
s(wmax|s − wmin|s)

2 and wmax|s, wmin|s being the extreme values of {wr|s}r.
Again, this can be interpreted as showing that if everything is correct, then the

probability of finding a violation of the positivity constraint is exponentially suppressed.

We can use this statement as follows: Suppose that we should reach a conclusion

whether the observed data are “compatible” or “incompatible” with our assumed model.

Of course, if we say “incompatible”, we do not want to reach this conclusion too often,

if indeed everything is perfect. For definiteness, we may assume that the probability of

claiming incompatibility if everything is correct should be at maximum α = 1%. We then

use Eq. (5) to deduce the threshold value that we need to beat, εα =
√
C2

w| log(α)|/2N .

If we now carry out the experiment and register click rates with w · F < −εα, we know

that there was at most a α = 1% chance that we would have registered such badly

looking data, if everything is correct. Since this would be really bad luck we would

rather say “incompatible”, and assume that some systematic error was present §.
In practice, this test can be used to detect systematic errors in various scenarios:

In ion trap experiments, a typical systematic error comes from the cross talk between

the ions, i.e. the fact that a laser focused on one ion also influences the neighbouring

ions. This phenomenon can be detected with the presented method [6]. The second

application are Bell experiments: In these experiments, the choice of the measurements

on one party should ideally not influence the results of the other party and a violation of

this condition completely invalidates the result of a Bell test. Again, this non-signalling

condition can be formulated as linear constraints on the probabilities and this can be

tested with the presented method. In all these applications, the determination of the

vector w characterizing the positivity constraint or the linear constraint can be done as

follows: One splits the observed data into two parts. From the first part one determines

the w leading to the maximal violation of the respective constraint for the first half.

Then, one applies this w as a test to the second part of the data. If the violations

of the constraint are only due to statistical fluctuations, the respective w for the two

parts of the data are uncorrelated and the test will not find a significant violation of the

constraint.

§ Since one typically likes to leave the choice of appropriate levels of α to the reader one can also

report the p-value [7] of the observed data: It is the smallest α with which we would have still said

“incompatible” with the test.
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Let us point out that the mathematical framework just described is called a

hypothesis test [7], in which one tests the null-hypothesis N0: “compatible”, against

the alternative A: “incompatible”. The special property of such a test is that there

is an asymmetry about the two types of errors that can occur. As already explained,

our concern is that, when saying “incompatible”, then this statement is more or less

correct. The other error can occur when we respond “compatible” to incompatible data.

Naturally, this error characterizing the detection strength of our test, ideally, should also

be made small. However, it is not possible to reduce both errors equally simultaneously.

Nevertheless, since we cannot detect all possible systematic deviations from the assumed

model, anyway, one should not be too euphoric about the statement “compatible” in

this sense.

Note that, while the presented test has been build up by first deriving specific

inequalities for event probabilities and then equipping it with the necessary statistical

rigour to arrive at an hypothesis test, one can also take the other direction, by using

techniques which are known to be good for hypothesis tests and apply them to the

special statistical model of the quantum experiments. We have done this for the so-

called generalized likelihood-ratio test [7] and details can be found in Ref. [6]. Finally,

other tests for systematic errors can be found in Refs. [8–10].

3. Performing state tomography

In the previous section, we have seen that care has to be taken when making the

measurements on the quantum system. In this section, we show that the interpretation

of tomographic data, such as the reconstruction of the quantum state, has to be done

with care, too. Otherwise, one introduces yet another class of systematic errors.

3.1. Problems with state estimates

We are used to summarize experimental data by an estimate together with an error

margin. In quantum state tomography this corresponds to an estimate for the density

matrix together with an error region. So, the first question is how one can obtain

an estimate ˆ̺ for the experimentally prepared density matrix ̺exp from the observed

frequencies Fr|s. The simplest approach is to use linear inversion, that is, the method

given in Eq. (1). This has, however, at first sight some disadvantages: Due to statistical

fluctuations the observed frequencies are not equal to the true probabilities and this

leads to the consequence that the reconstructed “density matrix” will typically have

some negative eigenvalues. This makes the further analysis of the experiment, e.g. the

evaluation of entanglement measures, not straightforward. In order to circumvent this,

one often makes a density matrix reconstruction by setting

ˆ̺ = argmax
σ≥0

F(Fr|s, σ). (6)

Here, one optimizes a target function F over all density matrices σ and the optimal σ

will obviously be a valid density matrix. Examples for this type of state reconstruction
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in mathematical statistics which method is appropriate, but most of the subsequent

discussion is independent of this dispute.

Before discussing the advantages and disadvantages of an error region, it is

important to remember, that the variance does in general not give an appropriate

error region. This occurs in particular if the underlying distributions are far from

being Gaussian. But for state tomography, the data is sampled from a multinomial

distribution, typically with a very low number of events. Indeed, in many experiments

the number of clicks per measurement outcome is about ten, but sometimes even below

one. Also the method of bootstrapping may yield an inappropriate error region. In

bootstrapping, one uses an estimate ˆ̺ for the state (parametric bootstrapping) or

the empirical distributions of the outcomes of the measurements Fr|s (non-parametric

bootstrapping) in order to estimate the variance of the estimate. This estimate is usually

obtained by Monte Carlo sampling from the corresponding distributions. There is no

particular reason that this should be a good error region, and it was also demonstrated

that the most commonly used schemes yield invalid error regions.

Methods to obtain valid error regions both in the Bayesian [14] and in the

frequentistic framework [15] have been suggested, however, they turn out to be

notoriously difficult to compute. But even when it is possible to achieve a proper error

region, one has to keep in mind that the size of the error region scales with the dimension

of the underlying Hilbert space, i.e., exponentially with the number of qubits. This

makes it very difficult to perform state tomography of a large system with a reasonable

sized error region. Fortunately, in many situations the error region for the state is not

of uttermost importance. Often one is only interested in certain scalar quantities like a

measure of entanglement or the fidelity with the (pure) target state. In this cases it is

possible to infer an appropriate confidence region directly from the data, without taking

the detour over an error region for the density operator. This is particularly simple, if

the quantity of interest is linear in the density matrix, e.g., the fidelity with a pure state

F = 〈ψ|̺|ψ〉. One can again use Hoeffding’s tail inequality in order to obtain a lower

bound F̂l on the fidelity. The promise is then that P (F̂l > 〈ψ|̺exp|ψ〉) < 1% for any

state ̺exp. A general method to provide such confidence regions for convex functions,

like the bipartite negativity or the quantum Fisher information, has been introduced in

Ref. [11].

4. Analysing density matrices

In the last section of this article, we assume that a valid multiparticle density matrix

̺ is given and the task is to analyse its properties. Naturally, many questions can be

asked about a density matrix, but we concentrate on two of them. First, we consider

the question whether the state is genuinely multiparticle entangled or not. We explain

a powerful approach for characterizing multiparticle entanglement with the help of so-

called PPT mixtures and semidefinite programming. Second, we consider the problem

of characterizing the complexity of a given quantum state and explain an approach using
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exponential families. For example, in this approach a state that is a thermal state of

a Hamiltonian with two-body interactions only, is considered to be of low complexity

and the distance to these thermal states can be considered as a measure of complexity.

The underlying techniques also allow to characterize pure states which are not ground

states of a two-body Hamiltonian.

4.1. Characterizing entanglement with PPT mixtures

4.1.1. Notions of entanglement — Before explaining the characterization of

multiparticle entanglement, we have to explain some basic facts about entanglement

on a two-particle system. The definition of entanglement is based on the notion of local

operations and classical communication (LOCC). If a quantum state can be prepared by

LOCC, it is called separable, otherwise it is entangled. For pure states, this just means

that product states of the form |φ〉 = |α〉 ⊗ |β〉 are separable and all other states (e.g.

the singlet state |ψ−〉 = (|01〉− |10〉)/
√
2) are entangled. If mixed states are considered,

a density matrix ̺ is separable, if it can be written as a convex combination of product

states,

̺ =
∑

k

pk̺
k
A ⊗ ̺kB, (7)

where the pk form a probability distribution, so they are non-negative and sum up to one.

Physically, the convex combination means that Alice and Bob can prepare the global

state by fixing the joint probabilities with classical communication and then preparing

the states ̺Ak and ̺Bk separately. The question whether or not a given quantum state is

entangled is, however, in general difficult to answer. This is the so-called separability

problem [2,3].

Many separability criteria have been proposed, but none of them delivers a complete

solution of the problem. The most famous separability test is the criterion of the

positivity of the partial transpose (PPT criterion) [16]. For that, one considers the

partial transposition of a density matrix ̺ =
∑

ij,kl ̺ij,kl|i〉〈j| ⊗ |k〉〈l|, given by

̺TA =
∑

ij,kl

̺ij,kl|j〉〈i| ⊗ |k〉〈l|. (8)

In an analogous manner, one can also define the partial transposition ̺TB with respect

to the second system. The PPT criterion states that for any separable state ̺ the partial

transpose ̺TA , (and consequently also ̺TB = (̺TA)T ) has no negative eigenvalues and

is therefore positive semidefinite. So, if one finds a negative eigenvalue of ̺TA , then

the state ̺ must necessarily be entangled. The PPT criterion solves the separability

problem for low dimensional systems (that is, two qubits or one qubit and one qutrit) [2],

but in all other cases the set of separable states is a strict subset of the PPT states.

The entangled states which are PPT are of great theoretical interest: It has been shown

that their entanglement can never be distilled to pure state entanglement, even if many

copies of the state are available. This weak form of entanglement is then also called bound
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entanglement and bound entangled states are central for many challenging questions in

quantum information theory.

The characterization of entanglement becomes significantly more complicated, if

more than two particles are involved. Let us consider three particles (A, B, C). First,

a state can be fully separable, meaning that it does not contain any entanglement and

is of the form |φfs〉 = |α〉 ⊗ |β〉 ⊗ |γ〉. If a state is entangled, one can further ask

whether only two parties are entangled or all three parties. For instance, in the state

|φbs〉 = |ψ−〉AB ⊗ |γ〉C the parties A and B are entangled, but C is not entangled

with A or B, therefore the state is called biseparable. Alternatively, if all parties are

entangled with each other, the state is called genuine multipartite entangled [3]. For the

simplest case of three two-level systems (qubits) it has been shown that even the genuine

multipartite entangled states can be divided into two subclasses, represented by the GHZ

state |GHZ〉 = (|000〉+ |111〉)/
√
2 and the W state |W 〉 = (|001〉+ |010〉+ |100〉)/

√
3.

These subclasses are distinguished by the fact that a single copy of a state in one class

cannot be converted via LOCC into a state in the other class, even if this transformation

is not required to be performed with probability one [3].

The classification of entanglement for pure states can be extended to mixed states

by considering convex combinations as in Eq. (7). First, a mixed state is fully separable,

if it can be written as a convex combination of fully separable states

̺fs =
∑

k

pk̺
k
A ⊗ ̺kB ⊗ ̺kC , (9)

and a state is biseparable, if it can be written as a mixture of biseparable states, which

might be separable with respect to different partitions,

̺bisep = p1̺
sep

A|BC
+ p2̺

sep

B|AC
+ p3̺

sep

C|AB
. (10)

The different notions of entanglement in the multipartite case and the different

bipartitions that have to be taken into account imply that the question whether a

given mixed multipartite state is entangled or not is extraordinarily complicated.

4.1.2. The approach of PPT mixtures — A systematic approach for characterizing

genuine multiparticle entanglement makes use of so-called PPT mixtures [17]. Instead

of asking whether a state is a mixture of separable states with respect to different

partitions as in Eq. (10), one asks whether it is a mixture of states which are PPT for

the bipartitions

̺pptmix = p1̺
ppt

A|BC
+ p2̺

ppt

B|AC
+ p3̺

ppt

C|AB
. (11)

Since the separable states are a subset of the PPT states, any biseparable state is also

a PPT mixture. This means that if a state is no PPT mixture, then it must be genuine

multipartite entangled (see also Fig. 3).

At first, it is not clear what can be gained by this redefinition of the problem. First,

the condition for PPT mixtures is a relaxation of the definition of biseparability and it
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Figure 3. Schematic view of the states which are PPT mixtures and the biseparable

states for three particles. There are three possible bipartitions, and the corresponding

sets of states which are separable or PPT for the bipartition. The figure is taken from

Ref. [17].

might be that the conditions are relaxed too much, implying that not many states can

be detected by this method. Second, it is not clear how the criterion for PPT mixtures

can be evaluated in practice and whether this is easier than evaluating the conditions for

separability directly. In the following, however, we will see that the question whether a

state is a PPT mixture or not can directly be checked with a technique called semidefinite

programming. Furthermore, the approximation to the biseparable states is rather tight,

and for many families of states the property of being a PPT mixture coincides with the

property of being biseparable.

4.1.3. Evaluation of the criterion — Let us discuss the evaluation of the condition for

PPT mixtures. For that, we need to introduce the notion of entanglement witnesses. In

the two-particle case, an entanglement witnessW is an observable with the property that

the expectation value is positive for all separable states, tr(̺sepW) ≥ 0. This implies

that a measured negative expectation value signals the presence of entanglement. In this

way, the concept of an entanglement witness bears some similarity to a Bell inequality,

where correlations are bounded for classical states admitting a local hidden variable

model, while entangled states may violate the bound.

How can entanglement witnesses be constructed? For the two-particle case a simple

method goes as follows: Consider an observable of the form

W = P +QTA , (12)

where P ≥ 0 and Q ≥ 0 are positive semidefinite operators. Using the fact that

Tr(XY TA) = Tr(XTAY ) for arbitrary operators X, Y , we find that for a separable state

Tr(W̺sep) = Tr(P̺sep) + Tr(Q(̺sep)TA) ≥ 0, since ̺sep has to be PPT. Therefore, the

observableW is an entanglement witness, which may be used to detect the entanglement

in states that violate the PPT criterion.
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This construction can be used to decide whether a given three-particle state is a

PPT mixture or not. For that, consider the optimization problem

minimize
W,Pi,Qi

Tr(̺W)

subject to: W = P1 +QTA

1 = P2 +QTB

2 = P3 +QTC

3 and

Pi ≥ 0 for i = 1, 2, 3 and

1 ≥ Qi ≥ 0 for i = 1, 2, 3. (13)

The constraints guarantee that the observable W is of the form as in Eq. (12) for any of

the three bipartitions. This means, that if a state is a PPT mixture as in Eq. (11), the

expectation value Tr(̺W) has to be non-negative. On the other hand, one can show

that if a state is not a PPT mixture, then the minimization problem will always result in

a strictly negative value [17]. In this way, the question whether a state is a PPT mixture

or not, can be transformed into a optimization problem under certain constraints.

The point is that the optimization problem belongs to the class of semidefinite

programs (SDP). An SDP is an optimization problem of the type

minimize
xi

∑

i

cixi

subject to: F0 +
∑

i

xiFi ≥ 0, (14)

where the ci are real coefficients defining the target function, the Fi are hermitean

matrices defining the constraints and the xi are real coefficients which are varied. This

type of optimization problem has two important features [18]. First, using the so-called

dual problem one can derive a lower bound on the solution of the minimization, which

equals the exact value under weak conditions. This means that the optimality of a

solution found numerically can be demonstrated. In this way, one can prove rigorously

by computer whether a given state is a PPT mixture or not. Second, for implementing

an SDP in practice there are ready-to-use computer algebra packages available and

therefore the practical solution of the SDP is straightforward.

4.1.4. Results — Concerning the characterization of PPT mixtures, the following

results have been obtained:

• First, the practical evaluation of the SDP in Eq. (13) can be carried out easily

with standard numerical routines. A free ready-to-use package called PPTMixer is

available online [19], and it solves the problem for up to six qubits on standard

computers. For a larger number of particles, the numerical evaluation becomes

difficult, but analytical approaches are also feasible [17, 22].

• For many families of states, the approach of the PPT mixtures delivers the strongest

criterion of entanglement known so far. For many cases it even solves the problem of

characterizing multiparticle entanglement. For instance, three-qubit permutation-

invariant states are biseparable, if and only if they are PPT mixtures [20]. The
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same holds for states with certain symmetries, like GHZ diagonal states or four-

qubit states diagonal in the graph-state basis [21, 22].

• Nevertheless, the approach of PPT mixtures can not detect all multiparticle

entangled states. There are examples of genuinely entangled three-qubit and three-

qutrit states, which are PPT mixtures [23, 24]. For an increasing dimension and

number of particles one can even show that the probability that a given multiparticle

entangled state can be detected by the PPT mixture approach decreases [25].

This finding, however, is in line with the observation that also in bipartite high-

dimensional systems no single entanglement criterion detects a large fraction of

states [26].

• The value N (̺) = −Tr(̺W), that is, the amount of violation of the witness

condition is a computable entanglement monotone for genuine multiparticle

entanglement [22]. It can be called the genuine multiparticle negativity, as it

generalizes the entanglement measure of bipartite negativity.

• An interesting feature of the PPT mixer approach is that it can also be evaluated, if

only partial information on the state ̺ is available. Namely, if only the expectation

values 〈Ai〉 of some observables Ai are known, one can add in the SDP in Eq. (13)

that the witness W should be a linear combination of the measured observables

W =
∑

i λiAi. It can be shown that this is then still a complete solution of the

problem, meaning that the SDP returns a negative value, if and only if all states

that are compatible with the data 〈Ai〉 are not PPT mixtures.

4.2. Characterizing the complexity of quantum states

Besides the question whether a given multiparticle quantum state is entangled or not,

one may also be interested in other questions about a reconstructed quantum state ̺.

For instance, one may ask: Is the given state is a ground state or thermal state of a

simple Hamiltonian? In the following, we will explain how this question can be used to

characterize the complexity of a many-body quantum state.

4.2.1. Exponential families — First, one can consider the set of all possible two-body

Hamiltonians. For multi-qubit systems they are of the form

H2 =
∑

i,α

λ(i)
α σ(i)

α +
∑

i,j,α,β

µ
(ij)

αβ σ
(i)
α σ

(j)

β + ν1, (15)

where σ
(i)
α is the Pauli matrix σα acting on the i-th qubit. This Hamiltonian H2 contains,

apart from the identity, single-particle terms and two-particle interactions. However, no

geometrical arrangement of the particles is assumed and the two-particle interactions

are between arbitrary particles and not restricted to nearest-neighbour interactions. We

also denote the set of all two-particle Hamiltonians by H2, and in a similar manner one

can define the sets of k-particle Hamiltonians Hk.
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Given the set of k-particle Hamiltonians, we can define the so-called exponential

family of all thermal states

Qk = {exp{Hk} with Hk ∈ Hk}, (16)

where the normalization of the state has been included into the Hamiltonian via the

term ν1.

If a given quantum state is in the family Qk for small k, then one can consider it to

be less complex, since only a simple Hamiltonian with few parameters are required to

describe the interaction structure. One the other hand, if a state is not in the exponential

family, one can consider the distance

Dk(̺||Qk) := inf
η∈Qk

D(̺||η) (17)

with D(̺||η) = tr[̺ log(̺)]− tr[̺ log(η)] being the relative entropy, as a measure of the

complexity of the quantum state. The optimal η is also called the information projection

˜̺k and one can show that this ˜̺k is the maximum likelihood approximation of ̺ within

the family Qk [27]. Below, we will explain several further equivalent characterizations

which can help to solve the underlying minimization problem.

This type of complexity measure has been first discussed for the case of classical

probability distributions in the context of information geometry [28]. The measure D1

is also known as the multi-information in complexity theory [29]. For classical complex

systems, these quantities have been used to study the onset of synchronization and chaos

in coupled maps or cellular automata [27]. For the quantum case, this measure and its

properties have been discussed in several recent works [30–33].

At this point, it is important to note that in the quantum case as well as in the

classical case the quantity Dk does not necessarily decrease under local operations

[31, 32]. Simple examples for this fact follow from observation that taking a thermal

state of a two-body Hamiltonian and tracing out one particle typically leads to a state

that is not a thermal state of a two-body Hamiltonian anymore. Therefore, the quantity

Dk should not be considered as a measure of correlations in the quantum state, it is

more appropriate to consider it as a measure of the complexity of the state.

4.2.2. Characterizing the approximation — For the characterization of the information

projection ˜̺k, the following result is quite helpful [31]. First, let ̺ be an arbitrary

quantum state, and ˜̺k be the information projection onto the exponential family Qk.

Furthermore, let Mk be the set of all quantum states that have the same k-body

marginals as ̺. Mk is, contrary to Qk, a linear subspace of the space of all density

matrices (see Fig. 4). Then, the following statements are equivalent:

(a) The state ˜̺k is the closest state to ̺ in Qk with respect to the relative entropy.

(b) The state ˜̺k has the maximal entropy among all states in Mk.

(c) The state ˜̺k is the intersection Qk ∩Mk.
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Figure 4. The information projection ˜̺k of the state ̺ is the closest state to ̺ within

the exponential family Qk. Mk denotes the set of all quantum states that have the

same k-body marginals as ̺, and can also be used to characterize ˜̺k. For arbitrary

states ̺′ within Qk the relation D(̺||̺′) = D(̺|| ˜̺k)+D(˜̺k||̺′) holds, which resembles

the Pythagorean Theorem. The figure is taken from Ref. [33]

This equivalence can be used for many purposes. For example, it is useful for

developing an algorithm for computing the information projection [33, 34]. Instead of

minimizing the relative entropy as a highly nonlinear function over Qk, one can do

the following: One optimizes over all states in Qk with the aim to make the k-body

marginals the same as for the state ̺. The resulting algorithm converges well and

allows the computation of the complexity measure Dk for up to six qubits [33].

Second, from the equivalences it follows that the multi-information D1 can directly

be calculated, since the closest state to ̺ in the family Q1 is the product state

˜̺1 = ̺1 ⊗ ̺2 ⊗ ... ⊗ ̺N built out of the reduced single-particle density matrices of

̺. Clearly, ˜̺1 has the same marginals as ̺ and maximizes the entropy.

4.2.3. A five-qubit example — As a final example, let us discuss how the notion of

exponential families can help to characterize ground states of two-body Hamiltonians.

For that, consider the five-qubit ring-cluster state |R5〉. This state is defined to be the

unique eigenstate fulfilling

|R5〉 = gi|R5〉, (18)

where g1 = σxσz11σz, g2 = σzσxσz11, g3 = 1σzσxσz1, g4 = 11σzσxσz, and g5 =

σz11σzσx. Here, the tensor product symbols have been omitted. After appropriate

local transformations, the ring-cluster state can also be written as

|R5〉 =
1√
8

[
|00000〉+ |00110〉−|01011〉+ |01101〉+ |10001〉−|10111〉+ |11010〉+ |11100〉

]
.

(19)

The ring-cluster state is an example of a so-called graph state, and plays an important

role in quantum error correction as a codeword of the five-qubit Shor code. It was known
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before that the state |R5〉 cannot be the unique ground state of a two-body Hamiltonian

[35]. This, however, leaves the question open whether it can be approximated by ground

states of two-body Hamiltonians. For instance, for three qubits it was shown that not

all pure states are ground states of two-body Hamiltonians, but all pure states can be

approximated arbitrarily well by such ground states [36].

The characterization of the exponential families from the previous section can

indeed help to prove that the state has |R5〉 has finite distance to all thermal states

of two-body Hamiltonians. For that, first note that the two-body marginals of the state

|R5〉〈R5| are all maximally mixed two-qubit states. Then, one can directly find states

which have the same two-body marginals, but their entropy is larger than the entropy

the state |R5〉〈R5|. This last property is, of course, not surprising, since |R5〉〈R5| has
as a pure state the minimal possible entropy. According to the previous section, this

already implies that |R5〉〈R5| cannot be the thermal or ground state of any two-body

Hamiltonian.

Furthermore, if an arbitrary state ̺ has a high fidelity with |R5〉 then the two-body

marginals will be close to the maximally mixed states, and in addition the entropy of ̺

will be small. This implies that one can find again states with the same marginals and

higher entropy. Using these ideas and some detailed calculations one can prove that if

a state fulfils

F = 〈R5|̺|R5〉 ≥
31

32
≈ 0.96875. (20)

then it cannot be a thermal state of a two-body Hamiltonian [37]. This shows that

the state |R5〉 cannot be approximated by thermal states of two-body Hamiltonians. In

principle, this bound can also be used to prove experimentally that a given state is not

a thermal state of a two-body Hamiltonian.

5. Conclusion

In conclusion we have explained several problems occurring in the analysis of

multiparticle quantum states, ranging from systematic errors of the measurement devices

to the characterization of ground states of two-body Hamiltonians. We believe that

several of the explained topics are important to be addressed in the future. First, since

the current experiments in quantum optics are getting more and more complex, advanced

statistical methods need to be applied in order to reach solid conclusions. Second, the

analysis of ground states and thermal states of simple Hamiltonians is relevant for

quantum simulation and quantum control, so direct characterizations would be very

helpful.
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Quantum measurements on a two-level system can have more than two independent outcomes,

and in this case, the measurement cannot be projective. Measurements of this general type are

essential to an operational approach to quantum theory, but so far, the nonprojective character of a

measurement could only be verified experimentally by already assuming a specific quantum model

of parts of the experimental setup. Here, we overcome this restriction by using a device-independent

approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more

than 8 standard deviations a Bell-like correlation inequality which is valid for all sets of two-outcome

measurements in any dimension. We combine this with a device-independent verification that the

system is best described by two qubits, which therefore constitutes the first device-independent

certification of a nonprojective quantum measurement.

The qubit is the abstract notion for any system which

can be modeled in quantum theory by a two-level sys-

tem. In such a system, any observable has at most two

eigenvalues and hence any projective measurement can

have at most two outcomes. Still, a qubit allows for an

infinite number of different two-outcome measurements,

the value of which, in general, cannot be known to the

observer beforehand, but rather follows a binomial distri-

bution. In quantum information theory, additional prop-

erties reflecting this binary structure have been revealed,

e.g., the information capacity of a qubit is one classical

bit, even when using entangled qubits [1]. Nonetheless,

the properties of a qubit sometimes break with the binary

structure, e.g., transferring the quantum state of a qubit

is only possible with the communication of two classical

bits and the help of entanglement [2]. Moreover, it is

well-known that general quantum measurements can be

nonprojective and have more than two irreducible out-

comes [3]. The most general quantum measurement with

n outcomes is described by positive semidefinite, possibly

nonprojective, operators E1, E2, . . . , En with
∑

Ek = 11.

The number of outcomes is reducible, if it is possible to

write Ek =
∑

λ pλE
(λ)
k so that E

(λ)
1 , . . . , E

(λ)
n are mea-

surements for each λ, pλ is a probability distribution over

λ, and for each λ there is at least one kλ with E
(λ)
kλ

= 0.
Nonprojective measurements found first applications in

quantum information processing in the context of the dis-

crimination of nonorthogonal quantum states. Ivanovic

[4] found that it is possible to discriminate two pure qubit

states without error even if the two states are nonorthog-

onal, but at the cost of allowing a third measurement out-

come that indicates a failure of the discrimination pro-

cedure. The strategy with the lowest failure probability

can be shown to be an irreducible three-outcome mea-

surement [5]. Also recently, nonprojective measurements

proved to be essential in purely information theoretical

tasks like improving randomness certification [6].

A peculiarity of nonprojective qubit measurements

with more than two irreducible outcomes is that there is

no known way to implement them within a qubit system.

Rather, the measurement apparatus needs to manifestly

work outside of what would be modeled by a qubit alone.

To some extent it is therefore a matter of perspective

whether, at all, one is willing to admit such nonprojec-

tive measurements on a qubit system. However, device-

independent self-testing [7] allows us to demonstrate that

a qubit description is appropriate for the tested system,

by showing that, with high precision, any measurement

on the system can be modeled as a qubit measurement.

A key observation is that it is not possible to show that

a measurement is irreducibly nonbinary insofar we con-

sider a single quantum system, as the outcomes of mea-

surements on a single system can always be explained

in terms of a hidden variable model where all E
(λ)
k are

either 11 or 0 and pλ depends on the preparation of the

system. The situation changes when considering the cor-

relations between independent measurements on an en-

tangled system [8], but still, a violation of a conventional

Bell inequality on qubits—however high—can always be

explained by locally selecting from binary quantum mea-

surements [9]. Yet, there are specialized Bell-like inequal-

ities, where qubit measurements with more than three

outcomes outperform the maximal violation attainable

when only binary measurements are considered [10]. An

analysis of this advantage reveals that this effect is very

small and would require an overall visibility of more than
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FIG. 1. Testing correlations that cannot be explained in terms
of binary measurements. (a) Scheme of the test performed.
Pairs of entangled systems are sent to Alice’s and Bob’s labo-
ratories (represented by boxes with yellow buttons at the top
and lights of different color in the side). In each laboratory
one system is submitted to a measurement (represented by
the yellow button pressed) and produces an outcome (repre-
sented by a light flashing). All possible measurements have
two outcomes, except for Alice’s measurement x = 3 which
has three outcomes (represented by lights of different color,
green for 0, red for 1, and blue for 2). (b) Discarded scenario.
Our experiment excludes that the outcomes of Alice’s mea-
surement x = 3 are produced by a measurement apparatus
that selects one out of three binary quantum measurements
with outcomes 0/1, 1/2, or 2/0 (represented by three coins
with green/red, red/blue, and blue/green sides, respectively).

0.992 [9–11].
Here we introduce an inequality where this threshold is

lowered to 0.9845, enabling the device-independent certi-
fication of a nonbinary measurement on a qubit. We con-
sider a bipartite scenario, cf. Fig. 1(a), where one party,
Alice, chooses one among four measurements x = 0, 1, 2, 3
while the other party, Bob, chooses one among three mea-
surements y = 0, 1, 2. All measurements have two out-
comes, a = 0, 1 and b = 0, 1, except Alice’s measurement
x = 3, which has three outcomes, a = 0, 1, 2. We denote
by P (ab|xy) the probability for outcome a and b when the
setting x and y were chosen and consider the expression

I = P (00|00) + P (00|11) + P (00|22)
− P (00|01)− P (00|12)− P (00|20)

− P (00|30)− P (10|31)− P (20|32). (1)

When restricted to binary quantum measurements, not
necessarily on a qubit, then the value of I is upper
bounded by 1.2711. Without this restriction, the max-
imal quantum value of I is 3

√
3/4 ≈ 1.2990 and can

be achieved for two qubits using a maximally entan-
gled state. Thus, an experiment violating the inequality
I < 1.2711 proves that Alice’s measurement x = 3 cannot

have been a measurement composed of binary quantum
measurements on whatever quantum system and selected
by the measurement apparatus, as shown in Fig. 1(b).

Since projective measurements on a qubit necessarily
are binary or trivial, a violation of I < 1.2711 certifies the
implementation of a nonprojective measurement. This
requires, however, that the system at Alice’s laboratory
is actually a qubit, which is manifestly the case in our
experimental set-up, as we explain below. In addition,
this assertion of Alice’s system being a qubit, can also be
verified in a device-independent way by measuring the
violation of the Clauser–Horne–Shimony–Holt (CHSH)
Bell inequality [12]. If this violation is maximal, the joint
state has to be a maximally entangled qubit-qubit state
[13–15], independently of what measurement apparatuses
are used. If the observed value for the CHSH violation
deviates by ǫ from the maximum 2

√
2−2, the state must

still have a fidelity of at least 1− 2.2ǫ with a maximally
entangled qubit-qubit state [16]. A description of the
system in the corresponding qubit-qubit-space is hence
accurate up to 2.2ǫ.

The set-up of our experiment is shown in Fig. 2.
Degenerate 810 nm photon pairs, with orthogonal po-
larisations, are produced from spontaneous parametric
down-conversion (SPDC) in a bulk type-II nonlinear pe-
riodically poled potassium titanyl phosphate (PPKTP)
20 mm long crystal. The crystal is pumped by a single-
longitudinal mode continuous wave 405 nm laser with
1 mW of optical power. We resort to an ultra-bright
source architecture, where the type-II nonlinear crystal
is placed inside an intrinsically phase-stable Sagnac in-
terferometer [17–19]. This interferometer is composed
of two laser mirrors, a half-wave plate (HWP2) and a
polarizing beamsplitter cube (PBS1). HWP2 and PBS1

are both dual-wavelength with anti-reflection coatings at
405 nm and 810 nm. The fast axis of the HWP2 is set at
45 degree with respect to the horizontal, such that down-
converted photons are generated in the clockwise and
counter-clockwise directions. The clockwise and counter-
clockwise propagating modes overlap inside the polariz-
ing beamsplitter and, by properly adjusting the pump
beam polarization mode, the two-photon state emerging
at the output ports is |ψ+〉 = (|HV 〉+ |V H〉)/

√
2, where

|H〉 (|V 〉) denotes the horizontal (vertical) polarization
of a down-converted photon. Due to the phase-matching
conditions, there may be entanglement between other de-
grees of freedom of the generated photons, or coupling
between the polarization and the momentum of these
photons that would compromise the quality of the polar-
ization entanglement. To avoid this we add extra spectral
and spatial filtering. To remove the remaining laser light
we adopt a series of dichroic mirrors followed by a long-
pass color glass filter. Then, Semrock high-quality (peak
transmission greater than 90%) narrow bandpass (full-
width-half-maximum of 0.5 nm) interference filters cen-
tered at 810 nm are used to ensure that phase-matching
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FIG. 2. Experimental set-up. A PPKTP nonlinear crystal placed into a phase-stable Sagnac interferometer is pumped by a
single mode laser operating at 405 nm to produce pairs of polarization-entangled photons at 810 nm. The quarter-wave plate
QWP1 and the half-wave plate HWP1 are used to control the polarization mode of the pump beam. Dichroic mirrors (D)
and longpass color filters are used to remove the pump beam light. The generated photons are then sent to Alice and Bob
through single-mode fibers (SMF). Alice (Bob) can choose among three different binary measurements (depicted in blue boxes)
labeled by x = 0, 1, 2 (y = 0, 1, 2). These measurements are performed using a set of a QWP, a HWP, and a PBS. Besides,
Alice also performs a three-outcome measurement x = 3 using a polarization based two-path Sagnac interferometer (depicted
in the Alice’s violet box). The elements of the three-outcome qubit measurement are defined by HWPr, HWPt, and HWPo.
The coincidence counts between Alice’s and Bob’s detectors are recorded using a coincidence electronics unit based on a field
programmable gate array device.

conditions are achieved with the horizontal and vertical

polarization modes at degenerated frequencies.

The indistinguishability of the photon pair modes

(“HV” and “VH”) is guaranteed by coupling the generated

down-converted photons into single mode fibers. These

fibers implement a spatial mode filtering of the down-

converted light, destroying any residual spatial entangle-

ment or polarization-momentum coupling. To maximize

the source’s spectral brightness, we resort to a numerical

model [20]. In our case, the beam waist wp of the pump

beam, and wSPDC of the selected down-converted modes,

at the center of the PPKTP crystal, are adjusted by using

a 20 cm focal length lens (L1) and 10X objective lenses.

The optimal condition for maximal photon-par yield is

obtained when wSPDC =
√
2wp, with wp = 40µm. The

observed source spectral brightness was 410000 photon

pairs (s mW nm)−1. The quality of the polarization en-

tanglement generated at the source site was measured by

observing a mean two-photon visibility of 0.987 ± 0.002
while measuring over the logical and diagonal polariza-

tion bases.

Due to the demand of a high overall visibility we built

a coincidence electronics based on a field programmable

gate array platform and capable of implementing up

to 1 ns coincidence windows, thus reducing the proba-

bility for an accidental coincidence count to less than

0.00025. Therefore, the evaluation of the data does not

require a separate treatment for accidental coincidence

counts. The down-converted photons are registered us-

ing PerkinElmer single-photon avalanche detectors with

an overall detection efficiency of 15%. We account for

this by including the assumption into our analysis that

the detected coincides are a fair sample from the set of

all photon pairs.

Alice’s and Bob’s binary measurements are imple-

mented using a set composed of a quarter wave plate

(QWP), a HWP, and a PBS for each party, cf. Fig. 2.

A high-quality film polarizer is also used in front of the

detectors (not shown for sake of clarity) to obtain a total

extinction ratio of the polarizers equal to 107:1. There-

fore, in our experiment the two-photon visibility is not

upper limited by the polarization contrast of our mea-

surement apparatuses. Alice’s three-outcome measure-

ment x = 3 is implemented using the propagation modes

of Alice’s down-converted photon. With this purpose,

Alice’s photons are sent, after displacing a removable

mirror, through a polarization based two-path Sagnac in-

terferometer. The propagation modes of a photon within

this interferometer are not co-propagating and depend on

its polarization state. This allows for conditional polar-
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Maximal value of I for binary quantum

measurements.

To obtain the bound for I while considering only bi-

nary quantum measurements, we note that I contains

the chained Bell inequality [22, 23] Ichain ≤ 1 with three

settings, where

Ichain = P (00|00) + P (00|11) + P (00|22)
− P (00|01)− P (00|12)− P (00|20). (2)

The remainder, I − Ichain = −P (00|30) − P (10|31) −
P (20|32) only involves correlations of Alice’s three-

outcome measurement x = 3. There are three possibili-

ties for replacing Alice’s measurement x = 3 by a binary

measurement, by omitting a = 0, a = 1, or a = 2. Tak-

ing into account the permutation symmetry of I, all of

them are equivalent to I ′ = Ichain−P (00|30)−P (10|31).
We used the Navascués–Pironio–Acín (NPA) hierarchy

[24] to obtain an upper bound on the maximal value I ′.

Running level 2 of the hierarchy, we obtain 1.271045 for

this bound. Within the numerical precision, this value

can be attained with a partially entangled qubit-qubit

state showing that 1.2711 also corresponds to the maxi-

mal value of I with binary qubit measurements.

Maximal value of I for arbitrary quantum

measurements.

An upper bound on the maximal value of I attainable

in quantum theory can be obtained by upper bounding

Ichain and the remainder I − Ichain separately. The max-

imal value of Ichain is 3
√
3/4 and can be attained with

a qubit-qubit maximally entangled state [25]. On the

other hand, by construction, I − Ichain cannot be greater

than zero since it only contains nonpositive terms. Put

together, the maximal value of I is upper bounded by

3
√
3/4.

This value is tight and can be attained by preparing

the qubit-qubit state |ψ+〉 = (|01〉+ |10〉)/
√
2 and choos-

ing the following measurements: Alice’s binary measure-

ments x = 0, 1, 2 are defined by M0|x = P (αx) and

M1|x = 11−P (αx), with P (θ) = (11+σz cos θ+σx sin θ)/2,
where σz and σx are Pauli matrices, and the angles are

given by α0 = 3π/2, α1 = π/6, and α2 = 5π/6. Al-

ice’s three-outcome measurement x = 3 is defined by

Ma|3 = 2P (γa)/3 for a = 0, 1, 2, with angles γ0 = 2π/3,
γ1 = 4π/3, and γ2 = 0. Bob’s measurements are defined

by M0|y = P (−γy) and M1|y = 11−P (−γy) for y = 0, 1, 2.

Implementation of Alice’s three-outcome

measurement.

The three-outcome measurement is implemented by

sending Alice’s down-converted photon through a polar-

ization based two-path Sagnac interferometer, cf. Fig. 2.

We write |H〉 (|V 〉) for the horizontal (vertical) polar-

ization. The mode entering the interferometer, rotating

counter-clockwise and leaving for outcomes 0 and 1 is

denoted by |a〉. |b〉 denotes the clockwise rotating mode

leaving for outcome 3. In this way, the action of the PBS

within the interferometer is given by

UPBS = |H〉〈H|(|a〉〈a|+ |b〉〈b|)
+ i|V 〉〈V |(|a〉〈b|+ |b〉〈a|). (3)

The actions of the HWPt and HWPr of the interferom-

eter in the transmitted and reflected mode, respectively,

combine to Ut,r = UHWP(γ
′

t)|a〉〈a| + UHWP(γ
′

r)|b〉〈b|,
where UHWP(γ

′) is the Jones matrix of a HWP whose

fast axis is oriented at an angle γ′ with respect to the

horizontal axis

UHWP(γ
′) = cos(2γ′)(|H〉〈H| − |V 〉〈V |)

+ sin(2γ′)(|V 〉〈H|+ |H〉〈V |). (4)

Therefore, the Sagnac interferometer is described by

US = UPBSUt,rUPBS.

After the interferometer, the photon in mode |a〉 is

transmitted through HWPo and an additional PBS. On

the polarization degree of freedom, the three outcome

modes 0, 1, and 2 are hence mediated by |ψ〉 → Ak |ψ〉
with the Kraus operators

A0 = 〈b|UPBSUHWP(γ
′

o)|a〉〈a|US|a〉 ,
A1 = 〈a|UPBSUHWP(γ

′

o)|a〉〈a|US|a〉 , and

A2 = 〈b|US|a〉 ,
(5)

so that the implemented three-outcome measurement is

given by Mk|3 = A
†

kAk. The measurement required for

a maximal violation of I is achieved with γ′

r = 0, γ′

t ≈
117.37◦, and γ′

o = 112.5◦.

Qubit-qubit correlation inexplicable by

three-outcome nonprojective measurements.

We consider a scenario where Alice chooses among the

binary measurements x = 0, 1, 2 and the four-outcome

measurement x = 3 and Bob chooses among the binary
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measurement y = 0, 1, 2, 3. The expression

L = βel − 8

3∑

i=0

P (i, 0|3, i), (6)

has been used in Ref. [6] in the context of randomness

extraction. The term βel was introduced by Bechmann-

Pasquinucci and Gisin [26] in the Bell inequality βel ≤ 6,
where

βel = +P (10|02) + P (10|03) + P (10|11) + P (10|13)
+ P (10|21) + P (10|22) + 2P (00|00)

+ 2P (00|10) + 2P (00|20) + 4P (00|01)
+ 4P (00|12) + 4P (00|23)− 2P (10|00)
− 2P (10|10)− 2P (10|20)− 3P (00|02)
− 3P (00|03)− 3P (00|11)− 3P (00|13)

− 3P (00|21)− 3P (00|22). (7)

Applying the methods developed in Section and Section ,

one finds, using the third level of the NPA-hierarchy, that

the value of L is upper bounded by 6.6876 for binary

measurement and by 6.8489 for three-outcome measure-

ments. Using four-outcome qubit measurements, L can

reach a value of 4
√
3 > 6.9282. Therefore, a verifica-

tion of an irreducible four-outcome qubit measurements

requires a visibility of 0.9928.
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1. Introduction

With an interest towards fundamental questions in quantum physics, as well as

applications, larger and larger entangled quantum systems have been realized with

photons, trapped ions, and cold atoms [1–11]. Entanglement is needed for certain

quantum information processing tasks [12, 13], and it is also necessary to reach the

maximum sensitivity in a wide range of interferometric schemes in quantum metrology

[14]. Hence, the verification of the presence of entanglement is a crucial but exceedingly

challenging task, especially in an ensemble of many, say 103 or 1012 particles [5–11].

Moreover, in such experiments it is not sufficient to claim that “the state is entangled”,

we need also to know how entangled the system is. Hence, quantifying entanglement in

large ensembles has recently been at the center of attention. In several experiments the

entanglement depth (i.e., the minimal number of mutually entangled particles consistent

with the measurement data) was determined, reaching to the thousands [7–11].

In the many-particle case, especially in large ensembles of cold atoms, it is typically

very difficult or even impossible to address the particles individually, while measuring

collective quantities is still feasible. In this context, one of the most successful

approaches to detect entanglement is based on the criterion [15]

ξ2s := N
(∆Jx)

2

〈Jy〉2 + 〈Jz〉2
≥ 1, (1)

where N is the number of the spin-1/2 particles, Jl =
∑N

n=1
j
(n)

l for l = x, y, z are

the collective spin components, and j
(n)

l are single particle spin components acting on

the nth particle. Every multiqubit state that violates (1) must be entangled [15]. The

criterion (1) is best suited for states with a large collective spin in the (ŷ, ẑ)-plane and a

small variance (∆Jx)
2 in the orthogonal direction. For such states the variance of a spin

component is reduced below what can be achieved with fully polarized spin-coherent

states, hence they have been called spin squeezed in the context of metrology [16, 17].

As a generalization of (1), a criterion has also been derived by Sørensen and Mølmer

[18] to detect the depth of entanglement of spin-squeezed states in an ensemble of

particles with a spin j. For the criterion, we have to consider a subgroup of k ≤ N

particles and define its total spin as

J = kj. (2)

We also need to define a function FJ via a minimization over quantum states of such a

group as

FJ(X) :=
1

J
min

̺: 1
J
〈Lz〉̺=X

(∆Lx)
2

̺, (3)

where Ll are the spin components of the group. In practice, the minimum will be the

same if we carry out the minimization over states of a single particle with a spin J [19].

Then, for all pure states with an entanglement depth of at most k

(∆Jx)
2 ≥ NjFJ

(〈Jz〉
Nj

)

(4)
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Entanglement and extreme spin squeezing of unpolarized states 3

holds. It is easy to see that (4) is valid even for mixed states with an entanglement depth

of at most k since the variance is concave in the state and FJ(X) is convex ‡. Thus,

every state that violates (4) must have a depth of entanglement of (k + 1) or larger.

It is important to stress that the criterion (4) provides a tight lower bound on (∆Jx)
2

based on 〈Jz〉. Spin squeezing has been demonstrated in many experiments, from cold

atoms [7, 20–26] to trapped ions [27], magnetic systems [28] and photons [29], and in

many of these experiments even multipartite entanglement has been detected using the

condition (4) [7, 23–26, 29].

Recently, the concept of spin squeezing has been extended to unpolarized states

[30–34]. In particular, Dicke states are attracting increasing attention, since their

multipartite entanglement is robust against particle loss, and they can be used for

high precision quantum metrology [8]. Dicke states are produced in experiments with

photons [35, 36] and Bose-Einstein condensates [8, 37, 38]. Suitable criteria to detect

the depth of entanglement of Dicke states have also been derived. However, either they

are limited to spin-1/2 particles [8, 39] or they do not give a tight lower bound on (∆Jx)
2

based on the expectation value measured for the criterion, concretely, 〈J2
y + J2

z 〉 [40].
In this paper, we present a general condition that: (i) provides a lower bound on

the entanglement depth, (ii) is applicable to spin-j systems, for any j, (iii) works both

for spin-squeezed states and Dicke states, and, (iv) is close to provide a tight bound

in the sense mentioned above in the large particle number limit. Such a criterion can

be applied immediately, for instance, in experiments producing Dicke states in spinor

condensates [41].

We now summarize the main results of our paper. With a method similar to the

one used for obtaining Eq. (4), we show that the condition

(∆Jx)
2 ≥ NjGJ

(〈J2
y + J2

z 〉 −Nj(kj + 1)

N(N − k)j2

)

(5)

holds for states with an entanglement depth of at most k of an ensemble of N spin-j

particles, where we introduced the notation

GJ : X 7→ FJ(
√
X), (6)

with FJ(X) defined as in Eq. (3) and J = kj as in (2). Our approach is motivated by

the fact that Eq. (4) fails to be a good criterion for mixed states with a low polarization

〈Jy〉2 + 〈Jz〉2 ≪ N2j2. Thus, we consider the second moments 〈J2
y + J2

z 〉 instead, which
are still large for many useful unpolarized quantum states, such as Dicke states. Using

the second moments is advantageous even for states with a large spin polarization since

criteria with second moments are more robust to noise, which will be demonstrated later

on concrete examples. We also analyze the performance of our condition compared to

other criteria in the literature.

‡ The convexity of FJ (X) is observed numerically [18]. In case the right-hand side of (3) results in a

non-convex function in X, then the convex hull of the right-hand side of (3) must be used in the place

of FJ(X).

204



Entanglement and extreme spin squeezing of unpolarized states 4

In general, the function GJ(X) appearing on the right-hand side of (5) has to be

evaluated numerically. However, due to its convexity properties we can bound it from

below with the two lowest nontrivial orders of its Taylor expansion around X = 0,

yielding a spin-squeezing parameter similar to the one defined in (1). While states

saturating (5) determine a curve in the (〈J2
y + J2

z 〉, (∆Jx)
2)-plane, such an analytic

condition corresponds to tangents to this curve. Hence, we will refer to it as a linear

criterion. Such a criterion for states with an entanglement depth k or smaller is given

by the inequality

ξ2 := (kj + 1)
2(N − k)j(∆Jx)

2

〈J2
y + J2

z 〉 −Nj(kj + 1)
≥ 1, (7)

where we require that kj is an integer. A similar condition can be obtained from the

Sørensen–Mølmer criterion (4) as

ξ2SM := (kj + 1)
2Nj(∆Jx)

2

〈Jy〉2 + 〈Jz〉2
≥ 1, (8)

again requiring that kj is integer. A direct comparison between ξ2 and ξ2SM shows that

the former is more suitable for detecting the depth of entanglement of unpolarized states,

such as Dicke states. Note also the similarity between (8) and the original criterion for

spin-1/2 particles (1). All these criteria are also generalized to the case when the particle

number is not fixed, following [19].

Our paper is organized as follows. In section 2, we discuss how to evaluate our

criteria numerically, while we also discuss cases where analytical formulas can be used

instead of numerics. In section 3, we derive our nonlinear entanglement criterion. In

section 4, we present linear criteria leading to new spin-squeezing parameters. In section

5, we compare our entanglement conditions to other conditions existing in the literature.

Finally, in section 6, we discuss how to generalize our methods to the case of a fluctuating

number of particles.

2. Numerical computation of GJ(X)

Before describing how to obtain FJ (X) and GJ(X) numerically, we define some notions

necessary for our discussion. We distinguish various levels of multipartite entanglement

based on the following definitions. A pure quantum state is k-producible if it can be

written as

|ψ(1)〉 ⊗ |ψ(2)〉 ⊗ · · · ⊗ |ψ(M)〉, (9)

where |ψ(l)〉 are states of kl ≤ k particles, and M stands for the number of particle

groups. A mixed quantum state is k-producible, if it can be written as a mixture of

pure k-producible states. Clearly, 1-producible states are separable states. A state that

is not k-producible is called (k+1)-entangled. The entanglement depth is k+1 whenever

the state is (k + 1)-producible but not k-producible [18, 42].

Next, we will show a simple method to calculate FJ(X) and GJ(X). We will discuss

both numerical and analytical approaches. Knowing the properties of these functions is
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necessary to prove later the relation (5). For an integer J, the function FJ(X) given in

(3) can be efficiently computed for some interval of X as follows [18]. We just need to

calculate the ground states |φλ〉 of the Hamiltonian

Hλ = L2

x − λLz (10)

for a sufficiently wide interval of λ. Note that the ground states of (10) are the extreme

spin-squeezed states studied in [18]. Then, the points of the curve FJ(X) are obtained as

X = 1

J
〈Lz〉φλ

and FJ(X) = 1

J
〈L2

x〉φλ
. Note that the method takes into account that the

state minimizing (∆Jx)
2 for a given 〈Lz〉 has 〈Lx〉 = 0, which is a property numerically

observed to be true for integer J [18]. The algorithm can be extended to half-integer

J ’s by adding a Lagrange multiplier term λ2Lx that constraints 〈Lx〉 to some value, the

details can be found in Appendix A. In practice, FJ(X) is computed typically for an

integer J only, which makes it possible to detect (k + 1)-particle entanglement for any

k for an integer j and for an even k for a half-integer j. In the latter case, it is not

a large restriction to consider only even k, since the entanglement depth in cold atom

experiments can be quite large [7–9].

In a similar fashion, we can also obtain the curve for GJ(X) defined in (6). The

points of the curve are given as X = 1

J2 〈Lz〉2φλ
and GJ(X) = 1

J
〈L2

x〉φλ
. In figure 1, we

drew GJ(X) for various values of J. Based on these, the boundary for k-producible

states in the (〈J2
y + J2

z 〉, (∆Jx)
2)-plane is given by

〈J2

y + J2

z 〉λ =
N(N − k)j2

k2j2
〈Lz〉2φλ

+Nj(kj + 1),

(∆Jx)
2

λ =
N

k
(∆Lx)

2

φλ
. (11)

In the numerical calculations, Ll are Hermitian matrices of size (2kj + 1) × (2kj +

1). Hence, it is possible to draw the boundaries for various levels of multipartite

entanglement for kj reaching up to the thousands, and for an arbitrarily large N.

We mention that for J = 1 we have G1(X) = 1

2
(1 −

√
1−X), i.e., the function

on the right-hand side of the criteria can be obtained analytically. Substituting

F1(X) = G1(X
2) into (5), we can obtain an analytic 2-producibility condition for qubits

and an analytic separability condition for qutrits. In figure 2, we plotted the curves for

k-producible states for some examples with spin-1
2
and spin-1 particles. For higher J ,

the function GJ(X) is not known analytically. Based on uncertainty relations of angular

momentum operators, a lower bound on GJ(X) for any J can be obtained as

G̃J(X) =
1

2

[
(J + 1)− JX −

√
(J + 1− JX)2 −X

]
, (12)

which is not tight for small J and small X , but becomes tight for large J and X close

to 1 [18].

3. Nonlinear criterion

In this section, we present our first main result.
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J = 1

X
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J
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Figure 1. The function GJ (X) defined in (6) for (left to right) J = 1, 3, 5, . . . , 19.

Observation 1. The inequality in (5) holds for all k-producible states of N spin-j

particles. Thus, every state of N spin-j particles that violates (5) must be (k + 1)-

entangled. The condition (5) can be used if 〈J2
y + J2

z 〉 ≥ Nj(kj + 1), while otherwise

there is a k-producible quantum state for which (∆Jx)
2 = 0.

Proof. The key argument of the proof is that for pure k-producible states of N spin-j

particles
√
〈Jy〉2 + 〈Jz〉2

Nj
≥

√
〈J2

y + J2
z 〉 −Nj (kj + 1)

N(N − k)j2
(13)

holds, which is proven in Appendix B.1. Then, based on (13) and on the monotonicity

of FJ(X) in X, we have for pure k-producible states

FJ(LHS) ≥ FJ(RHS). (14)

Here, we used the notation LHS and RHS for the left-hand side and right-hand side of

the relation (13), respectively. On the other hand, the Sørensen–Mølmer criterion (4)

can be rewritten as

(∆Jx)
2 ≥ NjFJ (LHS). (15)

From (14) and (15) follows that (5) holds for pure k-producible states.

Next, we will consider mixed states. In the formula (5) the argument of G is linear

in the state. Then, our criterion (5) can be extended to mixed k-producible states via
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〈J 2
y + J 2

z 〉/Nj(Nj + 1)

(∆
J
x
)2
/
N
j

0 0.25 0.5 0.75 1
0

0.05

0.1
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0.2

0 0.5 1
0
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0.4
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Figure 2. 20-producibility criteria for N = 200 qubits. (solid) The boundary given

by (5). (dashed) Criterion (7), i.e., the tangent to the curve given by (5). (dotted)

Criterion (22) given in [39]. (inset) Curves for k-producibility for N = 20 spin-1

particles, for (left to right) k = 1, 5, 9, 13, 17.

a convex hull of GJ(X). However we can observe numerically that GJ(X) is convex

already by itself. The tightness of (5) is discussed in Appendix B.2, while the convexity

of GJ(X) is considered in detail in Appendix B.3. �

The criterion (5) is especially suited to detect states for which 〈J2
y + J2

z 〉 is large

and (∆Jx)
2 is small. A paradigmatic example for such a state is the unpolarized Dicke

state in the x-basis

ρDicke = |J = Nj,mx = 0〉〈J = Nj,mx = 0|, (16)

that satisfies (∆Jx)
2 = 0 and 〈J2

y + J2
z 〉 = Nj(Nj + 1) and is detected as N -entangled.

In fact, substituting these quantities in the criterion (5) the left-hand side is zero, while

the right-hand side is positive for k = N − 1. Note also that the Dicke states violate

maximally even the relation (13) for pure k-producible states §.

4. Linear analytic criteria

In this section, we will derive the spin-squeezing parameters (7) and (8). Complementary

to the approximation (12), our approach is based on a lower bound on GJ(X) that is

§ We stress that (13) is not an entanglement criterion, since it does not hold for mixed states.
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tighy for X ≈ 0 and improves G̃J at small X by a factor of 2. For our derivation,

we will compute the first terms of the Taylor expansion of GJ(X) around X = 0.

Using the convexity of GJ(X), we will obtain the bound GJ(X) ≥ (GJ(0) +XG′

J(0)),

with GJ(0) = 0. In other words, we will compute the tangent to the k-producibility

boundaries, near their intersection point with the horizontal axis.

In what follows, we present the details of the derivation. The expansion of GJ(X)

can be obtained by employing the perturbation series for Hλ in powers of the parameter

λ ≪ 1, taking advantage of the fact that X = 0 corresponds to λ = 0. The

ground state of Hλ is then given by |φλ〉 = |φ(0)〉 + λ|φ(1)〉 + O(λ2) ‖, where |φ(0)〉
is the ground state of the unperturbed Hamiltonian H(0) = L2

x, i.e., the eigenstate

of Lx with eigenvalue zero. As in usual perturbation theory, the first order term is

obtained by imposing 〈φ(0)|φ(1)〉 = 0 and results in |φ(1)〉 =
∑

m6=0
cm|E(0)

m 〉, where

cm = −〈E(0)
m |H(1)|E(0)

0 〉/(E(0)
m − E

(0)

0 ) and E
(0)
m are the energy levels of the unperturbed

Hamiltonian. In our case, we obtain |φ(1)〉 = ∑
m6=0

cm|m〉x with cm = −〈m|xLz|0〉x/m2,

where |m〉x are the eigenstates of Lx with eigenvalue m. The expansion of the ground

state explicitly is as follows

|φλ〉 = |0〉x − iλ

√
J(J + 1)

2
(|1〉x − | − 1〉x) +O(λ2). (17)

Based on (17), we obtain for the dependence of X and GJ(X) on λ, respectively,

X(λ) = 1

J2 〈Lz〉2φλ
≈ λ2(J + 1)2 and GJ(X(λ)) = 1

J
〈L2

x〉φλ
≈ 1

2
λ2(J + 1). Hence, we

arrive at

GJ(X) ≥ X

2(J + 1)
, (18)

by employing the chain rule for dGJ (X(λ))

dX
near X = λ = 0. Based on this, we can

derive an analytic criterion that becomes tight close to the point (∆Jx)
2 = 0. Note

that we could also use G̃J(X) defined in (12) instead of GJ(X) for constructing our

linear entanglement condition. However, taking the derivative of G̃J(X) one obtains

GJ(X) ≥ G̃J(X) ≥ XG̃′

J(0) =
X

4(J+1)
, which underestimates (18) by a factor of 2. Note

that we computed the leading terms for the Taylor expansion of GJ(X) analytically,

while the function itself is known only numerically.

Observation 2. The criteria in (7) and (8) hold for all k-producible states of N spin-j

particles such that J given in (2) is an integer number. Every state of N spin-j particles

that violates one of the criteria must be (k + 1)-entangled, i.e., has an entanglement

depth at least k + 1.

Proof. From (18) we can bound the criterion (5) from below with (7) by substituting

X =
[
〈J2

y + J2
z 〉 −Nj(kj + 1)

]
/[N(N − k)j2]. Analogously, by rewriting (4) in terms

of GJ and using the bound (18) with X = 〈Jz〉2/N2j2 we obtain (8). �

‖ O(x) is the usual Landau symbol used to describe the asymptotic behavior of a quantity for small x
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Figure 3. Multiparticle entanglement for spin-squeezed states of N = 1000 spin-
1
2 particles, after 10 particles decohered into the completely mixed state. (solid)

Entanglement depth detected by our criterion (5) and (dashed) the Sørensen-Mølmer

criterion (4).

[43]. The results can be seen in figure 3. Our criterion (5) and the Sørensen-Mølmer

criterion (4) detect the same entanglement depth for almost completely polarized spin-

squeezed states. On the other hand, as the squeezing increases, our criterion detects a

monotonically increasing entanglement depth, while the other criterion detects smaller

and smaller multipartite entanglement. While we considered a noise affecting a few

particles, still the detected entanglement depth is much smaller than N. Other types of

noise, such as particle loss, small added white noise, or noise effects modelled considering

the thermal states of (21) lead to a similar situation.

Next, we compare our criteria with another important condition that is designed

to detect the depth of entanglement near unpolarized Dicke states (16). It is a linear

criterion derived by Duan in [39], stating that

N(k + 2)(∆Jx)
2 ≥ 〈J2

y + J2

z 〉 −
N

4
(k + 2) (22)

holds for all k-producible states of N spin-1
2
particles. Any state that violates (22) is

detected as (k + 1)-entangled. In this case, we can compare it with the linear criterion

(7), specialized to qubit-systems, i.e., for j = 1

2

(N − k)

2
(k + 2) (∆Jx)

2 ≥ 〈J2

y + J2

z 〉 −
N

4
(k + 2) . (23)

It is easy to see that a violation of (22) implies a violation of (23). Thus, our condition

detects more states, which can be seen in figure 2.
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Finally, we note that (5) with j = 1/2 is similar to the criterion for spin-1/2

particles used in the experiment described in [8]. A key difference is that in (5), in the

denominator of the fraction, the term N(N − k)j2 = N(N − k)/4 appears, while in the

formula of [8] there is the term N2/4. The difference between the two criteria is the

largest when we examine highly entangled Dicke states or spin-squeezed states, and in

the argument of FJ(X) we have a value close to X = 1. In the vicinity of this point, the

derivative of FJ(X) is very large, hence some improvement in the argument of FJ(X)

makes the bound on the right-hand side of (5) significantly higher. As a consequence,

the criterion (5) can be used to detect the noisy Dicke states of many particles even in

k ∼ N case, while the criterion of [8] can be used only when k ≪ N, and it does not

detect the Dicke state as N -entangled.

6. Extension to fluctuating number of particles

For macroscopic ensembles of particles, e.g., for N ∼ 106, the total particle number is

not under perfect control. In this section, we will generalize our entanglement criteria

to such a situation. The quantum state of a large particle ensemble with a fluctuating

particle number is given as

ρ =
∑

N

QNρN , (24)

where ρN are the density matrices corresponding to a subspace with a particle number

N and QN are probabilities. We also have to consider collective spin operators defined

as Jl =
∑

N Jl,N for l = x, y, z, where Jl,N , act on the subspace with N particles. In

principle, one could evaluate an entanglement condition, e.g., (4) for one of the fixed-N

subspaces. If ρN has an entanglement depth k for some N, then the state ρ has also

at least an entanglement depth k. However, in practice, we would not have sufficient

statistics to evaluate our entanglement criteria for some fixed N. This issue has been

studied by Hyllus et al. [19], who generalized the definition of entanglement depth to

the case of a fluctuating number of particles. They also showed how spin-squeezing

criteria can be used in this case such that all the collected statistics is used, not only

data for a given particle number N. For instance, (4) can be transformed to [19]

(∆Jx)
2 ≥ 〈N〉jFJ

( 〈Jz〉
〈N〉j

)

. (25)

Here, (25) could be obtained from (4) simply with the substitution N → 〈N〉.
Using methods similar to the ones in [19], we will now obtain the criterion (4) for

fluctuating particle numbers.

Observation 4. All k-producible states with a fluctuating particle number must satisfy

the following inequality

(∆Jx)
2 ≥ 〈N〉jGJ

( 〈W 〉
〈N〉j

)

, (26)
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Appendix A. Computing FJ(X) and GJ(X) for half-integer spin

For half-integer spins, we have to calculate FJ(X) numerically as follows. We consider

the Hamiltonian [18]

Hλ,λ2
= L2

x − λLz − λ2Lx, (A.1)

and denote its ground state by φλ,λ2
. Then, FJ(X) can be obtained as

FJ(X) = min
λ,λ2:

1

J
〈Lz〉=X

(∆Jx)
2

ψλ,λ2
, (A.2)

which is a two-parameter optimization with the constraint 1

J
〈Lz〉 = X.

Appendix B. Details of the proof of Observation 1

Appendix B.1. Proof. of (13)

To prove (13), let us consider the expression (∆Jy)
2+(∆Jz)

2 on pure k-producible states

(9). Due to the additivity of the variance for tensor products

(∆Jy)
2 + (∆Jz)

2 =
∑

l

[
(∆j(l)y )2 + (∆j(l)z )2

]

≤
∑

l

[
klj (klj + 1)− 〈(j(l)x )2〉 − 〈j(l)y 〉2 − 〈j(l)z 〉2

]
(B.1)

holds, where the superscript (l) indicates the lth group, that is composed of kl particles.

The inequality (B.1) is saturated by all quantum states for which 〈(j(l)x )2+(j
(l)
y )2+(j

(l)
z )2〉

is maximal, i.e., equal to klj (klj + 1), for all l.

For simplifying our expression, we neglect the non-negative quantity

X :=
∑

l

〈(j(l)x )2〉, (B.2)

and after some rearrangement of the terms in (B.1) we arrive at

〈J2

y + J2

z 〉 ≤ 〈Jy〉2 + 〈Jz〉2

+
∑

l

klj



(klj + 1)− klj

(
〈j(l)y 〉2 + 〈j(l)z 〉2

)

k2
l j

2



 . (B.3)
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From (B.3), we can obtain a simpler bound as

〈J2

y + J2

z 〉 ≤ 〈Jy〉2 + 〈Jz〉2 +Nj

+
∑

l

klj

[

kj

(

1− 〈j(l)y 〉2 + 〈j(l)z 〉2
k2
l j

2

)]

, (B.4)

due to the fact that kl ≤ k,
∑

l kl = N, and that the expression inside the round brackets

in (B.4) is positive. Furthermore, using Jensen’s inequality in the form

−
∑

l

klf
2

l ≤ − 1

N

(
∑

l

klfl

)2

,
∑

l

kl = N, (B.5)

with fl =
〈j

(l)
m 〉

kl
for m = x, y, z we obtain

〈J2

y + J2

z 〉 −Nj(kj + 1) ≤
(

1− k

N

)

(〈Jy〉2 + 〈Jz〉2). (B.6)

Hence, we proved (13).

Appendix B.2. Tightness of (13) and (5)

We will now examine, how the relation (13) would look for pure k-producible states

(9) without neglecting X defined in (B.2). Simply, 〈J2
y + J2

z 〉 would be substituted by

〈J2
y+J2

z 〉+X .With a derivation similar to the one in Appendix B.1, it can be shown that

such a condition would be saturated by all quantum states of the form |ψ〉⊗|ψ〉⊗...⊗|ψ〉,
if |ψ〉 are k-qubit states and 〈j2x + j2y + j2z 〉ψ is maximal, i.e., it is kj (kj + 1) . (Here we

assumed that X is defined such that all particle groups contain k particles, i.e, kl = k

for all l.)

Let us now see how large X is for relevant states. For the state fully polarized in

the z-direction, we have

X =
∑

l

(∆j(l)x )2 = Nj2/2, (B.7)

where we used the fact that 〈j(l)〉 = 0 for such a state. Let us consider now the ground

states of the Hamiltonian (21) for a given parameter µ. Such states include usual spin-

squeezed states, as well as Dicke states (16). For any µ,

X < Nj2/2 (B.8)

holds, since for such states the variance of the x-components of the collective angular

momentum is squeezed below that of the completely polarized state for any particle

group. Note that the upper bound in (B.8) does not grow with k.

Let us now consider the other relevant quantity, 〈J2
y + J2

z 〉. For the state fully

polarized in the x-direction, we have 〈J2
y + J2

z 〉 = Nj(Nj + 1/2). For the Dicke state

(16), 〈J2
y + J2

z 〉 = Nj(Nj + 1). For ground states of (21) for µ > 0, 〈J2
y + J2

z 〉 is in

between these two values. This can be seen noticing that 〈J2
x + J2

y + J2
z 〉 = Nj(Nj +1)

for these states.
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0 0.5 1
0
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2
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X

G
′
(X

)

Figure B1. The derivative G′(X) = J
2〈Lz〉φ

λ

λ as a function of X = 1
J2 〈Lz〉2φλ

for

(solid) J = 1, (dashed) J = 10, and (dotted) J = 19.

Based on the previous discusion, it is clear that X ≪ 〈J2
y + J2

z 〉 holds for large N.

Hence, in practical cases the relation (5) provides a tight bound on (∆Jx)
2 based on

〈J2
y + J2

z 〉 in the large N limit.

Appendix B.3. Properties of FJ and GJ

The functions FJ (X) can be obtained from the optimal states ρ for the problem defined

in (3), i.e., the states that minimize (∆Lx)
2 for a given 〈Lz〉. As discussed in section 2,

for an integer spin J , such states are the ground states of (10), where λ is a parameter.

They have 〈Lx〉 = 0 [18]. Thus, FJ(X) yields the minimal 〈J2
x〉 for a given value of 〈Jz〉.

Since the set of physical states is convex, the set of points in the (〈Jz〉, 〈J2
x〉)−space

corresponding to physical states is also convex. Hence, FJ(X) is also a convex function

and in particular its derivative λ(X) is monotonously increasing with X . Note that in

[18] a different proof was presented for this fact. In principle, the derivative F ′

J(X) can

be computed by numerical derivation of FJ(X). However, it is much simpler to obtain

F ′

J(X) for some range of X by plotting ( 1
J
〈Lz〉φλ

, λ) for some range of λ [18]. In other

words, for X = 1

J
〈Lz〉φλ

the derivative is F ′

J(X) = λ.

To show that also GJ(X) is convex we observe that G′

J(X) = 1

2
√

X
F ′

J(
√
X) is a

monotonously increasing function of X. We evaluate numerically the derivative G′

J(X)

by plotting ( 1

J2 〈Lz〉2φλ
, J
2〈Lz〉φλ

λ) for a wide range of λ, cf. figure B1, and see explicitly
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its monotonicity. More generally, one can check whether or not FJ(X
1

α ) is convex for

any exponent α. It can then be observed numerically (not shown) that FJ(X
1

α ) is not

convex for any α > 2.

So far we discussed the case of integer spin. For half-integer spin, the ideas

mentioned before cannot be used. Then, the derivative of GJ can be obtained via the

numerical derivation of FJ (X). Based on numerics, we can make the same statements

about the convexity of GJ(X) and FJ(X
1

α ) as for the case of an integer spin.
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[23] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Nature

464 1170–1173

[24] Esteve J, Gross C, Weller A, Giovanazzi S and Oberthaler M 2008 Nature 455

1216–1219

[25] Bohnet J G, Cox K C, Norcia M A, Weiner J M, Chen Z and Thompson J K 2014

Nat. Photon 8 731–736

[26] Cox K C, Greve G P, Weiner J M and Thompson J K 2016 Phys. Rev. Lett. 116

093602

[27] Meyer V, Rowe M A, Kielpinski D, Sackett C A, Itano W M, Monroe C and

Wineland D J 2001 Phys. Rev. Lett. 86 5870–5873

[28] Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J and

Roditi I 2015 Phys. Rev. Lett. 114 043604

[29] Mitchell M W and Beduini F A 2014 New J. Phys. 16 073027
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We show how to verify the metrological usefulness of quantum states based on the expectation values of an

arbitrarily chosen set of observables. In particular, we estimate the quantum Fisher information as a figure of

merit of metrological usefulness. Our approach gives a tight lower bound on the quantum Fisher information

for the given incomplete information. We apply our method to the results of various multiparticle quantum

states prepared in experiments with photons and trapped ions, as well as to spin-squeezed states and Dicke

states realized in cold gases. Our approach can be used for detecting and quantifying metrologically useful

entanglement in very large systems, based on a few operator expectation values. We also gain new insights into

the difference between metrological useful multipartite entanglement and entanglement in general.

DOI: 10.1103/PhysRevA.95.032330

I. INTRODUCTION

Entanglement lies at the heart of many problems in quantum

mechanics and has attracted increasing attention in recent

years. There are now efficient methods to detect it with a mod-

erate experimental effort [1,2]. However, in spite of intensive

research, many of the intriguing properties of entanglement

are not fully understood. One such puzzling fact is that, while

entanglement is a sought after resource, not all entangled

states are useful for some particular quantum information

processing task. For instance, it has been realized recently that

entanglement is needed in very general metrological tasks to

achieve a high precision [3]. Remarkably, this is true even in

the case of millions of particles, which is especially important

for characterizing the entanglement properties of cold atomic

ensembles [4–9]. However, there are highly entangled pure

states that are useless for metrology [10].

In the light of the these results, besides verifying that

a quantum state is entangled, we should also show that it

is useful for metrology. This is possible if we know the

quantum Fisher information FQ[ ,̺ Jl] for the state. Here ̺

is a density matrix of an ensemble of N two-level systems

(i.e., qubits), Jl =
1
2

∑
n σ

(n)

l
for l = x, y, z are the angular

momentum components and σ
(n)

l
are the Pauli spin matrices

acting on qubit n.

The quantum Fisher information is a central quantity of

quantum metrology. It is connected to the task of estimating the

phase θ for the unitary dynamics of a linear interferometer U =

exp(−iJlθ), assuming that we start from ̺ as the initial state.

It provides a tight bound for the precision of phase estimation

as [11,12]

(∆θ)2 > 1/FQ[ ,̺ Jl]. (1)

It has been shown that if FQ[ ,̺ Jl] is larger than the value

achieved by product states [3], then the state ̺ is entangled.

∗ toth@alumni.nd.edu; http://www.gtoth.eu

Higher values of the quantum Fisher information indicate

even multipartite entanglement [13]; this fact has been used

to analyze the results of several experiments [8,9,14].

In this paper, we suggest estimating the quantum Fisher

information based on a few measurements [15]. Our method

can be called “witnessing the quantum Fisher information”

since our estimation scheme is based on measuring operator

expectation values similarly to how entanglement witnesses

work [1, 2]. Our findings are expected to simplify the ex-

perimental determination of metrological sensitivity since the

proposed set of a few measurements is much easier to carry out

than the direct determination of the metrological sensitivity,

which has been applied in several experiments [8, 9, 16, 17].

The archetypical criterion in this regard is [3]

FQ[ ,̺ Jy] >
〈Jz〉

2

(∆Jx )2
, (2)

which is expected to work best for states that are almost

completely polarized in the z direction and spin-squeezed in

the x direction. Apart from spin-squeezed states, there are con-

ditions similar to Eq. (2) for symmetric states close to Dicke

states [18–21] and for two-mode squeezed states [22].

After finding criteria for various systems, it is crucial to

develop a general method that provides an optimal lower

bound on the quantum Fisher information in a wide class

of cases, especially for the states most relevant for experi-

ments such as spin-squeezed states [23], Greenberger-Horne-

Zeilinger (GHZ) states [24], and symmetric Dicke states [18].

It seems that such a method would involve a numerical mini-

mization over all density matrix elements constrained for some

operator expectation values, which would be impossible except

in very small systems.

In this paper, we demonstrate that tight lower bounds on the

quantum Fisher information can still be computed efficiently.

Remarkably, our method works for thousands of particles. We

show how to obtain a bound on the quantum Fisher informa-

tion from fidelity measurements for GHZ states [25–32] and

for symmetric Dicke states [14,33–37]. We also discuss how to

obtain such bounds based on collective measurements for spin-

squeezed states of thousands of atoms [6,7,38] and for sym-
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metric Dicke states prepared recently in cold gases [8,39–41].

We stress that the method is very general, and needs only the

expectation values of a set of operators chosen by the experi-

menter. Then it provides a tight lower bound on the quantum

Fisher information.

Due to the relation between the quantum Fisher informa-

tion and entanglement mentioned above, our method can also

be used for entanglement detection and quantification based on

an arbitrary set of operator expectation values in very large sys-

tems. So far, methods that can be used for large systems, such

as spin-squeezing inequalities [42–44], work only for a spe-

cific set of observables. In addition, methods that can quantify

entanglement based on the expectation values of an arbitrary

set of observables, such as semidefinite programming [45–47],

work only for small systems.

The paper is organized as follows. In Sec. II, we show

how to bound the quantum Fisher information based on the

knowledge of some operator expectation values. In Sec. III,

we test our method on theoretical examples in small systems.

In Sec. IV, we present calculations for experimental data. Fi-

nally, in Sec. V, we discuss how the quantum Fisher informa-

tion is expected to scale with the particle number in the limit

of large particle numbers.

II. ESTIMATION OF THE QUANTUM FISHER

INFORMATION

In this section, first we review some important properties of

the quantum Fisher information. Then we present our method

for estimating it based on a few measurements.

A. Entanglement quantification with the quantum Fisher

information

In Sec. I, we mentioned briefly, how quantum Fisher infor-

mation connects quantum metrology and entanglement theory.

In more detail, the bounds on the quantum Fisher information

make it possible to detect metrologically useful entanglement.

It has been shown that if

FQ[ ,̺ Jl] > (k − 1)N, (3)

where k is an integer, then the state has a better metrologi-

cal performance than any state with at most (k − 1)–particle

entanglement, hence it possesses at least k-particle metrologi-

cally useful entanglement [3,13]. We can immediately see that

a perfect N-particle GHZ state possesses metrologically useful

N-particle entanglement. Based on the ideas above, it is pos-

sible to use the quantum Fisher information for entanglement

detection [8,9,14].

Let us analyze the condition, Eq. (3), further. A simple cal-

culation shows that for a tensor product of (k−1)–particle GHZ

states the two sides of Eq. (3) are equal. Hence, a state is de-

tected by Eq. (3) if it performs better than a state in which all

particles are in GHZ states of (k − 1) particles. For instance, if

in an experiment with 10 000 particles we detect five-particle

metrologically useful entanglement, then the state is better

metrologically than a tensor product of 2500 four-particle GHZ

states. Based on this example, it is easy to see that the re-

quirements for metrologically useful k-particle entanglement

are much stricter than for general k-particle entanglement.

B. Estimation of a general function of ̺

First, we review a method that can be used to find a lower

bound on a convex function g(̺) based on only a single oper-

ator expectation value w = 〈W〉̺ = Tr(W ̺). Theory tells us

that a tight lower bound can be obtained as [48–50]

g(̺) > B(w) := sup
r

[rw − ĝ (rW)] , (4)

where ĝ is the Legendre transform, in this context defined as

ĝ(W) = sup
̺

[〈W〉̺ − g(̺)]. (5)

Equation (4) has been applied to entanglement measures [49,

50]. Since those are defined as convex roofs over all possible

decompositions of the density matrix, it is sufficient to carry

out the optimization in Eq. (4) for pure states only. However,

still an optimization over a general pure state, i.e., over many

variables, has to be carried out, which is practical only for

small systems.

Based on this method, we would like to estimate the

quantum Fisher information, which is strongly connected to

entanglement, while it also has a clear physical meaning

in metrological applications. As the first step, we note that

FQ[ ,̺ Jl] can be obtained as a closed formula with ̺ and

Jl [12], however, this is a highly nonlinear expression which

would make the computation of the Legendre transform very

demanding. A key point in our approach is using a very recent

finding showing that FQ[ ,̺ Jl] is the convex roof of 4(∆Jy)
2

[51], and hence the optimization may be carried out only for

pure states. With this, however, we are still facing an opti-

mization problem that cannot be solved numerically for system

sizes relevant for quantum metrology.

We now arrive at our first main result. We show that, for

the quantum Fisher information, Eq. (5) can be rewritten as an

optimization over a single real parameter.

Observation 1. The quantum Fisher information can be es-

timated using the Legendre transform

F̂Q(W) = sup
µ

{
λmax

[
W − 4(Jl − µ)

2
]}
, (6)

where λmax(A) denotes the maximal eigenvalue of A.

Proof. Based on the previous discussion, we can rewrite the

right-hand side of Eq. (5) for our case as

F̂Q(W) = sup
Ψ

[〈W − 4J2
l 〉Ψ + 4 〈Jl〉

2
Ψ
]. (7)

Equation (7) is quadratic in operator expectation values. It can

be rewritten as an optimization linear in operator expectation

values as

F̂Q(W) = sup
Ψ,µ

[〈W − 4J2
l 〉Ψ + 8µ 〈Jl〉Ψ − 4µ2], (8)
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which can be reformulated as Eq. (6). At the extremum, the

derivative with respect to µ must be 0, hence at the optimum

µ = 〈Jl〉Ψ . This also means that we have to test µ values in the

interval −N/2 6 µ 6 N/2 only. �

In this paper, we use Eq. (6) to calculate the Legendre trans-

form [52]. The full optimization problem to be solved consists

of Eq. (6) and Eq. (4) with the substitutions g(̺) = FQ[ ,̺ Jl]

and ĝ(W) = F̂Q(W).

We want to stress the generality of our findings beyond

the linear interferometers covered in this article. For nonlin-

ear interferometers [53–58], the phase θ must be estimated in

a unitary dynamics U = exp(−iAθ), where A is not a sum of

single spin operators and, hence, is different from the angular

momentum components. Using Observation 1, we can obtain

lower bounds for the corresponding quantum Fisher informa-

tion FQ[ ,̺ A] if we replace Jl with A in Eq. (6).

C. Measuring several observables

We now consider the estimation of the quantum Fisher in-

formation based on several expectation values. We can gener-

alize the method described by Eqs. (4) and (5) for measuring

several observables Wk as [49]

FQ[ ,̺ Jy] > sup
r1,r2,...,rK

[

K
∑

k=1

rkwk − F̂Q

(

K
∑

k=1

rkWk

)]

, (9)

where wk = 〈Wk〉̺ . As we can see, we now have several

parameters rk . Combining Eq. (9) with the Legendre transform

(6), we arrive at the formula

FQ[ ,̺ Jl] > sup
{rk }

[

∑

k

rkwk − sup
µ

λmax (M)

]

, (10)

where

M =

∑

k

rkWk − 4(Jl − µ)
2. (11)

Since F̂Q(
∑

rkWk) is a convex function in rk , in Eq. (10) the

quantity to be maximized in rk is concave [48]. Thus, we can

easily find the maximum with the gradient method. If we do

not find the optimal rk , then we underestimate the real bound.

Hence, we will still have a valid lower bound. This does not

hold for the optimization over µ. The function to be optimized

is not a convex function of µ, and not finding the optimal µ

leads to overestimating the bound. Thus, great care must be

taken when optimizing over µ.

III. EXAMPLES

In this section, we show how to use our method to esti-

mate the quantum Fisher information based on fidelity mea-

surements, as well as collective measurements.
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FIG. 1. (a) Fidelity vs. lower bound on the quantum Fisher informa-

tion for GHZ states of N qubits. The quantum Fisher information is 0

if the fidelity is less than 0.5. (b) The same, but for Dicke states for

with N = 6 (solid line) and N = 40 (dashed line).

A. Exploiting symmetries

When making calculations for quantum systems with an in-

creasing number of qubits, we soon run into difficulties when

computing the largest eigenvalue of Eq. (6). The reason is that

for N qubits, we need to handle 2N × 2N matrices, hence we

are limited to systems of 10–15 qubits.

We can obtain bounds for much larger particle numbers, if

we restrict ourselves to the symmetric subspace [59]. This ap-

proach can give optimal bounds for many systems, such as

Bose-Einstein condensates of two-state atoms, which are in

a symmetric multiparticle state. The bound computed for the

symmetric subspace might not be correct for general states.

Finally, it is important to note that if the operator W is

permutationally invariant and the eigenstate with the maximal

eigenvalue of the matrix in Eq. (6) is nondegenerate, then the

two bounds coincide, as shown in Appendix B.

B. Fidelity measurements

Let us examine the case where W is a projector onto a pure

quantum state. First, we consider GHZ states [24]. We choose

W = |GHZ〉〈GHZ|, hence 〈W〉 is equal to FGHZ, the fidelity

with respect to the GHZ state. Based on knowing FGHZ, we

would like to estimate FQ[ ,̺ Jz].

Observation 2. A sharp lower bound on the quantum Fisher

information with the fidelity FGHZ is given by

FQ[ ,̺ Jz]

N2
>

{

(1 − 2FGHZ)
2 if FGHZ > 1/2,

0 if FGHZ 6 1/2.
(12)

The proof is based on carrying out the optimization described

above analytically and can be found in Appendix A [60]. Equa-

tion (12) is plotted in Fig. 1(a). Note that the bound on the

quantum Fisher information normalized by N
2 in Eq. (12) is

independent of the number of particles. Moreover, the bound

is 0 for FGHZ 6 0.5. This is consistent with the fact that

for the product state |111...11〉 we have FGHZ = 1/2, while

FQ[ ,̺ Jz] = 0.

Next, let us consider symmetric Dicke states. An N-qubit
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symmetric Dicke state is given as

|D
(m)

N
〉 =

(

N

m

)− 1
2 ∑

k

Pk(|1〉
⊗m ⊗ |0〉⊗(N−m)), (13)

where the summation is over all the different permutations of

the product state having m particles in the |1〉 state and (N −m)
particles in the |0〉 state.

From the point of view of metrology, we are interested

mostly in the symmetric Dicke state for even N and m =
N
2
.

This state is known to be highly entangled [61,62] and allows

for Heisenberg limited interferometry [63]. In the following,

we omit the superscript giving the number of |1〉’s and use the

notation

|DN 〉 ≡ |D
( N

2
)

N
〉. (14)

The witness operator that can be used for noisy Dicke states

is W = |DN 〉〈DN |, hence for the expectation value of the

witness it is just the fidelity with respect to Dicke states, i.e.,

〈W〉 = FDicke. In Fig. 1(b), we plot the results for Dicke states

of various numbers of qubits. Now the normalized curve is not

the same for all particle numbers. FDicke = 1 corresponds to

FQ[ ,̺ Jy] = N(N + 2)/2. At this point note that for the exam-

ples presented above, the quantum Fisher information scales as

O(N2) if the quantum state has been prepared perfectly, where

O(x) is the usual Landau notation used to describe the asymp-

totic behavior of a quantity for large x [13].

Note that estimating FQ[ ,̺ Jy] based on FDicke was possible

for 40 qubits in Fig. 1(b), since we carried out the calculations

for the symmetric subspace. For our case, the witness opera-

tor W is permutationally invariant and it has a nondegenerate

eigenstate corresponding to the maximal eigenvalue. Hence,

based on the arguments in Sec. III A the bound is valid even

for general, i.e., nonsymmetric states. Further calculations for

the large-N limit are given in Appendix C.

C. Spin-squeezed states

In the case of spin-squeezing, the quantum state has a large

spin in the z direction, but a decreased variance in the x di-

rection. By measuring 〈Jz〉 and (∆Jx)
2 we can estimate the

quantum Fisher information by Eq. (2). However, this formula

does not necessarily give the best lower bound for all values of

the collective observables. With our approach we can find the

best bound.

To give a concrete example, we choose W1 = Jz, W2 = J
2
x ,

and W3 = Jx for the operators to be measured. We change w1

and w2 in some interval. We also require that w3 = 0, since we

assume that the mean spin points in the z direction [64]. This is

reasonable since in most spin-squeezing experiments we know

the direction of the mean spin.

Our results are shown in Fig. 2(a). We chose N = 4 particles

since for small N the main features of the plot are clearly vis-

ible. The white areas correspond to nonphysical combinations

of expectation values. States at the boundary can be obtained

as ground states of H
(±)

bnd
(µ) = ±J

2
x − µJz (Appendix D). In

0.6 0.8 1 1.2 1.4

1

1.1

1.2

1.3

〈J 4
x〉

F
Q
[̺
,
J
y
]/
N

(a) (b)

FIG. 2. (a) Optimal lower bound on the quantum Fisher information

FQ[ ,̺ Jy] based on collective measurements for spin-squeezing with

N = 4. The mean spin points in the z direction. Below the dashed

line we have FQ[ ,̺ Jy]/N > 1. For the description of points P, D,

M, and C, see the text. (b) Lower bound on FQ[ ,̺ Jy] for 〈Jz〉 = 1.5

and (∆Jx)
2
= 0.567, as a function of 〈J4

x 〉. The corresponding point

in (a) is denoted by a cross. Dashed horizontal line: Lower bound

without constraining 〈J4
x 〉. Dotted horizontal line: Lower bound for

states in the symmetric subspace. As shown, an additional constraint

or assuming symmetry improves the bound.

Fig. 2(a), the state fully polarized in the z direction, an ini-

tial state for spin-squeezing experiments, corresponds to point

P. The Dicke state, (14), corresponds to point D [65]. Spin-

squeezing makes (∆Jx)
2 decrease, while 〈Jz〉 also decreases

somewhat. Hence, at least for small squeezing, it corresponds

to moving down from point P towards point D on the bound-

ary of the plot, while the metrological usefulness is increas-

ing. Below the dashed line FQ[ ,̺ Jy]/N > 1, hence the state

possesses metrologically useful entanglement [3]. The equal

mixture of |000..00〉x and |111..11〉x corresponds to point M,

with FQ[̺M, Jy] = N . Finally, the completely mixed state cor-

responds to point C. It cannot be used for metrology, hence

FQ[̺C, Jy] = 0.

We now compare the difference between our bound and

Eq. (2). First, we consider the experimentally relevant region

for which (∆Jx)
2 < 1. We find that for points that are away

from the boundary at least by 0.01 on the vertical axis, the dif-

ference between the two bounds for FQ[ ,̺ Jy] is smaller than

2×10−6. For points at the boundary the difference is somewhat

larger but still small; the relative difference is less than 2% (see

Appendix E). Hence, Eq. (2) practically coincides with the op-

timal bound for (∆Jx )
2 < 1. We now consider the region in

Fig. 2(a) for which (∆Jx )
2 > 1. The difference between the

two bounds is now larger. It is largest at point M, for which the

bound, (2), is 0. Hence, for measurement values correspond-

ing to points close to M, our method could improve formula

(2). It is important from the point of view of applying our

method to spin-squeezing experiments that the bound, (2), can

be substantially improved even for (∆Jx)
2 < 1, if we assume a

bosonic symmetry or we measure an additional quantity, such

as 〈J4
x 〉 as shown in Fig. 2(b).
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FIG. 3. Optimal lower bound on the quantum Fisher information for

symmetric states close to Dicke states for N = 6.

D. Dicke states

In this section, we use our method to find lower bounds on

the quantum Fisher information for states close to the Dicke

states, (14), based on collective measurements. We discuss

what operators have to be measured to estimate the metrologi-

cal usefulness of the state. In Sec. IV B 2, we test our approach

for a realistic system with very many particles.

In order to estimate the metrological usefulness of states

created in such experiments, we choose to measure W1 = J2
x ,

W2 = J2
y , and W3 = J2

z since the expectation values of these

operators uniquely define the ideal Dicke state, and they have

already been used for entanglement detection [39]. In cold gas

experiments it is common that the state created is invariant un-

der transformations of the type Uz(φ) = exp(−iJzφ) [21]. For

such states 〈J2
x 〉 = 〈J2

y 〉, which we also use as a constraint in

our optimization.

Let us demonstrate how our method works in an example

for small systems. Figure 3 shows the results for N = 6 parti-

cles for symmetric states for which

〈J2
x + J2

y + J2
z 〉 =

N
2

(

N
2
+ 1

)

=: JN . (15)

It can be seen that the lower bound on the quantum Fisher in-

formation is the largest for 〈J2
z 〉 = 0. It reaches the value cor-

responding to the ideal Dicke state, N(N + 2)/2 = 24. It is

remarkable that the state is also useful for metrology if 〈J2
z 〉 is

very large. In this case 〈J2
x 〉 and 〈J2

y 〉 are smaller than 〈J2
z 〉, and

this cigar-shaped uncertainty ellipse can be used for metrology.

IV. CALCULATIONS FOR EXPERIMENTAL DATA

In this section, we use our method to find tight lower bounds

on the quantum Fisher information based on experimental data.

First, we determine the quantum Fisher information for sev-

eral experiments in photons and trapped ions creating GHZ

states and Dicke states, in which the fidelity has been measured

[14,27,29–36,66–68]. Our method is much simpler than obtain-

ing the quantum Fisher information from the density matrix

[14] or estimating it from a metrological procedure [8]. Sec-

ond, we obtain a bound on the quantum Fisher information for

a spin-squeezing experiment with thousands of particles [7].

Based on numerical examples, we see that the bound, (2), is

close to optimal even if the state is not completely polarized.

Assuming symmetry or knowing additional expectation values

can improve the bound (2). Finally, we also obtain the bound

for the quantum Fisher information for a recent experiment

with Dicke states [39]. The estimate of the precision based on

considering the particular case where 〈J2
z 〉 is measured for pa-

rameter estimation [21] is close to the optimal bound computed

by our method.

A. Few-particle experiments

We now estimate the quantum Fisher information based on

the fidelity with respect to Dicke states and GHZ states for sev-

eral experiments with photons and trapped cold ions, following

the ideas in Sec. III B.

Our results are summarized in Table I. For the experiments

aiming to create Dicke states, the lower bound on FQ[ ,̺ Jy]/N2

is shown, while for the experiments with GHZ states we esti-

mate FQ[ ,̺ Jz]/N2. In [29,36] several logical qubits are stored

in a particle, but in the rest of the experiments only a single

qubit. Reference [32] describes experiments with 2–14 ions,

of which we analyze the 8-qubit and 10-qubit GHZ sates. Fi-

nally, for the experiment in Ref. [66] we used the fidelity es-

timated using reasonable assumptions discussed in that paper,

while the worst-case fidelity is lower.

We can compare our estimate to the quantum Fisher in-

formation of the state for the experiment in Ref. [14], where

the quantum Fisher information for the density matrix was ob-

tained as FQ[ ,̺ Jy]/N2
= (10.326 ± 0.093)/N2

= (0.6454 ±
0.0058). As reported in Table I, this value is larger than the

one we obtained, however, it was calculated by knowing the

entire density matrix, while our bound is obtained from the fi-

delity alone.

B. Many-particle experiments

So far, we have studied the quantum state of few particles.

Next we turn to experiments with very many particles, in which

a fidelity measurement is not practical. In such systems, the

quantum Fisher information must be estimated based on col-

lective measurements.

By far the most relevant quantum states in many-particle

experiments are spin-squeezed states, which can be used to

increase the precision in magnetometry and in atomic clocks

[42]. We also discuss Dicke states, since they have been real-

ized in several experiments [8,39–41]. Dicke states realized in

cold gases are the focus of our attention, since they can be used

for high-precision interferometry [63].

1. Spin-squeezing experiment

We now use our method to find lower bounds on the

quantum Fisher information for a recent spin-squeezing exper-

iment in cold gases, following the ideas in Sec. III C. With it
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Targeted

Physical quantum

system state Fidelity
FQ

N2 > Ref. No.

Photons |D4〉 0.844 ± 0.008 0.358 ± 0.011 [33]

0.78 ± 0.005 0.281 ± 0.059 [36]

0.8872 ± 0.0055 0.420 ± 0.009 [14]

0.873 ± 0.005 0.351 ± 0.006 [69]

|D6〉 0.654 ± 0.024 0.141 ± 0.019 [34]

0.56 ± 0.02 0.0761 ± 0.012 [35]

Photons |GHZ4〉 0.840 ± 0.007 0.462 ± 0.019 [27]

|GHZ5〉 0.68 0.130 [66]

|GHZ8〉 0.59 ± 0.02 0.032 ± 0.016 [67]

|GHZ8〉 0.776 ± 0.006 0.305 ± 0.013 [29]

|GHZ10〉 0.561 ± 0.019 0.015 ± 0.011 [29]

Trapped ions |GHZ3〉 0.89 ± 0.03 0.608 ± 0.097 [30]

|GHZ4〉 0.57 ± 0.02 0.020 ± 0.013 [31]

|GHZ6〉 > 0.509 ± 0.004 0.0003 ± 0.0003 [68]

|GHZ8〉 0.817 ± 0.004 0.402 ± 0.010 [32]

|GHZ10〉 0.626 ± 0.006 0.064 ± 0.006 [32]

TABLE I. Fidelity values and the corresponding bounds on the

quantum Fisher information for several experiments with Dicke states

and GHZ states. For experiments targeting Dicke states, bounds on

FQ[ ,̺ Jy]/N2 are listed. The maximal value of this quantity is 0.75

and 0.67 for N = 4 and N = 6, respectively. For experiments with

GHZ states, bounds on FQ[ ,̺ Jz]/N2 are shown, and, in this case, the

maximal value is 1.

we show that the lower bound given in Eq. (2) is close to op-

timal in this case. We also demonstrate that we can carry out

calculations for real systems.

In particular, for our calculations we use the data from the

spin-squeezing experiment in Ref. [7]. The particle number is

N = 2300, and the spin-squeezing parameter, defined as

ξ2s = N
(∆Jx)

2

〈Jz〉2
, (16)

has the value ξ2s = −8.2dB = 10−8.2/10
= 0.1514. The spin

length 〈Jz〉 has been close to maximal. In our calculations, we

choose

〈Jz〉 = α
N
2
, (17)

where we test our method with various values for α. For each

α, we use a value for (∆Jx)
2 such that we get the experimen-

tally obtained spin-squeezing parameter, (16). Moreover, we

assume that 〈Jx 〉 = 0, as the zdirection was the direction of the

mean spin in the experiment. Based on Eq. (2), the bound for

the quantum Fisher information is obtained as

FQ[̺N, Jy]

N
>

1

ξ2s
= 6.605. (18)

where ̺N is the state of the system in the sxperiment satisfying

Eqs. (16) and (17).

We carry out the calculations for symmetric states. This

way we obtain a lower bound on the quantum Fisher informa-

tion, which we denote Bsym(〈Jz〉̺N
, 〈J2

x 〉̺N
). As mentioned in

Sec. III B, we could obtain a bound for the quantum Fisher

information that is valid even for general, not necessarily sym-

metric states if the matrix in Eq. (6) had nondegenerate eigen-

values. This is not the case for the spin-squeezing problem.

However, we still know that the bound obtained with our calcu-

lations restricted to the symmetric subspace cannot be smaller

than the optimal bound for general states, B(〈Jz〉̺N
, 〈J2

x 〉̺N
).

On the other hand, we know that bound (2) cannot be larger

than the optimal bound for general states. These relations can

be summarized as

Bsym(〈Jz〉̺N ′ , 〈J
2
x 〉̺N

) ≥ B(〈Jz〉̺N
, 〈J2

x 〉̺N
)

≥
〈Jz〉

2
̺N

(∆Jx)
2
̺N

, (19)

where on the right-hand side of Eq. (19) there is just the bound

in Eq. (2).

Our calculations lead to

Bsym(〈Jz〉̺N
, 〈J2

x 〉̺N
) = 6.605 (20)

for almost completely polarized spin-squeezed states with α =

0.85, as well as for not fully polarized ones with α = 0.5. That

is, based on numerics, the left-hand side and the right-hand

side of Eq. (19) seem to be equal. This implies that the lower

bound, (2), for the quantum Fisher information is optimal for

the system. In Appendix G 1, the details of the calculations are

given, and we also show examples where we can improve the

bound, (2), with our approach, if symmetry is assumed.

2. Experiment creating Dicke states

We now present our calculations for an experiment aimed

at creating Dicke states in cold gases [39]. The basic ideas

are similar to the ones explained in Sec. III D for small sys-

tems. The experimental data are N = 7900, 〈J2
z 〉N = 112 ±

31, 〈J2
x 〉N = 〈J2

y 〉N = 6 × 106 ± 0.6 × 106 [21]. Applying

some simple transformations, we can obtain a lower bound on

FQ[̺n, Jy] for this very large number of particles, even for gen-

eral, nonsymmetric systems.

For many particles we can make calculations directly only

in the symmetric subspace. Thus, we transform the collective

quantities such that they are compatible with symmetric states,

i.e., they have to fulfill

〈J2
x 〉sym,N + 〈J2

y 〉sym,N + 〈J2
z 〉sym,N = JN, (21)

where JN is given in Eq. (15). This can be done by multiplying

all the second moments by the same number as

〈J2
l 〉sym,N = γ〈J

2
l 〉N, (22)

where l = x, y, z, and we defined the coefficient

γ =
JN

〈J2
x + J2

y + J2
z 〉N
. (23)
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For a symmetric state, γ = 1. In practice, γ ≤ 1, but close

to 1. From this we can see that there are no symmetric states

that are compatible with the experimentally observed expec-

tation values. This is the reason why we needed to apply the

transformation (22).

Based on the ideas of Sec. III D, we calculate

the lower bound on the quantum Fisher information

for symmetric systems, which we denote

Bsym,N (〈J
2
x 〉sym,N, 〈J

2
y 〉sym,N, 〈J

2
z 〉sym,N ).

Finally, to obtain the results for the original, non-symmetric

case, we need the following observation.

Observation 3. For the bounds for original system and sym-

metric system, respectively, the inequality

BN 6
1
γ
Bsym,N (24)

holds, where γ is given in Eq. (23). Here, for brevity we have

omitted the arguments of BN and Bsym,N .

Proof. For our proof we need to know that for an N-

qubit singlet state ̺singlet,N the relations 〈J2
l
〉̺singlet,N

= 0 hold

for l = x, z, y. Due to the well-known inequality for the

quantum Fisher information FQ[̺singlet,N, Jl] 6 4(∆Jl)
2, we

have FQ[̺singlet,N, Jy] = 0. In other words, the singlet is not

useful for metrology with linear interferometers. Let us now

consider the mixture

˜̺N =
(

1 − 1
γ

)

̺singlet,N +
1
γ
̺sym,N, (25)

where ̺sym,N is a symmetric state having the second moments

〈J2
l
〉sym,N . We can easily see from Eq. (22) that for the state

˜̺N, we have 〈J2
l
〉 ˜̺N = 〈J2

l
〉N . In other words, ˜̺N has the

same values for the second moments that have been measured

experimentally.

We can relate the bound for general systems to the quantum

Fisher information for symmetric systems as

BN 6 FQ[ ˜̺N, Jy] =
1
γ
FQ[̺sym,N, Jy]. (26)

The inequality in Eq. (26) holds because our bound cannot be

larger than the quantum Fisher information of state ˜̺N having

the expectation values 〈J2
l
〉N . The equality in Eq. (26) is due to

the fact that both ˜̺N and Jy can be written as a block-diagonal

matrix of blocks corresponding to different eigenvalues of J2
x +

J2
y + J2

z . Moreover, ̺singlet,N and ̺sym,N have nonzero elements

in different blocks. Then we can use the general formula [70]

FQ[
⊕

k

pk ̺k,
⊕

k

Ak] =
∑

k

pkFQ[̺k, Ak], (27)

where ̺k are density matrices with a unit trace and
∑

k pk =

1. �

Extensive numerics for small systems show Eq. (24) is very

close to an equality, hence it can be used as a basis for making

calculations for nonsymmetric states. In this way, we arrive at

the bound for the experimental system,

BN

N
≈ 2.94. (28)

The "≈" sign is used referring to the fact that we assume that

the inequality in Eq. (26) is close to being saturated. The details

of the calculations are given in Appendix G 2.

It is instructive to compare the value, (28), to the one ob-

tained in Ref. [21], where the metrological usefulness has

been estimated based on the second and fourth moments of

the collective angular momentum components, and assuming

that 〈J2
z 〉 is used for parameter estimation. The result implies

that FQ[̺N, Jy]/N > 3.3. Our result in Eq. (28) is somewhat

smaller, as we did not use the knowledge of the fourth moment,

only the second moments. The closeness of the two results is a

strong argument for the correctness of our calculations.

V. SCALING OF FQ[ ,̺ Jl] WITH N .

Recent important works examine the scaling of the quantum

Fisher information with the particle number for metrology

under the presence of decoherence [71]. They consider the

quantum Fisher information defined for nonunitary, noisy evo-

lution. They find that for small N it is close to the value

obtained considering coherent dynamics. Hence, even the

Heisenberg scaling, O(N2), can be reached. However, if N is

sufficiently large, then, due to the decoherence during the pa-

rameter estimation, the quantum Fisher information scales as

O(N).

In contrast, we do not consider the usefulness of a quantum

state in some noisy metrological process, but we estimate

the quantum Fisher information assuming a perfect unitary

dynamics. Hence, the quantum Fisher information can be

smaller than what we expect ideally only due to imperfect

state preparation [72]. We can even find simple conditions for

the state preparation that lead to a Heisenberg scaling. Based

on Eq. (12), if one could realize quantum states ̺N such that

FGHZ(̺N ) > 0.5 + ǫ for N → ∞ for some ǫ > 0, then we

would reach FQ[̺N, Jz] = O(N2). Strong numerical evidence

suggests that a similar relation holds for the fidelity FDicke and

FQ[̺N, Jy], but with a smaller threshold value for FDicke (see

Appendix C). From another point of view, our method can es-

timate FQ[ ,̺ Jz] for large particle numbers, while a direct mea-

surement of the metrological sensitivity considerably underes-

timates it.

VI. CONCLUSIONS

We have reported a general method to estimate the metro-

logical usefulness of quantum states based on a few measure-

ments, such as measurements of the fidelity or some collective

observables. We tested our approach on extensive experimen-

tal data from photonic and cold-gas experiments and demon-

strated that it works even for the case of thousands particles

[73]. In the future, it would be interesting to use our method

to test the optimality of various recent formulas giving a lower

bound on the quantum Fisher information [19,22]. Another im-

portant question is how to improve the lower bounds on the

quantum Fisher information in various experiments by using

the knowledge of further operator expectation values.
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Appendix A: Proof of Observation 2

In this section, using Eqs. (4) and (6), we obtain analytically

a tight lower bound on the quantum Fisher information based

on the fidelity with respect to the GHZ state, FGHZ.

The calculation that we have to carry out is computing the

bound,

B(FGHZ) = sup
r

{rFGHZ − sup
µ

[λmax(MGHZ)]}, (A1)

where

MGHZ = r |GHZ〉〈GHZ| − 4(Jz − µ)
2
11. (A2)

We make our calculations in the Jz basis, which is defined with

the 2N basis vectors b0 = |00 . . . 000〉, b1 = |00 . . . 001〉,
b2 = |00 . . . 010〉, . . . , b(2N−2) = |11 . . . 110〉, and b(2N−1) =

|11 . . . 111〉. It is easy to see that the matrix, (A2), is almost

diagonal in the Jz basis. To be more specific, it can then be

written as

MGHZ = M2×2 ⊕ D, (A3)

where ⊕ denotes the direct sum and

M2×2 =

(
r
2
− 4( N

2
− µ)2 r

2
r
2

r
2
− 4( N

2
+ µ)2

)

(A4)

is given in the {b0, b(2N−1)} basis, while D is a diagonal matrix

given in the basis of the rest of the bk vectors as

Dk = −4(〈bk |Jz |bk〉 − µ)
2 (A5)

for k = 1, 2, . . . , (2N − 2). This means that MGHZ can be diag-

onalized as

diag[λ+, λ−, D1, D2, ..., D(2N−2)], (A6)

where the two eigenvalues of M2×2 are

λ± =
r

2
− N

2 − 4µ2 ±

√

16µ2N2
+

r2

4
. (A7)

Next, we show a way that can simplify our calculations con-

siderably. As indicated in Eq. (A1), we have to look for the

maximal eigenvalue of MGHZ and then optimize it over µ. We

exchange the order of the two steps, that is, we look for the

maximum of each eigenvalue over µ and then find the maxi-

mal one. Clearly, based on Eq. (A5) we obtain

sup
µ

Dk = 0, (A8)

since we can always choose a value for µ that makes Dk 0,

while it is clear that it cannot be positive. Thus, the maximal

eigenvalue, maximized also over µ, can be obtained as

sup
µ

[λmax(MGHZ)] := max[0, sup
µ

(λ+)]

=




0, if r < 0,
r
2
+

r2

16N2 , if 0 6 r 6 4N
2,

−N
2
+ r, if r > 4N

2,

(A9)

where we did not have to look for the maximum of λ− over µ

since clearly λ+ ≥ λ−. Finally, we have to substitute Eq. (A9)

into Eq. (A1), and carry out the optimization over r, consider-

ing FGHZ ∈ [0, 1]. This way we arrive at Eq. (12). �

Appendix B: Calculations in the symmetric subspace

In this section, we prove an important fact, which can be

used to simplify our calculations.

Observation 4. If a permutationally invariant N-qubit

Hamiltonian H has a nondegenerate ground state, then the

ground state is in the symmetric subspace if N > 2. An analo-

gous statement holds for the maximal eigenvalue.

Proof. This is a well-known fact; we give a proof only for

completeness. Let |Ψ〉 denote the nondegenerate ground state.

This is at the same time the T = 0 thermal ground state,

hence it must be a permutationally invariant pure state. For

such states Skl |Ψ〉〈Ψ|Skl = |Ψ〉〈Ψ|, where Skl is the swap op-

erator exchanging qubits k and l. Based on this, it follows that

Skl |Ψ〉 = ckl |Ψ〉, and ckl ∈ {−1,+1}. There are three possible

cases to consider.

(i) All ckl = +1. In this case, for all permutation operators

Πj we have

Πj |Ψ〉 = |Ψ〉, (B1)

since any permutation operator Πj can be constructed as Πj =

Sk1l1 Sk2l2 Sk3l3 . . . Skmlm, where m > 1. Equation (B1) means

that the state |Ψ〉 is symmetric.

(ii) All ckl = −1. This means that the state is antisymmetric,

however, such a state exists only for N = 2 qubits.
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Appendix D: Boundary of physical states in the

(〈Jz〉, 〈J
2
x 〉)-plane.

In this section, we discuss how to find the physical region

in the (〈Jz〉, 〈J
2
x 〉) plane, which was used to prepare Fig. 2(a).

The physical region must be a convex one, since the set of

quantum states is convex and the coordinates depend linearly

on the density matrix. Hence, we look for the minimal or max-

imal 〈J2
x 〉 for a given 〈Jz〉 by looking for the ground states of

the Hamiltonians [59],

H
(±)

bnd
(µ) = ±J

2
x − µJz . (D1)

The points of the boundary can be obtained by evaluating 〈J2
x 〉

and 〈Jz〉 for the ground states of Eq. (D1). In particular, the

ground states of H
(+)

bnd
correspond to boundary points below

point P corresponding to the fully polarized state in Fig. 2(a).

The ground states of H
(−)

bnd
correspond to boundary points above

point P.

For 0 < µ < ∞, the Hamiltonian H
(+)

bnd
has nondegenerate

ground states with 〈Jx 〉 = 0. For even N, the ground state of

H
(+)

bnd
minimizes both 〈J2

x 〉 and (∆Jx)
2 for a given 〈Jz〉. For odd

N, this is not the case for small µ [59].

On the other hand, H
(−)

bnd
(µ) has doubly degenerate ground

states. For the ground-state subspace, we have 〈Jx〉 = 0.

Hence, for both even N and odd N, the ground state of H
(−)

bnd

maximizes both 〈J2
x 〉 and (∆Jx)

2 for a given 〈Jz〉.

Appendix E: Quantum Fisher information for states at the

boundary of the physical region in the (〈Jz〉, 〈J
2
x 〉)-plane

We show that, for even N , the ground states of H
(+)

bnd
(µ)

defined in Eq. (D1) are close to saturating Eq. (2). As a

consequence, for the boundary of the physical region in the

(〈Jz〉, 〈J
2
x 〉) plane below point P in Fig. 2, bound (2) is close to

the optimal lower bound.

We carry out numerical calculations. Let us denote by |Ψµ〉

the ground state of H
(+)

bnd
(µ). Moreover, let us denote the rel-

evant expectation values for this state 〈J2
x 〉µ and 〈Jz〉µ . We

know that under the constraint 〈Jz〉 = 〈Jz〉µ, the state |Ψµ〉

minimizes 〈J2
x 〉. For H

(+)

bnd
(µ), the ground state is unique for

0 < µ < ∞. Thus, there is no other quantum state with the

same value for 〈Jz〉 and 〈J2
x 〉.

There is a very important consequence of the uniqueness of

the ground state of H
(+)

bnd
(µ) for the lower bound on the quantum

Fisher information. We have discussed that our method based

on the Legendre transform gives the optimal lower bound for

the quantum Fisher information

FQ[ ,̺ Jy] ≥ B(〈Jz〉̺,
〈
J

2
x

〉
̺
), (E1)

where B denotes the optimal bound. Since there is a unique

state corresponding to the boundary points, we must have for

the states at the boundary

B(〈Jz〉µ,
〈
J

2
x

〉
µ
) = FQ[Ψµ, Jy]. (E2)

〈Jz〉/(N/2)
0 0.5 1

0

0.01

0.02

Relative
difference

FIG. 5. Behavior of the bound in Eq. (2) for points at the boundary

of physical states. The relative difference with respect to the optimal

lower bound is plotted for N = 4 (solid line), N = 20 (dashed line),

and N = 1000 (dotted line).

Thus, for the boundary points we do not have to compute the

lower bound with the method based on the Legendre transform.

We can just calculate the right-hand side of Eq. (E2) instead.

Since we have a pure state, the quantum Fisher information is

proportional to the variance FQ[ ,̺ Jy] = 4(∆Jy)
2 [11].

We add that, for even N , state |Ψµ〉 not only minimizes 〈J2
x 〉

for a given value of 〈Jz〉, but also minimizes (∆Jx )
2, and this

state is unique [59]. Hence, for the points on the boundary of

physical states in the (〈Jz〉, (∆Jx)
2)-space we have

B(〈Jz〉µ, (∆Jx )
2
µ
) = FQ[Ψµ, Jy], (E3)

where B denotes the optimal bound if the expectation value

〈Jz〉 and the variance (∆Jx)
2 are constrained. Note that bound

(E3) is monotonous in (∆Jx)
2
µ

[59].

In Fig. 5, we plot the relative difference between the

quantum Fisher information of |Ψµ〉 and the lower bound (2)

given as

FQ[Ψµ, Jy] −
〈Jz 〉

2
µ

(∆Jx )
2
µ

FQ[Ψµ, Jy]
(E4)

for various particle numbers. It can be seen that for an almost

fully polarized state the difference is small, but even for a state

that is not fully polarized the relative difference is smaller than

3% for the particle numbers considered.

Appendix F: Why we can assume 〈Jx 〉 = 0 for the discussion of

spin-squeezed states

We show that for the state minimizing FQ[ ,̺ Jy] for given

〈Jz〉 and 〈J2
x 〉 we have 〈Jx 〉 = 0. Hence, if we constrain only

〈Jz〉 and 〈J2
x 〉, then we get the same bound as if we constrained

〈Jz〉 and 〈J2
x 〉, and we used an additional constraint 〈Jx 〉 = 0.

For spin-squeezed states, we have to solve the following op-

timization task. We have to find a tight lower bound on the

quantum Fisher information

FQ[ ,̺ Jy] > B( ®w̺) (F1)
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FIG. 6. (Color online) Lower bound on the quantum Fisher informa-

tion based on 〈Jz〉 and (∆Jx)
2 obtained for different particle num-

bers making calculations in the symmetric subspace. N = 2300 corre-

sponds to the spin-squeezing experiment in Ref. [7]. (a) Almost fully

polarized spin-squeezed state. Even for a moderate N
′, the bound

is practically identical to the right-hand side of Eq. (18). (b) Spin-

squeezed state that is not fully polarized. For large N
′, the bound con-

verges to the right-hand side of Eq. (18), represented by the dashed

line. In both panels, circles correspond to the results of our calcula-

tions, which are connected by straight lines to guide the eye.

where ®w̺ = (〈Jz〉̺, 〈J
2
x 〉̺, 〈Jx 〉̺). For any ,̺ we can define

a state ̺− = σ
⊗N
z ̺σ⊗N

z , for which ®w̺−
= (〈Jz〉̺, 〈J

2
x 〉̺,

−〈Jx〉̺). The metrological usefulness of ̺ and ̺− are the

same, i.e., FQ[ ,̺ Jy] = FQ[̺−, Jy]. Then, for any ,̺ we can

define a state ̺0 =
1
2
(̺ + ̺−), for which we have ®w̺0

=

(〈Jz〉̺, 〈J
2
x 〉̺, 0). Due to the convexity of the quantum Fisher

information, ̺0 cannot be better metrologically than ̺ or ̺−,

that is, FQ[ ,̺ Jy] = FQ[̺−, Jy] > FQ[̺0, Jy].

Since for any ̺ there is a corresponding ̺0 with the above

properties, it follows that B(®v̺) = B(®v̺−) > B( ®w̺0
) =

B(〈Jz〉̺, 〈J
2
x 〉̺, 0). Thus, the worst-case bound for given 〈Jz〉

and 〈J2
x 〉 is B(〈Jz〉, 〈J

2
x 〉, 0). Hence,

B(〈Jz〉, 〈J
2
x 〉) = B(〈Jz〉, 〈J

2
x 〉, 〈Jx 〉 = 0), (F2)

and our claim is proved.

Appendix G: Many-particle experiments

In this section, we consider cold-gas experiments creating

spin-squeezed states and Dicke states.

1. Spin-squeezing experiment

We now give the details of the calculations described in

Sec. IV B 1. We present a simple scheme that we need to han-

dle large systems. We do not make calculations directly for

N = 2300, but we start with smaller systems and make calcu-

lations for larger and larger system sizes. This is motivated as

follows. First, we can use the output of an optimization for a

smaller particle number as an initial guess for a larger parti-

cle number. Thus, we need fewer steps for the numerical opti-

mization for large system sizes, which makes our computations

faster. Second, while we are able to carry out the calculation

for the particle number of the experiment, we also see that we

could even extrapolate the results from the results obtained for

lower particle numbers. This is useful for future application of

our method to very large systems.

The basic idea is that we transform the collective quanti-

ties from N to a smaller particle number N
′ using the scaling

relation

〈Jz〉 =
N

′

2
α,

(∆Jx )
2
= ξ2s

N
′

4
α2. (G1)

We see that for the scaling we consider, for all N
′ the bound in

Eq. (2) is obtained as

FQ[̺N ′, Jy]

N ′
>

1

ξ2s
= 6.605. (G2)

where ̺N ′ is a state satisfying Eq. (G1). Let us first take

α = 0.85, which is somewhat lower than the experimental

value, however, it helps us to see various characteristics of the

method. At the end of the section we also discuss the results

for other values of α. Based on these ideas, we compute the

bound Bsym(〈Jz〉̺N ′ , 〈J
2
x 〉̺N ′ ), described in Sec. IV B 1, for the

quantum Fisher information for an increasing system size N
′.

The results are shown in Fig. 6(a). The bound obtained in

this way is close to the bound in Eq. (18) even for small N
′. For

a larger particle number, i.e., N
′ > 200, it is constant and co-

incides with the bound in Eq. (18). This also strongly supports

the idea that we could have used the results from small particle

numbers to extrapolate the bound for N . Since for the experi-

mental particle numbers we obtain that Bsym(〈Jz〉̺N
, 〈J2

x 〉̺N
)

equals the bound in (2), we find that for N
′
= N all three lower

bounds in Eq. (19) must be equal. Hence, Eq. (2) is optimal for

the experimental system considered in this section. Besides,

these results also present a strong argument for the correctness

of our approach.

We now give more details of the calculation. We were able

to carry out the optimization up to N
′
= 2300 with a usual

laptop computer using the MATLAB programming language

[74]. We started the calculation for each given particle number

with the rk parameters obtained for the previous simulation

with a smaller particle number.

Let us consider a spin-squeezed state that is not fully po-

larized and α = 0.5. In Fig. 6(b), we can see that for small

particle numbers we have a bound on FQ[ ,̺ Jy] larger than the

one obtained from Eq. (2). Thus for this case we could improve

bound (2) by assuming symmetry. On the other hand, for large

particle numbers we approach Eq. (2).

After seeing the results of the calculations for α = 0.85

and α = 0.5, the question arises, what would the result be for

larger α, that is, for even more polarized states? It turns out

that if we choose α larger than 0.85, then the convergence of

FQ[̺N ′, Jy]/N
′ will be even faster than in Fig. 6(a), and for the

particle number of the experiment we obtain again that Eq. (2)

is saturated.

Finally, we add a note on a technical detail. We carried out

our calculations with the constraints on (∆Jx)
2, and 〈Jz〉 , with

the additional constraint 〈Jx 〉 = 0. For the experimental parti-

cle numbers, one can show that our results are valid even if we
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constrain only (∆Jx)
2 and 〈Jz〉 , and do not use the 〈Jx〉 = 0

constraint. This way, in principle, we can only get a bound that

is equal to or lower than one we obtained before. However, we

previously obtained a value identical to the analytical bound,

(2). The optimal bound cannot be below the analytic bound,

since then the analytic bound would overestimate the quantum

Fisher information, and it would not be a valid bound. Hence,

even an optimization without the 〈Jx 〉 = 0 constraint could not

obtain a smaller value than our results.

2. Experiment creating Dicke states

We now give the details for the calculations described in

Sec. IV B 2. As in Appendix G 1, we compute the bound for

quantum Fisher information for an increasing system size N
′.

However, now we are not able to do the calculation for the

experimental particle number, and we use extrapolation from

the results obtained for smaller particle numbers.

First, we transform the measured second moments to val-

ues corresponding to a symmetric system using Eq. (22) and

Eq. (23). For our case, γ = 1.301. In this way, we obtain

〈J2
z 〉sym,N = 145.69,

〈J2
x 〉sym,N = 〈J2

y 〉sym,N = 7.8 × 106. (G3)

Next, we carry out calculations for symmetric systems. We

consider a scaling that keeps expectation values such that the

corresponding quantum state must be symmetric. Hence, we

use the relations

〈J2
z 〉sym,N ′ = 〈J2

z 〉sym,N,

〈J2
x 〉sym,N ′ = 〈J2

y 〉sym,N ′ =
1
2
(JN ′ − 〈J2

z 〉sym,N ′), (G4)

where JN ′ is defined in Eq. (15). Note that with Eq. (G4),

〈J2
x + J

2
y + J

2
z 〉sym,N ′ = JN ′ holds for all N

′, hence the state

must be symmetric. The main characteristics of the scaling

relation, Eq. (G4), can be summarized as follows. 〈J2
z 〉sym,N ′

remains equal to 〈J2
z 〉sym,N, while 〈J2

x 〉sym,N ′ and 〈J2
y 〉sym,N ′

are chosen such that they are equal to each other and the

state is symmetric. For large N , Eq. (G4) implies a scaling of

〈J2
z 〉 ∼ const. and 〈J2

x 〉 = 〈J2
z 〉 ∼ N(N + 2)/8.

Let us now turn to the central quantities of our paper,

the lower bounds on the quantum Fisher information. The

quantum Fisher information for the experimentally obtained

state ̺N is bounded from below as

FQ[̺N, Jy] > BN, (G5)

where BN denotes a bound based on 〈J2
l
〉N for l = x, y, z. An

analogous relation for the symmetric state ̺sym,N ′ is

FQ[̺sym,N ′, Jy] > Bsym,N ′, (G6)

where Bsym,N ′ denotes a bound based on 〈J2
l
〉sym,N ′ for l =

x, y, z.

A central point in our scheme is that due to the scaling prop-

erties of the system we can obtain the value for the particle

FIG. 7. (Color online) Quantum Fisher information extrapolated to

N = 7900 from calculations with different particle numbers N
′ in an

experiment creating Dicke states. Circles correspond to the results of

our calculations, which are connected by straight lines to guide the

eye.

number N from the value for a smaller particle number N
′

as [19]

Bsym,N ≈
JN

JN ′
Bsym,N ′, (G7)

which we verify numerically. Note that for large N, we have

JN/JN ′ ∼ N
2/(N ′)2.

As the last step, we have to return from the symmetric sys-

tem to our real, not fully symmetric one. Based on Eq. (G7),

and assuming that Eq. (24) is close to being saturated, a rela-

tion for the lower bound for the original problem can be ob-

tained from the bound on the symmetric problem with N
′ par-

ticles as

BN ≈
1

γ

JN

JN ′
Bsym,N ′ . (G8)

In Fig. 7, we plot the right-hand side of Eq. (G8) as a function

of N
′. We can see that BN ′ is constant or slightly increasing

for N
′ > 400. This is strong evidence that Eq. (G7) is valid for

large particle numbers. With this, we arrive at Eq. (28).
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Sequences of compatible quantum measurements can be contextual and any simulation with a
classical model conforming with the quantum predictions needs to use internal memory. Kleinmann
et al. [New J. Phys. 13, 113011 (2011)] showed that simulating the sequences from the Peres–Mermin
scenario requires at least three different internal states in order to be not in contradiction with the
deterministic predictions of quantum theory. We extend this analysis to the probabilistic quantum
predictions and ask how much memory is required to simulate the correlations generated for se-
quences of compatible observables by any quantum state. We find that even in this comprehensive
approach only three internal states are required for a perfect simulation of the quantum correlations
in the Peres–Mermin scenario.

I. INTRODUCTION

In the standard formulation of quantum theory (QT)

the individual outcomes of measurements are, in general,

not predetermined by the state of the system. Conse-

quently, QT allows us to asses only the probability dis-

tribution over the measurement outcomes. Specker [1]

noted that this is a fundamental property of QT and

if quantum measurements had predetermined outcomes

it would imply that these values depend on the mea-

surement context. In this sense, QT is contextual and

the mathematical formulation of this observation is the

Kochen–Specker theorem [2].

Significant effort has been undertaken to understand

the connection between quantum contextuality and

quantum information theory, for example, with respect to

the advantage of quantum computing over classical com-

puting [3, 4]. Similarly, a quantum system distributed

over several parties can be used to reduce the commu-

nication complexity over what is possible with classical

systems alone [5, 6] and the communication advantage

has been identified as a resource [7–9]. A related concept

is the memory cost in sequential measurements [10, 11],

i.e., the memory needed to simulate the correlations oc-

curring in sequences of quantum measurements by means

of a classical automaton with memory. It has been found

that the memory cost can exceed the amount of informa-

tion that can be stored in the quantum system yielding

a quantum memory advantage [10–12]. We are here in-

terested in the analysis of the memory cost with respect

to quantum contextuality, i.e., to determine the mem-

ory cost when the measurements in a sequence only em-

braces mutually compatible measurements [10]. In this

strict form the question of whether there exists a quan-

tum memory advantage due to contextuality is still open.

In this paper we investigate the situation for one of

the most natural candidates for a quantum memory ad-

vantage, the Peres–Mermin square. We ask, what is

∗ gabrielf@fisica.ufmg.br

the smallest memory for a classical model to reproduce

all contextuality predictions from the Peres–Mermin sce-

nario, for any quantum state. Our focus here is to stay

strictly in the regime of quantum contextuality, i.e., se-

quences of compatible measurements, and to take into

account also the probabilistic predictions of quantum the-

ory, while at the same time to admit the most versatile

classical automaton models.

II. THE PERES–MERMIN SQUARE

A simple proof of the Kochen–Specker theorem was

found by Peres [13] and Mermin [14] and uses 9 quantum

observables arranged in the Peres–Mermin square,




A B C

a b c

α β γ



 =




σz ⊗ 11 11 ⊗ σz σz ⊗ σz

11 ⊗ σx σx ⊗ 11 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy



 , (1)

where σx, σy, and σz are the Pauli operators. The proof

of the theorem consists of the observations (i) that the

operators within each row and each column form a con-

text, i.e., they are mutually compatible, and (ii) that the

condition

ABC = abc = αβγ = Aaα = Bbβ = −Ccγ = 11 (2)

holds. Therefore, according to QT, the expected value of

the product of the outcomes of observables in one context

is always +1, with the exception 〈Ccγ〉 = −1. In order

to obtain this behavior if the values of the observables

are predetermined, at least one observable needs to have

a context-dependent value, so that, for example, γ has

value +1 in the context αβγ but value −1 in the context

Ccγ.

In QT, the outcomes of all observables within a con-

text can be obtained in a joint measurement. For

the three dichotomic observables in each context of

the Peres–Mermin square, the joint measurement on

two qubits has four distinct outcomes, taken from

the set of the 8 possible combinations of outcomes
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{ (+1,+1,+1), (+1,+1,−1), . . . , (−1,−1,−1) }. Alter-

natively, the outcomes can be obtained by measuring

the observables in a context sequentially. This approach

has been preferred in recent experiments on quantum

contextuality [15–20]. When an observable X from the

Peres–Mermin square is measured, then the quantum

state ρ changes according to

ρ 7→ Πx|XρΠx|X

tr(ρΠx|X)
, (3)

with Πx|X = 1
2 (11 + xX) depending on the measurement

outcome x = ±1 of X. In a sense, sequential measure-

ments with this Lüders transformation [21] are a special

way to implement a joint measurement. Since the quan-

tum state changes according to the choice of the observ-

able and the measurement outcome, one can argue that

the quantum state serves as a memory and the contex-

tual behavior is achieved due to the very presence of this

memory.

However, in an extended variant of the Peres–Mermin

square, it has been shown [10] that even if one takes this

perspective, a classical model mimicking the quantum be-

havior would need more than four internal states. This

extended scenario uses quantum predictions for all com-

binations of Pauli matrices on two qubits, resulting in 15

dichotomic observables. The classical model must then

reproduce the predictions from any sequence of compat-

ible observables as well as respect conditions of compati-

bility and repeatability. The latter include conditions on

sequences of incompatible measurements, and thus are

outside the contextuality paradigm. Since the extended

variant also operates on a quantum four-level system and

such systems can carry at most two bits of classical in-

formation [22], this has been identified as an instance of

memory advantage [10–12].

The analysis in Ref. [10] concerns classical models

which reproduce the deterministic predictions of QT

within a sequence. Such predictions are, for example,

that the product of outcomes in the sequence A,B,C is

always +1 or that the value of A is repeated in the se-

quence A,B,A. For the case of the Peres–Mermin square

and when any sequence of measurements consists of ob-

servables from one context, there is a classical model con-

sistent with QT in this sense and which only uses three

internal states. This analysis does not cover the proba-

bilistic predictions of QT, for example, that 〈A〉 = 0 for

certain quantum states and it is not known how much

memory is needed to reproduce also the probabilistic pre-

dictions of QT in the Peres–Mermin square. Since the

Peres–Mermin scenario is tightly linked to contextuality,

we only consider sequences of observables taken from one

context. This includes predictions like 〈BBA〉 = 〈A〉,
but excludes predictions involving incompatible observ-

ables as in 〈ABcγ〉 = −1. In this paper our aim is hence

to determine the smallest memory for a classical model to

reproduce the nondeterministic contextual quantum pre-

dictions from the Peres–Mermin scenario, for any quan-

tum state.

III. SEQUENTIAL CORRELATIONS AND

STOCHASTIC AUTOMATA

The outcomes of a sequence of quantum measurements

may be viewed as an input–output process operating on

a quantum system. The input is the choice of the ob-

servable X and the output is the outcome x of the mea-

surement of the observable. The overall probability for

an output sequence x1, x2, . . . for a given input sequence

X1, X2, . . . is P (x1, x2, . . . |X1, X2, . . . ) and within stan-

dard QT only such correlations can be predicted.

The classical counterpart is modeled by an automa-

ton which operates on classical memory. This memory is

represented by a set M of internal memory states. In ad-

dition, the automaton has access to an external source of

randomness, modeled by an external parameter λ which

is fixed throughout a measurement sequence but ran-

domly distributed among different sequences according

to a distribution function p(λ). We use the model of a

stochastic sequential automaton [23] where the output x

and the state s′ ∈ M after the output only depend on

the input X, the value of λ, and the internal state s ∈ M

before the output, cf. Fig 1. The behavior of the automa-

ton is hence summarized by the probability distribution

p(x, s′|X, s, λ). It represents the probability of the out-

put x and subsequent transition to the internal state s′,

given the input X, the current internal state s and the

value of the parameter λ. Similarly, the initial state of

the automaton has a distribution depending on λ, which

we write as p(s0|λ). With this model, the correlations

achieved by the automaton are

P (x1, x2, . . . |X1, X2, . . . ) =
∑

λ,s0,s1,s2,...

p(λ)p(s0|λ)p(x1, s1|X1, s0, λ)

× p(x2, s2|X2, s1, λ) · · · . (4)

For a given automaton, i.e., p(x, s′|X, s, λ) and p(s0|λ),
the choice of p(λ) yields different correlations, so that the

correlations predicted by different quantum states can

be reproduced using different choices of the probability

distribution p(λ).
Clearly, it is possible to reproduce all noncon-

textual correlations with only one internal state,

|M | = 1, since in this case the right hand side

of Eq. (4) reduces to a hidden variable model [24],∑
λ p(λ)p(x1|X1, λ)p(x2|X2, λ) · · · . The external param-

eter λ is not always included in such an analysis, see, for

example, the ǫ-transducers studied in Ref. [25]. However,

then even noncontextual scenarios could require mem-

ory, since, for example, measuring the sequence σx, σx

on an eigenstate of σz gives a random outcome for the

first measurement, but the second measurement has to

repeat the value of the first measurement. Consequently,

if λ does not occur, the simulation requires two internal

states, while when λ can take two values, no memory

is required. The automaton is allowed to be intrinsi-

cally random, i.e., the distributions p(x, s′|X, s, λ) and
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FIG. 1. Stochastic sequential machine with two internal

states, M = { 1, 2 }. The transitions between the states s and

s′ are represented by arrows. The probability p(x, s′|X, s, λ)
for the output x and the transition from state s to state s′

can depend on the input X and the external parameter λ.

p(s0|λ) may be nondeterministic. As it is evident from

our analysis below, this intrinsic randomness is not re-

quired for simulating the quantum correlations from the

Peres–Mermin scenario.

IV. A MEMORY-OPTIMAL AUTOMATON FOR

THE PERES–MERMIN SCENARIO

As explained above, quantum contextuality is a fea-

ture of sets of compatible observables and we therefore

only consider sequences of measurements where all ob-

servables are taken from one context. That is, the ob-

servables are either taken from one row or one column of

the Peres–Mermin square. Our first concern is the simu-

lation of quantum measurements of a single sequence of

compatible observables. According to QT, certain events

can never occur, examples are the output +1,−1 in the

sequence A,A or the output +1,+1,−1 in the sequence

A,B,C. In Ref. [10], it has been shown that any automa-

ton which obeys all such quantum predictions must have

memory with at least three internal states. An explicit

example of such an automaton is given by [10]

o1 =




+1 +1 +1
+1 +1 +1
+1 +1 +1



 , t1 =




1 1 2
1 1 3
1 1 1



 ,

o2 =




+1 +1 +1
−1 +1 −1
−1 −1 +1



 , t2 =




2 1 2
2 2 2
2 3 2



 ,

o3 =




+1 −1 −1
+1 +1 +1
−1 −1 +1



 , t3 =




3 3 3
1 3 3
2 3 3



 .

(5)

This notation is supposed to be read as follows. Each

matrix oi, i ∈ M , represents the deterministic output for

each of the three internal states M = { 1, 2, 3 }. Sim-

ilarly, the transition matrices ti represent the internal

state after the output. In terms of Eq. (4), the distribu-

tion p(x, s′|X, s) is 1 if the entry in the output matrix

os at the position of the observable X is x and the en-

try in the transition matrix ts in the same position is

s′; the distribution is 0 otherwise. Here, x ∈ {+1,−1 },
s, s′ ∈ M = { 1, 2, 3 }, and X ∈ {A,B,C, a, b, c, α, β, γ }.
For example, if the automaton is in state s = 1 and we

provide the observable C as input, then the measure-

ment outcome is x = +1 and the automaton changes to

the state s′ = 2. It is straightforward to verify that this

automaton obeys all deterministic predictions of QT for

any sequence of compatible observables [10] and for any

initial state s0.

However, no quantum state gives deterministic predic-

tions for all 9 observables in the Peres–Mermin square,

because these observables are not all mutually compati-

ble and no common eigenstate can exist. In the following

we extend the automaton from Eq. (5) to use the exter-

nal parameter λ, so that a statistical mixture p(λ) can

reproduce the quantum predictions.

A. Other valid automata

Starting from the automaton in Eq. (5), there are sev-

eral transformations which lead to other automata with

the same properties. First, it is possible to flip the signs

for the output under the constraint that for each row and

each column there is either no flip of signs or there are

exactly two flips of signs. This generates 15 additional

automata. Second, it is possible to make any permuta-

tion of the rows or a permutation of the first and second

column. We restrict ourselves to the three permutations

of rows which leave one row unchanged and to the per-

mutation of the first and second column. This yields 4

additional automata and combined with the first set of

transformations we get in total 16×5 = 80 automata. In

addition, we are free to choose the initial state s0 and get

this way 240 different behaviors. We combine all these

behaviors into a single automaton by allowing 240 dif-

ferent values for λ, i.e., the value of λ determines the

behavior of the automaton.

B. Example: Singlet state

As an example, we reproduce all quantum correlations

for the singlet state (the quantum state yielding 〈C〉 =
〈c〉 = 〈γ〉 = −1) by choosing a distribution p(λ) for λ =
1, 2, . . . , 240. We choose p(λ) = 1

4 if λ ∈ {λ1, λ2, λ3, λ4 }
and p(λ) = 0 else. For λk, k = 1, 2, 3, the transition

matrices t
(k)
1 , t

(k)
2 , t

(k)
3 are as in Eq. (5) and the outcome

matrices o
(k)
s are given by

o
(1)
1 =




−1 +1 −1
−1 −1 +1
+1 −1 −1



 , o
(1)
2 =




−1 +1 −1
+1 −1 −1
−1 +1 −1



 ,

o
(1)
3 =




−1 −1 +1
−1 −1 +1
−1 +1 −1



 ,

(6a)
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o
(2)
1 =




−1 +1 −1
+1 +1 +1
−1 +1 −1



 , o
(2)
2 =




−1 +1 −1
−1 +1 −1
+1 −1 −1



 ,

o
(2)
3 =




−1 −1 +1
+1 +1 +1
+1 −1 −1



 ,

(6b)

o
(3)
1 =




+1 −1 −1
−1 −1 +1
−1 +1 −1



 , o
(3)
2 =




+1 −1 −1
+1 −1 −1
+1 −1 −1



 ,

o
(3)
3 =




+1 +1 +1
−1 −1 +1
+1 −1 −1



 ,

(6c)

o
(4)
1 =




+1 −1 −1
+1 +1 +1
+1 −1 −1



 , o
(4)
2 =




+1 −1 −1
−1 +1 −1
−1 +1 −1



 ,

o
(4)
3 =




+1 +1 +1
+1 +1 +1
−1 +1 −1



 .

(6d)

The initial state for all four cases is s0 = 2, i.e., we have

p(s0|λ) = 1 if s0 = 2 and zero else. In principle one can

now verify that for sequences of compatible observables,

all quantum correlations from the singlet state are indeed

reproduced. However, there is an infinite number of input

sequences which needs to be considered and it is our next

step to reduce the number of sequences to a finite set.

C. A finite set of sufficient input sequences

We show in this section that a finite number of input

sequences suffices to determine all correlations for all se-

quences. Since we only consider sequences of observables

from one context, as soon as two different observables

occur in a sequence, it is already possible to predict the

reminder of the sequence from the outcome of these two

observables. This is because the product of outcomes of

the three observables of each context is always +1 or −1,
depending on the context, and due to the requirement

that repeated occurrences of an observable in a sequence

produce repeated values.

Hence, it remains to consider sequences where ini-

tially one observable is measured repeatedly, for example,

X,X, Y . In quantum mechanics we have

P (x, x, . . . , x, y|X,X, . . . , X, Y ) =

tr(Πy|Y Πx|XρΠx|XΠy|Y ) = P (x, y|X,Y ), (7)

for any number of repetitions of the input X and out-

put x. However, for the automaton model we could

have different values for outcome y in the sequences

X,X, . . . , X, Y , depending on the number of repetitions

of x, since the value of Y does not need to be fixed until Y

is actually measured. Thus, we have to consider how our

specific model behaves in this situation. For any value of

λ, the behavior of our automaton is analogous to the au-

tomaton in Eq. (5) and for this automaton one observes

that the internal state s′ after an ℓ-fold measurement of

X does not depend on ℓ, if ℓ ≥ 1. Hence, the outcome

of X,X, . . . , X, Y is x, x, . . . , x, y if and only if X,Y has

outcome x, y.

In summary, our automaton with any choice of p(λ)
reproduces the quantum correlations for a state ρ for all

sequences of compatible observables, if and only if it does

so for all sequences of length two. For practical reasons,

instead of dealing with the correlations P (x, y|X,Y ) we

use the equivalent set of expectation values

〈X〉 =
∑

x,y

xP (x, y|X,Y ), (8a)

〈XYX〉 =
∑

x,y

yP (x, y|X,Y ), and (8b)

〈XY 〉 =
∑

x,y

xyP (x, y|X,Y ), (8c)

where in the second equation we used that the value of X

in the first and in the last position are the same. Note,

that while in QT, we always have 〈XYX〉 = 〈Y 〉, this

does not hold for all ensembles p(λ) in our automaton, as,

for example, in Eq. (5) with initial internal state s = 1,
we have 〈c〉 = 1, but 〈CcC〉 = −1. However, we observe

that 〈XY 〉 = 〈XY 〉 for all p(λ) and all compatible X and

Y , a relation that also holds in QT for any state.

Therefore, we have to take into account 9 values 〈X〉,
18 values 〈XY 〉, and 36 values 〈XYX〉. We enumerate

these values by j = 1, . . . , 63 and collect for each j the

values for all 240 values of λ in a vector ~vj . Then the

expectation values ~q = (q1, . . . , q63) can be achieved if

and only if qj = ~vj · ~p for some probabilities ~p with pλ ≡
p(λ). The set of achievable expectation values ~q is hence

given by the polytope

P = { ~q | qj = ~vj · ~p for all j and some ~p } . (9)

Similarly, for the quantum correlations we have 63 hermi-

tian operators Zj , such that the expectation values ~q can

be attained according to QT if and only if qj = tr(ρZj)
for all j and some quantum state ρ. The set of achievable

expectation values ~q according to QT is consequently the

convex set

Q = { ~q | qj = tr(ρZj) for all j and some ρ } . (10)

This allows us to easily verify the correctness of the

example in Sec. IV B, by comparing ~vj ·~p with tr(ρZj) for

all j and for any quantum state ρ, finding a corresponding

distribution p(λ) reduces to find probabilities ~p with ~vj ·
~p = tr(ρZj) for all j. This can be solved by means of

linear programming and was in fact our method to find

p(λ) for the singlet state in Sec. IV B.
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D. Simulation of the correlations of any quantum

state

We are now equipped with the necessary tools to

prove that the correlations of any quantum state can be

simulated with a construction analogous to the one in

Sec. IV B. According to our previous analysis, the ques-

tion whether the quantum predictions can be simulated

by an appropriate distribution p(λ) reduces to the ques-

tion whether the convex set Q is contained in the poly-

tope P . In order to make this question tractable, we

use an equivalent representation of the polytope, where

it is written as a finite intersection of half-spaces [26]

parametrized by vectors ~hℓ and numbers αℓ, so that

P = { ~q | ~hℓ · ~q ≤ αℓ for all ℓ } . (11)

Using this half-space representation, P contains Q if and

only if ~hℓ · tr(ρ~Z) ≤ αℓ for all ℓ and all ρ. By writing

Wℓ = αℓ11 − ~hℓ · ~Z, (12)

this further simplifies to tr(ρWℓ) ≥ 0 for all ℓ and all

ρ. That is, Q ⊂ P holds if and only if all Wℓ are pos-

itive semidefinite. Conversely, if we find a state with

tr(ρWℓ) < 0 for some ℓ, and hence Wℓ is not posi-

tive semidefinite, then our automaton cannot simulate

all quantum predictions for this state.

In principle, this can be tested directly. However, since

the polytope P is given in the form of Eq. (9), we need to

compute the half-space representation in Eq. (11). This

can be achieved by using the Fourier–Motzkin elimina-

tion, but is known to be a computationally hard task

and for our problem we were not able to find a direct

solution. The central observation to solve the problem

nonetheless is that Q spans a rather low-dimensional

affine space. In particular, Q is contained in the affine

space ~a + U ≡ {~a+ ~u | ~u ∈ U }, where aj = tr(ρZj) for

some fixed ρ0 (for example, ρ0 = 1
411) and U is the linear

space U = { ~u | uj = tr(GZj) for some G } with G any

hermitian operator obeying tr(ρ0G) = 0. This holds true

since we can always write ρ = ρ0 + G for some G. The

dimension of the linear space U is only dimU = 9, as

can be found by using the linear independence relations

of the operators Zj . Therefore, Q ⊂ P is equivalent to

Q ⊂ P ∩ (~a + U) and our problem reduces to calculate

a half-space representation for the polytope P ∩ (~a+U).
This problem is easily tractable, as we discuss in Ap-

pendix A. We obtain 24 nonzero operators Wℓ, each of

which is positive semidefinite. This proves Q ⊂ P and

thus our automaton can simulate the quantum corre-

lations for any quantum state. We mention that the

nonzero operators Wℓ are, up to an arbitrary positive

factor, exactly those 24 projectors of unit rank which

commute with all observables from one out of the six

contexts in the Peres–Mermin square.

V. CONCLUSIONS

Quantum contextuality is considered as one of the key

differences between the microscopic world and the world

governed by classical mechanics. Recent experimental

demonstrations of this phenomenon proceed by measur-

ing sequences of observables and yield a contradiction

to the assumption of noncontextuality, i.e., the assump-

tion that the value of an observable does not depend of

which other compatible observables are measured along-

side. We revisited this conclusion for the case of the

Peres–Mermin scenario in the light of classical models

which utilize internal memory in order to reproduce the

quantum behavior. We showed that for this scenario an

automaton using only three internal states can reproduce

the quantum correlations from any quantum state for

any sequence of compatible observables. This model is

also optimal, since a lower bound of three internal states

was already established [10]. The memory cost of the

Peres–Mermin scenario is therefore actually lower than

the canonical quantum implementation, which requires

two qubits. Since for quantum correlations involving se-

quences of incompatible observables, the memory cost

can also be larger than the memory of the quantum sys-

tem, this leaves open the question, whether there can

be a quantum memory advantage when restricted to se-

quences of compatible observables and if so, for which

contextuality scenario this occurs.
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Appendix A: Low-dimensional section of a

polyhedral cone

A central step in Sec. IV D is to compute the half-space

representation of the polytope P ∩ (~a+U), where P is a

polytope, ~a ∈ P is a vector and U is a linear subspace of

low dimension.

We first consider the equivalent problem for a polyhe-

dral cone P = {A~r | ~r � 0 }, where ~r � 0 abbreviates

rk ≥ 0 for all k and A is some matrix with real entries.

For a matrix K, let F be a matrix the range of which is
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the kernel of KA. We have

P ∩ ker(K) = {A~r | ~r � 0, K(A~r) = 0 }
= {A~r | ~r � 0, ~r = F~s for some ~s }
= {AF~s | F~s � 0 }
= AF {~s | F~s � 0 } ,

(A1)

where we used that KA~r = 0 implies ~r = F~s for some ~s

and, conversely, (KA)F~s = 0 for any ~s. It follows that
if we can obtain a matrix F ′, such that {~s | F~s � 0 } =
{F ′~s | ~s � 0 }, then P ∩ ker(K) = {AFF ′~s | ~s � 0 }.

For our case, we extend the polytope P from Eq. (9)
to a polyhedral cone P by adding ~e = (1, 1, . . . , 1) to
the vectors ~vj and by dropping the constraint

∑
i pi =

1, i.e., P = {A~r | ~r � 0 } and A is the matrix with
rows [e, v1, . . . , v63]. Then (1, ~q) ∈ P if and only if
~q ∈ P . Similarly, we define the linear subspace U =
{ (λ, λ~a+ ~u) | λ ∈ R and ~u ∈ U }, so that (1, ~x) ∈ U is
equivalent to ~x ∈ ~a+ U .

In order to apply Eq. (A1), we choose some matrix K

such that ker(K) = U and some matrix F with range

ker(KA). Despite FT being a larger matrix than A,
we find that F ′ is rather easy to compute. The ma-
trix B = AFF ′ is then only of rank dim(U) = 10 and
a matrix B′ with {B~s | ~s � 0 } = { ~y | B′~y � 0 } can be
computed at an instance. We use the software cddlib

[27] to generate the matrices F ′ and B′ and iml [28] to
compute K and F . Both packages work with unlimited
exact integer arithmetic and hence our computation of
B′ is exact. We verify independently our results by using
porta [29] to compute K, F , F ′ and B′.

Finally, we have that ~q ∈ P and ~q ∈ ~a+ U if and only
if (1, ~q) ∈ P∩U , i.e., if and only if B′

ℓ,1+
∑

j B
′

ℓ,j+1qj ≥ 0

for all ℓ. Therefore, the operators Wℓ defined in Eq. (12)
are given by

Wℓ = B
′

ℓ,111 −
∑

j

B
′

ℓ,j+1Zj . (A2)

As we showed in the main text, Q ⊂ P ∩ (~a + U) is
equivalent to all Wℓ being positive semidefinite. In our
analysis, all operators Wℓ satisfy this condition.
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Proposed experiment to test fundamentally binary theories
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Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes

are constructed by selecting from binary measurements. They constitute a sensible alternative to

quantum theory and have never been directly falsified by any experiment. Here we show that

fundamentally binary theories are experimentally testable with current technology. For that, we

identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that,

for any n, quantum n-ary correlations are not fundamentally (n− 1)-ary. For that, we introduce a

family of inequalities that hold for fundamentally (n− 1)-ary theories but are violated by quantum

n-ary correlations.

I. INTRODUCTION

Quantum theory (QT) is the most successful theory

physicists have ever devised. Still, there is no agree-

ment on which physical reasons force its formalism [1].

It is therefore important to test “close-to-quantum” al-

ternatives, defined as those which are similar to QT in

the sense that they have entangled states, incompatible

measurements, violation of Bell inequalities, and no ex-

periment has falsified them, and sensible in the sense

that they are in some aspects simpler than QT. Exam-

ples of these alternatives are theories allowing for almost

quantum correlations [2], theories in which measurements

are fundamentally binary [3], and theories allowing for a

higher degree of incompatibility between binary measure-

ments [4].

Each of these alternatives identifies a particular fea-

ture of QT that we do not fully understand and, as a

matter of fact, may or may not be satisfied by nature.

For example, we still do not know which principle sin-

gles out the set of correlations in QT [5]. In contrast,

the set of almost quantum correlations satisfies a list of

reasonable principles and is simple to characterize [2].

Similarly, we do not know why in QT there are mea-

surements that cannot be constructed by selecting from

binary measurements [3]. However, constructing the set

of measurements of the theory would be simpler if this

would not be the case. Finally, we do not know why the

degree of incompatibility of binary measurements in QT

is bounded as it is, while there are theories that are not

submitted to such a limitation [4].

Unfortunately, we do not yet have satisfactory answers

to these questions. Therefore, it is important to test

whether nature behaves as predicted by QT also in these

particular aspects. However, this is not an easy task.

Testing almost quantum theories is difficult because we

still do not have a well-defined theory; thus, there is not

∗ matthias_kleinmann001@ehu.eus
† tvertesi@atomki.mta.hu
‡ adan@us.es

a clear indication on how we should aim our experiments.

Another reason, shared by theories with larger binary in-

compatibility, is that the only way to test them is by

proving that QT is wrong, which is, arguably, very un-

likely. The case of fundamentally binary theories is dif-

ferent. We have explicit theories [3] and we know that

fundamentally binary theories predict supraquantum cor-

relations for some experiments but subquantum correla-

tions for others. That is, if QT is correct, there are ex-

periments that can falsify fundamentally binary theories

[3]. The problem is that all known cases of subquantum

correlations require visibilities that escape the scope of

current experiments.

This is particularly unfortunate now that, after years

of efforts, we have loophole-free Bell inequality tests [6–

10], tests touching the limits of QT [11, 12], and increas-

ingly sophisticated experiments using high-dimensional

two-photon entanglement [13–15]. Therefore, a funda-

mental challenge is to identify a feasible experiment ques-

tioning QT beyond the local realistic theories [16].

The main aim of this work is to present a feasible ex-

periment capable of excluding fundamentally binary the-

ories. In addition, the techniques employed to identify

that singular experiment will allow us to answer a ques-

tion raised in Ref. [3], namely, whether or not, for some

n, quantum n-ary correlations are fundamentally (n−1)-
ary.

A. Device-independent scenario

Consider a bipartite scenario where two observers, Al-

ice and Bob, perform independent measurements on a

joint physical system. For a fixed choice of measurements

x for Alice and y for Bob, P (a, b|x, y) denotes the joint

probability of Alice obtaining outcome a and Bob obtain-

ing outcome b. We assume that both parties act indepen-

dently in the sense that the marginal probability for Al-

ice to obtain outcome a does not depend on the choice of

Bob’s measurement y, i.e.,
∑

b
P (a, b|x, y) ≡ P (a, |x, ),

and analogously
∑

a
P (a, b|x, y) ≡ P ( , b| , y). These are

the nonsignaling conditions, which are obeyed by QT
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whenever both observers act independently, in particular,

if the operations of the observers are spacelike separated.

However, QT does not exhaust all possible correlations

subject to these constraints [17].

The strength of this scenario lies in the fact that the

correlations can be obtained without taking into account

the details of the experimental implementation and hence

it is possible to make statements that are independent of

the devices used. This device-independence allows us to

test nature without assuming a particular theory—such

as QT—for describing any of the properties of the mea-

surement setup. This way, it is also possible to make

theory-independent statements and, in particular, to an-

alyze the structure of any probabilistic theory that obeys

the nonsignaling conditions.

B. Fundamentally binary theories

One key element of the structure of any probabilistic

theory was identified in Ref. [3] and concerns how the

set of measurements is constructed, depending on the

number of outcomes. According to Ref. [3], it is plau-

sible to assume that a theory describing nature has, on

a fundamental level, only measurements with two out-

comes while situations where a measurement has more

outcomes are achieved by classical postprocessing of one

or several two-outcome measurements. To make this a

consistent construction, it is also admissible that the clas-

sical postprocessing depends on additional classical infor-

mation and, in the bipartite scenario, this classical infor-

mation might be correlated between both parties. The

total correlation attainable in such a scenario are the bi-

nary nonsignaling correlations, which are characterized

by the convex hull of all nonsignaling correlations obey-

ing P (a, |x, ) = 0 for all measurements x and all but

two outcomes a, and P ( , b| , y) = 0 for all measurements

y and all but two outcomes b. The generalization to n-ary

nonsignaling correlations is straightforward.

In Ref. [3], it was shown that for no n the set of n-ary

nonlocal correlations covers all the set of quantum cor-

relations. Albeit this being a general result, the proof

in Ref. [3] has two drawbacks: (i) It does not provide

a test which is experimentally feasible. (ii) It does not

allow us to answer whether or not quantum n-ary corre-

lations are still fundamentally (n− 1)-ary. For example,

the proof in Ref. [3] requires 10-outcome quantum mea-

surements for excluding the binary case. In this work,

we address both problems and provide (i’) an inequal-

ity that holds for all binary nonsignaling correlations,

but can be violated using three-level quantum systems

(qutrits) with current technology, and (ii’) a family of in-

equalities obeyed by (n−1)-ary nonsignaling correlations

but violated by quantum measurements with n outcomes.

II. RESULTS

A. Feasible experiment to test fundamentally

binary theories

We first consider the case where Alice and Bob both

can choose between two measurements, x = 0, 1 and y =

0, 1, and each measurement has three outcomes a, b =

0, 1, 2. For a set of correlations P (a, b|x, y), we define

Ia =
∑

k,x,y=0,1

(−1)k+x+y
P (k, k|x, y), (1)

where the outcomes with k = 2 do not explicitly appear.

With the methods explained in Sec. III A, we find that,

up to relabeling of the outcomes,

Ia ≤ 1 (2)

holds for nonsignaling correlations if and only if the cor-

relations are fundamentally binary. However, according

to QT, the inequality in Eq. (2) is violated, and a value

of

Ia = 2(2/3)3/2 ≈ 1.0887 (3)

can be achieved by preparing a two-qutrit system in the

pure state

|ψ〉 = 1

2
(
√
2 |00〉+ |11〉 − |22〉) (4)

and choosing the measurements x, y = 0 as Mk|0 =

V |k〉〈k|V †, and the measurements x, y = 1 as Mk|1 =

U |k〉〈k|U †, where, in canonical matrix representation,

V =
1√
12




2 2 2

−
√
3− 1

√
3− 1 2√

3− 1 −
√
3− 1 2



 , (5)

and U = diag(−1, 1, 1)V .

Using the second level of the Navascués–Pironio–Acín

(NPA) hierarchy [18], we verify that the value in Eq. (3) is

optimal within our numerical precision of 10−6. The vis-

ibility required to observe a violation of the inequality in

Eq. (2) is 91.7%, since the value for the maximally mixed

state is Ia = 0. The visibility is defined as the minimal p

required to obtain a violation assuming that the prepared

state is a mixture of the target state and a completely

mixed state, ρprepared = p|ψ〉〈ψ|+ (1− p)ρmixed.

We show in Sec. III A that the inequality in Eq. (2)

holds already if only one of the measurements of either

Alice or Bob is fundamentally binary. Therefore, the vi-

olation of the inequality in Eq. (2) allows us to make an

even stronger statement, namely, that none of the mea-

surements used is fundamentally binary, thus providing

a device-independent certificate of the genuinely ternary

character of all measurements in the experimental setup.

The conclusion at this point is that the violation of the

inequality in Eq. (2) predicted by QT could be experi-

mentally observable even achieving visibilities that have
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been already attained in previous Bell-inequality exper-

iments on qutrit–qutrit systems [13–15]. It is important

to point out that, in addition, a compelling experiment

requires that the local measurements are implemented as

measurements with three outcomes rather than measure-

ments that are effectively two-outcome measurements.

That is, there should be a detector in each of the three

possible outcomes of each party. The beauty of the in-

equality in Eq. (2) and the simplicity of the required state

and measurements suggest that this experiment could be

carried out in the near future.

B. Quantum n-ary correlations are not

fundamentally (n− 1)-ary

If our purpose is to test whether or not one partic-

ular measurement is fundamentally binary (rather than

all of them), then it is enough to consider a simpler sce-

nario where Alice has a two-outcome measurement x = 0
and a three-outcome measurement x = 1, while Bob has

three two-outcome measurements y = 0, 1, 2. We show

in Sec. III A that for the combination of correlations

Ib = −P (0, |0, )+
∑

k=0,1,2

[P (0, 0|0, k)−P (k, 0|1, k)], (6)

up to relabeling of the outcomes and Bob’s measurement

settings,

Ib ≤ 1 (7)

holds for nonsignaling correlations if and only if the cor-

relations are fundamentally binary. According to QT,

this bound can be violated with a value of

Ib =
√
16/15 ≈ 1.0328, (8)

by preparing the state

|ψ〉 = 1
√
(3ζ + 1)2 + 2

(|00〉+ |11〉+ |22〉+ ζ |φ〉|φ〉), (9)

where ζ = − 1
3 +

1
6

√
10

√
15− 38 ≈ −0.19095, |φ〉 = |0〉+

|1〉 + |2〉, and choosing Alice’s measurement x = 0 as

A0|0 = 11−A1|0, A1|0 = |φ〉〈φ|/3, and measurement x = 1
as Ak|1 = |k〉〈k|, for k = 0, 1, 2, and Bob’s measurements

y = 0, 1, 2 as B0|y = 11−B1|y and B1|k = |ηk〉〈ηk|/ 〈ηk|ηk〉,
where |ηk〉 = |k〉 + ξ |φ〉, for k = 0, 1, 2, and ξ = − 1

3 +
1
6

√
6
√
15 + 22 ≈ 0.78765. [Another optimal solution is

obtained by flipping the sign before the (16
√
)-terms in ξ

and ζ, yielding ξ ≈ −1.4543 and ζ ≈ −0.47572.]
We use the third level of the NPA hierarchy to confirm

that, within our numerical precision of 10−6, the value

in Eq. (8) is optimal. Notice, however, that the visibility

required to observe a violation of the inequality in Eq. (7)

is 96.9%. This contrasts with the 91.7% required for the

inequality in Eq. (2) and shows how a larger number

of outcomes allows us to certify more properties with a

smaller visibility.

Nevertheless, what is interesting about the inequality

in Eq. (7) is that it is a member of a family of inequalities

and this family allows us to prove that, for any n, quan-

tum n-ary correlations are not fundamentally (n−1)-ary,

a problem left open in Ref. [3]. For that, we modify the

scenario used for the inequality in Eq. (7), so that now

Alice’s measurement x = 1 has n outcomes, while Bob

has n measurements with two outcomes. We let I
(n)
b be

as Ib defined in Eq. (6), with the only modification that

in the sum, k takes values from 0 to n− 1. Then,

I
(n)
b ≤ n− 2 (10)

is satisfied for all fundamentally (n− 1)-ary correlations.

The proof is given in Sec. III B. Clearly, the value I
(n)
b =

n− 2 can already be reached by choosing the fixed local

assignments where all measurements of Alice and Bob

always have outcome a, b = 0. According to QT, it is

possible to reach values of I
(n)
b > (n−2)+1/(4n3), as can

be found by generalizing the quantum construction from

above to n-dimensional quantum systems with ξ =
√
2

and ζ = −1/n+ 1/(
√
2n2). Thus, the (n− 1)-ary bound

is violated already by n-ary quantum correlations. Note,

that the maximal quantum violation is already very small

for n = 4 as the bound from the third level of the NPA

hierarchy is I
(4)
b < 2.00959.

III. METHODS

A. Restricted nonsignaling polytopes

We now detail the systematic method that allows us

to obtain the inequalities in Eqs. (2), (7), and (10).

We write S = [a1, a2, . . . , an : b1, b2, . . . , bm] for the case

where Alice has n measurements and the first measure-

ment has a1 outcomes, the second a2 outcomes, etc., and

similarly for Bob and his m measurements with b1, b2,. . . ,

outcomes. The nonsignaling correlations for such a sce-

nario form a polytope C(S). For another bipartite sce-

nario S′ we consider all correlations P ′ ∈ C(S′) that can

be obtained by local classical postprocessing from any

P ∈ C(S). The convex hull of these correlations is again

a polytope and is denoted by C(S → S′).
The simplest nontrivial polytope of fundamentally bi-

nary correlations is then C([2, 2 : 2, 2] → [3, 3 : 3, 3]).
We construct the vertices of this polytope and com-

pute the 468 facet inequalities (i.e., tight inequalities for

fundamentally binary correlations) with the help of the

Fourier-Motzkin elimination implemented in the software

porta [19]. We confirm the results by using the indepen-

dent software ppl [20]. Up to relabeling of the outcomes,

only the facet Ia ≤ 1 is not a face of the set the nonsignal-

ing correlations C([3, 3 : 3, 3]), which concludes our con-

struction of Ia. In addition, we find that

C([2, 3 : 3, 3]) = C([2, 2 : 2, 2] → [2, 3 : 3, 3]), (11)
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and therefore the inequality in Eq. (2) holds for all
nonsignaling correlations where at least one of the mea-
surements is fundamentally binary.

As a complementary question we consider the case
where only a single measurement has three outcomes. Ac-
cording to Eq. (11), the smallest scenarios where such a
verification is possible are [2, 3 : 2, 2, 2] and [2, 2 : 2, 2, 3].
We first find that C([2, 2 : 3, 3, 3]) = C([2, 2 : 2, 2, 2] →
[2, 2 : 3, 3, 3]), i.e., even if all of Bob’s measurements
would be fundamentally ternary, the correlations are al-
ways within the set of fundamentally binary correlations.
Hence, we investigate the polytope C([2, 2 : 2, 2, 2] →
[2, 3 : 2, 2, 2]) and its 126 facets. Up to symmetries, only
the facet Ib ≤ 1 is not a face of C([2, 3 : 2, 2, 2]).

Our method also covers other scenarios. As an example
we study the polytope C([2, 4 : 2, 4] → [2, 2, 2 : 2, 2, 2])
with its 14052 facets. In this case, the four-outcome
measurements have to be distributed to two-outcome
measurements (or the two-outcome measurement is used
twice). Hence, this scenario is equivalent to the require-
ment that for each party at least two of the three mea-
surements are compatible. The polytope has, up to rela-
beling, 10 facets that are not a face of C([2, 2, 2 : 2, 2, 2]).
According to the fourth level of the NPA hierarchy, two of
the facets may intersect with the quantum correlations.
While for one of them the required visibility (with respect
to correlations where all outcomes are equally probable)
is at least 99.94%, the other requires a visibility of at
least 97.88%. This latter facet is Ic ≤ 0, where

Ic = −P (10|00)− P (00|01)− P (00|10)− P (00|11)
− P (10|12)− P (01|20)− P (01|21) + P (00|22). (12)

For arbitrary nonsignaling correlations, Ic ≤ 1/2 is tight,
while within QT, Ic < 0.0324 must hold. We can con-
struct a numeric solution for two qutrits which matches
the bound from the third level of the NPA hierarchy up
to our numerical precision of 10−6. The required quan-
tum visibility then computes to 97.2%. The quantum
optimum is reached for measurements A0|k = |αk〉〈αk|,
A1|k = 11 − A0|k, and B0|k = |βk〉〈βk|, B1|k = 11 − B0|k,
where all |αk〉 and |βk〉 are normalized and 〈α0|α1〉 ≈
0.098, 〈α0|α2〉 ≈ 0.630, 〈α1|α2〉 ≈ 0.572, and 〈βk|βℓ〉 ≈
0.771 for k 6= ℓ. A state achieving the maximal quantum
value is |ψ〉 ≈ 0.67931 |00〉 + 0.67605 |11〉 + 0.28548 |22〉.
Note, that Ic ≈ 0.0318 can still be reached according to
QT, when Alice has only two incompatible measurements
by choosing 〈α0|α1〉 = 0. Curiously, the facet Ic ≤ 0 is
equal to the inequality M3322 in Ref. [21] and a violation
of it has been observed recently by using photonic qubits
[12]. However, while M3322 is the only nontrivial facet
of the polytope investigated in Ref. [21], it is just one of
several nontrivial facets in our case.

B. Proof of the inequality in Eq. (10)

Here, we show that for (n − 1)-ary nonsignaling cor-
relations, the inequality in Eq. (10) holds. We start by

letting for some fixed index 0 ≤ ℓ < n,

F = −
∑

b

R0,b|0,ℓ +
∑

k

[R0,0|0,k −Rk,0|1,k], (13a)

X1;a|x,y =
∑

b

(Ra,b|x,y −Ra,b|x,ℓ), (13b)

X2;b|x,y =
∑

a

(Ra,b|x,y −Ra,b|0,y), (13c)

where all Ra,b|x,y are linearly independent vectors from a
real vector space V . Clearly, for any set of correlations,
we can find a linear function φ : V → R with φ(Ra,b|x,y) =

P (a, b|x, y). For such a function, I
(n)
b = φ(F ) holds and

φ(Xτ ) = 0 are all the nonsignaling conditions. The max-

imal value of I
(n)
b for (n−1)-ary nonsignaling correlations

is therefore given by

maxℓ′ max{φ(F ) | φ : V → R, linear,

φ(Xτ ) = 0, for all τ,

φ(Rℓ′,b|1,y) = 0, for all b, y,
∑

υ φ(Rυ) = 2n, and

φ(Rυ) ≥ 0, for all υ}.

(14)

Since the value of the inner maximization does not de-
pend on the choice of ℓ, we can choose ℓ = ℓ′. Equa-
tion (14) is a linear program, and the equivalent dual to
this program can be written as

max
ℓ

min
t,ξ,η

{ t | t ≥ ζυ for all υ } , (15)

where ζ is the solution of

2nF −
∑

τ

ξτXτ −
∑

b,y

ηb,yRℓ,b|1,y =
∑

υ

ζυRυ. (16)

To obtain an upper bound in Eq. (15), we choose η ≡ 2n
and all ξτ = 0, but ξ1;a|0,k = 4, ξ1;k|1,k = −2n, ξ2;b|1,ℓ =

−3n + 2, and ξ2;b|1,k = −(−1)bn + 2, for k 6= ℓ. This
yields maxυ ζυ = n− 2 for all ℓ and hence the (n− 1)-ary

nonsignaling correlations obey I
(n)
b ≤ n− 2.

IV. CONCLUSIONS

There was little chance to learn new physics from the
recent loophole-free experiments of the Bell inequality [6–
10]. Years of convincing experiments [22–24] allowed us
to anticipate the conclusions: nature cannot be explained
by local realistic theories [16], there are measurements for
which there is not a joint probability distribution [25],
and there are states that are not a convex combination
of local states [26].

Here we have shown how to use Bell-type experiments
to gain insights into QT. In Ref. [3], it was shown that
QT predicts correlations that cannot be explained by
nonsignaling correlations produced by fundamentally bi-
nary measurements (including Popescu–Rohrlich boxes
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[17]). We proposed a feasible experiment which will al-
low us to either exclude all fundamentally binary prob-
abilistic theories or to falsify QT. If the results of the
experiment violate the inequality in Eq. (2), as predicted
by QT, then we would learn that no fundamentally bi-
nary theory can possibly describe nature. In addition,
it would prove that all involved measurements are gen-
uine three-outcome measurements. If the inequality in
Eq. (2) is not violated despite visibilities would a priori

lead to such a violation, then we would have evidence
that QT is wrong at a fundamental level (although being
subtle to detect in experiments). We have also gone be-
yond Ref. [3] by showing that, for any n, already n-ary

quantum correlations are not fundamentally (n− 1)-ary.
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We present the first experimental confirmation of the quantum-mechanical prediction of stronger-than-binary

correlations. These are correlations that cannot be explained under the assumption that the occurrence of a

particular outcome of an n ≥ 3-outcome measurement is due to a two-step process in which, in the first step,

some classical mechanism precludes n − 2 of the outcomes and, in the second step, a binary measurement

generates the outcome. Our experiment uses pairs of photonic qutrits distributed between two laboratories,

where randomly chosen three-outcome measurements are performed. We report a violation by 9.3 standard

deviations of the optimal inequality for nonsignaling binary correlations.

Introduction.—Quantum mechanics is so successful that it

is difficult to imagine how to go beyond the present theory

without contradicting existing experiments. However, going

beyond our present understanding of quantum mechanics can

enable us to solve long-standing problems like the formulation

of quantum gravity. Some of the most puzzling questions in

quantum theory are connected to the measurement process [1].

To go beyond our present understanding of measurements we

use recent axiomatizations of quantum theory [2–6] that iden-

tify quantum theory as a special case within the general proba-

bilistic theories. We identify an axiom related to the structure

of measurements that can be modified in a way not contra-

dicting existing experimental evidence, but making different

predictions.

In quantum theory, two-outcome measurements are de-

scribed by pairs of operators, (E, 11 − E). A quantum mea-

surement is feasible whenever both operators are positive

semidefinite. Conversely, in any general probabilistic theory,

if (E1, E2, . . . , En) represents a feasible n-outcome measure-

ment, then any postprocessing to a two-outcome measurement

(E ′

1, E ′

2) is also a feasible measurement. However, according

to quantum theory, (E1, E2, . . . , En) is already a feasible n-

outcome measurement whenever all postprocessings to a two-

outcome measurement (E′, 11−E′) are feasible. This suggests

a natural alternative, namely, that feasible n-outcome mea-

surements are only those that can be implemented by select-

ing from two-outcome measurements. Such measurements

are hence binary [7] and can be implemented as a two-step

process in which, in the first step, some classical mechanism

excludes all but two of the outcomes and, in a second step, the

final output is produced by a genuine two-outcome measure-

ment. The concept is illustrated in Fig. 1.

Correlations between the outcomes of measurements per-

formed by two parties, called Alice and Bob, are described

by joint probabilities P (a, b|x, y), where x and y are Al-

ice’s and Bob’s measurement settings, respectively, and a

(b)

(a) (2)(1)

FIG. 1. Two possible explanations for the measurement process.

Suppose a measurement with three possible outcomes represented

by red, green, and blue lights. The process that generates the final

outcome (represented by the blue light flashing) can be either (a) a

sequence of two steps: (1) The red outcome is precluded by a clas-

sical mechanism (e.g., the initial position of the measured system).

(2) A general two-outcome measurement selects between the two re-

maining outcomes. Or (b), the measurement is genuinely ternary in

the sense that it cannot be explained as in (a).

and b are Alice’s and Bob’s measurement outcomes, respec-

tively. Binary nonsignaling correlations are those which

are both nonsignaling, i.e.,
∑

b
P (a, b|x, y) ≡ PA(a|x) and∑

a
P (a, b|x, y) ≡ PB(b|y), and have only two nontrivial

outcomes, i.e., PA(a|x) = 0 except for two outcomes a and

PB(b|y) = 0 except for two outcomes b, and the convex hull
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thereof [7]. Such correlations also include cases that are for-

bidden in quantum theory as, for example, Popescu-Rohrlich

boxes [8] maximally violating the Clauser-Horne-Shimony-

Holt inequality [9]. Interestingly, according to quantum the-

ory, there exist stronger-than-binary nonsignaling correlations

[7]. A major problem, however, has been to identify how they

can be actually observed.

The experiment presented here aims at the maximum vio-

lation predicted by quantum theory of the optimal and unique

inequality [10] satisfied by binary nonsignaling correlations.

The experiment is a bipartite Bell-type experiment in which

Alice randomly chooses between two different measurements,

x = 0, 1, each of them with three possible outcomes, a =
0, 1, 2, and Bob randomly chooses between two different mea-

surements, y = 0, 1, each of them with three possible out-

comes, b = 0, 1, 2. Binary nonsignaling correlations satisfy

the inequality

Ia ≤ 1, (1)

where

Ia =
∑

k,x,y=0,1

(−1)k+x+y
P (k, k|x, y), (2)

and the outcomes a = 2 and b = 2 do not occur explicitly (see

below). In contrast, according to quantum theory, the maximal

value for Ia is

Ia = 2(2/3)3/2 ≈ 1.089. (3)

This maximum quantum value can be achieved by preparing

two qutrits in a particular state and making some particular

three-outcome local measurements (see below).

In the experiment we have obtained

Ia = 1.066± 0.007 (4)

which implies a violation of the inequality in Eq. (1) with a

statistical significance corresponding to 9.4 standard devia-

tions. A further analysis of the data (see below) shows that

residual systematic errors do not explain this violation.

Consequently, general probabilistic theories in which n-

outcome measurements are only binary are falsified by show-

ing that there are correlations that are not binary nonsignaling.

This also shows that, in nature, there are genuinely ternary

measurements, thus demonstrating that the measurement pro-

cess in quantum theory cannot be explained as a two-step

process as in Fig. 1(a). In fact, the result of the experiment

demonstrates that none of the four measurements (Alice’s or

Bob’s) can be binary.

Bound on binary nonsignaling correlations.—The bound

Ia ≤ 1 in Eq. (1) has been proved in Ref. [10] by computer-

based methods. Here we prove explicitly that the bound

Ia ≤ 1 in Eq. (1) is valid for binary nonsignaling correlations.

We proceed by defining the auxiliary quantities

XA =
∑

a,b,x,y : a 6=2

(−1)a+x+y
P (a, b|x, y) and (5a)

XB =
∑

a,b,x,y : b6=2

(−1)b+x+y
P (a, b|x, y). (5b)

These clearly obey XA = 0 and XB = 0 for all nonsignaling

correlations. We then have the inequality

3Ia −XA −XB ≤
∑

a,b,x,y

P (a, b|x, y) ≡ 4, (6)

which holds because the left-hand side of Eq. (6) has only co-

efficients ±1. Consequently, Ia ≤ 4
3 holds for all nonsignal-

ing correlations.

For the bound on binary nonsignaling correlations, it is

enough to consider the extremal correlations. By definition,

for those there exist certain indices ax ∈ { 0, 1, 2 } for x =
0, 1 and by ∈ { 0, 1, 2 } for y = 0, 1 such that P (a, b|x, y) = 0
holds whenever a = ax or b = by . The reminder of the en-

tries are then extremal two-outcome correlations and hence

are either deterministic, P (a, b|x, y) ∈ { 0, 1 }, or they form a

Popescu-Rohrlich box [8], implying P (a, b|x, y) ∈ { 0, 1
2 }.

As a consequence, the bound on Ia must be a multiple of
1
2 and must not exceed 4

3 . This proves Ia ≤ 1 for binary

nonsignaling correlations. This bound is also tight as can

be seen by considering the outcome assignment a = x and

b = 2y.

Experimental test.—Our experimental setup is described in

Fig. 2 and further develops techniques from Refs. [11–13] op-

timized for testing the prediction in Eq. (3). The source gen-

erates the two-photon state

|ψ〉 = (
√
2 |HuHu〉+ |VuVu〉 − |HlHl〉)/2, (7)

where Hu (Vu) denotes horizontal (vertical) polarization in

the upper path and Hl denotes horizontal polarization in the

lower path. Consequently, |Hu〉, |Vu〉, and |Hl〉 define a qutrit

for Alice and for Bob. The visibility of the entangled state is

0.98±0.01. Each photon of the pair is distributed to a different

laboratory and measured there locally.

In each laboratory, the settings 0 and 1 are chosen randomly

by means of a random number generator. The measurement

outcomes for setting 0 are projectors onto the one-dimensional

spaces spanned by

|η0|0〉 =(2 |Hu〉 − (1 +
√
3) |Vu〉 − (1−

√
3) |Hl〉)/

√
12,

|η1|0〉 =(2 |Hu〉 − (1−
√
3) |Vu〉 − (1 +

√
3) |Hl〉)/

√
12,

|η2|0〉 =(|Hu〉+ |Vu〉+ |Hl〉)/
√
3,

(8)

where the projector onto |ηk|0〉 corresponds to outcome k.

Similarly, for setting 1,

|η0|1〉 =(2 |Hu〉+ (1 +
√
3) |Vu〉+ (1−

√
3) |Hl〉)/

√
12,

|η1|1〉 =(2 |Hu〉+ (1−
√
3) |Vu〉+ (1 +

√
3) |Hl〉)/

√
12,

|η2|1〉 =(|Hu〉 − |Vu〉 − |Hl〉)/
√
3.

(9)
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FIG. 2. Experimental setup. The source of pairs of photons and the first measurement party, Alice, are in laboratory Lab1, while the second

measurement party, Bob, is in laboratory Lab2. The distance between Alice’s and Bob’s measurement setups is approximately 8 m. The pump

laser is a continuous wave laser of 404 nm wavelength and 100 mW power. Subsequently, beam displacers are used to construct phase-stable

interferometers. The beam displacers introduce a 4.21 mm displacement of the vertically polarized component; beam displacer BD1 operates

at 404 nm and is approximately 36.41 mm long, beam displacers BD2–BD5 operate at 404 nm and are approximately 39.70 mm long. The

pump beam is separated into two paths by means of the half wave plates HWP1–HWP3 and BD1, where the fast axis of HWP1 is oriented

at 15◦ with respect to the horizontal axis, HWP2 is oriented at 27.37◦, and HWP3 at 0◦. After BD1 and HWP1–HWP3, the pump state is

(
√
2 |Vu〉+ |Hu〉− |Vl〉)/2, where H (V ) stands for horizontal (vertical) polarization and u (l) denotes the upper (lower) path. The two paths

of the pump beam are then focused on two spots of two 0.5 mm thick type-I cut β-borate crystals (BBO) to generate the spatial mode and

polarization mode hybrid entangled two-photon state |ψ〉; see Eq. (7). The local measurement setting 0, see Eq. (8), and 1, see Eq. (9), for

Alice and Bob are constructed using the polarizing beam splitters PBS1 and PBS2, the half wave plates HWP4–HWP13, and BD2–BD4. The

orientations of HWP4–HWP13 depend on the measurement setting and are chosen according to Table I. HWP4, HWP8, HWP9, and HWP13

are mounted in electric rotators to switch the measurement settings automatically and the random number generators Quantis-USB-4M (ID

Quantique) are used to locally select the measurement basis. Six fiber coupled single photon detectors D1–D6 are used to detect the photons.

Interference filters with a bandwidth of 3 nm are used before each detector to remove background photon noise (not shown). Coincidences

between D1–D3 and D4–D6 are detected with the coincidence logic ID800 (ID Quantique, not shown), using a coincidence window of 3.2 ns.

These settings together with the state |ψ〉 yield the maximal

quantum value of Ia; see Eq. (3). In our setup, the detec-

tors D1–D3 correspond to outcomes 0–2 for Alice and the

detectors D4–D6 correspond to outcomes 0–2 for Bob. The

measurements are complete with respect to the qutrit space

spanned by |Hu〉, |Vu〉, and |Hl〉, while any component of the

incoming photon that is outside of the qutrit space remains

undetected. In addition, the imperfect efficiency of the de-

tectors, together with the coincidence logic, yield an overall

detection efficiency of 0.087±0.001. We account for both ef-

fects by implementing the fair sampling assumption, that the

coincidences recorded are a representative subsample of what

would have been recorded, if all photons were detected.

Data are collected in 4500 runs, with a collection time of

0.5 s for each run. Within each run, the measurement settings

of Alice and Bob remain fixed. In total, 75 544 coincidences

have been recorded.

Evaluation of the data.—The 4500 runs with random mea-

surement settings for Alice and Bob, combine to 1060 com-

plete data sets with all four combinations of settings and an

average of 67.1 coincidences and for each complete set. We

evaluate three conditions on the data: (i) normalization, i.e.,

whether
∑

a,b Nr(a, b|x, y) is independent of x and y; (ii)

nonsignaling, i.e., whether
∑

a Nr(a, b|x, y) is independent

of x and
∑

b Nr(a, b|x, y) is independent of y; and (iii) bi-

nary correlations, tested by means of the inequality

∑

k,x,y=0,1

(−1)k+x+y
Nr(k, k|x, y)

−1

4

∑

a,b,x,y

Nr(a, b|x, y) ≤ 0.
(10)

Hereby Nr(a, b|x, y) denotes the number of coincidences for

each of the complete data sets r = 1, . . . , 1060 when the out-

come of Alice (Bob) is a (b) and the setting is x (y). We

compute the mean m and the variance v over the 1060 runs

for each condition, so that t = m
√

1060/v is distributed ac-

cording to the Student-t distribution with g = 1059 degrees of
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TABLE I. Angles of the fast axis of the half wave plates (HWPs) with respect to the horizontal axis as used in the measurement setups of Alice

and Bob; see Fig. 2.

Measurement
HWP4 HWP5 HWP6 HWP7 HWP8

HWP9 HWP10 HWP11 HWP12 HWP13

Setting 0 (deg) −22.5 0 45 17.63 37.5
Setting 1 (deg) 22.5 0 45 17.63 −37.5

TABLE II. p-values for (i) joint normalization conditions, (ii) joint

nonsignaling conditions, and (iii) the inequality in Eq. (10). “Coin

tosses” is q if the condition to hold is as plausible as obtaining q times

heads in a row when tossing a fair coin. “Standard deviations” is s if

the condition to hold is as plausible as obtaining a modulus greater

than s from a normal distributed random variable.

Condition p-value Coin tosses Standard deviations

Full data set using al 1060 repetitions: Ia = 1.066± 0.007
(i) 0.213 2.23 1.25

(ii) 3.66×10−4 11.4 3.56

(iii) 5.95×10−21 67.2 9.39

Reduced data set using every fifth data set: Ia = 1.08± 0.02
(i) 0.340 1.56 0.954

(ii)a 0.0592 4.08 1.89

(iii) 4.72×10−6 17.7 4.58
aThe χ2 value is unexpectedly below the median of the χ2

distribution and the p-value has been multiplied with a conservative

factor of 2.

freedom. In this regime, after rescaling by
√
(g − 2)/g, the

Student-t distribution is very close to a normal distribution.

We therefore obtain the p-value of the joint conditions (i) or

(ii) using the χ2 distribution, where there are three indepen-

dent conditions in (i) and 11 independent conditions in (ii).

The obtained values are given in Table II as “Full data set.”

The full data set shows a violation of the inequality in

Eq. (10) with a significance corresponding to 9.4 standard de-

viations. However, also the nonsignaling conditions (ii) are vi-

olated by 3.6 standard deviations. The origin of this apparent

signaling is the unavoidable fluctuations in the pumping laser.

This leads to statistically significant (apparent) signaling since

the statistical error is smaller than the error due to the imper-

fections. A maximum-likelihood fit imposing the nonsignal-

ing constraints increases the value of Ia, so that we conclude

that the significance of the violation of Ia is nonetheless gen-

uine. To further support this assertion, we reduce the set of

samples so that the statistical error is again dominant and con-

sider a reduced data set with only one-fifth of the complete

data sets; see Table II, “Reduced data set.” There, although

the shot noise is increased by a factor of
√
5 ≈ 2.2, a viola-

tion of the inequality in Eq. (10) by 4.6 standard deviations

remains, while the violation of the nonsignaling conditions

becomes negligible.

Finally, we compute the empirical frequencies

Pr(a, b|x, y) =
Nr(a, b|x, y)∑

a′,b′ Nr(a′, b′|x, y)
(11)

for each r. This allows us to compute for each repetition the

value of Ia. In Eq. (4) and Table II, we report the resulting

mean value and standard error.

Conclusion.—We have presented an experimental violation

with pairs of entangled qutrits of the optimal inequality for

nonsignaling binary correlations. Our result (i) provides com-

pelling evidence against two-step explanations of the mea-

surement process, (ii) falsifies nonsignaling binary theories as

possible descriptions of nature, apart from the detection and

locality loopholes, and (iii) shows, apart from these loopholes,

that in nature there exist stronger-than-binary nonsignaling

correlations, i.e., correlations that, in particular, cannot be re-

produced using Popescu-Rohrlich boxes. The experiment also

illustrates how the maturity and refinement achieved by the

experimental techniques developed for quantum communica-

tion and quantum information processing can be used to test

subtle predictions of quantum theory and obtain detailed in-

sights about how nature works.

Data repository.—The complete data set is publicly avail-

able by following the link in Ref. [14]. We encourage readers

who want to expand our work with further data analysis to do

so.
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FIG. 4. Violation of the separability criterion as a function

of the total number of atoms N. The black line represents

the right-hand side (RHS) of equation (1) for the ideal case.

The orange line represents the mean of the experimental re-

sults (orange diamonds) of the RHS of equation (1), where

the spin length is reduced. The green circles show the exper-

imental results for the left-hand side (LHS) of equation (1).

The dashed green line indicates the prediction of the LHS

corresponding to the gray lines in Fig. 3. The spin correla-

tions clearly violate the criterion by 2.8 standard deviations

at a mean total number of 3,460 atoms. The error bars and

shaded orange area indicate one standard deviation and are

obtained via a bootstrapping method (see Supplemental Ma-

terial).

with J (n) =

〈
(J(n)

x )2+(J(n)
y )2

j2n

〉 1
2

and the spin length

jn = Nn/2 for n = a, b. We arrive at a simple separa-

bility criterion

[
(∆J

+
z )2 + 1

2

] [
〈(J̃−

x )2 + (J̃−

y )2〉
]
≥ f

(
J (a)

,J (b)
)
,

(1)

where f(x, y) = (x2+y2
−1)2

xy
. Any separable state,

including mixtures of product states of the form
∑

k pk|Ψ
(a)

k 〉〈Ψ(a)

k | ⊗ |Ψ(b)

k 〉〈Ψ(b)

k | with a fluctuating

number of particles, fulfills this inequality. A viola-

tion of this criterion indicates that the state is insepa-

rable and therefore entangled. For perfectly symmetric

states, as we would expect in the ideal case, the right-

hand side (RHS) of the equation is equal to 1. Any de-

terioration from perfect symmetry is quantified by J (a)

and J (b). The inequality has similarities to the famous

EPR criterion [31] due to the characteristic product of

the uncertainties. It presents a general entanglement

criterion, which is particularly sensitive for a spatially

separated twin-Fock state.

An application of criterion (1) requires an evalua-

tion of the spin correlations between the two clouds a

and b. The measurement results for J
(a)
z and J

(b)
z are

readily obtained from the absorption images. The mea-

surement of the orthogonal direction is performed by

a sequence of resonant microwave pulses prior to the

particle number detection (see Supplemental Material).

The pulses lead to an effective rotation of the spins by

π/2. Because the microwave phase is independent of

the atomic phases, the rotation yields a measurement

of the spin component J⊥ along an arbitrary angle in

the x− y plane. Since our quantum state is symmetric

under rotations around the z axis, both due to the ini-

tial symmetry and the influence of magnetic field noise,

the measured distributions of J⊥ can be identified with

both Jx and Jy. Interestingly, the performed measure-

ment of J⊥ is the realization of a measurement scheme

to demonstrate the violation of a Bell inequality [32],

if local addressing and a single-particle-resolving atom

counting is added.

Figure 2 shows the histograms of Jz and J⊥/j for

a mean total number of 3,460 particles in both clouds.

The Jz data show the expected anti-correlation, while

the J⊥ measurements are strongly correlated. The

J⊥ histogram also shows pronounced peaks at the

edges, reflecting the projection of a ring onto its diame-

ter. The strength of these correlations can be quantified

by evaluating the prediction uncertainties — the width

of the distributions in the diagonal directions in the his-

tograms, i.e. (∆J+
z )2 and 〈(J̃−

⊥
)2〉.

Figure 3(a) presents the prediction variance (∆J+
z )2

as a function of the total number of atoms. The

shown fluctuations, obtained by subtracting indepen-

dent detection noise, remain well below the shot-noise

limit, and are equivalent to a number squeezing of

−11.0(5) dB. The orthogonal quantities (Fig. 3(b)) are

slightly influenced by technical noise due to small po-

sition fluctuations of the clouds, increasing the stan-

dard deviation by a factor of 1.8 above shot noise. Fig-

ure 3(c) shows the quantities J (a), J (b). We obtain a

value of up to 0.94, close to the ideal value of 1, in-

dicating a sufficiently clean preparation of an almost

symmetric state.

From these results, we can test a violation of the

separability criterion. In Fig. 4, the orange diamonds

correspond to an evaluation of the RHS of the crite-

rion, which would ideally be 1 (black line). The left-

hand side (LHS), represented by the green circles, is

well below the RHS, signaling entanglement in the

system. At the best value at a total number of 3,460
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atoms, the experimental data violates the separability

criterion by 2.8 standard deviations. Therefore, our

measurements cannot result from classical correlations

and prove the generation of entanglement between spa-

tially separated clouds from particle-entangled, indis-

tinguishable atoms.

Complementary to our work, the group of M.

Oberthaler has observed spatially distributed multipar-

tite entanglement and the group of P. Treutlein has ob-

served spatial entanglement patterns.
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the interaction of the ensembles with the large conden-

sate remaining in the F = 2,mF = −1 state [33]. Af-

ter the initial mean-field dominated expansion, a strong

magnetic field gradient is applied to spatially separate

the atoms in the populated Zeeman levels. Finally, the

number of atoms in the clouds is detected by absorp-

tion imaging on a CCD camera with a large quantum

efficiency.

The absorption images are used to detect the num-

ber of atoms in the two spatially separated clouds. The

center of mass of the large condensate in the F =
2,mF = −1 level is used as a reference for the posi-

tion of all clouds (see Fig. 5(b)). This is necessary due

to slight shot-to-shot variations of the position, which

result from minute position changes of the dipole trap.

The position of the masks for the ensembles in F =
2,mF = {−2, 0} (formerly F = 1,mF = ±1), as

well as the cutting line for the parts a (left) and b
(right), is fixed with respect to this reference. The num-

ber of atoms in the four resulting sub-masks is then ob-

tained by summing over the column density of the ab-

sorption image to record the spin fluctuations and prove

entanglement between the spatially separated atomic

clouds.

To utilize the created state for quantum information

tasks, it can be transferred into an optical lattice, where

all constituent particles are individually addressable.

As a concrete example, single-atom projective mea-

surements on one half of this highly entangled ensem-

ble allow to synthesize any pure symmetric quantum

state in the second half [24, 25].

Bootstrapping. The error bars in Figs. 3 and 4

are obtained via a bootstrapping method. We created

10,000 random data sets on the basis of the distribu-

tions of the experimental data. We then calculated the

standard deviations of the measured quantities from

these 10,000 samples and checked that the percentage

of violations of equation (1) was consistent with the

reported significance.

Proof of equation (1).

We start from the sum of two Heisenberg uncertainty

relations (∆Jz)
2[(∆Jx)

2 + (∆Jy)
2] ≥ 1

4
(〈Jx〉2 +

〈Jy〉2). Simple algebra yields

[

(∆Jz)
2 +

1

4

]

× (∆Jx)
2 + (∆Jy)

2

〈J2
x 〉+ 〈J2

y 〉
≥ 1

4
. (2)

Here, the first factor represents the fluctuations in the

particle number difference and the second term repre-

sents the fluctuations in the phase difference.

Product states. First, we consider product states of

the form |Ψ(a)〉 ⊗ |Ψ(b)〉. For such states
[

(∆J
+
z )2 +

1

2

]

×
[
(∆J̃

−

x )2 + (∆J̃
−

y )2
]

= [(U (a) + 1
4
) + (U (b) + 1

4
)] · (V(a) + V(b))

≥ 4
√
(U (a) + 1

4
)(U (b) + 1

4
)V(a)V(b) ≥ 1 (3)

holds, where we used the notation U (n) = (∆J
(n)
z )2

and V(n) = (∆J̃
(n)
x )2 + (∆J̃

(n)
y )2 for n = a, b.

For product states, the variance of a collective ob-

servable is the sum of the sub-system variances, i.e.

[∆(A(a)+A(b))]2 = (∆A(a))2+(∆A(b))2, leading to

the equality in equation (3). The first inequality is ob-

tained from the inequality between the arithmetic and

the geometric mean. Equation (2) is valid for both part

a and b of the state, leading to the second inequality.

Using 〈(J̃ (n)
x )2〉+〈(J̃ (n)

y )2〉 = 1 for n = a, b, equa-

tion (3) yields

2

[

(∆J
+
z )2 +

1

2

]

(S − C) ≥ S, (4)

where correlations between the two subsystems are

characterized by C =

〈
J(a)
x J(b)

x +J(a)
y J(b)

y

jajb

〉

, and S =

J (a)J (b). Note that C can be negative and |C| ≤ S.
The normalization with the total spin will make it eas-

ier to adapt our criterion to experiments with a varying

particle number in the ensembles.

Separable states. We now consider a mixed separa-

ble state of the form ̺sep =
∑

k pk|Ψ
(a)

k 〉 ⊗ |Ψ(b)

k 〉.
For such states, we can write the following series of

inequalities

2

[

(∆J
+
z )2 +

1

2

]

(S − C)

≥ 2

[
∑

k

pk(∆Jz)
2
k +

1

2

][
∑

k

pk (Sk − Ck)
]

≥ 2

[
∑

k

pk

√(

(∆Jz)2k +
1

2

)

(Sk − Ck)
]2

≥
(
∑

k

pk

√
Sk

)2

, (5)

where the subscript k indicates that the quantity is com-

puted for the kth sub-ensemble |Ψ(a)

k 〉 ⊗ |Ψ(b)

k 〉. The

first inequality in equation (5) is due to (∆J+
z )2 and
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S being concave in the quantum state. The second

inequality is based on the Cauchy-Schwarz inequal-

ity (
∑

k pkak) (
∑

k pkbk) ≥
(∑

k pk
√
akbk

)2
, where

ak, bk ≥ 0. The third inequality is the application of

equation (4) for all sub-ensembles. Next, we find a

lower bound on the RHS of equation (5) based on the

knowledge of J (a) and J (b).

We find that

∑

k

pk

(
J (a)

k J (b)

k

)1/2

≥ (J (a))2+(J (b))2−1, (6)

which is based on noting (xy)1/4 ≥ x + y − 1 for

0 ≤ x, y ≤ 1. Using equation (6) to bound the RHS of

equation (5) from below and dividing by S we obtain

[

(∆J
+

z
)2 +

1

2

]

×
[

2− 2
C
S

]

≥
[
(J (a))2 + (J (b))2 − 1

]2

S .

(7)

Non-zero particle number variance. So far, we as-

sumed that the particle number of the two clouds a and

b are known constants. In practice, the particle num-

ber is not a constant, but varies from experiment to

experiment. In principle, one could postselect exper-

iments for a given particle number, and test entangle-

ment only in the selected experiments. However, this

leads to discarding most experiments, increasing the

number of repetitions needed tremendously. Hence,

we modify our condition to handle non-zero particle

number variances [34]. In this case, the state of the

system can be written as ̺ =
∑

ja,jb
Qja,jb̺ja,jb ,

where ̺ja,jb are states with 2ja and 2jb particles in

the two clouds, Qja,jb ≥ 0,
∑

ja,jb
Qja,jb = 1. The

state ̺ is separable if and only if all ̺N are sepa-

rable. Then, expectation values for ̺ are computed

as 〈Af(ĵa, ĵb)〉̺ =
∑

ja,jb
Qja,jb〈A〉̺ja,jb

f(ja, jb),
where the operator is separated into one part that de-

pends only on the particle number operators of the two

clouds represented by ĵa and ĵb, and another part that

does not depend on them. f(x) denotes some function.

The proof from equation (3) to equation (7) can then be

repeated, assuming that ja and jb are operators. Hence,

we arrive at the criterion that can be used for the case

of varying particle numbers given in equation (1).

Note that we choose the normalization of the vari-

ances such that the criterion is robust against fluctua-

tions of the total number of particles. For a constant

particle number one could simplify the fractions on the

LHS of equation (1) by multiplying both the denomina-

tor and the numerator by ja, and for the other fractions

by jb.
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Preparing and certifying bound entan-

gled states in the laboratory is an intrinsi-

cally hard task, due to both the fact that

they typically form narrow regions in state

space, and that a certificate requires a to-

mographic reconstruction of the density

matrix. Indeed, the previous experiments

that have reported the preparation of a

bound entangled state relied on such tomo-

graphic reconstruction techniques. How-

ever, the reliability of these results cru-

cially depends on the extra assumption of

an unbiased reconstruction. We propose

an alternative method for certifying the

bound entangled character of a quantum

state that leads to a rigorous claim within

a desired statistical significance, while by-

passing a full reconstruction of the state.

The method is comprised by a search for

bound entangled states that are robust for

experimental verification, and a hypothe-

sis test tailored for the detection of bound

entanglement that is naturally equipped

with a measure of statistical significance.

We apply our method to families of states

of 3×3 and 4×4 systems, and find that the

experimental certification of bound entan-

gled states is well within reach.

Gael Sent́ıs: gael.sentis@uni-siegen.de

Jiangwei Shang: jiangwei.shang@bit.edu.cn

Jens Siewert: jens.siewert@ehu.eus

Matthias Kleinmann: matthias.kleinmann@uni-siegen.de

1 Introduction

To experimentally prepare, characterize and con-
trol entangled quantum states is an essential item
in the development of quantum-enhanced tech-
nologies, but it also serves the indispensable pur-
pose of testing the predictions of entanglement
theory in the laboratory. Among the most in-
triguing features of this theory stands the exis-
tence of bound entanglement [1], a form of en-
tanglement that cannot be distilled into singlet
states by any protocol that uses only local oper-
ations and classical communication. Originally
considered as useless for quantum information
processing, bound entangled states were later
established as a valid resource in the contexts
of quantum key distribution [2], entanglement
activation [3, 4], metrology [5, 6], steering [7],
and nonlocality [8], and their nondistillability has
been linked to irreversibility in thermodynam-
ics [9, 10].

Complementing these theoretical achieve-
ments, substantial efforts have been devoted to
experimentally producing and verifying bound
entanglement. The first experimental report
on the preparation of a bound entangled state
was presented in [11], although the result was
disputed [12] and subsequently amended [13].
The state prepared was the four-qubit Smolin
state [14], thus it showcases a multipartite in-
stance of bound entanglement, which is fun-
damentally distinct from the bipartite case:
when multiple parties are present, entanglement
can still potentially be distilled if two of the
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parties work together. Further experimental
works on multipartite bound entanglement in-
clude Refs. [15–20]. Examples of experimental
bipartite setups are more scarce. In Ref. [21] bi-
partite bound entanglement was produced using
four-mode continuous-variable Gaussian states,
and Ref. [22] focuses on a family of two-qutrit
states.

Since the property of nondistillability is exper-
imentally inaccessible in a direct manner, a nat-
ural route to verify a state as bound entangled
is to do a full tomographic reconstruction of the
density matrix from the experimental data [23]
and apply the only known computable criterion
on it [1]: if an entangled state has positive par-
tial transpose (PPT), then it is nondistillable
and therefore bound entangled1. However, it has
recently been pointed out that widely used re-
construction methods like maximum likelihood
and least squares [24, 25] inevitably suffer from
bias [26, 27], caused by imposing a positivity con-
straint over compatible density matrices. In some
cases, the bias can be large enough to drastically
change the entanglement properties of the esti-
mator with respect to the true state. In addition
to this state of affairs, the variance of the estima-
tor is usually calculated by bootstrapping [28],
which only accounts for statistical fluctuations,
and can result in a smaller variance than the ac-
tual bias of the estimator [27]. In contrast, a di-
rect reconstruction of the state by linear inversion
produces an unbiased estimator, but at the cost
of admitting unphysical density matrices. Then,
the PPT criterion simply looses all meaning.

All the experimental works cited above sup-
port their claims on some combination of max-
imum likelihood or least squares reconstruction
and bootstrapping. There exist more informative
methods to derive errors from tomographic data,
such as credibility [29] and confidence [30, 31] re-
gions, and also the alternative of using linear in-
version in addition to a sufficiently large number
of measurements that guarantees physical esti-
mates [32]. Should these methods be applied to
the detection of a bound entangled state, more
robust results may be generated, although they
might come at the expense of being computation-
ally expensive or even intractable [33]. However,

1It is still an open question whether the PPT criterion

completely characterizes bound entanglement, namely

whether all nondistillable states are PPT.

regardless of the reconstruction method of choice,
the problem of experimentally testing bound en-
tanglement is intrinsically challenging. This is
so because bound entangled regions of the state
space are typically very small in volume [34]. Fur-
thermore, at least for the known cases in low-
dimensional systems, bound entangled states are
close to both the sets of separable states and
distillable entangled states. This translates into
the requirement of a highly precise experimental
setup, and the deepening of the potential pitfalls
of biased tomographic reconstructions.

In this paper, we set ourselves to improve on
the above situation by devising methods that en-
able robust experimental certification of bound
entanglement. Instead of advocating for a par-
ticular tomographic method for detecting bound
entanglement or considering the preparation of a
specific state, we address the more generic ques-
tion: Which are the best candidate states for
an experimental verification of bound entangle-
ment? In other words, for bipartite systems, we
aim at finding states that have the largest ball
of bound entangled states around them [35]. To
this end, we construct simple lower bounds that
the radius r of such a ball (in Hilbert–Schmidt
distance) has to obey for a given state, and for-
mulate an optimization problem that maximizes
r over parametrized families of states. Having a
value for the maximum radius, r∗, allows us to as-
sert the robustness of the target state at the cen-
ter of the ball, and in turn gives us an idea of the
required number of preparations of the state in a
potential experiment. We proceed by designing
a χ2 hypothesis test directly applicable over un-
processed tomographic data that provides a cer-
tificate for bound entanglement within some sta-
tistical significance. We show that our proposed
method, combining the search of a robust can-
didate state with a statistical analysis through a
hypothesis test, makes rigorous bound entangle-
ment verification not only experimentally feasible
with current technology, but also computation-
ally cheap.

The paper is structured as follows. First we
derive the constraints for the existence of a ball
of bound entangled states of radius r around a
generic bipartite state of dimension d. Then, we
apply our method to two families of states of di-
mensions 3×3 and 4×4, known to contain bound
entanglement, and find robust candidates for its

Accepted in Quantum 2018-12-13, click title to verify 2

266



experimental verification. We proceed to devise a
hypothesis test for bound entanglement, and test
the robustness of the selected candidate states
in terms of the necessary number of samples to
achieve a statistically significant certification un-
der realistic experimental conditions.

2 A bound entangled ball

Verifying the bound entangled character of a bi-
partite state ρ requires, on the one hand, show-
ing that it is entangled, and on the other hand
proving that the entanglement of ρ is nondis-
tillable. Non-distillability is usually verified via
the (sufficient) PPT condition, which we denote
by Γ(ρ) ≥ 0. Throughout this paper, we iden-
tify bound entangled states with PPT entangled
states. As for verifying that ρ is entangled, there
exist several inequivalent criteria. We choose the
violation of the computable cross norm or realign-
ment criterion (CCNR) [36], since it is simple
and is generally tight enough to detect bound en-
tanglement. The CCNR criterion dictates that,
for some local orthonormal basis [with respect
to the Hilbert–Schmidt inner product (A, B) =
tr(A†B)] of the Hermitian matrices {gk}, ρ is en-
tangled if the matrix R(ρ)k,l = tr(ρ gk ⊗gl) obeys

‖R(ρ)‖
1

> 1, where ‖Y ‖
1

= tr
√

Y †Y is the trace
norm of Y . The points in the state space that vio-
late CCNR, fulfill PPT, and correspond to physi-
cal states (that is, satisfy the positivity condition
ρ ≥ 0), thus define a volume of bound entangled
density matrices.

Given a bound entangled state ρ that obeys
these conditions, we inquire how far we can move
away from it while remaining in the bound en-
tangled region. We construct a new state τ =
ρ + rX, where r ≥ 0, and X is a traceless Hermi-
tian matrix with bounded Hilbert–Schmidt norm
‖X‖

2
=

√

tr X†X ≤ 1. The set of all such matri-
ces forms a Hilbert–Schmidt ball that we denote
by B

′. We then define the set of all states τ as
B(ρ, r) := ρ + rB

′. Note that ‖ρ − τ‖
2

≤ r. We
can bound the minimum eigenvalue of τ as

λmin(τ) ≥ λmin(ρ) − r‖X‖
∞

≥ λmin(ρ) − r

√

(d − 1)/d ,
(1)

where ‖X‖
∞

= λmax(X) is the uniform norm
of X. The first inequality holds since, in the
extreme case, the eigenvector associated to the

minimal eigenvalue of X is aligned with the cor-
responding one for ρ. For the second inequality
we have used that

max { ‖X‖
∞

| X ∈ B
′
} =

√

(d − 1)/d (2)

(we provide a proof of this equation in Ap-
pendix A).

Similarly, since the partial transpose Γ(τ) does
not change the Hilbert–Schmidt ball, Γ(B) = B,
we have

λmin[Γ(τ)] ≥ λmin[Γ(ρ)] − r

√

(d − 1)/d . (3)

We can bound the value of the CCNR criterion
over τ in a similar fashion. We have

‖R(τ)‖
1

≥ ‖R(ρ)‖
1

− r‖R(X)‖
1

≥ ‖R(ρ)‖
1

− r
√

d ,
(4)

where we first applied the triangle inequality, and
for the last inequality we used that

max { ‖R(X)‖
1

| X ∈ B
′
} =

√

d (5)

(we refer to Appendix A for a proof).
Our goal is to find a state ρ such that, if we de-

part from it by a distance r in any direction, the
resulting τ still fulfils PPT and violates CCNR,
that is, λmin[Γ(τ)] ≥ 0 and ‖R(τ)‖

1
> 1. Then,

using Eqs. (3) and (4), we search for a state ρ

which admits the largest r under the constraints

λmin[Γ(ρ)] ≥ r

√

(d − 1)/d , (6a)

‖R(ρ)‖
1

> 1 + r
√

d . (6b)

For any admissible r, all states in B are bound
entangled. Note that, while the optimization is
naturally performed over physical target states ρ,
the resulting ball B can well be partly outside of
the state space, cf. Fig. 1, as the positivity of all
states inside B is not imposed as a constraint.

3 Symmetric families

The method described in the previous section is
completely general, but for the optimization to
actually become feasible one has to restrict the
free parameters in ρ. We consider two symmetric
families of bipartite states which are character-
ized by few parameters, and nevertheless contain
fairly large regions of bound entanglement.
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tical analysis of the experimental data that cru-
cially hinges on knowing the radius of the bound
entangled ball around the target state. The idea
is to judge whether the data was obtained from a
bound entangled state by considering the mem-
bership of the preparation to the bound entan-
gled ball. In order to endow the certification with
a measure of statistical significance, we design a
hypothesis test for this membership problem.
Our null hypothesis, H0, is that the prepared

state is outside the bound entangled ball B(ρ0, r0)
of radius r0 centered at the target state ρ0. We
make the assumption that an instance of experi-
mental data, ~x, is drawn from a multivariate nor-
mal distribution N(~ξ, Σ) with offset ~ξ and covari-
ance matrix Σ. This is a good approximation for
realistic scenarios. Here the vector notation is
used over variables that belong to the same space
as the experimental data, that is, e.g., the space
of frequencies of measurement outcomes. When
H0 holds true, then the offset ~ξ is the expected
value of the data when a state ρexp is prepared
such that ‖ρ0 − ρexp‖

2
≥ r0. The covariance ma-

trix Σ is determined by the particular experimen-
tal procedure used.
The goal is to design an appropriate hypothe-

sis test for H1 of the form t̂(~x) ≤ t, where t is a
threshold parameter, and the function t̂ is called
a test statistic. If the hypothesis test is true, the
data ~x is accepted as fulfilling the hypothesis H1,
that is, the state is bound entangled. The quan-
tity through which we assess the significance of
the hypothesis test is the worst-case probability
of the test accepting H1 while H0 is true. This is
formally written as

p(t, r0) = sup
ρ

{

P[t̂ ≤ t] | ‖ρ0 − ρ‖2 ≥ r0

}

, (11)

where P[t̂ ≤ t] is the probability for the hypoth-
esis test to accept data sampled from N(~ξ, Σ), ~ξ

depends to ρ, and ‖ρ0 − ρ‖2 ≥ r0 is the assertion
that H0 holds true. For given data ~x, the proba-
bility p[t̂(~x), r0] is the p-value of this hypothesis
test.
Now, let us define

t̂ : ~x 7→ ‖Σ−1/2[T (ρ0) − ~x]‖2 , (12)

where T is a map that takes a density matrix to
the expected data (e.g., to a vector of probabil-
ities), thus it is determined by the experimental
procedure. Hence, t̂(~x) gives some notion of dis-
tance between the standardized versions of the

experimental data and the expected data of a
perfect measurement performed over the target
state. In Appendix C we show that, if t̂ is of the
form in Eq. (12), the probability (11) is naturally
upper-bounded by

p(t, r0) ≤ qm(t2, r2
1) , (13)

where s 7→ qm(s, u) is the cumulative distribution
function of the noncentral χ2-distribution with m

degrees of freedom and noncentrality parameter
u, and r1 is the equivalent distance in the exper-
imental data space of the Hilbert–Schmidt dis-
tance r0, or, more precisely, r1 := inf∆6∈B

t̂[T (∆)],
where ∆ is any Hermitian matrix with unit trace.
Naturally, the value of r1 scales with r0 and
strongly depends on the experimental procedure,
that is, on T and Σ.

In the following, we show how to evaluate
the hypothesis test for the two-qutrit state from
Eq. (8) as an example of a target state ρ0, and as-
sess the necessary experimental requirements for
a desired level of significance. For this, we need to
make some assumptions about the experimental
procedure. We associate the measurement out-
comes in the experiment to semidefinite-positive
Hermitian operators Ek. We consider a com-
plete set of such operators, that is, the real linear
span of {Ek} is the set of all Hermitian opera-
tors. The probability of obtaining the outcome
corresponding to Ek when measuring the state ρ

is given by pk = tr(Ekρ), and we assume that
T (ρ)k ≡ pk. The connection between the prob-
abilities pk and the data gathered in the exper-
iment crucially depends on how the experiment
is performed. A straightforward theoretical as-
sociation can be established if one assumes that
measurement outcomes correspond to indepen-
dent Poissonian trials with parameters nT (ρ)k,
renormalized by n, where n is the mean total
number of events per measurement setting. That
is, if we obtain nk events for the outcome k, we
use as data xk = nk/n. Note, however, that in
a realistic experiment T (ρ) and n are not known
exactly. A reasonable alternative is to use the
total number of observed events

∑

k nk as an es-
timate of n, but then the connection between pk

and xk is more involved. For our examples below
we use this latter approach (a detailed discussion
is presented in Appendix C).

In order to get specific predictions, we assume
that mutually unbiased bases are used as local
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Figure 4: The density matrix of the optimal two-ququart state with parameters given in Eq. (32) in the computational

basis. The heights of the bars correspond to the entries of the density matrix. Note that these are all real-valued.

matrix of signs such that 1

4
Mx +

1

16
is a vector of eigenvalues of ρ, and recall that x1 = 1/4 is fixed

by normalization. Under these considerations it becomes apparent that the constraints in Eq. (31)

correspond to semidefinite-positiveness, PPT, and CCNR, respectively.

In order to solve Eq. (31), we linearize the CCNR constraint by removing the absolute values and
considering all the 2

15 possible sign combinations in the sum. Moreover, we incorporate the constraint
r ≥ 0 and regard r as an extra free parameter, instead of as an objective function. Then, each sign
combination chosen in the CCNR constraint results in a linear constraint that, along with positivity,
PPT, and r ≥ 0, will define a polytope of feasible parameters and, since all constraints are linear in
r, its maximal value will occur for one of the vertices. Of course, each single linear program of this
kind is in principle more restrictive than Eq. (31), but it is granted that the solution we are looking
for will correspond to a vertex of the feasibility polytope of one of them. We enumerate the vertices
of all the 2

15 polytopes using the polyhedral computation library cddlib
2. We then take the union

of all vertices, eliminate redundant and nonextremal ones, and end up with a set of 4224 vertices
with a maximal radius r∗

≈ 0.0214, which coincides with the value analytically obtained above. The
advantage of this method is that we obtain a much larger set of optimal states with varying rank.
Having optimal states with smaller rank can significantly simplify their experimental preparation.
In contrast, note that any state for which the assumption made in the analytical calculation above,
|xk| = s for all k = 2, . . . , 16, holds, is full-rank. The minimal rank for states of the form (26) achieving
a maximal radius r∗ is 10. An example of such a rank-10 optimal state is given by parameters

x1 =
1

4
,

xα ≈ −0.0557066 , α ∈ {2, 3, 4, 5, 6, 9, 12, 14, 16} ,

xβ ≈ 0.0142664 , β ∈ {7, 11, 13} ,

xγ ≈ 0.0971467 , γ ∈ {8, 10, 15} .

(32)

In Fig. 4 we depict the resulting density matrix as a bar plot.

The vertex enumeration of all feasibility polytopes contained in Eq. (31) allows us to go beyond
the set of optimal states and characterize states with even smaller ranks, naturally at the expense of
sacrificing some volume of bound entangled states around them. With this in mind, we see that the
absolute minimal rank for a Bloch-diagonal two-ququart bound entangled state is 9, with associated

2cddlib version 0.94h, https://www.inf.ethz.ch/personal/fukudak/cdd_home/
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