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Zusammenfassung

Elektrodialyse ist ein effizientes Verfahren zur Meerwasserentsalzung, in
dem verschiedene Phänomene zusammenwirken. Ionen werden dabei durch
Strömung, Diffusion und eine elektrische Kraft transportiert und mittels
selektiven Membranen getrennt. Für die Optimierung dieses Prozesses
ist ein Verständnis der Interaktion dieser Effekte wichtig. Diese Arbeit
präsentiert rigorose mathematische Modelle des Gesamtprozesses und erar-
beitet eine numerische Strategie zur Simulation Durch diesen Ansatz wird
es möglich die auftretenden Effekte mit ihren komplexen Interaktionen
detailliert zu simulieren. Dazu werden die Maxwell-Stefan Gleichungen für
Gemische verwendet, die auch die elektrische Kraft und Mehrkomponenten-
wechselwirkungen mit konzentrationsabhängigen Diffusions- und thermo-
dynamischen Faktoren berücksichtigt. Darüber hinaus wird hier ebenfalls
nicht die übliche Annahme der lokalen Elektroneutralität getroffen, um
die Effekte in der elektrochemischen Doppelschicht an den Membranen zu
ermöglichen. Für die numerische Behandlung dieser Gleichungen wird ein
Lattice-Boltzmann (LBM) Verfahren im Löser Musubi implementiert. Das
Modell der Kanaldurchströmung wird mit einem elektrischen Feld und
einem Modell für die Membranen gekoppelt. Für das elektrische Feld wird
in Musubi eine LBM zur Lösung der Poisson Gleichung implementiert.

Die Kanäle zwischen den Membranen werden durch Abstandshalter mit
komplexer Geometrie realisiert. Um eine passende Diskretisierung des
Gitters für diese Kanäle zu gewährleisten wird ein Gittergenerator (Seeder)
auf der Basis von Octrees entwickelt. Ein wesentlicher Teil dieser Arbeit ist
der Entwicklung des parallel skalierbaren Kopplungswerkzeugs APESmate
gewidmet. APESmate wird im Rahmen der APES-Suite neben Seeder
und Musubi entwickelt und erlaubt die Interaktion verschiedener Löser
auf Basis einer gemeinsamen zentralen Octree-Datenstruktur, die eine ef-
fiziente Handhabung der I/O auf großen verteilt parallelen Rechensystemen
ermöglicht.

Die entwickelte Software wird verwendet um das nichtideale Mehrkompo-
nentenmodell fïr verschiedene Konzentrationen und Oberflächenpotentiale
zu vergleichen. Die Ergebnisse belegen, dass nichtideale Effekte, ins-
besondere in der elektrochemischen Doppelschicht, mit der Konzentration
zunehmen. Die Abstandshalter werden mit mehreren hydrodynamischen
Winkeln und Einströmgeschwindigkeiten nahe und fern einer Ecke unter-
sucht um die Auslegung mit minimalen Druckabfall und ohne Totwasserge-
biete zu bestimmen. Diese hochaufgelösten Simulationen zeigen, dass der
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Druckabfall mit dem hydrodynamischen Winkel zunimmt, während die
Größe der Zonen mit geringer Durchströmung abnehmen.
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Abstract

Electrodialysis is an efficient process for seawater desalination that involves
various interacting phenomena. In this process, ions are transported by
flow, diffusion and an electric force and separated by selective membranes.
For the optimization of this process, it is important to understand these
interactions. This work presents rigorous mathematical models to describe
the overall process and develops a numerical strategy for its simulation.
With this approach it becomes possible to simulate the involved physical
effects and their interactions in detail. To achieve this, the Maxwell-Stefan
equations for mixtures are used. They take into account the electrical
force and the multicomponent interactions with concentration dependent
diffusivity coefficients and thermodynamic factors. Additionally, the usual
assumption of local electroneutrality is not assumed to allow the nonideal
effects in the electrical double layer near the membrane. For the numerical
solution of these equations, the multicomponent lattice Boltzmann method
(LBM) is developed and implemented in the solver Musubi. This model
for the channel flow is coupled with an electric field and a model for the
membranes. To obtain the electric field, the LBM that solves the Poisson’s
equation is implemented in Musubi.

The channels between the membranes are realized by spacers with
complex geometry. A mesh generator (Seeder) on the basis of octrees is
developed to ensure the appropriate discretization of the mesh for these
channels. An essential part of this work is dedicated to the development
of the parallel scaling coupling tool APESmate. APESmate is developed
within the APES suite along with Seeder and Musubi on a central octree
data structure that allows efficient handing of I/O on large scale distributed
parallel computing systems.

The developed software is used to compare the nonideal multicomponent
model for various concentrations and surface potentials. The results show
that nonideal effects increase with the concentration, especially in the
electrical double layer. The spacers for various hydrodynamic angles and
inflow velocities near and away from a sealed corner are investigated to
find the design with reduced pressure drop and without low velocity zones.
The highly resolved simulations show that the pressure drop increases
with the hydrodynamic angle, while the extend of the low flow regions
decreases.

ix





Contents

Zusammenfassung vii

Abstract ix

Nomenclature xv

Notation xxi

Notation xxii

1 Introduction 1
1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . 11

2 Mathematical models 13
2.1 Concentration measures, velocities and diffusive fluxes . . . 14
2.2 Multicomponent transport equations . . . . . . . . . . . . . 16

2.2.1 Maxwell-Stefan equations . . . . . . . . . . . . . . . 18
2.2.2 Nernst-Planck equations . . . . . . . . . . . . . . . . 22
2.2.3 Electrical current and Ion transport number . . . . . 24

2.3 Mixture flow - Incompressible Navier-Stokes equations . . . 26
2.4 Electrodynamics - Maxwell’s equations . . . . . . . . . . . . 27
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Numerical approaches 31
3.1 Lattice Boltzmann method for fluid flows . . . . . . . . . . 32

3.1.1 Initial conditions . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . 38

3.2 Multicomponent lattice Boltzmann method . . . . . . . . . 41
3.2.1 Nonideal liquid mixtures . . . . . . . . . . . . . . . . 45
3.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . 51

3.3 Membrane black-box model . . . . . . . . . . . . . . . . . . 53
3.3.1 Assumptions and modeling equations . . . . . . . . . 54

xi



Contents

3.4 Lattice Boltzmann method for the electric potential . . . . 57
3.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . 58

3.5 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Coupling of Multi-Physics Equations 65
4.1 General set-up for a model of an ED process and its modules 66
4.2 Coupling of multicomponent LBM and membrane model . . 66

4.2.1 Membrane-electrolyte interface . . . . . . . . . . . . 67
4.3 Coupling of multicomponent LBM and LBM for electric

potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Simulation framework 75
5.1 Apes overview . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Octree data structure . . . . . . . . . . . . . . . . . . . . . 76
5.3 Seeder - Mesh generator . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Mesh generation with spacer geometry . . . . . . . . 91
5.4 Musubi - lattice Boltzmann solver . . . . . . . . . . . . . . 97

5.4.1 Domain decomposition . . . . . . . . . . . . . . . . . 98
5.4.2 Topology unaware solver data structure . . . . . . . 98
5.4.3 Stream-collide algorithm . . . . . . . . . . . . . . . . 100
5.4.4 Main program . . . . . . . . . . . . . . . . . . . . . 103
5.4.5 Performance . . . . . . . . . . . . . . . . . . . . . . 106

5.5 APESmate - Integrated coupling tool . . . . . . . . . . . . . 113
5.5.1 Variable system . . . . . . . . . . . . . . . . . . . . . 116
5.5.2 Space-time function . . . . . . . . . . . . . . . . . . 122
5.5.3 Coupling algorithm . . . . . . . . . . . . . . . . . . . 127

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Numerical validation and verification 145
6.1 Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 Stefan tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3 Concentric cylinders . . . . . . . . . . . . . . . . . . . . . . 153
6.4 Taylor dispersion . . . . . . . . . . . . . . . . . . . . . . . . 154
6.5 Electrical double layer . . . . . . . . . . . . . . . . . . . . . 161
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Results 175
7.1 Flow simulations with spacers . . . . . . . . . . . . . . . . . 175

7.1.1 Spacer geometry . . . . . . . . . . . . . . . . . . . . 176

xii



Contents

7.1.2 Pure hydrodynamic flow . . . . . . . . . . . . . . . . 181
7.1.3 Multicomponent flows . . . . . . . . . . . . . . . . . 208

7.2 Repeating unit in ED stack . . . . . . . . . . . . . . . . . . 212

8 Summary and Future work 217
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A Appendix 225
A.1 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . 225

A.1.1 Lattice Boltzmann Method for Fluid Flow . . . . . . 225
A.1.2 Multicomponent Lattice Boltzmann Method for Non-

ideal Liquid Mixtures . . . . . . . . . . . . . . . . . 236
A.1.3 Lattice Boltzmann Method for Electric Potential . . 253
A.1.4 Time Discretization . . . . . . . . . . . . . . . . . . 256

A.2 Multiple Relaxation Time . . . . . . . . . . . . . . . . . . . 258
A.2.1 D3Q19 model . . . . . . . . . . . . . . . . . . . . . . 258

A.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 260

Bibliography 265

List of Figures 277

List of Tables 285

List of Algorithms 286

List of Algorithms 287

xiii





Nomenclature
Symbols

g Gravitational acceleration
[m s−2]

xb Position of virtual boundary
node

K Bulk modulus of the liquid
mixture

zk Charge number of species k [-]

Lc Characteristics length of the
flow [m]

c∞ Bulk concentration of solvent
[mol m−3]

κmem Specific conductance
of membrane[S m−1 or
C2 s kg−1 m−3]

dk Mass diffusive driving force of
species k [m−1]

df Diameter of the spacer fila-
ment [m]

id Current density [C m−2 s−1]

īd,mem Current density transported
through membranes along nor-
mal direction [C m−2 s−1]

D Electric displacement field
[ As

m2 ]

E Electric field [V m−1]

Ê Constant electric field [V m−1]

F k External diffusive driving force
on species k [m−1]

F̂ k External body force per mole
on species k [m s−2]

F External force [m s−2]

U Flow velocity [m s−1]

xf Position of fluid node next to
the boundary

R Universal gas constant
8.3144621 [J mol−1 K−1]
[kg m2 s−2 mol−1 K−1]

H Height of the channel [m]

hch Height of the spacer channel
[m]

I Identity matrix

M−1 Inverse of transformation ma-
trix

ni Number of ionic species

P̃ Kinematic pressure [m2 s−2]

L2 L2-norm

cs Lattice speed of sound

um Lattice velocity vector along
the direction m

c Lattice speed (δx/δt)

L Length of the channel [m]

W Width of the channel [m]

lch Length of the spacer channel
[m]

A Linear collision operator

lm Orthogonal distance between
two consecutive parallel fila-
ments [m]

H Magnetization [ A
m ]

B Magnetic field [ V s
m2 ]

jk Mass diffusive flux density of
species k [kg m−2 s−1]

Nk Mole flux density of species k
[mol m−2 s−1]

nk Mass flux density of species k
[kg m−2 s−1]

yk Mass fraction of species k [-]

v Mass averaged mixture veloc-
ity [m s−1]

vm Maximum velocity at middle
of the channel [m s−1]

xv



Contents

M Molecular weight of the mix-
ture [kg mol−1]

Mk Molar mass or molecular
weight of species k [kg mol−1]

ck Mole density or concentration
of species k [mol m−3]

Jk Molar diffusive flux density of
species k [mol m−2 s−1]

w Molar averaged mixture veloc-
ity [m s−1]

p Momentum vector
[kg m−2 s−1]

m Moments space vector

nF/inch Number of spacer filaments
per inch

nH Number of elements in height

n Normal direction of the bound-
ary wall

n Number of components in the
mixture

D Spatial dimension

Q Number of discrete velocity di-
rections

pk Partial pressure of species k

f Particle distribution function

feq Equilibrium distribution func-
tion

Fm External body force along the
direction m

fneq Non-equilibrium distribution
function

fc Post-collision distribution
function

fpre Pre-collision distribution func-
tion

f Particle distribution function
vector

x Physical spatial position vec-
tor [m]

P Pressure [N m−2]

qm Normalized distance between
exact wall and fluid node along
the direction m

r Radial distance from the cylin-
der center [m]

Rmem Specific resistivance of mem-
brane [ m or kg m3 C−2 s−1]

feq,m
k

Equilibrium distribution func-
tion of species k along the di-
rection m

veq
k

Equilibrium velocity of species
k

dm
k External driving force on

species k along the direction
m

vk Mass velocity of species k
[m s−1]

Svsp Specific surface of the spacer

t Tangent direction of the
boundary wall

T Temperature [K]

t Physical time [s]

M Transformation matrix

j̄k Transformed momentum of
species k

Tk Transport number of species k

Tw Transport number of water

f̄m Local transformation of parti-
cle distribution function along
the direction m

v̄in Mean inflow velocity [m s−1]

Ṽk Molar volume of species k
[m3 mol−1]

sk
m Density weight factor of

species k along the direction
m

wch Width of the spacer channel
[m]

xw Exact position of boundary
wall

Greek Symbols
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Contents

γk Mole fractions based activity
coefficients of species k

α Hydrodynamic angle or angle
between spacer filaments in dif-
ferent layer

β Angle between spacer filament
and flow direction

ζ Bulk viscosity [m2 s−1]

ρe Charge density [C m−3]

µk Molar chemical potential of
species k [J mol]

Ω Collision operator

Ωk,l Cross-Collision operator be-
tween species k and l

λD Debye length [m]

ρ Total mixture/fluid density
[kg m−3]

ρ0 Constant fluid density
[kg m−3]

σ′ Deviatoric stress [N m−2]

µ Dynamic viscosity of mixture
[kg m−1 s−1]

ε Electric permittivity [ As
V m ]

ε0 Electric permittivity of vac-
cum 8.85 × 10−12[ As

V m ]

εr Relative electric permittivity

ψ Scalar electric potential [V]

ε Smallness parameter

∇T,P Derivative at constant temper-
ature and pressure

λhom Relaxation frequency for
higher order moments

ν Kinematic viscosity of mixture
[m2 s−1]

δα,β Kronecker delta, δα.α = 1

µ̃ Magnetic permeability [ V s
Am ]

χk Mole fraction of species k [-]

Π Momentum flux tensor
[N m−2]

Π0 Equilibrium momentum flux
tensor [N m−2]

Π(1) non-Equilibrium momentum
flux tensor [N m−2]

∂ Partial derivative

Ψ Permselectivity of ion ex-
change membrane

φk Parameter related to species
molecular weight

γ Potential diffusivity [m2 s−1]

λγ Relaxation parameter for po-
tential LBE

Λ Relaxation matrix

λ Relaxation frequency

λν Relaxation frequency relate to
kinematic viscosity

λζ Relaxation frequency relate to
bulk viscosity

τ Relaxation time

Ωk,k Self-Collision operator of
species k

ρk Density of species k [kg m−3]

λζ
k

Relaxation frequency of
species k related to bulk vis-
cosity ζ

λD
k,l Relaxation frequency of

species k related to Maxwell-
Stefan diffusivity coefficient
Dk,l

λν
k Relaxation frequency of

species k related to kinematic
viscosity ν

Λk Relaxation matrix for species
k

δx Physical element size [m]

δx∗ Lattice element size

Γ Thermodynamic factor

δt Physical time step [s]

δt∗ Lattice time step
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ε Voidage

ωm Lattice weight along the direc-
tion m

Sub-/Superscripts

conv Convection of species due to
fluid velocity

diff diffusion of species due to its
concentration gradient

m Lattice direction

m̄ Inverse lattice direction

c Post-collision

eq Equilibrium

neq non-Equilibrium

pre Pre-collision

l,r left and right

mem membrane

mig migration of species due to an
external force

e Electrolyte solution

Subscripts

sp Atmospheric

c and a Cation and anion

ch Channel

Dom Donnan

fix Charges fixed to the membrane
polymer

in Inlet

k, l, j Species counters

o Outlet

x, y, z Spatial dimension

sp Spacer

t Total

w Water

Other Symbols

Dk,l Maxwell-Stefan diffusion co-
efficients of species k and l
[m2 s−1]

F Faraday constant 96485.3329
[C mol−1]

D Free parameter

L Refinement level

Bk,l Maxwell-Stefan resistivity co-
efficients of species k and
l[s m−2]

Sm Source term of potential LBE
along the direction m

tID TreeID of a node

Acronyms

AEM Anion exchange membrane

AoS Array of Structures

APES Adaptable Poly-Engineering
Simulator

BC Boundary condition

BCID Unique identification number
for Boundary label

BGK Bhatnagar-Gross-Krook

CEM Cation exchange membrane

DG Discontinuous Galerkin

ED Electrodialysis

EDL Electrical Double Layer

EDL Electrical double layer

EDR Electrodialysis-reversal

EWI Singapore Environment and
Water Industry Development
Council

FVDM Finite Discrete Velocity Model

IC Initial condition

IEM Ion exchange membrane

IS Ionic strength of the elec-
trolyte solution

Kn Knudsen number

LBE Lattice Boltzmann Equation

LBM Lattice Boltzmann Method
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LBM Lattice Boltzmann Method

LGA Lattice Gas Automata

Ma Mach number

MC Multicompontent

MPI Message Passing Interface

MRT Multiple Relaxation Time

MS Maxwell-Stefan’s equation

nBnds Number of fluid elements with
boundary neighbor

nFluids Number of fluid elements

NP Nernst-Planck’s equation

LW Osmotic water transport coef-
ficient

PDF Particle Distribution Function

Re Reynolds number

RO Reverse Osmosis

SC Single Compontent

Sc Schmidt number

SFC Space Filling Curve

SoA Structure of Arrays

SRT Single Relaxation Time

STfun Space-time function

varSys Variable System
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Notation

Let us begin with the introduction of some basic notations of variables and
operators, which are used in this thesis to support the technical discussion.
In Rd, subscripts are used to specify different spatial directions. E.g. a
point x in Rd is given by the d-tuple

x = (x1, . . . , xd)T .

Here, a point x is written in bold notation to represent the d-tuple. Also,
vectors, vector-valued functions, matrices and tensors are written in bold
notation. E.g. a matrix c in Rd is given by

c =

(
c11 c12 c13
c21 c22 c23
c31 c32 c33

)
.

The dyadic product ⊗ of two vectors a and b results in a matrix and it is
defined as

a ⊗ b = a · bT =

a1b1 · · · a1bd
...

...
adb1 · · · adbd

 .

The double inner product : of two tensors c and d results in a scalar and
it is defined as

c : d =
∑
i

∑
j

cijdij .

The partial derivatives are denoted by subscripts. E.g. a partial deriva-
tive of a function f with respect to xi is written as

∂xif = ∂f

∂xi
.

The nabla operator is used to collect all partial derivatives in Rd and it is
written as

∇ = (∂x1 , . . . , ∂xd )T .

xxi



Notation

The gradient of a scalar function f is denoted by

grad(f) = ∇f = (∂x1f, . . . , ∂xdf)T .

Finally, the divergence and curl of a vector-valued function are given by

div(f) = ∇ · f =
d∑
i=1

∂xifi

and

curl(f) = ∇× f =

(
∂x2f3 − ∂x3f2
∂x3f1 − ∂x1f3
∂x1f2 − ∂x2f1

)
respectively.
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1 Introduction

In recent years, the scarcity of clean drinking water has become a growing
problem in most parts of the world due to continuous global warming and
increasing world population. Drink water scarcity is either due to limited
availability of natural water resources referred to as physical water scarcity
or due to lack of infrastructure referred to as economic water scarcity
(Figure 1.1). In contrast, 2/3 of our world is covered by water. Figure
1.2 shows the breakdown of total world water and also the breakdown
of available fresh water. Thus, seawater desalination is the best way
to solve the water problem in the world. Among several desalination
techniques, the electrodialysis process has proven to be a cost and energy
efficient technology. Even though this process is used in practice, the
underlying physical phenomenon like transport of ions from the channel
to the membranes and the impact of the complex geometry between the
membranes on the ions transport and pressure drop across the channel are
not well understood. With the help of supercomputers, it is now possible
to numerically simulate those phenomena to gain a deeper understanding
of this process. In this thesis, the scalable coupled simulation algorithm
and the framework developed to investigate this process are presented.

Figure 1.1 World water scarcity
Figure 1.2 Breakdown of total world

water

1.1 State of the Art

There are several desalination techniques to remove salt from seawater
such as thermal distillation and membrane based technologies. Thermal

1



1 Introduction

distillation methods consume large amount of heat energy to evaporate
concentrate water in multiple stages to obtain drink water and due to the
high energy consumption, heat processes incur high costs. An alternative
technique is the use of membranes and electric fields to separate the
salt from seawater. The most commonly used membrane techniques are
Reverse Osmosis (RO) and Electrodialysis (ED). Figure 1.3 shows the
steps generally involved in a desalination process. The energy is required
mostly at the desalination stage. The energy requirement for different
industrial desalination techniques is listed in [22]. It is known that the RO
process requires electrical energy of roughly 3 − 5.5 kW h m−3 to pump
concentrated water through the osmotic membranes, whereas the ED
process uses low pressure flows and selective ion exchange membranes
to remove salt ions and requires less energy than RO. In 2007, Siemens
won the challenge to produce drink water from seawater at an energy
consumption ≤ 1.5 kW h m−3from the Singapore Environment and Water
Industry Development Council (EWI). In 2008, Siemens Water Technology
commenced the project to produce 50 m3 d−1 with the demonstration plant
in Singapore [1]. They worked on the development of an ED prototype
using experimental studies. In Germany, SIEMENS Corporate Technology
in Erlangen joined a collaboration with German Research School (GRS)
and Aachener Verfahrenstechnik (AVT) at RWTH Aachen University to use
numerical simulation to understand the fundamental physical phenomena
in the ED process.

Figure 1.3 Steps involved in desalination process

The ED process has several advantages over RO:

2
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• high water recovery rate of up to 80%,

• less feed water pretreatment,

• less membrane fouling 1 or scaling2 due to process reversal,

• easily tunable for feed water concentration,

• easy start-up and shut-down of the process for intermittent operation.

Figure 1.4 illustrates the principle of the electrodialysis process. It consists
of selective ion exchange membranes (IEM) such as cation exchange mem-
brane (CEM) and anion exchange membrane (AEM), which are arranged
in alternative fashion between anode and cathode to form individual flow
channels. Membranes that are swollen with negative and positive charged
groups in their polymer structure are called as CEM and AEM respectively.
Thus, cation exchange membranes allow only positively charged cations to
pass through and retain negatively charged anions in the channel. Likewise,
anion exchange membranes allow only negatively charged anions to pass
through and retain positively charged cations. In other words, the same
charge groups or co-ions are excluded and the opposite charge groups
or counter-ions are passed through the membranes. When an electric
potential is applied between the electrodes, anions migrate towards anode
and cations migrate towards cathode. Due to alternating arrangement of
AEM and CEM, ions are depleted and accumulated in alternate channels
resulting in alternate dilute and concentrate channels respectively. At the
inlet, seawater is pumped between the membranes into the flow channels
and at the outlet, dilute channels are connected together to collect potable
water and concentrate channels to collect brine or concentrated water.
In an ED stack, the dilute and concentrate channels together with AEM
and CEM constitute a repeating unit. In practical application, the ED
stack contains several hundreds of this repeating unit. This principle of
ED is exploited in industrial processes as the desalination of brackish3

water [99], the concentration of organic or anorganic acids [8] and the
demineralization of food products [90].

In ED processes, the electrical resistance of the solution in the channel
affects the energy consumption. Therefore, it is necessary to keep the
height of the channel as small as possible. In industrial ED stack, the
distance between membranes is typically between 0.25 mm to 2 mm. To

1accumulation of ions on the surface of the membrane and the spacer
2mineral layer that forms on the membrane surface
3a mixture of salt water and fresh water

3



1 Introduction

Figure 1.4 Schematic layout shows the principle of the conventional electrodial-
ysis process

create the flow channel between the membranes, a complex geometry
structure called spacer is used as shown in Figure 1.5. The spacer acts as a
mechanical stabilizer and turbulence promoter. It is also used to control the
flow distribution in the channel. It has influence on the migration of ions
in the flow channel and membranes and also the pressure drop along the
channel. There are two types of spacer designs used in practice: woven and
nonwoven spacers, which are shown in Figure 1.6. The following spacer
design parameters like filament diameter, thickness, distance between
filaments, angle between filaments and hydrodynamic angle (see Chapter
7) can be used in any combination to create the optimal spacer. The
optimal spacer design should provide

• uniform flow distribution,

• improve the mixing of the solutions at the membrane surface,

• maximize effective membrane area,

• reduce low flow zones (areas with very low flow velocities) to avoid
scaling and fouling formation in the flow channel,

• maximize the limiting current density1 and

• minimize the pressure drop.
1When an electric current passes through an IEM, salt concentration on the

desalting surface of the membrane decreases because of concentration polarization
and reduces to zero at the limiting current density [93].

4
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In this work, the impact of the spacer design on the pressure drop across
the channel and on the ion distribution for various inflow mean velocities
is investigated.

Figure 1.5 Schematic drawing illustrates the construction of electrodialysis
stack [91]

Figure 1.6 Woven (left) and nonwoven (right) spacers

In the spacer-filled flow channels, the mass transport of ions occurs in
the form of convection, diffusion and migration. Convection is due to the
pressure drop across the channel along the main flow direction, migration
towards membrane is due to the applied electric potential and diffusion
happens near the membrane surface due to the concentration gradient. In
the flow channels, the current is carried by both cation and anion whereas in
IEMs, the current is carried mainly by counter-ions. The transport number
[89] expresses the fraction of electric current carried by a certain ion. It is
described in Section 2.2. For selective IEM, the transport number of an
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ion defines the selective ion transport through the membrane. In addition
to the transport number of an ion through membranes, the membrane
permselectivity is an important integral membrane parameter that defines
the degree at which counter-ions are passed through membranes and co-ions
are excluded. Furthermore, the electric membrane resistance also strongly
affects the process performance. The membrane resistance characterizes
the drop of the electric potential across the membrane. The resistance and
the selectivity are governed by the meso- and microscopic morphology of
the membrane material [83]. The most desired properties of an IEM are
high permselectivity, low electrical resistance, high chemical stability, as
well as good mechanical and form stability [92]. The transport properties
of the membrane can be numerically simulated by resolving the membrane
and solving the transport equation per species. However, in this work, the
membranes are not numerically resolved instead they are modeled as black-
boxes that are based on an empirical description of the current-voltage
characteristics of the membrane. In other words, the selective transport of
an ion through the membrane is computed empirically using the transport
number of an ion and the current density through the membrane. This
approach was chosen because the main focus of this thesis is to develop
a coupled simulation framework and it serve as a good starting point to
mimic the membrane behavior in initial coupled simulations.

In the flow channel near the membrane, the concentration gradient is
established due to the difference in transport properties of ions in the
membrane and the solution in the flow channels. This concentration
gradient results in diffusive transport in a small region near the surface
of a membrane which is referred to as diffusive layer. However, far away
from the membranes the bulk solution is well mixed. The existence
of concentration gradients on both sides of the membrane leads to a
concentration polarization. The concept of concentration polarization is
introduced as an integral measure for the intensity of the mass transport
in the spacer-filled flow channels. It is understood as the local enrichment
or depletion of ions near the membrane surfaces in concentrate and dilute
channels respectively. The after-effect of concentration polarization is
different in dilute and concentrate channels. In concentrate channels,
when the salt concentration reaches its solubility limit of the solution,
precipitation of salt occurs resulting in scaling and fouling. In dilute
channels, when the salt concentration near the membrane reaches zero, the
flow of current through membranes stops, which increases the voltage drop
and results in high energy consumption. The current density at this stage
where no salt ions are available to transport the electrical current is referred
to as limiting current density. In the ED process, the spacer geometries
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are used to reduce the concentration polarization near the membranes by
promoting mixing of ions and turbulence in the flow channels, which in
turn increase the limiting current density.

In industrial applications of the ED processes, the formation of fouling,
scaling and concentration polarization constitutes severe problems. These
effects are strongly dependent on both the flow distribution adjacent to the
membrane and the total flux of ions leaving or entering the flow channel
through the membrane. These effects can be reduced by switching the
anode and cathode i.e. electrodialysis reversal (EDR). In reversing the
polarity, the dilute channel becomes concentrated and the concentrated
channel becomes dilute. This increase in durability of the membranes in
turn results in an increased durability of the ED stack, which makes this
method more environmental friendly. Furthermore, the flow distribution
near the membrane can be improved by modifying the spacer geometry and
the mass transport of ions through membranes by tuning the membrane
transport properties.

The mechanisms of the transport in the spacer-filled flow channels and
in the nano-structured membranes are not well understood. A major
difficulty in the experimental investigation of integral membrane properties
is the discrimination of phenomena occurring in the membrane from those
occurring in the adjacent electrolyte solution [23]. The coupled simulation
of the transport phenomena in the membrane and the spacer-filled flow-
channels can contribute to overcome this unsatisfactory situation.

1.2 Related works

The ED process has been studied experimentally and some modeling
approaches have been developed [25, 81, 92, 93] to study the ion transport
in the flow channel and the membranes. Costa et al [18] characterized
the spacer geometry and its effect on fluid mixing by determining the
flow-path in the spacer-filled channel. Additionally, they developed a
semi-empirical pressure model using experiments to determine the optimal
spacer design for ultrafiltration process. Few to investigate the effect of
spacer geometry on the mass flow rate and the pressure drop across the
channel using numerical simulations. Schwinge et al [84] simulated the flow
around different spacer configurations like the cavity, zigzag in 2D (two-
dimensional) for a range of Reynolds (Re) numbers from 100 to 1000 and
they found that filaments near the wall created larger recirculation than a
filament in the center and for large Re numbers the recirculation between
the successive filaments influences each other. Karode et al [82] used
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3D (three-dimensional) simulations to analyze the flow pattern through
symmetric (spacer with equal filament diameter) and asymmetric (spacer
with unequal filament diameter) nonwoven spacer channels. They found
that the pressure drop across the channel was mainly governed by the
loss of fluid momentum at the intersection of the spacer filaments that
causes abrupt change in flow directions. Koutsou et al [51] performed
simulations on 3D nonwoven spacer geometries on various Re numbers and
identified that transition to unsteady flow occurs at very low Re number. In
another paper [50], they also studied the effect of both Re and Schmidt (Sc)
numbers and calculated the local time-averaged mass transfer coefficient
from time-averaged wall mass flux for fixed concentration at the wall.
Shakaib et al [85] simulated flow dynamics and mass transfer on parallel
spacers (spacer filament aligned with channel axis) and diamond spacer
with various flow attack angles. For both kinds of spacers they also varied
filament spacing and thickness. They found that the distribution of the
mass transfer coefficient is uniform when the spacing between filaments is
increased and the fluid flows in a zigzag pattern. The fluid flows in parallel
to the filaments when spacing decreases or when the flow attack angle
increases. Li et al [59] performed simulations on different periodic unit cells
i.e. the smallest possible flow domain with the minimum number of spacer
filaments to form periodicity and proposed a periodic cell which can be
used to predict the pressure drop through the full-scale spacer. Picioreanu
et al [73] simulated the flow in a 3D nonwoven spacer channel and modeled
the biofilm formation, accumulation and its growth in the spacer channels.
All the previous simulations of flow in spacer filled channels are limited to
small scales i.e they considered either 2D cross sections or 3D with just
a few filaments. For the first time in 2015, Johannink et al [39] used our
open-sourced lattice Boltzmann solver Musubi [32] to develop a pressure
drop prediction model for woven and nonwoven spacers and also validated
the numerical result with experiments.

Regarding the mathematical model, the Nernst-Planck (NP) equation
is most widely used to describe the mass transport of ionic species in
electrolyte solutions. The limitation of this equation is the fact that
they are valid only for infinitely dilute electrolyte solutions due to Fick’s
law of diffusion description. Fick’s law of diffusion considers only the
diffusion between an ion and solvent and not between ions. A more
accurate description of charge transport in electrolyte solution is given by
the Maxwell-Stefan (MS) equations [72, 96]. Unlike Fick’s law of diffusion,
the MS equations include the multicomponent interaction that occurs
in concentrated electrolyte solution. Usually, only the MS equations for
a ideal mixture were used for numerical simulation and nonideal effects
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were neglected. However, in electrolyte solutions due to the nonlinear
concentration gradient near the electrode/electrolyte interface, the nonideal
effects must be considered. Psaltis [78] investigated the application of the
Nernst-Planck equations and the Maxwell-Stefan equations with ideal and
nonideal effects on the electrolyte solution. He found that the concentration
predicted by the Maxwell-Stefan is lower than the Nernst-Planck prediction
for a particular species and with ternary mixture, the behavior predicted
by the Maxwell-Stefan equation was not obtained by the Nernst-Planck
equations. Furthermore, he also observed that even though their steady
state solution was the same, their transient behavior was different.

1.3 Goal of this Thesis

As pointed out in the previous sections, the coupled transport phenomena
governing the performance of industrial ED processes are complex and
not sufficiently understood. One reason for the limiting insight into the
phenomena can be found in the compact design of ED modules prohibiting
an experimental in-situ observation. The development of simulation tools
allowing the coupled simulation of the transport phenomena can contribute
to overcome this unsatisfactory situation.

The goal of this thesis is the development and implementation of an
efficient coupled simulation tool for the integrated simulation of the trans-
port phenomena in electrodialysis modules. The development of such a
simulation tool requires the derivation of rigorous mathematical models
describing the local transport processes with a high accuracy. As the
resulting models are large and strongly coupled, appropriate numerical
schemes are to be developed allowing for an efficient numerical treatment
of the models. The huge computational effort resulting from the fine local
resolution of the multiple physical phenomena in large-scale industrially
relevant settings is addressed by using massively parallel high performance
computing systems.

In this work, the lattice Boltzmann method (LBM) is chosen as the
numerical scheme to simulate fluid flow, multicomponent flow and electric
potential. The LBM was chosen due to its efficiency in supercomputers
and ease in handling complex geometries like spacer structure in the flow
channels [12]. To improve the prediction of the behavior of mass transport
of ionic species in the flow channels, a sophisticated multicomponent
LBM model for nonideal liquid mixture with external diffusive force was
developed. This model recovers the Maxwell-Stefan equations for nonideal
mixture under the asymptotic limit. This nonideal model is compared
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against the ideal model to show the necessity of nonideal models to simulate
the charge transport in electrolyte solutions.

The LBM method requires meshes for computation i.e. elemental repre-
sentation of the computational domain. Due to the spacer geometry in
the flow channels, the accuracy of the simulation greatly depends on the
approximation of the spacer geometry. Furthermore, a fine resolution is
required to resolve the diffusive layer near the membranes. Therefore, an
efficient parallel mesh generator was also developed as part of this thesis
to generate very large computational meshes for supercomputing needs.

The developed tools (mesh generator Seeder, multicomponent extension
of the LBM solver Musubi, and coupling tool APESmate) are implemented
as part of an in-house scalable simulation framework called Adaptable
Poly-Engineering Simulator (APES). These tools allow for the thorough
investigation of the transport processes in ED modules by means of dedi-
cated simulation studies and sensitivity analysis. The resulting insight can
be directly used to improve the process performance by revising the design
of the module or the spacers. Further, the detailed simulation results
provide a solid basis for a more accurate detail engineering in industrial
applications. The coupling tool APESmate is designed in a way that it
can couple different solvers in APES framework in any combination and
thus allows for applications in a number of computational applications.

In this thesis, the flow structure in both woven and nonwoven spacers
for various flow attack angles and velocities are investigated to identify
the relationship between spacer design and the pressure drop across the
channel. Furthermore, the flow structure near the seal corner of the
industrial nonwoven spacer is investigated for various velocities and angles
between spacer filaments to determine the optimal spacer design with
reduced low flow zones. This investigation is performed on the nonwoven
spacer because the industrial partner SIEMENS used only this spacer in the
prototype of ED module. In addition to pure hydrodynamic simulations,
the effects of the spacer geometries on ions transport in the flow channels
are also addressed in this work. Furthermore, the coupled simulations
were performed to show the effect of ion transport on the electric potential
near the membranes and vice versa. Besides investigations, the major
contribution of this thesis are the development of the mesh generator
Seeder, a multicomponent LBM model for nonideal liquid mixtures and a
scalable coupling tool APESmate. They are presented in detail with their
algorithms.
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1.4 Structure of this Thesis

This thesis is structured as follows: In the next Chapter 2, the governing
equations to define various physical processes like ion transport, interac-
tion between ions, bulk flow and electrodynamics within the ED stack
are presented. In Chapter 3, the numerical scheme namely the lattice
Boltzmann method (LBM), chosen to solve those governing equations is
introduced. The black box model for membranes that is used as boundary
condition for multicomponent flows is also discussed in this chapter. Next,
the coupling strategy employed to couple the numerical approaches on
surface and volume are given in Chapter 4. Here, the surface balance
equations required to be satisfied on the electrolyte-membrane interface are
also introduced. In Chapter 5, the highly scalable simulation framework
APES is introduced. Here, algorithms and implementation details of the
mesh generator Seeder, the LBM solver Musubi and the coupling tool
APESmate are presented in detail since they are major contributions of
this thesis. In addition to the implementation details, the performance
of Seeder and Musubi are also presented. Then, the presented numerical
approaches and implementations are validated using several numerical
test cases against analytical solution or experiment in Chapter 6. Here,
coupling between multicomponent LBM and LBM for electric potential
is validated and coupling between multicomponent LBM and membrane
black box model is verified. In Chapter 7, the results of large scale flow
simulations with different spacer geometries are presented. The effect of
spacer design on flow structures in the middle of the channel and near the
sealed corner with low flow zones are discussed in detail. In addition to
pure hydrodynamic flow, the results of multicomponent flow simulations
performed using multicomponent LBM are also presented. Finally, this
chapter is concluded with the simulation results of a repeating unit in
the ED process consisting of a dilute and a concentrate channel with
membranes. Here, the electric effects on the flow are added to the physical
phenomena that are simulated. In the last Chapter 8, a short summary of
contributions and conclusion drawn from this work are listed along with
list of future work.
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2 Mathematical models

This chapter introduces the fundamental governing equations to represent
different physics involved in the ED process. An overview of the physical
subsystems in the ED process and their interactions are shown in Figure
2.1. The multicomponent transport in the spacer-filled flow channel re-
quires a description of mass balance, momentum balance for bulk mixture,
movement of ionic species. Furthermore, the description of interaction
between species in the electroneutral region in the bulk and the nonelec-
troneutral region near the membrane is required. In membranes, where
only the counter-ions are transported, a description of species mass balance
and its transport is required. In both, flow channels and membranes, the
electrodynamic is required to describe the interaction between migration
of ions and the applied electric potential. Each of these physical systems
must be coupled with each other to describe the ED process completely.
The coupling approach used to couple these subsystems is presented in
Chapter 4. All the descriptions in this section are restricted to isothermal
conditions and we neglect any chemical reactions and energy dissipation
effects. Thus, energy balance equations are not considered.

Flow channel with spacer

Fluid flow

Diffusion and interaction of 
ions and water molecules

Membrane

Diffusion of ions

Flow channel with spacer 
and Membrane

Electrodynamics

Surface

Volume Vo
lum

eCoupling

Figure 2.1 Multiphysical heterogeneous system representing different physics
involved in ED process [65].

The mathematical model is introduced for a general homogeneous phase
in a three dimensional spatial domain for a set S = {1, ..., n} of charged
or neutral species. Without a loss of generality, the first n − 1 species
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represent ionic species of arbitrary charge and species n represents a neutral
solvent i.e water molecules in an electrolyte solution. Before introducing
the governing equations, the fundamental measures for concentration,
velocities and diffusive fluxes are introduced.

2.1 Concentration measures, velocities and diffusive fluxes

The set of modeling equations is based on the definition of the mass
averaged mixture velocity v as the reference velocity

v =
n∑
k=1

ykvk, (2.1)

where, yk = ρk/ρ is the mass fraction of species k and vk is the velocity
of species k. ρk and ρ =

∑
k
ρk are mass density of species k and total

mixture mass density of the electrolyte solution respectively. n is the
number of species in the mixture. The mass flux density nk of species k is
defined by

nk = ρkvk (2.2)

and summing up these component fluxes results in the total mass flux

nt =
n∑
k=1

nk = ρv. (2.3)

Above measures can also be defined in molar form for liquid mixtures.
The molar density or molar concentration ck of species k is related to the
mass density ρk of species k by

ck = ρk
Mk

(2.4)

where, Mk is the molecular weight of species k. The molar flux density
Nk of species k is defined by

Nk = ckvk (2.5)

and summing up these component molar fluxes gives the total molar flux

N t =
n∑
k=1

Nk = ctw. (2.6)
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Here, ct =
∑n

k=1 ck is the total mixture molar concentration and w =∑n

k=1 χkvk is the molar averaged mixture velocity. χk = ck/ct is the mole
fraction of species k.

In addition to mass and molar fluxes, the diffusion flux is introduced
which defines the flux of species k in relation to the reference mixture
velocity. The mass diffusion flux density jk with respect to the mass
averaged mixture velocity is

jk = ρk (vk − v) , (2.7)

with the closure relation
n∑
k=1

jk = 0. (2.8)

Eq. 2.7 can be rewritten in terms of the mass flux density nk as

jk = nk − ρkv (2.9)

Similarly, the molar diffusion flux density Jk is defined with respect to
mole average mixture velocity by

Jk = ck (vk −w) = Nk − ckw, (2.10)

and with the closure relation
n∑
k=1

Jk = 0. (2.11)

The relation between the mole fraction χk and the mass fraction yk of
a species k is expressed by

χk = yk
M

Mk
, (2.12)

where M is the molecular weight of the mixture which can be determined
by

M =
n∑
k=1

χkMk. (2.13)

By definition of mole fraction χk and mass fraction yk, their sum reduces
to unity i.e.

n∑
k=1

yk = 1,

n∑
k=1

χk = 1
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respectively.

2.2 Multicomponent transport equations

In this section, the governing equations to describe the mass transport of
ionic species or components in the spacer-filled flow channels and mem-
branes are introduced. Before getting into equations, lets look at different
fluxes that transport ions in the flow channels and membranes. Figure
2.2 illustrates the flux densities of cation and anion in the flow channel
and membrane and the concentration profiles of the ions and salt near
the surface of CEM under steady state conditions [91]. In the figure, the
symbols N and c denote the flux density and the concentration, the su-
perscripts mig and diff refer to migration and diffusion, the superscripts
d and c refer to diluate and concentrate solution, and the superscripts b
and m refer to bulk phase and membrane surface respectively, and the
subscripts c, a and s refers to cation, anion and salt respectively. In the
flow channels, the bulk mixture with ions flows along the length of the
channel by an applied pressure drop and is described by the convective
flux N conv

k . In both, flow channels and membranes, the migration of
ions towards respective electrodes due to an applied electric potential is
described by migrative flux Nmig

k . Finally, the concentration gradient
which gets established in the channel near the membrane surface due to
the difference in the transport number of ions in the solution and the
membrane results in the diffusive flux Ndiff

k . Therefore, while selecting
the governing equations to describe the mass transport of ionic species,
all those above mentioned fluxes need to be considered. Additionally, the
interaction between ions must also be considered due to an increase in ion
concentration in the concentrate channel.

One more physics to consider is the interaction of ion concentration
with an electric potential in the diffusive boundary layer near both sides
of the membrane surface. In dilute channels, the concentration of salt
decreases near the membrane surface while the concentration of salt on
the other side of the membrane facing the concentrate channel increases.
This creates a concentration gradient of salt between the channels, which
results in diffusive transport of salt from the concentrate to the dilute
channel. Due to this concentration gradient in the flow channel near the
membrane surface, the solution is locally nonelectroneutral. However, the
bulk solution remains electroneutral for all times. The local nonelectroneu-
tral distribution of ions results in a potential gradient that acts as an
additional migrative force on the ions. Therefore, in the diffusive region,
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Figure 2.2 Illustration of concentration profiles of a salt in the boundary layer
on both sides of the CEM and the fluxes of cations and anions in
the boundary layer and in the membrane.

the interaction of ions and electric field must be considered. Thus, the
effective electric field on the ions consists of the applied external electric
field and the induced electric field of the ions.

In this work, the more sophisticated Maxwell-Stefan Eq. 2.26 with an
external driving forces is considered to describe the mass transport of
ions in both dilute and concentrate flow channels. For infinitely dilute
solutions, the Maxwell-Stefan (MS) equation can be simplified to the
Nernst-Planck Eq. 2.41 to model the flux transport of species [72]. However,
in the ED setup along the length of both dilute and concentrate flow
channels, the concentration decreases in dilute channels and increases in
concentrate channels. Thus, the solution in concentrate channels is not
sufficiently dilute anymore to be described by the Nernst-Planck equation.
Furthermore, for concentrate solutions with more than two components,
the interaction between the components must be considered. Additionally,
the nonideal liquid model must be considered for concentrate solutions
to include the effects of intermolecular forces between same and different
components. Therefore, the Maxwell-Stefan equation for nonideal liquid
model is chosen for flow channels to incorporate the interaction between
ionic components. On the other hand, in membranes where only counter-
ions are migrated, the interaction between ions can be neglected resulting
in ideal liquid model. Hence, the Nernst-Planck (NP) relation with external
driving forces for ideal liquid is considered to describe the mass transport
of ions through membranes. The equations presented in this section are
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based on [96].
In general, the mass conservation equation for k ∈ {1, ..., n} component

when neglecting chemical reactions is given by

∂ρk
∂t

+∇ · (ρkvk) = 0. (2.14)

Substituting Eq. 2.9 in above equation leads to

∂ρk
∂t

+∇ · (ρkv) = −∇ · jk (2.15)

The above equation can also be expressed in molar form as

∂ck
∂t

+∇ · (ckw) = −∇ · Jk (2.16)

Both Eq. 2.15 and Eq. 2.16 are equivalent in nature defining the transport
of individual species. Since our focus is on flow in electrolyte solutions,
all equations are presented in molar form in the rest of this section. The
second term in above transport equations define the convective transport
of component k and the right hand side defines the diffusive transport
of component k. The diffusive flux Jk or jk is provided by some phe-
nomenological models: the Fick model and the Maxwell-Stefan model
[96]. The Fick’s diffusion model is a very popular phenomenological model
for expressing the diffusion fluxes for binary mixtures and it is also valid
for dilute mixtures. The Nernst-Planck (NP) equation is an extension of
the Fick’s diffusion to include the migration of charged particles due to
electrostatic forces. The Maxwell-Stefan model is a model for describing
diffusion in multicomponent systems. In the following, both these models
are discussed.

2.2.1 Maxwell-Stefan equations
In the spacer-filled flow channel with an electrolyte solution, the interaction
between species are given by the generalized Maxwell-Stefan’s equations
which relates the driving force dk for diffusion of species k and the relative
velocity between species (vk − vl) as

dk = −
n∑

l=1,l 6=k

χkχl (vk − vl)
Dk,l

(2.17)

where Dk,l is the Maxwell-Stefan diffusion coefficient between species k
and l which represent the friction between those species. Eq. 2.17 can also
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be written in terms of the molar diffusive flux as

dk =
n∑

l=1,l 6=k

(χkJ l − χlJk)
ctDk,l

. (2.18)

The molar diffusive flux Jk and the molar fraction χk are related by
the driving force dk. From the theory of irreversible thermodynamics, the
driving force dk for diffusion of species k in nonideal fluids is given by [96]

dk = χk
RT
∇T,Pµk + ckṼk − yk

ctRT
∇P − F k k = 1, ..., n. (2.19)

The physical interpretation of ctRTdk is that it represents the force acting
on species k per unit volume of mixture tending to move species k relative
to the solution. µk is the molar chemical potential. Ṽk is the specific
molar volume. R is the universal gas constant. P and T are the mixture
pressure and temperature respectively. ∇T,Pµk represents the gradient of
molar chemical potential calculated at constant temperature and pressure
and it signifies the diffusion process where species move from higher
concentration to lower concentration. The second term in Eq. 2.19 describes
the influence of pressure gradients with respect to the difference of the
volume fraction ck (x, t) Ṽk (x, t) and the mass fraction yk (x, t). The last
term F k represents the external diffusive driving force on species k and it
is given as [72, 96]

F k = 1
ctRT

ρk

(
F̂ k

Mk
−

n∑
l=1

yl
F̂ l

Ml

)

= 1
ctRT

(
ckF̂ k − yk

n∑
l=1

clF̂ l

)
(2.20)

where F̂ k is the external body force per mole acting on species k. For
electrolyte systems like ED, the ionic species migrates due to an applied
external electrical field and the force F̂ k is given as

F̂ k = zkFE. (2.21)

Here, E represents applied electric field and its related a scalar electric
potential ψ as E = −∇ψ. zk is the specific charge number of species k and
F is the Faraday constant. In general, the external force term in Eq. 2.20
can be decomposed into two parts: The first part represents the total
external force which acts on species k and the second part represents the
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fraction of total mixture force acting on species k. It is worth mentioning
that in the ED process, the external electrical force which drives the ions
through the membranes must be high enough to overcome the friction
or the resistance from the electrolyte solution on the movement of ionic
species.

For nonideal fluids, the gradients of the molar chemical potential µk
in Eq. 2.19 can be expressed in terms of molar fraction χk and activity
coefficients γk based on mole fractions as [96]

χk
RT
∇µk =

n−1∑
j=1

(
δk,j + χk

∂ln(γk)
∂χj

∣∣∣∣
T,p,Σ

)
∇χk

=
n−1∑
j=1

Γk,j∇χj . (2.22)

Here, Γk,j is the thermodynamic factor and it is given as

Γk,j = δk,j + χk
∂ln(γk)
∂χj

∣∣∣∣
T,p,Σ

(2.23)

where, δk,j is the Kronecker delta. For the evaluation of Γk,j from molar
based activity coefficients γk see [60, 96]. This description of the chemical
potential gradients is of significant importance since it allows a straight-
forward inversion of the flux-force relationship. That way, an explicit
expression of the flux or composition vector can be obtained. The symbol
Σ in Eq. 2.23 means that the differentiation of ln(γk) with respect to mole
fraction χj must be carried out by keeping the mole fraction of all other
species constant except the nth. The subscripts T and P denote that this
differentiation is to be calculated at constant temperature and pressure.
Substituting Eq. 2.22 in Eq. 2.19 and neglecting the pressure diffusion
term since its effect is negligible [38], results in

dk =
n−1∑
j=1

Γk,j∇χj − F k. (2.24)

For ideal fluids, the activity coefficients becomes unity γk = 1 and the
thermodynamic factor reduces to identity matrix Γ = I. Thus, the driving
force dk for diffusion of species k in ideal fluids can be written as

dk = ∇χk − F k. (2.25)
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2.2 Multicomponent transport equations

Relating Eq. 2.24 and Eq. 2.18 gives the closure relation of Maxwell-
Stefan equation for nonideal fluids with an external force as

n∑
j=1

Γk,j∇χj − F k =
n∑

l=1,l 6=k

(χkJ l − χlJk)
ctDk,l

(2.26)

In case of ideal fluids, the above equation can be written as

∇χk − F k =
n∑

l=1,l 6=k

(χkJ l − χlJk)
ctDk,l

(2.27)

which is the Maxwell-Stefan relation with external force for ideal fluids.
Only n− 1 of Eqs. 2.26 and 2.27 are independent because the ∇χk sum

to zero; the nth component gradient is given by

∇χn = −∇χ1 −∇χ2 −∇χ3 · · · − ∇χn−1 (2.28)

= −
n−1∑
k=1

∇χk. (2.29)

There are also other important constraint to be considered when using
the Maxwell-Stefan formulation Eqs. 2.26 and 2.27. The Maxwell-Stefan
diffusion coefficients are symmetric

Dk,l = Dl,k

to fulfill the Onsager reciprocal conditions [68]. The concentration depen-
dent binary Maxwell-Stefan diffusion coefficients have been estimated by
[17] using the equation

Dk,l = D̃1(k, l) + D̃2(k, l) · Is + D̃3(k, l) · I3/2
s

+ D̃4(k, l) · I2
s + D̃5(k, l) ·

√
Is, (2.30)

and experimental data from [100]. Parameters D̃1(k, l), · · · , D̃5(k, l) are
species dependent coefficients and Is is the molar ionic strength of the
solution in mol m−3

Is = 1
2

n∑
k=1

ckz
2
k. (2.31)

For a binary (1:1) electrolyte solution like NaCl where each ion is singly-
charged, the ionic strength is equal to the concentration of ions i.e. Is =
cNaCl = cNa = cCl. For a liquid NaCl solution, the species diffusivity
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(k,l) D̃1 D̃2 D̃3 D̃4 D̃5
1× 10−9 1× 10−13 1× 10−15 1× 10−17 1× 10−12

[m2 s−1]
Na,Cl 0 0.802 −0.209 −0.703 2.18
Na,H2O 1.34 −0.306 −3.91 3.77 −1.77
Cl,H2O 2.04 −2.24 −3.79 3.78 8.32

Table 2.1 Parameter values D̃1(k, l), · · · , D̃5(k, l) for a liquid NaCl solution as
reported in [17].

coefficients are given in Table 2.1 and the correlation Eq. 2.30 can be
applied for a concentration range of cNaCl = 0 . . . 5000 mol m−3.

Last, for ideal fluids, by definition of dk, the sum of the diffusive driving
forces vanishes

n∑
k=1

dk = 0 (2.32)

due to the Gibbs-Duhem restriction [96], which results in only n − 1
independent forces.

2.2.2 Nernst-Planck equations
In membranes, where only the counter-ions are transported, the interaction
between ions is neglected and only the interaction between ion and solvent
is considered. Therefore, the Maxwell-Stefan diffusive driving force given
in Eq. 2.18 is reduced to

dk = −Jk/(ctDk). (2.33)

Substituting the above equation in Eq. 2.24 gives the direct relation
between diffusive flux and mole fraction of species as

∇χk − F k = −Jk/(ctDk) (2.34)

where Dk is the effective MS diffusion coefficient of species k in the
multicomponent mixture. Above equation can also be rewritten as

Jk = −Dk∇ck + ctDkF k (2.35)

which defines the diffusive flux Jk of species k. Once again there are only
n− 1 independent diffusive fluxes since the sum of diffusive fluxes vanishes.
Thus, the flux density Nk of species k can be explicitly written as

Nk = −Dk∇ck + ckw + ctDkF k. (2.36)
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2.2 Multicomponent transport equations

With an applied electrical field E as an external force, above equation can
be written as

Nk = −Dk∇ck︸ ︷︷ ︸
diffusion

+ ckv︸︷︷︸
convection

+

(
zkck − yk

n∑
l=1

zlcl

)
DkF
RT

E︸ ︷︷ ︸
electro-migration

. (2.37)

Here, the first term represents the diffusion of species due to the concentra-
tion gradient and the second term represents the convection of species due
to the pressure gradient across the stack and the last term represents the
electro-migration of ionic species due to an applied external electric field.
Note that both diffusion and convection transport of cations and anions
are in the same direction and only the electro-migration term discriminates
ions by their charge number zk and transport them in different directions.
In the ED process, the nonelectroneutral region exists in the flow chan-
nels only near the membranes due to charge separation and formation of
diffusion layer. However, far from membrane the bulk solution remains
electroneutral and satisfies the electroneutrality condition

N∑
k=1

zkck = 0. (2.38)

Additionally, the transport of counter ions in the ion exchange membrane
satisfies the electroneutrality condition

N∑
k=1
k 6=fix

zkc
IEM
k + zfixc

IEM
fix = 0 (2.39)

where, the superscript IEM refers to the ion-exchange membrane, the
subscript fix refers to charges fixed to the membrane polymer. With an
electroneutrality condition in bulk mixture and in membranes, there is no
net electrical force acting as a whole. Thus, for electroneutral solution,
the flux density Nk of species given in Eq. 2.36 can be simplified to

Nk = −Dk∇ck + ckw + zkDkF
RT

ckE. (2.40)

Combining Eq. 2.16 and Eq. 2.40 results in
∂ck
∂t

= −∇ · (−Dk∇ck + ckw + zkDkF
RT

ckE) (2.41)

which is the Nernst-Planck equation with an external electrical force. Its
worth mentioning that the Nernst-Planck equation is generally used to
describe mass transport of species in an infinitely dilute electrolyte solution.
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2.2.3 Electrical current and Ion transport number
The current in the ED process is carried by the charged ionic species in
the electrolyte solution. Thus, the electrical current density id can be
expressed in terms of the flux density Nk of the species as

id = F
n∑
k=1

zk
ρk
Mk

vk = F
n∑
k=1

zkckvk = F
n∑
k=1

zkNk. (2.42)

For the electrolyte solution with ionic species, the species balance Eq. 2.15
and Eq. 2.16 are completed by the charge balance equation

∂ρe

∂t
+∇ · id = 0, (2.43)

where ρe is the electrical charge density defined as

ρe = F
n∑
k=1

zk
ρk
Mk

= F
n∑
k=1

zkck. (2.44)

For electroneutral solutions, the charge density becomes zero. Therefore,
the charge balance equation reduces to

∇ · id = 0. (2.45)

Further relations between charge density, current density with electric and
magnetic field are given in Section 2.4. Substituting the flux density Nk

of species Eq. 2.40 in Eq.2.42 and setting E = −∇ψ, where ψ is the scalar
electric potential, the current density id can be written as

id = −F
n∑
k=1

zkDk∇ck + Fw
n∑
k=1

zkck −
F2

RT
∇ψ

n∑
k=1

z2
k
Dk
RT

ck. (2.46)

In the flow channels, the current is carried by both cation and anion
while in the IEM the current is mostly carried by counter-ions. Even
though the current is carried by both ionic species, the fraction of overall
current carried by individual ionic species differs. Therefore, the fraction of
current carried by specific ionic species k is expressed by the ion transport
number or transference number Tk and it is given as [92, 93]

Tk = zkNk∑
l
zlN l

(2.47)

with the constraint that the sum of the ion transport number is unity.
The transport number can also be expressed in terms of current density id
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2.2 Multicomponent transport equations

by multiplying and dividing Faraday’s constant to above equation, which
results in

Tk = zkFNk

F
∑

l
zlNk

= zkFNk

id
. (2.48)

The transport number of cations and anions in the flow channels does not
differ much since the current is carried by both ions. But due to the high
concentration of counter-ions in the IEM, the transport number of counter-
ions is close to 1. Another important parameter of the membrane is the
permselectivity Ψ that describes the degree to which a membrane passes an
ion of one charge and retains an ion of opposite charge. Therefore, it defines
the performance of a membrane in ED processes. The permselectivity of
cation and anion exchange membranes are given by [92, 93]

ΨCEM = TCEMc − T ec
T ea

and ΨAEM = TAEMa − T ea
T ec

. (2.49)

The subscripts c and a refer to cation and anion respectively. The super-
scripts cem, aem and e refer to CEM, AEM and an electrolyte solution
respectively.

Assuming that the membrane is very thin and there exists no concentra-
tion gradient, the first term in Eq. 2.46 will vanish. Additionally, due to
the electroneutrality condition in membranes, the second term in Eq. 2.39
becomes zero. Thus, the current density id,mem through membranes can
be defined as

id,mem = −F2∇ψ
n∑
k=1

z2
k
Dk
RT

ck (2.50)

which can be compared to the well-known Ohm’s law expression

id,mem = −κm∇ψ. (2.51)

Here, κmem is the specific membrane conductance

κmem = 1
Rmem

= F2
n∑
k=1

z2
k
Dk
RT

ck (2.52)

and Rmem is the specific membrane resistance. With no concentration
gradient and electroneutrality in the membranes, there is only a migrative
flux Nmig,mem

k which drives the ionic species in the membranes and it can
be explicitly expressed as

Nmig,mem
k = Tmemk

zkF
id,mem = −zkDkF

RT
cmemk ∇ψ (2.53)
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where cmemk is the molar concentration of species k in the membrane and
Tmemk is the ion transport number of species k in the membrane

Tmemk = z2
kDkcmemk∑
l
z2
l Dlcmeml

. (2.54)

2.3 Mixture flow - Incompressible Navier-Stokes equations

In the spacer-filled flow channel, the mixture flow is considered to be an
isothermal, incompressible and in the low-Mach regime. The mass and
momentum conservation equation with external forces are given by the
incompressible Navier-Stokes equation of the form

∇ · v = 0 (2.55)
∂v
∂t

+ v∇ · v = −∇P̃ + ν∇2v + g + ρe

ρ
Ê︸ ︷︷ ︸

=:F

(2.56)

respectively for a Newtonian fluid. The external force field F is the mixture
force that acts on all the components in same way. g and E are forces due
to the gravitational field and the electrical field respectively. The mass
conservation equation or continuity Eq. 2.55 can be obtained by summing
the species balance Eq. 2.14 over n species and mixture density as constant
due to incompressibility i.e. ρ = ρ0, where ρ0 is the constant fluid density.
The momentum conservation Eq. 2.56 is obtained from Newton’s second
law of motion which states that the rate of change of momentum of the
fluid is equal to the sum of the forces applied on it. Here, P̃ = P/ρ is the
kinematic pressure, ν = µ/ρ is the kinematic viscosity. µ is the dynamic
viscosity, F denotes the external force and ρe the charge density of the
mixture.

In the flow channel, the multicomponent flow can be characterized by
dimensionless quantities like the Reynolds and Schmidt number [14]. The
Reynolds number can be interpreted as the ratio of inertial forces to viscous
forces as

Re = vLc
ν

(2.57)

where Lc is the characteristic length of the flow. The Schmidt number is
defined as the ratio of viscous diffusion rate to molecular mass diffusion
rate as

Sc = ν

Dk,l
. (2.58)
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2.4 Electrodynamics - Maxwell’s equations

In the ED process, the ionic species are transported towards and through
the membrane by the applied electric potential between the anode and
cathode. The mixture in the bulk region of the flow channel remains
electroneutral

∑
k
zkck = 0 but near the membrane it becomes nonelec-

troneutral and creates a concentration gradient. The nonelectroneutral
region is referred as the diffusion layer and it is usually in the range of
nanometers. The concentration gradient in the diffusion layer affects the
potential field. Furthermore, the movement of ionic species might also
induce some magnetic field but usually this is neglected assuming it is very
small. Since the effect of magnetic field in the ED stack is unknown, the
full Maxwell equations of the form

∇ ·D = ρe, (2.59a)
∇ ·B = 0, (2.59b)

∂B

∂t
+∇×E = 0, (2.59c)

∂D

∂t
−∇×H = −id (2.59d)

are considered at first to describe the spatial and temporal evolution
of electro-magnetic fields in the entire ED unit. Here, D denotes the
electric displacement field, E the electric field, H the magnetization and
B the magnetic field. The charge density ρe and the current density id

are given in Eq. 2.44 and Eq. 2.42. Note that ρe and id must satisfy the
charge conservation Eq. 2.43 for all times t ≥ 0 and they are implicitly
satisfied when the displacement field D fulfills Gauss’ law Eq. 2.59a and
the magnetic field B fulfills the magnetic monopole constraint Eq. 2.59b
for all times. In case of a simple dielectric, where the electric permittivity ε
and the magnetic permeability µ̃ are considered constant, the displacement
field, electric field, magnetic field and magnetization are correlated by

D = εE, (2.60)
B = µ̃H. (2.61)

In this work which was part of the HISEEM 1 project, initially the full
Maxwell equations were considered to couple electrodynamics with mul-
ticomponent flows. However, some complications were encountered due

1Hocheffiziente Integrierte Simulation von Elektromembranverfahren zur
Entsalzung von Meerwasser
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to the difference in time scales between the Maxwell solver and the mul-
ticomponent solver. The time step size of the Maxwell solver is much
smaller than that of the multicomponent solver since the Maxwell solver
time step depends on the speed of light and the multicomponent solver
time step depends on the speed of sound. Another problem with this
coupling is that it is costly to satisfy the Gauss law at all times since
ions are transported with much larger time scale than the electric field.
Therefore, to circumvent this problem, the magnetic effect was neglected
which reduces the full Maxwell equations to the Poisson equation. When
the magnetic induction of the electrolyte solution is neglected, which is
reasonable in most electrochemical systems, the electric field E can be
assumed to be irrotational. This simplifies Faraday’s law according to

∇×E = −∂B

∂t
≈ 0. (2.62)

That way, the electric field can be interpreted as negative gradient of the
scalar electric potential ψ

E = −∇ψ. (2.63)

Additionally, if the dielectric permittivity ε is assumed to be constant,
Gauss Law ∇ · (εE) = ρe can be simplified to the well known Poisson’s
equation,

∇2ψ = −1
ε
ρe. (2.64)

Note, that the Poisson’s equation Eq. 2.64 and the charge balance in form
of Eq. 2.44 already imply Ampere’s law. The description of the electric
field can be simplified by using the assumption of a locally electroneutral
solution. This leads to the algebraic constraint

0 = ρe (x, t) = F
N∑
k=1

zk
ρk (x, t)
Mk

, (2.65)

also known as the electroneutrality condition. In a simplified model of ionic
mass transfer Eq. 2.65 can be used instead of the Poisson equation. Thus,
in the electroneutral region, the potential gradient is linear. However, in the
flow channel near the membrane where there is a concentration gradient, a
nonelectroneutral region exists, usually referred to as diffusive region. Here,
the charge density is non-zero and contributes to the nonlinear potential
gradient. This additional potential gradient in the diffusion region is called
the diffusion potential and the current in this region is called diffusion
current.
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2.5 Conclusion

In this chapter, the mathematical equations describing the various physi-
cal phenomena like transport of ionic species, bulk fluid and interaction
between ionic species and electric potential in ED processes were presented
in detail. Additionally, the measurement for fundamental properties of
the ionic species like concentration, velocity and the mole flux were in-
troduced. The transport of ionic species in ED processes are described
by the species transport equations and the phenomenological relationship
between mole flux and concentration of the species. They are given by
two different equations: the Maxwell-Stefan and Nernst-Planck equations.
The Maxwell-Stefan equation describes the interaction of ionic species in
the mixture where as the Nernst-Planck equation is a simplification of
the Maxwell-Stefan equation for infinitely dilute mixtures where species
interact only with the solvent and not with other ionic species. Due to the
high salinity level of sea water around 35%, the Maxwell-Stefan equation
is used to model the transport of ions in the dilute and concentrate flow
channels. Furthermore, since seawater is a nonideal liquid mixture, the
thermodynamic factors are introduced in the Maxwell-Stefan equations
to describe nonideal behavior. The Nernst-Planck equations are used to
model the transport of ions in the membrane since only specific ions are
transported through membranes. In both flow channels and membranes,
the ions are driven mainly due to the applied external electric field. There-
fore, the external driving force is introduced in both Maxwell-Stefan and
Nernst-Planck equations. In addition to equations describing ionic trans-
port, the incompressible Navier-Stokes equation with external body force
is introduced to describe the mixture transport. Finally, this chapter was
concluded with the introduction of the electric potential equation to model
the interaction between the electric potential and the local concentration
of ionic species in the flow channels.
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In this chapter, the numerical approaches chosen to simulate different
physical subsystems shown in Figure 2.1 are presented in detail. The
lattice Boltzmann method (LBM) is chosen to simulate the fluid flows,
multicomponent flows and electric potential in the spacer-filled flow channel.
The LBM is chosen due to its advantage in ease to integrate complex
geometries like spacers and its simple two-step stream-collide algorithm
that has high performance on supercomputers [12]. In Section 3.1, the
lattice Boltzmann equation (LBE) for fluid flows is presented in detail along
with the LBM algorithm and the boundary conditions. The asymptotic
analysis which recovers the incompressible Navier-Stokes equations in the
limit of low Mach numbers from the semi-discrete Boltzmann equation
under diffusive scaling δt ∝ δx2 is given in App. A.1.1. The semi-discrete
Boltzmann equation is the Boltzmann equation discretized in velocity
space but still continuous in space and time coordinates. The LBE is
the fully discrete Boltzmann equation discretized also in space and time
coordinates.

In Section 3.2, the multicomponent LBE for nonideal fluids to simulate
the multicomponent flow in spacer-filled flow channels is presented. Its
corresponding asymptotic analysis, which recovers the incompressible
Navier-Stokes equations for mixture and the Maxwell-Stefan equations for
species transport are detailed in App. A.1.2. For the transport process
in the ion exchange membranes, the simplified black box model given in
Section 3.3 is used. The black box model is implemented as source/sink
boundary for the multicomponent LBM as described in Section 3.2.2.

To simulate the electrodynamics defined by the Maxwell equations, the
discontinuous Galerkin (DG) scheme was deployed [103] at first. From
preliminary simulations, it was found that it is difficult to couple elec-
trodynamics with multicomponent LBM due to the very small time step
size in electrodynamics. Thus, even the smallest movement of ions leads
to a large electric field that leads to instability of the multicomponent
LBM. Therefore, the lattice Boltzmann method for the electric potential
described in Section 3.4 was deployed to solve the Poisson’s equation Eq.
2.64. This equation is solved for steady state solution at every physical
coupling time step in the entire ED stack. The asymptotic analysis re-
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covering the Poisson’s equation from the discrete Boltzmann equation for
electric potential is given in App. A.1.3. Finally, this chapter is concluded
with the parameterization Section 3.5 on how to convert various quantities
from physical SI units to lattice units.

3.1 Lattice Boltzmann method for fluid flows

In this section, the lattice Boltzmann method (LBM) chosen to simulate
hydrodynamics in spacer-filled channels is presented in detail. This method
is an alternative to classical fluid dynamics methods like finite difference,
finite volume, finite element, etc. that use fluid density, velocity and
pressure as the primary variables on macroscopic level. LBM is a statistical
method originated from the lattice gas automata, which is a discrete
kinetics utilizing a discrete lattice and discrete time. LBM uses the lattice
Boltzmann equation (LBE) that can be obtained from the Boltzmann
equation with finite discrete velocities. In this work, the asymptotic
analysis by Junk [41] is used to recover the incompressible Navier-Stokes
equations from the discrete Boltzmann equation under diffusive scaling.
The Boltzmann equation discretized with a finite set of discrete velocities
um with an external body force term Fm for m ∈ {1, · · ·Q} is given as

∂tf
m(x, t) + um · ∇fm(x, t) = Ωm(x, t) + Fm(x, t) (3.1)

where fm(x, t) is the particle distribution function (PDF) at position x
and at time t. This equation is referred to as the semi-discrete Boltzmann
equation. The left side of this equation describes the transport of a particle
and the right side Ωm describes the local collision interaction between
particles, and Fm describes the body force. Q is the number of lattice
velocity directions that is dependent on the velocity model. The velocity
model is also referred to as stencil. Here, in this work, the most commonly
used stencils D2Q9 for 2 dimensions and D3Q19 for 3 dimensions are used
(see Figure 3.1).

The fully discrete lattice Boltzmann equation (LBE) can be obtained
by integrating the Eq. 3.1 along its characteristic velocities um and
approximating the integral with the trapezoidal rule App. A.1.1.1 [35,
41]. In this work, the integrand of the body force term is approximated
by forward Euler, i.e. first-order in time because of the algorithm used in
our LB solver Musubi. In App. A.1.1.1, a new variable f̄ was introduced
which is defined by Eq. A.62 to convert the second-order implicit LBE
to second-order explicit LBE. Thus, the LB algorithm is carried out in
f̄ instead of f . Thus, all equations presented in here, are in transformed
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3.1 Lattice Boltzmann method for fluid flows

(a) D2Q9 model (b) D3Q19 model

Figure 3.1 Commonly used velocity models in 2D and 3D.

variable f̄ but for simplicity reasons the bar is neglected. The fully discrete
LBE with the multiple relaxation time (MRT) [19, 41, 56] collision model
with first-order body force term is given as

fm(x + umδt, t+ δt)− fm(x, t) = A(feq,m(x, t)− fm(x, t))︸ ︷︷ ︸
=Ωm

+ δtF
m(x, t). (3.2)

Here, A is the linear collisional operator and feq,m is the thermodynamic
equilibrium distribution function in mth direction. For the isothermal
incompressible case, feq,m is given by the Maxwell-Boltzmann distribution
function for low Mach numbers as

feq,m(ρ0, ρ, v) = ωm

(
ρ+ ρ0

( 1
c2
s

(um · v) + 1
2c4
s

(um · v)2

− 1
2c2
s

(v · v)
))

. (3.3)

where ρ and v are macroscopic density and velocity of the fluid respectively.
ρ0 = 1 is the constant mass density. cs is the speed of sound and it is set
to cs = c/

√
3 according to the isotropic condition given in Eq. 3.13 for

D2Q9 and D3Q19 velocity models. c = δx/δt is the lattice velocity, δx is
the lattice size and δt is the lattice time. Here, the lattice cell size δx and
lattice time step size δt are scaled to unity (δx = δt = 1) which results
in the lattice velocity to be c = 1 representing that at every time step
the PDF is streamed only to neighbor lattice. It’s worth mentioning here
that the subsequent descriptions are given in lattice units and conversion
of relevant physical quantities from physical to lattice units are given in
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Section 3.5. The macroscopic moments like the density ρ, the momentum
p = ρ0v and the total momentum flux tensor Π are related to the PDF
fm by,

ρ =
Q∑

m=1

fm, (3.4)

p = ρ0v =
Q∑

m=1

umfm =⇒ v = 1
ρ0

Q∑
m=1

umfm (3.5)

and

Π =
Q∑

m=1

umumfm. (3.6)

As shown in [21], the difference of the total momentum flux Π and the
equilibrium momentum flux

Π0 =
∑
m

umumfeq,m = ρ0(c2
sI + (v ⊗ v)) (3.7)

gives rise to the deviatoric stress tensor σ′, which contributes to the
viscous term in the incompressible Navier-Stokes equations. As mentioned
before, the LB algorithm is carried out in the transformed PDF f̄ but
the macroscopic moments must be computed from the original f . The
conserved moments like density and momentum can be directly computed
from f̄ , but the non-conserved moments like the deviatoric stress tensor
σ′ is calculated from

σ′ = −
(

1− λν

2

)(
Π−Π(0)) . (3.8)

The above equation can also be written in terms of the non-equilibrium
PDF, fneq,m = fm − feq,m as

σ′ = −
(

1− λν

2

) Q∑
m=1

umumfneq,m. (3.9)

Thus, in LBM, the deviatoric stress tensor σ′ can be computed locally
using the non-equilibrium PDF fneq,m, while other numerical methods
require the gradient of velocity to compute this tensor.

The pressure P is calculated from the density using the equation of state
relation as

P = c2
sρ = 1

3ρ. (3.10)
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For the incompressible LBM model, the pressure P is calculated by (see
App. A.1.1)

P = c2
s(ρ− ρ0) = 1

3(ρ− ρ0). (3.11)

Furthermore, the body force term Fm is related to the macroscopic force
F = g + ρe

ρ0 E as

Fm = ωm

c2
s

um · (ρ0F ). (3.12)

The discrete lattice velocity vector um and weights ωm are chosen to
satisfy the following isotropy conditions

〈1, ω〉 =
∑
m

ωm = 1 (3.13a)

〈1, uαω〉 =
∑
m

umα ω
m = 0 (3.13b)

〈1, uαuβω〉 =
∑
m

umα u
m
β ω

m = c2
sδα,β (3.13c)

〈1, uαuβuγω〉 =
∑
m

umα u
m
β u

m
γ ω

m = 0 (3.13d)

〈1, uαuβuγuδω〉 =
∑
m

umα u
m
β u

m
γ u

m
δ ω

m (3.13e)

= κc4
s (δα,βδγ,δ + δα,γδβ,δ + δα,δδβ,γ)

with κ 6= D/(D + 2) [41]. The upper restriction on κ allows us to make
use of the well-known D2Q9, D3Q15 or D3Q19 model where κ = 1. The
Greek letters α, β, γ, δ in the velocities subscripts represents dimension
1, 2, . . . , D. The discrete lattice velocity vector um and weights ωm for
D2Q9 are

um = (umx , umy )

=


(−1, 0), (0,−1), (1, 0), (0, 1) for m = 1, 2, 3, 4
(−1,−1), (−1, 1), (1,−1), (1, 1) for m = 5, 6, 7, 8
(0, 0) for m = 9

(3.14)

ωm =


1/9 for m = 1 · · · 4
1/36 for m = 5 · · · 8
4/9 for m = 9

(3.15)
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and for D3Q19, they are given in App. A.2.1. The linear collision operator
A is defined as

A = M−1ΛM (3.16)

where M is the transformation matrix of size Q×Q and composed of a
combination of the discrete lattice velocity vectors um. The stability of the
LBM can be increased if combinations of the discrete velocity vectors are
chosen to be orthonormal [19, 56]. The choice of orthogonal vectors yield
moments, which are linearly independent of each other. The transformation
matrix M for D2Q9 model is chosen as

M =



1 1 1 1 1 1 1 1 1
−1 0 1 0 −1 −1 1 1 0
0 −1 0 1 −1 1 −1 1 0
1 0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 1 0
0 0 0 0 1 −1 −1 1 0
0 0 0 0 −1 1 −1 1 0
0 0 0 0 −1 −1 1 1 0
0 0 0 0 1 1 1 1 0


. (3.17)

This matrix can be used to convert the particle distribution function vector
f to the moments space vector m and vice versa using

m = Mf , f = M−1m. (3.18)

The nine linearly independent moments for the D2Q9 model can be
arranged in vector form as

m =
(
ρ px py Πxx Πyy Πxy mxyy mxxy mxxyy

)T
. (3.19)

The first three moments ρ, px, py are locally conserved while the other
six moments are not conserved. Multiplying the transformation matrix
M with the equilibrium distribution function feq,m Eq. 3.3 results in the
equilibrium moments meq vector as

meq =
(
ρ ρ0vx ρ0vy P + ρ0v

2
x P + ρ0v

2
y ρ0vxvy

c2
sρ0vy c2

sρ0vx c2
s

(
P + ρ0v

2
x + ρ0v

2
y

))T
. (3.20)

Λ = diag(λm,m = 1, · · ·Q) is the non-negative diagonal collision matrix
with relaxation parameter λm for each moment mi. For the D2Q9 model,
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the diagonal entries are chosen as

λ1 = λ4 = λ6 = λa,

λ2 = λζ ,

λ3 = λb, λ5 = λ7 = λc

λ8 = λ9 = λν . (3.21)

The relaxation parameters λa, λb and λc are tuned between [0, 2] for
stability reasons and in this work, they are set to λa = 0, λb = 1.14
and λc = 1.92. The relaxation parameter λν is related to the kinematic
viscosity ν as

ν = c2
sδt
( 1
λν
− 1

2

)
(3.22)

and the relaxation parameter λζ is related to bulk viscosity ζ as [19]

ζ = (5− 9c2
s)δt

9

( 1
λζ
− 1

2

)
(3.23)

The one by two factor in the relation between kinematic viscosity and
relaxation frequency comes from the second-order time discretization of
the semi-discrete Boltzmann equation and is shown in App. A.1.1.1.

The transformation matrix M , moments vector m and relaxation matrix
Λ for the D3Q19 model are given in App. A.2.1. The MRT collision model
reduces to the most commonly used single relaxation time Bhatnagar-
Gross-Krook (BGK) [13] collision model when the relaxation parameter
λν is used for all entries in the diagonal collision matrix Λ. Thus, the fully
discrete LBE with the single relaxation time BGK collision with first-order
force body term is

fm(x + umδt, t+ δt)− fm(x, t) = λν(feq,m − fm) + δtF
m(x, t). (3.24)

The MRT model overcomes the limitations of the single relaxation time
BGK model such as fixed Prandtl number (Pr = 1) and fixed ratio between
kinematic and bulk viscosity [19]. Additionally, the MRT model is more
stable than BGK since each moment can be relaxed differently to obtain
stability.

In the asymptotic limit under diffusive scaling where the space and
time step size are scaled as δx = ε and δt = ε2 [41], Eq. 3.1 recovers the
incompressible Navier-Stokes equations (see App. A.1.1). The smallness
parameter ε corresponds to the Knudsen number

Kn = lm/L (3.25)
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with molecular mean free path lm and physical length scale L. The Mach
number is given by

Ma = U/c (3.26)

with the flow velocity U in m s−1 and the speed of sound c in m s−1.

3.1.1 Initial conditions
For time-dependent flow simulations, the dynamics of the flow are heavily
dependent on the initial conditions. Therefore, they must be properly
defined. Usually, the initial conditions are defined on macroscopic quan-
tities like density and velocity, so they must be converted into PDF.
The PDF can be split into an equilibrium and a non-equilibrium part as
fm = feq,m + fneq,m. The equilibrium part is a function of macroscopic
quantities: density ρ and velocity v as in Eq. 3.3 and the non-equilibrium
part is a function of shear stress tensor as [52]

fneq,m = − ωm

2c4
s

(
1− λν

2

) (umum − c2
sI
)

: σ′. (3.27)

Since the shear stress tensor σ′ is not straight forward to define at initial
time, the PDFs are simply initialized with the equilibrium distribution
function as

fm(x, t = 0) = feq,m(ρ(x), v(x)). (3.28)

This might result in some inconsistencies but they will be washed out
after several numbers of time steps. The inconsistencies due to equilibrium
based initial conditions can be observed in the flow simulation results with
spacer geometry presented in Section 7.1.

3.1.2 Boundary conditions
For any numerical simulations, the boundary condition (BC) play an impor-
tant role in simulating the real world problems in science and engineering
with bounded domains. Boundary conditions greatly affect the numerical
accuracy and stability of the numerical scheme. Often it is difficult to
define BC mathematically and it is even more difficult on the numerical
implementation as it may require neighbors of neighbors. In many nu-
merical schemes, the problem arises in setting BC for complex geometries.
Fortunately, LBM is very efficient in handling complex geometries due to
its link-based approach and its origin from kinetic theory. However, it
is not straight forward to impose BC which are defined in macroscopic
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variables like pressure (P ) and velocity (v) on the mesoscopic particle
distribution function fm.

In the last decade various BCs for the LBM were proposed and analyzed
[11, 15, 27, 42–44, 55]; nowadays the majority of BCs appearing in standard
incompressible computational fluid dynamics are available for LBM too.
The methodology behind specific BC is different: The most simplest of all
is the BC based on bounce back technique, which comes from kinetic theory.
In this work, the bounce back technique is used to handle wall and inlet
BCs. For outlet, the extrapolation BC is used. Here, BCs implemented
in the lattice Boltzmann solver Musubi [32] for incompressible flows are
presented in detail. In the two-step streaming collision implementation
style, the post-collision PDF fc,m̄(xb, t) from the virtual boundary node xb
to fluid node xf needs to be updated before streaming. Here, m denotes the
direction, which points towards the boundary, i.e. the outgoing direction,
and m̄ is its counter direction or incoming direction such that um = −um̄.
If BCs are to be applied after the collision step then the BCs must be
applied on the incoming direction m̄ of the post-collision PDF at the
boundary node xb. Therefore, the BCs presented here are applied on
fc,m̄(xb, t)

Wall The bounce back rule from the kinetic theory is the most simplest
BC in the LBM, in which particles are bounced back or reflected when they
hit the solid (no-slip) wall. This leads to zero macroscopic velocity v = 0
along the wall, assuming the wall is located at half-way between the fluid
and boundary nodes. In the LBM, this rule is applied by simply copying
the outgoing PDF fm to incoming PDF f m̄ at xf after the collision step,
i.e.

fc,m̄ (xf , t) = fc,m (xf , t) . (3.29)

Figure 3.2 illustrates this BC with blue color representing fluid nodes
and grey color representing solid nodes. The left side of the figure shows
the PDFs fm near the wall before the stream step and the right side
shows those PDFs after the stream step. This rule was analyzed in various
publications and second order velocity and first order pressure accuracy
was confirmed theoretically and numerically [42].

The limitation of the simple bounce back rule is that it results in zero
velocity at wall only if wall is located at half-way between the nodes. To
overcome this limitation of the simple bounce back rule and to improve the
accuracy for complex geometries, a concept of q-values was proposed by
Bouzidi et al. [15]. The q-values qm ∈ [0; 1) are the normalized distance
between the actual position of wall or physical boundary and the adjacent
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(a) Before stream
step

(b) After stream
step

Figure 3.2 Particle distribution function links on the cell near the obstacle.

barycenter of the fluid node as in Figure 3.3. Considering xw to be the
exact location of the wall or the physical boundary and xf to be the
location of the barycenter of the adjacent fluid node, such that um is the
lattice discrete velocity which points towards the boundary, then qm is
defined by

xw = xf + δx qmum. (3.30)
Clearly, for qm = 1/2 the wall is located exactly δx/2 away from the
element center. The q-value bounce back rule is then given by

fc,m̄ (xf , t) =
{

2qmfc,m (xf , t) + (1− 2qm)fc,m (xff , t) if qm < 1/2
1

2qm f
c,m (xf , t) + 2qm−1

2qm fc,m̄ (xf , t) if qm ≥ 1/2
.

(3.31)

Figure 3.3 shows the setup of the q-value bounce back rule for qm > 1/2.

physical boundary
xw

fluid node

xff

fluid node

xf

virtual node

xb

um

um̄

δx/2 + qm · δxδx

Figure 3.3 Illustration of q-values in 1D. The black circles depict the element
centers. The virtual node is behind the boundary and does not exist
[103].

This BC improves the accuracy for arbitrary geometries significantly to
first-order in pressure and second-order in velocity [42]. This BC is always
applied to the spacer geometry in Chapter 7.
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3.2 Multicomponent lattice Boltzmann method

Inlet At inlet, the velocity bounce back rule is applied with macroscopic
velocity vin(xw, t) according to [44, 55].

fc,m̄ (xf , t) = fc,m (xf , t) + 2
c2
s
ωmρ0 (um̄ · vin(xw, t)

)
, (3.32)

with the velocity index um̄ = −um and xw defines the exact position of
wall given by Eq. 3.30. This BC is an extension of the simple bounce back
rule Eq. 3.29 by applying velocity vin to the wall. Therefore, this BC can
also be used for the moving wall.

Outlet At outlet, a macroscopic pressure Po is imposed by outlet extrap-
olation boundary condition from Junk et al. [43] which is given as,

fc,m̄ (xf , t) =
{[
feq,m̄(c−2

s Po, vf ) + fneq,c,m
]

(xb, t) if um̄ = −n

1.5f m̄(xb − n, t+ 1)− 0.5f m̄(xb − 2n, t+ 1) if um̄ 6= −n

(3.33)

where n is the outer normal direction of the boundary. xb−n and xb− 2n
are two consecutive fluid nodes in the opposite direction of the boundary
normal n. The non-equilibrium distribution function fneq,m is given by

fneq,m = fm − feq,m. (3.34)

ve is the macroscopic velocity extrapolated from the adjacent fluid node of
the boundary. In the macroscopic limit, this settings results in the general
outflow condition of the form,

∂v · n
∂n

= 0, ∂v · t
∂n

= 0, P = Po (3.35)

where v · n and v · t are macroscopic velocities in normal and tangential
direction with respect to boundary. This technique is first-order accurate in
pressure [43] and to obtain second-order accuracy in pressure, an alternative
approach was proposed in [45].

3.2 Multicomponent lattice Boltzmann method

The single component LBM presented in the previous Section 3.1 is used
to simulate pure hydrodynamics in the spacer-filled flow channels. To
simulate the transport of ionic species in the diluted and concentrated flow
compartments, the single component LBM is extended to the multicom-
ponent LBM. The main reason for choosing multicomponent LBM in the
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spacer-filled flow channel is its advantage to incorporate complex spacer
geometries. In multicomponent, the LBE of the following form is solved
for each species k,

∂tf
m
k (x, t) + um · ∇fmk (x, t) = Ωmk (x, t) + dmk . (3.36)

Here, dmk is the external driving force for species k in mth direction. The
interaction between different species is defined by the collision operator
Ωm
k . Several collision operators have been proposed for multicomponent

lattice Boltzmann models [3, 5, 6, 26, 33, 40, 66, 86]. Some of those
approaches are shown in Figure 3.4

Multicompo-
nent models

Single-fluid Multi-fluid

Hybrid LBM
and FD Full LBM

FD for
species [26]

LBM for mix-
ture [26, 33]

LBM for
species [33]

Combined
self and cross
collision [5–7]

Separate self and
cross collision

Single lattice
speed [66]

Different lattice
speed (requires

interpola-
tion) [3, 40, 66]

Figure 3.4 Multicomponent simulation approaches
These approaches can be broadly categorized into single-fluid and multi-

fluid model. In single-fluid models, the mixture flow is modeled by single
component LBM and ionic species are modeled either by passive-scalar
LBM with reduced lattice discrete velocity directions [33] or by conventional
numerical schemes like finite differences [26]. Limitation of these approaches
is that they solve the Nernst-Planck equations for ionic species in infinitely
dilute solutions. Whereas in the multi-fluid model, the LBE is defined for
each species and the collision operator defines the interaction between the
species. Some authors [3, 40, 66] separated the collision operator into self
and cross collision such that each collision term for each species is relaxed
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3.2 Multicomponent lattice Boltzmann method

towards its equilibrium according to its relaxation parameter as

Ωmk = Ωmk,k +
∑
l,l 6=k

Ωmk,l

= λνk(feq,mk − fmk ) +
∑
l,l 6=k

λD
k,l

(
ρl
ρ

)
feq,mk

c2
sδt

(um − v) · (vl − vk).

Here, λνk and λD
k are relaxation parameters related to kinematic viscosity

ν and Maxwell-Stefan diffusion coefficient Dk,l respectively as

νk = c2
s

( 1
λνk
− 1

2

)
δt (3.37a)

Dk,l = ρp

c2
tMkMl

( 1
λDk,l
− 1

2

)
δt. (3.37b)

In one of those collision models, [66] proposed a single lattice speed
(SLS) and a different lattice speed (DLS) [3, 40, 66] approach. In DLS,
each species is streamed with a different lattice speed of sound depending
on its molecular weights. Thus, in the streaming step of LBM, the species
with the least molecular weight is streamed to the neighbor lattice and the
other species are streamed to the off-lattice within the lattice grid and an
interpolation is used to obtain the species PDF at the lattice nodes. The
lattice speed of sound for species k is tuned as

cs,k = 1√
3

√
Mk

minl(Ml)
. (3.38)

In SLS, the change in the speed of sound for each species is incorporated
as some constant in the equilibrium function. The disadvantage of the
DLS approach is that it requires interpolation, which is computationally
expensive. Nevertheless, both of these approaches recover the Maxwell-
diffusion equations and the incompressible Navier-Stokes equations in
continuum limit only within the macroscopic mixture averaged velocity in
the equilibrium distribution function of all species.

An alternative approach was proposed by Asinari [7], with a single
collision operator and the interaction between species defined by a specially
tuned velocity term in the equilibrium distribution function that results in
the Maxwell-Stefan diffusion equation in continuum limit. A theoretical
basis of this approach is based upon a BGK like kinetic model for gas
mixtures as proposed by Andries et al. [2]. In [5], Asinari presented explicit
and implicit LBE which are derived by integrating the discrete Boltzmann
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equation by the first-order forward Euler method and the second-order
Crank-Nicolson method respectively. He mentioned that the explicit LBE
suffers from lack of mass conservation so only the implicit LBE must be
used. Similar to single component LBM, the second-order implicit LBE is
converted into second-order explicit LBE using the variable transformation
technique. The disadvantage of this technique in the multicomponent LBM
case is that the linear equation system must be solved to obtain species
velocity of the original PDF on each lattice. It is worth mentioning that all
above mentioned approaches are proposed especially for ideal gas mixtures.
Therefore, a new model for nonideal liquid mixture was developed [38]
which is presented in Section 3.2.1. This new model is implemented in the
in-house LBM solver Musubi which is part of this work. The robustness of
the new model is analyzed on several test cases including complex geometry
setup and they are published in [104].

To decide which of the different multicomponent models to use, the
DLS (without and with scaled molecular weight ratio) and the Asinari
(explicit and implicit LBE) approaches highlighted in Figure 3.4 were
implemented in an experimental 2D LBM code and results are compared to
the finite difference results obtained from gProms [77]. For this experiment,
ternary gas mixture with H2, N2 and CO2 in a tube of length L =
0.0859 m were considered. The Maxwell-Stefan diffusivity coefficients
are DH2,N2 = 8.33 × 10−5 m2 s−1, DH2,CO2 = 6.8 × 10−5 m2 s−1 and
DN2,CO2 = 1.68 × 10−5 m2 s−1. The initial mole fraction profile of each
species is shown in Figure 3.5a. At x = 0 and x = L, wall (no-flux)
boundary condition is assumed for all species, i.e vk = 0.

Figure 3.5b shows the mole fraction χk profile of N2 at t = 1 s for
different multicomponent models: Asinari explicit time stepping [5], Asinari
implicit time stepping [5], DLS without scaled molecular weight ratio
(multspeed) [40], DLS with scaled molecular weight ratio (multispeed
rescaled) [40] and finite difference results from gProms. The figure shows
that the result of the Asinari model with implicit time stepping is closer
to FD than all other models. The multispeed rescaled shows increased
accuracy of result but still is far from FD. The analytical solution is not
available for this test case so the relative L2 error for all models is computed
w.r.t FD assuming FD result is accurate. Figure 3.5c shows the relative L2
error of all models over time for species N2. The explicit Asinari model is
below 2% and the implicit Asinari model shows an error below 0.5% which
is the best solution. Whereas, the errors of DLS with and without rescaled
molecular weight are much higher. All models reach steady state around
the same time and the error reduces towards steady state. From this, it
can be concluded that the Asinari approach is better than the multispeed
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Figure 3.5 Comparison of different multicomponent approaches on diffusion of
ternary gas mixture consists of H2, N2, CO2

(DLS) approach. Therefore, the Asinari model was chosen and extended
for nonideal liquid mixtures to simulate the ED system [38, 104].

3.2.1 Nonideal liquid mixtures

In this section, the multicomponent LBM for nonideal liquid mixtures is
presented which was developed to simulate the transport of ionic species
and mixture in spacer-filled flow channels. To model nonideal liquid mix-
tures, thermodynamic factors which are essential to describe electrolytes
are included in the Maxwell-Stefan relation. Furthermore, the electric
force which drives ionic species towards the membranes is included in
the Maxwell-Stefan equation. The boundary conditions for the multicom-
ponent are presented in Section 3.2.2. Similar to the single component
MRT Boltzmann equation for fluid flows, the discretized MRT Boltzmann
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equation with the external driving force for each species [6] is written as

∂tf
m
k (x, t) + um · ∇fmk (x, t) = Ak (feq,mk (x, t)− fmk (x, t))︸ ︷︷ ︸

=:Ωm
k

(x,t)

+ dmk (x, t), (3.39)

where Ak = M−1ΛkM is the linear collision operator with relaxation
matrix Λk defined for each species k. fmk and dmk are the PDF and
the external driving force for species k in discrete velocity direction m.
The single component equilibrium function given in Eq. 3.3 violates the
in-differentiability principle for multicomponents. I.e. for species with
similar molecular weight Eq. 3.39 should reduce to single component LBE
equation but it does not. The solution to this problem is proposed in [2] by
modifying the velocity in the equilibrium function. The modified species
equilibrium velocity veqk for nonideal liquid mixture is given as

veqk = vk + 1
ρk

∑
l

Γ−1
k,lρlφl

∑
ζ

χζ
D
Dζ,l

(vζ − vl) . (3.40)

Here, Dk,l are the Maxwell-Stefan binary diffusive coefficients between
species k and l and Γ−1

k,l are the inverse of thermodynamic factors. For
ideal mixture Γ−1 = I, and the species equilibrium velocity Eq. 3.40
reduces to

veqk = vk + φk
∑
l

χl
D
Dk,l

(vl − vk) . (3.41)

The thermodynamic equilibrium function in Eq. 3.39 for species k is defined
as

feq,mk (ρk,veqk , v) = ωmρk

(
skm + 1

c2
s

(um · veqk ) + 1
2c4
s

(um · v)2

− 1
2c2
s

(v)2
)
. (3.42)

Notice, that this is essentially the discrete version of the standard Maxwell
equilibrium distribution Eq. 3.3, except for the non-standard density and
velocity variables. In Eq. 3.42, the modified species velocity veqk in the
bilinear part recovers the Maxwell-Stefan equations and the mixture veloc-
ity v in the quadratic part recovers the nonlinear term in the momentum
equation of the incompressible Navier-Stokes equations under asymptotic
analysis, see App. A.1.2. The effect of using the mixture velocity v instead
of the species velocity veqk in the quadratic part of feq,mk is investigated in
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App. A.1.2.5. In equilibrium function feq,mk , the density is weighted by
the parameter skm to incorporate species with different molecular weight as

skm =
{ 1
ω0

+ (1− 1
ω0

)φk, if m = 0
φk else

, (3.43)

where the parameter φk is related to the molecular weight of species Mk

as

φk = minlMl

Mk
≤ 1 (3.44)

and the equation of state for each species is defined as

Pk = c2
sφkρk. (3.45)

Thus, an additional weighting parameter φk allows us to define the equation
of state by properly adjusting the effective local speed of sound for each
species cs,k =

√
c2
sφk. In general, any equation of state is possible in the

presented model but the following restrictions have to be considered:

• The equation of state should depend on slow mass diffusion time
scales and its corresponding quantities like ρ0

k (see App. A.1.2).

• The parameter φk should be positive and ≤ 1 to guarantee stability
of the model.

The weights ωm are chosen to guarantee the isotropy conditions given in
Eq. 3.13 which are the same as in the single component case. For D2Q9,
the relaxation matrix Λk [7] is set to

Λk =



0 0 0 0 0 0 0 0 0
0 λD

k 0 0 0 0 0 0 0
0 0 λD

k 0 0 0 0 0 0

0 0 0 λ
ζ
k

+λν
k

2
λ

ζ
k

−λν
k

2 0 0 0 0

0 0 0 λ
ζ
k

−λν
k

2
λ

ζ
k

+λν
k

2 0 0 0 0
0 0 0 0 0 λνk 0 0 0
0 0 0 0 0 0 λhom 0 0
0 0 0 0 0 0 0 λhom 0
0 0 0 0 0 0 0 0 λhom


.

(3.46)
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The entries in the relaxation matrix are related to the macroscopic quanti-
ties by

λD
k = K

ρD , (3.47a)

λνk = 1
3ν , (3.47b)

λζk = 2− φk
3ζ . (3.47c)

Where K is the bulk modulus of the liquid mixture, which defines fluid
resistance to uniform compression. λhom is the relaxation for higher order
moments and if not specified otherwise it is set to 1.0 to maintain stability.
Numerical values for some electrolytes relevant in electrodialysis can be
found for example in [67]. The parameter D is free to be chosen for stability.
If not mentioned otherwise, D is chosen such that λD

k = 2. For liquids and
gas phases the bulk modulus defines the speed of sound by the relation

c2
s = K

ρ
. (3.48)

ν and ζ are the kinematic viscosity and bulk viscosity of the mixture
respectively. The factor 1/3 in λνk and λζk corresponds to the lattice speed
of sound. Note that the relaxation parameters λD

k and λνk are species
independent, but this restriction does not lead to a single independent
diffusion parameter. Instead, the momentum exchange among the species
is modeled by veqk in feq,mk in Eq. 3.42. The relaxation matrix for D3Q19
is given in App. A.2.1. Finally, the equilibrium moments for species k,
the meq

k vector can be obtained by multiplying the transformation matrix
M (Eq. 3.17) with the equilibrium distribution function feq,mk Eq. 3.42
results in

meq
k =

(
ρk ρkv

eq
x,k ρkv

eq
y,k Pk + ρkv

2
x Pk + ρkv

2
y

ρkvxvy c2
sρkv

eq
y,k c2

sρkv
eq
x,k c2

s

(
Pk + ρkv

2
x + ρkv

2
y

))T
. (3.49)

The forcing term dmk in Eq. 3.39 for nonideal liquid mixture is directly
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related to the diffusive driving forces and mixture forces as

dmk = minα(Mα)ωmum ·

(∑
l

Γ−1
k,lc

0
tF l

)
︸ ︷︷ ︸
=:dm,(1)

k
diffusive driving force on species k

+ ωm

c2
s

um ·
(
ykρ

0F
)

︸ ︷︷ ︸
=:dm,(3)

k
fraction of mixture force on species k

. (3.50)

Here, dm,(1)
k is the diffusive driving force on species k as described by the

Maxwell-Stefan diffusion equation. dm,(3)
k is the fraction of mixture force

on species k as described by the momentum equation of the incompressible
Navier-Stokes equations. The subscripts (1) and (3) defies the order of
magnitude of the force term in their corresponding equations. They come
from the asymptotic analysis, see App. A.1.2. F k is the external diffusive
drive force acting on species k and it discriminates the nature of the
component due to its charge as given by Eq. 2.20. F is the external body
force of mixture acts on all the components in a same way as given in
Eq. 2.56 i.e. F = g. The relation of the external forcing term with the
incompressible Navier-Stokes equations is given in App. A.1.2 by matching
terms of the right order in the asymptotic analysis. In case of ideal mixture,
the forcing dmk can be written as

dmk = ωmum ·
(
c0
tminα(Mα)F k + yk

c2
s
ρ0F

)
. (3.51)

Here, the macroscopic density and momentum of the species k are obtained
by

ρk =
∑
m

fmk , (3.52a)

pk = ρkvk =
∑
m

umfmk . (3.52b)

Direct calculations show that the density moments of fmk and feq,mk are
equal

ρk =
∑
m

fmk =
∑

feq,mk . (3.53a)
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This shows that the species density is conserved in collision i.e. is collision
invariant. However, the species velocities vk are not conserved in collision,
i.e. the first order moments of fmk and feq,mk do not equal necessarily. In
general, the following relation holds

pk = ρkvk =
∑
m

umfmk

6=
∑
m

umfeq,mk = ρkveqk

= ρkvk +
∑
l

Γ−1
k,lρlφl

∑
ζ

D
Dl,ζ

χζ (vζ − vl) . (3.53b)

Furthermore, we notice that for Γ = I and summing the above equation
for all the components gives∑

k

ρkveqk =
∑
k

ρkvk = p. (3.54)

Therefore the total momentum is a collision invariant of our model. The
effect of concentration dependent diffusion coefficients in nonideal Maxwell-
Stefan formulation where Γ 6= I is discussed in [38, 103].

The fully discrete LBE for species k is obtained by integrating the
continuous Boltzmann equation with MRT collision model (Eq. 3.39)
along its characteristics um. Similar to the single component case, the
integrand of the collision term is approximated with trapezoidal rule and
the diffusive forcing term is approximated by forward Euler, App. A.1.2.4.
Dissimilar to the single component case, where relaxation parameters in
the relaxation matrix Λ were transformed according to Eq. A.55, here in
the multicomponent model, the relaxation parameters in Λk are unchanged.
Thus, the fully discrete MRT-LBE for each species k with first-order force
term is written as

f̄mk (x + umδt, t+ δt)− f̄mk (x, t) = δtÃk

(
feq,mk (x, t)− f̄mk (x, t)

)
+ δtdmk (x, t). (3.55)

Notice that the fully discrete relaxation matrix Ãk = Ak

(
I + δtAk

2

)−1

can be pre-computed at initialization. With this pre-computation, the cost
for applying the relaxation matrix for one species is very much the same
as for single component MRT-LBM. However, due to the introduction of
the transformed PDF f̄k and the collision invariance of species momen-
tum, Eq. 3.53b, the linear equation system has to be solved to compute
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the untransformed species momentum pk from the transformed species
momentum p̄k for every lattice cell

p̄k = pk + δtλD
k

2
∑
l

plφl
∑
ζ

Γ−1
k,l

D
Dl,ζ

χζ

− δtλD
k

2
∑
ζ

pζφζ
∑
l

Γ−1
k,l

D
Dl,ζ

χl. (3.56)

For ideal mixtures, the above equation can be written as

p̄k =

(
1 + δtλD

k

2 φk
∑
l

D
Dk,l

χl

)
pk −

δtλD
k

2 χk
∑
l

D
Dk,l

φlpl. (3.57)

3.2.2 Boundary conditions
In this section, boundary conditions for the multicomponent lattice Boltz-
mann method are presented. Similar to the single component case discussed
in Section 3.1.2, BC for the multicomponent model are also given in terms
of macroscopic moments of the target equation, e.g. ρk, v,vk, · · ·. Thus,
the number of macroscopic BCs are insufficient to determine the state in
mesoscopic space, i.e fmk . In contrast to the single component case, there
are a few difficulties in treating BC for multicomponent such as:

• Large number of different BC due to the complex nature of the
macroscopic multicomponent equations.

• Each species requires different boundary condition along the same
boundary.

• Non-standard diffusion-flux boundary for species.

• The multicomponent LBM Eq. 3.55 is formulated in transformed
variable, therefore the moments which are defined for the boundary
must be converted to transformed variable using Eq. A.123.

In addition to these difficulties, there are only a few proposed boundary
conditions for multicomponent flows and most of them are analyzed only on
binary mixtures. The only relevant BC proposed for multicomponent flows
are moments based BC for binary mixtures proposed in [10]. This type of
boundary conditions is robust, can be used for any specific macroscopic
boundary condition, and is purely local. It can be applied even in presence
of the variable transformation Eq. A.130. The key idea is to reduce the
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PDF at the boundary to the linearly independent information and impose
the remaining information via macroscopic moments. The main drawback
of this approach is the handling of arbitrary geometries because it is not
straight forward to compute moments for arbitrary unknown PDFs. An
alternative to the moment based approach is the standard bounce back
BC which works well for complex geometries. In contrast to the moment
based boundary conditions, bounce back boundaries are implemented
without additional boundary elements. This makes them more efficient
with regards to memory and computational cost. Both these approaches
are implemented in Musubi and in addition the most simple equilibrium
boundary condition is also implemented for Dirichlet mole fraction and
mole flux.

A single component bounce back BC like simple wall, higher order q-
values and velocity bounce back presented in Section 3.1.2 can be defined
directly on the transformed variable f̄km in the multicomponent setting
[103]. However, to simulate the ions transport in dilute and concentrate
channels BC for certain other variables are required such as mole fraction
and mole flux BC. The mole fraction BC is required to specify the species
concentration at the inlet. The specified mole fraction is converted into
species mass density using the relation

ρk,in = ctχk,inMk (3.58)

and the equilibrium function is used to update the incoming direction m̄
of PDFs as

f̄ m̄k (xb, t) = feq,m̄k (ρk,in,vk, v). (3.59)

Here, the species and mixture velocities (vk and v) are extrapolated from
the neighbor lattice along the normal boundary.

In ED application, species concentrations and velocity are measured
at both inlet and outlet. However, the channel length in the numerical
simulation setup is smaller than the actual channel length so the species
concentrations and velocity are defined at the inlet and they are extrapo-
lated at the outlet. At the inlet, concentration and velocity of the species
are defined as the mole flux of the species Nk,in = ck,invin. The species
mole flux Nk,in is converted into the species mass flux nk,in using the
relation nk,in = Nk,inMk and the incoming direction m∗ of PDFs are
updated using

f̄c,m̄k (xb, t) = f̄m,ck (x, t) + 2
c2
s
ωm
(
um̄ · nk,in(xw, t)

)
. (3.60)
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This BC is also used for source and sink BC to inject and remove ionic
species respectively from spacer-filled flow channels. The source and sink
boundaries are used to couple the flow channel with the membrane. In
this thesis, the mole flux for source or sink boundary is computed from
the membrane black-box model presented in Section 3.3.

3.3 Membrane black-box model

In ED stack, the membranes play a vital role due to theirs elective ions
transport. As previously presented in Section 2.2.2, the Nernst-Planck
equations are used to describe the ions transport through the membranes.
Assuming electroneutrality and neglecting concentration gradient in mem-
branes, selective ions are transported through the membranes only due to
the applied external electrical field. In Section 2.2.3, the migrative flux
Nmig,mem
k of species k through membranes is given by Eq. 2.53 with Tmemk

being the transport number of species k in the membrane and id,mem being
the current density through the membrane. Thus, if the transport number
Tk and the current density id are known then it’s possible to define the
migrative flux Nk as BC to the multicomponent LBM model. The positive
and negative direction of the flux defines the source and sink boundaries
respectively. Therefore, instead of solving the Nernst-Planck equations
explicitly in the membranes, it can be treated as black-box by defining the
transport number and flux direction as the boundary conditions.

In this section, the black-box model for the transport processes in the
ion-exchange membranes is presented. It is based on a pure empirical de-
scription of the current-voltage characteristics of the membrane. Moreover,
the current through the ion-exchange membranes is carried mostly by the
counter ions or mobile ions. Therefore, the charge selective transport of
multiple-ionic species is defined by concentration dependent transport num-
bers Tk. The transport processes are not spatially resolved with respect to
the membrane thickness, instead they are modeled by the black-box model.
If a dependence of the transport properties on the concentrations of the
external electrolyte solutions is assumed, this leaves a spatial distribution
only along the length and width of the membrane with the coordinates
xmem ∈ [xmemL ,xmemR ] , l = 1, 2, where xmemL and xmemU are fixed lower
and upper bounds.
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3.3.1 Assumptions and modeling equations
Lets recall the mole flux density Nmem

k of the ionic species through the
membrane given in Eq. 2.53 as

Nmem
k (xmem, t) = Tmemk (xmem, t)

zkF
id,mem (xmem, t) , k = 1, ..., ni,

(3.61)
where ni is the number of ionic species considered in the electrolyte solution.
Tmemk is the transport number describing the fraction of electric current
that is transported by a specific ionic species [72, 91–93] and id,mem is the
current density transported through the membranes. The relation between
current density and electric potential is given by the Ohm’s law expression
which is the most basic description of the current-voltage characteristics
as

ψl,mem (xmem, t)−ψr,mem (xmem, t) = −Rmem (xmem, t) īd,mem (xmem, t) .
(3.62)

Here, ψl,mem and ψr,mem are the electric potential at the left and right
side of the membrane respectively, Rmem is the concentration dependent
specific surface membrane resistance and īd,mem is the current density
transported through the membrane along the normal direction of the
membranes and it is given as

īd,mem (xmem, t) = nl · id,l (x, t) = −nr · id,r (x, t) . (3.63)

In other words, īd,mem corresponds to the orthogonal projection of the
current density at the left id,l and right id,r side of the membrane. The
normal vectors nl and nr point into the membrane surface. With this, the
scalar molar fluxes of the ionic species through the membranes along its
normal direction n can be expressed as

N̄mem
k (xmem, t) = Tmemk (xmem, t)

zk F
īd,mem (xmem, t) . (3.64)

Furthermore, the empirically determined transport numbers have to
satisfy the constraint

1 =
ni∑
j=1

Tmemk (xmem, t) . (3.65)

In case of multicomponent solutions, membrane specific correlations have
to be derived, which shows a strong influence of the concentrations in the
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3.3 Membrane black-box model

external electrolyte solutions. The correlations for the transport numbers
and the effective surface membrane resistance are derived from the Nernst-
Planck equations in Section 2.2.3. Recall Eq. 2.54, the transport number
of species k through the membrane is given as [93]. This results in

Tmemk (xmem, t) = zk Dk (xmem, t) c̄memk (xmem, t)∑ni

j=1 z
2
j Dj (xmem, t) c̄memj (xmem, t)

(3.66)

where Dk is the Nernst-Planck diffusion coefficient and c̄memk are the aver-
aged concentrations of the ionic species in the membrane phase computed
as

c̄memk = 1
2
(
ce,lk + ce,rk

)
. (3.67)

Here, ce,lk and ce,rk are concentration of ionic species in the electrolyte
at left and right side of membrane respectively. The surface membrane
resistance is given as

Rmem (xmem, t) = RT

δmem
∑ni

j=1 zj Dj (xmem, t) c̄memj (xmem, t)
. (3.68)

Here, δmem is the thickness of the membrane and R is the universal gas
constant.

Additionally, an empirical correlation for the water transport in the
membrane is given by Fidaleo et al. [24] as

N̄mem
w (xmem, t) = Tw

F īd,mem (xmem, t)

+ LW ·
(
ISl (xmem, t)− ISr (xmem, t)

)
. (3.69)

Here, N̄mem
w is the water flux density through the membrane, Tw is the

water transport number, LW is the osmotic water transport coefficient.
ISl and ISr is the ionic strength of the electrolyte solution at the left and
the right membrane side, respectively which is defined as

ISl (xmem, t) = 1
2

ni∑
k=1

z2
k c

mem
k (xmem, t) . (3.70)

Model parameters Lee et al. [57] and Fidaleo et al. [24] use a constant
surface membrane resistance. The experimental values of the surface
membrane resistance that have been determined for different membranes
vary in the range of 0.3 to 5 Ωcm2. In [24] experimentally determined
values for the parameters characterizing the water transport through the
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membrane are given as LW = 0.032
3600 m s−1 and Tw = 9.31. Transport

numbers Tmemk are usually measured in a single salt electrolyte. Fidaleo
et al. [24] report estimated values for an sodium chloride solution as
T cemNa+ = 0.971 and T aemCl− = 0.998.
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3.4 Lattice Boltzmann method for the electric potential

The Poisson’s equation Eq. 2.64 is an elliptical equation (i.e. time invariant)
but the LBM intrinsically deals with parabolic (time dependent) equations.
Therefore, to solve the Poisson’s equation with LBM, it is necessary to
introduce an artificial time-dependent term into Eq. 2.64 [62]

∂tψ(x, t) = γ∇2ψ(x, t) + γ
ρe(x, t)

ε
. (3.71)

Here, ρe is the charge density and ε is the electric permittivity. γ is a
non-zero coefficient (γ > 0) represents the potential diffusivity and it’s used
to control the evolution speed of the transient electric potential equation
Eq. 3.71. Note that the Poisson’s equation Eq. 2.64 is the steady state
solution of Eq. 3.71 for any γ. The value of γ affects the numerical stability
and also the computational cost. From some preliminary tests, the optimal
value is found to be 0.167 and for this value a numerically accurate electric
field can be obtained from Eq. 3.79. Since the transient electric potential
equation Eq. 3.71 needs to be solved for steady state solution for every
physical time step of the multicomponent flow equations. The simple
and computationally cheaper, the BGK collision model with the single
relaxation parameter λ̄γ is used. The BGK Boltzmann equation for the
electric potential discretized with a finite set of discrete velocities um with
source term for Eq. 3.71 can be written as

∂tf
m(x, t) + um · ∇fm(x, t) = λγ(feq,m(x, t)− fm(x, t)) + Sm. (3.72)

The Poisson’s Eq. 2.64 is recovered from the above equation under asymp-
totic analysis (App. A.1.3). Here fm is the PDF of the electric potential
and its equilibrium distribution function feq,m is given as

feq,m(x, t) = ωmψ. (3.73)

The source term Sm is related to the right hand side of the Poisson’s
Eq. 2.64

Sm = ωmγ
ρe(x, t)
εrε0

. (3.74)

The fully discrete BGK LBM for Eq. 3.71 can be written as

f̄m(x+umδt, t+δt)+f̄m(x, t) = λ̄γ(feq,m(x, t)−f̄m(x, t))+δtSm. (3.75)

The relaxation time λ̄γ is related to the potential diffusivity γ by

γ = c2
sδt
( 1
λ̄γ
− 1

2

)
. (3.76)
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With lattice speed of sound cs = 1/
√

3 and lattice time step δt = 1, the
above equation can be rewritten as

γ = 1
3

( 1
λ̄γ
− 1

2

)
. (3.77)

The macroscopic electric potential ψ is computed from the distribution
function by

ψ =
∑
m

f̄m. (3.78)

The macroscopic electric field E, which is the driving force of ions towards
the membranes, can be computed locally using (App. A.1.4)

E = −∇ψ = λ̄γ

c2
sδxδt

∑
m

umfm

= 3λγ
∑
m

umfm. (3.79)

3.4.1 Boundary conditions
Here, the unknown post-collision PDF fc,m̄(xb, t) at a virtual boundary
node xb in incoming direction m̄ is updated with the non-equilibrium
extrapolation method [27, 61]. This method works for curved boundaries
with q-values, which is essential to solve the electrical potential on the
spacer geometry. Notations used here are represented in Figure 3.3. The
unknown post-collision PDF at a virtual boundary node xb can be ex-
pressed as the sum of equilibrium and non-equilibrium PDF at the virtual
boundary node as

f̄c,m̄(xb, t) = feq,m̄(xb, t) + fneq,m̄(xb, t). (3.80)

The equilibrium function feq,m̄(xb, t) can be calculated as

feq,m̄(xb, t) = ωm̄ψb (3.81)

where ψb is the electric potential at the virtual boundary node. For the
Dirichlet condition, the electric potential ψw is given at the exact physical
boundary position xw. Thus, the electric potential at the virtual boundary
node is obtained as [61]

ψb =

{
1
q
[ψw + (q − 1)ψf ] if q ≥ 0.75

[ψw + (q − 1)ψf ] + 1−q
1+q [2ψw + (q − 1)ψff ] if q < 0.75

. (3.82)
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For the Neumann condition, which is required at the spacer geometry, the
electric potential at virtual boundary node ψb is obtained by simple second
order extrapolation

ψb = (4ψf − ψff )/3. (3.83)
Finally, the non-equilibrium PDF at virtual boundary node fneq,m̄(xb, t)
is obtained by the following second-order approximation [61]

fneq,m̄(xb, t) =


f m̄(xf , t)− feq,m̄(xf , t) if q ≥ 0.75

q[f m̄(xf , t)− feq,m̄(xf , t)]
+(1− q)[f m̄(xff, t)− feq,m̄(xff , t)] if q < 0.75

.

(3.84)

Note that the calculation of the non-equilibrium PDF at xb is independent
of the Dirichlet and Neumann conditions.

3.5 Parameterization

All the variables used in the LBM are in lattice units, they are parameter-
ized using the following fundamental physical quantities in SI unit:

• Size of a fluid cell δx [m]

• Time step δt [s]

• Mass density ρ [kg m−3]

• Mole density ct [mol m−3]

• Fundamental electric charge q [1.602 176 57× 10−19 C]

• Temperature T [K].

To distinguish between the physical and the lattice variables asterisk ∗ has
been added to the lattice variables in this section. In previous sections
3.1, 3.2, 3.4, the lattice velocity c∗ = δx∗

δt∗ = 1. i.e., the fluid particle can
travel only one lattice cell per time step. So, the lattice cell size δx∗ and
the lattice time step δt∗ are kept constant during the whole simulation.

δx∗ = δx

δx
= 1, (3.85)

δt∗ = δt

δt
= 1. (3.86)
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Additionally, the mass density ρ, the mole density ct, the charge q and
the temperature T in lattice units are scaled to unity and kept constant
during the whole simulation

ρ∗ = ρ

ρ
, c∗

t = ct
ct
, q∗ = q

q
, T ∗ = T

T
. (3.87)

Using the fundamental physical SI units other lattice variables can be
calculated. The lattice viscosity ν∗ and the lattice velocity v∗ can be
calculated from the physical kinematic viscosity ν and the physical velocity
v using

ν∗ = ν
δt

δx2 , (3.88)

v∗ = v
δt

δx
. (3.89)

The pressure p, force (F ), potential ψ, electric field (E), mole flux (J),
diffusivity coefficient (Di), charge density ρe, current δA, current density
id and dielectric constant ε0 in lattice can be obtained as follows:

p∗ = p
δt2

ρδx2 , F ∗ = F
δt2

ρδx4 , φ∗ = φ
δt2C

ρδx5 , E∗ = E
δt2q

ρδx4 ,

J∗ = J
δt

ctδx
, D∗

i = Di
δt

δx2 , ρe,∗ = ρe
δx3

q
, δA∗ = δA

δt

q
, (3.90)

id,∗ = id
δtδx2

q
, ε∗

0 = ε0
ρδx6

q2δt2
.

The physical constants like Faraday F = 96 485.3365 C mol−1and gas
constant R = 8.314 462 1 kg m2 s−2 mol−1 K−1in lattice are given as

F∗ = F ctδx
3

q
(3.91)

R∗ = Rδt
2ctT

ρδx2 . (3.92)

3.6 Conclusion

In this chapter, the numerical scheme LBM to solve three physical equa-
tions was presented. The LBM for fluid flow to solve the incompressible
Navier-Stokes equations in Section 3.1, LBM for multicomponent flow to
solve the multicomponent transport equations in Section 3.2 and LBM for
electric potential to solve the steady state potential equation in Section 3.4.

60



3.6 Conclusion

The fully discrete LBE equation with force/source term of each of those
LBMs are only first-order in time because the second-order discretization
of force/source term results in the modification of macroscopic velocity/po-
tential with force/source term. The current implementation of the LBM
solver Musubi(see Section 5.4.3) is not designed for such modification of
macroscopic velocity/potential since the force/source is added to the LBE
after the compute (stream-collision) kernel. Therefore, the implemented
LBM scheme is only first-order when an external force is considered. How-
ever, it can be easily tackled by choosing small time steps. To increase
numerical stability, the MRT collision model was introduced for both
LBM for fluid flow and multicomponent flow. For the electric potential,
the BGK collision model is sufficient. For all these LBMs, the PDFs are
initialized with their equilibrium functions. Initializing with equilibrium
functions causes numerical fluctuations and they remain in the domain
for several time steps until they get washed out. This initial fluctuation
can be minimized by slowly ramping the inflow velocity from rest. The
asymptotic analysis of the discrete Boltzmann equation recovering each
of the LBMs macroscopic physical equations under diffusive scaling is
detailed in App. A.1.1, App. A.1.2, App. A.1.3.

Several ways to apply BCs in LBM were presented: bounce-back BC for
fluid flow, equilibrium, bounce-back and moments based BC for multicom-
ponent flow and non-equilibrium extrapolation BC for electric potential.
Every treatment has its advantage and disadvantage. The advantages of
bounce-back BCs are that they are simple, straightforward and easy to
implement especially for no-slip wall boundaries. However, the numerical
accuracy might be reduced for curved boundaries and this is resolved by
using q-values to approximate the curved boundaries. The moments based
BC is robust and accurate but difficult to define moments equation of
unknown PDF for curved boundaries. The equilibrium BC are easy to
implement by setting the unknown PDF to equilibrium function. It’s
stable but less accurate than bounce-back and moments BC. Finally, the
non-equilibrium extrapolation BC is presented for LBM for the electric
potential which is stable and accurate for curved boundaries using q-values.

The multicomponent LBM introduced in Section 3.2 was developed as
part of this thesis to simulate the transport of ionic species in nonideal
liquid mixtures. Different multicomponent models were investigated and
the model proposed by Asinari was found to be accurate and more flexible
to implement than others. Also, it can be used for mixtures with large
molecular weights ratios between the species. In this model, the velocity
in the equilibrium function was modified such that the Maxwell-Stefan
equations are recovered in the asymptotic limit. Though this model has
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its advantages, it was proposed for gas mixtures only so beforehand one
of the objectives of this thesis is to extend it for nonideal liquid mixtures.
During this extension, it was found that the Navier-Stokes equations for
mixtures could be recovered only when the modified velocity is used in
the linear part (second term) of the equilibrium function and the mixture
velocity in the quadratic part (third and forth term) of the equilibrium
function. The investigation on the effect of the choice of velocity in the
equilibrium function is discussed in App. A.1.2.5. The first-order time
discretization of the multicomponent Boltzmann equation suffers from lack
of mass conservation of species and stability so the Boltzmann equation is
discretized by second-order Crank-Nicolson scheme. The Crank-Nicolson
discretization results in an implicit equation but can be turned into an
explicit scheme by variable transformation. The density moments of the
transformed equations are conserved. However, the velocity moments are
not conserved due to the change in the velocity term in the equilibrium
function. Thus, to obtain the actual species velocities, the linear equation
system of size of number of species needs to be solved for every element.
Even though this results in additional computations, it can be optimized
for certain number of species to obtain good sustained performance in
supercomputers through efficient utilization of processors.

In this work, the membranes are not explicitly solved by a numerical
scheme. Instead the black-box model was proposed to model the membrane
characteristics through pure empirical relations. The selective transport
characteristic of the membrane is defined by the transport number Tk of
species through the selective ion exchange membrane. Thus, this model
computes the mole flux Nk of the species from the current density id and
the transport number Tk of species. The mole flux Nk of the species is
treated by the multicomponent LBM as source/sink boundary condition.
The direction of the flux defines source or sink. The incoming direction
(pointing away from the membrane) is the source and outgoing direction
(pointing towards the membrane) is the sink. In addition to ionic species
transport through the membrane, the empirical relation for the water
transport through the membrane was also introduced.

The LBE in general is an evolution equation but the Poisson’s equation
for the electric potential is a time-independent steady state equation. So, to
solve this equation using the LBM scheme, an artificial time was introduced
in the Poisson’s equation. Therefore in a coupled simulation setup, the
LBM for the electric potential must be solved until a steady state solution
is reached at every time step of multicomponent flow. The steady state
solution can be obtained faster by either choosing the spatial resolution
lower than for the multicomponent flow or by decreasing the number
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of lattice directions. Since it’s better to have a high spatial resolution
to maintain accuracy of the coupling simulation, the smaller stencil is
preferred. Additionally, the artificial potential diffusivity, which is used to
modify the relaxation parameter can also be tuned to reduce the number
of iterations to reach steady state. From initial simulations, the potential
diffusivity of 0.167 is found to be optimal so if not mentioned this is the
default value used for artificial potential diffusivity.

At last, this chapter was concluded with the parameterization of physical
variables, i.e. conversion of physical units to lattice units. Here, the basic
SI units like meter (m), second (s), Kelvin (K), Coulomb (C), mole (mol)
and kilogram (kg) are used to parameterize the element size (δx), time
step size (δt), temperature, fundamental electric charge, mole density and
mass density respectively.
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In this chapter, the theoretical concept for coupling the numerical ap-
proaches which were presented in the last chapter to simulate different
physical subsystems (Figure 2.1) is introduced. Furthermore, the physical
conditions to be satisfied on the coupling interface and the variables to be
exchanged between the subsystems are presented. Here, the term "domain"
represents the individual physical subsystems and the term "interface"
refers to the surface or the volume through which the individual physical
subsystems interact with each other. The ED process contains three do-
mains: 1. Flow channel with spacer, 2. Membrane and 3. Electrodynamics.
The coupling strategy is derived from considering the physical interaction
of these subsystems or domains. From ED layout in Figure 1.4, it is obvious
that the flow channel with spacer interact with the membranes only via the
surface area resulting in a surface coupling, where as both the flow channel
and the membrane interact with electrodynamics on the entire volume
resulting in a volume coupling. For both surface and volume coupling, the
number of points on which variables need to be exchanged depends on
the mesh resolution on either side of surface and volume. However, the
volume coupling is more involved since more points in space are coupled.

At first, the general set-up of an ED process and its modules are intro-
duced in Section 4.1. Then, the couplings of different numerical approaches
are presented in detail. As mentioned in the previous chapter, the mul-
ticomponent LBM (Section 3.2) is deployed to simulate the transport of
ionic species and the mixture. The species transport through membranes
is modeled by the black-box model (Section 3.3) and the electrodynamics
in the entire stack is solved by LBM for the electric potential (Section
3.4). In Section 4.2, the coupling of multicomponent LBM in spacer-filled
flow channel with membrane black box model is presented. Additionally,
the physical conditions to be satisfied on the membrane and electrolyte
interface are discussed in detail. Finally, the coupling of the multicom-
ponent LBM with the LBM for electric potential is presented in Section
4.3. It is worth mentioning that there is no need to couple the membrane
black-box model with electrodynamics. However, if in the future the
Nernst-Planck equations are to be considered for membranes then it can
also be numerically solved using LBM [101]. In this case, the membrane
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must be coupled with electrodynamics in a way similar to the coupling of
the membrane with the flow channel.

4.1 General set-up for a model of an ED process and its
modules

The structure of an ED batch process in laboratory is sketched in Figure
4.1. The processed electrolyte solution is initially fed to the respective
storage tanks of the concentrate and dilute channels. Then, the electrolyte
solution is pumped from the storage tanks to the electrodialysis module
where the salt concentration in the concentrate channels increases while
it decreases in the dilute channels. After the module, the solutions are
recycled to the corresponding storage tanks until the desired product
quality (e.g. an appropriate dilute concentration) is reached.

Figure 4.1 Scheme of a typical ED batch process.

As seen in Figure 1.4, Anion- (AEM) and Cation-Exchange-Membranes
(CEM) are arranged in an alternating manner in between a pair of elec-
trodes. The spacer-filled flow channels between the membranes are rinsed
with solution from the concentrate and dilute channels respectively. Thus,
the repeating unit consists of one dilute and one concentrate channel with
one of AEM, CEM. Figure 4.2a illustrates the coupling interaction between
different physical subdomains in a repeating unit.

4.2 Coupling of multicomponent LBM and membrane
model

The multicomponent LBM and the membrane transport model are coupled
by introducing relations for the local concentrations and the total fluxes
for all species in the system. In detail, the surface balance equations
Eq. 4.2 are introduced as boundary conditions for the multicomponent
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LBM enforcing the total flux of all species at the boundary. In turn,
the multicomponent LBM provides the local species concentrations cek
as output at the boundary. From the concentration in the electrolyte
solution, average concentrations in the membrane c̄memk are determined
using Eq. 3.67. With c̄memk , the black-box membrane model introduced in
Section 3.3 calculates the molar fluxes Nmem

k which are required in the
surface balance equations Eq. 4.2. The exchange of variables between the
multicomponent LBM and the membrane model is illustrated in Figure
4.2b. The physical condition to be satisfied on the membrane-electrolyte
interface is presented in the following section.

4.2.1 Membrane-electrolyte interface

Essential for the coupling of the IEM and flow-channels is the description of
the resulting interface. The interface between an IEM and the electrolyte
solution is abstracted as an infinitesimally thin phase, such that no storage
of extensive quantities occurs. Furthermore, it is assumed that no chemical
reactions take place in the interface. With these assumptions, general
surface balance equations can be used to describe the transport processes
across the interface. For the coupled system of nonideal mixtures, the
activity coefficients γk of the ions must be defined at the interface and they
are obtained assuming local electro-chemical equilibrium at the membrane-
electrolyte interface.
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4.2.1.1 Surface balance equations

The conservation laws for the extensive1 quantities in a general thermo-
dynamic phase hold in a relative manner at the interfaces in between
the membrane and the electrolyte. Thus, surface balance equations are
to be formulated expressing the conservation of mass and momentum.
As isothermal conditions are considered, energy balance equations are
neglected.

Surface balance for the species mass start with the conservation of the
molar species fluxes across the interface and it can be is expressed in form
of the surface balance equation as

n · (Ne
k −Nmem

k ) = 0, k = 1, ..., n, (4.1)

where n is a normal vector of the membrane surface. The superscripts m
and e refers to membrane and electrolyte phase respectively. Ne

k = cek vk =
Jek + cek v is the total molar flux in the electrolyte and Nmem

k = Jmemk

is the total molar flux in the membrane phase. In case of the black-box
membrane model, J̄memk is a scalar in the normal direction of the membrane
surface, such that Eq. 4.1 can be simplified to

n ·Ne
k − J̄memk = 0, k = 1, ..., n. (4.2)

The surface balance equations Eq. 4.1 and Eq. 4.2 relates the normal
components of the fluxes in the membrane and electrolyte solution, re-
spectively. Thus, for a given flux J̄memk entering or leaving the electrolyte
channel, the normal components of the diffusive fluxes Jek, k = 1, ..., n are
fixed.

Assuming that the mass transport along the tangential directions are
negligible compared to the normal direction, the no-flux conditions are
applied for flux tangential to the membrane surface, i.e.

t ·Ne
k = 0, k = 1, ..., n, (4.3)

where t is the direction tangential to the membrane surface.

Surface balance for momentum defines the species balance equation for
the conservation of the momentum on the interface as

n · (Πe −Πmem) + F̄ = 0, (4.4)
1depends on the size of the system, E.g: mass, volume.
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where Πe and Πmem are the total momentum fluxes in the electrolyte and
membrane, respectively. F̄ is the momentum source term corresponding
to external electrical force in the normal direction of the membrane. In
the electrolyte the total momentum flux is defined as

Πe = ρve ve + σ′e + I P e, (4.5)

where σ′e is the deviatoric viscous stress tensor and I is a diagonal
matrix with unity entries. In membrane phase, it is not straightforward to
define the total momentum flux tensor Πmem. Therefore, the following
assumptions are made

• The viscous stresses tensor is neglected due to the very slow flow
velocity in the membranes [70] and

• The convective acceleration terms are neglected because the density
ρ of the transported fluid is difficult to evaluate in the membranes.

Additionally, at mechanical equilibrium i.e., no velocity gradients, the
following relation holds [96]

1
ρ
∇P =

n∑
k=1

ykF (4.6)

For example, consider the scenario of an ideal selective cation membrane,
where the total flux that is transported across the membrane consists of
sodium ions and possibly only a small fraction of water. In the simplest
scenario, neglecting the viscous stress tensor and the convective acceleration
term in the membrane phase, Eq. 4.4 simplifies to one relation for the
normal component

n · (ρve ve + σ′e + I (P e − Pmem)) = 0. (4.7)

P e − Pmem represents the osmotic pressure difference between the elec-
trolyte and the membrane, which is also called the swelling pressure of the
membrane. For NaCl solution i.e. monovalent electrolyte, the osmotic
effects can be neglected [92]. Similar to the no-flux condition in tangen-
tial direction for the species mole flux, the mixture velocity in tangential
direction is also set to zero i.e

t · ve = 0, (4.8)

A more sophisticated approach would be for example using Beavers-Joseph
conditions [9].
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4 Coupling of Multi-Physics Equations

4.2.1.2 Electro-Chemical equilibrium

Next to the interfacial surface balance equations, additional relations are
required to fully describe the coupled system of nonideal mixtures. To
relate the intensive1 quantities in the membrane and electrolyte phase,
the concept of a local thermodynamic equilibrium is used. Recall the
diffusive driving force dk (Eq. 2.19) introduced in Section 2.2 to describe
the transport of an ion in the electrolyte and membrane phase which is
equivalent to the gradient of the electro-chemical potential µk. With that,
the electro-chemical potential µk of species k can be written as [92, 93]

µk = µ̄k + Ṽk∇P + zkFψ (4.9)

where µ̄k is the molar chemical potential of an ion which at constant
temperature is a function of the total pressure P , Ṽk is the specific molar
volume. Eq. 2.22. ∇P = P − P 0 is the pressure gradient, where P 0 is
the standard atmospheric pressure. ψ is the electric potential, zk is the
specific charge number and F is the Faraday constant. The molar chemical
potential µ̄k of species k for nonideal fluids can be expressed as

µ̄k = µ̄0
k +RT ln(γk) (4.10)

where µ̄0
k is the standard chemical potential of species k and γk is the

activity coefficient of species k [96].
For the description of the behavior of the intensive quantities, e.g. molar

concentrations ck or mole fractions χk in the two phases (membrane and
electrolyte), additional relations needs to be specified. A common approach
is to specify an equilibrium relation at the interface. Using Donnan
equilibrium [93] (electro-chemical equilibrium) at membrane-electrolyte
interface, electro-chemical potential µ̄ek in electrolyte phase and electro-
chemical potential µ̄mk at the membrane phase are equal

µmemk = µek, k = 1, ..., n,
(4.11)

then it follows

=⇒ µ̄memk + Ṽk(Pmem − P 0) + zkFψmem = µ̄ek + Ṽk(P e − P 0) + zkFψe
(4.12)

1does not depend on the size of the system, E.g: temperature, density.
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4.2 Coupling of multicomponent LBM and membrane model

Substituting Eq. 4.10 and rearranging the above equation gives the Donnan
potential ψDon as

ψDon = ψmem − ψe = 1
zkF

(
RT ln

γek
γmemk

+ Ṽk(P e − Pmem)
)

(4.13)

which is the potential difference between membrane and electrolyte phase.
The Donnan potential ψdon can be calculated either from cation or anion
activity coefficient as

ψDon = 1
zkF

(
RT ln

γec
γmemc

+ Ṽc(P e − Pmem)
)

= 1
zkF

(
RT ln

γea
γmema

+ Ṽa(P e − Pmem)
)
. (4.14)

The subscripts c and a refer to cation and anion respectively. If the black
box membrane model introduced in Section 3.3 is used then the osmotic
pressure term is neglected and the above equation can be expressed for
each species k as(

γek
γmemk

) 1
zk

= e
F

RT
(ψmem−ψe) k = 1, .., ni. (4.15)

If the electric potential inside the membrane phase is not of particular
interest then it is useful to reformulate the above equation such that the
first ionic species is explicitly expressed as the exponential of the potential
difference. Introducing this expression into the equation for the remaining
species gives (

γek
γmemk

) 1
zk

=
(

γe1
γmem1

) 1
z1
, k = 2, ..., ni. (4.16)

The model is closed by the electro-neutrality condition for the membrane
phase

0 =
ni∑
j=1

zj c̄
mem
k + ρfix, (4.17)

where ρfix is the non-zero space charge1 of the fixed charged groups and
c̄memk is the average concentration of species k in membrane phase given
by Eq. 3.67.

1is a concept in which excess electric charge is treated as a continuous of charge
distributed over a region of space
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4 Coupling of Multi-Physics Equations

4.3 Coupling of multicomponent LBM and LBM for
electric potential

In dilute and concentrate flow channels, the ions of selective charges are
transported in opposite direction due to the applied electrical potential in
the direction perpendicular to the main flow direction. Near the membranes
exists a non-electroneutral regime (EDL) where the charge density ρe

becomes non-zero which results in change in electric potential. Thus, to
incorporate this change in the electric potential on the ions transport, the
multicomponent LBM (Section 3.2) must be coupled with the LBM for
electric potential (Section 3.4).

As shown in Figure 4.2a, these two domains are interacting with each
other in volume resulting in volume coupling. At every time step, the
LBM for electric potential is solved for until the solution convergence
i.e steady state solution is reached since the Poisson equation is time
independent. From the steady state solution of the LBM for the electric
potential, an electric field E is calculated using Eq. 3.79 and fed in as
input to the multicomponent LBM model. In turn, the multicomponent
LBM uses the electric field E as source term to transport the ions and
calculates the charge density ρe using Eq. 2.44 from the local concentration
of ions ck. The charge densities ρe are then handed back to the LBM
for the electric potential to close the loop of interaction. The variables
are exchanged between the domains in physical units and they are locally
converted into lattice units in the individual domains. Variables that are
exchanged between these domains are illustrated in Figure 4.2b. The
coupling tool APESmate presented in the next chapter enables exchanging
arbitrary variables in arbitrary resolution at every time step. This allows
each domain to have different mesh resolution or stencil layouts. Thus, the
LBM for electric potential can be chosen to have reduced stencil layout
compared to the multicomponent LBM to reduce the computational effort
at every time step.

The coupling becomes more involved and complicated, if the full Maxwell
equations Eq. 2.59 are to be solved for the electric field. In this case,
there are a few things to be considered. At first, the divergence correction
term [71] must be introduced to the Maxwell equations to clean divergence
errors. Then, the efficient numerical scheme must be chosen to solve this
equation. Within the APES framework, Ateles a Discontinuous Galerkin
(DG) solver is used to solve these equations with explicit time stepping.
In this case, the multicomponent LBM gives the charge density ρe and
the current density id as input to the Maxwell solver and in turn the
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Maxwell solver returns the electric field E. Note that if both schemes are
solved with explicit time stepping and exchange variables at each time
step, both schemes should have the same time step. Since electrodynamics
travels with the speed of light, the time step for the Maxwell solver is much
smaller than the multicomponent LBM. Additionally, it is costly to satisfy
the Gauss law at all times since ions are transported with much large
time scale than the electric field. This makes this coupling complicated
and expensive. Therefore, to circumvent this problem, the magnetic fields
are neglected which reduces the full Maxwell equations to the Poisson
equation. Thus, in this thesis, only the Poisson equation for the electric
potential is considered.

4.4 Conclusion

In this chapter, the coupling strategy employed for surface and volume
coupling involved in the coupling of multi-physics in the ED process were
detailed. The transport of ions in the flow channels and the membranes
are coupled via the surface and the interaction between ions with electric
potential in entire domain is coupled via the volume. In terms of numerical
schemes, the membrane black-box model is coupled with multicomponent
LBM in flow channels through BC. The multicomponent LBM provides
concentration of species ck on the elements next to the boundary to the
membrane black-box model. The black-box model computes mole flux
Nk from the concentration ck and transport number of species Tk on
the specific membrane provided in the configuration file. This mole flux
Nk is provided back to the multicomponent model where it is applied
as a source/sink BC. Additionally, the surface balance equations which
need to be satisfied on the surface coupling interface between channel and
membrane were introduced.

Regarding the volume coupling, only multicomponent flows in flow chan-
nels are coupled with electric potential because membranes are modeled
by black-box model. In the volume coupling, the multicomponent LBM
computes charge density ρe from local concentration of species ck and
provides them as a source term to the LBM for the electric potential.
In turn, the LBM for the electric potential computes the potential field
by solving the potential equation until the steady state is reached and
computes the electric field E which is the negative gradient of the electric
potential. As mentioned in the previous chapter, the one advantage of
using LBM for electric potential is that the electric field E can be com-
puted directly from the PDF. This electric field E is provided as a source
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4 Coupling of Multi-Physics Equations

term to the multicomponent LBM. Note that for every time step of the
multicomponent LBM, the LBM for the electric potential must be solved
until the solution reaches steady state.
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5 Simulation framework

In this chapter, the highly scalable in-house simulation framework named
APES (Adaptable Poly-Engineering Simulator) [80] is introduced. A
brief overview of this framework is presented in Section 5.1. The central
library of the framework called TreElM [48], which is based on an octree
data structure is discussed in Section 5.2. In Section 5.3 the octree
mesh generator called Seeder developed in this thesis to generate the
computational mesh with spacer geometry is presented in detail with its
algorithm. The Lattice Boltzmann solver Musubi[32] which is used to
simulate flow dynamics, multicomponent flows and electric potential in
flow channels with spacer is briefly presented in Section 5.4. Here, the
performance of single component and multicomponent LBM on large-
scale supercomputers is also presented. The integrated coupling tool
named APESmate used to couple the individual APES solvers is the major
contribution of this thesis and it is presented in detail with its algorithm
in Section 5.5. Here, the important features like space-time function and
variable system, which were required to realize the coupling between APES
solvers, are also presented.

5.1 Apes overview

Most large-scale industrial applications require enormous computing re-
sources and efficient numerical algorithms to utilize those resources. Thus,
APES [80] was developed to satisfy this requirement using octree-mesh
based highly scalable parallel algorithms. The entire framework was
mainly written in Fortran 2003 and some C-codes are used as external
libraries. The overview of APES with all its sub-projects is illustrated in
the schematic layout Figure 5.1.

The framework revolves around central library the TreElM [48], which
provides a tree based data structure which is efficient on modern large
scale distributed memory systems [49]. The mesh generator Seeder [63]
generates a computational domain and writes it to disk. The numerical
solver Musubi [32], reads the mesh data from disk and converts it into
local solver specific data structures. These data structures are set upon
the octree data structure and are designed such that they are efficient
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Figure 5.1 Schematic layout of solver suite APES.

on their respective compute kernels per solver. The solver dumps solver
state values (PDF) at specific times to disk as restart files. These files can
be used to restart the simulation and also to post-process results using
Harvester. Thus, the post-processing tool Harvester provides output in
different visualization formats like vtk or ascii. The configuration files for
all modules in APES are provided as Lua [37] scripts. Aotus [47] provides
an interface to load variables or functions defined in Lua scripts into the
Fortran application. It is worth mentioning that this framework also
enables us to couple different numerical solvers easily since they have same
octree data structure. In the following section, the octree data structure in
TreElM, the mesh generator Seeder, the lattice Boltzmann solver Musubi
and the integrated coupling tool APESmate are discussed. A python tool
Shepherd is used to steer the APES workflow especially for parameter
studies and to submit jobs in supercomputers. This tool is also used to
run regression checks to the APES projects.

5.2 Octree data structure

In this section, the octree data structure of TreElM is briefly discussed
to support the mesh generation Seeder discussion in the next section.
Tree based meshes are regular structural meshes created by recursive
subdivision of a d−dimensional cube. In general, subdivision creates
2d number of children and subdivision starts with the root cube which
represents the mesh universe or bounding cube. The bounding cube
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5.2 Octree data structure

represents the root node of the tree and contains all its children nodes.
The term node refers to an element or cell. To identify the node in the tree,
we utilize a global breadth-first numbering scheme for all the elements
of the full tree with a geometric ordering by a space-filling curve (SFC)
[69]. TreElM supports only octree-mesh data structure i.e d = 3, thus a
node is subdivided into 8 children. The children local coordinate following
SFC are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).
The refinement level (L) of a node defines the number of subdivision
performed on the bounding cube to obtain a node on that level. The
TreeID (tID) is an unique number to identify every node in the tree. It
implicitly encodes the spatial and topology representation of an element
within the bounding cube, which allows for fast loop up of certain tID in
the array of tIDs. The tID is defined as 64-bit signed long integer and for
octree meshes this limits the maximum level (Lglobalmax) a node can be
refined to be 20 i.e. 1 million nodes per direction. For the root node, both
TreeID and level are set to zero, tID = 0 and L = 0. The parent tID of
its children for d− dimensional is given as,

tIDparent = int
[
tIDchild − 1

2d
]
. (5.1)

Likewise, the tID of the child index k of its parent can be obtained from,

tIDchild = 2d ∗ tIDparent + k. (5.2)

Additionally, the first tIDL on any level can be computed easily just by
knowing the first tIDL−1 on previous level

tIDL = 2d(L−1) + tIDL−1. (5.3)

An example of how a tree based mesh looks like is illustrated in Figure
5.2 together with a domain decomposition of the fluid tID list on multiple
process. An advantage of the unique tID and SFC is that each process
can compute its neighbors locally with minimal data from the remote
partitions i.e only the first and last TreeID in each process are known to all
the processors [48, 80]. Thus, the computational workload of this neighbor
identification grows as O(log(nprocs)) where nprocs is the number of
processor involved in the computation. The computational domain is
equally distributed on all processors, i.e. the number of fluid elements on
each processor is almost equal except when the total number of elements
is not exactly divisible by nprocs. In this case the last processor will
have less number of elements. Thus, almost perfect load balancing can
be achieved. However, in reality the computational cost of some elements
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Figure 5.2 Left: Quadtree (2D) mesh with an obstacle. Right: Level-wise tree
representation with domain decomposition. Bottom: Serialized fluid
treeID list dumped into disk

might differ due to boundary, source or multilevel interpolation. In such
case, a dynamic load balancing algorithm is used [79] (see also Section
5.4.5).

5.3 Seeder - Mesh generator

The mesh generator Seeder generates an octree mesh from geometries
provided in the form of STL files or predefined canonical shapes. The
bounding cube, which defines the mesh universe is considered as periodic
domain. As mentioned before, the octree can be generated by recursive
subdivision of this cube. The approach used in an earlier Seeder version
[30], recursively subdivides the bounding cube until a desired level specified
for the node is reached. Then, if nodes at their maximum level (Lmax) are
intersected by a boundary geometry then they are marked as intersects
boundary nodes else if they are intersected by a seed geometry then they
are marked as fluid nodes. In this approach, all nodes are already at
their user defined level (Lmax) before flooding step. The term flooding
refers to the marking of a node as fluid if that node is not intersected by
a boundary geometry and one of its face neighbor nodes is fluid. In the
flooding step, the fluid (computational) domain is identified by looping
over all nodes and marking nodes as flooded which are non-intersected by
boundary geometries and have a face neighbor that is a fluid. This step
is repeated until there are no new flooded nodes. Each of this repeating
flooding steps is referred to as flooding wave. The identification of the
fluid domain might require several flooding wave. Thus, this step plays
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an important part in mesh generation time because it needs to check
all nodes in every flooding wave, even the nodes that are not part of
the fluid domain. In the earlier Seeder version, all nodes are at Lmax
before the flooding step starts, which made this step an expensive step
in mesh generation. Additionally, the flooding step requires 6 direct
neighbors for a node and they need to be identified for all nodes and
stored in memory, resulting in unnecessary memory and time consumption.
However, the idea of flooding a node only if any of its face neighbor is
fluid results in a watertight mesh. The watertight is essential to create
an enclosed computational domain by avoiding leakage of flooding into
the non-computational domain. Hence, a new efficient mesh generation
algorithm was developed with reduced memory consumption and mesh
generation time but keeps the watertightness property. Thus, Seeder [63]
was completely re-implemented from configuration file to mesh generation.

The optimized new Seeder [63] algorithm is given in Alg. 1. An
important optimization step in this algorithm is the building of a protoTree
where only the nodes with intersected boundary geometry are refined to
the level defined for that boundary and the fluid nodes away from the
boundary geometry are refined to the desired level only after the flooding.
This building protoTree step drastically reduces the memory consumption,
neighbor identification, flooding, boundary computation and in-turn the
overall mesh generation time.

Algorithm 1 Seeder - Octree mesh generation
1: Load Lua configuration file
2: Create protoTree by refining bounding cube until level of the boundary

object is reached
3: Identify neighbors of each node in protoTree
4: Recursively flood nodes starting from node with seed object towards

the intersected boundary node
5: Refine flooded leaf nodes to their finest level
6: Recursively traverse through the tree and identify boundaries for the

node adjacent to the intersected boundary node
7: Convert protoTree To TreElm
8: dump mesh into disk in TreElm format

In the Seeder configuration, the geometries and the level to refine each
geometry are attached to one of the following attributes:

• seed: Nodes intersected with seed geometry are marked as "flooded"
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(fluid) nodes. They are source nodes of the flooding step and helps
to decide which part of the domain to flood, i.e. identification of
fluid domain.

• boundary: Nodes intersected with boundary geometry are marked as
"intersects boundary" nodes. Only these nodes are refined to the level
defined by the user while building the preliminary tree (protoTree).
For this attribute, in addition to the geometries and the level, a label
must be defined by the user to create a unique boundary ID. This
label is later used by the solver to set BC.

• refinement: Nodes intersected with refinement geometry are refined
to their level after the flooding step. Only the flooded nodes are
further refined to the level defined by the user.

Regarding the geometries, most basic geometrical shapes such as point,
line, plane, box, triangles, sphere and cylinder are supported in addition
to STL files. These basic geometrical shapes are internally defined in
Seeder. The geometry provided as STLs is converted into triangles. The
intersection of these basic shapes with cubes is implemented in Seeder and
is used to refine or attach certain property to a node. In the following, the
building of the protoTree and the flooding are explained in detail with a
2D example. But before that some variables are introduced to ease the
dicussion. Lmin is the minimum level to which all fluid nodes should be
refined. Lbnd and Lrefine are the level of s particular boundary and the
refinement attribute respectively. Each node is refined to its maximum
level using Lmax = max(Lmin,Lbnd,Lrefine). Lglobalmax is the maximum
refinement level possible and it’s 20 since tID is defined as 8-bytes (64-bit)
signed long integer. In addition to the limit on the maximum refinement
level, there is also a limit on the number of nodes (nNodes) as largest
integer value since the loop variable which iterates over nodes from 1
to nNodes is defined as 4 bytes (32-bit) signed integer. This could be
overcome by changing the iteration counter to 8-bytes (64-bit) signed
long integer or with parallel mesh generation. If Lmax > Lmin then the
resultant computational mesh will be a multi-level mesh with different sizes
of the fluid elements. On the other hand, if Lmax ≤ Lmin then the mesh
will be a single-level mesh, i.e. size of all fluid elements will be same. The
multi-meshes are used in applications which involves multiple spatial scales
like the propagation of sound wave from the wind turbine blades. In such
applications, the ratio of the size of the flow domain and the geometry is
quite high and usage of single-level mesh to resolve all scales would result in
a mesh with the huge number of elements. The computations on such large
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mesh will be very expensive and sometimes becomes impossible due to the
memory limit. With the multi-level mesh, the number of elements can be
drastically reduced. However, the data must be exchanged between the
levels and it is achieved by either interpolation or polynomial evaluation
depending on the solver. In this work, the single-level mesh is used because
the flow channels in the ED module are narrow and the spacer filaments
are closer to each other.

Building the protoTree A first step in Seeder is to load the configuration
file which includes loading STL files too. Then, the protoTree is build
level-wise by iterating over levels from 1 to Lglobalmax. The parent nodes
are subdivided until those parent nodes, which are intersected by boundary
geometry are refined to their Lmax. The algorithm used to build the
protoTree is given in Alg. 2. In the protoTree, the following information
are stored per node:

tID: A unique ID of a node.

• Virtual: A parent (intermediate) node which is refined further.

Property: Used to attach certain properties to a node. Fortran ’ibset’
intrinsic function is used to set certain bit position

– Leaf: A node has reached Lmax of the "intersects boundary"
geometry or not intersected by any geometries.

– Flooded: A node is intersected by the seed geometry or flooded
during flooding algorithm. A node is marked as flooded only if
it is not intersected by the boundary geometry.

– Intersects boundary: The node intersects the boundary geome-
try.

– Has boundary: One of the 26 neighbor has the "intersects
boundary" property

– Wetface(6): A node with wet face required for flooding algorithm.
One bit for each face. Whenever a node is marked as fluid, the
face of its neighbor nodes facing the fluid node are marked as
wet using the appropriate bit.

• HasBoundaryBit: Stores which of the 26 directions of a node has
intersects boundary. One bit for each direction. In 26 directions, the
first 6 are direct face neighbors and the next 12 are edge neighbors
and the last 8 corner neighbors.
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• MinBCID: BCID is a unique ID given to each unique boundary label
according to the order in which the boundaries are defined in the
configuration file. As a rule of thump, the minBCID refer to the
boundary that is defined first in the configuration file among the
multiple boundaries which are intersected by a node. This single
integer value is very useful in choosing the boundary when a node is
intersected by multiple boundary geometries.

• Intersected_objects: Contains the list of geometrical objects inter-
sected by a node.

• Lmin: Minimum level to refine a node

• Linkpos(6): Stores location of 6 neighbors for leaf nodes in TreeID
list and the first child for virtual nodes at linkpos(1).

Here, tIDs are stored as ’dynamic array’ and all others as ’growing array’.
Both these arrays are a description to create a growing array of data
structures. But the dynamic one creates an array of unique values by
adding the same value only once. It is achieved by using a sorted index
list, which is used to fast loop up a given value using a binary search. If
the value already exists in the array then the position of that value in the
array is returned, otherwise a new value is appended to the array and the
nVals in an array is increased by 1 and the return position is assigned to
nVals. The nVals is the number of values in the array. It is different from
the actual array size because the array size is always doubled if the nVals
is greater than the array size. Due to the additional sorted index array in
the ’dynamic array’, it consumes more memory than the growing array.
Therefore, it is used only to store data which requires unique entries such
as the array of tIDs. The other arrays are accessed using the position of a
node in the tID array. Additionally, for every level, the positions of the
first and the last node in the sorted list of the dynamic array of tID are
stored. They help to loop over the nodes per level.
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Algorithm 2 Building of protoTree
1: if boundary geometries are defined then
2: mark root node as intersects boundary
3: else
4: mark root node as leaf
5: end if
6: nNodes← 1
7: Initialize firstNode and lastNode on level=0 to nNodes
8: for iLevel← 1,Lglobalmax do
9: firstNode(iLevel:) ← nNodes + 1

10: for iParent← firstNode(iLevel − 1), lastNode(iLevel − 1) do
11: if iParent intersects boundary and also leaf then
12: for iDir ← 1, 26 do . Loop over all 26 directions
13: Set hasBoundary for neighbor node
14: end for
15: end if
16: if iParent leaf then
17: linkpos ← identify neighbors on 6-faces
18: if iParent flooded then
19: Wet neighbors face of the neighbor node
20: end if
21: else
22: linkPos(1) of iParent ← nNodes + 1
23: Create 8 children
24: nNodes ← nNodes + 8
25: for iChild← 1, 8 do
26: for Each iChild loop over intersected objects of its parent

do
27: if iChild intersected with boundary object then
28: Mark iChild as intersects boundary
29: Inherit intersected objects from parent to iChild
30: Lmax ← max(Lmin, Lbnd)
31: if Lmax <= iLevel then
32: Mark iChild as leaf
33: end if
34: else if iChild intersected with seed object then
35: Mark iChild as flooded
36: else . Not intersected by any geometrical objects
37: Mark iChild as leaf
38: end if
39: end for
40: end for
41: end if
42: end for
43: lastNode(iLevel:) ← nNodes . Set last node position in sorted list

to total number of nodes created so far
44: end for
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Alg. 2 starts with an initialization of the root node by marking it as
"intersects boundary", if a boundary geometry is defined in the configura-
tion file, else it is marked as a leaf node. Inside the level loop, for every
parent node intersected with boundary geometry, 8 children are created
and these children inherit intersected geometry information from their
parent. A node which is not intersected by any boundary geometry or
reached its level of the "intersects boundary" is marked as leaf. Then,
the 6 face neighbors of the leaf node are identified. A leaf node which is
intersected by the seed geometry is marked as fluid (flooded) and 6 of its
face neighbors, face is marked as wet. Wetting neighbors faces helps to
flood a non-intersected boundary leaf node in the flooding step. For a leaf
node, the position of six direct neighbors which are connected to its faces
in the dynamic array of TreeID are identified to optimize the flooding. If
the neighbor is not found on the same level as the leaf node level then the
parent of neighbor must exist in protoTree and its position is identified.
Thus, neighbors are identified recursively in protoTree by looping from
current level to 0. It’s worth mentioning that the protoTree algorithm
creates nodes level-wise, so the entries (tIDs) in the dynamic array of
tID are sorted as shown in Figure 5.4. For a leaf node with intersected
boundary geometry, the minimum boundary ID (bcID) is stored. If a
node is intersected by multiple boundaries then the minimum bcID of
those boundaries is used. This bcID of a boundary depends on the order
in which boundary objects are defined in the configuration file. At the
end of this step, the nodes intersected with boundary geometries are fully
resolved and non-intersected geometry nodes are at their coarsest levels.
Additionally, there must be at least one fluid node in protoTree to build
the fluid tree in flooding. Therefore, a seed geometry must be defined
such that it does not overlap with the boundary geometry because if a
node is intersected by both seed and boundary geometry then it is not
flooded. The efficiency of generating the protoTree depends on how many
intersected objects need to be checked per node.
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t3

t4t5

t6

Figure 5.3 2D bounding cube (tID = 0) with a boundary with six triangles
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Figure 5.4 Prototree generation at every refinement level with Lbnd = 3

The build-up of the protoTree is illustrated using a 2D (quadtree)
example with a boundary of 6 triangles (geometries). The bounding cube
and the triangles are shown in Figure 5.3. Let us consider that the user
defines the level for a boundary of 6 triangles to be Lbnd = 3. It means
that the nodes intersecting these triangles are required by the user to be
refined up to level 3. The generation of the quadtree at every level with
a boundary level Lbnd = 3 is illustrated in Figure 5.4. The color of the
node represents their level except for nodes with intersected boundary
geometries, which are represented by gray color. The tID list and its
sorted index list are also shown in the figure.

Flooding The algorithm works by flooding the domain, starting from
seed nodes up to intersected boundary nodes. This approach is quite
robust even to broken STL definitions, as any crack below the resolution is
automatically healed and there is no dependence on the orientation of the
surfaces. Since flooding takes place only on 6 direct neighbors, which are
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connected by faces, there will be no fluid nodes which are connected by
edges or corners. The flooding algorithm is given in Alg. 3. The algorithm
iterates over all nodes in the protoTree from breath-first numbering fashion
which is the order in which the nodes are created and stored in tID list.
If a node does not not intersect a boundary and is not flooded and is leaf
node with any wet face then the node is flooded and its 6 direct neighbors
faces are wetted. If a node is a not a leaf then its wet faces are inherited to
its eligible children faces. This iteration is done several times until there
are no new flooded nodes. Each iteration is refered to as one flooding wave.
After flooding the leaf nodes, all virtual (intermediate) nodes with at least
one fluid child are also flooded to speed up the extraction of the final fluid
tree from the protoTree in convert protoTree to TreElm step. The efficiency
of the flooding step depends on the number of flooding waves required to
identify the fluid domain. The number of flooding waves can be reduced
by a good placement of seed geometries covering most of the fluid domain.

Algorithm 3 Flooding
1: repeat
2: for iNode← 1, nNodes do
3: if leaf node then
4: if not intersected boundary node and not flooded then
5: if any face is wet then
6: Mark this node as flooded
7: Wet 6 [3D] / 4 [2D] direct neighbors face connected

to this node
8: end if
9: end if

10: else . Virtual node inherit the wet face to its eligible children
11: for iFace← 1, 6 do
12: if iFace is wet then
13: Inherit the wetness to its direct children on this iFace
14: end if
15: end for
16: end if
17: end for
18: until no new node is flooded

The flooding algorithm is depicted in Figure 5.5 using a simple quadTree
example with a seed placed at node 1. Figure 5.5 also shows the inheritance
of a wet face from virtual nodes to their eligible children faces. Wetting
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of neighbors face can be understood by looking at the flooded node 1. In
this work, the terms: east, west, north and south refer to −x, +x, +y and
−y directions respectively. The node 1 wets west face of node 2, south
face of node 3, east face of node 2 and north face of node 3. The east face
of node 2 and north face of node 3 are wetted since the bounding cube is
a periodic domain. Due to inheritance of wet faces from non-leaf nodes
to children, this example is flooded in a single wave. The flood nodes are
highlighted in blue color in the tID list shown in the figure.
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Figure 5.5 Flooding of protoTree in 2D mesh

In case, q-values are required by the Lattice Boltzmann scheme to
increase the accuracy of the simulation as explained in Section 3.1.2.
Then, an additional step is performed in the flooding algorithm. After
flooding the inner domain, the algorithm iterates over all nodes again but
only over the nodes with "intersects boundary" property and q-values are
determined by calculating the normalized distance between the "intersects
boundary" node and the intersected geometries. To support this discussion,
these intersected boundary nodes are referred to as current nodes. The
current nodes are flooded only if there is a wet face and there are no
intersections with boundary geometries between the current node and the
flooded neighbor node along the wet face direction. The intersection of
boundary geometries between the current node and the flooded neighbor
node is done by checking the intersection of a ray from the current node
barycenter along the wet face direction against the intersected boundary
geometries in the current node. This additional step for q-values can be
determined for any shape of the boundary. Figure 5.6 shows the protoTree
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after flooding with and without q-value. It can be seen that in Figure
5.6b with q-value, the nodes 38, 41, 70, 72, 73 and 75 are flooded. Note
that only these nodes barycenter are outside the triangles, while other
"intersects boundary" nodes barycenter are inside the triangles.
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Figure 5.6 ProtoTree after flooding with and without q-values

Refine leaf After flooding, the computational domain is identified but
there are leaf nodes in the protoTree which might exist on a level lower than
Lmin. Thus, in the refine leaf step, all flooded leaf nodes which are not
"intersects boundary" are refined further if the level of that node is lower
than Lmin. If refinement geometries are defined then the nodes intersected
by refinement objects are refined to the level of the refinement attribute
by inheriting the refinement object to the children. To avoid any level
jump between a flooded node and a boundary neighbor node, a flooded
node is refined if a boundary neighbor node in any of the 26 directions
exist in higher level. Newly created children inherit all the properties from
their parent and the leaf property in the parent node is removed. The
algorithm to refine flooded leaf nodes is given in Alg. 4. This algorithm
also iterates over parent nodes level-wise similar to the building of the
protoTree step but the major difference is that in the refine leaf step, only
the flooded leaf nodes with no "intersects boundary" are further refined.
New children are appended to the dynamic array of tIDs resulting in an
unsorted array. This is the reason why the first node and the last node
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for every level refer to the sorted index array in the dynamic tID array.
The refine leaf step is illustrated in Figure 5.7 where nodes 1 and 3 are
refined further to Lmin = 2. The unsorted tID list and its sorted index
and serialized fluid IDs ordered by SFC are also depicted in the figure.
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Figure 5.7 ProtoTree after the refine leaf showing the SFC ordering of the fluid
tree. Newly created 8 leaf nodes are appended to the end of the tID
list and its sorted index is updated accordingly. Serialized fluid IDs
array shows the final fluid tIDs ordered by the SFC.

Convert protoTree to TreElM After the refine leaf step, all the flooded
leaf nodes are refined to their finest level in an unsorted fashion in the
dynamic array of the tID list. To minimize storage, only the flooded leaf
nodes in the protoTree are extracted and sorted as required by TreElM. It
is achieved by traversing down the protoTree in the order of depth first
manner following the SFC. This results in the sparse representation of
the tree instead of a full matrix representation. While traversing down
the protoTree, only flooded nodes are considered because there is no need
to traverse down non-flooded nodes, which are not part of fluid domain.
This is the reason why virtual nodes with at least single flooded children
are flooded at the end of flooding step. For the flooded leaf nodes with
HasBoundary property, BCIDs are identified in all 26 directions. If a
neighbor is fluid then the BCID is set to zero. Note that in flooding, only
the 6 direct neighbors are flooded so there might be a neighbor node in
the other 20 directions which might not be flooded and not intersected by
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Algorithm 4 Refine leaf nodes in protoTree to their level
1: nNodes← 0
2: for iLevel← 1,Lglobalmax do
3: for iParent← firstNode(iLevel − 1), lastNode(iLevel − 1) do
4: if iParent is flooded, leaf and non-intersected boundary then
5: Lmax ← Lmin
6: if iParent intersected by refinement geometry then
7: Lmax ← max(Lmin,Lrefine)
8: end if
9: if iParent has boundary neighbor then

10: Lmax ← max(Lmin,Lbnd,neighbor)
11: end if
12: if Lmax ≥ iLevel then
13: Create 8 childrens
14: nNodes← nNodes+ 8
15: for iChild← 1, 8 do
16: for each iChild loop over intersected objects of its

parent do
17: if iChild intersected with refinement object then
18: Inherit that intersected refinement object from

parent
19: end if
20: end for
21: end for
22: end if
23: end if
24: end for . Shift last node position in sorted list for iLevel with

nNew nodes created on this level
25: lastNode(iLevel) ← lastNode(iLevel) + nNodes . Shift first node

and last node position in sorted list for all levels higher than iLevel
26: firstNode(iLevel+1,:) ← firstNode(iLevel+1,:) + nNodes
27: lastNode(iLevel+1,:) ← lastNode(iLevel+1,:) + nNodes
28: end for

boundary, these nodes are referred to as hanging nodes. If a hanging node
is encountered as neighbor then the BCID for that direction is set based on
the BCID on adjacent face neighbors. As a rule of thump, the BCID in the
direction of the handing node is set to minimum of BCID (minBCID) of
other directions. In addition to the BCIDs in all 26 directions for flooded
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leaf node with boundary neighbor, the HasBoundary property is also
extracted because the property of a node is required by the solver to apply
special treatments. Furthermore, q-values are calculated for nodes with
q-value boundaries and the property for those nodes are set to HasQval.
The serialized final fluid tID list and the SFC connection of the consecutive
elements in the quadTree example are shown in Figure 5.7

It would be efficient to combine this step with the refine leaf step by
refining a leaf node if it is not at its finest level while traversing through the
tree in depth-first manner. However, it leads to difficulties in parallelization,
and therefore it is not applied.

Dump to disk Finally, the serialized fluid tID list, the boundary identifi-
cations (BCIDs) and the q-values are dumped to disk in binary format.
For every node, a tuple of 2 entries is stored: tID and property like Has-
Boundary or HasQval of that node are written in native binary format.
Additionally, for every node with HasBoundary and HasQval property,
BCID and q-values respectively for all 26 directions are written in separate
binary files. For every binary file, a header file in ascii format is created
with basic information about the binary file like the number of fluid el-
ements, the number of boundary elements, bounding cube description,
minimum and maximum level in the fluid tree, etc. This header file is
written in the form of a Lua script. The tID and the property bit are
8-bytes each and, BCID and q-values are 8-bytes per direction each. Thus,
inner fluid nodes consume 16-bytes per node and fluid nodes near boundary
consume additional 208-bytes per node and fluid nodes next to q-value
boundaries require also additional 208-bytes per node.

5.3.1 Mesh generation with spacer geometry
As previously mentioned, the complex spacer geometry is used in dilute
and concentrate flow channels to keep the membranes apart from each
other and maintain mechanical stability. The simulation setup with woven
spacer geometry is illustrated in Figure 5.8. The woven spacer with 2
filaments in x- and z- direction constitutes a single spacer element. The
length and width of this single spacer element is L = W = 0.2 cm with
distance between the filaments lm = 0.1 cm. The diameter of the filament,
df = 0.02 cm and channel height, hch = 2 · df .

The mesh generation of the woven spacer geometry with 6 filaments in
x-direction (lch = 0.6 cm and 4 filaments in z- direction wch = 0.4 cm using
Seeder is illustrated in Figure 5.9. The spacer geometry is provided as
STL file generated using the 3D modeling and rendering package Blender
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lch

hch

(a) Side view

wch

lch

(b) Top view

Figure 5.8 Simulation setup with interwoven laboratory spacer structure

[97]. For the woven spacer, only a single spacer element is generated using
Blender, which contains 33024 triangles. For longer channels, a single
spacer element is duplicated using the translation feature in Seeder. To
improve the accuracy of the numerical simulation near the spacer structure,
the q-values are calculated on the spacer geometry. In tree based mesh
generation, the mesh resolution or element size (δx) depends on the level to
which the node is refined. The bounding cube length (LBndCube) depends
on element size δx and level L as

LBndCube = (2L) · δx. (5.4)

Usually in numerical simulations, it is preferred to define either the
mesh resolution δx or the required number of elements in a characteristics
length. Here, the mesh resolution δx is defined by fixing the number of
elements in the height of channel nHch as δx = hch/nHch. In order to
create the mesh with a certain length, the bounding cube length should
be at least 2 elements sizes larger than the maximum of length, width and
height of the fluid domain to include one element for boundary in each
direction of the enclosed computational domain. In spacer flow channels,
the width of the channel is assumed to be periodic and only the length
of the channel is larger or equal to the width of the channel. Thus, the
bounding cube length is set to be LBndCube = lch + 2 · δx or the number of
elements in the bounding cube as nLBndCube = nLch + 2. Here, nLch is
the number of elements in the length of the channel. With this, the level
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(a) Outline of bounding cube and compu-
tational domain around spacer

(b) After build protoTree, nodes are refined
towards spacer and boundaries enclosing
computational domain. Cyan color nodes
represents seeds

(c) After flooding, nodes inside computa-
tional domain are flooded

(d) After refine leaf, all flooded nodes are
refined to their finest level

Figure 5.9 Mesh generation with woven spacer geometry.

to obtain the given δx can be computed using

L = math.ceil(math.log(nLBndCube, 2)). (5.5)

Figure 5.9a shows the outline of the bounding cube and the computa-
tional domain around woven spacer (colored olive). In build protoTree, the
nodes are refined towards the spacer geometry and boundaries enclosing
the computational domain such as inlet at x = 0, outlet at x = lch, bottom
wall at y = 0, top wall at y = hch, back z = 0 and front z = wch. Here,
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the front and back are defined as periodic boundaries. To decrease the
number of flooding waves, the seeds are defined as a line along the height
between the filaments for each single spacer element, which are colored
in cyan. The protoTree after flooding and refine leaf is shown in Figure
5.9c and Figure 5.9d respectively. Since the channels are so narrow and
filaments are closer to each other, all fluid elements are refined to same
level. The only disadvantage of this single level mesh is that it will be too
expensive when it comes to resolving the electrical double layer.

The efficiency of the Seeder mesh generation with spacer is analyzed
using two cases. In the first case, the element size δx is varied on single
spacer element and in the second case, the channel length lch is varied
by duplicating the single spacer element along the length for fixed δx.
This analysis was performed on Intel(R) Xeon(R) CPU E5-2650 2.00GHz
processor with 20MB Cache and 380 GB of main memory. The mesh
element size δxnHch is varied by varying number of elements in the height
i.e. the mesh resolution nHch from 32 to 256. The total runtime to generate
a mesh for each of these resolutions are tabled in Table 5.1 along with the
number of fluid elements (nFluids) and the number of fluid elements with
boundary neighbor (nBnds). Additionally, the virtual main high water
mark memory (VmHWM) consumption and the size of mesh files dumped
to disk are also tabled.

nHch δx nFluids nBnds Runtime VmHWM Mesh Files
(µm) (s) (GB) (GB)

32 12.5 686 844 111 756 6.0 0.12 0.0092
64 6.25 5 503 785 455 712 31.4 0.67 0.043
128 3.125 44 048 647 1 837 692 191 4.48 1.21
256 1.5625 352 456 277 7 377 172 1113 32.63 7.6

Table 5.1 Mesh generation of single spacer element for various resolution

The resolution δx256 results in roughly 350 million fluid elements and
it was generated in less than 20 min. Doubling it i.e. δx512 failed during
the build protoTree step due to the 2 billion limit of the largest 4-byte
(32-bit) signed integer which was used as loop variable iNode and total
nodes counter nNodes. Note that in a octree mesh, nFluids increases
roughly 8 times with doubling the resolution. The detailed split up of
mesh generation run time by every step in Seeder is tabled in Table 5.2
and plotted in Figure 5.10a. It can be seen that the runtime of the refine
leaf steps gets more expensive with increasing resolution because all the
flooded leaf nodes at coarser level are refined at this step. The proto2Treelm
step also gets expensive with increasing resolution because of boundary
identification on 26 directions for fluid nodes next to the boundary node.
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nHch Build Flooding Refine Proto2- Dump
protoTree (s) (s) leaf (s) treelm (s) mesh (s)

32 2.35 0.48 0.23 2.61 0.32
64 8.95 1.67 2.07 16.8 1.87
128 36.9 6.46 21.5 112 14.2
256 154 22.2 161 687 88.8

Table 5.2 Break down of time taken by every mesh generation step for single
spacer element for various resolution

(a) For various mesh resolution (b) For various spacer length

Figure 5.10 Comparison of time taken by steps involved in mesh generation
with spacer geometry.

In addition, the q-values are calculated on 26 directions for the nodes next
to boundary nodes intersected by spacer geometry. In the spacer-filled
flow channel, there are more nBnds but with increase in mesh resolution
the ratio of nFluids to nBnds decreases. In other words, the number of
inner fluid elements in the space between the filaments increases. Both
the build protoTree and the flooding step costs roughly 4 times more at
every increment in mesh resolution. This increase in cost is due to the
creation of more nodes nearing spacer geometry.

From the convergence analysis (see Section 7.1.2.1), it was found that the
difference in pressure drop across the channel between resolution δx64 and
δx128 was below 3%. Thus, the resolution δx64 is enough to approximate
the spacer geometry and also reduce the numerical computation time.
Therefore, for the second analysis of the mesh generation with spacer, the
resolution is fixed to δx64 and the channel length lch is increased from a
single spacer element length of 0.2 cm to the length of 20 cm. The limit
of maximum length 20 cm is due to the fact that the woven spacer used
in the laboratory of AVT, RWTH Aachen has the dimension L×W ×H:
20 cm×10 cm×0.04 cm. For lengths larger than a single spacer element, the
STL of a single spacer element was duplicated using the Seeder translation
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feature instead of creating a large STL by Blender. The width of the spacer
is kept to 0.2 cm and it is assumed to be periodic along the z-direction.
The mesh generation time, nFluids, nBnds, VmHWM and mesh file size
for various spacer lengths for resolution δx64 is tabled in Table 5.3. The
full spacer of length 20 cm has roughly 618 million fluid elements and 14%
of them are fluid elements with boundary neighbor. This largest mesh was
generated in around 4.5 Hrs with a virtual main memory consumption of
68 GB.

lch nFluids nBnds Runtime VmHWM Mesh files
(cm) (s) (GB) (GB)
0.2 5 503 785 455 712 27.3 0.67 0.21
0.4 11 006 960 876 020 57.1 1.32 0.42
1.0 27 516 471 2 136 908 145 3.52 1.05
2.5 68 789 975 5 289 186 364 8.37 2.62
5.0 150 678 658 10 686 695 1.51 × 103 17.1 5.48
10 301 356 308 21 337 720 4.58 × 103 33.85 10.96

15.0 457 801 588 32 020 733 9.64 × 103 51.76 16.53
20.0 618 441 508 42 727 010 1.52 × 104 68 22.17

Table 5.3 Mesh generation for various spacer length with fixed nHch = 64

As expecteds nFluids, nBnds, VmHWM and mesh file size increase
roughly by a same factor with increase in length i.e, linearly. However, the
runtime for the mesh generation increases linearly only up to the length
of 2.5 cm and from 2.5 cm to 5 cm it suddenly increases by a factor of 4
and from 5 cm to 20 cm it is increased by a factor of 10. Looking into the
runtime of each mesh generation step tabled in Table 5.4 reveals that the
non-linear increase in mesh generation time for large channel length is
caused by the flooding step. This can be seen in Figure 5.10b. Since seeds
are defined between every filament, the flooding should scale linearly but
this is not the case. A probable cause might be the increase in bounding
cube length which also increase the channel length, and this results in
different resolution near the boundaries which might have lead to more
flooding waves. Consider an example: if there is only one finer element
next to the boundary then it gets flooded because it inherits the wet face
from its parent. However, if there are two fine elements along the normal
direction of the boundary, then the fine element next to the boundary gets
flooded only when the neighbor fine element gets flooded first and this
might result in more flooding waves.
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Length Build Flooding Refine Proto2- Dump
(cm) protoTree (s) (s) leaf (s) treelm (s) mesh (s)
0.2 7.76 1.44 1.81 14.7 1.56
0.4 15.0 2.93 4.17 31.6 33.7
1.0 3.91 7.44 12.1 77.9 7.88
2.5 1.04 × 102 19.7 30.1 1.89 × 102 20.7
5.0 2.14 × 102 7.37 × 102 66.1 4.53 × 102 42.5
10 4.5 × 102 2.92 × 103 1.34 × 102 9.75 × 102 97.7

15.0 7.03 × 102 7.05 × 103 2.17 × 102 1.53 × 103 1.39 × 102

20.0 9.43 × 102 1.17 × 104 2.84 × 102 2.11 × 103 2.06 × 102

Table 5.4 Break down of time taken by every mesh generation step for various
spacer length with fixed nHch = 64

5.4 Musubi - lattice Boltzmann solver

Musubi [32] is the highly scalable lattice Boltzmann solver in the APES
framework. The lattice Boltzmann equation (LBE) for single component
flow, multicomponent flow and electric potential presented in Section 3.1,
Section 3.2 and Section 3.4 are implemented in Musubi. It also offers
numerical solution of other physical systems like weakly compressible
flows, non-Newtonian flows, clotting process, and few more. Each of these
physical systems is implemented as a dedicated compute kernel performing
streaming and collision. For each physical system, a dedicated compute
kernel is implemented for various stencils like D2Q9, D3Q19, D3Q27,
etc. and for various collision operators like BGK, MRT , etc. Musubi
offer full flexibility to chose a specific compute kernel by configuring
LBE, stencil layout and collision operator in the configuration file. In
addition to dedicated compute kernels, the various boundary conditions
and source terms for each physical system are also configurable. The
variables required at boundaries and source terms are defined as space-
time function, explained in Section 5.5.2. Musubi also offers a multi-level
solution with different interpolation techniques [32]. The detail description
and implementation details of this software can be found on [31, 32, 79].
Here, in this thesis the LBM stream-collide algorithm used in the compute
kernel for the single component flow, the multicomponent flow and the
electric potential are briefly discussed. Furthermore, the algorithm of the
Musubi main program is also presented to explain the coupling algorithm
in a later section.
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5.4.1 Domain decomposition

The octree mesh generated by Seeder is provided to the solver as the level
independent list of fluid elements serialized by depth-first order following
the SFC. In the solver, this level independent list of elements is splitted
and distributed to each processor such that each processor gets almost the
same number of elements. The advantage of the SFC is that it maintains
a fair degree of locality and reduces the communication surface between
the processors and achieves almost perfect load balancing. However, in
real applications with boundaries and sources terms, some fluid elements
cost more than others which results in load imbalance. This imbalance is
resolved by deploying the load balancing algorithm in TreElM which uses
SPartA [29] to redistribute the elements using weights calculated from
the computational cost of each element. Thus, with SFC for reducing
the communication surface and the load balancing algorithm balancing
computational cost, the good scalability is achieved on large parallel
systems.

5.4.2 Topology unaware solver data structure

Before getting into the LBM algorithm, the computation on elements
and the data layout of the state (PDF) values in the solver are briefly
discussed. To achieve good peak performance the computational cost per
processor must be optimized. It is achieved by vectorization, minimizing
the number of floating point operations and by efficient usage of cache
memory. To vectorize the computations, the level independent list of
fluid elements provided by the Seeder is converted into a level-wise list of
elements. Additionally, to apply the stream-collide algorithm, the solver
only requires the relationship between the elements (direct neighbors)
depending on the stencil definition. A stencil is defined as set of offset
directions describing the relative position of an element. Therefore, for
each element in the level-wise list, the direct neighbors according to the
stencil are identified by searching the neighbor tID in the level independent
serialized list of elements. If tID is not found in local processor then the
processor which contains the tID is identified locally since each processor
knows the first and last tID of all processors. The element that is found
on the remote processor is added as virtual halo element in the level-wise
list of elements. This allows the solver to apply vectorial operations on
the list of elements and to be unaware of the complex geometries and the
arbitrary nature of the tree. In addition to the compute kernels, the initial
conditions, boundary conditions, source terms, multi-level interpolation
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and communication between processors are applied to the level-wise list of
elements. Thus, TreElM manages the topology of the tree and the solver
operates only on level-wise list of elements with information about direct
neighbors for each element on their level. For more details on neighbor
search, stencil construction and tree topology refer to [48].

For each level, the PDF values are stored in a double buffer array, one
for reading and one for writing. The index is swapped before every time
step. The size of each PDF buffer is N ×Ns ×Q where N is the number
of elements, Ns is the number of species and Q is the number of directions
per element. For single component and electric potential LBM, Ns = 1
and for multicomponent LBM, it depends on number of species defined
in configuration file. Musubi offers two different data layouts: Structure
of Arrays (SoA) and Array of Structures (AoS). In this work, the AoS
data layout is used to store values in the PDF buffer, i.e. the PDF values
of Q directions for a single element are grouped together. In case of
multicomponent LBM, the PDF values of Q directions for all species for a
single element are grouped together as shown in Figure 5.11 because the
PDF of all species are required to compute the mixture velocity.
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Figure 5.11 Array of Structures data layout of state buffer for D3Q19 stencil
and Ns = 2. n represents element number and s represents species
number.

In the stream-colliide algorithm, the collision operation is local but the
streaming operation requires direct neighbors in Q directions to propagate
the PDF from neighbor to local or vice versa. The 1D connectivity array
is used to indirectly address the direct neighbors for each direction in the
state array and size of this array is N ×Q. At boundaries where neighbor
elements are missing, the link is reflected resulting in implicit bounce-back
operation. Thus, explicit bounce-back treatment is not required for no-slip
wall boundaries. Since streaming is just coping PDF values from local to
neighbor or vice versa, the computational cost of compute kernel depends
only on the collision operator.
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5.4.3 Stream-collide algorithm
The LBE of any physical system Eq. 3.2, Eq. 3.55 and Eq. 3.75 can be
generalized as

f̂mk (x + umδt, t+ δt) = f̂mk (x, t) + Âk(f̂eq,mk (x, t)− f̂mk (x, t)) + Ŝmk (x, t)
(5.6)

where f̂mk , f̂eq,m and Âk are particle distribution function, equilibrium
function and collision matrix respectively and Ŝm is the source or force
term depending on the LBE. The subscript k is the number of compo-
nents/species and k = 1 for single component and electric potential LBM.
The superscript m = 1 . . . Q represents the discrete velocity directions
and Q is the number of discrete directions according to the stencil. The
evolution of this LBE is solved by two step procedure i.e streaming and
collision. The collision step

f̂m,ck (x, t) = f̂mk (x, t) + Âk(feq,mk (x, t)− fmk (x, t)) + Ŝmk (x, t) (5.7)

describes the collision or interaction of the fluid particle by relaxing particle
distribution function f̂mk towards the equilibrium distribution function
f̂eq,mk with the relaxation collision matrix Âk as shown in Figure 5.12.
f̂m,ck represents the post-collision PDF after the collide step. After the

Figure 5.12 Collide step of the LBM in D2Q9 stencil
collide step, the streaming step is performed by pulling or pushing the
PDF from or to their neighboring cells respectively according to their
velocity directions. The stream step can be written as

f̂mk (x + umδt, t+ δt) = f̂m,ck (x, t). (5.8)

Figure 5.13 shows the pulling of the PDF from neighboring cells.
The stream and collision for each LBE are implemented as dedicated

highly optimized compute kernel by collapsing the stream and collide oper-
ations, minimizing the number of floating point operations and optimizing
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(a) Before stream-
ing

(b) After stream-
ing

Figure 5.13 Streaming step of the LBM in 2D with pulling f̂mk from neighbors

cache and memory access [102]. The kernel is implemented for different
stencil layouts like D2Q9, D3Q19, D3Q27, etc and different collision oper-
ations like BGK, MRT, etc. The algorithm used within the compute kernel
for the single component LBM, the multicomponent LBM and the LBM
for the electric potential are given Alg. 5, Alg. 6 and Alg. 7 respectively.

Algorithm 5 Compute kernel for the single component LBM
1: for each element in level-wise list of elements excluding halo elements

do
2: Pull InPDF links from corresponding neighbor Eq. 5.13
3: Compute macroscopic density from PDF Eq. 3.4
4: Compute macroscopic velocity from PDF Eq. 3.5
5: Compute equilibrium function Eq. 3.3
6: Update outPDF with collision step Eq. 5.7
7: end for

The multicomponent LBM kernel is implemented for both ideal and
nonideal liquid mixture. The kernel for nonideal liquid mixture is more
involved and expensive since it requires thermodynamic factor and concen-
tration dependent diffusivity coefficients. They are obtained by functions
provided by AVT, RWTH Aachen. These functions are written in C++ so
they are coupled with Musubi via Fortran-C interface. In addition, the
linear equation system of size Ns×Ns needs to be solved for every element
to obtain the species velocity of the original PDF. In Musubi, optimized
kernel is implemented for D3Q19 stencil with three components for both
ideal and nonideal mixtures. In the next section, the performance of the
multicomponent LBM kernel for ideal mixture with three components is
given. The number of floating point operations per element in the compute
kernel of D3Q19 with three components is 850 i.e. 280 floating point
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operations per element per component.

Algorithm 6 Compute kernel for the multicomponent LBM for nonideal
liquid mixture

1: for each element in level-wise list of elements excluding halo elements
do

2: Pull inPDF links from corresponding neighbor Eq. 5.13
3: Compute macroscopic species density from PDF using Eq. 3.52a
4: Compute thermodynamic factor and diffusivity coefficient from

local species concentration using C++ code from AVT, RWTH Aachen
5: Compute species macroscopic velocity of transformed PDF using

Eq. 3.52b
6: Compute species velocity of untransformed PDF by solving linear

equation system Eq. 3.55
7: Compute equilibrium velocity for nonideal mixture using Eq. 3.40
8: Compute equilibrium function using Eq. 3.42
9: Update outPDF with collision step Eq. 5.7

10: end for

The compute kernel of the LBM for the electric potential is very cheap
compared to other the LBMs. In the D3Q19 compute kernel, it requires
only 79 floating point operations per element. However, the solution of
the LBM for the electric potential is expensive since it needs to be solved
until the solution converges to steady state.

Algorithm 7 Compute kernel for the LBM for the electric potential
1: for each element in level-wise list of elements excluding halo elements

do
2: Pull inPDF links from corresponding neighbor Eq. 5.13
3: Compute macroscopic potential from PDF using Eq. 3.78
4: Compute equilibrium function using Eq. 3.73
5: Update outPDF with collision step Eq. 5.7
6: end for

In general, the stream and the collide step can be performed in any
order. Nevertheless, depending on the order, the PDF at the end of the
compute kernel is either pre-collision or post-collision PDF. The conserved
moments can be derived from both PDFs since they are collision invariants.
However, the non-conserved moment like the deviatoric stress tensor in the
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single component LBM must be computed differently depending on the
pre-collision or the post-collision PDF. As mentioned in Section 3.1, the
deviatoric stress tensor can be computed from the non-equilibrium PDF,
fneq,m = fm − feq,m. This relation is valid only with the pre-collision
PDF, so it can be rewritten as

fneq,m = fpre,m − feq,m. (5.9)

Thus, the above equation is used to compute the non-equilibrium PDF
when the stream step is performed at the end of the compute kernel. On
the other hand, if the collide step is performed at the end of the compute
kernel then the non-equilibrium function must be computed from the
post-collision PDF fm,c(x, t) using

fneq,m(x, t) = fm,c(x, t)− feq,m(x, t)
1− λν . (5.10)

This modification in the non-equilibrium PDF can be applied to other
LBM schemes. E.g. the electric field in the LBM for the electric potential
can be computed using

fneq,m(x, t) = fm,c(x, t)− feq,m(x, t)
1− λ̄γ

. (5.11)

5.4.4 Main program

The APES solvers are build on top of Aotus and TreElM libraries. Aotus
provides functionalities to load configuration files and TreElM manages the
topology of the octree data structure. In addition, TreElM also provides

• Efficient reading and writing of serialized tree mesh files in parallel,

• Routines to initialize and finalize the MPI environment and supports
several MPI communication patterns to exchange data between
processors,

• Logging, tracking and restart infrastructure,

• Variable system to define arbitrary variables and solver independent
procedural interfaces to obtain a variable,

• Space-time functions to define boundary and source variables and
etc.
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The space-time function and variable system are key features to couple
APES solvers so they are explained in detail in Section 5.5.1 and Section
5.5.2 respectively.

The algorithm used in the main program of APES solvers is given
in Alg. 8. Like every distributed MPI parallel algorithm, the MPI is
initialized and finalized at start and end of the program respectively. In
the tem_start routine, the MPI communicator and processor ranks are
also created to communicate between processors. Additionally, the logging
is also initialized. Each MPI program loads the configuration file and mesh
files are loaded in chunks i.e. each processor loads only a chunk of elements
distributed by splitting the serialized fluid elements list equally in each
processor.

Algorithm 8 APES solvers main program
. Initialize MPI environment and logging infrastructure. Also prints
solver revision and compiler version numbers

1: tem_start()
. Load configuration file

2: load_configuration()
. Load mesh files from Seeder

3: load_mesh()
. Build solver specific data structures and initialize state arrays

4: initialize_solver()
. Do main time loop computation: Set boundary, compute kernel,
apply source and write outputs

5: do_time_loop()
. Finalize outputs and dump runtime measurements of each step

6: finalize_solver()
. Finalize MPI

7: tem_finalize()

In the initialize_solver, step Alg. 8.4, the loaded level independent
serialized list of elements is converted into a solver specific level-wise list
of elements. Each solver creates this level-wise list according to its re-
quirements. In Musubi, the direct neighbors are identified according to
the stencil definition and the connectivity array is created. These direct
neighbors define the horizontal relationship between elements and for
multi-level meshes, at the level interface the vertical relationship between
them are also created. Here, the virtual ghost elements are introduced
to exchange values at interfaces. Two types of ghost elements are used:
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ghostFromFiner and ghostFromCoarser. ghostFromFiner is used to fill
coarser ghost element by taking average of values on finer elements. How-
ever for ghostFromCoarser, the interpolation order depends on the number
of coarser elements being used. The availability of the number of coarser
elements depends on the location of the interface. For example: at a level
interface away from boundaries, coarser elements in all neighbor direction
can be found and its possible that some of those neighbors might be ghost-
FromFiner. However, for the level interface at the boundary some coarser
elements will be missing which will result in a lower interpolation order. In
addition to the relationship between elements, the communication buffer
to communicate between partitions is also created. The variable system
that provides the method to obtain a variable is created depending on the
chosen physical scheme. The variables in the variable system are classified
into four types: state, derived, operation and space-time function variables.
The state and derived are solver specific variables. In LBM, the PDF are
defined as state variables and all macroscopic quantities that are derived
from PDF are defined as derived variables. The boundaries and source
variables are defined in configuration file as space-time function (Section
5.5.2). The operation variables are usually the user-defined variables in the
configuration file. The coupling between APES solvers is realized via the
variable system Section 5.5.1 and the space-time functions Section 5.5.2.
To write simulation output, tracking and restart features are also initialized
in this step. Finally, the flow is initialized with equilibrium function with
given initial condition according to the chosen physical system.

At every time step, the following steps are performed in do_time_loop
step Alg. 8.5:

Swap state array index: of the double buffer used for state array to read
and write

Update relaxation parameters: when relaxation parameter is depending
on time

Set boundary: update post-collision PDF according to boundary condition

Compute kernel: perform streaming and collision

Apply source: Add source term to LBE

Communicate: Exchange state values between partitions

Output: Write tracking and restart output and also check status of simu-
lation.
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Musubi has two different control routines called for each time step: one for
single-level mesh and one for multi-level mesh. The steps presented above
is for a single-level mesh simulation and for multi-level mesh simulation, a
recursive routine is used since it requires interpolation and communication
between partitions and levels. The recursive algorithm used for multi-
level meshes was presented in [32]. The time loop is terminated if the
simulation reached maximum time or if the simulation reaches steady
state or if the simulation gets non-physical values. The results of the
simulation terminated due to non-physical values are discarded. To decide
whether a steady state has been reached, a time average is computed for a
sliding window1 of past iterations. The size of the sliding window can be
configured by the user. A steady state is assumed to be reached when the
difference between the current value and the time averaged value is less
than a given threshold. This threshold is another configurable parameter
to be set by the user. If the deviation is larger than the threshold, then
the current value replaces the oldest value in the sliding window of past
iterations and it is assumed that no steady state is reached yet. If more
than one variable is to be checked for the steady state then the steady
state is assumed to have reached only if all the variables defined by the
user have reached the steady state. After the time loop, the solver finalizes
the outputs and also dumps the runtime measurement of each routine to a
file which is used to study the performance of the code.

Alg. 8 is very general and it can be applied to any numerical solver.
The main reason for this generalization is due to the requirements of the
coupling tool APESmate that is build on top of the APES solvers. It
utilizes routines from solvers to load solver configuration file, mesh files,
build solve data structure, initialize flow, compute time steps and write
outputs. In the next section, the performance of both single component and
multicomponent LBM-BGK on periodic domain and with spacer geometry
are presented. The performance results of Musubi are published in the
yearly HLRS review proceedings [64, 65].

5.4.5 Performance
In this section, the performance of Musubi on the cray XE6 system Hermit
at HLRS is described. Hermit system has 3552 computing nodes. Each
node with two AMD Interlagos sockets with 16 cores each resulting 32
cores per node. Up to 1024 computing nodes i.e. 32768 cores were used for
performance analysis. For this analysis, only MPI parallelism is considered.

1an array of given size whose values are updated using sliding window algorithm,
i.e. modulo operator is used to get the position to store the current value.
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Two different test cases were chosen: the analytical setup with a fully
periodic domain and the channel with complex spacer structure. A periodic
domain is well suited for scaling analysis since each processor ends up
in similar domain with the same communication to computation ratio.
The channel with spacer structure resembles the actual production run for
dilute and concentrate channels in the electrodialysis stack.

Generally, the performance of a numerical code on the machine is
measured in terms of floating point operations per second i.e GFLOPS
(Giga floating point operation per second). However, Lattice Boltzmann
codes are measured in terms of number of lattice updates per second.
Since the number of floating point operations per lattice is fixed, it is
straightforward to convert it into FLOPS. In the following, Lattice Update
Per second (LUPS) is used as a measurement unit as it directly provides
information about how long a simulation with a certain number of lattices
takes with a certain number of cores.

To get overall information, the behavior of the code is presented in terms
of LUPS per node as shown in Figure 5.14 and Figure 5.16. An ideal
parallel execution is expected to have replica of serial execution. However,
the variation of computation to communication ratio and the cache-usage
affects the performance per core. In addition to a performance map, an
exclusive plot for strong and weak scaling are also used to present the
scalability of the code up to 1024 nodes on the Hermit system. In strong
scaling, the total problem size is fixed and distributed on different numbers
of cores i.e. with an increase in the number of cores, the problem size
per core is reduced. Alternately, weak scaling is measured by fixing the
problem size per core resulting in the same computational load per core.
Both strong and weak scaling can also be explained using the performance
map Figure 5.14 and Figure 5.16 i.e. strong scaling by connecting values
along a horizontal axis and weak scaling along vertical axis. Thus, the
closer the measurements along a vertical axis in the performance map, the
better is the weak scaling.

The performance of Musubi is measured for both single component
and multicomponent (with three components) LBM. In both schemes,
the BGK-collision operator with D3Q19 stencil layout is used. Stream
and collide steps are solved at each time step for both models. However,
the multicomponent model requires additional operations due to variable
transformation (App. A.1.2.4) which results in a linear system of equations
of size N -species. The single component model requires 169 floating
point operations per lattice while the multicomponent model for three
components requires 850 floating point operations per lattice i.e 280 floating
point operations per lattice per component. Note that the number of
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floating point operations per component for multicomponent does not
increase linearly with the number of components. Nevertheless, the memory
consumption and MPI communication data increases lineally with N-
components. In Musubi, the amount of communication data is reduced
through communicating only the required links of the PDF fm. This
reduces the communication time driven by MPI buffer size and bandwidth.

Periodic domain A fully periodic cubic simulation is chosen as a test
case because when distributed each processor results in exactly the same
problem size. This test case is well suited for weak scaling analysis. Every
refinement results in an increase in the number of elements by a factor of
8 due to doubling of elements in each direction. Here, the problem size is
varied from 64 elements up to 1 billion elements. Figure 5.14 shows the
internode performance of single component LBM and multicomponent LBM
with three components. For comparison of both models, the measurement
is shown in GFLOPS per node. The performance of multicomponent is
higher than the single component due to additional floating point operation
per lattice in the multicomponent model which results in efficient usage of
machines operation per cycle. A sustained performance of 7.2% is achieved
with multicomponent LBM and 4.2% with single component LBM on the
Hermit system, which has a theoretical peak performance of 294.4 GLOPS
per node. This reveals that additional floating point operations per lattice
in the multicomponent model results in better utilization of the Interlagos
processors.

In Figure 5.14, the performance is lower for the small problem size due
to increase in communication to computational ratio. As the problem
size increases i.e. the ratio of communication to computation decreases,
the performance increases. A peak in performance is observed when the
problem size fits into cache. Beyond this cache region, the performance
flattens out for the single component LBM, irrespective of increase in
problem size per node resulting in better weak scaling. But for the
multicomponent LBM, it does not flatten, it still increases.

Dedicated strong and weak scaling plots for both models are depicted
in Figure 5.15. In strong scaling Figure 5.15a, the overall problem size
is fixed to 16777216 elements. This problem is distributed on 2, 16, 128
and 1024 nodes. The parallel efficiency decreases for both models due
to the increase in communication to computational over load. For single
component, the efficiency is slightly increased from node 16 to 128 as the
problem size fits into the cache and it decreases again for 1024 nodes. For
multi component model to fit into cache for this problem size, it requires
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Figure 5.14 Performance map of the single component and multicomponent
LBM (three components) on periodic domain

more than 1024 nodes. Regardless, the parallel efficiency of both models is
above 70%. The weak scaling Figure 5.15b is plotted for 1048576 elements
per node with data points corresponding to 2, 16, 128 and 1024 nodes.
Both models exhibit perfect weak scaling and parallel efficiency is above
98%.

100 101 102 103

Number of nodes

0

20

40

60

80

100

P
ar

al
le

lE
ffi

ci
en

cy
(%

)

SC-LBM, 16777216 elements
MC-LBM, 16777216 elements

(a) Strong scaling

100 101 102 103

Number of nodes

0

20

40

60

80

100

P
ar

al
le

lE
ffi

ci
en

cy
(%

)

SC-LBM, 1048576 elements/node
MC-LBM, 1048576 elements/node

(b) Weak scaling

Figure 5.15 Strong and weak scaling of single component and multicomponent
LBM (three components) on periodic domain

Complex spacer structure Now the actual production run test case i.e
flow channel with spacer structure is considered for performance analysis.
The purpose of this analysis is to determine the optimal point of operation
for production runs i.e. to estimate the computation time required for a
fixed problem size using a certain number of nodes. The same simulation
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setup illustrated in Figure 5.8 with interwoven spacer structure for Seeder
performance is also used here. The fluid flows horizontally along the spacer
filaments between the two membranes on top and bottom. The spacer
structure and the two membranes are treated with the simple bounce back
no-slip BC. In the following, a single spacer element L = W = 0.2cm is
discretized with nHch = 32 and no q-values resulting in 660 thousand
elements. For scaling analysis, this single spacer element is replicated up
to the total length of the actual laboratory spacer of 20cm used by AVT,
RWTH Aachen. The full length of the spacer has a problem size of 66
million elements. The periodic boundary is assumed along the width of
the channel. This setup covers all almost all relevant production settings;
hence most effects that influence the production performance are included
in this analysis.

Due to the SFC, solvers in the APES framework achieve an almost
perfect distribution of the computation of load with at most a difference
of one in the element count between two partitions. In the previous test
case of fully periodic domain, the problem size was distributed perfectly.
However, with the spacer structure which results in a large number of
boundary elements, the communication surface between two partitions
might vary drastically, resulting in large imbalances of communication
costs. Additionally, computational imbalances are caused by the treatment
of inlet and outlet boundary elements. It is not easy to resolve imbalances
due to communication costs but computational load imbalance can be
overcome by deploying a dynamic load balancing algorithm. The effect of
dynamic load balancing on the performance of this test case is presented
in the later section.

Figure 5.16 shows the performance of single component LBM on left and
multicomponent LBM with three components on the right for the channel
with spacer structure. Both models exhibit similar profiles except for the
absolute value of performance. It can be seen that for the single component
LBM roughly 30 million elements fit on a single node where as for multi
component LBM with three components this factor is reduced to 15 million
elements. Similar to the periodic test case, a cache region is observed
at 8 × 104 and 2 × 104 elements per none for the single component and
the multicomponent models respectively. A steep slope that is observed
at out of cache region in both models might be due to load imbalance
in communication which arises from the complex spacer structure. This
slope affects the strong scaling of the code while the weak scaling is almost
perfect.

Once again, a dedicated strong and weak scaling plot of both models
with spacer structure are shown in Figure 5.17. Strong scaling Figure
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Figure 5.16 Performance map of single component and multicomponent LBM
(three components) with laboratory spacer structure

5.17a is shown for a total problem size of 66.2 million elements that covers
the full length of the laboratory spacer. The minimum number of nodes
required to fit this problem size of single component and multicomponent
are 4 and 8 nodes respectively. This shows that the multicomponent model
requires roughly twice the number of nodes than the single component
model to fit the same problem size. The performance increase in the single
component case for 1024 nodes due to cache effects as the problem size is
getting small enough to fit into cache. For both models, the performance
drops due to communication overload. Overall, the code shows good strong
scaling with parallel efficiency above 70% on 1024 nodes, i.e. 32768 cores.
Weak scaling for a problem size of approximately 63 thousand elements per
node is shown in Figure 5.17b. As can be seen, the weak scaling is almost
perfect for both models with only a small drop in the parallel efficiency
for larger counts of compute nodes.

Dynamic Load Balancing In multicomponent flow simulation with spacer
structure, the computational load imbalance arises from fluid element that
require boundary treatment like inlet, outlet, spacer wall and membrane.
These imbalances are resolved by load balancing algorithm. In Musubi,
the space filling curve partitioning algorithm (SPartA) [29] is deployed
to handle the computational cost associated with boundary treatment.
For load balancing, the weights are provided for each element. In our
application, the weights per element are computed from the computational
time spent on compute kernel and boundary treatment. SPartA uses these
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Figure 5.17 Strong and weak scaling of single component and multicomponent
LBM (three components) with laboratory spacer structure

weights to compute the optimal split position such that weights are equally
distributed among the processors. To ensure optimal load balancing, this
algorithm is applied dynamically.
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Figure 5.18 Time spent on compute kernel (red) and set boundary (blue) routine
for 1000 time steps with a total problem size of 5 million elements,
distributed on 32 cores

Figure 5.18 shows the run time of "compute kernel" and "set boundary"
routines for 1000 time steps with a total problem size of 5 million elements
with spacer structure, distributed on 32 cores. Due to initial distribution,
almost perfect computational load is obtained for compute kernel but the
boundary elements cause load imbalances that can be seen in Figure 5.18a.
After load balancing, Figure 5.18b, the elements are redistributed and a
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perfect balancing is achieved. The element distribution before and after
load balancing is shown in Figure 5.19.
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Figure 5.19 Elements distribution before and after load balancing. Red repre-
sents fluid elements and blue presents fluid elements with boundary
treatment except wall. Here, q-Values are not considered for spacer.

5.5 APESmate - Integrated coupling tool

As previously mentioned, the ED process is the multiphysics heterogeneous
system, and to simulate this system the involved different physics must
be coupled. The theoretical concept to couple this multi-physics system
was introduced in Chapter 4. As shown in Figure 4.2, this system involves
both surface and volume coupling. The spacer-filled dilute and concentrate
flow channels are coupled with the membrane black-box model via surface
coupling. Both dilute and concentrate flow channels are coupled with
electric potential via volume coupling. In the previous Section 5.4, the
highly scalable lattice Boltzmann solver Musubi to simulate single physics
was introduced. In this section, the coupling tool APESmate developed
to couple solvers in the APES framework is introduced. At first, the
coupling challenges and certain requirements of the coupling tool are briefly
discussed. Then, the implementation details of this tool are presented in
detail.

Just like the ED process, most real world applications involve multi-
physics or multi-scales or both which are not feasible to compute using
traditional single physics solvers. One way to efficiently simulate these
applications are to split the domain into several sub-domains according
to their physics or length scales and couple them with each other via
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surface or volume. The coupling between sub-domains can be achieved by
exchanging variables at the coupling interfaces (surface or volume) as point
values. These spatial points on the coupling interface are called coupling
points and the variables evaluated on those points in the remote domain are
referred to as coupling variables. In this work, the term ’local domain’ and
’remote domain’ refer to the domain that requires and provides coupling
variable values respectively. The Musubi solver presented in the previous
section is highly scalable on its own so the coupling tool must be scalable
as well to simulate large coupled simulations. Therefore, the challenge here
is the efficient coupling of the scalable solvers such that scalability and
numerical accuracy of the solvers are maintained in the coupled simulation.
In addition to these coupling challenges, there are certain requirements
which need to be satisfied by the efficient coupling tool such as

• Mesh independent data (coupling variable) exchange in space and
time so each domain can have different resolution, time scale and
scheme order i.e.

– Interpolation in space, at coinciding or non-coinciding points.
– Interpolation in time, for non-coinciding time intervals i.e. when

each domain have different time steps.

• Coordinated execution of involved solvers.

• Minimal access to solver specific data structures and its routines.

• Exchange coupling variables between domains in parallel.

• Define the distribution of domains on certain number of processes as
configurable parameter.

The sole purpose of the coupling tool is to exchange values between the
domains at the interface. Most coupling tools do that through treating
solvers as black box. The solver of the local domain provides the coupling
variables on a certain list of points to the coupling tool and the coupling
tool interpolates the variable values provided by the remote domain on
the points requested by the local domain. The advantage of such a tool
is that any solver can be coupled but the disadvantage is that numerical
accuracy of the interpolated values depend on the interpolation order and
number of points available for interpolation. Thus, it reduces numerical
accuracy and scalability of the code. APESmate is an integrated coupling
tool developed to satisfy these challenges and most of the fore-mentioned
requirements. It is implemented as part of APES framework to couple
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APES solvers like Ateles and Musubi. The current limitation of APESmate
is that it can be used to couple only solvers in the APES framework as it
relies on the TreElM data structures. On the other hand, the integrated
coupling approach serves its purpose by improving the numerical accuracy
since the variables are evaluated directly by the solver for a given set of
points resulting in an accuracy order which is the same as the order of the
solver.

As shown in the APES schematic layout, TreElM is the central library
providing the octree data structure. The mesh generator, Seeder generates
the octree mesh and the SFC linearizes elements in the mesh. The lineariza-
tion of fluid elements in the mesh results in a level independent list of fluid
elements. As previously stated in Section 5.4.2 The generated linearized
mesh is dumped to disk which the solver reads and create a level-wise list
of elements to vectorize the computations. The data structure used by the
solver to store the level-wise list of elements is referred to as the solver
specific data structure. Then the state array to store the state variables of
the equation system is constructed from this solver specific data structure.
The lattice Boltzmann solver Musubi is stencil based so the state values per
element are stored according to the stencil definition. These state values
are cell-centered values so the values at the off-centered points are obtained
by interpolation. On the other hand, the Discontinuous Galerkin (DG)
solver Ateles is the high-order scheme with polynomial representation for
the state values. Here, the state values stored per element are polynomial
coefficients. Therefore, the values on points are obtained by polynomial
evaluation. Thus, to couple APES solvers with different solver internal
data structures, the concept of variable system (varSys) was introduced
(see Section 5.5.1). The varSys provides generic interfaces to extract vari-
ables for the list of elements or points. The space-time function (STfun)
is a type of variable in the varSys that is used to define BC and source
term in solvers. In APES, the surface and volume coupling are treated as
BC and source term respectively. Since BC and source term are defined
as STfun variable, the coupling data (points, variable names, variable
values, etc,) to exchange between domains are stored explicitly in STfun.
APESmate can access the data in the STfun through the varSys in the
local domain. Using these data, APESmate can evaluate the variables on
the coupling points using the varSys in the remote domain. The flow of
data between domains through APESmate is illustrated in Figure 5.20. In
the figure, APESmate takes the coupling points and the variable names
from STfun in ’domain 1’, evaluates the variables on the coupling points
using varSys in ’domain 2’ and then it stores the evaluated variable values
back to the STfun in ’domain 1’.
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Figure 5.20 Illustration of exchange of points, variable names and variable
values between domain 1 and 2 through APESmate

In short, APESmate only needs to access the varSys and STfun inside
the varSys to exchange data between domains. Therefore, these two core
features: varSys and STfun are implemented in the central library TreElM.
In the next sections, the implementation details of the two features are
explained in detail.

5.5.1 Variable system

The varSys is a feature in TreElM that provides different methods to
evaluate variables in the solver. This feature allows the user to define
arbitrary variables and their relations in the configuration file. Its main
purpose is to provide an easy access to evaluate variables for post-processing.
Since the interface of the functional procedure used to evaluate variables
is independent of the solver data structure, this feature is also best suited
to couple different solvers.

In varSys, the variables are classified into: state, derived, operation,
STfun and anonymous. In the following, the definition of these variables
and how they are added to the varSys are explained.

State: These variables are variables in the equation system on which the
computations are carried out in the numerical solvers. Therefore, the
state variables are allocated and stored in memory. Other variables
of interest are usually derived from the state variables. The name
and the number of components of the state variable depend on the
type of the equation system which is being solved. So, these variable
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are predefined in the solver for each equation system. E.g. in LBM,
the state variable is the PDF fm with Q components.

Derived : These variables are derived from another variable. In solver,
most derived variables are derived from the state variables. The
list of derived variables depends on the type of the equation system.
Therefore, these variables are also predefined in the solver for each
equation system. E.g. in LBM for fluid flow, the macroscopic quanti-
ties: density (ρ), pressure (P ), velocity (v) are derived from the PDF
but theshear stress (σ′) is derived from the fneq. Likewise, in multi-
component LBM, the species macroscopic quantities: spc_density
(ρk), spc_velocity (vk) are derived from species PDF fmk and mixture
variables are then derived from their respective species variables. In
LBM for electric potential, the macroscopic quantity: potential (ψ)
and electric-field (E) are derived directly from the PDF fm.

Operation: These variables are derived by applying a certain mathematical
operation on another variable. They are referred to as operation vari-
ables. E.g. momentum (p) can be computed by multiplying density
and velocity as p = ρv and vorticity (ω) can be computed from curl of
velocity as (ω = ∇×v). Almost all basic mathematical operations are
supported: basic arithmetic operations (+,−, ∗, /), logical operations
(>,<,≥,≤,=, /=, .and., .or.) and vector operations (magnitude, gra-
dient). These variables are usually defined in the configuration file to
obtain arbitrary variable for post-processing/visualization. Example
for operation variable definition in configuration file is given in App.
Lst: A.1.

STfun: These variables are defined as space-time function in the configu-
ration file. They are especially used to define boundary and source
variables. Since this variable is used for coupling solvers, they are
explained in detail in the next section. An example configuration of
the STfun variable in the variable table is given in Lst: A.2.

Anonymous: This variable is a specific form of the STfun variable. It
refers to a boundary/source variable which is directly defined as the
STfun instead of referring to a variable name defined in the variable
table. In the example configuration given in App. Lst: A.3, the
boundary and the source variables are defined as the anonymous
variable.

In summary, there are five variable types: state, derived, operation,
STfun and anonymous variables. They can be grouped into two category
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as: dependent and independent variables. The state, the STfun and
the anonymous variables are independent variables because they are self-
defined whereas the derived and the operation variables are dependent
variables because they are derived either from another variable.

In addition to the aforementioned mathematical operations, there are
two additional operations introduced especially for coupling: "combine"
and "extract". The "combine" operation gathers multiple variables into
a single variable and the "extract" operation extracts a certain number
of components from a vector variable. Often in surface/volume coupling,
more than one variable is required to be exchanged between domains and
they have to be evaluated on the same set of points so it’s efficient to
combine all those variables into one and exchange just one variable with a
single MPI communication. Thus, if the local domain requests multiple
variables then APESmate combines these variables into a single variable
and append it to the varSys in the remote domain. This variable in the
remote domain is then evaluated at every synchronization time step by
APESmate and the results are stored in the local domain where individual
variables are extracted. An example is given in App. Lst: A.4, where
’pressure’ and ’velocity’ in STfun variable ’surface_coupling’ is combined
into a single variable by APESmate and evaluated in the remote domain
’dom_1’ and the results are stored in the ’surface_coupling’ variable in
the local domain. These results in the ’surface_coupling’ variable are
then extracted using ’vel_d1’ and ’press_d1’ variable and assigned to the
boundary variable ’velocity’ and ’pressure’ respectively.

In tem_varSys_type (Lst: 5.1), varname is declared as ’dynamic array’1
of label (character(len=80)) to avoid duplication of variables in the varSys
and method is declared as ’growing array’2 of tem_varSys_op_type (Lst:
5.2) which contains information on how to obtain a variable. Since varname
is a dynamic array, it is possible to find the index position of a requested
variable name using binary search and this index position is then used to
access the method of that requested variable. In both Lst: 5.1 and Lst:
5.2, only the declarations that are relevant for this discussion are given.

1 type tem_varSys_type
2 . . .
3 !> List of variables in the system.
4 type(dyn_labelArray_type) :: varname
5
6 !> Definition of how to obtain a variable .
7 type(grw_varOpArray_type) :: method
8 end type tem_varSys_type

1contains an array with unique entries which grows over time and a sorted index
array for fast lookups of a given value using a binary search, see Section 5.3.

2contains an array which grows over time
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Listing 5.1 Description of the variable system

1 type tem_varSys_op_type
2 !> Number of components for this variable .
3 integer :: nComponents
4
5 !> Number of variables, that are needed as input to obtain this variable .
6 integer :: nInputs
7
8 !> Position of the input variables in the variable system.
9 ! ! There are as many entries as nInputs.

10 integer, allocatable :: input_varPos(:)
11
12 !> Data that is required by the get method.
13 type(c_ptr) :: method_data
14
15 !> Function to actually obtain the variable at a given point .
16 ! !
17 ! ! This is either a function accessing a state variable directly ,
18 ! ! a function returning a space time function evaluation or a
19 ! ! derived quantity , that computes a new variable out of others .
20 procedure(tem_varSys_proc_point), pointer :: get_point => null()
21
22 !> Function to setup points set for boundaries and sources.
23 ! ! Pointe set are stored in method_data level wise 1D growing array for
24 ! ! dimension X,Y and Z.
25 ! ! ∗ For solver variables , points are stored in solver container .
26 ! ! ∗ For space time variables , points are stored in space time function .
27 ! ! ∗ For operation variables , points are passed down to its input variable .
28 procedure(tem_varSys_proc_setupIndices), pointer :: setup_indices => null()
29
30 !> Function to get value for point set stored in method_data for requested
31 ! ! index in point set . This function either returns a pre stored value or
32 ! ! compute value depends on variable type and space time function .
33 ! ! For time independent space time function , values are computed
34 ! ! in setupIndices and growing array of points are deleted
35 procedure(tem_varSys_proc_getValOfIndex), pointer :: get_valOfIndex => null()
36
37 end type tem_varSys_op_type

Listing 5.2 Description of the method on how to obtain a variable

In order to keep the interface of functional procedures in tem_varSys_op_type
(Lst: 5.2) independent of the solvers, a method_data c_ptr is used. For
state and derived variables in the solvers, the method_data stores the
address of the solver container. The solver container is the data type
with pointers to all required data types in the solver to obtain a variable.
The method_data of the STfun variable refers to an element in the linked
list data structure (tem_st_fun_listElem_type) and the operation vari-
able refers to the operation data structure. With the method_data, each
variable can be implicitly obtained.

The varSys provides two ways to obtain a variable value: Either by
single-stage direct evaluation using get_point or by a two-stage approach
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using setup_indices and get_valOfIndex. get_point is the function pointer
of the tem_varSys_proc_point procedure and it returns variable values at
a given set of points xi, where i is the number of points requested. For
state variable, this function directly access the state array. In the Musubi
solver, the state values are cell averaged values and if the requested point
is not a barycenter of the element then a value is computed by weighted
average of neighbors using

ϕi(xi, t) =
∑
m

wmi ϕ(x + um, t), (5.12)

where wmi ∈ [0, 1] are the weights computed by

wmi = dm∑
m
dm

, where dm = |xmb − xi|, (5.13)

dm is the distance between the requested point xi and the barycenter
of an element xmb along the direction vector um. On the other hand, in
the Ateles solver, the state values are polynomial coefficients of the given
order. Therefore, a value is obtained by the evaluation of polynomial on
the requested point. get_point of a STfun variable evaluates the STfun
at the given set of points xi. The derived or operation variable calls their
dependent variable get_point using input_varPos and then derives or
applies the operation on the dependent variable output respectively. Thus,
get_point is a direct approach to obtain the variable at a given point.

The mesh independent data exchange between domains is achieved by
exchanging coupling variables at points in space. The variable at a certain
point can be directly obtained by get_point routine. However, in the
solver the state variables are stored element wise and it is expensive to
compute the element location in the tID list, which contains the requested
point at every time step. To resolve this, a two-stage approach was
introduced. In this approach, the points and the element location in the
state array are stored in the variable method_data during initialization.
At each time step, variable values are obtained using the index of points
stored in the method_data. This approach was mainly introduced to allow
coupling between domains via variables in the varSys. As mentioned earlier,
the surface and the volume coupling are carried out through boundary
condition and source terms respectively. The coupling points required to
evaluate the coupling variable in the remote domain are generated from
the boundary or source in the local domain and stored in their respective
boundary or source variable method_data. As stated before, the boundary
and source variables are defined as STfun, so the coupling tool APESmate
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needs to access only the STfun variable method_data to get the coupling
information. One of the goals for the design of the coupling tool APESmate
(Section 5.5) is to have minimum access necessity to each solver and it is
achieved using varSys and STfun in the solver.

In the following, the two-stage evaluation that is used for coupling in
explained. At first, the points are generated in boundary/source and they
are send to a variable via the setup_indices routine and it appends the
points to a growing array of points within in a variable method_data.
It then returns the index positions of the stored points, which are then
stored in the corresponding boundary/source data structure. Finally, the
indices are stored in boundaries/sources and they are used to obtain a
variable at every time step using the get_valOfIndex routine. Here, to
avoid appending a same point twice in the growing array of points, a point
is converted into a tID on the maximum refinement level (Lmax = 20)
using

1 ! location of point in bounding cube
2 locInCube = point bounding_cube%origin
3 ! Number of elements in maximum level
4 dimLen = 2∗∗level
5 meshDensity = real(dimLen) / bounding_cube%length
6 ! coordinate of point in given level
7 coord(1:3) = max( min( int(locInCube∗meshDensity), dimLen1), 0)
8 ! Start with first treeid on given level
9 treeID = firstIDAtlevel ( level )

10 fak8 = 1
11 fak2 = 1
12 ! Find the treeID by summing treeID of its parent
13 do iLevel = 0, level 1
14 treeID = treeID + fak8 ∗ ( mod( coord(1)/fak2, 2 ) + 2 ∗ mod( coord(2)/fak2, 2 ) &
15 & + 4∗ mod( coord(3)/fak2, 2 ) )
16 fak2 = fak2 ∗ 2
17 fak8 = fak8 ∗ 2
18 end do

and this tID is added to a dynamic array of tIDs to maintain a unique
growing array of points. Thus, if the same point is sent to state/STfun
variable by another boundary/source then setup_indices does not append a
point instead it will return the index of provided point in a growing array of
points. The points are stored only in the method_data of state and STfun
variables and the index are stored in corresponding boundary/source. For
the dependent variables: derived and operation, the points are passed down
to the state/STfun variables from which they are derived and store only
their required index.

Figure 5.21 illustrates the exchange of points and index between the
variable and the boundary for the example configuration in Lst: A.4. The
points from boundary are sent to a STfun variable ’surface_coupling’
through variables ’vel_d1’ and ’press_d1’. Let us assume that the points
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Figure 5.21 Illustration of exchange of points and index between variables and
boundary/source

are sent to ’surface_coupling’ variable through ’vel_d1’ variable. The
points are then stored in the method_data of the ’surface_coupling’ variable
and returns the indices of the stored points, i.e. Index1 in Figure 5.21.
When the same points are sent to the ’surface_coupling’ variable by the
’press_d1’ variable, it returns the same index Index1 without appending
the points. This Index1 is then stored in method_data of ’vel_d1’ and
’press_d1’ and they both create their own new index called Indexv and
Indexp respectively. These indices are then stored in the corresponding
boundary variables: velocity and pressure. The exchange of coupling points
between domains is elaborated in Section 5.5.3.3.

5.5.2 Space-time function
As mentioned earlier, the STfun is required to define macroscopic variables
at boundaries and sources in the configuration file. For example: In the
fluid flow of the LBM solver, velocity (v) and pressure (P ) are defined
for inflow and outflow boundaries respectively, and force (F ) is defined
as source term. In general, a STfun variable ϕ at boundary/source is
defined as function of space and time ϕ(x, t), where x is the physical
co-ordinate point or position vector and t is the physical simulation time.
The variable ϕ can be a scalar or vector depending on the requested
physical variable at the boundary/source. The STfun data type definition
in TreElM allows to define a variable to be an arbitrary definition of
STfun i.e. a variable definition in configuration file can be a constant or
a space-time Lua function or a predefined Fortran function. There are
several predefined Fortran functions implemented in TreElM. One of them
is predefined=’combined’ that splits a STfun into spatial ϕs and temporal
ϕt function as ϕ(x, t) = ϕs(x) · ϕt(t). An example configuration is given
in Lst: A.2, in which the pressure at the outflow boundary is defined as
constant, velocity at inflow boundary is defined as predefined=’combined’
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with temporal and spatial definitions, and force at source is defined as a
Lua function.

It’s worth mentioning again that the STfun is also a type of variable
in the varSys. So, it is possible to define STfun as a variable in the
configuration file and then refer to that variable name in the boundary and
source variables. Example of STfun as a variable is given in Lst: A.2 and
Lst: A.6. One advantage of defining STfun as a variable in the variable
table is that then it can be tracked by the tracking infrastructure to debug
the STfun. If STfun is defined directly as anonymous variable, it cannot
be tracked because the name for this variable is created within the code.

In the solver, the boundary variables must be evaluated on the boundary
(surface) of the computational domain and the points (spatial position
vector) x on the surface are generated using the boundary information
provided by Seeder. The source terms are usually applied on the entire
volume so the source variables must be evaluated on the entire computa-
tional domain. However, in some cases source terms need to be applied
only to a limited area of the computational domain and for these cases,
the shape object is defined. An example of such a STfun variable with
shape defining a box of length 1 in x- and y- direction is given in Lst: A.5.

As mentioned before, the coupling variables are evaluated in the remote
domain on the spatial points from the local domain. Therefore, the coupling
points generated by every boundary and source term in the local domain are
stored in their respective STfun point data type tem_pointData_list_type
object in tem_st_fun_listElem_type (Lst. 5.3).

1 !> An element for a spacetime function within a linked list .
2 ! !
3 ! ! Besides the actual list of space time definitions that are provided , there
4 ! ! is a pointer to the next element in the list .
5 ! ! Method data of a space time function variable refers to this type .
6 type tem_st_fun_listElem_type
7
8 !> Number of space time functions
9 integer :: nVals

10
11 !> List of space time function since single variable can have multiple
12 ! ! space time function
13 type(tem_spacetime_fun_type), dimension(:), pointer :: val => NULL()
14
15 !> Points data containing space coordinates or evaluated
16 ! ! values for time indepentent functions
17 type(tem_pointData_list_type) :: pntData
18
19 !> Pointer to next space time function
20 type(tem_st_fun_listElem_type), pointer :: next => NULL()
21 end type tem_st_fun_listElem_type

Listing 5.3 Description of the space-time function element data type
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APESmate gathers the points stored in the coupling STfun point data type
and evaluates the coupling variables at the points in the remote domain.
In order to evaluate the variable in the remote domain, the points must
exist in the remote domain. Unlike volume coupling where sub-domains
overlap, the surface coupling has non-overlapping sub-domains so the
coupling points on the surface of the local domain cannot be found on
the remote domain. Therefore, to identify and evaluate a variable at the
coupling points in the remote domain, the points need to be shifted by a
small offset towards the remote domain. The additional offset directions
are provided by the boundary routines in the local domain and stored in
tem_pointData_list_type for every point. The calculation of the offset
direction depends on the solver. For the link-based solver like Musubi the
points must be shifted along the outgoing direction pointing towards the
boundary(offset_dir) and for the DG solver Ateles the points must be
shifted along the boundary face normal direction. To maintain numerical
accuracy at the surface, the points are shifted only by a smallest double
precision real number using the Fortran intrinsic spacing function. The
offset_dir is three integers per point which is quite expensive to commu-
nicate. Therefore, to reduce the data size (memory consumption) of the
MPI communication, the offset_dir is converted into offset_bit for every
point. The offset_bit stores the offset_dir as character using

1 offset_bit = achar((offset_dir(1)+1) + (offset_dir(2)+1)∗4 + (offset_dir(3)+1)∗16)

The offset_bit can be converted back into the offset direction vector using

1 offset_dir (1) = mod(ichar(offset_bit),4) 1
2 offset_dir (2) = mod(ichar(offset_bit),16)/4 1
3 offset_dir (3) = ichar(offset_bit)/16 1

These offset_bits are sent to a variable through setup_indices by the BC
and source along with the points. The offset of points on the coupling
interface is illustrated using an example of a non-overlapping surface
coupling interface of two domains shown in Figure 5.22. The green domain
is the DG solver with spatial polynomial order 4 and the blue domain is
the LBM solver. Since the DG solver requires points exactly on the face,
its offset directions (red arrows) are defined along the face whereas for the
LBM solver, which is link-based, the points shift along each link. Figure
5.22b shows the points after shifting along the offset direction into the
remote domains. The top and the bottom are defined as wall boundaries
so the LBM solver does not require points on these walls

With the offset_bit, the APESmate computes the offset direction and
shift the points in the remote domain. This offset must to be done only for
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Figure 5.22 Example of non-overlapping coupling interface of two domain green
and blue. Both domains have different resolutions and different
solver. The green domain is the 4th order DG solver and Blue
domain is the LBM solver.

surface coupling, so to distinguish surface coupling from volume coupling,
the local domain sets an additional integer variable ’isSurface’ to 0 for
surface coupling or 1 for volume coupling. Since the solver treats BC
and source term on a level-wise (the elements are sorted per level for
multi-level meshes) list of elements, the generated points are also stored
level-wise in the point data type. Therefore, the evaluated variables on the
remote domain are also stored level-wise in the cpl_value_type object in
the tem_aps_coupling_type (Lst: 5.4). The coupling points on the single
process of the local domain might be distributed on multiple processes
on the remote domain. So, during the initialization of APESmate, the
process rank ID for each point is identified and stored in ’pntRanks’ in
cpl_value_type. This type also stores the values of the coupling variables
evaluated on the remote domain and stored in the ’evalVal’ array in the
local domain. The ’pntRanks’ helps to create the receive communication
buffer ’recvBuffer’ where the values are received from the remote processes
and then copied to ’evalVal’. The communication buffer is the data type in
TreElM that provides process-wise buffers to exchange data with a specific
process. The communication between domains is explained in the next
section.

1 ! type which include all exchange points information
2 type cpl_value_type
3 !> number of points per level
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4 integer :: nPnts = 0
5
6 !> Global process ids to evaluate the points
7 ! ! It is deallocated after recvBuffer is filled
8 integer, allocatable :: pntRanks(:)
9

10 !> Evaluated variable value on each point .
11 ! ! If variable is time independent then values are evaluated and stored
12 ! ! at initialization stage , in this case point arrays are not stored .
13 ! ! nComp = nScalars in the tem_aps_coupling_type%varnames
14 ! ! Access: (iVal 1)∗ nComp + iComp
15 real(kind=rk), allocatable :: evalVal(:)
16
17 !> Receive communication buffer to fill evalVal
18 type(tem_communication_type) :: recvBuffer
19 end type cpl_value_type
20
21 !> Coupling description defined in config file from load space time function
22 ! ! which is called from load boundary condition or load sources
23 type tem_aps_coupling_type
24
25 !> Remote domain label to get data from
26 character(len=labelLen) :: rem_domLabel
27 !> Domain ID of remote domain label
28 integer :: rem_domID
29
30 !> Number of variables to get from remote domain
31 integer :: nVars
32 !> List of variables to get from domain
33 character(len=labelLen), allocatable :: varNames(:)
34
35 !> nScalars of varNames
36 ! ! Must be same as nComps in stFun
37 integer :: nScalars
38
39 !> Used to decided whether this space time functions are used
40 ! ! for surface or volume i.e boundary or source.
41 ! ! For boundary. isSurface = 0
42 ! ! For volume, isSurface = 1
43 integer :: isSurface = 1
44
45 !> store value on each level
46 type(cpl_value_type) :: valOnLvl(globalMaxLevels)
47 end type tem_aps_coupling_type

Listing 5.4 Description of the coupling data type in TreElM to store evaluated
variable

The tem_aps_coupling_type (Lst. 5.4) is an object in tem_space-
time_fun_type (Lst. 5.5), APESmate can access them through method_data
of the STfun variable.

1 type tem_spacetime_fun_type
2 !> The function kind
3 ! ! Should be either :
4 ! ! ’ const ’: Constant for all (x,y,z, t)
5 ! ! ’combined’: This returns spatial (x,y,z)∗temporal(t)
6 ! ! ’lua_fun’: Function defined in the Lua script
7 ! ! ’apesmate’: Get variables from remote domain
8 character(len=labelLen) :: fun_kind
9
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10 !> spatial restrictions
11 type(tem_shape_type), allocatable :: geom(:)
12 \dots
13
14 !> Apesmate coupling description
15 type(tem_aps_coupling_type) :: aps_coupling
16 end type tem_spacetime_fun_type

Listing 5.5 Description of the space-time function data type

In the tem_aps_coupling_type, ’varNames’ and ’rem_domLabel’ are
coupling variables names to be evaluated in the remote domain and the
name of remote domain respectively. These two information are provided
in the configuration file as predefined Fortran function in STfun with
predefined =’apesmate’. An example configuration of the STfun variable
is given in Lst: A.6, where ’electric_force’ is provided to source term
’force’ and it needs to be computed from the remote domain name: ’poten-
tial_dom’ and the variable name in the remote domain: ’electric_field’.
The APESmate evaluates the coupling variables in the remote domain
and stores evaluated variables in the ’evalVal’ in cpl_value_type which is
defined level-wise in tem_aps_coupling_type which is an object in STfun
data type in the local domain. Then when the solver request a variable
at boundary/source using get_valOfIndex in varSys, STfun returns the
pre-stored values.

Its worth mentioning that it is possible to define multiple STfun for
a variable in the variable table. In such cases, evaltype is defined in
the configuration file to determine how to merge the values of multiple
STfun. The list of spatial points from the solver and multiple STfun are
stored as an element in the linked list type tem_st_fun_listElem_type.
The method_data c_ptr (explained in the previous section) of the STfun
variable refers to an element of this linked list. All STfun defined in
the configuration file are added to this linked list and address the first
entry in the linked list which is stored in the solver. This linked list
helps APESmate to gather all the coupling STfun by looping over each
entry in the list. With this design, the APESmate couples sub-domains
independent of the solver data structure.

5.5.3 Coupling algorithm
APESmate is a single executable, integrated coupling tool build as part of
APES framework. It utilizes existing solver routines to load solver configu-
ration file, load mesh files, initialize solver specific data structures, initialize
flow, do computation and write outputs. APESmate distributes the sub-
domains across processes by creating individual MPI sub-communicators
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for each domain. As mentioned before, it evaluates the coupling variable
in the remote domain using the remote domain’s varSys and stores the
evaluated variables in the STfun in the local domain along with the other
coupling information to exchange with the remote domain. The APESmate
uses a global MPI communicator to exchange variables between the do-
mains and the MPI sub-communicator to communicate within the domain.
Thus, it is not altering the underlying communication patterns used in the
solvers. Here, the domain refers to the physical system and solver is the
numerical scheme chosen to simulate that physical system.

The algorithm used in APESmate is given below Alg. 9. The basic
structure of this algorithm is similar to the solver Alg. 8 with few addi-
tional steps like loading APESmate configuration file, domain_distribution,
initialize_coupling, synchronize_domains, update_nextSyncTime and fi-
nalize_coupling. Some of these steps are explained in detail below. Similar
to the solver, the MPI communicator for APESmate is also initialized in
tem_start and finalized in tem_finalize. In the load_configuration step,
the APESmate configuration file is loaded with information about each
domain and the simulation termination conditions. After that in the
domain_distribution step, the domains are distributed across the processes
and MPI sub-communicators are created for each domain. Next, the
configuration file for each domain is loaded and the domain initialized to
build solver specific data structures. In the initialize_domain step, the
spatial points are generated by boundaries and source terms and stored
in their respective STfun variables and the state variables are initialized
with the initial conditions. In the initialize_coupling step, the APESmate
gathers the coupling data (points, variable names, remote domain label)
from the STfun variables. In this step, the rank ID of the remote domain
for each point are identified using the round-robin fashion and then the
points are sent to the correct process of the remote domain. Additionally,
the APESmate checks for the availability of the variable names requested
by the local domain in the remote domain varSys and then combines
those variables into a single variable and appends it to the remote domain
varSys as a ’combine’ variable. Furthermore, the communication buffers to
exchange evaluated variables between the domains are also build in the ini-
tialize_coupling step. Before the time loop, the domains are synchronized
with initial values from the domains in the synchronize_domains and the
next synchronization time is initialized in the initialize_nextSyncTime. In
the synchronization step, coupling variables are evaluated on the remote
domain and exchanged to the local domain. Next is the time loop in which
APESmate steers each domain by solving each sub-domain until it reaches
the next synchronization time. At every synchronization time, the coupling
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variables are evaluated and exchanged and the next synchronization time
is computed. After the time loop, each domain is finalized with writing
the simulation outputs and runtime measurements to disk. At last, before
finalizing the MPI, the runtime measurements of APESmate are written
to the disk. In the following, each step in the coupling Alg. 9 is explained.
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Algorithm 9 APESmate Algorithm
. Initialize MPI environment and logging

1: tem_start()
. Load APESmate configuration file

2: load_configuration()
. Distribute domains according to procWeight per domain and create
MPI sub-communicator for each domain

3: domain_distribution()
4: for each domain in local process do
. Load each domain configuration file and mesh files

5: load_domain_config()
. Build solver specific data structures and initialize state arrays for
each domain

6: initialize_domain()
7: end for
. Build coupling data structure

8: initialize_coupling()
. Synchronize domains by evaluating coupling variable in remote
domain and communicate to local domain

9: synchronize_domains()
. Compute first synchronization time by computing maximum of
domain time steps

10: Initialize_nextSyncTime()
. Do main loop computation: solve each domain and synchronize
domains

11: for iT ime← 0, tMax do
. Solve each domain till next synchronization time or until steady state

12: for each domain in local process do
13: do_time_loop_domain()
14: end for

. Synchronize domains by evaluating coupling variable in remote
domain and communicate to local domain

15: synchronize_domains()
. Update next synchronization time by computing maximum of domain
time steps

16: update_nextSyncTime()
17: end for
18: for each domain in local process do

. Finalize outputs and dump runtime measurements of each step of
each domain

19: finalize_domain()
20: end for

. Dump runtime measurements of APESmate
21: finialize_coupling()

. Finalize MPI
22: tem_finalize()
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5.5.3.1 Configuration

The configuration of the APESmate input file is pretty simple; the user
just needs to provide the following for each domain:

Filename: is the configuration file for the domain and it should match the
chosen solver configuration.

Solver: is the name of the solver to use for the domain and supported
solvers are: ’musubi’ and ’ateles’.

Label: is used in the STfun definition to identify the remote domain from
which the coupling variables need to be obtained.

nProc_dom: is the number of processors to distribute the domain to.

An example configuration is given in Lst. A.7 that defines four domains.
Since APESmate steers the solvers, the termination condition like the
maximum simulation time for the coupled simulation is defined in the
APESmate configuration file. It means that the sim_control which is the
solver configuration file is discarded and APESmate provides the solver
with a maximum simulation time to terminate the solver time loop. In
the solvers, the time loop is terminated when either one of this conditions
are satisfied: reached maximum simulation time, reached steady state or
non-physical state. These termination conditions are also applicable to
APESmate.

5.5.3.2 Domain distribution

APESmate provides three ways to distribute the domain:

1. Distribute the domains in a way that each process has only one
domain. It is achieved by defining nProc_dom as integer such that
the total number of global MPI ranks (nProc_total) is equal to the
sum of nProc_dom.

2. Distribute the domains to the total number of processors (nProc_to-
tal) by defining nProc_dom as fraction (nProc_dom_frac). Then,
the nProc_dom is obtained by nProc_total × nProc_dom_frac. How-
ever, if summation of the nProc_dom is not equal to the nProc_total
then one process will run more than one domain.

3. Distribute all domains on all processes i.e. nProc_dom=nProc_total.
In this distribution, in each process, the domains are executed in
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sequence in an order according to their definitions in the configuration
file. This approach was introduced especially for volume coupling
like coupling of the multicomponent flow and the electric potential.
The electric-potential equation is solved for steady state solution at
each time step, which might result in load imbalance if the electric
potential domain and the multi-component domain are distributed
on separate processes.

To achieve good scaling of the coupled simulation in large parallel systems,
the computational load between domains must be balanced. Hence, the
distribution of the domains across processes has a direct impact on the
performance of the coupled simulation. Therefore, nProc_dom is chosen
carefully using prior knowledge on the performance of the solver and
with some preliminary test runs of the coupled simulation. The current
APESmate allows only for static load balancing between domains through
configurable nProc_dom. It is possible to deploy the dynamic load bal-
ancing algorithm SParta [29] in TreElM but with some effort and it is
planned for future work. However, the individual dynamic load balancing
in the solvers can be used at the moment to reduce load imbalances within
the domain.

While distributing the domains, APESmate creates MPI sub-communicators
for each domain and passes it to the corresponding solver chosen for the
domain. The solver uses this sub-communicator to communicate within
the domain and APESmate uses the global MPI-communicator to com-
municate between the domains. With the distribution of domains across
processes, the domain in a local process is unaware of from which process
of the remote domain it should request coupling variables. Therefore,
for initial communication between domains, the concept of round-robin
communication is deployed. To establish this communication, APESmate
stores the global ranks of each domain in each process. It is explained in
Section 5.5.3.3.

Figure 5.23 shows the distribution of 4 domains given in the example
configuration in Lst. A.7. The domains are distributed among 6 processes
with 2 processes for each multi-component flow domain (the one in the back)
and one process for each electric potential domain (the one in the front).
The blue and green color represents the dilute channel and the concentrate
channel respectively. The red line between the channels represents the
membrane surface coupling interface which is treated using the membrane
black-box BC. In the figure, the element size of multicomponent and
electric potential domains is different to illustrate that the APESmate can
handle non-matching meshes.
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Multicomponent flow domains

D1 P0 G0 D1 P1 G1

Dilute channel

D2 P0 G3 D2 P1 G4

Concentrate channel

Electric potential domains

D3 P0 G5

Dilute channel

D4 P0 G6

Concentrate channel

D - Domain, P - Domain sub-communicator rank

G - Global communicator rank

Surface coupling

Volume coupling

Figure 5.23 Distribution of 4 domains (multicomponent flow and electric po-
tential in dilute and concentrate channels) on 6 processes with
four process for multicomponent flow and two process for electric
potential.

5.5.3.3 Initialize coupling

After the domain distribution, each domain initializes their MPI environ-
ment with its MPI sub-communicator provided by APESmate and loads
its respective configuration and mesh files. Then, in the initialize_domain
step, each domain builds its respective solver specific data structures,
initializes state variables with the initial conditions, varSys, output infras-
tructure, etc. During this step, the boundary and source terms of the solver
send the coupling data (points and offset_bit) to the STfun via setup_in-
dices routines and these data are stored in the STfun data structure. Thus,
at the end of this step, the varSys and the linked list of STfun, which are
required to initialize coupling data structure are available. The linked list
of STfun in the solver contains all STfun defined in the configuration file
but the APESmate requires only the STfun with predefined=’apesmate’.
Therefore, APESmate gathers the coupling STfun of all domains in the
local process to the linked list of aps_STfun_coupling_type data type
(cplSTfun). As mentioned in Section 5.5.2, the points in the STfun are
stored level-wise. Therefore, the points from each level are added as a
new entry to the list of cplSTfun. In this type, only the pointer to the
actual STfun data structure is stored for each level along with the local
domain ID, remote domain ID and the global rank of the remote domain
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(target) to send the coupling data to. Here, the term target and source
refers to the global rank of the destination process (rank to send data to)
and source process (rank to receive data from) respectively. The domain
ID (domID) is the unique ID created for each domain according to the
order in which they are defined in the configuration file.

A variable on a certain spatial point can be evaluated only on the
process that contains the element of that point. So, in order to evaluate
the coupling variables on the coupling points in the remote domain, the
target for each point in the remote domain must be known first. Since the
local domain is unaware of the distribution of serialized treeIDs on the
remote domain, it does not know which target to request for each coupling
point. Therefore, the target for each cplSTfun is created by round robin
fashion through mapping the sub-communicator rank of local and remote
domain.

1 ! ! myRank_loc is rank of local domain sub communicator
2 ! ! nProc_rem is the total of process of remote domain
3 ! ! rank_rem is the rank of remote domain subcommunicator
4 rank_rem = mod(myRank_loc, nProc_rem)
5 ! ! globalRank_rem is the list containing global ranks of the remote domain
6 ! ! +1 is because Fortran array index starts from 1 and MPI ranks start from 0
7 target = globalRank_rem(rank_rem+1)

Now, the coupling points and the variable names are sent to the target of
the remote domain. For surface coupling, to identify the coupling points on
the remote domain, the offset_bit introduced in Section 5.5.2 is used to shift
the points before sending them to the target process. Each set of coupling
points and variable names received from the source are called coupling
request (cplRequest). APESmate is designed such that each domain can
send and receive arbitrary number of cplRequest to and from the other
domain. Since APESmate allows sharing multiple domains in one process,
it is possible that target is the local rank (i.e. source=target) but MPI can
handle such a situation by just copying data within a process. The coupling
points and variable names are communicated between domains using
standard non-blocking point-to-point communication using MPI_Isend,
MPI_Irecv and MPI_Waitall routines. These communications are done
through the global MPI communicator. Using the target in cplSTfun, the
number of coupling data to send to each process (nCplSend_proc) are
known. However to establish point-to-point communication, the number of
cplRequest to receive from each process (nCplRecv_proc) must be known
beforehand. There are two ways to obtain nCplRecv_proc. Easiest way
is to use MPI_Alltoall to send nCplSend_proc from all processes to all
processes.
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1 call MPI_Alltoall( nCplSend_proc, 1, MPI_Integer, nCplRecv_proc, 1, MPI_Integer, &
2 & MPI_COMM_WORLD, iError)

but this way is very inefficient in case of surface coupling where only a
small fraction of all processors are involved.

An alternative way is to do sparse communication i.e. exchange data
only between processes which are involved in coupling. This is achieved by
creating two arrays: An array of targets and an array of nCplSend_proc for
each target. Likewise, the ranks from which the cplRequest are received,
are stored in an array of sources and another array to store nCplRecv_proc
for each source. Both nCplSend_proc and nCplRecv_proc arrays have
the same size and ordering as targets and sources arrays respectively.
The sparse communication algorithm given in Alg. 10 is used to receive
nCplRecv_proc from each target. After knowing the nCplRecv_proc for
each source, target needs to know how many number of points (nPnts) and
number of variables (nVars) to receive from each source so the target can
allocate arrays to receive data accordingly. Therefore, at first the basic
informations: nPnts, nVars, remote domID, local domID, couplingID and
iLevel are sent to target as 6 integers per cplSTfun. The couplingID is an
unique ID created to tag the MPI communication message between the
sender and the receiver. Now, the coupling points and the variable names
are sent to target in point-point communication between processes. In the
target, the global rank for each point in the remote domain is identified
by binary search on the tree. Additionally, the availability of the variable
names in the varSys of the remote domain is checked. The program is
aborted if a point is not found in the tree or if a variable name is not found
in the varSys. The global ranks for the points are referred to as pntRanks
and they are sent back to the sources along with the number of scalars
(nScalars) of the variable names in varSys. The nScalars is the sum of
the number of components of the variables. It is used by the source to
allocate ’evalVal’ in cpl_value_type (Lst: 5.4) where evaluated variables
values at each time step are stored by APESmate. The size of ’evalVal’ is
nPnts× nScalars.
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Algorithm 10 Sparse communication
1: Inputs: targets, nCplSend_pro, comm, tag
2: Outputs: sources, recv_buffer
3: targets: List of target ranks to send an integer to
4: sources: List of source ranks an integer received from
5: nCplSend_pro: Data to send to respective target ranks. Size and

ordering same as targets
6: recv_buffer: Data received from respective source ranks. Size and

ordering same as sources

7: subroutine sparse_alltoall(targets, nCplSend_pro, sources,
recv_buffer, comm, tag)
. Send data to all targets

8: for iTarget ∈ targets do
9: MPI_iSsend(nCplSend_pro(iTarget), 1, MPI_Integer, tar-

gets(iTarget), tag, comm, send_req(iTarget), iError)
10: serve_request(sources, recv_buffer)
11: end for

. Wait on sending to complete
12: repeat
13: MPI_Testall(nTargets, send_req, allSent, send_stat, iError)
14: serve_request(sources, recv_buffer)
15: until allSent

. Signal termination of the algorithm for this process
16: MPI_iBarrier(comm, bar_req, iError)

. Continue serving requests until all processes signaled the completion
of their sending

17: repeat
18: serve_request(sources, recv_buffer)
19: MPI_Test(bar_req, allProcsDone, bar_stat, iError)
20: until allProcsDone

. Ensure all processes had the opportunity to shut down their pending
receives to avoid any confusion with subsequent sparse alltoall exchange

21: MPI_Barrier(comm, iError)
22: end subroutine
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23: procedure serve_request(sources, recv_buffer)
24: MPI_IProbe(MPI_ANY_SOURCE, tag, comm, got_request,

recv_stat, iError)
25: if got_request then
26: source ← recv_stat(MPI_SOURCE)
27: MPI_Recv(recvdat, 1, MPI_Integer, source, tag, comm,

recv_stat, iError))
28: append(sources, source)
29: append(recv_buffer, recvdat)
30: end if
31: end procedure

The pntRanks in the source contains the correct target to communicate
each point. The source uses pntRanks to create a communication buffer 1

to receive evaluated variables from the target. Furthermore, this buffer is
used to gather points per process to send points to the correct target. In
addition to points, variable names are also be sent to the correct target.

Now, the source knows the correct target to send coupling data but
to establish a point-to-point communication, the target needs to know
from which source to receive data. This is the same situation as before
i.e. nCplSend_proc is known but not the nCplRecv_proc. Therefore, the
sparse communication Alg. 10 is deployed again to obtain nCplRecv_proc
in each target. Now, the basic informations (6 integers) are sent to the
correct target to allocate arrays to receive the actual data (points and
variable names). In the target, the variable names of one coupling ID are
combined into a single variable using the ’combine’ operation and they are
added to the remote domain varSys with couplingID as a variable name.
The position of every coupling variable added to the varSys are stored in
aps_coupling_variable_type. Since the process can have multiple domains,
for every variable the local domID is stored to access the correct the varSys.
In the target, the local and remote domID received from the source are
stored as remote and local domID respectively. For each variable, the
points and the evaluated variable values (evalVal) are stored level-wise
in the target. Similar to the communication buffer ’recvBuffer’ in the
cpl_value_type in the source, the send communication buffer is created
in the target using the source of the received points for each level and
stored along with points and evalVal. This communication buffer is used

1data type in TreElM, contains process-wise buffers to exchange data with a
specific process
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to send the evaluates variable values back to the source at every time step.
Since APESmate supports arbitrary number of cplRequest, the target can
have an arbitrary number of coupling variables. Each variable is evaluated
level-wise and sent back to the source. Note that after the initialization, in
the synchronization step, the evaluated variables are sent from the target
to the source i.e. the source becomes the target and vice vera due to the
definition of the source and the target. It’s worth mentioning that all
information in the target are in the remote domain so they are stored in
APESmate while the information in the source are in the local domain so
they are stored in the corresponding STfun variable.

In short, these are steps performed in the initialize_coupling:

• Gather STfun with predefined ’apesmate’ into a list of cplSTfun.
Each level of the same STfun is appended as separate entry into this
list.

• Send points and variable names to the target that contains the remote
domain using round-robin fashion.

• Identify rank for each point in the remote domain and check for
availability of variable names in the remote domain varSys.

• Send pntRanks and nScalars of variable names back to the source.

• Create receive communication buffer in the source using pntRanks
and allocate evalVal. Use this communicate buffer to send points
and variable names to the correct target.

• In the target, combine received variable names of one couplingID into
a single variable and append it to the remote domain varSys with
couplingID as variable name.

• Store points from every couplingID level-wise and create send com-
munication buffer using points received from source for each coupling
variable level-wise.

Figure 5.24a and Figure 5.24b illustrates the initial exchange of coupling
data to the target in the round robin fashion and then final exchange of
coupling data to the correct target respectively. For this illustration, the
four domain coupling example presented in Figure 5.23 is used. The first
domain (D1) and the second domain (D2) are coupled with each other on
the surface and each domain is distributed on 2 processes. In the figure,
the domain sub-communicator ranks are denoted by P and the global
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communicator ranks are denoted by G. The processes which contain the
surface coupling interface are P1 of D1 and P0 of D2. But due to initial
round robin exchange, the coupling data in P1 of D1 are sent to P1 of D2
and the data in P0 of D2 are sent to P0 of D1. Regarding the volume
coupling, the domain D1 is coupled with D3 and D2 is coupled with D4.
Since D3 and D4 are distributed on a single process, the volume data
from all processes of D1 and D2 are sent to P0 of D3 and D4 respectively.
On the other hand, the data from D3 and D4 are sent to P0 of D1 and
D2 respectively. After the data are successfully exchanged between the
domains, each domain identifies the global rank that contains the requested
point. As in this example, P0 of D1 identifies that the points from P0 of
D2 must be evaluated in P1 of D1 and sends this information back to P0
of D2. Each process that received data from the remote domain identifies
the actual process, which contains the points and sends that back to the
requested process. After this, each source knows the target for each point.
In the example, all the points from P1 of D1 are now sent to P0 of D2 and
vice versa. However, P0 of D3 and D4 gather points according to their
distribution in P0 and P1 of remote domains D1 and D2.

5.5.3.4 Synchronize domains

In the synchronize_domains step, the coupling variables are evaluated
level-wise in the remote domain and the values are communicated level-wise
to the requested domain using the communication buffers. The values
in the ’recvBuffer’ are per process so they are copied to ’evalVal’ in the
cpl_value_type in the same order as the array of points in the point data
type. This step is performed at every synchronization time in the time
loop and also once before the time loop so the solver can start with correct
BC and source terms. As mentioned earlier, the time loops in the solvers
are terminated when the maximum simulation time is reached or the
simulation reaches steady state or the simulation becomes non-physical.
With APESmate steering the solvers, the maximum simulation time (tMax)
for the solver is provided by APESmate by setting tMax of the solver
to the next synchronization time i.e. tMax = tSync = tNow + dtMax
where tNow is the current simulation time and dtMax is the maximum
time step of all domains. The time step dt of the domain depends on
the domain element size dx, the scheme order and the physical properties
of the flow like viscosity and velocity or the flow characteristics defined
by the Reynolds number or the Mach number. Thus, each domain can
have different dt depending on their equation system and the solver. So,
APESmate computes the maximum time step dtmax and lets each domain
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D1 P0 D1 P1 D2 P0 D2 P1 D3 P0 D4 P0
source

(sender)

D1 P0 D1 P1 D2 P0 D2 P1 D3 P0 D4 P0
target

(receiver)

G0 G1 G2 G3 G4 G5

(a) Sending datas to target in round robin fashion

D1 P0 D1 P1 D2 P0 D2 P1 D3 P0 D4 P0
source

(sender)

D1 P0 D1 P1 D2 P0 D2 P1 D3 P0 D4 P0
target

(receiver)

Surface coupling Volume coupling

G0 G1 G2 G3 G4 G5

(b) Sending datas to correct target

Figure 5.24 Exchange of coupling datas (points and variable names) between
domains. Arrows represents flow from data from source to target.

run until tSync is reached or till the steady state is reached. For domains
with different dt, this results in sub-cycling in a domain with dt smaller than
dtMax and at each sub-cycling step this domain requires coupling variable
values at intermediate time steps. A proper way to provide those values at
intermediate time step is through the interpolation of coupling variables
in time. At the moment, APESmate does not support the interpolation in
time so the domains with different time steps cause inconsistencies in the
simulations. Therefore, the domains are restricted to have either the same
time step or to be solved for steady state at each time step.

To reduce the computational cost of variable evaluation in the remote
domain, the two-state evaluation presented in Section 5.5.1 using setup_in-
dices and get_valOfIndex is used. Since APESmate uses varSys of the
solver for variable evaluation, the numerical accuracy of the evaluated
variable depends on the order of the solver.

Regarding the performance of the coupled simulation, the variable
evaluation using the get_valOnIndex routine is the routine which mostly
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contributes to the computational cost and the communication cost depends
on the number of processes which are involved in the coupling. In case of
surface coupling, only the processes with the coupling interface are involved
in coupling and in case of volume coupling all processes are involved in
coupling. Therefore, the communication cost for the volume coupling will
be higher than for the surface coupling. As long as the solvers are scalable,
the coupling is also scalable in large parallel systems. However, if the
domains are not properly distributed according to their computational cost
of each element then load imbalances between the domains will reduce the
overall performance and the parallel efficiency. E.g. for surface coupling,
the higher computation cost of the few processes which are involved in
coupling will lead to imbalances within the domain, in case no proper
load balancing is used. So, the user must keep this in mind in defining
the number of processes per domain. The performance of APESmate is
compared to the coupling library preCICE on the SuperMUC system [53].
The test case used for this performance comparison was surface coupling
of two cubes: inner and outer cube arranged in a way that inner cube is
enclosed by outer cube and 3D Gaussian pulse travel from inner to outer
cube. In comparison to preCICE, APESmate showed an advantage of 20%
lower overall computational time. Furthermore, the numerical accuracy of
the APESmate is found to be far superior than the preCICE.

5.6 Conclusion

In this chapter, the highly scalable simulation framework APES was
introduced. The implementation details and algorithms of APES sub-
parts: Seeder - octree mesh generator, Musubi - LB solver and APESmate
- integrated coupling tool were discussed in detail. The development and
implementation of Seeder, the incompressible flow, the multicomponent flow
and the electric potential in Musubi, and APESmate are major contribution
of this thesis.

The presented mesh generator Seeder is very efficient in generating octree
meshes automatically. In the presented algorithm, the protoTree is created
at first by refining the bounding cube towards the boundary geometries to
the level defined for each boundary. The main advantage of this approach
is that only nodes near the boundary are refined to their finest level so
the flooding algorithm runs over fewer nodes to flood the computational
domain. After flooding, the flooded nodes are refined to their finest level
and those flooded nodes are dumped to disk in the TreElM format i.e.
the nodes are serialized by depth-first ordering following the SFC. The
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introduction of the protoTree reduces the overall mesh generation time
and runtime memory consumption. The very high performance of Seeder
for creating a mesh around the spacer geometry was presented and it was
shown that Seeder can generate the mesh with several hundred millions of
fluid elements in a few minutes. The presented algorithm is implemented in
serial and it can be parallelized with some effort in distributing geometries
and merging the trees from different partitions, etc.

The numerical scheme LBM for the incompressible fluid flow, the mul-
ticomponent flow and the electric potential are implement in the highly
scalable LBM solver Musubi. In the solver, the serialized elements are
equally distributed among partitions resulting in almost perfect load bal-
ancing. The ordering by SFC helps to maintain locality by identifying the
rank of the element on a remote process locally. The serialized elements
from Seeder are converted into level-wise list of elements in the solver to
apply uniform operations to all elements in a level. The stream-collide
algorithm used in the compute kernels for each of those physical systems
was applied level-wise. The compute kernels were optimized for memory
and the number of floating point operations. The performance of the
single-component LBM and multicomponent LBM with three components
in Musubi was analyzed on the Hermit X86 system for two test cases: the
fully periodic cubic domain and the woven spacer structure. This analysis
showed that Musubi has almost perfect weak scaling, and the strong scal-
ing is very good down to a minimum problem size. Overall, the parallel
efficiency of strong scaling for the single component and multicomponent
LBM model is above 70%. In addition, the algorithm of the main program
of the solver was presented to show the similarity between the solver and
the coupling algorithm.

The scalable integrated coupling tool APESmate to couple different
APES solvers was introduced. Two key features used by APESmate
are the STfun and the varSys which were elaborated in detail. The
varSysallows for several definition of variables in the configuration file and
the STfunis one of the variable type in the varSys. The surface and volume
coupling were realized through variables defined as BC and source term
respectively. These variables are defined as the STfun in the configuration
file. The coupling algorithm was described in detail with explaining
its three important steps: domain distribution, initialize coupling and
synchronize domains. APESmate uses the solver data structure to evaluate
the coupling variables on the remote domain so the numerical accuracy of
coupling is in the same order as the order of the solver. The scalability of
this tool depends on the computational load balance between the domains.
To handle the imbalances in the domain introduced by the coupling,
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APESmate allows users to specify the number of processes per domain
so the coupled simulation can be scalable as long as the solver is scalable.
The APESmate is developed to handle arbitrary numbers of domains and
arbitrary numbers of coupling partners per domain. Therefore, it can be
used to simulate any coupled multiphysics problems. However, it is limited
to physical systems implemented in APES solvers using the TreElM data
structure.
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6 Numerical validation and verification

This chapter presents various numerical experiments to validate and verify
the presented numerical methods and the framework. Validation and
verification are an essential part of numerical simulations to ensure the
accuracy and correct implementation of the numerical schemes. The
implementation of the presented numerical schemes in Musubi is validated
by comparing the numerical results with the analytical solution but the
analytical solutions exists only under certain assumptions on the physical
system. Therefore, the simple two-dimensional (2D) test cases with known
analytical solution are used to validate the individual numerical schemes
presented in Chapter 3 and also the coupled setup presented in Chapter
4. The coupling of the multicomponent flow and the electric potential
is validated using the Boltzmann approximation of ion distribution in
dilute aqueous NaCl solutions. However, there is no analytical solution
to validate the coupling of the membrane black-box model and the multi-
component flow. So in this case, the numerical results are just verified
qualitatively. For all these numerical validations, the D2Q9 stencil with
MRT collision operator is used except for the LBM for thw electric potential,
where the BGK collision operator is used. The more complex three
dimensional flow simulation of Musubi with spacer geometry using the
D3Q19 stencil is validated against experiment and it is presented in a later
chapter.

6.1 Poiseuille flow

The LBM for incompressible Navier-Stokes equations is validated using the
well-known Poiseuille flow [54] and it is created by the steady flow between
two parallel plates in the presence of a constant pressure gradient. Consider
a 2D channel of length L and height H as shown in Figure 6.1. In this
case, a constant pressure gradient in x-direction i.e. −∂P/∂x = constant
drives the flow along the length of the channel. Neglecting other external
forces, the incompressible Navier-Stokes Eq. 2.56 can be reduced to the
one dimensional equation for velocity in x-direction

∂vx
∂t
− vx

∂vx
∂x

= −1
ρ

∂P

∂x
+ ν

∂2vx
∂y2 . (6.1)
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Assuming that the flow reaches steady state i.e. ∂vx/∂t = 0 and is fully
developed, then ∂vx/∂x = 0 from continuity Eq. 2.55. Furthermore,
setting ∂P/∂x = ∆P/L in the above equation results in

∂2vx
∂y2 = ∆P

ρνL
. (6.2)

Solving this equation with no-slip BCs on top and bottom walls i.e. vx(y =
0) = vx(y = H) = 0 results in the analytical solution of the velocity profile
across the height

vx(y) = ∆P
2ρνLy(y −H). (6.3)

Thus, the velocity profile varies parabolically across the height, reaching
its maximum vm in the center axis at y = H/2

vm = ∆PH2

8ρνL . (6.4)

Since the pressure gradient is constant, the analytical solution of the
pressure profile along the channel length can be written as

P (x) = Po + ∆P (x− L) (6.5)

where Po is the reference pressure defined at the outlet (x=L). The pressure
drop across the channel ∆P is Po − Pin and Pin is the pressure at the
inlet at (x=0).

x

y

0 L

H

Inlet Wall

OutletWall

Figure 6.1 Setup for Poiseuille flow.
In the numerical setup, there are three ways to create the flow in

the channel: defining a pressure gradient as an external force; defining
the pressures Pin and Po as pressure BC at the inlet and the outlet
respectively; defining velocity profile Eq. 6.3 as velocity BC at the inlet
and Po as pressure BC at the outlet respectively. Here, the last approach
is used so the results can be used to analysis the accuracy of velocity
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6.1 Poiseuille flow

and pressure BCs presented in Section 3.1.2. The no-slip walls at y=0
and y=H are treated with the simple bounce back BC. The channel
height and the length are H = 0.41 m and L = 5H respectively. The
flow parameters used for this validation are the pressure drop across the
channel ∆P = 1× 10−2 N m−2, the fluid density ρ = 1.0 kg m−3 and the
kinematic viscosity ν = 1× 10−3 m2 s−1. The comparison of the simulated
velocity profile and pressure profile with the analytical solution are plotted
in Figure 6.2. The domain is resolved with 32 elements in the height
and 160 elements in the length. With the relaxation parameter λν = 1.8,
the maximum lattice velocity at the middle is v∗ = 0.0243. The flow is
initialized with velocity v = 0 and pressure P = Po = 1.0 N m−2. The
simulation reached steady state after 61000 time steps. As can be seen in
Figure 6.2, the simulation results are in good agreement with the analytical
solution and the relative L2 error norm for the velocity and the pressure
are of 5.9101× 10−4 and 1.360 349× 10−5 respectively.
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Figure 6.2 Comparison of the simulated velocity profile across the height (left)
and pressure profile across the length (right) with the analytical
solution for the Poiseuille test case

In addition to the validation, the mesh convergence analysis was per-
formed to show the accuracy of the individual numerical schemes and
their BCs. The error between analytical solution (ua) and numerically
simulation (us) is measured in relative L2 error norm ‖e‖L2 given by

‖e‖L2 =

√∫
‖ua − us‖2

L2dV∫
‖ua‖2

L2dV
. (6.6)

For this analysis, the diffusive scaling δt ∝ δx2 is used i.e. the time step
size decreases with square of the element size. The number of elements
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in the height (nH) is varied from 8 to 128. At every refinement, nH was
increased by a factor of 2. Due to the diffusive scaling the relaxation
parameter λν is fixed to 1.8 and with every refinement the number of time
steps to reach the steady state increases by a factor of 4. The relative L2

error norm of velocity and pressure is plotted in Figure 6.3. It shows that
the velocity error is of 2nd order and the pressure error is of 1st order.
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Figure 6.3 Relative L2 error norm of velocity and pressure on various resolution
for the Poiseullie flow test case

The Poiseullie flow test case is also used to validate the multicomponent
LBM for ideal mixture. For this experiment, the channel is considered to
be homogeneously filled with two distinct species. At the inlet, the same
mole flux is imposed for both species as a parabolic profile given in Eq.
6.3 and at the outlet, the concentration and the velocity of the species are
extrapolated. Similar to single component LBM, no-flux is imposed at the
walls. The mesh convergence analysis shown in Figure 6.4 depicts that the
velocity convergence in second-order for both moments based and bounce
back BCs, which is in prefect agreement with the theoretical predictions.

6.2 Stefan tube

The diffusion dominated Stefan tube experiment is used to validate the
multi-component LBM for ideal mixture presented in Section 3.2.1. The
Stefan tube is a device used for measuring diffusion coefficients in binary
vapor mixtures. The setup of the Stefan tube is depicted in Figure 6.5.
The tube is aligned in y-direction (vertical), open at the top to the carrier
gas and at the bottom of the tube is filled with a quiescent liquid mixture.
The liquid evaporates and diffuses to the top of the tube. The carrier gas
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Figure 6.4 Relative L2 error norm of velocity for moments and bounce back
based BC on various resolution.

carries away the liquid vapor mixture and keeps the mole fraction of the
evaporative vapor there essentially to nothing. The mole fraction of the
vapor at the liquid-vapor interface is its equilibrium value.

x

y

0 L

H

Liquid mixture

Carrier gas

BC2 BC3

BC4

BC1

Figure 6.5 Setup of the Stefan tube experiment

In this validation, the simulation results are validated with Stefan tube
experiments from Carty and Schrodt (1975) [16]. In their experiments,
the binary liquid mixture of acetone (component 1) and methanol (com-
ponent 2) was evaporated from the bottom and air (component 3) was
used as the carrier gas at the top. The height of the tube used in the
experiment is H = 0.238 m. The molecular weight of the components
1, 2 and 3 in kg mol−1are M1 = 58.08× 10−3, M2 = 32.04× 10−3 and
M3 = 28.86× 10−3 respectively. The Maxwell-Stefan binary diffusivi-
ties coefficients of the mixture are D1,2 = 8.48× 10−6 m2 s−1, D1,3 =
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13.72× 10−6 m2 s−1 and D2,3 = 19.91× 10−6 m2 s−1 [96]. The total molar
density is ct = 1000 mol m−3. The boundary conditions are prescribed as
follows:

BC1 - Bottom: Filled with binary liquid mixture of acetone and methanol.
The mole fractions of those two components are fixed to χBC1

1 = 0.319
and χBC1

2 = 0.528. Assuming, that the component 3, air, does not
dissolve with the binary mixture at the bottom, the mole flux of
this component is set to zero i.e. N3 = 0, resulting in v3 = 0.
Thus, the mole fraction boundary condition is used for liquid mixture
component and mole flux boundary condition for component 3.

BC2 and BC3 - periodic: Assuming the diffusion takes place only in one
direction from bottom to top of the tube i.e. unidirectional, the
x-direction is considered to be periodic.

BC4 - Top: The carrier gas (air) at the top of the tube carries away the
component 1 and 2 resulting in zero mole fraction of vapor mixture.
But setting the mole fraction to zero causes numerical instabilities.
Therefore, a smallness parameter εs = 1× 10−3 is used to impose
χBC4

1 = χBC4
2 = εs and the mole fraction of air is χBC4

3 = 1− 2εs.

Note that for Dirichlet BC for the species mole fraction, the species mo-
mentum is extrapolated (Neumann boundary condition) and for Dirichlet
BC for the species mole flux, the species mole fraction is extrapolated as
explained in Section 3.2.2. In addition, zero kinematic pressure difference is
assumed between BC1 and BC4 such that no convective species transport
should occur (assuming that the initial condition has zero velocity). The
initial conditions are

χ1(x) = χBC1
1

(
1− y

H

)
+ εs

χ2(x) = χBC1
2

(
1− y

H

)
+ εs

χ3(x) = 1.0− χ1(x)− χ2(x)
v1(x) = v2(x) = v3(x) = 0

where x = (x, y, z) is the spatial coordinate.
In addition to comparing the multi-component LBM results with ex-

periments, they are also compared to the numerical solution obtained
by a shooting method [76] for the steady state mass transport equations.
The numerical solution of a shooting method is used to study the mesh
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6.2 Stefan tube

convergence analysis of multi-component LBM boundary conditions. Con-
cerning this numerical solution, at constant temperature and pressure, the
total molar density and the binary diffusion coefficients are constant and
neglecting any external forces, the only driving force is the mole fraction
gradient, i.e. dk = ∇χk. Furthermore, since the diffusion is assumed to
be unidirectional, the continuity Eq. 2.14 at steady state implies constant
flux i.e. Nk = constant. Thus, with these assumptions the Maxwell-Stefan
Eq. 2.27 can be reduced to a system of one dimensional first-order linear
differential equations

∂χk
∂y

=
n∑
l=1

(χkN l − χlNk)
ctDk,l

. (6.7)

These equations along with the boundary conditions discussed earlier
results in a boundary value problem, which is solved by the shooting
method [76].

For the multicomponent LBM simulation, the height of the tube is
resolved with 120 elements and due to the periodic BC in x-direction, the
length is resolved with just one element. With BGK collision, the same
relaxation parameter λνk = 2 is used for all components. The simulations
are ran until the steady state is reached. Figure 6.6 shows the mole
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Figure 6.6 Comparison of concentration profiles from multi-component LBM
with experiment and shooting method at steady state.

fraction profiles of the three components from the multi-component LBM
simulations, experiment and the shooting method at steady state. The
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numerical results of LBM and shooting method are in good agreement
with experiment [96]. Thus. these results point out that the presented
multicomponent LBM model is able to recover the full Maxwell-Stefan
equations.
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Figure 6.7 Relative L2 error norm of mole fraction of component 3 for moments
and equilibrium based BC on various resolution

In addition, the relative L2 error norm of the mole fraction profile of
component 3 is shown in Figure 6.7 for moments and equilibrium Section
3.2.2 based BCs. Here, the error is computed between the multicomponent
LBM results and the shooting method. The equilibrium based BC for the
mole fraction are expected to be rough and of first-order accuracy (for
concentration and velocity) in the diffusive asymptotic limit. However,
the moment based boundary conditions [10], with imposed mole fraction
for component 1 and 2, no flux for component 3 at BC1, and imposed
mole fraction for all components at BC4, provide sufficient accuracy to
recover the correct mole fraction profiles. Figure 6.7 shows second-order
convergence for the moments based BC and first-order convergence for the
equilibrium based BC in the Stefan tube setup, which is in good agreement
with the theoretical analysis. Even though, the moment based BCs deliver
more accurate simulation results, it is difficult to generalize for complex
geometries, therefore the equilibrium based BC is used for mole fraction
boundaries.
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6.3 Concentric cylinders

6.3 Concentric cylinders

The LBM for the electric potential is validated using the concentric cylinder
test case [61]. The simulation setup is shown in Figure 6.8a. The diameter
of the inner and the outer cylinders are 2a = 10 mm and 2b = 200 mm
respectively. A very high voltage of ψ0 = 50 kV is applied at the inner
electrode and the outer electrode is grounded i.e ψ1 = 0 V. The analytical
solution of the Poisson’s Eq. 2.64 for this test case is available for both
zero and constant charge density cases:

ψ(r) = ρe

4ε
(
b2 − r2)+

[
ψ0 −

ρe

4ε
(
b2 − a2)] ln r − ln b

ln a− ln b , (6.8)

where r is the radial distance from the inner cylinder center and the
permittivity of the medium ε = 8.854× 10−12 C2 J−1 m−1. Figure 6.8b
shows the numerical simulation results at steady state and analytical
results with charge density ρe = 0 and ρe = 20 µC m−3. The numerical
results of both cases are in good agreement with the analytical results. For
the numerical simulation, the diameter of the inner cylinder is resolved
with 16 elements and the potential diffusivity γ = 0.167. To improve the
accuracy of BC, the cylinders are approximated by q-values and the non-
equilibrium extrapolation BC (Section 3.4.1) is used to impose Dirichlet
potential values at the cylinders. This proves that the LBM for the electric
potential can be used to solve the potential equation in the flow channel
with spacer geometry.
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Figure 6.8 Numerical experiment of concentric cylinder test case
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6.4 Taylor dispersion

In this section, the convection dominated Taylor dispersion experiment
is used to investigate the multi-component LBM for ideal mixture with
and without an external electrical force. The Taylor dispersion is an effect
in fluid mechanics in which the shear flow smears out the concentration
distribution of the species in the direction of flow and enhances the effective
diffusivity of the species. It is a test case that is well known in the field of
multi-component flows [4, 95] and is widely used to test mass transport
models since it includes laminar hydrodynamics as well as pure diffusion
phenomena.

Here, a 2D fluid channel of dimensions [0;L] × [0;H] with a laminar
Poiseuille flow profile for the mole flux of the species is considered. The
direction of flow is the positive x- direction. The height H and the length
L of the channel is 0.04 cm and 0.24 cm respectively. The diameter of
the spacer filament is df = 0.02 cm which is same as in the spacer flow
investigations discussed in Section 7.1.1. The simulation setups used for
this Taylor dispersion experiment is depicted in Figure 6.9. Three different
configurations are investigated: 1) no filaments (plain channel), 2) centered
filaments and 3) zigzag filaments. The centered filaments and the zigzag
filaments represent the cross-section of typical spacer flow channels. In
centered filaments, spacer filaments are submerged at the center of the
flow channel and in zigzag filaments, alternative spacer filaments touch
the top and the bottom of the flow channel. In both cases, the filaments
are 0.1 cm apart from each other. The length of the channel is slightly
larger then a single spacer element length to reduce the influence of the
inlet and outlet boundaries. The boundary effects on the inner domain
are discussed later in this section.
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Figure 6.9 Three configurations used for the numerical simulation of the Taylor
dispersion experiment. The gray region depicts the region with high
concentration of species 2 and 3. The center of the concentration
stripe is x = c and its width is ∆c. The mole flux distribution is a
laminar Poiseuille pipe flow profile.

A mixture of aqueous NaCl solution is considered for this investigation
and the species 1, 2 and 3 corresponds to H2O, Na+ and Cl− respectively.
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6.4 Taylor dispersion

The parameters of aqueous NaCl solution are listed in Table 6.1. The
values chosen for this experiment are similar to the salinity of seawater
35 g/kg at temperature 298.15 K. The binary Maxwell-Stefan diffusivity
coefficients are evaluated for the concentration of cNaCl = 512.5 mol m−3

in Eq. 2.30. Initially, the ionic species 2 and 3 are distributed with non-zero
concentration only in a small stripe perpendicular to the flow direction
(i.e. aligned in the y direction) and it is depicted as grey region in the
Figure 6.9. The initial conditions are chosen as (κ = − ln(10−12))

χ2(x) = c2

ct
· exp

(
−κ
(
x− c
∆c/2

)2κ
)

+ εs

χ3(x) = c3

ct
· exp

(
−κ
(
x− c
∆c/2

)2κ
)

+ εs

χ1(x) = 1.0− χ1(x)− χ2(x).
v1(x) = v2(x) = v3(x) = 0

where εs = 1× 10−3 represents again a smallness parameter to avoid
division by zero, c = L/8 the center of the concentration stripe, ∆c = 3c
the total width of the stripe and κ = 2 determines the sharpness of the
transition zone of the concentration stripe for ionic species (larger κ leads
to sharper profile). The fraction c2/ct and c3/ct defines the highest mole
fraction of the species 2 and 3 respectively at the center of the concentration
stripe.

Furthermore, the boundary conditions are imposed as follows (cf. Figure
6.9):

BC1 - inlet: For the inlet boundary the x-component of the species mole
flux (Nk,x) is defined as a parabolic Poiseuille profile

Nk,x(y) = χk(y)ct
4vmy(H − y)

H2 (6.9)

where the mole fraction χk(y) of species 1, 2 and 3 are χ1 = 1− 2εs,
χ2 = χ3 = εs satisfying the initial conditions, and the maximum
velocity at the middle of the channel is vm = 1 cm s−1. Thus, the
Reynolds number for this setup is Re = vmH/ν = 3.8.

BC2 and BC3: Without an external electrical force: The bottom and top
boundaries are treated as solid no-slip walls for all species i.e.
v1 = v2 = v3 = 0. This type of BC is covered by the simple
bounce-back rule.
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Parameter Value
ρt [kg m−3] 1025

c1, c2, c3 [mol m−3] 54940, 512.5, 512.5
ct [mol m−3] 54965
χ1, χ2, χ3 0.981 685, 9.1575× 10−4, 9.1575× 10−4

D1,2 [m2 s−1] 1.249× 10−9

D1,3 [m2 s−1] 2.079× 10−9

D2,3 [m2 s−1] 8.618× 10−11

ν [m2 s−1] 1.054× 10−6

ζ [m2 s−1] 2ν/3
M1 [kg mol−1] 18.015 28× 10−3

M2 [kg mol−1] 22.989 77× 10−3

M3 [kg mol−1] 35.4527× 10−3

zk(1, 2, 3) (0,1,-1)
T [K] 298.15

Table 6.1 Parameters of aqueous NaCl solution used for the Taylor Dispersion
test case

With an external electrical force: The bottom and top boundaries
are treated as AEM and CEM for ionic species and no-slip wall
for solvent species 1. The membrane black-box model is used to
define the AEM and CEM. The transport number of Na+ and
Cl− on CEM and AEM are TCEMNa+ = 0.971, and TAEMCl− = 0.998.

BC4 - outlet: At the outlet, the Neumann BC is imposed for the concen-
tration and velocities of the species.

BC5 - spacer: Spacer filaments are approximated by q-values and treated
by higher order wall BC.

Each of these three configurations is investigated with and without an
external electrical force. At first, no electrical force is applied and the
species are driven mainly by the mole flux profile defined at the inlet
along the channel length and by the very small diffusive force due to the
concentration gradient induced by the initial condition. For a second case,
a constant external electrical force Ey = 100 V m−1 is applied along the y
direction perpendicular to the main flow direction which transports the
positively charged species 2 (Na+) towards the top boundary BC3 and the
negatively charged species 3 (Cl−) towards the bottom boundary BC2. As
mentioned before, the bottom BC2 and the top BC3 boundaries for this
case are treated as AEM and CEM respectively with membrane black-box
model to remove ionic species from the flow channel.
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6.4 Taylor dispersion

For the numerical simulation, the height of the channel is resolved with
256 elements and the physical time step δt = 7.82× 10−6 s is chosen to
maintain stability. With this time step, the maximum lattice velocity at
the center of the channel at inlet is v∗

m = 0.05 for the physical velocity
vm = 0.01 m s−1. The MRT collision operator with D3Q19 stencil is used
here. Figure 6.10 shows the results of the numerical experiment by means
of mole fraction of the third species (Cl−) for three configurations of the
spacer filaments in the case without external force. Due to the parabolic
mole flux profile at the inlet, the ionic species are transported much
faster along the center than at the channel wall boundaries (where zero
velocity is assumed). For the channel with no filaments, the concentration
profile follows the parabolic velocity profile of the background flow and
the no-slip BC along the horizontal boundaries is accurately resolved. At
outlet, the flow velocity increases due to simple equilibrium BC which
extrapolates both species concentration and velocity from the fluid node to
the boundary node. Notice that the concentration profile gets sharper only
near the outlet due to velocity increase. Therefore. the channel length
is increased by H/2 to reduce the influence of the outlet boundary in
the inner domain. In future, this can be resolved by more sophisticated
higher order outlet BC like non-equilibrium extrapolation BC [27, 61]. The
evolution of the concentration profile for the species 3 (Cl−) for the no
filaments configuration along the center line for different points in time
is shown in Figure 6.11. The subplot inside this figure shows that due to
diffusion the concentration gradient gets sharper but the diffusive transport
is much less than the convective transport.

It can been seen in the Figure 6.10 that with the presence of the
spacer filaments in the channel, the diffusive rate of the species increases
especially near the walls. The zigzag filament configuration accelerates the
species transport in the area between filament and opposite wall. The flow
distributions in centered and zigzag filaments are shown in Figure 6.12
with streamlines of velocity magnitude. It shows that even for very low
inflow velocity of 0.01 m s−1, a small recirculation appears on the zigzag
filaments configuration near the intersection of filament and wall. In the
recirculation area, the flow velocity is very low and areas with low velocities
are referred to as low flow zones. In these areas, the concentration of
ionic species accumulates resulting in scaling in the flow channel. These
results show that the expected advection-diffusion mechanism is accurately
recovered by the presented multi-component LBM scheme. The proposed
boundary conditions resolve no-slip as well as in- and outlet conditions
accurately.

Figure 6.13 shows the results of the mole fraction of the positively charged
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6 Numerical validation and verification

Figure 6.10 Temporal evolution of the diffusion of the species 3 (Cl−) in the
Taylor dispersion experiment for t = 0, 0.05, 0.1, 0.15, 0.2, 0.25[s]
(from top to bottom) with no external force for no filaments,
centered filaments and zigzag filaments (from left to right).
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Figure 6.11 Diffusion of the species 3 (Cl−) in the Taylor dispersion experiment
along the centerline of the channel over time without an external
force for the no filaments configuration. Subplot shows the decay
of the concentration profile peaks over time due to diffusion.

Figure 6.12 Stream lines of flow distribution along the channel at t = 0.25 s
for centered and zigzag filaments.

species 2 and the negatively charged species 3 in all three configurations
with an external electrical force Ey = 100 V m−1. In this case, the
top and bottom wall are treated as CEM and AEM respectively with
membrane black-box model. It can be clearly seen that the species 2
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6.4 Taylor dispersion

and the species 3 are transported in opposite direction i.e. towards the
top and bottom boundary respectively. There is no significant difference
between species 2 and species 3 in the plain channel and centered filaments
configurations other than ionic species are transported in opposite direction.
The increase in concentration of species 2 and species 3 on the top and the
bottom membranes respectively for the centered filaments configuration
at t = 0.25 s can be seen in Figure 6.14.

(a) Species 2

(b) Species 3

Figure 6.13 Mole fraction of species 2 (Na+) and species 3 (Cl−) at t = 0.25[s]
with black-box membrane model and a constant external electrical
force Ey = 100 V m−1 for three no filaments, centered filaments
and zigzag filaments (from left to right).

On the other hand, in the zigzag filament configuration, a significant
difference can be seen near the filament and membrane intersection. Due
to the applied external electrical force, the species 2 and the species 3
are accumulated at the intersection of upper filament and lower filament
respectively (see Figure 6.15). The concentration of species in this area
decreases gradually with time due to membrane model at the top and
bottom boundary. Even though the Figure 6.15 shows the results at
t = 0.25 s, the concentration profile reaches the lower filament much
earlier, when the concentration profile is still sharper. This results in a
small deposition of species 3 (Cl−) in front of the lower filament. Note
that this concentration at the intersection is roughly 2 times the initial
concentration and it grows with time and might affect the flow in the
channel. As the concentration of species 2 and 3 increases near the top
and bottom filament respectively, their concentration also decreases in the
alternative filaments. The simulation gets unstable if this concentration
falls below or equal to zero. In reality, the accumulation near the filaments
is cleaned by switching the direction of current which alters the direction
of ions transport which also swaps dilute and concentrate channels.

The membrane black-box model removes the ionic species from the flow
channel depending on the transport number of certain species and the local
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Figure 6.14 Mole fraction of species 2 (left) and species 3 (right) at t = 0.25 s of
centered filaments configuration with black-box membrane model
and a constant external electrical force Ey = 100 V m−1

Figure 6.15 Mole density of species 2 (left) and species 3 (right) near the top
and bottom filament respectively at t = 0.25 s of zigzag filaments
configuration with black-box membrane model and a constant
external electrical force Ey = 100 V m−1
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(a) Top boundary (BC3)
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(b) Bottom boundary (BC2)

Figure 6.16 Average mole fraction of species 2 (Na+) and 3 (Cl−) on the
surface of the top (left) and bottom (right) boundary BC2 over
time for wall and black-box membrane on the top and bottom
boundary with an external electrical force on the channel with no
filaments.

current density. Here, the top and bottom boundary are treated as CEM
and AEM resulting in a dilute flow channel. The behavior of the membrane
black-box model is verified by comparing it with no-slip wall BC for the
top and bottom in the flow channel with no filaments. With no-slip wall
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Figure 6.17 Average mole fraction of species 2 (Na+) and species 3 (Cl−)
on the top and bottom surface for different configuration with
black-box membrane model

BC, the ionic species that are transported towards the boundary by an
external electrical force stay on the surface of the corresponding boundary.
This can be observed in Figure 6.16, which shows the average mole fraction
of species 3 on the surface of top and bottom boundary for no-slip wall
and membrane black-box model. It can be seen that without a membrane
black-box model, the mole fraction of the ionic species on the surface of
the boundary increases drastically compared to the one with black-box
model. Due to high transport number of species 3 (Cl−) for the AEM,
the average mole fraction of species 3 on the bottom surface is less than
the average mole fraction of species 2 on the top surface. Furthermore,
the effect of the black-box model on different channel configurations is
shown in Figure 6.17. Due to the accumulation of ionic species near the
filament/membrane intersection in the flow channel with zigzag filaments,
the mole fraction of the corresponding species on the top and surface
increases with time. These results prove that the membrane black-box
model works as expected.

6.5 Electrical double layer

An electrical double layer (EDL) is a structure thats form due to redis-
tribution of ions when an electrolyte solution comes in contact with a
charged surface like an electrode. An EDL near a flat solid-liquid interface
is illustrated in Figure 6.18. Immediately next to the charges, there exists
a layer of ions which are strongly attracted to the surface and immobile.
This layer is called compact layer. Due to electrostatic interaction, the
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surface charges attract the oppositely charged ions or counterions in the
solution and repels the corresponding same charged ions or coions. Thus,
near the surface within the EDL, the net charge density is not zero so
the solution is nonelectroneutral. From the compact layer, the net charge
density gradually reduces to zero in the bulk solution where the solution is
electroneutral. The layer in which the ions are mobile and less affected by
electrostatic interaction are called the diffusive layer of the EDL. Note that
the net charge of the counter ions in the EDL balances the net charges
on the surface. The charges on the surface result in electrical surface
potential and they are difficult to measure. However, the potential at the
interface (shear plane between the compact layer and diffusive layer) is
measurable and it is called zeta (ζs) potential. Due to the non-zero net
charge density near the surface, the electric potential gradient is formed in
the diffusive layer of the EDL. Thus, the formation of the EDL involves an
electrostatic interaction between the distribution of ions and the electric
potential which makes this test case well suited to validate the coupled
simulation of multicomponent LBM and LBM for electric potential using
the coupling tool APESmate introduced in Section 5.5.

Figure 6.18 Illustration of an EDL near a flat-solid interface. a) Ion distribution.
b) electrical potential distribution [58].

According to the theory of electrostatics, the relationship between the
net charge density ρe = F

∑
k
zkck and the electric potential distribution

ψ at any point in the solution can be described by the Poisson Eq. 2.64.
Assuming the system is in thermodynamic equilibrium and the ionic
distributions are not affected by fluid flows, the distribution of ions near
the charged surface is given by the Boltzmann distribution

ck = ck,∞exp
(−zkFψ

RT

)
(6.10)
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6.5 Electrical double layer

where ck,∞ is the concentration of ions in the bulk solution, R is the
gas constant and T is the temperature. Note that this distribution is
independent of the species molecular weight therefore it is valid only up
to a certain ionic concentration. Also, the concentration of ions at the
electrolyte/electrode interface increases with an increase in bulk concen-
tration ck,∞ or the surface zeta potential ζs. For symmetric 1:1 electrolyte
solution like NaCl (zk = z and ck,∞ = c∞), the net charge density ρe can
be written as

ρe = −2c∞zFsinh
(
zFψ
RT

)
. (6.11)

Substituting this in Eq. 2.64 results in the Poisson-Boltzmann equation
for the electric potential distribution in dilute electrolyte solutions

∇2ψ = 2c∞zF
ε

exp
(
zFψ
RT

)
. (6.12)

Furthermore, if zFψ/RT is small or in other words, if the potential is
small |ψ|≤ 25 mV then Eq. 6.12 can be linearized into

∇2ψ = 2z2F2ci,∞
εRT

ψ = κ2ψ (6.13)

where κ = 1/λD =
√

2z2F2ci,∞
εRT

is the inverse of the Debye length λD

which is also called as the Debye-Huckel parameter. λD is the character-
istics thickness of the EDL. It is independent of the surface properties
and dependent only on the properties of the electrolyte solution such as
valance of ions and bulk concentration. Since the Debye length is inversely
proportional to the bulk concentration, it decreases with increase in con-
centration (see Table 6.2). Due to the very small thickness of the EDL,
its effects are only considered in micro- and nano-channels and usually
neglected in macro-channels. Therefore, in this validation, a 2D channel
with the height H = 50 nm in y-direction and periodic in x-direction as
shown in Figure 6.19 is considered. The height of the channel spans from
−H/2 to H/2. The top and bottom surface are heterogeneously charged
with a potential of ζs = −5 mV and ζs = 5 mV respectively. With this
boundary condition, the analytical solution for the electrical potential
distribution in the channel is given as

ψ(y) =

(
cosh[ y

λD
]

cosh[ H
2λD

]

)
ζs ζs =

{
5 mV for y < 0
−5 mV otherwise

. (6.14)

For multicomponent flows, the top and bottom surface are treated as
no-slip walls using simple bounce back BC. A mixture of aqueous NaCl
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Figure 6.19 Simulation setup for electrical double layer test case.

solution of different bulk concentrations 10, 100 and 500 mol m−3are
investigated here. Each of these concentrations is simulated with ideal
and nonideal multicomponent model. For the ideal model, the binary
Maxwell-Stefan diffusivity coefficients for these bulk concentrations are
evaluated using Eq. 2.30 and listed in Table 6.2. For nonideal model,
the concentration dependent diffusivity coefficients are evaluated using
Eq. 2.30 at every element using the local concentration. Additionally,
the activity coefficients in the thermodynamic factor Eq. 2.23 are also
computed from the local concentration using the NRTL-model [100]. A
NRTL (Non Random Two Liquid) model is an activity coefficient model
that correlates the activity coefficients γk of a component with its mole
fraction χk in a concerned liquid phase.

c∞ λD D1,2 D1,3 D2,3
[mol m−3] [nm] 1× 10−9[m2 s−1]

10 3.04 1.334 2.064 0.0077
100 0.96 1.3157 2.0974 0.0295
500 0.43 1.2508 2.0811 0.0848

Table 6.2 EDL thickness and binary Maxwell-Stefan diffusivity coefficients for
different bulk concentrations

The properties of an electrolyte solution like molecular weights of species,
total mass density, kinematic viscosity and bulk viscosity are the same
as listed in Table 6.1. The molar concentration of species 1 and total
concentration are computed from the bulk concentration of NaCl (c∞ =
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6.5 Electrical double layer

c2 = c3) using

c1 = (ρt − c∞(M2 +M3))
M1

, ct = c1 + 2c∞ (6.15)

respectively. Other properties are

• the permittivity of the medium ε = 7.083× 10−10 J K−1 mol−1,

• the Faraday constant F = 96 485.3365 C mol−1 and

• the gas constant R = 8.314 462 1 kg m2 s−2 mol−1 K−1.

The species 1, 2 and 3 corresponds to H2O, Na+ and Cl− respectively.
For the coupled simulation, the multicomponent LBM is initialized with
uniform ionic species distribution of bulk concentration and fluid at rest

χ2 = χ3 = c∞

ct
, χ1 = 1− χ2 − χ3

v1(x) = v2(x) = v3(x) = 0

and the LBM for electric potential is initialized with zero potential (ψ(t =
0) = 0). For multicomponent LBM, the MRT collision operator is used and
for LBM for electric potential, the BGK collision operator is used. For both
models, the D2Q9 layout is used. The potential diffusivity γ = 0.167. The
physical time step is meaningful only for multicomponent flows because
the LBM for electric potential equation is solved for steady state at
each time step of the multicomponent LBM. The analytical solutions for
ions distribution Eq. 6.10 and the potential distribution Eq. 6.14 are
steady state solutions, so coupled simulations are performed until the
concentration of the multicomponent flow reaches the steady state.

Steady state concentration profiles of species 2 and 3 along the entire
height for the applied potential drop of 100 mV (i.e. ζs = 50 mV at
y = −H/2 and ζ = −50 mV and y = H/2) for different bulk concentra-
tions are shown in Figure 6.20. From top to bottom, the concentration
is 10 mol m−3, 100 mol m−3 and 500 mol m−3. These results show the
change in concentration profile especially near the interface for different
concentrations. For all profiles, the formation of the EDL near the inter-
face can be clearly seen and in this region, the local electroneutrality does
not apply. The trend observed here is consistent with those explained
in the literature of electrochemical systems [36, 72]. At low concentra-
tion of 10 mol m−3, a very small discrepancy between ideal and nonideal
model can be seen only in the concentration profiles of co-ion1 (which is

1charge of the ion similar to the surface charge
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Figure 6.20 Steady state concentration profiles of species 2 (Na+) and species
3 (Cl−) on the left and potential distribution on the right with
applied potential drop of 100 mV for both ideal and nonideal
multicomponent LBM model for different concentration from top
to bottom 10 mol m−3, 100 mol m−3 and 500 mol m−3.

species 2 at y = −H/2 and species 3 at y = H/2) at the interface. The
concentration profiles of counter-ion1 and potential distribution profiles
of ideal and nonideal simulation are indistinguishable. However increas-
ing the concentration, the nonideal model forms a bulge like structure
near the interface because of the nonideal multicomponent effects where
counter-ions attract co-ions at the interface. Additionally, the concentra-
tion profile of counter-ion especially at the interface differs between ideal
and nonideal model. The concentration of counter-ions at the interface
predicted by the ideal model is higher than for the nonideal model. At
a high concentration of 500 mol m−3, the concentration of counter-ions
at the interface predicted by ideal model is roughly twice the nonideal
model prediction. For both models as the bulk concentration increases,
the concentration of counter-ion at the interface differs, i.e. species 3 at

1charge of the ion different than the surface charge
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y = −H/2 and species 2 at y = H/2 are not same. This is due to the
different molecular weight of species 2 and 3. The molecular weight of
the species corresponds to the partial molar volumes (Ṽk = Mk/ρk) of the
species. Since the partial molar volume of species 2 (Na+) is less than
that of species 3 (Cl−), species 2 occupies more space at the interface
than species 3. Even though the concentration of species at the interface
differs, the potential profile is symmetric because the total concentration
of species 2 in the EDL of y = H/2 is same as the total concentration of
species 3 in the EDL at y = −H/2, i.e. the areas under the concentration
profile in the EDL are equal. It can be also seen that away from the EDL,
the local electroneutrality applies and there are no differences between
ideal and nonideal models in the concentration profiles. On the other
hand, the potential profile between the two models differs slightly as the
bulk concentration increases. The potential profile of the nonideal model
preserves the symmetry and the zero potential in the bulk where as the
ideal model deviates slightly from zero potential in the bulk due to the
fixed binary Maxwell-Stefan diffusivity coefficient. Its worth mentioning at
this point that even though the steady state solution of ideal and nonideal
model are quite the same, their transient behavior was different.
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Figure 6.21 Normalized concentration (ck/c∞) profiles of species 2 on the left
and species 3 on the right at steady state for the applied potential
drop of 100 mV and different bulk concentrations near the interface
up to 9 nm.

For better comparison, normalized concentration (ck/c∞) profiles of
species 2 and species 3 for ideal and nonideal multicomponent model for
different concentrations and the potential drop of 100 mV are shown in
Figure 6.21. It can be seen that the normalized concentration of species 2
at the interface remains the same for all three bulk concentrations with
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the ideal model where as the nonideal model shows a significant drop in
the normalized concentration as the bulk concentration increases. The
difference between ideal and nonideal model is seen only very close to the
interface. Even at the high concentration 500 mol m−3 the difference is only
within 2 nm from the interface. Similarly, the difference in concentration
profiles of species 3 is also near the interface. The nonideal model forms
a bulge structure near the interface due to inclusion of thermodynamic
factor in the macroscopic force term. These results shows that coupled
simulation works as expected and the next step is to validate the numerical
result with analytical solution.
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Figure 6.22 Comparison of potential distribution near the interface up to 20
nm between analytical solution and coupled numerical simulation
of ideal and nonideal multicomponent model with electric potential
equation for different zeta potential ζs and bulk concentration
c∞ = 10 mol m−3 at steady state.

In order to validate the coupled simulation, a dilute aqueous NaCl
solution with concentration of 10 mol m−3 is considered at first. The
potential distributions near the interface at steady state of the coupled
simulation with the ideal and the nonideal multicomponent model, along
with the analytical solution for different zeta potentials are shown in Figure
6.22. The electric potential in the solution decreases nonlinearly near the
interface, and at the middle (bulk) of the channel the electrical potential
becomes zero. Even though the analytical solution of the linearized Poisson-
Boltzmann equation is valid only for zeta potential ≤ |25| mV, for low
concentration of 10 mol m−3, the numerical simulation of both ideal and
nonideal model matches perfectly with the analytical solution up to a
zeta potential of |50| mV. However, with an increase in zeta potential to
|100| mV, a discrepancy occurs between numerical and analytical solution.

The electric potential distribution shows only a very small discrepancy be-
tween ideal and nonideal simulations for high zeta potential ζs = |100| mV.
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Figure 6.23 Normalized concentration profiles of species 2 (left) and species
3 (right) up to 20 nm distance from interface for different zeta
potential ζs and bulk concentration c∞ = 10 mol m−3 at steady
state. Solid lines are nonideal multicomponent model, dashed lines
are ideal multicomponent model and dotted lines are analytical
solution

Yet, in the Figure 6.23b which shows the normalized concentration profile
of species 3 (co-ions) near the interface of negatively charged potential, the
effect of nonideal simulation can seen even at zeta potential ζs = |25| mV.
As the concentration of species 2 (counter-ions) increases at the interface
with an increase in zeta potential, it attracts more of species 3 (co-ions)
resulting in a sudden increase of species 3 concentration at the interface
and forms a bulge near the interface. This is due to nonideal multicom-
ponent effects where diffusivity and activity coefficients are calculated
from the local concentration. This nonideal effect is observed only in the
concentration profile of species 3 (co-ion) and not on the concentration
profile of species 2 (counter-ion) where ideal and nonideal results are
indistinguishable as shown in Figure 6.23a. However, the discrepancy
between numerical simulation and analytical solution occurs for zeta po-
tential > |25| mV and it increases with increase in zeta potential. This
proves that the linearized analytical solution is valid only for zeta potential
< |25| mV.

The electric potential distribution of ideal, nonideal and analytical
solution for different zeta potentials and c∞ = 100 mol m−3 are shown in
Figure 6.24. It can been seen that with increasing the concentration of
NaCl solution to 100 mol m−3, a discrepancy between ideal and nonideal
model on the potential distribution can be seen for zeta potential > |25|mV.
Still for zeta potential ≤ |25| mV, the numerical results of both ideal and
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Figure 6.24 Comparison of potential distribution near the interface up to 6 nm
between analytical solution and coupled numerical simulation of
ideal and nonideal multicomponent model with electric potential
equation for different zeta potential ζs and bulk concentration
c∞ = 100 mol m−3 at steady state.

nonideal model matches perfectly with a linearized analytical solution.
The electric potential distribution within the EDL of nonideal model is less
steep than of the ideal model and also the electric potential of the nonideal
at the interface matches well with the analytical solution. It seems that
with increasing concentration in the EDL, the potential distribution of
the ideal model produces asymmetry due to the species molecular weights
which results in a non-zero potential in the bulk. But considering nonideal
effects the profile becomes symmetric and the potential drops to zero in the
middle of the channel. This shows the importance of applying a nonideal
model for the aqueous NaCl liquid mixture.

Figure 6.25 shows the normalized concentration profiles of species 2 and
3 near the interface up to 6nm for concentration 100 mol m−3 and different
zeta potential. With 100 mol m−3, a difference between ideal and nonideal
modeal can be seen in the distribution of species 2 (counter-ion) near the
interface. This difference increases as the zeta potential increases. It can
been seen that the concentration of species 2 at the interface predicted by
the nonideal model is less than by the ideal model. For ζs = |50| mV, the
concentration predicted by nonideal is ≈ 4× c∞ and ideal is ≈ 5.8× c∞.
The distribution of species 3 (co-ion) near the interface is the same as
before except for nonideal, the magnitude of the concentration at the
interface is higher and also the bulge is bigger. Also, the nonideal effects
start to occur even for the very low zeta potential of |10| mV. Note that
the difference between ideal and nonideal is only near the interface and in
the bulk they are same.

The multicomponent LBM model implementation in Musubi can handle
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Figure 6.25 Normalized concentration profiles of species 2 (left) and species
3 (right) up to 6 nm distance from interface for different zeta
potential ζs and bulk concentration c∞ = 100 mol m−3 at steady
state. Solid lines are nonideal multicomponent model, dashed lines
are ideal multicomponent model and dotted lines are analytical
solution

arbitrary number of components and to demonstrate that, a liquid mixture
of NaCl and KCl solution is simulated. Here, the species 1, 2, 3 and 4
corresponds to H2O, Na+, Cl− and K+ respectively. The concentration of
the NaCl and KCl are 90 mol m−3 and 10 mol m−3 respectively with total
ionic species concentration of 100 mol m−3. Thus, the bulk concentration
of ionic species Na+, Cl− and K+ are cNa+,∞ = 90 mol m−3, cCl−,∞ =
100 mol m−3 and cK+,∞ = 10 mol m−3 respectively. The multicomponent
model is initialized with uniform distribution of ionic species with their
corresponding concentrations. Since the NRTL model was limited to binary
electrolyte, this simulation is performed only with the ideal model. The
Maxwell-Stefan binary diffusivity coefficients for species 1, 2 and 3 are the
same as before for the concentration of 100 mol m−3. For species 4, they
are chosen as D1,4 = D1,3, D2,4 = D2,3 and D3,4 = D2,3. The molecular
weight of species 4 is M4 = 39.0983× 10−3 kg mol−1. Figure 6.26 shows
the concentration profiles of all three ionic species at steady state for the
potential drop of 100 mV.

These coupled simulation results show that the presented coupling tool
APESmate can be used to perform coupled multiphysics simulations which
are required to simulate electro-convection transport of ions in the ED
process. In most previous works, the Nernst-Planck equations were used for
multicomponent transport, only few deployed the Maxwell-Stefan equations
but only for ideal mixture. From these results, it can be concluded that
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Figure 6.26 Steady state concentration profiles of species 2 (Na+) , 3 (Cl−)
and 4 (K+) for total ionic species concentration of 100 mol m−3

and potential drop 100 mV.

as the concentration of ionic species increases, the nonideal model shows
significantly different behavior from the ideal model. The concentration of
ionic species near the interface can increase either by initial concentration
or by applied potential drop. A high initial concentration 500 mol m−3 is
close to the salinity of seawater and for this concentration, the nonideal
effects are higher near the interface. In the ED stack, the concentration
of ionic species in the concentrate channel increases even higher than the
inlet seawater concentration. Thus, for this application, nonideal effects
must be considered for the multicomponent flow simulations.

6.6 Conclusion

In this chapter, the numerical methods presented in Chapter 3 which are
implemented in the LBM solver Musubi are validated against analytical
solution or laboratory experiment. At first, the individual physical system
were validated:
• The single component LBM is validated using a well-known Poiseuille

flow test case. The numerical results of velocity profile across the
channel height and the pressure drop across the channel length are
compared to the analytical solution and also a mesh convergence
analysis was performed to show the accuracy of the implemented
BC.

• The convection in multicomponent LBM is validated also with
Poiseuille flow but the diffusion phenomena modeled by Maxwell-
Stefan equations are validated using experimental data of the Stefan
tube test case.
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• The LBM for electric potential is validated against analytical solution
of a concentric cylinder test case. The cylinders are approximated
by q-values and higher order non-equilibrium extrapolation BC was
used to treat the Dirichlet potential boundaries.

After the validation of the individual physical systems, the coupled
multiphysical system was verified and validated.

• The coupled multicomponent LBM and membrane black box model
is verified using the Taylor dispersion test case. In this test case,
the flow is initialized with non-uniform concentration in a stripe
near the inlet and the ions are transported along the length due to
flow velocity defined at inlet. A membrane black box model was
used to treat the AEM and CEM on the bottom and top boundary
respectively. Since no analytical solution was available for this case,
the results are only qualitatively verified by comparing the transport
of ions across the membrane with a no-slip wall boundary. The
numerical results prove that the implementation of the membrane
black-box BC works as expected.

Finally, the coupled multicomponent LBM and the LBM for the electric
potential is validated.

• The formation of EDL test case is used to validate both ideal and
nonideal multicomponent LBM models. This test case was chosen
for the availability of analytical solution for distribution of ions and
the potential distribution. Both analytical solutions are valid only
under certain conditions:

– The Boltzmann distribution for distribution of ions near the
electrode/electrolyte interface is valid only when the system is
at thermodynamic equilibrium and when ions distributions are
not affected by the fluid flow.

– The analytical solution of the linearized Poisson-Boltzmann
equation is valid only for surface zeta potential ≤ |25| mV.

Under these conditions, the numerical results agree pretty well with
analytical solutions. The comparison of ideal and nonideal model
revealed that the nonideal effects occur when the concentration of
counter-ions in the EDL region is higher than 50 mol m−3. For the
co-ion concentration near the EDL region, the nonideal effects occur
even at low concentrations. Since in the ED stack, the concentration
of salt at inlet is around 500 mol m−3 and in concentrate channels,
the concentration of salt increases even further along the length, it is
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necessary to simulate this system with the nonideal multicomponent
model. These results show that the presented multicomponent LBM
with external electrical force predicts the behavior of the physical
system very well. Also, the coupling tool APESmate developed
enables us to perform coupled multiphysics simulations with high
numerical accuracy and can be used to simulate the multiphysics in
the ED process.
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This chapter presents large-scale flow simulations with woven and nonwoven
spacer geometries. For both spacer geometries, the angle between the
filament and the flow direction is varied to study its effect on the pressure
drop across the channel and the flow distribution in the channel. In total
five distinct spacer configurations are investigated and for each the mean
inflow velocity is varied from 0.01 m s−1 to 0.8 m s−1. Before the velocity
study, a mesh convergence analysis is performed on one spacer configuration
to identify the resolution required to produce mesh independent results.
The pure hydrodynamic flow simulations are performed at first on spacers
with periodic width, i.e periodic BC in z-direction to identify the optimal
spacer configuration. Then, the effect of sealed corner in the ED stack is
investigated on nonwoven spacer geometries for two different flow velocities.
The simulations on periodic width spacers are run on the Horus cluster
in the University of Siegen. But the simulations near the sealed corner
have a much larger mesh of around 500 million elements and they are run
on the Hermit system, HLRS, Stuttgart. Next, the multicomponent flow
simulations are performed on the five distinct spacer configurations for
one specific inflow velocity with a constant electrical force and membrane
black-box model to identify the optimal spacer design with respect to ions
transport through the membranes. Finally, this chapter is concluded with
the simulation results of a repeating single ED unit consisting of a dilute
and a concentrate channel.

7.1 Flow simulations with spacers

In this section, the spacer geometries used in the flow channel of the ED
process are investigated. As mentioned in Chapter 1, in the ED process,
the spacers are placed between the IEMs to create the flow channel and
maintain mechanical stability of the stack. The spacer design is known to
influence the pressure drop across the channel and the ions transport in the
channel and through the IEM. Thus, the optimal spacer design should have
a low pressure drop across the channel and also uniform flow distribution
with reduced low flow zones (extremely small velocity areas). Even though
there are several spacer parameters to define the spacer geometry (see
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Section 7.1.1), the investigations in this work are restricted to the woven
and nonwoven spacers with different inner angle between the filament and
the main bulk (feed) flow direction.

At first, the mesh convergence study is performed on the woven spacer
geometry with hydrodynamic angle β = 90◦ to determine the required
mesh resolution which provides good numerical accuracy with reasonable
runtime in large scale systems. Then, the effect of different spacer designs
on the velocity flow distribution in the channel and the pressure drop
across the channel are studied using pure hydrodynamic flow simulations.
The previous investigations performed together with Johannink [39] were
focused only on the pressure drop across the channel for various spacer
designs to develop the pressure drop prediction model. So, this work
focuses on the flow distribution inside the channel for different spacer
geometries. The initial investigations are performed in the middle of the
flow channel far from the corners. Near the corner the flow velocity is
expected to be low which is the main cause for scaling and fouling effect
in the flow channel. Therefore, the nonwoven spacers with different angles
between filaments are investigated near the sealed corner of the ED stack.
Finally, the effect of spacer design on the transport of ionic species in
the seawater is studied using the multi-component flow simulations with
constant external electrical force.

Most of the simulations are computed on the supercomputer Hazel Hen
in HLRS, Stuttgart and few of them on the HorUS cluster of the University
of Siegen. The Hazel Hen is based on Intel Haswell Processor and the
Cray Aries network that provides 7712 compute nodes with 24 processors
per node. The memory per node is 128 GB. The HorUS cluster in the
University of Siegen has 136 computation nodes with 12 processors per
node. Due to the limit of virtual memory and disk space in HorUS, the
supercomputer Hazel Hen was used for most of the large simulations with
problem sizes large than 100 million elements.

7.1.1 Spacer geometry
In this section, the different spacer geometries investigated in this work
are introduced. Additionally, the simulation setup including tracking areas
on which the physical quantities like pressure (P ) and velocity (v) are
measured over time and space are illustrated using figures. The spacers
are composed of filaments with rounded cross-section. The spacer design
can be categorized by the arrangement of these filaments as woven and
nonwoven spacers. In the woven spacer, the filaments are interweaved by
running one over the other where as in the nonwoven spacer the filaments
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are arranged on top of each other.
The geometrical parameters of the spacer and the simulation setup are

illustrated using the nonwoven spacer in Figure 7.1. The main flow is along
the x− direction and the two layers of parallel filaments are oriented along
the xz−plane. Within this plane, two angles characterize the orientation
of the filaments: 1) The angle α between the filaments in different layers,
which describes the change in direction of the fluid as it flows along the
channel and 2) The inner angle between the filament and the main feed
flow direction β. In some publications [18, 82], the angle α is referred to
as the hydrodynamic angle. In addition to these angles, the geometry of
spacer design is completely defined by the diameter of the spacer filaments
df , the orthogonal distance between two consecutive parallel filaments lm,
the height of the channel hch, the length of the channel lch and the width
of the channel wch. Here, the diameter of the filament df running on top
and bottom are considered to be equal, which leads to a channel height,
hch = 2df and the spacer mesh is considered to be a rhombus. Figure 7.1
also shows the zigzag arrangement of the filaments in the cross-section of
xy-plane.

Membrane
Spacer filament

Cross-section

Cross-section

Flow direction

df

lm

α

β

x

y

x

z

hch

Flow direction

Figure 7.1 Geometrical parameters of nonwoven spacer

For spacer-filled flow channels, the Reynolds number Resp is defined in
terms of the hydraulic diameter of the channel dh as characteristics height
and the mean inflow velocity v̄in as characteristic velocity [18]

Resp = v̄indh
ν

. (7.1)
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The hydraulic diameter dh for the spacer-filled channel is computed by

dh = 4ε
2
hch

+ (1− ε)Svsp
(7.2)

where ε is the voidage and Svsp is the specific surface of the spacer. Voidage
is the most important characteristics of spacers since spacers occupy quite
a large space in the spacer-filled flow channel resulting in less free space
for the fluid flow and it is defined by [18]

ε = 1− Spacer volume

Total volume
. (7.3)

For rhomboid type spacers, the voidage and the specific surface of the
spacer are given as

ε = 1−
πd2

f

2lmhchsin(α) (7.4)

and
Svsp = 4

df
. (7.5)

In this work, five distinct spacer configurations are considered: Woven
spacer with an angle β of 90◦ and 45◦ and nonwoven spacer with an angle
β of 30◦, 45◦ and 60◦. Figure 7.2 shows the woven and the nonwoven
spacers with different angle β. The nonwoven spacers are configured such
that the angle α is twice the angle β i.e. α = 2β, while in the woven spacer,
the angle α is fixed to 90◦ due to interweave arrangement of filaments. For
all configurations, the diameter of the filament and the distance between
the filaments are fixed to df = 0.02 cm, lm = 0.1 cm respectively which
are similar to the woven spacer introduced in Section 5.3.1. Since df and
lm are fixed, the hydraulic diameter depends only on the angle α. The
hydraulic diameter dh for the hydrodynamic angles α = 60◦, 90◦ and
120◦ are 0.03795 cm, 0.04141 cm and 0.03795 cm respectively. Since for
the chosen configurations, the hydraulic diameters are almost close to
the channel height i.e. dh ≈ hch, the hydraulic diameter in the Reynolds
number is replaced by the channel height as

Resp = v̄inhch
ν

. (7.6)
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.2 Woven and nonwoven spacer geometries

7.1.1.1 Simulation setup

The simulation domain and the boundary conditions are depicted in Figure
7.3 using woven spacer β = 90◦. For better comparison of the simulation
results, the length of the simulation domain for all spacer configurations
is fixed to lch = 0.7 cm. However, due to design constraint between the
width of the channel and the angle β or α, the width wch increases with
an increase in angle β resulting in a larger computational area (more
number of fluid elements). The simulation domain is periodic along the
z−direction. Therefore, the width of the channel wch is chosen such that
the xy−plane cross section at z = 0 and z = wch are exactly the same.
The width of the nonwoven spacer is chosen to be twice the periodic width
to show that the flow is symmetric between the periodic planes. The values
of the width wch of each spacer configuration are listed in Table 7.1.

Spacer β Width [cm]
woven 45◦ 0.15
woven 90◦ 0.20

nonwoven 30◦ 0.23
nonwoven 45◦ 0.28
nonwoven 60◦ 0.40

Table 7.1 Width of the flow channel for different spacer configuration
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Figure 7.3 Simulation domain of the woven spacer β = 90◦ and the boundary
conditions

The initial and boundary conditions are dependent on the physical
system. In this section, the simulation parameters, initial conditions
and boundary conditions used for the incompressible flow simulations
(pure hydyodynamics) are given and for multi-component flow simulations,
they are given later in Section 7.1.3. The physical properties of the
fluid are the density ρ = 998.2071 kg m−3 and the kinematic viscosity
ν = 1.082× 10−6 m2 s−1. The lattice parameters: the lattice velocity and
density are fixed to vL = 0.02 and ρL = 1 respectively. The relaxation
parameter λν is computed from the kinematic viscosity ν and the physical
time step δt using Eq. 3.22. The physical time step δt is computed from
the physical mean inflow velocity v̄in, the physical element size δx and the
lattice velocity vL using Eq. 3.89. For all flow simulations with spacer
geometries, the lattice Mach number is fixed to MaL = 0.035. For the
incompressible flow simulations, the MRT collision model and the D3Q19
layout are used.

The initial conditions are specified as v(x, t = 0) = 0 and P (x, t =
0) = Patm, where Patm is the atmospheric pressure. From this initial
state, simulations are run up to 1 s. The simulation is terminated if the
simulation reaches steady state i.e. the difference in the average of pressure
and velocity for 1000 time steps with the current time step is less than or
equal to 1× 10−10. At inlet x = 0, the mean inflow velocity (v̄in = 2

3vm)
is specified with parabolic velocity profile

vx(x.t) = 8vm
H2 y(y −H), vy(x, t) = vz(x, t) = 0 (7.7)

using velocity bounce back BC Eq. 3.32. vm is the maximum velocity at the
center of the parabolic profile. At outlet x = lch, the pressure (Po = Patm)
is prescribed using pressure extrapolation BC, Eq. 3.33. The top (y = hch)
and the bottom (y = 0), corresponding to the membranes, are treated
with no-slip wall BC. Finally, the spacer geometry is approximated by
q-values to improve the accuracy of the simulation and treated with higher
order wall BC, Eq. 3.31. The sudden inflow of velocity at inlet results in
pressure fluctuations since the PDFs are initialized with the equilibrium
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function and it is reduced by ramping the inflow velocity from 0 to vm
with a smooth function from 0 s to 0.025 s.

For this investigation, the physical quantities like pressure (P) and
velocity v are measured at certain areas of the simulation domain. To
study the transient behavior, the physical quantities are averaged over an
area and measured over the time. The tracking planes, lines and points at
which the physical quantities are measured are illustrated in Figure 7.4 on
the woven spacer with β = 90◦. For all spacer configurations, the pressure
drop ∆P is calculated from difference between the average pressure at
two planes (yellow) which are 0.3 cm apart. The planes are 0.2 cm away
from inlet and outlet to avoid an influence of boundaries on the pressure
drop. The pressure gradient ∇P is obtained by dividing the pressure drop
∆P by the distance of 0.3 cm. For unsteady flows, the pressure drop is
averaged over the last 50 values which are measured at every 100 iterations.
In addition to the average pressure on the planes, the velocity profiles are
measured over the height and the width of the channel represented by the
green and the red line respectively in Figure 7.4a. The origin of the line
over the height and the width are [ lch

2 + df , 0, wch
2 ] and [ lch

2 + df ,
hch

2 , 0]
respectively. Both origins are shifted by diameter of the filament along
the length to avoid the filament. Furthermore, the physical quantities are
measured over time at every 100 iterations at a single point (pink) located
at [3 · lm, hch

2 , wch
2 ].

(a) Side view (b) Top view

Figure 7.4 Tracking points, lines and planes in woven spacer β = 90◦

7.1.2 Pure hydrodynamic flow
7.1.2.1 Convergence

The mesh convergence analysis was performed to determine the minimum
resolution required to resolve the spacer geometry with sufficient numerical
accuracy. The resolution with the least numerical error compared to the
previous resolution is considered for the later investigations. The woven
spacer with β = 90◦ is used for this analysis. In LBM, to ensure the
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stability of the simulation, the lattice velocity must be below 0.1 due to
the incompressible limit and the relaxation parameter λν must be between
0.5 and 2.0. Therefore, for fixed lattice velocity or relaxation parameter,
the mesh resolution must be chosen properly to satisfy these stability
conditions. In this study, the mesh resolution is varied by varying the
number of elements in the height (nHeight) from 16 to 128 and the mean
inflow velocity v̄in is 0.2 m s−1. The element size (δx), the number of fluid
elements (nFluids), the number of fluid elements with boundary neighbor
(nBnds) and the number of fluid elements with boundary neighbor with
qValues or elements next to the spacer geometry (nQVals) for various
nHeight are listed in Table 7.2.

nHeight δx [µm] nFluids nBnds nQvals
16 25 299 692 89 518 41 130
32 12.5 2 403 907 370 305 161 677
64 6.25 19 262 832 1 506 304 643 799
128 3.125 154 430 305 6 073 031 2 566 855

Table 7.2 Number of elements for different mesh resolution
The simulations for the mesh up to δx64 were performed on 10 nodes of

the HorUS cluster in the University of Siegen while the mesh with δx128
was performed on 10 nodes in the Hazel Hen in HLRS, Stuttgart. The
pressure drop between the planes for different resolutions is listed in Table
7.3 along with number of iterations till steady state and the required wall
clock time. Figure 7.5 shows the pressure drop between the planes over

nHeight dt [µs] λν nIteration Wall clock ∆P [1× 102 Pa]
16 2.5 1.95 40 280 22 min 53 s 8.18
32 1.25 1.90 45 910 30 min 7 s 6.32
64 0.625 1.81 91 150 2 h 51 min 5.75
128 0.3125 1.66 193 790 9 h 26 min 5.59

Table 7.3 Pressure drop, number of iterations till steady state and run time for
different mesh resolution

the time. Except δx16, all other resolutions reached steady state before 0.1
s. The subplot inside the figure shows small fluctuations at the early stage
due to the equilibrium initial condition, and the ramping of the inflow
velocity can be observed in the evolution of the pressure drop up to 0.025
s. For the coarsest resolution δx16, the pressure drop is very high due to
numerical inaccuracy. It can be seen from the figure that the pressure
drop converges to unique solution with an increase in resolution. From
this analysis, a resolution δx128 seems to be a reliable resolution but this
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resolution requires high computational cost due to large mesh. Therefore,
to reduce the computational cost, a resolution δx64 was chosen because
the relative difference between the resolution δx64 and δx128 is less than
3%.
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Figure 7.5 Pressure drop over the time for different resolution

The velocity magnitude profile along the height and the width of the
channel for different resolutions is shown in Figure 7.6. It can be seen in
the figure that the velocity profiles converges with increasing resolution
(decreasing element size). In general, LBM computes only cell center
values but to compare different resolution, exact point values along the
line are evaluated using linear interpolation. Two maxima along the height
of the channel are due to the spacer filament in the middle resulting in
flow going around the filament. The magnitude of the maxima are not
equal because of the woven structure of the spacer. In the velocity profile
along the width of the channel, the velocity is close to zero in two areas
because of the spacer filaments running along the length. The tracking
line along the width does not intersect with the spacer filament but runs
slightly above and below the spacer filaments. Once again due to the
woven structure of the spacer the magnitude of the first two maxima and
the last two maxima are different while the magnitude of the two maxima
next to the spacer filament are symmetric. The flow recirculation occurs
in the exact middle of the channel. From both these profiles, it is evident
that the resolution δx64 is close to δx128 and it is sufficient for the spacer
flow simulations.

Experimental validation The numerical simulation is validated with a
laboratory experiment. The experiment was performed for different number
of flow channels with a woven spacer β = 90◦ and the pressure drop is
measured for various inflow velocities. The aim of this experiment is to
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Figure 7.6 Velocity magnitude profile along the height and width of the channel

measure the pressure drop and compare with simulation results, so the
drinking water is used with no external electrical field. Figure 7.7 shows the
pressure drop over inflow velocities for Musubi simulations, experiments and
the pressure drop prediction model. For inflow velocity below 0.1 m s−1, the
pressure drop measured from simulation is much lower than the experiment
and with increase in velocity, the simulation results match with experiment.
Figure 7.7 also shows that the effect of the number of flow channels in the
pressure drop measurement is small especially for velocities < 0.1 m s−1.
The discrepancy between simulation and experiment for small velocities is
due to the pressure drop in the distribution channels because the pressure
drop measured in experiment consists of the pressure drop in spacer-filled
flow channels and the distribution system i.e. ∆P tot = ∆P ch + ∆P dis.
However, in the numerical simulation only the spacer flow channel is
considered. Therefore, the contribution from distribution channels must
be subtracted from the total pressure drop to obtain the pressure drop in
the spacer channel. Since it is not possible to measure the pressure drop
in the distribution channel in experiment, its contribution is neglected in
the developed prediction model. The semi-empiric prediction model for
the pressure drop is based on the most commonly used model structure
[98] for the incompressible flow through an arbitrary geometry and it is
given as

∆P = ζ
lg
dg

ρv2
mean,in

2 . (7.8)

Here, ζ is the friction coefficient, lg is the characteristic length and dg
is the characteristic diameter of the geometry. For this validation, the
characteristic length is chosen to be the laboratory spacer length (lg = lsp)
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Figure 7.7 Comparison of pressure drop over an lsp = 0.2 m spacer channel by
the numerical simulation with experiments and prediction model Eq.
7.9.

and the characteristic diameter is chosen be the height of the channel
dg = hch. As mentioned before, the total pressure drop measured consists
of the pressure drop in spacer-filled flow channels and the distribution
channels i.e. ∆P tot = ∆P ch + ∆P dis. Thus, both these contributions are
accounted for in the total pressure drop by introducing friction coefficients
ζsp and ζdis for spacer and distribution channels. With this, Eq. 7.8 can
be written as

∆P tot =
(
ζdist + ζsp

lsp
hch

)
ρv2
ch

2 . (7.9)

The friction coefficients are obtained by the parameter estimating using
least-square approximation on single spacer flow channel experiment data.
Neglecting the friction coefficient of the distribution channels, the predic-
tion ζ-model matches pretty well the numerical simulation as shown in the
figure. For more information on the calculation of friction coefficient refer
to [39].

7.1.2.2 Periodic width

The five different spacer configurations with periodic width are investigated
by varying the inflow mean velocity from 0.01 m s−1 to 0.8 m s−1. As
mentioned earlier, the simulations are run up to 1 s unless the steady state
is reached. The evolution of the pressure drop over time between the planes
which are 0.3 cm apart from each other for various v̄in and for woven and
nonwoven configurations are shown in Figure 7.8 and Figure 7.9 respectively.
The behavior of the flow for the different configurations can be identified
from this figure. For all spacer configurations, numerical fluctuations are
observed due to initial conditions, which results in reflection of pressure
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waves from the outlet boundary. As it can be seen in the subplots of
Figure 7.8 and Figure 7.9a, these initial numerical fluctuations gets washed
away even before the ramping time of 0.025 s. Also note that these initial
fluctuations increase with increase in velocity.

In Figure 7.8 and Figure 7.9, the lines stop at different times because
it takes a different number of time steps until it reaches steady state.
See Section 5.4.4, for more information on how the steady state check is
performed by the solver. Here, the steady state is checked by measuring
the pressure and velocity magnitude variables at every 10th time step.
The sliding window is 100 resulting in 100 values from 1000 time steps.
The threshold is 1× 10−8. Thus, the time average is computed for 100
values and its difference against the current value is computed for both the
pressure and velocity magnitude variables. The steady state is assumed
to have reached only when the computed difference of both the variables
are less then the threshold of 1× 10−8. Since the physical time is directly
proportional to the physical time step δt and the physical time step δt is
inversely proportional to the physical mean inflow velocity v̄in (Eq. 3.89).
The physical time required to reach the steady state for the fixed number
of 1000 time steps decreases with increase in the mean inflow velocity
v̄in. This behavior can be clearly seen in Figure 7.9a for the nonwoven
spacer β = 30◦ for entire velocity range. However, for other configurations
except the nonwoven spacer β = 60◦, this behavior is observed for v̄in
only up to 0.2 m s−1. For higher velocities, the physical time to reach
steady state differs from each other due to initial numerical fluctuations.
In addition to the evolution of pressure drop, the pressure drop for various
inflow velocities for five spacer configurations are listed in Table 7.4. For
steady state flows, the pressure drop is taken at the last time step and for
unsteady flows, the pressure drop is averaged over last 5000 iterations.

For the woven spacer β = 90◦, the flow reached steady state for v̄in
up to 0.6 m s−1 and from 0.7 m s−1, the flow becomes unsteady with
periodic fluctuations. The simulation for 0.8 m s−1 was crashed due to
insufficient resolution. Just rotating the woven spacer β = 90◦ by β = 45◦

along the flow direction results in a steady state solution for all velocities.
Furthermore, the ratio of the pressure drop of the woven spacer β = 45◦ to
β = 90◦ decreases with increase in velocity. In other words, the pressure
drop of the woven spacer β = 45◦ is 0.8-0.9 times less than woven spacer
β = 90◦ for the same v̄in. Additionally, the pressure drop of woven
spacer β = 45◦ seems to increase linearly with increase in velocity. The
pressure drop of the nonwoven spacer β = 30◦ is much less than the
woven spacers and reaches steady state for all velocities. In comparison to
the woven spacers, the pressure drop of the nonwoven spacer β = 30◦ is
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Figure 7.8 Pressure drop over time for various inflow mean velocities of woven
spacer configurations

v̄in woven nonwoven
[m s−1] β = 90◦ β = 45◦ β = 30◦ β = 45◦ β = 60◦

0.01 0.1659 0.1527 0.065 0.0883 0.1254
0.05 0.9469 0.8587 0.35 0.5025 0.7914
0.1 2.20 1.98 0.76 1.20 2.13
0.2 5.75 4.90 1.73 3.07 6.38
0.4 16.33 13.17 4.02 8.68 22.68
0.5 23.6 18.87 5.25 12.7 35.5
0.6 32.12 25.38 6.57 18.33 48.97
0.7 41.96 32.39 8.00 23.75 NA
0.8 NA 39.83 9.53 30.3 NA

Table 7.4 Pressure drop between the planes (∆P ) in 1 × 102 Pa for 5 different
spacer configuration over various inflow mean velocity v̄in. A bar
over the value represents the unsteady flows. NA represents the
simulations which crashed due to insufficient resolution.

roughly 0.4 times smaller for velocity 0.01 m s−1 and 0.2 times smaller for
velocity 0.7 m s−1. For other two nonwoven spacers, with the increase in
hydrodynamic angle, the pressure drop increases and also the flow becomes
unsteady and fluctuations increase with increase in velocity. The nice
transition from steady flow to unsteady periodic laminar flow to unsteady
flow with large fluctuations can be observed for both nonwoven spacers
β = 45◦ and β = 60◦. For the nonwoven spacer β = 45◦, the flow changes
from steady state flow to unsteady periodic flow for velocity 0.4 m s−1.
From velocity 0.6 m s−1 the flow fluctuations becomes chaotic and behaves
more like a turbulent flow. With increasing the hydrodynamic angle for the
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Figure 7.9 Pressure drop over time for various inflow mean velocities of nonwo-
ven spacer configurations

nonwoven spacer to β = 60◦, the flow transition from steady state flow to
unsteady periodic flow occurs at earlier velocity of 0.2 m s−1 and the high
fluctuations are observed already at velocity 0.4 m s−1. Due to increase
in high fluctuations with velocity, the simulations crashed for velocity
≥ 0.7 m s−1 due to insufficient resolution. Thus, it can be concluded that
the flow becomes more turbulent with increase in hydrodynamic angle.

A closer look at the evolution of the pressure drop (see Figure 7.10)
shows that for the velocities with high fluctuations, the fluctuation starts
to appear even before the end of ramping time. To check whether these
fluctuations for high velocity are physical or numerical, the high inflow
velocities are ran with increased resolution of δx128. The fluctuations were
almost the same which shows that they are physical.
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Figure 7.10 Evolution of pressure drop during the velocity ramping for the
nonwoven spacer β = 45◦ (left) and β = 90◦ (right).

The turbulent flow behavior observed for nonwoven spacers β = 45◦

and β = 60◦ are investigated further using Kolmogorov −5/3 scale energy
decay. For the high fluctuation flows, the power spectrum density (PSD)
over the frequency was computed from the velocity measured at the center
the simulation domain [3 · lm, hch

2 , wch
2 ]. The PSD over frequency for

both those nonwoven spacers with high fluctuations are shown in Figure
7.11. The left figure shows the PSD for the nonwoven spacer β = 45◦ for
velocities from 0.6 m s−1 to 0.8 m s−1 and the right figure shows the PSD
for the nonwoven spacer β = 60◦ for velocities 0.4 m s−1 to 0.6 m s−1. A
red line in the figure represents the Kolmogorov −5/3 energy decay and
for the flow to remain turbulent, the PSD of the flow should be parallel
to the slope. In general, the turbulent flow is unsteady and chaotic with
unpredictable random motion of the vortices or eddies in different scales.
The kinetic energy of the turbulent flows enters through the large scale
eddies which are created by the flow separation influenced by the geometry
(boundaries). These large eddies are unstable and break up, transferring
their energy into small eddies. These smaller eddies undergo a similar
break up process until the eddies are so small and get dissipated due to
viscosity of the flow. According to Kolmogorov theory, the net energy
transferred from energy containing large eddies is in equilibrium with the
energy in smaller eddies where it is dissipated. The frequency range in
which this energy transfer happens is called the inertial subrange and the
slope of the energy spectrum at this range remains constant. Kolmogorov
showed thats this slope is −5/3 based on dimensional arguments [74].

From Figure 7.11, it can be seen that the inertial subrange exists for
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nonwoven spacer β = 45◦ between frequency 103 and 104. This frequency
range is self similar for all three velocities and only the magnitude of energy
decreases with decrease in velocity. On the other hand, with increased
hydrodynamic angle to β = 60◦ for woven spacer, the inertial subrange
is different for each velocity but they all dissipate much faster with a
sharp decrease in slope of PSD. For velocity 0.4 m s−1 and 0.5 m s−1, the
inertial subrange exists between frequency 103 Hz and 3 · 103 Hz and for
velocity 0.6 m s−1, the inertial subrange is between frequency 3 ·103 Hz and
5 · 103 Hz. After the inertial subrange, the slope of PSD gets steeper due
to the faster decay of energy. Thus, the existence of an inertial subrange
in the small frequency range suggests that the turbulent energy in the
spacer-filled flow channels does not last long and gets dissipated at much
faster rate.
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Figure 7.11 Power spectrum density over frequency for the inflow mean veloci-
ties 0.6 m s−1 to 0.8 m s−1 for the nonwoven spacer β = 45◦ (left)
and β = 90◦ (right).

The pressure drop in Table 7.4 is plotted against the inflow mean velocity
in Figure 7.12. Only the pressure drop of the nonwoven spacer β = 30◦

shows linear increase with velocity while others increase nonlinearly with
velocity. It can be clearly seen that with increase in hydrodynamic angle β,
the pressure drop increases drastically. For example, the pressure drop of
nonwoven spacer β = 60◦ is roughly 7.5 times larger than nonwoven spacer
β = 30◦ for the velocity of 0.6 m s−1. For the same hydrodynamic angle of
β = 45◦, the ratio of the pressure drop of woven spacer to nonwoven spacer
is roughly 1.3-1.7 times and this ratio increases with increase in velocity.
For low velocities, the pressure drop of nonwoven spacer β = 60◦ is slightly
lower than the woven spacer β = 90◦ and with increase in velocity, the
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pressure drop of nonwoven spacer β = 60◦ becomes higher than the woven
spacer β = 90◦ i.e. roughly 1.5 times higher for velocity 0.6 m s−1. The
pressure drop of nonwoven spacer β = 45◦ is roughly 0.5-0.7 times smaller
than the woven spacers.
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Figure 7.12 Pressure drop ∆P over inflow mean velocity for different spacer
configurations

In ED application, the pressure drop across the channel is directly
proportional to the pump energy which in turn relates to the operational
cost. Therefore, the spacer design with the least pressure drop is preferred.
On the other hand, the spacer with low pressure drop increases low flow
zones which are the main cause for scaling and fouling effect in spacer-
filled flow channels. Thus, the optimal spacer design should have low
pressure drop and less low flow zones. So, to identify the optimal spacer
design, in addition to the pressure drop study, the flow distribution in the
channel must also be studied in detail. To study the flow distribution, the
streamlines of velocity magnitude for different spacer configurations are
compared for two velocities: 0.01 m s−1 (low) and 0.5 m s−1 (high). In
addition to streamlines, the velocity magnitude profile in the xz−plane at
y = hch/2 and y = 3hch/4 are also compared. It is worth mentioning that
in addition to aforementioned conditions for the optimal spacer design,
the optimal spacer is also desired to maximize the limiting current density.
But it is not considered in this work and it will be considered in the future
work.

Before discussing the flow distribution in the spacer-filled flow channels,
the Re of different runs are discussed. The Reynolds number at the begin-
ning of the simulation (Resp.B) is calculated from the inlet mean velocity
v̄in and the Reynolds number at the end of the simulation (Resp,E) is
calculated from the maximum velocity magnitude vmax,E in the simulation
domain. The vmax,E is measured at the last time for steady state flows and
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averaged over last 5000 time steps for unsteady flows. Like the pressure
drop, the Reynolds number at the beginning Resp,B and at end Resp,E
of the simulation are listed in Table 7.5. The ratio of Resp,E/Resp,B is
plotted against v̄in in Figure 7.13. Between those two Re, the character-
istic height and the kinematic viscosity are kept constant and only the
characteristic velocity differs so the ratio of Resp,E/Resp,B is equal to
ratio of vmax,E/v̄in. Thus, the figure can also be interpreted as increase
in velocity magnitude with respect to the inflow mean velocity. The ratio
is always larger than 1 which shows that the flow is accelerated through
the channel due to the presence of spacer geometry. From these results, it
can be concluded that for nonwoven spacer with β ≥ 45◦, the flow changes
from steady to unsteady for Resp,E > 200 and the flow becomes turbulent
for Resp,E > 700.

v̄in Resp,B

Resp,E
woven nonwoven

[m s−1] β = 90◦ β = 45◦ β = 30◦ β = 45◦ β = 60◦

0.01 3.7 17.34 13.95 7.07 9.58 14.09
0.05 18.48 79.76 64.32 40.2 51.05 64.55
0.1 36.97 151.54 116.48 81.2 100.45 138.95
0.2 73.94 294.31 212.56 174.14 194.85 218.96
0.4 147.87 594.09 414.12 345.45 410.82 707.48
0.5 184.84 744.11 539.22 440.82 545.46 966.4
0.6 221.81 894.72 666.25 537.04 720.1 1198.46
0.7 258.78 1045.59 801.19 633.8 865.31 NA
0.8 295.95 NA 937.41 730.94 1008.89 NA

Table 7.5 Re computed using v̄in (Resp,B) and Re computed with vmax,E
in the simulation domain at the of end of simulation (Resp,E) for
different spacer configuration over various inflow mean velocity.

Figure 7.14 shows streamlines of the fluid flow colored with velocity
magnitude for different spacer configurations for v̄in = 0.01 m s−1. A
streamline represents a path followed by a fluid particle as it moves with
the flow. For all spacer configurations, the flow reaches its maximum
velocity between the filament and the membrane due to the reduced cross-
sectional area. Also, for this inflow velocity, the flow is steady and laminar
for all configurations. In woven spacers, the fluid goes around the filaments
along the flow direction due to their sinusoidal arrangement of filaments.
Even with a rotated angle of β = 45◦, the fluid flows almost along the
main flow direction with a zigzag pattern. On the other hand, the fluid in
the nonwoven spacers changes its direction at every filament intersection
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Figure 7.13 Ratio of Reynolds number at the end to the beginning of the simu-
lation over inflow mean velocity for different spacer configurations

(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦
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Figure 7.14 Stream lines of velocity magnitude for inflow mean velocity
0.01 m s−1 of different spacer configurations

and flows along the orientation of the filament. Thus, with increasing
hydrodynamic angle, the fluid stays longer in the flow channel and it takes
a longer path until it reaches the outlet. Figure 7.14 also shows that
near the filament, the flow velocity is very low since spacers act like walls.
In nonwoven spacers the fluid with low velocities flow in parallel to the
filaments. In comparison to other spacers, the flow in the woven spacer
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.15 Velocity magnitude profile for inflow mean velocity 0.01 m s−1 of
different spacer configurations at the middle slice y = hch/2 along
the length of the spacer

β = 45◦ is more uniform with less low flow areas. It can be clearly seen
that with increasing hydrodynamic angle, the velocity magnitude in the
domain increases, notably between the filament and the membrane closer
to the filaments intersection. Near this intersection, the distance between
the consecutive zigzag filaments (one up and one down) decreases with
increased angle α which causes change in fluid direction which in turn
increases the flow velocity. It shows that the fluid velocity in the domain
increases when the distance between the filaments lm decreases. As the
fluid moves towards the center of the intersections, the velocity decreases
which can be more clearly seen in Figure 7.15e.

The flow distribution in the xz-plane at y = hch/2 for different spacer
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.16 Velocity magnitude profile for inflow mean velocity 0.01 m s−1 of
different spacer configurations at the upper slice y = 2hch/3 along
the length of the spacer

configuration for v̄in = 0.01 m s−1 is shown in Figure 7.15. In all configu-
rations except the nonwoven spacer β = 60◦ the flow velocity is high in the
free flow area which is between the filament intersections. In the nonwoven
spacer β = 60◦, the flow velocity is high near the filament intersection as
observed in the streamlines figure and in the middle of the free flow area
the velocity is close to inflow velocity v̄in = 0.01 m s−1.

Shifting the xz- plane to y = 2hch/3 shows different distribution of the
flow for the spacer configurations (see Figure 7.16). In the woven spacer
β = 90◦, the flow velocity is very low above the filament running along
the flow direction and very high above the filament running perpendicular
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to the flow direction. The low flow velocity at the filaments intersection
looks like a pool where ions could accumulate. In the rotated woven spacer
β = 45◦, the pool disappears and the flow is more evenly distributed.
In this slice, the effect of the outlet BC in the simulation domain can
been seen in the woven spacer β = 90◦ up to the second last filament
running along the z-direction. In nonwoven spacers, the high velocity
between the bottom filament and top membrane are clearly visible and
the magnitude of this velocity increases with increase in angle β. Even
though the nonwoven spacer β = 60◦ has the highest velocity, it also has
larger low velocity zones near the filaments. The nonwoven spacer β = 45◦

has more even flow distribution with relatively less low flow zones.

(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.17 Contours of velocity magnitude 0.01 m s−1 colored with normalized
pressure for different spacer configurations

The pressure drop along the spacer-filled flow channel for different spacer
configurations is shown in Figure 7.17. The surface contour represents the
velocity magnitude of 0.01 m s−1 and the colors represents the normalized
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pressure, i.e. P − Patm. Figure 7.17 shows that the pressure decreases
almost linearly along the length similar to the straight channel.

(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.18 Streamlines of velocity magnitude for inflow mean velocity
0.2 m s−1 of different spacer configurations

Increasing the inflow velocity to 0.2 m s−1 introduces vortices behind the
filaments in the woven spacer β = 90◦ and the nonwoven spacer β = 60◦

(see Figure 7.18). In the woven spacer β = 90◦, the vortices appear above
the filament running along the flow direction. It’s the same area in which
very low velocity was observed for v̄in = 0.01 m s−1. Likewise, the vortex
in the nonwoven spacer β = 60◦ appears in the center of the free flow
area, where the low flow velocity was observed for v̄in = 0.01 m s−1. In
the other three spacer configurations, the twist in the flow direction can
be seen at every filament intersection.

With further increase in inflow velocity to 0.5 m s−1 vortices are also
introduced in the free flow area of the woven spacer β = 45◦ and the
nonwoven spacer β = 45◦ as shown in Figure 7.19. Still the flow in the
nonwoven spacer β = 30◦ is laminar and uniform with no vortices. The
size of vortices in the woven spacer β = 90◦ increases but still the flow is
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.19 Streamlines of velocity magnitude for inflow mean velocity
0.5 m s−1 of different spacer configurations

laminar and reaches a steady state. On the other hand, the flow in the
nonwoven spacer β = 60◦ became chaotic with many small vortices and
the velocity magnitude is more than 5 times larger than the inflow velocity
0.5 m s−1. This chaotic large fluctuations in the nonwoven spacer β = 60◦

may not be desirable for effective operation of ED stack. However, it could
be effective to clean the scaling in the spacer-filled flow channels and also
effective in mixing.

In Figure 7.20 and Figure 7.21, the effect of inlet and outlet BC on the
flow distribution can be seen up to the second filament and second last
filament running perpendicular to the flow direction respectively. This
was the main reason for measuring the pressure drop between the planes
that are 0.3 cm apart and located at a distance of 0.2 cm away from
inlet and outlet boundary. Except for the nonwoven spacer β = 30◦, all
other other configurations have very low velocity in the free flow area
which is due to the presence of vortices. A chaotic flow distribution in
the nonwoven spacer β = 60◦ shows a symmetric distribution along the
z-direction but a very different distribution at every filament intersection
along the flow direction. However, all other spacer configurations show self
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.20 Velocity magnitude profile for inflow mean velocity 0.5 m s−1 of
different spacer configurations at the middle slice y = hch/2 along
the length of the spacer

similar flow distribution at every filament cross section and in the free flow
area which are away from inlet and outlet boundary. These results show
that the flow distribution is always periodic in z-direction and differ only
in the main flow direction. Also, there are no differences in the main flow
direction between each spacer element (which consists of two filaments in
x- and y-direction) away from inlet and outlet boundaries. The difference
in the flow direction is observed only for the nonwoven spacer for inflow
velocitity 0.5 m s−1. Therefore, for inflow velocities up to 0.5 m s−1, the
pressure drop measured in the middle of the spacer-filled flow channel can
be extrapolated to the entire spacer length.

Here is the short summary of this investigation. The existence of the
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(a) Woven spacer β = 90◦ (b) Woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

Figure 7.21 Velocity magnitude profile for inflow mean velocity 0.5 m s−1 of
different spacer configurations at the upper slice y = 2hch/3 along
the length of the spacer

spacer reduces the area of the flow, thus the flow is accelerated. The
acceleration should corresponds to the area reduction. As the different
spacers correspond to different areas, the maximum flow velocity is different.
The second phenomenon is the uniformity of the flow. The nonwoven
spacer is expected to be more uniform than the woven spacer, as the flow
does not need to flow around the filaments. Furthermore, the fluid in
the nonwoven spacers changes its direction at every filament intersection
and flows along the orientation of the filament where as in the woven
spacers, the fluid flows almost along the main flow direction. And the
third is the, hydrodynamic angle β as it changes the distance between the
filaments. With increasing hydrodynamic angle, the fluid stays longer in
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the flow channel and it takes a longer path until it reaches the outlet. This
phenomena should enhance the mass transport of ionic species through the
membranes. For both woven and nonwoven spacers, the flow becomes more
transient towards turbulence with an increase in hydrodynamic angle β as
concluded in [46]. Thus, the spacer with larger hydrodynamic angle can
be used as a turbulence promoter, but is not suitable for an ED process
for seawater desalination which requires a more uniform flow with little
mixing to promote ions transfer through the membrane. The turbulence
is often induced in the ED process to increase the limiting current density,
to minimize boundary layer thickness and to wash accumulated ions in the
low flow areas. However, there is a limit on the operating velocity, and the
pressure drop along the spacer and through the stack, to prevent external
leakages. For a more detailed analysis, refer to [75].

7.1.2.3 Near sealed corner

In the previous investigation, the width of the channel was considered to
be periodic assuming the simulation domain is far away from the sidewalls
and corners. In reality, the spacers have sealed corners, which are used to
seal the spacer sheet in the ED stack. The illustration of a square spacer
sheet with sealed corners used by SIEMENS Water Technology in their ED
prototype is shown in Figure 7.22. The sealed corners are prone to have
low flow zones where the fluid velocity becomes low. This low flow zones
are the main cause for scaling and fouling effects in the spacer channels
because they lead to an accumulation of ions. Thus, it leads to failure
of the system and the only solution to this problem is disassembling the
entire stack and cleaning the spacer. Usually, this failure is noticed only
when the performance of the system is reduced. From previous section,
it is known that the flow distribution in the spacer-filled flow channel
depends on the spacer design and the inflow velocity but it is unknown
how much they affect the flow in the corners. Therefore, it is necessary
to study the flow distribution of different spacer configurations near the
sealed corner to determine the optimal spacer design.

The investigations are performed only on nonwoven spacers because
they are used more often than the woven spacers. The nonwoven spacers
are also cheaper than the woven spacers. Thus, nonwoven spacers with
different hydrodynamic angle β and number of filaments per inch density
nF/inch are investigated. The geometric parameters of such a nonwoven
spacer are given in Figure 7.1. Three different spacer configurations are
chosen:

1. β = 30◦, nF/inch = 14,
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2. β = 60◦, nF/inch = 14 and

3. β = 45◦, nF/inch = 18.

Each of these configurations is simulated with two inflow velocities of
0.03 m s−1 and 0.05 m s−1. Thus, totally 6 simulations are performed
for this investigation. The highlighted corner area in Figure 7.22 is of

Figure 7.22 Spacer sheet with sealed (blocked) corners. Simulations are per-
formed on the highlighted part which covers low flow zone.

dimension L×W = 7.1× 7.1 cm. The fluid mesh with spacer structure
generated by Seeder and the setup of the boundary conditions used for
the simulations are shown in Figure 7.23. The zoomed part shows the
grid resolution of spacer filament. The spacer filament is approximated
by 10 elements (lattice cells) i.e 20 elements in channel height resulting
in a total problem size of around 520 million elements. Due to memory
requirements to generate such big meshes, the pre- and post- processing
node with 128 GB memory in the Hermit system is used. Each mesh
generation consumed a machine memory of roughly 70 GB and a wall
clock time of roughly 3 h. The disk space used by each mesh is roughly
22 GB.

Here, the BGK collision operator and D3Q19 layout are used. At
inlet, the inflow mean velocity (v̄in) is imposed using velocity bounce
back BC and at outlet, atmospheric pressure is prescribed using pressure
extrapolation BC. The sealed corner walls and spacer structure are treated
as no-slip bounce back BC. At the plane opposite to the blocked wall,
free-slip boundary is imposed i.e flow velocity normal to this wall is set
to zero and the tangential velocity is extrapolated. Each simulation was
run on 2048 cores in the Hermit system, HLRS, Stuttgart, simulating up
to 20 s in a wall clock time of 40hrs. The simulations are run for long
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Figure 7.23 Spacer generated by Seeder marked with boundary condition setup.
Zoomed part shows the resolution of spacer filament used for
simulations.

time to ensure that the flow reaches the steady state. All simulations
reached steady state with in the simulation end time of 20 s except the
configuration No. 2 with inflow velocity 0.03 m s−1, which took longer to
reach steady state. So this simulation alone was ran up to 60 s.

Pressure distribution at steady state for different spacer configurations
on the xz- plane at y = hch/2 for v̄in = 0.03 m s−1 are shown in Figure
7.24. Due to the sealed corner, the pressure gradient exist in the z-direction
i.e it decreases from slip wall to the corner wall. The slope of this gradient
is greater for configuration No. 1 than others. Furthermore, the pressure
gradient along the z-direction decreases towards the slip wall. The pressure
drop measured across the channel for all configurations for both inflow
velocities is listed in Table 7.6. The magnitude of the normalized pressure
given in the color scale of the figure is different from the pressure drop
listed in the table because the later is averaged along the entire inlet
and outlet plane. As observed in the previous section, the pressure drop
increases with increase in hydrodynamic angle β.

Similar to the pressure distribution, the flow distribution in the entire
simulation domain along xz-plane at y = hch/2 for different spacer config-
urations for inflow mean velocity v̄in = 0.03 m s−1 is shown in Figure 7.25.
The blue color near the corner represents the flow with very low velocity
which is below 0.01 m s−1. The configuration No.1 with angle β = 30◦

has a large low flow area. The low flow area decreases with increase in
hydrodynamic angle β. Thus it is possible to decrease the low flow area
but very hard to get rid of them. Far from the corner towards the slip
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(a) Configuration No. 1 (b) Configuration No. 2

(c) Configuration No. 3

Figure 7.24 Pressure distribution in the entire simulation domain along xz-
plane at y = hch/2 for different spacer configurations for inflow
mean velocity v̄in = 0.03 m s−1.

Configuration β nF/inch Inflow velocity ∆P for 7.1 cm
[m s−1] kPa

1 30◦ 14 0.03 0.515
0.05 0.863

2 60◦ 14 0.03 0.742
0.05 1.342

3 45◦ 18 0.03 0.668
0.05 1.121

Table 7.6 Pressure drop ∆P across the simulated length on 3 different mesh
configuration and each with 2 different inflow mean velocities.
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(a) Configuration No. 1 (b) Configuration No. 2

(c) Configuration No. 3

Figure 7.25 Flow distribution and velocity vector in entire simulation domain
along xz-plane at y = hch/2 for different spacer configurations for
inflow mean velocity v̄in = 0.03 m s−1.

wall, the flow is more uniformly distributed in all three configurations.
The flow velocity is high near the inlet region and then it decreases close
to the inflow velocity along the length. Only for the larger angle β = 60◦,
the flow velocity decreases slightly below the inflow velocity. Thus, the
velocity magnitude in the bulk of the spacer-filled flow channel is close to
the inflow velocity and the velocity increases only near the inlet region.
In previous analysis, this was not observed because the length of the
simulation domain was 10 times smaller. Another important difference
between the two investigation is the diameter of the filament df and the
distance between the filament lm are different. The lm is larger and df is
smaller than previous investigation.

To compare low flow zones of different configuration, the area near the
blocked corner with the length of 2.5 cm and the width of 1.0 cm is used.
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(a) Configuration No. 1, v̄in = 0.03m/s (b) Configuration No. 1, v̄in = 0.05m/s

(c) Configuration No. 2, v̄in = 0.03m/s (d) Configuration No. 2, v̄in = 0.05m/s

(e) Configuration No. 3, v̄in = 0.03m/s (f) Configuration No. 3, v̄in = 0.05m/s

(g) Color map

Figure 7.26 Velocity distribution at plane y = h/2 near blocked corner on
different spacer configuration and inflow velocities. Velocity is
shown only for velocity above threshold of 0.02m/s, thus white
space between the filaments have velocity > 0.02m/s.

Additionally, the velocity magnitude threshold is set to 0.02 m s−1 to see
only the flow with low velocities since only they result in scaling and
fouling effects in the spacer-filled flow channels. Figure 7.26 and Figure
7.27 show the velocity distribution near the blocked corner in the xy-
plane at y = hch/2 and y = 3hch/4 for all 6 simulations. The left side
of the figure is for v̄in = 0.03 m s−1 and the right for v̄in = 0.05 m s−1.
The white spaces in the flow channel are either spacer channel or area
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(a) Configuration No. 1, v̄in = 0.03m/s (b) Configuration No. 1, v̄in = 0.05m/s

(c) Configuration No. 2, v̄in = 0.03m/s (d) Configuration No. 2, v̄in = 0.05m/s

(e) Configuration No. 3, v̄in = 0.03m/s (f) Configuration No. 3, v̄in = 0.05m/s

(g) Color map

Figure 7.27 Velocity distribution at plane y = 3h/4 near blocked corner on
different spacer configuration and inflow velocities. Velocity is
shown only for velocity above threshold of 0.02m/s, thus white
space between the filaments have velocity > 0.02m/s.

with velocity above the threshold of 0.02 m s−1. The flow velocity in the
xz- plane y = hch/2 is higher than in the xz- plane y = 3hch/4 which
is similar to Figure 7.15 and Figure 7.16. In other words, the low flow
area is higher in the plane y = 3hch/4 than in the plane y = hch/2. As
observed before, the flow velocity is high in the free flow area and low
near filaments. The flow has very low velocity only at the corner and the
area decreases when the inflow velocity is increased to 0.05 m s−1. In both
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planes, the low flow zone is more apparent with 60◦ angle and reduces
with increase in angle. It is obvious that with higher velocity the most
part of the domain has a velocity above the threshold value. Thus, a high
angle β reduces the low flow zones but increases the pressure drop across
the channel. Therefore, the optimal configuration would be a 45◦ angle
which has moderate pressure drop and uniform flow distribution around
the blocked corner.

7.1.3 Multicomponent flows
In this section, multicomponent flow simulations performed on the five
different spacer configurations introduced in Section 7.1.1 are presented.
This investigation is performed to see the distribution of charged species and
charge density in the spacer-filled flow channels. A ternary liquid of mixture
of NaCl solution with a concentration of cNa+ = cCl− = 512.5 mol m−3

is used. A molar concentration of solvent is cH2O = 55965 mol m−3.
Here, the species 1, 2 and 3 corresponds to H2O, Na+ and Cl−. Other
properties of the mixture are chosen as listed in Table 6.1 except the
diffusivity coefficient of the species. The chosen diffusivity coefficient is
103 times larger than the actual diffusivity coefficient of this mixture. This
choice was due to the stability of the simulation w.r.t the chosen resolution
nHeight = 64. The large diffusivity coefficient can have an effect on the
numerical accuracy but should be sufficient to study the species transport
on different spacers. The valence zk of species 1, 2 and 3 are 0, 1 and -1
respectively.

The initial conditions are chosen as

χ2 = χ3 = εs, χ1 = 1− χ2 − χ3

v1(x) = v2(x) = v3(x) = 0

where εs = 1× 10−4 represents a smallness parameter to avoid division by
zero. The boundary condition are imposed as follows: At the inlet, the
mole fraction of the species according to the concentration of a chosen
solution are specified using mole fraction equilibrium BC and at the outlet,
the velocity profile is specified according to Eq. 6.3 with a velocity of
0.1 m s−1. The bottom and top boundaries are treated as AEM and CEM
for ionic species and no-slip wall for solvent species 1. The membrane
black-box model is used to define the AEM and CEM. The transport
number of Na+ and Cl− on CEM and AEM are TCEMNa+ = 0.971 and
TAEMCl− = 0.998. The spacer filaments are approximated by q-values and
treated by higher order wall BC. This boundary conditions are similar
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to the Taylor dispersion verification test case with an external electrical
force discussed in Section 6.4 except for inlet and outlet. Furthermore,
a constant electrical force of Ey = 5× 10−5 V m−1 is applied along the
y-direction which is perpendicular to the main flow direction to transport
the ionic species towards the membranes. The inflow velocity is ramped
up to 0.025 s and an electrical force is activated only after this ramping
time is reached. The simulations are then ran long enough up to 0.35 s
until they reach the steady state.

(a) woven spacer β = 90◦ (b) woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

(f) Color map

Figure 7.28 Contours of species 2 (Na+) mole fraction for inflow mean velocity
v̄in = 0.1 m s−1 and a constant electrical field in y-direction for
different spacer configurations

Figure 7.28 and Figure 7.29 show the contours of mole fraction of species
2 and 3 respectively in different spacer configurations. The dark red color
at the inlet is the inlet mole fraction of ionic species i.e. 0.0092 and along
the length the concentration of ionic species decreases due to membrane
boundary conditions on top and bottom. Since an electrical field is applied
along the positive y- direction, the positive species Na+ is driven towards
the top while the negative species Cl− is driven in opposite direction
towards to the bottom. Also due to the higher transport number of AEM
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(a) woven spacer β = 90◦ (b) woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

(f) Color map

Figure 7.29 Contours of species 3 (Cl−) mole fraction for inflow mean velocity
v̄in = 0.1 m s−1 and an electrical field in y-direction for different
spacer configurations

at the bottom, the concentration of Cl− gets depleted faster than Na+

along the length of the channel. Among the nonwoven spacers, the angle
β = 60◦ has the least concentration at the outlet. This might be due to
the fact that the fluid takes a longer path to the outlet along the filament
as observed in pure hydrodynamic simulations and thus the IEM have
more time to deplete ions out of the flow channel. On the other hand,
in woven spacers due to sinusoidal flow around the filaments, the fluid
takes an even longer time than in the nonwoven spacer and it results in
the decrease in concentration at the outlet of the woven spacer compared
to the nonwoven spacers. Between woven spacers, the concentration at
the outlet of rotated spacer β = 45◦ is lower than the spacer β = 90◦.
This could be because in the woven spacer β = 45◦, the fluid changes
its direction at every filament intersection and also travels around the
filament which might have increased the travel path even longer. Thus,
the longer the travel distance of the fluid from inlet to outlet, the better is
the transport of ions through the membranes.
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(a) woven spacer β = 90◦ (b) woven spacer β = 45◦

(c) nonwoven spacer β = 30◦ (d) nonwoven spacer β = 45◦

(e) nonwoven spacer β = 60◦

(f) Color map

Figure 7.30 Contours of charge density ρe for inflow mean velocity v̄in =
0.1 m s−1 and an electrical field in y-direction for different spacer
configurations

Similar to mole fraction contours, the charge density contours on different
spacer configurations are shown in Figure 7.30. The charge density is
computed from the sum of the concentrations with its valance so this
figure can be considered as a composite plot of mole fraction contours of
species 2 and 3, i.e. Figure 7.28 and Figure 7.29. Most of the domain
is nonelectroneutral due to an applied external electrical force. A green
contour represents a charge density of exact zero (electroneutral), which is
along the middle of the channel for nonwoven spacers. For woven spacers,
they are below the middle plane. In all spacer configurations, the charge
density is high at low flow zones observed in the hydrodynamic simulations
and the concentration increases in those areas with time. In woven spacer
β = 90◦, the charge density between the filament running upwards along
the z-direction and the membrane is high. Furthermore, the concentration
in the free flow area between filaments is low. Thus the larger the free flow
area is the better the transport of ions through the membranes. This free
flow area can be increased by increasing the angle between the filaments
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α and increasing the distance between the filaments lm. On the contrary,
increasing the angle increases the pressure drop across the channel and
introduces high fluctuations in the flow channel. Thus, from all the spacer
investigations the optimal angle is β = 45◦ for both woven and nonwoven
spacers.

7.2 Repeating unit in ED stack

Finally, a single repeating unit of the ED stack with a dilute and concentrate
channel as in Figure 4.2 is simulated in this section. A setup for the
repeating unit is just an extension to the setup discussed in Section 6.4 for
the Taylor dispersion test case with an external electrical force. Instead
of a single flow channel with membranes, two flow channels are simulated
simultaneously with an alternate arrangement of membranes resulting
in dilute and concentrate channels. The dimensions of each channel are
L × H : 0.2 × 0.04 cm which are similar to that test case. Also, the
properties of an aqueous NaCl solution like viscosities, density, molecular
weight of the species, etc, and the transport number of the membranes are
same as in Taylor dispersion test case. Once again the species 1, 2 and 3
corresponds to H2O, Na+ and Cl− respectively.
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Figure 7.31 Simulation setup for a repeating unit in ED stack without spacer
filaments.

Unlike a strip of concentration in the flow channel, here, the flow is
uniformly distributed with following initial conditions

χ2 = χ3 = εs, χ1 = 1− χ2 − χ3

v1(x) = v2(x) = v3(x) = 0

where εs = 1× 10−3 represents a smallness parameter to avoid division by
zero. The boundary conditions are defined as follows

inlet: At the inlet of both channels, the x-component of the species mole
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flux (Nk,x) is defined as a parabolic Poiseuille profile

Nk,x(y) = ck(y)4vmy(H − y)
H2 (7.10)

where the molar concentration ck(y) of species 1, 2 and 3 are c1 =
54940 mol m−3, c2 = 512.5 mol m−3 and c3 = 512.5 mol m−3. The
maximum velocity at the middle of the channel is vm = 0.1 cm s−1.

AEM: Solvent H2O is treated with simple no-slip wall and ionic species are
treated with membrane black box model with the transport number
for ionic species as TNa+,AEM = 1− 0.998 and TCl−,AEM = 0.998.

CEM: Treated same as AEM, with different transport number of ionic
species TNa+,CEM = 0.971 and TCl−,CEM = 1− 0.971.

Outlet: At both outlets, a simple equilibrium based BC is imposed by
extrapolating the concentration and velocities of the species.

Spacer: Spacer filaments are approximated by q-values and treated by
higher order wall BC.

Each channel is resolved with 128 elements in the height. The MRT
collision operator with D3Q19 layout was used. Here, a constant electrical
field is applied along the y- direction perpendicular to the main flow
direction. Simulations are performed on two configurations: 1) centered
filaments and 2) zigzag filaments. In zigzag filaments configuration, the
position of filaments in the dilute and concentrate channels are swapped.
Both configurations are run for Ey = 5 V m−1 and Ey = 2.5 V m−1,
to see the effect of the externally applied electrical field on the species
transport. Due to constant electrical field, there is no need to solve the
LBM for electric potential so this is just a multicomponent flow simulation
with membrane black box model using Musubi. Another reason for not
performing a coupled multicomponent and electric potential simulation is
that the current implementation of membrane black box model treats each
channel as independent flow channel and does not exchange concentrations
between them. In other words, the membrane black box model either
removes or adds species concentration depending on the transport number
of ionic species. To exchange concentration between the channels through
membrane, a species transport in membranes must be modeled by the
Nernst-Planck equations. There exist a LBM to solve the Nernst-Planck
equation [101] which can be used and it will be implemented in Musubi in
the near future.
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(a) Centered filaments, t = 3 s (b) Zigzag filaments, t = 3 s

(c) Centered filaments, t = 6 s (d) Zigzag filaments, t = 6 s

(e) Color scale

Figure 7.32 Molar concentration of NaCl at t = 3 s (top) and t = 6 s (bot-
tom) for centered filaments (left) and zigzag filaments (right) in a
repeating unit with a constant electrical field Ey = 5 V m−1.

Figure 7.32 shows the molar concentration of NaCl (cNa+ + cCl− ) at
physical time t = 3 s and t = 6 s on centered and zigzag filaments
configuration for a constant electrical field Ey = 5 V m−1. It can be seen
that in both configurations at t = 6 s, the concentration of NaCl decreases
along the length of the channel and there is a noticeable difference in
concentration between dilute and concentrate channel. In both channels,
the concentration of NaCl is higher on the top boundary than the bottom
because the transport number of Na+ on the CEM is less than Cl− on
the AEM so Cl− is removed from channel much faster than Na+. Also,
Na+ migrates faster towards the CEM with an electrical force since its
molecular weight is less than Cl−. This is similar to the observation in
Section 6.5 that with increased concentration the concentration profile of
ionic species becomes asymmetric due to their different molecular weights.
In centered filaments, the concentration of NaCl on the top boundary in
the concentrate channel is higher between the filaments because in the area
between the filament and the membrane, the flow velocity is higher which
transports the ionic species. On the other hand, in zigzag filaments, the
concentration of NaCl accumulates near the filament on the top boundary
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in the concentrate channel and it increases with time. At t = 6 s, the
concentration of NaCl near the top filament in the concentration almost
covers the entire filament due to the very low velocity in this region. This
accumulation of ions near the filaments would block the bulk flow and
reduce the overall efficiency of the ED process.

(a) Centered filaments, t = 3 s (b) Zigzag filaments, t = 3 s

(c) Centered filaments, t = 6 s (d) Zigzag filaments, t = 6 s

(e) Color scale

Figure 7.33 Molar concentration of NaCl at t = 3 s (top) and t = 6 s (bot-
tom) for centered filaments (left) and zigzag filaments (right) in a
repeating unit with a constant electrical field Ey = 2.5 V m−1.

Now, the electrical force is reduced by half i.e. Ey = 2.5 V m−1 and
the molar concentration of NaCl for both configurations at the same
physical times are shown in Figure 7.33. As it can be seen in the figure, the
accumulation of NaCl near the filament in the concentrate channel of zigzag
configuration is reduced drastically. Still there is a high concentration
near the filament but it is much closer to the intersection of membrane
and filament. The accumulation in the corner of filament/membrane
intersection is unavoidable with such circular spacer filaments but can be
reduced by decreasing the applied potential drop. Reducing an electrical
force has no significant effect in centered filaments except the concentration
of NaCl on the top boundary in the concentration channel is less than
before. Also, note that the concentration of NaCl at the outlet of the
zigzag configuration is less than in the centered filaments. This shows that
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the zigzag configuration promotes the ionic species transport through the
membranes and with the right potential drop, ionic species accumulation
can be reduced.

The purpose of these simulations is to demonstrate that it is possible to
simulate a targeted single ED unit with a dilute and concentrate channel
using the presented simulation framework. Thus, we can conclude that
using the APES framework, we could simulate the multiphysics phenomena
in ED process. Using numerical simulations we could understand the
process better and also find the optimal spacer configuration and operating
conditions like inflow velocity and an applied potential across the ED
stack.
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In this final chapter, the summary of contributions of this thesis and the
drawn conclusions are presented. Along with that, some future work in
the direction of further development of the simulation framework and next
steps towards more detailed coupled multiphysics simulations of ED process
are described. In general, this thesis presented mathematical equations to
describe multiphysics (electro-convection-diffusion) phenomena involved in
the ED process and the lattice Boltzmann method to numerically solve
those physical equations and the coupled simulation framework with the
implementation details and algorithm, and finally the results of large scale
flow simulations with spacer geometry. It also presents the strategy of
coupling domains of different physics.

8.1 Summary

The conclusions drawn and the contributions of this thesis are summarized
as follows

Mesh generator - Seeder : An effective automatic octree mesh generator
algorithm was developed and implemented as Seeder in the APES
framework. It generates computational meshes of cubical elements
from STL files and predefined shapes. The fluid elements are lin-
earized using SFC and they are written to disk along with boundary
information. The performance of Seeder to generate computational
mesh with spacer geometry was presented and it was shown that it
can generate mesh with several hundred million of fluid elements in
less than an hour.

Incompressible LBM: A prior implementation of our highly scalable LB
solver only supported the weakly compressible LBE for acoustic
flow simulation. Therefore, the incompressible LBE and boundary
conditions to handle Dirichlet inlet velocity and Dirichlet outlet
pressure boundaries required to simulate the fluid flow in spacer-
filled flow channels was implemented in Musubi as part of this thesis.
This implementation was validated with a well-known Poiseuille flow
test case.
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Multicomponent LBM: The multicomponent LBM for ideal and nonideal
liquid mixtures with external forces presented in Section 3.2 was
developed from the Asinari’s ideal gas mixture model [6] and im-
plemented in the highly scalable LB solver Musubi. The nonideal
multicomponent model recovers the complex equations of nonideal
mass and momentum transport, i.e. the Maxwell-Stefan equations
with external diffusive force for species and the Navier-Stokes equa-
tion with external force for the mixture. In contrast to the ideal
model, the nonideal model includes thermodynamic factors and con-
centration dependent diffusivity coefficients. The comparison of ideal
and nonideal model are presented in Section 6.5. It showed that
nonideal effects are higher for concentrated solutions especially in the
EDL region. the ED process is widely used for seawater desalination
and its concentration is rather higher. Also it is known that a concen-
tration gradient exist at the membrane/electrolyte interface so it is
necessary to use the nonideal model to simulate the multicomponent
flow with spacer geometry. To best of my knowledge, there are no
other LBM solvers capable of simulating nonideal liquid mixtures.
Also, it is the first time, a detailed comparison study was performed
on ideal and nonideal model on an aqueous NaCl solution with
different concentrations and surface potentials. The implementation
of multicomponent LBM was validated and verified using various
test cases like Stefan tube, Taylor dispersion and EDL. The EDL test
case is used to validate the fully coupled setup of the multicomponent
LBM and the LBM for the electric potential.

Electric potential LBM: The Poisson equation, which describes the distri-
bution of electric potential with respect to local change in charge
density distribution, is also implemented in the LB solver Musubi. A
non-equilibrium extrapolation boundary condition for both Dirichlet
and Neumann boundary were implemented. The implementation
was validated using a concentric cylinder test case in which cylinders
are approximated by q-values and the numerical results showed very
good agreement with the analytical solution.

Performance: The multicomponent LBM compute kernel was implemented
for arbitrary number of species and stencil. Additionally, an opti-
mized compute kernel for the three species mixture on the D3Q19
stencil was implemented and its performance on the Hermit system,
HLRS, Stuttgart was presented in Section 5.4.5. In addition to mul-
ticomponent performance, the single component LBM performance
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was also presented on the complex spacer structure. Both single
component and multicomponent LBM show very good scalability
on the Hermit system and they achieved a sustained performance
of 4.2% and 7.2% respectively. The performance of the multicompo-
nent solver is better due to the additional number of floating point
operations involved in solving the linear equation system for species
momentum.

Load balancing: Dynamic load balancing from TreElM was deployed for
the multicomponent flow simulation with spacer to reduce the load
imbalances from the inlet and outlet boundaries.

Membrane model: A black-box membrane model was introduced to mimic
the behavior of membranes in the ED process. It uses a transport
number of for each species for a particular membrane to define the
mass flux of a species through that membrane. This model was
implemented as a BC in the LBM solver Musubi and verified using
the Taylor dispersion test case.

Integrated coupling tool - APESmate . The development of this coupling
tool to couple APES solvers to perform coupled multiphysics sim-
ulations is the major contribution of this work. In APESmate, a
multiphysics domain is partitioned into several sub-domains accord-
ing to the physical system and sub-domains can interact with each
other either via surface or via volume coupling. The BC and source
terms in solver are used to exchange data at the surface and volume
coupling interfaces respectively between sub-domains. APESmate
can handle both these couplings by exchanging coupling variables
at coupling points evaluated using the solver data structure thus
without losing numerical accuracy at the coupling interface. The
two key features used to realize this exchange of coupling variables
and points are space-time function and variable system, which were
presented in detail. APESmate is developed with scalability in large-
scale systems in mind so it can distribute sub-domains across several
processes. The global MPI communicator is used to exchange cou-
pling data between sub-domains and MPI sub-communicators are
used for communication within a sub-domain. Two types of domain
decomposition were implemented: 1) one domain per processes 2) all
domains per process. The former one is used especially for surface
coupling where only few processes contain a coupling surface and
are involved in coupling data exchange and evaluation. Whereas in
volume coupling, all processes contain coupling data so the latter is
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beneficial. An advantage of APESmate is that it does mesh indepen-
dent coupling because it obtains variables at physical coordinates
either by interpolation or polynomial evaluation depending on the
solver. I.e, it does interpolation or polynomial evaluation for a given
set of points in space to exchange data between sub-domains with co-
inciding or non-coinciding meshes. It can handle an arbitrary number
of sub-domains. Data are exchanged between sub-domains at every
synchronization time and this time is determined by the maximum
physical time steps of all sub-domains except for sub-domains, which
need to solve a steady state problem. The current implementation
allows for sub-cycling in a domain when its time step is below the
maximum time step but no data will be exchanged at the sub-cycling
step, which might result in numerical inconsistency. The time inter-
polation is required to resolve this issue and it is planned for future
work. Thus, the current version of APESmate limits sub-domains to
have same physical time steps.

Flow simulation with spacer Hydrodynamic flow simulations on five dis-
tinct spacer configurations i.e. both woven and nonwoven with differ-
ent hydrodynamic angle for various inflow velocities were investigated.
For each configuration, the pressure drop across the channel and the
flow distribution in the channel were measured and compared with
each other. Comparison revealed that the pressure drop increases
with hydrodynamic angle and the nonwoven spacer β = 30◦ has the
least pressure drop of all configurations for all inflow velocities. For
the same hydrodynamic angle β = 45◦, the nonwoven spacer has the
least pressure drop in comparison to the woven spacer. Furthermore,
for all velocities, the woven spacer β = 45◦ and the nonwoven spacer
β = 30◦ reach steady state and show no fluctuations in the flow.
Increasing the hydrodynamic angle increases fluctuations in the flow
and for larger angle β = 60◦, high fluctuations are observed from
inflow velocity of 0.4 m s−1. For those high fluctuating flows, the
power spectrum density over frequency was analyzed and compared
with Kolmogorov −5/3 scale energy decay. It was found that this
flow looses its energy much faster than other turbulent flows due to
presence of spacer structure. In ED process, an optimal spacer is one
with low pressure drop across the channel and reduced low flow zones.
The configuration that satisfies both of these conditions are both the
both woven and nonwoven spacer with β = 45◦. The main difference
between the flow in woven and nonwoven spacer is that in the woven
spacer the fluid flows around the filament in a zigzag pattern and
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flows mainly along the main flow direction but in nonwoven spacer,
the fluid changes its direction at every filament intersection which
results in a longer path to outlet. This observation was confirmed
by the multicomponent flow simulations with those spacer configu-
rations and showed that the spacer with β = 45◦ improves the ions
transport through the membrane. In addition to the flow simulations
with periodic width, the flow near a sealed corner was also simulated
because in real ED stack the spacers have a seal at all four corners
and this corner is known to have low flow zones which are the main
cause for scaling and fouling in spacer channels. Therefore, very
large scale simulations were performed on three nonwoven spacer
configurations with the sealed corner to identify the configurations
with reduced low flow zones. It was found that the nonwoven spacer
with β = 45◦ has less low flow zones compared to others. From these
results, we can conclude with β = 45◦ is the optimal hydrodynamic
angle for spacer flow channels.

Repeating unit: At last, a targeted simulation setup with a dilute and
concentrate channel was presented for centered and zigzag filament
configurations. These simulations showed that it is possible to simu-
late two channels simultaneously with different membrane boundary
conditions. The results showed that in zigzag configuration, in the
concentrate channel, an accumulation of ionic species near the fil-
ament and membrane can be reduced by decreasing the potential
drop across the ED stack.

8.2 Future work

This work can be continued in two directions: software development and
application (ED process). Software development would involve imple-
mentation in APES simulation framework and application would involve
systematic detailed investigation of fully coupled multiphysics simulation
of ED process. Here are the following aspects for future work in those two
directions:

Parallel Seeder : The presented mesh generation algorithm needs to be
MPI parallelized to reduce the mesh generation time and also to
generate larger computational mesh with billion fluid elements, which
up to now are limited because of available memory of a single node.

Second-order force in Musubi : In LBM, the fully discrete LBE of second-
order is obtained by integrating the semi-discrete LBE along the
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characteristics and approximating the integral by the trapezoidal rule
[21]. For the time discretization of LBE see App. A.1.1.1. Applying
the trapezoidal rule results in an implicit equation so to convert the
equation back to explicit form, a variable transformation technique
is used by introducing a new set of distribution functions. The LBE
equation is then written using a new set of distribution functions
(transformed PDF) just by altering the relaxation parameter. Due
to the collision invariance, the conserved quantities like mass and
momentum are readily reconstructed from transformed PDF. How-
ever, this transformation affects the shear stress [21]. To maintain
the second-order accuracy of the scheme, an external force term in
LBE is also integrated with trapezoidal rule and this affects the
momentum calculation [20]. In Musubi, the stream-collide step and
application of the force term are performed in two separate routines
which makes the current implementation unsuitable for second-order
force term. Therefore, to circumvent this problem, i.e. to avoid
an external force contribution on the momentum calculation, the
forward Euler is applied to the integration of the external force term
in LBE resulting in first-order accurate forcing term. Thus, with an
external force, the current implementation would result in a first-
order accurate scheme. In the future, the second-order force term
can be implemented to improve numerical accuracy and stability.
This implementation would require quite some redesign of the code
because an external force must be provided whenever the momen-
tum is computed from PDF which is compute kernel, apply force,
boundary condition and tracking. This limitation is also applicable
to an external force term in multicomponent LBE and source term
in LBE for electric potential, and must be resolved in the future.

BC for multicomponent LBM: More accurate and robust BC than the
simple equilibrium BC is required to treat multicomponent outflow.
The second-order accurate non-equilibrium extrapolation BC [27]
would suit well for this purpose.

Time interpolation in APESmate: This would allow for sub-domains with
different time steps i.e. sub-cycling of a sub-domain. At each sub-
cycling step, the coupling variables can be extrapolated in time and
the accuracy of this extrapolation depends on the number of previous
time step values stored in memory. Of course, this would increase the
memory consumption but it would payoff when the computational
cost of a sub-domain decreases by using larger element size and time
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step size.

Coupling performance: In APESmate algorithm, the initialization of the
coupling can be expensive because it needs to identify the right
process to communicate through round-robin fashion but at each
time step, it only evaluates a variable using solver routines and ex-
change data. So, the only potential routine, which would affect the
performance of the coupling is the variable evaluation. However, per-
forming a code profiling would provide more insight into identifying
performance bottlenecks. Additionally, a rigorous scaling analysis
needs to be done on large-scale systems similar to the solver scaling
analysis presented in Section 5.4.5.

Membrane model: A sophisticated membrane model described by Nernst-
Planck equation can be developed. In particular, LBM based Nernst-
Planck model proposed by [87, 88] can be implemented in Musubi.

ED process simulation: After implementing LBM for Nernst-Planck mode,
a fully coupled multiphysics in ED process can be simulated using
APESmate i.e. coupling multicomponent LBM for flow channel and
LBM based Nernst-Planck for membrane and LBM based electric
potential for the entire domain. In this coupled setup, the spacer
structure can be considered and also a nonideal multicomponent LBM
model can be used. Thus, using APESmate, a detailed multiphysics
simulations of ED process can be performed by varying parameters
like inflow velocity, applied potential drop, spacer design, membrane
properties and so on. These simulations would help to find the
optimal operating conditions for ED processes.

Coupled simulations: APESmate is an efficient coupling tool, which can
be used to simulate any multiphysics applications like aero-acoustic,
electro-osmotic flow and so on. Electro-osmotic flow simulations
can be performed without any implementation because the physical
phenomena required are electrostatic interaction and fluid flow that
are already available as mutlicomponent LBM and LBM for electric
potential in Musubi.

Extension of APESmate for external solvers: At the moment, APESmate
is limited only to solvers in APES and it can extended by developing
a wrapper for an external solver to support space-time functions and
variable system features.
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A.1 Asymptotic analysis

In this session, the asymptotic analysis [41] is used to recover macroscopic
equations from the semi-discrete Boltzmann equation, i.e. the Boltzmann
equation discretized in velocity space and continuous in space and time.
In some literatures, the semi-discrete Boltzmann equation is referred
to as the continuous finite discrete velocity model (FVDM) Boltzmann
equation. In App. A.1.1, the incompressible Navier-Stokes equation for
fluid flow is recovered. In App. A.1.2, the multicomponent Maxwell-Stefan
equations for species transport and the incompressible momentum equation
for mixture transport are recovered. Finally, in App. A.1.3 the Poisson
equation for electrical potential is recovered. In each of these sections, the
continuous Boltzmann equation is discretized in time to obtain the fully
discrete lattice Boltzmann equation.

A.1.1 Lattice Boltzmann Method for Fluid Flow
Following derivation of an asymptotic analysis, recovers the incompressible
Navier-Stokes equations from the semi-discrete Boltzmann equation Eq. 3.1.
In [41], the zero order density ρ(0) is set to 1, whereas in the derivation
below, it is fixed to initial density ρ(0) = ρt=0. The asymptotic analysis
for the generalized MRT continuous Boltzmann equation is given in [41].
Lets start with the BGK semi-discrete Boltzmann equation with body
force on discrete velocity sets um which is same as Eq. 3.1,

∂tf
m + um · ∇fm = λν(feq,m − fm)︸ ︷︷ ︸

:=Ωm

+Fm. (A.1)

Here, we apply diffusive scaling proposed in [41] i.e. δ̃x = εδx and δ̃t = ε2δt
to above equation. A smallness parameter ε, corresponds to Mach number
Ma = U/cs with the flow velocity U and the speed of sound cs or Knudsen
number Kn = lm/L with molecular mean free path lm and physical length
scale L

ε2∂tf
m + εum · ∇fm = λν(feq,m − fm) + Fm. (A.2)
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Now, we expand the particle distribution functions fm, the body force
term Fm and the macroscopic moments in an asymptotic expansion of the
form:

fm =
∞∑
i=0

εifm,(i) (A.3a)

Fm =
∞∑
i=0

εiFm,(i) (A.3b)

ρ =
∞∑
i=0

εiρ(i) (A.3c)

p =
∞∑
i=0

εip(i) (A.3d)

Furthermore, the macroscopic moments such as density, momentum and
momentum flux are defined via moments of f as

ρ =
∑
m

fm, p = ρ(0)v =
∑
m

umfm, Π =
∑
m

umumfm. (A.4)

Lets consider the following equilibrium distribution function

feq,m(ρ(0), ρ, v) = ωm

(
ρ+ ρ(0)

( 1
c2
s

(um · v) + 1
2c4
s

(um · v)2

− 1
2c2
s

(v · v)
))

. (A.5)

which is the Maxwell-Boltzmann distribution function for isothermal incom-
pressible low Mach number flows. For convenience we split the equilibrium
distribution function Eq. A.5 into linear, bi-linear and quadratic parts as
follows,

feq,m(ρ, ρ(0), v) = feq,m,L(ρ) + feq,m,BL(ρ(0), v) + feq,m,Q(ρ(0), v) (A.6)

where,
feq,m,L(ρ) = ωmρ (A.7)

feq,m,BL(ρ(0), v) = ωmρ(0) 1
c2
s

(um · v) (A.8)
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feq,m,Q(ρ(0), v) = ωmρ(0)( 1
2c4
s

(um · v)2 − 1
2c2
s

(v · v)). (A.9)

In above equation, ρ(0) is the zero order density which is fixed at t = 0.
Using Eq. 3.13 in linear, bi-linear and quadratic part of equilibrium function,

〈1, feq,L〉 = ρ (A.10a)

〈1,ufeq,L〉 = 0 (A.10b)

〈1,u⊗ ufeq,L〉 = c2
sρI (A.10c)

〈1, feq,BL〉 = 0 (A.11a)

〈1,ufeq,BL〉 = ρ(0)v (A.11b)

〈1,u⊗ ufeq,BL〉 = 0 (A.11c)

〈1, feq,Q〉 = 0 (A.12a)

〈1,ufeq,Q〉 = 0 (A.12b)

〈1,u⊗ ufeq,Q〉 = ρ(0)(v ⊗ v) (A.12c)

Where, I denotes the identity operator and ⊗ denotes tensor product
between two vectors ((a⊗ b)αβ = 1

2 (aαbβ + aβbα)).
Divide the semi-discrete Boltzmann equation Eq. A.2 by ε2 and apply

asymptotic expansion of PDF Eq. A.3a with fm,(i) = 0 for i < 0. We get
the following expression in the order εi+2 for i ≥ −2:

∂tf
m,(i) + um · ∇fm,(i+1) = λνf

eq,m,L(ρ(i+2))

+ λνf
eq,m,BL(ρ(0), v

(i+2)
1 )

+ λν
∑
j,l≥0

j+l=i+2

feq,m,Qk (ρ(0), v(j), v(l))

− λνfm,(i+2) + Fm,(i+2) (A.13)

We can rewrite above equation in terms of density moment using ρ =∑
m
fm and making use of Eq. A.10, Eq. A.11 and Eq. A.12,

∂tρ
(i) +∇ · p(i+1) = λν(〈1, feq,L,(i+2)〉+ 0 + 0− ρ(i+2)) + g(i+2)

:= g(i+2) (A.14)
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where
g(i) =

∑
m

Fm,(i). (A.15)

Similarly, the momentum equation can be obtained by taking first moment
of Eq. A.13 i.e. p =

∑
m
umfm and making use of Eq. A.10, Eq. A.11

and Eq. A.12

∂tp(i) +∇ · 〈1,u⊗ uf (i+1)〉 = λν(0 + 〈1,ufeq,BL,(i+2)〉+ 0− p(i+2))

+ h(i+2) := h(i+2) (A.16)

where
h(i) =

∑
m

umFm.(i). (A.17)

Additionally, from [41] following relation holds true

Fm,(i) =
{
ωmum ·G(i) , if i ≥ 3
0 , else

(A.18)

where G(i) is the macroscopic body force of form G = ρg. The mass
conservation equations can be obtained by setting i = 0 in Eq. A.14 and
using g(2) = 0 gives

∂tρ
(0) +∇ · p(1) = 0. (A.19)

Applying properties of incompressible fluids, ρ(0) = const and p1 = ρ(0)v1,
results in the following continuity equation with velocity of order ε

∇ · v(1) = 0. (A.20)

Likewise, the momentum conservation of the incompressible Navier-Stokes
equations can be obtained by setting i = 1 in Eq. A.16.

∂tp(1) +∇ · 〈1,u⊗ uf (2)〉 = h(3). (A.21)

To determine unknown variable fm,(2), we must first determine its
leading order coefficients fm,(0) and fm,(1). Setting i = −2 in Eq. A.13
and keeping in mind fm,(i) = 0 and Fm,(i) = 0 for i < 0 results in,

fm,(0) = feq,L,m(ρ(0)) = ωmρ(0) (A.22)
⇒v0 = 0 (A.23)
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Furthermore, in [41] it has been shown, that the following relations hold
true:

ρ(2i+1) = 0 ∀i ∈ N≥0

v(2i) = 0 ∀i ∈ N≥0 (A.24)

For i = −1 in Eq. A.13,

um · ∇fm,(0) = λν(feq,m,BL(ρ(0), v(1))− fm,(1)) + Fm,(1)

Using Eq. A.22 and ∇ρ(0) = 0 (since ρ(0) = const) and Fm,(1) = 0,

fm,(1) = feq,m,BL(ρ(0), v(1)) = ωm

c2
s
ρ(0)um · v(1). (A.25)

Finally to obtain fm,(2), set i = 0 in Eq. A.13,

∂tf
m,(0) + um · ∇fm,(1) = λν(feq,m,L(ρ(2)) (A.26)

+ feq,m,BL(ρ(0), v(2)) (A.27)

+ feq,m,Q(ρ(0), v(1), v(1)) (A.28)

− fm,(2)) + Fm,(2) (A.29)

Rewrite above equation in terms of fm,(2) by taking advantage of
Eq. A.24 in bi-linear part and ∂tf

m,(0) = ωm∂tρ
(0) = 0 and Fm,(2) = 0,

fm,(2) = feq,m,L(ρ(2)) + feq,m,Q(ρ(0), v(1), v(1))

− 1
λν

um · ∇fm,(1) (A.30)

Since fm,(1) is already known, it enables us to calculate second order
tensor in momentum transport equation Eq. A.21. Deriving second order
tensor for index α, β,

〈1, uαuβf (2)〉 =
∑
m

umα u
m
β f

eq,m,L(ρ(2)) +
∑
m

umα u
m
β f

eq,m,Q(ρ(0), v(1), v(1))

− ρ(0)

λνc2
s
∇ ·
∑
m

ωmumα u
m
β um(um · v(1))
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Using Eq. A.10c and Eq. A.12c together gives,

〈1, uαuβf (2)〉 = c2
sρ

(2) + ρ(0)(v(1) ⊗ v(1))αβ

− ρ(0)

λνc2
s

∑
γ

∂xγ (
∑
m

ωmumα u
m
β u

m
γ

∑
δ

umδ v
(1)
δ )

= c2
sρ

(2) + ρ(0)(v(1) ⊗ v(1))αβ

− ρ(0)

λνc2
s

∑
γ

∂xγ

∑
δ

v
(1)
δ

∑
m

ωmumα u
m
β u

m
γ u

m
δ

= c2
sρ

(2) + ρ(0)(v(1) ⊗ v(1))αβ

− ρ(0)

λνc2
s

∑
γ

∂xγ

∑
δ

v
(1)
δ (κc4

s(δα,βδγ,δ + δα,γδβ,δ + δα,δδβ,γ))

(A.31)

Using the property of Kronecker delta i.e δij = 1 only when i = j
otherwise zero.

〈1, uαuβf (2)〉 = c2
sρ

(2) + ρ(0)(v(1) ⊗ v(1))αβ

− ρ(0)κc2
s

λν
(∂xαv

(1)
α + ∂xαv

(1)
β + ∂xβv

(1)
α ) (A.32)

Now, lets generalize above equation for second order tensor as

〈1,u⊗ uf (2)〉 = c2
sρ

(2)I + ρ(0)(v(1) ⊗ v(1))

− ρ(0)κc2
s

λν
(∇ · v(1)I +∇(v(1))T +∇(v(1))) (A.33)

where I is the identity matrix.Due to continuity condition ∇ · v(1) = 0.
Substituting Eq. A.33 in Eq. A.21 and replacing p(1) = ρ(0)v(1) results,

∂t(ρ(0)v(1)) +∇ ·
(
c2
sρ

(2)I + ρ(0)(v(1) ⊗ v(1))

− ρ(0)κc2
s

λν
(∇(v(1))T +∇(v(1)))

)
= h(3).

(A.34)

Divide above equation with ρ(0). Also, setting pressure P (2) = c2
sρ

(2)

and kinematic viscosity

ν = κc2
s

λν
(A.35)
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and the force term

h(3) =
∑
m

ωmumum ·G3 = c2
sG

(3) (A.36)

to recover incompressible momentum transport equation of the form,

∂tv
(1) +∇ · (v(1) ⊗ v(1)) = −∇P

(2)

ρ(0) + ν∇ · (∇(v(1))T +∇(v(1)))

+ c2
s

ρ(0) G(3). (A.37)

Comparing this with the external body force per unit volume in Eq. 2.56

F = g + ρe

ρ(0) E (A.38)

gives

G(3) = ρ(0)

c2
s

F (3) (A.39)

Thus, the external body force term Fm in Boltzmann equation Eq. A.1 is

Fm,(3) = 1
c2
s
ωmum · (ρ(0)F (3)). (A.40)

This relation is similar to one proposed in [41]. However, there are other
methods proposed to add forcing term to the Boltzmann equation [20, 28].
Taking moments of this body force term Fm gives [20]∑

m

Fm = 0,
∑
m

umFm = ρ(0)F ,∑
m

umumFm = ρ(0)(F v + vF ) (A.41)

Upper analysis satisfies the incompressible Navier-Stokes equations with
velocity described by first order ε and pressure in the second order ε2 of
density. From Eq. A.24, the velocity can be written in terms of the odd
components

v = εv(1) + ε3v(3) + ε5v(5) + . . . (A.42a)

and density can be written in terms of the even components

ρ = ρ(0) + ε2ρ(2) + ε4ρ(4) + . . . (A.42b)
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Thus, the velocity v(1) and the pressure P (2) can be expressed in terms of
ε as

v(1) = 1
ε

v +O(ε2) (A.43)

P (2) = c2
s

ε2 (ρ− ρ(0)) +O(ε2) (A.44)

which implies that this velocity and pressure yields at least second order
accurate approximation of the incompressible Navier-Stokes equations.

A.1.1.1 Time discretization

As mentioned earlier, the semi-discrete Boltzmann equation Eq. A.1 in
App. A.1 was discrete in velocity space but still continuous in x and
t. Therefore, to obtain the fully discrete Boltzmann equation i.e. the
lattice Boltzmann equation, Eq. A.1 must be approximated in x and t.
Integrating Eq. A.1 along a characteristic for a time interval from 0 to δt
[21, 34] results in∫ δt

0
∂tf

m(x + ums, t+ s) + um · ∇fm(x + ums, t+ s)ds

=
∫ δt

0
Ωm(x + ums, t+ s)ds+

∫ δt

0
Fm(x + ums, t+ s)ds. (A.45)

The integration of left hand side gives exactly the difference of the function
values at either end of the characteristics∫ δt

0
∂tf

m(x + ums, t+ s) + um · ∇fm(x + ums, t+ s)ds

=
∫ δt

0
∂sf

m(x + ums, t+ s)ds

= f(x + umδt, t+ δt)− f(x, t). (A.46)

The first integrand term on the right hand side of Eq. A.45 represents the
collision term. Approximating this integral by the forward Euler would
result in first order accuracy in δt which causes numerical instability [20].
Therefore, to improve the stability and accuracy of the scheme, the collision
term is integrated by trapezium rule∫ δt

0
Ωm(x + ums, t+ s)ds ≈ δt

2

(
Ω(x + umδt, t+ δt) + Ω(x, t)

)
(A.47)
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which gives second order accuracy in δt. To be consistent with collision
integral, the second integrand term in Eq. A.45 representing the body
force term Fm is also approximated by trapezium rule. Thus, Eq. A.45
with MRT collision operator can be written as

fm(x + umδt, t+ δt)− fm(x, t)

= δtA

2

[
(feq,m(x + umδt, t+ δt)− fm(x + umδt, t+ δt))

+ (feq,m(x, t)− fm(x, t))
]

+ δt

2

[
Fm(x + umδt, t+ δt) + Fm(x, t)

]
. (A.48)

Clearly this is an implicit equation, since it involves the equilibrium function
at a later time point t+ δt (on the right hand side of the equation). As
the dependence of feq,m is typically nonlinear with respect to fm this
equation system is not easy to solve. To circumvent this problem, a
variable transformation technique is proposed [34] to convert this into
explicit equation by introducing a new variables f̄m as

f̄m(x, t) = fm(x, t) + δtA

2

(
fm(x, t)− feq,m(x, t)

)
− δt

2 F
m(x, t)

(A.49)

Thus, the second-order fully discrete LBE with a body force in f̄m is

f̄m(x + umδt, t+ δt)− f̄m(x, t)

= δtA
(

I + δtA

2

)−1 (
feq,m(x, t)− f̄(x, t)

)
+ δt

(
I + δtA

2

)−1
Fm(x, t). (A.50)

Above equation can be rewritten as

f̄(x + umδt, t+ δt) = f̄(x, t) + Ā(feq,m(x, t)− f̄(x, t))

+ δt

(
I − Ā

2

)
Fm(x, t) (A.51)

with new linear collision operator,

Ā = δtA
(

1 + δtA

2

)−1
(A.52)
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Above new linear collision operator Ā can be simplified into

Ā = M−1Λ̄M . (A.53)

by modifying the relaxation parameters in the new relaxation matrix Λ̄ as

λ̄ = δtλ(
1 + δtλ

2

) . (A.54)

Recalling λν = c2
s
ν

, the above equation becomes

λ̄ν = 1
ν
δtc2

s
+ 1

2
=⇒ ν = c2

sδt

(
1
λ̄ν
− 1

2

)
(A.55)

which is same as Eq. 3.22. Similarly, the relaxation parameter with bulk
viscosity can written as

ζ = (5− 9c2
s)δt

9

(
1
λ̄ζ
− 1

2

)
(A.56)

Thus, as long as relaxation parameter λ̄ν and λ̄ζ are chosen according to
Eq. A.55 and Eq. A.56, the LBM scheme is second order in time. With
BGK collision model, the second order LBE can be written as

f̄(x + umδt, t+ δt) = f̄(x, t) + λ̄ν(feq,m(x, t)− f̄(x, t))

+ δt

(
1− λ̄ν

2

)
Fm(x, t) (A.57)

Notice that now the lattice Boltzmann algorithm is not solved for fm
but on transformed variables f̄m defined by Eq. A.49. Additionally, the
macroscopic quantities density ρ and velocity v in equilibrium function
feq,m can be computed directly from f̄m assuming that the mass and
momentum are conserved in collision term [20]. Taking zeroth moments of
f̄ Eq. A.49 gives the macroscopic density

ρ =
∑
m

f̄m =
∑
m

fm (A.58)

and first moments gives the momentum [34]

p = ρ0v =
∑
m

umf =
∑
m

umf̄ + δt

2 ρ
(0)F . (A.59)
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The other moments which are not conserved in collision term are affected
by the replacement of fm by f̄m. For example, the deviatoric (non-
equilibrium) stress Π(1) is [34]

Π(1) = Π−Π(0) =
Π̄−Π(0) + δt

2 ρ
(0)[F u + uF ]

1 + δtλ
2

=
(

1− λ̄

2

)(
Π̄−Π(0) + δt

2 ρ
(0)[F u + uF ]

)
(A.60)

where
Π̄ =

∑
m

umumf̄m. (A.61)

Note that addition of body force in momentum and momentum flux calcu-
lation is due to the fact that integrand of body force term is approximated
by trapezoidal rule. However, for time independent force F or for small
δt, this addition of force term in Eq. A.59 and Eq. A.60 can be avoided
if integrand of body force term is approximated by forward Euler. Thus
reduces the global scheme order to first order in time when body forces
are considered in LBE. Thus, the transformed variables f̄ will be devoid
of body force term as

f̄m(x, t) = fm(x, t) + δtλν
2

(
fm(x, t)− feq,m(x, t)

)
(A.62)

and the fully discrete LBE with a body force term can be written as

f̄(x + umδt, t+ δt) = f̄(x, t) + λ̄(feq,m(x, t)− f̄(x, t))
+ δtFm(x, t). (A.63)

Thus, the macroscopic moments density, momentum and deviatoric stress
are

ρ =
∑
m

f̄m (A.64)

p = ρ0v =
∑
m

umf̄ (A.65)

Π(1) = Π−Π(0) =
(

1− λ̄

2

)(
Π̄−Π(0)) (A.66)

The forward Euler is used to approximate the body force term because of
the limitation of the LBM algorithm implementation in Musubi. The cur-
rent implementation adds the source term after the collision step resulting
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in compute kernel being independent of the source term. Therefore, the
contribution of force term by the second-order approximation of the force
term in the momentum calculation is not accessible in the compute kernel.

A.1.2 Multicomponent Lattice Boltzmann Method for Nonideal
Liquid Mixtures

In this section, the semi-discrete Boltzmann Eq. 3.39 for species is analyzed
by means of the diffusive asymptotic analysis. Like App. A.1.1, the
macroscopic equations: the incompressible Navier-Stokes for mixture,
the mass conservation of species and the Maxwell-Stefan equation for
nonideal mixture for species diffusion transport presented in Section 2.2
are recovered. In the limit of small Knudsen and Mach number the desired
macroscopic equations are solved with second order accuracy in space and
first order accuracy in time.

Lets recall the diffusive scaling for time step and grid width

δ̃x = εδx (A.67a)

δ̃t = ε2δt, (A.67b)

where ε may be considered as the Knudsen number Kn or the Mach
number M . Inserting this scaling in equation Eq. 3.39 with external force
and replacing the partial derivatives by its asymptotic counterparts, the
following asymptotic relation for the FDVM can be derived

ε2∂tf
m
k + εum · ∇fmk = λk (feq,mk − fmk ) + dmk . (A.68)

Similar to the single component case, each species probability density
function fmk , external force dmk , macroscopic variables like density ρk,
momentum pk and velocity vk are expanded as an asymptotic power series
in terms of ε

fmk =
∞∑
i=1

εif
m,(i)
k (A.69a)

dmk =
∞∑
i=1

εid
m,(i)
k (A.69b)

ρk =
∞∑
i=1

εiρ
(i)
k (A.69c)

pk =
∞∑
i=1

εip(i)
k (A.69d)
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vk =
∞∑
i=1

εiv(i)
k . (A.69e)

Species momentum pk can be rewritten as a convolution sum of ρ(i)
k and

v(i)
k by inserting expansion for species density ρk and species velocity vk

pk = ρkvk =
∞∑
i=1

εi
∑

j,l∈N≥0
j+l=i

ρ
(j)
k v(l)

k . (A.69f)

For convenience, lets split the equilibrium probability density function
Eq. 3.42 into linear, bi-linear and quadratic parts centered around species
equilibrium velocity veqk and mixture velocity v, as

feq,mk (ρk, v1, · · · , vN )

= feq,m,Lk (ρk) + feq,m,BLk (ρk,veqk (v1, · · · , vN ))

+ feq,m,Qk (ρk, v(v1, · · · , vN ), v(v1, · · · , vN )), (A.70)

where,

feq,m,Lk (ρk) = ωmρks
k
m (A.71a)

feq,m,BLk (ρk,veqk ) = ωmρk
1
c2
s

(um · veqk ) (A.71b)

feq,m,Qk (ρk, v, v) = ωmρk

(
1

2c4
s

(um · v) (um · v)− 1
2c2
s

(v · v)

)
.

(A.71c)

This splitting allows us to modify each part of the equilibrium separately.
Taking advantage of isotropic condition Eq. 3.13, the following for linear
term feq,m,Lk can be obtained

〈1, feq,m,Lk 〉 = ρk

〈1,umfeq,m,Lk 〉 = 0

〈1, umα umβ feq,m,Lk 〉 = ρk
∑
m

ωmskmu
m
α u

m
β

= ρk
∑
m 6=0

ωmφku
m
α u

m
β = φkc

2
sδα,βρk (A.72)
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Similarly, the first three moments of the bi-linear equilibrium part feq,m,BLk

and the quadratic equilibrium part feq,m,Qk can be derived as

〈1, feq,m,BLk 〉 = 0

〈1,umfeq,m,BLk 〉 = ρkveqk
〈1, umα umβ feq,m,BLk 〉 = 0 (A.73)

〈1, feq,m,Qk 〉 = 0

〈1,umfeq,m,Qk 〉 = 0

〈1, umα umβ feq,m,Qk 〉 = (ρkv ⊗ v)α,β . (A.74)
Applying the asymptotic expansions for fmk Eq. A.69a in the BGK semi-

discrete Boltzmann equation Eq. A.68 in the diffusive limit and separating
the scales in ε, the following expression is obtained in the order εi+2 for
i ≥ −2:
∂tf

m,(i)
k + um · ∇fm,(i+1)

k = λkf
eq,m,L
k (ρ(i+2)

k )

+ λk
∑
j,l≥0

j+l=i+2

feq,m,BLk (ρ(j)
k ,veqk (v(l)

1 , · · · v(l)
N ))

+ λk
∑
j,l,p≥0

j+l+p=i+2

feq,m,Qk (ρ(j)
k , v(v(l)

1 , · · · v(l)
N ), v(v(p)

1 , · · · , v(p)
N ))

− λkfm,(i+2)
k + d

m,(i+2)
k . (A.75)

The previous equation holds true for all i ∈ Z by setting
fm,ik = 0 (A.76)

for i < 0. Notice that Eq. A.75 is the multicomponent analogue of single
component Eq. A.13. Similar to the single component density Eq. A.14 and
momentum Eq. A.16, the density and the momentum for species k can be
obtained from Eq. A.75 by applying ρk =

∑
m
fmk and pk =

∑
m

umfmk :

∂tρ
(i)
k +∇ · pi+1

k = ∂tρ
(i)
k +∇ ·

∑
j,l≥0

j+l=i+1

ρ
(j)
k v(l)

k = g
(i+2)
k (A.77)

and

∂tp(i)
k +∇ · 〈1,um ⊗ umf

m,(i+1)
k 〉 = λk

∑
j,l≥0

j+l=i+2

ρ
(j)
k

(
veq,(l)k − v(l)

k

)
+ h

(i+2)
k . (A.78)
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respectively, where

g
(i)
k =

∑
m

d
m,(i)
k (A.79a)

h
(i)
k =

∑
m

umd
m,(i)
k . (A.79b)

From [41], following relation holds true

d
m,(i)
k =

{
ωmum ·G(i)

k , if i = 1, 3
0 , else

. (A.80)

i.e. the external force dmk is an odd function. Furthermore, lets make use
of the following notation for the equilibrium center velocity built with the
l-th part of our macroscopic asymptotic expansion Eq. 3.40 for nonideal
liquid mixture ∀j, l ≥ 0, j + l = i+ 2

veq,(l)k = veqk (v(l)
1 , · · · , v(l)

N )

= v(l)
k + 1

ρ
(j)
k

∑
η

Γ−1
k,η ρ

(j)
η φη

∑
ζ

χ
(j)
ζ

D
Dζ,η

(
v

(l)
ζ − v(l)

η

)
. (A.81)

A.1.2.1 Species mass transport

The macroscopic species transport Eq. 2.14 can be obtained by setting
i = 0 in density evolution Eq. A.77 and using Eq. A.24

∂tρ
(0)
k +∇ ·

(
ρ

(0)
k v(1)

k

)
= 0. (A.82)

Note that the finite discrete velocity method conserves species mass as the
relation

g
(i)
k = 0 ∀i ∈ {0, . . . ,∞} (A.83)

holds. As presented in Section 2.2, the momentum or mass flux density
pk is related to mass diffusion flux by pk = jk + ρkv. Additionally, the
phenomenological relation for the diffusion flux and the species concentra-
tion is required to complete the species transport and it is given by the
Maxwell-Stefan diffusion equations. The Maxwell-Stefan equation with
external forces for nonideal liquid mixture is given as

n∑
j=1

Γk,j∇χj − F k =
n∑
l=1

(χkJ l − χlJk)
ctDk,l

(A.84)
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and it can be recovered by setting i = −1 Eq. A.78 which results

∇ · 〈1,um ⊗ umf
m,(0)
k 〉 = λk

∑
j,l≥0
j+l=1

ρ
(j)
k

(
veq,()
k − v(l)

k

)+ h
(1)
k .

(A.85)

f
m,(0)
k can be obtained by setting i = −2 in Eq. A.75 and setting macro-

scopic moments with negative index to zero gives

f
m,(0)
k = feq,m,Lk (ρ(0)

k ) = ωmsmk ρ
(0)
k (A.86)

⇒v(0)
k = 0 (A.87)

⇒v(0) = 0 (A.88)

Combining Eq. A.86, Eq. A.85 and Eq. A.72 gives

c2
s∇φkρ

(0)
k = λk

(
ρ

(0)
k

(
veq,(1)
k − v(1)

k

))
+ h

(1)
k

=⇒ ∇φkρ(0)
k = λk

c2
s

(
ρ

(0)
k

(
veq,(1)
k − v(1)

k

))
+ 1
c2
s

h
(1)
k . (A.89)

Now, lets substitute the definition of relaxation parameter Eq. 3.47a i.e
λk = K

ρD and the speed of sound for liquid mixture Eq. 3.48 i.e c2
s = K

ρ

and the equilibrium velocity Eq. A.81 with j = 0 and l = 1 to obtain

∇φkρ(0)
k =

∑
η

Γ−1
k,ηρ

(0)
η φη

∑
ζ

χ
(0)
ζ

1
Dη,ζ

(
v

(1)
ζ − v(1)

η

)
+ 1
c2
s

h
(1)
k (A.90)

This equation shows that the free parameter D has no influence on the
species mass transport. Now, taking advantage of choice of parameter
φk = minα Mα

Mk
≤ 1 and the relation of molar density ck = ρk

Mk
results in

minαMα∇c(0)
k =

∑
η

Γ−1
k,ηc

(0)
η minαMα

∑
ζ

χ
(0)
ζ

1
Dη,ζ

(
v

(1)
ζ − v(1)

η

)
+ 1
c2
s

h
(1)
k

=⇒ ∇c(0)
k =

∑
η

Γ−1
k,ηc

(0)
η

∑
ζ

χ
(0)
ζ

1
Dη,ζ

(
v

(1)
ζ − v(1)

η

)
+ 1
minαMαc2

s
h

(1)
k . (A.91)
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Summing up over all species gives∑
k

∇c(0)
k = ∇c(0)

t

=
∑
k

∑
η

Γ−1
k,ηc

(0)
η

∑
ζ

χ
(0)
ζ

1
Dη,ζ

(
v

(1)
ζ − v(1)

η

)
+ 1
minαMαc2

s

∑
k

h
(1)
k = 0 ⇐⇒

∑
k

hk = 0. (A.92)

This shows that the zeroth order total mole density c(0)
t is constant through-

out the whole domain only in case of balanced external forces. Using the
definition of molar diffusion flux of first order J

(1)
k = c

(0)
k (v(1)

k −w(1)) in
Eq. A.91 and dividing both sides by c(0)

t and replacing χk = ck
ct

gives the
Maxwell-Stefan equation for nonideal liquid mixture

∇χ(0)
k =

∑
η

Γ−1
k,η

∑
ζ

1
ctDη,ζ

(
χ(0)
η J

(1)
ζ − χ

(0)
ζ J (1)

η

)
+ 1
minαMαc

(0)
t c2

s

h
(1)
k

=⇒
∑
η

Γk,η∇χ(0)
η =

∑
ζ

1
ctDk,ζ

(
χ(0)
η J

(1)
ζ − χ

(0)
ζ J (1)

η

)
+ 1
minαMαc

(0)
t c2

s

∑
η

Γk,ηh(1)
η (A.93)

This equation is similar to the Maxwell-Stefan equation for nonideal liquid
mixture Eq. A.84 except for the forcing term with h

(1)
η . Comparing above

equation with Eq. A.84 and using Eq. A.79b, Eq. A.80 yields the following
identification of the forcing term

1
minαMαc

(0)
t c2

s

∑
η

Γk,ηh(1)
η = 1

minαMαc
(0)
t c2

s

∑
η

Γk,η
∑
m

umd(1)
η

= 1
minαMαc

(0)
t c2

s

∑
η

Γk,η
∑
m

ωmum
(
um ·G(1)

η

)
= 1
minαMαc

(0)
t

∑
η

Γk,ηG(1)
η = F k

=⇒ G
(1)
k = minαMα

∑
η

Γ−1
k,ηc

(0)
t F η (A.94)
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Thus, the first order external force term d
m,(1)
k corresponds to the external

diffusive force F k of the Maxwell Stefan equation for nonideal liquid
mixture as

d
m,(1)
k = minαMαω

mum ·

(∑
η

Γ−1
k,ηc

(0)
t F η

)
. (A.95)

Note that the balance of F k ensures the balance of h(1)
k after summation

over k.

A.1.2.2 Species momentum transport with external forces

So far the mass transport of species and the Maxwell-Stefan diffusion
equation with external force for nonideal liquid mixture has been recovered.
Now, to recover momentum equation i.e the Navier Stokes equations for
each species, lets start by setting i = 1 in Eq. A.78 to get

∂tp(1)
k +∇ · 〈1,um ⊗ umf

m,(2)
k 〉

= λk
∑
j,l≥0
j+l=3

〈1,umfeq,mk (ρ(j)
k , v

(l)
1 , · · · , v(l)

N )− p(3)
k 〉

= λk
∑
j,l≥0
j+l=3

ρ
(j)
k

(
veq,(l)k − v(l)

k

)
+ h

(3)
k . (A.96)

f
m,(2)
k is required to derive macroscopic species momentum equations with

external force and it is derived by setting i = 0 in Eq. A.75

∂tf
m,(0)
k + um · ∇fm,(1)

k

= λkf
eq,m,L
k (ρ(2)

k ) + λk

(
feq,m,Qk (ρ(0)

k , v(1), v(1))
)

− λkfm,(2)
k + d

m,(2)
k︸ ︷︷ ︸

Eq. A.80
= 0

(A.97)

Above equation can be written explicit for fm,(2)
k with its leading order

coefficients fm,(0)
k = ωmsmk ρ

(0)
k and f

m,(1)
k as

f
m,(2)
k = feq,m,Lk (ρ(2)

k ) +
(
feq,m,Qk (ρ(0)

k , v(1), v(1))
)

− 1
λk
∂tω

msmk ρ
(0)
k −

1
λk

um · ∇fm,(1)
k . (A.98)
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From species mass conservation Eq. A.82, above equation can be rewritten
as

f
m,(2)
k = feq,m,Lk (ρ(2)

k ) +
(
feq,m,Qk (ρ(0)

k , v(1), v(1))
)

+ ωms
m
k

λk
∇ · (ρ(0)

k v(1)
k )− 1

λk
um · ∇fm,(1)

k . (A.99)

Only unknown here is the first order coefficient fm,(1)
k and it can be

obtained by setting i = −1 in Eq. A.75

um · ∇fm,(0)
k = λkf

eq,m,BL
k (ρ0

k,veqk (v(1)
1 , · · · , v(1)

N ))− λkfm,(1)
k

+ d
m,(1)
k (A.100)

and rewriting for the first order part gives,

f
m,(1)
k = feq,m,BLk (ρ(0)

k ,veqk (v(1)
1 , · · · , v(1)

N ))− 1
λk

um · ∇fm,(0)
k

+ 1
λk
d
m,(1)
k . (A.101)

Substituting fm,(0)
k Eq. A.86 and equilibrium definitions of linear Eq. A.71a

and bi-linear Eq. A.71b part gives

f
m,(1)
k = ωmρ

(0)
k

1
c2
s

(
um · veq,(1)

k

)
− 1
λk
ωmum · ∇skmρ

(0)
k + 1

λk
d
m,(1)
k

(A.102)

Since the lattice velocity at rest is zero, sk can be replaced by φk for
m 6= center and using Eq. A.89 results in

f
m,(1)
k = ωmρ

(0)
k

1
c2
s

(
um · veq,(1)

k

)
− ωmum ·

(
1
c2
s
ρ(0)

(
v
eq,(1)
k − v

(1)
k

)
+ 1
λkc2

s
h

(1)
k

)
+ 1
λk
d
m,(1)
k

= ωm

c2
s
ρ

(0)
k um · v(1)

k −
ωm

λkc2
s

um · h(1)
k + 1

λk
d
m,(1)
k . (A.103)
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Lets substitute fm,(1)
k in Eq. A.99

f
m,(2)
k = feq,m,Lk (ρ(2)

k ) +
(
feq,m,Qk (ρ(0)

k , v(1), v(1))
)

+ ωms
m
k

λk
∇ · (ρ(0)

k v(1)
k )

− 1
λk

um · ∇
(
ωm

c2
s
ρ

(0)
k um · v(1)

k −
ωm

λkc2
s

um · h(1)
k + 1

λk
d
m,(1)
k

)
.

(A.104)

Lets derive the second order tensor 〈1,um ⊗ umf
m,(2)
k 〉 which is required

recover the momentum transport equation similar to single component
case Eq. A.33 and taking advantage of Eq. A.72 and Eq. A.74 for linear
and quadratic equilibrium term gives

〈1,um ⊗ umf
m,(2)
k 〉

= φkc
2
sρ

(2)
k I + (ρ(0)

k v(1) ⊗ v(1))

+ 1
λk
〈1,um ⊗ um(ωmsmk )〉︸ ︷︷ ︸

Eq.3.13
= φkc

2
s

∇ · (ρ(0)
k v(1)

k )I

− κc2
s

λk

(
∇ · (ρ(0)

k v(1)
k )I +∇(ρ(0)

k v(1)
k )T +∇(ρ(0)

k v(1)
k )
)

+ 1
λk
〈1,um ⊗ um

(
um · ∇

(
ωm

λkc2
s

um · h(1)
k −

1
λk
d
m,(1)
k

))
〉

= φkc
2
sρ

(2)
k I + (ρ(0)

k v(1) ⊗ v(1)) + (φk − κ)c2
s

λk
∇ · (ρ(0)

k v(1)
k )I

− κc2
s

λk

(
∇(ρ(0)

k v(1)
k )T +∇(ρ(0)

k v(1)
k )
)

+ L
(1)
k (A.105)

where Lk expresses the second order moments of the forcing term given as

L
(1)
k = 1

λk
〈1,um ⊗ um

(
um · ∇

(
ωm

λkc2
s

um · h(1)
k −

1
λk
d
m,(1)
k

))
〉.
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Using Eq. A.80, Eq. 3.13 and using same algebra similar to single compo-
nent second order tensor of PDF i.e Eq. A.31 for forcing term results

L
(1)
k = 1

λ2
k

〈1,um ⊗ um
(

um · ∇
(
ωm

c2
s

um · h(1)
k − ωmum ·G(1)

k

))
〉

= 1
λ2
k

(
κc2
s

(
(∇ · h(1)

k )I +∇(h(1)
k )T +∇h

(1)
k

)
− κc4

s

(
(∇ ·G(1)

k )I +∇(G(1)
k )T +∇(G(1)

k )
))

= 1
λ2
k

(
κc2
s

(
∇ ·

(∑
m

ωmumum ·G(1)
k

)
I +∇

(∑
m

ωmumum ·G(1)
k

)T

+∇

(∑
m

ωmumum ·G(1)
k

))

− κc4
s

(
∇ · (G(1)

k )I +∇(G(1)
k )T +∇(G(1)

k )
))

= 0. (A.106)

Finally, the species momentum equation up to second order in ε can
be derived by substituting the second order tensor 〈1,um ⊗ umf

m,(2)
k 〉

Eq. A.105 and setting p(1)
k = ρ

(0)
k v

(1)
k and κ = 1

∂t(ρ(0)
k v

(1)
k ) +∇ ·

[
(ρ(0)
k v(1) ⊗ v(1)) +

(
φkc

2
sρ

(2)
k

+ (φk − 1)c2
s

λk
∇ · (ρ(0)

k v(1)
k )

)
I

− c2
s

λk

(
∇(ρ(0)

k v(1)
k )T +∇(ρ(0)

k v(1)
k )
)]

= λk
∑
j,l≥0
j+l=3

ρ
(j)
k

(
veq,(l)k − v(l)

k

)
+ h

(3)
k
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=⇒ ∂t(ρ(0)
k v

(1)
k ) +∇ · (ρ(0)

k v(1) ⊗ v(1)) = −φkc2
s∇ρ

(2)
k

− (φk − 1)c2
s

λk
∇ · ∇ · (ρ(0)

k v(1)
k )

+ c2
s

λk
∇ ·
(
∇(ρ(0)

k v(1)
k )T +∇(ρ(0)

k v(1)
k )
)

+ λk
∑
j,l≥0
j+l=3

ρ
(j)
k

(
veq,(l)k − v(l)

k

)
+ c2

sG
(3)
k . (A.107)

A.1.2.3 Mixture transport with external forces

Now, lets derive the incompressible Navier Stokes equation for mixture
i.e mass and momentum conservation equations. The mass conservation
of mixture can be derived by summing over species k of species mass
conservation Eq. A.82

∂tρ
(0) +∇ ·

(
ρ(0)v(1)) = 0. (A.108)

Like c(0)
t , the zeroth order mass density ρ(0) is fixed at initial time and

remains constant throughout the domain over time. With this assumption,
above equation reduces to incompressible mass conservation equation for
mixture

∇ · v(1) = 0. (A.109)
By summing over species k of the species momentum transport Eq. A.107
yields

∂t(ρ(0)v(1)) +∇ · (ρ(0)v(1) ⊗ v(1)) = −∇
∑
k

φkc
2
sρ

(2)
k

+ ρ(0)c2
s

λk
∇ ·
(
∇(v(1))T +∇(v(1))

)
+ c2

s

∑
k

G
(3)
k (A.110)

Thus, the incompressible momentum transport equation for mixture can
be obtained by dividing the equation with ρ(0) and setting the kinematic
pressure

P̃ (2) = c2
s

∑
k
φkρ

(2)
k

ρ(0) , (A.111)

the kinematic viscosity

ν = c2
s

λk
, (A.112)
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and the force term
F = c2

s

∑
k

G
(3)
k (A.113)

gives

∂tv
(1)+∇·(v(1)⊗v(1)) = −∇P̃+ 1

ν
∇·
(
∇(v(1))T +∇(v(1))

)
+F . (A.114)

The total mixture force term per unit volume F can be identified by
comparing above equation with the incompressible Navier-Stokes Eq. 2.56

F = g + ρe,(0)

ρ(0) Ê (A.115)

where g and Ê are acceleration due to gravitational field and external
electrical field acting on all the components in the same way. Thus, the
forcing term G

(3)
k in species momentum Eq. A.107 can be written as

G
(3)
k = 1

c2
s
yk
(
ρ(0)F

)
= 1
c2
s
yk
(
ρ(0)g + ρe,(0)Ê

)
. (A.116)

This concludes that the multicomponent LBE mixture forces d(m,3)
k on

species k as

d
m,(3)
k = ωmum ·G(3)

k = ωm

c2
s

um · yk
(
ρ(0)F

)
. (A.117)

Thus, total diffusive driving force on multicomponent LBE for each species
k can be written as

dmk = d
m,(1)
k + d

m,(3)
k

= minαMαω
mum ·

(∑
η

Γ−1
k,ηc

(0)
t F η

)
︸ ︷︷ ︸

Diffusive driving force on species k

+ ωm

c2
s

um · yk
(
ρ(0)F

)
.︸ ︷︷ ︸

Mixture fraction force on species k

(A.118)

It’s worth mentioning that the diffusive driving force term d
(m,1)
k Eq. A.95

is consistent with the incompressible limit due to the fact that the mixture
force term is of order O(ε3) and is small compared to the mixture velocity
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v(1). Similar to single component case, the mixture velocity v(1) and the
kinematic pressure term P̃ (2) can be expressed in terms of ε as

v(1) = 1
ε

v +O(ε2) (A.119)

P̃ (2) = c2
s

ε2

∑
k
φkρ

(2)
k − ρ

(0)

ρ(0) +O(ε2)

= c2
s

ε2

∑
k
φkρ

(2)
k −minαMαc

(0)
t

ρ(0) +O(ε2) (A.120)

which implies that this velocity and pressure yields at least second order
accurate approximation of the incompressible Navier-Stokes equations.

A.1.2.4 Time discretization

Here, the semi-discrete MRT-Boltzmann equation Eq. 3.39 is discretized
in time by integrating along its characteristics um same as in App. A.1.1.1∫ δt

0
∂tf

m
k (x + ums, t+ s) + um · ∇fmk (x + ums, t+ s)ds

=
∫ δt

0
Ωmk︸︷︷︸

:=Ak(feq,m
k

−fm
k

)

(x + ums, t+ s)ds

+
∫ δt

0
dmk (x + ums, t+ s)ds. (A.121)

Using, forward Euler to approximate the collision integral would lead to
lack of mass conservation [7]. So, lets approximate the integrant of both
collision and force term by trapezium rule and the resultant fully discrete
MRT-LBE with force term can be written as

fmk (x + umδt, t+ δt)− fmk (x, t)

= δtAk

2

[
(feq,mk (x + umδt, t+ δt)− fmk (x + umδt, t+ δt))

+ (feq,mk (x, t)− fmk (x, t))
]

+ δt

2

[
dmk (x + umδt, t+ δt) + dmk (x, t)

]
. (A.122)

This is an implicit equation similar to that of single component case so
variable transformation [6] is used to solve the equation explicitly by
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introducing a new variables f̄mk

f̄mk (x, t) = fmk (x, t) + δtAk

2 (fmk (x, t)− feq,mk (x, t))

− δt

2 d
m
k (x, t) (A.123)

Using this in Eq. A.122 gives second order fully discrete multicomponent
LBE with force term for species k

f̄mk (x + umδt, t+ δt)− f̄mk (x, t)

= (δtAk)
(

I + δtAk

2

)−1 (
feq,mk (x, t)− f̄mk (x, t)

)
+ δt

(
I + δtAk

2

)−1
dmk (x, t). (A.124)

Since the species density ρk moments are conserved in collision and∑
m
dmk = 0, it is obtained directly from transformed variable.

ρk =
∑
m

f̄mk =
∑
m

fmk . (A.125)

But due to modified species velocity veqk in equilibrium function, the species
momentums pk are not conserved in collision. Therefore, a linear equation
system needs to be solved to get momentum pk of untransformed variable
fmk by applying first order moment on Eq. A.123

p̄k = 〈1,umf̄mk 〉 = pk + δtλD
k

2 (pk − 〈1,umfeq,mk 〉)−
∑
m

umdmk

= pk + δtλD
k

2
∑
l

plφl
∑
ζ

Γ−1
k,l

D
Dl,ζ

χζ

− δtλD
k

2
∑
ζ

pζφζ
∑
l

Γ−1
k,l

D
Dl,ζ

χl

− δt

2 c
2
s

(
minα(Mα)

∑
l

Γ−1
k,lc

0
tF l + 1

c2
s
yk
(
ρ(0)F

))
.

(A.126)
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For ideal mixture Γ = I, above equation can be written as

p̄k =

(
1 + δtλD

k

2 φk
∑
l

D
Dk,l

χl

)
pk −

δtλDk

2 χk
∑
l

D
Dk,l

φlpl

− δt

2 c
2
s

(
minα(Mα)c0

tF k + 1
c2
s
yk
(
ρ(0)F

))
. (A.127)

This linear equation system must be solved at evert time step for every
lattice cell to obtain the species momentums pk. it is worth mentioning that
summing up previous equation results that the total mixture momentum
p which is conserved, therefore it is possible to compute it directly from
f̄mk as

p = ρv =
∑
k

∑
m

umf̄mk . (A.128)

After obtaining species momentums, the collide and the streaming steps are
carried out to complete the time step. In contrast to the implementation
described in [7], the presented model considers variable diffusivities and
thermodynamic factors and hence the element-wise variable system changes
in each iteration. A detailed discussion on the solvability of this linear
equation system is described in [103].

Notice that in Eq. A.126 and Eq. A.127, the external force term con-
tributes to the calculation of species momentum pk which is similar to
single component LBM. As mentioned before, source terms in Musubi
are added outside collision kernel so the force term in species momentum
can be avoided if the forward Euler is used to approximate the integrand
of the external force term. As the external forces are usually small (to
be consistent with the low Mach regime) the limitations with respect to
stability are moderate. Additionally, the stability of the scheme can be
improved by choosing small δt. With first order approximation of the
external force term, the fully discrete LBE Eq. A.122 for species k is

f̄mk (x + umδt, t+ δt)− f̄mk (x, t)

= (δtAk)
(

I + δtAk

2

)−1 (
feq,mk (x, t)− f̄mk (x, t)

)
+ δtdmk (x, t). (A.129)

Thus, the linear equation system for nonideal and ideal mixture Eq. A.126
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and Eq. A.127 to compute species momentum pk are simplified to

p̄k = pk + δtλD
k

2
∑
l

plφl
∑
ζ

Γ−1
k,l

D
Dl,ζ

χζ

− δtλD
k

2
∑
ζ

pζφζ
∑
l

Γ−1
k,l

D
Dl,ζ

χl. (A.130)

and

p̄k =

(
1 + δtλD

k

2 φk
∑
l

D
Dk,l

χl

)
pk −

δtλD
k

2 χk
∑
l

D
Dk,l

φlpl. (A.131)

It’s worth mentioning that the solvability conditions of the linear equa-
tions systems are not affected by the external forcing term and also the
computational cost of solving the linear equation system is same for BGK
and MRT collision models.

A.1.2.5 Effect of different velocities in equilibria

In previous analysis, the mixture velocity is used for the quadratic part
of equilibrium function instead of species equilibrium velocity to recover
correct nonlinear term in the incompressible Navier-Stokes equations for
large diffusion velocities. This claim can be verified by studying the effect
of different velocity in equilibrium distribution function with the help of
well-known Taylor green test case for small and large diffusion velocities.
For this, let us consider ternary mixture H2O, Na and Cl without external
forcing terms [94] to analyze the exactness of the proposed multicomponent
LBM model for liquid mixture. The Taylor-Green vortex is an analytical
solution of the incompressible Navier-Stokes equation and is defined by
(for a two-dimensional, fully periodic domain of length Lx = Ly = L in
each direction):

v(x, y, t) =

 sin
(

2π
L
x
)

cos
(

2π
L
y
)

exp
(
−2 4π2

L2 νt
)

− cos
(

2π
L
x
)

sin
(

2π
L
y
)

exp
(
−2 4π2

L2 νt
)

P (x, y, t) =ρ

4

(
cos
(

22π
L
x
)

+ cos
(

22π
L
y
))
· exp

(
−44π2

L2 νt

)
Furthermore, we prescribe homogenous mole density concentration fields

ct = c
(0)
t , c1 = c2 = c3 = ct/3
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such that no net-diffusive mass flux will be observed. The velocity distri-
butions are given by

v1 (x, t = 0) = v(x + r1, t = 0)
v2 (x, t = 0) = v(x + r2, t = 0)

v3 (x, t = 0) = ρ

ρ3
v −

(
ρ1

ρ3
v1 + ρ2

ρ3
v2

)
.

By construction, the upper initial conditions for the mixture are the usual
Taylor-Green initial conditions. The vectors rk = (rk, rk)T with rk ∈ [0;L]
for k = 1, 2 determine the phase shifts of the species velocities vk with
respect to the density averaged, mixture velocity v and the phase shift
between v1, v2 can be varied by changing the ratio r1/r2. With species
equilibrium velocity in quadratic part of equilibrium function

feq,m,Qk (ρk,veqk ) = ωmρk

( 1
2c4
s

(um · veqk )2 − 1
2c2
s

(veqk )2
)
,

the nonlinear term of the incompressible Navier-Stokes equation for mixture
can be recovered only when diffusion velocities are small [38]

v − vk ∈ O(ε),

For this study, the quadratic equilibrium part is generalized by a convex
combination of v and veqk , i.e.

feq,mk =feq,m,Lk (ρk) + feq,m,BLk (ρk,veqk )

+ feq,m,Qk (ρk, θv + (1− θ) veqk , θv + (1− θ) veqk ) (A.132)

where θ ∈ [0; 1].
Figure A.1 shows the relative error between the analytical solution for

the mixture’s velocity component (in x direction) and the numerical results
over simulation time. It can be observed that the error for small diffusion
velocities (i.e. v ≈ vk) is independent of θ. However, the situation changes
when r1 increases. In these situations θ = 1 delivers much better results
and the relative error is below 10−2 whereas the error for θ = 0 is above
1.0 ( for r1 = L/104 and r1 = L/103). It is worth emphasizing that the
relative error for θ = 1 is in the range of 10−2, independent of the choice
of diffusion velocities. Overall the numerical results are in good agreement
to the theoretical expectations, pointing out that the correct mixture
Navier-Stokes equation can be recovered by equilibrium Eq. A.132 for
θ = 1.
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Figure A.1 Relative mixture velocity error (x component) for r2 = 0, different
relative species velocity angles r1 and different equilibrium velocities
θ. For θ = 1 the correct nonlinearity of the incompressible Navier-
Stokes equation is recovered.

A.1.3 Lattice Boltzmann Method for Electric Potential

In this section, the BGK semi-discrete Boltzmann equation of electric
potential is analyzed using asymptotic analysis under diffusive scaling
(App. A.1.1) to recover the Poisson equation Eq. 2.64. The BGK semi-
discrete Boltzmann equation for electric potential with source term can be
written as

∂tf
m(x, t) + um · ∇fm(x, t) = λγ(feq,m(x, t)− fm(x, t)) + Sm. (A.133)

Recalling the diffusive scaling used in App. A.1.1 i.e δ̃x = εδx and δ̃t = ε2δt
to above equation gives

ε2∂tf
m + εum · ∇fm = λγ(feq,m − fm) + Sm (A.134)

Using Eq. 3.13 in the equilibrium distribution function for electric potential
Eq. 3.73 gives

〈1, feq〉 = ψ (A.135a)
〈1, uαfeq〉 = 0 (A.135b)

〈1, uαuβfeq〉 = c2
sψδα,β . (A.135c)

Expanding the particle distribution function fm, the source term Sm and
the macroscopic electric potential ψ asymptotically in the small parameter
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ε same as Eq. A.3a:

fm =
∞∑
i=0

εifm,(i) (A.136a)

Sm =
∞∑
i=0

εiSm,(i) (A.136b)

ψ =
∞∑
i=0

εiψ(i) (A.136c)

Applying the asymptotic expansion of fm Eq. A.136a in semi-discrete
Boltzmann equation Eq. A.134 with fm,(i) = 0 for i < 0. We get the
following expression in the order εi+2 for i ≥ −2:

∂tf
m,(i) + um · ∇fm,(i+1) = λγ

(
feq,m(ψ(i+2))− fm,(i+2))+ Sm,(i+2)

(A.137)

The time dependent electric potential Eq. 3.71 is obtained by taking zeroth
order moment of above equation i.e ψ(i) =

∑
m
fm,(i) and setting i = 0

∂tψ
(0) +∇ · 〈1,uf (1)〉 = λγ(ψ(2) − ψ(2)) +

∑
m

Sm,(2)

=⇒ ∂tψ
(0) +∇ · 〈1,uf (1)〉 =

∑
m

Sm,(2) (A.138)

To determine the unknown variable fm,(1), the leading order coefficient
fm,(0) must be determined. Setting i = −2 in Eq. A.137 and using
fm,(i) = 0 for i < 0 results in

fm,(0) = feq,m,(0) + 1
λγ
Sm,(0). (A.139)

However, taking the first moment of the equations gives Sm,(0) = 0. Thus,
above equation reduces to

fm,(0) = ωmψ(0). (A.140)

Now, fm,(1) is determined by setting i = −1 in Eq. A.137

um · ∇fm,(0) = λγ(feq,m,(1) − fm,(1)) + Sm,(1)

um · ∇(ωmψ(0)) = λγ(ωmψ(1) − fm,(1)) + Sm,(1). (A.141)
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Taking zeroth moment of above equation gives Sm,(1) = 0. Thus, fm,(1)

can be written as

fm,(1) = ωmψ(1) − 1
λγ

um · ∇(ωmψ(0)), (A.142)

Taking first moment of the above equation gives

∇ψ(0) = −λ
γ

c2
s

∑
m

umfm,(1) (A.143)

since
∑

umωmψ(1) = 0 from Eq. A.135. From the expansion of fm

Eq. A.136a, fm,(1) can be approximated as fm,(1) = 1
ε
(fm−fm,(0))+O(ε).

Using this relation together with 〈1, uαfm,(0)〉 = 0 and setting ε = δx from
diffusive scaling in above equation gives

∇ψ(0) = − λγ

c2
sδx

∑
m

umfm. (A.144)

Thus, the macroscopic electric field E(0) = −∇ψ(0) can be computed
locally using

E(0) = λγ

c2
sδx

∑
m

umfm. (A.145)

Finally, lets substitute Eq. A.142 in Eq. A.138

∂tψ
(0) − 1

λγ
∇ ·
∑
m

umum · ∇(ωmψ(0)) =
∑
m

Sm,(2)

=⇒ ∂tψ
(0) = c2

s

λγ
∇2ψ(0) +

∑
m

Sm,(2). (A.146)

Comparing this equation with Eq. 3.71 gives the relation between relaxation
parameter λγ and the potential diffusivity γ as

γ = c2
s

λγ
(A.147)

To satisfy the Poisson’s equation Eq. 2.64 in a steady state situation, i.e.
when ∂tψ(0) = 0 the source term Sm,(2) must fulfill the following condition

Sm,(2) = ωmγ
ρe

εrε0
. (A.148)
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A.1.4 Time Discretization
To obtain the fully discrete LBE for electric potential, Eq. A.133 must be
approximated in x and t similar to App. A.1.1.1. Integrating Eq. A.133
along its characteristics for a time interval 0 to δt gives

fm(x + umδt, t+ δt)− fm(x, t)

=
∫ δt

0
(Ωm(x + ums, t+ s) + Sm(x + ums, t+ s)) ds (A.149)

where, Ωm is the collision term with single relaxation parameter λγ is

Ωm(x + ums, t+ s) = λγ(feq,m(x + ums, t+ s)− fm(x + ums, t+ s)).
(A.150)

Approximating the integrant of both collision and source term with trapez-
ium rule results in

fm(x + umδt, t+ δt)− fm(x, t)

= δtλγ

2

[
(feq,m(x + umδt, t+ δt)− fm(x + umδt, t+ δt))

+ (feq,m(x, t)− fm(x, t))
]

+ δt

2

[
Sm(x + umδt, t+ δt) + Sm(x, t)

]
(A.151)

This is an implicit equation since it requires equilibrium at new time step.
So, lets introduce the new variables f̄m

f̄m(x, t) = fm(x, t) + λγδt

2

(
fm(x, t)− feq,m(x, t)

)
− δt

2 S
m(x, t)

(A.152)

to solve Eq. A.151 explicitly [34] which is same as in App. A.1.1.1. Thus,
the second-order fully discrete LBE for electric potential with source term
in f̄m is

f̄m(x + umδt, t+ δt)− f̄m(x, t) = δtλγ(
1 + δtλγ

2

) (feq,m(x, t)− f̄m(x, t)
)

+ δt(
1 + δtλγ

2

)Sm(x, t) (A.153)

Above equation can be rewritten with modified relaxation parameter

λ̄γ = δtλγ(
1 + δtλγ

2

) (A.154)
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as

f̄m(x + umδt, t+ δt)− f̄m(x, t) = λ̄γ
(
feq,m(x, t)− f̄m(x, t)

)
+ δt

(
1− λ̄γ

2

)
Sm(x, t). (A.155)

Substituting λγ = c2
s
γ

in λ̄γ gives

γ = δtc2
s

( 1
λ̄γ
− 1

2

)
(A.156)

which is same as Eq. 3.77. Thus, as long as relaxation parameter is chosen
according to this equation, the LBE for electric potential is second order
in time δt. However, taking zeroth moment of Eq. A.152 gives macroscopic
electric potential φ̄ as

φ̄ =
∑
m

f̄m = φ− δt

2 γ
ρe

εrε0
. (A.157)

Once again we have macroscopic quantity depending on source term
which is not supported in current Musubi implementation. Therefore, the
integrant of source term in Eq. A.149 is approximated with forward Euler.
It would reduce the scheme to first order but the LBE for electric potential
is solved at every time till convergence and time step δt is an artificial time
introduced to solve Poisson’s equation. Therefore, δt can be chosen small
enough to maintain stability and accuracy of the scheme. The transformed
variables f̄ can be rewritten without source term as

f̄m(x, t) = fm(x, t) + λγδt

2

(
fm(x, t)− feq,m(x, t)

)
. (A.158)

Thus, the fully discrete BGK-LBE for electrical potential with first-order
source term can be written as

f̄m(x + umδt, t+ δt)− f̄m(x, t) = λ̄γ
(
feq,m(x, t)− f̄m(x, t)

)
+ δtSm(x, t). (A.159)

Now, the macroscopic electric potential ψ can be computed directly from
transformed PDF f̄m

ψ =
∑
m

f̄m =
∑
m

fm (A.160)
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since electric potential is conserved in collision. But the non-conserved
macroscopic electric field E given in Eq. A.145 becomes

E = λγ

c2
sδx

∑
m

umfm = λγ

1 + δtλγ

2

1
c2
sδx

∑
m

umf̄m

= λ̄γ

c2
sδxδt

∑
m

umf̄m (A.161)

A.2 Multiple Relaxation Time

In this section, the velocity vectors, weights and transformation matrix for
D3Q19 layout are given.

A.2.1 D3Q19 model
For D3Q19 model, the discrete lattice velocity vector, um and weights,
ωm are given as:

um =

(
umx
umy
umz

)

=

(−1 0 0 1 0 0 0 0 0 0 −1 1 −1 1 −1 −1 1 1 0
0 −1 0 0 1 0 −1 −1 1 1 0 0 0 0 −1 1 −1 1 0
0 0 −1 0 0 1 −1 1 −1 1 −1 −1 1 1 0 0 0 0 0

)
(A.162)

ωm =


1/18 for m = 1 · · · 8
1/36 for m = 9 · · · 18
1/3 for m = 19

(A.163)

The most diagonal entries of collision matrix Λ are set to 1 i.e λi,i = 1
except

λ2.2 = λζ ,

λ10,10 = λ12,12 = λ14,14 = λ16,16 = λν . (A.164)

λν and λζ are relaxation parameter related to kinematic and bulk viscosity
respectively, The transformation matrix M with combination of discrete
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velocity vectors which are orthonormal to each other for D3Q19 model is
written as

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−1 0 0 1 0 0 0 0 0 0 −1 1 −1 1 −1 −1 1 1 0
0 −1 0 0 1 0 −1 −1 1 1 0 0 0 0 −1 1 −1 1 0
0 0 −1 0 0 1 −1 1 −1 1 −1 −1 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0
0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 0
0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0


(A.165)

The moment space which results from multiplying transformation matrix
with distribution function for D3Q19 model is

m = (m0 mx my mz mxx myy mzz mxy myz mxz

mxyy mxxz myyx myyz mzzx mzzy

mxxyy myyzz mzzxx)T (A.166)

Multiplying the equilibrium distribution function feq,m Eq. 3.3 with
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transformation matrix M results in following equilibrium moments

meq =



ρ
ρ0vx
ρ0vy
ρ0vz

1
3ρ+ ρ0v

2
x

1
3ρ+ ρ0v

2
y

1
3ρ+ ρ0v

2
zρ0vxvy

ρ0vyvz
ρ0vxvz
1
3ρ0vy
1
3ρ0vz
1
3ρ0vx
1
3ρ0vz
1
3ρ0vx
1
3ρ0vy

1
3 ( 1

3ρ+ ρ0v
2
x + ρ0v

2
y − 1

2ρ0v
2
z)

1
3 ( 1

3ρ−
1
2ρ0v

2
x + ρ0v

2
z + ρ0v

2
y)

1
3 ( 1

3ρ+ ρ0v
2
x − 1

2ρ0v
2
y + ρ0v

2
z)



. (A.167)

Here only first ten moments have a direct physical interpretation for
the incompressible Navier-Stokes equations as pressure, velocity and shear
stress.

Multi-component Lattice Boltzmann Method The non-zero entires of
relaxation matrix Λk for multi-component lattice Boltzmann equation for
species k is set to

λ2,2 = λ3.3 = λ4.4 = λD
k ,

λ5,5 = λ6,6 = λ7,7 =
λζk + λν

2 ,

λ5,6 = λ5,7 = λ6,5 = λ6,7 = λ7,5 = λ7,6 =
λζk − λ

ν

2 ,

λ8,8 = λ9,9 = λ10,10 = λνk,

λi,i = 1 ∀i = 11 . . . 19. (A.168)

A.3 Configurations

This section contains example configuration for STfunand varSys.
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1 variable = {
2 {
3 name = ’velmag’,
4 ncomponents = 1,
5 vartype = ’operation’,
6 operation = {
7 kind = ’magnitude’,
8 input_varname = {’velocity’}
9 }

10 },
11 {
12 name = ’momentum_mag’,
13 ncomponents = 3,
14 vartype = ’operation’,
15 operation = {
16 kind = ’multiplication’,
17 input_varname = {’density’,’velmag’}
18 }
19 }
20 }

Listing A.1 Operation variable definition in configuration file

1 variable = {
2 {
3 name = ’press_out’,
4 ncomponents = 1,
5 vartype = ’st_fun’,
6 st_fun = 1.0
7 },
8 {
9 name = ’vel_in’,

10 ncomponents = 3,
11 vartype = ’st_fun’,
12 st_fun = {
13 predefined = ’combined’,
14 temporal = {kind = ’linear’, from_time=0, to_time=0.25,
15 min_factor=0, max_factor=1.0},
16 spatial = {1.0, 0, 0}
17 }
18 }
19 }
20
21 boundary_condition={
22 ...
23 { label = ’outflow’ ,
24 kind = ’press_dirichlet’ ,
25 pressure = ’press_out’
26 },
27 { label = ’inflow’ ,
28 kind = ’vel_dirichlet’ ,
29 velocity = ’vel_in’
30 },
31 ...
32 }

Listing A.2 Configuration of space-time function in variable table

1 constant
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2 ref_press = 1.0
3 u_mean = 1.0
4
5 boundary_condition={
6 ...
7 { label = ’outflow’ ,
8 kind = ’press_dirichlet’ ,
9 pressure = ref_press

10 },
11 { label = ’inflow’ ,
12 kind = ’vel_dirichlet’ ,
13 velocity = {
14 predefined = ’combined’,
15 temporal = {kind = ’linear’, from_time=0, to_time=0.25,
16 min_factor=0, max_factor=1.0},
17 spatial = {u_mean, 0, 0}
18 }
19 }
20 ...
21 }
22
23 space time Lua function
24 function force_fun(x,y,z,t)
25 return {2.0∗x∗t, y, 0} returns a vector
26 end
27
28 source = {
29 force = force_fun,
30 }

Listing A.3 Configuration of space-time function as anonymous variable

1 boundary_condition ={
2 \dots
3 {
4 label=’inflow’
5 kind=’dirichlet’ ,
6 velocity = ’vel_d1’,
7 pressure = ’press_d1’
8 }
9 \dots

10 }
11
12 variable = {
13 {
14 name = ’surface_coupling’,
15 ncomponents = 4,
16 vartype = ’st_fun’,
17 st_fun = {
18 predefined = ’apesmate’,
19 input_varname = {’velocity’, ’pressure’},
20 domain_from = ’dom_1’
21 }
22 },
23 {
24 name=’vel_d1’,
25 ncomponents = 3,
26 vartype = ’operation’,
27 operation = {
28 kind = ’extract’,
29 input_varname = {’surface_coupling’},
30 input_varindex = {1,2,3},
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31 }
32 },
33 {
34 name=’press_d1’,
35 ncomponents = 1,
36 vartype = ’operation’,
37 operation = {
38 kind = ’extract’,
39 input_varname = {’surface_coupling’},
40 input_varindex = {4},
41 }
42 }
43 }

Listing A.4 "combine" and "extract" operation variable definition in configura-
tion file

1 source = {
2 force = {
3 fun = force_fun,
4 shape = {
5 kind = ’canoND’,
6 object = { origin = {0,0,0}, vec = {{1,0.,0}, {0,1,0}} }
7 }
8 }
9 }

Listing A.5 Configuration of space-time function variable with shape

1 source = {
2 force = ’ electric_force ’
3 }
4 variable = {
5 {
6 name = ’electric_force’
7 ncomponents = 3,
8 vartype = ’st_fun’,
9 st_fun = {

10 predefined = ’apesmate’,
11 input_varname = {’electric_field’},
12 domain_from = ’potential_dom’
13 }
14 }

Listing A.6 Configuration of space-time function variable for coupling

1 simulation time control
2 sim_control = {
3 time_control = {
4 max = 1.0 maximum simulation time in second
5 interval = 0.1 interval to check status of the simulation in second
6 }
7 }
8
9 Logic to distribute all domain on all process

10 Default: false
11 share_domain = false
12
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13 Logic to define nProc is fraction or integer
14 Default: true
15 nproc_is_frac = true
16
17 domain_object ={
18 {
19 label=’dilute_mc’, domain name
20 solver=’musubi’, solver name
21 filename = ’multicomponent_dilute_musubi.lua’, domain configuration filename
22 nproc_frac = 2/6 fraction of number of process to use for this domain
23 },
24 {
25 label=’conc_mc’,
26 solver=’musubi’,
27 filename = ’multicomponent_conc_musubi.lua’,
28 nproc_frac = 2/6
29 },
30 {
31 label=’dilute_potential’ ,
32 solver=’musubi’,
33 filename = ’potential_dilute_musubi.lua’,
34 nproc_frac = 1/6
35 },
36 {
37 label=’conc_potential’,
38 solver=’musubi’,
39 filename = ’potential_conc_musubi.lua’,
40 nproc_frac = 1/6
41 }
42 }

Listing A.7 APESmate domains configuration
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