
Probabilistic Freespace Prediction in Structured
Traffic Environments for Trajectory Planning

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von
Dipl.-Inform. Julian David Schlechtriemen

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2020

Betreuer und erster Gutachter
Prof. Dr.-Ing. Klaus-Dieter Kuhnert

Universität Siegen

Zweiter Gutachter
Prof. Dr. Manfred Reichert

Universität Ulm

Tag der mündlichen Prüfung
23.02.2021

Zusammenfassung

In der vorliegenden Arbeit wird ein methodisches Framework entwickelt, welches
einem hochautomatisierten Fahrzeug auf Autobahnen im Fehlerfall die Ausführung
eines sicheren Rückfallverhaltens ermöglicht. Das vorgestellte Framework kann dabei
Fehlerfälle der Umgebungserfassung, der Situationsanalyse sowie eine ausbleibende
Fahrerübernahme behandeln. Der Schwerpunkt dieser Arbeit liegt jedoch nicht auf der
Darstellung eines Gesamtsystems. Vielmehr wird auf die Entwicklung der fehlenden
funktionalen Bausteine fokussiert, die zur Umsetzung eines solchen Rückfallsystems
benötigt werden.
Im Verlauf der Arbeit wird nach einem Überblick über den inhaltlichen Kontext

und einer Einführung in die benötigten theoretischen Grundlagen eine Systemar-
chitektur vorgestellt, in der die in der Arbeit entwickelten Methoden eingesetzt
werden können. Die Methoden umfassen dabei Verfahren zur Manövererkennung,
Bewegungsprädiktion und Trajektorienplanung. Wichtige Ziele der Systemarchitektur
liegen in der Wiederverwendbarkeit und Erweiterbarkeit der entwickelten Methoden
für weitere Anwendungsfälle.

Der Hauptteil der Arbeit beschäftigt sich mit der Umsetzung der in der Systemar-
chitektur identifizierten Funktionsbausteine, die zur Planung einer Rückfalltrajektorie
benötigt werden. In einem ersten Schritt werden dazu Klassifikationsverfahren zur
Erkennung und Prognose von Fahrmanövern entwickelt. Das Klassifikationsproblem
beschränkt sich hierbei auf die Erkennung von Spurwechseln und Spurfolgeverhalten.
Da das zukünftige Verhalten von Fahrern nicht eindeutig bestimmbar ist, werden
hierbei nur Verfahren betrachtet, die eine probabilistische Bewertung der ausge-
führten Manöver ermöglichen. Den aktuellen Stand der Technik erweiternd, werden
hierbei der Situationskontext und mögliche Einflussfaktoren systematisch analysiert.
In zwei Experimenten werden die ausgewählten Verfahren vorgestellt und evaluiert.
Für die Prognose zukünftiger Aufenthaltsorte der Fahrzeuge wird eine Metho-

de vorgestellt, welche den physikalischen Bewegungsstatus und die Ergebnisse der
Manöverklassifikation berücksichtigt. Die Methode liefert hierbei nicht nur Infor-
mationen über den wahrscheinlich prognostizierten Ort, sondern eine zeitabhängige
Aufenthaltswahrscheinlichkeit der Verkehrsteilnehmer. Zur besseren Einordung der
Güte der Ergebnisse erfolgt ein Vergleich mit bestehenden klassischen Verfahren zur
Bewegungsprognose.

Zur Bestimmung einer Rückfalltrajektorie wird unter Nutzung der Bewegungspro-
gnosen des umgebenden Verkehrs wird abschließend ein neues Trajektorienplanungs-
verfahren vorgestellt. Hierzu wird eine Repräsentation des dynamischen Freiraums
vorgestellt, die ein effizientes Sampling einer Schar von Trajektorien ermöglicht. Aus
dieser Trajektorienschar wird anschließend anhand eines Optimierungskriteriums die
am besten passende ausgewählt. Zur Erzeugung der Trajektorien wird ein flachheits-
basierter Ansatz eingeführt, der Trajektorien durch stückweise Polynome modelliert.
Ohne Durchführung eines weiteren Optimierungsschritts garantiert die vorgestellte
Methode, dass die Gesamttrajektorie unter Berücksichtigung der Randbedingungen
ruckminimal ist.

Zusammenfassend werden in der vorliegenden Arbeit neue Verfahren vorgestellt,
die wesentliche Verbesserungen in den Bereichen Manöverklassifikation und Bewe-
gungsprädiktion realisieren. Die entwickelte Methode zur Trajektorienplanung erlaubt
die Berücksichtigung von Prädiktionsdaten und trägt dazu bei, dass vorgestellte
Problem der Erzeugung einer Rückfalltrajektorie zu lösen. Die Wirksamkeit der in
der Arbeit vorgestellten Methoden wurde neben den theoretischen Untersuchungen
auch im realen Fahrbetrieb nachgewiesen.

Abstract

This thesis addresses the problem of providing a methodical framework for highly
automated driving on highways, which allows an automated vehicle to execute a safe
fallback behavior in case of a system failure. The presented framework is able to
handle failures of the environment perception, situation analysis and a missing take
over by a driver. The thesis is however not focusing on the implementation of the
whole system. Instead, it focuses on the missing functional components which are
needed for the implementation of such kind of fallback system.
Within the thesis in a first step an overview on the context of the problem and

an introduction into the theoretical foundations is presented. To provide the reader
with a holistic understanding, a system architecture is presented, in which the
methods developed in this thesis can be applied. The methods include algorithms
for maneuver recognition, position prediction and trajectory planning. Important
goals of the architecture are reusability and extendability of the developed methods
for further use cases.

The main part of the thesis deals with the implementation of the functions which
were identified in the system architecture and are needed for planning fallback
trajectories. To do so, in a first step classification methods are developed for the
recognition of driving maneuvers. The classification problem in the context is limited
to the recognition of lane changing and lane following behavior. Because future
behavior of human drivers is not deterministic, the set of methods was restricted to
algorithms which provide a probabilistic output. Extending the state of the art, the
situation context and possible influencing factors are analyzed systematically. The
presented approach is evaluated in two experiments.

To predict future positions, a method is introduced which on the one hand considers
the physical state of a vehicle and on the other hand also takes account of the situation
context. This is realized by using the results of the method developed for maneuver
recognition. The presented algorithm does not only deliver information about the
future position, but a time dependent probability distribution of future whereabouts.
To provide an insight in the prediction performance, a comparison to existing classic
methods of position prediction is presented.
In order to plan a fallback behavior, a new method for trajectory planning is

introduced, which allows incorporating future positions of other vehicles. To do so,
a representation of the dynamic free space is introduced, which allows to sample
a family of trajectories efficiently. From this family the best trajectory according
to a chosen optimization criterion is selected. For the generation of trajectories a
flatness-based planning approach is presented, which models the trajectories using
composite polynomials. Without the execution of an additional optimization step,
the method guarantees, that the whole trajectory is jerk minimal given the defined
constraints.
Summarizing, this thesis introduces new methods, which implement meaningful

improvements in the field of maneuver classification and position prediction. The
method presented for planning trajectories allows incorporating prediction informa-

tion and is an enabler to solve the problem of planning fallback trajectories. Besides
the theoretical investigations presented in thesis, the methods have proven to be
applicable in prototypical vehicles in real traffic.

i

Contents

Contents i

List of Figures v

List of Tables viii

List of Abbrevations ix

1 Introduction 1
1.1 The Different Levels of Automation 1

1.1.1 Level-1: Driver Assistance . 3
1.1.2 Level-2: Partial Automation 3
1.1.3 Level-3: Conditional Automation 4
1.1.4 Level-4: High Automation . 4
1.1.5 Level-5: Full Automation . 5

1.2 Fallback from Level-3 Driving . 6
1.2.1 Human Machine Interaction 6
1.2.2 State transitions of a Level-3 System 7

1.3 Research Contribution . 8
1.3.1 System Design . 8
1.3.2 Maneuver recognition . 9
1.3.3 Prediction of Future Vehicle Positions 10
1.3.4 Trajectory Planning in Structured Dynamic Environments . . 11

1.4 Outline . 12

2 Background 13
2.1 Safety of Automated Driving Functions 13

2.1.1 Definitions . 13
2.1.2 Functional Safety . 14
2.1.3 Safety of Use . 15
2.1.4 Liability . 15

2.2 Coordinate Systems . 16
2.2.1 Vehicle Coordinate Systems 16
2.2.2 Curvilinear Coordinates . 16

2.3 Machine Learning . 19

ii

2.3.1 Model Selection . 20
2.3.2 Evaluation Methods . 23
2.3.3 Evaluation Measures for Discrete Data 25
2.3.4 Scoring Methods for Continuous Data 29
2.3.5 Supervised Learning . 32
2.3.6 Unsupervised Learning . 33

2.4 Vehicle Dynamics . 41
2.4.1 Point Models . 41
2.4.2 Kinematic Bicycle Model . 41

3 System Concept and Architecture 43
3.1 Introduction and Goals . 43

3.1.1 Requirements Overview . 43
3.1.2 Quality Goals . 44

3.2 Architecture Constraints . 45
3.3 System Scope and Context . 45

3.3.1 Business Context . 46
3.3.2 Architecture Level (0) - Technical Context 46

3.4 Solution Strategy . 50
3.5 Building Block View . 50

3.5.1 Architecture Level (1) - Automated Driving Logic 51
3.5.2 Architecture level (2) - Fallback Behavior Generation 53

3.6 Runtime View . 55
3.7 Risks and Technical Debts . 56

4 Maneuver Recognition 59
4.1 Problem Definition . 60
4.2 Literature . 60
4.3 Contribution . 62
4.4 Solution Design . 62
4.5 Environment Model . 63
4.6 Feature Selection Techniques . 65

4.6.1 Filtering . 65
4.6.2 Wrapper Techniques for Feature Selection 66

4.7 Classification Methods . 67
4.7.1 Naïve Bayes . 67
4.7.2 Support Vector Machines . 68
4.7.3 Random Forests . 69
4.7.4 Feedforward Neural Networks 71

4.8 Experiment I . 74
4.8.1 Setup & Dataset . 74
4.8.2 Model Generation . 75
4.8.3 Evaluation . 79
4.8.4 Conclusion . 82

4.9 Experiment 2 . 84

iii

4.9.1 Setup . 84
4.9.2 Dataset . 86
4.9.3 Model Generation . 87
4.9.4 Evaluation . 88
4.9.5 Conclusion . 91

5 Probabilistic Position Prediction 93
5.1 Problem Definition . 94
5.2 Literature . 95

5.2.1 Expert Based Models . 95
5.2.2 Learning Based Models . 95

5.3 Contribution . 96
5.4 Solution Design . 97
5.5 Features and Data Model . 98

5.5.1 Data Model for Longitudinal Position Prediction 99
5.5.2 Data Model for Lateral Position Prediction 100

5.6 Methods . 101
5.6.1 Gaussian Mixture Regression 102
5.6.2 Mixture of Experts . 103
5.6.3 Longitudinal Position Prediction Methods 104

5.7 Metrics . 105
5.8 Experiment 1 . 107

5.8.1 Setup and Training . 107
5.8.2 Evaluation . 108
5.8.3 Conclusion . 112

5.9 Experiment 2 . 115
5.9.1 Data Setup . 115
5.9.2 Evaluation . 116
5.9.3 Conclusion . 119

6 Trajectory Planning in Structured Dynamic Environments 123
6.1 Problem Definition . 124
6.2 Related Work . 125
6.3 Contribution . 126
6.4 Solution Design . 127
6.5 Behavior Planning . 129
6.6 Interface Definition . 131
6.7 Sampling using Action Spaces . 134
6.8 Trajectory Generation based on Differential Flatness 137
6.9 Experimental Results . 142
6.10 Conclusion . 145

7 Epilogue 147
7.1 Summary of Contributions . 148
7.2 Future Research Directions . 150

iv

7.3 Conclusion . 151

Publications 153

References 155

v

List of Figures

1.1 Nomenclature of automated driving modes 2
1.2 Automation levels as described by the SAE 2
1.3 Level-4 vehicle in Helsinki . 5
1.4 Difference between Level-4 and Level-5 automation 6
1.5 State transitions of fallback behavior . 7

2.1 Schematics of a risk and fault analysis 14
2.2 Coordinate system according to ISO 8855 17
2.3 Transformation Cartesian to lane coordinate system 17
2.4 Bias-variance-tradeoff . 21
2.5 Holdout method . 24
2.6 Bootstrapping method . 25
2.7 LOOC method . 26
2.8 Receiver operating characteristics . 29
2.9 Execution of the EM algorithm . 37
2.10 Drawbacks of the EM algorithm . 38
2.11 Bicycle model . 41

3.1 Architecture level (-1) building block view 46
3.2 Architecture level (0) use cases . 47
3.3 Architecture level (0) building block view 47
3.4 Architecture level (0) functional chain 49
3.5 Architecture level (1) building block view 51
3.6 Architecture level (2) building block view 53
3.7 Activation of Conditional Automated System 55
3.8 Activation of Fallback Performance . 56

4.1 Architecture level (3) black box diagram Maneuver Recognition 60
4.2 Definition of time point of lane change 61
4.3 Architecture level (3) - White box View Maneuver Recognition 63
4.4 Hierarchy of features used for predcition 64
4.5 Definition of environment model . 65
4.6 Anscombe’s Quartet . 67
4.7 Visualization of the fundamental idea of Support Vector Machines. . . . 69
4.8 Example of a Random Forest . 70
4.9 Example of Neural Network . 72

vi

4.10 Hidden Markov Model for maneuver recognition problem 73
4.11 Sensor setup in the first experiment . 74
4.12 Labeling of lane changes based on distance to lane markings 75
4.13 PDFs of chosen features . 79
4.14 HMM vs. unfiltered the Naïve Bayes Algorithm in experiment 1 80
4.15 ROC of Naïve Bayes Classifier in experiment 1 80
4.16 Naïve Bayes vs. Support Vector Machine (SVM) in experiment 1 81
4.17 Receiver Operating Characteristic of Pm 81
4.18 Classification performance of Random Forrest in experiment 1 82
4.19 ROC of maneuver recognition methods in experiment 2 89

5.1 Architecture level (3) - black box view Position Prediction 94
5.2 Architecture level (3) - White box view Position Prediction 98
5.3 Input dimensions for longitudinal regression model in experiment 1 . . . 99
5.4 Generation of traveled distance st . 100
5.5 Input dimensions for lateral expert nodes in experiment 1 101
5.6 Mixture of Experts for lateral position prediction 104
5.7 Comparison of longitudinal regression models in Experiment 1 108
5.8 Boxplots of evaluated longitudinal models in experiment 1 109
5.9 Evaluation of uncertainty prediction in experiment 1 110
5.10 MAD depicted for error for cases vrelt0 < 3m

s
. 110

5.11 Evaluation of the experts nodes in experiment 1 111
5.12 Lateral prediction error of Mixture of Experts approach in experiment 1 112
5.13 Position prediction in test vehicle . 113
5.14 Evaluation of longitudinal prediction in experiment 2 117
5.15 Evaluation of lateral position prediction in experiment 2 119
5.16 Comparison of lateral prediction results in experiment 2 120

6.1 Architecture level (3) - Black box view Trajectory Planning 124
6.2 Schematic visualization of the planning problem 125
6.3 Architecture level (3) - White box view Trajectory Planning 129
6.4 Transformation into s− d− t . 130
6.5 Visualization of occupied space as function of t 131
6.6 Definition of connecting Action Space Ã 132
6.7 Simplified class-diagram showing interface of trajectory planner 134
6.8 Output trajectory point tuple w.r.t. A1..A3 135
6.9 Output trajectory point tuple w.r.t intersected action spaces 136
6.10 Visualization of output trajectory point tuples 137
6.11 Flat transformation . 138
6.12 Visualization of different continuity levels of trajectories 141
6.13 Traffic scene used for evaluation scenario 142
6.14 Action Space sequence used for evaluation 143
6.15 Sampling in evaluation scenario using Intersected Action Spaces Ā 143
6.16 View on calculated trajectory in experiment in XY 144
6.17 State space of trajectory calculated for scene in experiment 144

vii

6.18 Experiment vehicle used for trajectory planning on rural road 145

viii

List of Tables

2.1 Definition of confusion matrix . 26

3.1 Quality goals . 44
3.2 Architecture constraints . 45
3.3 Architecture level (0) interfaces . 48
3.4 Architecture level (1) subsystems description 52
3.5 Architecture level (2) subsystem description 54

4.1 Description of the evaluated features f for an observed vehicle. 76
4.2 Predictive power of features in experiment 1 77
4.3 Featureset derived by Random Forest in experiment 1 78
4.4 Features for maneuver recognition in experiment 2 85
4.5 Examined Feature Selection Variants in experiment 2. 87
4.6 Examined Classifiers with Preferred Hyperparameters in experiment 2 . . 90
4.7 AUC values of experiment 2 compared related work. 92

5.1 L for different classification approached 118
5.2 Comparison of lateral prediction performance 120

6.1 Scene used for evaluation of trajectory planner 142
6.2 System vehicle state and constraints in planning experiment 143

ix

List of Abbreviations

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance Systems

AIC Akaike Information Criterion

ASIL Automotive Safety Integrity Level

AUC Area under the curve

BASt Bundesanstalt für Straßenwesen

BIC Bayesian Information Criterion

CA constant acceleration

CAD computer-aided design

CBR Case Based Reasoning

CDF Cummulative Density Function

CFS Correlation based Feature Selector

CMS Collision Mitigation System

CPU Central Processing Unit

CRP Chinese Restaurant Process

CV constant velocity

DARPA Defense Advanced Research Projects Agency

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DDT Dynamic Driving Task

DP Dirichlet Process

DPGMM Dirichlet Process Gaussian Mixture

EE Electrical / Electronic

x

ECU Electronic Control Unit

EM Expectation Maximization

FFNN Feed Forward Neural Network

Flw Lane Following

FN false negatives

FNR false negative rate

FP false positives

FPR false positive rate

GNB Gaussian Naive Bayes

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

GPU Graphics Processing Unit

HMI Human Machine Interface

HMM Hidden Markov Model

IDM Intelligent Driver Model

ISO International Organization for Standardization

KDE Kernel Density Estimator

LcL Lane Change Left

LcR Lane Change Right

LDA Linear Discriminant Analysis

LOOB Leave One Out Bootstrapping

LOOC Leave One Out Cross-validation

LSTM Long Short Term Memory

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MLE Maximum Likelihood Estimate

xi

MLP Multi Layer Perceptron

MSE Mean Squared Error

NGSIM Next Generation Simulation [1]

NHTSA National Highway Traffic Safety Administration

ODD Operational Design Domain

PCA Principal Component Analysis

PDF Probability Density Function

PPV Postive Predictive Value

RMSE Root Mean Squared Error

RBF Radial Basis Function

ReLu Rectified Linear Activation Function

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

RRT Rapidly-exploring Random Tree

ROC Receiver Operating Characteristics

SAE Society of Automotive Engineers

SVM Support Vector Machine

TN True negatives

TNR True negative rate

TP True positive rate

TPR True positive rate

TTC Time to collision

VBGMM Variational Bayesian Gaussian Mixture Model

V2X vehicle to X communication

VC Vapnik Chervonenkis

WCRP Weighted Chinese Restaurant Process

xii

Acknowledgments

This PhD thesis would not have been possible without the help and support of many
people throughout the last years. First and foremost, I would like to thank Prof.
Dr. Dieter Kuhnert for supervising me and making this Dissertation possible at the
University of Siegen. I also want to express my gratitude to the members of the
audit committee, Prof. Dr. Manfred Reichert, Prof. Dr. Frank Gronwald and Prof.
Dr. Malte Lochau.
I would also like to thank Andreas Wedel for shaping the path when starting

this work. Being my supervisor in the first years of my work as PhD student,
Andreas provided me with inspiring ideas and his support on so many levels. I have
learned a lot about enthusiasm, and how to build the pathways and bridges from
research ideas to publishable research items. I would also like to thank my friends
and former colleagues of Situation Analysis Group at Böblingen and the Vehicle
Intelligence Group in Sunnyvale for many fruitful and intense technical discussions.
This especially holds true for my former PhD colleagues Dominik Petrich and Viktor
Gomer.
I particularly like to thank Florian Wirthmüller and Kim Wabersich which not

only were co-authors of my papers but also closely collaborated on actually doing
the research. I also want to thank Jörg Hillenbrand who not only supported me in
getting my PhD position at Daimler, but also helped me to pave the way to my
assignment to Sunnyvale, CA. Furthermore, I would like to personally thank Gabi
Breuel, Matthias Schell, Christoph Keller, Thao Dang, Jochen Hipp, Florian Kerber,
Jens Desens and Galia Weidl for their collaboration.

Last but not least I like to thank my family and my former schoolmates and fellow
students, who all contributed to what I am now in their very own way. My deepest
thanks goes to Anja for always supporting me, no matter when or where. Thank
you for your patience, understanding and encouragement.

There are many more people who supported me on my journey and whom I owe
gratitude, but there are too many to name. Without all of you, I would not have
been able to master the challenges of this PhD thesis.

Thank you!

1

Chapter 1

Introduction

Automated vehicles are becoming reality. There are many reasons to increase the
degree of automation. On the one hand automation systems like adaptive cruise
control or lane-keeping are features increasing the comfort for the driver. On the
other hand fully automated robo-taxis may not only be a technical revolution, they
may also fundamentally change the way how mobility in our society will look like in
the next decades.
This thesis presents a concept for a non-fail-operational, but fail-safe automated

driving system. The goal of this first chapter is to introduce into the problem
domain which this thesis is attacking. Based on this understanding the contributions
are presented. The chapter starts with an overview of how the different levels
of automation are defined focusing on systems in which a human driver and the
automation system have strong interactions, see Sec. 1.1. The problem of executing a
handover from automated driving back to a human driver is investigated in Sec. 1.2.
Motivated by this handover problem the contribution of this thesis follows in Sec. 1.3.
The contribution presents a toolkit of methods enabling automated vehicles to
fulfill the mandatory safety requirement of having a fallback performance available
whenever needed. The chapter concludes with Sec. 1.4, where the structure of this
thesis is presented in detail.

1.1 The Different Levels of Automation
On the journey to autonomous driving starting from standard ’driver only’ modes,
passing driver assistance systems like Adaptive Cruise Control (ACC) and heading
straightforward to fully automated vehicle (-fleets) one will find repeating definitions
of automation levels. These levels will be briefly explained in this section. The
different levels do not only define what a vehicle is capable of, they also have
a strong impact on liability issues. A first definition of driving modes which is
widely used was defined in [3] by a project-group of the German Bundesanstalt für
Straßenwesen (BASt). The counterpart in the United-States, the National Highway
Traffic Safety Administration (NHTSA) caught up with an own set of definitions.
The most popular definitions however were published by the SAE (formerly known

2 CHAPTER 1. INTRODUCTION

Fig. 1.1: Standardization process of nomenclature of automation levels for autonomous
driving, see also [2].

as ’Society of Automotive Engineers’) in 2014. Its definitions do fully match the
ones of the BASt despite the definition of level five which is not available in the
defined set of the BASt, see also Fig. 1.1. To eliminate confusion the standardized
terminology of the SAE J 3016 will be used in this thesis. The definitions are starting
with driver only at Level-0. The higher the number of the automation level, the
more responsibility is handed over to the vehicle. Finally this ends up at Level-5 full
automation, see Fig. 1.2 for a detailed overview how the responsibilities are shifted
from the driver towards the autonomous driving system. Warning and momentary
intervention systems (like collision mitigation systems) do not change the role of the
driver and therefore do not automate the Dynamic Driving Task (DDT), see also [4].
In the following subsections a more elaborate overview over the capabilities of the
different driving modes will be given, while skipping Level-0: No Automation, where
there is no automation system, which capabilities can be explained.

- 0
 -

No
 A

ut
om

at
ion

- 1
 -

Dr
ive

r A
ssi

sta
nc

e
- 2

 -
Pa

rti
al

Au
to

m
at

ion
- 3

 -

Co
nd

iti
on

al
Au

to
m

at
ion

- 4
 -

Hi
gh

 A
ut

om
at

ion
- 5

 -
Fu

ll
Au

to
m

at
ion

Execution of steering,
acceleration, braking

Monitoring of driving
environment

Fallback performance of
dynamic driving task

System
Human driver

Fig. 1.2: Responsibilities of the driver and an automated driving system at the different
SAE automation-levels.

1.1. THE DIFFERENT LEVELS OF AUTOMATION 3

1.1.1 Level-1: Driver Assistance
The driving mode-specific execution by a driver assistance system of either
steering or acceleration/deceleration using information about the driving
environment and with the expectation that the human driver perform all
remaining aspects of the DDT.

Definition of Driver Assistance by the SAE [4]

Driver Assistance systems have been the first steps towards driving automation.
First prototypical implementations of an adaptive cruise control were developed in
the 1980s [5]. These ACC systems extend the functionality of standard cruise control
systems by ensuring a safe distance to the vehicle ahead, while trying to keep the
velocity as close as possible to the value set by the driver. The system can be realized
using any sensor which is capable of measuring the distance to the vehicle ahead,
being it radar, lidar or stereo-cameras, see [6]. For a more detailed description of an
implementation of such a system see [7]. Collision Warning/Mitigation/Avoidance
systems are not a part of the SAE’s definition of automation, due to only being
intended to help the diver in emergency situations. Nevertheless, automated systems
have to be at least as good in emergency situations as state-of-the-art collision
avoidance systems. A major challenge in the development process of those systems is
the unknown plan of the (human-) driver, who is executing the DDT. While the first
systems on the market focused on vehicles ahead of the system-vehicle, more recent
system help to avoid crashes at intersections and are capable to react to pedestrians
[8].

1.1.2 Level-2: Partial Automation
The driving mode-specific execution by one or more driver assistance systems of
both steering and acceleration/deceleration using information about the driving
environment and with the expectation that the human driver perform all
remaining aspects of the DDT

Definition of Partial Automation by the SAE [4]

While Level-1 systems can be realized by implementing either steering or longitudinal
assistance, a Level-2 partial automated system is the combination of longitudinal
and lateral assistance. In terms of liability for this mode it has to be ensured, that
the driver is in the loop and is therefore monitoring the driving environment all the
time to allow the driver to act in an appropriate way if needed. Practically this is
the first mode where the human driver is disengaged from the physical driving task.
Still the monitoring whether the driver is in the loop and the transition between
system-operation and driver-operation is a challenging task. In many systems this is
solved by the requirement to the driver to keep his hands on the wheel. This can can
be implemented by deactivating the system if no steering force was measured after
a fixed take-over time. While Naujoks in his study [9] states, that this take-over

4 CHAPTER 1. INTRODUCTION

time can be longer than a few seconds, accidents showed, that long take-over times
can lead to drivers, for which is hard to distinguish whether the system operates in
Level-2 or Level-3 mode, see [10].

1.1.3 Level-3: Conditional Automation
The driving mode-specific performance by an automated driving system of all
aspects of the DDT with the expectation that the human driver will respond
appropriately to a request to intervene

Definition of Conditional Automation by the SAE [4]

Conditional Automation is defined as the first automation level, where the system is
fully responsible of monitoring the driving environment while staying in its system
limits. When the system limits are reached, the driver needs the so called take-over
time twarn to get back into the loop to execute the ’Fallback performance of the
dynamic driving task’ [4]. The remaining question what amount of time is needed to
get back into the driving loop in an appropriate manner is investigated in multiple
publications, see for example [11], [12]. Hereby the question arises whether the take
over time can also determined beforehand by taking into account the gaze of the
driver [13]. It is however questionable if the take-over time is the only measure
needed, or one should also take into account the take-over quality [14]. According to
gasser [3], one can only think of accidents in which the automated system is involved
which are caused by a third party. In addition, one can also think of (rare) system
failures or force majeure as possible reasons for accidents. A major point is, that the
driver does not have to recognize the need to take over control, this task has always
to be executed by the system by warning the driver.

1.1.4 Level-4: High Automation

The driving mode-specific performance by an automated driving system of all
aspects of the DDT, even if a human driver does not respond appropriately to a
request to intervene

Definition of High Automation by the SAE [4]

In difference to lower levels of automation one cannot rely on a driver as fallback
operator when operating a vehicle in Level-4. According to the definition of the
SAE a high automated system is always able to revert to a state of minimum risk, if
the driver does not take over control. This can be a challenging tasking and is not
possible under all circumstances in all situations and traffic environments.
For example, it may be hard to define a safe state on an expressway if no hard

shoulder is available. This is the reason why a Level-4 system may be limited to
specific traffic environments under a set of defined conditions (weather, daytime,
etc.), see [15]. Highly constrained Level-4 systems may only be capable of following

1.1. THE DIFFERENT LEVELS OF AUTOMATION 5

Fig. 1.3: Automation level-4 vehicle EZ10 of the company EasyMile in Helsinki. The sys-
tem is capable to follow learned routes and is used to for last-mile transportation
with a maximum velocity of 12 km/h [16].

specific routes with limited speed, e.g. the systems presented in [16] and[17]. The
set of all restrictions are called system borders and vice versa the capabilities and
conditions in which a Level-4 system shall be operated the Operational Design
Domain (ODD). There exist various visions on how Level-4 automation should look
like, e.g. low-speed shuttles for the last-mile of travel [16] and on demand ride hailing
fleets [18]. This results in the possible challenge of needing specific licenses for the
different Level-4 systems in the respective context in which they are operated. How
state authorities will handle this vehicle specific licensing process remains unclear
[15].

1.1.5 Level-5: Full Automation
The full-time performance by an automated driving system of all aspects of the
DDT under all roadway and environmental conditions that can be managed by a
human driver

Definition of Full Automation by the SAE [4]

Reaching Level-5 means that vehicles are capable of operating vehicles in all conditions
in which an human can operate a vehicle. In addition to capabilities already known
by Level-4 systems, Level-5 systems would also implement for example the capability
to operate off-road vehicles in undeveloped areas. This would therefore require an
almost human-like artificial intelligence.
The definition of Level-5 can be interpreted as a reminder, that Level-4 systems
always have limitations, see Fig. 1.4 for a visual explanation. To the best of the
knowledge of the author of this thesis there are no companies or institutions aiming
to realize a Level-5 system. For these reasons the definition of Level-5 is only of
theoretical interest at the current point in time.

6 CHAPTER 1. INTRODUCTION

more

more

more

more

more
some

some

some

some

some

Geographic Areas

Roadway Types

Traffic Conditions

Weather Conditions

Events/incidents

Level-4

Level-5

all

Fig. 1.4: Transition from Level-4 to Level-5. It is not sufficient for a Level-5 vehicle of
being capable to handle all aspects of one subdomain like being able to handle
all Roadway types. A full automated vehicle has to be able to be operated safely
under all conditions and situations in which a human can operate it.

1.2 Fallback from Level-3 Driving
On the one hand the definition of Level-3 systems simplifies the automated driving
task, because a driver is always available as fallback when reaching the limits of the
automated system. On the other hand the implementation of such kind of systems
raises the human-machine-interaction question how control can be handed back
to the driver. This includes the mechanism how a driver is warned, informed and
brought back into the loop but also the aspect how much time a driver needs to
fulfill this task.

1.2.1 Human Machine Interaction
Consequently, the questions which kind of second task can be executed by the
driver and further how this affects the take-over quality and take-over time comes
up. In [14] the effect of drivers executing a second task vs. drivers not doing so is
investigated. The data presented in the study shows that a non-driving related second
task, for example watching video/reading newspaper/email impairs the reaction
of a driver negatively. Answers to the question of how take-over systems shall be
implemented to maximize take-over quality and minimize take-over time are delivered
in [12]. The result is, that visual-auditory warnings are highly superior to pure
visual Human-Machine-Interaction HMI approaches, regarding time and quality.
In [19] it is investigated how the take-over time varies depending on the traffic
situation and non-driving related tasks the driver is executing. As result the study
suggests, that the take-over time shall increase with the complexity of the traffic
scene, while a variation of the non-driving related task seems to have only minor
impact. The investigations of [20] show that it is hard to provide a Human Machine
Interface (HMI) supporting drivers in the take-over phase to support situational

1.2. FALLBACK FROM LEVEL-3 DRIVING 7

Start

FallbackLevel 3 - Driving

Standstill

System Limit

Is reached

Level 3 - Request

Level 3

possible?

false

true

Take Over

finished

Level 0 - Driving

Deactivation

Take Over

Fig. 1.5: State transitions between fallback behavior, Level-3 and Level-0 driving.

awareness and safety. Another finding is, that drivers tend to perform non-driving
related tasks if driving with an automated system. As a conclusion, from the different
research items, it is hardly possible to define one fixed value for the take-over time.
Its definition heavily depend on the take-over quality and the design of the HMI
system.

1.2.2 State transitions of a Level-3 System
The methods envisioned in this thesis are developed with a focus on problems which
need to be solved to realize Level-3 systems. One main issue in this context is how
to handle situations, in which the Level-3 system detects, that it is not operating
within its system limits at the current time-point. For these kinds of situations a
fallback-behavior needs to be available in the system, bringing the driver back into
the loop. To handle control back to the driver, the corresponding state-transitions
have to be designed carefully, see Fig. 1.5 for a flowchart visualizing the approach
used in this thesis, and [21]. In the envisioned system the activation of the Level-3
automation system has to be requested actively by the driver of the vehicle (’Level-3
Request’ in Fig. 1.5). However, it can only be activated in case its system inherent
constraints are fulfilled, see Sec. 1.1. The constraints may consist but are not limited
to the type of the road, the speed-limit and the health of the system. There are
two possibilities to get out of the Level-3 state. The first is by an active request
of the driver, for example by taking over the steering wheel or executing a braking
maneuver (see ’Take Over’ in Fig. 1.5). The second possibility is, that the system
detects, that it is not operating within its system-limits anymore (for example a
dropout of a sensor, or an immediate change of weather conditions). In this case a
fallback behavior has to be triggered (’System Limit is reached’ in Fig. 1.5), which
will be executed until a standstill is reached or the driver takes over control.

8 CHAPTER 1. INTRODUCTION

1.3 Research Contribution
The central question leading to the subsequent questions answered in this thesis is
the following:

How can an activated Level-3 system plan and execute a fallback-
performance if the environment perception drops out until the driver
is back in the loop?

This question however can be generalized. Every situation, in which a Level-3 system
detects it is not operating within its system limits anymore raises the same issue to
be solved. To attack the problem, the contribution of this thesis is threefold. The
first contribution is a system concept implementing the fallback performance of a
Level-3 system. This concept is based on the second and third contribution, the
methods to provide probabilistic long-term predictions of vehicles and a trajectory
planner, which is able to take this prediction information into account. Overall the
methods provided here shape the path from Level-2 Partial Automation to Level-3
Conditional Automated systems. More pictorial the questions answered in this thesis
are:

• What are the future positions of other traffic participants?

• If we know those future positions, how can a safe fallback-maneuver be planned?

This thesis introduces a system design and a toolkit of methods capable of solving
the described problem. Besides being tailored for Level-3 systems and highway
environments, the methods are designed in a way that they can be used for different
levels of vehicle automation.

1.3.1 System Design
1.3.1.1 System Design Problem

As described in Sec. 1.1, the main step from Level-2 to Level-3 can be seen in the
fact, that the driver does not have to monitor the traffic anymore. He only has to be
available for getting back into the loop after a few seconds. For the automated vehicle
this means that a fail-safe strategy needs to be available, which is capable of keeping
the vehicle in a safe state until the driver is able to take over control. Therefore a
safe automated vehicle needs to have at least one of those two capabilities:

• Detecting possible system limits at least twarn beforehand

• Executing the fallback performance until driver takes over control or vehicle is
in a safe state

While the first capability is a demanding challenge to the in-vehicle environment
sensing and recognition systems, the second solution raises high requirements to the

1.3. RESEARCH CONTRIBUTION 9

concept and performance of the fallback system. Still, it may be hard guaranteeing
to detect system limits beforehand in every situation, which makes the availability
of a fall-back behavior realizing fail-safety mandatory.

1.3.1.2 Contribution in System Design

This thesis presents a concept for a non-fail-operational Level-3 system. To imple-
ment fail-safety the components of the automated driving system are continuously
monitored. On reaching a system limit or detecting a failure, the automated system
switches to the fallback performance. On the one hand the problem how early a
driver shall be warned is discussed thoroughly in the scientific community. On the
other hand the question of how a technical solution guaranteeing the take-over time
within a Level-3 system can be implemented is not widely discussed, see also section
1.2 of this chapter.

The approach proposed in this thesis resolves the aforementioned issue. Using the
last sample of valid input data, consisting of dynamic and static objects and the
traffic infrastructure (e.g. lane markings and endings), the position of all objects
are predicted as a function of time. The knowledge of future traffic scenes allows
deriving the free-space as function of time. Using a representation of this prediction
information, a method to plan trajectories is presented allowing the vehicle to
execute collision free maneuvers. The major contribution of the concept developed
in this thesis is therefore providing a consistent concept to safe maneuver-planning
in fallback scenarios. This especially holds true for planned trajectories in situations
when no new input-data is available, for example due to a drop-out of the sensor or
problems in the sensor-fusion system.

1.3.2 Maneuver recognition
1.3.2.1 Maneuver Recognition Problem Description

To achieve an abstract understanding of how other traffic participants will act in
the future it is crucial to have an understanding of their plans and intention. The
argument, that vehicle to x communication (V2X) can solve this issue does not hold
true until 100% market penetration of such kind of technology is available. The only
chance therefore is to estimate the behavior of other vehicles based on observations.
For example in highway scenarios one may observe a vehicle approaching a slower
truck. Inferring from former observations, one may predict, that the respective
vehicle will cut-out to overtake. Because different drivers act in different manners,
such kind of predication are always uncertain. This results in a basic assumption in
this thesis, which is that predictions of vehicle (and therefore also human) behavior
are always uncertain and thus have to be modeled probabilistically. To determine
these probabilistic predictions also the question, which observable features contain
the most information about future human behavior, needs to be answered.

10 CHAPTER 1. INTRODUCTION

1.3.2.2 Contribution in Maneuver Recognition

The contributions in terms of maneuver recognition are twofold. The main contri-
bution is the systematic investigation of the most relevant features for lane change
recognition in highway scenarios.
In a first step, a superset of features is systematically constructed based on a

model of the traffic scene, which on the one hand provides a simple representation
of the environment, but also contains the relevant information influencing vehicles.
This is quite unlike previous strategies [22] [23] [24], where the feature set was chosen
by so called ’expert knowledge’. Using this superset of features the relevance of each
feature as function of time until a vehicle changes its lane assignment is evaluated.
The second contribution concerns about the use of machine learning techniques

for feature-selection and intention recognition with highly unbalanced classes. The
experimental results proved the strategy clearly superior to many former approaches
which were purely focused on a fixed feature set in combination with machine
learning techniques or explicit models, see also section 4.2. Using simple classification
algorithms the methods proposed in this thesis showed superior results compared to
former approaches, see chapter 4 for a detailed discussion.

1.3.3 Prediction of Future Vehicle Positions
1.3.3.1 Position Prediction Problem

Given the situation, that a probabilistic prediction of the maneuver class is already
available, see Sec. 1.3.2, one still has no knowledge about future positions of other
traffic participants. As already the knowledge about the maneuver class is uncertain,
the information about future positions has to be represented in a probabilistic fashion,
too. Due to complexity of real-world traffic a probabilistic position prediction shall
on the one hand be done with respect to vehicle dynamics, but on the other also
reflect the behavior of human drivers, which are interacting with each other. To make
this problem even more challenging, a function generating this kind of information
needs to be processed efficiently in real-time on in-vehicle Electronic Control Units
(ECU).

1.3.3.2 Contribution in Position Prediction

The main contribution regarding position prediction presented in this thesis is a real
time capable solution for the probabilistic position prediction of object vehicles in
highway scenarios. Unlike previous strategies, see for example[25], [26], the behavior
uncertainty of vehicles is taken care of. The output of the provided method is a
distribution for the future vehicle positions function of time. This distribution is
estimated with respect to the current vehicle state and the estimated maneuver class.
Compared to former publications non-measurable features like ’desired velocity’ [25]
of a vehicle are not used. All inputs of the proposed algorithms (see chapter 4)
are measurable with current automotive sensors. Compared to [27] future behavior
is not derived from past behavior, e.g. the past trajectory. Instead, the Markov

1.3. RESEARCH CONTRIBUTION 11

assumption is used, which basically says that information of past states is aggregated
in the current state, where the state of a vehicle also includes the relation to its
environment, see [28] for a tutorial on Markov Models.
The result is a real-time capable algorithm which is parametrized by machine

learning techniques allowing to represent the complexity of driver reactions in a
probabilistic fashion. Hereby the probability density functions of future positions
represent the uncertainty as observed in real-world situations. The main advantage
of using this output for situation analysis and trajectory planning is not only to
have precise estimate of the positions of other traffic participants. It is also to have
the knowledge in difficult situations that the future position of a vehicle is highly
uncertain.

1.3.4 Trajectory Planning in Structured Dynamic
Environments

1.3.4.1 Trajectory Planning Problem

Experienced drivers understand the traffic scene which can be interpreted as the
extraction of a feature vector. Based on this feature vector they predict other
vehicles by estimating their probable future position and use this information as
constraints in combination with the static environment for decision making and
trajectory-planning. While methods for predicting are part of the contribution of
this thesis, see Sec. 1.3.2 and Sec. 1.3.3, the problem remains to provide a planning
method, capable of dealing with the infinite number of traffic configurations. Hereby
a trajectory planning method shall incorporate arbitrary predication information
and also the constraints of the static environment, e.g. the shape of the road and
static obstacles.

1.3.4.2 Contribution in Trajectory Planning

In the scope of this thesis a trajectory planner is presented, which incorporates pre-
diction information of other traffic participants more explicit into account compared
to former methods, see chapter 6 for a detailed overview.
From a system-architecture perspective, the trajectory planner is only loosely

coupled to software modules which are executing their tasks at an earlier stage in the
functional chain (e.g. vehicle prediction) and is callable using a defined geometric
interface.
The contribution of this approach is threefold: First a generic interface between

scene predictions, higher level maneuver decisions and the trajectory planner is
presented based on a formal problem definition. This interface provides the hard
constraints for the planning problem and is independent of the underlying trajectory
planning method. The second contribution covers an increased flexibility of trajectory
shapes compared to former sampling based planning approaches, which were limited
to a fixed number of motion primitives. The third contribution is a method for

12 CHAPTER 1. INTRODUCTION

algebraic optimal sampling of trajectories based on sampled trajectory points, which
enables the approach to be computed efficiently in real time.

1.4 Outline
This thesis is structured as follows. In chapter 2 the methodical foundations needed
to gain an understanding in the following chapters are explained. This includes
an introduction to safety engineering definitions, the used coordinate systems, the
needed fundamentals of machine learning, statistical evaluation and important vehicle
models. In order to achieve an understanding which functions need to be developed
to implement a fail-safe Level-3 system the architecture of the envisioned system
is described on different level of abstraction in chapter 3. Within this chapter,
three major functional blocks are identified, which will be discussed in detail in the
following three chapters.
Chapter 4 provides a deeper insight into how maneuvers of traffic participants

can be recognized from a conceptual a methodical perspective. The presented
algorithms are evaluated in two experiments where the first experiment is focusing
on establishing a meaningful benchmark using simple methods while the second is
aiming on maximizing the prediction horizon. Using the generated information of
the methods of maneuver recognition, chapter 5 introduces an approach how future
positions of vehicles can be predicted in a probabilistic fashion in longitudinal and
lateral direction. The presented method is evaluated in two experiments. To be able
to process the prediction information, of the previous two chapters, in chapter 6 a
sampling based method of trajectory planning is introduced which is able to handle
long term prediction information. Therefore, a technique to represent dynamic
freespace information and a flatness based method for the generation of composite
trajectories are introduced. The thesis concludes with chapter 7 which summarizes
the achieved results and provides an insight into possible research perspectives.

13

Chapter 2

Background

The following chapter provides the theoretical foundations for the research conducted
in the chapters 3 - 6. Methods and algorithms, which are only used within a single
chapter are introduced in the respective chapter, all other background information
needed is covered in the following sections.
This chapter starts with a brief overview on what safety means for automated

driving functions in Sec. 2.1. The focus of the chapter then changes towards more
technical topics. In Sec. 2.2 the coordinate systems used throughout this thesis are
explained. The chapter continues with the needed foundations of machine learning
in Sec. 2.3 and concludes with an overview on the vehicle models used in this thesis
in Sec. 2.4.

2.1 Safety of Automated Driving Functions
The basic requirement to driving automation systems is, that they are safe. The
definition of safe and how safety can be quantified and assessed is however not
intuitively clear. In this section an overview of the relevant safety definitions and the
context in which they are embedded will be given. This also includes liability, which
becomes relevant in cases, in which the safety of an automation system is called into
question.

2.1.1 Definitions

Safe describes the property of a system, that it causes no, or only minimal harm
to itself, people and its environment, see [29]. Fail-safe systems are described as
systems, which, in the case of failure, are still safe, see [30]. Fail-operational systems
are described as systems which in the case of failure can continue their operation.
This is typically implemented by double- or three-time redundancy of components,
see [31].

14 CHAPTER 2. BACKGROUND

P
ro

b
ab

ili
ty

o
f

ex
p

o
su

re

Serverity of failure

Risk reduction by increasing controllability

Risk reduction by measures according ASIL

Fig. 2.1: Strategy how a a non-tolerable risk is transformed to a tolerable one by increasing
the controllability of the situation and by taking measures according to ASIL.

2.1.2 Functional Safety
More formal the part of safety, which depends on the correct functionality of
the safety relevant system and other risk minimizing functions is called Functional
Safety. Requirements and processes for Functional Safety for ADAS and Autonomous
Driving are defined in the ISO 26262, which is derived from the IEC 61508. While
the IEC61508 is the basic functional safety standard for all industries and different
kind of products, the ISO26262 is intended for functional and electrical safety of
automotive products, see [32]. To comply to the processes defined in the ISO26262,
a product among other things has to be assessed in hazard and risk analysis. The
main goal of this is to:

• Recognize and detect possible dangerous situations

• Take countermeasures to avoid, or if not possible to mitigate dangerous situa-
tions

This process is visualized in Fig. 2.1, see [33]. Within this figure the task of a
system design is always to come up with solutions which are below a ’tolerable risk’,
where risk is defined as the combination of ’severity of failure’ and the ’exposure’.
A dangerous situation with a high probability of exposure is not tolerable for an
automated driving system. In case of a Level-1, Level-2 and Level-3 system the
manufacturer can still rely on a human driver, who may be able to resolve those
situations. To do so, the controllability by the driver has to be ensured. For example
in case of a sensor dropout it may help to increase take over time, which describes the
time until the driver needs to take over control. For Level-3 systems it is important
allowing the driver to assess the situation carefully. Additional measures to be taken
in the Risk & Hazard analysis may then be able to bring the risk to a tolerable level.

2.1. SAFETY OF AUTOMATED DRIVING FUNCTIONS 15

2.1.3 Safety of Use
Safety of Use includes all risks, which users and third parties are faced with in case
of intended use and foreseeable miss-use. This however does not include gross misuse.
Precondition for all considerations is, that all components are working fault-free as
intended. To gain an insight of the importance of this safety aspect, one has to know
that human error and failure provokes a major part (86%) of accidents. Only in
11% of the cases the cause is not clearly recognizable and only 3% of the cases are
about technical errors or failure, see [34]. Main reasons for accidents are: speeding,
distance under-runs, right of way errors and insufficient visibility. While major parts
of these risks can be minimized by automated systems, new risks may occur. For
example drivers in a Level-2 system may try to not fulfill their task to monitor the
traffic environment, see [35]. To analyze the safety of use, one shall consider the
following four aspects of safety related systems:

• comprehensibility

• predictability

• controllability

• potential of misuse

see [36]. Major parts of the challenges which have to be resolved to improve the
’Safety of Use’ are part of the Human-Machine-Interface which is not in the scope of
this thesis.

2.1.4 Liability
To achieve legal security for the manufacturer of a product, its development process
shall comply to the state of the art. For automotive safety relevant systems, this
means that all developments and development processes have to comply to the
ISO2626, which is the relevant norm for the development of in-vehicle systems.
These also includes the task to document the design of the product. In case of
recourse or liability, this is a guideline for the lawsuit of a damaged party. Following
[37] a plaintiff according to the malfunction doctrine only has to prove that:

• ”the product malfunctioned

• the malfunction occurred during proper use, and

• the product had not been altered or misused in a manner that probably caused
the malfunction.”

The plaintiff can force the manufacturer to provide all relevant documentation to
avoid a sentence due to discovery (which is inadmissible under German civil law),
see [38]. The manufacturer in this case has to prove, especially for a safety related
system, that the method of development complies with the state of the art. This
leads to high requirements regarding the processes for development and validation
and also the measures reducing risks, see [37], [39].

16 CHAPTER 2. BACKGROUND

2.2 Coordinate Systems
To construct a model of the environment and to create plans for a vehicle one
needs coordinate systems, in which information can be represented. For different
calculations it is however handy to use different coordinate systems. In case of
calculating the time until a collision may happen it may make sense to do all
calculations for example using a reference point on the front of a system vehicle.
When planning trajectories using a model of the vehicle kinematic, it is handy to use
a reference point around which the vehicle rotates(e.g. rear axis in case of a bicycle
model). In a different use-case, when analyzing how different vehicles relate to each
other, it is useful to use a curvilinear coordinate system. In this section an overview
will be given, how the different coordinate systems are defined and how they can be
transformed into each other.

2.2.1 Vehicle Coordinate Systems
Within ISO 8855, there exists the definition of two main coordinate systems, the
earth fixed and the vehicle fixed one, see [40]. Within the earth fixed one, the xe and
ye axis are parallel to the ground plane, while the ze direction is pointing upwards
contrary to the gravitational force. This earth fixed coordinate system may be fixed
in an arbitrary location on the ground plane.

In contrast, the vehicle coordinate system is fixed in a vehicle reference point. For
different applications, different reference points are used in industry and science.
Within this thesis the vehicle reference point is fixed in the middle of the rear axis. In
the vehicle coordinate system, the xv-axis is pointing forwards, the yv-axis orthogonal
to the left and zV is pointing upwards. The vehicle coordinate system is a Cartesian
coordinate system. For many applications however, the definitions given beforehand
are not handy. This mainly stems from the fact, that every vehicle defines its own
vehicle coordinate system. Whenever for example relations between two vehicles
shall be investigated, it is handy to use a within ISO 8855 so called ’Intermediate
axis system’. Within this system, x and y are projections of xv and yv on the ground
plane. The z-axis is defined starting in the vehicle reference point pointing upwards
while being orthogonal to the ground plane, see Fig. 2.2 for a visual explanation.

2.2.2 Curvilinear Coordinates
Roads in general are not straight. Thus, for many calculations it is more feasible
to use a orthogonal coordinate system which is following the curvature of the road
to ’rectify’ traffic scenes. The coordinate system used in this thesis will be called
’lane-coordinate system’. The longitudinal distance along the curvature of a reference
line will be denoted as s, the lateral offset as d. The transformation from the
lane-coordinate system to the euclidean vehicle coordinate system and vice versa
cannot be solved analytically in general. Within this thesis it is assumed, that the
reference line Lref , which is the basis for the transformation between the lane and the
euclidean coordinate system is represented as a polyline. To solve the transformation

2.2. COORDINATE SYSTEMS 17

Fig. 2.2: Visualization of the intermediate axis system as defined by ISO 8855 and used
within this thesis.

x

y

s

d

P0 x0

y0

s0

d0

P0
s

Fig. 2.3: Using the transformation function Γ and Γ−1 one can transform between the
Cartesian coordinate system and the curvilinear lane-coordinate system. P0 is
transformed from the Cartesian coordinate system by being projected onto the red
solid reference line of the lane-coordinate system. The distance between P0 and
the projected point P s0 represents the lateral component d0. The corresponding s
value is determined by the integrated length of the reference line until the origin
of the lane coordinate system.

18 CHAPTER 2. BACKGROUND

task, a straightforward algorithm will be used throughout the thesis, using the
reference line Lref along which s is measured. The algorithm is limited to the case,
where the distance of a Point P to this line dlat is small compared to the radius of
the road defined by its curvature. This always holds true on highways. A polyline of
n points P in the euclidean space is defined as:

Lref = [P1, .., Pn−1, Pn], where (2.1)

Pm =
(
xm
ym

)
(2.2)

In order to transform between the euclidean and the curvilinear space a function Γ
is introduced, which is able to do so, see also Fig. 2.3. The function transforming
back to the Cartesian coordinate system is called Γ−1 respectively:

P sd = Γ(P xy) and P xy = Γ−1(P sd) (2.3)

For a short survey on how to compute this transformation in general see [41]. While
different reference lines can be used for different lanes, which is especially needed in
case of merging roads, intersections and roundabouts, throughout the thesis only a
single reference line is used. This limitation is introduced due to the focus on highway
scenarios, where only one driving direction is considered to be relevant for the Level-3
automated vehicle. Please see Alg. 1 of how a naive algorithm implementing Γ can
be realized.

2.3. MACHINE LEARNING 19

Alg. 1 High Level definition of the transformation function Γ
1: procedure findClosestPairNaive(P,L) . brute force
2: i← 1
3: d←∞
4: for i < numElements(L) do
5: dcur = |L[i− 1]− P |+ |L[0]− P |
6: if dcur < d then
7: imin ← i
8: d← dcur
9: end if
10: end for
11: return(L[imin − 1],L[imin])
12: end procedure

13: procedure projectOnLineSegment(Pin, Ps1, Ps2) . Segement defined by
Ps1 & Ps2

14: Calculate line through Ps1 & Ps2
15: Calculate intersection with perpendicular through Pin
16: d = distance from intersection to Pin
17: ss1 = distance from Ps1 to intersection
18: s =Length integrated up to Ps1 + ss1
19: end procedure

20: procedure Γ(P xy,Lxy
ref)

21: Pprev, Pnext ← findClosestPairNaive(P xy,Lxy
ref)

22: s, d← projectOnLineSegment(P xy, Pprev, Pnext)
23: P sd ← makePoint(s, d)
24: return(P sd)
25: end procedure

2.3 Machine Learning
There are many real-world problems in which one wants to know future values
based on current observations. For example a classification of available information
is needed, e.g. whether an email is spam or not. To do so, in many applications
computers are used to automate such kind of tasks. Based on an observation x output
values containing the information of interest y shall be generated. Machine learning
in this context describes various algorithms to learn models or their parameters using
statistical techniques together with training data. This approach differs to so called
’Expert System’ which emulate human decision making, by having decision rules
explicitly programmed into them.
This underlines the main difference: in expert systems decisions are based on

human interpretations, in machine-learning they are data driven, by having built a
model which is based on a set of training-data. One of the key advantages of machine

20 CHAPTER 2. BACKGROUND

learning techniques is, that even pretty complicated and high-dimensional problems
can be solved straightforward if a sufficient number of training-data is available.
There exist a huge number of related terms which partly overlap or are fully included
in the definition of machine learning, being it big-data, data mining, computational
statistics or predictive analytics. Within various fields, be it engineering, finance
industries, and research machine learning is used to generate (maybe hidden) insights,
classify, predict and to detect trends and values using historical and current data.
Within machine learning, there exist mainly two different approaches to learn output-
values y from input-data x. So called Generative Models generate a model of the joint
distribution of input- and output-data which results in a probability distribution
p(x,y). The second approach is learning discriminative models by training the
posterior of y given x resulting in a distribution p(y|x). Various studies observed
that discriminative models outperform generative ones in classification applications.
On the other hand generative models may converge faster with fewer data samples,
especially when using parametric distribution models, see [42]. Intuitively one can
understand that learning the desired result directly in discriminative models produces
superior prediction performance when compared to learning a distribution model
containing all in and output dimensions. On the other hand a handy property of
generative models is, that it is possible to sample pairs of x,y from a trained model.

However when dealing with Machine Learning techniques terminologies are defined
differently in literature. In this thesis terminologies are defined according to [43]:

• Target Function as the (sadly) unknown underlying function one wants to
approximate by a hypotheses

• Learning Algorithm as the method capable of inducing a model of the target
function given the training data

• Hypotheses as a function approximating the target function

• Model analogous to hypotheses

• Model Parameters as the parameters defining the ’behavior’ of the model itself
when fed with data

• Hyperparameters as the tuning parameters of the model, i.e. the number of k
in k-means or the topology of a Neural Network

Within this section an overview of how models can be fitted to data, how the
’best’ model can be selected from the various ones possible, how performance can be
measured and a introduction to some of the most important basic learning techniques
applied within this thesis will be given.

2.3.1 Model Selection
A main problem when generating models is the so called Bias-Variance Dilemma or
Bias-Variance Tradeoff. The term Bias is defined as the average error of predicted

2.3. MACHINE LEARNING 21

values vs. the correct values. Models with high bias have high error in the training
and evaluation dataset. Intuitively they can be understood as models which are
oversimplified, which is called underfitting. In contrast, models with highVariance
have a pretty accurate fit on the training data but fail to generalize on evaluation-
data, which is called overfitting, see also Fig. 2.4 for a visual explanation. The

-10 -5 0 5 10
x

-1500

-1000

-500

0

500

1000

y

generating function
sampled noisy points
1st degree polynomial
7th degree polynomial

Fig. 2.4: Visualization of the Bias-Variance Tradeoff. Samples (red) are sampled randomly
from the generating polynomial x3 − 4 ∗ x2 + 10 ∗ x. When fitting a 1st-order
polynomial the samples of the generating function are not approximated well.
The function which tries to approximate has not a sufficient number of degrees
of freedom. In the context of model fitting this is called high bias or underfitting.
On the other hand a polynomial of 7th degree has to many degrees of freedom
and fits the sampled points well but clearly is not a good fit for the generating
function, which is called high variance or overfitting.

reason why these both problems are coupled, stems from the fact that a reduction of
the complexity of a model, for example reducing the degree of a polynomial, results
in an increased bias (depending on the dataset). Vice versa increasing the capacity
of a model by adding additional degrees of freedom may lead to a higher error due
to variance. To minimize the total error an optimum has to be found. Therefore, the
task of model selection is to find the right or optimum model complexity, see [44].
Given for example a binary classification problem, for which it is assumed that

there is a unknown function f which generates training data and therefore maps
samples x to output variables y. A specific output instance yn in this case would be
always one of the two class labels:

f : x→ y. (2.4)

Assuming that a set of hypotheses functions h ∈ H are available, which are theoretical

22 CHAPTER 2. BACKGROUND

also able to map input variables x to output variables y ∈ Y :

hi : x→ y , (2.5)

where hi is one specific hypothesis instance withinH. In this case a learning algorithm
I has the task to choose a model representing a hypotheses hs out of H minimizing
the total error, in order to approximate f as close as possible. Given a set of data
used for training Xn = {x1, x2...xn}, the empirical error Eemp of a hypotheses hi
after training can be measured by:

Eemp(hi) = 1
N

N∑
n=1
|hi(xn)− f(xn)| (2.6)

The empirical error measures how well the hypothesis performs on the training
dataset. However one may be interested in the performance on the overall dataset.
This Generalization Error can be denoted as:

Egen = P (|h(x)− f(x)|) (2.7)

From the formula provides the insight, that minimizing the error on the training
dataset alone is not sufficient to minimize the Generalization Error. Using machine
learning techniques the goal is to get Egen in an ideal world close to zero. Even if
this would be possible, it would not be possible to verify this, because in the general
case f and Egen are unknown. In his research Vapnik [45] investigated under which
conditions the following can be approximated:

Egen ≈ Eemp. (2.8)

Even if one knows that the empirical error can be used as an approximation of the
generalization errors, the question arises under which conditions it approximates well
and whether there are error bounds which guarantee the quality of the approximation.
The work in [46] shows that with a probability Pbound the following bound can be
guaranteed for a classifier:

Egen 0 Eemp +
√
h(ln(2n

h
) + 1)− ln(1−Pbound

4)
n

(2.9)

where h denotes the VC (Vapnik–Chervonenkis) dimension of the data and n the
number of training data. Please see [47] for a detailed explanation. Unluckily the VC
dimension can only be obtained for a very small number of functions and has only
gained practical benefit when being used for linear discriminant functions. To answer
whether a hypothesis will generalize well on unseen data, in real-world applications
evaluation methods (for example: cross-validation) are widely applied. An overview
of how these methods work is given in the next subsection.

2.3. MACHINE LEARNING 23

2.3.2 Evaluation Methods
When questioning how good the performance of a trained model is, one may come
up with the question of why this point is particular of interest. There exist three
major use-cases why one may be interested in measuring a models performance:

• Estimating the generalization performance on data not used for training

• Selecting the best performing hypotheses from the set of model hypotheses

• Comparing different machine learning techniques, where each of them shall be
tuned with the optimal hyper-parameters and the optimal hypotheses

In this context hyper-parameters describe the parameters which determine the
possible complexity of model, but not the parameters of the model, which are
inferred by the learning algorithm itself.

2.3.2.1 Holdout and Stratification

The most simple technique to evaluate a model is the holdout method. When
applying this technique the dataset is split into a training and a evaluation set,
see Fig.2.5 for a visualization. While the first one is selected for training of model,
on the second one the performance of this trained model is evaluated, see [48]. It
is important to note that the performance shall not be measured on the dataset
used for training, since this may result in way too optimistic performance estimates.
This is due to the fact that in this case one can not distinguish whether the model
generalizes well or it is just the perfect fit through the samples of the training data,
see also Fig. 2.4.

In order to split the data, the most common technique, especially when it comes
to deep learning applications, is to randomly select one third of the whole dataset as
evaluation data while the rest remains for training, see [43]. This however may raise
issues in case of high (class-) biased machine learning problems and small datasets.
By doing random sampling from the dataset a class imbalance may increase, or in the
worst case no samples of the minor represented class are available in the evaluation
set. A workaround for this issue is making use of stratification techniques. Those
techniques take care that in the sub-sampling process the proportion of classes are
maintained. Another trade-off one has to tackle when applying the holdout method
are the proportions of the training versus the evaluation set. Assigning only a small
proportion of the data to the training set may result in models which make not
optimal use of the power of the hypothesis. A small the size of the evaluation set
however may result in less precise measures of the hypothesis performance.
A method to deal with this issue is the so called Monte Carlo Cross-Validation.

To do so, the dataset is repeatedly splitted k times into a training and a evaluation
set. To get a robust overall prediction of the models performance the average of
the k performance measures is computed to get the needed robustness. The value
of k in this case can be quite large compared to the naive holdout method. This
benefit however is attended by the k-times increased training time of the model. In

24 CHAPTER 2. BACKGROUND

1 2 3 4 5 6

1 2 3 4 5 6

Labeled dataset

Training set Evaluation set

Fig. 2.5: The Holdout method splits training and evaluation dataset straightforwardly.

the last years the holdout method became increasingly popular for deep learning
applications, often executed as 3-fold holdout. This is mainly due to the fact that
deep learning methods are only chosen whenever large datasets are available. Because
of the high number of samples, the risk of high variance is minimized. The reduced
computational effort compared to other methods makes the holdout method to the
method of choice in such cases.

2.3.2.2 Bootstrapping

The idea behind bootstrapping is the generation of sampled distributions which are
’good’ estimates of the distribution of the whole dataset. The main difference to
the Monte Carlo Holdout method is, that in every round of bootstrapping samples
are selected from the overall dataset with replacement. This means that individual
samples in the sampling process can be selected multiple times. A popular technique
allowing statistically good performance estimates is the leave one out bootstrap
method (LOOB). In difference to the original definition of bootstrapping in [49],
samples not selected for training are used for the evaluation of the models, which
are trained in every bootstrap round, see Fig. 2.6. Using the evaluation results
the statistical properties of the bootstrapping process given the hyper-parameters
can be computed. Applied in multiple rounds of bootstrapping using different sets
of hyper-parameters, one may for example prefer a hyper-parameter set with a
sufficient good averaged accuracy but also a relatively low variance. These properties,
for example the mean and variance of accuracy, are meaningful estimates of the
performance of the hypotheses given the hyper-parameters when being deployed to
real-world applications.

2.3.2.3 Cross-Validation

A major issue of holdout techniques is that only a small part of the data is selected
for training, which often results in too conservative hyper-parameter sets causing a
to pessimistic bias. In contrast, in k-fold cross-validation (depending on the choice
of k) more data can be used for example hyper-parameter selection which may lead
to superior bias values compared to holdout techniques, see [48]. However, this

2.3. MACHINE LEARNING 25

1 2 3 4 5 6

1 23 4 56 6 1

3 26 1 45 6 5

3 14 2 65 3 4

Labeled dataset

Training sets Evaluation sets

Fig. 2.6: Within the leave one out bootstrap process for every training run random samples
are sampled from the overall dataset.

advantage comes with a k-times increased training and evaluation time. To perform
k-fold cross-validation, k models with partly overlapping training datasets are trained.
Evaluation of the models is then executed on parts of the data, not overlapping
with the respective training dataset, see Fig. 2.7 for a visual explanation. A second
drawback, when k gets close (or even equal in Leave One-Out-Cross-Validation)
to the number of n samples available in the dataset, is the increase in variance.
The reason why the variance may increase is the similarity of the k training sets,
so overfitting cannot be detected in the different folds, see [50]. Summarized one
can say large values of k reduce the bias, but increase the variance and also the
computational cost.

2.3.3 Evaluation Measures for Discrete Data
Given a trained classifier one is usually interested in measuring its performance.
Given a binary decision problem and the knowledge of the labels within a test set,
every sample can be be evaluated according to the following scheme called confusion
matrix. In the following measures are presented which are able to quantify the
performance of a classifier, which are based on the values defined in the confusion
matrix, see [51] for more details.

2.3.3.1 Rates

The numbers defined in the confusion matrix are heavily used being normalized
to the actual class. Therefore, the true positive rate also written as TPR and its

26 CHAPTER 2. BACKGROUND

1 2 3 4 5 6

1 2 3 4 5 6

12 3 4 5

1 23 4 5

1 2 34 56

1 2 3 456

1 2 3 4 56

6

6

Labeled dataset

Training set Evaluation sets

Fig. 2.7: Within the Leave One Out Cross-validation method every sample of the original
dataset is selected for evaluation. Only one part of the data is selected for
evaluation in every iteration. This is the reason why it is equal to k-fold cross-
validation with k = 1.

Tab. 2.1: Confusion matrix: Each column of the matrix represents the instances as the
class determined by the classifier, while each row represents the instances as
labeled actual class. Using the table,it can be derived whether and how the
classifier ’confuses’ the two classes.

Classified positive Classified negative
actual positive true positives (TP) false negatives (FN)
actual negative false positives (FP) true negatives (TN)

2.3. MACHINE LEARNING 27

analogous terms are defined as follows:

TPR = TP

TP + FN
(2.10)

FNR = FN

FN + TP
(2.11)

FPR = FP

FP + TN
(2.12)

TNR = TN

TN + FP
(2.13)

2.3.3.2 Sensitivity

Sensitivity refers to the classifiers ability to correctly detect positives which are
actually positive. The term Sensitivity is also often known as Recall and is identical
to the TPR.

sensitivity = TP

TP + FN
= TPR (2.14)

= probability of a sample classified positive given that it is postive
(2.15)

2.3.3.3 Specificity

Specificity describes the ability of the classifier to correctly reject negatives. Specificity
of a classifier is the probability of a negative being classified as negative and is identical
to the TNR. Mathematically, this can also be written as:

specificity = TN

TN + FP
= TNR (2.16)

= probability of a negative classification given a negative sample
(2.17)

2.3.3.4 Accuracy

The term accuracy describes the proportion of correct predictions of a classifier
vs. all predictions made and therefore describes the ’trueness’ of the results. More
formally one writes:

accuracy = TN + TP

TP + TN + FP + TP
(2.18)

= probability that the classification results are correct (2.19)

28 CHAPTER 2. BACKGROUND

2.3.3.5 Precision

The precision value describes the probability that a sample classified as positive is
actual positive. Often it is also referred to as the positive predictive value (PPV).

precision = TP

TP + FP
(2.20)

= probability that positive classifications are correct (2.21)

2.3.3.6 F1 score

The F1 score is defined as the harmonic average of the precision and sensitivity. The
F1 score reaches its maximum at 1 and is always positive.

F1 = 2 ∗ precision ∗ sensivity
precision+ sensitivity

(2.22)

= harmonic average of precision and sensivity (2.23)

2.3.3.7 Balanced Measures

In case of imbalanced classes the measures defined formerly can produce non-intuitive
results, where in the worst case a model always providing a prediction of the majority
class can result an accuracy of close to 1. To handle such kind of issues there exist
measures which normalize the skew between classes. For example the balanced
accuracy for a multi-class problem is defined according to [52] as

ACCbal = 1
|N |
·
∑
n∈N

TPn
Pn

. (2.24)

where N defines the set of classes and the n a specific class. The balanced precision
can be defined accordingly as:

precisionbal = TPR

TPR + FPR
, (2.25)

and the balanced F1 measure as:

F bal
1 = 2 ∗ precision

bal ∗ recall
precisionbal + recall

. (2.26)

All three measures are independent from class skew and are directly comparable to
the results of accuracy, precision and F1 of classification problems with balanced
class distributions.

2.3.3.8 Receiver Operating Characteristics

The aforementioned performance measure are not measures characterizing the in-
herent predictive power of a classification algorithm. The numerical values heavily
depend on the choice of threshold values, for example of a specific probability for

2.3. MACHINE LEARNING 29

which a sample is accepted as positive. By varying this threshold value very different
values of the aforementioned measures will be the result. This leads to the conclusion
that the former defined measures of classifier performance are lacking the invariance
against threshold values and are not the best choice when assessing the ’predictive
power’ of a model. A solution to overcome this issue are the Receiver Operating
Characteristics (ROC) of a classifier. The ROC is a plot visualizing the performance
of a classifier in a binary decision problem. The curve visualizes the TPR as a func-
tion of the FPR, see Fig. 2.8. It is generated by varying a discrimination threshold

Fig. 2.8: ROC curves of three classifiers to be compared. The points on the curves denote
the thresholds of classifying a value as true in 10% steps.

T . Given is for example a classification algorithm which outputs class probabilities.
To compute the aforementioned measure (for example the true positive rate), one
needs to define a threshold 0 ≤ T ≤ 1 from which on a classification result is defined
’positive’. Using this definition of T a classifier can be tuned to increase the true
positive rate, which sadly also increases the number of false positives and vice versa.
Every point of the ROC curve corresponds to a specific value of T . The predictive
power of the classifier can therefore be expressed as the so called Area under the
Curve or AUC, which is as its name says the area under the ROC curve. For a
detailed explanation of the ROC and efficient computation algorithms to generate
the curves please see [53].

2.3.4 Scoring Methods for Continuous Data
The methods presented in the former subsection are tailored for classification prob-
lems. In this section measures of performance for continuous values are introduced.
For example a rain predictor in the discrete case could predict whether it may rain
on the next day, while a predictor for the continuous case would estimate the amount

30 CHAPTER 2. BACKGROUND

of water which it expects. It is obvious, that also for the second case one needs
methods to judge and to compare the performance of different predictors.

2.3.4.1 Mean Squared and Absolute Error

The most common measures when assessing a model given a dataset y is the Root
Mean Squared Error (RMSE). It is defined by:

RMSE =
√√√√ m∑
i=1

(f(xi)− yi)2 . (2.27)

Even though, the RMSE is widely used there are some drawbacks using it. It is
highly sensitive to outliers and has the property, due to its quadratic term, that a
higher variance of the errors results in a higher RMSE. Some researchers therefore
prefer to use the Mean Absolute Error (MAE), which is defined by:

MAE =
m∑
i=1
|(f(xi)− yi)| (2.28)

For a more detailed discussion including the pro and cons of both measures please
see [54] and [55].

2.3.4.2 Maximum Likelihood

Given the situation that one has collected data from an unknown distribution, one
then often is interested in identifying the distribution that is most likely to have
generated this collected data. Using a statistical model class (for example a Gaussian
distribution), each distribution is identified by a parameter or parameter set. By
varying this parameter(s), different distributions are generated from the family of
distributions. The probability density function PDF f(y|Θ) defines the probability
of observing a data vector y given the parameter Θ, where Θ can have n-dimensions.
Given a data vector y = y1, y2, ..., ym and the property of statistically independence
of each single observation of y, the probability density function P of the observations
can be rewritten by:

P (y|Θ) = P (y1|Θ) ∗ P (y2|Θ)...P (ym|Θ) (2.29)

In many applications y and the model-class are known, but Θ needs to be estimated.
The task is to maximize the likelihood of Θ given the data. Less formally, the task is
to find the value of Θ which parametrizes the distribution model that most probably
produced the data y. Therefore, the Likelihood function L(Θ) is defined as

L(Θ|y) = P (y|Θ) (2.30)

needs to be maximized to find the Maximum Likelihood Estimate (MLE). The
most important difference between the Probability Density Function (PDF) and

2.3. MACHINE LEARNING 31

the Likelihood function is therefore, that the Likelihood is a function of the model-
parameters given the data while the PDF is a function of the data given the
model-parameters. The process of Maximum Likelihood estimation in this context is
not more than the maximization of the likelihood function by varying Θ. In practical
applications this is mostly done by maximizing the Log-Likelihood, because both
functions are related monotonically and a maximum of the one function also relates
to a maximum of the other. For a more detailed explanation please see [56]. The
MLE however can be used to compare the goodness of fit of different models. A
practical application for example would be the maximization of the Likelihood for
multiple distribution models or hyperparameter sets to find out which model class
fits the existing data best.

2.3.4.3 Information measures

Akaike [57] found out that there is a relation between the Kullback Leibler Distance
(a measure from information theory) and the Likelihood of a model given the
data and model parameters. In his research he presented the Akaike Information
Criterion (AIC) which is defined according to [57] as:

AIC = −2 log(L(Θ|y)) + 2K (2.31)

where K is the asymptotic bias correction term and represents the number of
parameters which were estimated to determine the model. The value of the AIC
therefore describes the information loss introduced by the model compared to the
data. Please keep in mind that from the perspective of information theory every
model is only an approximation of the reality. When used for model fitting, usually
one is interested in the model with the least information loss. Especially interesting
for practical applications in this context is K, because it penalizes the number of
free parameters and thus can also be interpreted as measure to prevent overfitting,
see also [58] for more detailed insights. The Bayesian Information Criterion (BIC)
introduced by Gideon Schwarz et al. in [59] is not related to information theory, see
[58]. It is defined as:

BIC = −2 log(L(Θ|y)) +Klog(N) (2.32)

where K is defined accordingly to the AIC and N is the number of data. When
comparing the BIC of different models, the one with the lowest BIC is preferable.
There is a philosophical debate in the scientific community about which one the two
measures is the ’right’ one for model selection, see [58]. However, research shows
that there are good reasons for both measures to be used. For example [60] states,
that the model chosen to be the best in evaluation is often the one which is selected
by both metrics. In cases the BIC and AIC pick different models, mostly the model
chosen by the BIC tends to have bias, while the model chosen by AIC often suffers
from variance.

32 CHAPTER 2. BACKGROUND

2.3.5 Supervised Learning
The definition of Supervised learning describes the task of learning a function that
calculates output using given input data. The behavior of this function is shaped in
the training phase based on example input-output pairs. Therefore, labeled data
needs to be available to train a model. Each sample of the training set consists of
an input vector and desired output vector. This output can be discrete when doing
classification or continuous when doing regression. In the training phase the function
is inferred based on the training data. More formally a supervised learner F is a
function that maps an input-instance x ∈ X to an output instance y ∈ Y using
internal functions and data structures. Accordingly, one defines a learning algorithm
I as an algorithm, which builds a learner from a dataset D. The dataset D is defined
as the space in which the mapping between input and output instances is known:

D = X × Y , (2.33)

see [48]. A trained learner is capable to produce a predicted output instance yn
for every new input-instance xn. This prediction is based on the knowledge of the
training dataset Dt and the used induction algorithm It. This dependency can be
expressed more formally as:

yn = F(xn|Dt, It). (2.34)

Different supervised learning techniques use different methods to infer a model
based on the training data. The problem of training a model however, can always
be understood as an optimization problem. In classification one may minimize
the number of wrongly predicted classes. For regression tasks the sum of squared
errors between prediction and actual values is a typical measure which one wants to
minimize. A very general algorithm for solving such kind of optimization tasks is
Gradient Descent.

2.3.5.1 Gradient Descent

One of the most basic methods for training many supervised learners is Gradient
Descent. Given is a simple problem of fitting a continuous regression curve to data
points x. Using a learning algorithm one likes to generate a model for the distribution
from which x was drawn. The system of equations is overdetermined for all cases,
in which the number of data points is higher than the degrees of freedom of the
polynomial. The problem of fitting the polynomial can therefore be understood as a
minimization problem of finding a function minimizing the sum of squared distances
between data points and the polynomial one is looking for.
An often used technique to tackle this problem is the method of least squares,

which is typically solved using iterative gradient descent methods. The method of
Gradient Descent is an important method to train Neural Networks using Back-
Propagation and polynomial classifiers. Therefore, in the first step a cost function J
which is computed using the N points of the training dataset is defined, which shall

2.3. MACHINE LEARNING 33

be minimized:

min
x∈Rn

J(a0, a1...am) =
N∑
n=0

(f(xn)− yn)2 (2.35)

where am denote the m-th parameter of the polynomial f of degree M :

f(x) =
M∑
m=0

amx
m . (2.36)

Starting in a randomly selected vector A0 = (a0 a1 ... am) T the gradient is
computed by:

di = −∇J (a0, a1...an) (2.37)

where ∇J(Ai) determines the gradient of J given the parameters Ai. One then
progresses in the direction of the (negative-) descending gradient via:

Ai+1 = Ai + αdi. (2.38)

This procedure is repeated continuously until there is no more improvement in further
steps and the algorithm is converged. The learning rate α affects how many iterations
are needed in order to converge. A small value of α increases the number of needed
iterations and therefore slows down the process of finding a minimum. A large
value however means that the algorithm will fluctuate around the minimum of the
cost function, which means that the algorithm does not converge. To speed up the
performance and to deal with the problem that the naive version of Gradient Descent
may converge in local minima, various approaches and more elaborate methods exist,
see [61] for an overview. A more general problem of gradient descent is, that it is not
able to handle non-convex cost functions. When applied this is typically handled by
starting the algorithm multiple times with multiple parameter seeds Ai.

2.3.6 Unsupervised Learning
In contrast to Supervised Learning in Unsupervised Learning no label information
is available. Applications are the identification of commonalities and outliers for
data analytic applications and density estimation. The hypotheses generated in the
training process are trying to model the relationship between multiple observations,
e.g. multiple feature-vectors. Typically this is done in a two-step process. First one
reduces the dimensionality of the data by applying dimension-reduction algorithms,
e.g. Principal Component Analysis(PCA), Linear Discriminant Analysis (LDA) or
Locally Linear Embedding, see [45]. Alternatively, also feature-selection techniques
can be used instead, see [62]. In the second step one tries to learn the representation
of the data. This can incorporate clustering techniques like k-Nearest-Neighbour
or density-based clustering algorithms like DBSCAN, see [63]. Other Unsupervised
Learning techniques try to learn a representation of the data by modeling it as a
probability density function. In the following the most important algorithms applied
within in the thesis are presented.

34 CHAPTER 2. BACKGROUND

2.3.6.1 K-Means

Given a dataset D consisting of N data points x, from which it is known that K
clusters can be separated (maybe due to being generated by different distributions),
one may be interested which data point is generated from which cluster. A cluster
in this case can visually be understood as an accumulation of data points whose
inter-point distances within the cluster are small compared to distances to data points
not belonging to the cluster. Therefore, the learning problem can be formulated as
the minimization of inter-point distances within all K clusters. More formally the
’cost’ J which shall be minimized can be written by:

J =
K∑
k=1

N∑
n=1

Ik,n||xn − µk||2 (2.39)

where Ik,n is the indicator variable being 1 if a data point xn belongs to the k-th
cluster and 0 if not. The current cluster center µk of each cluster can be calculated
using

µk = 1
Nk

N∑
n=1

Ik,nxn (2.40)

where Nk denotes the number of data points assigned to the k-th cluster. The
calculation of µk is sometimes called maximization step and is closely related to the
maximization step of the EM-Algorithm, which is explained in a following subsection.
Analogous to the EM again in the expectation step the data is now assigned to
the newly derived cluster centers µk. This is done by calculating the euclidean
distance dk,n of each xn to each µk. Using these distances the indicator variables are
recomputed using:

Ik,n =
1 if k = argmin dk,n

0 else
(2.41)

For the basic code structure of the algorithm as described by Lloyd (see [64]), please
see Alg. 2. The clustering process however is not guaranteed to find the global
minimum of J , but can converge in local minima. To overcome this, the algorithm
is typically executed multiple times with different initial values for µk where the
clustering result with the lowest J will be taken as final result. There also exist
multiple extensions and tweaks for the K-Means algorithm, see also [65] for an
overview. One of the major difficulties of K-Means however is, that the number of
clusters has to set as a prior beforehand. To resolve this issues multiple approaches
are known, for example by comparing the models using AIC and/or BIC. Another
approach popular in real-word applications is the so called ’elbow method’, where the
decrease of the objective function J is plotted versus the number of clusters. When
an increasing number of clusters does not lead to a significantly reduced objective
value of the objective function, this number of k where the ’elbow’ is, is selected.
However, in most cases it is hard to find an unambiguous value for k.

2.3. MACHINE LEARNING 35

Alg. 2 Execution steps of the K-Means algorithm
1: procedure K-Means(D, K)
2: set random initial values for µk for all k ∈ K
3: while true do
4: compute Icurk,n for all n ∈ N
5: if Icur

k,n == Ik,n then . If cluster assignement did not change
6: break
7: end if
8: compute µk for all k ∈ K
9: end while
10: return(Ik,n)
11: end procedure

2.3.6.2 EM-Algorithm for Gaussian Mixtures

Gaussian Mixture Model (GMM) are parametric models which can be chosen for
modeling continuous multidimensional distributions. A GMM can be intuitively
understood as the weighted sum of multiple Gaussians. In most applications, the
EM-Algorithm is selected for the training of GMMs. A Gaussian Mixture distribution
G is defined by:

G ∼
n∑
k=1

wkN (µk,Σk) (2.42)

where wk is the weight, µk ∈ R the mean and Σk ∈ R the covariance matrix of each
of the n Gaussians. These parameters will be denoted as Θ in the following sections:

Θk = (wk µk Σk) (2.43)
with the constraint: ∑

wk = 1 (2.44)
While it is now clear how continuous distributions can be modeled using a mixture
of Gaussians, one needs a method which is able to fit these distributions to a dataset
D. Fitting a Gaussian Mixture to D is a maximum-likelihood parameter estimation
problem. Defining a short written version of the probability density function for
Gaussian Mixtures pgmm by:

pgmm(x|Θ) =
n∑
k=1

wkpN (µk,Σk) (2.45)

the aggregated density for all n samples of x in D is defined as:

pgmm(D|Θ) =
∏
n

pgmm(x|Θ) (2.46)

which therefore defines the likelihood L of the parameters given the data of a
Gaussian mixture

L(Θ|D) = pgmm(D|Θ) (2.47)

36 CHAPTER 2. BACKGROUND

To maximize the likelihood L therefore the parameters Θ have to be varied. Unluck-
ily there exists no analytical expression, helping to solve this maximum-likelihood
problem directly in case of a Gaussian Mixture. The steps of the EM Algorithm
for Gaussian Mixture distributions can be separated into three main functionalities:
initialization, expectation and maximization. In the initialization step all K compo-
nents are initialized with their mean µk, weight wk and covariance matrices Σk. The
initialization can be done purely randomized. To speed up the learning process, the
initialization with the values computed by k-means is widely used. The expectation
step when learning Gaussian Mixtures is the derivation of the responsibility γk(xi)
of every component to each data sample i in D. To understand the definition of
this responsibility value, one can remember that every component of a Gaussian
Mixture with K components has a weight wk, which can also be interpreted as prior
probability. Based on this insight, on can also define the posterior of a data sample
x given a single component of the mixture. This posterior can be interpreted as
responsibility γk(x) of a component k for a data sample x:

γk(x) = p(k|x) = wkp(x|k)
K∑
j=1
wjN (x, µj,Σj)

(2.48)

In the maximization-step the new values Θupdated are derived. This can be done by:

µupdatedk = 1
N

N∑
i=1

γk(xi)xi (2.49)

Σupdated
k = 1

N

N∑
i=1

γk(xi)(xi − µupdatedk)(xi − µupdatedk)t (2.50)

wupdatedk = 1
N

N∑
i=1

γk(xi) (2.51)

Using the newly derived parameters Θupdated, the likelihood of the model given the
data can be computed. Now iteratively the expectation and maximization step are
recomputed until the value of the likelihood converges within a predefined range
or an upper bound of iterations is reached, see also fig. 2.9 for a visualization of
the EM converges. In real-world implementations, often both criteria are used in
combination.

2.3. MACHINE LEARNING 37

0 1 2 3 4 5
0

1

2

3

4

5

(a) Samples drawn distribution-wise
0 1 2 3 4 5

0

1

2

3

4

5

(b) γk after 1st iteration

0 1 2 3 4 5
0

1

2

3

4

5

(c) γk after 2nd iteration
0 1 2 3 4 5

0

1

2

3

4

5

(d) γk after 3rd iteration

0 1 2 3 4 5
0

1

2

3

4

5

(e) γk after 4th iteration
0 1 2 3 4 5

0

1

2

3

4

5

(f) γk after 5th iteration

Fig. 2.9: The figure shows how the EM Algorithm is executed. In subfigure 2.9a you
can see the data points generated by random sampling two Gaussians. The
color (red and blue) indicates the Gaussian the sample is generated from. In
the following subfigures the responsibilities γ for each data point are visualized
color-coded. With a randomized initialization the EM Algorithm is executed for
the distribution model of a GMM with two components. In subfigure 2.9f the
algorithm has almost converged after the fifth step.

38 CHAPTER 2. BACKGROUND

2.3.6.3 Gibbs Sampling for Learning Dirichlet Process Gaussian
Mixtures

For the presented approach of learning Gaussian Mixtures using the EM-algorithm a
couple of problems arise, see also [66]:

• The ’best’ number of components is hard to determine

• When having a non optimal choice of the number of components, the method
is prone to overfitting

• The EM-algorithm only converges in local optima

In case of having only one or two closely located outliers beside the main component
which can be approximated well with a Gaussian, there is a high probability, that
these outliers are modeled as a component with very low variance and therefore
very high values of the PDF, which may lead to problems when using the model for
applications like Naive-Bayes. To overcome this issues, an alternative way of how to

(a) Samples drawn by
three Gaussian distri-
butions

(b) EM solution for two
Gaussians

(c) EM solution for four
Gaussians

Fig. 2.10: Based on samples generated in Fig. 2.10a different values of k are used to fit
the mixture. While the fit using two components in Fig. 2.10b gives a quite
smooth approximation of the distribution, using four components results in
overfitting and a peak in the PDF, see Fig. 2.10c. Source of pictures: [67].

train Gaussian Mixture distributions was developed using a Dirichlet Process, see
[66]. The main properties of this approach are:

• The number of components is not predetermined, but is only limited by an
upper bound

• The number of components is not a hyper-parameter anymore, it is estimated
within the training process

• The approach is based on a Dirichlet Process, which generated as distribution
of distributions

To understand how the Dirichlet Process is used for training it is crucial to understand
how the Chinese Restaurant Process (CRP), which is closely related to the Dirichlet
Process (DP), works.

2.3. MACHINE LEARNING 39

Chinese Restaurant Process (CRP)
Assuming there is a restaurant with K nonempty and an infinite number of total
tables. Each table has an infinite number of seats. Every non-empty table has a
number denoted as ci, which is assigned to it. The number of customers is defined
as N − 1 which will be denoted as y1, y2, ...yn−1 in the following. A new customer
arriving at the restaurant assigned with the index N has now two possibilities:

• Joining one of the already seated k = 1, ..., K tables

• Open a new table k∗ which increases K by one

The probability of joining a table is defined within this model according to [68] as

p(ci = k|c−i, α) = N−i,k
N + α− 1 (2.52)

and the probability of opening a new table (see also [68]) is defined by

p(ci = k∗|c−i, α) = α

N + α− 1 (2.53)

In this context c−i is the assignment of all guests but yi and N−i,k the number
of all guests (but yi), which are sitting at table k. The concentration parameter
α is used to control the probability of opening new tables. Given for example
a constellation of N = 5 guests, where the two first guests are seated at table
c1 = c2 = 1 and the two other already seated guests are sitting at table c3 = 2
and c4 = 3. By setting the parameter α = 1 the probabilities to join a nonempty
table are p(ci = 1|c−i, α = 1) = 2

5 and p(ci = 2|c−i, α = 1) = 1
5 . The probability to

open a new table is p(ci = k∗|c−i, α = 1) = 1
5 . When increasing the value α = 100

however the probabilities change significantly. For a nonempty table one calculates
p(ci = 1|c−i, α = 100) = 2

104 and p(ci = 2|c−i, α = 100) = 1
104 and the probability of

opening a new one is p(ci = k∗|c−i, α = 100) = 100
104 . From these observations, the

following can be derived:

• As long as α� N a lot of new tables are opened

• When N ≈ α new guests are assigned to already seated tables. Hereby tables
which are ’fuller’ are preferred. Murphy describes this in [66] as the ’get richer
phenomenon’.

When looking now at the CRP, it is intuitively clear, that this method cannot be
used for clustering, because its result only depends on the number of guests on the
already seated tables and the parameter α. The individual properties of each data
point (=guest) do not influence the result anyhow. Therefore, the Weighted Chinese
Restaurant Process (WCRP) is introduced. To do so, every of the k = 1, ..., K tables
is associated with a parameter Θk. Using the already computed prior probabilities
p(ci = k|c−i, α) for every table k and k∗, one needs to calculate how good the
new guest does fit to the already seated persons y−i,k at a table k. This value is
called Posterior Predictive p(y−i,k, β) and can be computed according to the math

40 CHAPTER 2. BACKGROUND

defined in [68]. The probability of being seated at a table k can be computed by a
multiplication of of prior and posterior predictive (see also [68]) by:

p(ci = k|c−i, y, α, β) ∝ p(ci = k|c−i, α) · p(y−i,k, β) (2.54)

Collapsed Gibbs Sampler for DPGMMs
The formulas defined in the last paragraph can be used in a Collapsed Gibbs Sampler
defined according to [68] for training a Dirichlet Process Gaussian Mixture Model
(DPGMM) see Alg. 3. Basically the algorithm works as follows: In every iteration
every sample is removed once from its former (randomly assigned) cluster and
is reassigned to a new one according to the prior probabilities of the CRP and
the posterior predictive probability of the WCRP. However, this assignment is a
probabilistic one to the different tables. This results in a discrete distribution over
the table indices for every single value of k. For every iteration (each loop of iterator)

Alg. 3 Collapsed Gibbs sampler for DPGMM according to [68]
1: procedure collapsed gibbs sampler(y, α)
2: set random initial values ci for all data values yi
3: for iterator = 1 : 1 : T do
4: for i = 1 : 1 : N do
5: Delete the table assignment of yi
6: Update parameters of the table yi was removed from
7: Remove any empty table and decrease K accordingly
8: for k = 1 : 1 : K do
9: p(ci = k|c−i, α) = N−i,k

N+α−1
10: p(yi,k|y−i,k, β) according to [68]
11: p(ci = k|c−i, y, α, β) ∝ p(ci = k|c−i, α) · p(yi,k|y−i,k)
12: end for
13: //determine the likelihood and prior in case of opening a new table
14: p(ci = k∗|c−i, α) = α

N+α−1
15: p(yi,k∗ |β) according to [68] (set N = 1)
16: p(ci = k∗|c−i, y, α, β) ∝ p(ci = k∗|c−i, α) · p(yi,k∗ |y−i,k∗)
17: Normalize and then sample a new value ci from p(ci|c−i, y, α, β).
18: Use the new value ci to calculate an update.
19: Do K + + if a new table is opened
20: end for
21: end for
22: end procedure

in Alg. 3 of the algorithm a set of parameters is ’sampled’ including the number of k.
By repeating this sampling step multiple times a ’smooth’ distribution of values over
their value range can be generated. From these parameter-values the distribution
parameters of a non-infinite GMM can be easily derived.

2.4. VEHICLE DYNAMICS 41

Fig. 2.11: Parameters of the bicycle model. In dark gray the two wheels of the model are
depicted. In bright gray the axis and wheels of a road vehicle with two axis and
four wheels, simplified by the bicycle model, are depicted.

2.4 Vehicle Dynamics
To predict and analyze the behavior of moving objects different kind of models are
used. For use cases like tracking of vehicles in sensor fusion systems for example,
which have a high update frequency, often simple models are sufficient. Whenever
vehicle dynamics are getting more important for the problem to solve, e.g. trajectory
planning or even motion control the models applied need to be more realistic and get
more sophisticated. An overview of the most important models and their limitations
will be given within this section.

2.4.1 Point Models
Given information of the location and the state of an object within a coordinate
system the most simple approach to model its movement is by assuming its velocity
and acceleration staying constant. This means for every future position xf at a
time-point tf in its future the following is assumed:

xf = xo + v0(tf − t0) + 1
2a0 ∗ (tf − t0)2 (2.55)

where t0 denotes the time-point at which the position x0 was determined. In many
publications the movement hypothesis is called constant acceleration model (CA).
The vector of acceleration a0 is set to 0 in the most simple realizations of this
dynamic model, which is sometimes called constant velocity model (CV).

2.4.2 Kinematic Bicycle Model
In the Bicycle Model (often also: Ackermann Model) the two pairs of wheels of a
vehicle are lumped together to a single wheel, which is located in the middle of the
front, respective the rear axis. The model has two inputs to control its dynamics,
the acceleration a and the steering angle δ. The model is defined by:

42 CHAPTER 2. BACKGROUND

ẋ(t) =

a(t)

cos(Ψ(t))v(t)
sin(Ψ(t))v(t)

1
L

tan(δ(t))v(t)

 (2.56)

where

x(t) = [v(t), x(t), y(t),Ψ(t)]T (2.57)
u(t) = [a(t), δ(t)]T (2.58)
y(t) = [x(t), y(t)] (2.59)

as depicted in Fig. 2.11. The vehicles position x,y, its velocity v and the acceleration
a are defined with respect to the rear axis of the model. The parameter Ψ denotes
the orientation in a global coordinate system, while L defines the distance between
the front and the rear axis. The function x(t) denotes the time-dependent vehicle
state with respect to the bicycle model, u(t) the time-dependent control input and
y(t) the time-dependent position of the vehicle in the Cartesian coordinate system.
For convenience within this thesis the function h(x(t)) is introduced, which allows
the extraction of the position in the Cartesian coordinate system y(t) out of arbitrary
x(t).

y = h(x) (2.60)
However when using the model for control, planning and analysis purposes, one needs
to be aware of the limitations of the model simplifications. According to [69] the
kinematic bicycle model is a valid choice with only low error for dry road-conditions.
Planned trajectories are feasible as long as the lateral acceleration ay / 0.5g and for
low friction scenarios as long as the ay / 0.5µg. When analyzing scenarios where
the vehicle is close to the handling limits, a more realistic vehicle model needs to
be chosen. For highway scenarios, which are in the focus of this thesis the model
provides a good balance between realism and model complexity.

43

Chapter 3

System Concept and Architecture

The functionality developed in this thesis is tailored to generate safe fallback behavior
of automated vehicles. Within this chapter a possible system context is developed in
which the identified functions can be embedded. However, the specific functions even
if explained here in a top down manner can also be used in different use-cases as
defined in this chapter. Please denote, that the structure of this chapter is inspired
by the architecture framework ARC42, see [70].

3.1 Introduction and Goals
Within a Level-3 automated system for highway scenarios, see also Sec. 1.1, a fallback
functionality implementing a fallback behavior is needed in case a driver does not take
back control or the sensed data cannot be trusted anymore. In order to implement
such kind of system the following issues need to be considered:

• Future positions of other vehicles surrounding the system-vehicle need to be
anticipated where eratic driver behavior shall be modeled, too

• Based on the dynamic information and the predicted future positions of other
vehicles the system-vehicle needs to be able to plan feasible trajectories

• The computational effort needs to be reasonable and no additional hardware
shall be needed compared with the hardware a Level-3 system is already
equipped with

• The system shall be real-time capable

• The system shall show deterministic behavior

• The system behavior shall feel ’natural’ to the driver in the vehicle

3.1.1 Requirements Overview
The main purpose of the functionality developed within this thesis is the prediction of
other traffic participants and using this information to plan kinematic and dynamic

44 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

feasible trajectories which can be executed by an automated vehicle. The research
target is to evaluate which information available in a traffic scene can be used best
to infer the (future) behavior of other traffic participants, while keeping computing
effort reasonable. The main functions to be provided are:

• The extraction of measures possibly influencing the behavior of every vehicle
to be predicted in the traffic scene

• A methodology to select the most relevant features from this list of overall
measures

• A real-time capable algorithm which induces the current maneuver from these
most relevant features

• A real-time algorithm which is able to predict future positions using the features
and the maneuver class while handling uncertainty

• A real-time algorithm which is able to plan feasible and smooth trajectories
for the system-vehicle while considering the prediction information expressing
the future positions of other vehicles

Regarding the interfaces between the different functions, which implement the
aforementioned requirements, there is a special focus on keeping the information
flow linear. This means for example no feedback loop using the planned trajectory
as input for vehicle prediction purposes may be used. The combination of functions
is supposed to enable a Level-3 system to plan a behavior implementing the most
safe and comfortable trajectory when a fallback behavior is needed.

3.1.2 Quality Goals
In order to be usable in safety relevant systems, see Sec. 2.1, the functions developed
within this thesis need to fulfill several requirements regarding there quality.

Tab. 3.1: Quality goals of functions to be implemented to fulfill the functional requirements,
see Sec. 3.3.

Quality measure Explanation
Testability The functional blocks shall be testable individually in

order to find faults easier and therefore reduce the
number of faults of the overall system.

Reusability The functional blocks to be deployed in the vehicle
shall be reusable (with slight adaptations) for
different scenarios.

Modularity The functional blocks shall be usable independently,
e.g. a trajectory planner shall not depend on an a
specific algorithm solving the prediction task.

3.3. SYSTEM SCOPE AND CONTEXT 45

3.2 Architecture Constraints
When designing the Level-3 automation function in this thesis, the freedom of
design was limited to the design of the subsystem predicting traffic participants
and subsystem planning trajectories. Besides this, both subsystems are embedded
in a real-time, safety relevant real-time-system. This puts tough constraints of
computation time on the subsystems to be developed.

Tab. 3.2: Constraints which influence the design of functions within the system.
Quality measure Explanation
Constant Runtime The functional blocks to be deployed in the vehicle

shall finish their computation in an almost constant
time time-budget in order to comply with the
underlying software-framework. Additionally the
time-budget is highly limited.

Efficiency The functional blocks shall have minimal
requirements towards computational effort and
memory consumption, in order to be executed on
automotive embedded control units.

Determinism In order to be able to trace and understand possible
unwanted system behavior, non-determinism is not
acceptable for a safety relevant system. Therefore all
techniques, in which random numbers influence the
output of a functional block at runtime, are not
usable.

3.3 System Scope and Context
Having functions which predict the behavior of traffic participants and plan tra-
jectories, the question arises how these functions are embedded into the overall
automated vehicle. To clarify, which kind of data is needed as input for the system
and which are its outputs, the system scope needs to be clear. The overall system
is described in a building block view as follows in Fig. 3.1. As documented in this
building block view, the Level-3 system needs to react in accordance to the (sensed)
environment, a map as an additional model of the world and to the input of the
driver. The vehicles reactions however are limited to the putting force on the road
by steering, deceleration and acceleration, informing the driver and exterior light
output, i.e. flashing its indicators. All functionality within therefore needs to be
deployed in the most middle block, the conditional automated vehicle. This thesis
mainly tackles how the fallback behavior of a conditional automated vehicle can be
implemented within its technical context. In order to do so, in a first step the desired
behavior of the vehicle needs to be defined. From former studies it is known that

46 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

Environment

Driver Input

Force

Conditional
Automated Vehicle Driver Information

High Precison Map Light Output

Fig. 3.1: Building block view of the context in which the conditional automated driving
system perceives and acts on architecture level (-1).

a driver is able to take over control after a few seconds, see for example [14]. This
take over time-period is an upper-bound for the duration of the fallback maneuver.
However, as a conclusion from the studies, it cannot be guaranteed, that a driver
gets back into the loop in-time. Therefore, at the end of the fallback maneuver, the
automated vehicle needs to be in a safe state. Assuming the possibility, that a driver
does not take over control, therefore the vehicle needs to break down to a standstill.
In Fig. 3.2 exemplary scenarios and how the envisioned maneuver by the fallback
behavior are defined.

3.3.1 Business Context
The system as described in this thesis needs comply to the requirements of vehicles
sold to end-customers. Therefore, the use of expensive sensors or less reliable
non-automotive-grade sensor setups and computing units is not possible. For the
techniques developed within this thesis, this guides the way into the direction of
using simple and computational inexpensive methods.

3.3.2 Architecture Level (0) - Technical Context
The system developed within this thesis assumes a number of challenges on the way
to automated driving to be solved. All system inputs representing the environment
perception and map depicted on the top right in Fig. 3.3 need to deliver sufficient
output quality enabling a Level-3 automation. The system output, e.g. the braking
system and the relevant components of the active steering subsystem are assumed
to be implemented fail-safe, see Sec. 2.1. This also holds true for the connection in
between the subsystems. To achieve this different strategies can be pursued. One

3.3. SYSTEM SCOPE AND CONTEXT 47

Fig. 3.2: Fallback Behavior which to be executed by the Conditional Automated Vehicle
in case of a system failure. The green vehicle depicts the automated vehicle,
the slightly transparent vehicles depict the path it is supposed to take. The red
vehicle depicts the most critical vehicle for the designated fallback maneuver.
Due to the limited duration of the fallback behavior, multilevel maneuvers cannot
be executed. The desired behavior is limited to stopping in the current lane or a
lane change to the hard shoulder in case the automated vehicle is already on the
most right lane.

Camera
System

Lidar System

Powertrain

Automated
Driving Logic

Active
Steering

Radar System

Light Control

LocalizationMap

Ego
Motion

Vehicle Status

HMI

Brake

Fig. 3.3: Architecture level (0) building block view of the conditional automated driving
logic within its technical context and neighboring systems.

possibility is to design relevant parts of the subsystem redundantly, the other one is
to have a valid fallback strategy in-place. Both variants however require a monitoring
system which is either able to switch to the second redundant component or to
trigger a fail-safe strategy. Within this thesis these challenges are out of scope the
research presented. Nevertheless, it is important to understand the technical context
and the interfaces between the different subsystems of the presented conditional
automated system. Therefore, please see the following table, which describes the
interfaces depicted in Fig. 3.3:

48 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

Tab. 3.3: Interfaces to neighboring system in the technical context of the Automated
Driving Logic on architecture level (0).

Source Sink Explanation
Map Automated

Driving Logic
Data provided here contains at least geometry
of roads, lanes, their connectivity and other
static entities of the environment as requested
by the Automated Driving Logic.

Localization Automated
Driving Logic

Data contains the information enabling a
consumer to transform between global (e.g.
map coordinates) and local coordinate systems
(e.g. data sensed by radar or Lidar systems).

Radar System Automated
Driving Logic

Object representation of the dynamic
environment measured by radar sensor(s),
where each object contains at least sensor
relative information of position, velocity and
acceleration.

Lidar System Automated
Driving Logic

Object representation of the environment
measured by Lidar sensor(s), where each object
contains at least sensor relative information of
position, velocity and geometry.

Camera System Automated
Driving Logic

Object representation of the environment
measured by camera sensor(s), where each
object contains at least sensor relative
information of position, velocity, geometry and
object class.

Ego Motion Automated
Driving Logic

Information describing the ego motion of the
automated vehicle. This contains at least the
yaw rate, steering angle, velocity and
acceleration.

Vehicle status Automated
Driving Logic

Health state of the vehicle and its systems. In
case preconditions in this system are not met,
the driver is requested to come back into the
loop.

HMI Automated
Driving Logic

Data generated by input of the driver (e.g.
activation, deactivation of automation system).
Human-Machine Interface (HMI) is also
responsible to monitor the awareness of the
driver to take over control when needed.

Automated
Driving Logic

Brake Commands used to control the Brake as needed
to execute a planned trajectory. The data
generated in the block Automated Driving Logic
needs to consider the state and capabilities of
the brake when sending control signals.

3.3. SYSTEM SCOPE AND CONTEXT 49

Source Sink Explanation

Automated
Driving Logic

Powertrain Commands used to control the Powertrain as
needed to execute a planned trajectory. The
data generated in the Automated Driving Logic
needs to consider the state and the capabilities
of the Powertrain when sending control signals.

Automated
Driving Logic

Active Steering Commands used to control the steering system
as needed to execute a planned trajectory. The
data generated in the Automated Driving Logic
needs to consider the state and the capabilities
of the steering system when sending control
signals.

Automated
Driving Logic

Light Control Commands used to control the light system as
needed to inform other road users and to
improve the sensing capabilities of the camera
and the driver.

To gain a better understanding of how the different functions work together, an
overview of the functional chain is given in Fig. 3.4. Within this view, the interaction
between the automated driving function, its fallback-behavior and its neighboring
systems is defined.

In
fo

rm
at

io
n

R
et

rie
va

l
Au

to
m

at
ed

D
riv

in
g

Ex
ec

ut
io

n

Fa
llb

ac
k

B
eh

av
io

r

Sense
Environment

Display System
State to Driver

Start

End
Collect driver

input

Collect System
State

Takeover yes

Conditions
met?

Interprete
situation

Plan
behavior

Control
actors

Interprete
last valid
situation

Plan
Fallback
behavior

Control
actors

Execute
Fallback
behavior

Takeover?

yes

Fig. 3.4: View on the functional chain of the automated driving logic and its interactions
with its neighboring systems and functions.

50 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

3.4 Solution Strategy
In order to implement a fallback behavior for a conditional automated driving system,
which considers the quality and architecture constraints described in the former
subsections, a number of design decisions were made:

• To increase testability, the planning and prediction system were decoupled. This
decision also fosters a more loose coupling of software systems, see Fig. 3.5. This
loose coupling also increases the reusability and modularity of the functions,
so they can be implemented in different systems and use-cases.

• In order to have reproducible system behavior all methods do not use random
number at execution time. This ensures that same numeric input data always
results in the same numeric system output.

• In order to have a real-time capable system, all methods need to be executed
within a constant (and limited) run-time budget. This decision has an impact
on the choice of trajectory planning methods. In many optimization techniques
runtime is mainly influenced by initialization values and varies a lot. Therefore
it was decided to use sampling based methods for trajectory planning.

• To be deployed in safety critical systems algorithms need to be tested extensively
in order to detect bugs and potential critical (sub-) system behavior. In order
to handle such kind of problems, black box end-to-end learning approaches
(e.g camera input is used as input for a machine learning model which directly
generates control outputs for the actors) were not taken into consideration
as possible solution for the problem of generating a fail-safe strategy for the
conditional automated driving system.

• For the prediction of other traffic participants, the design decision was made
to model their behavior in a probabilistic fashion. This decision was driven
by the observation, that different drivers act in a different manner. This also
results in the decision to use machine learning for modeling driver behavior,
lead by the insight, that human driving strategies, technically speaking, are
influenced by high dimensional input vectors and cannot be approximated well
by low dimensional models like for example constant acceleration.

• The whole prediction system additionally was designed (and is limited to)
to handle motorized vehicles in highway (or similar) traffic environments.
Therefore the dynamic environment of the system developed in this thesis is
limited to be modeled as distinct objects and not for example in a grid.

3.5 Building Block View
This section provides a decomposition of the system Automated Driving Logic into its
subsystems and interfaces, which is called Level 1 in the following. A more detailed

3.5. BUILDING BLOCK VIEW 51

white box view of the building blocks is only defined for the subsystem Fallback
Behavior Generation which is the context of the contributions within this thesis.
This detailing of the subsystem into its components in called Level 2 view and can
be found in Sec. 3.5.2.

3.5.1 Architecture Level (1) - Automated Driving Logic
The white box view of the block Automated Driving Logic in Fig. 3.5 contains the
building blocks computing the values as needed to comply to the requirements of the
output interfaces using the input interfaces. Within this white box it also clarified,

Output
Interfaces

Fusion
Behaviour
Generation

Control

State Manager

Fallback
Behaviour
Generation

Input
Interfaces

Automated
Driving Logic

Lidar System

Localization

Ego Motion

Map

Vehicle Status

HMI

Camera System

Radar System

Light Control

Active Steering

Powertrain

Brake

Fig. 3.5: Whitebox block view of the Automated Driving Logic including the interfaces
to the neighboring systems. Dashed lines denote the non-functional status and
error information of systems and subsystem. Solid lines represents the functional
data needed to compute the output signals for the actors. Based on the state as
chosen by the State Manager, the fallback behavior or the standard behavior is
forwarded to the Control block.

which external interfaces are used for the individual blocks. The block State Manager
implements the mediator pattern as described in [71]. Depending of the state of
the subsystems within the Automated Driving Logic subsystem and the states of
the neighboring systems as provided by the Input Interfaces, the State Manager is
able to activate Conditional Automated driving. This is done by forwarding the
output of the Behavior Generation Subsystem to the Control block. By request of
the driver implemented by the external HMI system, the driving automation can be
deactivated. In case of a critical fail state of one or multiple sensor subsystems, the
data generated by the Fusion module may not be sufficient trustworthy to continue
the automated ride. In such cases the driver can be alerted using the HMI and the
output of the Fallback Behavior Generation block is forwarded to the Control block.
Within this thesis only the block Fallback Behavior Generation and its interfaces
will be explained in more detail in the next subsection. Please see the following table
for an explanation of the functionality implemented in each block:

52 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

Tab. 3.4: Architecture level (1) subsystems and their responsbility within the system
Automated Driving Logic.

Name Responsibility
Fusion Fuses dynamic object information as provided by

the Camera, Lidar and Radar System into one
representation in one ego-centered coordinate
system, using Ego Motion information. Based on
Localization data and Ego Motion Information,
Map data is transformed into the same local
coordination system as sensed by the other
sensors. The information is then fused with the
static object information provided by Camera,
Lidar and Radar. The output of the fusion block
is an object oriented representation of the static
and dynamic world in one coordinate system.

State Manager Manages the overall conditional automation state
of the automated vehicle. Therefore, it consumes
the states of all functional relevant neighboring
systems and subsystems and implements an
overall state logic.

Behavior Generation Plans feasible trajectories to be executed by the
Control Block. Trajectories are supposed to be
driveable, collision free, comfortable, and be
compliant to traffic rules. Therefore, this module
is not only in charge to analyze the current
situation but also handle the Dynamic Driving
Task (DDT).

Fallback Behavior Generation Continuously plans a fallback driving maneuver
and trajectory for a given output of the Fusion
module. The main difference to the Behavior
Generation Module is, that replanning is not a
solution strategy on how to interact with other
traffic participants. Trajectories need also to be
driveable, collision free and comply to traffic
rules.

3.5. BUILDING BLOCK VIEW 53

Name Responsibility

Control Controls the actors, namely brake, powertrain
and active steering. To do so it needs to consume
the planned trajectory provided by Behavior
Generation or Fallback Behavior Generation. In
order to compute feasible outputs detailed
models describing the dynamic behavior and the
limitation of the powertrain, braking system and
active steering are considered.

3.5.2 Architecture level (2) - Fallback Behavior Generation
In this subsection a more detailed insight in the structure of the block Fallback
Behavior Generation will be given. All other blocks defined on architecture level (1)
(see Fig. 3.5) will not be described, due to not being part of the contribution of this
thesis. The block Fallback Behavior Generation decomposes into three functional

Output
Interfaces

World Model
Generation

Feature Extraction

Trajectory
Planning

Maneuver
Estimation

Action Space
Generation

Input
Interfaces

Fallback Behavior
Generation

Fusion

Control

Position
Prediction

Maneuver
Planning

State Manager

Fig. 3.6: Architecture level (2) white box block view of the Fallback Behavior Generation
block including the interfaces to the neighboring systems. Dashed lines denote the
non-functional status and error information. Solid lines represent the functional
data needed to compute the output signals for the actors.

clusters. The first cluster consists of only one block, the World Model Generation.
In this block all entities delivered by fusion are set into relation, e.g. vehicles are
assigned to lanes. The second cluster consists of the block Feature Extraction,
Maneuver Estimation and Position Prediction. Within this cluster the way how
others traffic participants will act is estimated. The third cluster consists of the
Action Space Generation, the Maneuver Planning and the Trajectory Planning block.
It computes the fallback trajectory of the ego vehicle using the information of the
two other blocks.

54 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

Tab. 3.5: Architecture level (2) Subsystems and their responsibility within the subsystem
Fallback Behavior Generation.

Name Responsibility
World Model Generation Generates relations between the different

semantic entities of a scene for example lanes,
roads, vehicles. Relations may contain multiple
measures, e.g. the relative position or the right of
way. Please see Sec. 4.5 for more details.

Feature Extraction Computes the inputs which are needed to
estimate the maneuver class and the future
trajectories of other traffic participants. Which
features are the ones which are relevant is
determined beforehand offline. Please see
Sec. 4.8.2 and Sec. 4.9.3 for more details.

Maneuver Estimation Estimates the probabilities of the different
maneuvers a vehicle may be executing at the
moment. Maneuvers can be for example
lane-following or a lane change to the right.
Please see Sec. 4.8.3 and Sec. 4.9.4 for more
details.

Position Prediction Based on the estimated maneuvers, the kinematic
state vector of a vehicle and its relations to the
environment future positions as a function of
prediction time are estimated within this block.
Please see chapter 5 for more details.

Action Space Generation Based on the environment and the information
generated out of the Position Prediction block a
model of the dynamic freespace is generated here.
Action Space in this context is defined as a kind
of gap on a lane as a function of time. Please see
Sec. 6.6 for a more detailed explanation.

Maneuver Planning Based on the dynamic freespace model generated
in the former block the possible maneuvers are
estimated. The output is a sequence of 1..n
action spaces. Please see Sec. 6.6.

Trajectory Planning Out of the sequence of action spaces defined by
Maneuver Planning, in this block a controllable
collision-free trajectory is computed which is then
forwarded to Motion Control. Please see
chapter 6.

The main contributions of this thesis are within the building block Feature

3.6. RUNTIME VIEW 55

Extraction, Maneuver Estimation (see chapter 4), Position Prediction (see
chapter 5)and Trajectory Planning, see chapter 6. A brief sketch how the building
block Action Space Generation can be implemented is described in chapter 6. The
functin of the block Maneuver Plannings is limited to two one-step maneuvers,
namely braking in the own lane or performing a lane change to the hard shoulder,
see Fig. 3.2. Due to this limitation, it is not described in more detail in this thesis. A
more detailed view on the respective functions can be found in the respective chapters.

3.6 Runtime View
The runtime behavior of every component of the described conditional automated
system when applied in a product is determined by the underlying architecture of
AUTOSAR, see [72]. AUTOSAR in this context is a standard defined to achieve
a standardized architecture for automotive computing units by various OEMs and
suppliers. Therefore, in this section only a brief insight in the system interactions
on architecture level (1) will be given. An overview how the conditional automated
system is activated and how the interactions work in a fallback scenario are depicted
in Fig. 3.7 and Fig. 3.8. In Fig. 3.7 the signals which need to be available in order to

HMI
State

Manager
Fusion

Behavior
Generation

Fallback
Behavior

Generation
Control

Level-3
Request

state=good
state=good

state=good
state=good

activate activate activate

While

[states=good]
Provide Trajectory

acknowledge

provide data provide data

Fig. 3.7: Simplified view of activation of conditional automated system upon request of
Driver. To increase understandability only the most relevant interactions are
depicted.

activate the automated driving are documented. It is important to understand, that
in every cycle both, the Behavior Generation and the Fallback Behavior Generation
block compute a trajectory, but only the trajectory of the non-fallback module is
forwarded to the Control block.
The reason to do so gets more clear when looking at the sequence diagram,

describing the interaction in case the Fallback Performance needs to be activated,
see Fig. 3.8. If this is the case, no valid information is available anymore from the

56 CHAPTER 3. SYSTEM CONCEPT AND ARCHITECTURE

HMI
State

Manager
Fusion

Behavior

Generation

Fallback

Behavior

Generation

Control

state=fail
state=good

state=good

acknowledge

provide trajectory

If

[Take Over]
deactivate deactivate

deactivate

Take Over

Fig. 3.8: Simplified view of activation of the fallback performance of the conditional auto-
mated system upon failure of the Fusion module. To increase understandability
only the most relevant interactions are depicted.

Fusion block and no updated trajectory can be computed. Therefore, the Fallback
Behavior Generation module relies on the last valid information available, which is
typically not older than 20ms− 100ms. In case the need for the fallback trajectory
is detected, the trajectory is selected as input to the Control block.

3.7 Risks and Technical Debts
In the following section, a brief overview on the technical risks is given. These risks
result from the technical design defined in the former sections.

The first risk for the reusability of the presented approach is the missing interaction
between the prediction and the planning part. Not explicitly modeling this interaction
is a valid approach when planning a single level maneuver like a fallback trajectory,
which typically takes not more time than a few seconds. The simplifying assumption
may not hold true when exploring multilevel maneuvers like an overtaking. In such
cases interactions between different participant may play a larger role compared to
fallback maneuvers. Trajectories planned and executed by the ego vehicle strongly
influence the maneuvers executed by other traffic participants, which again has an
impact on the planning of the system vehicle. In case one wants to reuse the existing
functionality, the architecture needs to be changed and the Behavior Planning module
needs an interface to request object behavior for multiple ego-trajectory hypothesis.
The second risk is the limitation of the whole approach to a 2D representation.

This limits the reusability of functions and architecture especially in city scenarios
where steep roads may exist. To deal with a full 3D representation, the features
space and the dimensionality of the position prediction output needs to be increased.
For the trajectory planning part presented in chapter 6, the simple 2D approach
presented in this thesis may be sufficient to be used for strategic and tactical planning.
However, for the trajectory planning part new functionality needs to be developed

3.7. RISKS AND TECHNICAL DEBTS 57

when such use cases are present.
The third identified risk deals with the generalization of machine-learning tech-

niques. The prediction system may produce non-feasible results when trying to
handle situations which are not (or only in a very homeopathic number) available in
the training datasets collected in real world. There are multiple measures to handle
this. One would be to add synthetic data generated by simulated scenarios. To do
so, the situation space to be handled by the system needs to be defined beforehand.
Data can be then extracted from the simulations and added to the training data.
Another option is to compute the confidence of the methods for every prediction.
Confidence in this context can be intuitively be understood by how similar the data
is compared to data seen in the training phase of the model. Whenever this value is
below a threshold to be defined, the Behavior Generation may be deactivated by the
State Manager, and the fallback behavior planned in the last cycle can be executed.

59

Chapter 4

Maneuver Recognition

Observations of traffic participants and the environment enable humans to drive
road-vehicles safely. However, when being driven by a second person, one recognizes
differences between a non-experienced in contrast to an experienced driver. One
may get the feeling, that the latter one anticipates what may happen in the next
few moments and considers this foresight in his driving behavior.
According to the system architecture defined in Sec. 3.5.2 a functional block to

implement such kind of skill needs to be available in a Level-3 automated system.
Besides the data-flow depicted in the system architecture in this thesis, there are
several use-cases where such kind of information is useful. Be it risk estimation,
object selection for adaptive cruise control, behavior planning purposes or as input
of motion prediction algorithms.
The chapter starts with the definition of the problem to be solved in Sec. 4.1.

Related to the problem definition an overview on related work is presented in Sec. 4.2.
Referencing the related methods, the contribution of this chapter is presented in
Sec. 4.3. To provide the reader with a high-level overview of the method, the
architecture and design decisions envisioned to solve this problem are detailed in
Sec. 4.4. As the basis for all investigations in this chapter, the concept of the
environment model is presented in Sec. 4.5. In order to be able to select the most
meaningful features, the techniques applied for feature selection are explained in
Sec. 4.6. Accordingly, the methods to generate classification models are presented
in Sec. 4.7. Two experiments attacking this problem are presented in this chapter.
The first one in Sec. 4.8 applies a heuristic feature selection strategy to solve the
defined problem. Within the first experiment models are generated using a small
dataset. The evaluated models were selected with the focus of having minimal
requirements regarding runtime and memory. The second experiment in Sec. 4.9
focuses on maximizing the performance for a prediction horizon of 5.0 s using a
large dataset while still maintaining acceptable requirements regarding memory and
runtime budget on automotive hardware.

The work presented in this chapter is mainly based on already published work in
[73]–[76]. The references are documented also in the introduction of the respective
sections.

60 CHAPTER 4. MANEUVER RECOGNITION

4.1 Problem Definition
Lane change recognition or prediction has already been investigated in various
publications, see Sec. 4.2. Many of these approaches only focus on the motion-state-
vector of the vehicle to be predicted and only use local information like the distance to
a marking to predict lane changes. However, global information clearly influences the
behavior of human drivers. Such kind of information can be for example the relation
to the vehicle in front, the traffic flow or the distance the next exit ramp. Such kind
of information is not in considered in most approaches. Therefore, the problem to be

Output
Interfaces

Input
Interfaces

World Model Maneuver Recognition
Inferred

Maneuvers

Fig. 4.1: Architecture level (3) black box diagram depicting the in and output interfaces
of the functions to be defined in the context of maneuver recognition.

solved is the generation of a classification method, which is capable to estimate the
probability of a maneuver execution by a vehicle based on all information available
and measurable in a traffic scene. Within the investigations also answers to the
following questions are presented.

• How early and precise can a lane change be detected based on all the information
available in a typical traffic scene?

• Which subset of all conceivable features shows the best trade-off between
classification performance and a desirable small number of features?

Due to the fact that vehicles follow the lane most of the time, the classification
problem is also highly unbalanced. In comparison to the time vehicles follow the
lane, the time period in which a lane change is executed is pretty short. For the
definition of a lane change time point please see Fig. 4.2.

4.2 Literature
The term ’recognition of driving maneuvers’ is strongly linked to terms like prediction,
intention recognition and situation assessment. In this section a short overview of
approaches attacking the problem of inferring the executed maneuver of traffic
participants is given. In [22], a SVM is used by Kumar et al. with a feature vector

4.2. LITERATURE 61

t-3
t-2

t-1

t0

t1

Fig. 4.2: The time point of a lane change is defined as the point, at which the middle of
a vehicle crosses the middle of the lane marking to the neighboring lane. Within
the figure this is pictured by the red colored vehicle at the lane change time point
t0.

consisting of the lateral relative position of a car in the lane, the steering angle
relative to the road curvature and the first derivatives of these two features. By using
a Bradley Terry Model, a probabilistic output is generated from the result of the
SVM. This probabilistic output is then processed by a Bayesian filter for the final
lane change intention prediction. By using this filter the precision of the classification
algorithm is significantly improved. In [77], Feed Forward Neural Networks FFNN,
Recurrent Neural Networks RNN and SVMs are compared by Dogan et al.. The
research uses different combinations of features consisting of lateral relations to the
corresponding lane, steering angle, the Time To Collision Time to collision (TTC)
to the preceding car and the curvature of the road. The evaluation of the method
demonstrates, that the SVM achieved the best results followed by the Recurrent
Neural Networks (RNN). Furthermore, the usage of the TTC to the car in front
reduced the false positive and false negative rate and increased the prediction time.
In [23], an object oriented Bayesian network is used for the recognition of lane
changes by Kasper et al.. The feature set consists of the movement in relation to the
assigned lane and a free-space representation. This approach predicts a lane change
0.6 s earlier than a standard adaptive cruise control system. In [24], a Case-based
reasoning approach is used by Graf et al. to detect cut-in maneuvers of vehicles. The
approach uses a feature set consisting of the relative distance and velocity between
the vehicle in front and the system vehicle. The final features were chosen using
temporal abstraction and consisted of trend and level information of the relative
distance and velocity. The evaluation shows that the approach has the ability to
detect lane change maneuvers until 2.3 s before a car is in the target lane with a
percentage of correct classifications of 79%. Weidl et al. introduces [78] a system
being capable of detecting lane changes with high accuracies (>99%), approximately
1 s before their occurrence. For this purpose, dynamic Bayesian networks are used.
The method in [79] presented by Wissing et al., is capable of detecting lane changes

62 CHAPTER 4. MANEUVER RECOGNITION

approximately 1.5 s before their occurrence. To do so the lane change probability is
determined using a situation- and a movement-based component, where an F1-score
of more than 98% is achieved. In the research [80] of Bahram et al. an interaction-
aware heuristic model is combined with an interaction unaware learned model. The
heuristic model, which is based on game theory, implements a classifier based on
Bayesian networks. In the evaluation the method demonstrated its ability to detect
lane changes on average 1.8 s in advance, with an AUC better than 93%.

4.3 Contribution
The contribution of this chapter is a strategy how the problem of maneuver recognition
can be solved in structured traffic environments systematically. This strategy enables
the development of models ’understanding’ traffic situations. Thus, the developed
models are able to detect intentions of other road vehicles several seconds in advance.
The key contribution within the overall strategy is the development of a scheme

how the superset of potential relevant features can be derived systematically. The
presented approach in this aspect differs strongly to prior work, in which features
are mostly selected based on ’expert knowledge’. The superset of features derived
by the presented method contains on the one hand a representation of the traffic
situation and the relations to potentially interacting vehicles. On the other hand the
superset contains information of the static environment and its semantics. Using
state of the art techniques for feature selection, the most relevant features were
selected for the respective classifications methods. This investigation provides the
second contribution, which is the identification of features which are relevant to
determine whether a vehicle may execute a lane change. The third contribution of
this chapter are the developed models for lane change intention recognition. The
evaluation shows, that the application of the proposed strategy, hand in hand with
the application of lightweight machine learning models, provides superior results
compared to prior work.

4.4 Solution Design
To solve the problem outlined in Sec. 4.1 a design tailored to the problem domain
and complying to the black box architecture defined in Fig. 5.1 is presented in this
section. The problem is a probabilistic classification problem which can be treated
as black box problem by machine learning techniques. For the work presented in
this chapter, four design decisions are documented in the following, which provide
guidance regarding methods and experiments.
Accordingly, the first design decision is not to limit the number of features

beforehand. Similar to human stimulus processing, in a first step the environment
shall be sensed and a superset of possible relevant features shall be extracted. As
in popular models of human perception chains (e.g. [81]), the information, which
is important has to be selected in a second step. In machine learning, this can

4.5. ENVIRONMENT MODEL 63

Output
Interfaces

Input
Interfaces

World Model
Feature

Extraction
Maneuver
Estimation

P (Flw)

P (LcR)

P (LcL)

Feature
Selection

Fig. 4.3: White box view on architecture level (3) on the maneuver recognition approach
presented in this thesis, see also Fig. 3.6 for the embedding in the system context.

be implemented by feature selection techniques. Selecting only the meaningful
features typically does not only improve the prediction performance of a classification
algorithm, it also reduces the complexity of the model to be trained. This property
helps to reduce the runtime which is important for the envisioned use case.
The second design decision is to use the Markov assumption for determining

maneuver probabilities. This means for the case of maneuver recognition, that the
probability of executing a maneuver at the next time-point in future only depends
on the maneuver executed at the current time-point and the current situation. This
explicitly excludes, that the sequence of events which preceded the current situation
needs to be considered.

The third design decision is to limit the maneuvers to be recognized to lane change
to the right (LcR), lane change to the left (LcL) and lane following (Flw). This
decision is based on the envisioned highway use-case. All maneuvers in the lateral
domain (e.g. overtaking) can be modeled as a sequence of these basis maneuvers.

Finally, the fourth design decision limits the complexity of the environment model
defined for the investigations. As comparably cheap series and close to automotive
series sensors are used, the range of sight for which features can be derived is limited.
Thus, all features which are based on relations to other vehicles are only derived for
direct neighboring vehicles, see Sec. 4.5.

The design decisions are reflected in the white box building block view, depicting
the design on architecture level (3) in Fig. 4.3.

4.5 Environment Model
When approaching the problem of predicting traffic participants, the question arises:
What are the relevant features, which have a major influence on the behavior of traffic
participants in highway-scenarios? To attack this issue a method to systematically
decompose the traffic environment of vehicles in highway scenarios is presented here.
The approach distinguishes mainly between three classes of relations, see Fig. 4.4.

64 CHAPTER 4. MANEUVER RECOGNITION

Rinfra includes all features to the infrastructure (e.g. distance to next ramp), Rvehicle

describes the relations to the vehicles surrounding the vehicle of interest. Ro includes
the features which relate to the vehicles own status or the relations to the lane its
located in, e.g. the lateral distance to the center of the lane. Please note, that the

…

𝑅𝑠𝑐𝑒𝑛𝑒

𝑅𝑖𝑛𝑓𝑟𝑎 𝑅𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑅𝑜

𝑅𝑓𝑜 𝑅𝑓𝑙

𝑓1

𝑅𝑡.𝑏.𝑑.

𝑓1

…

… 𝑓𝑙 𝑓1𝑓1 … 𝑓𝑚 𝑓1𝑓1 … 𝑓𝑛

𝑓1𝑓1 𝑓𝑘 𝑓1𝑓1 … 𝑓𝑜

Fig. 4.4: Feature hierarchy used for the derivation of features for predicting vehicles in
highway scenarios.

relation Rvehicle is decomposed into different subclasses including the features to
each relating vehicle taken into account for prediction, see Fig. 4.5. When using the
technique for the feature derivation as described in Fig. 4.4 an unbounded number of
relations to vehicles surrounding the vehicle to be predicted can be defined. Within
the experiments however, the number of vehicles is bounded to the eight nearest
neighboring vehicles, as can be seen in Fig. 4.5. There are two important reasons for
this limitation. On the one hand the complexity of the model shall be kept reasonable.
In case there is evidence missing information is limiting the prediction performance
significantly, the model is extend-able straightforwardly in future investigations. On
the other hand the range of the sensors available in the experiments is limited. For
example the second predecessor of a vehicle cannot be measured and tracked with
sufficient stability in most cases.

The environment model defined for the derivation of the features is simplified by
using a curvilinear coordinate system along the curvature of the road, in which all of
the following features f are computed, see section 2.2.2. Using the feature hierarchy
of Fig. 4.4 the feature vector Fsit is therefore defined as:

Fsit =
(
Rvehicle Ro Rinfra

)>
(4.1)

where Rvehicle is the concatenation of the relations to the neighboring vehicles,

Rvehicle =
(
Rfl Rfo Rfr Rl Rr Rbl Rbo Rbr

)>
. (4.2)

4.6. FEATURE SELECTION TECHNIQUES 65

vehfo

vehfr

vehlvehbl

vehbo

vehbr vehr

vehfl

Fig. 4.5: Relation vectors Rr are generated to the cars which directly surround the observed
vehicle o, for which one wants to determine the maneuver probabilities PLcL
PLcR and PFlw. In this example the vector Rfl, is shown, which is the relation
between observed vehicle o and the vehicle positioned relative in (f)ront on the
(l)eft lane.

For the experiment in this chapter it was assumed, that the defined set of features
contains all measurable information allowing to infer about the future behavior of
other traffic participants. Even if some of those features are highly dependent, the
number of features shall not be limited beforehand, but in the feature selection
process in the respective experiments.

4.6 Feature Selection Techniques
To improve the prediction performance of the algorithm detecting maneuvers and to
reduce the calculation effort for predicting on devices with limited computational
power, a subset of features shall be selected from the available superset of possible
features. Many approaches how feature selection in machine learning can be done
is documented in literature. In the implementation of the different strategies the
findings of [62] are used. In the following an overview on filtering and wrapper
strategies for feature selection will be given.

4.6.1 Filtering
Filtering methods are one of the most simple way to do feature selection. Instead
of using a trained model for the selection of features, heuristics as for example
correlation measures are used. Consequently, filtering can be executed faster than
wrapper methods and thus the methods scale well even for a lot of features. Used
for natural data they can provide good results, see [62]. One distinguishes between
methods computing correlation measures, methods computing information theoretic
measures, single variable classifiers and learning algorithms as a filter for other
learning methods (e.g. tree based methods can be applied for feature selection).

66 CHAPTER 4. MANEUVER RECOGNITION

Within this thesis, when using filtering techniques mainly correlation based methods
are applied. According to [82] the goal of correlation based feature selection methods
can be formulated like this:

A good feature subset is one that contains features highly correlated
with (predictive of) the class, yet uncorrelated with (not predictive of)
each other.

The weakness of methods purely focused on correlation is on the one hand, that
the properties of the classification algorithm are not taken into account. On the
other hand correlation based methods are not able to identify meaningful features
which according to [62] are: ’completely useless by itself but can provide a significant
performance improvement when taken with others.’ However, experiments [83] show
strong evidence, that on natural data correlation based methods for feature selection
improved or at least provided comparable prediction performance when compared to
predictors using the full feature-set. A decrease of performance can be expected in
cases where features are predictive in only small areas of the available data [82]. One
can think of different heuristic strategies to select features based on their correlation
with the target value and their feature cross-correlation. A more systematic approach
is the Correlation based Feature Selector (CFS) introduced by [83]. For all feature-
sets S the ’merit’ MS as a measure of the predictive performance is computed by:

MS = nrcf√
n+ n(n− 1)rff

(4.3)

where n describes the number of features, rcf is the mean correlation of all features
with the class label. The variable rff describes the mean feature-feature inter-
correlation of all features within S. As can be seen in (4.3), strongly correlated
features in a feature-set S will reduce the value of M while a stronger correlation
with the class label rcf will enlarge it. All these computations rely on the assumption,
see also [83], that there are no strong feature interactions present in the dataset,
but instead that every relevant feature alone is at least weakly correlated with the
class label. To avoid only measuring linear dependencies between a variable and an
outcome, as when using Pearsons correlation coefficient, within this chapter rank
correlation criteria are used. See [84] for an empirical survey and Fig. 4.6 for a visual
explanation why rank correlation are able to provide the more meaningful results.
Another possibility for filtering according to [62] are Single Variable Classifiers.

The main idea behind this approach is to measure the predictive performance of each
feature by itself by building a classifier for every single feature. Based on a threshold
of a performance measure, for example the accuracy, features are selected or not.

4.6.2 Wrapper Techniques for Feature Selection
The most popular wrapper techniques for feature selection are according to [62]
forward selection and backward elimination. Both techniques in general require a
higher computational effort compared to filtering methods. While forward selection

4.7. CLASSIFICATION METHODS 67

4 6 8 12 16

4
6
8

10
12

x1

y 1
4 6 8 12 16

4
6
8

10
12

x2

y 2

4 6 8 12 16

4
6
8

10
12

x3

y 3

4 6 8 12 16

4
6
8

10
12

x4

y 4
Fig. 4.6: Anscombe’s Quartet shows the weakness of Pearson’s linear correlation coefficient

by not taking into account non-linear dependencies and being non robust against
outliers. All four datasets are constructed in a way, that they own the same
value for Pearson’s correlation coefficient, even though the dependencies are
strongly different.

techniques stepwise include the most meaningful features into the feature subset,
backward elimination starts with the whole featureset and subsequently removes the
features having the least contribution to the performance of the model. Speaking
from a high-level perspective, forward selection tends to be computational more
efficient to generate a set of variables maximizing the predictive power of a classifier.
On the other hand backward elimination tends to select stronger sets of variables,
mainly because the importance of each variable is investigated considering to possible
dependencies to other variables within the feature-set [62]. The main advantage of
both wrapper techniques is, that the learner itself is handled as a black box, but its
properties are considered implicitly within the learning process. When striving for a
really small number of features backward elimination may remove a feature with
the best predictive power on its own in favor to a set of variables which together
outperform this single feature [62].

4.7 Classification Methods
Several methods and techniques were used to estimate maneuver classes and class
probabilities within the experiments of this thesis. In this section a short survey of
the methods applied in this chapter is presented.

4.7.1 Naïve Bayes
The Naïve Bayes algorithm is a generative learning algorithm. Its naivety is reasoned
in the assumed conditional independence between the different features. While

68 CHAPTER 4. MANEUVER RECOGNITION

it has a higher asymptotic error than discriminative models, it approaches its
asymptotic error faster than a discriminative classification model when the number
of training samples increases [42]. Even if its model assumptions do not hold true,
the classification performance on real world applications is often surprisingly good
[85]. For a multi-class problem the application of the Naïve Bayes algorithm can be
explained as follows: The probability of a sample Z = f1, f2...fn with the features fi
belonging to a class c with C = {c1...cm} is:

p(c|Z) ∝ p(Z|c)p(c) (4.4)

and
p(Z|c) =

n∏
i

p(fi|c) (4.5)

Using these calculations, the probabilities of a sample belonging to the different
classes can be determined. When applied as classification technique, different decision
threshold strategies can be used to decide for a class to which a sample belongs.
Although most implementations of the Naïve Bayes Classification algorithm assume
a normal distribution of the variables, this is obviously not a valid assumption in
general, thus an appropriate distribution model shall be selected to improve its
classification performance.

4.7.2 Support Vector Machines
A popular discriminative classification algorithm which works well even when fed
with little data, is the method of Support Vector Machines (SVM). The advantage
of the method are the comparable high precision and good generalization abilities
on ’realworld data’. When applied within this thesis, the popular LibSVM imple-
mentation was chosen, see [86]. The reason for the good performance of SVMs can
be seen in the structural risk minimization principle, which also provides an upper
bound on the risk of misclassifications. This bound, which implicitly characterizes
the generalization ability of the classifier, is determined not only by the training
error Remp, but also by the complexity of the model used, [87]:

R(α) ≤ Remp(α) +

√√√√√√h

(
log

2l
h

+ 1
)
− log

η

4
l

(4.6)

Hereby, with p = 1 − η, the probability of the validity of the upper error barrier
can be described, where l denotes the number of training samples. The variable h
represents the Vapnik Chervonenkis VC dimension of the function class (in the linear
case, for example, in Rn at most h = n+ 1 points can be arbitrarily separated). As
the number of training samples increases, an increasingly complex function class can
be chosen, while the risk barrier remains the same. In its basic form, a SVM is a
linear classifier for a two-class problem with the labels y ∈ {−1, 1}, which maximizes
the width of the ’margin’ to the boundary points of the data of the respective class,

4.7. CLASSIFICATION METHODS 69

(a) The SVM solves the
problem of which of
the possible separating
planes is the ’optimal’
one.

(b) This is done by select-
ing the plane with the
largest margin to the
support points of the
samples.

(c) By applying the kernel
trick also a non-linear
separation of the data
can be realized.

Fig. 4.7: Visualization of the fundamental idea of Support Vector Machines.

the ’support vectors’, see Fig. 4.7. To apply the method on multi-class problems
a one vs-all strategy can be implemented. It can be shown that maximizing the
width of the margin is equivalent to minimizing the magnitude of the normal vector
w, which defines the position of the plane in space. However, for this optimization
problem, there are l constraints for all training samples x:

y ∗ (〈w, x〉)− b) ≥ 1 (4.7)

where b is the support vector of the separating plane. If one wants to apply this
technique to nonlinear problems, one uses the ’kernel trick’, where the scalar product
in the above formula may be replaced by a Radial Basis Function (RBF), a polyno-
mial, or the like. This implicitly realizes the scalar product after a transformation
into a higher-dimensional space in which data can be separated linearly. In all
implementations in this thesis an RBF is applied for doing so. Please find a visual
explanation of the method in Fig. 4.7. The additional, free parameter γ which is the
free parameter of the RBF, as well as the parameter c, were optimized by means of a
5-fold cross validation when used in this thesis, see the documentation of [86] for an
explanation. The parameter c herein characterizes the weighting of misclassifications
on the parting line, the so called ’soft margin’.

4.7.3 Random Forests
When classification problems get more complex and an ideal separating plane in a
high-dimensional data-space is shaped in a non-trivial fashion, independence between
the features cannot be assumed in general. Thus, linear classifiers like the Naïve Bayes
may produce non-optimal results. A popular method to attack such kind of non-
trivial classification problems are Random Forests [88], which have gained popularity
because of their good classification performance even for high dimensional data. The
method is an ensemble of several Decision Tree Classifiers. Each Decision Tree of
a Random Forest (as shown in Fig. 4.8) splits at each stage all presented samples
into two groups based on a threshold of a specific feature. The free parameters of
the model to be optimized prior to training of the final models are nume as the

70 CHAPTER 4. MANEUVER RECOGNITION

number of trees and the maximum tree depth maxd. Additional advantages of the
Random Forest (RF) method are re their fast learning and prediction process, their
easy parallelization capability, their high accuracy, and the property that they are
white box models, meaning that each result can be retraced easily, see [89].

4.7.3.1 Training of Random Forests

In the usual training process Decision Trees are stepwise generated as follows: In
each step a subset of the training data is randomly selected. For n randomly selected
features the best threshold to split all samples in node q into two parts, defined by
the lowest Gini impurity H(Xg

q) is calculated by:

H(Xg
q) =

∑
m

Pq,m(1− Pq,m) (4.8)

where n is a parameter which is constant for the whole Random Forest and has to
be lower than the number of all features. Pq,m describes the probability of class
m in node q, see (4.9). Out of these thresholds the split with the lowest H(Xg

q) is
selected as a new split. This splitting step is repeated until the maximum tree depth
is reached or there are not enough remaining samples for a further split, see Fig. 4.8
for an example consisting of two trees. For a more detailed discussion, see [88].

feature 1 <= 0.2

gini = 0.5

samples = 500

feature 3 <= 13.2

gini = 0.487

samples = 405

feature 1 <= 0.9 feature 4 <= 5.6

samples = 123 samples = 282

gini = 0.464 gini = 0.494

gini = 0.336

samples = 89

gini = 0.36

gini = 0.461

gini = 0.409

samples = 125

samples = 157
samples = 34

value = [26, 8]

value = [19, 70]
value = [45, 80]

value = [112, 45]

Node 0

Node 2

Node 4Node 3

Node 6
Node 8

Node 7
Node 5

feature 3 <= -0.6

feature 3 <= -5.6

feature 2 <= 9.6

gini = 0.271

gini = 0.488

gini = 0.498

gini = 0.5

samples = 500

samples = 404

value = [26, 135]

samples = 161

samples =288

Node 9

Node 10

Node 13

Node 16

Fig. 4.8: Simple example of a Random Decision Forest, which is an ensemble of nume = 2
decision trees. The decision process for an example dataset d = [3.2, 9.7,−7.1, 0.2]
is highlighted in white, see [75].

4.7.3.2 Classification using Random Forests

For each single tree of the Random Forest the probabilistic prediction result of a
class m can be determined as the probability of this maneuver in the corresponding
leaf node q as Pq,m, see (4.9). Within this thesis and consistent with [75] the final
probability estimates Pm of the Random Forest are computed by computing the
average of all trees of the forest, see [89]. This contrasts with the original publication

4.7. CLASSIFICATION METHODS 71

of Breiman [88], where the predicted class is chosen by the maximum number of
votes of the single trees.

Pq,m = Nq,m

Nq

= 1
Nq

∗
∑
xi∈Rq

I(yi = m) (4.9)

The probability Pq,m of a class m in a node q can be calculated as the proportion
of Nq,m to Nq. Nq,m is calculated as the sum of all samples xi ∈ Rq with the label
yi which belong to class m. A sample is an element of a data-region Rq if it fulfills
all split criteria leading to node q. Nq in this context describes the overall number
of samples in node q, see [89]. I denotes the identity function in this context. The
probability Pm for a class m can be straightforward calculated by:

Pm = 1
|Q|

∑
q∈Q

Pq,m (4.10)

where Q denotes the set of the leaf nodes for this sample.

4.7.4 Feedforward Neural Networks
While the method of Feed Forward Neural Networks FFNN became popular in the
late 1980s, it did not become the dominant technique in many machine learning
applications until the 2000s. The advantages of using Neural Networks were identified
far before they were widely applied in science and industry. The key advantage
according to [90] is, that Feed Forward Neural Networks can be used as ’universal
approximators’ and that standard multilayer feedforward networks are capable of
’approximating any measurable function to any desired degree of accuracy’. The
application of the method for complex problems was however limited by the difficulties
in training the networks, see [91]. Especially the huge training effort became feasible
to handle with the introduction of CPU/GPU clusters, which accelerated the training
process by magnitudes, see [92]. Another issue which limited the training of deep
neural networks is the vanishing gradient problem, where in the training changes in
the last layers only have a minor impact on the first layers of the neural network.
This issue however can be handled by modifying the activation function to the
Rectified Linear Activation Function (ReLu), see [93]. The main principle behind
the Feedforward Networks however still stays the same.
According to [94] Feed Forward Neural Networks can implement an arbitrary

mapping of one vector space into another. A Multi Layer Feedforward Neural
Network consists of multiple layers, where the last one is called the output layer
in the following, and the first one the input layer. The one or multiple layers in
between are called hidden layers, see Fig. 4.9 for a visual explanation. The training
of neural networks is usually done by back-propagation. This training method can be
divided into two steps. In the forward phase an input vector is fed to the input layer
and the corresponding result at the output layer is determined using the current
parameters of the network. At the output layer the error to the known desired
output is calculated. Using this error value basically a gradient descent algorithm is

72 CHAPTER 4. MANEUVER RECOGNITION

Input
Layer

Hidden
Layers

Output
Layer

Fig. 4.9: Example of a Feedforward Neural Network with three input neurons, two output
neurons and two hidden layers.

used, to propagate the error back and to adapt the weights w, where the influence of
those parameters is explained in the following. Please see [95] for a tutorial on how
backpropagation works in detail. According to [94] the output ol of a single neuron l
is computed by:

ol = f(ξl) (4.11)

where f is the chosen activation function which was selected, which can be for
example a softmax or a sigmoid, see [91] for a survey on possible activation functions.
The ξ function for the corresponding neuron can be expressed as:

ξl =
n∑
k=1

xkwkl. (4.12)

Herein n is the number of the inputs of the neuron and wkl the weight which is
multiplied with each of the inputs xk. Basically this means that ξ builds a weighted
sum of all inputs of the neuron, where the weights wkl are the parameters which
need to be determined in the training phase. For a more detailed introduction into
Feed-Forward Neural Networks, see [96].

4.7.4.1 Hidden Markov Model and Gaussian Filtering

The presented methods up to here only present ’one shot’ predictions for the estimated
maneuver class based on a single observation. Depending on the noise of the data and
using the knowledge, that the maneuver class executed by a human typically does
not change cyclic one may be interested in a method which is able to consider the
history of observations. The task therefore is to compute the conditional probability
p(m|Z0:t), where the index 0 : t denotes the time period starting at 0 until the
time-point t. This conditional probability can be computed using a Hidden Markov
Model (HMM) [97], see Fig. 4.10. The model uses the Markov Property, which
assumes that all information is aggregated in the current state S and future states

4.7. CLASSIFICATION METHODS 73

SLcL SFlw SLcR

ELcL ELcREFlw

Fig. 4.10: Hidden Markov Model for the three maneuver classes LcL, Flw and LcR.

only depend on new observations and the current state. Thus the following holds
true (by setting the probabilistic output of a classifier as emissions E of the HMM):

Em = p(m|Zt) (4.13)

The prediction step to evaluate the probability of a state Sk at a time-point t is then
defined as:

p̄(Skt) =
∑
M

p(St = Sk|St−1 = Sm)p(Smt−1) (4.14)

and the update step:
p(Skt) = ηp(EΣ

t |St = Sk)p̄(Skt) (4.15)
with:

p(EΣ
t |St = Sk) =

∑
M

p(St = Sk|Em
t)p(Em

t) (4.16)

The conditional state transition probabilities of (4.14) are stored in the matrix T and
the conditional emission probabilities of (4.16) in the matrix E. For the proposed
approach of Gaussian filtering in [22], E is set to the identity matrix I.

74 CHAPTER 4. MANEUVER RECOGNITION

4.8 Experiment I
The first experiment focuses on the investigation how good lane changes of surround-
ing traffic can be recognized with close to series sensors using small models generated
by machine learning techniques. To be deployable on typical in-vehicle computing
units, these algorithms need to be computational inexpensive. All methods applied in
the investigation provide a probabilistic output, which is required by the architecture
defined in chapter 3. The work presented in this section was firstly published in [73],
[75] and [74].

4.8.1 Setup & Dataset
All data used in the experiment was measured by a system vehicle which was equipped
with a front facing stereo camera and two mid/long-range sensors the front and
back, see Fig. 4.11 for a visualization of the sensor setup. Furthermore, as described
in Sec. 2.2.2 the environment model is simplified by using a curvilinear coordinate
system along the curvature of the road, in which all features were computed. The data

60 m

200 m

64°
18°

60 m

200 m

64°

18°

80 m

44°

Fig. 4.11: Sensor setup of the research vehicle used for the first experiment. Blue denotes
the area sensed by the stereo camera, yellow the long-range beam of the radar
sensor and green the mid-range beam of the radar sensor.

used in the experiment was collected on a test drive along a route from Sindelfingen
to Brussels. In the data-collection process the feature vector Fsit was computed every
100ms for every measured and tracked vehicle with sufficient measurement confidence
of the system-vehicle and written into a database. For vehicle tracking the method
proposed by [98] was used. In total the database consists of 160 781 samples. In an
offline and automated post-processing step for each collected sample the time for the
next lane change to the left and to the right was determined. To detect whether a
lane change happened, the distance to the left and right lane marking was analyzed.
Whenever the waveform of the respective distance increased or decreased with a step
size comparable to the width of a lane, a lane change was labeled and the time until
the next lane change to the left TLcL and the right TLcR was added for each sample,
Fig. 4.12 for a visual explanation. Based on the time until the next lane change the

4.8. EXPERIMENT I 75

0 2 4 6 8 10

time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

di
st
an
ce
[m
]

dml

dmr

Fig. 4.12: Labeling based on distance to lane markings. At approximately 5 s the distance
to the left marking dml rapidly increases while at the same time the distance to
the right marking dmr decreases, which indicates that a lane change to the left
was executed.

maneuver M was determined using the following rules:

M =

LcL, if (TLcL ≤ Th) ∧
(TLcL < TLcR)

LcR, if (TLcR ≤ Th) ∧
(TLcR < TLcL)

Flw, otherwise

(4.17)

where Th denotes the time horizon of the prediction. Labeling samples 2 s before
a lane change event as positives, namely setting Th = 2 s results in prior class
probabilities of PLcL = 0.0051, PLcR = 0.0037 and PFlw = 0.9911.

4.8.2 Model Generation
To satisfy the requirements as described in chapter 3, the algorithm to detect lane
changes needs to provide a probabilistic output. To derive a meaningful featureset,
Sec. 4.8.2.1 introduces a straightforward approach for feature selection. To solve the
outlined classification problem, the methods used in the experiment are introduced in
Sec. 4.8.2.2. The strategies to optimize the respective hyperparameters are described
in Sec. 4.8.2.3.

4.8.2.1 Feature Selection

Within the feature selection process a small subset of features shall be determined
which maximizes the predictive power. This is done in order to implement a classifi-
cation algorithm which can be executed in real-time with minimal computational

76 CHAPTER 4. MANEUVER RECOGNITION

Tab. 4.1: Description of the evaluated features f for an observed vehicle.
R f description constraint
Rr srelr longitudinal distance between o vs. related vehicle r

vrels,r longitudinal relative speed between o vs. related vehicle r
areqs,r longitudinal deceleration required for o to avoid a collision with the related vehicle r constant acceleration
ttcs,r time to a longitudinal collision between o vs related vehicle r constant acceleration
τs,r time gap between o and related vehicle r
vd,r lateral velocity of a related vehicle r
carr existence of vehicle r (0 = false, 1 = true)

Ro dml lateral distance between the center of o and left marking
dmr distance between the center of o and right marking
dcl distance between center of o and centerline of assigned lane

ttcrmrd time to cross the right marking of assigned lane for o constant velocity
ttcrmld time to cross the left marking of assigned lane for o constant velocity
areqd required acceleration which is needed to stay in the current lane constant acceleration
ψ angle of the observed vehicle relative to the direction of the lane
vd lateral speed of the observed vehicle relative to the lane

nlaner number of lanes on the right side of observed the vehicle
nlanel number of lanes on the left of observed the vehicle
tml type of marking left (0 = dashed, 1 = solid)
tmr type of marking right (0 = dashed, 1 = solid)
areqneg,l required decc. for lane change left
areqneg,r required decc. for lane change right
areqpos,l required acc. for lane change left
areqpos,r required acc. for lane change right

Rinfra c0 curvature of the road clothoid model
sa distance to the next approach to the highway
se distance to the next exit of the highway
vas speed-limit of the current highway section

effort while optimizing the results of the prediction models at the same time. To
select this subset of useful features, different techniques can be applied [62], where
one mainly differentiates between filtering and wrapper techniques. The feature
selection problem comes hand in hand with the problem how early a lane change
maneuver of an opponent vehicle can be detected before it crosses the lane markings
based on all available information in Fsit.

To attack this issue the strategy is as follows. The maximum prediction horizon of
each feature which is derived in the presented environment model shall be estimated
by Single Variable Classifiers using a Naiv̈e Baysian approach. Based on these
prediction horizons, the best performing, uncorrelated features shall be selected
in order to build a small but powerful model. For the investigation the Area
under the curve (AUC) of the Receiver Operating Characteristics (ROC) was used,
which is useful for skewed distributions, because it is insensitive to changes in class
distributions, see also the discussion in [53]. To deal with the problem, that ROC
graphs can only handle two-class problems, a ROC graph was generated for every
class against the remaining two classes. The AUC for multi-class problems can be
calculated according to [53] by

AUCtotal =
∑
c∈M

AUCc ∗ p(c) (4.18)

where M is the aggregate of the maneuvers LcL, LcR and Flw and p(c) describes
the prior of a class c. To get a statement over the time, data at different time
intervals before a lane marking is crossed was selected. Using this metric a function
for a feature vector F which describes the predictive power of the classifier C at a

4.8. EXPERIMENT I 77

time instance tm before a lane change maneuver can be denoted:

AUCC
t (tm) = AUCC

total(F t=tm) (4.19)

This basically means that only feature vectors are taken into account, for which
the time t is equal to the time tm at which a maneuver m is executed. To select
the desired small feature-set, the probability density functions for every feature was
approximated and its predictive power analyzed using a Naiv̈e Bayesian approach.
Using single variable classifiers the value of AUCCf

t (tm) for every single variable
classifier Cf for the time interval [0 s, 15 s] was computed. By selecting only values
larger than AUCC

t (tmax) > AUCmin, a time point tmax for which a specific feature
loses its predictive power was computed. For the result in Tab. 4.2, AUCmin = 0.7
was set and the features were sorted according to their prediction horizon tmax. In

Tab. 4.2: Predictive power of features f and their Spearman’s rank correlation coefficient
ρ to the chosen features, see also feature definitions in Tab. 4.1.

f t m
a
x

ρ
(v

r
el
s,
f
o

)

ρ
(v
d
)

ρ
(d
cl

)
vrels,fo 2.2 1 -0.05 -0.07
vd 2.0 -0.05 1 0.15

ttcrmld 1.8 0.03 -0.65 -0.19
areqd 1.8 0.05 -0.96 -0.17
dcl 1.0 -0.07 0.15 1
dmr 1.0 -0.09 0.14 0.88
dml 1.0 0.06 -0.12 -0.88
ttcrmrd 0.8 -0.06 0.69 0.2
areqs,fo 0.8 0.62 -0.06 -0.06

the results, the relative velocity to the front vehicle, vrels,fo, contributes significantly
already 2.2 s before the lane change event and the lateral velocity of the vehicle
with respect to its lane, vd, contributes 2.0 s prior to the lane change. The following
features ttcrmld and areqd are clearly correlated to the lateral velocity and therefore
it is not surprising, that they contribute similarly. The lateral displacement dcl
contributes significantly up to 1.0 s before the lane change event. All remaining
features show less predictive power. Therefore, to build a minimal classifier, the three
most valuable uncorrelated features vrels,fo, vd, and dcl were selected as input features
for the SVM and Naïve Bayes algorithm. To investigate the validity of the approach,
a Random Forest (RF) model was selected. In contrast to SVMs and Naïve Bayes,
they method includes an implicit feature selection, as presented in Sec. 4.7.3. The
featureset, which was derived in the training process of the RF, is documented in
Tab. 4.3. For the training process, the data was labeled using a prediction horizon of
5.0 s. Because this prediction horizon was chosen purely on expert guess, the results

78 CHAPTER 4. MANEUVER RECOGNITION

of the RF are compared in detail to the results of the two other models in Sec. 4.8.3.

Tab. 4.3: Featureset which was derived in the training process of the Random Decision
Forrest.

f description f description
carl boolean if there is a car on the left side of the observed vehicle vrels,bl relative speed to the object on the back left lane
carr boolean if there is a car on the right side of the observed vehicle vrels,br relative speed to the object on the back right lane
nlanel number of lanes on the left of the observed vehicle arels,f relative acceleration to the object in front
nlaner number of lanes on the right of the observed vehicle arels,fl relative speed to the object on the front left lane
tml boolean if marking left is dashed arels,fr relative acceleration to the object on the front right lane
tmr boolean if marking right is dashed areqd required lateral acceleration to stay in the current lane
vd lateral velocity of the observed vehicle areqpos,l req. acc. for collision avoidance for a lane change left
vsmod smoothed vd areqpos,r req. acc. for collision avoidance for a lane change right
ttcrmld predicted time to a lane change left using a c.a. assumption areqneg,l req. decc. for collision avoidance for a lane change left
ttcrmrd predicted time to a lane change right using a c.a. assumption areqneg,r req. decc. for collision avoidance for a lane change right
dcl distance between vehicle center and assigned centerline ttcf time to collision with the object in front
dml distance between vehicle center and the left marking ttcs,b time to collision with the object in the back
dmr distance between vehicle center and the right marking ttcs,fl time to collision with the object on the front left lane
srelf relative distance to the object in front ttcs,fr time to collision with the object on the front right lane
srelb relative distance to the object in the back ttcs,bl time to collision with the object on the back left lane
srelfl relative distance to the object on the front left lane ttcs,br time to collision with the object on the back right lane
srelfr relative distance to the object on the front right lane τs,f timegap to the object in front
srelbl relative distance to the object on the back left lane τs,b timegap to the object in the back
srelbr relative distance to the object on the back right lane τs,fl timegap to the object on the front left lane
srelf relative distance to the object in front τs,fr timegap to the object on the front right lane
srelfl relative distance to the object on the front left τs,bl timegap to the object on the back left lane
vrels,f relative velocity to the object in front τs,br timegap to the object on the back right lane
vrels,b relative velocity to the object in the back vd,f lateral speed of the object in front
vrels,fl relative speed to the object on the front left lane vd,fl lateral speed of the object in front left

4.8.2.2 Algorithms

Within the experiment three different classification methods were used, the Naïve
Bayes Algorithm, Support Vector Machines and Random Forests, see also Sec. 4.7
for a detailed explanation. The Naïve Bayes is the most straightforward classification
approach providing probabilistic output as a baseline. SVMs were chosen to compare
this baseline to a state-of-the-art approach for low dimensional datasets. Random
Forests were chosen to investigate whether a model using an extensive feature set
provides superior performance. All three methods, when applied as proposed in this
experiment, have low requirements regarding runtime and memory. In accordance
to the prediction horizons which were derived by the single variable classifiers in
Tab. 4.2, the data for the training of the SVM and the distributions of the Naïve
Bayes was labeled using a prediction horizon of 2 s. To validate whether larger
prediction horizons are possible using the full featureset, the data used for the
training of the RF was labeled using a prediction horizon of 5 s.

4.8.2.3 Hyperparameter Optimization

For the selected methods in Sec. 4.8.2.2 the respective hyperparameters need to be
optimized to achieve the best possible performance and to ensure comparability. For
the Naïve Bayes Classification preliminary investigations showed, that an unimodal
normal distribution model is not a valid assumption. Many features have a strong non-
symmetrical value distribution, see Fig. 4.13. Thus, Gaussian Mixture distributions

4.8. EXPERIMENT I 79

were chosen as a distribution model. To determine the best performing number of
components of the Gaussian Mixture, the BIC was chosen as optimization criterion,
see Sec. 2.3.4.3. To increase the robustness of the Gaussian Mixtures against
singularities and noise, the DB-Scan [63] algorithm is used to estimate one single
Gaussian mixture distribution for every value range where a continuous distribution
exists. The method to do so is explained in detail in [73]. For the optimization of

-2-1012

0.5

1

1.5

follow
left
right

(a) dcl

-101

0.5

1

1.5

2

2.5

follow
left
right

(b) vd

-8 -4 0 4

0.1

0.2

0.3
follow
left
right

(c) vrels,fo

Fig. 4.13: Probability density functions of the different features. The classes visualized
are LcL (green), Flw (blue) and LcR (red). A good separation between the
three classes is possible for each of the chosen features, see [73].

the hyperparameters of the SVM and the Random Forest a grid search approach
was chosen. For the Random Forest the parameters to be varied are the number
of trees nume and the maximum tree depth maxd, see Sec. 4.7.3. The remaining
parameter fr which denotes the number of features taken into account for a new
split in the training process, was chosen according to [88], as the square-root of the
total number of features. For the SVM accordingly, the parameters to be optimized
are γ as the free parameter of the RBF and c parameterizing the soft margin, see
Sec. 4.7.2. For each method the respective best performing hyperparameters were
selected to train the model used in Sec. 4.8.3

4.8.3 Evaluation
In the following subsection the results of the first experiment are presented. For
the evaluations, which allowed to generate Fig. 4.14 a winner-takes-all strategy was
chosen. In Fig. 4.15 the probability of detecting a lane change increases as closer the
time point of a lane change gets. When analyzing the plot of the precision values,
almost every time a sample is classified as positive, it is also positive in reality. The
reason for the variation over time is mainly the decreasing number of true positives
as the time horizon increases. For the evaluation a winner-takes-all strategy was
chosen. When applied in Advanced Driver Assistance Systems (ADAS), one may be
interested in finding a more elaborate decision strategy. This can include different
thresholds to decide when a sample is truly positive.
For example in the application in an ACC system which only implements highly

limited acceleration and deceleration maneuvers, the decision threshold can be kept
pretty low to implement a cooperative behavior. When deployed in a collision

80 CHAPTER 4. MANEUVER RECOGNITION

0.2 0.6 1 1.4 1.8 2.2 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) LcL(HMM)
0.2 0.6 1 1.4 1.8 2.2 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) LcR(HMM)

Fig. 4.14: Comparison between the HMM (red) and the Naïve Bayes Algorithm (blue) in
(a) and (b) for the recognition of the maneuver classes LcL and LcR plotted
against the time before a lane change occurs on the x-axis.

avoidance or Collision Mitigation System (CMS) which allows strong braking one
will only decide for the execution of an emergency maneuver for high values of the
cut-in probability.
As can be seen in Fig. 4.14, the Naïve Bayes Algorithm shows better results

without the use of an additional HMM, see Sec. 4.7.4.1 for the explanation of the
method. Thus, there is no performance increase when applying additional filtering
in the domain of maneuver probabilities. For further analysis only the unfiltered
Naïve Bayes was taken into account. Its classification performance characterized by
its ROC curve is depicted in Fig. 4.15. Each of the three figures in Fig. 4.15 was
generated by selecting samples from the test-dataset in the time interval according
to the captions. When extending the time horizon up to 3 s the predictive power
decreases significantly, which indicates that lane changes can be recognized only up
to 2 s with high reliability.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ROC Naive Bayes GM 0s -1s

False−Positive Rate

T
ru

e−
P

os
iti

ve
 R

at
e

ROC of left
ROC of right

(a) ROC 0 s-1 s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ROCNaive Bayes GM 0s-2s

False−Positive Rate

T
ru

e−
P

os
iti

ve
 R

at
e

ROC of left
ROC of right

(b) ROC 0 s-2 s

ROCNaive Bayes GM 0s-3s

(c) ROC 0 s-3 s

Fig. 4.15: Receiver Operating Characteristic showing the predictive power of the proposed
Naïve Bayes Algorithm for samples in different time intervals before a lane
change, see [73]. Blue denotes the maneuver class LcL, red the maneuver class
LcR.

To assess the performance of the Naïve Bayesian model it was compared against

4.8. EXPERIMENT I 81

a SVM as state of the art method. The results of this experiment are depicted
in Fig. 4.16. The classification performance of both models is comparable up to
1.5 s with lower performance of the Naïve Bayes at higher time horizons. This
indicates, that the assumption of independence between the different features may
not hold true for prediction horizons larger than 1.5 s. Using the existing dataset

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ba
la

nc
ed

 a
cc

ur
ac

y
NB
SVM

Fig. 4.16: Comparison of the Naïve Bayes Classifier (blue) as proposed in experiment
versus a Support Vector Machine(red) using the same data.

it was investigated whether it is possible to increase the prediction time horizon
significantly using the power of the whole featureset. This investigation is motivated
by the insight, that the assumption of feature independence does not hold true for
larger time horizons, see Fig. 4.16.
Thus, a RF was trained as described in Sec. 4.8.2.3 with a labeling time horizon

of 5 s. The ROC curve for each class using the derived RF Model was computed
based on the probability estimates of the decision trees, for the results see Fig. 4.17.

Fig. 4.17: Receiver Operating Characteristic of the Random Forest for the classification
task of recognizing the intent of a vehicle 5 s before its lane assignment changes.

The results in Fig. 4.17 show that the prediction performance for a time horizon
of 5 s is noticeable worse when compared the Naïve Bayes with a (short) prediction

82 CHAPTER 4. MANEUVER RECOGNITION

threshold

FP
R

τ

(a) Maneuver recognition time as a function
of threshold on PLcL

threshold

FP
R

τ

(b) Maneuver recognition time as a function
of threshold on PLcR

Fig. 4.18: Evaluation of the Random Forest model with the task to recognize the intent of
a vehicle 5 s before its lane assignment changes. Because not only the value of
the True Positive Rate is in the focus of interest, but also how early the lane
change can be recognized, this property is visualized vs. a decision threshold
using a boxplot in Fig. 4.18a and 4.18b. The corresponding value on the y-axis
corresponds to the time τ at which this decision threshold is overrun for the first
time and never undershot until the vehicle has changed its lane-assignment.
The green line visualizes the corresponding the false positive rate.

horizon of 2 s. It is still considerable, that 65% of the lane change samples to the left
side can be detected in a time interval 5 s before the lane-assignment changes with a
false alarm rate of 10%. To get a deeper insight into the properties of the approach,
the prediction time via a threshold for a one against all decision is visualized in
Fig.4.18a and Fig. 4.18b. As expected by increasing the decision threshold, for
which a sample is classified as positive, the frequency of the true positive decreases.
However one may be not only interested in the number of true positives, but also
in the time horizon when a lane change can be detected. In Fig.4.18a at a decision
threshold of 0.75 the number of false positives decreases close to zero, while there
are still detections up to 3 s.

4.8.4 Conclusion
Using the available data collected in this first experiment, the lean approach using
the Naïve Bayesian Classifier showed impressive results for prediction horizons up to
2 s (Sec. 4.8.3). This is especially remarkable, as only the relative velocity to the
preceding vehicle, the lateral distance to the lane center and the lateral velocity were
selected as features (Sec. 4.8.2.1) from the presented environment model (Sec. 4.5).
Interestingly the prediction performance is also superior to more sophisticated models,
see for example [23]. The experiments indicated, that with the number of data
available and the presented method prediction horizons up to 2 s can be achieved
with high accuracy. Whether the prediction horizon can be increased even further,
cannot be answered reliably based on the data collected in this first experiment.
However, the evaluations in which the prediction time horizon was extended up to

4.8. EXPERIMENT I 83

5 s indicate that there may be potential for improvements. To verify this assumption
a second experiment was conducted in Sec. 4.9.

84 CHAPTER 4. MANEUVER RECOGNITION

4.9 Experiment 2

In the second experiment the focus shifts towards the question of how good the
prediction of traffic participants can get assuming high quality sensors are available.
To predict maneuvers for longer time horizons, it is convenient to have a dataset
which also contains tracks of the vehicle to be predicted for sufficient long observation
time horizons. To collect such kind of data, a fleet of close to series vehicles equipped
with comparable cheap camera and radar systems was used in the second experiment.
The environment data of these vehicles was collected and the vehicles themselves
were selected as prediction targets. This experiment setup heavily depends on the
assumption, that future sensor generations can determine the features derived in the
experiment for other vehicles comparable good as close to series vehicles today for
themselves. All investigations presented in the section were presented firstly in [76],
where the contribution of the author of this thesis is mainly in the research strategy
and the conceptual part.

4.9.1 Setup

By a fleet of test-vehicles which were deployed in the area of Stuttgart a dataset
consisting of round about 40 000 situations, collected on more than 30 000 km of
highway driving was used for the second experiment. The vehicles of the fleet were
operated by different drivers at varying weather conditions and different times.

The vehicles which collected this data were close to series vehicles equipped with a
front facing camera, a long range front radar sensor and radars sensors covering the
area left and right next to the system vehicle. When comparing the setup to the first
experiment, the visibility of the traffic scene is limited regarding the area behind
the system vehicle. In contrast to the work presented in Sec. 4.8 the system-vehicle
itself was selected as prediction target. As the method focuses on the prediction
of surrounding vehicles, only features were used, which can also be measured for
surrounding vehicles. This strategy is also applied in other research, see for example
[99] or [78]. Therefore, only a subset of the available data is available and information
like the status of the driver or the steering wheel angle are excluded from the dataset.
The main advantages compared to the setup in the first experiment is, that situation
development can be observed continuously without occlusion artifacts and that
sensor range is a less limiting factor. This way of data handling is widespread in
literature, see for example [79]. Future sensor setups including multiple lidar sensors
are expected to be more precise minimizing the data quality gap between sensed
object data and the data available for the system vehicle in the experiment. The
investigations rely on the environment model presented in Sec. 4.5. The vehicle
behind the system vehicle on the same lane could not be sensed and thus the
corresponding features are not present in the feature set. In Tab. 4.4 an overview of
all features used in the experiment is documented.

4.9. EXPERIMENT 2 85

Tab. 4.4: Description of the evaluated Features f for an Observed Vehicle o in the second
experiment, see Fig. 4.5 for a visual explanation of the vehicle relations.

R f Description Unit (Continuous) Element of
Range of Values (Nominal) B C D (MLP) D (GNB)

(40 Elements) (29 Elements) (24 Elements) (48 Elements)

general information describing the related vehicle r
Rr actvr activity status {0: inactive, 1: active} {f, l} {f, fl, fr, l} {fr, r} {fl, fr, l, r}

movr movement status {0: standing, 1: moving} {f, l, br} {f, fl, fr, l, br} {r, br} {fl, fr, r, br}

classr object class
{0: bicycle, 1: motorbike,

{f, l} {f, fl, l} {fl, fr, r}
2: car, ..., 14: no class}

cutinlvlr cut-in level
{0: P ≤ 0.5, 1: P > 0.5,

{l} {r}
2: P > 0.66, 3: P > 0.9}

relation between observed vehicle o and related vehicle r in o’s cartesian coordinate system
drelx,r longitudinal distance

m
{f, l} {f, l} {f, r} {fr, r}

drely,r lateral distance {f, l, bl} {f, fr, bl} {r} {fr, r, bl, br}
vrelx,r relative longitudinal speed

m/s
{f, r} {r} {f, fr, r}

vrely,r relative lateral speed {f, fl, l, r} {f} {f, fr, r} {f, fr}
arelx,r relative longitudinal acceleration m/s2 {fr} {f, fl, fr, r}

relation between observed vehicle o and related vehicle r in lane coordinates
drels,r longitudinal distance

m
{f, l} {l} {fr} {fl, fr, r}

dreld,r lateral distance {f, l} {fr} {r} {fr, r}
vrels,r relative longitudinal speed

m/s
{f, r} {f} {f, fl, fr, r}

vreld,r relative lateral speed {f, fl, l, r} {l} {fr, r}

Ro fogf status of the front fog lamp

{0: off, 1: on}
fogr status of the rear fog lamp
fogrl status of the rear left fog lamp
fogrr status of the rear right fog lamp
wpr wiper level {0, ..., 15}
dml distance between the center of o and the left marking

m

3 3 3 3

dmr distance between the center of o and the right marking 3 3

dcl
distance between the center of o and

3 3
the centerline of the assigned lane

vs longitudinal speed of the observed vehicle
m/s

vd lateral speed of the observed vehicle 3 3 3

as longitudinal acceleration of the observed vehicle
m/s2

3 3

ad lateral acceleration of the observed vehicle 3 3 3 3

ψ
angle of the observed vehicle ◦ 3 3 3 3

relative to the direction of the lane

Rinfra tml type of the left marking {0: no marking, 1: continuous, 3 3 3 3

tmr type of the right marking 2: broken} 3 3 3 3

cml color of the left marking {0: no marking, 1: white, 3

cmr color of the right marking 2: yellow} 3

nlanescam number of parallel lanes observed via the camera {0: 0, ..., 3: 3+} 3

nlanesmap number of lanes stored in the map {0, ..., 5}
cntr country {0: GER, 1: US, ...}
tnl indicator if the situation takes place in a tunnel

{0: False, 1: True}
3

brd indicator if the situation takes place on a bridge
vlim speedlimit of the current highway section {1: > 130km

h
, ..., 8: < 11km

h
}

ta
type of next approach {0: unknown, 1: on ramp,

to the highway 2: highway merge}

te
type of next exit {0: unknown, 1: ramp,
of the highway 2: highway divider}

wml width of the left marking

m

3 3

wmr width of the right marking 3 3

wlane width of the lane 3

dax distance to the next approach to the highway
dex distance to the next exit of the highway
c0 curvature of the road 1/m

c1 derivation of the curvature 1/m2

86 CHAPTER 4. MANEUVER RECOGNITION

4.9.2 Dataset

To be able to test and develop algorithms on the environment model presented
in Sec. 4.5, data from three different origins was fused. The first source of data
was collected by the testing fleet. This data was enriched with information from
a navigation map (containing information of e.g. bridges, tunnels and distances
to highway entries). The third kind of data was calculated based on the first and
second kind of data. This includes for example lateral and longitudinal distances in
a curvilinear coordinate system along the road which were computed accordingly to
the first experiment, see Sec. 2.2 and Fig. 2.3. Please see Tab. 4.4 for an overview
on the features used for the experiment.

According to Sec. 4.1 all samples were assigned to the three maneuver classes LcL
, Flw and LcR . The labeling process in accordance to Sec. 4.8, works as follows:
First for each data-sample the time to the next lane change to the left and right
neighboring lane is calculated. For the experiment a prediction horizon of 5 s was
chosen. The data was labeled accordingly. It is important to understand that this
labeling strategy can result in pessimistic performance values, as detections of lane
changes earlier than 5 s before a lane change are evaluated to false positive, because
being labeled as Flw.
The data is splitted into several parts after executing the aforementioned pre-

processing stages. The first split divides the data in one part for the lane change
classification and another one for the trajectory regression problem, see chapter 5 for
a detailed description. The dataset used for the experiment of lane change recognition
is then splitted into six parts. Five parts are selected in Sec. 4.9.3 for the design
and parametrization of the algorithms. The sixth part is only used for evaluation
purposes in Sec. 4.9.4. The split is performed on situations according to [75], to
ensure that no optimistic results are produced because of similar samples from the
same time series. To achieve an even proportion of the three maneuver classes,
the number of samples within each fold is balanced using a random undersampling
strategy. As the prediction problem is unbalanced, classifiers would mainly focus on
the most frequent maneuver class (Flw) otherwise.

In the collected data approximately 94% of the samples were lane following samples
(cf. also [100]). The increased share of lane change samples in comparison to the
first experiment can be partially explained by the increased prediction horizon. The
increase based on the change of 2.0 s to 5.0 s can be expected with a factor of 2.5.
The share of lane changing examples in the second experiment is however more
representative when being compared to the first experiment, due to the larger amount
of samples which were collected in a greater diversity of environment conditions.
For the experiment additionally only situations in which samples were collected
continuously up to the prediction horizon of 5 s were taken into account. This ensures,
that the folds are balanced over time. This is necessary to perform fair evaluations,
as the prediction task is a more demanding task for higher time horizons as for short
ones. The remaining data contains approximately 8 hours of highway driving where
each maneuver class is represented equally.

4.9. EXPERIMENT 2 87

4.9.3 Model Generation
The following subsection gives an overview of the different algorithms used for feature
selection, classification and the techniques to tune the respective hyperparameters
for the maneuver classification in the second experiment.

4.9.3.1 Feature Selection

In the implementation of the feature selection process of the second experiment, three
different feature selection methods were compared. Including the superset of features,
this results in four datasets A, B, C and D. The findings of [62] were used in the
application of the respective methods. The strategy to tackle the feature selection
problem is to start with simple techniques and to continue with more sophisticated
and computational expensive ones. As a baseline the classifiers were tested with the
whole superset of features, where A denotes this superset in the following. The second
feature set B was derived by applying a threshold on Spearman’s rank correlation
value (see [101, p. 133 ff]) of the feature with the respective class label. The
threshold value to perform the selection was set to 0.15. Feature set B still contains
many features which are highly cross-correlated. In order to remove this potentially
redundant information, a third method was applied to the feature selection problem.
The technique Correlation based Feature Selector (CFS) introduced by [83] was
used for the generation of this third feature set C. The main difference compared
to the naive strategy in B is, that correlation values for whole feature sets are
determined. See also Sec. 4.6.1 for a more detailed explanation of the method. Again
Spearman’s correlation was used for the computations. To generate C backward
selection with a 5-fold cross-validation was applied, because the computation of the
CFS was not feasible for all combinations of features. The filtering methods for

Tab. 4.5: Examined Feature Selection Variants in experiment 2.
Variant Description
A Baseline feature set containing all features
B Feature set based on correlation threshold of feature with class label
C Correlation based Feature Selector (CFS)
D Wrapper approach for selection of feature set

feature selection applied for the derivation of B and C, are typically fast to evaluate.
However, wrapper techniques can use the advantage incorporating the properties of
the respective classification algorithm in the feature selection process. Accordingly,
for the generation of feature set D for every classification algorithm except the
Random Forrest, which includes an implicit feature selection in its training, the
best feature set was derived. Using a hyperparameter set which was optimized on
C a backward selection strategy was applied. For each iteration one of the folds of
Sec. 4.9.2 was used for training and one for validation. This limitation was introduced
mainly to limit the time needed for feature selection, where one needs so see that
for each of the 5 000 possible subsets a classifier needs to be trained and evaluated.

88 CHAPTER 4. MANEUVER RECOGNITION

Tab. 4.5 summarizes the examined variants and their abbreviations. The resulting
elements of the respective feature sets can be found in Tab. 4.1.

4.9.3.2 Algorithms

For the task of maneuver classification three different methods were selected for
evaluation, where the first two were already part of the investigations in Sec. 4.8.
The first method is a Gaussian Naïve Bayes approach using GMMs. The second
method applied to the problem are Random Forest (RF). As third method a Multi
Layer Perceptron (MLP) implementing a Feedforward Neural Network, see Sec. 4.7.4,
similar to the approach proposed in [102] was chosen. This selection implements a
direct comparison of the approaches of the first experiment and a state-of-the-art
approach on a representative dataset. In contrast to [102], a modified labeling
and a partly automated strategy was chosen to identify the best possible model
structure, where the model was restricted to one hidden layer. In contrast to the
first experiment SVMs were not used, because the server cluster used for training
did not support parallelized training, which was an exclusion criteria due to non
tolerable computation time requirements.

4.9.3.3 Hyperparameter Optimization

To achieve the best performance and to enable a comparison of the chosen classifica-
tion algorithms, the respective hyperparameters were optimized. For the Gaussian
Naive Bayes (GNB) this means to find the optimal number of Gaussian components
for each feature and class. In contrast to the first experiment a Variational Bayesian
Gaussian Mixture Model (VBGMM) was selected for this task, where this technique
was already successfully applied by [27]. For the RF and the MLP the parameter
optimization was executed for each feature set using a grid search. The performance
of each parameter set was measured using the average balanced accuracy ACCbal,
derived using leave-one-out cross-validation with five folds of training and validation.
For the RF the parameters to be optimized are the number of parallel trees, the
maximum number of splits in each tree and the minimal number of samples that
are necessary for a split. For the MLP the parameters accordingly are the step size
which controls how fast the weights of the network are adapted towards the direction
of the gradient and the structure of the network using the number of neurons in each
layer. Using the described techniques, different feature sets were selected and the
respective hyperparameters for the different classification algorithms were optimized.
In a second step the respective best combinations were selected to derive the models
which were used for further evaluation. Please see Tab. 4.4 for the set of features
derived for the respective models.

4.9.4 Evaluation
In the following subsections the results of the second experiment are presented.
Subsection 4.9.4.1 introduces the chosen metrics for the evaluation. Sec. 4.9.4.2

4.9. EXPERIMENT 2 89

concludes with the listing and discussion of the results measured with the test
dataset.

4.9.4.1 Metrics

To asses the performance of the classification algorithms multiple metrics are needed,
as multiple objectives are of interest, namely the correctness and the prediction
time horizon. For measuring the correctness and to deal with the bias of the class
distribution, the balanced accuracy ACCbal is selected, see Sec. 2.3.3.7. To quantify
the predictive power of the classifier in accordance with the first experiment the
ROC and the AUC are used. To quantify the prediction time horizon, which is
the second objective, the time when a lane change is recognized is an important
performance metric. As the exact definition of this time is essential for a comparison
and most sources (see e.g. [78], [102] and [99]) are not very exact in that point, and
as a finding of the first experiment the following two metrics are defined:

• τ1: time of the first correct maneuver detection before lane assignment changes,
see for example [79].

• τ2: time of the correct maneuver classification before lane assignment changes,
where the classification does not change anymore until the lane assignment
changes.

The definition of τ2 is a considerable stricter definition compared to the definition of
τ1.

4.9.4.2 Results

For each of the chosen methods the formerly defined metrics were computed using
the respective best performing feature set and hyperparameters, please see Tab. 4.6
for a summary of the results. In Fig. 4.19 the respective ROC of the chosen models
are depicted.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

ROC: GNB
Feature Set: D; BACC = 0.772

FLW (AUC = 0.864)
LCL (AUC = 0.943)
LCR (AUC = 0.929)
WP for BACC
WP for

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

ROC: MLP
Feature Set: D; BACC = 0.831

FLW (AUC = 0.915)
LCL (AUC = 0.976)
LCR (AUC = 0.960)
WP for BACC
WP for

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
ve

 R
a
te

ROC: RF
Feature Set: A; BACC = 0.838

FLW (AUC = 0.925)
LCL (AUC = 0.978)
LCR (AUC = 0.968)
WP for BACC
WP for

Fig. 4.19: ROC-Curves for the developed lane change predictors with their respectively
best parameter sets and hyperparameters.

The classification of the lane following class Flw is notable worse when compared
to the lane-changing maneuvers, as can be seen in Tab. 4.6, which is neglected in

90 CHAPTER 4. MANEUVER RECOGNITION

Tab. 4.6: Summary of Examined Classifiers with Preferred Hyperparameters.
Classi- Feature Performance on Test Data
fier Set per Class (AUC ; τ1; τ2)

ACCbal LcL Flw LcR

GNB

0.924 0.815 0.905
A 0.704 2.86±1.46 s - 2.92±1.42 s

2.18±1.26 s - 2.21±1.21 s
0.910 0.801 0.895

B 0.692 2.82±1.38 s - 2.82±1.32 s
2.11±1.13 s - 2.09±1.06 s

0.874 0.770 0.884
C 0.651 2.57±1.31 s - 2.73±1.31 s

2.02±1.11 s - 2.02±1.07 s
0.943 0.864 0.929

DGNB 0.772 3.26±1.28 s - 3.11±1.14 s
2.61±1.13 s - 2.69±0.94 s

MLP

0.973 0.909 0.961
A 0.823 3.67±1.26 s - 3.34±1.18 s

2.95±1.25 s - 2.82±0.97 s
0.974 0.912 0.959

B 0.831 3.74±1.07 s - 3.60±1.16 s
3.08±1.04 s - 2.86±1.06 s

0.966 0.891 0.953
C 0.798 3.44±1.07 s - 3.46±1.11 s

2.86±0.91 s - 2.82±0.89 s
0.976 0.915 0.960

DMLP 0.831 3.78±1.16 s - 3.35±1.18 s
3.08±1.10 s - 2.66±0.99 s

RF

0.978 0.925 0.968
A 0.838 3.81±1.14 s - 3.60±1.19 s

3.31±1.13 s - 3.13±1.08 s
0.976 0.918 0.959

B 0.834 3.73±1.13 s - 3.61±1.17 s
3.28±1.10 s - 3.08±1.00 s

0.964 0.893 0.953
C 0.799 3.45±1.07 s - 3.49±1.10 s

2.95±0.87 s - 2.95±0.90 s

4.9. EXPERIMENT 2 91

most related research. This finding is consistent to the results of the first experiment,
see Sec. 4.8.3. A reason may be, that every sample which is not within a close time
horizon to an executed lane change maneuver is assigned to the Flw class. This
includes therefore early detections of lane changes but also interrupted lane change
maneuvers. On the other hand the confusion between the other two classes are very
rare. In this context the findings of [80] can be confirmed, which state that lane
changes to the left are easier to predict.
Another interesting finding is, that the classification problem remains resolvable

even with a significantly decreased number of features. This is demonstrated by the
MLP with feature set D, which includes only 24 features, where the lower dimensional
input space improves the classification performance. When comparing the predictive
performance of the different classification methods on the different feature sets in
Tab. 4.6, the Random Forrest approach on the unfiltered feature-set A performs
slightly best. The MLP on the feature set D which was derived using wrapper
techniques follows closely. For all classification models the application of the CFS in
feature set C results in a decrease in the predictive performance. When compared to
the naive correlation based filter technique applied to derive B, this is interesting, as
one may expect the more sophisticated technique to perform better. When focusing
on the classification results the GNB approach interestingly does not profit from
correlation based feature selection strategies, even though the chosen features are
not independent, see Tab. 4.4. However, the prediction performance can be increased
significantly by using wrapper techniques. The MLP on the other hand slightly
improves its predictive performance, if wrapper techniques are applied. At least it
does not show a decrease if uncorrelated features are removed from the superset.
When comparing the result of the Random Forest on the different feature sets, the
method on the examined dataset does not profit from correlation based feature
selection strategies. When assessing the prediction horizon,the both best performing
models achieve average lane change detection times of round about 3− 4 s. This
indicates that not all, but when taken together with the ROC, most lane changes
can be detected as early as 3 s or earlier. One may however not draw the conclusion,
that 3.81 s+ 1.14s s = 4.95 s is the maximum prediction horizon which is technically
possible, because the models were only trained for a time horizon up to 5 s. As a
consequence, all evaluations were limited to the time horizon of 5 s.

4.9.5 Conclusion
The second experiment demonstrates, that the proposed strategy to derive features
(Sec. 4.5) in combination with a best practice machine learning techniques is able to
outperform sophisticated models presented in related work, see Tab. 4.7. Although
the presented method has a significantly higher prediction horizon compared to the
listed approaches, still its predictive power is superior. Simple approaches, which
mainly focus on the lateral movement, accordingly are clearly outperformed, too. By
using the proposed method and models, many maneuvers can be predicted before
they are executed by interpreting the situation context. Some questions, which came
up in the experiments could be addressed by further work. This is for example the

92 CHAPTER 4. MANEUVER RECOGNITION

Tab. 4.7: AUC values of experiment 2 compared related work.
Approach AUC Prediction

Horizon
LcL LcR

GNB as described in 4.8.3 0.970 0.991 2.0 s
Interaction aware approach of Bahram et al. [80] 0.947 0.942 2.5 s
Hybrid approach of Wissing et al., see [103] 0.934 0.993 2.0 s
MLP 0.976 0.960 5.0 s
RF 0.978 0.968 5.0 s

investigation of the maximum feasible prediction time horizon. Another direction
worth to investigate, is a systematic extension of the environment model. Especially
the investigation of an "optimal" tradeoff between the complexity of the environment
model and the achievable prediction performance would be helpful to design future
generations of maneuver recognition models.

93

Chapter 5

Probabilistic Position Prediction

In order to avoid accidents and find a safe way to their destination, human drivers
use their intuition and knowledge about formerly experienced situations when driving
a vehicle. Thus, humans are taking into account future positions of other road users,
where those positions are estimated based on their experience and the anticipated
intent of others. This estimation skill is developed in the childhood. For example
children younger than 12 cannot handle complex traffic situations safely, see [104].
When automating the driving task, the skill to estimate future positions needs to be
part of an automated driving system.

Accordingly, in the system concept in Sec. 3.5.2 a function block Position Prediction
is specified. The output of this block is needed to implement a fallback behavior,
please see chapter 3 for details. Besides this use case such kind of output can also
be used for other vehicle automation purposes, e.g. Collision Mitigation Systems
(CMS), ACC or Level-4 automated systems.

In this chapter a method how future positions can be predicted is presented and
compared with classical and state-of-the-art approaches. This novel method features
a probabilistic output which can be derived efficiently in real time.

The chapter starts with the definition of the problem to be solved in Sec. 5.1. Based
on this problem definition a brief overview of related work is presented in Sec. 5.2.
The contribution is explained in Sec. 5.3, and the solution design is presented in
Sec. 5.4. The representation of the input data used for the training of the models
is presented in Sec. 5.5. Using this input data the methods to solve the outlined
problem are introduced in Sec. 5.6. According to the scope of this thesis, the methods
are applied and evaluated in highway scenarios. In the following the metrics which
are used in evaluation are discussed briefly in Sec. 5.7. The proposed methods are
evaluated in two experiments. The results of chapter 4 on maneuver recognition
are reused for the experiments, which are presented in Sec. 5.8 and Sec. 5.9. While
the first experiment investigates the principal applicability of the proposed method
to the problem domain, the second experiment is a representative study where the
method is evaluated on a large number of data.
The work presented in this chapter is mainly based on already published work

in [75], [76], [105]. The references are documented again in the introduction of the
respective sections.

94 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

Output

Interfaces

Input

Interfaces

Feature Extraction

Position

Prediction

Distribution of

Future Positions
Inferred Maneuvers

Fig. 5.1: White box view of the functional block Position Prediction depicting the consumed
information and the output to be computed, see also Fig. 3.6.

5.1 Problem Definition

Recognizing the intent of other drivers as discussed in the former chapter is a high
dimensional classification problem. A challenge of this problem is that human
behavior is eratic sometimes. When it comes to position prediction, the problem
in contrast is constrained by physics limiting the reachability of future positions.
The available knowledge about the executed maneuver class additionally constrains
future whereabouts.

Besides these constraints different drivers execute maneuvers differently. This
basically means that the problem to be solved is to predict a time-dependent
probability distribution and not a single trajectory. Thus, the objective of the learning
problem is to generate an estimator which models the probability distribution of
future vehicle positions. This shall be done in a way, such that the probability
distribution reflects the frequency of the observed positions, assuming the same
situation would be handled by different drivers.

Another problem is that when collecting data on highways the number of lane
change samples is magnitudes smaller compared to the number of samples collected
for lane following behavior, see also the findings of Sec. 4.8.3. This states a challenge
especially relevant in the context of lane change prediction in highway scenarios.

From an architectural point of view, the problem to be solved in the block of
Position Prediction as defined in Sec. 3.5.2 is the definition of a method, capable to
estimate a distribution of future positions. This distribution shall reflect the physical
state and inferred maneuver estimate of the vehicle to be predicted, see Fig. 5.1 for
a visual explanation.

5.2. LITERATURE 95

5.2 Literature
While maneuver recognition has already been investigated in numerous publications
(see Sec. 4.2), only a comparable small number of researchers investigated the
prediction of future whereabouts or even the distribution of future positions. The
approaches mainly can be categorized into expert based models and machine learning
approaches which is reflected in the following two subsections.

5.2.1 Expert Based Models
For many applications such as motion planning or collision avoidance systems, the
information of future vehicle positions needs to be estimated. Especially for collision
avoidance where only short prediction horizons are needed and motion dynamics are
mainly described by physics, expert models are a valid choice. In [26] an approach
for collision mitigation is described, which predicts the lateral movement of relevant
vehicles with a constant yaw angle and the longitudinal movement with a constant
acceleration model.
A more sophisticated approach to tackle the problem of longitudinal motion

prediction are Intelligent Driver Models (IDM), which are developed in [25] for the
simulation of traffic flows in highway scenarios. The IDM computes the estimated
acceleration of a vehicle, where the value depends on the current velocity, the distance
to the vehicle in front and the desired velocity. When applied to the problem defined
in Sec. 5.1, the output in contrast to the defined inputs depends on immeasurable
quantities, for example the desired velocity of other traffic participants. In [106] the
IDM approach is transferred to assess the driver intent at urban intersections where
it demonstrated its ability to infer the intention of a right turn.

Another model driven approach is the map based prediction algorithm introduced
by [107]. For each possible driving direction (the method is mainly tailored for
intersections) a motion hypotheses is defined, where a Kalman-Filter generates
uncertainty estimates by using pseudo update steps based on the road geometry.
Using this technique, a pseudo probabilistic output can be generated. The approach
assumes future position to be Gaussian distributed, where the estimates depend on
the geometric configuration of the predicted vehicle within the road geometry and
the dynamic state of the vehicle. More global information of the traffic situation is
however not considered in the derivation of the position estimates.

5.2.2 Learning Based Models
Most expert models either lack to provide probabilistic information, a global scene
understanding or the predictive power to handle time horizons larger than 2 s. To
extend the prediction horizon, various machine learning approaches exist in related
work.

For example [27] estimates a distribution of possible trajectories. The approach
uses a Variational Gaussian Mixture Model, where the density function of future tra-
jectories is determined by computing the conditional distribution of future trajectory

96 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

snippets given past trajectories. The evaluation of this algorithm shows promising
prediction results. The work presented in [108] extends this approach by using a
Mixture of Experts approach, which allows incorporating categorical information.
The latter includes for example the topology of a road intersection.

A more general approach for scene understanding using trajectory clustering is
described in [109], where a three-stage hierarchical learning process is implemented.
By using video data motion patterns are learned and abnormalities of behavior are
detected. The work presented in [110] proposes the use of a Hidden Markov Model
based maneuver recognition, which distinguishes between ten different maneuver
classes. On this basis a module for trajectory prediction and an Interacting Multiple
Model to consolidate the trajectories are described.

Another method presented in [111] proposes the use of a Long Short Term Memory
(LSTM) network. The authors show improvements compared to their previous work
using the NGSIM dataset for evaluation. Please see [1] for more details on the
NGSIM dataset. Also based on the NGSIM data for evaluation, [100] proposes the
use of a LSTM network for predicting trajectories. The presented method provides
single shot predictions with an average error of approximately 0.4m at 5 s.
Using a fully-connected Deep Neural Net for learning the parameters of a two-

dimensional Gaussian Mixture Model, another approach is presented in [112]. For
each situation, an adapted Gaussian Mixture distribution models the probability
density in the output dimensions ax and vy (see also Tab. 4.1). This distribution is
then sampled to estimate trajectories. In the evaluation an average lateral error of
approximately 0.5m at a prediction horizon of 5 s was achieved.

Wissing et al. present in [113] a two-step approach. In the first step a regression
technique based on Random Forests is used to estimate the time to the next lane
change. In [103], this approach is extended and combined with findings of [79]. The
estimated times to the next lane changes to the left and to the right are used as
input for a cubic polynomial to predict future trajectories. In the evaluation an
average lateral error of approximately 0.5m at a prediction horizon of 3 s is achieved,
assuming a perfect maneuver classification. The authors of [102] also present a
two-step approach: In a first step, a MLP is used to estimate the future lane of a
vehicle. In a second step, a trajectory realization is estimated using an additional
MLP. The evaluation of the module which predicts the trajectories results in an
average lateral error of approximately 0.23m at a prediction horizon of 5 s. For a
more extensive survey on position prediction see also [114].

5.3 Contribution
The main contribution of this chapter is the presentation of a real-time capable,
interaction-aware, probabilistic, data-driven approach for vehicle position prediction.
The estimates of the expected uncertainty are derived using real-world observations
in the training phase of the model. These uncertainty estimates of future vehicle
behavior are modeled explicitly in contrast to prior work, see for example [25] and
[26].

5.4. SOLUTION DESIGN 97

To predict the distribution of future positions, besides the kinematic state of a
vehicle, the maneuver recognition estimates are incorporated into the prediction
of future positions. See chapter 4 for a survey how such kind of estimates can be
derived. To predict future positions non-measurable features like ’desired velocity’
[25] are not required. All inputs of the proposed algorithms (please see chapter 4) are
measurable with current automotive sensors. Furthermore, the Markov Assumption,
that all information is aggregated in the current state serves as a basis of the research
which differs to many prediction approaches, where past behavior is used to compute
future trajectories, see for example [27].
The method presented in this chapter is also able to handle the statistical un-

derrepresented lane change case explicitly. Using the proposed strategy, important
but rare occurring corner cases can be handled reliably, where conventional learning
methods will run into problems, see as well [115].
The result is a novel method which is able to handle the task of probabilistic

position prediction considering the numerous factors which may affect the future
position of an object. A major advantage of this method is, that it not only derives
precise estimates of future positions. It also provides the knowledge in which cases
future positions are highly uncertain. This information is especially interesting for
trajectory planning and risk assessment methods.

5.4 Solution Design
To solve the problem outlined in Sec. 5.1 a design tailored to the problem domain
and complying to the black box architecture defined in Fig. 5.1 is presented in this
section. The outlined problem is a probabilistic regression problem which can be
treated as black box problem by machine learning techniques. Still, the problem
of position prediction on highways can be decomposed based on human problem
understanding in a divide-and-conquer manner.
Accordingly, the first design decision is to decouple the lateral and longitudinal

movement of vehicles to be predicted. This decision is based on the a priori knowledge
that the lateral behavior of a vehicle in highway situation is mainly influenced on
the driving intention of a driver and the lateral movement state of a vehicle. The
longitudinal behavior in highway situations on the other hand mainly depends on the
current longitudinal movement state and the presence of a preceding vehicle and the
desired velocity. This design decision additionally reduces the dimensionality of the
problem to be solved, which reduces the computational effort at runtime. Reducing
the dimensionality also allows models to generalize faster in the training process due
to the increased density of data.
The second design decision is to split the lateral prediction problem into three

sub-problems according to the maneuver classes defined in chapter 4. This means
that the prediction of positions is solved for each maneuver class individually which
results in three regression models. Using the probabilistic information of the inferred
maneuver, the results can be combined afterwards. This decision is based on the
observations of Sec. 4.8.3 on the frequency of maneuvers, where most samples are lane

98 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

Output

Interfaces

Distribution of

Future Positions

Input

Interfaces

Feature

Extraction

Positon Prediction

Lateral LcR

Positon Prediction

Lateral Flw

Positon Prediction

Lateral LcL

∑
Inferred

Maneuver

Probabilities

Positon Prediction

Longitudinial

Fig. 5.2: White box view on architecture level (3) on the position prediction method
presented in this thesis, see also Fig. 3.6 for the embedding in the system
context.

following samples. The main goal of regression techniques is however to minimize
the overall prediction error. In the case of lane change prediction, the data which
is of interest covers only 1% of the data space. This is based on the insight, that
only 1% of the data actually contains lane changes. This results in the problem of
handling unbalanced class distributions, which is a problem which is widely studied in
literature, see [116], [117]. The goal of the proposed method is to improve prediction
results in lane change situations by explicitly generating models in the relevant data
space. This is highly relevant for the fallback functions described in chapter 3. In
addition, the second design decision also reduces the number of model dimensions
needed, which again allows the models to converge faster with less risk of overfitting.

Both design decisions are reflected in the white box building block view, depicting
the design on architecture level (3) in Fig. 5.2. To implement maneuver class specific
regression models and fuse them afterwards a Mixture of Experts approach is chosen.
This method is explained in detail in Sec. 5.6.2.

5.5 Features and Data Model

The features used for learning models which are able to predict future positions is a
subset of the features defined in chapter 4. In order to reflect the architecture defined
in Sec. 5.4, the features and the setup was done separately for the longitudinal and
lateral dimension. The used approach is documented in the two following subsections.

5.5. FEATURES AND DATA MODEL 99

a rel
s,t

v rel
s,t

s rel
t))a

v))s,ts,t

Fig. 5.3: Input dimensions for longitudinal regression model in experiment 1.

5.5.1 Data Model for Longitudinal Position Prediction
To train the longitudinal model the available data needs to be splitted into situations
in which a leading vehicle was sensed, and into situations without a leading vehicle.
According to the experiments in chapter 4, a curvilinear coordinate system along the
curvature of the road was used, see Sec. 2.2.2.The longitudinal discretization chosen
for the experiment was 1m. For the generation of the data model the longitudinal
measured state Z lon

t of a vehicle at a time point t was defined.

Z lon
t =

(
t vs,t as,t srelt vrels,t arels,t

)T
(5.1)

In this context t is the current time point, vs,t the longitudinal velocity in the
curvilinear coordinate system and as,t the longitudinal acceleration. The relative
measures to the vehicle in front on the same lane contain the relative distance srelt ,
the relative velocity vrels,t and the relative acceleration arels,t . All relative measures
refer to the difference of values between the defined pair of leading and following
vehicle. For the sake of simplicity, the suffixes denoting the respective vehicle for
which measures are computed are not denoted. The one vehicle of relevance is the
preceding vehicle, see Fig. 5.3 According to the definitions of Sec. 5.6.1, an input
vector I lont0 can be extracted from Z lon

t .

I lont0 =
(
vs,t0 as,t0 srelt0 vrels,t0 arels,t0

)T
(5.2)

The containing parameters are the desired input of the prediction algorithm at the
measurement time point t0. The relative measures were removed from the vector in
case no preceding vehicle was available in the data. In order to create a relation to
future positions the output part Olon

t needs to be defined.

Olon
t =

(
st t

)T
(5.3)

For the generation of the states the traveled distance st at a specific time point
t + δt is computed using the naive Euler method. To do so δt and vt and a piece
wise constant velocity are assumed, where s0 = 0 and t0 = 0.

st+δt = st + δt · vt (5.4)

100 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

Zt0 Zt1
Zt2 Zt3

st0 + v t0 (t1 -t0)st1=

st1+ v t1 (t2 -t1)st2=

st2+ v t2 (t3 -t2)st3=

st1

st2

st3

Fig. 5.4: Generation of traveled distance st using the naive Euler method. The velocity
values can be extracted from the respective measurements Zt.

The process of how the respective traveled distances were derived is also depicted in
Fig. 5.4. The vectors Gδt which are the input to the learner to estimate a distribution
on in- and output dimensions can be defined using the respective vectors of the in-
and output dimensions. Thus, Gδt describes the relation between a given situation
described by It0 and the output Ot0+δt at a time point t0 + δt.

Gδt =
(

It0
Ot0+δt

)
(5.5)

Using this approach to model the dependencies, the number of samples is increased
significantly. Given a number of nz measurements and nt number of future positions
(at nt times points), the total number of training data ntrain is determined by
multiplication of nt and nz.

5.5.2 Data Model for Lateral Position Prediction
In order to train the three experts (see also Fig. 5.2) for predicting the lateral
positions the measurement vector Z lat

t is defined as:

Z lat
t = (t dclt dreq,lt dreq,rt vd,t)

T (5.6)

In this equation t denotes the current time point, dclt the distance to the centerline
of the lane the vehicle is currently assigned to, dreq,lt the distance to the centerline
of the left neighboring lane, and accordingly dreq,rt the distance to the centerline to
the right neighboring lane. The lateral velocity in the curvilinear coordinate system

5.6. METHODS 101

dreq,l

d t
req,r

dcl

vd,t

t

t

Fig. 5.5: Input dimensions for lateral expert nodes in experiment 1. The doted black line
visualizes the centerline of the respective lane.

is denoted as vd,t. Given a measurement Z lat
t0 at a time point t = t0 three input

vectors for the three experts I lat,F lwt0 , I lat,LcLt0 and I lat,LcRt0 can be extracted. These
three vectors are defined by:

I lat,F lwt0 =
(
dclt0 vd,t0

)T
(5.7)

I lat,LcLt0 =
(
dclt0 dreq,lt0 vd,t0

)T
(5.8)

I lat,LcRt0 =
(
dclt0 dreq,rt0 vd,t0

)T
(5.9)

where in accordance to Sec. 5.5.1 the containing parameters are the desired input of
the prediction algorithm at the measurement time point t0. The second part of the
data, which is needed to train the models is the output vector Olat

t . It is generated
according the output vector used for the longitudinal prediction part.

Olat
t =

(
dt t

)T
(5.10)

To generate states of the traveled lateral distance, dt can be computed in the same
fashion as presented in Sec. 5.5.1 using the naive Euler method. The combined states
Gδt, which are input for a learner which estimates a distribution over in- and output
dimensions can be computed accordingly.

5.6 Methods
To predict distributions of future positions, a regression approach using Gaussian
Mixtures as distribution model was chosen. The regression method is introduced
in Sec. 5.6.1. As already outlined in Sec. 5.4, a Mixture of Expert design for the
prediction of lateral positions is used. A brief overview on how this method works
is given in Sec. 5.6.2. The section is completed by providing an overview of the
techniques used for predicting the longitudinal behavior in Sec. 5.6.3.

102 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

5.6.1 Gaussian Mixture Regression
Regression methods are used for multiple applications. The most popular ones are
the determination of dependencies of variables and predicting future values based on
observed data. For the problem of position prediction the latter one is of interest.
To solve the problem two things are basically needed:

• An input vector describing the current traffic situation and the vehicle state.

• An output vector containing future positions for respective time horizons.

These two vectors need to be set into a relation in order to estimate a distribution
which models the dependencies between in- and output dimensions. A possible
implementation is described within this subsection. The situation description and
the vehicle state correspond to the input dimensions i. Future positions with the
respective time points are included in the output dimensions o. When deciding for a
probabilistic parametric method as required due to memory limitations, computa-
tional effort and architecture constraints Gaussian Mixtures are a handy choice as
distribution model. To generate predictions, a conditional distribution in the output
dimensions o can be computed based on a vector input in the input dimensions i.

To do so for a Gaussian Mixture distribution consisting of n components, where k
denotes a single component from the set of components, the decomposition of the
covariance matrices and means can be used.

Σk =
(

Σk,i Σk,i,o

Σk,o,i Σk,o

)
(5.11)

µk = {µk,i, µk,o} (5.12)

The index i again denotes the input- and the index o the output-dimensions. To
compute predictions, one can derive the covariance matrices of the conditional output.

Σk,o|i = Σk,o − Σk,o,iΣ−1
k,iΣk,i,o (5.13)

The output mean of each component can be derived using:

µk,o|i = µk,o + Σk,o,iΣ−1
k,i (I − µk,i) (5.14)

The conditional weights of the Gaussian Mixture can be computed by:

wk|i = wkp(I|N (µk,Σk))∑n
k=1 wnp(I|N (µn,Σn)) (5.15)

The described regression algorithm provides the required probability density function
in the output dimensions o. To benchmark the results, the value of the most
probable value is of interest. This is particularly true for the comparison with classic

5.6. METHODS 103

approaches. This can be realized according to [118] by computing the mean and the
variance of the Gaussian Mixture.

µσ,o|i =
n∑
k=1

wk|i · µk,o|i (5.16)

Σσ,o|i =
n∑
k=1

w2
k|i · Σk,o|i (5.17)

By using a machine learning approach for position prediction purposes, the question
arises how trustworthy the output of the algorithm is. This is especially relevant
in situations which are not similar to samples in the training dataset. To get
an indication the size of the confidence interval γ can be used for modeling the
similarity in the input dimensions i. In case of a Gaussian distribution, the size
of a confidence interval can be approximated using the property, that the squared
Mahalanobis distance is distributed according to χ2 in the df dimensional space.
Thus, by integrating the χ2 distribution up to the squared Mahalanobis distance
mdf ,x of a sample X, the minimum size of the confidence interval in which the value
x is included can be derived. The size of the prediction interval γn can be computed
by:

γn = F (mdf ,x|v) ≤
∫ mdf ,x

0

t
v−2

2 e
−t
2

2 v
2Γ

(
v
2

)dt (5.18)

where v ∈ N∗ are the degrees of freedom and Γ denotes the Gamma function. The
value of γn corresponds to the probability enclosed by the unimodal multivariate
Gaussian distribution with the index i. To extend the concept to a mixture of
Gaussians, one has to weight the probabilities according to the their weights wn.
The probability γΣ enclosed by all Gaussian components can be computed by

γΣ =
k∑

n=1
wkγk (5.19)

and represents the uncertainty of a prediction.

5.6.2 Mixture of Experts
Multiple variants of the Mixture of Experts approach are popular, i.e. Hierarchical
Mixture of Experts [119], Mixture of Experts for adaptive Kalman-Filters [120], and
Mixtures of Experts of classification or regression models [121]. All of those methods
have one main idea in common: They want to ensure that local information in the
data is not optimized out by a global optimization process. Therefore, they are a
solution for highly unbalanced classification problems and regression applications
where local information in different parts of the dataset should be maintained. This
is ensured by allowing the individual expert to specialize on smaller parts of larger
problems, which is basically a divide and conquer strategy. According to [122]
Mixture of Experts became popular for nonlinear classification problems, where
the data contains natural distinctive subsets of patterns. The Mixture of Experts

104 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

approach implements a tree-structured architecture, where all Mixture of Experts
models have three main components:

• Expert Functions which may be classification or regression models.

• Gating Functions which define data regions in which the individual Expert
Functions are trustworthy.

• A probabilistic summation which combines the results of the experts based on
the judgment of the Gating Functions.

For the problem of lateral position prediction as outlined in Sec. 5.1 the dataset
can be divided along the maneuver classes M = {Flw, LcL, LcR}. In accordance
with the definitions in chapter 4 Flw denotes lane-following, LcL lane change to
the left and LcR lane change to the right situations. This is done in order to
predict a distribution of lateral position p(d) for each maneuver class, where d is
the lateral position in a curvilinear coordinate system, see Sec. 2.2.2. To fuse the

∑

Regressor LcR

Regressor Flw

Regressor LcL

Inferred
Maneuvers

Feature
Extraction

Distribution of
Future Lateral
Positions

Fig. 5.6: Mixture of Experts design as implemented for the lateral position prediction task
in this thesis.

three predicted distributions, the probability estimates Pm for each maneuver class
(see (4.10)), which are computed by the algorithm presented in Sec. 4.7 are used.
The combination of the lateral maneuver specific distributions pm(d) to one lateral
distribution of positions p(d) can be computed straightforward.

p(d) =
M∑
m

Pm ∗ pm(d) (5.20)

In this context Pm is the probability of the inferred maneuver m out of the set of
Maneuvers M and pm(d) the lateral probability distribution of the regression model
for maneuver m.

5.6.3 Longitudinal Position Prediction Methods
The motivation behind generating a method for learning longitudinal future positions
is mainly to achieve better results than naive techniques as for example the constant

5.7. METRICS 105

velocity model. When solving the problem of probabilistic position prediction, the
Gaussian Mixture Regression as described in Sec. 5.6.1 can be used. However,
the problem, as described in Sec. 5.4 is quite different in the lateral and in the
longitudinal direction. When observing real traffic, one may come to the conclusion
that in many situations on highways the assumption of constant velocity is quite
precise for a limited time horizon. To use this insight, a second method for predicting
the longitudinal behavior of vehicles is presented in this thesis. Its novel idea is
to learn the deviations to the constant velocity assumption, where the change to a
constant velocity behavior is mainly the information one is interested in. To reflect
this insight, a second output part Oκ,lon

t was defined.

Oκ,lon
t =

(
st − (t− t0)vt0 t

)T
. (5.21)

This output is used for the same purpose as Olon
t . However, the notation κ refers to

a formulation of the prediction problem, where deviations are predicted instead of
full future positions. From a data perspective the motivation behind this strategy is
twofold. On the one hand one may hope for a reduction of the spread of the data in
the 7-dimensional space. By having a more dense data representation, the task of
learning probability density functions may become easier. On the other hand, the
approach focuses on the part of the information, which is intuitively of interest.

To be able to compare the different approaches, the four models which are investi-
gated are defined explicitly in the following. The first and most simple model is the
constant velocity (CV) model, which is defined by:

scv = st0 + vt0 · (t− t0) (5.22)

When taking acceleration into account, the constant acceleration (CA) model can
be defined accordingly.

sca = st0 + vt0 · (t− t0) + at0
2 · (t− t0)2 (5.23)

The function which predicts future positions based on data vectors Gδt, as explained
in Sec. 5.6.1, is denoted as:

sgmr = µσ,o|i (5.24)
Accordingly the method which predicts deviations to the CV model is defined by:

sgmrκ = µσ,oκ|i + scv (5.25)

where µσ,o|i and µσ,oκ|i are the derived means of the predicted Gaussian Mixture
distributions as defined in Sec. 5.6.1.

5.7 Metrics
There are many possibilities for an error metric to evaluate the results of a regression
algorithm. Popular approaches are the Mean Squared Error (MSE), the Mean

106 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

Absolute Percentage Error (MAPE) or the Mean Absolute Error (MAE). To reduce
the dependency of the achieved result to outliers, in this chapter the MAE is used.
Because the problem of outliers also holds true when computing the standard
deviation, the more robust Mean Absolute Deviation (MAD) is used in the following
accordingly.
However, all these methods have a disadvantage for the envisioned application

when used naively. By computing:

MAE = 1
l

l∑
j=1
|fj − yj| (5.26)

with predictions fj and measured values yj for l samples, all information about the
temporal distribution of the errors are removed. To handle this issue, the errors can
be separated according to their prediction horizon. To allow statistical computations,
e.g. calculating the median, the errors can be cumulated in equidistant bins. Using
these bins the statistical properties of a prediction model as a function of time can
be investigated.

Besides measuring the statistical properties of the predicted means, the goodness
of the predicted distribution has to be evaluated, too. The main challenge in
evaluating the predicted distributions is, that for each ground truth value one
predicted distribution is available. Thus computing the likelihood is not a feasible
approach to assess the prediction performance. What can be done however, is the use
of the properties of the confidence intervals. Having a measurement for the traveled
way at a specific time point after the prediction, for example sδt one can compare
it with the Gaussian Mixture defined by n values of the Θk,o|i parameter sets. The
confidence values γeval corresponding to the ’enclosed probability’ are defined as
follows:

γeval =
n∑
k=1

wkγk,sδt (5.27)

γk,sδt can be computed again, using the property that the squared Mahalanobis
distancem2

k for an unimodal Gaussian k is distributed according to the χ2 distribution.

m2
k = (xδt − µk,o|i)−1Σk,o|i(xδt − µk,o|i) (5.28)

When evaluating the confidence values derived based on a look-up at the χ2 dis-
tribution, the confidence values should be distributed linearly. For example, the
percentage of values with γeval ≤ 0.2 should be 20%.

5.8. EXPERIMENT 1 107

5.8 Experiment 1
The first experiment on position prediction focuses on whether and how good the
proposed method is able to solve the outlined prediction problem presented in Sec. 5.1.
The section is structured as follows. In Sec. 5.8.1 a brief overview on the setup and
the steps to generate the models is presented. The derived models are evaluated in
Sec. 5.8.2. The findings of the experiment are discussed in Sec. 5.8.3.

5.8.1 Setup and Training
The investigations in the first experiment are based on the same dataset which was
also used to execute the first experiment on maneuver recognition in Sec. 4.8. This
means that series-production ready automotive sensors were used to collect the data.
For training and the evaluation, each sample of the database was assigned to a

maneuver-class m ∈ {Flw, LcL, LcR}. Within this process the dataset was divided
into situations. Each situation consists of only one maneuver-class and one vehicle
but multiple samples. The time-horizon, which was used for the labeling was defined
for both lane change classes as the time-interval 0− 5s before the vehicle is assigned
to the neighbor lane (see Fig. 4.2).

5.8.1.1 Training of Models for Longitudinal Position Prediction

For the data setup of the longitudinal prediction model, only the measured object
vehicles with a preceding second object vehicle were selected. Accordingly, Gt0+δt
for δt up to 5s was computed for all vehicles, which were tracked long enough by
the sensor setup. This resulted in an amount of 3.128.266 samples. From this data,
two third were selected as training dataset. The minimum in the structural risk for
learning the distribution from all samples G resulted in nlon = 90 components for
the GMR and in nκlon = 23 components for the GMRκ

lon model.

5.8.1.2 Training of Lateral Expert Nodes

The maneuver probabilities which were used as output of the Gating Nodes (see also
Sec. 5.4) PLcL, PLcR and PFlw were used from the Random Forest model developed
in Sec. 4.8.3. The total number of data available was 160.781 samples. When
balancing maneuver classes the number was reduced to 4.097 samples. This means
for the training of the LcL and the LcR regression model less than 1% of the data
can be basically used for the respective model.The training data for the individual
experts was chosen by selecting it according to a winner-takes-all strategy using the
probability estimates of the Random Forest Model. The training of the mixture
models using the EM algorithm with the structural risk as optimization criterion
resulted in nFlwlat = 20, nLcLlat = 19 and nLcRlat = 15 number of components of the GMMs
for the respective maneuver class.

108 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

δt [s]

M
e
d
ia

n
 e

rr
o
r

[m
]

GMR

GMR
κ

CV

CA

(a) MAE vs. time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

δt [s]

M
A

D
 o

f
th

e
 a

b
s
o

lu
te

 e
rr

o
r

[m
]

GMR

GMR
κ

CV

CA

(b) MAD vs. time

Fig. 5.7: Comparison of the CV, CA, GMRlon and GMRκlon model vs. predicted time
horizon regarding the MAE and MAD.

5.8.2 Evaluation
In the following an overview on the achieved results of the first experiment on position
prediction will be given. The evaluation is separated into three parts. In the first
in Sec. 5.8.2.1 the results in the longitudinal domain are presented. The evaluation
continues with Sec. 5.8.2.2 which investigates the Mixture of Experts system in the
lateral domain. Finally, in Sec. 5.8.2.3 some insights in the properties of the derived
model in a test vehicle in field application are shared.

5.8.2.1 Evaluation of Longitudinal Prediction Results

Focusing on lane-following situations when a preceding vehicle is available, the
different methods presented in Sec. 5.6.3 were evaluated. The methods which were
evaluated are accordingly CA, CV, GMRlon and GMRκ

lon. The evaluated properties
are mainly the MAE and the MAD. Based on the insights which are derived in
this evaluation, the quality of the uncertainty estimates are evaluated for the best
performing model. Additionally, a brief look will be taken at the behavior of the
proposed method in corner cases. All evaluations were executed on the evaluation
set of the data, which consisted of one-third of the total available data.
In a first step, the overall performance was evaluated on the whole evaluation

dataset. In Fig. 5.7a the prediction accuracy in terms of the MAE of all models are
visualized. As can be seen, both GMR methods clearly outperform the performance
of the CV and CA methods for δt ≥ 2.5s, where the GMRκ

lon method shows the best
results. The constant acceleration assumption only holds true for very short time
horizons. When comparing the GMRlon with the GMRκ

lon, the first one is slightly
biased when compared to the second model. This especially holds true for short
prediction horizons.

Besides the absolute error also the spread of the prediction error is of interest. As
can be seen in Fig.5.7b the MAD of the error of the GMR methods are significantly

5.8. EXPERIMENT 1 109

lower for δt ≥ 2.5s compared to the CV and CA model. As in the evaluation of the
absolute errors the constant acceleration model shows the worst performance. When
looking at the learned models, the GMRκ

lon model is superior to the GMRlon model,
especially for δt ≤ 0.8s. The errors for short prediction horizons in the GMRlon

model can be interpreted as the bias of the models. The GMRκ
lon model combines the

precision of a physical model for short prediction time horizons with the situational
awareness of the GMRlon model. This is interesting especially due to the fact that
it uses only nκlon = 23 components compared to nlon = 90 in the standard GMRlon

model. To give an impression of the overall prediction performance of the models,

1 2 3 4 5
0

1

2

3

4

5

6

δ
t
[s]

a
b

s
o

lu
te

 e
rr

o
r

[m
]

(a) Error of CV

1 2 3 4 5
0

1

2

3

4

5

6

δ
t
[s]

a
b
s
o
lu

te
 e

rr
o
r

[m
]

(b) Error of CA

1 2 3 4 5
0

1

2

3

4

5

6

δ
t
[s]

a
b

s
o

lu
te

 e
rr

o
r

[m
]

(c) Error of GMR

1 2 3 4 5
0

1

2

3

4

5

6

δ
t
[s]

a
b

s
o

lu
te

 e
rr

o
r

[m
]

(d) Error of GMRκ

Fig. 5.8: Boxplots of the CV, CA, GMRlon and GMRκlon model vs. predicted time horizon.
The whisker visualize 99.3% coverage of the data, the red line the median and
the boxsize a 50% coverage of the data.

their statistical properties are visualized in the boxplots in Fig.5.8a-5.8d.
As the GMRκ

lon showed the best results in evaluation, its properties regarding
the estimation of uncertainties are discussed in the following. In Sec. 5.6.1 γΣ is
proposed as a measure on how certain a prediction is. In Fig. 5.9a the prediction
error strongly correlates with γΣ in the input dimension. This intuitively corresponds
to the expected behavior. The more similar situations are to the training data, the
less error prone predictions will be. Regarding the proportion of predictions, which

110 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

0.1 0.3 0.5 0.7 0.9
0

0.5

1

1.5

2

2.5

3

Σ

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

[m
]

Relative frequency of Predictions

Mean Absolute Error

γ

(a) Enclosed probability γΣ vs. Mean
absolute error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eval

c
u

m
m

u
la

ti
v
e

 r
e

la
ti
v
e

 f
re

q
u

e
n

c
y

cummulative relative frequency

γ

(b) Cumulated histogram of γeval

Fig. 5.9: Evaluation of the goodness of the distribution estimates in the longitudinal
dimension.

are highly uncertain, one can also discuss the blue histogram in the same figure.
As expected, the frequency of predictions decreases, the larger γΣ representing the
’enclosed probability’ gets.

In Fig. 5.9b the comparison of the measured values with the predicted Gaussian
Mixture distributions using the confidence intervals γeval in a cumulated histogram is
depicted. The ideal predictor would show a diagonal line starting bottom left raising
to the top right. This is obviously not the case. As the cumulated relative frequency
rises faster as the values for γκeval, this indicates that the variances of the predicted
Gaussian Mixture distributions are partially to large. On the other hand, the red
lines, which are plotted for a region of 90% confidence show that a similar part of
the predicted data is within this interval. This shows the ability of the algorithm to
deliver an error range of the prediction error, which is an important property for the
envisioned application.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

δ
t
[s]

M
A

D
 [
m

]

GMR

GMR
κ

CV

CA

Fig. 5.10: MAD depicted for error for cases vrelt0 < 3ms .

Finally, the properties of the derived model are investigated in situations with
conflict potential. To do so, situations were selected, in which a faster vehicle

5.8. EXPERIMENT 1 111

approaches a slower preceding car. In Fig. 5.10 all four models are evaluated for
situations where the relative velocity of the two vehicle exceeds 3ms−1. In the figure,
as expected, the difference of the MAD to the constant velocity approach increases
significantly compared to the evaluation on all scenarios.

5.8.2.2 Evaluation of Lateral Prediction Results

The evaluation of the lateral prediction is less extensive than the evaluation of
the longitudinal model. There are several reasons for this. The primary reason
is, that the main properties of the GMR method were already investigated in the
evaluation of longitudinal position prediction. The second reason is, that while the
constant velocity and acceleration model at least sound feasible for longitudinal
behavior of vehicles on highways, their assumptions are pointless for the prediction
of the lateral positions. Accordingly, only the properties of the GMR model were
evaluated. Again, all evaluations were executed on the evaluation set of the data,
which consisted of one-third of the total available data.

For the evaluation of the prediction performance the differences were calculated
between predictions and the available pseudo ground-truth from the evaluation data.
For the evaluation of the expert nodes, the label information was used to choose the
right expert for evaluation. Again, as in the evaluation of the longitudinal models,

δ
t
[s]

1 2 3 4 5

a
b
s
o
lu
te
e
rr
o
r
[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) GMRLcLlat

δ
t
[s]

1 2 3 4 5

a
b
s
o
lu
te
e
rr
o
r
[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) GMRFlwlat

δ
t
[s]

1 2 3 4 5

a
b
s
o
lu
te
e
rr
o
r
[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) GMRLcRlat

Fig. 5.11: Evaluation of the experts nodes.

the prediction performance vs. the prediction horizon is of interest. Therefore, the
errors vs. the time horizon were visualized using a boxplot for every expert. Please
see Fig. 5.11a, 5.11b and 5.11c for the results. As can be seen, the results for the lane
change classes LcR and LcL are more noisy compared to the Flw class. Reasons
for this can be seen in the fact, that only 1% of the data contains lane change
trajectories. Additionally, not all trajectories were tracked for the whole time horizon
in the dataset, such that the density of the data for higher prediction horizons was
relatively sparse compared to short horizons. Even though, it is remarkable in this
context, that the median error in none of the experts, at no time-horizon, exceeds
0.2m. In the evaluation of the overall performance, which is evaluated in the same
way as for the experts, the error of the Mixture of Experts approach (see Fig. 5.12)
is strongly dominated by the results of the Flw class, which contains 99% of the

112 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

δ
t

[s]

1 2 3 4 5

a
b

s
o

lu
te

 e
rr

o
r

[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.12: Absolute error of the predicted mean of the Mixture of Experts approach vs. the
ground-truth. The whiskers denote approximately 99.3% coverage of the data,
and the box approximately 50% coverage, assuming normal distributed errors.

data (see Fig. 5.11). However, the overall prediction results are quite precise. At
no time-step of the prediction horizon, the median error of the Mixture of Experts
model exceeds 0.2m. While the error of the longitidunal model increases, as the
prediciton horizon increases, the error in the lateral domain seems to be constrained
asymptotically. A possible explanation for this behavior is the width of the road,
which is an upper bound for the prediction error in the lateral domain.

5.8.2.3 Evaluation in Test Vehicle

Besides the offline evaluation of the collected data, the derived models of the first
experiment were also evaluated in a test vehicle. The experiments on the algorithms
were executed open loop in real traffic on German highways. The prediction results
were visualized and inspected visually by the co-driver.

At no time point the results seems to be unfeasible. The strongest issue which
was detected is related to the estimation of maneuver probabilities. Even a low, but
significant probability of a lane change can result in a situation where the predicted
position blocks two lanes. However, these findings are based on the confidence level
of 99, 73% which was chosen in the test vehicle. Please see Fig. 5.13 for snapshot on
the executed tests and especially Fig. 5.13c for a situation in which the maneuver
classification is uncertain, resulting in a high uncertain position prediction.

5.8.3 Conclusion
The first experiment illustrates the benefits of a data driven approach for position
prediction on highways. The proposed method was demonstrated to be superior to
classical techniques for position prediction which assume constant acceleration or
constant velocity of the vehicle to be predicted.

5.8. EXPERIMENT 1 113

(a) Situation before lane change

(b) Situation in the middle of a lane change

(c) Situation after lane change

Fig. 5.13: Position prediction evaluation closed loop in experimental vehicle. The red
area visualizes the mean of the prediction, the blue area the bounds of a 99.73%
confidence interval. The size arrows at the front and the right and left side
visualize the proportion of the estimated maneuver class probabilities.

114 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

In the investigation of the longitudinal models (Sec. 5.8.2.1), the model which
predicts the deviations to the constant velocity hypothesis showed superior results
in terms of the mean and the spread of the prediction error. This is especially
remarkable as this model has a lower complexity compared to the model which
solves the whole problem of position prediction. The benefit which comes hand in
hand with this model are substantial reduced run-time and memory requirements
when applying it. Thus, it can be concluded, than whenever a feasible and simple
analytical model is available to solve parts of a prediction problem it shall be used.
The machine learning based model can then focus on learning the errors of this
simplified model to improve the overall prediction performance.

The evaluation of the goodness of the PDFs of future positions (Fig. 5.9b) showed
that the predicted distributions can be used to derive meaningful confidence bounds
of the predicted values. The probability distributions are however not highly precise,
and are only an approximation for the exact probabilities especially in the low
confidence areas of the distribution. Thus, when setting thresholds for the confidence
area, one needs to consider the evaluation of the respective model to determine the
correct value. Additionally, the method is able to provide meaningful estimates of
the uncertainty of its predictions (Fig. 5.9a).
The evaluation of the Mixture of Experts model used for predicting the lateral

positions (Sec. 5.8.2.2) showed also promising results. It was demonstrated, that
the estimates of future position provided by the Mixture of Expert approach have
a median error of less than 0.2m for prediction horizons up to 5 s. However,
the evaluation showed some potential for further experiments. On the one hand
the slightly noisy evaluation results indicate, that increasing the number of lateral
trajectories available for training and evaluation may be beneficial. Also, an improved
maneuver classification algorithm delivering more precise probability estimates for
time horizons up to 5, s is assumed to improve the prediction results. To get an
insight, whether those envisioned modifications really improve the performance of
the algorithm, a second experiment was conducted.

5.9. EXPERIMENT 2 115

5.9 Experiment 2
The research topic of the second experiment is the investigation how an improved
classification model which was derived in Sec. 4.9 and an increased number of data
can improve the results of the models developed in the first experiment, see Sec. 5.8.
For the execution of the second experiment, the findings of the first experiment were
considered. The work presented in this section was firstly presented in [76], where
the contribution of the author of this thesis is mainly in the research strategy and
the conceptual part.

5.9.1 Data Setup
The dataset used in this experiment is based on the data obtained from the second
experiment on maneuver recognition in Sec. 4.9. Thus, the results of the developed
models of maneuver recognition were used for the Mixture of Experts approach. In
contrast to the first experiment on position prediction, the dataset was processed in
the same manner for the lateral and longitudinal direction.
The dataset, which is intended for the training and evaluation of the regression

models was processed in three steps.

1. In the first step the probability estimates of the derived classifiers in Sec. 4.9
were added to each measured samples in the respective samples in the dataset.

2. Using the data model as described in Sec. 5.5.1 the pseudo ground truth in s
and d direction was derived, please see [76] for a more detailed explanation of
the pre-processing. This process resulted in a multiplication of the size of the
dataset by a factor of 70.

3. The derived dataset was split in two parts, one for training and one for
evaluation. The training dataset contained 130 000 and the evaluation set
20 000 trajectories.

The number of samples available in the second experiment highly outnumbers the
number of samples in the dataset of the first experiment. Some features however,
which were used for the first experiment, were not available in the second experiment.
In the lateral dimension this resulted in the following input vector which was defined
according to Sec. 5.5.2:

I lat,F lwt0 = I lat,LcLt0 = I lat,LcRt0 =
(
dclt v0

d,t

)T
(5.29)

In the longitudinal direction, the relative acceleration was removed from the input
vector defined in Sec. 5.5.1. This resulted in the adapted input dimensions as follows
for situation where a preceding object was available.

I lont0 =
(
vt0 at0 srelt0 vrelt0

)T
(5.30)

116 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

5.9.1.1 Training of Longitudinal Position Prediction Models

Extending the work presented in the first experiment, two models were trained for
the longitudinal prediction task. The first model predicts future positions based on
the current longitudinal motion state. This model shall be applied in situations,
when no preceding vehicle is available in the range of sight of the sensor setup. The
second model in accordance with the first experiment predicts the object following
behavior. Accordingly, the input dimensions for the learning problem in accordance
with Sec. 5.5.1 are defined as follows:

I lon,followt0 = I lont0 =
(
vt0 at0 drelt0 vrelt0

)T
(5.31)

I lon,freet0 =
(
vt0 at0

)T
(5.32)

As a result of the first experiment, see also Sec. 5.8.2.1, the approach of predicting
deviations to constant velocity was chosen. For the simplicity of notation, the label
κ is not used and needed in the second experiment. This is because only the models
predicting deviations were evaluated in the longitudinal dimension. For the training
process, according to the training for the lateral models, the number of components
was limited to 50 and full covariance matrices were used while fitting the Gaussian
Mixture models variationally. Regarding the data 2 693 605 samples were used to
fit the model where no preceding vehicle was available and 4 345 284 samples with
preceding object.

5.9.1.2 Training of Lateral Expert Nodes

For the training of the expert nodes of the Mixture of Experts model, the dataset
was split along the maneuver labels, which were defined according to Sec. 4.9.3.
Because of the large number of the data, random undersampling was executed on the
Flw class, to get a comparable dataset size for all three models. Beside the reduced
time needed for training, also the problem of predicting the lateral lane following
behavior in the lateral dimension seemed less complex compared to the lane change
classes. Thus, the problem shall also be solvable with a comparable number of data
compared to the lane change classes. In the undersampling process, the number of
data for the Flw class was reduced by 95 %. This resulted in a number of 327 841
samples for the Flw, 201 066 samples for the LcL and 270 151 for the LcR class.

Using the derived three sub datasets, three GMMs were trained as experts for the
Mixture of Expert approach, see Sec. 5.6.2. To bound the training complexity and
after the findings of the first experiment, the maximum number of components was
limited to 50, and full covariance matrices were used. Please see [76] for more details.

5.9.2 Evaluation
In the following subsection the results of the second experiment on probabilistic
position prediction are presented and discussed. The evaluation is splitted into
two parts. In the first part in Sec. 5.9.2.1 the results of the longitudinal prediction

5.9. EXPERIMENT 2 117

models are presented. The second part of the subsection covers the evaluation of
the Mixture of Experts model implemented for the prediction of lateral positions in
Sec. 5.9.2.1. All evaluations were executed on the evaluation dataset, where 20 000
trajectories were used for the evaluation of the Mixture of Experts approach where
the class distribution was equal to the statistical population. The evaluations of the
experts were also executed each with 20 000 trajectories of the respective class.

5.9.2.1 Evaluation of Longitudinal Prediction Results

The evaluation of the longitudinal prediction mainly focuses on the predicted mean
of future positions. The main difference to the evaluation in the first experiment in
Sec. 5.8.2.1 is, that an explicit model GMRfree

lon handles situations without leading
vehicle. Situations in which a preceding vehicle is sensed can be predicted using the
GMRfollow

lon model, which is similar to the model evaluated in the first experiment.
The combination of both models is denoted as GMRall

lon. The results of the evaluation

1 2 3 4

t [s]

0

2

4

6

ab
so

lu
te

 e
rro

r [
m

]

(a) GMRfollowlon

1 2 3 4

t [s]

0

2

4

6

ab
so

lu
te

 e
rro

r [
m

]

(b) GMRfreelon

1 2 3 4

t [s]

0

2

4

6

ab
so

lu
te

 e
rro

r [
m

]

(c) GMRalllon

Fig. 5.14: Evaluation of the longitudinal Gaussian Mixture Regression models. Fig. 5.14a
displays the error distribution as a function of time for the model which
considers a preceding vehicle. In Fig. 5.14b free driving with no sensed preceding
vehicle is visualized. The overall results can be seen in Fig. 5.14c.

are shown in Fig. 5.14. In case a preceding vehicle is present (Fig. 5.14a) the prediction
results are slightly less precise when compared to free driving scenarios (Fig. 5.14b).
This correlates with an intuitive situation understanding, where a preceding vehicle
forces a driver to react, where the way how these reactions are executed depend on
the individual driving style.

When comparing the achieved results with the first experiment where only situa-
tions with a preceding vehicle where evaluated, see Fig. 5.8c, the results are highly
similar to the GMRfollow

lon model. The overall performance of the combination of
both models in Fig. 5.14 shows a median error of round about 1.6m at 5 s where
99.73% of all predictions in the longitudinal direction are more precise than 7m.

5.9.2.2 Evaluation of Lateral Prediction results

To evaluate the lateral prediction model one first has to decide for a model which
is used as Gating Node, see Sec. 5.4 for the design of the method. The available
models were presented in Sec. 4.9.3. However, in the evaluation of the classification

118 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

models in Sec. 4.9.4 the Random Forrest and the MLP model showed comparable
good performance in solving the classification problem. For the task of predicting
probability distributions of future positions it seems to be feasible to use the classifi-
cation model, for which the output distributions of the Mixture of Experts model are
’best’. For scoring and comparing the distributions for the respective classification
models, the average log-likelihoods L were calculated on the (maneuver-) class-wise
unbalanced evaluation dataset. The value of L is derived by computing the average of
the evaluations of the PDF at the respective ground-truth sample for every predicted
distribution. In Tab. 5.1 the respective values L for the different approaches for the

Tab. 5.1: L derived using the Random Forest and the MLP as Gating Node. The value
derived for Labels uses the label information to select the right expert. The bold
value denotes the respective best result.

Classification strategy Ld
Labels -7.547
RF -7.626
MLP -7.608

lateral position prediction are documented. For the computations, the results of
the Random Forest and the MLP derived in Sec. 4.9.3 were used. As can be seen,
the combination of the MLP with the three lateral expert models provides the best
results. For a more detailed investigation please also see [76]. Thus, all evaluations
presented in the following are based on the use of the MLP.
As in the first experiment, the overall prediction performance was evaluated by

calculating the differences between the predicted mean and pseudo ground-truth on
the evaluation dataset. In a first step the three experts were evaluated on samples
belonging to the respective class of the expert. Please see Fig. 5.15 for the results.
As expected the errors for the GMRFlw

lat model used for lane following are the lowest.
The results achieved for this model are very similar to the results achieved in in the
first experiment, see Fig. 5.11 for a comparison. For both lane change classes the
median position prediction results show comparable errors up to 0.4m at 5 s. These
errors are higher as the ones which were derived on the insufficient number of data
in the first experiment. The spread of the errors on the 99.73% of the data for both
lane change classes is up to round about 1.5m for every prediction horizon.
In the evaluation of the overall performance of the Mixture of Experts approach

in Fig. 5.15d, the Flw class clearly dominates the results. This corresponds to the
number of samples in the evaluation dataset as presented in Sec. 5.9.2. Regarding the
predictive power of the method even for time horizons of 5 s the median error is better
than 0.25m and 99.73% of all predictions at all evaluated prediction horizons are
more precise than 0.8m when compared with the mean of the predicted distributions.
The increased error of the expert models of the lane change classes however result
also in a slightly increased error of the overall lateral prediction performance, when
compared to the first experiment. The reason, why the model performs slightly

5.9. EXPERIMENT 2 119

1 2 3 4

t [s]

0.25

0.5

0.75

1

1.25

1.5
ab

so
lu

te
 e

rro
r [

m
]

(a) GMRLcLlat

1 2 3 4

t [s]

0.25

0.5

0.75

1

1.25

1.5

ab
so

lu
te

 e
rro

r [
m

]

(b) GMRFlwlat

1 2 3 4

t [s]

0.25

0.5

0.75

1

1.25

1.5

ab
so

lu
te

 e
rro

r [
m

]

(c) GMRLcRlat

1 2 3 4

t [s]

0.25

0.5

0.75

1

1.25

1.5

ab
so

lu
te

 e
rro

r [
m

]

(d) GMRalllat

Fig. 5.15: Evaluation of the lateral position prediction in the second experiment. In
contrast to [76], the number of samples for the respective evaluation time points
is not constant.

worse can only be assumed in the adapted feature space. The reduced dimensionality
seems to hinder the models to take advantage of the higher number of data.
In Fig. 5.16 the Mixture of Experts approach is compared with the naive CV

approach and a Mixture of Experts model which uses the label information as Gating
Node. This is done to gain a better understanding of the goodness of the predictions.
The Mixture of Experts approach performs significantly better than the constant
velocity model. It is also interesting to see, that the predicted positions in the lateral
domain are almost comparable to having a perfect classifier as Gating Node. The
median prediction error at no time point exceeds 0.21m within the prediction horizon
of 5 s.

5.9.3 Conclusion
The second experiment completes the insights which were already gained in the first
experiment. This includes the model for predicting longitudinal future positions in
situations without leading vehicle and a more extensive evaluation of the lateral
position prediction particularly scenarios with lane changes.
The investigations of the longitudinal models (Sec. 5.9.2.1) shows results which

are highly similar to the results of the first experiment. Even though both datasets
were collected on German highways, the number of data in the second experiment is
significantly higher. The comparability of the results proves that the developed model

120 CHAPTER 5. PROBABILISTIC POSITION PREDICTION

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Prediction Horizon t [s]

0.0

0.1

0.2

0.3

0.4

0.5

[m
]

Labels CV MLP

Fig. 5.16: Comparison of lateral prediction results with reference systems. The constant
velocity approach (cyan) and the method using labels as gating node output(blue)
are depicted for better comparability of the performance of the Mixture of Experts
approach (red).

for longitudinal prediction generalizes well. The slightly higher error compared to the
first experiment is assumed to depend on the missing value of relative acceleration
as input dimension of the prediction models.
The evaluation of the Mixture of Experts model (Sec. 5.9.2.2) in the second

experiment in the lateral dimension shows also promising results. The tendencies of
the first experiment were proven to be right. As in the first experiment, the lane
following class dominates the overall results.
The results of the experiment are compared to state-of-the-art approaches in

Tab. 5.2. The mean of the predicted distribution of the proposed method are
comparable to the results achieved by Yoon et al. in [102]. However, the method
of Yoon et al. is lacking the ability to provide meaningful probability estimates.
When interpreting the results however one has to consider, that all models were
derived and evaluated on different datasets. Overall, the experiment shows that

Tab. 5.2: Lateral Prediction Performance in Comparison to the first experiment and
related work.

Approach Ẽy,t [m] Prediction Horizon t [s]
Experiment 1 (Sec. 4.8) ≈ 0.18 5.0

Yoon et al. [102] 0.23 5.0
Wissing et al. [103] 0.50 3.0

Mixture of Experts using MLP 0.21 5.0

the proposed method is able to provide results which are at least on par with
state-of-the-art approaches for the prediction of future mean position of vehicles on
highways. Besides this, the method delivers meaningful probability densities of future
positions. This information is highly relevant when applying the method for risk
assessment or trajectory planning. The evaluation also showed highly similar results
to the evaluation of the first experiment. The flaws identified in the first experiment
regarding the longitudinal and lateral prediction models were considered in the test

5.9. EXPERIMENT 2 121

setup and model design. In the experiment the method proved to deliver precise
probabilistic predictions which are an enabler for the envisioned use case of planning
fallback trajectories. A possible next step to improve the prediction performance
of the regression models could be the use of kernel density estimators. Using such
kind of non-parametric technique, the probability density of future whereabouts
could be derived without any artifacts introduced by a generative model based on a
parametric representation. Such kind of approach however would increase memory
requirements significantly. Another direction to optimize the prediction performance
could be to continue the work on the models of maneuver recognition. A first step
could be to add a probability calibration step at the output of the classifiers, see for
example [123].

123

Chapter 6

Trajectory Planning in Structured
Dynamic Environments

Humans drive with respect to future positions of other traffic participants. Such
kind of prediction information can be derived for example by the method proposed
in the previous chapter. When planning trajectories for an automated vehicle, the
question arises how such kind of time-dependent information can be incorporated
together with a representation of the static environment into the decision making
and trajectory planning problem.
Accordingly, in the system concept (Sec. 3.5.2) a function block ’Trajectory

Planning’ is specified. This block is the last functional block specific to the functional
chain of the fallback system introduced in chapter 3. Besides the envisioned use case
as a trajectory planner for a fallback system the method presented in this chapter
can be applied in different vehicle automation systems, e.g. as trajectory planner for
standard automated driving in Level-3 and Level-4 automated systems.

In this chapter, a method for trajectory planning using the bicycle model (Sec. 2.4)
is introduced. The method is able to consider future positions of dynamic and static
obstacles using a flexible but generic data representation. The output of the method
is a composite polynomial which is derived efficiently in real-time.
The chapter starts with the definition of the problem to be solved in Sec. 6.1.

Related to the problem definition an overview on related work is presented in Sec. 6.2.
Referencing the related methods, the contribution of this chapter is presented in
Sec. 6.3. To provide the reader with an high-level overview of the method, the
architecture envisioned to solve this problem is detailed in Sec. 6.4. Providing even
more background information to better understand the separation between trajectory
and behavior planning, a brief sketch on behavior planning is presented in Sec. 6.5.
Based on the information which shall be provided by the behavior planner an interface
to trajectory planning is proposed in Sec. 6.6. Using the available information of
the dynamic freespace and the behavior, the way how the data provided by the
interface can be processed and how it can be used to sample trajectories is presented
in Sec. 6.7. The main output of this sampling step are safe support point sequences
which represent the input of trajectory generation. Accordingly in Sec. 6.8 a flexible
method of how trajectories can be generated considering the support points is

124 CHAPTER 6. TRAJECTORY PLANNING

described. Subsequently in Sec. 6.9 the capabilities of the method are demonstrated
in a simulated scenario and real-world driving. The chapter concludes with Sec. 6.10
in which the findings of the experiments are summarized briefly.
The method presented in this chapter was published beforehand in [124]. The

main contribution of the author of this thesis is within the concept of problem design,
the interface design, the way how the dynamic freespace is processed and the concept
of how trajectories can be sampled within the dynamic freespace.

6.1 Problem Definition
When describing the targeted problem as a black box problem (see Fig. 6.1), planning
a trajectory means to find a smooth trajectory from a ’Vehicle State’ at a current
time point to an unknown state of a vehicle at a future time point. This ’Vehicle
State’ shall include position, orientation, and its derivatives according to the bicycle
model, see Sec. 2.4. To avoid collisions the ’Dynamic Free Space’ shall be considered,

Output

Interfaces

Input

Interfaces

Maneuver

Vehicle State

Trajectory

Planning TrajectoryDynamic Free Space

Fig. 6.1: Architecture level (3) black box view of the functional block Trajectory Planning
depicting the consumed information and the output to be computed, see Fig. 3.6.

which can be interpreted as time-dependent geometric information in which the
trajectory shall be planned. The missing information to plan a trajectory is the
information of the ’Maneuver’ to be executed, i.e. a lane change to the right or lane
following. Within the planning black box the capabilities of the vehicle shall be
considered, for example the maximum acceleration or the maximum steering angle.

When depicting the planning problem geometrically, Fig. 6.2 provides an overview
how a typical situation may look like. Please see, that the curvilinear coordinate
system defined in Sec. 2.2.2 is used.

In order to solve the planning problem, it needs also to be defined more formally.
In the following it is described as a minimization of a cost function J . Given this
cost function J to compute an optimal vehicle state x∗(t), and a control function

6.2. RELATED WORK 125

vf,l

vb,l

d

t

s

y(t)

Fig. 6.2: Schematic visualization of the planning problem from a geometrical perspective.
The grey occupancies visualize the predicted positions of two vehicles on the
left neighboring lane, the blue prediction shows a vehicle which is following the
system vehicle. The cyan box may correspond to a static obstacle, its position is
constant at all time points. In red, the system vehicle position coordinates y(t)
are depicted.

u∗(t) both depending on time the optimization problem can be described as follows.

u∗(t), x∗(t) = arg minu,x J(Tf ,x(t),u(t)) (6.1)
s.t. ẋ(t) = f(x(t),u(t)) (6.2)

u(t) ∈ U (6.3)
x(t) ∈ X (6.4)

y(t) ∈ Y(t) (6.5)
t ∈ [0, Tf] (6.6)

where u(t) is the control input of the vehicle at a time t, x(t) the vehicle state, and
y(t) the vehicle position coordinates. Please consider that in the latter the argument
t is often neglected for simplification purposes, for example by writing x(t) as x.

Formally (6.1) is a kinodynamic trajectory planning problem as described in [125].
It needs to be emphasized that based on prediction information, time-dependent
constraints need to be considered. The main challenge therefore is to solve (6.1) in
real-time.

6.2 Related Work
One of the most popular methods in the context of automated driving is proposed
by Werling et al. in [41]. The method is a sampling based approach working in
a curvilinear coordinate system. It distinguishes between a finite set of maneuver
options. Using these maneuver options, the author describes a method to plan jerk-
optimal trajectories considering multiple traffic participants and lanes. It is important
to understand, that the proposed method is not only a pure trajectory planning,
but also a method of behavior planning. Most authors however architecture-wise
decouple behavior planning from trajectory planning.
An example of a behavior planning method for road vehicles is presented in

[126]. Within the paper, a solution for the combinatorial problem which maneuver

126 CHAPTER 6. TRAJECTORY PLANNING

variant shall be chosen is presented. A variant herein describes for example in case
of an overtaking maneuver which traffic gap shall be chosen. In accordance with
the definitions in chapter 3 this discrete selection of maneuver-variants is called
behavior-planning, following. When it comes to planning trajectories a solution is
described in [127]. Within the proposed method, Sequential Quadratic Programming
is used to plan a trajectory in a global coordinate system. The cost function which is
minimized is pretty complex and incorporates a weighted combination of the lateral
offset to the middle of the lane, the velocity difference to a desired velocity and
high values of jerk and acceleration. The robustness of the method was proven on
the Bertha Benz Memorial route on an autonomous ride between Mannheim and
Pforzheim. One of the main drawbacks of the method is, that depending on the
complexity of the constraints, the optimization process runs into a problem that is
not solvable in real-time. Both approaches are however closely related to the work
presented in this chapter.
Another approach, which is less related but is analyzed in this section is [128].

The method uses a Rapidly-exploring Random Tree (RRT) for motion planning,
and proved to be feasible in the 2007 DARPA Urban challenge. In [129] a spatio-
temporal-lattice is used for trajectory planning. It is shown, that the proposed
method can be easily executed on a GPU in order to achieve real-time capability.
While the use of the method on the one hand results in high requirements to the
hardware, on the other hand the behavior planning problem is solved implicitly in
the planning process. Another approach which explicitly addresses the inflexibility of
many sampling based approaches regarding the shape of the trajectories is presented
in [130]. To do so, the presented method piecewise concatenates motion primitives,
where the approach is demonstrated to be feasible for the application of a small
aerobatic helicopter.

6.3 Contribution
The main contribution of this chapter is a trajectory planning method, which is able
to plan trajectories using a dynamic freespace representation which can be generated
by arbitrary prediction algorithms. The method is inspired by and extends the work
presented in [41], [127], [130] and [131]. The contribution can be divided into three
parts.
The first part is the definition of a generic interface of dynamic freespace which

on the one hand is able to handle arbitrary prediction information and on the other
includes the information which kind of maneuver shall be executed. To generate
a human-like driving behavior, the idea of [127] to penalize offsets from the center
of the lane is modified towards defining the borders of a lane as a hard constraint
within the interface. From an architectural point of view the defined interface allows
the separation of the functions position prediction, maneuver planning and trajectory
planning, see Fig. 3.6 for the context.

The second part of the contribution is the concept of how this dynamic freespace
information can be processed to generate support points for the trajectories to be

6.4. SOLUTION DESIGN 127

sampled. Therein, the concept focuses implicitly on sampling along the curvilinear
coordinate system which follows the curse of the road. The sampling is executed in
the important parts of the solution space which is fostered by the way the freespace is
represented. The presented method improves the concepts derived by [41] by avoiding
sampling in occupied regions. This in contrast to approaches which are sampling the
state space, where large numbers of planned trajectories in dense traffic are discarded
due to collisions. It is important to understand, that the construction of the interface
provides not only constraints but also a heuristic for trajectory planning which is
independent of an underlying trajectory planning method. The approach results in
an increased flexibility of trajectory shapes. Many sampling based approaches lack
flexibility when it comes to the shape of planned trajectories due to their limitation
to a fixed number of motion primitives. Even simple scenes which require a two-step
strategy, like catching up to a gap and performing a lane-change afterwards, are
often not directly solvable using these approaches.

The third part of the contribution is a method for trajectory generation which is
based on composite polynomials of fifth order. The polynomials use the properties of
differential flatness and are jerk optimal given the constraints defined explicitly by the
vehicle states and the support points. Because jerk optimality is achieved without any
iterative optimization, the method is computational inexpensive. The polynomials
use the support points which are transformed back to the Cartesian coordinate
system for trajectory generation. This guarantees driveability and jerk optimality
for the generated trajectories, even when a real road contains discontinuities and
curvature, which is the main difference to the method presented in [41]. Besides the
envisioned use case of planning fallback trajectories, the introduced method is able
to produce dynamic feasible results for different kinds of maneuvers, i.e. turning at
intersections, lane-changing or roundabouts. This is achieved by using a longitudinal
and lateral coupled model, which differs to known similar methods for the problem
domain, where mostly path-velocity decomposition is used for trajectory generation.

The result of the three parts of the contribution is a method which is able to handle
the challenging task of trajectory planning in dynamic environments considering
arbitrary prediction information in real-time. Major advantages of the method are
the architectural clean separation of the planning problem from the methods of
object prediction, the high flexibility of the planned trajectory shapes even though
using a coupled model and the computational efficiency.

6.4 Solution Design
In this section, a brief overview on the high-level design used to solve the problem as
described in Sec. 6.1 is provided. The design complies to the black box architecture
visualized in Fig. 6.1 and the L2 system design presented in Sec. 3.5.2. Within this
section, four design decisions are presented which are the basis for the development
of the presented trajectory planning method.
The problem of planning a trajectory in the dynamic freespace is treated as an

optimization problem. In contrast to the presented methods for maneuver recognition

128 CHAPTER 6. TRAJECTORY PLANNING

and position prediction in chapter 4 and 5, the uncertainty factor of human behavior
is not part of the problem to be solved. Thus, the planning problem shall be solved
without use of machine learning techniques. This however requires a lean and
carefully designed interface.
Accordingly, the first design decision is, that the trajectory planner shall handle

arbitrary prediction information in order to be usable for different applications.
Therefore, an interface needs to be designed which provides a sufficient level of
abstraction, includes all needed data, but only contains information which every
method used for prediction can provide. Because not every planning algorithm is
able to provide probabilistic information on future positions, this implies, that all
probabilistic information needs to be transformed to non-probabilistic values based
on for example the choice of a confidence level.
The second design decision relates to the sampling strategy. Instead of sampling

in the state space like for example [41], sampling techniques shall focus explicitly
on areas in which the chance of finding collision free trajectories is high. This task
however can be executed in a simplified environment representation, in order to
reduce the computational effort. This guardrail reduces the effort needed for collision
checking after the sampling process which is typically the most computational
expensive step. In order to provide higher quality solutions in the important parts of
the solution space and to reduce the computational effort, this second design decision
introduces more complexity in the sampling process. For further simplification, the
sampling process shall be executed in a curvilinear coordinate system, where many
geometric calculations can be substituted with simple inequality checks. However,
no guarantees can be made on the geometric configuration of the sampled points.
Thus, motion primitives cannot be used and challenging requirements regarding the
flexibility of trajectories are laid down to the method of trajectory generation.
The third design decision affects the model assumptions made for trajectory

generation. When generating trajectories to be executed in a Cartesian coordinate
system no model assumptions which are violated obviously shall be made. This
especially relates to the use of the lane coordinate system, where many methods use
the lane coordinate system for planning and assessing the goodness of trajectories.
This introduces physical implausibilities. For example the lateral and longitudinal
acceleration of a trajectory in a bad case may have a maximum at a point of
the trajectory where the curvature of the road has a maximum, too. Thus the
decision is to use the Cartesian coordinate system for trajectory generation. A
further popular approach, often called ’Path velocity decomposition’ assumes that
lateral and longitudinal trajectories can be planned separately. While this approach
may work well on almost straight roads, its obviously not valid in every traffic
environment and accordingly such kind of simplification may not be used in the
trajectory generation process. This design decision however makes the planning
problem more complex. Solving the optimization problem in the longitudinal and
lateral domain at the same time increases its dimensionality.

The fourth design decision affects the complexity of the model used for trajectory
generation. Even though it is possible to generate smooth curves using methods
from CAD and Computer Graphics like Hermite Splines, the trajectories shall be

6.5. BEHAVIOR PLANNING 129

constrained by being compatible to the dynamic bicycle model (Sec. 2.4). In many
applications, see for example [132], the non-linear bicycle model has proven to be a
reasonable simplification of the dynamical behavior of a real vehicle. This design also
allows trajectories to be checked simply using dynamic constraints like maximum
acceleration or the steering rate. All four design decisions are reflected in the white

Output

Interfaces

Input

Interfaces

Maneuver

Vehicle State

Trajectory

Point

Sequence

Sampling

TrajectoryDynamic Free Space
Trajectory

Generation

Trajectory

Pruning
Trajectory

Selection

Fig. 6.3: White box view on architecture level (3) on the trajectory planning method
presented in this thesis, see also Fig. 3.6 for the embedding in the system
context.

box building block view, depicting the design on architecture level (3) in Fig. 6.3. The
method of trajectory planning as proposed in this chapter consists of four subsequent
steps. In the step ’Trajectory Point Sequence Sampling’ multiple sequences of
support points for trajectories are sampled based on the dynamic freespace. These
sequences can intuitively be understood as prototypes guiding the trajectory in the
three-dimensional space. In the next step ’Trajectory Generation’ for every sequence
a respective jerk optimal trajectory is generated. The generated trajectories have
to intersect all support points within the sequence. Subsequently, in ’Trajectory
Pruning’ trajectories which are affected by collisions or violate dynamic limits of the
vehicle are removed from the set of generated trajectories. In the last step ’Trajectory
Selection’ the best trajectory with respect to the cost function is selected and send
to the output interface.

6.5 Behavior Planning
Even though the problem of behavior planning is not within the scope of the trajectory
planner, a sketch of which information shall be provided by such kind of function is
needed. The key to behavior planning is scene-understanding. This understanding is
hard to achieve in a Cartesian coordinate system. Humans for example determine
the relevance of other traffic participants by their current and future lane-assignment.
For this reason a curvilinear coordinate system along the curvature of the road is
chosen, where the transformations are defined and explained in Sec. 2.2.2. In Fig. 6.4

130 CHAPTER 6. TRAJECTORY PLANNING

x

yVbl
Vfl

Vbo

cfo

(a) Challenging situation for the red ego vehicle. The
task is to plan a safe trajectory respecting other
traffic participants and static objects.

s

d

Vbo

Vbl Vfl

cfo

(b) Transformation of traffic scene into curvilinear
coordinate system using Γ (see Sec. 2.2).

Fig. 6.4: For task of planning trajectories, the traffic scene is transformed into a curvilin-
ear coordinate system.

the transformation is done for an exemplary challenging traffic scene which requires
a complex coordination of longitudinal and lateral behavior.

After deriving the prediction information, by using the methods defined in chapter 5,
the dynamic occupied space can be illustrated in the longitudinal direction in a
path-time diagram (see Fig. 6.5). If the system vehicle, for which a trajectory shall
be planned is on the right lane, in which the blue vehicle is relevant (see Fig. 6.4) on
can see that at the time point t = 0 no collision is present. In the path-time diagram
the area between the predicted occupancies of the blue vehicle and the cyan static
obstacle visualize this property. The left neighbor lane, which is occupied by two
faster grey vehicles shows a gap to merge into, which becomes relevant at t = 0 in
the origin of the coordinate system. The higher gradient of the both grey predicted
occupancies in the figure corresponds to the higher velocity of both vehicles. On the
right lane, for a high value of s a non-moving obstacle is present, which behavior
wise should result in a decision to brake or to change the lane. The area which is
white only, is the longitudinal dynamic freespace for which both lanes are safe, and
thus it is the space in which a lane change can be executed.
Based on the insights gained by the analysis of the path-time diagram, a safe

driving sequence based on the dynamic freespace can be derived. Thus, the system
vehicle can start with moving within the dynamic freespace of the right lane. Then
the system vehicle can execute a lane change in the dynamic freespace which is
collision free in longitudinal direction for both lanes. This freespace corresponds to
the white area in the middle of Fig. 6.5. Subsequently, the vehicle can continue its

6.6. INTERFACE DEFINITION 131

s

t

cfo

Vbl

Vbo

Vfl

Fig. 6.5: Using prediction information the occupied space can be visualized as a function
of t, see Fig. 6.4b.

journey in the dynamic freespace between the predicted occupancies of both grey
vehicles.

The sequence of dynamic freespace entities therefore allows expressing constraints
to the trajectory planning problem while implicitly determining the maneuver to be
executed at the same time. A structured method to model the freespace efficiently
is presented in the following section.

6.6 Interface Definition
When using the dynamic freespace of a traffic scene for trajectory planning as
proposed in Sec. 6.5, a model is needed to represent this information. Such kind of
model needs to provide sufficient constraints to describe the maneuver on the one
hand without losing generality on the other hand. In the former chapter in Fig. 6.5
the future occupancies were depicted in a path-time diagram. This representation of
data provides a solution space but does not determine the maneuver to be planned
by a trajectory planner. To do so, the sequence of dynamic freespaces to be traversed
needs to be determined.
In order to describe such kind of sequence, a representation of a single element

of dynamic freespace needs to be available. To derive such kind of representation
it is handy to make a lane-wise inversion of the occupancies, for example of the
ones depicted in Fig. 6.5. This information is visualized in Fig. 6.6. As can be seen
in Fig. 6.6a the dynamic freespace for the right lane depicted blue is named A1,
where the letter corresponds to the name of the dynamic freespace representation
’Action Space’. This ’Action Space’ is defined as a connected volume in the t, s and
d dimension where each point in this volume is collision free. It can be interpreted as
representation of a dynamic safe driveable space. The depicted sectional view of A1
herein corresponds to the predicted gap on the right lane which can be seen in Fig. 6.5.
Accordingly, A2 corresponds to the gap on the left lane, see Fig. 6.6c. The action
space Ã corresponds to the white area in the middle of Fig. 6.5, and is the dynamic

132 CHAPTER 6. TRAJECTORY PLANNING

t

s AAAAA1

(a) Dynamic freespace
on the right lane,
A1.

s

d

Vf,o
Vb,o

cf,o

AAAAA1
AAAA~

(b) Projection of Action-Space A1 in the
s-d plane.

t

s AAAAA2

(c) Dynamic freespace
on the left lane, A2.

s

d
Vf,l
Vb,lAAAAA2

(d) Projection of Action-Space A2 in a
s-d view.

t

s AAAAA1 AAAAA2

(e) Overlay of A1 and
A2 in t-s view.

s

d
Vf,l
Vb,l

Vf,o
Vb,o

cf,o

AAAAA1
AAAAA2

(f) Projection of both A1 and A2 in a s-d
view.

t

s

bu

bl
tmax

smax

tmin

smin

AAAAA~~~

(g) Definition of Ã in t-
s view

s

dbu

bl smaxsmin

dmax

dmin

AAAAA~~~

(h) Definition of Ã in s-d view

Fig. 6.6: Derivation of connecting Action Space Ã representing a locally and timely
limited dynamic freespace. The representation can be derived by inverting the
occupancies, see Fig. 6.5.

6.6. INTERFACE DEFINITION 133

freespace where driving is collision free in both lanes in the longitudinal direction,
see Fig. 6.6g. Because it connects both lanes it is also named connecting Action
Space. The red and green line bl and bu depict the lower and upper bound of Ã.

Up to here only the longitudinal dimension was discussed in the description of the
dynamic freespace and the derived Action Spaces. For planning trajectories however,
both dimension need to be considered. In Fig. 6.6h the three Action Spaces A1, Ã
and A2 are depicted in a sectional view on the s-d plane. The derivation process of
this view is visualized in Fig. 6.6b, Fig. 6.6d and Fig. 6.6f. Again each Action Space
can be described by an upper and a lower bound, see also the corresponding view in
Fig. 6.6g.
While the Action Spaces A1 and A2 can be derived straightforwardly using the

road geometry and the predicted occupancies, the derivation of the connecting Action
Space Ã needs a detailed analysis. Ã can be defined as the connecting Action-Space
of Ai and Ai+1 if for all points P̃ ∈ Ã the following holds true:

 sP̃
dP̃
tP̃

 ∈ Ai or

 sP̃
dP̃
tP̃

 ∈ Ai+1 and (6.7)

dP̃ ∈ DÃs,t with DÃs,t = DAis,t ∪ D
Ai+1
s,t s.t. (6.8)

DAs,t =
{
dPs,t |(Pst ∈ A) ∧ (sPs,t = s) ∧ (tPs,t = t)

}
(6.9)

and ∀P̃ : DAisP̃ ,tP̃ ∩ D
Ai+1
sP̃ ,tP̃

6= {} (6.10)

Basically this means that all points of a connecting Action Space are either part of
an Action Space i or (not exclusive) of the following Action Space i + 1 within a
section of Action Spaces, see (6.7). Additionally, all d values need to be in the set
DÃs,t which includes all d values of the intersected action space for a specific value
of s and t, see (6.9). Therein, this set can be derived by the join of the Ds,t sets of
the Action Spaces i and i + 1, see (6.8). However, for all points P̃ which are part
of the connecting Action Space Ã the corresponding lateral sets of the preceding
and following Action Space have to intersect (6.10). From a geometrical perspective
the connecting Action Space Ã is the union of Ai and Ai+1 at all points where both
Action Spaces (at least) touch in s-d and intersect in t-s.

When describing a single Action Space, see Fig. 6.6, it is defined by multiple
properties. The limits of an Action Space A are defined by the time-point tmin,
where it is the first time when it can be entered without causing a collision. The
latest time-point for leaving it is tmax. In the d and s dimension these extreme
values are defined accordingly. The shape of an action-space A is defined by two
polylines, the upper-bound bu and the lower-bound bl, each consisting of points P ,
see also Fig. 6.7. Please denote, that those two lines are sufficient to describe this
three-dimensional shape, as for a defined time the cross section of an Action Space
is modeled as rectangle in s-d.
When defining an interface R, see Fig. 6.7 a sequence of the previous defined

action spaces is needed to traverse in the dynamic freespace. As can be seen in the

134 CHAPTER 6. TRAJECTORY PLANNING

s0
d0
v0
a0
Ψ0
δ0

se
de
Ψe

c0,e
ve
ae

11 11

P
s
d
t

P~
tmin
tmax
dmin
dmax
smin
smax

bu:P
bl:P

1

2..N

1

1 1
xcenter
ycenter

1

Fig. 6.7: This slightly simplified class-diagram shows the interface of the trajectory planner.

figure, the planning interface does not distinguish between connection and ’standard’
Action Spaces. Every Action Space is handled in the same fashion. However, the
implicit constraint to the sequence of Action Spaces is, that every Action Space Ai
needs to intersect with its following Action Space Ai+1.

∀i ∈ 1..(N − 1) Ai ∩ Ai+1 6= { } (6.11)

Where N denotes the number of Action Spaces in a Action Space sequence. Besides
modeling the dynamic freespace the start and end state of a trajectory need to be
defined in the interface R. In addition, to solve the planning problem an end state
Ce and a start-state C0 is defined. Thus, the start-state C0 consists of the position in
the curvilinear coordinate system and the initial values of the bicycle-model. This
includes the longitudinal velocity v0, the longitudinal acceleration a0, the orientation
relative to the road measured by the angle Ψ and the steering angle δ. The end state
is defined as a search space along the curvature of the road. It is modeled as polyline
represented by se and de providing curvature c0,e and orientation Ψ0,e at each point
of it. Practically this allows to generate a trajectory ending smooth on an arbitrary
curved and oriented road geometry. Additionally a target speed ve and acceleration
ae should be reached at the end of the trajectory. As the last part of the interface
one needs a transformation class γ, which implements the transformations between
the curvilinear and Cartesian coordinate system and back as described in Sec. 2.2.2.

6.7 Sampling using Action Spaces
Given the interface definition R in Sec. 6.6 the task is to plan a trajectory with
respect to the constraints defined in (6.1)-(6.5). To do so, multiple samples of
trajectories indexed by m shall be generated. The underlying idea of the sampling
process it to sample points at different time points in collision free areas along the
curvilinear coordinate system. Tuples of combinations of these points can then be
used as ’support points’ to generate trajectories.

6.7. SAMPLING USING ACTION SPACES 135

Each trajectory sample can be described uniquely with an output trajectory point
tuple T (m):

T (m) = {y(m)
1 ,y

(m)
2 , ..,y

(m)
i , ..,y

(m)
N }, (6.12)

where y(m)
1 = h(x0). (6.13)

Using the definition of h in Sec. 2.4, x0 = C0 representing the start state as defined
in R can be used to extract the first point of the output trajectory tuple, see (6.13).
Please see Fig. 6.8 for the visualization of a tuple consisting of four output trajectory
points. The goal of the sampling process is to produce a high rate of trajectory

d t

s

A1A2

A3

y1

y
2

y3
y4

(a) Trajectory Point tuple
in t− s plane

s

d

t A1

A2

A3

y4y3y2y1
(b) Trajectory Point tuple in

s− d plane

Fig. 6.8: Output trajectory point tuple in a curvilinear coordinate system for an Action
Space Sequence A1..A3.

point tuples resulting in trajectories which are feasible with respect to the previously
defined constraints. To generate an output trajectory point tuple T (m) an Action
Space sequence Ai, i = 1, 2, .., N as visualized in Fig. 6.8 can be used. In this simple
example only one connecting Action Space Ã = A2 is present. Additionally, the
start state C0 and the end state Ce are inputs for the sampling process.

An intelligent sampling approach for output trajectory tuples is needed to reduce
the probability of a trajectory to violate the constraints (6.2)-(6.5). Thus, the task
is to find the most promising candidates T (m). To find a strategy a challenging
but typical scenarios is depicted in Fig. 6.8. One can see, that sampling output
trajectories points from the intersection of two subsequent Action Spaces in most
cases ensures that a trajectory stays within the Action Space Sequence. Less formal
speaking, the Action Space can be interpreted as ’moving gap’. Then it is obvious,
that the transition from one gap to the next is the most narrow part in the situation
space. Thus, a search strategy for trajectories best focuses on this narrow part in
order to reduce the number of trajectories resulting in collisions.
Accordingly, in Fig. 6.9 intersected Action Spaces A are introduced. Each inter-

sected Action Space is defined using the previous and next Action Space from the

136 CHAPTER 6. TRAJECTORY PLANNING

Action Space Sequence.

Ai = Ai ∩ Ai+1 (6.14)
whereAi ∩ Ai+1 6= ∅

As visualized in Fig. 6.9 respective one trajectory point is sampled for the start state,
each intersected Action space and the end state. The intersected Action Space A1
and A2 overlap in t− s but do not intersect in s− d. The final output trajectory

d t

s
-A2

y1

y3
-A1

y2

(a) Trajectory Point tuple in
t-s plane

s

d

t -A1

-A2

y3y2y1

y4

(b) Intersected action spaces
in s− d plane

Fig. 6.9: Output trajectory point tuple in a curvilinear coordinate system w.r.t intersected
action spaces Ā1..Ā2.

which is generated for each T (m) in the Cartesian coordinate system is defined as:

y(m)(t) = [x(m)(t), y(m)(t)]T (6.15)

has to pass through all intersected action spaces ĀXY , see Fig. 6.9, i.e.

∃ti, i = 1, 2, ..N − 1 : y(m)(ti) ∩ ĀXY,i 6= ∅ (6.16)

where ĀXY,i denotes the i-th intersected action space transformed to the Cartesian
coordinate System (see Sec. 2.2.2).

ĀXY,i = Γ−1(Āi) (6.17)

Pictorially speaking the intersections A are time-dependent gates the trajectory
needs to traverse.

To get candidates of output trajectory points, each intersected Action Space An is
discretized in all three dimensions. This discretization serves as basis, see Fig. 6.9,
to generate output trajectory point candidates.

TP(m)
i (p, q, r) =

t
(m)
i,p

s
(m)
i,q

d
(m)
i,r

 =

 tmin + p∆t

smin + q∆s

dmin + r∆d

 (6.18)

6.8. TRAJECTORY GENERATION BASED ON DIFFERENTIAL FLATNESS137

where

∆t = (tmax − tmin)/Nt, (6.19)
∆s = (smax − smin)/Ns, (6.20)
∆d = (dmax − dmin)/Nd (6.21)

according to the interface definition depicted in Fig. 6.7. Nt, NsandNd define the
discretization resolution. In the following t(m)

i is written instead of t(m)
i,p , same for

y

x

t

(a) Trajectory Point tuples in
x− t plane

x

y

t
(b) Trajectory Point tuples in

y − t plane

Fig. 6.10: Output trajectory point tuples in the Cartesian coordinate system.

s
(m)
i,q and d(m)

i,r . A sample (6.12) is generated by choosing one trajectory point in each
intersected action space. By taking every possible combination, all possible tuples
T (m) can be derived, see (6.12).
In Fig. 6.9a in the depicted example the sampled output point y3 sampled from
A2 has a greater value for t when compared to y2. A similar observation can be
made in Fig. 6.9b where the s value of y3 is larger than the one of y2. Intuitively
both properties make intuitively sense. Neither a trajectory shall be able to move
backwards in the time dimension, nor backwards along the curvature of the road
when driving forward. Such properties need to be considered in a sampling process,
in order to reduce the number of infeasible T (m) prior to trajectory generation. To do
so, pruning is done. For example in order to get from TP(m)

i to TP(m)
i+1, the comparison

t
(m)
i,p ≤ t

(m)
i+1 and s(m)

i ≤ s
(m)
i+1 can be used to remove infeasible combinations. These

naive pruning strategies can however be extended using for example approximate
maximum dynamic estimates.

6.8 Trajectory Generation based on Differential
Flatness

Using the trajectory output point tuples which were derived in Sec. 6.7 jerk optimal
output trajectories (see (6.15)) compatible with the dynamic bicycle model shall be
generated. In this section a method solving this problem is presented.

138 CHAPTER 6. TRAJECTORY PLANNING

One of the fundamental ideas of the proposed method is to neglect dynamic
limits and collision checking in the trajectory generation process. Instead, infeasible
trajectories shall be filtered out at a later stage of the trajectory planning process.
This design is only valid because the sampling strategy presented in Sec. 6.7 minimizes
the number of trajectories, which are affected by collisions. Because the number
of trajectory output points ym within a tuple T (m) which constrain the output
trajectory can get high, a method is needed to handle this challenge. Within this
section a strategy is presented, which solves the problem using piecewise trajectories.
The content of this section is mainly based on the work presented in [124]. The
contribution of the author of this thesis is mostly in the formulation and discussion
of the problem statement and not in the mathematical foundations of this section.
However, for the sake of completeness a brief insight into the method will be given
in the following.
The dynamic bicycle model as discussed in Sec. 2.4 is as reasonable choice to

model the dynamic behavior of a vehicle within the planning process. For trajectory
generation, the property, that the bicycle model is differentially flat with respect to
the outputs x(t) and y(t) can be used, see [133] for an introduction into the concept
of flat systems. Briefly summarized one can say, that if a system is differentially flat,
then there exists a unique transformation between the ’differential flat outputs’ z,
its derivatives, the system states x and the inputs u, see Fig. 6.11. When using the

flat
transformation

Fig. 6.11: The flat transformation enables to transform between (flat) output trajectory
and state-/input trajectory.

bicycle model the flat output corresponds to the dimensions of the output trajectory
z = y. This results in the property, that for an available output trajectory, the
system states and inputs can be calculated. Because the principle is also working
vice versa, constraints can be put to trajectory output points and its derivatives,
in order to ensure they fulfill certain vehicle states and inputs. This property is
especially relevant for the start x0 and the end state xT of the trajectory. To map
the inputs u and the states x to the flat outputs x(t) and y(t) using the algebraic
transformations Φx and Φy, the flat outputs need to be differentiated twice as defined

6.8. TRAJECTORY GENERATION 139

in (6.22) and (6.23), see also [124].

Φx :
(
x(t)
u(t)

)
→ zx(t) : (6.22)x(t)

ẋ(t)
ẍ(t)

︸ ︷︷ ︸

zx(t)

=

 x(t)
cos(Ψ(t))v(t)

cos(Ψ(t))a(t)− sin(Ψ(t)) 1
L

tan(δ(t))v(t)2

︸ ︷︷ ︸

Φx(x(t),u(t))

,

Φy :
(
x(t)
u(t)

)
→ zy(t) : (6.23)y(t)

ẏ(t)
ÿ(t)

︸ ︷︷ ︸

zy(t)

=

 y(t)
sin(Ψ(t))v(t)

sin(Ψ(t))a(t) + cos(Ψ(t)) 1
L

tan(δ(t))v(t)2

︸ ︷︷ ︸

Φy(x(t),u(t))

.

As described in Sec. 2.4.2 the letter Ψ denotes the orientation in a global coordinate
system. As described in [124], the algebraic transformation (6.22) and (6.23) can be
(locally) inverted to

Φ−1 :
(
zx(t)
zy(t)

)
→
(
x(t)
u(t)

)
: (6.24)

v(t)
x(t)
y(t)
Ψ(t)
a(t)
δ(t)

=

zx,2(t)
cos[tan−1(zy,2(t)/zx,2(t))]

zx,1(t)
zy,1(t)

tan−1(zy,2(t)/zx,2(t))
Φ−1
a (.)

Φ−1
δ (.)

︸ ︷︷ ︸

Φ−1([zx(t),zy(t)]T)

. (6.25)

where δ(t) = Φ−1
δ (.) and a(t) = Φ−1

a (.) are defined according to [124] by

tan
(
Φ−1
δ (.)

)
=

zy,3(t)− tan(Φ−1
Ψ (.))zx,3(t)

Φ−1
v (.)2(1/L)(tan(Φ−1

Ψ (.)) sin(Φ−1
Ψ (.)) + cos(Φ−1

Ψ (.))
(6.26)

Φ−1
a (.) = zx,3(t) + sin(Φ−1

Ψ (.))(1/L) tan(Φ−1
δ (.))Φ−1

v (.)2

cos(Φ−1
Ψ (.))

(6.27)

and Φ−1
v and Φ−1

Ψ are given in rows one and four of (6.25). The inverse transformation
(6.25) only holds locally for

v(t) 6= 0 ∧Ψ(t), δ(t) ∈ (−π/2, π/2). (6.28)

140 CHAPTER 6. TRAJECTORY PLANNING

This is treated as special cases in the implementation. Equations (6.22) and (6.23)
allow to verify state and input conditions on the output trajectory. Once an output
trajectory is generated, (6.25) can be applied to calculate the corresponding state
and input trajectories.
As presented in Sec. 6.7 each sample T (m) represents a sequence of sampled points
TP(m). Instead of trying to find a global solution which directly connects all points
within the sequence, the principle of divide and conquer is used. Thus, for each point
and its successor a trajectory piece is generated, which connects TP(m)

i and TP(m)
i+1.

The overall trajectory is defined according to (6.15) as:

y
(m)
i (t) =

y
(m)
1 (t), t ∈ [t(m)

1 , t
(m)
2]

:
y

(m)
i (t), t ∈ [t(m)

i , t
(m)
i+1]

:
y

(m)
N−1(t), t ∈ [t(m)

N−1, t
(m)
N].

(6.29)

where yi(t)(m) is a trajectory piece. This trajectory piece again is defined as:

y
(m)
i (t) =

(
x

(m)
i (t)
y

(m)
i (t)

)
=
(
θ(t)TG(m)

i

θ(t)TH(m)
i

)
∈ C2 (6.30)

based on a yet unknown basis function θ(t) with coefficients G(m)
i and H(m)

i . When
slicing the overall trajectory y(m)

i (t) into pieces, the constraints on the start and end
state of the overall trajectory, which are the states of the bicycle model, still need to
be fulfilled as defined in (6.31) and (6.32).

x
(m)
1 (0)
ẋ

(m)
1 (0)
ẍ

(m)
1 (0)

 = Φx(x0,u0),

x

(m)
N−1(t(m)

N−1)
ẋ

(m)
N−1(t(m)

N−1)
ẍ

(m)
N−1(t(m)

N−1)

 = Φx(xT ,uT), (6.31)

y

(m)
1 (0)
ẏ

(m)
1 (0)
ÿ

(m)
1 (0)

 = Φy(x0,u0),

y

(m)
N−1(t(m)

N−1)
ẏ

(m)
N−1(t(m)

N−1)
ÿ

(m)
N−1(t(m)

N−1)

 = Φy(xT ,uT) (6.32)

Besides complying to the start and the end state of the overall trajectory, every
connection between two trajectory pieces shall comply to C0, C1 and C2 smoothness
conditions, as defined in (6.33) - (6.37). See also Fig. 6.12 for a visualization of the
different levels of continuity.

y
(m)
i (t(m)

i) = Γ−1(s(m)
i , d

(m)
i), ∀i = 2, 3, .., N − 1, (6.33)

y
(m)
i (t(m)

i+1) = Γ−1(s(m)
i+1, d

(m)
i+1), ∀i = 1, 2, .., N − 2, (6.34)

ẏ
(m)
i (t(m)

i+1) = ẏ
(m)
i+1(t(m)

i+1), ∀i = 1, 2, .., N − 2 (6.35)
ÿ

(m)
i (t(m)

i+1) = ÿ
(m)
i+1(t(m)

i+1), ∀i = 1, 2, .., N − 2, (6.36)
...
y

(m)
i (t(m)

i+1) = ...
y

(m)
i+1(t(m)

i+1), ∀i = 1, 2, .., N − 2. (6.37)

6.8. TRAJECTORY GENERATION 141

In this definitions (6.33) and (6.34) ensure that the every trajectory piece starts and
ends in the corresponding output trajectory points, see Sec. 2.2.2 for the definition
of Γ−1. Equation (6.35) aligns the velocity of the vehicle to be the same at the
transitions from one trajectory piece to another, while (6.36) does the same for the
acceleration. The properties up to here yield the required smoothness conditions
on the trajectory for the flat transformation. Finally, (6.37) guarantees smooth
jerk at the trajectory output points, which is needed as a consequence of the jerk
optimality objective. The property also reduces the degrees of freedom of the resulting
optimization problem. As described in the beginning of this section, quadratic jerk-

x

t
(a) C0 continuity. Tra-

jectories touch at
their end or respec-
tive beginning.

x

t
(b) C1 continuity. Tra-

jectories have the
same velocity at the
point where they
touch.

x

t
(c) C2 continuity. Tra-

jectories have the
same acceleration at
the point where they
touch.

Fig. 6.12: Different continuity levels for longitudinal trajectories. Lower continuity levels
are included in the higher continuity levels.

optimal trajectories shall be generated. Therefore the (sub)optimization problem is
to solve

argmin
H

(m)
i ,G

(m)
i , i=1..N−1

N−1∑
i=1

∫ t
(m)
i+1

t
(m)
i,p

[...
y

(m)
i (t)2,

...
x

(m)
i (t)2

]
dt

 (6.38)

s.t. ((6.31))− (6.37)

for each sample m. In [41] it is shown that the jerk-optimal output trajectory lies
in quintic polynomials. Therefore quintic polynomials for x(m)

i (t) and y
(m)
i (t) are

chosen in(6.30). Using this knowledge a method of how this optimization problem
can be solved analytically is presented in [124], where this solution is not part of the
contribution of the author of this thesis.
After deriving all possible trajectories m based on all T m each trajectory can

be checked, whether dynamic limits regarding the state of the bicycle model are
violated. Trajectories violating these limits can be pruned out. The same holds true
for trajectories affected by collisions by leaving the sequence of action spaces. From
the remaining trajectories, the best (jerk-minimal) that satisfies all constraints is
picked subsequently and provided at the output interface, see Fig. 6.1.

142 CHAPTER 6. TRAJECTORY PLANNING

6.9 Experimental Results
In this section the proposed method of trajectory planning is evaluated experimentally.
To do so the method is evaluated in a synthetic test scenario. Within the scenario, a
complex lane change maneuver is designed, which is depicted in Fig. 6.13, in which
the system vehicle (blue) is surrounded by four cars. The states of the respective

Fig. 6.13: Traffic scene used for evaluation. System vehicle is depicted in dark blue.

vehicles are documented in Tab. 6.1. In order to keep the experiment simple, the
respective Action Spaces were derived by predicting the vehicles in the scene using the
constant acceleration and the lane following assumption. In order to setup a planning

Tab. 6.1: Object states used to derive the Action Space sequence using the CA model for
predictions.

Cars Pink Yellow Black Cyan
s0 [m] −60 −40 0 40
v0 [m/s] 11 10 13 10
a0 [m/s2] 1 0 0 −0.1

request using the interface R, also the states and the constraints which apply to the
system vehicle need to be known. These values are documented in Tab. 6.2. The
bounds for the se,min and se,max for the end state were chosen heuristically using two
constant acceleration assumptions.

The trajectory to be planned by the proposed method is a lane change to the left
for the blue system vehicle. Thus, the vehicle shall catch the gap defined by the
black and pink vehicle. To do so, the system vehicle shall avoid colliding with the
black vehicle, while accelerating to the velocity of its future preceding vehicle. This
lane change shall be executed before the pink vehicle is able to close the gap. The
corresponding Action Space sequence is documented visually in Fig. 6.14a - 6.14h.
Using the sequence of action spaces, the intersected action spaces are computed
as presented in Sec. 6.7. They are visualized in Fig. 6.15a and 6.15b. Accordingly

6.9. EXPERIMENTAL RESULTS 143

Tab. 6.2: State of the system vehicle and constraints used to setup the planning interface
R.

State Value Constraint Value
s0 [m] −3 amin [m/s2] −5
v0 [m/s] 10 amax [m/s2] 2
a0 [m/s2] 0 ve [m/s] 13
d0 [m] 0 ae [m/s2] 0
ψ0 [°] 0 de [m] 3
δ0 [°] 0

(a) A1 in t-s view (b) A1 in t-d view (c) A2 in t-s view (d) A2 in t-d view

(e) A3 in t-s view (f) A3 in t-d view (g) A4 in t-s view (h) A4 in t-d view

Fig. 6.14: Action Space sequence used for evaluation.

Trajectory Output Points TP are sampled from the intersected Action Spaces. These
points are visualized as section view in Fig. 6.15c and 6.15d. As one can see many
points that would be intuitively pruned out by a human driver are part of the set
of Trajectory Output Point tuples. This may result in a large number of maybe
driveable, but suboptimal solutions.

(a) Ā1 − Ā3 in t-s (b) Ā1 − Ā3 in t-d (c) TPs in t-s (d) TPs in t-d

Fig. 6.15: Sampling in evaluation scenario using intersected Action Spaces Ā.

Based on the sampled Points TP trajectories are generated using the method
proposed in Sec. 6.8. Infeasible trajectories and trajectories affected by collisions

144 CHAPTER 6. TRAJECTORY PLANNING

are pruned out. The resulting best trajectory is visualized in the XY plane in
figure Fig. 6.16. Using the property of flatness the in and output states of the
dynamic bicycle model are derived, which are visualized in Fig. 6.17. Due to jerk
optimality the acceleration profile in Fig. 6.17 is very smooth. Besides the synthetic

Fig. 6.16: View on calculated trajectory in experiment in XY plane. The sampled TPs
which were used to plan the trajectories are depicted as stars.

Fig. 6.17: State space of trajectory calculated for scene in experiment. The scene is
depicted in Fig. 6.13.

test, the algorithm was also implemented in C++. For the implementation Eigen
[134] was chosen as library for efficient transformation and trajectory generation.
Without any further optimization, around 3000 trajectories can be sampled in the
described setup within 50 ms using an off-the-shelf computer, see [124]. This result
is promising for the envisioned application on an embedded system with limited
computational resources. By using parallelization techniques, these results can be

6.10. CONCLUSION 145

improved even further. Calculating all samples simultaneously as well as checking
their constraints can be parallelized easily, where checking the constraints is the
most expensive step. Only 5% of the overall computation time was needed to solve
the optimization problem as stated in [124]. In the implementation the constraints
were checked discredited at 50 points of a single trajectory and the action spaces
were shrinked based on minimum/maximum acceleration of the vehicle. Unrealistic
output trajectory points were pruned out. The number of trajectories sampled
depends on the density of the grid described in Sec. 6.7 and the pruning based on
the current state. For each planning request 2000-3000 trajectories were sampled in
the experiment vehicle. The planner was also applied successfully in an closed loop
experiment in an urban environment (see Fig. 6.18).

Fig. 6.18: Experiment vehicle tailored for urban driving driving along inner city road
using the proposed method of trajectory planning.

6.10 Conclusion
In this chapter a method for planning trajectories in structured environments, based
on an abstraction of the environment and prediction information was presented.
This method allows abstracting traffic gaps and static obstacles as time-dependent
geometric bodies (Sec. 6.6). The method allows a flexible but general and simple
description of trajectory planning problems. Because main parts of the abstraction
are done in curvilinear coordinate system, the method can be easily transferred to
different structured dynamic environments, e.g. roundabouts or inner city merge
situations. The approach of modeling the constraints as a sequence of action-spaces
is an efficient way to encapsulate behavior planning from the problem of planning a
driveable trajectory. Using the representation, a sampling method was presented
(Sec. 6.7), which uses the sequence of dynamic freespace elements as sampling
heuristic. The method proved to be deliver meaningful results in the experiment.
The presented method is also highly efficient and real-time capable (Sec. 6.9). This
is achieved by an efficient sampling of jerk-optimal trajectories that are piece-wise
defined in Cartesian coordinates (Sec. 6.8).

146 CHAPTER 6. TRAJECTORY PLANNING

In the application of the method in inner city scenarios it however turned out,
that depending on the traffic situation, many sampled trajectories are dynamically
infeasible. This points in the direction, that further improvements can be expected
by modifying the sampling strategy.

147

Chapter 7

Epilogue

The technology of automated driving is in full growth. Today’s partial automated
driving systems available in the market are able to help the human driver in more
and more difficult traffic situations. This covers for example lane-keeping, collision
avoidance and even traffic light information systems. The growth of driving automa-
tion goes hand in hand with a change of the development focus. Coming from a
decade, where sensor performance was the limiting factor of system performance,
software and data driven methods were identified as the major challenge in the last
years. This change goes hand in hand with a change of Electrical / Electronic (EE)
architectures. The typical architecture used in Advanced Driver Assistance Systems
was a decentralized approach of early information reduction, where every sensor was
equipped with intelligence. Modern systems use a centralized architecture. Raw data
of different domains is sent to central electronic control units in which all computa-
tions are done. This change in architecture rises challenging requirements regarding
computational power to such kind of central driving computer. The availability of
such hardware allows the execution of powerful methods for situation analysis and
trajectory planning.
Despite the technological advances, the step to the next level of automation is

difficult. In all partial automated systems in the market, the driver is used as
fallback instance in many situations. This approach is not an option for conditional
or Level-3 automation. Within its Operational Design Domain (ODD) the Dynamic
Driving Task (DDT) needs to be solved by the automation system. Thus, all possible
scenarios which require a human driver in a partial automated system, need to be
handled by the conditional automated system.

Providing a methodical toolkit for solving these kinds of fallback problems is one
of the main topics of this work. Accordingly, a system design was presented in which
the developed methods are embedded. This system design implements a safety net
by offering a collision-free fallback trajectory which can be used at least for the
take-over time. However, the presented methods still leave room for improvements,
as will be discussed in the next two sections.
This epilogue is structured as follows. The novel contributions to solve the

automated driving task with a focus on the fallback performance are summarized in
Sec. 7.1. Achieved results and remaining gaps are discussed within this summary.

148 CHAPTER 7. EPILOGUE

Based on this big picture, ideas are presented in Sec. 7.2 which point out possible
future research directions in the context of this thesis. Finally, the thesis concludes
with Sec. 7.3.

7.1 Summary of Contributions
In this thesis a novel toolkit for implementing a fallback function for conditional
automated vehicles has been presented. The contributions to the scientific community
are manifold and can be summarized in four clusters:

• A system design implementing a fallback mechanism for a Level-3 automated
driving system.

• A holistic approach to the problem of ’Maneuver Estimation’ in order to
recognize the intent of other traffic participants.

• A novel method of ’Probabilistic Position Prediction’ considering the intent
and physical state of vehicles to be predicted.

• A ’Trajectory Planning’ method capable of handling information of time-
dependent freespace.

In the following these four clusters will be explained individually in further details.
The first major contribution of this thesis is the derivation of a functional system

design implementing a fallback mechanism for a Level-3 automated driving system.
Based on a high level description of the use case, the needed functions and interactions
were derived in chapter 3. Function blocks needed in order to perform a meaningful
fallback performance were identified. The three identified non trivial function blocks
are ’Maneuver Estimation’, ’Position Prediction’ and ’Trajectory Planning’. With
respect to the functionality of providing a fallback trajectory, the basic requirements
were analyzed, documented and discussed regarding the technical risks of the proposed
system design.
The second contribution to the field of this thesis is a holistic approach to the

problem of ’Maneuver Estimation’ which was presented in chapter 4. Within the
scope of this thesis, the maneuver classes were restricted to the following three
classes: lane following, lane change to the left, and lane change to the right. The
basic assumption of the novel approach is that decisions of human drivers are based
on some (unknown) stimuli. It is assumed to be a priori unknown, which stimuli are
triggering a specific decision. Accordingly, an environment model was investigated
and derived which systematically defines possible stimuli influencing the decision
making of human drivers. This model is assumed to contain all relevant information.
Based on this model, data was collected and both machine learning as well as
statistical methods were applied to identify the information relevant and measurable.
Several models were derived and evaluated in two experiments. The results show
that short term maneuver predictions up to 1.5 s can be done close to perfect. For
longer horizons up to 5.0 s, maneuver estimation gets more challenging. Still, using

7.1. SUMMARY OF CONTRIBUTIONS 149

a conservative parameterization, up to 60% of lane changes can be recognized up to
5.0 s in advance with a false positive rate of close to zero. The approach is accepted as
contribution to the field by the scientific community and was published in [73]–[76].

The third contribution of this thesis is a method capable of estimating probability
densities of future positions of vehicles. The derived estimates consider the kinematic
vehicle state and the situation the vehicle needs to handle. To achieve this, the
method of ’Position Prediction’ derived in chapter 5 treats the human driver and the
way maneuvers are executed as a probabilistic black box. To solve the problem of
providing probability distributions of future positions, a Mixture of Experts model
was chosen. In this model the methods developed for ’Maneuver Estimation’ were
used as Gating Nodes. To predict future positions efficiently in real-time, Gaussian
Mixture Regression was used for the individual experts. The method was evaluated
and compared to classical methods of position prediction in two experiments. The
outcome proves that the mean of the prediction is as precise as 0.2m in the lateral
and 0.5m in the longitudinal dimension at a prediction horizon of 5.0 s, which
compares to state-of-the-art methods. In contrast to other methods however, the
novel approach is also able to deliver meaningful probability distributions of future
whereabouts of other vehicles. This information is extremely valuable, as dynamic
freespace is one of the main inputs needed for trajectory planning. The approach for
position prediction presented in this thesis is accepted as contribution to the field
and was published in [75], [76], [105].

The fourth contribution of this thesis is a ’Trajectory Planning’ method capable of
considering information of time-dependent freespace. The approach was presented
in chapter 6. In contrast to related work, the novelty of the presented method is to
handle time dependent constraints using an interface which explicitly models the
dynamic freespace. Using this specific representation, the maneuver to be planned
can be handed over to the trajectory planner implicitly. Maneuvers in this context
can be quite complex sequences, i.e. catching up to a gap followed by an overtaking
maneuver. Based on the information provided by this interface, a method of sampling
in the curvilinear coordinate system was presented. The method samples trajectory
support points using a geometric heuristic. The heuristic hereby minimizes the share
of trajectories which are affected by collisions. Subsequently, a method for trajectory
generation was presented. The method transforms the support points into a Cartesian
coordinate system and generates jerk minimal trajectories using a longitudinally
and laterally coupled model. At the same time, the method provides a high level of
flexibility regarding the shape of trajectories by using a composite representation.
Because the method was designed to operate in the Cartesian coordinate system it
is also robust with respect to discontinuities in the road representation and towards
high lane curvatures. The method of trajectory planning was successfully evaluated
in complex synthetic scenarios and has also proven to be robust in inner city scenarios
when evaluated on a small fleet of test vehicles. It is also accepted as contribution
to the field by the scientific community in [124].

150 CHAPTER 7. EPILOGUE

7.2 Future Research Directions
In this section possible future research directions are outlined. The architecture
proposed in chapter 3 includes many possibilities for further improvements. The
system was designed according to a pure deliberative architecture paradigm. However,
even though a new fallback trajectory can only be planned if a new reliable world
model is available, the fallback system could be improved by adding a reactive layer
to it. Such kind of reactive layer, knowing about the planned trajectory, could help
to avoid collisions when situations do not evolve as predicted. Further research
directions regarding the system concept can be found in the documentation of the
technical risks in Sec. 3.7.

Regarding maneuver estimation there exist multiple future research directions and
topics worth to investigate. The basic assumption which is made in chapter 4 is
that the presented environment model contains all data influencing the behavior
of human drivers. Obviously this assumption does not hold true and additional
features could be incorporated. The possible set of additional features can be divided
into three categories. The first category contains features which could be directly
measured by a single sensor system. This includes for example the lateral distance to
a lane marking. The second category of features are the ones which could be derived
by information provided by a global instance, particularly a backend delivering
additional map layers via a communication channel. This could include for example
the weather and road conditions. The third and most important category of features
could be derived by an extension of the feature model in which more surrounding
vehicles and the road topology could be included, e.g. the distance to motorway
junctions. An orthogonal research direction is the extension of the prediction time
horizon. A first step could be to investigate the temporal importance of the different
features with respect to the prediction time horizon. Such knowledge could be used
to derive the maximum time horizon for which meaningful predictions can be made.
Regarding the methods of position prediction presented in chapter 5 there are

several directions to be investigated in future research. Within the presented method,
the feature set was derived using expert knowledge. A systematic feature selection
process could help to improve prediction results even further. When taking a look at
the methods used for position prediction a parametric method resulting in a generative
model was chosen. One could also investigate how prediction results change if the
parametric model is replaced by non-parametric methods, e.g. multidimensional
Kernel Density EstimatorsKDE. As for the methods of Maneuver Recognition, also
for position prediction one could investigate the maximum prediction horizon which
could be achieved. This could be done by a stepwise extension of the prediction
horizon, until the distributions of future positions of different vehicles overlap with
each other. As no trajectories can be planned without available freespace, this is a
pragmatic upper bound for the maximum feasible prediction horizon. In case one
wants to apply the presented method for non-highway scenarios one could investigate
whether a lateral and longitudinal coupled model is able to improve the prediction
performance.
Furthermore, both machine learning based methods ‘Maneuver Estimation’ and

7.3. CONCLUSION 151

‘Position Prediction’ could profit strongly from a fleet based relearning strategy
using a common backend, in which relevant events could be collected. These events
could be used to improve the models in order to achieve a better generalization
and more robust performance in corner cases, where such improvements can only
be achieved by massive data. The models could then be generated and deployed
to the fleet again. Besides the needed data pipelines in the backend, also methods
and tools are needed to handle this relearning task. The challenge of this problem
is to improve the prediction performance in the special cases without lowering the
predictive performance of the models in the common cases.
Besides these methodical and architectural perspectives, the designed prediction

methods could be adapted to inner-city scenarios in the future. The only change
needed in architecture would be a modification of the environment model and the
maneuver classes of interest.

When discussing future work regarding the presented method of trajectory planning
in chapter 6, the experiments hinted in the direction that more powerful sampling
strategies and heuristics could be useful to lower the number of trajectories to be
sampled. Besides the pruning of sampling points which are not reachable due to
the dynamic limitations of a vehicle, other methods could be helpful. A possible
solution is the usage of the method of Position Prediction, presented in chapter 5.
By sampling support points within the intersected Action Spaces in a frequency
according to the derived predicted distribution, the share of ’human driver like’
trajectories could be increased. Another research direction worth to investigate is a
post-processing of the sampled trajectory. To improve the perceived human comfort
an optimizer could smooth and adapt the selected trajectory based on a cost function
reflecting the research done in human factors, see for example [135].

7.3 Conclusion
Driving automation is a very active field of research and subject to fast development
in both hard- and software. One of the next major milestones is to handover the
responsibility from the driver to a Level-3 automated vehicle. Even though a driver
is basically available, an additional fallback system is needed. Such kind of system
can ensure a safe handover back to the driver within a reasonable take-over time in
case of a system failure of the automated driving system.

This thesis addresses this topic by providing a concept and a toolkit of methods to
implement such a fallback system. A system concept is presented, which is suitable
to solve the outlined problem. Based on this concept, three critical functions are
identified which are needed for the implementation of the fallback system. Accord-
ingly, a novel method of intention recognition for vehicles on highways was presented,
which was verified and optimized in extensive experiments using real-world data.
Significant performance boosts are achieved in evaluation. A method of probabilistic
position prediction was developed and evaluated in the same manner achieving
state-of-the-art performance regarding the mean of the predicted distributions. In
contrast to related work, the derived method is also able to provide meaningful

152 CHAPTER 7. EPILOGUE

estimates of the uncertainty of future positions. Based on these estimates, reli-
able fallback trajectories can be planned. The novel planning method is able to
consider prediction information explicitly as time dependent constraints. Using a
sampling-based approach, jerk minimal trajectories w.r.t the dynamic bicycle model
are sampled efficiently in real-time.
All developed methods in this thesis were not only accepted by the scientific

community. They were also implemented and successfully tested in different test
vehicles. This confirms the applicability of the presented fallback system as well as
its potential for usage in large scale series vehicles.

153

Publications

This thesis has led to the following publications:

[73] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K. Kuhnert, “A
lane change detection approach using feature ranking with maximized predic-
tive power”, in Proceedings of the 2014 IEEE Intelligent Vehicles Symposium
Proceedings, pp. 108–114.

[74] J. Schlechtriemen, R. Graf, A. Wedel, M. Fritzsche, K.-D. Kuhnert, and K.
Dietmayer, “Ein Vergleich von Algorithmen zur Verhaltensprädiktion anderer
Verkehrsteilnehmer”, in Tagungsband - VDI Workshop Fahrerassistenzsystem
2014.

[75] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. Kuhn-
ert, “When will it change the lane? A probabilistic regression approach for
rarely occurring events”, in Proceedings of the 2015 IEEE Intelligent Vehicles
Symposium (IV), pp. 1373–1379.

[76] F. Wirthmüller, J. Schlechtriemen, J. Hipp, and M. Reichert, “Teaching Vehi-
cles to Anticipate: A Systematic Study on Probabilistic Behavior Prediction
Using Large Data Sets”, IEEE Transactions on Intelligent Transportation
Systems, pp. 1–16, 2020.

[105] J. Schlechtriemen, A. Wedel, G. Breuel, and K.-D. Kuhnert, “A probabilistic
long term prediction approach for highway scenarios”, in Proceedings of
the 2014 IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC), pp. 732–738.

[124] J. Schlechtriemen, K. Wabersich, and K. Kuhnert, “Wiggling through complex
traffic: Planning trajectories constrained by predictions”, in Proceedings of
the 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 1293–1300.

[136] V. Gomer, H. Lu, G. Weidl, T. Dang, G. Breuel, J. Schlechtriemen, and W.
Rosenstiel, “Freiraumbewertung für Spurwechselmanöver mit Bayes-Netzen”,
in Tagungsband - VDI Workshop Fahrerassistenzsystem 2015.

155

References

[1] Federal Highway Administration (FHWA), Next Generation SIMulation Fact
Sheet, https://www.fhwa.dot.gov/publications/research/operations/its/
06135/index.cfm, (Accessed on 09/07/2019), Dec. 2006.

[2] T. Winkle, “Safety Benefits of Automated Vehicles: Extended Findings from
Accident Research for Development, Validation and Testing”, in Autonomous
Driving, Springer, 2016, pp. 335–364.

[3] T. Gasser, C. Arzt, M. Ayoubi, et al., “Rechtsfolgen zunehmender Fahrzeu-
gautomatisierung”, Berichte der Bundesanstalt für Straßenwesen. Unterreihe
Fahrzeugtechnik, no. 83, 2012.

[4] SAE On-Road Automated Vehicle Standards Committee, Taxonomy and
definitions for terms related to on-road motor vehicle automated driving
systems, (Accessed on 12/10/2016), 2014.

[5] F. Ackermann, “Abstandsregelung mit Radar”, Spektrum der Wissenschaft,
vol. 34, 1980.

[6] Wikipedia, Autonomous cruise control system — Wikipedia, The Free En-
cyclopedia, (Accessed on 12/31/2016), 2016. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Autonomous_cruise_control_system&
oldid=757633069.

[7] P. I. Labuhn and W. J. Chundrlik, Adaptive cruise control, US Patent
5,454,442, Oct. 1995.

[8] B. Fleming, “New automotive electronics technologies [automotive electron-
ics]”, IEEE Vehicular Technology Magazine, vol. 7, no. 4, pp. 4–12, 2012.

[9] F. Naujoks, C. Purucker, A. Neukum, S. Wolter, and R. Steiger, “Control-
lability of Partially Automated Driving functions - Does it matter whether
drivers are allowed to take their hands off the steering wheel?”, Transportation
research part F: traffic psychology and behaviour, vol. 35, pp. 185–198, 2015.

[10] S. Lohr, A Lesson of Tesla Crashes? Computer Vision Can’t Do It All Yet - The
New York Times, https://www.nytimes.com/2016/09/20/science/computer-
vision-tesla-driverless-cars.html, (Accessed on 01/23/2017), Sep. 2016.

https://www.fhwa.dot.gov/publications/research/operations/its/06135/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/its/06135/index.cfm
https://en.wikipedia.org/w/index.php?title=Autonomous_cruise_control_system&oldid=757633069
https://en.wikipedia.org/w/index.php?title=Autonomous_cruise_control_system&oldid=757633069
https://en.wikipedia.org/w/index.php?title=Autonomous_cruise_control_system&oldid=757633069
https://www.nytimes.com/2016/09/20/science/computer-vision-tesla-driverless-cars.html
https://www.nytimes.com/2016/09/20/science/computer-vision-tesla-driverless-cars.html

156 REFERENCES

[11] C. Gold, D. Damböck, L. Lorenz, and K. Bengler, “Take over! How long does
it take to get the driver back into the loop?”, in Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 57, 2013, pp. 1938–1942.
doi: 10.1177/1541931213571433. [Online]. Available: http://dx.doi.org/10.
1177/1541931213571433.

[12] F. Naujoks, C. Mai, and A. Neukum, “The effect of urgency of take-over
requests during highly automated driving under distraction conditions”, Ad-
vances in Human Aspects of Transportation, no. Part I, p. 431, 2014.

[13] K. Zeeb, A. Buchner, and M. Schrauf, “What determines the take-over time?
An integrated model approach of driver take-over after automated driving”,
Accident Analysis & Prevention, vol. 78, pp. 212–221, 2015.

[14] K. Zeeb, A. Buchner, and M. Schrauf, “Is take-over time all that matters? The
impact of visual-cognitive load on driver take-over quality after conditionally
automated driving”, Accident Analysis & Prevention, vol. 92, pp. 230–239,
2016.

[15] B. Smith and J. Svensson, “Automated and Autonomous Driving: Regulation
under Uncertainty”, International Transport Forum Policy Papers, 2015.

[16] H. Fountain, A Slow Ride Toward the Future of Public Transportation - The
New York Times, https://www.nytimes.com/2016/11/08/science/finland-
public-transportation-driverless-bus.html, (Accessed on 02/08/2017), Nov.
2016.

[17] A. Alessandrini, A. Cattivera, C. Holguin, and D. Stam, “CityMobil2: Chal-
lenges and Opportunitieys of Fully Automated Mobility”, in Road Vehicle
Automation, Springer, 2014, pp. 169–184.

[18] M. Isaac, What It Feels Like to Ride in a Self-Driving Uber - The New York
Times, https://www.nytimes.com/2016/09/15/technology/our-reporter-goes-
for-a-spin-in-a-self-driving-uber-car.html, (Accessed on 02/08/2017), Sep.
2016.

[19] J. Radlmayr, C. Gold, L. Lorenz, M. Farid, and K. Bengler, “How traffic
situations and non-driving related tasks affect the take-over quality in highly
automated driving”, in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Sage Publications Sage CA: Los Angeles, CA, vol. 58,
2014, pp. 2063–2067.

[20] F. Wulf, K. Zeeb, M. Rimini-Doring, M. Arnon, and F. Gauterin, “Effects
of human-machine interaction mechanisms on situation awareness in partly
automated driving”, in Proceedings of the 16th International IEEE Conference
on Intelligent Transportation Systems-(ITSC), 2013, pp. 2012–2019.

[21] J. Bredereke and A. Lankenau, “A rigorous view of mode confusion”, in
Proceedings of the International Conference on Computer Safety, Reliability,
and Security, Springer, 2002, pp. 19–31.

https://doi.org/10.1177/1541931213571433
http://dx.doi.org/10.1177/1541931213571433
http://dx.doi.org/10.1177/1541931213571433
https://www.nytimes.com/2016/11/08/science/finland-public-transportation-driverless-bus.html
https://www.nytimes.com/2016/11/08/science/finland-public-transportation-driverless-bus.html
https://www.nytimes.com/2016/09/15/technology/our-reporter-goes-for-a-spin-in-a-self-driving-uber-car.html
https://www.nytimes.com/2016/09/15/technology/our-reporter-goes-for-a-spin-in-a-self-driving-uber-car.html

REFERENCES 157

[22] P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier, “Learning-based approach
for online lane change intention prediction”, in Proceedings of the IEEE
Intelligent Vehicles Symposium, 2013.

[23] D. Kasper, G. Weidl, T. Dang, G. Breuel, A. Tamke, and W. Rosenstiel,
“Object-oriented Bayesian networks for detection of lane change maneuvers”,
in Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), 2011,
pp. 673–678. doi: 10.1109/IVS.2011.5940468.

[24] H. Graf R.and Deusch, M. Fritzsche, and K. Dietmayer, “A learning concept
for behavior prediction in traffic situations”, in Proceedings of the 2013 IEEE
Intelligent Vehicles Symposium (IV), pp. 672–677.

[25] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical
observations and microscopic simulations”, Physical Review E, vol. 62, no. 2,
p. 1805, 2000.

[26] J. Hillenbrand, A. M. Spieker, and K. Kroschel, “A Multilevel Collision Mitiga-
tion Approach; Its Situation Assessment, Decision Making, and Performance
Tradeoffs”, Intelligent Transportation Systems, IEEE Transactions on, vol. 7,
no. 4, pp. 528–540, Dec. 2006, issn: 1524-9050. doi: 10.1109/TITS.2006.
883115.

[27] J. Wiest, M. Hoffken, U. Kressel, and K. Dietmayer, “Probabilistic trajectory
prediction with Gaussian mixture models”, in Proceedings of the 2012 IEEE
Intelligent Vehicles Symposium (IV), Jun. 2012, pp. 141–146. doi: 10.1109/
IVS.2012.6232277.

[28] E. Fosler-Lussier, “Markov models and hidden Markov models: A brief tuto-
rial”, International Computer Science Institute, 1998.

[29] International Electrotechnical Commission (IEC), Functional safety - Essential
to overall safety, https://www.iec.ch/about/brochures/pdf/technology/
functional_safety.pdf, (Accessed on 07/21/2019), 2015.

[30] International Electrotechnical Commission (IEC), IEC 60050 - International
Electrotechnical Vocabulary - Details for IEV number 192-10-06: "fail-safe",
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-10-
06, (Accessed on 07/21/2019).

[31] European Aviation Safety Agency (EASA), Final Decision on CS-AWO-
23 October 2003 _publication ver. . . https://www.easa.europa.eu/sites/
default/files/dfu/ws_prod-g-doc-Agency_Mesures-Certification_Spec-
decision_ED_2003_06_RM.pdf, (Accessed on 07/21/2019).

[32] M. Hillenbrand, Funktionale Sicherheit nach ISO 26262 in der Konzeptphase
der Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen. KIT
Scientific Publishing, 2012, vol. 4.

[33] R. Krüger and B. G. Z. Funktionssicherheit, “Ganzheitliche Sicherheitsbetra-
chtung am Beispiel von E-Fahrzeugen”, in Tagungsband - Workshop Safety in
Transportation-SiT. Braunschweig, vol. 30, 2011.

https://doi.org/10.1109/IVS.2011.5940468
https://doi.org/10.1109/TITS.2006.883115
https://doi.org/10.1109/TITS.2006.883115
https://doi.org/10.1109/IVS.2012.6232277
https://doi.org/10.1109/IVS.2012.6232277
https://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf
https://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-10-06
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-10-06
https://www.easa.europa.eu/sites/default/files/dfu/ws_prod-g-doc-Agency_Mesures-Certification_Spec-decision_ED_2003_06_RM.pdf
https://www.easa.europa.eu/sites/default/files/dfu/ws_prod-g-doc-Agency_Mesures-Certification_Spec-decision_ED_2003_06_RM.pdf
https://www.easa.europa.eu/sites/default/files/dfu/ws_prod-g-doc-Agency_Mesures-Certification_Spec-decision_ED_2003_06_RM.pdf

158 REFERENCES

[34] S. Becker, “Fahrerassistenzsysteme-Gebrauchssicherheit fuer Jedermann”,
Berichte der Bundestanstalt fuer Strassenwesen. Unterreihe Mensch und
Sicherheit, no. 123, 2000.

[35] V. Banks, K. Plant, and N. Stanton, “Driver error or designer error: Using
the Perceptual Cycle Model to explore the circumstances surrounding the
fatal Tesla crash on 7th May 2016”, Safety Science, vol. 108, pp. 278–285,
2018, issn: 0925-7535. doi: https://doi.org/10.1016/j.ssci.2017.12.023.

[36] A. Luttenberger, “Legal framework on eSafety communication in road trans-
port”, in Proceedings of the Conference on Tourism and Hospitality Manage-
ment 2012, vol. 1, 2012, pp. 126–129.

[37] J. Gurney, “Sue my car not me: Products liability and accidents involving
autonomous vehicles”, U. Ill. JL Tech. & Pol’y, p. 247, 2013.

[38] E. Helming, Functional Safety in accordance with ISO 26262 and product
liability for No Trouble Found events, http://www.ra-helmig.de/fileadmin/
docs/publikationen/2012_ISO_26262_No_Trouble_Found_PHi.pdf,
(Accessed on 03/18/2018), Nov. 2012.

[39] J. Anderson, K. Nidhi, K. Stanley, P. Sorensen, C. Samaras, and O. Oluwatola,
Autonomous vehicle technology: A guide for policymakers. Rand Corporation,
2014.

[40] I. O. for Standardization (ISO), “ISO 8855: 2013-11. Road vehicles — Vehicle
dynamics and road-holding ability — Vocabulary”, Geneva, CH, Tech. Rep.,
2013.

[41] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory gener-
ation for dynamic street scenarios in a frenet frame”, in Proceedings of the
2010 IEEE International Conference on Robotics and Automation (ICRA),
pp. 987–993.

[42] A. Ng and M. Jordan, “On Discriminative vs. Generative classifiers: A compar-
ison of logistic regression and naive Bayes”, Advances in neural information
processing systems, vol. 14, p. 841, 2002.

[43] S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection
in Machine Learning”, CoRR, vol. abs/1811.12808, 2018. arXiv: 1811.12808.
[Online]. Available: http://arxiv.org/abs/1811.12808.

[44] S. Fortmann-Roe, Understanding the bias-variance tradeoff, http://scott.
fortmann-roe.com/docs/BiasVariance.html, (Accessed on 01/30/2020), 2012.

[45] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: A comparative”, J Mach Learn Res, vol. 10, pp. 66–71, 2009.

[46] C. Burges, “A tutorial on support vector machines for pattern recognition”,
Data mining and knowledge discovery, vol. 2, no. 2, p. 123, 1998.

[47] C. Cortes and V. Vapnik, “Support-vector networks”, Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

https://doi.org/https://doi.org/10.1016/j.ssci.2017.12.023
http://www.ra-helmig.de/fileadmin/docs/publikationen/2012_ISO_26262_No_Trouble_Found_PHi.pdf
http://www.ra-helmig.de/fileadmin/docs/publikationen/2012_ISO_26262_No_Trouble_Found_PHi.pdf
https://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1811.12808
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

REFERENCES 159

[48] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection”, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), vol. 14, 1995, pp. 1137–1145.

[49] B. Efron, “Bootstrap methods: Another look at the jackknife”, in Break-
throughs in statistics, Springer, 1992, pp. 569–593.

[50] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning”, in The
elements of statistical learning, Springer, 2009, pp. 485–585.

[51] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures
for classification tasks”, Information Processing & Management, vol. 45, no. 4,
pp. 427–437, 2009.

[52] K. H. Brodersen, S. Cheng, K. E. Stephan, and J. M. Buhmann, “The
Balanced Accuracy and Its Posterior Distribution”, in Proceedings of the 20th
International Conference on Pattern Recognition (ICPR), 2010, pp. 3121–3124.
doi: 10.1109/ICPR.2010.764.

[53] T. Fawcett, “An Introduction to ROC Analysis”, Pattern Recogn. Lett., vol. 27,
no. 8, pp. 861–874, Jun. 2006, issn: 0167-8655. doi: 10.1016/j.patrec.2005.10.
010. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2005.10.010.

[54] C. Willmott and K. Matsuura, “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance”, Climate research, vol. 30, no. 1, pp. 79–82, 2005.

[55] T. Chai and R. Draxler, “Root mean square error (RMSE) or mean abso-
lute error (MAE)?–Arguments against avoiding RMSE in the literature”,
Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[56] I. Myung, “Tutorial on maximum likelihood estimation”, Journal of mathe-
matical Psychology, vol. 47, no. 1, pp. 90–100, 2003.

[57] H. Akaike, “Information theory and an extension of the maximum likelihood
principle”, in Selected papers of hirotugu akaike, Springer, 1998, pp. 199–213.

[58] K. Burnham and D. Anderson, “Multimodel inference: understanding AIC
and BIC in model selection”, Sociological methods & research, vol. 33, no. 2,
pp. 261–304, 2004.

[59] G. Schwarz et al., “Estimating the dimension of a model”, The annals of
statistics, vol. 6, no. 2, pp. 461–464, 1978.

[60] J. Kuha, “AIC and BIC: Comparisons of assumptions and performance”,
Sociological methods & research, vol. 33, no. 2, pp. 188–229, 2004.

[61] S. Ruder, “An overview of gradient descent optimization algorithms”, arXiv
preprint arXiv:1609.04747, 2016.

[62] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection”,
J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003, issn: 1532-4435.
[Online]. Available: http://dl.acm.org/citation.cfm?id=944919.944968.

https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dl.acm.org/citation.cfm?id=944919.944968

160 REFERENCES

[63] M. Ester, H. Kriegel, and X. Xu, “A Density-Based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise”, in Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining,
ser. KDD’96, Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[64] S. Lloyd, “Least squares quantization in PCM”, IEEE transactions on infor-
mation theory, vol. 28, no. 2, pp. 129–137, 1982.

[65] A. Jain, “Data clustering: 50 years beyond K-means”, Pattern recognition
letters, vol. 31, no. 8, pp. 651–666, 2010.

[66] K. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.
[67] I. Filho, The Chinese Restaurant Process: Bayesian Inference of Mixture

Models and Applications in Computational Biology, http://www.cin.ufpe.br/
~igcf/talks/2008-defense.pdf, (Accessed on 12/05/2018), 2008.

[68] R. Das, Collapsed Gibbs Sampler for Dirichlet Process Gaussian Mixture
Models (DPGMM), http://rajarshd.github.io/talks/DPGMM_tutorial.pdf,
(Accessed on 01/30/2020).

[69] P. Polack, F. Altché, B. D’Andréa-Novel, and A. Dela Fortelle, “The Kinematic
Bicycle Model: a Consistent Model for Planning Feasible Trajectories for
Autonomous Vehicles?”, in Proceedings of the 2017 IEEE Intelligent Vehicles
Symposium (IV).

[70] G. Starke and P. Hruschka, “Eine Strukturvorlage zur effektiven Dokumenta-
tion von Software-und IT Architekturen”, in eOrganisation: Service-, Prozess-,
Market-Engineering: 8. Internationale Tagung Wirtschaftsinformatik, (Ac-
cessed on 06/20/2019), vol. 2, Feb. 2007, pp. 77–88. [Online]. Available:
http://aisel.aisnet.org/wi2007/61.

[71] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Ab-
straction and reuse of object-oriented design”, in Proceedings of the European
Conference on Object-Oriented Programming, Springer, 1993, pp. 406–431.

[72] S. Fürst, J. Mössinger, S. Bunzel, et al., “AUTOSAR–A Worldwide Standard
is on the Road”, in Proceedings of the 14th International VDI Congress
Electronic Systems for Vehicles, vol. 62, 2009, p. 5.

[77] U. Dogan, J. Edelbrunner, and I. Iossifidis, “Autonomous driving: A com-
parison of machine learning techniques by means of the prediction of lane
change behavior”, in Proceedings of the 2011 IEEE International Confer-
ence on Robotics and Biomimetics (ROBIO), 2011, pp. 1837–1843. doi:
10.1109/ROBIO.2011.6181557.

[78] G. Weidl, A. L. Madsen, S. Wang, D. Kasper, and M. Karlsen, “Early and
Accurate Recognition of Highway Traffic Maneuvers Considering Real World
Application: A Novel Framework Using Bayesian Networks”, IEEE Intelligent
Transportation Systems Magazine, vol. 10, no. 3, pp. 146–158, 2018, issn:
1939-1390. doi: 10.1109/MITS.2018.2842049.

http://www.cin.ufpe.br/~igcf/talks/2008-defense.pdf
http://www.cin.ufpe.br/~igcf/talks/2008-defense.pdf
http://rajarshd.github.io/talks/DPGMM_tutorial.pdf
http://aisel.aisnet.org/wi2007/61
https://doi.org/10.1109/ROBIO.2011.6181557
https://doi.org/10.1109/MITS.2018.2842049

REFERENCES 161

[79] C. Wissing, T. Nattermann, K.-H. Glander, C. Hass, and T. Bertram, “Lane
Change Prediction by Combining Movement and Situation based Probabili-
ties”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 3554–3559, 2017, 20th IFAC
World Congress, issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2017.
08.960.

[80] M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr, “A
combined model-and learning-based framework for interaction-aware maneuver
prediction”, IEEE Transactions on Intelligent Transportation Systems (T-
ITS), vol. 17, no. 6, pp. 1538–1550, 2016.

[81] D. Broadbent, Perception and communication. Elsevier, 2013.
[82] M. Hall, “Correlation-based features selection for machine learning”, Ph.D.

dissertation, The university of Waikato, 1999.
[83] M. Hall, “Correlation-based feature selection for discrete and numeric class

machine learning”, in Proceedings of the Seventeenth International Conference
on Machine Learning, 2000, pp. 359–366.

[84] J. Hauke and T. Kossowski, “Comparison of values of Pearson’s and Spear-
mans’s correlation coefficients on the same sets of data”, Quaestiones geo-
graphicae, vol. 30, no. 2, pp. 87–93, 2011.

[85] H. Zhang, “The Optimality of Naive Bayes.”, in Proceedings of the FLAIRS
Conference, V. Barr and Z. Markov, Eds., AAAI Press, 2004.

[86] C. Chang and C. Lin, “LIBSVM: a library for support vector machines”,
ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,
p. 27, 2011.

[87] V. N. Vapnik, The Nature of Statistical Learning Theory. Berlin: Springer-
Verlag, 1995, isbn: 0387945598.

[88] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
Learning in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[90] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators”, Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

[91] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, in Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249–256.

[92] NVIDIA, Accelerating AI with GPUs: A New Computing Model | NVIDIA
Blog, https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-
intelligence-gpus/, (Accessed on 08/21/2019).

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.960
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.960
https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/
https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/

162 REFERENCES

[93] A. Maas, A. Hannun, and A. Ng, “Rectifier nonlinearities improve neural
network acoustic models”, in Proceedings of the ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, vol. 30, 2013, p. 3.

[94] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-
forward neural networks”, Chemometrics and intelligent laboratory systems,
vol. 39, no. 1, pp. 43–62, 1997.

[95] Q. Le et al., “A tutorial on deep learning part 1: Nonlinear classifiers and the
backpropagation algorithm”, Google Inc., Mountain View, CA, p. 18, 2015.

[96] A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: A tutorial”,
Computer, no. 3, pp. 31–44, 1996.

[97] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005, isbn: 0262201623.

[98] A. Barth and U. Franke, “Where Will the Oncoming Vehicle be the Next Sec-
ond?”, in Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven:
Springer, Jun. 2008, pp. 1068–1073.

[99] H. Woo, Y. Ji, H. Kono, et al., “Lane-change detection based on vehicle-
trajectory prediction”, IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 1109–1116, 2017.

[100] F. Altché and A. De La Fortelle, “An LSTM network for highway trajectory
prediction”, in Proceedings of the 2017 IEEE International Conference on
Intelligent Transportation Systems (ITSC), pp. 353–359.

[101] L. Fahrmeir, C. Heumann, R. Künstler, I. Pigeot, and G. Tutz, Statistik: Der
Weg zur Datenanalyse. Springer Spektrum, 2016.

[102] S. Yoon and D. Kum, “The multilayer perceptron approach to lateral motion
prediction of surrounding vehicles for autonomous vehicles”, in Proceedings of
the 2016 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2016, pp. 1307–
1312.

[103] C. Wissing, T. Nattermann, K. Glander, and T. Bertram, “Trajectory Pre-
diction for Safety Critical Maneuvers in Automated Highway Driving”, in
Proceedings of the 2018 IEEE International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 131–136.

[104] M. L. Connelly, H. Conaglen, B. Parsonson, and R. Isler, “Child pedestrians’
crossing gap thresholds”, Accident; analysis and prevention, vol. 30, pp. 443–
53, Aug. 1998. doi: 10.1016/S0001-4575(97)00109-7.

[106] M. Liebner, M. Baumann, F. Klanner, and C. Stiller, “Driver intent inference
at urban intersections using the intelligent driver model”, in Proceedings of
the 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 1162–1167.

[107] D. Petrich, T. Dang, D. Kasper, G. Breuel, and C. Stiller, “Map-based long
term motion prediction for vehicles in traffic environments”, in Proceedings of
the 16th International IEEE Conference on Intelligent Transportation Systems
- (ITSC), Oct. 2013, pp. 2166–2172. doi: 10.1109/ITSC.2013.6728549.

https://doi.org/10.1016/S0001-4575(97)00109-7
https://doi.org/10.1109/ITSC.2013.6728549

REFERENCES 163

[108] J. Wiest, F. Kunz, U. Kreßel, and K. Dietmayer, “Incorporating categorical
information for enhanced probabilistic trajectory prediction”, in Proceedings
of the 2013 International Conference on Machine Learning and Applications
(ICMLA), vol. 1, pp. 402–407.

[109] B. T. Morris and M. M. Trivedi, “Trajectory Learning for Activity Understand-
ing: Unsupervised, Multilevel, and Long-Term Adaptive Approach”, Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 11,
pp. 2287–2301, Nov. 2011, issn: 0162-8828. doi: 10.1109/TPAMI.2011.64.

[110] N. Deo, A. Rangesh, and M. Trivedi, “How would surround vehicles move? A
unified framework for maneuver classification and motion prediction”, IEEE
Transactions on Intelligent Vehicles (T-ITS), vol. 3, no. 2, pp. 129–140, 2018.

[111] N. Deo and M. Trivedi, “Convolutional social pooling for vehicle trajectory
prediction”, in Proceedings of the 2018 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPR), pp. 1468–1476.

[112] D. Lenz, F. Diehl, M. Le, and A. Knoll, “Deep neural networks for Markovian
interactive scene prediction in highway scenarios”, in Proceedings of the 2017
IEEE Intelligent Vehicles Symposium (IV), pp. 685–692.

[113] C. Wissing, T. Nattermann, K. Glander, and T. Bertram, “Probabilistic
time-to-lane-change prediction on highways”, in Proceedings of the 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 1452–1457.

[114] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and
risk assessment for intelligent vehicles”, English, ROBOMECH Journal, vol. 1,
no. 1, 1, 2014. doi: 10.1186/s40648-014-0001-z.

[115] G. King and L. Zeng, “Logistic regression in rare events data”, Political
analysis, vol. 9, no. 2, pp. 137–163, 2001.

[116] G. M. Weiss, K. McCarthy, and B. Zabar, “Cost-sensitive learning vs. sam-
pling: Which is best for handling unbalanced classes with unequal error
costs?”, Dmin, vol. 7, no. 35-41, p. 24, 2007.

[117] S. R. Searle, Linear models for unbalanced data. John Wiley & Sons, 2006,
vol. 639.

[118] S. Calinon, F. Guenter, and A. Billard, “On Learning, Representing and
Generalizing a Task in a Humanoid Robot”, IEEE Transactions on Systems,
Man and Cybernetics, Part B, vol. 37, no. 2, pp. 286–298, 2007.

[119] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM
algorithm”, Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[120] W. Chaer, R. Bishop, and J. Ghosh, “A mixture-of-experts framework for
adaptive kalman filtering”, Systems, Man, and Cybernetics, Part B: Cyber-
netics, IEEE Transactions on, vol. 27, no. 3, pp. 452–464, 1997.

[121] J. Kwok, “Support vector mixture for classification and regression prob-
lems”, in Proceedings of the Fourteenth International Conference on Pattern
Recognition, vol. 1, 1998, pp. 255–258.

https://doi.org/10.1109/TPAMI.2011.64
https://doi.org/10.1186/s40648-014-0001-z

164 REFERENCES

[122] S. Yuksel, J. Wilson, and P. Gader, “Twenty years of mixture of experts”,
IEEE transactions on neural networks and learning systems, vol. 23, no. 8,
pp. 1177–1193, 2012.

[123] B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate
multiclass probability estimates”, in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM, 2002,
pp. 694–699.

[125] S. LaValle, Planning algorithms. Cambridge university press, 2006.
[126] P. Bender, O. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect of mo-

tion planning: Maneuver variants in structured environments”, in Proceedings
of the 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1386–1392.

[127] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
Bertha—A local, continuous method”, in Proceedings of the 2014 IEEE
Intelligent Vehicles Symposium Proceedings, pp. 450–457.

[128] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore, “Real-time
motion planning with applications to autonomous urban driving”, Control
Systems Technology, IEEE Transactions on, vol. 17, no. 5, pp. 1105–1118,
2009.

[129] M. McNaughton, C. Urmson, J. Dolan, and J. Lee, “Motion planning for
autonomous driving with a conformal spatiotemporal lattice”, in Proceedings
of the 2011 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4889–4895.

[130] E. Frazzoli, M. Dahleh, E. Feron, et al., “Maneuver-based motion planning
for nonlinear systems with symmetries”, Robotics, IEEE Transactions on,
vol. 21, no. 6, pp. 1077–1091, 2005.

[131] T. Gu, J. Atwood, C. Dong, J. Dolan, and J. Lee, “Tunable and stable
real-time trajectory planning for urban autonomous driving”, in Proceedings
of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 250–256.

[132] N. Kapania, J. Subosits, and C. Gerdes, “A sequential two-step algorithm for
fast generation of vehicle racing trajectories”, Journal of Dynamic Systems,
Measurement, and Control, vol. 138, no. 9, p. 091 005, 2016.

[133] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples”, International journal
of control, vol. 61, no. 6, pp. 1327–1361, 1995.

[134] G. Guennebaud, B. Jacob, et al., Eigen C++, http://eigen.tuxfamily.org,
(Accessed on 01/18/2016), 2016.

[135] H. Bellem, B. Seitz, M. Schrauf, and J. Krems, “Comfort in automated driving:
An analysis of preferences for different automated driving styles and their
dependence on personality traits”, Transportation Research Part F Traffic
Psychology and Behaviour, vol. 55, Jun. 2018. doi: 10.1016/j.trf.2018.02.036.

https://doi.org/10.1016/j.trf.2018.02.036

	Title page
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Different Levels of Automation
	Level-1: Driver Assistance
	Level-2: Partial Automation
	Level-3: Conditional Automation
	Level-4: High Automation
	Level-5: Full Automation

	Fallback from Level-3 Driving
	Human Machine Interaction
	State transitions of a Level-3 System

	Research Contribution
	System Design
	Maneuver recognition
	Prediction of Future Vehicle Positions
	Trajectory Planning in Structured Dynamic Environments

	Outline

	Background
	Safety of Automated Driving Functions
	Definitions
	Functional Safety
	Safety of Use
	Liability

	Coordinate Systems
	Vehicle Coordinate Systems
	Curvilinear Coordinates

	Machine Learning
	Model Selection
	Evaluation Methods
	Evaluation Measures for Discrete Data
	Scoring Methods for Continuous Data
	Supervised Learning
	Unsupervised Learning

	Vehicle Dynamics
	Point Models
	Kinematic Bicycle Model

	System Concept and Architecture
	Introduction and Goals
	Requirements Overview
	Quality Goals

	Architecture Constraints
	System Scope and Context
	Business Context
	Architecture Level (0) - Technical Context

	Solution Strategy
	Building Block View
	Architecture Level (1) - Automated Driving Logic
	Architecture level (2) - Fallback Behavior Generation

	Runtime View
	Risks and Technical Debts

	Maneuver Recognition
	Problem Definition
	Literature
	Contribution
	Solution Design
	Environment Model
	Feature Selection Techniques
	Filtering
	Wrapper Techniques for Feature Selection

	Classification Methods
	Naïve Bayes
	Support Vector Machines
	Random Forests
	Feedforward Neural Networks

	Experiment I
	Setup & Dataset
	Model Generation
	Evaluation
	Conclusion

	Experiment 2
	Setup
	Dataset
	Model Generation
	Evaluation
	Conclusion

	Probabilistic Position Prediction
	Problem Definition
	Literature
	Expert Based Models
	Learning Based Models

	Contribution
	Solution Design
	Features and Data Model
	Data Model for Longitudinal Position Prediction
	Data Model for Lateral Position Prediction

	Methods
	Gaussian Mixture Regression
	Mixture of Experts
	Longitudinal Position Prediction Methods

	Metrics
	Experiment 1
	Setup and Training
	Evaluation
	Conclusion

	Experiment 2
	Data Setup
	Evaluation
	Conclusion

	Trajectory Planning in Structured Dynamic Environments
	Problem Definition
	Related Work
	Contribution
	Solution Design
	Behavior Planning
	Interface Definition
	Sampling using Action Spaces
	Trajectory Generation based on Differential Flatness
	Experimental Results
	Conclusion

	Epilogue
	Summary of Contributions
	Future Research Directions
	Conclusion

	Publications
	References

