
List Scheduling Algorithms for Open Distributed

Real-Time Embedded Systems

DISSERTATION

To Obtain the Degree of Doctor of Engineering

Submitted By

Sarah Amin

Submitted To

Chair of Embedded Systems

Department of Elektrotechnik und Informatik

The University of Siegen

Siegen 2020

Supervisor And First Appraiser

Prof. Dr. Roman Obermaisser

University of Siegen

Second Appraiser

Prof. Dr. Peter Puschner

Vienna University of Technology

Date of the Oral Examination

20. May 2020

Take care of the minutes and the hours will take care of themselves.

Earl of Chesterfield

I dedicate this work to my beloved parents, and my aunt, Rubina Shafique, who have

always supported my innate thrive for knowledge and have always encouraged me to do

my best.

ACKNOWLEDGEMENTS

I would like to thank Allah Almighty for giving me the opportunity, determination and

strength to do my research. His continuous grace and mercy was with me throughout my

life and ever more during the tenure of my research.

I would like to express my deep and sincere gratitude to my supervisor Prof. Dr Roman

Obermaisser for his continuous support, guidance and encouragement. In addition to being

an excellent supervisor, he is a man of principles and has immense knowledge of research

in general and his subject in particular. I appreciate all his contributions of time, support

and ideas.

I would also like to thank the staff of the Chair of Embedded Systems, specifically

Manuela Popp and Stefan Otterbach. I am grateful to my colleagues and friends, specially

Nadra, Maryam, Adele and Setareh, for their continued guidance, support and friendship.

Very special gratitude goes out to my eternal Cheerleaders, my siblings, who sacrificed

a lot to help me fulfil my dream. Finally, I am grateful to my aunt, and my parents who

have provided me through emotional and moral support in my life.

v

ABSTRACT

In recent years, the field of embedded systems has evolved towards application ar-

eas that combine stringent real-time constraints, reliability requirements and a need for

an open-world assumption. Such systems are called Open Distributed Real-time Embed-

ded (ODRE) systems. These systems are based on an open-world assumption where new

components enter at runtime to dynamically realise emerging services. At the same time,

reliable operation and support for stringent real-time requirements are essential to sup-

port closed-loop control and guaranteed response times. In such systems, time-triggered

scheduling of the services before executing them on the system ensures the correct tempo-

ral behaviour of the applications and guarantees support for stringent real-time constraints.

However, scheduling a real-time application in an ODRE system is complicated because

of its dynamic nature. The structure of the ODRE system is continuously changing, which

means that a fixed schedule generated at the design time cannot be used throughout the

lifetime of the system. The execution times of prevalent scheduling algorithms, e.g, evolu-

tionary algorithms, mixed integer linear programming, satisfiablity modulo theories, are not

suitable for invocation at runtime. Moreover, these algorithms make assumptions, e.g., as-

suming a bus-based communication network instead of multi-hop communication networks

or considering the same period for all the application tasks, that are unrealistic for the strin-

gent real-time requirements of ODRE systems. Therefore, there is a need for a scheduling

algorithm that computes a feasible schedule for ODRE systems at runtime whenever there

are changes in the system. This thesis proposes list scheduling algorithms that consider

both stringent timing constraints and openness of the ODRE system while computing a fea-

sible schedule with short scheduling delay at runtime. The proposed algorithms are generic

and support the computation of a time-triggered schedule for any system application on an

ODRE system. In addition, this thesis demonstrates the models and algorithms for schedul-

ing diagnostic services for fault detection and diagnosis in ODRE systems. The scheduling

vi

algorithms are evaluated based on different parameters such as, the size of the system ap-

plication, the number of available resources, the network topology used in the system, the

number of modifications in the scheduled application, and reconfiguration cost of the sys-

tem. The results show that the algorithms can compute a feasible schedule provided that

there are enough resources in the system. The results for the proposed incremental schedul-

ing algorithm show that the computed schedules are scalable to changes in the system and

the revalidation efforts can be reduced by minimising the changes in the already scheduled

application. Furthermore, the time complexity and the observed runtime of the algorithms

shows that they can be invoked during runtime when the scheduler is triggered by a change

in the system configuration.

vii

Zusammenfassung

In den letzten Jahren hat sich der Bereich der eingebetteten Systeme zu Anwendungs-

bereichen entwickelt, die strenge Echtzeitbeschränkungen, Zuverlässigkeitsanforderungen

und die Notwendigkeit einer Open-World-Annahme vereinen. Solche Systeme werden

als Open Distributed Real-time Embedded (ODRE) Systeme bezeichnet. Diese Sys-

teme basieren auf einer Open-World-Annahme, bei der neue Komponenten zur Laufzeit

auftreten, um neu entstehende Dienste dynamisch zu realisieren. Gleichzeitig sind ein zu-

verlässiger Betrieb und die Unterstützung von strengen Echtzeitanforderungen für die Un-

terstützung von geschlossenen Regelkreisen und garantierten Reaktionszeiten unerlässlich.

In solchen Systemen sorgt ein zeitgesteuertes Scheduling der Dienste vor der Ausführung

auf dem System für das korrekte zeitliche Verhalten der Anwendungen und garantiert die

Unterstützung von strengen Echtzeitbedingungen. Das Scheduling einer Echtzeitanwen-

dung in einem ODRE-System ist jedoch aufgrund seiner dynamischen Natur kompliziert.

Die Struktur des ODRE-Systems ändert sich ständig, was bedeutet, dass ein zur Designzeit

generierter fester Zeitplan nicht über die gesamte Lebensdauer des Systems verwendet wer-

den kann. Die Ausführungszeiten gängiger Scheduling-Algorithmen, z.B. evolutionäre Al-

gorithmen, gemischt-ganzzahlige lineare Programmierung, Satisfiablity-Modulo-Theorien,

sind für die Verwendung zur Laufzeit nicht geeignet. Darüber hinaus machen diese Al-

gorithmen restriktive Annahmen, z.B. die Annahme eines busbasierten Kommunikation-

snetzes anstelle von Multi-Hop-Kommunikationsnetzen oder die Berücksichtigung der

gleichen Periode für alle Anwendungsaufgaben, die für die Echtzeitanforderungen von

ODRE-Systemen unrealistisch sind. Daher besteht ein Bedarf an einem Scheduling-

Algorithmus, der zur Laufzeit einen realisierbaren Zeitplan für ODRE-Systeme berech-

net, wenn es Änderungen im System gibt. Diese Arbeit schlägt Listen-Scheduling-

Algorithmen vor, die sowohl strenge Zetbedingungen als auch die Offenheit des ODRE-

Systems berücksichtigen, während sie einen Zeitplan mit kurzer Planungsverzögerung zur

viii

Laufzeit berechnen. Die vorgeschlagenen Algorithmen sind generisch und unterstützen

die Berechnung eines zeitgesteuerten Zeitplans für verschiedene Systemanwendungen

auf einem ODRE-System. Darüber hinaus werden in dieser Arbeit die Modelle und

Algorithmen für das Scheduling von Diagnosediensten zur Fehlererkennung und Diag-

nose in ODRE-Systemen demonstriert. Die Scheduling-Algorithmen werden auf der Ba-

sis verschiedener Parameter, wie z.B. der Größe der Systemanwendung, der Anzahl der

verfügbaren Ressourcen, der im System verwendeten Netzwerktopologie, der Anzahl der

Änderungen in der geplanten Anwendung und der Rekonfigurationskosten des Systems,

bewertet. Die Ergebnisse zeigen, dass die Algorithmen einen korrekten Zeitplan berech-

nen können, sofern genügend Ressourcen im System vorhanden sind. Die Ergebnisse für

den vorgeschlagenen inkrementellen Scheduling-Algorithmus zeigen, dass die berechneten

Zeitpläne auf Änderungen im System skalierbar sind und der Aufwand für die Revali-

dierung durch Minimierung der Änderungen in der bereits eingeplanten Anwendung re-

duziert werden kann. Darüber hinaus zeigt die Analyse der Zeitkomplexität und der

beobachteten Laufzeit der Algorithmen, dass sie zur Laufzeit aufgerufen werden können,

wenn der Scheduler durch eine Änderung der Systemkonfiguration ausgelöst wird.

ix

TABLE OF CONTENTS

List of Tables . xv

List of Figures . xvii

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Research Statement and Thesis Contributions 3

1.3 Thesis Overview . 5

Chapter 2: Basic Concepts . 6

2.1 Distributed Real-Time Embedded Systems 6

2.1.1 Embedded Systems . 6

2.1.2 Real-Time Systems . 7

2.1.2.1 Classification of Real-Time Systems 7

2.1.2.2 Characteristics of Hard Real-Time Embedded Systems . . 8

2.1.3 Distributed Systems . 9

2.1.3.1 Characteristics of Distributed Systems 10

2.2 Fault Diagnosis and Detection (FDD) in Safety-Critical Distributed Em-
bedded Systems . 11

2.2.1 Passive and Active FDD . 11

x

2.2.2 Diagnosis requirements for Open Distributed Real-time Embedded
(ODRE) systems . 13

2.3 Real-time Scheduling Problems . 14

2.3.1 Classification of Real-time Scheduling Algorithms 14

2.3.2 Real-time Feasibility and Schedulability 16

2.4 Time-triggered (TT) Systems . 17

2.4.1 TT Task Execution . 17

2.4.2 Static Communication (TT Message Execution) 18

2.5 Static Task Scheduling . 20

2.5.1 List Scheduling . 21

2.5.2 Clustering Heuristics . 22

2.5.3 Task Duplication Heuristics . 22

2.5.4 Guided Random Search Techniques 23

2.6 Incremental Design Process . 23

Chapter 3: Related Work . 26

3.1 Static Task and Message Scheduling . 26

3.2 List Scheduling . 33

3.3 Incremental Scheduling . 35

3.4 Fault Detection and Diagnosis in Embedded Systems 37

Chapter 4: System Model . 40

4.1 System Architecture . 40

4.1.1 Hardware Components of Processors 40

xi

4.1.2 Software Components of Processors 41

4.1.3 Scheduler . 42

4.1.4 Constraints of the Distributed System 43

4.2 Application Model . 45

4.2.1 System Application (GS) . 45

4.2.2 Diagnostic Multi-Query Graph (DMG - GD) 46

4.2.3 Characteristics of DMG . 49

4.2.3.1 Time Period and Absolute Deadline 50

4.2.3.2 Hyper-Period . 52

4.2.3.3 History-Interval . 53

4.2.4 Translation of History-Interval to Directed Edges 57

4.3 Characteristics of the Application Model used for List Scheduling 62

Chapter 5: List Scheduling for active diagnosis in Homogeneous ODRE Systems 68

5.1 Problem Formulation . 69

5.2 List Scheduling (LS) for Homogeneous Distributed Systems 69

5.2.1 Proposed Algorithm . 71

5.2.2 Example . 77

5.2.3 Complexity of LS algorithm for homogeneous systems 78

5.3 Experimental Setup . 79

5.4 Results . 82

Chapter 6: List Scheduling for active diagnosis in Heterogeneous ODRE Systems 87

6.1 Problem Formulation . 88

xii

6.2 List Scheduling (LS) for Heterogeneous Systems 90

6.2.1 Proposed Algorithm . 91

6.2.2 Example . 94

6.2.3 Complexity of LS algorithm for heterogeneous systems 97

6.3 Experimental Setup . 97

6.4 Results . 100

Chapter 7: Incremental List Scheduling . 104

7.1 Problem Formulation . 105

7.2 Incremental List Scheduling (ILS) . 108

7.2.1 Identify the modifications in the system 108

7.2.2 Compute the affected queries . 110

7.2.3 Scheduling the queries/messages 112

7.2.4 Complexity of the ILS algorithm 118

7.3 Experimentation and Evaluation . 118

7.3.1 Experimental Setup . 120

7.3.2 Evaluation . 122

Chapter 8: Real-World Use Case: Fault detection and diagnosis using diagnos-
tic multi-queries in HVAC systems 136

8.1 Background . 136

8.2 Related Work . 138

8.3 Problem Formulation . 139

8.3.1 Building Architecture . 141

xiii

8.4 Formulation of Diagnostic Multi-query Graphs (DMGs) 145

8.5 Optimization . 148

8.6 Scheduler . 150

8.7 Experimentation and Results . 151

Chapter 9: Conclusion . 155

9.1 List Scheduling Algorithm for Homogeneous ODRE systems 156

9.2 List Scheduling Algorithm for Heterogeneous ODRE systems 157

9.3 Incremental List Scheduling Algorithm for Homogeneous ODRE systems . 158

9.4 Real-World Use Case: HVAC Systems . 159

xiv

LIST OF TABLES

4.1 Relationship matrix of parent query q1 and child query q2 for the example
given in Fig. 4.10c . 61

6.1 Computation Cost Matrix W for Fig. 6.1 90

6.2 Computation Cost Matrix W for GD given in Fig. 6.2a implemented on
architecture given in Fig. 6.3 . 95

6.3 Features of the queries calculated for scheduling 96

7.1 Schedule Table for Fig. 7.2 . 111

7.2 Message Table for Fig. 7.2 . 111

7.3 Updated Schedule Table after modification of Fig. 7.1a to Fig. 7.1c 113

7.4 Updated Message Table after modification of Fig. 7.1a to Fig. 7.1c 113

7.5 System Specifications for the Experiments 123

7.6 Average execution time of ILS and LS for the three use cases 123

7.7 Case 1 - Results for Ring Topology . 125

7.8 Case 1 - Results for Star Topology . 126

7.9 Case 1 - Results for Bus Topology . 127

7.10 Case 2 - Results for Ring Topology . 131

7.11 Case 2 - Results for Star Topology . 131

7.12 Case 2 - Results for Bus Topology . 132

xv

7.13 Case 3 - Results for Ring Topology . 133

7.14 Case 3 - Results for Star Topology . 133

7.15 Case 3 - Results for Bus Topology . 135

8.1 Fault Parameters . 148

8.2 Diagnostic queries for CO2 sensor faults in NR1 of FR1 150

8.3 Diagnostic queries to monitor the levels of CO2 and temperature in NR2 of
FR1 . 150

8.4 Diagnostic queries for fire detection in CR1 of FR1 151

8.5 Diagnostic queries for Temperature sensor faults in NR3 of FR2 151

8.6 Diagnostic queries to monitor the levels of CO2 and temperature in NR4 of
FR2 . 152

8.7 Diagnostic queries for fire detection in CR2 of FR2 152

xvi

LIST OF FIGURES

2.1 Block diagrams for passive and active fault diagnosis 12

2.2 Time-Triggered Execution of Tasks . 18

2.3 TDMA Bus Communication . 19

2.4 Static Time-Triggered (TT) Communication 19

2.5 Classification of static task scheduling . 21

4.1 Example of a distributed system . 41

4.2 Transition between schedules during runtime whenever changes occur in
the system . 42

4.3 System Architecture (Mesh Network) . 43

4.4 (a). System Architecture before Modification (b). System Architecture
after Modification . 44

4.5 Examples of Directed Acyclic Graph (DAG) 46

4.6 Modified version of the graphs presented in Fig. 4.5 47

4.7 Flow diagram of Fault detection and diagnosis using Diagnostic Queries
(FDQ) . 48

4.8 Examples of DMG . 50

4.9 Time period and absolute deadline of two consecutive instances of q1 52

4.10 Impact of history-interval on the relationship between iterations of q1 and
q2 (t = 0 ms) . 56

xvii

4.11 Sliding window function of history-interval (< ai j,bi j >=< 0,0 > and t =
0 ms) . 57

4.12 Impact of ready time of a query on the data transmission (t = 0 ms) 57

4.13 (a). Initial form of the DMG (b). DMG after translating the history-interval
to directed edges . 61

5.1 Homogeneous Distributed System Model 69

5.2 (a). DMG - GD (here D(qi) = T(qi)) (b). GD after translating the history-
interval to directed edges (here D(qi) = T(qi)) 78

5.3 Homogeneous distributed system (l1 = l3 = 1 Mb/ms, l2 = l4 = 2 Mb/ms) . 78

5.4 Schedule representation for GD given in Fig. 5.2a implemented on archi-
tecture given in Fig. 5.3 (t = 0 ms) . 79

5.5 Variation in SL with increase in size of DMG (64-ring distributed system) . 84

5.6 Variation in SL with increase in CCR (16-ring distributed system) 85

5.7 Variation in SL with increase in number of processors and links (Q = 100) . 86

6.1 Heterogeneous Distributed System Model 88

6.2 (a). DMG - GD (here D(qi) = T(qi)) (b). GD after translating the history-
interval to directed edges (here D(qi) = T(qi)) 96

6.3 Heterogeneous distributed system (l1 = l2 = 1 Mb/ms, l3 = l4 = 2 Mb/ms) . 96

6.4 Schedule representation for GD given in Fig. 6.2a implemented on archi-
tecture given in Fig. 6.3 (t = 0 ms) . 96

6.5 64-bus, CCR = 0.5, α = 1 . 101

6.6 64-ring, CCR = 0.5, α = 1 . 101

6.7 Variation in SL with an increase in CCR 102

6.8 Variation in SL with an increase in P . 103

xviii

7.1 (a). DMG - GD (T (qi) = 100 ms, < ai j,bi j > = < 0,0>) (b). Homogeneous
distributed system (l1 = 2 Mb/ms, l2 = 1 Mb/ms) (c). Modified version of
GD (T (qi) = 100 ms, < ai j,bi j > = < 0,0 >) 109

7.2 Schedule representation for GS given in Fig. 7.1a implemented on archi-
tecture given in Fig. 7.1b . 110

7.3 Schedule representation for GD given in Fig. 7.1c implemented on architec-
ture given in Fig. 7.1b using ILS and different use case scenarios (Colored
boxes show the modifications to the original schedule given in Fig. 7.2) . . 117

7.4 Case 1 - Addition of a query or an edge to an existing DMG in a Ring Network128

7.5 Case 2 - Adding new applications of varying sizes to an existing system
running a DMG of 50 queries in a Star Network 130

7.6 Case 3 - Removal of a processor or a switch from a Bus Network with
varying number of processors and switches 134

8.1 Flow diagram of schedule generation for Fault detection and diagnosis us-
ing Diagnostic Queries (FDQ) . 140

8.2 HVAC model of a 2 floor building each with 3 rooms and one corridor . . . 143

8.3 Example of the system architecture of floor one of the building 144

8.4 Different components of the building architecture 145

8.5 (a). DMG for NR1 (b). DMG for normal rooms of floor FR1 149

8.6 (a). 4-processor ring (b). 6-processor ring 153

8.7 (a). 4-processor star (b). 6-processor star 154

8.8 (a). 4-processor bus (b). 6-processor bus 154

xix

CHAPTER 1

INTRODUCTION

THIS THESIS deals with the specific challenges related to the system-level design of

open distributed real-time embedded systems implemented with time-triggered task sets

that communicate over time-triggered communication protocols. The specific focus is on

proposing an efficient heuristic that can compute a feasible schedule during runtime when-

ever there are changes in the system.

1.1 Background

In recent years, the field of embedded systems has evolved towards application areas

that combine stringent real-time constraints, reliability requirements and a need for an

open-world assumption. These systems are called Open Distributed Real-Time Embed-

ded (ODRE) systems [1]. The open-world assumption means that the system structure is

dynamic, and components may enter or leave at runtime. In other words, the structure of the

system is not completely known at the design time, and changes may occur during the func-

tioning of the system. Examples of ODRE systems are Ambient-Assisted Living (AAL)

for elderly care [2], networked medical devices and health management systems [2], com-

mand/control systems [3, 4], and applications for electrical power distribution [5]. In such

systems, new components are integrated at runtime to realise emerging global services. At

the same time, reliable operations and stringent real-time requirements are essential to sup-

port closed-loop control and guaranteed response times. For example, a physician needs to

dynamically integrate medical devices into an in-home AAL system for emergency treat-

ment. In this scenario, the device should be integrated to the in-home AAL system such

that it gives a predictable response time and can interact reliably with the in-home medical

devices (e.g., sensors) and remote sites (e.g., the hospital).

1

In safety-critical systems, an embedded computer system has to provide its services

with dependability that is better than the dependability of any of its constituent compo-

nents [6]. If the failure rate data of available electrical components is considered, then this

level of dependability can only be achieved if the system supports fault-tolerance. An es-

sential step in fault treatment is fault diagnosis, which determines the causes of failures in

terms of nature and localisation. Root cause analysis is used to trace back the abnormal

behaviours and states to the originating fault. A component can fail due to a design fault in

software or hardware, a transient or permanent physical hardware fault or an operator mis-

take. The faults must be detected and diagnosed, and recovery actions must be proposed

within a predictable time to avoid disastrous and life-threatening situations. ODRE systems

can be safety-critical, i.e., failure or malfunction of such systems may lead to death or seri-

ous injuries, loss/damage of the property or environmental harm. For example, consider an

in-home AAL medical device that monitors the oxygen input to a critical elderly patient.

In this case, if the device is unable to detect a malfunction in one of its components within

the systemFLs defined time-bound and the oxygen pressure is increased beyond the recom-

mended value, then the patient can die due to oxygen toxicity in his/her blood. Therefore, it

is essential that ODRE systems also offer diagnostic services to diagnose and detect faults

at runtime. The diagnostic method should cope with dynamic system structures, should

follow stringent timing constraints and should be reliable.

Scheduling the diagnostic service before executing it ensures a predictable temporal

behaviour of the diagnostic application and also bounds the time to detect and diagnose

faults. Preplanned execution of the diagnostic application infers the maximum time to de-

tect and diagnose faults in the system. However, scheduling a real-time application in an

ODRE system is complicated by its dynamic nature. The structure of the ODRE system

is not entirely known before runtime, which means that a fixed schedule generated at the

design time cannot be used throughout the functioning of the system. The tasks and com-

munication messages need to be reallocated and rescheduled whenever there is a change in

2

the system structure or system application. After that, the system can switch to this new

schedule, and the message and task dispatching can proceed according to the new sched-

ule. The scheduling algorithm should, therefore, be fast enough to recompute a schedule

during runtime and should ensure continuity of service to avoid interruption of services

that are not affected by the changes and to minimise changes in the system to preserve

previous validation results and safety arguments. Dynamic scheduling is not desirable due

to the higher runtime overhead in particular with task dependencies and usage of shared

resources. In contrast, time-triggered schedules can exploit implicit synchronisation to

satisfy precedence constraints, avoid resource conflicts and race conditions. In addition,

dynamic scheduling can result in the loss of temporal determinism [7]. Therefore, a time-

triggered scheduling algorithm is required that recomputes a feasible schedule, whenever

there are changes in the system, within a predictable time. There should also be a fail-safe

mechanism in the system that discards the changes if no feasible schedule is found.

1.2 Research Statement and Thesis Contributions

In the state-of-the-art, there are few time-triggered scheduling algorithms that support both

stringent timing constraints and the open-world assumptions of distributed real-time em-

bedded systems. Existing algorithms for time-triggered systems (cf. Chapter 3) support

dynamic changes by pre-computing the schedules for all potential changes offline rather

than during runtime of the system. The computation time of most of these algorithms is not

suitable for invocation at runtime, or they compute schedules for the real-time tasks with

unrealistic assumptions (e.g., without considering the communication constraints or con-

sidering the same period for all the application tasks). This thesis proposes list scheduling

algorithms that consider both stringent timing constraints and the openness of the ODRE

system while computing a schedule. The proposed algorithms are designed to schedule

any system application on an ODRE system. In addition, this thesis exploits the scheduling

of a diagnostic application for fault detection and diagnosis in ODRE systems to test the

3

validity and effectiveness of the proposed algorithms.

Given an ODRE system and a system application, we compute a feasible static sched-

ule for the time-triggered execution of application tasks and message communications at

runtime. The schedule is scalable to changes in the ODRE system, and ensures continu-

ity of service and minimises changes in the system to preserve previous validation results

and safety arguments. The faults are detected and diagnosed in the ODRE system using

diagnostic multi-queries that are realised in a real-time database and executed on pervasive

SQL [8, 9]. If a feasible schedule is not found, then the system should keep running the old

schedule and discard the changes.

The main contributions of this thesis are as follows,

• This thesis proposes semi-static list scheduling algorithms that are executable during

runtime and recompute a schedule whenever there are changes in the system.

• This thesis proposes list scheduling algorithms that consider both processor and com-

munication bandwidth constraints while mapping and allocating tasks onto proces-

sors, i.e., the communication overhead and routing constraints of the network are

considered while scheduling tasks onto processors. Furthermore, there is no band-

width sharing between communication messages and the conflicts are solved by

scheduling them onto paths.

• The proposed incremental list scheduling algorithm creates an execution and com-

munication plan for the changes in the system while minimising the modifications in

the already scheduled application. The minimisation of the modifications maximises

the continuity of services and preserves existing validation and certification results.

• The evaluation and demonstration of the algorithms is done by scheduling the pro-

posed diagnostic application to detect faults in ODRE systems. Our diagnostic appli-

cation uses diagnostic multi-queries to identify and locate faults in the system. The

diagnostic application graph is an enhanced form of the traditional scheduler input,

4

i.e., the directed acyclic graph. In addition to depicting the characteristics of the di-

agnostic tasks, i.e., time-periods, computation costs, and the precedence constraints

between them, the application graph also depicts the relationship between multiple

iterations of two dependent tasks. The multi-iteration relationships between the tasks

in the application determine what data must be discarded from the real-time database

that bounds the total data consumption. It also depicts the real-time requirements by

providing the maximum delay between the execution of two dependent tasks.

1.3 Thesis Overview

The remaining part of the thesis is structured as follows. Chapter 2 presents the basic

concepts used throughout the thesis. In Chapter 3, the reader is acquainted with the state-

of-the-art already presented in the considered field. Chapter 4 presents the characteristics

of the system model, i.e. the system architecture and the system application. Chapter 5 and

6 propose list scheduling algorithms to schedule diagnostic graphs in homogeneous and

heterogeneous distributed real-time embedded systems, respectively. Chapter 7 presents

an incremental list scheduling algorithm that schedules the changes in the system while

minimising the modifications to the already scheduled application. Chapter 8 presents a

test case scenario to diagnose and detect faults in heat, ventilation and cooling systems

using the list scheduling algorithm proposed in Chapter 5. Finally, Chapter 9 draws some

conclusions and gives a summary of the presented work.

5

CHAPTER 2

BASIC CONCEPTS

THIS CHAPTER presents the basic concepts used throughout this thesis. It presents the

framework of distributed real-time embedded systems, fault detection and diagnosis (FDD)

in real-time embedded systems, characteristics of open distributed real-time embedded sys-

tems (ODRE), and finally it explains different real-time scheduling problems along with

scheduling in time-triggered systems.

2.1 Distributed Real-Time Embedded Systems

A distributed real-time embedded system is a computer system that is designed to perform

dedicated functionality and is embedded in a larger device whose components are con-

nected through a network, and that must guarantee a response within strict time constraints

[10]. A distributed real-time embedded system is the combination of embedded, real-time

and distributed domain. This section explains the concepts and characteristics of these

domains.

2.1.1 Embedded Systems

In the computing domain, the term embedded system refers to an electronic system that is

designed to perform dedicated functionality and is often embedded within a larger system

[11]. An embedded system is generally a combination of computer hardware and software

components. In contrast to general-purpose computing devices, an embedded system is

designed for a specific function and is usually built together with the software intended to

run on it. This model of developing hardware and software collectively is called hardware-

software co-design [11].

Embedded systems are widely used in safety-critical applications such as

6

aerospace/avionics, railway, automotive industry and medical equipment. Such systems

are quite often also called real-time embedded systems since they are obliged to perform

certain tasks in a limited amount of time. The failure to comply with the timing constraints

has consequences whose gravity varies from a gradual loss of quality in an MPEG decoder

to catastrophic events, e.g., fatal car crashes when the braking system fails to react in time

[12].

2.1.2 Real-Time Systems

Real-time is a quantitative measurement of time measured using a physical clock. For

example, consider a chemical power plant, where the system shuts down the heater within

25 ms when the temperature reaches 260◦ C. The 25 ms are measured using a physical

clock present on the plant. A real-time system means that the system is subjected to real-

time i.e. the correctness of the system behavior not only depends upon the logical results

of the system but also on the physical time when these results are produced.

2.1.2 Classification of Real-Time Systems

Depending upon the nature of the timing constraints, real-time systems are classified into

hard and soft real-time systems [11].

• Soft real-time systems: A timing constraint is termed soft if the consequences of

missing a deadline are undesirable but tolerable. A soft real-time system offers best-

effort services, i.e. it completes the service of a request within a known finite time but

with an occasional missed deadline that is considered tolerable. Although missing

a deadline does not have any dire consequences, but the overall quality of service is

degraded. For example, a GPS in a car must remind the driver about a waypoint at

a latency of 1.5s. If the system misses this deadline, the driver simply misses the

waypoint without any dire consequences [11].

7

• Hard real-time systems: A timing constraint is termed hard if the consequences of

missing a deadline are fatal. A hard real-time system offers guaranteed services, i.e.

its service of a request is guaranteed to be completed within a strict deadline. In a

hard real-time system, missing a deadline could result in catastrophic effects such

as safety hazards or serious financial consequences. For example, a pacemaker is a

small device that is placed inside the chest to help control abnormal heart rhythms.

It uses electrical pulses to prompt the heart to beat at a normal rate. The deadline for

generating a pulse for the ventricular beat after detecting an abnormal atrial beat is at

least 0.1s and at most 0.2s. The consequence of missing this deadline is the loss of

human life [11].

2.1.2 Characteristics of Hard Real-Time Embedded Systems

A real-time system embedded within a larger system is considered a real-time embedded

system. This thesis focuses on hard real-time embedded systems, also called safety-critical

RT systems. These systems have the following characteristics [13]:

• Response time: The response time requirements for such systems are typically in the

range of milliseconds or less and may result in a catastrophe if not met.

• Peak load performance: The peak load performance of such systems must be pre-

dictable and should not violate the predefined deadlines.

• Concurrency: Such systems are highly complex since they control multiple sensors

and actuators at a time. Therefore, to avoid system failure, the system must remain

synchronous with its environment at all times.

• Safety and reliability: Violating a deadline in such systems may result in loss of life,

severe injury or environmental damage. Therefore, the components in such systems

should be highly reliable with respect to critical failure modes to ensure safety.

8

• Data integrity: Temporal accuracy is a great concern in such systems. If the result is

obtained after the deadline, then it is useless and is considered incorrect.

• Fault tolerance: Due to the stringent timing and safety requirements, these systems

must support fault tolerance and the system must complete the execution of the tasks

within their deadline even in the presence of faults.

2.1.3 Distributed Systems

A distributed system is classified as a collection of autonomous computers that appear as a

single coherent system to its user who could either be an application or a human [14]. In

a distributed system, there are multiple control units and each control unit is connected to

a set of sensors and actuators that are local to it meaning that a control unit only handles

its local sensors and actuators. Each control unit, combined with its sensors and actuators,

is termed as a node. Multiple nodes are connected together to create a distributed system

where each node provides services for the other nodes to use the nodeFLs resources, e.g.,

local sensors and actuators [15].

In order to support different control units and networks while offering a single system

view, distributed systems are often organized by means of a layer of software that is placed

between the higher-level layer of applications and the lower-level layer of operating sys-

tems and communication facilities. Such a software layer is termed as middleware, and

it provides services beyond those provided by the operating system that enables various

components of the distributed system to communicate and manage data. Although the hi-

erarchical approach in these systems provides better scalability and reconfiguration, it also

complicates the connection and communication between nodes. Since there is no shared

memory pool between the nodes, the communication is usually performed by message

passing that limits the choice of usable tools. Moreover, each node may have a different

communication protocol or may run on a different operating system which complicates the

coordination done by the middleware [15].

9

2.1.3 Characteristics of Distributed Systems

While designing a distributed system, the following characteristics are considered [14]:

• A distributed system must make it easy for the applications to remotely access re-

sources and must share them in a controlled and efficient manner, i.e., the resource

conflicts should be solved without the application knowing about it.

• A distributed system that is able to present itself to applications as if it were a single

system is called transparent distributed system. Although complete transparency is

preferred for distributed systems, there are cases in which attempting to hide all the

distributed aspects from the users is not a good idea. For example, a wide-area dis-

tributed system that connects a process from San Francisco to Berlin cannot hide the

fact that the laws of physics will not allow it to send a message in less than 35 ms.

• A distributed system that offers services according to certain rules that describe the

semantics of the offered services is termed as an open distributed system. In this

case, the services are usually provided through interfaces described in Interface Def-

inition Language (IDL). If correctly implemented, an interface definition allows an

arbitrary process, that requires a certain interface, to communicate with a process

that provides said interface. Proper specifications are complete and neutral, i.e., all

the specifications that are needed for implementation are completely defined, and the

specifications do not dictate what an implementation should look like. Complete-

ness and neutrality are important for interoperability and portability. Interoperability

characterizes the extent by which a component interacts with a component from a

different manufacturer (implementation or access) without any restriction. Portabil-

ity characterizes the extent to which an application designed for a system A runs on

a system B without modification if system B implements the same interface as A.

Another important aspect for open distributed systems is that it should be easy to

reconfigure the system, i.e., addition or removal of components should not affect the

10

untouched ones.

• A distributed system must be scalable. Scalability of a system can be measured

in three different ways. A system can be scalable in size, i.e., more resources and

application can be easily added to the system. Secondly, it can be administratively

scalable, i.e., it is easy to manage the system even if it spans across multiple indepen-

dent administrative organizations. Lastly, the system can be geographically scalable,

i.e., it may have users or resources that may lie far apart.

2.2 Fault Diagnosis and Detection (FDD) in Safety-Critical Distributed Embedded

Systems

In safety-critical systems, an embedded computer should provide its services with reliabil-

ity that is higher than the reliability of any of its constituent components. Adding redundant

components is one way to increase the reliability of such systems, but it is a costly solution.

The other and more applicable solution is to make the systems fault-tolerant using implicit

redundancy. An essential aspect of fault treatment is fault diagnosis that determines the

cause, nature and locality of the occurring fault [16]. There are different ways faults can

occur in a component. A component can fail because of a software or hardware design

fault, a transient or permanent physical failure of the hardware or an operator mistake. The

fault can be traced back to its source through root-cause analysis. There are two ways to

diagnose and detect faults in distributed embedded systems.

2.2.1 Passive and Active FDD

• Passive Diagnosis: In passive fault diagnosis, the input-output data of the monitored

system is measured, analyzed for faulty behaviour, and consequently, a decision for

the fault is taken [17]. In such diagnosis techniques, the unusual behaviours and

states of the components in the system are usually saved in an offline format and then

analyzed by model-based, data-based or knowledge-based techniques. It means that

11

(a)

(b)

Figure 2.1: Block diagrams for passive and active fault diagnosis

the system is not informed about the fault directly after the failure of a component.

Thus it does not raise the alarm or suggests a recovery action. Passive diagnosis is

mostly used for maintenance and may not be feasible for fault detection and isola-

tion in systems that have stringent-timing constraints and the possibility of complete

failure within seconds of occurrence of the fault.

• Active Diagnosis: Contrary to passive diagnosis, an active diagnosis detector inter-

acts with the monitored system by injecting a suitably designed auxiliary input signal

to probe it for faults [17]. Such a technique monitors the system at runtime and pro-

poses a suitable recovery action against the faults. This technique is better applicable

in systems with stringent timings constraints to prevent their complete failure.

Fig. 2.1 shows the block diagrams for the two mentioned fault diagnosis and detection

techniques [17].

12

2.2.2 Diagnosis requirements for Open Distributed Real-time Embedded (ODRE)

systems

Since Open Distributed and Real-Time Embedded (ODRE) Systems support stringent tim-

ing constraints, continuous monitoring through active diagnosis is a more beneficial ap-

proach for ODRE systems than the passive diagnosis. ODRE systems have following fault

detection and diagnosis requirements:

• Open-world assumption: Diagnosis needs to cope with the dynamic structures of

the system where the components leave or enter at runtime, interact with each other

at different levels and implement different global services. In this context, fixed

variables cannot express diagnostic information. Upon the addition or extraction of

a component from the system, the diagnostic technique should be able to express

the relationships and change the diagnostic information accordingly. Similarly, the

following recovery actions should also consider the dynamic nature of the system.

• Real-time: Active diagnosis must support the analysis of the diagnostic information

and the subsequent recovery from a fault within a predictable time. Many control

applications tolerate the loss of control inputs for only a few cycles; longer outages

close off the system completely. For example, the maximum transient outage time for

an automotive steer-by-wire application is 50 ms [18]. It means that the diagnostic

approach should detect the fault, identify its location and propose a recovery action

within a predictable time. Scheduling the diagnostic tasks before executing them

on the system depicts the possible temporal behaviour of the diagnostic application.

This apriori knowledge of the temporal behaviour bounds the time required to infer

faults.

• Reliability: In case of active diagnosis, diagnostic information is used to achieve

fault-tolerance by directly intervening in the system behaviour. Therefore, the diag-

nosis technique should be reliable enough to ensure that a fault affecting the diagnos-

13

tic mechanisms does not cause incorrect recovery actions, e.g. restart the components

that are working correctly. In this work, it is assumed that the proposed recovery ac-

tions are always correct.

2.3 Real-time Scheduling Problems

A real-time scheduling problem explains the conflicts due to the simultaneous access of

processors by the tasks. A real-time scheduler usually takes its decisions based on the

timing parameters of the ready tasks. A task is said to be ready when all its parent tasks

have completed their execution [19]. The scheduling function is a service provided by an

operating system, which allocates processors across time following the sequence of the

ready tasks. The scheduler usually employs one or more scheduling algorithms to select

the tasks for execution. Generally, the performance criteria of all such algorithms are to

maximize the success of meeting the deadline. The arrangement of the tasks constructed

by a scheduling algorithm is called a task sequence, or a schedule [20] and is usually

represented by a Gantt chart.

2.3.1 Classification of Real-time Scheduling Algorithms

Real-time scheduling is divided into different categories depending upon various criteria,

e.g. the scheduling rule and where to apply the scheduling rule. These characteristics can

be classified as follows [20].

• Preemptive vs Non-preemptive: A scheduling algorithm is said to be preemptive if

a running task can be interrupted any time to assign the processor to another task

in the ready state according to the predefined scheduling function. Whereas, if the

task once assigned frees the processor only upon its completion, then the scheduling

algorithm is non-preemptive.

• Dynamic vs Static: A static (offline) scheduling algorithm generates the sequence

14

on the system application before the system starts operation. Whereas, in a dynamic

environment, the characteristics of the application (e.g., start-time of tasks) are not

known apriori. Therefore, scheduling decisions are made during the execution of the

task set.

• Mono-processor vs Multiprocessor: An algorithm is said to be mono-processor if it

runs all the tasks on a single processor and multiprocessor if it schedules the tasks on

multiple processors.

• Idling vs Non-idling: An algorithm is said to be idling if a processor waits to execute

a task for a period even if it is free. Whereas if the processor starts executing the

highest priority task when it is ready without insertion of idle time, then it is said to

be non-idling.

• Optimal vs Heuristic: An algorithm is said to be optimal if it can find a feasible

solution if one exists. Whereas the heuristic algorithm aims to provide a solution in a

reasonable time frame that is good enough to solve the problem at hand. A heuristic

solution is not necessarily always the optimal solution.

• Centralized vs Distributed: A centralized algorithm makes the scheduling decisions

for the whole system at a central node irrespective of the fact that the system is

distributed itself or not. In a distributed algorithm, the scheduling decisions are taken

locally at each node.

In this thesis, a non-preemptive, semi-static, multiprocessor and centralized scheduling

heuristic is proposed that searches for the best possible solution for the entire task set. The

scheduler is semi-static because whenever there are changes in the system, the schedule is

recomputed online, but for the whole task application at once.

15

2.3.2 Real-time Feasibility and Schedulability

Schedulability or feasibility analysis of a real-time system consists of checking whether

all the tasks finish their execution within their deadline. The following properties of a

scheduling algorithm are used to determine its feasibility [20].

• Validity: A schedule is said to be valid if the deadlines of all the tasks in the system

application are met.

• Optimal: A scheduling algorithm is optimal if it finds a schedule that fulfills all

the system requirements, i.e. the schedule is completely valid, within an estimated

amount of time.

• System feasibility: A system is said to be feasible if there exists at least one schedule

for the application aimed to be implemented on it.

• Computational Complexity: Computational or Time complexity of a scheduling al-

gorithm describes the amount of time it takes to run the algorithm. It is used to

measure the efficiency of the algorithm and the worst-case overhead incurred if the

scheduler is executed at runtime.

– An algorithm is said to be in polynomial time if its complexity function is

O(p(n)) where p is a polynomial function of a size n task set e.g., O(nk) where

k is a constant. When p is linear, the complexity is termed as linear complexity

e.g., O(n).

– An algorithm is said to be in pseudo-polynomial time if its computation time is

expressed as a polynomial function in terms of not only the size of the input but

also the length of the input e.g., the knapsack problem has a time complexity

of O(n*W) where n is the total number of items and W is the maximum weight

capacity of the knapsack.

16

– An algorithm is said to be in exponential time if its complexity function is O(n!)

or O(kn), where k > 1 or O(nlog(n)), e.g., finding all distinct subsets of a set with

n number of elements has a time complexity of O(2n).

The higher is the algorithmic complexity, the greater is the overhead incurred by the

on-line execution of the scheduler.

2.4 Time-triggered (TT) Systems

There are two fundamental paradigms for the design of embedded systems. In an event-

triggered design, the system waits for triggers from the controlled objects, e.g. sensors to

carry out particular activities. Whereas, in a time-triggered system, the system activities

are carried out in predefined slots in a periodic manner. Time-triggered systems are pre-

ferred in safety-critical environments because they provide a high level of predictability

and determinism [7]. With predefined time slots and the knowledge of the sequence of

execution, the designer is ensured that all the stringent timing constraints are fulfilled. The

fault diagnosis and detection model used for this work depends upon the diagnosis of faults

in predictable time with the fulfilment of all deadlines; therefore, the safety-critical system

is defined using a time-triggered design model. Thus, only the time-triggered execution of

computation and communication tasks is considered.

2.4.1 TT Task Execution

A task is defined as ”a computation that is executed by the CPU in a sequential fashion”

[21]. In this thesis, a task is a non-divisible sequential code segment or more specifically,

a non-divisible diagnostic query. In a time-triggered system, the task execution starts at

predetermined points in time. The main component of the real-time kernel is the timer

interrupt routine, and the primary control signal is the clock of the system that is synchro-

nized across all segments. The information needed for task execution is stored in a data

structure called schedule table that contains the assigned start time of each task obtained

17

through a static scheduling algorithm. This algorithm computes the schedule before it is

deployed and thus eliminates any possible conflict between tasks by imposing appropriate

start times [12].

Task Start-time Time Period
T1 t1 TSP
T2 t2 TSP

Figure 2.2: Time-Triggered Execution of Tasks

Consider Fig. 2.2, where two periodic tasks T1 and T2 are scheduled, each with a period

TSP on a single processor. The table on the right side in the figure represents the schedule

table and gives the start-times of each task. The start time of a task is computed offline

such that it finishes its execution before the next start-time in the table. After a certain time

TSP called the period of the static cyclic schedule, the kernel again performs the same set of

decisions. If the tasks have different periods, then TSP is the least common multiple of the

periods of all the individual tasks in the system. In such a case, the tasks have a different

number of iterations within one TSP and the size of the schedule table is increased. This is

discussed in later chapters.

2.4.2 Static Communication (TT Message Execution)

Similar to the time-triggered execution of tasks, static communication activities are initiated

at predetermined moments. The communication activities are usually termed as messages

between system nodes. For consistency, the clocks in all the nodes in such multiprocessor

distributed systems must be synchronized to provide a global notion of time [7]. This

synchronization is achieved through a defined communication protocol. In this section, the

time-triggered communication mechanism is discussed as an example as it appears in a

TDMA bus.

In a TDMA bus, the bandwidth is divided into different time-slots. Each such slot is

18

Figure 2.3: TDMA Bus Communication

then assigned offline to a node in the system. The node can only send messages on the bus

during its assigned time-slot(s). The slots are ordered in a periodic sequence (i.e. the kernel

repeats the assignment) called a TDMA round [12] e.g., in Fig. 2.3 shows TDMA rounds

for a two-node system. The bandwidth is divided into three time-slots that collectively form

a TDMA round, slot 1, slot 2 and slot 3. Node A can transmit messages over the TDMA

bus only during slot 1 and slot 3, whereas node B can only transmit during slot 2. This way,

it is guaranteed that only one node transmits on the bus at a time, and there are no conflicts.

Message ID Start Time Length Sender Receiver
mAB t1 L1 Node A Node B
mBA t2 L2 Node B Node A

Figure 2.4: Static Time-Triggered (TT) Communication

A widely used TDMA based communication protocol is the Time-Triggered Protocol

19

(TTP) [22]. In the case of TTP, each node stores the information related to each of the

messages in the system, e.g., sender/receiver nodes, the starting time of transmission and

message length. A node will send a message whenever the current global time reaches one

of the start times stored locally. For example, in Fig. 2.4 according to the information

stored locally, Node A starts sending a message to Node B at t1 during its predefined slot in

the first bus round. At the same time, the communication controller at Node B knows from

its local table that at time t1 it has to start reading message mAB. In the second bus round,

at time t2, a message from Node B to Node A is scheduled. The illustrated static schedule

expands across two bus rounds, and the sequence of consecutive TDMA rounds is called a

hypercycle. The static schedule stored locally at each node is repeated periodically with a

period equal to the length of one hypercycle [12].

There are various advantages of time-triggered communication, e.g., timing properties

of the system are guaranteed, and composability of the system is simple when extensions

are planned [7]. This thesis considers time-triggered communication, e.g., TDMA, over

different network topology and uses a heuristic to solve the conflicts by scheduling the

application at run-time before its deployment.

2.5 Static Task Scheduling

When the characteristics of the system application, e.g., the execution time of the tasks are

known apriori, then the scheduling problem is represented through a static model. The al-

gorithm generates a schedule for the application before the start of the system, and the tasks

are executed following this static schedule. Static task scheduling algorithms are divided

into two groups (Fig. 2.5) [23], heuristic-based and guided random-search-based algo-

rithms. Heuristic-based algorithms are further classified into, list scheduling, clustering

and task duplication heuristics.

20

Figure 2.5: Classification of static task scheduling

2.5.1 List Scheduling

The most commonly used static heuristic to schedule tasks/messages in distributed systems

is the traditional list scheduling algorithm [24]. It was first used with the assumption that

the communication cost between tasks is zero, e.g., [25, 26, 27, 28]. In later works, it was

modified to include non-zero communication cost between tasks, e.g., [29, 30, 31, 32]. List

scheduling algorithm consists of two phases. In the first phase, the tasks are assigned prior-

ities using a defined criterion, e.g. static level of the task in the application graph. The tasks

are sorted into a list using the calculated priorities while respecting their precedence con-

straints. In the second phase, the algorithm schedules the highest priority ready task from

the list to the processor that minimizes a defined cost function, e.g., the earliest start time

of the task. In this general definition, it is assumed that the communication cost between

tasks is zero. Most of the list scheduling algorithms are designed for a bounded number

of fully connected homogeneous processor systems. They are generally more practical and

provide better performance results at a lower computation time than the other algorithms

in the group [23]. Since this thesis considers scheduling at runtime that requires lower

computation time by the scheduler, therefore list scheduling is used as the starting heuris-

tic. Some of the examples include Dynamic Level Scheduling [33], Modified Critical Path

[34], Mapping Heuristic [35], Earliest Time First [29], Insertion-Scheduling Heuristic [30]

21

and Dynamic Critical Path [36].

2.5.2 Clustering Heuristics

In an algorithm in this group, the tasks in the graph are mapped to an unlimited number

of clusters. It is not necessary for the task selected for clustering to be a ready task. Each

iteration refines the previous clustering by merging some clusters. All the tasks in a cluster

are assigned to the same processor for scheduling. After clustering, the algorithm merges

the clusters so that the number of clusters equals the number of processors. Each cluster

is then assigned to a processor, and tasks within a processor are arranged according to

their precedence constraints. Clustering heuristics are generally expensive to implement

since their complexity and the workload on each processor increases with the increase in

the number of tasks in each cluster. Some examples for clustering heuristics are, Linear

Clustering Method [37], Mobility Directed [34], Dominant Sequence Clustering (DSC)

[38], and Clustering and Scheduling System (CASS) [39].

2.5.3 Task Duplication Heuristics

In this algorithm, the interprocess communication overhead is reduced by mapping some

of the tasks redundantly, i.e. a task is replicated and assigned to more than one processor.

The algorithm avoids the transmission of the output to a successor task by executing the

replication of the predecessor task on the same processor. The algorithms in this group have

much higher complexity than the algorithms in the other groups and are usually used for

an unbounded number of homogeneous processors [23]. A few examples are Critical Path

Fast Duplication (CPFD) [40], Duplication Scheduling Heuristic (DSH) [30], Bottom-Up

Top-Down Duplication Heuristic [41] and Duplication First and Reduction Next [42].

22

2.5.4 Guided Random Search Techniques

Guided random search techniques use random choices to guide themselves through the

problem space. These techniques combine the knowledge gained from previous search re-

sults with some randomized features to generate new results. Genetic Algorithms (GAs)

[43, 44, 45] are the most widely used algorithms in this group. GAs generate optimal sched-

ules. However, their computation time is much higher than the heuristic-based techniques.

Also, the control parameters in a GA should be determined appropriately. Since a set of

control parameters that work for one task graph may not give the best results for another

graph. Other techniques in this group are simulated annealing [46, 47] and a local search

method [48, 49]. Guided random search techniques generally require a lot of computation

time and are thus not advisable for scheduling at runtime in safety-critical applications.

2.6 Incremental Design Process

Complex embedded systems with multiple processing elements have become a common

occurrence in different fields like automotive electronics, telecommunication networks,

networked medical devices, health management systems, command/control systems, nu-

clear power plants, and electrical power distribution. Such systems demand high per-

formance, reliability, and cost-efficiency [50]. The design of these systems includes the

selection of a distributed platform with different resources, such as processors and com-

munication networks, and allocation (spatial and temporal) and scheduling of the system

application onto the distributed platform. The process usually comprises an iterative exe-

cution of these steps until a solution is found that satisfies all the design constraints [51],

[52], [53].

In the literature, several notable methods have been reported to facilitate the design-

ers with the hardware/software design and co-synthesis of the embedded systems. The

research mostly concentrates on designing a new system from scratch to accommodate a

23

particular application. However, in many fields, it is more likely that a base system is mod-

ified to provide new functionality and specifications [50]. For example, in the automotive

industry, companies usually develop different car models on the same technological plat-

form. Models like Audi A3, Volkswagen Golf, and SEAT Leon share the same Modularer

QuerBaukasten (MQB) Platform [54]. Each car model usually has multiple variations, i.e.

different configuration settings depending upon the targeted market. In [55], the Volkswa-

gen group proclaimed that they have 340 different model variants in their product portfolio.

Therefore, it seems highly logical to design the system on the same technological platform

to avoid extensive design costs and to reduce development and testing times.

Similarly, in the railway industry, the ongoing digitization of all technical systems has

led to an increased number of functionalities being implemented in software on standard

platforms rather than dedicated hardware domains. These software systems are connected,

raising new demands of usability and security. Consequently, the technical systems get

affected by changes in the technological infrastructure or user behaviour that necessitates

re-validation or re-certification of the whole system [56]. An incremental verification ap-

proach is used to decrease the cost and effort of re-verification, where only the modified

part of the system is validated. In this scenario, it is fundamental that there are no or as few

modifications in the execution of the already running system application.

The system validation is a time-consuming and costly process, e.g., in the automotive

industry, in case of a power-train, the product goes through the validation process in 5 out of

24 months of production [57]. However, the testing of solely the added functionality rather

than the whole system considerably reduces the time required to introduce the product to

the market, thus decreasing the development cost. Such an incremental design process

is vital for current and future industrial practices. Since the time interval between the

successive generations of products is reducing, but the complexity of the product is rapidly

growing because of the increasing demand for new functionality and security.

The concept of incremental design process coincides with the open-world assumption

24

of ODRE systems where the components leave or enter at runtime. This thesis proposes an

incremental scheduling technique that deals with the dynamic nature of embedded systems

intending to optimize the design cost and time for reconfiguring the system. The proposed

method is applicable in all the areas of complex embedded systems that support the open-

world assumption, i.e. dynamic integration of components at runtime.

25

CHAPTER 3

RELATED WORK

THIS CHAPTER gives an overview of the state-of-the-art related to the work presented in

this thesis. The first three sections of the chapter introduce the literature review on schedul-

ing tasks and communication messages in distributed embedded systems. The fourth sec-

tion gives an overview of the work done in the field of incremental scheduling. The final

section presents the different techniques used to detect and diagnose faults in embedded

systems.

3.1 Static Task and Message Scheduling

One can distinguish dynamic and static scheduling algorithms for multi-core platforms. In

static scheduling, tasks are statically allocated to cores during the design phase [58]. This

activity results in decreasing the utilisation of computing resources as execution times may

be lower than worst-case execution times (WCET). Static scheduling statically determines

the sequences of tasks and is only applicable to Dataflow Graphs (DFGs) that have either

Synchronous Dataflow (SDF) or Cyclo-Static Dataflow (CSDF) [59]. In static scheduling,

decisions such as, selection of paths for message transmission, selection of processors for

task executions, and start time for task executions, are made at compile-time [60]. For

this purpose, a static schedule needs complete prior knowledge of the characteristics of

the tasks, e.g., maximum execution time, precedence constraints, deadlines, and mutual

exclusion constraints. [61, 62, 63]. However, in dynamic scheduling, all the decisions are

made at runtime, and the algorithm considers only the current ready task set while making a

decision. Dynamic schedulers are flexible and adapt to an evolving task scenario. However,

the runtime effort involved in finding a feasible schedule is substantial [62, 63].

Many distributed real-time embedded systems assign computational activities statically

26

to the processors. In these systems, constructing a schedule of the application statically

before executing it depicts its temporal behaviour and guarantees fulfilment of deadlines

and timing constraints. According to [63], static scheduling is widely used in safety-

critical systems where missing a deadline leads to catastrophic consequences. According

to [61], static scheduling can be divided into guided random search-based algorithms and

heuristic-based algorithms. Heuristic-based scheduling algorithms use greedy heuristics

that restrict the solution space to a smaller portion of the search space [60]. As explained

previously, heuristic-based scheduling algorithms provide feasible solutions, without guar-

anteeing an optimal schedule, and exhibit a time complexity that is polynomial. The guided

random search-based algorithms, on the other hand, use random choices to guide them-

selves throughout the solution space. These algorithms have a robust performance on a

variety of scheduling problems. However, they are less efficient and generate much higher

computational costs than heuristic-based algorithms [64].

Heuristic-based scheduling algorithms can be categorised into (i) cluster-based heuris-

tics, (ii) task duplication heuristics and (iii) priority-based (list scheduling) heuristics.

Priority-based heuristics are simplistic as they do not consider the inter-process commu-

nication. Each task has an assigned priority which is used to assign it to the processor.

These algorithms generally provide better performance results at lower computation time

[23]. Cluster-based heuristics put related tasks in one cluster, and this cluster is assigned to

one processor. In this manner, the communication cost is minimised, although it increases

the complexity of the algorithms and makes them more expensive to implement [23]. Task

duplication heuristics reduce the interprocess communication overhead by executing the

replication of a predecessor task on the processor assigned to the successor task. Task

duplication is also used to handle failures and crashes in the system. Duplicate copies of

the same task are executed on multiple processors so that in case of a failure, the applica-

tion still completes its execution [65]. The replication of the tasks, however, increases the

complexity of these heuristics and introduces significant overhead at runtime [23].

27

Different characteristics of the scheduling problem, e.g., scheduling length, deadline

of the tasks, and reliability of the system, are considered by researchers while propos-

ing an algorithm. Scheduling techniques that consider both aspects of algorithmic design

and architectural design (bi-criteria scheduling mechanism) are typically more effective as

compared to other methods. The scheduling algorithm presented in [66] gives priority to

the reliability of the model, while its modified version [67] also considers the deadline of

the tasks while scheduling the application. Sun et al. [68] proposed a scheduling algo-

rithm based on Breadth-First Scheduling (BFS) known as BFS* that schedules the tasks

with precedence constraints in an OpenMP framework to reduce the sequential execution

of dependent OpenMP tasks. The performance of the algorithm is highly dependent on the

order of the tasks in the ready list [68].

Authors in [61] have proposed a method known as Predict Earliest Finish Time (PEFT)

for task scheduling in heterogeneous distributed systems. The proposed algorithm has the

same complexity as other state-of-the-art methods. Still, it optimises the schedule length by

introducing a look ahead feature and computes an Optimistic Cost Table (OCT). Optimistic

cost is denoted as optimistic because the availability of processors is not considered in the

computational cost. OCT is used to select the processors and rank the tasks. PEFT in

comparison to the Heterogeneous Earliest Finish Time (HEFT) gives better schedulability

and makespan. Heuristic-based scheduling algorithms with low complexities provide better

schedulability in case of heterogeneous real-time systems. Authors in [69] have compared

20 algorithms and concluded that Heterogeneous Earliest Finish Time (HEFT) gives the

best results (robustness and shortest schedule length in safety-critical systems) in case of

random graphs. Colin and Chretienne have proposed a scheduling algorithm which gives

good results in case of homogeneous processing nodes. The task graphs that are scheduled

in this technique are arbitrary in size while short communication time is also considered

between the nodes of task graphs [70]. The mentioned algorithms either only concentrate

on scheduling the tasks onto processors without any consideration to communication across

28

the network or consider a simplistic model for the communication rather than the multi-hop

network used in real-time distributed systems.

According to [71], the communication architecture is essential for an embedded system

to exchange or share data in a timely and efficient manner. A communication architecture

consists of nodes that are linked via the communication channels that facilitate nodes to

send messages to one another. As mentioned by [72], there are two types of scheduling

models for communication, one in which communication contention is considered and the

other where communication activities are contention-free. In a contention-free commu-

nication model, communication networks or processors are fully connected and have the

potential to perform concurrent communications. Also, each processor has an independent

communication sub-system. However, in a communication model that considers commu-

nication conflicts, a message has to wait for a communication source to be available for

transmission, which in turn impacts the execution time of the application [72]. Moreover,

task scheduling and message scheduling processes are isolated in a communication con-

tention environment, i.e. they are not scheduled concurrently. However, synchronisation of

tasks and messages is critical for end-to-end worst-case response time and has an impact

on the overall system properties like the ease of maintenance, cost, and performance [73,

12, 72].

One can distinguish two types of communication systems. Systems in which com-

munication activities are triggered dynamically in response to an event are called event-

triggered systems. In contrast, the systems in which communication activities are triggered

at pre-determined moments in time are called time-triggered systems [74, 12]. Therefore,

there are communication protocols where message scheduling is performed dynamically

on the occurrence of an event, such as CAN [75], LonWorks [76], and Bytefight [77], and

then there are communication protocols that schedule the messages statically based on the

progression of time, e.g., Time-Triggered Protocol (TTP) [78], SPIDER [79], SAFEbus

[80], TTEthernet [81] and TTCAN [82]. Within time-triggered communication, the mes-

29

sages are transmitted during pre-defined time windows leading to the advantage of a quasi-

deterministic behaviour during regular operation. Therefore, time-triggered communica-

tion systems provide higher dependability since missing messages are easily detected, and

the network is guarded against non-authorized message access [74]. Another interesting

property of time-triggered communication systems is composability. Since the time win-

dows for the network access are pre-defined, the behaviour along the timeline is decoupled

from the actual network load. Thus, it is possible to develop different sub-systems, sim-

ulate the exact time behaviour of said sub-systems and subsequently integrate them into

the complete system [74]. One drawback of time-triggered communications is the lack

of flexibility and the restrictive design process since all the communication messages and

their time specifications must be known in advance for an efficient implementation. More-

over, task and message executions must be synchronised during operation to ensure that

the real-time system application fulfils all its strict deadlines and timing constraints [74].

Dynamic scheduling of messages in event-triggered systems gives them the advantage to

schedule asynchronous communication activities that are not known in advance. There-

fore, in comparison to time-triggered systems, event-triggered systems are more flexible

[74]. For safety-critical applications, time-triggered systems are preferred because they

ensure the temporal behaviour and strict timing constraints of the application.

A significant effort has gone into developing algorithms that find a reliable, bandwidth-

efficient, and deterministic communication schedule for different time-triggered communi-

cation networks such as TTP, Ethernet or FlexRay [83]. Steiner et al. [84, 85, 86, 87] used

SMT Solver, Tabu Search and Network calculus to compute schedules for time-triggered

communication activities for TTEthernet and Automotive Ethernet. In [50], Pop et al.

proposed an extensible scheduling method for TTP bus traffic. Their method first finds a

solution that satisfies the hard real-time constraints of the system and then uses an iterative

algorithm to schedule any new traffic into vacant spaces thus improving the availability of

the resources for any future use. Authors in [88] presented an offline schedule synthesis

30

model for time-triggered communication flows to improve reliability in large hybrid (i.e.,

containing both wireless and wired) networks. Authors in [89] have proposed a schedul-

ing algorithm for time-triggered communication flows for TTEthernet. Their algorithm is

based on the path-hop of tasks to generate a rational scheduling timetable that is free of

conflicts on the physical links.

FlexRay is a hybrid protocol that allows sharing of the network by both time-triggered

and even-triggered messages, thus offering the advantages of both worlds [12]. For this

reason, a lot of recent work focuses on scheduling communication activities in the FlexRay

protocol. For the static (time-triggered) part of the FlexRay, Lukasiewycz et al. [90] are

the pioneers to introduce the method for transforming the basic static segment scheduling

problem into a two-dimensional bin packing problem. Their main objective is to minimise

the number of allocated slots and to obtain such a schedule where further traffic can be

accommodated with no need to allocate new slots. In [91], authors proposed an algorithm

to schedule periodic signals in the static segment of FlexRay. Their method first packed

the communication signals into message frames while maximising the utilisation. In the

second step, the message frames are scheduled while using a minimum number of slots.

In [92], authors presented a static segment scheduling problem with real-time constraints.

Their method consists of two steps, in the first step the signals are packed into message

frames and in the second step a frame scheduling algorithm is used to create a schedule.

Kang et al. [93] proposed a frame packing algorithm for the static segment of FlexRay that

allows packing of communication signals with different periods into a single frame. In [94],

authors proposed a fast heuristic to schedule communication signals on the static segment

of FlexRay. In [95], authors proposed an Integer Linear Programming (ILP) algorithm to

allocate signals to static slots of FlexRay. Zhao et al. [96] proposed a fast heuristic and

an efficient Mixed Integer Linear Programming (MILP) algorithm to optimise the schedul-

ing of the static segment of FlexRay. The authors also proposed a rectangle bin packing

optimisation approach to schedule communication signals with timing constraints at mini-

31

mum bandwidth cost [97]. Authors in [83] proposed a multi-variant scheduling algorithm

to schedule the communication signals of new vehicle variants. All of the mentioned ap-

proaches only focus on communication schedules and do not attempt to schedule the tasks.

Generally scheduling in distributed real-time systems requires a complete system view

that takes into account both processors and network devices as well as the task-level execu-

tion times and their inter-dependencies. For an optimal resource utilisation, all these param-

eters should be considered at once. However, with growing system sizes and complexities,

the holistic approach for scheduling becomes more and more difficult. The industrial so-

lution for that is to construct the application and communication schedules separately and

synchronise them afterwards [84]. The isolated approach, though, seriously limits the flex-

ibility and performance of real-time applications [98]. There are a handful of studies that

have considered the scheduling of both communication signals and application tasks. In

[99], authors proposed a MILP algorithm that executes joint scheduling of communication

messages and application tasks with the aim to reduce network energy consumption. In

[100], another ILP-based algorithm is proposed that schedules both communication mes-

sages and application tasks while improving communication latency. Authors in [101]

proposed a MILP-based optimisation approach to solve the scheduling problem of time-

triggered systems communicating over a FlexRay static segment. Another ILP-based opti-

misation approach for FlexRay-based time-triggered systems is proposed in [102]. Authors

in [98] also proposed a MILP-based optimisation approach to solve the scheduling problem

of FlexRay based real-time automotive systems subject to both authentication mechanism

constraints and traditional design constraints. The objective of their approach is to improve

timing performance and extensibility.

Authors in [103] have proposed an ILP-based method for the scheduling problem and

a greedy randomised adaptive search procedure-based heuristic for the routing problem

of time-triggered flows and AVB flows in time-sensitive networks. Authors in [104] have

designed a scheduling algorithm named as Unfixed Start Time (UST). The proposed algo-

32

rithm deals with both task and message scheduling problems and uses rescheduling and

backtracking methodologies named as Rescheduling with Offset Modification (ROM) and

Backtracking and Priority Promotion (BPP) to solve the assignment conflicts. Authors in

[105] proposed a genetic algorithm for scheduling applications in Time-Sensitive Networks

(TSN). They considered joint routing and scheduling optimisation problem in the context

of time-triggered traffic for safety-critical systems. Authors in [106] study the schedul-

ing and communication synthesis problem in integrated avionics for satellites and propose

a scheduling model based on the mechanism of a time-trigger bus. Although the men-

tioned approaches consider both task and communication scheduling, their computation

time makes them infeasible for runtime scheduling.

3.2 List Scheduling

In distributed and parallel real-time systems, an application is usually represented through

a Directed Acyclic Graph (DAG). A DAG is an application model that represents the char-

acteristics of the application tasks and the precedence constraints between them and is a

standard form of representing an input to the scheduler. An effective scheduling scheme

to schedule the DAG not only minimises the worst-case response time but also maximises

task concurrency. Scheduling tasks to minimise the overall schedule length of the DAG

falls under the NP-hard optimisation problem. In the state-of-the-art, numerous heuristics

are proposed to solve this NP-hard optimization problem [107][108][109]. One of the most

efficient heuristics in this category is the list scheduling algorithm [19]. List scheduling

forgoes the search for an optimal solution in favour of reducing the time complexity of the

scheduling problem. Authors in [110] stated that a list scheduling algorithm solves two

problems, i.e., (i). how two tasks with no precedence order can be parallelised, and (ii).

how the overall schedule length of the application can be reduced. A list scheduling al-

gorithm consists of two phases. In the first phase, the priorities are assigned to the tasks,

and the tasks are ordered into a list in ascending or descending order of the priorities. In

33

the second phase, the algorithm allocates the tasks to processors that give them the earliest

start time. The polynomial-time complexity of the list scheduling algorithm allows it to be

called during runtime of the application.

Heterogeneous Earliest Finish Time (HEFT) [23] is a list scheduling algorithm that

uses a recursive approach in the bottom-up direction to determine the order of the tasks,

which is based on the computation costs. The tasks are then processed following their

order. HEFT is built on the notion of preferring the critical path tasks, which leads it

to depth-first search based ordering of tasks and subsequent execution. Authors in [36]

propose an algorithm, where tasks on the critical path are scheduled first, and non-critical

path tasks are scheduled according to their calculated priority. Another algorithm, the

Critical Path/Most Immediate Successors First (CP/MISF) algorithm by authors in [28] is

also based on the bottom level task ordering with ties being broken by giving precedence

to the task with the higher number of successors. Authors in [111], propose a scheduling

heuristic for heterogeneous systems named Constrained Earliest Finish Time (CEFT). Their

heuristic is based on the notion of a constrained critical path (CCP), which is a small task

window representing ready tasks in one instance. CEFT finds critical paths in the DAG,

and subsequently, the tasks in the CCPs are scheduled using the finish time of the entire

CCP.

Authors in [112] analyse various priority schemes that are based on task orders accord-

ing to the bottom level augmented with metrics based on the communication costs between

two tasks and critical path based orders as proposed by authors in [113, 36]. Authors in

[114] proposed a locality-aware list scheduling algorithm for homogeneous distributed sys-

tems where tasks in the same path are grouped together based on their path length and their

level in the DAG. The groups are then scheduled onto free processors. Their algorithm is

a work-conserving algorithm that takes into account both locality and load balancing in or-

der to reduce the execution time of the DAG. The Dynamic Critical Path (DCP) scheduling

algorithm presented in [115] is based on a critical pattern traversal approach. It attempts

34

to minimise the schedule length at each step by using the remaining critical path. A final

schedule is not produced until all the tasks have been processed. The DCP uses the absolute

earliest start time and the absolute latest start time that represent the possible execution of

a task at the earliest or the latest time, respectively. These values are computed through the

breadth-first traversal of the task graph. Another algorithm, called the Modified Critical

Path (MCP) is proposed in [34], where the tasks are ordered by their bottom level and for

tasks with equal bottom levels, the bottom level of the successor tasks are considered and

so on.

All of the mentioned algorithms do not consider periodic tasks and assume that there

is no synchronisation between tasks and communication, i.e., they do not consider the

communication contention between tasks and only focus on mapping and allocating tasks

onto the processors. This assumption is unrealistic for hard real-time, distributed embedded

systems where timing constraints need to be guaranteed. There are very few list scheduling

algorithms that consider both task and message scheduling. One such example is [116]

where the authors proposed a contention-aware list scheduling algorithm but they made

the assumption that a message starts transmission at the same time on all links in a path

even if the links have different bandwidths. This assumption is again unrealistic for real-

time systems where a message cannot start transmitting until it is completely received from

the previous link. Moreover, they also do not consider different periods of the tasks and

messages while scheduling them. Another list scheduling algorithm that considers joint

scheduling of tasks and time-triggered communication activities is proposed in [117] but

their main goal is to reduce the overall execution time of the time-triggered communications

rather than the whole system application.

3.3 Incremental Scheduling

Authors in [50] have presented a scheduling technique for the hard real-time embedded

systems while minimising the modification cost of the system. The authors proposed their

35

algorithm, keeping in mind two specific goals. The first goal is that the already running ap-

plications are disturbed as little as possible while scheduling the new functionality, i.e., the

reconfiguration cost is minimised, and the second goal is that any future functionality can be

added in the system with minimum effort. The proposed algorithm adds the new function-

ality into the vacant spaces of the old schedule such that the mentioned goals are achieved.

The algorithm has one drawback that it should be aware of any future functionality being

added to the system. Authors in [118] have proposed (i) a high-level scheduling algorithm

for System-of-Systems (SoS) and (ii) a low-level scheduling problem for individual con-

stituent systems. The SoS is comprised of constituent systems. Each constituent system

is an embedded system, which consists of end systems connected through a real-time net-

work. The incremental scheduling problem is expressed using MILP and implemented in

IBM Cplex. Authors in [119] propose an ILP-based algorithm to incrementally add time-

triggered flows in the domain of time-sensitive software-defined networks (TSSDN). The

TSSDN is a network architecture which provides deterministic real-time guarantees for

time-triggered traffic by isolating it either temporally or spatially. The evaluations show

that the proposed algorithm can compute incremental schedules for time-triggered flows in

a few seconds with an average scheduling ratio of 68%. The first multi-variant scheduling

algorithm in the domain of automotive systems is proposed in [120] wherein a first fit based

heuristic algorithm is used to create schedules for several vehicle variants at once, where a

given signal in all the schedules is transmitted at the same time.

Sagstetter et al. [121] propose an iterative multi-variant schedule in the same domain,

where the signals common to all the vehicle variants are scheduled in the first iteration, the

signals shared among the variants are scheduled in the intermediate iteration, and the sig-

nals specific to just one variant are scheduled in the final iteration. Authors in [83] propose

an efficient and robust heuristic algorithm to create schedules for time-triggered internal

communication of new vehicle variants. The proposed algorithm provides variant manage-

ment by ensuring compatibility among the new vehicle variants and preserving backward

36

compatibility with the preceding vehicle variants. The algorithm also uses an extensibility

optimisation heuristic that predicts the communication signals of future design iterations

and enhances the current schedule, such that it allocates less bandwidth. All of the men-

tioned incremental scheduling algorithms either do not consider the already scheduled tasks

and messages while making the changes or just consider the schedule of the time-triggered

communication flows or require knowledge about any future changes in the system to cre-

ate an optimal schedule. Moreover, the last three mentioned algorithms are applicable only

to the domain of automotive systems where management of multiple variants of a vehi-

cle is taken as a test case. Moreover, the mentioned algorithms are proposed for offline

scheduling and are not efficient enough to be invoked during runtime.

3.4 Fault Detection and Diagnosis in Embedded Systems

Proactive maintenance is ensured by detecting faults through online monitoring schemes

that help in assessing the credibility of the operations, performed by the system. The mon-

itored output is then compared with the standard behaviour of the system to ensure that

the system is working as expected [122]. As mentioned by [123], recent technological

advancements have made fault detection and diagnosis challenging as it requires a deeper

understanding of the system. Early fault detection is crucial in avoiding degradation of the

embedded system, degradation of the product, and overall damage to the system. Correct

fault detection and diagnosis also facilitate optimal and proper corrective decisions, asso-

ciated with repairs and required remedial actions. Traditional fault detection and diagno-

sis approaches include checking variables or physical redundancy, whereas more complex

methods also include behavioural and spectral analysis of signals [124]. Fault detection

and diagnosis in embedded systems involve different tasks such as fault identification,

fault isolation, and fault detection. Fault detection, according to [124] is an indication

of fault possibility. Fault isolation, on the other hand, discovers the fault location while

fault identification determines the fault magnitude. The simplest approaches to detecting

37

and diagnosing faults are associated with making comparisons between pre-set limits and

the system’s output [125]. The output of the system is compared to the output obtained

from the model using mathematical models, and any discrepancy means the existence of a

fault. [126] asserted that fault detection and diagnosis is a data processing system which

is based on information redundancy, in which data as well as the understanding of humans

about the data, serve as the two basic elements. The study further claimed that fault detec-

tion and diagnosis is done via intelligent computation, signal processing, and mathematical

modelling. The arrival of efficient information techniques, communication networks, and

computerised control have made fault detection and diagnosis simple, efficient, and effec-

tive.

To ensure the safety and reliability of embedded systems and minimise breakdown

risks, fault detection and diagnosis have been gaining significant attention in the automa-

tion and control community. It focuses on detecting a failure while identifying the fault’s

location and magnitude as precisely as possible [126]. Different analytical models, such as

state-space and signal-based models, have significantly improved the techniques of diag-

nosing and detecting the faults. Authors in [127] state that diagnosis and detection of faults

is often used to continually monitor a system during the execution of a task, which is also

known as online monitoring to assure that the system is giving optimal performance. [127]

further contends that fault detection and diagnosis can be categorised into model-free and

model-based methods. The former can be categorised into univariate – signal-based, and

multivariate – data-driven methods.

Model-based methods make use of mathematical models to understand the system's be-

haviour [127]. In this way, the system's faults are detected by observing the consistency

between the predicted and observed behaviour via mathematical models. However, since

it requires an accurate model to predict the behaviour, practical applications are limited.

Data-driven methods, on the other hand, uses data history to mine implicit knowledge via

machine learning or intelligent training methods [126]. The model, obtained from this

38

method is then used to approximate actual values of the new measurements; thus, the eval-

uation of approximate residuals leads to fault detection. Signal-based fault detection and di-

agnosis methods make decisions through the comparison of feature spectrums [127]. These

features spectrums are established for a signal with appropriate values as a baseline. Fault

detection and diagnosis in embedded systems can contribute to mitigating faulty events and

result in ensuring safety while eliminating the risk of any potential damage to the system.

The mentioned fault detection and diagnosis techniques do not provide runtime scheduling

mechanisms that are essential requirements for time-triggered ODRE systems. Moreover,

the mentioned techniques do not consider the stringent timing constraints and the dynamic

nature of the ODRE systems together. Therefore, there is a need for a scheduling algorithm

that computes a feasible schedule that follows all the stringent timing constraints of the

diagnostic application, and that also considers the dynamic nature of the ODRE systems.

39

CHAPTER 4

SYSTEM MODEL

THIS CHAPTER presents the system model used for the submitted work. The first part

of this chapter illustrates the architecture of the system. The second part presents the ab-

stract representation used to model the system application, and the last part of this chapter

explains the diagnostic services provided by the system.

4.1 System Architecture

Architectures consisting of distributed nodes with a dedicated communication network are

considered. Such a distributed system denoted with S contains a set of processors P and

switches SW connected through bi-directional links L.

S =< P,SW,L > (4.1)

An example of such a distributed system is given in Fig. 4.1.

4.1.1 Hardware Components of Processors

At the hardware level, each processor in the has the following components,

• A communication controller that controls the transmission and reception of time-

triggered messages.

• An input/output interface to sensors and actuators.

• ROM to store the code of the kernel and RAM to store the local data and code of the

task, e.g. diagnostic query, assigned to the processor.

40

Figure 4.1: Example of a distributed system

4.1.2 Software Components of Processors

At the software level, each processor Pi ∈ P in S has the following components,

• A local real-time database that stores the data required for the execution of the query

assigned to the processor. Once the query has completed its execution, its corre-

sponding data is deleted from the local database provided that no other future query

assigned to the processor requires it. This deletion is done to ensure that the data

replication does not cause a memory overflow of the processor.

• A query execution engine that executes the queries assigned to the processor.

• A real-time (RT) kernel that stores the local schedule table containing all the infor-

mation needed to make decisions on the activation of tasks such as diagnostic queries

and the transmission of messages at predetermined moments in time.

The processors and switches in the system are connected through a real-time commu-

nication network. Although there are different types of communication models, this work

only considers static time-triggered communication because it provides temporal predic-

tion, guaranteed data transference, easier certification and fault isolation through guardians

that prevent incorrect transmission of messages. Furthermore, time-triggered communica-

tion provides implicit synchronization of the database since each application task accesses

the local database during its allocated time, so there is no need for locking the database or

rollbacks. The communication network can use any topology that supports time-triggered

communication.

41

Figure 4.2: Transition between schedules during runtime whenever changes occur in the
system

4.1.3 Scheduler

A node in the overall system is reserved solely to compute the schedule. It is termed as

scheduler and its RT-kernel stores the global schedule of the whole system. Whenever

there are changes in the system architecture or the system application, the scheduler is

invoked to recompute the new schedule at run time. Until the new schedule is computed,

the system keeps running the old schedule, for example, in Fig. 4.2, a change occurs in

the system at t ms and the scheduler is invoked to recompute the schedule corresponding

this change. At t + 10 ms, the scheduler successfully computes the new schedule Sch2 and

deploys it to the other nodes in the system. Before t + 10 ms, the system keeps running the

old schedule Sch1. The time between the occurrence of the change and the computation of

the new schedule needs to be bounded because the schedule is computed at runtime, and it

needs to be deployed before the system becomes unstable. Therefore, an efficient and fast

scheduling heuristic is required to compute the new schedule within the bounded time. If

the scheduler is unable to compute a schedule, then the designer is notified that the changes

are not integrable with the running system and must be redefined. In this case, the system

discards the changes and keeps running the old schedule Sch1.

42

Figure 4.3: System Architecture (Mesh Network)

4.1.4 Constraints of the Distributed System

An example of the overall system architecture connected through a mesh network is given

in Fig. 4.3. The overall system has the following constraints:

• The processors are only used for the execution of the tasks or queries, whereas the

bi-directional links are only used for time-triggered communication.

• The schedule is non-preemptive, i.e. once a task (query) is assigned to a proces-

sor, the task frees the processor only when it is completed. Similarly, the messages

are transmitted over a link during their predetermined time intervals and cannot be

preempted.

• If the tasks (queries) are periodic, then all iterations are executed on the same proces-

sor. Similarly, all iterations of a periodic message are transmitted through the same

links.

• The scheduler computes the schedule for both the application and the diagnostic

services.

43

• For simplicity sake, it is assumed that the system runs both the application and the

diagnostic services in parallel to each other without any conflicts.

• Each link in the system has a fixed rate of transmission, and the communication cost

is calculated using,

c(mi j, lk) =
d(mi j)

wk
(4.2)

where c(mi j, lk) is the communication cost of message mi j when it transmits data

d(mi j) over a link lk of bandwidth wk.

• The processors in the distributed system can either be homogeneous or heterogeneous

e.g., it is not necessary that all the processors in the system have the same clock

frequency.

• Before the query starts executing its required data is replicated from the other proces-

sors to the local database of the executing processor through peer-to-peer communi-

cation. Once a query has completed its execution, the data required for its execution

is deleted from the local database.

• Any modification can occur in the system architecture e.g. removal of a switch as

shown in Fig. 4.4.

(a) (b)

Figure 4.4: (a). System Architecture before Modification (b). System Architecture after
Modification

44

4.2 Application Model

There are two types of services provided by the system: the application that implements

system functionality and the application that provides the service of diagnosing and detect-

ing faults

4.2.1 System Application (GS)

The system application is represented through a Directed Acyclic Graph (DAG). In a DAG,

each vertex represents a sequential code segment or a task, and each edge represents the

relationship between the tasks. Such a task graph GA can be represented as,

GS =< T,E > (4.3)

where T is a finite set of |T | tasks and E is a finite set of |E| directed edges. Each task ti ∈ T

represents a non-divisible sequential task and each edge ei j ∈ E represents the precedence

constraint between tasks ti and t j where ti is the parent task of t j. The weight wi assigned to

the task ti represents its computation cost or execution time whereas the weight di j assigned

to the edge ei j is the amount of data transferred between tasks ti and t j. Each task ti ∈ T

has a hard deadline Di that must be fulfilled to keep the system from failing. The overall

application is cyclic with a constant period P.

A few examples of the application graphs are shown in Fig. 4.5. There is no restriction

on the input, and the task graphs can have an arbitrary shape with an arbitrary number of

tasks and edges. Any modification can occur in the system. If a new application is added

to the system, then two dummy tasks called source, and sink are added such that tasks in

both the original and the new application graph are successors of source and predecessors

of sink. These dummy tasks are added to make a connection between the two graphs and

have no impact on the schedule of the application. Fig. 4.6 shows the modified version of

the application graphs given in Fig. 4.5 if they are executed on the same system.

45

Figure 4.5: Examples of Directed Acyclic Graph (DAG)

4.2.2 Diagnostic Multi-Query Graph (DMG - GD)

The Fault Detection and Diagnosis (FDD) platform used in this work is based on diag-

nostic queries that use rule-based inference and semantic web technology to identify faults

in the system. In such an approach, a Diagnostic Knowledge Base (DKB) describes the

structure of the ODRE systems using semantic web technology, i.e. constituting compo-

nents and their interfaces, defines faulty or abnormal behaviour, rules for the identification

of faults and the respective recovery actions for mitigating failures. A directed graph of

diagnostic rules herein called Diagnostic Multi-query Graph (DMG) is the central element

of this technique. Diagnostic features derived through local error detection mechanisms,

e.g., message classification, self-testing, serve as the starting point for the inference on

faults and recovery actions. The diagnostic inference process is temporally and spatially

decomposed by introducing intermediate inference steps called symptoms. These symp-

toms and diagnostic features are stored in a real-time database, parts of which are timely

and consistently replicated to enable the distributed execution of rules. Each rule is realized

as a query on the diagnostic facts within the real-time database. The vertices in the DMG

represent queries, and the edges depict data relationships through the real-time database

between these queries [6]. The management unit of DKB maintains the diagnostic knowl-

46

Figure 4.6: Modified version of the graphs presented in Fig. 4.5

edge, integrates new knowledge and ensures consistency, completeness and integrity. The

faults considered in this system can either be permanent hardware faults, software faults

or interaction faults. A time-triggered schedule for the execution of the diagnostic queries

is computed to ensure that the system meets the stringent time constraints. It does not

only specify the time and location for query execution but also which data is replicated

at which component to enable the distributed implementation of the queries under given

resource constraints. The execution of the DMG, according to the computed schedule,

identifies faults. Once the fault is detected, the system proposes appropriate recovery ac-

tions. For example, possible reactions to permanent faults include introducing degraded

service modes as a first-level recovery. Whereas less time-critical second-level recovery

may include extended reconfiguration measures with knowledge base support. Fig. 4.7

shows the flow diagram of Fault detection and diagnosis using Diagnostic Queries (FDQ).

The marked blocks are covered in this thesis.

In a DMG, each query is unique and is either linked with sensors or a set of queries. The

sensors periodically provide data, which is replicated to the databases of other processors

through peer-to-peer communication based on the schedule computed by the scheduler.

47

Figure 4.7: Flow diagram of Fault detection and diagnosis using Diagnostic Queries (FDQ)

Each vertex in the graph represents a query, and each edge specifies the input/output rela-

tionship between two queries through the real-time database. The queries are categorized

as features, symptoms and faults. A feature is an output from a sensor, a symptom is an

abnormality in said output, and a fault is the failure of the sensor. For example, in a car,

an oxygen sensor is used to monitor the percentage of oxygen in the exhaust. The output

of this sensor is a feature. The increasing or decreasing of the output beyond the threshold

level of the sensor is a symptom. If the output of the oxygen sensor does not fall within the

required threshold range, then the sensor is not functioning correctly and is faulty. The ver-

tices without incoming edges are features and the ones without outgoing edges are faults.

The vertices that have both incoming and outgoing edges are termed symptoms. Since

the sensors are sending data periodically, so the queries also need to be regularly executed

respecting predefined phase-shift from the sensor input to consider the computational and

communication delays. Therefore, each query is linked with a strict time period and a strict

phase respecting a global time base. The periodic executions of queries create the possibil-

ity that the child query requires output data from one or a group of the previous executions

48

rather than the present one. This feature is incorporated in the DMG by labelling the edges

with timing information called a history-interval. The history-interval defines an interval

from which query results are required for the execution of the target query. The start of this

interval determines what output of the parent query is discarded from the local database of

the source processor, and the end interval determines the permissible communication delay

between the executions of the parent and child queries. The history-interval is explained in

detail later in this section.

A DMG can be represented as,

GD =< Q,M > (4.4)

where Q is a finite set of |Q| queries and M is a finite set of |M| directed edges. Each vertex

qi ∈Q represents a non-divisible periodic query task and each edge mi j ∈M represents the

data dependency between query tasks qi and q j where the transference of data is from qi

to q j. Each qi ∈ Q is represented by the tuple <W (qi),D(qi),T (qi) > where W (qi) is the

worst-case execution time (WCET) of qi, D(qi) is the relative deadline of qi and T (qi) is

the time period of qi. Each periodic instance of qi has the same W (qi) and D(qi). Each

directed edge mi j ∈M is represented by the tuple < D(mi j),< ai j,bi j >> where D(mi j) is

the amount of output tuples transferred from qi to q j and < ai j,bi j > is the history-interval

of the edge mi j. Any change can occur in the structure of the DMG e.g. generation of new

queries when new sensors are added to the system. Two example DMGs are given in Fig.

4.8.

4.2.3 Characteristics of DMG

The DMG has the following characteristics that aid in the scheduling process.

49

Figure 4.8: Examples of DMG

4.2.3 Time Period and Absolute Deadline

The sensors in the system are sending data periodically. Therefore each query in the DMG

also executes periodically to make sure that the query is executed on an up-to-date input

data from the sensors. In a DMG represented by Eq. 4.4, each query qi repeats execution

after a strict time interval T (qi). This time interval T (qi) ∈ R>0, herein is termed as time

period and is the exact time difference between release times of two consecutive instances

of qi [21]. The release time of qi is the earliest time at which qi is available for execution.

Let rtk+1(qi) ∈ R≥0 and rtk(qi) ∈ R≥0 be release times of two consecutive instances of

query qi then the time period of qi can be represented as,

T (qi) = rtk+1(qi)− rtk(qi) (4.5)

Since it is possible that the query does not start execution right after being released and its

actual start time may differ from its release time, therefore it is necessary that each instance

of qi completes its execution before the start of its next instance to hold the strict time

period. If stk(qi) ∈ R≥0 is the actual start time of the kth instance of qi and W (qi) ∈ R>0 is

50

its WCET then this condition can be represented as,

stk(qi)+W (qi)< rtk(qi)+T (qi) (4.6)

For this condition to hold it is necessary that the WCET of qi is always less than its T (qi),

i.e. W (qi)
T (qi)

< 1 [21]. Time-period of a query is sometimes also considered as its deadline, in

that case a previous iteration of the query should complete its execution before its calculated

time period is reached. For example, two instances of a query q1 with a time period 10 ms

and a WCET 3 ms are shown in Fig. 4.9. The release time of the first instance of q1 is t ms

whereas the actual start time of the instance is t + 1 ms. For q1 to hold its strict time period

(deadline) of 10 ms, it is essential that t + 4 < t + 10.

Each query qi in the DMG is annotated with a relative deadline D(qi). This deadline

is relative to the release time of previous instance of qi and is always less than or equal to

the time period of qi. Absolute deadline of an instance of query qi is the time at which the

execution of the instance must be completed. Each instance of qi has a different absolute

deadline and is the sum of the release time of the instance and the relative deadline of qi.

Let dk(qi)∈R>0 be the absolute deadline of the kth instance of qi then it can be represented

as,

dk(qi) = rtk(qi)+D(qi) (4.7)

If the kth instance of the query qi does not finish its execution before its absolute deadline

dk(qi) then the system becomes unstable. Therefore it is necessary that the sum of the start

time of an instance of qi and its WCET W (qi) is always less than the absolute deadline of

the instance. This can be represented in mathematical form as follows,

stk(qi)+W (qi)< dk(qi) (4.8)

In the example given in Fig. 4.9, q1 has a relative deadline of 5 ms. The first instance of q1

51

has an absolute deadline of t + 5 ms whereas the second instance has an absolute deadline

of t + 15 ms. In this thesis, it is assumed that the difference between the start-times of two

consecutive iterations of a query is equal to the time-period of the query to ensure that all

the iterations meet their respective deadlines.

Figure 4.9: Time period and absolute deadline of two consecutive instances of q1

4.2.3 Hyper-Period

For a DMG represented by Eq. 4.4, the hyper-period HG ∈ R>0 is the minimum time

interval after which GD starts its next cycle of execution [21]. It is calculated by taking the

least common multiple (L.C.M.) of all the time periods in GD.

HG = L.C.M.{T (q1),T (q2), ...,T (qq)} (4.9)

The hyper-period is an important characteristic of GD and is used to calculate the minimum

number of times each query is repeated within one complete execution [128]. Let times(qi)

∈ Z>0 represent the number of times a query qi repeats in one hyper-period HG of the

DMG. It can be calculated as,

times(qi) = f (HG,T (qi)) =
HG

T (qi)
(4.10)

52

4.2.3 History-Interval

Each edge mi j ∈ M is labelled with a history-interval < ai j,bi j >. As described before,

the start of history interval determines what output data of a parent query is discarded

from the local database of the source processor, and the end of the interval determines

the permissible communication delay between the parent and child query. The history-

interval determines what data must be discarded from the database that bounds the total data

consumption. It also depicts the real-time requirements by providing the maximum delay

between executions of parent and child queries. History-interval is essential to determine

the amount of data required by q j and the earliest starting time of q j. In simple words, the

history interval determines the set of iterations of the parent query required by the child

query. Here ai j represents the iteration of parent query from which the data transmission

starts and bi j represents the last iteration of parent query that needs to send data to the child

query. It has to be noted that ai j does not essentially need to be from the same hyper-period.

For better understanding of history interval, consider a two vertex DMG where q1 is

the parent of q2 i.e. q1 is transmitting data, D(m12) = 1 Mb, to q2. The time period of

q1 is T (q1) = 2 ms, and time period of q2 is T (q2) = 5 ms. The queries are scheduled on

two homogeneous processors, P1 and P2. The WCET of both queries is 1 ms. There is

only one link l (Bl = 1 Mb/ms) between P1 and P2. Query q1 is scheduled on processor P1

while q2 is scheduled on processor P2. According to Eq. 4.9, the hyper-period of the DMG

is 10 ms where q1 and q2 repeat five-fold and twice respectively (Eq. 4.10). To ensure

that the child query q2 receives all the data sent by the parent q1 without it being lost or

duplicated, it is essential to calculate the number of times q1 should be repeated for the

complete transference of data to q2. Let timesi j ∈ Z>0 represent the iteration number of a

parent query qi that transmits data to a child query q j. It can be represented as a piece-wise

function of the time-periods of the parent and child queries, as shown in Eq. 4.11. In the

illustrated example, the parent query has a time period of 2 ms, and the child query has a

time period of 5 ms. Therefore according to Eq. 4.11, times12 = f (2,5) =
⌊5

2

⌋
= b2.5c= 2.

53

The resultant number implies that q1 must repeat twice before q2 can start its execution for

the complete transference of data.

timesi j = f (T (qi),T (q j)) =


⌊

T (q j)

T (qi)

⌋
, T (q j)≥ T (qi)

1, otherwise

(4.11)

Since there are multiple iterations of parent query q1, therefore it is a possibility that

instead of every second iteration, the child query q2 requires data from every first iteration

or both iterations of q1. In order to determine the iterations of q1 that must send data to

q2, the concept of history-interval is introduced. The history-interval serves as a sliding

window to determine what iterations of the parent query must forward their data to the

child query. In the history-interval < ai j,bi j > assigned to an edge mi j from a query qi

to a query q j, ai j serves as the starting point of the sliding window whereas bi j serves

as the ending point. In order to determine what iterations of qi must transfer data to q j,

the history-interval needs to be translated to iteration numbers i.e., first iteration or second

iteration, of parent query qi. Let I1 ∈ Z represent the iteration number of qi that starts data

transmission to q j. It can be represented as a function of timesi j (cf. Eq. 4.11) and the

start of the history-interval ai j as shown in Eq. 4.12. Let I2 ∈ Z represent the last iteration

number of qi that sends the data to q j. It can be represented as a piece-wise function of

timesi j (cf. Eq. 4.11) and end of the history-interval bi j as shown in Eq. 4.13. I1 and I2

collectively form a range of iterations that must send data to the child query. This range

is represented by the closed interval range [I1, I2] ∈ Z. Consider the example given before

where times12 = 2, now if history-interval is < a12,b12 >=< 1,0 > then according to Eq.

4.12 and Eq. 4.13, the closed interval range is [1,2]. It means that the output data of the first

and second iterations of q1 must be transmitted to q2. Since the complete data that must be

transferred to q2 is available only after the second execution of q1 therefore the transmission

starts after said execution. It cannot start before that because then q2 will not receive the

complete data required to start its execution. This has been depicted in Fig. 4.10b where

54

q2 starts its execution after the data from both first and second iterations of q1 has been

transmitted. In comparison, in Fig. 4.10a where the history-interval is < 0,0 >, the data

is transmitted to q2 only from the second iteration of q1. For the correct interpretation of

history-interval, it is essential that bi j is never greater than ai j. Both ai j and bi j should be

non-negative integers i.e. ai j ∈ Z≥0 and bi j ∈ Z≥0.

I1 = f (timesi j,ai j) = timesi j−ai j, ai j ∈ Z≥0 (4.12)

I2 = f (timesi j,bi j) =


timesi j−bi j, bi j ∈ Zbi j≥0∪bi j≤ai j

timesi j, otherwise
(4.13)

If I1 is negative, it means that the required iteration is from a previous hyper-period.

Consider the example given before with a history-interval < a12,b12 >=< 3,1 >. Now

according to Eq. 4.12 and Eq. 4.13, the closed interval range for the required iterations of

q1 is [−1,1]. The range values -1 and 0 imply that the data is also transferred from the last

two iterations of the previous hyper-period of the DMG. In this case, it is assumed that the

required data is available to q2 when the DMG starts execution of its current hyper-period.

It has been shown in Fig. 4.10c where the data transference starts after the first iteration of

q1 (I2 = 1) but also includes the data from the last and second to last iteration of q1 in the

previous hyper-period.

It is important to note that each child iteration gets data from a different parent iteration

in the cyclic execution of the graph. The history-interval acts as a sliding window whose

width can be given as a function of timesi j and time-period of parent query qi. Let width ∈

R>0 represent the duration of the sliding window of the history-interval, then it can be

represented as,

width = f (timesi j,T (qi)) = timesi j ·T (qi) (4.14)

For example, consider Fig. 4.11 where the time-periods for q1 and q2 are 2 and 5 and the

55

(a) < a12,b12 >=< 0,0 > (b) < a12,b12 >=< 1,0 >

(c) < a12,b12 >=< 3,1 >

Figure 4.10: Impact of history-interval on the relationship between iterations of q1 and q2
(t = 0 ms)

history-interval is < 0,0 >. In this case, the width of the history-interval according to Eq.

4.14 is width=
⌊5

2

⌋
·2= 4. According to Eq. 4.12 and Eq. 4.13, the data is transmitted after

every second iteration of q1. In Fig. 4.11a, the second iteration of qi with respect to the first

iteration of q2 and the calculated width is the second iteration of q1 in one cyclic execution

of the DMG. Whereas, the second iteration of q1 with respect to the second iteration of q2

is actually the fourth iteration in one cyclic execution of the DMG (cf. Fig. 4.11b).

The ready time of a child query has an equal impact on the choice of the parent iteration

that transmits the data to it, specifically when a query has multiple parents. The query ready

time is defined as the earliest time when all the required iterations of a parent query are

completed. For example, consider the DMG given in Fig. 4.8b. It is scheduled on a two-

processor homogeneous distributed system where the processors are connected by a single

link. In the first case, the bandwidth of the link is taken as 1 Mb/ms, and in the second case,

the bandwidth is 2 Mb/ms. The corresponding schedules for both cases are given in Fig.

56

(a) (b)

Figure 4.11: Sliding window function of history-interval (< ai j,bi j >=< 0,0 > and t = 0
ms)

(a) wl = 1 Mb/ms (b) wl = 2 Mb/ms

Figure 4.12: Impact of ready time of a query on the data transmission (t = 0 ms)

4.12. In both cases, q3 is ready for execution after q1 and q2 have completed three and two

iterations, respectively (cf. Eq. 4.12 and Eq. 4.13). In Fig. 4.12a, q3 is ready at 7 ms, but

the data from q1 to q3 cannot be transmitted yet since the link is not free. Therefore, m13

is scheduled at the next free time slot i.e. 9 ms. At 9 ms, the third iteration of q1 according

to the sliding window of width 6 ms is the fifth iteration of q1 in one cyclic execution of

GD. In Fig. 4.12b, q3 is ready after 6 ms therefore, the third iteration of q1 in one cyclic

execution of GD transmits its data to q3.

4.2.4 Translation of History-Interval to Directed Edges

In literature, the DAG described in Section 4.2.1 is the standard form of representing an

input to a scheduler. In a DAG, each edge represents a single relationship between a parent

and child task. The weight of the edge represents the amount of data transferred between

57

two tasks and also the maximum communication delay between their executions. On the

other hand, in a DMG, an edge is represented through a history-interval that raises the

possibility of multiple relationships between two dependent queries. For example, if the

history-interval between two queries qi and q j, where the edge is from qi to q j and the

time periods are 4 and 8 ms, is < 1,0 >, then according to Eq. 4.12 and Eq. 4.13 the first

iteration of q j must get its data from the first two iterations of qi. Here, there should be

two separate directed edges from qi to q j for the scheduler to determine the precedence

constraint between the queries and also to compute the correct amount of data transferred

from qi to q j. Since the scheduler is not able to directly convert the history-interval to the

corresponding directed edges, therefore, the history-interval between qi and q j needs to be

translated before giving the DMG as an input to the scheduler.

By using the characteristics mentioned above, a DMG can be simplified to make the

graph easier to schedule. The goal is to map the history-interval into appropriate edges

so the scheduler can determine the correct precedence constraints between the queries and

also the amount of data transferred. To accomplish this, firstly, the hyper-period of the

DMG is calculated using Eq. 4.9. Then the minimum number of iterations for each query

task in the DMG in one hyper-period is calculated using Eq. 4.10. Each query in the

DMG is replicated the number of times it needs to be repeated in one hyper-period. Each

replication represents an instance of the query. All the instances of a query are stored in a

set that is enclosed with a specific tag. Each instance in the set is scheduled on the same

processor and the time difference between two consecutive instances is equivalent to the

time period of the set. All the instances in a set have the same relative deadline and WCET.

The history-intervals given in the DMG are used to calculate data dependencies between

different iterations of the query tasks using Eq. 4.12 and Eq. 4.13. These data dependencies

are stored in the form of a m x n query relationship matrix RM. This matrix represents the

relationship between a parent query qi and the first iteration of the child query q j across

multiple executions of the qi and q j DMG. The m rows in this matrix represent the total

58

number of cyclic executions of the DMG (comprising only of qi and q j) from which the

first iteration of q j requires data in the current cyclic execution. Since one cyclic execution

of the DMG is equal to one hyper-period therefore m just represents multiple hyper-periods

of the DMG from which the data is required by q j. The n columns in the matrix represent

the total number of iterations of qi in one hyper-period of the DMG. Each rmab, where a

= 1,2,...,m and b = 1,2,...,n, gives the relationship between the first iteration of q j in the

current hyper-period and the bth iteration of qi from ath hyper-period of the < qi,q j >

DMG. If rmab = X , then it means that bth iteration of qi from the ath hyper-period of the

the DMG is transmitting data to the first iteration of q j. The total number of rows m and

the total number of columns n are calculated as follows,

m =


⌈

I2− I1 +1
T (q j)

⌉
, [I1, I2] ∈ Z⌈

I2− I1 +1
T (q j)

⌉
+1, [I1, I2] ∈ Z≤0

(4.15)

n =
L.C.M.(T (qi),T (q j))

T (qi)
(4.16)

where, I1 and I2 are calculated using Eq. 4.12 and Eq. 4.13, respectively. Since it is

necessary to know in which hyper-period q j is being scheduled, the last row in the matrix

always represents the current hyper-period even if there are zero iterations of qi from said

hyper-period that send data to q j. Therefore, m is incremented if all the integers in the

closed interval [I1, I2] are non-positive integers so that the mth row in the matrix always

represents the current hyper-period.

Consider the time-line representation given in Fig. 4.10c for the two vertex DMG

example given in Section 4.2.3.3. The closed interval range for this example is [I1, I2] =

[−1,1]. Here, the first iteration of q2 requires data from the first iteration of q1 from the

same hyper-period, and the last two iterations of q1 from the previous hyper-period. To

determine which elements in the matrix should contain ’X’, it is necessary to first convert

59

all the non-positive integers in the range to positive integers so that they correspond to the

indices of the columns in the matrix. For this purpose, the range is first stored in an array of

integers. Then the value of n calculated using Eq. 4.16 is added to all non-positive integers

in the array until all the values are within [1,n]. In the given example, the closed interval

range for the iterations of q1 is [−1,1] and n = 5. So the integer array contains {−1,0,1}

and the resultant integer array after adding 5 to all non-positive integers is {4,5,1} where

all the values are ranging between 1 and 5. After converting the non-positive integers in

the array to positive column indices, the next step is to determine the row indices that refer

to the calculated column indices. The minimum column index of an element in a row is

always 1, so whenever an integer in the array is 1, provided it is not the first integer in

the array, it means that the next hyper-period has started. In this case, the row index is

incremented. In the illustrated example, the resultant integer array from the previous step

is 4,5,1. Here integers 4 and 5 are the column indexes of the first row whereas integer 1

is the column index in the second row. The resultant relationship matrix for the example

is given in Table 4.1. The pseudo-code representation of the algorithm to compute the

relationship matrix between a parent query qi and the first iteration of child query q j across

multiple hyper-periods of < qi,q j > DMG is given in Algorithm 1.

The relationship matrix computed in the previous step is used to create directed edges

between queries in the simplified DMG. The algorithm traverses through the relationship

matrix and creates a directed edge between the bth iteration of qi from the ath hyper-period

of < qi,q j > DMG whenever rmab = X . For the iterations of qi that are from the previous

cyclic execution of the DMG, a dummy vertex is created. This dummy vertex is added as a

subset to the set of instances of qi so that it can be differentiated from the other instances.

To determine which subset belongs to which cyclic execution of < qi,q j >, each subset

is assigned the number corresponding its row in the relationship matrix. The WCET of

each dummy vertex in the subset is zero since it has already completed its execution in the

previous hyper-period, but the time period is equal to the time period of qi. For example, a

60

dummy vertex is created in Fig. 4.13b to depict the first iteration of q2 from the previous

hyper-period of < q2,q4 > that is sending data to q4. This dummy vertex is added in a

separate subset of the overall set of q2 and annotated with its corresponding row number

(i.e., 1) in the relationship matrix of q2 and q4. The WCET of the vertex is zero, but it has

the same time period and relative deadline as the other subset of q2. A directed edge is

then created from this dummy vertex to the first iteration of q j. The weight of this edge is

equal to the amount of data transmitted between qi and q j. The pseudo-code representation

of the algorithm used to simplify the DMG is given in Algorithm 2. An example of the

transformation is given in Fig. 4.13. A directed edge here describes two characteristics: the

minimum number of iterations of parent query required by the child query for its execution,

and the iterations of qi that transfer the data to the first iteration of q j.

HH
HHHHHG

qi 1 2 3 4 5

1 - - - X X
2 X - - - -

Table 4.1: Relationship matrix of parent query q1 and child query q2 for the example given
in Fig. 4.10c

Figure 4.13: (a). Initial form of the DMG (b). DMG after translating the history-interval to
directed edges

61

Algorithm 1 Algorithm to compute relationship matrix RM between the first iteration of a
child query q j and n iterations of parent query qi across m hyper-periods

[I1, I2]← range of iterations of parent query qi from which data is required by child
query q j
indexes[0,(I2-I1+1)]←{I1, I1+1, ..., I2}, array of integers containing the values from
the closed interval range [I1, I2]
RM((qi,q j))← Relationship matrix of parent query qi and child query q j : ∃ a path
p(qi→ q j) ∈ GD
m← total number of rows in RM((qi,q j)) calculated using Eq. 4.15
n← total number of columns in RM((qi,q j)) calculated using Eq. 4.16
for k = 0 to k = I1-I2+1 do

while indexes[k] < 1 do
indexes[k]← indexes[k] + n

end while
end for
temp← 0
b←, column index of RM((qi,q j))
a← row index of RM((qi,q j))
for a = 1 to a = m do

for k = temp to k = I1-I2+1 do
if indexes[k+1] == 1 then

temp← k+1
break

end if
b← indexes[k]
rmab = X , element in RM((qi,q j)) at ath row and bth column

end for
end for

4.3 Characteristics of the Application Model used for List Scheduling

The following characteristics that are common to both GS and GD are used to schedule the

graphs via a list scheduling heuristic.

• Path Length (pl): For a task graph GS represented by Eq. 4.3 or GD represented

by Eq. 4.4, a path represented as p is a sequence of directed edges that connect a

finite sequence of tasks [19]. For example, in Fig. 4.5a, < tg, ti, t j > and < tg, th, t j >

are two paths between tasks tg and t j. Similarly, in Fig. 4.8a, < q1,q2,q4 > and

62

Algorithm 2 Algorithm to Translate History-Intervals to Directed Edges

Parent(qi)← Set of parent queries of qi ∈ Q : ∃ a path p(p j→ qi) ∈ GD
times(qi)←Minimum number of times qi repeats in one HG
Iden(qi)← Tag for the set containing all iterations of qi
for each qi ∈ Q do

Create times(qi) identical query tasks in the graph.
Iden(qi)← i
for each p j ∈ Parent(qi) do

D(m ji)← the amount of data transferred between p j and qi
Calculate range of iterations of p j required by qi, [I1, I2], using Eq. 4.12 and Eq.
4.13
RM((p j,qi))← Relationship matrix of parent query p j and child query qi : ∃ a
path p(p j→ qi) ∈ GD
m← total number of rows in RM((qi, p j))
n← total number of columns in RM((qi, p j))
Create RM((qi, p j)) using Algorithm 1
for a = 1 to a = m do

for b = 1 to b = n do
rmab← element in RM((qi, p j)) at ath row and bth column
if rmab == X then

If bth iteration of p j does not exist in ath hyper-period of < qi, p j > then
create a dummy vertex and add it to its corresponding hyper-period set.
Create a directed edge between bth iteration of p j from the ath hyper-
period of < qi, p j > and the first iteration of qi.
Assign the weight D(m ji) to the created directed edge.

end if
end for

end for
end for

end for

63

< q1,q3,q4 > are two paths between query tasks q1 and q4. The length of a path p in

GS or GD is the sum of the weights of the vertices and edges in p [19].

plp =


∑

ti∈T,p
wi + ∑

ei j∈E,p
di j, p ∈ GS

∑
qi∈Q,p

W (qi)+ ∑
mi j∈M,p

D(mi j), p ∈ GD

(4.17)

where, wi is the execution time of task ti, di j is the amount of data transferred on

the edge ei j, W (qi) is the WCET of query task qi, D(mi j) is the amount of data

transferred on the edge mi j, and plp is a positive real number. A critical path cp is

the path that has the greatest length in the graph i.e. plcp = maxp∈GS∪GD plp. If the

list scheduling heuristic is considered with zero communication cost between tasks,

then plcp is the lower bound of the schedule computed by the heuristic [19].

• Task Level: In a task graph GS represented by Eq. 4.3 or GD represented by Eq. 4.4,

there are numerous paths that start or end at a task ti or a query task qi. Similar to cp,

the longest paths among both sets can be distinguished through task levels. These

levels are generally used to calculate priorities for the tasks in the graph.

– Bottom-Level: The bottom-level of a task t ∈ T or a query task q ∈ Q is the

length of the longest path starting from t or q. It can be presented as,

bl(t) = maxti∈[succ(t)∩tsink]{plt−>ti} : ∃ a path p(t−> ti) ∈ GS

bl(q) = maxqi∈[succ(q)∩qsink]{plq−>qi} : ∃ a path p(q−> qi) ∈ GD (4.18)

where succ(t) and succ(q) are sets of descendants of t and q, tsink and qsink are

the exit vertices of GS and GD, plt−>ti is the length of the path from task t to

the task ti, and plq−>qi is the length of the path from q to qi. Both bl(t) and

bl(q) are positive real numbers. If succ(t) = succ(q) = /0, then bl(t) = wt and

64

bl(q) =W (q).

– Top-Level: The top-level of a task t ∈ T or a query task q ∈ Q is the length of

the longest path ending at t or q excluding the weight of the task or the query.

It can be presented as,

tl(t) = maxti∈[pred(t)∩tsource]{plti−>t}−wt : ∃ a path p(ti−> t) ∈ GS

tl(q) = maxqi∈[pred(q)∩qsource]{plqi−>q}−W (q) : ∃ a path p(qi−> q) ∈ GD

(4.19)

where pred(t) and pred(q) are set of ancestors of t and q, wt is the execution

time of task t, W (q) is the WCET of query q, tsink and qsink are the entry vertices

of GS and GD, plti−>t is the length of the path from task ti to the task t, and

plqi−>q is the length of the path from qi to q. Both tl(t) and tl(q) are positive

real numbers. If pred(t) = pred(q) = /0, then tl(t) = tl(q) = 0.

In this thesis, bottom-level is used when the intended system architecture consists

of homogeneous processors whereas top-level combined with bottom-level is used

when the processors are heterogeneous.

• Schedule Length (sl): Let Sch represent the execution plan of tasks/queries and mes-

sages present in GS or GD on the processors and the communication network, then

the schedule length, sl(Sch) ∈ R>0 of Sch can be represented as [19],

sl(Sch) =


maxti∈T{FT (ti)}−minti∈T{ST (ti)}

maxqi∈Q{FT (qi)}−minqi∈T{ST (qi)}
(4.20)

where FT (ti) and ST (ti) are start and finish times of task ti ∈ T , and FT (qi) and

ST (qi) are the finish and start times of query task qi ∈Q. In this thesis, it is assumed

that the start time of all the tasks without precedence constraints in T and the start

65

time of all the diagnostic queries without any parent queries in Q is 0.

• Communication to Computation Cost Ratio (CCR): Let GS be a DAG represented

by Eq. 4.3 and GD be a DMG represented by Eq. 4.4, then CCR(GS) ∈ R>0 and

CCR(GD) ∈ R>0 can be given as [19],

CCR(GS) =
∑e∈E de

∑t∈T wt

CCR(GD) =
∑m∈M D(m)

∑q∈QW (q)
(4.21)

In literature, CCR is sometimes defined as the average edge weight to the average

task weight ratio [113].

CCR(GS) =
de

wt

CCR(GD) =
D(m)

W (q)
(4.22)

Where, de and D(m) are the average edge weight of the graphs and wt and W (q) are

the average task weights of the graphs. Although this definition does not reflect the

total communication volume yet it is a much simpler way to calculate the weight of

the directed edges in the graph. If task ti is a parent of task t j in GS and query qi is

a parent of query q j in GD then the approximate amount of data transmission can be

calculated as follows,

di j =CCR(GS)∗wi : ∃ a path p(ti→ t j) ∈ GS

D(mi j) =CCR(GD)∗W (qi) : ∃ a path p(qi→ q j) ∈ GD (4.23)

Where, wi and W (qi) are the WCETs of ti and qi, di j and D(mi j) is the average

amount of data transferred from ti to t j and qi to q j, respectively. In this thesis,

CCR values range between medium and low communication loads, i.e., the ratio is

66

between 0.1 and 1.0, and are used to calculate the size of the data transmitted between

tasks in GS and queries in GD.

67

CHAPTER 5

LIST SCHEDULING FOR ACTIVE DIAGNOSIS IN HOMOGENEOUS ODRE

SYSTEMS

THIS CHAPTER presents a list scheduling heuristic to schedule diagnostic queries and com-

munication messages in a homogeneous open distributed real-time embedded (ODRE) sys-

tem. The ODRE systems have requirements for reliable operations with stringent real-time

constraints and an open-world assumption. In such systems, an embedded computer system

has to provide its services with a dependability that is better than the dependability of its

constituent components. If the failure rate of available electrical components in the system

is considered, then this level of dependability can only be achieved if the system supports

fault-tolerance. In this thesis, fault-tolerance in ODRE systems is supported through a Di-

agnostic Multi-query Graph (DMG). A DMG is a directed graph of diagnostic queries that

is used to detect and diagnose faults in ODRE systems. Scheduling the DMG before ex-

ecuting it on the system depicts the temporal behaviour of the diagnostic application and

thus bounds the time to detect and diagnose faults. The scheduling heuristic must also take

into account the dynamic nature of ODRE systems, i.e., the integration of new components

at runtime to realize global services. Therefore, the scheduling heuristic should be fast in

recomputing a feasible schedule during runtime so that the faults can be diagnosed before

the system becomes unstable. If no feasible schedule is found then the designer is notified

that the changes cannot be integrated to the system. In this scenario, the system keeps run-

ning the old schedule. In this chapter, a list scheduling heuristic is proposed to schedule

the diagnostic queries and communication messages in a distributed environment where all

the processors have the same clock frequency. List scheduling is used because it is faster

and more efficient than other static task scheduling algorithms in computing a schedule

[19]. This algorithm is used to schedule both system application and the diagnostic graph.

68

However, in this chapter only the scheduling of diagnostic application is considered with

the assumption that the system application is already scheduled using the same algorithm.

5.1 Problem Formulation

Given a homogeneous system architecture presented in Section 4.1 and a diagnostic ap-

plication GD presented in Section 4.2.2 the following problem has to be solved: construct

a feasible static cyclic schedule for the time-triggered diagnostic queries in GD and the

time-triggered message executions such that all the timing constraints of the system are

fulfilled.

The system architecture considered in this scenario consists of homogeneous distributed

processors, i.e. all the processors in the system have the same clock frequency. Therefore

the WCET for each query in GD is the same throughout the system. The problem is simpli-

fied by restricting the time periods of the parent and child queries in GD to be multiples of

each other. An example of the homogeneous distributed system model is given in Fig. 5.1.

Figure 5.1: Homogeneous Distributed System Model

5.2 List Scheduling (LS) for Homogeneous Distributed Systems

The pseudo-code representation of the technique proposed to compute the schedule of the

DMG in a homogeneous distributed system is given in Algorithm 3. The purpose of the

algorithm is to find a feasible schedule for the given DMG in a bounded time so that when-

ever there are changes in the system a schedule can be computed before the system becomes

69

Algorithm 3 Pseudo-code representation of LS for scheduling DMGs on a homogeneous
distributed systems

P← Set of processors in the system
Calculate the hyper-period HG of the graph.
Calculate the minimum number of times each query qi is repeated within one cycle of the
graph, times(qi).
Translate history-intervals to directed edges.
Compute bl(qi) for each query qi ∈ Q.
Assign bl(qi) to all the incoming edges of each query qi ∈ Q
while there are unscheduled queries do

Compute the ready-list R.
for each ready query r j ∈ R do

Order the queries in decreasing order of their bottom-level. The ties are broken by
prioritising the query that has a child query with a greater bottom-level.
Parent(r j)← Set of parent queries of ready query r j : ∃ a path p(pi→ r j) ∈ GD

for each processor Pj ∈ P do
for each parent query pi ∈ Parent(r j) do

Pi← Allocated processor of parent query pi ∈ Parent(r j)
if Pj 6= Pi then

Create a communicating message mi j from Pi to Pj.
for each path pathk between Pj and Pi do

for each link lm in pathk do
if mi j can be scheduled on lm then

Calculate the finish time of mi j on lm
end if

end for
The finish time of mi j on pathk is equal to the time the last link in the path
took to transmit the information.

end for
Select the path that gives the earliest finish time to mi j.

end if
end for
if r j can be scheduled on Pj then

Calculate the start time of r j on Pj

end if
end for
Assign the processor Pj that gives earliest start time to r j and also fulfills its relative
deadline D(r j)

end for
end while

70

unstable and the faults can be identified within the system-defined time. The algorithm fol-

lows the concept of list scheduling, i.e. assign priorities to the queries, order the ready

queries according to the calculated priorities and then assign them to free processors while

satisfying the precedence constraints of the DMG. Along with scheduling the diagnostic

queries, the algorithm also schedules the data transmission between the queries. The edges

in the graph are assigned the priority of their destination query and are allocated to the

communication path that computes least communication time for them. There are four

main steps of the algorithm: (i). Priority assignment, (ii). Adding queries to ready list, (iii).

Ordering the ready list and (iii). Processor selection for query and path selection for mes-

sages. Before starting the scheduling phase, the algorithm first calculates the hyper-period

HG of the given DMG using Eq. 4.9. Then the minimum number of times each query qi

repeats in one HG is calculated using Eq. 4.10. Lastly, Algorithm 2 is used to convert the

history-intervals to directed edges.

5.2.1 Proposed Algorithm

1. Priority assignment: Before adding the queries to the ready list, the algorithm as-

signs a static priority to each query in the DMG. For this purpose, bottom-level of

each query qi ∈ Q is computed using Eq. 4.18. Static priority here means that once

a priority is assigned to a query it remains unchanged throughout the computation

of the schedule. Pseudo-code representation of the algorithm used to calculate the

bottom-level of a query qi is given in Algorithm 4. The priority calculated for each

query qi is also assigned to the incoming edges of said query.

2. Query Selection: The next step is to add all the ready queries to a ready list that is

represented by R. A query qi is said to be ready if all of its predecessors have com-

pleted their execution [19]. The algorithm traverses through the graph and adds all

the ready queries to R. Here, it is essential to determine the number of iterations of

the parent query that send the data to the child query. Only when all the required iter-

71

Algorithm 4 Pseudo-code representation for calculating bottom-level of a query qi

Children(qi)← Set of successor queries of qi : ∃ a path p(qi→ c j) ∈ GD
D(mi j)← Data transmitted from qi and c j : ∃ a path p(qi→ c j) ∈ GD
W (qi)←WCET of qi
bl(c j)← Bottom-level of c j
bl(qi)←W (qi), Bottom-level of qi
for each child query c j ∈Children(qi) do

bl(q)← bl(c j)+W (qi)
if bl(q)> bl(qi) then

bl(qi)← bl(q)
end if

end for

ations of the parent queries are completed then the child query can start its execution.

The graph obtained after the translation of history-intervals to directed edges is used

to determine the required iterations. For example in Fig. 4.13b, query q2 can only

start its execution after the completion of the first iteration of query q1 whereas query

q4 can only start its execution after the first iterations of q2 and q3 are completed. The

simplified DMG created using Algorithm 2 is used to determine the starting point of

each query in the graph. If all the parent queries have completed their required iter-

ations then the child query is added to R. The ready-time of a query qi is given as,

rt(qi) = max
q j∈pred(qi)

f k
t (q j) : ∃ a path p(q j→ qi) ∈ GD (5.1)

where, f k
t (q j) is the finish time of the kth required iteration of q j and pred(qi) is the

set of predecessor queries of qi. The ready-time of a query is also called its release

time. If there are no predecessors of qi i.e., pred(qi) = /0 then rt(qi) = t = 0. The

ready-list R is a set of queries and can be defined as,

R = {qi ∈ Q : global time is equal to rt(qi)} (5.2)

72

3. Order the ready list R: In this step, the ready list R obtained in step 2 (cf. Eq . 5.2)

is ordered in descending order of the bottom-level of the queries in GD. In case of

ties, the query that lies in the critical path or has a child query with max bottom-level

among children of other queries is ranked higher in the ready-list.

4. Path and processor selection: After the generation and order of the ready list R,

the next step is to select a processor for the execution of the query. The algorithm

traverses through the list of processors and assigns the query to the processor that

gives it the earliest start time and on which the query fulfils its relative deadline. For

a processor to execute a query, the query must not overlap or hinder the execution of

the queries already scheduled on the processor. To ensure a query qi does not over-

lap other queries scheduled on a processor Pj, Algorithm 5 is used. The algorithm

traverses through the list of queries already scheduled on Pj and determines whether

the execution of qi overlaps the already scheduled queries on Pj. If an overlap occurs

between any iteration of qi and q j already scheduled on Pj then qi cannot be sched-

uled on Pj. Moreover, a query cannot start its execution until all of its required data

is transmitted to the selected processor. This has been explained later in the chapter.

The earliest start time of a query qi on a processor Pj can be given as,

EST (qi,Pj) = DRT (qi,Pj) (5.3)

where, DRT (qi,Pj) is the time at which all the data required by qi is available at Pj.

For computing the start time of the query on the processor, it is first necessary to

schedule the incoming edges of the query. It is assumed that intra-processor com-

munication cost, i.e. communication between queries assigned to the same processor

is zero. This assumption is following the fact that the communication on the same

processor is cheap than communication between different processors and is therefore

negligible [19]. If the parent and child queries are allocated to different processors,

73

then a message is created and transmitted using the path that gives the least commu-

nication cost to the message. Since the links in the distributed system have different

bandwidths, therefore the communication time might be different on each link in the

same path. For complete transference of data, a link must not start transmitting a

message before its previous link has completed its transmission. Consider a message

mi j transmitting from processor Pi to Pj through a path pathi j that has k number of

links or hops then the earliest start time of the message mi j on a link ln ∈ pathi j where

n is a natural number ranging from 1 to k can be given as,

EST (mi j, ln) = max
ln∩ln−1∈pathi j

{FT (mi j, ln−1),EAT (ln)} (5.4)

where, FT (mi j, ln−1) is the finish time of mi j on the previous link ln−1 in the path

pathi j and EAT (ln) is the earliest available time of ln. The finish time of mi j on ln is,

FT (mi j, ln) = ST (mi j, ln)+ c(mi j, ln) (5.5)

where, ST (mi j, ln) is the start time of mi j on ln and c(mi j, ln) is the communication

cost of mi j on ln calculated using Eq. 4.2. The finish time of mi j on pathi j is the

maximum finish time of mi j on the last link in the path i.e. the kth link. The finish

time of mi j can then be represented as,

FT (mi j, pathi j) = FT (mi j, lk) (5.6)

The path between processors Pi and Pj that satisfies min{FT (mi j, pathi j)} is selected

for transmission of the message mi j. The queries transmitting the messages are pe-

riodic, which means that the transmission is also periodic. Therefore, each message

is assigned the greater time period among the transmitting queries and is repeated

the number of times the query with a greater time period is repeated. Moreover,

74

all the iterations of the message are transmitted using the same path. Similar to the

processors, a message cannot be scheduled on a link if it overlaps the execution of

other messages scheduled on the link. A message mi j can be transmitted on a path

pathi j if it does not overlap the messages already scheduled on any link in the path.

The pseudo-code representation of the algorithm used to ensure that a message mi j

does not overlap any other messages on a link ln is given in Algorithm 6. If all the

incoming messages of qi are scheduled successfully and Algorithm 5 does not return

any query that is scheduled in the same duration as qi then qi is allocated to Pj and

removed from the ready-list R. All the iterations of qi are scheduled on the same

processor.

Algorithm 5 Pseudo-code representation for ensuring a query qi can be scheduled on the
processor Pj

W (qi,Pj)←WCET of query qi on processor Pj
T (qi)← time period of query qi
a← Iteration number of query qi
b← Iteration number of query q j already scheduled on processor Pj
HG← Hyper-period of the graph GD
W (q j,Pj)←WCET of query q j already scheduled on processor Pj
T (q j)← time period of query q j

for a = 0 to a = HG
T (qi)

do
ST (qi,Pj)← Start time of the ath iteration of query qi on processor Pj
duration = ST (qi,Pj) + W (qi,Pj)

for b = 0 to b = HG
T (q j)

do
ST (q j,Pj)← Start time of the bth iteration of query q j on processor Pj
d = ST (q j,Pj) + W (q j,Pj)
if (ST (qi,Pj)≥ ST (q j,Pj) < d) OR (ST (qi,Pj)≥ duration < d) then

qi can not be scheduled on Pj
Exit

else if (ST (q j,Pj)≥ ST (qi,Pj) < d) OR (ST (q j,Pj)≥ d < duration) then
qi can not be scheduled on Pj
Exit

end if
end for

end for

75

Algorithm 6 Pseudo-code representation for ensuring a message mi j can be scheduled on
the link ln

c(mi j, ln)← Communication cost of message mi j on link ln
T (mi j)← time period of message mi j
a← Iteration number of message mi j
b← Iteration number of message Mi j already scheduled on link ln
HG← Hyper-period of the graph GD
c(Mi j, ln)← Communication cost of message Mi j already scheduled on link ln
T (Mi j)← time period of message Mi j

for a = 0 to a = HG
T (mi j)

do
ST (mi j, ln)← Start time of the ath iteration of message mi j on link ln
duration = ST (mi j, ln) + c(mi j, ln)
for b = 0 to b = HG

T (Mi j)
do

ST (Mi j, ln)← Start time of the bth iteration of message Mi j on link ln
d = ST (Mi j, ln) + c(Mi j, ln)
if (ST (Mi j, ln)≥ ST (mi j, ln) < d) OR (ST (Mi j, ln)≥ duration < d) then

mi j can not be scheduled on ln
Exit

else if ST (mi j, ln) ≥ ST (Mi j, ln) < duration) OR (ST (mi j, ln) ≥ d < duration)
then

mi j can not be scheduled on ln
Exit

end if
end for

end for

76

From the mentioned steps, steps [2-4] are repeated until all the queries in the DMG are

scheduled.

5.2.2 Example

Consider the DMG given in Fig. 5.2a. The target 3-processor homogeneous distributed

system architecture is given in Fig. 5.3. The system has single bi-directional communi-

cation paths from P1 to P2 (< l1, l2 >), P1 to P3 (< l1, l3, l4 >) and P2 to P3 (< l2, l3, l4 >).

Using Eq. 4.9, the hyper-period of the DMG is calculated as 8 ms. After that Eq. 4.10

is used to calculate the minimum number of times each query is repeated in the graph.

Queries q1, q2 and q3 are repeated at least twice, q5 and q6 are executed only once whereas

q4 is repeated at least four times in one execution cycle. The algorithm then translates

the history-intervals to directed edges as shown in Fig. 5.2b. The bottom-level calculated

for the queries using Eq. 4.18 are: bl(q1) = 13, bl(q2) = 11, bl(q3) = 10, bl(q4) = 5,

bl(q5) = 8, and bl(q6) = 3. At time 0 ms, only query q1 is ready for execution so it is

assigned to processor P1. At 1 ms, both q2 and q3 are ready but q2 is given priority because

it has a greater bottom-level. Processor P1 gives earliest start time to q2 while fulfilling its

absolute deadline i.e., 5 ms. For q3 with an absolute deadline 5 ms, processor P2 is selected

and the message from P1 to P2 is transmitted on path < l1, l2 >. Since q4 requires only one

iteration of q3, therefore it is ready for execution at 3.5 ms. Earliest start time of q4 at P1 is

5 ms and at P2, it is 3.5 ms. Therefore, it is assigned to P2. Query q5 is ready at 7.5 ms after

the second iteration of q3. Processors P1 and P2 cannot execute q5 so it is allocated to P3.

Messages m25 and m35 are transmitted on paths < l1, l3, l4 > and < l2, l3, l4 >, respectively.

The calculation for the communication time of the messages is slightly tricky here because

both paths share links l3 and l4. Both messages start transmitting from their respective

processors at 7.5 ms. Since link l2 is faster than link l1 so m35 reaches link l3 first at 8 ms.

When m25 reaches l3, it has to wait for m35 to finish its transmission on l3 that ends at 9 ms,

at which point m25 starts transmitting again. In Fig. 5.4, it is visible that m25 gets blocked

77

by m35 for 1.5 ms and starts transmitting again as soon as link l3 is free. After that there are

no collisions on the path and m35 reaches P3 at 9.5 ms and m25 reaches at 10.5 ms. Query

q5 completes its execution at 14.5 ms. Lastly, again it is not possible to execute q6 on either

P1 or P2 so it is allocated to P3. Message m46 is transmitted on path < l2, l3, l4 >. Thus, q6

starts its execution at 16.5 ms and completes at 19.5 ms which is the schedule length for

one cyclic execution of given GD. The timeline representation of the schedule is given in

Fig. 5.4. Here, path12 is < l1, l2 >, path23 is < l2, l3, l4 > and lastly path13 is < l1, l3, l4 >.

(a)
(b)

Figure 5.2: (a). DMG - GD (here D(qi) = T(qi)) (b). GD after translating the history-interval
to directed edges (here D(qi) = T(qi))

Figure 5.3: Homogeneous distributed system (l1 = l3 = 1 Mb/ms, l2 = l4 = 2 Mb/ms)

5.2.3 Complexity of LS algorithm for homogeneous systems

In the LS algorithm for homogeneous distributed systems, the time complexity to compute

the bottom-level of queries using a depth-first search (DFS) is O(|Q|+ |M|) [129]. Sort-

78

Figure 5.4: Schedule representation for GD given in Fig. 5.2a implemented on architecture
given in Fig. 5.3 (t = 0 ms)

ing the queries has a complexity of O(|Q|log|Q|). Computing the time required for each

message on each path has a worst-case time complexity of O(|Q|+ |M|)|P||L|) and finding

the shortest path for the message communication has a complexity of O(|L|log|L|). Lastly,

allocating the query to the processor that gives it the earliest start time has a worst-case

complexity of O(|Q|+ |M|)|P|. The complexity of the algorithm majorly depends upon the

number of nodes and edges in the graph and the communication network.

5.3 Experimental Setup

In this section, various experiments are performed to check the validity of the proposed

algorithm. The experiments are performed on a platform with four Intel Core i5-6200U

cores containing 23 GB RAM and operating at a fixed clock frequency of 2.30 GHz. The

operating system used is fedora 27 with kernel Linux 5-generic. The algorithm is designed

in C and implemented on an online-server.

A set of randomly generated graphs are used to test the LS algorithm for different

parameters. The following characteristics, that are widely used to generate random graphs

[19], are used to generate test DMGs.

1. Total number of queries in the DMG, i.e., |Q|.

79

2. Probability of a directed edge between two queries, i.e. prob.

3. Time period T (q) of a query q ∈Q. They are generated from the geometric sequence

{T,T ∗ r,T ∗ r2, ...,T ∗ rk} where r 6= 0 and k is a non-negative integer. A geometric

sequence is used because the algorithm is applied to DMGs that have either the same

or multiple periods. If an arithmetic sequence is used, then it cannot be guaranteed

that the time periods of two queries are multiple of each other.

4. Relative deadline D(q) of a query q ∈ Q. It is equal to the time period of the query,

i.e., T (q).

5. A utilization factor, UT (q) ∈ R>0 is used to calculate the WCET of each query.

UT (q) is the ratio of WCET of a query q to its time period i.e. W (q)
T (q) . The value for

the utilization factor lies in the range (0,1) with both 0 and 1 excluded.

6. History interval < ai j,bi j > between queries qi and q j, where qi is the parent of q j,

is generated randomly such that is generated randomly from an integer arithmetic

sequence such that ai j ∈ Z≥0 and bi j ∈ Zbi j≥0∪bi j<ai j .

7. Eq. 4.23 is used to calculate the average amount of data transferred between the

queries. The unit for this is megabits.

The mentioned characteristics are used to generate 100 DMGs each of 100, 150 and

200 queries per graph. The probability of an edge between two queries in the graph is 0.5.

The time period of each query is taken from the geometric range {4,12,36,108} where

T = 4, r = 3 and k = 3 measured in milliseconds and UT is 0.5. Thus the range of W (q)

is from 2 to 54 ms. The history-interval < ai j,bi j > is chosen from the arithmetic range

{0,1,2, ...,10} such that bi j ≤ ai j. The CCR value is either 0.1, 0.5 (low communication

loads) or 1 (medium communication load). The amount of data transferred between the

queries is given in megabits.

80

The system contains distributed clusters connected through a defined network topology.

Following characteristics are used to generate the system architectures.

1. Total number of processors in the distributed system, P.

2. Total number of processors, PSN and switches SW in each cluster.

3. Network topology used in each cluster and the overall system.

4. Total number of links per cluster represented by L.

5. Rate of transmission wk of a link lk in a cluster. It is randomly generated from the

arithmetic sequence {wmin,wmin + β , ...,wmax} such that the overall bandwidth of

the cluster is always equal to wmax+wmin
2 . β is the common difference between two

consecutive numbers of the sequence.

For the system architecture, the total number of processors is varied between 8, 16, 32

and 64. There are four processors in each cluster, so the total number of distributed clusters

are 2, 4, 8 or 16. Each cluster uses a star topology with one switch and one bi-directional

link between a processor and the switch. The bandwidths of the links are generated from

the arithmetic sequence {60,100,140,180,220}. The rates are given in Mbps. For the

overall system, a ring topology is used.

The metrics used to explain the results are scheduling length (cf. Eq. 4.20) and schedul-

ing rate of the DMGs, i.e., the total number of DMGs in a set that are successfully sched-

uled (cf. Eq. 5.7). These metrics were measured against the total number of queries per

DMG, communication to computation cost ratio, and the total number of processors in the

distributed system.

%Rate =
total number of DMGs scheduled in the set

total number of DMGs in the set
∗100 (5.7)

81

5.4 Results

This section presents an analysis of the results obtained from the experiments detailed

above. In the first set of experiments, the trend in the scheduling length is observed by

a varying number of queries in the DMG. Consider Fig. 5.5 where 100 instances of 100,

150 and 200 query task graphs are scheduled on a 64-processor ring based homogeneous

distributed system. The experimental setup is considered with low and medium communi-

cation loads. The graphs show that the average scheduling length generally increases with

an increase in the number of queries. For example, in Fig. 5.5b, the average scheduling

length for 100 instances of 200 query task graphs is approximately 154% greater than the

average scheduling length for the same amount of 100 query task graphs. The paralleliza-

tion factor of the DMGs plays an important role in the increase in the scheduling length.

For example, consider a 100 query graph scheduled on a 4-processor distributed system.

If the graph has a maximum parallelization factor of three (i.e. at maximum three queries

can execute parallel to each other), it means that at maximum it uses only three processors

at a time. Now if the graph size is increased to 150 queries with the same parallelization

factor, then the DMG still at maximum uses only three processors which in turn increases

the schedule length. If the parallelization factor is increased to four in the latter case, there

would still be an increase in SL but not as high as before. The parallelization factor also

plays a role in determining the schedulability of the DMG on the target distributed system.

If there are enough resources to cater to the increase in DMG size, then the schedulability

ratio is high.

In the next set of experiments, the scalability of the algorithm was measured against

the computation to communication cost ratio (CCR). For these experiments, the trend of

scheduling length and schedulability rate is observed when the communication load on the

network is increased. Consider Fig. 5.6a where results of the scheduling length obtained by

scheduling 100 instances of 100 query task graphs on a 16-processor ring distributed system

82

are presented. Here, the communication load is varied from low, i.e. 0.1 and 0.5 to medium,

i.e. 1.0. The results show that as the communication load increases, the overall schedule

length is increased, for example, in Fig. 5.6a the scheduling length is approximately four

times more when CCR is 1.0 than when CCR is 0.1. A similar pattern is observed for the

other results, as shown in Fig. 5.6b and Fig. 5.6c. The increase in the schedule length

can be designated to the fact that an increase in the amount of data transferred between

queries increases the time required for transmission if the bandwidth remains unchanged.

The results also showed that an increase in the CCR value lowers the schedulability of the

DMGs. It can be attained to the fact that a message that was previously schedulable on

a link may now overlap other messages scheduled on the link with its increased duration

making it unschedulable.

Lastly, to study the effect of increasing the number of clusters (processors and links)

on the scheduling length, 100 different instances of 100 query task graphs are implemented

on 8, 16, 32, and 64-processor ring based distributed systems. The number of links for the

mentioned system architectures is 9, 20, 40, and 96, respectively. The communication load

is varied from low to medium. The results (Fig. 5.7) show that the scheduling length de-

creases with an increase in the number of resources. Although the scheduling length tends

to converge to the same result even if the resources are further increased. The paralleliza-

tion factor plays a role in this scenario, i.e. if the system can execute only three queries

in parallel than the scheduling length does not change even if the number of processors

is increased from 4 to 100. The results also showed that the schedulability ratio increases

with an increase in the number of resources. This increase is understandable since a greater

number of resources increases the chances of obtaining a schedule.

83

36

56

156

108.5535

155.854

182.783

160.2

274.6377

408.2667

650

711

732

100 150 200

Number of queries per DMG (Q) --->

0

100

200

300

400

500

600

700

800

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(a) CCR = 0.1

66 82

229

307.5094

453.5141

533.9285

371.8067

673.5217

944.7333

1592

1862

1930

100 150 200

Number of queries per DMG (Q) --->

0

200

400

600

800

1000

1200

1400

1600

1800

2000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(b) CCR = 0.5

98 112

325

562.5941

829.4252

968.3081

635.67333

1172.0797

1614.6667

2907

3388 3379

100 150 200

Number of queries per DMG (Q) --->

0

500

1000

1500

2000

2500

3000

3500

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(c) CCR = 1.0

Figure 5.5: Variation in SL with increase in size of DMG (64-ring distributed system)

84

90
125

175
113.0558

338.4709

623.8114

222.7681

470.9855

782.9783

650

1830

3374

CCR = 0.1 CCR = 0.5 CCR = 1.0
0

500

1000

1500

2000

2500

3000

3500

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(a) Q = 100

174
259

359

167.2519

533.7806

991.3551

442.65217

1000.5435

1704.6739

920

2637

4787

CCR = 0.1 CCR = 0.5 CCR = 1.0
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(b) Q = 150

558

782

1057

427.70504

1203.378

2047.0015

1092.2

2316.4667

3738.9333

1961

4908

8131

CCR = 0.1 CCR = 0.5 CCR = 1.0
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(c) Q = 200

Figure 5.6: Variation in SL with increase in CCR (16-ring distributed system)

85

345

174

96
56

301.8332

167.2519
147.6675 155.854

828.4783

442.6522

296.2971
274.6377

1797

920

711 711

8,9 16,20 32,40 64,96

Number of processors/links (P,L) --->

0

200

400

600

800

1000

1200

1400

1600

1800

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(a) CCR = 0.1

493

259
140 82

961.7475

533.7806
443.9207 453.5141

1828.6232

1000.5435

710.31884 673.52174

5216

2637

1924
1862

8,9 16,20 32,40 64,96

Number of processors/links (P,L) --->

0

1000

2000

3000

4000

5000

6000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(b) CCR = 0.5

681

359
193 112

1785.3639

991.35512
819.93939 829.42519

3081.5145

1704.6739

1226.5362 1172.0797

9459

4787

3512
3388

8,9 16,20 32,40 64,96

Number of processors/links (P,L) --->

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S
c
h

e
d

u
li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
>

minimum

standard deviation

average

maximum

(c) CCR = 1.0

Figure 5.7: Variation in SL with increase in number of processors and links (Q = 100)

86

CHAPTER 6

LIST SCHEDULING FOR ACTIVE DIAGNOSIS IN HETEROGENEOUS ODRE

SYSTEMS

THIS CHAPTER presents a list scheduling heuristic to schedule diagnostic queries and com-

munication messages in a heterogeneous open distributed environment. As explained in

previous sections, Open Distributed Real-Time Embedded (ODRE) systems have require-

ments for reliable operations with strict timing constraints and an open-world assumption.

In such systems, an embedded computer system has to provide its services with a depend-

ability that is better than the dependability of its constituent components. Considering the

failure rate of electrical components, one way to achieve this level of dependability is to

make the ODRE system fault-tolerant. This thesis uses diagnostic queries to detect and

diagnose faults in ODRE systems. The diagnostic queries are represented in the form of

a Diagnostic Multi-query Graph (DMG). Scheduling the diagnostic queries before exe-

cuting them on the system depicts their temporal behaviour and also bounds the time to

detect and diagnose faults. In ODRE systems, the term openness means that the electrical

components can leave and enter the system at runtime and there is a time-bound in which

the schedule must be recomputed to continue the normal and accurate functioning of the

system. Therefore, the scheduling heuristic must be fast and efficient so that the sched-

ule can be recalculated before the system becomes unstable. The time complexity of the

list scheduling heuristic is pseudo-polynomial that makes it an efficient heuristic to solve

the real-time scheduling problem. If a feasible schedule is not found then the designer is

notified that the changes cannot be integrated to the system. In this scenario, the system

keeps running the old schedule. In this chapter, a modified version of the traditional list

scheduling heuristic is proposed to schedule the DMG to diagnose faults in heterogeneous

open distributed embedded systems. The proposed algorithm is used to schedule both sys-

87

tem application and diagnostic graphs. This chapter only focuses on the scheduling of the

diagnostic application and assumes that the system application is already scheduled.

6.1 Problem Formulation

Given a heterogeneous system architecture presented in Section 4.1 and a diagnostic ap-

plication GD presented in Section 4.2.2 the following problem has to be solved: construct

a feasible static cyclic schedule for the time-triggered diagnostic queries in GD and the

time-triggered message executions such that all the timing constraints of the system are

fulfilled.

The system architecture considered in this scenario consists of heterogeneous proces-

sors. It means that the processors have different clock frequencies and compute the queries

with different execution times. The worst-case execution time (WCET) of each diagnos-

tic query qi ∈ Q is represented in a m x n computation cost matrix W. The m rows in this

matrix represent the queries, whereas the columns n represent the processors in the overall

system. It means that there are total m queries in the DMG and total n processors in the

system. Each wi j, where i = 1,2, ...,m and j = 1,2, ...,n, gives the worst-case execution

time of query task qi on processor Pj. An example of the computation matrix is given in

Table 6.1 for the heterogeneous distributed system model of Fig. 6.1.

Figure 6.1: Heterogeneous Distributed System Model

88

Algorithm 7 Pseudo-code representation of LS for scheduling DMGs on a heterogeneous
distributed systems

P← Set of processors in the system
Calculate the hyper-period HG of the graph.
Calculate the minimum number of times each query qi is repeated within one cycle of the
graph, times(qi).
Translate history-intervals to directed edges.
Compute the W (qi) for each query qi ∈ Q.
Compute bl(qi) for each query qi ∈ Q.
Assign bl(qi) to all the incoming edges of each query qi ∈ Q
while there are unscheduled queries do

Compute the ready-list R.
for each ready query r j ∈ R do

D(r j)← Deadline of r j.
Compute tl(r j) for r j.
Assign tl(r j) to all incoming edges of r j

Order the queries in increasing order of their top-level. The ties are broken by giving
priority to the query with greater bottom-level.
Parent(r j)← Set of parent queries of ready query r j : ∃ a path p(pi→ r j) ∈ GD

for each processor Pj ∈ P do
for each parent query pi ∈ Parent(r j) do

Pi← Allocated processor of parent query pi ∈ Parent(r j)
if Pj 6= Pi then

Create a communicating message mi j from Pi to Pj.
for each path pathk between Pi and Pj do

for each link lm in pathk do
if mi j can be scheduled on lm then

Calculate the finish time of mi j on lm
end if

end for
The finish time of mi j on pathk is equal to the time the last link in the path
took to transmit the information.

end for
Select the path that gives the earliest finish time to mi j.

end if
end for
if r j can be scheduled on Pj then

Calculate the finish time of r j on Pj

end if
end for
Select the processor that gives the earliest finish time to r j and on which r j fulfills its
relative deadline D(r j).

end for
Update the weights of the edges and the already scheduled queries.

end while

89


``````````````̀Queries
Processors P1 P2 P3

q1 0.5 1 1.5
q2 1.75 2.25 2.75
q3 0.65 1.15 1.65
q4 1 1.5 2

Table 6.1: Computation Cost Matrix W for Fig. 6.1

6.2 List Scheduling (LS) for Heterogeneous Systems

The pseudo-code representation of the technique proposed to schedule diagnostic queries

in heterogeneous distributed systems is given in Algorithm 7. It follows the concept of

list scheduling, i.e. assign priorities to the queries and then allocate the ready queries to

processors that give them the earliest finish time. While scheduling the queries, message

scheduling is also considered. Each edge in the DMG is assigned the same priority as its

destination query and is allocated to the path that gives it the least communication cost.

There are four steps of the proposed scheduling heuristic: i). Adding queries to ready

list, ii). Priority assignment and ordering the ready list, iii). Path and processor selection

for messages and queries and, iv). Status update. Additionally, the following steps are

performed before going to the query selection phase.

1. The algorithm first calculates the hyper-period HG of GD using Eq. 4.9.

2. The minimum number of times each query qi is repeated in one HG is calculated

using Eq. (4.10).

3. Algorithm 2 is used to translate the history-intervals to directed edges in the graph.

4. Since each query has a different computation cost on each processor, therefore, cal-

culating the bottom-level without simplification is not possible because it leads to

multiple priorities. Therefore, average computation cost W (qi) of each query qi ∈ Q

is computed using Eq. (6.1). Here, P represents the total number of processors in the

90



system.

W (qi) =
∑

P
k=1W (qi,Pk)

P
(6.1)

5. Bottom-level bl(qi) of each query qi ∈ Q is computed using Eq. 4.18 and W (qi),

calculated in the previous step. Pseudo-code representation of this step is given in

Algorithm 4. The calculated bl(qi) of each query qi is also allocated to all of its

incoming edges.

6.2.1 Proposed Algorithm

1. Query Selection: After completing the initial steps of the algorithm, the scheduler

computes the ready list R. A query qi ∈ Q is said to be ready when all its parent

queries have completed their execution [19]. Here, the graph obtained after translat-

ing the history-intervals to directed edges is used to determine the starting point of

the child query. If the queries related to the incoming edges of the child query have

completed their execution, then the child query is added to R. The ready time of a

query qi ∈ Q is given in Eq. 5.1 and the ready-list R is computed using Eq. 5.2. The

ready-time of a query is also its release time.

2. Priority assignment and Ordering the Ready list: The top-level of each query ri ∈ R

is calculated using Eq. 4.19. The ready list R is then ordered in increasing order

of the top-level of each query. Also, all the incoming edges are assigned the same

priorities as their destination queries because naturally, the query with higher priority

should have its incoming messages scheduled first. If priorities are the same for two

queries, then the tie is broken using the average bottom level of the queries computed

in step 6 of the algorithm. In this case, the query that has a greater bottom-level is

placed higher in the ready list. Algorithm 8 shows the pseudo-code representation

for calculating top-level of a ready query ri.

3. Path and processor selection: After the generation of a ready list, the scheduler

91



Algorithm 8 Pseudo-code representation for calculating top-level of ready query ri

Parent(qi)← Set of predecessor queries of qi : ∃ a path p(p j← qi) ∈ GD
W (p j)←WCET of p j ∈ Parent(qi) computed in Algorithm 7
D(m ji)← Data transmitted between p j and qi : ∃ a path p(p j← qi) ∈ GD
tl(p j)← Top-level of p j
tl(qi)← Initialize to zero, Top-level of qi
for each parent query p j ∈ Parent(qi) do

tl(q)← tl(p j)+D(m ji)+W (p j)
if tl(q)> tl(qi) then

tl(qi)← tl(q)
end if

end for

traverses through the paths and processors to select the pair that gives the least com-

munication time to the incoming messages and least computation cost to the query,

respectively. The goal of this phase is to select the combination that gives the earliest

finish time to the ready query. Here, it is assumed that intra-processor communica-

tion cost is zero, i.e. if two dependent queries are scheduled on the same processor,

then their data transfer cost is zero. On the other hand, if two dependent queries are

scheduled on two different processors, then a message is created whose communica-

tion cost depends upon the path selected for communication.

• Path selection: If a message mi j is being transmitted from processor Pi to Pj,

then among all the paths between Pi and Pj, the path pathi j that gives the least

communication cost is selected. Since the links have different bandwidths, so a

link must not start transmitting a message before it is fully received, i.e. com-

pletely transmitted by the previous link in the path. Consider a message mi j

transmitting from processor Pi to Pj through a path pathi j that has k number of

links or hops then the earliest start time of mi j on a link ln in the path pathi j

is given in Eq. 5.4 and its finish time is given in Eq. 5.5. The finish time of

mi j on pathi j is the finish time of the message on the last link i.e. kth link in

92



the path (cf. Eq. 5.6). The path between processors Pi and Pj that satisfies

min{FT (mi j, pathi j)} is selected for transmission of the message mi j. Since

the queries exchanging the message are periodic, therefore mi j also repeats its

transmission in regular time intervals. The time period for the message is equal

to the time period of the sending query task if it is greater than the time period

of the receiving query task and vice versa. All the iterations of a message are

executed on the same path. Algorithm 6 is used to make sure that only one mes-

sage is transmitted over a link during a time slot. If any iteration of message

mi j overlaps the time-slot of an iteration of message Mi j scheduled on link ln

then mi j cannot be scheduled on the path containing the link.

• Processor selection: The scheduler traverses through all the processors of the

system and selects the processor that gives the earliest finish time to the schedul-

ing query. Another condition for the selection of the processor is that the query

fulfils its relative deadline D(qi). The finish time of qi on a processor Pj is given

as [112]:

FT (qi,Pj) = ST (qi,Pj)+W (qi,Pj) (6.2)

Here, ST (qi,Pj) is the start time of qi on Pj and W (qi,Pj) is the WCET of qi on

Pj. So the processor that gives the minimum finish time and on which the query

qi fulfills its deadline, i.e., FT (qi,Pj)< ST (qi,Pj)+D(qi), is selected. A query

qi should not start its execution until all of its required data is transmitted to the

allocated processor. Therefore, the earliest start time of a query qi on processor

Pj can be given as,

EST (qi,Pj) = max{DRT (qi,Pj),EAT (Pj)} (6.3)

where, DRT (qi,Pj) is the data ready time of qi on Pj i.e. the time at which all

the data required for qi is transmitted to Pj and EAT (Pj) is the earliest available

93



time of Pj. Also Algorithm 5 is used to ensure that only one query is executed

during a time slot in the schedule. If any iteration of a query q j scheduled on

Pj lies within the time-slot allocated to an iteration of qi or vice versa then qi

cannot be scheduled on Pj.

4. Status Update: Once the query is scheduled on a processor, the status of the system is

updated. As qi is now scheduled on Pj so its WCET is no longer unknown. Hence the

weight of the vertex that identifies qi in the graph is set to its WCET on Pj. Moreover,

the weight of the edges between qi and all of its parents that were scheduled on Pj

are set to zero. The change in the weight of edges changes the top-level of qi so it is

recalculated. Since tl(qi) affects the top-level of all the child queries of qi therefore

it is recalculated to keep the critical path accurate at each step of the schedule.

The above mentioned steps are repeated until a valid schedule is obtained.

6.2.2 Example

Consider the DMG given in Fig. 6.2a. It needs to be scheduled on the heterogeneous

distributed system given in Fig. 6.3 that has two bi-directional communication paths from

P1 to P2 i.e. < l1, l2, l3 > and < l1, l4, l3 >. The corresponding computation cost matrix W

is given in Table 6.2. Each wi j in the computation matrix is in millisecond. Similarly the

time periods of the queries are also in milliseconds and given in Fig. 6.2a. According to the

algorithm, the first step is to calculate the hyper-period of the DMG using Eq. 4.9 i.e. 6 ms.

The algorithm then calculates the minimum number of times each query is repeated in one

cyclic execution of the DMG using Eq. 4.10 i.e. times(q1) = times(q4) = 3, times(q2) =

times(q3) = 2, and times(q5) = 1. After that the history-intervals in the DMG are translated

into directed edges as shown in Fig. 6.2b. The average computation cost and the average

bottom-level calculated for the example are given in Table 6.3. At 0 ms, only q1 and q2

are ready since they have no precedence constraints. Both the queries have top-levels equal

94



to zero so average bottom-level is used to break the tie. According to Table 6.3, q1 has a

higher priority than q2 so it is scheduled first. Processor P1 gives the earliest finish-time

to q1 0.5 ms therefore q1 is scheduled on P1. Query q2 ends at 1.5 ms for both P1 and

P2 but it hinders the execution of q1 on P1 so it is assigned to P2. Since the queries are

allocated to the processors so their WCETs are updated in the DMG. According to Fig.

6.2b, query q3 requires a single iteration of q1 so it is ready for execution at 0.5 ms. Its top-

level is calculated as 0.5 + 1 = 1.5. The finish time for q3 on P1 is 1 ms but it hinders the

execution of already scheduled q1. Therefore, q3 is allocated to P2. The finish time for m12

on < l1, l2, l3 > is 3 ms but it is 2.5 ms on < l1, l4, l3 > therefore the latter path is selected for

the transmission of m12. If q3 starts execution at 2.5 ms on P2, it overlaps the execution of

q2. Therefore, q3 is allocated the next available time slot on P2 at 4.5 ms. Query q4 is ready

at 5.5 ms and is assigned to P1 since it cannot be scheduled on P2. Similar to m12, path

< l2, l4, l1 > is selected for the transmission of m34 since it provides faster communication

service than the other path. Lastly, query q5 is ready at 10 ms and is assigned to P2 since it

cannot be scheduled on P1. Message m45 cannot be assigned to path < l1, l4, l2 > because

it hinders the transmission of m13 therefore it is assigned to < l1, l3, l2 >. Query q5 does

not start transmission on P2 at 12.5 ms because it overlaps both q2 and q3. Therefore it

is assigned to the next possible time slot at 14.5 ms. The schedule length for one cyclic

execution of given GD is 15 ms. The timeline representation of the schedule is given in Fig.

6.4. Here, path12 is < l1, l4, l2 >, path21 is < l2, l4, l1 >, and finally path’12 is < l1, l3, l2 >.

``````````````̀Queries
Processors P1 P2

q1 0.5 1
q2 1 1.5
q3 0.5 1
q4 0.5 1
q5 0.25 0.5

Table 6.2: Computation Cost Matrix W for GD given in Fig. 6.2a implemented on archi-
tecture given in Fig. 6.3

95

(a) (b)

Figure 6.2: (a). DMG - GD (here D(qi) = T(qi)) (b). GD after translating the history-interval
to directed edges (here D(qi) = T(qi))

Figure 6.3: Heterogeneous distributed system (l1 = l2 = 1 Mb/ms, l3 = l4 = 2 Mb/ms)

XXXXXXXXXXXXQueries
Features

W (qi) bl(qi) tl(qi) W (qi)

q1 0.75 6.5 0 0.5
q2 1.25 5.25 0 1.5
q3 0.75 4.75 1.5 1
q4 0.75 3 2.5 0.5
q5 1.25 1.25 3.5 0.5

Table 6.3: Features of the queries calculated for scheduling

Figure 6.4: Schedule representation for GD given in Fig. 6.2a implemented on architecture
given in Fig. 6.3 (t = 0 ms)

96

6.2.3 Complexity of LS algorithm for heterogeneous systems

In the LS algorithm for heterogeneous distributed systems, the time-complexity to calculate

the bottom and top levels of queries using the depth-first search (DFS) is O(|Q|+ |D||E|)

[129]. Sorting the queries according to their priorities has a complexity of O(|Q|log|Q|).

Calculating the communication time for each message has a complexity of O((|Q|+

|D||E|)|P||L|) and assigning the best possible link has O(|L|log|L|) time complexity. Lastly

assigning the query to the processor that gives its earliest finish time has complexities of

O(|Q|+ |D||E|)|P| and O(|P|log|P|). It shows that the complexity of the scheduler de-

pends greatly upon the size of DMG and the structure of system architecture. The highest

complexity is for the last two steps of the scheduler. It can be reduced by restricting the

algorithm to consider the first free link or the first available processor instead of searching

for the best possible solution. This restriction, however, might increase the schedule length

of the graph.

6.3 Experimental Setup

This section presents the results for the various experiments performed to test the validity

of the proposed algorithm. The experiments are performed on a platform with four Intel

Core i5-6200U cores operating at a fixed clock frequency of 2.30 GHz and 23 GB RAM.

The operating system used is fedora 30 with kernel Linux 5-generic. The algorithm is

programmed in C language and implemented on an online-server. A set of randomly gen-

erated graphs are used to test the scheduler, and the results are compared through varying

parameters. The following characteristics are used to generate these test graphs.

1. The total number of queries in the DMG represented by |Q|.

2. The number of directed edges per query in the DMG represented by |M|.

3. Time period T (q) of a query q ∈ Q. It is randomly generated from the arithmetic

97

sequence {Tmin(q),Tmin(q)+ 1, ...,Tmax(q)} such that the average time period T (q)

of the DMG is always equal to Tmin(q)+Tmax(q)
2 .

4. Relative deadline D(q) of a query q ∈ Q. It is equal to the time period of the query,

i.e., T (q).

5. History interval < ai j,bi j > between queries qi and q j, where qi is the parent of q j, is

generated randomly from an arithmetic sequence of integers such that ai j ∈ Z≥0 and

bi j ∈ Zbi j≥0∪bi j<ai j .

6. Average utilization factor UT(q), i.e. the ratio of average WCET of a query q ∈ Q to

its time period T (q), is used to calculate the W(q) of the query. This factor is chosen

such that the time period is always greater than the maximum WCET of a query.

7. Computation cost heterogeneity factor α is used in most scheduling algorithms [130,

131] to introduce heterogeneity to the system. If α = 0 then the WCET of a query is

the same for all the processors. If there are P processors in a distributed system and

the average WCET of a query is W (q) then the WCET of q on a processor Pi ∈ P lies

between [W (q)∗(1− α

2),W (q)∗(1+ α

2)] [130, 131]. This range is used to calculate P

different WCETs of a query q, and then the costs are arranged in ascending order, i.e.

the lowest cost is assigned to P1 and so on. The value of α is between (0, 2−2UT(q)
UT(q)

)

so that the WCET of a query at any processor is not greater than its time period.

8. Eq. 4.23 is used to calculate the amount of data transmission between queries. Here,

the average WCET of a query is used to keep the data transmission same between

queries for all processors in the distributed system.

The mentioned characteristics are used to generate 300 DMG applications. The appli-

cation size |Q| ranges from 200 to 600 with an increment of 200 queries per DMG. The

number of directed edges per query is four. The time period is taken from the arithmetic

sequence {1,2,3, ...,10} measured in milliseconds and UT is 0.25. Therefore, the range

98

for α is (0, 6) and is taken as one for the experiments. Thus the WCET of q lies between

[0.5W (q),1.5W (q)] where the range of W (q) is from 0.25 to 2.5 ms. The history-interval

< ai j,bi j > is chosen from the arithmetic range {0,1,2, ...,10} such that bi j ≤ ai j. The

CCR value varies between low and medium communication loads and is either 0.1, 0.5 or

1. The amount of data transmitted is given in megabits.

Different system architectures consisting of distributed clusters are generated for the

implementation of the scheduler. To keep things simpler, a distributed cluster in the sys-

tem consists of only homogeneous processors; therefore, heterogeneity factor α is zero

for each cluster. These nodes are combined through a defined network topology to form

a heterogeneous distributed system. Following characteristics are used to generate these

architectures.

1. Total number of processors used in the distributed system, P.

2. Network topology used in each cluster and the overall system.

3. Total number of processors PC and the total number of switches SW in a cluster. The

total number of switches here usually depend upon the topology used in the node.

4. Total number of links per cluster represented by L.

5. Rate of transmission wk of a link lk in the system. It is randomly generated from

the arithmetic sequence {wmin,wmin+β , ...,wmax} such that the overall bandwidth of

the cluster is always equal to wmax+wmin
2 . β is the common difference between two

consecutive numbers of the sequence.

For the system architecture, the total number of processors is varied between 16, 32 and

64. There are four processors in each cluster, so the total number of distributed clusters are

4, 8 or 16. Each cluster uses a star topology with one switch and one bi-directional link

between processors and the switch. The bandwidths of the links are generated from the

arithmetic sequence {40,60,80,100}. The rates are given in Mbps. For the overall system,

99

two topologies are used i). ring topology and ii). bus topology. The homogeneous clusters

are combined using these topologies to form a heterogeneous distributed system.

The metrics used to evaluate the results are scheduling length (cf. Eq. 4.20) and

scheduling rate of the DMGs, i.e., the percentage of DMGs successfully scheduled in a

set (cf. Eq. 5.7). These metrics were measured against the total number of queries per

DMG, communication to computation cost ratio, the total number of processors in the dis-

tributed system, and the network topology of the overall distributed system.

6.4 Results

This section presents an analysis of the results obtained from the experiments performed

using the setup described before. In the first set of experiments, the trend in the scheduling

length was observed with an increase in DMG's size. The scheduling length increases with

an increase in the total number of queries. Consider the bar graph shown in Fig. 6.5. Here,

100 graphs with application sizes 200, 400 and 600 are scheduled on a 64-bus networked

distributed system. Communication to computation cost ratio CCR, is 0.5. Each bar in the

graph represents the minimum, standard deviation, average and the maximum values of the

scheduling lengths. Here, the average scheduling length for Q = 200 is approximately 38.9

ms, whereas it increases to approximately 168.9 ms when the total number of queries is

increased to 600. The size of the DMGs does not considerably affect the scheduling rate if

there are enough resources in the distributed system.

In the second set of experiments, the results were evaluated against the increase in the

communication load on the network, i.e., an increase in CCR values from low to medium.

An increase in CCR increases the amount of data being transmitted from a parent query to

its child query. Which in turn increases the congestion over the network as each message

now occupies more bandwidth of the link. For example, an edge transmitting data of 4 units

over a link of the rate of four units/ms takes 1 ms to complete its transmission. Now if the

data is doubled to 8 units, the same edge occupies the link for the double amount of time.

100

SL vs. Q

200 400 600

Number of queries per DMG (Q) --->

0

50

100

150

200

250

300

350

400

S
c
h

e
d

u
li
n

g
 l
e
n

g
th

 (
S

L
)

m
s
 -

--
>

Minimum

Standard Deviation

Average

Maximum

Figure 6.5: 64-bus, CCR = 0.5, α = 1

SL vs. Q

200 400 600

Number of queries per DMG (Q) --->

0

50

100

150

200

250

300

350

400

S
c
h

e
d

u
li
n

g
 l
e
n

g
th

 (
S

L
)

m
s
 -

--
>

Minimum

Standard Deviation

Average

Maximum

Figure 6.6: 64-ring, CCR = 0.5, α = 1

101

Consider the graph in Fig. 6.7. Here 100 separate instances of Q = 200 queries per DMG

have been scheduled on a 32-ring distributed network. The CCR varies between 0.1, 0.5

and 1.0. Fig. 6.7 shows that when the communication load increases from low to medium,

the scheduling length is increased. It was also noticed from the results that increasing this

CCR value often results in a decrease in the scheduling rate over the same network. It is

explainable in the sense that a message which was previously scheduled over a link might

now hinder other messages on that link with its increased duration.

SL vs. CCR

CCR = 0.1 CCR = 0.5 CCR = 1
0

50

100

150

200

250

300

S
c
h

e
d

u
li
n

g
 l
e
n

g
th

 (
S

L
)

m
s
 -

--
>

Minimum

Standard Deviation

Average

Maximum

Figure 6.7: Variation in SL with an increase in CCR

The next set of results evaluate the results when the number of resources in the system

is increased. The increase in the number of processors increases the parallel execution of

queries which in turn reduces the overall schedule length of the DMG. Consider Fig. 6.8,

where 100 instances of a DMG containing 400 queries is scheduled on 16-, 32- and 64-ring

distributed systems. When a DMG is scheduled on a 64 processor distributed system, the

average scheduling length is considerably lower than when it is scheduled on a 16 processor

distributed system. An interesting point here is that after some time the scheduling length

starts converging to the same result irrespective of the number of resources being used.

The parallelization of the graph plays a role in this scenario. For instance, consider a graph

consisting of three queries that are possible to execute in parallel with each other. Now

if the number of processors is two, then two of the queries can run in parallel while the

102

last query has to wait for the other queries to complete execution. But if the number of

resources is increased to three, then the queries can easily execute in parallel. Now even

if the processors are increased to five, the graph still utilizes three processors so it will

give the same schedule length as in the previous case. The same principle applies in case

of scheduling rate of the graph. If there are more resources, then there is more chance of

obtaining a scheduling result.

SL vs. P

16 32 64

Number of processors (P) --->

0

100

200

300

400

500

600

S
c
h

e
d

u
li
n

g
 l
e
n

g
th

 (
S

L
)

m
s
 -

--
>

Minimum

Standard Deviation

Average

Maximum

Figure 6.8: Variation in SL with an increase in P

In the last set of experiments, the results are evaluated for different network topologies

in the system. Fig. 6.6 shows the ring based implementation of the experiment performed

in Fig. 6.5. The results show that there is not much difference in the scheduling length

of the graphs. However, the network topology has an impact on the scheduling rate. For

example, for Q = 600, the scheduling rate for the 64-ring network is approximately 86%,

but it reduces to 75% when the same scenario is applied on a 64-bus distributed network.

It might be because there are more link resources in a ring network which increases the

chances of successful message allocations. Increase in the link resources better exploits

the parallel execution of queries. Therefore, an increase in the number of link resources

increases the scheduling rate of the graph.

103

CHAPTER 7

INCREMENTAL LIST SCHEDULING

THIS CHAPTER presents an incremental list scheduling heuristic to schedule diagnostic ser-

vices in a homogeneous open distributed real-time environment where changes are made

to the system during runtime. An open distributed real-time embedded (ODRE) system

has requirements for reliable operations with strict timing constraints and open world as-

sumptions. If the failure rate of the electrical components is considered, then one way to

obtain dependability in such a system is through fault tolerance. This thesis supports fault-

tolerance in ODRE systems using a Diagnostic Multi-query Graph (DMG). A DMG is a

directed graph of diagnostic queries, that is used to detect and diagnose faults in ODRE

systems. It is scheduled before being implemented to depict its temporal behaviour and

also to bound the time to detect and diagnose faults. An open-world assumption in ODRE

system means that the system components can be changed, i.e., new electrical components

can be added, or old ones can be removed from the system, during runtime to realise global

services. Whenever there are changes in the system, the diagnostic graph is also changed.

For example, consider a sensor whose output is being used by a set of diagnostic queries to

diagnose faults. If this sensor is replaced with another sensor of the same type but different

characteristics then the characteristics of the diagnostic queries getting data from this sen-

sor are also changed. Whenever there are changes in the system the schedule is recomputed

to integrate these changes. The system then switches to this new schedule and the execution

of the diagnostic services proceed according to this schedule. Since ODRE systems have

stringent timing constraints and the changes are made at runtime therefore the scheduling

algorithm should be fast in recomputing a feasible schedule so that the changes can be

integrated before the system becomes unstable. An efficient way to do is to only sched-

ule the changes in the system while not touching the already scheduled diagnostic queries

104

and communication messages. This reduces the complexity of the scheduling algorithm

because it takes less time to find a schedule for only the changes rather than the whole di-

agnostic graph. In an ideal situation, the algorithm manages to find a feasible schedule for

the changes without touching the already scheduled diagnostic queries and communication

messages. However, in real-world applications, it might be necessary to modify resource

allocations of some of the already scheduled diagnostic queries and communication mes-

sages to obtain a feasible schedule. In this case, the modifications must be minimised for

the stability of prior applications and to maximize the continuity of services. If a feasible

schedule for the changes is unattainable even after modifications in the old schedule then

the designer is notified that it is not possible to make the requested changes in the system.

In this scenario, the system discards the changes and keeps running the old schedule. This

chapter proposes an incremental list scheduling heuristic that computes a schedule for the

changes in a homogeneous distributed system while minimising the modifications to the al-

ready scheduled diagnostic queries and communication messages. List scheduling is used

because its time complexity is pseudo-polynomial, and it can be implemented during run-

time. It has to be noted that the proposed algorithm can be used to schedule any application

on a open distributed real-time embedded system and the scheduling of diagnostic services

to support fault-tolerance in ODRE systems is just taken as a case study here.

7.1 Problem Formulation

Given a homogeneously distributed system architecture presented in Section 4.1 and a diag-

nostic application presented in Section 4.2.2 GD: construct a feasible static cyclic schedule

for the time-triggered execution of modified queries and the time-triggered execution of

modified messages in GD. Whenever changes occur in the system architecture or the sys-

tem application, the scheduler is activated, and it computes the schedule of the queries

and messages effected by the change while minimising the modifications to the already

computed schedule.

105

For supporting the open-world assumption and fault-tolerance in time-triggered ODRE

systems, a schedule must be generated at runtime whenever new functionality is added

to the system. After the computation of the schedule it is deployed and the message and

diagnostic query dispatching continues. When the system is initialised, the scheduler makes

an execution and communication plan for the queries/messages that serves as the primary

schedule for the system. Whenever, there are changes in the system architecture or the

system application, e.g., removal of a processor or addition of a new task, the scheduler

is reactivated at runtime to recompute the schedule. The changes in the already computed

schedule need to be kept minimum for the stability of prior applications. If a feasible

schedule for the changes is not obtained, then the requested changes can not be added to

the system. In this case, the scheduler discards the changes and keeps running the old

schedule.

The scheduler starts scheduling the new queries and messages using the primary sched-

ule as the starting point. Each scheduling decision for a new query, i.e. the processor se-

lected for its execution and the paths chosen for the transmission of its incoming messages,

is termed as a ’scheduling step’. After a ’schedule step’ is made, it is analysed to determine

whether the query fulfils its deadline with the selected combination of processor and paths.

If the query cannot complete execution before its deadline, then the corresponding schedule

step is discarded, and a new schedule step is generated. This process is repeated until the

query is allocated to a processor that fulfils its timing constraints. The final schedule step

for the query is integrated into the overall schedule that is a combination of the old schedule

and the newly generated schedule steps. The process of making a scheduling decision and

keeping or discarding the schedule step fits well into the list scheduling approach. There is

no limit to the number of changes, or the type of changes occurring in the system and any

change can occur in the system architecture and diagnostic application.

106

Algorithm 9 Pseudo-code representation of ILS to schedule changes in the diagnostic
multi-query graph in a homogeneous distributed embedded system

signal← external signal that notifies the occurrence of a change in the system to the scheduler
if system initialised then

Use Algorithm 3 to compute a schedule for the DMG.
Store the schedule of tasks in schedule table.
Store the schedule of messages in message table.
Store the characteristics of the system architecture.
Store the characteristics of the DMG.

end if
if signal then

Compare the characteristics of the old system architecture and the new system architecture to identify changes.
Compare the characteristics of the old DMG to the characteristics of the new DMG to identify changes.
Store the new DMG and the new system architecture.
Compute the set of queries U affected by the change.
Calculate bl(ui) of each query ui ∈U .
Order U according to the bottom-level of the queries. Ties are broken by prioritising the query whose children have a
greater bottom-level.
Remove all the queries in U from the schedule table.
Remove all the messages that are transmitting data to queries in U from the message table.
for each query ui ∈U do

Use Algorithm 3 to schedule the query ui on a processor Pj at its ready-time rt(ui) calculated using Eq. 7.2.
if ui is not schedulable at calculated rt(ui) then

Calculate the earliest ready-time of ui using Eq. 5.1.
Use Algorithm 3 to schedule the query ui on a processor Pj that gives it the earliest start time and on which ui fulfils
its deadline.
Compute the set of queries H that hinder the execution of ui at the selected processor Pj using Algorithm 11 and
Algorithm 12.
if all the queries in H have a greater bottom-level or an earlier deadline than ui then

Query ui cannot be scheduled on Pj during the selected time slot so the algorithm schedules it on the next
processor that gives it the earliest start time and on which ui fulfils its deadline provided that ui is schedule on
said processor.

else if all the queries in H have a lower bottom-level or a later deadline than ui then
All the queries in H along with their child queries are removed from the schedule table and added to U .
All such messages that are transmitting data to queries in H and their child queries are removed from message
table.
Query ui is scheduled on Pj .
Update the schedule and message table.

end if
end if

end for
if a feasible schedule is not obtained then

Discard the requested changes and continue running the old schedule.
end if

end if

107

7.2 Incremental List Scheduling (ILS)

An iterative or incremental scheduling algorithm was first used by authors in [50] to in-

corporate incremental design in hard real-time distributed embedded systems. The authors

give a more detailed version of the process in [132] where they describe the incremental

scheduling algorithm as a continuous iterative process. When the system is first initialised,

the algorithm generates a primary schedule based on the initial system requirements and

constraints. When the system encounters a change in its architecture or system application,

the algorithm analyses the change and schedules the new tasks and messages. The resultant

schedule is analysed to ensure that all tasks fulfil their deadline. The process is repeated

until a schedule is obtained that follows all the stringent timing constraints of the system.

This thesis proposes an Incremental List Scheduling (ILS) algorithm to schedule mod-

ifications in a DMG to support diagnostic services in Open Distributed Real-Time Embed-

ded (ODRE) systems. When the system is first initialised, a schedule is generated using

Algorithm 3. This schedule is termed as the primary schedule. Whenever a change occurs

in the system, a signal is generated to notify the scheduler. The ILS algorithm then iden-

tifies the change in the system architecture or the DMG and computes the queries affected

by said change. Then the algorithm schedules both the affected queries and the new queries

onto the target system while minimising the changes to the already scheduled queries and

messages. There are three main steps of ILS: (i). Identify the changes in the system archi-

tecture or the system application, (ii). Identify the queries affected by the change and (iii).

Schedule the affected queries and new queries/messages on the system. The pseudo-code

representation of ILS is given in Algorithm 9.

7.2.1 Identify the modifications in the system

To simplify the algorithm, ILS considers only one modification at a time, be it a change

in the system architecture or the system application. The characteristics of the old system

108

(a)

(b)

(c)

Figure 7.1: (a). DMG - GD (T (qi) = 100 ms, < ai j,bi j > = < 0,0 >) (b). Homogeneous
distributed system (l1 = 2 Mb/ms, l2 = 1 Mb/ms) (c). Modified version of GD (T (qi) = 100
ms, < ai j,bi j > = < 0,0 >)

architecture and DMG are compared with the characteristics of the modified architecture

and DMG. The algorithm assigns a unique ID to each component in the system architecture,

and a unique one to each query in the DMG. These IDs once assigned, remain unchanged.

The ILS uses these IDs to identify changes in the system. For example, if a particular ID

present in the old architecture is not present in the new one, then it means that the designer

has removed the corresponding component from the system architecture. Similarly, a query

with a particular ID might have a different WCET or deadline in the new DMG and would

require rescheduling. If a completely new DMG is added to the system, then the old and

109

Figure 7.2: Schedule representation for GS given in Fig. 7.1a implemented on architecture
given in Fig. 7.1b

new DMGs would have no common IDs. In this scenario, dummy source and sink vertices

with zero WCETs are added to combine the two DMGs. The algorithm adds the dummy

source vertex as a predecessor to all the queries in the DMGs that have no predecessors and

the sink vertex as a successor to all the queries that have no successors. To understand this

phase, consider the two DMGs given in Fig. 7.1a and Fig. 7.1c. When we compare the two

DMGs, the result shows that the designer has added a new query qK between queries qG

and qI .

7.2.2 Compute the affected queries

After identifying the changes in the system, the next step is to identify queries in the DMG

affected by the change. Let U , called rescheduling set, be a set of unscheduled queries

affected by the change. It can be represented as

U = qi ∈ Q : qi is unscheduled in the old schedule or needs rescheduling (7.1)

The rescheduling set U contains all such queries that were either affected by the change

(their WCET or the WCET of one of their predecessors was changed) or the queries that

110

Table 7.1: Schedule Table for Fig. 7.2

Task Start Time (ms) End Time (ms) Assigned Processor

qA 0 7 P1
qB 7 17 P1
qC 13 25 P2
qD 17 26 P1
qE 26 31 P2
qF 31 40 P2
qG 34 42 P1
qH 40 52 P2
qI 48 57 P1
qJ 63 68 P2

Table 7.2: Message Table for Fig. 7.2

Message Start Time (ms) End Time (ms) Sender Receiver

mAC 7 13 P1 P2
mBE 17 26 P1 P2
mCG 25 34 P1 P2
mDH 31 37 P1 P2
mFI 42 48 P2 P1
mIJ 57 63 P1 P2

were added to the DMG corresponding a change in the system (the addition of a new

sensor). For example, if the designer removes a processor from the system architecture,

then all the queries that were previously allocated to the said processor cannot execute

if they are not assigned to another processor. In this case, all the queries allocated to

the removed processor are added to the rescheduling set U . Consider another example,

where the designer adds a set of new queries in the DMG. All the queries in this set need

scheduling and therefore, are added to U .

The queries in the DMG follow a precedence constraint so a successor query cannot ex-

ecute until all of its predecessors have completed their execution. Therefore, the removal of

a query from the schedule also affects the scheduling of its successor queries. For comput-

ing all the queries affected by the change, the algorithm needs to find the paths in the DMG

that contain the queries from the rescheduling set U . The pseudo-code representation of the

111

algorithm used to determine the paths is given in Algorithm 10 that was previously used by

authors in [114]. The algorithm uses a recursive function to find all the paths in the graph

that start with the queries present in U . The function is called for all such queries that are

successors of the considered query u ∈U . If a successor query has no outgoing messages,

then it is the last query in the path p. The computed path p is then added to a path set P. All

the queries in this set are then added to U . As a final step, queries in U are removed from

the schedule table and the messages that are transmitting data to queries in U are removed

from the message table. For example, the scheduling set U for the modified DMG given

in Fig. 7.1c contains queries < qK,qI,qJ >. The updated schedule and message tables for

this example are given in Table 7.3 and 7.4.

Algorithm 10 Pseudo-code representation for computing the paths in GD that start with
queries in U

u← unscheduled query ∈U
p← /0 , current path
P← Set of all paths in GD with source query u
Children(u)← Set of all successor queries of u : ∃ a path p(u−> c j) ∈ GD
function ComputePaths (u, p, P)
p← p∪u
for each task ci ∈Children(u) do

if ci is the last successor then
ComputePaths(ci, p, P)

else
tempP← p\ ci, create a new path
P← P∪ p
ComputePaths(ci, tempP, P)

end if
end for
return

7.2.3 Scheduling the queries/messages

After the computation of the scheduling set U , the next step is to schedule the queries

in U and their corresponding communication messages. The queries and messages are

scheduled incrementally from the end of the primary schedule. There are two scenarios

here: (i). A query scheduled at the end of the primary schedule fulfils its deadline and (ii).

It does not fulfil its absolute deadline in which case changes need to be made in the primary

112

Table 7.3: Updated Schedule Table after modification of Fig. 7.1a to Fig. 7.1c

Task Start Time (ms) End Time (ms) Assigned Processor

qA 0 7 P1
qB 7 17 P1
qC 13 25 P2
qD 17 26 P1
qE 26 31 P2
qF 31 40 P2
qG 34 42 P1
qH 40 52 P2

Table 7.4: Updated Message Table after modification of Fig. 7.1a to Fig. 7.1c

Message Start Time (ms) End Time (ms) Sender Receiver

mAC 7 13 P1 P2
mBE 17 26 P1 P2
mCG 25 34 P1 P2
mDH 31 37 P1 P2

schedule to accommodate the query.

ILS first uses the method given in Algorithm 3 to schedule the queries in U at the end

of the original schedule. It means that the ready time for the queries in U is the schedule

length of the original schedule. Although there might be a case where the parent queries

of a query ui ∈U are not yet scheduled in which case the maximum finish time among the

parent queries of ui is its ready time. Thus, the ready time of a query ui in U is given as,

rt(ui) = max{maxu∈pred(ui) ft(u),maxqi∈schedule table ft(qi)} : ∃ a path p(u−> ui) ∈ GD

(7.2)

where pred(ui) is the set of predecessors of ui ∈ GD, ft(u) is the finish time of query

u ∈ pred(ui) and ft(qi) is the finish time of a query qi in the schedule table. If a query

ui ∈U does not fulfil its deadline on any processor in the system with its calculated ready

time, then its earliest ready time is calculated using Eq. 5.1. ILS then again uses Algorithm

3 to schedule ui at this ready time. However, there is a possibility that the processor chosen

113

by the algorithm might be assigned to another query qi in the schedule. In this scenario,

if ui has a greater bottom-level or earlier deadline than qi then it is assigned to the chosen

processor otherwise the algorithm assigns ui to the next processor that gives it the earliest

start time and at which ui fulfils its deadline. There is also a possibility that although ui

is schedulable on the processor in the time slot computed using its earliest ready time.

Still, one of its incoming messages overlaps a message in the message table. If this is the

case, then the bottom-level and deadline of ui are compared with the source query qi of the

conflicting message and the query with a higher bottom-level or an earlier deadline is given

the priority. In both possibilities, if query qi has a lower priority or later deadline, then it

along with all of its successors and related messages are removed from the schedule. All

the removed queries are also added to U .

On the other hand, if ui has a lower priority or later deadline, then ILS tries to schedule

it in the next available time slot or another processor. Pseudo-code representation of the al-

gorithms used to compute the queries hindering the execution of qi are given in Algorithms

11 and Algorithm 12. After each successful allocation of a query in U , the schedule and

message tables are accordingly updated to keep the ready times for other queries concur-

rent. The process is repeated until the queries in U are scheduled, and a schedule is obtained

that satisfies the stringent timing constraints of the system. The queries in U are scheduled

following their bottom-level where a query with a greater bottom-level is scheduled first.

Ties are broken by prioritising the query whose children have a greater bottom-level.

To understand this phase, consider the DMG is given in Fig. 7.1a that is scheduled

using Algorithm 3 on the homogeneous distributed system given in Fig. 7.1b. The time-line

representation of the primary schedule is given in Fig. 7.2. The schedule and message table

of the primary schedule are given in Table 7.1 and Table 7.2, respectively. The designer

modifies the original DMG by adding a query qk between queries qG and qI as shown in

Fig. 7.1c. After applying the previous two steps, the resultant rescheduling set U contains

queries < qK,qI,qJ >. The ready time for qk using the updated schedule table (Table 7.3) is

114

Algorithm 11 Pseudo-code representation for checking whether any task in the schedule
table overlaps ui

time← Start time of query ui
endtime← Finish time of query ui
processor(ui)← Processor assigned to a query ui ∈U
Queries← Configuration of the queries in the schedule table
function GetConflictingTask (Queriess, time,endtime, processor(ui))
for each query qi ∈ Queries do

ST ← Start time of query qi
ET ← Finish time of query qi
processor(qi)← Processor assigned to query qi
if processor(ui) == processor(qi) then

if time == ST then
return qi

else if time≥ ST and time < ET then
return qi

else if endtime > ST and endtime≤ ET then
return qi

else if ST ≥ time and ST < endtime then
return qi

else if ET ≥ time and ET < endtime then
return qi

end if
end if

end for
return /0

Algorithm 12 Pseudo-code representation for checking whether any message in the mes-
sage table overlaps message m ji from parent query p j to ui

m ji← a message from parent query p j ∈ GD to child query ui ∈U : ∃ a path p(p j−> ui) ∈ GD
time← Start time of message m ji
endtime← Finish time of message m ji
path(m ji)← Path assigned to transmit message m ji
Messages← Configuration of the messages in the message table
mess ji← a message in Messages from parent query p j ∈ GD to child query qi ∈ GD : ∃ a path p(p j−> qi) ∈ GD
function GetConflictingMessageQueries (Messages, time,endtime, path(m ji))
for each message mess ji ∈Messages do

path(mess ji)← Path assigned to transmit message mess ji ∈Messages
qi← Destination query of message mess ji ∈Messages
ST ← Start time of message mess ji ∈Messages
ET ← Finish time of message mess ji ∈Messages
if path(m ji) == path(mess ji) then

if time == ST then
return qi

else if time≥ ST and time < ET then
return qi

else if endtime > ST and endtime≤ ET then
return qi

else if ST ≥ time and ST < endtime then
return qi

else if ET ≥ time and ET < endtime then
return qi

end if
end if

end for
return /0

115

52 ms. It finishes at 61 ms on P1 and at 67 ms on P2 so it is assigned to P1 and the schedule

table is updated. Similarly, tasks qI (ready time = 61 ms) and qJ (ready time = 76 ms) are

assigned to processors P1 and P2 respectively. The resultant schedule given in Fig. 7.3a is

a valid solution because all the queries are fulfilling their timing constraints. In this case

qk has a relative deadline D(qK) of 46 ms which means that the first instance of qk has an

absolute deadline of 88 ms since its release time is 42 ms (finish time of its parent query

qG). If the absolute deadline of qK is changed from 88 ms to 58 ms (D(qK) = 16 ms) then

this solution becomes invalid since qk is finishing at 61 ms. In this scenario, the original

ready time for qK is calculated using Eq. 5.1. Since qK has only one parent qG so its ready

time is 42 ms. It has an earlier finish time on P1 (51 ms) than P2 so it is allocated on P1

(57 ms). After the allocation of qK , the schedule table is updated. Since qH is still the last

task that finishes its execution in the schedule table so the ready time for qI is 52 ms. It

is assigned to P1 whereas qJ is assigned to P2. The resultant schedule (Fig. 7.3b) is valid

because all the queries now fulfill their deadlines. To explain the displacement of queries

in case of an overlap, assume that it is necessary to allocate qk on P2. Query qk starts at 48

ms and finishes at 57 ms on P2 which overlaps the execution of qH already assigned to P2.

Query qk is given priority in this scenario because it has a greater bottom-level (31) and an

earlier deadline (58 ms) than query qH (24 and 98, respectively). Therefore, qH is removed

from the schedule and added to U . After the allocation of qk, the updated schedule table

gives a maximum finish time of 57 ms. Queries qH and qI are both ready at this time but

qH is given priority because it has a greater bottom-level. Query qH ends at 72 ms on P1

and at 75 ms on P2 so it is assigned to P1. The process is repeated for queries qI and qJ .

The resultant schedule given in Fig. 7.3c fulfills all the deadline constraints therefore is

considered valid.

116

(a) D(qK) = 46 ms

(b) D(qK) = 16 ms

(c) Query qK is assigned to P2

Figure 7.3: Schedule representation for GD given in Fig. 7.1c implemented on architecture
given in Fig. 7.1b using ILS and different use case scenarios (Colored boxes show the
modifications to the original schedule given in Fig. 7.2)

117

7.2.4 Complexity of the ILS algorithm

If there are N queries in the diagnostic application that need rescheduling then the minimum

time complexity to reschedule these queries on |P| processors is O(|N|+ |M|)|P||L| where

|M| is the total number of incoming messages required for the execution of the query ni ∈

N scheduled on |L| number of links. This means that the time complexity of the ILS

algorithm depends upon the total number of queries that need rescheduling. In the worst-

case scenario, if the whole DMG needs to be rescheduled then the time complexity is equal

to the time complexity of the list scheduling algorithm proposed in Chapter 5. Therefore,

even in worst case scenario, the algorithm still remains in pseudo-polynomial time and can

be invoked during runtime.

7.3 Experimentation and Evaluation

In this section, a series of experiments demonstrate the effectiveness of ILS. The experi-

ments are performed on a platform with four Intel Core i5-6200U cores operating at a fixed

clock frequency of 2.30 GHz and 23 GB RAM. The operating system used is fedora 30

with the kernel Linux 5-generic. The algorithm was tested for three types of changes in

the system: (i). Addition of a query/edge in the DMG, (ii). Addition of a new DMG, and

(iii). Removal of a processor/switch from the system architecture. Each type of change

was tested for 60 different structures of DMGs and 60 different structures of system archi-

tectures. Therefore, a total of 180 DMGs and 180 architecture models were generated for

experimental purposes. The effectiveness of ILS was measured against the total number of

modifications in the original schedule and total reconfiguring cost of the system.

For each test case, Algorithm 3 from Chapter 5 is used to compute a primary schedule

for the original DMG on the original system architecture. After that whenever a change

occurs in the system, Algorithm 9 is used to compute the schedule for the changes while

minimising the modifications in the primary schedule and Algorithm 3 is used to compute

118

the schedule for the DMG from scratch without consideration to the primary schedule. A

comparative analysis was performed between the total number of modifications and the

total reconfiguration cost obtained for the two schedules to demonstrate that ILS is more

effective in terms of maximizing the continuity of services and preserving the existing

validation and certification results by minimizing the changes in the system. Henceforth,

the primary schedule produced by the list scheduler when the system is first initialised will

be called the original schedule. The Incremental List Scheduling algorithm is called ILS,

and the original List Scheduling algorithm (cf. Algorithm 3) is called LS. The results were

measured against the following performance metrics,

1. % Similarity between schedules: The percentage similarity between the computed

schedules is measured by calculating the total number of unchanged task configu-

rations in the schedule tables generated by ILS and LS when compared with the

original schedule table. Similarly, the percentage similarity between the network

schedules is measured by the total number of unchanged message configurations in

the Message Tables generated by ILS and LS. Let %SimST represent the percent-

age similarity between the query schedules generated by ILS and LS and %SimMT

represent the percentage similarity between the message schedules generated by ILS

and LS, then Eq. 7.3 is used to calculate the percentage similarity between query

schedules and Eq. 7.4 is used to calculate the percentage similarity between message

schedules.

%SimST =
total number of unchanged query conf. in the schedule table

total number of queries in the original schedule table
∗100

(7.3)

%SimMT =
total number of unchanged message conf. in the message table

total number of messages in the original message table
∗100

(7.4)

119

2. Reconfiguration cost: The total cost required for the reconfiguration of the system

for both ILS and LS schedules is measured. This cost determines the amount of dis-

turbance in the already running system. Therefore, lower-cost means that a smaller

part of the system is reconfigured and revalidated. If a query in the schedule table of

ILS or LS has a different execution time (i.e. start and end-time) or is executed on

a different processor than in the original schedule table, then the total modification

cost is incremented by one. The modification cost is incremented twice if both the

mentioned cases are true at the same time. Similarly, if a message has a different

duration or is transmitted on a different path than in the original message table, then

the cost is incremented by one. The cost is also incremented twice if a message is

executed during a different duration and using a different path. Lastly, the cost is also

incremented for the new queries and messages created by the change in the system.

7.3.1 Experimental Setup

The algorithms were programmed in Java, and a set of test cases are generated to mea-

sure their validity. Three use case scenarios are used: (i). Addition of a query/edge to

the existing DMG, (ii). Addition of a new DMG to the system and lastly iii). Removal

of a processor/switch from the existing system architecture. For each case, the function

GenForestFire is used from the library [133] to generate random forest fire directed DMGs

with different sizes. The forward probability of an edge between two queries is randomly

chosen using the uniform distribution within the range [0.2,0.4]. The execution times of

the queries and the amount of data on the edges are also assigned randomly using the uni-

form distribution within the interval of 10 to 100 ms., and 25 to 50 Mb, respectively. The

deadlines for the queries were calculated by reversing the bottom-levels from source to sink

queries and multiplying the resultant with 2. The bottom-level is used because it shows the

scheduling order of the queries and thus determines which query is more critical than the

others. The values of the bottom-levels are reversed from source to sink because the more

120

critical query should have an earlier deadline than the other queries. For simplification of

the results, the time period of all the queries is the same, i.e., 300 ms. The history interval

< ai j,bi j > between queries qi and q j is chosen from the arithmetic range {0,1,2, ...,10}

such that bi j ≤ ai j.

The system architecture contains different distributed clusters connected through a de-

fined network topology. Each distributed cluster consists of two processors and a switch

connected through a star topology. Ring, star, or bus topology are used to connect the

distributed clusters. The bandwidth of the links was selected randomly using the uniform

distribution within the 128 to 256 Mbps range. The performance of the algorithm was

measured in all the cases against the performance metrics mentioned before. The details

of the use cases are described below, and Table 7.5 gives a brief overview of the system

specification for the three use cases. Table 7.6 shows the average execution time of ILS

and LS for the three use cases. From the table, it is visible that on average there is not

a high difference between the computation times of both algorithms. Understandably, the

better choice is to compute the schedule from scratch using LS but it will majorly effect

the reconfiguration cost of the system. However, if ILS is used the computation time is

still feasible and it also reduces the reconfiguration cost of the system. This is a trade-off

between computation time and reconfiguration cost so at the end it depends upon the user

of what they would prefer. However, since the average execution time of ILS is in seconds,

it can be used to recompute the schedule at run-time.

1. Case 1 - Addition of a query / edge: For the diagnostic service, 60 random forest

fire directed DMGs were generated each for sizes 20, 40, 60, 80, 100, 120, 140, and

160. Sixty instances of system architectures were also generated each for the ring,

bus, and star topology with varying bandwidths for links. Each instance had five

distributed clusters, i.e. ten processors and five switches for ring and bus topology,

whereas ten processors and six switches are used for the star topology. For each test,

a single edge or a query was added to the DMG with a probability of 0.5. The starting

121

query of the edge was chosen randomly from the first half of the DMG, i.e. if there is

a total of 100 queries in the graph then the parent query was selected randomly from

the range [0,50]. In contrast, the sink query was selected randomly from the second

half, i.e. from the range [51,100]. It is similar for an added query, but the number of

sink queries was taken as either 2 or 4.

2. Case 2 - Addition of a DMG: For the diagnostic service, a single instance of a 50

query random forest fire directed DMG was generated. For the system architecture,

60 instances each for the ring, star, and bus topology with different bandwidths for

links were generated. Each instance had five distributed clusters, i.e. ten processors

for all three topologies whereas five switches for the ring and bus and six switches for

the star. For the modifications, 60 random forest fire directed DMGs were generated

for sizes 20, 40, 60, 80, and 100.

3. Case 3 - Removal of a processor/switches: For the diagnostic service, 60 instances

of random forest fire directed DMGs with a size of 160 queries each were generated.

For the system architecture, again 60 instances of 5, 7, 9, 11 and 13 clusters each

with the ring, bus, and star topology were generated. It means that each instance

has 10, 14, 18, 22, and 26 processors. The ring and bus topology have 5, 7, 9, 11

and 13 switches, whereas the star topology has 6, 8, 10, 12, and 14 switches for

each instance. For the modifications, a single processor or a switch was randomly

removed from the distributed system with a probability of 0.5.

7.3.2 Evaluation

The average percentage similarities between the query and messages schedules and the

average reconfiguration costs for both ILS and LS were measured for the three experimental

use cases mentioned above. A comparative analysis was performed between the results to

show that ILS is more efficient in maximizing the continuity of services and preserving the

122

Table 7.5: System Specifications for the Experiments

Case 1 Case 2 Case 3
System Specifications addition of addition of removal of switch

query / edge a DMG / processor

Size 20, 40, 50 160
DMG 60, 80,

100, 120
140, 160

Instances 60 1 60

Topology ring, bus ring, bus ring, bus
star star star

System No. of 10 10 10, 14, 18
Architecture processors 22, 26

No. of 5/6 5/6 5/6, 7/8, 9/10
switches 11/12, 13/14

Instances 60 60 60

Scheduler Case 1 Case 2 Case 3
(s) (s) (s)

LS 10.5 7.4 5.2
ILS 15.6 12.8 7.5

Table 7.6: Average execution time of ILS and LS for the three use cases

existing validation and certification results by minimizing the changes in the system.

1. Addition of a task or an edge to the existing application graph: The average simi-

larities between the query and message schedules computed for case 1 using the ring

network topology are shown in Fig. 7.4a and Fig. 7.4b, respectively. It is visible

from the results that ILS is more successful in keeping the disturbances in the sched-

ule to the minimum. The average similarity decreases for both algorithms with an

increase in the size of the DMG. It is mainly because a larger data set means that

there is a higher possibility of displacement in the scheduled queries and messages

123

by the addition of an edge or a query. However, the amount of displacement depends

upon the location of the added query or an edge. To better understand this, take a

DMG of 20 queries where all the queries are connected in a straight line, i.e. one

after the other from 1 to 20. If a query is added between queries 10 and 11, then

the scheduling of query 11 and all the queries after that is invalidated, i.e., ten tasks

need rescheduling. But if the new query is added between queries 17 and 18, then

only three queries need to be rescheduled. If the same scenario is considered with a

DMG of 40 queries and a query is added between queries 20 and 21, then 20 queries

would need rescheduling. Thus, the similarity between schedules depends upon the

structure and size of the existing DMG and the location of the added query/edge. In

the experiments, a new query/edge is placed between the first and second half of the

DMGs irrespective of their size. Therefore the average similarity decreases with an

increase in the size of the DMG.

Fig. 7.4c shows the average reconfiguration cost computed for case 1 using the ring

network topology. There is a significant difference between the average reconfigura-

tion costs of ILS and LS specifically in case of bigger DMGs. The cost increases with

an increase in the size of the DMG, which follows the decrease in the average similar-

ity between schedules. Even with the increasing reconfiguration cost and decreasing

similarity between schedules, ILS performs much better than LS. The experiments

were performed for all three network topology, i.e., ring, star and bus. The average,

minimum and maximum values of the performance metrics for all the experiments

in case 1 are given in Tables 7.7, 7.8 and 7.9, respectively.

2. Addition of a new DMG to the system: The average similarities between the query

and message schedules generated for the 60 instances using the star topology are

shown in Fig. 7.5a and Fig. 7.5b, respectively. The results show that ILS is better

in keeping changes in the running application to a minimum compared to LS. The

average similarities drop significantly when the size of the DMG is more than the size

124

Table 7.7: Case 1 - Results for Ring Topology

DMG Scheduler % SimST % SimMT Cost
Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 61.8/90.3/100 48/85.2/100 0/3.9/12
LS 5/41.7/100 0/26.9/100 0/17.5/35

40 ILS 67.8/90.2/99.3 51/84.9/99.6 0/6.7/22
LS 2.5/41/95 0/29.4/96.6 0/35.7/69

60 ILS 65.8/91.95/100 45.4/87.2/100 0/8.9/39
LS 1.67/47.1/98.3 0/30.7/97.2 1/46.4/111

80 ILS 60/90.78/100 40.5/85.8/100 0/10.6/47
LS 3.7/50.6/100 1/36.2/100 0/54.6/128

100 ILS 60/90.75/100 43.8/85.7/100 0/13.2/74
LS 8/42.68/100 1.45/28.2/100 0/81.8/173

120 ILS 60/89.8/100 37.9/83.1/100 0/13.7/69
LS 5.8/43.4/96.6 1.36/27.8/97.28 4/93.8/164

140 ILS 60/89.2/100 48.2/83.6/100 1/19.3/66
LS 2.14/41.08/95 0.37/26.3/93.13 7/116.9/238

160 ILS 60/87.4/100 24.7/77.5/100 0/20.9/86
LS 5.62/38.7/100 0.99/23.8/100 0/139/290

125

Table 7.8: Case 1 - Results for Star Topology

DMG Scheduler % SimST % SimMT Cost
Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 68.7/93.3/100 55.69/89.2/100 0/4/15
LS 5/53.9/100 0/38.6/100 0/13.3/32

40 ILS 64.3/91.2/99.2 45.4/86.3/99.6 0/6/27
LS 2/45.7/95 0/32.3/84.9 2/29.6/61

60 ILS 59.2/89.9/99.1 40.6/84.2/99.5 0/9.6/41
LS 1/43.6/97 0/28.7/93.6 2/46.9/101

80 ILS 62/89.8/100 44.7/84.1/100 0/14/44
LS 3.7/45.5/96 0.4/30.9/96.4 3/61.2/144

100 ILS 61.3/87.8/100 39.5/80.5/100 0/14.5/57
LS 1/47.7/99 0/32.4/96.9 1/70.4/143

120 ILS 55/89/100 26.9/82.6/100 1/17.2/61
LS 5.8/49.1/95 1.4/32.1/93.7 6/82.3/163

140 ILS 57.5/90.1/100 41.9/84.3/100 1/17.6/81
LS 4.2/44.6/93.5 0.7/29.2/97.6 14/104/229

160 ILS 55/85.8/100 11/75.3/100 0/15.4/70
LS 9.3/47/100 2.1/33.9/100 0/114.4/239

126

Table 7.9: Case 1 - Results for Bus Topology

DMG Scheduler % SimST % SimMT Cost
Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 63.1/92.6/100 43.9/87.6/100 0/4/13
LS 5/32.7/100 0/25.4/100 0/20.9/32

40 ILS 70.7/91.7/100 51.9/86.4/100 1/6.3/32
LS 2.5/45.9/100 0/32/100 0/29.6/62

60 ILS 60/89.1/100 40.7/82.2/100 0/7.5/26
LS 1.7/43.9/93.3 0.5/29/88.6 6/47.3/85

80 ILS 60/91.3/100 38.6/86/100 0/10.5/40
LS 2.5/47.3/100 0/32.2/100 0/57.4/139

100 ILS 63.7/90.9/100 45.4/84.4/99.3 0/12.3/61
LS 5/44.3/99 0.8/28.5/97.2 1/75.7/143

120 ILS 73.3/91.5/100 48/86/100 0/18.5/68
LS 0.8/45/99.2 0.17/29.3/99.4 1/89.4/185

140 ILS 52.5/89.7/97.5 28/82.7/100 0/16.9/59
LS 0.7/43.8/99.2 0/28.7/97.8 1/109.5/241

160 ILS 60/87.5/100 28.5/84.6/100 0/17.5/87
LS 1.3/42.7/100 0.2/27.8/100 0/130/233

127

20 40 60 80 100 120 140 160

Number of queries per DMG (Q)

30

40

50

60

70

80

90

100

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 S
im

il
a

ri
ty

 (
%

)

Similarity between Query Schedules (Case 1)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(a)

20 40 60 80 100 120 140 160

Number of queries per DMG (Q)

20

30

40

50

60

70

80

90

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 S
im

il
a

ri
ty

 (
%

)

Similarity between Message Schedules (Case 1)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(b)

20 40 60 80 100 120 140 160

Number of queries per DMG (Q)

0

20

40

60

80

100

120

140

A
v

e
ra

g
e

 R
e

c
o

n
fi

g
u

ra
ti

o
n

 C
o

s
t

Reconfiguration Cost (Case 1)

ILS

LS

(c)

Figure 7.4: Case 1 - Addition of a query or an edge to an existing DMG in a Ring Network

128

of the already scheduled DMG, i.e. 60 and onward. The decrease in the similarity

is because queries in DMGs with sizes 60 and onward have greater path lengths that

increase the bottom-level of their queries. Consider a DMG of 3 queries q1, q2 and q3

with WCETs 2, 3, and 4 ms. The DMG has a single path < q1,q2,q3 > from source

to sink query and the amount of data transferred between the queries is zero. The

bottom-level of q1 is this case is 2 + 3 + 5 = 10, for q2 it is 3 + 5 = 8 and for q3 it is

5. Now consider another DMG with 2 queries q1 and q2 and a single path < q1,q2 >

from source to sink query. The queries have a WCET of 2 and 4, respectively, so the

bottom-level of q1, in this case, is 2 + 4 = 6 and for q2 it is 4. Therefore, the position

of the query and the total number of queries in the DMG affect its bottom-level. In

the experiments, bottom-level is reversed from source to sink vertex (i.e., the bottom-

level of sink vertex is assigned to the bottom-level of source vertex) and is used to

calculate the deadline of the queries. For example, in the first DMG considered here,

the deadline for q1 is 5 * 2 = 10 ms whereas in the second DMG it is 4 * 2 = 8 ms.

Therefore, as the size of the DMG increases the criticality level of its queries also

increase which means that the queries in the DMGs with sizes 60 and onward have

more critical queries than the queries in the DMG with 50 queries. Thus there is a

greater chance that these queries do not keep their deadlines without displacing the

already scheduled queries.

Fig. 7.5c shows the average reconfiguration cost computed for the 60 instances of

case 2 using the star topology. The difference between the average reconfiguration

cost between ILS and LS decreases as the size of the added DMG increases. The

modification cost depends upon the structure and the size of the added DMG. If the

queries in the added application have lower deadlines than the already scheduled

queries, then it is natural that the scheduled queries are displaced. Even with the

decreasing reconfiguration cost, ILS performs better than LS and is a better choice

for scheduling the modified DMG. The rest of the results for this case are shown in

129

10 20 30 40 50 60 70 80 90 100 110

Size of the added DMG

0

10

20

30

40

50

60

70

80

90

A
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e
 S

im
il

a
ri

ty
 (

%
)

Similarity between Query Schedules (Case 2)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(a)

10 20 30 40 50 60 70 80 90 100 110

Size of the added DMG

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 P

e
rc

e
n

ta
g

e
 S

im
il
a
ri

ty
 (

%
)

Similarity between Message Schedules (Case 2)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(b)

10 20 30 40 50 60 70 80 90 100 110

Size of the added DMG

20

40

60

80

100

120

140

160

180

A
v

e
ra

g
e

 R
e

c
o

n
fi

g
u

ra
ti

o
n

 C
o

s
t

Reconfiguration Cost (Case 2)

ILS

LS

(c)

Figure 7.5: Case 2 - Adding new applications of varying sizes to an existing system running
a DMG of 50 queries in a Star Network

Tables 7.10, 7.11 and 7.12, respectively.

130

Table 7.10: Case 2 - Results for Ring Topology

Added Scheduler % SimST % SimMT Cost
DMG Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 34/76/100 10.1/64/100 20/38.8/72
LS 2/30.6/60 0/14.1/40.8 46/73.8/104

40 ILS 6/36.9/88 1.1/22.2/75.9 52/90.8/124
LS 2/10.8/60 0/4.1/36.3 71/111.6/128

60 ILS 6/20.8/58 0/5.6/38.5 96/123.9/140
LS 2/2.45/16 0/0.15/4.6 122/137.6/149

80 ILS 6/18.9/80 0/5.9/69.9 96/145.4/164
LS 2/3.6/56 0/0.78/27.2 119/158/168

100 ILS 8/14.8/66 0/3.3/49.4 126/168.5/180
LS 2/3/38 0/0.3/12.2 150/178/187

Table 7.11: Case 2 - Results for Star Topology

Added Scheduler % SimST % SimMT Cost
DMG Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 28/80.2/100 7.2/69.7/100 20/36.6/76
LS 2/24.8/62 0/8.5/40.2 46/80.4/108

40 ILS 4/38/100 0.2/24.2/100 40/93.2/131
LS 2/10.7/56 0/3.7/33 74/112.4/132

60 ILS 8/22.2/74 0.9/7.2/62.3 84/123/142
LS 2/2.5/16 0/0.1/4.5 129/139.7/152

80 ILS 6/19.4/76 0.5/6.2/61.1 104/145/166
LS 2/2.9/32 0/0.2/7.2 145/158.6/170

100 ILS 8/15.8/70 0/3.7/51.5 123/170/186
LS 2/3.3/50 0/0.7/23.7 139/179/192

3. Removal of a processor or a switch from existing system architecture: Fig. 7.6a

and Fig. 7.6b show the similarities between the query and message schedules when

a processor or a switch is removed from a bus network with a varying number of dis-

tributed clusters. There is a considerable difference between the average similarities

for ILS and LS. The results show that ILS is more effective than LS in minimising the

differences between schedules. The average similarity between schedules increases

131

Table 7.12: Case 2 - Results for Bus Topology

Added Scheduler % SimST % SimMT Cost
DMG Size (min./avg./max.) (min./avg./max.) (min./avg./max.)

20 ILS 26/79.2/100 6.6/68.4/100 20/36.5/81
LS 2/27.8/60 0/11.3/37.2 52/77/104

40 ILS 6/37.8/98 0/22.4/95.4 42/89.7/118
LS 2/11/60 0/4/36.3 69/110/127

60 ILS 6/21/52 0.2/5.8/31.7 97/122.5/140
LS 2/2.5/18 0/0.2/5.4 118/137/146

80 ILS 6/19.5/90 0/6.3/82 90/144.6/156
LS 2/3.6/56 0/0.9/30.9 116/157.7/167

100 ILS 6/14.2/70 0/3.3/50.6 122/168/78
LS 2/3.6/58 0/1/36 130/177/185

when the number of distributed clusters, i.e. processors and switches, is increased. It

is because when the possibility of choosing between processors or paths is little as in

case of a smaller number of processors and switches, the processor and network load

is high to accommodate all the queries and messages. Here when a processor or a

switch is removed, it displaces a greater number of queries and messages compared

to when the number of processors and switches is high. Therefore, the average sim-

ilarity between the schedules increases with an increase in the number of distributed

clusters. Another factor here is the parallelism in the DMG. If a greater number of

queries are parallel to each other, then they have a high chance of being allocated

to different processors that decreases the processor load. Here, when a processor is

removed from the system, fewer tasks are rescheduled.

Fig. 7.6c shows the average reconfiguration cost computed when a processor or a

switch is removed from a bus network comprising a different number of distributed

clusters. There is a huge difference between the average reconfiguration costs of ILS

and LS, specifically when the number of clusters is increased. The reconfiguration

cost is smaller when the load on the processors and switches in the original schedule

132

Table 7.13: Case 3 - Results for Ring Topology

System Scheduler % SimST % SimMT Cost
Architecture (min./avg./max.) (min./avg./max.) (min./avg./max.)
(clus./proc.
/switches)

5/10/5 ILS 0/67.3/100 0/62.6/100 0/87.2/314
LS 0/4.4/10.6 0/1.3/9.2 189/235/314

7/14/7 ILS 0/58.5/100 0/49.7/100 0/108/314
LS 0/4.6/11.2 0/1.7/8.4 164/231/314

9/18/9 ILS 0/61.7/100 0/52.7/100 0/103.3/311
LS 0/4.8/14.4 0/1.3/5 173/227/311

11/22/11 ILS 0/81.5/100 0/77.3/100 0/46.4/305
LS 0/6.6/13.8 0/2.4/20 143/204/305

13/26/13 ILS 0/80.2/100 0/74.4/100 0/50.9/311
LS 0/6.5/26.2 0/2.3/14.1 122/213.4/313

Table 7.14: Case 3 - Results for Star Topology

System Scheduler % SimST % SimMT Cost
Architecture (min./avg./max.) (min./avg./max.) (min./avg./max.)
(clus./proc.
/switches)

5/10/6 ILS 0/57.2/100 0/51/100 0/116.3/314
LS 0/4/11.8 0/1.14/4.5 191/240.9/314

7/14/8 ILS 0/77.2/100 0/72.3/100 0/60.5/313
LS 0/5.2/15.6 0/1.5/8.4 159/219.7/313

9/18/10 ILS 0/81.3/100 0/78.4/100 0/48.5/314
LS 0/5.3/10 0/1.6/6.7 166/214.9/314

11/22/12 ILS 0/81.4/100 0/77.4/100 0/51.3/314
LS 0/5.8/15 0/1.9/23 150/208.6/314

13/26/14 ILS 0/88.3/100 0/86.2/100 0/34.3/311
LS 0/6.2/18.3 0/2.1/24 148/201/311

is less; therefore, it decreases when the number of processors and switches in the

system are increased. The experiments were performed in this case for all three

topologies. The detailed results are given in Tables 7.13, 7.14 and 7.15, respectively.

133

4 5 6 7 8 9 10 11 12 13 14

Number of Distributed Clusters

0

45

90

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 S
im

il
a

ri
ty

 (
%

)

Similarity between Query Schedules (Case 3)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(a)

4 5 6 7 8 9 10 11 12 13 14

Number of Distributed Clusters

0

45

90

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 S
im

il
a

ri
ty

 (
%

)

Similarity between Message Schedules (Case 3)

% similarity b/w original schedule and ILS

% similarity b/w original schedule and LS

(b)

4 5 6 7 8 9 10 11 12 13 14

Number of Distributed Clusters

0

50

100

150

200

250

A
v

e
ra

g
e

 R
e

c
o

n
fi

g
u

ra
ti

o
n

 C
o

s
t

Reconfiguration Cost (Case 3)

ILS

LS

(c)

Figure 7.6: Case 3 - Removal of a processor or a switch from a Bus Network with varying
number of processors and switches

134

Table 7.15: Case 3 - Results for Bus Topology

System Scheduler % SimST % SimMT Cost
Architecture (min./avg./max.) (min./avg./max.) (min./avg./max.)
(clus./proc.
/switches)

5/10/5 ILS 0/73.2/100 0/68.5/100 0/69.8/307
LS 0/4.63/10 0/1.2/5.8 189/229/307

7/14/7 ILS 0/76.6/100 0/73.2/100 0/65.5/313
LS 0/4.7/9.3 0/1.4/7.1 163/224/313

9/18/9 ILS 0/79/100 0/77.3/100 0/56.4/309
LS 0/4.9/13.1 0/1.4/7.7 170/217/309

11/22/11 ILS 0/86.3/100 0/84.9/100 0/34.5/313
LS 0/5.9/10.6 0/1.7/15.2 151/206.8/313

13/26/13 ILS 0/89.6/100 0/88/100 0/27.2/312
LS 0/6.7/19.3 0/1.8/16.4 145/198.5/312

135

CHAPTER 8

REAL-WORLD USE CASE: FAULT DETECTION AND DIAGNOSIS USING

DIAGNOSTIC MULTI-QUERIES IN HVAC SYSTEMS

THIS CHAPTER evaluates the results of the list scheduling algorithm proposed in Chapter

5 by implementing fault detection and diagnosis using DMGs in a real-world use case, i.e.,

the Heat, Ventilation, and Cooling (HVAC) system.

8.1 Background

In the U.S., HVAC systems account for roughly 43% of the overall energy consumption

in buildings [134]. Researchers have tried to improve these numbers by deploying more

embedded sensors in the systems to monitor temperature, CO2 and humidity levels [135]

but including electrical components has made the systems failure-prone. If a fault arises in

one of the electrical components of such systems, the sensors may produce erroneous data,

and the actuators may behave differently than what is expected. These failures usually lead

to general human discomfort, excessive energy consumption, increased overall operation

costs, and deterioration of equipment lifespan. Regular checks and maintenance solve this

problem but because of the increased cost of on-site maintenance, preventive or predictive

maintenance in the form of fault-tolerant systems has become much more significant in

recent years [136, 137, 138, 139, 140, 141].

Along with controlling the indoor environment levels, the HVAC systems are gener-

ally integrated with hazard detectors such as smoke detectors and play a crucial role in

restricting hazardous situations. In hospitals, for example, the HVAC systems are one of

the primary responders in the case of a fire. They can contain the situation by staving off

oxygen from the fire, expelling smoke from an area, using automatic sprinklers to extin-

guish the fire or providing a smoke-free pathway to safety [142]. In such situations, HVAC

136

systems must discern a critical from a non-critical situation, i.e. they should identify if an

actual fire has occurred or if there is some fault within the system. False alarms have a much

more negative impact than expected. For example, in homes, occupants have to search for

the detector that is sounding the alarm and determine themselves if the signal is false or

an actual hazardous situation exists. This process is time-consuming, stressful and poten-

tially dangerous. Ordinarily, the alarms may mistake regular situations for critical ones.

For example, the fire alarms near bathrooms mistake steam from the shower as smoke, or

smoke detectors near the kitchen are continuously buzzing because of the steam from the

cooking. In these situations, inhabitants may shut the detectors off to avoid the annoyance

of false alarms. The malfunctioning of the detection system itself is equally disastrous in

life-threatening situations. For example, faulty readings from CO sensors in HVAC sys-

tems lead to undetected air poisoning that kills thousands of people each year. Therefore,

disabled or ineffective detectors may cause a high death toll and property damage from

hazardous situations that otherwise could have easily been prevented [143].

In hazardous situations, thousands of lives depend upon the correct functioning and

timely response of the HVAC systems. If a component is faulty, it should be detected before

a critical situation occurs. It means that the HVAC systems are time-sensitive, and the fault

detection and diagnosis technique (FDD) used should identify faults within the system's

provided time-frame. This aspect of the HVAC systems, although essential, is usually

not discussed in the literature. In this thesis, a time-critical approach for fault detection

and diagnosis in HVAC systems is provided. The HVAC system considered is integrated

into a complex building architecture with multiple rooms and floors. There are different

sensors and actuators in each room. The HVAC system maintains the indoor environment

levels and also provides detection for fire hazards. The faults in the sensors are detected

using diagnostic queries that measure the values of the sensors for critical and non-critical

situations. The critical situations are considered time-sensitive, and the proposed FDD

technique determines whether the fire has occurred or a sensor has malfunctioned within

137

the system's defined time-bound. The detection and diagnosis in non-critical situations

have no time restriction and is done to minimize the energy consumption of the HVAC

systems due to faulty equipment.

8.2 Related Work

Modern HVAC systems consist of an increasing number of remotely controlled actuators

and sensors. The HVAC systems that contain these smart devices can minimize the over-

all energy consumption by keeping track of the overall cost. HVAC Fault Detection and

Diagnosis (FDD) schemes that cannot detect the right fault obstruct the process of fault

investigation. Therefore, there is a paramount requirement of designing the right FDD

techniques tailored for HVAC systems, and this area has received a significant amount of

pursuance of many researchers [144, 145, 146].

The authors in [138] classify fault detection approaches in HVAC systems into

hardware-based and software-based solutions. In hardware-based solutions, the design-

ers integrate smart components solely for actuator fault detection into the system. These

solutions are far more expensive and difficult to reconfigure by introducing additional smart

actuator devices. Software-based solutions, although much more appealing in theory than

hardware-based fault detectors suffer from dependency on difficult to learn physical models

or system-specific detector design specifications.

Du et al. [147] divide FDD methods in HVAC into three types i). Model-based, ii).

Rule-based and iii). Data-driven. Model-based methods are designed by adding mass and

energy balance based aspects of the system. The residues can be calculated by comparing

the actual measurements with the values provided by the system at a certain time. Rule-

based methods do not require any system model but rely on expert rules created based

on expert knowledge. The data-driven models do not need any physical model or expert

knowledge of the system. The information from sensors are compared with the threshold

values of sensors, and a warning is generated if the values are not in agreement [126].

138

Different methods in the state-of-the-art are dealing with the process of FDD by apply-

ing techniques such as signal-based, model-based and analytical methods [148]. A Tree-

structured Fault Dependence Kernel (TFDK) method is designed along with the online

learning algorithm for data streaming in [149]. TFDK is an improvement of the traditional

classification method known as Support Vector Machine (SVM). Experimental results in

this context show that in comparison with other data-driven methods, TFDK improves the

overall performance of the FDD process.

Recently, a wide range of machine learning-based techniques was implemented for the

process of FDD in HVAC systems. These techniques include Statistical Process Control

(SPC) [150, 151], Neural Networks (NN) [152, 153], Support Vector Machines (SVM)

[154, 155], Principal Component Analysis (PCA) [156], and Fisher Discriminant Analysis

(FDA) [157]. Among all these techniques, the SPC and PCA are methods of unsupervised

learning which do not require expert knowledge for the labelling of faults. NN and FDA

are supervised learning-based classification methods that require expert training data for

the process of FDD. Existing work in the domain of data-driven FDD shows distinguished

results in terms of both efficiency and accuracy. Therefore, two important issues, namely

fault severity and fault interdependence, are ignored while considering the homogeneity

based assumptions [158, 159].

8.3 Problem Formulation

In this thesis, Fault detection and diagnosis using Diagnostic Queries (FDQ) is proposed

for an HVAC system. The considered HVAC system is located in a complex building

architecture with multiple rooms and floors. Each room has a certain set of sensors and

actuators depending upon its requirements and function. Fault detection and diagnosis in

the HVAC systems is considered in two separate scenarios: i). in rooms that have hazardous

fire equipment, e.g. kitchen and ii). in rooms where there is no possibility of a fire, e.g.

study room. The functioning of the HVAC system in a fire-prone environment is considered

139

Figure 8.1: Flow diagram of schedule generation for Fault detection and diagnosis using
Diagnostic Queries (FDQ)

a critical situation and is highly time-sensitive. It means that the faults in the electrical

equipment in such situations should be identified and rectified within the system's defined

time-bound. In contrast, the maintenance of comfort levels (e.g. room temperature) by the

HVAC systems is considered non-critical and has no time restriction for fault detection and

diagnosis. The sensors and actuators in each room provide output data that is stored in

distributed local databases. The diagnostic queries are formulated that compare the sensor

and actuator values with certain thresholds and concentration levels to determine faults in

the system. Since multiple sensors and actuators are considered and in turn, multiple sets

of queries, therefore a Diagnostic Multi-query Graph (DMG) is generated for a structured

and timely diagnosis. Since highly time-critical situations are considered where a false

output could cause a dangerous situation, so the maximum time FDQ takes to identify

and diagnose faults is known beforehand, i.e. the total execution time of the DMG. For

this purpose, the DMG is given to a scheduler that allocates, maps, and schedules the

queries and gives a tentative time for fault detection. This pre-defined time should always

be less than the deadline defined by the system for the detection of fire in the building. To

ensure that this deadline is met, the DMG is optimized before giving it to the scheduler that

computes a feasible schedule for the execution of the DMG. Fig. 8.1 gives the main steps

of our FDQ approach.

140

8.3.1 Building Architecture

A building with multiple numbers of rooms, corridors, and floors is considered. There are

two main components in the building, i). The HVAC model and ii). the FDQ execution

model.

1. HVAC model: The rooms, corridors and floors of the building along with the sensors

and actuators form the HVAC model. Each room and corridor in the building has a

certain set of sensors and actuators depending upon its type, function, and require-

ments for fault detection. The rooms are divided into two categories,

• Catastrophic Rooms (CR): All the rooms that contain hazardous fire equip-

ment are sorted into this category. In such rooms, the HVAC system detects

the occurrence of a fire and sounds an alarm corresponding a fire. The fault

detection and diagnosis in such rooms is highly time-critical because a faulty

component can either overshadow the existence of an actual fire or can sound a

false alarm that creates a stressful and dangerous situation. Therefore, in such

rooms, a defective component must be identified within the system's defined

deadline before a catastrophic situation occurs. The following sensors and ac-

tuators are considered in such rooms.

– Temp: A sensor that measures the temperature of the room and the adjacent

corridor.

– CO2: A sensor that measures the concentration level of carbon dioxide in

the room.

– Heater (thermostat): An actuator that controls the amount of heat in the

room.

A fault can occur in any of the mentioned components. If the output from

the three components point to the occurrence of fire, then the system sounds an

alarm. In contrast, if one of the components is giving a value above its threshold

141

or is asynchronous with the values of the other two components, then the system

classifies it as defective. Here, the component needs fixing or replacement. To

simplify the situation, it is assumed that only one of the electrical components

may be defective at a time.

• Normal Rooms (NR): The non-possibility of fire hazards classifies a room into

this category. These rooms require the normal functioning of the HVAC sys-

tems, i.e. controlling temperature and humidity levels to provide a comfortable

environment for a living. The fault detection in such cases is not time-critical

and thus is not restricted by any deadline. However, it is still essential to identify

the faults since a defective component adds to the energy consumption of the

HVAC system and causes general discomfort for the inhabitants. The following

sensors and actuators are considered in such rooms.

– Temp: Similar to CR, this sensor also measures the temperature of the room

and the adjacent corridor.

– CO2: This sensor functions similarly to the carbon dioxide sensor in CR,

i.e. it measures the level of carbon dioxide in the room. Here, it is used to

measure the air concentration and humidity level.

– Damper: It deals with the airflow calculations of the ventilation system

and takes the input from the CO2 sensor.

The proposed technique detects the faults in all the above components. If the

output of one of the above components is above its threshold or is not in agree-

ment with the outputs of the other two components, then this component is

defective and needs replacement. Similar to CR, it is assumed that only one

component is faulty at a time.

For example, the chemistry lab in the HVAC model of a school building is classified

as a catastrophic room (CR) because it has various sensitive chemicals that can cause

142

Figure 8.2: HVAC model of a 2 floor building each with 3 rooms and one corridor

explosions. In contrast, the gym is categorized as a normal room (NR) since it has

no fire-prone equipment. The method described in [160] is used to compose the

HVAC model in MATLAB/Simulink. For simplification of the model, the number

of catastrophic rooms per floor is restricted to one. The rest of the rooms and the

corridor (C) on the floor are classified as NRs. There is no restriction on the number

of rooms per floor or the number of floors in the building, and the FDQ technique is

scalable to any kind of building structure provided the rooms can be classified into

one of the mentioned categories. Fig. 8.2 shows the HVAC model for a two-floor

building, each with three rooms and one corridor.

2. FDQ execution model: FDQ execution model comprises the part of the building

that stores the output data of the sensors and also provides the architecture platform

for the scheduling and the execution of the diagnostic queries. This model has the

following components.

• System architecture: The system architecture provides the distribution plat-

form for the execution and scheduling of the DMG. The system architecture

defined in Section 4.1 is also used here. The architecture consists of processors,

143

Figure 8.3: Example of the system architecture of floor one of the building

switches and bi-directional links and can be presented using Eq. 4.4. Each dis-

tributed system here is represented with S. It is assumed that each floor in the

building has a separate platform to execute and schedule the DMG. An example

of such a platform for floor one of the building used to create the HVAC model

in Fig. 8.2 is given in Fig. 8.3.

• Communication Network: The building is assumed to have a dedicated wired

communication network (e.g. LAN) that transmits the information from the

HVAC model to the FDQ model and also transmits the data between the com-

ponents of the FDQ model. It is essential for the information flow between the

different components of our technique.

• Distributed Database: The database is distributed locally, i.e., each processor

in the system has a local database. The sensors and actuators in the rooms and

corridors transfer their values through the communication network mentioned

above to their nearest distributed platform. Parts of the distributed databases

are timely and consistently replicated to enable the distributed execution of di-

agnostic queries. The scheduling algorithm decides what parts of the database

should be replicated and what parts should be deleted to conserve memory.

Fig. 8.4 shows different components of the building architecture and the flow of

information between them.

144

Figure 8.4: Different components of the building architecture

8.4 Formulation of Diagnostic Multi-query Graphs (DMGs)

With multiple rooms in the building, each with its own set of sensors and actuators, it is

difficult to keep track of the data and the execution of the corresponding diagnostic queries.

To simplify the process, a DMG is formulated that represents queries and data relationships

in a structured form as a foundation for the scheduler. A DMG can be represented using

Eq. 4.4 where Q is a finite set of |Q| queries and M is a finite set of |M| data directed edges

between the queries. Here, the queries without incoming edges are features, queries with

both incoming and outgoing edges are symptoms and queries without outgoing edges are

faults. Each qi ∈ Q is represented by the tuple <W (qi),D(qi),T (qi)> where W (qi) is the

worst-case execution time of the query, D(qi) is its relative deadline and T (qi) is its time

period. Each mi j ∈M is represented by the tuple < D(mi j),< ai j,bi j >> where D(mi j) is

the amount of output tuples transferred from qi to q j and < ai j,bi j > is the history-interval

of the edge mi j. Two example DMGs are given in Fig. 4.8.

For each room (NR or CR), a separate DMG is created. This DMG is based on the

faults that need to be detected in that particular room. Therefore, for each room, one DMG

is created. All such DMGs from one floor are then combined to formulate the DMG for

that particular floor. For simplification of the problem, only two floors are considered for

fault detection and diagnosis.

145

1. Creation of diagnostic queries for floor 1, FR1: The FDQs written for NR1 and NR2

present at F1 are shown in Table 8.2 and Table 8.3. In the case of normal rooms,

two types of situations are monitored (i). The occurrence of faults in the CO2 sensor,

(ii). Monitoring the concentration levels of CO2 and temperature in a room. The

concentration of CO2 and temperature is only monitored to maintain the comfort

level in the room. The fault detection in this scenario is not time-sensitive. Therefore

critical faults like fire are not detected in such rooms. The main purpose of fault

detection in normal rooms is to minimize the overall consumption of energy. The

diagnostic queries given in Table 8.2, are used to identify faults in the CO2 sensor.

Whenever, CO2 f aultcounter is one it means that the corresponding sensor is faulty

even if the other parameters i.e. room temperature1 and CO2concentration have

values greater than their threshold levels. In contrast, if the CO2 f aultcounter is

zero, but other parameters have values greater than their thresholds then it means

that the concentration of CO2 and the room temperature are not at comfortable levels

as shown in Table 8.3. In this scenario, a possible solution is for the occupant to open

the window to maintain comfort levels. The FDQs written for CR1 are given in Table

8.4. The diagnostic queries given in the mentioned table are used to detect fire in

the catastrophic room on floor 1. Whenever, the concentration levels of temperature,

CO2, and heat are above their threshold values but the HeaterWarningCounter is

zero, i.e. there is no fault in the heater actuator then it means a fire has occurred in

the room. Upon the occurrence of a fire, the HVAC system sounds an alarm for the

occupants to clear the building.

2. Creation of diagnostic queries for floor 2, FR2: The FDQs written for rooms NR3

and NR4 present at floor FR2 are shown in Table 8.5 and Table 8.6, respectively. The

HVAC system monitors two scenarios in this room (i). Detecting faults in tempera-

ture sensor and (ii). Monitoring the CO2 and temperature levels in the room. Similar

to FR1, both NR3 and NR4 are non-critical. Therefore, the main goal of the HVAC

146

system in this room is to minimize energy. The diagnostic queries in Table 8.5 are

used to identify faults in the temperature sensor. The queries show that whenever

Temperature f aultcounter is one, then it means the corresponding sensor is faulty

irrespective of the values of the other parameters. On the other hand, if the value for

Temperature f aultcounter is zero, but the other parameters, i.e. room temperature

and concentration of CO2 have values greater than their threshold. It means that the

room is not at the desired comfort level. In this case, the occupant might need to open

a window. The mentioned diagnostic queries for measuring the concentration levels

in NR4 are given in Table 8.6. The diagnostic queries for CR2 at FR2 are identical

to that of the critical room at FR1 and similarly, are used to detect fire in the room

(Table 8.7).

3. Creation of DMGs for each room on both floors: After generating the diagnostic

queries, the next step is to combine the FDQs for each room to create its DMG. For

example, the FDQs given in Table 8.2 are used to create a DMG for room NR1 at

FR1. The resultant DMG (shown in Fig. 8.5a) detects and diagnosis faults in the

CO2 sensor. Similarly, the DMG created for NR2 monitors the comfort level in the

room while the DMG created for CR1 detects fire in the room. At FR2, the DMG of

NR3 detects and diagnosis faults in temperature sensor while the other two DMGs

work similarly to their counterpart at FR1.

4. Creation of DMGs for normal and catastrophic rooms at each floor: After generating

DMGs from the FDQs, the next step is to combine these DMGs to form the DMG

for normal and catastrophic rooms of the floor. For example, in Fig. 8.5b, the DMGs

for NR1 and NR2 are combined together using a source vertex to form the DMG for

the normal rooms of FR1. If FR1 had more than one critical room, then their corre-

sponding DMGs would have been combined to make the final DMG for catastrophic

rooms at FR1. The DMGs for critical and normal rooms are kept separate because

147

they have different queries and need to be compared with the DMGs of normal and

catastrophic rooms from other floors. If the resultant tuples from the normal room

DMG of one floor are different from the normal room DMG of the other floor, then

one of the rooms have a faulty sensor.

The parameters to detect the faults are the resultant tuples from the DMGs (RT), com-

parison between DMG of one floor to the other floor (CA), and the threshold values of the

sensors (TV). When all of these values are one, then it means one of the sensors in one of

the rooms on the floor is faulty. Sample parametric values are shown in Table 8.1.

Table 8.1: Fault Parameters

RV CA TV Fault (Yes/No)
DMGFR1 1 1 1 Yes
DMGFR2 1 1 1 Yes
DMGFR1 1 0 0 No
DMGFR2 0 1 0 No

8.5 Optimization

In the previous section, the method to create DMGs for a two-floor building with three

rooms was explained. Since each room in the building has its own DMG, this means that

an increasing number of rooms results in multiple DMGs with large inputs that need to be

processed within stringent timing constraints. There is a possibility that the scheduler is not

able to allocate and map these DMGs for the available resources or the diagnosis technique

is unable to identify the faults within the mentioned timing constraints because the DMGs

are processing a huge amount of input data. To overcome this problem, created DMGs are

forwarded to an optimizer before giving them to the scheduler. The optimization technique

proposed in [9] is used here to optimize the DMGs.

148

(a)

(b)

Figure 8.5: (a). DMG for NR1 (b). DMG for normal rooms of floor FR1

149

Table 8.2: Diagnostic queries for CO2 sensor faults in NR1 of FR1

Names Diagnostic Queries

RQ11 Select CO2 f aultcounter from CO2sensor where CO2 f aultcounter = ’1’

RQ12 Select CO2value,CO2 f aultcounter from CO2sensor where CO2concentration > 399 and CO2 f aultcounter = ’1’

RQ13 Select room temperature1, CO2 f aultcounter from rooms, CO2sensor
where rooms.id = CO2sensor.id and room temperature1 > 19 and CO2 f aultcounter = ’1’

RQ14 Select CO2 f aultcounter,CO2value, room temperature1
from CO2sensor, rooms, where rooms.id = CO2sensor.id

and room temperature1 > 19 and CO2concentration > 399 and CO2 f aultcounter = ’1’

Table 8.3: Diagnostic queries to monitor the levels of CO2 and temperature in NR2 of FR1

Names Diagnostic Queries

RQ21 Select CO2 f aultcounter from CO2sensor where CO2 f aultcounter = ’0’

RQ22 Select CO2value,CO2 f aultcounter from CO2sensor where CO2concentration > 399 and CO2 f aultcounter = ’0’

RQ23 Select room temperature2, CO2 f aultcounter from rooms, CO2sensor
where rooms.id = CO2sensor.id and room temperature2 > 19 and CO2 f aultcounter = ’0’

RQ24 Select CO2 f aultcounter,CO2value, room temperature2
from CO2sensor, rooms, where rooms.id = CO2sensor.id

and room temperature2 > 19 and CO2concentration > 399 and CO2 f aultcounter = ’0’

8.6 Scheduler

The method described in Algorithm 3 is used to schedule the diagnostic queries and com-

munication messages to the target system architecture described in the previous section.

The main steps of the scheduler are as follows,

1. Calculate the hyper-period of the DMG using Eq. 4.9 and the number of times each

query executes within one HG using Eq. 4.10.

2. Translate the history-intervals to directed edges in the DMG using Algorithm 2.

3. Calculate the bottom-level of each query qi ∈ Q using Eq. 4.18.

4. Add the queries to the ready list. A query is said to be ready if all of its predecessor

queries have completed their required executions. Order the ready list in descend-

ing order of the bottom-level. The ties are broken by prioritizing the query whose

successors have the greater bottom-level.

150

Table 8.4: Diagnostic queries for fire detection in CR1 of FR1

Names Diagnostic Queries

CQ11 Select HeaterWarningCounter from Heateractuator where HeaterWarningCounter = ’0’

CQ12 Select TemperatureValue, HeaterWarningCounter from TemperatureSensor T, Heateractuator H where T.id = H.id
and TemperatureValue > 1100 and HeaterWarningCounter = ’0’

CQ13 Select CO2concentration, TemperatureValue from CO2sensor C , TemperatureSensor T
where C.id = T.id and CO2concentration > 12800 and HeaterWarningCounter = ’0’

CQ14 Select Heatvalue, CO2Sensorvalue, TemperatureValue from HeatSensor H, CO2Sensor C, TemperatureSensor T
where H.id = C.id and C.id = T.id and Heatvalue > 1100, CO2concentration > 12800 and HeaterWarningCounter = ’0’

Table 8.5: Diagnostic queries for Temperature sensor faults in NR3 of FR2

Names Diagnostic Queries

RQ31 Select Temperature f aultcounter from Temperaturesensor where Temperature f aultcounter = ’1’

RQ32 Select CO2concentration, Temperature f aultcounter from CO2sensor C, Temperaturesensor T
where C.id = T.id CO2concentration > 399 and Temperature f aultcounter = ’1’

RQ33 Select room temperature3, Temperature f aultcounter from rooms, CO2sensor where rooms.id = CO2sensor.id
and room temperature3 > 19 and Temperature f aultcounter = ’1’

RQ34 Select Temperature f aultcounter, CO2concentration, room temperature3 from CO2sensor, rooms,
where rooms.id = CO2sensor.id and room temperature3 > 19 and CO2concentration > 399 and Temperature f aultcounter = ’1’

5. Assign the query to the processor that gives it the earliest start time and on which they

query fulfils its deadline. Moreover, assign the communication messages between the

query and its predecessors on paths that give them the earliest finish time.

6. Repeat steps 4 and 5 until all the queries and messages are successfully scheduled.

A detailed version of the scheduler has been described in Chapter 4.

8.7 Experimentation and Results

For experimentation purposes, the technique proposed in [160] is used to design an HVAC

system model in MATLAB/Simulink for building architectures containing 12, 18, 24, 48,

60, and 80 rooms each. The corresponding DMGs comprise of 12, 18, 24, 48, 60, and 80

diagnostic queries and the system architecture consists of 2 and 3 distributed clusters where

each cluster contains two processors and one switch. Three different network topology

were used: (i). Star, (ii). Ring and (iii). Bus. The designed FDQs are executed on a

database created in distributed SQL servers. This database contains 85,000 values from

151

Table 8.6: Diagnostic queries to monitor the levels of CO2 and temperature in NR4 of FR2

Names FDQS
RQ41 Select Temperature f aultcounter from Temperaturesensor where Temperature f aultcounter = ’0’

RQ42 Select CO2concentration, Temperature f aultcounter from CO2sensor C, Temperaturesensor T
where C.id = T.id CO2concentration > 399 and Temperature f aultcounter = ’0’

RQ43 Select room temperature4, Temperature f aultcounter from rooms, CO2sensor where rooms.id = CO2sensor.id
and room temperature4 > 19 and Temperature f aultcounter = ’0’

RQ44 Select Temperature f aultcounter, CO2concentration, room temperature4 from CO2sensor, rooms,
where rooms.id = CO2sensor.id and room temperature4 > 19 and CO2concentration > 399 and Temperature f aultcounter = ’0’

Table 8.7: Diagnostic queries for fire detection in CR2 of FR2

Names Diagnostic Queries

CQ21 Select HeaterWarningCounter from Heateractuator where HeaterWarningCounter = ’0’

CQ22 Select TemperatureValue, HeaterWarningCounter from TemperatureSensor T, Heateractuator H where T.id = H.id
and TemperatureValue > 1100 and HeaterWarningCounter = ’0’

CQ23 Select CO2concentration, TemperatureValue from CO2sensor C , TemperatureSensor T
where C.id = T.id and CO2concentration > 12800 and HeaterWarningCounter = ’0’

CQ24 Select Heatvalue, CO2Sensorvalue, TemperatureValue from HeatSensor H, CO2Sensor C, TemperatureSensor T
where H.id = C.id and C.id = T.id and Heatvalue > 1100, CO2concentration > 12800 and HeaterWarningCounter = ’0’

sensors and actuators. A comparative analysis was done between the unoptimized and the

optimized versions of the DMG for the obtained schedule lengths.

Fig. 8.6a shows the results for the 4-processor ring topology network. The results

show that the scheduling length increases with an increase in the number of queries and

the scheduling length is considerably better for the optimized DMG. Similarly, in Fig.

8.6b (6-processor ring topology network), the results are better for the optimized DMG.

The results also depict that increasing the number of resources decreases the scheduling

length of the DMG. When the number of resources is high, there is a greater possibility

for parallel execution of queries that, in turn, reduces the scheduling length. A similar

trend was observed for star and bus network topologies, as shown in Fig. 8.7 and Fig.

8.8. The results for the ring topology were the best out of all three topologies followed by

bus and then star. It is expected since ring topology has less number of hops compared to

star topology and more direct connections than bus topology, which result in the successful

allocation of messages with less execution time. The results show that the proposed FDQ

technique can successfully diagnose and detect faults in HVAC systems under stringent

152

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

0

50

100

150

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
S

L
)

m
s

 -
--

> (a)

Unoptimized DMG

Optimized DMG

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

20

40

60

80

100

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
S

L
)

m
s

 -
--

> (b)

Unoptimized DMG

Optimized DMG

Figure 8.6: (a). 4-processor ring (b). 6-processor ring

timing constraints.

153

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

0

50

100

150

200

S
c
h

e
d

u
li

n
g

 L
e

n
g

th
 (

S
L

)
m

s
 -

--
> (a)

Unoptimized DMG

Optimized DMG

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

50

100

150

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
S

L
)

m
s
 -

--
> (b)

Unoptimized DMG

Optimized DMG

Figure 8.7: (a). 4-processor star (b). 6-processor star

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

0

50

100

150

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
S

L
)

m
s

 -
--

> (a)

Unoptimized DMG

Optimized DMG

10 20 30 40 50 60 70 80
Number of diagnostic queries (Q) --->

0

50

100

150

S
c

h
e

d
u

li
n

g
 L

e
n

g
th

 (
S

L
)

m
s

 -
--

> (b)

Unoptimized DMG

Optimized DMG

Figure 8.8: (a). 4-processor bus (b). 6-processor bus

154

CHAPTER 9

CONCLUSION

THIS CHAPTER gives the concluding remarks for the work presented in this thesis. This

thesis proposes different algorithms to compute time-triggered schedules during runtime

for diagnostic applications to detect and diagnose faults in Open Distributed Real-Time

Embedded (ODRE) systems.

ODRE systems have requirements for reliable operations with strict timing constraints

and an open-world assumption. In such systems, an embedded computer system has to pro-

vide its services with dependability that is better than the dependability of its constituent

components. Considering the failure rate of electrical components, one way to achieve this

level of dependability is to make the ODRE system fault-tolerant. Scheduling the diagnos-

tic service before executing it ensures a predictable temporal behaviour of the diagnostic

application and also bounds the time to infer faults. However, scheduling a real-time ap-

plication in an ODRE system is complicated because of its dynamic nature. In ODRE

systems, the term openness means that the electrical components can leave and enter the

system at runtime, which means that a fixed schedule generated at the design time cannot

be used throughout the functioning of the system. Thus, the schedule for the diagnostic

queries and communication messages should be recomputed at runtime whenever there is

a change in the system architecture or the diagnostic application. After that, the system can

switch to this new schedule, and the message and diagnostic query dispatching can proceed

according to the new schedule. The scheduling algorithm should, therefore, be fast enough

to recompute a schedule during runtime and efficient enough to maximize the continuity

of service and preserve the previous validation results and safety arguments by minimizing

the changes in the system. In the state-of-the-art, there are few time-triggered scheduling

algorithms that support both the stringent timing constraints and dynamic nature of ODRE

155

systems. Existing algorithms for time-triggerd systems support dynamic changes of the

ODRE systems by pre-computing the schedules for all the potential changes offline rather

than during runtime of the system. The computation time of most of these algorithms is

not suitable for invocation at runtime, or they compute schedules for real-time tasks with

unrealistic assumptions, e.g., only considering the bus-based network instead of multi-hop

network used in distributed real-time embedded systems.

This thesis proposes three different list scheduling algorithms to compute feasible

schedules for real-time applications in ODRE systems. The time complexity and the ob-

served execution time of the algorithms show that they can be invoked during runtime. The

proposed algorithms consider the stringent timing and routing constraints while scheduling

the tasks and messages in ODRE systems. Effectiveness of the scheduling algorithms is

measured using different parameters, e.g., an increase in the size of the application or the

total number of modifications in the already scheduled application. The results for the list

scheduling algorithm proposed for homogeneous ODRE systems are also evaluated using

the real-world use case of Heat, Ventilation and Cooling (HVAC) systems. The results show

that the computed schedules are scalable for changes in the system and also fulfil the strin-

gent timing constraints of the ODRE systems. The proposed algorithms are applicable to

any domain that has requirements for reliable operations, strict real-time constraints and a

need for an open-world assumption. Moreover, the algorithms can be used to schedule any

type of application in ODRE systems and are not restricted to the scheduling of diagnostic

services.

9.1 List Scheduling Algorithm for Homogeneous ODRE systems

The first list scheduling algorithm was proposed for homogeneous ODRE systems, i.e.,

all the processors in such ODRE systems have the same characteristics. The proposed

algorithm elaborates the traditional list scheduling algorithm to schedule an application

on an ODRE system such that all the timing constraints of the system are fulfilled. The

156

algorithm has four steps. In the first step, the bottom-levels of the tasks are calculated.

In the second step, a ready-list, containing all the tasks that are available for execution, is

generated. In the third step, the computed ready-list is ordered according to the calculated

bottom-levels. Here, the priority is given to the task that has a greater bottom-level. The

ties are broken by prioritising the task whose child tasks have greater bottom-levels than

the child tasks of the other conflicted task. In the fourth step, the ready task is allocated to a

processor that gives it the earliest start time and on which it fulfils its deadline. In the same

step, all the incoming communication messages of the task are scheduled on the paths that

give them the earliest finish time. The last three steps of the algorithm are repeated until all

the tasks in the application are scheduled. The effectiveness of the proposed algorithm was

tested for different randomly generated applications and system architectures. The results

show that the algorithm generates a feasible schedule for the applications provided the

deadline constraints of the tasks are fulfilled and if enough computation and communication

resources are available in the system.

9.2 List Scheduling Algorithm for Heterogeneous ODRE systems

The second list scheduling algorithm was proposed for heterogeneous ODRE systems, i.e.,

the processors in the system have different characteristics. In this case, each task in the

application has a different WCET on each processor in the system. The proposed algo-

rithm schedules an application on a heterogeneous ODRE system such that all the stringent

timing constraints of the system are fulfilled. The algorithm has four steps. In the first

step, a ready-list, containing all the tasks that are available for execution, is generated. In

the second step, top-levels of ready tasks are calculated, and the ready list is ordered in

increasing order of the computed top-levels. The ties are broken by prioritising the task

whose child tasks have greater bottom-levels than the child tasks of other ready tasks in

the list. In the third step, the incoming communications, of the ready task, are scheduled

on the paths that give them the earliest finish time, and the ready task itself is scheduled

157

on the processor that gives it the earliest finish time. For the selection of the processor, the

ready task should also fulfil its deadline on the assigned processor. In the fourth step, the

application is updated, i.e., the weight of the scheduled tasks is changed to its WCET on

the assigned processor. Also, the weight of the edge between tasks that were assigned to

the same processor is updated to zero. All the steps of the algorithm are repeated until all

the tasks in the application are scheduled. The effectiveness of the proposed algorithm was

tested for different randomly generated applications and system architectures. The results

show that the algorithm computes a feasible schedule for the DMGs provided the dead-

line constraints of the tasks are fulfilled and if enough computation and communication

resources are available in the system.

9.3 Incremental List Scheduling Algorithm for Homogeneous ODRE systems

The Incremental List Scheduling (ILS) algorithm is an extension of the list scheduling al-

gorithm proposed previously for homogeneous ODRE systems. When the system is first

initialised, the original list scheduling algorithm is used to generate a primary schedule for

the initial application. The primary schedule is stored in the form of schedule and message

tables. After that, whenever there are changes in the system, ILS recomputes the sched-

ule while minimising the modifications to the already scheduled tasks and communication

messages. The changes in the already scheduled application are minimised for the stability

of prior applications and to preserve previous validation results and safety arguments. If a

feasible schedule is not found, then the system discards the requested changes and keeps

running the old schedule.

There are three main steps of the algorithm. In the first step, ILS tries to identify the

change in the system by comparing the characteristics of the old and new applications and

the old and new system architectures. In the second step, the rescheduling set, consisting

of all the tasks that need rescheduling or that are not present in the primary schedule,

is computed. The tasks from the rescheduling set are removed from the schedule table.

158

All such messages that are transmitting data to the tasks in the set are removed from the

message table. The scheduling length of the primary schedule is used as the ready-time for

the tasks in the rescheduling set. The final step of the algorithm is to schedule the tasks in

the set using the calculated ready-time. There are two different scenarios here. In the first

scenario, a task from the rescheduling set is successfully scheduled using the calculated

ready-time. In the second scenario, the scheduler is unable to schedule the task with the

calculated ready-time and the available resources. Therefore, the earliest ready-time of the

task is calculated. ILS then schedules the query using this ready-time onto a processor that

gives it the earliest start time and also fulfils its deadline. After each successful allocation

of a task from the rescheduling set, the schedule and message tables are updated. The last

step in the algorithm is repeated until all the tasks in the rescheduling set. The tasks in the

set are scheduled following their bottom-level where the task with a greater bottom-level is

scheduled first.

The algorithm was tested and evaluated for three types of changes in the system (i).

Addition of a task/edge, (ii). Addition of a new application, and (iii). Removal of a proces-

sor/switch. The effectiveness of the algorithm was measured by the number of modifica-

tions in the primary schedule and total reconfiguration cost of the system. The results show

that ILS is more effective than the list scheduling algorithm proposed previously in max-

imizing the continuity of service and preserving the previous validation results and safety

arguments by minimizing the changes in the system. The results also show that the com-

puted schedules are scalable with respect to changes in the system. ILS can also be applied

to incrementally schedule applications in heterogeneous ODRE systems by employing the

list scheduling algorithm proposed in Chapter 6 as the primary scheduling algorithm.

9.4 Real-World Use Case: HVAC Systems

The results of the list scheduling algorithm proposed for homogeneous ODRE systems

are evaluated in a real-world use case, HVAC systems. Along with controlling the indoor

159

environment levels, the HVAC systems also play a crucial role in restricting hazardous sit-

uations. In hazardous situations, thousand of lives depend upon the correct functioning

and timely response of HVAC systems. Therefore, a faulty component must be detected

before the occurrence of a critical situation. This means that the HVAC systems are time-

critical and faults must be detected within the system’s defined time-bound. This thesis

proposes time-critical detection of faults in HVAC systems using multi-query based diag-

nostic applications. The diagnostic queries measure the values of the sensors for critical and

non-critical situations. The detection of fire in the room is considered a critical situation,

whereas the maintenance of comfort levels in the room is considered a non-critical situa-

tion. The model of the HVAC system is implemented in MATLAB/Simulink, and different

types of diagnostic queries are generated using the features and symptoms of the sensors

in the HVAC system. These diagnostic queries are used to formulate DMGs. The list

scheduling algorithm computes a feasible schedule for the optimised DMG that depicts the

temporal behaviour of the query and messages executions, thus bounding the time to infer

faults. Different DMGs and system architectures were generated using MATLAB/Simulink

model of the HVAC system to test the effectiveness of the proposed technique. The results

show that the proposed list scheduling algorithm can compute feasible runtime schedules

for DMGs for fault detection and diagnosis in HVAC systems.

160

REFERENCES

[1] Y. Yu, “Modelling and reasoning timing constraints in open distributed real-time
and embedded systems,” Ph.D. dissertation, Illinious Institute of Technology, 2009.

[2] T. Abdelzaher, C. Gill, R Rajkumar, and J. Stankovic, “Distributed real-time and
embedded systems research in the context of geni,” Technical report, National Sci-
ence Foundation Workshop, 2006.

[3] A.-M. Grisogono, “The implications of complex adaptive systems theory for
c2,” DEFENCE SCIENCE and TECHNOLOGY ORGANISATION EDINBURGH
(AUSTRALIA) LAND . . ., Tech. Rep., 2006.

[4] C. McCann and R. Pigeau, “Clarifying the concepts of control and of command,”
in Proceedings of the 1999 Command and Control Research and Technology Sym-
posium, vol. 29, 1999.

[5] E. O. Schweitzer, D. Whitehead, A. Guzman, Y. Gong, and M. Donolo, “Advanced
real-time synchrophasor applications,” in proceedings of the 35th Annual Western
Protective Relay Conference, Spokane, WA, 2008.

[6] R. Obermaisser, R. I. Sadat, and F. Weber, “Active diagnosis in distributed embed-
ded systems based on the time-triggered execution of semantic web queries,” in
2014 IEEE 17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing, IEEE, 2014, pp. 222–229.

[7] H. Kopetz, Real-time systems: design principles for distributed embedded applica-
tions. Springer Science & Business Media, 2011.

[8] Actian. (2009). “Actian psql,” (visited on 2019).

[9] N. Tabassam, S. Amin, and R. Obermaisser, “Minimizing the worst case execution
time of diagnostic fault queries in real time systems using genetic algorithm,” in
Science and Information Conference, Springer, 2019, pp. 564–582.

[10] A. Bagnato, L. S. Indrusiak, I. R. Quadri, M. Rossi, et al., Handbook of Research
on Embedded System Design. Information Science Reference, 2014.

[11] X. Fan, Real-time embedded systems: design principles and engineering practices.
Newnes, 2015.

161

[12] T. Pop, “Analysis and optimisation of distributed embedded systems with hetero-
geneous scheduling policies,” Ph.D. dissertation, Institutionen för datavetenskap,
2007.

[13] K. Juvva. (1998). “Real-time systems, carnegie mellon university,” (visited on
2019).

[14] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[15] C. W. Leung, “Architecture of distributed real-time embedded system,” Ph.D. dis-
sertation, KTH Information and Communication Technology, 2013.

[16] H Kopetz, “On the fault hypothesis for a safety-critical real-time system,” Automo-
tive Software–Connected Services in Mobile Networks, pp. 31–42, 2006.

[17] J. Škach and I. Punčochář, “Active fault detection: A comparison of probabilis-
tic methods,” in Journal of Physics: Conference Series, IOP Publishing, vol. 659,
2015, p. 012 046.

[18] G. Heiner and T. Thurner, “Time-triggered architecture for safety-related dis-
tributed real-time systems in transportation systems,” in Digest of Papers. Twenty-
Eighth Annual International Symposium on Fault-Tolerant Computing (Cat. No.
98CB36224), IEEE, 1998, pp. 402–407.

[19] O. Sinnen, Task scheduling for parallel systems. John Wiley & Sons, 2007, vol. 60.

[20] R. El Osta, “Contributions to real time scheduling for energy autonomous systems,”
Ph.D. dissertation, Nantes, 2017.

[21] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Springer Science & Business Media, 2011, vol. 24.

[22] TTTech. (1998). “Ttp/c specification, website of time-triggered technology,” (vis-
ited on 2019).

[23] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE transactions on parallel and
distributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[24] A. Darte, Y. Robert, and F. Vivien, Scheduling and automatic Parallelization.
Springer Science & Business Media, 2012.

162

[25] T. L. Adam, K. M. Chandy, and J. Dickson, “A comparison of list schedules for
parallel processing systems,” Communications of the ACM, vol. 17, no. 12, pp. 685–
690, 1974.

[26] E. G. Coffman and R. L. Graham, “Optimal scheduling for two-processor systems,”
Acta informatica, vol. 1, no. 3, pp. 200–213, 1972.

[27] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM journal on
Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[28] H. Kasahara and S. Narita, “Practical multiprocessor scheduling algorithms for
efficient parallel processing,” IEEE Transactions on Computers, vol. 33, no. 11,
pp. 1023–1029, 1984.

[29] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling precedence
graphs in systems with interprocessor communication times,” SIAM Journal on
Computing, vol. 18, no. 2, pp. 244–257, 1989.

[30] B. Kruatrachue and T. Lewis, “Grain size determination for parallel processing,”
IEEE software, vol. 5, no. 1, pp. 23–32, 1988.

[31] C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D. Anger, “Multiprocessor scheduling
with interprocessor communication delays,” Operations Research Letters, vol. 7,
no. 3, pp. 141–147, 1988.

[32] Z. Liu, “A note on graham’s bound,” Information Processing Letters, vol. 36, no. 1,
pp. 1–5, 1990.

[33] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures,” IEEE transactions on Parallel
and Distributed systems, vol. 4, no. 2, pp. 175–187, 1993.

[34] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid for message-passing
systems,” IEEE transactions on parallel and distributed systems, vol. 1, no. 3,
pp. 330–343, 1990.

[35] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of parallel and Distributed Computing, vol. 9, no. 2,
pp. 138–153, 1990.

[36] Y. K. Kwok and I. Ahmad, “Link contention-constrained scheduling and mapping
of tasks and messages to a network of heterogeneous processors,” Cluster Comput-
ing, vol. 3, no. 2, pp. 113–124, 2000.

163

[37] S. Kim and J. C. Browne, “General approach to mapping of parallel computations
upon multiprocessor architectures,” in Proceedings of the International Conference
on Parallel Processing, vol. 3, 1988, pp. 1–8.

[38] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an unbounded num-
ber of processors,” IEEE Transactions on Parallel and Distributed Systems, vol. 5,
no. 9, pp. 951–967, 1994.

[39] J.-C. Liou and M. A. Palis, “An efficient task clustering heuristic for scheduling
dags on multiprocessors,” in Workshop on Resource Management, Symposium on
Parallel and Distributed Processing, 1996, pp. 152–156.

[40] I. Ahmad and Y.-K. K. Y.-K. Kwok, “A new approach to scheduling parallel pro-
grams using task duplication,” in 1994 Internatonal Conference on Parallel Pro-
cessing Vol. 2, IEEE, vol. 2, 1994, pp. 47–51.

[41] Y.-C. Chung and S. Ranka, “Applications and performance analysis of a compile-
time optimization approach for list scheduling algorithms on distributed memory
multiprocessors,” in Supercomputing’92: Proceedings of the 1992 ACM/IEEE Con-
ference on Supercomputing, IEEE, 1992, pp. 512–521.

[42] G.-L. Park, B. Shirazi, and J. Marquis, “Dfrn: A new approach for duplication
based scheduling for distributed memory multiprocessor systems,” in Proceedings
11th International Parallel Processing Symposium, IEEE, 1997, pp. 157–166.

[43] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task graphs
using genetic algorithms,” in 5th IEEE heterogeneous computing workshop
(HCW’96), 1996, pp. 86–97.

[44] L. Wang, H. J. Siegel, and V. P. Roychowdhury, “A genetic-algorithm-based ap-
proach for task matching and scheduling in heterogeneous computing environ-
ments,” in Proc. Heterogeneous Computing Workshop, 1996, pp. 72–85.

[45] E. S. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor schedul-
ing,” IEEE Transactions on Parallel and Distributed systems, vol. 5, no. 2, pp. 113–
120, 1994.

[46] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund, “Genetic simulated anneal-
ing for scheduling data-dependent tasks in heterogeneous environments,” in 5th
Heterogeneous Computing Workshop (HCW’96), 1996, pp. 98–117.

[47] L Tao, B Narahari, and Y. Zhao, “Heuristics for mapping parallel computations to
parallel architectures,” in Proceedings. Workshop on Heterogeneous Processing,,
IEEE, 1993, pp. 36–41.

164

[48] M.-Y. Wu, W. Shu, and J. Gu, “Local search for dag scheduling and task assign-
ment,” in Proceedings of the 1997 International Conference on Parallel Processing
(Cat. No. 97TB100162), IEEE, 1997, pp. 174–180.

[49] Y.-K. Kwok, I. Ahmad, and J. Gu, “Fast: A low-complexity algorithm for efficient
scheduling of dags on parallel processors,” in Proceedings of the 1996 ICPP Work-
shop on Challenges for Parallel Processing, IEEE, vol. 2, 1996, pp. 150–157.

[50] P. Pop, P. Eles, Z. Peng, and T. Pop, “Scheduling and mapping in an incremental
design methodology for distributed real-time embedded systems,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 8, pp. 793–811,
2004.

[51] R. Ernst, “Codesign of embedded systems: Status and trends,” IEEE Design & Test
of Computers, vol. 15, no. 2, pp. 45–54, 1998.

[52] G De Michell and R. K. Gupta, “Hardware/software co-design,” Proceedings of the
IEEE, vol. 85, no. 3, pp. 349–365, 1997.

[53] J. Staunstrup and W. Wolf, Hardware/software co-design: principles and practice.
Springer Science & Business Media, 2013.

[54] A. Buiga, “Investigating the role of mqb platform in volkswagen group’s strategy
and automobile industry,” International Journal of Academic Research in Business
and Social Sciences, vol. 2, no. 9, pp. 391–399, 2012.

[55] A. Volkswagen, New group strategy adopted: Volkswagen group to become a
world-leading provider of sustainable mobility, 2016.

[56] R. Hähnle and R. Muschevici, “Towards incremental validation of railway sys-
tems,” in International Symposium on Leveraging Applications of Formal Methods,
Springer, 2016, pp. 433–446.

[57] A. Sangiovanni-Vincentelli, “Electronic-system design in the automobile industry,”
IEEE Micro, vol. 23, no. 3, pp. 8–18, 2003.

[58] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment in real-time
scheduling of dag tasks on multi-cores,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2019.

[59] T. Schwarzer, J. Falk, M. Glaß, J. Teich, C. Zebelein, and C. Haubelt, “Throughput-
optimizing compilation of dataflow applications for multi-cores using quasi-static
scheduling,” in Proceedings of the 18th International Workshop on Software and
Compilers for Embedded Systems, ACM, 2015, pp. 68–75.

165

[60] Y. Wen, H. Xu, and J. Yang, “A heuristic-based hybrid genetic-variable neighbor-
hood search algorithm for task scheduling in heterogeneous multiprocessor sys-
tem,” Information Sciences, vol. 181, no. 3, pp. 567–581, 2011.

[61] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 682–694, 2013.

[62] “Real-time scheduling,” in Real-Time Systems: Design Principles for Distributed
Embedded Applications. Boston, MA: Springer US, 1997, pp. 227–243, ISBN: 978-
0-306-47055-4.

[63] K. Singh, M. Alam, and S. K. Sharma, “A survey of static scheduling algorithm for
distributed computing system,” International Journal of Computer Applications,
vol. 129, no. 2, pp. 25–30, 2015.

[64] R. Rajak, “Comparison of bounded number of processors (bnp) class of scheduling
algorithms based on matrices,” Computer Sciences and Telecommunications, no. 3,
pp. 35–44, 2012.

[65] P. Cichowski and J. Keller, “Efficient and fault-tolerant static scheduling for grids,”
in 2013 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, IEEE, 2013, pp. 1439–1448.

[66] S. M. Shatz, J.-P. Wang, and M. Goto, “Task allocation for maximizing reliability of
distributed computer systems,” IEEE Transactions on Computers, no. 9, pp. 1156–
1168, 1992.

[67] X. Qin, H. Jiang, and D. R. Swanson, “An efficient fault-tolerant scheduling algo-
rithm for real-time tasks with precedence constraints in heterogeneous systems,”
in Proceedings International Conference on Parallel Processing, IEEE, 2002,
pp. 360–368.

[68] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi, “Real-time scheduling and analysis of
openmp task systems with tied tasks,” in 2017 IEEE Real-Time Systems Symposium
(RTSS), IEEE, 2017, pp. 92–103.

[69] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, “Comparative evaluation
of the robustness of dag scheduling heuristics,” in Grid Computing, Springer, 2008,
pp. 73–84.

[70] J.-Y. Colin and P. Chrétienne, “Cpm scheduling with small communication delays
and task duplication,” Operations Research, vol. 39, no. 4, pp. 680–684, 1991.

166

[71] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014 IEEE
international conference on automation, quality and testing, robotics, IEEE, 2014,
pp. 1–4.

[72] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized schedul-
ing for precedence constrained tasks and messages on networked embedded sys-
tems,” Journal of Parallel and Distributed Computing, vol. 83, pp. 1–12, 2015.

[73] X.-M. Zhang and Q.-L. Han, “Event-triggered dynamic output feedback control
for networked control systems,” IET Control Theory & Applications, vol. 8, no. 4,
pp. 226–234, 2014.

[74] A. Albert et al., “Comparison of event-triggered and time-triggered concepts with
regard to distributed control systems,” Embedded world, vol. 2004, pp. 235–252,
2004.

[75] R. Bosch et al., “Can specification version 2.0,” Rober Bousch GmbH, Postfach,
vol. 300240, p. 72, 1991.

[76] L. Echelon, The lontalk protocol specification, 2003.

[77] J. Berwanger, M. Peller, and R. Griessbach, “Byteflight–a new high-performance
data bus system for safety-related applications,” BMW AG, 2000.

[78] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[79] P. Miner, “Analysis of the spider fault-tolerance protocols,” in Proceedings of the
5th NASA Langley Formal Methods Workshop, 2000.

[80] K. Hoyme and K. Driscoll, “Safebus,” in [1992] Proceedings IEEE/AIAA 11th Dig-
ital Avionics Systems Conference, IEEE, 1992, pp. 68–73.

[81] W. Steiner, “Ttethernet specification,” TTTech Computertechnik AG, Nov, vol. 39,
p. 40, 2008.

[82] I. ISO, “11898-4-road vehicles-controller area network (can)-part 4: Time-
triggered communication,” International Standard Organization, pp. 11 898–4,
2000.

[83] J. Dvořák and Z. Hanzálek, “Multi-variant scheduling of critical time-triggered
communication in incremental development process: Application to flexray,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 1, pp. 155–169, 2018.

167

[84] W. Steiner, “An evaluation of smt-based schedule synthesis for time-triggered
multi-hop networks,” in 2010 31st IEEE Real-Time Systems Symposium, IEEE,
2010, pp. 375–384.

[85] ——, “Synthesis of static communication schedules for mixed-criticality sys-
tems,” in 2011 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, IEEE, 2011, pp. 11–18.

[86] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design optimization of ttethernet-
based distributed real-time systems,” Real-Time Systems, vol. 51, no. 1, pp. 1–35,
2015.

[87] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling real-time
communication in ieee 802.1 qbv time sensitive networks,” in Proceedings of the
24th International Conference on Real-Time Networks and Systems, ACM, 2016,
pp. 183–192.

[88] F. Pozo, G. Rodriguez-Navas, and H. Hansson, “Methods for large-scale time-
triggered network scheduling,” 2019.

[89] Z. Zheng, F. He, and Y. Xiong, “The research of scheduling algorithm for time-
triggered ethernet based on path-hop,” in 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), IEEE, 2016, pp. 1–6.

[90] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule optimiza-
tion of the static segment,” in Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, ACM, 2009,
pp. 363–372.

[91] K. Schmidt and E. G. Schmidt, “Message scheduling for the flexray protocol:
The static segment,” IEEE transactions on vehicular technology, vol. 58, no. 5,
pp. 2170–2179, 2008.

[92] Z. Hanzálek, D. Beneš, and D. Waraus, “Time constrained flexray static segment
scheduling,” in Proc. 10th Int. Workshop Real-Time Netw., 2011, pp. 23–28.

[93] M. Kang, K. Park, and M.-K. Jeong, “Frame packing for minimizing the band-
width consumption of the flexray static segment,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 9, pp. 4001–4008, 2012.

[94] M. Grenier, L. Havet, and N. Navet, “Configuring the communication on flexray-
the case of the static segment,” 2008.

168

[95] K. Schmidt and E. G. Schmidt, “Optimal message scheduling for the static segment
of flexray,” in 2010 IEEE 72nd Vehicular Technology Conference-Fall, IEEE, 2010,
pp. 1–5.

[96] R Zhao, G. Qin, and J. Liu, “Optimal scheduling of the flexray static segment based
on two-dimensional bin-packing algorithm,” International Journal of Automotive
Technology, vol. 17, no. 4, pp. 703–715, 2016.

[97] R. Zhao, G.-h. Qin, and J.-q. Liu, “A rectangle bin packing optimization approach
to the signal scheduling problem in the flexray static segment,” Frontiers of Infor-
mation Technology & Electronic Engineering, vol. 17, no. 4, pp. 375–388, 2016.

[98] R Zhao, G. Qin, H. Chen, J Qin, and J Yan, “Security-aware scheduling for
flexray-based real-time automotive systems,” Mathematical Problems in Engineer-
ing, vol. 2019, 2019.

[99] B. Fateh and M. Govindarasu, “Joint scheduling of tasks and messages for energy
minimization in interference-aware real-time sensor networks,” IEEE transactions
on mobile computing, vol. 14, no. 1, pp. 86–98, 2013.

[100] L. Yang, W. Liu, W. Jiang, M. Li, J. Yi, and E. H.-M. Sha, “Application map-
ping and scheduling for network-on-chip-based multiprocessor system-on-chip
with fine-grain communication optimization,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3027–3040, 2016.

[101] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli, “Schedule opti-
mization of time-triggered systems communicating over the flexray static segment,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 1, pp. 1–17, 2010.

[102] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Modular
scheduling of distributed heterogeneous time-triggered automotive systems,” in
17th Asia and South Pacific design automation conference, IEEE, 2012, pp. 665–
670.

[103] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design optimisation of
cyber-physical distributed systems using ieee time-sensitive networks,” IET Cyber-
Physical Systems: Theory & Applications, vol. 1, no. 1, pp. 86–94, 2016.

[104] M. Hu, J. Luo, Y. Wang, M. Lukasiewycz, and Z. Zeng, “Holistic scheduling of
real-time applications in time-triggered in-vehicle networks,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 3, pp. 1817–1828, 2014.

[105] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling time-triggered
traffic in time-sensitive networks,” in 2018 IEEE 23rd International Conference

169

on Emerging Technologies and Factory Automation (ETFA), IEEE, vol. 1, 2018,
pp. 337–344.

[106] B. Cheng, L. Wang, W. Liu, and L. Zeng, “Scheduling algorithm based on time-
trigger bus,” in 2016 IEEE 13th International Conference on Signal Processing
(ICSP), IEEE, 2016, pp. 1787–1790.

[107] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous en-
vironment,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 2,
pp. 107–118, 2004.

[108] S. Baskiyar and P. C. SaiRanga, “Scheduling directed a-cyclic task graphs on het-
erogeneous network of workstations to minimize schedule length,” in 2003 Inter-
national Conference on Parallel Processing Workshops, 2003. Proceedings., IEEE,
2003, pp. 97–103.

[109] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems,” in 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings., IEEE, 2004,
p. 107.

[110] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu, “A stochastic scheduling algorithm
for precedence constrained tasks on grid,” Future Generation Computer Systems,
vol. 27, no. 8, pp. 1083–1091, 2011.

[111] M. A. Khan, “Scheduling for heterogeneous systems using constrained critical
paths,” Parallel Computing, vol. 38, no. 4, pp. 175–193, 2012.

[112] O. Sinnen and L. Sousa, “List scheduling: Extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures,” Parallel Com-
puting, vol. 30, no. 1, pp. 81–101, 2004.

[113] Y.-K. Kwok and I. Ahmad, “Benchmarking the task graph scheduling algorithms,”
in Proceedings of the First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing, IEEE, 1998, pp. 531–537.

[114] M. K. Bhatti, I. Oz, S. Amin, M. Mushtaq, U. Farooq, K. Popov, and M. Brorsson,
“Locality-aware task scheduling for homogeneous parallel computing systems,”
Computing, vol. 100, no. 6, pp. 557–595, 2018.

[115] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective tech-
nique for allocating task graphs to multiprocessors,” IEEE transactions on parallel
and distributed systems, vol. 7, no. 5, pp. 506–521, 1996.

170

[116] O. Sinnen, A. To, and M. Kaur, “Contention-aware scheduling with task duplica-
tion,” Journal of Parallel and Distributed Computing, vol. 71, no. 1, pp. 77–86,
2011.

[117] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler for time
triggered traffic in time sensitive networks,” ACM Sigbed Review, vol. 16, no. 1,
pp. 15–20, 2019.

[118] R. Obermaisser and A. Murshed, “Incremental, distributed, and concurrent schedul-
ing in systems-of-systems with real-time requirements,” in 2015 IEEE Interna-
tional Conference on Computer and Information Technology; Ubiquitous Comput-
ing and Communications; Dependable, Autonomic and Secure Computing; Perva-
sive Intelligence and Computing, IEEE, 2015, pp. 1918–1927.

[119] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling and rout-
ing in time-sensitive software-defined networks,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[120] J. Dvorak and Z. Hanzalek, “Multi-variant time constrained flexray static segment
scheduling,” in 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014), IEEE, 2014, pp. 1–8.

[121] F. Sagstetter, P. Waszecki, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty,
“Multischedule synthesis for variant management in automotive time-triggered sys-
tems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 4, pp. 637–650, 2015.

[122] L. F. Gonçalves, J. L. Bosa, T. R. Balen, M. S. Lubaszewski, E. L. Schneider,
and R. V. Henriques, “Fault detection, diagnosis and prediction in electrical valves
using self-organizing maps,” Journal of Electronic Testing, vol. 27, no. 4, pp. 551–
564, 2011.

[123] A. Le Mortellec, J. Clarhaut, Y. Sallez, T. Berger, and D. Trentesaux, “Embedded
holonic fault diagnosis of complex transportation systems,” Engineering Applica-
tions of Artificial Intelligence, vol. 26, no. 1, pp. 227–240, 2013.

[124] J. Gertler, Fault detection and diagnosis in engineering systems. Routledge, 2017.

[125] ——, “Fault detection and diagnosis,” Encyclopedia of Systems and Control,
pp. 417–422, 2015.

[126] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven perspective of
fault detection and diagnosis,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 4, pp. 2226–2238, 2013.

171

[127] J. Ma and J. Jiang, “Applications of fault detection and diagnosis methods in nu-
clear power plants: A review,” Progress in nuclear energy, vol. 53, no. 3, pp. 255–
266, 2011.

[128] O. Kermia and Y. Sorel, “A rapid heuristic for scheduling non-preemptive depen-
dent periodic tasks onto multiprocessor,” in Proceedings of ISCA 20th international
conference on Parallel and Distributed Computing Systems, PDCS’07, 2007.

[129] A. Rădulescu and A. J. Van Gemund, “On the complexity of list scheduling algo-
rithms for distributed-memory systems,” in Proceedings of the 13th international
conference on Supercomputing, ACM, 1999, pp. 68–75.

[130] M. I. Daoud and N. Kharma, “A high performance algorithm for static task schedul-
ing in heterogeneous distributed computing systems,” Journal of Parallel and dis-
tributed computing, vol. 68, no. 4, pp. 399–409, 2008.

[131] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 682–694, 2014.

[132] R. Obermaisser, Time-triggered communication. CRC Press, 2018.

[133] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis and graph-
mining library,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 8, no. 1, p. 1, 2016.

[134] U. D. of Energy. (2008). “Energy efficiency trends in residential and commercial
buildings,” (visited on 09/19/2019).

[135] Y. Kim, T. Schmid, M. B. Srivastava, and Y. Wang, “Challenges in resource mon-
itoring for residential spaces,” in Proceedings of the First ACM Workshop on Em-
bedded Sensing Systems for Energy-Efficiency in Buildings, ACM, 2009, pp. 1–6.

[136] M. Dey, S. P. Rana, and S. Dudley, “Smart building creation in large scale hvac
environments through automated fault detection and diagnosis,” Future Generation
Computer Systems, 2018.

[137] J. Weimer, S. A. Ahmadi, J. Araujo, F. M. Mele, D. Papale, I. Shames, H. Sandberg,
and K. H. Johansson, “Active actuator fault detection and diagnostics in hvac sys-
tems,” in Proceedings of the fourth ACM workshop on embedded sensing systems
for energy-efficiency in buildings, ACM, 2012, pp. 107–114.

[138] S. Katipamula and M. R. Brambley, “Methods for fault detection, diagnostics, and
prognostics for building systems—a review, part i,” Hvac&R Research, vol. 11,
no. 1, pp. 3–25, 2005.

172

[139] N. Djuric and V. Novakovic, “Review of possibilities and necessities for build-
ing lifetime commissioning,” Renewable and Sustainable Energy Reviews, vol. 13,
no. 2, pp. 486–492, 2009.

[140] N. Fernandez, M. R. Brambley, S. Katipamula, H. Cho, J. K. Goddard, and L. H.
Dinh, “Self-correcting hvac controls project final report,” Pacific Northwest Na-
tional Lab.(PNNL), Richland, WA (United States), Tech. Rep., 2010.

[141] L. Jagemar, D. Olsson, and F Schmidt, “The epbd and continuous commissioning,”
Project Report, Building EQ, EIE/06/038/SI2, vol. 448300, 2007.

[142] S. W. Kramer and P. Fleck, “Maintaining building function during a fire event:
Analysis of hospital fire and smoke control systems,” 2018.

[143] D. Sloo, N. U. Webb, E. J. Fisher, Y. Matsuoka, A. Fadell, and M. Rogers, Smart-
home control system providing hvac system dependent responses to hazard detec-
tion events, US Patent 9,905,122, 2018.

[144] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. E. Cerpa, “Observe: Occupancy-
based system for efficient reduction of hvac energy,” in Proceedings of the 10th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works, IEEE, 2011, pp. 258–269.

[145] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B.
Lehmann, and M. Morari, “Use of model predictive control and weather fore-
casts for energy efficient building climate control,” Energy and Buildings, vol. 45,
pp. 15–27, 2012.

[146] A. Afram and F. Janabi-Sharifi, “Theory and applications of hvac control systems–
a review of model predictive control (mpc),” Building and Environment, vol. 72,
pp. 343–355, 2014.

[147] Z. Du, B. Fan, X. Jin, and J. Chi, “Fault detection and diagnosis for buildings and
hvac systems using combined neural networks and subtractive clustering analysis,”
Building and Environment, vol. 73, pp. 1–11, 2014.

[148] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques—part i: Fault diagnosis with model-based and signal-based ap-
proaches,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757–
3767, 2015.

[149] D. Li, Y. Zhou, G. Hu, and C. J. Spanos, “Fault detection and diagnosis for build-
ing cooling system with a tree-structured learning method,” Energy and Buildings,
vol. 127, pp. 540–551, 2016.

173

[150] B. Sun, P. B. Luh, Q.-S. Jia, Z. O’Neill, and F. Song, “Building energy doctors:
An spc and kalman filter-based method for system-level fault detection in hvac sys-
tems,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 1,
pp. 215–229, 2013.

[151] H. Wang, Y. Chen, C. W. Chan, and J. Qin, “An online fault diagnosis tool of vav
terminals for building management and control systems,” Automation in Construc-
tion, vol. 22, pp. 203–211, 2012.

[152] Y. Zhu, X. Jin, and Z. Du, “Fault diagnosis for sensors in air handling unit based
on neural network pre-processed by wavelet and fractal,” Energy and buildings,
vol. 44, pp. 7–16, 2012.

[153] B. Fan, Z. Du, X. Jin, X. Yang, and Y. Guo, “A hybrid fdd strategy for local sys-
tem of ahu based on artificial neural network and wavelet analysis,” Building and
environment, vol. 45, no. 12, pp. 2698–2708, 2010.

[154] H. Han, Z. Cao, B. Gu, and N. Ren, “Pca-svm-based automated fault detection and
diagnosis (afdd) for vapor-compression refrigeration systems,” HVAC&R Research,
vol. 16, no. 3, pp. 295–313, 2010.

[155] K.-Y. Chen, L.-S. Chen, M.-C. Chen, and C.-L. Lee, “Using svm based method for
equipment fault detection in a thermal power plant,” Computers in industry, vol. 62,
no. 1, pp. 42–50, 2011.

[156] Y. Hu, H. Chen, J. Xie, X. Yang, and C. Zhou, “Chiller sensor fault detection using a
self-adaptive principal component analysis method,” Energy and buildings, vol. 54,
pp. 252–258, 2012.

[157] J. Yun and K.-H. Won, “Building environment analysis based on temperature and
humidity for smart energy systems,” Sensors, vol. 12, no. 10, pp. 13 458–13 470,
2012.

[158] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, “Communication and com-
putation in buildings: A short introduction and overview,” IEEE transactions on
industrial electronics, vol. 57, no. 11, pp. 3577–3584, 2010.

[159] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-driven approaches
for industrial process monitoring,” IEEE Transactions on Industrial Electronics,
vol. 61, no. 11, pp. 6418–6428, 2014.

[160] A. Behravan, N. Tabassam, O. Al-Najjar, and R. Obermaisser, “Composability
modeling for the use case of demand-controlled ventilation and heating system,”
in 2019 6th International Conference on Control, Decision and Information Tech-
nologies (CoDIT), IEEE, 2019, pp. 1998–2003.

174

	Title page
	ABSTRACT
	Zusammenfassung
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Research Statement and Thesis Contributions
	Thesis Overview

	Basic Concepts
	Distributed Real-Time Embedded Systems
	Embedded Systems
	Real-Time Systems
	Classification of Real-Time Systems
	Characteristics of Hard Real-Time Embedded Systems

	Distributed Systems
	Characteristics of Distributed Systems

	Fault Diagnosis and Detection (FDD) in Safety-Critical Distributed Embedded Systems
	Passive and Active FDD
	Diagnosis requirements for Open Distributed Real-time Embedded (ODRE) systems

	Real-time Scheduling Problems
	Classification of Real-time Scheduling Algorithms
	Real-time Feasibility and Schedulability

	Time-triggered (TT) Systems
	TT Task Execution
	Static Communication (TT Message Execution)

	Static Task Scheduling
	List Scheduling
	Clustering Heuristics
	Task Duplication Heuristics
	Guided Random Search Techniques

	Incremental Design Process

	Related Work
	Static Task and Message Scheduling
	List Scheduling
	Incremental Scheduling
	Fault Detection and Diagnosis in Embedded Systems

	System Model
	System Architecture
	Hardware Components of Processors
	Software Components of Processors
	Scheduler
	Constraints of the Distributed System

	Application Model
	System Application (GS)
	Diagnostic Multi-Query Graph (DMG - GD)
	Characteristics of DMG
	Time Period and Absolute Deadline
	Hyper-Period
	History-Interval

	Translation of History-Interval to Directed Edges

	Characteristics of the Application Model used for List Scheduling

	List Scheduling for active diagnosis in Homogeneous ODRE Systems
	Problem Formulation
	List Scheduling (LS) for Homogeneous Distributed Systems
	Proposed Algorithm
	Example
	Complexity of LS algorithm for homogeneous systems

	Experimental Setup
	Results

	List Scheduling for active diagnosis in Heterogeneous ODRE Systems
	Problem Formulation
	List Scheduling (LS) for Heterogeneous Systems
	Proposed Algorithm
	Example
	Complexity of LS algorithm for heterogeneous systems

	Experimental Setup
	Results

	Incremental List Scheduling
	Problem Formulation
	Incremental List Scheduling (ILS)
	Identify the modifications in the system
	Compute the affected queries
	Scheduling the queries/messages
	Complexity of the ILS algorithm

	Experimentation and Evaluation
	Experimental Setup
	Evaluation

	Real-World Use Case: Fault detection and diagnosis using diagnostic multi-queries in HVAC systems
	Background
	Related Work
	Problem Formulation
	Building Architecture

	Formulation of Diagnostic Multi-query Graphs (DMGs)
	Optimization
	Scheduler
	Experimentation and Results

	Conclusion
	List Scheduling Algorithm for Homogeneous ODRE systems
	List Scheduling Algorithm for Heterogeneous ODRE systems
	Incremental List Scheduling Algorithm for Homogeneous ODRE systems
	Real-World Use Case: HVAC Systems

	REFERENCES

