

Comprehensive Machine and Deep Learning
Fault Detection and Classification Approaches of

Industry 4.0 Mechanical Machineries: With
Application to A Hydraulic Test Rig

DISSERTATION

Zur Erlangung des Grades eines Doktors
der Ingenieurwissenschaften.

vorgelegt von

M.Sc. Ahlam Mallak

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen 2021

i

Betreuer und erster Gutachter
Prof. Dr.-Ing. habil. Madjid Fathi

Universität Siegen

Zweiter Gutachter
Prof. Dr.-Ing. habil. Roman Obermaisser

Universität Siegen

Mitglieder der Promotionskommission
Prof. Dr. rer. nat. Volker Blanz

Universität Siegen

Vorsitzender: Prof. Dr. Markus Lohrey

Tag der mündlichen Prüfung
 15. März 2021

ii

gedruckt auf alterungsbeständigem holz- und säurefreiem Papier

iii

Dedication: I dedicate this work to my family and my partner for always supporting
me and standing by my side. I love you all more than anything, and I cannot thank you
enough!

iv

Acknowledgments

First, I would like to thank my first supervisor Prof. Madjid Fathi for always
offering great support and understanding. You have played such an important
role in my personal and academic development and growth. You have chosen
me, supported me, believed in me, and pushed me to be the best academic I
can be. Thank you so much for everything.

I would like to also thank my second supervisor, Prof. Roman Obermaisser for
being a great support for the past 3 years, while working on our joint DFG
project resulting a lot of work contributing to this dissertation.

A special appreciation and thanks for Dr. Daniel Müller who is the head of the
House of Young Talents office in the University of Siegen, for the valuable
courses your office offers. They were an eye-opener and a valuable source of
information. Thank you as well for offering me a scholarship at the end of my
doctorate that helped me a lot during my academic journey.

Another great academic I would like to thank is Dr. Nina Finn for being a great
support and a role model, and a female academic to look up to.

Thanks to my colleagues for the continuous intrinsic and moral support. I hope
we can work together again in the near future.

Thanks to my family: Dad, Mom, Rana, Bahjat, Omar and Maram. And the
family that fate and I chose: Kellum O’Connor, for always standing by my side
and loving me no matter what. Thank you for believing in me and pushing me
to keep fighting even when I was at my lowest. I am rich for having you all in
my life.

Above all, I am so thankful to God for giving me the strength to keep going.
For sending the right people at the right time. For keeping me and my loved
ones healthy and safe. For being so kind to me, even when I was not kind to
myself. I love you so much, and I will always be thankful to you until the day
I die.

v

Abstract

Anomaly occurrences in mechanical equipment within industry 4.0 may lead
to massive systems shut down, jeopardizing the safety of the machinery and its
surrounding human operator(s) and environment, as well as the severe
economic implications succeeding the faults and their associated damage.

Various mechanical tools are mostly placed in harsh and ruthless environments,
where the machines are consistently vulnerable to many fault types connected
to their functionality nature. Hence, not only the machines and their
components are prone to anomalies, but also the sensors attached to them
necessary to collect viable signals to monitor and report the overall machine
health and behavioural changes. Those sensors may likewise fail and carry out
various anomalies.

This thesis elucidates a full research and analytical implementation of
component and sensor faults detection and diagnosis, utilizing numerous
machine and deep learning approaches in application of a hydraulic system
extracted from a hydraulic test rig. It is unfortunate that hydraulic systems are
rarely approached for anomaly detection subject comparing to other
mechanical machines in the past decade. Specifically, comprehensive systems
that cover all aspects of anomaly detection in hydraulic systems, which
includes both sensor and component faults, essential feature engineering
methods, and innovative detection algorithms based on the latest technologies
such as, the application of deep learning.

In this work, three main contributions to anomaly detection in hydraulic
systems extracted from a hydraulic test rig are thoroughly achieved. Firstly, we

vi

provided a combination of LSTM autoencoders and supervised machine and
deep learning methodologies to perform two separate stages of fault detection
and diagnosis. The two phases are condensed by: (1) the detection phase using
the LSTM autoencoder. Followed by (2) the fault diagnosis phase represented
by the classification schema. The previously mentioned framework is applied
to component and sensor faults in hydraulic systems, deployed in the form of
two in-depth applicational experiments. In the detection phase declared by the
classification process, diversified machine and deep learning supervised
methods are compared and analysed for their component and sensor fault
detection performance in hydraulic systems. In addition, we provided
comparisons of plentiful feature engineering techniques in the time-domain, to
showcase the influence of each feature engineering method on its
corresponding supervised classifiers in the detection phase. Secondly, we
provided an unprecedented feature selection method called Recursive k-means
Silhouette Elimination (RkSE), and it is deployed to perform feature selection
for component fault classification in multi-variate hydraulic test rig dataset.
Moreover, RkSE is utilized as a window compression method when deployed
to achieve sensor fault identification in univariate sliding window-structured
datasets. Finally, an innovative application of Random Forests (RF) in a hybrid
architecture between data-driven and model-based diagnosis approaches is
introduced and applied to hydraulic systems for dynamic diagnostic rules
generation.

vii

Zusammenfassung

Das Auftreten von Anomalien in mechanischen Geräten innerhalb der
Industrie 4.0 kann zu massiven Systemabschaltungen führen, die die Sicherheit
der Maschinen und der sie umgebenden menschlichen Bediener und der
Umwelt gefährden, sowie zu schwerwiegenden wirtschaftlichen
Auswirkungen, die auf die Fehler und die damit verbundenen Schäden folgen.
Verschiedene mechanische Werkzeuge werden meist in rauen und
unbarmherzigen Umgebungen eingesetzt, in denen die Maschinen aufgrund
ihrer Funktionsweise durchweg anfällig für viele Fehlertypen sind. Daher sind
nicht nur die Maschinen und ihre Komponenten anfällig für Anomalien,
sondern auch die an ihnen angebrachten Sensoren, die notwendig sind, um
brauchbare Signale zur Überwachung und Meldung des allgemeinen
Maschinenzustands und der Verhaltensänderungen zu sammeln. Diese

Sensoren können ebenfalls ausfallen und verschiedene Anomalien hervorrufen.

Diese Arbeit erläutert eine vollständige Forschung und analytische
Implementierung der Erkennung und Diagnose von Komponenten- und
Sensorfehlern unter Verwendung zahlreicher maschineller und Deep-
Learning-Ansätze in der Anwendung eines hydraulischen Systems, das aus

einem hydraulischen Prüfstand stammt. Es ist bedauerlich, dass hydraulische
Systeme im Vergleich zu anderen mechanischen Maschinen im letzten
Jahrzehnt nur selten zum Thema Anomalieerkennung herangezogen werden.
Insbesondere umfassende Systeme, die alle Aspekte der Anomalieerkennung
in hydraulischen Systemen abdecken, was sowohl Sensor- als auch
Komponentenfehler, wesentliche Feature-Engineering-Methoden und
innovative Erkennungsalgorithmen auf Basis neuester Technologien wie die
Anwendung von Deep Learning umfasst.

In dieser Arbeit werden drei Hauptbeiträge zur Anomalieerkennung in
hydraulischen Systemen, die von einem hydraulischen Prüfstand extrahiert
wurden, gründlich erreicht. Erstens haben wir eine Kombination aus LSTM-
Auto-Encodern und überwachten Maschinen- und Deep-Learning-Methoden
bereitgestellt, um zwei separate Phasen der Fehlererkennung und -diagnose
durchzuführen. Die beiden Phasen werden zusammengefasst durch: (1) die

viii

Erkennungsphase unter Verwendung des LSTM-Autoencoders. Gefolgt von (2)
der Fehlerdiagnosephase, die durch das Klassifikationsschema repräsentiert
wird. Das zuvor beschriebene Framework wird auf Komponenten- und
Sensorfehler in hydraulischen Systemen angewandt, die in Form von zwei
vertiefenden Anwendungsexperimenten eingesetzt werden. In der durch das
Klassifikationsverfahren deklarierten Erkennungsphase werden diversifizierte
maschinelle und Deep-Learning-überwachte Methoden verglichen und auf
ihre Leistung bei der Erkennung von Komponenten- und Sensorfehlern in
hydraulischen Systemen analysiert. Darüber hinaus haben wir Vergleiche
zahlreicher Feature-Engineering-Techniken im Zeitbereich durchgeführt, um
den Einfluss jeder Feature-Engineering-Methode auf die entsprechenden
überwachten Klassifikatoren in der Erkennungsphase zu zeigen. Zweitens
haben wir eine noch nie dagewesene Merkmalsauswahlmethode namens
Recursive k-means Silhouette Elimination (RkSE) entwickelt, die zur
Merkmalsauswahl für die Klassifizierung von Komponentenfehlern in einem
multivariaten Hydraulikprüfstandsdatensatz eingesetzt wird. Darüber hinaus
wird RkSE als Fensterkompressionsmethode eingesetzt, um eine
Sensorfehleridentifikation in univariaten, gleitenden, fensterstrukturierten
Datensätzen zu erreichen. Schließlich wird eine innovative Anwendung von
Random Forests (RF) in einer hybriden Architektur zwischen datengetriebenen
und modellbasierten Diagnoseansätzen vorgestellt und auf hydraulische
Systeme zur dynamischen Generierung von Diagnoseregeln angewendet.

ix

Table of Contents

Acknowledgments ..iv

Abstract ...v

Zusammenfassung ... vii

List of Figures ... xii

List of Tables ... xiv

List of Acronyms... xv

1. Chapter 1: Introduction ... 1

1. Motivation ... 1

2. Problem Statement .. 3

3. Research Questions.. 7

4. Our Contribution .. 8

5. Our Publications... 9

6. Structure of the Dissertation .. 11

2. Chapter 2: Conceptual and Theoretical Foundation .. 12

1. The Fourth Industrial Revolution ... 12

2. Hydraulic Systems Overview .. 13

3. Fault Types and Classifications ... 15
3.1 Actuator Faults ... 17
3.2 Sensor Faults .. 17
3.3 Component Faults .. 20

4. Fault Detection and Diagnosis (FDD) .. 20
4.1 FDD Definition .. 20
4.2 FDD Classification ... 20

5. Machine Learning Algorithms Taxonomy ... 25

6. Feature Selection Literature ... 28

7. k-means Clustering Literature .. 31
7.1 Silhouette Value Literature ... 33

8. Relevant ML Classification Algorithms ... 35
8.1 Logistic Regression (LR) .. 35
8.2 Naïve Bayes (NB) .. 36
8.3 K-Nearest Neighbors (KNN) .. 36
8.4 Linear Discriminant Analysis (LDA) .. 37
8.5 Support Vector Machine (SVM) .. 37
8.6 Decision Trees .. 38
8.7 Random Forests (RF) .. 39

x

9. Relevant DL Literature ... 40
9.1 From Neural Networks to DL .. 40
9.2 Convolutional Neural Network (CNN) ... 44
9.3 Recurrent Neural Network (RNN) ... 46
9.4 Long Short-term Memory (LSTM) ... 47
9.5 Encoder-Decoder and Autoencoders .. 50

10. Other Relevant Literature .. 51
10.1 Principal Component Analysis (PCA) ... 51
10.2 Feature Importance (FI) ... 52

11. Data Collection and Generation ... 53
11.1 Condition Monitoring of Hydraulic Systems Dataset ... 53

3. Chapter 3: Relevant Related Work .. 54

1. Supervised ML Approaches for FDD in Mechanical Machinery 54

2. Autoencoder Approaches for FDD in Mechanical Machinery 60

3. k-means for Feature Selection Related Work ... 63
3.1 k-means Hybrid Approaches for Feature Selection .. 65
3.2 k-means Based on Features Weighting or Ranking .. 66
3.3 Sparse k-means Feature Selection .. 68
3.4 k-means Based on Correlation Measures .. 69

4. Chapter 4: Unsupervised Feature Selection Using Recursive k-Means Silhouette
Elimination (RkSE): A Two-Scenario Case Study for Fault Classification of High-
Dimensional Sensor Data .. 71

1. Chapter Overview .. 71

2. Recursive k-means Silhouette Elimination (RkSE): Method Overview 72

3. Analysis and Experimental Results ... 75
3.1 Experiment One: RkSE for Univariate Time-Series Feature Selection within a Window 77
3.2 Experiment Two: RkSE for Multivariate Time-Series Feature Selection without a Window
 82

5. Chapter 5: Sensor and Component FDD for Hydraulic Systems using Combined
LSTM Autoencoder Detector and Diagnosis Classifiers ... 86

1. Chapter Overview .. 86

2. Hydraulic System FDD Overview .. 88

3. Analysis and Experimental Results ... 92
3.1 Experiment One: Sensor FDD Using the Joint LSTM Autoencoder and Classifier Approach
 92
3.2 Experiment Two: Component FDD Using the Joint LSTM Autoencoder and Classifier
Approach .. 107

6. Chapter 6: A Hybrid Approach: Dynamic Diagnostic Rules for Hydraulic
Systems in Industry 4.0 Generated by Online Hyperparameter Tuned Random
Forest .. 115

xi

1. Chapter Overview .. 115

2. System Model Overview .. 116

3. Experimental Results ... 120

7. Chapter 7: Conclusions and Future Work .. 129

References .. 135

8. Appendix A: Ontology and Ontology Design ... 152

9. Appendix B: Active Diagnosis and Repair Automotive (ADRA) Ontology 156

10. Appendix C: SenGen: A Two-Phase Dynamic Simulation and Toolbox for
Sensor Datasets And Case-Study Generation In Mobile Wireless Sensor Networks
(MWSN) .. 162

11. Appendix D: A Model-Based Approach: A Graph-Based FDD for IoT Systems
Extracted from A Semantic Ontology.. 175

xii

List of Figures

Figure 1 A Hydraulic System Paradigm Containing the Basic Components [16]. ·································· 14
Figure 2 Classifications of FDD Methods ·· 25
Figure 3 Machine Learning Algorithms' Types·· 26
Figure 4 Reinforcement Learning Mechanism ·· 27
Figure 5 Feature Selection Classification [27]. ·· 30
Figure 6 Example of a Perceptron in Neural Networks. ·· 41
Figure 7 Comparison Between Perceptron, Multi-layer Perceptron and Deep Neural Network. ··········· 43
Figure 8 An Example of a Convolutional Neural Network Framework for Image Classification [66]. ···· 45
Figure 9 LSTM Cell Common Architecture ·· 48
Figure 10 Encoder-Decoder General Structure ··· 51
Figure 11 k-means for Unsupervised Feature Selection Proposed Taxonomy [124]. ···························· 65
Figure 12 Choosing the Optimal PCs or Features in PCA. ·· 77
Figure 13 Funnel Graph Describing the Directly Proportional Relationship Between the Threshold and
the Features Selected [124]. ·· 79
Figure 14 Feature Number and Mean Accuracy Comparisons Applied for Various Classifiers [124]. ···· 80
Figure 15 Threshold and Mean Accuracy Comparisons Applied for Various Classifiers [124]. ·············· 80
Figure 16 The Effect of RkSE in Minimizing the Size of the Original Signal While Keeping the Accuracy
[124]. ··· 81
Figure 17 FI, RkSE and PCA Performance Evaluation with Best Number of Features [124]. ·················· 82
Figure 18 RkSE of Various Threshold Values Applied to Different Classifiers [124].······························ 83
Figure 19 Average Accuracy of All Classifiers for Different Feature Numbers [124]. ···························· 84
Figure 20 FI, RkSE and PCA Comparisons. ·· 85
Figure 21 An Overview of the Two Experiments to Achieve FDD in Hydraulic Test Rigs for both Sensor
and Component Faults [78]. ·· 90
Figure 22 Sensor FDD Comprehensive Framework [78]. ··· 92
Figure 23 Constant Faults Verses Healthy Signal. ··· 94
Figure 24 Gain Faults Verses Healthy Signal. ··· 95
Figure 25 Bias Faults Verses Healthy Signal. ·· 95
Figure 26 A Comparison Between a Randomly Chosen Testing Window and its Corresponding
Reconstructed Signal. ··· 98

xiii

Figure 27 Optimal Threshold Selection Using Regular Signal Difference [78].··································· 102
Figure 28 Optimal Threshold Selection Using Signal Difference Based on Correlation [78]. ··············· 102
Figure 29 Component FDD Comprehensive Framework [78]. ·· 107
Figure 30 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Pearson's Correlation
Difference [78]. ··· 110
Figure 31 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Signal Subtraction
Difference [78]. ··· 111
Figure 32 Hybrid-based FDD System Overview [155]. ·· 117
Figure 33 RF Accuracy, Time, and Space Complexities in Respect of No. of Features [155]. ··············· 123
Figure 34 One of the Decision Trees after Feature Selection and Hyperparameter Tuning [155].······· 126
Figure 35 Diagnostic Rules Extraction from Parts of a Tree in the RF [155]. ······································ 127
Figure 36 One of the Decision Trees after Feature Selection and Hyperparameter Tuning [154].······· 127
Figure 37 A Hybrid RF Approach Between Data-driven and Model-based Approaches [155]. ············ 128
Figure 38 Active Diagnosis and Repair Automotive System Workflow ·· 158
Figure 39 Active Diagnosis and Repair Automotive Ontology Structure [169]. ·································· 160
Figure 40 Active Diagnosis and Repair Automotive Ontology Class Hierarchy [169]. ························· 161
Figure 41 Sensor Distribution of Intel Berkeley Lab [180]. ·· 167
Figure 42 Top-view Indoor System Design. ·· 168
Figure 43 Air Flow Architecture. ·· 168
Figure 44 Build Block of Simulink Model ·· 169
Figure 45 Toolbox: Animated Real-Time Panel ··· 171
Figure 46 Toolbox: User Input Pane ··· 171
Figure 47 Pressure Signals Comparison Throughout the Indoor System with Time ···························· 172
Figure 48 Temperature Signals Comparison Throughout the Indoor System with Time ····················· 173
Figure 49 Humidity Signals Comparison Throughout the Indoor System with Time ··························· 173
Figure 50 CO2 Signals Comparison Throughout the Indoor System with Time. ·································· 174
Figure 51 MWSN Architecture in the IoT Ontology ··· 177
Figure 52 IoT Ontology Entities and Sub-Entities Hierarchy ·· 178
Figure 53 IoT Ontology Entities and Relationships ··· 179
Figure 54 IoT Ontologies Main Classes and Some Individuals and Their Relationships. ····················· 180
Figure 55 Expert-Rules Semantics Visualisation ··· 181
Figure 56 CO2 Sensor Diagnostic Directed Graph ·· 182

file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585395
file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585396
file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585397
file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585406
file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585407
file:///D:/Ahlam%20work-%20Uni%20Siegen/Siegen%20University/My%20new%20workspace/My%20thesis%20Writing/Last_dissertation_modifications_after_defense/Print%20this%20again/latest_after_modifications.docx%23_Toc70585410

xiv

1. List of Tables

Table 1 Filter, Wrapper and Embedded Feature Selection Methods Pros and Cons Comparison. ········· 31
Table 2 Hydraulic System Fault Degrees and Their Codes ··· 53
Table 3 ML Supervised Approaches for FDD in Mechanical Machinery for the Past Decade [78]. ········ 58
Table 4 Autoencoding-Based Methods for FDD in Mechanical Machinery [78]. ·································· 62
Table 5 k-means Unsupervised Feature Selection Related-Work [124].··· 69
Table 6 RkSE Pros and Cons ··· 75
Table 7 The Effect of Threshold on Number of Features Selected, Number of Iterations Required and
Execution Time in Milliseconds [124]. ·· 78
Table 8 The First Five Samples and Their Signal Difference when Compared to the Reconstructed
Signal, Calculated in Two Different Fashions ··· 100
Table 9 Signal Difference Thresholds and Their Metrics [78]. ··· 100
Table 10 Signal Difference Using the Correlation and Their Metrics [78]. ··· 101
Table 11 ML Classifiers and Their Parameters in Scikit Python. ·· 104
Table 12 Classification Accuracy of Different ML and DL Approaches Using Various Feature Engineering
Methods [78]. ··· 105
Table 13 The Thresholds of Pearson's Correlation Difference and Their Corresponding Fault Detection
Accuracy, Precision, Recall and F1-Score [78]. ··· 109
Table 14 The Thresholds of Subtraction Difference and Their Corresponding Fault Detection Accuracy,
Precision, Recall and F1-Score [78]. ··· 110
Table 15 Component Fault Diagnosis Using Various Feature Engineering and Classification Approaches
[78]. ··· 113
Table 16 Hydraulic Test Rig Chosen Faults and Their Full Description [155].. ···································· 121
Table 17 RF Accuracy Results Comparison to Some Other Classifiers for Hydraulic Test Rig Fault
Classification [155].. ··· 122
Table 18 Feature Importance Calculated for Each Sensor Feature [155]. ·· 122
Table 19 RF Accuracies Using Different Features Based on Their Importance [155]. ························· 123
Table 20 Selected Sensors and their Corresponding Signs/Symptoms ··· 156
Table 21. Symptoms Associated to CO2 Sensor Failure ··· 182

xv

List of Acronyms

FDD Fault detection and diagnosis

ML Machine learning

DL Deep learning

LSTM Long short-term memory

CNN Convolutional neural networks

ANN Artificial neural networks

RNN Recurrent neural networks

RF Random forests

CART Classification and regression trees

SVM Support vector machines

LR Logistic regression

LDA Linear discriminant analysis

KNN k-nearest neighbour

NB Naïve Bayesian

PCA Principal component analysis

FI Feature importance

1

2. Chapter 1: Introduction

1. Motivation

Mechanical machineries within industry 4.0 are considered a vital part of the
industrial operation. Hence, they play a tremendous role in the production and
manufacturing processes. Due to their major importance in the production line,
mechanical devices are usually placed in tough locations and dangerous
environments, which make them susceptive to the occurrence of various faults
and malfunctions. Nowadays, the industrial applications are getting more
complicated and scalable than ever, which contributed tremendously to the
complexity of fault detection in mechanical machineries, as well as making
those tasks quite challenging [1].

The study in [2] indicated that 70-90% of the incidents associated to the
industrial operations are caused by human workers or operators. Consequently,
the need for computer-aided diagnosis emerged, to ensure highly accurate fault
detection, prediction, and diagnosis of systems with extreme complexities.
Moreover, computer-aided diagnosis for mechanical machines may also
contribute to the speed and precision of the recovery actions deployment
required following the fault appearance.

The main goal of fault detection in mechanical machinery is to capture the
anomalies accurately as soon as they manifest, to ensure deploying the
necessary maintenance procedures, and to dodge economical, humanitarian,

and environmental tragedies. Creating a solid fault detection and diagnosis

2

systems, not only contribute to reducing the risk, and providing safety to
human operators and the environment. But also, they play a major role in
cutting down the costs related to unnecessary maintenance. Thereafter, fault
detection and diagnosis in mechanical devices placed in complex systems like
the industrial ones is always a hot research topic.

Automated FDD algorithms and systems are usually dependent on the training
and analysis of datasets, in which they are extracted from numerous sensors
attached to the industrial equipment and its components. Those sensors
continuously send signals essential to monitor each component of the
mechanical machine. In other words, sensor readings are the modalities, or the
source of raw data associated to automated FDD systems. The health of these
sensors is the key to monitor those components properly, which leads to
accurate component diagnosis results. Although these sensors are substantial
for computer-aided diagnosis, they are mostly ridiculously cheap and perform
under extreme environmental conditions due to their attachment to the
machinery device. Therefore, sensors in mechanical machines are prone to
malfunctions and variety of faults themselves.

Smart FDD systems should monitor both the mechanical devices and their
components, as well as the sensors’ health status of those who are responsible
of reporting the health indications of mechanical components. Hence, it is
undeniably important to establish sensor FDD systems along with the
component FDD ones when monitoring industrial operations.

One of the most essential mechanical equipment for industrial processes are
hydraulic systems. The hydraulic system’s data applied to this study is
gathered from a hydraulic test rig. A test rig can be defined as a piece of
mechanical devices that is mainly utilized to assess, evaluate, and test the
capacities and performance of other mechanical machines, or just certain

components of them. Test rigs can be called by various terminologies including
test bench or test pay, and testing station. Test rigs are common in a wide range
of industrial fields from hydraulic systems to aerospace. They literally have a
vast scope of testing methods, and analytical parameters such as, manual,
cyclical, brake and burst testing.

Hydraulic systems obtained from a hydraulic test rig are the focus of this
dissertation, due to their importance and limited FDD resources in the past
decade, in which a comprehensive FDD system of both component and sensor
faults are included.

3

2. Problem Statement

As mentioned earlier, this work represents a thorough analysis and application
of both sensor and component faults in hydraulic systems manifested by
hydraulic test rigs. To ensure comprehension, three main perspectives of FDD
in hydraulic systems are researched and analysed in this dissertation, which
includes: (1) creating comprehensive FDD algorithms to cover sensor and
component faults in hydraulic systems. (2) Establishing a new feature
engineering method applicable to FDD in hydraulic systems. And finally, (3)
creating dynamic diagnostic rules to aid the automation of existing model-
based FDD methods in hydraulic systems. In which each aspect has its own
problem statements and research questions. Therefore, the problem statement
is divided into three main parts corresponding to each section in the thesis.

A. Problem Statement 1: Creating Comprehensive FDD Algorithms to Cover
Sensor and Component Faults in Hydraulic Systems

Hydraulic systems in the industry require a non-stop monitoring, supervision
and evaluation of the sensors’ readings connected to each component of the
system, most especially when they are prone to failure. In reality, sensor faults
tend to be ungeneralised and highly system-specific with a wide range of
characteristics and possibilities that vary even within the same system. That is
the reason sensor fault detection is usually tackled manually by the system’s
expert who acquire the knowledge of each sensor and its characteristics, its
healthy indictors, and parameters. Automated sensor fault FDD has attracted a
lot of research and industrial attention in recent years. The accuracy and
efficiency of automated FDD for Hydraulic systems is entirely dependent on
the reliability of the sensors and their readings, since they are the raw data fed
into the FDD systems. In other words, their health and validity determine the
overall reliability and accuracy of the overall FDD system.

On a different note, hydraulic systems’ components are also extremely prone
to failure. To address this issue, it is necessary to develop sensor FDD
algorithms along with the component FDD ones, to be able to distinguish the
source of the behavioural deviation of the system, whether it is actually a
deviation in a part of the hydraulic system or a malfunctioned sensor with a
misleading reading.

4

When the data trained and utilized to build the FDD model is extracted from a
hydraulic test rig, it has -by definition- observed labels and conditions, since
the main goal of using hydraulic test rigs is to test and evaluate the condition
of the system under experimentation. Therefore, the data-driven FDD methods
of interest are the supervised approaches. Supervised ML approaches for FDD
in hydraulic systems have shown significant and highly accurate results in the
literature. However, most classification methods fail to capture new faults or
rare occurrences beyond their trained labels, which makes it a huge drawback
of supervised ML methods of FDD comparing to clustering or unsupervised
ones, which urge the need to combine those methods to other ML and DL
branches of data-driven diagnosis.

B. Problem Statement 2: Establishing A New Feature Engineering Method
Applicable to FDD in Hydraulic Systems

Human brains can only visualize and imagine three-dimensional spaces. Data
with larger dimensions outpaces the human capacity to understand and
manually analyse such data. In accordance with the human incapacity to deal
with high volume data, data mining is brought to light to discover highly
dimensional patterns in this large data, offering new solutions to visualize,
analyse and process the big influx of information. Although, machine learning
offers a lot of algorithms and methods for big data analysis, finding relevant
and non-redundant attributes in data that contains hundreds or thousands of
attributes can be challenging.

It is important to mention that feature selection is performed on the data before
it is fed to the FDD algorithms. Thus, the quality of feature selection reflects the
expected outcome of the FDD algorithm and its precision. Irrelevant features
in the input data may decrease the accuracy of the machine learning model
learnt especially when they are many, because they can create an accumulative
amount of deviation from the correct patterns. However, redundant features
are the features that do not carry new information necessary for learning. So
that, redundant features may not affect the learning process and its accuracy,
but indeed will increase the computational cost required for performing such
tasks [3]. Therefore, when the dimensionality of the data is high without

investigation and analysis of their redundancy and relevance, this would
weaken the quality of the data used for learning, increase its computational cost,
and diminish its accuracy. Moreover, besides redundant, and irrelevant
features, noisy features can also contribute to degrading the training
performance of various learning algorithms.

5

Feature selection in data mining is the process of choosing a subset of the
overall features (variables) in the feature space, by sacrificing the ones carrying
little valuable information, unnecessarily redundant ones, and noisy features
[4]. Feature selection is most appropriate for multivariate datasets owning to
their nature of numerous numbers of attributes and samples. Some examples
of datasets require feature selection due to their complexity and size demands
are text, genetic information, imaging modalities and time-series data.
Moreover, to achieve FDD in univariate systems, univariate time-series data
can also benefit from feature selection, but only when it is structured in a
window format, where the feature selection method is rather window
compression, to select the most representative time points in the window. This
side of feature selection is usually ignored by researchers, specifically when
applying FDD in a sliding-window format.

Although, one might think the deployment of feature selection in any FDD task
is completely optional, incorporating this step has a great potential to add-up
many advantages. For instance, reducing the number of features can effectively
improve the ability of data understanding and visualization, decrease the
computational power and storage requirements needed, noticeably fasten the
training and testing times. Finally, increasing the accuracy of the FDD model
using smaller inputs and resources. Wherefore, feature selection is a substantial
step to eliminate undesirable features, by selecting the ones that are more
relevant, non-noisy and non-redundant [5] and [4].

Most of the feature selection algorithms utilized to aid FDD systems proposed
in the literature are classification-based techniques [6], [7] and [8], where these
methods are dependent on the presence of clear classes or labels to perform the
feature selection accordingly. In the past few years, a new cluster-based also
known as unsupervised feature selection algorithm emerged. Unsupervised
feature selection methods work by grouping objects in various groups based
on their similarity, where better clusters are the ones with higher within-cluster
similarities and lower between-clusters similarities [9] and [10]. This group of
feature selection methodology fits more to the unpredicted nature of data used
for FDD in real life. One of the most famous clustering algorithms in data
mining is k-means clustering. k-means depends on dividing the data between k
main clusters, where the intra-similarity within the cluster and inter-similarity
between clusters is measured using silhouette value measurement.

Although, the literature is enriched with numerous supervised learning feature
selection methods, it is still scarce when it comes to unsupervised ones and it
needs more investigation and research in this field especially when applied
prior to data-driven FDD systems.

6

Recently, feature selection applied to FDD in mechanical systems research
interest drastically shifted to unsupervised methods, mostly because of their
strength in identifying relevant features without the need of existing class
labels. k-means clustering is one of the most famous clustering algorithms
deployed for feature selection due to its simplicity, the mount of existing
research already done to accurately select various parameters of the algorithm.
i.e., selecting the best k and initializing the seeds. Moreover, k-means is
relatively easier to evaluate comparing to other clustering algorithms, since it
has many clear measures to evaluate the quality of the clustering process such
as the silhouette measure.

C. Problem Statement 3: Creating Dynamic Diagnostic Rules to Aid the
Automation of Existing Model-Based FDD in Hydraulic Systems

Model-based approaches for FDD tend to have a handful of disadvantages such
as, the lack of dynamicity and generality, since they exhibit static knowledge
for a specific domain stored in the model. The lack of or absence in handling
sudden or novel fault occurrences (hence they are not pre-stored in the
reference model), and the inability to automatically detect, fill or update the
system gaps. The lack of credibility in knowledge acquisition because it is
completely dependent on experts’ reliability. And finally, the impossibility to
learn from misdiagnosis and fault occurrence overtime.

Although, data-driven approaches might offer dynamic and general-domain
diagnostic alternatives comparing to their model-based counterparts, they tend
to have their share of challenges. i.e., the dependency on the data in case of poor
data collection or tending to invalid sources, the dependency on possessing
certain skills to apply data-driven processing and analysis methods, storing
data necessary for learning and testing is resource and security expensive, and
the additional expenses related to the needed supplementary hardware
purchases and regular maintenance.

According to the mentioned drawbacks of each approach, it is essential to
establish a hybrid approach that combines the positive sides of each one and
eliminates as many as possible of their limitations. In order to, provide a clear
architecture that may aid existing model-based approaches for FDD in
hydraulic systems to get dynamic and automated.

The algorithm in [11] demonstrates a model-based component FDD method
based on using diagnostic graphs created by static/constant diagnostic rules
extracted from semantic ontology. In other words, the system model
represented by the Ontology [12] is fed directly with the expert knowledge, and

7

later used to generate diagnostic graphs that links between various symptoms
and their faults. The created graphs using the model-based approach alone are
lacking the dynamicity and the generality, where they are only applicable to a
certain system or model that they were created upon. Thus, a more general and
dynamic approach is needed.

Creating dynamic diagnostic graphs using data-driven approaches such as
Random Forest (RF) can be beneficial. However, because of their dynamic
nature, these models are hard to use in structured or distributed systems
without following some guidelines, graphs, or clear steps. Furthermore, data-
driven approaches require more time and resources to process and store the
needed data. Thus, a strong necessity to create a general domain, dynamic but
structured enough algorithm, to guarantee general-domain application and the
possibility of distributed computing if needed. Additionally, a decrease in the
time and resource complexity constraints required by online data-driven
approaches.

3. Research Questions

The following are the research questions investigated and answered in this
dissertation:

1- How to create a supervised FDD method in hydraulic systems that is
comprehensive enough to cover both sensor and component faults?

2- How to overcome the drawback of supervised FDD approaches in
detecting and diagnosing the occurrence of rare faults in both sensor and
component faults located in hydraulic systems?

3- How to create an unsupervised feature engineering method that can be
applicable for both sensor and component FDD in hydraulic systems?

4- How to automate/dynamize the diagnostic rules in existing model-
based approaches?

8

4. Our Contribution

A. Contribution 1: Sensor and Component FDD for Hydraulic Systems
Using Combined LSTM Autoencoder Detector and Diagnostic Classifiers

In chapter 6, a comprehensive FDD approach for hydraulic systems is
proposed, where an additional step is added in advance to the diagnosis using
the classification phase, to overcome the weaknesses of supervised diagnostic
approaches in capturing rare and beyond the existing labels faults.

To overcome this challenge, in this section the detection and diagnosis phase
are performed separately. Where the detection phase is done by applying a
LSTM autoencoder to detect rare and unprecedented faults. Followed by the
diagnosis phase using the ML and DL classifiers to analyse the nature of the
captured faults in phase one. This approach has been already created in the
literature; however, our work is beyond the state-of-the-art by the following: (1)
It is the first time this schema is applied to hydraulic test rigs data. (2) This work
was applied to both sensor and component faults, in two thorough separate
experiments. (3) We applied a unique architecture of the LSTM autoencoder
utilized for the detection phase. (4) In the detection phase represented by the
autoencoder, we presented a new criterion to calculate the deviation between
the predicted signal and the input one, which is proven more effective to the
traditional method in computing more accurate diagnostic thresholds. (5) In
the fault diagnosis phase proposed by the classification, we provided a full

comparison results between numerous ML and DL classifiers of different
functionality and technique. (6) In the same phase, we also provided a
behavioural analysis of each ML and DL classifier with a bunch of time-domain
feature selection methods, to support further research in the future by mapping
each classifier to their best or least suitable time-domain feature, to achieve
either component or sensor FDD in hydraulic systems.

B. Contribution 2: Unsupervised Feature Selection using Recursive k-Means
Silhouette Elimination (RkSE): A Two-Scenario Case Study for Fault
Classification of High-Dimensional Sensor Data

Chapter 5 introduces a new feature selection algorithm that depends on
recursively clustering the data into k groups using k-means clustering, then
calculating the silhouette value for each member of the individual cluster to
decide which feature is the representative for the rest of the cluster, and which
are going to be re-clustered for further analysis.

9

For this section, the following are contributed to this thesis: (1) an in-depth
review for feature selection algorithms based on k-means clustering is
structured in related-work chapter, chapter 4. In addition, (2) a new taxonomy
for feature selection algorithms using k-means clustering is presented.
Furthermore, (3) a new feature selection algorithm based on the deployment of
k-means and silhouette measure in an iterative fashion called “Recursive k-
Means Silhouette Elimination (RkSE)” is introduced, tested, and validated. (4)
RkSE is compared to various feature selection and extraction algorithms when
applied prior to component and sensor fault classification using a bunch of ML
and DL classifiers, performed in two separate experiments.

C. Contribution 3: A Hybrid Approach: Dynamic Diagnostic Graphs for
Sensor Systems Generated by Online Hyperparameter Tuned Random
Forest

In chapter 7, a novel architecture to dynamize fixed-ruled model-based
diagnostic systems, by the application of RF as a hybrid approach between
model-based and data-driven diagnostic approaches.

On one hand, this work demonstrates a unique architecture to deploy RF in
FDD beyond its ordinary application as a data-driven methodology. Usually,
RF is used as a classifier, feature selection, and when certain adaptations are
made, RF can also be used for unsupervised learning. However, the literature
is lacking the use of RF for model-based FDD or hybrid approaches beyond the
data-driven combination ones.

On the other hand, in this work, a development and extension of the work in
[11] is proposed, by offering a dynamic and general domain approach, with the
possibility of generating dynamic diagnostic rules using RF.

5. Our Publications

• Journals Submitted, Accepted and Published

o Mallak and M. Fathi, “A Hybrid Approach: Dynamic Diagnostic
Rules for Sensor Systems in Industry 4.0 Generated by Online
Hyperparameter Tuned Random Forest,” Sci, vol. 2, no. 3, Art. no. 3,
Sep. 2020, doi: 10.3390/sci2030061.

o A. Mallak and M. Fathi, “Sensor and Component Fault Detection and
Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder

10

Detector and Diagnostic Classifiers,” Sensors, vol. 21, no. 2, Art. no.
2, Jan. 2021, doi: 10.3390/s21020433.

• Journals in progress of publishing
o Mallak and M. Fathi, “Unsupervised Feature Selection Using

Recursive k-Means Silhouette Elimination (RkSE): A Two-Scenario
Case Study for Fault Classification of High-Dimensional Sensor
Data,” Aug. 2020, doi: 10.20944/preprints202008.0254.v1.

• Conferences
o Mallak, C. Weber, M. Fathi, and A. Holland, “Active diagnosis

automotive ontology for distributed embedded systems,” in 2017
IEEE European Technology and Engineering Management Summit (E-

TEMS), Oct. 2017, pp. 1–6, doi: 10.1109/E-TEMS.2017.8244219.
o Behravan, A. Mallak, R. Obermaisser, D. H. Basavegowda, C. Weber,

and M. Fathi, “Fault injection framework for fault diagnosis based on
machine learning in heating and demand-controlled ventilation
systems,” in 2017 IEEE 4th International Conference on Knowledge-Based
Engineering and Innovation (KBEI), Dec. 2017, pp. 0273–0279, doi:
10.1109/KBEI.2017.8324986.

o Mallak, A. Behravan, C. Weber, M. Fathi, and R. Obermaisser, “A
Graph-Based Sensor Fault Detection and Diagnosis for Demand-
Controlled Ventilation Systems Extracted from a Semantic Ontology,”
in 2018 IEEE 22nd International Conference on Intelligent Engineering
Systems (INES), Jun. 2018, pp. 000377–000382, doi:
10.1109/INES.2018.8523895.

o Mallak, A. Sonnad, and M. Fathi, “SenGen: A Two-Phase Dynamic
Simulation and Toolbox of an Indoor Mobile Wireless Sensor
Network for Sensor Monitoring and Dataset Generation,” in 2019
International Conference on Computational Science and Computational
Intelligence (CSCI), Dec. 2019, pp. 1190–1195, doi:
10.1109/CSCI49370.2019.00224.

• Posters
o Mallak, M. Fathi, A Dynamic Sensor Fault Detection and

Identification System in IoT using MATLAB and Simulink, MATLAB
Expo 2019, Munich, Germany, July 2019

• Awards

11

o Best poster award, MATLAB EXPO 2019: A Dynamic Sensor Fault
Detection and Identification System in IoT using MATLAB and
Simulink.

6. Structure of the Dissertation

 The rest of the dissertation is structured as follows: in the following
chapter (chapter 3), a brief yet extensive explanation of all the technical
terminologies and definitions of the background used in this dissertation.
Chapter 4 showcases all the state-of-the-art related research and application
to the created methods explained in the next chapters. Chapter 5 represents
an explanation of our innovative feature selection and window compression
algorithm called RkSE. RkSE has been tested in two different experiments
once as a feature selection to aid the diagnosis of component faults using
multi-variate datasets, while the other experiment shows the abilities of RkSE
as a window compression method when applied to a univariate dataset in a
window structure to aid sensor fault diagnosis. Chapter 6 represents a joint
approach between LSTM autoencoder and diagnostic classifiers to achieve

both sensor and component faults in hydraulic systems. In chapter 7, RF is
applied in a hybrid approach between model-based and data-driven
approaches, beyond its traditional method of application as a data-driven or
hybrid between data-driven approaches. Chapter 8 is where the conclusion
of our methodologies represented in the previous three chapters is discussed,
as well as adding some ideas for further research in the future.

12

3. Chapter 2: Conceptual and Theoretical
Foundation

1. The Fourth Industrial Revolution

The fourth industrial revolution also known as industry 4.0 [13] is defined as
the continuous dynamizing and automation of regular industrial and
technological manufacturing applications invented in the previous three
industrial revolutions. It is worth to spot the light on the main technologies
created Industry 4.0, which can be concluded by the expansion in Machine-to-
machine communication (M2M), and the invention of the internet of things
(IoT). The emergence of Industry 4.0 has a tremendous influence on the shape
of the industry nowadays, where engaging this technology improved the
automation, built enhanced communication between industrial machines and
components, improved dynamic and real-time monitoring and control, fully
automated fault detection and diagnosis systems that do not have the need for
human operators or control.

Below is a brief explanation of all the industrial revolutions that played a
valuable role in the creation of the fourth industrial revolution we recognise
today.

• First industrial revolution: In the 18th century the invention of steam
power and mechanical manufacturing is the core of Industry 1.0.

• Second industrial revolution: The industry 2.0 era has emerged in the
19th century, due to the discovery of electricity and direct current.

13

• Third industrial revolution: This revolutionary discovery took place in
the 70s of the 20th century. The main highlight of industry 3.0 is the
growing technological computers and the creation of programmable
memories, which insured partial automation in industrial processes.

• Fourth revolution industry: Finally, industry 4.0 is where all the
previous revolutions are joined together with IoT, M2M, cyber physical
systems and cloud-based technologies…etc, where all computers,
components and humans communicate together via wired or wireless

networks, to provide full automation, communication, and control
between various industrial components over the production line.

2. Hydraulic Systems Overview

Hydraulic systems [14] are defined by the systems that are dependent on the
utilization of pressurised fluids to generate a driving force or an incentive
power necessary to power-up various industrial tools and components such as,
motors and fans. Simply, the fluid motion due to temperature and pressure
variations functions as a driving force to perform various industrial tasks and
run mechanical devices.

The generated power by the hydraulic mechanism is enormous, which is the
main motive of deploying such systems in heavy machineries. i.e., bulldozers,
backhoes, loaders, cranes, and log splitters.

Applying the energy preservation laws and pascal law of pressure, it is
noticeable that the created power by the pressurized liquid is transmitted and
undiminished. According to Pascal’s law [15], the principal law of hydraulics:
“A pressure change occurring anywhere in a confined incompressible fluid is
transmitted throughout the fluid such that the same change occurs
everywhere.”. Thus, by controlling the fluid temperature and the amplitude
and direction of the enforced pressure, the power generated is recycled and
circulated over all the components connected to the hydraulic system. In other
words, the hydraulically generated power is not only massive to lift extremely
heavy loads, but also can perform repetitive tasks easily.

The schema represented in the figure below is a paradigm of hydraulic systems
with their basic components.

14

Figure 1 A Hydraulic System Paradigm Containing the Basic Components [16].

The main basic components in any hydraulic circuit are explained below:

• Hydraulic pumps: the pump is the mechanical part responsible for
pumping the fluid to the rest of the hydraulic circuit components.
Pumps act as a vacuum to push the liquid out of the reservoir through
the filter back to the pump.

• Hydraulic cylinders: a hydraulic cylinder also known as the hydraulic
motor, is the component responsible of generating unidirectional strokes
that lead to establishing a unidirectional force. In other words, the
cylinder is the mechanical actuator in the hydraulic circuit. Moreover,
hydraulic cylinders and pumps can be also used as one unit in the
hydraulic circuit called “hydraulic transmission”.

• Control valves: there are several types of valves placed in various
locations of the hydraulic circuit, but what they all have in common is
their functionality of directing the fluid to the designated actuator or
cylinder.

• Hydraulic fluids: some of the hydraulic circuits run by water. However,
most of hydraulic systems are fuelled by hydraulic fluids. Hydraulic
fluids also known as “tractor fluid” that mainly contains petroleum oil
and other added fluids to fit the purpose and restrictions of the
containing hydraulic circuit.

15

• Filters: this component cleans and filter the fluid coming from reservoir,
by removing the unnecessary dirt, particles and contamination resulted
from the other mechanical components.

• Reservoir: this part main functionality is to contain the excessive fluids
continuously formed by the pressure and temperature differences,
which leads to fluid expansion or sometimes leaks.

• Accumulators: this component is essential to reserve the generated
energy to ensure the preservation necessary to perform repetitive
motions. Accumulators store the energy applying a certain gas under
pressure.

3. Fault Types and Classifications

In the last century, the world has witnessed an industrial and technological
revolution that caused the rapid spread of nonlinear, complex sensor systems
in various domains and applications. These systems are literally everywhere;
in aircrafts, transportation like cars and ships, computing systems such as
computers, laptops, smart phones, embedded systems, and in many industrial
applications such as factories, chemical reactors and nuclear power plants and
many more countless examples. As long as these complex systems continue to
function properly, they play a major role in providing help, comfort and
assistance to our daily lives and they are even considered a necessity to the
current structure of modern societies. But what if these systems fail? What are
the consequences and risks followed by such failures?

Faults in complex sensor systems can be defined as unexpected events that may
occur at a certain point of time, that might trigger bigger events or a series of
other unexpected events. Isermann and Balle [17] defined faults as:
A fault is an unauthorized, permitted or allowed deviation of one or more of
the system’s parameters, characteristics, behaviours or patterns from the
normal or standard state of the system.

Based on the nature of these systems being non-linear, dynamic, and having
complex relationships between its components, it is extremely complicated to
predict faults in such systems. Faults consequences fall in a spectrum that
ranges from harmless, ignorable faults to extremely disastrous ones that could
lead to major economical and human catastrophes. There are many examples

throughout the years of incidents caused by faults in complex systems which

16

were so severe and almost caused human and nature extinction. An example
of such incidents was the explosion of the nuclear reactor at Chernobyl,
Ukraine, in 1986. Many civilians died immediately by the explosion, and many
others died shortly after, affected by the radiations emitted from the power
plant which caused them serious health issues including various types of
cancer. The reason behind the explosion was a fault in one of the internal units
that provided the system with trajectory and altitude information. Chernobyl
till this day still is uninhabitable and so dangerous to visit, it still is highly
contaminated by radio-active waste in the soil, water and air, and it is extremely
biohazardous to all biological creatures in the planet for the next couple of
hundreds or even thousands of years.

The real question is: is there anything that could have been done to avoid such
catastrophic incidents? In most incidents in history, it is not possible to avoid
the occurrence of such incidents. However, it is possible to predict the causing
failures, detect them as soon as they occur, then take quick recovery actions to
minimize the severity of their consequences. Which leads to the significance of
applying Fault Detection and Diagnosis (FDD) technologies to ensure the
reliability and safety of complex systems.

Before diving in this topic, it is highly recommended to understand the
distinction between different technical terminologies related to FDD. The
following definitions are described in more detail in [17]:

• Fault: is an unauthorized, permitted or allowed deviation of one
or more of the system’s parameters, characteristics, behaviours,
or patterns from the normal or standard state of the system.

• Failure: a failure is when the system loses the ability to perform
one or more of its required functions permanently.

• Symptom: an observable change in the system’s quantifiable
parameters from the normal state, which can point to the
existence of a fault, that might lead to another fault or a system
failure.

• Fault Detection: is the ability to detect the fault presence in the
system and the point of time this presence occurred.

• Fault Isolation: is the ability to isolate the detected fault(s), by
finding its type, location, and time. This process usually follows
the fault detection process.

• Fault Identification: is the ability to identify the detected and
isolated faults by identifying their size and time-variant
behaviour. This process follows fault isolation.

17

• Fault Diagnosis: is the ability to create static or dynamic
relationships between symptoms and their connected faults, that
altogether might cause the occurrence of system failure.

• Monitoring: is a real-time operation of continuously observing
the system and its behaviour, by recording its vital information
that might indicate an existence of a fault.

In the literature, faults can be classified into three main categories based on the
location of the fault itself in the containing system as: sensor faults, actuator
faults and component faults [18].

3.1 Actuator Faults

Are the faults occur in actuation units and appears as a partial or complete
malfunction of the actuation control. In other words, the actuators could be
faulty when they fail to perform the actuation function i.e., stuck actuator. A
complete fault in actuators can appear as a result of a burning wire, a cut,
leakage, breakage or a presence of an actual physical object holding back the
actuator preventing it from controlling the system’s behaviour.

3.2 Sensor Faults

Sensor faults are the faults represented by the sensors and their readings.
Usually, these faults are noticed when the sensors are producing incorrect
readings due to a physical fault in the sensor itself, broken wires, or a
malfunction in the communication channels between the sensors and the
controlling unit, or the change of the sensor’s reading could be an indicator
(symptom) of a component or system fault. Industrial systems contain
hundreds of sensors attached in different locations of the system, wired or
wireless, stationary, or mobile, to continuously measure some key variables of
these systems in real time. The data generated from sensors is considered a rich
source of information from the analytical perspective, since this type of data
has a vast majority of unique patterns and worthwhile characteristics.
Moreover, any sudden changes of these sensors’ readings, or the appearance of
any unexpected patterns that goes without notice, can lead to a major risk and
serious consequences.

18

A. Sensor Faults Taxonomy

There are several existing classifications and categorical descriptions of sensor
faults. The most sound and interesting one, is the comprehensive study
conducted in 2009 [19], where an extensive approach was taken to provide a
clear definition of each fault, their potential cause(s), the observed duration of
each fault in time-series datasets and the effect each fault carries on the sensed
data.

In accordance with the mentioned research, sensor faults can be divided into
two main categories based on how they get observed, and where the fault
shows its symptoms. The two groups are: faults based on system view and
faults based on data centric view.

The first broad category is system-centric faults, where the fault influences the
system, and its symptoms can be observed by the system’s behaviour. The
system here is meant to be the sensor itself and its physical nature. The system
related sensor faults are usually caused by the following: (1) the sensor
calibration such as offset, gain, and drift faults. (2) low sensor battery, (3) data
clipping, which occurs when the sensor reaches its minimum or maximum
reading and cannot sense beyond its defined capacity, (4) connectors and
hardware problems and (5) environmental factors as of radical changes beyond
the sensor range of readings, which leads to clipping.

Calibration Faults: Calibration is a tricky task when applied to sensors. If the
calibration is not done with caution and expertise, it might lead to serious
consequences on the generated sensor data. The following are the main
calibration related sensor faults and their definition.

- Offset or bias fault: This fault occurs when the data is offset or shifted by
a constant value called the bias. This fault can be easily injected by
adding a constant value or an offset to the input data. Bias faults are hard
to diagnose since the input data keeps containing similar patterns to
healthy data but shifted in value.

- Gain faults: gain fault represents the amplification of the input signal, or
simply multiply the input signal with a constant value.

- Drift faults: in these faults the accuracy or the performance of the input
signal is drifting away from the expected healthy performance. This
kind of fault can be injected by adding the input signal to a function of
change such as a polynomial.

19

The second category is the data-centric sensor faults, where the sensors
deviation can be observed in the data, while not necessarily having a symptom
or cause noticeable on the physical aspect of the sensor. The data-centric faults
are summarized by; outliers, spike, stuck-at or constant, and noise.

- Outliers are one of the most common faults to occur in sensor data. An
outlier as a sensor fault can be defined as an input sensor signal or an
isolated duration that shows a significant deviation from the expected
recorded patterns. The reasons behind this kind of faults are unknown
and varies each time.

- Spikes: is a type of sensor faults that can be diagnosed by the data
observation, in which the rate of change over a limited duration of time
is observed to be higher than the expected rate of change. This type of
faults is not necessarily returning to normal phase. The difference
between the spike and outlier faults, is that spike faults should be
observed in multiple readings or data samples, unlike outliers where
they only show effect in one isolated sample or entry. The main reasons
behind spikes faults are expected lower battery levels of the sensor, or a
malfunction in its connectors or the hardware.

- Stuck-at faults: stuck-at faults also known as constant faults are defined
as a sequence of consecutive entries that have no variance over a
relatively long period of time. In other words, the sensor is stuck at some
value for longer periods than usual. The sensor can be stuck at zero,
hence is called constant-zero. As well as, stuck at the highest or lowest
possible values of the sensor, which are called constant-high and
constant-low, respectively. The main reasons behind constant faults can
range from neglectable faults due to clipping (sudden environmental
changes that cause the sensor to falsely point at its maximum or

minimum reading range) a low battery level, or more serious causes
connected to the sensor connectors or hardware malfunction.

- High noise: normally any sensor data exhibits a small amount of noise.
However, when the data contains more noise or variance than usual, it
might be a sign of faulty sensors. This fault can be connected to lower
battery levels, or the occurrence of actual hardware malfunction in the
physical sensor.

20

3.3 Component Faults

Component faults are the faults appear in different components of a complex
system that are not considered a sensor or an actuator. These faults are the most
common among all the fault types, and they can vary drastically from a system
to another or a domain of application to another. When component faults occur,
they change the observed behaviour of the system and its expected outcomes
and results.

4. Fault Detection and Diagnosis (FDD)

4.1 FDD Definition

Fault Detection and Diagnosis (FDD) is the process of finding odd,
extraordinary, or unusual patterns in the given data, comparing to the patterns
it usually forms in the regular or healthy state. These irregular patterns are most
commonly called faults, anomalies or outliers [20].

In the last decade, FDD has been an interesting topic for many researchers
applied in a wide range of applicational domains. Due to its enormous
significance to provide the needed safety, security, and reliability in many
industrial systems. As well as, the vital role it plays in the fast detection of
abnormalities and faulty patterns, which is essential in many industrial systems,
especially the ones with harsh or highly restricted environments, systems that
are prone to malicious attacks, sensor systems that contain fault-prone sensors
or the sensors’ reading might be faulty or unusual. As a result, many FDD
systems are developed for a specific domain, while others offer a more generic
solution.

4.2 FDD Classification

FDD approaches can be divided into three main categories; model-based and
data-driven approaches, as Venkatasubramanian et al explained in [21], [22]
and [23].

Model-based approaches uses a physical system or a simulated model of the
system to form a prior-knowledge of this system, its components, symptoms,

21

faults, and failures. The stored knowledge is used as a reference to identify
faults, where they can be spotted easily by observing the difference between
this reference knowledge and the current applicational measurements.

Data-driven approaches might not offer any knowledge of the physical system
or a modelled simulation. However, they tend to extract data-driven
knowledge by analysing the system recorded data and applying various
methods to find hidden patterns and relationships that describe the unknown
system and its behaviour. Although these approaches do not provide a good
insight of the system and its processes, these approaches are extracted from the
data (unlike model-based methods that are dependent on fixed rules and rigid
knowledge) is considered a dynamic, general-domain solution.

Hybrid approaches can be formed by introducing a combination of methods of
the same group or different groups. i.e., a combination between two data-
driven approaches to form a new hybrid one or establishing a bridge between
a specific method in data-driven and model-based to finally produce a hybrid
offspring method between entirely different branches.

Model-based and data-driven approaches each can be divided into two main
classes based on the methodology they use to approach the fault detection
problem: Quantitative models and qualitative models.

• Quantitative models: Are the models that uses the relationships
between the systems’ symptoms, faults, parameters, and components
either statically or dynamically to describe the system and its behaviour
quantitively using mathematical formulas and statistical approaches.

• Qualitative models: Are the models that uses the relationships between
the systems’ symptoms, faults, parameters, and components either
statically or dynamically to describe the system and its behaviour
qualitatively using causalities, graphs and if-then rules.

A. Model-Based FDD

• Quantitative Model-Based FDD

The quantitative approach for model-based FDD is based on deriving
mathematical formulas and relationships from the physical or simulation
model to describe the natural behaviour of the underlying system. These
explicitly derived mathematical knowledge is used to detect and diagnose the

22

intended system faults. The quantitative information derived from the physical
system and represented by mathematical equations can be extracted from the
system by either observing the behaviour of the system in the time-domain,
parameters estimation using the knowledge of the system experts and their
understanding of the created physical system or finally, by applying parity
space methods.

• Qualitative Model-Based FDD

Another common approach for model-based FDD is by applying qualitative
methods. These methods do not rely on mathematical formulas to describe the
normal state of the physical system. Instead, they create a rule-based diagnostic
model derived from the physical system’s prior-knowledge. These rules can be
extracted by a direct contact with the system expert to build and exchange
knowledge about the system’s components and rules between them. The
verbally transmitted expert-knowledge is normally documented and
summarized in some sort of a database such as ontologies, either with a
semantic representation or simple if-then statements. The most famous
qualitative model-based FDD methods are digraph methods, fault trees and
qualitative physics approaches.

A majorly important type of model-based systems are expert systems which
tend to use rule-based, empirical reasoning and functional reasoning to
inference a series of rules necessary to make the diagnosis. These systems are
suitable to diagnose complex systems that need a lot of human expertise to offer
deep understanding and provide resolutions.

The main characteristic of expert systems is the deep association between the
fundamental given concepts of the system, and the inferred knowledge. This
relationship is a perfect example of a causality, also known as the cause-effect
relationships based on establishing logical conclusions that bridge the initial
premises and the diagnostic conclusions. In Addition, deploying heuristics into
these systems can result in forming heuristic-based expert systems, which
tends to contribute to solving many of the limitations of the regular expert
systems but still is domain-specific and lacks the generality in its approach.

The downsides of using the traditional cause-effect methods represented in
expert systems include the following:

• The lack of dynamicity and generality; static knowledge for a specific
domain.

• The lack, or absence in handling sudden or novel occurrences.

23

• Unable to detect, fill and update the knowledgebase/system gaps.

• The lack of credibility in knowledge acquisition because it is completely
dependent on experts’ reliability.

• The impossibility to learn from misdiagnosis and errors them.

B. Data-Driven FDD

• Quantitative Data-Driven FDD

Data-driven quantitative approaches use the process history data and the
systems measured data to extract mathematical formulas that defines hidden
patterns or relationships between different parameters and features of the
physical model, without having any prior-knowledge of this model. The
mathematical representation of the data knowledge can be extracted in two
different fashions; one is a statistical approach, and the other is a black-box
approach.

In statistical approaches, the mathematical model parameters are estimated
taking into account the physical system harmony and principles, these

parameters are often obtained from the measured data generated from the
system using various statistical and pattern recognition approaches, such as
supervised, unsupervised, semi-supervised and ensemble-learning methods.

The black-box models formulate the system using non-physical parameters or
characteristics of the system. In other words, the mathematical formulas
extracted by black-box approaches do not reflect or represent the actual
physical system or its components, that is why such models are identified by a
“black-box”. An example of black-box data-driven FDD methods are shallow
neural networks like Artificial Neural Network (ANN), fuzzy logic and deep
neural networks.

• Qualitative Data-Driven FDD

Previously, there were three major methods to extract qualitative knowledge
from the historical information or the system’s measured data, which are expert
systems, knowledge-bases and Qualitative Trend Analysis (QTA) [24].
However, recent studies [23] and [25] added these three approaches under
qualitative model-based branch, since such methods include creating a model
of the system and its diagnostic rules, either inferred or learned. Which makes
these methods more suitable to be categorised under model-base rather than
data-driven.

24

In conclusion, data-driven approaches offer a lot of advantages over other types
of diagnosis approaches, including their ability to transform the data into less
complex and lower-dimensional forms using feature selection and extraction
approaches. Moreover, data-driven approaches are of a dynamic nature. Hence,
they can be an effective alternative to general-domain FDD approaches with
high level of dynamicity and ability to identify and learn new faults and
abnormalities directly from the data.

Although data-driven approaches show a dynamic behaviour, the decision
made using such methods are not guaranteed to be more accurate and they
have the tendency to consume more time, computational and storage resources
comparing to their model-based counterparts. Additionally, data-driven
approaches are useless when ones do not possess the fundamental skills in
machine learning, big data analysis and statistical knowledge. However, the
main disadvantage of methods relying on this schema lays in the concept of
data-driven approaches itself, where they are a hundred percent dependent on
the quality of the data. Which results in producing and storing a huge amount
of data, that is not only a resource expensive but also dangerous, since some
data has a sensitive content and storing them makes such an attractive hub for
cyberthefts and anomalous attacks.

The following is a sum-up of data-driven cons:

• The dependency on the data

• The dependency on possessing certain skills to apply those methods.

• Storing data is resource and security expensive.

• Additional expenses related to the need of additional hardware and
maintenance.

An overview of the classifications of FDD methods influenced by the chart
visualized in 2003 by Venkatasubramanian et al [21], and Skliros et al in 2018
[23]. The chart is extended and updated to meet the rapid development in FDD
methods and techniques in the past ten years as shown in Figure 2.

25

Figure 2 Classifications of FDD Methods

5. Machine Learning Algorithms Taxonomy

Machine Learning (ML) is a subset of Artificial intelligence (AI) that is
concerned in the algorithmic structure of computer procedures, which
continuously improve due to learning or experience [26]. Commonly speaking,
ML is fundamentally a process of establishing mathematical and statistical
models using a portion of the input data used for training, named “training
data”. These models are expected to make decisions when tested with further
data based on the patterns learned from the training process without the aid of
pre-defined programs or rules.

ML approaches can be classified into four main categories based on their
mechanism of learning the patterns and decision making, as well as the

Fault Detection
Methods

Model-Based

Qualitative

Diagraphs

Fault Trees

Qualitative
Physics

Knowledge-based
Systems

Rule-based Expert
Systems

Quantitative

Observers

Parameter
Estimations

Parity Space

Data-Driven

Quantitative

Black-Box

Shallow Neural
Networks

Deep Learning

Traditional
Machine Learning

Supervised

Unsupervised

Semi-supervised

Ensemble-
Learning

Hybrid
Approaches

26

availability of the labels associated to the sample data or not. Based on this, ML
algorithms can be classified into supervised, unsupervised, semi-supervised
and reinforcement learning. As shown in Figure 3

Figure 3 Machine Learning Algorithms' Types

Supervised Learning: is the type of machine learning where the data samples
giving for training are fully paired with their label or category that describes
the problem. These types of models try to map the relationship between the
samples’ features dependencies to their target label to make the final decision.

The labels or target variables in supervised learning can be in applied two
forms: (1) discrete values in which each value represent a category or class. This
representation is used in classification algorithms. (2) Continuous target values
or a value within a range. This type of label representation is use in regression
problems, where the algorithm is expected to result a number within a specific
range.

Some famous examples of supervised learning algorithms are: SVM, KNN, NB,
CART, Linear Regression and many more.

Unsupervised Learning: is the type of ML that lacks the class labels or target
variables as in supervised methods. These approaches function by analysing
the relationships and connections between the samples themselves, then create

Machine
Learning

Model Creation

Supervised

Classification

Regression

Semi-
Supervised

Reinforcement
Learning

Unsupervised

Clustering

Dimensionality
Reduction

Feature
Selection

Feature
Extraction

27

clusters or groups where the samples of similar behaviours are gathered
together. Unsupervised ML methods are extremely important to analyse,
provide better understanding of the data, and derive meaningful relationships
between the samples. An example of unsupervised learning algorithms is k-
means clustering, Hierarchical clustering, Self-Organising Maps (SOM) and
many more.

Semi-supervised ML: is the type of ML that lays in between the supervised
and the unsupervised approaches, in which the data is partially containing the
target variable information. It is worth to be mentioned here that this type of
ML approaches is quite common in real-life scenarios. Since the data labelling
process is very time and effort consuming and usually is manually done by a
human observer exhaustively recording the status of an observed process.
These methods can be used in classification or clustering tasks based on the
end-goal of the learning problem in hand.

Reinforcement Learning: reinforcement ML has a different mechanism of
learning comparing to the last three ML types. The Reinforcement learning is
based on the continuous interaction between the training model and the
environment to provide a reward system, in which it the decision making
ensures the best reward and the least risk. Reinforcement learning is the closest
scenario to how humans learn based on actual environmental interactions and
experience, which makes this type ideal for robotics and robot learning. The
following workflow chart shows how reinforcement learning methods

organize the interaction between agents and the surrounding environment.
One of the most well-known reinforcement learning methods is Q-learning and
temporal difference.

Figure 4 Reinforcement Learning Mechanism

28

In this work, we are mainly concentrating on classification ML algorithms to
achieve FDD. In addition, to unsupervised feature selection algorithms which
might enhance the efficiency of FDD in hydraulic systems. Accordingly, the
literature of the methods mentioned bellow are coherent to the content of this
dissertation and reflects all the methods that are encountered within this work.

6. Feature Selection Literature

Feature selection categories are determined based on two main characteristics.
(1) The existence of samples’ labels or classes, and (2) the search strategy used
to select the features [27].

First, according to the label availability, feature selection methods can be
classified into; supervised, semi-supervise and unsupervised feature selection
methods [28].

Supervised feature selection algorithms depend on the existence of labels to
efficiently chose the most discriminant and informative features, by effectively
classifying the samples between the classes using the given labels. However,
when only some of the data samples contain labels, while the rest are
unlabelled, in this case the feature selection is called semi-supervised. Semi-
supervised algorithms are capable of extracting feature importance from both
labelled and unlabelled instances. Generally, semi-supervised feature selection
relies on the construction of correlation matrix between features and determine
the valuable ones based on their similarity degree to the formed matrix [29]and
[30]. The most spontaneous, natural, and common form of data is the
unlabelled form, where the records are stored from their source naturally
without being combined with any observations, or any sort of grouping or
notations. Due to the absence of guidelines and clues, unsupervised feature
selection is considered by far the most difficult type comparing to the former
two [31]. The related work to this method is explain in detail in related work
section.

Second, another way to determine the feature selection method used is by the
process strategy which can be divided into filter, wrapper, and embedded
methods.

In most practices, filter methods are applied as a pre-processing stage prior to
the actual feature selection using wrapping methods. The features are selected
by performing various statistical tests to measure the correlation between each
feature and which are more relevant. Some examples of statistical tests to

29

measure the correlation coefficient are, Pearson’s correlation, Fisher
transformation coefficient also known as F-test, Linear Discriminant Analysis
(LDA), Chi-square, and many more. Filter methods utilize the shape of the data
to determine the most valuable features. More specifically, by applying a
certain condition, methods, or criteria to rank the features, then order them in
a descending order based on the rank calculated while selecting the features
highest in the order to represent the rest. Some examples of the filtering
approach is reliefF [32], information gain [33], and F-statistic [34].

Wrapper methods rely on the continuous selection of various subsets of
features from the feature space and utilize them each to train a machine
learning model and infer which subsets to choose and which to eliminate
according to the resulting performance of the model. In other words, wrapper
methods do not rely on the shape of the data as the filter methods, instead they
use machine learning to select the features with the best accuracy when running
the machine learning model. Although, this kind of methods conclude the
feature selection process in a search problem, these methods are very
computationally expensive.

Wrapper methods are known for applying various machine learning and data
mining algorithms to select features such as, the utilization of SVM to create
SVM Recursive Feature Elimination (SVMRFE), which is considered one of the
most useful feature selection algorithms when using microarrays and genetic
data [35].

Wrapper methods can be divided into forward, backward, and recursive
feature elimination. Below is the detailed explanation of each:

• Forward Selection: is the wrapper feature selection method in which
ones iteratively keep adding new features to the model, while starting
the selection process with no features at all. These methods are
initialized with a null feature set and keep adding new ones each
iteration until convergence is reached. The most common convergence
criterion is when the model has the highest performance the way it is
without any additional feature from the feature space.

• Backward Elimination: this method follows the exact opposite strategy
of the forward selection. In this case, the feature subset is initialized with
the whole subsets in the feature space, followed by iteratively
eliminating them until the performance of the model is the best without
any further elimination.

• Recursive Feature Elimination: these methods are remarkably similar
in the mechanism to greedy search. They iteratively select a different

30

subset of the features, run the model, and keep tracks of the best and
worst performance features at each iteration. Each iteration, the
construction of the next model is dependent on the features left from the
previous iteration. Finally, a full rank list of the features is created and
accordingly the selection or elimination is decided.

Finally, embedded feature selection methods or sometimes called hybrid
methods, are a combination between filter and wrapper methods, where they
construct their own built-in feature selection using both the shape of the data
or the statistical analysis of it, along with applying machine learning models. A
popular example of embedded methods for feature selection is the application
of LASSO and RIDGE regression by constructing internal criteria functions to
contribute to feature selection and reduce overfitting. Figure 5, shows the
classification of feature selection methods according to the research in [27].

Figure 5 Feature Selection Classification [27].

The following table describes the advantages and disadvantages of wrapper,
filter and hybrid (embedded) approaches, as described in [36].

Feature
Selection

Label
Information

Supervised

Unsupervised

Semi-
supervised

Search
Strategy

Wrapper

Filter

Embedded

31

Table 1 Filter, Wrapper and Embedded Feature Selection Methods Pros and Cons Comparison.

Method Pros Cons

Filter • Scalability

• Speed

• Independent from the
clustering process

• Permits parallel
computation

• Has limited interaction with
the clustering algorithm.

Wrapper • Can Create a model
Representation of
feature dependencies.

• Provides interaction
with the clustering
algorithm used for
selection.

• Prone to overfitting.

• Computationally expensive.

• Method-specific: depends on
the clustering algorithm
applied

Embedded • Provides interaction
with the clustering
algorithm used for
selection.

• Less computational
time complexity
comparing to Wrapper
methods.

• Can Create a model
Representation of
feature dependencies.

• Method-specific: depends on
the clustering algorithm
applied

7. k-means Clustering Literature

k-means clustering algorithm was first created back in 1967 by James
MacQueen, the detailed article is shown in [37], where data is divided into k
number of clusters based on their connectivity and pattern. This method is
optimal to find hidden patterns in unlabelled data.

The basic flow of any process must contain inputs, outputs, and the mechanism
of the process itself for k-means clustering algorithm. First, the inputs expected
are the unlabelled dataset D, and a predefined number of clusters k. k can be
chosen randomly or computed using various methods. In a recent study [38]
various methods are introduced to calculate the most optimal number of
clusters in k-means algorithm. The most common method to calculate k is using
elbow method. The elbow method will be used later in the feature selection
algorithm proposed in this thesis, so that it is essential to have some overview
of the method and how it works. The fundamental idea of the elbow method is
to calculate the sum of squared errors (SSE) for various k values iteratively,

32

while the best k is represented by the k value with the first sudden drop in SSE
value, in such way that it looks like an elbow when plotting k and the distortion
of SSE.

Second, the process in which k-means clustering work as the following: (1)
randomly select k number of samples from the dataset D. These k samples are
considered the seeds of the algorithm which can be chosen randomly or
following some specific algorithms to initialize the seeds. (2) The chosen seeds
will perform as the initial centroids of the k clusters, in which the distance
between all the instances and these centroids is calculated. Each instance is
grouped in the nearest centroid’s cluster (minimum centroid distance). (3)
Perform iterative or repetitive centroids selection and distance calculations to
optimize the centroids locations, to eventually have the best centroids locations
that ensures better clustering. The regular equation used to calculate the new
centroid each iteration is explained below:

𝐶𝑖_𝑛𝑒𝑤 = (
1

𝑁𝑖
)∑𝑥𝑖

𝑁𝑖

𝑖

 Eq. 1

Where 𝑁𝑖 is the number of members or instances in the cluster i, and the
calculation of 𝐶𝑖_𝑛𝑒𝑤 is simply computed by finding the mean point or object of
each cluster.

There are two main conditions to revoke the iteration and get the final centroids
positions. Either by calculating the mean distance for each cluster iteratively
and stop when the cluster has the minimum mean distance between the
centroid of this cluster and all the cluster members, or when a maximum
number of iterations is reached.

Finally, k-means output is expected to be a k number of clusters, where each
cluster has a centroid Ci and various members of the object forming the dataset
D based on their connectivity or distance to their final cluster.

The study in [39] demonstrates four different distance measures that can be
used to calculate the distance between the objects and the centroids within each
iteration of processing k-means. The following bullet points explain the most
popular three distance measures that used in k-means clustering algorithm.

• Euclidean distance: is the distance computed by subtracting the
corresponding coordinates of two objects, and then measure the square root

33

for the squared value of the individual subtraction, as shown in the equation
below:

𝐷𝑥𝑦 = √∑(𝑋𝑖𝑓 − 𝑋𝑗𝑓)
2

𝑚

𝑓=1

Eq. 2

Where m is the total number of dimensions in both vectors 𝑋𝑖and 𝑋𝑗.

• Manhattan Distance: is the distance calculated by measuring the absolute
value of the difference between two objects.

𝐷𝑥𝑦 = |𝑋𝑖𝑓 − 𝑋𝑗𝑓| Eq. 3

• Chebychev Distance: this kind of distance measurement computes the
Manhattan distance for each two corresponding dimensions in two objects
individually, and then take the maximum dimension distance as the overall
distance representing the two vector objects.

𝐷𝑥𝑦 = 𝑚𝑎𝑥𝑓|𝑋𝑖𝑓 − 𝑋𝑗𝑓| Eq. 4

Generally, k-means for feature selection methods work by trying to cluster the
features as samples, as they initially selecting k random number of features
from the feature space to perform as the k clusters’ centres and repeatedly
measure the similarity between the selected centroids and their objects.

7.1 Silhouette Value Literature

Clustering in general, is the process of defining groups of objects. In a way that,
in each group objects tend to be like one another, and different from other
objects located in other clusters or groups. How to evaluate these clusters? A
high-quality cluster usually have a high intra-cluster similarity value, and low
inter-cluster value, which means the objects contained in this cluster are highly

34

similar and connected to one another, and distinctively distant from other
objects in other clusters. In other words, the cluster should be well-defined to
be considered a high-quality cluster.

There are many similarity measures to compute the intra-cluster and inter-
cluster similarity values. Such as, silhouette value [40].

 The silhouette value for an object i in one of the k clusters computed using k-
means clustering can be calculated as the following equation:

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)
 Eq. 5

Silhouette value can also be written in a function formula as the following:

𝑆𝑖 =

{

 1 −

𝑎𝑖
𝑏𝑖
, 𝑖𝑓 𝑎𝑖 < 𝑏𝑖

0, 𝑖𝑓 𝑎𝑖 = 𝑏𝑖
𝑎𝑖
𝑏𝑖
− 1, 𝑖𝑓 𝑎𝑖 > 𝑏𝑖

 Eq. 6

Where 𝑎𝑖 is the average distance between the object i, and all other objects that
belongs to the same cluster. 𝑏𝑖 is the minimum average distance between the
object i and all other object in all neighbouring clusters.

𝑆𝑖 is the silhouette value of the object i. Based on the values of 𝑎𝑖 and 𝑏𝑖 using
one of the equations above.

 𝑆𝑖 is a straightforward approach to know the similarity or dissimilarity
measures between the object i and its group. If 𝑆𝑖 is close to the positive end,
positive one, that means this object is highly similar to its cluster and
appropriately grouped. When 𝑆𝑖 is close to the negative end or negative one,
then i is not appropriate to its original cluster, and the similarity between i and
its neighbouring clusters are higher, so i should have been clustered in the
neighbouring group instead. An 𝑆𝑖 close to zero means that this object is located
in between two main clusters and does not belong to any.

35

8. Relevant ML Classification Algorithms

8.1 Logistic Regression (LR)

To understand LR, it is necessary to distinguish it from Linear Regression.
Linear Regression is suitable for ML tasks where the outcome is expected to be
a range of values, or a continuous measurement such as, students grades
prediction, the amount of rainfall in a specific time of the year, the expected
earnings of a production line…etc. Nevertheless, logistic regression [41] [42]
results a discrete value of a clear category mostly suitable for binary
classifications (i.e. student fail or pass, the weather is rainy or not, a production
line have earnings or not)

Logistic regression applies a transformation function to calculate the
probability in which each targeted occurrence is measured, and then
accordingly decide which group to classify the sample within. This function
has an S shaped-curve and is called the “logistic function” which is where
logistic regression gets its name from.

An example of how logistic regression works, assume a binary classification
scenario where 𝑌 = {0,1} and the input data has 𝑚 number of samples 𝑋 =
 {𝑥1, 𝑥2, 𝑥3…𝑥𝑚} and the relationship with the classes is linear. The traditional
equation for logistic regression is shown below:

𝑙 = 𝑙𝑜𝑔𝑏
𝑝

1 − 𝑝

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2…+ 𝛽𝑚𝑥𝑚
Eq. 7

And

𝑝 =
1

(1 + 𝑒−𝑋𝛽)
=

1

(1 + 𝑒−(𝛽0+ 𝛽1𝑥1+ 𝛽2𝑥2…+ 𝛽𝑚𝑥𝑚))

Eq. 8

The results of 𝑙 will determine the value of 𝑦. If 𝑙 > 0 then 𝑦 = 1 (instance is in
the positive class). When 𝑙 𝑖𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 then 𝑦 = 0 (instance is in the negative
class).

36

8.2 Naïve Bayes (NB)

NB is a well-known supervised, statistical machine learning approach. NB is
dependent on the probability calculation of the next event occurrence, given
the probability of another influential event that has already happened. The
basic idea of NB classifier is derived from Bayes theorem [43], where the prior
knowledge is used to calculate the probability of the hypothesis being true.

Bayes’ theorem in a mathematical formula is shown below:

𝑃(ℎ|𝑑) = (𝑃(𝑑|ℎ) 𝑃(ℎ))/𝑃(𝑑) Eq. 9

Where:

• P(h|d) is the conditional probability of the hypothesis event h in condition
of the probability shown in the data d.

• P(d|h) the conditional probability of the data d that makes the hypothesis h
true.

• P(d) the probability of the data d irrespective to the hypothesis condition
whether it is true or false.

• P(h) the probability of the occurrence of hypothesis h irrespectively with the
observations stored in the data d.

 As a final note about NB. The word “Naïve” is added to the algorithm name

to indicate the naïve assumption that this theorem is built upon, which assumes
that the variables in d are independent from each other, which is highly
unrealistic in real-world scenarios.

8.3 K-Nearest Neighbors (KNN)

KNN [44] is a classification and regression machine learning algorithm, which
has a unique technique of using the whole dataset without splitting the data
into training and testing required by traditional supervised approaches.

37

KNN uses the instances or samples in the data as a reference, when a new
instance is given, KNN tries to find the most similar K points or instances to
the new point. When KNN is used for a classification task, the label of the new
point is determined by the majority class label of the chosen nearest K points.
For regression problems using KNN, the mean value of the K instances is used
to compute the regression outcomes.

KNN parameters such as K and the similarity measure used are predefined by
the user. There are a variety of similarity measures which basically work by
calculating the distance between the new instance and each point in the dataset.
The distance measures can be Euclidean, hamming distance and many others.

8.4 Linear Discriminant Analysis (LDA)

LDA is a machine learning algorithm used for classification and feature
selection purposes based by the application of statistical concepts. More
specifically, LDA applies Fischer linear discriminant [45] statistical approach to
compute the linear combinations for the features in the given dataset, which
provide the best separation between the labelled classes or events.

It is worth to be mentioned that both PCA and LDA functions by finding the
linear combinations of features. However, they both have different criteria to
choose the hyperplanes. In PCA, the hyperplanes are chosen to maximize the
variance or difference between the data points in the feature space without
taking the knowledge of the points’ labels or classes into consideration, as well
as the fact that the chosen PCs must be orthogonal to one another. On the other
hand, LDA chooses the hyperplanes to maximize the similarities between
points of the same class or label to provide the best separation possible from
other classes in the dataset. LDA’s hyperplanes chosen are not necessarily
orthogonal to one another as in PCA.

8.5 Support Vector Machine (SVM)

SVM [46] is a non-statistical machine learning approach that can be applied to
solve classification and regression problems. SVM works by attempting to find
the optimal hyperplanes that offers the best separation between the labelled
classes in the feature space. The optimal separation between the classes is
determined by choosing the hyperplanes that has the furthest distance between

38

the data points and the hyperplane. The gap distance between the closest
instance on both sides of the hyperplane is known as “functional margin”. The
margin should be at least equal to one. However, in some cases some tolerances
can be applied and margins with less than one distance can be accepted to
optimize the SVM performance.

Although, SVM works by finding linear combinations of hyperplanes, it can
also be used to solve non-linear problems by applying the “kernel trick” which
makes SVM extremely relevant to the nature of real-life problems, and
universally applicable in many fields and applications such as, fault detection
and classification.

When plotting the data points in the feature space, sometimes it is even visible
by the naked eye that the separation hyperplane between various classes is not
linear. The kernel trick comes to overcome this challenge by projecting the data
points with non-linear separation hyperplanes into a higher dimensional space,
where the classes appear to be linearly separated by a linear hyperplane. There
are various types of kernels based on the shape of the decision boundary most
optimal to separate the data classes, i.e., Fischer kernel, polynomial kernel,
Gaussian kernel, Radial Basis Function (RBF) kernel, and many more.

8.6 Decision Trees

Decision trees in data mining are a commonly used supervised technique to
solve classification and regression problems. Where a set of observations and
their labels or classes are already known and used to make various predictions
[47]. In data mining, decision tree algorithm is divided into two main types:
classification and regression trees. In 1984, Breiman et al [48] combined the two
types together under the same category using the term Classification And
Regression Tree (CART).

Decision trees are called this way because they are visualized in a tree structure,

in which is created by recursively splitting the training dataset from top to
bottom, forming the first level node of depth zero called the “root”, followed
by going down the tree forming higher depths and continuously splitting into
successor children nodes. The splitting process is determined using different
rules that determine the impurity of a certain node, and upon the selection of
the splitting criteria [49].

39

8.7 Random Forests (RF)

• From Bootstrap Aggregation (Bagging) To Random Forests

Furthermore, there are some algorithms classified under ensemble learning
category that allow the possibility of creating multiple different trees over the
same dataset, to contribute to minimizing the over-fitting problem decision
trees usually suffer from, especially when the sample size provided is relatively
small. The two main types of such ensemble methods are boosted ensemble
trees [50] [51] and bootstrap aggregated or bagged trees [50] [52].

Boosted trees are a sequential type of ensemble decision trees, where the
optimal shape of the tree is established incrementally by adjusting the tree
continuously based on the arrival of new instances. The most famous boosted
trees algorithm is AdaBoost method.

Bootstrap aggregated or bagged trees are a parallel type of ensemble decision
trees, generates multiple numbers of decision trees concurrently, by resampling
the training dataset with replacement. The final prediction for such methods is
made by voting the results of the created trees altogether. What is worth to be
mentioned is that random forests are an example of a Bootstrap aggregating
methods to optimize the traditional decision trees methodology [52].

Random forests are an optimization algorithm of decision trees, under the
ensemble learning sub-category, intended to perform different tasks such as,
classification, regression, and many others. The core of this algorithm relies on
creating multitude of parallel decision trees based on dividing the feature space
each time and deploying the chosen sub-space to form the tree of choice. The
prediction decision of random forests is made by majority vote of all the
separately created trees. Random forests started as “stochastic discrimination”
approach created by Eugene Kleinberg [8]. Which was inspired by the formula
created by Tin Kam Ho [53] to deploy the understanding of random subspaces
and how to use them in a practical approach. Recently, random forest algorithm
is trademarked by Leo Breiman and Adele Cutler owned by Minitab, Inc in
2019 [54]. The registered algorithm represents an extension of the formula
introduced by Ho [53] and the “Bagging” idea created by Breiman [52] and [48].

Bagging algorithm whole idea depends on randomly choosing a subset of the
original training set with placement, to perform an S number of classification
or regression tasks, to finally make the overall decision of the performed task
using all the learners created. Generally, the trees created by the bagging
algorithm alone tend to be highly correlated and, in most cases, the same tree

40

is being generated for multiple of times. Due to, simply, training multiple trees
over the same dataset with placement that can easily generate high correlation
between the formed estimators. The best way to introduce some sort of de-
correlation between the trained trees is by feeding the algorithms different
datasets. A new dataset can be formed from the original dataset by using the
random subspace algorithm [55] to not only randomly choose the data points,
but also concurrently pick randomly a feature from the feature space, to act as
a new splitting point. Random forests use random subspace method to de-
correlate the trees formed using the bagging method alone.

Random subspace algorithm is highly identical to bootstrap aggregation in
many ways. The only difference is that in random subspace the features are the
subject of bagging and they are considered as the “predictors” or “random
variables” that would be sampled with replacement to create predictions for
each learner. Thus, random subspace is also known as attribute bagging [56] or
feature bagging. Random forest algorithm is a combination of bootstrap
aggregation to sample the training dataset, and random subspace algorithm
necessary to sample the features, to create splitting points that results in
generating multiple estimators with high level of distinction and accuracy.

9. Relevant DL Literature

9.1 From Neural Networks to DL

Shallow and deep neural networks are defined as a machine learning algorithm
inspired by the brain neurons functionality and logical processing flow. Neural
networks were used in mathematics since 1943 [57], and the fundamental
algorithm kept on developing, changing and getting more complicated until

this day. Neural networks can solve supervised, unsupervised, semi-
supervised and reinforcement learning problems.

In the following sections, a gradual demonstration of many deep learning
techniques starting from the simplest form of neural networks also known as
“the perceptron”, reaching to various complicated deep learning schemas.

• Perceptron and Multi-layer Perceptron

The perceptron [58] represents the neuron or the basic building block of the
neural network. The perceptron uses a simple mathematical operation
calculated by the dot product between or sum of the inputs and their

41

corresponding weights, which contributes to its decision making or output
acquisition process. The perceptron consists of three main layers: input layer,
one hidden layer and an output layer. The figure below, Figure 6 shows a
perceptron with six inputs. As shown in the figure, the perceptron can only
make binary decisions either 1 or 0. Furthermore, the perceptron has only one
hidden layer, where each input is multiplied to its weight in a dot product
operation and added to the rest of multiplications in sum of product operation.
In other words, if we consider a perceptron with six inputs, the hidden layer

value is calculated using ∑ (𝑤𝑖 𝑥𝑖) + 𝑏𝑖𝑎𝑠
6
𝑖=1 . The bias is 𝑤0 stored in the hidden

layer. The output layer is where the classification decisions are made. The
output layer also known as the activation function layer that can hold various
types of activation functions which accordingly the classification result is
selected. In perceptrons the activation function is a simple step function. The
function below shows the activation function or the content of the output layer
in the simplest neural network form as a perceptron:

𝑓(𝑥) =

{

 1 𝑖𝑓 ∑(𝑤𝑖 𝑥𝑖) + 𝑏 ≥ 0

6

𝑖=1

0 𝑖𝑓 ∑(𝑤𝑖 𝑥𝑖) + 𝑏 < 0

6

𝑖=1

 Eq. 10

Figure 6 Example of a Perceptron in Neural Networks.

Before explaining any further, it is essential to clear the difference between the
perceptron, multilayer perceptron and deep learning or deep neural network.

As explained before, the perceptron is the building block of any neural network
and its main distinctive feature is the possession of only one hidden layer with

42

only one neuron within. Although, multilayer perceptron has one hidden layer
as in simple perceptron, it has various neuron within the hidden layer, each
with their own vector of weights. The size of the weight vector in each neuron
within the hidden layer is the number of the inputs plus one because of the
additional value of 𝑤0 the bias for each neuron in the hidden layer. Finally,
deep learning is a chain of multiple hidden layers of multilayer perceptron. In
other words, a deep neural network consists of many hidden layers connected
sequentially to one another, where each has many neurons of different weight
vectors. The output of the previous hidden layer contributes as the input layer
of the next hidden layer. The overall output in the output layer is calculated by
the sum of product between the outcomes of all neurons in the last hidden layer
that act as inputs, and they will be multiplied to their corresponding weights
using dot product. The figure below explains the difference between the
perceptron, multilayer perceptron, and deep neural networks assuming the
input layer has only two inputs. Meanwhile, 𝑤0 in each layer represent the bias
of this layer, 𝑊𝑖𝑗 shows the indices of the weights in a multi-layer perceptron

when 𝑖 is the input index and 𝑗 is the index neuron connected to that input. In
deep neural networks the weights on each edge are determined with at least
three indices based on the shape of the neural network. 𝑊𝑖𝑗𝑘 is how to identify

weights of each edge in deep neural networks, where 𝑖 and 𝑗 are explained
earlier, 𝑘 represents the index of the hidden layer that the input neuron is
connected to with the edge 𝑊𝑖𝑗𝑘 . Each layer, the choice of the right weights for

the edges is bounded to direction of the edge. The neuron that the edge is
coming out of is always considered the input for this edge, even if this neuron
located in a hidden layer. While the destination neuron is the hidden layer
neuron for this operation. It is crucial to define the direction of the operation
since not all neural operations are feed forward processes, but it can also be
backward process as in the backpropagation neural networks [59]. 𝑊𝑂𝑖 is the
weight connecting the last hidden layer to the output layer. The dot product
between the outcome of the last hidden neuron with its corresponding output
weight will be then added to the rest of the dot products calculated from all
neurons in the final hidden layer, which all together will be sent to the output
layer to be judged by the activation function content and criteria before the final
classification, regression or re-enforcement decision is finally made.

43

Figure 7 Comparison Between Perceptron, Multi-layer Perceptron and Deep Neural Network.

• Activation Functions

Activation functions are defined as a mathematical equation or a series of
equations in which they are the output determinant in a perceptron or a multi-
layer neural network. Choosing the suitable activation function has a critical
impact in boosting the accuracy and enhancing the training process of the
neural network no matter how simple or complex these networks are.
Generally, it is highly advisable to experiment with various activation
functions to ensure most effective results. Moreover, during the training stage
tuning the activation function as a hyperparameter of the neural network can
also contribute to the overall efficiency and accuracy.

 The following are some examples of the most common activation functions:

• The Rectified Linear Unit (ReLU) function [60]: one of the famous
activation functions that works efficiently with positive inputs, and it
lacks precision with negative or positive approaching to zero input
values. Some other activation functions are created based on ReLU such
as, the leaky and the parametric ReLU.

44

• The Tanh function [61]: tanh is hyperbolic function that works better with
centred or strongly on the edges positive or negative inputs. Which means
it has better results with strong positives, strong negatives, and mean
values to fit better with the hyperbolic plane shape.

• The sigmoid function: this function is distinctive for its S-shape curve or so
called the sigmoid curve. The sigmoid function rule is derived from the
logistic function operation and equation [62]. The sigmoid creates smooth
gradient to find the optimal output between zero and one.

• Other well-known functions: Softmax [63] and Swish[64].

9.2 Convolutional Neural Network (CNN)

CNN [65] is a form of deep neural networks mostly applied to various imaging
modalities, i.e. medical images, regular grayscale or RGB images and videos.
CNN is often related to computer vision applications such as, images and video
classification, image captioning and metadata production, facial recognition,
object, and posture recognition, and medical image processing. CNN can also
be applied to non-imaging applications as in time-series prediction and various
natural language processing applications. CNN possesses many advantages
over traditional machine learning approaches when dealing with images and
image classification, that is because of its ability to internally select the most
valuable features directly from the input images, without the need to manually
apply feature engineering. However, with non-imaging inputs it requires more
research to compare the feature engineering capabilities of CNN and the
available ones in the literature.

• CNN Architecture

CNN has two main phases: feature engineering phase and classification phase.
The feature engineering phase consists of two main layers: convolution and
pooling layers. The classification phase includes a fully connected deep neural
network schema that is trained using the feature vector that was created by
flattening the feature matrix extracted from the earlier phase of the implicit
feature engineering in CNN. The following figure, Figure 8 shows an example
of a CNN network, while later each layer will be explained in comprehensive
detail.

45

Figure 8 An Example of a Convolutional Neural Network Framework for Image Classification
[66].

• Convolution Layer

The name CNN is created based on the convolution layer because it is the core
of the CNN and its main building block. Moreover, the heaviest computational
load occurs within this layer.

The kernel in CNN is defined by a matrix that is smaller in size of the original
input image but have more depth. It is like applying masks or filters to images
in image processing. If the image has RGB layers, the kernel would be able to
perceive the three dimensions in the depth but smaller area of the x and y
coordinates of the original image.

In the convolution layer the mask or the kernel will spatially slide over the
input image, each time a dot product operation occurs between the visible part
of the image under the kernel and the kernel. Then the kernel will slide to the
next position of the image to calculate the next position’s dot product value, the
sliding size is called the stride. The convolution between the image and the
filter or the kernel is called feature map or activation map. Let us assume the
image matrix has the size h × 𝑤 × 𝑑, the kernel size is h𝐾 ×𝑤𝐾 × 𝑑𝐾 the output
after the convolution will have this size: (h − ℎ𝐾 + 1) × (𝑤 − 𝑤𝐾 + 1) × 1
assuming that the stride is equal to one sliding unit each time.

 In some cases, the kernel does not fit the image properly, in this case a new
concept called padding is used. Padding indicates adding values to pad the
non-fitting cells between the kernel and the image. Padding can be applied by
zero-padding which -by definition- means filling the extra cells with zeros, or
another padding mechanism called valid padding, which drops the non-fitting
part of the image, while only contributing the valid parts of the image.

46

In Figure 8, it is noticeable that ReLU is applied to the mapped features after
the convolution process. ReLU implies adding non-linearity to the convolution
operation. Since real-world problems and challenges are mostly non-linear, so
by applying ReLU to the convoluted results it is more reflecting to the reality.
The output of ReLU is calculated by: 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥), x is the value of each
cell in the feature map. Many of the activation functions mentioned earlier can
be applied to the convolution layer instead of ReLU such as, sigmoid and tanh
functions.

• Pooling Layer:

Pooling layer is meant to reduce the spatial size of the feature map produced
by the convolution process followed by non-linearity addition. Basically,
pooling creates a rectangle that also slides across the resultant selected features
and select only one value of the triangle to represent the whole one. The most
popular types of pooling are max pooling, average pooling, sum pooling and
L2 norm pooling of the rectangular neighbours.

The convolution layer and pooling layer should always follow one another in
this order. However, this process can be repeated as many times as possible,
especially if the original image is highly dimensional and requires adding
additional feature engineering steps.

Before the selected feature matrix is feed into the classification phase, it is
necessary to flatten the matrix representing the image while being feature
selected and dimensionally reduced into a single vector, in which each cell of
the vector is feed as an input to the fully connected neural network.

The rest of the CNN architecture represented by the classification phase is
completely like the explanation provided in the neural network section
mentioned earlier. Where all the activation functions also known as non-
linearity layer are explained in detail.

9.3 Recurrent Neural Network (RNN)

RNN [67] is a type of neural networks specialized in sequential or time-series
data such as, videos, audio, sensors’ readings, text and the data record of a
series of dependent events overtime. RNN elementary neuron functions by
accepting a sequence of input variables each time, while keep tracking or
remembering the previous input in the sequence, assuming that the previous

47

occurrences could carry valuable information, in which can lead or enhance the
process in the current step.

9.4 Long Short-term Memory (LSTM)

LSTM [68] is a type of deep artificial neural networks that follows RNN
architecture. Unlike traditional neural network with feedforward process flow,
LSTM provides a connection between the current point and the previous ones.
Hence, LSTM has the ability to process sequential datasets such as speech,
audio, and time-series data in general. Speech recognition, fault detection and
handwriting detection are some common applications of LSTM.

A LSTM unit is highly similar to RNN in which both propagates forward the
input sequences to learn dependencies from previous periods. However, the
internal structure of LSTM is more sophisticated than the regular RNN cell,
which offers various gates or regulators, that provide the selectivity between
keeping or forgetting certain sequences rather than accepting all the memories
from previous cells blindly.

LSTM is applicable to various machine learning problems over time-series data,
i.e., classification, one point or a sequence prediction and reinforcement
learning. Generally, a LSTM unit consists of the cell and three more gates: one
input, one output and one forget gates. The cell is responsible of remembering
the states of inputs over various arbitrary periods of time. The remaining gates
basically regulate the information flow from the beginning of the cell until the
decision is made at the end of the cell.

More specifically, LSTM units has various architectures. However, the most
common components among them are the cell, which represents the memory
of the LSTM unit, and three regulators also known as gates that include input
gate, output gate, and forget gate. It is essential to point out that not all LSTM
composed of all the three gates combined, for example the LSTM architecture
called Gated Recurrent Units (GRUs) does not compose of output gate.

Moreover, some LSTM architectures may contain additional gates to regulate
the data flow in and out the LSTM unit as needed.

The cell is responsible of pointing out the dependencies between the input
elements or given sequences. The memorized dependencies determine the
importance of the current memory to the next LSTM connected unit. The input

gate controls the new sequences flowing into the LSTM unit. Whilst the forget

48

gate determines which input sequences to forget and which to remain the
LSTM unit. Finally, the output gate controls the values computed and used in
the output activation function at the end of a LSTM unit. The activation
function used in LSTM is the sigmoid function [69]. Furthermore, tanh [61]
activation function is also used internally to compute different gates and
intermediate stages in the LSTM unit.

The following figure explains the common architecture of LSTM units, the
information flow and the main function and operations within. As shown in
Figure 9, The forget gate 𝐹𝑡 uses the summation of previous hidden state
𝐻𝑡−1 also known as the previous unit prediction, and the input sequence
𝑋𝑡 passed through a sigmoid function to determine if the information derived
from the input sequence based on the previous knowledge is worthy of keeping
or better to forget. As it is known for sigmoid functions, the output is between
zero and one. If the forget gate results a value closer to one that means store the
information. However, if closer to zero forget the processed information.

Figure 9 LSTM Cell Common Architecture

Input gate 𝐼𝑡 is crucial to provide important parameters to update the current
cell state 𝐶𝑡 . First, the summation of the previous hidden state 𝐻𝑡−1 and the
input sequence 𝑋𝑡 is passed into a sigmoid function to determine which input
information is important (sigmoid close to one), or not important hence ignore
(sigmoid close to zero). There is an intermediate stage for the current state
called 𝐶�̅� can be calculated by passing the sum 𝐻𝑡−1 and 𝑋𝑡 into a tanh function,
which contributes to normalizing the sum of product between -1 and 1.

49

The cell state 𝐶𝑡 can be calculated by two steps: (a) the element-wise
multiplication between the previous memory or previous cell state 𝐶𝑡−1 , and
the forget gate 𝐹𝑡 calculated. To determine which previous memories to keep
or to forget in case it gets multiplied by a zero from the forget gate. (b) The
element-wise addition of the values computed in (a) and the newly added
important information from the input gate 𝐼𝑡 , plus the intermediate current
memories 𝐶�̅� calculated by the tanh function.

At last, the computation of the output gate 𝑂𝑡 is in order. The output gate is the
determinant of the current hidden state 𝐻𝑡 that would be passed to the next
LSTM unit as the previous hidden state 𝐻𝑡−1. The hidden state 𝐻𝑡 of the last
LSTM unit connected represents the output of the overall LSTM network that
is used for predictions and decision making. The output gate 𝑂𝑡 value is
calculated by passing the summation of the previous hidden state 𝐻𝑡−1 and the
input state 𝑋𝑡 into a sigmoid function. The value of 𝐻𝑡 is calculated by
multiplying 𝑂𝑡 resulted from the output gate by the outcome measured by
passing the current cell memories 𝐶𝑡 into a tanh function.

The descriptive information derived from Figure 9 and explained in detail
above, can be comprehended and easier to understand by equations. Thus, the
following are the equations for the calculations required by each gate in the
LSTM unit. Each gate has different weight vector, but for the sake of simplicity
they were denoted by 𝑊 and 𝑈. The symbols subscripted under the weights
represents the gate the weight vector belong to. Where 𝑓 is for forget gate, 𝐶 for

cell state, 𝑖 and 𝑂 are for input and output gates weight vectors, respectively.

50

𝐹𝑡 = 𝜎 (𝑋𝑡 × 𝑈𝑓 +𝐻𝑡−1 × 𝑊𝑓) Eq. 11

𝐼𝑡 = 𝜎 (𝑋𝑡 × 𝑈𝑖 + 𝐻𝑡−1 × 𝑊𝑖) Eq. 12

𝐶�̅� = 𝑡𝑎𝑛ℎ (𝑋𝑡 × 𝑈𝑐 +𝐻𝑡−1 × 𝑊𝑐) Eq. 13

𝐶𝑡 = 𝜎 (𝐶𝑡−1 × 𝐹𝑡 + 𝐶�̅� × 𝐼𝑡) Eq. 14

𝑂𝑡 = 𝜎 (𝑋𝑡 × 𝑈𝑂 + 𝐻𝑡−1 × 𝑊𝑂) Eq. 15

𝐻𝑡 = 𝑡𝑎ℎ𝑛 (𝐶𝑡) × 𝑂𝑡 Eq. 16

9.5 Encoder-Decoder and Autoencoders

Encoder-decoder [70] is a machine learning approach also known as Seq2seq,
where it is required to predict a sequence of observations by learning patterns
of other sequences of different size, or even different nature from the target
sequence. Encoder-decoders are widely used in image captioning,
summarization of texts, natural language translation and many more. The first
Seq2seq algorithm was developed by google to achieve machine translation.
Seq2seq rely on turning one sequence of inputs into another sequence of
outputs using RNN and mostly LSTM and GRU. Encoder-decoders construct
of an encoder that turns each input sequence a hidden vector. A decoder that
receives the hidden vector encoded by the encoder and reverse it back to an
output item of the same nature of the output category or group.

51

Figure 10 Encoder-Decoder General Structure

Previously, encoder-decoder framework was explained. To rephrase it,
decoder-encoders are a type of RNN functions which maps a sequence from an
input space, to another sequence from an entirely different input/ feature space,
and probably both sequences own variable sizes as well. i.e., in image
captioning, the input is an image of a certain size, shape and extracted features.
While the caption is a text owning entirely variant feature space and sequence
size than the images, they describe them. Another example is in natural
language translation, when the input sequence is an English sentence, while the
output is a French sentence for example.

On the other hand, autoencoders [71] are a special type of encoder-decoders
that map two sequences to one another, while the target and source are both of
a similar feature space, nature, and size. As an illustration when mapping one
English sentence to another English sentence of the same size. Furthermore,
autoencoders are most popular in sequence reconstruction, which means
learning previous sequences to reconstruct the next or missing sequences of the

dataset. Finally, both encoder-decoders and autoencoders can be applied for
various types of deep learning algorithms such as, CNN, RNN. LSTM and GRU.

10. Other Relevant Literature

10.1 Principal Component Analysis (PCA)

PCA [72] is a dimensionality reduction technique falls under feature extraction
category. The concept of PCA is dependent on projecting the data
perpendicularly on hyperplanes that possess the most variance of the data also
called “principal components (PCs)”. Many data points have similar
projections on the principal component hyperplanes, which provides a way to
reduce the number of features by using their projections instead.

The chosen components are the linear combination of the data features which
provides the most variance, as well as each component is orthogonal to one

52

another to eliminate the chance of any correlation between them (correlation=
0). Hence, to ensure avoiding the data redundancy as possible.

The 1st PC carries the maximum variance where it has the greatest number of
data points, followed by the 2nd PC that has the remaining points that did not
correlate with the 1st PC. The selection of further PCs like the 3rd and 4th…etc is
determined by the same technique as the 2nd PC, demonstrated by finding the
maximum variance in the remaining uncorrelated data points left from the
previous PC.

10.2 Feature Importance (FI)

FI is a feature selection method created based on RF. In the context of RF, Mean
Decrease Accuracy (MDA) or permutation importance or feature importance [52] and
[73], of a variable 𝑋𝑛 to predict 𝑌 of classes is computed by the summation of
the Gini impurities of 𝑋𝑛 for all the nodes 𝑑 where 𝑋𝑛 is present and used.
Followed by the mean of the impurity decrease metric of all the trees 𝐷 in the
forest. The following equation comprehend the concept of feature importance
using RF.

𝐹𝐼(𝑋𝑛) =
1

𝑛𝑜. 𝑇𝑟𝑒𝑒𝑠
∑ ∑ 𝐺𝑖𝑛𝑖_𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑋𝑛)

𝑑∈𝐷:𝑣(𝑠𝑑)=𝑋𝑛𝑛𝑜.𝑇𝑟𝑒𝑒𝑠

 Eq. 17

Where 𝑋𝑛 is the feature of interest. 𝑣(𝑠𝑑) is the feature/variable used to split
𝑠𝑑.

53

11. Data Collection and Generation

11.1 Condition Monitoring of Hydraulic Systems Dataset

This dataset [74] represents real measurements of multivariate, time-series
sensors, placed in a hydraulic test rig. The purpose intended for the data
collection is to monitor and assess the hydraulic system health condition.

The outcome of this experiment yielded a success of collecting sensor data of
various system health degrees of different components of the hydraulic system,
such as the cooler, valve, pump, and accumulator.

The system consists of six pressure, four temperature, two volume sensors and
one vibration sensor which all possess a constant cycle of 60 seconds. Each cycle
the sensors are collected, while the condition of the four main hydraulic
components; cooler, valve, pump and accumulator are monitored and
observed. The component health ranges from completely healthy to totally
damaged, and each condition degree is decoded into a numerical value to
facilitate the application of statistical and data mining approaches, as shown in
the following table, Table 2 .

Table 2 Hydraulic System Fault Degrees and Their Codes

Cooler condition Valve condition Internal pump leakage
Internal pump
leakage

3
close to total
failure

100
optimal
switching
behaviour

0 no leakage 130
optimal
pressure

20
reduced
efficiency

90 small lag 1 weak leakage 115
slightly
reduced
pressure

100 full efficiency

80 severe lag

2 severe leakage 100
severely
reduced
pressure 73

close to total
failure

This dataset has been used by many researchers to perform sensor fault
monitoring. i.e. constant, shift, bias and peak. [2]. Moreover, this dataset is also
beneficial to perform component or system FDD such as the application
researched in [76]. As well as, being applicable for creating and testing feature
extraction and selection algorithms in [77].

54

4. Chapter 3: Relevant Related Work

1. Supervised ML Approaches for FDD in Mechanical Machinery

Parts of this research have been used in our published research in [78]. Please
note that all rights and copy rights have been reserved to the MDPI publisher.

Griffin et al. [79] proposes an approach that mimics real-industrial processes,
by investigating two main machine processes and their faults at the same time:
(1) grinding: an example of grinding faults are chatters and grinding burns. (2)
Hole making: the faults that can be associated to hole making are drill tool onset
faults, drilling malfunctions and tool gradual wear. The approach shows a
combination of neural networks and CART to provide a robust classification.
A Makino A55 machine is calipered to be used in both the grinding and the
drilling experiments. The work in [80] developed a fault detection and monitoring
algorithm for spur gears based on decision trees. The vibration signals extracted
from the spur gear go first through feature selection applying the time-domain
features. i.e., sum, mean, skewness, minimum, maximum, and so on. Then the
selected features are fed in the CART model. In [81] an improved CART algorithm
to achieve fault diagnosis in refrigerant flow systems is introduced. The results
conducted from the improved CART are compared to the regular CART, RF and
Generalized Boosted Regression (GBR). The improved CART has shown better
results in comparison of the previously mentioned methods. Additionally, the
work in [82] provided an intelligent approach of applying rotation forests
ensemble of C4.4 CART, to achieve fault diagnosis in wind turbines. Seven sensor
readings are used to test and validate the improved model without any feature
engineering required.

55

For the last few decades, RF has been used widely to perform FDD and monitoring
applied in various fields and applications, such as industrial systems. The
literature demonstrates several techniques to apply RF for the purpose of outlier
detection, either exclusively or incorporated with other algorithms to form some
sort of a hybrid approach aimed to fulfil an intended research or applicational
purpose. The most common methodology of deploying RF is as a classifier. RF is
intended to achieve an optimized, supervised, and structured resolution for
labelled problems, which is proven to have more accurate results comparing to
many other supervised machine learning algorithms. In [83] RF is compared to
numerous classifiers of different functionality to overcome two occurring sensor
faults in Wireless Sensor Networks (WSNs), which are spike fault and data loss
fault. This study represents an elaborated comparison between RF, SVM,
Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), CNN, and
Probabilistic Neural Network (PNN). Using Detection Accuracy (DA), Matthews
Correlation Coefficients (MCC), True Positive Rate (TPR), and F1-score as the
comparison criteria that determine the overall rank of each method. As a result, RF
is proven to have the highest rank of all the above classifiers in WSN’s sensor fault
classification. In addition, another study in [84] showed similar results in proving
the superiority in performance of RF in the field of WSN, but this time while
detecting four different sensor faults; gain, offset, constant and out of range faults.

In [85], another example of using RF in a solo fashion to achieve FDD in industrial
sensor systems applied to unmanned aircraft vehicle. This study deployed a
brilliant interpretation of RF and feature importance, to extract a weighted
similarity metric based on the data priority represented by RF. The induced
similarity measure is then used to perform FDD.

RF can also be used combined to different approaches instead of using directly as
a classifier to achieve FDD in industrial systems. Usually, any hybrid approach is
originated to optimize the individual forming methods combined, or to establish
a customized solution that fulfils additional system goals or requirements. In [86],
a hybrid approach is established to detect faults of rolling bearings, which if left
undetected can lead to major consequences in the performance of the rotating
machine. This hybrid approach combines Wavelet Packet Decomposition (WPD)
method to extract new enhanced features from the bearing vibration signal
provided from n number of sensors, using signal-to-noise ratio and Mean Square
Error (MSE). Followed by the step of mutual, dimensionless index construction,
which will be fed to the fault database and contribute as the data necessary to train
and test the RF model. Moreover, another example for a hybrid FDD approach
using RF is [87], This method demonstrates the effect of combining genetic
algorithm and RF to increase the classification accuracy of the FDD process of an
induction motor.

56

A parallel RF cloud-based approach in [88] is introduced, to predict and monitor
the wear of dry milling tool operations. 28 Statistical features are extracted from
the row data collected from various channels of the dry milling tool such as, cutting
force, acoustic emission, and vibration. Furthermore, an RF algorithm for
predictive maintenance in wind turbines at real-time is proposed in [89]. A new
approach of deep RF fusion in [90] is utilized to enhance the fault diagnosis process
in gearboxes using two feature modalities: (1) acoustic emission sensors and (2)
vibrational signals extracted from accelerometers. The best features from both
modalities are selected using wavelet packet transform.

Beyond the intensive use of RF in industrial sensor systems, RF can be used in
a smaller range, for many reasons and purposes exceeding the industry. One
of the common applications of RF is in the medical field using sensing
modalities. In [91] a recent study shows an application of RF to reduce the
fallacious clinical alarms. i.e., the Arrhythmia alarms. In case of false
Arrhythmia alarms occurrences, that may lead to elevation in the patient and
staff stress level, as well as causing unnecessary pressure on the intensive care
staff. According to the study, the application of RF detects the true from the
faulty calls has significantly reduced the number of false calls concerning five
main types of arrhythmia. In this recent work [92], RF is used in a hybrid fashion
with Feedforward Neural Network (FNN) to investigate the relationship(s) among
multi-modal signals, extracted from electrochemiluminescence (ECL) sensor
located in a smartphone and the concentration of Ru(bpy) 3

2+ luminophore and its
electrochemical data. Establishing such correlation is essential for building
optimized and cheaper diagnostic devices. Understanding the hidden
relationships between each modality may lead to creating diagnostic rules, which
can be used for FDD in later stages. Thus, this study is included with the
application of RF in FDD related work.

The work presented in [93] demonstrates a component fault detection using
kernel-SVM, applied to auxiliary marine diesel engine. The kernel applied is
multi-variate gaussian kernel. The work presented in [94] focuses on the
utilization of multi-class classification using SVM classifier, applied on the field
of semiconductor manufacturing to achieve predictive maintenance. The entire
feature space included 31 features, and six main features are extracted using
time-domain statistical and mathematical calculations such as, maximum,
minimum, mean, variance, skewness, and kurtosis. In [95] a data-driven
approach to predict component faults in air craft systems using SVMs is
proposed. Where the prediction process is used to perform maintenance when
needed. The created method is called Auto-Regressive Moving Average
(ARMA). Six different classifiers are compared within ARMA’s interior
architecture to determine the best fitted algorithm for the problem, including

57

KNN, Generalized Linear Regression (GLR), ANN, RF and SVM. The
application of SVM within ARMA showed best results comparing to the rest of
the classifiers. The data gathered for this work is collected from a real industrial
operation of an aircraft engine that suffers from critical valve malfunctions.
Followed by applying PCA to extract the optimal features prior the
classification. Moreover, the research in [96] demonstrates the application of
multi-class SVM to build a diagnostic model of component faults in rolling
bearings. The vibration signals are used as the input signals, followed by the
application of time-domain feature selection to extract the appropriate features.
A deep SVM for multi-class classification approach is researched in [97]. The
word “deep” in this context indicates the usage of various types of features
including the fault diagnosis process. Deep SVM is applied to detect
component faults in gearboxes using various homologous features, where their
time, frequency and wavelet natures are extracted from the original data. LR is
widely used for FDD in mechanical machinery. The following related work
shows several research applications using LR. The research proposed by Li et
al. in [98] introduces an FDD approach that combines LR with acoustic emission
to ensure the reliability of various cutting tools during the manufacturing
process. The aim of this research goes beyond FDD of cutting tools, but also

monitors the tear and wear of these tools and estimates the best time to perform
maintenance. The feature selection method applied in this research is wavelet
packet decomposition. The work shown in [99] represent a monitoring and
prognosis system for gas circulator units applying a joint approach of LR and
linear SVM L1-regularizer. This method implicitly selects the most distinctive
features. Thus, no other external feature engineering methods are applied.
Pandya et al. in [100] introduced an FDD approach of rolling bearing devices,
in which the application of multinomial LR is applied and its effectiveness is
compared to SVM and ANN. Multinomial LR is proven to have the best
accuracy results comparing to both SVM and ANN. The feature engineering
method applied to this research prior to the classification is wavelet packet
decomposition. In a similar note, Caesarendra et al. [101] focuses on building a
machine degradation analysis model using bearing run-to-failure datasets. The
proposed approach is a combination of LR and Relevance Vector Machines
(RVM). LR is used to detect the degradation status, and its results are used as
labels for degradation probability estimation in the following step performed
by RVM. An FDD approach applied on micro-piercing process is developed in
[102]. The proposed approach represents an online vibration-based monitoring
and FDD system using LR. LR is applied to the selected features to achieve fault
detection and monitoring at run-time. Statistical feature engineering method is
applied to select the most optimal features extracted in both time and frequency
domains. Moreover, a fault detection and prediction approach using dynamic

58

LR applied to rolling bearings is introduced [103]. The approach is tested and
validated on PRONOSTIA dataset [104]. Similarly, the work in [105] LDA
classifier is applied to achieve sensor fault identification in hydraulic systems.
A simulated hydraulic system benchmark is used to extract the sensor readings,
which then are statistically engineered to extract time-domain features such as,
mean, variance, skewness, and kurtosis. Before finally applying them to the
classification model for training and later for testing. To sum up, the following
table compares the previously mentioned ML supervised approaches to
achieve FDD in mechanical machinery in the past decade.

Table 3 ML Supervised Approaches for FDD in Mechanical Machinery for the Past Decade [78].

Classifier Reference
Mechanical
Equipment

Feature
Engineering

Fault
Type/Purpose

Dataset

CART

[79]

A Makino A55
machine for
grinding and
hole making

Component faults
associated to
grinding and hole
making
processes.

Dataset
extracted from
Makino A55
machine

[80] Spur gears
Time-domain
statistical
features

Component faults
in spur gears.

Fault
simulator.

[81]
Refrigerant flow
systems

Component faults
in Refrigerant
flow systems.

Real
commercial
buildings, and
a VRF system.

[82] Wind turbines ------
Component fault
diagnosis in wind
turbines.

From a
physical test
bed.

[106]
Electropneumatic
brakes.

Isolate sensor
faults in
electropneumatic
brakes.

An actual
Locomotive
electro-
pneumatic
brake (DK-2).

RF

[88]
Dry milling tool
operations

Time-domain
statistical
features

Predict and
monitor the wear
of dry milling
tools.

Obtained from
this paper
[107]

[89] Wind turbines ------

Predictive
maintenance in
wind turbines at
real-time.

From actual
wind turbine
within 2 years.

[90] Gearboxes ------
Component fault
diagnosis in
gearboxes

From a
simulator.

[86] Rolling bearings
Wavelet Packet
Decomposition
(WPD)

Component fault
diagnosis in
rolling bearings.

From an actual
system.

59

[85]
Unmanned
aircraft vehicle

FI
Component FDD
in unmanned
aircraft vehicle

From a
Physical
aircraft vehicle

SVM

[93] Diesel engine ------
Component faults
in diesel engines

Data extracted
from auxiliary
marine diesel
engine.

[94]
Semiconductor
manufacturing

Time-domain
statistical
features

Component faults
in
semiconductors

From
implanter tool

[95] Aircraft engine PCA

Component fault
prediction and
maintenance in
airlines

From real
aircraft engine
valve.

[96] Rolling bearing
Time-domain
statistical
features

Component faults
in rolling
bearings

From six test
bearings.

[97] Gearbox

Time,
frequency, and
wavelet
domain
features

Component faults
detection in
gearboxes

Gathered from
UPS.

LR

[98] Cutting tools
wavelet packet
decomposition

Wear and tear
evaluation of
components in
cutting tools.

Dongyu
machine and
tool CMV-
850A centre

[99]
Gas circulator
units.

Component faults
in gas circulators
estimation.

EDF energy

[100]
Rotating
bearings

Wavelet packet
decomposition

Component faults
in bearings to
estimate their
degradation.

A test bearing
rig

[101] Bearings -----

Component faults
in bearings to
estimate their
degradation.

MATLAB
simulation

[102]
Micro-piercing
Process

Statistical
feature
engineering

Component faults
in micro-piercing
devices detection.

Readings of an
actual
machine.

[103] Bearings -----
Component faults
detection in
bearings

PRONOSTIA
dataset [104].

LDA [105]
Hydraulic
systems

Time-domain
statistical
features

Sensor and
component fault
identification in
hydraulic
systems.

A simulated
hydraulic
system
benchmark.

60

2. Autoencoder Approaches for FDD in Mechanical Machinery

Parts of this research have been used in our published research in [78]. Please
note that all rights and copy rights have been reserved to the MDPI publisher.

The work in [108] shows a combined approach to achieve component fault
detection and diagnosis of rare events occurring in chemical factories. The
proposed method joints LSTM autoencoder as the detection phase, followed by
the diagnosis phase using LSTM classifier. This approach is used to detect and
diagnose faults of the Tennessee Eastman benchmark [109], which represent a
dataset extracted from a simulator of actual chemical processes that includes
various components: reactors, condensers, vapor-liquids… and so on. In the
detection phase, the sequence comparison between the reconstructed sequence
and the given one is achieved by applying the traditional signal difference. In
the diagnosis phase, no feature selection or extraction approach is used prior to
the classification using LSTM classifiers. Moreover, a solo comparison to CNN
is made, but no comparisons with other DL or ML classifiers are conducted.

Lu et al. [110] introduced a novel autoencoder called Stacked Denoised
Autoencoder (SDA) that is used to detect component faults in rotary
machineries. The method is applied to a dataset extracted from a physical
simulation of a bearing test-rig. SDA implicitly feature engineer the data, which
is compared to PCA and regular stacked autoencoders (SAE). Moreover, the
classification results provided by SDA are then compared to SAE, SVM, RF and
regular autoencoders.

The work proposed in [111] shows a novel approach of creating a new type of
autoencoders, in which it combines stacked autoencoders and LSTM network.
The work is separated into two-phases: (1) feature transformation using LSTM
stacked autoencoders. (2) Apply LSTM for fault identification. The proposed
method focuses on detecting injected component faults to a Bently Nevada
Rotor Kit RK3, which is designed to physically simulate rotating equipment
and its conditions. The raw vibrational signals are directly collected from the
RK3 kit, then Wavelet Packet Decomposition (WPD) method is used to select
features in both time-domain and frequency-domain, to ensure a wide
investigation in both domains, followed by transforming the selected features
using the stacked autoencoders in account to their mean square error calculated,
which helps in generating a threshold for each feature. Finally, the fault
detection accuracy for each feature is validated using five-fold cross validation
after classification using KNN method. No comparisons of other feature

61

selection methods to WPD, or additional classifiers besides KNN are used in
the mentioned work.

According to [112] a component fault diagnosis system of rolling bearings
using stacked autoencoders is introduced, as well as compared to two other
deep learning schemas: (1) deep Boltzmann machines and (2) deep belief
networks. Four experiments are conducted using various data pre-processing
schemas using time-domain, frequency-domain, and time-frequency domain.

As stated in [113] a deep autoencoder is developed to diagnose vibration
signals in both gearboxes and electrical locomotive roller bearings. The novel
approach proposed consist of two steps: (1) the design of the deep loss function
in the autoencoder using maximum correntropy. (2) Applying artificial fish
swam algorithm to optimize the autoencoder’s parameters and its ability to
extract valuable features.

Similarly, the approach proposed in [114] demonstrates a new method of
combining wavelet transform and stacked autoencoders, to diagnose faults
occurring in roller bearing systems.

Furthermore, a deep autoencoder in [115] is used to develop the quality of
feature fusion, which contributes in aiding the diagnosis of faults in rotating
machinery. The applied autoencoder is a collaboration between denoising
autoencoders and contractive autoencoders, where the deeply extracted
features from both methods separately are then fused together using Locality
Preserving Projection (LPP). The fused features are then applied to SoftMax
function to train the diagnosis process.

In addition, another architecture of sparse autoencoders is performed in [116]
to monitor and diagnose the component faults in motors and air compressors.
The application of regular ML classifiers such as SVM requires intensive
understanding and expertise in feature engineering. Thus, the application of
autoencoders can massively facilitate the feature engineering process and
perhaps outperform the regular feature engineering approaches. For that
matter, sparse autoencoders are compared to other ML fault diagnosis methods
such as, SVM and SoftMax regressor to classify faults in motors and air
compressors.

Accordingly, in [117] a multivariant fault diagnosis and health monitoring
approach in rotating machines is introduced. This method is called “SAE-DBN”
as a combination of a two-layered Sparse Autoencoder (SAE) to perform data

62

fusion between the features of multi-sensors followed by the application of
Deep Belief Networks (DBN) for the diagnosis.

In [118] another approach using sparse autoencoders is proposed. The method
is applied to induction motors monitoring and fault diagnosis purposes.

The autoencoder application in [119] shows an ensemble, and deep approach
of autoencoders designated to fault diagnosis in rolling bearings. Various
activation functions are deployed at the same time, to create multiple
autoencoders that are going to be combined later using a novel strategy.

Finally, the work in [120] investigates fault detection and feature extraction
schema for motors using an autoencoding schema of RNN networks. The
explained schema for fault classification is applied directly on time-domain
vibrational data then compared to the results conducted by a two-layered ANN
model. On a different note, the feature selection capacities of the RNN
autoencoder was compared to PCA and LDA for dimensionality reduction. The
vibrational signals used in this work were obtained form an actual motor
positioned with different accelerometers in various locations.

The table demonstrated below is created to conclude all the autoencoding FDD
approaches in mechanical machinery performed in the past decade.

Table 4 Autoencoding-Based Methods for FDD in Mechanical Machinery [78].

Reference
Autoencoding
Method

Mechanical
Equipment

Fault Type/
Purpose

Dataset

[108]
LSTM
autoencoder+
LSTM classifier

Chemical
reactor

Component faults
of Tennessee
Eastman
benchmark.

Tennessee Eastman
benchmark[109].

[111]
Stacked
autoencoder
LSTM + KNN

Rotating
equipment

Injected component
faults to a physical
simulation

Data collected from
Bently Nevada Rotor
Kit RK3 to simulate
rotating device.

[110]
Stacked denoised
autoencoder

Rotary
machinery

Component faults
in a bearing test-rig

Data extracted from
physical bearing test-
rig.

[112]
Stacked deep
autoencoders

Rolling
bearings

Component faults
in rolling bearings.

Gathered from UPS.

[113]
Another
architecture deep
autoencoder

Gearboxes and
electrical
locomotive
roller bearings

Component faults
in rolling bearings
and electrical
locomotive.

From a physical test
rig.

[114]
Wavelet
transform +

Roller bearing
systems

Component faults
in rolling bearings.

From case western
reserve university
(CWRU) [121].

63

stacked
autoencoders

[115]

Another
architecture of
deep
autoencoders

Rotating
machinery

Component faults
in rotating
machinery

Physical rotor fault
test, CWRU [121] and
NASA datasets [122].

[116]

Another
architecture of
sparse
autoencoders

Motors and air
compressors

Component faults
in motors and air
compressors

Actual air
compressor and
motor

[117]

SAE-DBN
(sparse
autoencoder +
deep belief
networks)

Rotating
machines

Component faults
in rotating
machinery

Extracted from an
experimental system.

[118]

Another
architecture of
sparse
autoencoders

Induction
motors

Component faults
in induction motors

Fault simulator.

[119]
Ensemble deep
autoencoder

Rolling
bearings

Component fault
diagnosis in rolling
bearings

CWRU [121].

[123]

Another
architecture of
stacked
autoencoders

Hydraulic
pumps

Detect component
faults in hydraulic
pumps

Hydraulic pump of
type axial piston
pump (25MCY14-1B).

[120]
Autoencoding
schema of RNN
networks

Motors

Component fault
detection and
feature extraction
in motors

Physical motor.

3. k-means for Feature Selection Related Work

Parts of this research have been used in our published research in [124]. Please
note that all rights and copy rights have been reserved to the pre-print
publisher.

On one hand, the literature is rich with review research papers related to
feature selection methods. However, the vast majority of these review papers
are focused on supervised and semi-supervised methods. The research in [28]
and [27] represent a thorough analysis of various supervised and semi-
supervised algorithms, along with a quick glance at few unsupervised
techniques for feature selection. In [125] an inclusive research is done
investigating various semi-supervised techniques in various fields and
applications. Finally, the work in [126] introduce a new perspective for

64

supervised feature selection methods, including more recent studies and
different taxonomies comparing to the ones described in the latter papers.

On the other hand, a few research studies concentrated their efforts to analyse
unsupervised methods for feature selection such as, the work in [36] where they
pointed out the lack of survey research in this area, and offered a detailed
analysis of numerous unsupervised methods along with summarising their
advantages and disadvantages, as well as an experimental comparisons
between them. The work in [127] narrowed down the scope of the research in
[36] and instead, it focuses specifically on clustering algorithms for feature
selection providing various clustering techniques for generic, text, streaming
and linked data. Moreover, they finalized their review with some challenges
that clustering algorithms for feature selection witness and elaborated with
some suggestions to overcome the proposed challenges.

In this review, we narrowed down the scope even more, to include clustering
feature selection algorithms using k-means clustering alone. This work is
essential since k-means clustering for feature selection has already a huge
amount of literature with different strategies and mechanisms, which creates
the need to add some structure and taxonomy for this influx of studies, to
facilitate navigating through them, as well as building up new literature
following the legitimate path.

According the literature in the past decade, it is prominent that k-means for
feature selection can divided into the following main categories based on their
clustering strategy and the included mechanisms.

(1) k-mean hybrid approaches: which includes a combination between k-means
and other wrapper feature selection or filter feature selection methods. (2) k-
means based on feature weighting or ranking: this group depends on assigning
some weights to the features and rank them accordingly to measure their
relevance, followed by choosing the highest ranked features as the selected
ones. (3) k-means with correlation measures: this method uses the similarity
measures between features as the decision criteria. (4) Sparse k-means Feature
Selection methods.

Figure 11, shows the four main categories of k-means for unsupervised feature
selection proposed in this literature review. Based on the acquired knowledge
and understanding of the work in the literature.

65

Figure 11 k-means for Unsupervised Feature Selection Proposed Taxonomy [124].

The following section represents a full explanation of each sub-category of the
previously mentioned taxonomy. A comprehensive analysis and overview of
numerous related works for each category is also explained.

3.1 k-means Hybrid Approaches for Feature Selection

The work in [128] is an example of feature ranking methods, which can also be
grouped as hybrid approach between filter and wrapper methods. The filter
stage used in this algorithm is introduced in [5]. In addition, the wrapper
method included is used to determine the separability criterion following the
algorithm explained in [31]. This method consists of two main stages: filter and
wrapper. In the filter stage an entropy elimination calculation technique is used,
where the process is initialized with a full dataset, and then the features are
being eliminated individually while the entropy is being computed during the
elimination process. As a result, a list of features and their entropy is formed
and can be sorted, which allows the features with higher entropy values to be
excluded. The second phase is the wrapper phase, during this stage k-means
clustering is applied to the remaining feature, and the cluster separability
criteria used is the scatter separability. Finally, the feature subset with the
highest scatter separability is selected.

In [129] another hybrid approach is introduced. Evolutionary Local Selection
Algorithm (ELSA) is an unsupervised feature selection algorithm that
computes the number of clusters k and the feature subsets, by using the

combination of k-means clustering and expectation maximisation embedded to

k-means for Unsupervised
Feature Selection

k-means Hybrid
k-means Based on

Features Weighting
or Ranking

Sparse k-means
Feature Selection

k-means Based on
Correlation
measures

66

Gaussian Mixture clustering. The quality of the cluster is determined by three
main criteria based on the maximum likelihood, the separation criterion, and
the cluster cohesion. ELSA is validated using numerous synthetic and real-
world datasets.

In [130] a hybrid approach between wrapper and filter methods is proposed.
This method contains two main phases: the first is the wrapper phase which
starts by applying k-means clustering to the input dataset using an upper range
of cluster numbers specified by the user, followed by applying simplified
silhouette measurement as the separation criterion, then the feature subsets
with higher silhouette value is selected. Note that this method is not a feature
ranking k-means algorithm even though silhouette criterion is applied, because
silhouette criterion here is only an intermediate stage for the feature selection
and part of the first phase only, which is not directly contributing to the final
decision of the selection process. The second phase for this algorithm uses
Bayesian network as the filter approach to select the best feature subsets.
Moreover, this method generates Bayesian networks in the form of directed
graphs of the nodes representing the features selected, and the edges
connecting them are the relationships between features.

3.2 k-means Based on Features Weighting or Ranking

The general idea of k-means for feature selection based on feature weighting
begins with clustering the dataset into k main clusters. Followed by, using
variations of strategies to assign weights to each feature or a features’ subsets
in some literature, in a way that the feature or subset of features that minimizes
the inter-cluster distance and maximizes the intra-cluster distance is assigned
higher ranks or weights. The type of measurements or process responsible for
assigning weights or ranks to a feature or a groups of features during clustering
are called ‘clustering criteria’ [131]. Although, the literature introduced
numerous clustering criteria, the oldest and most common ones are the
silhouette criterion [40] and Davies-Bouldin index (DB) [132], where they
contributed as base methods for modern weighting criteria nowadays.

The work in [133] showcases a feature selection method based on the
application of k-means along with Fisher ratio. Fisher ratio is used as the
clustering criterion that reduces the ratio between the mean intra-cluster to the
mean inter-cluster dispersion. Several clustering attempts using different
feature subspaces is generated, while the ones with the smallest Fisher ratio is
chosen to as the final subspace of features.

67

In a similar way, the feature weighting method proposed in [134] uses the
feature intra-cluster variance to measure the weights of each feature within its
containing cluster.

Hruscka and Covoes [135] introduced Simplified Silhouette Sequential
Forward Selection (SS-SFS) approach for feature selection. As the name of the
algorithm implies the simplified silhouette measure is used as the clustering
criterion to determine the quality of a feature subset. The algorithm starts with
partitioning the data into various feature subsets, followed by applying k-
means clustering to each feature subset. The simplified silhouette criterion is
computed to each performed k-means and the subsets with best silhouette
measures are selected. SS-SFS depends on forward selection of the features,
which make it the key difference between SS-SFS and our proposed method in
this work which operates in an iterative manner.

In [136] a method called Entropy Weighting k-means (EWKM) is introduced to
reduce the intra-cluster distortion and increase negative entropy throughout
the clustering. EWKM weighting criteria depends on the computation of
weight entropy in k-means objective function. Additionally, this method allows
subspace clustering.

In [131] a new method for unsupervised clustering criterion is introduced,
where it solves two main challenges in k-means clustering methods; obtaining
the optimal partitioning, and applying ranks for features to perform feature
selection. The proposed method is applied to k-means clustering to choose the
best partitioning according to the intra and inter cluster inertia scores. The
inertia scores are created by building scatter matrices from each cluster’s
partition, and then based on the minimization-maximisation of the created
matrices a ranking score for each cluster partition is established. Eventually, all
the partitions and their ranks are added to a search space for the application of

a proper searching algorithm necessary for optimal partitioning.

The recent work proposed in [137] the authors introduced a ranking pipeline
that includes k-means and various statistical approaches such as, signal-to-
noise ratio, t-statistics and significance analysis to rank the features in a highly
dimensional microarray. This method is also considered a hybrid k-means
approach that combines wrapper methods represented by k-means, as well as
filter methods represented by the statistical analysis.

68

3.3 Sparse k-means Feature Selection

The research done in [138] explains the definition of sparse learning specialized
in clustering algorithms for dimensionality reduction. One way to describe
sparse learning in k-means is a form of matrix decomposition that yields the
matrix 𝐴 as a lower dimensional and more relevant partition of the original
dataset 𝑋 .Where 𝑋 is a matrix of 𝑛 × 𝑝 size and it can be approximately
decomposed to the matrices 𝐴 and 𝐵, following the formula: 𝑋 ≈ 𝐴𝐵, As 𝐴 is a
𝑛 × 𝑞 size, and 𝐵 is 𝑞 × 𝑝 matrix, known that 𝑞 ≪ 𝑝. Eventually, the clustering
can be formed using the lower dimensional decomposition matrix 𝐴 instead of
the whole dataset 𝑋.

In the last decade, Witten and Tibshirani [138] proposed a revolutionary
framework for feature selection by introducing the concept of sparse clustering.
They implicitly combined k-means algorithm with 𝑙1 − 𝑛𝑜𝑟𝑚 of Lasso-type as
the feature selection contribution. The mechanism incorporated in this work for
feature selection was introduced before in [139] as a technique for choosing the
optimal k or number of clusters during k-means application. This technique is
called gap statistics and it was included in this method to compute 𝑙 instead,
which refers to the number of features selected.

Embedded Unsupervised Feature Selection (EUFS) [140] proposes a new idea
of embedding the feature selection process within the clustering algorithm by
the deployment of sparse learning. In this work, k-means is used to initialize
two essential matrices for the EUFS algorithm: matrix U the cluster indicator

where U ∈ 𝑅𝑁𝑥𝑘 , and matrix V the feature weights where V ∈ 𝑅𝑑𝑥𝑘 . EUFS
applies 𝑙2,1 − 𝑛𝑜𝑟𝑚 as a loss function to minimize the inaccuracies during the

reconstruction of the dataset X where X ∈ 𝑅𝑁𝑋𝑑 and the feature selection over
the latent feature matrix V . EUFS is validated over six different real-world
datasets from various fields of applications. Note that 𝑁,𝑑, and 𝑘 represent the
number of samples, the number of dimensions or features and the number of
clusters, respectively. In [141] the research done is based on the novelty
algorithm introduced in [140]. This method adopts a similar analogy to EUFS
explained earlier. However, the recent work in [141] uses Frobenius-norm as
the loss function. Moreover, this method represents an iterative approach of
sparse learning where k-means is executed iteratively until the convergence
criteria is met.

69

3.4 k-means Based on Correlation Measures

In [142], a new perspective for feature selection using k-means is introduced,
where a correlation measure between clusters is the selection or elimination
criterion. The correlation measure is used to improve the quality of the feature
subsets to be clustered using k-means. This method provides an elimination
possibility of both irrelevant features using k-means, and redundant features
using the correlation measure applied to each cluster. This method is validated
by solving a classification problem using Naïve Bays classifier, applied on
microarray and text datasets. Additionally, the work in [143] successfully
integrated correlation-based k-means clustering to improve the accuracy of the
computer-aided diagnosis specified with cardiovascular diseases. The
following table analysis proposes a visual overview of the mentioned related

work in a chronological order within each sub-category. Showing the datasets
used for each literature and their validation approach used.

Table 5 k-means Unsupervised Feature Selection Related-Work [124].

Clustering Approach Literature
Database Used for
Validation

Validation Method

k-means Hybrid
Approaches

[128]
Synthetic datasets
UCI machine learning
repository.

Feature ranking
impurity

[129]

Real datasets
synthetic
datasets(Wisconsin
Prognostic Breast Cancer
(WPBC) data [144]).

F-score for accuracy.

[130]

Synthetic dataset
UCI machine learning
repository. (congress,
ionosphere, pima
diabetes and wine) [145].

Class error

k-means Based on
Features Weighting or
Ranking

[133]

UCI machine learning
repository (heart, adult
and Australian datasets
[146])

Precision/recall
evaluations

[134]

Synthetic dataset
UCI machine learning
repository. (heart
diseases data and the
Australian credit card
data)

Rand index evaluation
[147].

70

[135]

Synthetic dataset (same
data used in [31])
UCI machine learning
repository.(Bio1,
Bio2..Bio5, yeast
galactose dataset [148],)

Class error

[136]
Synthetic datasets
UCI machine learning
repository (text data)

Entropy
F-Score

[131]
Synthetic datasets
(generated using the
framework in [149])

Recall
Precision
F-Score

[137]

Benchmark microarray
datasets (DLBCL [150],
prostate, lymphoma
[151], breast cancer
[152])

Accuracy
Error Rate
Precision
Sensitivity
Specificity

Sparse k-means
Feature Selection

[138]

Human breast tumour
dataset [153].
Single Nucleotide
Polymorphism (SNP)
data

[140]

Mass Spectrometry (MS)
dataset.
Two microarrays of
prostate cancer genes.
Two face image datasets.
One object image
dataset.

Accuracy
Normalize Mutation
Information (NMI)

[141]

Object image
dataset (COIL202).
Spoken letter
recognition dataset
(Isolet12).
Cancer dataset
(LUNG2).
Handwritten digit
dataset (USPS2)
Face image datasets
(AT&T3 and UMIST4)

Accuracy

k-means Based on
Correlation measures

[24]
12 text and microarray
Datasets.

Classification accuracy

[143]

Heart dataset of
children born with
intrauterine growth
restriction (IUGR)
UCI machine learning
repository:
“CORONARY” a
cardiovascular problems
dataset [146].

Correlation measures.

71

5. Chapter 4: Unsupervised Feature Selection Using
Recursive k-Means Silhouette Elimination
(RkSE): A Two-Scenario Case Study for Fault
Classification of High-Dimensional Sensor Data

Parts of this chapter have been used in our published pre-print in [124]. Please
note that all rights and copy rights have been reserved to the pre-print
publisher.

1. Chapter Overview

Feature selection is a crucial step to overcome the curse of dimensionality
problem in data mining. This chapter proposes Recursive k-means Silhouette
Elimination (RkSE) as a new unsupervised feature selection algorithm to reduce
dimensionality in univariate and multivariate time-series datasets. Where k-
means clustering is applied recursively to select the cluster representative
features according to a unique application of silhouette measure for each
cluster as the feature selection or elimination criteria. The proposed method is

evaluated on a Hydraulic test rig multi sensor reading in two different fashions;
(1) reduce the dimensionality in a component fault multivariate classification
problem using various classifiers of different functionalities. (2) Classification
of univariate injected sensor faults in a sliding window scenario, where the
proposed method is used as a window compression method, to reduce the
window dimensionality by selecting the best time points in a sliding window.

72

In both experiments, the classifiers used are: LR, LDA, KNN, CART, NB, SVM
and finally, RF. Moreover, the results are validated for each classifier separately
using 10-fold cross validation technique. As well as, compared to the results
when the classification is pulled directly with no feature selection applied, and
to another well-known feature selection and extraction techniques, which are
FI and PCA, respectively. The experimental results and observations in the two
comprehensive experiments demonstrated in this work reveal the capabilities
and accuracy of the proposed method.

2. Recursive k-means Silhouette Elimination (RkSE): Method Overview

Recursive k-means Silhouette Elimination (RkSE): is a dimensionality reduction
technique for high dimensional data of various types such as, large time-series
datasets, microarrays, text, images and so on. The idea behind RkSE method is
similar to any ordinary cluster-based unsupervised feature selection method,
where they treat features as objects or samples, and it is required to cluster them
into groups based on a computed similarity measure, or with the aid of data
mining by applying a suitable clustering method. RkSE keeps recursively
applying k-means clustering to group the features with similar patterns in the
same cluster, while applying silhouette criteria iteratively as the selection
condition. Start the feature selection with collecting the features that are higher
than some user-defined threshold or tolerance value. This threshold represents
the strength of the connection between the cluster and the individual features
located within, represented by the silhouette measure. The highest selected
thresholds, the more connected the feature should be, to be selected, and the
more iterations required to complete the feature selection process. Thereafter,
the features with the highest silhouette criteria of each cluster are selected to
represent the whole cluster. Within each cluster, neglect all the features higher
than the threshold other than the selected highest silhouette feature. Since the
feature with highest silhouette value in the cluster is the one connected the most
to this cluster, and the rest of the features within the cluster are either highly
connected to the cluster centre (the ones with high silhouette criterion) or
weakly connected to the centre (the ones with lower silhouette criterion). The
highly connected features are similar to each other, hence they are all strongly
connected to the same cluster centroid, and by selecting only one of them,
particularly the highest silhouette above the threshold, to represent the high
pack is only fair and necessary to eliminate the redundant cluster similar
features. However, the weakly connected features within the cluster (silhouette
lower than selected threshold) are following slightly to highly different
patterns than their connected clusters, and these connections can be affiliated

73

to other cluster or other centroids within the same cluster. That is why, these
features should be accumulated from all the clusters and stored in a matrix for
remaining features, followed by aggregating them, re-cluster them all together
and compute the silhouette over again. This process keeps repeating
recursively between clustering (dividing), silhouette calculation, feature
selection (highest silhouette above threshold of each cluster), elimination
(silhouette above threshold of each cluster other than the highest) and
aggregation (lower than threshold of each cluster) until all features are either
selected or eliminated. In other words, the recursion is convergence when the
amount features in the remaining features matrix is empty or null. Let us

Assume that 𝑿 ∈ ℝ𝒅×𝑵 where 𝒅 is the number of features or dimensions
needed to be clustered, and 𝑵 is the value of each feature 𝒅 through the
samples or selected subset of the samples. Set the threshold 𝝈 to any desired
percentage where 𝟎 < 𝝈 < 𝟏. The higher the threshold, the more features to be
selected, and the number of iterations or re-clustering before reaching
convergence is increased. Moreover, the quality of the feature selection is
directly proportional to the threshold 𝝈 selected. When 𝝈 → 𝟏 the max
number of features < 𝑵 are selected, and the accuracy of the feature selection
is maximized. However, the computational cost and time will rise dramatically
in comparison to lower thresholds, due to the increase of the iteration count for
the process repetition. It is crucial to identify some matrices required during
the feature selection. 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 ∈ ℝ

𝒓×𝑵 where 𝒓 is the remain features from past
iterations that has not yet been eliminated or selected but require re-clustering
to make the choice accordingly. 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 contains the features from all the
cluster aggregated, which did not satisfy the condition 𝑺𝒊 ≥ 𝝈 in the previous
iteration, as well as they showed weak connection to their current cluster, so
re-clustering is inevitable to find another more connected pattern in the feature
space. 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 ∈ ℝ

𝒔×𝑵 where 𝒔 is the number of features selected. The selected
features are only the features with the highest silhouette criteria 𝒎𝒂𝒙 (𝑺𝒊)|𝑺𝒊𝝐𝑪𝒌

that is also fulfilling the selection criteria 𝑺𝒊 ≥ 𝝈 within each cluster 𝑪𝒌
collected recursively throughout the iterations after the aggregation and re-
clustering of each phase. Which make the final condition for choosing the
feature is (𝐦𝐚𝐱(𝑺𝒊) ≥ 𝝈)|𝑺𝒊𝝐𝑪𝒌 . Finally, 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 ∈ ℝ

𝒆×𝑵 where 𝒆 is the

number of features eliminated that has the size of 𝒆 < 𝒅. The features added to
the 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 matrix are the redundant ones within each cluster collected
iteratively throughout the iterations. More specifically, the eliminated features
represent the ones that did belong to their representing cluster following that
exact iteration. However, they have higher than threshold silhouette value
(𝑺𝒊 ≥ 𝝈)|𝑺𝒊𝝐𝑪𝒌 , but not high enough to represent the whole similar features in

the cluster. Which means ((𝑺𝒊 ≥ 𝝈) ∩ (𝑺𝒊 < 𝐦𝐚𝐱(𝑺𝒊)))|𝑺𝒊𝝐𝑪𝒌 . Eliminating those

features even though they possess high intra-cluster relation can massively

74

reduce the features redundancy. Furthermore, another reason to escape the
algorithm is when it refuses to reach convergence for a pre-defined number of
iterations, where 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 keeps constant and fixed for many iterations and no
more possible re-clustering that provides the sufficient requested threshold is
possible. In this case, all the features in 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 will be added to 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 ,
which ensures 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 to have null content, that provokes the completion of the
algorithm by reaching convergence. To develop more precise explanation of
the feature selection proposed, the below pseudo code to RkSE is introduced.

RkSE Pseudo Code

1. Initialisation of important matrices and parameters:

𝑿 ∈ ℝ𝒅×𝑵
 𝝈 = 𝒖𝒔𝒆𝒓_𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝟎 < 𝝈 < 𝟏
 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 = 𝑿
𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 = ∅
𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 = ∅
2. Apply k-means clustering using 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 (Choose the optimal k using the

elbow method prior to k-means application)

3. Calculate 𝑺𝒊 for each element within each cluster following the equation
below:

𝑺𝒊 =
𝒃𝒊 − 𝒂𝒊

𝐦𝐚𝐱(𝒂𝒊, 𝒃𝒊)

4. Some features will be selected, eliminated, or remain for re-clustering
based on the following value of 𝑺𝒊 within each cluster 𝑪𝒌 separately.

𝑺𝒊 = {

𝐗𝐫𝐞𝐦𝐚𝐢𝐧 ← 𝒊, 𝒊𝒇 𝑺𝒊 < 𝝈
𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 ← 𝒊, 𝒊𝒇 (𝑺𝒊 ≥ 𝝈)𝒂𝒏𝒅 (𝑺𝒊 < 𝐦𝐚𝐱 𝑺𝒊)
𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 ← 𝒊, 𝒊𝒇 (𝑺𝒊 ≥ 𝝈)𝒂𝒏𝒅 (𝑺𝒊 = 𝐦𝐚𝐱 𝑺𝒊)

5. Remove 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 and 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 from 𝐗𝐫𝐞𝐦𝐚𝐢𝐧
6. Check if 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 is empty

𝐢𝐟 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 = ∅ 𝒕𝒉𝒆𝒏
Convergence achieved; feature selection is complete.
 Selected features are stored in 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝
𝒆𝒍𝒔𝒆
Repeat from step 2

To sum up, RkSE represents an iterative, unsupervised, silhouette-based, k-
means clustering feature selection algorithm. Although, RkSE has plenty of
advantaged and contributions that exceed the methods mentioned in related-
work section, it also has limitations that we hope to eliminate in the future.

75

Based on the iterative and unsupervised nature of RkSE, it can include the
advantages of both methodology groups and their disadvantages. The
following table shows the pros and cons of RkSE.

Table 6 RkSE Pros and Cons

3. Analysis and Experimental Results

In this section, RkSE method is analysed, evaluated, and tested when applied
on two main experiments.
The first experiment aims to study the effect of RkSE in feature selection for
univariate time-series data in a shape of windows with a defined length. RkSE
when applied to experiment one, is supposed to act as a time-series

compression method that chooses the most informative time points in each

Method Pros Cons

RkSE

- Can create a model representation
of feature dependencies. (iterative
advantage)

- Feature selection and clustering are
made concurrently in one single
operation. (iterative advantage)

- Unsupervised feature selection
method, no labels required.

- Simple, robust, and low
computational and time cost: due
to the exclusive application of k-
means and silhouette criteria,
which provides simplicity and
reduce time and computational
complexity

- User-interactive: allows the user to
choose the value of the threshold
which give the freedom of choice,
which can change the algorithm
drastically.

- Introducing a new concept of using
k-means and silhouette measure in
a recursive manner, instead of the
common forward and backward
approaches.

- Prone to overfitting.
(iterative algorithms
disadvantage)

- The choice of the
threshold can drastically
affect the quality of the
selection, which cannot
be guaranteed since σ is
user selected.

- The accuracy is a little
compromised because
the algorithm focuses on
the relationship between
the feature and the
cluster, rather than the
relationships between
features.

76

sliding window and eliminates the redundant and less important time points
per window. (selection of optimal time points in one modality type)
The second experiment explores the potential of RkSE applied to a multivariate
time-series dataset without the sliding window application. In this experiment,
RKSE is expected to choose the most informative features within all the time
points. i.e., in a dataset of different sensors readings, RkSE is expected to choose
the best sensors as the representative features. (selection of best modalities
among variations of them during various time frames).
For the sake of validating the results of the two mentioned experiments, it is
essential to explain the main methodologies followed to validate unsupervised
feature selection methods. The following points describe the main categories
for unsupervised feature selection validation techniques as researched in [36].

1- Feature selection evaluation by classification accuracy: in this method
the selected features using the feature selection method subject of
evaluation are used to test a classification problem using one of the
common supervised classifiers such as, SVM, KNN or NB. Then, the
classification accuracy or the error rate is measured, and compared to
the classification results of the entire dataset prior to classification.

2- Feature selection evaluation using clustering criteria: In this case the
results of a clustering task such as, k-means clustering is evaluated by
using one of the clustering qualities measures. i.e., Normalized Mutual
Information and Clustering Accuracy.

In this work, the evaluation method used is the classification accuracy
approach since the dataset available for evaluation has already included the
labels. Moreover, the fault classification experiments are done in more detail in
chapter 6, against PCA as a feature extraction method, and FI and manually
selected time-domain features as the supervised feature selection method.
Therefore, it will provide a wide range of comparisons between RkSE and other
approaches besides the original dataset prior to feature selection. The dataset
used for the following experiments is the hydraulic test rig dataset. This dataset
is described in full detail Chapter 2. In addition, it was pre-processed
differently to fit two scenarios of classification schemas; one to fulfil sensor
FDD using a fault injection scenario, while the other is processed for
component FDD using the real-time measured faults in the test rig.

Before we start demonstrating the two experiments, it is necessary to explain
the procedure in deciding the optimal number of features to select for each
method such as PCA and FI. The optimal number of features selected for FI are
the ones guaranteeing the best accuracy when performing the classification task.
In chapter 7, FI is used as the feature selection method prior to the hybrid RF

77

approach, and the experimental results of that chapter shows the fundamental
steps of experimentally choosing the number of features when using FI. On the
other hand, when extracting features using PCA, it is essential to calculate as
many PCs as possible, then compute the variance of each PC separately. The
variance usually is an indication of the availability of variant data points, which
indicates the existence of information. Data that is rich in variance (no
redundancy) is a healthy data that carries a significant amount of information
for classification. When plotting the variance value of each PC, the optimal
number of PCs is the one carrying the most variance, before the variance gets
almost constant when moving to further PCs. Figure 12 shows process of
selecting the optimal PC based on the variance changes. As shown the best
number of PCs is five, before the variance gets almost constant in the next PCs.

Figure 12 Choosing the Optimal PCs or Features in PCA.

3.1 Experiment One: RkSE for Univariate Time-Series Feature Selection
within a Window

In this experiment, the sensor PS1 reading from the hydraulic test rig dataset is
used for the purpose of sensor FDD using a classification schema. Four main
types of faults are injected in the PS1 data such as, constant fault (constant high,
low and zero), gain fault and bias or offset fault, which makes the resultant PS1
data containing four different labels of faults along with the healthy readings.
The pre-processed PS1 data that has 28,882 readings that are captured in a
second basis, is reshaped into a 7210 sliding windows with 60 seconds length

78

worth of PS1 readings with zero intersection points between each window or
offset/delay equals the window size n, as shown below:

First of all, as described earlier RkSE has a user-specified threshold that effects

the number of features selected and the accuracy of selection process. Thus, the
following table shows the number of features selected, the execution time for
RkSE and the number of re-clustering iterations required until reached
convergence when changing the threshold between 0.1 until approaching the
highest threshold of one.

Table 7 The Effect of Threshold on Number of Features Selected, Number of Iterations Required
and Execution Time in Milliseconds [124].

𝜎 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98

No.
Features
Selected

3 5 8 8 8 9 10 11 20 46 60

Exe.Time
(msec)

76.2 76.99 77.58 77.22 77.18 77.07 77.00 77.45 78.03 80.69 87.14

No.
Iterations

2 2 3 3 3 4 4 7 8 8 10

As shown in the table, the increase of the threshold selected increases the
number of features selected, as well as increasing the time and computational
complexity of the algorithm by increasing the number of iterations required
until reaching the convergence criteria of empty Xremain. The funnel chart below
emphasizes the relationship inferred above. Notice that when the threshold is
0.98≈ 1 all features in X were selected as if no feature selection is applied in the
first place.

WindowN

Window1

PS1 data reshaped
into sliding windows
with n offset

Window2

PS1

79

Figure 13 Funnel Graph Describing the Directly Proportional Relationship Between the
Threshold and the Features Selected [124].

To evaluate the performance of the feature selection algorithm applied on the
PS1 data, the features selected by RkSE are used to classify the data into healthy
and faulty. The performance of RkSE is compared to the original dataset
without feature selection (number of features is 60), and then compared to the
features extracted with PCA, and selected with FI.
The following graph shows the mean accuracy of 10-folds when applying 10-
fold cross validation technique evaluating the performance of RkSE over
various classifiers; LR, LDA, KNN, CART, NB, SVM and RF. Illustrated in
Figure 14, the results of the mean 10-fold accuracy for the classifiers applying
different number of selected features to show a trade-off between the accuracy
and the number of features selected. The fault classification schema is similar
to the one introduced fully in chapter 6, but using data with various health and
fault statuses instead of just applying faulty data as in chapter 6 experiment.

As shown, the increase in the number of features selected followed by an
increase of classification accuracy for all the features. However, when the
threshold is 95% the feature selected are 46 features out of 60 overalls, the 46
features offered higher classification accuracy than the original dataset. Which
implies that RkSE has successfully reduced the dimensionality of a univariate
time-series dataset in a sliding window scenario with even an increase of the
mean accuracy for most of the classifiers applied. Figure 15 shows the
relationship between the classifier accuracy and the threshold applied.

80

Figure 14 Feature Number and Mean Accuracy Comparisons Applied for Various Classifiers
[124].

Figure 15 Threshold and Mean Accuracy Comparisons Applied for Various Classifiers [124].

Figure 16 demonstrates the ability of RkSE in reducing the size of the training
time-series data, by selecting small number of features per window instead of

taking all the window size for classification. The orange signal is the PS1 after

0
.6

0
2

2
3

4

0
.6

2
3

8
7

5

0
.6

4
1

7
9

5

0
.6

4
3

4
8

3

0
.6

6
1

4
8

7

0
.6

7
3

1
7

4

0
.6

7
6

0
5

9

0
.6

2
4

0
0

5

0
.6

3
3

3
9

8

0
.6

3
1

8
4

0
.6

5
3

5
6

7

0
.6

7
8

9
3

1

0
.6

9
1

8
2

9

0
.6

9
0

2
5

8

0
.8

7
8

5
9

3

0
.8

6
9

3
3

1

0
.8

6
4

3
0

9

0
.8

6
2

9
2

5

0
.8

8
1

5
7

9

0
.8

6
6

5
6

1

0
.8

5
9

7
1

6

0
.8

8
1

2
3

3

0
.8

8
1

0
1

7

0
.8

7
7

0
3

5

0
.8

7
8

3
7

6

0
.8

9
9

1
9

5

0
.8

9
6

5
9

8

0
.8

9
7

2
4

3

0
.6

7
9

7
9

7

0
.6

8
3

4
7

6

0
.6

7
5

6
4

2

0
.6

7
2

9
1

5

0
.6

7
2

1
3

6

0
.6

6
7

4
1

8

0
.6

9
3

8
5

0
.8

6
7

4
7

0
.8

6
5

9
9

8

0
.8

6
6

6
0

4

0
.8

6
5

8
6

8

0
.8

9
9

2
8

2

0
.8

9
9

1
9

6

0
.8

9
7

4
5

9

0
.8

0
3

4
5

5

0
.8

0
5

1

0
.8

0
3

3
6

9

0
.8

0
4

3
2

1

0
.8

0
5

0
5

7

0
.8

0
4

2
7

8

0
.8

0
3

8
7

8

5 8 1 0 1 2 2 0 4 6 6 0

LR LDA KNN CART NB SVM RF

0
.6

2
3

8
7

5

0
.6

0
2

2
3

4

0
.6

1
0

8
4

7

0
.6

4
3

4
8

3

0
.6

4
1

7
9

5

0
.6

6
1

4
8

7

0
.6

7
3

1
7

4

0
.6

7
6

0
5

9

0
.6

3
3

3
9

8

0
.6

2
4

0
0

5

0
.6

1
1

9
2

9

0
.6

5
3

5
6

7

0
.6

3
1

8
4

0
.6

7
8

9
3

1

0
.6

9
1

8
2

9

0
.6

9
0

2
5

8

0
.8

6
9

3
3

1

0
.8

7
8

5
9

3

0
.8

7
0

8
8

9

0
.8

6
2

9
2

5

0
.8

6
4

3
0

9

0
.8

8
1

5
7

9

0
.8

6
6

5
6

1

0
.8

5
9

7
1

6

0
.8

8
1

0
1

7

0
.8

8
1

2
3

3

0
.8

8
2

9
6

5

0
.8

7
8

3
7

6

0
.8

7
7

0
3

5

0
.8

9
9

1
9

5

0
.8

9
6

5
9

8

0
.8

9
7

2
4

3

0
.6

8
3

4
7

6

0
.6

7
9

7
9

7

0
.6

9
2

5
6

6

0
.6

7
2

9
1

5

0
.6

7
5

6
4

2

0
.6

7
2

1
3

6

0
.6

6
7

4
1

8

0
.6

9
3

8
5

0
.8

6
5

9
9

8

0
.8

6
7

4
7

0
.8

6
8

4
6

5

0
.8

6
5

8
6

8

0
.8

6
6

6
0

4

0
.8

9
9

2
8

2

0
.8

9
9

1
9

6

0
.8

9
7

4
5

9

0
.8

0
5

1

0
.8

0
3

4
5

5

0
.8

0
4

2
3

4

0
.8

0
4

3
2

1

0
.8

0
3

3
6

9

0
.8

0
5

0
5

7

0
.8

0
4

2
7

8

0
.8

0
3

8
7

8

1 0 % 2 0 % 3 0 % 6 0 % 7 0 % 9 0 % 9 5 % 1 0 0 %

LR LDA KNN CART NB SVM RF

81

feature selection, while the blue signal is the original PS1 signal without feature
selection laying underneath the orange signal. As a conclusion, RkSE noticeably
reduced the size of the training dataset without compromising the accuracy of
the classification even with smallest threshold applied. Furthermore, some
other feature selection and extraction methods are applied to the classification
experiment shown. PCA is applied and provided only five features extracted
to from each sliding window to represent the whole window for classification.
Not surprisingly, PCA succeeded to maintain the average accuracy while
applying the minimal number of features. While the feature selection methods
tested FI and RkSE has smaller average accuracy when five features are selected;
0.706 and 0.762 respectively, PCA has the mean average of all classifiers applied
of 0.784 which is slightly higher than both FI and RkSE. Moreover, both FI and
RkSE reached their full accuracy potential when the number of features selected
are 0.787 and 0.785 respectively, which shows little improvement of the
accuracy when using only five features with PCA with the result of 0.784.

Figure 16 The Effect of RkSE in Minimizing the Size of the Original Signal While Keeping the
Accuracy [124].

The following figure, Figure 17 shows a detailed comparison for all the
classifiers used when each method; FI, RkSE and PCA reach their highest

accuracy with 45 features for FI and RkSE comparing to only five features using
PCA.

Time (sec)

(Trial 1)

(Trial 2)

(Trial 3)

PS1 value

82

In conclusion, RkSE has proven its potential to accurately select features in
univariate time-series datasets in a window fashion, where the features are the
time points in the window. RkSE has shown better results comparing to without
the application of any feature selection at all. Moreover, when RkSE is
compared to another supervised feature selection method (FI), RkSE has also
shown slight improvements using the same number of selected features.
However, feature extraction methods such as PCA, offered comparable
accuracy with little features included. This observation could lead to the
conclusion that feature extraction methods such as PCA, are more effective
when applied to univariate time-series dimensionality reduction problems
within a sliding window.

Figure 17 FI, RkSE and PCA Performance Evaluation with Best Number of Features [124].

3.2 Experiment Two: RkSE for Multivariate Time-Series Feature Selection
without a Window

In this experiment, the hydraulic test rig dataset is used for component fault

classification based on the classification of eleven main sensors: PS1-PS6, TS1-

0
.6

8
6

8
5

0
.6

8
8

7
5

6 0
.8

6
0

7
6

1

0
.8

9
7

6
3

7

0
.6

7
7

9
7

9

0
.8

9
6

1
6

6

0
.8

0
4

5
8

1

0
.6

7
3

1
7

4

0
.6

9
1

8
2

9 0
.8

6
6

5
6

1

0
.8

9
6

5
9

8

0
.6

6
7

4
1

8

0
.8

9
9

1
9

6

0
.8

0
4

2
7

8

0
.6

2
0

5
7

0
.6

3
8

5
3

3

0
.8

9
7

8
0

5

0
.9

6
6

7
5

8

0
.6

7
6

9
2

6

0
.8

6
7

7
2

3

0
.8

2
4

0
0

7

L R L D A K N N C A R T N B S V M R F

Feature Importance_45 RKSE_45 PCA_5

83

TS4 and VS1. The data is processed in a way that include the fully efficient
samples as the healthy form, while the full failure of the cooler, valve, pump,
and heater are used to represent the rest of the faulty samples.

The overall goal of this experiment is to investigate the potential of RkSE for
selecting the most important sensors for the component fault classification
challenge. When applying RkSE to this experiment, it is crucial to make sure
that the features (sensors) are located on the row of the dataset as they are the
subject to be clustered iteratively. When applying RkSE to the multivariate
hydraulic test rig dataset, it showed a good performance comparing to when
applying the entire eleven-dimensional dataset for classification. When the
threshold is set to 0.20 the number of features selected are four, with 0.90
threshold five features are selected, 0.95 with six features, and finally with 0.98
threshold nine features out of eleven are selected. Figure 18, shows the results
of all the classifiers applying different threshold when using RkSE. Hence,
different number of features are compared.

Figure 18 RkSE of Various Threshold Values Applied to Different Classifiers [124].

Figure 19, shows the average accuracy of all the classifiers mean accuracy at a
certain number of features used for classification. It is obviously noticeable that
RkSE of thresholds 0.90 and 0.95 with six and nine number of selected features

0
.4

8
9

3
2

3

0
.6

1
0

6
7

7

0
.7

1
0

9
3

8

0
.7

7
2

3
9

6

0
.7

8
0

4
6

9

0
.4

8
9

5
8

3

0
.6

0
5

9
9

0
.6

7
9

6
8

8

0
.7

5
0

7
8

1

0
.7

7
8

6
4

6

0
.8

4
6

6
1

5

0
.8

9
1

1
4

6

0
.9

0
9

8
9

6

0
.9

2
9

4
2

7

0
.9

3
2

0
3

1

0
.8

5
8

8
5

4

0
.9

8
2

8
1

2

0
.9

7
7

3
4

4

0
.9

8
9

3
2

3

0
.9

8
9

8
4

4

0
.4

8
7

5

0
.5

0
2

0
8

3

0
.6

0
4

4
2

7

0
.7

0
4

6
8

8

0
.7

0
4

1
6

7

0
.7

6
8

7
5

0
.8

7
5

5
2

1

0
.8

9
9

4
7

9

0
.9

2
5

0
.9

2
3

1
7

7

0
.8

0
0

2
6 0

.9
5

8
0

7
3

0
.9

7
4

4
7

9

0
.9

8
7

7
6

0
.9

8
6

1
9

8

4 5 6 9 1 1

LR LDA KNN CART NB SVM RF

84

respectively, has shown comparable results to the fully sized dataset of eleven
features with lower dimensionality applied.

Figure 19 Average Accuracy of All Classifiers for Different Feature Numbers [124].

Similarly, when comparing the classification results between PCA and FI as
done previously in experiment one, PCA achieves its highest average accuracy
when the features extracted are the first five PCs with 0.8478 average accuracy.
Comparing to the FI that showed the highest recorded performance using only
four most important features, with the average accuracy of 0.9638. Finally,
when applying RkSE the highest accuracy is accomplished when nine features
are selected, that makes its average accuracy among all classifiers is 0.8656.
Figure 20 provides a visual explanation of the previous observation.

To sum up, PCA has shown a steady performance when applying various
classifiers of different functionality and mechanism for validation.
Additionally, the steady performance of PCA was not affected by the type or
shape of the input dataset, whether the classification problem is univariate or
multivariate, sliding windows or not and, sensor or component faults. PCA
remained consistence in its high performance which proves the theory of the
suitability of feature extraction methods over feature selection when applying
to time-series computations.

0.677269286

0.775186
0.822321571

0.865625 0.870647429

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 9 11

85

Figure 20 FI, RkSE and PCA Comparisons.

Back to the feature selection methods evaluated in this chapter. RkSE and FI are
two wrapper feature selection algorithms of two different nature. RkSE is
unsupervised based on k-means and the silhouette value, while FI is a
supervised method that requires the availability of class labels to apply RF as
the criteria used to compute the performance of each feature. RkSE showed
slightly better overall performance when applied to the univariate sliding
window data structure, comparing to the FI results when the same number of
features are selected. Although RkSE increased the average accuracy over FI in
the first experiment, FI flipped the turns and showed better accuracy than RkSE
with only four features selected versus nine in RkSE. The reason behind this
remark is that FI uses the knowledge of the samples’ labels, which allows more
heuristic approach that keeps improving as an optimization of RF.

0

0.2

0.4

0.6

0.8

1

1.2

LR

LD
A

K
N

N

C
A

R
T

N
B

SV
M R
F

LR

LD
A

K
N

N

C
A

R
T

N
B

SV
M R
F

LR

LD
A

K
N

N

C
A

R
T

N
B

SV
M R
F

4 5 9

FI RKSE PCA

86

6. Chapter 5: Sensor and Component FDD for
Hydraulic Systems using Combined LSTM
Autoencoder Detector and Diagnosis Classifiers

Please note that parts of this chapter have been published by us in [78], while
all copy rights and rights are reserved to the MDPI publisher.

1. Chapter Overview

In this chapter, an FDD method is constructed based on integrating fault
detection using LSTM autoencoders, and fault diagnosis applying various
supervised ML and DL approaches. The detection and diagnosis processes are
done separately to ensure detecting rare fault occurrences in time-series data
applied on hydraulic systems.

In the fault detection phase, the LSTM autoencoder is trained using the fully

efficient inputs of the dataset, which represents the healthy form of the training
data. Eventually, the autoencoding model is trained to reconstruct the healthy
version of the input data at any given point of time. Comparing the
reconstructed healthy signal with the given one, provides an indication of any
fault presence. The more the given signal is identical to the healthy
reconstructed one, the most likely it is a healthy signal and lacks the presence
of anomalies, and vice versa.

The faults or deviations captured in the first phase (detection phase), are then
used to train the classification model in the fault diagnosis stage. This phase
consists of two major processes: feature engineering analysis, and ML and DL
model investigation. The engineered features are fed into various ML and DL
approaches to determine the best approach to diagnose component and sensor
faults. In this phase, all the training data are faulty inputs in contrary of the
previous phase.

87

Otherwise speaking, in this chapter a fault detection and classification applying
healthy signal reconstruction using LSTM Multi-step Forecasting, combined to
a fault classification schema is introduced, where a comprehensive application
of various classification ML and DL approaches is shown and compared.

This chapter is inspired by the recent research in [108], and represents a more
extensive and improved version of the mentioned research. The former FDD
method developed in [108] shows an integration between two separate phases;
the detection phase using LSTM autoencoders, and the diagnosis phase
represented by the LSTM classifier. They applied the proposed FDD system on
the dataset generated by Tennessee Eastman benchmark [109].

In this work, we adopted the same idea of separating the detection and
diagnosis phases to ensure better performance in capturing rare occurrences or
events. However, the following improvements and distinctions between the
former research and our current work is explained below:

• In the former work, they only investigated one type of faults, which is
component faults. However, our research has conducted two separate
experiments applying the same analogy, but one to detect and diagnose
sensor faults while the other do the same but to component faults.

• Both component FDD and sensor FDD experiments conducted are
applied on a hydraulic test rig dataset. The component faults are already

labelled and provided by the dataset. Meanwhile, the sensor faults on
were injected in the data following a data fault injection schema.

• In the former work, the detection phase represented by the LSTM
healthy signal reconstruction, the similarity measure chosen to check the
relevance between the constructed signal and the input signal is a simple
signal difference. However, in this work we provided a more accurate
measurement to find the similarity between the signals, applying
Pearson’s autocorrelation to calculate the similarity, followed by
calculating the signal difference by simply taking the subtraction
between the full correlation of positive one and the calculated
autocorrelation.

• The former approach directly applied LSTM as a classifier to follow up
with the detection phase represented by the autoencoder. They
compared the result with CNN classifier. However, they have not

conducted any thorough comparisons with any other traditional ML
approaches. In this work, we conducted the detection phase to

88

investigate various ML and DL approaches to decide the most accurate
algorithm for the joint FDD approach.

• The former work did not focus on feature engineering prior the
classification phase. In this work, we applied different feature
engineering approaches such as, PCA, FI, manually extracted time-
domain features and a RkSE. This step provides essential comparisons
between four common feature engineering methods of different nature,

which shines a light on a guide that clearly shows the effect of each
features on the target classifiers. Thus, researchers using fault
classification as a fault diagnosis mechanism could rely on the
comparisons we provided as a base for further research on FDD for
hydraulic rigs, to know which features work the best/worst for each ML
and DL classifiers.

2. Hydraulic System FDD Overview

In this experiment the data used is collected from a condition monitoring of a
hydraulic test rig, which is designated to test a hydraulic system. Thereafter,
the data is used to conduct two main experiments, one to analyse the provided
component faults at the total failure stage. The other experiment is concerned
with sensor faults, where the fault injection takes place to successfully inject
three main types of sensor faults; constant fault that covers constant low,
constant high and constant zero faults, as well as gain faults and bias or offset
faults. These injected faults along with the healthy readings would eventually
act as pre-defined classes necessary for the fault classification and the healthy
signal reconstruction learning, respectively.

Figure 21, shows the two main experiments to detect and diagnose a variety of
sensor faults and severe component failures in the hydraulic test rig readings,
as an example of industry 4.0 hydraulic system’s data. The method followed to
perform the FDD consists of two main separately conducted processes; the first
is the fault detection using the LSTM healthy reconstruction schema. The
second process is involved to diagnose the faults being detected during the
detection phase, the diagnosis process is a classification algorithm using a
variety of features and classifiers.

In this chapter, two comprehensive experiments were conducted to guarantee
performing fault detection and diagnosis for each component and sensor faults
in the hydraulic system tested using the hydraulic test rig.

89

The two experiments start mutually with applying the necessary data pre-
processing steps, to ensure removing the unnecessary noise in the input signals,
and to arrange the inputs in a way suitable for the LSTM autoencoder. Please
note that the data applied, and its pre-processing differs between the sensor
FDD experiment and the component one. Moreover, the data used for both
experiments are filtered and organized differently. The data description and
organisation for both experiments will be described in detail in the
experimental results section of this chapter.

For Sensor FDD, the available dataset of a hydraulic test rig described in the
data description chapter, lacks the presence of any sensor faults. Which
necessities the need of injecting various sensor faults into the filtered and pre-
processed data. The choice of which types of sensors faults to inject is decided
upon convenience and necessity. For example, stuck-at or constant sensor fault
was chosen to be injected in the data due to its simplicity to apply such an effect
on different periods of time comparing to other data-centric sensor faults. i.e.,
outliers or spikes that are not easily predicted or frequently occurring, or even
possessing a regular pattern in which they could be injected in the data. Gain
and bias faults are an example of system-centric faults, which -by definition-
are complicated to diagnose relying on the data alone, that is why these sensor
faults are significant to study and apply algorithms with high accuracies to
diagnose, as well as both mentioned faults have a clear definition and pattern
that makes it easier to inject them to the dataset.

90

Figure 21 An Overview of the Two Experiments to Achieve FDD in Hydraulic Test Rigs for
both Sensor and Component Faults [78].

For the component FDD experiments, the data selected are the ones with full
efficiency to be fed in the detection phase demonstrated by the LSTM
autoencoder. However, the faults that are proceeded to the diagnosis stage are
the ones representing total failure in the hydraulic test rig which are, cooler
total failure, valve total failure, pump severe leakage and hydraulic
accumulator total failure.

In both experiments the detection phase is demonstrated by the LSTM
autoencoder to reconstruct the healthy form of the input signal when the FDD
is conducted and tested. The LSTM autoencoder is trained using healthy sensor
data that shows full efficiency in both experiments. However, the data
formulation and organisation is different between the two experiments, since
the signal subject of reconstruction for sensor FDD is a window of 60 seconds
values corresponding to each sensor separately in the hydraulic test rig, but in
the component FDD the healthy signal used for training is organised without
sliding windows, while each reading represents the values of all eleven sensors
at this particular point of time, and how they altogether contributed in
diagnosing the failure.

In the diagnosis phase for both experiments, the faulty data of both systems are
fed separately into a classification process. The choice of traditional ML

91

classifiers for this experiment is dependent on the selection of various
supervised learning methods of entirely different functionality and mechanism
as possible, to provide a broad and comprehensive analysis. The classifiers
used in this experiment are LDA, LR, KNN, CART, NB, SVM and finally RF.
The DL methods chosen for this experiment are CNN and LSTM both applied
in an interesting manner. The comparison includes the application of the
chosen ML and DL approaches using different features extracted or selected
via numerous feature extraction and selection methods such as, manually
extracting time domain features for each sliding window, applying Principal
PCA directly using the raw multivariate time domain sensor data without
dimensionality reduction, as well as using our developed RkSE feature
selection and dimensionality reduction algorithm. RkSE results comparisons
will be explained in comprehensive detail in the following chapter. Moreover,
the results of each ML and DL method using three different feature extraction
schemas are shown.

Finally, the trained models and saved thresholds from each experiment can be
easily used to achieve run-time predictions of new samples at real-time. The
FDD prediction at run-time can be done by the following: (1) the detection: a)
predict the healthy reconstructed sample to the new sample using the trained
model of LSTM autoencoder. b) Compare the reconstructed sample and its
original form by applying the suitable sequence difference. c) Compare the
calculated sequence difference to the threshold computed during the offline
training stage, if the difference is greater than the threshold then a fault has
been detected.

When fault is detected, it needs to be passed to the next stage of fault diagnosis.
(2) Fault diagnosis: this step is done by passing the new sample that has been
detected as faulty, into the chosen trained classifier. After taking into
consideration choosing the best features and the most optimal classifiers based
on the comprehensive training and comparisons done previously in the model
training offline phase.

In this section, only an overview of FDD process proposed is explained without
comprehension. However, in the next section each experiment will be
explained in exhaustive details.

92

3. Analysis and Experimental Results

3.1 Experiment One: Sensor FDD Using the Joint LSTM Autoencoder and
Classifier Approach

In this section FDD of sensor faults in hydraulic test rigs using a joint approach
between healthy signal reconstruction to detect sensor faults, followed by fault
classification to diagnose the selected sensor faults is introduced, analyzed, and
discussed.

The following subsections elucidate each step of the described approach
applied on sensor faults and showcase their results. Figure 22 shows the steps
included in experiment one, where below each step is elaborated in
comprehensive detail.

Figure 22 Sensor FDD Comprehensive Framework [78].

93

A. Data Pre-Processing and Organization

It is worth to be mentioned that the preprocessing step is applied twice for each
phase in a different manner. The pre-processing and data structure required for
the LSTM autoencoder in the detection phase differ from the data structure
used for the diagnosis via classification phase. For this purpose, the
preprocessing necessary for each phase is explained under the corresponding
operation.

B. Sensor Fault Injection Schema

The dataset used for the sensor fault detection and diagnosis is the hydraulic
test rig dataset explained in the data generation and collection chapter. The data
provided a wide range of component faults varies from slightly damaged to
total failure. However, the dataset did not provide any sensor faults. Thus, it is
essential to inject sensor faults to build the sensor FDD model.

Although the sensor FDD architecture navigated in this chapter is meant for
multivariate time-series data, for simplicity reasons one sensor only is
considered to show results for the sensor FDD process.

Sensor PS1 (the first pressure sensor) is used to showcase the sensor FDD
results during the fault injection, sensor FDD while using LSTM autoencoder
and the sensor detection classification results.

The faults chosen to be injected are: (1) stuck-at: three main types of stuck at
faults has been injected due to the fact that stuck-at or constant faults are the
most common form of data-centric faults, and it shows a mighty severity of the
sensor condition. Moreover, constant faults are extremely easy to inject.
Consider the input sensor signal is 𝑥(𝑡) then the constant fault can be injected
easily by following 𝑥′(𝑡) = 𝑐 where 𝑐 is a constant number representing the
stationary condition of the sensor. Three main types of constant faults are
added. constant zero when the sensor is stuck at zero, constant high when the
sensor is stuck at the highest value in the window, and constant low stuck at
the lowest point of the sensor readings during the observed window. We
randomly injected 40 windows of size 60 seconds with constant zero fault, 7210
windows of size 60 readings of PS1 are injected with high and low constant
faults, which make the overall number of windows injected with stuck-at fault
is 7250 windows. (2) Gain fault and (3) bias or offset faults. these faults are a
type of system-centric faults; hence it is hard to observe their pattern through
sensor signal’s observation alone. So that, these faults are significant to study
and build ML approaches to dynamically detect and diagnose them.

94

Furthermore, both faults have a clear pattern that makes it easy to inject these
types of faults in the data. Gain fault also known as amplification, where the
original signal 𝑥(𝑡) is amplified with a constant 𝑤; 𝑥′(𝑡) = 𝑥(𝑡) ∗ 𝑤. To inject
this fault, randomly selected amplification number between 0.3-1.3 are selected
each time, to regenerate the magnified fault signal. 7210 samples of 60 PS1
sensor readings are injected with randomly chosen gain values. Bias or offset
fault is another example of calibration system-centric fault, where the original
signal is shifted with a constant value. Consider the original signal is 𝑥(𝑡) then
the manipulated with offset signal is 𝑥′(𝑡) = 𝑥(𝑡) + 𝑏 where 𝑏 is the constant
number representing the bias or offset added to the signal. 𝑏 value can be too
small and hard to notice or observe, or too large and hard to ignore. As a result,
it is essential to inject both cases of 𝑏. To achieve this, 3480 windows of size 60
were injected with a random number between 0.1-1 to represent the too tiny
bias category, while the remaining 3730 windows of size 60, were injected with
the comparatively larger biases that are randomly chosen between 1.1-50.
Finally, the overall PS1 sensor data prepared after the fault inject process,
possesses many windows of size 60 readings that consists of the following: (1)
7210 windows representing fully efficient windows as an example of healthy
windows. (2) 7250 windows of constant faults (zero, high, low). (3) 7120

windows of gain fault. (4) 7210 windows of bias faults (low bias, high bias).
Figure 23, Figure 24 and Figure 25 show a small part of a signal with each type
of faults injected.

Figure 23 Constant Faults Verses Healthy Signal.

95

Figure 24 Gain Faults Verses Healthy Signal.

Figure 25 Bias Faults Verses Healthy Signal.

96

C. Sensor Fault Detection: Healthy Signal Reconstruction Using LSTM
Autoencoder

This step is applied to feed the healthy windows of sensor PS1 into the LSTM
autoencoder to be able to reconstruct the healthy form of an input signal for
prediction that will be necessary to identify the faulty patterns by how much
they are deviated from the healthy reconstructed one.
The steps below showcase the main steps to achieve sensor fault detection
using LSTM autoencoder collaborated with the application of Pearson’s
autocorrelation.

(1) Define the problem. (2) Design the neural network suitable to solve the
problem. (3) Pre-process the healthy PS1 data in a form useful for the designed
neural network. (4) Compile the designed model with a fit compiler and
libraries such as, Keras in Python. (5) Train and then validate the compiled
model by calculating the necessary metrics. i.e., Mean Square Error (MSE). (6)
Use the validated model to make predictions. (7) Find a suitable metric to
measure the deviation between given signal and reconstructed one using the
validated model. (8) Find the suitable threshold for the found metric. (9) Detect
the faulty occurrences based on the calculated threshold.
The validated model can make predictions by reconstructing the healthy form
of the given signal, which means that the outcome of the autoencoder is a signal,
not a measurement to decide upon the status of the given signal to be healthy
or faulty. The state-of-the-art research work suggest using the amplitude of the
signal difference between the healthy reconstructed signal and the given signal,
then define a threshold for the accepted amount of difference as the criteria to
decide whether the signal is healthy or not. However, in this work we
suggested a new way to calculate the signal difference using the Pearson’s
autocorrelation and then derive the suitable threshold from the difference
extracted from the correlation.

In the following bullet points a full explanation supported by the experimental
results in LSTM autoencoder to achieve sensor fault detection.

• Design LSTM Autoencoder for Sensor Signal Reconstruction

To achieve the problem under investigation, the desired neural network should
be able to perform sequence to sequence predictions. Hence, the input sequence
is sliding window of the sensor PS1 and the reconstructed signal is from the
same nature of the input sequence, as well as they are both having the same
size of 60. Then the encoder-decoder type required to fit the problem is an
autoencoder. The choice of LSTM as a type of DL algorithm is because its

97

tendency to learn the hidden dependencies between many time points at once,
which make LSTM one of the most suitable forms of DL when it comes to time-
series data, especially sequence to sequence (seq2seq) operations.

 The LSTM autoencoder created for this experiment, has only one batch of
LSTM sequences. This batch is designed to be sequential in direction and nature,
which means the input layer is directly connected to the hidden layers, then the
hidden layer is connected to the output layer. The LSTM hidden layer consists
of a hundred hidden LSTM neurons. The activation function applied for the
designed DL model is ReLU, based on a try and error validation. The hidden
layer is chosen to be fully connected by adding the dense layer of output equal
to the overall output expected from the LSTM model. The optimizer chosen for
the LSTM layer is Adam optimization algorithm.

• Data Preprocessing Prior to LSTM Autoencoder for Sensor Signal
Reconstruction

In order to utilize the healthy windows of PS1 for LSTM use, it must go under
a heavy pre-processing and structuring to fit the LSTM criteria. The pre-
processing and restructuring including the following: (1) Flatten the data into
a vector. (2) Normalize the flattened data between zero and one to be able to
use in LSTM. (3) Create the target sequence 𝑦(𝑡) to reconstruct this is the most
important step of all, which determines what to learn and what to predict. In
our case, the input sequence is a sliding window of size 60, while the target
sequence is the next sliding window. The shift or sliding step is assumed to be
only one step to guarantee higher model accuracy, which means if the input
point is 𝑥(0) then the target point used to train the prediction model is 𝑦(0) =
𝑥(1). So that in general, 𝑦(𝑡) = 𝑥(𝑡 + 1) (4) divide the flattened normalized
vectors of 𝑥(𝑡) and 𝑦(𝑡) between training and testing samples, where the
training windows are the 80% selected from the overall data, while the
remaining 20% is divided equally between testing and prediction. (5) convert
the flat, normalized vectors of 𝑥(𝑡) and 𝑦(𝑡) into a two-dimensional array of
(number of samples, window size) shape. (6) convert the training and testing
2D tensor samples into a 3D tensor suitable to use in LSTM. LSTM units in
Keras only accept the training and testing data in a 3D tensor shape following

the size of (number of samples, time points, number of features). Where z-axis
or pages or axis 0 is the number of samples, axis 1 or rows is the number of time
points to store in the memory of LSTM and learn their dependencies, and
finally axis 2 or columns represents the number of features inserted in the data.
The 𝑥(𝑡𝑟𝑎𝑖𝑛) used in this experiment has the size of (11191, 60, 1), where 11191

98

of samples that has the size of (60,1) which is corresponding to one window of
60 only healthy readings of PS1.

• Train, Validate and Test the Designed LSTM Autoencoder Model

The previously designed LSTM model is trained and validated using the
intensely pre-processed healthy data of PS1. In this experiment, the LSTM
parameters are set to one hundred epochs and verbose equal one.

The validation results of the LSTM healthy signal reconstruction using the
formulated testing data at the last epoch (number one hundred) has the errors
MSE and MAE 0.000039871 and 0.0029, respectively, which both are considered
exceedingly small loss values. Figure 26, shows a randomly selected window
from the test samples compared to its reconstructed window using the trained
and validated LSTM autoencoder. As shown the figure, the resemblance
between the original, healthy window and the reconstructed window is
extremely high, which provides another proof of efficiency besides the low
error rate.

Figure 26 A Comparison Between a Randomly Chosen Testing Window and its Corresponding
Reconstructed Signal.

• Determine the Best Signal Difference Metric and its Threshold:

After training, evaluating, and testing the LSTM autoencoder model, it is time
to start making fault detection decisions aided by the model, but the question

0.57

0.59

0.61

0.63

0.65

0.67

0.69

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

P
S1

 V
al

u
e

time

Y test Original

Y test Reconstructed

99

arises, how to detect faults based on the quality of the reconstructed signal?
Which brings up another important question: How to determine the fault
detection threshold?

Taking a glance at the state-of-the-art methods helps answering the previous
questions, as such the study researched in [154]. The approach they have
applied is highly similar to our approach by having separate phases for both
detection using signal reconstruction, and diagnosis applying fault
classification. To find the difference between the predicted sequence and the
input sequence, they used signal difference that can be easily calculated by
taking the amplitude of the subtraction operation between the two sequences
(𝑧(𝑡) = |𝑥(𝑡) − 𝑥′(𝑡)|). Although using signal difference has shown accurate
results, we propose a different signal similarity measure that showed more
accuracy and performance when comparing to signal difference for fault
detection.

The threshold determines what is faulty or healthy based on the value of the
signal difference. If the value is higher than the designated threshold then the
reconstructed signal is considered faulty, or else it is healthy. The threshold is
best measured by creating a pool of various threshold values between the
minimum and maximum values of the calculated signal difference. Followed
by making the fault detection decisions on the prediction samples, based on
each one of the thresholds in the pool. For each threshold in the pool, check if
the prediction’s sample signal difference is higher than the threshold to be

considered faulty, while lower is detected to be healthy. Finally, calculate the
precision, recall, f1-score, and accuracy for all the prediction results made by
each threshold in the pool. The choice of the right threshold for the sensor fault
detection, is made by choosing the threshold that guarantees the best precision
to recall trade-off, also known as f1-score. In this experiment, a prediction
dataset (500 windows of size 60 readings of PS1) that consists of various healthy
and faulty samples, is used to determine the fault detection accuracy using the
LSTM autoencoder sequence reconstruction. The 500 windows reconstructed
using LSTM were then each compared to the original sequence to show how
much they were deviated from the original window regarding their health
status. The comparisons between the reconstructed windows and the original
ones are made utilizing two main metrics: (1) signal difference: 𝑧(𝑡) =
|𝑥(𝑡) − 𝑥′(𝑡)| . (2) our new metric using the complement of Pearson’s
autocorrelation.

Pearson’s autocorrelation can be calculated using the formula shown below:

100

𝑟𝑥𝑦 =
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 − (∑𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2 − (∑𝑦𝑖)2

Eq. 18

Where 𝑟𝑥𝑦 is the correlation between to vectors 𝑥, 𝑦. Furthermore, 𝑥 𝑎𝑛𝑑 𝑦 are

expected to possess the same length of 𝑛. Where the autocorrelation measures
the similarity between two sequences, while subtracting the measured
similarity from the highest possible value of resemblance (+1) represents
another way of calculating the difference between two sequences. (𝑧(𝑡) = 1 −
(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛))

The table below, Table 8 shows the signal difference values, and the signal
difference based on the correlation values, for the first five entries of the
prediction samples after being compared to their reconstructed version using
LSTM.

Table 8 The First Five Samples and Their Signal Difference when Compared to the
Reconstructed Signal, Calculated in Two Different Fashions

The tables demonstrated below shows some of the threshold values selected to
find the optimal threshold necessary for the sensor fault detection,
corresponding to their precision, recall, f1-score, and accuracy.

Table 9 Signal Difference Thresholds and Their Metrics [78].

THRESHOLD 0.1 0.3 0.5 0.7 0.9 1.1

PRECISION 0.78 0.76 0.74 0.69 0.65 0.79

RECALL 0.89 0.77 0.69 0.54 0.33 0.2

F1-SCORE 0.83 0.76 0.71 0.61 0.43 0.32

ACCURACY 0.71 0.62 0.55 0.44 0.32 0.32

Difference Metric/samples 1 2 3 4 5

Signal Difference:
𝐳(𝐭) = |𝐱(𝐭) − 𝐱′(𝐭)|

0.0806 0.6880 0.8279 0.8485 0.6538

Pearson’s Correlation:
𝐫𝐱𝐲

=
𝐧∑𝐱𝐢𝐲𝐢 − ∑ 𝐱𝐢 ∑𝐲𝐢

√𝐧 ∑ 𝐱𝐢
𝟐 − (∑𝐱𝐢)

𝟐√𝐧 ∑ 𝐲𝐢
𝟐 − (∑𝐲𝐢)

𝟐

0.4281 -1 0.1784 -0.5772 -1

Signal difference=
𝐳(𝐭) = 𝟏 − (𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧)

0.5718 2 0.8215 1.5772 2

101

Table 10 Signal Difference Using the Correlation and Their Metrics [78].

THRESHOLD 0.1 0.3 0.5 0.7 0.9 1.1 1.3

PRECISION 0.79 0.8 0.81 0.83 0.84 0.85 0.86

RECALL 0.95 0.85 0.82 0.72 0.64 0.55 0.5

F1-SCORE 0.86 0.82 0.81 0.77 0.73 0.66 0.63

ACCURACY 0.76 0.71 0.7 0.66 0.61 0.56 0.53

Based on the values shown in Table 9 and Table 10. The optimal threshold
based on each signal difference metric can be easily detected by choosing the
threshold that provided the best precision, recall trade-off. It is apparent that

the threshold of 0.3 is the optimal threshold when using the regular signal
difference metric, and the accuracy of the LSTM autoencoding sensor fault
detection when using the optimal threshold of 0.3 is 0.62. On the other hand,
the optimal threshold when using the signal difference based on the correlation
is 0.5, and the accuracy of the sensor detection given the optimal threshold is
0.71.

As visualized in Figure 27 and Figure 28. The optimal threshold is the one
providing the best precision, recall trade-off also known as f1-score. The
optimal threshold can be easily observed as the intersection point between the
three metrics mentioned previously. Based on the visualization in Figure 27,
the threshold selected is 0.3, which provide the detection with 0.62 accuracy.
Compared to the intersection point shown in Figure 28, where the threshold is
chosen 0.5, and the corresponding accuracy is observed higher at 0.71.

This concludes the accuracy of the proposed signal difference measure
comparing to the traditional one, to achieve fault detection using signal
reconstruction technique.

102

Figure 27 Optimal Threshold Selection Using Regular Signal Difference [78].

Figure 28 Optimal Threshold Selection Using Signal Difference Based on Correlation [78].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

P
R

EC
IS

IO
M

, R
EC

A
LL

 A
N

D
 F

1
-S

C
O

R
E

THRESHOLD

Precision Recall F1-Score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
R

EC
IS

IO
N

, R
EC

A
LL

 A
N

D
 F

1
-S

C
O

R
E

THRESHOLD

Precision 1 Recall 1 f1_score 1

103

D. Sensor Fault Diagnosis: Classification Schema

In this section, the experimental results conducting sensor fault diagnosis using
a variety of supervised learning algorithms is demonstrated. As shown in
Figure 22, the second phase following the detection of existing anomalies is
applying the necessary means to diagnose their nature. The detected faults by
the previous phase using the LSTM autoencoder, are then fed into a fault
classification schema to determine the type and nature of the detected faults. In
other words, to perform the fault diagnosis only faulty data is classified.

PS1 sensor data is pre-processed, and then restructured into a two-dimensional
matrix of 28882 windows of size 60. Three main faults existing in the training
data provided to the classifiers; constant faults of three different types, gain
fault, and bias or offset faults. The fault injection schema and its details are
explained earlier in this experiment.

In this work, the classification results are compared when various feature
engineering approaches are applied. The feature engineering approaches used
for this section are: PCA, FI, manually extracted time-domain features, and new
cluster-based feature selection method called RkSE. Feature selection or
extraction when applied to univariate datasets in a shape of sliding windows,
is simply considered as a window compression method, to minimize the size
of the readings provided by each window and select the features with most
contribution to the learning process. Therefore, the time and complexity
constraints of the ML or DL models can be managed and minimized with
smarter choice of features. Various ML and DL classifiers has been trained,
validated, and tested, individually with the selected features using a diversity
of feature engineering approaches. Then their results are documented and
compared. The ML approaches used are LR, LDA, KNN, CART, NB, SVM and
RF. The DL approaches selected to perform the classification tasks are CNN
and LSTM.

The following experimental results tackle each of the feature engineering
process and their results, when fed into the mentioned above ML and DL
classifiers, to eventually achieve the FDD for sensor faults, using PS1 sensor as
an example of sensors in the hydraulic test rig system.

The feature selection section for PS1 as a window compression method, is
thoroughly explained, as well as all the mentioned methods are explained in
detail in the previous chapter (chapter 5).

104

The parameters selection for each classifier was chosen by trial and error, to
ensure the highest possible accuracy when validating using 10-fold cross
validation over the original data without any feature engineering applied. The
table shown below describes the applied ML classifiers and their
corresponding parameters using Scikit in Python. Furthermore, the mean
accuracy for the 10-folds and the standard deviation corresponding to the 10-
folds is calculated.

Table 11 ML Classifiers and Their Parameters in Scikit Python.

ML
Classifier

Parameters Mean Accuracy Standard Deviation

LR
solver='liblinear',
multi_class='ovr'

0.69 0.02

LDA no parameters 0.71 0.01

KNN no parameters 0.87 0.01

CART no parameters 0.90 0.01

NB no parameters 0.71 0.01

SVM gamma='auto' 0.91 0.01

RF
n_estimators=1000,

max_depth=5,
random_state=0

0.82 0.01

The CNN classifier has the parameters verbose, epochs and batch size of zero,
hundred and 20, respectively. The parameters are chosen by try and error to
provide the designed deep neural network with the highest 10-fold
classification accuracy. The CNN applied is designed as sequential model
(input, hidden layers, and output). The CNN convolutional layer applied here
is a 1-D layer since the training dataset is a time-series data and of a one-
dimensional nature, unlike the usual application of CNN where the data is
typically of two-dimensional shape such as, images. CNN design included 6
one-dimensional convolutional layers of filter equals to 64 and kernel size of
one. The kernel size that shows the length of the convolution window/masking
window required for the convolution is selected as one. The number of
convolution layers is added to guarantee highest possible accuracy, and by try
and error it is set to 6 layers of 1-D convolutional layers. The activation function
within the created layers is ReLU. The next process following each convolution
layer is the pooling layer, in this work the pooling function is selected as the
maximum pooling, which indicates selecting the maximum entry in the kernel
during the pooling phase. Two fully connected layers are added following the
pooling phase, one of size hundred and their activation function is ReLU. The

second fully connected layer has three outputs to match the number of

105

classification outputs/faults designated for the training, while its activation
function is selected as SoftMax. Finally, the CNN optimizer chosen is Adam
optimizer. The LSTM model designed for classification differs from the one
used in the previous step, as this model is a classifier while the previous LSTM
model is an autoencoder designed to solve multi-regression problems not
classification. Only one batch of LSTM neurons is used, this batch has hundred
sequential hidden layers or neurons. The layers are fully connected using a
dense layer of size one hundred with the activation function ReLU, which is
connected to another fully connected dense layer of size three (to match the
number of outputs expected from the LSTM model), with the activation
function SoftMax. The LSTM classifier parameters are represented by verbose,
epochs and batch size which are equal to zero, 10 and 20, respectively.

Here are the classification results when using number of ML and DL classifiers
when fed with only faulty data, to perform PS1 fault diagnosis and
classification. In Table 12, nine ML and DL classifiers are trained separately
using five different features at a time, which are selected/extracted using PCA,
manually extracted time-domain features, FI, RkSE. As well as the entire faulty
dataset without any feature selection. The number of features without feature
selection is equivalent to the window size of 60. Four features are extracted
using PCA, 45 features are selected using FI, compared to 46 features selected
using RkSE. Finally, four time-domain features extracted from each window,
represented by the mean, variance, standard deviation, and signal to noise
ration. The number of features selected by each method is the one with the
highest fault classification mean accuracy.

Table 12 Classification Accuracy of Different ML and DL Approaches Using Various Feature
Engineering Methods [78].

Classifier
no feature
selection

PCA
Time-Domain

Features
FI RKSE

LR 0.6911 0.6356 0.2425 0.7019 0.6882

LDA 0.7053 0.6535 0.7859 0.7038 0.7068

KNN 0.8747 0.9128 0.9625 0.8758 0.8816

CART 0.8972 0.9818 0.9951 0.9126 0.9116

NB 0.7089 0.6919 0.4821 0.6930 0.6824

SVM 0.9125 0.8827 0.7298 0.9112 0.9142

RF 0.8189 0.8390 0.9402 0.8196 0.8193

CNN 0.8773 0.8486 0.7575 0.8385 0.8562

LSTM 0.8352 0.9568 0.9684 0.7278 0.7499

Mean Feature
Accuracy

0.81 0.82 0.76 0.80 0.80

106

When observing each row in respect to each feature engineering method, it can
clearly show the feature engineering approach giving the highest or lowest 10-
fold mean accuracy corresponding to each classification method. The mean
feature accuracy row shows the overall accuracy for each feature engineering
approach in respect to all ML and DL classifiers combined. It is shown that PCA
has the highest mean feature engineering accuracy when applied to the nine
classifiers, which proves the consistency of PCA and its validity with different
classification techniques. It is also obvious that the time-domain features
selected are the one providing highest accuracy to many of the ML and DL
classifiers, which are LDA, KNN, CART, RF and LSTM. However, this feature
selection technique does not provide consistency in the accuracy results, since
LR and NB classifiers for example show exceptionally low performances when
applying the four selected time-domain features, comparing to the rest of
feature engineering methods. This explains why time-domain features result in
lower overall mean feature accuracy comparing to PCA, even though more
classifiers have the maximum accuracy when applying time-domain features.

The selection of the suitable feature engineering method is highly dependent
on each classifier type and its functionality. The table above has the purpose of
investigating the behavioral changes of some of the most common ML and DL
classifiers in respect to various commonly used feature engineering methods
with time-series datasets. Furthermore, finding the best pair of features and
classification approach which provides the most optimal accuracy-complexity
trade-off when performing sensor fault detection is the number one aim of
these comparisons. As a result, the highest measured sensor fault detection
combination is when applying CART using time-domain features, followed by
LSTM, KNN and RF using the same extracted features.

Finally, the sensor fault detection for new windows of PS1 (size 60) at run-time,
can be easily performed by applying the new window into the trained, LSTM
autoencoder explained in full details previously in this experiment. Followed
by the reconstructed healthy signal of the new window will be compared to the
new window by calculating the signal difference using the Pearson’s
correlation. If the difference is bigger than the previously trained threshold,
then a fault is detected and needs to pass to the next stage of fault diagnosis
using the chosen trained classifier, by feeding the new window into the chosen
trained classification model after applying the necessary feature engineering
modifications. In our case, extracting the time-domain features such as, mean,
variance, standard deviation, and signal to noise ratio to the signal. Then, the
created vector of size four (four features extracted) is used to make predictions
using the trained CART, LSTM or RF classifiers, as they showed better results
than others when combined to the chosen features.

107

3.2 Experiment Two: Component FDD Using the Joint LSTM Autoencoder
and Classifier Approach

In this experiment, component faults existing in the hydraulic test rig are
detected and diagnosed using a unique approach, in which the detection and
diagnosis stages are done separately to ensure more accurate detection of rare
occurrences. Figure 29, shows the framework of this experiment.

Figure 29 Component FDD Comprehensive Framework [78].

The same steps and parameters created in experiment one (sensor FDD) are
repeated in this experiment, excluding the data pre-processing and structuring,
and the fault injection schema. The pre-processing step here differs from the
previous experiment, since this time it is a multi-variate autoencoding and
classification problem, without the application of sliding windows. Moreover,
no fault injection is required in this experiment because the component faults
studied are already available in the hydraulic test rig dataset used for this
experiment.

108

A. Data Pre-Processing and Organization

In this section, the data used is the hydraulic test rig dataset of eleven sensors,
which indicates that this experiment is a multi-variate FDD experiment. The
healthy data is applied for the detection as the first step of the FDD system
represented by the LSTM autoencoder. While the faulty data containing four
main component faults; cooler, value and hydraulic accumulator total failures,
and pump severe leakage fault, are used in the second stage represented by the
fault diagnosis using the supervised ML and DL methods.

In both stages, the data is organized as a 2D matrix of samples and the features
expressed by the eleven sensors and their readings at different time points.

B. Component Fault Detection: LSTM Autoencoder

This section has the same procedure explained in experiment one for fault
detection in sensors. The LSTM autoencoder for fault detection stage has the
following main steps: (1) design the LSTM autoencoder to fit the problem. (2)
Prepare the data into a form acceptable in the LSTM. (3) Train and validate the
LSTM autoencoder using healthy data only and calculate the MSE and other
error metrics. (4) Predict the samples that contain fault and healthy readings.
(5) Calculate signal difference between the original samples and the predicted
samples, using the regular difference and the Pearson’s correlation one, to
establish accuracy comparisons. (6) Find the best threshold of sequence
difference to ensure the best trade-off between precision, recall and f1-score. (7)
Make component fault detection decisions using the trained, validated LSTM
autoencoding model, and their calculated sequence difference compared to the
computed threshold.

For training the designed model, 1438 samples of the eleven sensors’ reading
are used to train and validate the model. The data should be normalized
between zero and one, as well as converted to a three-dimensional tensor
format (samples, time points for LSTM to remember, number of features)
before applying to the LSTM model. The LSTM model designed for component
FDD detection is an autoencoder of a sequential hundred hidden LSTM
neurons using the activation function ReLU, then a fully connected dense layer
of size equal to the number of sensors or features is added. The dense layer
contributes to improving the accuracy of the LSTM model, as well as making
sure to the LSTM model generates outcomes equal in size with the designated
input signal. Finally, the optimizer applied for the LSTM model is Adam. The
training parameters of the LSTM autoencoder are epochs= 100 and batch size=
30.

109

After training and validating the designed model over a hundred epochs, the
MSE error of the last epoch is 0.00057 and the MAE is equal to 0.0096. Both error
metrics are exceedingly small, which is a high indication of the validity and
accuracy of the created model in reconstructing healthy input sequences.

To select the optimal threshold corresponding to the allowed sequence
difference between the original sequence and the reconstructed one resulted
from the LSTM autoencoder. 4800 samples of size eleven are predicted using
the autoencoder, to reconstruct 4800 healthy versions of the prediction samples.
The signal difference using between each of the corresponding sequences in the
original and reconstructed sequences are computed using (1) the traditional
signal subtraction to find the signal difference as a vector, then find the
magnitude of this vector. (2) The sequence difference using (1-Pearson’s
autocorrelation) as a measurement created in this work and proposed to be
more accurate measurement for fault detection than the traditional signal
subtraction.
To avoid repeating the explanation of each signal difference methods, we will
jump right through the results and their comparisons.
A pool of candidate threshold values is created, then the labels of the 4800

prediction samples were obtained based on each threshold in the pool, if the
value of the signal difference is higher than the threshold a fault is considered
to be detected, thus label 1, else label 0. The precision, recall, and f1-score are
computed to each threshold in the pool based on the generated labels and the
original labels of the given prediction samples.
When applying signal difference using the Pearson’s autocorrelation, the pool
of chosen thresholds between the minimum and maximum observed values are
shown in Table 13. Furthermore, for each chosen threshold the accuracy,
precision, recall and f1-score are computed. Figure 30, illustrates the process of
choosing the component fault detection threshold based on the precision, recall
and f1-score trade-off shown in the table below. As clearly shown in Figure 30,
the selected threshold is the intersection between the three curves, which is
approximately equal 0.0007 and the accuracy observed for this threshold value
is 0.71.

Table 13 The Thresholds of Pearson's Correlation Difference and Their Corresponding Fault
Detection Accuracy, Precision, Recall and F1-Score [78].

THRESHOLD 0.0001 0.0003 0.0005 0.0007 0.0009 0.001 0.003 0.005

PRECISION 0.63 0.73 0.77 0.78 0.79 0.81 0.95 0.93

RECALL 1 0.79 0.74 0.74 0.72 0.68 0.25 0.14

F1-SCORE 0.77 0.76 0.75 0.76 0.75 0.74 0.39 0.24

ACCURACY 0.63 0.69 0.7 0.71 0.7 0.69 0.52 0.46

110

Figure 30 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Pearson's
Correlation Difference [78].

On the other hand, Table 14 and Figure 31 shows the pool of threshold and their
metrics when using the traditional subtraction as signal difference method is
shown.

Table 14 The Thresholds of Subtraction Difference and Their Corresponding Fault Detection
Accuracy, Precision, Recall and F1-Score [78].

The intersection between the three curves in Figure 31, shows that the optimal
threshold for component fault detection using the sequence subtraction is
approximately 0.03, with the fault detection accuracy of 0.69. The optimal
accuracy using signal subtraction of 0.69 is less than the measured one using
the optimal threshold computed by Pearson’s correlation of 0.71.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.001 0.002 0.003 0.004 0.005 0.006

P
R

EC
IS

IO
N

, R
EC

A
LL

 A
N

D
 F

1
-S

C
O

R
E

THRESHOLD

precision 1

recall 1

F1-Score

CANDIDATE THRESHOLDS 0.02 0.03 0.05 0.07 0.09 0.1

PRECISION 0.63 0.73 0.77 0.92 0.92 0.89

RECALL 0.99 0.76 0.66 0.26 0.15 0.1

F1-SCORE 0.77 0.74 0.71 0.41 0.26 0.18

ACCURACY 0.63 0.69 0.66 0.52 0.46 0.43

111

As a result, when comparing the accuracy of the optimal thresholds selected
using two different signal deviation measurements, which are the
autocorrelation complement and the traditional subtraction. It is clearly shown
that the proposed method using Pearson’s correlation guarantees higher
component and sensor faults detection accuracies, comparing to its commonly
used traditional subtraction counterpart, based on the measured comparisons
in experiment one and two.

Figure 31 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Signal
Subtraction Difference [78].

C. Component Fault Diagnosis: Classification Schema

In this section, the feature engineering methods compared are FI, PCA and
RkSE. The time-domain extracted features applied for multi-variate time series
sequences without the application of sliding windows, are expected to have
lower accuracy values regardless the ML or DL classifier used. Hence, it does
not make sense to compute the mean, standard deviation, and variance to a
sample of readings extracted from sensors of different nature. However, the
time-domain features were extracted and applied to all the classifiers anyways,
to prove the point mentioned earlier.

Based on the feature engineering thorough analysis in chapter 5, the optimal
number for each feature engineering method is computed. The overall number
of features in each sample is eleven, corresponding to each sensor in the

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1 0.12

P
R

EC
IS

IO
N

, R
EC

A
LL

 A
N

D
 F

1
-S

C
O

R
E

THRESHOLD

precision

recall

F1-Score

112

hydraulic test rig dataset explained in chapter 2. The optimal features for FI,
PCA, time-domain features and RkSE are four, five, four and nine, respectively.

The accuracies computed for all the ML and DL classifiers are results of
dividing the fault data with component faults, into training and testing data,
with percentages of 80% to 20% of the faulty data, respectively. Followed by
applying 10-fold cross validation technique for each classifier separately.

The parameters and optimizers for each ML method used in this section, are
identical to the ones used in the sensor FDD experiment earlier in this chapter
and shown in Table 11. Moreover, some minor changes in the CNN and LSTM
classifiers’ design and parameters have been made comparing to the previous
experiment.

CNN design consists of only one 1D CNN layer of filter size 64, and kernel size
of one. The layer is sequential which means the input layer is directly connected
to the hidden layer(s) that is connected to the output layer. The activation
function used is ReLU. Followed by the pooling layer that has pooling size of
one and applies maximum pooling as the pooling function. Finally, a fully
connected dense layer of size equivalent to the number of expected outputs,
with SoftMax activation function is created to make the classification process
for the extracted features during the convolutional and pooling layers. The
CNN optimizer used is Adam, as a stochastic gradient descent approach to
optimize the network.

The LSTM classifier applied has only one LSTM batch with two hundred
hidden neurons that are sequential in order and nature. Followed by a fully
connected dense layer of SoftMax activation function, and naturally Adam is
the applied optimizer for the LSTM as well. The verbose, epochs and batch size
parameters are applied by testing various values and their effect on the
classification accuracy, and they are set to zero, 10 and 20, accordingly.

The table below comprehend the component fault classification results when
trained by faulty hydraulic test rig data, applying various ML and DL
approaches using numerous feature engineering methods.

113

Table 15 Component Fault Diagnosis Using Various Feature Engineering and Classification
Approaches [78].

METHOD
NAME

FI PCA RKSE
TIME-DOMAIN
FEATURES

NO FEATURE
SELECTION

LR 0.9962 0.7300 0.7823 0.37599 0.6832

LDA 0.7634 0.7490 0.7528 0.370521 0.7031

KNN 0.9940 0.9229 0.9320 0.831458 0.8677

CART 0.9932 0.9435 0.9912 0.928594 0.6849

NB 0.9924 0.7510 0.7122 0.39526 0.9035

SVM 0.9859 0.9337 0.9310 0.833281 0.8139

RF 0.9930 0.9013 0.9910 0.871042 0.9042

CNN 0.7343 0.8427 0.7343 0.3971 0.7385

LSTM 0.7375 0.8770 0.7375 0.3981 0.73124

MEAN
ACCURACY

0.910 0.850 0.840 0.600 0.781

As shown in Table 15, feature selection approaches work better than extraction
ones such as, PCA and time-domain features when dealing with traditional ML
classifiers, to classify multi-variate time series datasets. On the one hand, FI is
consistently showing highest accuracy results comparing to the rest of the
feature engineering methods when dealing with traditional ML classifiers.
Followed by RkSE, that is yet slightly lower accuracy than FI for traditional ML
approaches, but it shows consistency in all ML classifiers. On the other hand,
PCA has shown the highest accuracy when applying DL classification
algorithms comparing to other feature selection approaches. While FI and
RkSE are neck to neck when it comes to the classification accuracy using the
selected DL approaches. Finally, even though time-domain features were the
most accurate ones when applied to sliding-windows for univariate
classification as shown in experiment one. As spotted earlier in this experiment,
when it comes to extracting time-domain features from multi-variate datasets
without applying sliding windows, this feature extraction method is proven
weaker than the rest of the approaches, when combined to regardless ML or
DL classifiers.

In another side of comparison, KNN, CART, RF and SVM showed great
consistency in high accuracy results no matter what feature engineering
method is applied, including time-domain features regardless its weakness.
CNN and LSTM had lower accuracies comparing to the traditional ML

114

approaches mentioned earlier, and their accuracies drops radically when time-
domain features are applied.

To conclude experiment two, it is important to know how to apply the trained
models and saved parameters from experiment two at run-time, to make new
real-time predictions. The input vector for prediction should have one readings
of each sensor of the eleven sensors used for the training process during the
offline or training phase. (1) fault detection: fault detection for new samples can
be done by; feeding the new sample into the trained and validated LSTM
autoencoder model to reconstruct the healthy form of the sequence. Then the
reconstructed sequence and the original one is compared by calculating the
signal difference using Pearson’s autocorrelation. Finally, with the signal
difference calculated is above or below the trained threshold, this will
determine the existence of faults or not. (2) Fault diagnosis: in case a fault is
being detecting using the detection step. The fault should be diagnosed by
applying the necessary feature engineering approaches, then feeding the
processed new sample to the highest accuracy ML or DL trained classifier,
suitable to the features chosen. In our case, based on the results shown in Table
15, it is more accurate to use RF a combined with FI to guarantee better accuracy
and complexity trade-off.

115

7. Chapter 6: A Hybrid Approach: Dynamic
Diagnostic Rules for Hydraulic Systems in
Industry 4.0 Generated by Online
Hyperparameter Tuned Random Forest

Please note that parts of this chapter have been published under our own article
in [155], and all copy rights and other rights are reserved to the MDPI publisher.

1. Chapter Overview

In this chapter, a hybrid component FDD approach for a hydraulic system
extracted from a hydraulic test rig is established and analysed, to provide a
hybrid schema that combines the advantages and eliminates the drawbacks of
both model-based and data-driven methods of diagnosis. Moreover, it shines
light on a new utilization of RF together with model-based diagnosis, beyond
its ordinary data-driven application. RF is trained and hyperparameter tuned
using three-fold cross validation over a random grid of parameters using
random search, to finally generate diagnostic graphs as the dynamic, data-
driven part of this system. This is followed by translating those graphs into
model-based rules in the form of if-else statements, SQL queries or semantic
queries such as SPARQL depending on the type of the model-based system
available, in order to feed the dynamic rules into a structured model essential
for further diagnosis. The RF hyperparameters are consistently updated online
using the newly generated sensor data to maintain the dynamicity and
accuracy of the generated graphs and rules thereafter. The architecture of the

116

proposed method is demonstrated in a comprehensive manner, and the
dynamic rules extraction phase is applied using a case study on condition
monitoring of a hydraulic test rig using time-series multivariate sensor
readings. Furthermore, the proposed method contributes to providing a way
of dynamizing already existing model-based FDD systems containing fixed
rules, by automating the rules and replacing them with the dynamic, RF
generated ones. This work is an optimization of the model-based FDD
approach using semantic ontologies described in [11]. In order to offer a hybrid-
approach that is dynamic, and less complex than the one relying on model-
based FDD for component faults in industrial systems.

2. System Model Overview

The proposed system scenario in Figure 32 represents a possible method to
merge RF as a data-driven approach for industrial FDD and model-based FDD
approaches into a final hybrid approach, which possesses the powerful features
of both approaches. This technique eliminates the main drawbacks of each
approach individually such as, the lack of dynamicity and response to sudden
occurrences in case of traditional model-based FDD. As well as, providing,
dynamic diagnostic rules that contribute massively to reducing the diagnostic
time and computational needed resources, comparing to their online data-
driven counterparts. The figure below shows the two main diagnosis phases
used in this research; data-driven and model-based, and how these two
methods are combined into a new improved approach.

The following is a comprehensive explanation of each phase:

A. Data-Driven Phase

This phase consists of multiple internal steps essential to learn the best possible
dynamic diagnostic rules using random forest algorithm. Below, each step is
discussed in an elaborate manner:

• Multivariate Time-Series Dataset

In this work, the dataset used is a multivariate, time-series dataset, of six
pressure, four temperature, two volume sensors and one vibration sensor
which all possess a constant cycle of 60 seconds, placed in a hydraulic test rig
to monitor its condition over time. For more details about this dataset and its
previous applications, please refer the data collection and generation section,
in this chapter.

117

Figure 32 Hybrid-based FDD System Overview [155].

• Feature Selection

Complex sensor industrial systems often have hundreds or even thousands of
sensors connected, simultaneously transmitting sensors’ reading data crucial
to monitor and control those systems. Each of which is considered a feature for

analysis and model training. Thus, creating diagnostic models that only include
valuable features is a necessity.

Implementing a model with less but more meaningful features have a
significant impact on the overall system. First, the diagnostic model become
simpler to analyse and interpret when fewer elements are included. Second, by
eliminating some features of the dataset, the data would be less scattered hence
less variant, which can lead to reducing overfitting. Finally, the main reason
behind feature selection is generally to reduce the time and computational costs
required to train the model.

118

In practice, RF algorithm can be applied to carry out feature selection as well.
Simply because the features are implicitly ranked based on their impurity
during the formation of each decision-tree creating the forest. In other words,
when top-down traversing a tree in RF, the nodes toward the top happened to
have the largest impurity decrease metric, also known as Gini Impurity (GI),
comparing to the nodes at the bottom. Thus, by determining a particular
impurity decrease threshold, it is possible to prune the tree below this tolerance,
in order to establish a subset of the most fitting or important features.

The data-driven FDD method implemented in this work is RF. In intention of
reducing the computational cost as possible, RF is also used to perform feature
selection using what is known as feature importance or permutation importance [52]
and [73]. Since, GI calculations are already measured during the RF training
process, and only a slightly bit of additional computations are required to
complete the feature selection process.

The most popular implementation of feature importance provided by RF, is the
Python library Scikit-learn where a pre-defined function feature_importances_
is directly executed given the learned RF model. However, a team of data
scientists at the University of San Francisco pointed out some bugs associated
to this function and implemented an alternative to generate more accurate
feature importance results in [156].

• Hyper-Parameter Optimization

The foremost goal of any machine learning algorithm is to minimize the
expected loss as possible. To achieve this, it is consequential to deploy some
optimization equations to select the optimal values for some, or all the
hyperparameters of the machine learning algorithm of focus.

RF algorithm has plenty of hyperparameters. On one hand, some are
implemented on the overall forest level such as, the number of subjects
randomly drawn from the dataset to form each tree, the choice of with or
without replacement regarding the samples selection and most importantly is
the number of trees in the RF. On the other hand, some hyperparameters are
on a tree level, which control the shape of each tree in RF. i.e., the number of
features drawn for each split, the selection of splitting rules, the depth of each
tree and many others. These parameters are typically selected by the user.
Consequently, creating a method to efficiently select these hyperparameters
can influence the performance versus the cost of RF significantly. In addition,
the recent research done in [157] emphasizes the significance of
hyperparameter optimization specifically for RF parameters, as well as

119

providing deep comparisons between numerous tuning and optimization
mechanisms and software.

One of the key tuning strategies for RF, is using searching algorithms to look
for optimal parameters in a pool or grid of selected ones. Search techniques
differ in their way of pool or grid creation, based on the mechanism applied to
choose the successful candidates forming the bag of options. Some searching
strategies use all the possibilities available as candidates to be exhaustively
investigated, one by one to select the optimal choice, as in grid search algorithm.
However, in random search, the bag of candidates are drawn randomly from
the overall existing possibilities, which is not only a precious asset for reducing
the search complexity, but also studies have proved that random search
produces better accuracy scores for parameters optimization comparing to grid
search [158].

Random search refers to a group of searching algorithms that rely on
randomness or pseudo-random generators as the core of their function. This
method is also known as a Monte Carlo, a stochastic or metaheuristic
algorithms. Random search is beneficial for various global optimization
problems, structured or ill-structured over discrete or continuous variables
[159]. Below is the algorithm describing the flow-work of a typical random
search algorithm.

Algorithm Random Search Algorithm

Let 𝑅𝐹 is the cost function to be optimized or minimized. 𝐶 is a candidate
solution in the search-space 𝑅𝑛.
Select termination condition 𝑇𝐶. i.e., specific fitness measure achieved, or
max number of iterations reached, and so on.

Initialize C. 𝐶 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑅𝑛
𝐹𝑜𝑟 𝑇𝐶 :
Randomly choose another position 𝐶𝑛𝑒𝑤 from the radius surrounding 𝐶 (the
radius of the hypersphere surrounding C)
𝑖𝑓 𝑅𝐹(𝐶𝑛𝑒𝑤) < 𝑅𝐹(𝐶) 𝑡ℎ𝑒𝑛
𝐶 = 𝐶𝑛𝑒𝑤

In practice, Scikit-learn library for Python machine learning provides a method;
RandomizedSearchCV which can be provoked by creating a range for each
hyperparameters subject of optimization. By calling RandomizedSearchCV
method over the predefined range, random search is performed to randomly
select a candidate grid of possibilities within the range, then applying K-fold

120

cross validation technique over the created grid. For additional examples about
this method, refer to [160].

B. Model-based Phase

This phase represents a clear model of the system, whether it is an actual
physical model, a simulation, a knowledgebase semantically connecting the
system component together, or a relational database. Based on the system

model nature, the extracted nested, conditional rules from the RF are
transmitted to a suitable form. i.e., in knowledge-based systems such as
ontologies, the rules are converted into SPARQL [161] semantic queries, a
regular SQL queries in case the system model is represented by a relational
database, or in a simpler fashion use the extracted rules as a small conditional
code, which runs every diagnostic window to perform the diagnosis. This
phase is crucial to minimize the online diagnostic time and computational
power needed, comparing to provoking the testing RF algorithm over and over
for each sliding window.

C. Dynamic Rules Update Phase

In this phase, the new time-series data generated by the system for a certain
number of sliding windows, is stored and used to update the originally created
RF, by performing the hyperparameter tuning again to find out if any alteration
of the RF parameters could reduce the size of the overall RF and increase the
accuracy at the same time. The new updates selection or rejection decision is
highly dependent on the accuracy of the newly tuned RF.

3. Experimental Results

In this experiment, RF is used following the steps in the data-driven flowchart
in Figure 32, to generate dynamic diagnostic rules to diagnose and monitor the
health of a hydraulic system tested by a hydraulic test rig. Provided in the
dataset, each component condition ranges between full efficiency, reduced
efficiency and close to total failure. In this experiment, for the sake of simplicity,

the healthy state is represented by the full efficient cycles, and the failures are
represented by the cycles where the component is close to failure, while the
partial failure state is being excluded. Based on the previous fault description,
there are four types of total failure in four different components to monitor;
cooler total failure state, valve close to total failure, internal pump has a severe
leakage and hydraulic accumulator close to total failure. Table 16 explains the

121

definition of each fault chosen for this experiment and some example cycles
that contains each fault.

Table 16 Hydraulic Test Rig Chosen Faults and Their Full Description [155]..

Status Status Description Example Cycle no.

Healthy
All components are healthy and in
full efficiency mode.

1788, 1789,1790

Cooler Fault
Cooler has a total failure, and the
rest of the components are fully
efficient.

1,2,3

Valve Fault
Valve close to total failure, and the
rest of the components are fully
efficient.

1759, 1760, 1761

Pump Fault
Internal pump has severe leakage,
and the rest of the components are
fully efficient.

1675, 1706, 1707

Accumulator Fault
Hydraulic Accumulator close to
total failure, and the rest of the
components are fully efficient.

1465, 1466, 1467

The hydraulic system described in this experiment contains eleven sensor
readings of three types of sensors located in different components of the
hydraulic test rig. Six Pressure sensors labelled as PS1, PS2 up to PS6, four
temperature sensors TS1-TS4, and finally one vibrational sensor labelled as VS1.

The readings of all the eleven sensors from various cycles containing the five
different statuses shown in the table above is collected in one labelled dataset
of eleven features necessary to perform RF training and analysis.

As mentioned earlier, the selection of RF as the classification method in this
work is done after carefully comparing the results of RF with respect to other
famous classifiers. The supervised machine learning methods shown above
along with RF are used to perform a multi-class classification task, to classify
the hydraulic test rig faults described in Table 2. The following table, Table 3,
shows the classification results after performing multi-class classification using
different classifiers. It is demonstrated clearly that CART and RF have elevated
accuracy compared to the rest of the approaches. However, RF is an
optimization of CART, which overcomes its tendency to form overfitted
relationships with the training dataset.

122

Table 17 RF Accuracy Results Comparison to Some Other Classifiers for Hydraulic Test Rig

Fault Classification [155]..

Method LR LDA KNN CART NB SVM RF

Accuracy 0.780469 0.778646 0.932031 0.989844 0.704167 0.923177 0.985198

Non-zero feature importance method is used to neglect the features with less
impact of the learning process, by concentrating only on the features that
contribute more to the model accuracy. The table below shows the importance
of each sensor to the RF model calculated using Eq. 17.

Table 18 shows the calculated importance of each one of the 11 sensors. There
are a variety of options by which these importance values are analysed and
evaluated to achieve feature selection. One can pick the highest importance
feature alone to represent all the features, or the highest three, highest six or
just the non-zero ones to represent the whole pack. However, the most
convincing approach is testing all the possibilities and making a logical
accuracy versus complexity trade off. For each selected feature(s) scenario, the
RF accuracies and the time complexity given 𝑂(𝑇 log𝑛) equation are calculated,
where 𝑇 is the number of trees in the RF and 𝑛 is the size of the input data used
for training, assuming that the number of trees, 𝑇, is constant for all the feature
trials. As such, the time complexity is a factor of input data size, represented by
the number of features included without sacrificing much or any of the model
accuracy.

Table 18 Feature Importance Calculated for Each Sensor Feature [155].

Sensor label PS1 PS2 PS3 PS4 PS5 PS6 TS1 TS2 TS3 TS4 VS1

Importance
X100 (%)

0 0 0 29.689 16.036 14.118 6.446 8.977 8.920 9.509 2.875

In Table 19, four different RF model training experiments are conducted to find
out the best number of features required to train an RF on a hundred decision
tree. In the first trial, the most important feature PS4 is used alone to train the
RF model. The second trial used the top three important features PS4, PS5 and
PS6. The third trial applied the highest six features. Finally, only the non-zero
features are selected to train the RF model. For all the above four experiments,
the random forest has fixed hyperparameters which were randomly chosen as

123

one hundred trees and the maximum depth of five. Furthermore, 10-fold cross
validation technique is used to compute each trial’s accuracy.

Table 19 RF Accuracies Using Different Features Based on Their Importance [155].

Trial Description No. features RF Accuracy

No feature selection 11 0.985

Highest Feature 1 0.707

Highest Three 3 0.977

Highest Six 6 0.986

Non-zero
importance

8 0.981

For this experiment, the highest six features are used for the training process
since these features provided the best accuracy among all trials and shown
lower time and space accuracy comparing to the training using eleven and
eight features, respectively. The following figure shows how the time
complexity 𝑂(𝑇 log𝑛) and space complexity 𝑂(𝑛) for the RF are directly
proportional to the number of features used. It is crucial to emphasize that the

amount of accuracy sacrificed, and the added complexity tolerances are totally
dependent on the system used and one’s preferences. i.e., some other
researchers would use the highest three features with 0.977 accuracy, if ones
are willing to lose more accuracy in expense of the dramatic drop in both time
and space complexities.

Figure 33 RF Accuracy, Time, and Space Complexities in Respect of No. of Features [155].

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Accuracy time complexity Space Complexity

124

The next step is tuning the hyperparameters of the RF applied on the
dimensionally reduced dataset of the selected six features: PS4, PS5, PS6, TS2,
TS3 and TS4. The hyperparameters subject of tuning in this experiment are the
number of trees in the RF, the maximum depth of the tree, minimum number
of samples required to split a node and minimum number of samples required
to form a leaf node. As the purpose behind RF creation in this research is to
establish a set of base rules for fault diagnosis, the main hyperparameter of
focus is the number of trees to ensure lessening the complexity as possible.

A random grid of hyperparameters is created by applying random search over
a pre-defined range for each parameter separately. i.e., the number of trees is
pre-defined to range between one and one thousand, and only a hundred
possibility is selected from the range to form the random grid for this
hyperparameter. Followed by RF training using one of the randomly selected
pair of features at a time. The selection is validated using 3-fold cross validation
to calculate the accuracy of the RF model over a particular set of
hyperparameters. A hundred set of randomly selected parameters are used to
create the grid, which means 300 RF model training has been successfully
executed considering 3-fold cross validation over the hundred set of
possibilities in the grid. Finally, the set of hyperparameters with the highest
accuracy when applying 3-fold cross validation is the one selected to generate
the diagnostic rules.

The RF model trained after applying feature selection with randomly chosen

parameters yielded an accuracy of 0.9865 using a hundred decision trees
forming the RF with maximum depth of five. However, the best
hyperparameter tuned using cross validation over random search grid
improved the accuracy with 0.32 to reach 0.9865 . As well as, using only 49
trees in total instead of one hundred over the same depth, which has
dramatically decreased the complexity and size of the generated RF rules while
increasing the accuracy and speed of the diagnosis.

The best hyperparameters selected from the grid has 49 number of estimators,
minimum sample split of two, minimum leaf samples of one and maximum
depth of 83. It is worth to be mentioned that the accuracy of the RF using all the
best hyperparameters increased the accuracy to 0.99, but this slight rise in the
accuracy is not worth it, especially when it is compared to the massive increase
in the time and size of each tree in the RF, due to the large increase in the
maximum depth. Figure 36 shows the one of the decision trees in the RF after
feature selection and hyperparameter tuning.

125

Each tree in the RF can be translated into a set of nested if-else statements of
rules. These rules can be executed in a distributed fashion when a proper
scheduler is applied. Moreover, the formed dynamic, distributed rules from the
RF can be fed inside various system models to generate a hybrid approach out
of the data-driven and the model-based ones. The dynamic rules extracted from
the RF can be used as they are, converted to SQL queries if the model is a
relational database or a SPARQL queries if the system model is represented by
a semantic knowledgebase such as ontologies. The diagnostic rules can be
extracted from the RF dynamically, using a few lines of code in Python
language. For the sake of simplicity, Figure 35 shows the tree in Figure 36
pruned in a way that only the positive part of the condition after the root node
is remaining, connected to a series of nested if statements showing how this
part of the tree is translated into clear dynamic rules. The work in [11] provided
a graph-based FDD system for industrial systems using a model-based
approach, based on creating a knowledge-base of the system under diagnosis,
such as ontologies. Followed by manually feeding a set of static diagnostic rules
created by the system expert, into the ontology, in a way that forms a causation
relationship between the system sensors and the faults they lead to. In this work,
we propose creating dynamic rules using RF, extracting these rules, and

feeding them into the ontology instead of the expert rules that are static,
unreliable, and unverifiable. Furthermore, the extracted diagnostic rules using
RF can be applied in a variety of forms to fit the model expressing the system.

126

F

ig
u

re

34

O
n

e
o

f
th

e
D

ec
is

io
n

T

re
es

af

te
r

F
ea

tu
re

S

el
ec

ti
o

n

an
d

H

y
p

er
p

ar
am

et
er

 T
u

n
in

g
 [

15
5]

.

127

 if PS6 <= 9.682436466217041:

 if PS5 <= 9.378981590270996:

 if TS3 <= 40.929338455200195:

 if PS6 <= 5.359611511230469:

 if TS4 <= 32.44318962097168:

 return [[4. 0. 0. 0. 0.]]

 else: # if TS4 > 32.44318962097168

 return [[0. 1. 0. 0. 0.]]

 else: # if PS6 > 5.359611511230469

 if TS4 <= 30.676508903503418:

return [[0. 2. 0. 0. 1.]]

 else: # if TS4 > 30.676508903503418

 return [[0. 0. 2. 0. 0.]]

 else: # if TS3 > 40.929338455200195

 return [[0. 0. 0. 0. 495.]]

 else: # if PS5 > 9.378981590270996

 if PS4 <= 0.9992818832397461:

 return [[0. 638. 0. 0. 0.]]

 else: # if PS4 > 0.9992818832397461

 if PS4 <= 5.781721115112305:

 return [[0. 0. 0. 0. 2.]]

 else: # if PS4 > 5.781721115112305

 if TS3 <= 6.558143854141235:

 return [[0. 0. 2. 1. 0.]]

 else: # if TS3 > 6.558143854141235

 return [[17. 0. 1. 3. 0.]]

Figure 35 Diagnostic Rules Extraction from Parts of a Tree in the RF [155].

128

Figure 37 showcases the extracted rules from the optimized, hyperparameter
tuned RF, and how these rules are transformed to various forms and types to
match the nature of the system model. As mentioned before in this chapter, the
diagnostic rules can be translated into SQL queries in case a relational database
is the system model, or SPARQL queries if a semantic knowledge-base, such as
ontologies [12] are used to represent the system. The rules extracted from each
tree may be scheduled separately, or all together with the trees forming the RF.

Figure 37 A Hybrid RF Approach Between Data-driven and Model-based Approaches [155].

129

8. Chapter 7: Conclusions and Future Work

This work demonstrated a full research and experimental analysis regarding
FDD in hydraulic systems extracted from a hydraulic test rig. We made sure to
tackle all the steps in data-driven FDD methods starting from feature

engineering to establishing innovative intelligent models.

The contributions of this dissertation are summarized by the three main aspects,
in which each one of them contributes to solving many major research
problems and challenges connected to FDD in hydraulic systems. Below the
conclusion and future adaptations for each contribution provided in this thesis.

A. RkSE Conclusions

In this work Recursive k-means Silhouette Elimination (RkSE) is proposed,
tested, and validated. RkSE is a new unsupervised feature selection algorithm
with a novel idea of applying k-means clustering and silhouette measure
beyond its ordinary backward or forward selection style, but as a recursive
acquisition approach with the application of a user-defined threshold, that
plays a major role in the uniqueness of this approach.
RkSE can be applied for various applications. However, in this work RkSE is
applied to reduce dimensionality in univariate and multivariate sensor time-
series datasets. For future work, RkSE will be applied on numerous datasets of
different applications and fields such as, genetics, microarrays, text, images and
so on. Furthermore, this work focuses on the performance of RkSE on
univariate and multi-variate time-series datasets. i.e., sensor data.

130

RkSE is evaluated on a real measured data of a hydraulic test rig and validated
to solve a classical fault classification problem in two different experiments: (1)
RkSE is used in a univariate time-series dataset, to classify sensor faults in a
sliding window format. When RkSE is applied on sliding windows, its function
indicates the ability to select the best quality time points to represent the whole
window. In other words, RkSE can successfully be used as a signal compression
method when, applied to time-series data in a window format. (2) In a multi-
variate time-series data without the application of sliding windows, RkSE is
applied to select the best modality of features to represent the whole dataset.
In addition, this work structures a comprehensive review survey of feature
selection algorithms based on k-means clustering, existing in the literature.
Which yielded the creation of a new taxonomy for k-means clustering feature
selection methods.
The results of the two extensive experiments proves the uniqueness and
efficiency of RkSE method for time-series datasets in a univariate or multi-
variate format.
To sum up, RkSE represents an iterative, unsupervised, silhouette-based, k-
means clustering feature selection algorithm. Although, RkSE has plenty of
advantaged and contributions that exceed the methods RkSE in related-work

section, it also has limitations that we hope to eliminate in the future. The
following points show the strengths and limitations of RkSE method for feature
selection based on its functionality and workflow.
RkSE advantages are the following:

• Can Create a model representation of feature dependencies
(Iterative algorithm advantage).
• Feature selection and clustering are made concurrently in one
single operation. (Iterative Advantage)
• Unsupervised Feature Selection method, no labels required.
• Simple, robust, and low computational and time costs: Due to the
exclusive application of k-means and silhouette criteria, which provides
simplicity and reduce time and computational complexity
• User-interactive: allows the user to choose the value of the
threshold which give the freedom to select the best number of features
which provide the option to loosen the accuracy, or the complexity
constrains.
• Introducing a new concept of using k-means and silhouette
measure in a recursive manner, instead of the common forward and
backward approaches.

The limitations of RkSE are as follows:

• Prone to overfitting. (iterative algorithms disadvantage)

131

• The choice of the threshold if not chosen probably can drastically
affect the quality of the selection, which cannot be guaranteed since σ is
user selected.
• The accuracy is a little compromised because the algorithm
focuses on the relationship between the feature and the cluster, rather
than the relationships between features.

B. Hydraulic Systems FDD Model: A Joint Approach Between a LSTM
Autoencoder Detector and Classification Diagnosis:

In this section a two-staged FDD approach is proposed. Where the detection
and diagnosis are separated into two stages to guarantee detecting rare
occurrences and events. The detection process is represented by a LSTM
autoencoder that learns only from healthy observations, in an attempt to

reconstruct the healthy version of the given sequences, sensor window
readings or multi-sensors readings. Followed by the comparison between the
given sequences and their healthy reconstructed version, to measure the
deviation from the healthy state and the given sequences, which is vital to
detect the existence of faults and malfunctions when this deviation exceeds a
certain, learned threshold. The fault diagnosis is represented by a classification
process that can be a ML or DL algorithm, which is trained using only the faulty
observations captured by the detection stage using LSTM autoencoder.
The proposed approach is beyond the state-of-the-art methods by the following:

• The proposed method is applied into two entirely different experiments,
with different data pre-processing, acquisition and structuring, different DL
algorithmic designs, and above all to detect two different fault types: sensor
faults and component faults. The methods proposed in the literature only
focuses on one fault type, either component faults or sensor faults. However, it
is rarely seen that any work shows comprehension in detecting or diagnosing
different fault types at once.

• In the detection phase using LSTM autoencoder, some changes are made
from the existing related work. The most important addition is using the
sequence difference calculated by subtracting the Pearson’s autocorrelation
from one. The detection results using the complement of Pearson’s
autocorrelation comparing to the traditional signal difference measure applied
in the state-of-the-art research is proved experimentally. In experiment one to
detect sensor faults, the detection accuracy using signal difference is observed
as 62%, comparing to the detection accuracy when applying our proposed
measurement of signal difference, the detection accuracy is observed as 71%.
Moreover, in experiment two for component fault detection, the accuracies

132

observed using traditional signal difference, and the proposed one are 69% and
71%, respectively. The results of the detection phase in the two conducted
experiments prove the superiority of the proposed signal difference
measurement comparing to the traditional subtraction of signals to provide
signal difference.

• Investigating various feature engineering approaches and pairing them
with numerous ML and DL methods, to determine the most suitable feature
engineering method to classifiers of different functionality and design.
Furthermore, this pairing gives the opportunity to see how each classifier reacts
with different feature engineering methods of different procedure, which
would help future work researchers to select the best match pair or avoid the
worst pair for both data structures, windows univariate or no window multi-
variate. For example, in experiment one when dealing with sensor faults in a
sliding window data structure, it was noticeable that the chosen time-domain
features shown the highest diagnosis accuracy of almost all the classifiers. i.e.,
LDA, KNN, CART, RF and LSTM. Although the mean accuracy of all classifiers
using PCA was computed the highest of 82%, which is justified by the
consistency PCA shows with all the classifiers regardless their functionality.

However, time-domain extracted features show extremely low diagnosis
accuracies when applied to some classifiers such as LR and NB with the
detection accuracies of only 24.25% and 48.21%, respectively. Which explains
why the time-domain extracted features is not the highest mean accuracy even
though it provides the highest accuracy to the majority of the supervised
methods. On the other hand, in experiment two when component faults were
classified using multi-variate sensor’s readings without the application of
sliding windows, FI showed the highest diagnosis accuracy for all the ML
classifiers, and PCA shows the highest diagnosis accuracy when combined to
DL such as, CNN and LSTM.

• In the related work, the diagnosis phase is represented by some chosen
type of classifiers combined with a chosen set of features, without any analysis
or investigation in respect of other classifiers or features. In this work, after
careful experimental observations and calculations, the appropriate features
and their suitable classifier is used to represent the diagnosis phase for our
algorithm. In experiment one (univariate sliding window structure) the
diagnosis phase is chosen using the time-domain extracted features combined
with either CART or LSTM classifiers with the diagnosis accuracies of 99.51%
and 96.84%. However, in experiment two, when dealing with multi-variate
features without the application of sliding windows, FI combined with almost
all ML classifiers showed extremely high accuracies exceeding 98%. Thus, RF

133

combined with FI is the best combo used to perform multi-variate diagnosis,
especially when FI can be done implicitly during the RF training stage based
on FI nature, which can help in reducing time and computational complexities.

In conclusion, the proposed approach is used for the first time in the field of
industry 4.0 especially when applied to hydraulic rigs. Although, the proposed
work in this chapter has multiple changes and valuable improvements from
the state-of-the art, there is always a place for improvements and further
expansions. For future work, it can be a good challenge to improve experiment
one, by designing a LSTM autoencoder that can learn multiple sequences of
multiple windows that belongs to different sensors at a time applying one
LSTM autoencoding model. For example, in experiment one only one sensor at
a time (PS1) is used in a sliding window format to train the LSTM autoencoder
to predict/reconstruct the healthy window of the given PS1 window of size 60.
In the current approach we must train the LSTM autoencoder for each sensor
separately to learn how to reconstruct the healthy window of each. However,
A multi-variate approach, multi-sequences, multi-sensor deep neural network
design would be a sophisticated approach in the future, where maybe a number
of LSTM autoencoder batches can be connected together sequentially or in
parallel so each can train on different sensor window sequences. Furthermore,
the feature engineering methods applied to the diagnosis phase are all in time-
domain. Investigating frequency-domain or the combination of time and
frequency domains, such as applying Wavelet Coefficient Packer
Decomposition (WPD) would add different perspective for the future of FDD
in mechanical equipment’s.

C. A Hybrid Approach to Generate Dynamic Diagnostic Rules Based on RF:

 In this work, the architecture of a hybrid FDD method, between model-based
and data-driven approaches to achieve FDD for component faults, is
introduced. In this hybrid method, the data-driven part is represented by an
optimized and hyperparameter tuned RF, in order to generate dynamic,
diagnostic graphs that are later converted into a set of diagnostic rules and fed
into a pre-defined system diagnostic model, acting as the model-based part of
the proposed FDD system. The proposed approach provides a dynamic
solution, unlike other model-based FDD approaches. Additionally, there is the
option to apply distributed computing to the diagnostic graphs and extracted
rules, which can reduce time and resource complexity compared to traditional
data-driven approaches. Moreover, the proposed method introduces a new
methodology to approach RF in a model-based fashion, beyond its exclusive,
ordinary application as a data-driven approach.

134

The data-driven part of this system is experimentally applied and analyzed
using multivariate time-series sensor data collected from an actual hydraulic
test rig. The applied data-driven part includes the RF creation, RF feature
selection using non-zero feature importance, and RF pruning and
hyperparameter tuning using three-fold cross validation on a grid of variables,
selected using random search. Furthermore, the diagnostic rules in the form of
nested if-else statements are practically extracted from RF as the diagnostic
graph of this approach. The extracted rules can be converted into various forms
and shapes depending on the nature of the system model that is the subject of
integration.

This work has successfully provided an extension and development of the
model-based FDD approach introduced in [11], where the previous system is
domain-specific, and can only be applied to the model described in the
ontology. It also contains rigid knowledge preserved in the ontology as a set of
semantic rules, but later translated into static, domain-specific, application-
specific set of diagnostic rules with constrained reliability to the system’s expert.
On the other hand, our proposed method provided dynamic and reliable
diagnostic rules, with the combined advantages of both the data-driven and
model-based approaches.

The proposed FDD system offers a vast number of advantages and new
insights. However, there is always room for improvements. Thus, some
additional work and further modifications of the proposed system can be

applied in the future. In this work, the traditional RF algorithm is applied to
serve as the dynamic rule generator in both the offline learning and the online
update stage, using the newly arrived sensor reading. Instead, considering
online RF methods in the first place, such as Mondrian forests [162] or online
incremental RF (described in [163]), may reduce the training and update time.
Moreover, in future work a full application of this approach will be introduced
and examined in a practical study, where the extracted rules are converted into
SPARQL queries to fit the ontology designed of the chosen system.
Furthermore, a proper scheduler will be chosen to demonstrate the possibility
of distributed computing using the extracted diagnostic rules at run-time.

135

References

[1] R.-E. Precup, P. Angelov, B. S. J. Costa, and M. Sayed-Mouchaweh, “An
overview on fault diagnosis and nature-inspired optimal control of
industrial process applications,” Computers in Industry, vol. 74, pp. 75–94,
Dec. 2015, doi: 10.1016/j.compind.2015.03.001.

[2] P. Wang and C. Guo, “Based on the coal mine ’ s essential safety
management system of safety accident cause analysis,” 2013.

[3] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset
selection problem,” in Proceedings of the Eleventh International Conference on
International Conference on Machine Learning, New Brunswick, NJ, USA, Jul.
1994, pp. 121–129, Accessed: May 20, 2020. [Online].

[4] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, no. null, pp. 1157–1182, Mar. 2003.

[5] M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data
Analysis, vol. 1, no. 3, pp. 131–156, Dec. 1997, doi: 10.3233/IDA-1997-1302.

[6] H. Fröhlich, O. Chapelle, and B. Schölkopf, “Feature selection for support
vector machines using genetic algorithms,” Int. J. Artif. Intell. Tools, vol. 13,
no. 04, pp. 791–800, Dec. 2004, doi: 10.1142/S0218213004001818.

[7] S.-W. Lin, K.-C. Ying, C.-Y. Lee, and Z.-J. Lee, “An intelligent algorithm
with feature selection and decision rules applied to anomaly intrusion

detection,” Applied Soft Computing, vol. 12, no. 10, pp. 3285–3290, Oct. 2012,
doi: 10.1016/j.asoc.2012.05.004.

[8] D. K. Bhattacharyya and J. K. Kalita, Network Anomaly Detection: A Machine
Learning Perspective. Chapman & Hall/CRC, 2013.

[9] P. Arabie and L. J. Hubert, “An overview of combinatorial data analysis,”
in Clustering and Classification, 0 vols., WORLD SCIENTIFIC, 1996, pp. 5–63.

[10] S. Kasim, S. Deris, and R. M. Othman, “Multi-stage filtering for
improving confidence level and determining dominant clusters in
clustering algorithms of gene expression data,” Comput. Biol. Med., vol. 43,
no. 9, pp. 1120–1133, Sep. 2013, doi: 10.1016/j.compbiomed.2013.05.011.

136

[11] A. Mallak, A. Behravan, C. Weber, M. Fathi, and R. Obermaisser, “A
Graph-Based Sensor Fault Detection and Diagnosis for Demand-Controlled
Ventilation Systems Extracted from a Semantic Ontology,” in 2018 IEEE
22nd International Conference on Intelligent Engineering Systems (INES), Jun.
2018, pp. 000377–000382, doi: 10.1109/INES.2018.8523895.

[12] “Definition of ONTOLOGY.” https://www.merriam-
webster.com/dictionary/ontology (accessed Aug. 11, 2019).

[13] A. Rojko, “Industry 4.0 Concept: Background and Overview,”
International Journal of Interactive Mobile Technologies (iJIM), vol. 11, no. 5, Art.
no. 5, Jul. 2017.

[14] R. Doddannavar, A. Barnard, and J. Ganesh, Practical Hydraulic Systems:
Operation and Troubleshooting for Engineers and Technicians. Elsevier, 2005.

[15] “Pascal’s principle | Definition, Example, & Facts,” Encyclopedia
Britannica. https://www.britannica.com/science/Pascals-principle
(accessed Oct. 22, 2020).

[16] “What Is a Hydraulic System? Definition, Design, and Components |
Convergence Training,” Convergence Training Blog, Jul. 23, 2017.
https://www.convergencetraining.com/blog/what-is-a-hydraulic-
system-definition-design-and-components (accessed Oct. 22, 2020).

[17] R. Isermann and P. Ballé, “Trends in the application of model-based fault
detection and diagnosis of technical processes,” Control Engineering Practice,
vol. 5, no. 5, pp. 709–719, May 1997, doi: 10.1016/S0967-0661(97)00053-1.

[18] S. K. Kanev, “Robust fault-tolerant control,” 2004.

[19] K. Ni et al., “Sensor network data fault types,” ACM Trans. Sen. Netw.,
vol. 5, no. 3, p. 25:1-25:29, Jun. 2009, doi: 10.1145/1525856.1525863.

[20] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009, doi:
10.1145/1541880.1541882.

[21] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A
review of process fault detection and diagnosis: Part I: Quantitative model-
based methods,” Computers & Chemical Engineering, vol. 27, no. 3, pp. 293–
311, Mar. 2003, doi: 10.1016/S0098-1354(02)00160-6.

[22] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, “A review
of process fault detection and diagnosis: Part II: Qualitative models and
search strategies,” Computers & Chemical Engineering, vol. 27, pp. 313–326,
2003, doi: 10.1016/S0098-1354(02)00161-8.

137

[23] C. Skliros, M. E. Miguez, A. Fakhre, and I. Jennions, “A review of model
based and data-driven methods targeting hardware systems diagnostics,”
Diagnostyka, vol. 20, no. 1, pp. 3–21, Nov. 2018, doi: 10.29354/diag/99603.

[24] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A
review of process fault detection and diagnosis: Part III: Process history
based methods,” Computers & Chemical Engineering, vol. 27, no. 3, pp. 327–
346, Mar. 2003, doi: 10.1016/S0098-1354(02)00162-X.

[25] A. Poongodai and S. Bhuvaneswari, “AI Technique in Diagnostics and
Prognostics,” IJCA Proceedings on National Conference on Future Computing
2013, vol. NCFC, no. 1, pp. 1–4, Sep. 2013.

[26] “Machine Learning textbook.”
http://www.cs.cmu.edu/~tom/mlbook.html (accessed Jul. 09, 2020).

[27] J. Miao and L. Niu, “A Survey on Feature Selection,” Procedia Computer
Science, vol. 91, pp. 919–926, Jan. 2016, doi: 10.1016/j.procs.2016.07.111.

[28] J. C. Ang, A. Mirzal, H. Haron, and H. N. A. Hamed, “Supervised,
Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene
Selection,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 13, no. 5, pp. 971–989, Sep. 2016, doi:
10.1109/TCBB.2015.2478454.

[29] Z. Zhao and H. Liu, “Semi-supervised Feature Selection via Spectral
Analysis,” in Proceedings of the 2007 SIAM International Conference on Data
Mining, 0 vols., Society for Industrial and Applied Mathematics, 2007, pp.
641–646.

[30] Q. Cheng, H. Zhou, and J. Cheng, “The Fisher-Markov Selector: Fast
Selecting Maximally Separable Feature Subset for Multiclass Classification
with Applications to High-Dimensional Data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 6, pp. 1217–1233, Jun. 2011, doi:

10.1109/TPAMI.2010.195.

[31] J. G. Dy and C. E. Brodley, “Feature Selection for Unsupervised
Learning,” J. Mach. Learn. Res., vol. 5, pp. 845–889, Dec. 2004.

[32] K. Kira and L. A. Rendell, “A Practical Approach to Feature Selection,”
in Machine Learning Proceedings 1992, D. Sleeman and P. Edwards, Eds. San
Francisco (CA): Morgan Kaufmann, 1992, pp. 249–256.

[33] L. E. Raileanu and K. Stoffel, “Theoretical Comparison between the Gini
Index and Information Gain Criteria,” Annals of Mathematics and Artificial
Intelligence, vol. 41, no. 1, pp. 77–93, May 2004, doi:
10.1023/B:AMAI.0000018580.96245.c6.

138

[34] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” in Computational Systems Bioinformatics.
CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003,
Aug. 2003, pp. 523–528, doi: 10.1109/CSB.2003.1227396.

[35] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for
Cancer Classification using Support Vector Machines,” Machine Learning,
vol. 46, no. 1, pp. 389–422, Jan. 2002, doi: 10.1023/A:1012487302797.

[36] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. Fco. Martínez-
Trinidad, “A review of unsupervised feature selection methods,” Artif Intell
Rev, vol. 53, no. 2, pp. 907–948, Feb. 2020, doi: 10.1007/s10462-019-09682-y.

[37] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” presented at the Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:
Statistics, 1967, Accessed: Jun. 06, 2020. [Online]. Available:
https://projecteuclid.org/euclid.bsmsp/1200512992.

[38] C. Yuan and H. Yang, “Research on K-Value Selection Method of K-
Means Clustering Algorithm,” J — Multidisciplinary Scientific Journal, vol. 2,
no. 2, Art. no. 2, Jun. 2019, doi: 10.3390/j2020016.

[39] A. Singh, A. Yadav, A. E. Block, A. Rana, E. Block, and G. Floor, K-means

with Three different Distance Metrics. .

[40] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, Nov. 1987, doi: 10.1016/0377-0427(87)90125-
7.

[41] S. H. Walker and D. B. Duncan, “Estimation of the Probability of an
Event as a Function of Several Independent Variables,” Biometrika, vol. 54,
no. 1/2, pp. 167–179, 1967, doi: 10.2307/2333860.

[42] J. Tolles and W. J. Meurer, “Logistic Regression: Relating Patient
Characteristics to Outcomes,” JAMA, vol. 316, no. 5, pp. 533–534, Aug. 2016,
doi: 10.1001/jama.2016.7653.

[43] J. Joyce, “Bayes’ Theorem,” Jun. 2003, Accessed: Jul. 17, 2020. [Online].
Available: https://plato.stanford.edu/archives/spr2019/entries/bayes-
theorem/.

[44] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor
Nonparametric Regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, Aug. 1992, doi: 10.1080/00031305.1992.10475879.

139

[45] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936, doi:
10.1111/j.1469-1809.1936.tb02137.x.

[46] C. Cortes and V. Vapnik, “Support-vector networks,” Mach Learn, vol.
20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[47] L. Rokach and O. Maimon, Data mining with decision trees: theory and
applications, Second edition. Hackensack, New Jersey: World Scientific, 2015.

[48] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification
and Regression Trees,” 1983, doi: 10.2307/2530946.

[49] S. Shalev-Shwartz and S. Ben-David, “Understanding Machine Learning:
From Theory to Algorithms,” 2014.

[50] B. Anderson, Pattern Recognition: An introduction. Scientific e-Resources,

2019.

[51] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, 2nd ed. New
York: Springer-Verlag, 2009.

[52] L. Breiman, “Bagging predictors,” Mach Learn, vol. 24, no. 2, pp. 123–140,
Aug. 1996, doi: 10.1007/BF00058655.

[53] Tin Kam Ho, “Random decision forests,” in Proceedings of 3rd

International Conference on Document Analysis and Recognition, Aug. 1995, vol.
1, pp. 278–282 vol.1, doi: 10.1109/ICDAR.1995.598994.

[54] “RANDOM FORESTS Trademark of MINITAB, LLC - Registration
Number 3185828 - Serial Number 78642027 :: Justia Trademarks.”
http://trademarks.justia.com/786/42/random-78642027.html (accessed
Jan. 18, 2020).

[55] Tin Kam Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
20, no. 8, pp. 832–844, Aug. 1998, doi: 10.1109/34.709601.

[56] R. Bryll, R. Gutierrez-Osuna, and F. Quek, “Attribute bagging:
improving accuracy of classifier ensembles by using random feature
subsets,” Pattern Recognition, vol. 36, no. 6, pp. 1291–1302, Jun. 2003, doi:
10.1016/S0031-3203(02)00121-8.

[57] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–
133, Dec. 1943, doi: 10.1007/BF02478259.

140

[58] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain,” Psychological Review, pp. 65–386,
1958.

[59] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception (Vol. 2): computation, learning, architectures,
USA: Harcourt Brace & Co., 1992, pp. 65–93.

[60] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning, Madison, WI, USA, Jun. 2010,
pp. 807–814, Accessed: Aug. 23, 2020. [Online].

[61] “Hyperbolic functions - Encyclopedia of Mathematics.”
https://encyclopediaofmath.org/index.php?title=Hyperbolic_functions

(accessed Aug. 23, 2020).

[62] S. International Workshop on Artificial Neural Networks (1995 :
Torremolinos, From natural to artificial neural computation : International
Workshop on Artificial Neural Networks, Malaga-Torremolinos, Spain, June 7-9,
1995 : proceedings. Berlin ; New York : Springer-Verlag, 1995.

[63] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[64] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation
Functions,” arXiv:1710.05941 [cs], Oct. 2017, Accessed: Aug. 23, 2020.
[Online]. Available: http://arxiv.org/abs/1710.05941.

[65] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry. Cambridge/Mass.: MIT Press, 1969.

[66] ICTperspectives | Taliawebs, “Introducing Deep learning with Matlab,”
Accessed: Jan. 12, 2021. [Online]. Available:

https://www.slideshare.net/ICTperspectives/introducing-deep-
learning-with-matlab.

[67] L. Medsker, L. C. Jain, and L. C. Jain, Recurrent Neural Networks : Design
and Applications. CRC Press, 1999.

[68] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[69] S. Narayan, “The generalized sigmoid activation function: Competitive
supervised learning,” Information Sciences, vol. 99, no. 1, pp. 69–82, Jun. 1997,
doi: 10.1016/S0020-0255(96)00200-9.

141

[70] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” arXiv:1409.3215 [cs], Dec. 2014, Accessed: Sep. 09,
2020. [Online]. Available: http://arxiv.org/abs/1409.3215.

[71] “Learning Internal Representations by Error Propagation,” in Parallel
Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations, MITP, 1987, pp. 318–362.

[72] K. P. F.R.S, “LIII. On lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, Nov. 1901, doi:
10.1080/14786440109462720.

[73] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Advances in Neural
Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z.
Ghahramani, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
431–439.

[74] “UCI Machine Learning Repository: Citation Policy.”
https://archive.ics.uci.edu/ml/citation_policy.html (accessed Feb. 04,
2020).

[75] N. Helwig, E. Pignanelli, and A. Schütze, “D8.1 - Detecting and
Compensating Sensor Faults in a Hydraulic Condition Monitoring System,”
Proceedings SENSOR 2015, pp. 641–646, May 2015, doi:
http://dx.doi.org/10.5162/sensor2015/D8.1.

[76] N. Helwig, E. Pignanelli, and A. Schütze, “Condition monitoring of a
complex hydraulic system using multivariate statistics,” in 2015 IEEE
International Instrumentation and Measurement Technology Conference (I2MTC)

Proceedings, May 2015, pp. 210–215, doi: 10.1109/I2MTC.2015.7151267.

[77] T. Schneider, N. Helwig, and A. Schütze, “Automatic feature extraction
and selection for classification of cyclical time series data,” tm - Technisches
Messen, vol. 84, no. 3, pp. 198–206, 2017, doi: 10.1515/teme-2016-0072.

[78] A. Mallak and M. Fathi, “Sensor and Component Fault Detection and
Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder
Detector and Diagnostic Classifiers,” MDPI Sensors, vol. 21, no. 2, Art. no. 2,

Jan. 2021, doi: 10.3390/s21020433.

[79] J. M. Griffin, A. J. Doberti, V. Hernández, N. A. Miranda, and M. A. Vélez,
“Multiple classification of the force and acceleration signals extracted
during multiple machine processes: part 1 intelligent classification from an
anomaly perspective,” Int J Adv Manuf Technol, vol. 93, no. 1, pp. 811–823,
Oct. 2017, doi: 10.1007/s00170-017-0320-3.

142

[80] A. Krishnakumari, A. Elayaperumal, M. Saravanan, and C. Arvindan,
“Fault diagnostics of spur gear using decision tree and fuzzy classifier,” Int
J Adv Manuf Technol, vol. 89, no. 9, pp. 3487–3494, Apr. 2017, doi:
10.1007/s00170-016-9307-8.

[81] G. Li et al., “An improved decision tree-based fault diagnosis method for
practical variable refrigerant flow system using virtual sensor-based fault
indicators,” Applied Thermal Engineering, vol. 129, pp. 1292–1303, Jan. 2018,
doi: 10.1016/j.applthermaleng.2017.10.013.

[82] P. Santos, J. Maudes, and A. Bustillo, “Identifying maximum imbalance
in datasets for fault diagnosis of gearboxes,” J Intell Manuf, vol. 29, no. 2, pp.
333–351, Feb. 2018, doi: 10.1007/s10845-015-1110-0.

[83] Z. Noshad et al., “Fault Detection in Wireless Sensor Networks through

the Random Forest Classifier,” Sensors, vol. 19, no. 7, p. 1568, Jan. 2019, doi:
10.3390/s19071568.

[84] S. Zidi, T. Moulahi, and B. Alaya, “Fault Detection in Wireless Sensor
Networks Through SVM Classifier,” IEEE Sensors Journal, 2018, doi:
10.1109/JSEN.2017.2771226.

[85] S. Lee, W. Park, and S. Jung, “Fault Detection of Aircraft System with
Random Forest Algorithm and Similarity Measure,” The Scientific World

Journal, 2014. https://www.hindawi.com/journals/tswj/2014/727359/
(accessed Aug. 26, 2019).

[86] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, “Fault Diagnosis
of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests,”
IEEE Sensors Journal, vol. 17, no. 17, pp. 5581–5588, Sep. 2017, doi:
10.1109/JSEN.2017.2726011.

[87] B.-S. Yang, X. Di, and T. Han, “Random forests classifier for machine
fault diagnosis,” J Mech Sci Technol, vol. 22, no. 9, pp. 1716–1725, Sep. 2008,

doi: 10.1007/s12206-008-0603-6.

[88] D. Wu, C. Jennings, J. Terpenny, and S. Kumara, “Cloud-based machine
learning for predictive analytics: Tool wear prediction in milling,” in 2016
IEEE International Conference on Big Data (Big Data), Dec. 2016, pp. 2062–2069,
doi: 10.1109/BigData.2016.7840831.

[89] M. Canizo, E. Onieva, A. Conde, S. Charramendieta, and S. Trujillo,
“Real-time predictive maintenance for wind turbines using Big Data
frameworks,” in 2017 IEEE International Conference on Prognostics and Health
Management (ICPHM), Jun. 2017, pp. 70–77, doi:
10.1109/ICPHM.2017.7998308.

143

[90] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E.
Vásquez, “Gearbox fault diagnosis based on deep random forest fusion of
acoustic and vibratory signals,” Mechanical Systems and Signal Processing, vol.
76–77, pp. 283–293, Aug. 2016, doi: 10.1016/j.ymssp.2016.02.007.

[91] K. Gajowniczek, I. Grzegorczyk, and T. Ząbkowski, “Reducing False
Arrhythmia Alarms Using Different Methods of Probability and Class
Assignment in Random Forest Learning Methods,” Sensors, vol. 19, no. 7, p.
1588, Jan. 2019, doi: 10.3390/s19071588.

[92] E. Ccopa Rivera et al., “Data-Driven Modeling of Smartphone-Based
Electrochemiluminescence Sensor Data Using Artificial Intelligence,”
Sensors, vol. 20, no. 3, p. 625, Jan. 2020, doi: 10.3390/s20030625.

[93] A. Diez-Olivan, J. A. Pagan, N. L. D. Khoa, R. Sanz, and B. Sierra,

“Kernel-based support vector machines for automated health status
assessment in monitoring sensor data,” Int J Adv Manuf Technol, vol. 95, no.
1, pp. 327–340, Mar. 2018, doi: 10.1007/s00170-017-1204-2.

[94] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, “Machine
Learning for Predictive Maintenance: A Multiple Classifier Approach,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp. 812–820, Jun.
2015, doi: 10.1109/TII.2014.2349359.

[95] M. Baptista, S. Sankararaman, Ivo. P. de Medeiros, C. Nascimento, H.
Prendinger, and E. M. P. Henriques, “Forecasting fault events for predictive
maintenance using data-driven techniques and ARMA modeling,”
Computers & Industrial Engineering, vol. 115, pp. 41–53, Jan. 2018, doi:
10.1016/j.cie.2017.10.033.

[96] O. R. Seryasat, M. Aliyari shoorehdeli, F. Honarvar, and A. Rahmani,
“Multi-fault diagnosis of ball bearing based on features extracted from
time-domain and multi-class support vector machine(MSVM),” in 2010

IEEE International Conference on Systems, Man and Cybernetics, Oct. 2010, pp.
4300–4303, doi: 10.1109/ICSMC.2010.5642390.

[97] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E.
Vásquez, “Multimodal deep support vector classification with homologous
features and its application to gearbox fault diagnosis,” Neurocomputing, vol.
168, pp. 119–127, Nov. 2015, doi: 10.1016/j.neucom.2015.06.008.

[98] H. Li, Y. Wang, P. Zhao, X. Zhang, and P. Zhou, “Cutting tool
operational reliability prediction based on acoustic emission and logistic
regression model,” J Intell Manuf, vol. 26, no. 5, pp. 923–931, Oct. 2015, doi:
10.1007/s10845-014-0941-4.

144

[99] J. J. A. Costello, G. M. West, and S. D. J. McArthur, “Machine Learning
Model for Event-Based Prognostics in Gas Circulator Condition
Monitoring,” IEEE Transactions on Reliability, vol. 66, no. 4, pp. 1048–1057,
Dec. 2017, doi: 10.1109/TR.2017.2727489.

[100] D. H. Pandya, S. H. Upadhyay, and S. P. Harsha, “Fault diagnosis of
rolling element bearing by using multinomial logistic regression and
wavelet packet transform,” Soft Comput, vol. 18, no. 2, pp. 255–266, Feb. 2014,
doi: 10.1007/s00500-013-1055-1.

[101] W. Caesarendra, A. Widodo, and B.-S. Yang, “Application of relevance
vector machine and logistic regression for machine degradation
assessment,” Mechanical Systems and Signal Processing, vol. 24, no. 4, pp.
1161–1171, May 2010, doi: 10.1016/j.ymssp.2009.10.011.

[102] T.-L. Wu, D. Y. Sari, B.-T. Lin, and C.-W. Chang, “Monitoring of punch
failure in micro-piercing process based on vibratory signal and logistic
regression,” Int J Adv Manuf Technol, vol. 93, no. 5, pp. 2447–2458, Nov. 2017,
doi: 10.1007/s00170-017-0701-7.

[103] W. Ahmad, S. A. Khan, M. M. M. Islam, and J.-M. Kim, “A reliable
technique for remaining useful life estimation of rolling element bearings
using dynamic regression models,” Reliability Engineering & System Safety,
vol. 184, pp. 67–76, Apr. 2019, doi: 10.1016/j.ress.2018.02.003.

[104] Meosis, “PRONOSTIA › Formatronics,” Patrick Nectoux Formatronics.
http://www.formatronics.fr/en/pronostia-en.html (accessed Oct. 18,
2020).

[105] N. Helwig, E. Pignanelli, and A. Schütze, “D8.1 - Detecting and
Compensating Sensor Faults in a Hydraulic Condition Monitoring System,”
Proceedings SENSOR 2015, pp. 641–646, May 2015, doi:
http://dx.doi.org/10.5162/sensor2015/D8.1.

[106] Y. Lu et al., “A Data-Based Approach for Sensor Fault Detection and
Diagnosis of Electro-Pneumatic Brake,” in 2019 IEEE International
Conference on Prognostics and Health Management (ICPHM), Jun. 2019, pp. 1–
6, doi: 10.1109/ICPHM.2019.8819443.

[107] “Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry
Milling Operation | PHM Society.”
https://www.phmsociety.org/node/79 (accessed Oct. 19, 2020).

[108] P. Park, P. D. Marco, H. Shin, and J. Bang, “Fault Detection and
Diagnosis Using Combined Autoencoder and Long Short-Term Memory
Network,” Sensors (Basel), vol. 19, no. 21, Oct. 2019, doi: 10.3390/s19214612.

145

[109] xiaolu chen, “Tennessee Eastman simulation dataset.” IEEE, Jun. 09,
2019, Accessed: Oct. 11, 2020. [Online]. Available: https://ieee-
dataport.org/documents/tennessee-eastman-simulation-dataset.

[110] C. Lu, Z.-Y. Wang, W.-L. Qin, and J. Ma, “Fault diagnosis of rotary
machinery components using a stacked denoising autoencoder-based
health state identification,” Signal Processing, vol. 130, pp. 377–388, Jan. 2017,
doi: 10.1016/j.sigpro.2016.07.028.

[111] Z. Li, J. Li, Y. Wang, and K. Wang, “A deep learning approach for
anomaly detection based on SAE and LSTM in mechanical equipment,” Int
J Adv Manuf Technol, vol. 103, no. 1, pp. 499–510, Jul. 2019, doi:
10.1007/s00170-019-03557-w.

[112] Z. Chen, S. Deng, X. Chen, C. Li, R.-V. Sanchez, and H. Qin, “Deep

neural networks-based rolling bearing fault diagnosis,” Microelectronics
Reliability, vol. 75, pp. 327–333, Aug. 2017, doi:
10.1016/j.microrel.2017.03.006.

[113] H. Shao, H. Jiang, H. Zhao, and F. Wang, “A novel deep autoencoder
feature learning method for rotating machinery fault diagnosis,” Mechanical
Systems and Signal Processing, vol. 95, pp. 187–204, Oct. 2017, doi:
10.1016/j.ymssp.2017.03.034.

[114] T. Junbo, L. Weining, A. Juneng, and W. Xueqian, “Fault diagnosis
method study in roller bearing based on wavelet transform and stacked
auto-encoder,” in The 27th Chinese Control and Decision Conference (2015
CCDC), May 2015, pp. 4608–4613, doi: 10.1109/CCDC.2015.7162738.

[115] H. Shao, H. Jiang, F. Wang, and H. Zhao, “An enhancement deep feature
fusion method for rotating machinery fault diagnosis,” Knowledge-Based
Systems, vol. 119, pp. 200–220, Mar. 2017, doi: 10.1016/j.knosys.2016.12.012.

[116] N. K. Verma, V. K. Gupta, M. Sharma, and R. K. Sevakula, “Intelligent

condition based monitoring of rotating machines using sparse auto-
encoders,” in 2013 IEEE Conference on Prognostics and Health Management
(PHM), Jun. 2013, pp. 1–7, doi: 10.1109/ICPHM.2013.6621447.

[117] Z. Chen and W. Li, “Multisensor Feature Fusion for Bearing Fault
Diagnosis Using Sparse Autoencoder and Deep Belief Network,” IEEE
Transactions on Instrumentation and Measurement, vol. 66, no. 7, pp. 1693–
1702, Jul. 2017, doi: 10.1109/TIM.2017.2669947.

[118] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A sparse auto-
encoder-based deep neural network approach for induction motor faults
classification,” Measurement, vol. 89, pp. 171–178, Jul. 2016, doi:
10.1016/j.measurement.2016.04.007.

146

[119] H. Shao, H. Jiang, Y. Lin, and X. Li, “A novel method for intelligent fault
diagnosis of rolling bearings using ensemble deep auto-encoders,”
Mechanical Systems and Signal Processing, vol. 102, pp. 278–297, Mar. 2018,
doi: 10.1016/j.ymssp.2017.09.026.

[120] Y. Huang, C.-H. Chen, and C.-J. Huang, “Motor Fault Detection and
Feature Extraction Using RNN-Based Variational Autoencoder,” IEEE
Access, vol. 7, pp. 139086–139096, 2019, doi: 10.1109/ACCESS.2019.2940769.

[121] “Welcome to the Case Western Reserve University Bearing Data Center
Website | Bearing Data Center.”
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-
western-reserve-university-bearing-data-center-website (accessed Oct. 19,
2020).

[122] “NASA | Open Data | NASA Open Data Portal.”
https://nasa.github.io/data-nasa-gov-frontpage/ (accessed Oct. 19, 2020).

[123] Z. Hui-jie, R. Ting, W. Xin-qing, Z. You, and F. Hu-sheng, “Fault
diagnosis of hydraulic pump based on stacked autoencoders,” 2015 12th
IEEE International Conference on Electronic Measurement & Instruments
(ICEMI), 2015, doi: 10.1109/ICEMI.2015.7494195.

[124] A. Mallak and M. Fathi, “Unsupervised Feature Selection Using
Recursive k-Means Silhouette Elimination (RkSE): A Two-Scenario Case
Study for Fault Classification of High-Dimensional Sensor Data,” Aug. 2020,
doi: 10.20944/preprints202008.0254.v1.

[125] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A
Survey on semi-supervised feature selection methods,” Pattern Recognition,
vol. 64, pp. 141–158, Apr. 2017, doi: 10.1016/j.patcog.2016.11.003.

[126] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine
learning: A new perspective,” Neurocomputing, vol. 300, pp. 70–79, Jul. 2018,
doi: 10.1016/j.neucom.2017.11.077.

[127] S. Alelyani, J. Tang, and H. Liu, “Feature Selection for Clustering: A
Review,” 2013, doi: 10.1201/9781315373515-2.

[128] M. Dash and H. Liu, “Feature Selection for Clustering,” in Knowledge
Discovery and Data Mining. Current Issues and New Applications, Berlin,
Heidelberg, 2000, pp. 110–121, doi: 10.1007/3-540-45571-X_13.

[129] Y. Kim, W. N. Street, and F. Menczer, “Evolutionary model selection in
unsupervised learning,” Intell. Data Anal., vol. 6, no. 6, pp. 531–556, Dec.
2002.

147

[130] E. R. Hruschka, E. R. Hruschka, T. F. Covoes, and N. F. F. Ebecken,
“Feature selection for clustering problems: a hybrid algorithm that iterates
between k-means and a Bayesian filter,” in Fifth International Conference on
Hybrid Intelligent Systems (HIS’05), Nov. 2005, p. 6 pp.-, doi:
10.1109/ICHIS.2005.42.

[131] M. Breaban and H. Luchian, “A unifying criterion for unsupervised
clustering and feature selection,” Pattern Recognition, vol. 44, no. 4, pp. 854–
865, Apr. 2011, doi: 10.1016/j.patcog.2010.10.006.

[132] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2,
pp. 224–227, Apr. 1979, doi: 10.1109/TPAMI.1979.4766909.

[133] D. S. Modha and W. S. Spangler, “Feature Weighting in k-Means

Clustering,” Machine Learning, vol. 52, no. 3, pp. 217–237, Sep. 2003, doi:
10.1023/A:1024016609528.

[134] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable
weighting in k-means type clustering,” IEEE Trans Pattern Anal Mach Intell,
vol. 27, no. 5, pp. 657–668, May 2005, doi: 10.1109/TPAMI.2005.95.

[135] E. R. Hruschka and T. F. Covoes, “Feature Selection for Cluster Analysis:
an Approach Based on the Simplified Silhouette Criterion,” in International
Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce (CIMCA-IAWTIC’06), Nov. 2005, vol. 1, pp. 32–38, doi:
10.1109/CIMCA.2005.1631238.

[136] L. Jing, M. K. Ng, and J. Z. Huang, “An Entropy Weighting k-Means
Algorithm for Subspace Clustering of High-Dimensional Sparse Data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1026–
1041, Aug. 2007, doi: 10.1109/TKDE.2007.1048.

[137] B. Sahu, S. Dehuri, and A. K. Jagadev, “Feature selection model based
on clustering and ranking in pipeline for microarray data,” Informatics in
Medicine Unlocked, vol. 9, pp. 107–122, Jan. 2017, doi:
10.1016/j.imu.2017.07.004.

[138] D. M. Witten and R. Tibshirani, “A framework for feature selection in

clustering,” J Am Stat Assoc, vol. 105, no. 490, pp. 713–726, Jun. 2010, doi:
10.1198/jasa.2010.tm09415.

[139] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423, 2001, doi:
10.1111/1467-9868.00293.

148

[140] S. Wang, J. Tang, and H. Liu, “Embedded unsupervised feature
selection,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, Texas, Jan. 2015, pp. 470–476, Accessed: Jun. 11, 2020.
[Online].

[141] J. Guo, Y. Guo, X. Kong, and R. He, “Unsupervised feature selection with
ordinal locality,” in 2017 IEEE International Conference on Multimedia and
Expo (ICME), Jul. 2017, pp. 1213–1218, doi: 10.1109/ICME.2017.8019357.

[142] S. Chormunge and S. Jena, “Correlation based feature selection with
clustering for high dimensional data,” Journal of Electrical Systems and
Information Technology, vol. 5, no. 3, pp. 542–549, Dec. 2018, doi:
10.1016/j.jesit.2017.06.004.

[143] A. Wosiak and D. Zakrzewska, “Integrating Correlation-Based Feature

Selection and Clustering for Improved Cardiovascular Disease Diagnosis,”
Complexity, Oct. 14, 2018.
https://www.hindawi.com/journals/complexity/2018/2520706/
(accessed Jun. 12, 2020).

[144] O. L. Mangasarian, W. N. Street, and W. H. Wolberg, “Breast Cancer
Diagnosis and Prognosis Via Linear Programming,” Operations Research, vol.
43, no. 4, pp. 570–577, Aug. 1995, doi: 10.1287/opre.43.4.570.

[145] “Donald Bren School of Information and Computer Sciences @
University of California, Irvine.” https://www.ics.uci.edu/ (accessed Jun.
15, 2020).

[146] “UCI Machine Learning Repository.”
http://archive.ics.uci.edu/ml/index.php (accessed Jun. 15, 2020).

[147] A. K. Jain and R. C. Dubes, Algorithms for clustering data. USA: Prentice-
Hall, Inc., 1988.

[148] K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner, “Clustering gene-
expression data with repeated measurements,” Genome Biology, vol. 4, no. 5,
p. R34, Apr. 2003, doi: 10.1186/gb-2003-4-5-r34.

[149] J. Handl and J. Knowles, “Improvements to the scalability of
multiobjective clustering,” in 2005 IEEE Congress on Evolutionary
Computation, Sep. 2005, vol. 3, pp. 2372-2379 Vol. 3, doi:
10.1109/CEC.2005.1554990.

[150] “Broad Institute,” Broad Institute. https://www.broadinstitute.org/
(accessed Jun. 15, 2020).

[151] “Microarray Datasets.”
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html (accessed Jun. 15, 2020).

149

[152] “Microarray.” http://ico2s.org/datasets/microarray.html (accessed
Jun. 15, 2020).

[153] “Molecular Portraits > Download.” http://genome-
www.stanford.edu/breast_cancer/molecularportraits/download.shtml
(accessed Jun. 15, 2020).

[154] P. Park, P. D. Marco, H. Shin, and J. Bang, “Fault Detection and
Diagnosis Using Combined Autoencoder and Long Short-Term Memory
Network,” Sensors (Basel), vol. 19, no. 21, Oct. 2019, doi: 10.3390/s19214612.

[155] A. Mallak and M. Fathi, “A Hybrid Approach: Dynamic Diagnostic
Rules for Sensor Systems in Industry 4.0 Generated by Online
Hyperparameter Tuned Random Forest,” Sci, vol. 2, no. 4, Art. no. 4, Dec.
2020, doi: 10.3390/sci2040075.

[156] “Beware Default Random Forest Importances.”
http://explained.ai/decision-tree-viz/index.html (accessed Feb. 08, 2020).

[157] P. Probst, M. Wright, and A.-L. Boulesteix, “Hyperparameters and
Tuning Strategies for Random Forest,” WIREs Data Mining Knowl Discov,
vol. 9, no. 3, May 2019, doi: 10.1002/widm.1301.

[158] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 281–305, Feb. 2012.

[159] Z. B. Zabinsky, “Random Search Algorithms,” in Wiley Encyclopedia of
Operations Research and Management Science, American Cancer Society, 2011.

[160] “sklearn.model_selection.RandomizedSearchCV — scikit-learn 0.22.1
documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.Randomiz
edSearchCV.html (accessed Feb. 09, 2020).

[161] “SPARQL,” Wikipedia. Jan. 29, 2020, Accessed: Feb. 14, 2020. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=SPARQL&oldid=938150653.

[162] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian Forests:
Efficient Online Random Forests,” arXiv:1406.2673 [cs, stat], Feb. 2015,
Accessed: Mar. 10, 2020. [Online]. Available:
http://arxiv.org/abs/1406.2673.

[163] O. Hassab Elgawi and O. Hasegawa, “Online incremental random
forests,” in 2007 International Conference on Machine Vision, Dec. 2007, pp.
102–106, doi: 10.1109/ICMV.2007.4469281.

150

[164] J. P. Martins, “Review: Michael R. Genesereth, Nils J. Nilsson, Logical
Foundations of Artificial Intelligence,” J. Symbolic Logic, vol. 55, no. 3, pp.
1304–1307, Sep. 1990.

[165] “Definition of ONTOLOGY.” https://www.merriam-
webster.com/dictionary/ontology (accessed Mar. 30, 2017).

[166] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?,” International Journal of Human-Computer Studies, vol.
43, no. 5, pp. 907–928, Nov. 1995, doi: 10.1006/ijhc.1995.1081.

[167] I. Niles and A. Pease, “Towards a Standard Upper Ontology,” in
Proceedings of the International Conference on Formal Ontology in Information
Systems - Volume 2001, New York, NY, USA, 2001, pp. 2–9, doi:
10.1145/505168.505170.

[168] M. Uschold and M. Gruninger, “Ontologies: principles, methods and
applications,” The Knowledge Engineering Review, vol. 11, no. 2, pp. 93–136,
Jun. 1996, doi: 10.1017/S0269888900007797.

[169] A. Mallak, C. Weber, M. Fathi, and A. Holland, “Active diagnosis
automotive ontology for distributed embedded systems,” in 2017 IEEE
European Technology and Engineering Management Summit (E-TEMS), Oct.
2017, pp. 1–6, doi: 10.1109/E-TEMS.2017.8244219.

[170] “protégé.” https://protege.stanford.edu/ (accessed Aug. 11, 2019).

[171] L. W. Lacy, “Owl: Representing Information Using the Web Ontology
Language,” 2005.

[172] I. M. M. El Emary and S. Ramakrishnan, Wireless Sensor Networks: From
Theory to Applications. Boca Raton, FL, USA: CRC Press, Inc., 2013.

[173] M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan, “Machine Learning in
Wireless Sensor Networks: Algorithms, Strategies, and Applications,” IEEE

Communications Surveys Tutorials, vol. 16, no. 4, pp. 1996–2018,
Fourthquarter 2014, doi: 10.1109/COMST.2014.2320099.

[174] E. Jovanov, A. Milenkovic, C. Otto, and P. C. de Groen, “A wireless body
area network of intelligent motion sensors for computer assisted physical
rehabilitation,” J Neuroeng Rehabil, vol. 2, no. 1, p. 6, Mar. 2005, doi:
10.1186/1743-0003-2-6.

[175] E. Jovanov et al., “A WBAN System for Ambulatory Monitoring of
Physical Activity and Health Status: Applications and Challenges,” Conf
Proc IEEE Eng Med Biol Soc, vol. 4, pp. 3810–3813, 2005, doi:
10.1109/IEMBS.2005.1615290.

151

[176] M. O. Adepeju and A. Evans, “A dynamic microsimulation framework
for generating synthetic spatiotemporal crime patterns,” GISRUK 2018
Proceedings, Mar. 07, 2018. http://eprints.whiterose.ac.uk/128602/
(accessed Aug. 24, 2019).

[177] Q. I. Ali, A. Abdulmaowjod, and H. M. Mohammed, “Simulation amp;
performance study of wireless sensor network (WSN) using MATLAB,” in
2010 1st International Conference on Energy, Power and Control (EPC-IQ), Nov.
2010, pp. 307–314.

[178] M. N. Jambli, M. I. Bandan, K. S. Pillay, and S. M. Suhaili, “An Analytical
Study of LEACH Routing Protocol for Wireless Sensor Network,” in 2018
IEEE Conference on Wireless Sensors (ICWiSe), Nov. 2018, pp. 44–49, doi:
10.1109/ICWISE.2018.8633291.

[179] “Weather archive Jena.” https://kaggle.com/pankrzysiu/weather-
archive-jena (accessed Aug. 13, 2019).

[180] “Intel Lab Data.” http://db.csail.mit.edu/labdata/labdata.html
(accessed Aug. 13, 2019).

[181] “Moist Air Source Domain - MATLAB & Simulink - MathWorks United
Kingdom.”
https://uk.mathworks.com/help/physmod/simscape/lang/moist-air-
source-domain.html (accessed Aug. 13, 2019).

[182] G. Bajaj, R. Agarwal, P. Singh, N. Georgantas, and V. Issarny, “A study
of existing Ontologies in the IoT-domain,” arXiv:1707.00112 [cs], Jul. 2017,
Accessed: Sep. 01, 2019. [Online]. Available:
http://arxiv.org/abs/1707.00112.

[183] A. Behravan, R. Obermaisser, and A. Nasari, “Thermal dynamic
modeling and simulation of a heating system for a multi-zone office
building equipped with demand controlled ventilation using

MATLAB/Simulink,” in 2017 International Conference on Circuits, System and
Simulation (ICCSS), Jul. 2017, pp. 103–108, doi:
10.1109/CIRSYSSIM.2017.8023191.

[184] A. Behravan, R. Obermaisser, D. H. Basavegowda, and S. Meckel,
“Automatic model-based fault detection and diagnosis using diagnostic
directed acyclic graph for a demand-controlled ventilation and heating
system in Simulink,” in 2018 Annual IEEE International Systems Conference

(SysCon), Apr. 2018, pp. 1–7, doi: 10.1109/SYSCON.2018.8369614.

152

9. Appendix A: Ontology and Ontology Design

In order to enhance the system ability for detecting faults, isolating them, and
deciding the most suitable recovery action during the shortest possible
completion period at runtime. It is necessary to build a precise and appropriate

knowledge-based model that can serve the diagnosis and the fixing tasks
efficiently and accurately. In this section, the literature of ontologies is
described and explained as an example of knowledge-based systems, which are
used in this work as a part of the model-based, component fault detection and
diagnosis section to extract static diagnostic graphs.

Conceptualization is the foundation of any formally represented knowledge.
conceptualization is needed to represent all the fundamental terms in a
knowledge-base, including the objects, concepts and all the entities that are
created to express an area of interest and all the connecting relationships
between them [164].

Knowledge can be specified either implicitly or explicitly. In this study,
ontologies are our knowledge-based form of interest. The term ontology itself
is originally inherited from philosophy, where the ontology is a symbol of
existence, the nature of being and reality, as well as the categories of beings and
the connections between them. Historically, ontologies are categorized as a
sub-major of metaphysics [165].

In the field of knowledge-based systems, ontologies formalize their concept
from the studies in philosophy. What exists in our domain is exactly what will
be included in the ontology. The set of entities that exist in our domain is called

153

the universe of discourse. Thus, we can define the ontology for a knowledge-
based system as a set of fundamental terms, which constructs the entities in the
universe of discourse. e.g., classes, relations or other objects, and with natural
languages, we can describe their names and the formal axioms and constraints
between them.

Ontology representations can be either simple with just a few classes, hierarchy
and relations, or extremely complicated with nested hierarchies, classes or
multi-connected relations. Sophisticated ontologies tend to be easier to
understand and learn by non-expert individuals. The main drawback of large
ontologies is the lack of computational cost efficiency, due to the time and
complexity of both querying and reasoning for large systems that can be costly
to compute especially with a very complex structure or large number of
instances. Hence, the main concern in designing our automotive ontology was
to keep it simple but detailed enough to guarantee an accurate presentation of
all the modelled facts in the reality. Additionally, simplifying the model plays
an important role in simplifying the description of the raw data such as sensors
types, values and thresholds, as well as being able to keep periodical history
records of all the sensors values, which would benefit the quality of the
diagnosis and learning in the future.

Ontology design is usually done as a collaborative task between a team of
knowledge-engineers and domain experts, e.g. car technicians, IoT
experts…etc. The main goal behind the ontology development process is to

create a model that offers a common understanding between people of different
areas of expertise and backgrounds [166].

In the last few decades, many studies about ontology development, design and
methodologies have been proposed. The main steps of creating an ontology can
be extracted from these studies as follows [167]:

- Define the domain of interest:

It is important to identify and define the domain that is needed to be modeled,
the scope of this domain and the main purposes behind the creation of such
domains. To ensure a better knowledge of the domain, it is advisable to answer
some basic questions about the system. Such as:

What will the domain of the ontology cover?

What is the purpose of the ontology?

154

What type of questions are the ontology expected to answer?

Who is the target user of the ontology?

The answer to these questions might vary during the process of ontology
design, but at least answering these questions would limit the scope of the
ontology and direct it to a desired direction.

• Search for existing ontologies of the same domain:

Sometimes it is hard and time consuming to build an ontology from scratch,
especially when the knowledge-based expert has no clue about the domain, or
in case of the absence of field experts in the ontology development process. In
this case, it is crucial to study existing ontologies of the same domain, to create
a general idea about the domain of interest as well as the possibility to scale
and adjust the existing ontologies to meet the desired goal ontology.

• List keywords and important domain terms:

It is very useful to write down all the terms related to the domain, in particular,
the ones that answer the basic questions mentioned earlier.

• Create classes and hierarchy:

There are many approaches that describe the development of class hierarchy,
we can limit them into three main approaches [168]: a top-down, a bottom-up
and a combination approach. Simply the main difference between these
approaches is the direction of the development process, which is very clear as
the approaches names indicate; top-down for example, indicates the design
process that starts with creating the top or super-classes with the most general
details till the most down subclasses with the most detailed information.

• Define class properties and data properties:

The structured hierarchy will not provide an enough level of details, so that
adding class properties and data properties will provide additional sources of
clarity to the ontology and it will help to answer the basic domain questions.

• Define the facets or constraints connected to each class and property value
if needed:

155

Many facets can be added regarding the value type, the allowed values and the
number of allowed values that is what called ‘Cardinality’ and any other values
that might benefit the description of the slot.

• Define individuals:

Define individuals for each class, subclass and all the components added, then
connect these individuals with the defined relationships between them and
describe their property/data values if needed.

156

10. Appendix B: Active Diagnosis and Repair
Automotive (ADRA) Ontology

The active diagnosis and repair automotive system (ADRA) is a computing
system, which describes the collaboration between knowledge-based systems
and embedded systems to achieve an active diagnosis and repair for
automotive failures at runtime [169].

Table 20 shows the main signs and symptoms associated with sensors used in

the described system. The sensors, symptoms, failures and recovery actions are
stored within a database. The data was collected based on the fusion of
expertise between automotive and knowledge-based experts. It contains the
following main attributes: sensor type, sensed object attribute (the sensed object
is a ‘car’), location of the sensor in the sensed object, possible symptoms
associated with the sensor, the sensor’s current value, sensor threshold value,
external conditions and the main failures and the recovery actions performed
to fix the failures. Symptoms might lead to other symptoms and the succession
of connected symptoms represents a graph.

Table 20 Selected Sensors and their Corresponding Signs/Symptoms

Sensors Symptoms/signs

Oxygen Sensor
“Check engine” light on, Bad gas
mileage, Rough engine

Crankshaft
Position Sensor

Issues starting the vehicle, “Check
engine” light on

Camshaft
Position Sensor

“Check engine” light on, Vehicle won’t
start

157

Sensors Symptoms/signs

Knock Sensor
Loss fuel mileage, Trouble in
acceleration.

Throttle
Position Sensor

“Check engine” light on, Trouble in
acceleration.

Pressure Sensor
Gas smell after starting the engine,
Excessive fuel consumption, Trouble
in acceleration.

Figure 38 shows the overall ADRA system workflow. The detection process
begins with collecting the values of the embedded diagnostic sensors in the
vehicle each specified period of time. Then the values are temporarily stored in
a database. Stored values can be used to serve a learning process which is
planned to be developed and performed in a latter project stage to improve the

diagnosis of new symptoms and failures. The sensors are embedded into
different components of the vehicle, such as the engine, accelerating pedals, oil
and water tanks and many more.

The detection of prospective symptoms can be done by continuously
monitoring and temporarily storing the instant values of these sensors and then
continuously comparing them to the set threshold values at runtime. The
threshold values are not the only conditions to complete the symptoms and
failures. Other factors, as external, environmental factors, can include:

• Weather conditions: weather conditions can include the

presence or absence of rain, snow, wind and dust and many
other weather-related conditions.

• Season: incorporating the seasons might be necessary. Different
seasons can trigger different changes which can lead to
symptoms and failures, as well as some symptoms or failures
may have a higher possibility to occur in some seasons
comparing to others. So that, adding up the season attribute
might help us to discover new relationships between the season
and the symptoms and accidents appear in that season in
particular.

• Driving style: the driving style might affect the sensor’s reading
and its’ average lifetime. For example, the driver drives
continuously, or he makes many stops, what is the average speed
he usually drives in, does he drive on rough roads? Many other
driving styles can be added to the driving style attribute, which

158

might help in the learning process to answer unanswered
questions and to find hidden, indirect relationships between
symptoms, failures and each attribute.

Vehicles are continuously in motion. As a result, the sensors reading might
change dramatically within short intervals. Thus, it is essential to address time
in the diagnostic knowledge management system. Integrating additionally
time as a semantic connection between individuals in future implementations
will increase the importance of attributes and properties for an efficient
reasoning.

Figure 38 Active Diagnosis and Repair Automotive System Workflow

Vehicle failure diagnosis and repair is a complex decision-making process
handled by mechanical and electrical technicians in order to detect failures
based on observing signs and symptoms of the vehicle. Using the diagnostic
ontology as the knowledge representation method to define specific symptoms
for failures, can give additional support and facilitate the fault detection

process for technicians. We developed an active diagnosis and repair
automotive ontology using the open-source editor protégé [170].

The ontology consists of six main classes the Sensors class is divided into four
subclasses. Each subclass shows what type of information the sensor can
measure, such as temperature, pressure, speed, level and others. The
SensedObjects class contains the possible sensed objects the ontology can
diagnose - cars, trains, bicycles…etc,. This class makes the ontology scalable to
different systems supported by one ontology. Each sensed object is divided into
sub-classes that represent the components or parts of this sensed object, which
can contain a diagnostic sensor. The Symptoms class describes the main
symptoms that can lead to failures. The Failures class is a class representing all

159

the possible failures in the sensed object. RecoveryActions represents the main
recovery actions for the failures, addressed in the Failures class. Finally, the
ExternalConditions class contains all the external factors that can play a hidden
role in causing the symptoms.

The main relations in the diagnostic and repair ontology are described below:

• CanCause(ExternalConditions, Symptoms): this relation states that the

ExternalCondition that can cause a certain Symptom.

• CanLead(Sensors, Symptoms): this relation connects the sensors class as
the domain and the symptoms as the range, this relation connects the
sensor(s) that can lead to a specific symptom(s).

• CanLeadTo(Symptoms, Symptoms): some symptoms can cause the
occurrence of other symptoms, so this recursive relation is to connect
some symptoms to other symptoms, in order to form a sequence of
causing and leading symptoms which influence the occurrence of
failures.

• IsCause(Symptoms, Failures): this relation states the symptoms that are
responsible for specific failures.

• IsLocatedIn(Sensors, SensedObjects): IsLocatedIn relation connects the

Sensors and the SensedObjects to show in which SensedObject and
component of this object in particular this sensor is located in.
Furthermore, this relation is helpful in case of using the same sensor type
in different SensedObjects or different parts of the same sensed object.

• IsRecovered(Failures, RecoveryActions): this relation is about the Failures
and their corresponding RecoveryActions.

• Recover(RecoveryActions, Failures): this relation is the inverse of the
IsRecovered relation.

 The diagnosis ontology is scripted in the Web Ontology Language (OWL)
[171] which guarantees a better storage, exchange and readability for the
ontology. It is crucial to understand that the ontology is not a static dictionary
of terms, but a semantic model of the domain and the diagnostic frame and will
later on offer more dynamic features, using machine learning and text mining
techniques as described earlier in this paper.

160

 Figure 39 represents the main concepts of the ontology along with the
relationships between them, as well as the subclasses of each concept and their
data properties. In favor of space, not the full spectrum of instances is shown.

Figure 39 Active Diagnosis and Repair Automotive Ontology Structure [169].

Figure 40 shows the class hierarchy, the parent classes and the subclasses are
inherited top-down. As addressed, the current version of the ontology is a
starting point. The ontology is a core ontology that will be enhanced with
additional dynamic solutions in future works.

161

Figure 40 Active Diagnosis and Repair Automotive Ontology Class Hierarchy [169].

162

11. Appendix C: SenGen: A Two-Phase Dynamic
Simulation and Toolbox for Sensor Datasets and
Case-Study Generation in Mobile Wireless
Sensor Networks (MWSN)

In this section, a MWSN simulated model and toolbox “SenGen” is introduced.
The toolbox is used to create a customized MWSN as an example of an IoT
system, where the system architecture and the relationships between its
components is used to create the entities and semantic rules of the IoT ontology.

2.1 Why SenGen for Mobile Wireless Sensor Network (MWSN)?

Mobile Wireless Sensor Network (MWSN) is a group of non-stationary or
mobile transducers enabled with wireless communication channels, designated
to sense the environment where they are placed, in order to accomplish some
intended system goal(s). The sensor nodes gather the sensed information and
transfer it to a centralized backend unit called “Sink” or “base stations”. The
sensor nodes can measure different modalities, depending on the nature of the
system’s application and purpose, like pressure, temperature, light, speed,
humidity and so on. WSNs was first applied during the world war period to
survey enemy movements in the battlefield. Nowadays, MWSNs are applied
in a vast majority of different fields and applications, such as industrial
monitoring, home surveillance, habitat monitoring, traffic control and many
more applications [172].

163

MWSN is an emerging field due to its flexibility, adaptability with dynamic
topologies and the possibility of deploying anywhere. Due to its dynamic
nature, when it comes to sensing data, MWSN tend to generate dynamic
datasets as well. Sometimes, the exported sensor data is required to be altered
to fulfil different system requirements, such as system scaling, change and
calibration, as well as generating customized data for various research
purposes. This need of customization in sensor data generation in MWSNs is
highly dependent on system experts’ intervention to change the physical or
simulated systems upon required.

MWSNs study and research is a wide subject, which still has a lot of research
problems, questions and optimizations that need to be investigated and
researched. The sensor data generated from such networks is highly
dimensional with multiple features and high complexity, which makes it a
resource expensive, exhaustive, and extremely complicated to perform many
tasks manually, such as system monitoring, maintenance, fault diagnosis and
prediction tasks. Thus, the need for applying deep learning and other machine
learning approaches to resolve such challenges is highly required [173]. To train
and build such machine learning models, a huge amount of data is required,
and not only that, this data should be customized enough to represent the
research challenge in hand.

The possibilities, challenges and changes in MWSNs are endless. User-
customized test cases are necessary for each particular research about MWSNs.

Finding the right case-study for building a machine learning model is a very
difficult challenge. It would be a lot easier, if some user-specific datasets were
available. Where these datasets can fit any research questions and challenges,
and also can be changed easily, without any pre-knowledge or expertise of the
physical or simulated MWSNs model to generate and alter the data exported.
If this possibility was not available, the researcher would be forced to conduct
a lot of study and research to learn how to establish the preferred system, either
using some simulation tool or building an actual physical system first. And
then have to proceed with the generated data to solve the original intended
research questions, which will add up a lot of time, effort and pressure on the
researcher or customer.

The collaboration between machine learning and MWSNs is relatively recent.
That is why, it is a huge challenge to find available sensor data for research
purposes, and it is almost impossible to find platforms or benchmarks to
provide customized ones.

164

In this section, a two-phase dynamic simulation toolbox -so-called ‘SenGen’-
for sensor data and sensor case-study generation in MWSNs is presented and
tested, where a full simulation of an indoor MWSN system is established using
Simulink. Then a Graphical User Interface (GUI) is created with MATLAB, to
overall perform as a dynamic toolbox for sensor data generation in MWSNs.
Moreover, a common MWSNs challenge is tackled in the next chapter; sensor
fault detection and identification using the data generated by SenGen in a
distributed fashion, to showcase the capabilities of the provided solution to be
customized, reliable and even extended to endless possibilities for researching
sensors in MWSNs and overcome the challenge of the scarcity of these kinds of
data generation platforms for MWSNs.

2.2 Related Work to SenGen

There are some tools available online that are successfully done creating
dynamic data generation platforms, which will serve the purpose. However,
these tools tend to cover different field of research and study, which is not
related to MWSNs in particular [174], [175] and [176].

Furthermore, a simulated WSN model using Simulink/MATLAB is created in
[177]. However, this model does not cover sensor mobility options and does
not provide dynamicity, or support model alteration and modifications. Finally,
there are some fixed WSN sensor datasets available for download online, but
these are by far the least dynamic option, since the simulated model or the
physical system is not available, that eliminates any possibility for
modifications even when the system experts are available and have full
knowledge of the created system .

To provide MWSN sensor data that is user-specific, we have developed a
MATLAB GUI platform where users of different levels of expertise can
customize the model. By having the possibility to add various number of
sensors, of different types, in different locations and various patterns of motion.
Also, different types of faults can be injected to any selected sensor(s) at any
point of time during the simulation, to provide the possibility in researching
anomaly detection and sensor fault detection and identification, along with a

visualization representation of the whole system. This user-friendly GUI is
built based on a pre-simulated Simulink model where a system of stationary
sensors is placed in an indoor environment. The simulated data is linked with
mobility and a routing protocol in MATLAB environment and finally
presented to the user through an executable GUI.

165

Due to the continuous motion of the sensor nodes in MWSNs, the topology of
these networks is in simultaneous change and the routing algorithm must
handle the fast changes in the topology effectively. The routing from source
node to sink could happen either by direct hopping (single hop) or through
multiple hops using the in-between nodes from the source node to sink. Unai,
Ugatiz and Caralos presented a unique technique for routing in MWSNs [177]
following multi-hop technique where on real-time basis, the shortest path
between is calculated at the source node and the data is communicated
accordingly. In such scenarios, the energy of all the mediating sensor nodes is
consumed for data transfer. This lowers the battery life of each nodes in-
between which lowers the longevity of the entire system. Since battery life of
sensor nodes is important in MWSNs, the routing could also be done using
LEACH (Low Energy Adaptive Cluster Technology) [178]. LEACH is a hybrid
method where a group of sensors form a cluster and the center-most sensor
becomes a transmitter for all the cluster members to transfer data to sink.
Though this method seems like a multi-hop scenario, it is not! Because the
transmitter node acts as a primary sink and do not sense the surrounding as far
as it acts as a transmitter. On following so, only two nodes consume energy; the
source node and the cluster head node. During data transfer, the cluster head

is comparatively more active than cluster members hence its battery drains out
sooner. But, by rotating the role of clusters among the cluster heads, the total
energy consumption is minimized.

2.3 SenGen System Overview

SenGen consists of two fundamental phases. In the first phase, an in-door
MWSN system is created using Simulink/MATLAB environment to establish
the foundation design of the model, which in a later phase can be altered to
dynamically meet the user-specifications and requirements. The simulated
model, represented by phase one will generate informative data for each sensor

that consist of the sensors’ readings, their locations in the simulated system,
their mobility patterns, and then apply LEACH routing protocol based on their
previously mentioned information. The second phase represents the dynamic
factor of this software by developing a Graphical User Interface (GUI) in order
to provide flexibility and the possibility to externally tweak the basis simulation
model created in phase one, without the need to understand or to deal with
unnecessary technical details indicated within the simulation model.

• Phase 1: Indoor Simulation Model Creation

 The first step to start with in creating a simulated model using Simulink, is
to find an input signal that is sufficient for the end system goal and

166

requirements. In this simulated model, the input signal is used as a reference
signal, which will act as the simulation environment parameters that will
automatically provide the required parameters placed in the pipeline react
accordingly.

 The aim of this simulation is to create an indoor MWSN environment that
can sense and collect environmentally related information of any indoor system
in a natural base, without any artificial heating, air conditioning or ventilation
applied. Such as, an office building, a hospital, an apartment…etc. The data
generated from such models, can then be used later for energy research
purposes or smart houses technology, sensor fault detection and identification
and many other research related areas.

 The sensors needed in the indoor system were atmospheric sensors. Hence,
a weather data is the best choice to be used as one of the reference signals in the
simulated system. The weather data of Jena (Austria) [179] had a suitable data
with the psychometric details around Jena recorded for every 10 minutes over
a period of 10 years. The environmental parameters of the simulation model
must change more frequently, to match the real-time nature intended in this
model. So that, this dataset is up-sampled using anti-aliasing filters which
distribute the data between two given data-points. In our case, we choose the
data to change for every single second hence the original data is re-sampled
with a ratio of 600:1.

Since an open atmospheric environment cannot be modelled in Simulink
because it is really hard to simulate the unpredictable weather changes, that
varies a lot from one region to another. Hence, an indoor system is created,
which consists of several closed rooms that built in a way it imitates actual,
naturally ventilated closed environments. Each room design was inspired by
the Intel Berkeley research lab [180]. The lab measurements are taken as

references for each room modelled in our system since the lab also contains
WSN that are stationary and fixed locations, in specific locations of the
simulated system as shown in Figure 41. The Berkeley lab consists of 54 sensors
distributed across the lab of size 50mx40m. Figure 42 shows a top-view design
of the indoor system simulated using Simulink where the air flow source, the
total number of rooms, doors and the fixed locations of the routers and their
measurements are clarified.

The air source is created using ‘Moist air’ library provided by Simulink [181], a
virtual system is built consisting of three similar building blocks functioning
parallel by drawing moist air from the system gateway. The moist air flow
represents the natural ventilation provided in the indoor system. The gateway

167

has a cross-sectional area of 0.75 m2 which corresponds to the size of the door
of Intel lab from which the moist air enters, and each building block has flow
area of 0.25 m2. It comprises of a heat exchanger to modify the temperature and
humidity levels of moist air, pipe block which models the addition of humidity
and carbon-di-oxide into the system along a length of 5 m, a variable local
restriction element modelling the pressure loss in the flow and finally the moist
air goes down to sink/reservoir. In Figure 43, the architecture of the air flow
source is shown.

Sensor blocks are placed after each component to sense psychometric
parameters. The variable parameters for all flow modifying blocks is initialized
with random values to add up more realistic changes to the model. The
architecture of the simulation model building block, or in other words one
room of the indoor system created in Simulink is shown in Figure 44. The
sensed outputs are exported to MATLAB environment using “simout” block
and are saved for a future reference.

Figure 41 Sensor Distribution of Intel Berkeley Lab [180].

168

Figure 42 Top-view Indoor System Design.

Figure 43 Air Flow Architecture.

169

Previously, in this paper, how to create the simulated model with fixed or
stationary sensors was mentioned. To convert this WSN into a MWSN it is
necessary to add some mobility patterns and scenarios for the sensors to use as
their motion. For this purpose, a football players’ position data [14] is used to
extract realistic patterns of movements, by normalizing it to the size of the lab
instead of the football field. This motion pattern is provided as a pre-defined
one which the user can immediately use. However, the user can also apply their
own mobility pattern(s) using the GUI as explained in the next section.

Figure 44 Build Block of Simulink Model

In order to ensure more system stability, a sliding window of user-defined
length is introduced, to process the information each sliding window instead
of each second. In other words, if the sensor changes location so fast, the new
location will only be considered if the sensor is there for a length of a sliding
window. During this period the sensor nodes communicate the information to
routers and then move on with intermittent motion.

• Phase 2: Dynamic GUI Creation

To give the user the ability and flexibility to control the process of establishing
a customized MWSN system, as well as providing an animated MWSN view,
a GUI is created where the user can observe and change the system easily in a
straightforward fashion.

The following steps represent a user quick manual, of how to use the GUI to
benefit the customized data generation, visualization and extraction:

2 User Input Panel:

170

This Panel is shown in Figure 46. The user input panel is the first GUI window
appears to the user, which is divided into three main sections; Simulation
timings, time intervals and user input. In the simulation timing section, the
user can enter the desired overall simulation time and sliding window size in
seconds. In the time intervals part of the user input panel, the sensor addition
process occurs that allows the user to add different sensors by providing their
sensor ID, the initial x and y locations, sensor type and mobility patterns. This
GUI offered a pre-defined mobility scenario and it will be activated when
choosing 1 in the drop-down list under the mobility. The user can also upload
a matrix of their own to perform as a mobility pattern to provide more mobility
options. After adding the desired information of the sensor, press ‘Add sensor’
button to enable the addition of more sensors to fit the desired system
requirements. It must be noted that the number of sensor nodes are limited to
the number of sensor nodes placed in simulation model. The user input section
located in the right side of the user panel is used to enable checking the added
sensors, taking a final look at them and their information and delete or modify
any sensor(s), to make sure the added information matches the wanted design
before moving to the next panel and start the real-time simulation. Press
‘continue’ to start the real-time simulation of the inserted sensors.

3 Animated Real-time Panel:

When pressing ‘start’, the sensor nodes (blue) start to move following the
mobility pattern chosen before. The routers (red) being stationery. The
visualization will continue till it reaches the simulation time defined in the
previous panel. The user can pause the simulation to make observations
anytime during the simulation.

During the pause mode, the user has flexibility to inject any kind of sensor
faults; bias, drift faults, constant or freezing faults...etc, to any sensor(s) on that
particular instant by simply providing their sensor ID. For simplicity reasons,
the faults types added are High, Low and Constant. Figure 45 shows the GUI
panel for visualization and fault injection. The fault injection process is very
crucial, especially for those who work with anomaly detection or sensor fault
detection and identification, providing them with clear system fault labels
which are customized in any given point of time is beneficial and highly
necessary.

When the simulation ends, the updated MWSN data would be exported
automatically in excel format, or press ‘extract data in excel format’ button to
export the excel file anytime during the simulation.

171

Figure 46 Toolbox: User Input Pane

Figure 45 Toolbox: Animated Real-Time Panel

172

The sensor data can be extracted anytime during the simulation in a sequential

or bulk fashion where the values and information of all sensors in the system,
located in the range of all routers is extracted. Also, the sensor data can be
extracted in a distributed manner, where each router extract the data of the
sensors in its range separately from other routers.

2.4 Data Generation and Visualization using SenGen

To experiment the simulated system in phase one and its outcomes. A test
experiment is set by following the SenGen Toolbox step by step, to create five
sensors in user-specific x, y locations of the indoor system, and each one of
these sensors can measure one of the following weather parameters; pressure,

temperature, CO2 or humidity, that are chosen manually by the user while
using the Toolbox.

Figure 47 Pressure Signals Comparison Throughout the Indoor System with Time

173

Figure 48 Temperature Signals Comparison Throughout the Indoor System with

Time

Figure 49 Humidity Signals Comparison Throughout the
Indoor System with Time

174

Figure 50 CO2 Signals Comparison Throughout the Indoor System with Time.

175

12. Appendix D: A Model-Based Approach: A
Graph-Based FDD for IoT Systems Extracted
from A Semantic Ontology

In this chapter a full explanation of the model-based, component fault detection
and diagnosis for IoT systems is introduced. This approach is applied on a
Mobile Wireless Sensor Network (MWSN) created using SenGen toolbox.

In this work, the graph-based fault detection and diagnosis approach based on
a semantic ontology proposed in [11] is adopted and applied to the IoT domain.
The proposed methodology consists of the following main steps: 1) creating a
simulated model or an actual physical system to provide a clear definition of
the system and its components. 2) A semantic model represented by the
ontology, to transfer the understanding of the system into a clear semantic
representation of the system’s components and the relationships between them.
And finally, 3) A novel diagnostic directed graph is extracted from the ontology
to offer more automation to the diagnosis and lessen the complexity of the
system, by providing a clear graph of the decision-making process.

IoT Ontology: Design and Application

IoT-based devices are witnessing an increase of application in a vast majority
of domains for their capabilities of generating sensor data and establishing a
solid perception of the real world. Sensor data has a heterogenous nature that

implicates several interoperability issues when applying to general-domain

176

applications. In other words, it is inconvenient and highly complicated to apply
one’s domain sensor data to investigate another domain due to the multi-modal
and heterogenous nature of sensor data. To overcome this challenge, it is
essential to introduce semantic interpretations of the sensors, their containing
systems and the relationships between them. An ontology as a semantic
representation of knowledge has been proven to be effective to represent IoT
systems and regulate the IoT-based sensor data collection and offering a
comprehensive explanation of the system and its requirements [182].

FDD is an essential yet complicated and required a lot of precision step in IoT
systems of various applications. Ontology-based FDD methodologies and
algorithms plays an important rule in the diagnostic process especially in
sensor-based applications, since they tend to be more complicated and
heterogenous than other domains. Therefore, ontologies provide such systems
with a semantic, expressive platform for knowledge-creation, knowledge-
sharing and even re-application of the existing knowledge by adopting the
represented deep semantics within the ontology structure. Ontology-based
FDD has gained a lot of research focus in the past decade due to its semantic
advantage over other FDD methods [3]. Although ontology-based FDD
methods are solving a good amount of challenges in different domains, they
tend to be a static form of diagnosis that is limited to the pre-defined semantics,
knowledge and relationships stored within the ontology. In [4] is an example
of an ontology of an automotive system where many sensors are used to
diagnose a punch of common faults in automotive systems. Moving to another
domain, a Demand Control Ventilation (DCV) ontology is introduced to tackle
some faults in an office building depending on the sensors’ readings in various
zones of the simulated model [1].

The IoT ontology proposed in this work is created as a generic IoT domain
ontology, where various examples of IoT systems can be added as an individual
of the main entity of the ontology, then all the aspects of data properties,
relationships and individuals can be added to give a comprehensive
representation of this application. In this work, a Mobile Wireless Sensor
Network (MWSN) is created using SenGen simulation and toolbox mentioned
in earlier chapters and used as an example of IoT system to be described in the
ontology. The MWSN created is a customized model of an indoor system that
contains four rooms and two routers located in room one and two. Each room
has two sensors; CO2 and Temperature sensors that are fully mobile within the
range of their containing rooms. Figure 51 shows the MWSN architecture
stored in the IoT ontology.

177

Figure 51 MWSN Architecture in the IoT Ontology

The IoT ontology consists of four main classes; Sensory_and_Control,
Surrounding_Environment, Symptoms and Failures. The Sensory_and_Control
entity describes the devices, sensors and other components of an IoT system,
and in this work, it is divided into two main sub-classes of Sensing_units and
Routing_units. The Surrounding_Environment class is added to describe the
nature of the surroundings containing the IoT system, which has two main sub-
classes Indoor and outdoor. The Symptoms class represents a set of individuals
that are servings as symptoms that might lead to certain failure(s). Finally, the
Failures class describes the instances of failures that might happen in a certain
system and is connected to one or a series of symptoms stored in the Symptoms
class. Figure 52 shows a visual representation of the class hierarchy of the IoT
ontology described above.

178

Figure 52 IoT Ontology Entities and Sub-Entities Hierarchy

The four entities form the IoT ontology must have some semantic
representation of the relationships between themselves and their neighboring
entities. The following bullet points are the main object properties or relations
applied to the ontology, in the form of relation_name(domain(from), Range(to)) :

• Causes(Symptoms, Failures): this object property connects the
symptoms to the failures by showing that symptoms causes
failures.

• Consist_of(Surrounding_Environment, Surrounding_Environment):
this relation is added to show that individuals in the
Surrounding_Environment class can consist of other components
from the same class. e.g. the instance MWSN_indoor of the indoor
sub-class consist-of the individual Room1 in the same sub-class of
Surrounding_Environment.

• Detected_By(Failures, Sensory_and_Control): This relationship
implies that individuals from the Failures is Detected_By
individuals of Sensory_and_Control class.

• Lead_to(Symptoms, Symptoms): some Symptoms can lead_to other
symptoms that is the reason behind adding this relationship.

• Located_in(Sensory_and_Control, Surrounding_Environment): the
sensors, routers, devices..etc are all located in the individuals in
the Surrounding_Environment.

Figure 53 shows a graph describing the ontology of its main entities and the
relationships between those entities.

179

Figure 53 IoT Ontology Entities and Relationships

The diagnosis ontology is scripted in the Web Ontology Language (OWL) [171]
which guarantees a better storage, exchange and readability for the ontology.

Figure 54 shows a graphical representation of the IoT ontology and the
instances of a small one case study of the MWSN model. The model chosen
does not have a lot of instances or complicated relationships. However, the
graph is comprehensive and complicated enough to give a hint of how big and
complex these semantic graphs can reach if more case-studies and instances are
added.

180

Figure 54 IoT Ontologies Main Classes and Some Individuals and Their Relationships.

A Graph-Based Sensor Fault Detection and Diagnosis

In this step, the semantic information provided by the domain experts, and
stored in the IoT ontology are translated into a directed graph. Some might
underestimate the importance of this stage for the rule-based diagnostic
approaches, where such methods rely on IF-Then statements most of the time,
which makes it so much time and effort inefficient. By representing these rules
using a clear graph, the time and effort required for the detection and diagnosis
process is reduced dramatically, as well as using the graph representation of
the diagnostic information provides a clear and easy platform, which can be
used by any individual including experts and non-experts of the domain
system or the ontology. Mapping the semantic information from the system
ontology to the diagnostic graph is done manually by the knowledge-based
experts, to ensure that all the needed information was translated precisely and
completely.

181

The diagnostic information and rules represented by a set of symptoms are
added to the ontology as instances of the Symptoms class. These symptoms are
created based on the system expert knowledge and expertise, where then fed
to the ontology and translated into semantic keywords of relationships. The
diagnosis rules implemented in this ontology are adopted from an existing
demand control ventilation simulated model in [183]. Figure 55 shows that by
adding the symptoms and their semantic representations to the IoT ontology it
was a lot easier to extract diagnostic graphs based on the semantic graphical
representation of the symptoms, their leading symptoms and causing failures.

Figure 55 Expert-Rules Semantics Visualisation

Table 21 shows the main symptoms of the component failure connected to CO2
sensor, and how these symptoms are nested to one another. Each sensor and
actuator added to the system has its own symptoms table. These symptoms are
provided by the embedded systems team and modelled into the ontology by
the knowledge-based experts to form the final graph. For more information
about the symptoms for the sensors and actuators used in this study, check
[184].

182

Table 21. Symptoms Associated to CO2 Sensor Failure

Figure 56 shows the diagnostic directed graph for the CO2 sensor as an example
of sensory and actuation effect on component/system faults. This graph is
duplicated as a sub-graph for each room or corridor that contains a CO2 sensor
in it.

Figure 56 CO2 Sensor Diagnostic Directed Graph

The directed graph created in this work, shows the connection between the
diagnostic features extracted from the inserted instances in the ontology and
their data properties. These features are connected to some corresponding
symptoms, extracted from the semantic relationships added to the ontology.

183

The added symptoms can lead to another symptom, or directly cause the
component failure.

 A single diagnostic graph is created for each sensory and control device stored
in the ontology, that is located in each and every component of the IoT ontology,
regardless in which component or location it was created Thus, if each room
has four sensory and control devices that might have a failure, and their
information stored in the ontology, then the diagnostic graph of this room,
contains four main sub-graphs connected to each sensory device. Keep in mind
that our MWSN simulated and used to create the ontology is indoor and has
four rooms, which means the overall diagnostic graph represents all the sub-
graphs of each sensory device from all the indoor rooms and corridors. As a
result, the overall diagnostic directed graph can be so complex and
computationally challenging for bigger systems. To overcome this challenge,
the integration of date-driven approaches to support this expert-based graph
representation is needed. Applying machine learning as an example of the
data-driven techniques will provide more dynamic solutions to this graph, by
adding the possibility to prune, add some branches or learn the values and
thresholds stored in each feature and symptom node in the diagnostic graph.

	Title Page
	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1: Introduction
	1. Motivation
	2. Problem Statement
	3. Research Questions
	4. Our Contribution
	5. Our Publications
	6. Structure of the Dissertation

	Chapter 2: Conceptual and Theoretical Foundation
	1. The Fourth Industrial Revolution
	2. Hydraulic Systems Overview
	3. Fault Types and Classifications
	4. Fault Detection and Diagnosis (FDD)
	5. Machine Learning Algorithms Taxonomy
	6. Feature Selection Literature
	7. k-means Clustering Literature
	8. Relevant ML Classification Algorithms
	9. Relevant DL Literature
	10. Other Relevant Literature
	11. Data Collection and Generation

	Chapter 3: Relevant Related Work
	1. Supervised ML Approaches for FDD in Mechanical Machinery
	2. Autoencoder Approaches for FDD in Mechanical Machinery
	3. k-means for Feature Selection Related Work

	Chapter 4: Unsupervised Feature Selection Using Recursive k-Means Silhouette Elimination (RkSE): A Two-Scenario Case Study for Fault Classification of High-Dimensional Sensor Data
	1. Chapter Overview
	2. Recursive k-means Silhouette Elimination (RkSE): Method Overview
	3. Analysis and Experimental Results

	Chapter 5: Sensor and Component FDD for Hydraulic Systems using Combined LSTM Autoencoder Detector and Diagnosis Classifiers
	1. Chapter Overview
	2. Hydraulic System FDD Overview
	3. Analysis and Experimental Results

	Chapter 6: A Hybrid Approach: Dynamic Diagnostic Rules for Hydraulic Systems in Industry 4.0 Generated by Online Hyperparameter Tuned Random Forest
	1. Chapter Overview
	2. System Model Overview
	3. Experimental Results

	Chapter 7: Conclusions and Future Work
	References
	Appendix A: Ontology and Ontology Design
	Appendix B: Active Diagnosis and Repair Automotive (ADRA) Ontology
	Appendix C: SenGen: A Two-Phase Dynamic Simulation and Toolbox for Sensor Datasets and Case-Study Generation in Mobile Wireless Sensor Networks (MWSN)
	Appendix D: A Model-Based Approach: A Graph-Based FDD for IoT Systems Extracted from A Semantic Ontology

