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Abstract 

Anomaly occurrences in mechanical equipment within industry 4.0 may lead 
to massive systems shut down, jeopardizing the safety of the machinery and its 
surrounding human operator(s) and environment, as well as the severe 
economic implications succeeding the faults and their associated damage. 

Various mechanical tools are mostly placed in harsh and ruthless environments, 
where the machines are consistently vulnerable to many fault types connected 
to their functionality nature. Hence, not only the machines and their 
components are prone to anomalies, but also the sensors attached to them 
necessary to collect viable signals to monitor and report the overall machine 
health and behavioural changes. Those sensors may likewise fail and carry out 
various anomalies. 

This thesis elucidates a full research and analytical implementation of 
component and sensor faults detection and diagnosis, utilizing numerous 
machine and deep learning approaches in application of a hydraulic system 
extracted from a hydraulic test rig. It is unfortunate that hydraulic systems are 
rarely approached for anomaly detection subject comparing to other 
mechanical machines in the past decade. Specifically, comprehensive systems 
that cover all aspects of anomaly detection in hydraulic systems, which 
includes both sensor and component faults, essential feature engineering 
methods, and innovative detection algorithms based on the latest technologies 
such as, the application of deep learning. 

In this work, three main contributions to anomaly detection in hydraulic 
systems extracted from a hydraulic test rig are thoroughly achieved. Firstly, we 
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provided a combination of LSTM autoencoders and supervised machine and 
deep learning methodologies to perform two separate stages of fault detection 
and diagnosis. The two phases are condensed by: (1) the detection phase using 
the LSTM autoencoder. Followed by (2) the fault diagnosis phase represented 
by the classification schema. The previously mentioned framework is applied 
to component and sensor faults in hydraulic systems, deployed in the form of 
two in-depth applicational experiments. In the detection phase declared by the 
classification process, diversified machine and deep learning supervised 
methods are compared and analysed for their component and sensor fault 
detection performance in hydraulic systems. In addition, we provided 
comparisons of plentiful feature engineering techniques in the time-domain, to 
showcase the influence of each feature engineering method on its 
corresponding supervised classifiers in the detection phase. Secondly, we 
provided an unprecedented feature selection method called Recursive k-means 
Silhouette Elimination (RkSE), and it is deployed to perform feature selection 
for component fault classification in multi-variate hydraulic test rig dataset. 
Moreover, RkSE is utilized as a window compression method when deployed 
to achieve sensor fault identification in univariate sliding window-structured 
datasets. Finally, an innovative application of Random Forests (RF) in a hybrid 
architecture between data-driven and model-based diagnosis approaches is 
introduced and applied to hydraulic systems for dynamic diagnostic rules 
generation.   
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Zusammenfassung 

Das Auftreten von Anomalien in mechanischen Geräten innerhalb der 
Industrie 4.0 kann zu massiven Systemabschaltungen führen, die die Sicherheit 
der Maschinen und der sie umgebenden menschlichen Bediener und der 
Umwelt gefährden, sowie zu schwerwiegenden wirtschaftlichen 
Auswirkungen, die auf die Fehler und die damit verbundenen Schäden folgen. 
Verschiedene mechanische Werkzeuge werden meist in rauen und 
unbarmherzigen Umgebungen eingesetzt, in denen die Maschinen aufgrund 
ihrer Funktionsweise durchweg anfällig für viele Fehlertypen sind. Daher sind 
nicht nur die Maschinen und ihre Komponenten anfällig für Anomalien, 
sondern auch die an ihnen angebrachten Sensoren, die notwendig sind, um 
brauchbare Signale zur Überwachung und Meldung des allgemeinen 
Maschinenzustands und der Verhaltensänderungen zu sammeln. Diese 

Sensoren können ebenfalls ausfallen und verschiedene Anomalien hervorrufen. 

Diese Arbeit erläutert eine vollständige Forschung und analytische 
Implementierung der Erkennung und Diagnose von Komponenten- und 
Sensorfehlern unter Verwendung zahlreicher maschineller und Deep-
Learning-Ansätze in der Anwendung eines hydraulischen Systems, das aus 

einem hydraulischen Prüfstand stammt. Es ist bedauerlich, dass hydraulische 
Systeme im Vergleich zu anderen mechanischen Maschinen im letzten 
Jahrzehnt nur selten zum Thema Anomalieerkennung herangezogen werden. 
Insbesondere umfassende Systeme, die alle Aspekte der Anomalieerkennung 
in hydraulischen Systemen abdecken, was sowohl Sensor- als auch 
Komponentenfehler, wesentliche Feature-Engineering-Methoden und 
innovative Erkennungsalgorithmen auf Basis neuester Technologien wie die 
Anwendung von Deep Learning umfasst. 

In dieser Arbeit werden drei Hauptbeiträge zur Anomalieerkennung in 
hydraulischen Systemen, die von einem hydraulischen Prüfstand extrahiert 
wurden, gründlich erreicht. Erstens haben wir eine Kombination aus LSTM-
Auto-Encodern und überwachten Maschinen- und Deep-Learning-Methoden 
bereitgestellt, um zwei separate Phasen der Fehlererkennung und -diagnose 
durchzuführen. Die beiden Phasen werden zusammengefasst durch: (1) die 
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Erkennungsphase unter Verwendung des LSTM-Autoencoders. Gefolgt von (2) 
der Fehlerdiagnosephase, die durch das Klassifikationsschema repräsentiert 
wird. Das zuvor beschriebene Framework wird auf Komponenten- und 
Sensorfehler in hydraulischen Systemen angewandt, die in Form von zwei 
vertiefenden Anwendungsexperimenten eingesetzt werden. In der durch das 
Klassifikationsverfahren deklarierten Erkennungsphase werden diversifizierte 
maschinelle und Deep-Learning-überwachte Methoden verglichen und auf 
ihre Leistung bei der Erkennung von Komponenten- und Sensorfehlern in 
hydraulischen Systemen analysiert. Darüber hinaus haben wir Vergleiche 
zahlreicher Feature-Engineering-Techniken im Zeitbereich durchgeführt, um 
den Einfluss jeder Feature-Engineering-Methode auf die entsprechenden 
überwachten Klassifikatoren in der Erkennungsphase zu zeigen. Zweitens 
haben wir eine noch nie dagewesene Merkmalsauswahlmethode namens 
Recursive k-means Silhouette Elimination (RkSE) entwickelt, die zur 
Merkmalsauswahl für die Klassifizierung von Komponentenfehlern in einem 
multivariaten Hydraulikprüfstandsdatensatz eingesetzt wird. Darüber hinaus 
wird RkSE als Fensterkompressionsmethode eingesetzt, um eine 
Sensorfehleridentifikation in univariaten, gleitenden, fensterstrukturierten 
Datensätzen zu erreichen. Schließlich wird eine innovative Anwendung von 
Random Forests (RF) in einer hybriden Architektur zwischen datengetriebenen 
und modellbasierten Diagnoseansätzen vorgestellt und auf hydraulische 
Systeme zur dynamischen Generierung von Diagnoseregeln angewendet. 
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2. Chapter 1: Introduction 

1. Motivation 

Mechanical machineries within industry 4.0 are considered a vital part of the 
industrial operation. Hence, they play a tremendous role in the production and 
manufacturing processes. Due to their major importance in the production line, 
mechanical devices are usually placed in tough locations and dangerous 
environments, which make them susceptive to the occurrence of various faults 
and malfunctions. Nowadays, the industrial applications are getting more 
complicated and scalable than ever, which contributed tremendously to the 
complexity of fault detection in mechanical machineries, as well as making 
those tasks quite challenging [1].  

The study in [2] indicated that 70-90% of the incidents associated to the 
industrial operations are caused by human workers or operators. Consequently, 
the need for computer-aided diagnosis emerged, to ensure highly accurate fault 
detection, prediction, and diagnosis of systems with extreme complexities. 
Moreover, computer-aided diagnosis for mechanical machines may also 
contribute to the speed and precision of the recovery actions deployment 
required following the fault appearance.  

The main goal of fault detection in mechanical machinery is to capture the 
anomalies accurately as soon as they manifest, to ensure deploying the 
necessary maintenance procedures, and to dodge economical, humanitarian, 

and environmental tragedies. Creating a solid fault detection and diagnosis 
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systems, not only contribute to reducing the risk, and providing safety to 
human operators and the environment. But also, they play a major role in 
cutting down the costs related to unnecessary maintenance.  Thereafter, fault 
detection and diagnosis in mechanical devices placed in complex systems like 
the industrial ones is always a hot research topic. 

Automated FDD algorithms and systems are usually dependent on the training 
and analysis of datasets, in which they are extracted from numerous sensors 
attached to the industrial equipment and its components. Those sensors 
continuously send signals essential to monitor each component of the 
mechanical machine. In other words, sensor readings are the modalities, or the 
source of raw data associated to automated FDD systems. The health of these 
sensors is the key to monitor those components properly, which leads to 
accurate component diagnosis results. Although these sensors are substantial 
for computer-aided diagnosis, they are mostly ridiculously cheap and perform 
under extreme environmental conditions due to their attachment to the 
machinery device. Therefore, sensors in mechanical machines are prone to 
malfunctions and variety of faults themselves.  

Smart FDD systems should monitor both the mechanical devices and their 
components, as well as the sensors’ health status of those who are responsible 
of reporting the health indications of mechanical components. Hence, it is 
undeniably important to establish sensor FDD systems along with the 
component FDD ones when monitoring industrial operations. 

One of the most essential mechanical equipment for industrial processes are 
hydraulic systems. The hydraulic system’s data applied to this study is 
gathered from a hydraulic test rig. A test rig can be defined as a piece of 
mechanical devices that is mainly utilized to assess, evaluate, and test the 
capacities and performance of other mechanical machines, or just certain 

components of them. Test rigs can be called by various terminologies including 
test bench or test pay, and testing station. Test rigs are common in a wide range 
of industrial fields from hydraulic systems to aerospace. They literally have a 
vast scope of testing methods, and analytical parameters such as, manual, 
cyclical, brake and burst testing. 

Hydraulic systems obtained from a hydraulic test rig are the focus of this 
dissertation, due to their importance and limited FDD resources in the past 
decade, in which a comprehensive FDD system of both component and sensor 
faults are included.  
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2. Problem Statement 

As mentioned earlier, this work represents a thorough analysis and application 
of both sensor and component faults in hydraulic systems manifested by 
hydraulic test rigs. To ensure comprehension, three main perspectives of FDD 
in hydraulic systems are researched and analysed in this dissertation, which 
includes: (1) creating comprehensive FDD algorithms to cover sensor and 
component faults in hydraulic systems. (2) Establishing a new feature 
engineering method applicable to FDD in hydraulic systems. And finally, (3) 
creating dynamic diagnostic rules to aid the automation of existing model-
based FDD methods in hydraulic systems. In which each aspect has its own 
problem statements and research questions. Therefore, the problem statement 
is divided into three main parts corresponding to each section in the thesis. 

A. Problem Statement 1: Creating Comprehensive FDD Algorithms to Cover 
Sensor and Component Faults in Hydraulic Systems 

Hydraulic systems in the industry require a non-stop monitoring, supervision 
and evaluation of the sensors’ readings connected to each component of the 
system, most especially when they are prone to failure. In reality, sensor faults 
tend to be ungeneralised and highly system-specific with a wide range of 
characteristics and possibilities that vary even within the same system.  That is 
the reason sensor fault detection is usually tackled manually by the system’s 
expert who acquire the knowledge of each sensor and its characteristics, its 
healthy indictors, and parameters. Automated sensor fault FDD has attracted a 
lot of research and industrial attention in recent years. The accuracy and 
efficiency of automated FDD for Hydraulic systems is entirely dependent on 
the reliability of the sensors and their readings, since they are the raw data fed 
into the FDD systems. In other words, their health and validity determine the 
overall reliability and accuracy of the overall FDD system. 

On a different note, hydraulic systems’ components are also extremely prone 
to failure. To address this issue, it is necessary to develop sensor FDD 
algorithms along with the component FDD ones, to be able to distinguish the 
source of the behavioural deviation of the system, whether it is actually a 
deviation in a part of the hydraulic system or a malfunctioned sensor with a 
misleading reading.  



 

4 
 

When the data trained and utilized to build the FDD model is extracted from a 
hydraulic test rig, it has -by definition- observed labels and conditions, since 
the main goal of using hydraulic test rigs is to test and evaluate the condition 
of the system under experimentation. Therefore, the data-driven FDD methods 
of interest are the supervised approaches. Supervised ML approaches for FDD 
in hydraulic systems have shown significant and highly accurate results in the 
literature. However, most classification methods fail to capture new faults or 
rare occurrences beyond their trained labels, which makes it a huge drawback 
of supervised ML methods of FDD comparing to clustering or unsupervised 
ones, which urge the need to combine those methods to other ML and DL 
branches of data-driven diagnosis. 

B. Problem Statement 2: Establishing A New Feature Engineering Method 
Applicable to FDD in Hydraulic Systems 

Human brains can only visualize and imagine three-dimensional spaces. Data 
with larger dimensions outpaces the human capacity to understand and 
manually analyse such data. In accordance with the human incapacity to deal 
with high volume data, data mining is brought to light to discover highly 
dimensional patterns in this large data, offering new solutions to visualize, 
analyse and process the big influx of information.    Although, machine learning 
offers a lot of algorithms and methods for big data analysis, finding relevant 
and non-redundant attributes in data that contains hundreds or thousands of 
attributes can be challenging.  

It is important to mention that feature selection is performed on the data before 
it is fed to the FDD algorithms. Thus, the quality of feature selection reflects the 
expected outcome of the FDD algorithm and its precision.  Irrelevant features 
in the input data may decrease the accuracy of the machine learning model 
learnt especially when they are many, because they can create an accumulative 
amount of deviation from the correct patterns. However, redundant features 
are the features that do not carry new information necessary for learning. So 
that, redundant features may not affect the learning process and its accuracy, 
but indeed will increase the computational cost required for performing such 
tasks [3]. Therefore, when the dimensionality of the data is high without 

investigation and analysis of their redundancy and relevance, this would 
weaken the quality of the data used for learning, increase its computational cost, 
and diminish its accuracy. Moreover, besides redundant, and irrelevant 
features, noisy features can also contribute to degrading the training 
performance of various learning algorithms.  
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Feature selection in data mining is the process of choosing a subset of the 
overall features (variables) in the feature space, by sacrificing the ones carrying 
little valuable information, unnecessarily redundant ones, and noisy features 
[4]. Feature selection is most appropriate for multivariate datasets owning to 
their nature of numerous numbers of attributes and samples. Some examples 
of datasets require feature selection due to their complexity and size demands 
are text, genetic information, imaging modalities and time-series data. 
Moreover, to achieve FDD in univariate systems, univariate time-series data 
can also benefit from feature selection, but only when it is structured in a 
window format, where the feature selection method is rather window 
compression, to select the most representative time points in the window. This 
side of feature selection is usually ignored by researchers, specifically when 
applying FDD in a sliding-window format. 

Although, one might think the deployment of feature selection in any FDD task 
is completely optional, incorporating this step has a great potential to add-up 
many advantages. For instance, reducing the number of features can effectively 
improve the ability of data understanding and visualization, decrease the 
computational power and storage requirements needed, noticeably fasten the 
training and testing times. Finally, increasing the accuracy of the FDD model 
using smaller inputs and resources. Wherefore, feature selection is a substantial 
step to eliminate undesirable features, by selecting the ones that are more 
relevant, non-noisy and non-redundant [5] and [4].  

Most of the feature selection algorithms utilized to aid FDD systems proposed 
in the literature are classification-based techniques [6], [7] and [8], where these 
methods are dependent on the presence of clear classes or labels to perform the 
feature selection accordingly. In the past few years, a new cluster-based also 
known as unsupervised feature selection algorithm emerged. Unsupervised 
feature selection methods work by grouping objects in various groups based 
on their similarity, where better clusters are the ones with higher within-cluster 
similarities and lower between-clusters similarities [9] and [10]. This group of 
feature selection methodology fits more to the unpredicted nature of data used 
for FDD in real life. One of the most famous clustering algorithms in data 
mining is k-means clustering. k-means depends on dividing the data between k 
main clusters, where the intra-similarity within the cluster and inter-similarity 
between clusters is measured using silhouette value measurement. 

Although, the literature is enriched with numerous supervised learning feature 
selection methods, it is still scarce when it comes to unsupervised ones and it 
needs more investigation and research in this field especially when applied 
prior to data-driven FDD systems. 
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Recently, feature selection applied to FDD in mechanical systems research 
interest drastically shifted to unsupervised methods, mostly because of their 
strength in identifying relevant features without the need of existing class 
labels. k-means clustering is one of the most famous clustering algorithms 
deployed for feature selection due to its simplicity, the mount of existing 
research already done to accurately select various parameters of the algorithm. 
i.e., selecting the best k and initializing the seeds. Moreover, k-means is 
relatively easier to evaluate comparing to other clustering algorithms, since it 
has many clear measures to evaluate the quality of the clustering process such 
as the silhouette measure. 

C. Problem Statement 3: Creating Dynamic Diagnostic Rules to Aid the 
Automation of Existing Model-Based FDD in Hydraulic Systems 

Model-based approaches for FDD tend to have a handful of disadvantages such 
as, the lack of dynamicity and generality, since they exhibit static knowledge 
for a specific domain stored in the model. The lack of or absence in handling 
sudden or novel fault occurrences (hence they are not pre-stored in the 
reference model), and the inability to automatically detect, fill or update the 
system gaps. The lack of credibility in knowledge acquisition because it is 
completely dependent on experts’ reliability. And finally, the impossibility to 
learn from misdiagnosis and fault occurrence overtime. 

Although, data-driven approaches might offer dynamic and general-domain 
diagnostic alternatives comparing to their model-based counterparts, they tend 
to have their share of challenges. i.e., the dependency on the data in case of poor 
data collection or tending to invalid sources, the dependency on possessing 
certain skills to apply data-driven processing and analysis methods, storing 
data necessary for learning and testing is resource and security expensive, and 
the additional expenses related to the needed supplementary hardware 
purchases and regular maintenance. 

According to the mentioned drawbacks of each approach, it is essential to 
establish a hybrid approach that combines the positive sides of each one and 
eliminates as many as possible of their limitations. In order to, provide a clear 
architecture that may aid existing model-based approaches for FDD in 
hydraulic systems to get dynamic and automated.  

The algorithm in [11] demonstrates a model-based component FDD method 
based on using diagnostic graphs created by static/constant diagnostic rules 
extracted from semantic ontology. In other words, the system model 
represented by the Ontology [12] is fed directly with the expert knowledge, and 
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later used to generate diagnostic graphs that links between various symptoms 
and their faults. The created graphs using the model-based approach alone are 
lacking the dynamicity and the generality, where they are only applicable to a 
certain system or model that they were created upon. Thus, a more general and 
dynamic approach is needed.  

Creating dynamic diagnostic graphs using data-driven approaches such as 
Random Forest (RF) can be beneficial. However, because of their dynamic 
nature, these models are hard to use in structured or distributed systems 
without following some guidelines, graphs, or clear steps. Furthermore, data-
driven approaches require more time and resources to process and store the 
needed data. Thus, a strong necessity to create a general domain, dynamic but 
structured enough algorithm, to guarantee general-domain application and the 
possibility of distributed computing if needed. Additionally, a decrease in the 
time and resource complexity constraints required by online data-driven 
approaches. 

3. Research Questions 

The following are the research questions investigated and answered in this 
dissertation: 

1- How to create a supervised FDD method in hydraulic systems that is 
comprehensive enough to cover both sensor and component faults? 

2- How to overcome the drawback of supervised FDD approaches in 
detecting and diagnosing the occurrence of rare faults in both sensor and 
component faults located in hydraulic systems? 

3- How to create an unsupervised feature engineering method that can be 
applicable for both sensor and component FDD in hydraulic systems? 

4- How to automate/dynamize the diagnostic rules in existing model-
based approaches? 
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4. Our Contribution  

A. Contribution 1: Sensor and Component FDD for Hydraulic Systems 
Using Combined LSTM Autoencoder Detector and Diagnostic Classifiers 

In chapter 6,  a comprehensive FDD approach for hydraulic systems is 
proposed, where an additional step is added in advance to the diagnosis using 
the classification phase, to overcome the weaknesses of supervised diagnostic 
approaches in capturing rare and beyond the existing labels faults.  

To overcome this challenge, in this section the detection and diagnosis phase 
are performed separately. Where the detection phase is done by applying a 
LSTM autoencoder to detect rare and unprecedented faults. Followed by the 
diagnosis phase using the ML and DL classifiers to analyse the nature of the 
captured faults in phase one. This approach has been already created in the 
literature; however, our work is beyond the state-of-the-art by the following: (1) 
It is the first time this schema is applied to hydraulic test rigs data. (2) This work 
was applied to both sensor and component faults, in two thorough separate 
experiments. (3) We applied a unique architecture of the LSTM autoencoder 
utilized for the detection phase. (4) In the detection phase represented by the 
autoencoder, we presented a new criterion to calculate the deviation between 
the predicted signal and the input one, which is proven more effective to the 
traditional method in computing more accurate diagnostic thresholds. (5) In 
the fault diagnosis phase proposed by the classification, we provided a full 

comparison results between numerous ML and DL classifiers of different 
functionality and technique. (6) In the same phase, we also provided a 
behavioural analysis of each ML and DL classifier with a bunch of time-domain 
feature selection methods, to support further research in the future by mapping 
each classifier to their best or least suitable time-domain feature, to achieve 
either component or sensor FDD in hydraulic systems. 

B. Contribution 2: Unsupervised Feature Selection using Recursive k-Means 
Silhouette Elimination (RkSE): A Two-Scenario Case Study for Fault 
Classification of High-Dimensional Sensor Data 

Chapter 5 introduces a new feature selection algorithm that depends on 
recursively clustering the data into k groups using k-means clustering, then 
calculating the silhouette value for each member of the individual cluster to 
decide which feature is the representative for the rest of the cluster, and which 
are going to be re-clustered for further analysis. 
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For this section, the following are contributed to this thesis: (1) an in-depth 
review for feature selection algorithms based on k-means clustering is 
structured in related-work chapter, chapter 4. In addition, (2) a new taxonomy 
for feature selection algorithms using k-means clustering is presented. 
Furthermore, (3) a new feature selection algorithm based on the deployment of 
k-means and silhouette measure in an iterative fashion called “Recursive k-
Means Silhouette Elimination (RkSE)” is introduced, tested, and validated. (4) 
RkSE is compared to various feature selection and extraction algorithms when 
applied prior to component and sensor fault classification using a bunch of ML 
and DL classifiers, performed in two separate experiments. 

C. Contribution 3: A Hybrid Approach: Dynamic Diagnostic Graphs for 
Sensor Systems Generated by Online Hyperparameter Tuned Random 
Forest 

In chapter 7, a novel architecture to dynamize fixed-ruled model-based 
diagnostic systems, by the application of RF as a hybrid approach between 
model-based and data-driven diagnostic approaches. 

On one hand, this work demonstrates a unique architecture to deploy RF in 
FDD beyond its ordinary application as a data-driven methodology. Usually, 
RF is used as a classifier, feature selection, and when certain adaptations are 
made, RF can also be used for unsupervised learning. However, the literature 
is lacking the use of RF for model-based FDD or hybrid approaches beyond the 
data-driven combination ones. 

On the other hand, in this work, a development and extension of the work in 
[11] is proposed, by offering a dynamic and general domain approach, with the 
possibility of generating dynamic diagnostic rules using RF. 
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6. Structure of the Dissertation 

 The rest of the dissertation is structured as follows: in the following 
chapter (chapter 3), a brief yet extensive explanation of all the technical 
terminologies and definitions of the background used in this dissertation. 
Chapter 4 showcases all the state-of-the-art related research and application 
to the created methods explained in the next chapters. Chapter 5 represents 
an explanation of our innovative feature selection and window compression 
algorithm called RkSE. RkSE has been tested in two different experiments 
once as a feature selection to aid the diagnosis of component faults using 
multi-variate datasets, while the other experiment shows the abilities of RkSE 
as a window compression method when applied to a univariate dataset in a 
window structure to aid sensor fault diagnosis.  Chapter 6 represents a joint 
approach between LSTM autoencoder and diagnostic classifiers to achieve 

both sensor and component faults in hydraulic systems. In chapter 7, RF is 
applied in a hybrid approach between model-based and data-driven 
approaches, beyond its traditional method of application as a data-driven or 
hybrid between data-driven approaches. Chapter 8 is where the conclusion 
of our methodologies represented in the previous three chapters is discussed, 
as well as adding some ideas for further research in the future. 
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3. Chapter 2: Conceptual and Theoretical 
Foundation 

1. The Fourth Industrial Revolution  

The fourth industrial revolution also known as industry 4.0 [13] is defined as 
the continuous dynamizing and automation of regular industrial and 
technological manufacturing applications invented in the previous three 
industrial revolutions. It is worth to spot the light on the main technologies 
created Industry 4.0, which can be concluded by the expansion in Machine-to-
machine communication (M2M), and the invention of the internet of things 
(IoT). The emergence of Industry 4.0 has a tremendous influence on the shape 
of the industry nowadays, where engaging this technology improved the 
automation, built enhanced communication between industrial machines and 
components, improved dynamic and real-time monitoring and control, fully 
automated fault detection and diagnosis systems that do not have the need for 
human operators or control. 

Below is a brief explanation of all the industrial revolutions that played a 
valuable role in the creation of the fourth industrial revolution we recognise 
today. 

• First industrial revolution: In the 18th century the invention of steam 
power and mechanical manufacturing is the core of Industry 1.0. 

• Second industrial revolution: The industry 2.0 era has emerged in the 
19th century, due to the discovery of electricity and direct current. 
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• Third industrial revolution: This revolutionary discovery took place in 
the 70s of the 20th century. The main highlight of industry 3.0 is the 
growing technological computers and the creation of programmable 
memories, which insured partial automation in industrial processes. 

• Fourth revolution industry: Finally, industry 4.0 is where all the 
previous revolutions are joined together with IoT, M2M, cyber physical 
systems and cloud-based technologies…etc, where all computers, 
components and humans communicate together via wired or wireless 

networks, to provide full automation, communication, and control 
between various industrial components over the production line. 

2. Hydraulic Systems Overview 

Hydraulic systems [14] are defined by the systems that are dependent on the 
utilization of pressurised fluids to generate a driving force or an incentive 
power necessary to power-up various industrial tools and components such as, 
motors and fans. Simply, the fluid motion due to temperature and pressure 
variations functions as a driving force to perform various industrial tasks and 
run mechanical devices. 

The generated power by the hydraulic mechanism is enormous, which is the 
main motive of deploying such systems in heavy machineries. i.e., bulldozers, 
backhoes, loaders, cranes, and log splitters.   

Applying the energy preservation laws and pascal law of pressure, it is 
noticeable that the created power by the pressurized liquid is transmitted and 
undiminished. According to Pascal’s law [15], the principal law of hydraulics: 
“A pressure change occurring anywhere in a confined incompressible fluid is 
transmitted throughout the fluid such that the same change occurs 
everywhere.”. Thus, by controlling the fluid temperature and the amplitude 
and direction of the enforced pressure, the power generated is recycled and 
circulated over all the components connected to the hydraulic system. In other 
words, the hydraulically generated power is not only massive to lift extremely 
heavy loads, but also can perform repetitive tasks easily. 

The schema represented in the figure below is a paradigm of hydraulic systems 
with their basic components. 
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Figure 1 A Hydraulic System Paradigm Containing the Basic Components [16]. 

The main basic components in any hydraulic circuit are explained below: 

• Hydraulic pumps: the pump is the mechanical part responsible for 
pumping the fluid to the rest of the hydraulic circuit components. 
Pumps act as a vacuum to push the liquid out of the reservoir through 
the filter back to the pump. 

• Hydraulic cylinders: a hydraulic cylinder also known as the hydraulic 
motor, is the component responsible of generating unidirectional strokes 
that lead to establishing a unidirectional force. In other words, the 
cylinder is the mechanical actuator in the hydraulic circuit.  Moreover, 
hydraulic cylinders and pumps can be also used as one unit in the 
hydraulic circuit called “hydraulic transmission”. 

• Control valves: there are several types of valves placed in various 
locations of the hydraulic circuit, but what they all have in common is 
their functionality of directing the fluid to the designated actuator or 
cylinder. 

• Hydraulic fluids: some of the hydraulic circuits run by water. However, 
most of hydraulic systems are fuelled by hydraulic fluids. Hydraulic 
fluids also known as “tractor fluid” that mainly contains petroleum oil 
and other added fluids to fit the purpose and restrictions of the 
containing hydraulic circuit.  
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• Filters: this component cleans and filter the fluid coming from reservoir, 
by removing the unnecessary dirt, particles and contamination resulted 
from the other mechanical components.  

• Reservoir: this part main functionality is to contain the excessive fluids 
continuously formed by the pressure and temperature differences, 
which leads to fluid expansion or sometimes leaks. 

• Accumulators: this component is essential to reserve the generated 
energy to ensure the preservation necessary to perform repetitive 
motions. Accumulators store the energy applying a certain gas under 
pressure. 

3. Fault Types and Classifications 

In the last century, the world has witnessed an industrial and technological 
revolution that caused the rapid spread of nonlinear, complex sensor systems 
in various domains and applications. These systems are literally everywhere; 
in aircrafts, transportation like cars and ships, computing systems such as 
computers, laptops, smart phones, embedded systems, and in many industrial 
applications such as factories, chemical reactors and nuclear power plants and 
many more countless examples. As long as these complex systems continue to 
function properly, they play a major role in providing help, comfort and 
assistance to our daily lives and they are even considered a necessity to the 
current structure of modern societies. But what if these systems fail? What are 
the consequences and risks followed by such failures?  

Faults in complex sensor systems can be defined as unexpected events that may 
occur at a certain point of time, that might trigger bigger events or a series of 
other unexpected events. Isermann and Balle [17] defined faults as:  
A fault is an unauthorized, permitted or allowed deviation of one or more of 
the system’s parameters, characteristics, behaviours or patterns from the 
normal or standard state of the system. 

Based on the nature of these systems being non-linear, dynamic, and having 
complex relationships between its components, it is extremely complicated to 
predict faults in such systems. Faults consequences fall in a spectrum that 
ranges from harmless, ignorable faults to extremely disastrous ones that could 
lead to major economical and human catastrophes. There are many examples 

throughout the years of incidents caused by faults in complex systems which 
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were so severe and almost caused human and nature extinction. An example 
of such incidents was the explosion of the nuclear reactor at Chernobyl, 
Ukraine, in 1986. Many civilians died immediately by the explosion, and many 
others died shortly after, affected by the radiations emitted from the power 
plant which caused them serious health issues including various types of 
cancer.  The reason behind the explosion was a fault in one of the internal units 
that provided the system with trajectory and altitude information. Chernobyl 
till this day still is uninhabitable and so dangerous to visit, it still is highly 
contaminated by radio-active waste in the soil, water and air, and it is extremely 
biohazardous to all biological creatures in the planet for the next couple of 
hundreds or even thousands of years.  

The real question is: is there anything that could have been done to avoid such 
catastrophic incidents?  In most incidents in history, it is not possible to avoid 
the occurrence of such incidents. However, it is possible to predict the causing 
failures, detect them as soon as they occur, then take quick recovery actions to 
minimize the severity of their consequences. Which leads to the significance of 
applying Fault Detection and Diagnosis (FDD) technologies to ensure the 
reliability and safety of complex systems. 

Before diving in this topic, it is highly recommended to understand the 
distinction between different technical terminologies related to FDD. The 
following definitions are described in more detail in [17]:  

• Fault: is an unauthorized, permitted or allowed deviation of one 
or more of the system’s parameters, characteristics, behaviours, 
or patterns from the normal or standard state of the system. 

• Failure: a failure is when the system loses the ability to perform 
one or more of its required functions permanently.  

• Symptom: an observable change in the system’s quantifiable 
parameters from the normal state, which can point to the 
existence of a fault, that might lead to another fault or a system 
failure. 

• Fault Detection: is the ability to detect the fault presence in the 
system and the point of time this presence occurred.  

• Fault Isolation: is the ability to isolate the detected fault(s), by 
finding its type, location, and time. This process usually follows 
the fault detection process. 

• Fault Identification: is the ability to identify the detected and 
isolated faults by identifying their size and time-variant 
behaviour. This process follows fault isolation. 
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• Fault Diagnosis: is the ability to create static or dynamic 
relationships between symptoms and their connected faults, that 
altogether might cause the occurrence of system failure. 

• Monitoring: is a real-time operation of continuously observing 
the system and its behaviour, by recording its vital information 
that might indicate an existence of a fault.  

In the literature, faults can be classified into three main categories based on the 
location of the fault itself in the containing system as: sensor faults, actuator 
faults and component faults [18].  

3.1 Actuator Faults  

Are the faults occur in actuation units and appears as a partial or complete 
malfunction of the actuation control. In other words, the actuators could be 
faulty when they fail to perform the actuation function i.e., stuck actuator. A 
complete fault in actuators can appear as a result of a burning wire, a cut, 
leakage, breakage or a presence of an actual physical object holding back the 
actuator preventing it from controlling the system’s behaviour.  

3.2 Sensor Faults 

Sensor faults are the faults represented by the sensors and their readings. 
Usually, these faults are noticed when the sensors are producing incorrect 
readings due to a physical fault in the sensor itself, broken wires, or a 
malfunction in the communication channels between the sensors and the 
controlling unit, or the change of the sensor’s reading could be an indicator 
(symptom) of a component or system fault.  Industrial systems contain 
hundreds of sensors attached in different locations of the system, wired or 
wireless, stationary, or mobile, to continuously measure some key variables of 
these systems in real time. The data generated from sensors is considered a rich 
source of information from the analytical perspective, since this type of data 
has a vast majority of unique patterns and worthwhile characteristics. 
Moreover, any sudden changes of these sensors’ readings, or the appearance of 
any unexpected patterns that goes without notice, can lead to a major risk and 
serious consequences. 
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A. Sensor Faults Taxonomy 

There are several existing classifications and categorical descriptions of sensor 
faults. The most sound and interesting one, is the comprehensive study 
conducted in 2009 [19], where an extensive approach was taken to provide a 
clear definition of each fault, their potential cause(s), the observed duration of 
each fault in time-series datasets and the effect each fault carries on the sensed 
data.   

In accordance with the mentioned research, sensor faults can be divided into 
two main categories based on how they get observed, and where the fault 
shows its symptoms. The two groups are: faults based on system view and 
faults based on data centric view. 

The first broad category is system-centric faults, where the fault influences the 
system, and its symptoms can be observed by the system’s behaviour. The 
system here is meant to be the sensor itself and its physical nature. The system 
related sensor faults are usually caused by the following: (1) the sensor 
calibration such as offset, gain, and drift faults. (2) low sensor battery, (3) data 
clipping, which occurs when the sensor reaches its minimum or maximum 
reading and cannot sense beyond its defined capacity, (4) connectors and 
hardware problems and (5) environmental factors as of radical changes beyond 
the sensor range of readings, which leads to clipping.  

Calibration Faults: Calibration is a tricky task when applied to sensors. If the 
calibration is not done with caution and expertise, it might lead to serious 
consequences on the generated sensor data. The following are the main 
calibration related sensor faults and their definition. 

- Offset or bias fault: This fault occurs when the data is offset or shifted by 
a constant value called the bias. This fault can be easily injected by 
adding a constant value or an offset to the input data. Bias faults are hard 
to diagnose since the input data keeps containing similar patterns to 
healthy data but shifted in value. 

- Gain faults: gain fault represents the amplification of the input signal, or 
simply multiply the input signal with a constant value.   

- Drift faults: in these faults the accuracy or the performance of the input 
signal is drifting away from the expected healthy performance. This 
kind of fault can be injected by adding the input signal to a function of 
change such as a polynomial.  
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The second category is the data-centric sensor faults, where the sensors 
deviation can be observed in the data, while not necessarily having a symptom 
or cause noticeable on the physical aspect of the sensor. The data-centric faults 
are summarized by; outliers, spike, stuck-at or constant, and noise. 

- Outliers are one of the most common faults to occur in sensor data. An 
outlier as a sensor fault can be defined as an input sensor signal or an 
isolated duration that shows a significant deviation from the expected 
recorded patterns. The reasons behind this kind of faults are unknown 
and varies each time. 

- Spikes: is a type of sensor faults that can be diagnosed by the data 
observation, in which the rate of change over a limited duration of time 
is observed to be higher than the expected rate of change. This type of 
faults is not necessarily returning to normal phase. The difference 
between the spike and outlier faults, is that spike faults should be 
observed in multiple readings or data samples, unlike outliers where 
they only show effect in one isolated sample or entry. The main reasons 
behind spikes faults are expected lower battery levels of the sensor, or a 
malfunction in its connectors or the hardware. 

- Stuck-at faults: stuck-at faults also known as constant faults are defined 
as a sequence of consecutive entries that have no variance over a 
relatively long period of time. In other words, the sensor is stuck at some 
value for longer periods than usual. The sensor can be stuck at zero, 
hence is called constant-zero. As well as, stuck at the highest or lowest 
possible values of the sensor, which are called constant-high and 
constant-low, respectively. The main reasons behind constant faults can 
range from neglectable faults due to clipping (sudden environmental 
changes that cause the sensor to falsely point at its maximum or 

minimum reading range) a low battery level, or more serious causes 
connected to the sensor connectors or hardware malfunction. 

- High noise: normally any sensor data exhibits a small amount of noise. 
However, when the data contains more noise or variance than usual, it 
might be a sign of faulty sensors. This fault can be connected to lower 
battery levels, or the occurrence of actual hardware malfunction in the 
physical sensor. 
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3.3 Component Faults  

Component faults are the faults appear in different components of a complex 
system that are not considered a sensor or an actuator. These faults are the most 
common among all the fault types, and they can vary drastically from a system 
to another or a domain of application to another. When component faults occur, 
they change the observed behaviour of the system and its expected outcomes 
and results. 

4. Fault Detection and Diagnosis (FDD) 

4.1 FDD Definition  

Fault Detection and Diagnosis (FDD) is the process of finding odd, 
extraordinary, or unusual patterns in the given data, comparing to the patterns 
it usually forms in the regular or healthy state. These irregular patterns are most 
commonly called faults, anomalies or outliers [20].  

In the last decade, FDD has been an interesting topic for many researchers 
applied in a wide range of applicational domains. Due to its enormous 
significance to provide the needed safety, security, and reliability in many 
industrial systems. As well as, the vital role it plays in the fast detection of 
abnormalities and faulty patterns, which is essential in many industrial systems, 
especially the ones with harsh or highly restricted environments, systems that 
are prone to malicious attacks, sensor systems that contain fault-prone sensors 
or the sensors’ reading might be faulty or unusual. As a result, many FDD 
systems are developed for a specific domain, while others offer a more generic 
solution. 

4.2 FDD Classification 

FDD approaches can be divided into three main categories; model-based and 
data-driven approaches, as Venkatasubramanian et al explained in [21], [22] 
and [23]. 

Model-based approaches uses a physical system or a simulated model of the 
system to form a prior-knowledge of this system, its components, symptoms, 
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faults, and failures. The stored knowledge is used as a reference to identify 
faults, where they can be spotted easily by observing the difference between 
this reference knowledge and the current applicational measurements.  

Data-driven approaches might not offer any knowledge of the physical system 
or a modelled simulation. However, they tend to extract data-driven 
knowledge by analysing the system recorded data and applying various 
methods to find hidden patterns and relationships that describe the unknown 
system and its behaviour. Although these approaches do not provide a good 
insight of the system and its processes, these approaches are extracted from the 
data (unlike model-based methods that are dependent on fixed rules and rigid 
knowledge) is considered a dynamic, general-domain solution.  

Hybrid approaches can be formed by introducing a combination of methods of 
the same group or different groups. i.e., a combination between two data-
driven approaches to form a new hybrid one or establishing a bridge between 
a specific method in data-driven and model-based to finally produce a hybrid 
offspring method between entirely different branches. 

Model-based and data-driven approaches each can be divided into two main 
classes based on the methodology they use to approach the fault detection 
problem: Quantitative models and qualitative models. 

• Quantitative models: Are the models that uses the relationships 
between the systems’ symptoms, faults, parameters, and components 
either statically or dynamically to describe the system and its behaviour 
quantitively using mathematical formulas and statistical approaches.   

• Qualitative models: Are the models that uses the relationships between 
the systems’ symptoms, faults, parameters, and components either 
statically or dynamically to describe the system and its behaviour 
qualitatively using causalities, graphs and if-then rules. 

A.  Model-Based FDD 

• Quantitative Model-Based FDD 

The quantitative approach for model-based FDD is based on deriving 
mathematical formulas and relationships from the physical or simulation 
model to describe the natural behaviour of the underlying system. These 
explicitly derived mathematical knowledge is used to detect and diagnose the 
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intended system faults. The quantitative information derived from the physical 
system and represented by mathematical equations can be extracted from the 
system by either observing the behaviour of the system in the time-domain, 
parameters estimation using the knowledge of the system experts and their 
understanding of the created physical system or finally, by applying parity 
space methods. 

• Qualitative Model-Based FDD 

Another common approach for model-based FDD is by applying qualitative 
methods. These methods do not rely on mathematical formulas to describe the 
normal state of the physical system. Instead, they create a rule-based diagnostic 
model derived from the physical system’s prior-knowledge. These rules can be 
extracted by a direct contact with the system expert to build and exchange 
knowledge about the system’s components and rules between them. The 
verbally transmitted expert-knowledge is normally documented and 
summarized in some sort of a database such as ontologies, either with a 
semantic representation or simple if-then statements.  The most famous 
qualitative model-based FDD methods are digraph methods, fault trees and 
qualitative physics approaches. 

A majorly important type of model-based systems are expert systems which 
tend to use rule-based, empirical reasoning and functional reasoning to 
inference a series of rules necessary to make the diagnosis. These systems are 
suitable to diagnose complex systems that need a lot of human expertise to offer 
deep understanding and provide resolutions.  

The main characteristic of expert systems is the deep association between the 
fundamental given concepts of the system, and the inferred knowledge. This 
relationship is a perfect example of a causality, also known as the cause-effect 
relationships based on establishing logical conclusions that bridge the initial 
premises and the diagnostic conclusions. In Addition, deploying heuristics into 
these systems can result in forming heuristic-based expert systems, which 
tends to contribute to solving many of the limitations of the regular expert 
systems but still is domain-specific and lacks the generality in its approach. 

The downsides of using the traditional cause-effect methods represented in 
expert systems include the following: 

• The lack of dynamicity and generality; static knowledge for a specific 
domain. 

• The lack, or absence in handling sudden or novel occurrences. 
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• Unable to detect, fill and update the knowledgebase/system gaps. 

• The lack of credibility in knowledge acquisition because it is completely 
dependent on experts’ reliability. 

• The impossibility to learn from misdiagnosis and errors them. 

B. Data-Driven FDD 

• Quantitative Data-Driven FDD 

Data-driven quantitative approaches use the process history data and the 
systems measured data to extract mathematical formulas that defines hidden 
patterns or relationships between different parameters and features of the 
physical model, without having any prior-knowledge of this model. The 
mathematical representation of the data knowledge can be extracted in two 
different fashions; one is a statistical approach, and the other is a black-box 
approach. 

In statistical approaches, the mathematical model parameters are estimated 
taking into account the physical system harmony and principles, these 

parameters are often obtained from the measured data generated from the 
system using various statistical and pattern recognition approaches, such as 
supervised, unsupervised, semi-supervised and ensemble-learning methods.  

The black-box models formulate the system using non-physical parameters or 
characteristics of the system. In other words, the mathematical formulas 
extracted by black-box approaches do not reflect or represent the actual 
physical system or its components, that is why such models are identified by a 
“black-box”. An example of black-box data-driven FDD methods are shallow 
neural networks like Artificial Neural Network (ANN), fuzzy logic and deep 
neural networks. 

• Qualitative Data-Driven FDD 

Previously, there were three major methods to extract qualitative knowledge 
from the historical information or the system’s measured data, which are expert 
systems, knowledge-bases and Qualitative Trend Analysis (QTA) [24]. 
However, recent studies [23] and [25] added these three approaches under 
qualitative model-based branch, since such methods include creating a model 
of the system and its diagnostic rules, either inferred or learned. Which makes 
these methods more suitable to be categorised under model-base rather than 
data-driven. 
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In conclusion, data-driven approaches offer a lot of advantages over other types 
of diagnosis approaches, including their ability to transform the data into less 
complex and lower-dimensional forms using feature selection and extraction 
approaches. Moreover, data-driven approaches are of a dynamic nature. Hence, 
they can be an effective alternative to general-domain FDD approaches with 
high level of dynamicity and ability to identify and learn new faults and 
abnormalities directly from the data. 

Although data-driven approaches show a dynamic behaviour, the decision 
made using such methods are not guaranteed to be more accurate and they 
have the tendency to consume more time, computational and storage resources 
comparing to their model-based counterparts. Additionally, data-driven 
approaches are useless when ones do not possess the fundamental skills in 
machine learning, big data analysis and statistical knowledge. However, the 
main disadvantage of methods relying on this schema lays in the concept of 
data-driven approaches itself, where they are a hundred percent dependent on 
the quality of the data. Which results in producing and storing a huge amount 
of data, that is not only a resource expensive but also dangerous, since some 
data has a sensitive content and storing them makes such an attractive hub for 
cyberthefts and anomalous attacks. 

The following is a sum-up of data-driven cons: 

• The dependency on the data 

• The dependency on possessing certain skills to apply those methods. 

• Storing data is resource and security expensive. 

• Additional expenses related to the need of additional hardware and 
maintenance. 

 

An overview of the classifications of FDD methods influenced by the chart 
visualized in 2003 by Venkatasubramanian et al [21], and Skliros et al in 2018 
[23]. The chart is extended and updated to meet the rapid development in FDD 
methods and techniques in the past ten years as shown in Figure 2.  
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Figure 2 Classifications of FDD Methods 
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continuously improve due to learning or experience [26].  Commonly speaking, 
ML is fundamentally a process of establishing mathematical and statistical 
models using a portion of the input data used for training, named “training 
data”. These models are expected to make decisions when tested with further 
data based on the patterns learned from the training process without the aid of 
pre-defined programs or rules.  

ML approaches can be classified into four main categories based on their 
mechanism of learning the patterns and decision making, as well as the 
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availability of the labels associated to the sample data or not. Based on this, ML 
algorithms can be classified into supervised, unsupervised, semi-supervised 
and reinforcement learning. As shown in Figure 3 

 

Figure 3 Machine Learning Algorithms' Types 

Supervised Learning: is the type of machine learning where the data samples 
giving for training are fully paired with their label or category that describes 
the problem. These types of models try to map the relationship between the 
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or a value within a range.  This type of label representation is use in regression 
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clusters or groups where the samples of similar behaviours are gathered 
together.  Unsupervised ML methods are extremely important to analyse, 
provide better understanding of the data, and derive meaningful relationships 
between the samples. An example of unsupervised learning algorithms is k-
means clustering, Hierarchical clustering, Self-Organising Maps (SOM) and 
many more. 

Semi-supervised ML: is the type of ML that lays in between the supervised 
and the unsupervised approaches, in which the data is partially containing the 
target variable information. It is worth to be mentioned here that this type of 
ML approaches is quite common in real-life scenarios. Since the data labelling 
process is very time and effort consuming and usually is manually done by a 
human observer exhaustively recording the status of an observed process. 
These methods can be used in classification or clustering tasks based on the 
end-goal of the learning problem in hand. 

Reinforcement Learning: reinforcement ML has a different mechanism of 
learning comparing to the last three ML types. The Reinforcement learning is 
based on the continuous interaction between the training model and the 
environment to provide a reward system, in which it the decision making 
ensures the best reward and the least risk. Reinforcement learning is the closest 
scenario to how humans learn based on actual environmental interactions and 
experience, which makes this type ideal for robotics and robot learning. The 
following workflow chart shows how reinforcement learning methods 

organize the interaction between agents and the surrounding environment. 
One of the most well-known reinforcement learning methods is Q-learning and 
temporal difference. 

 

Figure 4 Reinforcement Learning Mechanism 
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In this work, we are mainly concentrating on classification ML algorithms to 
achieve FDD. In addition, to unsupervised feature selection algorithms which 
might enhance the efficiency of FDD in hydraulic systems. Accordingly, the 
literature of the methods mentioned bellow are coherent to the content of this 
dissertation and reflects all the methods that are encountered within this work. 

6. Feature Selection Literature 

Feature selection categories are determined based on two main characteristics. 
(1) The existence of samples’ labels or classes, and (2) the search strategy used 
to select the features [27].  

First, according to the label availability, feature selection methods can be 
classified into; supervised, semi-supervise and unsupervised feature selection 
methods [28]. 

Supervised feature selection algorithms depend on the existence of labels to 
efficiently chose the most discriminant and informative features, by effectively 
classifying the samples between the classes using the given labels. However, 
when only some of the data samples contain labels, while the rest are 
unlabelled, in this case the feature selection is called semi-supervised. Semi-
supervised algorithms are capable of extracting feature importance from both 
labelled and unlabelled instances. Generally, semi-supervised feature selection 
relies on the construction of correlation matrix between features and determine 
the valuable ones based on their similarity degree to the formed matrix [29]and 
[30]. The most spontaneous, natural, and common form of data is the 
unlabelled form, where the records are stored from their source naturally 
without being combined with any observations, or any sort of grouping or 
notations. Due to the absence of guidelines and clues, unsupervised feature 
selection is considered by far the most difficult type comparing to the former 
two [31].  The related work to this method is explain in detail in related work 
section. 

Second, another way to determine the feature selection method used is by the 
process strategy which can be divided into filter, wrapper, and embedded 
methods. 

In most practices, filter methods are applied as a pre-processing stage prior to 
the actual feature selection using wrapping methods. The features are selected 
by performing various statistical tests to measure the correlation between each 
feature and which are more relevant. Some examples of statistical tests to 
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measure the correlation coefficient are, Pearson’s correlation, Fisher 
transformation coefficient also known as F-test, Linear Discriminant Analysis 
(LDA), Chi-square, and many more. Filter methods utilize the shape of the data 
to determine the most valuable features. More specifically, by applying a 
certain condition, methods, or criteria to rank the features, then order them in 
a descending order based on the rank calculated while selecting the features 
highest in the order to represent the rest. Some examples of the filtering 
approach is reliefF [32], information gain [33], and F-statistic [34]. 

Wrapper methods rely on the continuous selection of various subsets of 
features from the feature space and utilize them each to train a machine 
learning model and infer which subsets to choose and which to eliminate 
according to the resulting performance of the model. In other words, wrapper 
methods do not rely on the shape of the data as the filter methods, instead they 
use machine learning to select the features with the best accuracy when running 
the machine learning model. Although, this kind of methods conclude the 
feature selection process in a search problem, these methods are very 
computationally expensive. 

Wrapper methods are known for applying various machine learning and data 
mining algorithms to select features such as, the utilization of SVM to create 
SVM Recursive Feature Elimination (SVMRFE), which is considered one of the 
most useful feature selection algorithms when using microarrays and genetic 
data [35]. 

Wrapper methods can be divided into forward, backward, and recursive 
feature elimination. Below is the detailed explanation of each: 

• Forward Selection: is the wrapper feature selection method in which 
ones iteratively keep adding new features to the model, while starting 
the selection process with no features at all. These methods are 
initialized with a null feature set and keep adding new ones each 
iteration until convergence is reached. The most common convergence 
criterion is when the model has the highest performance the way it is 
without any additional feature from the feature space. 

• Backward Elimination: this method follows the exact opposite strategy 
of the forward selection. In this case, the feature subset is initialized with 
the whole subsets in the feature space, followed by iteratively 
eliminating them until the performance of the model is the best without 
any further elimination. 

• Recursive Feature Elimination: these methods are remarkably similar 
in the mechanism to greedy search. They iteratively select a different 
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subset of the features, run the model, and keep tracks of the best and 
worst performance features at each iteration. Each iteration, the 
construction of the next model is dependent on the features left from the 
previous iteration. Finally, a full rank list of the features is created and 
accordingly the selection or elimination is decided. 

Finally, embedded feature selection methods or sometimes called hybrid 
methods, are a combination between filter and wrapper methods, where they 
construct their own built-in feature selection using both the shape of the data 
or the statistical analysis of it, along with applying machine learning models. A 
popular example of embedded methods for feature selection is the application 
of LASSO and RIDGE regression by constructing internal criteria functions to 
contribute to feature selection and reduce overfitting. Figure 5, shows the 
classification of feature selection methods according to the research in [27]. 

 

Figure 5 Feature Selection Classification [27]. 

The following table describes the advantages and disadvantages of wrapper, 
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Table 1 Filter, Wrapper and Embedded Feature Selection Methods Pros and Cons Comparison. 

Method Pros Cons 

Filter • Scalability 

• Speed 

• Independent from the 
clustering process 

• Permits parallel 
computation 

 

• Has limited interaction with 
the clustering algorithm. 

Wrapper • Can Create a model 
Representation of 
feature dependencies. 

• Provides interaction 
with the clustering 
algorithm used for 
selection. 

• Prone to overfitting. 

• Computationally expensive. 

• Method-specific: depends on 
the clustering algorithm 
applied 

Embedded • Provides interaction 
with the clustering 
algorithm used for 
selection. 

• Less computational 
time complexity 
comparing to Wrapper 
methods. 

• Can Create a model 
Representation of 
feature dependencies. 

 

• Method-specific: depends on 
the clustering algorithm 
applied 

7. k-means Clustering Literature 

k-means clustering algorithm was first created back in 1967 by James 
MacQueen, the detailed article is shown in [37], where data is divided into k 
number of clusters based on their connectivity and pattern. This method is 
optimal to find hidden patterns in unlabelled data. 

The basic flow of any process must contain inputs, outputs, and the mechanism 
of the process itself for k-means clustering algorithm. First, the inputs expected 
are the unlabelled dataset D, and a predefined number of clusters k. k can be 
chosen randomly or computed using various methods. In a recent study [38] 
various methods are introduced to calculate the most optimal number of 
clusters in k-means algorithm. The most common method to calculate k is using 
elbow method. The elbow method will be used later in the feature selection 
algorithm proposed in this thesis, so that it is essential to have some overview 
of the method and how it works. The fundamental idea of the elbow method is 
to calculate the sum of squared errors (SSE) for various k values iteratively, 
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while the best k is represented by the k value with the first sudden drop in SSE 
value, in such way that it looks like an elbow when plotting k and the distortion 
of SSE.  

Second, the process in which k-means clustering work as the following: (1) 
randomly select k number of samples from the dataset D. These k samples are 
considered the seeds of the algorithm which can be chosen randomly or 
following some specific algorithms to initialize the seeds. (2) The chosen seeds 
will perform as the initial centroids of the k clusters, in which the distance 
between all the instances and these centroids is calculated. Each instance is 
grouped in the nearest centroid’s cluster (minimum centroid distance).  (3) 
Perform iterative or repetitive centroids selection and distance calculations to 
optimize the centroids locations, to eventually have the best centroids locations 
that ensures better clustering. The regular equation used to calculate the new 
centroid each iteration is explained below: 

𝐶𝑖_𝑛𝑒𝑤 = (
1

𝑁𝑖
)∑𝑥𝑖

𝑁𝑖

𝑖

 Eq.  1 

Where 𝑁𝑖   is the number of members or instances in the cluster i, and the 
calculation of 𝐶𝑖_𝑛𝑒𝑤   is simply computed by finding the mean point or object of 
each cluster. 

There are two main conditions to revoke the iteration and get the final centroids 
positions. Either by calculating the mean distance for each cluster iteratively 
and stop when the cluster has the minimum mean distance between the 
centroid of this cluster and all the cluster members, or when a maximum 
number of iterations is reached.  

Finally, k-means output is expected to be a k number of clusters, where each 
cluster has a centroid Ci and various members of the object forming the dataset 
D based on their connectivity or distance to their final cluster. 

The study in [39] demonstrates four different distance measures that can be 
used to calculate the distance between the objects and the centroids within each 
iteration of processing k-means. The following bullet points explain the most 
popular three distance measures that used in k-means clustering algorithm. 

• Euclidean distance: is the distance computed by subtracting the 
corresponding coordinates of two objects, and then measure the square root 
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for the squared value of the individual subtraction, as shown in the equation 
below: 

𝐷𝑥𝑦 = √∑(𝑋𝑖𝑓 − 𝑋𝑗𝑓)
2

𝑚

𝑓=1

 

 

Eq.  2 
 
 

Where m is the total number of dimensions in both vectors 𝑋𝑖and 𝑋𝑗. 

• Manhattan Distance: is the distance calculated by measuring the absolute 
value of the difference between two objects. 

𝐷𝑥𝑦 = |𝑋𝑖𝑓 − 𝑋𝑗𝑓| Eq.  3 

• Chebychev Distance: this kind of distance measurement computes the 
Manhattan distance for each two corresponding dimensions in two objects 
individually, and then take the maximum dimension distance as the overall 
distance representing the two vector objects.  

𝐷𝑥𝑦 = 𝑚𝑎𝑥𝑓|𝑋𝑖𝑓 − 𝑋𝑗𝑓| Eq.  4 

Generally, k-means for feature selection methods work by trying to cluster the 
features as samples, as they initially selecting k random number of features 
from the feature space to perform as the k clusters’ centres and repeatedly 
measure the similarity between the selected centroids and their objects. 

7.1 Silhouette Value Literature 

Clustering in general, is the process of defining groups of objects. In a way that, 
in each group objects tend to be like one another, and different from other 
objects located in other clusters or groups. How to evaluate these clusters? A 
high-quality cluster usually have a high intra-cluster similarity value, and low 
inter-cluster value, which means the objects contained in this cluster are highly 
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similar and connected to one another, and distinctively distant from other 
objects in other clusters. In other words, the cluster should be well-defined to 
be considered a high-quality cluster.  

There are many similarity measures to compute the intra-cluster and inter-
cluster similarity values. Such as, silhouette value [40]. 

 The silhouette value for an object i in one of the k clusters computed using k-
means clustering can be calculated as the following equation: 

𝑆𝑖 = 
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)
 Eq.  5 

Silhouette value can also be written in a function formula as the following: 

𝑆𝑖 = 

{
 
 

 
 1 −

𝑎𝑖
𝑏𝑖
, 𝑖𝑓 𝑎𝑖 < 𝑏𝑖

0,                   𝑖𝑓 𝑎𝑖 = 𝑏𝑖   
𝑎𝑖
𝑏𝑖
− 1,      𝑖𝑓 𝑎𝑖 > 𝑏𝑖

 Eq.  6 

Where 𝑎𝑖 is the average distance between the object i, and all other objects that 
belongs to the same cluster. 𝑏𝑖  is the minimum average distance between the 
object i and all other object in all neighbouring clusters. 

𝑆𝑖 is the silhouette value of the object i. Based on the values of 𝑎𝑖 and 𝑏𝑖  using 
one of the equations above. 

 𝑆𝑖  is a straightforward approach to know the similarity or dissimilarity 
measures between the object i and its group. If 𝑆𝑖 is close to the positive end, 
positive one, that means this object is highly similar to its cluster and 
appropriately grouped. When 𝑆𝑖 is close to the negative end or negative one, 
then i is not appropriate to its original cluster, and the similarity between i and 
its neighbouring clusters are higher, so i should have been clustered in the 
neighbouring group instead. An 𝑆𝑖 close to zero means that this object is located 
in between two main clusters and does not belong to any. 
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8. Relevant ML Classification Algorithms 

8.1 Logistic Regression (LR) 

To understand LR, it is necessary to distinguish it from Linear Regression.  
Linear Regression is suitable for ML tasks where the outcome is expected to be 
a range of values, or a continuous measurement such as, students grades 
prediction, the amount of rainfall in a specific time of the year, the expected 
earnings of a production line…etc. Nevertheless, logistic regression [41] [42] 
results a discrete value of a clear category mostly suitable for binary 
classifications (i.e. student fail or pass, the weather is rainy or not, a production 
line have earnings or not) 

Logistic regression applies a transformation function to calculate the 
probability in which each targeted occurrence is measured, and then 
accordingly decide which group to classify the sample within. This function 
has an S shaped-curve and is called the “logistic function” which is where 
logistic regression gets its name from.   

An example of how logistic regression works, assume a binary classification 
scenario where 𝑌 = {0,1} and the input data has 𝑚 number of samples  𝑋 =
 {𝑥1, 𝑥2, 𝑥3…𝑥𝑚} and the relationship with the classes is linear. The traditional 
equation for logistic regression is shown below: 

𝑙 = 𝑙𝑜𝑔𝑏
𝑝

1 − 𝑝
 

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2…+ 𝛽𝑚𝑥𝑚 
Eq.  7 

And  

 

𝑝 =  
1

(1 + 𝑒−𝑋𝛽)
=  

1

(1 + 𝑒−(𝛽0+ 𝛽1𝑥1+ 𝛽2𝑥2…+ 𝛽𝑚𝑥𝑚))
 

Eq.  8 

The results of 𝑙 will determine the value of 𝑦. If 𝑙 > 0 then 𝑦 = 1 (instance is in 
the positive class). When 𝑙 𝑖𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 then 𝑦 = 0 (instance is in the negative 
class). 
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8.2 Naïve Bayes (NB) 

NB is a well-known supervised, statistical machine learning approach. NB is 
dependent on the probability calculation of the next event occurrence, given 
the probability of another influential event that has already happened. The 
basic idea of NB classifier is derived from Bayes theorem [43], where the prior 
knowledge is used to calculate the probability of the hypothesis being true. 

Bayes’ theorem in a mathematical formula is shown below: 

𝑃(ℎ|𝑑) = (𝑃(𝑑|ℎ) 𝑃(ℎ))/𝑃(𝑑) Eq.  9 

Where: 

• P(h|d) is the conditional probability of the hypothesis event h in condition 
of the probability shown in the data d.  

• P(d|h) the conditional probability of the data d that makes the hypothesis h 
true.  

• P(d) the probability of the data d irrespective to the hypothesis condition 
whether it is true or false. 

• P(h) the probability of the occurrence of hypothesis h irrespectively with the 
observations stored in the data d.  

 As a final note about NB. The word “Naïve” is added to the algorithm name 

to indicate the naïve assumption that this theorem is built upon, which assumes 
that the variables in d are independent from each other, which is highly 
unrealistic in real-world scenarios.  

8.3 K-Nearest Neighbors (KNN) 

KNN [44] is a classification and regression machine learning algorithm, which 
has a unique technique of using the whole dataset without splitting the data 
into training and testing required by traditional supervised approaches.   
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KNN uses the instances or samples in the data as a reference, when a new 
instance is given, KNN tries to find the most similar K points or instances to 
the new point. When KNN is used for a classification task, the label of the new 
point is determined by the majority class label of the chosen nearest K points. 
For regression problems using KNN, the mean value of the K instances is used 
to compute the regression outcomes.  

KNN parameters such as K and the similarity measure used are predefined by 
the user. There are a variety of similarity measures which basically work by 
calculating the distance between the new instance and each point in the dataset. 
The distance measures can be Euclidean, hamming distance and many others. 

8.4 Linear Discriminant Analysis (LDA) 

LDA is a machine learning algorithm used for classification and feature 
selection purposes based by the application of statistical concepts. More 
specifically, LDA applies Fischer linear discriminant [45] statistical approach to 
compute the linear combinations for the features in the given dataset, which 
provide the best separation between the labelled classes or events.  

It is worth to be mentioned that both PCA and LDA functions by finding the 
linear combinations of features. However, they both have different criteria to 
choose the hyperplanes. In PCA, the hyperplanes are chosen to maximize the 
variance or difference between the data points in the feature space without 
taking the knowledge of the points’ labels or classes into consideration, as well 
as the fact that the chosen PCs must be orthogonal to one another. On the other 
hand, LDA chooses the hyperplanes to maximize the similarities between 
points of the same class or label to provide the best separation possible from 
other classes in the dataset. LDA’s hyperplanes chosen are not necessarily 
orthogonal to one another as in PCA. 

8.5 Support Vector Machine (SVM) 

SVM [46] is a non-statistical machine learning approach that can be applied to 
solve classification and regression problems. SVM works by attempting to find 
the optimal hyperplanes that offers the best separation between the labelled 
classes in the feature space. The optimal separation between the classes is 
determined by choosing the hyperplanes that has the furthest distance between 
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the data points and the hyperplane. The gap distance between the closest 
instance on both sides of the hyperplane is known as “functional margin”. The 
margin should be at least equal to one. However, in some cases some tolerances 
can be applied and margins with less than one distance can be accepted to 
optimize the SVM performance. 

Although, SVM works by finding linear combinations of hyperplanes, it can 
also be used to solve non-linear problems by applying the “kernel trick” which 
makes SVM extremely relevant to the nature of real-life problems, and 
universally applicable in many fields and applications such as, fault detection 
and classification.  

When plotting the data points in the feature space, sometimes it is even visible 
by the naked eye that the separation hyperplane between various classes is not 
linear. The kernel trick comes to overcome this challenge by projecting the data 
points with non-linear separation hyperplanes into a higher dimensional space, 
where the classes appear to be linearly separated by a linear hyperplane. There 
are various types of kernels based on the shape of the decision boundary most 
optimal to separate the data classes, i.e., Fischer kernel, polynomial kernel, 
Gaussian kernel, Radial Basis Function (RBF) kernel, and many more. 

8.6 Decision Trees  

Decision trees in data mining are a commonly used supervised technique to 
solve classification and regression problems. Where a set of observations and 
their labels or classes are already known and used to make various predictions 
[47]. In data mining, decision tree algorithm is divided into two main types: 
classification and regression trees. In 1984, Breiman et al [48] combined the two 
types together under the same category using the term Classification And 
Regression Tree (CART).  

  
Decision trees are called this way because they are visualized in a tree structure, 

in which is created by recursively splitting the training dataset from top to 
bottom, forming the first level node of depth zero called the “root”, followed 
by going down the tree forming higher depths and continuously splitting into 
successor children nodes. The splitting process is determined using different 
rules that determine the impurity of a certain node, and upon the selection of 
the splitting criteria [49]. 
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8.7 Random Forests (RF) 

• From Bootstrap Aggregation (Bagging) To Random Forests 

Furthermore, there are some algorithms classified under ensemble learning 
category that allow the possibility of creating multiple different trees over the 
same dataset, to contribute to minimizing the over-fitting problem decision 
trees usually suffer from, especially when the sample size provided is relatively 
small. The two main types of such ensemble methods are boosted ensemble 
trees [50] [51] and bootstrap aggregated or bagged trees [50] [52].   

Boosted trees are a sequential type of ensemble decision trees, where the 
optimal shape of the tree is established incrementally by adjusting the tree 
continuously based on the arrival of new instances. The most famous boosted 
trees algorithm is AdaBoost method. 

Bootstrap aggregated or bagged trees are a parallel type of ensemble decision 
trees, generates multiple numbers of decision trees concurrently, by resampling 
the training dataset with replacement. The final prediction for such methods is 
made by voting the results of the created trees altogether. What is worth to be 
mentioned is that random forests are an example of a Bootstrap aggregating 
methods to optimize the traditional decision trees methodology [52].  

Random forests are an optimization algorithm of decision trees, under the 
ensemble learning sub-category, intended to perform different tasks such as, 
classification, regression, and many others. The core of this algorithm relies on 
creating multitude of parallel decision trees based on dividing the feature space 
each time and deploying the chosen sub-space to form the tree of choice. The 
prediction decision of random forests is made by majority vote of all the 
separately created trees. Random forests started as “stochastic discrimination” 
approach created by Eugene Kleinberg [8]. Which was inspired by the formula 
created by Tin Kam Ho [53] to deploy the understanding of random subspaces 
and how to use them in a practical approach. Recently, random forest algorithm 
is trademarked by Leo Breiman and Adele Cutler owned by Minitab, Inc in 
2019 [54].  The registered algorithm represents an extension of the formula 
introduced by Ho [53] and the “Bagging” idea created by Breiman [52] and [48].   

Bagging algorithm whole idea depends on randomly choosing a subset of the 
original training set with placement, to perform an S number of classification 
or regression tasks, to finally make the overall decision of the performed task 
using all the learners created. Generally, the trees created by the bagging 
algorithm alone tend to be highly correlated and, in most cases, the same tree 
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is being generated for multiple of times.  Due to, simply, training multiple trees 
over the same dataset with placement that can easily generate high correlation 
between the formed estimators. The best way to introduce some sort of de-
correlation between the trained trees is by feeding the algorithms different 
datasets. A new dataset can be formed from the original dataset by using the 
random subspace algorithm [55] to not only randomly choose the data points, 
but also concurrently pick randomly a feature from the feature space, to act as 
a new splitting point. Random forests use random subspace method to de-
correlate the trees formed using the bagging method alone. 

Random subspace algorithm is highly identical to bootstrap aggregation in 
many ways. The only difference is that in random subspace the features are the 
subject of bagging and they are considered as the “predictors” or “random 
variables” that would be sampled with replacement to create predictions for 
each learner. Thus, random subspace is also known as attribute bagging [56] or 
feature bagging. Random forest algorithm is a combination of bootstrap 
aggregation to sample the training dataset, and random subspace algorithm 
necessary to sample the features, to create splitting points that results in 
generating multiple estimators with high level of distinction and accuracy. 

9. Relevant DL Literature 

9.1 From Neural Networks to DL 

Shallow and deep neural networks are defined as a machine learning algorithm 
inspired by the brain neurons functionality and logical processing flow. Neural 
networks were used in mathematics since 1943 [57], and the fundamental 
algorithm kept on developing, changing and getting more complicated until 

this day. Neural networks can solve supervised, unsupervised, semi-
supervised and reinforcement learning problems. 

In the following sections, a gradual demonstration of many deep learning 
techniques starting from the simplest form of neural networks also known as 
“the perceptron”, reaching to various complicated deep learning schemas.  

• Perceptron and Multi-layer Perceptron 

The perceptron [58] represents the neuron or the basic building block of the 
neural network. The perceptron uses a simple mathematical operation 
calculated by the dot product between or sum of the inputs and their 
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corresponding weights, which contributes to its decision making or output 
acquisition process. The perceptron consists of three main layers: input layer, 
one hidden layer and an output layer. The figure below, Figure 6 shows a 
perceptron with six inputs. As shown in the figure, the perceptron can only 
make binary decisions either 1 or 0. Furthermore, the perceptron has only one 
hidden layer, where each input is multiplied to its weight in a dot product 
operation and added to the rest of multiplications in sum of product operation. 
In other words, if we consider a perceptron with six inputs, the hidden layer 

value is calculated using  ∑ (𝑤𝑖 𝑥𝑖) + 𝑏𝑖𝑎𝑠
6
𝑖=1 . The bias is 𝑤0 stored in the hidden 

layer. The output layer is where the classification decisions are made. The 
output layer also known as the activation function layer that can hold various 
types of activation functions which accordingly the classification result is 
selected. In perceptrons the activation function is a simple step function. The 
function below shows the activation function or the content of the output layer 
in the simplest neural network form as a perceptron: 

𝑓(𝑥) =  

{
 
 

 
 1   𝑖𝑓  ∑(𝑤𝑖  𝑥𝑖) + 𝑏 ≥ 0

6

𝑖=1

0   𝑖𝑓  ∑(𝑤𝑖  𝑥𝑖) + 𝑏 < 0

6

𝑖=1

 Eq.  10 

 

Figure 6 Example of a Perceptron in Neural Networks. 

Before explaining any further, it is essential to clear the difference between the 
perceptron, multilayer perceptron and deep learning or deep neural network.  

As explained before, the perceptron is the building block of any neural network 
and its main distinctive feature is the possession of only one hidden layer with 
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only one neuron within. Although, multilayer perceptron has one hidden layer 
as in simple perceptron, it has various neuron within the hidden layer, each 
with their own vector of weights. The size of the weight vector in each neuron 
within the hidden layer is the number of the inputs plus one because of the 
additional value of  𝑤0  the bias for each neuron in the hidden layer. Finally, 
deep learning is a chain of multiple hidden layers of multilayer perceptron. In 
other words, a deep neural network consists of many hidden layers connected 
sequentially to one another, where each has many neurons of different weight 
vectors. The output of the previous hidden layer contributes as the input layer 
of the next hidden layer. The overall output in the output layer is calculated by 
the sum of product between the outcomes of all neurons in the last hidden layer 
that act as inputs, and they will be multiplied to their corresponding weights 
using dot product. The figure below explains the difference between the 
perceptron, multilayer perceptron, and deep neural networks assuming the 
input layer has only two inputs. Meanwhile, 𝑤0 in each layer represent the bias 
of this layer, 𝑊𝑖𝑗  shows the indices of the weights in a multi-layer perceptron 

when 𝑖 is the input index and 𝑗  is the index neuron connected to that input. In 
deep neural networks the weights on each edge are determined with at least 
three indices based on the shape of the neural network. 𝑊𝑖𝑗𝑘  is how to identify 

weights of each edge in deep neural networks, where 𝑖  and 𝑗  are explained 
earlier, 𝑘  represents the index of the hidden layer that the input neuron is 
connected to with the edge 𝑊𝑖𝑗𝑘 . Each layer, the choice of the right weights for 

the edges is bounded to direction of the edge. The neuron that the edge is 
coming out of is always considered the input for this edge, even if this neuron 
located in a hidden layer. While the destination neuron is the hidden layer 
neuron for this operation. It is crucial to define the direction of the operation 
since not all neural operations are feed forward processes, but it can also be 
backward process as in the backpropagation neural networks [59]. 𝑊𝑂𝑖  is the 
weight connecting the last hidden layer to the output layer. The dot product 
between the outcome of the last hidden neuron with its corresponding output 
weight will be then added to the rest of the dot products calculated from all 
neurons in the final hidden layer, which all together will be sent to the output 
layer to be judged by the activation function content and criteria before the final 
classification, regression or re-enforcement decision is finally made. 
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Figure 7 Comparison Between Perceptron, Multi-layer Perceptron and Deep Neural Network. 

• Activation Functions 

Activation functions are defined as a mathematical equation or a series of 
equations in which they are the output determinant in a perceptron or a multi-
layer neural network. Choosing the suitable activation function has a critical 
impact in boosting the accuracy and enhancing the training process of the 
neural network no matter how simple or complex these networks are. 
Generally, it is highly advisable to experiment with various activation 
functions to ensure most effective results. Moreover, during the training stage 
tuning the activation function as a hyperparameter of the neural network can 
also contribute to the overall efficiency and accuracy. 

 The following are some examples of the most common activation functions: 

• The Rectified Linear Unit (ReLU) function [60]: one of the famous 
activation functions that works efficiently with positive inputs, and it 
lacks precision with negative or positive approaching to zero input 
values. Some other activation functions are created based on ReLU such 
as, the leaky and the parametric ReLU. 
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• The Tanh function [61]: tanh is hyperbolic function that works better with 
centred or strongly on the edges positive or negative inputs. Which means 
it has better results with strong positives, strong negatives, and mean 
values to fit better with the hyperbolic plane shape.  

• The sigmoid function: this function is distinctive for its S-shape curve or so 
called the sigmoid curve. The sigmoid function rule is derived from the 
logistic function operation and equation [62]. The sigmoid creates smooth 
gradient to find the optimal output between zero and one. 

• Other well-known functions: Softmax [63] and Swish[64]. 

9.2 Convolutional Neural Network (CNN) 

CNN [65] is a form of deep neural networks mostly applied to various imaging 
modalities, i.e. medical images, regular grayscale or RGB images and videos.  
CNN is often related to computer vision applications such as, images and video 
classification, image captioning and metadata production, facial recognition, 
object, and posture recognition, and medical image processing. CNN can also 
be applied to non-imaging applications as in time-series prediction and various 
natural language processing applications. CNN possesses many advantages 
over traditional machine learning approaches when dealing with images and 
image classification, that is because of its ability to internally select the most 
valuable features directly from the input images, without the need to manually 
apply feature engineering. However, with non-imaging inputs it requires more 
research to compare the feature engineering capabilities of CNN and the 
available ones in the literature.   

• CNN Architecture 

CNN has two main phases: feature engineering phase and classification phase. 
The feature engineering phase consists of two main layers: convolution and 
pooling layers. The classification phase includes a fully connected deep neural 
network schema that is trained using the feature vector that was created by 
flattening the feature matrix extracted from the earlier phase of the implicit 
feature engineering in CNN. The following figure, Figure 8 shows an example 
of a CNN network, while later each layer will be explained in comprehensive 
detail. 
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Figure 8 An Example of a Convolutional Neural Network Framework for Image Classification 
[66]. 

• Convolution Layer 

The name CNN is created based on the convolution layer because it is the core 
of the CNN and its main building block. Moreover, the heaviest computational 
load occurs within this layer. 

The kernel in CNN is defined by a matrix that is smaller in size of the original 
input image but have more depth. It is like applying masks or filters to images 
in image processing. If the image has RGB layers, the kernel would be able to 
perceive the three dimensions in the depth but smaller area of the x and y 
coordinates of the original image. 

In the convolution layer the mask or the kernel will spatially slide over the 
input image, each time a dot product operation occurs between the visible part 
of the image under the kernel and the kernel. Then the kernel will slide to the 
next position of the image to calculate the next position’s dot product value, the 
sliding size is called the stride. The convolution between the image and the 
filter or the kernel is called feature map or activation map. Let us assume the 
image matrix has the size h × 𝑤 × 𝑑, the kernel size is h𝐾 ×𝑤𝐾 × 𝑑𝐾  the output 
after the convolution will have this size: (h − ℎ𝐾 + 1) × (𝑤 − 𝑤𝐾 + 1) × 1 
assuming that the stride is equal to one sliding unit each time. 

 In some cases, the kernel does not fit the image properly, in this case a new 
concept called padding is used. Padding indicates adding values to pad the 
non-fitting cells between the kernel and the image. Padding can be applied by 
zero-padding which -by definition- means filling the extra cells with zeros, or 
another padding mechanism called valid padding, which drops the non-fitting 
part of the image, while only contributing the valid parts of the image.  
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In Figure 8,  it is noticeable that ReLU is applied to the mapped features after 
the convolution process. ReLU implies adding non-linearity to the convolution 
operation. Since real-world problems and challenges are mostly non-linear, so 
by applying ReLU to the convoluted results it is more reflecting to the reality. 
The output of ReLU is calculated by: 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥), x is the value of each 
cell in the feature map. Many of the activation functions mentioned earlier can 
be applied to the convolution layer instead of ReLU such as, sigmoid and tanh 
functions. 

• Pooling Layer: 

Pooling layer is meant to reduce the spatial size of the feature map produced 
by the convolution process followed by non-linearity addition. Basically, 
pooling creates a rectangle that also slides across the resultant selected features 
and select only one value of the triangle to represent the whole one. The most 
popular types of pooling are max pooling, average pooling, sum pooling and 
L2 norm pooling of the rectangular neighbours.   

The convolution layer and pooling layer should always follow one another in 
this order. However, this process can be repeated as many times as possible, 
especially if the original image is highly dimensional and requires adding 
additional feature engineering steps.  

Before the selected feature matrix is feed into the classification phase, it is 
necessary to flatten the matrix representing the image while being feature 
selected and dimensionally reduced into a single vector, in which each cell of 
the vector is feed as an input to the fully connected neural network. 

The rest of the CNN architecture represented by the classification phase is 
completely like the explanation provided in the neural network section 
mentioned earlier. Where all the activation functions also known as non-
linearity layer are explained in detail. 

9.3 Recurrent Neural Network (RNN) 

RNN [67] is a type of neural networks specialized in sequential or time-series 
data such as, videos, audio, sensors’ readings, text and the data record of a 
series of dependent events overtime.  RNN elementary neuron functions by 
accepting a sequence of input variables each time, while keep tracking or 
remembering the previous input in the sequence, assuming that the previous 
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occurrences could carry valuable information, in which can lead or enhance the 
process in the current step. 

9.4 Long Short-term Memory (LSTM) 

LSTM [68] is a type of deep artificial neural networks that follows RNN 
architecture. Unlike traditional neural network with feedforward process flow, 
LSTM provides a connection between the current point and the previous ones. 
Hence, LSTM has the ability to process sequential datasets such as speech, 
audio, and time-series data in general. Speech recognition, fault detection and 
handwriting detection are some common applications of LSTM. 

A LSTM unit is highly similar to RNN in which both propagates forward the 
input sequences to learn dependencies from previous periods. However, the 
internal structure of LSTM is more sophisticated than the regular RNN cell, 
which offers various gates or regulators, that provide the selectivity between 
keeping or forgetting certain sequences rather than accepting all the memories 
from previous cells blindly.  

LSTM is applicable to various machine learning problems over time-series data, 
i.e., classification, one point or a sequence prediction and reinforcement 
learning.  Generally, a LSTM unit consists of the cell and three more gates: one 
input, one output and one forget gates. The cell is responsible of remembering 
the states of inputs over various arbitrary periods of time. The remaining gates 
basically regulate the information flow from the beginning of the cell until the 
decision is made at the end of the cell.  

More specifically, LSTM units has various architectures. However, the most 
common components among them are the cell, which represents the memory 
of the LSTM unit, and three regulators also known as gates that include input 
gate, output gate, and forget gate. It is essential to point out that not all LSTM 
composed of all the three gates combined, for example the LSTM architecture 
called Gated Recurrent Units (GRUs) does not compose of output gate. 

Moreover, some LSTM architectures may contain additional gates to regulate 
the data flow in and out the LSTM unit as needed. 

The cell is responsible of pointing out the dependencies between the input 
elements or given sequences. The memorized dependencies determine the 
importance of the current memory to the next LSTM connected unit. The input 

gate controls the new sequences flowing into the LSTM unit. Whilst the forget 
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gate determines which input sequences to forget and which to remain the 
LSTM unit. Finally, the output gate controls the values computed and used in 
the output activation function at the end of a LSTM unit. The activation 
function used in LSTM is the sigmoid function [69]. Furthermore, tanh [61] 
activation function is also used internally to compute different gates and 
intermediate stages in the LSTM unit.  

The following figure explains the common architecture of LSTM units, the 
information flow and the main function and operations within. As shown in 
Figure 9, The forget gate 𝐹𝑡  uses the summation of previous hidden state 
𝐻𝑡−1 also known as the previous unit prediction, and the input sequence 
𝑋𝑡 passed through a sigmoid function to determine if the information derived 
from the input sequence based on the previous knowledge is worthy of keeping 
or better to forget. As it is known for sigmoid functions, the output is between 
zero and one. If the forget gate results a value closer to one that means store the 
information. However, if closer to zero forget the processed information. 

 

Figure 9 LSTM Cell Common Architecture 

Input gate 𝐼𝑡 is crucial to provide important parameters to update the current 
cell state 𝐶𝑡 . First, the summation of the previous hidden state 𝐻𝑡−1 and the 
input sequence 𝑋𝑡 is passed into a sigmoid function to determine which input 
information is important (sigmoid close to one), or not important hence ignore 
(sigmoid close to zero). There is an intermediate stage for the current state 
called 𝐶�̅� can be calculated by passing the sum  𝐻𝑡−1 and 𝑋𝑡  into a tanh function, 
which contributes to normalizing the sum of product between -1 and 1.  
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The cell state 𝐶𝑡  can be calculated by two steps: (a) the element-wise 
multiplication between the previous memory or previous cell state 𝐶𝑡−1 , and 
the forget gate 𝐹𝑡 calculated. To determine which previous memories to keep 
or to forget in case it gets multiplied by a zero from the forget gate. (b) The 
element-wise addition of the values computed in (a) and the newly added 
important information from the input gate 𝐼𝑡 , plus the intermediate current 
memories 𝐶�̅� calculated by the tanh function.  

At last, the computation of the output gate 𝑂𝑡 is in order. The output gate is the 
determinant of the current hidden state 𝐻𝑡  that would be passed to the next 
LSTM unit as the previous hidden state 𝐻𝑡−1. The hidden state 𝐻𝑡 of the last 
LSTM unit connected represents the output of the overall LSTM network that 
is used for predictions and decision making. The output gate 𝑂𝑡  value is 
calculated by passing the summation of the previous hidden state 𝐻𝑡−1 and the 
input state 𝑋𝑡  into a sigmoid function. The value of 𝐻𝑡  is calculated by 
multiplying 𝑂𝑡  resulted from the output gate by the outcome measured by 
passing the current cell memories 𝐶𝑡 into a tanh function. 

The descriptive information derived from Figure 9 and explained in detail 
above, can be comprehended and easier to understand by equations. Thus, the 
following are the equations for the calculations required by each gate in the 
LSTM unit. Each gate has different weight vector, but for the sake of simplicity 
they were denoted by 𝑊 and 𝑈. The symbols subscripted under the weights 
represents the gate the weight vector belong to. Where 𝑓 is for forget gate, 𝐶 for 

cell state, 𝑖 and 𝑂 are for input and output gates weight vectors, respectively.  
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𝐹𝑡 =  𝜎 (𝑋𝑡 × 𝑈𝑓 +𝐻𝑡−1 × 𝑊𝑓) Eq.  11 

𝐼𝑡 =  𝜎 (𝑋𝑡 × 𝑈𝑖 + 𝐻𝑡−1 × 𝑊𝑖) Eq.  12 

𝐶�̅� =  𝑡𝑎𝑛ℎ (𝑋𝑡 × 𝑈𝑐 +𝐻𝑡−1 × 𝑊𝑐) Eq.  13 

𝐶𝑡 =   𝜎 (𝐶𝑡−1 × 𝐹𝑡 + 𝐶�̅� × 𝐼𝑡) Eq.  14 

𝑂𝑡 =   𝜎 (𝑋𝑡 × 𝑈𝑂 + 𝐻𝑡−1 × 𝑊𝑂) Eq.  15 

𝐻𝑡 =   𝑡𝑎ℎ𝑛 (𝐶𝑡) × 𝑂𝑡 Eq.  16 

9.5 Encoder-Decoder and Autoencoders 

Encoder-decoder [70] is a machine learning approach also known as Seq2seq, 
where it is required to predict a sequence of observations by learning patterns 
of other sequences of different size, or even different nature from the target 
sequence. Encoder-decoders are widely used in image captioning, 
summarization of texts, natural language translation and many more.  The first 
Seq2seq algorithm was developed by google to achieve machine translation. 
Seq2seq rely on turning one sequence of inputs into another sequence of 
outputs using RNN and mostly LSTM and GRU.  Encoder-decoders construct 
of an encoder that turns each input sequence a hidden vector. A decoder that 
receives the hidden vector encoded by the encoder and reverse it back to an 
output item of the same nature of the output category or group.  
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Figure 10 Encoder-Decoder General Structure 

Previously, encoder-decoder framework was explained. To rephrase it, 
decoder-encoders are a type of RNN functions which maps a sequence from an 
input space, to another sequence from an entirely different input/ feature space, 
and probably both sequences own variable sizes as well. i.e., in image 
captioning, the input is an image of a certain size, shape and extracted features. 
While the caption is a text owning entirely variant feature space and sequence 
size than the images, they describe them. Another example is in natural 
language translation, when the input sequence is an English sentence, while the 
output is a French sentence for example.   

On the other hand, autoencoders [71] are a special type of encoder-decoders 
that map two sequences to one another, while the target and source are both of 
a similar feature space, nature, and size. As an illustration when mapping one 
English sentence to another English sentence of the same size.  Furthermore, 
autoencoders are most popular in sequence reconstruction, which means 
learning previous sequences to reconstruct the next or missing sequences of the 

dataset. Finally, both encoder-decoders and autoencoders can be applied for 
various types of deep learning algorithms such as, CNN, RNN. LSTM and GRU. 

10. Other Relevant Literature 

10.1 Principal Component Analysis (PCA) 

PCA [72] is a dimensionality reduction technique falls under feature extraction 
category. The concept of PCA is dependent on projecting the data 
perpendicularly on hyperplanes that possess the most variance of the data also 
called “principal components (PCs)”. Many data points have similar 
projections on the principal component hyperplanes, which provides a way to 
reduce the number of features by using their projections instead. 

The chosen components are the linear combination of the data features which 
provides the most variance, as well as each component is orthogonal to one 
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another to eliminate the chance of any correlation between them (correlation= 
0). Hence, to ensure avoiding the data redundancy as possible. 

The 1st PC carries the maximum variance where it has the greatest number of 
data points, followed by the 2nd PC that has the remaining points that did not 
correlate with the 1st PC. The selection of further PCs like the 3rd and 4th…etc is 
determined by the same technique as the 2nd PC, demonstrated by finding the 
maximum variance in the remaining uncorrelated data points left from the 
previous PC. 

10.2 Feature Importance (FI) 

FI is a feature selection method created based on RF.  In the context of RF, Mean 
Decrease Accuracy (MDA) or permutation importance or feature importance [52] and 
[73], of a variable 𝑋𝑛 to predict 𝑌 of classes is computed by the summation of 
the Gini impurities of 𝑋𝑛  for all the nodes 𝑑  where 𝑋𝑛   is present and used. 
Followed by the mean of the impurity decrease metric of all the trees 𝐷 in the 
forest. The following equation comprehend the concept of feature importance 
using RF. 

𝐹𝐼(𝑋𝑛) =  
1

𝑛𝑜. 𝑇𝑟𝑒𝑒𝑠
∑   ∑ 𝐺𝑖𝑛𝑖_𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑋𝑛)

𝑑∈𝐷:𝑣(𝑠𝑑)=𝑋𝑛𝑛𝑜.𝑇𝑟𝑒𝑒𝑠

 Eq.  17 

 

Where 𝑋𝑛 is the feature of interest.  𝑣(𝑠𝑑) is the feature/variable used to split 
𝑠𝑑.  
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11. Data Collection and Generation 

11.1 Condition Monitoring of Hydraulic Systems Dataset 

This dataset [74] represents real measurements of multivariate, time-series 
sensors, placed in a hydraulic test rig. The purpose intended for the data 
collection is to monitor and assess the hydraulic system health condition.  

The outcome of this experiment yielded a success of collecting sensor data of 
various system health degrees of different components of the hydraulic system, 
such as the cooler, valve, pump, and accumulator.  

The system consists of six pressure, four temperature, two volume sensors and 
one vibration sensor which all possess a constant cycle of 60 seconds. Each cycle 
the sensors are collected, while the condition of the four main hydraulic 
components; cooler, valve, pump and accumulator are monitored and 
observed. The component health ranges from completely healthy to totally 
damaged, and each condition degree is decoded into a numerical value to 
facilitate the application of statistical and data mining approaches, as shown in 
the following table, Table 2 . 

Table 2 Hydraulic System Fault Degrees and Their Codes 

Cooler condition Valve condition Internal pump leakage 
Internal pump 
leakage 

3 
close to total 
failure 

100 
optimal 
switching 
behaviour 

0 no leakage 130 
optimal 
pressure 

20 
reduced 
efficiency 

90 small lag 1 weak leakage 115 
slightly 
reduced 
pressure 

100 full efficiency 

80 severe lag 

2 severe leakage 100 
severely 
reduced 
pressure 73 

close to total 
failure 

This dataset has been used by many researchers to perform sensor fault 
monitoring. i.e. constant, shift, bias and peak. [2]. Moreover, this dataset is also 
beneficial to perform component or system FDD such as the application 
researched in [76]. As well as, being applicable for creating and testing feature 
extraction and selection algorithms in [77]. 
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4. Chapter 3: Relevant Related Work 

1. Supervised ML Approaches for FDD in Mechanical Machinery 

Parts of this research have been used in our published research in [78]. Please 
note that all rights and copy rights have been reserved to the MDPI publisher. 

Griffin et al. [79] proposes an approach that mimics real-industrial processes, 
by investigating two main machine processes and their faults at the same time: 
(1) grinding: an example of grinding faults are chatters and grinding burns. (2) 
Hole making: the faults that can be associated to hole making are drill tool onset 
faults, drilling malfunctions and tool gradual wear. The approach shows a 
combination of neural networks and CART to provide a robust classification.  
A Makino A55 machine is calipered to be used in both the grinding and the 
drilling experiments. The work in [80] developed a fault detection and monitoring 
algorithm for spur gears based on decision trees. The vibration signals extracted 
from the spur gear go first through feature selection applying the time-domain 
features. i.e., sum, mean, skewness, minimum, maximum, and so on. Then the 
selected features are fed in the CART model. In [81] an improved CART algorithm 
to achieve fault diagnosis in refrigerant flow systems is introduced. The results 
conducted from the improved CART are compared to the regular CART, RF and 
Generalized Boosted Regression (GBR). The improved CART has shown better 
results in comparison of the previously mentioned methods. Additionally, the 
work in [82] provided an intelligent approach of applying rotation forests 
ensemble of C4.4 CART, to achieve fault diagnosis in wind turbines. Seven sensor 
readings are used to test and validate the improved model without any feature 
engineering required. 
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For the last few decades, RF has been used widely to perform FDD and monitoring 
applied in various fields and applications, such as industrial systems. The 
literature demonstrates several techniques to apply RF for the purpose of outlier 
detection, either exclusively or incorporated with other algorithms to form some 
sort of a hybrid approach aimed to fulfil an intended research or applicational 
purpose. The most common methodology of deploying RF is as a classifier. RF is 
intended to achieve an optimized, supervised, and structured resolution for 
labelled problems, which is proven to have more accurate results comparing to 
many other supervised machine learning algorithms. In [83] RF is compared to 
numerous classifiers of different functionality to overcome two occurring sensor 
faults in Wireless Sensor Networks (WSNs), which are spike fault and data loss 
fault. This study represents an elaborated comparison between RF, SVM, 
Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), CNN, and 
Probabilistic Neural Network (PNN). Using Detection Accuracy (DA), Matthews 
Correlation Coefficients (MCC), True Positive Rate (TPR), and F1-score as the 
comparison criteria that determine the overall rank of each method. As a result, RF 
is proven to have the highest rank of all the above classifiers in WSN’s sensor fault 
classification. In addition, another study in [84] showed similar results in proving 
the superiority in performance of RF in the field of WSN, but this time while 
detecting four different sensor faults; gain, offset, constant and out of range faults. 

In [85], another example of using RF in a solo fashion to achieve FDD in industrial 
sensor systems applied to unmanned aircraft vehicle. This study deployed a 
brilliant interpretation of RF and feature importance, to extract a weighted 
similarity metric based on the data priority represented by RF. The induced 
similarity measure is then used to perform FDD. 

RF can also be used combined to different approaches instead of using directly as 
a classifier to achieve FDD in industrial systems. Usually, any hybrid approach is 
originated to optimize the individual forming methods combined, or to establish 
a customized solution that fulfils additional system goals or requirements.  In [86], 
a hybrid  approach is established to detect faults of rolling bearings, which if left 
undetected can lead to major consequences in the performance of the rotating 
machine. This hybrid approach combines Wavelet Packet Decomposition (WPD) 
method to extract new enhanced features from the bearing vibration signal 
provided from n number of sensors, using signal-to-noise ratio and Mean Square 
Error (MSE). Followed by the step of mutual, dimensionless index construction, 
which will be fed to the fault database and contribute as the data necessary to train 
and test the RF model. Moreover, another example for a hybrid FDD approach 
using RF is [87], This method demonstrates the effect of combining genetic 
algorithm and RF to increase the classification accuracy of the FDD process of an 
induction motor.  
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A parallel RF cloud-based approach in [88] is introduced, to predict and monitor 
the wear of dry milling tool operations. 28 Statistical features are extracted from 
the row data collected from various channels of the dry milling tool such as, cutting 
force, acoustic emission, and vibration. Furthermore, an RF algorithm for 
predictive maintenance in wind turbines at real-time is proposed in [89]. A new 
approach of deep RF fusion in [90] is utilized to enhance the fault diagnosis process 
in gearboxes using two feature modalities: (1) acoustic emission sensors and (2) 
vibrational signals extracted from accelerometers. The best features from both 
modalities are selected using wavelet packet transform. 

Beyond the intensive use of RF in industrial sensor systems, RF can be used in 
a smaller range, for many reasons and purposes exceeding the industry. One 
of the common applications of RF is in the medical field using sensing 
modalities. In [91] a recent study shows an application of RF to reduce the 
fallacious clinical alarms. i.e., the Arrhythmia alarms. In case of false 
Arrhythmia alarms occurrences, that may lead to elevation in the patient and 
staff stress level, as well as causing unnecessary pressure on the intensive care 
staff. According to the study, the application of RF detects the true from the 
faulty calls has significantly reduced the number of false calls concerning five 
main types of arrhythmia. In this recent work [92], RF is used in a hybrid fashion 
with Feedforward Neural Network (FNN) to investigate the relationship(s) among 
multi-modal signals, extracted from electrochemiluminescence (ECL) sensor 
located in a smartphone and the concentration of Ru(bpy) 3

2+ luminophore and its 
electrochemical data. Establishing such correlation is essential for building 
optimized and cheaper diagnostic devices.  Understanding the hidden 
relationships between each modality may lead to creating diagnostic rules, which 
can be used for FDD in later stages. Thus, this study is included with the 
application of RF in FDD related work. 

The work presented in [93] demonstrates a component fault detection using 
kernel-SVM, applied to auxiliary marine diesel engine. The kernel applied is 
multi-variate gaussian kernel. The work presented in [94] focuses on the 
utilization of multi-class classification using SVM classifier, applied on the field 
of semiconductor manufacturing to achieve predictive maintenance. The entire 
feature space included 31 features, and six main features are extracted using 
time-domain statistical and mathematical calculations such as, maximum, 
minimum, mean, variance, skewness, and kurtosis. In [95] a data-driven 
approach to predict component faults in air craft systems using SVMs is 
proposed. Where the prediction process is used to perform maintenance when 
needed. The created method is called Auto-Regressive Moving Average 
(ARMA). Six different classifiers are compared within ARMA’s interior 
architecture to determine the best fitted algorithm for the problem, including 
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KNN, Generalized Linear Regression (GLR), ANN, RF and SVM. The 
application of SVM within ARMA showed best results comparing to the rest of 
the classifiers. The data gathered for this work is collected from a real industrial 
operation of an aircraft engine that suffers from critical valve malfunctions. 
Followed by applying PCA to extract the optimal features prior the 
classification. Moreover, the research in [96] demonstrates the application of 
multi-class SVM to build a diagnostic model of component faults in rolling 
bearings. The vibration signals are used as the input signals, followed by the 
application of time-domain feature selection to extract the appropriate features. 
A deep SVM for multi-class classification approach is researched in [97]. The 
word “deep” in this context indicates the usage of various types of features 
including the fault diagnosis process. Deep SVM is applied to detect 
component faults in gearboxes using various homologous features, where their 
time, frequency and wavelet natures are extracted from the original data. LR is 
widely used for FDD in mechanical machinery. The following related work 
shows several research applications using LR. The research proposed by Li et 
al. in [98] introduces an FDD approach that combines LR with acoustic emission 
to ensure the reliability of various cutting tools during the manufacturing 
process. The aim of this research goes beyond FDD of cutting tools, but also 

monitors the tear and wear of these tools and estimates the best time to perform 
maintenance. The feature selection method applied in this research is wavelet 
packet decomposition. The work shown in [99] represent a monitoring and 
prognosis system for gas circulator units applying a joint approach of LR and 
linear SVM L1-regularizer. This method implicitly selects the most distinctive 
features. Thus, no other external feature engineering methods are applied. 
Pandya et al. in [100] introduced an FDD approach of rolling bearing devices, 
in which the application of multinomial LR is applied and its effectiveness is 
compared to SVM and ANN. Multinomial LR is proven to have the best 
accuracy results comparing to both SVM and ANN. The feature engineering 
method applied to this research prior to the classification is wavelet packet 
decomposition. In a similar note, Caesarendra et al. [101] focuses on building a 
machine degradation analysis model using bearing run-to-failure datasets. The 
proposed approach is a combination of LR and Relevance Vector Machines 
(RVM). LR is used to detect the degradation status, and its results are used as 
labels for degradation probability estimation in the following step performed 
by RVM. An FDD approach applied on micro-piercing process is developed in 
[102]. The proposed approach represents an online vibration-based monitoring 
and FDD system using LR. LR is applied to the selected features to achieve fault 
detection and monitoring at run-time. Statistical feature engineering method is 
applied to select the most optimal features extracted in both time and frequency 
domains. Moreover, a fault detection and prediction approach using dynamic 
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LR applied to rolling bearings is introduced [103]. The approach is tested and 
validated on PRONOSTIA dataset [104]. Similarly, the work in [105] LDA 
classifier is applied to achieve sensor fault identification in hydraulic systems. 
A simulated hydraulic system benchmark is used to extract the sensor readings, 
which then are statistically engineered to extract time-domain features such as, 
mean, variance, skewness, and kurtosis. Before finally applying them to the 
classification model for training and later for testing. To sum up, the following 
table compares the previously mentioned ML supervised approaches to 
achieve FDD in mechanical machinery in the past decade. 

Table 3 ML Supervised Approaches for FDD in Mechanical Machinery for the Past Decade [78]. 

Classifier Reference 
Mechanical 
Equipment 

Feature 
Engineering 

Fault 
Type/Purpose 

Dataset 

CART 

[79] 

A Makino A55 
machine for 
grinding and 
hole making 

----- 

Component faults 
associated to 
grinding and hole 
making 
processes. 

Dataset 
extracted from 
Makino A55 
machine 

[80] Spur gears 
Time-domain 
statistical 
features 

Component faults 
in spur gears. 

Fault 
simulator. 

[81] 
Refrigerant flow 
systems 

----- 
Component faults 
in Refrigerant 
flow systems. 

Real 
commercial 
buildings, and 
a VRF system. 

[82] Wind turbines ------ 
Component fault 
diagnosis in wind 
turbines. 

From a 
physical test 
bed. 

[106] 
Electropneumatic 
brakes. 

----- 

Isolate sensor 
faults in 
electropneumatic 
brakes. 

An actual 
Locomotive 
electro-
pneumatic 
brake (DK-2). 

RF 

[88] 
Dry milling tool 
operations 

Time-domain 
statistical 
features 

Predict and 
monitor the wear 
of dry milling 
tools. 

Obtained from 
this paper 
[107] 

[89] Wind turbines ------ 

Predictive 
maintenance in 
wind turbines at 
real-time. 

From actual 
wind turbine 
within 2 years. 

[90] Gearboxes ------ 
Component fault 
diagnosis in 
gearboxes 

From a 
simulator. 

[86] Rolling bearings 
Wavelet Packet 
Decomposition 
(WPD) 

Component fault 
diagnosis in 
rolling bearings. 

From an actual 
system. 



 

59 
 

[85] 
Unmanned 
aircraft vehicle 

FI 
Component FDD 
in unmanned 
aircraft vehicle 

From a 
Physical 
aircraft vehicle 

SVM 

[93] Diesel engine ------ 
Component faults 
in diesel engines 

Data extracted 
from auxiliary 
marine diesel 
engine. 

[94] 
Semiconductor 
manufacturing 

Time-domain 
statistical 
features 

Component faults 
in 
semiconductors 

From 
implanter tool 

[95] Aircraft engine PCA 

Component fault 
prediction and 
maintenance in 
airlines 

From real 
aircraft engine 
valve. 

[96] Rolling bearing 
Time-domain 
statistical 
features 

Component faults 
in rolling 
bearings 

From six test 
bearings. 

[97] Gearbox 

Time, 
frequency, and 
wavelet 
domain 
features 

Component faults 
detection in 
gearboxes 

Gathered from 
UPS. 

LR 

[98] Cutting tools 
wavelet packet 
decomposition 

Wear and tear 
evaluation of 
components in 
cutting tools. 

Dongyu 
machine and 
tool CMV-
850A centre 

[99] 
Gas circulator 
units. 

----- 
Component faults 
in gas circulators 
estimation. 

EDF energy 

[100] 
Rotating 
bearings 

Wavelet packet 
decomposition 

Component faults 
in bearings to 
estimate their 
degradation. 

A test bearing 
rig 

[101] Bearings ----- 

Component faults 
in bearings to 
estimate their 
degradation. 

MATLAB 
simulation 

[102] 
Micro-piercing 
Process 

Statistical 
feature 
engineering 

Component faults 
in micro-piercing 
devices detection. 

Readings of an 
actual 
machine. 

[103] Bearings ----- 
Component faults 
detection in 
bearings 

PRONOSTIA 
dataset [104]. 

LDA [105] 
Hydraulic 
systems 

Time-domain 
statistical 
features 

Sensor and 
component fault 
identification in 
hydraulic 
systems. 

A simulated 
hydraulic 
system 
benchmark. 
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2. Autoencoder Approaches for FDD in Mechanical Machinery 

Parts of this research have been used in our published research in [78]. Please 
note that all rights and copy rights have been reserved to the MDPI publisher. 

The work in [108] shows a combined approach to achieve component fault 
detection and diagnosis of rare events occurring in chemical factories. The 
proposed method joints LSTM autoencoder as the detection phase, followed by 
the diagnosis phase using LSTM classifier. This approach is used to detect and 
diagnose faults of the Tennessee Eastman benchmark [109], which represent a 
dataset extracted from a simulator of actual chemical processes that includes 
various components: reactors, condensers, vapor-liquids… and so on. In the 
detection phase, the sequence comparison between the reconstructed sequence 
and the given one is achieved by applying the traditional signal difference. In 
the diagnosis phase, no feature selection or extraction approach is used prior to 
the classification using LSTM classifiers. Moreover, a solo comparison to CNN 
is made, but no comparisons with other DL or ML classifiers are conducted. 

Lu et al. [110] introduced a novel autoencoder called Stacked Denoised 
Autoencoder (SDA) that is used to detect component faults in rotary 
machineries. The method is applied to a dataset extracted from a physical 
simulation of a bearing test-rig. SDA implicitly feature engineer the data, which 
is compared to PCA and regular stacked autoencoders (SAE). Moreover, the 
classification results provided by SDA are then compared to SAE, SVM, RF and 
regular autoencoders. 

The work proposed in [111] shows a novel approach of creating a new type of 
autoencoders, in which it combines stacked autoencoders and LSTM network. 
The work is separated into two-phases: (1) feature transformation using LSTM 
stacked autoencoders. (2) Apply LSTM for fault identification.  The proposed 
method focuses on detecting injected component faults to a Bently Nevada 
Rotor Kit RK3, which is designed to physically simulate rotating equipment 
and its conditions. The raw vibrational signals are directly collected from the 
RK3 kit, then Wavelet Packet Decomposition (WPD) method is used to select 
features in both time-domain and frequency-domain, to ensure a wide 
investigation in both domains, followed by transforming the selected features 
using the stacked autoencoders in account to their mean square error calculated, 
which helps in generating a threshold for each feature. Finally, the fault 
detection accuracy for each feature is validated using five-fold cross validation 
after classification using KNN method. No comparisons of other feature 
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selection methods to WPD, or additional classifiers besides KNN are used in 
the mentioned work. 

According to [112] a component fault diagnosis system of rolling bearings 
using stacked autoencoders is introduced, as well as compared to two other 
deep learning schemas: (1) deep Boltzmann machines and (2) deep belief 
networks. Four experiments are conducted using various data pre-processing 
schemas using time-domain, frequency-domain, and time-frequency domain. 

As stated in [113] a deep autoencoder is developed to diagnose vibration 
signals in both gearboxes and electrical locomotive roller bearings. The novel 
approach proposed consist of two steps: (1) the design of the deep loss function 
in the autoencoder using maximum correntropy. (2) Applying artificial fish 
swam algorithm to optimize the autoencoder’s parameters and its ability to 
extract valuable features. 

Similarly, the approach proposed in [114] demonstrates a new method of 
combining wavelet transform and stacked autoencoders, to  diagnose faults 
occurring in roller bearing systems.  

Furthermore, a deep autoencoder in [115] is used to develop the quality of 
feature fusion,  which contributes in aiding the diagnosis of faults in rotating 
machinery. The applied autoencoder is a collaboration between denoising 
autoencoders and contractive autoencoders, where the deeply extracted 
features from both methods separately are then fused together using Locality 
Preserving Projection (LPP). The fused features are then applied to SoftMax 
function to train the diagnosis process. 

In addition, another architecture of sparse autoencoders is performed in [116] 
to monitor and diagnose the component faults in motors and air compressors. 
The application of regular ML classifiers such as SVM requires intensive 
understanding and expertise in feature engineering. Thus, the application of 
autoencoders can massively facilitate the feature engineering process and 
perhaps outperform the regular feature engineering approaches. For that 
matter, sparse autoencoders are compared to other ML fault diagnosis methods 
such as, SVM and SoftMax regressor to classify faults in motors and air 
compressors.   

Accordingly, in [117] a multivariant fault diagnosis and health monitoring 
approach in rotating machines is introduced. This method is called “SAE-DBN” 
as a combination of a two-layered Sparse Autoencoder (SAE) to perform data 
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fusion between the features of multi-sensors followed by the application of 
Deep Belief Networks (DBN) for the diagnosis. 

In [118] another approach using sparse autoencoders is proposed. The method 
is applied to induction motors monitoring and fault diagnosis purposes.  

The autoencoder application in [119] shows an ensemble, and deep approach 
of autoencoders designated to fault diagnosis in rolling bearings. Various 
activation functions are deployed at the same time, to create multiple 
autoencoders that are going to be combined later using a novel strategy. 

Finally, the work in [120] investigates fault detection and feature extraction 
schema for motors using an autoencoding schema of RNN networks. The 
explained schema for fault classification is applied directly on time-domain 
vibrational data then compared to the results conducted by a two-layered ANN 
model. On a different note, the feature selection capacities of the RNN 
autoencoder was compared to PCA and LDA for dimensionality reduction. The 
vibrational signals used in this work were obtained form an actual motor 
positioned with different accelerometers in various locations. 

The table demonstrated below is created to conclude all the autoencoding FDD 
approaches in mechanical machinery performed in the past decade.  

Table 4 Autoencoding-Based Methods for FDD in Mechanical Machinery [78]. 

Reference 
Autoencoding 
Method 

Mechanical 
Equipment 

Fault Type/ 
Purpose 

Dataset 

[108] 
LSTM 
autoencoder+ 
LSTM classifier 

Chemical 
reactor 

Component faults 
of Tennessee 
Eastman 
benchmark. 

Tennessee Eastman 
benchmark[109]. 

[111] 
Stacked 
autoencoder 
LSTM + KNN 

Rotating 
equipment 

Injected component 
faults to a physical 
simulation 

Data collected from 
Bently Nevada Rotor 
Kit RK3 to simulate 
rotating device. 

[110] 
Stacked denoised 
autoencoder 

Rotary 
machinery 

Component faults 
in a bearing test-rig 

Data extracted from 
physical bearing test-
rig. 

[112] 
Stacked deep 
autoencoders 

Rolling 
bearings 

Component faults 
in rolling bearings. 

Gathered from UPS. 

[113] 
Another 
architecture deep 
autoencoder 

Gearboxes and 
electrical 
locomotive 
roller bearings 

Component faults 
in rolling bearings 
and electrical 
locomotive. 

From a physical test 
rig. 

[114] 
Wavelet 
transform + 

Roller bearing 
systems 

Component faults 
in rolling bearings. 

From case western 
reserve university 
(CWRU) [121]. 
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stacked 
autoencoders 

[115] 

Another 
architecture of 
deep 
autoencoders 

Rotating 
machinery 

Component faults 
in rotating 
machinery 

Physical rotor fault 
test, CWRU [121] and 
NASA datasets [122]. 

[116] 

Another 
architecture of 
sparse 
autoencoders 

Motors and air 
compressors 

Component faults 
in motors and air 
compressors 

Actual air 
compressor and 
motor 

[117] 

SAE-DBN 
(sparse 
autoencoder + 
deep belief 
networks) 

Rotating 
machines 

Component faults 
in rotating 
machinery 

Extracted from an 
experimental system. 

[118] 

Another 
architecture of 
sparse 
autoencoders 

Induction 
motors 

Component faults 
in induction motors 

Fault simulator. 

[119] 
Ensemble deep 
autoencoder 

Rolling 
bearings 

Component fault 
diagnosis in rolling 
bearings 

CWRU [121]. 

[123] 

Another 
architecture of 
stacked 
autoencoders 

Hydraulic 
pumps 

Detect component 
faults in hydraulic 
pumps 

Hydraulic pump of 
type axial piston 
pump (25MCY14-1B). 

[120] 
Autoencoding 
schema of RNN 
networks 

Motors 

Component fault 
detection and 
feature extraction 
in motors 

Physical motor. 

 

3. k-means for Feature Selection Related Work 

Parts of this research have been used in our published research in [124]. Please 
note that all rights and copy rights have been reserved to the pre-print 
publisher. 

On one hand, the literature is rich with review research papers related to 
feature selection methods. However, the vast majority of these review papers 
are focused on supervised and semi-supervised methods. The research in [28] 
and [27] represent a thorough analysis of various supervised and semi-
supervised algorithms, along with a quick glance at few unsupervised 
techniques for feature selection. In [125] an inclusive research is done 
investigating various semi-supervised techniques in various fields and 
applications. Finally, the work in [126] introduce a new perspective for 



 

64 
 

supervised feature selection methods, including more recent studies and 
different taxonomies comparing to the ones described in the latter papers. 

On the other hand, a few research studies concentrated their efforts to analyse 
unsupervised methods for feature selection such as, the work in [36] where they 
pointed out the lack of survey research in this area, and offered a detailed 
analysis of numerous unsupervised methods along with summarising their 
advantages and disadvantages, as well as an experimental comparisons 
between them. The work in [127] narrowed down the scope of the research in 
[36] and instead, it focuses specifically on clustering algorithms for feature 
selection providing various clustering techniques for generic, text, streaming 
and linked data. Moreover, they finalized their review with some challenges 
that clustering algorithms for feature selection witness and elaborated with 
some suggestions to overcome the proposed challenges.  

In this review, we narrowed down the scope even more, to include clustering 
feature selection algorithms using k-means clustering alone. This work is 
essential since k-means clustering for feature selection has already a huge 
amount of literature with different strategies and mechanisms, which creates 
the need to add some structure and taxonomy for this influx of studies, to 
facilitate navigating through them, as well as building up new literature 
following the legitimate path. 

According the literature in the past decade, it is prominent that k-means for 
feature selection can divided into the following main categories based on their 
clustering strategy and the included mechanisms.  

(1) k-mean hybrid approaches: which includes a combination between k-means 
and other wrapper feature selection or filter feature selection methods. (2) k-
means based on feature weighting or ranking: this group depends on assigning 
some weights to the features and rank them accordingly to measure their 
relevance, followed by choosing the highest ranked features as the selected 
ones. (3) k-means with correlation measures: this method uses the similarity 
measures between features as the decision criteria. (4) Sparse k-means Feature 
Selection methods. 

Figure 11, shows the four main categories of k-means for unsupervised feature 
selection proposed in this literature review. Based on the acquired knowledge 
and understanding of the work in the literature. 
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Figure 11 k-means for Unsupervised Feature Selection Proposed Taxonomy [124]. 

The following section represents a full explanation of each sub-category of the 
previously mentioned taxonomy. A comprehensive analysis and overview of 
numerous related works for each category is also explained. 

3.1 k-means Hybrid Approaches for Feature Selection 

The work in [128] is an example of feature ranking methods, which can also be 
grouped as hybrid approach between filter and wrapper methods. The filter 
stage used in this algorithm is introduced in [5]. In addition, the wrapper 
method included is used to determine the separability criterion following the 
algorithm explained in [31]. This method consists of two main stages: filter and 
wrapper. In the filter stage an entropy elimination calculation technique is used, 
where the process is initialized with a full dataset, and then the features are 
being eliminated individually while the entropy is being computed during the 
elimination process. As a result, a list of features and their entropy is formed 
and can be sorted, which allows the features with higher entropy values to be 
excluded. The second phase is the wrapper phase, during this stage k-means 
clustering is applied to the remaining feature, and the cluster separability 
criteria used is the scatter separability. Finally, the feature subset with the 
highest scatter separability is selected. 

In [129] another hybrid approach is introduced. Evolutionary Local Selection 
Algorithm (ELSA) is an unsupervised feature selection algorithm that 
computes the number of clusters k and the feature subsets, by using the 

combination of k-means clustering and expectation maximisation embedded to 

k-means for Unsupervised 
Feature Selection

k-means Hybrid
k-means Based on 

Features Weighting 
or Ranking

Sparse k-means 
Feature Selection

k-means Based on 
Correlation 
measures
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Gaussian Mixture clustering. The quality of the cluster is determined by three 
main criteria based on the maximum likelihood, the separation criterion, and 
the cluster cohesion. ELSA is validated using numerous synthetic and real-
world datasets. 

In [130] a hybrid approach between wrapper and filter methods is proposed. 
This method contains two main phases: the first is the wrapper phase which 
starts by applying k-means clustering to the input dataset using an upper range 
of cluster numbers specified by the user, followed by applying simplified 
silhouette measurement as the separation criterion, then the feature subsets 
with higher silhouette value is selected. Note that this method is not a feature 
ranking k-means algorithm even though silhouette criterion is applied, because 
silhouette criterion here is only an intermediate stage for the feature selection 
and part of the first phase only, which is not directly contributing to the final 
decision of the selection process. The second phase for this algorithm uses 
Bayesian network as the filter approach to select the best feature subsets. 
Moreover, this method generates Bayesian networks in the form of directed 
graphs of the nodes representing the features selected, and the edges 
connecting them are the relationships between features. 

3.2 k-means Based on Features Weighting or Ranking 

The general idea of k-means for feature selection based on feature weighting 
begins with clustering the dataset into k main clusters. Followed by, using 
variations of strategies to assign weights to each feature or a features’ subsets 
in some literature, in a way that the feature or subset of features that minimizes 
the inter-cluster distance and maximizes the intra-cluster distance is assigned 
higher ranks or weights. The type of measurements or process responsible for 
assigning weights or ranks to a feature or a groups of features during clustering 
are called ‘clustering criteria’ [131].  Although, the literature introduced 
numerous clustering criteria, the oldest and most common ones are the 
silhouette criterion [40] and Davies-Bouldin index (DB) [132], where they 
contributed as base methods for modern weighting criteria nowadays. 

The work in [133] showcases a feature selection method based on the 
application of k-means along with Fisher ratio. Fisher ratio is used as the 
clustering criterion that reduces the ratio between the mean intra-cluster to the 
mean inter-cluster dispersion. Several clustering attempts using different 
feature subspaces is generated, while the ones with the smallest Fisher ratio is 
chosen to as the final subspace of features. 
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In a similar way, the feature weighting method proposed in [134] uses the 
feature intra-cluster variance to measure the weights of each feature within its 
containing cluster.   

Hruscka and Covoes [135] introduced Simplified Silhouette Sequential 
Forward Selection (SS-SFS) approach for feature selection. As the name of the 
algorithm implies the simplified silhouette measure is used as the clustering 
criterion to determine the quality of a feature subset. The algorithm starts with 
partitioning the data into various feature subsets, followed by applying k-
means clustering to each feature subset. The simplified silhouette criterion is 
computed to each performed k-means and the subsets with best silhouette 
measures are selected. SS-SFS depends on forward selection of the features, 
which make it the key difference between SS-SFS and our proposed method in 
this work which operates in an iterative manner. 

In [136] a method called Entropy Weighting k-means (EWKM) is introduced to 
reduce the intra-cluster distortion and increase negative entropy throughout 
the clustering. EWKM weighting criteria depends on the computation of 
weight entropy in k-means objective function. Additionally, this method allows 
subspace clustering. 

In [131] a new method for unsupervised clustering criterion is introduced, 
where it solves two main challenges in k-means clustering methods; obtaining 
the optimal partitioning, and applying ranks for features to perform feature 
selection. The proposed method is applied to k-means clustering to choose the 
best partitioning according to the intra and inter cluster inertia scores. The 
inertia scores are created by building scatter matrices from each cluster’s 
partition, and then based on the minimization-maximisation of the created 
matrices a ranking score for each cluster partition is established. Eventually, all 
the partitions and their ranks are added to a search space for the application of 

a proper searching algorithm necessary for optimal partitioning.   

The recent work proposed in [137] the authors introduced a ranking pipeline 
that includes k-means and various statistical approaches such as, signal-to-
noise ratio, t-statistics and significance analysis to rank the features in a highly 
dimensional microarray. This method is also considered a hybrid k-means 
approach that combines wrapper methods represented by k-means, as well as 
filter methods represented by the statistical analysis.  



 

68 
 

3.3 Sparse k-means Feature Selection 

The research done in [138] explains the definition of sparse learning specialized 
in clustering algorithms for dimensionality reduction. One way to describe 
sparse learning in k-means is a form of matrix decomposition that yields the 
matrix 𝐴 as a lower dimensional and more relevant partition of the original 
dataset 𝑋  .Where 𝑋  is a matrix of 𝑛 × 𝑝  size and it can be approximately 
decomposed to the matrices 𝐴 and 𝐵, following the formula:  𝑋 ≈ 𝐴𝐵, As 𝐴 is a 
𝑛 × 𝑞 size, and 𝐵 is 𝑞 × 𝑝 matrix, known that 𝑞 ≪ 𝑝. Eventually, the clustering 
can be formed using the lower dimensional decomposition matrix 𝐴 instead of 
the whole dataset 𝑋. 

In the last decade, Witten and Tibshirani [138] proposed a revolutionary 
framework for feature selection by introducing the concept of sparse clustering. 
They implicitly combined k-means algorithm with 𝑙1 − 𝑛𝑜𝑟𝑚 of Lasso-type as 
the feature selection contribution. The mechanism incorporated in this work for 
feature selection was introduced before in [139] as a technique for choosing the 
optimal k or number of clusters during k-means application. This technique is 
called gap statistics and it was included in this method to compute 𝑙  instead, 
which refers to the number of features selected. 

Embedded Unsupervised Feature Selection (EUFS) [140] proposes a new idea 
of embedding the feature selection process within the clustering algorithm by 
the deployment of sparse learning. In this work, k-means is used to initialize 
two essential matrices for the EUFS algorithm: matrix U the cluster indicator 

where U ∈ 𝑅𝑁𝑥𝑘 , and matrix V  the feature weights where V ∈ 𝑅𝑑𝑥𝑘 . EUFS 
applies 𝑙2,1 − 𝑛𝑜𝑟𝑚 as a loss function to minimize the inaccuracies during the 

reconstruction of the dataset  X where X ∈ 𝑅𝑁𝑋𝑑  and the feature selection over 
the latent feature matrix V . EUFS is validated over six different real-world 
datasets from various fields of applications. Note that 𝑁,𝑑, and 𝑘 represent the 
number of samples, the number of dimensions or features and the number of 
clusters, respectively. In [141] the research done is based on the novelty 
algorithm introduced in [140]. This method adopts a similar analogy to EUFS 
explained earlier. However, the recent work in [141] uses Frobenius-norm as 
the loss function. Moreover, this method represents an iterative approach of 
sparse learning where k-means is executed iteratively until the convergence 
criteria is met. 
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3.4 k-means Based on Correlation Measures 

In [142], a new perspective for feature selection using k-means is introduced, 
where a correlation measure between clusters is the selection or elimination 
criterion. The correlation measure is used to improve the quality of the feature 
subsets to be clustered using k-means. This method provides an elimination 
possibility of both irrelevant features using k-means, and redundant features 
using the correlation measure applied to each cluster. This method is validated 
by solving a classification problem using Naïve Bays classifier, applied on 
microarray and text datasets. Additionally, the work in [143] successfully 
integrated correlation-based k-means clustering to improve the accuracy of the 
computer-aided diagnosis specified with cardiovascular diseases. The 
following table analysis proposes a visual overview of the mentioned related 

work in a chronological order within each sub-category. Showing the datasets 
used for each literature and their validation approach used. 

Table 5 k-means Unsupervised Feature Selection Related-Work [124]. 

Clustering Approach Literature 
Database Used for 
Validation 

Validation Method 

k-means Hybrid 
Approaches 

[128]  
Synthetic datasets 
UCI machine learning 
repository. 

Feature ranking 
impurity 

[129]  

Real datasets 
synthetic 
datasets(Wisconsin 
Prognostic Breast Cancer 
(WPBC) data [144]). 

 
F-score for accuracy. 
 

[130]  

Synthetic dataset 
UCI machine learning 
repository. (congress, 
ionosphere, pima 
diabetes and wine) [145]. 

Class error 

k-means Based on 
Features Weighting or 
Ranking 

[133]  

UCI machine learning 
repository (heart, adult 
and Australian datasets 
[146]) 

Precision/recall 
evaluations 

[134]  

Synthetic dataset 
UCI machine learning 
repository. (heart 
diseases data and the 
Australian credit card 
data) 

Rand index evaluation 
[147]. 
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[135]  

Synthetic dataset (same 
data used in [31]) 
UCI machine learning 
repository.(Bio1, 
Bio2..Bio5, yeast 
galactose dataset [148], ) 

Class error 

[136]  
Synthetic datasets 
UCI machine learning 
repository (text data) 

Entropy 
F-Score 

[131]  
Synthetic datasets 
(generated using the 
framework in [149]) 

Recall 
Precision 
F-Score 

[137]  

Benchmark microarray 
datasets (DLBCL [150], 
prostate,  lymphoma 
[151], breast cancer 
[152]) 

Accuracy 
Error Rate 
Precision 
Sensitivity 
Specificity 

Sparse k-means 
Feature Selection 

[138]  

Human breast tumour 
dataset [153]. 
Single Nucleotide 
Polymorphism (SNP) 
data 

----------------------- 

[140]  

Mass Spectrometry (MS) 
dataset. 
Two microarrays of 
prostate cancer genes. 
Two face image datasets. 
One object image 
dataset. 

Accuracy 
Normalize Mutation 
Information (NMI) 

[141]  

Object image 
dataset (COIL202). 
Spoken letter 
recognition dataset 
(Isolet12). 
Cancer dataset 
(LUNG2). 
Handwritten digit 
dataset (USPS2) 
Face image datasets 
(AT&T3 and UMIST4) 

Accuracy 

k-means Based on 
Correlation measures 

[24]  
12 text and microarray 
Datasets. 

 
Classification accuracy 

[143]  

Heart dataset of 
children born with 
intrauterine growth 
restriction (IUGR) 
UCI machine learning 
repository: 
“CORONARY” a 
cardiovascular problems 
dataset [146]. 

Correlation measures. 

 



 

71 
 

 

5. Chapter 4: Unsupervised Feature Selection Using 
Recursive k-Means Silhouette Elimination 
(RkSE): A Two-Scenario Case Study for Fault 
Classification of High-Dimensional Sensor Data 

Parts of this chapter have been used in our published pre-print in [124]. Please 
note that all rights and copy rights have been reserved to the pre-print 
publisher. 

1. Chapter Overview 

Feature selection is a crucial step to overcome the curse of dimensionality 
problem in data mining. This chapter proposes Recursive k-means Silhouette 
Elimination (RkSE) as a new unsupervised feature selection algorithm to reduce 
dimensionality in univariate and multivariate time-series datasets. Where k-
means clustering is applied recursively to select the cluster representative 
features according to a unique application of silhouette measure for each 
cluster as the feature selection or elimination criteria.   The proposed method is 

evaluated on a Hydraulic test rig multi sensor reading in two different fashions; 
(1) reduce the dimensionality in a component fault multivariate classification 
problem using various classifiers of different functionalities. (2) Classification 
of univariate injected sensor faults in a sliding window scenario, where the 
proposed method is used as a window compression method, to reduce the 
window dimensionality by selecting the best time points in a sliding window.  
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In both experiments, the classifiers used are: LR, LDA, KNN, CART, NB, SVM 
and finally, RF. Moreover, the results are validated for each classifier separately 
using 10-fold cross validation technique. As well as, compared to the results 
when the classification is pulled directly with no feature selection applied, and 
to another well-known feature selection and extraction techniques, which are 
FI and PCA, respectively.  The experimental results and observations in the two 
comprehensive experiments demonstrated in this work reveal the capabilities 
and accuracy of the proposed method. 

2. Recursive k-means Silhouette Elimination (RkSE): Method Overview 

Recursive k-means Silhouette Elimination (RkSE): is a dimensionality reduction 
technique for high dimensional data of various types such as, large time-series 
datasets, microarrays, text, images and so on. The idea behind RkSE method is 
similar to any ordinary cluster-based unsupervised feature selection method, 
where they treat features as objects or samples, and it is required to cluster them 
into groups based on a computed similarity measure, or with the aid of data 
mining by applying a suitable clustering method. RkSE keeps recursively 
applying k-means clustering to group the features with similar patterns in the 
same cluster, while applying silhouette criteria iteratively as the selection 
condition.  Start the feature selection with collecting the features that are higher 
than some user-defined threshold or tolerance value. This threshold represents 
the strength of the connection between the cluster and the individual features 
located within, represented by the silhouette measure. The highest selected 
thresholds, the more connected the feature should be, to be selected, and the 
more iterations required to complete the feature selection process. Thereafter, 
the features with the highest silhouette criteria of each cluster are selected to 
represent the whole cluster. Within each cluster, neglect all the features higher 
than the threshold other than the selected highest silhouette feature. Since the 
feature with highest silhouette value in the cluster is the one connected the most 
to this cluster, and the rest of the features within the cluster are either highly 
connected to the cluster centre (the ones with high silhouette criterion) or 
weakly connected to the centre (the ones with lower silhouette criterion). The 
highly connected features are similar to each other, hence they are all strongly 
connected to the same cluster centroid, and by selecting only one of them, 
particularly the highest silhouette above the threshold, to represent the high 
pack is only fair and necessary to eliminate the redundant cluster similar 
features. However, the weakly connected features within the cluster (silhouette 
lower than selected threshold) are following slightly to highly different 
patterns than their connected clusters, and these connections can be affiliated 
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to other cluster or other centroids within the same cluster. That is why, these 
features should be accumulated from all the clusters and stored in a matrix for 
remaining features, followed by aggregating them, re-cluster them all together 
and compute the silhouette over again. This process keeps repeating 
recursively between clustering (dividing), silhouette calculation, feature 
selection (highest silhouette above threshold of each cluster), elimination 
(silhouette above threshold of each cluster other than the highest) and 
aggregation (lower than threshold of each cluster) until all features are either 
selected or eliminated. In other words, the recursion is convergence when the 
amount features in the remaining features matrix is empty or null. Let us 

Assume that 𝑿 ∈ ℝ𝒅×𝑵  where 𝒅  is the number of features or dimensions 
needed to be clustered, and 𝑵 is the value of each feature 𝒅  through the 
samples or selected subset of the samples. Set the threshold 𝝈 to any desired 
percentage where 𝟎 < 𝝈 < 𝟏. The higher the threshold, the more features to be 
selected, and the number of iterations or re-clustering before reaching 
convergence is increased. Moreover, the quality of the feature selection is 
directly proportional to the threshold 𝝈  selected. When  𝝈 → 𝟏  the max 
number of features < 𝑵 are selected, and the accuracy of the feature selection 
is maximized. However, the computational cost and time will rise dramatically 
in comparison to lower thresholds, due to the increase of the iteration count for 
the process repetition. It is crucial to identify some matrices required during 
the feature selection. 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 ∈ ℝ

𝒓×𝑵  where 𝒓 is the remain features from past 
iterations that has not yet been eliminated or selected but require re-clustering 
to make the choice accordingly. 𝐗𝐫𝐞𝐦𝐚𝐢𝐧  contains the features from all the 
cluster aggregated, which did not satisfy the condition 𝑺𝒊 ≥ 𝝈 in the previous 
iteration, as well as they showed weak connection to their current cluster, so 
re-clustering is inevitable to find another more connected pattern in the feature 
space. 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 ∈ ℝ

𝒔×𝑵 where 𝒔 is the number of features selected. The selected 
features are only the features with the highest silhouette criteria 𝒎𝒂𝒙 (𝑺𝒊)|𝑺𝒊𝝐𝑪𝒌  

that is also fulfilling the selection criteria 𝑺𝒊 ≥ 𝝈  within each cluster 𝑪𝒌 
collected recursively throughout the iterations after the aggregation and re-
clustering of each phase. Which make the final condition for choosing the 
feature is (𝐦𝐚𝐱(𝑺𝒊) ≥ 𝝈)|𝑺𝒊𝝐𝑪𝒌 . Finally, 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 ∈ ℝ

𝒆×𝑵 where 𝒆  is the 

number of features eliminated that has the size of  𝒆 < 𝒅. The features added to 
the 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝  matrix are the redundant ones within each cluster collected 
iteratively throughout the iterations. More specifically, the eliminated features 
represent the ones that did belong to their representing cluster following that 
exact iteration. However, they have higher than threshold silhouette value 
( 𝑺𝒊 ≥ 𝝈)|𝑺𝒊𝝐𝑪𝒌  , but not high enough to represent the whole similar features in 

the cluster. Which means (( 𝑺𝒊 ≥ 𝝈) ∩ (𝑺𝒊 < 𝐦𝐚𝐱(𝑺𝒊)))|𝑺𝒊𝝐𝑪𝒌 . Eliminating those 

features even though they possess high intra-cluster relation can massively 
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reduce the features redundancy. Furthermore, another reason to escape the 
algorithm is when it refuses to reach convergence for a pre-defined number of 
iterations, where 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 keeps constant and fixed for many iterations and no 
more possible re-clustering that provides the sufficient requested threshold is 
possible. In this case, all the features in 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 will be added to 𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 , 
which ensures 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 to have null content, that provokes the completion of the 
algorithm by reaching convergence.    To develop more precise explanation of 
the feature selection proposed, the below pseudo code to RkSE is introduced. 

RkSE Pseudo Code 

1. Initialisation of important matrices and parameters: 

𝑿 ∈ ℝ𝒅×𝑵 
 𝝈 = 𝒖𝒔𝒆𝒓_𝒅𝒆𝒇𝒊𝒏𝒆𝒅  𝟎 < 𝝈 < 𝟏  
 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 = 𝑿 
𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 = ∅ 
𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 = ∅ 
2. Apply k-means clustering using 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 (Choose the optimal k using the 

elbow method prior to k-means application) 

3. Calculate 𝑺𝒊 for each element within each cluster following the equation 
below: 

𝑺𝒊 =  
𝒃𝒊 − 𝒂𝒊

𝐦𝐚𝐱(𝒂𝒊, 𝒃𝒊)
 

4. Some features will be selected, eliminated, or remain for re-clustering 
based on the following value of 𝑺𝒊 within each cluster 𝑪𝒌 separately. 

𝑺𝒊 =  {

𝐗𝐫𝐞𝐦𝐚𝐢𝐧 ← 𝒊,                                            𝒊𝒇 𝑺𝒊 < 𝝈
𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 ← 𝒊,      𝒊𝒇 (𝑺𝒊 ≥ 𝝈)𝒂𝒏𝒅 (𝑺𝒊 < 𝐦𝐚𝐱 𝑺𝒊)  
𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 ← 𝒊,           𝒊𝒇 (𝑺𝒊 ≥ 𝝈)𝒂𝒏𝒅 (𝑺𝒊 = 𝐦𝐚𝐱 𝑺𝒊)

 

 
5. Remove  𝐗𝐞𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐞𝐝 and 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 from 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 
6. Check if 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 is empty 

  
𝐢𝐟 𝐗𝐫𝐞𝐦𝐚𝐢𝐧 =  ∅ 𝒕𝒉𝒆𝒏 
Convergence achieved; feature selection is complete. 
 Selected features are stored in 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝  
𝒆𝒍𝒔𝒆 
Repeat from step 2 

To sum up, RkSE represents an iterative, unsupervised, silhouette-based, k-
means clustering feature selection algorithm. Although, RkSE has plenty of 
advantaged and contributions that exceed the methods mentioned in related-
work section, it also has limitations that we hope to eliminate in the future. 
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Based on the iterative and unsupervised nature of RkSE, it can include the 
advantages of both methodology groups and their disadvantages. The 
following table shows the pros and cons of RkSE. 

Table 6 RkSE Pros and Cons 

 

3. Analysis and Experimental Results 

In this section, RkSE method is analysed, evaluated, and tested when applied 
on two main experiments.  
The first experiment aims to study the effect of RkSE in feature selection for 
univariate time-series data in a shape of windows with a defined length. RkSE 
when applied to experiment one, is supposed to act as a time-series 

compression method that chooses the most informative time points in each 

Method Pros Cons 

RkSE 

- Can create a model representation 
of feature dependencies. (iterative 
advantage) 
 

- Feature selection and clustering are 
made concurrently in one single 
operation. (iterative advantage) 
 

- Unsupervised feature selection 
method, no labels required. 
 

- Simple, robust, and low 
computational and time cost: due 
to the exclusive application of k-
means and silhouette criteria, 
which provides simplicity and 
reduce time and computational 
complexity 
 

- User-interactive: allows the user to 
choose the value of the threshold 
which give the freedom of choice, 
which can change the algorithm 
drastically. 
 

- Introducing a new concept of using 
k-means and silhouette measure in 
a recursive manner, instead of the 
common forward and backward 
approaches. 

- Prone to overfitting. 
(iterative algorithms 
disadvantage) 
 

- The choice of the 
threshold can drastically 
affect the quality of the 
selection, which cannot 
be guaranteed since σ is 
user selected. 
 

- The accuracy is a little 
compromised because 
the algorithm focuses on 
the relationship between 
the feature and the 
cluster, rather than the 
relationships between 
features. 
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sliding window and eliminates the redundant and less important time points 
per window. (selection of optimal time points in one modality type) 
The second experiment explores the potential of RkSE applied to a multivariate 
time-series dataset without the sliding window application. In this experiment, 
RKSE is expected to choose the most informative features within all the time 
points. i.e., in a dataset of different sensors readings, RkSE is expected to choose 
the best sensors as the representative features. (selection of best modalities 
among variations of them during various time frames). 
For the sake of validating the results of the two mentioned experiments, it is 
essential to explain the main methodologies followed to validate unsupervised 
feature selection methods. The following points describe the main categories 
for unsupervised feature selection validation techniques as researched in [36]. 
 

1- Feature selection evaluation by classification accuracy: in this method 
the selected features using the feature selection method subject of 
evaluation are used to test a classification problem using one of the 
common supervised classifiers such as, SVM, KNN or NB. Then, the 
classification accuracy or the error rate is measured, and compared to 
the classification results of the entire dataset prior to classification. 

2- Feature selection evaluation using clustering criteria: In this case the 
results of a clustering task such as, k-means clustering is evaluated by 
using one of the clustering qualities measures. i.e., Normalized Mutual 
Information and Clustering Accuracy.  

 
In this work, the evaluation method used is the classification accuracy 
approach since the dataset available for evaluation has already included the 
labels. Moreover, the fault classification experiments are done in more detail in 
chapter 6, against PCA as a feature extraction method, and FI and manually 
selected time-domain features as the supervised feature selection method. 
Therefore, it will provide a wide range of comparisons between RkSE and other 
approaches besides the original dataset prior to feature selection. The dataset 
used for the following experiments is the hydraulic test rig dataset. This dataset 
is described in full detail Chapter 2. In addition, it was pre-processed 
differently to fit two scenarios of classification schemas; one to fulfil sensor 
FDD using a fault injection scenario, while the other is processed for 
component FDD using the real-time measured faults in the test rig.  

Before we start demonstrating the two experiments, it is necessary to explain 
the procedure in deciding the optimal number of features to select for each 
method such as PCA and FI. The optimal number of features selected for FI are 
the ones guaranteeing the best accuracy when performing the classification task. 
In chapter 7, FI is used as the feature selection method prior to the hybrid RF 
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approach, and the experimental results of that chapter shows the fundamental 
steps of experimentally choosing the number of features when using FI. On the 
other hand, when extracting features using PCA, it is essential to calculate as 
many PCs as possible, then compute the variance of each PC separately. The 
variance usually is an indication of the availability of variant data points, which 
indicates the existence of information. Data that is rich in variance (no 
redundancy) is a healthy data that carries a significant amount of information 
for classification. When plotting the variance value of each PC, the optimal 
number of PCs is the one carrying the most variance, before the variance gets 
almost constant when moving to further PCs. Figure 12 shows process of 
selecting the optimal PC based on the variance changes. As shown the best 
number of PCs is five, before the variance gets almost constant in the next PCs. 

 

Figure 12 Choosing the Optimal PCs or Features in PCA. 

3.1 Experiment One: RkSE for Univariate Time-Series Feature Selection 
within a Window 

In this experiment, the sensor PS1 reading from the hydraulic test rig dataset is 
used for the purpose of sensor FDD using a classification schema. Four main 
types of faults are injected in the PS1 data such as, constant fault (constant high, 
low and zero), gain fault and bias or offset fault, which makes the resultant PS1 
data containing four different labels of faults along with the healthy readings. 
The pre-processed PS1 data that has 28,882 readings that are captured in a 
second basis, is reshaped into a 7210 sliding windows with 60 seconds length 
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worth of PS1 readings with zero intersection points between each window or 
offset/delay equals the window size n, as shown below:  

    

 
 
 
 
 
 
 
First of all, as described earlier RkSE has a user-specified threshold that effects 

the number of features selected and the accuracy of selection process. Thus, the 
following table shows the number of features selected, the execution time for 
RkSE and the number of re-clustering iterations required until reached 
convergence when changing the threshold between 0.1 until approaching the 
highest threshold of one. 
 

Table 7 The Effect of Threshold on Number of Features Selected, Number of Iterations Required 
and Execution Time in Milliseconds [124]. 

𝜎 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98 

No. 
Features 
Selected 

3 5 8 8 8 9 10 11 20 46 60 

Exe.Time 
(msec) 

76.2 76.99 77.58 77.22 77.18 77.07 77.00 77.45 78.03 80.69 87.14 

No. 
Iterations 

2 2 3 3 3 4 4 7 8 8 10 

As shown in the table, the increase of the threshold selected increases the 
number of features selected, as well as increasing the time and computational 
complexity of the algorithm by increasing the number of iterations required 
until reaching the convergence criteria of empty Xremain.  The funnel chart below 
emphasizes the relationship inferred above. Notice that when the threshold is 
0.98≈ 1 all features in X were selected as if no feature selection is applied in the 
first place. 

WindowN 

Window1 

PS1 data reshaped 
into sliding windows 
with n offset 

Window2 

PS1 
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Figure 13 Funnel Graph Describing the Directly Proportional Relationship Between the 
Threshold and the Features Selected [124]. 

To evaluate the performance of the feature selection algorithm applied on the 
PS1 data, the features selected by RkSE are used to classify the data into healthy 
and faulty. The performance of RkSE is compared to the original dataset 
without feature selection (number of features is 60), and then compared to the 
features extracted with PCA, and selected with FI.  
The following graph shows the mean accuracy of 10-folds when applying 10-
fold cross validation technique evaluating the performance of RkSE over 
various classifiers; LR, LDA, KNN, CART, NB, SVM and RF. Illustrated in 
Figure 14, the results of the mean 10-fold accuracy for the classifiers applying 
different number of selected features to show a trade-off between the accuracy 
and the number of features selected. The fault classification schema is similar 
to the one introduced fully in chapter 6, but using data with various health and 
fault statuses instead of just applying faulty data as in chapter 6 experiment. 
 

As shown, the increase in the number of features selected followed by an 
increase of classification accuracy for all the features. However, when the 
threshold is 95% the feature selected are 46 features out of 60 overalls, the 46 
features offered higher classification accuracy than the original dataset. Which 
implies that RkSE has successfully reduced the dimensionality of a univariate 
time-series dataset in a sliding window scenario with even an increase of the 
mean accuracy for most of the classifiers applied. Figure 15 shows the 
relationship between the classifier accuracy and the threshold applied. 
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Figure 14 Feature Number and Mean Accuracy Comparisons Applied for Various Classifiers 
[124]. 

 

Figure 15 Threshold and Mean Accuracy Comparisons Applied for Various Classifiers [124]. 

Figure 16 demonstrates the ability of RkSE in reducing the size of the training 
time-series data, by selecting small number of features per window instead of 

taking all the window size for classification. The orange signal is the PS1 after 
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feature selection, while the blue signal is the original PS1 signal without feature 
selection laying underneath the orange signal. As a conclusion, RkSE noticeably 
reduced the size of the training dataset without compromising the accuracy of 
the classification even with smallest threshold applied. Furthermore, some 
other feature selection and extraction methods are applied to the classification 
experiment shown. PCA is applied and provided only five features extracted 
to from each sliding window to represent the whole window for classification. 
Not surprisingly, PCA succeeded to maintain the average accuracy while 
applying the minimal number of features. While the feature selection methods 
tested FI and RkSE has smaller average accuracy when five features are selected; 
0.706 and 0.762 respectively, PCA has the mean average of all classifiers applied 
of 0.784 which is slightly higher than both FI and RkSE. Moreover, both FI and 
RkSE reached their full accuracy potential when the number of features selected 
are 0.787 and 0.785 respectively, which shows little improvement of the 
accuracy when using only five features with PCA with the result of 0.784.  

 

Figure 16 The Effect of RkSE in Minimizing the Size of the Original Signal While Keeping the 
Accuracy [124]. 

The following figure, Figure 17 shows a detailed comparison for all the 
classifiers used when each method; FI, RkSE and PCA reach their highest 

accuracy with 45 features for FI and RkSE comparing to only five features using 
PCA. 

Time (sec) 

(Trial 1) 

(Trial 2) 

(Trial 3) 

PS1 value 
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In conclusion, RkSE has proven its potential to accurately select features in 
univariate time-series datasets in a window fashion, where the features are the 
time points in the window. RkSE has shown better results comparing to without 
the application of any feature selection at all. Moreover, when RkSE is 
compared to another supervised feature selection method (FI), RkSE has also 
shown slight improvements using the same number of selected features. 
However, feature extraction methods such as PCA, offered comparable 
accuracy with little features included. This observation could lead to the 
conclusion that feature extraction methods such as PCA, are more effective 
when applied to univariate time-series dimensionality reduction problems 
within a sliding window. 

 

 

Figure 17 FI, RkSE and PCA Performance Evaluation with Best Number of Features [124]. 

3.2 Experiment Two: RkSE for Multivariate Time-Series Feature Selection 
without a Window 

In this experiment, the hydraulic test rig dataset is used for component fault 

classification based on the classification of eleven main sensors: PS1-PS6, TS1-
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TS4 and VS1. The data is processed in a way that include the fully efficient 
samples as the healthy form, while the full failure of the cooler, valve, pump, 
and heater are used to represent the rest of the faulty samples.  

The overall goal of this experiment is to investigate the potential of RkSE for 
selecting the most important sensors for the component fault classification 
challenge. When applying RkSE to this experiment, it is crucial to make sure 
that the features (sensors) are located on the row of the dataset as they are the 
subject to be clustered iteratively. When applying RkSE to the multivariate 
hydraulic test rig dataset, it showed a good performance comparing to when 
applying the entire eleven-dimensional dataset for classification. When the 
threshold is set to 0.20 the number of features selected are four, with 0.90 
threshold five features are selected, 0.95 with six features, and finally with 0.98 
threshold nine features out of eleven are selected. Figure 18, shows the results 
of all the classifiers applying different threshold when using RkSE. Hence, 
different number of features are compared.  

 

Figure 18 RkSE of Various Threshold Values Applied to Different Classifiers [124]. 

Figure 19, shows the average accuracy of all the classifiers mean accuracy at a 
certain number of features used for classification. It is obviously noticeable that 
RkSE of thresholds 0.90 and 0.95 with six and nine number of selected features 
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respectively, has shown comparable results to the fully sized dataset of eleven 
features with lower dimensionality applied. 

 

Figure 19 Average Accuracy of All Classifiers for Different Feature Numbers [124]. 

Similarly, when comparing the classification results between PCA and FI as 
done previously in experiment one, PCA achieves its highest average accuracy 
when the features extracted are the first five PCs with 0.8478 average accuracy. 
Comparing to the FI that showed the highest recorded performance using only 
four most important features, with the average accuracy of 0.9638. Finally, 
when applying RkSE the highest accuracy is accomplished when nine features 
are selected, that makes its average accuracy among all classifiers is 0.8656. 
Figure 20 provides a visual explanation of the previous observation. 

To sum up, PCA has shown a steady performance when applying various 
classifiers of different functionality and mechanism for validation. 
Additionally, the steady performance of PCA was not affected by the type or 
shape of the input dataset, whether the classification problem is univariate or 
multivariate, sliding windows or not and, sensor or component faults. PCA 
remained consistence in its high performance which proves the theory of the 
suitability of feature extraction methods over feature selection when applying 
to time-series computations. 
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Figure 20 FI, RkSE and PCA Comparisons. 

Back to the feature selection methods evaluated in this chapter. RkSE and FI are 
two wrapper feature selection algorithms of two different nature. RkSE is 
unsupervised based on k-means and the silhouette value, while FI is a 
supervised method that requires the availability of class labels to apply RF as 
the criteria used to compute the performance of each feature. RkSE showed 
slightly better overall performance when applied to the univariate sliding 
window data structure, comparing to the FI results when the same number of 
features are selected. Although RkSE increased the average accuracy over FI in 
the first experiment, FI flipped the turns and showed better accuracy than RkSE 
with only four features selected versus nine in RkSE. The reason behind this 
remark is that FI uses the knowledge of the samples’ labels, which allows more 
heuristic approach that keeps improving as an optimization of RF.  
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6. Chapter 5: Sensor and Component FDD for 
Hydraulic Systems using Combined LSTM 
Autoencoder Detector and Diagnosis Classifiers 

Please note that parts of this chapter have been published by us in [78], while 
all copy rights and rights are reserved to the MDPI publisher. 

1. Chapter Overview 

In this chapter, an FDD method is constructed based on integrating fault 
detection using LSTM autoencoders, and fault diagnosis applying various 
supervised ML and DL approaches. The detection and diagnosis processes are 
done separately to ensure detecting rare fault occurrences in time-series data 
applied on hydraulic systems.  

In the fault detection phase, the LSTM autoencoder is trained using the fully 

efficient inputs of the dataset, which represents the healthy form of the training 
data. Eventually, the autoencoding model is trained to reconstruct the healthy 
version of the input data at any given point of time. Comparing the 
reconstructed healthy signal with the given one, provides an indication of any 
fault presence. The more the given signal is identical to the healthy 
reconstructed one, the most likely it is a healthy signal and lacks the presence 
of anomalies, and vice versa. 

The faults or deviations captured in the first phase (detection phase), are then 
used to train the classification model in the fault diagnosis stage. This phase 
consists of two major processes: feature engineering analysis, and ML and DL 
model investigation. The engineered features are fed into various ML and DL 
approaches to determine the best approach to diagnose component and sensor 
faults. In this phase, all the training data are faulty inputs in contrary of the 
previous phase. 
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Otherwise speaking, in this chapter a fault detection and classification applying 
healthy signal reconstruction using LSTM Multi-step Forecasting, combined to 
a fault classification schema is introduced, where a comprehensive application 
of various classification ML and DL approaches is shown and compared.  

This chapter is inspired by the recent research in [108], and represents a more 
extensive and improved version of the mentioned research. The former FDD 
method developed in [108] shows an integration between two separate phases; 
the detection phase using LSTM autoencoders, and the diagnosis phase 
represented by the LSTM classifier. They applied the proposed FDD system on 
the dataset generated by Tennessee Eastman benchmark [109]. 

In this work, we adopted the same idea of separating the detection and 
diagnosis phases to ensure better performance in capturing rare occurrences or 
events. However, the following improvements and distinctions between the 
former research and our current work is explained below: 

• In the former work, they only investigated one type of faults, which is 
component faults. However, our research has conducted two separate 
experiments applying the same analogy, but one to detect and diagnose 
sensor faults while the other do the same but to component faults.  

• Both component FDD and sensor FDD experiments conducted are 
applied on a hydraulic test rig dataset. The component faults are already 

labelled and provided by the dataset. Meanwhile, the sensor faults on 
were injected in the data following a data fault injection schema. 

• In the former work, the detection phase represented by the LSTM 
healthy signal reconstruction, the similarity measure chosen to check the 
relevance between the constructed signal and the input signal is a simple 
signal difference. However, in this work we provided a more accurate 
measurement to find the similarity between the signals, applying 
Pearson’s autocorrelation to calculate the similarity, followed by 
calculating the signal difference by simply taking the subtraction 
between the full correlation of positive one and the calculated 
autocorrelation. 

• The former approach directly applied LSTM as a classifier to follow up 
with the detection phase represented by the autoencoder. They 
compared the result with CNN classifier. However, they have not 

conducted any thorough comparisons with any other traditional ML 
approaches. In this work, we conducted the detection phase to 
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investigate various ML and DL approaches to decide the most accurate 
algorithm for the joint FDD approach. 

• The former work did not focus on feature engineering prior the 
classification phase. In this work, we applied different feature 
engineering approaches such as, PCA, FI, manually extracted time-
domain features and a RkSE. This step provides essential comparisons 
between four common feature engineering methods of different nature, 

which shines a light on a guide that clearly shows the effect of each 
features on the target classifiers. Thus, researchers using fault 
classification as a fault diagnosis mechanism could rely on the 
comparisons we provided as a base for further research on FDD for 
hydraulic rigs, to know which features work the best/worst for each ML 
and DL classifiers. 

2. Hydraulic System FDD Overview 

In this experiment the data used is collected from a condition monitoring of a 
hydraulic test rig, which is designated to test a hydraulic system. Thereafter, 
the data is used to conduct two main experiments, one to analyse the provided 
component faults at the total failure stage. The other experiment is concerned 
with sensor faults, where the fault injection takes place to successfully inject 
three main types of sensor faults; constant fault that covers constant low, 
constant high and constant zero faults, as well as gain faults and bias or offset 
faults. These injected faults along with the healthy readings would eventually 
act as pre-defined classes necessary for the fault classification and the healthy 
signal reconstruction learning, respectively. 

Figure 21, shows the two main experiments to detect and diagnose a variety of 
sensor faults and severe component failures in the hydraulic test rig readings, 
as an example of industry 4.0 hydraulic system’s data. The method followed to 
perform the FDD consists of two main separately conducted processes; the first 
is the fault detection using the LSTM healthy reconstruction schema. The 
second process is involved to diagnose the faults being detected during the 
detection phase, the diagnosis process is a classification algorithm using a 
variety of features and classifiers.   

In this chapter, two comprehensive experiments were conducted to guarantee 
performing fault detection and diagnosis for each component and sensor faults 
in the hydraulic system tested using the hydraulic test rig.  
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The two experiments start mutually with applying the necessary data pre-
processing steps, to ensure removing the unnecessary noise in the input signals, 
and to arrange the inputs in a way suitable for the LSTM autoencoder. Please 
note that the data applied, and its pre-processing differs between the sensor 
FDD experiment and the component one.  Moreover, the data used for both 
experiments are filtered and organized differently. The data description and 
organisation for both experiments will be described in detail in the 
experimental results section of this chapter. 

For Sensor FDD, the available dataset of a hydraulic test rig described in the 
data description chapter, lacks the presence of any sensor faults. Which 
necessities the need of injecting various sensor faults into the filtered and pre-
processed data. The choice of which types of sensors faults to inject is decided 
upon convenience and necessity. For example, stuck-at or constant sensor fault 
was chosen to be injected in the data due to its simplicity to apply such an effect 
on different periods of time comparing to other data-centric sensor faults. i.e., 
outliers or spikes that are not easily predicted or frequently occurring, or even 
possessing a regular pattern in which they could be injected in the data. Gain 
and bias faults are an example of system-centric faults, which -by definition- 
are complicated to diagnose relying on the data alone, that is why these sensor 
faults are significant to study and apply algorithms with high accuracies to 
diagnose, as well as both mentioned faults have a clear definition and pattern 
that makes it easier to inject them to the dataset. 
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Figure 21 An Overview of the Two Experiments to Achieve FDD in Hydraulic Test Rigs for 
both Sensor and Component Faults [78]. 

For the component FDD experiments, the data selected are the ones with full 
efficiency to be fed in the detection phase demonstrated by the LSTM 
autoencoder. However, the faults that are proceeded to the diagnosis stage are 
the ones representing total failure in the hydraulic test rig which are, cooler 
total failure, valve total failure, pump severe leakage and hydraulic 
accumulator total failure. 

In both experiments the detection phase is demonstrated by the LSTM 
autoencoder to reconstruct the healthy form of the input signal when the FDD 
is conducted and tested. The LSTM autoencoder is trained using healthy sensor 
data that shows full efficiency in both experiments. However, the data 
formulation and organisation is different between the two experiments, since 
the signal subject of reconstruction for sensor FDD is a window of 60 seconds 
values corresponding to each sensor separately in the hydraulic test rig, but in 
the component FDD the healthy signal used for training is organised without 
sliding windows, while each reading represents the values of all eleven sensors 
at this particular point of time, and how they altogether contributed in 
diagnosing the failure.  

In the diagnosis phase for both experiments, the faulty data of both systems are 
fed separately into a classification process. The choice of traditional ML 
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classifiers for this experiment is dependent on the selection of various 
supervised learning methods of entirely different functionality and mechanism 
as possible, to provide a broad and comprehensive analysis. The classifiers 
used in this experiment are LDA, LR, KNN, CART, NB, SVM and finally RF. 
The DL methods chosen for this experiment are CNN and LSTM both applied 
in an interesting manner. The comparison includes the application of the 
chosen ML and DL approaches using different features extracted or selected 
via numerous feature extraction and selection methods such as, manually 
extracting time domain features for each sliding window, applying Principal 
PCA directly using the raw multivariate time domain sensor data without 
dimensionality reduction, as well as using our developed RkSE feature 
selection and dimensionality reduction algorithm. RkSE results comparisons 
will be explained in comprehensive detail in the following chapter. Moreover, 
the results of each ML and DL method using three different feature extraction 
schemas are shown.  

Finally, the trained models and saved thresholds from each experiment can be 
easily used to achieve run-time predictions of new samples at real-time. The 
FDD prediction at run-time can be done by the following: (1) the detection: a) 
predict the healthy reconstructed sample to the new sample using the trained 
model of LSTM autoencoder. b) Compare the reconstructed sample and its 
original form by applying the suitable sequence difference. c) Compare the 
calculated sequence difference to the threshold computed during the offline 
training stage, if the difference is greater than the threshold then a fault has 
been detected.  

When fault is detected, it needs to be passed to the next stage of fault diagnosis. 
(2) Fault diagnosis: this step is done by passing the new sample that has been 
detected as faulty, into the chosen trained classifier. After taking into 
consideration choosing the best features and the most optimal classifiers based 
on the comprehensive training and comparisons done previously in the model 
training offline phase. 

In this section, only an overview of FDD process proposed is explained without 
comprehension. However, in the next section each experiment will be 
explained in exhaustive details.  
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3. Analysis and Experimental Results 

3.1 Experiment One: Sensor FDD Using the Joint LSTM Autoencoder and 
Classifier Approach 

In this section FDD of sensor faults in hydraulic test rigs using a joint approach 
between healthy signal reconstruction to detect sensor faults, followed by fault 
classification to diagnose the selected sensor faults is introduced, analyzed, and 
discussed. 

The following subsections elucidate each step of the described approach 
applied on sensor faults and showcase their results. Figure 22 shows the steps 
included in experiment one, where below each step is elaborated in 
comprehensive detail. 

 

Figure 22 Sensor FDD Comprehensive Framework [78]. 
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A. Data Pre-Processing and Organization 

It is worth to be mentioned that the preprocessing step is applied twice for each 
phase in a different manner. The pre-processing and data structure required for 
the LSTM autoencoder in the detection phase differ from the data structure 
used for the diagnosis via classification phase. For this purpose, the 
preprocessing necessary for each phase is explained under the corresponding 
operation. 

B. Sensor Fault Injection Schema 

The dataset used for the sensor fault detection and diagnosis is the hydraulic 
test rig dataset explained in the data generation and collection chapter. The data 
provided a wide range of component faults varies from slightly damaged to 
total failure. However, the dataset did not provide any sensor faults. Thus, it is 
essential to inject sensor faults to build the sensor FDD model. 

Although the sensor FDD architecture navigated in this chapter is meant for 
multivariate time-series data, for simplicity reasons one sensor only is 
considered to show results for the sensor FDD process.  

Sensor PS1 (the first pressure sensor) is used to showcase the sensor FDD 
results during the fault injection, sensor FDD while using LSTM autoencoder 
and the sensor detection classification results. 

The faults chosen to be injected are: (1) stuck-at: three main types of stuck at 
faults has been injected due to the fact that stuck-at or constant faults are the 
most common form of data-centric faults, and it shows a mighty severity of the 
sensor condition. Moreover, constant faults are extremely easy to inject. 
Consider the input sensor signal is 𝑥(𝑡) then the constant fault can be injected 
easily by following 𝑥′(𝑡) = 𝑐  where 𝑐  is a constant number representing the 
stationary condition of the sensor. Three main types of constant faults are 
added. constant zero when the sensor is stuck at zero, constant high when the 
sensor is stuck at the highest value in the window, and constant low stuck at 
the lowest point of the sensor readings during the observed window.  We 
randomly injected 40 windows of size 60 seconds with constant zero fault, 7210 
windows of size 60 readings of PS1 are injected with high and low constant 
faults, which make the overall number of windows injected with stuck-at fault 
is 7250 windows. (2) Gain fault and (3) bias or offset faults. these faults are a 
type of system-centric faults; hence it is hard to observe their pattern through 
sensor signal’s observation alone. So that, these faults are significant to study 
and build ML approaches to dynamically detect and diagnose them. 
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Furthermore, both faults have a clear pattern that makes it easy to inject these 
types of faults in the data. Gain fault also known as amplification, where the 
original signal  𝑥(𝑡) is amplified with a constant 𝑤; 𝑥′(𝑡) = 𝑥(𝑡) ∗ 𝑤. To inject 
this fault, randomly selected amplification number between 0.3-1.3 are selected 
each time, to regenerate the magnified fault signal. 7210 samples of 60 PS1 
sensor readings are injected with randomly chosen gain values. Bias or offset 
fault is another example of calibration system-centric fault, where the original 
signal is shifted with a constant value. Consider the original signal is 𝑥(𝑡) then 
the manipulated with offset signal is 𝑥′(𝑡) = 𝑥(𝑡) + 𝑏  where 𝑏 is the constant 
number representing the bias or offset added to the signal. 𝑏 value can be too 
small and hard to notice or observe, or too large and hard to ignore. As a result, 
it is essential to inject both cases of 𝑏. To achieve this, 3480 windows of size 60 
were injected with a random number between 0.1-1 to represent the too tiny 
bias category, while the remaining 3730 windows of size 60, were injected with 
the comparatively larger biases that are randomly chosen between 1.1-50.  
Finally, the overall PS1 sensor data prepared after the fault inject process, 
possesses many windows of size 60 readings that consists of the following: (1) 
7210 windows representing fully efficient windows as an example of healthy 
windows. (2) 7250 windows of constant faults (zero, high, low). (3) 7120 

windows of gain fault. (4) 7210 windows of bias faults (low bias, high bias). 
Figure 23, Figure 24 and Figure 25 show a small part of a signal with each type 
of faults injected.  

 

Figure 23 Constant Faults Verses Healthy Signal. 
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Figure 24 Gain Faults Verses Healthy Signal. 

 

Figure 25 Bias Faults Verses Healthy Signal. 
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C. Sensor Fault Detection: Healthy Signal Reconstruction Using LSTM 
Autoencoder 

This step is applied to feed the healthy windows of sensor PS1 into the LSTM 
autoencoder to be able to reconstruct the healthy form of an input signal for 
prediction that will be necessary to identify the faulty patterns by how much 
they are deviated from the healthy reconstructed one.  
The steps below showcase the main steps to achieve sensor fault detection 
using LSTM autoencoder collaborated with the application of Pearson’s 
autocorrelation. 
  
(1) Define the problem. (2) Design the neural network suitable to solve the 
problem. (3) Pre-process the healthy PS1 data in a form useful for the designed 
neural network. (4) Compile the designed model with a fit compiler and 
libraries such as, Keras in Python. (5) Train and then validate the compiled 
model by calculating the necessary metrics. i.e., Mean Square Error (MSE). (6) 
Use the validated model to make predictions. (7) Find a suitable metric to 
measure the deviation between given signal and reconstructed one using the 
validated model. (8) Find the suitable threshold for the found metric. (9) Detect 
the faulty occurrences based on the calculated threshold.   
The validated model can make predictions by reconstructing the healthy form 
of the given signal, which means that the outcome of the autoencoder is a signal, 
not a measurement to decide upon the status of the given signal to be healthy 
or faulty. The state-of-the-art research work suggest using the amplitude of the 
signal difference between the healthy reconstructed signal and the given signal, 
then define a threshold for the accepted amount of difference as the criteria to 
decide whether the signal is healthy or not. However, in this work we 
suggested a new way to calculate the signal difference using the Pearson’s 
autocorrelation and then derive the suitable threshold from the difference 
extracted from the correlation. 
 
In the following bullet points a full explanation supported by the experimental 
results in LSTM autoencoder to achieve sensor fault detection. 

• Design LSTM Autoencoder for Sensor Signal Reconstruction 

To achieve the problem under investigation, the desired neural network should 
be able to perform sequence to sequence predictions. Hence, the input sequence 
is sliding window of the sensor PS1 and the reconstructed signal is from the 
same nature of the input sequence, as well as they are both having the same 
size of 60. Then the encoder-decoder type required to fit the problem is an 
autoencoder. The choice of LSTM as a type of DL algorithm is because its 
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tendency to learn the hidden dependencies between many time points at once, 
which make LSTM one of the most suitable forms of DL when it comes to time-
series data, especially sequence to sequence (seq2seq) operations. 
 
 The LSTM autoencoder created for this experiment, has only one batch of 
LSTM sequences. This batch is designed to be sequential in direction and nature, 
which means the input layer is directly connected to the hidden layers, then the 
hidden layer is connected to the output layer. The LSTM hidden layer consists 
of a hundred hidden LSTM neurons. The activation function applied for the 
designed DL model is ReLU, based on a try and error validation. The hidden 
layer is chosen to be fully connected by adding the dense layer of output equal 
to the overall output expected from the LSTM model. The optimizer chosen for 
the LSTM layer is Adam optimization algorithm. 

 

• Data Preprocessing Prior to LSTM Autoencoder for Sensor Signal 
Reconstruction 

In order to utilize the healthy windows of PS1 for LSTM use, it must go under 
a heavy pre-processing and structuring to fit the LSTM criteria. The pre-
processing and restructuring including the following: (1) Flatten the data into 
a vector. (2) Normalize the flattened data between zero and one to be able to 
use in LSTM. (3) Create the target sequence 𝑦(𝑡) to reconstruct this is the most 
important step of all, which determines what to learn and what to predict. In 
our case, the input sequence is a sliding window of size 60, while the target 
sequence is the next sliding window. The shift or sliding step is assumed to be 
only one step to guarantee higher model accuracy, which means if the input 
point is 𝑥(0) then the target point used to train the prediction model is 𝑦(0) =
𝑥(1). So that in general, 𝑦(𝑡) = 𝑥(𝑡 + 1)  (4) divide the flattened normalized 
vectors of 𝑥(𝑡)  and 𝑦(𝑡)  between training and testing samples, where the 
training windows are the 80% selected from the overall data, while the 
remaining 20% is divided equally between testing and prediction. (5) convert 
the flat, normalized vectors of 𝑥(𝑡) and 𝑦(𝑡) into a two-dimensional array of 
(number of samples, window size) shape. (6) convert the training and testing 
2D tensor samples into a 3D tensor suitable to use in LSTM. LSTM units in 
Keras only accept the training and testing data in a 3D tensor shape following 

the size of (number of samples, time points, number of features). Where z-axis 
or pages or axis 0 is the number of samples, axis 1 or rows is the number of time 
points to store in the memory of LSTM and learn their dependencies, and 
finally axis 2 or columns represents the number of features inserted in the data.  
The 𝑥(𝑡𝑟𝑎𝑖𝑛) used in this experiment has the size of (11191, 60, 1), where 11191 



 

98 
 

of samples that has the size of (60,1) which is corresponding to one window of 
60 only healthy readings of PS1.  

• Train, Validate and Test the Designed LSTM Autoencoder Model 

The previously designed LSTM model is trained and validated using the 
intensely pre-processed healthy data of PS1. In this experiment, the LSTM 
parameters are set to one hundred epochs and verbose equal one. 

The validation results of the LSTM healthy signal reconstruction using the 
formulated testing data at the last epoch (number one hundred) has the errors 
MSE and MAE 0.000039871 and 0.0029, respectively, which both are considered 
exceedingly small loss values. Figure 26, shows a randomly selected window 
from the test samples compared to its reconstructed window using the trained 
and validated LSTM autoencoder. As shown the figure, the resemblance 
between the original, healthy window and the reconstructed window is 
extremely high, which provides another proof of efficiency besides the low 
error rate.  

 

Figure 26  A Comparison Between a Randomly Chosen Testing Window and its Corresponding 
Reconstructed Signal. 

• Determine the Best Signal Difference Metric and its Threshold: 

After training, evaluating, and testing the LSTM autoencoder model, it is time 
to start making fault detection decisions aided by the model, but the question 
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arises, how to detect faults based on the quality of the reconstructed signal? 
Which brings up another important question: How to determine the fault 
detection threshold? 

Taking a glance at the state-of-the-art methods helps answering the previous 
questions, as  such the study researched in [154]. The approach they have 
applied is highly similar to our approach by having separate phases for both 
detection using signal reconstruction, and diagnosis applying fault 
classification. To find the difference between the predicted sequence and the 
input sequence, they used signal difference that can be easily calculated by 
taking the amplitude of the subtraction operation between the two sequences 
(𝑧(𝑡) = |𝑥(𝑡) − 𝑥′(𝑡)|). Although using signal difference has shown accurate 
results, we propose a different signal similarity measure that showed more 
accuracy and performance when comparing to signal difference for fault 
detection. 

The threshold determines what is faulty or healthy based on the value of the 
signal difference. If the value is higher than the designated threshold then the 
reconstructed signal is considered faulty, or else it is healthy. The threshold is 
best measured by creating a pool of various threshold values between the 
minimum and maximum values of the calculated signal difference. Followed 
by making the fault detection decisions on the prediction samples, based on 
each one of the thresholds in the pool. For each threshold in the pool, check if 
the prediction’s sample signal difference is higher than the threshold to be 

considered faulty, while lower is detected to be healthy. Finally, calculate the 
precision, recall, f1-score, and accuracy for all the prediction results made by 
each threshold in the pool.  The choice of the right threshold for the sensor fault 
detection, is made by choosing the threshold that guarantees the best precision 
to recall trade-off, also known as f1-score. In this experiment, a prediction 
dataset (500 windows of size 60 readings of PS1) that consists of various healthy 
and faulty samples, is used to determine the fault detection accuracy using the 
LSTM autoencoder sequence reconstruction. The 500 windows reconstructed 
using LSTM were then each compared to the original sequence to show how 
much they were deviated from the original window regarding their health 
status. The comparisons between the reconstructed windows and the original 
ones are made utilizing two main metrics: (1) signal difference: 𝑧(𝑡) =
|𝑥(𝑡) − 𝑥′(𝑡)| . (2) our new metric using the complement of Pearson’s 
autocorrelation. 

Pearson’s autocorrelation can be calculated using the formula shown below: 
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𝑟𝑥𝑦 = 
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 − (∑𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2 − (∑𝑦𝑖)2
 

Eq.  18 

 

Where 𝑟𝑥𝑦 is the correlation between to vectors 𝑥, 𝑦.  Furthermore, 𝑥 𝑎𝑛𝑑 𝑦  are 

expected to possess the same length of  𝑛. Where the autocorrelation measures 
the similarity between two sequences, while subtracting the measured 
similarity from the highest possible value of resemblance (+1) represents 
another way of calculating the difference between two sequences. (𝑧(𝑡) = 1 −
(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)) 

The table below, Table 8 shows the signal difference values, and the signal 
difference based on the correlation values, for the first five entries of the 
prediction samples after being compared to their reconstructed version using 
LSTM. 

Table 8 The First Five Samples and Their Signal Difference when Compared to the 
Reconstructed Signal, Calculated in Two Different Fashions 

 

The tables demonstrated below shows some of the threshold values selected to 
find the optimal threshold necessary for the sensor fault detection, 
corresponding to their precision, recall, f1-score, and accuracy. 

Table 9 Signal Difference Thresholds and Their Metrics [78]. 

THRESHOLD 0.1 0.3 0.5 0.7 0.9 1.1 

PRECISION 0.78 0.76 0.74 0.69 0.65 0.79 

RECALL 0.89 0.77 0.69 0.54 0.33 0.2 

F1-SCORE 0.83 0.76 0.71 0.61 0.43 0.32 

ACCURACY 0.71 0.62 0.55 0.44 0.32 0.32 

Difference Metric/samples 1 2 3 4 5 

Signal Difference: 
𝐳(𝐭) = |𝐱(𝐭) − 𝐱′(𝐭)| 

0.0806 0.6880 0.8279 0.8485 0.6538 

Pearson’s Correlation:  
𝐫𝐱𝐲

=  
𝐧∑𝐱𝐢𝐲𝐢 − ∑ 𝐱𝐢 ∑𝐲𝐢

√𝐧 ∑ 𝐱𝐢
𝟐 − (∑𝐱𝐢)

𝟐√𝐧 ∑ 𝐲𝐢
𝟐 − (∑𝐲𝐢)

𝟐
 

0.4281 -1 0.1784 -0.5772 -1 

Signal difference= 
𝐳(𝐭) = 𝟏 − (𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧) 

0.5718 2 0.8215 1.5772 2 
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Table 10 Signal Difference Using the Correlation and Their Metrics [78]. 

THRESHOLD 0.1 0.3 0.5 0.7 0.9 1.1 1.3 

PRECISION  0.79 0.8 0.81 0.83 0.84 0.85 0.86 

RECALL  0.95 0.85 0.82 0.72 0.64 0.55 0.5 

F1-SCORE  0.86 0.82 0.81 0.77 0.73 0.66 0.63 

ACCURACY 0.76 0.71 0.7 0.66 0.61 0.56 0.53 

 
Based on the values shown in Table 9 and Table 10. The optimal threshold 
based on each signal difference metric can be easily detected by choosing the 
threshold that provided the best precision, recall trade-off. It is apparent that 

the threshold of 0.3 is the optimal threshold when using the regular signal 
difference metric, and the accuracy of the LSTM autoencoding sensor fault 
detection when using the optimal threshold of 0.3 is 0.62. On the other hand, 
the optimal threshold when using the signal difference based on the correlation 
is 0.5, and the accuracy of the sensor detection given the optimal threshold is 
0.71.  
 
As visualized in Figure 27 and Figure 28. The optimal threshold is the one 
providing the best precision, recall trade-off also known as f1-score. The 
optimal threshold can be easily observed as the intersection point between the 
three metrics mentioned previously. Based on the visualization in Figure 27, 
the threshold selected is 0.3, which provide the detection with 0.62 accuracy. 
Compared to the intersection point shown in Figure 28, where the threshold is 
chosen 0.5, and the corresponding accuracy is observed higher at 0.71. 
 
This concludes the accuracy of the proposed signal difference measure 
comparing to the traditional one, to achieve fault detection using signal 
reconstruction technique. 
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Figure 27 Optimal Threshold Selection Using Regular Signal Difference  [78]. 

 

Figure 28 Optimal Threshold Selection Using Signal Difference Based on Correlation [78]. 
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D. Sensor Fault Diagnosis: Classification Schema 

In this section, the experimental results conducting sensor fault diagnosis using 
a variety of supervised learning algorithms is demonstrated.  As shown in 
Figure 22, the second phase following the detection of existing anomalies is 
applying the necessary means to diagnose their nature. The detected faults by 
the previous phase using the LSTM autoencoder, are then fed into a fault 
classification schema to determine the type and nature of the detected faults. In 
other words, to perform the fault diagnosis only faulty data is classified.  

PS1 sensor data is pre-processed, and then restructured into a two-dimensional 
matrix of 28882 windows of size 60. Three main faults existing in the training 
data provided to the classifiers; constant faults of three different types, gain 
fault, and bias or offset faults. The fault injection schema and its details are 
explained earlier in this experiment. 

In this work, the classification results are compared when various feature 
engineering approaches are applied. The feature engineering approaches used 
for this section are: PCA, FI, manually extracted time-domain features, and new 
cluster-based feature selection method called RkSE. Feature selection or 
extraction when applied to univariate datasets in a shape of sliding windows, 
is simply considered as a window compression method, to minimize the size 
of the readings provided by each window and select the features with most 
contribution to the learning process. Therefore, the time and complexity 
constraints of the ML or DL models can be managed and minimized with 
smarter choice of features. Various ML and DL classifiers has been trained, 
validated, and tested, individually with the selected features using a diversity 
of feature engineering approaches. Then their results are documented and 
compared.  The ML approaches used are LR, LDA, KNN, CART, NB, SVM and 
RF. The DL approaches selected to perform the classification tasks are CNN 
and LSTM. 

The following experimental results tackle each of the feature engineering 
process and their results, when fed into the mentioned above ML and DL 
classifiers, to eventually achieve the FDD for sensor faults, using PS1 sensor as 
an example of sensors in the hydraulic test rig system. 

The feature selection section for PS1 as a window compression method, is 
thoroughly explained, as well as all the mentioned methods are explained in 
detail in the previous chapter (chapter 5). 
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The parameters selection for each classifier was chosen by trial and error, to 
ensure the highest possible accuracy when validating using 10-fold cross 
validation over the original data without any feature engineering applied. The 
table shown below describes the applied ML classifiers and their 
corresponding parameters using Scikit in Python. Furthermore, the mean 
accuracy for the 10-folds and the standard deviation corresponding to the 10-
folds is calculated. 

Table 11 ML Classifiers and Their Parameters in Scikit Python. 

ML 
Classifier 

Parameters Mean Accuracy Standard Deviation 

LR 
solver='liblinear', 
multi_class='ovr' 

0.69 0.02 

LDA no parameters 0.71 0.01 

KNN no parameters 0.87 0.01 

CART no parameters 0.90 0.01 

NB no parameters 0.71 0.01 

SVM gamma='auto' 0.91 0.01 

RF 
n_estimators=1000, 

max_depth=5, 
random_state=0 

0.82 0.01 

 

The CNN classifier has the parameters verbose, epochs and batch size of zero, 
hundred and 20, respectively. The parameters are chosen by try and error to 
provide the designed deep neural network with the highest 10-fold 
classification accuracy. The CNN applied is designed as sequential model 
(input, hidden layers, and output). The CNN convolutional layer applied here 
is a 1-D layer since the training dataset is a time-series data and of a one-
dimensional nature, unlike the usual application of CNN where the data is 
typically of two-dimensional shape such as, images. CNN design included 6 
one-dimensional convolutional layers of filter equals to 64 and kernel size of 
one. The kernel size that shows the length of the convolution window/masking 
window required for the convolution is selected as one. The number of 
convolution layers is added to guarantee highest possible accuracy, and by try 
and error it is set to 6 layers of 1-D convolutional layers. The activation function 
within the created layers is ReLU. The next process following each convolution 
layer is the pooling layer, in this work the pooling function is selected as the 
maximum pooling, which indicates selecting the maximum entry in the kernel 
during the pooling phase. Two fully connected layers are added following the 
pooling phase, one of size hundred and their activation function is ReLU. The 

second fully connected layer has three outputs to match the number of 



 

105 
 

classification outputs/faults designated for the training, while its activation 
function is selected as SoftMax. Finally, the CNN optimizer chosen is Adam 
optimizer. The LSTM model designed for classification differs from the one 
used in the previous step, as this model is a classifier while the previous LSTM 
model is an autoencoder designed to solve multi-regression problems not 
classification. Only one batch of LSTM neurons is used, this batch has hundred 
sequential hidden layers or neurons. The layers are fully connected using a 
dense layer of size one hundred with the activation function ReLU, which is 
connected to another fully connected dense layer of size three (to match the 
number of outputs expected from the LSTM model), with the activation 
function SoftMax. The LSTM classifier parameters are represented by verbose, 
epochs and batch size which are equal to zero, 10 and 20, respectively. 

Here are the classification results when using number of ML and DL classifiers 
when fed with only faulty data, to perform PS1 fault diagnosis and 
classification. In Table 12, nine ML and DL classifiers are trained separately 
using five different features at a time, which are selected/extracted using PCA, 
manually extracted time-domain features, FI, RkSE. As well as the entire faulty 
dataset without any feature selection. The number of features without feature 
selection is equivalent to the window size of 60. Four features are extracted 
using PCA, 45 features are selected using FI, compared to 46 features selected 
using RkSE. Finally, four time-domain features extracted from each window, 
represented by the mean, variance, standard deviation, and signal to noise 
ration. The number of features selected by each method is the one with the 
highest fault classification mean accuracy.  

Table 12 Classification Accuracy of Different ML and DL Approaches Using Various Feature 
Engineering Methods [78]. 

Classifier 
no feature 
selection 

PCA 
Time-Domain 

Features 
FI RKSE 

LR 0.6911 0.6356 0.2425 0.7019 0.6882 

LDA 0.7053 0.6535 0.7859 0.7038 0.7068 

KNN 0.8747 0.9128 0.9625 0.8758 0.8816 

CART 0.8972 0.9818 0.9951 0.9126 0.9116 

NB 0.7089 0.6919 0.4821 0.6930 0.6824 

SVM 0.9125 0.8827 0.7298 0.9112 0.9142 

RF 0.8189 0.8390 0.9402 0.8196 0.8193 

CNN 0.8773 0.8486 0.7575 0.8385 0.8562 

LSTM 0.8352 0.9568 0.9684 0.7278 0.7499 

Mean Feature 
Accuracy 

0.81 0.82 0.76 0.80 0.80 
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When observing each row in respect to each feature engineering method, it can 
clearly show the feature engineering approach giving the highest or lowest 10-
fold mean accuracy corresponding to each classification method. The mean 
feature accuracy row shows the overall accuracy for each feature engineering 
approach in respect to all ML and DL classifiers combined. It is shown that PCA 
has the highest mean feature engineering accuracy when applied to the nine 
classifiers, which proves the consistency of PCA and its validity with different 
classification techniques.  It is also obvious that the time-domain features 
selected are the one providing highest accuracy to many of the ML and DL 
classifiers, which are LDA, KNN, CART, RF and LSTM. However, this feature 
selection technique does not provide consistency in the accuracy results, since 
LR and NB classifiers for example show exceptionally low performances when 
applying the four selected time-domain features, comparing to the rest of 
feature engineering methods. This explains why time-domain features result in 
lower overall mean feature accuracy comparing to PCA, even though more 
classifiers have the maximum accuracy when applying time-domain features.  

The selection of the suitable feature engineering method is highly dependent 
on each classifier type and its functionality. The table above has the purpose of 
investigating the behavioral changes of some of the most common ML and DL 
classifiers in respect to various commonly used feature engineering methods 
with time-series datasets. Furthermore, finding the best pair of features and 
classification approach which provides the most optimal accuracy-complexity 
trade-off when performing sensor fault detection is the number one aim of 
these comparisons. As a result, the highest measured sensor fault detection 
combination is when applying CART using time-domain features, followed by 
LSTM, KNN and RF using the same extracted features. 

Finally, the sensor fault detection for new windows of PS1 (size 60) at run-time, 
can be easily performed by applying the new window into the trained, LSTM 
autoencoder explained in full details previously in this experiment. Followed 
by the reconstructed healthy signal of the new window will be compared to the 
new window by calculating the signal difference using the Pearson’s 
correlation. If the difference is bigger than the previously trained threshold, 
then a fault is detected and needs to pass to the next stage of fault diagnosis 
using the chosen trained classifier, by feeding the new window into the chosen 
trained classification model after applying the necessary feature engineering 
modifications. In our case, extracting the time-domain features such as, mean, 
variance, standard deviation, and signal to noise ratio to the signal. Then, the 
created vector of size four (four features extracted) is used to make predictions 
using the trained CART, LSTM or RF classifiers, as they showed better results 
than others when combined to the chosen features. 
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3.2 Experiment Two: Component FDD Using the Joint LSTM Autoencoder 
and Classifier Approach 

In this experiment, component faults existing in the hydraulic test rig are 
detected and diagnosed using a unique approach, in which the detection and 
diagnosis stages are done separately to ensure more accurate detection of rare 
occurrences.  Figure 29, shows the framework of this experiment.  

 

Figure 29 Component FDD Comprehensive Framework [78]. 

The same steps and parameters created in experiment one (sensor FDD) are 
repeated in this experiment, excluding the data pre-processing and structuring, 
and the fault injection schema. The pre-processing step here differs from the 
previous experiment, since this time it is a multi-variate autoencoding and 
classification problem, without the application of sliding windows. Moreover, 
no fault injection is required in this experiment because the component faults 
studied are already available in the hydraulic test rig dataset used for this 
experiment. 
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A. Data Pre-Processing and Organization 

In this section, the data used is the hydraulic test rig dataset of eleven sensors, 
which indicates that this experiment is a multi-variate FDD experiment. The 
healthy data is applied for the detection as the first step of the FDD system 
represented by the LSTM autoencoder. While the faulty data containing four 
main component faults; cooler, value and hydraulic accumulator total failures, 
and pump severe leakage fault, are used in the second stage represented by the 
fault diagnosis using the supervised ML and DL methods. 

In both stages, the data is organized as a 2D matrix of samples and the features 
expressed by the eleven sensors and their readings at different time points.  

B. Component Fault Detection: LSTM Autoencoder 

This section has the same procedure explained in experiment one for fault 
detection in sensors. The LSTM autoencoder for fault detection stage has the 
following main steps: (1) design the LSTM autoencoder to fit the problem. (2) 
Prepare the data into a form acceptable in the LSTM. (3) Train and validate the 
LSTM autoencoder using healthy data only and calculate the MSE and other 
error metrics. (4) Predict the samples that contain fault and healthy readings. 
(5) Calculate signal difference between the original samples and the predicted 
samples, using the regular difference and the Pearson’s correlation one, to 
establish accuracy comparisons. (6) Find the best threshold of sequence 
difference to ensure the best trade-off between precision, recall and f1-score. (7) 
Make component fault detection decisions using the trained, validated LSTM 
autoencoding model, and their calculated sequence difference compared to the 
computed threshold.  

For training the designed model, 1438 samples of the eleven sensors’ reading 
are used to train and validate the model. The data should be normalized 
between zero and one, as well as converted to a three-dimensional tensor 
format (samples, time points for LSTM to remember, number of features) 
before applying to the LSTM model. The LSTM model designed for component 
FDD detection is an autoencoder of a sequential hundred hidden LSTM 
neurons using the activation function ReLU, then a fully connected dense layer 
of size equal to the number of sensors or features is added. The dense layer 
contributes to improving the accuracy of the LSTM model, as well as making 
sure to the LSTM model generates outcomes equal in size with the designated 
input signal. Finally, the optimizer applied for the LSTM model is Adam. The 
training parameters of the LSTM autoencoder are epochs= 100 and batch size= 
30.   
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After training and validating the designed model over a hundred epochs, the 
MSE error of the last epoch is 0.00057 and the MAE is equal to 0.0096. Both error 
metrics are exceedingly small, which is a high indication of the validity and 
accuracy of the created model in reconstructing healthy input sequences. 
 
To select the optimal threshold corresponding to the allowed sequence 
difference between the original sequence and the reconstructed one resulted 
from the LSTM autoencoder. 4800 samples of size eleven are predicted using 
the autoencoder, to reconstruct 4800 healthy versions of the prediction samples. 
The signal difference using between each of the corresponding sequences in the 
original and reconstructed sequences are computed using (1) the traditional 
signal subtraction to find the signal difference as a vector, then find the 
magnitude of this vector. (2) The sequence difference using (1-Pearson’s 
autocorrelation) as a measurement created in this work and proposed to be 
more accurate measurement for fault detection than the traditional signal 
subtraction. 
To avoid repeating the explanation of each signal difference methods, we will 
jump right through the results and their comparisons. 
A pool of candidate threshold values is created, then the labels of the 4800 

prediction samples were obtained based on each threshold in the pool, if the 
value of the signal difference is higher than the threshold a fault is considered 
to be detected, thus label 1, else label 0. The precision, recall, and f1-score are 
computed to each threshold in the pool based on the generated labels and the 
original labels of the given prediction samples. 
When applying signal difference using the Pearson’s autocorrelation, the pool 
of chosen thresholds between the minimum and maximum observed values are 
shown in Table 13. Furthermore, for each chosen threshold the accuracy, 
precision, recall and f1-score are computed. Figure 30, illustrates the process of 
choosing the component fault detection threshold based on the precision, recall 
and f1-score trade-off shown in the table below. As clearly shown in Figure 30, 
the selected threshold is the intersection between the three curves, which is 
approximately equal 0.0007 and the accuracy observed for this threshold value 
is 0.71.    

Table 13 The Thresholds of Pearson's Correlation Difference and Their Corresponding Fault 
Detection Accuracy, Precision, Recall and F1-Score [78]. 

THRESHOLD 0.0001 0.0003 0.0005 0.0007 0.0009 0.001 0.003 0.005 

PRECISION 0.63 0.73 0.77 0.78 0.79 0.81 0.95 0.93 

RECALL 1 0.79 0.74 0.74 0.72 0.68 0.25 0.14 

F1-SCORE 0.77 0.76 0.75 0.76 0.75 0.74 0.39 0.24 

ACCURACY 0.63 0.69 0.7 0.71 0.7 0.69 0.52 0.46 
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Figure 30 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Pearson's 
Correlation Difference [78]. 

On the other hand, Table 14 and Figure 31 shows the pool of threshold and their 
metrics when using the traditional subtraction as signal difference method is 
shown. 

Table 14 The Thresholds of Subtraction Difference and Their Corresponding Fault Detection 
Accuracy, Precision, Recall and F1-Score [78]. 

 

The intersection between the three curves in Figure 31, shows that the optimal 
threshold for component fault detection using the sequence subtraction is 
approximately 0.03, with the fault detection accuracy of 0.69. The optimal 
accuracy using signal subtraction of 0.69 is less than the measured one using 
the optimal threshold computed by Pearson’s correlation of 0.71. 
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As a result, when comparing the accuracy of the optimal thresholds selected 
using two different signal deviation measurements, which are the 
autocorrelation complement and the traditional subtraction. It is clearly shown 
that the proposed method using Pearson’s correlation guarantees higher 
component and sensor faults detection accuracies, comparing to its commonly 
used traditional subtraction counterpart, based on the measured comparisons 
in experiment one and two. 

 

Figure 31 Precision, Recall and F1-Score Trade-Off for Threshold Selection Using Signal 
Subtraction Difference [78]. 

C. Component Fault Diagnosis: Classification Schema 

In this section, the feature engineering methods compared are FI, PCA and 
RkSE. The time-domain extracted features applied for multi-variate time series 
sequences without the application of sliding windows, are expected to have 
lower accuracy values regardless the ML or DL classifier used. Hence, it does 
not make sense to compute the mean, standard deviation, and variance to a 
sample of readings extracted from sensors of different nature. However, the 
time-domain features were extracted and applied to all the classifiers anyways, 
to prove the point mentioned earlier. 

Based on the feature engineering thorough analysis in chapter 5, the optimal 
number for each feature engineering method is computed. The overall number 
of features in each sample is eleven, corresponding to each sensor in the 
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hydraulic test rig dataset explained in chapter 2. The optimal features for FI, 
PCA, time-domain features and RkSE are four, five, four and nine, respectively.  

The accuracies computed for all the ML and DL classifiers are results of 
dividing the fault data with component faults, into training and testing data, 
with percentages of 80% to 20% of the faulty data, respectively. Followed by 
applying 10-fold cross validation technique for each classifier separately. 

The parameters and optimizers for each ML method used in this section, are 
identical to the ones used in the sensor FDD experiment earlier in this chapter 
and shown in Table 11. Moreover, some minor changes in the CNN and LSTM 
classifiers’ design and parameters have been made comparing to the previous 
experiment.  

CNN design consists of only one 1D CNN layer of filter size 64, and kernel size 
of one. The layer is sequential which means the input layer is directly connected 
to the hidden layer(s) that is connected to the output layer. The activation 
function used is ReLU. Followed by the pooling layer that has pooling size of 
one and applies maximum pooling as the pooling function. Finally, a fully 
connected dense layer of size equivalent to the number of expected outputs, 
with SoftMax activation function is created to make the classification process 
for the extracted features during the convolutional and pooling layers. The 
CNN optimizer used is Adam, as a stochastic gradient descent approach to 
optimize the network. 

The LSTM classifier applied has only one LSTM batch with two hundred 
hidden neurons that are sequential in order and nature.  Followed by a fully 
connected dense layer of SoftMax activation function, and naturally Adam is 
the applied optimizer for the LSTM as well. The verbose, epochs and batch size 
parameters are applied by testing various values and their effect on the 
classification accuracy, and they are set to zero, 10 and 20, accordingly.   

The table below comprehend the component fault classification results when 
trained by faulty hydraulic test rig data, applying various ML and DL 
approaches using numerous feature engineering methods. 
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Table 15 Component Fault Diagnosis Using Various Feature Engineering and Classification 
Approaches [78]. 

METHOD 
NAME 

FI PCA RKSE 
TIME-DOMAIN 
FEATURES 

NO FEATURE 
SELECTION 

LR 0.9962 0.7300 0.7823 0.37599 0.6832 

LDA 0.7634 0.7490 0.7528 0.370521 0.7031 

KNN 0.9940 0.9229 0.9320 0.831458 0.8677 

CART 0.9932 0.9435 0.9912 0.928594 0.6849 

NB 0.9924 0.7510 0.7122 0.39526 0.9035 

SVM 0.9859 0.9337 0.9310 0.833281 0.8139 

RF 0.9930 0.9013 0.9910 0.871042 0.9042 

CNN 0.7343 0.8427 0.7343 0.3971 0.7385 

LSTM 0.7375 0.8770 0.7375 0.3981 0.73124 

MEAN 
ACCURACY 

0.910 0.850 0.840 0.600 0.781 

 

As shown in Table 15, feature selection approaches work better than extraction 
ones such as, PCA and time-domain features when dealing with traditional ML 
classifiers, to classify multi-variate time series datasets. On the one hand, FI is 
consistently showing highest accuracy results comparing to the rest of the 
feature engineering methods when dealing with traditional ML classifiers. 
Followed by RkSE, that is yet slightly lower accuracy than FI for traditional ML 
approaches, but it shows consistency in all ML classifiers. On the other hand, 
PCA has shown the highest accuracy when applying DL classification 
algorithms comparing to other feature selection approaches.  While FI and 
RkSE are neck to neck when it comes to the classification accuracy using the 
selected DL approaches. Finally, even though time-domain features were the 
most accurate ones when applied to sliding-windows for univariate 
classification as shown in experiment one. As spotted earlier in this experiment, 
when it comes to extracting time-domain features from multi-variate datasets 
without applying sliding windows, this feature extraction method is proven 
weaker than the rest of the approaches, when combined to regardless ML or 
DL classifiers.  

In another side of comparison, KNN, CART, RF and SVM showed great 
consistency in high accuracy results no matter what feature engineering 
method is applied, including time-domain features regardless its weakness. 
CNN and LSTM had lower accuracies comparing to the traditional ML 
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approaches mentioned earlier, and their accuracies drops radically when time-
domain features are applied. 

To conclude experiment two, it is important to know how to apply the trained 
models and saved parameters from experiment two at run-time, to make new 
real-time predictions. The input vector for prediction should have one readings 
of each sensor of the eleven sensors used for the training process during the 
offline or training phase. (1) fault detection: fault detection for new samples can 
be done by; feeding the new sample into the trained and validated LSTM 
autoencoder model to reconstruct the healthy form of the sequence. Then the 
reconstructed sequence and the original one is compared by calculating the 
signal difference using Pearson’s autocorrelation. Finally, with the signal 
difference calculated is above or below the trained threshold, this will 
determine the existence of faults or not. (2) Fault diagnosis: in case a fault is 
being detecting using the detection step. The fault should be diagnosed by 
applying the necessary feature engineering approaches, then feeding the 
processed new sample to the highest accuracy ML or DL trained classifier, 
suitable to the features chosen. In our case, based on the results shown in Table 
15, it is more accurate to use RF a combined with FI to guarantee better accuracy 
and complexity trade-off. 
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7. Chapter 6: A Hybrid Approach: Dynamic 
Diagnostic Rules for Hydraulic Systems in 
Industry 4.0 Generated by Online 
Hyperparameter Tuned Random Forest 

Please note that parts of this chapter have been published under our own article 
in [155], and all copy rights and other rights are reserved to the MDPI publisher. 

1. Chapter Overview 

In this chapter, a hybrid component FDD approach for a hydraulic system 
extracted from a hydraulic test rig is established and analysed, to provide a 
hybrid schema that combines the advantages and eliminates the drawbacks of 
both model-based and data-driven methods of diagnosis. Moreover, it shines 
light on a new utilization of RF together with model-based diagnosis, beyond 
its ordinary data-driven application. RF is trained and hyperparameter tuned 
using three-fold cross validation over a random grid of parameters using 
random search, to finally generate diagnostic graphs as the dynamic, data-
driven part of this system. This is followed by translating those graphs into 
model-based rules in the form of if-else statements, SQL queries or semantic 
queries such as SPARQL depending on the type of the model-based system 
available, in order to feed the dynamic rules into a structured model essential 
for further diagnosis. The RF hyperparameters are consistently updated online 
using the newly generated sensor data to maintain the dynamicity and 
accuracy of the generated graphs and rules thereafter. The architecture of the 
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proposed method is demonstrated in a comprehensive manner, and the 
dynamic rules extraction phase is applied using a case study on condition 
monitoring of a hydraulic test rig using time-series multivariate sensor 
readings. Furthermore, the proposed method contributes to providing a way 
of dynamizing already existing model-based FDD systems containing fixed 
rules, by automating the rules and replacing them with the dynamic, RF 
generated ones. This work is an optimization of the model-based FDD 
approach using semantic ontologies described in [11]. In order to offer a hybrid-
approach that is dynamic, and less complex than the one relying on model-
based FDD for component faults in industrial systems. 

2. System Model Overview 

The proposed system scenario in Figure 32 represents a possible method to 
merge RF as a data-driven approach for industrial FDD and model-based FDD 
approaches into a final hybrid approach, which possesses the powerful features 
of both approaches. This technique eliminates the main drawbacks of each 
approach individually such as, the lack of dynamicity and response to sudden 
occurrences in case of traditional model-based FDD. As well as, providing, 
dynamic diagnostic rules that contribute massively to reducing the diagnostic 
time and computational needed resources, comparing to their online data-
driven counterparts. The figure below shows the two main diagnosis phases 
used in this research; data-driven and model-based, and how these two 
methods are combined into a new improved approach. 

The following is a comprehensive explanation of each phase:  

A. Data-Driven Phase 

This phase consists of multiple internal steps essential to learn the best possible 
dynamic diagnostic rules using random forest algorithm. Below, each step is 
discussed in an elaborate manner: 

• Multivariate Time-Series Dataset 

In this work, the dataset used is a multivariate, time-series dataset, of six 
pressure, four temperature, two volume sensors and one vibration sensor 
which all possess a constant cycle of 60 seconds, placed in a hydraulic test rig 
to monitor its condition over time.  For more details about this dataset and its 
previous applications, please refer the data collection and generation section, 
in this chapter.  
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Figure 32  Hybrid-based FDD System Overview [155]. 

• Feature Selection  

Complex sensor industrial systems often have hundreds or even thousands of 
sensors connected, simultaneously transmitting sensors’ reading data crucial 
to monitor and control those systems. Each of which is considered a feature for 

analysis and model training. Thus, creating diagnostic models that only include 
valuable features is a necessity.  

Implementing a model with less but more meaningful features have a 
significant impact on the overall system. First, the diagnostic model become 
simpler to analyse and interpret when fewer elements are included. Second, by 
eliminating some features of the dataset, the data would be less scattered hence 
less variant, which can lead to reducing overfitting. Finally, the main reason 
behind feature selection is generally to reduce the time and computational costs 
required to train the model. 
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In practice, RF algorithm can be applied to carry out feature selection as well. 
Simply because the features are implicitly ranked based on their impurity 
during the formation of each decision-tree creating the forest. In other words, 
when top-down traversing a tree in RF, the nodes toward the top happened to 
have the largest impurity decrease metric, also known as Gini Impurity (GI), 
comparing to the nodes at the bottom. Thus, by determining a particular 
impurity decrease threshold, it is possible to prune the tree below this tolerance, 
in order to establish a subset of the most fitting or important features. 

The data-driven FDD method implemented in this work is RF. In intention of 
reducing the computational cost as possible, RF is also used to perform feature 
selection using what is known as feature importance or permutation importance [52] 
and [73]. Since, GI calculations are already measured during the RF training 
process, and only a slightly bit of additional computations are required to 
complete the feature selection process. 

The most popular implementation of feature importance provided by RF, is the 
Python library Scikit-learn where a pre-defined function feature_importances_ 
is directly executed given the learned RF model. However, a team of data 
scientists at the University of San Francisco pointed out some bugs associated 
to this function and implemented an alternative to generate more accurate 
feature importance results in [156].   

• Hyper-Parameter Optimization 

The foremost goal of any machine learning algorithm is to minimize the 
expected loss as possible. To achieve this, it is consequential to deploy some 
optimization equations to select the optimal values for some, or all the 
hyperparameters of the machine learning algorithm of focus. 

RF algorithm has plenty of hyperparameters. On one hand, some are 
implemented on the overall forest level such as, the number of subjects 
randomly drawn from the dataset to form each tree, the choice of with or 
without replacement regarding the samples selection and most importantly is 
the number of trees in the RF. On the other hand, some hyperparameters are 
on a tree level, which control the shape of each tree in RF. i.e., the number of 
features drawn for each split, the selection of splitting rules, the depth of each 
tree and many others. These parameters are typically selected by the user. 
Consequently, creating a method to efficiently select these hyperparameters 
can influence the performance versus the cost of RF significantly. In addition, 
the recent research done in [157] emphasizes the significance of 
hyperparameter optimization specifically for RF parameters, as well as 
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providing deep comparisons between numerous tuning and optimization 
mechanisms and software. 

One of the key tuning strategies for RF, is using searching algorithms to look 
for optimal parameters in a pool or grid of selected ones. Search techniques 
differ in their way of pool or grid creation, based on the mechanism applied to 
choose the successful candidates forming the bag of options. Some searching 
strategies use all the possibilities available as candidates to be exhaustively 
investigated, one by one to select the optimal choice, as in grid search algorithm. 
However, in random search, the bag of candidates are drawn randomly from 
the overall existing possibilities, which is not only a precious asset for reducing 
the search complexity, but also studies have proved that random search 
produces better accuracy scores for parameters optimization comparing to grid 
search [158].  

Random search refers to a group of searching algorithms that rely on 
randomness or pseudo-random generators as the core of their function. This 
method is also known as a Monte Carlo, a stochastic or metaheuristic 
algorithms. Random search is beneficial for various global optimization 
problems, structured or ill-structured over discrete or continuous variables 
[159].  Below is the algorithm describing the flow-work of a typical random 
search algorithm. 

Algorithm Random Search Algorithm 

Let 𝑅𝐹 is the cost function to be optimized or minimized.  𝐶 is a candidate 
solution in the search-space 𝑅𝑛.  
Select termination condition 𝑇𝐶. i.e., specific fitness measure achieved, or 
max number of iterations reached, and so on.  
 
Initialize C.  𝐶 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑅𝑛   
𝐹𝑜𝑟 𝑇𝐶 : 
Randomly choose another position 𝐶𝑛𝑒𝑤 from the radius surrounding 𝐶 (the 
radius of the hypersphere surrounding C) 
𝑖𝑓 𝑅𝐹(𝐶𝑛𝑒𝑤) < 𝑅𝐹(𝐶) 𝑡ℎ𝑒𝑛 
𝐶 =  𝐶𝑛𝑒𝑤  
  

In practice, Scikit-learn library for Python machine learning provides a method; 
RandomizedSearchCV which can be provoked by creating a range for each 
hyperparameters subject of optimization. By calling RandomizedSearchCV 
method over the predefined range, random search is performed to randomly 
select a candidate grid of possibilities within the range, then applying K-fold 
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cross validation technique over the created grid. For additional examples about 
this method, refer to [160].  

B. Model-based Phase 

This phase represents a clear model of the system, whether it is an actual 
physical model, a simulation, a knowledgebase semantically connecting the 
system component together, or a relational database.  Based on the system 

model nature, the extracted nested, conditional rules from the RF are 
transmitted to a suitable form. i.e., in knowledge-based systems such as 
ontologies, the rules are converted into SPARQL [161] semantic queries, a 
regular SQL queries in case the system model is represented by a relational 
database, or in a simpler fashion use the extracted rules as a small conditional 
code, which runs every diagnostic window to perform the diagnosis. This 
phase is crucial to minimize the online diagnostic time and computational 
power needed, comparing to provoking the testing RF algorithm over and over 
for each sliding window. 

C. Dynamic Rules Update Phase 

In this phase, the new time-series data generated by the system for a certain 
number of sliding windows, is stored and used to update the originally created 
RF, by performing the hyperparameter tuning again to find out if any alteration 
of the RF parameters could reduce the size of the overall RF and increase the 
accuracy at the same time. The new updates selection or rejection decision is 
highly dependent on the accuracy of the newly tuned RF. 

3. Experimental Results 

In this experiment, RF is used following the steps in the data-driven flowchart 
in Figure 32, to generate dynamic diagnostic rules to diagnose and monitor the 
health of a hydraulic system tested by a hydraulic test rig. Provided in the 
dataset, each component condition ranges between full efficiency, reduced 
efficiency and close to total failure. In this experiment, for the sake of simplicity, 

the healthy state is represented by the full efficient cycles, and the failures are 
represented by the cycles where the component is close to failure, while the 
partial failure state is being excluded. Based on the previous fault description, 
there are four types of total failure in four different components to monitor; 
cooler total failure state, valve close to total failure, internal pump has a severe 
leakage and hydraulic accumulator close to total failure. Table 16 explains the 
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definition of each fault chosen for this experiment and some example cycles 
that contains each fault. 

Table 16 Hydraulic Test Rig Chosen Faults and Their Full Description [155].. 

Status Status Description Example Cycle no. 

Healthy 
All components are healthy and in 
full efficiency mode. 

1788, 1789,1790 

Cooler Fault 
Cooler has a total failure, and the 
rest of the components are fully 
efficient. 

1,2,3 

Valve Fault 
Valve close to total failure, and the 
rest of the components are fully 
efficient. 

1759, 1760, 1761 

Pump Fault 
Internal pump has severe leakage, 
and the rest of the components are 
fully efficient. 

1675, 1706, 1707 

Accumulator Fault 
Hydraulic Accumulator close to 
total failure, and the rest of the 
components are fully efficient. 

1465, 1466, 1467 

 

The hydraulic system described in this experiment contains eleven sensor 
readings of three types of sensors located in different components of the 
hydraulic test rig. Six Pressure sensors labelled as PS1, PS2 up to PS6, four 
temperature sensors TS1-TS4, and finally one vibrational sensor labelled as VS1. 

The readings of all the eleven sensors from various cycles containing the five 
different statuses shown in the table above is collected in one labelled dataset 
of eleven features necessary to perform RF training and analysis. 

As mentioned earlier, the selection of RF as the classification method in this 
work is done after carefully comparing the results of RF with respect to other 
famous classifiers. The supervised machine learning methods shown above 
along with RF are used to perform a multi-class classification task, to classify 
the hydraulic test rig faults described in Table 2. The following table, Table 3, 
shows the classification results after performing multi-class classification using 
different classifiers. It is demonstrated clearly that CART and RF have elevated 
accuracy compared to the rest of the approaches. However, RF is an 
optimization of CART, which overcomes its tendency to form overfitted 
relationships with the training dataset. 
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Table 17 RF Accuracy Results Comparison to Some Other Classifiers for Hydraulic Test Rig 

Fault Classification [155].. 

Method LR LDA KNN CART NB SVM RF 

Accuracy 0.780469 0.778646 0.932031 0.989844 0.704167 0.923177 0.985198 

 

Non-zero feature importance method is used to neglect the features with less 
impact of the learning process, by concentrating only on the features that 
contribute more to the model accuracy. The table below shows the importance 
of each sensor to the RF model calculated using Eq.  17. 

Table 18 shows the calculated importance of each one of the 11 sensors. There 
are a variety of options by which these importance values are analysed and 
evaluated to achieve feature selection. One can pick the highest importance 
feature alone to represent all the features, or the highest three, highest six or 
just the non-zero ones to represent the whole pack. However, the most 
convincing approach is testing all the possibilities and making a logical 
accuracy versus complexity trade off. For each selected feature(s) scenario, the 
RF accuracies and the time complexity given 𝑂(𝑇 log𝑛) equation are calculated, 
where 𝑇 is the number of trees in the RF and 𝑛 is the size of the input data used 
for training, assuming that the number of trees, 𝑇, is constant for all the feature 
trials. As such, the time complexity is a factor of input data size, represented by 
the number of features included without sacrificing much or any of the model 
accuracy. 

Table 18 Feature Importance Calculated for Each Sensor Feature [155]. 

Sensor label PS1 PS2 PS3 PS4 PS5 PS6 TS1 TS2 TS3 TS4 VS1 

Importance 
X100 (%) 

0 0 0 29.689 16.036 14.118 6.446 8.977 8.920 9.509 2.875 

 

In Table 19, four different RF model training experiments are conducted to find 
out the best number of features required to train an RF on a hundred decision 
tree. In the first trial, the most important feature PS4 is used alone to train the 
RF model. The second trial used the top three important features PS4, PS5 and 
PS6. The third trial applied the highest six features. Finally, only the non-zero 
features are selected to train the RF model. For all the above four experiments, 
the random forest has fixed hyperparameters which were randomly chosen as 



 

123 
 

one hundred trees and the maximum depth of five. Furthermore, 10-fold cross 
validation technique is used to compute each trial’s accuracy. 

Table 19 RF Accuracies Using Different Features Based on Their Importance [155]. 

Trial Description No. features RF Accuracy 

No feature selection 11 0.985 

Highest Feature 1 0.707 

Highest Three 3 0.977 

Highest Six 6 0.986 

Non-zero 
importance 

8 0.981 

 

For this experiment, the highest six features are used for the training process 
since these features provided the best accuracy among all trials and shown 
lower time and space accuracy comparing to the training using eleven and 
eight features, respectively. The following figure shows how the time 
complexity 𝑂(𝑇 log𝑛)  and space complexity 𝑂(𝑛)   for the RF are directly 
proportional to the number of features used. It is crucial to emphasize that the 

amount of accuracy sacrificed, and the added complexity tolerances are totally 
dependent on the system used and one’s preferences. i.e., some other 
researchers would use the highest three features with 0.977 accuracy, if ones 
are willing to lose more accuracy in expense of the dramatic drop in both time 
and space complexities. 

 

Figure 33 RF Accuracy, Time, and Space Complexities in Respect of No. of Features [155]. 
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The next step is tuning the hyperparameters of the RF applied on the 
dimensionally reduced dataset of the selected six features: PS4, PS5, PS6, TS2, 
TS3 and TS4.  The hyperparameters subject of tuning in this experiment are the 
number of trees in the RF, the maximum depth of the tree, minimum number 
of samples required to split a node and minimum number of samples required 
to form a leaf node. As the purpose behind RF creation in this research is to 
establish a set of base rules for fault diagnosis, the main hyperparameter of 
focus is the number of trees to ensure lessening the complexity as possible. 

A random grid of hyperparameters is created by applying random search over 
a pre-defined range for each parameter separately. i.e., the number of trees is 
pre-defined to range between one and one thousand, and only a hundred 
possibility is selected from the range to form the random grid for this 
hyperparameter.  Followed by RF training using one of the randomly selected 
pair of features at a time. The selection is validated using 3-fold cross validation 
to calculate the accuracy of the RF model over a particular set of 
hyperparameters. A hundred set of randomly selected parameters are used to 
create the grid, which means 300 RF model training has been successfully 
executed considering 3-fold cross validation over the hundred set of 
possibilities in the grid.  Finally, the set of hyperparameters with the highest 
accuracy when applying 3-fold cross validation is the one selected to generate 
the diagnostic rules. 

The RF model trained after applying feature selection with randomly chosen 

parameters yielded an accuracy of 0.9865  using a hundred decision trees 
forming the RF with maximum depth of five. However, the best 
hyperparameter tuned using cross validation over random search grid 
improved the accuracy with 0.32 to reach 0.9865 . As well as, using only 49 
trees in total instead of one hundred over the same depth, which has 
dramatically decreased the complexity and size of the generated RF rules while 
increasing the accuracy and speed of the diagnosis.  

The best hyperparameters selected from the grid has 49 number of estimators, 
minimum sample split of two, minimum leaf samples of one and maximum 
depth of 83. It is worth to be mentioned that the accuracy of the RF using all the 
best hyperparameters increased the accuracy to 0.99, but this slight rise in the 
accuracy is not worth it, especially when it is compared to the massive increase 
in the time and size of each tree in the RF, due to the large increase in the 
maximum depth. Figure 36 shows the one of the decision trees in the RF after 
feature selection and hyperparameter tuning. 
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Each tree in the RF can be translated into a set of nested if-else statements of 
rules. These rules can be executed in a distributed fashion when a proper 
scheduler is applied. Moreover, the formed dynamic, distributed rules from the 
RF can be fed inside various system models to generate a hybrid approach out 
of the data-driven and the model-based ones. The dynamic rules extracted from 
the RF can be used as they are, converted to SQL queries if the model is a 
relational database or a SPARQL queries if the system model is represented by 
a semantic knowledgebase such as ontologies. The diagnostic rules can be 
extracted from the RF dynamically, using a few lines of code in Python 
language. For the sake of simplicity, Figure 35 shows  the tree in Figure 36 
pruned in a way that only the positive part of the condition after the root node 
is remaining, connected to a series of nested if statements showing how this 
part of the tree is translated into clear dynamic rules. The work in [11] provided 
a graph-based FDD system for industrial systems using a model-based 
approach, based on creating a knowledge-base of the system under diagnosis, 
such as ontologies. Followed by manually feeding a set of static diagnostic rules 
created by the system expert, into the ontology, in a way that forms a causation 
relationship between the system sensors and the faults they lead to. In this work, 
we propose creating dynamic rules using RF, extracting these rules, and 

feeding them into the ontology instead of the expert rules that are static, 
unreliable, and unverifiable. Furthermore, the extracted diagnostic rules using 
RF can be applied in a variety of forms to fit the model expressing the system. 
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  if PS6 <= 9.682436466217041: 

    if PS5 <= 9.378981590270996: 

      if TS3 <= 40.929338455200195: 

        if PS6 <= 5.359611511230469: 

          if TS4 <= 32.44318962097168: 

            return [[4. 0. 0. 0. 0.]] 

          else:  # if TS4 > 32.44318962097168 

            return [[0. 1. 0. 0. 0.]] 

        else:  # if PS6 > 5.359611511230469 

          if TS4 <= 30.676508903503418: 

return [[0. 2. 0. 0. 1.]] 

          else:  # if TS4 > 30.676508903503418 

            return [[0. 0. 2. 0. 0.]] 

      else:  # if TS3 > 40.929338455200195 

        return [[0.   0.   0.   0. 495.]] 

    else:  # if PS5 > 9.378981590270996 

      if PS4 <= 0.9992818832397461: 

        return [[0. 638.   0.   0.   0.]] 

      else:  # if PS4 > 0.9992818832397461 

        if PS4 <= 5.781721115112305: 

          return [[0. 0. 0. 0. 2.]] 

        else:  # if PS4 > 5.781721115112305 

          if TS3 <= 6.558143854141235: 

            return [[0. 0. 2. 1. 0.]] 

          else:  # if TS3 > 6.558143854141235 

            return [[17.  0.  1.  3.  0.]] 

Figure 35 Diagnostic Rules Extraction from Parts of a Tree in the RF [155]. 
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Figure 37 showcases the extracted rules from the optimized, hyperparameter 
tuned RF, and how these rules are transformed to various forms and types to 
match the nature of the system model. As mentioned before in this chapter, the 
diagnostic rules can be translated into SQL queries in case a relational database 
is the system model, or SPARQL queries if a semantic knowledge-base, such as 
ontologies [12] are used to represent the system. The rules extracted from each 
tree may be scheduled separately, or all together with the trees forming the RF.  

 

Figure 37 A Hybrid RF Approach Between Data-driven and Model-based Approaches [155]. 
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8. Chapter 7: Conclusions and Future Work 

This work demonstrated a full research and experimental analysis regarding 
FDD in hydraulic systems extracted from a hydraulic test rig. We made sure to 
tackle all the steps in data-driven FDD methods starting from feature 

engineering to establishing innovative intelligent models. 

The contributions of this dissertation are summarized by the three main aspects, 
in which each one of them contributes to solving many major research 
problems and challenges connected to FDD in hydraulic systems. Below the 
conclusion and future adaptations for each contribution provided in this thesis. 

A. RkSE Conclusions  

In this work Recursive k-means Silhouette Elimination (RkSE) is proposed, 
tested, and validated. RkSE is a new unsupervised feature selection algorithm 
with a novel idea of applying k-means clustering and silhouette measure 
beyond its ordinary backward or forward selection style, but as a recursive 
acquisition approach with the application of a user-defined threshold, that 
plays a major role in the uniqueness of this approach. 
RkSE can be applied for various applications. However, in this work RkSE is 
applied to reduce dimensionality in univariate and multivariate sensor time-
series datasets. For future work, RkSE will be applied on numerous datasets of 
different applications and fields such as, genetics, microarrays, text, images and 
so on. Furthermore, this work focuses on the performance of RkSE on 
univariate and multi-variate time-series datasets. i.e., sensor data.  
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RkSE is evaluated on a real measured data of a hydraulic test rig and validated 
to solve a classical fault classification problem in two different experiments: (1) 
RkSE is used in a univariate time-series dataset, to classify sensor faults in a 
sliding window format. When RkSE is applied on sliding windows, its function 
indicates the ability to select the best quality time points to represent the whole 
window. In other words, RkSE can successfully be used as a signal compression 
method when, applied to time-series data in a window format. (2) In a multi-
variate time-series data without the application of sliding windows, RkSE is 
applied to select the best modality of features to represent the whole dataset.  
In addition, this work structures a comprehensive review survey of feature 
selection algorithms based on k-means clustering, existing in the literature. 
Which yielded the creation of a new taxonomy for k-means clustering feature 
selection methods.  
The results of the two extensive experiments proves the uniqueness and 
efficiency of RkSE method for time-series datasets in a univariate or multi-
variate format. 
To sum up, RkSE represents an iterative, unsupervised, silhouette-based, k-
means clustering feature selection algorithm. Although, RkSE has plenty of 
advantaged and contributions that exceed the methods RkSE in related-work 

section, it also has limitations that we hope to eliminate in the future. The 
following points show the strengths and limitations of RkSE method for feature 
selection based on its functionality and workflow. 
RkSE advantages are the following: 

• Can Create a model representation of feature dependencies 
(Iterative algorithm advantage). 
• Feature selection and clustering are made concurrently in one 
single operation. (Iterative Advantage) 
• Unsupervised Feature Selection method, no labels required. 
• Simple, robust, and low computational and time costs: Due to the 
exclusive application of k-means and silhouette criteria, which provides 
simplicity and reduce time and computational complexity 
• User-interactive: allows the user to choose the value of the 
threshold which give the freedom to select the best number of features 
which provide the option to loosen the accuracy, or the complexity 
constrains.  
• Introducing a new concept of using k-means and silhouette 
measure in a recursive manner, instead of the common forward and 
backward approaches. 

 
The limitations of RkSE are as follows: 

• Prone to overfitting. (iterative algorithms disadvantage) 
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• The choice of the threshold if not chosen probably can drastically 
affect the quality of the selection, which cannot be guaranteed since σ is 
user selected. 
• The accuracy is a little compromised because the algorithm 
focuses on the relationship between the feature and the cluster, rather 
than the relationships between features. 

B. Hydraulic Systems FDD Model: A Joint Approach Between a LSTM 
Autoencoder Detector and Classification Diagnosis: 

In this section a two-staged FDD approach is proposed. Where the detection 
and diagnosis are separated into two stages to guarantee detecting rare 
occurrences and events. The detection process is represented by a LSTM 
autoencoder that learns only from healthy observations, in an attempt to 

reconstruct the healthy version of the given sequences, sensor window 
readings or multi-sensors readings. Followed by the comparison between the 
given sequences and their healthy reconstructed version, to measure the 
deviation from the healthy state and the given sequences, which is vital to 
detect the existence of faults and malfunctions when this deviation exceeds a 
certain, learned threshold.  The fault diagnosis is represented by a classification 
process that can be a ML or DL algorithm, which is trained using only the faulty 
observations captured by the detection stage using LSTM autoencoder. 
The proposed approach is beyond the state-of-the-art methods by the following: 
 
• The proposed method is applied into two entirely different experiments, 
with different data pre-processing, acquisition and structuring, different DL 
algorithmic designs, and above all to detect two different fault types: sensor 
faults and component faults.  The methods proposed in the literature only 
focuses on one fault type, either component faults or sensor faults. However, it 
is rarely seen that any work shows comprehension in detecting or diagnosing 
different fault types at once. 
  
• In the detection phase using LSTM autoencoder, some changes are made 
from the existing related work. The most important addition is using the 
sequence difference calculated by subtracting the Pearson’s autocorrelation 
from one. The detection results using the complement of Pearson’s 
autocorrelation comparing to the traditional signal difference measure applied 
in the state-of-the-art research is proved experimentally. In experiment one to 
detect sensor faults, the detection accuracy using signal difference is observed 
as 62%, comparing to the detection accuracy when applying our proposed 
measurement of signal difference, the detection accuracy is observed as 71%.  
Moreover, in experiment two for component fault detection, the accuracies 
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observed using traditional signal difference, and the proposed one are 69% and 
71%, respectively. The results of the detection phase in the two conducted 
experiments prove the superiority of the proposed signal difference 
measurement comparing to the traditional subtraction of signals to provide 
signal difference. 
 
• Investigating various feature engineering approaches and pairing them 
with numerous ML and DL methods, to determine the most suitable feature 
engineering method to classifiers of different functionality and design. 
Furthermore, this pairing gives the opportunity to see how each classifier reacts 
with different feature engineering methods of different procedure, which 
would help future work researchers to select the best match pair or avoid the 
worst pair for both data structures, windows univariate or no window multi-
variate. For example, in experiment one when dealing with sensor faults in a 
sliding window data structure, it was noticeable that the chosen time-domain 
features shown the highest diagnosis accuracy of almost all the classifiers. i.e., 
LDA, KNN, CART, RF and LSTM. Although the mean accuracy of all classifiers 
using PCA was computed the highest of 82%, which is justified by the 
consistency PCA shows with all the classifiers regardless their functionality. 

However, time-domain extracted features show extremely low diagnosis 
accuracies when applied to some classifiers such as LR and NB with the 
detection accuracies of only 24.25% and 48.21%, respectively. Which explains 
why the time-domain extracted features is not the highest mean accuracy even 
though it provides the highest accuracy to the majority of the supervised 
methods. On the other hand, in experiment two when component faults were 
classified using multi-variate sensor’s readings without the application of 
sliding windows, FI showed the highest diagnosis accuracy for all the ML 
classifiers, and PCA shows the highest diagnosis accuracy when combined to 
DL such as, CNN and LSTM.  
 

• In the related work, the diagnosis phase is represented by some chosen 
type of classifiers combined with a chosen set of features, without any analysis 
or investigation in respect of other classifiers or features. In this work, after 
careful experimental observations and calculations, the appropriate features 
and their suitable classifier is used to represent the diagnosis phase for our 
algorithm. In experiment one (univariate sliding window structure) the 
diagnosis phase is chosen using the time-domain extracted features combined 
with either CART or LSTM classifiers with the diagnosis accuracies of 99.51% 
and 96.84%. However, in experiment two, when dealing with multi-variate 
features without the application of sliding windows, FI combined with almost 
all ML classifiers showed extremely high accuracies exceeding 98%. Thus, RF 
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combined with FI is the best combo used to perform multi-variate diagnosis, 
especially when FI can be done implicitly during the RF training stage based 
on FI nature, which can help in reducing time and computational complexities.  

In conclusion, the proposed approach is used for the first time in the field of 
industry 4.0 especially when applied to hydraulic rigs. Although, the proposed 
work in this chapter has multiple changes and valuable improvements from 
the state-of-the art, there is always a place for improvements and further 
expansions. For future work, it can be a good challenge to improve experiment 
one, by designing a LSTM autoencoder that can learn multiple sequences of 
multiple windows that belongs to different sensors at a time applying one 
LSTM autoencoding model. For example, in experiment one only one sensor at 
a time (PS1) is used in a sliding window format to train the LSTM autoencoder 
to predict/reconstruct the healthy window of the given PS1 window of size 60. 
In the current approach we must train the LSTM autoencoder for each sensor 
separately to learn how to reconstruct the healthy window of each. However, 
A multi-variate approach, multi-sequences, multi-sensor deep neural network 
design would be a sophisticated approach in the future, where maybe a number 
of LSTM autoencoder batches can be connected together sequentially or in 
parallel so each can train on different sensor window sequences.  Furthermore, 
the feature engineering methods applied to the diagnosis phase are all in time-
domain. Investigating frequency-domain or the combination of time and 
frequency domains, such as applying Wavelet Coefficient Packer 
Decomposition (WPD) would add different perspective for the future of FDD 
in mechanical equipment’s.   

C. A Hybrid Approach to Generate Dynamic Diagnostic Rules Based on RF: 

 In this work, the architecture of a hybrid FDD method, between model-based 
and data-driven approaches to achieve FDD for component faults, is 
introduced. In this hybrid method, the data-driven part is represented by an 
optimized and hyperparameter tuned RF, in order to generate dynamic, 
diagnostic graphs that are later converted into a set of diagnostic rules and fed 
into a pre-defined system diagnostic model, acting as the model-based part of 
the proposed FDD system. The proposed approach provides a dynamic 
solution, unlike other model-based FDD approaches. Additionally, there is the 
option to apply distributed computing to the diagnostic graphs and extracted 
rules, which can reduce time and resource complexity compared to traditional 
data-driven approaches. Moreover, the proposed method introduces a new 
methodology to approach RF in a model-based fashion, beyond its exclusive, 
ordinary application as a data-driven approach. 
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The data-driven part of this system is experimentally applied and analyzed 
using multivariate time-series sensor data collected from an actual hydraulic 
test rig. The applied data-driven part includes the RF creation, RF feature 
selection using non-zero feature importance, and RF pruning and 
hyperparameter tuning using three-fold cross validation on a grid of variables, 
selected using random search. Furthermore, the diagnostic rules in the form of 
nested if-else statements are practically extracted from RF as the diagnostic 
graph of this approach. The extracted rules can be converted into various forms 
and shapes depending on the nature of the system model that is the subject of 
integration. 

This work has successfully provided an extension and development of the 
model-based FDD approach introduced in [11], where the previous system is 
domain-specific, and can only be applied to the model described in the 
ontology. It also contains rigid knowledge preserved in the ontology as a set of 
semantic rules, but later translated into static, domain-specific, application-
specific set of diagnostic rules with constrained reliability to the system’s expert. 
On the other hand, our proposed method provided dynamic and reliable 
diagnostic rules, with the combined advantages of both the data-driven and 
model-based approaches.  

The proposed FDD system offers a vast number of advantages and new 
insights. However, there is always room for improvements. Thus, some 
additional work and further modifications of the proposed system can be 

applied in the future. In this work, the traditional RF algorithm is applied to 
serve as the dynamic rule generator in both the offline learning and the online 
update stage, using the newly arrived sensor reading. Instead, considering 
online RF methods in the first place, such as Mondrian forests [162] or online 
incremental RF (described in [163]), may reduce the training and update time. 
Moreover, in future work a full application of this approach will be introduced 
and examined in a practical study, where the extracted rules are converted into 
SPARQL queries to fit the ontology designed of the chosen system. 
Furthermore, a proper scheduler will be chosen to demonstrate the possibility 
of distributed computing using the extracted diagnostic rules at run-time. 
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9. Appendix A: Ontology and Ontology Design 

In order to enhance the system ability for detecting faults, isolating them, and 
deciding the most suitable recovery action during the shortest possible 
completion period at runtime. It is necessary to build a precise and appropriate 

knowledge-based model that can serve the diagnosis and the fixing tasks 
efficiently and accurately. In this section, the literature of ontologies is 
described and explained as an example of knowledge-based systems, which are 
used in this work as a part of the model-based, component fault detection and 
diagnosis section to extract static diagnostic graphs. 

Conceptualization is the foundation of any formally represented knowledge.  
conceptualization is needed to represent all the fundamental terms in a 
knowledge-base, including the objects, concepts and all the entities that are 
created to express an area of interest and all the connecting relationships 
between them [164]. 

Knowledge can be specified either implicitly or explicitly. In this study, 
ontologies are our knowledge-based form of interest. The term ontology itself 
is originally inherited from philosophy, where the ontology is a symbol of 
existence, the nature of being and reality, as well as the categories of beings and 
the connections between them. Historically, ontologies are categorized as a 
sub-major of metaphysics [165]. 

In the field of knowledge-based systems, ontologies formalize their concept 
from the studies in philosophy. What exists in our domain is exactly what will 
be included in the ontology. The set of entities that exist in our domain is called 
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the universe of discourse. Thus, we can define the ontology for a knowledge-
based system as a set of fundamental terms, which constructs the entities in the 
universe of discourse. e.g., classes, relations or other objects, and with natural 
languages, we can describe their names and the formal axioms and constraints 
between them. 

Ontology representations can be either simple with just a few classes, hierarchy 
and relations, or extremely complicated with nested hierarchies, classes or 
multi-connected relations. Sophisticated ontologies tend to be easier to 
understand and learn by non-expert individuals. The main drawback of large 
ontologies is the lack of computational cost efficiency, due to the time and 
complexity of both querying and reasoning for large systems that can be costly 
to compute especially with a very complex structure or large number of 
instances. Hence, the main concern in designing our automotive ontology was 
to keep it simple but detailed enough to guarantee an accurate presentation of 
all the modelled facts in the reality. Additionally, simplifying the model plays 
an important role in simplifying the description of the raw data such as sensors 
types, values and thresholds, as well as being able to keep periodical history 
records of all the sensors values, which would benefit the quality of the 
diagnosis and learning in the future. 

Ontology design is usually done as a collaborative task between a team of 
knowledge-engineers and domain experts, e.g. car technicians, IoT 
experts…etc. The main goal behind the ontology development process is to 

create a model that offers a common understanding between people of different 
areas of expertise and backgrounds [166]. 

In the last few decades, many studies about ontology development, design and 
methodologies have been proposed. The main steps of creating an ontology can 
be extracted from these studies as follows [167]: 

- Define the domain of interest:  

It is important to identify and define the domain that is needed to be modeled, 
the scope of this domain and the main purposes behind the creation of such 
domains. To ensure a better knowledge of the domain, it is advisable to answer 
some basic questions about the system. Such as: 

What will the domain of the ontology cover? 

What is the purpose of the ontology?  
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What type of questions are the ontology expected to answer?  

Who is the target user of the ontology?  

The answer to these questions might vary during the process of ontology 
design, but at least answering these questions would limit the scope of the 
ontology and direct it to a desired direction.  

• Search for existing ontologies of the same domain: 

Sometimes it is hard and time consuming to build an ontology from scratch, 
especially when the knowledge-based expert has no clue about the domain, or 
in case of the absence of field experts in the ontology development process. In 
this case, it is crucial to study existing ontologies of the same domain, to create 
a general idea about the domain of interest as well as the possibility to scale 
and adjust the existing ontologies to meet the desired goal ontology. 

 

• List keywords and important domain terms: 

It is very useful to write down all the terms related to the domain, in particular, 
the ones that answer the basic questions mentioned earlier.  

• Create classes and hierarchy:  

There are many approaches that describe the development of class hierarchy, 
we can limit them into three main approaches [168]:  a top-down, a bottom-up 
and a combination approach. Simply the main difference between these 
approaches is the direction of the development process, which is very clear as 
the approaches names indicate; top-down for example, indicates the design 
process that starts with creating the top or super-classes with the most general 
details till the most down subclasses with the most detailed information. 

• Define class properties and data properties:  

The structured hierarchy will not provide an enough level of details, so that 
adding class properties and data properties will provide additional sources of 
clarity to the ontology and it will help to answer the basic domain questions. 

• Define the facets or constraints connected to each class and property value 
if needed:  
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Many facets can be added regarding the value type, the allowed values and the 
number of allowed values that is what called ‘Cardinality’ and any other values 
that might benefit the description of the slot. 

• Define individuals:  

Define individuals for each class, subclass and all the components added, then 
connect these individuals with the defined relationships between them and 
describe their property/data values if needed.  
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10. Appendix B: Active Diagnosis and Repair 
Automotive (ADRA) Ontology 

The active diagnosis and repair automotive system (ADRA) is a computing 
system, which describes the collaboration between knowledge-based systems 
and embedded systems to achieve an active diagnosis and repair for 
automotive failures at runtime [169]. 

Table 20 shows the main signs and symptoms associated with sensors used in 

the described system. The sensors, symptoms, failures and recovery actions are 
stored within a database. The data was collected based on the fusion of 
expertise between automotive and knowledge-based experts. It contains the 
following main attributes: sensor type, sensed object attribute (the sensed object 
is a ‘car’), location of the sensor in the sensed object, possible symptoms 
associated with the sensor, the sensor’s current value, sensor threshold value, 
external conditions and the main failures and the recovery actions performed 
to fix the failures. Symptoms might lead to other symptoms and the succession 
of connected symptoms represents a graph. 

Table 20 Selected Sensors and their Corresponding Signs/Symptoms 

Sensors Symptoms/signs 

Oxygen Sensor 
“Check engine” light on, Bad gas 
mileage, Rough engine 

Crankshaft 
Position Sensor 

Issues starting the vehicle, “Check 
engine” light on 

Camshaft 
Position Sensor 

“Check engine” light on, Vehicle won’t 
start 
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Sensors Symptoms/signs 

Knock Sensor 
Loss fuel mileage, Trouble in 
acceleration. 

Throttle 
Position Sensor 

“Check engine” light on, Trouble in 
acceleration. 

Pressure Sensor 
Gas smell after starting the engine, 
Excessive fuel consumption, Trouble 
in acceleration.  

 

Figure 38  shows the overall ADRA system workflow. The detection process 
begins with collecting the values of the embedded diagnostic sensors in the 
vehicle each specified period of time. Then the values are temporarily stored in 
a database. Stored values can be used to serve a learning process which is 
planned to be developed and performed in a latter project stage to improve the 

diagnosis of new symptoms and failures. The sensors are embedded into 
different components of the vehicle, such as the engine, accelerating pedals, oil 
and water tanks and many more.  

The detection of prospective symptoms can be done by continuously 
monitoring and temporarily storing the instant values of these sensors and then 
continuously comparing them to the set threshold values at runtime. The 
threshold values are not the only conditions to complete the symptoms and 
failures. Other factors, as external, environmental factors, can include:  

• Weather conditions: weather conditions can include the 

presence or absence of rain, snow, wind and dust and many 
other weather-related conditions. 

• Season: incorporating the seasons might be necessary. Different 
seasons can trigger different changes which can lead to 
symptoms and failures, as well as some symptoms or failures 
may have a higher possibility to occur in some seasons 
comparing to others. So that, adding up the season attribute 
might help us to discover new relationships between the season 
and the symptoms and accidents appear in that season in 
particular. 

• Driving style: the driving style might affect the sensor’s reading 
and its’ average lifetime. For example, the driver drives 
continuously, or he makes many stops, what is the average speed 
he usually drives in, does he drive on rough roads? Many other 
driving styles can be added to the driving style attribute, which 
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might help in the learning process to answer unanswered 
questions and to find hidden, indirect relationships between 
symptoms, failures and each attribute.  

Vehicles are continuously in motion. As a result, the sensors reading might 
change dramatically within short intervals. Thus, it is essential to address time 
in the diagnostic knowledge management system. Integrating additionally 
time as a semantic connection between individuals in future implementations 
will increase the importance of attributes and properties for an efficient 
reasoning. 

 

Figure 38 Active Diagnosis and Repair Automotive System Workflow 

Vehicle failure diagnosis and repair is a complex decision-making process 
handled by mechanical and electrical technicians in order to detect failures 
based on observing signs and symptoms of the vehicle. Using the diagnostic 
ontology as the knowledge representation method to define specific symptoms 
for failures, can give additional support and facilitate the fault detection 

process for technicians. We developed an active diagnosis and repair 
automotive ontology using the open-source editor protégé [170].  

The ontology consists of six main classes the Sensors class is divided into four 
subclasses. Each subclass shows what type of information the sensor can 
measure, such as temperature, pressure, speed, level and others. The 
SensedObjects class contains the possible sensed objects the ontology can 
diagnose - cars, trains, bicycles…etc,. This class makes the ontology scalable to 
different systems supported by one ontology. Each sensed object is divided into 
sub-classes that represent the components or parts of this sensed object, which 
can contain a diagnostic sensor. The Symptoms class describes the main 
symptoms that can lead to failures. The Failures class is a class representing all 



 

159 
 

the possible failures in the sensed object. RecoveryActions represents the main 
recovery actions for the failures, addressed in the Failures class. Finally, the 
ExternalConditions class contains all the external factors that can play a hidden 
role in causing the symptoms. 

The main relations in the diagnostic and repair ontology are described below:  

• CanCause(ExternalConditions, Symptoms): this relation states that the 

ExternalCondition that can cause a certain Symptom. 

• CanLead( Sensors, Symptoms ): this relation connects the sensors class as 
the domain and the symptoms as the range, this relation connects the 
sensor(s) that can lead to a specific symptom(s). 

• CanLeadTo( Symptoms, Symptoms ): some symptoms can cause the 
occurrence of other symptoms, so this recursive relation is to connect 
some symptoms to other symptoms, in order to form a sequence of 
causing and leading symptoms which influence the occurrence of 
failures.  

• IsCause( Symptoms, Failures ): this relation states the symptoms that are 
responsible for specific failures. 

• IsLocatedIn( Sensors, SensedObjects ): IsLocatedIn relation connects the 

Sensors and the SensedObjects to show in which SensedObject and 
component of this object in particular this sensor is located in. 
Furthermore, this relation is helpful in case of using the same sensor type 
in different SensedObjects or different parts of the same sensed object. 

• IsRecovered( Failures, RecoveryActions ): this relation is about the Failures 
and their corresponding RecoveryActions. 

• Recover( RecoveryActions, Failures ): this relation is the inverse of the 
IsRecovered relation. 

     The diagnosis ontology is  scripted in the Web Ontology Language (OWL) 
[171] which guarantees a better storage, exchange and readability for the 
ontology. It is crucial to understand that the ontology is not a static dictionary 
of terms, but a semantic model of the domain and the diagnostic frame and will 
later on offer more dynamic features, using machine learning and text mining 
techniques as described earlier in this paper. 
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 Figure 39 represents the main concepts of the ontology along with the 
relationships between them, as well as the subclasses of each concept and their 
data properties. In favor of space, not the full spectrum of instances is shown. 

 

Figure 39 Active Diagnosis and Repair Automotive Ontology Structure [169]. 

Figure 40 shows the class hierarchy, the parent classes and the subclasses are 
inherited top-down. As addressed, the current version of the ontology is a 
starting point. The ontology is a core ontology that will be enhanced with 
additional dynamic solutions in future works. 
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Figure 40 Active Diagnosis and Repair Automotive Ontology Class Hierarchy [169]. 
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11. Appendix C: SenGen: A Two-Phase Dynamic 
Simulation and Toolbox for Sensor Datasets and 
Case-Study Generation in Mobile Wireless 
Sensor Networks (MWSN) 

In this section, a MWSN simulated model and toolbox “SenGen” is introduced. 
The toolbox is used to create a customized MWSN as an example of an IoT 
system, where the system architecture and the relationships between its 
components is used to create the entities and semantic rules of the IoT ontology. 

2.1 Why SenGen for Mobile Wireless Sensor Network (MWSN)? 

Mobile Wireless Sensor Network (MWSN) is a group of non-stationary or 
mobile transducers enabled with wireless communication channels, designated 
to sense the environment where they are placed, in order to accomplish some 
intended system goal(s). The sensor nodes gather the sensed information and 
transfer it to a centralized backend unit called “Sink” or “base stations”. The 
sensor nodes can measure different modalities, depending on the nature of the 
system’s application and purpose, like pressure, temperature, light, speed, 
humidity and so on. WSNs was first applied during the world war period to 
survey enemy movements in the battlefield. Nowadays, MWSNs are applied 
in a vast majority of different fields and applications, such as industrial 
monitoring, home surveillance, habitat monitoring, traffic control and many 
more applications [172]. 
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MWSN is an emerging field due to its flexibility, adaptability with dynamic 
topologies and the possibility of deploying anywhere. Due to its dynamic 
nature, when it comes to sensing data, MWSN tend to generate dynamic 
datasets as well. Sometimes, the exported sensor data is required to be altered 
to fulfil different system requirements, such as system scaling, change and 
calibration, as well as generating customized data for various research 
purposes. This need of customization in sensor data generation in MWSNs is 
highly dependent on system experts’ intervention to change the physical or 
simulated systems upon required. 

MWSNs study and research is a wide subject, which still has a lot of research 
problems, questions and optimizations that need to be investigated and 
researched. The sensor data generated from such networks is highly 
dimensional with multiple features and high complexity, which makes it a 
resource expensive, exhaustive, and extremely complicated to perform many 
tasks manually, such as system monitoring, maintenance, fault diagnosis and 
prediction tasks. Thus, the need for applying deep learning and other machine 
learning approaches to resolve such challenges is highly required [173]. To train 
and build such machine learning models, a huge amount of data is required, 
and not only that, this data should be customized enough to represent the 
research challenge in hand.  

The possibilities, challenges and changes in MWSNs are endless. User-
customized test cases are necessary for each particular research about MWSNs. 

Finding the right case-study for building a machine learning model is a very 
difficult challenge. It would be a lot easier, if some user-specific datasets were 
available. Where these datasets can fit any research questions and challenges, 
and also can be changed easily, without any pre-knowledge or expertise of the 
physical or simulated MWSNs model to generate and alter the data exported. 
If this possibility was not available, the researcher would be forced to conduct 
a lot of study and research to learn how to establish the preferred system, either 
using some simulation tool or building an actual physical system first. And 
then have to proceed with the generated data to solve the original intended 
research questions, which will add up a lot of time, effort and pressure on the 
researcher or customer. 

The collaboration between machine learning and MWSNs is relatively recent. 
That is why, it is a huge challenge to find available sensor data for research 
purposes, and it is almost impossible to find platforms or benchmarks to 
provide customized ones.  
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In this section, a two-phase dynamic simulation toolbox -so-called ‘SenGen’- 
for sensor data and sensor case-study generation in MWSNs is presented and 
tested, where a full simulation of an indoor MWSN system is established using 
Simulink. Then a Graphical User Interface (GUI) is created with MATLAB, to 
overall perform as a dynamic toolbox for sensor data generation in MWSNs. 
Moreover, a common MWSNs challenge is tackled in the next chapter; sensor 
fault detection and identification using the data generated by SenGen in a 
distributed fashion, to showcase the capabilities of the provided solution to be 
customized, reliable and even extended to  endless possibilities for researching 
sensors in MWSNs and overcome the challenge of the scarcity of these kinds of 
data generation platforms for MWSNs. 

2.2  Related Work to SenGen 

There are some tools available online that are successfully done creating 
dynamic data generation platforms, which will serve the purpose. However, 
these tools tend to cover different field of research and study, which is not 
related to MWSNs in particular [174],  [175] and [176]. 

Furthermore, a simulated WSN model using Simulink/MATLAB is created in 
[177]. However, this model does not cover sensor mobility options and does 
not provide dynamicity, or support model alteration and modifications. Finally, 
there are some fixed WSN sensor datasets available for download online, but 
these are by far the least dynamic option, since the simulated model or the 
physical system is not available, that eliminates any possibility for 
modifications even when the system experts are available and have full 
knowledge of the created system .  

To provide MWSN sensor data that is user-specific, we have developed a 
MATLAB GUI platform where users of different levels of expertise can 
customize the model. By having the possibility to add various number of 
sensors, of different types, in different locations and various patterns of motion. 
Also, different types of faults can be injected to any selected sensor(s) at any 
point of time during the simulation, to provide the possibility in researching 
anomaly detection and sensor fault detection and identification, along with a 

visualization representation of the whole system.  This user-friendly GUI is 
built based on a pre-simulated Simulink model where a system of stationary 
sensors is placed in an indoor environment. The simulated data is linked with 
mobility and a routing protocol in MATLAB environment and finally 
presented to the user through an executable GUI. 
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Due to the continuous motion of the sensor nodes in MWSNs, the topology of 
these networks is in simultaneous change and the routing algorithm must 
handle the fast changes in the topology effectively. The routing from source 
node to sink could happen either by direct hopping (single hop) or through 
multiple hops using the in-between nodes from the source node to sink. Unai, 
Ugatiz and Caralos presented a unique technique for routing in MWSNs [177] 
following multi-hop technique where on real-time basis, the shortest path 
between is calculated at the source node and the data is communicated 
accordingly. In such scenarios, the energy of all the mediating sensor nodes is 
consumed for data transfer. This lowers the battery life of each nodes in-
between which lowers the longevity of the entire system. Since battery life of 
sensor nodes is important in MWSNs, the routing could also be done using 
LEACH (Low Energy Adaptive Cluster Technology) [178]. LEACH is a hybrid 
method where a group of sensors form a cluster and the center-most sensor 
becomes a transmitter for all the cluster members to transfer data to sink. 
Though this method seems like a multi-hop scenario, it is not! Because the 
transmitter node acts as a primary sink and do not sense the surrounding as far 
as it acts as a transmitter. On following so, only two nodes consume energy; the 
source node and the cluster head node. During data transfer, the cluster head 

is comparatively more active than cluster members hence its battery drains out 
sooner. But, by rotating the role of clusters among the cluster heads, the total 
energy consumption is minimized. 

2.3 SenGen System Overview 

SenGen consists of two fundamental phases. In the first phase, an in-door 
MWSN system is created using Simulink/MATLAB environment to establish 
the foundation design of the model, which in a later phase can be altered to 
dynamically meet the user-specifications and requirements. The simulated 
model, represented by phase one will generate informative data for each sensor 

that consist of the sensors’ readings, their locations in the simulated system, 
their mobility patterns, and then apply LEACH routing protocol based on their 
previously mentioned information. The second phase represents the dynamic 
factor of this software by developing a Graphical User Interface (GUI) in order 
to provide flexibility and the possibility to externally tweak the basis simulation 
model created in phase one, without the need to understand or to deal with 
unnecessary technical details indicated within the simulation model. 

• Phase 1: Indoor Simulation Model Creation 

    The first step to start with in creating a simulated model using Simulink, is 
to find an input signal that is sufficient for the end system goal and 
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requirements.  In this simulated model, the input signal is used as a reference 
signal, which will act as the simulation environment parameters that will 
automatically provide the required parameters placed in the pipeline react 
accordingly.  

    The aim of this simulation is to create an indoor MWSN environment that 
can sense and collect environmentally related information of any indoor system 
in a natural base, without any artificial heating, air conditioning or ventilation 
applied. Such as, an office building, a hospital, an apartment…etc. The data 
generated from such models, can then be used later for energy research 
purposes or smart houses technology, sensor fault detection and identification 
and many other research related areas.  

    The sensors needed in the indoor system were atmospheric sensors. Hence, 
a weather data is the best choice to be used as one of the reference signals in the 
simulated system. The weather data of Jena (Austria) [179] had a suitable data 
with the psychometric details around Jena recorded for every 10 minutes over 
a period of 10 years. The environmental parameters of the simulation model 
must change more frequently, to match the real-time nature intended in this 
model. So that, this dataset is up-sampled using anti-aliasing filters which 
distribute the data between two given data-points. In our case, we choose the 
data to change for every single second hence the original data is re-sampled 
with a ratio of 600:1.  

Since an open atmospheric environment cannot be modelled in Simulink 
because it is really hard to simulate the unpredictable weather changes, that 
varies a lot from one region to another. Hence, an indoor system is created, 
which consists of several closed rooms that built in a way it imitates actual, 
naturally ventilated closed environments. Each room design was inspired by 
the Intel Berkeley research lab [180]. The lab measurements are taken as 

references for each room modelled in our system since the lab also contains 
WSN that are stationary and fixed locations, in specific locations of the 
simulated system as shown in Figure 41. The Berkeley lab consists of 54 sensors 
distributed across the lab of size 50mx40m. Figure 42 shows a top-view design 
of the indoor system simulated using Simulink where the air flow source, the 
total number of rooms, doors and the fixed locations of the routers and their 
measurements are clarified. 

The air source is created using ‘Moist air’ library provided by Simulink [181], a 
virtual system is built consisting of three similar building blocks functioning 
parallel by drawing moist air from the system gateway. The moist air flow 
represents the natural ventilation provided in the indoor system. The gateway 
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has a cross-sectional area of 0.75 m2 which corresponds to the size of the door 
of Intel lab from which the moist air enters, and each building block has flow 
area of 0.25 m2. It comprises of a heat exchanger to modify the temperature and 
humidity levels of moist air, pipe block which models the addition of humidity 
and carbon-di-oxide into the system along a length of 5 m, a variable local 
restriction element modelling the pressure loss in the flow and finally the moist 
air goes down to sink/reservoir. In Figure 43, the architecture of the air flow 
source is shown. 

Sensor blocks are placed after each component to sense psychometric 
parameters. The variable parameters for all flow modifying blocks is initialized 
with random values to add up more realistic changes to the model. The 
architecture of the simulation model building block, or in other words one 
room of the indoor system created in Simulink is shown in Figure 44.   The 
sensed outputs are exported to MATLAB environment using “simout” block 
and are saved for a future reference. 

 

 

Figure 41 Sensor Distribution of Intel Berkeley Lab [180]. 
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Figure 42 Top-view Indoor System Design. 

 

 

Figure 43 Air Flow Architecture. 
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Previously, in this paper, how to create the simulated model with fixed or 
stationary sensors was mentioned. To convert this WSN into a MWSN it is 
necessary to add some mobility patterns and scenarios for the sensors to use as 
their motion. For this purpose, a football players’ position data [14] is used to 
extract realistic patterns of movements, by normalizing it to the size of the lab 
instead of the football field. This motion pattern is provided as a pre-defined 
one which the user can immediately use. However, the user can also apply their 
own mobility pattern(s) using the GUI as explained in the next section. 

 

Figure 44 Build Block of Simulink Model 

In order to ensure more system stability, a sliding window of user-defined 
length is introduced, to process the information each sliding window instead 
of each second. In other words, if the sensor changes location so fast, the new 
location will only be considered if the sensor is there for a length of a sliding 
window. During this period the sensor nodes communicate the information to 
routers and then move on with intermittent motion. 

• Phase 2: Dynamic GUI Creation 

To give the user the ability and flexibility to control the process of establishing 
a customized MWSN system, as well as providing an animated MWSN view, 
a GUI is created where the user can observe and change the system easily in a 
straightforward fashion.  

The following steps represent a user quick manual, of how to use the GUI to 
benefit the customized data generation, visualization and extraction: 

2 User Input Panel: 
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This Panel is shown in Figure 46. The user input panel is the first GUI window 
appears to the user, which is divided into three main sections; Simulation 
timings, time intervals and user input.  In the simulation timing section, the 
user can enter the desired overall simulation time and sliding window size in 
seconds.  In the time intervals part of the user input panel, the sensor addition 
process occurs that allows the user to add different sensors by providing their 
sensor ID, the initial x and y locations, sensor type and mobility patterns. This 
GUI offered a pre-defined mobility scenario and it will be activated when 
choosing 1 in the drop-down list under the mobility. The user can also upload 
a matrix of their own to perform as a mobility pattern to provide more mobility 
options. After adding the desired information of the sensor, press ‘Add sensor’ 
button to enable the addition of more sensors to fit the desired system 
requirements. It must be noted that the number of sensor nodes are limited to 
the number of sensor nodes placed in simulation model.  The user input section 
located in the right side of the user panel is used to enable checking the added 
sensors, taking a final look at them and their information and delete or modify 
any sensor(s), to make sure the added information matches the wanted design 
before moving to the next panel and start the real-time simulation. Press 
‘continue’ to start the real-time simulation of the inserted sensors. 

3 Animated Real-time Panel: 

When pressing ‘start’, the sensor nodes (blue) start to move following the 
mobility pattern chosen before. The routers (red) being stationery. The 
visualization will continue till it reaches the simulation time defined in the 
previous panel. The user can pause the simulation to make observations 
anytime during the simulation. 

During the pause mode, the user has flexibility to inject any kind of sensor 
faults; bias, drift faults, constant or freezing faults...etc, to any sensor(s) on that 
particular instant by simply providing their sensor ID. For simplicity reasons, 
the faults types added are High, Low and Constant. Figure 45 shows the GUI 
panel for visualization and fault injection. The fault injection process is very 
crucial, especially for those who work with anomaly detection or sensor fault 
detection and identification, providing them with clear system fault labels 
which are customized in any given point of time is beneficial and highly 
necessary.   

When the simulation ends, the updated MWSN data would be exported 
automatically in excel format, or press ‘extract data in excel format’ button to 
export the excel file anytime during the simulation.
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Figure 46 Toolbox: User Input Pane 

Figure 45 Toolbox: Animated Real-Time Panel 



 

172 
 

The sensor data can be extracted anytime during the simulation in a sequential 

or bulk fashion where the values and information of all sensors in the system, 
located in the range of all routers is extracted. Also, the sensor data can be 
extracted in a distributed manner, where each router extract the data of the 
sensors in its range separately from other routers.  

2.4  Data Generation and Visualization using SenGen 

To experiment the simulated system in phase one and its outcomes. A test 
experiment is set by following the SenGen Toolbox step by step, to create five 
sensors in user-specific x, y locations of the indoor system, and each one of 
these sensors can measure one of the following weather parameters; pressure, 

temperature, CO2 or humidity, that are chosen manually by the user while 
using the Toolbox.  

 

Figure 47 Pressure Signals Comparison Throughout the Indoor System with Time 

 

 



 

173 
 

 

 
Figure 48 Temperature Signals Comparison Throughout the Indoor System with 

Time  

 

 

 

 

 

 

Figure 49 Humidity Signals Comparison Throughout the 
Indoor System with Time  



 

174 
 

 

Figure 50 CO2 Signals Comparison Throughout the Indoor System with Time. 
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12. Appendix D: A Model-Based Approach: A 
Graph-Based FDD for IoT Systems Extracted 
from A Semantic Ontology 

In this chapter a full explanation of the model-based, component fault detection 
and diagnosis for IoT systems is introduced. This approach is applied on a 
Mobile Wireless Sensor Network (MWSN) created using SenGen toolbox.  

In this work, the graph-based fault detection and diagnosis approach based on 
a semantic ontology proposed in [11] is adopted and applied to the IoT domain. 
The proposed methodology consists of the following main steps: 1) creating a 
simulated model or an actual physical system to provide a clear definition of 
the system and its components. 2) A semantic model represented by the 
ontology, to transfer the understanding of the system into a clear semantic 
representation of the system’s components and the relationships between them. 
And finally, 3) A novel diagnostic directed graph is extracted from the ontology 
to offer more automation to the diagnosis and lessen the complexity of the 
system, by providing a clear graph of the decision-making process.    

IoT Ontology: Design and Application 

IoT-based devices are witnessing an increase of application in a vast majority 
of domains for their capabilities of generating sensor data and establishing a 
solid perception of the real world. Sensor data has a heterogenous nature that 

implicates several interoperability issues when applying to general-domain 
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applications. In other words, it is inconvenient and highly complicated to apply 
one’s domain sensor data to investigate another domain due to the multi-modal 
and heterogenous nature of sensor data. To overcome this challenge, it is 
essential to introduce semantic interpretations of the sensors, their containing 
systems and the relationships between them. An ontology as a semantic 
representation of knowledge has been proven to be effective to represent IoT 
systems and regulate the IoT-based sensor data collection and offering a 
comprehensive explanation of the system and its requirements [182]. 

FDD is an essential yet complicated and required a lot of precision step in IoT 
systems of various applications. Ontology-based FDD methodologies and 
algorithms plays an important rule in the diagnostic process especially in 
sensor-based applications, since they tend to be more complicated and 
heterogenous than other domains. Therefore, ontologies provide such systems 
with a semantic, expressive platform for knowledge-creation, knowledge-
sharing and even re-application of the existing knowledge by adopting the 
represented deep semantics within the ontology structure. Ontology-based 
FDD has gained a lot of research focus in the past decade due to its semantic 
advantage over other FDD methods [3]. Although ontology-based FDD 
methods are solving a good amount of challenges in different domains, they 
tend to be a static form of diagnosis that is limited to the pre-defined semantics, 
knowledge and relationships stored within the ontology. In [4] is an example 
of an ontology of an automotive system where many sensors are used to 
diagnose a punch of common faults in automotive systems. Moving to another 
domain, a Demand Control Ventilation (DCV) ontology is introduced to tackle 
some faults in an office building depending on the sensors’ readings in various 
zones of the simulated model [1]. 

The IoT ontology proposed in this work is created as a generic IoT domain 
ontology, where various examples of IoT systems can be added as an individual 
of the main entity of the ontology, then all the aspects of data properties, 
relationships and individuals can be added to give a comprehensive 
representation of this application. In this work, a Mobile Wireless Sensor 
Network (MWSN) is created using SenGen simulation and toolbox mentioned 
in earlier chapters and used as an example of IoT system to be described in the 
ontology. The MWSN created is a customized model of an indoor system that 
contains four rooms and two routers located in room one and two.  Each room 
has two sensors; CO2 and Temperature sensors that are fully mobile within the 
range of their containing rooms. Figure 51 shows the MWSN architecture 
stored in the IoT ontology. 
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Figure 51 MWSN Architecture in the IoT Ontology 

 

The IoT ontology consists of four main classes; Sensory_and_Control, 
Surrounding_Environment, Symptoms and Failures. The Sensory_and_Control 
entity describes the devices, sensors and other components of an IoT system, 
and in this work, it is divided into two main sub-classes of Sensing_units and 
Routing_units. The Surrounding_Environment class is added to describe the 
nature of the surroundings containing the IoT system, which has two main sub-
classes Indoor and outdoor. The Symptoms class represents a set of individuals 
that are servings as symptoms that might lead to certain failure(s). Finally, the 
Failures class describes the instances of failures that might happen in a certain 
system and is connected to one or a series of symptoms stored in the Symptoms 
class.  Figure 52 shows a visual representation of the class hierarchy of the IoT 
ontology described above. 
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Figure 52 IoT Ontology Entities and Sub-Entities Hierarchy 

 

The four entities form the IoT ontology must have some semantic 
representation of the relationships between themselves and their neighboring 
entities. The following bullet points are the main object properties or relations 
applied to the ontology, in the form of relation_name(domain(from), Range(to)) : 

• Causes( Symptoms, Failures): this object property connects the 
symptoms to the failures by showing that symptoms causes 
failures. 

• Consist_of(Surrounding_Environment, Surrounding_Environment): 
this relation is added to show that individuals in the 
Surrounding_Environment class can consist of other components 
from the same class. e.g. the instance MWSN_indoor of the indoor 
sub-class consist-of the individual Room1 in the same sub-class of  
Surrounding_Environment. 

• Detected_By( Failures, Sensory_and_Control): This relationship 
implies that individuals from the Failures is Detected_By 
individuals of Sensory_and_Control class. 

• Lead_to( Symptoms, Symptoms): some Symptoms can lead_to other 
symptoms that is the reason behind adding this relationship. 

• Located_in( Sensory_and_Control, Surrounding_Environment): the 
sensors, routers, devices..etc are all located in the individuals in 
the Surrounding_Environment. 
 

Figure 53 shows a graph describing the ontology of its main entities and the 
relationships between those entities. 
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Figure 53 IoT Ontology Entities and Relationships 

 

The diagnosis ontology is  scripted in the Web Ontology Language (OWL) [171] 
which guarantees a better storage, exchange and readability for the ontology.  

Figure 54 shows a graphical representation of the IoT ontology and the 
instances of a small one case study of the MWSN model. The model chosen 
does not have a lot of instances or complicated relationships. However, the 
graph is comprehensive and complicated enough to give a hint of how big and 
complex these semantic graphs can reach if more case-studies and instances are 
added. 
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Figure 54 IoT Ontologies Main Classes and Some Individuals and Their Relationships. 

A Graph-Based Sensor Fault Detection and Diagnosis 

In this step, the semantic information provided by the domain experts, and 
stored in the IoT ontology are translated into a directed graph. Some might 
underestimate the importance of this stage for the rule-based diagnostic 
approaches, where such methods rely on IF-Then statements most of the time, 
which makes it so much time and effort inefficient. By representing these rules 
using a clear graph, the time and effort required for the detection and diagnosis 
process is reduced dramatically, as well as using the graph representation of 
the diagnostic information provides a clear and easy platform, which can be 
used by any individual including experts and non-experts of the domain 
system or the ontology. Mapping the semantic information from the system 
ontology to the diagnostic graph is done manually by the knowledge-based 
experts, to ensure that all the needed information was translated precisely and 
completely.  
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The diagnostic information and rules represented by a set of symptoms are 
added to the ontology as instances of the Symptoms class. These symptoms are 
created based on the system expert knowledge and expertise, where then fed 
to the ontology and translated into semantic keywords of relationships. The 
diagnosis rules implemented in this ontology are adopted from an existing 
demand control ventilation simulated model in [183]. Figure 55 shows that by 
adding the symptoms and their semantic representations to the IoT ontology it 
was a lot easier to extract diagnostic graphs based on the semantic graphical 
representation of the symptoms, their leading symptoms and causing failures. 

 

Figure 55 Expert-Rules Semantics Visualisation 

 

Table 21 shows the main symptoms of the component failure connected to CO2 
sensor, and how these symptoms are nested to one another. Each sensor and 
actuator added to the system has its own symptoms table. These symptoms are 
provided by the embedded systems team and modelled into the ontology by 
the knowledge-based experts to form the final graph. For more information 
about the symptoms for the sensors and actuators used in this study, check 
[184]. 
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Table 21. Symptoms Associated to CO2 Sensor Failure 

 

Figure 56 shows the diagnostic directed graph for the CO2 sensor as an example 
of sensory and actuation effect on component/system faults. This graph is 
duplicated as a sub-graph for each room or corridor that contains a CO2 sensor 
in it.  

 

Figure 56 CO2 Sensor Diagnostic Directed Graph 

The directed graph created in this work, shows the connection between the 
diagnostic features extracted from the inserted instances in the ontology and 
their data properties. These features are connected to some corresponding 
symptoms, extracted from the semantic relationships added to the ontology. 
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The added symptoms can lead to another symptom, or directly cause the 
component failure. 

 A single diagnostic graph is created for each sensory and control device stored 
in the ontology, that is located in each and every component of the IoT ontology, 
regardless in which component or location it was created Thus, if each room 
has four sensory and control devices that might have a failure, and their 
information stored in the ontology, then the diagnostic graph of this room, 
contains four main sub-graphs connected to each sensory device. Keep in mind 
that our MWSN simulated and used to create the ontology is indoor and has 
four rooms, which means the overall diagnostic graph represents all the sub-
graphs of each sensory device from all the indoor rooms and corridors. As a 
result, the overall diagnostic directed graph can be so complex and 
computationally challenging for bigger systems. To overcome this challenge, 
the integration of date-driven approaches to support this expert-based graph 
representation is needed. Applying machine learning as an example of the 
data-driven techniques will provide more dynamic solutions to this graph, by 
adding the possibility to prune, add some branches or learn the values and 
thresholds stored in each feature and symptom node in the diagnostic graph. 
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