de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Brandenburg, Martin: Tensor categorical foundations of algebraic geometry. 2014
Inhalt
Introduction
Background
Results
Acknowledgements
Preliminaries
Category theory
Algebraic geometry
Presentability
Density and Adams stacks
Extension result
Introduction to cocomplete tensor categories
Definitions and examples
Categorification
Element notation
Adjunction between stacks and cocomplete tensor categories
Commutative algebra in a cocomplete tensor category
Algebras and modules
Ideals and affine schemes
Symtrivial objects
Symmetric and exterior powers
Derivations
Flat objects
Dualizable objects
Invertible objects
Locally free objects
Descent theory
Cohomology
Constructions with cocomplete tensor categories
Basic free constructions
Free tensor categories
Cocompletions
Indization
Limits and colimits
Global schemes and stacks
Module categories over algebras
Gradings
Representations
Local functors
Tensoriality
The case of qc qs schemes
The case of algebraic stacks
Localization
General theory
Examples
Localization at sections
Ideals
Idempotents
Projective tensor categories
Definition and comparison to schemes
Blow-ups
The Segre embedding
The Veronese embedding
The Plücker embedding
Products of schemes
Tensorial base change
The case of qc qs schemes over a field
Tangent tensor categories
Monoidal monads and their modules
Overview
Reflexive coequalizers
Monoidal monads
Tensor product of modules
Module categories
Bibliography