de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Schindler, Felix ; Albrecht, Felix: Model reduction for parametric multi-scale problems. 2016
Inhalt
Introduction
1 Elliptic parametric multiscale problems
1.1 Elliptic problems and grid-based approximations
1.1.1 Elliptic problems
1.1.2 Grid-based numerical approximations with Finite Element methods
1.2 Multiscale problems and numerical multiscale methods
1.2.1 Elliptic multiscale problems
1.2.2 Numerical multiscale methods
1.3 Parametric problems and model order reduction
1.3.1 Elliptic parametric problems
1.3.2 Model order reduction with reduced basis methods
1.3.2.1 Offline/online decomposition
1.3.2.2 Basis generation
1.3.2.3 Accuracy vs. efficiency
1.4 Parametric multiscale problems and combined approaches
1.4.1 Elliptic parametric multiscale problems
1.4.2 The localized reduced basis multiscale method
1.4.3 Combined approaches
2 The localized reduced basis multiscale method (LRBMS)
2.1 Detailed discretization
2.1.1 Local discretizations
2.1.2 Global coupling
2.2 Reduced discretization
2.2.1 Offline/online decomposition
2.3 Error control
2.3.1 Residual based error control of the model reduction error
2.3.2 Localized error control of the discretization and the full error
2.3.2.1 Oswald interpolation
2.3.2.2 Diffusive flux reconstruction
2.3.2.3 Local efficiency
2.3.2.4 Localized offline/online decomposition
2.4 Adaptivity
2.4.1 Offline basis generation
2.4.2 Online basis enrichment
3 Software concepts and implementations
3.1 Discretization framework
3.1.1 Mathematical foundation and theoretical requirements
3.1.1.1 Approximating the solution of a PDE
3.1.1.2 Error estimation
3.1.1.3 Projections and prolongations.
3.1.2 Abstract design principles and technical requirements
3.1.3 Existing implementations
3.1.4 A new discretization framework
3.1.4.1 dune-stuff
3.1.4.2 dune-gdt
3.2 Model reduction framework
3.2.1 Requirements
3.2.1.1 High-dimensional operations
3.2.1.2 Low-dimensional operations
3.2.2 Existing implementations
3.2.2.1 App. 1: Separate software
3.2.2.2 App. 2: Inside high-dimensional solver
3.2.2.3 App. 3: Separate low- and high-dimensional operations
3.2.3 Design principles
3.2.4 A new model reduction framework
3.2.4.1 pyMOR
3.2.4.2 dune-pymor
3.2.4.3 dune-hdd
4 Numerical experiments
4.1 The localized reduced basis (multiscale) method
4.1.1 The thermal block experiment
4.1.2 The Spe10 model2 experiment
4.2 A new discretization framework: dune-gdt
4.2.1 A first online enrichment experiment
4.2.2 A first validation of the new localized estimator
4.2.3 A first localization study of the new estimator
4.2.4 Detailed study of the parametric localized error estimator
4.2.4.1 Academic example
4.2.4.2 Parametric multiscale example
4.3 A new model reduction framework: pyMOR
4.3.1 Vector array benchmarks
4.3.2 Gram-Schmidt and POD benchmarks
4.4 The online adaptive LRBMS
4.4.1 Academic example
4.4.2 Parametric multiscale example
Bibliography