de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Papenkort, Thomas: Coherent and squeezed phonons in semiconductor quantum wells : simulating optically induced lattice dynamics. 2012
Inhalt
Contents
Abstract | Zusammenfassung
Introduction
1 Phonons in quantum wells
1.1 Phonons
1.1.1 Coherent and incoherent phonons
1.1.2 Confined phonon modes
1.2 Semiconductor quantum wells
1.2.1 Envelope function description
1.2.2 Quantum confined Stark effect
1.3 The full model Hamiltonian
1.3.1 Electronic subsystem and Coulomb interaction
1.3.2 Optical driving
1.3.3 Electron-phonon coupling
1.3.4 Full Hamiltonian
2 Driving coherent phonons
2.1 State of the art
2.2 Quantum kinetic calculations: Correlation expansion
2.2.1 Density matrix formalism with correlation expansion
2.2.2 Dynamical variables and the in-plane homogeneity
2.2.3 Qualitative explanation for driving mechanisms
2.2.4 Equations of motion
2.2.5 Coulomb interaction and mean-field approximation
2.2.6 The spin degree of freedom
2.2.7 Decoherence processes: Spin relaxation and phonon decay
2.2.8 Singularity in the Coulomb coupling matrix
2.2.9 Singularity in the Fröhlich coupling matrix
2.3 Absorption spectra and the quantum confined Stark effect
2.4 Non-resonant coherent phonon generation
2.4.1 Impulsive driving
2.4.2 Displacive driving
2.5 Resonant coherent phonon generation
2.5.1 Time-dependent picture
2.5.2 Characteristics of the RPG mechanism
2.5.3 The role of incoherent phonons
2.5.4 Effects of the Coulomb mean-field approximation
2.5.5 RPG in a different quantum well
3 Squeezed phonon states
3.1 State of the art
3.2 Lattice uncertainties and spatial averaging
3.2.1 Uncertainties and the Heisenberg uncertainty principle
3.2.2 Effects of limited spatial resolution
3.3 Quantum kinetics: Why we need a new method
3.3.1 The problem with divergent terms
3.3.2 Unphysical uncertainties
3.4 Quantum kinetics: Order separation
3.4.1 State vector formulation
3.4.2 Spin degree of freedom
3.4.3 Truncating the hierarchy
3.4.4 Comparison with other hierarchy-truncation schemes
3.4.5 Density matrix formulation
3.4.6 Decoherence
3.5 Producing squeezed phonons
3.5.1 Effects of a single Gaussian pulse
3.5.2 Two-pulse excitation
3.5.3 Elevated temperatures
4 Conclusions
5 Appendix
5.1 Parameters
5.1.1 Material parameters for GaAs/AlAs wells
5.1.2 Structure and simulation parameters
5.1.3 Numerical parameters
5.2 Model Hamiltonian
5.3 Correlation expansion
5.3.1 Dynamical variables
5.3.2 Abbreviations for interaction terms
5.3.3 Equations of motion
5.4 Order separation
5.4.1 State vector formulation
5.4.2 Density matrix formulation
List of symbols
References