de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Brunken, Julia: Stable and efficient Petrov-Galerkin methods for certain (kinetic) transport equations. 2021
Inhalt
Introduction
Motivation
Goal and contribution of this work
Overview of the literature
Outline of this thesis
Background
Modeling of glioma tumor spreading
Abstract well-posedness theory
Inf-sup theory
Petrov-Galerkin projections
Sobolev spaces for transport and kinetic equations
Spaces for first-order transport equations
Spaces for kinetic equations without velocity derivatives
Sobolev spaces on manifolds and the Laplace-Beltrami operator
The transport equation
An optimally stable ultraweak (space-time) formulation
An optimally stable Petrov-Galerkin method
Optimally stable discrete spaces
Nonphysical restrictions at the boundary
Postprocessing
Comparison with other approaches
The reduced basis method for parametrized transport problems
Parametrized transport problem
Discretization
Reduced scheme
Basis generation
Error analysis for the reduced basis approximation
Comparison with the double greedy algorithm
Computational realization
Implementation for constant data
Assembling the matrices for spaces on rectangular grids
Implementation for nonconstant data
Numerical experiments
Non-parametric cases
Parametric cases: The reduced basis method
The kinetic Fokker-Planck equation
Problem setting
Function spaces
Variational formulation
Existence of a weak solution
Uniqueness of the weak solution
Discretization
Stable Petrov-Galerkin schemes
Efficient numerical scheme
Numerical experiments
Test Case
Numerical results
Conclusion and outlook
Conclusion
Outlook
Discussion: Global traces in H1fp()
Bibliography