Die Mengenlehre hat heute eine Zwitterstellung: Einerseits beherrscht ihre Terminologie einen Großteil der Mathematik, andrerseits soll sie als eine spezielle formale axiomatische Theorie aufgebaut werden. Die Hilbertsche Auffassung der Formalität als syntaktische und somit sprachgebundene Struktur scheint diese beiden Aufgaben vereinbar zu machen. Diese Auffassung wird hier in Frage gestellt und durch eine andere rein strukturelle ersetzt, der auch die Sprache unterworfen ist. Danach sind nicht die Relationen der Mengenlehre bzw. der Syntax für die Mathematik entscheidend, sondern deren Eigenschaften. Eine Menge ist nur eine Rolle einer Relation, der Elementschafts-Relation, eine Klasse nicht einmal eine logische Einheit. Damit büßt die Mengenlehre ihre Sonderstellung ein und behält lediglich denselben Status wie etwa die (inhaltliche bzw. formale) Geometrie.