The prediction of human locomotion behavior is a complex task based on data from the given environment and the user. In this study, we trained multiple machine learning models to investigate if data from contemporary virtual reality hardware enables long- and short-term locomotion predictions. To create our data set, 18 participants walked through a virtual environment with different tasks. The recorded positional, orientation- and eye-tracking data was used to train an LSTM model predicting the future walking target. We distinguished between short-term predictions of 50ms and longterm predictions of 2.5 seconds. Moreover, we evaluated GRUs, sequence-to-sequence prediction, and Bayesian model weights. Our results showed that the best short-term model was the LSTM using positional and orientation data with a mean error of 5.14 mm. The best long-term model was the LSTM using positional, orientation and eye-tracking data with a mean error of 65.73 cm. Gaze data offered the greatest predictive utility for long-term predictions of short distances. Our findings indicate that an LSTM model can be used to predict walking paths in VR. Moreover, our results suggest that eye-tracking data provides an advantage for this task.
Titelaufnahme
Titelaufnahme
- TitelPredicting Future Position From Natural Walking and Eye Movements with Machine Learning
- Verfasser
- Erschienen
- AnmerkungFörderer: Deutsche Forschungsgemeinschaft / Projektnummer: 274361309Funding organisation: Deutsche Forschungsgemeinschaft / Project number: 274361309Förderer: European Commission / Projektnummer: 951910Funding organisation: European Commission / Project number: 951910
- SpracheEnglisch
- Bibl. ReferenzProceedings of the 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), 2021, pp. 19-28
- DokumenttypAufsatz in einer Zeitschrift
- Schlagwörter (EN)
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- Nachweis
- IIIF
Dateien
Klassifikation
Abstract
Statistik
- Das PDF-Dokument wurde 4 mal heruntergeladen.