TY - THES A3 - Wilking, Burkhard AB - Positiv Quaternional Kähler (PQK) Mannigfaltigkeiten sind Riemannsche Mannigfaltigkeiten mit einer in Sp(n)Sp(1) enthaltenen Holonomiegruppe und mit positiver Skalarkrümmung. Gemäß der LeBrun-Salamon Vermutung ist jede solche Mannigfaltigkeit ein symmetrischer Raum. In der vorliegenden Dissertation wird diese Vermutung aus unterschiedlichsten Gesichtspunkten beleuchtet: So werden u.a. Methoden der (äquivarianten) Index-, Lie- und Kohomologietheorie angewandt, um zahlreiche Teilklassifikationsergebnisse zu erhalten. Weiter wurde erkannt, dass die bestehende Klassifikation in Dimension 12 von Herrera und Herrera fehlerhaft ist und so nicht aufrechterhalten werden kann. Ein neuer Zugang mittels Rationaler Homotopietheorie erlaubt z.B. zu schließen, dass PQK Mannigfaltigkeiten formale Räume sind. Dies folgt aus einer tiefgehenden Analyse sphärischer Faserungen. Im Rahmen dieser Untersuchung werden insbesondere auch Konstruktionsprinzipien für nicht-formale homogene Räume bereitgestellt. AU - Amann, Manuel DA - 2009 KW - Positiv Quaternional Kähler Mannigfaltigkeiten KW - spezielle Holonomie KW - Rationale Homotopietheorie KW - Formalität KW - Klassifikation KW - Indextheorie KW - homogener Raum LA - eng PY - 2009 TI - Positive Quaternion Kähler Manifolds UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-80579470681 Y2 - 2024-11-22T05:13:54 ER -