TY - JOUR AB - We review distinct features arising from the unique nature of the carrier-phonon coupling in self-assembled semiconductor quantum dots. Because of the discrete electronic energy structure, the pure dephasing coupling usually dominates the phonon effects, of which two properties are of key importance: The resonant nature of the dot-phonon coupling, i.e. its non-monotonic behavior as a function of energy, and the fact that it is of super-Ohmic type. Phonons do not only act destructively in quantum dots by introducing dephasing, they also offer new opportunities, e.g. in state preparation protocols. Apart from being an interesting model systems for studying fundamental physical aspects, quantum dot and quantum dot-microcavity systems are a hotspot for many innovative applications. We discuss recent developments related to the decisive impact of phonons on key figures of merit of photonic devices like single or entangled photon sources under aspects like indistinguishability, purity and brightness. All in all it follows that understanding and controlling the carrier-phonon interaction in semiconductor quantum dots is vital for their usage in quantum information technology. AU - Reiter, Doris Elisabeth AU - Kuhn, Tilmann E. AU - Axt, Vollrath Martin DA - 2019-09-09 DO - 10.1080/23746149.2019.1655478 KW - Semiconductor quantum dots KW - carrier-phonon interaction KW - optical manipulation KW - photonics KW - quantum information processing KW - Non-Markovian dynamics LA - eng N1 - Advances in Physics: X, 4 (2019) 1, 1655478, 718-760 N1 - Finanziert durch den Open-Access-Publikationsfonds der Westfälischen Wilhelms-Universität Münster (WWU Münster). N1 - This work was supported by the Deutsche Forschungsgemeinschaft [419036043] PY - 2019-09-09 TI - Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-90179547544 Y2 - 2024-11-22T00:07:09 ER -