TY - JOUR AB - We associate to each homology theory in an elementary and canonical manner a tautological cohomology theory on Cartesian spaces such that the classical Alexander duality holds. The duality isomorphisms obtained from cap-products yield an isomorphism of cohomology theories. Guided by our methods we also introduce the new category of dualizible maps. AU - Tom Dieck, Tammo AU - Tom-Dieck, Tammo AU - Tom-Dieck, T. AU - Tom Dieck, T. AU - Dieck, Tammo tom AU - Dik, Tammo tom AU - TomDieck, Tammo AU - TomDieck, T. AU - Dieck, T. tom AU - Dieck, T. T. AU - Dieck, T. AU - Dik, T. tom AU - Dik, T. T. AU - Dik, T. DA - 2013 LA - eng IS - Münster Journal of Mathematics M2 - 365 PY - 2013 SP - 365-382 T2 - Münster Journal of Mathematics TI - Axiomatic homology and duality revisited UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-55309458011 Y2 - 2024-11-22T22:54:28 ER -