TY - JOUR AB - Background: Spinal pattern generators (SPG) are neural networks in the spinal cord that do not require a central input from the brain to generate a motor output. We wanted to determine whether SPG can adapt to the changing motor demands from walking at different speeds, and performing silly walks. Methods: An SPG model consisting of an oscillator made up of two neurons was utilised in this study; one neuron activates the soleus and the other activates the tibialis anterior. The outputs of the SPG model therefore represent the electromyographic measurements from each muscle. Seven healthy subjects were requested to perform silly walks, normal walking at self-selected speed (4.8 ± 0.5 km/h), 3.5 km/h, 4.0 km/h and 4.5 km/h on a treadmill. Loading and hip angles were used as inputs into the model. Results: No significant differences in the model parameters were found between normal walking at self-selected speed and other walking speeds. Only the adaptation time constant for the ankle flexor during silly walks was significantly different from the other normal walking trials. Conclusion: We showed that SPG in the spinal cord can interpret and respond accordingly to velocitydependent afferent information. Changes in walking speed do not require a different motor control mechanism provided there is no disruption to the alternating muscular activations generated at the ankle. AU - Chong, Sook-Yee AU - Wagner, Heiko AU - Wulf, Arne DA - 2013-02-13 DO - doi:10.1186/1742-4682-10-9 KW - Locomotion KW - Walking speed KW - Silly walks KW - EMG KW - Spinal pattern generator KW - Neural network KW - Sensory afferents KW - Motor control LA - eng N1 - Finanziert durch den Open-Access-Publikationsfonds 2012/2013 der Deutschen Forschungsgemeinschaft (DFG) und der Westfälischen Wilhelms-Universität Münster (WWU Münster). N1 - Theoretical Biology and Medical Modelling 10 (2013) 9 PY - 2013-02-13 TI - Application of neural oscillators to study the effects of walking speed on rhythmic activations at the ankle UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-87359485807 Y2 - 2024-11-22T08:47:48 ER -