TY - JOUR AB - Microvascular barrier dysfunction plays a major role in the pathophysiology of acute kidney injury (AKI). Angiopoietin-1, the natural agonist ligand for the endothelial-specific Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor. Here we evaluate the efficacy of a polyethylene glycol-clustered Tie2 agonist peptide, vasculotide (VT), to protect against endothelial-cell activation with subsequent microvascular dysfunction in a murine model of ischemic AKI. Renal ischemia reperfusion injury (IRI) was induced by clamping of the renal arteries for 35 minutes. Mice were treated with VT or PEGylated cysteine before IRI. Sham-operated animals served as time-matched controls. Treatment with VT significantly reduced transcapillary albumin flux and renal tissue edema after IRI. The protective effects of VT were associated with activation of Tie2 and stabilization of its downstream effector, VE-cadherin in renal vasculature. VT abolished the decline in renal tissue blood flow, attenuated the increase of serum creatinine and blood urea nitrogen after IRI, improved recovery of renal function and markedly reduced mortality compared to PEG [HR 0.14 (95% CI 0.05–0.78) P < 0.05]. VT is inexpensive to produce, chemically stable and unrelated to any Tie2 ligands. Thus, VT may represent a novel therapy to prevent AKI in patients. AU - Rübig, Eva Christina AU - Stypmann, Jörg AU - Van Slyke, Paul AU - Dumont, Daniel J. AU - Spieker, Georg Tilmann AU - Buscher, Konrad AU - Buscher, Conrad AU - Buscherus, Conradus AU - Reuter, Stefan Johannes AU - Görge, Tobias AU - Pavenstädt, Hermann-Joseph AU - Kümpers, Philipp AU - Kümpers, Philipp Franz Gerhard DA - 2016-02-25 DO - 10.1038/srep22111 LA - eng N1 - Scientific Reports 6 (2016) 22111, 1-11 N1 - Finanziert durch den Open-Access-Publikationsfonds 2015/2016 der Westfälischen Wilhelms-Universität Münster (WWU Münster). PY - 2016-02-25 SN - 2045-2322 TI - The Synthetic Tie2 Agonist Peptide Vasculotide Protects Renal Vascular Barrier Function In Experimental Acute Kidney Injury UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-45279724898 Y2 - 2024-11-22T00:54:33 ER -