TY - JOUR AB - We discuss Poincaré duality complexes X and the question whether or not their Spivak normal fibration admits a reduction to a vector bundle in the case where the dimension of X is at most 4. We show that in dimensions less than 4 such a reduction always exists, and in dimension 4 such a reduction exists provided X is orientable. In the non-orientable case, there are counterexamples to reducibility by Hambleton–Milgram. AU - Land, Markus DA - 2022 DO - 10.17879/23049551069 LA - eng IS - Münster Journal of Mathematics M2 - 47 N1 - Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: CRC 1085 N1 - Funding organisation: Deutsche Forschungsgemeinschaft / Project number: CRC 1085 N1 - Förderer: Danish National Research Foundation / Projektnummer: DNRF151 N1 - Funding organisation: Danish National Research Foundation / Project number: DNRF151 PY - 2022 SP - 47-81 T2 - Münster Journal of Mathematics TI - Reducibility of low-dimensional Poincaré duality spaces UR - https://nbn-resolving.org/urn:nbn:de:hbz:6-23049551583 Y2 - 2024-12-27T09:53:48 ER -