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Introduction

The whole is more than the sum of its
parts.

Aristotle

Let X be a 2-dimensional non-singular affine complex algebraic variety and S be a
smooth complex curve. There are two main questions approached in this work. The first
is asking, when an algebraic morphism f : X → S defines a differentiable fiber bundle.
Analogously, the second one is asking, when f : X → S defines a fiber bundle, which is
locally trivial in the holomorphic sense.

The Ehresmann Fibration Theorem and a theorem of HàH.V. and LêD.T., cf. [HL84],
are well known criteria for the existence of differentiable local triviality. Having a key
role in this work, both theorems are modified and extended in the process of this thesis.
The Ehresmann Fibration Theorem is stating that a mapping between differentiable
manifolds, which is proper and has no singular points already defines a C∞-fiber bundle.
Unit vector fields are lifted from the base space to the total space to construct a globally
integrable flow, which yields differentiable local trivializations.

The theorem of Hà and Lê is stating that a polynomial mapping from C2 to C de-
fines a C∞-fiber bundle if and only if the mapping has no singular points and if the
Euler-Poincaré characteristic of the fibers is constant. Hà and Lê are using a compacti-
fication of the graph, controlling its “infinite part” by the constance of the Euler-Poincaré
characteristic to construct a submersion, then use methods similar to the Ehresmann Fi-
bration Theorem. To extend this statement to the situation of the scheme f : X → S is
in general not possible. Since a compactification of the graph may fiberwise yield irre-
ducible components in the infinite part of the compactification, it is difficult to transfer
the methods from the original proof. To conclude differentiable local triviality for the
scheme f : X → S in the main result of this work, it is necessary in addition to require
the fibers of f to be pairwise homeomorphic, and to have the same strictly positive ge-
ometric genus. Furthermore, the fibers of f above closed points of S are required to be
irreducible.

According to the minimal models theorem by S. Lichtenbaum and I.R. Shafarevich
[Sha66] there exists a minimal regular model, a compactification of the morphism, having
no exceptional divisors. The resulting total space does not contain any singularities, and
the resulting morphism is proper, though not necessarily smooth, i.e. a submersion in the
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Introduction

analytic sense. This though is necessary to apply an argument based on the Ehresmann
Fibration Theorem.

For a fibered surface having a Henselian base space, there exists the contraction mor-
phism for irreducible components in the special fiber. Using a Henselization locally on
the base of a compactification of X → S, irreducible components in the closure are con-
tracted to single points. For any t ∈ S a non-singular compactification X̄ ×S Spec(Oh

S,t)
is constructed, whose fibers densely contain the fibers of X ×S Spec(Oh

S,t). The geo-
metric genus of the fibers is preserved this way. According to a result of T. Sekiguchi,
F.Oort, and N. Suwa [SOS89] the minimal regular model of X̄×SSpec(Oh

S,t) is smooth.
For all t ∈ S the smooth minimal model of X̄×S Spec(Oh

S,t) commutes with the minimal
regular model X̄ → S of X → S, which in turn is smooth as well.

In case S has a trivial fundamental group, the infinite part of X̄ → S is shown to con-
sist of a finite disjoint union of global holomorphic sections. Analogous to the Ehresmann
Fibration Theorem, it is then possible to locally lift integrable vector fields, which are
parallel to these sections. The lifted vector fields are then glued together with a partition
of unity, hence yielding local trivializations for the pair of spaces (X̄, X), rendering X

as a differentiable fiber bundle. Theorem 2.70 is giving the main result.

Furthermore holomorphic local triviality is investigated in three parts. At first, families
of hyperbolic Riemann surfaces are pursued. Then families of curves of genus 1 as well
as 0 are discussed.

A theorem of W.Fischer and H.Grauert [GF65] ensures local triviality in the
holomorphic sense for a proper holomorphic submersion, which is an analytically isotrivial
family of connected compact complex manifolds. This theorem is altered and extended
as follows, in order to generalize the requirement of isotriviality for the case of the scheme
f : X → S. For this main result of Section 3.1.1 on holomorphic local triviality it is
necessary to require S ∈ {C, C∗, P1

C, T}, where T is the complex torus, and that the
compactification of each fiber is a hyperbolic Riemann surface. Furthermore suppose that
all fibers are pairwise homeomorphic. Under these conditions, f defines a holomorphic
fiber bundle.

The Rigidity Theorem of S. Ju.Arakelov, A.N.Parshin , Y.Manin, and
H.Grauert [Mum99] states in particular that families of smooth projective curves of
genus 2 or higher are isotrivial, in case the base space is one of C, C∗, P1

C, or T . This
theorem already answers the original question in the case of families of projective curves.
In the general case, for the family X → S there exists a regular minimal model X̄, which
is isotrivial by the Rigidity Theorem. The infinite part X̄ \ X of the minimal regular
model is shown to be holomorphically trivial. Consequently the minimal regular model
defines a holomorphically fibered pair of spaces, including the original bundle. This result
is given in Theorem 3.29.

For the investigation of families of elliptic curves, let the fibers of f be complex tori
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having exactly one puncture. By a theorem of A.Beauville, a family of elliptic curves
is isotrivial if the base space is again one of C, C∗, P1

C, or T . The minimal regular
model of X is locally trivial in the holomorphic sense by Fischer and Grauert. The
former punctures are translated by holomorphic automorphisms of the fibers and deform
holomorphically over the base space. Therefore, even outside its infinite part the resulting
bundle is locally trivial in the holomorphic sense.

Families of curves of genus 0 are always isotrivial and therefore define a holomorphic
fiber bundle by the theorem of Fischer and Grauert. For Section 3.1.3, let the fibers
of f : X → S be biholomorphic to P1

C with up to three punctures. After compactification
of the graph and removal of finitely many singular fibers, the resulting family is locally
trivial in the holomorphic sense by the theorem of Fischer and Grauert. Fiberwise,
the infinite part of the compactification consists constantly of up to three points. These
are translated such that they deform holomorphically within the bundle. The resulting
bundle is consequently trivial in the holomorphic sense outside its infinite part.

Finally, let f : X → S be a holomorphic fiber bundle having Riemann surfaces as fibers,
where X is not necessarily affine. This situation is investigated for global triviality in the
holomorphic sense. A result of H.Grauert [Gra58] ensures global triviality for holo-
morphic bundles having a connected complex Lie group as structure group. The focus is
therefore narrowed down to fiber bundles having a non-discrete and non-connected Lie
group as structure group. Using non-abelian cohomology, the main theorem, Theorem
3.43, of this section states that such a fiber bundle is globally trivial in the holomorphic
sense if and only if its corresponding cocycle is contained in the kernel of a mapping
defined in the theorem.

A Note on Reading this Thesis. The reader is advised to start reading the definition
of a fiber bundle and only look through the contents of the first chapter without going
into much detail. The preliminary chapter should then be skipped, since it only serves
to give a collection of mostly algebraic preparatory material used in following chapters.
The reader can therefore use it as reference and, if needed, come back to it for later
consultation.

With the exception of the usage of a minimal regular model in chapter three, chapters
two and three can be read independently. The result for the construction of differentiable
triviality in chapter two is mostly using methods from algebraic geometry, and constitutes
the main result of this thesis. This algebraic part ranges from Section 2.1 to 2.3, followed
by the main theorem, Theorem 2.70. The third chapter is largely using complex analytic
methods. The main results for local triviality in the holomorphic sense for fiber genus 2
or higher, Theorem 3.29, genus 1, Theorem 3.33, and fiber genus 0, Theorem 3.34, are
located at the end of Sections 3.1.1, 3.1.2, and 3.1.3. A criterion for global triviality in
the holomorphic sense, Theorem 3.43, is located in the shorter final section, Section 3.2.
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1 Preliminaries

Im großen Garten der Geometrie kann
sich jeder nach seinem Geschmack
einen Strauß pflücken.

D.Hilbert

One of the most important objects used in the following chapters is the notion of
a scheme, in particular that of a fibered surface. Some basic definitions are therefore
recalled in accordance to [Liu02]. The note on the comparison of algebraic and analytic
categories is based on [Har77]. For the following, a scheme X will be called integral at
x ∈ X if OX,x is an integral domain. This is equivalent to saying that X is reduced at x

and that there is a single irreducible component of X passing through x. The scheme X

is called integral if it is reduced and irreducible. This implies that X is integral at all of
its points.

1.1 Definition (Affine Scheme, Scheme). An affine scheme is a locally ringed space
(X, OX) which is isomorphic (as a locally ringed space) to the spectrum of some ring. A
scheme is a locally ringed topological space (X, OX) admitting an open covering {Ui}i∈I

such that (Ui, OX |U ) is an affine scheme for every i.

1.2 Definition (Normal Scheme). A scheme X is called normal at x ∈ X or x is
called a normal point of X if OX,x is normal. The scheme X is called normal if it is
irreducible and normal at all points.

1.3 Definition (Zariski Tangent Space). Let X be a scheme and x ∈ X. Let
mx be the maximal ideal of OX,x and k(x) := OX,x/mx be the residue field. Then
mx/m2

x = mx⊗OX,x
k(x) defines a k(x)-vector space in a natural way. Its dual (mx/m2

x)∨

is called the Zariski tangent space to X at x, and is denoted by T z
xX.

1.4 Definition (Regular Scheme). A scheme X is called Noetherian if it is a finite
union of affine open subsets Xi such that OXi(Xi) is a Noetherian ring for all i. It is
called locally Noetherian if every point possesses a Noetherian neighborhood.

Let X be a locally Noetherian scheme, and let x ∈ X be a point. The scheme X is
regular at x ∈ X, or x is a regular point of X, if OX,x is regular, i.e.

dimOX,x = dimk(x) T z
xX.
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1 Preliminaries

The scheme X is regular if it is regular at all of its points. A point x ∈ X which is not
regular is called a singular point of X.

1.5 Definition (Reduced Scheme). A ring R is called reduced if {0} is the only
nilpotent element of R. A scheme X is called reduced at x ∈ X if the ring OX,x is
reduced. The scheme X is called reduced if it is reduced at every point.

1.6 Definition (Dedekind Scheme). A ring is called a domain if 0 is a prime ideal. A
Noetherian normal domain of dimension 1 is called a Dedekind domain. A normal locally
Noetherian scheme of dimension 1 is called a Dedekind scheme.

1.7 Definition (Universally Catenary Schemes). A Noetherian ring R is called
catenary if for any triplet of prime ideals q ⊆ p ⊆ m, there is

ht(m/q) = ht(m/p) + ht(p/q),

where the height ht is the supremum of the lengths of strictly ascending chains of prime
ideals contained in the given prime ideal. A Noetherian ring R is called universally
catenary if every finitely generated R-algebra is catenary. A finitely generated algebra
over a universally catenary ring is universally catenary. A locally Noetherian scheme X

is catenary if its local rings are catenary, and is universally catenary if An
X is catenary

for every n ≥ 0.

1.8 Remark. Any scheme of locally finite type over a regular Noetherian scheme is
universally catenary, see [Liu02, Corollary 2.16].

1.9 Definition (Geometrically Integral Scheme). Let X be a scheme of finite type
over a field k. Let k̄ be the algebraic closure of k. The scheme X is called geometrically
reduced, resp. geometrically irreducible, if X ×Spec(k) Spec(k̄) is reduced, resp. irreducible.
The scheme X is called geometrically integral, if X ×Spec(k) Spec(k̄) is integral.

1.10 Definition (Formal Fiber). Let (R, m) be a locally Noetherian ring, and let R̂

be its completion for the m-adic topology. Fibers of the canonical morphism

Spec(R̂) → Spec(R)

are called the formal fibers of R.

The following notion of excellent rings and schemes was introduced byA.Grothendieck
in his “Éléments de Géométrie Algébrique” (EGA), see [EGA, IV2, 7.8.1].

1.11 Definition (Excellent Scheme). A Noetherian ring R is called excellent if it
verifies the following three properties.
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(a) Spec(R) is universally catenary.

(b) For every p ∈ Spec(R), the formal fibers of Rp are geometrically regular.

(c) For every finitely generated R-algebra B, the set of regular points of Spec(B) is
open in Spec(B).

Note that conditions (a) and (b) only relate to the localization of R at the prime ideals,
which is not the case for condition (c). A locally Noetherian scheme X is called excellent
if there exists an affine covering {Ui}i∈I of X such that OX(Ui) is excellent for every i.

1.12 Remark. Two important properties of excellent schemes are recalled from [Liu02,
Theorem 8.2.39].

(a) Any complete Noetherian local ring, in particular a field, is excellent.

(b) Moreover, let S be an excellent locally Noetherian scheme. Then any scheme that
is locally of finite type over S is excellent.

Consequently, the property of a scheme to be excellent is almost always true for the
schemes used in this work. It is only in the construction of a smooth minimal model of a
scheme over the spectrum of a local ring in Section 2.3 that the latter is not necessarily
excellent. For an example of a discrete valuation ring which is not excellent, see [Liu02,
Example 8.2.31].

1.13 Definition (Generic Fiber). Let f : X → Y be a morphism of schemes, where
Y is an irreducible scheme with generic point η. The fiber Xη is called the generic fiber
of the morphism f .

1.14 Proposition. Let S be a Dedekind scheme, let X be an integral scheme of dimension
2, and f : X → S be a dominant morphism, i.e. f(X) is dense in X. Then X → S is
flat.

Proof. Since X is irreducible, there exists an injection i : OX ↪→ K(X). The morphism
f is dominant, and therefore induces an injection j : K(S) → K(X) which does not
vanish. Since S is a Dedekind scheme, the surface X is flat over S if and only if OX

does not possess any S-torsion. Let g ∈ OX,x, x ∈ X, and r ∈ OS,g(x). Suppose that
r ·g = 0. It follows that i(r ·g) = 0 and consequently i(g) · j(r) = 0. Then either i(g) = 0
or j(r) = 0, since K(X) is a field. Therefore if j(r) 6= 0 (resp. i(g) 6= 0) then i(g) = 0
(resp. j(r) = 0). Since i (resp. j) is an injection, it follows that g = 0 (resp. r = 0).

1.15 Definition (Fibered Surface). Let S be a Dedekind scheme. An integral pro-
jective flat S-scheme f : X → S such that dimX = 2 is called a fibered surface over
S. The scheme X is also called a projective flat S-curve. The S-scheme X is a normal
(resp. regular) fibered surface if X is normal (resp. regular). A morphism (resp. rational
mapping) between fibered surfaces is a morphism (resp. rational mapping) that is com-
patible with the structure of S-schemes.
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1 Preliminaries

A Note on the Comparison of Algebraic and Analytic Categories

By a ground-breaking result of J.-P.Serre [Ser56] there exists a correspondence between
the category of complex analytic spaces with coherent analytic sheaves and complex al-
gebraic projective varieties with coherent algebraic sheaves, generally referred to as the
“GAGA”-principle.

First, a few basic facts on cohomology are recalled. The following theorem is a fun-
damental property of Zariski cohomology, and will be used to define the Euler-Poincaré
characteristic.

1.16 Theorem (Serre). Let A be a Noetherian ring, and X be a projective scheme over
A. Let F be a coherent sheaf on X. Then for any integer p ≥ 0, the A-module

Hp(X, F )

is finitely generated.

See [Liu02, Theorem 5.3.2].

1.17 Theorem. Let X be an affine scheme. Then for any quasi-coherent sheaf F on
X, and for any integer i ≥ 1,

H i(X, F ) = 0.

See [Liu02, Proposition 5.2.18].

1.18 Theorem. Let X be a quasi-projective scheme of dimension d over a Noetherian
ring A. Then X admits a covering by d + 1 affine open subsets. In particular,

H i(X, F ) = 0, for i > d.

See [Liu02, Proposition 5.2.24].

1.19 Definition (Complex Analytic Space). Let X be a Hausdorff space and OX

be a sheaf of rings. The space (X, OX) is called a complex analytic space if every x ∈ X

has a neighborhood U such that (U, OX |U ) is isomorphic to (U ′, OU ′), where U ′ is an
analytic subset of an open set W in some Cn, OU ′ is the sheaf of germs of holomorphic
functions on U ′, and OU ′ = (OW /I )|U ′ , where I is some ideal, which has the analytic
subset U ′ as set of zeros.
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Let X be a scheme of finite type over C. It is possible to cover X with open affine
subsets Xi = Spec(Ai), where each Ai is an algebra of finite type over C. Therefore

Ai
∼= C[x1, . . . , xn]/(f1, . . . , fq),

where f1, . . . , fq are polynomials in x1, . . . , xn. As holomorphic functions on Cn the set of
common zeros of these functions define an analytic subset (Xi)h. Since “glueing together”
the open sets Xi is giving the scheme X, it is possible to glue the analytic spaces (Xi)h

in the same way.The resulting space is called the associated complex analytic space of X.
This construction yields a functor h from the category of schemes of finite type over C
to the category of complex analytic spaces.

Let F be a coherent sheaf on X. For the Zariski topology, F is locally a cokernel of
a morphism ϕ of free sheaves

Om
U

ϕ−→ On
U −→ F −→ 0.

Since the analytic topology is finer than the Zariski topology, Uh is open in Xh. Fur-
thermore, ϕ is yielding local sections of OUh

. It is possible to define F h locally as the
cokernel of the corresponding mapping ϕh of free coherent analytic sheaves.

Most properties and theorems are preserved by this functor. A few examples are
connectedness, reducedness, and smoothness of spaces or properness of morphisms. For
any coherent sheaf F of OX -modules, it follows that

Fh
∼= ϕ∗F .

This induces natural mappings of cohomology groups

ψi : H i(X, F ) → H i(Xh, Fh).

The following theorem of J.-P.Serre is ensuring even an equivalence in cohomology for
projective schemes.

1.20 Theorem (Serre). Let X be a projective scheme over C. Then the functor h

induces an equivalence of categories from the category of coherent sheaves on X to the
category of coherent analytic sheaves on Xh. Furthermore, for every coherent sheaf F

on X, the natural mappings

αi : H i(X, F ) → H i(Xh, Fh)

are isomorphisms, for all i ≥ 0.

See [Ser56, Théorème 1, p. 19].
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1 Preliminaries

1.1 Normalizations and Blowing-ups

1.21 Definition (Analytic Normalization). Let X be a reduced complex analytic
space. A finite holomorphic mapping π : X ′ → X is called a normalization of X, if X ′ is
normal, and there exists a thin analytic subset A of X such that π−1(A) is thin in X ′,
and if π : X ′ \ π−1(A) → X \A is biholomorphic.

1.22 Proposition. Let X be a reduced complex analytic space. If x ∈ X is normal, then

dimx S(X) ≤ dimx X − 2,

where S(X) is the singular locus of X.

See [GR84, 5.3].

1.23 Definition (Algebraic Normalization). Let X be an integral scheme. A mor-
phism π : X ′ → X is called a normalization morphism if X ′ is normal, and every dominant
morphism g : Z → X, where Z is normal, factors uniquely through π.

Z //

g
ÂÂ@

@@
@@

@@
@ X ′

π
~~||

||
||

||

X

1.24 Remark. Analytically, outside of singular points, a normalization π : X ′ → X is a
one-sheeted analytic covering of a reduced complex space X, where X ′ is a normal com-
plex space. Since analytic and algebraic normalization coincide, see [KK83, Proposition
71.8], the two will not be distinguished later on.

1.25 Theorem (Normalization Theorem). Let X be an integral scheme. Then there
exists a normalization morphism π : X ′ → X, which is unique up to isomorphism of
X-schemes. A morphism f : Y → X is the normalization morphism if and only if Y is
normal, and f is birational and integral.

See [Liu02, Proposition 4.1.22].

The birational mapping of a blowing-up of a variety at a point is a main tool in the
resolution of singularities of varieties. Let R be a Noetherian ring, and I be an ideal in
R. Define the graded R-algebra

R̃ :=
⊕

d≥0

Id, where I0 := R.

6



1.1 Normalizations and Blowing-ups

This definition is, of course, dependent on I. Let f1, . . . , fn be a system of generators of
I. Let ti ∈ I = R̃1 denote the element fi as a homogeneous element of degree 1. There
exists a surjective homomorphism of graded R-algebras

ϕ : R[T1, . . . , Tn] → R̃

Ti 7→ ti.

Therefore R̃ is a homogeneous R-algebra, i.e. a graded algebra being the quotient of
R[T1, . . . , Tn] by a homogeneous ideal.

Let P (t) be a homogeneous polynomial with coefficients in R. Then P (t1, . . . , tn) = 0
if and only if P (f1, . . . , fn) = 0. This motivates the following definition.

1.26 Definition. Let X = Spec(R) be an affine Noetherian scheme, and let I be an ideal
of R. Define X̃ := Proj(R̃). The canonical morphism X̃ → X is called the blowing-up of
X with center (or along) V (I), where Proj(R̃) is the set of homogeneous prime ideals of
R̃, not containing the ideal

⊕
d>0 R̃d, and V (I) := {p ∈ Spec(R) | I ⊂ p}.

1.27 Remark. It is possible to endow the set Proj(R̃) with the structure of an R-scheme,
see [Liu02, Proposition 2.3.38].

1.28 Definition (Blowing-up of a Scheme). Let X be a scheme. A quasi-coherent
sheaf B of OX -algebras with grading B =

⊕
n≥0 Bn, where the Bn are quasi-coherent

sub-OX -modules, is called a graded OX-algebra. If in addition B1 is finitely generated,
and (B1)n = Bn for every n ≥ 1, B is called a homogeneous OX-algebra. For any affine
subset U of X, B(U) is a homogeneous OX -algebra.

Let I be a coherent sheaf of ideals on a locally Noetherian scheme X. The X-scheme

Proj
(⊕

n≥0

I n
) → X

is called the blowing-up of X with center (or along) V (I ), the closed subscheme of X

corresponding to the sheaf of ideals I . The scheme Proj(
⊕

n≥0 I n) will be denoted by
X̃. In case X is affine, this definition coincides with the previous definition.

1.29 Theorem (Universal Property of Blowing-ups). Let X be a locally Noetherian
scheme and I be a coherent sheaf of ideals. Let π : X̃ → X be the blowing-up of X along
V (I ). If g : W → X is any morphism such that (g−1I )OW is an invertible sheaf of

7



1 Preliminaries

ideals on W , then there exists a unique morphism g̃ : W → X̃ factoring g.

W
g̃ //

g
ÃÃA

AA
AA

AA
A X̃

π
ÄÄ~~

~~
~~

~

X

See [Liu02, Proposition 8.1.15].

The next theorem shows that projective birational morphisms are blowing-ups.

1.30 Theorem. Let f : W → X be a projective birational morphism of integral schemes.
Suppose that X is quasi-projective over an affine Noetherian scheme. Then f is the
blowing-up of X along a closed subscheme.

See [Liu02, Theorem 8.1.24].

1.31 Remark. In dimension 1 the notion of normality coincides with that of regularity.

It is possible to determine the normalization of an integral projective curve X over a
field k of characteristic 0 by successive blowing-ups. Let therefore X be singular, and let
X1 → X0 = X be the blowing-up of X0 along the singular locus of X0 endowed with the
reduced scheme structure. Repeat the process unless the resulting curve is not singular.

1.32 Proposition. The sequence defined

X = X0 ←− X1 ←− X2 · · ·

is finite. There exists a desingularization of X by a finite number of successive blowing-
ups with regular centers.

See [Liu02, Proposition 8.1.26].

It will be shown in Section 2.2 that there exists a finite number of successive blowing-
ups and normalizations to desingularize a Noetherian normal connected and excellent
scheme X of dimension 2.

8



1.2 Introduction to Fiber Bundles

1.2 Introduction to Fiber Bundles

To simplify notation, intersections of sets Ui and Uj may be denoted by Uij .

1.33 Definition (Lie Group). Assume that G is a set that has the structure of a group
and at the same time that of an n-dimensional complex manifold. The inverse of g ∈ G

will be denoted by g−1, the identity element by e, and the composition of two elements
g1, g2 ∈ G by g1g2. If G satisfies the following two properties, it is called a complex Lie
group.

(a) The mapping g 7→ g−1 is holomorphic.

(b) The mapping (g1, g2) 7→ g1g2 is holomorphic.

One of the most important examples of a complex Lie group is the general linear group

GLn(C) := {A ∈ Mn(C) | det A 6= 0},

where Mn(C) is the group of complex (n× n) matrices.

1.34 Definition (Fiber Bundle). Let S and F be complex manifolds, and let G be
a complex Lie group acting analytically and faithfully on F . A topological fiber bundle
over S with structure group G and typical fiber F is given by a topological space X and
a continuous mapping π : X → S, together with

(a) an open covering {Ui}i∈I of S,

(b) for any i ∈ I a topological mapping

ϕi : π−1(Ui) → Ui × F

with pr1 ◦ϕi = π,

(c) for any pair of indices (i, j) ∈ I × I a continuous mapping gij : Ui ∩ Uj → G with

ϕi ◦ ϕ−1
j (x, y) = (x, gij(x)y)

for x ∈ Ui ∩ Uj and y ∈ F .

The mappings ϕi are called local trivializations and the mappings gij a system of transi-
tion functions.

If X is a complex analytic manifold, then analogously (X, π, S) is a differentiable
(resp. holomorphic) fiber bundle if f , π, and the gij are differentiable (resp. holomor-
phic) mappings.

9



1 Preliminaries

As convention in the following, if the structure group is not explicitly mentioned, the
term fiber bundle just refers to the property of being locally trivial.

Fiber bundles, which have vector spaces as fibers, and the general linear group as struc-
ture group are called vector bundles.

1.35 Remark. Since G is acting faithfully, the following compatibility condition holds.

gijgjk = gik, for Uijk.

Consequently gii = e and gij = g−1
ji .

1.36 Definition ((Cross) Section). Let (X, f, S) be a fiber bundle. A (cross) section
in X over an open subset U ⊂ S is a mapping s : U → X with f ◦ s = idU . A section,
which is defined over the entire base space is called a global section.

1.37 Definition (Canonical Line Bundle). Let X be a n-dimensional manifold,
{Ui}i∈I an open covering of X, and {ϕi : Ui → Cn} suitable coordinate charts on X.
To construct a fiber bundle, choose C as the typical fiber and C∗ as structure group,
acting on C. It is possible to define transition functions gij : Uij → C∗ by

gij(x) := detDϕi◦ϕ−1
j

(ϕj(x))−1.

By the chain rule and the determinant product theorem, the compatibility conditions are
satisfied. “Glueing together”, i.e. identifying (x, p) ∈ Ui × C with (x, gij(x)(p)) over Uij

yields a fiber bundle over X, called the canonical line bundle.

1.38 Example (Tangent Bundle). Let M be an n-dimensional differentiable manifold.
Define

TM :=
⋃

a∈M

TaM,

and let π : TM → M be the canonical projection such that π(v) = a, for v ∈ TaM , where
TaM is the differentiable tangent space at the point a. Through the charts of M , it is
possible to define differentiable bundle mappings

ϕ : π−1(U) → U × Rn

for any open subset U ⊂ M . Furthermore it is possible to endow TM with the structure
of a differentiable manifold. Then (TM, π, M) is a differentiable vector bundle. A
section in TM is called a vector field .

10



1.2 Introduction to Fiber Bundles

1.39 Definition (Fiber Bundle Isomorphism). Let (X, f, S) and (Y, g, S) topolog-
ical (resp. differentiable, holomorphic) fiber bundles over a manifold S, with the same
fiber F and the same structure group G. Let {Ui}i∈I be an open covering of S such that
there exist trivializations ϕi : f−1(Ui) → Ui × F and ψi : g−1(Ui) → Ui × F .

A fiber bundle isomorphism between (X, f, S) and (Y, g, S) is a topological (resp. dif-
ferentiable, holomorphic) mapping h : X → Y with g ◦ h = f such that for any i ∈ I

there exists a continuous (resp. differentiable, holomorphic) mapping hi : Ui → G with

ψi ◦ h ◦ ϕ−1
i (x, y) = (x, hi(x)(y)).

The two fiber bundles are called equivalent in this case.

11





2 Differentiable Fiber Bundles

Algebra is the offer made by the devil
to the mathematician. The devil
says:“I will give you this powerful
machine, and it will answer any
question you like. All you need to do
is to give me your soul: give up
geometry and you will have this
marvelous machine.”

Sir M.F.Atiyah

A polynomial function f : C2 → C which does not possess any critical points does not
necessarily define a differentiable fiber bundle. The following example of S.A.Broughton,
see [Bro81], illustrates this fact. The polynomial

f(x, y) = x(xy − 1)

possesses no critical points. However it does not define a C∞-fiber bundle, since the
topological type of the fiber at f = 0 is different from that of the general fiber. The Euler-
Poincaré characteristic of the fiber above 0 is equal to 1, that of the general fiber is equal
to 0. The following theorem of HàH.V. and LêD.T. states that the Euler-Poincaré
characteristic of the fibers being invariant causes a polynomial mapping f : C2 → C to
define a differentiable fiber bundle.

Theorem (Hà, Lê). The polynomial mapping f : C2 → C defines a C∞-fiber bundle
over a neighborhood of z ∈ C if and only if z is not a critical value of f , and if the
Euler-Poincaré characteristic of f−1(z) is equal to that of the general fiber of f .

See [HL84, théorème principal].

In the following chapters the notion of a natural number being positive is always used
in the sense of being strictly positive. In the present chapter a generalization of the
theorem above will be given. The main theorem, Theorem 2.70, extends the mentioned
result from C2 to 2-dimensional non-singular affine complex algebraic varieties. For this,
the morphism is required to have irreducible fibers of positive geometric genus and all
fibers need to be pairwise homeomorphic. The theorem does not require C to be the base
space, but is instead valid for any smooth complex algebraic curve S.

13



2 Differentiable Fiber Bundles

Usual compactification of the morphism by homogenization with an additional variable,
under conditions of Hà and Lê’s theorem, is compactifying fibers by single points. In the
case of a variety as total space this method of compactification may yield 1-dimensional
components in the “infinite part” of the closure of single fibers, which make it difficult to
transfer Hà and Lê’s methods.

The main tool in achieving a suitable compactification of a morphism f : X → S will be
the following Minimal Models Theorem. A minimal model is a certain compactification
of the given morphism. Its existence will be shown below in Section 2.2.

In addition it is necessary to show the minimal model to be smooth. For this, the
morphism f will be examined locally over a Henselization Oh

S,z, with z ∈ S, in Section
2.3. An arbitrary compactification of the morphism results in components in the “infinite
part” of the closure of one fiber. For a Henselian base space there exists the contraction
morphism, with which these components can be contracted to isolated points. The re-
sulting space X ′ with morphism f ′ is then a relatively minimal model of X×SSpec(Oh

S,z),
and the fibers of f in X are dense in the fibers of f ′ in X ′. Since the generic fiber of the
normalization X ′′ of X ′ is smooth, it follows that

pa((X ′′)η) = pg((X ′′)η).

It will be shown that the arithmetic genus of the fibers in X ′′ does not vary over the base
Spec(Oh

S,z). The fibers in X are contained densely in the fibers of X ′′. This is implying
the same for X ′ and X ′′ in the local Henselian case. Hence arithmetic and geometric
genus of the fibers of X ′′ are equal and constant over the local Henselization, which will
prove the morphism to be smooth by a result of T. Sekiguchi, F. Oort, and N. Suwa,
see [SOS89, Lemma 2.3]. The arithmetic genus being constant and positive makes X ′′ a
minimal regular model of X ×S Spec(Oh

S,z).

Let X̄ be the minimal model of X over S. Due to properties of the local Henselization,
the minimal model X̄ commutes with the local minimal model X ′′ which is smooth. The
smoothness of X̄ follows from the uniqueness of the minimal model.

For this situation the Ehresmann Fibration Theorem, Theorem 2.49, is giving local
differentiable trivializations on X̄. To show that X also defines a C∞-fiber bundle, it
will be shown that the unit vector field in S can be lifted locally to a vector field w in
X̄ such that w is tangential to X̄ \ X. For this, the morphism X̄ → S restricted to
X̄ \X is shown to be smooth as well. “Glueing” these local vector fields together with
a partition of unity is resulting in a globally integrable vector field, whose restriction to
X̄ \X and X is defining an integrable vector field on X̄ \X and X respectively. From
this vector field local differentiable trivializations will be constructed using a recursive
argument such that the space (X̄, X) turns out to be a differentiably fibered pair.
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2.1 The Minimal Regular Model

2.1 Definition (Monoidal Transformation). Let X be a regular surface. A monoidal
transformation of X is defined to be the blowing-up of a single point P ∈ X. Let f : X̃ →
X be the monoidal transformation with center P . Then f induces an isomorphism of
X̃ \ f−1(P ) onto X \ {P}. The inverse image of P is a curve E, which is called an
exceptional curve or exceptional divisor.

2.2 Definition (Strict Transform). Let X be a locally Noetherian scheme and f : X̃ →
X the blowing-up of X along a closed subscheme Y , which has the associated ideal I .
Let W be a closed subscheme of X not contained in Y . Let W̃ be the blowing-up of the
inverse image ideal sheaf (j−1I )OW on W , where j is the imbedding of W into X. The
closed subscheme W̃ ⊆ X̃ is called the strict transform of W under the blowing up f .

2.3 Remark. Set-theoretically, the strict transform of W is the Zariski closure of
f−1(W \ Y ) in X̃.

2.4 Definition (Regular Model). Let S be a Dedekind scheme with function field
K. Let C be a normal projective curve over K. A normal fibered surface X → S with
generic fiber Xη together with an isomorphism Xη → C is called a model of C over S. It
is called a regular model of C if X is regular. A morphism X → X ′ of two models of C is
a morphism of S-schemes that is compatible with the isomorphisms Xη → C, X ′

η → C.

2.5 Definition (Minimal Regular Model). A regular fibered surface X → S is
relatively minimal or is a relatively minimal model of its function field K(X), if it does
not contain any exceptional divisor, i.e. every birational morphism of regular fibered
surfaces X → Y is an isomorphism.

It is calledminimal or aminimal model of K(X), if every birational mapping of regular
fibered surfaces X 99K Y is a birational morphism. A regular fibered surface Y → S

with this property such that the generic fiber Yη is isomorphic to X, is called a minimal
regular model of X.

A minimal model is, of course, relatively minimal. If it exists, the minimal model is
unique up to unique isomorphism.

A morphism of two (regular) models Y, Z of Xη is a morphism of fibered S-surfaces
Y → Z which is compatible with the birational mappings Y 99K X, Z 99K X.

2.6 Remark. Analytically, a regular minimal model over a smooth complex curve is a
manifold together with a proper holomorphic mapping.

The following theorem is insuring the existence of minimal regular models of regular
curves. The existence will be proven in Section 2.2.
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2 Differentiable Fiber Bundles

2.7 Theorem (Minimal Models Theorem). Let R be a Dedekind domain, and let
X be a regular curve over S := Spec(R). Assume that the fraction field K(S) of R is
algebraically closed in K(X), i.e. the generic fiber Xη is geometrically integral. Then there
exists a relatively minimal model Y of the function field K(X). If H1(Xη,OXη) 6= 0,
then Y is a minimal model of K(X).

See J. Lipman [Art86] for the existence of a regular model, and T.C.K.Chinburg
[Chi86, §7] for the existence of the minimal regular model.

Let X be a projective scheme over a Noetherian ring, and let F be a coherent sheaf
on X. The cohomology groups Hp(X, F ) are finitely generated for all p ≥ 0 by the the-
orem of J.-P. Serre above, Theorem 1.16, and vanish for p > dimX by Theorem 1.18.
Therefore the Euler-Poincaré characteristic in the following definition is well defined.

2.8 Definition (Euler-Poincaré Characteristic). Let X be a projective variety over
a field k. Let F be coherent sheaf on X. The alternating sum

χk(F ) =
∑

i≥0

(−1)i dimk H i(X, F )

is called the Euler-Poincaré characteristic of F .

2.9 Definition (Arithmetic Genus). Let X be a projective curve over a field k. The
arithmetic genus pa of X is defined to be the integer

pa := 1− χk(OX).

If the projective curve X is geometrically connected and geometrically reduced, so that
H0(X,OX) = k, then

pa = dimk H1(X, OX).

2.10 Definition (Geometric Genus). Let X be a smooth variety of pure dimension
n over a field k. The invertible sheaf on X

ωX :=
n∧

ΩX/k

is called the canonical sheaf of X, the nth exterior power of the sheaf of differentials,
where n = dimX. If X is projective and smooth, define the geometric genus pg of X to
be

pg := dimk H0(X, ωX).

However, if X is a curve and either not smooth or not projective, the geometric genus of
X is defined to be the geometric genus of its unique geometrically integral and normal

16



2.2 Existence of the Minimal Regular Model in the Global Case

compactification. This unique compactification always exists for curves. If k = C and X

is normal, this means that X is topologically equivalent to a sphere with a finite number
of handles attached to it, and having a finite number of punctures. If X is smooth, the
punctures are filled with points without adding singularities. The geometric genus is
then the usual topological genus, simply defined to be the number of handles.

2.11 Remark. In case of a projective smooth curve X over a field, H1(X, OX) and
H0(X, ωX) are dual vector spaces as a consequence of Serre Duality, [Har77, III, Theorem
7.6]. Therefore the arithmetic genus and geometric genus coincide.

2.12 Proposition. Let S be a Dedekind scheme with generic point η and closed point s.
Let f : X → S be a projective morphism and F a coherent sheaf on X that is flat over
S. Then

χk(s)(Fs) = χk(η)(Fη).

See [EGA, III2, Corollaire 7.9.3].

The fact that the Euler-Poincaré characteristic is constant for flat structure sheaves of
fibers of a surface will be used to conclude the constance of the arithmetic genus of these
fibers.

2.2 Existence of the Minimal Regular Model in the Global
Case

The results of this section can be found in [Art86] and [Chi86]. For the construction of
a minimal regular model, a regular fibered surface is needed. The following theorem of
J. Lipman is used to construct such a regular surface.

2.13 Theorem (Lipman). Let X be a Noetherian normal connected and excellent
scheme of dimension 2. Define a sequence of schemes

X = X0
f1←− X1

f2←− X2 · · ·

inductively as follows: Let Si ⊂ Xi be the (reduced) singular locus. Then Xi+1 is the
normalization of the blowing-up of Si in Xi or equivalently, the normalization of the
scheme obtained by blowing up the maximal ideal of Si in succession. Then each Xi is a
Noetherian, normal, connected and excellent scheme of dimension 2, and the mappings
fi are proper. Moreover the scheme Xn is regular if n is sufficiently large.

See M. Artin’s presentation of the proof in [Art86].

For the following, all schemes and rings are excellent and Noetherian, R is a Dedekind
ring, the curve X over R is connected and normal. Moreover S is always normal.
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2 Differentiable Fiber Bundles

2.2.1 The Factorization Theorem and the Castelnuovo Criterion

The next theorem shows that proper birational morphisms are blowing-ups.

2.14 Theorem (Factorization Theorem). Let X, X ′ be regular surfaces and π :
X ′ → X be a proper birational morphism. Then X ′ is isomorphic to the scheme obtained
from X by a finite number of successive blowing-ups.

See [Chi86, §2].

Using the Factorization Theorem it is now possible to clarify the uniqueness of blowing-
downs of exceptional curves on regular surfaces.

2.15 Lemma. Let Y be a normal locally Noetherian scheme, let X be an integral scheme,
and f : X → Y a proper birational morphism. Then the following properties hold.

(a) The canonical homomorphism OY → f∗OX is an isomorphism.

(b) There exists an open subset V of Y such that f−1(V ) → V is an isomorphism, and
Xy has no isolated points if y 6∈ V . Moreover, the complement of V has codimension
≥ 2.

See [Liu02, Corollary 4.4.3].

2.16 Corollary. Let X be a regular surface and Y be a normal surface. Suppose π :
X → Y is a proper birational morphism, a blowing-down of a prime divisor E on X to
a point P of Y and an isomorphism outside of |E|. Then Y and P determine X and E

up to isomorphism over Y , and X and E determine Y up to isomorphism.

Proof. With E being prime, the Factorization Theorem shows π to be the blowing-up of
Y at P . Therefore X and E are determined up to isomorphism over Y . The converse
statement is a consequence of Lemma 2.15.

2.17 Definition (Intersection Product). Let i : E → X be a closed injection of a
proper integral curve E over a field k into a regular scheme X. There is a canonical
morphism from the group of Cartier divisors Div(X) into the group of Weil divisors
Z1(X). Since X is normal, this morphism is an immersion. From the regularity of X

follows that the morphism is surjective. It is now possible to define a positive Cartier
divisor on X to be a closed subscheme F of X such that the sheaf of ideals I which
defines F is invertible. Define ik(E, F ), the intersection of E and F with respect to k, to
be deg(i∗I −1), where i∗I −1 is the induced invertible sheaf on E. If k = H0(E,OE),
the self-intersection E(2) of E is defined to be ik(E,E). A Cartier divisor on X is a
formal integral linear combination of positive Cartier divisors.
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2.2 Existence of the Minimal Regular Model in the Global Case

The Castelnuovo Criterion is used to decide whether a fibered surface is minimal. It
states that an exceptional divisor of a regular fibered surface is contained in a single
fiber, is of genus zero, and has only normal self-intersection.

2.18 Theorem (Castelnuovo Criterion). Let X → S be a regular fibered surface. A
prime divisor E of X is exceptional if and only if

(a) E is contained in a fiber X over a closed point of S,

(b) H1(E, OE) = 0, and

(c) E(2) = −1.

In this case E is isomorphic to P1
k over the field k = H0(E, OE).

See [Chi86, §6].

2.2.2 The Minimal Models Theorem

2.19 Lemma. Let R be a Dedekind ring and let X be a regular fibered surface over
S := Spec(R). Assume that the fraction field K(S) of R is algebraically closed in K(X),
i.e. the generic fiber Xη is geometrically integral. Then X has the following properties.

(a) The fibers of X are connected.

(b) Let x be a closed point of S, with residue field k = k(x). Let V be the real vector
space whose basis is the set {Fi} of irreducible components of the fiber Xx of X

over x. Then ik(Xx, D) = 0 for all D ∈ V . The pairing on V/RXx, induced by
ik( , ), is negative definite.

(c) The exceptional divisors on X lie in reducible fibers of X. The number α(X) of
irreducible divisors of X which lie in reducible fibers of X is finite.

By linearity the intersection product ik can be prolonged to V .

See [Chi86, Lemma 7.1].

2.20 Corollary. Let X and S be as in Lemma 2.19. Construct a sequence {X(n)}n of
regular curves over S in the following way. Let X(0) = X. If X(n) has been defined,
and there is an exceptional curve on X(n), let πn : X(n) → X(n + 1) be a blowing-down
over S of one such curve. Then the sequence {X(n)}n is necessarily finite. If Y is the
last term in the sequence, then Y is a relatively minimal model for K(X).
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Proof. The number α(X(n)) of irreducible divisors of X(n) which lie in reducible fibers
must decrease as n increases. Since the number α(X(0)) of components in X(0) is
finite, the sequence {X(n)}n must be finite. The final term Y in this sequence can
have no exceptional curves, therefore Y is a relatively minimal model for K(X) by the
Factorization Theorem.

The following lemma is the key in showing that Y in Corollary 2.20 is a minimal model
if the generic fiber of X has positive genus.

2.21 Lemma. Let R be a Dedekind ring and let X be a regular fibered surface over
S := Spec(R). Assume that the fraction field K(S) of R is algebraically closed in K(X),
i.e. the generic fiber Xη is geometrically integral. Let X ′ → X be a birational S-morphism
from a regular curve X ′ over S to X, which is the blowing-down of an exceptional curve
E on X ′ to a point P ∈ X. Assume that

H1(Xη, OXη) 6= 0.

Suppose that C ′ is an exceptional curve on X ′. Then either C ′ = E, or C = f(C ′) is an
exceptional curve in X which does not contain P .

One of the key results used in the proof of this lemma in [Chi86] is Lemma 2.19 (b).
First it is shown that, in case C ′ 6= E, the curve C is an exceptional curve if P /∈ C.
Furthermore, in case P ∈ C, Lemma 2.19 (b) provides that C is a rational multiple of a
fiber of X over a closed point of S. Hence C(2) = 0. It is shown that C is isomorphic to
P1

k, where k = H0(C ′, OC′) = H0(C, OC). Finally it is concluded that

H1(Xη, OXη) = H1(X, OX)⊗R K = 0,

where K is the quotient field of the Dedekind ring R. This is contradicting the hypothesis
of H1(Xη, OXη) 6= 0, proving the lemma.

For a detailed proof see [Chi86, Lemma 7.2].

2.22 Definition (S-birational Mapping). Let X and Y be regular surfaces over a
base scheme S. An S-rational mapping f : X → Y is an equivalence class of S-morphisms
from open dense subsets of X to Y , where two such morphisms are equivalent if they
agree on the intersection of their domains. By [EGA, I, Proposition 7.2.2], there is a
largest dense open set U in X, on which an element in the equivalence class of f is
defined. The set U is called the domain of f . In particular, f is a morphism if and only
if f is defined at each x ∈ X, i.e. an element in the equivalence class of f has x in its
domain. By [EGA, II, Proposition 7.3.5], the codimension of X \ U in X is at least two.
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2.3 Existence of the Minimal Regular Model in the Local Henselian Case

If f induces an isomorphism between the function fields of X and Y , then f is called an
S-birational mapping.

2.23 Proposition. Let g : X → X ′ be a proper S-birational mapping between regular
2-dimensional surfaces, which are proper over a base scheme S. Then there is a regular
surface Z and a proper birational S-morphism π : Z → X and g′ : Z → X ′ such that
g′ = g ◦ π.

Z
π //

g′ ÃÃA
AA

AA
AA

A X

g~~||
||

||
||

X ′

See [Chi86, Proposition 2.2].

2.24 Theorem (Minimal Models Theorem). Let R be a Dedekind domain, and let
X be a regular curve over S := Spec(R). Assume that the fraction field K(S) of R is
algebraically closed in K(X), i.e. the generic fiber Xη is geometrically integral. Construct
a sequence {X(n)}n of regular curves over S as done in Corollary 2.20.
If H1(Xη,OXη) 6= 0, then the final curve Y in this sequence is a minimal model of K(X).

See T.C.K.Chinburg [Chi86, §7]. The proof of the Minimal Models Theorem was first
given independently by S. Lichtenbaum and I.R. Shafarevich, cf. [Lic68] and [Sha66].

Proof. According to Corollary 2.20, the final curve Y is a relatively minimal model for
K(X). Suppose Y and Y ′ are relatively minimal models of K(X), and assume that the
general fiber of X has positive genus. It follows from Proposition 2.23 that there is a
regular curve X ′ over S for which there are proper S-birational morphisms π : X ′ → Y

and π′ : X ′ → Y ′. Suppose further that X ′ has been chosen, so that α(X ′), the number
of irreducible divisors contained in reducible fibers of X ′, is minimal. It follows from
Lemma 2.21 and H1(Xη, OXη) 6= 0 that X ′ can not have any exceptional curves. From
the Factorization Theorem, Theorem 2.14, follows that π and π′ are isomorphisms.

2.3 Existence of the Minimal Regular Model in the Local
Henselian Case

For a fibered surface over the spectrum of a Henselian discrete valuation ring there
exists the contraction morphism for irreducible components. This contraction is used to
construct a fibered surface, which does not contain any exceptional divisors and therefore
is a relatively minimal regular model, whose fibers contain the fibers of the original surface
densely.
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2 Differentiable Fiber Bundles

If the fibers of the original surface are irreducible and of constant positive geomet-
ric genus, then these attributes are inherited through the construction by the relatively
minimal regular model, which in turn is shown to be smooth and minimal. Later, this
construction will yield a submersion in the analytic sense, allowing to create a differen-
tiable trivialization in the main theorem.

2.3.1 Henselization

2.25 Definition (Étale Morphism). Let f : X → Y be a morphism of finite type
of locally Noetherian schemes. Let P ∈ X and P ′ = f(P ). The morphism f is
called unramified at P if the homomorphism OY,P ′ → OX,P verifies mP ′OX,P = mP ,
i.e.OX,P /mP ′OX,P = k(P ), and if the (finite) extension of residue fields k(P ′) → k(P ) is
separable. The morphism f is called étale at P if it is unramified and flat at P . A homo-
morphism of Noetherian local rings A → B is called étale if it is unramified, flat, and if
B is a localization of a finitely generated A-algebra. The morphism is called unramified
(resp. étale) if it is unramified (resp. étale) at every point of X.

For this section let R be a local ring with residue field k. Let S be the affine (local)
spectrum of R and let s be the closed point of S.

2.26 Definition (Henselian Ring). The local ring R is called Henselian if, for each
monic polynomial P ∈ R[T ], all k-rational simple zeros of the residue class P̄ ∈ k[T ] lift
to R-rational zeros of P .

2.27 Definition (Jacobson Radical). Let R be a ring. The intersection of all maximal
ideals in R,

r :=
⋂

m∈Spm(R)

m,

is called the Jacobson radical of R, where Spm(R) is the set of maximal ideals of R.

2.28 Theorem (Hensel’s Lemma). Let R be a ring, which possesses only a finite
number of maximal ideals. Let R be separated and complete with respect to the r-adic
topology, where r is the Jacobson radical of R. Then R is Henselian.

See A.Grothendieck [EGA, IV4, 18.5.14].

Equivalently to Definition 2.26 there is the following definition.

2.29 Definition (Henselian Scheme). The local scheme S is called Henselian if each
étale mapping S′ → S is a local morphism at all points x of S′ over s with trivial residue
field extension k(x) = k(s).

Since a local Noetherian ring R is always a subring of its m-adic completion R̂, these lo-
cal rings are a priori subrings of Henselian rings. The “smallest” Henselian ring containing
R is called the Henselization of R.
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2.3 Existence of the Minimal Regular Model in the Local Henselian Case

2.30 Definition (Henselization). A Henselization of a local ring R is a Henselian local
ring Rh together with a local morphism i : R → Rh such that the following universal
property is satisfied: For any local morphism u : R → A from R to a Henselian local ring
A, there exists a unique local morphism uh : Rh → A such that uh ◦ i = u.

2.31 Remark. If the Henselization exists, it is unique up to unique isomorphism. More-
over, the residue field of Rh must be k. In view of Definition 2.29, the Henselization of R

must be the “union”of all local ring OX,x of étale R-schemes at points x above the closed
points s of S = Spec(R), whose residue fields coincide with k. For the existence of such
a “union” in terms of inductive limits, see [BLR90, 2.3, Lemma 7].

2.32 Definition (Vertical curve). Let f : X → S be a fibered surface over a Dedekind
scheme S. A closed curve E in X is called vertical if f(E) is reduced to a point.

2.33 Definition (Contraction Morphism). Let X → S be a normal fibered surface.
Let E be a finite set of integral (projective) curves on X. A normal fibered surface
X ′ → S together with a projective birational morphism f : X → X ′ such that for every
integral vertical curve E on X, the set f(E) is a point if and only if E ∈ E , is called a
contraction morphism of the E ∈ E .

The following theorem is the key result in the construction of a compactification of
the morphism of a fibered surface, having no 1-dimensional components in the infinite
part.

2.34 Theorem. Let X → S be a normal fibered surface over the spectrum of a Henselian
discrete valuation ring. Then for any proper subset E of the set of irreducible components
of Xs, where s ∈ S is a closed point, the contraction morphism of E ∈ E exists.

See [Liu02, Theorem 8.3.36].

2.3.2 The Minimal Regular Model in the Henselian Case

The existence of the contraction morphism over a Henselian base will be used in the
following to construct a compactification, whose fibers densely contain the fibers of the
original surface. This way, the appearance of positive-dimensional components in the
closure will be circumvented.

2.35 Proposition. Let S be a Dedekind scheme and f : X → S be a normal integral flat
S-scheme, and let f be surjective. Suppose that S is Henselian, and dimX = 2. Then
there exists a compactification X ′ of X such that the the fibers of X are dense in the
fibers of X ′.
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2 Differentiable Fiber Bundles

Proof. Let X ′′ be a compactification of f . Let E be the set of curves in the “infinite
part” X ′′

s \ Xs of the compactification. By Theorem 2.34 there exists the contraction
morphism f : X ′′ → X ′, where f(E) is a point for each E ∈ E . Therefore X ′ is the
desired compactification.

2.36 Proposition. Let S be a Dedekind scheme and f : X → S be an integral projective
scheme such that f is dominant and geometrically integral, and dimX = 2. Then the
function t 7→ pa(Xt) with t ∈ S is constant.

Proof. By Proposition 1.14, OX is flat over S, since X is integral. Then by Proposi-
tion 2.12 the Euler-Poincaré characteristic χ(OXt) of the fibers Xt is constant.

2.37 Definition (δ-invariant). Let A be a ring and M be an A-module. The module
M is called simple if M 6= {0}, and if 0 and M are the only sub-A-modules. It is called
of finite length if there exists a chain

0 = M0 ⊂ · · · ⊂ Mn = M

of sub-A-modules of M such that Mi+1/Mi is simple for every i ≤ n − 1, in particular,
Mi+1 6= M . The length of M is then defined to be lengthA(M) := n.

Let X be an integral projective scheme of dimension 1 over a field k, and let f : X̃ → X

be its normalization. Define the δ-invariant δP for P ∈ X as

δP := lengthOX,P
(ÕX,P /OX,P ),

where ÕX,P is the integral closure of OX,P . Then δP = 0 if and only if P is a normal,
hence regular point of X. The δ-invariant of X is then defined as

δ :=
∑

P∈X

δP .

Hence δ = 0 if and only if X is regular.

2.38 Remark. Let X be an integral projective scheme of dimension 1 over a curve over
a field k. It follows from the definition that, between the δ-invariant and the geometric
genus, there is the close relation

pg(Xη)− pg(Xs) = δ.

Using the constance of the two genera, the following proposition is insuring the smooth-
ness of the morphism of the minimal regular model constructed later in Theorem 2.44.
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2.39 Proposition (Sekiguchi, Oort, Suwa). Let R be a discrete valuation ring and
S := Spec(R). By η and s denote the generic and special points of S, respectively. Let
f : X → S be a projective flat morphism with geometrically integral curves as fibers.
Assume pg(Xη) = pg(Xs). Then the mapping f̃ : X̃ → S induced by the normalization
of X has the non-singular models of Xη and Xs as fibers, i.e. the morphism f̃ is smooth.

The proof of this proposition in [SOS89] is written very short and may consequently not
be transparent. Therefore, a proof is given at this point.

Proof. Since the fiber Xs is geometrically reduced, the mapping OXs → OX̃s
is injective

and therefore the following sequence of coherent sheaves,

0 → OXs → OX̃s
→ OX̃s

/OXs → 0,

is exact. Hence there is a long exact cohomology sequence

0 → H0(Xs, OXs) → H0(X̃, OX̃s
) → H0(Xs, OX̃s

/OXs)

→ H1(Xs, OXs) → H1(X̃, OX̃s
) → H1(Xs, OX̃s

/OXs) → 0.

In this case, since a 0-dimensional scheme is affine,

H1(Xs, OX̃s
/OXs) = 0

by Theorem 1.17. Since Xs and X̃s are geometrically reduced and connected, both
H0(Xs,OXs) and H0(X̃,OX̃s

) are of dimension 1. By Proposition 2.12, it follows from
the flatness of f that the arithmetic genus of the fibers of X̃ → S is constant.

Since the generic fiber of S, X̃η → Spec(K(η)) is geometrically reduced and normal,
it is therefore smooth. Consequently

pa(X̃η) = pg(X̃η) = pg(Xη) = pa(Xs).

By hypothesis the geometric genus is constant. It follows that

dimH1(Xs, OXs) = dimH1(X̃s, OX̃s
).

From the exactness of the long exact cohomology sequence follows that

H0(Xs, OX̃s
/OXs) = 0.

For the original proof, cf. [SOS89, Lemma 2.3].
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2.40 Remark. The δ-invariant is a measure for the difference of the arithmetic and
geometric genus of a curve. The δ-invariant being 0 is equivalent to the non-existence of
vanishing cycles in the fibers.

2.41 Definition (Depth). Let A be ring. Let M be an A-module. An element a ∈ A is
said to be M -regular, if the mapping M → M defined by multiplication by a is injective.
A sequence of elements a1, . . . , an of A is called M -regular, if a1 is regular for M , and
if ai+1 is regular for M/(a1M + · · · aiM) for every 1 ≤ i ≤ n − 1. If I is an ideal of
A such that IM 6= M , and if the ai ∈ I, it is called an M -regular sequence in I. The
I − depth of M , denoted by depthI M , is the maximal number of elements of an M -
regular sequence in I. When A is a Noetherian local ring with maximal ideal m, and M

is finitely generated over A, depthm M is denoted by depthM .

2.42 Definition (Serre Condition). Let n ≥ 0 be an integer. A locally Noetherian
scheme X is said to verify Serre condition (Sn), if for any P ∈ X it holds

(Sn) depthOX,P ≥ inf{n, dimOX,P }.

2.43 Remark. A locally Noetherian scheme X always verifies property (S0). Property
(S1) is equivalent to X having no embedded points.

2.44 Theorem. Let S be a complete scheme of dimension 1 and let X → S be a geomet-
rically integral quasi-projective flat S-scheme such that its fibers are of positive geometric
genus such that X is of dimension 2. Furthermore let the function t 7→ pg(Xt) with t ∈ S

be constant. Then the minimal model of X is smooth.

Proof. Since S is complete, it is also Henselian by Theorem 2.28. Then by Proposi-
tion 2.35, there exists a compactification X ′ of X such that the fibers of X are dense
in the fibers of X ′. Since S is the spectrum of a complete discrete valuation ring, S is
excellent, and in particular the normalization f : X ′′ → X of X ′′ is finite. The generic
fiber over S, X ′′

η → Spec(K(η)), is geometrically reduced, it is therefore smooth. Con-
sequently pg(X ′′

η ) = pa(X ′′
η ), cf. Remark 2.11. By Proposition 2.36 the arithmetic genus

of the fibers of X ′′ → S is constant. Since the fibers of X are dense in the fibers of X ′,
the fibers of X and X ′ and therefore X ′′ have the same geometric genus. Hence both
geometric and arithmetic genus of the fibers of X ′′ are constant and positive.

Since X ′′ is normal, it satisfies Serre condition (S2), cf. [Liu02, Lemma 8.2.21]. From
the flatness of the morphism follows that the special fiber X ′′

s satisfies Serre condition
(S1), i.e. possesses no embedded points. By construction, the geometrically reduced
scheme Xs is densely contained in X ′′

s . Since X ′′
s satisfies (S1), it follows that X ′′

s is
reduced as well.

Therefore X ′′ → S is smooth by Proposition 2.39, and as a consequence X ′′ is regular.
Already X ′′ → S is relatively minimal, and since in particular the arithmetic genus of the
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2.4 Local Differentiable Triviality

generic fiber is positive, it follows from Theorem 2.7 that X ′ → S is the desired smooth
minimal model.

2.45 Remark. The fibers of the original fibered surface are dense in the fibers of the
minimal regular model constructed above. The condition on the geometric genus to be
positive is necessary, since otherwise the relatively minimal model constructed above will
generally not be minimal and may therefore not be unique up to isomorphism.
Let X = P1

S and X̄ be the blowing-up of X with center a closed point x ∈ X(k(s)). In X̄s

the strict transform D of Xs is an exceptional divisor. Let X̄ → X ′ be the contraction
of D. Then the models X and X ′ of X̄ are relatively minimal, but not isomorphic as
models of X̄. The identity on the generic fiber induces a birational map X 99K X ′, which
does not extend to a morphism, since the generic points of the fiber Xs and X ′

s induce
distinct valuations in K(X̄).

2.4 Local Differentiable Triviality

The following proposition is insuring the compatibility of the minimal model with étale
base change, and base change resulting from the completion of a local ring. With suit-
able conditions and after localization and Henselization in the base, the minimal regular
model of a surface is smooth as shown in Section 2.3. Since the minimal regular model
commutes with this type of base change, the global minimal regular model over the entire
base is smooth.

2.46 Proposition. Let X → S be a regular fibered surface over a Dedekind scheme such
that pa(Xη) ≥ 1. Let S′ → S be an étale surjective morphism, or let S be the spectrum
of a discrete valuation ring R and S′ = Spec(R̂), where R̂ is the completion of the local
ring R. Then X → S is minimal if and only if X ×S S′ → S′ is minimal.

See [Liu02, Proposition 9.3.28].

2.47 Theorem. Let R be an excellent Dedekind domain, and let X be a geometrically
integral quasi-projective curve over S := Spec(R). Suppose that the fibers of X → S

are of positive genus. Furthermore suppose that the function t 7→ pg(Xt) with t ∈ S is
constant. Then the (minimal) model of X is smooth.

Proof. Let X ′ → X be the normalization of X. Since X ′ is Noetherian, normal, con-
nected and excellent, there exists a regular surface X ′′ and a proper mapping X ′′ → X ′

due to Theorem 2.13. Since the fraction field K(Spec(R)) is algebraically closed in
K(X ′′), by Theorem 2.7 there exists a relatively minimal regular model X̄ of X ′′. It
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2 Differentiable Fiber Bundles

follows from the geometric integrality of Xη that X ′′
η is also smooth, hence pa(X ′′

η ) =
pg(X ′′

η ) ≥ 1. Consequently X̄ is the minimal model of X ′′ and therefore of X.
Let t ∈ S. Note that Ôh

S,t = ÔS,t. It follows from Theorem 2.44 that the minimal model
of X ×S Spec(ÔS,t) is smooth.

It follows from Proposition 2.46 that X̄×S Spec(OS,t) commutes with the local smooth
minimal model of X ×S Spec(ÔS,t). From the uniqueness of minimal regular models
follows now that there exists an open neighborhood U of t such that the minimal regular
model X̄ is smooth over U , hence X̄ ×S U is smooth. Consequently X̄ is smooth over
the entire base space S.

2.4.1 A Variation of the Ehresmann Fibration Theorem

The existence of a smooth minimal regular model is yielding a proper smooth morphism
of the compactification of a suitable surface. The projective space is compact in the
analytic category and the pendent to the proper algebraic morphism is therefore proper
in the analytic sense. All following results are developed for real manifolds. To develop
differentiable trivializations of the minimal regular model, and moreover the original
surface, unit vector fields are lifted from the base space.

2.48 Definition (Submersion). A smooth mapping between differentiable manifolds
f : M → N is called a submersion if and only if the tangential mapping Txf : TxM →
Tf(x)N is surjective for all x ∈ M .

2.49 Theorem (Ehresmann). Let X and S be differentiable manifolds, and f : X → S

a proper (surjective) submersion. Then (X, f, S) is a C∞-fiber bundle.

See [Kod86, §2.3].

2.50 Definition (Fibered pair). Let X be a smooth manifold , let S be smooth
connected manifold, and Y be a submanifold of X. Let f : X → S be a differentiable
fiber bundle. The pair (X, Y )f is called a differentiably fibered pair with projection f ,
if there exist local trivializations for f , which induce local trivializations for f |Y . Thus
there exists a pair (F, E), where E is a submanifold of a manifold F . Furthermore for
every y ∈ S there exists a neighborhood U such that there exists a fiber preserving
diffeomorphism τ : f−1(U) → U × F , which induces a diffeomorphism τ |(f |Y )−1(U) →
U ×E. This causes (Y, f, S) and (X \ Y, f |X\Y , S) to be differentiable fiber bundles as
well.

2.51 Definition (Partition of Unity). Let X be a topological space and {Ui}i∈I an
open covering of X. A smooth partition of unity, subordinate to the covering {Ui}i∈I , is
a family {ρj}j∈J of smooth real-valued functions ρj : X → [0, 1] such that
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2.4 Local Differentiable Triviality

(a) ρj ≥ 0 everywhere.

(b) For all j ∈ J there exists a i ∈ I and a mapping τ : J → I such that
supp(ρj) := {x ∈ X | ρj(x) = 0} ⊂ Uτ(j).

(c) The systems of sets supp(ρj) is locally finite.

(d)
∑
j∈J

ρj = 1.

2.52 Remark. The sum in (d) is well defined because of the local finiteness in (c).
The partition of unity is a tool for “glueing together” local vector fields to obtain a
globally integrable flow.

2.53 Theorem. Let X be a smooth manifold. For every open covering of X there exists
a smooth partition of unity.

See [BJ73, 7.3].

In the following, a differentiable local trivialization realizing a differentiably fibered pair
of spaces is constructed by lifting vector fields and glueing them together with a partition
of unity. This part is analogous to the proof of Thom’s isotopy Lemma (cf. [GM80, 1.5])
without the use of controlled vector fields.

2.54 Definition (Flow). Let X be a differentiable manifold, and let A ⊂ R×X be an
open subset such that {0} × X ⊂ A and A ∩ (R × {x}) is connected for all x ∈ X. A
differentiable mapping

Φ : A → X

such that Φ(0, x) = x and Φ(t + s, x) = Φ(t, Φ(s, x)), whenever both sides are defined
for all parameters is called a (local) flow on X. A flow with A = R×X is called a global
flow. For x ∈ X write A∩ (R×{x}) as Ix×{x}, where Ix :=]ax, bx[ with possible infinite
ax and bx. The mapping

γx : Ix → X

t 7→ Φ(t, x)

is called the flow line of Φ through x. A flow is called maximal , if for all x ∈ X the
interval Ix is maximal.

Every flow Φ on X defines a vector field
·
Φ(0, x) :=

·
γx(0) ∈ Γ(X,TX) on X. For the

reverse statement see the following theorem.

2.55 Theorem. Let X be a smooth manifold and v ∈ Γ(X, TX) a vector field on X.

Then there exists a maximal flow Φv, such that
·
Φv(0, x) = v(x).
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Proof. Every γx solves the differential equation ·
γ(t) = v(γ(t)). The theorem is there-

fore a restatement of the Existence and Uniqueness Theorem in the theory of ordinary
differential equations.

2.56 Theorem (Rank Theorem). Let X be a smooth manifold of dimension n, and
let S be a smooth manifold of dimension s. Let Y be a smooth submanifold of X, let
f : X → S be a differentiable mapping and x ∈ Y . Suppose that f and f |Y are of constant
rank r in a neighborhood of x. Then there exist charts (U, ϕ) of X with x ∈ U and (V, ψ)
of S with f(x) ∈ V such that

ϕ(U ∩ Y ) = {(a1, . . . , an) ∈ ϕ(U) | am+1 = · · · = an = 0}
ψ ◦ f ◦ ϕ−1(a1, . . . , an) = (a1, . . . , ar, 0, . . . , 0).

Proof. Without loss of generality it is possible to assume X = Rn, Y = {a ∈ Rn | am+1 =
· · · = an = 0}, S = Rs, x = 0, and f(0) = 0. The germ of a function g is denoted by
ĝ. After a change of coordinates, and since rank0(f |Y ) ≥ r, it is possible to assume the
matrix (

∂fi

∂xj

)

1≤i,j≤r

to be regular in 0. Define a function h : Rn → Rn by

h(a) := (f1(a), . . . , fr(a), ar+1, . . . , an).

The Jacobian matrix Dh is regular in 0, and the germ ĥ of h in 0 is invertible. Fur-
thermore the functions h and h−1, where defined, map points of Y into Y . The germ
ĝ := f̂ ◦ ĥ−1 is represented by the mapping

b 7→ (b1, . . . , br, gr+1(b), . . . , gn(b)).

Its Jacobian matrix is of the form

Dg(b) =

(
Er 0
∗ A(b)

)
, where A(b) :=

(
∂gi

∂xj

)

r+1≤i,j≤n

,

and Er is the (r× r) unit matrix. Since rank f = r close to 0, Â = 0, hence ∂gi/∂xj = 0
for r + 1 ≤ i and j ≤ n. Hence, the gi do not depend on the variables br+1, . . . , bn. Let
the germ k̂ : (Rs, 0) → (Rs, 0) be defined by

c 7→ (c1, . . . , cr, cr+1 − gr+1(c1, . . . , cr, 0, . . . , 0), . . . , cs − gs(c1, . . . , cr, 0, . . . , 0)).
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It follows that

Dk =

(
Er 0
∗ Es−r

)
,

hence k̂ is invertible. Therefore k̂ ◦ f̂ ◦ ĥ−1 = k̂ ◦ ĝ is represented by

b 7→ k̂(b1, . . . , br, gr+1(b), . . . , gs(b))

= (b1, . . . , br, 0, . . . , 0),

since the gi do not depend on br+1, . . . bn, and is of the desired form. Furthermore Y is
invariant under the coordinate change h−1.

2.57 Corollary. Let X and S be smooth manifolds. Let X be n-dimensional, S be s-
dimensional, and Y be a submanifold of X of codimension 1. Let x ∈ Y and f : X → S

be a differentiable mapping such that f |Y is a submersion in x. Then there exists a chart
(U, ϕ) near x with ϕ(U) ⊂ Rn and ϕ(U ∩ Y ) = {(a1, . . . , an) ∈ ϕ(U) | am+1 = · · · =
an = 0} and a chart (V, ψ) near f(x) such that

ψ ◦ f ◦ ϕ−1 = (a1, . . . , as).

Proof. Without loss of generality assume X = Rn, S = Rs, and x = 0. Since the rank of
f is semicontinuous, the mapping f is still a submersion in a neighborhood of 0. Using
the Rank Theorem, Theorem 2.56, on ∆n and ∆n ∩ {x ∈ Rn | xn = 0} completes the
proof.

The following lemmata are insuring the liftability of vector fields to construct a differen-
tiably fibered pair of spaces.

2.58 Lemma. Let X and S be smooth manifolds, Y be a smooth submanifold of X of
codimension 1 and f : X → S be a submersion such that f |Y is a submersion. For a
vector field v ∈ Γ(S, TS) on S, there exists a vector field w ∈ Γ(X, TX) such that

(Txf)(w(x)) = v(f(x)), ∀x ∈ X and

w(x) ∈ TxY, ∀x ∈ Y.

Proof. Let {Ui}i∈I be an open covering of X and v ∈ Γ(S, TS). The local existence
of suitable vector fields wi ∈ Γ(Ui, TUi) is a direct consequence of Corollary 2.57. For
the global existence of a suitable vector field the local vector fields wi are glued together
using a partition of unity as follows. There exists a smooth partition of unity {ρi}i∈I

subordinate to the covering {Ui}i∈I by Theorem 2.53. Define a global vector field on X

as
w :=

∑

j∈J

ρjwτ(j),
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where τ is a mapping in accordance to Definition 2.51. The differential of f at x ∈ X is
of the form

(Txf)(wx) = (Txf)

(∑

i∈I

ρi(x)wix

)

=
∑

i∈I

ρi(x)(Txf)(wix)

= (Txf)(wix)

= vf(x).

Moreover, w(x) ∈ TxY for all x ∈ Y , therefore w is the desired global vector field. Notice
that w|Y is a vector field on Y .

2.59 Lemma. Let X be a smooth manifold and Φ be a flow on X. Let γx be the flow
line of Φ through x. Suppose that bx < ∞ with Ix :=]ax, bx[ being the maximal interval.
Then lim

t→bx

γx(t) = ∞, with respect to the one-point compactification of X. The analogous

statement is true for ax > −∞.

Proof. Assume the negation of the conclusion. Let (tn) be a sequence in ]ax, bx[ such
that tn → bx. Since X is a locally compact Hausdorff space, the sequence (yn), where
yn := γx(tn), possesses a converging subsequence in X. Let y be the limit of this
subsequence, and γy be the flow line through y. Define

γ̃x(t) :=

{
γx(t), ax < t < bx

γy(t− bx), bx ≤ t < bx + by

.

Then γ̃x is a flow line through x, which is in contradiction to bx being maximal.

2.60 Lemma. Let X and S be smooth manifolds, let Y be a smooth submanifold of X

of codimension 1, and f : X → S be a proper differentiable mapping. Let w be a vector
field on X and v be a vector field on S such that

(Txf)(w(x)) = v(f(x)), ∀x ∈ X and

w(x) ∈ TxY, ∀x ∈ Y.

Suppose that v is globally integrable, then so are w|X\Y and w|Y .

Proof. By assumption v is globally integrable. Let x ∈ w|X\Y and γx be the solution
curve of w|X\Y through x with maximal interval Ix := ]ax, bx[. Assume that γx is not
defined on all of R, so without loss of generality let bx < ∞. From Lemma 2.59 follows
that lim

t→bx

γx(t) = ∞ in X \ Y , i.e. with respect to the one-point compactification of
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X \ Y . This is equivalent to either lim
t→bx

γx(t) = ∞ in all of X, or (γx(tn)) possesses a

subsequence, which converges in Y , where (tn) is a sequence with tn → bx.
First consider lim

t→bx

γx(t) = ∞ in all of X. Since f is proper and continuous, it follows

that lim
t→bx

f(γx(t)) = ∞ with respect to the one-point compactification of S. This is in

contradiction to v being globally integrable in S, since f ◦ γx is a solution curve of v

through f(x). The second case is in contradiction to w(x′) ∈ Tx′Y for all x′ ∈ Y .
With f , also f |Y is proper. Using the same argument on f |Y is giving the analogous
result for w|Y .

2.61 Remark. The maximal flow Φw of the globally integrable vector field w on X

constructed in Lemma 2.58 consists of the flows of w|X\Y on X \ Y and w|Y on Y . It
still possesses all properties of a flow, since the flow lines on X \ Y do not reach Y .

The following theorem is extending the statement of the Ehresmann Fibration Theorem
from a differentiably fibered manifold to a differentiably fibered pair of manifolds.

2.62 Theorem. Let X and S be smooth manifolds, Y be a smooth submanifold of X

of codimension 1 and f : X → S be a proper submersion such that f |Y is a submersion.
Then (X, Y )f is a differentiably fibered pair.

Proof. Without loss of generality let S = Rs. Let e1, . . . , es be the unit vector fields on
S. From Lemma 2.58 and Lemma 2.60 follows the existence of globally integrable vector
fields w1, . . . , ws such that

(Txf)(wi(x)) = ei, ∀x ∈ X, ∀i ∈ {1, . . . , s} and

wi(x) ∈ TxY, ∀x ∈ Y, ∀i ∈ {1, . . . , s}.

For i ∈ {1, . . . , s} let Φi : R ×X → X be the global flow for wi. Define a differentiable
mapping σ : S × f−1(0) → X with

σ((t1, . . . , ts), x) = Φ1(t1, Φ2(t2, . . . , Φs−1(ts−1, Φs(ts, x)) . . . )).

It follows from the construction that f(σ((t1, . . . , ts), x)) = (t1, . . . , ts). The mapping
τ : X → S × f−1(0) with

τ(x) = (t1, . . . , ts, Φs(−ts, Φs−1(−ts−1, . . . , Φ2(−t2, Φ1(−t1, x)) . . . ))),

for f(x) = (t1, . . . , ts) is differentiable as well and inverse to σ. Therefore σ is the desired
trivialization which causes (X, Y )f to be a differentiably fibered pair.
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2.4.2 The Main Theorem

Before proving the main result, it will be shown that the requirement of the total space
to be geometrically integral over the base is already satisfied if the fibers above analytic,
i.e. closed, points of the base space are irreducible.

2.63 Definition (Geometric Number of Irreducible Components). Let X be a
scheme over a field k, and let k̄ be the algebraic closure of k. The number n of irreducible
components of X ×k k̄ is called the geometric number of irreducible components of X.

2.64 Theorem. Let S be an irreducible variety, and let f : X → S be a morphism of
varieties. Let nη be the geometric number of irreducible components of Xη, where η is the
generic point of S. Then there exists a neighborhood U of η in S such that the geometric
number of irreducible components n(Xs) of the fiber over s is equal to nη for all s ∈ U .

See [EGA, IV3, Proposition 9.7.8].

2.65 Theorem. Let X be a geometrically reduced algebraic variety over a field k. Then
there exists a point in X with residue field a finite separable extension of k.

See [Liu02, Proposition 3.2.20]

2.66 Theorem. Let X be an algebraic variety over k, and let K/k be an algebraic
extension. If X is reduced, and K/k is separable, then XK is reduced.

See [Liu02, Proposition 3.2.7].

2.67 Theorem. Let X be a regular algebraic curve over a complex algebraic curve S

such that the fibers of closed points are irreducible. Then X is geometrically integral over
S.

Proof. Since field extensions in characteristic 0 are separable, it follows with Theorem
2.66 that X is geometrically reduced over S.

Therefore, it is sufficient to prove X to be geometrically irreducible over S. Let η be
the generic point in S, and let η̄ be the algebraic closure of η. By hypothesis, the fibers
above closed points are irreducible. Consequently, the geometric fiber above any closed
point of S is irreducible. Hence, it is sufficient to show that the geometric generic fiber
Xη̄ is irreducible. It follows by Theorem 2.64 that there exists a neighborhood U of η

in S such that the geometric number n(Xs) of irreducible components of the fibers is
constant for all s ∈ U . Since U is geometrically reduced and of finite type over a field,
it follows by Theorem 2.65 that U contains a closed point. Fibers above closed points
are geometrically irreducible. Therefore, all geometric fibers above U are geometrically
irreducible.

2.68 Remark. Under otherwise equal conditions, the proof of Theorem 2.67 also works
in case X is a scheme of finite type over a reduced complex variety.
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2.4 Local Differentiable Triviality

The additional hypothesis of the fibers being homeomorphic allows to show that the
infinite part of the smooth minimal regular model constructed before is a smooth sub-
manifold over S. With the results of Section 2.4.1 it is now possible to lift the unit vector
field from the base space to construct a stratum-preserving differentiable trivialization
resulting in a differentiably fibered pair of spaces.

2.69 Lemma. Let X be a normal locally Noetherian scheme. Let F be a closed subset
of X of codimension codim(F, X) ≥ 2. Then the restriction

OX(X) → OX(X \ F )

is an isomorphism. In other words, every regular function on X \ F extends uniquely to
a regular function on X.

See [Liu02, Theorem 4.1.4].

It is now possible to prove the main result.

2.70 Theorem (Main Theorem). Let S be a smooth complex curve, and let X be a
regular affine curve over S. Suppose that the fibers of X → S are of positive geometric
genus and that the fibers above closed points of S are irreducible. Furthermore suppose
that all fibers are pairwise homeomorphic. Then f defines a C∞-fiber bundle.

Proof. By Theorem 2.67, X is geometrically integral over S. All fibers of X → S have the
same geometric genus, since all fibers of f are pairwise homeomorphic. Since S is a curve
over C, it is excellent. By Theorem 2.24 and Theorem 2.47 there exists a minimal model
X ′ of X which is smooth. The morphism f ′ : X ′ → S is proper in the algebraic category.
By GAGA, f ′ is also proper in the analytic sense. It follows from Theorem 2.49 that
(X ′, f ′, S) defines a C∞-fiber bundle. The “infinite part” X ′ \X of the minimal model
X ′ consists of a set E of finitely many curves and, due to dimensional reasons, a set F of
finitely many isolated points. The infinite part X ′ \X will be considered a scheme with
the reduced structure. By construction, the infinite part X ′

η \ Xη of the generic fiber
consists of a finite number of points {P1, . . . , Pn}. Since E does not possess any vertical
part, it is evident that E ⊆ {P1, . . . , Pn}.

To prove that X ′ \X = E, it is sufficient to show that F = ∅. Without loss of general-
ity let S be affine, hence X is affine. By assumption X ′ \ {P1, . . . , Pn} is 2-dimensional
and normal. By Lemma 2.69, X ′ \ ({P1, . . . , Pn} ∪ F ) = X would not be affine. Hence
F = ∅. Since all fibers are homeomorphic, the number of points in the infinite parts
X ′

t \Xt of a fiber does not vary with t ∈ S. Therefore the curves P̄i are pairwise disjoint
for i ∈ {1, . . . , n}. As an additional consequence, the curves P̄i cannot possess any self-
intersections, since the cardinality of the set X ′

t \Xt is constant.
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2 Differentiable Fiber Bundles

The next step in the proof is to show that f ′|E is a submersion. Since the morphism
f ′|E : E → S is dominant on every irreducible component, and E is reduced, it is
also flat. Therefore it is sufficient to show that it is unramified. Since field extensions in
characteristic 0 are separable, f ′|E is generically unramified. In addition, f ′|E is finite and
its fibers consist of d := deg f ′ or less points, where d is counted without multiplicities.
After hypothesis the fibers are pairwise homeomorphic, therefore the number of points
in one fiber of f ′|E is constant, hence equal to d. Consequently the fibers are reduced.
It follows that the mapping f ′|E : E → S is étale and in particular a submersion. Since
E is a smooth submanifold of X ′ of codimension 1, and f ′|E is a proper submersion, it
follows from Theorem 2.62 that (X ′, E)f ′ is a differentiably fibered pair, which makes
(X, f, S) a C∞-fiber bundle.

2.71 Remark. In particular, the existence of a smooth compactification of the affine
morphism given in the theorem above is proven. Moreover, it is shown that the resulting
morphism of the compactification is even smooth when restricted to the “infinite part”,
X ′ \X, of the compactification.

With notation from the theorem above, let S possess a trivial fundamental group. In
this case, for every curve P̄i ⊂ E, the mapping f |P̄i

: P̄i → S is even an isomorphism,
and all curves in E therefore define global holomorphic sections.

2.72 Corollary. Let X be a 2-dimensional non-singular complex affine algebraic variety
and f : X → C a polynomial mapping with irreducible fibers. The mapping f defines a
C∞-fiber bundle over a neighborhood of z ∈ C if the geometric genus of f−1(z) is positive,
and f−1(z) is homeomorphic to the general fiber of f .

Proof. Considering C as an affine line, this Corollary is a direct consequence of the
previous theorem.
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3 Holomorphic Fiber Bundles

The construction of local triviality in the holomorphic sense will be divided into three
sections. The first part is dealing with fiber bundles having an algebraic morphism
as projection, and the compactification of the typical fiber is a hyperbolic Riemann
surface. The Rigidity Theorem of S. Ju. Arakelov, A. N. Parshin,Y. Manin and
H. Grauert ensures isotriviality for this type of family, and a result of W. Fischer
and H. Grauert ensures local triviality for the minimal model of such a surface. For
the base space being C,C∗,P1

C, or the complex torus T , the infinite part of the minimal
model is shown to be holomorphically trivial, rendering the original fibered surface locally
trivial in the holomorphic sense.

A theorem of A.Beauville ensures isotriviality for families of elliptic curves, in case
the base space is again one of C,C∗,P1

C, or T . Local triviality in the holomorphic sense
is constructed for families whose typical fiber is a torus with exactly one puncture. The
regular minimal model of this family is locally trivial in the holomorphic sense, again
by the result of W. Fischer and H. Grauert. The former punctures are translated
on the compactified fibers such that they deform holomorphically over the base space,
yielding holomorphic local trivializations on the original family of punctured tori.

At last fiber bundles having a sphere with up to three punctures as typical fiber are
investigated in part three. The theorem of Fischer and Grauert is providing a lo-
cal trivialization in the holomorphic sense for the bundle of the compactified punctured
spheres. With Möbius transformations the punctures are translated on the surface such
that they are transported holomorphically by deformations over the base space. This is
resulting in holomorphic local trivialization on the original bundle of punctured spheres.

Non-Abelian Cohomology

To investigate the triviality of holomorphic fiber bundles with Lie groups as structure
groups, it is necessary to define a cohomology theory for sheaves with values in non-
abelian groups. Instead of cohomology groups it is only possible to construct cohomology
sets. Without strong restrictions, it is only possible though to define these sets up to
the first cohomology set. For a topological space X and a non-abelian sheaf F , the set
H0(X, F ) is defined analogously to the abelian case as the set of global sections on X.
The cohomological set H1(X, F ) is defined using the relation on the 1-cochains of being
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3 Holomorphic Fiber Bundles

pairwise cohomologous. In the following, indices will again be simplified in the sense of
Uij := Ui ∩ Uj .

3.1 Definition. Let F be a sheaf of groups on a topological space X, and let U = (Ui)i∈I

be an open covering of X. A 1-cochain f : I2 → ∏
(i,j)∈I2 Γ(Uij ,F ), denoted shorter by

{fij} on U with values in F is called a 1-cocycle, if it satisfies the cochain condition

fij(x)fjk(x) = fik(x) for all x ∈ Uijk.

Two 1-cochains {fij} and {gij} are called cohomologous, if there is a 0-cochain {hi} on
U with values in F such that

fij(x) = h−1
i (x)gij(x)hj(x) for all x ∈ Uij .

Therefore, the property of being cohomologous defined above defines an equivalence
relation, which is denoted by ∼c. Let Z1(U,F ) be the set of 1-cocycles in regards to U

with values in F . If F is a sheaf of abelian groups, Z1(U, F ) possesses a group struc-
ture and the cohomology relation defined here is congruent with the usual cohomology
theories.

3.2 Definition. Let F be a sheaf of groups on a topological space X. The first co-
homology set of an open covering U of X with values in F is defined to be the set of
1-cocycles in regard to U modulo the relation of being cohomologous:

H1(U, F ) := Z1(U,F )/ ∼c .

Generally H1(U, F ) does not possess a group structure, since already Z1(U, F ) generally
does not possess one.

3.3 Definition. Let F be a sheaf of groups on a topological space X. The sets H1(U, F )
are generating a directed system on the open coverings of X. Define the first cohomology
set of X with values in F to be

H1(X, F ) := lim−→
U

H1(U, F ).

3.4 Remark. For a non-abelian sheaf F , the set H1(X, F ) possesses a distinguished
element. Let p be a homomorphism between sheaves of groups G and F , therefore
inducing a mapping from H0(U, G ) to H0(U, F ), where U is an open subset of X,
and furthermore a mapping from C1(U, G ) to C1(U, F ), preserving the cohomology
relation of chains, where C1(U, F ) is the set of 1-cochains in regards to U with values
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in F . This mapping is compatible with inductive limits, hence p defines a mapping
p∗ : H1(X, G ) → H1(X, F ) leaving the neutral element invariant.

For a more detailed construction of the existence of long exact cohomology sequences
in the non-abelian case see J. Frenkel’s work [Fre57], or [Epp03, Kap. 3].

3.5 Definition (Exactness). A sequence of sets Ai containing a distinguished element
e and mappings fi : Ai → Ai+1 is called exact, if

f−1
i ({e}) = fi−1(Ai−1).

Define the kernel of fi to be ker fi := f−1
i ({e}).

Let F be a sheaf of groups and G a subsheaf of groups of F . The sheaf of cosets
F/G possesses a neutral section e. Let i : G → F be the canonical injection, and
p : F → F/G the canonical projection. The sequence of sheaves

{e} → G
i→ F

p→ F/G → {e}

is exact, since on the stalks there is im i|Gx = ker p|Fx .

3.6 Theorem (Frenkel). Let G be a subsheaf of normal divisors of the sheaf of groups
F . There exists an exact sequence

{e} → H0(X, G ) → H0(X, F ) → H0(X, F/G )

→ H1(X, G ) → H1(X, F ) → H1(X, F/G ).

See [Fre57, p. 156].

3.7 Remark. If G is a central subsheaf of the sheaf of groups F , i.e. Gx is contained in
the center of Fx for all x ∈ X, the exact sequence in the previous Theorem extends to
H2(X, G ).

Let L be a complex Lie group, let B be a complex space, and let L c (resp. L a) be
the sheaf of germs of continuous (resp. holomorphic) mappings with values in L. The
sheaves L c and L a are sheaves of groups which are abelian if and only if L is an abelian
Lie group. Obviously L a is a subsheaf of L c.

3.8 Proposition. Let L be a complex Lie group, and let S be a complex space. Let
K c (resp. K a) be the set of isomorphism classes of topological (resp. holomorphic) fiber
bundles with base S, structure group L and fiber F . Then K c (resp. K a) is isomorphic
to H1(S, L c) (resp. H1(S, L a)).
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3 Holomorphic Fiber Bundles

See F. Hirzebruch [Hir62, §3.2].

3.9 Definition (Stein Space). A complex space X is called Stein space, if it satisfies
the following two properties.

(a) It is holomorphically convex : For any compact set M ⊂ X the holomorphically
convex hull

M̂ := {x ∈ X | |f(x)| ≤ sup
M
|f |, f ∈ O(X)},

is likewise a compact subset of X.

(b) It is holomorphically spreadable: For every x ∈ X there is a neighborhood U(x)
and a holomorphic mapping f : X → Ck, which does not degenerate U(x), i.e. the
set f−1(z) ∩ U(x) is discrete in U(x) for all z ∈ Ck.

The second property ensures the existence of sufficiently many holomorphic functions
in X to provide a complex function theory. Stein spaces are called holomorphically
complete spaces.

3.10 Theorem (Grauert). With the same conditions as Proposition 3.8 let S be a Stein
space. Then

H1(S, L c) ∼= H1(S, L a).

This theorem is the main result in [Gra57].

3.1 Holomorphic Local Triviality

3.11 Definition (Hyperbolic Riemann surface). A Riemann surface X is called
elliptic, parabolic, or hyperbolic, if its universal covering is isomorphic to P1

C,C, or ∆
respectively.

3.12 Theorem.

(a) The Riemann sphere P1
C is an elliptic Riemann surface.

(b) All complex tori, as well as C and C∗ are parabolic Riemann surfaces.

(c) Any Riemann surface not being isomorphic to one of the surfaces in (a) or (b) is
hyperbolic.

In particular, a compact Riemann surface is elliptic, parabolic, or hyperbolic, if its genus
is zero, one, or greater than one respectively.
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3.1 Holomorphic Local Triviality

See [For77, III, Satz 27.12].

3.13 Remark. Since smooth projective curves of genus one are called elliptic curves,
the term elliptic Riemann surface for P1

C will not be used further.

3.1.1 Families of Hyperbolic Riemann surfaces

3.14 Definition (Family of curves). Let S be a smooth curve of geometric genus pg

and Σ ⊂ S be a finite set of points. A family over S \ Σ, f : X → S \ Σ, is a surjective
flat mapping with equidimensional fibers.

3.15 Definition (Isotriviality). A family f : X → S is called isotrivial if f−1(P ) ∼=
f−1(P ′) for all P, P ′ ∈ S.

From the theorem of Fischer and Grauert, Theorem 3.28, it follows that proper
smooth isotrivial families of compact Riemann surfaces are already locally trivial in the
holomorphic sense.

At the ICM in Stockholm in 1962 I. R. Shafarevich, conjectured: “There exists only
a finite number of fields of algebraic functions K/C of a given genus g ≥ 1, the critical
prime divisors of which belong to a given finite set Σ.” The conjecture can be modified
and made more precise as follows, where the mentioned genus g will be denoted by g′.

3.16 Shafarevich Conjecture. Let S be a smooth projective curve of geometric genus
g and Σ ⊂ S be a set of n points. Let q ∈ Z and g′ ≥ 2. Then

(I) (Boundedness, Rigidity) there exists, up to isomorphism, only finitely many non-
isotrivial smooth families of curves of geometric genus g′ over S \ Σ. These are
called “admissible families”.

(II) (Hyperbolicity) If
2g − 2 + n ≤ 0,

then there are no admissible families.

This conjecture was confirmed by A.N. Parshin for the case Σ = ∅, cf. [Par68]. Part
(I) of the conjecture was confirmed by S. Ju. Arakelov in general.

3.17 Theorem (Arakelov). Let S be a curve and Σ ⊂ S a finite set of points. Then
there exist only finitely many non-isomorphic non-constant curves of fixed genus over
k(S) for which Σ is the set of points of degeneracy.
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See [Ara71, Theorem 1].

Results of S. Ju. Arakelov, A.N. Parshin, Y. Manin and H. Grauert led to the
following theorem, also called the “Shafarevich-Mordell conjecture in the function field
case”, see [Ara71, Par68, Man63] and [Gra65].

3.18 Theorem (Rigidity Theorem of Arakelov-Parshin-Manin-Grauert). Let S

be a smooth projective curve of (geometric) genus g and Σ be a set of n points in S. Then
there are only finitely many families of non-isomorphic curves of geometric genus g′ ≥ 2
over S \ Σ,

f : X → S \ Σ,

which are non-isotrivial. If
2g − 2 + n ≤ 0,

there are none at all.

The theorem can be found in the second edition of D.B. Mumford’s lecture notes
[Mum99, A. II, p. 253].

3.19 Definition (Principal Fiber Bundle). A fiber bundle with fiber F such that
F ∼= Aut(F ) is called a principal fiber bundle.

The following theorem is well known in the case of global triviality in the topological
sense, cf. [Ste51, §8, 8.3]. The proof for the holomorphic case in the following is done in
analogy.

3.20 Theorem (Section Theorem). Let X and S be complex manifolds. A holomor-
phic principal fiber bundle (X, f, S) is globally trivial in the holomorphic sense if and
only if it admits a global holomorphic section.

Proof. Let F be the fiber of (X, f, S), and let {Ui}i∈I be an open covering of S. For
any i ∈ I there exists a biholomorphic mapping

ϕi : Ui × F → f−1(Ui)

with pr1 ◦ϕ−1
i = f . For any pair of indices (i, j) ∈ I × I, the mapping

gji : Ui ∩ Uj → Aut(F ),

given by ϕ−1
i ◦ ϕj(x, P ) = (x, gij(x)(P )) for x ∈ Ui ∩ Uj and P ∈ F is biholomorphic.
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If the mapping ϕi,x : F → f−1(x) is defined by setting

ϕi,x(P ) = ϕi(x, P ),

then, for each pair (i, j) ∈ I, and each x ∈ Ui ∩ Uj , the mapping

ϕ−1
j,x ◦ ϕi,x : F → F

coincides with the operation of an element of Aut(F ), which is unique since Aut(F ) is
acting faithfully.
It is convenient to introduce the mapping

fj : f−1(Uj) → F

defined by fj(P ) = ϕ−1
j,x(P ), where x = f(P ). Then fi satisfies the identities

fi ◦ ϕi(x, y) = y,

ϕj(f(z), fj(z)) = z,

gij(f(z))(fj(z)) = fi(z), for f(z) ∈ Ui ∩ Uj . (3.1)

Suppose a global section s : S → X is given. Define hi(x) := fi(s(x)) for x ∈ Ui. From
(3.1) follows immediately

gij(x)(hj(x)) = hi(x), x ∈ Ui ∩ Uj . (3.2)

Therefore the cocycle splits, and the fiber bundle is trivial.
Conversely, suppose (X, f, S) is globally trivial. By Proposition 3.8 there exist bi-

holomorphic functions hi satisfying (3.2). Define

si := ϕi(x, hi(x)), x ∈ Ui.

Then si is holomorphic. From (3.2) follows si(x) = sj(x) for x ∈ Ui ∩ Uj . Hence
s(x) = si(x) for x ∈ Ui defines a global holomorphic section.

3.21 Definition (Ramification Divisor). Let f : X → Y be a finite, separable
morphism of complete non-singular projective curves. Then the ramification divisor of f

is
R :=

∑

P∈X

length(ΩX/Y )P · P.
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3.22 Theorem (Hurwitz). Let f : X → Y be a finite separable morphism of nonsin-
gular projective integral seperated curves. Let n = deg f . Then

2pa(X)− 2 = n · (2pa(Y )− 2) + degR.

See [Har77, IV, Corollary 2.4].

3.23 Theorem (Schwarz). If X is a smooth integral projective complex curve of (geo-
metric) genus 2 or higher, its automorphism group Aut(X) is finite.

See [FK92, V.1.2, Corollary 2].

The next four propositions will be used to control the infinite part of a minimal model
of a given fiber bundle with base space C, C∗, P1

C, and T in order to prove the existence
of a holomorphic structure.

3.24 Proposition. Let X be a complex manifold, let f : X → C be a holomorphic
mapping and (X, f, C) be a holomorphic fiber bundle such that the fibers of f are biholo-
morphic to a hyperbolic Riemann surface F . If the bundle (X, f, C) possesses a global
holomorphic section s : C→ X, then (X, s(C))f is a holomorphically fibered pair.

Proof. The fiber bundle (X, f, C) is classified by its 1-cocycle in the first cohomology
set and is therefore 1-cocycle of a suitable principal bundle. Since by Schwarz’s The-
orem, Theorem 3.23, the automorphism group of curves of genus 2 or higher is finite,
the principal bundle is an unbounded and unramified covering (X ′, f ′, C) with a finite
number of sheets. Since C is simply connected, the total space consists of exactly this
number of connected components, and a single connected component X ′

k ⊂ X ′ is home-
omorphic to C via f ′. Since f |X′

k
is holomorphic and f ′−1|X′

k
is continuous, the latter

is also holomorphic by the criterion for biholomorphicy. Hence f ′−1|X′
k
defines a global

holomorphic section in X ′. By the Section Theorem, Theorem 3.20, the principal fiber
bundle (X ′, f ′, C), and therefore the bundle (X, f, C) is globally trivial. With respect
to a trivialization of the bundle, the section s is of the form

s : C→ C× F

x 7→ (x, s′(x)),

where s′ : C→ F is a holomorphic mapping. Since F is hyperbolic, the mapping s′ can
be lifted to the universal covering of F , the open unit disc ∆, and is therefore constant
by Liouville’s Theorem. Hence (X, s(C))f is a holomorphically fibered pair.
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3.25 Proposition. Let X be a complex manifold, let f : X → C∗ be a holomorphic
mapping and (X, f, C∗) be a holomorphic fiber bundle such that the fibers of f are biholo-
morphic to a hyperbolic Riemann surface F . If there exists an unbounded and unramified
holomorphic covering

f : E → C∗

with a complex submanifold E ⊂ X, then (X, E)f is a holomorphically fibered pair.

Proof. The fiber bundle f : X → C∗ can be pulled back via the universal covering
mapping exp: C→ C∗ to a holomorphic fiber bundle (X ′, f ′, C). This way, the covering
f : E → C∗ is lifted to an unbounded and unramified covering f ′ : E′ → C in X ′ with
E′ ⊂ X ′.

X ⊃ E

f |E

²²

©

E′oo

f ′|E′

²²

X ′⊂

C∗ C
expoo

The fiber bundle (X ′, f ′, C) is classified by its 1-cocycle in the first cohomology set
and is therefore the 1-cocycle of a suitable principal bundle (X ′′, g, C). By Schwarz’s
Theorem, Theorem 3.23 the automorphism group of curves of genus 2 or higher is fi-
nite. Therefore the principal bundle is an unbounded and unramified covering, which
decomposes over C into finitely many connected components X ′′

1 , . . . , X ′′
n, each of which

is homeomorphic to C. Since g|X′′
i
is holomorphic and (g|X′′

i
)−1 is continuous for all i,

the latter is also holomorphic by the criterion for biholomorphicy, and defines a global
holomorphic section. By the Section Theorem, Theorem 3.20, the principal fiber bun-
dle (X ′′, g, C) is globally trivial in the holomorphic sense. Therefore the fiber bundle
(X ′, f ′, C) is also globally trivial in the holomorphic sense.

Since C is simply connected, the covering space E′ decomposes into connected com-
ponents E′

1, . . . , E′
n. Each component E′

i is homeomorphic to C via f ′. Since f ′|E′i is
holomorphic, and (f ′|E′i)−1 is continuous for all i, the latter is also holomorphic by the
criterion of biholomorphicy. Hence (f ′|E′i)−1 defines a holomorphic section

t : C→ X ′.

The fiber bundle (X ′, f ′, C) is globally trivial in the holomorphic sense. Therefore, with
respect to a trivialization of the fiber bundle, the section t is of the form

t : C→ C× F

x 7→ (x, t′(x)),
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where t′ : C → F is a holomorphic mapping. Since F is hyperbolic, the mapping t′ can
be lifted to the universal covering of F , the open unit disc ∆, and is therefore constant
by Liouville’s Theorem. Therefore the section t is constant with respect to the chosen
trivialization, and (X ′, E′)f ′ is a holomorphically fibered pair.

X ⊃ f−1(U)

f |f−1(U)

²²

©

f ′−1(U ′)oo

f ′|f ′−1(U′)

²²

X ′⊂

C∗ ⊃ U

s

KK

U ′

t

SS

expoo C⊂

Let U be a simply connected subset of C∗, and let U ′ be a subset of C such that
exp(U ′) = U . The section t induces a holomorphic section s : U → f−1(U). The diagram
above commutes, thus rendering the section s constant over U with respect to the chosen
trivialization. Therefore (X, E)f is also a holomorphically fibered pair.

3.26 Proposition. Let X be a complex manifold, let f : X → P1
C be a holomorphic

mapping and (X, f, P1
C) be a holomorphic fiber bundle such that the fibers of f are biholo-

morphic to a hyperbolic Riemann surface F . If there exists an unbounded and unramified
holomorphic covering

f : E → P1
C

with a complex submanifold E ⊂ X, then (X, E)f is a holomorphically fibered pair.

Proof. Without loss of generality let {U1, U2} be an open covering of P1
C such that

Ui
∼= C for i = 1, 2. The proof for each Ui as base space is then analogous to the proof

of Proposition 3.24.

3.27 Proposition. Let X be a complex manifold and T be the complex torus. Let
f : X → T be a holomorphic mapping and (X, f, T ) be a holomorphic fiber bundle such
that the fibers of f are biholomorphic to a hyperbolic Riemann surface F . If there exists
an unbounded and unramified holomorphic covering

f : E → T

with a complex submanifold E ⊂ X, then (X, E)f is a holomorphically fibered pair.

Proof. Identify the complex torus T with C/Γ, where Γ is a complex lattice. The bundle
(X, f, T ) can be pulled back via the universal covering mapping to a holomorphic fiber
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bundle (X ′, f ′, C).
X

f

²²

©

X ′oo

f ′

²²
C/Γ Coo

From this point, the proof is analogous to the proof of Proposition 3.25, where the
open subset U ⊂ C/Γ has to be chosen such that U ∩ Γ = ∅, and U is contained in one
period parallelogram.

The next theorem is a standard result for ensuring a holomorphic structure on complex
fiber bundles.

3.28 Theorem (Fischer, Grauert). Let X and S be connected complex manifolds,
f : X → S a surjective proper holomorphic submersion such that the fibers Xt := f−1(t)
are connected compact submanifolds of X. Suppose that f : X → S is an analytically
isotrivial family. Then (X, f, S) is locally trivial in the holomorphic sense.

See [GF65, p. 89].

3.29 Theorem. Let X be a 2-dimensional non-singular affine complex algebraic variety,
and let f : X → S be a morphism with S ∈ {C, C∗, P1

C, T} such that the compactification
of each fiber f−1(t) is a hyperbolic Riemann surface for all t ∈ S. Furthermore suppose
that all fibers are pairwise homeomorphic. Then f defines a holomorphic fiber bundle.

Proof. By Theorem 2.47 there exist a smooth minimal model X ′ of X together with a
proper morphism f ′ : X ′ → S. As a consequence of the Rigidity Theorem, Theorem 3.18,
(X ′, f ′, S) is an isotrivial family. According to Theorem 3.28, (X ′, f ′, S) is locally trivial
in the holomorphic sense.

In the case of S = C, as seen in the proof of Theorem 2.70, the infinite part E of X ′

consists of a finite number of disjoint curves, which define global holomorphic sections,
cf. 2.71. According to Proposition 3.24, (X ′, E) is a holomorphically fibered pair and
therefore (X, f, C) defines a holomorphic fiber bundle.

In case of S ∈ {C∗, P1
C, T} the infinite part E of X also consists of curves such that

the morphism f ′E is submersive. But since the fundamental group of the base space
is not trivial, these curves only define unbounded and unramified coverings, cf. proof
of Theorem 2.70. According to Propositions 3.25–3.27, (X ′, E) is a holomorphically
fibered pair over S ∈ {C∗,P1

C, T}. Therefore (X, f, C∗), (X, f, P1
C) and (X, f, T ) define

holomorphic fiber bundles.
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3.30 Remark. A fiber bundle f : X → C of the compact surface X over the smooth
curve C is called a Kodaira fibration if f is a submersion but not a holomorphic fiber
bundle mapping. In view of the Fischer-Grauert Theorem, Theorem 3.28, this means
that, though all fibers are smooth curves, their complex structure varies. For a further
treatment of Kodaira fibrations see [BPVdV84].

3.1.2 Families of Elliptic Curves

It is possible to construct local triviality in the holomorphic sense for families of elliptic
curves in analogy to the result of the previous section. This result is restricted to fami-
lies of curves, which are isomorphic to one elliptic curve having one or no punctures. A
theorem of A.Beauville is stating that families of elliptic curves are isotrivial, in case
the base space is either P1

C, C, C∗, or T . The theorem of Fischer and Grauert again
yields local triviality in the holomorphic sense. For an affine scheme over one of these
base spaces, having pairwise homeomorphic curves of geometric genus one as fibers, there
exists a smooth minimal model. Since the fibers are not hyperbolic, it is generally not
possible to argue that the infinite part of the minimal model is holomorphically trivial, as
done in the previous section. Requiring that each fiber is compactified with exactly one
point, these points can be translated to the same point by holomorphic automorphisms
of the fibers, yielding a holomorphically fibered pair of spaces.

Let E be an elliptic curve and Aut(E) the group of its biholomorphic automorphisms.
The group E, acting on itself by translations, forms a normal subgroup of Aut(E), and
the quotient Aut(E)/E can be identified with the group of automorphisms leaving 0
fixed. This quotient is the cyclic group Zn of order

n = 4 if E ∼= C/(Z⊕ Zi),

n = 6 if E ∼= C/(Z⊕ Z exp(πi/3)),

n = 2 in all other cases.

Then Aut(E) is the semi-direct product E × Zn. Its elements are (e, z), e ∈ E, z ∈ Zn

being the group of the nth root of unity,

(e, z) : x 7→ e + zx, x ∈ E.

The operation in the group is

(e, z), (e′, z′) = (e + ze′, zz′).
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The translation group E is described by the universal covering sequence

0 → Z⊕ Z→ C→ E → 0.

3.31 Theorem (Beauville). Any non-isotrivial family of projective curves of genus at
least 1 over P1

C has at least 3 singular fibers. Over an elliptic curve, there must be at
least 1 singular fiber.

See [Bea81, Proposition 1].

3.32 Remark. The statement on non-isotrivial families over a curve of genus 1 is not
part of the original proposition of Beauville, but is a result of the proof. Therefore,
the theorem of Beauville extends the second statement of the Rigidity Theorem of
Arakelov-Parshin-Manin-Grauert, Theorem 3.18.

To construct local triviality in the holomorphic sense it is not possible to proceed with
the previous methods from Section 3.1.1. Since the global sections defined by the infinite
part of the minimal regular model of the given scheme have values in an elliptic curve
instead of a hyperbolic Riemann surface, they are in general not constant with respect
to a holomorphic trivialization. It is possible to prove a slightly weaker result as follows.

3.33 Theorem. Let X be a 2-dimensional non-singular complex algebraic variety, and
let f : X → S be an affine morphism with S ∈ {C, C∗, P1

C, T}, where T is a complex
torus such that each fiber f−1(t) is a complex torus having exactly one puncture. Then
f defines a holomorphic fiber bundle.

Proof. By Theorem 2.47 there exists a smooth minimal regular model f̄ : X̄ → S of
X. According to the theorem of Beauville, Theorem 3.31, the family of elliptic curves
f̄ : X̄ → S is isotrivial. This way, a fiber f−1(t) of f is compactified with one point. As
seen in the proof of Theorem 2.70, the infinite part X̄ \X of X̄ consists of an unbounded
and unramified covering E. There exists an open covering {Ui}i∈I of S such that for any
Ui the covering E defines a holomorphic section, denoted by

sUi
: Ui → X̄|f̄−1(Ui)

.

By the theorem of Fischer and Grauert, Theorem 3.28, the family f̄ : X̄ → S is
locally trivial in the holomorphic sense. Choosing local holomorphic trivializations for
an open covering {Vi}i∈I subordinate to the covering {Ui}i∈I , the fiber bundle (X̄, f̄ , S)
is locally of the form

X̄|f−1(Vi)
∼= Vi × C/Γ,

where Γ is a suitable lattice corresponding to the torus of the fibers.
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For all Vi, Vj ∈ {Vi}i∈I , and for all t ∈ Vij there exist biholomorphic mappings

ψij : Vij × C/Γ → Vij × C/Γ

(t, z) 7→ (t, z − sUi(t)).

These mappings yield local holomorphic trivializations on E and on X̄. Therefore,
(X̄, X)f̄ is a holomorphically fibered pair of spaces.

3.1.3 Families of Spheres

Since there exists, up to isomorphism, only one compact Riemann surface of genus 0,
there do not exist any admissible families with fibers of genus 0. The construction of
local triviality in the holomorphic sense in this section aims at fiber bundles having fibers
isomorphic to C∗. Analogously the construction allows equal results for the fibers being
isomorphic to P1

C having up to three punctures, including of course none at all.
The following theorem is stating that an analytically isotrivial family with fibers being
isomorphic to C∗ is locally trivial in the analytic sense outside of a finite number fibers.

3.34 Theorem. Let X be a 2-dimensional non-singular complex algebraic variety, and
S be a smooth irreducible complex algebraic curve. Furthermore let f : X → S be a
surjective affine morphism such that the fibers f−1(t) are biholomorphic to C∗. Then
there exists a finite set Σ ⊂ S such that

(X \ f−1(Σ), f |f−1(S\Σ), S \ Σ)

is locally trivial in the holomorphic sense.

Proof. Let X̄ be a compactification of X. The product X̄ ×S contains the closure X̄ ′ of
the graph of f . This product therefore yields a mapping t : X̄ ′ → S̄, which fits into the
commuting diagram

X
i //

f ÂÂ?
??

??
??

? X̄

tÄÄÄÄ
ÄÄ

ÄÄ
Ä

S

,

where i denotes the inclusion x 7→ (x, f(x)), and t is the projection on the second factor.
Singularities may only appear in the closure X̄ ′\X×S. Let X̃ → X̄ be the normalization
of X̄. This normalization induces a proper mapping f̃ : X̃ → S which commutes with the
original mapping f . Since X̃ is compact, it possesses only a finite number of singularities.
Proposition 1.22 yields dimS(X̃) = 0. Denote by Σf̃ the set of critical values of f̃ . The
sets Σf̃ and Σf̃ |X̃\X

, and therefore their union are algebraically closed sets in X̃. Since f̃
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3.1 Holomorphic Local Triviality

is proper in the algebraic sense, the set

Σ := f̃(Σf̃ ∪ Σf̃ |X̃\X
)

is algebraically closed in S. Since S is 1-dimensional, the set Σ is finite. Therefore

f̃Σ := f̃ : X̃ \ f̃−1(Σ) → S \ Σ

is a proper holomorphic submersion. In particular, f̃ |X̃\(X∪f̃−1(Σ)) is a holomorphic sub-
mersion. The theorem of Fischer and Grauert, Theorem 3.28, gives local trivializa-
tions in the holomorphic sense for (X̃\f̃−1(Σ), f̃Σ, S\Σ). Fix one of these trivializations.

Since all fibers f−1(t) are biholomorphic to C∗ and f̃−1(S \ Σ) is regular, the genus
of the fibers f̃−1

Σ (t) is constant. This way, fibers of f over S \ Σ are compactified with
two points ωtn, ωts ∈ X̃t, referred to as north and south poles of the fibers, which
vary holomorphically with t above the base space. All such fibers are biholomorphic by
trivialization to P1

C. Let t0 ∈ S \Σ. For all t ∈ S \Σ there exist Möbius transformations
φt : X̃t0 → X̃t, such that φt(ωt0n) = ωtn and φt(ωt0s) = ωts, namely

z 7→ (z − ωt0n)(ωts − ωtn)
ωt0s − ωt0n

+ ωtn.

The Möbius transformations of all t ∈ S \ Σ combined yield a biholomorphic mapping

φ : X̃ → X̃ ′, where X̃ ′ :=
·⋃

t∈S\Σφt(X̃t). This mapping induces a proper holomorphic
submersion f̃ ′ which commutes with f over S \ Σ.

X̃

f̃ ′

$$HHHHHHHHHHHHHHHHHHHHH X̃ \ f̃−1(S \ Σ)
φoo

f̄

²²

Xoo

f

zzvvvvvvvvvvvvvvvvvvvvv

S \ Σ

North and south poles of the fibers X̃ ′
t deform holomorphically. Theorem 3.28 gives

holomorphic local trivializations for (X̃ ′, f̃ ′, S \ Σ). Let Ui and Uj be subsets of S \ Σ,
such that Uij := Ui ∩ Uj 6= ∅, and let f̃ ′−1(t) (resp. f̄ ′−1(t′)) be a fiber above t ∈ Ui

(resp. t′ ∈ Uj .) For Ui and Uj choose a biholomorphic mapping

ψij : Uij × f̃ ′−1(t) → Uij × f̃ ′−1(t′)

from the holomorphic trivializations given by Theorem 3.28. By construction, the map-
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3 Holomorphic Fiber Bundles

ping ψij commutes with f . Therefore the restriction

ψij |X : Uij × (f̃ ′−1(t) ∩X) → Uij × (f̃ ′−1(t′) ∩X)

= ψij : Uij × f̃ ′−1(t) → Uij × f̃ ′−1(t′)

defines a holomorphic local trivialization for (X, f, S\Σ), which in turn is a biholomorphic
fiber bundle.

3.35 Remark. For the construction of local triviality as in Theorem 3.34, it is possible
to assume fibers to be biholomorphic to C or C∗ \ {P}, where P is an arbitrary point
in C∗. The construction of local triviality is analogous, since there exist biholomorphic
automorphisms on P1

C, Möbius transformations, mapping up to three punctures simulta-
neously to points, which are transported holomorphically through all fibers. Since there
generally do not exist automorphisms on P1

C that permute more than three given points,
it is not possible to generally construct local triviality for fibers being isomorphic to P1

C
having more than three punctures.
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3.2 Gobal Triviality of Holomorphic Fiber Bundles

3.2 Gobal Triviality of Holomorphic Fiber Bundles

Let X be a 2-dimensional non-singular and non-compact complex algebraic variety and S

be a smooth non-compact complex curve. In this section, fiber bundles (X, f, S), which
are already locally trivial in the holomorphic sense are investigated for global triviality
in the holomorphic sense. Here, f is assumed to be an algebraic morphism such that
its fibers are Riemann surfaces. All considered fiber bundles possess a typical fiber, and
a complex Lie group as structure group. A strong result of H. Grauert is ensuring
global triviality in the holomorphic sense for fiber bundles. The theorem is only ensuring
it though for fiber bundles having a connected complex Lie group as structure group.
In particular, the previously constructed case of a fiber bundle with typical fiber C∗

and finitely punctured base space is treated. The problem is reduced to a cohomological
treatment of sheaves with values in the structure group of the bundle. The cohomological
problem can be reduced to the topological case, where the base space consists of a bouquet
of spheres. Criteria for global triviality in the holomorphic sense are worked out this way.

The following theorem was first proven by H.Röhrl (see [Röh57]).

3.36 Theorem (Grauert). Let X be a holomorphic fiber bundle over a non-compact
Riemann surface B. If the structure group G of X is a connected compact Lie group,
then X is holomorphically trivial.

See [Gra58, Satz 7].

The following theorem of S. Bochner and D. Montgomery is stating that automor-
phism groups of compact complex analytic manifolds are compact Lie groups. According
to Theorem 3.36 above, a fiber bundle having such a structure group, which is connected
in addition, would therefore be globally trivial in the holomorphic case.

Let M be a compact complex manifold. The group Autc(M) of homeomorphisms of
M onto itself has a natural topology which can be defined as follows. Since M can be
considered a metric space, the distance between any two homeomorphisms h1 and h2 is
defined, in the usual way, as

dist(h1, h2) := sup
x∈M

d(h1(x), h2(x)),

where d is the metric on M .

3.37 Theorem (Bochner, Montgomery). Let M be compact complex analytic man-
ifold, and Aut(M) be the group of all complex holomorphic automorphisms of M where
Aut(M) has been topologized as above. Then the group of automorphisms Aut(M) is a
complex Lie group.
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See [BM47, Theorem 1].

There exists only a very limited number of Riemann surfaces with non-discrete automor-
phism group.

3.38 Theorem. Let M be a Riemann surface. The automorphism group Aut(M) is
a non-discrete Lie group if and only if M is biholomorphically equivalent to one of the
following Riemann surfaces.

(a) Ĉ,

(b) C,

(c) C∗,

(d) T , the complex torus.

See [FK92, V.4.1].

3.39 Remark. Notice that the automorphism groups of the (non-algebraic) Riemann
surfaces ∆ := {z ∈ C | |z| < 1}, ∆∗ := ∆ \ {0}, and ∆r := {z ∈ C | r < |z| < 1},
0 < r < 1, are non-discrete real Lie groups. The only Riemann surfaces with a non-
discrete and non-connected complex Lie group as automorphism group are therefore C∗,
and T . These will be studied in more detail.

In addition, the base space will be assumed to be C\Σ, where Σ is a finite set of points
such that the investigation is narrowed down to holomorphic fiber bundles as constructed
in Section 3.1. Instead of choosing C \Σ as base space, it is possible to choose any non-
compact Riemann surface. The cycles generating the first homology group are then the
cycles of the bouquet of spheres, used for the reduction to the topological situation.

The following results also work for discrete automorphism groups, which constitute a
simpler special case of the present situation.

The following theorem is stating that the connected component of a Lie group contain-
ing the neutral element is a normal subgroup of its group. This important fact is enabling
the construction of a non-abelian exact cohomology sequence to deduce a criterion for
global triviality.

3.40 Theorem. Let G be a Lie group, and let G0 be the connected component of the
neutral element of G. Then the Lie group G0 is a normal subgroup in G. Furthermore
the cardinality of G/G0 is equal to the number of connected components of G.

Proof. Since G is a manifold, it satisfies the second axiom of countability and has there-
fore countably many connected components, which are all open in G and are open sub-
manifolds of G.
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3.2 Gobal Triviality of Holomorphic Fiber Bundles

For G0 to be a Lie group, it is necessary to show that if x, y ∈ G0, also xy−1 ∈ G0.
Let γ1 and γ2 be continuous paths in G such that γ1(0) = γ2(0) = e, and γ1(1) = x,
γ2(1) = y, where e is the neutral element of G. Then γ1γ

−1
2 : [0, 1] → G is a path such

that γ1γ
−1
2 (0) = γ1(0)γ−1

2 (0) = e, and γ1γ
−1
2 = xy−1. It follows that xy−1 ∈ G0.

Let x ∈ G0 and γ : [0, 1] → G0 be a path such that γ(0) = e, and γ(1) = x. Let y ∈ G.
Then

γ′ := yγy−1 : [0, 1] → G

is a path with γ′(0) = e and γ′(1) = yxy−1 ∈ G0. Therefore G0 is a normal subgroup in
G.

With the same argument it follows that, for an open and connected set U ⊂ G, the
right (resp. left) cosets, which are diffeomorphic to U , yU (resp. Uy), with fixed y ∈ G,
are open and connected as well. Let G/G0 = {[yi]}i∈I , then

G =
·⋃

i∈I

yiG0.

3.41 Definition (Wedge Product). Let X and Y be two topological spaces with
x0 ∈ X and y0 ∈ Y . The wedge product is the subspace

X ∨ Y := {(x, y) ∈ X × Y | x = x0 or y = y0}

of X × Y .

3.42 Theorem. Let KΣ be the set of isomorphisms classes of holomorphic fiber bundles
with base space C \ Σ and fiber F such that the structure group Aut(F ) is a finite (Lie)
group, where Σ ⊂ C is a set of n distinct points. Then there exists a bijection

KΣ →
n∏

Aut(F ),

preserving the neutral element.

Proof. According to Theorem 3.10 it is sufficient to consider isomorphism classes of topo-
logical fiber bundles under otherwise equal conditions. Therefore a holomorphic bundle
over the base C \ Σ is equivalent to a topological bundle over a bouquet of n spheres∨n S1. Let F be the sheaf of germs of continuous functions with values in the group
Aut(F ). Then

H1(C \ Σ, F ) ∼= H1
( n∨

S1, F
)
.
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Let P be the point connecting all n spheres.
Define an open covering V = {Vi}i∈I of

∨n S1 consisting of n + 1 open sets such that

V0 :=
n∨
S1 ∩∆(P ).

The set ∆(P ) is a disc of radius r with center P such that the boundary ∂∆(P ) has
exactly two intersections with each sphere. Number the spheres S1

1 to S1
n. For all i > 0,

define
Vi := S1

i \ ∆̄′(P ),

where ∆̄′(P ) is the closed disc of radius r − ε with center P and r > ε > 0 such
that the boundary ∂∆̄′(P ) has exactly two intersections with S1

i . For i > 0, all Vi are
pairwise disjoint, and each possesses two non-discrete disjoint intersections with V1. For
an example with n = 3, cf. Figure 3.1.

Consider a 1-cocycle {fij} in H1(
∨n S1, F ) for the open covering V . The cocycle is

only defined, modulo inversion, for i = 0 and j ∈ {1, . . . , n}. Since all fij are continuous
and the group Aut(F ) is finite, fij can only take one value in Aut(F ) for each of the
two components of every V0 ∩ Vi, i > 0, and is trivial for i = j. There exists a 0-cochain
{gi}i∈I on V with values in F such that g−1

i fijgj is the identity on one of the components
of every V0 ∩ Vi, i > 0. The resulting 1-cocycle is cohomologous to {fij}.

Since for each of the n intersections V0 ∩ Vi there exists exactly one element in the
automorphism group Aut(F ) besides the identity, it is possible to define an injective
mapping

ϕ : H1
( n∨

S1, F
)
→

n∏
Aut(F ).

Conversely, each Vi ∈ V is simply connected and contractible. Therefore any topological
bundle over any Vi is topologically globally trivial. Since Aut(F ) is finite, it only takes
two automorphisms in Aut(F ) to glue together two bundles over an intersection V0 ∩ Vi,
i > 0, one of which can be chosen without restriction to be the identity. Since there are
n intersections, it is possible to choose n automorphisms, besides the identity on one of
the connected components of each intersection, to construct a topological fiber bundle
over

∨n S1. This yields a mapping

ψ :
n∏

Aut(F ) → H1
( n∨

S1, F
)
.

Obviously, ϕ ◦ ψ = id.
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V1

V2 V3

V4

Figure 3.1: Open covering of a bouquet of 3 spheres

3.43 Theorem. Let (X, f,C \ Σ) be a holomorphic fiber bundle with fiber F , having a
non-connected Lie group as structure group, where Σ ⊂ C is a set of n distinct points.
Let Aut0(F ) be the connected component in Aut(F ) containing the neutral element. The
bundle (X, f,C \ Σ) is globally trivial in the holomorphic sense, if and only if the corre-
sponding 1-cocycle {fij} ∈ H1(C \ Σ, F ) is contained in the kernel of the mapping

H1(C \ Σ, F ) →
n∏

Aut(F )/Aut0(F )

defined below, where F is the sheaf of germs of holomorphic functions with values in the
structure group.

Proof. Let F0 be the sheaf of germs of holomorphic functions with values in Aut0(F ).
According to Theorem 3.40, Aut0(F ) is a normal subgroup in Aut(F ). By Theorem 3.6,
there exists an exact sequence

H1(C \ Σ, F0) → H1(C \ Σ, F ) → H1(C \ Σ, F/F0).

Since F0 is a connected Lie group, H1(C\Σ, F0) is trivial according to Theorem 3.36.
Since Aut(F )/Aut0(F ) is a finite group according to Theorem 3.40, there exists a bijec-
tion

H1(C \ Σ, F/F0) →
n∏

Aut(F )/Aut0(F ),

preserving the neutral element as a consequence of Theorem 3.42. Altogether there exists
an exact sequence

{e} → H1(C \ Σ, F ) →
n∏

Aut(F )/Aut0(F ).
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3.44 Remark. In Theorem 3.38, the only Riemann surfaces having a non-discrete au-
tomorphism group are mentioned. The only surfaces among theses, which in addition
have a non-connected complex Lie group as automorphism group are C∗ and the complex
torus T . Let F , resp. G be the sheaf of germs of holomorphic functions with values in
the group Aut(C∗), resp. Aut(T ). Since Aut0(C∗) ∼= C∗ and Aut0(T ) ∼= T , according to
Theorem 3.43 there exist mappings

(a) H1(C \ Σ, F ) →
n∏
Z2,

(b) H1(C \ Σ, G ) →
n∏
Zk, where k = 2, 4, or 6, depending on the torus T .

In view of Theorem 3.43, holomorphic fiber bundles over C \ Σ having one of the two
mentioned Riemann surfaces as typical fiber are globally-trivial in the holomorphic sense
if and only if their corresponding 1-cocycle is contained in the kernel of the corresponding
mapping (a) or (b).

58



Bibliography

[Ara71] Arakelov, J. Su., Families of algebraic curves with fixed degeneracies.
Izv. Akad. Nauk SSSR Ser. Math., 35(6):1277–1302, 1971. 42

[Art86] Artin, M., Lipman’s Proof of Resolution of Singularities for Surfaces.
In Cornell, G. and J. H. Silverman (editors): Arithmetic Geometry,
Storrs Conference, Connecticut, chapter XI, pages 267–287. Springer-Verlag,
Berlin, Heidelberg, New York, Tokyo, 1986. 16, 17

[Bea81] Beauville, A., Le nombre minimum de fibres singulières d’une courbe sta-
ble sur P1. Volume 86 of Astérisque, Exposé 6, pages 97–108. Société Math-
ématique de France, 1981. 49

[BJ73] Bröcker, Th. and K. Jänich, Einführung in die Differentialtopologie,
volume 143 of Heidelberger Taschenbücher. Springer Verlag, Heidelberg,
1973. 29

[BLR90] Bosch, S., W. Lütkebohmert and M. Raynaud, Néron Models, vol-
ume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-
Verlag, New York, Berlin, Heidelberg, 1990. 23

[BM47] Bochner, S. and D. Montgomery, Groups on analytic manifolds.
Ann. Math., 48:659–669, 1947. 54

[BPVdV84] Barth, W., C. Peters and A. Van de Ven, Compact Complex Surfaces,
volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo, 1984. 48

[Bro81] Broughton, S. A., On the topology of polynomial hypersurfaces.
Proc. Symp. Pure Math., 40(1):167–178, 1981. 13

[Chi86] Chinburg, T., Minimal Models for Curves over Dedekind Rings. In Cor-
nell, G. and J. H. Silverman (editors): Arithmetic Geometry, Storrs Con-
ference, Connecticut, chapter XIII, pages 309–326. Springer-Verlag, Berlin,
Heidelberg, New York, Tokyo, 1986. 16, 17, 18, 19, 20, 21

[EGA] Grothendieck, A. and J. Dieudonné, Éléments de géométrie algébrique
(EGA). Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, 1960–1967. 2, 17, 20,
22, 34

59



Bibliography

[Epp03] Epping, D. C., Nichtabelsche Kohomologie und Vektorbündel auf Rie-
mannschen Flächen. Westfälische Wilhelms-Universität,Münster, 2003. 39

[FK92] Farkas, H. M. and I. Kra, Riemann Surfaces. Springer-Verlag, Berlin,
Heidelberg, New York, 2nd edition, 1992. 44, 54

[For77] Forster, O., Riemannsche Flächen. Springer-Verlag, Berlin-Heidelberg,
1977. 41

[Fre57] Frenkel, J., Cohomologie non abélienne et espaces fibrés. Bulletin de la
Société Mathématique de France, 85:135–220, 1957. 39

[GF65] Grauert, H. and W. Fischer, Lokal-triviale Familien kompakter kom-
plexer Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen, II:89–94, 1965. x,
47

[GM80] Goresky, M. and R. MacPherson, Stratified Morse Theory, volume 14
of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New
York, Berlin, Heidelberg, 1980. 29

[GR84] Grauert, H. and R. Remmert, Coherent Analytic Sheaves. Springer-
Verlag, Berlin-Heidelberg-New York, 1984. 6

[Gra57] Grauert, H., Holomorphe Funktionen mit Werten in komplexen Lieschen
Gruppen. Math. Ann., 133:450–472, 1957. 40

[Gra58] , Analytische Faserungen über holomorph-vollständigen Räumen.
Math. Ann., 135:263–273, 1958. xi, 53

[Gra65] , Mordells Vermutung über Punkte auf algebraischen Kurven und
Funktionenkörper. Publ. Math. IHES, 25, 1965. 42

[Har77] Hartshorne, R., Algebraic Geometry. Springer-Verlag, Berlin-Heidelberg-
New York, 1977. 1, 17, 44

[Hir62] Hirzebruch, F., Neue topologische Methoden in der algebraischen Ge-
ometrie, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer-Verlag, Berlin-Göttingen-Heidelberg, 2nd edition, 1962. 40

[HL84] Hà H. V. and Lê D. T., Sur la topologie des polynômes complexes. Acta
Math. Vietnamica, 9:21–32, 1984. ix, 13

[KK83] Kaup, L. and B. Kaup, Holomorphic Functions of Several Variables. Num-
ber 3 in Studies in Mathematics. Walter de Gruyter, Berlin-New York, 1983.
6

60



Bibliography

[Kod86] Kodaira, K., Complex Manifolds and Deformation of Complex Structures,
volume 283 of Grundlehren der mathematischen Wissenschaften. Springer-
Verlag, New York, Berlin, Heidelberg, Tokyo, 1986. 28

[Lic68] Lichtenbaum, S., Curves over discrete valuation rings. Am. J. Math.,
90:380–405, 1968. 21

[Liu02] Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford University
Press, 2002. 1, 2, 3, 4, 6, 7, 8, 18, 23, 26, 27, 34, 35

[Man63] Manin, Y., Rational Points on algebraic curves over function fields.
Izv. Akad. Nauk SSSR Ser. Math., 27:1397–1442, 1963. 42

[Mum99] Mumford, D. B., The Red Book of Varieties and Schemes, volume 1358
of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New
York, 2nd edition, 1999. x, 42

[Par68] Parshin, A. N., Algebraic curves over function fields. Izv. Akad. Nauk
SSSR Ser. Math., 32:1191–1219, 1968. 41, 42

[Röh57] Röhrl, H., Das Riemann-Hilbertsche Problem der Theorie der linearen Dif-
ferentialgleichungen. Math. Ann., 133:1–25, 1957. 53

[Ser56] Serre, J.-P., Géométrie algébrique et géométrie analytique (GAGA).
Ann. Inst. Fourier, 6:1–42, 1956. 4, 5

[Sha66] Shafarevich, I. R., Lectures on minimal models and birational transfor-
mations of twodimensional schemes. Tata Inst. Fundam. Res., 1966. ix,
21

[SOS89] Sekiguchi, T., F. Oort and N. Suwa, On the Deformation of Artin-
Schreier to Kummer. Annales Scientifiques de l’École Normale Supérieure,
22:345–375, 1989. x, 14, 25

[Ste51] Steenrod, N., The Topology of Fiber Bundles, volume 14 of Princeton
Mathematical Series. Princeton University Press, Princeton, New Jersey,
1951. 42

61





Glossary of Notation

∼c cohomology as equivalence relation, p. 38.

X ∨ Y wedge product {(x, y) ∈ X × Y | x = x0 or y = y0} of topological spaces X, Y , p. 55.

α(X) number of irreducible divisors of a scheme X, p. 19.

C1(U, F ) set of 1-cochains in regards to an open covering U with values in a sheaf F , p. 38.

codim(F, X) codimension of a subset F of X in X, p. 35.

δ δ-invariant of integral projective schemes of dimension 1, p. 24.

∆ complex open unit disc, p. 40.

∆n n-dimensional unit sphere, p. 31.

∆r {z ∈ C | r < |t| < 1}, p. 54.
depth M depth of a module M , p. 26.

Df Jacobian matrix of a function f , p. 30.

Div(X) group of Cartier divisors on a scheme X, p. 18.

E(2) self-intersection of a curve E, p. 18.

En (n× n) unit matrix, p. 30.

f germ of a function f , p. 30.

GLn(C) general linear group of complex invertible (n× n) matrices, p. 9.

ht(I) height of an ideal I, p. 2.

I (V ) sheaf of ideals of a variety V , p. 4.

ik(E, F ) intersection of a curve E with a positive Cartier divisor F with respect to a field k, p. 18.

K canonical divisor.

l(D) dimk H0(X, L (D)).

lengthA(M) length of an A-module M , p. 24.

L a sheaf of germs of holomorphic maps in a Lie group L, p. 39.

L c sheaf of germs of continuous maps in a Lie group L, p. 39.

M̂ holomorphically convex hull of a set M , p. 40.

Mn(C) group of complex (n× n) matrices, p. 9.

n(X) geometric number of irreducible components of a scheme X, p. 34.

N(X) set of non-normal points of a reduced complex space X.

ωX canonical sheaf of a smooth variety X, the nth exterior power of the sheaf of differentials,
p. 16.

ΩX/k sheaf of differentials of a variety X over a field k, p. 16.

Φ flow on a differentiable manifold, p. 29.
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Glossary of Notation

pa arithmetic genus, p. 16.

pg geometric genus, p. 16.

Proj(R) scheme associated to a graded algebra, p. 7.

R ramification divisor, p. 43.

R̂ completion of a ring R, p. 22.

Rh Henselization of a ring R, p. 23.

ranka f rank Taf , rank of a function f in a, p. 30.

s̄ algebraic closure of a point s of a scheme, p. 34.

(Sn) Serre condition for locally Noetherian schemes, p. 26.

Spec(R) spectrum of a ring R, p. 3.

Spm(R) set of maximal ideals of a ring R, p. 22.

supp(f) {x ∈ (f) | f(x) = 0}, p. 29.
S(X) singular locus of a reduced complex space X, p. 6.

T complex torus, p. 46.

TxM analytic tangent space to a manifold M at x, p. 10.

T z
x X Zariski tangent space to a scheme X at x, p. 1.

Uij intersection Ui ∩ Uj of two sets Ui and Uj , p. 9.

V (I) {p ∈ Spec(R) | I ⊆ p}, p. 7.
V (I ) closed subscheme associated to a quasi-coherent sheaf of ideals, p. 7.

Xη generic fiber of a morphism, p. 3.

Xh associated complex analytic space, p. 5.

(X, Y )f fibered pair with projection f , p. 28.

Z1(U, F ) set of 1-cocycles in regards to a covering U with values in F , p. 38.

Z1(X) group of Weil divisors on a scheme X, p. 18.
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Blowing-up, 7
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Cohomology set, 38
Compatibility condition, 10
Complex analytic space, 4

associated, 5
Contraction morphism, x
Cross section, 10, see Section
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exceptional, 15, see Divisor, exceptional
vertical, 23

δ-invariant, 24
Depth, 26
Divisor

Cartier, 18
positive, 18

exceptional, ix, 15, see Curve, exceptional
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Factorization Theorem, 18
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isomorphism, 11
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maximal, 29
Flow line, 29, 32
Formal fiber, 2
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General linear group, 9
Generic fiber, 3
Geometric genus, pg, ix, 16
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Graded OX -algebra, 7

Height, ht, 2
Hensel’s Lemma, 22
Henselian ring, 22
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Holomorphically complete space, 40, see Stein
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Holomorphically convex space, 40
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Homogeneous OX -algebra, 7
Homogeneous algebra, 7
Hurwitz Theorem, 43

Intersection, ik, 18
Isotriviality, 41

Jacobian matrix, D, 30
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Length of a module, 24
Lie group, xi, 9
Line bundle

canonical, 10
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Möbius transformation, 37, 51, 52
Mapping
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Minimal Models Theorem, ix, 14, 16, 21
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relatively, 15
Model, 15

minimal regular, ix, 14, 15
regular, 15
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Theorem, 6
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Rank Theorem, 30
Riemann surface

elliptic, 40
hyperbolic, x, 40
parabolic, 40

Rigidity Theorem of Arakelov-Parshin-Manin-
Grauert, x, 42, 49

Scheme, 1
affine, 1
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Henselian, 22
integral, 1
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global, 10
Section Theorem, 42
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Simple module, 24
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Strict transform, 15
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analytic, 10
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Thom’s Isotopy Lemma, 29
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Universal property of blowing-ups, 7

Vector bundle, 10
Vector field, x, 10
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