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Detecting orbits along subvarieties
via the moment map
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Abstract. Let G be a (real or complex) linear reductive algebraic group acting on an affine
variety V. Let W be a subvariety. In this work we study how the G-orbits intersect W. We
develop a criterion to determine when the intersection can be described as a finite union of
orbits of a reductive subgroup.

The conditions of the criterion are easily verified in practice and are used to develop
techniques to study left-invariant Ricci soliton metrics on nilpotent Lie groups. A nilpotent
Lie group is called an Einstein nilradical if it admits a left-invariant Ricci soliton metric.
Applying the techniques developed, we show that the classification of Einstein nilradicals
can be reduced to the class of so-called indecomposable groups. Among other applications,
we construct arbitrarily large continuous families of (non-isomorphic) nilpotent Lie groups
which do not admit left-invariant Ricci soliton metrics.

The note finishes by applying our techniques to the adjoint representation of reductive
Lie groups. The classical result of finiteness of nilpotent orbits is reproved and it is shown
that each of these orbits contains a critical point of the norm squared of the moment map.

1. INTRODUCTION

This work addresses the following question. Let G be a reductive group
acting on a variety V' and let W be a subvariety of interest.

Question. Can we calculate the size of the moduli of G-orbits intersecting W ¢

By moduli we mean the set of points up to the equivalence of lying in the
same G orbit. More generally, we are interested in understanding W up to
G-equivalence; here G does not preserve W. We study this question when W
is smooth and there exists a reductive subgroup H of G which measures the
G-action along W. The notion of measuring the G-action is by means of the
moment map and we say that G is H-detected along W if W is H-stable and
mg(w) € h = Lie H for w € W, where m¢ is the moment map of the G action
(see Section 2). Our main technical result is the following.

Theorem 3.1. Let G, H,V,W be as above. Suppose G is H-detected along
W, then, for w € W C V, the components of G -w N'W are Hy-orbits, where
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Hy is the identity component of H. Consequently, G -wNW is a finite union
of H-orbits.

We are primarily interested in applying this theorem to study left-invariant
metrics on Lie groups. In Section 4 we present applications to the geometry of
nilpotent Lie groups.

Since the works of Heber [6] and Lauret [13] (cp. Remark 4.9 in [14]), geomet-
ric invariant theory (GIT) has become a powerful tool in the study of Einstein
metrics on non-unimodular solvable Lie groups and Ricci soliton metrics on
nilpotent Lie groups (called nilsolitons). However, there are few practical tools
in the literature for answering questions concerning the geometry of these Lie
groups, from the perspective of GIT. Using Theorem 3.1, we produce new tools
for studying Lie groups with left-invariant metrics from this perspective.

Recall that a Riemannian manifold (M, g) is called Einstein if its Ricci
operator (Ric) is a multiple of the identity map. While left-invariant Einstein
metrics do exist on some semisimple and solvable Lie groups, they cannot exist
on nilpotent Lie groups by a result of Milnor [19]; this is due to the fact that
the Ricci tensor has mixed sign for any metric on a nilpotent Lie group. It
is natural, then, to ask which metrics on nilpotent Lie groups are ‘closest’ to
being Einstein. In a measurable sense, the metrics which are nearest to being
Einstein are the so-called nilsoliton metrics [13] and are characterized by the
property Ric = ¢Id+ D for some ¢ € R and D € Der(9), where M is the
nilpotent Lie algebra in question.

A nilpotent Lie group is called an FEinstein nilradical if it admits a nilsoli-
ton metric (see [17] for justification of this terminology). The following two
questions are central to much of the current research on nilsolitons:

Question. Given a nilpotent Lie group, how can we determine if it is an
Einstein nilradical?

Question. How are the Finstein nilradicals distributed among all nilpotent
Lie algebras?

In response to these questions, we present Theorems 4.2 and 4.4; these
theorems describe how to reduce the set of metrics when searching for a
nilsoliton metric. More precisely, we study a representation of GL,R on
V = A%2(R")* @ R", the vector space of R"-valued, anti-symmetric maps on
R™ x R™. Observe that a Lie bracket ;1 on R™ can be viewed as an element of
V' and from this perspective the orbit GL,R - i is the isomorphism class of p.
In the notation of Theorem 3.1, the variety W will be the set of Lie brackets
which admit a prescribed set of ‘symmetric derivations’. Theorems 4.2 and 4.4
show that if a nilpotent Lie group admits a soliton metric and its Lie algebra
admits a family of symmetric derivations, then there exists a soliton metric
preserving those symmetries.

These theorems generalize a result of Heber [6] which applies in the case of
having one specific symmetric derivation, the so-called pre-Einstein derivation.
In practice, the above theorems are more user friendly when trying to find
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a soliton metric on a nilpotent Lie group. Additionally, these theorems are
necessary tools for building continuous families of indecomposable (see below),
nonisomorphic nilpotent Lie groups which do not admit nilsoliton metrics (see
[10]).

Theorem 4.7. There exist continuous families of nonisomorphic, indecom-
posable two-step nilpotent Lie groups which do not admit Ricci soliton metrics.
The size of these families may be made arbitrarily large; more precisely, these
families may be chosen so that the dimension of said families grows linearly in
the dimension of the underlying Lie group.

The first examples of the above phenomenon appeared in [31], where Will
constructs a curve of such algebras. To our knowledge, the construction given
in [10] of these new higher dimensional families is the first general construction
of its kind and depends on the technical results of the present work.

In trying to classify Einstein nilradicals, we are able to reduce the question
to one concerning its ‘irreducible pieces’. Consider a Lie group N and write
N = N; N as a product of complementary normal subgroups (i.e., Ny N Ny =
{e}). Wesay N is decomposable if there exists such a decomposition with both
N; nontrivial; otherwise, the group is called indecomposable. Using the above
theorems, we obtain

Theorem 4.5 Let N be a nilpotent Lie group such that N = N1 Ns, a product
of complementary normal subgroups. Then N admits a left-invariant Ricci
soliton metric if and only if both N1 and Ny admit such a metric.

This result has previously appeared in [21] where it is proven using different
techniques, ones which are specialized to the setting of solitons on nilpotent
groups.

In addition to the above, Section 3 also contains a comparison of the tech-
niques used in studying Ricci solitons on k-step nilpotent Lie groups vs. 2-
step nilpotent Lie groups. To study nilpotent Lie groups (of arbitrary step)
one uses a particular representation of GL,R. To study 2-step nilpotent Lie
groups, it is often helpful to specialize and consider a family of representations
of SLy;R x SL,R with p+ ¢ = n, as in [4]. On a general k-step nilpotent
Lie group, nilsolitons are realized as critical points of the norm-squared of the
moment map for the GL,R representation above [13]. Using ad hoc methods,
an analogous result is true in the 2-step setting for the moment map of the
SL¢R x SL,R above, see [9]. In Corollary 4.3 we demonstrate that this result
for 2-step nilpotent Lie groups follows from more general principles which are
applicable to all nilpotent groups (cp. Theorems 4.2 and 4.4).

We finish by demonstrating our techniques applied to the adjoint represen-
tation in Section 5. Let G be a semisimple, or reductive, group and consider
the adjoint action on g. We reprove the classical result that there are finitely
many nilpotent orbits and show that every nilpotent orbit in g is (analytically)
distinguished in the sense of Definition 2.6. The mechanics of this proof for
the adjoint representation have been known to experts for some time, but not
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phrased in the language of moment maps. We present our work for this case to
emphasize how these techniques for the adjoint representation can be phrased
in a more general language that applies to any representation of a reductive
group, with worthwhile applications.

2. PRELIMINARIES

We are interested in actions of both real and complex linear reductive
groups. As the main results for real groups follow from the special case of
complex groups, we will start with complex groups. Let G be a complex lin-
ear reductive group acting (rationally) on an affine algebraic variety X. The
following theorem is well-known.

Theorem 2.1. There exists a linear representationT : G — GL(V') and closed
imbedding I : X — V which is G-equivariant; that is, I(gz) = T(g)I(x) for
rzeX, ged.

In this way we can reduce to the setting X = V, for a proof see [23,
Thm. 1.5]. Let G be a complex reductive group and K a maximal compact
subgroup of G. Let V' be a complex vector space on which G acts linearly and
rationally. We denote this action by

GxV -V (g,v) —g-v

We may endow V' with a positive definite i-invariant inner product ( , ); that
is, the real part of a positive definite Hermitian inner product. Such an inner
product {, ) on V is called G-compatible if { , ) is K-invariant. This definition
implies that G is closed under the transpose (metric adjoint) operation and
that ¢ acts symmetrically, where LieG = g = ¢® it and ¢ = Lie K. Such
inner products always exist on V' by averaging.

Cartan Involutions. Let G be a closed subgroup of GL(V'). The adjoint with
respect to ( , ) is denoted by *. Any involution of the form 6(g) = (g*)~! for
g € GL(V) is called a Cartan involution of GL(V'). If the involution 6 leaves
G stable, then we say that 6 is a Cartan involution of G. Such involutions
always exist by a result of Mostow (see below).

Now choose { , ) to be invariant under K , as above. Then G is stable under
the metric adjoint operation and we have a Cartan involution 6(g) = (¢*)~! on
G with K = GY, the fixed points of #. We denote the corresponding involution
on g by 6 and the following are true: £ = LK = +1 eigenspace of 6 and
p = it = —1 eigenspace of §. We observe that 6 on g is conjugate linear (by
i-invariance of { , )) and is just complex conjugation with respect to the real
form € of g. See [20], [25], and references therein for more information on
Cartan involutions and decompositions.

Proposition 2.2 (Mostow). Let G be a complex (linear algebraic) reductive
group and H a reductive subgroup. Then there exists a Cartan involution 6
which simultaneously preserves G and H. The involution 6 can be chosen so
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that K = HY is a previously chosen mazimal compact subgroup of H and
Ky C K = GY where K is a mazimal compact subgroup of G.

We say that the Cartan decomposition of H above is compatible with the
Cartan decomposition of G. In practice we will be interested in inner products
which are both G and H-compatible. The above proposition says that such in-
ner products always exist. We observe that if an inner product is G-compatible
and H is compatible with G, then the given inner product is H-compatible.

Similarly, Cartan involutions exist on real algebraic reductive groups and the
above proposition is still valid. In the real setting, however, the space p = —1
eigenspace of # will not equal i as g might not be a complex Lie algebra.
Here we choose inner products on V such that p acts symmetrically on V,
such inner products always exist. Cartan involutions and the decomposition
g = €@ p are good tools for studying the the geometry of orbits of real rational
representations of real reductive groups, see [25], [18], and [5] for applications
to the study of real group orbits.

Moment maps. Endow g with an Ad K-invariant, i-invariant, f-invariant
inner product ({ , )). This is equivalent to ({( , )) being the real part of an
Ad K-invariant, -invariant Hermitian inner product on g. We choose (( , ))
to be f-invariant so that ¢ = €@ p is an orthogonal decomposition. Such
inner products on g always exist as demonstrated by the following examples.
Additionally, one could guarantee their existence by averaging.

Example 2.3. Let G be an algebraic reductive subgroup of SL(E). Let 6
denote a G-stable Cartan involution of SL(FE) and let B denote the Killing form
of s{(E). Then the inner product ((-,-)) = —B(-,6(-)) satisfies the conditions
stated above.

Example 2.4. If G is semisimple then one may use the inner product ((-,-)) =
—Byg(+,0(-)) where By is the Killing form of g.

We define the g-valued moment map m : V — g implicitly by
((mv), X)) =2(X -v,v) forall X g

The K-invariance of ( , ) implies m(v) € €&+ C g. The 6-invariance of {( , ))
implies ¢ = p and thence

m(v) €p forallveV

Having p-valued moment maps is the real reason we required {{ , )) to be
f-invariant.

We observe that m is a (real) homogeneous polynomials of degree 2. More-
over, for ¢ € C we have m(cv) = |¢|*m(v), where |c[* = ¢@ is the usual norm
square on C. This gives rise to a well-defined polynomial on complex projective
space
_ m(v)

O

m[v]
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In the sequel, we will be interested in ||m||? as a real valued function on both
V and PV, the norm-squared being taken with respect to ((, )) on g. When G
is a real reductive group the same results hold except that p is not necessarily
1€. Moreover, in the real setting our moment map gives rise to a well-defined
function on real projective space.

Closed and distinguished orbits. Consider the action of G on V. It has
been shown that the closed orbits are precisely the orbits which intersect the
zero set of the moment map m : V' — p. In the complex setting this theorem
was done by Kempf-Ness [12] and in the real setting done by Richardson-
Slodowy [25]. We state it below.

Theorem 2.5. Consider the action G x V. — V. Denote the zero set of
m:V —p by M =m~1(0). Forv eV, the orbit G - v is closed if and only if
G-vNnM#£o.

A mnonzero point v € V is called semi-stable if 0 ¢ G -v. This set clearly
contains all nontrivial closed G-orbits. In contrast, a point is called unstable
if zero is contained in the boundary of its G-orbit. The set of unstable points
is called the null-cone and can be studied in a more refined way by passing to
projective space.

Definition 2.6. A point v € V or [v] € PV is called G-distinguished, or just
distinguished when the G action is clear, if [v] € PV is a critical point of
[|m||? : PV — R. Likewise, we call an orbit G - v, or G - [v], distinguished if it
contains a distinguished point.

Closed orbits are always distinguished as zero is an absolute minimum of
[|m||?. The nonclosed distinguished orbits all lie in the null-cone.

Lemma 2.7. Let v € V. Then v is distinguished if and only if m(v) -v = cv
for some c € R.

A proof of this lemma follows immediately from the definitions and came
be found in [18]. In the following theorem, G may be either a real or complex
reductive Lie group.

Theorem 2.8. Let G, g, K, and V' be as above endowed with inner products
as above. Let m denote the moment map of the representation and, forv eV,
denote by @4 [v] the negative gradient flow of ||m||? starting at [v] in PV . Denote
the limit point of this flow by peo[v]. If G - v is a distinguished orbit with v
such a distinguished point, then for every g € G, poolg-v] € K - [v].

This theorem is true in both the real and complex settings, see [7]. A priori,

it is not clear that the limit set of the flow is a single point. For this point and
more information on moment maps, see [28, Sec. 2.5].

Detecting G-orbits along subvarieties. Let G be a (real or complex al-
gebraic) reductive group which acts linearly and rationally on V. Let H be
a reductive subgroup of G which has a compatible Cartan decomposition (see
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Proposition 2.2). Let V' be endowed with a G-compatible metric (see beginning
of Section 2). Recall that the G-compatible metric on V is also H-compatible
as H has a compatible Cartan decomposition. Let W be an H-stable smooth
subvariety of V' (by smooth we mean W is also a submanifold).

Definition 2.9. We say that the G-action on V is ‘H-detectable along W’ if
ma(w) € h for w e W.

Here m¢ denotes the moment map for the G-action. Analogously, we could
state this definition for smooth varieties in projective space.

We observe the following. Let V' be a G-representation which is H-detectable
on W, then mg(w) = mg(w) for all w € W. The proof follows immediately
upon writing out the definitions.

3. ORBITS OF COMPATIBLE SUBGROUPS

As above, let G be a reductive group with Cartan involution 6 and let H
be a compatible reductive subgroup (cp. Proposition 2.2). Let V be a G-
representation space endowed with an inner product ( , ) which is G (and
hence H) compatible. Let mg and mpy denote the moment maps of the G and
H actions, resp., on V. Suppose there exists an H-stable smooth subvariety
W C V on which the G-action is H-detectable; that is, such that mg(w) =
mp(w) for all w € W (see the definition above). The subvariety W is not
required to be closed.

The following theorems are true for real and complex groups. We first give
proofs for complex groups and finish the section by explaining how to extend
the results over C to results over R.

Theorem 3.1. Let G, H,W,V be as above. If w € W C V, then the compo-
nents of G-wNW are Hy-orbits and, consequently, G-wNW is a finite union
of H-orbits.

Remark. In this way we obtain a solution of the original question. The di-
mension of the moduli of G orbits which intersect W is precisely the dimension
of the moduli of H orbits in W.

While the proof of this theorem is elementary, the criterion of a G-orbit
being H-detected along some W is easily verified in practice and can produce
information with genuine content. For applications of this theorem to the
study of left-invariant metrics on nilpotent Lie groups, see Section 4 and [10].
One general consequence of the above theorem is the following corollary.

Corollary 3.2. Let G, H, W,V be as in the theorem above. Then for w € W,
the intersection G -w N'W is smooth.

Theorem 3.3. Let G, H, W,V be as above but with W a cone in V; that is,
W descends to a projective variety PW of PV. Consider the induced actions
on PV,PW. If [w] € PW, then the components of G - [w] NPW are Hy-orbits
and, consequently, G - [w] NPW is a finite union of H-orbits.
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Remark. The proof of the second theorem does not follow immediately from
the first. However, the proofs are very similar and we give them simultaneously.

Corollary 3.4. Let w € W C V where W s a closed H-stable smooth sub-
variety (e.g., a subspace). Then G - w is distinguished if and only if H - w is
distinguished.

Remarks. (1) Closedness of W is necessary in this corollary as finding dis-
tinguished points involves taking limits. This corollary gives a useful criterion
for determining when a specific orbit of G or H is distinguished. Applications
of this corollary are given in the following section and also in [10].

(2) It is not true, in general, that H - w must be distinguished if G - w
is distinguished. In the special case of closed orbits, this problem has been
explored in [30] and [5]. In [30] it is shown that if G - w is closed then H - gw
is closed for generic g € G. Other criteria to determine closedness of orbits of
(sub)groups have been constructed in [5]; at the moment there is no general
criterion which completely determines when H - w is closed, even if G - w is
closed. For an explicit example of a nonclosed H orbit in a closed G orbit, see
8]

Before proving the theorem, we use it to deduce Corollary 3.4.

Proof of the Corollary 3.4. We apply Theorem 3.3 and Theorem 2.8 to prove
the corollary.

Recall that [w] € PW, or w € W, is a G-distinguished point if (by definition)
[w] is a critical point of |[mg||? : PV — R where mg is the moment map
of the G-action on PV. We denote the moment map on V and PV by the
same notation as context should avoid any confusion. It is well-known, see
Lemma 2.7, that [w] € PW C PV is G-distinguished if and only if mg(w) -w =
cw for some ¢ € R. In this way we see that a point w € W is H-distinguished
if and only if w € W is G-distinguished as mg(w) = my(w). Thus, if H - w is
H-distinguished, then G - w must be G-distinguished.

Conversely, consider w € W such that the orbit G - w is G-distinguished.
Theorem 2.8 provides the existence of g, € Gy and g € G such that [g, - w] —
[g-w] in PW, as n — oo, and [g - w] is distinguished. Notice that the sequence
[gnw] can be chosen to lie in PW by following the negative gradient flow of
[|me||? starting at [w] and our limit point is in PW as PW is closed. Moreover,
observe that [g-w] is in the same connected component of G - [w] NPW as [w].
By Theorem 3.3, there exists h € H such that ¢ - [w] = h - [w]; that is, H - [w]
contains a distinguished point and hence H - w is a distinguished orbit.

U

Next we prove Theorems 3.1 and 3.3. The proofs of both are given simul-
taneously as they are so similar. It suffices to consider H which is connected
as H, being an algebraic group, has finitely many components.

Lemma 3.5. Forw € W, T,,(G-w) NTyuW = Tyw(H - w). When W is a cone
in V with projection PW C PV, we have Tj,,)(G - [w]) NTiu)PW = T, (H - [w]).
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Proof of the lemma. To show equality, we show containment in both direc-
tions. One direction is trivial. Since H preserves W, we immediately have
Tw(H -w) C Ty (G-w)NT,W which then implies T, (H - [w]) C T} (G- [w]) N
T7,)PW. The reverse containments are shown below.

We prove the lemma at the affine level first. By translation, we have the
following identifications

Tw(G-w)~g-w
Ty(H -w)~bh- -w
Recall that our Cartan decompositions g = €@ p and h = €y @ py satisfy
by C €t p=1% and py = tky. Take X € p © py, the orthogonal compliment
of py in p, then
0= (X,mg(w)) =(X - w,w) for allw e W
as mg(w) = my(w) € h. Consider v,, € T, W and a curve v(t) € W tangent
to vy, at t = 0; that is v(0) = w and 7/(0) = v. Applying the above equation
to this curve and differentiating we obtain
d
= — X -~(t t
o t:0< Y(t), (1))
= (X -v,w)+ (v, X - w)
=2(X -w,v)

0

as X = X' € popy C p is symmetric with respect to (, ). Thus, X -w L T,,W
forwe W and X € pSpgy.

Since T,,W is a complex vector space and ( , ) is i-invariant, forw € W, v, €
T,W,and X € pSpy we have 0 = (X - w, —iv) = (iX - w,v) = {(iX) - w,v)
as g acts C-linearly. Since goh = (t@dp)o (tg ®py) =C —span{pSpu} we
have

(1) X wlT,WfrweW, Xegoh

Now pick X € g such that X -w € g-wNT,W. Writing X = X; + X3 €
hd(goh), we obtain X;-w+ Xy -w € T,,W which then implies Xo-w € T, W as
H acts on W by hypothesis. Here we are using the smoothness of W to insure
that Xo -w =X -w— Xy -w e T,W. But then X5 -w = 0 by Equation (1).
Hence, X -w = X7 -w € h - w as desired. This proves the lemma in the affine
case.

To prove the second part of the lemma, we reduce to the first part. Recall
that the map 7 : V' — PV is a submersion and the restrictions 7 : G-v — G-[v]
and 7 : W — PW are surjective. Let m, : TV — TPV denote the induced map
on the tangent bundles and recall that if v,, € T,V is such that m.(v,,) =0 €
TPV, then v € C < w >.

Consider X[, € Tjy)(G - [w]) N Tp,PW. Then there exist X, € T (G - w)
and X € T, W such that X, = 7.(X),) = 7 (X)) € T},,)PW. This implies
(X, — X7,) = 0 € Tj,,)PW, which implies X, — X7 € C < w >,,, which then
implies X/, € X!/ + C < w >,,C T,,W as W is a cone and smooth at w # 0.
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That is, X/, € T, ( w) NT,W =Ty, (H -w) by the first part of the lemma
and so KXw) = (X ) e (TwH - w) = T ]( - [w]). Thus, T[w](G [w]) N

T PW = Ty (H - [w]).
U

As the lemma is now proven, we continue with the proof of the theorems. If
we knew G -wNW were smooth, then by dimension arguments and the lemma
above it would be easy to establish that G- wNW ~ H - w locally near w.
A priori, however, we cannot guarantee smoothness; obviously the theorems
show smoothness a posteriori. We recall the following basic proposition on
algebraic group actions; for a proof see [3, 1.1.8].

Proposition 3.6. Let G be an algebraic group acting on a variety X. Then
for x € X, the boundary O(G -x) = G - x — G - x consists of G-orbits of strictly
lesser dimension. Moreover, the orbit G - x is open and dense in G -x. The
Hausdorff and Zariski closures of the orbit coincide.

Lemma 3.7. Let G be an algebraic group and let H be a closed subgroup of
G. Let G act on a variety V and assume that W is an H-stable subvariety.
Suppose the following is true for every w € W

T(G - w) N TWyW = Ty (H - w)

Then the intersection of each G-orbit with W is a union of finitely many H -
orbits.

Clearly this lemma combined with the previous lemma completes the proof
of the theorems. We would like to thank Chuck Hague for pointing out to us
that this lemma previously existed in the literature (see [11, Lem. 2.4]). We
include a proof for the sake of completeness and for the nonexpert.

Proof of the lemma. Let w € W, we can decompose the variety G - wNW =
UX; into irreducible components X;. As we are interested in the component of
G-wNW that contains w, we only need to consider the irreducible components
X, that contain w.

We begin by showing H preserves X;. Take p; € X; which is a smooth point
of X;. Then G-p; NW coincides with X; near p; (in the Hausdorff sense), and
so h-p; € X; for h € O, C H where O, is a (Hausdorff) open neighborhood
of the identity element e € H. Let 1 : G x V — V denote the G-action on V.
Since O, = H and p is continuous we have

w(H, p;) = p(Oe, pi) C u(Oe, pi) C X;

This holds for_ any smooth point of X;. Let U denote the set of smooth points
of X;. Then U = X; (cp. [27, Lem. 2.1.1]) and as before

p(H, X;) = p(H,U) C p(H,U) C | p(H,pi) C | Xi =X,
pi €U piEU

This shows H acts on X;.
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Now that H - p; C X; we may compare the following dimensions
dimH - p; < dim X, at p; < dim(T), (G - p;) NTp,W) = dim T}, (H - p;)

where the second inequality follows from T}, (G -p;, N W) C Tp,,(G - p;) N T, W
and the last equality is the hypothesis of the present lemma. Thus dim H -p; =
dim X; and we see that H - p; is an (analytic) open neighborhood of p; in Xj;.
As X, is irreducible, we see that H - p; = X;. Since H - p; is open and dense
in H - p;, the same is true for H - p; C X;.

Next we show H - p; = X;. Let w’ € X;. First we observe that v’ € H - p;,
as stated in the previous paragraph. The next lemma will use the fact that
the Hausdorff and Zariski closure of the orbit coincide (cp. Proposition 3.6).

Sublemma 3.8. dim 7y, (G - w') N T W > dim H - p;

Proof of the sublemma. By hypothesis G-w’ = G-p; and there exists w, € H-p;
such that w, — w’ as v’ is in the Hausdorff closure of H - p;.

Pick an orthonormal basis {X'}7_; of Ty, H - w, = Ty, H - p; where r =
dim H - p;. By passing to a subsequence we may assume X! — X; as n — oo,
forj=1,...,r. Since G-w' = G-p; we have X; € T,,,G-w’ which then implies
{X;}j=1 € Tw (G -w') N Ty W. As this collection of vectors is orthonormal,
the sublemma is proven.

O

By hypothesis and the above work, we have
dimH - w' =dim Ty (H - w'") = dim(T G - w' N Ty W) > dim H - p;

But w’ € H - p;. Proposition 3.6 implies dim H - w’ < dim H - p; with equality
if and only if H -w’ = H - p;. Applying this fact and the inequality above, we
see that H -w’ = H - p;. Since w’ € X; was arbitrary we have H - p; = X;. We
observe that we have shown X; = H - v’ for any v’ € X;.

Recall that we have decomposed G - w N W = UXj; into irreducible com-
ponents. If an irreducible component X; contains w then X; = H - w, as
shown above. Thus the topological component of G - w N W containing w is

U X, = UH -w = H -w. This proves the lemma and the proofs of
{X;| weX;}
our theorems are complete.

Remark. We point out that this technique of using compatible subgroups to
study G-wNW does not completely detect the phenomenon of the intersection
being a finite union of H-orbits. There do exist examples where W is an H-
stable subspace, each intersection G-wNW is finite union of H-orbits, but that
the G-action is not H-detectable along W for any choice of inner products on
V and g. This is proven by constructing H and W so that the G-orbit through
a generic point of W is closed, but so that the H-orbit through said points is
not closed (cp. Corollary 3.4).
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The question of closed orbits of subgroups. Let G be a reductive group
acting rationally on V. Let H be a reductive subgroup. If G - v is closed, then
it is known that H - gv is closed for generic ¢ € G. This problem has been
worked on by many people, see, e.g., [16], [22], [30], or [8]. However, it is not
true for all g € G that H - gv must be closed. It is an interesting problem to
try and determine when the orbit of H is closed.

Corollary 3.9. Suppose there exists an H-stable smooth (closed) subvariety
W along which G is H-detected. If G - w is closed, then so is H - w.

This is the special case of Corollary 3.4 when our distinguished orbit is
closed. We do not know if the converse is true.

Question 3.10. Let H be a reductive subgroup of G. Let G act rationally on
V' an suppose that G -v and H -v are closed. Do there exist inner products on
V' and g, satisfying the hypothesis of Theorem 3.1, such that G is H-detected
along the smooth subvariety H - v ?

As stated at the end of the previous subsection, there do exist examples of
V,W, G, H such that G cannot be H-detected along W for any choice of inner
products on V' and g.

Real algebraic groups. Here we explain how to obtain the above results
over R. Let G be a real algebraic reductive group. The real group G can be
realized as the real points of a complex algebraic reductive group G® such that
G is Zariski dense. This is well-known, see, e.g., [25].

The following result of Borel-Harish-Chandra ([1, Prop. 2.3]) is the standard
way of relating the real and complex settings. Let V be real vector space on
which G acts linearly and rationally. Let V€ = V ® C denote the complexifi-
cation, then G acts linearly and rationally on V°.

Theorem 3.11. Consider v € V. C VC. Then GC-vNV is a finite union of
G-orbits. Moreover, the orbit G© - v is closed if and only if G -v is closed.

In the last assertion, the only if direction requires the work of either [2] or
[25]. In fact, a slightly stronger version of this theorem is true. We state this
version below and refer the reader to [7] for a proof.

Theorem 3.12. Consider v € V. C VC. Then G© - v is distinguished if and
only if G - v is distinguished.

To obtain Theorems 3.1 and 3.3 over R, one just needs know that they are
true over C and apply Theorem 3.11. To obtain Corollary 3.4 over R, one just
needs to know that it is true over C and apply Theorem 3.12.

4. APPLICATIONS TO THE LEFT-INVARIANT GEOMETRY OF LIE GROUPS

The theorems in this section can be viewed as specialized change of basis
theorems. We are interested in left-invariant Ricci soliton metrics on nilpotent
Lie groups. Such a metric is called a nilsoliton and if a nilpotent Lie group
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admits such a metric, it is called an Einstein nilradical (see [17] for justification
of this terminology).

Question. Which nilpotent Lie groups are Finstein nilradicals? If a nilpotent
Lie group admits such a metric, how can one find this special metric?

As a left-invariant metric on a Lie group is equivalent to an inner product
on its Lie algebra, we reduce to studying Lie algebras with inner products.
The nilsoliton condition can be completely phrased at the algebra level.

There are two points of view that one can take. The first is to fix a Lie
bracket on a vector space and vary the inner product, the second is to fix
an inner product on a vector space and vary the Lie bracket. We will work
from the second perspective as it has produced many results and allows us to
exploit tools from Geometric Invariant Theory. This is the perspective taken
by J. Lauret and others (see [15] and references therein).

These special metrics are realized as critical points of the norm squared of
the moment map corresponding to a particular GL(n,R) action. Let 9 be an
n-dimensional real vector space with fixed inner product ( , ). Consider the
space V. = AZ2(M)* ® N. This is the space of skew-symmetric bilinear forms
from M x N to M. The set of Lie brackets on M is a variety V in V. The change
of basis action of GL(n,R) on 9 induces the following action on V

g-wX,Y) =gu(g ' X,g7'Y)

for g € GL(n,R), p € V, and X,Y € R™. This action preserves the variety
V of Lie brackets. Moreover, if g € V is a Lie bracket on 91, then the orbit
GL,, - i is precisely the isomorphism class of p in V. The metric nilpotent
Lie algebra with bracket p and inner product { , ) is denoted 91, and the
simply connected nilpotent Lie group with Lie algebra 91, and left-invariant
metric corresponding to ( , ) is denoted by {N,,(, )} or just N, when (, )
is understood. Let g*(-,-) = (g~1-,g7 1) for g € GL(n,R), then {Ng.,,(, )}
is isometric to {N,,¢*(, )}. Thus N, admits a nilsoliton metric if and only
if Ng.,, is a nilsoliton for some g € GL(n,R). In this way we can study the set
of left-invariant metrics on N, by studying the orbit GL(n,R) - p in V.

The inner product on 91 extends naturally to an inner product on V' defined
by

M) =D X, X5), Xa) (X, X;), X
ijk
where {X;} is any orthonormal basis of 9. This inner product on V is O(n)-
invariant, where O(n) is the orthogonal group relative to (, ) on M.

A Cartan decomposition of gl(n) is given by so(n)® symm(n) where so(n) is
the Lie algebra of O(n), the skew-symmetric endomorphisms relative to ( , ),
and symm(n) is the set of symmetric endomorphisms relative to { , ). We
consider the inner product ((A4, B)) = tr(AB?) on gl(n), where the transpose
is determined by ( , ). This gives rise to the following moment map (see [15,
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Prop. 3.5))
(2) m(p) = -4 (ad,X;)'ad, X; +2)  ad,X(ad,X;)"

where {X;} is any orthonormal basis of 9. Or equivalently, for X, Y € N,

B YD) =~ S0, 0, ). )
+2§; (X0 X)), X) (X0, X)), )

Theorem 4.1 (Lauret). The Lie group N, (with left-invariant metric ( , ))
is a left-invariant Ricci soliton if and only if [u] is a critical point of ||m||? :
PV — R; here [u] denotes the class of p in PV. Equivalently, N, is an Einstein
nilradical if and only if the orbit GL(n,R) - p is distinguished.

Given pu € V, we are interested in the problem of finding ¢ € GL(n,R) such
that Ng., is a nilsoliton. The following theorems say that g can be chosen
from a subgroup of GL(n,R) that reflects natural symmetries in the metric
algebra ,. In this way, the following are considered specialized change of
basis theorems.

Theorem 4.2. Let {N, (, )} be a nilpotent Lie group with left-invariant metric
(, ). Denote by {M,(, )} the Lie algebra of N with inner product { , )
corresponding to the left-invariant metric on N.

Suppose N admits a left-invariant Ricci soliton metric; that is, there exists
g € GL(M) such that g*(-,+) = (g~1-, g~ 1) is a nilsoliton. Moreover, suppose
that {M, (, )} admits a symmetric derivation D € Der(M) (D is symmetric
with respect to { , )).

Let 0Nt = &Ny denote the eigenspace decomposition of D. Then the element
g € GL(M) such that g*( , ) is nilsoliton can actually be chosen from the
subgroup GL(My,) x --- x GL(Ny,).

Remark. This theorem was known in the special case that the symmetric
derivation D is the unique derivation such that the rank 1 extension s = R <
D > &M admits a left-invariant Einstein metric [6, Prop. 6.8]. In fact, there
it is shown that a slightly smaller group can be used. However, our theorem
is very useful in practice when it is not known which symmetric derivation
should be used to uniquely extend to an Einstein solvmanifold.

As a practical application, we have the following.

Corollary 4.3. Let {N,(, )} be a two-step nilpotent Lie group with Lie algebra
M. Denote the commutator of N by 3 = [N, MN]. Then N is an Einstein
nilradical if and only if there exist g € GL(3%) x GL(3) such that {N,g*(, )}
is a nilsoliton; here 3+ C M is taken relative to ( , ).

Proof of Corollary. This corollary follows immediately from the theorem as
every two-step nilpotent Lie algebra admits a symmetric derivation defined by
Id on 3+ and 2Id on 3. O
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Remark. In [4] and [9], 2-step nilpotent Lie groups, and their left-invariant
metrics, are studied using a particular representation of SL,R x SL,R on
s0(¢)?. Adapting the techniques of [13] to this setting, one is able to char-
acterize the 2-step nilpotent Lie groups with left-invariant metrics which are
Ricci solitons as distinguished points of the action of SL;R x SL,R on so(q)?.
The above corollary demonstrates that the ad hoc methods for characteriz-
ing nilsolitons on 2-step nilpotent Lie groups can replaced by a more general
procedure which applies to all nilpotent Lie groups.

Proof of Theorem 4.2. Let N = N, for some p € V. We will apply Corol-
lary 3.4 for the particular representation at hand.

By hypothesis, our nilpotent Lie algebra is an Einstein nilradical and so
Theorem 4.1 implies that the G = GL(n,R) orbit is distinguished. Consider
the subspace W = {\ € V | DA(X,Y) = A(DX,Y)+ (X, DY) for X,Y € N}.
This is a vector subspace which contains p as D € Der(MN,,).

Lemma. Let o, 3 be eigenvalues D with corresponding eigenspaces Vo, V3,
then for A € W, A(Vy, Vg) C Vo4, the eigenspace corresponding to a + 3.

The proof is immediate.

Define H to be the group GL(My,) x --- x GL(V), ). First observe that H
is closed under the metric adjoint with respect to (, ), hence H is reductive.
Also, W is H-stable as the elements of H are precisely the elements of G which
commute with D.

For A € W, we will show m(A\) € h = LH by means of Equation (3).
Let X, (resp. Xg) € M be in the A\, (resp. Ag) eigenspace of D, Ay # Ag.
Choose an orthonormal basis {X;} consisting of eigenvectors of D, and apply
Equation (3). This gives

<<m()‘)XonXﬂ = _42 (Xa, Xi), ></\(X[35X )7Xj>

+22 (X4, X;), Xo) AN(Xi, X;), Xp)

=0

To see that this is zero, we observe that each summand is zero. In the first
summation, we have

(X, Xi), X >< (Xﬂ,X),Xj> =0

since either Ao + A; # Aj or Ag + A # A;j as Ay # Ag; here we are applying
the lemma above. Similarly, all the terms in the second summation are zero.
Thus m(X) € h for A € W.

Applying Corollary 3.4 together with Theorem 4.1 completes the proof. [

Theorem 4.4. Consider {N,(, )} and a collection of symmetric derivations
{Du} of Mt (relative to ( , )). Denote by H® the group which preserves the
eigenspace decomposition of Dy, as in Theorem 4.2. Define H = NH*. The
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group H is a reductive algebraic group and N admits a nilsoliton metric if and
only if {N,h*( , )} is such a metric for some h € H.

Remark. It is not always true that the intersection of reductive groups is
reductive, although such intersections are ‘generically’ reductive. See, e.g., [8]
for an explicit example of this nongeneric phenomenon.

Proof. It was shown in the proof of the previous theorem that each H¢ is
closed under the metric adjoint. Hence, the same is true for the intersection
H. Moreover, H is a variety as it is the intersection of varieties. Thus, H is a
reductive algebraic group. Let h be the Lie algebra of H, then h = Nh<, where
h* is the Lie algebra of H¢.

Define a subspace W, = {A € W | D, AX,Y) = A(DoX,Y) + A(X,D,Y)
for XY € M}. Define W = NW,, this subspace is H-stable as each W, is
H%-stable. The proof of the previous theorem shows that for A € W C W, we
have m(X) € h®. Hence for A € W, m(X) € b.

As before, applying Corollary 3.4 together with Theorem 4.1 completes the
proof. O

Theorem 4.5. Suppose that N is a nilpotent algebra that can be written as a
sum of ideals M = Ny & Na. Then N is an Finstein nilradical if and only if
both N1, Ny are Einstein nilradicals.

Remark. The property of being an Einstein nilradical is a property of the
Lie group (or algebra) and does not depend on the choice of inner product on
N.

The above result has previously appeared in a preprint of Nikolayevky [21].
In that work the author uses special subgroups and relates Ricci solitons to
closed orbits of said subgroups. These subgroups are determined by first iden-
tifying a so-called ‘pre-Einstein derivation’. While the pre-Einstein derivation
is very interesting in its own right, our work does not need to consider such
derivations and associated subgroups, instead we use distinguished orbits giv-
ing a new proof of the theorem.

Proof. We choose to endow 91 with an inner product so that 91; and 91y are
orthogonal. With this choice of inner product we have 0 =91, = N, &N,
where p1 = pi1 + p2 € W= (AN @ M) @ (A2 @ Na) C AN @9 As in
the previous theorems, we will apply Corollary 3.4 together with Theorem 4.1.

We will show for A € W that m(A) € gl(911) xgl(MN2). We apply Equation (3)
by choosing an orthonormal basis which respects 91, &91,. For X € 911, Y € M,
we have

((m(N)X,Y)) = —4 Z(A(K Xi), X5) (A(Y, Xi), X;)

#2308 ) X ACK X5).¥)
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In the first summand, if X; € My, then ANV, X;) = 0; if X; € 99, then
AX, X;) = 0. In the second summand, if X;, X; are not in the same subspace
My or Ny, then A(X;, X;) = 0. Now suppose, without loss of generality, that
Xi, X; € M. Then we have A(X;, X;) € My with is orthogonal to Mz, hence
(AM(X;,X;),Y) = 0. In this way, we see that ((m(\)X,Y)) = 0 for X € Ny,
Y € 9My. Thus m(A) € gl(911) x gl(N2) and the proof is complete. O

Proposition 4.6. Consider Mt = My & Na. Let V; denote the variety of
Lie brackets on N; (see the remarks at the beginning of this section for more
information on the set of Lie brackets). For p; € Vi, consider the set of Lie
brackets on N that can be written in the form p = pu1 ® pe. The moduli of such
is precisely the moduli of GL(M1) x GL(MN2) orbits in Vi x Vo C V.

Proof. This follows immediately from the proof of the previous theorem and
Theorem 3.1, see also the remarks following Theorem 3.1. O

Remark. In this way we can construct moduli (i.e., nonisomorphic continu-
ous families) of Einstein and non-Einstein nilradicals. For example, pick one
non-Einstein nilradical 91; (which are known to exist, see [17] or [10]) and add
on the vector space IMy. Letting the bracket vary on 9tz will produce moduli of
algebras 911 @ My which cannot be Einstein nilradical by the previous propo-
sition. However, the moduli of non-Einstein nilradicals constructed in this
way is somewhat trivial. In [10], there are given constructions of non-Einstein
nilradicals which do not arise as direct sums, that is, the examples given are
indecomposable (cp. Corollary 4.3).

Theorem 4.7. There exist continuous families of nonisomorphic, indecom-
posable two-step nilpotent Lie groups which do not admit Ricci soliton metrics.
The size of these families may be made arbitrarily large; more precisely, these
families may be chosen so that the dimension of said families grows linearly in
the dimension of the underlying Lie group.

These are not the first examples of moduli of non-Einstein nilradicals. In
[31], C. Will produces a curve of (pairwise) nonisomorphic, non-Einstein nil-
radicals. However, this is the first general construction for building many
examples of non-Einstein nilradicals. To our knowledge, Will’s examples are
the only other known examples of nondiscrete families of this phenomenon.

In the study of two-step nilpotent Lie algebras there are different represen-
tations that are very useful for obtaining concrete results. We will not go into
the details of setting these up and refer the reader to [10] for the applications
of this work in the two-step case. The work of that paper, loc. cit., allows one
to concretely construct moduli of Einstein and non-Einstein nilradicals in the
set of “nongeneric” two-step nilalgebras.

5. NILPOTENT ORBITS IN THE ADJOINT REPRESENTATION

In this section we present the case of the adjoint representation. We focus
our attention on the null-cone of this representation. Recall that the null-cone
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of a representation V consists of points v € V such that 0 € G-v. When
V' = g is the adjoint representation, X € g is in the null-cone if and only if X
is nilpotent, see, e.g., Remark 10.2 of [1].

It is well-known that there exist only finitely many orbits in the null-cone of
an adjoint representation of a reductive group. We reprove this result by apply-
ing Theorem 3.1. Moreover, we show that each of these orbits is distinguished
(in the sense of Definition 2.6).

The known general proofs of the finiteness result are essentially the same
as ours, without the language of the moment map. The existing proofs use
Lemma 3.7 and an additional theorem on the reducibility of representations of
reductive groups; these ideas originally go back to Richardson [24].

Proposition 5.1. Let G = SL,(C). The null-cone of the adjoint action of G
on g has finitely many orbits.

These orbits are in one-to-one correspondence with the partitions of n; they
correspond to the different Jordan normal forms with 0's along the diagonal
(the nilpotent endomorphisms). See [11, Sec. 1.1] for more details.

Theorem 5.2 (Dynkin-Kostant). Let G be a (real or complex algebraic) linear
reductive group. There exist only finitely many orbits in the null-cone of the
adjoint representation.

We prove this theorem in the complex setting and apply Theorem 3.11
to immediately obtain the theorem for reals groups once known for complex
groups (cp. the end of Section 3).

Proof. Tt suffices to consider connected reductive groups G. As G is a linear
group, G C SL,(C) for some n € N. Let 6 be a G-stable Cartan involution of
SL,(C), such exists by Proposition 2.2. Then g C s[,,(C) and we will endow
s, (C) with the inner product from Example 2.3. That is, (-,) = —B(-,0(-))
where B is the Killing form of s(,,(C). This inner product is SU(n), K, and
i-invariant; and so, this inner product satisfies the requirements of Section 2.
We endow sl,,(C) = Lie SL,(C) and g = Lie G with the same inner product
inner product ((, )) =, ).
From this one readily computes

(4) m(X) = —[X, 6(X)]

for X € sl,,(C). Observe that the SL,(C) orbits are G-detected along g (see
Definition 2.9); that is, the moment map takes values in g when evaluated
along g.

We also observe that the G-null-cone in g is contained in the SL,,(C)-null-
cone in sl, (C). Applying Theorem 3.1 we see that each SL,,(C) orbit through
the G-null-cone consists of finitely many G-orbits. However, there are only
finitely many such SL,,(C)-orbits (see Proposition 5.1). Hence, there are only
finitely many G-orbits in the G-null-cone. g
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Theorem 5.3. Let G be a semisimple group acting on g by the adjoint rep-
resentation. Every orbit in the null-cone of g is distinguished (in the sense of
Definition 2.6).

Remark. This result has previously appeared in the literature, see Lemma
2.11 of [29]. The proof presented in that work uses the work of [26]. Our
proof relies on constructing such critical points for the case of sl,,(C) and then
applying Corollary 3.4.

Proposition 5.4. FEvery nilpotent orbit in the adjoint representation of SL,,
is distinguished.

Proof. We first prove that the principal orbit in sl,, is distinguished. Consider
the element

We point out that this element is in the same SL,-orbit as the standard nilpo-
tent Jordan block as long as the \; are nonzero.
By Equation (4), m(X) = —[X,—-X"] = XX* — X*X and

m(X)-X =[m(X),X]=m(X)X - Xm(X) =2XX*X - X*X? - X2X*

We claim that \; = 1/%(71 — 1) satisfies the condition m(J,)-J, = J, (cp. Def-
inition 2.6 and Lemma thereafter with ¢ = 1) and hence SL,, - J, will be
distinguished. This is easy to verify by direct computation.

To see that every nilpotent orbit contains a distinguished point, observe

that every nilpotent endomorphism can be conjugated to be of the form

I
Ik,

T,

J
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where Y k; = n. This is the Jordan form where the super diagonal has nonzero
entries which are rescaled. The matrix m(X) will have the same block decom-
position and hence

_m(Jlﬂ) : J/ﬂ
m(sz) : sz

m(ka) - Jg

Ji,
Ty

|

We continue now with the proof of the theorem for all semisimple groups.
We use the following observation without proof.

Lemma 5.5. Let X € g be in the null-cone. Then cX € G- X for all c € K,
where K = R, respectively C, if g is a real, respectively complex, Lie algebra.

First, we reduce to the case that G is simple. Suppose that the result
is known for simple groups and decompose g = g1 X ...gx as a product of
simple factors. Let X be a nilpotent element of g, then X = " X; where
X, € g; are all nilpotent elements. Observe that m(X) = > m(X;). Using
the lemma above and the hypothesis, we may assume that each X; satisfies

All that remains to be shown is that the theorem is true in the case G
is simple. Firstly, we embed G into SL, so that G is selfadjoint, as in the
beginning of the section. As G is simple, any K-invariant inner product on
p is unique up to scaling. This is due to the fact that K acts irreducibly on
p. Thus, given any inner product on g, as in Section 2, our moment map is
uniquely defined up to rescaling. As rescaling the moment map does not affect
the property of a point being distinguished, we may assume that our inner
product on g is the restriction of the inner product on sl,.

Recall that the SL,-orbits are G-detected along g. As every nilpotent el-
ement of g is a nilpotent element of sl, and every nilpotent orbit of SL,, is
S L,-distinguished, applying Corollary 3.4 we see that every nilpotent orbit of
G is G-distinguished.
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