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Abstract
Convexity and weaker forms of convexity play a crucial role in many areas of mathematics. In
this thesis, we introduce and investigate the new notion of Bianchi-convexity, a generalization
of convexity inspired by the second Bianchi identity of Riemannian curvature tensors, and give
some applications to the Ricci flow: In the setting of algebraic curvature tensors, we generalize
Hamilton’s maximum principle for Bianchi-convex sets. Using this, in dimension three, we derive
a family of non-convex Bianchi-convex sets which are preserved by the Ricci flow. Moreover, we
prove rigidity results for compact Ricci solitons respectively complete shrinking gradient Ricci
solitons involving the concept of Bianchi-convex functions. As a consequence, we obtain explicit
curvature conditions such that complete shrinking gradient Ricci solitons (and as a special case
complete Einstein manifolds) satisfying these are locally symmetric. This yields a further step
into the direction of a complete classification of shrinking Ricci solitons.
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Introduction

The notion of convexity plays an important role in many areas of mathematics. It has applications,
for instance, in convex minimization, a subfield of optimization theory, where the problem of mini-
mizing convex functions over convex sets is investigated. Since minima of strictly convex functions
on vector spaces are unique, these are of particular significance in this area. Concerning convexity
of sets, the Brunn-Minkowski inequality gives a connection between the Lebesgue-measure of a
certain Minkowski-sum of two convex bodies and their Lebesgue-measure. A direct consequence
is the famous isoperimetric inequality, which in three-dimensional space implies that under all
bodies with the same surface area, the ball (a convex set) has the largest volume. An analogous
statement holds true in arbitrary dimensions. An elementary inequality for convex functions is
Jensen’s inequality which is the basis of many important results in probability theory, measure
theory and analysis. In the study of non-positively curved spaces, convexity is an important tool,
since subsets of CAT(0)-spaces are convex if and only if the distance functions from these sets
are convex. In Riemannian geometry, the existence of a non-constant convex function f on a
complete Riemannian manifold M (i.e. a function that is convex along all geodesics) has strong
topological and geometrical consequences. In the case that f is additionally continuous, an obvi-
ous implication is that the manifold is non-compact. Moreover, in [Yau74], Yau showed that in
this case its volume is infinite. In dimension two, Greene and Shiohama proved that if f is locally
non-constant, then M is either diffeomorphic to the plane, the cylinder or the open Möbius strip
[GS81b]. Furthermore, in [GS81a], they proved results about the differentiable structure of M
depending on whether the set of minimum points of f is empty or not.
In many situations where convexity is used, only a weaker form of convexity is needed. An example
for this is the concept of quasiconvex functions (i.e. functions defined on a convex subset of a vector
space, the sublevel sets of which are all convex), relevant in quasiconvex programming, a subfield
of optimization theory, as well as in game theory, in particular for applications of Sion’s minimax
theorem. In the study of majorization, one considers Schur-convex functions, i.e. order-preserving
functions in the sense that if one argument is majorized by another, then the corresponding values
under this functions are ordered in the same way [PPT92, Definition 12.23]. For functions on the
space of matrices, the notion of rank-one convexity occurs in the analysis of partial differential
equations, calculus of variations and elasticity theory. In the case of twice continuous differentia-
bility, this notion is equivalent to the Legendre-Hadamard condition, which means that in each
point the Hessian of the function is positive semidefinite on the space of matrices of rank one.

In the analysis of the Ricci flow, where Riemannian metrics on a manifold evolve according to

∂

∂t
gt = −2ricgt

(here ricgt denotes the Ricci curvature of the metric gt), convexity is of particular interest via
Hamilton’s maximum principle. It states that an O(n)-invariant, closed and convex subset of the
space of algebraic curvature tensors An := S2

B(Λ2(Rn)∗), which is invariant under the ordinary
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2 INTRODUCTION

differential equation

R′(t) = R(t)2 +R(t)#, (1)

is already invariant under the Ricci flow, i.e. for all n-dimensional compact manifolds M and
solutions gt, t ∈ [0, T ), to the Ricci flow on M with g0 satisfying Ω, we have that gt satisfies Ω for
all t ∈ [0, T ). Here, a Riemannian metric g satisfies Ω, if the Riemannian curvature operator Rmg

(see Section 1.3) is contained in Ωg ⊆ S2
B(Λ2T ∗M) (i.e. Ω transfered to the fibres via g-isometries)

at all points in M , and the map # will be defined in Definition 1.1.17. Moreover, a set being
invariant under a differential equation means that solutions of this differential equation which
start in the set stay in it for all times. Following the above ideas, it turns out that this theorem
can be generalized by weakening the notion of convexity to what we call Bianchi-convexity. We
define a closed subset Ω ⊆ An with smooth boundary to be Bianchi-convex, if for all R ∈ ∂Ω and
tuples (T1, . . . , Tn) ∈ (TR∂Ω)n which satisfy a certain second Bianchi identity, we have that

n∑
i=1

â∂Ω
R (Ti, Ti) ≤ 0,

where â∂Ω
R denotes the second fundamental form of ∂Ω in R. In the general case that the boundary

of Ω is not smooth, we give a definition involving supporting submanifolds. One goal of this thesis
is to investigate this new notion, including examples of non-convex Bianchi-convex sets which show
that Bianchi-convexity is a real generalization of convexity, and to give a proof of the following
maximum principle.

Theorem A. Let Ω ⊆ An be O(n)-invariant, closed, Bianchi-convex and uniformly transversally
star-shaped with respect to λI for some λ ∈ R (see Definition 4.3.1). If Ω is invariant under the
ordinary differential equation (1), then Ω is invariant under the Ricci flow.

Here, I denotes the identity in An. In dimension three, using the maximum principle, Theorem
A, we derive a family of non-convex Bianchi-convex sets which are invariant under the Ricci flow.

Proposition. For a ∈ (1
3 ,

2
5) and c > 0, the set{

R ∈ A3

∣∣∣ ‖R‖2 − ascal(R)2 ≤ c and scal(R) ≥ ba,c
}

is invariant under (1), thus invariant under the Ricci flow. Here,

ba,c :=
√

3c
3a− 1 sinh

(3
2

)
> 0.

The second part of this thesis treats Bianchi-convex functions, i.e. smooth functions F : U → R,
where U ⊆ An is open, such that for all R ∈ U and tuples (T1, . . . , Tn) ∈ (TRU)n that satisfy the
afore-mentioned second Bianchi identity, we have that

n∑
i=1

HessRF (Ti, Ti) ≥ 0.

If the inequality above is strict unless Ti = 0 for each i = 1, . . . , n, then F is called strictly Bianchi-
convex. In dimension n ≥ 3, a non-constant smooth function F on an open cone Ω ⊆ An \ {0},
the sublevel sets of which are strictly convex cones, can never be convex. However, we will see
that up to an appropriate reparametrization and restriction such a function is Bianchi-convex:
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Theorem B. For each open cone U with U ⊂ Ω∩Bn and such that HessRF |R⊥ is positive definite
for all R ∈ U with dFR = 0, there exists a smooth function ϕ : R→ R with ϕ′ > 0 such that ϕ ◦F
restricted to U is strictly Bianchi-convex.

Here, the closure of U is taken in An \ {0} and we define the cone

Bn :=
{
R ∈ An | R|Λ2(v⊥) 6≡ 0 for all v ∈ Rn \ {0}

}
.

In the study of singularity formation of the Ricci flow, Ricci solitons are of special significance.
These are tuples (M, g,X, λ) consisting of a Riemannian manifold (M, g), a smooth vector field
X and a real number λ which satisfy

ricg + 1
2LXg = λg,

where L denotes the Lie derivative. In particular, shrinking gradient Ricci solitons (i.e. Ricci
solitons with λ > 0 andX = gradgf for some smooth function f : M → R, denoted by (M, g, f, λ))
arise as singularity models for so-called Type I Ricci flows. However, although several partial
results exist, a classification of shrinking gradient Ricci solitons is not yet understood and is an
active area of research.
Trivial examples for shrinking gradient Ricci solitons are Einstein manifolds E with positive Ein-
stein constant λ as well as (E × Rk, gE + dx2, f, λ), where k > 0 and the potential function is
given by f(e, x) := λ

2‖x‖
2 for e ∈ E and x ∈ Rk. It is known that all two-dimensional complete

shrinking gradient Ricci solitons are either S2, RP 2 or R2 ([Ham88], [BM15, Corollary 1]) and in
dimension three they are finite quotients of S3, S2 ×R or R3 [CCZ08, Proposition 4.7]. In higher
dimensions, the classification is more difficult. There exist non-trivial shrinking gradient Ricci
solitons (see [Koi90], [Cao96], [WZ04], [FIK03]). However, all known examples so far are Kähler.
Yet there are many rigidity results for complete shrinking gradient Ricci solitons satisfying some
curvature condition such as bounded non-negative curvature operator (in the four-dimensional
non-compact case [Nab07]), non-negative sectional curvature and scalar curvature bounded from
above by 2λ [PW09, Theorem 1.4], vanishing Weyl tensor [Zha09a, Theorem 1.2], harmonic Weyl
tensor ([FLGR11], [MS13]) and vanishing Bach tensor [CC13] to name just a few.
The notion of Bianchi-convex functions introduced above yields a further step into the direction of
a complete classification of shrinking gradient Ricci solitons, namely the following rigidity result.

Theorem C. Let Ω ⊆ An \ {0} be an open and O(n)-invariant cone and F : Ω → R a scale-
and O(n)-invariant, smooth, bounded and strictly Bianchi-convex function, the sublevel sets of
which are invariant under the ordinary differential equation (1). Then all n-dimensional complete
shrinking gradient Ricci solitons (M, g, f, λ) such that g satisfies Ω are locally symmetric.

By [FLGR11] and [MS13], such a Ricci soliton (M, g, f, λ) is trivial, i.e. either Einstein or a finite
quotient of E × Rk, where k > 0, E is an (n − k)-dimensional Einstein manifold and Rk is the
Gaussian shrinking soliton.

Keeping the reparametrization theorem, Theorem B, in mind, a first step into the direction of
finding functions that satisfy the assumption of Theorem C is to find a one-parameter family of
strictly convex cones in An which are invariant under the ordinary differential equation (1). Given
the conjecture of Böhm-Wilking that the cones

Ωa :=
{
R ∈ An

∣∣∣∣ (n− 2
4 + a

)
‖R‖2 ≤ ‖ric(R)‖2 and scal(R) > 0

}



4 INTRODUCTION

are invariant under (1) for n ≥ 12 and a ∈ [0, n4 ], respectively the conjecture of the author that
the cones

Θa :=

R ∈ An
∣∣∣∣∣∣ ^(R, I) ≤ arctan

√1
a

 and scal(R) > 0


are invariant under (1) for n ≥ 3 and a ≥ dn, where dn := (n−2)(n+1)

2 , one obtains scale- and
O(n)-invariant, bounded and smooth functions

Ω→ R : R 7→ ‖R‖2

‖ric(R)‖2

Θ→ R : R 7→ ‖Rric0 +RW‖2

‖RI‖2 ,

where Ω := ∪a>0Ωa, Θ := ∪a> 2
n−2

Θa. Above, RW , Rric0 respectively RI denote the Weyl, traceless
Ricci respectively scalar curvature part of the algebraic curvature tensor R and I is the identity
in An. The sublevel sets of these functions are strictly convex. Moreover, the sublevel sets of the
first function are invariant under (1), for the second function this is only true after restricting it
to Θdn . With the help of the reparametrization theorem, Theorem B, this yields the following two
applications of Theorem C.

Theorem D. Let n ≥ 12. Then all n-dimensional complete shrinking gradient Ricci solitons
(M, g) with g satisfying Ωa for some a > 1

2 are locally symmetric.

Theorem E. Let n ≥ 3. Then all n-dimensional complete shrinking gradient Ricci solitons (M, g)
with g satisfying Θdn are locally symmetric.

In dimension n ≥ 5, we show that the Bryant soliton, a complete non-compact steady gradient
Ricci soliton, satisfies Ωa ⊆ Bn for some a > 1

2 . Since it is not locally symmetric, this shows that
Theorem D (and consequently Theorem C) is sharp in the sense that it is false, if one drops the
assumption “shrinking”. Furthermore, as a consequence of Theorem D we obtain the following
result.

Theorem F. Let n ≥ 12. Then all n-dimensional complete Einstein manifolds (M, g) with g
satisfying Ωa for some a > 0 are locally symmetric.

This thesis is organized as follows. After discussing some preliminary notions, in Chapter 2 we
introduce curvature conditions, that is O(n)-invariant subsets Ω ⊆ An, and the corresponding
subsets Ωg of the bundle of algebraic curvature tensors over a Riemannian manifold (M, g) being
parallel with respect to the Levi-Civita connection ∇g of (M, g). As in our results, curvature con-
ditions often arise as domains of O(n)-invariant functions F , we provide formulas for derivatives
of the corresponding parallel functions F g on Ωg in terms of those of F . Moreover, we give some
properties of tangent cones as well as a connection to subsets of a vector space which are invariant
under an ordinary differential equation of the form f ′(t) = Φ(f(t)). In Chapter 3, we investigate
the notion of Bianchi-convex sets and in dimension three derive examples of such sets of algebraic
curvature tensors that are not convex but invariant under (1). The fourth chapter is dedicated
to maximum principles. We recall the weak and strong maximum principles for functions and
Hamilton’s maximum principle. Using the Uhlenbeck trick, we give a reformulation of the latter
in the special case of algebraic curvature tensors. As one main result we give a proof of Theorem
A. Chapter 5 prefaces the second part of this thesis. Here, the notion of Bianchi-convex functions



5

is introduced and the reparametrization theorem (Theorem B) is proved. The last chapter deals
with Ricci solitons and aims at giving rigidity results for compact Ricci solitons as well as com-
plete shrinking gradient Ricci solitons (see Theorem 6.1.16 and Theorem C). Finally, we derive
two applications of these classification results, Theorem D and Theorem E, based on conjectures
of Böhm-Wilking and the author.
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Martin Kerin, Marco Radeschi, Martin Herrmann, Boris Vertman, Georg Frenck, Paul Breutmann
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Chapter 1

Preliminaries

This chapter is dedicated to introducing all known objects, spaces, notions and facts that will be
important throughout the whole present work. As we will be interested in Riemannian manifolds
which satisfy certain curvature conditions, we define the space of algebraic curvature tensors and
give some first properties. We recall notions of curvature of a Riemannian manifold, as for example
the Riemannian curvature tensor, which pointwise can be identified with an algebraic curvature
tensor. Moreover, we consider time-dependent Riemannian metrics on a manifold and introduce
a metric connection on the space-time. In the special case that the time-dependent metrics are
solutions to the Ricci flow, we formulate the evolution equation of the Riemannian curvature
operator along these metrics.

1.1 Skew-symmetric endomorphisms, two-forms and
algebraic curvature tensors

In this section, we introduce the space of algebraic curvature tensors, which plays a crucial role
when investigating the curvature of a Riemannian manifold. We give some properties of this space
and define the Ricci respectively scalar curvature of an algebraic curvature tensor. Moreover, we
recall that there is an orthogonal decomposition of this space into irreducible subspaces and derive
formulas for the norms of the components of an algebraic curvature tensor with respect to this
splitting. Finally, we provide a definition and some characteristics of the map #, which allows us
to formulate the right-hand side of certain differential equations arising when working with the
Ricci flow, such as the evolution equation of the Riemannian curvature operator.
Throughout this section, let V be an n-dimensional Euclidean vector space.

Definition 1.1.1. We define the spaces

so(V ) := {A : V → V | A is a skew-symmetric endomorphism}
and Λ2V ∗ := {ω : V × V → R | ω is antisymmetric and bilinear}.

As a special case, we set so(n) := so(Rn).

Remark 1.1.2. Using the scalar product, we will always freely identify so(V ) and Λ2V ∗ via the
isomorphism

so(V )→ Λ2V ∗

A 7→ ωA,
(1.1)

7



8 CHAPTER 1. PRELIMINARIES

where ωA(v, w) := 〈v, A(w)〉 for v, w ∈ V . On so(V ), we have the scalar product

〈A,B〉 := 1
2tr(AtB) = −1

2tr(AB).

Moreover, we choose the scalar product on Λ2V ∗ in such a way that the isomorphism (1.1) is an
isometry. This means that for each orthonormal basis (b1, . . . , bn) of V ∗ the vectors bi ∧ bj, i < j,
form an orthonormal basis of Λ2V ∗.

Definition 1.1.3. By S2(V ∗), we denote the space of symmetric bilinear forms on V .

This space can be identified with the space SymEnd(V ) of self-adjoint endomorphisms of V via

SymEnd(V )→ S2(V ∗)
L 7→ Ľ

β̂ ←[ β,

where Ľ(v, w) := 〈L(v), w〉 respectively β̂(v) := ∑n
i=1 β(v, bi)bi for v, w ∈ V . Here, (b1, . . . , bn) is

an orthonormal basis of V . Therefore, we will not always distinguish between symmetric bilinear
forms and self-adjoint endomorphisms.

Remark 1.1.4. In the case that V = so(n), the identification of S2(V ∗) with SymEnd(V ) leads
to a one-to-one correspondence between self-maps Φ̂ on SymEnd(V) satisfying

Φ̂(c(Q) ◦ R̂ ◦ c(Qt)) = c(Q) ◦ Φ̂(R̂) ◦ c(Qt)

and self-maps Φ on S2(V ∗) satisfying

Φ(ρ(Q)R) = ρ(Q)Φ(R)

for all Q ∈ O(n) and R ∈ S2(V ∗), via Φ̂(R) = Φ̂(R̂). Here,

c(Q) : so(n)→ so(n) : A 7→ QAQt

denotes the conjugation with Q and ρ : O(n) → End(S2(V ∗)) the representation of O(n) on
S2(V ∗) given by

(ρ(Q)R)(A,B) := R(QtAQ,QtBQ) = R(c(Qt)A, c(Qt)B),

where Q ∈ O(n), R ∈ S2(V ∗) and A,B ∈ so(n).
In the case that V = Λ2Rn, the same is true after replacing c(Q) by the linear map Λ2Q given by

Λ2Q : Λ2Rn → Λ2Rn : v ∧ w 7→ Qv ∧Qw

for Q ∈ O(n), and adjusting ρ accordingly.

Definition 1.1.5. The space of algebraic curvature tensors S2
B(Λ2V ∗) associated to V is the space

of symmetric bilinear forms R on Λ2V which satisfy the first Bianchi identity, that is

R(x ∧ y, z ∧ w) +R(y ∧ z, x ∧ w) +R(z ∧ x, y ∧ w) = 0

for all x, y, z, w ∈ V . In the case that V = Rn, we will denote it by An.
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This space is of special interest when investigating Riemannian manifolds, since the Riemannian
curvature tensor can be considered as an algebraic curvature tensor at each point (see Section
1.3).

Remark 1.1.6. From [Str88, Theorem 2.1], it is known that

dim(An) = n2(n2 − 1)
12 =: N(n) = N.

Therefore, from now on n will always be at least 2.

Remark 1.1.7. The scalar product on Λ2V ∗ induces a scalar product on S2(Λ2V ∗), and hence
on S2

B(Λ2V ∗), given by the formular

〈R, S〉 =
∑

1≤i<j≤n,
1≤k<l≤n

R(bi ∧ bj, bk ∧ bl)S(bi ∧ bj, bk ∧ bl)

for R, S ∈ S2(Λ2V ∗), where (b1, . . . , bn) is an orthonormal basis of V . We notice that 〈R, S〉 =
tr(R ◦ S), if R and S are considered as self-adjoint endomorphisms on Λ2V .

Remark 1.1.8. Let A(V ) be the space of all (0, 4)-tensors R on V (i.e. of all multilinear maps
R : V × V × V × V → R) which have the following symmetries:

1. R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),

2. R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0

for all x, y, z, w ∈ V . Then the map Φ : A(V )→ S2
B(Λ2V ∗) given by

Φ(R)(x ∧ y, z ∧ w) := 2R(x, y, z, w)

for R ∈ A(V ) is an isometry with respect to the usual tensor norm on A(V ) and the norm on
S2
B(Λ2V ∗) introduced in Remark 1.1.7. Namely, for R ∈ A(V ) we have that

‖R‖2 =
∑
i,j,k,l

R(bi, bj, bk, bl)2 = 1
4
∑
i,j,k,l

Φ(R)(bi ∧ bj, bk ∧ bl)2

=
∑

i<j,k<l

Φ(R)(bi ∧ bj, bk ∧ bl)2 = ‖Φ(R)‖2,

where (b1, . . . , bn) is an orthonormal basis of V . Hence, we can and will freely identify the spaces
A(V ) and S2

B(Λ2V ∗).

Lemma 1.1.9. If V is of dimension n ≤ 3, we have that S2
B(Λ2V ∗) = S2(Λ2V ∗).

Proof. We prove the statement for the case that n = 3. The cases n ≤ 2 are trivial. Let
R ∈ S2(Λ2V ∗) and (b1, b2, b3) be an orthonormal basis of V . In order to show that R satisfies the
first Bianchi identity, it suffices to show that

R(bi ∧ bj, bk ∧ bl) +R(bj ∧ bk, bi ∧ bl) +R(bk ∧ bi, bj ∧ bl) = 0

for all i, j, k, l ∈ {1, 2, 3}. Since the set {bi, bj, bk, bl} consists of at most three elements, at least
two are the same. For example, in the case that i = j, we compute that

R(bi ∧ bj, bk ∧ bl) +R(bj ∧ bk, bi ∧ bl) +R(bk ∧ bi, bj ∧ bl)
= R(bi ∧ bi︸ ︷︷ ︸

=0

, bk ∧ bl) +R(bi ∧ bk, bi ∧ bl) +R(bk ∧ bi︸ ︷︷ ︸
=−bi∧bk

, bi ∧ bl) = 0.

The other cases are similar.
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Definition 1.1.10. Corresponding to an algebraic curvature tensor R ∈ S2
B(Λ2V ∗), we define the

Ricci tensors ric(R) : V × V → R and Ric(R) : V → R by

ric(R)(v, w) = 〈Ric(R)(v), w〉 = 1
2tr(R(v ∧ · , w ∧ · )),

where v, w ∈ V , and the scalar curvature scal(R) by
scal(R) := tr(Ric(R)).

Notice, that here we use a different convention for the Ricci tensor and consequently the scalar
curvature than e.g. in [BW08] and [CCG+08], where the factor 1

2 is omitted.
Remark 1.1.11. Let (b1, . . . , bn) be an orthonormal basis of V . Then according to Remark 1.1.2
(bi ∧ bj)i<j is an orthonormal basis of Λ2V , so that for R ∈ S2

B(Λ2V ∗) we find that

scal(R) = tr(Ric(R)) =
n∑
i=1
〈Ric(R)(bi), bi〉 = 1

2

n∑
i=1

tr(R(bi ∧ ·, bi ∧ ·))

= 1
2

n∑
i,j=1

R(bi ∧ bj, bi ∧ bj) =
∑
i<j

R(bi ∧ bj, bi ∧ bj)

= tr(R).
By introducing the following symmetric product on symmetric bilinear forms, we can give a
decomposition of the space of algebraic curvature tensors into irreducible subspaces with respect to
the O(n)-representation ρ as discussed in Remark 1.1.4, which will be useful for some applications
in Section 6.3.
Definition 1.1.12. Let g, h be symmetric bilinear forms on V . Then the Kulkarni-Nomizu product
g ? h of g and h is defined by

(g ? h)(x, y, z, w) := g(x, z)h(y, w)− g(x,w)h(y, z) + h(x, z)g(y, w)− h(x,w)g(y, z)
for x, y, z, w ∈ V .
Remark 1.1.13. The Kulkarni-Nomizu product of g and h defines an algebraic curvature tensor.
Furthermore, we notice that

id ? id = 4I,
where id denotes the identity in the space of symmetric bilinear forms on V (i.e. the scalar product
on V ) and I the identity in S2

B(Λ2V ∗) (i.e. the induced scalar product on Λ2V as introduced in
Remark 1.1.2). Of course in this equality we used the identification of A(V ) with S2

B(Λ2V ∗) as in
Remark 1.1.8.
Lemma 1.1.14 ([CCG+08]). For n ≥ 4, the space of algebraic curvature tensors as an O(n)-
representation has the following orthogonal decomposition into irreducible subrepresentations

An = Rid ? id ⊕ id ? S2
0((Rn)∗) ⊕ W , (1.2)

where id denotes the given scalar product on Rn, S2
0((Rn)∗) the space of traceless symmetric bilinear

forms on Rn and W := ker(Ric) the space of Weyl tensors. By RI , Rric0 and RW , we denote the
components of R ∈ An with respect to the decomposition (1.2), so that R = RI +Rric0 +RW . Then

RI = 1
2n(n− 1)scal(R)id ? id,

Rric0 = 1
n− 2id ? ric0(R),

where ric0(R) := ric(R)− 1
n
scal(R)id denotes the traceless part of ric(R).
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Remark 1.1.15. The factors in the decomposition of R in Lemma 1.1.14 differ from those of
[BW08] and [CCG+08, Section 2.2.3] due to the different convention we made for the Ricci tensor
and scalar curvature (see above).

Remark 1.1.16. For all bilinear forms β on Rn, we have that

‖β ? id‖2 = 4(n− 2)‖β‖2 + 4tr(β)2.

This yields for R ∈ An that

‖RI‖2 = 2
n(n− 1)scal(R)2,

‖Rric0‖2 = 4
n− 2‖ric0(R)‖2.

(1.3)

Hence, together with

‖ric0(R)‖2 = ‖ric(R)‖2 − 1
n

scal(R)2, (1.4)

we obtain that

‖R‖2 = 2
n(n− 1)scal(R)2 + 4

n− 2‖ric0(R)‖2 + ‖RW‖2

= − 2
(n− 1)(n− 2)scal(R)2 + 4

n− 2‖ric(R)‖2 + ‖RW‖2.
(1.5)

Moreover, polarization of (1.3) leads to

〈R, S〉 = 〈RI , SI〉+ 〈Rric0 , Sric0〉+ 〈RW , SW 〉

= 2
n(n− 1)scal(R)scal(S) + 4

n− 2〈ric0(R), ric0(S)〉+ 〈RW , SW 〉
(1.6)

for all R, S ∈ An.

The following map arises for example in the evolution equation of the Riemannian curvature
operator of a Riemannian manifold under the Ricci flow (see Lemma 1.4.2).

Definition 1.1.17. The symmetric bilinear map

# : SymEnd(so(V ))× SymEnd(so(V ))→ SymEnd(so(V )) : (R, S) 7→ R#S

is given by
〈
(R#S)(A), B

〉
:= −1

4tr(adA ◦R ◦ adB ◦ S + adA ◦ S ◦ adB ◦R)

for A,B ∈ so(V ). Here, for any A ∈ so(V ) the adjoint representation adA : so(V ) → so(V ) is
given by

adA(B) := [A,B] = AB −BA

for B ∈ so(V ). Note that R#S is self-adjoint by the trace property. Moreover, we set R# := R#R.
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Remark 1.1.18. Since adc(Q)A = c(Q)◦adA◦c(Qt), hence adc(Q)A◦adc(Q)B = c(Q)◦adA◦adB◦c(Qt)
for all Q ∈ O(n) and A,B ∈ so(n), it is easy to show that

c(Q) ◦R# ◦ c(Qt) = (c(Q) ◦R ◦ c(Qt))#.

Therefore, by Remark 1.1.4 we find that

̂(ρ(Q)Ř)
#

= ρ(Q)Ř#

for all Q ∈ O(n) and R ∈ SymEnd(so(n)). In this sense, R 7→ R# is O(n)-equivariant.

Remark 1.1.19. Let M := dim(so(V )). For an orthonormal basis (B1, . . . , BM) of so(V ), we
have that

〈R#(Bi), Bj〉 = −1
2

M∑
k,l,m,p=1

Rl
kR

p
mc

m
jl c

k
ip

for i, j = 1, . . . ,M . Here, the coefficients Rj
i and ckij are given by

R(Bi) =
M∑
j=1

Rj
iBj respectively [Bi, Bj] =

M∑
k=1

ckijBk

for i, j = 1, . . . ,M . We notice that ckij = −ckji.

Example 1.1.20. In dimension 3, R# can be described as follows. By (E1, E2, E3), we denote
the orthonormal basis of so(3) defined by

E1 :=

0 0 0
0 0 1
0 −1 0

, E2 :=

 0 0 1
0 0 0
−1 0 0

 and E3 :=

 0 1 0
−1 0 0
0 0 0

 .
Since

[E1, E2] = E3, [E1, E3] = −E2 and [E2, E3] = E1,

we obtain from Remark 1.1.19 that if R is the self-adjoint endomorphism of so(3), which is with
respect to (E1, E2, E3) given by the matrix

R =̂

a b c
b d e
c e f

 ,
then with respect to the same basis R# corresponds the the adjoint matrix, i.e.

R#=̂

df − e
2 ce− bf be− cd

ce− bf af − c2 bc− ae
be− cd bc− ae ad− b2

 .
For R invertible this means that R# = det(R)(R−1)t.

Remark 1.1.21. One can show that R2 +R# is an algebraic curvature tensor.
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1.2 The frame bundle and a connection on space-time
Given a one-parameter family of Riemannian metrics on a manifold M , we want to investigate
how the geometry changes along this family. For this, a connection on the tangent bundle over
the manifold M × R plays a central role. In this section, we are particularly interested in the
evolution of the orthonormal frame bundle on an initial Riemannian manifold.

Definition 1.2.1. Let (M, g) be an n-dimensional Riemannian manifold with Levi-Civita con-
nection ∇g. The orthonormal frame bundle Og of (M, g) is the principle bundle with structure
group O(n), the fibres over points x ∈M of which are given by

Og
x := {p : (Rn, 〈·, ·〉)→ (TxM, gx) | p is an linear isometry},

where 〈·, ·〉 is the standard metric on Rn. Hence, the group O(n) acts freely and transitively on
the fibres of Og from the right.
We say that a smooth curve p : I → Og, where I ⊆ R is an interval, is parallel with respect to ∇g

along γ := π ◦ p, if the vector field t 7→ p(t)v along γ is parallel with respect to ∇g for all v ∈ Rn.
Here, π : TM →M denotes the bundle projection on M .
Throughout this section, let (gt)t∈R be a smooth family of Riemannian metrics on a manifold M
and set

ht := −1
2
∂

∂t
gt.

Definition 1.2.2. On the vector bundle TM → M × R, we introduce a linear connection ∇,
which on the times slices M ×{t} is given by the Levi-Civita connection ∇gt of the metric gt and
is not the product connection: Let ∂

∂t
be the vector field on M × R given by ∂

∂t
|(x,t) := ċ(t) for

(x, t) ∈M ×R, where c(t) := (x, t). Let further X, Y ∈ Γ(M ×R, TM) be time-dependent vector
fields on M . Then ∇ is given by

(∇YX)|(x,t) :=
(
∇gt
Y (·,t)X(·, t)

)
|x(

∇ ∂
∂t
X
)∣∣∣

(x,t)
:= ∂

∂t
X(x, t)−Ht(X(x, t))

(1.7)

for (x, t) ∈M × R, where by Ht we denote the map

Ht : TM → TM : X 7→ ht(X, ·)]gt ,

i.e. for X ∈ TM the vector HtX satisfies gt(HtX, ·) = ht(X, ·).
Remark 1.2.3. The introduced connection extends in the usual way to a connection on the
vector bundle S2

B(Λ2T ∗M) → M × R. More explicitly, for R ∈ Γ(M × R, S2
B(Λ2T ∗M)) and

X, Y, Z, V,W ∈ Γ(M × R, TM) we have that

(∇ZR)(V ∧W,X ∧ Y ) = ∂Z(R(V ∧W,X ∧ Y ))−R(∇ZV ∧W,X ∧ Y )
−R(V ∧∇ZW,X ∧ Y )−R(V ∧W,∇ZX ∧ Y )
−R(V ∧W,X ∧∇ZY )

and (
∇ ∂
∂t
R
)
(V ∧W,X ∧ Y ) = ∂

∂t

(
R(V ∧W,X ∧ Y )

)
−R

(
∇ ∂
∂t
V ∧W,X ∧ Y

)
−R

(
V ∧∇ ∂

∂t
W,X ∧ Y

)
−R

(
V ∧W,∇ ∂

∂t
X ∧ Y

)
−R

(
V ∧W,X ∧∇ ∂

∂t
Y
)
.
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Remark 1.2.4. ∇ is metric with respect to g(·). Namely, for X, Y ∈ Γ(M × R, TM) we can
compute that

∂

∂t

(
gt(X, Y )

)
=
(
∂

∂t
gt

)
(X, Y ) + gt

(
∂

∂t
X, Y

)
+ gt

(
X,

∂

∂t
Y

)
=− 2ht(X, Y ) + gt

(
∇ ∂
∂t
X, Y

)
+ gt(HtX, Y ) + gt

(
X,∇ ∂

∂t
Y
)

+ gt(X,HtY )

= gt
(
∇ ∂
∂t
X, Y

)
+ gt

(
X,∇ ∂

∂t
Y
)
.

Definition 1.2.5. Let x0 ∈ M and pt : Rn → Tx0M be a one-parameter family of linear maps.
Then t 7→ pt is parallel, if t 7→ pt(v) is parallel along the curve t 7→ (x0, t) with respect to the
connection ∇ (introduced in Definition 1.2.2) for all v ∈ Rn, i.e. if

d

dt
pt(v) = Htpt(v)

for all v ∈ Rn.

Lemma 1.2.6. Let x0 ∈ M , Rt ∈ S2
B(Λ2T ∗x0M) be a one-parameter family of algebraic curvature

tensors and pt : Rn → Tx0M be a one-parameter family of linear maps. If t 7→ Rt is smooth and
t 7→ pt is parallel, then

d

dt
(p∗tRt) = p∗t∇ ∂

∂t
Rt.

Proof. Let v, w, x, y ∈ Rn. Then we can compute that

d

dt
(p∗tRt)(v ∧ w, x ∧ y) = d

dt

(
(p∗tRt)(v ∧ w, x ∧ y)

)
= d

dt

(
Rt(pt(v) ∧ pt(w), pt(x) ∧ pt(y))

)
=
(
∇ ∂
∂t
Rt

)
(pt(v) ∧ pt(w), pt(x) ∧ pt(y)) +Rt

(
∇ ∂
∂t
pt(v)︸ ︷︷ ︸

=0

∧pt(w), pt(x) ∧ pt(y)
)

+ · · ·+Rt

(
pt(v) ∧ pt(w), pt(x) ∧∇ ∂

∂t
pt(y)︸ ︷︷ ︸

=0

)

=
(
∇ ∂
∂t
Rt

)
(pt(v) ∧ pt(w), pt(x) ∧ pt(y))

=
(
p∗t∇ ∂

∂t
Rt

)
(v ∧ w, x ∧ y).

This finishes the proof.

Next, we show that if t 7→ pt is parallel and p0 is an isometry with respect to the standard metric
〈·, ·〉 on Rn and g0, then pt is an isometry with respect to 〈·, ·〉 and gt for all t ∈ R as well.

Lemma 1.2.7. Let x0 ∈M and p be a solution of

d

dt
pt = Htpt (1.8)

with p0 : (Rn, 〈·, ·〉) → (Tx0M, g0) being an isometry. Then pt : (Rn, 〈·, ·〉) → (Tx0M, gt) is an
isometry for each t ∈ R.
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Proof. Let v, w ∈ Rn. Then we have that

d

dt

(
gt(pt(v), pt(w))

)
=
(
∂

∂t
gt

)
(pt(v), pt(w)) + gt

(
d

dt
pt(v), pt(w)

)
+ gt

(
pt(v), d

dt
pt(w)

)
= −2ht(pt(v), pt(w)) + gt(Htpt(v), pt(w)) + gt(pt(v), Htpt(w))
= −2ht(pt(v), pt(w)) + ht(pt(v), pt(w)) + ht(pt(v), pt(w))
= 0.

Therefore, we find for each t ∈ R that

gt(pt(v), pt(w)) = g0(p0(v), p0(w)) = 〈v, w〉.

Given an initial value, according to the Picard-Lindelöf theorem, there is a solution to the linear
ordinary differential equation (1.8). Lemma 1.2.7 therefore shows that given an initial isometry p0
there is always a parallel curve t 7→ pt ∈ Ogt starting at p0. This shows that the flow ∂

∂t
gt = −2ht

preserves the bundle Og. .

1.3 Curvature of Riemannian manifolds
In this section, we recall the common notions of curvature of a Riemannian manifold, give a
connection to algebraic curvature tensors and show how the introduced objects behave under
rescaling of the metric.
Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇g. Let further π : TM →M
be the bundle projection on M , x ∈M and X, Y, Z,W ∈ TxM .

• The Riemannian curvature tensor Rg : TM × TM × TM → TM is defined by

Rg(X, Y )Z := ∇g
X∇

g
YZ −∇

g
Y∇

g
XZ −∇

g
[X,Y ]Z.

We may also write

Rg(X, Y, Z,W ) := g(Rg(X, Y )W,Z).

• The Riemannian curvature operator Rmg is the symmetric bilinear form on Λ2TM , respec-
tively the self-adjoint endomorphism of Λ2TM , defined by

Rmg(X ∧ Y, Z ∧W ) = g(Rmg(X ∧ Y ), Z ∧W ) := 2Rg(X, Y, Z,W ). (1.9)

Hence, Rmg is a section of the bundle of algebraic curvature tensors S2
B(Λ2T ∗M). Note that

Rmg = 2I for the standard sphere.

• We define the Ricci curvature ricg : TM × TM → R of g in terms of the Ricci tensor of an
algebraic curvature tensor (see Definition 1.1.10) by

ricg(X, Y ) := ric(Rmg(x))(X, Y ) = 1
2trg(Rmg(X ∧ ·, Y ∧ ·)) = trg(Rg(X, ·, Y, ·))

and Ricg : TM → TM by

g(Ricg(X), Y ) := ricg(X, Y ).
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• The scalar curvature scalg : M → R of g is defined by

scalg := trg(Ric(Rmg)) = trg(Ricg).

Remark 1.3.1. If ψ : N → M is a smooth map, then the pullback ψ∗Rmg of Rmg along ψ is
given by

(ψ∗Rmg)(x)(X ∧ Y, Z ∧W ) := Rmg(ψ(x))(dψ(X) ∧ dψ(Y ), dψ(Z) ∧ dψ(W ))

for x ∈M and X, Y, Z,W ∈ TxM .

Remark 1.3.2. The objects introduced above have the following scaling behaviour under confor-
mal changes of the metric: Let α > 0. Then ∇αg = ∇g, Rαg = Rg (respectively Rαg = αRg when
interpreted as (0,4)-tensor), Rmαg = αRmg (respectively Rmαg = 1

α
Rmg when interpreted as

endomorphism of Λ2TM), ‖Rm‖αg = 1
α2‖Rm‖g, ricαg = ricg, Ricαg = 1

α
Ricg and scalαg = 1

α
scalg.

For a function f : M → R, we further have that Hessαgf = Hessgf .

1.4 A brief introduction to the Ricci flow
Given a manifold equipped with a Riemannian metric g0, one can consider solutions gt, t ∈ [0, T ),
of the partial differential equation

∂

∂t
gt = −2ricgt (1.10)

starting at g0, so-called solutions to the Ricci flow. The Ricci curvature ricg of a Riemannian
manifold (M, g) can be considered as a Laplacian of g. For instance, in harmonic coordinates we
have that (ricg)ij is given by −1

2∆gij plus lower order terms respectively in normal coordinates
by −3

2∆gij in the central point. Therefore, the partial differential equation (1.10) can be seen
as a version of the heat equation. Hence roughly speaking, similar to the diffusion of heat the
curvature evens out it time such that in the limit one expects a metric of constant curvature.
However, there are some problems, since solutions may possibly not be continued for all times as
singularities may arise in the flow. In particular, not every manifold can carry a metric of constant
curvature.
For compact manifolds, Richard S. Hamilton, who was the first to introduce the Ricci flow in
1982 [Ham82], proved short-time existence and uniqueness of solutions to the Ricci flow to a given
initial metric [Ham82]. Provided that the sectional curvature of the initial metric is bounded,
Shi [Shi89] showed that one has short-time existence on complete non-compact manifolds. Fur-
thermore, Chen and Zhu [CZ06] proved that complete solutions to the Ricci flow on non-compact
manifolds with bounded sectional curvature are unique.
The Ricci flow is the main tool in Perelman’s proof of Thurston’s geometrization conjecture for
three-manifolds [Per02, Per03b, Per03a], which in particular implies the Poincaré conjecture and
Thurston’s elliptization conjecture. Moreover, the Ricci flows plays a central role in the investi-
gation of manifolds with different curvature conditions as for example in the proofs of Hamilton’s
theorems for compact 3-manifolds with positive Ricci curvature [Ham82] respectively compact
4-manifolds with positive curvature operator [Ham86], Huisken’s result for compact manifolds
satisfying an explicit open conical curvature condition in dimension n ≥ 4 [Hui85], the theorem
of Böhm and Wilking for compact manifolds with 2-positive curvature operator [BW08] and the
differentiable sphere theorem by Brendle and Schoen [BS09].
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Given a solution gt to the Ricci flow on a manifold M , one is interested in how the Riemannian
curvature operator Rmgt changes in time. By setting ht := ricgt , Definition 1.2.2 yields a con-
nection ∇ on the vector bundle TM → M × R. In order to formulate the evolution equation of
the Riemannian curvature operator, we additionally need to define the Laplace operator acting
on sections of the bundle of algebraic curvature tensors.

Definition 1.4.1. Let (M, g) be a Riemannian manifold, x ∈ M and γ1, . . . , γn be geodesics in
M such that γi(0) = x for i = 1, . . . , n and (γ̇1(0), . . . , γ̇n(0)) is an orthonormal basis of TxM .
The Laplace operator ∆g with respect to g on M is defined as follows.

1. If f : M → R is a smooth function, then

(∆gf)(x) :=
n∑
i=1

d2

ds2

∣∣∣∣∣
s=0

f(γi(s)).

2. If R ∈ Γ(M,S2
B(Λ2T ∗M)) is a smooth section of the bundle of algebraic curvature tensors,

then

(∆gR)(x) :=
n∑
i=1

(∇g)2

ds2

∣∣∣∣∣
s=0

R(γi(s)), (1.11)

where ∇g denotes the Levi-Civita connection of (M, g).

3. More generally, for sections of an arbitrary vector bundle V over M with connection, an
associated Laplace operator can be defined by the same formula (1.11) using the connection
of V instead of the Levi-Civita connection ∇g.

We can now formulate the evolution equation of the Riemannian curvature operator under the
Ricci flow.

Lemma 1.4.2. ([Ham86, p.155]) If gt is a solution to the Ricci flow on a manifold M , then the
Riemannian curvature operator of gt evolves under the partial differential equation

∇ ∂
∂t
Rmgt = ∆gtRmgt +Rm2

gt +Rm#
gt . (1.12)

Here, for any x ∈ M we regard Rmgt(x) as a self-adjoint endomorphism of so(TxM) and define
Rm2

gt(x) := Rmgt(x) ◦Rmgt(x) and Rm#
gt(x) as in Definition 1.1.17.





Chapter 2

Curvature conditions and
ODE-invariance

This chapter is dedicated to introducing curvature conditions, that is O(n)-invariant subsets Ω
of the space of algebraic curvature tensors An. To these sets, one can associate subsets Ωg of
the bundle of algebraic curvature tensors over a Riemannian manifold (M, g), which are invariant
under parallel transport by the Levi-Civita connection ∇g of (M, g). Generically, these are exactly
the subsets being invariant under ∇g. Using this notation, we are able to say when a Riemannian
metric satisfies a given curvature condition.
Furthermore, we consider subsets of a vector space which are invariant under an ordinary differ-
ential equation of the form f ′(t) = Φ(f(t)) and give a characterization of these in terms of their
tangent cones. In some of our applications, such sets arise as sublevel sets of some function. We
show that these are invariant under the mentioned ordinary differential equation if and only if
the angle between the gradient of this function and the map Φ is at least π

2 . As an application,
we obtain that scalar curvature bounded from below is invariant under the ordinary differential
equation R′(t) = R(t)2 +R(t)#.

2.1 Curvature conditions
Let (M, g) be an n-dimensional Riemannian manifold and Og the orthonormal frame bundle on
(M, g) (see Definition 1.2.1). There is a left-action of O(n) on the space of algebraic curvature
tensors. Remember from Section 1.1 that the representation

ρ : O(n)→ End(An)

of O(n) on An = S2
B(Λ2(Rn)∗) is given by

(ρ(Q)R)(v ∧ w, y ∧ z) := R(Q−1v ∧Q−1w,Q−1y ∧Q−1z),

where Q ∈ O(n), R ∈ An and v, w, y, z ∈ Rn.

Definition 2.1.1. A subset Ω ⊆ An is called O(n)-invariant, if for all R ∈ Ω we have that

ρ(Q)R ∈ Ω

for every Q ∈ O(n).

19
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Definition 2.1.2. To an O(n)-invariant subset Ω ⊆ An, we associate the subset Ωg ⊆ S2
B(Λ2T ∗M)

defined by

Ωg :=
{
R ∈ S2

B(Λ2T ∗M) | p∗R ∈ Ω for some p ∈ Og
π(R)

}
,

where π : S2
B(Λ2T ∗M)→M is the projection map and p∗R ∈ An is the pullback of R along p, i.e.

(p∗R)(v ∧ w, x ∧ y) := R(p(v) ∧ p(w), p(x) ∧ p(y))

for v, w, x, y ∈ Rn.

Remark 2.1.3. If p∗R ∈ Ω for one p ∈ Og
π(R), then p∗R ∈ Ω for every p ∈ Og

π(R). Namely, let
p ∈ Og

π(R) with p∗R ∈ Ω and q ∈ Og
π(R). Since O(n) acts transitively on Og

π(R), there is a Q ∈ O(n)
with q = p ◦Q. Therefore, we have that

q∗R = (p ◦Q)∗R = ρ(Q−1)(p∗R) ∈ Ω,

since Ω is O(n)-invariant.

Lemma 2.1.4. Ωg is invariant under parallel transport by ∇g.

Proof. Let s 7→ Rs be a parallel curve in S2
B(Λ2(T ∗M)) with respect to ∇g with R0 ∈ Ωg. Let

further s 7→ ps be a parallel curve in Og along π◦R with respect to ∇g. Then for all v, w, y, z ∈ Rn,
we have that

d

ds

(
p∗sRs

)
(v ∧ w, y ∧ z) = d

ds

(
(p∗sRs)(v ∧ w, y ∧ z)

)
= d

ds

(
Rs

(
ps(v) ∧ ps(w), ps(y) ∧ ps(z)

))
=
(∇g

ds
Rs

)
︸ ︷︷ ︸

=0

(
ps(v) ∧ ps(w), ps(y) ∧ ps(z)

)
+Rs

( ∇g

ds
ps(v)︸ ︷︷ ︸
=0

∧ ps(w), ps(y) ∧ ps(z)
)

+ · · ·+Rs

(
ps(v) ∧ ps(w), ps(y) ∧ ∇

g

ds
ps(z)︸ ︷︷ ︸
=0

)

= 0,

(2.1)

where the last equality holds, since s 7→ ps and s 7→ Rs are parallel. Therefore,
d

ds

(
p∗sRs

)
= 0

and thus s 7→ p∗sRs is constant. Since R0 ∈ Ωg, we have that

p∗sRs = p∗0R0 ∈ Ω

for all s. Consequently, Rs ∈ Ωg for all s.

Definition 2.1.5. For x ∈M , the holonomy group of ∇g based at x is defined by

holx(∇g) := {Pγ | γ : [0, 1]→M piecewise smooth with γ(0) = γ(1) = x} ⊆ O(TxM).

Here, Pγ : TxM → TxM denotes the parallel transport along the loop γ with respect to ∇g, that
is for X0 ∈ TxM

Pγ(X0) := X(1),

where t 7→ X(t) is the parallel vector field along γ with respect to ∇g satisfying X(0) = X0.
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Remark 2.1.6. If M is connected and x, y ∈ M , then the groups holx(∇g) and holy(∇g) are
isomorphic. Namely, let γ : [0, 1]→ M be a piecewise smooth curve with γ(0) = x and γ(1) = y,
then

holx(∇g)→ holy(∇g) : Q 7→ Pγ ◦Q ◦ P−1
γ

is an isomorphism.

The holonomy of a generic n-dimensional Riemannian manifold is isomorphic to O(n), or SO(n)
if it is orientable. We show that in this case, all subsets of S2

B(Λ2T ∗M), which are invariant under
parallel transport by ∇g, are of the form Ωg for a suitable set Ω ⊆ An.

Lemma 2.1.7. Let C ⊆ S2
B(Λ2T ∗M) be invariant under parallel transport by ∇g and suppose that

holx(∇g) = O(TxM) (or SO(TxM) if M is orientable)

for an x ∈M . Then there exists an O(n)-invariant (respectively SO(n)-invariant) subset Ω ⊆ An
such that C = Ωg. Here, in the case that M is orientable, we define Ωg using the orientable frame
bundle of M instead of Og.

Proof. We prove the lemma for the case that holx(∇g) = O(TxM) for an x ∈ M . The other case
works analogously. Choose p ∈ Og

x and set

Ω := p∗Cx ⊆ An,

where Cx denotes the restriction of C to the fibre over x. Then Ωg
x = Cx, where again Ωg

x denotes
the restriction of Ωg to the fibre over x. Since C is invariant under parallel transport, for all y ∈M
and piecewise smooth paths γ : [0, 1]→M with γ(0) = y and γ(1) = x, we have that

P ∗γCx := {R(Pγ(·) ∧ Pγ(·), Pγ(·) ∧ Pγ(·)) | R ∈ Cx} = Cy.

Using the parallel invariance of Ωg (see Lemma 2.1.4), this leads to

Cy = P ∗γCx = P ∗γΩg
x = Ωg

y.

Hence, C = Ωg. It remains to show that Ω is O(n)-invariant. To this end, let Q ∈ O(n). Then
p ◦Q−1 ◦ p−1 ∈ O(TxM) = holx(∇g). Again using that C is invariant under holx(∇g) yields that

Cx = (p ◦Q−1 ◦ p−1)∗Cx = (p−1)∗(ρ(Q)(p∗Cx)) = (p−1)∗(ρ(Q)Ω).

Thus,

ρ(Q)Ω = p∗Cx = Ω.

Remark 2.1.8. If Ω is open respectively closed, Ωg is open respectively closed as well.

Example 2.1.9. The set

Ω := {R ∈ An | Ric(R) ≥ 0}

is O(n)-invariant and

Ωg = {R ∈ S2
B(Λ2T ∗M) | Ricg(R) ≥ 0},

where Ricg(R) denotes the Ricci tensor of R with respect to the metric g.
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Definition 2.1.10. Let Ω ⊆ An be O(n)-invariant. We say that g satisfies Ω, if for all x ∈ M ,
we have that

Rmg(x) ∈ Ωg.

Therefore, we often call such a set Ω a curvature condition.

Definition 2.1.11. We define the O(n)-invariant set

C(M, g) := {p∗Rmg(x) | x ∈M and p ∈ Og
x} ⊆ An.

Obviously, g satisfies C(M, g). Moreover, for curvature conditions Ω ⊆ An, we have that g satisfies
Ω if and only if C(M, g) ⊆ Ω.

Definition 2.1.12. We say that an O(n)-invariant set Ω ⊆ An is invariant under the Ricci flow,
if for all n-dimensional compact manifolds M and solutions gt, t ∈ [0, T ), to the Ricci flow on M
with g0 satisfying Ω, we have that gt satisfies Ω for all t ∈ [0, T ).

2.1.1 As domain of functions
In our results, curvature conditions Ω often arise as domains of O(n)-invariant functions F . Again,
to these functions one can associate functions F g which are defined on the associated sets Ωg and
are invariant under parallel transport by the Levi-Civita connection of the Riemannian manifold
(M, g). In this section, we provide formulas for derivatives of F g in terms of those of F .

Throughout this section, let Ω ⊆ An be an O(n)-invariant subset.

Definition 2.1.13. A function F : Ω→ R is called O(n)-invariant, if

F (ρ(Q)R) = F (R)

for all R ∈ Ω and Q ∈ O(n).
To such a function F , we associate a function F g : Ωg → R, which is defined via

F g(R) := F (p∗R)

for some p ∈ Og
π(R). Remark 2.1.3 shows that this is independent of the choice of p, hence well

defined, due to the O(n)-invariance of F .

Lemma 2.1.14. Let F : Ω → R be an O(n)-invariant function. Then F g is invariant under
parallel transport with respect to ∇g.

Proof. Let s 7→ Rs be parallel in S2
B(Λ2T ∗M) with respect to ∇g with R0 ∈ Ωg, and let s 7→ ps be

a parallel curve in Og along π ◦R with respect to ∇g. Then s 7→ p∗sRs is constant as shown in the
proof of Lemma 2.1.4, and therefore

s 7→ F g(Rs) = F (p∗sRs)

is constant as well. This means that F g is invariant under parallel transport.
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Remark 2.1.15. A vector space V can be canonically identified with its tangent space TvV at a
point v ∈ V via the map

canv : V → TvV : w 7→ d

dt

∣∣∣∣
t=0

[v + tw].

Moreover, for R ∈ S2
B(Λ2T ∗M) by ιR we denote the inclusion

ιR : TRS2
B(Λ2T ∗π(R)M)→ TRS

2
B(Λ2T ∗M) = TRS

2
B(Λ2T ∗π(R)M)⊕HR

of the vertical part of the tangent space of the bundle at R. Here, HR denotes the horizontal space

HR :=
{

[v̇(0)]
∣∣∣ v : (−ε, ε)→ S2

B(Λ2T ∗M) parallel

with respect to ∇g along π ◦ v with v(0) = R
}
.

Setting V := S2
B(Λ2T ∗π(R)M), one can consider the composition of these to maps

vR := ιR ◦ canR : S2
B(Λ2T ∗π(R)M)→ TRS

2
B(Λ2T ∗M) : S 7→ SvR .

For the sake of notational simplicity, we will always use the identifications canR silently, and omit
the base point of vR and write v instead.

Remark 2.1.16. By Lemma 2.1.14, F g is invariant under parallel transport with respect to ∇g.
Therefore, dF g

R vanishes identically on the horizontal space HR for all R ∈ Ωg. Namely, let
[Ṙ(0)] ∈ HR such that s 7→ R(s) is parallel with respect to ∇g. Then

dF g
R([Ṙ(0)]) = d

ds

∣∣∣∣∣
s=0

F g(R(s)) = 0

as F g is invariant under parallel transport, thus s 7→ F g(R(s)) is constant.

Lemma 2.1.17. Let Ω be open and F : Ω→ R a smooth and O(n)-invariant function. Then for
all R ∈ Ωg, S ∈ S2

B(Λ2T ∗π(R)M) and p ∈ Og
π(R), we have that

dF g
R(Sv) = dFp∗R(p∗S).

Proof. Let R ∈ Ωg, S ∈ S2
B(Λ2T ∗π(R)M) and p ∈ Og

π(R). Since Ωg is open, there exists an ε > 0
such that R + tS ∈ Ωg for small t ∈ (−ε, ε). Therefore,

dF g
R(Sv) = d

dt

∣∣∣∣∣
t=0
F g(R + tS) = d

dt

∣∣∣∣∣
t=0
F (p∗(R + tS))

= d

dt

∣∣∣∣∣
t=0
F (p∗R + tp∗S) = dFp∗R(p∗S).

A key lemma is now the following.

Lemma 2.1.18. Let Ω be open, F : Ω → R a smooth and O(n)-invariant function and R ∈
Γ(M,Ωg) a smooth section of Ωg. Then for each x ∈M , we have that

(∆g(F g ◦R))(x) =
n∑
i=1

Hessp∗R(x)F
(
p∗∇g

ei
R, p∗∇g

ei
R
)

+ dF g
R(x) ((∆gR)(x)v) .

Here, (e1, . . . , en) is an orthonormal basis of TxM with respect to g and p ∈ Og
x.
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Proof. Let x ∈ M , γ a geodesic in M with γ(0) = x and s 7→ ps a parallel curve in Og that lies
over γ, meaning that ps ∈ Og

γ(s) for all s. Then we find that

d

ds

(
p∗sR(γ(s))

) (2.1)= p∗s
∇g

ds
R(γ(s)) = p∗s∇

g
γ̇(s)R

and therefore that
d

ds
F g(R(γ(s))) = d

ds
F (p∗sR(γ(s))) = dFp∗sR(γ(s))

(
d

ds
p∗sR(γ(s))

)
= dFp∗sR(γ(s))

(
p∗s
∇g

ds
R(γ(s))

)
.

Differentiating this once more and again using (2.1) yields that

d2

ds2F
g(R(γ(s))) = Hessp∗sR(γ(s))F

(
p∗s∇

g
γ̇(s)R, p

∗
s∇

g
γ̇(s)R

)
+ dFp∗sR(γ(s))

(
p∗s

(∇g)2

ds2 R(γ(s))
)

= Hessp∗sR(γ(s))F
(
p∗s∇

g
γ̇(s)R, p

∗
s∇

g
γ̇(s)R

)
+ dF g

R(γ(s))

(
(∇g)2

ds2 R(γ(s))
v)
.

Now, let (e1, . . . , en) be a g-orthonormal basis of TxM and γ1, . . . , γn geodesics inM with γi(0) = x
and γ̇i(0) = ei for i = 1, . . . , n and let p ∈ Og

x. Then

(∆g(F g ◦R))(x) =
n∑
i=1

d2

ds2

∣∣∣∣∣
s=0

F g(R(γi(s)))

=
n∑
i=1

(
Hessp∗R(x)F

(
p∗∇g

ei
R, p∗∇g

ei
R
)

+ dF g
R(x)

(
(∇g)2

ds2

∣∣∣∣∣
s=0

R(γi(s))
v))

=
n∑
i=1

Hessp∗R(x)F
(
p∗∇g

ei
R, p∗∇g

ei
R
)

+ dF g
R(x) ((∆gR)(x)v) .

Lemma 2.1.19. Let Ω be open and F : Ω→ R a smooth and O(n)-invariant function. Moreover,
let (M, g0) be an n-dimensional Riemannian manifold and g(t), t ∈ [0, T ), be a solution to the
Ricci flow with g(0) = g0 such that g(t) satisfies Ω for all t ∈ [0, T ). Then for all x ∈ M and
t ∈ [0, T ), we have that

∂

∂t
F g(t)(Rmg(t)(x)) = dF

g(t)
Rmg(t)(x)

(
∇ ∂
∂t
Rmg(t)(x)v

)
.

Proof. Throughout the proof we write gt := g(t). Let ∇ be the metric connection on the vector
bundle TM → M × R introduced in Definition 1.2.2. Let further x ∈ M and t 7→ pt ∈ Ogt

x be a
parallel curve. Since gt satisfies Ω, the function F gt ◦ Rmgt : M → R is defined for all t ∈ [0, T )
and we have that

∂

∂t
F gt(Rmgt(x)) = ∂

∂t
F (p∗tRmgt(x)) = dFp∗tRmgt (x)

(
∂

∂t
(p∗tRmgt(x))

)
1.2.6= dFp∗tRmgt (x)

(
p∗t∇ ∂

∂t
Rmgt(x)

) 2.1.17= dF gt
Rmgt (x)

(
∇ ∂
∂t
Rmgt(x)v

)
.

This finishes the proof.

Similarly to the case of O(n)-invariant functions, to O(n)-equivariant maps on the space of alge-
braic curvature tensors, we can associate maps on the bundle of algebraic curvature tensors over a
Riemannian manifold. These will enable us to formulate a version of Hamilton’s maximum prin-
ciple for algebraic curvature tensors and finally a generalization of this version to Bianchi-convex
sets in Section 4.
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Definition 2.1.20. A map Φ : An → An is called O(n)-equivariant, if for each Q ∈ O(n) and
R ∈ An, it satisfies that

Φ(ρ(Q)R) = ρ(Q)Φ(R),

where ρ denotes the representation of O(n) on An as defined in the beginning of Section 2.1.
To such a map Φ, we associate a map

Φg : S2
B(Λ2T ∗M)→ S2

B(Λ2T ∗M)
R 7→ (p−1)∗Φ(p∗R),

where p ∈ Og
π(R) can be chosen arbitrarily.

Remark 2.1.21. The map Φg is well defined. Namely, let R ∈ S2
B(Λ2T ∗M) and p, q ∈ Og

π(R).
Since O(n) acts transitively on Og

π(R), there is a Q ∈ O(n) with q = p ◦Q and we have that

(q−1)∗Φ(q∗R) = (p−1)∗ρ(Q)Φ(ρ(Q−1)(p∗R)) = (p−1)∗Φ(p∗R).

Moreover, we notice that Φg is fibre-preserving.

Remark 2.1.22. Properties of the map Φ such as being locally Lipschitz continuous or bounded
transfer to Φg.

2.2 Properties of tangent cones
For closed subsets C of a metric space with smooth boundary ∂C, we can linearly approximate the
submanifold ∂C at some point x0 ∈ ∂C, namely by the tangent space Tx0∂C. If the boundary of
C is not smooth this concept fails. However, tangent cones of such subsets generalize this notion
to arbitrary regularity of the boundary. In this section, we show some properties of tangent cones,
which, in the non-smooth case, involves approximating the boundaries of the subsets by certain
submanifolds, so-called supporting submanifolds.
Throughout, let V be a metric space and C ⊆ V be a closed subset.

Definition 2.2.1. Let x0 ∈ C. The tangent cone of C at x0 is defined by

Tx0C := {γ̇(0) | γ : (−ε, ε)→ V in C1 with γ(0) = x0 and γ(t) ∈ C for all t ∈ [0, ε)}.

From now on, let V be a Euclidean vector space with induced norm ‖ · ‖ and let C ⊆ V be a
closed subset.

Lemma 2.2.2. Let x0 ∈ C. Then we have that

Tx0C ⊆ Kx0C := {v ∈ V | ∀x ∈ V with d(x,C) = ‖x0 − x‖ : 〈x− x0, v〉 ≤ 0}.

Proof. For x0 being in the interior of C, we have thatKx0C = V . Hence, in this case the statement
is trivial. Now, let x0 ∈ ∂C and v ∈ Tx0C such that v = γ̇(0), where γ : (−ε, ε)→ V is a C1-curve
with γ(0) = x0 and γ(t) ∈ C for all t ∈ [0, ε). Let x ∈ V with d(x,C) = ‖x0 − x‖. If we had that
〈x− x0, v〉 > 0, then for t > 0 small enough, we would find that

‖x− γ(t)‖2 = ‖x− γ(0)− tγ̇(0) + o(t)‖2 = ‖x− x0‖2 − 2t 〈x− x0, v〉︸ ︷︷ ︸
>0

+o(t) < ‖x− x0‖2,

in contradiction to ‖x − x0‖ = d(x,C) ≤ ‖x − γ(t)‖ since γ(t) ∈ C. Thus, 〈x − x0, v〉 ≤ 0 and
therefore v ∈ Kx0C. The statement follows since Kx0C is closed.
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If the boundary ∂C of C is smooth and of codimension one, then for x0 ∈ ∂C, we have that

Tx0C = {v ∈ V | 〈v,nx0〉 ≤ 0},

where nx0 denotes the outward pointing unit normal on ∂C at x0. If the boundary of C is of lower
regularity, approximating it pointwise by certain submanifolds of V , a similar, however slightly
weaker, result is true (see Lemma 2.2.4). To this end, we introduce the notion of a supporting
submanifold.

Definition 2.2.3. Let x0 ∈ ∂C. A supporting submanifold of C in x0 is a submanifold N of V
of codimension one that touches C in x0 such that C locally lies on one side of N , meaning that
there is an open neighborhood U ⊆ V of x0 such that U \ N consists of exactly two connected
components U1 and U2, the closure of one of those (say U1) containing C ∩ U .
Moreover, by rN , we will always denote a signed distance function from a supporting submanifold
N of C in x0, i.e. a function

rN : U → R : x 7→

−d(x,N), x ∈ U1

d(x,N), x ∈ U2

 =

−d(x,N), x lies on the side of C
d(x,N), else.

By possibly making U smaller, we can always arrange rN to be smooth, which we will assume
throughout.

Lemma 2.2.4. Let x0 ∈ ∂C and N be a supporting submanifold of C in x0. Then we have that

Tx0C ⊆ {v ∈ V | 〈v,nx0〉 ≤ 0} =: HN ,

where nx0 denotes the unit normal on N at x0 pointing in the opposite direction of C. In particular,
the tangent cone Tx0C lies on one side of the tangent space Tx0N .

Proof. Let γ : (−ε, ε) → V be once differentiable with γ(0) = x0 and γ(t) ∈ C for all t ∈ [0, ε).
Then γ̇(0) ∈ Tx0C ⊆ V and we have that rN(γ(t)) ≤ 0 for all t ∈ [0, ε) and rN(γ(0)) = 0. Hence,

0 ≥ d

dt

∣∣∣∣∣
t=0
rN(γ(t)) = drNγ(0)(γ̇(0)) = 〈nR, γ̇(0)〉.

Passing to the closure yields that Tx0C ⊆ HN . Since the tangent space Tx0N is the boundary of
the half space HN , the tangent cone Tx0C lies on one side of Tx0N .

2.3 Invariance under an ordinary differential equation
We start with the following definition.

Definition 2.3.1. Let V be a vector space and Φ : V → V a locally Lipschitz continuous map.
A subset C ⊆ V is invariant under the ordinary differential equation

f ′(t) = Φ(f(t)), (2.2)

if for all solutions f : [0, δ]→ V of (2.2) with f(0) ∈ C, we have that f(t) ∈ C for all t ∈ [0, δ].
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Remark 2.3.2. Since Φ is locally Lipschitz continuous, given an initial value, the theorem of
Picard-Lindelöf provides existence and uniqueness of such solutions.

In our applications, we will always have that V = An and that Φ : An → An is the map
corresponding to the self-map Φ̂ on SymEnd(Λ2Rn) given by

Φ̂(R) := R2 +R#

for all R ∈ SymEnd(Λ2Rn) as in Remark 1.1.4. Since Φ is a quadratic function, it is locally
Lipschitz continuous. Moreover in Remark 1.1.18, we have shown that Φ is O(n)-equivariant.
From now on, we will freely identify Φ and Φ̂.

The following proposition is somewhat more general than Hamilton’s statement in [Ham86, Lemma
4.1] since the convexity assumption is not required.

Proposition 2.3.3. Let V be a normed vector space, Φ : V → V locally Lipschitz continuous and
C ⊆ V a closed set. Then C is invariant under the ordinary differential equation (2.2) if and only
if for all v ∈ ∂C we have that Φ(v) ∈ TvC.

Proof. First, assume that C is invariant under (2.2). Let v ∈ ∂C and f : [0, δ]→ V be a solution
of (2.2) with f(0) = v. By the theorem of Picard-Lindelöf, f is defined on the interval (−ε, ε)
for an ε ∈ (0, δ) as well. Moreover, f ′(0) = Φ(v) and the invariance of C under (2.2) yields that
f(t) ∈ C for all t ∈ [0, δ]. Hence, Φ(v) ∈ TvC.

In order to show the opposite direction, let f : [0, δ] → V be a solution of (2.2) with f(0) ∈ C.
Let r : V → [0,∞) be the distance function from C, i.e. for v ∈ V let

r(v) := d(v, C) = inf
w∈C
‖v − w‖.

Moreover, for t ∈ [0, δ] we set

s(t) := r(f(t))2.

In general, the function s : [0, δ]→ [0,∞) is not differentiable. Still we can define

s′(t) := lim sup
h↘0

s(t+ h)− s(t)
h

<∞

for t ∈ [0, δ), since r is Lipschitz continuous and f is once continuously differentiable. Let r0 be
the maximum of s on [0, δ]. Then

K :=
⋃

t∈[0,δ]
B√r0(f(t))

is compact. Since Φ is locally Lipschitz continuous, there exists a constant L > 0 such that Φ|K is
L
2 -Lipschitz continuous. Our goal is to show that s′(t) ≤ Ls(t) for all t ∈ [0, δ). Because then for

g : [0, δ]→ [0,∞) : t 7→ s(t)e−Lt,

we find that g′(t) ≤ e−Lt(s′(t)− Ls(t)) ≤ 0 for all t ∈ [0, δ) and g(0) = 0. Therefore, g(t) ≤ 0 for
all t ∈ [0, δ], hence s(t) ≤ 0 for all t ∈ [0, δ]. Since s is non-negative, however, this means that
s ≡ 0, which yields that f(t) ∈ C for all t ∈ [0, δ].
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Let now t ∈ [0, δ). Since C is closed, there is an xt ∈ C with d(f(t), C) = ‖f(t) − xt‖. By
assumption, Φ(xt) ∈ TxtC ⊆ KxtC, thus 〈f(t)− xt,Φ(xt)〉 ≤ 0. Consequently,

s′(t) = lim sup
h↘0

d(f(t+ h), C)2 − d(f(t), C)2

h
≤ lim sup

h↘0

‖f(t+ h)− xt‖2 − ‖f(t)− xt‖2

h

= lim sup
h↘0

‖f(t+ h)‖2 − ‖f(t)‖2 − 2〈f(t+ h)− f(t), xt〉
h

= d

dt
‖f(t)‖2 − 2〈f ′(t), xt〉

(2.2)= 2〈f ′(t), f(t)〉 − 2〈Φ(f(t)), xt〉
(2.2)= 2〈Φ(f(t)), f(t)− xt〉

≤ 2〈Φ(f(t)), f(t)− xt〉 − 2〈Φ(xt), f(t)− xt〉 = 2〈Φ(f(t))− Φ(xt), f(t)− xt〉
≤ 2‖Φ(f(t))− Φ(xt)‖‖f(t)− xt‖ ≤ L‖f(t)− xt‖2 = Ls(t),

where the last inequality holds, since

‖xt − f(t)‖2 = s(t) ≤ r0,

thus xt ∈ B√r0(f(t)) ⊆ K.

For a smooth function F , the following lemma gives a connection between the invariance of the
sublevel sets of F under the ordinary differential equation (2.2) and the angle between the gradient
of F and the map Φ.

Lemma 2.3.4. Let V be a vector space and Φ : V → V a locally Lipschitz continuous map. Let
further C ⊆ V be an open set and F : C → R a smooth function. If the sublevel sets of F are
invariant under (2.2), then for all v ∈ C we have that

dFv(Φ(v)) ≤ 0. (2.3)

Conversely, if F satisfies (2.3) for all v ∈ C, then for all a ∈ im(F ) and solutions f : [0, δ]→ C
with f(0) ∈ F−1((−∞, a]), we have that f(t) ∈ F−1((−∞, a]) for all t ∈ [0, δ]. In particular, if C
is additionally invariant under (2.2), then the sublevel sets of F are invariant under (2.2).

Proof. Under the assumption that the sublevel sets of F are invariant under (2.2), let v ∈ C and
f : [0, δ]→ V be a solution of (2.2) with f(0) = v. Let further a := F (v). Then v ∈ F−1((−∞, a]).
Hence, by assumption f(t) ∈ F−1((−∞, a]) for all t ∈ [0, δ]. This means that the function
F ◦ f : [0, δ]→ R is defined and satisfies F (f(0)) = a and F (f(t)) ≤ a for all t ∈ [0, δ]. Therefore,
we find that

0 ≥ d

dt

∣∣∣∣
t=0
F (f(t)) = dFv(f ′(0)) = dFv(Φ(f(0))) = dFv(Φ(v)).

Conversely, we assume that F satisfies (2.3) for all v ∈ C. Let f : [0, δ]→ C be a solution of (2.2)
with f(0) ∈ F−1((−∞, a]) for some a ∈ im(F ). Then

d

dt
F (f(t)) = dFf(t)(Φ(f(t))) ≤ 0

for all t ∈ [0, δ]. Hence, F ◦ f is decreasing, which means that F (f(t)) ≤ F (f(0)) ≤ a, thus
f(t) ∈ F−1((−∞, a]), for all t ∈ [0, δ].

An example of a family of sets which are invariant under the ordinary differential equation

R′(t) = R(t)2 +R(t)# (2.4)

is the following. (Remember that the map # was defined in Definition 1.1.17.)
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Example 2.3.5. For a ∈ R, the sets

{R ∈ An | scal(R) ≥ a}

are invariant under the ordinary differential equation (2.4).

Proof. Let us consider the function

F : An → R : R 7→ −scal(R).

Using a formula for the components of R2 +R# (see for example [Ham86]), one can compute that

dFR(R2 +R#) = −scal(R2 +R#) = −2‖ric(R)‖2 ≤ 0

for all R ∈ An. Therefore, Lemma 2.3.4 implies that for a ∈ R the sublevel sets F−1((−∞,−a]) =
{R ∈ An | scal(R) ≥ a} are invariant under (2.4).





Chapter 3

Bianchi-convex sets

In this chapter, we introduce Bianchi-convex sets of algebraic curvature tensors and show some
first properties. Bianchi-convexity relaxes the notion of convexity in a certain sense inspired by
the second Bianchi identity for the Riemannian curvature tensor of a Riemannian manifold. In
dimension 3, we consider Bianchi-convex sets of algebraic curvature tensors whose eigenvalues lie
in a sublevel set of some function f : R3 → R and derive another characterization of Bianchi-
convexity for those sets in terms of f . This enables us to find examples for Bianchi-convex sets
which are not convex and thereby show that the introduced notion is a real generalization of
convexity. Moreover, we show that certain subsets of these Bianchi-convex sets are invariant
under the ordinary differential equation (2.4).

3.1 The definition and first properties
First of all, recall that for a submanifold N of codimension one of a Riemannian manifold (M, g)
and a point x ∈ M , given the choice of a normal vector nx at x, the second fundamental form of
N in x is defined as the symmetric and bilinear map

âNx : TxN × TxN → R : (X, Y ) 7→ gx(∇g
XY,nx),

where ∇g is the Levi-Civita connection of M . For X, Y ∈ TxN , one can show that

gx(∇g
XY,nx) = −gx(Y,∇g

Xn). (3.1)

Here, n denotes an extension of nx to a neighborhood of x in M .

Remark 3.1.1. Let V be a vector space and C ⊆ V a closed convex set, the boundary ∂C of
which is smooth and of codimension one. If one chooses nx to be the outward pointing unit normal
on ∂C at x, then â∂Cx is negative semidefinite for all x ∈ ∂C.

Our generalization of the notion of convexity requires a second Bianchi identity for tuples of
algebraic curvature tensors.

Definition 3.1.2. An n-tuple (T1, . . . , Tn) ∈ Ann satisfies the second Bianchi identity, if for some
orthonormal basis (b1, . . . , bn) of Rn, we have that

Ti(bj ∧ bk) + Tj(bk ∧ bi) + Tk(bi ∧ bj) = 0

for all i, j, k ∈ {1, . . . , n}. Moreover, we can replace An by S2
B(Λ2T ∗xM) and Rn by TxM for some

x ∈M .

31
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Remark 3.1.3. In dimension n ≤ 2, the second Bianchi identity is always satisfied. In dimension
n = 3, (T1, T2, T3) ∈ A3

3 satisfies the second Bianchi identity if and only if

T1(b2 ∧ b3) + T2(b3 ∧ b1) + T3(b1 ∧ b2) = 0

for some orthonormal basis (b1, b2, b3) of R3.

Example 3.1.4. Let (M, g) be an n-dimensional Riemannian manifold, x ∈ M and (b1, . . . , bn)
an orthonormal basis of TxM . Then (T1, . . . , Tn), where Ti := ∇biRmg for i = 1, . . . , n, satisfies
the second Bianchi identity with respect to (b1, . . . , bn).

For closed subsets of algebraic curvature tensors, we introduce a weaker form of convexity.

Definition 3.1.5. A closed subset Ω ⊆ An is called Bianchi-convex, if for all ε > 0 and R ∈ ∂Ω
there is a supporting submanifold N of Ω in R such that for each S ∈ N and (T1, . . . , Tn) ∈ (TSN)n
satisfying the second Bianchi identity, we have that

n∑
i=1

âNS (Ti, Ti) ≤ ε
n∑
i=1
‖Ti‖2. (3.2)

Furthermore, we can replace An by S2
B(Λ2T ∗xM) for some x ∈M .

Remark 3.1.6. If the boundary of Ω is smooth, then the supporting submanifolds in the Definition
3.1.5 can be chosen to be ∂Ω itself, and we obtain that Ω is Bianchi-convex, if and only if for all
R ∈ ∂Ω and (T1, . . . , Tn) ∈ (TR∂Ω)n satisfying the second Bianchi identity, we have that

n∑
i=1

â∂Ω
R (Ti, Ti) ≤ 0.

Roughly speaking, in order for a set of algebraic curvature tensors to be Bianchi-convex, concavity
is permitted in certain directions as long as these directions are compensated by the convex ones.

Remark 3.1.7. Closed convex subsets of An are Bianchi-convex.

Remark 3.1.8. Let (M, g) be an n-dimensional Riemannian manifold and Ω ⊆ An an O(n)-
invariant set. If Ω is Bianchi-convex, then Ωg (as defined in Definition 2.1.2) is fibrewise Bianchi-
convex.

Lemma 3.1.9. The intersection of two Bianchi-convex sets is Bianchi-convex.

Proof. Let Ω,Ω′ ⊆ An be Bianchi-convex sets. Let ε > 0 and R ∈ ∂(Ω∩Ω′). If R ∈ ∂Ω∩Ω′ ⊆ ∂Ω,
then, since Ω is Bianchi-convex, there exists a supporting submanifold N of Ω in R such that
(3.2) is true for each S ∈ N and (T1, . . . , Tn) ∈ (TSN)n that satisfies the second Bianchi identity.
Since N is also a supporting submanifold of Ω ∩ Ω′ in R, we are done in this case. The case that
R ∈ ∂Ω′ ∩ Ω ⊆ ∂Ω′ works analogously.

The following lemma is a crucial step towards generalizing Hamilton’s maximum principle [Ham86,
Theorem 4.3] to the Bianchi-convex setting (see Section 4.3).

Lemma 3.1.10. Let (M, g) be an n-dimensional Riemannian manifold, C ⊆ S2
B(Λ2T ∗M) be

closed, invariant under parallel transport with respect to the Levi-Civita connection ∇g and fi-
brewise Bianchi-convex. Let R ∈ Γ(M,C) be a smooth section of C and R(x) ∈ ∂Cx for some
point x ∈ M . Moreover, assume that (∇b1R, . . . ,∇bnR) satisfies the second Bianchi identity with
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respect to some orthonormal basis (b1, . . . , bn) of TxM . Let further ε > 0 and N be a supporting
submanifold of Cx in R(x) satisfying (3.2). Then we have that〈

(∆gR)(x),nR(x)
〉
g
≤ ε

n∑
i=1
‖∇g

bi
R‖2

g,

where nR(x) denotes the unit normal on N at R(x) pointing in the opposite direction of Cx.
Above, we identified the normal vector nR(x), which was a priori a tangent vector to S2

B(Λ2T ∗xM)
at R(x), with a vector of S2

B(Λ2T ∗xM) itself.

Proof. For i = 1, . . . , n, let γi : (−δ, δ)→ M be geodesics with γi(0) = x and γ̇i(0) = bi. Since C
is invariant under parallel transport with respect to ∇g, for i = 1, . . . , n and t ∈ (−δ, δ) we find
that

hi(t) :=
(
Pγi|[0,t]

)−1
(R ◦ γi)(t)︸ ︷︷ ︸
∈Cγi(t)

∈ Cx,

where Pγi|[0,t] denotes the parallel transport along γi|[0,t] with respect to ∇g. Hence, hi is a curve
in Cx with hi(0) = R(x) ∈ N . Now, let rN be a signed distance function from N . Then

(rN ◦ hi)(0) = rN(R(x)) = 0,
and (rN ◦ hi)(t) ≤ 0 for all t ∈ (−δ, δ).

Therefore, 0 is a local maximum of rN ◦ hi. On the one hand, this implies that

0 = d

dt

∣∣∣∣∣
t=0

(rN ◦ hi)(t) = drNhi(0)(h′i(0)) = 〈gradhi(0)r
N , h′i(0)〉 =

〈
nhi(0), h

′
i(0)

〉
,

thus

∇g
bi
R = ∇

g

dt

∣∣∣∣∣
t=0
R(γi(t)) = h′i(0) ∈ Thi(0)N.

On the other hand, we obtain that

0 ≥ d2

dt2

∣∣∣∣∣
t=0

(rN ◦ hi)(t) = Hesshi(0)r
N
(
h′i(0), h′i(0)

)
+ drNhi(0)(h′′i (0)).

Since

Hesshi(0)r
N
(
h′i(0), h′i(0)

)
=
〈
∇g
h′i(0)grad rN , h′i(0)

〉 (3.1)= −
〈
gradR(x)r

N ,∇g
h′i(0)h

′
i(0)

〉
= −

〈
nR(x),∇g

h′i(0)h
′
i(0)

〉
= −âNR(x)(h′i(0), h′i(0)),

we find that
âNR(x)(h′i(0), h′i(0)) ≥

〈
nR(x), h

′′
i (0)

〉
, (3.3)

which leads to〈
(∆gR)(x),nR(x)

〉
=

n∑
i=1

〈
(∇g)2

dt2

∣∣∣∣∣
t=0
R(γi(t)),nR(x)

〉
=

n∑
i=1

〈
h′′i (0),nR(x)

〉
(3.3)
≤

n∑
i=1

âNR(x)(h′i(0), h′i(0)) =
n∑
i=1

âNR(x)(∇
g
bi
R,∇g

bi
R)

(3.2)
≤ ε

n∑
i=1
‖∇g

bi
R‖2,

where the last inequality holds since (∇g
b1R, . . . ,∇

g
bn
R) ∈ (TR(x)N)n satisfies the second Bianchi

identity (with respect to the orthonormal basis (b1, . . . , bn)) and Cx is Bianchi-convex.
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3.2 Bianchi-convex sets in dimension 3
In this section, we have a closer look at Bianchi-convex sets in dimension n = 3. First of all,
the following lemma allows us to reformulate the second Bianchi identity in terms of symmetric
3 × 3-matrices and oriented orthonormal bases of R3, which makes explicit calculations much
easier.
Lemma 3.2.1. Let (B1, B2, B3) be a positively oriented orthonormal basis of Λ2R3. Then there
exists an orthonormal basis (b1, b2, b3) of R3 with B1 = b2 ∧ b3, B2 = b3 ∧ b1 and B3 = b1 ∧ b2.
Here, an orthonormal basis of Λ2R3 is called positively oriented, if it lies in the same connected
component as (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2), where (e1, e2, e3) is the standard basis of R3.
Proof. Let ONB(R3) and ONB(Λ2R3) be the sets of orthonormal bases of R3 and Λ2R3, respec-
tively. These are compact submanifolds of R3×3 and (Λ2R3)3, respectively. Let us consider the
map

Φ : ONB(R3)→ ONB(Λ2R3) : (b1, b2, b3) 7→ (b2 ∧ b3, b3 ∧ b1, b1 ∧ b2)
between these manifolds and show that it is surjective. In order to do so, we first show that Φ is
a local diffeomorphism. Let b = (b1, b2, b3) ∈ ONB(R3). The differential of Φ at b is given by

dΦb : TbONB(R3)→ TΦ(b)ONB(Λ2R3)
X 7→ (X2 ∧ b3 − b2 ∧X3, X3 ∧ b1 − b3 ∧X1, X1 ∧ b2 − b1 ∧X2).

Using that

TbONB(R3) =


 3∑
j=1

c1jbj,
3∑
j=1

c2jbj,
3∑
j=1

c3jbj

 ∣∣∣∣∣∣ cii = 0, cij = −cji

 ,
one shows that dΦb is injective. Thus, as a linear map between equal dimensional spaces, dΦb is
bijective. The inverse function theorem yields that there is an open neighborhood U of b such
that Φ|U : U → Φ(U) is a diffeomorphism. Since b ∈ ONB(R3) was arbitrary, Φ is a local
diffeomorphism and therefore an open map. Hence, Φ(ONB(R3)) is open in ONB(Λ2R3), and
compact since Φ is continuous and ONB(R3) is compact. In particular, ONB(R3) is open and
closed. This results in Φ mapping surjectively onto each connected component of ONB(Λ2R3),
which means that if it hits a connected component at all, it hits every point of it. It remains to
show which of the two connected components of ONB(Λ2R3) are hit by Φ. Since the standard basis
(e1, e2, e3) of R3 and (e2, e1, e3) are of the opposite orientation but both Φ(e1, e2, e3) and Φ(e2, e1, e3)
have the same orientation, continuity of Φ yields that Φ is surjective onto the connected component
of ONB(Λ2R3) containing (e2∧e3, e3∧e1, e1∧e2), which we call the positively oriented orthonormal
bases of Λ2R3.
Lemma 3.2.2. Let (T1, T2, T3) ∈ A3

3. Then the following are equivalent:
(1) There is an orthonormal basis (b1, b2, b3) of R3 such that

T1(b2 ∧ b3) + T2(b3 ∧ b1) + T3(b1 ∧ b2) = 0.

(2) There is a positively oriented orthonormal basis (c1, c2, c3) of R3, meaning that the matrix
(c1c2c3) ∈ SO(3), such that

3∑
i=1

TMi ci = 0,

where TMi denotes the matrix representation of Ti with respect to (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2),
where (e1, e2, e3) is the standard basis of R3.
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Proof. With respect to the standard scalar product on R3 and the scalar product on Λ2R3 in-
troduced in Section 1.1 (using the identification of Λ2R3 with so(3)), we consider the following
isometry

ψ : R3 → Λ2R3 : (x1, x2, x3)t 7→ x1e2 ∧ e3 + x2e3 ∧ e1 + x3e1 ∧ e2.

Now, TMi = ψ−1 ◦ Ti ◦ ψ. In order to show the implication "⇒", we assume that there is an
orthonormal basis (b1, b2, b3) of R3 such that

T1(b2 ∧ b3) + T2(b3 ∧ b1) + T3(b1 ∧ b2) = 0. (3.4)

Let

C :=

c
1
1 c2

1 c3
1

c1
2 c2

2 c3
2

c1
3 c2

3 c3
3


be the change of basis matrix between the orthonormal bases E := (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2) and
B := (b2 ∧ b3, b3 ∧ b1, b1 ∧ b2), that is

b2 ∧ b3 = c1
1e2 ∧ e3 + c2

1e3 ∧ e1 + c3
1e1 ∧ e2,

b3 ∧ b1 = c1
2e2 ∧ e3 + c2

2e3 ∧ e1 + c3
2e1 ∧ e2

and b1 ∧ b2 = c1
3e2 ∧ e3 + c2

3e3 ∧ e1 + c3
3e1 ∧ e2,

(3.5)

and set

ci := C−1ei =

c
1
i

c2
i

c3
i

 =
3∑
j=1

cjiej (3.6)

for i = 1, 2, 3. Since both E and B are positively oriented, we find that C ∈ SO(3). Hence,
(c1, c2, c3) is a positively oriented orthonormal basis of R3. It follows that

3∑
i=1

TMi ci =
3∑
i=1

ψ−1(Ti(ψ(ci)))

(3.6)= ψ−1
(
T1

( 3∑
i=1

ci1ψ(ei)
)

+ T2

( 3∑
i=1

ci2ψ(ei)
)

+ T3

( 3∑
i=1

ci3ψ(ei)
))

(3.5)= ψ−1 (T1(b2 ∧ b3) + T2(b3 ∧ b1) + T3(b1 ∧ b2))
(3.4)= 0.

Conversely, let (c1, c2, c3) be a positively oriented orthonormal basis of R3 with
3∑
i=1

TMi ci = 0. (3.7)

Then C := (c1c2c3)t ∈ SO(3), hence (B1, B2, B3), where

B1 := c1
1e2 ∧ e3 + c2

1e3 ∧ e1 + c3
1e1 ∧ e2,

B2 := c1
2e2 ∧ e3 + c2

2e3 ∧ e1 + c3
2e1 ∧ e2

and B3 := c1
3e2 ∧ e3 + c2

3e3 ∧ e1 + c3
3e1 ∧ e2,
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is a positively oriented orthonormal basis of Λ2R3. Therefore, by Lemma 3.2.1 there is an or-
thonormal basis (b1, b2, b3) of R3 such that B1 = b2 ∧ b3, B2 = b3 ∧ b1 and B3 = b1 ∧ b2. As above,
this yields that

T1(b2 ∧ b3) + T2(b3 ∧ b1) + T3(b1 ∧ b2) = ψ

( 3∑
i=1

TMi ci

)
(3.7)= 0.

From now on, we will always identify A3 with the space of symmetric (3×3)-matrices (via mapping
each algebraic curvature tensor to its matrix representation with respect to (e2∧e3, e3∧e1, e1∧e2),
where (e1, e2, e3) is the standard basis of R3).

Remark 3.2.3. The triple (T, 0, 0) (respectively (0, T, 0) and (0, 0, T )) satisfies the second Bianchi
identity if and only if T is singular, that is the kernel of T is non-trivial. In dimensions n ≥ 4,
however, T ∈ An being singular in general does not imply that the n-tuple (T, 0, . . . , 0) satisfies
the second Bianchi identity, since there is no splitting as in Lemma 3.2.1 anymore.

Corollary 3.2.4. Let Ω ⊆ A3 be a Bianchi-convex set with smooth boundary ∂Ω of codimension
one and R ∈ ∂Ω. Then the second fundamental form â∂Ω

R is negative semidefinite on the singular
part of TR∂Ω, i.e. for each T ∈ TR∂Ω with ker(T ) 6= {0}, we have that

â∂Ω
R (T, T ) ≤ 0.

Next, we show that in the definition of Bianchi-convexity, it is equivalent to require that the triples
satisfy the second Bianchi identity with respect to some fixed positively oriented orthonormal basis
of R3, say the standard basis.

Lemma 3.2.5. A set Ω ⊆ A3 is Bianchi-convex if and only if for all R ∈ ∂Ω and (T1, T2, T3) ∈
(TR∂Ω)3 with

3∑
i=1

Tiei = 0,

we have that
3∑
i=1

â∂Ω
R (Ti, Ti) ≤ 0. (3.8)

Here, (e1, e2, e3) denotes the standard basis of R3.

Remark 3.2.6. It is, however, not true that a triple (T1, T2, T3) ∈ A3 satisfies the second Bianchi
identity if and only if

3∑
i=1

Tiei = 0, (3.9)

where (e1, e2, e3) denotes the standard basis of R3. Of course, only the obvious of both implications
is true, namely (3.9) implies that (T1, T2, T3) satisfies the second Bianchi identity.

Proof. That the implication “⇒” holds true is obvious. To show the other direction, let R ∈ ∂Ω
and take (T1, T2, T3) ∈ (TR∂Ω)3 satisfying

3∑
i=1

Tibi = 0
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for some positively oriented orthonormal basis (b1, b2, b3) of R3. There exists some Q ∈ SO(3)
with (b1, b2, b3) = (Qe1, Qe2, Qe3) and we have that bi = Qei = ∑3

j=1Qjiej. For i = 1, 2, 3, we set

T̃i :=
3∑
j=1

QijTj.

Then we find that
3∑
i=1

T̃iei =
3∑

i,j=1
QijTjei =

3∑
j=1

Tj
3∑
i=1

Qijei︸ ︷︷ ︸
=bj

=
3∑
j=1

Tjbj = 0.

Hence, by assumption, we obtain that

0 ≥
3∑
i=1

â∂Ω
R (T̃i, T̃i) =

3∑
i=1

â∂Ω
R

 3∑
j=1

QijTj,
3∑

k=1
QikTk

 =
3∑

i,j,k=1
QijQikâ

∂Ω
R (Tj, Tk)

=
3∑

j,k=1

( 3∑
i=1

Qt
jiQik︸ ︷︷ ︸

=(QtQ)jk=δjk

)
â∂Ω
R (Tj, Tk) =

3∑
j=1

â∂Ω
R (Tj, Tj).

This proves that Ω is Bianchi-convex.

Remark 3.2.7. The formulation of Lemma 3.2.5 is convenient since for R ∈ ∂Ω the set

(TR∂Ω)3
(2BI) :=

{
(T1, T2, T3) ∈ (TR∂Ω)3

∣∣∣∣∣
3∑
i=1

Tiei = 0
}

(3.10)

forms a vector space.

3.2.1 Ansatz
Although the reformulation of Bianchi-convexity of sets given in Lemma 3.2.5 is somewhat better
to handle, it is still unclear whether there are Bianchi-convex sets which are not convex, so whether
Bianchi-convexity is at all a reasonable notion. To this end, we develop another characterization
of Bianchi-convex sets which have the following concrete form.
Let f : R3 → R be a smooth function with f−1(0) 6= ∅ such that 0 is a regular value of f , i.e. dfx 6= 0
for all x ∈ f−1(0). Let further f be symmetric, meaning that f(x1, x2, x3) = f(xσ(1), xσ(2), xσ(3))
for all x ∈ R3 and all permutations σ ∈ S3. We set

Ωf := {R ∈ A3 | f(λ(R)) ≤ 0}.

Here,

λ : A3 → R3 : R 7→ (λ1(R), λ2(R), λ3(R)),

where λ1(R) ≤ λ2(R) ≤ λ3(R) are the eigenvalues of R.

Example 3.2.8. The following functions satisfy the properties mentioned above:

x 7→ x1 + x2 + x3

or x 7→ x2
1 + x2

2 + x2
3 − a(x1 + x2 + x3)2 − c

for a ∈ R and c > 0.
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Lemma 3.2.9. The boundary

∂Ωf = {R ∈ A3 | f(λ(R)) = 0} = (f ◦ λ)−1(0)

of Ωf is smooth and 5-dimensional, that is of codimension one.

Proof. Since f is smooth and symmetric, by Schwarz’s theorem [Sch75], f can be written as a
smooth function in the elementary symmetric polynomials σ1, σ2, σ3 on R3, i.e. there is a smooth
function g : R3 → R such that f = g(σ1, σ2, σ3). Moreover, it is well known that for i = 1, 2, 3 the
function A 7→ σi(λ(A)) is smooth on the space of matrices. This yields that

f ◦ λ : A3 → R
A 7→ g(σ1(λ(A)), σ2(λ(A)), σ3(λ(A)))

as composition of smooth functions is smooth as well.
Next, we show that 0 is a regular value of f◦λ. To this end, letR ∈ (f◦λ)−1(0) and write λ := λ(R).
Since R is symmetric, there is some Q ∈ O(3) such that R = QDQt, where D := diag(λ).
Since f(λ) = 0 and 0 is a regular value of f , there is an x ∈ TλR3 such that dfλ(x) 6= 0. Set
D(s) := diag(λ+ sx) and c(s) := QD(s)Qt. Due to the symmetry of f , we obtain that

(f ◦ λ)(c(s)) = f(λ(D(s))) = f(λ+ sx).

Differentiating this equation at s = 0 yields that

d(f ◦ λ)R(ċ(0)) = dfλ(x) 6= 0.

Hence, d(f ◦ λ)R is surjective. This shows that 0 is a regular value of f ◦ λ. Now, the submersion
theorem [Kli95, Theorem 1.3.3] implies that (f ◦ λ)−1(0) is a submanifold of A3 of codimension
one.

Lemma 3.2.10. Let R ∈ ∂Ωf . Then there exists an ε > 0 and a smooth curve c : (−ε, ε)→ ∂Ωf

with c(0) = R and c(s) having pairwise distinct eigenvalues for all s 6= 0.

Proof. Let R ∈ ∂Ωf with eigenvalues λ1, λ2 and λ3. Set λ := (λ1, λ2, λ3).
Step 1: We show that there exists a v ∈ Tλf−1(0) such that for ε > 0 small enough γv(s) := λ+ sv
has pairwise distinct components for s ∈ (−ε, ε) with s 6= 0.

• If λ1, λ2 and λ3 are pairwise distinct, this is clearly true for each v ∈ R3, in particular for
each v ∈ Tλf−1(0), and ε > 0 small enough.

• If two of the eigenvalues of R coincide, say λ1 = λ2, then the symmetry of f gives that

∂1f(λ1, λ1, λ3) = d

ds

∣∣∣∣
s=0

f(λ1 + s, λ1, λ3) = d

ds

∣∣∣∣
s=0

f(λ1, λ1 + s, λ3) = ∂2f(λ1, λ1, λ3).

Therefore, v := (1,−1, 0)t ∈ gradλf⊥ = Tλf
−1(0) and it is easy to see that γv(s) has pairwise

distinct components for s ∈ (−ε, ε) but s 6= 0 for ε > 0 small enough.

Step 2: Let v ∈ Tλf−1(0) as in Step 1 and γ̃ : (−ε, ε)→ f−1(0) be any smooth curve with γ̃(0) = λ

and ˙̃γ(0) = v. Since γv and γ̃ correspond up to first order, γ̃(s) has pairwise distinct components
for each s 6= 0 and ε > 0 small enough as well.
Step 3: Let Q ∈ O(3) such that R = Qdiag(λ)Qt. Then, c := Q(diag ◦ γ̃)Qt is a smooth curve in
∂Ωf with c(s) having pairwise distinct eigenvalues for each s ∈ (−ε, ε) with s 6= 0 for ε > 0 small
enough.
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Lemma 3.2.11. (T∂Ωf )3
(2BI) is a smooth vector bundle over ∂Ωf of rank 12.

Proof. For i = 1, 2, 3, R ∈ A3 and (T1, T2, T3) ∈ (TRA3)3, we define

s̃i(R)(T1, T2, T3) :=
〈
ei,

3∑
j=1

Tjej

〉
,

where (e1, e2, e3) denotes the standard basis of R3. (Here, we canonically identified A3 with TRA3.)
Then s̃i ∈ Γ(A3, ((TA3)3)∗), i = 1, 2, 3, are smooth sections of ((TA3)3)∗. Since ∂Ωf is smooth,
their restrictions si ∈ Γ(∂Ωf , ((T∂Ωf )3)∗), i = 1, 2, 3, are smooth sections of ((T∂Ωf )3)∗. We claim
that these are linearly independent in each point R ∈ ∂Ωf . In order to see this, let α, β, γ ∈ R
such that

αs1(R) + βs2(R) + γs3(R) = 0.

Then for all (T1, T2, T3) ∈ (TR∂Ωf )3, we have that

α

〈
e1,

3∑
j=1

Tjej

〉
+ β

〈
e2,

3∑
j=1

Tjej

〉
+ γ

〈
e3,

3∑
j=1

Tjej

〉
= 0. (3.11)

Since the system of linear equations ∑3
j=1 Tjej = 0 has full rank 3 as a system in the Ti, (3.11)

leads to α = β = γ = 0. Hence, {s1(R), s2(R), s3(R)} is linearly independent. Moreover, we
notice that

ker(s1(R)) ∩ ker(s2(R)) ∩ ker(s3(R)) (3.10)= (TR∂Ωf )3
(2BI).

Proposition A.0.2 implies that

ker(s1) ∩ ker(s2) ∩ ker(s3) (3.10)= (T∂Ωf )3
(2BI)

is a smooth subbundle of (T∂Ωf )3 of rank 12 since (T∂Ωf )3 has rank 15.

The following considerations aim at explicitly computing the second fundamental form of ∂Ωf .

Lemma 3.2.12. For each D := diag(λ) ∈ ∂Ωf , i.e. λ ∈ f−1(0), with λ1 6= λ2 6= λ3 6= λ1, we have
that

TD∂Ωf = [so(3), D]⊕ diag(ker(dfλ)). (3.12)

Proof. Let D := diag(λ) ∈ ∂Ωf with λ1, λ2 and λ3 being pairwise distinct. In order to prove
the inclusion "⊇", let S ∈ so(3) = T13O(3) and x ∈ ker dfλ = Tλf

−1(0). Let further ε > 0,
Q : (−ε, ε)→ O(3) be a curve with Q(0) = 13 and Q̇(0) = S and c : (−ε, ε)→ f−1(0) be a curve
with c(0) = λ and ċ(0) = x. Then for the curve

γ : (−ε, ε)→ ∂Ωf : s 7→ Q(s)diag(c(s))Q(s)t,

we have that

[S,D] + diag(x) = γ̇(0) ∈ TD∂Ωf .

This yields that

[so(3), D] + diag(ker(dfλ)) ⊆ TD∂Ωf . (3.13)
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Since (E1, E2, E3) (as defined in Example 1.1.20) is a basis of so(3), the commutator

[so(3), D] = span
{

[Ei, D] | i = 1, 2, 3
}
,

where

[E1, D] = (λ3 − λ2)

0 0 0
0 0 1
0 1 0

 ,

[E2, D] = (λ3 − λ1)

0 0 1
0 0 0
1 0 0



and [E3, D] = (λ2 − λ1)

0 1 0
1 0 0
0 0 0

 .

(3.14)

Since λ1, λ2 and λ3 are pairwise distinct, this shows that [so(3), D] is the space of all symmetric
matrices with vanishing diagonal, hence 3-dimensional and orthogonal to the space of diagonal
matrices. Therefore the sum in (3.13) is direct. Since 0 is a regular value of f , the submersion
theorem implies that f−1(0) is 2-dimensional. Consequently,

[so(3), D]⊕ diag(ker(dfλ)) = [so(3), D]⊕ diag(Tλf−1(0))

is a 5-dimensional space. By Lemma 3.2.9, we have equality in (3.13).

Remark 3.2.13. Since for each Q ∈ O(3) the map

ϕQ : ∂Ωf → ∂Ωf : R 7→ QRQt

is an isometric diffeomorphism, for all R ∈ ∂Ωf

dϕQ|R : TR∂Ωf → TQRQt∂Ωf : X 7→ X 7→ QXQt

is an isomorphism. Hence, we have that

TQRQt∂Ωf = dϕQ|R(TR∂Ωf ) = QTR∂ΩfQ
t.

Therefore, Lemma 3.2.12 yields an explicit formula for the tangent space of ∂Ωf at an arbitrary
point R ∈ ∂Ωf with pairwise distinct eigenvalues.

Lemma 3.2.14. For each D := diag(λ) ∈ ∂Ωf , we have that the outward pointing unit normal
on ∂Ωf at D is given by

nD = 1
‖gradλf‖

diag(gradλf). (3.15)

Proof. First of all, let D := diag(λ) ∈ ∂Ωf with λ1, λ2 and λ3 being pairwise distinct. Using
Lemma 3.2.12, we observe that

TDA3 = TD∂Ωf ⊕ND∂Ωf = [so(3), D]⊕ diag(ker(dfλ))⊕ND∂Ωf .



3.2. BIANCHI-CONVEX SETS IN DIMENSION 3 41

Since [so(3), D] is the space of all symmetric matrices, the diagonal of which is zero, we obtain
that

diag(ker(dfλ))⊕ND∂Ωf = diag(R3).

It follows that the normal space of ∂Ωf at D is given by

ND∂Ωf = Rdiag(gradλf).

Recalling that ‖diag(gradλf)‖ = ‖gradλf‖ yields that nD is given by (3.15) in this case. Here, the
norm on the left-hand side is the one induced by the scalar product on A3 introduced in Remark
1.1.7, which is given by

〈A,B〉 =
3∑

i,j=1
AijBij

for symmetric 3× 3-matrices A and B. Since Lemma 3.2.10 implies that the set

{λ ∈ f−1(0) | λ1 6= λ2 6= λ3 6= λ1}

is dense in f−1(0) and the right-hand side of (3.15) depends continuously on λ, we obtain that
(3.15) is also true for general λ ∈ f−1(0).

Remark 3.2.15. For Q ∈ O(3), let ϕQ be as in Remark 3.2.13 and R ∈ ∂Ωf . For all X ∈
TQRQt∂Ωf , we have that

0 = 〈nR, dϕQ|R−1(X)〉 = 〈dϕQ|R(nR), X〉.

Thus, dϕQ|R(nR) ∈ NQRQt∂Ωf . Since

‖dϕQ|R(nR)‖ = ‖nR‖ = 1

and 13 ∈ O(3), it follows that

nQRQt = dϕQ|R(nR) = QnRQt.

Combining this with Lemma 3.2.14 gives an explicit formula for the unit normal on ∂Ωf at every
point R ∈ ∂Ωf .

Remark 3.2.16. For all Q ∈ O(3), R ∈ ∂Ωf and T1, T2 ∈ TR∂Ωf , we have that

â∂Ωf
R (T1, T2) = −〈T2,∇T1n〉 = −〈dϕQ|R(T2), dϕQ|R(∇T1n)〉

= −
〈
QT2Q

t,∇QT1Qtn
〉

= â∂Ωf
QRQt(QT1Q

t, QT2Q
t).

Here, ϕQ denotes the isometric diffeomorphism introduced in Remark 3.2.13.

Lemma 3.2.17. For each D := diag(λ) ∈ ∂Ωf with λ1 6= λ2 6= λ3 6= λ1, the second fundamental
form â∂Ωf

D is diagonal with respect to the decomposition TD∂Ωf = [so(3), D]⊕ diag(ker(dfλ)), i.e.

â∂Ωf
D =̂

(
â∂Ωf
D |[so(3),D] 0

0 â∂Ωf
D |diag(ker(dfλ))

)
.
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Proof. Let D := diag(λ) ∈ ∂Ωf with λi, i = 1, 2, 3, being pairwise distinct. Let further [S,D] ∈
[so(3), D] and Q : (−ε, ε) → O(3) be a curve with Q(0) = 13 and Q̇(0) = S. For s ∈ (−ε, ε), we
set c(s) := Q(s)DQ(s)t. Since

f(λ(c(s))) = f(λ) = 0

for all s ∈ (−ε, ε), c is a curve in ∂Ωf with c(0) = D and ċ(0) = [S,D]. Now, by Remark 3.2.15,
we find that

∇[S,D]n = d

ds

∣∣∣∣
s=0

(n ◦ c)(s) = d

ds

∣∣∣∣
s=0

Q(s)nDQ(s)t

= SnD + nDSt = SnD − nDS = [S,nD].
(3.16)

Since nD is diagonal, [S,nD] has vanishing diagonal by (3.14). As a consequence,

â∂Ωf
D ([S,D], X) = −〈X,∇[S,D]n〉 = −〈X, [S,nD]〉 = 0

for X ∈ diag(ker(dfλ)), where again 〈·, ·〉 denotes the scalar product on A3 introduced in Remark
1.1.7.

In the next lemma, we give explicit formulas for the second fundamental form of ∂Ωf on the two
factors of the above decomposition.

Lemma 3.2.18. Let D := diag(λ) ∈ ∂Ωf with λ1 6= λ2 6= λ3 6= λ1. Then for all X = diag(x), Y =
diag(y) with x, y ∈ ker(dfλ), we have that

â∂Ωf
D (X, Y ) = − 1

‖gradλf‖
Hessλf(x, y).

For all S1, S2 ∈ so(3), we have that

â∂Ωf
D ([S1, D], [S2, D]) = −〈[S2, D], [S1,nD]〉.

Proof. Let X = diag(x), Y = diag(y) ∈ diag(ker(dfλ)). Let further g : (−ε, ε)→ f−1(0), ε > 0, be
a curve with g(0) = λ and ġ(0) = x. Now, set c(s) := diag(g(s)) for every s ∈ (−ε, ε). Then c is
a curve in ∂Ωf with c(0) = D and ċ(0) = X and we have that

∇Xn = d

ds

∣∣∣∣
s=0

(n ◦ c)(s) = d

ds

∣∣∣∣
s=0

1
‖gradg(s)f‖

diag(gradg(s)f)

= d

ds

∣∣∣∣
s=0

(
1

‖gradg(s)f‖

)
diag(gradλf) + 1

‖gradλf‖
diag (∇xgradf) .

Since y ∈ ker dfλ, it follows that

â∂Ωf
D (X, Y ) = −〈Y,∇Xn〉

= − d

ds

∣∣∣∣
s=0

(
1

‖gradg(s)f‖

)
〈y, gradλf〉︸ ︷︷ ︸

=0

− 1
‖gradλf‖

〈y,∇xgradf〉

= − 1
‖gradλf‖

Hessλf(x, y).

Using (3.16), for S1, S2 ∈ so(3), we can compute that

â∂Ωf
D ([S1, D], [S2, D]) = −〈[S2, D],∇[S1,D]n〉

(3.16)= −〈[S2, D], [S1,nD]〉.



3.2. BIANCHI-CONVEX SETS IN DIMENSION 3 43

3.2.1.1 The first factor of the decomposition (3.12)

The following Lemma shows that Bianchi-convex sets can only be concave in directions coming
from the second factor diag(ker(dfλ)) of the decomposition (3.12). Since, by Lemma 3.2.18, the
second fundamental form on this space is essentially given by the Hessian of f , the degree of
concavity of Ωf is determined by that of f−1((−∞, 0]).

Lemma 3.2.19. Let Ωf be Bianchi-convex and D := diag(λ) ∈ ∂Ωf with λ1 6= λ2 6= λ3 6= λ1.
Then â∂Ωf

D |[so(3),D] is negative semidefinite.

Proof. In the proof of Lemma 3.2.12, we have seen that ([E1, D], [E2, D], [E3, D]) is a basis of
[so(3), D] which only consists of singular matrices. According to Remark 3.2.3, for i = 1, 2, 3, the
triples ([Ei, D], 0, 0) therefore satisfy the second Bianchi identity. Since Ωf is Bianchi-convex,

â∂Ωf
D ([Ei, D], [Ei, D]) ≤ 0

for i = 1, 2, 3. Moreover, one can compute that

[E1,nD] = ∂3f(λ)− ∂2f(λ)
‖gradλf‖

0 0 0
0 0 1
0 1 0

 ,

[E2,nD] = ∂3f(λ)− ∂1f(λ)
‖gradλf‖

0 0 1
0 0 0
1 0 0



and [E3,nD] = ∂2f(λ)− ∂1f(λ)
‖gradλf‖

0 1 0
1 0 0
0 0 0

 .

(3.17)

Together with (3.14), we find for i 6= j that

â∂Ωf
D ([Ei, D], [Ej, D]) = −〈[Ej, D], [Ei,nD]〉 (3.14)= 0.

Therefore, â∂Ωf
D |[so(3),D] is diagonal with respect to the basis ([E1, D], [E2, D], [E3, D]) and has

non-positive diagonal elements, hence it is negative semidefinite.

Corollary 3.2.20. If Ωf is Bianchi-convex, then for all λ ∈ f−1(0) with λ1 < λ2 < λ3, we have
that

∂1f(λ) ≤ ∂2f(λ) ≤ ∂3f(λ). (3.18)

Proof. Let λ ∈ f−1(0) with λ1 < λ2 < λ3. Set D := diag(λ). Again using that the triples
([Ei, D], 0, 0), i = 1, 2, 3, satisfy the second Bianchi identity, the Bianchi-convexity of Ωf implies
that

0 ≥ â∂Ωf
D ([E1, D], [E1, D]) = −〈[E1, D], [E1,nD]〉 (3.14),(3.17)= −2(λ3 − λ2)(∂3f(λ)− ∂2f(λ))

‖gradλf‖
,

0 ≥ â∂Ωf
D ([E3, D], [E3, D]) = −〈[E3, D], [E3,nD]〉 (3.14),(3.17)= −2(λ2 − λ1)(∂2f(λ)− ∂1f(λ))

‖gradλf‖
.

Therefore, ∂3f(λ)− ∂2f(λ)) ≥ 0 and ∂2f(λ)− ∂1f(λ)) ≥ 0.
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Remark 3.2.21. Let D := diag(λ) with λ1 6= λ2 6= λ3 6= λ1 and define

Z1(λ) := ∂3f(λ)− ∂2f(λ)
λ3 − λ2

, Z2(λ) := ∂3f(λ)− ∂1f(λ)
λ3 − λ1

and Z3(λ) := ∂2f(λ)− ∂1f(λ)
λ2 − λ1

.

For i = 1, 2, 3, let further

Fi := [Ei, D]
‖[Ei, D]‖ .

Then (F1, F2, F3) is an orthonormal basis of [so(3), D], and with respect to this basis, we find that

â∂Ωf
D

∣∣∣
[so(3),D]

=̂− 1
‖gradλf‖

diag(Z1(λ), Z2(λ), Z3(λ)).

If Ωf is Bianchi-convex and additionally λ ∈ f−1(0), then Zi(λ) ≥ 0 for i = 1, 2, 3.

The sublevel sets of a convex function are convex, as is well known. Since Ωf is a sublevel set of
f ◦ λ, it is natural to ask whether f being convex implies that Ωf is already convex. Since by
assumption f is symmetric, the answer is yes.

Lemma 3.2.22. If f is convex, then each connected component of Ωf is convex.

Proof. Step 1: By assumption, f is symmetric and convex, hence Schur-convex (for a reference see
[PPT92, Def. 12.23, Thm. 12.27]). Therefore, the Schur-Ostrowski criterion [PPT92, Thm. 12.25]
yields that

(xi − xj) (∂if(x)− ∂jf(x)) ≥ 0

for all x ∈ R3 and i, j = 1, 2, 3. In particular, for all λ ∈ f−1(0) with λ1, λ2 and λ3 being
pairwise distinct, we have that Zi(λ) ≥ 0 for i = 1, 2, 3. Remark 3.2.21 implies that â∂Ωf

D |[so(3),D]
is negative semidefinite, where D := diag(λ). Moreover, f being convex together with Lemma
3.2.18 yields that â∂Ωf

D |diag(ker(dfλ)) is negative semidefinite as well. Thus, Lemma 3.2.17 gives that
â∂Ωf
D is negative semidefinite. Using Remark 3.2.16, all in all we have shown that â∂Ωf

R is negative
semidefinite in all points R ∈ ∂Ωf with pairwise different eigenvalues.
Step 2: Let now R ∈ ∂Ωf , the eigenvalues of which are not pairwise distinct. By Lemma 3.2.10,
there exists a smooth curve c : (−ε, ε) → ∂Ωf with c(0) = R and c(s) has pairwise distinct
eigenvalues for all s 6= 0. Let T ∈ TR∂Ωf and s 7→ T (s) ∈ Tc(s)∂Ωf a smooth vector field along c
with T (0) = T . From Step 1, we obtain for all s 6= 0 that

â∂Ωf
c(s) (T (s), T (s)) ≤ 0.

By continuity, this is also true for s = 0, hence â∂Ωf
R is negative semidefinite.

Taking both steps together yields that â∂Ωf
R is negative semidefinite for all R ∈ ∂Ωf . Consequently,

the connected components of Ωf are convex.

Remark 3.2.23. However, Ωf being (component-wise) convex in general does not imply that f
is convex. To see this, for a ∈ (0, 1) consider the symmetric smooth function

fa : R3 → R : x 7→ a− e−‖x‖2
.
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If x ∈ f−1
a (0), then ‖x‖2 = − log(a) > 0, hence x 6= 0, which implies that gradxfa = 2ax 6= 0. It

follows that 0 is a regular value of fa. Moreover,

D2f(e1) = 2
e

diag(−1, 1, 1)

is indefinite. Because of this, fa is not convex. Since for R ∈ A3 we have that ‖λ(R)‖ = ‖R‖, we
observe that

Ωfa = {R ∈ A3 | fa(λ(R)) ≤ 0} =
{
R ∈ A3

∣∣∣∣ ‖R‖ ≤ √− log(a)
}

is a ball in A3, hence convex, while fa is not convex.

3.2.1.2 The second factor of the decomposition (3.12)

As we have seen in the previous section, the second factor diag(ker(dfλ)) of the decompositon
(3.12) is the more interesting one concerning the degree of concavity a Bianchi-convex set can have,
meaning that concave directions can only come from this space. In this section, we investigate
how positive the second fundamental form of a Bianchi-convex set restricted to this space can be.

Let Ωf be Bianchi-convex and D := diag(λ) ∈ ∂Ωf with λ1, λ2 and λ3 being pairwise distinct.
Then for all (T1, T2, T3) ∈ TD∂Ωf , there are unique Si ∈ [so(3), D] and xi ∈ ker(dfλ) such that
Ti = Si + diag(xi) for i = 1, 2, 3. If ∑3

i=1 Tiei = 0, where (e1, e2, e3) denotes the standard basis of
R3, we have that

3∑
i=1

â∂Ωf
D (diag(xi), diag(xi)) ≤ −

3∑
i=1

â∂Ωf
D (Si, Si),

where we used Lemma 3.2.17. As a consequence, for all x1, x2, x3 ∈ ker(dfλ), we have that
3∑
i=1

â∂Ωf
D (diag(xi), diag(xi)) ≤ min−

3∑
i=1

â∂Ωf
D (Si, Si)︸ ︷︷ ︸

3.2.19
≥ 0

, (3.19)

where the minimum is taken over all S1, S2, S3 ∈ [so(3), D] with
3∑
i=1

(Si + diag(xi))ei = 0.

Before determining the right-hand side of the inequality (3.19) more specifically, we make sure
that we are not taking the minimum over an empty set.

Lemma 3.2.24. Let D := diag(λ), where λ ∈ R3 with λ1 6= λ2 6= λ3 6= λ1. For all x1, x2, x3 ∈ R3,
there exist S1, S2, S3 ∈ [so(3), D] such that

3∑
i=1

(Si + diag(xi))ei = 0.

Here, (e1, e2, e3) denotes the standard basis of R3.

Proof. Let x1, x2, x3 ∈ R3. Then for all a, b, c ∈ R,

S1 :=

 0 −x22 −x33
−x22 0 a
−x33 a 0

, S2 :=

 0 −x11 b
−x11 0 0
b 0 0

 and S3 :=

0 c 0
c 0 0
0 0 0
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are elements of [so(3), D], where xi = (xi1, xi2, xi3) for i = 1, 2, 3, and we have that
3∑
i=1

(Si + diag(xi))ei = 0.

Lemma 3.2.25. Let D := diag(λ), where λ ∈ R3 with λ1 < λ2 < λ3 and ∂1f(λ) ≤ ∂2f(λ) ≤
∂3f(λ). Let further Zi := Zi(λ), i = 1, 2, 3, be defined as in Remark 3.2.21. Then, unless
Z1 = Z2 = Z3 = 0, for all x1, x2, x3 ∈ R3 we have that

min−
3∑
i=1

â∂Ωf
D (Si, Si) = 2

‖gradλf‖

(
Z2Z3

Z2 + Z3
x2

11 + Z1Z3

Z1 + Z3
x2

22 + Z1Z2

Z1 + Z2
x2

33

)
, (3.20)

where the minimum is taken over all S1, S2, S3 ∈ [so(3), D] with ∑3
i=1(Si + diag(xi))ei = 0. If

Z1 = Z2 = Z3 = 0, the left-hand side of (3.20) is zero.

Remark 3.2.26. Notice that Zi + Zj 6= 0 for all i 6= j, unless Z1 = Z2 = Z3 = 0.

Proof. By assumption, Zi ≥ 0 for i = 1, 2, 3. The case that Z1 = Z2 = Z3 = 0 is trivial since then
â∂Ωf
D |[so(3),D] ≡ 0. In the other case, fix x1, x2, x3 ∈ R3. Let further

Si :=

 0 ai bi
ai 0 ci
bi ci 0

 ∈ [so(3), D],

where ai, bi, ci ∈ R, i = 1, 2, 3, such that
3∑
i=1

(Si + diag(xi))ei = 0.

Then
x11 + a2 + b3 = 0,
a1 + x22 + c3 = 0,
b1 + c2 + x33 = 0

(3.21)

and Si =
√

2(ciF1 + biF2 + aiF3), i = 1, 2, 3, where (F1, F2, F3) denotes the orthonormal basis of
[so(3), D] introduced in Remark 3.2.21. Consequently,

−
3∑
i=1
â∂Ωf
D (Si, Si) 3.2.21= 2

‖gradλf‖

3∑
i=1

(c2
iZ1 + b2

iZ2 + a2
iZ3).

Since Zi ≥ 0 for i = 1, 2, 3, the function

g : R9 → R : (a1, a2, a3, b1, b2, b3, c1, c2, c3) 7→
3∑
i=1

(c2
iZ1 + b2

iZ2 + a2
iZ3)

is bounded from below and homogeneous of degree two. Using the method of Langrange multi-
pliers, one can compute that the minimum of g subject to the equality constraints (3.21) is given
by

Z2Z3

Z2 + Z3
x2

11 + Z1Z3

Z1 + Z3
x2

22 + Z1Z2

Z1 + Z2
x2

33.

This proves the statement.
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Lemma 3.2.25 directly provides how concave a Bianchi-convex set Ωf can at most be.

Corollary 3.2.27. Let Ωf be Bianchi-convex and D := diag(λ) ∈ ∂Ωf with λ1 6= λ2 6= λ3 6= λ1.
Let further Zi := Zi(λ), i = 1, 2, 3, be defined as in Remark 3.2.21. Then, unless Z1 = Z2 = Z3 =
0, for all x ∈ ker(dfλ) we have that

â∂Ωf
D (diag(x), diag(x)) ≤ 2

‖gradλf‖
min
{i,j,k}

={1,2,3}

ZiZj
Zi + Zj

x2
k. (3.22)

In the case that Z1 = Z2 = Z3 = 0, the left-hand side of (3.22) is non-positive.

Proof. Using Corollary 3.2.20, Lemma 3.2.25 shows that for all x1, x2, x3 ∈ ker(dfλ), we have that
3∑
i=1

â∂Ωf
D (diag(xi), diag(xi)) ≤

0, Z1 = Z2 = Z3 = 0
2

‖gradλf‖

(
Z2Z3
Z2+Z3

x2
11 + Z1Z3

Z1+Z3
x2

22 + Z1Z2
Z1+Z2

x2
33

)
, else

.

In particular, this holds true for x1, x2, x3 ∈ ker(dfλ) with in each case two of these vectors being
zero.

Remark 3.2.28. As we have seen in Lemma 3.2.18, the inequality (3.22) is equivalent to

Hessλf(x, x) ≥ −2 min
{i,j,k}

={1,2,3}

ZiZj
Zi + Zj

x2
k.

An immediate consequence of Corollary 3.2.27 is the following statement.

Lemma 3.2.29. Let Ωf be Bianchi-convex. If for all λ ∈ f−1(0) with λ1 6= λ2 6= λ3 6= λ1 there is
an i ∈ {1, 2, 3} such that Zi(λ) = 0, then the connected components of Ωf are convex.

Proof. Let λ ∈ f−1(0) with λ1, λ2 and λ3 being pairwise distinct and set D := diag(λ). Since
Ωf is Bianchi-convex, Zi(λ) ≥ 0 for i = 1, 2, 3. By assumption, there is a j ∈ {1, 2, 3} such
that Zj(λ) = 0. Therefore, from Corollary 3.2.27, we obtain that â∂Ωf

D |diag(ker(dfλ)) is negative
semidefinite, and by Lemma 3.2.19 so is â∂Ωf

D |[so(3),D]. Arguing as in the proof of Lemma 3.2.22
finishes the proof.

Remark 3.2.30. Lemma 3.2.29 shows that in order for Ωf to be Bianchi-convex but not convex,
∂1f(λ) < ∂2f(λ) < ∂3f(λ) must hold true for all λ ∈ f−1(0) with λ1 < λ2 < λ3.

3.2.1.3 Another characterization of Bianchi-convex sets

The previous considerations finally enable us to prove another characterization of Bianchi-convex
sets of the form Ωf for a function f : R3 → R as above.

Proposition 3.2.31. The set Ωf is Bianchi-convex if and only if for all λ ∈ f−1(0) with λ1 <
λ2 < λ3 the following are true.

1.) ∂1f(λ) ≤ ∂2f(λ) ≤ ∂3f(λ) and,

2.) unless Z1 = Z2 = Z3 = 0, we have for all x ∈ ker(dfλ) that

Hessλf(x, x) ≥ −2 min
{i,j,k}

={1,2,3}

ZiZj
Zi + Zj

x2
k,

while if Z1 = Z2 = Z3 = 0, we have that Hessλf(x, x) ≥ 0 for all x ∈ ker(dfλ). Here,
Zi := Zi(λ), i = 1, 2, 3, are defined as in Remark 3.2.21.
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Proof. The implication “⇒” follows immediately from Corollary 3.2.20 and Corollary 3.2.27. To
show the converse implication, let first of all R ∈ ∂Ωf with pairwise different eigenvalues. Then
there exists a Q ∈ O(3) such that R = QDQt, where D := diag(λ) for some λ ∈ f−1(0) with
λ1 < λ2 < λ3.

Step 1: Let (T1, T2, T3) ∈ (TR∂Ωf )3 with ∑3
i=1 TiQei = 0. Recalling Lemma 3.2.12 and Remark

3.2.13, for i = 1, 2, 3 there are unique Si ∈ [so(3), D] and xi ∈ ker(dfλ) such that Ti = Q(Si+Xi)Qt,
where Xi := diag(xi). Then

0 =
3∑
i=1

TiQei =
3∑
i=1

Q(Si +Xi)ei,

which implies that

3∑
i=1

(Si +Xi)ei = 0. (3.23)

Now, we can compute

3∑
i=1

â∂Ωf
R (Ti, Ti) 3.2.16=

3∑
i=1

â∂Ωf
D (Si +Xi, Si +Xi) 3.2.17=

3∑
i=1

â∂Ωf
D (Si, Si) +

3∑
i=1

â∂Ωf
D (Xi, Xi).

If Z1 = Z2 = Z3 = 0, from Remark 3.2.21, we obtain that â∂Ωf
D |[so(3),D] ≡ 0 and the second

assumption together with Lemma 3.2.18 yields that â∂Ωf
D |diag(ker(dfλ)) ≤ 0. Hence, in this case, we

immediately obtain that

3∑
i=1

â∂Ωf
R (Ti, Ti) ≤ 0.

In the other cases, both assumptions together with Lemma 3.2.25 provide that

3∑
i=1

â∂Ωf
R (Ti, Ti)

2.
≤

3∑
i=1

â∂Ωf
D (Si, Si) + 2

‖gradλf‖

3∑
i=1

min
{j,k,l}

={1,2,3}

ZjZk
Zj + Zk

x2
il

≤
3∑
i=1

â∂Ωf
D (Si, Si) + 2

‖gradλf‖

(
Z2Z3

Z2 + Z3
x2

11 + Z1Z3

Z1 + Z3
x2

22 + Z1Z2

Z1 + Z2
x2

33

)
1.),

3.2.25=
3∑
i=1

â∂Ωf
D (Si, Si) + min

S̃1,S̃2,S̃3∈[so(3),D]:
3∑
i=1

(S̃i+Xi)ei=0

−
3∑
i=1

â∂Ωf
D (S̃i, S̃i)

(3.23)
≤

3∑
i=1

â∂Ωf
D (Si, Si)−

3∑
i=1

â∂Ωf
D (Si, Si) = 0.

Step 2: Let now (T1, T2, T3) ∈ (TR∂Ωf )3 with ∑3
i=1 Tiei = 0. Then

3∑
i=1

T̃iQei = 0,



3.2. BIANCHI-CONVEX SETS IN DIMENSION 3 49

where T̃i := ∑3
j=1QjiTj for i = 1, 2, 3. Similarly to the proof of Lemma 3.2.5, one computes that

3∑
i=1

â∂Ωf
R (Ti, Ti) =

3∑
i=1

â∂Ωf
R (T̃i, T̃i)

Step 1
≤ 0.

Thus, by Lemma 3.2.5, we have shown that Ωf is Bianchi-convex in all R ∈ ∂Ωf with pairwise
distinct eigenvalues.
To finish the proof, let R ∈ ∂Ωf , the eigenvalues of which are not pairwise distinct. From
Lemma 3.2.10, we know that there exists a smooth curve c : (−ε, ε) → ∂Ωf with c(0) = R and
c(s) having pairwise distinct eigenvalues for all s 6= 0. Let further (T1, T2, T3) ∈ (TR∂Ωf )3 with∑3
i=1 Tiei = 0. Then (T1, T2, T3) ∈ (TR∂Ωf )3

(2BI). Since (T∂Ωf )3
(2BI) is a vector bundle, as we have

shown in Lemma 3.2.11, there exists a smooth section s 7→ T (s) ∈ (Tc(s)∂Ωf )3
(2BI) along c such that

T (0) = (T1, T2, T3). Hence, T (s) = (T1(s), T2(s), T3(s)), where s 7→ Ti(s) ∈ Tc(s)∂Ωf are smooth
vector fields along c with Ti(0) = Ti for i = 1, 2, 3, satisfying ∑3

i=1 Ti(s)ei = 0. Since we already
know that Ωf is Bianchi-convex in all points in ∂Ωf having pairwise distinct eigenvalues, we find
that

3∑
i=1

â∂Ωf
c(s) (Ti(s), Ti(s)) ≤ 0

for all s 6= 0. By continuity, this holds true for s = 0 as well. This proves that Ωf is Bianchi-
convex.

3.2.1.4 Application

In order to prove the subsequent proposition, we need the following lemma.

Lemma 3.2.32. In each two-dimensional linear subspace of R3 there are two linearly independent
vectors with one vanishing component.

Proof. Let U be a two-dimensional subspace of R3 not being one of the coordinate planes, since we
are done otherwise. Then U ∩{x ∈ R3 | x1 = 0}, U ∩{x ∈ R3 | x2 = 0} and U ∩{x ∈ R3 | x3 = 0},
as intersections of transversal subspaces, are one-dimensional. Moreover, these three intersections
cannot coincide since elements x in their intersection have x1 = 0, x2 = 0 and x3 = 0, hence x = 0.
This yields that at least two of these three subspaces are distinct. Choosing a non-zero vector in
each of them provides two vectors as desired.

Proposition 3.2.33. If Ωf is Bianchi-convex and scale-invariant, then the connected components
of Ωf are convex.

Proof. As we have seen in the proof of Lemma 3.2.22, it suffices to show that â∂Ωf
D is negative

semidefinite for all D := diag(λ), where λ ∈ f−1(0) with λ1, λ2 and λ3 being pairwise distinct.
Since Ωf is Bianchi-convex, from Lemma 3.2.19, we already know that â∂Ωf

D |[so(3),D] is negative
semidefinite. Thus, by Lemma 3.2.17, it remains to show that this is also true for â∂Ωf

D |diag(ker(dfλ)),
which by Lemma 3.2.18 is equivalent to Hessλf |Tλf−1(0) being positive semidefinite. To this end,
let λ and D be as above. Then D ∈ ∂Ωf . Since Ωf is scale-invariant, so is ∂Ωf as we know from
Lemma A.0.1. Therefore, αD ∈ ∂Ωf , i.e. αλ ∈ f−1(0), for all α > 0. Hence, f−1(0) is scale-
invariant as well. Because of this, for s ∈ (−ε, ε) with 0 < ε < 1, the curve s 7→ c(s) := λ + sλ is
contained in f−1(0) and we find that

dfλ(λ) = d

ds

∣∣∣∣
s=0

(f ◦ c)(s) = 0.
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This yields that λ ∈ ker(dfλ) = Tλf
−1(0). Furthermore,

0 = d2

ds2

∣∣∣∣
s=0

(f ◦ c)(s) = Hessλf(λ, λ).

Now, let x ∈ Tλf−1(0). If d : (−δ, δ)→ f−1(0), 0 < δ < 1, is a curve with d(0) = λ and ḋ(0) = x
and γ(s, t) := d(t) + sd(t) for s, t ∈ (−δ, δ), then γ is a curve in f−1(0) as well and we find that

0 = d2

ds dt

∣∣∣∣
s=t=0

f(γ(s, t)) = d

ds

∣∣∣∣
s=0

dfλ+sλ(x+ sx) = Hessλf(λ, x) + dfλ(x) = Hessλf(λ, x).

Moreover, x = rλ+ v for a unique r ∈ R and v ∈ λ⊥ ∩ Tλf−1(0) and we have that

Hessλf(x, x) = r2 Hessλf(λ, λ)︸ ︷︷ ︸
=0

+2rHessλf(λ, v)︸ ︷︷ ︸
=0

+Hessλf(v, v) = Hessλf(v, v). (3.24)

Hence, it remains to show that Hessλf restricted to λ⊥ ∩ Tλf−1(0) is positive semidefinite. Since
Tλf

−1(0) ⊆ R3 is a two-dimensional vector space, by Lemma 3.2.32, there are two linearly in-
dependent vectors having at least one vanishing component. Thus, Tλf−1(0) \ Rλ contains a
vector x0 having at least one vanishing component. Writing x0 = rλ + v0 for unique r ∈ R and
0 6= v0 ∈ λ⊥ ∩ Tλf−1(0), by Proposition 3.2.31, we therefore find that

Hessλf(v0, v0) (3.24)= Hessλf(x0, x0) ≥ 0.

Since the space λ⊥∩Tλf−1(0) is one-dimensional, it follows that Hessλf restricted to λ⊥∩Tλf−1(0)
is positive semidefinite.

3.2.2 Example of ODE-invariant non-convex Bianchi-convex sets
We are now in the position to show that Bianchi-convexity is a genuine generalization of convexity,
i.e. there are Bianchi-convex sets which are not convex.

Proposition 3.2.34. For a ∈
(

1
3 ,

2
5

)
and c > 0, the set

Ωa,c := {R ∈ A3 | ‖R‖2 − a scal(R)2 ≤ c}

is Bianchi-convex but not convex.

Proof. For a ∈
(

1
3 ,

2
5

)
and c > 0, we consider the function

fa,c : R3 → R : x 7→ ‖x‖2 − a〈x, I〉2 − c,

where I := (1, 1, 1)t. Obviously, fa,c is smooth and symmetric. For x :=
(√

c
1−a , 0, 0

)t
∈ R3,

we have that fa,c(x) = 0, thus f−1
a,c (0) 6= ∅. Moreover, 0 is a regular value of fa,c, since c 6= 0.

Remembering Remark 1.1.11, we obtain that Ωa,c = Ωfa,c .
Step 1: Let λ ∈ R3 with λ1 < λ2 < λ3. Because

gradλfa,c =

2λ1 − 2a(λ1 + λ2 + λ3)
2λ2 − 2a(λ1 + λ2 + λ3)
2λ3 − 2a(λ1 + λ2 + λ3)

 ,
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we obtain that

∂1fa,c(λ) < ∂2fa,c(λ) < ∂3fa,c(λ). (3.25)

Let

E11 :=

1 0 0
0 0 0
0 0 0

 , E22 :=

0 0 0
0 1 0
0 0 0

 and E33 :=

0 0 0
0 0 0
0 0 1


and

A := 1
2D

2fa,c(λ) = 13 − a

1 1 1
1 1 1
1 1 1

 .
The matrices A+ E11, A+ E22 and A+ E33 all have the same eigenvalues

1, λ1(a) := 1
2
(
3− 3a+

√
9a2 + 2a+ 1

)
and λ2(a) := 1

2
(
3− 3a−

√
9a2 + 2a+ 1

)
.

Since λ1(a) > 0 for all a ∈ R and λ2(a) > 0 for all a < 2
5 , we find that A + E11, A + E22 and

A+ E33 are positive definite. Therefore, for each x ∈ R3 \ {0} and k ∈ {1, 2, 3}, we have that

〈(A+ Ekk)x, x〉 > 0,

which is equivalent to

1
2Hessλfa,c(x, x) = 1

2〈D
2fa,c(λ)x, x〉 = 〈Ax, x〉 > −〈Ekkx, x〉 = −x2

k.

Since Z1(λ) = Z2(λ) = Z3(λ) = 2, this results in

Hessλfa,c(x, x) > max
k∈{1,2,3}

(−2x2
k) = −2 min

k∈{1,2,3}
x2
k = −2 min

{i,j,k}
={1,2,3}

ZiZj
Zi + Zj

x2
k (3.26)

for all x ∈ R3 \ {0}. With a view on (3.25) and (3.26), Proposition 3.2.31 yields that Ωa,c is
Bianchi-convex. (For this we only used that a < 2

5 and c 6= 0.)
Step 2: First, we observe that we can write the function fa,c as follows: For all x ∈ R3, we have
that

fa,c(x) = 〈Ax, x〉 − c.

Furthermore, there is some Q ∈ O(3) such that A = QDQt, where D := diag(1 − 3a, 1, 1).
Computing for all x ∈ R3 that

fa,c(Qx) = 〈QDx,Qx〉 − c = 〈Dx, x〉 − c = (1− 3a)x2
1 + x2

2 + x2
3 − c,

we find that

f−1
a,c ((−∞, 0]) = {x ∈ R3 | fa,c(x) ≤ 0} = {Qx | x ∈ R3, fa,c(Qx) ≤ 0}

= Q{x ∈ R3 | (1− 3a)x2
1 + x2

2 + x2
3 ≤ c}.

(3.27)
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From this, it is easy to read off that f−1
a,c ((−∞, 0]) is not convex given that 1− 3a < 0, i.e. a > 1

3 ,
and c > 0, but a one-sheeted hyperboloid. In this case, let

R := diag

Q

√
c√

3ac
0


 and S := diag

Q
−
√
c√

3ac
0


 .

Keeping in mind that

Ωa,c = Ωfa,c = {R ∈ A3 | λ(R) ∈ f−1
a,c ((−∞, 0])}

yields that R, S ∈ ∂Ωa,c. However, the connecting straight line t 7→ c(t) := tR + (1 − t)S, where
t ∈ [0, 1], is not contained in Ωa,c. For example,

c
(1

2

)
= diag

Q
 0√

3ac
0


 /∈ Ωa,c

since 3ac > c. Consequently, Ωa,c is not convex.

f−1
a,c (0) for a ∈

(
1
3 ,

2
5

)
and c > 0

Remark 3.2.35. From the proof of Proposition 3.2.34, it even follows that for a ∈
(

1
3 ,

2
5

)
and c >

0, the set Ωa,c is strictly Bianchi-convex, that is for all R ∈ ∂Ωa,c and (T1, T2, T3) ∈ (TR∂Ωa,c)3\{0}
satisfying the second Bianchi identity, the inequality

3∑
i=1

â∂Ωa,c
R (Ti, Ti) < 0

is strict. Consequently, the sets Ωa,c can be deformed a little bit in such a way that they remain
Bianchi-convex.

Next, we show that suitable subsets of the sets Ωa,c are invariant under the ordinary differential
equation (2.4).
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Proposition 3.2.36. For every a ∈
(

1
3 ,

2
5

)
and c > 0, there exists a constant ba,c > 0 such that

the intersection

Ω̃a,c := Ωa,c ∩ {R ∈ A3 | scal(R) ≥ ba,c}

is invariant under the ordinary differential equation (2.4). Moreover, a possible choice of ba,c is
given in (3.31) below.

Remark 3.2.37. Since {R ∈ A3 | scal(R) ≥ ba,c} as a half space is convex and hence also
Bianchi-convex, with a view on Lemma 3.1.9, the set Ω̃a,c as intersection of Bianchi-convex sets is
still Bianchi-convex.

Proof. Fix a ∈
(

1
3 ,

2
5

)
and c > 0. Firstly, in three steps, we show that the set

Ca,c := f−1
a,c ((−∞, 0]) ∩ {y ∈ R3 | y1 + y2 + y3 ≥ ba,c}

is invariant under the ordinary differential equation

f ′(t) = ϕ(f(t)). (3.28)

Here, fa,c denotes the function introduced in the proof of Proposition 3.2.34 and the map ϕ is
defined as follows

ϕ : R3 → R3 : x 7→

x
2
1 + x2x3
x2

2 + x1x3
x2

3 + x1x2

 .

Step 1: For v ∈ R3 with ‖v‖ =
√
c and v ⊥ I, where I := (1, 1, 1)t, we consider the curve

cv : R→ f−1
a,c (0) : t 7→ cosh(t)v + β sinh(t)I

in f−1
a,c (0) with cv(0) = v, where

β :=
√

c

9a− 3 ,
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and show that

〈ϕ(cv(t)), gradcv(t)fa,c〉 ≤ 0

for all t ≥ t0 := 3
2 . First, since v ⊥ I, i.e. v1 + v2 + v3 = 0, we notice that

0 = (v1 + v2 + v3)2 = v2
1 + v2

2 + v2
3 + 2(v1v2 + v1v3 + v2v3) = c+ 2(v1v2 + v1v3 + v2v3),

thus

v1v2 + v1v3 + v2v3 = − c2 (3.29)

and

0 = (v1 + v2 + v3)3 = v3
1 + v3

2 + v3
3 + 6v1v2v3 + 3(v2

1v2 + v2
1v3 + v1v

2
2 + v1v

2
3 + v2

2v3 + v2v
2
3︸ ︷︷ ︸

=(v1+v2+v3)(v1v2+v1v3+v2v3)−3v1v2v3
=−3v1v2v3

)

= v3
1 + v3

2 + v3
3 − 3v1v2v3,

hence

v3
1 + v3

2 + v3
3 = 3v1v2v3. (3.30)

Using (3.29) and (3.30), one can calculate that

〈ϕ(cv(t)), gradcv(t)fa,c〉 = 12v1v2v3 cosh(t)3 + 12β3(1− 3a) sinh(t)3 + 3cβ(1− a) cosh(t)2 sinh(t)
= 12v1v2v3 cosh(t)3 + 3β3(1− 9a2) sinh(t)3 + 3cβ(1− a) sinh(t).

Moreover, using the method of Langrange multipliers, one can show that the maximum of the
function g : R3 → R : x 7→ x1x2x3 subject to the equality constraints x1 + x2 + x3 = 0 and
x2

1 + x2
2 + x2

3 = c is given by 1
3
√

6c
3
2 . Therefore,

〈ϕ(cv(t)), gradcv(t)fa,c〉 ≤
4√
6
c

3
2 cosh(t)3 + 3β3(1− 9a2) sinh(t)3 + 3cβ(1− a) sinh(t)

=
(

4√
6

cosh(t)3 + 3(1− 9a2)
(9a− 3) 3

2
sinh(t)3 + 3(1− a)√

9a− 3
sinh(t)

)
c

3
2

< 0

for all a ∈
(

1
3 ,

2
5

)
, c > 0 and t ≥ t0 := 3

2 . We set

ba,c :=
√

3c
3a− 1 sinh

(3
2

)
. (3.31)

Then cv(t0) ∈ {y ∈ R3 | y1 + y2 + y3 = ba,c}. Consequently, since v (as in the beginning of Step 1)
was arbitrary, we have shown that

〈ϕ(x), gradxfa,c〉 < 0

for any x ∈ f−1
a,c (0) ∩ {y ∈ R3 | y1 + y2 + y3 ≥ ba,c}.
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Step 1 Step 2

Step 2: For x 6= 0, we have that

〈ϕ(x), (−I)〉 = −(x2
1 + x2

2 + x2
3 + x1x2 + x1x2 + x2x3)

= −1
2
(
‖x‖2 + (x1 + x2 + x3)2

)
< 0.

Notice that, in particular, this is true for x ∈ f−1
a,c ((−∞, 0]) ∩ {y ∈ R3 | y1 + y2 + y3 = ba,c} and

that −I is the outward pointing unit normal on this part of the boundary of Ca,c.
Away from the set

Sa,c := f−1
a,c (0) ∩ {y ∈ R3 | y1 + y2 + y3 = ba,c},

the boundary of the set Ca,c is smooth. Hence, all things considered, in steps 1 and 2 we have
shown that

〈ϕ(x),nx〉 < 0,

i.e. ϕ(x) is contained in the tangent cone TxCa,c, for each x ∈ ∂Ca,c \ Sa,c.
Step 3: Now, let x ∈ Sa,c and define

γ(t) := x+ tϕ(x)

for t ∈ R. Then, by Step 1, we have that
d

dt

∣∣∣∣
t=0
fa,c(γ(t)) = 〈gradxfa,c, ϕ(x)〉 < 0.

Since fa,c(γ(0)) = fa,c(x) = 0, this implies that there is an ε1 > 0 such that fa,c(γ(t)) ≤ 0, i.e.
γ(t) ∈ f−1

a,c ((−∞, 0]), for all t ∈ [0, ε1). Moreover, from Step 2, we know that

d

dt

∣∣∣∣
t=0
〈γ(t), I〉 = 〈ϕ(x), I〉 > 0.
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Since 〈γ(0), I〉 = 〈x, I〉 = ba,c, this yields that there is an ε2 > 0 such that 〈γ(t), I〉 ≥ ba,c, i.e.
γ(t) ∈ {y ∈ R3 | y1 + y2 + y3 ≥ ba,c}, for all t ∈ [0, ε2). In total, γ(t) ∈ Ca,c for all t ∈ [0, ε), where
ε := min{ε1, ε2}. Due to γ(0) = x and γ̇(0) = ϕ(x), we have shown that ϕ(x) ∈ TxCa,c as well.
Proposition 2.3.3 together with the previous considerations yields that Ca,c is invariant under the
ordinary differential equation (3.28).
Step 4: Now, we are in the position to show that Ω̃a,c is invariant under (2.4), i.e. that for each
R ∈ ∂Ω̃a,c, we have that R2 +R# ∈ TRΩ̃a,c (see Proposition 2.3.3).
To this end, let R ∈ ∂Ω̃a,c and Q ∈ O(3) such that R = QDQt, where D := diag(λ). Then of
course λ ∈ ∂Ca,c. Above we have shown that therefore ϕ(λ) ∈ TλCa,c. Hence, by Example 1.1.20
together with the fact that Ω̃a,c is O(3)-invariant, we obtain that

D2 +D# 1.1.20= diag(ϕ(λ)) ∈ diag(TλCa,c) ⊆ Tdiag(λ)Ω̃a,c = TDΩ̃a,c = Qt(TRΩ̃a,c)Q

and consequently

R2 +R# 1.1.20= Q(D2 +D#)Qt ∈ TRΩ̃a,c.

From (3.27), we immediately see that for c = 0 and a > 1
3 the sets Ωa,c are convex double cones.

The following proposition shows that the upper cone, that is the subset of Ωa,0 which lies in the
half-space of non-negative scalar curvature, is invariant under the ordinary differential equation
(2.4).

Proposition 3.2.38. For all a ≥ 1
3 , the cones

Ω̃a,0 = Ωa,0 ∩ {R ∈ A3 | scal(R) ≥ 0}

are invariant under the ordinary differential equation (2.4).

Proof. Throughout the proof, we will use the notations as in the proof of Proposition 3.2.36. First
of all, let a > 1

3 . It is obvious that 0 = ϕ(0) ∈ T0Ca,0. Now, let 0 6= x ∈ f−1
a,0 (0) ∩ {x ∈ R3 |

x1 + x2 + x3 ≥ 0}. Then there are α, β > 0 and v ∈ R3 with ‖v‖ = 1 and v ⊥ I such that
x = αv + βI. Firstly, let α = 1. Since x ∈ f−1

a,0 (0), we find that

0 = fa,0(x) = ‖v + βI‖2 − a〈v + βI, I〉2 = 1 + 3β2(1− 3a),

hence β = 1√
9a−3 . Similar to the proof of Proposition 3.2.36, one can show that

〈ϕ(x), gradxfa,0〉 = 12v1v2v3 + 3(1− a)β + 12(1− 3a)β3

≤ 4√
6

+ 3(1− a)β + 12(1− 3a)β3

= 4√
6

+ 1− 9a2
√

3(3a− 1) 3
2

≤ 0

for all a > 1
3 . Now, for α 6= 1, by setting y := v + β

α
I, we find that x = αy, hence

〈ϕ(x), gradxfa,0〉 = 〈ϕ(αy), gradαyfa,0〉 = α3〈ϕ(y), gradyfa,0〉 ≤ 0.

Consequently, we have shown that ϕ(x) ∈ TxCa,0 for all x ∈ ∂Ca,0. Arguing as in the proof of
Proposition 3.2.36 shows the statement in the case that a > 1

3 . Since (with a view on (3.27)) Ω̃ 1
3 ,0is the set of non-negative multiples of the identity in A3, this finishes the proof.



Chapter 4

Maximum principles

In this chapter, we recall the weak and strong maximum principles for functions, introduce Hamil-
ton’s maximum principle and give a reformulation in the special case of algebraic curvature tensors
and the Ricci flow. The aim is to generalize this version to Bianchi-convex sets. As an application,
we obtain new curvature conditions which are preserved by the Ricci flow in dimension three.

4.1 Statements for functions
Theorem 4.1.1 (Weak parabolic maximum principle for scalars [Top06, p. 35]). For t ∈ [0, T ),
where 0 < T < ∞, let gt be a smooth family of metrics on a closed manifold M . Suppose that
u ∈ C∞(M × [0, T ),R) solves

∂u

∂t
≤ ∆gtu.

Let α ∈ R. If u(·, 0) ≤ α, then u(·, t) ≤ α for all t ∈ [0, T ).

Remark 4.1.2. By setting α := max
M

u(·, 0), it follows immediately that u attains its supremum
on M × {0}, that is

sup
M×[0,T )

u = max
M

u(·, 0).

Remark 4.1.3. The strong parabolic maximum principle for scalars [Top06, p. 36] tells us that
under the same assumptions as in Theorem 4.1.1, u(·, t) < α for all t ∈ (0, T ), unless u ≡ α. In
particular, if u attains its maximum in the interior of M × [0, T ), i.e. at a point (x, t) with x ∈M
and t ∈ (0, T ), then u is constant.

Remark 4.1.4. Theorem 4.1.1 is also true after replacing all three ≤ by ≥ and is called the weak
parabolic minimum principle. Applying this, we obtain that if gt is a solution to the Ricci flow
and scalg0 ≥ α for some α ∈ R, then scalgt ≥ α for all t ∈ [0, T ). Moreover, strictly positive scalar
curvature is preserved by the Ricci flow as well.

4.2 Hamilton’s maximum principle and the Uhlenbeck trick
For t ∈ [0, T ), let gt be a smooth family of Riemannian metrics on a compact manifold M and
V a vector bundle over M with a time-independent fibre metric h and connections ∇̃t which are
compatible with h. Let further U ⊂ V be open, Φ : U → U be a fibre-preserving smooth map
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and C ⊆ U a closed subset which is invariant under parallel transport by ∇̃t for all t ∈ [0, T ) and
fibre-wise convex. Then the maximum principle of Hamilton [Ham86, Theorem 4.3] is as follows.

Theorem 4.2.1 (Hamilton). If C is invariant under the ordinary differential equation

f ′(t) = Φ(f(t))

in each fibre, then C is invariant under the partial differential equation

∂

∂t
ft = ∆̃gtft + Φ(ft), (4.1)

meaning that each solution of (4.1), i.e. time-dependent section ft ∈ Γ(M,V ), with f0(x) ∈ C
for all x ∈ M satisfies that ft(x) ∈ C for all x ∈ M and t ∈ [0, T0). Here, T0 ≤ T denotes the
maximal existence time of the solution f .

Here, the Laplacian ∆̃gt of a section f ∈ Γ(M,V ) at time t is defined as in Definition 1.4.1 and
formed using the metric gt and the connection ∇̃t.

Remark 4.2.2. In the special case that V = R is the line bundle equipped with the standard
metric h and the usual connection ∇̃t = ∂ and that Φ ≡ 0, Hamilton’s maximum principle implies
that all intervals [a, b] are invariant under the heat equation. This leads to a version of the weak
parabolic maximum principle (see Theorem 4.1.1) and thereby gives an explanation why Theorem
4.2.1 is called a maximum principle even though no maximum appears in its formulation.

As a special case, let us consider the bundle of algebraic curvature tensors S2
B(Λ2T ∗M) together

with the fibre metrics gt and the induced Levi-Civita connections ∇gt . In order to reformulate
Hamilton’s maximum principle in this setting, we use the so-called Uhlenbeck trick to get rid of the
time-dependence of the metric. More precisely, we fix a vector bundle V which is isomorphic to TM
via a bundle isomorphism u0 : V → TM with fibre metric h := u∗0g0. Hence, u0 : (V, h)→ (TM, g0)
is a bundle isometry. Now, for t ∈ [0, T ], let ut = u(t) : V → TM be a family of bundle
homomorphisms with u(0) = u0 solving

∂

∂t
ut = Ht(ut).

Here, Ht is defined as in Definition 1.2.2. One can show that u∗tgt = h for all t ∈ [0, T ]. Thus,
ut : (V, h) → (TM, gt) is a bundle isometry for all t ∈ [0, T ]. By pulling back the Levi-Civita
connections∇gt on TM with the isometries ut, we obtain compatible connections ∇̃t on V and sim-
ilarly for S2

B(Λ2T ∗M) and S2
B(Λ2V ∗). More precisely, for sections X in TM and R in S2

B(Λ2T ∗M),
we have that

∇̃t
X(u∗tR) = u∗t (∇

gt
XR).

Moreover, let n := dim(M) and Φ : An → An be an O(n)-equivariant locally Lipschitz continuous
map. We define the fibre-preserving map

Φ̃ := u∗0 ◦ Φg0 ◦ (u−1
0 )∗ : S2

B(Λ2V ∗)→ S2
B(Λ2V ∗),

where Φgt : S2
B(Λ2T ∗M) → S2

B(Λ2T ∗M) is defined as in Definition 2.1.20. One easily checks
that Φ̃ = u∗t ◦ Φgt ◦ (u−1

t )∗ for all t ∈ [0, T ] since u∗tOgt = u∗0O
g0 for all t ∈ [0, T ]. Then each

time-dependent section Rt ∈ Γ(M,S2
B(Λ2T ∗M)) is a solution to

∇ ∂
∂t
Rt = ∆gtRt + Φgt(Rt), (4.2)
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if and only if R̃t := u∗tRt ∈ Γ(M,S2
B(Λ2V ∗)) solves

∂

∂t
R̃t = ∆̃gtR̃t + Φ̃(R̃t). (4.3)

In (4.2), ∇ is the connection on the vector bundle S2
B(Λ2T ∗M)→M×R as introduced in Definition

1.2.2 respectively Remark 1.2.3.

This leads to the following reformulation of Hamilton’s maximum principle in this setting.

Theorem 4.2.3. Let Ω ⊆ An be an O(n)-invariant, closed and convex set. If Ω is invariant
under the ordinary differential equation

R′(t) = Φ(R(t)),

then the family of sets Ωgt ⊆ S2
B(Λ2T ∗M) is invariant under the partial differential equation

∇ ∂
∂t
Rt = ∆gtRt + Φgt(Rt), (4.4)

i.e. for solutions R to (4.4) with R0(x) ∈ Ωg0
x for all x ∈ M , we have that Rt(x) ∈ Ωgt

x for all
x ∈M and t ∈ [0, T0). Here, T0 ≤ T denotes the maximal existence time of R.

Proof (using Theorem 4.2.1). Let R be a solution to (4.4) with R0(x) ∈ Ωg0 for all x ∈M . Then
R̃ := u∗R is a solution to (4.3) with R̃0(x) ∈ u∗0Ωg0 for all x ∈ M . By the assumptions on Ω, we
find that u∗0Ωg0 is closed, fibre-wise convex and invariant under the ordinary differential equation
S ′(t) = Φ̃(S(t)). Moreover by Lemma 2.1.4, the set Ωg0 is invariant under parallel transport by
∇g0 . Since u∗0Ωg0 = u∗tΩgt for all t (where again we used that u∗tOgt = u∗0O

g0 for all t), this yields
that this set is invariant under parallel transport by u∗t∇gt = ∇̃t for all t. Consequently, Theorem
4.2.1 implies that R̃t(x) ∈ u∗0Ωg0 = u∗tΩgt for all t and x ∈ M . Thus, Rt(x) ∈ Ωgt for all t and
x ∈M .

Corollary 4.2.4. Let Ω ⊆ An be an O(n)-invariant, closed and convex set. If Ω is invariant under
the ordinary differential equation (2.4), then Ω is invariant under the Ricci flow (see Definition
2.1.12).

In the next section, we will generalize this corollary to Bianchi-convex sets.

Remark 4.2.5. Hamilton’s maximum principle implies for example that in dimension n = 3 non-
negative sectional curvature as well as non-negative and positive Ricci curvature are preserved by
the Ricci flow, i.e. the sets

{R ∈ An | λ1(R) ≥ 0}, {R ∈ An | λ1(R) + λ2(R) ≥ 0} and {R ∈ An | λ1(R) + λ2(R) > 0},

are invariant under the Ricci flow. Here, λi(R) denotes the i-th eigenvalue of R.

4.3 Generalization for tensors in the Bianchi-convex
setting

In this section, we prove a generalization of Hamilton’s maximum principle in the setting of
Corollary 4.2.4 to Bianchi-convex sets and apply it to the sets Ω̃a,c discussed in Section 3.2.2.
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Definition 4.3.1. A closed set Ω ⊆ An is called uniformly transversally star-shaped with respect
to S ∈ An, if for each compact set K ⊆ An there exists a constant r > 0 such that for each
R ∈ K ∩ ∂Ω there is an ε0 > 0 such that

R + εBr(S −R) ⊆ Ω

for all ε ∈ [0, ε0).

Remark 4.3.2. Notice that if Ω is uniformly transversally star-shaped with respect to S, then
for all R ∈ Ω we have that S −R is in the interior of the tangent cone TRΩ.

Theorem 4.3.3. Let Ω ⊆ An be O(n)-invariant, closed, Bianchi-convex and uniformly transver-
sally star-shaped with respect to λI for some λ ∈ R. If Ω is invariant under the ordinary differential
equation (2.4), then Ω is invariant under the Ricci flow (see Definition 2.1.12)

In Theorem 4.3.3, I denotes the identity in An. Before we prove this maximum principle, we show
two auxiliary lemmas.

Lemma 4.3.4. If a closed set Ω ⊆ An is uniformly transversally star-shaped with respect to
S ∈ An, then for each R ∈ Ω, we have that R+α(S−R) is in the interior of Ω for all α ∈ (0, 1).

Proof. From the assumption, it immediately follows that S−R ∈ TRΩ for all R ∈ ∂Ω. Therefore,
by Proposition 2.3.3, Ω is invariant under the ordinary differential equation

R′(t) = S −R(t). (4.5)

Let R ∈ Ω. Then R(t) := R + (1− e−t)(S − R) is a solution to (4.5) with R(0) = R. Therefore,
R(t) ∈ Ω for all t ∈ [0,∞), which by the closedness of Ω means that R + α(S − R) ∈ Ω for all
α ∈ [0, 1].
Now, let R ∈ ∂Ω, K ⊆ An be a compact set containing R and r > 0 be as in Definition 4.3.1.
By assumption, there is an ε0 > 0 such that R + εBr(S − R) ⊆ Ω for all ε ∈ [0, ε0). It follows
that (1 − α) ∪ε∈[0,ε0) (R + εBr(S − R)) + αS ⊆ Ω for all α ∈ [0, 1]. Therefore, (1 − α)R + αS is
contained in the interior of Ω for all α ∈ (0, 1).
If R is in the interior of Ω, then there is a neighborhood U of R which is contained in the interior
of Ω as well. Therefore, (1− α)U + αS ⊆ Ω for all α ∈ [0, 1], which shows that (1− α)R + αS is
in the interior of Ω for all α ∈ [0, 1).

Lemma 4.3.5. If a closed set Ω ⊆ An is uniformly transversally star-shaped with respect to
S ∈ An, then for each compact set K ⊆ An, we have that

−a := sup〈n, S −R〉 < 0, (4.6)

where the supremum is taken over all R ∈ K ∩ ∂Ω and n ∈ An with 〈n, v〉 ≤ 0 for all v ∈ TRΩ
and ‖n‖ = 1 (i.e. outward pointing generalized normal vectors n on ∂Ω at R).

Proof. Let K ⊆ An be compact, r > 0 as in Definition 4.3.1, R ∈ K ∩ ∂Ω and n ∈ An with
and ‖n‖ = 1 and 〈n, v〉 ≤ 0 for all v ∈ TRΩ. By assumption, there is an ε0 > 0 such that
R + εBr(S − R) ⊆ Ω for all ε ∈ [0, ε0). Hence, Br(S − R) ⊆ TRΩ and by scale-invariance of
TRΩ, it follows that R>0Br(S − R) ⊆ TRΩ. Let α ∈ (0, π) denote the opening angle of the cone
R>0Br(S −R). Then

arccos
(
〈n, S −R〉
‖S −R‖

)
= ^(n, S −R) > α

2 + π

2
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and since α
2 + π

2 ∈ (π2 , π), we find that

〈n, S −R〉
‖S −R‖

< cos
(
α

2 + π

2

)
.

Hence,

〈n, S −R〉 < ‖S −R‖ cos
(
α

2 + π

2

)
≤ max

R̃∈K∩∂Ω
‖S − R̃‖ cos

(
α

2 + π

2

)
< 0.

Since α only depends on K, this finishes the proof.

Now, we are in the position to prove the maximum principle in the Bianchi-convex setting.

Proof of Theorem 4.3.3. Let M be an n-dimensional compact manifold and gt, t ∈ [0, T ), be a
solution to the Ricci flow with g0 satisfying Ω, i.e. with Rmg0(x) ∈ Ωg0

x for all x ∈ M . Let
T1 ∈ (0, T ). We will show that Rmgt ∈ Ωgt for all t ∈ [0, T1]. To this end, let a > 0 be defined
by (4.6) as in Lemma 4.3.5 with K = Br(0), were r > 0 is so large that C(M, gt) ⊆ Br(0) for all
t ∈ [0, T1], and set

L := max
(x,t)∈M×[0,T1]

‖Rmgt(x) +Rmgt(x)#Igt(x)‖gt

and P := max
(x,t)∈M×[0,T1]

‖λIgt(x)−Rmgt(x)‖gt ,

where Igt ∈ Γ(M,S2
B(Λ2T ∗M)) with Igt(x) being the identity in S2

B(Λ2T ∗xM) with respect to gt for
all x ∈ M . (Recall that the set of possible algebraic curvature tensors C(M, g) of a Riemannian
manifold (M, g) was defined in Definition 2.1.11.) By the compactness ofM×[0, T1], the constants
r, L and P are finite. Moreover, we choose b > 2|λ|L

a
and ε0 ∈ (0, 1) such that

ε0e
bT1 < min

1
2 ,

ab− 2|λ|L
λ2
√

2n(n− 1)3 + bP

 .
For ε ∈ (0, ε0), we define

Rε
t := Rmgt + εebt(λIgt −Rmgt) = (1− εebt)Rmgt + εebtλIgt

for t ∈ [0, T ). Using Lemma 1.4.2 and that I + I# = (n − 1)I, by [BW08, Lemma 2.1], we find
that

∇ ∂
∂t
Rε
t

1.4.2= −εbebtRmgt + (1− εebt)
(
∆gtRmgt +Rm2

gt +Rm#
gt

)
+ εbebtλIgt

= ∆gtR
ε
t + εbebt (λIgt −Rmgt)

+ 1
1− εebt

(
(Rε

t )2 + (Rε
t )# − ε2e2btλ2(Igt + I#

gt )− 2(1− εebt)εebtλ(Rmgt +Rmgt#Igt)
)

= ∆gtR
ε
t + εbebt (λIgt −Rε

t ) + ε2be2bt (λIgt −Rmgt)

+ 1
1− εebt

(
(Rε

t )2 + (Rε
t )#

)
− ε2e2btλ2(n− 1)

1− εebt Igt − 2εebtλ(Rmgt +Rmgt#Igt).
(4.7)

By assumption and Lemma 4.3.4, Rε
0 = Rmg0 + ε(λIg0 − Rmg0) is in the interior of Ωg0 . We

claim that Rε
t is in the interior of Ωgt for all t ∈ [0, T1]. Suppose this is not true. Then there is a

minimal time t0 ∈ (0, T1] such that Rε
t0(x0) ∈ ∂Ωgt0

x0 for some x0 ∈M , since M is compact. Hence,
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Rε
t (x) ∈ Ωgt

x for all t ∈ [0, t0] and x ∈ M , and in particular Rε
t0 ∈ Γ(M,Ωgt0 ). Let t 7→ pt ∈ Ogt

x0

be parallel and set S0 := p∗t0R
ε
t0(x0) ∈ ∂Ω. Furthermore, for i = 1, . . . , n, set bi := pt0(ei), where

(e1, . . . , en) denotes the standard basis of Rn. Then (b1, . . . , bn) is an orthonormal basis of Tx0M
with respect to gt0 . We choose δ > 0 such that

δ
n∑
i=1
‖∇gt0

bi
Rε
t0‖

2
gt0

< εebt0
(
ab− 2|λ|L− ε0e

bT1λ2
√

2n(n− 1)3 + ε0be
bT1P

)
.

By the choice of the constants b and ε0, the right-hand side of this inequality is positive. Since Ω
is Bianchi-convex, there is a supporting submanifold N of Ω in S0 with

n∑
i=1

âNS (Ti, Ti) ≤ δ
n∑
i=1
‖Ti‖2

for all S ∈ N and (T1, . . . , Tn) ∈ (TSN)n that satisfy the second Bianchi identity. It follows that
(p−1
t0 )∗N is a supporting submanifold of Ωgt0

x0 in Rε
t0(x0) with

n∑
i=1

â
(p−1
t0

)∗N
S (Ti, Ti) ≤ δ

n∑
i=1
‖Ti‖2

gt0

for all S ∈ (p−1
t0 )∗N and (T1, . . . , Tn) ∈ (TS(p−1

t0 )∗N)n that satisfy the second Bianchi identity.
By nS0 , we denote the unit normal on N at S0 pointing in the opposite direction of Ω. Then
nRεt0 (x0) := (p−1

t0 )∗nS0 is the unit normal on (p−1
t0 )∗N at Rε

t0(x0) pointing in the opposite direction
of Ωgt0

x0 .
Let further rN be a signed distance function from N . Now, using that Ω is invariant under the
ordinary differential equation (2.4) in combination with Proposition 2.3.3 and Lemma 2.2.4, and
applying Lemma 3.1.10, we can compute that

d

dt

∣∣∣∣∣
t=t0

rN(p∗tRε
t (x0)) = drNS0

(
d

dt

∣∣∣∣∣
t=t0

p∗tR
ε
t (x0)

)

1.2.6= drNS0

(
p∗t0∇ ∂

∂t
Rε
t (x0)

∣∣∣∣
t=t0

)
(4.7)=

〈
nS0 , p

∗
t0∆gt0

Rε
t0(x0)

〉
+ 1

1− εebt0
〈
nS0 , p

∗
t0

(
Rε
t0(x0)2 +Rε

t0(x0)#
)〉

− 2εebt0λ
〈
nS0 , p

∗
t0

(
Rmgt0

(x0) +Rmgt0
(x0)#Igt0 (x0)

)〉
− ε2e2bt0λ2(n− 1)

1− εebt0 〈nS0 , I〉+ εbebt0
〈
nS0 , p

∗
t0

(
λIgt0 (x0)−Rε

t0(x0)
)〉

+ ε2be2bt0
〈
nS0 , p

∗
t0

(
λIgt0 (x0)−Rmgt0

(x0)
)〉

≤
〈
(nRεt0 (x0),∆gt0

Rε
t0(x0)

〉
gt0

+ 2
〈
nS0 , S

2
0 + S#

0

〉
︸ ︷︷ ︸

2.3.3,2.2.4
≤ 0

+ε
2e2bt0λ2(n− 1)

1− εebt0 ‖I‖

− 2εebt0λ
〈
nRεt0 (x0),

(
Rmgt0

(x0) +Rmgt0
(x0)#Igt0 (x0)

)〉
gt0

+ εbebt0
〈
nRεt0 (x0),

(
λIgt0 (x0)−Rε

t0(x0)
)〉

gt0︸ ︷︷ ︸
≤−a

+ ε2be2bt0
〈
nRεt0 (x0),

(
λIgt0 (x0)−Rmgt0

(x0)
)〉

gt0
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≤
〈
nRεt0 (x0),∆gt0

Rε
t0(x0)

〉
gt0

+ ε2e2bt0λ2
√

2n(n− 1)3

+ 2εebt0|λ|
∥∥∥Rmgt0

(x0) +Rmgt0
(x0)#Igt0 (x0)

∥∥∥
gt0︸ ︷︷ ︸

≤L

− εbebt0a+ ε2be2bt0 ‖λIgt0 (x0)−Rε
t0(x0)‖gt0︸ ︷︷ ︸

≤P

3.1.10
≤ δ

n∑
i=1
‖∇gt0

bi
Rε
t0‖

2
gt0

+ εebt0
(
2|λ|L− ab+ ε0e

bT1λ2
√

2n(n− 1)3 + ε0e
bT1P

)
< 0.

Here, we could apply Lemma 3.1.10 for C = Ωgt0 since with Rmgt0
also Rε

t0 = Rmgt0
+εebt0(λIgt0−

Rmgt0
) satisfies the second Bianchi identity and, in addition, Rε

t0 ∈ Γ(M,Ωgt0 ). This together with
the fact that rN(p∗t0R

ε
t0(x0)) = rN(S0) = 0 yields that there is a µ > 0 such that

rN(p∗tRε
t (x0)) > 0

for all t ∈ (t0 − µ, t0). Therefore, p∗tRε
t (x0) /∈ Ω, thus Rε

t (x0) /∈ Ωgt
x0 for all t ∈ (t0 − µ, t0). This,

however, is a contradiction to Rε
t (x0) ∈ Ωgt

x0 for all t ∈ [0, t0] as assumed in the beginning of the
proof. Hence, as we claimed, Rε

t (x) is in the interior of Ωgt
x for all x ∈M and t ∈ [0, T1].

Since Ωgt is closed and Rε
t (x) converges to Rmgt(x) as ε tends to zero for each t ∈ [0, T1] and

x ∈M , we have that Rmgt(x) ∈ Ωgt
x for all t ∈ [0, T1] and x ∈M . Since T1 was chosen arbitrarily,

this is true for all t ∈ [0, T ). Consequently, we have shown that Ω is invariant under the Ricci
flow.

Remark 4.3.6. Let us consider the special case that n = 3. As we have seen in Section 3.2.2, for
a ∈ (1

3 ,
2
5) and c > 0, the sets Ω̃a,c ⊂ A3 are O(3)-invariant, closed, Bianchi-convex and invariant

under the ordinary differential equation (2.4). Moreover, it is easy to varify that Ω̃a,c satisfies the
cone condition with respect to I. Therefore, Theorem 4.3.3 yields that Ω̃a,c is invariant under the
Ricci flow.





Chapter 5

Bianchi-convex functions

In this chapter, we introduce the notion of a Bianchi-convex function and give a first connection
to the Ricci flow on a compact manifold. The sublevel sets of such functions are Bianchi-convex
sets. In order to obtain examples of Bianchi-convex functions, we show that smooth functions,
the sublevel sets of which are strictly convex cones, can be reparametrized in such a way that
(restricted appropriately) they become strictly Bianchi-convex. This will lead to rigidity results
of complete shrinking gradient Ricci solitons as an application of Theorem 6.2.9 in the subsequent
chapter.

5.1 The definition and first properties
We start with the definition of a Bianchi-convex function.

Definition 5.1.1. Let U ⊆ An be open. A smooth function F : U → R is called Bianchi-convex
at R ∈ U , if for all (T1, . . . , Tn) ∈ (TRU)n satisfying the second Bianchi identity, we have that

n∑
i=1

HessRF (Ti, Ti) ≥ 0.

Moreover, we say that F is strictly Bianchi-convex at R ∈ U , if the inequality above is strict unless
Ti = 0 for each i. If F is (strictly) Bianchi-convex at all R ∈ U , we call F (strictly) Bianchi-convex.

Remark 5.1.2. Let V be a vector space, F : V → R a smooth function and c ∈ R a regular value
of F . By the submersion theorem [Kli95, Theorem 1.3.3], we have that F−1(c) is a submanifold
of V of codimension one, and that for all v ∈ F−1(c) and X, Y ∈ TvF−1(c) = ker(dFv),

nv = gradvF
‖gradvF‖

is the outward pointing unit normal on F−1(c) = ∂F−1((−∞, c]) at v. Therefore,

âF
−1(c)

v (X, Y ) = −〈Y,∇Xn〉 = −
〈
Y,∇X

gradF
‖gradF‖

〉

= − 1
‖gradvF‖

〈Y,∇XgradF 〉 − ∂X
(

1
‖gradF‖

)
〈Y, gradvF 〉︸ ︷︷ ︸

=0

= − 1
‖gradvF‖

HessvF (X, Y ).
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Lemma 5.1.3. Let F : An → R be a Bianchi-convex function with dFR 6= 0 for all R ∈ An. Then
all sublevel sets of F are Bianchi-convex.

Proof. Let c ∈ R. We show that the sublevel set {F ≤ c} is Bianchi-convex. To this end, let
R ∈ ∂{F ≤ c} = F−1(c) and (T1, . . . , Tn) ∈ (TRF−1(c))n satisfying the second Bianchi identity.
Since F is Bianchi-convex and TRF−1(c) ⊆ TRAn, Remark 5.1.2 yields that

−‖gradRF‖
n∑
i=1

âF
−1(c)

R (Ti, Ti) =
n∑
i=1

HessRF (Ti, Ti) ≥ 0.

Hence,

n∑
i=1

âF
−1(c)

R (Ti, Ti) ≤ 0,

which proves the statement.

Considering Bianchi-convex functions along the Riemannian curvature tensor of a Ricci flow, we
obtain the following result.

Remark 5.1.4. Throughout, a sublevel set of a function F will always be a non-trivial sublevel
set of F , that is a set F−1((−∞, c]) for some c ∈ im(F ).

Proposition 5.1.5. Let Ω ⊆ An be an open and O(n)-invariant set and F : Ω → R a smooth,
O(n)-invariant and Bianchi-convex function, the sublevel sets of which are closed and invariant
under the ordinary differential equation (2.4). Moreover, let (M, g0) be a compact n-dimensional
Riemannian manifold and g(t), t ∈ [0, T ), be the solution to the Ricci flow with g(0) = g0. If g0
satisfies Ω, then g(t) satisfies Ω for all t ∈ [0, T ).
Moreover, the function F g ◦Rmg : M × [0, T )→ R satisfies the heat inequality

∂

∂t

(
F g(t) ◦Rmg(t)

)
≤ ∆g(t)

(
F g(t) ◦Rmg(t)

)
.

Hence, by the parabolic maximum principle either F g ◦ Rmg is constant or maxM(F g(t) ◦ Rmg(t))
is strictly decreasing in t. Moreover, if F is strictly Bianchi-convex and F g ◦Rmg is constant, we
have that (M, g0) is locally symmetric, i.e. ∇g0Rmg0 ≡ 0.

Remark 5.1.6. In fact, instead of being closed (in An), it suffices to assume that the sublevel
sets of F are closed in a set U ⊆ An, which is invariant under the Ricci flow, i.e. if g0 satisfies U ,
then gt satisfies U for all t ∈ [0, T ). For example, this is true for U := {R ∈ An | scal(R) > 0}.

Proof. Throughout the proof, we write gt := g(t). The total space of the orthonormal frame bundle
Og0 on (M, g0) is compact, because (M, g0) is compact. Therefore, C(M, g0) is compact as it is
the image of the compact set Og0 under the continuous function Og0 → An : p 7→ p∗Rmg0(π(p)).
Moreover, since g0 satisfies Ω, we have that C(M, g0) ⊂ Ω. Both together implies that

a := max
R∈C(M,g0)

F (R)

exists, thus C(M, g0) ⊆ F−1((−∞, a]). For continuity reasons there is a maximal t0 > 0 such that
C(M, gt) ⊂ Ω for all t ∈ [0, t0). This gives that the function F g ◦Rmg is well defined onM× [0, t0).
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Therefore, we can calculate that
∂

∂t
F gt(Rmgt(x)) 2.1.19= dF gt

Rmgt (x)

(
∇ ∂
∂t
Rmgt(x)v

)
(1.12)= dF gt

Rmgt (x) (∆gtRmgt(x)v) + dF gt
Rmgt (x)

(
Rm2

gt(x)v +Rm#
gt(x)v)

2.1.18= (∆gt(F gt ◦Rmgt)) (x) + dF gt
Rmgt (x)

(
Rm2

gt(x)v +Rm#
gt(x)v)

−
n∑
i=1

Hessp∗tRmgt (x)F
(
p∗t∇

gt
eti
Rmgt(x), p∗t∇

gt
eti
Rmgt(x)

)
(5.1)

for t ∈ [0, t0) and x ∈ M , where (et1, . . . , etn) is a gt-orthonormal basis of TxM and pt ∈ Ogt
x .

Here, we applied Lemma 2.1.19 in the first and the evolution equation of the Riemannian curvator
operator (1.12) in the second step. The last equality holds due to Lemma 2.1.18. Since pt :
(Rn, 〈·, ·〉)→ (TxM, gt(x)) is an isometry, (bt1, . . . , btn), where bti := p−1

t (eti), is an orthonormal basis
of Rn. We set Ti := p∗t∇

g(t)
eti
Rmgt(x) ∈ An. Then

Ti(bj ∧ bk) + Tj(bk ∧ bi) + Tk(bi ∧ bj)
= ∇gt

eti
Rmgt(x)(ej ∧ ek) +∇gt

etj
Rmgt(x)(ek ∧ ei) +∇gt

et
k
Rmgt(x)(ei ∧ ej) = 0.

Consequently, (T1, . . . , Tn) ∈ Ann satisfies the second Bianchi identity, and therefore the last sum-
mand on the right-hand side of (5.1) is non-positive due to the Bianchi-convexity of F .
Since the sublevel sets of F are invariant under (2.4), from the lemmas 2.3.4 and 2.1.17 it follows
that

dF gt
Rmgt (x)

(
Rm2

gt(x)v +Rm#
gt(x)v) 2.1.17= dFp∗tRmgt (x)

(
p∗t
(
Rm2

gt(x) +Rm#
gt(x)

)) 2.3.4
≤ 0.

Thus, the second summand on the right-hand sight of (5.1) is also non-positive. Put together, we
obtain that F g ◦Rmg : M × [0, t0)→ R satisfies the heat inequality

∂

∂t
(F gt ◦Rmgt) ≤ ∆gt(F gt ◦Rmgt). (5.2)

The weak parabolic maximum principle (see Remark (4.1.2)) yields that

sup
M×[0,t0)

(F g ◦Rmg) = max
M

(F g0 ◦Rmg0) = a

and therefore C(M, gt) ⊆ F−1((−∞, a]) for all t ∈ [0, t0). Suppose that t0 < T . Then by continuity
reasons we find that

C(M, gt0) ⊆ F−1((−∞, a]) ⊂ Ω,

since the sublevel sets of F are closed. As above, this yields that there is a t1 > t0 such that
C(M, gt) ⊂ Ω for all t ∈ [t0, t1), in contradiction to the maximality of t0. Consequently, t0 = T
and thus gt satisfies Ω for all t ∈ [0, T ).
Thus, we have shown that the function F g ◦Rmg is defined on all of M × [0, T ) and satisfies the
heat inequality (5.2).
Now, let F be strictly Bianchi-convex and F g ◦ Rmg be constant, in particular a solution to the
heat equation

∂

∂t
(F gt ◦Rmgt) = ∆gt(F gt ◦Rmgt).
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Then combining this with (5.1) results in
n∑
i=1

Hessp∗tRmgt (x)F
(
p∗t∇

gt
eti
Rmgt(x), p∗t∇

gt
eti
Rmgt(x)

)
= 0

for all t ∈ [0, T ), x ∈M , pt ∈ Ogt
x and gt-orthonormal bases (et1, . . . , etn) of TxM . Since F is strictly

Bianchi-convex, this means that

p∗t∇
gt
eti
Rmgt(x) = 0

for i = 1, . . . n. As a consequence, ∇gtRmgt ≡ 0, that is (M, gt) is locally symmetric, for all
t ∈ [0, T ).

5.2 A reparametrization theorem
The sublevel sets of convex functions are convex as is well known. However, a function, the
sublevel sets of which are convex, need not to be convex. The following theorem shows that (in
the case that the sublevel sets are strictly convex cones) up to reparametrization and restriction
such a function is at least Bianchi-convex. The goal of this section is to prove this statement.
Here, the cone Bn defined by

Bn :=
{
R ∈ An | R|Λ2(v⊥) 6≡ 0 for all v ∈ Rn \ {0}

}
,

where the restriction on Λ2(v⊥) is meant in the endomorphism sense, plays an important role.

Theorem 5.2.1. Let n ≥ 3, Ω ⊆ An \ {0} an open cone and F : Ω → R a smooth function, the
sublevel sets of which are strictly convex cones. Let further U be an open cone with U ⊂ Ω ∩ Bn
(where the closure is taken in An \ {0}) and assume that HessRF |R⊥ is positive definite for all
R ∈ U with dFR = 0. Then there exists a smooth function ϕ : R → R with ϕ′ > 0 such that
ϕ ◦ F |U is strictly Bianchi-convex.

Remark 5.2.2. By a strictly convex cone we mean a cone, i.e. a scale-invariant set, the base of
which is strictly convex.

Example 5.2.3. As an anticipation on the next chapter, examples for functions F as in Theorem
5.2.1 are the following:

Ω→ R : R 7→ ‖R‖2

‖ric(R)‖2

Θ→ R : R 7→ ‖Rric0 +RW‖2

‖RI‖2 ,

where Ω and Θ will be defined in Section 6.3.2 respectively Section 6.3.3. Moreover, in these
sections, using Theorem 5.2.1 and Lemma 5.2.13, we will show that reparametrizing and restricting
these functions appropriately provides strictly Bianchi-convex functions which are not convex.

Remark 5.2.4. In order to facilitate following the somewhat technical proofs of the subsequent
auxiliary lemmas, we sketch the idea of the proof of Theorem 5.2.1: The wanted reparametrization
ϕ : R → R is going to be defined by ϕ(s) := eκs for s ∈ R, where the main task is to show that
κ > 0 can be chosen appropriately. As we will see in Lemma 5.2.13, for all R ∈ U , we have
that HessR(ϕ ◦ F ) has exactly one negative eigenvalue, all other eigenvalues are positive (unless
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dFR = 0 which turns out to be a rather trivial situation). The set of all “negative directions” in
TRU , that is the set of all S ∈ TRU with HessR(ϕ◦F )(S, S) < 0, is therefore a double cone. Given
a tuple T := (T1, . . . , Tn) ∈ (TRU)n \ {0} satisfying the second Bianchi identity, we will show that
there is at least one index i ∈ {1, . . . , n} such that Ti has a certain uniform angle to R and a
non-negligible length in comparison to the length of T (see Lemma 5.2.16; this uses U ⊂ Bn). By
making κ large enough, we are able to shrink the opening angle of the double cone mentioned
above such that Ti becomes a “positive direction” (in the sense analogously to above), i.e. gives a
positive contribution to the sum ∑n

i=1 HessR(ϕ ◦ F )(Ti, Ti) (see Lemma 5.2.14). In order to have
that the sum becomes positive as well, we use the fact about the length of Ti (as indicated above).

5.2.1 Scale-invariant functions
In this section, we collect some first properties of scale-invariant functions on Euclidean vec-
tor spaces. In particular, we study how their gradient and Hessian behave under rescaling and
how the Hessian looks like in a matrix representation. Moreover, we start investigating certain
reparametrizations of these functions in the case that their sublevel sets are strictly convex.

Throughout, let V be a Euclidean vector space, Ω ⊆ V \ {0} an open cone and F : Ω → R a
smooth function, the sublevel sets of which are strictly convex cones.

Lemma 5.2.5. F is scale-invariant, i.e. F (αv) = F (v) for all v ∈ Ω and α > 0.

In particular, the lemma shows that F cannot be defined in 0 unless it is constant.

Proof. Let v ∈ Ω and set F (v) =: c. Then v ∈ F−1(c) = ∂{F ≤ c}. Since, by assumption, {F ≤ c}
is scale-invariant, due to Lemma A.0.1 this is also true for ∂{F ≤ c}. Therefore, αv ∈ ∂{F ≤ c}
for all α > 0. This, however, implies that F (v) = c = F (αv) for all α > 0.

Lemma 5.2.6. For all v ∈ Ω and α > 0, we have that gradvF = α · gradαvF .

Proof. For α > 0, we define the map µα : V → V : v 7→ αv. For all v ∈ V , the differential dµα|v
is given by multiplication with α as well. Since F is scale-invariant, we have that F ◦ µα = F for
all α > 0. This yields that

gradvF = gradv(F ◦ µα) = Dv(F ◦ µα)t

= (Dµα(v)F ·Dvµα)t = Dvµα
t ·DαvF

t = α · gradαvF.

Lemma 5.2.7. For all v ∈ Ω and α > 0, we have that HessvF = α2 ·HessαvF , where the Hessian
is considered as bilinear form.

Proof. Let v ∈ Ω, X, Y ∈ TvΩ and α > 0. Then

HessvF (X, Y ) = 〈(DXgradF )(v), Y 〉 5.2.6= α · 〈(DXgradα·F )(v), Y 〉 = α2 · 〈(DXgradF )(αv), Y 〉
= α2 · HessαvF (X, Y ).

Lemma 5.2.8. For all v ∈ Ω and w ∈ V , we have that

HessvF (v, w) = −dFv(w).
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Proof. Let w ∈ V . Then

HessvF (v, w) = d

ds

∣∣∣∣
s=0

dFv+sw(v)

= d

ds

∣∣∣∣
s=0

dFv+sw(v + sw)︸ ︷︷ ︸
=0

− d

ds

∣∣∣∣
s=0

dFv+sw(sw)

= − d

ds

∣∣∣∣
s=0

s · dFv+sw(w)

= −dFv(w).

Here, in the third equality, we used that F (u+su) is constant in s for all u ∈ Ω by scale-invariance
of F (Lemma 5.2.5). Thus, dFu(u) = 0 for all u ∈ Ω.

Let v ∈ Ω with dFv 6= 0 and set F (v) := c. Near v, F−1(c) is a smooth submanifold and we can
split

TvU = TvV = TvF
−1(c)⊕ RgradvF = (v⊥ ∩ TvF−1(c))⊕ Rv ⊕ RgradvF.

Let (b1, ..., bN−2) be an orthonormal basis of v⊥ ∩ TvF−1(c) such that(
b1, ..., bN−2, bN−1 := v

‖v‖
, bN := gradvF

‖gradvF‖

)
is an orthonormal basis of TvU , where by N we denote the dimension of V . Since F (v) = c, we
have that v ∈ ∂{F ≤ c} = F−1(c) and since {F ≤ c} is a strictly convex cone, we have that
HessvF restricted to TvF

−1(c) is positive semidefinite and restricted to v⊥ ∩ TvF−1(c) is even
positive definite. Together with Lemma 5.2.8, this observation yields the following lemma.
Lemma 5.2.9. For all v ∈ Ω with dFv 6= 0, we have with respect to the basis (b1, . . . , bN) above
that

HessvF =̂
(

HessvF (bi, bj)
)
i,j

=

A 0 b
0 0 e
bt e f

 ,
where A = A(v) ∈ SymMat(N − 2×N − 2,R) is positive definite, b = b(v) ∈ RN−2 and e = e(v),
f = f(v) ∈ R.
Remark 5.2.10. Notice that, by Lemma 5.2.8, we have that

e(v) = HessvF
(
v

‖v‖
,

gradvF
‖gradvF‖

)
= −‖gradvF‖

‖v‖
for v ∈ Ω with dFv 6= 0.
Notation 5.2.11. For every vector space V , bilinear form H : V × V → R and linear subspace
W of V , we will denote H|W := H|W×W and by λmin(H) respectively λmax(H) the smallest
respectively largest eigenvalue of H, calculated with respect to the metric.
Lemma 5.2.12. For s ∈ R, let ϕ(s) := eκs for some κ ∈ R. Then for all v ∈ Ω with dFv 6= 0, we
have that

Hessv(ϕ ◦ F ) =̂ ϕ′(F (v))

A 0 b
0 0 e
bt e f + κe2‖v‖2


with respect to the orthonormal basis (b1, ..., bN), where A = A(v), b = b(v), e = e(v) and f = f(v)
are as in Lemma 5.2.9.
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Proof. For all v ∈ Ω, we have that

Hessv(ϕ ◦ F ) = ϕ′′(F (v)) · dFv ⊗ dFv + ϕ′(F (v)) · HessvF, (5.3)

which immediately implies the statement.

Lemma 5.2.13. Let ϕ : R → R : s 7→ eκs, where κ > 0. Then for all v ∈ Ω with dFv 6= 0, the
Hessian Hessv(ϕ ◦ F ) has exactly one negative eigenvalue, all other eigenvalues are positive.

Proof. Let v ∈ Ω with dFv 6= 0. Then, by Remark 5.2.10, e(v) 6= 0. Therefore, in the notation of
Lemma 5.2.12, we have that

det(Hessv(ϕ ◦ F )) = ϕ′(F (v))N det

A 0 b
0 0 e
bt e f + κe2‖v‖2


= ϕ′(F (v))N det(A) det

((
0 e
e f + κe2‖v‖2

)
−
(

0
bt

)
A−1

(
0 b

))

= ϕ′(F (v))N det(A) det
(

0 e
e f + κe2‖v‖2 − btA−1b

)
= −ϕ′(F (v))N det(A)e2

< 0.

It follows that Hessv(ϕ◦F ) is invertible and in particular has no vanishing but at least one negative
eigenvalue. Since Hessv(ϕ ◦ F )|(gradvF )⊥ is positive semidefinite and (gradvF )⊥ has codimension
one, we find that Hessv(ϕ ◦ F ) has exactly one negative eigenvalue and all other eigenvalues are
positive.

The following lemma shows that having some uniform lower bound for λmin(HessvF |v⊥), the nega-
tive eigenvalue of HessvF can be pushed arbitrarily close to zero using a suitable reparametrization.

Lemma 5.2.14. Assume that there exists some ρ > 0 such that

λmin(HessvF |v⊥) ≥ ρ

‖v‖2 (5.4)

for all v ∈ Ω. Then for each κ > 0, we have that

−λmin(Hessv(ϕ ◦ F )) ≤ 1
ρκ
λmin(Hessv(ϕ ◦ F )|v⊥)

for all v ∈ Ω, where ϕ(s) := eκs for s ∈ R.

Note that the sublevel sets of F being strictly convex cones is equivalent to

λmin
(
HessvF |v⊥∩(gradvF )⊥

)
> 0

for all v ∈ Ω, which is implied by (5.4). Therefore in Lemma 5.2.14, it suffices to assume that F
is scale-invariant together with (5.4).
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Proof. Let κ > 0 and v ∈ Ω. Due to the scale-invariance of F (see Lemma 5.2.7), we may assume
that ‖v‖ = 1. In the case that dFv = 0, let w ∈ V and write w = αv + w′, where α ∈ R and
w′ ∈ v⊥. Then, using Lemma 5.2.8, we can compute that

Hessv(ϕ ◦ F )(w,w)(5.3)= ϕ′(F (v))HessvF (w,w)
= ϕ′(F (v))

(
α2HessvF (v, v) + 2αHessvF (v, w′) + HessvF (w′, w′)

)
5.2.8= ϕ′(F (v))HessvF (w′, w′)
≥ ϕ′(F (v))λmin(HessvF |v⊥) ‖w′‖2

(5.4)
≥ 0.

(5.5)

This shows that Hessv(ϕ ◦ F ) is positive semidefinite. Hence,

λmin(Hessv(ϕ ◦ F )) ≥ 0 ≥ − 1
ρκ
λmin(Hessv(ϕ ◦ F )|v⊥) .

Now, we consider the case that dFv 6= 0. By Lemma 5.2.12, we have that

Hessv(ϕ ◦ F ) =̂ ϕ′(F (v))

A 0 b
0 0 e
bt e f + κe2


with respect to the orthonormal basis (b1, ..., bN), where A = A(v), b = b(v), e = e(v) and f = f(v)
are as in Lemma 5.2.9. Hence, by assumption

λmin(Hessv(ϕ ◦ F )|v⊥) = ϕ′(F (v))λmin

(
A b
bt f + κe2

)

≥ ϕ′(F (v))λmin

(
A b
bt f

)
+ ϕ′(F (v))λmin

(
0 0
0 κe2

)
︸ ︷︷ ︸

=0

= ϕ′(F (v))λmin(HessvF |v⊥)
(5.4)
≥ ϕ′(F (v))ρ.

(5.6)

On the other hand, we find that

−λmin(Hessv(ϕ ◦ F )) = −ϕ′(F (v))λmin

A 0 b
0 0 e
bt e f + κe2



≤ −ϕ′(F (v))λmin

A 0 b
0 0 0
bt 0 f


︸ ︷︷ ︸

=0

−ϕ′(F (v))λmin

0 0 0
0 0 e
0 e κe2



(5.4)= −ϕ′(F (v))λmin

(
0 e
e κe2

)
5.2.10= ϕ′(F (v))‖gradvF‖λmax

(
0 1
1 κe

)
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= ϕ′(F (v))‖gradvF‖
κe

2 +
√
κ2e2

4 + 1


︸ ︷︷ ︸
<− 1

κe

<
ϕ′(F (v))

κ
(5.6)
≤ 1

κρ
λmin(Hessv(ϕ ◦ F )|v⊥) ,

which is what we wanted to show.

The next lemma shows that the lower bound from Lemma 5.2.14 can actually by achieved using
the assumptions of Theorem 5.2.1.

Lemma 5.2.15. Let U be an open cone with U ⊂ Ω, where the closure is taken in V \{0}. Assume
that HessvF |v⊥ is positive definite for all v ∈ U with dFv = 0. Then there exist constants κ, ρ > 0
such that

λmin(Hessv(ϕ ◦ F )|v⊥) ≥ ρ

‖v‖2

for all v ∈ U , where ϕ(s) := eκs for s ∈ R.

Proof. Since λmin(HessvF |v⊥) depends continuously on v, there is some open scale-invariant neigh-
borhood W ⊆ Ω of {v ∈ Ω | dFv = 0} such that

λmin(HessvF |v⊥) > 0 (5.7)

for all v ∈ W .
Choose κ > max{κ0, 0}, where we set

κ0 := max
v∈U\W :
‖v‖=1

1
‖gradvF‖2

(
bt(v)A−1(v)b(v)− f(v)

)
,

using the notation of Lemma 5.2.9. Notice that the maximum exists since it is taken over a
compact set. Using Lemma 5.2.12, we find that with this choice of κ,

det (Hessv(ϕ ◦ F )|v⊥) = ϕ′(F (v))N−1 det
(
A b
bt f + κe2‖v‖2

)
= ϕ′(F (v))N−1 det(A)

(
f + κe2‖v‖2 − btA−1b

)
> 0

for each v ∈ U \ W , since e2‖v‖2 = ‖gradvF‖2 (see Remark 5.2.10). Because additionally A
is positive definite, Sylvester’s criterion [Gil91] gives that Hessv(ϕ ◦ F )|v⊥ is positive definite for
v ∈ U \W . Hence, together with (5.7), we obtain that

λmin(Hessv(ϕ ◦ F )|v⊥) > 0

for all v ∈ U . Since U ∩ {v ∈ V | ‖v‖ = 1} is compact, there exists some ρ′ > 0 such that

λmin(Hessv(ϕ ◦ F )|v⊥) > ρ′

for all v ∈ U ∩ {v ∈ V | ‖v‖ = 1}. By scale-invariance of F (see Lemma 5.2.7), this finishes the
proof.
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5.2.2 Two further ingredients for the proof of the theorem
The following lemma explains the relation between the sets Bn and the second Bianchi identity.

Lemma 5.2.16. For all cones C ⊂ Bn which are closed in An \{0}, there are constants L ∈ (0, 1)
and θ ∈ (0, π2 ] such that the following is true. For all R ∈ C and T := (T1, . . . , Tn) ∈ Ann satisfying
the second Bianchi identity, there exists an i ∈ {1, . . . , n} such that ^(Ti, R) ∈ [θ, π − θ] and
‖Ti‖ ≥ L‖T‖.

Proof. We assume that the statement is not true. Then there exists a cone C ⊂ Bn, which
is closed in An \ {0}, such that for all m ∈ N with m > 1 there exists an Rm ∈ C and a
Tm = (Tm1 , . . . , Tmn ) ∈ Ann satisfying the second Bianchi identity with respect to some orthonormal
basis em = (em1 , . . . , emn ) of Rn such that for all i ∈ {1, . . . , n}, we have that

^(Tmi , Rm) > π − 1
m

or ^(Tmi , Rm) < 1
m

or ‖Tmi ‖ <
1
m
‖Tm‖.

Due to the scale-invariance of C, we may assume without loss of generality that ‖Tm‖ = 1 and
‖Rm‖ = 1. Since {R ∈ C | ‖R‖ = 1} and {T ∈ Ann | ‖T‖ = 1} are compact, the sequences
(Rm)m∈N and (Tm)m∈N subconverge to an R∞ ∈ C with ‖R∞‖ = 1 respectively a T∞ ∈ Ann with
‖T∞‖ = 1, i.e. there is a sequence (ml)l∈N ⊆ N with

lim
l→∞

Rml = R∞,

a subsequence (mlp)p∈N ⊆ (ml)l∈N with

lim
p→∞

Tmlp = T∞

and for all i ∈ {1, . . . , n} we have that

^(T∞i , R∞) = π or ^(T∞i , R∞) = 0 or ‖T∞i ‖ = 0.

Therefore, we find that for all i ∈ {1, . . . , n}

T∞i = αiR∞ (5.8)

for an αi ∈ R. We do not have that αi = 0 for all i ∈ {1, . . . , n}, since otherwise we had that
T∞ = 0 in contradiction to ‖T∞‖ = 1. Without loss of generality, let α1 6= 0.
Next, we show that T∞ satisfies the second Bianchi identity as well: Since the space of orthonormal
bases of Rn is compact, there is a subsequence (bq)q∈N ⊆ (mlp)p∈N such that ebq converges to an
orthonormal basis e∞ of Rn for q → ∞. Together with the fact that Tm satisfies the second
Bianchi identity for all m ∈ N, this implies that

0 = lim
q→∞

T
bq
i (ebqj ∧ e

bq
k ) + T

bq
j (ebqk ∧ e

bq
i ) + T

bq
k (ebqi ∧ e

bq
j )

= T∞i (e∞j ∧ e∞k ) + T∞j (e∞k ∧ e∞i ) + T∞k (e∞i ∧ e∞j )

for all i, j, k ∈ {1, . . . , n}. Hence, T∞ satisfies the second Bianchi identity with respect to e∞.
Moreover, by (5.8) this yields that

R∞(αie∞j ∧ e∞k + αje
∞
k ∧ e∞i + αke

∞
i ∧ e∞j︸ ︷︷ ︸

:=vijk

) = 0
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for all i, j, k ∈ {1, . . . , n} and due to the linearity of R∞ that

R∞|span{vijk|i,j,k∈{1,...,n}} ≡ 0.

Let now (e1
∞, . . . , e

n
∞) be the dual basis corresponding to (e∞1 , . . . , e∞n ), i.e. e∞i (ej∞) = δji for i, j ∈

{1, . . . , n}, where we identified Rn with ((Rn)∗)∗. We set

α :=
n∑
l=1

αle
l
∞.

Then for all i, j, k ∈ {1, . . . , n}, we have that

vijk(α, ·) =
n∑
l=1

αl

(
αi(δlje∞k − δlke∞j ) + αj(δlke∞i − δlie∞k ) + αk(δlie∞j − δlje∞i )

)
= αi(αje∞k − αke∞j ) + αj(αke∞i − αie∞k ) + αk(αie∞j − αje∞i )
= 0

and thus that

span{vijk | i, j, k ∈ {1, . . . , n}} ⊆ Λ2(α⊥). (5.9)

For 2 ≤ i < j ≤ n, let βij ∈ R with

0 =
∑

2≤i<j≤n
βijv1ij =

∑
2≤i<j≤n

βij(α1e
∞
i ∧ e∞j + αie

∞
j ∧ e∞1 + αje

∞
1 ∧ e∞i ).

Since {e∞i ∧ e∞j | 1 ≤ i < j ≤ n} is a basis of Λ2Rn and α1 6= 0, we find that βij = 0 for
2 ≤ i < j ≤ n. It follows that {v1ij | 2 ≤ i < j ≤ n} is linearly independent. Consequently,

dim(span{vijk | i, j, k ∈ {1, . . . , n}}) ≥ #{v1ij | 2 ≤ i < j ≤ n} = (n− 1)(n− 2)
2 = dim(Λ2(α⊥))

(5.9)
≥ dim(span{vijk | i, j, k ∈ {1, . . . , n}}).

This implies that

span{vijk | i, j, k ∈ {1, . . . , n}} = Λ2(α⊥)

and therefore we have shown that R∞|Λ2(α⊥) ≡ 0. This, however, is a contradiction to our
assumption. Consequently, the statement of the lemma is true.

Directly from the proof of Lemma 5.2.16, we obtain the following result.

Corollary 5.2.17. Let R ∈ An. If (α1R, . . . , αnR) satisfies the second Bianchi identity, where
(α1, . . . , αn) ∈ Rn \ {0}, then R ∈ Bcn.

The final ingredient will be the next linear algebra lemma.

Lemma 5.2.18. Let H : V ×V → R be a symmetric bilinear form on an N-dimensional Euclidean
vector space V with one negative and N − 1 positive eigenvalues. Let further 0 6= R ∈ V such that
H(R,R) = 0 and H|R⊥ is positive definite. Then for all w ∈ V \ {0}, the following is true:

a) If 2 arctan
(√

−λmin(H)
λmin(H|

R⊥ )

)
< ^(w,R) < π − 2 arctan

(√
−λmin(H)
λmin(H|

R⊥ )

)
, then H(w,w) > 0.
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b) If 2 arctan(ε) ≤ ^(w,R) ≤ π − 2 arctan(ε), where ε >
√
−λmin(H)
λmin(H|

R⊥ ) , then

H(w,w) ≥ C(H,R, ε)‖w‖2.

Here,

C(H,R, ε) := ε2λmin(H|R⊥) + λmin(H)
1 + ε2

> 0.

Remark 5.2.19. Of course, statement a) follows from b). However, in the proof of b) it is
convenient to use a), which is why we prove a) beforehand.

Remark 5.2.20. The zero-directions of a bilinear form H as in Lemma 5.2.18, i.e. those vectors
v ∈ V with H(v, v) = 0, form the boundary of a double cone with axis Eig(H,λmin(H)) and an
(N − 2)-dimensional ellipse as base. For the vectors v ∈ V in the interior of the cone, we have
that H(v, v) < 0 and for those outside the cone that H(v, v) > 0.

Proof. Let e1 ∈ V be an eigenvector to the negative eigenvalue of H with ‖e1‖ = 1 and set
λ := −λmin(H) > 0.

a) For v ∈ V with ‖v‖ = 1 and H(v, e1) = 0, that is v ⊥ e1 and H(v, v) > 0, let αv be the
opening angle of the double cone (around the axis Re1) of the non-positive directions of H
in Re1 ⊕ Rv, i.e. the double cone of those vectors w ∈ Re1 ⊕ Rv with H(w,w) ≤ 0. In
particular, we have that αv = 2^(e1, u), where u with ^(e1, u) ≤ π

2 is on the boundary of
this cone.

We claim that

αv = 2 arctan
(√

λ

H(v, v)

)
. (5.10)

Namely, let 0 6= u = ae1 + bv, a, b ∈ R, be an element of the boundary of the cone with
^(e1, u) ≤ π

2 , i.e.

0 = H(u, u) = −λa2 + b2H(v, v). (5.11)

Then, due to H(v, v) > 0 and λ > 0, it follows that a, b 6= 0. In particular, we have that

0 < ^(e1, u) < π

2 .

Therefore, (5.11) yields that
√

λ

H(v, v) =
∣∣∣∣∣ ba
∣∣∣∣∣ = tan(^(e1, u)) = tan

(
αv
2

)
,

which is the claim.
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Moreover, we notice that

λmin(H|e1⊥) ≥ λmin(H|u⊥) (5.12)

for all u ∈ V , as Re1 is the eigenspace of the smallest eigenvalue of H.

Now, let w ∈ V \ {0} with H(w,w) ≤ 0. In the case that ^(w,R) ≤ π
2 , we obtain that

^(w,R) ≤ sup
v∈V :

H(v,v)≤0,
〈v,R〉≥0

^(v,R) ≤ max
v∈e⊥1 :‖v‖=1

αv
(5.10)= 2 arctan


√√√√√ λ

min
v∈e⊥1 :‖v‖=1

H(v, v)



= 2 arctan
√√√√ λ

λmin(H|e1⊥)

 (5.12)
≤ 2 arctan

(√
λ

λmin(H|R⊥)

)
.

(5.13)

If ^(w,R) ≥ π
2 , we find that

^(w,R) = π − ^(−w,R)
(5.13)
≥ π − 2 arctan

(√
λ

λmin(H|R⊥)

)
.

This proves a).

b) Step 1: Let v ∈ V with ‖v‖ = 1 and H(v, e1) = 0, i.e. v ⊥ e1. First, we show that for
w ∈ Re1 ⊕ Rv, w 6= 0, with arctan(ε) ≤ ^(w, e1) ≤ π − arctan(ε), where ε >

√
λ

H(v,v) , we
have that

H(w,w) ≥ ε2H(v, v)− λ
1 + ε2︸ ︷︷ ︸
>0

‖w‖2.

To this end, write w = ae1 + bv, where a, b ∈ R and suppose that arctan(ε) ≤ ^(w, e1) ≤
π − arctan(ε) and ε >

√
λ

H(v,v) . Clearly, b 6= 0.

In the case that a = 0, we find that

^(w, e1) = π

2 .
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Thus, the assumption is satisfied and we have that

H(w,w) = b2H(v, v) = H(v, v)‖w‖2 ≥ ε2H(v, v)− λ
1 + ε2

‖w‖2

as desired.

Let now a > 0. Then tan(^(w, e1)) =
∣∣∣ b
a

∣∣∣ and therefore, by assumption,

b2

a2 ≥ ε2 >
λ

H(v, v) . (5.14)

Consequently,

δ := λ

ε2H(v, v) ∈ (0, 1) (5.15)

and we obtain that

H(w,w) = −λa2 + b2H(v, v)
= −λa2 + δH(v, v)b2 + (1− δ)H(v, v)b2

(5.14)
≥ −λa2 + δH(v, v)ε2a2 + (1− δ)H(v, v)b2

(5.15)= (1− δ)H(v, v)b2

= (1− δ)H(v, v)
(

1
1 + ε2

b2 + ε2

1 + ε2
b2
)

(5.14),(5.15)
≥

(
1− λ

ε2H(v, v)

)
H(v, v) ε2

1 + ε2
(a2 + b2)

= ε2H(v, v)− λ
1 + ε2

‖w‖2.

(5.16)

Since with w also −w satisfies the assumption on the angle ^(−w, e1), in the case that a < 0
we find that

H(w,w) = H(−w,−w)
(5.16)
≥ ε2H(v, v)− λ

1 + ε2
‖−w‖2 = ε2H(v, v)− λ

1 + ε2
‖w‖2.

Step 2: Let w ∈ V \{0} with 2 arctan(ε) ≤ ^(w,R) ≤ π−2 arctan(ε), where ε >
√

λ
λmin(H|

R⊥ ) .
First, we show that w satisfies the assumptions of Step 1. To this end, we claim that

arctan(ε) ≤ ^(w, e1) ≤ π − arctan(ε). (5.17)

Namely, if ^(e1, R) ≤ π
2 , then similar to (5.13) one shows that

^(e1, R) ≤ 1
2 max
v∈e⊥1 :
‖v‖=1

αv ≤ arctan
(√

λ

λmin(H|R⊥)

)
< arctan(ε).

Hence, by assumption,

^(w, e1) ≥ ^(w,R)− ^(R, e1) ≥ 2 arctan(ε)− arctan(ε) = arctan(ε)
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and
^(w, e1) ≤ ^(w,R) + ^(R, e1) ≤ π − 2 arctan(ε) + arctan(ε) = π − arctan(ε).

Since −R still satisfies the assumption on the angle ^(w,−R), exchanging R by −R, in the
same way one shows that the inequalities (5.17) also hold in the case that ^(e1, R) ≥ π

2 .

Moreover, we compute that

ε >

√
λ

λmin(H|R⊥)
(5.12)
≥

√√√√ λ

λmin(H|e1⊥) =
√√√√√ λ

min
‖v‖=1,v⊥e1

H(v, v)

= max
‖v‖=1,v⊥e1

√
λ

H(v, v) ≥
√

λ

H(w⊥, w⊥) .

Here, we denote w⊥ := π(w)
‖π(w)‖ ⊥ e1, where π : V → e1

⊥ is the orthogonal projection on e1
⊥.

This is well defined, since π(w) 6= 0. Namely, if we had that π(w) = 0, that is w ∈ Re1, we
would obtain that H(w,w) ≤ 0 and thus due to a) that

π − 2 arctan
(√

λ

λmin(H|R⊥)

)
≤ ^(w,R) ≤ 2 arctan

(√
λ

λmin(H|R⊥)

)
.

This, however, is a contradiction to the assumption.

Now, by Step 1, it follows that

H(w,w) ≥ ε2H(w⊥, w⊥)− λ
1 + ε2

‖w‖2

≥ ε2λmin(H|e1⊥)− λ
1 + ε2

‖w‖2

(5.12)
≥ ε2λmin(H|R⊥)− λ

1 + ε2︸ ︷︷ ︸
=:C(H,R,ε)

‖w‖2.

Here, C(H,R, ε) > 0 by the choice of ε.

5.2.3 Proof of the theorem
Now, we are in the position to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. By Lemma 5.2.15, there are constants κ′, ρ > 0 such that

λmin(HessR(ψ ◦ F )|R⊥) ≥ ρ

‖R‖2 (5.18)

for all R ∈ U , where ψ(s) := eκ
′s for s ∈ R. Throughout the proof, write F̃ := ψ ◦ F .

Let L ∈ (0, 1), θ ∈ (0, π2 ] be constants corresponding to the cone U ⊂ Bn as in Lemma 5.2.16.
Then for s ∈ R, we set

ϕ(s) := eκs with κ ≥ 1
ρδ2 ,

where δ ∈

0,

√√√√ L2ε2

1 + (1− L2)ε2


and ε := tan

(
θ

2

)
.
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Let R ∈ U and let T := (T1, . . . , Tn) ∈ (TRU)n \ {0} ⊂ Ann satisfy the second Bianchi identity.
If dFR = 0, then dF̃R = 0 and, by (5.5), HessR(ϕ ◦ F̃ ) is positive semidefinite. For k = 1, . . . , n,
write Tk = αkR + Sk, where αk ∈ R and Sk ∈ R⊥. Then,

n∑
k=1

HessR(ϕ ◦ F̃ )(Tk, Tk) ≥ 0. (5.19)

Suppose we have equality in (5.19). Then, by Lemma 5.2.8,

0 =
n∑
k=1

(
HessR(ϕ ◦ F̃ )(Sk, Sk) + 2αk HessR(ϕ ◦ F̃ )(Sk, R)︸ ︷︷ ︸

=0

+α2
k HessR(ϕ ◦ F̃ )(R,R)︸ ︷︷ ︸

=0

)

5.2.8=
n∑
k=1

HessR(ϕ ◦ F̃ )(Sk, Sk).

Since

HessR(ϕ ◦ F̃ )|R⊥
(5.3)= ϕ′(F̃ (R))HessRF̃ |R⊥

is positive definite by (5.18) and κ > 0, this implies that Sk = 0 for each k. Hence, Tk = αkR
for each k, which implies that R ∈ Bcn by Corollary 5.2.17, in contradiction to R ∈ U ⊂ Bn.
Therefore, the inequality in (5.19) is strict, i.e. ϕ ◦ F̃ is strictly Bianchi-convex in all R ∈ U with
dFR = 0.
Now, consider the case that dFR 6= 0. Since then also dF̃R 6= 0, from (5.6), it follows that

λmin
(
HessR(ϕ ◦ F̃ )|R⊥

)
> 0. (5.20)

Therefore, by Lemma 5.2.14, we have that

−λmin
(
HessR(ϕ ◦ F̃ )

)
≤ 1
ρκ
λmin

(
HessR(ϕ ◦ F̃ )|R⊥

)
≤ δ2λmin

(
HessR(ϕ ◦ F̃ )|R⊥

)
. (5.21)

Thus, using that L < 1, we find that√√√√√ −λmin
(
HessR(ϕ ◦ F̃ )

)
λmin

(
HessR(ϕ ◦ F̃ )|R⊥

) ≤ δ < ε.

From the choice of L and θ, it follows that there is an i ∈ {1, . . . , n} with ^(Ti, R) ∈ [θ, π − θ]
and ‖Ti‖ ≥ L‖T‖. Without loss of generality, let i = 1. This yields that

2 arctan(ε) = θ ≤ ^(T1, R) ≤ π − θ = π − 2 arctan(ε).

Due to R 6= 0 (because R ∈ Bn), Lemma 5.2.13, Lemma 5.2.14 and (5.20), we can apply Lemma
5.2.18 and obtain that

HessR(ϕ ◦ F )(T1, T1) ≥ C‖T1‖2

with

C := ε2λmin(H|R⊥) + λmin(H)
1 + ε2

> 0,
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where we used the abbreviation H := HessR(ϕ ◦ F̃ ). Since ‖T‖2 =
n∑
k=1
‖Tk‖2, this implies that

n∑
k=1

HessR(ϕ ◦ F̃ )(Tk, Tk) ≥ C‖T1‖2 + λmin(H)(‖T2‖2 + · · ·+ ‖Tn‖2)

=
(
C − λmin(H)

)
‖T1‖2 + λmin(H)‖T‖2

= ε2

1 + ε2

(
λmin(H|R⊥)− λmin(H)

)
‖T1‖2︸ ︷︷ ︸
≥L2‖T‖2

+ λmin(H)‖T‖2

≥
(
ε2L2

1 + ε2
λmin(H|R⊥) +

(
1− ε2L2

1 + ε2

)
λmin(H)

)
‖T‖2

(5.21)
≥ δ2 + 1

δ2

(
δ2

δ2 + 1 −
ε2L2

1 + ε2

)
︸ ︷︷ ︸

<0

λmin(H)︸ ︷︷ ︸
<0

‖T‖2

> 0,

by Lemma 5.2.13 and the choice of δ. Consequently, this results in ϕ ◦ F̃ = ϕ ◦ ψ ◦ F restricted
to U being strictly Bianchi-convex.





Chapter 6

Ricci solitons, curvature conditions and
local symmetry

In the study of singularity formation of solutions to the Ricci flow, so-called Ricci solitons play an
important role. They are natural generalizations of Einstein metrics and correspond to self-similar
solutions to the Ricci flow. In this chapter, we give a short introduction to this concept and as a
special case to gradient shrinking Ricci solitons. Moreover, we consider curvature conditions that
are the domains of certain scale-invariant and strictly Bianchi-convex functions, the sublevel sets
of which are invariant under the ordinary differential equation (2.4). As a main result, we show
that complete shrinking gradient Ricci solitons (respectively compact Ricci solitons) which satisfy
such curvature conditions are already locally symmetric. Finally, we derive two applications of
these rigidity results based on conjectures of Böhm-Wilking and the author.

6.1 Ricci solitons
A metric g on a manifold is called Einstein, if there exists a constant λ ∈ R such that ricg = λg.
In this section, we want to investigate a natural generalization of Einstein metrics, so-called Ricci
solitons.

Definition 6.1.1. A Ricci soliton is a quadruple (M, g,X, λ) consisting of a Riemannian manifold
(M, g), a smooth vector field X ∈ Γ(M,TM) and λ ∈ R such that

ricg + 1
2LXg = λg. (6.1)

Here, L denotes the Lie derivative. If X and λ need not to be specified, sometimes we just write
(M, g) for a Ricci soliton. A Ricci soliton is called expanding, steady or shrinking depending on
whether λ < 0, λ = 0 or λ > 0 respectively. Furthermore, we say a Ricci soliton is complete, if
(M, g) is complete and the vector field X is complete, i.e. if all of its flow curves exist for all times.
If the vector field X can be written as the gradient of some smooth function f : M → R with
respect to g, i.e. X = gradgf , then the Ricci soliton is called gradient and denoted by (M, g, f, λ).
The function f is referred to as potential function. Since in this case one can compute

LXg = 2Hessgf,

the equation (6.1) becomes

ricg + Hessgf = λg. (6.2)

83
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Taking the trace of equation (6.2) gives

scalg + ∆gf = nλ. (6.3)

Remark 6.1.2. If the vector field X ≡ 0, which in the gradient Ricci soliton case means that
the function f is constant, then g is an Einstein metric. Therefore, Ricci solitons are natural
generalizations of Einstein metrics.

Remark 6.1.3. In [Zha09b], Z.-H. Zhang shows that if (M, g, f, λ) is a gradient Ricci soliton,
the metric g of which is complete, then gradgf is already complete, i.e. (M, g, f, λ) is complete as
Ricci soliton.

Remark 6.1.4. Equivalently to the above definition, (M, g0, X, λ) is a Ricci soliton, if there exists
a function σ : [0, T ] → (0,∞) and a one-parameter family of diffeomorphisms ψt : M → M such
that

g(t) := σ(t)ψ∗t g0 (6.4)

is a solution to the Ricci flow. Namely, given a metric g0 satisfying (6.1) one can show that

g(t) := (1− 2λt)ψ∗t g0

is a solution to the Ricci flow (to which we will refer as the solution to the Ricci flow corresponding
to (M, g0)). Here, ψt is the one-parameter family of diffeomorphisms with ψ0 = id given by

∂ψt(x)
∂t

= 1
1− 2λtX|ψt(x)

for x ∈ M . Conversely, if we have a solution to the Ricci flow of the form (6.4), differentiating
(6.4) at t = 0 yields that (M, g0, X, λ) satisfies (6.1) for appropriate λ and X.
Therefore, Ricci solitons correspond to the self-similar solutions to the Ricci flow.

Remark 6.1.5. Since ψt : (M,ψ∗t g0) → (M, g0) is an isometry, the evolution of the Riemannian
curvature operator (interpreted as bilinear form) of a Ricci soliton in time is very explicit, namely

Rmg(t)
1.3.2= σ(t)Rmψ∗t g0 = σ(t)ψ∗tRmg0 . (6.5)

The following observation is crucial when working with gradient Ricci solitons.

Proposition 6.1.6 ([CLN06, Thm. 4.1]). Let (M, g0, f0, λ) be a complete gradient Ricci soliton.
Then for all t ∈ R with

σ(t) := 1− 2λt > 0,

there exist a solution g(t) to the Ricci flow with g(0) = g0, diffeomorphisms ψt : M → M with
ψ0 = id|M and functions f(t) : M → R with f(0) = f0 such that

1. ψt is the one-parameter family of diffeomorphisms generated by the vector field X(t) :=
1
σ(t)gradg0f0. That is

∂

∂t
ψt(x) = 1

σ(t)gradg0f0|ψt(x). (6.6)
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2. g(t) is the pullback of g0 by ψt up to the scale factor σ(t):

g(t) = σ(t)ψ∗t g0.

3. f(t) is the pullback of f0 by ψt:

f(t) = ψ∗t f0 = f0 ◦ ψt.

Moreover,

ricg(t) + Hessg(t)f(t) = λ

σ(t)g(t) (6.7)

and

∂

∂t
f(t) = ‖gradg(t)f(t)‖2

g(t). (6.8)

Remark 6.1.7. Below, we often write gt and ft instead of g(t) and f(t). Moreover, whenever we
speak of the solution g(t) to the Ricci flow corresponding to (M, g0, f0, λ), the same notation as
in Proposition 6.1.6 is implied.

Remark 6.1.8. As an immediate consequence, in the case of a shrinking gradient soliton, i.e.
λ > 0, we observe that g(t) is an ancient solution, that is defined for all t ∈ (−∞, 1

2λ).

Remark 6.1.9. Taking the trace with respect to g(t) in (6.7), we obtain that

scalg(t) + ∆g(t)f(t) = λn

1− 2λt. (6.9)

Remark 6.1.10. Perelman [Per02] showed that any compact Ricci soliton is a gradient Ricci
soliton.

In Lemma 1.4.2, we reminded of the evolution equation of the Riemannian curvature operator
under the Ricci flow. In the special case that the Ricci flow corresponds to a gradient Ricci
soliton, the evolution equation is as follows.

Lemma 6.1.11. Let (M, g0, f0, λ) be a gradient Ricci soliton and let g(t) = σ(t)ψ∗t g0 be the
corresponding solution to the Ricci flow with g(0) = g0. Then the Riemannian curvature operator
Rmg(t) of g(t) evolves under the partial differential equation

∇ ∂
∂t
Rmg(t) = 2λ

σ(t)Rmg(t) +∇g(t)
gradg(t)f(t)Rmg(t),

where f(t) := ψ∗t f0.

Proof. Let x ∈M and (e0
1, . . . , e

0
n) be a g0-orthonormal basis of TxM , where n is the dimension of

M . For i = 1, . . . , n, let ei be the solution to the partial differential equation

∂

∂t
ei(t) = Ricg(t)(ei(t)) (6.10)

with ei(0) = e0
i . Note, that (6.10) is equivalent to ∇ ∂

∂t
ei(t) = 0. Then (e1(t), . . . , en(t)) is a

g(t)-orthonormal basis of TxM for all t. Extending (e1(t), . . . , en(t)) for each t to a neighborhood
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of x via parallel transport along geodesics starting at x and using the abbreviations eti := ei(t)
and gt := g(t), we can compute that(

∇ ∂
∂t
Rmgt(x)

)
(eti ∧ etj, etk ∧ etl)

= ∂

∂t

(
Rmgt(x)(eti ∧ etj, etk ∧ etl)

)
−Rmgt(x)

(
∇ ∂
∂t
eti ∧ etj, etk ∧ etl

)
− · · · −Rmgt(x)

(
eti ∧ etj, etk ∧∇ ∂

∂t
etl
)

(1.7)= ∂

∂t

(
Rmgt(x)(eti ∧ etj, etk ∧ etl)

)
=
(
∂

∂t
Rmgt(x)

)
(eti ∧ etj, etk ∧ etl) +Rmgt(x)(Ricgt(eti) ∧ etj, etk ∧ etl)

+ · · ·+Rmgt(x)(eti ∧ etj, etk ∧ Ricgt(etl)).

(6.11)

Using (6.5), the first term of the right-hand side of (6.11) can be rewritten as follows(
∂

∂t
Rmgt(x)

)
(eti ∧ etj, etk ∧ etl)

(6.5)= − 2λ(ψ∗tRmg0)(x)(eti ∧ etj, etk ∧ etl) + σ(t)
(
∂

∂t
(ψ∗tRmg0)(x)

)
(eti ∧ etj, etk ∧ etl)

= − 2λ
σ(t)Rmgt(x)(eti ∧ etj, etk ∧ etl)

+ σ(t)
(
∂

∂t

(
(ψ∗tRmg0)(x)(eti ∧ etj, etk ∧ etl)

)
− (ψ∗tRmg0)(x)(Ricgt(eti) ∧ etj, etk ∧ etl)

− · · · − (ψ∗tRmg0)(x)(eti ∧ etj, etk ∧ Ricgt(etl))
)
.

(6.12)

Since for all Y ∈ TxM we have that

∇g0

dt
dψt(Y ) = ∇g0

ψ̇t(x)dψt(Y ) = ∇g0
dψt(Y )ψ̇t(x) (6.13)

and due to (6.2) for all X ∈ TM that

Ricg0(X) +∇g0
Xgradg0f0 = λX, (6.14)

we find for all i = 1, . . . , n that

∇g0

dt
dψt(eti)

(6.13)= ∇g0
dψt(eti)

ψ̇t(x) + dψt(Ricgt(eti))
(6.6)= 1

σ(t)∇
g0
dψt(eti)

gradg0f0|ψt(x) + dψt(Ricgt(eti))

(6.14)= λ

σ(t)dψt(e
t
i)−

1
σ(t)Ricg0(dψt(eti)) + dψt(Ricgt(eti))

= λ

σ(t)dψt(e
t
i)−

1
σ(t)dψt(Ricψ∗t g0(eti)) + dψt(Ricgt(eti))

1.3.2= λ

σ(t)dψt(e
t
i).

(6.15)
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Hence, we obtain that the first summand in the bracket on the right-hand side of (6.12) is equal
to

∂

∂t

(
Rmg0(ψt(x))

(
dψt(eti) ∧ dψt(etj), dψt(etk) ∧ dψt(etl)

))
=

(
∇g0
ψ̇t(x)Rmg0

)
(ψt(x))

(
dψt(eti) ∧ dψt(etj), dψt(etk) ∧ dψt(etl)

)
+Rmg0(ψt(x))

(∇g0

dt
dψt(eti) ∧ dψt(etj), dψt(etk) ∧ dψt(etl)

)
+ · · ·+Rmg0(ψt(x))

(
dψt(eti) ∧ dψt(etj), dψt(etk) ∧

∇g0

dt
dψt(etl)

)
(6.15)=

(
ψ∗t∇

g0
ψ̇t(x)Rmg0

)
(x)(eti ∧ etj, etk ∧ etl) + 4λ

σ(t)(ψ∗tRmg0)(x)(eti ∧ etj, etk ∧ etl)

(6.6),(6.5)= 1
σ(t)

(
ψ∗t∇

g0
gradg0f0|ψt(x)

Rmg0

)
(x)(eti ∧ etj, etk ∧ etl) + 4λ

σ(t)2Rmgt(x)(eti ∧ etj, etk ∧ etl).

Plugging this into (6.12) yields that(
∂

∂t
Rmgt(x)

)
(eti ∧ etj, etk ∧ etl)

= 2λ
σ(t)Rmgt(x)(eti ∧ etj, etk ∧ etl) +

(
ψ∗t∇

g0
gradg0f0|ψt(x)

Rmg0

)
(x)(eti ∧ etj, etk ∧ etl)

−
(
(Rmgt)(x)(Ricgt(eti) ∧ etj, etk ∧ etl) + · · ·+ (Rmgt)(x)(eti ∧ etj, etk ∧ Ricgt(etl))

)
.

From this, we obtain that(
∇ ∂
∂t
Rmgt(x)

)
(eti ∧ etj, etk ∧ etl)

= 2λ
σ(t)Rmgt(x)(eti ∧ etj, etk ∧ etl) +

(
ψ∗t∇

g0
gradg0f0|ψt(x)

Rmg0

)
(x)(eti ∧ etj, etk ∧ etl).

It remains to show that

ψ∗t∇
g0
gradg0f0|ψt(x)

Rmg0 = ∇gt
gradgtft|x

Rmgt .

From ft = f0 ◦ ψt, it follows that for all Y ∈ TxM we have that

g0(gradg0f0|ψt(x), dψt(Y )) = df0(dψt(Y )) = dft(Y ) = gt(gradgtft|x, Y )
= σ(t)(ψ∗t g0)(gradgtft|x, Y ) = σ(t)g0(dψt(gradgtft|x), dψt(Y )).

Since dψt|x is an isomorphism, this provides that

gradg0f0|ψt(x) = σ(t)dψt(gradgtft|x). (6.16)

Moreover, we have that ψt : (M,ψ∗t g0)→ (M, g0) is an isometry. Thus,

ψ∗t∇
g0
gradg0f0|ψt(x)

Rmg0 = ∇ψ∗t g0

dψ−1
t (gradg0f0|ψt(x))ψ

∗
tRmg0

1.3.2,
(6.16),(6.5)= ∇gt

gradgtft|x
Rmgt .

as we wanted to show.
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6.1.1 Ricci solitons and curvature conditions
In this section, we show that conical curvature conditions are invariant under self-similar solutions
to the Ricci flow. If such a curvature condition is the domain of a certain scale-invariant and
Bianchi-convex function F , the sublevel sets of which are invariant under the ordinary differential
equation (2.4), and if, moreover, the curvature condition is satisfied by a gradient Ricci soliton,
then F along the Riemannian curvature tensor of the Ricci soliton is f -subharmonic, where f
denotes the potential function of the Ricci soliton.

Remark 6.1.12. Let (M, g0) be a Ricci soliton and g(t) = σ(t)ψ∗t g0, t ∈ [0, T ), be the corre-
sponding solution to the Ricci flow with g(0) = g0. Then, with a view on Remark 1.3.2 and
remembering Definition 2.1.11, in the case that Rmg is considered as bilinear form on Λ2TM , we
have that C(M, g0) = σ(t)C(M, g(t)) for all t ∈ [0, T ). In the case that Rmg is interpreted as
endomorphism of Λ2TM , we have that C(M, g0) = σ(t)3C(M, g(t)) for all t ∈ [0, T ).

Recall that for a Riemannian manifold (M, g), by definition, g satisfies C(M, g) and for curvature
conditions Ω ⊆ An (where n is the dimension of M), we have that g satisfies Ω if and only if
C(M, g) ⊆ Ω. Therefore, Remark 6.1.12 implies the following lemma.

Lemma 6.1.13. Let Ω ⊆ An be an O(n)-invariant cone, (M, g0) an n-dimensional Ricci soliton
and g(t) = σ(t)ψ∗t g0, t ∈ [0, T ), be the corresponding solution to the Ricci flow with g(0) = g0. If
g0 satisfies Ω, then g(t) satisfies Ω for all t ∈ [0, T ).

Corollary 6.1.14. Let Ω ⊆ An be an open and O(n)-invariant cone and F : Ω→ R be a smooth
and O(n)-invariant function. Moreover, let (M, g0) be an n-dimensional Ricci soliton such that
g0 satisfies Ω and let g(t) = σ(t)ψ∗t g0, t ∈ [0, T ), be the corresponding solution to the Ricci flow
with g(0) = g0. Then for all t ∈ [0, T ) and x ∈M , the following is true

∂

∂t
F g(t)(Rmg(t)(x)) = dF

g(t)
Rmg(t)(x)

(
∇ ∂
∂t
Rmg(t)(x)v

)
.

Proof. This follows directly from Lemma 2.1.19 and Lemma 6.1.13.

Lemma 6.1.15. Let Ω ⊆ An \{0} be an open and O(n)-invariant cone and F : Ω→ R be a scale-
and O(n)-invariant, smooth and Bianchi-convex function, the sublevel sets of which are invariant
under the ordinary differential equation (2.4). Then for any n-dimensional gradient Ricci soliton
(M, g0, f0, λ) such that g0 satisfies Ω, we have that

∆f0(F g0 ◦Rmg0) ≥ 0.

Here, we define the f0-Laplacian ∆f0 := ∆g0 − ∂gradg0f0.

Proof. Let g(t) = σ(t)ψ∗t g0, t ∈ [0, T ), be the solution to the Ricci flow corresponding to (M, g0)
with g(0) = g0 and write gt := g(t) throughout the proof. Since g0 satisfies Ω, so does gt for all
t ∈ [0, T ) (see Lemma 6.1.13), thus the function F gt ◦ Rmgt : M → R is defined for all t ∈ [0, T ).
As in the proof of Proposition 5.1.5, one can show that

∂

∂t
(F gt ◦Rmgt) ≤ ∆gt(F gt ◦Rmgt). (6.17)

Furthermore, the scale-invariance of F yields for all R ∈ Ω that

dFR(R) = 0. (6.18)
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Namely, let R ∈ Ω and F (R) =: c. Then R is contained in ∂F−1((−∞, c]), which is a cone, since
F is scale-invariant, and therefore contains the curve s 7→ c(s) := R + sR for s ∈ (−ε, ε) with
ε < 1. Now,

dFR(R) = d

ds

∣∣∣∣
s=0

F (c(s)) = d

ds

∣∣∣∣
s=0

F ((1 + s)R) = d

ds

∣∣∣∣
s=0

F (R) = 0.

Therefore, on the other hand, this together with the evolution equation of a gradient Ricci soliton
(see Lemma 6.1.11) and the fact that F gt is invariant under parallel transport for all t ∈ [0, T )
(see Lemma 2.1.14) gives for t ∈ [0, T ), x ∈M and p ∈ Ogt

x that

∂

∂t
F gt(Rmgt(x)) 6.1.14= dF gt

Rmgt (x)

(
∇ ∂
∂t
Rmgt(x)v

)
6.1.11= 2λ

σ(t)dF
gt
Rmgt (x)(Rmgt(x)v) + dF gt

Rmgt (x)(∇
gt
gradgtft|x

Rmgt
v)

= 2λ
σ(t)dFp

∗Rmgt (x)(p∗Rmgt(x)) + dF gt
Rmgt (x)(∇

gt
gradgtft|x

Rmgt
v)

(6.18)= dF gt
Rmgt (x)(∇

gt
gradgtft|x

Rmgt
v)

= ∂gradgtft|x
(F gt ◦Rmgt).

(6.19)

Consequently, for t = 0 the equations (6.17) and (6.19) provide that

∆g0(F g0 ◦Rmg0) ≥ ∂gradg0f0(F g0 ◦Rmg0).

6.1.2 Rigidity of compact Ricci solitons
Using the weak and strong parabolic maximum principles for functions, in this section we show a
first rigidity result for compact Ricci solitons.

Theorem 6.1.16. Let Ω ⊆ An \ {0} be an open and O(n)-invariant cone and F : Ω→ R a scale-
and O(n)-invariant, smooth and strictly Bianchi-convex function, the sublevel sets of which are
invariant under the ordinary differential equation (2.4). Then all n-dimensional compact Ricci
solitons (M, g0) such that g0 satisfies Ω are locally symmetric.

Proof. Let g(t) = σ(t)ψ∗t g0, t ∈ [0, T ), be the solution to the Ricci flow corresponding to (M, g0)
with g(0) = g0 and write gt := g(t) throughout the proof. As in the proof of Lemma 6.1.15, we
find that F g ◦Rmg : M × [0, T )→ R satisfies the heat inequality

∂

∂t
(F gt ◦Rmgt) ≤ ∆gt(F gt ◦Rmgt).

Since M is compact and F g ◦ Rmg ∈ C∞(M × [0, T ),R), we can exhaust the weak and strong
parabolic maximum principles in order to show that the function F g ◦Rmg is actually a solution to
the heat equation. For this, let x ∈M , t ∈ [0, T ) and p ∈ Ogt

x . Moreover, set q :=
√
σ(t)dψt|x ◦ p.

Then q ∈ Og0
ψt(x) and the scale-invariance of F gives

F gt(Rmgt(x)) = F (p∗Rmgt(x)) (6.5)= F (σ(t)(dψt|x ◦ p)∗Rmg0(ψt(x)))

= F

(
1
σ(t)q

∗Rmg0(ψt(x))
)

= F (q∗Rmg0(ψt(x))) = F g0(Rmg0(ψt(x))).
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Maximizing this over M yields for all t ∈ [0, T ) that

max
x∈M

F gt(Rmgt(x)) = max
x∈M

F g0(Rmg0(ψt(x))) = max
x∈M

F g0(Rmg0(x)) = sup
[0,T )×M

F g ◦Rmg,

where in the last step we applied the weak parabolic maximum principle (see Remark 4.1.2), that
is the supremum of F g ◦Rmg is attained in M × {0}. In particular, this is true for all t ∈ (0, T ).
Thus, the strong maximum principle (see Remark 4.1.3) implies that F g ◦ Rmg is constant and
in particular a solution to the heat equation. As in the proof of Proposition 5.1.5, this leads to
∇gtRmgt ≡ 0, hence (M, gt) being locally symmetric, for all t ∈ [0, T ).

Remark 6.1.17. In Lemma 6.1.15 and consequently Theorem 6.1.16, the condition that F is
strictly Bianchi-convex and its sublevel sets are invariant under the ordinary differential equation
(2.4) can be relaxed as follows: Due to the scale-invariance of F and Remark 6.1.12, the function
F needs only to be strictly Bianchi-convex when restricted to C(M, g0) and we only need to have
that

dFR(R2 +R#) ≤ 0

for R ∈ C(M, g0).

In the next section, we want to prove a similar result for non-compact Ricci solitons.

6.2 Shrinking gradient Ricci solitons
In this section, we have a closer look at shrinking gradient Ricci solitons. They are of special
interest as they arise as possible singularity models for the Ricci flow. More precisely, suppose
that g(t), t ∈ [0, T ) with T < ∞, is a maximal solution to the Ricci flow and that there exists a
constant C > 0 such that for all t ∈ [0, T )

sup
x∈M
‖Rmg(t)(x)‖g(t) ≤

C

T − t
,

i.e. g(t) is a so-called Type I Ricci flow, then for every “singular” point p ∈ M , there exists a
sequence (λi)i∈N tending to infinity as i → ∞ such that the rescaled Ricci flows (M, gi(t), p),
t ∈ [−λiT, 0), where

gi(t) := λig
(
T + t

λi

)
,

subconverge to a non-flat shrinking gradient Ricci soliton as i→∞ [EMT11].

Remark 6.2.1. If (M, g, f, λ) is a shrinking gradient Ricci soliton, then
(
M, 2λg, f, 1

2

)
is a shrink-

ing gradient Ricci soliton with the same potential function. Namely,

ric2λg + Hess2λgf = ricg + Hessgf = λg = 1
2(2λg).

Lemma 6.2.2 ([Zha09b]). Let (M, g, f, λ) be a complete shrinking gradient Ricci soliton. Then
scalg ≥ 0.

Lemma 6.2.3 ([Ham95]). Let (M, g, f, λ) be a complete shrinking gradient Ricci soliton. Then

scalg + ‖gradgf‖2
g − 2λf ≡ c

for a constant c.
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For the proof, see for example [Cao10, Lemma 1.1].

For f̃ := f + c
2λ , we have that

scalg + ‖gradgf̃‖2
g − 2λf̃ ≡ 0. (6.20)

Due to Lemma 6.2.2, the normalization f̃ of f is non-negative.

The asymptotic behaviour of the potential function of a complete non-compact shrinking gradient
Ricci soliton is as follows.

Lemma 6.2.4 ([CZ10, Thm. 1.1]). Let (Mn, g, f, 1
2) be a complete non-compact shrinking gradient

Ricci soliton satisfying (6.20). Then

1
4(r(x)− c1)2 ≤ f(x) ≤ 1

4(r(x) + c2)2,

where c1, c2 > 0 depend only on n and the geometry of g on B1(x0). Here, r := d(x0, ·) denotes
the distance function from a fixed point x0 ∈M .

6.2.1 Rigidity in the general case
In this section, we prove a second rigidity result for complete shrinking gradient Ricci solitons.

Remark 6.2.5. For the convenience of the reader, we briefly recall the divergence theorem: For
compact sets B with smooth boundary, continuously differentiable functions f, g and continuously
differentiable vector fields X defined on a neighborhood of B, we have that∫

∂B
fg〈X,n〉dA =

∫
B

div(fgX)dV =
∫
B
g∂Xf + f∂Xg + fgdiv(X)dV,

where n denotes the outward pointing unit normal on ∂B.

Lemma 6.2.6. Let (M, g, f, λ) be a complete shrinking gradient Ricci soliton. Then for all smooth
functions u : M → R with |u(x)| ≤ C for all x ∈ M for some constant C ≥ 0, we have that
∆fu ≥ 0 implies that ∆fu = 0. Here, the f -Laplacian ∆f is defined as in Lemma 6.1.15.

Proof. By f̃ = f+d, we denote the normalization of the potential function f . Moreover, for r ∈ R
we define the set D(r) := {x ∈M | f̃(x) ≤ r}, which is compact due to Lemma 6.2.4 and Remark
6.2.1. Let u : M → R be as in the statement. Then for r ∈ R, we have that

h(r) :=
∫
D(r)
〈gradu, gradf̃〉e−f̃dV

=
∫ r

0

∫
∂D(s)
〈gradu,n〉e−f̃dAds

by the co-area formula [SY94], where n := gradf̃
‖gradf̃‖ denotes the outward pointing unit normal on

the boundary ∂D(s). Since ∆f = ∆f̃ , by assumption we have that

h′(r) =
∫
∂D(r)
〈gradu,n〉e−f̃dA 6.2.5=

∫
D(r)

div(e−f̃gradu)dV =
∫
D(r)

∆f̃u︸ ︷︷ ︸
≥0

e−f̃dV ≥ 0.
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Combining the soliton equations (6.3) and (6.20) yields that λn− 2λf̃ = ∆f̃ − ‖gradf̃‖2. Hence,
on the other hand

h(r) =
∫
D(r)

(
div

(
ue−f̃gradf̃

)
− u

(
∆f̃ − ‖gradf̃‖2

)
e−f̃

)
dV

=
∫
D(r)

div
(
ue−f̃gradf̃

)
dV − λ

∫
D(r)

u
(
n− 2f̃

)
e−f̃dV

6.2.5=
∫
∂D(r)

u〈gradf̃ ,n〉e−f̃dA− λ
∫
D(r)

u
(
n− 2f̃

)
e−f̃dV.

For the first term on the right-hand side, we obtain that∣∣∣∣ ∫
∂D(r)

u〈gradf̃ ,n〉e−f̃dA
∣∣∣∣ ≤ C

∫
∂D(r)
〈gradf̃ ,n〉e−f̃dA

6.2.5= C
∫
D(r)

div(e−f̃gradf̃)dV

= C
∫
D(r)

(
∆f̃ − ‖gradf̃‖2

)
e−f̃dV

= Cλ
∫
D(r)

(
n− 2f̃

)
e−f̃dV.

In total, using that f̃ ≥ 0, we find that

h(r) ≤ |h(r)| ≤ 2Cλ
∫
D(r)

(
n− 2f̃

)
e−f̃dV

≤ 2Cλne−d
∫
D(r)

e−fdV

≤ 2Cλne−d
∫
M
e−fdV.

By [CZ10, Corollary 1.1], the weighted volume
∫
M e−fdV of M is finite, hence h is bounded

from above. Since additionally h is monotonously increasing, there exists a sequence (ri)i∈N with
limi→∞ ri =∞ such that

0 = lim
i→∞

h′(ri) =
∫
M

∆f̃ue
−f̃dV.

This implies that ∆fu = ∆f̃u = 0, since the integrand is non-negative.

Remark 6.2.7. Due to Sard’s theorem and the preimage theorem, the boundary ∂D(r) is smooth
for almost all r ∈ R. In the proof of Lemma 6.2.6, the equations derived by applying the divergence
theorem therefore only hold true for almost all r. However, by continuity reasons, they are correct
for all r.

Corollary 6.2.8. Let Ω ⊆ An \ {0} be an open and O(n)-invariant cone and F : Ω→ R a scale-
and O(n)-invariant, smooth, bounded and Bianchi-convex function, the sublevel sets of which are
invariant under the ordinary differential equation (2.4). Then for any n-dimensional complete
shrinking gradient Ricci soliton (M, g, f, λ) such that g satisfies Ω we have that

∆f (F g ◦Rmg) = 0.

Proof. This follows directly from Lemma 6.1.15 and Lemma 6.2.6.
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Theorem 6.2.9. Let Ω ⊆ An\{0} be an open and O(n)-invariant cone and F : Ω→ R a scale- and
O(n)-invariant, smooth, bounded and strictly Bianchi-convex function, the sublevel sets of which
are invariant under the ordinary differential equation (2.4). Then all n-dimensional complete
shrinking gradient Ricci solitons (M, g, f, λ) such that g satisfies Ω are locally symmetric.

Remark 6.2.10. Note that the assumptions in Theorem 6.2.9 can be relaxed as in Remark 6.1.17
and, in addition, F needs only to be bounded on C(M, g). Furthermore, if C(M, g) is contained in
a closed non-trivial sublevel set F−1((−∞, c]) 6= Ω of F , then F−1((−∞, c])∩{R ∈ An | ‖R‖g = 1}
is compact, hence due to its scale-invariance, F is bounded on F−1((−∞, c]). Therefore, in this
case, the boundedness assumption on F in Theorem 6.2.9 can be removed as well.

Proof. From Corollary 6.2.8, we know that ∆f (F g ◦ Rmg) = 0. Therefore, the proof of Lemma
6.1.15 yields that

n∑
i=1

Hessp∗Rmg(x)F
(
p∗∇g

ei
Rmg(x), p∗∇g

ei
Rmg(x)

)
= 0

for x ∈ M , where (e1, . . . , en) is an orthonormal basis of TxM and p ∈ Og
x. Since F is strictly

Bianchi-convex, this shows that ∇gRmg ≡ 0.

Remark 6.2.11. If a Riemannian manifold (M, g) is locally symmetric, we find that in particular
the covariant derivative of the Weyl part of the Riemannian curvature tensor vanishes, which
implies that its divergence is zero. By [FLGR11] and [MS13], this shows that all n-dimensional
locally symmetric complete shrinking gradient Ricci solitons are either Einstein or finite quotients
of E × Rk, where k > 0, E is an (n − k)-dimensional Einstein manifold and Rk is the Gaussian
shrinking soliton.

Remark 6.2.12. In Theorem 6.2.9, one can relax the condition that Ω and F are O(n)-invariant
and require invariance under SO(n) or U(n2 ) (if n is even) instead. In that case, the Ricci soliton
(M, g) in question needs to be orientable respectively Kähler. Here, one uses the fact that Kähler
manifolds stay Kähler under the Ricci flow.

6.3 Application
A first step into the direction of finding functions that satisfy the assumptions of Theorem 6.1.16
respectively Theorem 6.2.9 is to find one-parameter families of strictly convex cones in An which
are invariant under the ordinary differential equation (2.4). Constructing a function which has the
sets of such a family as sublevel sets, reparametrizing and restricting it appropriately provides a
scale-invariant strictly Bianchi-convex function (see Theorem 5.2.1). In this section, we give two
examples of such families and thereby derive two explicit rigidity results for complete shrinking
gradient Ricci solitons, and as a special case for complete Einstein manifolds.

6.3.1 The cone Bn

To obtain explicit applications of theorems 6.1.16 and 6.2.9, we will need to apply the reparametriza-
tion theorem 5.2.1. Therefore in this section, we want to have a closer look at the cone

Bn =
{
R ∈ An | R|Λ2(v⊥) 6≡ 0 for all v ∈ Rn \ {0}

}
,

where the restriction on Λ2(v⊥) is meant in the endomorphism sense.
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Remark 6.3.1. The cone Bn is open and dense in An.

Remark 6.3.2. Notice that, by Lemma 3.2.1, the complement Bc3 of B3 is exactly the set of
singular symmetric 3 × 3-matrices. Moreover, analogously to the three-dimensional case (see
Remark 3.2.3), we have that the tuple (T, 0, . . . , 0) ∈ Ann satisfies the second Bianchi identity if
and only if T is contained in Bcn. In this sense, in arbitrary dimensions, elements of Bcn are a
natural generalization of singular matrices in A3.

Definition 6.3.3. For ω, η ∈ Λ2(Rn)∗, the symmetric tensor product ω � η of ω and η is defined
as follows:

ω � η := ω ⊗ η + η ⊗ ω,

that is for µ, ν ∈ Λ2Rn, we have that

(ω � η)(µ, ν) = ω(µ)η(ν) + η(µ)ω(ν).

Remark 6.3.4. Let R ∈ Bcn and v ∈ Rn \ {0} with R|Λ2(v⊥) ≡ 0. Let further (e1, . . . , en) be
an orthonormal basis of Rn with e1 = v and (e1, . . . , en) the corresponding dual basis. Then
R = ∑

i<j,k<lRijkle
i ∧ ej � ek ∧ el and for p, q 6= 1, we obtain that

0 = R(ep ∧ eq) =
∑

i<j,k<l

Rijkl

(
(δipδjq − δiqδjp)ek ∧ el + (δkpδlq − δkq δlp)ei ∧ ej

)
= 2

∑
i<j

(Rpqij −Rqpij)ei ∧ ej = 4
∑
i<j

Rpqije
i ∧ ej.

Since (ei ∧ ej)i<j is a basis of Λ2(Rn)∗, this yields that Rpqij = 0 for i < j. Due to the symmetry
of R, all components Rijkl with 1 /∈ {i, j} or 1 /∈ {k, l} are zero. Consequently, we have that

R =
n∑

i,j=2
R1i1je

1 ∧ ei � e1 ∧ ej.

Definition 6.3.5. We call an algebraic curvature tensor R ∈ An to be of type (D), if

R = c
n∑
i=2

e1 ∧ ei � e1 ∧ ei

for some suitable orthonormal basis (e1, . . . , en) of (Rn)∗ and c ∈ R.

In order to understand the geometric meaning of the cone Bn a bit better, subsequently we give
some properties of the complement Bcn of Bn.

Lemma 6.3.6. For R ∈ Bcn with scal(R) > 0, we have that

^(R, I) ≥ arctan
√n− 2

2

 .
Equality holds if and only if R is of type (D). Here, I denotes the identity in An.

Proof. Let R ∈ Bcn and v ∈ Rn \{0} with R|Λ2(v⊥) ≡ 0. Let further (e1, . . . , en) be an orthonormal
basis of Rn with e1 = v and (e1, . . . , en) the corresponding dual basis. In the following computation,
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we consider R as (0,4)-tensor, that is R = ∑n
i,j,k,l=1 Rijkle

i ⊗ ej ⊗ ej ⊗ ek. Remembering Section
1.1 and Remark 6.3.4, we find that

scal(R)
1.1.11,
1.1.8=

n∑
i,j=1

Rijij
6.3.4= 2

n∑
i=2

R1i1i (6.21)

and therefore

‖R−RI‖2 = ‖R‖2 − ‖RI‖2

1.1.16=
n∑

i,j,k,l=1
Rijkl

2 − 2
n(n− 1)scal(R)2

6.3.4= 4
n∑

i,j=2
R1i1j

2 − 8
n(n− 1)

(
n∑
i=2

R1i1i

)2

≥ 4
n∑
i=2

R1i1i
2 − 8

n(n− 1)

(
n∑
i=2

R1i1i

)2

≥ 4
n− 1

(
n∑
i=2

R1i1i

)2

− 8
n(n− 1)

(
n∑
i=2

R1i1i

)2

= 4n− 8
n(n− 1)

(
n∑
i=2

R1i1i

)2

= n− 2
n(n− 1)scal(R)2

1.1.16= n− 2
2 ‖RI‖2.

(6.22)

Since scal(R) > 0, i.e. ^(R, I) < π
2 , it follows that

tan(^(R, I)) = ‖R−RI‖
‖RI‖

≥
√
n− 2

2 . (6.23)

The first inequality in (6.22) is an equality if and only if R1i1j = 0 for all i 6= j, whereas by
Cauchy-Schwarz, the second inequality is an equality if and only if there is a constant c ∈ R such
that R1i1i = c for all i = 2, . . . , n. Hence, in (6.23) equality holds for

R = c
n∑
i=2

e1 ∧ ei � e1 ∧ ei.

Lemma 6.3.7. For R ∈ Bcn, we have that

‖R‖2 ≥ 4
n
‖ric(R)‖2.

Equality holds if and only if R is of type (D).
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Proof. Let R ∈ Bcn be as in the proof of Lemma 6.3.6. Then, by Remark 6.3.4, we have that

‖ric(R)‖2 =
n∑

i,j=1

(
n∑
k=1

Rikjk

)2

=
(

n∑
k=2

R1k1k

)2

+ 2
n∑
i=2

(
n∑
k=2

Rik1k

)2

︸ ︷︷ ︸
=0

+
n∑

i,j=2

(
n∑
k=1

Rikjk

)2

=
(

n∑
k=2

R1k1k

)2

+
n∑

i,j=2
Ri1j1

2,

hence by setting θ = n−1
n

that

‖R‖2 =
n∑

i,j,k,l=1
Rijkl

2 = 4
n∑

i,j=2
R1i1j

2 = 4
n∑
i=2

R1i1i
2 + 4

∑
i6=j

R1i1j
2

= 4θ
n∑
i=2

R1i1i
2 + 4(1− θ)

n∑
i=2

R1i1i
2 + 4

∑
i6=j

R1i1j
2

≥ 4θ
n− 1

(
n∑
i=2

R1i1i

)2

+ 4(1− θ)
n∑

i,j=2
R1i1j

2

= 4
n
‖ric(R)‖2.

Here, equality holds if and only if R1i1j = 0 for i 6= j and R1i1i = c for i = 2, . . . , n for some
constant c ∈ R, i.e. if and only if R is of type (D).

An algebraic curvature tensor R ∈ An is called Einstein, if there is some λ ∈ R such that
ric(R) = λ · id, that is if ric0(R) = 0. We refer to λ as the Einstein constant of R.

Lemma 6.3.8. For n ≥ 3, we have that

{R ∈ An \ {0} | R is Einstein} ⊆ Bn.

Proof. Suppose there is an R ∈ Bcn with R 6= 0 and ric(R) = λid for some λ ∈ R. Let R be as in
the proof of Lemma 6.3.6. Since ric(R)ij = ∑n

k=1Rikjk for i, j = 1, . . . , n and R ∈ Bcn, we obtain
that

λ = ric(R)ii = Ri1i1 = R1i1i

for i = 2, . . . , n and therefore that

λ = ric(R)11 =
n∑
k=2

R1k1k = (n− 1)λ.

This, however, is a contradiction, since n ≥ 3 and λ 6= 0. Indeed, if we had that λ = 0, then
ric(R) = 0, which would imply that 0 = ric(R)ij = Ri1j1 for i, j 6= 1. Hence, by Remark 6.3.4,
this would lead to R = 0.

Remark 6.3.9. All algebraic curvature tensors in A2 are Einstein, whereas B2 = ∅.
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6.3.2 Application 1
For n ≥ 3 and a ∈ [0, n4 ], we consider the family of scale-invariant sets

Ωa :=
{
R ∈ An

∣∣∣∣ (n− 2
4 + a

)
‖R‖2 ≤ ‖ric(R)‖2 and scal(R) > 0

}
.

Remark 6.3.10. For a > b, we have that Ωa ⊆ Ωb. More precisely, from Remark 1.1.16, we
obtain that (

n− 2
4 + a

)
‖R‖2 ≤ ‖ric(R)‖2

is equivalent to

4a− n
4 ‖RI‖2 + a‖Rric0‖2 +

(
n− 2

4 + a
)
‖RW‖2 ≤ 0.

This immediately yields that for a > n
4 the sets Ωa are empty. For a = n

4 , we have that Ωa = R>0·I,
where I denotes the identity in An. Moreover, for a ≥ 0 the cones Ωa are convex and in the case
that a > 0 even strictly convex. For a = 0, we have that

Ω0
1.1.16=

{
R ∈ An

∣∣∣∣ n− 2
n
‖RW‖2 ≤ ‖RI‖2 and tr(R) > 0

}

=

R ∈ An
∣∣∣∣∣∣ ^(RI +RW , I) ≤ arctan

√n− 2
n

 and tr(R) > 0

 .
Lemma 6.3.11. For a ∈ (1

2 ,
n
4 ], we have that Ωa ⊆ Bn. Moreover, if R ∈ An is of type (D) with

scal(R) > 0, then we have that R ∈ ∂Ω 1
2
∩ Bcn.

Proof. Let a ∈ (1
2 ,

n
4 ] and assume that there is an R ∈ Ωa ∩ Bcn. Then we have that

‖ric(R)‖2 ≥
(
n− 2

4 + a
)
‖R‖2 6.3.7

≥
(
n− 2

4 + a
) 4
n
‖ric(R)‖2.

Therefore, either ‖ric(R)‖ = 0, which is a contradiction to scal(R) > 0, or a ≤ 1
2 , in contradiction

to the assumption. Hence, Ωa ⊆ Bn.
Moreover, due to Lemma 6.3.7, we find that R as in the statement of Lemma 6.3.11 is contained
in Bcn as well as in ∂Ω 1

2
, since scal(R) > 0.

On the set scal+ := {R ∈ An | scal(R) > 0}, we can define the O(n)-invariant function

F : scal+ → R : R 7→ ‖R‖2

‖ric(R)‖2 . (6.24)

Due to scal(R) > 0, thus ric(R) 6= 0, for all R ∈ scal+, this function is well defined. Restricted to
the open cone Ω := ∪a>0Ωa, F is bounded, more specifically

0 ≤ F (R) < 4
n− 2
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for R ∈ Ω, and its sublevel sets are given by Ωa = F−1((−∞, 4
n−2+4a ]) for a > 0 and thereby are

strictly convex cones. Moreover, F is smooth and for each R ∈ scal+ its differential is given by

dFR(S) = 2
‖ric(R)‖2

(
〈R, S〉 − F (R)〈ric(R), ric(S)〉

)
(1.6)= 2
‖ric(R)‖2

((
2

n(n− 1) −
F (R)
n

)
scal(R)scal(S)

+
( 4
n− 2 − F (R)

)
〈ric0(R), ric0(S)〉+ 〈RW , SW 〉

) (6.25)

for all S ∈ TRscal+ ∼= An. Here, we used Remark 1.1.16, ric(R) = ric0(R) + 1
n
scal(R)id and

〈ric0(R), id〉 = tr(ric0(R)) = 0. For the identity I, we find that F (I) = 2
n−1 , since ‖I‖

2 = n(n−1)
2

and ric(I) = n−1
2 id. Using (6.25), this directly leads to dFI = 0. The next lemma shows that the

positive multiples of I are the only points where the differential of F vanishes.

Lemma 6.3.12. For R ∈ scal+ with R /∈ R>0I, we have that dFR 6= 0.

Proof. Let R ∈ scal+ with R /∈ R>0I. Then either RW 6= 0 or Rric0 6= 0. If RW 6= 0, we
set S := RW . Then by definition, we have that ric(S) = 0, hence scal(S) = 0 and therefore
ric0(S) = 0. This yields that

dFR(S) = 2‖RW‖2

‖ric(R)‖2 > 0.

Conversely, if Rric0 6= 0, we put S := Rric0 . Then SW = 0 and since ric(Rric0) = ric0(R), we again
find that scal(S) = 0 and thus that ric0(S) = ric(S) = ric0(R). Consequently,

dFR(S) = 2
‖ric(R)‖2

( 4
n− 2 − F (R)

)
‖ric0(R)‖2

(1.3)= 2
‖ric(R)‖2

(
1− n− 2

4 F (R)
)

︸ ︷︷ ︸
>0

‖Rric0‖2 > 0.

This leads to dFR 6= 0 in any case.

Furthermore, we notice that the Hessian of F at R is given by

HessRF (S, S) = d

dt

∣∣∣∣
t=0
dFR+tS(S)

= 2
‖ric(R)‖2

(
‖S‖2 − 2dFR(S)〈ric(R), ric(S)〉 − F (R)‖ric(S)‖2

) (6.26)

for S ∈ TRscal+.
As we have already seen in Lemma 5.2.8, the Hessian of a scale-invariant function at a point R is
always zero restricted to the space RR. However, the following lemma shows that HessIF is “as
positive definite as possible”.

Lemma 6.3.13. For all S ∈ An with S ⊥ I, we have that

HessIF (S, S) ≥ 4
(n− 1)3‖S‖

2.

Moreover, HessIF is diagonal with respect to the decomposition (1.2) of An.
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Proof. Let S ∈ An with S ⊥ I. Then SI = 0, hence scal(S) = 0 and therefore

‖S‖2 (1.5)= 4
n− 2‖ric0(S)‖2 + ‖SW‖2. (6.27)

Since dFI = 0 and F (I) = 2
n−1 , we obtain that

HessIF (S, S) (6.26)= 2
‖ric(I)‖2

(
‖S‖2 − 2

n− 1‖ric(S)‖2
)

(1.4),(1.5)= 8
n(n− 1)2

(
‖SW‖2 + 2n

(n− 1)(n− 2)‖ric0(S)‖2
)

(6.27)= 8
n(n− 1)2

(
n− 2

2(n− 1)‖SW‖
2 + n

2(n− 1)‖S‖
2
)

≥ 4
(n− 1)3‖S‖

2.

(6.28)

By polarization of the last equality in (6.28), we immediately obtain that HessIF (I, S) = 0 and
polarizing the first equality in (6.28) yields that HessIF (R,W ) = 0 for W ∈ W and R ⊥ W .

Remark 6.3.14. In dimension n = 3, the closures of the sets Ωa coincide with the sets discussed
in Section 3.2.2 for c = 0. More precisely, Ωa = Ωa ∪ {0} = Ω̃ 1

4a ,0
. (To show this, notice that

W = {0} in dimension 3.) In Proposition 3.2.38, we have already seen that for a ≤ 3
4 these sets

are invariant under the ordinary differential equation (2.4).
Analogously to Proposition 3.2.34, it should be possible to show that for certain a and c ∈ R the
sets {

R ∈ An
∣∣∣∣ (n− 2

4 + a
)
‖R‖2 − ‖ric(R)‖2 ≤ c and scal(R) ≥ 0

}
are strictly Bianchi-convex.

Remark 6.3.15. An unpublished conjecture of Christoph Böhm and Burkhard Wilking is that
for n ≥ 12 the cones Ωa are invariant under the ordinary differential equation (2.4) for a ∈ [0, n4 ].

Some evidence for this is the following.

Lemma 6.3.16. There is some ε > 0 such that Ωa respectively Ωa are invariant under the ordinary
differential equation (2.4) for a ∈ [n4 − ε,

n
4 ].

Proof. First of all, we consider the function

G : scal+ → R : R 7→ dFR(Φ(R)),

where Φ(R) := R2 +R#, and show that restricted to Ωa it is non-positive for a near n
4 . To this end,

we notice that I2 + I# = (n− 1)I (see [BW08, Lemma 2.1]. Therefore, G(I) = (n− 1)dFI(I) = 0,
since F is scale-invariant. Moreover, since dFI = 0, for R ∈ scal+ we find that

dGI(R) = d

ds

∣∣∣∣
s=0

G(I + sR) = d

ds

∣∣∣∣
s=0

dFI+sR(Φ(I + sR))

= HessIF (R,Φ(I)) = (n− 1)HessIF (R, I) 6.3.13= 0,
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where in the last step we applied Lemma 6.3.13. Hence, dGI = 0, which means that I is a critical
point of G. Again using [BW08, Lemma 2.1], we observe that

d

ds

∣∣∣∣
s=0

Φ(I + sR) = 2(R + I#R) = 2(n− 1)RI + (n− 2)Rric0 . (6.29)

Moreover, (6.26) yields that

HessIF (RW , RW ) (6.26)= 2
‖ric(I)‖2‖RW‖2 = 8

n(n− 1)2‖RW‖2 (6.30)

and since ric(Rric0) = ric0(R) that

HessIF (Rric0 , Rric0) (6.26)= 8
n(n− 1)2

(
‖Rric0‖2 − 2

n− 1‖ric(Rric0)‖2
)

(1.3)= 4
(n− 1)3‖Rric0‖2. (6.31)

This together with Lemma 6.3.13 yields that for R ∈ An, the Hessian of G at I is given by

HessIG(R,R) = d2

ds2

∣∣∣∣
s=0

G(I + sR) = d2

ds2

∣∣∣∣
s=0

dFI+sR(Φ(I + sR))

= D3FI(R,R,Φ(I)) + 2HessIF
(
R,

d

ds

∣∣∣∣
s=0

Φ(I + sR)
)

(6.29),6.3.13= d

ds

∣∣∣∣
s=0

HessI+sΦ(I)F (R,R) + 2(n− 2)HessIF (Rric0 , Rric0)

= d

ds

∣∣∣∣
s=0

1
(1 + (n− 1)s)2 HessIF (R,R) + 2(n− 2)HessIF (Rric0 , Rric0)

= −2(n− 1)HessIF (R,R) + 2(n− 2)HessIF (Rric0 , Rric0)
6.3.13= −2HessIF (Rric0 , Rric0)− 2(n− 1)HessIF (RW , RW )

(6.30),(6.31)= − 8
(n− 1)3‖Rric0‖2 − 16

n(n− 1)‖RW‖2

≤ 0.

In total, we have shown that G(I) = 0, dGI = 0 and that HessIG is negative definite on I⊥.
Consequently, I is a local maximum of G, which means that there is a neighborhood U ⊆ scal+
of I such that G|U ≤ 0. Since G is scale- and O(n)-invariant, without loss of generality we may
assume that U is scale- and O(n)-invariant as well. It follows that there is a ε > 0 such that
G|Ωn

4−ε
≤ 0.

Now, let a ∈ [n4 −ε,
n
4 ], R0 ∈ ∂Ωa = ∂F−1((−∞, 4

n−2+4a ]) ⊆ scal+ and R : [0, δ]→ An be a solution
to the ordinary differential equation (2.4) with R(0) = R0. From Example 2.3.5 we know that
scal+ is invariant under (2.4), hence R(t) ∈ scal+ for all t ∈ [0, δ]. It follows that F ◦R is defined
and we have that

d

dt

∣∣∣∣
t=0
F (R(t)) = dFR0(Φ(R0)) = G(R0) ≤ 0,

which means that F (R(t)) ≤ F (R0) = 4
n−2+4a and equivalently

R(t) ∈ F−1
((
−∞, 4

n− 2 + 4a

])
= Ωa ⊆ Ωa = Ωa ∪ {0}
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for small t. Comparing Definition 2.2.1, this yields that

Φ(R0) = R′(0) ∈ TR0Ωa. (6.32)

Since clearly Φ(0) = 0 ∈ T0Ωa, (6.32) holds true for all R0 ∈ ∂Ωa. Consequently, Proposition 2.3.3
implies that Ωa is invariant under (2.4). Moreover, Ωa is invariant under (2.4). Namely, if there
was a solutions R : [0, δ] → An of (2.4) with R(0) ∈ Ωa and R(t0) = 0 for some t0 ∈ [0, δ], then
by uniqueness of solutions of ordinary differential equations we had that R ≡ 0, in contradiction
to R(0) ∈ Ωa, thus R(0) 6= 0.

The following rigidity result is based on the conjecture of Böhm and Wilking (see Remark 6.3.15).

Theorem 6.3.17. For n ≥ 12, let (M, g) be an n-dimensional complete shrinking gradient Ricci
soliton with R>0 · C(M, g) ⊂ Ω∩Bn, where Ω = ∪a>0Ωa and the closure is taken in An \{0}. Then
(M, g) is locally symmetric.

Proof. By assumption, in An\{0}, the closed set R>0 · C(M, g) is contained in the open set Ω∩Bn.
Therefore, there exists an open neighborhood U of R>0 · C(M, g) such that U ⊂ Ω ∩ Bn. Since
Ω ∩ Bn is an O(n)-invariant cone, without loss of generality we may assume that U is O(n)- and
scale-invariant as well.

By Lemma 6.3.12, the only points where the differential of F vanishes are the positive multiples
of I. From Lemma 6.3.13, we know that HessIF |I⊥ is positive definite. Therefore, by the scale-
invariance of F (see Lemma 5.2.7), HessRF |R⊥ is positive definite for all R ∈ R>0I. Since the
function F : Ω → R is smooth and its sublevel sets are strictly convex cones, according to
Theorem 5.2.1 there exists a smooth function ϕ : R→ R with ϕ′ > 0 such that ϕ ◦ F |U is strictly
Bianchi-convex.

As it satisfies C(M, g), g also satisfies U , that is C(M, g) ⊂ U ⊂ Ω. Since the sublevel sets of
F : Ω→ R are conjectured to be invariant under the ordinary differential equation (2.4), Lemma
2.3.4 shows that in particular we have that dFR(R2 + R#) ≤ 0, hence d(ϕ ◦ F )R(R2 + R#) ≤ 0
(since ϕ′ > 0), for all R ∈ C(M, g). Consequently, we can apply Theorem 6.2.9 together with
Remark 6.1.17 to the smooth, bounded, strictly Bianchi-convex, scale- and O(n)-invariant function
ϕ ◦ F : U → R and obtain that (M, g) is locally symmetric.

Remark 6.3.18. For n ≥ 12, let (M, g) be an n-dimensional complete shrinking gradient Ricci
soliton with g satisfying Ωa for some a > 1

2 . Then according to Lemma 6.3.11, we automatically
have that R>0 · C(M, g) ⊂ Ω ∩ Bn. Thus, by Theorem 6.3.17, (M, g) is locally symmetric.

A direct consequence of Theorem 6.3.17 is the following.

Theorem 6.3.19. Let n ≥ 12. Then all n-dimensional complete Einstein manifolds (M, g) with
g satisfying Ωa for some a > 0 are locally symmetric.

Proof. Clearly, (M, g) is a complete shrinking gradient Ricci soliton. Let a > 0. Since C(M, g) ⊆
Ωa and, moreover, Ωa and {R ∈ An \{0} | R is Einstein} are closed cones (in An \{0}), according
to Lemma 6.3.8, we have that

R>0 · C(M, g) ⊆ Ωa ∩ {R ∈ An \ {0} | R is Einstein} ⊂ Ω ∩ Bn.

Therefore, Theorem 6.3.17 yields that (M, g) is locally symmetric.
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6.3.2.1 The Bryant soliton

In this section, we show that the assumption “shrinking” cannot be dropped in Theorem 6.3.17
(and consequently in Theorem 6.2.9 in dimension n ≥ 12).

The Bryant soliton (M, g, f, 0) is a complete, non-compact and steady gradient Ricci soliton,
where M = Rn and on M \ {0} ∼= (0,∞)× Sn−1 (via polar coordinates) g is the warped product
metric g = dt2 + w(t)gSn−1 , where t denotes the standard coordinate on (0,∞), (Sn−1, gSn−1) is
the unit sphere with constant sectional curvature 1 and w : (0,∞) → R satisfies w > 0 and is
given by a system of ordinary differential equations involving derivatives of the potential function
f . Moreover, limt→0w(t) = 0 and limt→0w

′(t) = 1 ensure that g can be smoothly extended to all
of Rn. For x ∈ Sn−1, with respect to an orthonormal basis (b1 = ∂

∂t
, b2, . . . , bn), where (b2, . . . , bn)

is an orthonormal basis of TxSn−1, we have that

Rmg(t, x)(b1 ∧ bi, b1 ∧ bi) = −2w
′′(t)
w(t) =: a(t)

Rmg(t, x)(bi ∧ bj, bi ∧ bj) = 21− w′(t)2

w(t)2 =: b(t)

for all t > 0 and i 6= j ∈ {2, . . . , n}. In other words, the sectional curvature of the Bryant soliton
for planes tangent to the radial direction is given by a

2 and for planes tangent to Sn−1 by b
2 . This

yields that for all (t, x) ∈ (0,∞) × Sn−1 and isometries p : Rn → T(t,x)M with p(e1) = ∂
∂t
, where

(e1, . . . , en) is an orthonormal basis of Rn, we have that

p∗Rmg(t, x) = a(t)D + b(t)(I −D),

where I denotes the identity in An (as in Remark 1.1.13) and D is of type (D) with respect
to (e1, . . . , en) (with c = 1 in Definition 6.3.5). Note that 2(I −D) is the Riemannian curvature
operator of R×Sn−1 together with the product metric, if one identifies ∂

∂t
with e1 and TxSn−1 with

e⊥1 for x ∈ Sn−1. Since the sectional curvatures of the Bryant soliton are known to be positive, we
find that a(t), b(t) > 0 for t > 0. Furthermore, a0 := limt→0 a(t) and b0 := limt→0 b(t) exist and
are positive.
The Bryant soliton is asymptotically cylindrical in the following sense: Let (xi)i∈N be a sequence in
(M, g) tending to infinity. Then there exists a sequence (λi)i∈N in R and isometries pi : Rn → TxiM ,
i ∈ N, such that

lim
i→∞

λip
∗
iRmg(xi) = 2(I −D), (6.33)

the Riemannian curvature operator of the cylinder R×Sn−1. Of course, this requires that pi(e1) =
∂
∂t

for i = 1, . . . , n. (For references of the above see for example [CCG+07].)

Lemma 6.3.20. There is an ε̃ > 0 such that b(t)
a(t) > ε̃ for all t > 0.

Proof. We suppose the opposite. Then there exists a sequence (ti)i∈N such that

lim
i→∞

b(ti)
a(ti)

= 0.

Case 1: The sequence (ti)i∈N is bounded. Then there exists a convergent subsequence (tik)k∈N. Set
t := limk→∞ tik . If t = 0, we have that

0 = lim
k→∞

b(tik)
a(tik)

=
lim
k→∞

b(tik)
lim
k→∞

a(tik)
> 0,
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since the limits in the numerator and denominator exist and are positive. This is a contradiction.
If t > 0, then due to continuity we have that

0 = lim
k→∞

b(tik)
a(tik)

= b(t)
a(t) ,

which implies that b(t) = 0. This a contradiction to b > 0.
Case 2: The sequence (ti)i∈N diverges. Let (xi)i∈N be a sequence in Sn−1. Then (ti, xi)i∈N tends to
infinity in R×Sn−1. Since the Bryant soliton is asymptotically cylindrical, there exists a sequence
(λi)i∈N in R and isometries pi : Rn → T(ti,xi)M , i ∈ N with (6.33). Hence,

2(I −D) = lim
i→∞

λip
∗
iRmg(ti, xi)

= lim
i→∞

λi
(
a(ti)D + b(ti)(I −D)

)
= lim

i→∞
λia(ti)

(
D + b(ti)

a(ti)
(I −D)

)

=
(

lim
i→∞

λia(ti)
)(

D + lim
i→∞

b(ti)
a(ti)

(I −D)
)

= cD,

where the forth equality holds, since the sequence (xiyi)i∈N, where xi := λia(ti) and yi := D +
b(ti)
a(ti)(I−D), is convergent (with limit I−D) and (yi)i∈N converges by assumption to D 6= 0, hence
limi→∞ xi =: c exists. This is a contradiction, since I,D are linearly independent (in the case that
c 6= −2) respectively to I 6= 0 (if c = −2).
Consequently, the statement is true.

Lemma 6.3.21. Let n ≥ 5. Then g satisfies Ωa for some a > 1
2 .

Proof. We consider the function

g : [0,∞)→ R : t 7→ F (D + t(I −D)) = 4 + 2(n− 2)t2
n+ 2(n− 2)t+ (n− 2)2t2

with F being the function defined in (6.24). Obviously, g(0) = 4
n
. Since n ≥ 4, we have that

g(t) < 4
n
for t > 0 and since n ≥ 5, that limt→∞ g(t) = 2

n−2 < 4
n
. Moreover, g has one local

minimum (at t = 1) and this is even global. Therefore, for all ε > 0 there exists some δ > 0 such
that g(t) ≤ 4

n
− δ for all t ≥ ε. (Namely, δ = 4

n
− g(ε).) In particular, there is some δ̃ > 0 such

that

g

(
b(t)
a(t)

)
≤ 4
n
− δ̃

for all t > 0, since by Lemma 6.3.20 we have that b(t)
a(t) > ε̃ for t > 0.

Now, set ε := n2δ̃
16−4nδ̃ > 0. Let (t, x) ∈ (0,∞)× Sn−1 and p : Rn → T(t,x)M be an isometry. Then

the scale-invariance of F and a > 0 imply that

F (p∗Rmg(t, x)) = F (a(t)D + b(t)(I −D)) = F

(
D + b(t)

a(t)(I −D)
)

= g

(
b(t)
a(t)

)

≤ 4
n
− δ̃ = 4

n+ 4ε.
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Since b0
a0
≥ ε̃, the same is true for t tending to 0. Together with the fact that the scalar curvature

of the Bryant soliton is positive for n ≥ 2, this shows that p∗Rmg(x) ∈ Ω 1
2 +ε for all x ∈ M , thus

C(M, g) ⊆ Ω 1
2 +ε, which means that g satisfies Ω 1

2 +ε.

Remark 6.3.22. Since the Bryant soliton is not locally symmetric, Lemma 6.3.21 shows that in
general Theorem 6.3.17 (and consequently Theorem 6.2.9 in dimension n ≥ 12) is false, if one
drops the assumption “shrinking” (see Remark 6.3.18).

6.3.3 Application 2
For n ≥ 3 and a ≥ 0, we consider the family of scale-invariant sets

Θa : =
{
R ∈ An

∣∣∣ a‖Rric0 +RW‖2 ≤ ‖RI‖2 and scal(R) > 0
}

=

R ∈ An
∣∣∣∣∣∣ ^(R, I) ≤ arctan

√1
a

 and scal(R) > 0

 ,
where I denotes the identity in An. Note that Θ0 = scal+ and Θ∞ = R>0I. For a > 0, the
cones Θa are strictly convex. In [Hui85, Theorem 3.1], Huisken shows that Θa is preserved by
the Ricci flow for a ≥ dn, where dn := (n−2)(n+1)

2 (although his proof works only in dimension
n ≥ 4 and for n = 5, he needs that d5 = 10). The constant dn is the smallest value a such that
Θa ⊆ {R ∈ An | R ≥ 0}, the cone of positive curvature operators. In dimension n ≥ 4, the author
expects that Θa is even invariant under the ordinary differential equation (2.4) for all a ≥ dn (in
dimension n = 3, see Remark 6.3.24 below). Some indication for this is the following.

Lemma 6.3.23. There exists an a0 > 0 such that Θa is invariant under the ordinary differential
equation (2.4) for a ≥ a0.

Proof. The proof works analogously to the proof of Lemma 6.3.16.

Remark 6.3.24. Notice that in dimension n = 3, the closures of the sets Θa coincide with the
sets discussed in Section 3.2.2 for c = 0. More precisely, Θa = Θa ∪ {0} = Ω̃ 1+a

3a ,0
. In Proposition

3.2.38, we have already seen that these sets are invariant under the ordinary differential equation
(2.4) for all a ≥ 0.

Lemma 6.3.25. For a > 2
n−2 , we have that Θa ⊆ Bn.

Proof. Let R ∈ Bcn. Then, by Lemma 6.3.6, we have that

^(R, I) ≥ arctan
√n− 2

2

 .
Hence, R /∈ Θa, which finishes the proof.

Next, we define the smooth and O(n)-invariant function

F : scal+ → R : R 7→ ‖Rric0 +RW‖2

‖RI‖2 . (6.34)
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For a > 0, its sublevel sets are the strictly convex cones F−1((−∞, a]) = Θ 1
a
. The differential of

F at R ∈ scal+ is given by

dFR(S) = 2
‖RI‖2

(
〈Rric0 +RW , Sric0 + SW 〉 − F (R)〈RI , SI〉

)
= 2
‖RI‖2

(
〈R, S〉 − (1 + F (R))〈RI , SI〉

)
for all S ∈ TRscal+. Since F (I) = 0, we immediately obtain that dFI = 0, which is clearly
contained in scal+, since scal(I) = n(n−1)

2 . The next lemma shows that the positive multiples of I
are the only points where the differential of F vanishes.

Lemma 6.3.26. For R ∈ scal+ with R /∈ R>0I, we have that dFR 6= 0.

Proof. Let R ∈ scal+ with R /∈ R>0I. Then either Rric0 6= 0 or RW 6= 0. If Rric0 6= 0, we find that

dFR(Rric0) = 2‖Rric0‖2

‖RI‖2 > 0

and if RW 6= 0, we have that

dFR(RW ) = 2‖RW‖2

‖RI‖2 > 0.

Hence, dFR 6= 0.

Moreover, one can calculate the Hessian of F at R to be

HessRF (S, S) = 2
‖RI‖2

(
‖S‖2 − 2dFR(S)〈RI , SI〉 − (1 + F (R))‖SI‖2

)
for S ∈ TRscal+. For R = I, we obtain that

HessIF (S, S) = 2
‖RI‖2

(
‖Sric0 + SW‖2

)
.

For S ⊥ I, this yields that

HessIF (S, S) = 2
‖RI‖2‖S‖

2.

Under the assumption that in dimension n ≥ 3 the cone Θa is invariant under the ordinary
differential equation (2.4) for a ≥ dn, the following theorem holds.

Theorem 6.3.27. Let n ≥ 3. Then all n-dimensional complete shrinking gradient Ricci solitons
(M, g) with g satisfying Θdn are locally symmetric.

Proof. Using the observations above, the proof works similarly to the proof of Theorem 6.3.17 after
exchanging Ω by Θ := ∪a> 2

n−2
Θa and U by the interior of Θa for some a ∈ ( 2

n−2 , dn). However, we
apply a slightly more general version of Theorem 6.2.9 (see Remark 6.1.17).





Appendix A

In order not to disturb the reading flow, we have outsourced a collection of some statements
we needed in the previous work. In this chapter, we finally give the results and corresponding
references respectively proofs.

Lemma A.0.1. Let (V, ‖ · ‖) be a normed vector space and Ω ⊆ V a closed scale-invariant subset.
Then ∂Ω is scale-invariant as well.

Proof. If v = 0 ∈ ∂Ω, then trivially tv = 0 ∈ ∂Ω for all t > 0. Now, let v ∈ ∂Ω with v 6= 0.
Suppose there is a t0 > 0 with t0v /∈ ∂Ω. Since Ω is scale-invariant, we have that t0v is in the
interior of Ω. Hence, there exists an ε > 0 such that Bε(t0v) is contained in the interior of Ω.
Since Ω is scale-invariant, it follows that R>0 · Bε(t0v) is contained in Ω. In particular, we have
that

B ε
t0

(v) = 1
t0
Bε(t0v) ⊆ Ω

and therefore v lies in the interior of Ω. This, however, is a contradiction to v ∈ ∂Ω.

From [Die76, 16.17.5] the following Proposition is known.

Proposition A.0.2. Let V be a vector bundle over a manifold M and let s1, . . . , sk ∈ Γ(M,V ∗)
be smooth sections of V ∗ being linear independent in each point p ∈M . Then

ker(s1) ∩ · · · ∩ ker(sk)

is a subbundle of V .

Remark A.0.3. Since si(p) : Vp → R is linear and non-zero for i = 1, 2, 3 and p ∈ M , the
dimension of its kernel is dim(Vp)− 1. Since {s1(p), . . . , sk(p)} is linear independent,

dim
(
ker(s1(p)) ∩ · · · ∩ ker(sk(p))

)
= dim(Vp)− k.
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