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Abstract

We review the construction of Jensen’s L-forcing which we apply to study the Π2

consequences of the theory ZFC + BMM + NSω1 is precipitous. Many natural con-
sequences for Hω2 of the theory ZFC + MM follow from this weaker theory. We give
a new characterization of the axiom (†) by isolating a class of stationary set pre-
serving L-forcings whose semiproperness is equivalent to (†). This characterization
is used to generalize work of Todorčević: we show that Rado’s Conjecture implies
the combinatorial axiom (†).
Furthermore we study genericity iterations beginning with a measurable Woodin
cardinal δ. We obtain a generalization of Woodin’s Σ2

1 absoluteness theorem for
c.c.c. forcings. We study the class of subsets of ω1 that extend to a class with
unique condensation and develop a genericity iteration for such sets in generic ex-
tensions. Such a genericity iteration is used to show absoluteness results. Moreover
we show that large cardinals imply that sets that extend to a class with unique
condensation are constructible from a real.
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Introduction

One of the main interests of modern set theory is absoluteness. Given two models
M,N of set theory a statement φ, possibly in a parameter from N ∩M , is absolute
between M and N if

M |= φ ⇐⇒ N |= φ.

Set theorists are curious about absoluteness phenomena for (at least) two reasons:
absoluteness theorems are central results of set theory and have also become im-
portant tools in the theory. We give an example: a classic absoluteness result is
Shoenfield’s Theorem, i.e. given two models M , N of set theory that both contain
ω1 as a subset and a real x, and given a Σ1

2(x) statement φ

M |= φ ⇐⇒ N |= φ.

Shoenfield’s Theorem is both, a central result of set theory and an important tool.
Often Shoenfield’s Theorem is applied in the context of forcing: if V [G] is a forcing
extension of V , then

V ≺Σ1
2
V [G].

Also in this thesis one of the main themes is absoluteness, especially in the sense
of forcing absoluteness. We produce absoluteness theorems and we also frequently
apply them. The most prominent we apply is the following: Bagaria discovered
that bounded forcing axioms can be rephrased as absoluteness axioms.

Theorem (Bagaria [Bag00]) Let Γ be a class of partial orders. The Bounded
Forcing Axiom for Γ holds if, and only if, for all P ∈ Γ

Hω2 ≺Σ1 H
V P

ω2
.

We especially consider the case Γ = {P ; P preserves stationary subsets of ω1},
then the Bounded Forcing Axiom for Γ is Bounded Martin’s Maximum, BMM.
We will now go into detail about the structure and contents: this thesis contains
work on stationary set preserving L-forcings and their application as well as work
on the extender algebra and Σ2

1-absoluteness. We give an introduction to both parts
of the thesis.

L-Forcing

Besides Bagaria’s reformulation of BMM, the main tool of the first part of this thesis
is R. Jensen’s L-forcing. In the early 90’s Jensen developed the first example of an L-
forcing in the handwritten notes [Jenb]. This first example was a partial order P with
the following properties: if GCH holds, κ is a measurable cardinal and U a normal
measure on κ, then P collapses κ to become ω1, makes cof(κ+V ) = ω and adds
a countable structure 〈H̄; Ū〉 that iterates in ωV

P

1 = κ many times to 〈HV
κ+V ;U〉.

Since then Jensen has substantially refined his theory of L-forcings: starting with
some large cardinal assumption (or possibly just ZFC), GCH, a regular cardinal κ
and some regular β > κ, an L-forcing adds a family of countable models Mi, i < κ
together with a commutative system πi,j : Mi → Mj , i ≤ j < κ of elementary
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embeddings such that the direct limit of the system 〈Mi, πi,j ; i ≤ j < κ〉 is HV
β .

In the example of the forcing P above, the embeddings πi,i+1 are the ultrapowers
formed with the measure Ū and its images respectively. Other L-forcings have
different types of embeddings; usually the type of the embedding is closely related
to the large cardinal assumption. The model M0 is not an element of V , so the
above type of L-forcing adds reals. Other generalizations of L-forcings do not add
reals, see [Jena]. In Chapter 2 of this thesis we will review the construction of
L-forcings that add reals; moreover we generalize Jensen’s construction to allow for
other types of embeddings, especially generic ultrapowers.
The modification of L-forcings towards generic ultrapowers is motivated by the
following: B. Claverie and R. Schindler, starting with a precipitous ideal I on ω1,
constructed the first example of an L-forcing P(ω2, I) that adds a direct system
〈Mi, πi,j , Ii, Gi; i ≤ j < κ〉 such that the direct limit of this system is 〈Hω2 , I〉 and
for each i < ω1 πi,i+1 : Mi →Mi+1 ' Ult(Mi, Gi) is a generic ultrapower. The use
of generic ultrapowers is the substantial new idea in the construction of Claverie-
Schindler forcing; this allows to construct a stationary set preserving L-forcing if I
is the nonstationary ideal on ω1. The first application of (a slight generalization of)
P(ω2, I) was the following:

Theorem ([CS09]) If Bounded Martin’s Maximum (BMM) holds and NSω1 is
precipitous, then δ1

2 = ω2.

Note that it was known that δ1
2 = ω2 follows from the much stronger Martin’s

Maximum (MM). We will construct Claverie-Schindler forcing in Chapter 2 in our
setup and study applications of P(ω2, I) and other stationary set preserving L-
forcings in Chapter 2 and 3, among them the above theorem, which we generalize
in Theorem 3.1.25 by showing that BMM and NSω1 is precipitous implies Admis-
sible Club Guessing which in turn implies δ1

2 = ω2, see Lemma 3.1.9. A rather
elementary application we will study, due to S. Todorčević, is that P(22ω1+

, I) seals
all antichains of I-positive sets from the ground model, see Theorem 2.4.16.
Chapter 3 is devoted to results in the style of the theorem above: for various Π2

formula φ in parameters from Hω2 we study the following question: if φ is a con-
sequence of MM, does BMM + NSω1 is precipitous imply φ? It will turn out that
Woodin’s Admissible Club Guessing, φAC and ψAC all follow from BMM + NSω1

is precipitous, see Theorem 3.1.25 and Corollaries 3.2.11 and 3.2.20 respectively.
Woodin had shown this for ψAC before using a more straightforward forcing con-
struction. To show that φAC follows from BMM + NSω1 is precipitous we construct
a variant of Claverie Schindler forcing.
One can interpret these results as follows: any natural Π2 consequence of MM for
Hω2 follows from BMM and NSω1 is precipitous. Of course “natural” is a very vague
word and moreover there are Π2 consequences of MM that can provably not follow
from BMM and NSω1 is precipitous, namely certain Gödel sentences that assert the
existence of countable models of large cardinals beyond the consistency strength of
BMM and NSω1 is precipitous.
In Chapter 4 of this thesis we use L-forcing to characterize the axiom

(†) :≡ Every stationary set preserving forcing is semiproper.

We will show:

Theorem (Theorem 4.2.6) The following are equivalent:

1. For every regular cardinal θ ≥ ω2 the Claverie-Schindler forcing P(θ,NSω1) is
semiproper.
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2. (†)

3. CC∗∗

Here CC∗∗ is a combinatorial principle that strengthens Chang’s Conjecture. The
above theorem is in turn applied to show that Rado’s Conjecture implies (†) by show-
ing that Rado’s Conjecture implies CC∗∗. This generalizes a result by Todorčević,
who showed that Rado’s Conjecture implies CC∗, see [Tod93].

The Extender Algebra

The second part of this thesis, which is identical with Chapter 5, deals with the
extender algebra, a construction due to H. Woodin. Given a (fine-structural) suf-
ficiently iterable countable model M that contains a Woodin cardinal δ, one can
construct the extender algebra Wδ in M. This construction then has the following
application due to Woodin: given some x ⊂ ω and seeing Wδ as a forcing notion,
one can find an iteration map j : M → M∗ such that x is generic over M∗ for
j(Wδ). This iteration is known as a genericity iteration. It should be stressed that
x was arbitrary to begin with and even more than that: if P is a notion of forcing,
M is highly iterable and τ is a forcing-name for a real in V P, then there is an
iterate M∗ of M, such that regardless of the choice of G ⊂ P generic over V we
have that τG is generic over M∗; this result is also due to Woodin. So all possible
interpretations of the name τ are generic over M∗.
We will carry out the construction of the extender algebra for a fine-structural
model with a Woodin cardinal δ; for reals this has also been done in detail by Steel
in [Ste], but we review the construction of the extender algebra, due to Woodin,
for subsets of ω1. The construction for reals starts with ω-many generators, the
construction for subsets of ω1 starts with δ-many generators. For the version with
δ-many generators sources besides this thesis are scarce: see [Far] for the coarse
case and a slightly different construction of the extender algebra, or see [SS09] for
another application of the extender algebra with δ-many generators. These gener-
icity iterations are applied to prove an original Σ2

1-absoluteness theorem for c.c.c.
forcings with ordinal parameters, Theorem 5.5.3.
Additionally we introduce and discuss sets that extend to a class with unique con-
densation: A ⊂ ω1 extends to A∗ with unique condensation if A∗ is class of ordinals
such that A∗ ∩ ω1 = A and for all uncountable cardinals κ

if λ > κ is a sufficiently large regular cardinal, then there is a club
C(A∗, κ, λ) of countable substructures X ≺ Hλ such that A∗ ∩ κ ∈ X
and

A ∩ κ̄ = A∗ ∩ κ,

where π is the inverse of the collapse of X and π(κ̄, A∗ ∩ κ) = κ,A∗.

We analyse the sets that extend to classes with unique condensation in detail and
construct non-trivial examples. We show that these sets can trivialize in the fol-
lowing sense: granted large cardinals in V and an iterability assumption, we show
that every set with a uniquely condensing extensions is constructible from a real,
see Theorem 5.6.14 for the precise statement.
We mentioned that, given a forcing-name for a real, a genericity iteration exists
such that all interpretations of the name are generic over the final model. Given
a name τ for a set that extends to a class with unique condensation, we construct
a genericity iteration such that all interpretations of τ are generic over the final
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model. We show that if τ is in a reasonable forcing extension, then such a gener-
icity iteration behaves like genericity iterations for reals, see Lemma 5.6.16. We
apply this Lemma to show two absoluteness results, Theorem 5.6.25 and Theorem
5.6.24.
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1 Basic Concepts and Definitions

In this chapter we recall basic concepts that we will encounter later. Due to the
complexity of what follows it is not possible to give a self-contained exposition in
our framework. Definitions and basic results not found in this chapter are part of
the standard set theoretic literature, i.e. the reader is advised to consult [Jec03]
and [Kan03].
Our notation is standard and follows [Jec03].

1.1 Forcings that preserve ω1

For the reader’s convenience we recall several classes of forcings that do not collapse
ω1.

Definition and Lemma 1.1.1 A notion of forcing P is proper if it satisfies the
following equivalent conditions:

1. for every uncountable cardinal λ every stationary S ⊂ [λ]ω in V is still sta-
tionary in ([λ]ω)V

P
;

2. for every sufficiently large λ, every well-ordering < of Hλ and every countable
elementary submodel X ≺ 〈Hλ;∈, <〉 the following holds:

∀p ∈ X ∩ P : ∃q ≤ p : q is (X,P)-generic,

where q is (X,P)-generic if

q  Ġ ∩X is a filter on P generic over X.

For a proof of the well know equivalence above see [Jec03, 31.7, 31.16]. Note that
all c.c.c. forcings and all ω-closed forcings are proper.

Definition 1.1.2 A notion of forcing P is semiproper if for every sufficiently
large λ, every well-ordering < of Hλ and every countable elementary submodel
X ≺ 〈Hλ;∈, <〉 the following holds:

∀p ∈ X ∩ P ∃q ≤ p : q is (X,P)-semigeneric,

where q is (X,P)-semigeneric if for every name α̇ ∈ X for a countable ordinal

q  ∃β ∈ X̌ : α̇ = β.

Clearly every proper forcing is also semiproper.

Definition 1.1.3 A notion of forcing P preserves stationary subsets of ω1 if every
stationary S ⊂ ω1 is stationary in V [G] for all G ⊂ P generic over V . When it is
clear from the context which stationary sets are meant, we will call a forcing from
the above class just stationary set preserving.

9



1 Basic Concepts and Definitions

It is well known that all semiproper forcings are stationary set preserving and that
all stationary set preserving forcings do not collapse ωV1 . So we have the following
diagram:

c.c.c. ⊂ proper ⊂ semiproper ⊂ stationary set preserving ⊂ ω1-preserving.

There is one more class of forcings that we will encounter:

Definition and Lemma 1.1.4 (Foreman-Magidor [FM95]) A notion of forcing
P is reasonable if it satisfies the following equivalent conditions:

1. for all ordinals α ([α]ω)V is stationary in ([α]ω)V
P
,

2. for all p ∈ P and all sufficiently large regular λ there is an elementary sub-
structure N ≺ 〈Hλ;∈,P, {p}〉 and an (N,P)-generic q ≤ p.

It is not difficult to see that reasonable forcings preserve ω1, since any count-
able sequence cofinal in ωV1 would witness that ([ωV1 ]ω)V is not stationary in the
extension. Further note that every proper forcing is reasonable.

1.2 Forcing Axioms

D.A. Martin formulated the axiom that is known today as MAω1 . That was the
foundation of the theory of forcing axioms. Martin and Solovay studied the slight
generalization of MAω1 , nowadays called Martin’s Axiom MA, see [MS70]. Using
Shelah’s concept of proper forcing, Baumgartner introduced the Proper Forcing
Axiom PFA, see [Bau84]. The provably strongest forcing axiom was then isolated
by Foreman, Magidor and Shelah and named Martin’s Maximum MM, see [FMS88].
The following definition encompasses many forcing axioms.

Definition 1.2.1 Let Γ be a class of partial orders. The Forcing Axiom for Γ,
FA(Γ), is the following principle: let P ∈ Γ and let 〈Di ; i ∈ ω1〉 denote a collection
of sets dense in P. Then there is a filter F ⊂ Q meeting every Di, i < ω1.

If Γ is the class of c.c.c. partial orderings, then FA(Γ) is MAω1 . Clearly MM is
FA(Γ) for Γ the class of stationary set preserving forcings, and PFA is FA(Γ) for Γ
the class of proper forcings.

1.3 Bounded Forcing Axioms

Goldstern and Shelah were the first to study a “bounded” version of a forcing
axioms. They weakened the Proper Forcing Axiom PFA to the Bounded Proper
Forcing Axiom BPFA and studied it in depth, see [GS95]. The following definition
encompasses many different bounded forcing axioms.

Definition 1.3.1 Let Γ be a class of partial orders. The Bounded Forcing Axiom
for Γ, BFA(Γ), is the following principle: let Q = ro(P) \ {0} for some P ∈ Γ,
here ro(P) is the Boolean algebra consisting of the regular open subsets of P. Let
〈Di ; i ∈ ω1〉 denote a collection of sets dense in Q, each of cardinality at most ω1.
Then there is a filter F ⊂ Q meeting every Di, i < ω1.

If Γ is the class of c.c.c. forcings, then BFA(Γ) is just MAω1 . Clearly BMM is
BFA(Γ) for Γ the class of stationary set preserving forcings, and BPFA is BFA(Γ) for
Γ the class of proper forcings. The following characterization of BFA(Γ) is due to
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1.4 Precipitous Ideals

Bagaria, see [Bag00]. We will use this characterization without further notice. In
our context the characterization of Bounded Forcing Axioms below is much more
natural and applicable than the original definition.

Theorem 1.3.2 (Bagaria) BFA(Γ) holds if, and only if, for all P ∈ Γ

Hω2 ≺Σ1 H
V P

ω2
.

We will also make use of the following result from [Sch04]:

Theorem 1.3.3 (Schindler) If BMM holds, then X] exists for every set X.

Note that even a stronger closure property holds: if BMM holds, then for every
set X there is an inner model with a strong cardinal containing X, see [Sch06].
Nevertheless we have no use for this fact in the following. The last fact that we will
use without further notice is the following:

Theorem 1.3.4 ([Moo05]) If BPFA holds, then 2ℵ0 = 2ℵ1 = ℵ2.

1.4 Precipitous Ideals

We will often deal with ideals on ω1. Given an ideal I, we will consider the partial
order (P(ω1)\ I,⊂). Forcing with this partial order yields an ultrafilter on P(ω1)V ;
therefore one is able to form a generic ultrapower:

Definition 1.4.1 An ideal I ⊂ P(Z) is precipitous if for every G ⊂ P(Z) \ I
generic over V the ultrapower j : V → Ult(V,G) is well-founded. Here Ult(V,G) is
formed using functions from V . We will call j : V → Ult(V,G) a generic ultrapower
and identify it with its transitive collapse if it is well-founded.

Note that even if an ideal is not precipitous, well-founded ultrapowers might exist.
It is well known that the existence of a precipitous ideal on P(ω1) is equiconsis-
tent with a measurable cardinal, see [JMMP80]. Note that Kakuda and Magidor
independently showed how to force a precipitous ideal on ω1 from a measurable
cardinal; this result is known as Kakuda’s Theorem which we discuss in more depth
in a moment.
By NSω1 we denote the ideal of nonstationary subsets of ω1. Magidor showed that
the precipitousness of NSω1 can also be forced from a measurable cardinal, see
[JMMP80]. One might believe at first glance that precipitousness is a second order
property, but precipitousness is equivalent to a first order combinatorial property,
see for example [Jec03, 22.19, 22.21]. Hence if I is precipitous and G ⊂ P(ω1) \ I
is V -generic, then j(I) is still precipitous in Ult(V,G), where j : V → Ult(V,G)
is the generic ultrapower. So we can force over the ultrapower and form another
generic ultrapower. This observation leads to generic iterations of which we will
give a formal definition further below.

1.4.1 Adding a precipitous ideal with κ-c.c. forcing

Theorem 1.4.2 (Kakuda’s Theorem) If δ is a measurable Woodin cardinal and P
a δ-c.c. notion of forcing, then forcing with P adds a precipitous ideal on δ.

The above theorem is due to Kakuda and Magidor independently, see [Kak81]
and [Mag80] respectively. If forcing with P is trivial, the precipitous ideal is the

11



1 Basic Concepts and Definitions

complement of the normal measure U witnessing that δ is measurable. Forcing with
this ideal will also be trivial.

1.4.2 Stronger Ideals

If I is a precipitous ideal on ω1, one can study the Boolean algebra P(ω1) \ I and
ask which properties it has.

Definition 1.4.3 Let I be a normal uniform ideal on ω1.

1. I is ω2-saturated, or simply saturated, if P(ω1) \ I satisfies the ω2-chain con-
dition.

2. I is ω1-dense, if P(ω1) \ I has a dense subset of cardinality ω1.

It is a standard fact that all saturated ideals on ω1 are precipitous. Clearly
every ω1-dense ideal is saturated and hence precipitous. If I is any normal uniform
ideal on ω1, then forcing with P(ω1) \ I collapses ω1 to ω. This implies that
P(ω1) \ I is isomorphic to the Boolean algebra generated by Col(ω, ω1) if I is ω1-
dense. We stress that in this case P(ω1) \ I is a homogeneous forcing. If I is
ω2-saturated, then for all generic G ⊂ P(ω1) \ I and all induced generic embedding
j : V → Ult(V,G) =: M we have that MωV1 ⊂M , where Mω1 is calculated in V [G].

1.5 Generic Iterations

We will often deal with generic iterations, obtained by iterating the process of
forming generic ultrapowers. For this note that generic ultrapowers are a meaningful
concept even in (countable) models of (fragments of) ZFC; all that one needs to
form a generic ultrapower is that the class of functions with domain ω1 exists and
is reasonably closed, so that we can prove a version of the  Loś’ Theorem. The
exact choice of the fragment in the definition below is not too important, we could
have used a different fragment. The fragment ZFC∗ we use in the definition below
originates from [Woo99]; note that for example Hω2 |= ZFC∗. In the definition
below we allow I to be a class from the point of view of M .

Definition 1.5.1 Let M be a countable transitive model of ZFC∗ + “ω1 exists,”
and let I ⊆ P(ωM1 ) be such that 〈M ;∈, I〉 |= “I is a uniform and normal ideal on
ωM1 .” Let γ ≤ ω1. Then

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉 ∈ V

is called a putative generic iteration of 〈M ;∈, I〉 (of length γ + 1) iff the following
hold true:

1. M0 = M and I0 = I.

2. For all i ≤ j ≤ γ, πi,j : 〈Mi;∈, Ii〉 → 〈Mj ;∈, Ij〉 is elementary, Ii = π0,i(I),
and κi = π0,i(ωM1 ) = ωMi

1 .

3. For all i < γ, Mi is transitive and Gi is (P(κi) \ Ii,⊂)-generic over Mi.

4. For all i+ 1 ≤ γ, Mi+1 = Ult(Mi;Gi) and πi,i+1 is the associated ultrapower
map.

5. πj,k ◦ πi,j = πi,k for i ≤ j ≤ γ.

12



1.6 Canonical Functions

6. If λ ≤ γ is a limit ordinal, then 〈Mλ, πi,λ; i < λ〉 is the direct limit of
〈Mi, πi,j ; i ≤ j < λ〉.

We call
〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉

a generic iteration of 〈M ;∈, I〉 (of length γ+1) iff it is a putative generic iteration of
〈M ;∈, I〉 of length γ+ 1 and Mγ is transitive. 〈M ;∈, I〉 is generically γ+ 1 iterable
iff for any γ′ ≤ ω1 every putative generic iteration of 〈M ;∈, I〉 of length γ′+ 1 is an
iteration. We will call 〈M ;∈, I〉 generically iterable if 〈M ;∈, I〉 is generically ω1 + 1
iterable in all generic extensions of V . We will call 〈N ;E, J〉 a (generic) iterate of
〈M ;∈, I〉 if there is a putative generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉

of 〈M0;∈, I0〉 = 〈M ;∈, I〉 such that 〈Mγ ;Eγ , Iγ〉 = 〈N ;E, J〉, where Eγ is Mγ ’s ∈-
relation. Sometimes we will say that j : 〈M ;∈, I〉 → 〈N ;E, J〉 is a generic iteration
if we only want to refer to the iteration map but not to the generic filters.

Notice that we want (putative) iterations of a given countable model 〈M ;∈, I〉 to
exist in V , which amounts to requiring that the relevant generics Gi may be found
in V .
The next lemmas roughly says: the critical points of a generic iteration and a few
functions generate the final model of the iteration.

Lemma 1.5.2 (folklore) Let

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉

be a generic iteration of M0. Let β < α ≤ γ. All elements of Mα are of the form
πβ,α(f)(~ξ) for some f : κnβ →Mβ, f ∈Mβ and ordinals ξ1, ..., ξn < ωMα

1 . Moreover
all the ordinals ξ1, ..., ξn can be chosen in {κi ; β < i ≤ α}.

Proof. Fix β < ω1. We show this by induction on α. Let α = γ + 1. Then Mα is
isomorphic to Ult(Mγ , Gγ). Hence every element of Mα has the form πγ,α(f)(κγ)
for some f : κγ → Mγ , f ∈ Mγ . By the inductive hypothesis f is of the form
πβ,γ(g)(~ξ) for some g : κnβ →Mβ , g ∈Mβ and ~ξ ∈ κnγ . Then

πγ,α(f)(κγ) = πγ,α(πβ,γ(g)(~ξ))(κγ) = πβ,α(g)(~ξ)(κγ),

since the critical point of πγ,α is κγ .
The case Lim(α) simply uses the fact that Mα is the direct limit of all Mγ for
γ < α: if x ∈ Mα, then x = πγ,α(x̄) for some γ < α and some x̄ ∈ Mγ . Without
loss of generality we may assume β < γ. Then x̄ is of the form πβ,γ(g)(~ξ) for some
g : κnβ →Mβ , g ∈Mβ and ordinals ~ξ ∈ κnγ . Then

x = πγ,α(x̄) = πγ,α(πβ,γ(g)(~ξ)) = πβ,α(g)(~ξ).

1.6 Canonical Functions

When working with a generic ultrapower j : V → Ult(V,G) we often deal with
functions f : ω1 → ω1 representing ordinals < j(ω1).

13



1 Basic Concepts and Definitions

Definition 1.6.1 Let η < ω2 be uncountable. Let g : ω1 → η be surjective. Define
fη : ω1 → ω1 by fη(α) = otp(g“α). We call fη the canonical function for η derived
from g.

We recall the folklore around canonical functions. First note that we will not
always make g explicit when referring to some canonical fη; the following remark
justifies to do so:

Remark 1.6.2 Let ω1 ≤ η < ω2. If g, g′ : ω1 → η are both surjective, then there
is a club C such that

∀α ∈ C : fη(α) = f ′η(α),

where fη is the canonical functions derived from g and f ′η is the canonical function
derived from g′.

Proof. Let α < ω1 be such that there is some countable X ≺ Hω2 with g, g′ ∈ X
such that X ∩ ω1 = α. We compute fη(α):

fη(α) = otp(g“α) = otp(g“X ∩ ω1) = otp(X ∩ η),

here the last equality holds since g is surjective. Clearly the same computation
shows f ′η(α) = otp(X ∩ η). It now suffices to note that there are club many α < ω1

such that X ∩ ω1 = α for some countable X ≺ Hω2 with g, g′ ∈ X.

There is a second approach to canonical functions: we inductively define a series
of functions and prove that they are in fact canonical functions.

Definition 1.6.3 Let η < ω2. Let f0 : ω1 → ω1 be defined by f0(α) = 0 for all
α < ω1. Suppose that fβ has already been defined for all β < η. If η = β + 1, then
we set

fη(α) := fβ(α) + 1.

If η is an ordinal of cofinality ω, say (βi)i∈ω is a sequence cofinal in η, then we set

fη(α) := sup{fβi(α) ; i ∈ ω}.

If η is an ordinal of cofinality ω1, say (βi)i∈ω1 is a sequence cofinal in η, then we set

fη(α) := sup{fβi(α) ; i < α}.

We call the construction in the uncountable cofinality case a diagonal supremum.

It is easy to verify the following: if η < ω2 is a limit ordinal, then fη (modulo
a nonstationary set) does not depend on the choice of the cofinal sequence. More
generally we have the following notation: if f, g : ω1 → ω1, then we set f ≤ g if
and only if the set {α ∈ ω1 ; f(α) > g(α)} is nonstationary. Clearly we can define
relations =, < in the very same fashion. The relation < is also a well founded partial
ordering because NSω1 is σ-complete. Hence each f : ω1 → ω1 has a rank ||f ||. We
need a straightforward generalization. If S is stationary, then we say f <S g if and
only if the set {α ∈ S ; f(α) ≥ g(α)} is nonstationary. This leads to a new notion
of rank ||f ||S . Note that if S ⊂ T then ||f ||T ≤ ||f ||S . The following lemma is then
easy to check, see [Jec03, 24.5].

Lemma 1.6.4 If η < ω2 is a limit ordinal, then fη is a least upper bound of
{fβ ; β < η} in ≤. Each fη is unique modulo =, and ||fη||S = η for all stationary
S. �
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1.6 Canonical Functions

We now check that each fη is in fact a canonical function according to our original
definition.

Lemma 1.6.5 Let η < ω2. Then there is a surjection g : ω1 → η and some club
C ⊂ ω1 such that for all α ∈ C

fη(α) = otp g“α.

Hence fη is a canonical function

Proof. By induction on η. There are clearly three cases: successor case, countable
cofinality and uncountable cofinality. We discuss the uncountable cofinality case,
the other cases are simpler. Let (βi)i<ω1 witness that η has uncountable cofinality.
By our inductive hypothesis there exists for each i < ω1 some surjection gβi : ω1 →
βi and some club Ci witnessing that fβi is a canonical function. We construct
g : ω1 → η such that if λ is a limit ordinal, then

g“λ =
⋃
i<ω1

gβi“λ.

For this recall that there is a bijection π : ω1 → ω1 × ω1 such that π“λ = λ× λ for
all limit ordinals λ. Let α < ω1 and let π(α) = (α0, α1). We set

g(α) := gβα0
(α1).

Clearly for all limit ordinals λ

g“λ =
⋃
i<λ

gβi“λ.

There is a club D ⊂ Lim such that for all α ∈ D if i, j ∈ D, i < j, then gβi“α ⊂
gβj“α. So for λ ∈ D

otp g“λ = otp
⋃
i<λ

gβi“λ = sup{otp gβi“λ ; i < λ}.

Let C denote the diagonal intersection of all the Ci. Let λ ∈ C ∩D be some limit
ordinal. Then

otp g“λ = sup{otp gβi“λ ; i < λ} = sup{fβi(λ) ; i < λ} = fη(λ).

As a corollary to the above lemmata we note:

Corollary 1.6.6 Let fη be a canonical function for η < ω2. In every generic
ultrapower j : V → N , η is represented by fη; i.e. if N is well-founded, then
η = [fη]. This clearly holds regardless of the representative. �

The following lemma describes a general way to obtain canonical functions. Note
that a non-transitive X in the hypothesis of the lemma below can be obtained by
taking a substructure closed under sequences of length ω1 of some Hκ, κ > ω1

regular. Moreover note that a canonical function only needs to defined on a subset
of ω1 containing a club.

Lemma 1.6.7 Let X be a model of ZFC− of cardinality ω1 such that X ∩ ω2 is
transitive. Let ~X = 〈Xi; i < ω1〉 be a continuous chain of countable elementary
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1 Basic Concepts and Definitions

submodels of X. For i < ω1 let πi : Mi → Xi denote the inverse of the transitive
collapse of Xi. Let β < ω1 and α ∈ Xβ ∩ ω2. Then

f : ω1 \ β → ω1; γ 7→ π−1
γ (α)

is a canonical function for α.

Proof. Let fα : ω1 → ω1 be a canonical function for α derived from some surjective
g : ω1 → α. We have to show that there is a club C such that fα(γ) = f(γ) for all
γ ∈ C. Let κ be large enough so that Hκ contains ~X and g. Let C consist of the
ordinals γ < ω1 such that γ = Y ∩ ω1 for a countable substructure Y ≺ Hκ with
~X, g ∈ Y . For γ ∈ C and a Y ≺ Hκ witnessing this we can then compute:

fα(γ) = otp(g“γ) = otp(Y ∩ α).

Since X ∩ ω2 is transitive we have: Y ∩ α = Y ∩ X ∩ α =
⋃
{Xi ∩ α ; i < γ}; so,

since ~X is continuous, Y ∩ α = Xγ ∩ α. Hence

otp(Y ∩ α) = otp(Xγ ∩ α) = π−1
γ (α) = f(γ).

This is what we wanted to show.

1.7 Admissibles, Indiscernibles and Sharps

We will assume that the reader has a basic understanding of the theory of admissible
ordinals. Since we do not too frequently encounter admissibles, we hint the reader
at [Bar75]. Also we presuppose that the reader is familiar with indiscernibles, say
with the exposition in [Kan03]. When referring to the sharp of a set, we do not
think of Ehrenfeucht-Mostowski blueprints; we rather have the following in mind:

Definition 1.7.1 For a set X, we let X] denote the least X-mouse, i.e. the least
X-premouse P = 〈Jα(X);∈, X,Eα〉, such that Eα 6= ∅, P is sound above X and P
is iterable.

For all concepts of inner model theory [Ste] is our reference if not otherwise stated;
there the reader can find the definition of premouse, soundness and iterability.
Note that the universe of any X] is a model of ZFC− and also of ZFC∗+“ω1. exists”.
The next lemma shows how sharps and indiscernibles are related.

Lemma 1.7.2 (Folklore) Let X be a set and suppose X] = P = 〈Jα(X);∈, X,Eα〉
exists. Let κ denote the critical point of Eα. Then κ is an X-indiscernible. More
generally: if π : P →M is an iteration map, where M is a linear iterate of P that
we produced using only Eα and its images, then π(κ) is also an X-indiscernible. �

1.8 Universally Baire Sets of Reals

Feng, Magidor and Woodin introduced and analysed the universally Baire sets of
reals.

Definition and Lemma 1.8.1 ([FMW92]) Let A ⊂ ωω and let κ ≥ ω be a
cardinal. The following are equivalent:

1. For every topological space X with a regular open basis of cardinality ≤ κ and
for every continuous function f : X → ωω the set f−1“A is Baire.
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1.9 Chang’s Conjecture

2. There are trees T , S on ω× 2κ such that A = p[T ] and for every forcing P of
cardinality ≤ κ

V P |= p[Ť ] = ωω \ p[Š].

3. There are trees T , S such that A = p[T ] and

V Col(ω,κ) |= p[Ť ] = ωω \ p[Š].

If A satisfies the three equivalent conditions, we will say that A is κ-universally
Baire. If A is κ-universally Baire for all cardinals κ ≥ ω, then we will say that A
is universally Baire. �

In [FMW92] it is shown that all analytic sets are universally Baire (and hence
also all co-analytic sets). In general large cardinals are required to see that a given
projective set is universally Baire. The following lemma says that any set that is
∆1

2 in all forcing extensions of V , is also universally Baire. Note that this pointclass
contains the sets that are provably ∆1

2.

Lemma 1.8.2 (Folklore) Let φ0 and φ1 denote Σ1
2 formulae with real parameters

and one free variable. Furthermore assume if M is a forcing extension of V , then

M |= ∀x : φ0(x) ⇐⇒ ¬φ1(x).

Then {x ∈ ωω ; φ0(x)}V is universally Baire.

Proof. For this let us recall a fact about Shoenfield trees: given a Σ1
2-formula φ one

usually constructs the Shoenfield tree T for φ on ω × ω1; i.e. the canonical tree T
such that p[T ] = {x ∈ ωω ; φ(x)}. Nevertheless it is well known that one can also
construct a canonical Shoenfield tree T for φ on ω × κ for a regular cardinal > ω1.
If T and the parameters of φ are in some transitive M |= ZFC such that ωM1 ≤ κ,
then p[T ]M = {x ∈ ωω ; φ(x)}M . Furthermore note that such a T is in L[~p] where
~p are the real parameters of φ.
We need to show that {x ∈ ωω ; φ0(x)} is κ universally Baire for all κ. Let T be
the Shoenfield tree on ω × κ+ for φ0 and let S be the Shoenfield tree on ω × κ+

for φ1. Let M denote a forcing extension of V by a forcing of size ≤ κ. We have
p[T ]M = {x ∈ ωω ; φ0(x)}M , p[S]M = {x ∈ ωω ; φ1(x)}M , so by our hypothesis

M |= ∀x ∈ ωω : x ∈ p[T ] ⇐⇒ x 6∈ p[S].

1.9 Chang’s Conjecture

In this thesis we will encounter Chang’s Conjecture and some of its generalizations.
Before we give a definition we recall a basic notion: for infinite cardinals λ > κ
a closed unbounded set C ⊂ [λ]κ is strongly closed unbounded if there is some
F : [λ]<ω → λ such that C ⊃ CF := {x ∈ [λ]κ ; F“[x]<ω ⊂ x}. By a theorem of
Kueker, for κ = ω the notion of closed unbounded and strongly closed unbounded
coincide.

Definition and Lemma 1.9.1 The following are equivalent

1. Every model of type (ω2, ω1) has an elementary submodel of type (ω1, ω).

2. The set {X ⊂ ω2 ; otp(X) = ω1} intersects all strongly closed unbounded sets.

17



1 Basic Concepts and Definitions

If one of the equivalent conditions holds, then we say Chang’s Conjecture (CC)
holds.

Proof. Let F : [ω2]<ω → ω2 be a function. The set CF := {x ∈ [ω2]ω1 ; F“[x]<ω ⊂
x} is strongly club in [ω2]ω1 . Granted 1. we have to show an X ∈ CF of ordertype
ω1 exists. For this study the structure A = 〈ω2;∈, ω1, F,G〉 where G : ω2×ω1 → ω2

is such that G(α, ·) : ω1 → α is a surjection. By 1. a substructure B = 〈A;∈
, B, F,G〉 ≺ A exists such that A has cardinality ω1 and B is countable. Let
〈α;∈, β, F̄ , Ḡ〉 denote the transitive collapse of B. Clearly α = otp(α) = otp(A) and
A is closed under F . So it remains to show α = ω1. If ω1 ∈ α, then by elementarity
Ḡ(ω1, ·) : β → ω1 is a surjection, but this contradicts that β is countable. Since α
is uncountable ω1 = α.
For the converse assume we have a model A = 〈A;R, ...〉 of type (ω2, ω1). Without
loss of generality we can assume A = ω2 and also we can add the ∈ relation, so
A = 〈ω2;R,∈, ...〉. There is a function F : [ω2]<ω → ω2 such that all sets closed
under F are elementary substructures of A. Clearly the sets of cardinality ω1 closed
under F form a club in [ω2]ω1 , hence by our hypothesis there is some B ⊂ ω2 of
ordertype ω1 such that B is closed under F . Since R ⊂ A is a bounded subset of A,
we have that R∩B is bounded in B. Any bounded subset of B must have countable
ordertype. This shows that 〈B;R ∩B, ...〉 is of type (ω1, ω).
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2 L-Forcing

Following Jensen’s handwritten notes [Jena] we develop the theory of L-forcing
more or less from scratch. In contrast to [Jena] we do not make use of infinitary
languages and Barwise theory. This of course changes the proofs; the forcings we
can construct with this approach are nevertheless the same. Additionally we discuss
L-forcings that add generic iterations and isolate a class of L-forcings that preserve
stationary subsets of ω1. Such a forcing was constructed in [CS09] and a reader
familiar with [CS09] will see that our presentation is influenced by [CS09].

2.1 Definition of L-Forcing

We will now describe what all L-forcings have in common: given some cardinal
θ > ω1, an L-forcing P adds a system 〈Mi; i ≤ κ〉 of models and a commutative,
continuous system of elementary embeddings πi,j : Mi → Mj for i ≤ j ≤ κ such
that all Mi are countable for i < κ and Mκ = HV

θ . Also P preserves the regularity
of κ, hence κ = ωV

P

1 . Note that the cardinality of HV
θ is ℵ1 in the extension, since

HV
θ = Mκ is a direct limit of countable structures and κ is the ω1 of the extension.

Different L-forcings are not only constructed by choosing different κ and θ but
also by discussing different types of elementary embeddings 〈πi,j ; i ≤ j ≤ κ〉; for
example πi,i+1 could be an ultrapower or a generic ultrapower. Also there are L-
forcings such that subsets of κ are coded into the system of elementary embeddings
〈πi,j ; i ≤ j ≤ κ〉, see for example Theorem 3.2.5 and Theorem 3.2.15. Also note
that in the definitions below we want to include the possibility that Mκ is slightly
larger than HV

θ , say Mκ = (HV
θ )].

In the following we will often consider models of a language L of set theory with
two additional constants π̇ and Ṁ , where the constant Ṁ will be interpreted as a
continuous system of models and the constant π̇ will be interpreted as a commuting
system of elementary embeddings. Note that we do not restrict ourselves to a
language with only these two constants; it might be convenient to consider models
of languages with additional non-logical symbols to build other L-forcings.
We outline our cardinal setup: in the following we fix three regular cardinals ρ =
2<ρ > 2θ > θ = 2<θ > κ > ω. We are aware of the fact that such ρ and θ might not
always exist. Nevertheless in the applications we have in mind it is not relevant:
one forces ρ = 2<ρ and θ = 2<θ and then proceeds with the construction we will
outline, see the proof of Theorem 2.4.8 for a rigorous treatment of this problem.
Let us fix a model M0 of cardinality θ such that θ ⊂ |M| and let <0 be a well-
ordering ofM0 of ordertype OR∩ |M0|. End-extend <0 to a well ordering < of Hρ

of order type ρ such that <� |M0| =<0 . In an abuse of notation we will write <
for <0 if talking aboutM0. All Skolem-hulls will be calculated with the help of <;
i.e. we choose <-least witnesses. We set

M = 〈|M|;∈, <, ...〉,

i.e. M0 extended by <, and

H = 〈Hρ;∈, <,M, ...〉.

For the next few definitions we fix θ, κ, M and H as above.
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2 L-Forcing

Definition 2.1.1 Let A = 〈|A|;∈, π̇A, ṀA, ...〉 be a transitive model. Let Φ be a
(possibly uncountable) collection of statements in the language of A with parameters
from Hθ+ . We call A a certifying structure for Φ with respect to Hθ+ , κ and M if
the following conditions are met:

1. HV
θ+ ⊂ A and M∈ A,

2. A |= ZFC−, where ZFC− is ZFC without the power set axiom,

3. A |= κ = ω1,

4. A |= ṀA = 〈ṀA
i ; i ≤ κ〉 and if i < κ then ṀA

i is countable in A and ṀA
κ =M,

5. A |= π̇A = 〈π̇A
i,j ; i ≤ j ≤ κ〉 is a commutative, continuous system of elementary

embeddings π̇A
i,j : ṀA

i → ṀA
j ,

6. A |= crit(π̇A
i,κ) < crit(π̇A

i+1,κ) for all i < κ,

7. A |= κ ∈ ran(π̇A
i,κ) for all i ≤ κ,

8. A |= φ for every φ ∈ Φ.

We stress that every φ in item 8. above contains the symbols from the language
of A, especially every φ may contain the symbols π̇ and Ṁ . If it is clear from the
context which Hθ+ , κ and M are meant we will drop them. Clearly if κ > ω1 then
a certiyfing structure cannot exist in V . There is a slightly more subtle reason why
certifying structures do not exist in V : since κ = ωA

1 andM is a limit of countable
structures the modelM has at most cardinality ℵ1 in A; since the cardinality ofM
is at least ℵ2 in V a certifying structure can not exist in V . We will hence always
consider certifying structures in some forcing extension.
The choice of Φ andM determines what kind of L-forcing we construct. Of course
we only want to consider reasonable choices of Φ, i.e. those that are consistent in
some certifying structure:

Definition 2.1.2 LetM, θ and κ be as above. Let Φ be a collection of statements
in the language of set theory with two additional constants π̇, Ṁ (and maybe other
relation and function symbols) with parameters from V . We call Φ consistent if in
V Col(ω,2θ) there is a certifying structure for Φ with respect to Hθ+ , κ and M .

Jensen isolated the following concept of resectionability; we merely made minor
changes to adopt it to our situation. Resectionability is crucial in the proof that L-
forcings preserve the regularity of κ and that certain L-forcings preserve stationary
subsets of ω1, see Theorem 2.2.3 and Theorem 2.3.2 respectively. Roughly resec-
tionability states the following: given a certifying structure A for Φ and a small
certifying structure Ā ∈ A that certifies an “initial segment” of π̇A and ṀA we
can change π̇A and ṀA according to π̇Ā and Ṁ Ā and still have that the changed
structure is a certifying structure for Φ. We try to explain why resectionability is
crucial in the theory of L-forcing: all conditions of a L-forcing will be certified by
a certifying structure. In the proof for the central Theorem 2.3.2 resectionability is
used to find certifying structures for a certain L-forcing condition q that appears
in the proof; without resectionability it is not clear that q is certified by some
structure, i.e. it is not clear that q is a condition. Note that in all cases we know
resectionability is trivial to check, albeit it is a lengthy concept. We believe that
only pathological examples of a non-resectionable forcings exist.
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Definition 2.1.3 Let θ, κ and M be as above. Let Φ be a collection of state-
ments in the language of set theory with two additional constants π̇, Ṁ with pa-
rameters from Hθ+ . We call Φ resectionable if the following holds: let A = 〈|A|;∈
, π̇A, ṀA, ...〉 ∈ HCol(ω,2θ) be a certifying structure for Φ with respect to Hθ+ , κ
and M. Let Y ≺ H such that Φ ∈ Y and H ∈ HA

ω1
where H denotes the transitive

collapse of Y . Let Φ̄, N̄ , π̄,M̄, σ such that

1. Φ̄ is the transitive collapse of Φ,

2. N̄ is transitive and N̄ ⊂ H,

3. π̄,M̄ ∈ HA
ω1

and σ ∈ A,

4. σ : 〈N̄ ; π̄,M̄〉 ≺ 〈HV
θ+ ; π̇A,M〉.

Letting κ̄ = σ−1(κ), we have: M̄ = ṀA
κ̄ , where σ(M̄) = M, and σ � M̄ = π̇A

α,κ.
Let θ̄ = σ−1(θ). Let Ā ∈ HA

ω1
be a certifying structure for Φ̄ with respect to N̄ , κ̄

and M̄. Define M̃ = 〈M̃i; i ≤ κ〉 and π̃ = 〈π̃i,j ; i ≤ j ≤ κ〉 by:

M̃i =

{
Ṁ Ā
i if i ≤ κ̄,

ṀA
i if i ≥ κ̄;

π̃i,j =


π̇Ā
i,j if i ≤ j ≤ κ̄,
π̇A
κ̄,j ◦ π̇Ā

i,κ̄ if i ≤ κ̄ ≤ j,
π̇A
i,j if κ̄ ≤ i ≤ j.

Form Ã by interpreting Ṁ and π̇ by M̃ and π̃. THEN Ã is a certifying structure
for Φ with respect to θ, κ and M.

Note that in the above definition, since H ∈ HA
ω1

, it is clear by elementarity of
H → H that a countable certifying structure Ā exists in HA

ω1
. Also, since Ā ∈ A,

we can calculate π̃ and M̃ in A.
We will now define L-forcing in a very general form. We first define a set of pre-
conditions P̃; the forcing we are going to define will be a subset of P̃. The first and
the second component of a condition should be seen as finite attempts to describe
a system of models and a commutative system of elementary embeddings: the first
component gives finitely many heights of the models, the second component gives
finite approximations to the maps of the commutative system restricted to the ordi-
nals. Though these maps only act on ordinals we will be able to extend them using
the well-ordering <, see Lemma 2.2.2. The third and the fourth component help
to control the embeddings. The third component locally bounds the heights of the
models and the fourth component allows us to extend some of the elementary em-
beddings to embeddings into H; both components are only important in the proof
of 2.3.2.

Definition 2.1.4 Let θ, κ andM be as above. Let Φ be a collection of statements
in the language of set theory with two additional constants π̇, Ṁ with parameters
from Hθ+ such that Φ is consistent and resectionable. Then P̃ := P̃(θ, κ,M) is the
collection of all quadruples1 p of the form

p = 〈〈βpi ; i ∈ dom(p)〉, 〈πpi ; i ∈ dom(p)〉, cp, 〈τpi ; i ∈ dom−(p)〉〉

where
1This is in constrast to [Jena] and [CS09] where triples are used.
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2 L-Forcing

1. All three dom(p), cp and dom−(p) are finite and dom−(p) ⊂ dom(p) ⊂ κ and
cp ⊂ dom(p).

2. 〈βpi ; i ∈ dom(p)〉 is a sequence of ordinals < κ.

3. For i ∈ dom(p) πpi is a finite partial map from βpi to θ.

4. For i ∈ dom−(p) τpi ⊂ Hθ.

Let p ∈ P̃. By Φ(p) we denote Φ augmented by the further statements:

1. βpi = OR ∩ Ṁi and πpi ⊂ π̇i,κ for i ∈ dom(p),2

2. ∃ā: π̇i,κ : 〈Ṁi, ā〉 → 〈M, τpi 〉 for i ∈ dom−(p),

3. OR ∩ Ṁi < γ = crit(π̇γ) for γ ∈ cp and i < γ.3

If Φ is clear from the context a certifying structure for Φ(p) will also be called a
certifying structure for p. Set τpi (n) = {x ; 〈n, x〉 ∈ τpi } for n < ω. A condition p ∈ P̃
will be called good if Φ(p) is consistent. We will call p neat if for all i < j ∈ dom−(p)
there is some n and finitely many ordinals ~u ∈ ran(πpj ) such that

τpi = {〈m,x〉 ; ~u_m_x ∈ τpj (n)}.

Finally we are ready to define L-forcing. By PΦ we will denote the collection of
all good and neat p ∈ P̃ ordered as follows: if p, q ∈ PΦ then p ≤ q if and only
〈βqi ; i ∈ dom(q)〉 ⊂ 〈βpi ; i ∈ dom(p)〉 and πqi ⊂ πpi for i ∈ dom(q) and τ qi = τpi for
i ∈ dom−(q) and cq ⊂ cp.

In general it is nontrivial to see that a given L-forcing is nonempty. We will first
carry out a basic analysis and later show that nonempty L-forcings exist.

2.2 The Basic Analysis of L-Forcing

Here is a lemma on the extendability of conditions in L-forcings.

Lemma 2.2.1 Let P = PΦ be an L-forcing. Let p ∈ P.

1. Let u ⊂ κ be finite such that dom(p) ⊂ u. There is p′ ≤ p such that u ⊂
dom(p′).

2. Let i ∈ dom(p) and let u ⊂ βpi be finite. There is p′ ≤ p such that u ⊂
dom(πp

′

i ).

3. Let u ⊂ OR ∩ |M| be finite. There is p′ ≤ p such that u ⊂ ran(πp
′

j ) for some
j ∈ dom(p′).

4. Let u ⊂ πpλ be finite where λ is a limit ordinal. There is p′ ≤ p and j ∈ dom(p′)
such that u ⊂ ran(πp

′

j ) ∩ λ.

5. There is p′ ≤ p such that ran(πp
′

i ) ⊂ ran(πp
′

j ) whenever i, j ∈ dom(p′), i < j.

2Readers of [CS09] will note that the first component of the conditions in [CS09] are finite
approximations to the critical points of the maps π̇i,κ, where our first component is a finite

approximation to the sequence of heights of model OR ∩ Ṁi, like in [Jena].
3This is in contrast to the approach in [Jena]. Jensen uses the stronger statement βpi < crit(π̇i+1)

which would exclude all examples involving generic ultrapowers.
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2.3 Stationary Set Preserving L-Forcings

6. Let i ∈ dom(p) and let ξ1, ..., ξm ∈ ran(πpi ) such that M |= ∃ηφ(η, ~ξ). There
is p′ ≤ p with some η ∈ ran(πp

′

i ) such that M |= φ(η, ~ξ).

7. Let α < κ. There is p′ ≤ p and some α′ ∈ cp′ such that α′ ≥ α.

Since proofs of all but the last statement above can be found in [Jena], we only
prove the last statement. Nevertheless the proofs are all of the same structure and
basically follow this pattern: look at a certifying structure A for p and extend the
condition according to π̇A and ṀA. Note also that [CS09] contains similar lemmata.

Proof. Assume w.l.o.g. that dom(p) ⊂ α < κ. Let A be a certifying structure for
p. Clearly κ ⊂ A. Pick some X ≺ HA

θ+ of cardinality less than κ = ωA
1 such that

α ∪ {π̇A, ṀA} ⊂ X. Let X̄ denote the transitive collapse of X and let M̄ denote
the collapse of M. Then

X̄ |= M̄ is uncountable and a limit of countable, transitive structures.

Hence for all i < κ ∩X = ωX̄1

OR ∩ ṀA
i < κ ∩X.

Define p′ by dom(p′) = dom(p) ∪ {κ ∩ X}, βp
′

κ∩X = OR ∩ M̄, πp
′

κ∩X = ∅, cp′ =
cp ∪ {κ ∩ X} and leaving all other components of p unchanged. So, noting that
M̄ = ṀA

κ∩X , the condition p′ is certified by A. Clearly p′ is neat and p′ ≤ p.

Lemma 2.2.2 Let P = PΦ be an L-forcing. Let G ⊂ P be generic.

1. Then
⋃
{〈βpi ; i ∈ dom(p)〉 ; p ∈ G} = 〈βi; i < κ〉, where βi < κ for i < κ. Set

βκ = OR ∩ |M|.

2. Let i < κ. Set π̄i =
⋃
{πpi ; p ∈ G ∧ i ∈ dom(p)}. Then π̄i : βi → βκ is

monotone with κi = crit(π̄i) where κi := π̄−1
i (κ).

3. If i ≤ j ≤ κ, then ran(π̄i) ⊂ ran(π̄j) (letting π̄κ = id�βκ).

4. If λ ≤ κ is a limit ordinal, then ran(π̄λ) = ∪{ran(π̄i) ; i < λ}.

5. Let i ≤ κ. Set Xi := HullM(ran(π̄i)). Then Xi ∩ βκ = ran(π̄i).

6. Let πi : Mi → Xi be the inverse of the transitive collapse of Xi for i ≤ κ.
Then πi : Mi ≺M, πi �βi = π̄i, βi = OR ∩Mi and πi �κi = id�κi.

7. Set πi,j = π−1
j ◦ πi for i ≤ j ≤ κ. Then πi,j : Mi ≺ Mj and 〈πi,j ; i ≤ j ≤ κ〉

is a commutative continuous system of embeddings. �

A proof of the above lemma and the next theorem can be found in [Jena].

Theorem 2.2.3 Let P = PΦ be an L-forcing. Let G ⊂ P be generic. Then κ is
regular in V [G]. �

2.3 Stationary Set Preserving L-Forcings

To discuss stationary set preserving forcings we need to discuss certifying structures
that are close to V in the following sense:

Definition 2.3.1 Let I ∈ V be a normal, uniform ideal on a regular uncountable
cardinal λ. A ZF− model A such that P(λ)V ⊂ |A| is I-close to V if every S ∈
P(λ)V \ I is stationary in A.
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2 L-Forcing

Clearly the previous definition is only interesting if A lives in a forcing extension
of V . The proof of the following theorem is modeled after Jensen’s proof of Theorem
2.2.3 and the proof of [CS09, Lemma 17].

Theorem 2.3.2 Let I ∈ V be a normal, uniform ideal on κ. Let ρ > θ > κ and
<,M,H as above. Let Φ be a collection of statements in a language containing
constants π̇ and Ṁ such that for every S ∈ P(λ)V \ I the statement

“S is stationary in κ”

is contained in Φ. Let P = PΦ be the resulting L-forcing. Then all certifying
structures for Φ are I-close to V and in V P every S ∈ P(ω1)V \ I is stationary in
κ.

Proof. Let us assume that Φ is consistent and resectionable, else P = ∅ and the
theorem trivializes. Let S ⊂ κ be I positive and in V and let Ċ be a P-name such
that for some p ∈ P

p  Ċ is club in ω1 = κ̌.

We want to find some α < ω1 and some p′ ≤ p such that

p′  α̌ ∈ Ċ ∩ Š.

Recall that ρ > 2θ, hence without loss of generality we can assume that Ċ ∈ Hρ by
replacing Ċ with the set

{〈β̌, r〉 ; r ≤ p ∧ r  β̌ ∈ Ċ}.

Let 〈τ(n);n < ω〉 enumerate the τ ⊂ Hθ that are H-definable from Ċ, p, κ,M,≤P,Φ
and set

τ := {〈x, n〉 ; n < ω ∧ x ∈ τ(n)}.

If A is a model and X a set, we write X ≺ A to mean: X ⊂ |A| and A|X ≺ A.
Claim 1. For any X ⊂ |M| the following are equivalent:

1. X ≺ 〈M, τ(n)〉 for all n < ω.

2. Let Y = HullH(X ∪ {Ċ, p, κ,M,≤P,Φ}). Then Y ∩ |M| = X.

Proof of Claim 1. Let us assume X ≺ 〈M, τ〉. Each z ∈ Y is H-definable in param-
eters from X ∪ {Ċ, p, κ,M,≤P,Φ}, hence especially each z ∈ Y ∩ |M| is definable
in this fashion. So by the choice of τ each such z is in X.
For the converse again recall the definition of τ . (Claim 1)

Let G ⊂ Col(ω, 2θ) be generic over V . Let us work in V [G] for a while. Let B
be a certifying structure for p. Then 〈M, τ〉 ∈ Hθ+ ⊂ B. Since κ = ωB

1 is regular
in B and S is stationary in B there is α < κ such that

• α = crit(π̇B
α,κ) ⊃ dom(p),

• for all i < α: OR ∩ ṀB
i < α,

• α ∈ S,

• there is τ̄ ⊂ ṀB
α such that

〈ṀB
α , τ̄〉 ≺ 〈M, τ〉.
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2.3 Stationary Set Preserving L-Forcings

We define p′ = 〈〈βp
′

i ; i ∈ dom(p′)〉, 〈πp
′

i ; i ∈ dom(p′)〉, cp′ , 〈τp
′

i ; i ∈ dom−(p′)〉〉 as
follows:

• dom(p′) = dom(p) ∪ {α},

• βp
′

i = βpi and πp
′

i = πpi for i ∈ dom(p),

• τp
′

i = τpi for i ∈ dom−(p),

• βp′α = OR ∩ ṀB
α ,

• πp′α = {〈α, κ〉},

• τp′α = τ ,

• cp′ = cp ∪ {α}.

Then p′ is good since B is a certifying structure for p′; also p′ is neat since each
τpi = τ(n) for some n. Thus p′ ≤ p and it suffices to show: p′  α ∈ Ċ. Suppose
this is not the case and work towards a contradiction. Hence there is q ≤ p′ and
ξ < α such that

q  Ċ ∩ α ⊂ ξ;

else Ċ would be unbounded in α and hence, by closedness, Ċ would contain α. Pick
a certifying structure A for q. Then τ qα = τ . In A there is some τ̄ such that

π̇A
α,κ : 〈ṀA

α , τ̄〉 ≺ 〈M, τ〉,

and the only choice for τ̄ is τ̄ = (π̇A
α,κ)−1“τ . LetX := ran(π̇A

α,κ) and Y := HullH(X∪
{Ċ, p, κ,M,≤P,Φ}). Then Y ∩M = X by the above claim. Let π : H → Y denote
the inverse of the transitive collapse of Y . Then π̇A

α,κ ⊂ π and π(ṀA
α ) =M.

Claim 2. H ∈ A and there is an elementary map σ : H ′ → Hθ+ from some
transitive H ′ ⊂ H such that σ ∈ A.
Proof of Claim 2. Let Ỹ := HullH(M∪ {Ċ, p, κ,M,≤P,Φ}) and let π̃ : H̃ → Ỹ
denote the inverse of the transitive collapse of Y . Clearly π̃ ∈ V and H̃ ∈ Hθ+ .
Hence H̃ ∈ A. Note that π̃ �M = id�M. Let

π̃(C̃, p̃, κ̃,M̃, ≤̃, Φ̃) = Ċ, p, κ,M,≤P,Φ,

and let
Y ∗ = HullH̃(X ∪ {C̃, p̃, κ̃,M̃, ≤̃, Φ̃}).

Since X ∈ A also Y ∗ ∈ A and hence the transitive collapse of Y ∗ is in A. This
transitive collapse is H. Since Hθ+ ∈ A and Hθ+ ∈ Ỹ it is straightforward to define
σ. (Claim 2)

Now let
π(C̄, p̄, κ̄,M̄,≤P̄, Φ̄, θ̄) = Ċ, p, κ,M,≤P,Φ, θ.

Set q′ = q �α i.e. the condition that results by intersecting dom(q), cq and dom−(q)
with α. Then q ≤ q′.
Claim 3. q′ ∈ Y .
Proof of Claim 3. Since α ∈ cq clearly βq

′

i < α ⊂ Y for every i ∈ dom(q′). The set
dom(q′) is finite, hence 〈βq

′

i ; i ∈ dom(q′)〉 ∈ Y . Since ran(πq
′

i ) is a finite subset of
X ⊂ Y , also 〈πq

′

i ; i ∈ dom(q′)〉 ∈ Y . Again by finiteness cq
′ ∈ Y . If i ∈ dom−(q′),

then τ q
′

i is 〈M, τ(n)〉-definable in parameters from ran(πqα) ⊂ X for some n < ω.
Hence τ q

′

i ∈ Y , since τ ∈ Y . So 〈τ q
′

i ; i ∈ dom−(q′)〉 ∈ Y by finiteness. (Claim 3)
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2 L-Forcing

So there is some q̄′ such that π(q̄′) = q′. Then by elementarity q̄′ ≤P̄ p̄. Since

q̄′ HP̄ C̄ is club in α,

there is r̄ < q̄′ in P̄ and some β > ξ such that

r̄ HP̄ β ∈ C̄.

Let r := π(r̄). Then by elementarity r ∈ P and r is incompatible with q since
q  Ċ ∩ α ⊂ ξ. We derive a contradiction by showing that q is in fact compatible
with r.
Since r̄ is good in H there is some Ā ∈ HCol(ω,2θ̄) that is a certifying structure for
Φ̄(r̄). This can be reformulated as a Σ1

1 statement in a parameter from HA
ω1

, so
by absoluteness such a certifying structure is also in A; we will again denote this
structure by Ā. By resectionability we can then define a new model Ã with the
same universe as A, by interpreting Ṁ and π̇ as M̃ and π̃ where:

M̃i =

{
Ṁ Ā
i if i ≤ κ̄,

ṀA
i if i ≥ κ̄;

π̃i,j =


π̇Ā
i,j if i ≤ j ≤ κ̄,
π̇A
κ̄,j ◦ π̇Ā

i,κ̄ if i ≤ κ̄ ≤ j,
π̇A
i,j if κ̄ ≤ i ≤ j.

For this note, that Ā ∈ A implies that π̃, M̃ ∈ A. Then Ã is a certifying structure
for Φ. Also Ã is a certifying structure for r: if i ∈ dom(r), then βri = βÃ

i and
πri ⊂ π̃i,κ and if i ∈ dom−(r), n < ω, then

π̃i,κ : 〈Ṁ Ã
i , ā〉 → 〈Ṁ, ari (n)〉,

where ā is such that
πĀ
i,κ : 〈Ṁ Ā

i , ā〉 → 〈ṀA
κ̄ , a

r
i (n)〉.

Since r ≤P q′ it follows that Ã certifies q′; also Ã certifies q � (κ \ α). Hence Ã
certifies q = q′ ∪ q � (κ \ α) and also r ∪ q, where r ∪ q is the condition one obtains
by setting cr∪q = cr ∪ cq and joining all other components in the same way. Clearly
r ∪ q is good. However r ∪ q might not be neat, so we have to modify the partial
maps πr∪qi to obtain an s ≤P r, q.
First note that r = π(r̄) ∈ Y . By the definition of τ there is a parameter w ∈
X = ran(π̇A

α,κ) = ran(π̇Ã
α,κ) and some n < ω such that r is 〈M, τ(n)〉 definable in

w. Hence for every i ∈ dom−(r) the set τ ri is 〈M, τ(n)〉 definable in w. For each
γ ∈ dom(q) \ α we pick some wγ such that π̇A

γ,κ(wγ) = w. For i ∈ dom(r ∪ q) set

πsi =

{
πri for i < α,

πqi ∪ {〈wγ , w〉} for i ≥ α;

we leave the other components of r ∪ q unchanged. Hence s is certified by Ã and
is neat by construction. Also clearly s ≤P r, q. But the existence of such an s is a
contradiction to the incompatibility of r and q.

2.4 Examples of Stationary Set Preserving L-Forcings

The first example of a stationary set preserving L-forcing appeared in [CS09]. Read-
ers familiar with [CS09] will note several small differences to our approach. Nev-
ertheless we will construct a forcing very similar to the one from [CS09] in our
setup.
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2.4.1 Claverie-Schindler forcing

Given a precipitous ideal I on ω1 and a cardinal θ > ω1 we will construct a notion
of forcing P(I, θ) that adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that Mω1 = 〈Hθ;∈, I〉 and Iω1 = I; here κi = ωMi
1 and all Mi with i < ω1 will

be countable. Of course P(I, θ) will be an L-forcing. Let us fix a (normal, uniform
and) precipitous ideal I on ω1; note that NSω1 ⊂ I.
We set κ = ω1. Recall the cardinal setup

ρ = 2<ρ > 2θ > θ = 2<θ

and fix a well-ordering < of Hρ such that <�Hθ is a well-ordering of Hθ of ordertype
θ. SetM = 〈Hθ;∈, I, <〉 and H = 〈Hρ;∈,M, <〉. Note that we are in the situation

of Defintion 2.1.4. It is convenient, but not necessary, to add the constants ~̇G and
İ.

Definition 2.4.1 By Φ we denote the collection of statements in the language of
set theory with the additional constants π̇, Ṁ ,İ and ~̇G in parameters from Hθ+ that
contains the following statements:

1. “S is stationary” for every S ∈ P(ω1) \ I,

2. “ ~̇G = 〈Gi; i < ω1〉 is a sequence”,

3. “İ = 〈Ii; i ≥ ω1〉 is a sequence”,

4. “Gi is (P(ω1) \ Ii)Ṁi -generic over Ṁi, and π̇i,i+1 : Ṁi → Ṁi+1 ' Ult(Ṁi, Gi)
is a generic ultrapower”,

5. “Iω1 = I”.

Note that the constant İ is obsolete if I = NSω1 . Later we will discuss collections
containing Φ, see Definition 3.2.6 and Definition 3.2.16. It will be clear that the
results on PΦ we are about to show will also hold for these larger collections.
To see that the forcing PΦ is nonempty we need to see that Φ is consistent, since
this will certify 1P(I,θ) = 〈〈〉, 〈〉, ∅, 〈〉〉.

Lemma 2.4.2 ([CS09, Lemma 5]) Φ is consistent.

Proof. We need to see that in V Col(ω,2θ) there a certifying structure for Φ with
respect to Hθ+ , ω1 and M. Let g be Col(ω,< ρ)-generic over V . We work in
V [g] until further notice. So 〈V ;∈, I〉 is ρ + 1 iterable, by [Woo99, 3.11]. Hence
〈Hθ;∈, I〉 is also ρ+ 1 iterable. We prepare a book-keeping device: pick a bijection
g : [ρ]<ρ → ρ and a family 〈Sν , ν < ρ〉 of pairwise disjoint stationary subsets of ρ.
Now define f : ρ→ [ρ]<ρ by

f(i) = s ⇐⇒ i ∈ Sg(s).

Note that f enumerates each s ∈ [ρ]<ρ stationarily often. We recursively construct
a generic iteration

J := 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ρ〉, 〈Gi; i < ρ〉〉
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2 L-Forcing

of M0 = 〈Hθ;∈, I〉, where Ii = π0,i(I). Suppose we are at stage i < ρ. If there is a
(unique) j ≤ i such that f(i) is stationary in Mj , i.e. πj,i(f(i)) is stationary in Mi,
then we choose Gi such that πj,i(f(i)) ∈ Gi. If there is no such j ≤ i we choose Gi
arbitrarily. This defines the generic iteration.
Let S be stationary in Mρ. Let j < ρ and s be such that πj,ρ(s) = S. Whenever
j ≤ i ≤ ρ and f(i) = s, then πj,i(s) ∈ Gi, i.e. crit(πi,i+1) ∈ πi,i+1(πj,i(s)) =
πj,i+1(s) ⊂ πj,ρ(s) = S. This shows that

Sg(s) \ j ⊂ {i < ρ ; crit(πi,i+1) ∈ S},

so that in fact S is stationary in V [g].
The map π0,ρ : Hθ → Mρ admits a canonical extension π : V → N , where N
is transitive and π(Hθ) = Mρ. Let us now leave V [g] and pick some h which
is Col(ω, π(2θ))-generic over V [g]. Hence h is also Col(ω, π(2θ))-generic over N .
Let x ∈ N [h] be a real that codes π((Hθ+)V ) in a natural way. The existence
of a countable, well-founded certifying structure for π(Φ) with respect to π(Hθ+),
π(ω1) and π(M) then clearly a Σ1

2(x) statement. This statement is true in V [g, h]:
the witness is an initial segment of V [g] that contains the generic iteration we
constructed. Hence by Shoenfield absoluteness this statement holds in N [h]. So in
NCol(ω,π(2θ)) there is a certifying structure for π(Φ) with respect to π(Hθ+), π(ω1)
and π(M). So by elementarity, in V Col(ω,2θ) there is a certifying structure for Φ
with respect to Hθ+ , ω1 and M.

Note the following trivial fact: if two generic iterations of countable length have
the same last model 〈M ;∈, I〉, where I is the ideal, then any continuation of the
first generic iteration is a continuation of the second. Hence:

Remark 2.4.3 Φ is resectionable.

The basic analysis of L-forcing we have outlined yields that PΦ adds system of
elementary embeddings and a system 〈Mi; i ≤ ω1〉 of models such that Mω1 =M.
By Theorem 2.3.2 PΦ will “spare” the I-positive sets, i.e. each S ∈ I+ is stationary
in the forcing extension; in the special case I = NSω1 this means that PΦ preserves
stationary sets of ω1. We do not know yet that the elementary embeddings are in
fact a generic iteration. For this we show four lemmata, the first being an easy
observation:

Lemma 2.4.4 Let 〈πi,j ; i ≤ j ≤ κ〉 be a system of elementary embeddings and let
〈Mi; i ≤ κ〉 be a sequence of transitive models of ZFC∗ + “ω1 exists”, where κ = ωV1
and Mi is countable for i < κ. Additionally assume that

Mκ |= ω1 = κ.

Then crit(πi,κ) = κ ∩ ran(πi,κ).

Proof. By elementarity there is some κi ∈Mi such that πi,κ(κi) = κ; i.e.

Mi |= ω1 = κi.

Hence κ ∩ ran(πi,κ) = κi is transitive and countable. Hence crit(πi,κ) = κi.

Lemma 2.4.5 Let p ∈ PΦ, i, i + 1 ∈ dom(p). Let ξ ∈ ran(πpi+1) and suppose
πpi (κi) = κ for some κi ∈ dom(πpi ). There is some q ≤ p such that ξ is definable
over M from parameters in ran(πqi ) ∪ {κi}.
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Proof. Let A certify p. Since ṀA
i+1 = Ult(ṀA

i , Gi) for some ṀA
i -generic Gi, there

is an f : κi → ṀA
i , f ∈ ṀA

i such that (πpi+1)−1(ξ) = π̇A
i,i+1(f)(κi), i.e. ξ =

π̇A
i,κ(f)(κi). By the presence of <, the function π̇A

i,κ(f) is definable overM in some
ordinal parameter λ ∈ ran(π̇A

i,κ), say π̇A
i,κ(λ̄) = λ. By 2.2.1 we find some q ≤ p such

that dom(p) = dom(q), dom−(p) = dom−(q), βqi = βpi for i ∈ dom(p), cp = cq,
πqj = πpj for j ∈ dom(p) \ {i} , πqi = πpi ∪ {〈λ̄, λ〉}, and τ qi = τpi for i ∈ dom−(p).
Clearly A also certifies q and q ≤ p.

Note that in the next lemma we discuss definable sets rather than elements to
handle the case θ = ω2; i.e. the situation where P(ω1) \ I is a class from the point
of view of Hθ.

Lemma 2.4.6 Let p ∈ PΦ, i ∈ dom(p) and suppose D ∈ Hθ is definable over M
from parameters in ran(πpi ) and also suppose

M |= D is dense in the partial order P(ω1) \ I.

There is some p′ ≤ p and some X ∈ D that is definable over M from parameters
in ran(πp

′

i ) such that

p′ PΦ crit(πĠi,i+1) ∈ X̌,

where πĠ is a PΦ-name for the system of elementary embeddings added by PΦ.

Proof. By Lemma 2.2.1 it is safe to assume that there is some κi ∈ dom(πpi ) such
that πpi (κi) = ω1. By Lemma 2.4.4 κi = crit(π̇A

i,ω1
) for all A that certify p. This,

by Lemma 2.2.2, implies
p  crit(πĠi,i+1) = κ̌i.

Let A certify p and let D̄ ∈ ṀA
i be such that π̇A

i,ω1
(D̄) = D. Since A believes that

π̇A
i,i+1 is a generic ultrapower there is some X̄ ∈ D̄ such that κi = crit(π̇A

i,i+1) ∈
π̇A
i,i+1(X̄) ⊂ π̇A

i,ω1
(X̄) =: X. By the presence of the well-ordering <, we know that

X is definable; for this note that X is the <-least member of D such that κi ∈ X.
Exploiting the well-ordering < and the elementarity of ran(πA

i,ω1
) ≺ M we find

a single ordinal ξ ∈ ran(πA
i,ω1

) such that X is definable from ξ. Now another

application of 2.2.1 yields some p′ ≤ p such that ξ ∈ ran(πp
′

i ). Hence the lemma
follows.

Lemma 2.4.7 Let G ⊂ PΦ be generic over V and let 〈πi,j ; i ≤ j ≤ κ〉 be the
system of elementary embeddings added by G and let 〈Mi; i ≤ κ〉 be the sequence of
transitive models added by G. Then:

1. Mi+1 ' Ult(Mi, Gi) for i < ω1, where Gi := {X ∈ P(ωMi
1 )Mi ; crit(πi,i+1 ∈

πi,i+1(X)},

2. 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉 is a generic iteration, where κi =
π−1
i,ω1

(κ) and Ii = π−1
i,ω1

(I).

Proof. Fix some i < ω1. Let D̄ be a dense subset of P(ωMi
1 )Mi that is definable

over Mi. Hence D := πi,ω1(D̄) is definable over M from parameters in ran(πi,ω1).
By the previous lemma and some straightforward density argument, there is some
X ∈ D that is definable over M from parameters in ran(πi,ω1) such that

κi = crit(πi,i+1) ∈ X.
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2 L-Forcing

Hence by elementarity, there is some X̄ definable over Mi such that X̄ ∈ D̄ and
X̄ ∈ Gi. The elements of Ult(Mi, Gi) are all of the form [f ]Gi for some f ∈Mi, f :
κi →Mi. It is straightforward to verify that

σ : Ult(Mi, Gi)→ HullM(ran(πi,ω1) ∪ {κi}); [f ]Gi 7→ πi,ω1(f)(κi)

is an isomorphism. By Lemma 2.4.5

Mi+1 ' HullM(ran(πi,ω1) ∪ {κi}).

This shows Mi+1 ' Ult(Mi, Gi) for i < ω1. The rest follows easily since one forms
direct limits at limit stages of generic iterations and also at limits of the system of
elementary embeddings 〈πi,j ; i ≤ j ≤ κ〉.

Combining these results we get:

Theorem 2.4.8 ([CS09]) Let I be a precipitous ideal on ω1. Let θ > ω1 be a
regular cardinal and let M = 〈Hθ;∈,NSω1 , <〉. Then there is an ω1-preserving
L-forcing P(I, θ) that adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that Mω1 = 〈HV
θ ;∈, I〉 and Iω1 = I; here κi = ωMi

1 and all Mi with i < ω1 are
countable. All I-positive S ∈ V are stationary in V P(I,θ). Especially if I = NSω1 ,
then P(I, θ) preserves stationary subsets of ω1.

Proof. If the cardinal setup ρ = 2<ρ > 2θ > θ = 2<θ holds in V for some reg-
ular ρ we set P(I, θ) = PΦ. If Col(θ, θ) preserves the precipitousness of I we
set P(I, θ) = Col(ρ, ρ) × Col(θ, θ) × ṖΦ, where ṖΦ is a name for PΦ calculated
in V Col(ρ,ρ)×Col(θ,θ). If Col(θ, θ) does not preserve the precipitousness of I let
θ′ = (22θ )+ and set P(I, θ) = Col(ρ′, ρ′)×Col(θ′, θ′)× ṖΦ for some regular ρ′ >> θ′

and restrict the resulting generic iteration. This will be possible since Hθ ∈ Hθ′ .
Note that θ′ is sufficiently large so that the precipitousness of I is preserved by forc-
ing with Col(θ′, θ′); there are no new strategies in V Col(θ′,θ′) for the players Empty
and Nonempty in the precipitousness game, see [Jec03, 22.21].
In any of the three cases we can apply the previous lemmata and Theorem 2.3.2 to
get the desired result.

The previous theorem does not tell us whether M0 is generically iterable. The
following theorem shows that under an additional large cardinal assumption this is
possible.

Theorem 2.4.9 ([CS09]) Let I be a precipitous ideal on ω1. Let θ > ω1 be a
regular cardinal and suppose H]

θ exists. Let M = 〈H]
θ;∈,NSω1 , <〉. Then there is a

stationary set preserving L-forcing P′(I, θ) that adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that Mω1 =M and Iω1 = I; here κi = ωMi
1 and all Mi with i < ω1 are count-

able. Additionally M0 is generically iterable. All I-positive S ∈ V are stationary in
V P′(I,θ). Especially if I = NSω1 , then P′(I, θ) preserves stationary subsets of ω1.

Proof. By the previous theorem there is a forcing P that adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉
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2.4 Examples of Stationary Set Preserving L-Forcings

such that Hθ ∈ Mω1 . Without loss of generality assume that Hθ ∈ ran(π0,ω1). Set
Ni = π−1

i,ω1
(Hθ). Then Ni = π−1

i,ω1
(H]

θ) = N ]
i , so we can restrict the above generic

iteration such that the last model is 〈H]
θ;∈,NSω1 , <〉. It remains to show the generic

iterability of 〈N ]
0 ;∈, I0〉. For this note that 〈N ]

0 ;∈, I0〉 is generically ω1 + 1-iterable
if and only if 〈L[N0];∈, I0〉 is generically ω1 + 1-iterable, see [Woo99, 3.8] and also
note that 〈L[N0];∈, I0〉 is generically ω1 + 1-iterable by [Woo99, 3.10, 3.11].

Question 2.4.10 Ketchersid, Larson and Zapletal also developed a notion of
forcing that adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

with countable Mi for i < ω1 and Mω1 ⊃ Hθ for some given θ, see [KLZ07]. We do
not know if this forcing construction can be recast as an L-forcing, nor do we know
if it is equivalent to Claverie-Schindler forcing.

2.4.2 Variants of Claverie-Schindler forcing

The forcing P(NSω1 , θ) can be modified to force (a single instance of) ψAC and φAC ,
combinatorial principles isolated by Woodin. These modified forcing constructions
are carried out later, see Theorem 3.2.5 and Theorem 3.2.15.

2.4.3 A First Application: Sealing Antichains

We show that Claverie-Schindler seals all antichains in P(ω1) \ NSω1 . This obser-
vation (i.e. what we call Theorem 2.4.16) is due to S. Todorčević. Let us first have
a look at the classic approach to sealing antichains:

Definition 2.4.11 Let I ⊂ P(ω1) be a normal and uniform ideal. Let A be a
maximal antichain in P(ω1) \ I =: I+, i.e. if S, T ∈ A, then S ∩ T ∈ I and for all
S ∈ I+ there is some T ∈ A such that S ∩ T ∈ I+. We say A is sealed if there is a
surjection F : ω1 → A and a club C ⊂ ω1 such that

C ⊂ ∇α∈ω1F (α) := {α ; α ∈ ∪β<αF (β)}.

We call ∇α∈ω1F (α) the diagonal union of F .

The following lemma explains the term sealed.

Lemma 2.4.12 Let A be a maximal antichain in P(ω1) \NSω1 that is sealed. Let
F : ω1 → A and C be witnesses. Then in all outer models W such that ωV1 = ωW1
the set A contains a maximal antichain in (P(ω1) \ NSω1)W .
Especially if W is a stationary set preserving extension of V , then A is a maximal
antichain in (P(ω1) \ NSω1)W .

Proof. Let S ⊂ ω1 be some stationary set of W . The set C is also club in W , so
S ∩C is stationary. Let us assume S witnesses that A does not contain a maximal
antichain, i.e. if T ∈ A, then S ∩ T ∈ NSWω1

, and work toward a contradiction. For
each α ∈ ω1 fix a club Dα such that F (α) ∩ S ∩ Dα = ∅. Let D := 4Dα, the
diagonal intersection of the Dα. Then S ∩C ∩D 6= ∅, say α0 is in this intersection.
Since C ⊂ ∇F (α)

α0 ∈
⋃
β<α0

F (β).
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2 L-Forcing

On the other hand by the definition of D

α0 ∈
⋂
β<α0

Dβ .

So there is some β0 < α0 such that α0 ∈ F (β0) and α0 ∈ Dβ0 . But this is absurd
since Dβ0 ∩ F (β0) ∩ S = ∅.

Antichains can be forced to be sealed.

Definition 2.4.13 (Foreman, Magidor, Shelah) Let A ⊂ P(ω1) \ NSω1 be a
nonempty set. Let PA be the following partial order: elements are pairs (f, c)
such that c ⊂ ω1 is closed and bounded in ω1 and

f : max(c) + 1→ A

and for all α ∈ c there is some β < α such that α ∈ f(β). For (f, c), (g, d) ∈ PA we
set (g, d) ≤ (f, c) if and only if g ⊃ f and d ⊃ c and d ∩ (max(c) + 1) = c.

Lemma 2.4.14 The forcing PA preserves stationary subsets of ω1 if A is pre-
dense in P(ω1) \ NSω1 . So especially for all antichains A the forcing PA preserves
stationary subsets of ω1. Furthermore the forcing is ω-distributive.

Proof. Let S ⊂ ω1 be a stationary set in V and let Ċ ∈ V PA be a name for a club.
Since A is predense, there is some T ∈ A such that S ∩ T is stationary. Let λ be
large enough so that all the dense subsets of PA are contained in Hλ and Ċ ∈ Hλ.
Pick a countable X ≺ Hλ such that {A,PA, T, S, Ċ} ⊂ X and α := ω1∩X ∈ S ∩T .
Let π : M → X be the inverse of the transitive collapse of X. Let g be generic for
π−1(PA) over M . Let

c :=
⋃
{c′ ; ∃f ′ : (f ′, c′) ∈ g}; f :=

⋃
{π(f ′) ; ∃c′ : (f ′, c′) ∈ g}.

Clearly c is club in α and f : α → A ∩ X is surjective. Note that (f, c) is not
a condition, since c is not closed in ω1. It is straightforward to check that p :=
(f_(α, T ), c ∪ {α}) ∈ PA; the key fact is that by the genericity of g over M there
is some β < α such that f(β) = T . Since

M [g] |= π−1(Ċ)g is club in α,

we have p  Ċ is unbounded in α. Then p  α ∈ Ċ. So p  α ∈ Š ∩ Ċ.
For the ω-distributivity we look at some name ρ for a function with domain ω and
range in V . We only have to modify the argument above slightly. Pick an X as
above with the additional property that ρ ∈ X. Then construct p as before. By
genericity p decides ρ(n) for all n ∈ ω, i.e. for all n ∈ ω there is some r ≥ p and
some x such that

r  ρ(n) = x̌.

Lemma 2.4.15 (Foreman, Magidor, Shelah) Let A be a maximal antichain in
P(ω1) \ NSω1 . Let G ⊂ PA be generic over V . Let

C :=
⋃
{c ; ∃f : (f, c) ∈ G};F :=

⋃
{f ; ∃c : (f, c) ∈ G}.

Then C ⊂ ω1 is closed unbounded and F : ω1 → A is surjective and C, F witness
that A is sealed in V [G].
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2.4 Examples of Stationary Set Preserving L-Forcings

Proof. By the previous lemma we know that V [G] is a stationary set preserving
extension of V . Obvious density arguments imply that C is club and that F is
surjective. We show that C ⊂ ∇α∈ω1F (α). Fix some α ∈ C. Hence there is some
(f, c) ∈ G such that α ∈ c. Hence by the definition of PA we have that α ∈ f(β)
for some β < α. Then clearly α ∈

⋃
β<α F (β) which suffices to show.

We now show how to seal all antichains in V by a single notion of forcing.

Theorem 2.4.16 Let θ > 22ω1 and regular. Let I ⊂ P(ω1) be a precipitous ideal.
Let P be a notion of forcing that preserves all I-positive sets; i.e. all I-positive sets
are stationary in V P. Furthermore suppose that P adds a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that 〈Mω1 , Iω1〉 = 〈Hθ; I〉. Then all maximal antichains A ⊂ (P(ω1) \ I)V in
V are sealed in V P.

We state the following obvious corollary before proving the theorem.

Corollary 2.4.17 Let θ > 22ω1 and regular. Let I be precipitous. Let P = P(I, θ).
Then all maximal antichains A ⊂ (P(ω1) \ I)V in V are sealed in V P.

We now prove the theorem.

Proof. Let A ∈ V be a maximal antichain in P(ω1) \ I. Let

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

be a generic iteration with last model 〈Hθ; I〉. Then clearly A ∈ Hθ. Let us assume
without loss of generality that there is some A ∈ M0 such that π0,ω1(A) = A. Let
Γ : ω1 → ω1×ω denote a function such that for all limit ordinals δ < ω1 the function
Γ�δ : δ → δ × ω is bijective. We also fix for all α < ω1 enumerations

σα : ω →Mα

of all stationary subsets of κα in Mα. We define a function F that will witness that
A is sealed in V P. We set

F : ω1 → A;α 7→

{
πβ,ω1(σβ(n)) if Γ(α) = (β, n) and πβ,ω1(σβ(n)) ∈ A;
S0 else, for some fixed S0 ∈ A.

Let C := {α < ω1 ; α = κα}. It clearly remains to show

C ⊂ ∇α∈ω1F (α).

Fix some α ∈ C. The set π0,α(A) is a maximal antichain in (P(κα) \ Iα)Mα . Hence
by the genericity of Gα over Mα there is a unique t ∈ π0,α(A) such that t ∈ Gα.
This implies that α ∈ πα,α+1(t) ⊂ πα,ω1(t). Since α is a limit ordinal, there is a
β < α and a t̄ ∈ Mβ such that πβ,α(t̄) = t. So there is some n ∈ ω such that
σβ(n) = t̄ an hence some γ < α such that Γ(γ) = (β, n). Note that γ < α since α
is a limit ordinal. So we have F (γ) = πα,ω1(t̄). Hence α ∈

⋃
α′<α F (α′), which is

what we needed to show.

Theorem 2.4.16 yields a characterization of precipitousness:

Corollary 2.4.18 Let I ⊂ P(ω1) be a normal and uniform ideal. The following
are equivalent:
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2 L-Forcing

1. I is precipitous.

2. There is a notion of forcing P such that all maximal antichains A ⊂ P(ω1)\I,
A ∈ V are sealed in V P and all S ∈ P(ω1) \ I, S ∈ V are stationary in V P.

3. For all cardinals θ > ω1 there is a notion of forcing P such that P adds a
generic iteration of length ω1 +1 with last model 〈Hθ; I〉 and all S ∈ P(ω1)\I,
S ∈ V are stationary in V P.

Proof. Let us assume 1. holds. Then P(I, θ) witnesses that 3. holds. Clearly 3.
implies 2. by the previous theorem. It remains to check that 2. implies 1.
Assume there is some S ∈ P(ω1) \ I such that

S  Ult(V, Ġ) is ill-founded,

and work towards a contradiction. So there is some θ > 22ω1 that is a cardinal in
V P such that

S  Ult(ȞV
θ , Ġ) is ill-founded.

Let X ≺ 〈HV P

θ ;∈, I,HV
θ 〉, X ∈ V P such that S ∈ X and α := X ∩ ω ∈ S. This

is possible, since S is stationary in V P. Let A denote the collection of all maximal
antichains of P(ω1) \ I. So for every A ∈ A ∩X, there is a surjection F : ω1 → A
and a club C ⊂ ω1, F,C ∈ X, such that F,C witness that A is sealed. Let π : 〈H̄;∈
, Ī, H̄V

θ 〉 → X denote the inverse of the transitive collapse and let π(S̄, Ā) = S,A.
Set

g = {a ∈M ; a ∈ P(α) \ Ī ∧ α ∈ π(a)}.

Clearly S̄ ∈ g. We claim that g is generic over H̄V
θ . So let Ā ∈ Ā and let F,C ∈ X

witness that π(Ā) is sealed. Then α ∈ C, since C ∩ α is unbounded in α by
elementarity. This implies that there is some β < α such that α ∈ F (β). So
π−1(F (β)) ∈ g (in fact this β is unique). That shows that g intersects all members
of Ā, hence g is generic over H̄V

θ . Since S̄ ∈ g, the generic ultrapower j : H̄V
θ →

Ult(H̄V
θ , g) is ill-founded. This contradicts the fact that the map

j(f)(α) 7→ π(f)(α)

witnesses the well-foundedness of j. This finishes the proof.
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3 The Theory BMM + NSω1 is
precipitous

We will now investigate which Π2 sentences (over Hω2) that are consequences of
ZFC + MM also follow from ZFC + BMM + NSω1 is precipitous. It turns out that
admissible club guessing (acg), δ˜1

2 = ω2, the club bounding principle (CBP), and
ψAC as well as φAC follow from this weaker theory. This was known for δ˜1

2 = ω2 and
ψAC but not for φAC and acg. We will define and study the principles mentioned
above. First we will study acg and its various direct consequences and show that
acg follows from BMM + NSω1 is precipitous. Then we will define and study φAC
and ψAC and show that they are consequences of BMM + NSω1 is precipitous.
Here is an outline of the strategy of our investigation. Given a Π2 statement φ =
∀xφ̄(x, p), where p ∈ Hω2 and φ̄ is Σ1 we will make use of the theory BMM + NSω1

is precipitous as follows: the precipitousness of NSω1 will allow us to construct a
stationary set preserving L-forcing that forces φ̄(x, p) for a fixed x ∈ Hω2 . Then we
will apply BMM to see that φ̄(x, p) holds in the ground model. The forcing will be
Claverie-Schindler forcing or a variant.
The theory BMM + NSω1 is precipitous does nevertheless not imply that NSω1 is
saturated, in contrast to MM: it is well known that MM implies that NSω1 is ω2-
saturated, see [FMS88], but by [Woo99, 10.103, 10.99] BMM + NSω1 is precipitous
does not1.
The following diagram illustrates the logical structure of the various statements;
here the superscripts of the implications refer to the respective result:

BMM + NSω1 is precipitous

acg

3.1.25

⇐==
==

==
==

==
==

==

ψAC

3.2.15�
wwwwwwww

φAC

3.2.5
===============⇒

∀x ∈ R : x] exists

3.1.14

⇐=
==

==
==

==
==

=

δ˜1
2 = ω2

3.1.9�
wwwwwwww

CBP

�
wwwwwwww
⇐===============

3.1.6

=============⇒

The implication from ψAC to CBP is due to Aspero and Welch, see [AW02]. Claverie
and Schindler have shown that BMM + NSω1 is precipitous implies δ˜1

2 = ω2, see
[CS09]. The implication from φAC to CBP follows easily from Lemma 3.1.5. All
implications from acg are due to Woodin, see [Woo99, (proof of) 3.19]; nevertheless
we will discuss acg in greater detail and review the implications from acg.

3.1 The Principle acg

Let x ⊂ ω. Recall that an ordinal α is x-admissible, or simply admissible if x is
clear from the context, if Lα[x] |= KP, where KP is Kripke-Platek set theory.
1In the situation of [Woo99, 10.103] one considers a 2Pmax extension; there NSω1 is not saturated

but one can check that it is precipitous using the 2Pmax analysis in [Woo99, 6.14].
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3 The Theory BMM + NSω1 is precipitous

Definition 3.1.1 We call the following principle admissible club guessing (acg).
For all clubs C ⊆ ω1 there exists a real x such that

Ax := {α < ω1 ; Lα[x] is admissible} ⊂ C.

Note that acg is a Π2 statement in no parameters over Hω2 .

Remark 3.1.2 The principle acg was isolated by Woodin. If MM holds, then NSω1

is ω2-saturated and the universe is closed under the sharp operation (the closure
under the sharp operation is already a consequence of BMM, see [Sch04]). So by
[Woo99, 3.17] δ˜1

2 = ω2 and hence by [Woo99, 3.16, 3.19] acg holds.

3.1.1 Consequences of acg

We discuss several interesting consequences of acg. Recall the definition of the Club
Bounding Principle (CBP).

Definition 3.1.3 The Club Bounding Principle (CBP) is the following axiom:
For all f : ω1 → ω1 there is some η < ω2 and some club C such that for all
α ∈ C : f(α) < fη(α) where fη is a canonical function for η.

Clearly CBP can be recast as a Π2 statement in no parameters over Hω2 .

Definition 3.1.4 (Tilde Operation) Let T ⊂ ω1. Then we set

T̃ := {α < ω2 ; ω1 ≤ α ∧ 1P(ω1)\NSω1
 α ∈ j(T )},

where j is a name for the generic ultrapower added by P(ω1) \ NSω1 .

Note that C̃ contains ω1 if and only if C contains a club.

Lemma 3.1.5 (Folklore) The following are equivalent:

1. CBP

2. For every club C ⊂ ω1 there is a club D ⊂ ω1, α < ω2, ω1 < α and a canonical
function fα for α such that fα“D ⊂ C.

3. For every club C ⊂ ω1 there is some α ∈ C̃ such that ω1 < α.

Proof. Unraveling the definition of C̃ it is not difficult to see that 2. and 3. are
equivalent. It remains to show 1. if and only if 2. We assume CBP. Let C ⊂ ω1

be club. Inductively we construct a sequence 〈fi; i < ω〉 and a sequence 〈αi; i < ω〉
of ordinals < ω2 such that ran(fi) ⊂ C and such that there is a club Di such that
fi(ξ) < fαi(ξ) < fi+1(ξ) for all ξ ∈ Di where fαi is a canonical function for αi.
Set f0(ξ) = min(C \ (ξ + 1)) for ξ < ω1. Then by CBP there is some α0 < ω2, a
canonical function fα0 for α0 and a club D0 such that fα0(ξ) > f0(ξ) for ξ ∈ D0.
In the induction step set fi+1(ξ) = min(C \ (fαi(ξ) + 1) for ξ < ω1. Note that by
the choice of f0 every αi is > ω1. Set D = ∩i<ωDi. Then for all ξ ∈ D

sup
i<ω

fαi(ξ) = sup
i<ω

fi(ξ) ∈ C,

since ran(fi) ⊂ C by construction. By Lemma 1.6.5 f : ω1 → ω1; f(ξ) :=
supi<ω fαi(ξ) is a canonical function for α := supi<ω αi. Hence f(ξ) ∈ C for
all ξ ∈ D.

36



3.1 The Principle acg

It remains to show the converse. Assume 2. holds. Let f : ω1 → ω1 be a function
and let C := {β < ω1 ; f“β ⊂ β}. By the hypothesis there is a club D, an α > ω1

and a canonical function fα : ω1 → ω1 for α such that fα(β) ∈ C for all β ∈ D.
Since α > ω1 the set {β ; β ≥ fα(β)} is nonstationary. Hence we can assume with-
out loss of generality that fα(β) > β for β < ω1. If β ∈ D, then fα(β) ∈ C. Hence
f“fα(β) ⊂ fα(β) > β for β ∈ D. So especially f(β) < fα(β) for all β ∈ D.

Note that CBP implies that ωV2 = ωN1 for every well-founded generic ultrapower
j : V → N , see Lemma 3.1.17

Lemma 3.1.6 ([Woo99, (proof of) 3.19]) acg =⇒ CBP.

In the proof of the lemma and later on it is convenient to use the following
function.

Definition 3.1.7 If x is a real we define a function looking for the next x-
admissible above some ordinal.

πx : ω1 + 1→ ω2; πx(α) := the least x-admissible > α.

Note that we sometimes write πx for πx � ω1, especially when equivalence classes
of functions with domain ω1 are discussed. Note the following: if f = fπx(ω1) is a
canonical function for πx(ω1), then f and πx agree on a club.

We now show Lemma 3.1.6.

Proof. Let f : ω1 → ω1. Let C be the club of ordinals α such that f“α ⊂ α. Let
x ∈ ωω such that Ax ⊂ C. If α < ω1, then πx(α) ∈ Ax and so f“πx(α) ⊂ πx(α).
Hence for all α ∈ ω1

f(α) < πx(α).

So clearly f < πx on a club. Let η = πx(ω1), so ω1 < η < ω2. We claim that fη (i.e.
an ηth canonical function) is a function that dominates πx on a club (this clearly
suffices to show). The set D ⊂ ω1 of ξ such that there is an X ≺ Hω2 such that the
following conditions hold is club:

1. ξ = X ∩ ω1,

2. fη(ξ) = otp(X ∩ η).

Such X exist, by the following argument: pick some X ≺ 〈Hω2 ,∈, η, gη〉, where
gη : ω1 → η bijective such that fη(α) = otp(gη“α) (such a gη exists by the definition
of canonical functions). If ξ = X ∩ ω1 then, by elementarity,

ρ ∈ X ∩ η ⇐⇒ X |= ∃α < ω1 : gη(α) = ρ ⇐⇒ ρ ∈ gη“ξ,

Hence X ∩ η = gη“ξ. But then fη(ξ) = otp(gη“ξ) = otp(X ∩ η).
Without loss of generality we can assume that each witness X as above contains
x as an element. We now show: if ξ ∈ D, then πx(ξ) ≤ fη(ξ). Pick X, a witness
for ξ ∈ D. Let σ : H → Hω2 be the inverse of the transitive collapse of X. Let
η̄ = σ−1(η). So η̄ = fη(ξ). Since Hω2 |= “η = πx(ω1) is an x-admissible”, the same
holds for η̄ in H by elementarity. Since H is transitive, η̄ is really an x-admissible.
So πx(ξ) ≤ η̄ = fη(ξ).

Recall the following concepts:
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3 The Theory BMM + NSω1 is precipitous

Definition and Remark 3.1.8 By δ˜1
2 we denote the supremum of the lengths

of all ∆˜ 1
2 well-orderings of the reals and by u2 we denote the second uniform indis-

cernible, i.e. the least ordinal above ω1 that is an x-indiscernible for all x ∈ R. It
is well known that if x] exists for all reals x then δ˜1

2 = u2. It is easy to see that
always ω1 < δ˜1

2 ≤ ω2 and ω1 < u2 ≤ ω2.

Lemma 3.1.9 ([Woo99, (proof of) 3.19]) acg =⇒ δ˜1
2 = ω2.

We have not yet shown that acg implies that sharps for all reals exist but want
to make use of this fact in the proof. We promise to prove the existence of sharps
for reals in 3.1.14

Proof. By 3.1.14 acg implies that sharps for all reals exist. So u2 = δ˜1
2. Hence it

suffices to show that u2 = ω2. If sharps for all reals exists, the second uniform
indiscernible u2 can be characterized as follows:

u2 = sup{(ωV1 )+L[x] ; x ∈ ωω}.

Since πx(ω1) < (ωV1 )+L[x], it suffices to show that the ordinals of the form πx(ω1)
are cofinal in ω2. Fix some η < ω2 and a canonical function fη : ω1 → ω1. We
now apply acg as in the proof of the previous lemma to find a real x such that πx
dominates fη on a club. So clearly πx(ω1) > η.

The following lemma is (3) =⇒ (4) in [Woo99, 3.19]. Since there is no proof of
this implication given, we give one here.

Lemma 3.1.10 If x] exists for every real x and additionally for every club C ⊂ ω1

there exists a club C ′ ⊂ C that is constructible from a real, then acg holds.

Proof. Fix a club C ⊂ ω1. By our hypothesis, there is a real x and a club C ′ ∈ L[x]
such that C ′ ⊂ C. Since x] exists, we find x-indiscernibles ν1 < ... < νn < ω1 and
some formula φ, such that C ′ is the unique set (in L[x]) defined by φ using ~ν and
x as parameters. Pick some real y such that x ∈ L[y] and L[y] |= “ν1, ..., νn < ω1”.
Since there is a club of countable x-indiscernibles there is clearly an x-indiscernible
in C ′. Hence all x-indiscernibles ξ such that νr < ξ < ω1 are in C ′. Note that
every y-indiscernible ξ < ω1 is an x-indiscernible. Now look at A := Ay] = {α <
ω1 ; α is y]-admissible}. We claim that A ⊂ C. Pick some α ∈ A. Hence Lα[y]] |=
KP. Using only KP one can check that unboundedly many y-indiscernibles exist in
Lα[y]]. Hence α is a limit of y-indiscernibles and so also a y-indiscernible. Clearly
α > νn, since y was chosen so that there is a surjection from ω to νr in L[y]. So
α ∈ C ′. This suffices to show.

By 3.1.14 acg implies that sharps exist for all reals. For any x the set Ax is clearly
constructible from x. So we have the following corollary:

Corollary 3.1.11 The following are equivalent:

1. Sharps for all reals exist and for every club C ⊂ ω1 there exists a club C ′ ⊂ C
that is constructible from a real.

2. acg. �
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3.1.2 The consistency strength of acg

To derive strength from acg it is crucial to know that sharps for reals exist if acg
holds. We will now show that acg implies that x] exists for every real x. There are
two ways to show this; we are going to present both, since the more cumbersome
way yields additional information about the generic iterability of substructures of
Hω2 .

Lemma 3.1.12 (Woodin) Let 〈X;∈,NSω1 ∩X〉 ≺ 〈Hω2 ;∈,NSω1〉 be a countable
substructure. Let N denote the transitive collapse of X. Then acg implies that N
is (fully) generically iterable, i.e. if there is a generic iterate Nα of N in some
transitive ZFC model W ⊇ V such that Nα is countable in W then we can continue
the generic iteration in W to an iteration of length ωW1 + 1.

Proof. Fix a countable 〈X; NSω1 ∩ X〉 ≺ 〈Hω2 ; NSω1〉 and let 〈N ;∈,NSNω1
〉 denote

its transitive collapse. The proof of 3.1.9 shows that {πx(ω1) ; x ∈ ωω} is cofinal in
ω2. If x, y are reals such that πx(ω1) < πy(ω1) then there is a club C of α < ω1 such
that πx(α) < πy(α); this can easily be seen by looking at collapses of elementary
substructures of Hω2 . Now acg implies that for each such C there exists a real z
such that Az ⊂ C. We now construct a sequence 〈xi ; i ∈ ω〉 of reals such that

1. ∀i ∈ ω : xi ∈ X,

2. {πxi(ω1) ; i ∈ ω} is cofinal in X ∩ ω2,

3. for each α ∈ Axi+2

πxi(α) < πxi+1(α).

Pick some countable sequence 〈αi ; i ∈ ω〉 of ordinals cofinal in X ∩ ω2. Pick
x0, x1 ∈ X∩ωω such that α0 ≤ πx0(ω1) < πx1(ω1) and α1 ≤ πx1(ω1). We now apply
acg to find a real z2 such that for all α ∈ Az2 πx0(α) < πx1(α). By elementarity
z2 can be picked in X. Pick some real z′2 such that α2 ≤ πz′2(ω1). Again such
a real exists in X. Let x2 ∈ X code z2 and z′2, then clearly for all α ∈ Ax2

α0 ≤ πx0(α) < πx1(α). We can now continue in this fashion to pick xi for 2 < i.
Since N is the transitive collapse of X it follows for i ∈ ω that πxi(ω

N
1 ) is the image

of πxi(ω1) under the collapsing map. Thus if j : 〈N ;∈,NSNω1
〉 → 〈M ;E,NSMω1

〉 is a
generic iterate, {j(πxi(ωN1 )) ; i ∈ ω} is cofinal in the ordinals of M , simply because
j“OR∩N is cofinal in the ordinals of M and {πxi(ωN1 ) ; i ∈ ω} is cofinal in OR∩N .
We prove two claims and derive the desired result from them.
Claim 1. Suppose that 〈N∗;E∗, I∗〉 is a generic iterate of 〈N ;∈,NSNω1

〉 such that
ωN

∗

1 is well-founded. Then N∗ is well-founded.
Proof of Claim 1. Let γ be the well-founded part of ORN

∗
. Thus for each x ∈

N∗ ∩ ωω, Lγ [x] is admissible, see [Bar75, Corollary II 8.5], i.e. the so called Trun-
cation Lemma (the quoted result works for x = ∅; for x 6= ∅ it is easily checked that
an analog holds). Since ωN

∗

1 is well-founded ωN
∗

1 ∈ γ. Hence for all x ∈ N∗ ∩ ωω
we have πx(ωN

∗

1 ) ≤ γ. So sup{πx(ωN
∗

1 ) ; x ∈ N∗ ∩ ωω} ≤ γ; this implies that
γ = ORN

∗
. Hence N∗ is well-founded. (Claim 1)

Claim 2. Let 〈N∗;∈, I∗〉 be a well-founded iterate of N and let 〈N∗∗;E∗∗, I∗∗〉 be
a generic ultrapower of 〈N∗;∈, I∗〉. Then

ωN
∗∗

1 = N∗ ∩ OR.

Proof of Claim 2. The proof of 3.1.6 shows that for all f : ω1 → ω1 a real x exists
such that for all α ∈ Ax we have f(α) < πx(α). Hence this also holds in N and
its iterates. Let j∗ : 〈N∗;∈, I∗〉 → 〈N∗∗;E∗∗, I∗∗〉 be a generic ultrapower. All
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3 The Theory BMM + NSω1 is precipitous

elements of ωN
∗∗

1 are represented by functions f : ωN
∗

1 → ωN
∗

1 . Fix such an f . It
suffices to show that

j∗(f)(ωN
∗

1 ) < OR ∩N∗,
since the ordinals of N∗ are clearly an initial segment of the ordinals of N∗∗. Now
pick some real x ∈ N∗ such that for all α ∈ AN∗x ,

f(α) < πx(α).

Again by elementarity we know that πx(ωN
∗

1 ) ∈ N∗. By absoluteness we have

πx(ωN
∗

1 ) = (πx(ωN
∗

1 ))N
∗∗
.

By the elementarity of j∗

∀α ∈ AN
∗∗

x : j∗(f)(α) < j∗(πx)(α).

Since j(πN
∗

x ) = πx �ωN
∗∗

1 we conclude

j∗(f)(ωN
∗

1 ) < j∗(πx)(ωN
∗

1 ) < OR ∩N∗.

Hence j∗(ωN
∗

1 ) = OR ∩N∗. (Claim 2)

From the two claims it follows inductively that all generic iterates of N are well-
founded: the successor case is a direct consequence of the two claims. For the limit
case it suffices to check that for any putative generic iteration

〈〈Ni, πi,j ,NSNiω1
, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉

of 〈N ;∈,NSNω1
〉, where γ is a countable limit ordinal, the ordinal ωNλ1 is well-founded.

If not there is a decreasing chain (ai)i∈ω of countable ordinals in Nλ. Since all ai
are countable in Nλ there is some α < λ such that all ai have a preimage āi in Nα.
But this contradicts the well-foundedness of Nα. Hence generic iterations of N can
be continued in either case.

Lemma 3.1.13 (Woodin) If there is an 〈X;∈,NSω1 ∩ X ≺ 〈Hω2 ;∈,NSω1〉 such
that the transitive collapse of X is (fully) generically iterable, then x] exists for all
reals x.

Proof. Let 〈M ; NSMω1
〉 be the transitive collapse of some X ≺ Hω2 such that the

model 〈M ; NSMω1
〉 is generically iterable. Note that sharps for all reals exists if and

only if Hω2 |= ∀x ∈ ωω : x] exists. We assume that sharps did not exist for all
reals and prove that this contradicts Jensen’s Covering Lemma. It clearly suffices
to discuss only reals in M . So let z be a real in M and assume z] did not exist.
Claim 1. If N is a countable, transitive, generically iterable model of ZFC∗+“ω1

exists” and if t is a real in N then ωN1 is a regular cardinal in L[t].
Proof of Claim 1. Let S = {κ < ωN1 ; κ is singular in LωN1 [t]}. We prove that S
is nonstationary. Otherwise it was stationary in N . Let j : N → N∗ be an iter-
ation of length ω1. So j(ωN1 ) = ω1. Work in some generic extension V [G] where
ω1 is countable. Continue the iteration by one step, say k : N∗ → N∗∗, such that
ω1 ∈ k(j(S)). So ωV1 is singular in LωN∗∗1

[t], which is clearly a contradiction.
Hence there is a club C ⊂ ωN1 in N such that all κ ∈ C are regular in LωN1 [t].
Suppose ωN1 was not regular in L[t]. Let β < ω1 such that ωN1 is singular in Lβ [t].
Let j : N → N∗ be some iteration of N of length β. So β ≤ ωN

∗

1 and hence ωN1 is
singular in LωN∗1

[t]. But ωN1 ∈ j(C), hence ωN1 must be regular in LωN∗1
[t]. Contra-

diction. (Claim 1)
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3.1 The Principle acg

We now use the claim to show that all uncountable cardinals in V are regular
cardinals in L[z]. Let λ be an uncountable cardinal in V . Let V [G] be a generic
extension of V in which λ is countable. Let

〈〈Mi, πi,j ,NSMi
ω1
, κi; i ≤ j ≤ λ〉, 〈Gi; i < λ〉〉

be a generic iteration of 〈M ;∈,NSMω1
〉. By Lemma 3.15 of [Woo99] we have j(ωM1 ) =

λ. Also Mλ is generically iterable in V [G]. Hence an application of the claim implies
that λ is regular in L[z]. But this implies that ℵVω is regular in L[z] which clearly
contradicts Jensen’s Covering Lemma.

Combining the lemmata above we have:

Lemma 3.1.14 ([Woo99, (proof of) 3.19]) acg implies that sharps exist for all
reals.

Remark 3.1.15 Since acg implies that sharps for all reals exist and δ˜1
2 = ω2, it

follows by [SW98], that ZFC+acg has at least consistency strength of ZFC+∃λ∃κ >
λ : λ is < κ-strong and κ is inaccessible. In fact it can be shown that n strong
cardinals exist in some inner model for all n ∈ ω. Unpublished work of Steel and
Welch indicates that even κ-many strong cardinals exist in some inner model, for
every cardinal κ. It is frequently conjectured that δ˜1

2 = ω2 and the existence of
sharps for all reals has the consistency strength of one Woodin cardinal.

We now present a simplified proof of the fact that acg implies that sharps for
all reals exists. Because the previous proof also gives information on the generic
iterability of countable substructures of Hω2 , we decided to present both.
First we show two lemmata about the Club Bounding Principle.

Lemma 3.1.16 (Folklore) If CBP and j : V → N is any generic ultrapower (not
necessarily well-founded), then each ordinal < j(ω1) is represented by a canonical
function.

Proof. Let f : ω1 → ω1. By CBP there is some η < ω2 such that fη > f on a club.
The relation <S is well-founded for all stationary S and ||fη||S = η. Hence

1P(ω1)\NSω1
 [fη] = η ∧ [f ] < [fη].

But then for some S ∈ G and some η′ < η

S  [f ] = η′.

Since ||fη′ ||S = η′, we have
S  [f ] = [fη′ ].

The following is an immediate consequence of the previous lemma.

Lemma 3.1.17 (Folklore) If CBP, then ωV2 + 1 ⊂ wfp(N), where N = Ult(V,G)
and G ⊂ P(ω1) \NSω1 is generic for V . Also j(ω1) = ωV2 , where j is the canonical
generic ultrapower map j : V → N .

Lemma 3.1.18 Let a ⊂ ω. Then CBP implies that ω1 is inaccessible in L[a].
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3 The Theory BMM + NSω1 is precipitous

Proof. Assume ω1 was not inaccessible in some L[a]. So there is a countable ordinal
α such that the following is true in V

∀β < ω1∃γ < ω1 : Lγ [a] |= there is a surjection from α to β.

Let j : V → N be any generic ultrapower. Then by elementarity the following holds
in N

∀β < j(ω1)∃γ < j(ω1) : Lγ [a] |= there is a surjection from α to β,

since j(a) = a. By the previous Lemma ωV2 + 1 ⊂ wfp(N), so setting β = ωV1 we
get some γ in the well-founded part of N such that Lγ [a] contains a surjection from
α to ωV1 . But this is absurd, since Lγ [a] is absolute between V and N .

The following theorem is due to Silver and a (simplified) proof due to Paris was
published by Harrington in [Har78].

Theorem 3.1.19 Let a ⊂ ω. Assume that all a-admissibles are L-cardinals. Then
0] exists in L[a].

It is straightforward to generalize the previous theorem to arbitrary sharps, so
we do not give a proof of the following theorem.

Theorem 3.1.20 Let a, b ⊂ ω. Assume that all a-admissibles are L[b]-cardinals
and that b ∈ L[a]. Then b] exists in L[a].

Corollary 3.1.21 acg implies that sharps exist for all reals.

Proof. Fix an arbitrary real b. Since acg =⇒ CBP we have that C := CardL[b] ∩ω1

is club in ω1 by Lemma 3.1.18. By acg there is a real a that guesses C. Furthermore
without loss of generality we can assume that b ∈ L[a]. Hence all a-admissibles are
L[b]-cardinals. So b] exists in L[a] by the previous theorem. Since b] is absolute,
we are done.

Remark 3.1.22 If acg then there are at least ω2 many reals, see the proof 3.1.9.
Nevertheless acg does not decide the size of the continuum, by the following argu-
ment: add many Cohen reals, say ω3 many to a model of acg. Any club of the
forcing extension has a subset which is a club in the ground model. Hence acg still
holds in the forcing extension! This shows that relative to large cardinal assump-
tions, the continuum can be arbitrarily large and CBP can hold at the same time.
Moreover this also implies that CBP does not bound the size of the continuum. In
fact by [LS03], CBP + CH is consistent relative to some large cardinal.

An upper bound for the consistency strength of acg is the following.

Remark 3.1.23 If

ZFC + ∃δ∃κ : δ < κ and δ is Woodin and κ is measurable

is consistent then so is
ZFC + acg.

Proof. Let κ and δ be as above. Shelah showed that there is a forcing extension V P

of V such that NSω1 is saturated in V P. Since P ∈ Vκ, κ is still measurable in V P.
Hence P(ω1)] exists in V P. By [Woo99, 3.17] and [Woo99, 3.16] it follows that acg
holds in V P.
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Clearly the upper bound given by the remark is suboptimal. We did not really
need the measurable, an adequate sharp would have done. Also note the following
interesting fact. If NSω1 is saturated, then it need not be the case that δ˜1

2 = ω2;
Woodin, starting with one Woodin cardinal, has constructed a model of NSω1 is
saturated and δ˜1

2 6= ω2, see [Woo99, 3.28].

3.1.3 The consistency of acg

Claverie and Schindler have shown:

Theorem 3.1.24 ([CS09]) BMM + NSω1 is precipitous =⇒ δ˜1
2 = ω2.

We will now refine the above theorem by showing the following.

Lemma 3.1.25 BMM + NSω1 is precipitous =⇒ acg.

Proof. Fix some club C. We have to show that C is guessed in the sense of acg. Since
NSω1 is precipitous we can construct P′(ω2,NSω1), see Theorem 2.4.9 or see [CS09]
for the original construction. P′(ω2,NSω1) adds a countable generically iterable M0

generically iterating in ωV1 many steps to 〈(HV
ω2

)];∈,NSω1〉, i.e. a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉,

such that 〈Mω1 ; Iω1〉 = 〈(HV
ω2

)]; NSω1〉. For brevity we write πα instead of πα,ω1 .
So there is some α0 < ω1 such that C ∩ ωMα0

1 ∈Mα0 and πα0(C ∩ ωMα0
1 ) = C. We

can assume w.l.o.g. by changing some indices that 0 = α0. We now show that in
the extension by P′(ω2,NSω1) there is a real y such that Ay ⊂ C. Let x be a real
that codes M0 and let y code x].
Writing Cα = C ∩ ωMα

1 we have Cα ∈ Mα and πα(Cα) = C for all α < ω1. By
elementarity, Cα is unbounded in ωMα

1 . So by the closedness of C we have ωMα
1 ∈ C.

Claim 1. If α is an x-indiscernible and

〈〈M ′i , π′i,j , I ′i, κ′i; i ≤ j ≤ α〉, 〈G′i; i < α〉〉

is an arbitrary generic iteration of M = M0
′ then α = ω

M ′α
1 .

Proof of Claim 1. First note that M is generically ω1 + 1 iterable by 2.4.9. Fix an
x-indiscernible α and an iteration as above. Every x-indiscernible is inaccessible in
L[x], so for all β < α

L[x]Col(ω,β) |= α is inaccessible.

Let g ⊂ Col(ω, β) be L[x]-generic. Assume w.l.o.g. that g is a real. Then, by

[Woo99, 3.15] (compare Lemma 19 in [CS09]), M ′β ∩OR < ω
L[x,g]
1 . Hence ω

M ′β
1 < α.

This implies ωM
′
α

1 ≤ α. So it follows easily that ωM
′
α

1 = α. (Claim 1)

If α is x]-admissible, then α is x-indiscernible. Hence by the above claim it follows
that each y-admissible < ω1 is in C. Hence Ax] ⊂ C. Since the existence of a real y
such that Ay ⊂ C can be recast as a Σ1-statement over Hω2 with C as a parameter,
BMM implies that it is already true in V .
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3 The Theory BMM + NSω1 is precipitous

3.2 The Sentences φAC and ψAC

We will now discuss the combinatorial principles φAC and ψAC . Both are Π2 state-
ments over Hω2 and both will be shown to follow from BMM + NSω1 is precipitous.
This was known for ψAC , but not for φAC .

3.2.1 Definition of φAC

We recall the Tilde Operation: Let S ⊂ ω1. Then we set

S̃ := {α < ω2 ; ω1 ≤ α ∧ 1B  α̌ ∈ j(Š)},

where B = ro(P(ω1) \NSω1) and j is a name for the corresponding generic elemen-
tary embedding 〈V ;∈〉 → 〈M,E〉 ⊂ V B. Note that α ∈ S̃ if and only if for all
(equivalently one) canonical function fα for α, there is a club C such that if β ∈ C
then fα(β) ∈ S.

Definition 3.2.1 (Woodin) Let ~S = 〈Si ; i ∈ ω〉, ~T = 〈Ti ; i ∈ ω〉 be sequences of
pairwise disjoint subsets of ω1, such that all Si are stationary and

ω1 =
⋃
{Ti ; i ∈ ω}.

ϕAC(~S, ~T ) is the conjunction of the following two statements:

1. There is an ω1 sequence of distinct reals.2

2. There is γ < ω2 and a continuous increasing function F : ω1 → γ with range
cofinal in γ such that for all i ∈ ω

F“Ti ⊂ S̃i.

ϕAC(~S, ~T ) is clearly Σ1({~S, ~T}) in 〈Hω2 ;∈〉. We set

φAC :≡ ∀~S∀~TϕAC(~S, ~T ).

Note that φAC is equivalent to a Π2 statement in 〈Hω2 ;∈〉.

By [Woo99, 5.9] MM implies φAC . Note that by an observation of Larson MM(c)
already suffices, see [Woo99, p.200].
Our plan is as follows: we modify the forcing P′(ω2,NSω1) from [CS09] to show an
arbitrary instance of φAC in the generic extension. An application of BMM will
then give us the desired result. We need to prepare the proof a little:

3.2.2 Hitting many cardinals

The following lemma states that for a generically iterable 〈M ; I〉 there is a generic
iteration that realizes many cardinals.

Lemma 3.2.2 (Hitting many cardinals lemma) Let 〈M ; I〉 be a countable model
of ZFC∗+“ω1 exists” and let I be a precipitous ideal on ωM1 . Assume that P(P(ω1))
exists in M . Let α ∈M be such that

M |= 22ω1 = ℵα,
2We are working in models of ZFC so this will trivially hold. It is more interesting if working in

models of ZF + DC.
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furthermore assume that
M |= (ℵα+ω1)M exists.

Let θ := (ℵα+ω1)M . Then a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ〉, 〈Gi; i < θ〉〉

of 〈M0; I0〉 = 〈M, I〉 exists such that for all 0 < β < ωM1

π0,ℵMα+β
(ωM1 ) = ℵMα+β .

Proof. First note the following fact: it suffices to construct a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ〉, 〈Gi; i < θ〉〉

such that for all β < ωM1

π0,ℵMα+β+1
(ωM1 ) = ℵMα+β+1.

To see this let 0 < λ < ωM1 a limit ordinal: then

π0,ℵMα+λ
(ωM1 ) = sup{π0,ℵMα+β+1

(ωM1 ) ; β < λ}.

So we will focus on the successor cardinals < (ℵα+ω1)M of M . Let g ⊂ Col(ω,< θ)
be generic over M . Since M is countable in V the generic g can be chosen in V .
Let P := P(ωM1 )M \ I. For β < ωM1 we set

gα+β+1 := g ∩ Col(ω,< ℵMα+β+1).

Clearly all the gi defined in this fashion are generic overM . Recursively we construct
a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ〉, 〈Gi; i < θ〉〉

such that for β < ωM1 the sequence 〈Gi; i < ℵMα+β+1〉 is in M [gα+β+1]. We induc-
tively maintain the following:

• For β < ωM1 and i < ℵMα+β+1 the set

Di = {d ∈Mi ; d ⊂ π0,i(P) ∧Mi |= d is dense in π0,i(P)}

is countable in M [gα+β+1].

Set M0 = M , I0 = I and κ0 = ωM1 . Assume we are at stage i < θ of the construc-
tion. Let β < ωM1 be least such that i < ℵMα+β+1. Inductively we have that Di is
countable in M [gα+β+1]. Choose a Di-generic Gi in M [gα+β+1]. At limit stages
form direct limits.
Let us check our inductive hypotheses in the successor case, the limit case being an
easy consequence of the fact that the sequence 〈Gi; i < ℵMα+β+1〉 is in M [gα+β+1].
For the successor case note that an appropriate hull of

π0,i+1“(Hθ)M0 ∪ {κj ; j < i+ 1}

is (Hθi+1)Mi+1 where θi+1 = π0,i+1(θ). This hull can be calculated in M [gα+β+1].
Hence Di+1 ⊂ (Hθi+1)Mi+1 is also countable in M [gα+β+1]. It is trivial to maintain
that the sequence 〈Gj ; j < i+ 1〉 is in M [gα+β+1].
Now we need that ℵMα+β+1 is regular in M . Hence

ω
M [gα+β+1]
1 = ℵMα+β+1.

So an easy calculation shows that for all β < ωM1

π0,ℵMα+β+1
(ωM1 ) = ℵMα+β+1.
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3 The Theory BMM + NSω1 is precipitous

Clearly the previous lemma can be generalized further. Since we only need the
case above, we refrained to state it in a more general fashion. Note that we have a
lot of freedom when choosing the generics of the iteration; the only true restriction
is that they come from small generic extensions. We will make use of this later.
We define a set of ordinals relative to a generic iteration. This set will come in
handy in the proof of the main result of this section.

Definition 3.2.3 Let 〈M ; I〉 be a countable model of ZFC∗ + “ω1 exists,” such
that M |= I is precipitous. Let θ be a cardinal in M . Let

J := 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ρ〉, 〈Gi; i < ρ〉〉

be a generic iteration of 〈M0; I0〉 = 〈M ; I〉. We inductively define the important
ordinals of J relative to θ.

1. 0 is an important ordinal.

2. If α is an important ordinal, then the least ordinal γ such that γ = κγ and
π0,α(θ) ≤ γ is the next important ordinal.

3. Limits of important ordinals are important.

Remark 3.2.4 Let 〈M ; I〉 be countable and as in the previous definition and let
J be as in the previous definition and ρ = ω1. Then clearly the set of important
ordinals of J relative to θ is a club in ω1. Also, if α > 0 is important, then κα = α.

3.2.3 Obtaining φAC

We will show the following theorem:

Theorem 3.2.5 Suppose 2ω1 = ℵ2. Let ℵα = (22ω1 )
+

. Let θ := ℵα+ω1 . Let NSω1

be precipitous and suppose H]
θ exists. Let F : ω1 → θ defined by

F (β) = ℵα+β .

Let ~S = 〈Sk ; k ∈ ω〉, ~T = 〈Tk ; k ∈ ω〉 be sequences of pairwise disjoint subsets of
ω1, such that all Sk are stationary and ω1 =

⋃
{Tk ; k ∈ ω}. There exists a forcing

construction P = P′(θ,NSω1 ,
~S, ~T ) that preserves stationary subsets of ω1 such that

if G is P-generic over V , then in V [G] there is generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that if i < ω1, then Mi is countable and Mω1 = 〈H]
θ;∈,NSω1〉. Moreover M0

is generically ω1-iterable. Additionally the following holds in V [G] for all k ∈ ω:

F“Tk ⊂ S̃k.

We use a similar setup as in Theorem 2.4.8, i.e. we assume:

θ = 2<θ < 2θ < ρ = 2<ρ,

for some cardinal ρ. For reasons of convenience we like to think of ℵα = (22ω1 )
+

as ℵ4. This eases notation considerably. Note that we can force ℵ4 = (22ω1 )
+

with
stationary set preserving forcing. Since 2ω1 = ℵ2, the precipitousness of NSω1 is
preserved by forcing with Col(ω3, (22ω1 )), since no new subsets of 2ω1 are added, see
[Jec03, 22.19]. Nevertheless the reader can verify that all of the following arguments
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go through for an arbitrary ℵα instead of ℵ4. If ℵα = ℵ4, then clearly θ = ℵω1 .
At this point a remark is in order. In Theorem 2.4.8 θ is supposed to be regular.
Nevertheless it is straightforward to check that if one can add generic iterations with
last model Hη for arbitrarily large regular η you can also add generic iterations with
last model Hθ by restricting the generic iteration with larger last model. We can
hence work with a singular θ and use the theory of L-forcings we have developed.
Fix a well-order < of Hρ such that <� H]

θ is a well-ordering of H]
θ of ordertype

OR ∩ H]
θ. We now fix ~S = 〈Sk ; k ∈ ω〉, ~T = 〈Tk ; k ∈ ω〉 sequences of pairwise

disjoint subsets of ω1, such that all Sk are stationary and ω1 =
⋃
{Tk ; k ∈ ω}. We

use
H = 〈Hρ;∈, H]

θ,NSω1 , <〉

and
M = 〈H]

θ;∈,NSω1 , <〉

since we are defining a variant of P′(θ,NSω1). We will now define our modified
forcing construction P′(θ,NSω1 ,

~S, ~T ). For this we need a collection of statements in
the language of set theory augmented by two constants π̇, Ṁ . It is convenient, but
not necessary, to add further constants to the language we are working with: we
add J̇ , ~̇G and Ḋ.

Definition 3.2.6 By Φ we denote the collection of statements in the language of
set theory augmented by the constants π̇, Ṁ , J̇ , ~̇G and Ḋ that contains:

1. “S is stationary in ω1” for every S ∈ P(ω1) \ NSω1 ,

2. “ ~̇G = 〈Gi; i < ω1〉 is a sequence of (P(ω1) \ NSω1)Ṁi-generics over Ṁi”,

3. “J̇ is a generic iteration

〈〈Ṁi, π̇i,j ,NSṀi
ω1
, ωṀi

1 ; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉,

and π̇i(i+1) : Ṁi → Ṁi+1 ' Ult(Ṁi, Gi)”,

4. “Ḋ is the set of important ordinals of J̇ relative to (π̇0,ω1)−1(θ)”

5. “If γ ∈ Ḋ, then for all β < γ = ω
Ṁγ

1 and all k ∈ ω.

ℵṀγ

4+β ∈ Sk ⇐⇒ β ∈ Tk.”

We set P′(θ,NSω1 ,
~S, ~T ) = PΦ.

Note that the only difference between the above forcing and P′(θ,NSω1) is the
requirement that a witness for a single instance of φAC is coded into the generic
iteration.
We now show Theorem 3.2.5. First we show that PΦ 6= ∅; i.e. the consistency of Φ.

Lemma 3.2.7 PΦ 6= ∅.

Proof. We need to verify, that in V Col(ω,2θ) there is a model which certifies the
trivial condition with respect toM. Let g be Col(ω,< ρ)-generic over V . We work
in V [g] until further notice. So 〈V ;∈,NSω1〉 is ρ+1 iterable, by [Woo99, 3.10, 3.11].
Hence 〈H]

θ;∈,NSω1〉 is also ρ+ 1 iterable. We prepare a book-keeping device: pick
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3 The Theory BMM + NSω1 is precipitous

a bijection g : [ρ]<ρ → ρ and a family 〈Uν , ν < ρ〉 of pairwise disjoint stationary
subsets of ρ. Now define f : ρ→ [ρ]<ρ by

f(i) = u ⇐⇒ i ∈ Ug(u).

Note that each u is enumerated stationarily often. We recursively construct a
generic iteration

J := 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ρ〉, 〈Gi; i < ρ〉〉

of M0 = 〈V ;∈,NSω1〉 together with a set of local generics gi. Later the restriction
of this iteration to 〈H]

θ;∈,NSω1〉 will be of interest. For each important ordinal i of
the iteration a local generic gi will be picked. Suppose we have already constructed
J to some i < ρ. Note that we can calculate the important ordinals of J relative
to θ while we construct J . The following three clauses define the iteration.

1. If i is an important ordinal of J relative to θ, we continue the iteration as
follows: gi := g ∩ Col(ω,< π0,i(θ)) ∈ V [g] is generic over Mi. Then pick Gi
in Mi[gi] with the following property: if for a (unique) j the set πj,i(f(i)) is
a stationary subset of ωMi

1 in Mi, then πj,i(f(i)) ∈ Gi. Note that j is unique
because f(i) can only be stationary in Mj if sup f(i) = ω

Mj

1 .

2. If i is not important, γ is the largest important ordinal below i and i = ω
Mγ

4+β

for some β < κγ = γ, we continue the iteration as follows: we already have
fixed gγ ⊂ Col(ω,< π0,γ(θ)) in V [g] that is generic over Mγ . We pick some
Gi in Mγ [gγ ∩ Col(ω,< ω

Mγ

4+β+1)] such that

β ∈ π0,γ(Tk) ⇐⇒ π0,i(Sk) ∈ Gi.

Note that since ~T is a partition of ω1, there is a unique k such that β ∈ π0,i(Tk).

3. If the first and second clause do not hold and γ is the largest important
ordinal below i, we continue the iteration as follows: we already have fixed
gγ ⊂ Col(ω,< π0,γ(θ)) in V [g] that is generic over Mγ . In the case that
i < π0,γ(θ) in Mγ , i is not a cardinal in Mγ , hence there is a least β < κγ such
that i < ω

Mγ

3+β+1. We pick some arbitrary Gi in Mγ [gγ ∩ Col(ω,< ω
Mγ

3+β+1)].
Else we pick a completely arbitrary generic.

Fix some important γ > 0. So J restricted to [γ, π0,γ(θ)[ is an iteration like in
the “Hitting many cardinals lemma” 3.2.2. Hence we know that the iteration is
well-defined and additionally we have for β < κγ = γ and i := ℵMγ

4+β

i = πγ,i(κγ) = κi.

By the second clause of the iteration we hence have for i as above and k ∈ ω:

β ∈ π0,γ(Tk) ⇐⇒ π0,i(Sk) ∈ Gi ⇐⇒ κi ∈ π0,i+1(Sk) ⇐⇒ i ∈ π0,ρ(Sk).

Let D denote the club of important ordinals and let U be a stationary subset of
ω
Mρ

1 = ρ. Let j < ρ and u be such that πj,ρ(u) = U . If i ∈ D \ j and f(i) = u, then
πj,i(u) ∈ Gi. This shows that

D ∩ Ug(u) \ j ⊂ {i < ρ ; κi ∈ U},

so that in fact U is stationary in V [g].
Hence in M

Col(ω,π0,ρ(θ))
ρ there is a model that certifies the empty condition with

respect to π0,ρ(〈H]
θ;∈,NSω1〉). Now we can literally complete our proof by following

the last paragraph of the proof of 2.4.2.
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3.2 The Sentences φAC and ψAC

Clearly PΦ is resectionable. Since the Φ from Definition 2.4.1 is contained in our
current Φ we have:

Lemma 3.2.8 Let G ⊂ P be V -generic. Then in V [G] there is a generic iteration

JG := 〈〈Mi, πi,j ,NSMi
ω1
, κi; i ≤ j ≤ ωV1 〉, 〈Gi; i < ω1〉〉

of M0 such that if i < ω1, then Mi is countable, and Mω1 = 〈H]
θ;∈,NSω1〉.

Let DG denote the important ordinals of JG relative to π−1
0,ω1

(θ). We can assume
without loss of generality that there are ~s, ~t ∈M0 such that π0,ω1(〈~s,~t〉) = 〈~S, ~T 〉.

Lemma 3.2.9 DG is club and for all γ ∈ DG the following holds: if β < ω
Mγ

1 = γ
then for all k ∈ ω

β ∈ π0,γ(tk) ⇐⇒ ℵMγ

4+β ∈ π0,ω1(sk),

which by the choice of ~s and ~t means

β ∈ Tk ⇐⇒ ℵMγ

4+β ∈ Sk.

Proof. That DG is club is obvious.
Claim 1. Let p ∈ P. Then p  γ̌ ∈ DĠ if and only if for all A which certify p,
γ ∈ ḊA.

Proof of Claim 1. Fix p such that p  γ̌ ∈ DĠ and some structure A which certifies
p. Towards a contradiction suppose γ /∈ DA. Then there is some γ′ < γ, γ′ ∈ DA

with
(π̇A
γ′,ω1

)−1(θ) > γ.

By Lemma 2.2.1 we can extend p to p′ also certified by A such that γ′ ∈ dom(p′),
πp
′

γ′(γ
′) = ω1 and (πp

′

γ′)
−1(θ) > γ. Then

p′  γ̌ /∈ DĠ.

Contradiction! The other direction is easy. (Claim 1)

Now if β ∈ π0,γ(tk) and γ ∈ DG there is some p ∈ G with p  γ̌ ∈ DĠ and
β ∈ (πpγ)−1 ◦πp0(tk) (Note the following subtlety: πp0 is only defined on the ordinals,
but using the well ordering < on H]

θ we can assume that dom(πp0) contains tk). Let

p′ ≤ p be arbitrary and let A certify p′. Then ℵM
A
γ

4+β ∈ Sk by the above claim and
the fact that A certifies p′. So we may extend p′ to p′′ making sure

p′′  ℵMγ

4+β ∈ π0,ω1(sk).

Hence the set of p′′ forcing the desired result is dense below p. The other direction
is similar.

By Theorem 2.3.2 it is clear that P′(θ,NSω1 ,
~S, ~T ) is stationary set preserving.

To finish the proof of 3.2.5 we have to show that in V [G] for all k ∈ ω

F“Tk ⊂ S̃k.

For this fix k ∈ ω and some β ∈ Tk. By 3.2.9 we have for all γ ∈ DG \ (β + 1)

β ∈ Tk ⇐⇒ ℵMγ

4+β ∈ Sk.
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3 The Theory BMM + NSω1 is precipitous

Recall that G adds a generic iteration, and hence a continuous chain, of the form

JG := 〈〈Mi, πi,j ,NSMi
ω1
, κi; i ≤ j ≤ ωV1 〉, 〈Gi; i < ω1〉〉;

the following lemma is a consequence of this and Lemma 1.6.7.

Lemma 3.2.10 The function f : DG \ (β + 1)→ ω1

γ 7→ ℵMγ

4+β

is a canonical function for ℵV4+β < ω
V [G]
2 in V [G].

So the club DG \ (β + 1) and f from the previous lemma witness that in V [G]

1B  ℵV4+β ∈ j(Si),

where B is ro(P(ω1) \ NSω1)V [G] and j is a name for the generic embedding added
by forcing with B. Hence ℵV4+β ∈ S̃i. This finishes the proof of 3.2.5.

Observe that the single instance of φAC that holds in V P′(θ,NSω1 ,
~S,~T ) is a Σ1 state-

ment in Hω2 in the parameters ~S and ~T . Since P′(θ,NSω1 ,
~S, ~T ) preserves stationary

subsets an application of BMM, noting Theorem 1.3.4 and Theorem 1.3.3, yields
the following corollary.

Corollary 3.2.11 If NSω1 is precipitous + BMM then φAC . �

3.2.4 Obtaining ψAC

Definition 3.2.12 (Woodin) ψAC : Let S ⊂ ω1 and T ⊂ ω1 be stationary, costa-
tionary sets. Then there exists a canonical function f for some η < ω2 such that
for some club C ⊂ ω1

{α < ω1 ; f(α) ∈ T} ∩ C = S ∩ C.

Note the following reformulation of the above definition in terms of generic ul-
trapowers: let j be a name for the ultrapower embedding induced by some generic
G ⊂ P(ω1) \ NSω1 : with S, T as above we have

1P(ω1)\NSω1
 Š ∈ Ġ ⇐⇒ η ∈ j(T ).

Woodin has shown:

Theorem 3.2.13 ([Woo99, 10.95]) If BMM + NSω1 is precipitous, then ψAC .

With the technology from the previous section we developed for φAC it is possible
to give a different proof of 3.2.13. Since this is very similar to the section on φAC ,
we shall only state the required results. The proofs are very similar to the φAC
case.

Lemma 3.2.14 (Hitting regular cardinals lemma) Let 〈M ; I〉 be a countable model
of ZFC∗ and let I be a precipitous ideal on ωM1 . Assume that P(P(ω1)) exists in
M . Let θ ∈M be such that

M |= Card(P(P(ω1)))+ = θ,

and let θ′ ≥ θ such that θ′ is a regular cardinal in M . Then a genericity iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ′〉, 〈Gi; i < θ′〉〉

of 〈M0; I0〉 = 〈M, I〉 exists in V such that π0,θ′(ωM1 ) = θ′. �
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3.2 The Sentences φAC and ψAC

We again modify the forcing P′(ω2,NSω1) to show a weak form of ψAC in the
generic extension. An application of BMM will then give us the desired result.

Theorem 3.2.15 Suppose 2ω1 = ℵ2. Let NSω1 be precipitous and suppose H]
θ

exists, where θ = (22ℵ1 )+. For all S, T stationary and costationary there exists a
forcing construction P = P′(θ,NSω1 , S, T ) that preserves stationary subsets of ω1,
such that if G is P-generic over V , then in V [G] there is generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that if i < ω1, then Mi is countable and Mω1 = 〈H]
θ;∈,NSω1〉. In particular,

M0 is generically ω1-iterable. Additionally the following holds in V [G]: there is a
club C ⊂ ω1, such that for all α ∈ C

ωMα
1 ∈ S ⇐⇒ θα ∈ T,

where θα = π−1
α,ω1

(θ).

We will now define our modified forcing construction P := P′(θ,NSω1 , S, T ). For
this we need a collection of statements in the language of set theory augmented
by two constants π̇, Ṁ . Again it is convenient, but not necessary, to add further
constants to the language we are working with: we add J̇ , ~̇G and Ḋ.

Definition 3.2.16 By Φ we denote the collection of statements in the language
of set theory augmented by the constants π̇, Ṁ , J̇ , ~̇G and Ḋ that contains:

1. “S is stationary in ω1” for every S ∈ P(ω1) \ NSω1 ,

2. “ ~̇G = 〈Gi; i < ω1〉 is a sequence of (P(ω1) \ NSω1)Ṁi-generics over Ṁi”,

3. “J̇ is a generic iteration

〈〈Ṁi, π̇i,j ,NSṀi
ω1
, ωṀi

1 ; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉,

and π̇i(i+1) : Ṁi → Ṁi+1 ' Ult(Ṁi, Gi)”,

4. “Ḋ is the set of important ordinals of J̇ relative to (π̇0,ω1)−1(θ)”

5. “If γ ∈ Ḋ
ωṀα

1 ∈ S ⇐⇒ π̇−1
α,ω1

(θ) ∈ T.”

We set P′(θ,NSω1 , S, T ) = PΦ.

Applying the “Hitting regular cardinals lemma” 3.2.14 one can show that certi-
fying structures for Φ exist. Hence one has:

Lemma 3.2.17 PΦ 6= ∅. �

Clearly PΦ is resectionable. Since the Φ from Definition 2.4.1 is contained in our
current Φ we have:

Lemma 3.2.18 Let G ⊂ PΦ is V -generic. Then in V [G] there is a generic iteration

JG := 〈〈Mi, πi,j ,NSMi
ω1
, κi; i ≤ j ≤ ωV1 〉, 〈Gi; i < ω1〉〉

of M0 such that if i < ω1, then Mi is countable, and Mω1 = 〈H]
θ;∈,NSω1〉. �
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3 The Theory BMM + NSω1 is precipitous

We set
θi := π−1

i,ω1
(θ),

an we let DG denote the club of limits of important ordinal of J relative to θ0. A
density argument shows:

Lemma 3.2.19 DG is club and for all i ∈ DG

ωMi
1 ∈ S ⇐⇒ θi ∈ T.

�

By Lemma 1.6.7 the sequence 〈θi ; i ∈ DG〉 is a canonical function for θ in the
forcing extension, so we have

1P(ω1)\NSω1
 Š ∈ Ġ ⇐⇒ θ ∈ j(T ).

By Theorem 2.3.2 it is clear that P′(θ,NSω1 , S, T ) is stationary set preserving. Hence
Theorem 3.2.15 follows. Again we have an obvious corollary:

Corollary 3.2.20 If NSω1 is precipitous + BMM then ψAC . �
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4 The axiom (†)

4.1 Introduction to (†)
Foreman, Magidor and Shelah isolated the following interesting axiom.

Definition 4.1.1 ([FMS88])

(†) :≡ Every stationary set preserving forcing is semiproper.

We review some results on the consistency strength of (†):

Remark 4.1.2 1. If κ is supercompact, then V Col(ω1,<κ) |= (†). Also SPFA
implies (†) and hence SPFA implies MM.

2. (†) implies that �κ does not hold for any κ.

The failure of �κ for a singular strong limit κ is known to imply ADL(R), see
[Ste05].

Proof. For the first item, see [FMS88]. For the second we need a short chain of
reasoning. Shelah showed, that (†) is equivalent to Semistationary Reflection (SSR),
see Definition 4.2.1 for a definition of SSR and see [She98, XIII.1.7(5)] for the
result. SSR in turn was shown by Sakai to imply the following reflection property
of stationary sets, see [Sak08]:

If λ ≥ ω2 is a regular cardinal, then for every stationary S ⊂ Eλω = {α ∈
λ ; cof(α) = ω} there is an ordinal β < λ of cofinality ω1 such that S∩β
is stationary.

The above reflection principle contradicts the existence of a �κ-sequence for κ+ = λ:
assume towards a contradiction that a �κ-sequence 〈Cα;α ∈ Lim(κ+)〉 exists. Let
f : Eκ

+

ω → κ+ be defined by f(α) = otp(Cα); so f(α) < α if α > κ. Hence there
is an ordinal β < κ of countable cofinality such that Sβ := {α ∈ Eκ+

ω ; f(α) = β}
is stationary. If Sβ reflects to some γ < κ+ of cofinality ≥ ω1, then Cγ ∩ Sβ
is unbounded in γ, a contradiction to the fact that Sβ has at most one point in
common with each Cα.

4.1.1 Other forms of (†)
Definition 4.1.3 Let Γ be a class of stationary set preserving forcings.

(†)Γ :≡ every P ∈ Γ is semiproper.

We study three examples of this dagger axiom. The first two examples will be
weaker than (†) and the third will be shown to be equivalent to (†). The first
example is taken from [She98].

Example 4.1.4 (When Namba is semiproper) Let P be the set of perfect subtrees
of [ω2]<ω ordered by reverse inclusion, i.e. Namba Forcing. Note that perfect here
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means that every node of the tree has ℵ2 many extensions. Forcing with P gives
ωV2 cofinality ω. If CH holds, then P adds no reals and hence preserves ω1. Let
Γ = {P}. If κ is measurable, then V Col(ω1,<κ) |= CH ∧ (†)Γ, see [She98, XII. 2.8]
and [GJM78] respectively. Hence (†)Γ is clearly weaker than (†), also in terms of
consistency strength, since by Remark 4.1.2 (†) implies ADL(R).
Note that by [She98, XII. 2.5] (†)Γ implies CC∗∗(ω2), a principle defined in Defini-
tion 4.2.4. In fact they are equivalent, which we will show in 4.3.11.

Example 4.1.5 (The semiproperness of all sealing forcings) Let Γ denote the
class of all sealing forcings, i.e. the forcings to seal antichains of P(ω1), see Defin-
tion 2.4.13. We will show that if NSω1 is saturated, then (†)Γ holds; like in the
previous example this shows that (†)Γ is clearly weaker than (†), also in terms con-
sistency strength: to force that NSω1 is saturated one needs a Woodin cardinal,
but by Remark 4.1.2, (†) implies ADL(R). We need the following concept: A set
A ⊂ P(ω1) \ NSω1 is semiproper if for any transitive M closed under sequences of
length 22ω1 and for any countable X ≺ M , A ∈ X, there is Y ≺ M and some
S ∈ Y ∩ A such that ω1 ∩X = ω1 ∩ Y ∈ S. In [FMS88] it is implicitly shown that
some antichain A is semiproper if and only if the sealing forcing PA is semiproper,
see the (proof of) [FMS88, Theorem 26]. By (the proof of) [Woo99, 3.12], every
maximal antichain is semiproper if NSω1 is saturated. Hence (†)Γ holds.
On the other hand if (†)Γ holds, then by [FMS88, Theorem 26] NSω1 is precipi-
tous. Hence (†)Γ has at least the consistency strength of a measurable cardinal, see
[JMMP80].

4.2 The Semiproperness of P(NSω1
, θ)

The third example of a (seemingly) weaker form of (†) requires more work. We will
discuss the case that Γ is the class of all P(NSω1 , θ) for θ ≥ ω2 and show that (†)Γ

is equivalent to (†).
We have seen that P(NSω1 , θ) preserves stationary subsets of ω1 provided that NSω1

is precipitous. The forcing P(NSω1 , θ) can clearly be semiproper if large cardinals
are present, for example if (†) holds. We show that the semiproperness of the
forcings P(NSω1 , θ) implies a generalization of Chang’s Conjecture, CC∗∗, which in
turn implies the semiproperness of all stationary set preserving forcings.

Definition 4.2.1 ([She98, XIII. 1.5])

• Let x, y be countable. We write x @ y if x ∩ ω1 = y ∩ ω1 and x ⊂ y.

• A set S ⊂ [W ]ω is semistationary in [W ]ω if {y ∈ [W ]ω ; ∃x ∈ S : x @ y} is
stationary in [W ]ω.

• Let λ ≥ ω2. We denote by SSR([λ]ω) the following principle: For every S
semistationary in [λ]ω there is W ⊂ λ, Card(W ) = ω1 ⊂ W and S ∩ [W ]ω is
semistationary in [W ]ω.

• If SSR([λ]ω) holds for all cardinals λ ≥ ω2 then we will say that Semistationary
Reflection (SSR) holds.

Note that [She98] has a more general notation for the above reflection principles.
In [She98] the principle SSR([λ]ω) is called Rss(ℵ2, λ) and SSR is called Rss(ℵ2).

Lemma 4.2.2 ([She98, XIII.1.7(3)]) Semistationary Reflection implies that all
stationary set preserving forcings are semiproper.
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4.2 The Semiproperness of P(NSω1 , θ)

Foreman, Magidor and Shelah have shown:

Lemma 4.2.3 ([FMS88, Theorem 26]) If (†) holds, then NSω1 is precipitous.

We will consider a generalization of Chang’s Conjecture that we call CC∗∗.

Definition 4.2.4 Let λ ≥ ω2. CC∗(λ) is the following axiom: There are arbitrarily
large regular cardinals θ > λ such that for all well-orderings < of Hθ and for all
a ∈ [λ]ω1 and for all countable X ≺ 〈Hθ;∈, <〉 there is a countable Y ≺ 〈Hθ;∈, <〉
such that X @ Y and there is some b ∈ Y ∩ [λ]ω1 such that a ⊂ b.
CC∗∗ holds if CC∗(λ) holds for all cardinals λ ≥ ω2.

Note that CC∗(ω2) implies Todorčević’s CC∗, i.e. the axiom

CC∗ :≡ There are arbitrarily large regular cardinals θ such that for all well-
orderings < of Hθ and for all countable X ≺ 〈Hθ;∈, <〉 there is a
countable Y ≺ 〈Hθ;∈, <〉 such that X @ Y and X ∩ ω2 6= Y ∩ ω2.

To see that CC∗(ω2) implies CC∗ pick an X as in CC∗ and set a = ω1 ∪ X ∩ ω2.
Then CC∗(ω2) applied to X, a yields a Y as desired. The axiom CC∗ was first
studied in [Tod93].

Remark 4.2.5 CC∗ implies Chang’s Conjecture.

Proof. We have to show that every model of type (ω2, ω1) has an elementary
submodel of type (ω1, ω). For this let 〈M ;A〉 be a model of type (ω2, ω1), i.e.
Card(M) = ω2 and Card(A) = ω1. Let θ be large enough such that the implication
of CC∗ holds for Hθ. Inductively we define a sequence 〈Xi; i ≤ ω1〉 of elementary
submodels of 〈Hθ;∈, <〉 as follows: pick X0 ≺ 〈Hθ;∈, <〉 such that 〈M ;A〉 ∈ X0, at
limit stages λ let Xλ =

⋃
{Xα ; α < λ} and at successor stages α+ 1 apply CC∗ to

obtain some Xα+1 ≺ 〈Hθ;∈, <〉 such that Xα @ Xα+1 and Xα ∩ ω2 6= Xα+1 ∩ ω2.
So ω2 ∩ (Xα+1 \ Xα) 6= ∅. Hence Xω1 is a model of cardinality ω1 such that
X0 ∩ω1 = Xω1 ∩ω1. Since X0 |= Card(A) = ω1, we have that A∩X0 = A∩Xω1 is
countable. By construction Card(Xω1 ∩ ω2) = ω1, so Card(M ∩Xω1) = ω1, hence
〈M ∩Xω1 ;A ∩Xω1〉 ≺ 〈M ;A〉 is of type (ω1, ω).

The next theorem answers a question of Todorčević who asked Ralf Schindler
under what circumstances P(NSω1 , θ) is semiproper.
We would like to thank Daiske Ikegami for telling us about Lemma 4.2.2 and for
explaining that CC∗ implies a weak version of SSR.

Theorem 4.2.6 The following are equivalent:

1. NSω1 is precipitous and for all regular θ ≥ ω2 the partial ordering P(NSω1 , θ)
is semiproper.

2. For arbitrarily large θ ≥ ω2 there is a semiproper partial order P that adds a
generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

such that Hθ ⊂Mω1 and all Mi are countable.

3. CC∗∗

4. SSR
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4 The axiom (†)

5. (†)

Before we prove the above theorem note that the Namba-like forcing in [KLZ07]
is stationary set preserving (cf. [Zap]) and hence P(NSω1 , θ) is not the only example
witnessing the consistency of 2.

Proof. 1. =⇒ 2. is trivial and 4. =⇒ 5. is Lemma 4.2.2.
5. =⇒ 1. is clear since by 4.2.3, NSω1 is precipitous in this case and so by [CS09]
the forcing P(NSω1 , θ) exists for all regular θ ≤ ω2 and preserves stationary subsets
of ω1.
It remains to show 2. =⇒ 3. and 3. =⇒ 4. For the first implication we assume that
CC∗∗ does not hold and work toward a contradiction. So there is a least cardinal
λ0 ≥ ℵ2 for which CC∗(λ0) fails. Since 2. holds there is a least θ0 > λ0 such that a
semiproper P exists that adds an iteration

J = 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that Hθ0 ⊂ Mω1 and all Mi are countable. Let θ > θ0 large enough so that
a name for an iteration as above and P(P) are both in Hθ. Let < be some well-
ordering of Hθ. Now fix some arbitrary X ≺ 〈Hθ;∈, <〉 and some a ∈ [λ0]ω1 . Our
aim is now to construct a Y ≺ 〈Hθ;∈, <〉 like in CC∗∗. For this we first show that
it suffices to do so in a generic extension:

Claim 1. If there is some generic extension W of V with ωW1 = ωV1 that contains
some Y ≺ 〈Hθ;∈, <〉 such that X @ Y and there is some b ∈ Y ∩ [λ0]ω1 ∩ V such
that a ⊂ b, then there is already some Z ∈ V with Z ≺ 〈Hθ;∈, <〉, X @ Z and
b ∈ Z.

Proof of Claim 1. If Y is in some generic extension W of V with ωW1 = ωV1 , then
by b ∈ V there is a tree T ∈ V searching for a countable Z ≺ 〈Hθ;∈, <〉 such that
b ∈ Z and X @ Z. So T has a branch in W , since this is clearly witnessed by Y . By
the absoluteness of wellfoundedness we have a branch through T in V and hence
there is some countable Z ≺ 〈Hθ;∈, <〉 with X @ Z and b ∈ Z in V . (Claim 1)

By the minimality of λ0 and θ0 there is in X a semiproper forcing P′ and a P′-
name J̇ for a generic iteration with the properties of J . In an abuse of notation
let us write P for P′. Let G ⊂ P be generic over V such that G contains an (X,P)-
semigeneric. By X[G] we mean {σG ; σ ∈ X ∩ V P}.

Claim 2. X[G] ≺ Hθ[G].
This claim is part of the folklore. For the readers convenience we give a short

Proof of Claim 2. An induction along the first order formulae will yield the desired
result: let φ be a formula and let σ ∈ X denote some name such that

Hθ[G] |= ∃yφ(y, σG).

Then by the fullness of the forcing names we have

Hθ |= ∃τ∀p ∈ P(p  ∃yφ(y, σ) =⇒ p  φ(τ, σ)).

The above is a statement in the parameters P and σ, so by elementarity such a τ
exists in X. By the inductive hypothesis we have

Hθ[G] |= φ(τG, σG) ⇐⇒ X[G] |= φ(τG, σG).

(Claim 2)
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4.2 The Semiproperness of P(NSω1 , θ)

By our hypothesis we can force the existence of a generic iteration

J̇G = 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

with Mω1 ⊃ Hθ. So by the regularity of θ we have a ∈ Mω1 . Note that X[G] can
calculate M0.
We now apply the basic Lemma 1.5.2. In Lemma 1.5.2 we set β = 0 and α = ω1, so
we have that there is some f ∈M0, f : κn0 →M0 and ~ξ = ξ1, ..., ξn < ω1 such that

a = π0,ω1(f)(~ξ).

This f is in X[G]. We set

b :=
⋃
{π0,ω1(f)(~α) ; ~α ∈ ωn1 ∧ π0,ω1(f)(~α) ∈ ([Hθ]ω1)V }.

Clearly a ⊂ b and Card(b) = ω1. Since the parameters π0,ω1(f), [Hθ]ω1 used in the
definition of b are in V we have that b ∈ V . Also b ∈ X[G]. By the semiproperness
of P and the choice of G we have X @ X[G]. So X[G] witnesses that in some generic
extension of V there is some Y as desired. This suffices to show by Claim 1.
We now show that 3. =⇒ 4. This implication is a slight generalization of [Tod93,
Lemma 6]. Let us assume that SSR does not hold and work toward a contradiction,
say λ ≥ ω2 and a semistationary S ⊂ [λ]ω witness that. We set

W := {W ⊂ λ ; Card(W ) = ω1 ⊂W}

and
T := {y ∈ [λ]ω ; ∃x ∈ S : x @ y}.

By the very definition of semistationarity T is stationary. For all W ∈ W

SW := {y ∈ [W ]ω ; ∃x ∈ S ∩ [W ]ω : x @ y}

is nonstationary. For each W ∈ W we may hence pick a function

fW : [W ]<ω →W

such that
SW ∩ {x ∈ [W ]ω ; fW “[x]<ω ⊂ x} = ∅.

Let F denote the collection of these fW . Let θ > λ be regular large enough such that
F ,W, S, T ∈ Hθ and such that the implications of CC∗(λ) hold for this θ. Let < be
a well-ordering of Hθ. Pick a countable M ≺ 〈Hθ;∈, <〉 such that F ,W, S, T, λ ∈M
and

M ∩ λ ∈ T.
Let

a := (M ∩ λ) ∪ ω1.

Since CC∗(λ) holds for θ, there is a countable M∗ ≺ Hθ and some W ∈ [λ]ω1 such
that M @M∗, a ⊂W and W ∈M∗. So fW ∈M∗. Then by elementarity of M∗

fW “[W ∩M∗]<ω ⊂W ∩M∗.

By the choice of a and the properties of M∗ we have

M ∩ λ @W ∩M∗.

Since we have M ∩ λ ∈ T there is some x ∈ S such that x @ M ∩ λ. Note that
x ∈ [W ]ω. By the transitivity of @,

x @W ∩M∗.

This implies W ∩M∗ ∈ SW . We thus have a contradiction to the choice of fW .
This finishes the proof.
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4 The axiom (†)

4.3 RC implies (†)
We show that Rado’s Conjecture, a combinatorial principle of large consistency
strength, implies that the class of forcings preserving stationary subsets of ω1 is
equal to the class of semiproper forcings. First we will discuss Rado’s Conjecture,
then we will study a class of cut and choose games Gω([λ]ω1 , ω1) that will be a key
tool for showing that Rado’s Conjecture implies (†).
We recall some basic concepts. A tree is special if it can be partitioned into ω-many
antichains. An interval of a linear ordering 〈A,<〉 is a nonempty a ⊂ A such that
if x < y < z and x, z ∈ a, then y ∈ a. A family of intervals is σ-disjoint if it is the
union of countably many disjoint subfamilies. If 〈T,<〉 is a tree, then a subtree of
〈T,<〉 is a subset of T with the inherited tree structure.

Definition and Lemma 4.3.1 ([Tod83, Theorem 6]) The following are equivalent

1. If T is a tree such that all subtrees of T of cardinality ℵ1 are special, then T
is special.

2. Every family of intervals of a linearly ordered set is σ-disjoint if and only if
each of its subfamilies of size ℵ1 is σ-disjoint.

We refer to these equivalent statements as Rado’s Conjecture, RC, though we will
always have the first statement in mind.

Note that the second statement is the countable case of a conjecture of Rado, see
[Tod93].
Let us collect some facts about (non)special trees. A tree 〈T,<〉 of countable height
is always special: if Tα denotes the nodes of T at the αth level, then Tα is an
antichain. Also if a tree 〈T,<〉 has height > ω1, then it is nonspecial: pick an
element of height ω1 then the subtree of T formed by all s < t has size ℵ1 and
clearly can not be partitioned into ω-many antichains. Hence for the purpose of RC
it will suffice to study trees of height ω1. Also note that if we study a subtree U of
size ℵ1 of a tree of height ≤ ω1, then we can always close U under initial segments
without changing the cardinality of U .
When working with (non)special trees the following lemma is useful. A mapping
f : T → T is called regressive if t ∈ T \{∅} implies f(t) < t, here ∅ denotes the root
of T which we assume to be always present.

Lemma 4.3.2 (Pressing Down Lemma for Trees, [Tod81]) Every regressive map-
ping defined on a nonspecial tree must be constant on a nonspecial subtree.

Since this result is not part of the standard literature, we prove it here.

Proof. Let f : T → T be regressive. Let Us = {t ∈ T ; f(t) = s}. It will suffice to
show that if all Us are special, then T is special. Let gs : Us → ω be a specializing
function. Since the tree order is well-founded, for every t ∈ T \ {∅} there is some
n ∈ ω such that applying f n-times yields ∅. Hence for every t ∈ T there is a unique
sequence 〈t0, ..., tn〉 such that t0 = t, tn = ∅ and ti+1 = f(ti) for i < n. We define
g : T \ {∅} → [ω]<ω by setting

g(t) = 〈gt1(t0), ..., gtn(tn−1)〉.

Hence if s, t ∈ T \ {∅}, s 6= t and g(s) = g(t) then the unique sequences ~s, ~t have
the same length, say n+ 1. So tn = sn = ∅ and hence gsn(sn−1) = gtn(tn−1). Since
g∅ is a specializing function either sn−1 = tn−1 or sn−1 and tn−1 are incompatible.
If the first case holds we continue in the same fashion until for some i < n si
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and ti are incompatible. Hence, modulo a bijection [ω]<ω → ω, g is a specializing
function.

A tree 〈T,<〉 is Baire, if for all countable sequences (Dn)n of open dense sets in
T the intersection

⋂
nDn is dense; here a set D ⊂ T is dense if for all t ∈ T there

is some s ∈ D such that t < s and D ⊂ T is open if for all t ∈ D and s ∈ T if t < s,
then s ∈ D. These notions clearly coincide with the notions for partial orders if one
sees T as a partial order with < reversed.

Remark 4.3.3 Every Baire tree is nonspecial.

Proof. We show that every special tree is not Baire. Fix a special tree T . By an
application of Zorn’s Lemma there is a specializing function g : T → ω such that
g(s) is minimal for all s ∈ T in the following sense: if k < g(s), then there is some
t ∈ T such that g(t) = k and s < t or t < s. It easily follows that such a g is in
fact a partition of T into countably many maximal antichains (An)n∈ω of T . Set
Dn := {t ∈ T ; ∃s ∈ An : s ≤ t}. Hence every Dn is a dense open set. Since (An)n
is a partition

⋂
nDn is empty. So T is not Baire.

In [Tod83] and [Tod93] Todorčević analysed RC in detail; we sum up the results
of this analysis:

Remark 4.3.4 1. If κ is supercompact, then V Col(ω1,<κ) |= RC + CH.

2. If RC holds, then �κ fails for all κ.

3. RC implies 2ℵ0 ≤ ℵ2.

4. If V |= RC and W ⊂ V is a transitive inner model such that ωW2 = ω2, then
RV ⊂W .

5. MAω1 implies ¬RC.

6. RC implies CC∗.
�

The implication RC =⇒ CC∗ was shown in [Tod93]. We will generalize the
argument for this from [Tod83] and show the following theorem.

Theorem 4.3.5 RC implies CC∗∗.

The proof we are going to give for the above theorem is structured very much
like Todorčević’s original proof for RC =⇒ CC∗ . Since CC∗∗ is equivalent to (†)
by 4.2.6 the above theorem instantly yields the following corollary.

Corollary 4.3.6 RC implies (†). �

For the proof of the above theorem we will need the following cut and choose
game:

Definition 4.3.7 Let λ ≥ ω2 denote an ordinal. We will call the following game
Gω([λ]ω1 , ω1):

I f0 f1

II δ0 δ1
. . .
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4 The axiom (†)

In the nth round player I splits [λ]ω1 into ω1 pieces, i.e. player I plays fn : [λ]ω1 →
ω1. Player II responds by choosing some δn < ω1. The game has ω many rounds.
Player II wins a play f0, δ0, f1, δ1, ... if and only if the set

{a ∈ [λ]ω1 ; ∀n : fn(a) < sup{δi ; i ∈ ω}}

is unbounded in [λ]ω1 , i.e. for all b ∈ [λ]ω1 there is some a in the above set such
that b ⊂ a.

The class of games above generalizes the game Gω(ω2, ω1) studied in [Tod93] and
also in [She98, XII. §2]; one obtains Gω(ω2, ω1) if one replaces [λ]ω1 by ω2 in the
above definition. The game Gω(ω2, ω1) is due to Galvin. In [Tod93] it is shown
that player II has a winning strategy in Gω(ω2, ω1). We generalize this as follows:

Lemma 4.3.8 RC implies that player II has a winning strategy in Gω([λ]ω1 , ω1)
for all λ ≥ ω2.

Proof. The proof of this lemma runs through several claims. Let us fix some λ ≥ ω2.
Set Fλ := ω

([λ]ω1 )
1 ∪ ω1, here ω([λ]ω1 )

1 is the set of all functions [λ]ω1 → ω1. For
X ∈ [Fλ]ω, let

DX := {a ∈ [λ]ω1 ; f(a) ∈ X for all f ∈ X}.

Set
S := {X ∈ Fλ ; X ∩ ω1 ∈ ω1 and DX is bounded in [λ]ω1}.

Claim 1. Player II has a winning strategy in Gω([λ]ω1 , ω1) if and only if S is
nonstationary in [Fλ]ω.
Proof of Claim 1. Let us first assume player II has a winning strategy σ in
Gω([λ]ω1 , ω1). Let θ > 2λ and let Y ≺ Hθ be countable such that σ ∈ Y . Set
X := Y ∩ Fλ. Let (fn)n∈ω enumerate all functions [λ]ω1 → ω1 that are in Y . We
play (fn)n against σ. Since finite initial segments of this play are in Y and Y ≺ Hλ,
the responses (δn)n of II according to σ are all countable in Y ; hence for all n:
δn < Y ∩ ω1 = X ∩ ω1. Since σ is a winning strategy

{a ∈ [λ]ω1 ; ∀n : fn(a) < sup{δi ; i ∈ ω}}

is unbounded. Hence DX , which contains the above set, is unbounded. Since there
are club many Y ≺ Hθ such that σ ∈ Y , there are also club many X such that
DX 6∈ S.
For the converse direction let C be a club witnessing that S is nonstationary. Player
I will play functions fn. We will choose player II’s responses δn such that δn = Xn∩
ω1 for some increasing sequence (Xn)n of elements of C, i.e. Xn ⊂ Xn+1. Suppose
f0, δ0, ..., fn−1, δn−1, fn are already played and X0, ..., Xn−1 ∈ C are already picked.
Since C is unbounded we find some Xn ⊃ Xn−1 such that Xn ∩ ω1 ≥ δn−1 and
fn ∈ Xn. Let δn = Xn ∩ ω1. Since C is closed X :=

⋃
nXn ∈ C. So

DX := {a ∈ [λ]ω1 ; f(a) ∈ X for all f ∈ X}

is unbounded. Hence

{a ∈ [λ]ω1 ; ∀n : fn(a) < sup{δi ; i ∈ ω}}

is also unbounded. (Claim 1)

If X,Y ∈ S, then we will say that Y strongly includes X if X ⊂ Y and X ∩ω1 <
Y ∩ω1; this concept originates from [Tod93] and also the idea for the following tree
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construction is taken from [Tod93]. Let T be the tree of all countable continuous
strong inclusion chains t of elements of S such that

⋃
t is also an element of S. The

ordering of T is end-extension. We want to apply RC to see that T is special. For
this we have to check the following:
Claim 2. Every subtree of T of size ℵ1 is special.
Proof of Claim 2. Fix some U ⊂ T of size ℵ1. Without loss of generality we can
close U under initial segments. Since DS

t is bounded for all t ∈ U , we can find a
d ∈ [λ]ω1 such that d is a bound for all DS

t, t ∈ U . We now define a regressive
function H with the limit nodes of U as H’s domain. Pick some t ∈ U of limit
length. Hence d is a bound for DS

t; so by the definition of DS
t there is ft ∈

⋃
t

such that ft(d) ≥ (
⋃
t) ∩ ω1. We can hence find some proper initial segment H(t)

of t such that
⋃
H(t) contains ft. Clearly H is regressive, since H(t) is a proper

initial segment of t. So by the Pressing Down Lemma for Trees 4.3.2 it suffices to
show that every H−1“{s} is special for s ∈ U . For this fix some f ∈

⋃
s for some

s ∈ U and set
Wf := {t ; ft = f and H(t) = s}.

Hence if t ∈ Wf , then f(d) ≥ (
⋃
t) ∩ ω1. Since t is a strong inclusion chain the

length of t is bounded by (
⋃
t) ∩ ω1, so the length of t is bounded by f(d) which

is a countable ordinal. It is straightforward to partition Wf : for α < f(d) set
Wα
f = {t ∈ Wf ; lh(t) = α}. Since there are only countably many f ∈

⋃
s, we

clearly have that H−1“{s} is special. (Claim 2)

So an application of RC yields that T is special. So it remains to show that player
II has a winning strategy in Gω([λ]ω1 , ω1). By Claim 1 it is enough to show: if S
is stationary, then T is nonspecial. We even show that T is Baire. Pick a regular
θ such that θ > 22λ . Fix a sequence (Dn)n∈ω of dense open subsets of T and pick
an arbitrary t ∈ T . Let X ≺ Hθ be countable such that t, (Dn)n, S, T, λ ∈ X and
X ∩Fλ ∈ S. Let (xn)n∈ω enumerate X ∩Fλ. We now construct a sequence (tn)n∈ω
such that tn ∈ T ∩ X, tn ∈ Dn ∩ X, t < t0, tn < tn+1 and xn ∈ tn. This is
possible by the elementarity of X and the unboundedness of S. Set tω =

⋃
n tn,

then
⋃
tω = X ∩ Fλ, hence tω ∈ T . Since t was arbitrary, we have that

⋂
Dn is

dense in T . So T is Baire. This finishes the proof.

The proof of Theorem 4.3.5 will be completed once we show the next lemma,
which generalizes the following implication from [Tod93]: if player II has a winning
strategy in Gω(ω2, ω1), then CC∗ holds.

Lemma 4.3.9 If player II has a winning strategy in Gω([λ]ω1 , ω1) for all λ ≥ ω2,
then CC∗∗ holds.

Proof. Let us assume towards a contradiction that CC∗∗ fails; i.e. there is a least
λ such that CC∗(λ) does not hold. Fix some θ > 22λ and some well-ordering < of
Hθ. Since λ is least such that CC∗(λ) fails, it is definable in Hθ. Fix an arbitrary
countable X ≺ Hθ and an arbitrary a ∈ [λ]ω1 . Clearly λ ∈ X and hence a winning
strategy σ for player II in Gω([λ]ω1 , ω1) is also in X. Let (fn)n∈ω enumerate
X ∩ {f ; f : [λ]ω1 → ω1}. We play (fn)n against σ and obtain a sequence (δn)n∈ω
of responses of player II. Each δn < X ∩ ω1, since initial segments of the play are
in X. Hence δ = supn δn ≤ X ∩ ω1 (in fact δ = X ∩ ω1, but we have no use for this
fact). Since σ was winning we have that

{b ∈ [λ]ω1 ; ∀n : fn(b) < δ}

is unbounded in [λ]ω1 . Pick some b in the set above such that b ⊃ a. Let Y denote
the Skolem Hull of X∪{b} in 〈Hθ;∈, <〉. It remains to show Y ∩ω1 = X∩ω1. Since

61



4 The axiom (†)

we assume all the Skolem functions to be defined relative to <, they are definable
in X; furthermore we can assume they are closed under composition. Since b is the
only new member of the Hull and we are only interested in Y ∩ ω1, it suffices to
look at functions of the form

f : Hθ × [λ]ω1 → ω1.

Fix some such f ∈ X. For each x ∈ X, the function f(x, ·) : [λ]ω1 → ω1 is a
member of X, hence f = fn for some n < ω. So for all x: f(x, b) < δ. So X @ Y ,
a contradiction to the failure of CC∗(λ), since X and a were arbitrary.

Clearly the previous two lemmata show Theorem 4.3.5.
For λ = ω2 the converse of the previous lemma holds.

Lemma 4.3.10 (Folklore) CC∗(ω2) holds if and only if player II has a winning
strategy in Gω([ω2]ω1 , ω1).

Proof. In the previous lemma we have shown that a winning strategy for player II
yields CC∗(ω2). For the converse we construct a strategy in a similar fashion as in
the proof of 4.3.8. Let θ be large enough such that the consequences of CC∗(ω2)
hold for 〈Hθ;∈, <〉, where < is some well-order of Hθ. Together with a run of
Gω([ω2]ω1 , ω1) we construct a sequence (Xn)n∈ω of substructures of Hθ. Assume
f0, ..., fn and δ0, ..., δn−1 are already played and (Xi)i<n are already picked such
that Xi ⊂ Xi+1, fi ∈ Xi and δi = Xi ∩ ω1. Then pick a countable Xn ≺ Hθ such
that Xn−1 ⊂ Xn and fn ∈ Xn; player II plays δn = Xn ∩ω1. Now assume towards
a contradiction that player II did not win this run; i.e. the set

D := {a ∈ [ω2]ω1 ; ∀n : fn(a) < sup
i∈ω

δi}

is bounded in [ω2]ω1 . So there is an ordinal α < ω2 such that every b ∈ D is
contained in α. By CC∗(ω2) there is a Y ≺ Hθ such that X @ Y and α + 1 ⊂ b
for some b ∈ Y ∩ [ω2]ω1 . Hence for every f ∈ Y such that f : [ω2]ω1 → ω1 by
elementarity f(b) < ω1 ∩ Y = ω1 ∩X = supi δi. Hence the set

DY := {c ∈ [ω2]ω1 ; ∀f ∈ Y (f : [ω2]ω1 → ω1 =⇒ f(c) < sup{δi ; i ∈ ω})}

contains b. But clearly DY ⊂ D, a contradiction to the fact that D is bounded by
α+ 1 ⊂ b.

Corollary 4.3.11 (Folklore) Namba forcing is semiproper if and only if CC∗(ω2)
holds.

Proof. By [She98, XII. 2.2] Namba forcing is semiproper if and only if player II has
a winning strategy in Gω([ω2]ω1 , ω1). Note that the game used in [She98, XII. 2.2]
is slightly different but is readily seen to be equivalent to ours.
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5 The Extender Algebra and
Absoluteness

5.1 Introduction to absoluteness for L(R)

In this introductory section we will review some results about forcing absoluteness
for L(R). In what follows some concepts of inner model theory appear. All these
concepts, especially the concepts of premice and (ω, ω1 +1)-iterability, can be found
in [Ste]. We believe that stating the definitions from [Ste] without Steel’s enlighten-
ing explanations would not help the reader understand what follows. A reader not
too familiar with inner model theory is nevertheless encouraged to proceed: coarse
iterations in the sense of [MS94] are sufficient to construct the main tool of this
chapter, the extender algebra. We believe that many of proofs that follow, if not
all, have natural versions in the coarse case.
Woodin has shown that L(R) is Σ2

1 absolute with respect to forcing extensions of
V if large cardinals are present.

Theorem (Woodin) Suppose M ]
mw exists and is (ω, ω1 + 1)-iterable in all set

forcing extensions. Assume CH holds. Let P be a notion of forcing and let G ⊂ P
be V -generic. Let z be a real in V . If in V [G]

∃A ⊂ RV [G]L(RV [G], A) |= φ(A, z),

then in V
∃A ⊂ RV L(RV , A) |= φ(A, z).

Furthermore if CH holds in V P, then the converse is true.

Here M ]
mw is a fine-structural premouse that contains a measurable Woodin car-

dinal; we will give more details about M ]
mw later. Note that the existence of M ]

mw

is not the original hypothesis of the Σ2
1 absoluteness theorem; Woodin’s first proof

used class many measurable Woodins. We will give a detailed proof of the above
theorem, see Theorem 5.4.1.
It is natural to ask if one can add ordinal parameters to the statement of the above
theorem. Neeman and Zapletal showed, granted the large cardinal assumption Aκ,
that the theory of L(R) with ordinal parameters is stable under reasonable forcing.
In the following theorem Aκ is a large cardinal assumption that follows from the
existence and (ω, κ+ + 1)-iterability of M ]

ω.

Theorem (Embedding Theorem [NZ01]) Assume Aκ holds. Let P be a reasonable
forcing notion of size ≤ κ, and let G be P-generic over V . Then there exists an
elementary embedding

j : L(RV )→ L(RV [G])

which is the identity on all ordinals.

Note that a version of the Embedding Theorem exists which is shown using the
stationary tower; this uses a weakly compact Woodin cardinal, see [NZ98].
Woodin studied a class of forcings larger than the reasonable forcings and obtained
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5 The Extender Algebra and Absoluteness

the following result, using a related but different hypothesis. The conclusion of the
following theorem is more general than the conclusion of the Embedding Theorem:

Theorem ([Woo99, 10.63]) Let P ∈ Vδ be a weakly proper notion of forcing; i.e.
for all ordinals α ([α]ω)V is cofinal in ([α]ω)V

P
. Assume A ⊂ R, L(A,R) |= AD

and every set in P(R) ∩ L(A,R) is δ-weakly homogeneously Suslin. Let G ⊂ P be
generic and let

jG : L(A,R)→ L(AG,RG)

be the associated generic elementary embedding. Then jG(α) = α for all α ∈ OR.

Clearly A is < δ-universally Baire in the previous theorem, so it makes sense to
consider the natural reinterpretations AG, RG in the above theorem and also jG is
well-defined1. Note that Woodin has show relative to large cardinals that there is
a semiproper forcing extension V [G] of V such that

jG : L(R)→ L(RG)

is not the identity on the ordinals. So one cannot hope to generalize the above
theorem to a larger class of forcings.
Another result in this direction due to Woodin is the following theorem published in
[Woo05]. We state it with the reduced large cardinal assumption Larson obtained
in [Lar04, Theorem 3.4.17].

Theorem (Woodin with stronger hypothesis, Larson) Let ΓuB denote the class of
universally Baire sets. Suppose there is a proper class of Woodin cardinals. Suppose
δ is supercompact and Vδ+1 is countable in V [G], G set generic over V . Let V [G][g]
be any set generic extension of V [G]. Then

1. P(R) ∩ L(R,ΓuB)V [G] = ΓV [G]
uB ,

2. P(R) ∩ L(R,ΓuB)V [G][g] = ΓV [G][g]
uB ,

3. (ΓV [G]
uB )] ⊂ (ΓV [G][g]

uB )], where each set in ΓV [G]
uB is identified with its reinter-

pretation in V [G][g].

The above theorem says that the theory of L(R,ΓuB) is sealed with respect to
set forcing and hence generalizes the Σ2

1 absoluteness for L(R).
All the above theorems are shown with modern set theoretic methods. Station-
ary tower forcing is one way to show Σ2

1 absoluteness for L(R) and is also used to
show the above theorem. The second way to show Σ2

1 absoluteness for L(R) is the
extender algebra; also the Embedding Theorem is shown using the extender alge-
bra. Besides stationary tower forcing and the extender algebra there is yet another
method to show Σ2

1 absoluteness for L(R): Todorčević imitated the stationary tower
proof by Levy collapsing measurable Woodin cardinals to ω2. In such a Levy col-
lapse a ω2-saturated ideal on ω1 exists and one can force with this ideal. A detailed
proof of Σ2

1 absoluteness for L(R) hay been published by Farah in [Far07].
In the literature there are other variants and extensions of Σ2

1 absoluteness for L(R).
For example one can enrich the language and add predicates for universally Baire
sets of reals; see [FL06] and [FKLM08] for such a result and other extensions of Σ2

1

absoluteness.
1If T is a δ-weakly homogeneously Suslin tree such that A = p[T ], then the associated generic

embedding jG is uniquely determined by the following three clauses: (1) jG(A) = AG =
p[T ]V [G], (2) RG = RV [G] and (3) L(AG,RG) = {jG(f)(a) ; a ∈ RG, f : R→ L(A,R) and f ∈
L(A,R)}
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5.2 The Extender Algebra

In this chapter the extender algebra will be our main tool. We construct the exten-
der algebra and give a detailed proof of Σ2

1 absoluteness for L(R).
It is well known that given a real x ⊂ ω and a sufficiently iterable structureM (i.e.
a (coarse) premice) that contains a Woodin cardinal one can make x generic over
some countable iterate ofM. This technique, due to Woodin, is known as genericity
iteration. The first result we present in this chapter is a generalization of the above
technique, also due to Woodin: we explain how to make an arbitrary subset of ω1

generic over an iterate of a fine structural model containing a measurable Woodin
cardinal. We believe that all basic results not otherwise attributed to someone are
due to Woodin.
We then look at ẋ ⊂ ω1 that lives in a c.c.c. generic extension and also construct a
genericity iteration for ẋ. We apply this technique to show:

Theorem (Theorem 5.5.3) Suppose M ]
mw exists. Assume CH holds. Furthermore

assume P is a c.c.c. forcing of size κ such that V P |= CH. Let G ⊂ P be V -generic.
Then

V |= ∃A ⊂ R : L(R, A) |= φ(A, z, ~α)

if, and only if,

V [G] |= ∃A ⊂ RV [G] : L(RV [G], A) |= φ(A, z, ~α).

Here z is a real parameter and ~α are finitely many ordinal parameters.

Note that it is not possible to substitute c.c.c. by ω-closed in the statement of
the above theorem: let G ⊂ P = Col(ω1, ω2) be V generic. Then the following
statement in parameters ωV1 and ωV2 is true in V [G] but absurd in V :

∃A ⊂ RV [G] : L(RV [G], A) |= A codes a surjection from ωV1 onto ωV2 .

So we turn to more restrictive subsets of ω1: the sets A ⊂ ω1 that extend to a class
with unique condensation. We develop a genericity iteration for ẋ ⊂ ω1 in (reason-
able) forcing extensions that extend to a class with unique condensation and use
this genericity iteration to show a weak absoluteness result.
These subsets of ω1 can trivialize: granted a large cardinal hypothesis and an iter-
ability hypothes, then every A that extends to a class with unique condensation is
constructible from a real, see Theorem 5.6.14.

5.2 The Extender Algebra

We begin by recalling the Lindenbaum algebra and some basic facts. Then we will
construct the extender algebra. We would like to mention the notes [Far] which
were very helpful.

Definition 5.2.1 For a cardinal δ and an ordinal β ≤ δ let Lβ,δ,0 be the propo-
sitional logic with β many propositional variables aξ, ξ < β, allowing conjunctions∧
ξ<κ φξ for all κ < δ. In addition to the axioms and rules for finitary propositional

logic we have for all η < κ < δ and all 〈φξ; ξ < κ〉 the abbreviation∨
ξ<κ

φξ ≡ ¬
∧
ξ<κ

¬φξ,

the axiom ∧
ξ<κ

φξ → φη
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5 The Extender Algebra and Absoluteness

and an infinitary rule of inference for each κ < δ

from ` φξ for all ξ < κ infer `
∧
ξ<κ

φξ.

Every x ⊂ β naturally defines a valuation νx for Lβ,δ,0 via νx(aξ) = true if, and
only if, ξ ∈ x. For φ ∈ Lβ,δ,0 let

Aφ = {x ⊂ β ; x |= φ}.

If T ⊂ Lβ,δ,0 is a theory, we set AT = {x ⊂ β ; x |= T}.

Note that x |= φ is absolute between transitive models of ZFC containing x and
φ; in particular collapsing δ to ω makes no difference.

Lemma 5.2.2 For every φ ∈ Lβ,δ,0 the following are equivalent.

1. ` φ.

2. Aφ = P(β) in all generic extensions.

3. Aφ = P(β) in all generic extensions by Col(ω, δ).

Furthermore: for every theory T ⊂ Lβ,δ,0 and every φ ∈ Lβ,δ,0 the following are
equivalent:

1. T ` φ.

2. AT∪{φ} = AT in all generic extensions.

3. AT∪{φ} = AT in all generic extensions by Col(ω, δ).

Proof. We only show the first part since the characterization of T ` φ has almost
the same proof. It suffices to show 1. =⇒ 2. and 3. =⇒ 1. Let us suppose that
` φ. Since ` φ is upwards absolute, it holds in all generic extensions. So we need
to verify the correctness of Lβ,δ,0, i.e. ` φ =⇒ x |= φ for all x ⊂ β. We omit this
argument since it is an easy induction on the rank of the proof for φ.
So let us suppose that Aφ = P(β) holds in all generic extensions by Col(ω, δ). We
assume that ` φ fails and construct a forcing of size δ that adds an x ⊂ β such
that x 6|= φ. Since the forcing we are going to construct completely embeds into
ro(Col(ω, δ)), this will suffice.
Let P = {p ⊂ Lβ,δ,0 ; p 6` φ ∧ Card(p) < δ} ordered by reverse inclusion. For p ∈ P
and ψ ∈ Lβ,δ,0 we claim that either p ∪ {ψ} or p ∪ {¬ψ} belongs to P. Otherwise
we would have p ` ψ → φ and p ` ¬ψ → φ. Hence, by elementary inference rules,
we have p ` φ, contradiction to p ∈ P! So the set Dψ = {p ∈ P ; ψ ∈ p ∨ ¬ψ ∈ p}
is dense in P, and hence every generic Γ ⊂ P is forced to be a complete theory
such that Γ 6` φ. In V [Γ] define xΓ ⊂ β by ξ ∈ xΓ if, and only if, aξ ∈ Γ. Then
xΓ 6|= φ.

Let Bβ,δ,0 be the Lindenbaum algebra of Lβ,δ,0, i.e. we set

φ ∼ ψ iff ` φ↔ ψ

and let [φ] denote the ∼-equivalence class of φ. Let

φ ≤ ψ iff ` φ→ ψ,
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5.2 The Extender Algebra

we then set Bβ,δ,0 = 〈{[φ] ; φ ∈ Lβ,δ,0},≤ / ∼〉.
For a theory T we define the quotient Lindenbaum algebra Bβ,δ,0/T as follows:

φ ∼T ψ iff T ` φ↔ ψ

and let [φ]T denote the ∼T -equivalence class of φ. Let

φ ≤T ψ iff T ` φ→ ψ;

then Bβ,δ,0/T = 〈{[φ]T ; φ ∈ Lβ,δ,0},≤T / ∼T 〉.

Lemma 5.2.3 For every theory T if Bβ,δ,0/T has the δ-chain condition, then
Bβ,δ,0/T is a complete Boolean algebra.

Proof. Bβ,δ,0 is δ-complete, since for any κ < δ

Σξ<κ[φξ] = [
∨
ξ<κ

φξ];

the same clearly holds for Bβ,δ,0/T . Let X ⊂ Bβ,δ,0/T . We have to show that ΣX
exists. Fix an antichain Y that is maximal with respect to the following property:
if x ∈ X, then there is some y ∈ Y such that y ≤ x. By the δ-chain condition, Y
has cardinality < δ, hence ΣY exists. It is easy to verify that ΣY = ΣX.

For x ⊂ β such that x |= T define an ultrafilter Γx ⊂ Bβ,δ,0/T by

Γx = {[φ]T ; x |= φ}.

Note that Γx is well-defined on the ∼T -equivalence classes since x |= T . For a
generic Γ ⊂ Bβ,δ,0/T we also set xΓ = {ξ < δ ; [aξ]T ∈ Γ}. Then ΓxΓ = Γ and it is
also not difficult to check that xΓx = x for any x such that x |= T .

Lemma 5.2.4 Let δ be an ordinal. Assume M is a transitive model of ZFC −
Powerset + “P(δ) exists” such that for some T ∈ M the Boolean algebra Bβ,δ,0/T
has the δ-chain condition. Then for every x ⊂ β such that x |= T the filter Γx ⊂
Bβ,δ,0/T is generic over M . In particular, since Γx and x are interdefinable, x is
generic over M .

Proof. Fix x ⊂ β, x |= T . Assume {[φξ] ; ξ < κ} is a maximal antichain of Bβ,δ,0/T
that belongs to M . By Lemma 5.2.2 it suffices to verify x ∈ AT∪{φξ} for some
ξ < κ. Assume otherwise. Let G ⊂ Col(ω, δ) be V -generic. Note that G is also
M -generic. Let {ψn ; n ∈ ω} be an enumeration of {φξ ; ξ < κ} in order type ω in
M [G] ⊂ V [G]. Since the statement “there is an x ⊂ β, x |= T such that x 6|= ψn
for all n < ω” is a Σ˜1

1 statement true in V [G], it is also true in M [G]. Therefore
Col(ω, δ) forces over M that there is an x ⊂ β, x |= T such that x 6|=

∨
ξ<κ φξ.

Hence by Lemma 5.2.2 the sentence ¬
∨
ξ<κ φξ is consistent with T . This statement

is absolute and holds in M , contradicting the maximality of the antichain.

We now define the extender algebra relative to a sequence of extenders ~E. For
details regarding extender sequences, premice and other concepts of inner model
theory we refer the conscientious reader to [Ste]. Though we suppress many details
we want to give the reader an intution of iteration strategies and iterability: given
a premouse M one can define an iteration game for M. Such a game exists for all
ordinals α. In an iteration game of length α two players construct an iteration tree
T of length α on MT0 = M. For each node β in the tree there is a model MTβ ,
and the models at each direct <T -successor of a node β are obtained by forming
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5 The Extender Algebra and Absoluteness

an ultrapower of (an initial segment of) MTβ with some extender. These extenders
are chosen by player I at successor stages of the game. Player II only plays at
limit stages. It is player II’s responsibility to pick well-founded branches through
the tree at limit stages; i.e. the direct limit of the models along the branch is well-
founded. An (ω, α)-iteration strategy Σ forM is a winning strategy for player II in
the iteration game of length α; here we suppress many details, especially why there
is an ω in (ω, α)-iteration strategy. So Σ tells us what branches to pick. We will
then choose player I’s moves to obtain an iteration. A premouse is (ω, α)-iterable
if there is an (ω, α)-iteration strategy.
Note that the extender algebra can also be defined for “coarse” iterable models with
Woodin cardinals, see [Far]; in this case iterability refers to the concept in [MS94].

Definition 5.2.5 Let M = 〈Jρ[ ~E];∈, ~E,Eρ〉 be a premouse such that M |= δ is
Woodin, let β ≤ δ and let ζ < ρ. Then T ( ~E �ζ, β) ⊂ Lβ,δ,0 is the theory containing
the axioms ∨

α<κ

φα ↔
∨
α<λ

iE(〈φξ; ξ < κ〉)α

for E on the sequence ~E � ζ such that crit(E) = κ ≤ λ, and ν(E) is a M-cardinal
such that iE(〈φξ; ξ < κ〉)�λ ∈ JMν(E).

If δ = ζ, we will simply write T ( ~E, β) for T ( ~E � δ, β). We will call Wδ( ~E, β) :=
Bβ,δ,0/T ( ~E, β) the extender algebra of ~E with β-many generators. If β = δ = ζ,
then we will write Wδ( ~E) and T ( ~E) respectively.

Note that the extender algebra of ~E with β many generators exists in M. If β
and ~E are clear from the context, we will omit them. Also note that the extender
algebra only depends on ~E �δ and not on the whole sequence ~E.

For us the most interesting case is β = δ. The extender algebra with δ-many
generators is used to make subsets of ω1 generic. Sometimes it is convenient to use
the extender algebra with less than δ many generators; we will especially need the
case with ω-many generators to make reals generic over iterates.
Another well known trick is the following: one can restrict the extender sequence
~E such that only extenders with critical point > κ for some κ < δ appear on ~E. It
is not difficult to see that it is possible to restrict in such a way, that the restricted
sequence still witnesses that δ is Woodin. We cannot hope that the restriction of
~E is a fine extender sequence in the sense of [Ste].
Note that the extender algebra has atoms: for less than δ many generators this is
easy to see. In the case of δ-many generators, look at the Lδ,δ,0 statement φ :≡∧
ξ<κ aξ, where κ is a cardinal strong up to δ such that this strongness is witnessed

by ~E. For all κ < λ < δ we have, using the axioms induced by extenders with
critical point κ,

T ( ~E) `
∨
ξ<κ

φ↔
∨
ξ<λ

(
∧
ξ<λ

aξ),

so
T ( ~E) ` φ↔

∧
ξ<λ

aξ.

Hence the condition [
∧
ξ<κ aξ]T (~E) is an atom, since

∧
ξ<λ aξ ∈ [

∧
ξ<κ aξ]T (~E) for

κ < λ < δ.
Let us recall some notation for iteration trees. Let T = 〈α,<T 〉 be an iteration
tree of length α in the sense of [Ste], then MTβ denotes the βth model of this tree.
The set [β, γ]T is the branch through T from β to γ. If γ is a T -successor of β,
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then there is an iteration map jTβ,γ : MTβ → MTγ . If an extender was picked to
continue the iteration at stage β, then we denote this extender by ETβ . Any notions
left undefined are to be found in [Ste].

5.3 The Genericity Iteration

Theorem 5.3.1 (Woodin and Steel independently) Let M = 〈Jρ[ ~E];∈, ~E,Eρ〉
be a sound premouse that is active and has a (ω, ω1 + 1)-iteration strategy Σ such
that ~E witnesses the measurability and Woodiness of δ in M. Let Wδ := Wδ( ~E, δ)
denote the extender algebra of ~E with δ many generators. Let x ⊂ ω1. Then there
is an iteration tree T on M of height ω1 + 1 such that iT0,ω1

: M→MTω1
such that

x is iT0,ω1
(Wδ)-generic over MTω1

.

Note that if x ⊂ ω; i.e. the situation when the extender algebra is only con-
structed with ω-many generators, then the measurability of δ is not required, see
[Ste, 7.14]. The proof we are about to give mainly follows the proof of [Ste, 7.14];
the notes [Far] were also very helpful.

Proof. The extender algebraWδ is built using extenders witnessing that δ is Woodin;
we will make use of this fact in the following claim:
Claim 1. Wδ is δ-c.c. in M.
Proof of Claim 1. Working in M we pick a set A = {[φξ]T (~E) ; ξ < δ}. We have to
show that A is not an antichain. Let κ < δ be 〈φξ; ξ < δ〉-reflecting and let this fact
be witnessed by ~E. Let ν be a cardinal such that 〈φξ; ξ < κ+ 1〉 ∈ JM

ν and let F
on ~E witness the reflection of κ at this ν. Let E be the trivial completion of F �ν.
Then

iE(
∨
ξ<κ

φξ)�(κ+ 1) =
∨
ξ≤κ

φξ.

Hence
T ( ~E) `

∨
ξ<κ

φξ ↔
∨
ξ≤κ

φξ

and hence also
T ( ~E) ` φκ →

∨
ξ<κ

φξ

Reformulating this fact gives [φκ]T (~E) ≤ [
∨
ξ<κ φξ]T (~E). So A is not an antichain.

(Claim 1)

By Lemma 5.2.3 Wδ is a complete Boolean algebra. In general an arbitrary y ⊂ δ
will not satisfy T ( ~E). We will produce a normal iteration tree T of height ω1 + 1
such that for iT0,ω1

: M→MTω1

iT0,ω1
(δ) = ω1 and x |= iT0,ω1

(T ( ~E)),

for a fixed x ⊂ ω1. If we achieve this, then by Lemma 5.2.4 the set x will be j(Wδ)-
generic over MTω1

.
There is a normal measure U on δ such that U ’s trivial completion appears on ~E.
Let us assume that U ’s index is minimal; i.e. the trivial completion of U is Eζ0 ,
where ζ0 is minimal among all ordinals ζ ′ such Eζ′ is the trivial completion of a
normal measure on δ.
Let iU : M→M′ ' Ult(M, U) and let ~F denote the extender sequence of M′. The
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model M can see a part of iU (T ( ~E)): the coherence of M’s fine extender sequence
implies

~F �ζ0 = ~E �ζ0.

So if Eα is an extender on ~E with α < ζ0 and crit(E) = κ, then Eα = Fα; hence
every axiom of the form ∨

α<κ

φα ↔
∨
α<λ

iE(〈φξ; ξ < κ〉)α,

with iEα(〈φξ; ξ < κ〉)�λ ∈ JM′

ν(Eα) is in M. We introduce a notation for this slightly

“longer” theory: set T ( ~E)+ = T ( ~E �ζ0, ζ0).
We now recursively construct the iteration tree T for a fixed x ⊂ ω1. Before giving
more details we outline our plan: we will show that for club many γ < ω1 we have

x ∩ iT0,γ(δ) |= iT0,γ(T ( ~E)).

We call such a γ a baby closure point. At a baby closure point γ we would like to
use the trivial completion of iT0,γ(U) to continue the iteration, but we need to ensure
that the resulting iteration is normal. For this we define: γ is a closure point, if
there is no extender with index < iT0,γ(ζ0) that induces an axiom not satisfied by
x ∩ iT0,γ(ζ0), or equivalently:

x ∩ iT0,γ(ζ0) |= iT0,γ(T ( ~E)+).

Clearly every closure point is a baby closure point. Moreover we will show in the
end that there are also club many closure points. Note that this is not trivial: using
the agreement of models in an iteration tree, it is not difficult to see that limits of
closure points are baby closure points, but in general such limits are not closure
points.
We now give more details how to iterate away the least extender which induces an
axiom not satisfied by x. SetMT0 = M and suppose T onM has been constructed
up to some countable stage β; furthermore suppose that DT = ∅, i.e. the tree has
not dropped. If β is a limit ordinal we use the strategy Σ to continue the iteration.
If β is a successor there are two cases: if β is a closure point, then we continue the
construction of T ∗ by picking (the trivial completion of) the least normal measure
witnessing that iT0,β(δ) is measurable.
The second case is: β is not a closure point. Let E be on the Mβ-sequence such
that E induces an axiom of i0,β(T ( ~E)+) not satisfied by x, and such that lh(E)
is minimal among all extenders on the Mβ sequence with this property. We set
ETβ = E and use E according to the rules for ω-maximal iteration trees to extend
T one more step. Note that lh(E) < iT0,β(ζ0) in this case.
The following is easily verified: if an extender E an axiom φ false of x, then iE(φ) is
true of x, where iE is the ultrapower formed with E. In this sense we iterate away
false axioms.
We check that all moves are valid in the iteration game. For this we must check
that γ < β =⇒ lh(ETγ ) < lh(ETβ ) to see that E is a valid move of player I in the
iteration game. There are four cases:

(1) If γ and β are closure points, then lh(ETγ ) = lh(iT0,γ(U)) = iT0,γ(ζ0) < iT0,β(ζ0) =
lh(iT0,β(U)) = lh(ETβ ).

(2) If β is a closure point, then an easy induction, using the definition of closure
point, yields that lh(ETβ ) = iT0,β(ζ0) is an upper bound for the length of all
extenders used at stages < β (note that (1) is a special case of (2)).
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5.3 The Genericity Iteration

(3) Now suppose neither γ nor β is a closure point. Suppose the implication does
not hold for γ < β. The agreement of models in an ω-maximal iteration tree
implies that Eβ is on the sequence ofMTγ . We show that ν(ETβ ) is a cardinal
of MTγ : ν(ETγ ) is a cardinal of MTγ and any cardinal ≤ ν(ETγ ) of Mβ is a
cardinal of MTγ . By our assumption ν(ETβ ) < lh(ETβ ) ≤ lh(ETγ ) and there
are no cardinals in the open interval ]ν(ETγ ), lh(ETγ )[, so ν(ETβ ) ≤ ν(ETγ ) is a
cardinal in MTγ . So clearly the false axiom induced by ETβ is also induced in
MTγ . But this contradicts our choice of ETγ , since lh(ETγ ) was not minimal.

(4) Now suppose γ is a closure point and at stage β > γ we used the extender ETβ
to iterate away a false axiom. Like in (3) we suppose towards a contradiction
lh(ETβ ) ≤ lh(ETγ ). Then the argument for (3) yields that ETβ is in MTγ , so in
fact lh(ETβ ) < lh(ETγ ). Moreover ETβ also induces inMTγ an axiom false of x,
but then γ is not a closure point! Contradiction.

We must check that [0, β+ 1]T does not drop; that is ETβ measures all subsets of its
critical point κ in the model MTγ to which it is applied. In the closure point case
this is clear. In the other case this is true because κ < ν(ETγ ), ν(ETγ ) is a cardinal
ofMTγ , andMTβ agrees withMTγ below ν(ETγ ). This finishes the successor step of
the construction in both cases.
Set M∗ = MTω1

and let b = [0, ω1]T denote the branch that yields M∗. We now
show that b contains ω1 many closure points.
So suppose not and aim for a contradiction, say the closure points are bounded
by some ζ. Let Hη be large enough such that x, T ,M,Σ, ζ ∈ Hη and pick some
countable, elementary

π : H → Hη,

such that H is transitive and ζ < γ := crit(π) = ωH1 and all the objects mentioned
are in the range of π. Let π(T̄ ) = T and set γ = crit(π) = ωH1 . Set δ∗ = iT0,γ(δ)
and ζ∗ = iT0,γ(ζ0). Like in the proof that the comparison process terminates we get
the following claim.
Claim 2. We have

V
MT̄γ
γ = V

MTγ
γ

and
π �V

MT̄γ
γ = iTγ,ω1

�V
MTγ
γ .

�
Let β+1 ∈ b be the T -successor of γ. Because the critical points of the extenders

used along b are increasing, we have crit(ETβ ) = crit(iTγ,ω1
) = γ. Also we have an

axiom ∨
ξ<γ

φξ ↔ iETβ (
∨
ξ<γ

φξ)�λ

of iT0,β(T ( ~E)+) induced by ETβ that does not hold for x ∩ ζ∗. The falsity of this
axiom means that the right hand side is true of x∩ ζ∗, but the left hand side is not.
But now

∨
ξ<γ φξ is essentially a subset of γ, and therefore, by the agreement of the

models of the iteration, contained as an element in MTγ . Recall that λ < ν(ETβ );
since generators are not moved on T

iETβ (
∨
ξ<γ

φξ)�λ = iTγ,ω1
(
∨
ξ<γ

φξ)�λ = π(
∨
ξ<γ

φξ)�λ.

Now γ ≤ ζ∗ and x ∩ ζ∗ 6|=
∨
ξ<γ φξ implies that x ∩ γ 6|=

∨
ξ<γ φξ. Since x ∩ γ ∈ H

and π(x ∩ γ) = x, we have x 6|= π(
∨
ξ<γ φξ). This contradicts the fact that x ∩ ζ∗
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5 The Extender Algebra and Absoluteness

satisfies the initial segment iETβ (
∨
ξ<γ φξ) �λ of this disjunction. In other words γ

is a closure point: contradiction!
So b contains uncountably many closure points (in fact club many, but we have
no use for this fact here), hence the least normal measure on δ witnessing the
measurability of δ (resp. its image) was used ω1-many times. For a closure point γ,
note that x∩ iT0,γ(δ) |= iT0,γ(T ( ~E)), so x |= iT0,γ(T ( ~E)). Also note that the existence
of unboundedly many closure points in b implies iT0,ω1

(δ) = ω1. We need to show
x |= iT0,ω1

(T ( ~E)), i.e. ω1 is a baby closure point. For this fix some ψ ∈ iT0,ω1
(T ( ~E)).

Clearly there is some ψ̄ and some closure point γ ∈ b such that iTγ,ω1
(ψ̄) = ψ. But

since ψ̄ ∈ iT0,γ(T ( ~E)), it is basically a bounded subset of iT0,γ(δ) = crit(iTγ,ω1
), hence

ψ̄ = ψ. Since x ∩ iT0,γ(δ) |= ψ̄ clearly x |= ψ.

We will call an iteration as above a genericity iteration. In the following we
will refine the concept of genericity iteration. Note that the argument above for
x |= iT0,ω1

(T ( ~E)) also yields that limits of closure points are baby closure points and
moreover that the baby closure points are club in ω1.

5.3.1 First applications of genericity iterations

We use genericity iterations to present Corollary 5.3.4, an absoluteness argument
due to Steel and Woodin independently; this is not the most general result though,
but the proof is quite easy to grasp. We will refine the argument later to add more
parameters and to obtain Σ2

1 absoluteness, see Theorem 5.4.1.

Definition 5.3.2 Let x ⊂ OR and let ~E be a fine extender sequence over x. We
let M ]

mw(x) = 〈Jβ(x)~E ;∈, x, ~E �β,Eβ〉 denote the minimal sound x-premouse that
satisfies the following properties:

1. M ]
mw(x) is active, i.e. Eβ 6= ∅, and crit(Eβ) > δ,

2. M ]
mw(x) has a (ω, ω1 + 1)-iteration strategy Σ,

3. ~E witnesses the measurability and Woodiness of δ.

Note that we demand that the witnesses for the measurability and Woodiness
of δ are on ~E. We can describe the top measure of M ]

mw; we do not prove the
following fact, it follows from the minimality of M ]

mw. If M ]
mw(x) = 〈Jβ(x)~E ;∈

, x, ~E � β,Eβ〉, then on ~E � β there is no extender witnessing the measurability
of M ]

mw(x)’s measurable Woodin; Eβ is in fact the only extender so that Eβ is
the trivial completion of a normal measure on δ. Furthermore, since we have the
indexing of [Ste], β = δ++Ult(M]

mw(x),Eβ). Without a proof we state the following
fact that we will make use of without further notice:

Remark 5.3.3 If M ]
mw := M ]

mw(∅) exists, then M ]
mw(x) exists for every x ⊂ ω.

The key ingredients to show the above are the following: first one observes that
even without the least Woodin cardinal η of M ]

mw there are measure one many
Woodins in M ]

mw, say the thinned out sequence of extenders with critical point > η

is called ~F . Then one performs a genericity iteration to make x generic over some
iterate of M ]

mw for Wη, where Wη is constructed with ω-many generators. So in
the generic extension containing x (the image of) ~F witnesses that there is still an
iterable system of extenders.
We remark that the current inner model theory does not tell us under what circum-
stances M ]

mw exists.

72



5.3 The Genericity Iteration

For the next theorem we introduce a quantifier Q. The interpretation of Q is as
follows: if φ is a statement in the language of set theory with one free variable,
then QXφ(X) if, and only if, there is some X ⊂ ω1 such that X is unbounded in
ω1 and φ(X) holds. This quantifier ensures that the next theorem is more than
Shoenfield’s Absoluteness Theorem.

Corollary 5.3.4 (Woodin and Steel independently) Suppose M ]
mw exists and is

(ω, ω1 + 2)-iterable. Let φ be a statement in the language of set theory with one free
variable. There is a statement φ∗ such that

QX : L[X] |= φ(X)

if, and only if,
M ]

mw |= φ∗.

Proof. Let δ be the measurable Woodin cardinal of M ]
mw. We will define φ∗ in a

moment. Suppose L[X] |= φ(X) for some unbounded X ⊂ ω1. If necessary we
modify φ and X a little so that L[X] |= ω1 = ωV1 . By Theorem 5.3.1 there is
an elementary map j : M ]

mw → M∗ such that j(δ) = ω1 and X is generic over
M∗. Then M∗ has a top measure U and the critical point of this top measure is
j(δ) = ω1. Let h : M∗∗ = Ult(M∗, U) and note that the extender U must be applied
to M∗ by the rules of the iteration game. Since V M∗∗

ω1
= V M∗

ω1
, we have that X is

also generic over M∗∗. Because h(ω1) is still measurable in M∗∗[X], we have that
h(ω1) is an X-indiscernible. So

Lh(ω1)[X] |= φ(X).

In M∗, the existence of an X, such that X is generic for the extender-algebra Wω1

and Lh(ω1)[X] |= φ(X) in the ultrapower with U is a first order statement in the
paramters ω1 and U , call it φ∗(ω1, U). By elementarity φ∗(δ, Ū) holds in M ]

mw,
where Ū is M ]

mw’s top-measure.
For the other direction pick some G ⊂ Wδ, G ∈ V that is generic over M ]

mw such

that for some Y ⊂ ωM
]
mw[G]

1 unbounded in ωM
]
mw[G]

1 , Y ∈M ]
mw[G] and Y is a witness

for φ∗, say p ∈ G is a condition that forces Y is a witness for φ∗. Then we iterate
M ]

mw linearly ω1-many times using only its top measure on δ. We need to apply
the technique we call “piecing together end-extending generics” from the proof of
Theorem 5.4.1; since we give a very detailed and far more general version of this
technique there, we omit the details of this construction and just sum up the result.
Set G0 = G. For each countable iterate Mi of M ]

mw, i < ω1, obtained by linearly
iterating, we have a generic Gi ⊂ j0,i(Wδ), where j0,i : M ]

mw →Mi is the iteration
map. For i < j the generics Gi, Gj end-extend each other, i.e.: Gi ⊂ Gj . Then
Gω1 =

⋃
{Gi ; i < ω1} is generic over Mω1 . We have p ∈ Gω1 , so Yω1 has the desired

properties, where Yω1 is calculated from Gω1 in the same way as Y was calculated
from G.

We then have the following obvious corollary which looks like a bounded forcing
axiom, except that it lacks interesting parameters.

Corollary 5.3.5 Suppose M ]
mw exists and furthermore suppose that the (ω, ω1+1)-

iterability of M ]
mw is preserved in all generic extensions. Then for every forcing P

and every ∆0 statement φ with one free variable

HV P

ω2
|= QXφ(X) =⇒ Hω2 |= QXφ(X).

�
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5 The Extender Algebra and Absoluteness

The above corollary is suboptimal. With different methods one can show far
more than the above corollary using a weaker large cardinal hypothesis: in [FL06,
Theorem 5.2], assuming the existence of two Woodin cardinals but not the existence
of M ]

mw, a similar absoluteness result is shown using a more expressive language as
in the corollary above. The language in [FL06, Theorem 5.2] in addition contains
a predicate for NSω1 and predicates for all universally Baire sets of reals, as well as
constants for every member of Hω1 .

5.3.2 Adding parameters

We now explore what parameters one can reasonably hope to add to the statement
of the above corollaries. The arguments to follow are blueprints which can be
applied for example to add parameters to the statement of Theorem 5.4.1. Let us
first consider a real z: if we demand that M ]

mw exists then we have remarked that
M ]

mw(z) exists.

Corollary 5.3.6 Suppose M ]
mw(z) exists. Let z be a real and suppose that in all

generic extensions M ]
mw(z) is (ω, ω1 + 1)-iterable. Then for every forcing P and

every ∆0 statement φ with two free variables

HV P

ω2
|= QXφ(X, z) =⇒ Hω2 |= QXφ(X, z).

�

We now study parameters for which forcing names exist in some generic extension
of M ]

mw(z). We need some notation first.

Definition 5.3.7 For S ⊂ ω1 let code(S) = {x ∈ WO ; ||x|| ∈ S}. A set A ⊂ R is
closed under ordertypes if x ∈ A ∩WO and ||x|| = ||y|| for some y implies y ∈ A.
Let A ⊂ R, we then set decode(A) = {α < ω1 ; ∃x ∈ A ∩WO : ||x|| = α}. Let
M be a (ω, ω1 + 1)-iterable premouse that contains a Woodin cardinal δ and let
A ⊂ R. We say a term for a set of reals τ ∈MCol(ω,δ) captures A if for all iterations
π : M→M∗ and all g ⊂ π(Col(ω, δ)) generic over M∗

π(τ)g = A ∩M∗.

We will say that S ⊂ ω1 is captured by τ over M if for all iterations π : M →M∗

such that π(δ) = ω1 and for all g ⊂ π(Col(ω, δ)) generic over M∗

π(τ)g ∩WO = code(S) ∩M∗[g].

Note that equivalently we could say

decode(π(τ)g) = S ∩ ωM∗[g]
1

in the last part of the definitions above. Moreover note that in the presence of large
cardinals lots of definable sets can be captured.

Lemma 5.3.8 Let M = 〈Jβ [ ~E];∈, ~E,Eβ〉 be a sound premouse that is active and
has a (ω, ω1 + 1)-iteration strategy Σ such that ~E witnesses the measurability and
Woodiness of δ. Furthermore assume that S ⊂ ω1 is captured by τ over M. Let φ
be a statement in the language of set theory with two free variables, then

∃X ⊂ ω1 : L[X,S] |= φ(X,S)
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5.3 The Genericity Iteration

if, and only if,

∃p ∈WM
δ : p M ∃X ⊂ δ̌ : Lκ[X,decode(τ)] |= φ(X,decode(τ)),

where κ is the critical point of the top measure of M.

Proof. The proof is similar to the proof of 5.3.4. First assume L[X,S] |= φ(X,S)
for some X ⊂ ω1. Then produce a genericity iteration π : M → M∗ such that
π(δ) = ω1 and X is π(Wδ)-generic over M∗. So π(τ)X ∩WO = code(S) ∩M∗[X]
by our hypothesis. So S ∈M∗[X]. Then by (X,S)-indiscernibility of π(κ)

L[X,S]π(κ) |= φ(X,S),

where κ is the critical point of the top measure of M. It remains to appeal to the
elementarity of π.
The presence of τ does change the proof of the other direction. We need to piece
together end-extending local generic objects for the other direction. Since a more
complex argument of this type is given in the proof for 5.4.1, we omit it here.

Unfortunately there are serious restrictions on the complexity of a parameters S
such that code(S) is captured. Recall that a (κ, λ)-extender E = {Ea ; a ∈ [λ]<ω}
with critical point κ on the sequence of a premouse M is complete, if Ea measures
P(κ|a|)M for a ∈ [λ]<ω. If E is complete, then we can linearly iterate M using only
E and its images without dropping to an initial segment of M.

Lemma 5.3.9 Let S ⊂ ω1 be such that code(S) is captured by some τ over some
countable sound premouse M that is active and (ω, ω1 + 1)-iterable. Furthermore
suppose that the M-extender sequence contains a complete measure on a regular
M-cardinal. Then

1. there is a ∆1
2-set A such that S = decode(A);

2. if furthermore sharps for all reals exist, then either S or ω1 \ S contains a
club.

Proof. We show how to calculate A ⊂WO with the desired properties. For this let
us fix a a cardinal δ ∈M such that there is a complete measure U on δ. Let x ∈WO,
say ||x|| = α. Pick a countable linear iteration π : M→M∗ that is obtained using
only U and its images such that π(δ) > α. In V pick a g ⊂ Col(ω, π(δ)) generic
over M∗. If x ∈M∗[g] then by the choice of τ

x ∈ π(τ)g ⇐⇒ α ∈ S.

So we define A such that x ∈ A if and only if

∀π∀g[φ0(π, U,M) ∧ π(δ) > ||x|| ∧ φ1(π, g, δ)→
∃y ∈WO ∩M∗ : ||y|| = ||x|| ∧ y ∈ π(τ)g],

here φ0(π, U,M) expresses that π is a linear iteration of M using only U and its
images and φ1(π, g, δ) expresses that g is Col(ω, π(δ)) generic over the last model
of the iteration π and M∗ denotes π’s last model.
We can also calculate A in the following fashion: x ∈ A if and only if

∃π∃g[φ0(π, U,M) ∧ π(δ) > ||x|| ∧ φ1(π, g, δ)∧
(∃y ∈WO ∩M∗ : ||y|| = ||x|| ∧ y ∈ π(τ)g)].
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5 The Extender Algebra and Absoluteness

By choosing a nice coding we see that the first formula defining A is Π1
2(z) where z

is a real coding (M, δ, U) and the second is Σ1
2(z). Hence A is ∆1

2(z).
This clearly implies that S is constructible from the real z. If z] exists, then there
is either a z-indiscernible in S or in ω1 \ S, hence there are either club many z-
indiscernibles in S or in ω1 \ S.

This shows that we cannot hope to capture (a code for) a stationary and costa-
tionary set if we have sharps for reals. Also we can not capture a ladder system
for ω1, since such a system would allow to partition ω1 into ω1-many stationary
sets (a ladder system is in fact the amount of choice one needs to calculate such a
partition).

5.4 Σ2
1 absoluteness

We now work a little harder to obtain Σ2
1 absoluteness which was first shown by

Woodin. Our proof differs substantially from Woodin’s original proof and uses
genericity iterations instead of the stationary tower. The proof we are going to
present is due to Steel and Woodin independently.

Theorem 5.4.1 (Woodin) Suppose M ]
mw exists and is (ω, ω1 +1)-iterable in all set

forcing extensions. Assume CH holds. Let P be a notion of forcing and let G ⊂ P
be V -generic. Let z be a real in V . If in V [G]

∃A ⊂ RV [G]L(RV [G], A) |= φ(A, z),

then in V
∃A ⊂ RV L(RV , A) |= φ(A, z).

Furthermore if CH holds in V P, then the converse is true.

Before we give proof, we want to state three Lemmata. The first one is part of
the folklore; for a more general result see (for example) [Kan03, 10.10].

Lemma 5.4.2 Let P and Q be notions of forcings in V such that in V P for all q ∈ Q
a Q-generic containing q exists. Then a Q name Ṙ exists such that V Q∗R = V P. �

The above Lemma is shown using Boolean algebras. If P and Q are Boolean
algebras, then the conclusion of the above Lemma reads: Q is a regular subalgebra
of P.
The second lemma is also part of the folklore; we do not explicitly state it for
fine-structural models since it clearly also holds in the coarse case.

Lemma 5.4.3 Let P be a complete Boolean algebra that satisfies the δ-c.c. and let
j : V →M be an elementary embedding with critical point δ. Then j“P is a regular
subalgebra of j(P).
Furthermore if δ is Woodin as witnessed by the extender-sequence ~E, ω ≤ β ≤ δ
and P = Wδ = Wδ(β, ~E), then the embedding

[φ]T (~E) 7→ [φ]j(T (~E))

witnesses that Wδ is a regular subalgebra of j(Wδ).

Proof. Let A be a maximal antichain of P. Then Card(A) < δ, so j(A) = j′′A is a
maximal antichain of j(P). Hence j“P is a regular subalgebra of j(P).
For the second part let A = {[φi]T (~E) ; i < κ}, κ < δ be a maximal antichain of
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Wδ. Notice
∨
i<κ φi ∈ Vδ. Hence by maximality T ( ~E) `

∨
i<κ φi. By elementarity

j(T ( ~E)) `
∨
i<κ φi.

The third lemma discusses the relationship of the extender algebra with ω-many
generators and small forcing. It is a slight generalization of the genericity iteration
to make a real generic.

Lemma 5.4.4 (Woodin) Let M = 〈Jρ[ ~E];∈, ~E,Eρ〉 be a sound premouse that is
active and has a (ω, ω1+1)-iteration strategy Σ such that ~E witnesses the Woodiness
of δ in M. Let P ∈ V M

κ , κ < δ, be a notion of forcing. Let ~F denote the complete
extenders of ~E with critical point > κ and index < δ. Let x ⊂ ω. Then the following
hold:

1. If g ⊂ P is generic over M and α < δ such that Fα 6= ∅, then there is a
complete extender F̃α ∈M[g] such that F̃α∩M = Fα. We will say Fα induces
F̃α.

2. For g ⊂ P is generic over M, let W g
δ := W g

δ (~F , ω) denote the extender algebra
with ω many generators calculated from the set of induced extenders {F̃α ; α <
δ} in M[g] and let W ġ

δ denote a name for that forcing. If g ⊂ P is generic
over M, then there is an iteration tree T on M of some height α + 1 < ω1

such that:

a) if E is the extender we apply at stage β of the construction of T , then
E is on the sequence iT0,β(~F );

b) crit(iT0,α) > κ;

c) if g ⊂ P is generic over M, then g is generic over MTα , and moreover x
is generic for iT0,α(W ġ

δ )g over MTα [g].

3. Moreover there is an iteration tree T on M of some height α + 1 < ω1 such
that for all g ⊂ P generic over M the real x is generic for iT0,α(W ġ

δ )g over
MTα [g].

We will give the key ideas for this Lemma only. For 1. one needs to run the
argument that shows that the measurability of some cardinal is preserved under
small forcing. Note that 2. of the above lemma is identical to [Ste, 7.16] and 3.
has almost the same proof: one performs a genericity iteration for x using only the
extenders from ~F and their images. We hint how to pick extenders to obtain a tree
like in 3. At stage β of the tree construction do the following: if there is a condition
p ∈ P and an extender E ∈ iT0,β(~F ) such that p forces that Ẽ induces an axiom false
of x, then pick the minimal such E to continue the construction of T . The rest
runs similar to the proof of [Ste, 7.14]. It is routine to check that the extenders on
~F witness that δ is Woodin and that the extenders induced from ~F continue to do
so in MP. So W g

δ is well-defined and δ-c.c. We shall give no more details.
We now prove 5.4.1.

Proof. We fix G ⊂ P generic over V and some A ∈ P(R)V [G] such that

ψ(A) :≡ L(RV [G], A) |= φ(A, z),

where z ∈ RV . We force CH over V [G] using Col(ω1, 2ω)V [G] and call the resulting
extension W . For a while we will work in W . We code A and RV [G] by a set B ⊂ ω1.
Clearly there is a formula ψ′ such that L[B] |= ψ′(B) if, and only if, ψ(A) holds.
By our hypothesis, we have that M := M ]

mw(z) has a (ω, ω1 + 1)-iteration strategy
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5 The Extender Algebra and Absoluteness

Σ in W , so by Corollary 5.3.4 there is an iteration j : M → M∗ such that B is
generic over M for the extender algebra. Let δ denote M’s measurable Woodin and
let Wδ be the extender algebra calculated in M relative to M’s extender sequence
~E. Hence by elementarity of j there is a condition p ∈ Wδ, say p = [φ]T (~E), such
that

p M δ̌ = ω1 ∧ ∃Ḃ : Lκ[Ḃ] |= ψ′(Ḃ),

where κ is the critical point of M’s top extender.
Our plan is as follows: we will construct in V an iteration tree T of length ω1 + 1
and Γ generic over the last model M∗ of T such that p ∈ Γ, RV ⊂M∗[Γ] and p is
not moved by jT0,ω1

. The tree T will be constructed in ω1 many rounds; for each
round i there is an ordinal αi, and in round i we will construct the map

jTαi,αi+1
:MTαi →M

T
αi+1

.

Before we can go into details we need to care for a minor technical thing. Recall that
the members of Wδ are of the form [φ]T (~E); alternatively we could have constructed
Wδ using the <M]

mw
-least formula in an equivalence class. So for the rest of the

proof we assume without loss of generality that Wδ contains formulae and so the
maps of the form

[φ]jT0,αi (T (~E)) 7→ [φ]jT0,αi+1
(T (~E))

are the identity on formulae. This identification eases the reasoning considerably,
since Lδ,δ,0 formulae are not moved by maps with critical point δ. One consequence
we will need later is that nice names for reals are not moved by such maps; another
consequence of this and Lemma 5.4.3 is the following: if j : M → M′ has critical
point δ, then Wδ = j“Wδ is a regular subalgebra of j(Wδ).
For book-keeping pick an enumeration {xi ; 0 < i < ω1 is not a limit ordinal} of
the reals in V . We call what follows piecing together end extending generics. We
now construct in V an iteration tree T of length ω1 + 1, a sequence of ordinals
〈αi; i < ω1 + 1〉 and a sequence of generics 〈Γi; i < ω1 + 1〉 such that

1. 〈αi; i < ω1〉 is a normal sequence, i.e. {αi ; i < ω1} is closed unbounded in ω1

and αω1 = ω1,

2. p ∈ Γ0,

3. p is not moved by jT0,ω1
,

4. crit(jTαi,ω1
) = jT0,αi(δ),

5. Γi ⊂ jT0,αi(Wδ) is generic over MTαi [Γj ] for j < i,

6. if i > 0 is not a limit ordinal, then xi ∈MTαi [Γi] and

7. if i ≤ j, then Γi ⊂ Γj .

Let U denote (the trivial completion of) the least normal measure on δ that is on
~E. Set MT0 = M and set α0 = 0. In V we can pick Γ0 such that p ∈ Γ0. This
finishes the construction of α0 and Γ0.
At all stages αi of the iteration we use the trivial completion of iT0,αi(U) to continue
the iteration. At limit stages λ ≤ ω1 we set αλ = sup{αi ; i < λ} and we use the
iteration strategy Σ to continue the iteration. We set

Γλ :=
⋃
{Γi ; i < λ} ⊂ jT0,αλ(Wδ).

All antichains of the extender algebra are small and crit(jTαi,ω1
) = jT0,αi(δ) for i < λ,

so we have that Γλ is generic over MTαλ .
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We now discuss the successor case. Fix i < ω1 and let γ = αi. We continue the
iteration by picking jT0,γ(U) as the next extender. At stage γ + 1 let ηγ be the least
Woodin cardinal in MTγ+1 in the open interval ]jT0,γ(δ), jT0,γ+1(δ)[. Let ~F consist of
the extenders onMTγ+1’s extender sequence with critical point > jT0,γ(δ) and index
< ηγ that witness that ηγ is Woodin. As in Lemma 5.4.4 we define from ~F an
extender algebra WΓγ

ηγ ∈ MTγ+1[Γγ ] with ω-many generators. We now apply 2. of
Lemma 5.4.4: we continue the iteration tree T by performing a genericity iteration
to make xi+1 generic for iTγ+1,β(WΓγ

ηγ ) over MTβ [Γγ ], where MTβ is some iterate of
MTγ+1, such that crit(iTγ+1,β) > jT0,γ(δ).
A model of the form MTβ [Γγ ] is well-defined since Γγ is small forcing over MTγ+1

and crit(jTγ+1,β) > jT0,γ(δ) by Lemma 5.4.4. Also the genericity iteration to make
xi+1 generic over a small forcing extension of an iterate terminates after countably
many steps. Note that we never apply extenders to models with index < γ + 1
(every extender used in the construction of WΓγ

ηγ , i.e. every extender on ~F , has
critical point > jT0,γ(δ); since ν(Eζ) < jT0,γ(δ) for all ζ < γ we see that the extenders
are never applied to models with index < γ + 1). So we have that xi+1 is generic
over MTβ [Γγ ]. We now want to apply Lemma 5.4.2 to find Γβ . Let D denote

the collection of all dense sets of jTγ+1,β(WΓγ
ηγ ) computed in MTβ [Γγ ]. Recall that

p  ω1 = δ̌, hence we have for all q ∈ jTγ+1,β(WΓγ
ηγ )

jTα0,β(p) M
T
β [Γγ ] ∃g ⊂ jTγ+1,β(WΓγ

ηγ )[q̌ ∈ g ∧ g meets every d ∈ Ď].

So by Lemma 5.4.3 and Lemma 5.4.2 we find a generic filter Γβ extending Γγ such
that xi+1 ∈MTβ [Γβ ]. This finishes the construction of T and 〈Γi; i ≤ ω1〉.
Let b = [0, ω1]T be the uncountable branch through T . By construction, b contains
every αi; hence jT0,ω1

(δ) = ωV1 .
So Γ := Γω1 ⊂ jT0,ω1

(Wδ) is generic over MTω1
, and jT0,ω1

(p) ∈ Γ. We have to check
RV ∈ MTω1

[Γ]. Consider some xi ∈ RV . By construction xi ∈ MTαi [Γi], so there is
a nice name σ such that xi = σΓ

i . By the δ-c.c. of Wδ, σ is not moved by jTαi,ω1

and since Γi = Γ ∩Wδi , we have xi = σΓ
i ∈MTω1

.
Recall that p ∈ Γ and that p was not moved by jT0,ω1

. By elementarity it now suffices
to iterate the top-extender of MTω1

[Γ] out of the universe to obtain

V |= ∃A′ ⊂ RV L(RV , A′) |= φ(A′, z).

The same method yields a proof for the converse direction: basically one changes
the roles of V [G] and V ; i.e. in V [G] replace 〈xi; i < ω1〉 by an enumeration of the
reals of V [G], run the according tree construction in V [G]

It is possible to add parameters besides reals to the formulae above, using for
example Lemma 5.3.8. Also one can add a subset of the reals captured by a term for
example. Nevertheless the same restrictions to the complexity of such parameters
as before apply, see Lemma 5.3.9.

5.5 Subsets of ω1 in Forcing Extensions

The classic genericity iteration to make a fixed real generic has a generalization for
reals living in forcing extensions. It is possible to produce a long iteration such that
all interpretations of a name for a real are generic:

Theorem 5.5.1 (Woodin) Let P be a forcing of size κ and suppose the sound
premouse M = 〈Jβ [ ~E];∈, ~E,Eβ〉 is active and has a (ω, κ+ + 1)-iteration strategy
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Σ such that ~E witnesses the Woodiness of δ. Let W denote the extender algebra
with ω many generators relative to ~E. Let ẋ ∈ V P be a name for a real. Then there
exists an iteration j : M→M∗ in V of length < κ+ such that for all G ⊂ P generic
over V the real ẋG is j(W )-generic over M.

We do not give a proof of the above theorem but refer the reader to the appendix
[NZ] of [NZ01]; we will give a proof of a more general result, Lemma 5.6.16, with a
similar proof. We aim to generalize the above theorem to subsets of ω1. The first
generalization is the following theorem which allows us to make subsets of ω1 in
c.c.c. forcing extensions generic over an iterate living in V ; clearly the following
theorem also generalize Theorem 5.3.1. The second generalization is Lemma 5.6.16,
which allows us to make certain subsets of ω1 living in reasonable extensions generic
over an iterate in V .

Theorem 5.5.2 Let P be any c.c.c. forcing. Let Ȧ be a P-name such that

1P  Ȧ ⊂ ω̌1.

Let M = 〈Jβ [ ~E];∈, ~E,Eβ〉 be a sound premouse that is active and has a (ω, ω1 +1)-
iteration strategy Σ such that ~E witnesses the Woodiness and measurability of δ.
Then there exists an iteration j : M → M∗ of length ω1 in V such that for all
G ⊂ P generic over V the set ȦG is j(Wδ)-generic over M.

The proof we are about to give is very similar to the one for Theorem 5.3.1; we
will omit some details that we gave in the proof for Theorem 5.3.1.

Proof. Let U on ~E be the extender with the least index witnessing the measurability
of δ, i.e. U is (the trivial completion of) a normal complete measure on δ. Let ζ0
be the index of U . We construct an iteration tree T of length ω1 + 1 onMT0 = M.
We will call an α ≤ ω1 a P-baby closure point for Ȧ if for all p ∈ P

p  Ȧ ∩ jT0,α(δ) |= jT0,α(T ( ~E)).

To ensure normality of the resulting iteration we need a more technical definition:
α ≤ ω1 is a P-closure point for Ȧ if for all p ∈ P and all ζ < jT0,α(ζ0) and ~F MTα ’s
extender sequence

p  Ȧ ∩ jT0,α(ζ0) does not contradict any axiom induced by F̌ζ .

Clearly any P-closure point for Ȧ is a P-baby closure point for Ȧ and limits of P-
closure points for Ȧ are P-baby closure points for Ȧ.
We define the iteration as follows: in the limit case we use Σ to continue the
iteration. In the successor case there are two subcases: if α < ω1 is a P-closure
point for Ȧ, then we use jT0,α(U) to continue the iteration. If α is not a closure
point, then there is a least “bad” extender E on the extender sequence ofMTα and
some p ∈ P such that

p  Ȧ ∩ jT0,α(ζ0) 6|= φ,

where φ is some axiom induced by E. We then use E to continue the iteration. This
finishes the construction of T . The arguments we have given before make sure T is
a normal tree. Let b = [0, ω1]T and let j = jT0,ω1

: M→MTω1
. We set M∗ =MTω1

.
Let us now check that there are unboundedly many (in fact club many) P-closure
points for Ȧ in b; so suppose towards a contradiction that the set of closure points
is bounded in ω1 say by η < ω1. Pick a countable X ≺ Vλ for some large enough λ
such that ω1 ∩X > η and Ȧ, T ,P ∈ X. Let π : H → X denote the inverse of the
transitive collapse of X and let α = ω1 ∩ X. Then π �MTα = jTα,ω1

. Since α ∈ b

80
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there is a direct T -successor of α, say γ + 1. Then there is a p ∈ P that forces that

the extender E
MTγ
ζ on theMTγ -sequence is the minimal extender that induces a bad

axiom. Let G ⊂ P be V -generic such that p ∈ G. We show that G is generic over
X: Let D ∈ X be an antichain of P; then q ∈ G∩D for a unique q. Since D can be
enumerated in ordertype ω, we have q ∈ X ∩G. Moreover we show: X[G]∩V = X,
this follows from the following claim:

Claim 1. Let τ ∈ X be a P-name, let B = ro(P) and let q := [[τ ∈ V̌ ]]B. Then
q ∈ X and there is a countable set y ∈ X such that q  τ ∈ y̌.
Proof of Claim 1. Clearly q ∈ X by elementarity. Let

A = {q′ ≤ q ; 0 6= q′ = [[τ = x̌]] for some x ∈ V }.

Since P is c.c.c. A is countable. By elementarity A ∈ X. Since A is countable we
have y ∈ X. (Claim 1)

Let π̂ : Ĥ → X[G] denote the inverse of the transitive collapse of X[G]. Since
X[G] ∩ V = X, we have that H ⊂ Ĥ and π̂ � H = π. Let Ā, Ḡ be such that
π̂(Ā, Ḡ) = Ȧ, G. So

Ĥ |= ĀḠ ∩ jT0,α(δ) 6|= jT0,α(T ( ~E)).

As before we get the following claim:
Claim 2. We have

π̂ �VM
T̄
α

δ∗ = iTα,ω1
�VM

T
α

δ∗ .

�(Claim 2)
We have now reproduced the situation in the proof of Theorem 5.3.1 and can

proceed like in that proof. Hence α is a P-closure point for Ȧ. By the argument at
the end of the proof of Theorem 5.3.1 we have that ω1 is a P-baby closure point for
Ȧ. This suffices to show.

We now refine the previous argument to show more Σ2
1 absoluteness for the class

of c.c.c. forcings; we allow not only real parameters but also ordinals.

5.5.1 Σ2
1 Absoluteness and c.c.c. Forcing Extensions

Theorem 5.5.3 Suppose M ]
mw exists. Assume CH holds. Furthermore assume P

is a c.c.c. forcing such that V P |= CH. Let G ⊂ P be V -generic. Then

V |= ∃A ⊂ R : L(R, A) |= φ(A, z, ~α)

if, and only if,

V [G] |= ∃A ⊂ RV [G] : L(RV [G], A) |= φ(A, z, ~α).

Here z is a real parameter and ~α are finitely many ordinal parameters.

The proof will use ideas from the previous proof and from the proof of Theorem
5.4.1. It is convenient to introduce some notation: we will code two subsets of
ω1 into one. For this purpose we define the useful ⊕-operation and its reverse
operations:

Definition 5.5.4 Given (maybe set-sized) classes A,B ⊂ OR we define the set
A⊕B by γ ∈ A⊕B if and only if

(∃α ∈ A : ∃α′ ∈ Lim : ∃n ∈ ω : α = α′ + n ∧ γ = α′ + 2n) ∨
(∃α ∈ B : ∃α′ ∈ Lim : ∃n ∈ ω : α = α′ + n ∧ γ = α′ + 2n+ 1).
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Furthermore we implicitly define operations (·)even and (·)odd acting on classes of
ordinals by demanding:

(A⊕B)even = A

and
(A⊕B)odd = B.

The intuition in the above definition is that A is mapped to the “even” ordinals
and B to the “odd” ordinals. In the following we will make us of the following fact:
if Ȧ and Ḃ are forcing names for sets of ordinals, then we can compute a forcing
name Ċ such that it is forced that Ċ = Ȧ ⊕ Ḃ. In an abuse of notation, we will
denote a name Ċ as above by Ȧ⊕ Ḃ. We now show Theorem 5.5.3.

Proof. We will first give a detailed proof of the downwards direction of the abso-
luteness, i.e. we assume

L(RV [G], ḂG) |= φ(ḂG, z, ~α)

for some Ḃ, and we want to show

L(RV , B) |= φ(B, z, ~α)

for some B ∈ V . The converse direction of this absoluteness is a variant of what
we are going to show now; we will mention some details for the upwards direction
at the end of the proof.
We denote the measurable Woodin cardinal in M = M ]

mw by δ and we let Σ denote
M’s (ω, ω1 + 1)-iteration strategy. Let us fix a P-name Ḃ such that for all G ⊂ P
generic over V

L(RV [G], ḂG) |= φ(ḂG, z, ~α) ∧ ḂG ⊂ ω̌1.

In the following we will suppress z and work with M = M ]
mw. We will construe M

and its iterates as class sized models if convenient (i.e. we will confuse M with the
class sized model one obtains when iterating M’s top measure out of the universe);
we will need this fact to allow for arbitrarily large ordinal parameters at the end of
this proof.
Set Ȧ = Ḃ ⊕ Ṙ for some name Ṙ such that

1P  Ṙ ⊂ ω̌1 ∧ Ṙ codes a well-ordering of R.

Our aim is to produce an iteration tree T ∈ V , p and Γ ∈ V such that

• T on MT0 = M is of length ω1 + 1,

• for all G ⊂ P generic over V the set ȦG is generic for jT0,ω1
(Wδ) over MTω1

,

• p ∈ jT0,ω1
(Wδ) is such that

p  L(R, (Γ̇)even) |= φ((Γ̇)even, ~α),

where Γ̇ is the canonical name for a jT0,ω1
(Wδ)-generic,

• Γ ⊂ jT0,ω1
(Wδ) contains p and is generic over MTω1

,

• RV ⊂MTω1
[Γ].

82



5.5 Subsets of ω1 in Forcing Extensions

For this our stratgey is as follows: like in the proof for Theorem 5.4.1 we have
to piece together end-extending generics. Again it is helpful to assume that the
conditions of the extender algebra are not equivalence classes of formulae, but take
the form of (minimal) formulae. In the proof of 5.4.1, we knew p from the beginning,
in this proof we will have to consider all possible p; also we have ordinal parameters
present which are moved in general by iterating, so we will have to arrange that in
V P the set Ȧ is generic over MTω1

.
We will drop the superscript T in the rest of this proof; i.e. T has modelsMα and
maps jα,β . We prepare a book-keeping device: let 〈yi; i < ω1〉 be an enumeration of
the reals of V and for i < ω1 let xi ∈ V be such that 〈yj ; j ≤ i〉 ∈ L[xi]. Let U on
~E be the extender with the least index witnessing the measurability of δ, i.e. U is
(the trivial completion of) a normal complete measure on δ, and let ζ0 be the index
of U , in fact ζ0 is the height of M ]

mw and U is M ]
mw’s top-measure. An ordinal α is

a P-closure point for Ȧ if for all q ∈ P and all ζ < j0,α(ζ0)

q  Ȧ ∩ j0,α(ζ0) does not contradict any axiom induced by F̌ζ ,

where ~F denotesMα’s extender sequence; in this case we clearly have: for all q ∈ P

q  Ȧ ∩ j0,α(δ) |= j0,α(T ( ~E)),

we will call α a P-baby closure point for Ȧ if it only satisfies this weaker property.
As before we have that a limit of P-baby closure points for Ȧ is also a P-baby closure
point for Ȧ; in general a limit of P-closure points for Ȧ is just a P-baby closure point
for Ȧ.
We now formally define the iteration tree T in ω1-many rounds; each round i starts
at a stage αi of T . Set M0 = M. In each round αi we have T � (αi + 1) defined
and soMαi exists. The tree T and the ordinals 〈αi; i < ω1〉 will have the following
properties:

1. T ∈ V is an iteration tree on M of length ω1 + 1,

2. the set {αi ; i < ω1} is a club of P-baby closure points for Ȧ.

Additionally, for i < ω1 and p ∈ j0,αi(Wδ) such that

p  j0,αi(δ̌) = ω̇1

we will pick a generic Γpi , with p ∈ Γpi . For this it is convenient to introduce some
objects: we will define a partial regressive function j that maps αi to the maximal
αj < αi such that the generic Γpj can be extended to a generic Γpi . We now define
j formally: for γ < ω1 we inductively define

J(γ) := {j ; αj ∈ [0, γ[T ∧ crit(jαj ,γ) = j0,αj (δ)},

So if j ∈ J(γ) we have jαj ,γ � j0,αj (δ) = id. It is not difficult to check that J(γ) is
a closed set if γ is not a limit of αi. If γ = αλ for a limit λ, then J(γ) might be
unbounded in λ. We set

j(γ) = max(J(γ)),

if max(J(γ)) < γ exists, and let j(γ) be undefined else. Here we want the maximum
of the empty set to be undefined. For j ≤ i look at the map jαj ,αi :Mαj →Mαi ,
if it exists. If this map does not exist, then the following definition trivializes, i.e.
Pj,i = ∅. Let

Pj,i := {p ∈ j0,αj (Wδ) ; jαj ,αi �j0,αj (δ) = id∧p  j0,αj (δ̌) = ω̇1},
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so that Pj,i is empty if jαj ,αi �j0,αj (δ) is not the identity. Let

Pi := Pj(αi),i

if j(αi) is defined and empty otherwise. Finally let

P i := {p ∈ j0,αi(Wδ) ; p  j0,αi(δ̌) = ω̇1 ∧ p /∈ Pi}.

The generic Γpi will satisfy the following conditions:

3. if p ∈ Pi ∪ P i, then p ∈ Γpi ⊂ j0,αi(Wδ) and Γpi is generic over Mαi ,

4. if j(αi) is defined and if p ∈ Pi, then Γpi end-extends Γpj(αi),

5. if λ is a limit ordinal and J(αλ) is unbounded in λ, then

Γpλ =
⋃
{Γpj ; j ∈ J(αλ)}

for all p ∈ Pλ,

6. if p ∈ Pi and j(αi) is defined, then the real xj(αi) is generic over Mαi [Γ
p
j(αi)

]
for a forcing of cardinality < j0,αi(δ),

7. if j(αi) is defined and p ∈ Pi, then xj(αi) ∈Mαi [Γ
p
i ],

8. each Γpi is generic over all models with index γ ≥ αi.

Once we state how we construct the iteration in each round, the last item above will
follow easily by the agreement of models of an iteration tree. At each limit ordinal
≤ ω1 we use Σ to continue the iteration tree T . Suppose we have already constructed
the iteration with the above properties up to a stage αi, i.e. we have produced
T �(αi + 1). We now describe a tree U of length ω1 + 1 that continues T �(αi + 1).
After we do so, we will decide which countable β is αi+1, i.e. T �(αi+1 + 1) = U �β
for some countable β.
Say the construction of U has reached a countable stage β ≥ αi. There are three
rules, (P1), (P2) and (P3) that define the iteration at a stage β. These rules tell us
which extender we use; (P1) in fact gives rise to countably many rules. We use the
minimal extender E with

(P1) j0,αi(ζ0) < crit(E) < j0,β(δ) and there is some j ≤ i, some k ≤ i and some
p ∈ P j ∪ Pj such that in Mβ [Γpj ] the extender Ẽ induces an axiom false of
xk, or

(P2) there is some q ∈ P such that

q  Ȧ ∩ j0,β(ζ̌0) does contradict an axiom induced by Ě.

Here Ẽ is the induced extender in the sense of Lemma 5.4.4. We explicitly do not
fix a system of extenders and a Woodin cardinal. One can define axioms induced
by extenders independently of a Woodin cardinal. Of course later we will specify a
system. Also note thatMβ [Γpj ] in the definition of (P1) is well-defined by condition
8. For β = αi the rule (P1) is trivial.
If none of the above rules imply that we have to use an extender, then rule (P3)
tells us what to do:

(P3) If neither (P1) nor (P2) implies that we use an extender, use the top-measure
j0,β(U) of Mβ , i.e. the measure witnessing that j0,β(δ) is measurable.

84



5.5 Subsets of ω1 in Forcing Extensions

So if we use j0,β(U), then especially β is a P-closure point for Ȧ. This fact and
the fact that we always picked the minimal extenders at all stages yield that the
extenders we used are of increasing length, i.e. the resulting iteration is normal.
We now show that in the construction of U we reach a stage where neither (P1)
nor (P2) implies that we use an extender, so that the top-measure is actually used.
Assume that this was not the case and work towards a contradiction. So in the ith
round we produce a tree U of length ω1 + 1 such that rule (P3) was not used at a
stage β ≥ αi. This implies that (P1) was unboundedly often the reason why we had
to apply an extender, otherwise by the argument from 5.5.2 we reach a P-closure
point for Ȧ after countably many steps.
Claim 1. Stationarily often (P1) was the reason why we had to continue the
iteration.
Proof of Claim 1. If (P1) was at nonstationary many stages the reason why we had
to continue the iteration, then there is a club C ⊂ ω1 of points such that (P1) was
not the reason, and hence (P2) was. Now pick an elementary substructure X ≺ Vλ
for a large enough λ such that γ = X∩ω1 ∈ C and T ∈ X. Making use of P’s c.c.c.,
like in the proof for Theorem 5.5.2, we can now study the embedding X[G] ≺ Vλ[G]
for a G ⊂ P generic over V . But then an argument like in the proof for Theorem
5.5.2 shows that γ is a P-closure point for Ȧ. Contradiction! (Claim 1)

By an application of Fodor’s Theorem there is a stationary S, a k and a p such
that for all β ∈ S: some extender Ẽ induces an axiom false of xk, in the sense
of (P1). Pick an elementary substructure X ≺ Vλ for a large enough λ such that
αi < γ = X ∩ ω1 ∈ S and U ∈ X. But then an argument like in the proof for
Theorem 5.3.1 shows that xk is generic over Mγ [Γpi ] (here one has keep in mind
thatMγ [Γpi ] is a small forcing extension ofMγ , see Lemma 5.4.4). This contradicts
γ ∈ S!
This shows that unboundedly often during the construction of U rule (P3) implied
that we had to use the top-measure at a stage β ≥ αi. An easier version of this
argument shows that we reach unboundedly many stages β, such that β is a P-baby
closure point for Ȧ and (P1) is not the reason why we have to use an extender at
stage β, call such a stage extraordinary. Then we let αi+1 be the least extraordinary
stage such that we have used the top-measure at some stage γ, αi ≤ γ < αi+1. We
set T � (αi+1 + 1) := U � (αi+1 + 1). Clearly αi+1 is a P-baby closure point, since
αi+1 is extraordinary. We have to show how to pick the generics of the form Γpi+1

such that conditions 3. through 8. are satisfied. We first show:
Claim 2. For j ≤ i, k ≤ i and p ∈ P j ∪ Pj the real xk is generic over Mαi+1 [Γpj ]
for a forcing of cardinality < j0,αi+1(δ).
Proof of Claim 2. Let η < j0,αi+1(δ), η > j0,αi(ζ0) be a Woodin cardinal such that
there are extenders ~F onMαi+1 ’s extender sequence that witness that η is Woodin.
In the construction of U we picked αi+1 as an extraordinary stage, so none of the
extenders from ~F induce an extender F̃ in Mαi+1 [Γpj ] that induces an axiom false
of xk. So xk is generic over Mαi+1 [Γpj ] for the extender algebra with ω-many gen-
erators calculated from {F̃ ∈Mαi+1 [Γpj ] ; F on ~F}. (Claim 2)

This claim clearly shows more than what we demand in condition 6. Recall for
any j < ω1 and any p ∈ P j ∪ Pj we have p  j0,αj (δ̌) = ω̇1, so if jαj ,αi+1 exists
and p is not moved by jαj ,αi+1 , we have by elementarity p  j0,αi+1(δ̌) = ω̇1. So
the powerset of any forcing of cardinality < j0,αi+1(δ) is forced to be countable. We
recall this fact because we are about to apply Lemma 5.4.2. Now pick a p in Pi+1

and let j = j(αi+1). Inductively we already picked Γpj . An argument like in the
proof for Theorem 5.4.1, using crit(jαj ,αi+1) = j0,αj (δ), Lemmata 5.4.2 and 5.4.3,
shows that we find Γpi+1, an end-extension of Γpj , such that xj ∈Mαi+1 [Γpi+1]. This
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choice satisfies condition 7. For p ∈ P i+1 we pick Γpi+1 ⊂ j0,αi+1(Wδ) generic over
Mα+1, so 4. is satisfied. Note that since αi+1 is extraordinary, we will not pick
an extender with length < j0,αi+1(δ) when we continue the iteration at stage αi+1,
this shows that condition 8. holds.
For a limit λ of rounds we set αλ = sup{αi ; i < λ}. It is not difficult to see, using
the agreement of models along the iteration, that αλ is a P-baby closure point for Ȧ.
We now have to pick the generics of the form Γpλ. There are three cases. The first
case is: J(αλ) is unbounded in λ. Then we pick the generics according to condition
5.: for all p ∈ Pλ set

Γpλ =
⋃
{Γpj ; j ∈ J(αλ)}.

The second case is: j(αλ) is undefined but the first case does not hold, then for p ∈
P i+1 we pick Γpλ ⊂ j0,αλ(Wδ) generic overMλ. The third case is: j := j(αλ) exists,
then inductively we picked Γpj . Recall that j < λ and hence αj+1 < αλ. The above
claim shows: in the jth round we produced an iteration such that xj was generic
over Mαj+1 for a forcing of cardinality < j0,αj+1(δ). Since αj+1 is extraordinary,
we used an extender with length ≥ j0,αi+1(δ) to continue the iteration, so by the
agreement of models of T

V
Mαj+1

j0,αj+1 (δ) = V
Mαλ

j0,αj+1 (δ).

This implies that xj is also generic overMαλ for small forcing. This shows condition
6. By the argument from the successor case we find Γpλ, an end-extension of Γpj ,
such that xj ∈Mαλ [Γpλ], making 7. true.
This finishes the construction of T and the family (Γpi )i.
Let b = [0, ω1]T and let j∗ = j0,ω1 : M → Mω1 . We set M∗ = Mω1 . We have
shown that in each round we produce a countable iteration that terminates at
an extraordinary stage. For this we showed that we actually use the top-measure.
Another Skolem-hull argument of this type shows that there are unboundedly many
β ∈ b where we use the top-measure, so j∗(δ) = ω1. It is easy to see that there are
club many P-baby closure points αi for Ȧ in b such that crit(jαi,ω1) = αi. Since ω1

is a limit of P-baby closure points for Ȧ, we have that ω1 is also a P-baby closure
point for Ȧ. Hence: if G ⊂ P is V -generic, then in V [G] the set ȦG is generic
over M∗. Let C ⊂ b denote a club of P-baby closure points β for Ȧ such that
crit(jβ,ω1) = αβ = β = j0,β(δ).
We now iterate the top-measure of M∗ linearly and write M∗∗ for the resulting class
sized model; we do this to make sure ~α ∈M∗∗. Note that all generics of the for Γpi
are still generic over M∗∗ and V M∗

ω1
= V M∗∗

ω1
. Moreover if G ⊂ P is V -generic, then

in V [G] the set ȦG is generic over M∗∗. So clearly there is a condition p ∈ j(Wδ)
such that

p j(Wδ)
M∗∗ L(Ṙ, (Γ̇)even) |= φ((Γ̇)even, ~̌α) ∧ j∗(δ̌) = ω̇1,

where Γ̇ is the canonical name for the j(Wδ)-generic. Then p ∈ Pj0,ω1 for some
countable αj0 ∈ C. Set

Γ =
⋃
{Γpi ; j0 < i ∧ i ∈ C}.

We show that Γ is well defined: by the choice of C, we have that C ∩ λ ⊂ J(αλ)
for every limit point λ = αλ of C, so J(λ) is unbounded in λ in this case. Then
conditions 4. and 5. imply that the generics of the form Γpi , i ∈ C, extend each
other. Using that the antichains of j∗(Wδ) are of cardinality < j∗(δ), we see that
Γ ∈ V is generic over M∗ and hence over M∗∗.
We have to check RV ⊂ M∗[Γ]. If y is a real in V , then y ∈ L[xi] for all large
enough i. Let αi ∈ C and let αj denote the least αk > αi in b. We have j(αj) = i

86



5.6 Sets that extend to a Class with unique Condensation

and so xj ∈ Mαj [Γ
p
j ] by condition 7. Hence xi ∈ M∗[Γ], because a nice name for

xi is not moved by jαi,ω1 . Since i can be arbitrary large, we have RV ∈M∗[Γ]. So
RV ∈M∗∗[Γ].
By the choice of p

M∗∗[Γ] |= L(R, (Γ)even) |= φ((Γ)even, ~α).

This is what we needed to show for the downwards direction of the absoluteness.
For the upwards direction of the absoluteness, one runs a similar argument: we
reverse the roles of V [G] and V , still the construction takes place in V . Note for
this we have to replace the sequence 〈yi; i < ω1〉 by a sequence of names for reals.
If ẏ ∈ V P is a name for a real, then a genericity iteration for ẏ still terminates after
countably many steps, see [NZ01, Lemma 3]. This is the key fact one additionally
needs in the converse direction. We replace Ḃ with an B ∈ V such that L(RV , B) |=
φ(B, z, ~α) and so we replace P-(baby) closure points for Ȧ with (baby)-closure points
(for an appropriate A) in the sense of Theorem 5.3.1. We shall give no more details.

5.6 Sets that extend to a Class with unique
Condensation

We mentioned that we cannot hope to generalize Theorem 5.5.3 to all proper forc-
ings. One problem is that the witnesses for Σ2

1 absoluteness are very general. If
we restrict the choice of witnesses, then we can generalize Theorem 5.5.3. Sets
that extend to a class with unique condensation, which we are about to define, are
well-suited witnesses as we will see in Theorem 5.6.25.
We will systematically study the sets that extend to classes with unique condensa-
tion. Besides constructing examples, we will also show that a set that extends to a
class with unique condensation, granted a large cardinal hypothesis, is constructible
from a real.

Definition 5.6.1 Let A ⊂ ω1 and let κ > ω1 be a cardinal. We will say A extends
to A∗ with unique condensation up to κ if A∗ ⊂ κ is a set such that

1. A∗ ∩ ω1 = A,

2. if λ > κ is a sufficiently large regular cardinal, then there is a club C(A∗, κ, λ)
of countable substructures X ≺ Hλ such that A∗ ∈ X and A∩ κ̄ = Ā∗, where
π is the inverse of the collapse of X and π(κ̄, Ā∗) = κ,A∗.

We will say A extends to a class A∗ with unique condensation if A∗ ⊂ OR is a class
such that

1. A∗ ∩ ω1 = A,

2. for all cardinals κ > ω1 A extends to A∗ ∩ κ with unique condensation.

In the above definition sufficiently large means that for every κ > ω1 as above
there is some λ0 such that for all λ ≥ λ0 the above property holds. If A extends
to a class A∗ with unique condensation, then ω1 \ A also extends to OR \ A∗ with
unique condensation. In Lemma 5.6.7 we will show that all A ⊂ ω1 that live in a
model of AD extend to a class with unique condensation. We now show that the
term “unique” is justified in the above definition.

Lemma 5.6.2 If A ⊂ ω1 extends to A∗ with unique condensation, then A∗ is
unique with this property.
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Proof. Suppose A∗ and A∗∗ are both classes to which A extends with unique con-
densation. It suffices to show that all ordinals β are in A∗ if and only if β ∈ A∗∗.
Fix an ordinal β. Let κ > ω1 be a regular cardinal > β and let X ∈ C(A∗, κ, λ) ∩
C(A∗∗, κ, λ) be a countable substructure such that A∗ ∩ κ,A∗∗ ∩ κ, β ∈ X; here
λ is sufficiently large for A∗ and A∗∗. Let π : M → X denote the inverse of the
collapsing map of X and let π(Ā∗, A∗∗, β̄, κ̄) = A∗ ∩ κ,A∗∗ ∩ κ, β, κ. Then by our
hypothesis

Ā∗ = A ∩ κ̄ = A∗∗.

So by elementarity of π

β ∈ A∗ ⇐⇒ β̄ ∈ Ā∗ ⇐⇒ β̄ ∈ A∗∗ ⇐⇒ β ∈ A∗∗.

We will call an A∗ as above a uniquely condensing extension of A.

Lemma 5.6.3 Let A,B ⊂ ω1.

1. If A extends to a class A∗ with unique condensation, then A contains a club
if ω1 ∈ A∗ and A is nonstationary if ω1 6∈ A∗.

2. If A is bounded in ω1, then A extends to a class with unique condensation.

3. If A and B both extend to a class with unique condensation, then A ⊕ B
extends to a class with unique condensation, too.

4. If A extends to a class with unique condensation and A′ is obtained from A
by replacing a countable initial segment of A with another countable set, then
A′ extends to a class with unique condensation.

Proof. For 1. we will show that if ω1 ∈ A∗, then A contains a club; the other
implication then follows from the previous lemma and the fact that ω1 \A extends
to OR \A∗ with unique condensation. The following set contains a club C := {α <
ω1 ; ∃X ∈ C(A∗, ω2, θ) : α = X ∩ ω1}, for some sufficiently large θ. By the unique
condensation of A∗ and ω1 ∈ A∗, we have that C ⊂ A.
The rest of the lemma is straightforward to verify: we list the appropriate witnesses
for each case: If A is bounded, then A∗ = A is a uniquely condensing extension of A.
If A and B both extend to a class with unique condensation, then there are classes
A∗, B∗ that witness this fact; it is not difficult to see that A∗ ⊕ B∗ witnesses that
A⊕B extends to a class with unique condensation. If A∗ is a uniquely condensing
extension of A and A′ = (A \ α) ∪ a for some a ⊂ α < ω1, then A′

∗ := (A∗ \ α) ∪ a
is a uniquely condensing extension of A′.

If A∗ is a uniquely condensing extension of some A, then A∗ satisfies even better
condensation properties, as the following lemma shows:

Lemma 5.6.4 Let κ > ω1 be a cardinal and let A extend to a class A∗ with
unique condensation. Let F : [Hθ]<ω → Hθ be such that the club CF := {X ∈
[Hθ]ω ; X is closed under F} ⊂ C(A∗, κ, θ). Let X ⊂ Hθ of cardinality < κ such
that X is closed under F and let π : M → X denote the inverse of the transitive
collapse of X. Then

A∗ ∩ κ̄ = A∗ ∩ κ,

where π(κ̄, A∗ ∩ κ) = κ,A∗ ∩ κ.
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Proof. Let θ′ > θ be a regular cardinal such that Hθ ∈ Hθ′ . Let Y be a countable
substructure of Hθ′ such that X,F ∈ Y . Then Z := X ∩Y is a countable substruc-
ture of Hθ and by elementarity of Y , Z is closed under F . So Z ∈ C(A∗, κ, θ). Let
σ : N → Y denote the inverse of the transitive collapse of Y , so

ρ := σ−1(π) : σ−1(M)→ Z

is the inverse of the transitive collapse of Z. Then

ρ−1(A∗ ∩ κ) = A ∩ ρ−1(κ).

By elementarity of σ we have that π also has the above property, i.e.

π−1(A∗ ∩ κ) = A ∩ π−1(κ).

Lemma 5.6.5 Let OR ⊂ M ⊂ N denote two transitive models of set theory such
that ωM1 = ωN1 . If A ⊂ ω1 extends to a class A∗ with unique condensation in M
and A∗ is definable in N , then A also extends to a class with unique condensation
in N .

Proof. We suppose that A∗ did not witness that A extends to class with unique
condensation in N and work towards a contradiction. So given an uncountable
N -cardinal λ > ω1, there are unboundedly many θ such that the second part of
Definition 5.6.1 fails for λ and θ in N ; i.e. the set of countable X ≺ HN

θ such that
A,A∗ ∩ λ ∈ X and π−1(A ∩ λ) 6= A ∩ π−1(λ) is stationary. On the other hand,
there is a club C(A∗, θ, λ) in M that witnesses that A∗ has unique condensation.
Say all countable structures closed under F : [Hθ]<ω → Hθ are in C(A∗, θ, λ) for
some F ∈M .
Pick X ≺ 〈HN

θ ;∈, HM
θ 〉 countable with A,A∗ ∩ λ, p ∈ X and π−1(A ∩ λ) 6= A ∩

π−1(λ), where π : 〈X̄;∈, H̄〉 → X denote the inverse of the transitive collapse of
X. Since ωM1 = ωN1 , we can assume without loss of generality that Y = X ∩HM

θ is
closed under F . Then H̄ is the transitive collapse of Y and π �H̄ is its uncollapsing
map. So

(π �H̄)−1(A ∩ λ) = π−1(A ∩ λ) 6= A ∩ π−1(λ) = A ∩ (π �H̄)−1(λ).

We now study the tree T of height ω searching for a countable substructure Z of
HM
θ , Z closed under F such that σ−1(A ∩ λ) 6= A ∩ σ−1(λ), where σ is the inverse

of the transitive collapse of Z. Then T ∈ M and Y witnesses that T is ill-founded
in N . By absoluteness of well-foundedness, we have a branch Z through T , Z ∈M .
But since Z is closed under F , we have Z ∈ C(A∗, θ, λ), a contradiction!

5.6.1 Constructing sets with uniquely condesing extensions

We now show that any A ⊂ ω1 coded by a universally Baire sets of reals extends to a
class with unique condensation. For this let us fix a recursive function {(·)i ; i < ω}
that maps a real y to a countable set of reals {yi ; i < ω}.

Lemma 5.6.6 Let A ⊂ ω1 be unbounded in ω1 and let B ⊂ ωω be a set of reals
with the following properties:

1. B is universally Baire;

2. if y ∈ B and {yi ; i < ω} ⊂WO, then {||yi|| ; i < ω} = A∩α for some α < ω1;
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3. for every β < ω1 there is some y ∈ B such that {yi ; i < ω} ⊂ WO and
{||yi|| ; i < ω} = A ∩ α for some β < α < ω1;

4. if y ∈ B and {yi ; i < ω} ⊂ WO and z ∈ ωω is such that {zi ; i < ω} ⊂ WO
and {||yi|| ; i < ω} end-extends {||zi|| ; i < ω}, then z ∈ B.

Then A extends to a class with unique condensation.

Proof. For every cardinal κ we fix trees Tκ, Sκ such that B = p[Tκ] and p[Tκ] =
ωω \p[Sκ] in all forcing extensions by forcings of cardinality ≤ κ. We can now define
the uniquely condensing extension A∗ of A. We set α ∈ A∗ if and only if

V Col(ω,α) |= ∃y ∈ p[Ťκ] : {yi ; i < ω} ⊂WO ∧ α̌ ∈ {||yi|| ; i < ω},

where κ is the least cardinal > α. Note that by the homogeneity of Col(ω, α) the
above statement is decided by 1Col(ω,α).
Claim 1. A∗ is definable from B and furthermore A∗ does not depend on the
choice of the family of trees (Tκ, Sκ)κ.
Proof of Claim 1. It will suffice to show that the set A∗ does not depend on the
choice of the trees Tκ, Sκ. If we can show this, then A∗ is definable from any class
of trees witnessing the universal Baireness of B.
We fix another pair of trees T ′κ, S

′
κ witnessing that B is κ-universally Baire. Assume

for some α < κ there is some real ẏ ∈ V Col(ω,α) such that ẏ ∈ p[Ťκ] and ẏ ∈
p[Š′κ], then the tree U searching for a branch through Tκ and S′κ is ill-founded in
V Col(ω,α); note that U is without loss of generality in V . By the absoluteness of
well-foundedness, this tree is ill-founded in V . So there is some z ∈ V such that
z ∈ p[Tκ] ∩ p[S′κ]. This contradicts the fact that in V

p[Tκ] = ωω \ p[Sκ] = ωω \ p[S′κ].

(Claim 1)

We now have to show that A∗ ∩ ω1 = A. By the choice of B it is not difficult to
see that A ⊂ A∗. So let α ∈ A∗ ∩ ω1, we have to show α ∈ A. Let ẏ ∈ V Col(ω,α) be
such that

V Col(ω,α) |= ẏ ∈ p[Ťκ] ∧ {ẏi ; i < ω} ⊂WO ∧ α̌ ∈ {||ẏi|| ; i < ω}.

Let λ be regular and large enough such that ẏ, Tω1 , Sω1 ,R ∈ Hλ and let X ≺ Hλ

be countable such that ẏ, Tω1 , Sω1 ∈ X and α < X ∩ ω1. Let π : H̄ → X be the
inverse of the transitive collapse of X and let π(ȳ, T̄ , S̄) = ẏ, Tω1 , Sω1 . Let g ∈ V ,
g ⊂ Col(ω, α) be an arbitrary generic over H̄. Then ȳg ∈ p[T̄ ], so for some f with
domain ω we have (ȳg, f) ∈ [T̄ ]. Hence back in V we have (ȳg,∪{π(f �n ; n ∈ ω}) ∈
[Tκ], so ȳg ∈ B. This implies that α ∈ A.
We have to show the second item in Definition 5.6.1; the argument for this will be
similar to the argument we have just given for A∗ ∩ω1 = A. So let us fix a cardinal
κ > ω1 and let λ be regular and large enough such that B,A∗ ∩ κ, Tκ, Sκ ∈ Hλ.
Pick X ≺ Hλ such that A∗ ∩ κ,B ∈ X and let π : H̄ → X denote the inverse of the
transitive collapse of X. Since B ∈ X, there are two trees T, S ∈ X that witness
that B is κ-universally Baire. Let π(κ̄, Ā∗, T̄ , S̄) = κ,A∗ ∩ κ, T, S. We have to show
A ∩ κ̄ = Ā∗. Fix α ∈ Ā∗. Then by elementarity there is some ẏ ∈ H̄Col(ω,α) such
that

H̄Col(ω,α) |= ẏ ∈ p[ ˇ̄T ] ∧ {ẏi ; i < ω} ⊂WO ∧ α̌ ∈ {||ẏi|| ; i < ω}.

Let g ∈ V , g ⊂ Col(ω, α) be an arbitrary H̄ generic. Then α ∈ {||ẏi|| ; i < ω} and
ẏg ∈ p[T̄ ]. By the same reasoning as before ẏg ∈ p[T ] in V . Hence ẏg ∈ B and
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α ∈ A ∩ κ̄.
Let us assume the other inclusion fails and work towards a contradiction. Let α < κ̄
be minimal such that α ∈ A but α 6∈ Ā∗. Hence there is a condition p ∈ Col(ω, α)
such that

H̄Col(ω,α) |= p  ∀y : {yi ; i < ω} ⊂WO ∧ α̌ ∈ {||yi|| ; i < ω} =⇒ y ∈ p[ ˇ̄S].

Let p ∈ g ∈ V , g ⊂ Col(ω, α) generic over H̄. Note that H̄Col(ω,α) can calculate
A∩α = Ā∗∩α. In H̄Col(ω,α) we find a real y such that {||yi|| ; i < ω} = A∩ (α+1).
Since p ∈ g, we have that y ∈ p[S̄]. By the same argument as before y ∈ p[S]
and hence y 6∈ B. Hence by the properties of B there is no z ∈ B such that
{||yi|| ; i < ω} is end-extended by {||zi|| ; i < ω}. Hence α 6∈ A; a contradiction to
our choice of α. This finishes the proof of the lemma.

As a consequence to the previous lemma we can show that subsets of ω1 living
in determinacy models extend to uniquely condensing classes.

Lemma 5.6.7 Let M be a transitive class sized model such that R ⊂ M |=
ZF + AD. Let A ∈ M be a subset of ωM1 = ωV1 . Then A extends to a class with
unique condensation.

Proof. Let A ∈M |= AD, A ⊂ ω1. We aim to show that there is a universally Baire
B that satisfies the properties in the statement of the previous lemma. For this we
study the following well-known Solovay Game

G(A) :
I x0 x1

II y0 y1
. . .

Here player I is obliged to play some x = 〈xi; i < ω〉 ∈WO, else II wins, and Player
II has to respond by playing a real y = 〈yi; i < ω〉 such that y codes (in some fixed
recursive way) a countable set {yi ; i ∈ ω} ⊂WO, else I wins. Player II wins G(A)
if {||yi|| ; i < ω} = A ∩ α for some α > ||x||.
We show that player I cannot have a winning strategy: let σ be a strategy (not
necessarily winning) for I, then the set {σ∗y ; y ∈ ωω} is a Σ1

1 subset of WO. Hence
by boundedness there is a countable ordinal α such that α > ||σ ∗ y|| for all y ∈ ωω.
So player II can play a y such that {||yi||; i < ω} = A ∩ α and win against the
strategy σ, hence σ is not winning.
By the determinacy hypothesis a winning strategy τ for player II exists. With the
help of τ we will define B. Set x ∈ B if and only if

φ0(x) :≡ {xi ; i < ω} ⊂WO ∧
∃y(y ∈WO ∧ {||(y ∗ τ)i|| ; i < ω} end-extends {||xi|| ; i < ω}).

A straightforward calculation shows that φ0 is Σ1
2 in a code for τ . We promise that

the next claim shows that we can also define B as follows: x ∈ B if and only if

φ1(x) :≡ {xi ; i < ω} ⊂WO ∧ ∀y[(y ∈WO ∧ ||y|| > sup{||xi|| ; i < ω}) =⇒
{||(y ∗ τ)i|| ; i < ω} end-extends {||xi|| ; i < ω}].

Another straightforward calculation shows that φ1 is Π1
2 in a code for τ . The

following statement is true in V by the fact that τ is a winning strategy for player
II in G(A):

∀y, z[y, z ∈WO =⇒ ({||(y ∗ τ)i|| ; i < ω} end-extends {||(z ∗ τ)i|| ; i < ω} ∨
{||(z ∗ τ)i|| ; i < ω} end-extends {||(y ∗ τ)i|| ; i < ω})].
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It is not difficult to see that that ψ is a Π1
2 statement in a code for τ . Hence by

Shoenfield Absoluteness ψ holds in all forcing extensions of V .
Claim 1. If a transitive model of set theory containing τ satisfies ψ, then

∀x : φ0(x) ⇐⇒ φ1(x).

Proof of Claim 1. Clearly φ1(x) implies φ0(x). So suppose φ0(x) and let y ∈ WO
be such that Let y ∈ WO be such that {||(y ∗ τ)i|| ; i < ω} end-extends {||xi|| ; i <
ω}. Now let z ∈ WO be arbitrary such that ||z|| > sup{||xi|| ; i < ω}. Since
ψ holds, we have that {||(z ∗ τ)i|| ; i < ω} end-extends {||(y ∗ τ)i|| ; i < ω} or
{||(y ∗ τ)i|| ; i < ω} end-extends {||(z ∗ τ)i|| ; i < ω}. In either case {||(z ∗ τ)i|| ; i <
ω} end-extends {||xi|| ; i < ω}. (Claim 1)

So B is (in a weak sense) provably ∆1
2, hence by Lemma 1.8.2 B is universally

Baire.
We have to check that B satisfies the properties stated in the previous lemma;
for all properties not obvious this is verified by using the fact that τ is a winning
strategy for player I. Hence by the previous lemma A extends to a class with unique
condensation.

Note that if A ⊂ ω1 is in a model of AD, then A is constructible from a real; in
fact A ∈ L[σ] where σ is a winning strategy for player II in G(A). In this sense, the
set A trivializes. Nevertheless non-trivial examples of sets with uniquely condensing
extensions exist if the universe has a uniform shape:

Example 5.6.8 Suppose sharps for all sets exist. Let V = L], the smallest inner
model that is closed under the ] operation. Using the Gödel pairing function and
the well order < of L], we can uniformly code initial segments of L] in the following
way: if α < β are limit ordinals, then the code Aα for L]α is a subset of α and the
code Aβ for L]β end-extends Aα, i.e. Aβ ∩ α = Aα. By A∗ we denote the class
coding L]. Set A = Aω1 . We claim that A∗ is a uniquely condensing extension of
A. For θ > κ both regular uncountable cardinals consider a countable substructure
X ≺ L]||θ such that Aκ = A∗ ∩ κ ∈ X. Let π : M → X denote the transitive
collapse of M and let π(κ̄, Ā) = κ,Aκ. By elementarity of π

M |= V = L],

and for all x ∈M the set (x])M is embedded into (π(x))], hence (x])M = x]. Thus
M is an initial segment of L]. So, since we defined the sets of the form Aα uniformly,
we have Ā = Aκ̄.
We need to show that A is not constructible from a real. Suppose otherwise that
A ∈ L[z] for some real z ∈ V = L]. Then z] exists and is clearly not in L[z]. But
z] ∈ Lω1 [A] ⊂ L[z], a contradiction!

Note that given any mouse operator J , the same construction works for LJ , the
smallest inner model that is closed under J .

5.6.2 Sets with uniquely condensing extensions, precipitous ideals
and CC∗

We analyse how sets with uniquely condesing extensions behave in the presence of
ideals and the combinatorial principle CC∗.
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Lemma 5.6.9 Let I be a precipitous ideal on ω1 with the following property: if
G ⊂ P := P(ω1) \ I is generic, then j(ωV1 ) = ωV2 , where j is the generic ultrapower
induced by G. Let A be a set that extends to a class A∗ with unique condensation.
If j is a generic ultrapower induced by some generic G ⊂ P(ω1) \ I, then

j(A) = A∗ ∩ ω2 = A ∪ Ã,

where Ã is the set of ω1 ≤ α < ω2 such that there is a club C and a canonical
function fα such that fα(β) ∈ A for every β ∈ C, i.e. the Tilde operation applied
to A.

Proof. Fix some generic G and j as above. We first show j(A) ⊂ A∗ ∩ ω2. Let
α ∈ j(A). So there is some I-positive S ∈ G and some canonical function fα such
that fα(β) ∈ A for all β ∈ S. The set

C := {β < ω1 ; β = X ∩ ω1 for some X ∈ C(A∗, ω2, θ) with α, fα ∈ X}

is club, where θ is sufficiently large. Since S is stationary we find some β ∈ S∩C, say
X ≺ Hθ witnesses β ∈ C. Let π : M → X be the inverse of the transitive collapse
of X and let π(ᾱ, A∗ ∩ ω2) = α,A∗ ∩ ω2. Then fα(β) = otp(X ∩ α) = ᾱ ∈ A and
since A extends we have that ᾱ ∈ A∗ ∩ ω2. Applying π yields: α ∈ A∗ ∩ ω2.
We show A∗ ∩ ω2 ⊂ A ∪ Ã. Let α ∈ A∗ ∩ ω2, α ≥ ω1. Fix a surjection g : ω1 → α
and f : ω1 → ω1 let be the canonical function induced by g. Consider the club

C := {β < ω1 ; β = X ∩ ω1 for some X ∈ C(A∗, ω2, θ) with α, g, f ∈ X}

for some sufficiently large θ. Let β ∈ C and X ≺ Hθ be a witnesses for this, let
π : M → X be the inverse of the transitive collapse of X and let π(ᾱ) = α. Since
α ∈ A∗ ∩ ω2 we have ᾱ = otp(X ∩ α) = otp(g“β) = f(β) ∈ A. Hence C, f witness
that α ∈ Ã.
Trivially A ∪ Ã ⊂ j(A). This finishes the proof.

We conjecture that the existence of a strong enough ideal on ω1 implies that every
set with a uniquely condensing extension is constructible from a real.
Using the combinatorial principle CC∗ we can show that only countably many reals
can be constructed from a set with a uniquely condensing extension.

Lemma 5.6.10 If CC∗ holds and A extends to a class A∗ with unique condensa-
tion, then L[A] only contains countably many reals.

Proof. Suppose otherwise and work towards a contradiction. Then L[A] contains
uncountably many reals and any real of L[A] is in some Lα[A] for a countable
α. Let f : ω1 → ω1 be such that f(α) is the least ordinal such that the <L[A]-
least real a 6∈ Lα[A] is in Lf(α)[A]. Clearly f ∈ L[A]. Let C = C(A∗, ω2, θ)
for some sufficiently large θ and suppose there is a function F : [Hθ]<ω → Hθ

such that C contains exactly the X ≺ Hθ closed under F . Let X ≺ Hθ+ be
countable such that F,A,A∗ ∩ ω2 ∈ X. Let α = X ∩ ω1 and let π : M → X be
the inverse of the transitive collapse of X. In general we can not compute f(α) in
M , we apply CC∗ f(α) + 1-many times to find a countable Y ⊃ X, Y ∩ ω1 = α,
Y ≺ Hθ+ such that otp(Y ∩ ω2) > f(α). Let σ : N → Y denote the inverse of the
transitive collapse of Y and note that by elementarity Y ∩Hθ is closed under F . Let
σ(Ā, A∗ ∩ ω2, β) = A,A∗∩ω2, ω2. Then, since Y ∩Hθ ∈ C, we have A∗ ∩ ω2 = A∩β
and β > f(α). Hence Lβ [A] ∈ N and we can compute f(α) in N . By F ∈ Y we have
that Hθ ∈ Y . In Y we find a countable Y ′′ ≺ Hθ that contains A,A∗∩ω2, f(α) and
is closed under F , so Y ′′ ∈ C. Let π(Y ′) = Y ′′ and let ρ : N ′ → Y ′ be the inverse of
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the transitive collapse of Y ′. Note that N ′ ∈ N and crit(ρ) < α. Then in N the set
A∗ ∩ ω2 witnesses that Ā has a countable extension that condenses uniquely up to β.
Let ρ(A∗ ∩ ω2, β̄) = A∗ ∩ ω2, β. Hence A∗ ∩ ω2 = Ā∩ β̄ and so A∗ ∩ ω2 = A∩ β̄. In
N ′ compute Lβ̄ [A∗ ∩ ω2] = Lβ̄ [A]. By elementarity f(α) ∈ Lβ̄ [A], a contradiction
to the fact that β̄ < α.

5.6.3 Sets with uniquely condensing extensions and
term-capturing

We have seen: if an ω1-dense ideal on ω1 exists, then every set with a uniquely
condensing extension is constructible from a real. If V contains ω-many Woodin
cardinals and a measurable above and satisfies an iterability hypothesis, we can
also show that sets with uniquely condensing extensions are constructible from a
real. The key idea is the following: if A ⊂ ω1 is in a model of determinacy, then
it is constructible from a real. So we aim to show L(R) = L(R, A) |= AD, this is
Theorem 5.6.14. This is of course similar to a proof of ADL(R) from ω-many Woodin
cardinals. There are various ways to show determinacy from large cardinals. We
will use the technique of capturing sets of reals over sufficiently iterable premice. In
contrast to the rest of this chapter, we will work with coarse premice in the sense
of Martin and Steel [MS94], since we will apply [Nee95].

Definition 5.6.11 Let B ⊂ ωω. Let M be a premouse with an iteration strategy
Σ that contains ω-many Woodin cardinals (δi)i∈ω. Let τ be a Col(ω, δ0) term in
M. We say τ captures B with respect to Σ if, and only if, for all countable iteration
maps i : M→M∗, i ∈ V , obtained by using Σ and for all g ⊂ Col(ω, i(δ0)), g ∈ V ,

i(τ)g = B ∩M∗[g].

Definition 5.6.12 Let λ be an infinite ordinal. Let G ⊂ Col(ω,< λ) be M-generic
for some suitable M. Then we set

R∗G =
⋃
{R ∩M[G ∩ Col(ω,< α)] ; α < λ}.

If M is sufficiently iterable and contains ω-many Woodin cardinals, it is possible
to use M to verify parts of the theory of L(RV ); for this recall the following result:

Theorem 5.6.13 ([Ste, 7.15]) Suppose that M |= λ is a limit of Woodin cardinals,
where λ is countable in V , and that Σ is an ω1 + 1-iteration strategy for M. Let H
be Col(ω,R)-generic over V ; then in V [H] there is an iteration map i : M → M∗

coming from an iteration tree all of whose proper initial segments are played by Σ,
and a G which is Col(ω,< i(λ))-generic over M∗, such that

R∗G = RV .

Moreover, given a g ⊂ Col(ω, α) for an α < λ, we can construct i, G such that
crit(i) > α++M∗ for any given α < λ and G is generic over M∗[g]. �

First note that [Ste, 7.15] deals with fine-structural premice, nevertheless the
proof of [Ste, 7.15] works in the coarse case, too. As we stated earlier the extender
algebra, which is the main tool in the proof of [Ste, 7.15], can also be used to
construct genericity iterations with coarse premice. Also note that the moreover
part of the above theorem is only implicit in [Ste]; it follows by a minor modification
of the proof using [Ste, 7.16]. We apply the previous theorem to obtain:
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5.6 Sets that extend to a Class with unique Condensation

Theorem 5.6.14 Suppose

V |= λ′ is the limit of ω-many Woodin cardinals and κ′ > λ′ is measurable

Suppose A extends to A∗ ⊂ λ′ with unique condensation up to λ′. Let θ > θ′ >
(2κ
′
)+ be large enough such that

1. the club C = C(A∗, λ′, θ′) of countable substructures of Vθ′ witnesses that A
extends to A∗ with unique condensation,

2. θ is large enough so that 〈Vθ;∈, λ′〉 is a premouse in the sense of [MS94],

3. if X ≺ Vθ, A∗, λ, C ∈ X is a countable elementary substructure with π : M→
X the inverse of the transitive collapse, then

a) M has a ω1 + 1-iteration strategy Σ, and
b) (Re-embedding) if i : M → M∗ is a countable iteration map obtained

by using Σ, then there is an elementary πM∗ : M∗ → Vθ satisfying
πM∗ ◦ i = π.

Then

1. L(R, A) |= AD,

2. A is constructible from a real, and

3. L(R, A) = L(R).

Proof. We first discuss the conclusions: Clearly 2. implies 3. If A is contained in a
model of AD, then it is a well-known fact that the determinacy of the Solovay-Game
G(A) implies that A is constructible from a real that codes a winning strategy for
player II in G(A). So it suffices to show 1.
For this assume L(R, A) |= ¬AD, hence there is a set of reals B that is not deter-
mined. By minimizing the ordinal parameters in the definition of B we can assume
without loss of generality that B is definable without ordinal parameters in L(R, A).
Let z be the only real parameter used in the definition of B. If we can show that
B is captured by a term over some countable sufficiently iterable model then by
[Nee95, Lemma 1.7] the set is determined, contradicting our assumption. So we
aim to show that B is captured.
Assume x ∈ B if and only if

L(R, A) |= φ(x, z,A).

Pick X ≺ Vθ with z, C,A∗, λ ∈ X. Let π : M → X denote the inverse of the
transitive collapse and let π(Ā, λ, κ) = A∗, λ′, κ′ and let (δi)i∈ω denote the countably
many Woodin cardinals in M. In M we define a Col(ω, δ0)-term τ as follows: if
g ⊂ Col(ω, δ0) is generic over M, then x ∈ τg if and only if

ψ(x, z,A) ≡: 1Col(ω,<λ)  Jκ̌(R∗
Ġ
, ˇ̄A) |= φ(x̌, ž, Ǎ),

here Ġ is a canonical name for a Col(ω,< λ) generic and κ is the measurable
> λ in M. We need to verify that τ captures B. Assume i : M → M∗ is a
countable iteration according to Σ and let g ⊂ Col(ω, i(δ0)) be generic over M∗.
Let x ∈ R ∩M∗[g]. We have to show

(L(RV , A) |= φ(x, z,A)) ⇐⇒ (M∗[g] |= ψ(x, z,A)).
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By the previous theorem, we find an iteration map j : M∗ →M∗∗, j ∈ V Col(ω,RV ),
with crit(j) > i(δ0)++M∗ coming from an iteration tree T of length ω1 +1 on M∗ all
of whose proper initial segments are played by Σ, and a G which is Col(ω,< j(i(λ)))-
generic over M∗∗[g], such that

R∗G = RV .

For this note, that since crit(j) is large enough, g is a M∗∗-generic; moreover j lifts
to

ĵ : M∗[g]→M∗∗[g],

where ĵ(σg) = j(σ)g. In an abuse of notation we shall write j for ĵ. By our
re-embedding hypothesis, we have for α < ω1 an elementary embedding

πα :MTα → Vθ,

such that πα(jT0,α(i(Ā))) = A∗. The model M∗∗ is the direct limit of the models
MTα , and hence there is a map

π∗∗ : M∗∗ → Vθ.

Since for every γ < ωV1 a real xγ ∈WO with ||x|| = γ is in M∗∗[g,G ∩Col(ω,< α)]
for some α < j(i(λ)), we have that j(i(λ)) ≥ ωV1 and by a standard homogeneity
argument and the symmetry of the name R∗

Ġ
we have R∩L(R∗G, A) = R∗G and hence

j(i(λ)) ≤ ωV1 . So j(i(λ)) = ωV1 . We now apply that A extends to A∗ with unique
condensation: for all α < ω1 we have that ran(πα) ∩ Vθ′ ∈ C. Hence

π−1
α (A∗) = A ∩ π−1

α (λ′).

From sup{π−1
α (λ′) ; α < ω1} = j(i(λ)) = ωV1 it follows (π∗∗)−1(A∗) = A. We can

now calculate
Jj(i(κ))(R∗G, j(i(Ā)))M∗∗[G] = Jj(i(κ))(RV , A).

Note that π∗∗ ◦ j ◦ i(κ) = π(κ) = κ′. By elementarity of j and the fact that we can
iterate the measure on j(i(κ)) out of the universe

M∗[g] |= ψ(x, z,A)
⇐⇒ Jj(i(κ))(R∗G, j(i(Ā))) |= φ(x, z,A)

⇐⇒ Jj(i(κ))(RV , A) |= φ(x, z,A)

⇐⇒ L(RV , A) |= φ(x, z,A).

This shows that B is captured by M. This is what we needed to show.

5.6.4 Sets with uniquely condensing extensions in forcing
extensions

We work with fine-structural premice again. Given a forcing name ẋ ∈ V P for a
real and granted that M ]

mw exists and is sufficiently iterable, one can construct an
iteration tree T of length < Card(P)+ + 1 such that for every G ⊂ P generic over
V the real ẋG is generic over T ’s last model, see Theorem 5.5.1. In general such
an iteration is uncountable. Neeman and Zapletal showed that, given one generic
G ⊂ P for a reasonable forcing P, one finds α < ω1 such that ẋG is generic overMTα ,
see [NZ01, Lemma 3]. We generalize this to names for subset of ω1 with uniquely
condensing extensions; before we can state the lemma we need a definition:
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Definition 5.6.15 Let κ be an ordinal and let M = 〈Jβ [ ~E];∈, ~E,Eβ〉 be a count-
able sound premouse that has a (ω, κ + 1)-iteration strategy Σ. We will say Σ
condenses to fragments if it satisfies the following property: if λ is a regular car-
dinal such that M,Σ ∈ Hλ, and if X ≺ Hλ is a countable with uncollapsing map
π : H̄ → X and π(Σ̄) = Σ, then Σ̄ = Σ�dom(Σ̄).

Here we do not want to construct iteration strategies that condense to fragments;
nevertheless let us note that there are (at least) two ways to see that they exist: in
the large cardinal area below one Woodin cardinal one is always in the situation that
there is at most one well-founded branch through an iteration tree, hence there is
only at most one (highly absolute) iteration strategy, this is one of the main results
of [MS94]; for a fine-structural version see [Ste, Theorem 6.10]. Beyond that one uses
Q-structures in the construction of iteration strategies. Under the assumption that
the ultimate projectum drops below the least Woodin cardinal of a tame premouse
M, there is a unique branch b through an iteration tree on M such that b comes
with a Q-structure (if there is any). Again this gives rise to an absolute iteration
strategy. For more details on Q-structures and iteration trees see, for example, the
introduction of [BS09].

Lemma 5.6.16 Let M = 〈Jβ [ ~E];∈, ~E,Eβ〉 be a sound premouse that is active
and has a (ω, κ+ + 1)-iteration strategy Σ such that ~E witnesses the Woodiness and
measurability of δ < β. Let P be a forcing of size ≤ κ. Let Ȧ ∈ V P be a name such
that

1P  Ȧ ⊂ ω̌1 extends to Ȧ∗ with unique condensation;

here we see Ȧ∗ as a P-name for a class definable from some set in V P.
It is possible to construct an iteration tree T of height κ+ + 1 with the following
properties:

1. There are arbitrary large ordinals β < κ+ such that for any G ⊂ P that is
generic over V , the set Ȧ∗G∩ jT0,β(δ) is jT0,β(Wδ)-generic over MTβ , where Wδ

is the extender algebra with δ many generators calculated in M. We call such
a β a baby closure point.

2. If P is a reasonable forcing and additionally Σ condenses to fragments, then in
V P there are club many weak closure points β ∈ [0, ω1]T ; i.e. for any G ⊂ P
that is generic over V there are club many β such that set ȦG ∩ jT0,β(δ) is
jT0,β(Wδ)-generic over MTβ .

3. Especially: if P is a reasonable forcing and additionally Σ condenses to frag-
ments, then for any G ⊂ P that is generic over V , the set ȦG ⊂ ω1 is
jT0,ω1

(Wδ)-generic over MTω1
, where Wδ is the extender algebra with δ many

generators calculated in M. So ω1 is a baby closure point.

Note that Theorem 5.5.1 is a special case of conclusion 1. above: if Ȧ ⊂ ω, then
Ȧ extends to Ȧ with unique condensation.
Before we begin the proof of the above lemma, we need a suitable notation. Fol-
lowing Neeman and Zapletal, we extend our notation for the axioms that arise in
the construction of the extender-algebra.

Definition 5.6.17 Let M = 〈Jβ [ ~E];∈, ~E,Eβ〉 be a premouse such that M |= δ

is Woodin. Let ~φ = 〈φξ; ξ < κ〉 be a sequence of Lδ,δ,0-sentences and let E = Eρ
be a extender on ~E. Let λ such that crit(E) = κ ≤ λ < ρ, and suppose ν(E) is a
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M-cardinal such that iE(〈φξ; ξ < κ〉)�λ ∈ JMν(E). We set

aκ,λ,ρ,~φ :≡
∨
α<κ

φα ↔
∨
α<λ

iE(〈φξ; ξ < κ〉)α.

Now we are ready to prove the lemma.

Proof. We construct T using the strategy we have used many times: iterate up to
some closure point and then hit the measure (or its image respectively) witnessing
the measurability of δ. This time the tree will be of height κ+ + 1. Let us fix P not
necessarily reasonable. Let U be the least extender on the extender sequence of M
that witnesses that δ is measurable, and let ζ0 be the ordinal where U is indexed.
First we define what a baby closure point is in the context of this proof: We will
call an α ≤ κ+ a baby closure point if for all p ∈ P

p  Ȧ∗ ∩ jT0,α(δ) |= jT0,α(T ( ~E)).

Note the following subtlety: we are talking about Ȧ∗ above, the uniquely condensing
extension of Ȧ; this allows us to discuss the case α > ω1 in contrast to the previous
proofs. Now α < κ+ is a closure point for if for all p ∈ P and all ζ < iT0,α(ζ0)

p  F̌ζ does not induce an axiom false of Ȧ∗ ∩ jT0,α(ζ0),

where ~F is MTα ’s extender sequence. Clearly every closure point is a baby closure
point. We will show something a little stronger than what we state in conclusion
1.; we actually show that there is a closure point.
We construct an iteration tree T of length κ+ + 1 on MT0 = M. We will refer to
this construction as a genericity iteration for Ȧ∗. We define the iteration as follows:
in the limit case we use Σ to continue the iteration. In the successor case there are
subcases: if α < ω1 is a closure point, then we use jT0,α(U) to continue the iteration.

If α is not a closure point, then there is a least “bad” extender EM
T
α

ρ on the extender
sequence of MTα and some pα ∈ P such that

pα  Ȧ
∗ ∩ jT0,α(ζ0) 6|= a,

where a is some axiom in MTα of the form aκα,λα,ρ,~φ for some (λα, ~φ) ∈ MTα .
Furthermore we pick pα so that it decides the value of a and minimizes λα, i.e.
there is some ~φα ∈MTα such that

pα  Ȧ
∗ ∩ jT0,α(ζ0) 6|= aκα,λα,ρ,~φα ,

and λα is minimal among all λ with

pα  Ȧ
∗ ∩ jT0,α(ζ0) 6|= aκα,λ,ρ,~φ′α

for some φ′α. We then use EM
T
α

ρ to continue the iteration. This finishes the con-
struction of T . The arguments we have given before make sure T is a normal tree.
Let b = [0, κ+]T and let j = jT0,κ+ : M → MTκ . Note that b is club in κ+. We
set M∗ = MTκ . We aim to show the first part of the theorem, i.e. that there is a
closure point < κ+.
For every α ∈ b let α+

b be the least ordinal such that αT α+
b +1. So there is an exten-

der ET
α+
b

which we used to continue the iteration at stage α+
b ; let κα+

b
= crit(ET

α+
b

).

Since MTα and MT
α+
b +1

agree on subsets of κα+
b

, it follows that ~φα
+
b ∈MTα . Let us

denote ~φα
+
b by ~ψα.
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Let S1 = b ∩ Lim. For α ∈ S1 the model MTα is a direct limit and contains ~ψα,
so there is some h(α) < α such that ~ψα ∈ ran(jTh(α),α). So Fodor’s Theorem yields
a stationary S2 ⊂ S1 such that h(α) = β for all α ∈ S2. Since MTβ has at most
cardinality κ, further thinning of S2 produces a stationary S3 ⊂ S2 and a fixed
~ψ ∈ MTβ such that ~ψα = jTβ,α(~ψ) for all α ∈ S3. Since P has cardinality ≤ κ, we
can also assume that there is a fixed p ∈ P such that pα+

b
= p for all α ∈ S3.

Let α be any element of S3 and set γ = α+
b (hence γ + 1 ∈ b). So

p  Ȧ∗ ∩ jT0,γ(ζ0) 6|= aκ,λγ ,ρ,jTβ,α(~ψ),

where ρ satisfies our minimality assumption and κγ = crit(ETγ ) and aκ,λγ ,ρ,jTβ,α(~ψ)

is calculated in MTγ . Hence

p  Ȧ∗ ∩ jT0,γ(ζ0) 6|=
∨
ξ<κγ

jTβ,α(~ψ)ξ and Ȧ∗ ∩ jT0,γ(ζ0) |=
∨

ξ<ν(ETγ )

i
MTγ
ETγ

(jTβ,α(~ψ))ξ.

Note that i
MTγ
ETγ

(jTβ,α(~ψ)) = i
MTα
ETγ

(jTβ,α(~ψ)), so we will drop the superscript. Since

iETγ (jTβ,α(~ψ)) is jTα,γ+1(jTβ,α(~ψ)), we can rewrite the above statement as

(∗) p  Ȧ∗ ∩ jT0,γ(ζ0) 6|=
∨
ξ<κγ

jTβ,α(~ψ)ξ and Ȧ∗ ∩ jT0,γ(ζ0) |=
∨
ξ<ν(ETγ ) j

T
β,γ+1(~ψ)ξ.

Let α′ ∈ S3 such that α′ > γ+1. Then crit(jTγ+1,α′) ≥ ν(ETγ ) and so for ξ < ν(ETγ ),
jTβ,γ+1(~ψ)ξ is not moved by jTγ+1,α′ . Thus

p 
∨

ξ<ν(ETγ )

jTβ,α′(~ψ).

But then clearly
p 

∨
ξ<κ′

jTβ,α′(~ψ),

where κ′ = crit(ET
α′+b

). This clearly contradicts (∗). Hence we have shown that

there is a closure point < κ+; in fact we did not need that Ȧ∗ is (a name for) a
uniquely condensing extension but our argument works for any subset of κ+. Also
it is obvious that there are arbitrarily large closure points < κ+, since we could run
the same argument starting with S1 \ η instead of S1 for an arbitrary η < κ+.
We now additionally assume that P is reasonable and that Σ condenses to fragments.
We show the second part of the theorem; the third easily follows from the second.
We fix a countable ordinal η and some G ⊂ P generic over V . We aim to find a
weak closure point, i.e. some β > η, β < ω1 such that for some q ∈ G

q  Ȧ∗ ∩ jT0,β(δ) |= jT0,β(T ( ~E)).

In V pick a countable X ≺ Hλ for some large enough regular λ such that ω1∩X > η
and Ȧ, Ȧ∗ ∩ κ̌+,Σ, T ,P ∈ X. Let π : H → X denote the inverse of the transitive
collapse of X and let α = ω1 ∩X. By the definition of reasonable forcings we can
assume without loss of generality that G ∩X is P-generic over X and X[G ∩X] ≺
Hλ[G]; this implies that π lifts, i.e.

π̂ : H[Ḡ]→ Hλ[G],

τ Ḡ 7→ π(τ)G
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is an elementary embedding, where Ḡ := π−1“G. We write π again for π̂. Let
π(κ̄, Ā, Ā∗, Σ̄, T̄ ) = κ, ȦG, (̇A∗∩ κ̌+)G,Σ, T . Since (Ȧ∗)G is the uniquely condensing
extension of ȦG we have ȦG ∩ κ̄ = Ā∗. By the first part of the theorem there is
an uncountable closure point β ∈ κ+ ∩ X. Let π(β̄) = β, then by elementarity
ȦG ∩ jT̄

0,β̄
(δ) = Ā∗ ∩ jT̄

0,β̄
(δ) is jT̄

0,β̄
(Wδ)-generic over MT̄

β̄
. Also by elementarity the

tree T̄ in H is built using the same rules as in the construction of T , but at limit
stages one uses the strategy Σ̄ to pick branches. By our hypothesis we have that Σ̄
is a fragment of Σ, hence we know that the branches picked by Σ̄ in H̄ are the same
branches that Σ picked in V . This implies that the iteration tree T̄ is an initial
segment of T . So in V [G] we have

V [G] |= ȦG ∩ jT0,β̄(δ) |= jT0,β̄(T ( ~E)).

So there is a condition q ∈ G that forces that β̄ is a weak closue point.

Note that if P is reasonable but not c.c.c. we can not hope to show that in the
previous tree construction there are countable stages α such that

1P  j
T
0,α(δ) ∩ Ȧ |= jT0,α(T ( ~E)).

To see this pick a maximal antichain A ⊂ P of cardinality ω1 (we can do so if we
without loss of generality suppose that P is a Boolean algebra). Assume CH and
let f : A → P(ω) be a surjection. Choose a name Ȧ such that a  Ȧ = ˇf(a) for
every a ∈ A. Then clearly Ȧ is a name for a bounded subset of ω1 and hence Ȧ
extends to class with unique condensation. Let T be the iteration tree given by the
previous lemma. Now assume towards a contradiction that for a countable α

1P  j
T
0,α(δ) ∩ Ȧ |= jT0,α(T ( ~E)).

Let a be such that f(a) codes an ordertype >MTα ∩ OR. Then

a  ˇf(a) is generic over MTα ,

a contradiction.

Remark 5.6.18 Lemma 5.6.16 can be easily seen to generalize. Using the notation
of Lemma 5.6.16 : if P is reasonable and Σ condenses to fragments and we have
an arbitrary iteration tree T on M of height < ω2, then one can continue T by
performing a genericity iteration for A∗ as in the proof of Lemma 5.6.16 of length
κ+ + 1. Note that in general one will have to apply extenders to models of T in
this process. By the same reflection argument this genericity iteration terminates
after < ω2-many steps. So we reach a closure point in the sense of Lemma 5.6.16
at some stage < ω2.

5.6.5 Applications of sets with uniquely condensing extensions

The following lemma is part of the folklore surrounding measurable cardinals and
not too difficult to prove. A detailed proof can be found in [Lar04, 1.1.20, 1.1.19]

Lemma 5.6.19 (folklore) Let κ be measurable and assume θ is a regular cardinal
such that a normal measure µ on κ is in Hθ. Let Z ≺ M be a substructure such
that µ ∈ Z and Z ∩ P(κ) has cardinality < κ and suppose Card(Z) < θ. Then for
all γ < κ

1. Z[γ] = {f(γ) ; f ∈ Z, f : κ→M} ≺M ,
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2.
⋂
{A ; A ∈ Z ∩ µ} 6= ∅,

3. if γ ∈ ∩{A ; A ∈ Z ∩ µ} 6= ∅, then Z[γ] ∩ γ = Z ∩ γ. �

Recall that Chang’s Conjecture is equivalent to the statement: the set {X ⊂
ω2 ; otp(X) = ω1} intersects all strongly closed unbounded subsets of [ω2]ω1 , see
Lemma 1.9.1. In the light of this, the following lemma can be seen as a generalization
of Chang’s Conjecture.

Lemma 5.6.20 (folklore) Let κ be measurable. Let M = Hθ for some regular
θ > 2κ. Then

{X ⊂ κ ; otp(X) = ω1 ∧ ∃Z ≺M : X = Z ∩ κ}

intersects all strongly closed unbounded subsets of [κ]ω1 . Especially

{X ⊂ κ ; otp(X) = ω1}

intersects all strongly closed unbounded subsets of [κ]ω1 .

Proof. Fix a function F : [κ]<ω → κ. We have to show that

{X ⊂ κ ; otp(X) = ω1 ∧ ∃Z ≺M : X = Z ∩ κ}

intersects CF . We build a chain of length ω1 of elementary substructures 〈Zα;α <
ω1〉 of M such that Zα ⊂ Zα+1 for α < ω1 and Zα ∩ κ = Zα+1 ∩ sup(Zα ∩ κ). Let
Z0 ≺M be a countable substructure with κ, F ∈ Z0. At limit stages form unions. If
Zα is already constructed, then an application of Lemma 5.6.19 yields a Zα+1 ≺M ,
Zα ⊂ Zα+1 with Zα∩κ = Zα+1∩ sup(Zα∩κ). Set Z =

⋃
{Zα ; α < ω1}. Then Z is

closed under F and otp(Z ∩ κ) = ω1, the latter holds because the sets of the form
Zα ∩ κ, α < κ, end-extend each other. This finishes the proof of the lemma.

We show that the conclusion of the previous lemma is preserved under c.c.c.
forcing.

Lemma 5.6.21 Let P be notion of forcing that satisfies the c.c.c. Let κ > ω1 be
a cardinal and let S ⊂ [κ]ω1 be such that S intersect all strongly closed unbounded
subsets of [κ]ω1 . Then in V P the set S also intersects all strongly closed unbounded
subsets of [κ]ω1 .

Proof. Fix a name Ḟ ∈ V P such that

1P  Ḟ : [κ̌]<ω̌ → κ.

Let θ be large enough such that all the dense sets of P, Ḟ , S ∈ Vθ. The set of C ′

of Y ≺ Vθ of cardinality ω1 such that P, Ḟ , S ∈ Y is a strongly closed unbounded
subsets of [Vθ]ω1 , so the set C = {Y ∩ κ ; Y ∈ C} is strongly closed unbounded in
[κ]ω1 . Pick Y ∈ C ′ such that Y ∩ κ ∈ C ∩ S. Then, by the argument for Claim 1 in
the proof of Lemma 5.5.2, we have for all V -generics G ⊂ P

Y [G] ≺ Vθ[G] and Y [G] ∩ V = Y.

By elementarity Y ∩ κ = Y [G] ∩ κ is closed under ḞG. This suffices to show.

Using the characterization of CC in Lemma 1.9.1 we obtain:

Corollary 5.6.22 (folklore) Chang’s Conjecture is preserved by c.c.c. forcing. �
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5 The Extender Algebra and Absoluteness

The following concept is not standard; we introduce it to state the following
theorems.

Definition 5.6.23 Let κ > ω1 be a cardinal and let S ⊂ [κ]ω1 such that S
intersects all strongly closed unbounded subsets of [κ]ω1 . A notion of forcing P
preserves S, if in V P the set S intersects all strongly closed unbounded subsets of
[κ]ω1 .

Theorem 5.6.24 Let κ be measurable and let P be a forcing of cardinality < κ.
Let Ȧ be a name such that

1P  L[Ȧ] |= φ(Ȧ, ~̌α),

where ~α are finitely many ordinal parameters, and Ȧ∗ be a name for subset of κ
such that

1P  Ȧ extends to Ȧ∗ with unique condensation.

Let θ ≥ (2κ)+ be large enough such that Ȧ∗ ∈ Hθ and set M = 〈Hθ;∈,P, Ȧ, Ȧ∗〉.
Suppose M ]

mw exists and has an (ω, κ + 1)-iteration strategy Σ that condenses to
fragments. Suppose that

S := {X ⊂ κ ; otp(X) = ω1 ∧ ∃Y ≺M : Y ∩ κ = X}V

intersects all strongly closed unbounded subsets of [κ]ω1 and P preserves S.
Then there is some A ⊂ ω1, A ∈ V such that

L[A] |= φ(A, ~α).

Proof. Set M = M ]
mw and let δ denote M’s measurable Woodin. Let U ∈ M ]

mw

denote the (trivial completion of the) least normal measure on δ and let ζ0 denote
the index of U on M ]

mw’s extender sequence. Our strategy is as follows: using the
ideas of Lemma 5.6.16 we build an iteration tree T ∈ V on M of height κ+ 1 such
that for all G ⊂ P the set Ȧ∗G is generic over MTκ . Once T is constructed it will
follow from the hypothesis on S that we find some elementary substructure X ≺M ,
X ∈ V , otp(X ∩ κ) = ω1 such that ȦG is generic over this substructure.
We construct T ; we will omit superscripts T where possible, so T has iteration
maps jα,β and model Mα. We will call α < κ a closure point if

1P  Ȧ
∗ ∩ j0,α(ζ0) |= j0,α(Wδ)

where Wδ is the extender algebra with δ-many generators calculated in M. If α is
a closure point we use j0,α(U) to continue the iteration. If α is not a closure point
we perform a genericity iteration for Ȧ∗ in the sense of Lemma 5.6.16. Since P has
size < κ we can apply conclusion 1. of Lemma 5.6.16; so we reach the next closure
point after < κ-many stages. Literally Lemma 5.6.16 only tells us where the first
baby closure point is; nevertheless from the proof we also obtain a closure point.
Moreover it is easy to see the following: after we apply (the image of) U at a closure
point α, we can perform another genericity iteration for Ȧ∗ in the sense of Lemma
5.6.16. This completes the definition of T .
Clearly T ∈ M . Let b = [0, κ]T . By the argument we have given before b contains
unboundedly many (and hence club many) closure points. So club often we have
used (the images of) U to continue the iteration. Moreover j0,κ(δ) = κ and κ is a
baby closure point. Let M∗ =Mκ.
Now pick an arbitrary G ⊂ P generic over V . In V [G] we consider the structure
M+ := 〈HV

θ ;∈,P, Ȧ, Ȧ∗, Ȧ∗G〉. Trivially all substructures of M+ contain T . The
set

C = {X ⊂ κ ; otp(X) = ω1 ∧ ∃Y ≺M+ : Y ∩ κ = X}V [G]
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5.6 Sets that extend to a Class with unique Condensation

is strongly closed unbounded. By our hypothesis on S, we find some Y ≺M , Y ∈ V
such that otp(Y ∩κ) = ω1 and there is some Y + ∈ C such that Y +∩κ = Y ∩κ. Since
κ is a closure point Y + |= Ȧ∗G ∩ κ is generic over M∗. Let π+ : N+ → Y + denote
the inverse of the transitive collapse of Y +. By Lemma 5.6.4 and otp(Y + ∩κ) = ω1

we have (π+)−1(Ȧ∗G ∩ κ) = ȦG. Set T̄ = (π+)−1(T ) and let π : N → Y denote
the inverse of the transitive collapse of Y . Since Y + ∩ κ = Y ∩ κ we have that
T̄ = π−1(T ). Since Σ condenses to fragments, T̄ is build according to Σ. So by
elementarity of π+, T̄ contains ω1-many closure points for ȦG and hence ȦG is
generic over M̄∗ = MT̄ω1

. Summing up we have that ȦG is generic over M̄∗ ∈ V .
If necessary we iterate M̄∗’s top-measure to make sure ~α ∈ M̄∗. Pick a condition
q ∈ jT̄0,ω1

(Wδ) such that

q  ω1 = jT̄0,ω1
(δ)ˇ∧ ∃A : L[A] |= φ(A, ~̌α).

We want to find Γ ∈ V , q ∈ Γ, Γ ⊂ jT̄0,ω1
(Wδ) generic over M̄∗. For this we

need to piece together end-extending generics; since we do not need to make sure
that RV ⊂ M̄∗[Γ] the argument is much simpler than in the proof for Theorem
5.4.1. Especially we do not have to pick generics while iterating this time. Let
C ⊂ [0, ω1]T̄ denote the club of points α where we used j0,α(U) to continue the
iteration. Let α0 ∈ C be such that q ∈ MT̄α0

and q is not moved by jT̄α0,ω1
. In

V pick Γ0 ⊂ jT̄0,α0
(Wδ) generic over MT̄α0

. Let α1 = min(C \ (α0 + 1)). Using
Lemma 5.4.3, we can end-extend Γ0 to some Γ1 generic over MT̄α1

. In this fashion
we continue all the way up through C: at successor stages repeat the argument we
have just given, at limit stages λ ∈ C form the union Γλ =

⋃
{Γi ; i < λ}. Using

the fact that anitchains are small, it is not difficult to see that Γλ is generic over
MT̄λ . Finally we set Γ =

⋃
{Γi ; i < ω1}. Then Γ is as desired.

There is some A ⊂ ω1, A ∈ M̄∗[Γ] such that

Lρ[A] |= φ(A, ~α),

where ρ is the critical point of M̄∗’s top measure. Iterating this top measure out of
the universe we obtain

L[A] |= φ(A, ~α).

This finishes the proof.

The previous theorem has a variant:

Theorem 5.6.25 Let P be a reasonable forcing of cardinality < κ, κ regular. Let
Ȧ be a name such that

1P  L[Ȧ] |= φ(Ȧ, ~̌α),

where ~α are finitely many ordinal parameters, and Ȧ∗ be a name for subset of κ
such that

1P  Ȧ extends to Ȧ∗ with unique condensation.

Let θ ≥ (2κ)+ be large enough such that Ȧ∗ ∈ Hθ and set M = 〈Hθ;∈,P, Ȧ, Ȧ∗〉.
Suppose M ]

mw exists and has an (ω, κ + 1)-iteration strategy Σ that condenses to
fragments. Suppose that

S := {X ⊂ ω2 ; otp(X) = ω1 ∧ ∃Y ≺M : Y ∩ ω2 = X}V

intersects all strongly closed unbounded subsets of [ω2]ω1 and P preserves S.
Then there is some A ⊂ ω1, A ∈ V such that

L[A] |= φ(A, ~α).
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5 The Extender Algebra and Absoluteness

Note that S intersects all strongly club sets in V is equivalent to Chang’s Con-
jecture, compare Lemma 1.9.1. The proof of the above theorem is similar to the
proof of the previous theorem. We nevertheless give some details, especially at the
point where the reasonability of P is applied.

Proof. Set M = M ]
mw and let δ denote M’s measurable Woodin. Let U ∈ M ]

mw

denote the (trivial completion of the) least normal measure on δ and let ζ0 denote
the index of U on M ]

mw’s extender sequence. Using Lemma 5.6.16 we are going
to build an iteration tree T ∈ V on M of height ω2 + 1 such that for all G ⊂ P
the set Ȧ∗G ∩ ω2 is generic over MTω2

. Once T is constructed it will follow from
the hypothesis on S that we find some elementary substructure X ≺ M , X ∈ V ,
otp(X ∩ ω2) = ω1 such that ȦG is generic over this substructure.
We construct T ; we will omit superscripts T where possible, so T has iteration
maps jα,β and model Mα. We will call α < ω2 a closure point if

1P  Ȧ
∗ ∩ j0,α(ζ0) |= j0,α(Wδ)

where Wδ is the extender algebra with δ-many generators calculated in M. If α is
a closure point we use j0,α(U) to continue the iteration. If α is not a closure point
we perform a genericity iteration for Ȧ∗ in the sense of Lemma 5.6.16. Since P is
reasonable and Σ condenses to fragments we can apply Lemma 5.6.16, so, taking
note of Remark 5.6.18, we reach the next closure point after < ω2-many stages.
This completes the definition of T . Clearly T ∈ M . Let b = [0, ω2]T . Clearly b
contains unboundedly many (and hence club many) closure points. So club often
we have used (the images of) U to continue the iteration. Moreover j0,ω2(δ) = ω2

and ω2 is a baby closure point.
The rest follows like in the previous proof if one replaces κ with ω2.
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