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Abstract. We define an overconvergent version of the Hyodo–Kato complex for semi-stable
varieties Y over perfect fields of positive characteristic, and prove that its hypercohomology
tensored with Q recovers the log-rigid cohomology when Y is quasi-projective. We then de-
scribe the monodromy operator using the overconvergent Hyodo–Kato complex. Finally, we
show that overconvergent Hyodo–Kato cohomology agrees with log-crystalline cohomology
in the projective semi-stable case.

1. Introduction

For a proper and smooth variety Y over a perfect field k of characteristic
p > 0, the hypercohomology of the Deligne–Illusie de Rham–Witt complex
WΩ•

Y/k tensored with Q computes – using the comparison isomorphism with
crystalline cohomology [1] – the rigid cohomology

H∗
rig(Y/W (k)[1/p]) ∼= H∗(Y,WΩ•

Y/k)⊗Q.

However, rigid cohomology is well-defined without any properness assumption
on Y . In [4], Davis, Langer and Zink define an overconvergent de Rham–Witt
complex W †Ω•

Y/k, which is a subcomplex of WΩ•
Y/k, and show that

H∗
rig(Y/W (k)[1/p]) ∼= H∗(Y,W †Ω•

Y/k)⊗Q

for Y quasi-projective and smooth over k.
On the other hand, one could instead relax the smoothness condition on Y .

Let S0 = (Spec k,N) be the standard log point, and let Y be a fine S0-log
scheme. Let S0 be the (weak) formal log scheme (SpfW,N → W , 1 7→ 0).
Then Grosse-Klönne [8] defines the log-rigid cohomology H∗

log-rig(Y/S0) of Y
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(we recall the definition in Section 2). Grosse-Klönne shows that the log-
rigid cohomology of Y agrees with Shiho’s log-convergent cohomology of Y
whenever Y is a semi-stable variety whose irreducible components are proper.
In particular, by the comparison between log-convergent and log-crystalline
cohomology [19], there is an isomorphism

H∗
log-rig(Y/S0) ∼= H∗(Y,Wω•

Y/k)⊗Q

for proper semi-stable varieties Y over k, where Wω•
Y/k is the Hyodo–Kato

complex [10].
There is, however, currently no Hyodo–Kato style theory available for non-

proper semi-stable varieties. We shall define a complex W †ω•
Y/k, functorial

in Y , which computes log-rigid cohomology in non-proper situations. More
precisely, we prove the following theorem.

Theorem 1.1. Let Y be a quasi-projective semi-stable variety over S0. Then

there is a quasi-isomorphism

RΓlog-rig(Y/S0) ∼= RΓ(Y,W †ω•
Y/k ⊗Q).

We then describe the monodromy operator on log-rigid cohomology in terms
of the overconvergent Hyodo–Kato complex, using the method of [18].

Using the overconvergent Hyodo–Kato complex, we can formulate Grosse-
Klönne’s Hyodo–Kato isomorphism [8] in the non-proper case as follows: For a
strictly semi-stable weak formal scheme X over SpwfW (k) with generic fibreX ,
a K0 = W (k)[1/p]-dagger space, and a closed fibre Y which we assume to
be quasi-projective, there is a canonical isomorphism between the de Rham
cohomology of X and the (rational) overconvergent Hyodo–Kato cohomology
of Y [8, Cor. 3.5].

In [3], log-rigid cohomology and overconvergent syntomic cohomology are
used to study the p-adic cohomology of semi-stable p-adic Stein spaces, notably
Drinfeld half-spaces, within the context of a hoped for p-adic local Langlands
correspondence. We expect that the overconvergent Hyodo–Kato complex will
have interesting applications in this area.

Note that even in the smooth caseX/k, [4] only construct a mapRΓrig(X) →
RΓ(X,W †Ω•

X/k ⊗ Q) when X is quasi-projective. We will see in the proof of

Theorem 5.3 (= Theorem 1.1) in Section 5 why we need to assume quasi-
projectivity. In a recent preprint [16], Lawless has been able to remove the
quasi-projectivity hypothesis at least in the smooth case. For details, we refer
to [16]. In a work in progress, Lawless also intends to remove this hypothesis in
the semi-stable case and hence we expect Theorem 1.1 to hold unconditionally
as well.

In the final part of the paper, we compare the usual and overconvergent
Hyodo–Kato cohomology in the proper case:

Theorem 1.2. Let Y be a projective semi-stable variety over S0. Then the

canonical map

H∗(Y,W †ω•
Y/k) → H∗(Y,Wω•

Y/k) = H∗
log-cris((Y,M)/(W (k),W (L)))
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induced by the inclusion W †ω•
Y/k ⊂ Wω•

Y/k is an isomorphism of finite type

W (k)-modules. Here M is the log structure on Y given by OY ∩ u∗O
×
U , where

u : U →֒ Y is a smooth dense open, and W (L) is the canonical lifting of the

log structure L on Spec k given by 1 7→ 0 (previously denoted by S0).

It should be noted that in fact we give two definitions of the overconvergent
Hyodo–Kato complex in this paper. The first is constructed in the style of
[10], and the second in the more modern approach of [17]. We prove that the
two complexes are the same. Along the way, this has the serendipitous conse-
quence that we show that Matsuue’s log de Rham–Witt complex WΛ•

Y/(R,N)

(see Section 3.1 for the notation) gives the Hyodo–Kato complex Wω•
Y/k in

the special case that R = k, thus filling a gap in the literature.
We assume that the reader is familiar with the de Rham–Witt complex of

Deligne–Illusie and its basic properties, including its explicit description for
(Laurent)-polynomial algebras [14], étale base change results, and the over-
convergent version in the smooth case proven in [4].

2. Log-rigid cohomology

Let k be a field of characteristic p > 0, let W = W (k) be the Witt vectors
of k and K := FracW . Set Wn = W/pn for n ∈ N. We will write S0 for the
(weak) formal log scheme (SpfW,N → W, 1 7→ 0). The special fibre of S0 is
the standard log point S0 = (Spec k,N → k, 1 7→ 0).

We briefly recall Grosse-Klönne’s definition of the log-rigid cohomology of a
fine S0-log scheme Y . For the details, one should consult [8]. Let Y =

⋃

i∈I Vi

be an open covering, and suppose there are exact closed immersions Vi →֒ Pi

into log smooth weak formalS0-log schemes for each i. For eachH ⊂ I, choose
an exactification of the diagonal embedding

VH :=
⋂

i∈H

Vi
ι
−֒→ PH

f
−→

∏

i∈H

Pi

(this means that ι is an exact closed immersion and f is log-étale). Then the log
de Rham complex ω•

PH/S0
tensored with Q induces a complex of sheaves ω•

PH,K

on the K-dagger spacePH,K associated to the generic fibre ofPH (see [7]). Let
sp: PH,K → PH be the specialization map, and write ]VH [†PH

:= sp−1(VH)
for the tubular neighborhood of VH in PH,K . Then

]VH [†PH
and ω•

]VH [†
PH

:= ω•
PH,K

|]VH [†
PH

are independent of the choice of exactification above [8, Lem. 1.2]. Now, for
H1 ⊂ H2, the projection p12 : ]VH2 [

†
PH2

→ ]VH1 [
†
PH1

induces

p−1
12 ω

•
]VH1 [

†
PH1

→ ω•
]VH2 [

†
PH2

.
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This defines a complex of simplicial sheaves ω•
]VH• [

†
PH•

on a simplicial dagger

space ]VH• [
†
PH•

. The log-rigid cohomology of Y is given by

RΓlog-rig(Y/S0) := RΓ(]VH• [
†
PH•

, ω•
]VH• [

†
PH•

).

Then RΓlog-rig(Y/S0) is independent on the choice of open cover Y =
⋃

i∈I Vi

and the choice of embeddings Vi →֒ Pi [8, Lem. 1.4].

3. The overconvergent Hyodo–Kato complex

Now suppose that k is a perfect field of characteristic p > 0. We follow
closely the approach of [10]. Let X be a regular flat W -scheme and write

Y X XK

Spec k SpecW SpecK

i j

for the special and generic fibres of X . We suppose that X has semi-stable
reduction, that is to say we suppose that étale locally on X , there is a smooth
morphism X → SpecW [T1, . . . , Tn]/(T1 · · ·Td − p) for some n ≥ d. In par-
ticular, XK is smooth and Y is a reduced normal crossings divisor on X . If
we endow X with the log-structure induced by the special fibre and consider
Y with the pullback log structure, then Y is a fine log-smooth S0-log scheme.

Étale locally on Y , the structure morphism factors as

Y
f
−→ (Spec k[T1, . . . , Tn]/(T1 · · ·Td),N

d, ei 7→ Ti)
δ
−→ S0,

where f is exact and étale and δ is induced by the diagonal. We say that Y is
semi-stable over S0.

Since k is a perfect field, we can find a dense open subscheme u : U →֒ Y ,
which is smooth over k. We may therefore consider the pushforward of the
overconvergent de Rham–Witt complex W †ω•

U/k of [4]. Let

d log : i−1j∗(O
×
XK

) → u∗WΩ1
U/k

be the homomorphism considered in [10, Section 1]. Note that the image lies
in u∗W

†Ω1
U/k (see [17, Prop. 10.1]). Then the Hyodo–Kato complex Wω•

Y/k

is the p-adic completion of the W (OY )-subalgebra of u∗WΩ•
U/k generated by

dW (OY ) and the image of d log. Let W †(OY ) denote the Zariski sheaf of
overconvergent Witt vectors (see [5, Prop. 3.2]) on Y .

Definition. W †ω•
Y/k is the differential graded W †(OY )-algebra

Wω•
Y/k ∩ u∗W

†Ω•
U/k.

Then W †ω•
Y/k is a subcomplex of the W †(OY )-algebra u∗W

†Ω•
U/k and in-

herits the operators F and V satisfying the usual de Rham–Witt relations, as
in [10].
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Now let u∗W
†Ω•

U/k[θ]/(θ
2) be the complex given by adjoining an indeter-

minate θ in degree one, subject to θa = (−1)qaθ for all a ∈ u∗W
†Ωq

U/k and
dθ = 0. Let

d log : i−1j∗(O
×
XK

) → u∗W
†Ω1

U/k[θ]/(θ
2)

be the unique homomorphism which induces on u−1i−1(O×
X) the composite

map

u−1i−1(O×
X) → O×

U

d log
−−−→ WΩ1

U/k

and induces on K× the map a 7→ ordK(a)θ (again, see [10, Section 1]). The
image of d log lies by definition inside Wω̃•

Y/k, defined in [10, Section 1.4].

Definition. W †ω̃•
Y/k is the W †(OY )-algebra Wω̃•

Y/k ∩ u∗W
†Ω•

U/k[θ]/(θ
2).

Then we have a short exact sequence of complexes, induced by (see [10,
Prop. 1.5])

(1)

{

0 → W †ω•
Y/k[−1] → W †ω̃•

Y/k → W †ω•
Y/k → 0,

a 7→ a ∧ θ, θ 7→ 0.

3.1. An equivalent approach. In this section we shall outline another def-
inition of the overconvergent Hyodo–Kato complex, this time in the style of
[17], and we will show that the two definitions are the same. This will become
particularly useful in Section 7.

In [17, Section 3.4] Matsuue defines the log de Rham–Witt complex
WΛ•

(S,Q)/(R,P ) for any morphism of pre-log rings (R,P ) → (S,Q), where R
is a Z(p)-algebra, as the initial object in the category of log F-V-procomplexes.
The construction is a logarithmic generalization of the construction given in
[14, Section 1.3].

Fix integers n ≥ d and let (B := k[T1, . . . , Tn],N
d, ei 7→ Ti) be considered

as a pre-log ring over (k, {∗}), where {∗} denotes the trivial monoid. Then
one has, in particular, the log de Rham–Witt complex WΛ•

(B,Nd)/(k,{∗}) as a
special case. Any element of WΛ•

(B,Nd)/(k,{∗}) can be written as a convergent
sum of basic log Witt differentials [17, Prop. 4.3]. Matsuue then defines a
subcomplex W †Λ•

(B,Nd)/(k,{∗}) as those elements of WΛ•
(B,Nd)/(k,{∗}) which are

overconvergent (see [17, Section 10.1]).
Now consider a pre-log ring (A,M,α) over (k, {∗}) such that A is a finitely

generated k-algebra. Then we may choose a surjective morphism of pre-log
rings over (k, {∗}):

Nd B = k[T1, . . . , Tn]

M A,
α

where the top morphism is ei 7→ Ti. This morphism of pre-log rings induces a
morphism of log de Rham–Witt complexes

λ : WΛ•
(B,Nd)/(k,{∗}) → WΛ•

(A,M)/(k,{∗}).
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Matsuue defines W †Λ•
(A,M)/(k,{∗}) := λ(W †Λ•

(B,Nd)/(k,{∗})). Notice that one
could have taken any log polynomial algebra over k which surjects onto (A,M),
but Matsuue shows thatW †Λ•

(A,M)/(k,{∗}) is independent of this choice (see [17,
Def. 10.2] and the subsequent discussion). By construction, W †Λ•

(A,{∗})/(k,{∗})

is the overconvergent de Rham–Witt complex W †ω•
A/k of [4]. In [4, Cor. 1.7],

it is shown that this construction glues to give a complex of Zariski sheaves
W †ω•

X/k on any variety X . In [17, Section 10.3] this is generalized to show that
W †Λ•

(A,M)/(k,{∗}) glues to give a complex of Zariski sheaves W †Λ•
(X,M)/(k,{∗}),

where (X,M) denotes the log scheme associated to the complement of a strict
normal crossing divisor. We give a similar argument in the semi-stable case.

Let SpecA be a semi-stable affine k-scheme and let (A,M,α) be the asso-
ciated pre-log ring. Define PjWΛr

(A,M)/(k,{∗}) to be the image of the map

WΛj
(A,M)/(k,{∗}) ⊗WΩr−j

A/k → WΛr
(A,M)/(k,{∗}).

This gives a filtration P•WΛ•
(A,M)/(k,{∗}) of the complex WΛ•

(A,M)/(k,{∗}). Let
{SpecAi}i∈I be the irreducible components of SpecA. For subsets J ⊂ I, let
⋂

i∈J SpecAi = SpecAJ . Then the Poincaré residue maps give

GrjWΛ•
(A,M)/(k,{∗}) ≃

⊕

J⊂I
|J|=j

WΩ•
AJ/k

[−j].

Similarly, define PjW
†Λr

(A,M)/(k,{∗}) to be the image of the map

W †Λj
(A,M)/(k,{∗}) ⊗W †Ωr−j

A/k → W †Λr
(A,M)/(k,{∗})

to get a filtration P•W
†Λ•

(A,M)/(k,{∗}) of the complex W †Λ•
(A,M)/(k,{∗}). The

argument in [17, Lem. 10.9] shows that the above residue isomorphism induces

GrjW
†Λ•

(A,M)/(k,{∗}) ≃
⊕

J⊂I
|J|=j

W †Ω•
AJ/k

[−j].

Proposition 3.2. Let SpecA be a semi-stable affine k-scheme and let (A,M,α)
be the associated pre-log ring. Then the presheaf canonically determined by

D(f) 7→ W †Λr
(Af ,M)/(k,{∗})

on the basis of distinguished opens is a Zariski sheaf on SpecA. (Given f ∈ A,

we consider the localization Af as a pre-log ring via the composition M
α
−→

A → Af .)

Proof. The proof is similar to the proof of [4, Prop. 1.2] and [17, Prop. 10.12].
Let f1, . . . , fl ∈ A be a generating set for A. Write Ai1···is for Afi1 ···fis

. Con-
sider the Čech complex C• given by

Cs =
⊕

1≤i1<···<is≤l

W †Λr
(Ai1···is ,M)/(k,{∗})
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(so C0 = W †Λr
(A,M)/(k,{∗})). Then it suffices to show that C• is exact. Define

PjC
s =

⊕

1≤i1<···<is≤l

PjW
†Λr

(Ai1···is ,M)/(k,{∗}).

This gives a filtration P•C
• of the complex C•. The graded piece GrjC

• is

GrjC
s ∼=

⊕

1≤i1<···<is≤l

⊕

J⊂I
|J|=j

W †Ωr−j
(Ai1···is)J

/k

∼=
⊕

1≤i1<···<is≤l

⊕

J⊂I
|J|=j

W †Ωr−j
(AJ )i1···is/k

in degree s. Here the second direct sum in the first line runs over all j-fold
intersections of irreducible components of SpecAi1···is . Therefore,

GrjC
• ∼=

⊕

J⊂I
|J|=j

C̃•,

where

C̃s =
⊕

1≤i1<···<is≤l

W †Ωr−j
(AJ )i1···is/k

is the Čech complex for W †ωr−j
AJ/k

. This is exact by [4, Prop. 1.6]. Induction,
using the short exact sequence of complexes

0 → Pj−1C
• → PjC

• → GrjC
• → 0,

shows that PjC
• is exact for all j, and hence C• is exact. �

One may therefore glue to define a complex of Zariski sheaves W †Λ•
Y/(k,{∗})

for semi-stable schemes Y over S0 (recall from Section 2 that S0 is the standard
log point (Spec k,N, 1 7→ 0)). Finally, we define the overconvergent Hyodo–
Kato complex W †Λ•

Y/S0
to be the image of W †Λ•

Y/(k,{∗}) under the projection

WΛ•
Y/(k,{∗}) → WΛ•

Y/(k,N) = WΛ•
Y/S0

of log de Rham–Witt complexes. This is again a complex of Zariski sheaves.

Proposition 3.3. The overconvergent Hyodo–Kato complex W †ω•
Y/k of the

previous section is the same as W †Λ•
Y/S0

.

Proof. We first show that Matsuue’s log de Rham–Witt complex WΛ•
Y/S0

agrees with the Hyodo–Kato complex Wω•
Y/k of [10]. This must be well known

to the experts, but the authors do not know of a proof recorded in the liter-
ature; it seems important to reconcile the two approaches, so we give a proof
here. Since both complexes are complexes of Zariski sheaves, it suffices to
construct a canonical isomomorphism, functorial in Y , if Y is affine.

Given a log F -V procomplex {E•
m}m∈N, define differential graded ideals

FilsEi
m := V sEi

m−s + dV sEi−1
m−s ⊂ Ei

m.
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Then this gives a filtration of log F -V -procomplexes which is compatible with
F , V , d and the projections, see [17, Section 3.5].

Now, W•Λ
•
Y/S0

= {WmΛ•
Y/S0

}m∈N and W•ω
•
Y/k = {Wmω•

Y/k}m∈N are log
F-V-procomplexes, so we have a map of log F-V-procomplexes, evidently func-
torial in Y ,

W•Λ
•
Y/S0

→ W•ω
•
Y/k,

by the universal property of WΛ•
Y/S0

. This map induces diagrams

0 FilmWm+1Λ
•
Y/S0

Wm+1Λ
•
Y/S0

WmΛ•
Y/S0

0

0 FilmWm+1ω
•
Y/k Wm+1ω

•
Y/k Wmω•

Y/k 0

of short exact sequences (see [17, Prop. 3.6] for the top row, and [10, Thm. 4.4]
for the bottom row) for each m ∈ N. Now one notices that

W1Λ
•
Y/S0

= W1ω
•
Y/k = ω•

Y/k

is the usual logarithmic de Rham complex, by definition. This gives

FilmWm+1Λ
•
Y/S0

= FilmWm+1ω
•
Y/k

and then the diagrams give WmΛ•
Y/S0

= Wmω•
Y/k for all m ∈ N.

SinceW †ω•
Y/k andW †Λ•

Y/S0
are subcomplexes of Zariski sheaves of the com-

pleted versions, it suffices to show the claim for Y affine. By a result of Kedlaya
[13, Thm. 2], Y can be covered by finitely many affines SpecBi such that Bi

is finite étale and free over Ai = k[T1, . . . , Td]/(T1 · · ·Tr) for some r. Using
again a sheaf argument, it suffices to prove the claim for B finite étale and free
over A = k[T1, . . . , Td]/(T1 · · ·Tr). By étale base change [17, Prop. 3.7] and the
fact that W (B) is again finite étale and free over W (A), we have WΛ•

B/S0
=

W (B)⊗W (A)WΛ•
A/S0

and likewise Wω•
B/k = W (B)⊗W (A) Wω•

A/k. Note that
the isomorphism WΛ•

A/S0

∼= Wω•
A/k is explicitly given by formula (14) in Sec-

tion 7.
Now, [5, Cor. 2.46] implies that W †(B) is finite étale and free as a W †(A)-

module. The proofs of [4, Prop. 1.9] or, alternatively, [4, Prop. 3.19] transfer
to the Hyodo–Kato complexes and provide étale base change in the overcon-
vergent setting:

W †Λℓ
B/S0

∼= W †Λℓ
A/S0

⊗W †(A) W
†(B),

W †ωℓ
B/k

∼= W †ωℓ
A/k ⊗W †(A) W

†(B).

This finishes the proof, since evidently by definition W †Λℓ
A/S0

∼= W †ωℓ
A/k. �

4. Comparison with log-Monsky–Washnitzer cohomology

Let Y = SpecA be a semi-stable affine scheme over S0. Let Y →֒ Z =
SpecB be a closed embedding into a smooth affine k-scheme such that Y is
a normal crossings divisor on Z, in other words, A = B/(f1 · · · fr) and each
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B/(fi) is smooth. Let B̃ be a smooth W -algebra lifting B (there always exists

such a B̃ by [6]) and set Ã := B̃/(f̃1 · · · f̃r) for some liftings f̃i ∈ B̃ of the fi,

such that Ỹ := Spec Ã is a normal crossings divisor in Z̃ = Spec B̃. That is,
we have a diagram

Ỹ = Spec Ã Z̃ = Spec B̃

Y = SpecA Z = SpecB.

We define the complexes W †ω•
Y/k and W †ω̃•

Y/k as in Section 3. Indeed,
X = Spec B̃/(f̃1 · · · f̃r − p) is a regular scheme whose special fibre is Y , so the
definition applies.

Now let Ω•
Z̃/W

(log Ỹ ) denote the logarithmic de Rham complex of Z̃ with
respect to the normal crossings divisor Ỹ . We set

ω̃•
Ỹ
:= OỸ ⊗OZ̃

Ω•
Z̃/W

(log Ỹ )

and write
ω̃•
Ỹ † := OỸ † ⊗O

Z̃† Ω•
Z̃†/W

(log Ỹ †)

for the weak completion.

Definition. The logarithmic Monsky–Washnitzer complex of Y is defined to
be

ω•
Ỹ † := ω̃•

Ỹ †/(ω̃
•−1

Ỹ †
∧ θ),

where θ := d log f̃1 + · · ·+ d log f̃r. We define

H∗
log-MW(Y/K) := H∗(Y, ω•

Ỹ † ⊗Q).

This is the logarithmic Monsky–Washnitzer cohomology, as discussed in [8,
Section 5]. It is clear that

H∗
log-MW(Y/K) ∼= H∗

log-rig(Y/S0),

and that there is a short exact sequence of complexes

(2)

{

0 → ω•
Ỹ † [−1] → ω̃•

Ỹ † → ω•
Ỹ † → 0,

a 7→ a ∧ θ, θ 7→ 0.

In this section we shall construct a morphism of short exact sequences from
(2) to (1). We will then prove that the subsequent vertical arrows become
quasi-isomorphisms after tensoring with Q.

Let Ã† and B̃† denote the weak completion of Ã and B̃, respectively. Then
we have an induced diagram

B̃† Ã†

W (B) W (A),

tF tF

Münster Journal of Mathematics Vol. 13 (2020), 541–571



550 Oliver Gregory and Andreas Langer

where the vertical arrows are the Lazard morphisms [11, Section 0, Eq. 1.3.6].
Since B is a smooth finitely generated k-algebra, tF : B̃† → W (B) has image
contained in the overconvergent Witt vectors W †(B) [4, Prop. 3.2]. By func-
toriality of the Lazard morphisms and since W (B) ։ W (A) sends W †(B) to
W †(A), we deduce that we in fact have a diagram

B̃† Ã†

W †(B) W †(A).

tF tF

Let u and ũ denote the respective open immersions U := Z \ Y →֒ Z and

Ũ := Z̃ \ Ỹ →֒ Z̃. Then the map

ũ∗Ω
•
Ũ/W

→ u∗WΩ•
U/k, d log f̃i 7→ d log[fi],

sends logarithmic differentials along Ỹ to logarithmic differentials along Y .
(Here [fi] ∈ W (B̃) denotes the Teichmüller lift). In particular, it induces a
map

Ω•
Z̃/W

(log Ỹ ) → WΩ•
Z/k(log Y ),

and by the above discussion, this induces a map

Ω•
Z̃†/W

(log Ỹ †) → W †Ω•
Z/k(log Y ).

These maps were considered in [17, Section 10] and become quasi-isomorphisms
after tensoring with Q, by [17, Lem. 10.9]. In any case, this gives a map

(3) ω̃•
Ỹ † → W †(A) ⊗W †(B) W

†Ω•
Z/k(log Y ).

Notice that the logarithmic differentials d log[fi] along Y coincide with the
logarithmic differentials as defined by Hyodo–Kato as the image of d log using
the regular W -scheme X = Spec B̃/(f̃1 · · · f̃r − p). Indeed, f̃i is mapped to
d log[fi] and p is mapped to θ = d log[f1] + · · ·+ d log[fr].

Let Wnω̃
i
Y/k be the sheaves introduced in [9, Section 1.6]. These are the

same as WnΛ
i
Y/(k,{∗}). One way to see this is by mimicking the proof of

Proposition 3.3. Recall that one can express the sheaves Wnω̃
i
Y/k as quotients

of the WnΩ
i
Z/k(log Y ). Indeed, we may assume that Z̃ is an admissible lifting

of Y (see [18, Section 2.4] for the definition). Set Z̃n := Z̃ ×W Wn and Ỹn :=

Ỹ ×W Wn, so that Z = Z̃1 and Y = Ỹ1. Then

(4) Wnω̃
i
Y/k = WnΩ

i
Z/k(log Y )/WnΩ

i
Z/k(− log Y ),

where we have identified

WnΩ
i
Z/k(log Y ) = Hi

(

Ω•
Z̃n/Wn

(log Ỹn)
)

and

WnΩ
i
Z/k(− log Y ) = Hi

(

Jn ⊗OZ̃n
Ω•

Z̃n/Wn
(log Ỹn)

)

,
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where Jn = ker(OZ̃n → OỸn). The fact that the right-hand side of (4) gives
the same sheaf Wnω̃

i
Y/k as defined in [10] is discussed in [18, Section 2.4].

Passing to the projective limit gives Wω̃i
Y/k as a quotient of WΩi

Z/k(log Y ).
We therefore deduce a map of complexes of sheaves on Y :

W (A)⊗W (B) WΩ•
Z/k(log Y ) → Wω̃•

Y/k.

Let Σ be the singular locus of Y , U = Y \Σ, u : U →֒ Y and i : Y → Z. Then
we have canonical maps

W †Ω•
Z/k → i∗W

†Ω•
Y/k → i∗u∗W

†Ω•
U/k,

which extend to a map

W †Ω•
Z/k(log Y ) → i∗u∗W

†Ω•
U/k[θ]/(θ

2),

since the d log[fi] are overconvergent [17, Prop. 10.1]. The image of this map
lies – by the above interpretation of Wω̃•

Y/k – in

i∗W
†ω̃•

Y/k = i∗Wω̃•
Y/k ∩ i∗u∗W

†Ω•
U/k[θ]/(θ

2).

We get in each degree a W †(B)-module map

W †Ωr
Z/k(log Y ) → i∗W

†ω̃r
Y/k.

Hence, we get a canonical map

W †(A)⊗W †(B) W
†Ω•

Z/k(log Y ) → W †ω̃•
Y/k.

Composing with (3) defines a comparison morphism

(5) ω̃•
Ỹ † → W †ω̃•

Y/k,

which sends θ = d log f̃1+· · ·+d log f̃r to θ = d log[f1]+· · ·+d log[fr]. Since the
“divide by θ” projection W †ω̃•

Y/k ։ W †ω•
Y/k sends θ to 0, we get an induced

comparison morphism

(6) ω•
Ỹ † → W †ω•

Y/k

between the logarithmic Monsky–Washnitzer and overconvergent Hyodo–Kato
complexes. Moreover, (5) and (6) give a diagram of exact rows

0 ω•
Ỹ †

[−1] ω̃•
Ỹ †

ω•
Ỹ †

0

0 W †ω•
Y/k[−1] W †ω̃•

Y/k W †ω•
Y/k 0.

We will use the weight filtration of Steenbrink to show that the vertical arrows
(5) and (6) become quasi-isomorphisms after tensoring with Q.

Theorem 4.1. The comparison morphisms (5) and (6) induce quasi-iso-

morphisms

ω̃•
Ỹ † ⊗Q

∼
−→ W †ω̃•

Y/k ⊗Q and ω•
Ỹ † ⊗Q

∼
−→ W †ω•

Y/k ⊗Q.

Münster Journal of Mathematics Vol. 13 (2020), 541–571



552 Oliver Gregory and Andreas Langer

Proof. Recall that the weight filtration P•ω̃
•
Ỹ † of ω̃•

Ỹ † (see [8, Section 5] for it

in this context) is defined as

Pjω̃
i
Ỹ † := image

(

Ωj

Z̃†/W
(log Ỹ )⊗ Ωi−j

Z̃†/W
→ Ωi

Z̃†/W
(log Ỹ )

)

⊗O
Z̃† OỸ † .

Via the Poincaré residue maps, the graded pieces of the filtration are identified
as

Grj(ω̃
•
Ỹ † ⊗Q)

∼
−→

⊕

YI∈Mj

Ω•
]YI [

†

Z̃†

[−j],

where Mj denotes the collection of all (smooth) intersections of j different
components of Y which lift to a smooth intersection of j different liftings in Ỹ ,
with Ω•

]YI [
†

Z̃†
denoting the usual de Rham complex on the smooth affinoid

dagger space ]YI [
†

Z̃†
. By [8, Section 5.2], one has an isomorphism of exact

sequences

0 Gr0(ω̃
•
Ỹ †

⊗Q) Gr1(ω̃
•
Ỹ †

⊗Q)[1] Gr2(ω̃
•
Ỹ †

⊗Q)[2] · · ·

0 Ω•
Ỹ † ⊗Q

⊕

YI∈M1

Ω•
]YI [

†

Z̃†

⊗Q
⊕

YI∈M2

Ω•
]YI [

†

Z̃†

⊗Q · · ·

∧θ ∧θ ∧θ

≀ ≀ ≀

(the bottom row is exact because the YI are normal crossings intersections).
Similarly, consider the weight filtration of Mokrane [18] on Wω̃•

Y/k:

PjWω̃i
Y/k := image

(

Wω̃j
Y/k ⊗WΩi−j

Y/k → Wω̃i
Y/k

)

and set

PjW
†ω̃i

Y/k := image
(

W †ω̃j
Y/k ⊗W †Ωi−j

Y/k → W †ω̃i
Y/k

)

.

By construction, the comparison morphism (5) induces maps Pjω̃
•
Ỹ † →

PjW
†ω̃•

Y/k for each j, and therefore respects the weight filtrations. Moreover,

we have PjW
†ω̃•

Y/k = W †ω̃•
Y/k∩PjWω̃•

Y/k for each j. By [18, Section 3.7], the

graded pieces of the weight filtration are identified, via the Poincaré residue
maps, as

GrjWω̃•
Y/k

∼
−→

⊕

YI∈Mj

WΩ•
YI/k

[−j],

and therefore

GrjW
†ω̃•

Y/k
∼
−→

⊕

YI∈Mj

W †Ω•
YI/k

[−j].

Since each YI is smooth over k, we know by [4] that W †ω•
YI/k

⊗Q is
quasi-isomorphic to Ω•

]YI [Z̃†
, and therefore conclude that the comparison mor-

phism (5) is a quasi-isomorphism when tensored with Q.
To show that the second comparison morphism induces a quasi-isomorphism

after tensoring with Q, define a double complex

A†i,j
Q :=

ω̃i+j+1

Ỹ †
⊗Q

Pjω̃
i+j+1

Ỹ †
⊗Q
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with differential A†i,j
Q → A†i+1,j

Q induced by (−1)jd, and the other differential
A†i,j

Q → A†i,j+1
Q induced by ω 7→ ω ∧ θ. Let A†•

Q be the total complex of A†•,•
Q .

Entirely similarly, define another double complex B†•,•
Q by

B†i,j
Q :=

W †ω̃i+j+1
Y/k ⊗Q

PjW †ω̃i+j+1
Y/k ⊗Q

,

with the differential B†i,j
Q → B†i+1,j

Q induced by (−1)jd and the differential

B†i,j
Q → B†i,j+1

Q induced by ω 7→ ω ∧ θ, and let B†•
Q be the total complex of

BQ
†•,•. Then A†•

Q is quasi-isomorphic to B†•
Q , because the graded quotients

Ω•
]YI [

†

Z̃
and W †ω•

YI/k
⊗ Q are quasi-isomorphic by the comparison theorem in

the smooth case [4].
Now, the map

ω̃•
Ỹ † ⊗Q → A†•,0

Q , ω 7→ ω ∧ θ,

induces a quasi-isomorphism ω•
Ỹ † ⊗ Q

∼
−→ A†•

Q . This is [8, Section 5] in this

context, but the argument goes back to [20]. The same argument shows that
the map

W †ω̃•
Y/k ⊗Q → B†•,0

Q , ω 7→ ω ∧ θ,

induces a quasi-isomorphism W †ω•
Y/k ⊗Q

∼
−→ B†•

Q . As we already noted that

A†•
Q

∼= B†•
Q , we conclude that the comparison morphism (6) is a quasi-iso-

morphism when tensored with Q. �

Corollary 4.2. Let Y be a semi-stable affine scheme over S0. Then there is

a canonical isomorphism

H∗
log-rig(Y/S0) ∼= H∗(Y,W †ω•

Y/k ⊗Q).

Proof. We showed thatH∗(Y,W †ω•
Y/k⊗Q) ∼= H∗

log-MW(Y/K). The comparison

between log-Monsky–Washnitzer cohomology and log-rigid cohomology is more
or less by definition (see [8, Section 5.2]). �

5. Comparison with log-rigid cohomology

Our aim in this section is to globalize the comparison isomorphism between
log-rigid and overconvergentHyodo–Kato cohomology. We note here that given
a W -scheme X , we shall always write X̂ for the formal completion of X along
the special fibre, and X̂K for the associated rigid analytic generic fibre.

Definition. Let Y = SpecA be a semi-stable affine scheme over S0. A semi-
stable frame for Y is the data of a normal crossings divisor relative to W

G = SpecC →֒ F = SpecB

of affine W -schemes, where F is smooth over W and

Y →֒ Gk := G×W k

is an exact closed k-immersion.
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Note that if (F,G) is a semi-stable frame for Y , then F is a special frame
for Y in the sense of [4, Def. 4.1]. Recall from [4, p. 253] that the rigid tube

]Y [F̂⊂ F̂K has a dagger space structure ]Y [†
F̂
, which induces a dagger structure

]Y [†
Ĝ

on ]Y [Ĝ. This is functorial in (Y, F,G).

Definition. An overconvergent semi-stable frame for Y = SpecA is the data
of a semi-stable frame (F = SpecB,G = SpecC) for Y along with a homo-
morphism κ : C → W †(A) which lifts the comorphism C ։ A of the closed
W -immersion Y →֒ G.

Let Y = SpecA be a semi-stable affine scheme over S0 and suppose that
(F,G,κ) is an overconvergent semi-stable frame for Y . Choose an embedding
F →֒ P into a proper smooth W -scheme and write G and F for the respective
closures of G and F inside P. Let Gk and F k be the special fibres of G and
F , and let Y be the closure of Y inside Gk. Since ĜK is defined in F̂K by
overconvergent functions, we can extend the normal crossings divisor ĜK →֒
F̂K to a normal crossings divisor V ′ →֒ V , where V is a strict neighborhood
of ]Fk[P̂ in ]F k[P̂ and V ′ is a strict neighborhood of ]Gk[P̂ in ]Gk[P̂. We get the
following diagram of strict neighborhoods:

]Fk[P̂ ⊆ V ⊆ ]F k[P̂

]Gk[P̂ ⊆ V ′ ⊆ ]Gk[P̂

]Y [Ĝ ⊆ Ṽ := V ′∩]Y [P̂ ⊆ ]Y [P̂.

In order to define the comparison morphism, we will find it useful to have a
rigid analytic description of log-rigid cohomology in terms of sheaves on strict
neighborhoods, in the style of Berthelot. Let ω̃•

Ṽ be the complex given by

the restriction of Ω•
V (log V

′) ⊗ OV ′ to Ṽ , and ω•
Ṽ := ω̃•

Ṽ /(ω̃
•−1
Ṽ ∧ θ), where

θ = d log f1+ · · ·+d log fs for the functions fi cutting out the normal crossings
divisor Ṽ in V .

Recall that given an abelian sheaf F on a strict neighborhood W of ]Y [Ĝ
in ]Y [̂G

, Berthelot’s sheaf of overconvergent sections (see [1, Section 1.2]) is

defined to be

j†F := lim
−→
V

jW,V ∗j
−1
W,V F ,

where the limit is over strict neighborhoods of ]Y [Ĝ in W , and jW,V : V →֒ W
is the inclusion.

We claim that we have the following Berthelot-style interpretation of log-
rigid cohomology.

Lemma 5.1. We have

RΓ(]Y [†
Ĝ
, ω̃•

]Y [†
Ĝ

) = RΓ(Ṽ , j†ω̃•
Ṽ
)
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and

RΓlog-rig(Y/S0) := RΓ(]Y [†
Ĝ
, ω•

]Y [†
Ĝ

) = RΓ(Ṽ , j†ω•
Ṽ
).

Proof. We shall only prove the first statement, since the second is proved using
exactly the same argument.

In order to prove the lemma, it suffices to prove that

RΓ(]Y [†
Ĝ
, ω̃•

]Y [†
Ĝ

) ∼= RΓ(]Y [̂
G
, j†ω̃•

]Y [ ̂
G

).

Indeed, the right-hand side is the same as RΓ(Ṽ , j†ω̃•
Ṽ ) by [1, Section 1.2 (iv)].

For a coherent sheaf F on ]Y [̂G considered as a dagger space with corre-

sponding coherent sheaf F ′ on the rigid space ]Y [̂G, let F̃ be the restriction of

F to the open subspace ]Y [†
Ĝ
. Since the map ]Y [†

Ĝ

j
−→ ]Y [̂G is affinoid and any

section of F̃ is defined via a neighborhood of ]Y [†
Ĝ
in ]Y [̂G, we have a canonical

map

Rj∗F̃ = j∗F̃ → j†F ′.

If F• is a complex of coherent sheaves on ]Y [̂G, with corresponding complexes

F ′•, F̃• defined as above, we get a canonical map

RΓ(]Y [†
Ĝ
, F̃•) → RΓ(]Y [̂G

, j†F ′•).

Let ω̃•
]Y [†

̂
G

be the log de Rham complex of the log morphism

]Y [†
̂G
→ (sp†K, {∗}).

Since ]Y [̂
G

is a partially proper rigid space and ω•
]Y [†

̂
G

is a coherent O]Y [†
̂
G

-

module, we have canonical isomorphisms

Hj(]Y [̂G
, j†Y ω̃

i
]Y [ ̂

G

) ∼= Hj(]Y [†
̂G
, ω̃i

]Y [†
̂
G

|
]Y [†

̂
G

) = Hj(]Y [†
̂G
, ω̃i

]Y [†
̂
G

)

for all i, j, by [7, Thm. 5.1 (a)]. But ]Y [̂G
= ]Y [Ĝ, and therefore ]Y [†

̂G
= ]Y [†

Ĝ
too. Hence,

Hj(]Y [̂G
, j†Y ω̃

i
]Y [ ̂

G

) ∼= Hj(]Y [†
Ĝ
, ω̃i

]Y [†
Ĝ

)

for all i, j. Since we have a canonical map

RΓ(]Y [†
Ĝ
, ω̃•

]Y [†
Ĝ

) → RΓ(]Y [̂G
, j†ω̃•

]Y [ ̂
G

),

we conclude from the first hypercohomology spectral sequence that

RΓ(]Y [̂
G
, j†Y ω̃

•
]Y [ ̂

G

) ∼= RΓ(]Y [†
Ĝ
, ω̃•

]Y [†
Ĝ

),

as required.
The second statement is proved with exactly the same argument, but where

one instead considers the log de Rham complex with respect to the base (K,N).
The proof is complete. �
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In [4, Section 4], an explicit fundamental system of strict affinoid neigh-
borhoods Vλ,η of ]Y [Ĝ in ]Y [P̂ (here 0 < λ, η < 1) is constructed, as well as
canonical morphisms (see [4, p. 251])

Γ(Vλ,η, j
†OVλ,η

) → W †(A)⊗Q,

and therefore morphisms

Γ(Ṽ , j†OṼ ) → W †(A)⊗Q

for any strict neighborhood Ṽ of ]Y [Ĝ in ]Y [P̂. The universal property of the
de Rham complex then gives a map

Γ(Ṽ , j†ω̃•
Ṽ
) → u∗W

†Ω•
U/k[θ]/(θ

2)⊗Q,

where u : U →֒ Y is the smooth locus of Y = SpecA, and this clearly factors
through

(7) Γ(Ṽ , j†ω̃•
Ṽ
) → W †ω̃•

A/k ⊗Q.

The argument used after [4, Eq. (4.28)] can be used verbatim to show that this
factors through a morphism

(8) RΓ(Ṽ , j†ω̃•
Ṽ
) → W †ω̃•

A/k ⊗Q.

Indeed, Ṽ contains some Vλ,η and we can consider the restriction

RΓ(Ṽ , j†ω̃•
Ṽ
) → RΓ(Vλ,η, j

†ω̃•
Vλ,η

).

Given any strict neighborhood Ṽ ′ of ]Y [Ĝ in Ṽ , let us write αṼ ′ : Ṽ ′ ∩ Vλ,η →֒

Vλ,η for the inclusion. Then, by the definition of j†, we have

j†ω̃•
Vλ,η

= lim
−→
Ṽ ′

αṼ ′∗ω̃
•
Ṽ ′∩Vλ,η

,

where the direct limit runs over all strict neighborhoods Ṽ ′ of ]Y [Ĝ in Ṽ .
Therefore,

RΓ(Vλ,η, j
†ω̃•

Vλ,η
) = RΓ(Vλ,η, lim−→

Ṽ ′

αṼ ′∗ω̃
•
Ṽ ′∩Vλ,η

) ∼= lim
−→
Ṽ ′

RΓ(Vλ,η, αṼ ′∗ω̃
•
Ṽ ′∩Vλ,η

),

where the isomorphism is by the quasicompactness of Vλ,η. Now for each Ṽ ′,
one can find a λ′ such that Vλ′,η is a strict affinoid neighborhood of ]Y [Ĝ in

Ṽ ′ ∩ Vλ,η. The restriction to the affinoids Vλ′,η gives a map

RΓ(Vλ,η, j
†ω̃•

Vλ,η
) → lim

−→
λ′

RΓ(Vλ′,η, ω̃
•
Vλ′,η

) ∼= lim
−→
λ′

Γ(Vλ′,η, ω̃
•
Vλ′,η

) → W †ω̃•
A/k⊗Q,

where the isomorphism is because each Vλ′,η is affinoid and the last map is
induced by the morphisms Γ(Vλ′,η,OVλ′,η

) → W †(A)⊗Q constructed in [4,

p. 251]. Precomposing with the restriction RΓ(Ṽ , j†ω̃•
Ṽ
) → RΓ(Vλ,η, j

†ω̃•
Vλ,η

)

then gives the desired morphism.
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If f1, . . . , fs define the normal crossings divisor Ṽ in V , then f1 · · · fs = 0,
and hence f̄1 · · · f̄s = 0. Therefore, d log[f̄1] + · · · + d log[f̄s] = 0 and the
morphism (8) induces a morphism

(9) RΓlog-rig(Y/S0) = RΓ(Ṽ , j†ω•
Ṽ
) → W †ω•

A/k ⊗Q.

Proposition 5.2. The morphisms (8) and (9) for overconvergent semi-stable

frames are isomorphisms in the derived category and do not depend on the

choice of overconvergent semi-stable frame for Y .

Proof. We first prove the independence assertion. Let (F,G,κ) and (F ′, G′,κ′)
be two overconvergent semi-stable frames for Y . Let

F
pr1←−− F ×W F ′ pr2−−→ F ′

be the projections. Then the product

(F ′′, G′′,κ′′) := (F ×W F ′, pr−1
1 (G) + pr−1

2 (G′),κ ⊗ κ′)

is another overconvergent semi-stable frame for Y . Choose strict neighbor-
hoods Ṽ , Ṽ ′ and Ṽ ′′ such that Ṽ ′′ is sent to Ṽ and Ṽ ′ by the respective
projections. By functoriality, the projections induce diagrams

RΓ(Ṽ , j†ω̃•
Ṽ
) RΓ(Ṽ ′′, j†ω̃•

Ṽ ′′) RΓ(Ṽ ′, j†ω̃•
Ṽ ′)

W †ω̃•
A/k ⊗Q

pr∗1 pr∗2

and

RΓ(Ṽ , j†ω•
Ṽ
) RΓ(Ṽ ′′, j†ω•

Ṽ ′′) RΓ(Ṽ ′, j†ω•
Ṽ ′)

W †ω•
A/k ⊗Q,

pr∗1 pr∗2

and we see therefore that the morphisms (8) and (9) do not depend on the
choice of overconvergent semi-stable frame for Y .

To prove that the morphisms are isomorphisms, since we have already shown
independence, we may as well work with the log-Monsky–Washnitzer frame
(Z̃, Ỹ ,κ), as in Section 4 for the overconvergent semi-stable frame for Y (re-
member that Y is affine). We then conclude by Theorem 4.1. �

Theorem 5.3. Let Y be a quasi-projective semi-stable scheme over S0. Then

the overconvergent Hyodo–Kato complex computes the log-rigid cohomology

of Y :

RΓlog-rig(Y/S0) ∼= RΓ(Y,W †ω•
Y/k ⊗Q).

Münster Journal of Mathematics Vol. 13 (2020), 541–571



558 Oliver Gregory and Andreas Langer

Proof. Let Y =
⋃

i∈I Yi be an open covering, and for J = {i0, . . . , it} ⊂ I, let
YJ := Yi0 ∩ · · · ∩ Yit . By choosing a possibly finer covering, we may assume
that YJ = SpecAJ is affine and that AJ = (Ai0)ḡ for some element ḡ ∈ Ai0 ,
where Yi0 = SpecAi0 . It is here that we use the quasi-projectivity hypothesis
(compare the argument in [4, Def. 4.33] and the subsequent discussion). For
each i ∈ J , choose a smooth affine k-scheme Xi = SpecBi such that Yi is
a normal crossings divisor in Xi. We may assume that each Xi is standard
smooth in the sense of [4, Def. 4.33]. Let Fi be a smooth affine W -scheme
lifting Xi, which is again standard smooth, and let Zi be a lifting over W of Yi

which is a normal crossings divisor in Fi (compare with [12, Prop. 11.3]).

Now let Zi0 = Spec Ãi0 and Z ′
i0 = Spec(Ãi0 )g for some lifting g of ḡ, and

let Fi0 = Spec B̃i0 and F ′
i0 = Spec(B̃i0)f for some lifting f of g. Set

E :=
∏

i∈J
i6=i0

Fi.

Then, by the strong fibration theorem, the special frames (YJ , Fi0 × E) and
(YJ , F

′
i0
× E) have isomorphic dagger spaces. See the argument in the proof

of [4, Prop. 4.35]. Since E is standard smooth, we can choose an étale map
E → An

W for some n. Again by the strong fibration theorem, the dagger
spaces associated to (YJ , F

′
i0 × E) and (YJ , F

′
i0 × An

W ) are isomorphic. By
the coordinate change argument in the proof of [4, Prop. 4.35], we may assume
that the map YJ → An

W factors through the zero section Spec k → An
W . Hence,

the dagger space associated to (YJ , F
′
i0 × An

W ) is isomorphic to Q× D̆n, where
D̆ is the open unit dagger disk and Q is the dagger space associated to the
special frame (YJ , F

′
i0
). Using the notation of [4, p. 252], we write the dagger

space associated to (YJ , F
′
i0 ×An

W ) as Q× D̆n =: ]YJ [
†
̂F ′
i0

×An
W
, where ̂F ′

i0
× An

W

denotes the weak formal completion of F ′
i0 × An

W along p.
Now consider the embeddings

YJ →֒
∏

i∈J

Zi →֒ Zi0 ×
∏

j∈J
j 6=i0

Fj →֒ Fi0 × E

and

YJ →֒ Z ′
i0 ×

∏

i∈J
i6=i0

Zi →֒
∑

i∈J

(

Z ′
i ×

∏

j∈J
j 6=i

F ′
j

)

→֒ F ′
i0 × E,

where

Z ′
i :=

{

Zi if i 6= i0,

Z ′
i0

if i = i0,

and likewise for F ′
i . Note that

DJ :=
∑

i∈J

(

Z ′
i ×

∏

j∈J
j 6=i

F ′
j

)

=
(

Z ′
i0 ×

∏

i∈J
i6=i0

F ′
i

)

+
∑

i∈J
i6=i0

(

F ′
i0 × Zi ×

∏

j∈J
j 6=i,i0

Fi

)
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is a normal crossings divisor in F ′
i0 × E, and ]YJ [

†

D̂J
is a normal crossings

divisor in ]YJ [
†

F̂ ′
i0

×E
. Applying the strong fibration theorem and coordinate

change argument as above, we get a commutative diagram of dagger spaces

]YJ [
†

D̂J
]YJ [

†

F̂ ′
i0
×E

]XJ [
†

F̂ ′
i0

×E

MJ Q× D̆n Q̃× D̆n,

≀ ≀ ≀

where the dagger space MJ , which is a normal crossings divisor in Q× D̆n, is
a sum of normal crossings divisors of the following form:

(a) ]YJ [
†

Ẑ′
i0

×D̆n, where ]YJ [
†

Ẑ′
i0

is a normal crossings divisor in Q,

(b) Q× D̆n(m), where D̆n(m) is the divisor in D̆n corresponding to

SpK〈T1, . . . , Tn〉
†/(T1 · · ·Tm).

Let ω•
MJ

denote the logarithmic de Rham complex on the normal crossings
divisor MJ in Q× D̆n, as defined in [8]. We rewrite the comparison morphism
defined in (9) in terms of dagger spaces using Lemma 5.1. Then for the case (a),
we have a map

Γ(]YJ [
†

Ẑ′
i0

×D̆n, ω•
]YJ [

†

Ẑ′
i0

×D̆n) = Γ
(

]YJ [
†

Ẑ′
i0

×D̆n, ω•
]YJ [

†

Ẑ′
i0

⊗ Ω•
D̆n

)

→ Γ
(

]YJ [
†

Ẑ′
i0

, ω•
]YJ [

†

Ẑ′
i0

)

→ W †ω•
AJ/k

⊗Q,

where Ω•
D̆n

is the usual (non-logarithmic) de Rham complex on D̆n, and where

the first map is the projection and the second comes from the comparison
between the log-Monsky–Washnitzer complex and overconvergent Hyodo–Kato
complex constructed in (6). For the case (b), we have a map

Γ(Q× D̆n(m), ω•
Q×D̆n(m)

) = Γ(Q× D̆n(m), ω•
]YJ [

†

F̂ ′
i0

×D̆n(m)
)

= Γ(Q× D̆n(m),Ω•
]YJ [

†

F̂ ′
i0

⊗ ω•
D̆n(m)

)

→ Γ(]YJ [
†

F̂ ′
i0

,Ω•
]YJ [

†

F̂ ′
i0

) → W †Ω•
AJ/k

⊗Q

→ W †ω•
AJ/k

⊗Q,

where Ω•
]YJ [

†

F̂ ′
i0

is the usual de Rham complex on ]YJ [
†

F̂ ′
i0

and the first map is

again the projection. Let sp: ]YJ [
†

D̂J
= MJ → YJ be the specialization map.

Then, by the argument in [4, Eq. 4.32], we have a local version of the above
morphisms and get morphisms of complexes of Zariski sheaves on YJ

sp∗ω
•
]YJ [

†

Ẑ′
i0

×D̆n
→ W †ω•

YJ/k
⊗Q
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and

sp∗ω
•
Q×D̆n(m)

→ W †ω•
YJ/k

⊗Q,

which give rise to a morphism

(10) sp∗ω
•
]YJ [

†

D̂J

= sp∗ω
•
MJ

→ W †ω•
YJ/k

⊗Q

into the overconvergent Hyodo–Kato complex (tensored with Q) of YJ . For
the convenience of the reader, we recall the argument in [4, pp. 253 and 254].
We use the notation as above. Let YJ = SpecAJ with AJ = (Ai0)ḡ, Z

′
i0

=

Spec(Ãi0)g with g a lifting of ḡ, and F ′
i0 = Spec(B̃i0)f with f a lifting of g.

Let U = Spec(AJ )h̄, h a lifting of h̄ in (Ãi0 )g and h̃ a lifting of h in (B̃i0)f .

Let Z ′′
i0 = Spec((Ãi0)g)h and F ′′

i0 = Spec((B̃i0)f )h̃. Then ]U [Ẑ′
i0

is open in

]YJ [Ẑ′
i0

and ]U [F̂ ′
i0

is open in ]YJ [F̂ ′
i0

, hence ]U [Ẑ′
i0

and ]U [F̂ ′
i0

inherit dagger

space structures from ]YJ [
†

Ẑ′
i0

and ]YJ [
†

F̂ ′
i0

. By the strong fibration theorem

applied in the same way as in the section following [4, Eq. 4.32], the dagger

spaces ]U [†
Ẑ′

i0

and ]U [†
Ẑ′′

i0

(resp. ]U [†
F̂ ′

i0

and ]U [†
F̂ ′′

i0

) coincide. This induces the

two morphisms

sp∗ω
•
]YJ [

†

Ẑ′
i0

×D̆n → W †ω•
YJ/k

⊗Q

and

sp∗ω
•
Q×D̆n(m)

→ W †ω•
YJ/k

⊗Q,

which combined give the morphism (10).
We claim, in analogy to [4, Cor. 4.38], that the canonical morphisms

sp∗ω
•
MJ

→ Rsp∗ω
•
MJ

are quasi-isomorphisms. For now we will assume this claim; the proof is post-
poned until Proposition 5.4. Then (10), together with the claim, gives a mor-
phism

(11) Rsp∗ω
•
MJ

→ W †ω•
YJ/k

⊗Q.

Let U = SpecC be affine open in YJ . By applying RΓ(U,−) to (11), we get
from Lemma 5.1 and Proposition 5.2 an isomorphism

RΓ(U,Rsp∗ω
•
]sp−1(U)[†

D̂J

)
∼
−→ RΓ(U,W †ω•

U/k ⊗Q) ≃ W †ω•
C/k ⊗Q,

where the latter isomorphism follows from the fact that Hi(U,W †ωr
U/k) = 0

for all r ≥ 0, i > 0. This is the semi-stable analogue of [4, Prop. 1.2 (b)]
and is derived from the smooth case by considering the graded quotients of
the weight filtration on the Čech complex associated to W †ωr

C/k, as in the
proof of Proposition 3.2. The above isomorphism shows that (11) is already
an isomorphism.
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Now, as we range through the subsets J ⊂ I, we get an augmented simplicial
k-scheme θ : Y• := {YJ}J⊂I → Y . Let

D̃J :=
∑

i∈J

(

Zi ×
∏

j∈J
j 6=i

Fj

)

,

which is a normal crossings divisor in Fi0 × E. Again by the strong fibration

theorem, the dagger tubes ]YJ [
†
ˆ̃DJ

and ]YJ [
†

D̂J
are isomorphic. We get a simpli-

cial object of special frames {(YJ , D̃J)}J⊂I , and this gives rise to a simplicial
object of dagger spaces

M• :=
{

]YJ [
†
ˆ̃DJ

}

J⊂I
= {MJ}J⊂I .

The quasi-isomorphisms (11) glue to give a quasi-isomorphism of simplicial
complexes on Y•

(12) Rsp∗ω
•
M•

∼
−→ W †ω•

Y•/k
⊗Q.

Therefore,

Rθ∗Rsp∗ω
•
M•

∼= Rθ∗W
†ω•

Y•/k
⊗Q ∼= W †ω•

Y/k ⊗Q,

and we deduce that

RΓlog-rig(Y/S0) = RΓ(Y,Rθ∗Rsp∗ω
•
M•

) ∼= RΓ(Y,W †ω•
Y/k ⊗Q),

as desired. �

It therefore remains to prove the following proposition.

Proposition 5.4. Let MJ be the dagger space considered in the proof of The-

orem 5.3. Then the canonical morphism

sp∗ω
•
MJ

→ Rsp∗ω
•
MJ

is a quasi-isomorphism.

The proof will occupy us for the rest of the section. By using the Mayer–
Vietoris exact sequence, it is easy to see that it suffices to prove the proposition
separately for the two cases (a) and (b) above. That is, it suffices to prove that

sp∗ω
•
]YJ [

†

Ẑi0

×D̆n → Rsp∗ω
•
]YJ [

†

Ẑi0

×D̆n

and

sp∗ω
•
Q×D̆n(m)

→ Rsp∗ω
•
Q×D̆n(m)

are quasi-isomorphisms. We recall from the proof of Theorem 5.3 that we have

ω•
]YJ [

†

Ẑi0

×D̆n = ω•
]YJ [

†

Ẑ′
i0

⊗ Ω•
D̆n

and

ω•
Q×D̆n(m)

= Ω•
]YJ [

†

F̂ ′
i0

⊗ ω•
D̆n(m)

.
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The proof for case (a) is easy. Indeed, in [4, Prop. 4.37 and Cor. 4.38], it
is not needed that Q is a smooth affinoid dagger space. What is needed is
that Ωp

Q is a locally free OQ-module and that Hi(Q,Ωp
Q) vanishes for i > 0

(Tate-acyclicity). Both properties hold for the locally free (Ãi0 )
†
g ⊗Q-module

ωp

]YJ [
†

Ẑi0

as well; indeed,

Hi(]YJ [
†

Ẑi0

, ωp

]YJ [
†

Ẑi0

) = 0

for i > 0 because ]YJ [
†

Ẑi0

is affinoid. Hence, we can replace Q by ]YJ [
†

Ẑi0

and

Ωp
Q by ωp

]YJ [
†

Ẑi0

in the proofs of [4, Prop. 4.37, Cor. 4.38 and Lem. 4.44–4.47]

to obtain the desired quasi-isomorphism

Rsp∗ω
•
]YJ [

†

Ẑi0

×D̆n
∼= sp∗ω

•
]YJ [

†

Ẑi0

×D̆n
.

Now we will treat case (b), which is more subtle. SinceQ is an open subspace

in the smooth affinoid dagger space Q̃, it is enough to show that

Rsp∗ω
•
Q̃×D̆n(m)

∼= sp∗ω
•
Q̃×D̆n(m)

.

Note that we have

ω•
Q̃×D̆n(m)

= Ω•
Q̃
⊗ ω•

D̆n(m)
.

We have the following analogues of [4, Lem. 4.45 and 4.47].

Lemma 5.5. Let A be a smooth dagger algebra, Q = SpA the associated

affinoid dagger space, and Dn(m) the normal crossings divisor on the closed

unit dagger n-ball Dn associated to

SpK〈T1, . . . , Tn〉
†/(T1 · · ·Tm).

Let

Λn :=
(

A⊗K ω0
Dn(m) → A⊗K ω1

Dn(m) → A⊗K ω2
Dn(m) → · · ·

)

be the complex with obvious differential. Let

dt := dimHt(ω•
K〈T1,...,Tn〉†/(T1···Tm))

be the dimension of the log-Monsky–Washnitzer cohomology of k[T1, . . . , Tn]/
(T1 · · ·Tm). Then Λn is quasi-isomorphic to the complex (with zero differen-

tials)

A
0
−→ Ad1

0
−→ Ad2

0
−→ · · · .

Lemma 5.6. With the same notation as above, let

Λ̆n :=
(

A⊗K ω0
D̆n(m)

→ A⊗K ω1
D̆n(m)

→ A⊗K ω2
D̆n(m)

→ · · ·
)

be the analogue complex for D̆n and its closed normal crossings divisor D̆n(m).

Then Λ̆n is quasi-isomorphic to the complex

A
0
−→ Ad1

0
−→ Ad2

0
−→ · · · .
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We can now follow the proof of [4, Prop. 4.37]. Let D̆n =
⋃∞

i=1 Ui be

a union of dagger balls of ascending radius, and let D̆n(m) =
⋃∞

i=1 Ui(m)
be the corresponding normal crossings divisors. For notational brevity, write
ωq := ω

q

Q̃×Ui(m). Since Q̃× Ui(m) is affinoid, Hp(Q̃× Ui(m), ωq) vanishes for

p ≥ 1 and RΓ(Q̃× D̆n(m), ωq) is quasi-isomorphic to the global sections of the
complex

∞
∏

i=1

ωq(Q̃ × Ui(m)) →

∞
∏

i=1

ωq(Q̃× Ui(m)),
∏

si 7→
∏

(si − si+1).

Note that

ωq

Q̃×Ui(m)
=

⊕

ℓ

Ωℓ
Q̃
⊗K ωq−ℓ

Ui(m).

Then the complexH0(Q̃× Ui(m), ω•
Q̃×Ui(m)

) is represented by the double com-
plex with components

Cp,q(Ut(m)) = H0(Q̃,Ωp

Q̃
)⊗K H0(Ui(m), ωq).

Therefore, the morphism of double complexes

∞
∏

i=1

C•,•(Ui(m)) →

∞
∏

i=1

C•,•(Ui(m))

given on the (p, q)-entry by

∞
∏

i=1

Cp,q(Ui(m)) →

∞
∏

i=1

Cp,q(Ui(m)),
∏

si 7→
∏

(si − si+1),

induces a map of total complexes with kernel H0(Q̃× D̆n(m), ω
•
Q̃×D̆n(m)) and

cokernel H1(Q̃× D̆n(m), ω
•
Q̃×D̆n(m)). It follows from Lemma 5.5 that the total

complex associated to C•,•(Ui(m)) is quasi-isomorphic to

⊕

t

(H0(Q̃,Ω•
Q̃
))dt

with the correction d0 = 1. Analogously, it follows from Lemma 5.6 that
H0(Q̃ × D̆n(m), ω

•
Q̃×D̆n(m)) is quasi-isomorphic to

⊕

t

(H0(Q̃,Ω•
Q̃
))dt =

(

⊕

t

(H0(Q̃,Ω0
Q̃
))dt →

⊕

t

(H0(Q̃,Ω1
Q̃
))dt → · · ·

)

.

Finally, H1(Q̃ × D̆n(m), ω
•
Q̃×D̆n(m)) is quasi-isomorphic to the total complex

of the triple complex

H0(Q̃ × D̆n(m),Ω•
Q̃
⊗ ω•

D̆n(m)
) →

∞
∏

i=1

C•,•(Ui(m)) →
∞
∏

i=1

C•,•(Ui(m)),
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which is quasi-isomorphic to the total complex of the double complex

⊕

t

(H0(Q̃,Ω•
Q̃
))dt →

∞
∏

i=1

⊕

t

H0(Q̃,Ω•
Q̃
)dt →

∞
∏

i=1

⊕

t

H0(Q̃,Ω•
Q̃
)dt ,

∏

si 7→
∏

(si − si+1)

(we note that the direct sums are finite, since dt = 0 for t greater than twice
the dimension).

Since the double complex is acyclic with regard to the horizontal differential,
the total complex is acyclic too, and hence H1(Q̃× D̆n(m), ω

•
Q̃×D̆n(m)) is also

acyclic. This proves [4, Prop. 4.37 and Cor. 4.38] for ω
•
Q̃×D̆n(m), and hence we

conclude that Proposition 5.4 holds.

6. The monodromy operator

We follow the argument in [18] but in the more general setting that Y need
not be proper.

Let Y be a quasi-projective semi-stable scheme over S0. Define a double
complex

B†•,• :=
W †ω̃i+j+1

Y/k

PjW †ω̃i+j+1
Y/k

,

with the differential B†i,j → B†i+1,j given by (−1)jd and the differential
B†i,j → B†i,j+1 given by ω 7→ ω ∧ θ. Let B†• be the total complex of B†•,•.
Then B†• ⊗ Q is the complex B†•

Q considered in the proof of Theorem 4.1 in
the log-Monsky–Washnitzer setting. Let Φ denote the map induced by pi+1F
on B†i,j . Define also a map ν by requiring that (−1)i+j+1ν : B†i,j → B†i−1,j+1

is the projection. This induces a map on B†•, which we also call ν. The
same argument as in the proof of Theorem 4.1 shows that the natural map
W †ω̃•

Y/k → B†• factors through Θ: W †ω•
Y/k → B†•, and ΘΦ = ΦΘ. One also

has that Θ ⊗Q is a quasi-isomorphism. Indeed, this is a local question on Y ,
so we may reduce to the case that Y is a semi-stable affine scheme over S0,
and this case was already shown in the proof of Theorem 4.1.

Proposition 6.1. The map ν : B†•,• → B†•,• induces a nilpotent operator N
on

H∗(Y,B†•
Q ) ∼= H∗(Y,W †ω•

Y/k ⊗ Q) ∼= H∗
log-rig(Y/S0),

which coincides with the monodromy operator

N : H∗
log-rig(Y/S0) → H∗

log-rig(Y/S0)

defined in [8, Section 5.4].

Proof. Let us define another double complex by

C†i,j := B†,i−1,j ⊕ B†i,j

for i, j ≥ 0, with the differential C†i,j → C†i+1,j given by

(ω1, ω2) 7→ ((−1)jdω1, (−1)jdω2)

Münster Journal of Mathematics Vol. 13 (2020), 541–571



Overconvergent de Rham–Witt cohomology for semi-stable varieties 565

and the differential C†i,j → C†i,j+1 given by

(ω1, ω2) 7→ (ω1 ∧ θ + νω2, ω2 ∧ θ).

Let C†• be the total complex of C†•,•. Then we get a natural morphism

Ψ : W †ω̃•
Y/k → C†•

fitting into the following diagram of short exact sequences:

0 W †ω•
Y/k[−1] W †ω̃•

Y/k W †ω•
Y/k 0

0 B†•[−1] C†• B†• 0.

− ∧ θ

− ∧ θ

Θ[−1] Ψ Θ

Tensoring by Q gives the diagram

0 W †ω•
Y/k ⊗Q[−1] W †ω̃•

Y/k ⊗Q W †ω•
Y/k ⊗Q 0

0 B†•
Q [−1] C†• ⊗Q B†•

Q 0,

− ∧ θ

− ∧ θ

Θ ⊗ Q[−1]≀ Ψ ⊗ Q Θ ⊗ Q≀

where the outermost vertical arrows are quasi-isomorphisms by the local argu-
ment given in the proof of Theorem 4.1, and hence we conclude that Ψ⊗Q is
also a quasi-isomorphism. By construction, this shows that the map

N : H∗(Y,W †ω•
Y/k ⊗Q) → H∗(Y,W †ω•

Y/k ⊗Q)

induced by ν : B†•,• → B†•,• is exactly the connecting homomorphism on co-
homology associated to the top short exact sequence.

It therefore suffices to prove that the connecting homomorphism gives the
monodromy operator on H∗

log-rig(Y/S0). Let Y• be the simplicial scheme and

M• := ]Y•[
†
D̂•

the simplicial dagger space as constructed in the proof of The-
orem 5.3. Then we have a diagram of short exact sequences of complexes of
simplicial sheaves

0 Rsp∗ω
•
M•

[−1] Rsp∗ω̃
•
M•

Rsp∗ω
•
M•

0

0 W †ω•
Y•/k

⊗Q[−1] W †ω̃•
Y•/k

⊗Q W †ω•
Y•/k

⊗Q 0,

− ∧ θ

− ∧ θ

≀ ≀

where the outermost vertical arrows are the quasi-isomorphisms (12), and the
middle arrow is constructed as follows.

We rewrite the morphism (7) in terms of dagger spaces for each J :

Γ(MJ , ω̃
•
MJ

) → W †ω̃•
YJ/k

⊗Q.

Then applying the argument after [4, Eq. 4.32] gives a local version

sp∗ω̃
•
MJ

→ W †ω̃•
YJ/k

⊗Q.
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The proof of Proposition 5.4 holds verbatim with sp∗ω
•
MJ

replaced by sp∗ω̃
•
MJ

to show that the canonical morphism sp∗ω̃
•
MJ

→ Rsp∗ω̃
•
MJ

is a quasi-iso-
morphism. This then defines the middle arrow in the diagram, which is there-
fore a quasi-isomorphism. The monodromy operator on the log-rigid coho-
mology of Y is, by definition, the connecting homomorphism on cohomology
associated to the top short exact sequence.

7. Comparison with log-crystalline cohomology in the
projective case

We prove a semi-stable analogue of a comparison, obtained for smooth pro-
jective varieties in [15] between overconvergent and usual de Rham–Witt co-
homology, for Hyodo–Kato cohomology:

Theorem 7.1. Let Y be a projective semi-stable scheme over S0. Then the

canonical map

H∗(Y,W †ω•
Y/k) → H∗(Y,Wω•

Y/k)

is an isomorphism of W (k)-modules of finite type.

For the assumption of (quasi-)projectivity, see the remark below Theo-
rem 1.1.

First we need the following lemma.

Lemma 7.2. Under the assumptions of Theorem 7.1, there is a commutative

diagram

H∗(Y,W †ω•
Y/k) H∗(Y,Wω•

Y/k)

H∗(Y,W †ω•
Y/k ⊗Q) H∗(Y,Wω•

Y/k ⊗Q)

H∗
log-rig(Y/S0) H∗

log-cris((Y,M)/(W (k),W (L)))⊗Q.
∼

≀ ≀

Here M is the log structure on Y given by OY ∩ u∗O
×
U , where u : U →֒ Y is a

smooth dense open, and W (L) is the canonical lifting of the log structure L on

Spec k given by 1 7→ 0 (previously denoted by S0).

Proof. We need to show that the lower square commutes. The isomorphism
on the left and right are the comparisons between log-rigid and overconvergent
Hyodo–Kato (resp. between log-crystalline and Hyodo–Kato cohomology [10,
Thm. 4.19]). These isomorphisms also hold if Y is only quasi-projective. The
lower horizontal isomorphism is the logarithmic analogue of a comparison be-
tween rigid and crystalline cohomology defined in the proof of [1, Thm. 1.9].
If there exists a global semi-stable frame, the analogy with Berthelot’s proof
is clear, otherwise one has to proceed by simplicial methods. Using Grosse-
Klönne’s definition of log-rigid cohomology as the cohomology of simplicial
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dagger spaces [8, 1.5] one obtains a canonical map, by using p-adic formal
schemes and rigid spaces instead of weak formal schemes and dagger spaces, to
Shiho’s analytic cohomology which is isomorphic to log-convergent cohomology
by Shiho’s log convergent Poincaré lemma [19, Cor. 2.3.9]. Using the isomor-
phism between log-convergent and log-crystalline cohomology [19, Thm. 3.1.1],
one obtains the lower horizontal arrow for any semi-stable Y , not necessarily
proper. If Y is proper, then the log-rigid cohomology is isomorphic to analytic,
respectively, log-convergent cohomology by [8, Thm. 5.3], and hence the lower
horizontal arrow is an isomorphism for Y proper semi-stable.

Hence, all maps in the lower square are defined for quasi-projective varieties
as well. Using the Mayer–Vietoris sequence for cohomology, we may assume
that Y is affine. Since the lower horizontal map in the diagram is independent
from the choice of embeddings into log-smooth (weak) formal schemes, we may
assume that H∗

log-rig(Y/S0) is given by the logarithmic Monsky–Washnitzer
cohomology H∗

log-MW(Y/K). In this case the map is given by a morphism of
complexes

ω•
Ỹ † → ω•

ˆ̃Y
,

i.e., by taking p-adic completion of the logarithmic Monsky–Washnitzer com-
plex. The comparison maps to the overconvergent and usual Hyodo–Kato
complexes evidently commute with taking p-adic completions. This proves the
lemma. �

Next we show the analogue of [15, Prop. 2.2].

Proposition 7.3. Under the assumptions of Theorem 7.1, we have quasi-

isomorphisms

W †ω•
Y/k/p

n ∼= Wω•
Y/k/p

n ∼= Wnω
•
Y/k

for all n ∈ N.

Only the first quasi-isomorphism requires a proof; the second quasi-iso-
morphism follows from [10, Cor. 4.5].

This is a Zariski-local question, so we may assume that Y is affine. Moreover,
by a result of Kedlaya [13, Thm. 2], we may assume that Y = SpecB is finite
étale and free over SpecA = Spec k[T1, . . . , Td]/(T1 · · ·Tr) for some r.

We note that [15, Prop. 2.3] is based on [5, Cor. 2.46] and does not need
A being a smooth k-algebra, hence we conclude that W †(B) is a finite étale
W †(A)-algebra and free as a W †(A)-module.

The proof of [4, Prop. 1.9] transfers verbatim to the Hyodo–Kato com-
plexes and extends the étale base change for the Hyodo–Kato complexes in
[17, Prop. 3.7] to the overconvergent setting, hence we have

W †ωℓ
A/k ⊗W †(A) W

†(B)
∼
−→ W †ωℓ

B/k.

Let κA : Ã† = W (k)〈T1, . . . , Td〉
†/(T1 · · ·Tr) → W †(A) be the canonical

map obtained by sending Ti to [Ti] for i = 1, . . . , d. Note that [T1 · · ·Tr] =
[T1] · · · [Tr] is zero in W (A), hence κA is well defined. By reproducing the
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argument before [15, Prop. 2.5], we conclude that the above map extends
uniquely to

κB : B̃† → W †(B)

(note that this map is used to construct the comparison morphisms (5) and
(6)). Then we have the following proposition.

Proposition 7.4. Let B be finite étale and free over A = k[T1, . . . , Td]/
(T1 · · ·Tr). Then there is a decomposition of W †ω•

B/k into subcomplexes

W †ω•
B/k = W †ωint •

B/k ⊕W †ωfrac •
B/k ,

where W †ωfrac •
B/k is acyclic and W †ωint •

B/k is isomorphic to ω•
B̃† via the morphism

induced by

κB : ω•
B̃† → W †ω•

B/k.

Proof. It is enough to treat the case A = B; the argument for this is the same
as in the proof of [15, Prop. 2.5]. Indeed,

W †ωℓ
B/k

∼= W †ωℓ
A/k ⊗W †(A) W

†(B)

by étale base change. Let b1, . . . , bm be an A-module basis of B and lift these to
an Ã†-module basis u1, . . . , um of B̃†. Then κB(u1), . . . , κB(um) is a W †(A)-
module basis of W †(B). Therefore,

W †ωℓ
B/k

∼= W †ωℓ
A/k ⊗Ã† B̃

†.

If W †ω•
A/k decomposes as in the statement of the proposition, then we obtain

a decomposition

W †ω•
B/k = W †ωint•

B/k ⊕W †ωfrac •
B/k

by tensoring the corresponding decomposition for A with B̃†. The same proof
as that of [4, Thm. 3.19] shows that if W †ωfrac •

A/k is acyclic, then W †ωfrac •
B/k

is acyclic. It therefore suffices to prove the proposition for the case A = B.
For this we use the description of the de Rham–Witt complex of a (Laurent-)
polynomial algebra given in [2, Section 10.4].

For a Z(p)-algebra R, any element ω in WnΩ
ℓ
R[T±1

1 ,...,T±1
d

]/R
can be uniquely

written as a finite sum

(13) ω =
∑

k,P

e(ξk,P , k,P≤ρ)

ℓ
∏

j=ρ+1

d log
(

∏

i∈Ij

[Ti]
)

,

where k ranges over the weight functions k : [1, d] → Z[ 1p ] ∪ {∞} satisfying

properties (i), (ii), (iii) in [2, Section 10.4], and P = {I0, I1, . . . , Iρ, Iρ+1, . . . , Iℓ}
is a disjoint partition of I = supp k, such that P≤ρ = {I0, I1, . . . , Iρ} and ρ
is the integer denoted by ρ2 in [2, Section 10.4], I0 is possibly empty and
e(ξk,P , k,P≤ρ) is a basic Witt differential of type Case 1, Case 2, Case 3 given
in [14, Eq. 2.15–2.17] (but where the exponents of the Ti for i occurring in Ij
for 0 ≤ j ≤ ρ can be negative).

Consider now the log-scheme Spec(A,Nr), where Nr ∋ ei 7→ Ti, 1 ≤ i ≤ r,
over the trivial base Spec(k, ∗). Then the complex WΛ•

(A,Nr)/(k,∗), defined
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in [17], can be described as follows (our description differs from the description
in [17] but is equivalent): any ω in WΛℓ

(A,Nr)/(k,∗) has a unique expression as
a convergent sum

ω =
∑

k,P

e(ξk,P , k,P≤ρ)

ℓ
∏

j=ρ+1

d log
(

∏

i∈Ij

[Ti]
)

,

as in (13), where for any given m, the following hold:

• ξk,P ∈ V mW (k) = pmW (k) for all but finitely many k.
• All weight functions take nonnegative values, i.e., on I0 ∪· · · ∪ Iρ, they

take values in Z≥0[
1
p ].

• [1, r] 6⊂ Ij for any j = 0, . . . , ρ, and for any i occurring in Ij for
j = ρ+ 1, . . . , ℓ, we have i ∈ [1, . . . , r].

It is clear from this description that we get a decomposition

WΛ•
(A,Nr)/(k,∗) = WΛint•

(A,Nr)/(k,∗) ⊕WΛfrac •
(A,Nr)/(k,∗),

given by integral and purely fractional weights, and that the fractional part is
acyclic, as in the case of (Laurent-) polynomial algebras [2, Thm. 10.13].

Now we apply [17, Section 7.2]. LetWmΛ̃• :=WmΛ•
(A,Nr)/(k,∗) andWmΛ• :=

WmΛ•
(A,Nr)/(k,N) = WmΛ•

(A,Nr)/S0
, which is isomorphic to the Hyodo–Kato

complex Wmω•
Y/k by the proof of Proposition 3.3. Then we have a short exact

sequence (see [17, Lem. 7.4])

0 −→ WmΛ•−1 ∧θm−−−→ WmΛ̃• −→ WmΛ• −→ 0,

where θm := d log[T1] + · · · + d log[Tr]. This implies that any element ω in
WmΛℓ can be written uniquely as a sum

(14) ω =
∑

k,P

e(ξk,P , k,P≤ρ)

ℓ
∏

j=ρ+1

d log
(

∏

i∈Ij

[Ti]
)

with the following properties:

• [1, r] 6⊂ Ij for any j = 0, . . . , ℓ; ρ is equal to ρ2 in [2, Section 10.4].
• For all j = ρ+ 1, . . . , ℓ we have Ij ⊂ {1, . . . , r}.
• e(ξk,P , k,P≤ρ), as before.

From the definitions it is clear that we again have a decomposition

WmΛ• = WmΛint • ⊕WmΛfrac •,

and the fractional part is acyclic. Passing to the projective limit and overcon-
vergent subcomplexes, we obtain decompositions

WΛ• = WΛint • ⊕WΛfrac •

and

W †Λ• = W †Λint • ⊕W †Λfrac •,
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and the fractional parts are acyclic subcomplexes (the acyclicity is inherited
from the case of polynomial algebras). Hence, we have the desired decomposi-
tion

W †ω•
Y/k = W †ωint •

Y/k ⊕W †ωfrac •
Y/k

in the case that Y = Spec k[T1, . . . , Td]/(T1 · · ·Tr). It is evident that W
†ωint•

Y/k
is isomorphic to ω•

Ã†
. �

Since the W †ωℓ
Y/k and Wωℓ

Y/k are p-torsion-free [10, Cor. 4.5], we conclude

that W †ωfrac •
Y/k ⊗ Z/pn is acyclic too. It is clear that ω•

B̃† ⊗Z/pn is isomorphic

to ω•
ˆ̃B
⊗ Z/pn. This concludes the proof of Proposition 7.3.

Finally, since

lim
←−
n

Hi(Y,W †ω•
Y/k/p

n) = lim
←−
n

Hi(Y,Wnω
•
Y/k) = Hi(Y,Wω•

Y/k),

where the last equality holds because all Hi(Y,Wnω
•
Y/k) are of finite length

if Y is proper [10, Section 3.2] and Hi(Y,Wω•
Y/k) are W (k)-modules of finite

type, we can apply the arguments in [15, p. 1392] to conclude that

H∗(Y,W †ω•
Y/k)

∼= H∗(Y,Wω•
Y/k).

This proves Theorem 7.1. �
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