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Almost one-to-one extensions of Cantor
minimal systems and order embeddings
of simple dimension groups
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(Communicated by Joachim Cuntz)

Abstract. Suppose 7 is an almost one-to-one factor map of Cantor minimal systems from
(X, ¢) to (Y,9). Then it is known that (1) the induced map 7* is an order embedding of
KO(Y, 9) to K%(X, 1), (2) the cokernel of 7%, K9(X, ¢)/m* (K°(Y, 1)), is torsion free and (3)
the induced affine map # from the state space S(K%(X, #)) to the state space S(K°(Y; 1))
is surjective and sends ex S(K°(X, #)), the set of all extreme points in S(K°(X, ¢)), onto
ex S(K9(Y,4)). In this paper we will show the dynamical realization problem of dimension
groups by the following: Suppose G and H are simple dimension groups satisfying that (i) an
injective unital order homomorphism ¢ : H — G is an order embedding, (ii) the cokernel of ¢,
G/u(H), is torsion free and (iii) an induced affine map ¢* of state spaces from S(G) to S(H)
is surjective and ¢*(ex S(G)) = exS(H). Then there exist Cantor minimal systems (X, ¢)
and (Y,%), an almost one-to-one factor map 7 : X — Y and a unital order isomorphism
a: K9%X,¢) — G and 8 : K°(Y,v) — H such that (1), (2) and (3) above and con* = 10f3
hold. This is a generalization of the results in [4].

1. INTRODUCTION

A topological dynamical system (Y1) is called a Cantor minimal system if
Y is the Cantor set (i.e., a compact totally disconnected metric space with no
isolated points) and ¢ is a homeomorphism on Y acting minimally (i.e., every
1p-orbit is dense in Y, or equivalently, the only closed w-invariant sets are Y
and the empty set.).

Let (Y, 1) be a Cantor minimal system, C(Y,Z) be the set of integer-valued
continuous functions on Y and By, := {f — foy | f € C(Y,Z)}. We regard
C(Y,Z) as an abelian group with point-wise addition. Then By, is a subgroup
of C(Y,Z). We define an ordered abelian group with a positive cone

K°(Y,¢) == C(Y,Z)/ By,
E°(Y, )" ={[fle K°(V,¢) | f 20, f € C(Y,Z)},
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142 FUMIAKI SUGISAKI

where [f] is the coset of f € C(Y,Z) in K°(Y,%). In the case where f is
a constant function 1, we call [1] the distinguished order unit of K°(Y,1).
In [6], Herman, Putnam and Skau showed that K°(Y,) is an acyclic (i.e.,
K°(Y,4) % Z) simple dimension group and every acyclic simple dimension
group arises from Cantor minimal systems. A triple (G, G",u), where G is
a dimension group, G its positive cone and wu its distinguished order unit,
is called a dimension group triple. Two dimension group triple (G,G*,u)
and (H, HY,v) are unital order isomorphic if there is a group isomorphism
¢ : G — H such that «(G*) = H" and «(u) = v. In [3], Giordano, Putnam
and Skau showed that the unital order isomorphic class of a dimension group
triple (K°(Y,v), K°(Y,%)*,[1]) is a complete invariant of the strong orbit
equivalence class of (Y, ).

Given a dimension group triple (G, GT,u), a state w on G is a group homo-
morphism w : G — R such that w(GT) C Ry and w(u) = 1. Let S(G) denote
the set of all states of G. Then S(G) is a metrizable Choquet simplex, that is,
a compact convex metrizable space with the property that for any pu € S(G),
there exists a unique probability measure 7 on S(G) with 7(exS(G)) = 1,
where ex S(G) is the set of all extreme points in S(G), such that for any linear
functional f on S(G),

f(lj‘) B ~/1/€exS(G) f(y) dT(V).
We write p = ||

veexS(G) Y dr(v). (See [8] and [2].) If G = K°(Y, %), there
is a bijection between S(K°(Y,%)) and the set of all ¥-invariant probability
measures on Y, M (Y). In fact, define & : My (Y) — S(K°(Y,v)) as

()] = / fdu,  feCY,z).

Then & is an affine isomorphism ([6, Thm. 5.4]).

Suppose (X, ¢) and (Y, 1)) are topological dynamical systems. A continuous
map 7 : X — Y is called a factor map if 7 is surjective and mo ¢ = p o . We
say a factor map 7 is almost one-to-one if the set {z € X | #r 'n(x) =1} is
a residual set (i.e., the complement of a set of first category.). Then we call
(Y,9) an almost one-to-one factor of (X, ), or (X,d) an almost one-to-one
extension of (Y,1). In the case where (X, ¢) is minimal, it suffices to verify
the existence of x satisfying #r n(z) = 1.

Suppose that (X, ¢) and (Y, ) are Cantor minimal systems and 7 : X — Y
is a factor map. Define 7* : K°(Y,¢) — K°(X, ¢) as

T [f] = [f om].

By [5, Prop. 3.1], #* is an order embedding, that is, an injective unital order
homomorphism with the property that [f] € K°(Y, )T if and only if 7*[f] €
K°(X,6)".

Suppose that (X, ¢) and (Y, ) are topological dynamical systems assuming
that both transformation are homeomorphisms and = : X — Y is a factor
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ALMOST ONE-TO-ONE EXTENSIONS OF CANTOR MINIMAL SYSTEMS 143

map. Define 7 : My(X) = My(Y) as
F(p) =port, pe My(X).

Then 7 is a surjective affine homomorphism ([1, Prop. 3.2 and 3.11]) and 7
sends ¢-invariant ergodic measures, ex My(X) (extreme points of My(X)),
onto -invariant ergodic measures, ex My (Y). Indeed, suppose that E is a
-invariant Borel subset of Y and g € ex My(X). Since ¢ and 3 are homeo-
morphisms and

mogon T (E) = poron(B) = y(E) =
rog on ! (B) = ¢ omor}(B) =y \(E > E,

we have ¢ o 7~ (E) C 7 YE), ¢t on I (E) C 7 }(E) and hence ¢ o
7 YE) = 7 Y(E). Therefore 7~ }(E) is ¢-invariant set and p is ergodic,
we have pu(7~1(E)) =0 or 1. So 7(u) is also ergodic.

Suppose (Y,4) is a Cantor minimal system. It is not hard to show (The-
orem 3.1) that if there are a Cantor minimal system (X, ¢) and an almost
one-to-one factor map 7 : (X, ¢) — (Y, ), then

(1) 7 : K%Y,9y) — K°(X,¢) is an order embedding,

(2) the cokernel of 7, K°(X,¢)/n*(K°(Y,)), is torsion free,

(B) T+ My(X) — My(Y) is a surjective affine homomorphism and

ﬁ'(eXM¢(X)) = eXMw(Y).
The condition (3) is equivalent to
(3) 7:S(KYX,¢)) = S(K°(Y,)) defined by 7 (i) := por* is a surjective
affine homomorphism and #(ex S(K°(X, ¢))) = exS(K°(Y, 1)).
Then we have a problem of its converse, which is called the dynamical realiza-
tion problem of dimension groups, as follows. Given a Cantor minimal system
(Y, ) and a simple dimension group G satisfying that

(i) there is an order embedding ¢ : K°(Y, %) — G,
(i) G/u(K°(Y,)) is torsion free,
(iii) ¢* : S(G) — S(KY(Y, %)) defined by t*(u) := p o ¢ is a surjective affine
homomorphism and ¢*(ex S(GQ)) = ex S(K°(Y,)).
Then does there exist a Cantor minimal system (X, ¢) such that the following
statements hold?

(a) There is an almost one-to-one factor map 7 : (X, ¢) — (Y, ),
(b) there is a unital order isomorphism « : K°(X, ¢) — G such that con* = ¢
holds.

In [4], Giordano, Putnam and Skau showed the dynamical realization problem
by assuming (i), (ii) above and the order dense condition. For an order em-
bedding ¢ : H — G of dimension groups, we say t(H) is order dense in G if for
any g,g" € G with g < ¢’, there is h € H such that g < ¢(h) < ¢’. Tt is known
that «(H) is order dense in G if and only if ¢* is injective ([4, Prop. 1.1]). So
the order dense condition satisfies (iii) above.
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We remark that by Proposition 2.3, ¢ is an order embedding if and only if ¢*
is surjective. Moreover, if 1* is affine and sends ex S(G) onto ex S(K°(Y,v)),
then ¢* is surjective. So the conditions (i) and (iii) are equivalent to:

(iv) ¢: K%Y,%) — G is an injective unital order homomorphism and ¢* :
S(G) — S(K°(Y,)) is an affine homomorphism so that t*(ex S(G)) =
ex S(KO(Y, ).

In this paper we will show the following.

Theorem 1.1. In the situations (ii) and (iv) above, there exists a Cantor
minimal system (X, @) such that the conditions (a) and (b) above hold.

We remark that the assumption (iv) (or (iii)) is important. In fact we
construct K°(Y, 1) and G satisfying the conditions (i) and (ii) but not (iii)
(Example 5.1) and hence we cannot do the dynamical realization in this case.

By Theorem 1.1 and Theorem 3.1 it is easy to check the following corollaries:

Corollary 1.2. Suppose that (Y,v) is a uniquely ergodic Cantor minimal
system and G is a simple dimension group satisfying the assumptions (i) and
(ii) above. Then there exists a Cantor minimal system (X, ¢) such that the
conditions (a) and (b) above hold.

Corollary 1.3. Suppose that G and H are acyclic simple dimension groups
and v : H — G is an injective unital order homomorphism. Then the following
statements are equivalent:
(1) There exist Cantor minimal systems (X, ¢) and (Y, ) such that
e there is an almost one-to-one factor map 7 : (X, ¢) — (Y, ),

e there are unital order isomorphisms o : K°(X,¢) — G and f3 :
K°(Y,v) — H such that ao 7 = 10 3 holds.

KO(Y, )" K°(X, ¢)

Blﬁ 0 :la

HC G

L

(2) G/u(H) is torsion free and * : S(G) — S(H) defined by v* () := por
is an affine homomorphism and *(exS(G)) = exS(H).

Basically, we use notations and definitions in [6] and [3]. Here we will
introduce some notations and definitions in this paper. Suppose B = (V, E, >)
is a properly ordered (also called simply ordered) Bratteli diagram.

e Let r: E — V denote the range map and s : E — V denote the source
map. Namely, e € E,, connects between s(e) € V,,_1 and r(e) € V,,.

o Let MM = [Mq[ﬁ]] denote the n-th incidence matrix of B (i.e., M s
the number of edges connecting between u € V,, and v € V,,_1). We
also write B = (V, E,{M™},>). Let M = (Ml).cv, denote the
v’s column vector of M and M = (Mq[ﬁ])vevn,l denote the u’s row
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ALMOST ONE-TO-ONE EXTENSIONS OF CANTOR MINIMAL SYSTEMS 145

vector of MM, For n > k, let M) (or M™F+1) denote the product
of incidence matrices MMprln=1 ... prle+1,

e For a sequence cg = 0 < ¢ < cg < ¢c3 < --- in Zy, we say that a
Bratteli diagram B’ = (V' E, {M’[n]}) is a telescoping (or contraction)
of B to depths {¢,}52,, which we write B’ = (B, {¢n}), if V' := V2,
and MM .= plenen—1), Especially, we define B,qq as telescoping B
to odd depths (0,1,3,---) and define Beyen as telescoping B to even
depths (0,2,4,---).

e Let (Xp,Sp) denote the Bratteli-Vershik system of B. Namely, Xz
is the infinite path space of B and S : Xz — Xp is the Vershik
(lexicographic) map defined by the order > on E. (See [6].)

e Define an equivalence relation ~ on Bratteli diagrams as follows. B =
(V,E) ~ (V,E) = B if there exists a Bratteli diagram B = (V, E)
such that Bodd yields a telescoping either B or B, and Beven yields a
telescoping of the other.

2. THE STATE SPACE S(Ky(B))

Recall notations of inductive limit of ordered groups. For a simple Bratteli
diagram B = (V, E, {M™}), Ko(B) is the inductive limit of a sequence

Mt

3 V-1 [’I’L] — \%
(1) lim(z%-r, M) = 7%

with the distinguished order umit of Ky(B) corresponding to 1 € Z"°. For
g € ZVt, we write [g,t]y € Ko(B). We also write [v,t]y € Ko(B) where we
identify v € V; with v = (0,...,0,?,0,...,0) € ZV+. Suppose g € Z"* and
g’ € ZV" with [g,t]y = [¢/,t']y. Then there is an s > ¢,#’ such that Mg =
M) g’ =: g € ZV> and hence [g,t]y = [¢/,t']y = [g, s]v. If G is a dimension
group, then there exists B = (V, E, { M(™}) such that G = hgl(ZV"*l,M[”]).

For a simple Bratteli diagram B, let us recall the definition of the state space
S(Ko(B)). Let G be an ordered group with fixed order unit u € Gt. We say
that a homomorphism p : G — R is a state if p is positive (i.e., u(g) > 0 for
g € G1) and p(u) = 1. Let S(G) denote the set of all states of G. In the case
of G=7"and u = (u1,...,un) € (Z")", p € S(Z™) is written by

n n
u((zl,...,zn))zz%, where Zsizland s; > 0.
i=1 i=1

Therefore we may identify S(Z™) with the standard n-simplex A,,. Le.,

n
Zsi = 1, S; Z 0}
i=1

For v € V,,, let p, denote the number of paths between vo(€ Vp) and v. Then
Dy = MT[,’UL(;” holds and (py)vev, = M. i’;g)” is the distinguished order unit of Z"».

An:{(sl,...,sn)
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146 FUMIAKI SUGISAKI

Let Dy, denote the V,, x V,, diagonal matrix defined by (Dy,, )yy := py. Then
by (2.1), the state space S(K(B)) is the inverse limit of a sequence

: M= M2l A181=
];El(AVn—l’M[n]*) — AVO AV1 AV2 e

where M"* .= DilM["]DV _, and we also identify S(K((B)) with

Ag {s@ EHAV

Let v1¥1 : Ay — Ay, denote a projection defined by v[¥1((s())) := s(*). Then
7l is an affine homomorphism. Define Ay, (t) := {sM®R* | s € Ay,}. We
have

(i) _ -3 z+1)]\4[1+1]»< i> 0}

e Ay (t) DAy, (t+1) for any ¢t > k,
o VF(Ag) = N Ay, (t). (See Appendix, Proposition A.1.)
t>k

Let | - ||lv, denote the I;-norm on R, that is, for s = (s,) € RV, ||s||v, :=
> vev, |Su]- For a sequence {s, € Ay, }52;, we write

lim s, = (u) = p if lim |8, M™** — 1y ||y, = 0 for any k € N.

n— 00 n—oo

It is easy to see that u € Ag. Now we identify v € V,, with an extreme point
v
v=1(0,...,0,1,0,...,0) € Ay,. For a sequence {v, € V,,}>2;, we write

Hm v, = (ue) if lim || MIP* = |y, = 0 for any k € N.
n— 00 n—oo
Proposition 2.1. For any sequence {x, € Ay, }22, ({vn € Vo }52,), there
exist {n;} C N and pn € Ag such that p = lim x,, (u= lim v,,) holds.
71— 00 71— 00

Proof. First we consider a,, M!™Y* for n € N. By the compactness of Ay,
there exist p1 € Ay, and S; C N with #5; = oo such that

lim |, M™Y* — ||y, = 0.

S1d9n—o0

Take any s; € S; and fix it. Next we consider &, M[™2)* for n € S;. By the
compactness of Ay, there exist puo € Ay, and Sy C S1 with #S2 = oo such
that s1 € Sy and

lim H:BnM["’Q)* — p2|lv, = 0.

Sodn—o00
Take any so € So with so > s; and fix it. Repeating this argument we get
{pn € Ay, 332 and S := (), ey Sn with #S =00 (0 S, D {si | 1 <i < n},
S D {sn | n € N}) so that

lim |z, M™% — pelly, =0 for any k € N.
S3n—o00

Now we will show (ux) € Ag. It suffices to show that ju = g1 MF* for all
keN.

s = s r MYy, = ([ = 2 M) 4 (@, MU9* — psd MU s,
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< Nk = @ MRy 4 (@ MO — ) My,
—0 asS>n— 0.

In the case of {v, € V,,}52,, we let x,, = v, as an extreme point of Ay, . O

Proposition 2.2. Suppose G and H are dimension groups and v : H — G
is a unital order group homomorphism. Then there exist Bmtteli diagrams
B = (V,E,{M"}), ¢ = (W,F,{N"}) and V,, x W,, matriz I such that
G = Ko(B) and H = Ko(C) as unital order isomorphisms and the following
diagrams commute:

N2 13]
(2.2) Ko(C) =—— gWo N gwn N7 _ow, N7 .
Ll/ I[O]_id'l [[Ul [Ml
Ko(B) ——zVo M0 zvs ME g ME

Proof. Let B = (V, E,{M"™}) and C = (W, F,{N[}) be Bratteli diagrams
satisfying G = Ko(B) and H 2 Ky(C). In order to define I, we will modify
B by telescoping to some suitable depths {t,}. Let I% := [1]. There exists
t1 > 1such that for any w € Wy, thereis g,, € Z"1 with (([w, 1lw) =[Gy, t1]v
We fix such ¢; and g,,. Define IEU]J :=g,,- Next there exists to > t; such that
for any w’ € W, there is g,,, € Z"*> satisfying that

® L([U)/, 2]W) = [gw/a tQ]Vv

L M[Qil)]ﬁl = Ew/eW2 N[g]wgw"

w!

Indeed, suppose t([w’,2)w) = [y, t2]y but M2t 0] - YW, NZ g,
Since

(MU= 1B 4]y = u(fw, 1) = o [N, 2)w [Z Mgw,tz} :

w’'€Ws 4

there exists t > to such that for any w € Wh,

M[ttl)l tt2) Z Nw wgw’
w'eWs

So resetting to and g,,,, we set to :=t and g, := M**2)g .. We fix such t,
2
and g,,. Define Iiu}j, =g, Then for any w € Wy,

Ml B = INEL and hence M2t 711 = 21N,

Repeating this process, we can define 11"l for all n. Telescoping B to {t,}, we
get the conclusion. O

In the situation above, ¢ induces an affine homomorphism t* : Ag — A¢
defined by * () := por. If u = (s¥)) € Ap, we also write

(p) = (IR where IF* .= D;;I[k]DWk.
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Then the following diagrams commute.
JEE

[1]% [2]%
Ac {1} N Aw, N Ay, £— ...

Tb* TI[O]*_{Ld' Tl[l]* TI[2]*

A== {1} < Ay, Av,

(Note that Ay, = Aw, = {1}.)

1

o Vor e

Proposition 2.3. Suppose G and H are dimension groups and v : H — G is
an injective unital order group homomorphism. Then following statements are
equivalent:

(1) ¢ is an order embedding,

(2) * is a surjection.
Proof. (1)=-(2). Let v € S(H). For x € G*, define pu(z) as

() v(y), if 2 = «(y) for some y € HT,
x) =
. 0, ifze GH\(HT).

Since ¢ is injective, u is well-defined on G™. Since for any x € G, we can write
x =y — z for some y,z € GT and hence we define u(x) := pu(y) — pu(z). It is
easy to check that p is well-defined on G and p € S(G). So v = por = 1*(u)
holds.

(2)=-(1). Since ¢ is an order homomorphism, ((H*) C G holds. So we will
show :71(GT) C H*. Let y € :71(G*)\ {0}. Then there is a z € G* such that
t(y) =x #0. Let v € S(H). Then there is a y € S(G) such that v = *(u).
In [2, Cor. 4.2], we see that

Gt ={2€ G| uz) >0 for any p € S(G)} U {0}.
Then p(z) > 0 and we have
0 <plx) =pouy) =1 (1)(y) =v(y)
Since ¢* is surjective, it is shown that v(y) > 0 for any v € S(H). This implies
yc HT. O

For k € N, n € RY* := {(n,) € R"* | n,, > 0} and n* € Ay, we consider
the linear equations for & and y:

*

Il = n, yIFl* = n*.
We set S(n) := {x € RY | I*] = n}, the set of solutions of xI¥ = n,
and S*(n*) := {y € RY* | yI*I* = n*}, the set of solutions of x*IF* = n*.
Define maps * : RK’“ — RK’“ and * : R+W’“ — R+W’“ as
mDVk :y-DVV]c
xMk1]’ yN[k,l] :
Remark 2.4. We have the following properties with respect to *:
(1) (RY)" = Ay, and (RY*)* = Aw,,

RK’“B:B»—HB*:: RK_V"‘By»—>y*::
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(2) for & € S(n), x* = xDy, /AN € §*(n*),
(3) for a fixed n, the restriction * to S(n), *|sm) : S(n) — S*(n*) is bijective,

1

(4) the preimage of * to S*(n*), (S*(n*))* ,is

(5" (") = | Strn).

reRy

Proof. (1) We will show (RK")* = Ay,. Clearly * = (z}) € RK’“ and we see

that

Y=y @Du) s e @M

k1] k1] — k1] —
veEV) veEV) mM[ ] veV) wM[ ] wM[ ]

Soz* € Ay,. If &’ € Ay,, then :1c’D‘7k1 € RY* and

x’ x’ ,

' DY) = = =
( Vi ) :B’D‘_,:M[kxl] Evevk x’

So the map * is surjective.
(2) Since M1 = [FINF and 2I*) = n, we have

z* = :IUDVk _ :IUDVk - .’I}DVk

e MEL T RN T Nk

Moreover,

xeSn) o I =n

& (zDv,)Dy ™Dy, =nDyw, < (xDy,)IM* = nDy,

mDVk [k]* _ nDWk * ]k _ % * * *
nN[k’l]I =N T ™" =n" & x* e S*(n").

(3) Clearly #|g(n) is injective. For ' € S*(n*), it is easy to see that
(nN[k’l])wlD‘;kl € S(n) and ((nN[kJ])m’D;kl)* =x'. So *|g(n) is surjective.

(4) Trivial. O

=

Let A‘J;k ={x = (z,) € Ay, | &y > 0 Vv € Vi}, Sg,(n) := S(n) HRK"‘,

Sz(n) == S(n) NZY%, Sy(n) == S(n) NN Sx(n*) = S*(n*) N Ay, and

A+ (n7) = S*(n*) N AT . For e >0 and ¢ € RY, let B.(z) := {y € R" |
le — yllv, < e} denote the open ball with center at & and radius e.

Proposition 2.5. Suppose Sz(n) # &. Then there exists T > 0 such that for
any m* € S*(n*), there is ** € S*(n*) N B, ), yix.1 (M) such that

= (nNFz* Dyl € Sy(n) N B, (m),

where p = maxyev, pv. Moreover if S*(n*) N By, nien(m*) C S3,(n*),
then

x € Sny(n) N B-(m).
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Proof. First we will show that there exists 7 > 0 such that for any m € S(n),
Sz(n) N By (m) # @. Let {&,,&,,---,€,.} be a basis of Ker(I¥). Since all
entries of I™* consist of positive integers, we may assume that & 1:&9, -+, &, €
ZVe. Let 7:=Y_i_, |I&]lv,.- For any a € Sz(n), there exist a; € R and n; € Z
such that m=a+ Y., a;&; and n; < a; <n; +1. Let @’ :=a+ .._, ni&,.
Then a’ € Sz(n) and

> (a; —ni)E
i=1
Therefore a’ € Sz(n) N B.(m) # 2.
We take x € Sz(n) N B(m) and fix it. Since |[m* — z*|v, < —FErlm -
z|v,, * = (nNF~1xDy, € §*(n*) N By ik (m*). Moreover if z* €
A+ (n¥), then € Sg, (n) := {(2,) € S(n) | z, > 0,Yv € Vi }. So we are
done. g

Z i —na)|&illvi <7

lm —a’|lv, =

3. EXTENSIONS OF CANTOR MINIMAL SYSTEMS AND BRATTELI DIAGRAMS

Theorem 3.1. Suppose that (X,¢) and (Y,v) are Cantor minimal systems
and m: X =Y is an almost one-to-one factor map. Then
(1) 7 : KOY,¢) — K°X,¢) defined by 7*[f] := [f o 7| is an order
embedding,
(2) KX, ¢)/n*(K°(Y,)) is torsion free,
(3) T My(X) = My(Y) defined by 7(u) := pon ! is the surjective
affine homomorphism and 7w(ex My(X)) = ex My (Y).

Proof. We only show the statement (2). First we will construct a properly
ordered Bratteli diagram for (Y,4) (See [6, Thm. 4.2]). Let zo € X satisfy
#r L om(zo) =1 and yo := 7(x0). Let Q,, :={Y,,(i,h) |1 <i<I,, 1<h<
H, (i)} denote the n-th Kakutani-Rohlin (KR) clopen partition for (Y, ) and
{Q,} denote a sequence of KR partitions for (Y, ) satisfying the following
conditions:

o Q= {Y =Yy(1,1)},

o for 1 <h < H,(i), Y, (i,h) = Yo (i,h + 1),

I

e {w}= ) U Y, (i, 1),

n€Zy i=1
e Q, is finer than Q,, 1 for all n (i.e., for any Q € Q,, Q C Q' for some
QI S anl)a
e {9, } generates the topology of Y.
Let C = (W, F,>) denote the properly ordered Bratteli diagram arising from
(0.}, That is,

<1}
F, = i, )n | Ya ( h) - Yn—l(ia 1)}7
for (4, ) € F, s(i,i',h)p :=ip—1 and r(i,¢', h), =iy,

={in | 1<
(i,

Z?

(6,7, 9)n < (k, K, )nlfandonlylfz—k'andg<h
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Then yo (¢~ (yo), resp.) corresponds to the unique minimal (maximal, resp.)
path in Xc.

Next we will construct a properly ordered Bratteli diagram for (X, ¢). Let
{P’,} denote a sequence of clopen partitions for X which generates the topol-
ogy of X. Let P, = {X,,(i),h) |1 <i<I,, 1<j<J.(i), 1 <h<H,(i)}
denote the n-th KR clopen partition for (X, ¢) associated with Q,, and {P,}
denote a sequence of KR partitions for (X, ¢) such that

o Py ={X=X,(10,1)},

U0 X (19, h) = 77 1Y, (i, h),

for 1 < h < H,(i), $X, (19, h) = X,, (i) h+ 1),
e P, is finer than P’,, and P, _; for all n € N.

Then we see that

In | Jn(i (i

o {w0} = Nyez, Ui Uz X (09),1),

e {P,} generates the topology of X.
Let B = (V, E,>) denote the properly ordered Bratteli diagram arising from
{Pn}. That is,

o Vo= {i) [1<i< L, 1<5 < .00},

o B, :={({D,#9) h), | XY h) € Xp1(iD, 1)},

o for (i), 'Y ), € By, s(i%), i) h), =iV

and r(i(j),z"(jl), h)p == z”,(lj,),

o (i(j),i’(j/),g)n < (k0, K, h)y if and only if 9 = ™) and g < h.

Then x¢ (¢~ (x0), resp.) corresponds to the unique minimal (maximal, resp.)

path in Xz.
We identify 7* : K°(Y,v) — K°(X, ¢) with 7* : Ko(C) — Ko(B). That is,

7 Z" 54, =(0,...,0,1,0,...,0)

Jn (1) Jn (1) ()
= Y i =3"(0,...,0,1,0,...,0) e 2"
J=1 J=1
I, Jn(4)
<7r*([z,n]w) = [ zinigf),n] ,  where z = (z;,) € ZW".>
i=1 j=1 14

In order to show that Ko(B)/7*(Ko(C)) is torsion free, it suffices to show that
7*(Z"") is a pure subgroup of Z". Suppose that z = (z,;h) € Z'" and
kz € 7 (Z"") for some k € N. kz € 7*(Z"") implies that kz,) = kz,,) if
i=1". So z € 7 (Z"") holds and hence 7*(Z"") is pure in Z"». So we finish
the proof. 0
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Remark 3.2. Let M" (N resp.) denote the n-th incidence matrix of B
(C, resp.) in Theorem 3.1. Then we see that

Jn_1(k)
(3.1) S oMy, =N
=1 "ot
7 induces the surjection ¢ : V.— W defined by np(z'gij)) := 1y, for all n. Then

we have

o p(V,) =W, for all n,
e forveV, and we W,_q,

[n] _ arlnl
(3.2) > M =N,

uee—1(w)
Note that (3.1) and (3.2) are equivalent.

Proposition 3.3. Suppose that C = (W, F, {N[”]}, >) is a properly ordered
Bratteli diagram and B = (V, E, {M™}) is a simple Bratteli diagram. Suppose
w:V = W is a surjection satisfying that

(1) (Vi) =W, for all n,

(2) forveV, andwe W, 1, > il = Nt

u€p—1(w) p(v)w"

Then there exists a proper order > on E such that (X5,S3) is an almost one-
to-one extension of (Xc¢,Sc), where (X3, S3) and (X¢,Sc) are the Bratteli-
Vershik systems associated with B and C respectively.

Proof. We construct an almost one-to-one factor map 7 : X3 — X¢. Since B
and C are simple diagrams, we may assume that M and NI are positive
matrices (i.e., all entries of them are positive) for all n. Let FMin Fmax ¢
denote the set of minimal, maximal edges in F}, respectively. For f € F™" and
I e Eraxlet v}“i“,v?}a" € V,_ satisfy go(v?i“) = s(f) and (V) = s(f)
and fix them. The condition (2) implies that for v € V,, there is a bijection
between 71 (v) = {e € E, | 7(e) = v} and r~'(¢(v)). So we can define
surjections 7, : E, — F, for all n and a partial order > on E,, as

(i) for v € Vy, mp o1 (v) = 7~ (po(v)),

(ii) for e € E,, somy(e) = po s(e),

(iii) for any f € F™ and e € 7, (f), s(e) = U?i“,

(iv) for any f € F™* and e € 7, }(f), s(e) = Cra

(v) e,e € E, and e < ¢ if and only if r(e) = r(e/) and m,(e) < mp,(e’).
Define m : Xz — X¢ as

m(p) == (mn(pn)),  where p = (pn).

By the conditions (i) and (ii), 7 is well-defined. Now we will show that
#r (™) = #r7H(@MeX) = 1, where ¢™® ¢™** € X¢ is a unique min-
imal, maximal path respectively. Let p = (p,),p’ = (') € Xj satisfy
n(p) = 7w(p') = ¢™". By the condition (v), p and p’ are minimal paths
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in X3 Let n € N be fixed. By mp11(pny1) = 7Tn+'1(p/n+1) = ¢™% and
the conditions (ii) and (iii), s(pp+1) = (' pi1) = v;’gﬁ,}l . This implies that

min

r(pn) = r(0',) = Ugmin and hence p, = p',. So p = p’ holds. Therefore
n+1

#r~1(g™n) = 1. Similarly we can show #7~1(¢g™*) = 1. This proof also
means that B has a proper-order (i.e., there exist unique minimal, maximal

path in XB").
Finally, it is easy to see that  is a continuous surjection and oSz = Scom.
By #m1(¢™") = 1, 7 is an almost one-to-one factor map. O

Remark 3.4. ¢ induces group homomorphisms (matrices) Iml . zWe 5 7Va
by

Then M N = prlnl fin=1] Kelds.

4. PROOF OF THEOREM 1.1

4.1. Requirements of a simple Bratteli diagram for (X, ¢). Suppose
that C = (W, F, {N["]}, >) is a properly ordered Bratteli diagram arising from
(Y, ), B = (V,E, {M}) is a simple Bratteli diagram arising from G, ¢ :
Ky(C) — G is an injective unital order group homomorphism. The assumption
(iv) of Theorem 1.1 implies that ¢* : Ag — Ac¢ defined by t*(u) := po is
surjective. So by Proposition 2.3, ¢ is an order embedding. By Proposition 2.2,
the following diagrams commute:

Ko(C) ===z N gwi N_gw, MO
Ll/ 7lol _id_l il l/ 72 l
G = Ko(B) == 2% M gvi Mg ME_

Telescoping diagrams, we may assume that for all n, M, N and 1™ are
positive matrices. Also, the following diagrams commute:

NI* N2 NBl*
AC R {1} AW1 Wy <=—— """
TL* TI[D]*_id' TIU]* Tl[z]*
A 1 Ay =<— Ay =<— oot
B { } M 14 JVEE V2 Yk

where
M= pptmMpy, . Nt = D! NIMDy, 1= Dy Dy,

Also MM* Nl and [/ ["]*Nau"e~ positive matrices. Now we will construct a sim-
ple Bratteli diagram B = (V, E, {M!™}) by an induction so that B satisfies the
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assumptions of Proposition 3.3. In order to construct B, we need to telescope
B and C to some suitable depths {t,}.

The first step. Let Vj := {vo}, Wy := {wp}, Vo = {0} and @o(0g) := wo.
We will construct the following commutative diagrams:

ol =iq.

ZWo zVo
0] =4q.
N ZVO
i
W it
7" Ml
A2
it AL

Define t1, Vi, projections @1 : Vi — Wy and py : Vi — Vi, T, M@ N0 and
MM as follows:

ot = ].,
o Vi :={(v,w,i)|veVi, we W, 1 Sig]})ﬂ},
o p1(v,w,i) :=w, p1(v,w,i) :=v

TR TP - E SRS
0, if p1(0)#w 0, if p1(0)#w

. Mf[)lv]o = ME@)UO for all & € 14,

o 31 o 3l

p1(0)

The n-th step. For n > 2, suppose t,—1 € N, ‘N/n,l, Pn—1: Vi1 — Wk, 1,
Mn=1 [ln=1] and M2n=2] are defined. Now we simply write k = t,_1. We
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will construct the following commutative diagrams:

fln-1]

Z‘N/nfl

(4.1) AL

Nltn.k)

ZWen VAL Mltn )

ltn] ZVin

When t,, > k is decided, Vn, projections ¢, : Vn — Wy, and py : f/n - Wi,
I and MP" are necessarily determined by the following:
oV, = {(v,w,i) |[veVe,, weW,, , 1<i< Iyﬂ}]},
o o, (v,w, 1) == w, pp(v,w,1) := v,
e I b
0, if p,(7) #w 0, if pu(0) #v

Wi, Wi, < Pn (6)
flnl
I[tn] :>.. _»YVn
""""""""" M[Qn]
Vi, Vi, <pn(0)

Moreover when M2"—1 is also decided, M ™ is necessarily determined by

o N = Jpn-1gin-2]
So we will show that there exist ¢, > k and M2"~1] such that
(n-1) for & € V,,, M[Zn Ue sy (N t"’f) )i={x e NV | xlF = Nl k) b
(n-2) M (20l pr2n=1] — pfltn.k)
Suppose the recursive construction above is finished. First, we will show

that B and C (more precisely, B and (C,{t,})) satisfy the assumptions of
Proposition 3.3. Define ¢ : V' — W as ¢y, := ¢, for all n. Note that
~[2n—1] \Y rl2n—2] fln—1] _ [tn,k)
M, e {meN"* | mM I N, oyt
and
Z M 2n=2] _ prl2n—2fln-1]

et (w)
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For o €V, and w € Wy,
Z M“] _ Z M[2n 1]M2n 2] Mpnq]M[gn,g]mZA] NlEnk)

et (w) acpt(w)

So they satisfy the assumptions of Proposition 3.3. Then there exist a proper
order > on FE and an almost one-to-one factor map 7w : Xz — Xc. We let
(X, 9) := (X3, 53)-

Second, let B = (V, E) be the Bratteli diagram defined by {M}. Then
Boaa = B and Beven = B. So B ~ B and hence there is a unital order isomor-
phism « : Ko(B) — G defined by a([z,nly) = [MPz,t,]y if 2 € ZV». By
Proposition 3.3, 7 is defined by 7*([z,t,|w) = [z, n]y if © € ZWm. By
the commutative diagrams (4.1) we have

aom*([z, ta]w) = [MPIIMy t, )y = [Pz, th)v = o[z, ta]w).

4.2. The condition (n — 1). Now we simply write t = t,,. For w € W;, we
set

S(w) = S(N[t7k)) ={x e R% | zI™ = NPy,

(Note that the map x : S(w) 3 m — m* € S*(w) is bijective. See Remark 2.4.)
In this subsection, we will show that for any sufficiently large t and any @ € V;,
Sn(¢n (D)) # @. More simply, we will show that for sufficiently large ¢ and
w € Wy,

(1) S(w) # 2,

(2) Sz(w) = S(w)NZY # 2,

(3) Su(w) := S(w) NNV # .

The proof of (1). Let I € ZUVe+DXIWkl e the matrix defined by

7 (%]

- { NP ] '

We will show rank(I[¥) = rank(I). For any ¢ € ZW* with I¥lc = 0, we have
[I™e, k]y = 0. This means (([N["Fe, #']ly) = 0 for any ¢’ > k. Since ¢ is
injective, [NI'"*)¢, ¢y = 0. So there is a T > k such that N[T"¥)¢e = 0. This
implies that for any ¢t > T, Ic = 0. Using this fact, we get rank(I") = rank(f)
and hence the equation xIFl = Ng;k) is solvable. So S(w) # @. g

The proof of (2). For a vector a = (aq,...,ay) € Z"\ {0}, let GCD(a) denote
the greatest common divider of |a1],...,|as|. In this proof, we write Vj =
{1,2,...,V}, W, = {1,2,...,W} and I = I'*l, For w € W}, and & € R"*, let
Iy(x) := Ele Lywy. We will change x,, into X, by the Euclidean algorithm
substitution (cp. [7, p. 30, Thm. 2]). We may suppose that 1 € V}, satisfies
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0 # | 1| = min{|I,,| | v € Vi } because I is a positive matrix. Let k, be an
integer satisfying |I1wky + Lpw| < |T1w|. We apply a substitution

r1 = X1+ kawa + -+ kvay

and then I, (@) = I'1uX1 + Yooy I'vwity, where Iy = Twky 4 Lyw (v =

2,3,...,V)and I'1y, = I1y. It is easy to check that GCD(I,y,) = GCD (I 4y).

Suppose now that in the new form, I’9,, plays the role of I,,. A substitution
o =Xo+UX1 +l3xs+ -+ lvay,

where [, is an integer satisfying |I'2,ly + I'pw| < [I'2|. Continuing this
process, we arrive at a unimodular integral substitution, which changes I,,(x)
into

v
Iy(w) =Y e,X,, where |e1] = GCD(L.) and &, =0 (v =2,3,...,V).

v=1
Here, consider the equation I,,(x) = a with GCD(I.y) | a. Then X; = £ and
the general solution is given linearly in terms of the n— 1 variables Xo, ..., Xy.

Now for the matrix I we apply a unimodular integral substitution and the
I,(x)’s will be changed into the forms

(4.2) Ly(x) =Y cowXy (u=12,...,K),
v=1

where cyw € N, €1y, Cow, - -5 Cw—1w € Z and K = rank(l). At first, by a
unimodular integral substitution I(x) = ¢11 X1 and ¢;17 = GCD(I,1) hold.
This substitution changes Is(x) into c12X1 + 12(2) (X2,Xs5,...,Xv), where 12(2)
is a linear form in X5, X3,..., Xy. By this substitution 12(2)(X2, Xs, ..., Xv)
can be changed into cge Xo, where coy is the greatest common divisor of the
coefficients of 1'2(2). (If co2 < 0, we change X5 into — X2 and may suppose that
c22 > 0.) This process can be continued and (4.2) follows.
Next we can replace the equation by

e Xy = Nv[tl’k)7 c12X1 + 22 Xo = Nv[tg’k)7 c13 X1 + c23 X0 + €33X3 = Nv[tg’k)7 -
As ¢11 = GCD(1.y,), we see that c17 | Ng”lk) and c11 X1 = Ng’lk) is solvable

in Z. (See Appendix, Proposition A.2.) Moreover we eliminate X7 from the

equation c19.X1 + coa Xo = Ng’gk) and get

(4.3) crienXs = i N — cla NP,

Since c11¢20 X2 = c1112(x) — c1211(x), we apply Proposition A.2 and get
GCD(CHL*Q — 012[*1) | GCD(CHNE;’]C) — ClgNFl’k)).

As GCD(e11142 — c12141) = c11¢22, the equation (4.3) is solvable in Z. This
process continues until Xx and we see that for sufficiently large ¢ the equation
oI = NI s solvable in ZV* and hence Sz(w) # @. O
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The proof of (3). Suppose Sz(w) # &. Let py, := NiEY, By Proposition 2.5,
there exists 7 > 0 such that for any m* € S*(w), there is * € S*(w) N

Byr jp, (m*) such that x € Sz(w) N Br(m), where p = max,cy;, MEY I
m* € S} (w) satisfies

(4.4) S*(w) N Bpr/p, (M™) C Sx (w),

then x € Sy(w) N B, (m) holds. So Sy(w) # 2. O

Let Hy, = {x = (z,) € R"* | D vev, To = 1}. For A C Ay, and § > 0, let
At .={x € Hy, | ||z — 2|y, <0 for some z € A}. If A is convex, so is A+°.
Define

e:= min sup{e’ > 0| B (Mv[liﬂ] )N Hy, C AT }.

VEVE 41

Since MU € A{, for any v, € > 0 holds. Moreover, Ay, (k+1) and A{,
are convex and Ay, (k +1)C A‘tk, it follows that

(4.5) Ay, (k+1)* c AT .
Here we will show
(4.6) Aw, (t) C (Ay, (K+ 1))

for sufficiently large ¢. Since ¢* : Ap — A is surjective and by Proposition A.1
in the Appendix, we have

FH(Ae) = 1F oA & NAw () = [ (A1) = A.
t>k >k

(Note that Aw, (t) \¢ A and *(Ay, (1)) \y A ast — o0.) If Ay, (T) =
Aw, (T 4+ 1) for some T, then Ay, (T) = A holds and A has only one point.
(See Appendix, Proposition A.3.) So we consider the following cases:

[1] there exists T' > k such that Aw, (T') = Aw, (T'+ 1),

[2] for any ¢ >k, Aw, (t) 2 Aw, (t+1).
In the case of [1], A has only one point. Since Ay, (t) C Ay, (k + 1) for all
t > k+ 1, it follows that for any ¢t > T,

Aw, (t) = " (A (1) C " (A, (k +1)).
t>k
In the case of [2], similarly Ay, () 2 Ay, (t + 1) holds. Moreover we see that
A C Ay, (t) and A C *(Ay, (t)). So there exists T > k such that for any
t>T,
AC Aw, (1) C U (Ay, (k+1)).
Therefore (4.6) holds. Since min,ew, pw — 00 as t — oo, we consider a
sufficiently large ¢ satisfying that
pT

4.7 —<e
(4.7) o
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holds for any w € W;. We note that t*(Ay, (k + 1)) = {xMFEFUTE* | ¢ ¢
Ay, }. (4.6) follows that for any w € Wy, there exists s = (s,) € Ay, , such
that
N[t k)x _ M+ Ikl Z SU(M[kJrl]*I[k]*)v*
vEVE 41
(M[k+1]*j[k]*)v3*

N[t:k)*
)« wa *
NER

(M[kJrl]*I[k]*)UZ*
Nl[;f;k)* _ Z SU(M[k+1]*I[k]*)v*

~ ’UEV]H,l

(M[k+1]*l[k]*)vl*

So we see that

(4.8) MU = N MY € S5 (w).
UEVk+1

Since sMF+1* € Ay, (k4 1) and (4.5), we have

(4.9) sup{e’ > 0| BE/(SMU“H]*) NHy, C A‘tk} >e.

Therefore we set m* := sMF+1*. By (4.7), (4.8) and (4.9), (4.4) holds.

4.3. The condition (n — 2). M[F = N A1 i5 equivalent to MR
= Y iepsi(v) M[2" U for all v € Vi. By the condition (n-1), we may assume
i e Sn(¢n(?)). Now we will show, by three steps, that for any suffi-

Uk

ciently large ¢t and any v € V4,
(4.10) MED € Y Sulen®) = D I Su(w),
o€pnt (v) weW,

where

> 1 Su(w { > me i) w,i)ESN(w)}.

weWy weW, i=1
We explain (4.10) in terms of elements in Ay, and Ay, .
The first step. We consider a sequence {v,, € V,,} so that lim v,, =:

71— 00
1 € Ap exists. Telescoping the diagrams, we may assume p = lim v,. Let
n—oo

vi=1"(p).
We recall the properties of linear algebra. We regard I'** as a linear map
I . RVe 5 RWr, Ifa € S*(t), then we can write SX(t) = (a + Ker(I[k]*)) N
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Ay, , where SX (t) := S*(t)NAy;, and a+Ker(IF*) := {a+x | = € Ker(IF*)}.
Let H be the subspace of R"* so that Ker(I'**)@ H = RVs. Then for t € Ay, ,
there exists a unique a(t) € H N Ay, such that

Si(t) = (a(t) + Ker(IM*)) n Ay, .
It is easy to see that the map a : t — a(t) is uniformly continuous and injective.
For w € Wy, we also define the map a : w — a(w) := a(ngf;k)*).

Here we consider y[¥l(Ag), Ay, (t) and Ay,. Since Ay, (t) is convex and
shrinks to y*/(Ag) as t — oo, there exists g > 0 such that for any ¢ > k,
(4.11) W (Ag)* € Ay, ()70 € A,

In fact, we set g9 := minyev,,,,ven Mi[)]ffl]*. Now we choose any ¢ with
0 < 8¢ < g¢ and fix it. Then by the uniform continuity of a : t — a(t), there
is a ¢ > 0 such that for any x,y € Aw, with ||z —y|lw, <9,

(4.12) la(z) —a(y)|v. <e.
For such a § > 0, by the compactness of Ay, , there exist &1, @2, -+, x; € Ay,

!
such that Ay, C ‘EJIB(;/Q(wi). We set Wy(i) C W; satisfying that

!
o W, = |JW,(4) as a disjoint union,
i=1

o for any w € Wy(i), NP ¢ Bsa(x;).

Deleting and changing index ¢ and telescoping the diagrams, we may assume

Wy (i) # @ for any t and i. Let bgi) =D wewn (i) L[,tt]{f,. bgi) # 0 because I* is

a positive matrix. Define sgi) € Ay, as

i 1 .
sg):: ol Z Lg’i]ww.

t weWi(i)
Clearly
1
(4.13) L[,tj: = beﬁsff’ and sgl)N[t’k)* € Bsja(xi).
i=1
Renaming index ¢ and telescoping diagrams again, we may assume that
tlim sgl) =: v and tlim b,(f) =: b) exist and there exists 1 < L <[ such
— 00 — 00

that () > 0if 4 < L and b®) =0 if i > L. Then v =, bDv. Now we
will show that -

(4.14) RS Zb(i)(a*)_l(u(i)) = { Z QI

i<L i<L

W e (L*rl(w“)}.

By the Choquet representation theorem, we have p = fu’ Cox Ag wdr(y') and

v V'dn(v'"), where T and n are unique invariant probability measures

= fu’Eex Ac
on Ap and Ac¢ respectively with 7(exAg) = 1 and n(exA¢) = 1. Since
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v =1*(p) and 1*(ex Ag) = exAc, 7o (¢*)7! = n holds. For v/ € ex Ac with
n(¥') # 0, we define

1 / !/ !/
—— pdr ().
77(1//) reex ApN(e*)~1(v')

)~
Clearly p,y € (t*)"*(v') and p = [, reexng MV ) dn(V'). So we write

’LLV/ =

@15) pe [ 0@ @)
— _ I/I li I/I li L* —1 I/I .
={e= [ 0wy | e @00

Let (Y denote the unique probability measure on A¢ with 7 (exA¢) =1
satisfying v(9) = Jorcex A v'dn™ (). Then by the uniqueness of 7,

(4.16) n= Z by

i<L

In general, for v, v1,v9 € Ac with v = avi+(1—a)ve, (¢*) 71 (v) D a(t*) 1 (v1)+
(1 — a)(¢*)~Y(v2) holds. So we have

(4.17) (U‘)l(v(”)D/e N (@)@ ().

By (4.15), (4.16) and (4.17), we see that

RIGRIZIED ST NG R

i<L i<L v/ €ex Ac

- / (Y)W 3
v/ Eex Ac

Therefore (4.14) holds.

The second step. Let n(w) := L[,t]wN[t ) and n( = > wew, (i) P(w). In this

step we will show that for any sufficiently large t, there exist () € Sy(n(?),
r(w) € Sy(n(w)) and r(w,j) € Sy(w) such that

! I,
MED 37RO 20— 5 s, )= 3 el
i=1 weWy (%) J=1

Then we have

vtw

l
M2 = Z >, D rwa) ey D LinSuw)= Y, LS

i=1 weWy(:) j=1 i=1 weW (1) weWy
The construction of r(®. Let Do, 1= MT[,tt*l] Remark that
n@* — Sgi)N[t,k)*’ b(l Z t 1] — nO Nk

vtw
weWy(3)
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and the local inverse map *~1 : Sx (nV*) — S, (n") is given by

*—1

m=(m*)"" = p,b'm Dy,

MR [Tk = Tl NTER)* implies MEF* € g5 (1 N1t
Let By :=3 b " Since

W= tli)m Vt, ) = tli)m sgi), tli}m bgi) = b(i), tli)m B =1, tlgn min p,, = o0,
00 00 o) 0 oo weW,

we see that for any sufficiently large ¢,

L I L T
(4.18) M<§ &_1 <Z ifi<lL
Bt 87 bgi) 8 -

We fix such a t. For i > L, choose any u¥ € Ag with o*(p®) = v¥ and
fix it. From (4.14), for i < L, there exists u( € (+*)~*(v)) such that pu =
S bOu =37, b0 Vk) follows that a(vx) =3, bW a(y, (). Since

Ut*N[tk Z Z Utw tk)* sz) z)*

=1 weW(i)
we have a(I[i NEP*) = T 5@ a(n(D*). Define m®* as
ifi <L,

t

bW 0 1 @), (@) @)
+ @ (,Uk — Mk +a(Vk) - a(yk )) - E 'Z:th (Nk - a(uk ))7

ifi>1L,
mD* ::a(n(i)*) 4 u}(ﬂi) _ a(Vl(ci))'
Let m(®) .= pvtbii)m(i)*D‘_,kl. Then

l
Mv[ttf)* = Z bgi)m(i)*, iy k) Zm(l and m® ¢ S(n¥)
=1
hold. If ¢ < L, then
7)% k) 1) % i
@ — 1y, <IMEP* — i + la@@) = a(@i)]|v,
e ek ‘
+ ||atrt ) —a(),
b (i) )
+ 1o = 1 Ul + )l + la(a) v + 1 1)
t

Miinster Journal of Mathematics VoL. 4 (2011), 141-170



ALMOST ONE-TO-ONE EXTENSIONS OF CANTOR MINIMAL SYSTEMS 163

1-—- k)* t]* *
B POy, + (I N9y, +2).

If ¢ > L, then
[ = 10w < la(n") = a)) v
So by (4.12) and (4.18), we have
(4.19) Im®* — 1Dy, < 4e < ep.
By (4.11) and u( e YH(Ag), mD* € S%, (n(V*) holds.

Let ) = 22 m© and n) = 22:1 n®. Then m' SR* (). By
Proposition 2.5, there is an w(l € S* L (n )meT/m o e (M%) such that
) = (RO NFDzO* Dot ¢ 5y(n®) N B, (m®). Fix such an (). Define
'r(z) =@ — (D 20 .=,

Then it follows (¥ € Sz(n() and Zlizl r = Mq[,if) Here we will show

r( € Sy(n®). Since
(x(z) _ x(i—l))DVk (ﬁ(l)N[kl])m(l)* _ (ﬁ(i—l)N[k,l])x(i—l)*

7"(1)* = =
n (i) N k1] n() NIk1]
and
(i) (™ —m~Y)Dy, _(n O Ny O — (071 N1y (1)
me= () N1 = () NF1 ’
we have
> (1) n7[k,1]
1) % 1) % n'“ N i 7)%
79 = m @y, SWHfB( — |y,
= (i—1) A7[k,1]
n N i—1)x _ o= (i—1)x
(4.20) +WH$( " — 1 v
2pT _ 2pT
RO NFT <&

[t]
ZwEWt(i) Ljwpw
So by (4.19) and (4.20), we have
(4.21) Il — % ||y, < e < .
Therefore 7* € S% . (n(V*) and hence () € Sy(n®).
The construction of r(w). If #W;(i) = 1, then let W;(i) = {w} and define
r(w) == r® € Sy(n). So we consider the case where #W; (i) > 2. Remark
that o
n*(w) = NiP* o plpx = Z Il[i];;n*(w)
weEWy(7)

Dand*) = D wews (i) 1% a(n*(w)). For any

By the above, we see that b;
w € Wy(i), define

m*(w) := a(n*(w)) + rD* —anD*), mw) = £i]wpwm (w )D\7,3~
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Then
m*(w) € §*(n*(w)) = 5™(w), m(w) € S(n(w)),
pr@ = N fihmriw), r@ = Y m(w).
wEW, (4) weW: (i)

Let s := #W(i) and {wi,wz, - ,ws} = Wi(i). For 1 < j < s, let
m(j) = Yi_, m(we) and n(j) := Z% 1 n(we). Clearly m(j) € S(n(j)).
By Proposition 2.5, there is «*(j) € SX(n"(j )) N By /agynten (m7(j)) such
glag (j) = (A()NFa*(7) Dy € SN( (1)) N Br(m(j)). Fix such an z*(5).

r(w;) =x(j) —x(j —1), x(0):=0.
Then it follows r(w;) € Sz(n(w;)) and 37_, 7(w;) = (). Here we will show
r(w;) € Sn(n(w;)). Since

_ (2()—=z(—1)Dy,

r (wj) - n(wj)N[k’l]
_ (@GN z*(j) — (A — HNFax(j — 1)
a n(w;) N 1]
and
! n(w; ) N1
_ (@GN m® () — (a(j - HN*D)m®(j — 1)
n(w;) N1
we have
(N Nk
I () = m () v <%nw*m — i () I,
(i — [k,1]
(1.22) Rl =) =G = Dl
2pT 2pT
7n(wj)N[k’1] - Im[)tt]wjpwj =

n*(w;),nM* € Byso(x;) implies ||n*(w;) — n*||ly, < 6. Then by (4.12) we
have

(423)  me(wy) — 7Oy, = a(n® () - a(mO)y, <.
So by (4.21), (4.22) and (4.23), we have

(4.24) g = 7 (w))llv, < 7e < 0.

Therefore r(w) € Sn(n(w)) for all w.

The construction of r(w,j). Let w € Wy(i). If Iww =1, let r(w,1) :=
r(w) € Sy(w) and we are done. So we consider the case where ILt]w > 2.
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Let m* := r*(w) and m := pwm*D;kl. Then r(w) = l[fjwm holds. By

Proposition 2.5, for any 1 < j < L?)w, there exists z} € S*(w) N Bpr/jp,, (M)

such that x; = jpwm;D;kl € SN(jNg;k)) N B-(jm). Fix such an ;. Define
’I”(U},j) =&j—Tj-1, o = 0.

Then it follows that r(w,j) € Sz(w) and Zj“ti“ r(w,j) = r(w). Now we will

show r(w, j) € Sy(w). Since

(xj —xj_1)Dy, =z;Dy, . =j1Dy,

r(w,j)* = =L —tj—— (j—1) =jx;—(j—Dx;_,,
Pw JPw (J—Dpuw I i1
we have
7 (w, )" = r*(w)llvi, <jlle; —m* v, + (G —Dllzj_ —m[ly, < e <F
w

So by (4.24), ||u,(€i) —7r(w,j)*|lv, < 8 < gp holds. This means that r(w,j)* €
S+ (w) and hence r(w, j) € Sn(w).

The third step. Finally we will show (4.10). Suppose that for infinitely many
t, there exists v; € V; such that

[t,k
Ut*) ¢ Z vtw
weWy
Then we take a subsequence {v,,} C {v;} so that lim v,, exists. By the
11— 00
second step there exists I € N such that for any ¢ > I,
ME e S, Su(w).

weWn,

This is a contradiction. So (4.10) holds.

5. EXAMPLES

Example 5.1. We will construct Bratteli diagrams B, C and an injective,
unital order group homomorphism ¢ : Ko(C) — Ko(B) so that (i) ¢ is an
order embedding, (ii) Ko/t(Ko(C)) is torsion free, and (iii) ¢* : Ag — A¢ is a
surjective affine homomorphism but ¢*(ex Ap) # ex Ac.

Let + < a < 1. Define a sequence {a,,} by the following: Let a; := 0. Let
as € N satisfy 2- (and hence ap > 2). Suppose for n > 2, a,

satisfies
by, 1 /b,_
O<——a<—< l—oz),
Pn 2 Pn—1
where p,, := [[}_,(ar + 1) and b, := (an, — 1)bp—1 + pn_1, by := 1. Define

(@ = 1)bu +pn
(z +1)pn

fz) =
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Then it follows that f(1) =1/2, f(x) is monotonously increasing and
b
lim f(z) = —.

xTr—r0o0 n
Define an+1 € N as f(an+1 — 1) < a < f(ans+1). Then we see that
bn+1

0< flantr) —a=
Pn+1

1 (b_n _a> B (bnﬂ ) a) L @h—plann =1

2 Pn Pn+1 2an+1pn(an+1 + 1)
Moreover we have lim b,/p, = a. Remark that
n— oo

—14+0b,/pn 2b,, /pn — 1
a—l4bafpn 0 o 20/Pn =1
bn/pn — bn/pn — @
Therefore b, /p, \, @ means a,11  0o. Let {¢,} satisly ¢, = (an, — 2)en—1 +
pn—1 and ¢; = 0. Then 0 < ¢, /py, < b, /pn and
Cn Cn 1
En _ Cnl 3en _ ‘ o2
Dn Dn+1 ant1+ 1| pn ant1 +1
So 8 := lim ¢, /p, exists. We see that 5+ a < 1 because b, + ¢, < p,, holds
n—oo

flansr —1) S a < flany1)

3cn

—0 asn— oo.

for any n.
Suppose B = (V, E,{M}) and C = (W, F, {N"}) are Bratteli diagrams
and I'™ is a V,, x W,, matrix satisfying that
1
MU= 2] N .= H , IO =1],
1

-1 1 0 . 10
MR = 1 4, 1 |, NWP.= [“1" } , Il= |1
0 1 an—1 i 0 1

Since detM[™ = (a, + 1)(an — 1)(a, — 2) and detN" = (a, + 1)(a, — 1),
M and N are invertible (n > 2). (If ay = 2, then Ml is not invertible.
However, we telescope diagrams B and C to {0,2,3,4,---}, we may assume
ay, > 3 for any n > 2.) Then M =11 = I NT7] for all n € N and

b’I’L — Cp, Cp, pn - bn —Cn

M[n71) = Cn Pn — Cn Cn ;

pn_bn_cn Cn bn_cn

[n,1) _ bn, Pn — bn
N Pn — bn bn ’
bn — Cn 2Cn Pn — bn — Cn
[n,1)=* 1

M = cn/2 Pn —Cn cn/2 )

Pn Pn — bn —Cn 2cn bn —Cn

Miinster Journal of Mathematics VoL. 4 (2011), 141-170



ALMOST ONE-TO-ONE EXTENSIONS OF CANTOR MINIMAL SYSTEMS 167

1

N[ml)* — _N[ml)’
DPn
a—0 286 1—a-—p
lim M0 = B/2 1-8 B8/2 |,
e l—-a—8 28 a—p
lim ND* = [ “ 1_0‘} .
n—o0 1« (0%

Define ¢ : Ko(C) — Ko(B) as o([z,n]w) := [[™z,n]y. Then ¢ is an injective,
unital order group homomorphism. Since {1 (]2 | z € ZW»} is a pure subgroup
of ZV», 1(Ky(C)) is a pure subgroup of Ky(B) and hence Ko(B)/it(Ky(C)) is
torsion free. Define u™, 4, 13 € Ag and v, (2 € A¢ as
[ —8,28,1 —a—B|(MFD)=1ifi=1,
p? = lim MR = Q8721 - B, B/2)(M D)1, if i =2,
e 1 —a- 3,28 a—F(MFD)1 ifi=3,

: 1 — a)(Nk:D*)=1 if i =1
1/;(.;) = lim N[n R {[a, al( ) ne ’

n—oo

[1—a,a](NED9=1 - if =2,

It is easy to check that ex Ag = {u™, u® 13} ex Ae = {vM, v} and

3
BZ{ZSW(“ (81752,83)€A3}, {Zt,u(l
i=1

Define t* : Ag — Ac as o*((ue)) = (uxI**) where

tl,tQ S AQ}

10
M= 11/2 1/2
0 1

Then *(p™M) = v, *(u®) = D + @))/2 and *(u®) = ). This
means ¢* is surJectlve afﬁne homomorphism. By Proposition 2.3, ¢ is order
embedding. Moreover, we see that ¢*(ex Ap) # ex Ac.

APPENDIX A

Proposition A.1. For anyn € N, 4["(Ag) = N Ay, (k).

k>n
Proof. Clearly, Ay, (k) D Ay, (k+1) D 7"(Ap) for any k > n. We have
Y (AB) C Nysn Av,, (k). Therefore we will show 4" (Ag) D N,.~,, Av, (k).
Let s, € [jop Av, (k). For any k& > n, there exists &z € Ay, such that
8, = xpMPF™ . We fix such {x}}r>,. By Proposition 2.1, there exists sub-
sequence {k;} such that Zliglo x, = pu € Ag. Then s, = v"(y). Therefore

Sn € ’\/[n](AB) O
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Proposition A.2. Suppose that ¢ : Ko(C) — Ko(B) is an order embedding
and Ko(B)/1(Ko(C)) is torsion free. Suppose that ¢ € ZW* \ {0} satisfy that
for any t > k, NFe £ 0 and I*le # 0. Then there exists T > k such that
forallt >T,

GCD(I*e) | GECD(NERe).

Proof. Set ¢ := GCD(I¥¢). Then

IHe

[Ie, kv = ie, klw € «(Ko(C)) and —— e ZY*.

As Ko(B)/u(Ko(C)) is torsion free, t(Ky(C)) is a pure subgroup of Ko(B). So
there exists g € Ko(C) such that t(g) = [c"!MER T t]y for t > k (if t = F,
M¥t = jd. € ZV+*Vr). Moreover there exist T} > k and gr, € Z"™ such
that g = [gr,, Ta]w. Since [ITg, . T\]y = u(g), there is a T» > T such that

MT2:k) [TK] ¢
—
The equality above and M72F) [l = [[T2] N[72:%) mean that 172! (cN[T2’T1)gT1)
= [IRINT2R e As 1 is injective, we get [eNT2T) g, Thly = [NT2R e, Th]w
This implies that there is T > Tj such that for t > T, eNtT) g, = NtRe,
So we finish the proof. O

Proposition A.3. Let A := (1,5, Aw, (t). Suppose Aw, (T) = Aw, (T + 1)
for some T. Then Aw, (T) = A and A has only one point.

Proof. Recall that Aw, (T) = {sNIT"F)* | s € Ay, }. We will show that for
any w,w’ € Wr , NIEP* — NITP* holds. This means that Aw, (T) has only
one point. AWk( ) = Aw, (T + 1) implies that for any w € Wy, there exists
s € Aw,.,, such that NIER* = gNITHLR* We write (t,)pew, = sNT+Ix,
Suppose w € Wy is an extreme point in Ay, (7). Then

(A1) Aﬂﬁkﬁ NIT+1k)% 2: t]%fk
veWrp

I[Ta]N[TmTl)ng — M[TQ’Tl)I[Tl]ng —

Since 0 < N, < 1 for all 2 € Wiy and y € Wr, 0 < £, < 1 holds for any

v. Therefore by (A.1), NIR — NITR* o1 all v because N2P* is extreme
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