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Almost one-to-one extensions of Cantor
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of simple dimension groups
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Abstract. Suppose π is an almost one-to-one factor map of Cantor minimal systems from
(X, φ) to (Y, ψ). Then it is known that (1) the induced map π∗ is an order embedding of
K0(Y, ψ) to K0(X,ψ), (2) the cokernel of π∗, K0(X, φ)/π∗(K0(Y, ψ)), is torsion free and (3)
the induced affine map π̂ from the state space S(K0(X, φ)) to the state space S(K0(Y, ψ))
is surjective and sends exS(K0(X, φ)), the set of all extreme points in S(K0(X, φ)), onto
exS(K0(Y, ψ)). In this paper we will show the dynamical realization problem of dimension
groups by the following: Suppose G and H are simple dimension groups satisfying that (i) an
injective unital order homomorphism ι : H → G is an order embedding, (ii) the cokernel of ι,
G/ι(H), is torsion free and (iii) an induced affine map ι∗ of state spaces from S(G) to S(H)
is surjective and ι∗(exS(G)) = exS(H). Then there exist Cantor minimal systems (X, φ)
and (Y,ψ), an almost one-to-one factor map π : X → Y and a unital order isomorphism
α : K0(X, φ) → G and β : K0(Y,ψ) → H such that (1), (2) and (3) above and α ◦π∗ = ι ◦β
hold. This is a generalization of the results in [4].

1. Introduction

A topological dynamical system (Y, ψ) is called a Cantor minimal system if
Y is the Cantor set (i.e., a compact totally disconnected metric space with no
isolated points) and ψ is a homeomorphism on Y acting minimally (i.e., every
ψ-orbit is dense in Y , or equivalently, the only closed ψ-invariant sets are Y
and the empty set.).

Let (Y, ψ) be a Cantor minimal system, C(Y,Z) be the set of integer-valued
continuous functions on Y and Bψ := {f − f ◦ ψ | f ∈ C(Y,Z)}. We regard
C(Y,Z) as an abelian group with point-wise addition. Then Bψ is a subgroup
of C(Y,Z). We define an ordered abelian group with a positive cone

K0(Y, ψ) := C(Y,Z)/Bψ ,

K0(Y, ψ)+ := {[f ] ∈ K0(Y, ψ) | f ≥ 0, f ∈ C(Y,Z)},
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142 Fumiaki Sugisaki

where [f ] is the coset of f ∈ C(Y,Z) in K0(Y, ψ). In the case where f is
a constant function 1, we call [1] the distinguished order unit of K0(Y, ψ).
In [6], Herman, Putnam and Skau showed that K0(Y, ψ) is an acyclic (i.e.,
K0(Y, ψ) 6∼= Z) simple dimension group and every acyclic simple dimension
group arises from Cantor minimal systems. A triple (G,G+, u), where G is
a dimension group, G+ its positive cone and u its distinguished order unit,
is called a dimension group triple. Two dimension group triple (G,G+, u)
and (H,H+, v) are unital order isomorphic if there is a group isomorphism
ι : G → H such that ι(G+) = H+ and ι(u) = v. In [3], Giordano, Putnam
and Skau showed that the unital order isomorphic class of a dimension group
triple (K0(Y, ψ),K0(Y, ψ)+, [1]) is a complete invariant of the strong orbit
equivalence class of (Y, ψ).

Given a dimension group triple (G,G+, u), a state ω on G is a group homo-
morphism ω : G → R such that ω(G+) ⊂ R+ and ω(u) = 1. Let S(G) denote
the set of all states of G. Then S(G) is a metrizable Choquet simplex, that is,
a compact convex metrizable space with the property that for any µ ∈ S(G),
there exists a unique probability measure τ on S(G) with τ(exS(G)) = 1,
where exS(G) is the set of all extreme points in S(G), such that for any linear
functional f on S(G),

f(µ) =

∫

ν∈exS(G)

f(ν) dτ(ν).

We write µ =
∫

ν∈exS(G) ν dτ(ν). (See [8] and [2].) If G = K0(Y, ψ), there

is a bijection between S(K0(Y, ψ)) and the set of all ψ-invariant probability
measures on Y , Mψ(Y ). In fact, define Φ : Mψ(Y ) → S(K0(Y, ψ)) as

Φ(µ)[f ] :=

∫

f dµ, f ∈ C(Y,Z).

Then Φ is an affine isomorphism ([6, Thm. 5.4]).
Suppose (X,φ) and (Y, ψ) are topological dynamical systems. A continuous

map π : X → Y is called a factor map if π is surjective and π ◦ φ = ψ ◦ π. We
say a factor map π is almost one-to-one if the set {x ∈ X | #π−1π(x) = 1} is
a residual set (i.e., the complement of a set of first category.). Then we call
(Y, ψ) an almost one-to-one factor of (X,φ), or (X,φ) an almost one-to-one
extension of (Y, ψ). In the case where (X,φ) is minimal, it suffices to verify
the existence of x satisfying #π−1π(x) = 1.

Suppose that (X,φ) and (Y, ψ) are Cantor minimal systems and π : X → Y
is a factor map. Define π∗ : K0(Y, ψ) → K0(X,φ) as

π∗[f ] := [f ◦ π].

By [5, Prop. 3.1], π∗ is an order embedding, that is, an injective unital order
homomorphism with the property that [f ] ∈ K0(Y, ψ)+ if and only if π∗[f ] ∈
K0(X,φ)+.

Suppose that (X,φ) and (Y, ψ) are topological dynamical systems assuming
that both transformation are homeomorphisms and π : X → Y is a factor
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Almost one-to-one extensions of Cantor minimal systems 143

map. Define π̃ : Mφ(X) → Mψ(Y ) as

π̃(µ) := µ ◦ π−1, µ ∈ Mφ(X).

Then π̃ is a surjective affine homomorphism ([1, Prop. 3.2 and 3.11]) and π̃
sends φ-invariant ergodic measures, exMφ(X) (extreme points of Mφ(X)),
onto ψ-invariant ergodic measures, exMψ(Y ). Indeed, suppose that E is a
ψ-invariant Borel subset of Y and µ ∈ exMφ(X). Since φ and ψ are homeo-
morphisms and

π ◦ φ ◦ π−1(E) = ψ ◦ π ◦ π−1(E) = ψ(E) = E,

π ◦ φ−1 ◦ π−1(E) = ψ−1 ◦ π ◦ π−1(E) = ψ−1(E) = E,

we have φ ◦ π−1(E) ⊂ π−1(E), φ−1 ◦ π−1(E) ⊂ π−1(E) and hence φ ◦
π−1(E) = π−1(E). Therefore π−1(E) is φ-invariant set and µ is ergodic,
we have µ(π−1(E)) = 0 or 1. So π̃(µ) is also ergodic.

Suppose (Y, ψ) is a Cantor minimal system. It is not hard to show (The-
orem 3.1) that if there are a Cantor minimal system (X,φ) and an almost
one-to-one factor map π : (X,φ) → (Y, ψ), then

(1) π∗ : K0(Y, ψ) → K0(X,φ) is an order embedding,
(2) the cokernel of π∗, K0(X,φ)/π∗(K0(Y, ψ)), is torsion free,
(3) π̃ : Mφ(X) → Mψ(Y ) is a surjective affine homomorphism and

π̃(exMφ(X)) = exMψ(Y ).

The condition (3) is equivalent to

(3’) π̂ : S(K0(X,φ)) → S(K0(Y, ψ)) defined by π̂(µ) := µ◦π∗ is a surjective
affine homomorphism and π̂(exS(K0(X,φ))) = exS(K0(Y, ψ)).

Then we have a problem of its converse, which is called the dynamical realiza-
tion problem of dimension groups, as follows. Given a Cantor minimal system
(Y, ψ) and a simple dimension group G satisfying that

(i) there is an order embedding ι : K0(Y, ψ) → G,
(ii) G/ι(K0(Y, ψ)) is torsion free,
(iii) ι∗ : S(G) → S(K0(Y, ψ)) defined by ι∗(µ) := µ ◦ ι is a surjective affine

homomorphism and ι∗(exS(G)) = exS(K0(Y, ψ)).

Then does there exist a Cantor minimal system (X,φ) such that the following
statements hold?

(a) There is an almost one-to-one factor map π : (X,φ) → (Y, ψ),
(b) there is a unital order isomorphism α : K0(X,φ) → G such that α◦π∗ = ι

holds.

In [4], Giordano, Putnam and Skau showed the dynamical realization problem
by assuming (i), (ii) above and the order dense condition. For an order em-
bedding ι : H → G of dimension groups, we say ι(H) is order dense in G if for
any g, g′ ∈ G with g < g′, there is h ∈ H such that g < ι(h) < g′. It is known
that ι(H) is order dense in G if and only if ι∗ is injective ([4, Prop. 1.1]). So
the order dense condition satisfies (iii) above.
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144 Fumiaki Sugisaki

We remark that by Proposition 2.3, ι is an order embedding if and only if ι∗

is surjective. Moreover, if ι∗ is affine and sends exS(G) onto exS(K0(Y, ψ)),
then ι∗ is surjective. So the conditions (i) and (iii) are equivalent to:

(iv) ι : K0(Y, ψ) → G is an injective unital order homomorphism and ι∗ :
S(G) → S(K0(Y, ψ)) is an affine homomorphism so that ι∗(exS(G)) =
exS(K0(Y, ψ)).

In this paper we will show the following.

Theorem 1.1. In the situations (ii) and (iv) above, there exists a Cantor
minimal system (X,φ) such that the conditions (a) and (b) above hold.

We remark that the assumption (iv) (or (iii)) is important. In fact we
construct K0(Y, ψ) and G satisfying the conditions (i) and (ii) but not (iii)
(Example 5.1) and hence we cannot do the dynamical realization in this case.

By Theorem 1.1 and Theorem 3.1 it is easy to check the following corollaries:

Corollary 1.2. Suppose that (Y, ψ) is a uniquely ergodic Cantor minimal
system and G is a simple dimension group satisfying the assumptions (i) and
(ii) above. Then there exists a Cantor minimal system (X,φ) such that the
conditions (a) and (b) above hold.

Corollary 1.3. Suppose that G and H are acyclic simple dimension groups
and ι : H → G is an injective unital order homomorphism. Then the following
statements are equivalent:

(1) There exist Cantor minimal systems (X,φ) and (Y, ψ) such that
• there is an almost one-to-one factor map π : (X,φ) → (Y, ψ),
• there are unital order isomorphisms α : K0(X,φ) → G and β :
K0(Y, ψ) → H such that α ◦ π∗ = ι ◦ β holds.

K0(Y, ψ)
�

� π∗

//

β ∼=

��
	

K0(X,φ)

α∼=

��
H �

�

ι
// G

(2) G/ι(H) is torsion free and ι∗ : S(G) → S(H) defined by ι∗(µ) := µ ◦ ι
is an affine homomorphism and ι∗(exS(G)) = exS(H).

Basically, we use notations and definitions in [6] and [3]. Here we will
introduce some notations and definitions in this paper. Suppose B = (V,E,≥)
is a properly ordered (also called simply ordered) Bratteli diagram.

• Let r : E → V denote the range map and s : E → V denote the source
map. Namely, e ∈ En connects between s(e) ∈ Vn−1 and r(e) ∈ Vn.

• Let M [n] = [M
[n]
uv ] denote the n-th incidence matrix of B (i.e., M

[n]
uv is

the number of edges connecting between u ∈ Vn and v ∈ Vn−1). We

also write B = (V,E, {M [n]},≥). Let M
[n]
∗v = (M

[n]
uv )u∈Vn

denote the

v’s column vector ofM [n] andM
[n]
u∗ = (M

[n]
uv )v∈Vn−1 denote the u’s row
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Almost one-to-one extensions of Cantor minimal systems 145

vector ofM [n]. For n > k, letM [n,k) (or M [n,k+1]) denote the product
of incidence matrices M [n]M [n−1] · · ·M [k+1].

• For a sequence c0 = 0 < c1 < c2 < c3 < · · · in Z+, we say that a

Bratteli diagram B′ = (V ′, E′, {M ′
[n]
}) is a telescoping (or contraction)

of B to depths {cn}
∞
n=0, which we write B′ = (B, {cn}), if V

′
n := Vcn

and M ′[n] := M [cn,cn−1). Especially, we define Bodd as telescoping B
to odd depths (0, 1, 3, · · · ) and define Beven as telescoping B to even
depths (0, 2, 4, · · · ).

• Let (XB, SB) denote the Bratteli-Vershik system of B. Namely, XB
is the infinite path space of B and SB : XB → XB is the Vershik
(lexicographic) map defined by the order ≥ on E. (See [6].)

• Define an equivalence relation ∼ on Bratteli diagrams as follows. B =
(V,E) ∼ (Ṽ , Ẽ) = B̃ if there exists a Bratteli diagram B̂ = (V̂ , Ê)

such that B̂odd yields a telescoping either B or B̃, and B̂even yields a
telescoping of the other.

2. The state space S(K0(B))

Recall notations of inductive limit of ordered groups. For a simple Bratteli
diagram B = (V,E, {M (n)}), K0(B) is the inductive limit of a sequence

(2.1) lim
−→

(ZVn−1 ,M [n]) = ZV0
M [1]

// ZV1
M [2]

// ZV2
M [3]

// · · · · ·

with the distinguished order unit of K0(B) corresponding to 1 ∈ ZV0 . For
g ∈ ZVt , we write [g, t]V ∈ K0(B). We also write [v, t]V ∈ K0(B) where we

identify v ∈ Vt with v = (0, . . . , 0,
v
1, 0, . . . , 0) ∈ ZVt . Suppose g ∈ ZVt and

g′ ∈ ZVt′ with [g, t]V = [g′, t′]V . Then there is an s > t, t′ such that M [s,t)g =

M [s,t′)g′ =: g̃ ∈ ZVs and hence [g, t]V = [g′, t′]V = [g̃, s]V . If G is a dimension

group, then there exists B = (V,E, {M (n)}) such that G ∼= lim
−→

(ZVn−1 ,M [n]).

For a simple Bratteli diagram B, let us recall the definition of the state space
S(K0(B)). Let G be an ordered group with fixed order unit u ∈ G+. We say
that a homomorphism µ : G → R is a state if µ is positive (i.e., µ(g) ≥ 0 for
g ∈ G+) and µ(u) = 1. Let S(G) denote the set of all states of G. In the case
of G = Zn and u = (u1, . . . , un) ∈ (Zn)+, µ ∈ S(Zn) is written by

µ((z1, . . . , zn)) =

n
∑

i=1

sizi
ui

, where

n
∑

i=1

si = 1 and si ≥ 0.

Therefore we may identify S(Zn) with the standard n-simplex ∆n. I.e.,

∆n =

{

(s1, . . . , sn)

∣

∣

∣

∣

n
∑

i=1

si = 1, si ≥ 0

}

.

For v ∈ Vn, let pv denote the number of paths between v0(∈ V0) and v. Then

pv =M
[n,1]
vv0 holds and (pv)v∈Vn

=M
[n,1]
∗v0 is the distinguished order unit of ZVn .
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Let DVn
denote the Vn × Vn diagonal matrix defined by (DVn

)vv := pv. Then
by (2.1), the state space S(K0(B)) is the inverse limit of a sequence

lim
←−

(∆Vn−1 ,M
[n]∗) = ∆V0 ∆V1

M [1]∗
oo ∆V2

M [2]∗
oo · · · · ·

M [3]∗
oo ,

where M [n]∗ := D−1Vn
M [n]DVn−1 and we also identify S(K0(B)) with

∆B :=

{

(s(i)) ∈

∞
∏

i=0

∆Vi

∣

∣

∣

∣

s(i) = s(i+1)M [i+1]∗, i ≥ 0

}

.

Let γ[k] : ∆B → ∆Vk
denote a projection defined by γ[k]((s(i))) := s(k). Then

γ[k] is an affine homomorphism. Define ∆Vk
(t) := {sM [t,k)∗ | s ∈ ∆Vt

}. We
have

• ∆Vk
(t) ⊃ ∆Vk

(t+ 1) for any t > k,
• γ[k](∆B) =

⋂

t>k

∆Vk
(t). (See Appendix, Proposition A.1.)

Let ‖ · ‖Vn
denote the l1-norm on RVn , that is, for s = (sv) ∈ RVn , ‖s‖Vn

:=
∑

v∈Vn
|sv|. For a sequence {sn ∈ ∆Vn

}∞n=1, we write

lim
n→∞

sn = (µk) =: µ if lim
n→∞

‖snM
[n,k)∗ − µk‖Vk

= 0 for any k ∈ N.

It is easy to see that µ ∈ ∆B. Now we identify v ∈ Vn with an extreme point

v = (0, . . . , 0,
v
1, 0, . . . , 0) ∈ ∆Vn

. For a sequence {vn ∈ Vn}
∞
n=1, we write

lim
n→∞

vn = (µk) if lim
n→∞

‖M
[n,k)∗
vn∗ − µk‖Vk

= 0 for any k ∈ N.

Proposition 2.1. For any sequence {xn ∈ ∆Vn
}∞n=1 ({vn ∈ Vn}

∞
n=1), there

exist {ni} ⊂ N and µ ∈ ∆B such that µ = lim
i→∞

xni
(µ = lim

i→∞
vni

) holds.

Proof. First we consider xnM
[n,1)∗ for n ∈ N. By the compactness of ∆V1 ,

there exist µ1 ∈ ∆V1 and S1 ⊂ N with #S1 = ∞ such that

lim
S1∋n→∞

‖xnM
[n,1)∗ − µ1‖V1 = 0.

Take any s1 ∈ S1 and fix it. Next we consider xnM
[n,2)∗ for n ∈ S1. By the

compactness of ∆V2 , there exist µ2 ∈ ∆V2 and S2 ⊂ S1 with #S2 = ∞ such
that s1 ∈ S2 and

lim
S2∋n→∞

‖xnM
[n,2)∗ − µ2‖V2 = 0.

Take any s2 ∈ S2 with s2 > s1 and fix it. Repeating this argument we get
{µn ∈ ∆Vn

}∞n=1 and S :=
⋂

n∈N Sn with #S = ∞ (∵ Sn ⊃ {si | 1 ≤ i ≤ n},
S ⊃ {sn | n ∈ N}) so that

lim
S∋n→∞

‖xnM
[n,k)∗ − µk‖Vk

= 0 for any k ∈ N.

Now we will show (µk) ∈ ∆B. It suffices to show that µk = µk+1M
[k]∗ for all

k ∈ N.

‖µk − µk+1M
[k]∗‖Vk

= ‖(µk − xnM
[n,k)∗) + (xnM

[n,k)∗ − µk+1M
[k]∗)‖Vk
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Almost one-to-one extensions of Cantor minimal systems 147

≤ ‖µk − xnM
[n,k)∗‖Vk

+ ‖(xnM
[n,k+1)∗ − µk+1)M

[k]∗‖Vk

→ 0 as S ∋ n→ ∞.

In the case of {vn ∈ Vn}
∞
n=1, we let xn = vn as an extreme point of ∆Vn

. �

Proposition 2.2. Suppose G and H are dimension groups and ι : H → G
is a unital order group homomorphism. Then there exist Bratteli diagrams
B = (V,E, {M [n]}), C = (W,F, {N [n]}) and Vn ×Wn matrix I [n] such that
G ∼= K0(B) and H ∼= K0(C) as unital order isomorphisms and the following
diagrams commute:

(2.2) K0(C)

ι

��

ZW0
N [1]

//

I[0]=id.
��

ZW1
N [2]

//

I[1]

��

ZW2
N [3]

//

I[2]

��

· · · · ·

K0(B) ZV0
M [1]

// ZV1
M [2]

// ZV2
M [3]

// · · · · ·

Proof. Let B = (V,E, {M [n]}) and C = (W,F, {N [n]}) be Bratteli diagrams
satisfying G ∼= K0(B) and H ∼= K0(C). In order to define I [n], we will modify
B by telescoping to some suitable depths {tn}. Let I [0] := [1]. There exists
t1 ≥ 1 such that for any w ∈ W1, there is gw ∈ ZVt1 with ι([w, 1]W ) = [gw, t1]V .

We fix such t1 and gw. Define I
[1]
∗w := gw. Next there exists t2 > t1 such that

for any w′ ∈W2, there is gw′ ∈ ZVt2 satisfying that

• ι([w′, 2]W ) = [gw′ , t2]V ,

• M [t2,t1)I
[1]
∗w =

∑

w′∈W2
N

[2]
w′wgw′ .

Indeed, suppose ι([w′, 2]W ) = [gw′ , t2]V but M [t2,t1)I
[1]
∗w 6=

∑

w′∈W2
N

[2]
w′wgw′ .

Since

[M [t2,t1)I
[1]
∗w , t2]V = ι([w, 1]W ) = ι([N

[2]
∗w, 2]W ) =

[

∑

w′∈W2

N
[2]
w′wgw′ , t2

]

V

,

there exists t > t2 such that for any w ∈ W1,

M [t,t1)I
[1]
∗w =M [t,t2)

∑

w′∈W2

N
[2]
w′wgw′ .

So resetting t2 and gw′ , we set t2 := t and gw′ := M [t,t2)gw′ . We fix such t2

and gw′ . Define I
[2]
∗w′ := gw′ . Then for any w ∈W1,

M [t2,t1)I
[1]
∗w = I [2]N

[2]
∗w and hence M [t2,t1)I [1] = I [2]N [2].

Repeating this process, we can define I [n] for all n. Telescoping B to {tn}, we
get the conclusion. �

In the situation above, ι induces an affine homomorphism ι∗ : ∆B → ∆C
defined by ι∗(µ) := µ ◦ ι. If µ = (s(k)) ∈ ∆B, we also write

ι∗(µ) = (s(k)I [k]∗) where I [k]∗ := D−1Vk
I [k]DWk

.
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Then the following diagrams commute.

∆C {1} ∆W1

N [1]∗
oo ∆W2

N [2]∗
oo · · · · ·

N [3]∗
oo

∆B

ι∗

OO

{1}

I[0]∗=id.

OO

∆V1
M [1]∗

oo

I[1]∗

OO

∆V2
M [2]∗

oo

I[2]∗

OO

· · · · ·
M [3]∗

oo

(Note that ∆V0 = ∆W0 = {1}.)

Proposition 2.3. Suppose G and H are dimension groups and ι : H → G is
an injective unital order group homomorphism. Then following statements are
equivalent:

(1) ι is an order embedding,
(2) ι∗ is a surjection.

Proof. (1)⇒(2). Let ν ∈ S(H). For x ∈ G+, define µ(x) as

µ(x) :=

{

ν(y), if x = ι(y) for some y ∈ H+,

0, if x ∈ G+ \ ι(H+).

Since ι is injective, µ is well-defined on G+. Since for any x ∈ G, we can write
x = y − z for some y, z ∈ G+ and hence we define µ(x) := µ(y) − µ(z). It is
easy to check that µ is well-defined on G and µ ∈ S(G). So ν = µ ◦ ι = ι∗(µ)
holds.
(2)⇒(1). Since ι is an order homomorphism, ι(H+) ⊂ G+ holds. So we will
show ι−1(G+) ⊂ H+. Let y ∈ ι−1(G+)\{0}. Then there is a x ∈ G+ such that
ι(y) = x 6= 0. Let ν ∈ S(H). Then there is a µ ∈ S(G) such that ν = ι∗(µ).
In [2, Cor. 4.2], we see that

G+ = {z ∈ G | µ(z) > 0 for any µ ∈ S(G)} ∪ {0}.

Then µ(x) > 0 and we have

0 < µ(x) = µ ◦ ι(y) = ι∗(µ)(y) = ν(y).

Since ι∗ is surjective, it is shown that ν(y) > 0 for any ν ∈ S(H). This implies
y ∈ H+. �

For k ∈ N, n ∈ RWk

+ := {(nw) ∈ RWk | nw ≥ 0} and n∗ ∈ ∆Wk
, we consider

the linear equations for x and y:

xI [k] = n, yI [k]∗ = n∗.

We set S(n) := {x ∈ RVk | xI [k] = n}, the set of solutions of xI [k] = n,
and S∗(n∗) := {y ∈ RVk | yI [k]∗ = n∗}, the set of solutions of x∗I [k]∗ = n∗.

Define maps ∗ : RVk

+ → RVk

+ and ∗ : RWk

+ → RWk

+ as

RVk

+ ∋ x 7−→ x∗ :=
xDVk

xM [k,1]
, RWk

+ ∋ y 7−→ y∗ :=
yDWk

yN [k,1]
.

Remark 2.4. We have the following properties with respect to ∗:

(1) (RVk

+ )∗ = ∆Vk
and (RWk

+ )∗ = ∆Wk
,
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(2) for x ∈ S(n), x∗ = xDVk
/nN [k,1] ∈ S∗(n∗),

(3) for a fixed n, the restriction ∗ to S(n), ∗|S(n) : S(n) → S∗(n∗) is bijective,

(4) the preimage of ∗ to S∗(n∗), (S∗(n∗))∗
−1

, is

(S∗(n∗))∗
−1

=
⋃

r∈R+

S(rn).

Proof. (1) We will show (RVk

+ )∗ = ∆Vk
. Clearly x∗ = (x∗v) ∈ RVk

+ and we see
that

∑

v∈Vk

x∗v =
∑

v∈Vk

(xDVk
)v

xM [k,1]
=

∑

v∈Vk

xvpv
xM [k,1]

=
xM [k,1]

xM [k,1]
= 1.

So x∗ ∈ ∆Vk
. If x′ ∈ ∆Vk

, then x′D−1Vk
∈ RVk

+ and

(x′D−1Vk
)∗ =

x′

x′D−1Vk
M [k,1]

=
x′

∑

v∈Vk
x′v

= x′.

So the map ∗ is surjective.
(2) Since M [k,1] = I [k]N [k,1] and xI [k] = n, we have

x∗ =
xDVk

xM [k,1]
=

xDVk

xI [k]N [k,1]
=

xDVk

nN [k,1]
.

Moreover,

x ∈ S(n) ⇔ xI [k] = n

⇔ (xDVk
)D−1Vk

I [k]DWk
= nDWk

⇔ (xDVk
)I [k]∗ = nDWk

⇔
xDVk

nN [k,1]
I [k]∗ =

nDWk

nN [k,1]
⇒ x∗I [k]∗ = n∗ ⇔ x∗ ∈ S∗(n∗).

(3) Clearly ∗|S(n) is injective. For x′ ∈ S∗(n∗), it is easy to see that

(nN [k,1])x′D−1Vk
∈ S(n) and ((nN [k,1])x′D−1Vk

)∗ = x′. So ∗|S(n) is surjective.

(4) Trivial. �

Let ∆+
Vk

:= {x = (xv) ∈ ∆Vk
| xv > 0 ∀v ∈ Vk}, SR+(n) := S(n) ∩ RVk

+ ,

SZ(n) := S(n) ∩ ZVk , SN(n) := S(n) ∩ NVk , S∗∆(n
∗) := S∗(n∗) ∩ ∆Vk

and
S∗∆+(n∗) := S∗(n∗) ∩∆+

Vk
. For ε > 0 and x ∈ RVk , let Bε(x) := {y ∈ RVk |

‖x− y‖Vk
< ε} denote the open ball with center at x and radius ε.

Proposition 2.5. Suppose SZ(n) 6= ∅. Then there exists τ > 0 such that for
any m∗ ∈ S∗(n∗), there is x∗ ∈ S∗(n∗) ∩Bpτ/nN [k,1](m∗) such that

x := (nN [k,1])x∗D−1Vk
∈ SZ(n) ∩Bτ (m),

where p = maxv∈Vk
pv. Moreover if S∗(n∗) ∩ Bpτ/nN [k,1](m∗) ⊂ S∗∆+(n∗),

then

x ∈ SN(n) ∩Bτ (m).
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Proof. First we will show that there exists τ > 0 such that for any m ∈ S(n),
SZ(n) ∩ Bτ (m) 6= ∅. Let {ξ1, ξ2, · · · , ξr} be a basis of Ker(I [k]). Since all
entries of I [k] consist of positive integers, we may assume that ξ1, ξ2, · · · , ξr ∈
ZVk . Let τ :=

∑r
i=1 ‖ξi‖Vk

. For any a ∈ SZ(n), there exist ai ∈ R and ni ∈ Z

such that m = a +
∑r
i=1 aiξi and ni ≤ ai < ni + 1. Let a′ := a+

∑r
i=1 niξi.

Then a′ ∈ SZ(n) and

‖m− a′‖Vk
=

∥

∥

∥

∥

∥

r
∑

i=1

(ai − ni)ξi

∥

∥

∥

∥

∥

Vk

≤

r
∑

i=1

(ai − ni)‖ξi‖Vk
< τ.

Therefore a′ ∈ SZ(n) ∩Bτ (m) 6= ∅.
We take x ∈ SZ(n) ∩Bτ (m) and fix it. Since ‖m∗ − x∗‖Vk

≤ p
nN [k,1] ‖m−

x‖Vk
, x∗ = (nN [k,1])−1xDVk

∈ S∗(n∗) ∩ Bpτ/nN [k,1](m∗). Moreover if x∗ ∈

S∗∆+(n∗), then x ∈ SR++(n) := {(zv) ∈ S(n) | zv > 0, ∀v ∈ Vk}. So we are
done. �

3. Extensions of Cantor minimal systems and Bratteli diagrams

Theorem 3.1. Suppose that (X,φ) and (Y, ψ) are Cantor minimal systems
and π : X → Y is an almost one-to-one factor map. Then

(1) π∗ : K0(Y, ψ) → K0(X,φ) defined by π∗[f ] := [f ◦ π] is an order
embedding,

(2) K0(X,φ)/π∗(K0(Y, ψ)) is torsion free,
(3) π̃ : Mφ(X) → Mψ(Y ) defined by π̃(µ) := µ ◦ π−1 is the surjective

affine homomorphism and π̃(exMφ(X)) = exMψ(Y ).

Proof. We only show the statement (2). First we will construct a properly
ordered Bratteli diagram for (Y, ψ) (See [6, Thm. 4.2]). Let x0 ∈ X satisfy
#π−1 ◦ π(x0) = 1 and y0 := π(x0). Let Qn := {Yn(i, h) | 1 ≤ i ≤ In, 1 ≤ h ≤
Hn(i)} denote the n-th Kakutani-Rohlin (KR) clopen partition for (Y, ψ) and
{Qn} denote a sequence of KR partitions for (Y, ψ) satisfying the following
conditions:

• Q0 = {Y = Y0(1, 1)},
• for 1 ≤ h < Hn(i), ψYn(i, h) = Yn(i, h+ 1),

• {y0} =
⋂

n∈Z+

In
⋃

i=1

Yn(i, 1),

• Qn is finer than Qn−1 for all n (i.e., for any Q ∈ Qn, Q ⊂ Q′ for some
Q′ ∈ Qn−1),

• {Qn} generates the topology of Y .

Let C = (W,F,≥) denote the properly ordered Bratteli diagram arising from
{Qn}. That is,

• Wn := {in | 1 ≤ i ≤ In},
• Fn := {(i, i′, h)n | Yn(i

′, h) ⊂ Yn−1(i, 1)},
• for (i, i′, h)n ∈ Fn, s(i, i

′, h)n := in−1 and r(i, i′, h)n := i′n,
• (i, i′, g)n < (k, k′, h)n if and only if i′ = k′ and g < h.
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Then y0 (ψ−1(y0), resp.) corresponds to the unique minimal (maximal, resp.)
path in XC .

Next we will construct a properly ordered Bratteli diagram for (X,φ). Let
{P ′n} denote a sequence of clopen partitions for X which generates the topol-
ogy of X . Let Pn = {Xn(i

(j), h) | 1 ≤ i ≤ In, 1 ≤ j ≤ Jn(i), 1 ≤ h ≤ Hn(i)}
denote the n-th KR clopen partition for (X,φ) associated with Qn and {Pn}
denote a sequence of KR partitions for (X,φ) such that

• P0 = {X = X0(1
(1), 1)},

•
⋃Jn(i)
j=1 Xn(i

(j), h) = π−1Yn(i, h),

• for 1 ≤ h < Hn(i), φXn(i
(j), h) = Xn(i

(j), h+ 1),
• Pn is finer than P ′n and Pn−1 for all n ∈ N.

Then we see that

• {x0} =
⋂

n∈Z+

⋃In
i=1

⋃Jn(i)
j=1 Xn(i

(j), 1),

• {Pn} generates the topology of X .

Let B = (V,E,≥) denote the properly ordered Bratteli diagram arising from
{Pn}. That is,

• Vn := {i
(j)
n | 1 ≤ i ≤ In, 1 ≤ j ≤ Jn(i)},

• En := {(i(j), i′
(j′)

, h)n | Xn(i
′(j

′)
, h) ⊂ Xn−1(i

(j), 1)},

• for (i(j), i′(j
′), h)n ∈ En, s(i

(j), i′(j
′), h)n := i

(j)
n−1

and r(i(j), i′
(j′)

, h)n := i′
(j′)
n ,

• (i(j), i′
(j′)

, g)n < (k(l), k′
(l′)
, h)n if and only if i′

(j′)
= k′

(l′)
and g < h.

Then x0 (φ−1(x0), resp.) corresponds to the unique minimal (maximal, resp.)
path in XB.

We identify π∗ : K0(Y, ψ) → K0(X,φ) with π∗ : K0(C) → K0(B). That is,

π∗ : ZWn ∋ in = (0, . . . , 0,
in
1 , 0, . . . , 0)

7→

Jn(i)
∑

j=1

i(j)n =

Jn(i)
∑

j=1

(0, . . . , 0,
i(j)n

1 , 0, . . . , 0) ∈ ZVn .

(

π∗([z, n]W ) :=

[ In
∑

i=1

Jn(i)
∑

j=1

zini
(j)
n , n

]

V

, where z = (zin) ∈ ZWn .

)

In order to show that K0(B)/π
∗(K0(C)) is torsion free, it suffices to show that

π∗(ZWn) is a pure subgroup of ZVn . Suppose that z = (z
i
(j)
n
) ∈ ZVn and

kz ∈ π∗(ZWn) for some k ∈ N. kz ∈ π∗(ZWn) implies that kz
i
(j)
n

= kz
i′

(j′)
n

if

i = i′. So z ∈ π∗(ZWn) holds and hence π∗(ZWn) is pure in ZVn . So we finish
the proof. �

Münster Journal of Mathematics Vol. 4 (2011), 141–170



152 Fumiaki Sugisaki

Remark 3.2. Let M [n] (N [n], resp.) denote the n-th incidence matrix of B
(C, resp.) in Theorem 3.1. Then we see that

(3.1)

Jn−1(k)
∑

l=1

M
[n]

i
(j)
n k

(l)
n−1

= N
[n]
inkn−1

.

π induces the surjection ϕ : V → W defined by ϕ(i
(j)
n ) := in for all n. Then

we have

• ϕ(Vn) =Wn for all n,
• for v ∈ Vn and w ∈ Wn−1,

(3.2)
∑

u∈ϕ−1(w)

M [n]
vu = N

[n]
ϕ(v)w.

Note that (3.1) and (3.2) are equivalent.

Proposition 3.3. Suppose that C = (W,F, {N [n]},≥) is a properly ordered

Bratteli diagram and B̃ = (Ṽ , Ẽ, {M̃ [n]}) is a simple Bratteli diagram. Suppose

ϕ : Ṽ →W is a surjection satisfying that

(1) ϕ(Ṽn) =Wn for all n,

(2) for v ∈ Ṽn and w ∈Wn−1,
∑

u∈ϕ−1(w) M̃
[n]
vu = N

[n]
ϕ(v)w.

Then there exists a proper order ≥ on Ẽ such that (XB̃, SB̃) is an almost one-
to-one extension of (XC , SC), where (XB̃, SB̃) and (XC , SC) are the Bratteli-

Vershik systems associated with B̃ and C respectively.

Proof. We construct an almost one-to-one factor map π : XB̃ → XC. Since B̃

and C are simple diagrams, we may assume that M̃ [n] and N [n] are positive
matrices (i.e., all entries of them are positive) for all n. Let Fmin

n , Fmax
n ⊂ Fn

denote the set of minimal, maximal edges in Fn respectively. For f ∈ Fmin
n and

f ′ ∈ Fmax
n , let vmin

f , vmax
f ′ ∈ Ṽn−1 satisfy ϕ(vmin

f ) = s(f) and ϕ(vmax
f ′ ) = s(f ′)

and fix them. The condition (2) implies that for v ∈ Ṽn there is a bijection

between r−1(v) = {e ∈ Ẽn | r(e) = v} and r−1(ϕ(v)). So we can define

surjections πn : Ẽn → Fn for all n and a partial order ≥ on Ẽn as

(i) for v ∈ Ṽn, πn ◦ r−1(v) = r−1(ϕ(v)),

(ii) for e ∈ Ẽn, s ◦ πn(e) = ϕ ◦ s(e),
(iii) for any f ∈ Fmin

n and e ∈ π−1n (f), s(e) = vmin
f ,

(iv) for any f ∈ Fmax
n and e ∈ π−1n (f), s(e) = vmax

f ,

(v) e, e′ ∈ Ẽn and e < e′ if and only if r(e) = r(e′) and πn(e) < πn(e
′).

Define π : XB̃ → XC as

π(p) := (πn(pn)), where p = (pn).

By the conditions (i) and (ii), π is well-defined. Now we will show that
#π−1(qmin) = #π−1(qmax) = 1, where qmin, qmax ∈ XC is a unique min-
imal, maximal path respectively. Let p = (pn), p

′ = (p′n) ∈ XB̃ satisfy
π(p) = π(p′) = qmin. By the condition (v), p and p′ are minimal paths
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in XB̃. Let n ∈ N be fixed. By πn+1(pn+1) = πn+1(p
′
n+1) = qmin

n+1 and

the conditions (ii) and (iii), s(pn+1) = s(p′n+1) = vmin
qmin
n+1

. This implies that

r(pn) = r(p′n) = vmin
qmin
n+1

and hence pn = p′n. So p = p′ holds. Therefore

#π−1(qmin) = 1. Similarly we can show #π−1(qmax) = 1. This proof also

means that B̃ has a proper-order (i.e., there exist unique minimal, maximal
path in XB̃).

Finally, it is easy to see that π is a continuous surjection and π◦SB̃ = SC ◦π.
By #π−1(qmin) = 1, π is an almost one-to-one factor map. �

Remark 3.4. ϕ induces group homomorphisms (matrices) Ĩ [n] : ZWn → ZṼn

by

Ĩ [n]vw :=

{

1, if ϕ(ṽ) = w,

0, if ϕ(ṽ) 6= w.

Then Ĩ [n]N [n] = M̃ [n]Ĩ [n−1] holds.

4. Proof of Theorem 1.1

4.1. Requirements of a simple Bratteli diagram for (X,φ). Suppose
that C = (W,F, {N [n]}, ≥) is a properly ordered Bratteli diagram arising from
(Y, ψ), B = (V,E, {M [n]}) is a simple Bratteli diagram arising from G, ι :
K0(C) → G is an injective unital order group homomorphism. The assumption
(iv) of Theorem 1.1 implies that ι∗ : ∆B → ∆C defined by ι∗(µ) := µ ◦ ι is
surjective. So by Proposition 2.3, ι is an order embedding. By Proposition 2.2,
the following diagrams commute:

K0(C)

ι

��

ZW0
N [1]

//

I[0]=id.
��

ZW1
N [2]

//

I[1]

��

ZW2
N [3]

//

I[2]

��

· · · · ·

G = K0(B) ZV0
M [1]

// ZV1
M [2]

// ZV2
M [3]

// · · · · ·

Telescoping diagrams, we may assume that for all n, M [n], N [n] and I [n] are
positive matrices. Also, the following diagrams commute:

∆C {1} ∆W1

N [1]∗
oo ∆W2

N [2]∗
oo · · · · ·

N [3]∗
oo

∆B

ι∗

OO

{1}

I[0]∗=id.

OO

∆V1
M [1]∗

oo

I[1]∗

OO

∆V2
M [2]∗

oo

I[2]∗

OO

· · · · ·
M [3]∗

oo

where

M [n]∗ := D−1Vn
M [n]DVn−1 , N [n]∗ := D−1Wn

N [n]DWn−1 , I [n]∗ := D−1Vn
I [n]DWn

.

AlsoM [n]∗, N [n]∗ and I [n]∗ are positive matrices. Now we will construct a sim-
ple Bratteli diagram B̃ = (Ṽ , Ẽ, {M̃ [n]}) by an induction so that B̃ satisfies the
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assumptions of Proposition 3.3. In order to construct B̃, we need to telescope
B and C to some suitable depths {tn}.

The first step. Let V0 := {v0}, W0 := {w0}, Ṽ0 := {ṽ0} and ϕ0(ṽ0) := w0.
We will construct the following commutative diagrams:

ZW0
Ĩ[0]=id. //

N [1]

��

I[0]

//

ZṼ0

M̃ [1]

��

M̂ [0]=id.

''NN
NN

NN
NN

NN
NN

N

ZV0

M [1]

��

M̂ [1]

wwppp
pp
pp
pp
pp
pp

ZW1

I[1]
//

Ĩ[1] // ZṼ1

M̂ [2]

''NN
NN

NN
NN

NN
NN

N

ZV1

Define t1, Ṽ1, projections ϕ1 : Ṽ1 →W1 and ρ1 : Ṽ1 → V1, Ĩ
[1], M̂ [2], M̂ [1] and

M̃ [1] as follows:

• t1 := 1,

• Ṽ1 := {(v, w, i) | v ∈ V1, w ∈W1, 1 ≤ i ≤ I
[1]
vw},

• ϕ1(v, w, i) := w, ρ1(v, w, i) := v

• Ĩ
[1]
ṽw :=

{

1, if ϕ1(ṽ) = w

0, if ϕ1(ṽ) 6= w
, M̂

[2]
vṽ :=

{

1, if ρ1(ṽ) = v

0, if ρ1(ṽ) 6= v
,

• M̂
[1]
ṽv0

:=M
[1]
ϕ1(ṽ)v0

for all ṽ ∈ Ṽ1,

• M̃
[1]
ṽṽ0

:= M̂ [1].

N [1]

I [1]

N [1]

W1

V1

W1

V1

Ṽ1

Ĩ [1]

M̂ [2]

M̃ [1]

Ṽ1

M̂ [2]

V1

⇒ ⇒

ṽ

ρ1(ṽ)

ϕ1(ṽ)

The n-th step. For n ≥ 2, suppose tn−1 ∈ N, Ṽn−1, ϕn−1 : Ṽn−1 → Wtn−1 ,

M̃ [n−1], Ĩ [n−1] and M̂ [2n−2] are defined. Now we simply write k = tn−1. We
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will construct the following commutative diagrams:

(4.1) ZWk
Ĩ[n−1]

//

N [tn,k)

��

I[k]

//

ZṼn−1

M̃ [n]

��

M̂ [2n−2]

''PP
PP

PP
PP

PP
PP

PP

ZVk

M [tn,k)

��

M̂ [2n−1]

wwnnn
nn
nn
nn
nn
nn
n

ZWtn

I[tn] //

Ĩ[n]
// ZṼn

M̂ [2n]

''PP
PP

PP
PP

PP
PP

P

ZVtn

When tn > k is decided, Ṽn, projections ϕn : Ṽn → Wtn and ρn : Ṽn → Vtn ,

Ĩ [n] and M̂ [2n] are necessarily determined by the following:

• Ṽn := {(v, w, i) | v ∈ Vtn , w ∈ Wtn , 1 ≤ i ≤ I
[tn]
vw },

• ϕn(v, w, i) := w, ρn(v, w, i) := v,

• Ĩ
[n]
ṽw :=

{

1, if ϕn(ṽ) = w

0, if ϕn(ṽ) 6= w
, M̂

[2n]
vṽ :=

{

1, if ρn(ṽ) = v

0, if ρn(ṽ) 6= v
.

I [tn]

Wtn

Vtn

Ṽn

Ĩ [n]

M̂ [2n]

=⇒

Wtn

Vtn

ṽ

ϕn(ṽ)

ρn(ṽ)

Moreover when M̂ [2n−1] is also decided, M̃ [n] is necessarily determined by

• M̃ [n] := M̂ [2n−1]M̂ [2n−2].

So we will show that there exist tn > k and M̂ [2n−1] such that

(n-1) for ṽ ∈ Ṽn, M̂
[2n−1]
ṽ∗ ∈ SN(N

[tn,k)
ϕn(ṽ)∗

) := {x ∈ NVk | xI [k] = N
[tn,k)
ϕn(ṽ)∗

},

(n-2) M̂ [2n]M̂ [2n−1] =M [tn,k).

Suppose the recursive construction above is finished. First, we will show
that B̃ and C (more precisely, B̃ and (C, {tn})) satisfy the assumptions of

Proposition 3.3. Define ϕ : Ṽ →W as ϕ|Ṽn
:= ϕn for all n. Note that

M̂
[2n−1]
ṽ∗ ∈ {m ∈ NVk | mM̂ [2n−2]Ĩ [n−1] = N

[tn,k)
ϕn(ṽ)∗

}

and
∑

ũ∈ϕ−1(w)

M̂
[2n−2]
∗ũ = M̂ [2n−2]Ĩ

[n−1]
∗w .
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For ṽ ∈ Ṽn and w ∈ Wk,
∑

ũ∈ϕ−1(w)

M̃
[n]
ṽũ =

∑

ũ∈ϕ−1(w)

M̂
[2n−1]
ṽ∗ M̂

[2n−2]
∗ũ = M̂

[2n−1]
ṽ∗ M̂ [2n−2]Ĩ

[n−1]
∗w = N

[tn,k)
ϕ(v)w.

So they satisfy the assumptions of Proposition 3.3. Then there exist a proper
order ≥ on Ẽ and an almost one-to-one factor map π : XB̃ → XC. We let
(X,φ) := (XB̃, SB̃).

Second, let B̂ = (V̂ , Ê) be the Bratteli diagram defined by {M̂ [n]}. Then

B̂odd = B̃ and B̂even = B. So B ∼ B̃ and hence there is a unital order isomor-

phism α : K0(B̃) → G defined by α([x, n]Ṽ ) = [M̂ [2n]x, tn]V if x ∈ ZṼn . By

Proposition 3.3, π∗ is defined by π∗([x, tn]W ) = [Ĩ [n]x, n]Ṽ if x ∈ ZWtn . By
the commutative diagrams (4.1) we have

α ◦ π∗([x, tn]W ) = [M̂ [2n]Ĩ [n]x, tn]V = [I [tn]x, tn]V = ι([x, tn]W ).

4.2. The condition (n − 1). Now we simply write t = tn. For w ∈ Wt, we
set

S(w) := S(N
[t,k)
w∗ ) = {x ∈ RVk | xI [k] = N

[t,k)
w∗ },

S∗(w) := S∗(N
[t,k)∗
w∗ ) = {y ∈ RVk | yI [k]∗ = N

[t,k)∗
w∗ }.

(Note that the map ∗ : S(w) ∋ m 7→ m∗ ∈ S∗(w) is bijective. See Remark 2.4.)

In this subsection, we will show that for any sufficiently large t and any ṽ ∈ Ṽt,
SN(ϕn(ṽ)) 6= ∅. More simply, we will show that for sufficiently large t and
w ∈Wt,

(1) S(w) 6= ∅,
(2) SZ(w) := S(w) ∩ ZVk 6= ∅,
(3) SN(w) := S(w) ∩ NVk 6= ∅.

The proof of (1). Let Í ∈ Z(|Vk|+1)×|Wk| be the matrix defined by

Í =

[

I [k]

N
[t,k)
w∗

]

.

We will show rank(I [k]) = rank(Í). For any c ∈ ZWk with I [k]c = 0, we have

[I [k]c, k]V = 0. This means ι([N [t′,k)c, t′]W ) = 0 for any t′ > k. Since ι is

injective, [N [t′,k)c, t′]W = 0. So there is a T > k such that N [T,k)c = 0. This

implies that for any t ≥ T , Íc = 0. Using this fact, we get rank(I [k]) = rank(Í)

and hence the equation xI [k] = N
[t,k)
w∗ is solvable. So S(w) 6= ∅. �

The proof of (2). For a vector a = (a1, . . . , an) ∈ Zn \{0}, let GCD(a) denote
the greatest common divider of |a1|, . . . , |an|. In this proof, we write Vk =
{1, 2, . . . , V }, Wk = {1, 2, . . . ,W} and I = I [k]. For w ∈ Wk and x ∈ RVk , let

Iw(x) :=
∑V
v=1 Ivwxv. We will change xv into Xv by the Euclidean algorithm

substitution (cp. [7, p. 30, Thm. 2]). We may suppose that 1 ∈ Vk satisfies
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0 6= |I1w| = min{|Ivw| | v ∈ Vk} because I is a positive matrix. Let kv be an
integer satisfying |I1wkv + Ivw | < |I1w|. We apply a substitution

x1 = X1 + k2x2 + · · ·+ kV xV

and then Iw(x) = I ′1wX1 +
∑V

v=2 I
′
vwxv, where I

′
vw = I1wkv + Ivw (v =

2, 3, . . . , V ) and I ′1w = I1w. It is easy to check that GCD(I∗w) = GCD(I ′∗w).
Suppose now that in the new form, I ′2w plays the role of I1w. A substitution

x2 = X2 + l1X1 + l3x3 + · · ·+ lV xV ,

where lv is an integer satisfying |I ′2wlv + I ′vw| < |I ′2w|. Continuing this
process, we arrive at a unimodular integral substitution, which changes Iw(x)
into

Iw(x) =
V
∑

v=1

εvXv, where |ε1| = GCD(I∗w) and εv = 0 (v = 2, 3, . . . , V ).

Here, consider the equation Iw(x) = a with GCD(I∗w) | a. Then X1 = a
ε1

and
the general solution is given linearly in terms of the n−1 variablesX2, . . . , XV .

Now for the matrix I we apply a unimodular integral substitution and the
Iw(x)’s will be changed into the forms

(4.2) Iw(x) =

u
∑

v=1

cvwXv (u = 1, 2, . . . ,K),

where cww ∈ N, c1w, c2w, . . . , cw−1w ∈ Z and K = rank(I). At first, by a
unimodular integral substitution I1(x) = c11X1 and c11 = GCD(I∗1) hold.

This substitution changes I2(x) into c12X1 + I
(2)
2 (X2, X3, . . . , XV ), where I

(2)
2

is a linear form in X2, X3, . . . , XV . By this substitution I
(2)
2 (X2, X3, . . . , XV )

can be changed into c22X2, where c22 is the greatest common divisor of the

coefficients of I
(2)
2 . (If c22 < 0, we change X2 into −X2 and may suppose that

c22 > 0.) This process can be continued and (4.2) follows.
Next we can replace the equation by

c11X1 = N
[t,k)
v1 , c12X1 + c22X2 = N

[t,k)
v2 , c13X1 + c23X2 + c33X3 = N

[t,k)
v3 , . . .

As c11 = GCD(I∗w), we see that c11 | N
[t,k)
w1 and c11X1 = N

[t,k)
w1 is solvable

in Z. (See Appendix, Proposition A.2.) Moreover we eliminate X1 from the

equation c12X1 + c22X2 = N
[t,k)
w2 and get

(4.3) c11c22X2 = c11N
[t,k)
w2 − c12N

[t,k)
w1 .

Since c11c22X2 = c11I2(x)− c12I1(x), we apply Proposition A.2 and get

GCD(c11L∗2 − c12I∗1) | GCD(c11N
[t,k)
∗2 − c12N

[t,k)
∗1 ).

As GCD(c11I∗2 − c12I∗1) = c11c22, the equation (4.3) is solvable in Z. This
process continues until XK and we see that for sufficiently large t the equation

xI [k] = N
[t,k)
w∗ is solvable in ZVk and hence SZ(w) 6= ∅. �
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The proof of (3). Suppose SZ(w) 6= ∅. Let pw := N
[t,1]
w∗ . By Proposition 2.5,

there exists τ > 0 such that for any m∗ ∈ S∗(w), there is x∗ ∈ S∗(w) ∩

Bpτ/pw(m
∗) such that x ∈ SZ(w) ∩ Bτ (m), where p = maxv∈Vk

M
[k,1]
v∗ . If

m∗ ∈ S∗∆+(w) satisfies

(4.4) S∗(w) ∩Bpτ/pw(m
∗) ⊂ S∗∆+(w),

then x ∈ SN(w) ∩Bτ (m) holds. So SN(w) 6= ∅. �

Let HVk
:=

{

x = (xv) ∈ RVk |
∑

v∈Vk
xv = 1

}

. For A ⊂ ∆Vk
and δ > 0, let

A+δ := {x ∈ HVk
| ‖x− z‖Vk

< δ for some z ∈ A}. If A is convex, so is A+δ.
Define

ε := min
v∈Vk+1

sup{ε′ ≥ 0 | Bε′(M
[k+1]∗
v∗ ) ∩HVk

⊂ ∆+
Vk
}.

Since M
[k+1]∗
v∗ ∈ ∆+

Vk
for any v, ε > 0 holds. Moreover, ∆Vk

(k + 1) and ∆+
Vk

are convex and ∆Vk
(k + 1) ⊂ ∆+

Vk
, it follows that

(4.5) ∆Vk
(k + 1)+ε ⊂ ∆+

Vk
.

Here we will show

(4.6) ∆Wk
(t) ⊂ ι∗(∆Vk

(k + 1))

for sufficiently large t. Since ι∗ : ∆B → ∆C is surjective and by Proposition A.1
in the Appendix, we have

γ[k](∆C) = ι∗ ◦ γ[k](∆B) ⇔
⋂

t>k

∆Wk
(t) =

⋂

t>k

ι∗(∆Vk
(t)) =: ∆.

(Note that ∆Wk
(t) ց ∆ and ι∗(∆Vk

(t)) ց ∆ as t → ∞.) If ∆Wk
(T ) =

∆Wk
(T + 1) for some T , then ∆Wk

(T ) = ∆ holds and ∆ has only one point.
(See Appendix, Proposition A.3.) So we consider the following cases:

[1] there exists T > k such that ∆Wk
(T ) = ∆Wk

(T + 1),
[2] for any t > k, ∆Wk

(t) ) ∆Wk
(t+ 1).

In the case of [1], ∆ has only one point. Since ∆Vk
(t) ⊂ ∆Vk

(k + 1) for all
t ≥ k + 1, it follows that for any t ≥ T ,

∆Wk
(t) =

⋂

t>k

ι∗(∆Vk
(t)) ⊂ ι∗(∆Vk

(k + 1)).

In the case of [2], similarly ∆Vk
(t) ) ∆Vk

(t + 1) holds. Moreover we see that
∆ ( ∆Wk

(t) and ∆ ( ι∗(∆Vk
(t)). So there exists T > k such that for any

t > T ,

∆ ( ∆Wk
(t) ⊂ ι∗(∆Vk

(k + 1)).

Therefore (4.6) holds. Since minw∈Wt
pw → ∞ as t → ∞, we consider a

sufficiently large t satisfying that

(4.7)
pτ

pw
< ε
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holds for any w ∈ Wt. We note that ι∗(∆Vk
(k + 1)) = {xM [k+1]∗I [k]∗ | x ∈

∆Vk+1
}. (4.6) follows that for any w ∈Wt, there exists s = (sv) ∈ ∆Vk+1

such
that

N
[t,k)∗
w∗ = sM [k+1]∗I [k]∗ =

∑

v∈Vk+1

sv(M
[k+1]∗I [k]∗)v∗.

N
[t,k)∗
w∗ =

∑

v∈Vk+1

sv(M
[k+1]∗I [k]∗)v∗

ι∗(∆Vk
(k + 1))

(M [k+1]∗I [k]∗)v1∗

(M [k+1]∗I [k]∗)v2∗

(M [k+1]∗I [k]∗)v3∗

∆Wk
(t)

N
[t,k)∗
w1∗

N
[t,k)∗
w2∗

So we see that

(4.8) sM [k+1]∗ =
∑

v∈Vk+1

svM
[k+1]∗
v∗ ∈ S∗∆+(w).

Since sM [k+1]∗ ∈ ∆Vk
(k + 1) and (4.5), we have

(4.9) sup{ε′ ≥ 0 | Bε′(sM
[k+1]∗) ∩HVk

⊂ ∆+
Vk
} ≥ ε.

Therefore we set m∗ := sM [k+1]∗. By (4.7), (4.8) and (4.9), (4.4) holds.

4.3. The condition (n − 2). M [t,k) = M̂ [2n]M̂ [2n−1] is equivalent to M
[t,k)
v∗

=
∑

ṽ∈ρ−1
n (v) M̂

[2n−1]
ṽ∗ for all v ∈ Vt. By the condition (n-1), we may assume

M̂
[2n−1]
ṽ∗ ∈ SN(ϕn(ṽ)). Now we will show, by three steps, that for any suffi-

ciently large t and any v ∈ Vt,

(4.10) M
[t,k)
v∗ ∈

∑

ṽ∈ρ−1
n (v)

SN(ϕn(ṽ)) =
∑

w∈Wt

I [t]vwSN(w),

where

∑

w∈Wt

I [t]vwSN(w) :=

{

∑

w∈Wt

I[t]vw
∑

i=1

m(w, i)

∣

∣

∣

∣

m(w, i) ∈ SN(w)

}

.

We explain (4.10) in terms of elements in ∆Vk
and ∆Wk

.

The first step. We consider a sequence {vni
∈ Vni

} so that lim
i→∞

vni
=:

µ ∈ ∆B exists. Telescoping the diagrams, we may assume µ = lim
n→∞

vn. Let

ν := ι∗(µ).
We recall the properties of linear algebra. We regard I [k]∗ as a linear map

I [k]∗ : RVk → RWk . If a ∈ S∗(t), then we can write S∗∆(t) = (a+Ker(I [k]∗))∩
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∆Vk
, where S∗∆(t) := S∗(t)∩∆Vk

and a+Ker(I [k]∗) := {a+x | x ∈ Ker(I [k]∗)}.

Let H be the subspace of RVk so that Ker(I [k]∗)⊕H = RVk . Then for t ∈ ∆Wt
,

there exists a unique a(t) ∈ H ∩∆Vk
such that

S∗∆(t) = (a(t) + Ker(I [k]∗)) ∩∆Vk
.

It is easy to see that the map a : t 7→ a(t) is uniformly continuous and injective.

For w ∈Wt, we also define the map a : w 7→ a(w) := a(N
[t,k)∗
w∗ ).

Here we consider γ[k](∆B), ∆Vk
(t) and ∆Vk

. Since ∆Vk
(t) is convex and

shrinks to γ[k](∆B) as t→ ∞, there exists ε0 > 0 such that for any t > k,

(4.11) γ[k](∆B)
+ε0 ⊂ ∆Vk

(t)+ε0 ( ∆+
Vk
.

In fact, we set ε0 := minv∈Vk+1,v′∈Vk
M

[k+1]∗
vv′ . Now we choose any ε with

0 < 8ε < ε0 and fix it. Then by the uniform continuity of a : t 7→ a(t), there
is a δ > 0 such that for any x,y ∈ ∆Wk

with ‖x− y‖Wk
< δ,

(4.12) ‖a(x)− a(y)‖Vk
< ε.

For such a δ > 0, by the compactness of ∆Wk
, there exist x1,x2, · · · ,xl ∈ ∆Wk

such that ∆Wk
⊂

l
∪
i=1
Bδ/2(xi). We set Wt(i) ⊂Wt satisfying that

• Wt =
l
⋃

i=1

Wt(i) as a disjoint union,

• for any w ∈Wt(i), N
[t,k)∗
w∗ ∈ Bδ/2(xi).

Deleting and changing index i and telescoping the diagrams, we may assume

Wt(i) 6= ∅ for any t and i. Let b
(i)
t :=

∑

w∈Wt(i)
I
[t]∗
vtw. b

(i)
t 6= 0 because I [t]∗ is

a positive matrix. Define s
(i)
t ∈ ∆Wt

as

s
(i)
t :=

1

b
(i)
t

∑

w∈Wt(i)

I [t]∗vtww.

Clearly

(4.13) I
[t]∗
vt∗ =

l
∑

i=1

b
(i)
t s

(i)
t and s

(i)
t N [t,k)∗ ∈ Bδ/2(xi).

Renaming index i and telescoping diagrams again, we may assume that

lim
t→∞

s
(i)
t =: ν(i) and lim

t→∞
b
(i)
t =: b(i) exist and there exists 1 ≤ L ≤ l such

that b(i) > 0 if i ≤ L and b(i) = 0 if i > L. Then ν =
∑

i≤L b
(i)ν(i). Now we

will show that

(4.14) µ ∈
∑

i≤L

b(i)(ι∗)−1(ν(i)) :=

{

∑

i≤L

b(i)µ(i)

∣

∣

∣

∣

µ(i) ∈ (ι∗)−1(ν(i))

}

.

By the Choquet representation theorem, we have µ =
∫

µ′∈ex∆B
µ′dτ(µ′) and

ν =
∫

ν′∈ex∆C
ν′dη(ν′), where τ and η are unique invariant probability measures

on ∆B and ∆C respectively with τ(ex∆B) = 1 and η(ex∆C) = 1. Since
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ν = ι∗(µ) and ι∗(ex∆B) = ex∆C , τ ◦ (ι∗)−1 = η holds. For ν′ ∈ ex∆C with
η(ν′) 6= 0, we define

µν′ :=
1

η(ν′)

∫

µ′∈ex∆B∩(ι∗)−1(ν′)

µ′dτ(µ′).

Clearly µν′ ∈ (ι∗)−1(ν′) and µ =
∫

ν′∈ex∆C
η(ν′)µν′dη(ν′). So we write

(4.15) µ ∈

∫

ν′∈ex∆C

η(ν′)(ι∗)−1(ν′)dη(ν′)

:=

{

ξ =

∫

ν′∈ex∆C

η(ν′)µ′dη(ν′)

∣

∣

∣

∣

µ′ ∈ (ι∗)−1(ν′)

}

.

Let η(i) denote the unique probability measure on ∆C with η(i)(ex∆C) = 1
satisfying ν(i) =

∫

ν′∈ex∆C
ν′dη(i)(ν′). Then by the uniqueness of η,

(4.16) η =
∑

i≤L

b(i)η(i).

In general, for ν, ν1, ν2 ∈ ∆C with ν = aν1+(1−a)ν2, (ι
∗)−1(ν) ⊃ a(ι∗)−1(ν1)+

(1− a)(ι∗)−1(ν2) holds. So we have

(ι∗)−1(ν(i)) ⊃

∫

ν′∈ex∆C

(ι∗)−1(ν′)dη(i)(ν′).(4.17)

By (4.15), (4.16) and (4.17), we see that
∑

i≤L

b(i)(ι∗)−1(ν(i)) ⊃
∑

i≤L

b(i)
∫

ν′∈ex∆C

(ι∗)−1(ν′)dη(i)(ν′)

=

∫

ν′∈ex∆C

η(ν′)(ι∗)−1(ν′)dη(ν′) ∋ µ.

Therefore (4.14) holds.

The second step. Let n(w) := I
[t]
vtwN

[t,k)
w∗ and n(i) :=

∑

w∈Wt(i)
n(w). In this

step we will show that for any sufficiently large t, there exist r(i) ∈ SN(n
(i)),

r(w) ∈ SN(n(w)) and r(w, j) ∈ SN(w) such that

M
[t,k)
vt∗ =

l
∑

i=1

r(i), r(i) =
∑

w∈Wt(i)

r(w), r(w) =

I[t]vtw
∑

j=1

r(w, j).

Then we have

M
[t,k)
vt∗ =

l
∑

i=1

∑

w∈Wt(i)

I[t]vtw
∑

j=1

r(w, j) ∈

l
∑

i=1

∑

w∈Wt(i)

I [t]vtwSN(w) =
∑

w∈Wt

I [t]vtwSN(w).

The construction of r(i). Let pvt :=M
[t,1]
vt∗ . Remark that

n(i)∗ = s
(i)
t N [t,k)∗, pvtb

(i)
t =

∑

w∈Wt(i)

I [t]vtwN
[t,1]
w∗ = n(i)N [k,1]
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and the local inverse map ∗−1 : S∗∆(n
(i)∗) → SR+(n

(i)) is given by

m = (m∗)∗
−1

= pvtb
(i)
t m∗D−1Vk

.

M [t,k)∗I [k]∗ = I [t]∗N [t,k)∗ implies M
[t,k)∗
vt∗ ∈ S∗∆(I

[t]∗
vt∗N

[t,k)∗).

Let Bt :=
∑

i≤L b
(i)
t . Since

µ = lim
t→∞

vt, ν
(i) = lim

t→∞
s
(i)
t , lim

t→∞
b
(i)
t = b(i), lim

t→∞
Bt = 1, lim

t→∞
min
w∈Wt

pw = ∞,

we see that for any sufficiently large t,

(4.18)

‖µk −M
[t,k)∗
vt∗ ‖Vk

< ε, ‖ν
(i)
k − n(i)∗‖Wk

< δ, max
w∈Wt

2pτ

pw
< ε,

(1−Bt)

Bt
<
ε

8
,

∣

∣

∣

∣

∣

b(i)

b
(i)
t

− 1

∣

∣

∣

∣

∣

<
ε

8
if i ≤ L.

We fix such a t. For i > L, choose any µ(i) ∈ ∆B with ι∗(µ(i)) = ν(i) and
fix it. From (4.14), for i ≤ L, there exists µ(i) ∈ (ι∗)−1(ν(i)) such that µ =
∑

i≤L b
(i)µ(i). νk =

∑

i≤L b
(i)ν

(i)
k follows that a(νk) =

∑

i≤L b
(i)a(ν

(i)
k ). Since

I
[t]∗
vt∗N

[t,k)∗ =
l

∑

i=1

∑

w∈Wt(i)

I [t]∗vtwN
[t,k)∗
w∗ =

l
∑

i=1

b
(i)
t n(i)∗,

we have a(I
[t]∗
vt∗N

[t,k)∗) =
∑l
i=1 b

(i)
t a(n(i)∗). Define m(i)∗ as

if i ≤ L,

m(i)∗ :=a(n(i)∗) +
1

Bt
(M

[t,k)∗
vt∗ − a(I

[t]∗
vt∗N

[t,k)∗))

+
b(i)

b
(i)
t

(

µ
(i)
k − µk + a(νk)− a(ν

(i)
k )

)

−
1

Bt

∑

i′>L

b
(i′)
t (µ

(i′)
k − a(ν

(i′)
k )),

if i > L,

m(i)∗ :=a(n(i)∗) + µ
(i)
k − a(ν

(i)
k ).

Let m(i) := pvtb
(i)
t m(i)∗D−1Vk

. Then

M
[t,k)∗
vt∗ =

l
∑

i=1

b
(i)
t m(i)∗, M

[t,k)
vt∗ =

l
∑

i=1

m(i) and m(i) ∈ S(n(i))

hold. If i ≤ L, then

‖m(i)∗ − µ
(i)
k ‖Vk

≤‖M
[t,k)∗
vt∗ − µk‖Vk

+ ‖a(n(i)∗)− a(ν
(i)
k )‖Vk

+
∥

∥

∥
a(I

[t]∗
vt∗N

[t,k)∗)− a(νk)
∥

∥

∥

Vk

+

∣

∣

∣

∣

∣

b(i)

b
(i)
t

− 1

∣

∣

∣

∣

∣

(‖µk‖Vk
+ ‖a(ν

(i)
k )‖Vk

+ ‖a(νk)‖Vk
+ ‖µ

(i)
k ‖Vk

)
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+
1−Bt
Bt

(‖M
[t,k)∗
vt∗ ‖Vk

+ ‖a(I
[t]∗
vt∗N

[t,k)∗)‖Vk
+ 2).

If i > L, then

‖m(i)∗ − µ
(i)
k ‖Vk

≤ ‖a(n(i)∗)− a(ν
(i)
k )‖Vk

.

So by (4.12) and (4.18), we have

(4.19) ‖m(i)∗ − µ
(i)
k ‖Vk

< 4ε < ε0.

By (4.11) and µ
(i)
k ∈ γ[k](∆B), m

(i)∗ ∈ S∗∆+(n(i)∗) holds.

Let m̃(i) :=
∑i

ξ=1 m
(ξ) and ñ(i) :=

∑i
ξ=1 n

(ξ). Then m̃(i) ∈ SR+(ñ
(i)). By

Proposition 2.5, there is an x(i)∗ ∈ S∗∆+(ñ
(i)∗)∩Bpτ/ñ(i)N [k,1](m̃(i)∗) such that

x(i) = (ñ(i)N [k,1])x(i)∗D−1Vk
∈ SN(ñ

(i)) ∩Bτ (m̃
(i)). Fix such an x(i). Define

r(i) := x(i) − x(i−1), x(0) := 0.

Then it follows r(i) ∈ SZ(n
(i)) and

∑l
i=1 r

(i) = M
[t,k)
vt∗ . Here we will show

r(i) ∈ SN(n
(i)). Since

r(i)∗ =
(x(i) − x(i−1))DVk

n(i)N [k,1]
=

(ñ(i)N [k,1])x(i)∗ − (ñ(i−1)N [k,1])x(i−1)∗

n(i)N [k,1]

and

m(i)∗ =
(m̃(i) − m̃(i−1))DVk

n(i)N [k,1]
=

(ñ(i)N [k,1])m̃(i)∗ − (ñ(i−1)N [k,1])m̃(i−1)∗

n(i)N [k,1]
,

we have

(4.20)

‖r(i)∗ −m(i)∗‖Vk
≤
ñ(i)N [k,1]

n(i)N [k,1]
‖x(i)∗ − m̃(i)∗‖Vk

+
ñ(i−1)N [k,1]

n(i)N [k,1]
‖x(i−1)∗ − m̃(i−1)∗‖Vk

≤
2pτ

n(i)N [k,1]
=

2pτ
∑

w∈Wt(i)
I
[t]
vtwpw

< ε.

So by (4.19) and (4.20), we have

(4.21) ‖µ
(i)
k − r(i)∗‖Vk

< 5ε < ε0.

Therefore r(i)∗ ∈ S∗∆+(n(i)∗) and hence r(i) ∈ SN(n
(i)).

The construction of r(w). If #Wt(i) = 1, then let Wt(i) = {w} and define
r(w) := r(i) ∈ SN(n

(i)). So we consider the case where #Wt(i) ≥ 2. Remark
that

n∗(w) = N
[t,k)∗
w∗ , b

(i)
t n(i)∗ =

∑

w∈Wt(i)

I [t]∗vtwn
∗(w).

By the above, we see that b
(i)
t a(n(i)∗) =

∑

w∈Wt(i)
I
[t]∗
vtwa(n

∗(w)). For any

w ∈Wt(i), define

m∗(w) := a(n∗(w)) + r(i)∗ − a(n(i)∗), m(w) := I [t]vtwpwm
∗(w)D−1Vk

.
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Then

m∗(w) ∈ S∗(n∗(w)) = S∗(w), m(w) ∈ S(n(w)),

b
(i)
t r(i)∗ =

∑

w∈Wt(i)

I [t]∗vtwm
∗(w), r(i) =

∑

w∈Wt(i)

m(w).

Let s := #Wt(i) and {w1, w2, · · · , ws} = Wt(i). For 1 ≤ j ≤ s, let

m̃(j) :=
∑j

ξ=1 m(wξ) and ñ(j) :=
∑j

ξ=1 n(wξ). Clearly m̃(j) ∈ S(ñ(j)).

By Proposition 2.5, there is x∗(j) ∈ S∗∆+(ñ
∗(j)) ∩ Bpτ/ñ(j)N [k,1](m̃∗(j)) such

that x(j) = (ñ(j)N [k,1])x∗(j)D−1Vk
∈ SN(ñ(j))∩Bτ (m̃(j)). Fix such an x∗(j).

Define

r(wj) := x(j)− x(j − 1), x(0) := 0.

Then it follows r(wj) ∈ SZ(n(wj)) and
∑s
j=1 r(wj) = r(i). Here we will show

r(wj) ∈ SN(n(wj)). Since

r∗(wj) =
(x(j)− x(j − 1))DVk

n(wj)N [k,1]

=
(ñ(j)N [k,1])x∗(j)− (ñ(j − 1)N [k,1])x∗(j − 1)

n(wj)N [k,1]

and

m∗(wj) =
(m̃(j)− m̃(j − 1))DVk

n(wj)N [k,1]

=
(ñ(j)N [k,1])m̃∗(j)− (ñ(j − 1)N [k,1])m̃∗(j − 1)

n(wj)N [k,1]

we have

(4.22)

‖r∗(wj)−m∗(wj)‖Vk
≤

ñ(j)N [k,1]

n(wj)N [k,1]
‖x∗(j)− m̃∗(j)‖Vk

+
ñ(j − 1)N [k,1]

n(wj)N [k,1]
‖x∗(j − 1)− m̃∗(j − 1)‖Vk

≤
2pτ

n(wj)N [k,1]
=

2pτ

I
[t]
vtwjpwj

< ε.

n∗(wj),n
(i)∗ ∈ Bδ/2(xi) implies ‖n∗(wj) − n(i)∗‖Wk

< δ. Then by (4.12) we
have

(4.23) ‖m∗(wj)− r(i)∗‖Vk
= ‖a(n∗(wj))− a(n(i)∗)‖Vk

< ε.

So by (4.21), (4.22) and (4.23), we have

(4.24) ‖µ
(i)
k − r∗(wj)‖Vk

< 7ε < ε0.

Therefore r(w) ∈ SN(n(w)) for all w.

The construction of r(w, j). Let w ∈ Wt(i). If I
[t]
vtw = 1, let r(w, 1) :=

r(w) ∈ SN(w) and we are done. So we consider the case where I
[t]
vtw ≥ 2.
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Let m∗ := r∗(w) and m := pwm
∗D−1Vk

. Then r(w) = I
[t]
vtwm holds. By

Proposition 2.5, for any 1 ≤ j ≤ I
[t]
vtw, there exists x∗j ∈ S∗(w) ∩Bpτ/jpw (m

∗)

such that xj = jpwx
∗
jD
−1
Vk

∈ SN(jN
[t,k)
w∗ ) ∩Bτ (jm). Fix such an xj . Define

r(w, j) := xj − xj−1, x0 := 0.

Then it follows that r(w, j) ∈ SZ(w) and
∑I[t]vtw

j=1 r(w, j) = r(w). Now we will

show r(w, j) ∈ SN(w). Since

r(w, j)∗ =
(xj − xj−1)DVk

pw
=

xjDVk

jpw
j−

xj−1DVk

(j − 1)pw
(j−1) = jx∗j −(j−1)x∗j−1,

we have

‖r(w, j)∗ − r∗(w)‖Vk
≤ j‖x∗j −m∗‖Vk

+ (j − 1)‖x∗j−1 −m∗‖Vk
≤

2pτ

pw
< ε.

So by (4.24), ‖µ
(i)
k − r(w, j)∗‖Vk

< 8ε < ε0 holds. This means that r(w, j)∗ ∈
S∗∆+(w) and hence r(w, j) ∈ SN(w).

The third step. Finally we will show (4.10). Suppose that for infinitely many
t, there exists vt ∈ Vt such that

M
[t,k)
vt∗ 6∈

∑

w∈Wt

I [t]vtwSN(w).

Then we take a subsequence {vni
} ⊂ {vt} so that lim

i→∞
vni

exists. By the

second step there exists I ∈ N such that for any i > I,

M
[ni,k)
vni
∗ ∈

∑

w∈Wni

I [ni]
vni

wSN(w).

This is a contradiction. So (4.10) holds.

5. Examples

Example 5.1. We will construct Bratteli diagrams B, C and an injective,
unital order group homomorphism ι : K0(C) → K0(B) so that (i) ι is an
order embedding, (ii) K0/ι(K0(C)) is torsion free, and (iii) ι∗ : ∆B → ∆C is a
surjective affine homomorphism but ι∗(ex∆B) 6= ex∆C .

Let 1
2 < α < 1. Define a sequence {an} by the following: Let a1 := 0. Let

a2 ∈ N satisfy a2−1
a2

≤ α < a2
a2+1 (and hence a2 ≥ 2). Suppose for n ≥ 2, an

satisfies

0 <
bn
pn

− α <
1

2

(

bn−1
pn−1

− α

)

,

where pn :=
∏n
k=1(ak + 1) and bn := (an − 1)bn−1 + pn−1, b1 := 1. Define

f(x) :=
(x− 1)bn + pn

(x + 1)pn
.
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Then it follows that f(1) = 1/2, f(x) is monotonously increasing and

lim
x→∞

f(x) =
bn
pn
.

Define an+1 ∈ N as f(an+1 − 1) ≤ α < f(an+1). Then we see that

0 < f(an+1)− α =
bn+1

pn+1
− α,

1

2

(

bn
pn

− α

)

−

(

bn+1

pn+1
− α

)

>
(2bn − pn)(an+1 − 1)

2an+1pn(an+1 + 1)
> 0.

Moreover we have lim
n→∞

bn/pn = α. Remark that

f(an+1 − 1) ≤ α < f(an+1) ⇐⇒
α− 1 + bn/pn
bn/pn − α

< an+1 ≤
2bn/pn − 1

bn/pn − α
.

Therefore bn/pn ց α means an+1 ր ∞. Let {cn} satisfy cn = (an − 2)cn−1 +
pn−1 and c1 = 0. Then 0 < cn/pn < bn/pn and

∣

∣

∣

∣

cn
pn

−
cn+1

pn+1

∣

∣

∣

∣

<
1

an+1 + 1

∣

∣

∣

∣

3cn
pn

− 1

∣

∣

∣

∣

<
2

an+1 + 1
→ 0 as n→ ∞.

So β := lim
n→∞

cn/pn exists. We see that β + α ≤ 1 because bn + cn ≤ pn holds

for any n.
Suppose B = (V,E, {M [n]}) and C = (W,F, {N [n]}) are Bratteli diagrams

and I [n] is a Vn ×Wn matrix satisfying that

M [1] :=





1
2
1



 , N [1] :=

[

1
1

]

, I [0] := [1],

for n ≥ 2,

M [n] :=





an − 1 1 0
1 an 1
0 1 an − 1



 , N [n] :=

[

an 1
1 an

]

, I [n−1] :=





1 0
1 1
0 1



 .

Since detM [n] = (an + 1)(an − 1)(an − 2) and detN [n] = (an + 1)(an − 1),
M [n] and N [n] are invertible (n ≥ 2). (If a2 = 2, then M [2] is not invertible.
However, we telescope diagrams B and C to {0, 2, 3, 4, · · · }, we may assume
an ≥ 3 for any n ≥ 2.) Then M [n]I [n−1] = I [n]N [n] for all n ∈ N and

M [n,1) =





bn − cn cn pn − bn − cn
cn pn − cn cn

pn − bn − cn cn bn − cn



 ,

N [n,1) =

[

bn pn − bn
pn − bn bn

]

,

M [n,1)∗ =
1

pn





bn − cn 2cn pn − bn − cn
cn/2 pn − cn cn/2

pn − bn − cn 2cn bn − cn



 ,
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N [n,1)∗ =
1

pn
N [n,1),

lim
n→∞

M [n,1)∗ =





α− β 2β 1− α− β
β/2 1− β β/2

1− α− β 2β α− β



 ,

lim
n→∞

N [n,1)∗ =

[

α 1− α
1− α α

]

.

Define ι : K0(C) → K0(B) as ι([z, n]W ) := [I [n]z, n]V . Then ι is an injective,
unital order group homomorphism. Since {I [n]z | z ∈ ZWn} is a pure subgroup
of ZVn , ι(K0(C)) is a pure subgroup of K0(B) and hence K0(B)/ι(K0(C)) is
torsion free. Define µ(1), µ(2), µ(3) ∈ ∆B and ν(1), ν(2) ∈ ∆C as

µ
(i)
k := lim

n→∞
M

[n,k)∗
i∗ =











[α− β, 2β, 1− α− β](M [k,1)∗)−1, if i = 1,

[β/2, 1− β, β/2](M [k,1)∗)−1, if i = 2,

[1− α− β, 2β, α− β](M [k,1)∗)−1, if i = 3,

ν
(i)
k := lim

n→∞
N

[n,k)∗
i∗ =

{

[α, 1− α](N [k,1)∗)−1, if i = 1,

[1− α, α](N [k,1)∗)−1, if i = 2.

It is easy to check that ex∆B = {µ(1), µ(2), µ(3)}, ex∆C = {ν(1), ν(2)} and

∆B =

{ 3
∑

i=1

siµ
(i)

∣

∣

∣

∣

(s1, s2, s3) ∈ ∆3

}

, ∆C =

{ 2
∑

i=1

tiµ
(i)

∣

∣

∣

∣

(t1, t2) ∈ ∆2

}

.

Define ι∗ : ∆B → ∆C as ι∗((µk)) := (µkI
[k]∗) where

I [k]∗ =





1 0
1/2 1/2
0 1



 .

Then ι∗(µ(1)) = ν(1), ι∗(µ(2)) = (ν(1) + ν(2))/2 and ι∗(µ(3)) = ν(2). This
means ι∗ is surjective affine homomorphism. By Proposition 2.3, ι is order
embedding. Moreover, we see that ι∗(ex∆B) 6= ex∆C .

Appendix A

Proposition A.1. For any n ∈ N, γ[n](∆B) =
⋂

k>n

∆Vn
(k).

Proof. Clearly, ∆Vn
(k) ⊃ ∆Vn

(k + 1) ⊃ γ[n](∆B) for any k > n. We have
γ[n](∆B) ⊂

⋂

k>n∆Vn
(k). Therefore we will show γ[n](∆B) ⊃

⋂

k>n∆Vn
(k).

Let sn ∈
⋂

k>n∆Vn
(k). For any k > n, there exists xk ∈ ∆Vk

such that

sn = xkM
[k,n). We fix such {xk}k>n. By Proposition 2.1, there exists sub-

sequence {ki} such that lim
i→∞

xki =: µ ∈ ∆B. Then sn = γ[n](µ). Therefore

sn ∈ γ[n](∆B). �
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Proposition A.2. Suppose that ι : K0(C) → K0(B) is an order embedding
and K0(B)/ι(K0(C)) is torsion free. Suppose that c ∈ ZWk \ {0} satisfy that
for any t > k, N [t,k)c 6= 0 and I [k]c 6= 0. Then there exists T > k such that
for all t ≥ T ,

GCD(I [k]c) | GCD(N [t,k)c).

Proof. Set c := GCD(I [k]c). Then

[I [k]c, k]V = ι[c, k]W ∈ ι(K0(C)) and
I [k]c

c
∈ ZVk .

As K0(B)/ι(K0(C)) is torsion free, ι(K0(C)) is a pure subgroup of K0(B). So
there exists g ∈ K0(C) such that ι(g) = [c−1M [t,k)I [k]c, t]V for t ≥ k (if t = k,
M [k,t) = id. ∈ ZVk×Vk). Moreover there exist T1 > k and gT1

∈ ZWT1 such

that g = [gT1
, T1]W . Since [I [T1]gT1

, T1]V = ι(g), there is a T2 > T1 such that

I [T2]N [T2,T1)gT1
=M [T2,T1)I [T1]gT1

=
M [T2,k)I [k]c

c
.

The equality above andM [T2,k)I [k] = I [T2]N [T2,k) mean that I [T2](cN [T2,T1)gT1
)

= I [T2]N [T2,k)c. As ι is injective, we get [cN [T2,T1)gT1
, T2]W = [N [T2,k)c, T2]W .

This implies that there is T > T2 such that for t ≥ T , cN [t,T1)gT1
= N [t,k)c.

So we finish the proof. �

Proposition A.3. Let ∆ :=
⋂

t>k∆Wk
(t). Suppose ∆Wk

(T ) = ∆Wk
(T + 1)

for some T . Then ∆Wk
(T ) = ∆ and ∆ has only one point.

Proof. Recall that ∆Wk
(T ) = {sN [T,k)∗ | s ∈ ∆WT

}. We will show that for

any w,w′ ∈ WT , N
[T,k)∗
w∗ = N

[T,k)∗
w∗ holds. This means that ∆Wk

(T ) has only
one point. ∆Wk

(T ) = ∆Wk
(T + 1) implies that for any w ∈ WT , there exists

s ∈ ∆WT+1 such that N
[T,k)∗
w∗ = sN [T+1,k)∗. We write (tv)v∈WT

= sN [T+1]∗.
Suppose w ∈WT is an extreme point in ∆Wk

(T ). Then

(A.1) N
[T,k)∗
w∗ = sN [T+1,k)∗ =

∑

v∈WT

tvN
[T,k)∗
v∗

Since 0 < N
[T+1]∗
xy < 1 for all x ∈ WT+1 and y ∈ WT , 0 < tv < 1 holds for any

v. Therefore by (A.1), N
[T,k)∗
v∗ = N

[T,k)∗
w∗ for all v because N

[T,k)∗
w∗ is extreme

in ∆Wk
(T ). �
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