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ABSTRACT
The cross Gramian matrix is a tool for model reduction and system identification, but it is only
applicable to square control systems. For symmetric systems, the cross Gramian possesses a use-
ful relation to the system’s associated Hankel singular values. Yet, many real-life models are neither
square nor symmetric. In this work, concepts from decentralized control are used to approximate
a cross Gramian for non-symmetric and non-square systems. To illustrate this new non-symmetric
cross Gramian, it is applied in the context of model order reduction.
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1. Introduction

The cross Gramian was introduced in Fernando and
Nicholson (1983) for single-input-single-output (SISO)
systems and extended tomultiple-input-multiple-output
(MIMO) systems in Laub, Silverman, and Verma (1983).
With many applications in model order reduction and
system theory in general, such as system identifica-
tion (Mironovskii & Solv’eva 2015), decentralized control
(Moaveni & Khaki-Sedigh 2006), parameter identification
(Himpe & Ohlberger 2014) or sensitivity analysis (Streif,
Findeisen, & Bullinger 2006), a major hindrance in the
use of the cross Gramian matrix is the constraint that it
can be computed strictly for square systems and exhibits
its core property only for symmetric systems. An exten-
sion of the cross Gramian to non-symmetric systems
enables such uses and particularly the (approximate) bal-
ancing state-space reduction by the computation of a
single Gramian matrix. This work can be seen as a follow
up to Laub et al. (1983) and De Abreu-Garcia and Fair-
man (1986), which previously expanded the scope of the
cross Gramian.

The object of interest in this context is a linear time-
invariant state-space system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

x(0) = x0,

(1)

which consists of a linear vector field composed of a sys-
tem matrix A ∈ R

N×N and an input matrix B ∈ R
N×M, as

well as a linear output functional composed of an output
matrix C ∈ R

Q×N and a feed-through matrix D ∈ R
Q×M.
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In the scope of this work, only a trivial feed-through
matrix D=0 is considered. Furthermore, the system is
assumed to be asymptotically stable, hence all eigenval-
ues of the system matrix A lie in the open left half-plane
Re(λi(A)) < 0. The classic cross Gramian is defined for a
subset of these systems and is expanded to arbitrary sys-
tems in the remainder of this work, which is organized as
follows. In Section 2, the cross Gramian is reviewed. Exist-
ing approaches and the new result for the non-symmetric
cross Gramian are presented in Section 3. A brief descrip-
tion of projection-based model reduction is presented
in Section 4, which is followed by the connection of the
non-symmetric cross Gramian to the frequency-domain
in Section5. Lastly, in Section6, verification andvalidation
for the new non-symmetric cross Gramian and compari-
son with established methods are conducted.

2. The cross Gramian

With the controllability operator C(u) := ∫ ∞
0 eAtBu(t)dt

and the observability operator O(x) := CeAtx, the con-
trollability and observability of a system can be eval-
uated through the associated controllability Gramian
WC := CC∗ and observability Gramian WO := O∗O.
A third system Gramian, called cross Gramian, combines
controllability and observability information into a single
matrix.

2.1. Square systems

For a square system, a system with the same number of
inputs and outputs, the cross Gramian is defined as the
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product of controllability operator C and observability
operatorO (Fernando & Nicholson 1983):

WX := CO =
∫ ∞

0
eAtBCeAt dt ∈ R

N×N. (2)

Classically, the cross Gramian is computed as solution of
the Sylvester equation:

AWX + WXA = −BC,

which relates to the definition in Equation (2) through
integration by parts:

∫ ∞

0
eAtBCeAt dt = A−1

∣∣eAtBCeAt∣∣∞0
− A−1

∫ ∞

0
eAtBCeAt dtA

⇒ A
∫ ∞

0
eAtBCeAt dt = −BC −

∫ ∞

0
eAtBCeAt dtA

⇒ AWX = −BC − WXA.

2.2. Symmetric systems

A system in the form of Equation (1) is called symmetric if
the system’s transfer function is symmetric1:

C(sI − A)−1B = (C(sI − A)−1B)∗.

Since a SISO system has a scalar gain, all SISO systems are
symmetric. Generally, for a symmetric system, a symmet-
ric matrix P exists such that:

AP = PAᵀ and B = P−1Cᵀ (3)

are fulfilled (Fortuna, Gallo, Guglielmino, & Nunnari 1988;
Willems 1976).

For a symmetric system, the absolute values of the
eigenvalues of the cross Gramian are equal to the Hankel
singular values (Fernando & Nicholson 1985; Sorensen &
Antoulas 2002):

W2
X = WCWO

⇒ |λi(WX)| =
√

λi(WCWO) = σi(OC). (4)

This core property of the cross Gramian allows the joint
evaluation of the underlying system’s controllability and
observability information.

Apart from the computation of the full cross Gramian
by the Bartels–Stewart algorithm (1972), various algo-
rithms are available to obtain an approximate cross
Gramian such as approximate balancing (Sorensen &
Antoulas 2001, 2002),which computes a low-rank singular

value decomposition of the cross Gramian, or a uti-
lization of the matrix sign function (Baur & Benner
2008; Benner 2004), providing a low-rank factorization of
the cross Gramian. Compared with balanced truncation
(Baur, Benner, & Feng 2014; Moore 1981), cross-Gramian-
based model reduction yields comparable results as
demonstrated in numerical experiments, for example,
in Gugercin and Antoulas (2000) and Baur and Ben-
ner (2008).

3. The non-symmetric cross Gramian

In this section, existing approaches for cross Gramians
of non-symmetric systems and selected methods from
decentralized control are briefly summarized; the latter
is employed to expand the scope of the cross Gramian
from symmetric (square) to non-symmetric (non-square)
systems.

3.1. Previous work

To the authors’ best knowledge, there exist two meth-
ods to broaden the scope of the cross Gramian for non-
symmetricMIMO systems and towardsmore general con-
figurations.

The first approach from De Abreu-Garcia and Fair-
man (1986) extends the applicability of the cross Gramian
from symmetric systems to the wider class of orthog-
onally symmetric systems. Given a symmetric matrix
P = Pᵀ for which AP = PAᵀ holds and an orthogonal
matrix U, with the property B = PCUᵀ if Q ≤ M, or
C = PBUᵀ ifM ≤ Q, then the system is orthogonally sym-
metric and the associated cross Gramian:

W̆X =
∫ ∞

0
eAtBUCeAt dt

satisfies the core property (4).
The second approach, presented in Sorensen and

Antoulas (2001, 2002), uses embedding of a non-sym-
metric or non-square system into a symmetric system,
and relies on a symmetrizer matrix (Datta 1988) J = Jᵀ:

AJ = JAᵀ.

For a symmetrizermatrix J of A, an embedding is given by

˙̂x(t) = Ax(t) + (
JCᵀ B

)
u(t),

ŷ(t) =
(

C
BᵀJ−1

)
x(t)

and the associated cross Gramian has the form:

ŴX =
∫ ∞

0
eAt(JCᵀC + BBᵀJ−1)eAt dt. (5)
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While the first approach preserves the central property
from Equation (4) in W̆X for orthogonally symmetric sys-
tems, the second approach approximates it in ŴX for
arbitrary systems by an embedding.

3.2. SystemGramian decomposition

The basis for the non-symmetric cross Gramian is a result
fromdecentralized control, which aims to partitionMIMO
systems into sets of SISO systemswith input–output pair-
ings that exhibit the strongest coherence. To this end,
a relation between the MIMO system Gramians and the
associated SISO subsystem Gramians is described. As a
first step, a MIMO system is decomposed intoM × Q SISO
systems, by partitioning the input matrix B and output
matrix C column-wise and row-wise, respectively (Khaki-
Sedigh & Shahmansourian 1996):

B = (b1 . . . bM), bi ∈ R
N×1,

C =

⎛
⎜⎝
c1
...
cQ

⎞
⎟⎠ , cj ∈ R

1×N.

Each combination of bi and cj induces a SISO systemwith
the following subsystem Gramians:

Wi
C :=

∫ ∞

0
eAtbib

ᵀ
i e

Aᵀ t dt,

Wj
O :=

∫ ∞

0
eA

ᵀ tcᵀj cje
At dt,

Wi,j
X :=

∫ ∞

0
eAtbicjeAt dt.

The system Gramians computed for the SISO sub-
systems relate to the full MIMO Gramians as shown in
Moaveni and Khaki-Sedigh (2006):

WC =
M∑
i=1

Wi
C , WO =

Q∑
j=1

Wj
O. (6)

For square systems M=Q, also the cross Gramian can
be computed and the following identity holds (Alavian &
Rotkowitz 2015; Moaveni & Khaki-Sedigh 2006; Shaker &
Tahavori 2015):

WX =
M∑
i=1

Wi,i
X . (7)

3.3. Main result

Next, the previous result is utilized for the computation
of an approximate cross Gramian for non-square or non-
symmetric systems. The central idea is to exploit, that for

any SISO systema cross Gramianwith the property (4) can
be computed.

With Equation (6), the product of controllability and
observability can be expressed as sum of squared cross
Gramians:

WCWO =
M∑
i=1

Q∑
j=1

Wi
CW

j
O =

M∑
i=1

Q∑
j=1

Wi,j
X W

i,j
X . (8)

Due to the squaring of Wi,j
X , this ansatz is not numeri-

cally efficient. Therefore, an alternative approximate non-
symmetric cross Gramian, related to Equation (7), is
introduced.

Definition 3.1 (non-symmetric cross Gramian): The
non-symmetric cross Gramian is defined as the sum of the
cross Gramians of all (M × Q) SISO subsystems:

WZ :=
M∑
i=1

Q∑
j=1

Wi,j
X . (9)

Obviously, this Gramian does not preserve the cross
Gramian’s property (4) and it should be emphasized that
the non-symmetric cross Gramian does not reduce to the
classic cross Gramian in case of a symmetricMIMO system
(compare Equation (7)). Yet, for a linear system,WZ yields
the following representation:

WZ =
M∑
i=1

Q∑
j=1

∫ ∞

0
eAtbicjeAt dt

=
∫ ∞

0
eAt

M∑
i=1

Q∑
j=1

bicjeAt dt

=
∫ ∞

0
eAt

(
M∑
i=1

bi

)⎛
⎝ Q∑

j=1

cj

⎞
⎠ eAt dt

⇔ AWZ + WZA = −
M∑
i=1

bi

Q∑
j=1

cj. (10)

Hence, this approximate cross GramianWZ is equal to the
cross Gramian of the SISO systemgiven by A, the row sum
of the input matrix B and the column sum of the out-
put matrix C, and thus can be seen as an ‘average’ cross
Gramian over all SISO subsystems.

Both approaches in Section 3.1 share the common
drawback that they are limited to linear systems (1),
and additionally may require a, potentially computa-
tionally expensive, symmetrizer. The new approach, pro-
posed in Equation (9), does not require the linear struc-
ture of the underlying system; only a cross Gramian
of a SISO system needs to be computable. Thus, the
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non-symmetric cross Gramian can even be computed
for nonlinear systems if a nonlinear cross Gramian is
available; this could be, for example, an empirical cross
Gramian (Himpe & Ohlberger 2014). Empirical Gramians
(Lall, Marsden, & Glavaski 1999) are computed from (sim-
ulated) trajectories of the underlying system with per-
turbations in the input and initial state. The empirical
cross Gramian has been introduced for SISO systems in
Streif et al. (2006) and extended to MIMO systems in
Himpe andOhlberger (2014); and as shown in Himpe and
Ohlberger (2014), the empirical cross Gramian is equal to
the cross Gramian (2) for linear systems (1), hence the
empirical cross Gramian can be used for the numerical
experiments in Section 6.

4. Projection-basedmodel reduction

A major application of the cross Gramian is projection-
based model reduction (Baur et al. 2014). For a linear
system (1), a reduced-order model can be obtained by
using truncated projections u1 ∈ R

N×r , v1 ∈ R
r×N of rank

r � N to project the full-order system to a lower order
state-space:

ẋr(t) = v1Au1xr(t) + v1Bu(t),

yr(t) = Cu1xr(t),

xr(0) = v1x0.

Among others, such projections can be computed
by balancing approaches, like balanced truncation
(Moore 1981) utilizing the controllability Gramian and
observability Gramian, or approximate balancing
(Sorensen & Antoulas 2002, Section 4.3) and direct trun-
cation (Himpe & Ohlberger 2014) utilizing the cross
Gramian. For direct truncation, a Galerkin projection is
generated from the singular value decomposition of the
cross Gramian, of which the singular values are assumed
to be sorted in decreasing order. Based on themagnitude
of the singular values, which typically decay fast initially,
the left singular vectors constituting the columns ofU are
partitioned into u1 ∈ R

N×r and u2 ∈ R
N×N−r :

WX
SVD= UDV → U = (u1 u2). (11)

Setting the singular vectors in u2 to zero yields the reduc-
ing orthogonal projection of rank r:

U = (u1 u2) → U1 = (u1 0) → v1 := uᵀ
1 . (12)

Practically, u1 (and v1 := uᵀ
1 ) are used directly to obtain

the reduced-order components {Ar := v1Au1, Br := v1B,
Cr := Cu1},which is equivalent to thepreviouslydescribed
projection.

Recall relation (10) of the non-symmetric cross
Gramian to the ‘average’ SISO system, which is symmet-
ric due to its scalar systemgain. The eigen-decomposition
of a symmetric system’s cross GramianWX = T�T−1 con-
stitutes a balancing projection {T , T−1}, with the same
attributes as balancing projections derived from control-
lability and observability Gramians (Baur & Benner 2008);
for further details, see Aldhaheri (1991). A truncated bal-
ancing projection applied to the underlying system then
yields a stable reduced-ordermodel as shown in Pernebo
and Silverman (1982) and Antoulas (2005, Chapter 7.2).
As the system matrix A is unaltered for the original and
‘average’ system, the balancing transformation also pre-
serves the internal stability of the original non-symmetric
or non-square system.

5. A connection to tangential interpolation

A class of frequency-domain-oriented (projection-based)
model reduction methods aim to approximate the sys-
tem’s transfer function,

h(s) = C(sI − A)−1B,

by interpolation. For (linear) SISO systems, the transfer
function is a scalar-valued rational function which can
be interpolated by a reduced-order transfer function2

hr(s) = Cr(sI − Ar)−1Br to match a set of frequencies si ∈
C such that:

h(si) = hr(si).

One approach3 for transfer function interpolation of
MIMO systems is the tangential interpolation technique
(Gallivan, Vandendorpe, & VanDooren 2004), which inter-
polates the system’s transfer function for certain frequen-
cies si, sj in associated left and right (tangential) directions
ri ∈ R

M×1, �j ∈ R
1×Q such that:

h(si)ri = hr(si)ri, �jh(sj) = �jhr(sj).

By Antoulas, Beattie, and Gugercin (2010, Theorem 1),
these interpolation conditions are met, if for the general-
ized controllability operatorC (s) := (sI − A)−1B andgen-
eralized observability operator O(s) := C(sI − A)−1 from
Zhou, Salomon, and Wu (1999), the following holds:

C (si)ri ∈ range(V1), �jO(si) ∈ range(U1),

which can be achieved, for example, by

v1 :=
⊕
i

C (si)ri, u1 :=
⊕
j

�jO(sj).

A link between tangential interpolation and the (clas-
sic) cross Gramian is already established in Minh and
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Batlle (2013) in terms ofH2 optimalmodel reduction. Yet,
for the setting at hand, the frequency-domain represen-
tation of the time-domain cross Gramian (2) (Phillips & Sil-
veira 2005, Section D), resulting from Parseval’s theorem
(Sorensen & Antoulas 2005), is considered:

WX = 1
2π

∫ ∞

−∞
(ı ωI − A)−1BC(ı ωI − A)−1 dω.

This frequency-domain crossGramian is equal to the com-
position of the generalized controllability and observabil-
ity operatorsC O . Thus, a tangential cross Gramian can be
defined using the tangential generalized controllability
operatorCr := C r and tangential generalized observabil-
ity operator O� := �O for some associated directions r
and �, which then can be transformed back to the time-
domain:

WX ,r� := CrO� = 1
2π

∫ ∞

−∞
(ı ωI − A)−1Br�C(ı ωI − A)−1 dω

=
∫ ∞

0
eAtBr�CeAt dt. (13)

Since only tangential input and output directions are
considered, this tangential cross Gramian is associated
with a SISO system with the components A, Br ∈ R

N×1,
�C ∈ R

1×N.

Lemma 5.1: The non-symmetric cross Gramian WZ is a
tangential cross GramianWX ,r� for directions:

r = (1 · · · 1)ᵀ ∈ R
M×1, � = (1 · · · 1) ∈ R

1×Q.

Proof: This results directly from the definition of the tan-
gential cross Gramian (13). �

Naturally, the question of alternative or in some sense
optimal directions for the tangential cross Gramian arises.
Yet, opposed to the frequency-domain setting of the
tangential interpolation method, a set of frequencies to
be matched by the system’s transfer function is usu-
ally not available. In the time-domain, the input–output
behaviour of the tangential SISO system has to reflect
the associated MIMO system for all input and output
components.

For thenon-symmetric crossGramian,which is also the
cross Gramian of the ‘average’ SISO system (10), we note
that the selected directions have no zero components
and all components are of the same magnitude, hence
contributions from all columns of B and all rows of C are
incorporated equally.

Various alternative directions obtained from system
components or associated operators have been tested
heuristically, of which neither produced comparable or
better reducing projections for the originalMIMO system.

This leaves the issue of better or even optimal directions
(with respect to model reduction) open and thus the
numerical experiments focus on the non-symmetric cross
Gramian.

6. Numerical results

The presented non-symmetric cross Gramian is tested in
the context of model reduction. For the following numer-
ical experiments, empirical Gramians (Lall et al. 1999)
are employed, which are not computed as solution to
a matrix equation, but purely from simulated trajec-
tory data and thus are also applicable to nonlinear sys-
tems. An implementation of the non-symmetric cross
Gramian is realized as part of the empirical Gramian
framework (emgr) (Himpe 2016) introduced in Himpe
andOhlberger (2013); and the following numerical exper-
iments are conducted using emgr, which is compatible
with OCTAVE and MATLAB�. The source code for reproduc-
ing the experiments can be found under an open-source
licence at http://runmycode.org/companion/view/913.

Froma computational point of view, the empirical vari-
ant of the proposed non-symmetric cross Gramian has
the advantage, that for all SISO subsystem cross Grami-
ans, the trajectories for perturbed initial states (observ-
ability), which consume the dominant fraction of overall
computational time, have to be computed only once.

First, theapproximatenon-symmetric crossGramian (9)
is compared to balanced truncation4 (Baur et al. 2014;
Moore 1981) and the classic cross Gramian (2) for a sym-
metric system.

A state-space symmetric system A = Aᵀ, B = Cᵀ of
state-space dimension N = dim(x(t)) = 1024 and input
dimension M = dim(u(t)) = dim(y(t)) = Q = 8 is
selected, with a negative Lehmermatrix (Shampine 1965)
as system matrix A, Aij := −(min(i, j)/max(i, j)) and uni-
formly random generated input matrix B = Cᵀ.

To confirm Equation (10), the error between the
proposed non-symmetric cross Gramian WZ and the
cross Gramian W̄X of the ‘average’ SISO system {A, b, c},
with bi =

∑M
j=1 Bij and cj =

∑P
i=1 Cij, is compared in the

Frobenius norm:

‖WZ − W̄X‖F ≈ 1.02e−13,

which is reasonably close tomachine precision in double-
precision floating-point arithmetic.

For the following experiments, a zero initial state
x0 = 0 is selected and an impulse input ui(t) = δ(t),
i = 1 · · ·M, is applied. The relative L2 output error is then
evaluated for varying reduced-order state-space dimen-
sions. Such a coherence assessment for a reduced-order
impulse response is meaningful since a linear system

http://runmycode.org/companion/view/913
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response is a convolution of the impulse response with
an input function.

Figure 1 shows that the reduced-order models
obtained by balanced truncation and the cross Gramian
exhibits the same behaviour due to the state-space sym-
metric nature of the system. The newly proposed non-
symmetric cross Gramian from Definition 3.1 does not
achieve the same accuracy, but provides a lower output
error for smaller reduced-order models. A lower accu-
racy is to be expected due to the use of a one-sided
projection, while balanced truncation uses a two-sided
Petrov–Galerkinprojection,which in the state-space sym-
metric case is equal to the projection obtained from
the (symmetric) classic cross Gramian. Notably, the out-
put error of the reduced-order model from the non-
symmetric cross Gramian drops already at a very low
order n ≥ 8 to the steady error level while balanced trun-
cation and the classic cross Gramian reach this error not
until a reduced order of n ≥ 24.

Secondly, the non-symmetric cross Gramian is com-
pared to balanced truncation and the approximate cross
Gramian (5) of the symmetric system derived by embed-
ding from Equation (5) for a non-square (and thus non-
symmetric) system.

To prevent the computation of a symmetrizer matrix
J, the symmetric system matrix A ∈ R

1024×1024 from the
first example is reused, yet now, a uniformly randomgen-
erated input matrix B ∈ R

1024×1 for a single input and a
uniformly random output matrix C ∈ R

8×1024 is selected,
thus the system is non-square and non-symmetric, since
M=1 and Q = 8. Also for this example, zero initial state
x0 = 0 and impulse input u(t) = δ(t) are applied and the
relative L2 output error is evaluated for varying reduced-
order state-space dimensions in Figure 2.

Using balanced truncation as reference, the cross
Gramian of the embedded system performs worse
as predicted in Sorensen and Antoulas (2001, 2002).
Here, the output error of the balanced-truncation-based

Figure 1. Relative L2 output error of reduced-ordermodels for reduced orders up to one hundred by balanced truncation, cross Gramian
and non-symmetric cross Gramian for the state-space symmetric MIMO system.

Figure 2. Relative L2 output error of reduced-order models for reduced orders up to one hundred by balanced truncation, embedding
cross Gramian and non-symmetric cross Gramian for a non-square SIMO system.



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 205

reduced-order model decays for an increasing reduced
order largely with the same rate as the non-symmetric
cross-Gramian-based reduced-order model.

Thirdly, a square but non-symmetric stable system
with system matrix A ∈ R

1024×1024, uniformly random
input matrix B ∈ R

1024×8 and uniformly random output
matrix C ∈ R

8×1024 is chosen. For this system, balanced
truncation, the cross Gramian and the non-symmetric
cross Gramian are compared. Due to the non-symmetric
nature of the system, the crossGramianhas no theoretical
foundation, yet is applicable since the system is square.
Heuristically, also in Baur and Benner (2008) workable
results for non-symmetric systems have been obtained
for the classic cross Gramian.

Figure 3 shows a similar results as for the non-
square system: the reduced-order models by the cross
Gramian and non-symmetric cross Gramian both exhibit
a lesser accuracy, yet the non-symmetric cross Gramian’s
reduced-order models require the least states to reach
this error level even compared to balanced truncation.

Next, the structural model for the Russian ISS ser-
vice module 1r, which is part of the benchmark col-
lection (Chahlaoui & VanDooren 2005), is tested. This
model is a second-order square MIMO system of order
N=270 and M=Q=3. As for the previous experiments,
a zero initial state and an impulse input is utilized. For
this benchmark, balanced truncation, direct truncation
of the cross Gramian and direct truncation of the non-
symmetric cross Gramian are applied. Due to the second-
order nature of the system, a structure preserving variant
of the truncation methods is chosen (Teng 2012).

Figure 4 shows a similar result as for the previous
experiments. The error decay for increasing reduced
order of the reduced-order models derived by the reg-
ular cross Gramian and balanced truncation is similar,
but a lower error is reached by balanced truncation. The
error of the reduced-order model resulting from the non-
symmetric cross Gramian decays steeper but does not
reach the same accuracy than the regular cross Gramian
and balanced truncation.

Figure 3. Relative L2 output error of reduced-ordermodels for reduced orders up to one hundred by balanced truncation, cross Gramian
and non-symmetric cross Gramian for a non-symmetric, but square, MIMO system.

Figure 4. Relative L2 output error of reduced-ordermodels for reduced orders up to one hundred by balanced truncation, cross Gramian
and non-symmetric cross Gramian for the ISS-1r benchmark.
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Lastly, a second benchmark from the collection
(Chahlaoui & VanDooren 2005) is tested in an adapted
form. The benchmark entitled ‘FOM’ (Chahlaoui & Van-
Dooren 2005) describes a SISO system of order 1006. In
Heyouni, Jbilou,Messaoudi, and Tabaa (2008), this bench-
mark is extended to a MIMO system, related to this adap-
tion, in this setting a single-input-multiple-output (SIMO)
variant of the benchmark is used. The system matrix A ∈
R
1006×1006 is a block diagonal matrix consisting of four

blocks,

A =

⎛
⎜⎜⎝
A1

A2
A3

A4

⎞
⎟⎟⎠ ,

A4 =

⎛
⎜⎜⎜⎝

−1
−2

. . .
−1000

⎞
⎟⎟⎟⎠ ,

A1 =
( −1 100

−100 −1

)
, A2 =

( −1 200
−200 −1

)
,

A3 =
( −1 400

−400 −1

)
.

The input matrix (vector) b ∈ R
1006×1 from the original

benchmark,

bi =
⎧⎨
⎩
10, i ≤ 6,

1, i > 6

is used. The output matrix C ∈ R
8×1006 is originally set to

C = bᵀ, in this setting the output matrix is generated by
samples from a uniform randomdistributionwith ranges,

for each row of C, determined by bᵀ
i :

Cij =
⎧⎨
⎩
U[0,10], j ≤ 6,

U[0,1], j > 6.

In Figure 5, the L2 error for the non-square and thus
non-symmetric adapted benchmark model are shown
for balanced truncation and the non-symmetric cross
Gramian. For this benchmark, the reduced-order models
from balanced truncation and the non-symmetric cross
Gramian perform similar in decay and lowest reached
error. Notably, both methods coincide in their lowest
attained error.

For all five experiments, the minimal state-space
model reduction error of the presented non-symmetric
cross Gramian is equal or worse than for balanced trun-
cation, but the descent of the error is steeper or at least
equally fast. Hence, if the lower accuracy is acceptable,
often a smaller reduced-order model can be constructed
with this (non-symmetric) variant of the cross Gramian
method. This superior performance of the non-symmetric
cross Gramian compared to balanced truncation and
the regular cross Gramian (if applicable) for low-order
reduced-order models is not yet supported by a theoret-
ical result. Further investigation of the relation between
a MIMO system and its associated ‘average’ SISO system
with respect to linear superposition of linear system state
and output could reveal an explanation for these surpris-
ing numerical results. Alternatively, the connection to the
frequency-domain through the tangential cross Gramian
may also uncover the reason for the model reduction
performance of the non-symmetric cross Gramian.

In terms of computational complexity, the non-
symmetric cross Gramian can be computed as the regular
cross Gramian of the ‘average’ system, thus it has the

Figure 5. Relative L2 output error of reduced-order models for reduced orders up to one hundred by balanced truncation and non-
symmetric cross Gramian for the non-square variant of the FOM benchmark.
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same complexity as solving a Sylvester equation for a
cross Gramian of a (linear) SISO system. From an empirical
Gramian viewpoint, the non-symmetric empirical cross
Gramian requires additional Q matrix additions to aver-
age the ‘observability’ snapshots compared to the regular
empirical cross Gramian for a square (possibly nonlinear)
system.

It should be noted that the non-symmetric cross
Gramian is not suitable for frequency-space-based
approximation. This is due to its construction by aver-
aging the subsystem cross Gramians. For example, the
(Hardy) H2-error between full and reduced-order model
will decay very slowly or not at all, hence this method is
currently targeted purely at state-space approximations.

7. Conclusion

In this work, a non-symmetric cross Gramian, based
on concepts from decentralized control, is proposed,
connected to the tangential interpolation method and
demonstrated to provide viable results for linear non-
symmetric and non-square systems, which are outside
the scope of the regular cross Gramian.

Future work will evaluate the effectiveness of the
non-symmetric cross Gramian for parametric and non-
linear systems. Furthermore, since the procedure for
cross-Gramian-based Petrov–Galerkin projections sug-
gested inRahrovani, Vakilzadeh, andAbrahamsson (2014)
does generally not yield stable reduced-order mod-
els in this setting, an investigation of two-sided and
stability-preserving projections for the (non-symmetric)
cross Gramian may yield errors comparable to balanced
truncation.

Notes

1. Equivalently, the symmetry of the impulse response, system
gain or Markov parameter can be used.

2. Where the reduced-order components Ar , Br , Cr are derived
by projections u1 and v1.

3. For an overview on model reduction techniques see
Antoulas (2005).

4. The balanced truncation is performed using the empirical
controllability and observability Gramians.
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