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Abstract

We study Weil group representations over the coefficient field Q, and es-
tablish certain equivalences of categories in the flavor of FONTAINE’s classi-
fication of p-adic representations of the absolute Galois group. If we restrict
to crystalline (or de-Rham) Weil group representations, we can describe the
category of these Weil group representations in terms of generators. More
precisely it is generated as an abelian tensor category by the full subcate-
gory of Galois group representations and finite unramified inductions of the
character Q,(| - |) given by ARTIN’s reciprocity law.
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Introduction

Let p be a prime, K/Q, a finite field extension with ring of integers O and
residue field k, denote by K an algebraic closure of K. It is a fundamen-
tal problem in Number Theory to understand the structure of the (local)
absolute Galois group Gy := Gal(K/K). An usual strategy in many fields
of mathematics to understand the structure of a group is the study of its
representation theory. The (local) Langlands program suggests that there is
a deep connection between the representations of Gx and representations of
reductive groups. Over time several approaches were made to give this idea
a concrete incarnation. The classical local Langlands correspondence pro-
vided by Harris-Taylor [HT01] and Henniart [Hen00] for GL,, relates certain
(more precisely: irreducible admissible) representations of GL, (K) over C
and certain n-dimensional (more precisely: semisimple Weil-Deligne) repre-
sentations of Wx over C, where the Weil group Wi is (as an abstract group)
the subgroup of G'x consisting of all automorphisms whose restriction to the
residual Galois group Gy, is an integral power of the Frobenius automorphism.
Due to Grothendieck’s (I-adic) Monodromy Theorem [Tat79, §4] the latter
category of Weil-Deligne representations of Wiy over C is equivalent to usual
l-adic representations of Wy where [ # p. In contrast to the [-adic case
p-adic Hodge theory only deals with Galois representations instead of Weil
group representations, which raises the natural question how both concepts
can be linked. In this thesis we will study the difference between categories

of Galois group representations and Weil group representations over the co-
efficient field Q,.

More precisely we modify FONTAINE’s classification of p-adic Galois rep-
resentations (given in [Fon90| and |Fon94a|) with the intention to fit Weil
group representations into the picture. If we restrict the problem to de-Rham
representations, we receive enough structure on the corresponding modules
to completely describe the Weil group representations as subquotients of Ga-
lois group representations twisted by induced representations of the character
given by ARTIN’s reciprocity law.

il
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In chapter 1 we collect general statements about Weil group represen-
tations. It is pointed out that Weil group representations are the same as
Galois group representations over the coefficient rings FP,EJ and Z,. If one
considers representations with coefficients in Q,, this is false. The charac-
ter given by ARTIN’s reciprocity law Q,(] - |) is a Weil group representation
but can’t be extended to a (alois group representation. We introduce an
axiomatic setting in which we adjust the theory of B-admissible represen-
tations (e.g. given in [BC09|) to our purposes. In particular we define a
B-admissible Weil group representation by requesting that the restriction to
a representation of the inertia group is B-admissible. Afterwards we prove
that the category of B-admissible Weil group representations is equivalent
to the category of pairs (D, F') where D is the object consisting of "linear
algebra data" FONTAINE associates to representations of the inertia group
and F is a semilinear operator satisfying certain extra conditions (see Axioms
1.1 to 1.5), essentially the linearization of F' has to define an isomorphism.

In chapter 2 we introduce the period rings, which are required in order
to define crystalline, log-crystalline (i.e. semistable) and de-Rham represen-
tations. We use the language introduced by SCHOLZE [Schll] of perfectoid
fields and tilts in order to reduce the wild amount of notation to a minimum.
During this excursion we recapitulate the basic facts about these rings. We
explicitly calculate the Gal(K /F)-invariants of Bgqr (see Theorem 2.16) and
By (see Lemma 2.35) for an algebraic extension F/K such that ' C C, is a
perfectoid field.

In chapter 3 we apply the theory of B-admissible representations devel-
oped in chapter 1 to the period rings mentioned in chapter 2. By checking
that the axioms formulated before hold in this situation we receive several
equivalences of categories, which describe certain categories of B-admissible
(e.g. crystalline, log-crystalline, de-Rham) Weil group representations in
terms of linear algebra data. These equivalences (see Theorem 3.12 and
Theorem 3.20) are based on the well-known equivalences of categories for
(crystalline, log-crystalline, de-Rham) p-adic representations of the inertia
group Ix. We endow the objects of linear algebra data with an additional
operator F' that is highly compatible with the given structures and mimics
a lift of the Frobenius in Wx C Gk.

In chapter 4 we give a complete treatment of the case of (potentially)
log-crystalline representations, which is by the p-adic Monodromy Theorem
(see [Ber02]) the same as dealing with de-Rham representations. It turns out
that a Weil group representation can be lifted to a Galois group representa-
tion if and only if the corresponding (admissible filtered ¢-)module (D, F)



has Newton slope 0 with respect to F' (see Theorem 4.7). Hence we decom-
pose the module (D, F) along the semilinear map F' via the Classification
Theorem of Dieudonne-Manin. This is possible since such a decomposition is
compatible with the additional structures (see Theorem 4.19) on the module
D. In the last step we take powers of every summand and then "tilt" it to
Newton slope 0 by forming the tensor product with a representation induced
from Q,(] - |). This leads to the main result (see Theorem 4.25): The cat-
egory of (potentially) log-crystalline Weil group representations is generated
(as a tensor category) by the full subcategory of Galois group representations
and induced representations of the character Q,(] - |).

In chapter 5 we treat the case of general p-adic representations. We
use the main result from chapter 1 once again to construct categories of
linear algebra data which classify (general) mod-p representations of Wi
(see Theorem 5.7). This construction works out in a similar way in the case
of p-adic Weil group representations (see Theorem 5.11).

Acknowledgments

First of all I would like to thank my advisor Peter Schneider for giving me
the opportunity to be part of his work group and for offering me this exciting
as well as lucrative topic. His support and supervision were essential for the
progress of this thesis. For various discussions connected to the topics of this
paper I would like to thank Marten Bornmann, Marius Kley, Jonas Stelzig,
Matthias Weirich and Matthias Wulkau.

Auch danke ich allen, die mich in der Zeit der Promotion, begleitet haben,
im speziellen meinen Eltern und meinem Bruder fiir ihre bedingungslose
Unterstiitzung. Ein besonderer Dank geht auch an meine Kollegen und
Freunde, die eine Bereicherung fiir diesen Lebensabschnitt sind und waren.
Ausdriicklich danke ich Anna, Armin, Boris, Christian, Christine, Dimitri,
Eugen, Federico, Felix, Jakob, Jannik, Jonas, Kirsten, Matthias, Matthias,
Matthias, Marius, Marten, Nico, Niklas, Nikolai, Paul, Sebastian, Stephan,
Tamés, Tim, Torsten, Verena und Victoria.

Zu guter Letzt bedanke ich mich noch bei den Ehrenamtlichen des Hoch-
schulsports und bei allen Futsalern sowie den Organisatoren der Doktoranden-
treffen.



vi



Chapter 1

Weil Group Representations

Once and for all we fix the following Notations: We denote by
e k the finite field with ¢ = p/ elements.
e G = 7 the absolute Galois group of k.
e K, the fraction field of the ring of Witt vectors W (k).

e K/Kj a purely ramified finite Galois extension contained in a fixed
algebraic closure K of K.

e Ok C K the ring of integral elements with maximal ideal (7).

e (G the absolute Galois group of K.

o degy: G — G = 7 the canonical projection.

o [ := ker(degy) the absolute inertia group of K.

o K" :=J,en K(ptpr—1) the maximal unramified extension of K.

e [ the completion of the maximal unramified extension of Q,.

e o an element of Gk such that degy(ox) = 1.

e o the continuous automorphism of Py such that o(x) = 2? mod p.

o K the algebraic extension of K given by adjoining all p-power roots
of unity to K.

e W(-) the functor that attaches to a ring R the ring of (unramified)
Witt vectors W(R). We denote (multiplicative) Teichmiiller map by
Tr: R — W(R) and neglect the index if no confusion is possible.

1



2 CHAPTER 1. WEIL GROUP REPRESENTATIONS

1.1 Trivia about the Weil Group

We call W := degy'(Z) the Weil group of K and consider it as a topological
group endowed with the coarsest topology such that:

e the subspace topology on I is the usual (profinite) topology of Ik.
e [ is open in Wk.

Then

1= I S Wy 285, 741

is an exact sequence of topological groups, where Z is endowed with the
discrete topology. Wi is a dense subset of G since Z is dense in 7 =~ Gy
The Weil group naturally embeds into the context of local class field theory in
the following way. For a finite abelian extension L/K the local norm residue

symbol
(,L/K): K* = Gal(L/K)

is an epimorphism of topological groups with kernel Ny, /5 (L*) [Neu86, Chap-
ter III, Theorem (2.1)], which maps O} onto I(L/K) and the group 1+ m}
onto the n-th ramification group G™(L/K) with respect to the upper num-
bering |[Neu86, Chapter I1I, Theorem (8.10)]. Let K denote the maximal
abelian extension of K. By passing to the projective limit we obtain that
(0%, K®/K) C I(K®/K) is dense but since O} is compact this actually an
equality. Consider the following commutative diagram with exact rows:

c

1 o5 K* 27 0.
l(-,mb/m L(-,Kab/m\=

| —— (K% /K) S~ W& 7 ¢

Since the outer vertical maps are surjective we obtain that the inner verti-
cal arrow maps onto W, By the ezistence theorem [Neu86, Chapter III,
Theorem (3.1)]

N Nyx(L) C()(@h) x 1+mf = {1}.

L/K finite abelian fin

Hence the map (-, K®/K): K* = W& is an isomorphism of topological
groups. We call its inverse

T'KCWI(I(I)—)KX

the reciprocity law of local class field theory.
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1.2 p-adic Representations

Definition 1.1 Let G be a locally compact topological group and E be a
normed field. An E-representation of G is a finite dimensional vector space
V' over E together with a continuous group homomorphism p: G — Autg(V)
(where Autg (V') = GL,(F) is endowed with the topology induced by the norm
on E, which is independent of the choice of the base of V). We define a mor-
phism of E-representations of G to be an E-linear map that is G-equivariant
and denote the corresponding category by Repp(G). The category Repg (G)
of p-adic representations of G will be denoted by Rep(G).

An important lemma in the case where G is a profinite group is the
following.

Lemma 1.2 Let R be a valuation ring with field of fractions E. For any
profinite group G and each object V' of Repg(QG) there exists a G-stable R-
lattice M C V.

We (literally) imitate the proof of [BC09, Lemma 1.2.6.].

Proof: Let p: G — Autg(V) be the continuous group homomorphism that
defines V. Take an arbitrary R-lattice My C V and obtain the commutative
diagram

AlltR(Mo)(—>' AutE(V)

o

GL4(R)—— GL4(FE),

where d = dimg(V). Since GL4(R) is an open subgroup of GLy4(FE) the
preimage Gy := p~'(Autr(Mp)) is open in G, in particular G /G is finite.

Therefore
M= > plg)(Mo)
gGoEG/G()
is a well-defined R-lattice in V that is G-stable. O

Example 1.3 Consider the continuous homomorphism of groups given by
p: Wi — WP 5 K~ |.£>29Z cQ,,

where the first arrow is the canonical projection. This defines a one-dimensional
p-adic representation of Wi, which we will denote by Q,(| - |k) in the fol-
lowing. The map p does not extend (continuously) to a map p: G — Q.
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Assume this would be the case. As a profinite group G is compact and thus
its image p(Gx) € Q5 would be compact, in particular bounded. But p(G k)
would contain p” which is unbounded. For another way to see this, we apply
Lemma 1.2. Since there is an element o € Wy such that p(ox) = p~! there
can be no Zy-lattice which is invariant under a (hypothetical) action of Gk.

Remark 1.4 Let E be a normed field. Then any E-representation of Gg
restricts to an E-representation of Wy since the topology on Wi is finer than
the subspace topology on Wy inherited from Gg. On the other hand any E-
representation of Wy that extends to an E-representation of G does this in
an unique way since Wy is dense in Gg. Therefore we consider Repy(Gk)
as a full subcategory of Repr(Wi). By the preceding example these categories
are not equivalent via restriction in the case of E = Q,.

1.3 Mod-p- and Z,-Representations
Let F now be a local field with finite residue field. We remark that both
exact sequences in the commutative diagram

- degp

1 I Wi 7 0
T
1 Ip—Su Gp 282 7 0

split via choosing an element oz € degy'(1). We see that
Gp=1IpxZand Wg=IpxZ

as topological groups. This emphasizes the significance of the following state-
ment [Bou71, ITI, Prop. 28], which will be used to prove that certain actions
of Wg extend continuously to G g-actions if the corresponding Z-action ex-
tends continuously to a Z-action.

Proposition 1.5 Let L, N be topological groups and 7: L — Aut(N) a group
homomorphism such that

N x L — N,(z,y) — 7(y)(2)

is continuous (with respect to the product topology on the source). For con-
tinuous group homomorphisms f: N — G and g: L — G into a topological
group G, such that f(r(y)(z)) = g(y)f(x)g(y™') holds for all x € N and
y € L, the group homomorphism N x L — G given by (z,y) — f(x)g(y)
s continuous. In particular N x L endowed with the product topology is a
topological group.
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According to |[RZ00, Chapter 4| (or more generally Lemma 4.1) every
group homomorphism Z — G into a profinite group G extends continuously
to a group homomorphism Z — G. This has the following consequences.

Corollary 1.6 Let g be a power of p. The forgetful functor
F: Repy, (Gr) — Repg, (Wr)

s an equivalence of categories.

~

Proof: It is enough to show that any representation p: Wg — Autg, (V
GL4(F,) can be lifted to a representation of Gp. Choose op € degy'(1
and obtain a group homomorphism f: Z — GL4(F,) given by 1 — p(og).
Since GL4(F,) is finite f extends to a continuous homomorphism f: 7 —
GL4(F,) and we use Proposition 1.5 to extend p via f to a continuous group

homomorphism p: Gg — GL4(F,). O

Let R be a complete discrete valuation ring with finite residue field and
maximal ideal (¢). We remark that the functor GL4 from the category of rings
to the category of sets is representable and therefore preserves projective
limits by [ML78, V.4. Theorem 1|. Then the same argument as above still
works if we consider free R-representations (i.e. finitely generated free R-
modules equipped with a continuous linear action of G) since

GL4(R) = @GLd(R/(t”)) (as topological groups)

is profinite. (Hence any group homomorphism Z — GL4(R) lifts to a con-
tinuous group homomorphism Z — GL4(R), see for example [RZ00, §4.1.]).

Corollary 1.7 The forgetful functor
F: Repr(Gr) — Repr(Wp)
s an equivalence of categories.

This holds for R = Z,, in particular.

1.4 Formalism of Admissibility

In this section we extend the formalism of admissibility (see e.g. [BC09, 1.5.])
in order to extend it to representations of Weil groups.
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Let G denote a profinite group, I C G a closed normal subgroup such that
G/I = Z and denote by deg: G — Z the composition of this isomorphism
with the canonical projection G — G/I. Choose an element

¢ €deg (1) CG.
The group homomorphism
Z — Aut(I) given by n +— (u+— ¢"ug™™)

is continuous. Set W := I x Z (with respect to the map above), which we
understand as a subgroup of G via (u,n) — uc”, and endow it with the
product topology of I (which carries the topology inherited by G) and Z
(which carries the discrete topology).

Let (F,0) denote either the pair (F,s,5), where : x — 2P is the r-
th power of the usual Frobenius map, or the pair (W(]Fps)[%], o), where o =
W(&)[%] for some N> r < s & NU{oco}. Assume that B D F'is a topological
ring that carries an action of G such that B¢ C B! are fields endowed with a
Frobenius endomorphism ¢ which extends the Frobenius on /' and commutes
with the action of G. In the following the term p-module refers to modules
endowed with a o-semilinear map .

Now we want to introduce the concept of admissibility (with respect to
an (E, G)-regular ring B). Hence let E be the fixed field of ' with respect to
o and B be an (E, G)-regular ring, i.e. B O F is an E-domain that carries an
action of G such that Frac(B)“ = BY is a field and for all b € B such that E-b
is G stable we have b € B*. We also assume B to be (E, I)-regular. Recall
[BC09, §5.2.] that an E-representation of G (resp. I) is called admissible if

dimge (B @5 V) = dimg(V) (resp. dimgr(B @z V)! = dimg(V)).
For the group W we vary this kind of definition for our purposes as follows.

Definition 1.8 An E-representation V' of W is called B-admissible if the
restriction V|; is a B-admissible representation of 1. We denote the full

subcategory of Repy(W) containing only the B-admissible E-representations
of W by Repa(W).

One may consider the assignments V — (B ®g V)Y (resp. V — (B ®p
V)!) as functors from the category RepZ(G) (resp. Rep2(I)) to the category
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of p-modules over BY (resp. B'). As usual we denote the "comparison
morphisms" as follows. Let

a,: BRp (B®g (0)) = B®pg (o)

denote the natural transformation given by
ONéVZ Zbl ®blj ®Uj — Z(Zblbw) ®’Uj
irj i

for all objects V in RepZ(I) and let
Bu: B@pr (B@pr (9))77 = B@pi (o)

denote the natural transformation given by
ij i

for all o-modules M over B!. These are natural transformations of E-linear
additive tensor functors which means the following:

Definition 1.9 Let C and D be E-linear abelian tensor categories and let
F,G: C — D denote E-linear additive tensor functors. We call a natural
transformation te: F' --+» G a natural transformation of E-linear additive
tensor functors if the diagram

IX18c X2

F(X1 Qe X2> G(Xl Qe X2)

: ;

tx, ®Dlx,
F(X) ©p F(Xa) G(X1) ®@p G(Xs)

of vector spaces over E commutes for all objects X1 and Xy in C. (The
vertical arrows are given by the natural isomorphisms making the functors F
and G tensor functors.)

Denote by j, the (canonical) natural injective transformation
idRepg(I) --» B4 g (o)
which is given by jy(v) = 1 ® v.

We adopted the definitions and notations from [DM82]| and assume that
the following axiom holds:
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Axiom 1.1 There exists an E-linear abelian tensor category Cy together with
an E-linear faithful additive tensor functor

T: C; — (p-modules over BY)

such that there exist two mutually inverse E-linear additive tensor functors
Dg: Rep2(I) — C; and Vi: Cr — RepB(1),

in particular there exist natural isomorphisms of E-linear additive tensor
functors
6{.: QB ©) @B —f') 1dRepg(I)
and N
6,2 ]DB o VB - idcl.
We furthermore require these data to satisfy the following properties:
e There exists an injective natural transformation of E-linear additive

tensor functors
Ne: Vi~ (B @pi T(e))7

e and there exists a natural isomorphism of E-linear additive tensor func-
tors

5.1 TO]DB -%-) (B ®E (.))[
such that
@y = (@) o (B@pr &)7 o, 0 Vi(Dp(s)) > (B @p ()7

is an injective natural transformation of E-linear additive tensor functors
satisfying jo o Qe = &. and

By = (B) o(B@pma) o€y, T(Dp(Vp(s))) -

IR

[

> (BopiT(e))' (> T(e))

15 a natural isomorphism of E-linear additive tensor functors satisfying

Remark 1.10 T'(Home, (D1, D)) € Homg poq, p (T(D1), T(D2)) is an E-
subspace since T is E-linear and faithful.
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Remark 1.11 Let (D, ) be a p-module over BI. We define (B',<) to be
the BI-module which is B! as an abelian group and scalar multiplication is

given by b :=c(u) - b for all u,b € B, Set
¢*(D) := B @pr D := (B',¢) @pr D.
We receive a map
(@) (D) = (D), p@d = o(p) @ p(d).

Since o commutes with the G-action on B the map is well-defined and it is
o-semilinear:

() (- Z i @ m;) = c*(sO)(Z pupt; © m;)
Z o(p)o () @ p(m;)
() - <*(90)(Z 1 ®m)

holds for all " pi; ® m; € <*(D) and p € B'. This construction is functorial.

Take a morpi;ism
[ (D1,o1) = (D2, ¢2)
of p-modules over B! and define

S*(f): " (D1) = "(D2), p@d = p@ f(d).

This map is B!-linear and satisfies *(f) o ¢* (1) = s*(p2) 0 *(f), hence ¢*
s a self-equivalence of categories. Furthermore

((D):s*(D) - D,1®d—d
induces a ¢~ t-semilinear bijection and for all p € B! and d € D

UD)(" (@) (p®d)) = u(D)(e(n) @ p(d))
= (st o) (u)e(d)
= (0o ) (we(d)
= (¢ H()d)
= o(UD)(1 ® s (p)(d)))
= o((D)(p @ d))

holds, i.e. 1(D)oc*(p) = @ou(D) has been verified. In the same manner we
check

{(Dy) 0 <*(f) = f o uDy). (1.1)
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Lemma 1.12 Let (D, ) be a p-module over B'. Then there exists an iso-
morphism ¢*(0*(D)) = o*(¢*(D)) of vector spaces.

Proof: Consider the linear map given by
(0" (D)) = ((s0a) ™) (D), A@ p@d = Xs(n) @ d.

This is well-defined and the inverse is given by t ® d — 2 ® 1 ® d. One
receives an isomorphism o*(¢*(D)) = ((0 o ¢)~1)*(D) by interchanging the
roles of o and ¢. But ¢ and ¢ commute and we obtain the claim. 0J

In order to modify the category C; such that it captures the structure of
RepZ (W) instead of RepZ(I) we need the following axiom.

Axiom 1.2 Assume that ¢* lifts to an equivalence of categories on Cyp, i.e.
there exists an equivalence of categories from Cy to itself which we also denote
by <* making the diagram

C < C
| |
(p-mod. over B!) —> (¢-mod. over BY)
commutative.
This allows us to state the following definition.
Definition 1.13 Denote by Cy the following category:

e The objects are pairs (D, F), where D is an object of C; and F is a
self-map of T(D) such that F'™¥ := F o (D) lifts (uniquely) to an
isomorphism F' in Cp, i.e. T(F'™) = Fin¢ holds.

o A morphism (D1, F1) — (Da, F») in Cy consists of a morphism f: Dy —
Dy in C; such that f o Fi* = FJ™ o ¢*(f) holds.

e The composition of morphisms is the usual composition of maps.

In order to define a functor from the category RepZ(W) to Cy we need
to define a self-map Fy of T(Dg(V)) for any object V of Rep2(W). Let Fy
be the map determined by the commutative diagram

T(Dp(V)) —=T(Dp(V))

%lév %lﬁv
©

F,
(B V) Y~ (BegV)!
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where the bottom map is given by
Fy: Zbi ® v; Zg.bi ® §.v;.

Remark that this map is well-defined since I is a normal subgroup of W and
hence

u.FY(z) = Z (uog)b;® (uos)w = FZ((s T ouog).x) = Ff(z)

)

for all u € Ix and x = >_b; @ v; € (B®g V). Furthermore

(po FY)(z Zsogb R <.v;
—Zggo ® §.v;
Z(Fx“fosf))( )

holds for all z = 32 b; ® v; € (B®@g V)L, Let FL™ := Fy o 1(Dp(V)) denote

7
the linearization of Fy. In order to show that this construction is indeed
functorial we need to enforce the existence of a (unique) lift of Fy"?:

Axiom 1.3 Assume that there erists a (unique) lift Flin € Tsomg, (]INDB(V))
such that T(FiM) = F‘l}n"p for any object V' in Rep2(I).

Now consider a morphism f: Vi — V5 in Rep2(W). We see that
(Ff,o (B s ))r) = (0@ f(v0)

= Zg.bi ® <. f(v;)
= Z S.b; ® f(s.v;)

= ((B®g [) o F)(x)



12 CHAPTER 1. WEIL GROUP REPRESENTATIONS

holds for all z = > b; ® v; € H~)>B(V1). Hence one obtains

T(Dy(f) o Ff = T(Ds(f)) o Fy;*

=&, 0 (B®p f)f 0 &y 0 Fy, 0 u(Dp(V1))
=&, o (B®p f)f o I o &y, 0 u(Dp(Vy
=&, o FY, 0 (B®g [)! 0 &y 0 u(Dp(WA))
= Fy, o T(D(f)) o e(Dp(V1))
W By, 0 uDs(12)) 0 *(T(Ds(1)))
= T(Fy} o <" (Ds(f)))

and therefore Dp(f) o Fii* = Fii* o ¢*(Dp(f)) holds since T is faithful.

For the case that 7, is not surjective (i.e. no natural isomorphism), we

need to assume two more axioms. In the cases where this natural transfor-
mation is a natural isomorphism these axioms are satisfied automatically.

Axiom 1.4 Assume that for all object D in C; there exists a (unique) bijec-
tive map Sp making the following diagram commutative:

V(D) o V5(D)

(B ®p1 }Z;))@id ‘b (B ®pr jl;ZDD))apid

where the bottom map is given by
G Y bi@di— Y chi@d;.

Remark 1.14 The latter axiom makes sense since the bottom map s well-

defined:
p(ShH(z)) = @(Z ¢.b; ® d;)
= Z ©0(s.b;) @ p(d;)
= Z c.p(b;) @ p(d;)

= Splp(r)) = <hla),
holds for all x = >_b; @ d; € (B ®@p: T(D))¥=4. If n, is a natural isomor-

phism the aziom s satisfied automatically.
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Axiom 1.5 Assume that for all objects (D, F') in Cy there exists a (unique)
bijective map Fp making the following diagram commutative:

Fp

V(D) V(D)

b

B @y T(D))#= 2o (B @41 T(D))#=
(B ®p: T(D)) B
where the bottom map is given by

Ef: ) bi@dim Y bi® F(dy).

Remark 1.15 The latter axiom makes sense since the bottom map s well-
defined:

holds for all x = >_b; @ d; € (B ®@pr T(D))*79. If n, is a natural isomor-

phism the axiom is satisfied automatically.
We need the following relations in order to prove the theorem below.

Remark 1.16 Let (D, F) denote an object of Cy. The following relations
are itmmediate from the definitions:

e {f o Ffy = F} od, holds and hence we also have Sp o Fp = Fp o $p.

e [p(uzx) =u.Fp(z) for allu e I and z € V(D).

e {(ux) = (cus™Y).Lp(x) holds for all x € V(D).

Now we are set to prove that the category Cy, constructed above is indeed
equivalent to RepZ ().
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Theorem 1.17 The additive E-linear tensor functor
RepE(W) — Cy given by V (DB(V),FV),

provides an equivalence of categories.

Proof: Let (D, F) be an object of Cy. We set V := Vg(D), which is then
an E-representation of I. In order to define a W-action on V' let

W x V — V be given by (g,v) — g.v := (Fp o <p)3e@ (w.w).

For all v € V and ¢; = %81 .y, g = ¢°82)yy € W such that uy,uy € 1
we have

91.(g2.0) = g1.((Fp 0 ¢p)2892) (uy.0))
= (FD o &p)deelon) (4, (FD o )8 (15 1))
= (ﬁ’D o gAD)deg(glgz)((g deg(g2)“1§deg(92)u2)_v)

= (9192)-v (1.2)

since gy g, = ¢i8(9192) (¢~ deslg2)qy cdee(92)y,) holds. Thus we indeed defined an
W-action and it remains to check that the map above is continuous. By
assumption its restriction to I x V' — V is continuous and [ is open in V.
Hence I x Visopenin W x V and W x V' — V is therefore continuous. We
claim that this procedure defines a functor which we also denote by V by
slight abuse of notation. Consider a morphism f: (Dy, F1) — (Do, F3) in Cw
and for sake of brevity write

[ = (B @ T(f)7.

For allv =Y b; ® d; € (B®p: T(D;))¥=4 and g € W we have:

£ Zg.b ® F{¢9(d;))
= Zg b ® (f o Fy*9)(d;)
= Zgb @ (F5 o f)(d;)
= g-f*(v)-
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This enables the following calculation:

(D, O@B(f))(g-v) = (" onp,)(g-v)
= f*onp, o (FDl o GDl)deg(g) (u.v)
= [ o (Fp, 055, (w.np, (v))
= f*(g-1p,(v))
= g.((f" onp,)(v))
= .(1p, © V() (v)
= (Fp, 05,9 (u.(11p, © Vi (f))(v))
= 1D, © (Fp, © $p,)* 9 (u.Vp(f)(v))
= 1p, (9. VB( )(v))

holds for all g = ¢4¢@Wy € W and v € vB(Dl) and since 7p, is injective we
have

Va(f)(g-0) = 9.Va(f)(v)

in particular. Thus VB( f) is E[W]-linear indeed. In the last step of the proof
we show that Dy and Vp are quasi-inverse functors (between RepZ(1V) and
Cw). It suffices to check that the comparison isomorphisms from Axiom 1.1
lift to isomorphisms in the current situation, i.e. we need to prove E[W]-
linearity of the E[I]-linear natural isomorphism

6{.: vB O DB —f') ldRepg(I)
and compatibility with F' of the natural isomorphism

Be:DpoVg -—» ldcf

We begin with the latter. For sake of brevity we denote the map (B ®g )’
by n}. Then take an element x = > b, @ v; € (B ®p Vp(D))!, expand the
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image np(v;) = Y. bij ® d; € (B ®g (B ®p: T(D))?74)! and obtain:
J

B! o B () = () 0153 b .0
= (3p)' (X <.b: ®11p(s.v:))
= (Bb)l(i ¢.bi ® np(Fp 0 $p)(vy)))
() (X e (P o) o(o0)

i vV
=>_¢.bi;®F(d;)
j

i,J
= (Fo (Bp) onp)(@).
Now we can conclude that 8p is a morphism in Cyy:

T(Bp) © Faypy = (Bp) 0 0 0 &7y © Firpy
(52}) OUDOFQD V(D) fVB D)
=Fo (BD) OnDOSQB(D)
= FOT(BD)

implies

T(BD o F%/ig(D)) = T(BD) o Fy.(p)© L(DB(V))
= FoT(Bp) o u(Dp(V))

W o yDp(V)) o *T(Bn)

= T(F%}}I;(D) o<*Bp).

Therefore Bp o Fh“(D) F%,‘“(D) o ¢*Bp holds since T is faithful. It is left to

check that ay is E[W]-linear for any V' in RepZ(I). Since jy is E[W]-linear
and injective it suffices to show that &y, is E[W]-linear. Take an element
z € (Vg oDg)(V), write M) (T) = Zb ®d; € (B®pr T(]D)B(V)))“’:id as

well as & (d;) = > b ® v; € (BRgV)! and abbreviate &, := (B®pgi &y )?~
J
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Then we have

~I

av(s.a) = (&) o & o, 1) (s-2)

= (@) Moo FY ot (V)(Z bi @ d;)
= (@) o & (3 o:bi @ Fy(di)) |

= (@) (3 cb @ (v o Fy)(dy))

- ((d’)*’“(i ¢.b; @ (Fy o &v)(dy))

_ ((d/)WZid(Z ¢.b; ®¢.bj ®<.v;)
1,7
= g(z bibijvj)
(2]
=6.(&)" Qb @by @ vy)
ol

We conclude that & is an E[W]-linear isomorphism which finishes the proof.
U

Example 1.18 Take E =F, (i.e. r=1) and B =TF,. Then Theorem 1.17
recovers the fact that Galois group representations over Fy, are just the same
as Weil group representations over I, as follows:

Repg, (Wr,) ~ Cos, ~ (¢-modules over F,) ~ Repg (Gr,).

The equivalence in the middle is given by D — D=1 in one direction and
by given by M — (IF, ®, M, F) in the opposite direction where F' is given by

for allx:Zui@)miEFp@FpM.
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Chapter 2

Period Rings

In this chapter we will introduce the so called period rings constructed by
FONTAINE (see for example [Fon94a|) that serve well in order to give a hi-
erarchy of p-adic Galois representations. We will give a slight generalization
by constructing these period rings from a perfectoid field F' that is contained
in C, rather than just starting with C,, itself. It will be proven that this vari-
ation behaves well with taking invariants under Aut(C,/F) (see Proposition
2.34 and 2.16).

2.1 Perfectoid Fields

Definition 2.1 Let L be a wvalued field with respect to a nonarchimedian
absolute value |- |: L — Rsq. We call L perfectoid if the following conditions
are satisfied:

1. L is complete and the value group |L*| is dense in Ryg.
2. The ring homomorphism Or/p — Op/p, T — TP is surjective.

We call this ring homomorphism the "mod p"-Frobenius of L.

Example 2.2 Let y; € @p denote the subgroup of l-th roots of unity for any
[l eN.

o The completion C, of@p is perfectoid.
e The completion of Qp oo = U,>1 Qp(pn) is perfectoid.
e The completion of Q,(pF™ ") = Ut Qp(pz%") is perfectoid.

19
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The completion of Q)" := Frac(W (F,)) is not perfectoid, since its value
group s discrete.

The completion of Q) := UM@ Q;}T(p%) is not perfectoid, since the "mod
p"-Frobenius is not surjective.

The completion of of the separable closure of F,((t)) is perfectoid.

The completion of Fp((t))(t" ™) == U,»1 IFp((t))(tFl") is perfectoid.

Remark 2.3 Any perfectoid field is perfect.

2.2 Tilting

The concept of tilting was basically already introduced by FONTAINE in
|[Fon94a]. It turned out that this construction gives a deep connection be-
tween finite Galois extensions of perfectoid field in mixed characteristic (0, p)
and their ’tilts” in equal characteristic p (compare Theorem 2.7). We will stick
to the notations introduced by SCHOLZE in [Sch11] who denoted the tilting
functor by F — F’. A detailed exposition can be found in [Sch17].

Let L be a perfectoid field such that K C L and @ € L a pseudo uni-
formizer, i.e. w satisfies |7| < |w| < 1. Furthermore we set

Op:={zxel]lz| <1}
Definition 2.4 The map
¢: Op/wOr — Or/wOy given by T — 74

is a ring homomorphism and we obtain a projective system (Op/wOr, d)p.

We define
Opp = M(OL/WOL, ¢),, and L’ := Frac(O},)

and call L the tilt of L. For a = ()i € Oy choose representatives a; € O,
and set _
of = lim af € Oy.
1—00
Denote the composition of § and |- | by
|- Op — Rsg, a0 |

It is not yet clear if all definitions make sense but this is covered by:
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Theorem 2.5 1. of is independent of the choices of liftings of the ;’s.
2. O is a valuation ring with respect to | - 5.

8. L’ is a perfect and complete nonarchimedian field with respect to | - |,
of characteristic p.

Proof: [Sch17, Proposition 1.4.7.] O

Example 2.6 e The tilt of the completion of Q,(pP ") is isomorphic to
the completion of F,((t))(tP ).

o The tilt of a perfectoid field of characteristic p s the field itself.

Theorem 2.7 There is a bijection
{K. CLCC,|L perfectoid } +» {K’, C F C (C;’) | F' perfectoid }

given by
L L.

Furthermore any finite extension Ly /L is mapped to a finite extension L} /L’
of the same degree, i.e. [L, : L] = [L} : L"].

Proof: [Sch17, Theorem 1.4.24.] and [Sch17, Proposition 1.6.8.]. O

2.3 The map ¢

Theorem 2.8 The map
Or: W(Op») = Op (resp. ©r: W(Op») ®z, Q, — L)

given by

Z 7(0)p" = Z O‘szn

n>0 n>0

is a surjective homomorphisms of Z,-algebras (resp. Q,-algebras) and its
kernel is a principal ideal.

Proof: [Sch17, Lemma 1.4.18|,[Sch17, Lemma 1.4.19] and [Sch17, Proposition
2.1.19.]. O
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2.4 The Crystalline Period Ring (Bys)

For the remainder of chapter 2 let L be an intermediate field KOO CLCC,
such that L is a perfectoid field. We denote by L the intermediate field
K., C L C K such that the completion of L is L.

Definition 2.9 Let A.(C,) denote the p-adic completion of the divided
power envelope of W(Op,) with respect to the ideal ker(0c,) over Z,. In
formulas:

A[CJI"ys<(C ) : D(Zp( ( (O(Cb) ker(e(cp))
and

7

Acrys( ) L crys( )/p :

We denote o
Bys(L) = (Aays(Cp) @z, Q)Y

crys

and abbreviate Acrys = Acrys(Cp) and B, =B (C,).

crys crys

For the definition of the divided power envelope see section A.2. Since
this definition is rather abstract we will give an explicit description.

Lemma 2.10 Let ¢ be a generator of ker(0c,). Then we have
l m
A (Cp) = {> b |1 € N,b, € W(Opg,) for all 0 < m < 1}
crys mm' s Ym C, = = :
m=0

In particular A2 (Cp) is an integral domain containing W (k).
Proof: [BC09, §9.1.]. O

Proposition 2.11 Let m > 1 be an integer. Then there exists an exact
sequence

0= Ky = @PW(Og) X" % M, =0,
n=0
where

ZW O(Cb I g A(?rys<cp)
and Ky, € W(Og )[X] denotes the W(Ocz)—submodule generated by
X" —nX"for1 <n<m.

The map s is given by X" > % In particular M, is of finite presentation.
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Proof: We have s(K,,) = 0 since

n—1 n

n—1 ny __ ¢ . C__
s(eX" —nX") = c—(n — noy= 0

holds for any 1 < n < m. Take an element

a= ZTan € @W(OC;) - X™ such that s(a) = 0.
n=0

n=0

One obtains

and hence

m
m!
mla = E rn— (RIX™ — ") € Koy,
n!
n=1

by the relation
nX"—"=n-DeX" T —"=-.=c"-"=0 mod K,,.

We claim that K, is Z-saturated and conclude a € K,,. Without loss of
generality we take p- f € K,,, and remark that

Zan(cX"_l —nX")=pf=0 modp

n=1
for some aq,...,a,, € W(Oq}). Comparing coefficients in the residue ring
O, [X] delivers
aic =0 mod p
and
(pi1C = a,n mod p

for all 1 <n <m —1. Since ¢ ¢ pW(Og; ) and Og; is a domain, we see that
p | a, for all 1 <n < m by induction, hence f € K,,. O

Corollary 2.12 Every finitely generated W(Og; )-submodule of A2 (Cy) is
contained in a finitely presented submodule.

Remark 2.13 Al (C,) is p-adically separated by [BC0Y, Explanation after

crys

(9.1.2.)]. Therefore we have inclusions
W(k) € W(Og,) C A

crys

(Cp) € Acrys(Cp)-
Hence BY. (L) is a Ko-algebra. If the residue field of L is algebraically closed

crys

the same argument shows that BY (L) is a Py-algebra.
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Another feature of the ring Bf (L) is that there exists a G'x-equivariant
Frobenius endomorphism ® on BZ (L) which extends the natural Frobenius

crys
endomorphism

b W(OLb) — W(OLb)
coming from the theory of Witt vectors [Sch17, Section 1.1.].

Proposition 2.14 There exists a G-equivariant Frobenius endomorphism
on Acys(C,) extending ©.

Proof: [BC09, Lemma 9.1.7.] O

2.5 The Ring of p-adic Periods (Bgr)

Definition 2.15 Let B, (L) denote the ker(01)-adic completion of W (Op,)
localized with respect to the element p. Or short:

: 1 n
Bar(L) := fm (W(Op)[])/ ker(O1)",

We abbreviate Bfy := Bix (C,). Furthermore we call Bar(L) := Frac(Bjz (L))

the (field of ) p-adic periods with respect to L and Bag := Ba4r(C,) the p-adic

periods.

Proposition 2.16
B (Cp)* = B (L)

Proof: W(OU)[%] N ker(©¢,)" = ker(0©)" holds for all n > 1 by the com-
mutative diagram after [Sch17, Lemma 1.4.19.]. Thus we obtain a canonical
inclusion B, (L) — Bji by the universal property of the projective limit.
We have g.(ker(Oc,)) C ker(Oc¢,) for all g € Gk since O, is G g-equivariant.
Thus we obtain an injective map

1 1 )
In: W(oLb)[];} /ker(©p)" — (W(Ocpb)[];] / ker(O¢,)™")“"
for each n > 1. It is enough to prove surjectivity of this map and we do this

by induction on n. For n = 1 we proceed as follows. Take x € W(Ocpb)[%]

such that g.v — z € ker(O¢,) for all g € G;. Then ¢g.O¢,(z) — O¢,(z) =0
for all g € Gy, i.e. O¢,(v) € (CEL = L. Since Oy, is surjective we receive an
y € W(Op»)[;] such that O¢,(z) = O1(y). Hence

1
p

t1(y +ker(©r)) =y + ker(O¢,) = v + ker(O¢,)



2.5. THE RING OF P-ADIC PERIODS (Bpgr) 25

and ¢ is surjective. Now consider the case n > 1 and the commutative
diagram with exact columns

0 0

ker(01)" ' W (Op)[}]/ ker(OL)" — (ker(01)"'W (O »)[3]/ ker(Oc,)") 2

1
p

W(Op)[;]/ ker(OL)" - (W(Og,»)[3]/ ker(O¢,)") "

1
p

W(Op)[3])/ ker(©,)" ! ——= (W(Og,»)[3]/ ker(O¢c, )" ) “r

1
P

0

where the vertical arrows are the canonical maps. The top arrow is an iso-
morphism by the case n = 1 since ker(0y) is a principal ideal and hence

1 1
ker(GL)”_lw(OLb)[zg]/ker(@L)” = W(OLb)[];]/ker(@L)

holds. The bottom arrow is an isomorphism by induction and therefore ¢,, is

an isomorphism by the five lemma. U

Proposition 2.17 B (L) is a complete discrete valuation ring with residue
field L and (Biz(L))* contains W(Op)[2] \ {0}.

1
P

Proof: This is literally [BC09, Proposition 4.4.6.] if one replaces C, with L
since the proof does not use that C, is algebraically closed. Il

An immediate consequence of this is that there exists a multiplicative
G k-equivariant Teichmiiller map

Tan: (L) — (Bl (L))"

given by

for all a,b € Oy and b # 0.
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Proposition 2.18 There exists a Gj-equivariant section
SAR, L - L— B (L)

of the G -equivariant projection map
Odr.z: Big(L) — L.

Via this section B, (L) contains a unique copy of L as a subfield over K,
and the action of Gk, is compatible with this inclusion.

Proof: For the case L = C, see [BC09, Lemma 4.4.10.], then take Gal(Q,/L)-
invariants. U

Warning: The section S4R.T, is not continuous and therefore it does not

extend to a Gg-equivariant section C, — B (C,). By [Ser79, Chapter II,
§4, Theorem 2| there exists an isomorphism BJ, (C,) = C,[[T]] of rings but
this map is neither Gx-equivariant nor continuous.

Proposition 2.19 There exists a continuous G g-equivariant isomorphism
of rings from Acys(C,) to the subring

{Z by - — E B1:(C,) | (bn)n sequence in W(Og;) converging to 0}

n>0

of B (C,) which is compatible with the inclusion W(O@)[ ] CBIL(C,).

Proof: [BC09, §9.1.] O

2.6 The Tilted p-adic Logarithm

First of all we give a short reminder about the usual versions of p-adic loga-
rithms.

Definition 2.20 Let B be a complete valuation ring of characteristic 0 and
denote the valuation on B by vg. We call B logarithmic if

lim ny —vg(n) = oo
n—oo

holds for all v € v(B) \ {cco} such that v > 0.
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Lemma 2.21 Let B be a logarithmic valuation ring and let mp denote its
mazimal ideal. Then

n+1 (‘T - 1)n

logp: 1+mB—>B,x|—>Z(—1)
n

n>1
1$ a continuous group homomorphism.

Proof: Since B is complete we only have to check that # converges to

zero but this is covered by definition. U

Example 2.22 1. O is logarithmic (see [Neu99, Chapter II, Proposi-
tion (5.4)]) and we can extend logy, . uniquely to a continuous group
homomorphism

logp: K* — K

such that logy (p) = 0.

2. O; does not need to be logarithmic since it is not necessarily complete
but every element of L is contained in a finite extension of K. Thus
we obtain a Gal(L/Q,)-equivariant group homomorphism

logp, : 1+my = Op

which can be uniquely extended to a Gal(L/Q,)-equivariant group
homomorphism
log;: L* — L

such that log; (p) = 0 (see [BC0Y, Lemma 9.2.6.]).

3. Op is logarithmic (see [Was82, Proposition 5.4]) and we can extend
logp, uniquely to a continuous group homomorphism

log,: L* — L

such that log; (p) = 0. Furthermore this map is G-equivariant since
each g € Gk extends to a continuous automorphism of C,. We call

log, :=log¢,: C; — C,

the p-adic logarithm. Furthermore ker(log,) = p% - p holds by [Was82,
Proposition 5.6], where p C C, is the multiplicative subgroup consisting
of roots of arbitrary roots of unity.
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4. Bix (L) is logarithmic since var(n) =0 for all n € N and we denote

We now give a construction of a tilted version of the usual p-adic logarithm
log, following [BC09, §9.2.]. Since a map defined by the logarithm formula
can’t have values in a field (or ring) of characteristic p we substitute (C; with
the ring of p-adic periods Bjy. Therefore we construct more generally a
G g-invariant group homomorphism

log) : L — B, (L).

Lemma 2.23 FEach element in (L*)*/(O)* can be represented by an ele-
ment z such that 2* € L*.

Proof: By [Sch11, Lemma 3.4.] we know that v (L*) = v} ((L")*) and since
completing a non-archimedian field does not change the value group we have

vi(L*) = vy (L*). Therefore we obtain
(L)*/(0},) = L*|OF = L*|OF.

Proposition 2.24 Let k;» denote the residue field of L’. The map

b ~
1080pys 1. Oz,, = /izb X 14+mp, — IBjrys(L)

given by

n

(A, z) — Z (—1)™*! (T(x)n_ 1)

is a G g-equivariant group homomorphism.

Proof: For L = C, this is [BC09, Lemma 9.2.2.], then take Gal(Q,/L)-

invariants. O

Fix an element ¢ € O, such that & = 1 and (¢1/P)8 £ 1. Then the action
of Gk on € is given by g.c = x(g) - € for all g € Gk, where

X: Gk =7,

is the cyclotomic character. Now apply the tilted p-adic logarithm to obtain
an element
t = logbL(g) c Bz;ys(L)
and
g.t =log} (g.€) =log}(x(g) - £) = logy (x(g)) +

for all g € Gk by the G g-equivariance of logbL.
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Definition 2.25 We define Beys(L) := By (L)[7] and Berys := Berys(Cp).

crys

Proposition 2.26 There exists an unique injective continuous G g -equivariant
map
7t Aerys(Cp) — BiR(Cp)

such that the diagram

AL (Cy) —= W (Og,)[2]

crys

.

Acrys<(cp> - B?iLR (Cp)
commutes. In particular Beys(L) may be viewed as a subring of Bar (L).

Proof: The map j is unique since AY (C,) is dense in Agys(Cp). The ex-

crys
istence is proven in [BC09, §9.1.] which gives an inclusion of Bs(C,) into

Bar(C,). For the relative case take Gal(@p /L)-invariants and apply Propo-
sition 2.16. O

Proposition 2.27 The map
K @Ky Berys(L) — Bar(L), A@b— X+ b
is injective. If the residue field ky, of L s algebraically closed the map
(K - Py) ®p, Berys(L) = Bar(L), A @b+ A-b
s also injective.

Proof: Be,ys(L) is a Ky-algebra (resp. Py-algebra if r, is algebraically closed)
by Remark 2.13. The case L = C, is known due to [Fon94a, Théoréme
4.2.4.] resp. [BC09, Theorem 9.1.5.]. Take Gal(Q,/L)-invariants and apply
Proposition 2.16 to obtain the relative statement. [l

From all above we obtain the commutative diagram

Op —T=W(0,) —== Bl (L) <2 L (2.1)
X lOL @dR,Ll /
0, —S L

and with Lemma 2.23 we are ready to define the tilted p-adic logarithm as
follows.
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Theorem 2.28 Let z be an element of (L°)*. By Lemma 2.23 we can write

z=u-y withu € O}, and y € (L)% such that y* € L. Then the map

log): (L) — B, (L)
given by

T dR(?J)
sar (Y*)

z=u-y > logyp( ) + sar (logz (¥%)) + log(b:rys,L(u)

s a G-equivariant group homomorphism that extends logirys. We call

log; = log(bcp

the tilted p-adic logarithm.

Proof: The first thing we have to check is 37::((@%)) € 1+ mygg but
Tar(Y) Y
Odr ( —1)=%=-1=0
sar (y*) Yt

holds by (2.1). For further details consult [BC09, Lemma 9.2.7.].

This gives us the following commutative diagram:

b
1087 yss

_ el o (L)

X
o P crys
lc jg

pyx _ lost +
(L) —>BdR(L)'

2.7 Gpg-Invariants of Period Rings

(2.2)

With the diagram (2.2) in mind we are now able to calculate the Galois
invariants of Be,ys(L). We assume that the residue field of L is algebraically

closed to assure that Bggr (L) contains P.
Proposition 2.29 The element t is an uniformizer in BI, (L).
Proof: [BC09, Proposition 4.4.8].

PI‘OpOSitiOIl 2.30 BdR(L)GK = K and BdR(L)IK =K- P().
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Proof: The G g-action on Byg(L) is compatible with the filtration
{t' Bir(L)|i€Z}
since O is G g-equivariant. We take Gg-invariants of the sequence
0 — "B (L) — t'Biz(L) — Cu(i) — 0
and obtain that the induced sequence
0 — (B (L) — (B (L)% — (C,(0)°%

is exact for all i € Z. But (C,(7))“% =0 for all i € Z \ {0} by the Theorem
of Tate and Sen [Tat67, §(3.3), Theorem 2|. Hence

(' BiR(L) = (B (L))"

holds for all € Z\ {0}. Since Bi;(L) is a complete and separated discrete
valuation ring we have

B (L) C (B (L) = 0
i>1 i>1

and therefore (#Bj;(L))%% = 0 for all i > 1. Hence Bqr(L)“x = B}, (L)°%
and for i = 0 the second exact sequence implies B, (L)“< C C5* = K. But
since B, (L) contains K we have Bl (L)% = K. We replace G with I
in the argument and obtain Byg (L)’ = K - Py as well. O

Proposition 2.31 Beys(L)9% = K, and Beys(L)'x = R,

Proof: We have inclusions Ky C Beys(L) C Bgr(L) and taking Gk-invariants
gives us Beys(L)9% C K. By Proposition 2.27 we obtain

dim g, (Berys(L)9%) = 1.

Again, replace G by I and receive Bcrys(L)IK = P as well. O

2.8 The Log-crystalline Period Ring (Bst)

Originally the term "semistable" was used instead of "log-crystalline", since
one may define this property as being semistable with respect to the difference
slope given by the degree function ¢ty —ty (see [CF00, §3.4. & Theoreme A|)
in the sense of Appendix B. Since the terms "stable" or "semistable” are used
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to oblivion in many contexts (see for example Appendix B), we will stick to
the notation ’log-crystalline’ (as in [FF11|). However, in order to avoid an
increase of names for certain rings, we will keep the name By (instead of
switching to Biog).

Fix an element p} € O}, such that |(p’ )|z = |p|z. Such an element exists
by [Sch1l, Lemma 3.4.(ii)] and set

uy, = logy (p}) € Big(L).
For the case L = C, we fix an element p € OCZ such that p* = p and set

u = log}, ()
Tar (D)

= log g ( ) + sar(logz(p))

=0

Ly (Y

n>1

We remark that the element u;, (resp. u) depends on the choice of p’, (resp.
p) and the ring B, (L) will also depend on this choice. Fortunately the image
of By in Bgg is independent of this choice, see |BC09, §9.2.|. Furthermore

we will show that Bs(t;L = By (L) holds and therefore the image of By (L) in
Bar (L) is independent of the choice of uy.

Proposition 2.32 The element u is transcendental over Frac(Berys)-
Proof: [Fon94a, (Proof of) Théoréme 4.2.4.]. O
Definition 2.33 We define the log-crystalline period ring to be
B (L) = Beryal L) uz]
and endow it with an extension of the map ¢ on Beys(L) given by
0: Bgt(L) = B (L), ur — p - up.

There is also a natural action of Gk on the element uy, inherited from B, (L)
given by
gug, =log) (g.p)) = log) (e“p}) = ¢, - t + ug,

for some ¢, € Z;. Furthermore let
N: By (L) — By (L) given by Z byuj — — Z nbnu’L"1
n=0 n=0

denote the Monodromy operator on By (L). As usual we set By 1= Bg(C,).
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Proposition 2.34 1. BS" = By (L).

2. uy, is transcendental over Frac(Be,ys(L)).

Proof: The fraction p% is contained in (’)éb since it has absolute value
L P

JZn Py

=1 =1(5)], =1

R

Therefore we find \ € F; = Un fpn—1 C Oé;) and z € 1+ mey such that

£ — ). 2. We obtain
pr,

ug, = logy (py,) = logy(p) +log)(\) + logy () .
= TS e

This shows that the images of Bys[u] and Beyys[uy] inside By are equal and
since G'j acts trivially on u;, we see that

BG" = (Beryslur])t = BSL[ug] = By (L).

crys

The existence of the isomorphism Beyys[u] = Beys|ur] also implies that uy, is
transcendental over Frac(B,ys) and hence transcendental over Frac(Bc,ys(L)).
U

Now we are able to give a list of properties of By (L) that will be exploited
later on.

Lemma 2.35
e ©(g.b) = g.p(b) holds for all b € By (L) and g € Autg(L).

e N(g.b) = g.N(b) holds for all b € By(L) and g € Autg(L).

(Nop)(b)=p-(poN)(b) holds for all b € B (L).

The map K @, Bst (L) — Bar(L) given by A@b— X-b is an injective
G k-equivariant map.

The map (K - Py) ®p, Bg (L) — Bar(L) given by A@ b +— X -b is an
injective I -equivariant map.

B (L)9% = Ko and By (L)% = P.
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Proof: The first three properties are standard calculations. The map
K XK, Bst(L) — BdR(L), ARb+—> A-b

(resp. (K - Py) @p, Boo(L) — Bar(L), A @b — A - b)

is injective since the statement is true for L = C,, (compare |[Fon94a, Théoréme
4.2.4.]) and taking Gj-invariants preserves the injectivity. Thus By (L)“x%
(resp. Bg(L)'%) is a one-dimensional vector space over Kj (resp. ) and
contains Ky = Berys (L)% (vesp. Py = Berys(L)®) by Proposition 2.31. We
conclude By (L)9% = K (resp. By (L)'® = ). O

2.9 A Two-Dimensional Representation of Gy

We now discuss [BC09, Example 9.2.8] in detail since it gives a tangible ex-
ample of a non-trivial p-adic Galois representations obtained from the period
rings defined above.

Lemma 2.36 Let V be a (finite dimensional) representation of Gk over Q,
and B be a (not necessarily finite dimensional) vector space over Q, with Gk
acting on it. Then the usual isomorphism

B ®QP V* = HOHIQP(V, B)

restricts to
(B ®g, V") = Homg, ¢ (V, B)

where V™ is the vector space V* with the G -action given by
g.f(v) := flg'v) for all g € Gx,v € V.
For the remainder of this section we assume that 11,(Q,) € K.
Lemma 2.37 Fiz the notations
K, = K(puy) and A, := Gal(K,,/K).
Then an element b € K* \ (K*)P has order p™ in the group K)/(KX)?".

Proof: For every algebraic extension L/K and k£ > 0 we know by Kummer’s
theory that
HY (G, ) = L* (L),
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Consider the inflation-restriction sequence associated to the normal subgroup
Gk, in Gg and the module p1,; := p,1(Q,). We obtain exactness of

1= Hl(A"’ (MPZ)GKn) — Hl(Glﬂﬂpl) - Hl(Ganupl)An — H2(An7 (:upl)GKn)-

But H2(A,, (t,)5%n) 2 HO(A,, (1,)%%n) = 1 and since (u,)“% is a finite
module the Herbrand quotient h(A,, (u,)“%) = 1. By using the argument
from Kummer’s theory above we obtain

K* (KX = (KX (KX for all | < n.

By [Neu99, Chapter II, Proposition 5.7 we obtain the following isomorphism
for any finite extension L/Q, of degree d with residue field F,.

L*=ZxZ/(q—1)Zx L[/p"Lx L.
where m := max{k > 0 | u,» C L}. In our special case we have
K} =ZxZ/(q—1)ZxZL[p"L x L.

and therefore K/(KX)P" is isomorphic to a finite direct sum of copies of
Z/p"Z. Being no p'-th power in KX therefore implies that the residue class
of b has order p™ in K} /(K;)P". O

Lemma 2.38 Let a € 1+ mg be no root of unity. Then the Galois group of
1
Ko({a?™ | n>1})/K is not abelian.

Proof: It is enough to show that the G,, := Gal(K,(a'/?")/K) is not abelian
for some n. Without loss of generality we may assume that a ¢ (K*)P,
otherwise replace a by a'/? which is still contained in 1+ my and no root of
unity. We abbreviate

N, = Gal(K,(a'"")/K,)
and
H, := Gal(K,(a"*") /K (a'/?")).

By Lemma 2.37 we know that ord(a(KX)P") = p", ie. a' & (K)X)P" for
all 1 <1 < p". This leads to [K,(a'/?") : K,] = p" in the following way.
Assume that X?" — a is divided by some f in K,[X]. There exists k < p"
and iy, ...,1; € Z such that

k o
f= HX — f;,ilaﬁ with {» € ppn primitive .
j=1
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Examining the constant term of f we conclude a*/?" € K, i.e. a* € (KX)"
which contradicts the preceding argument. This means that N, is a cyclic
group of order p". The usual theory of p-power unit roots (e.g. [Neu99,
Chapter II, (7.13)]) tells us that H,, is cyclic of a degree d dividing p"~*(p—1).
GG, is a semidirect product of H,, and N,, which is not direct. In order to see
this we are left to show that the map

H, — Aut(N,),h > (n+— hnh™t)

is not the identity. Assume that n is chosen such that |H,| # 1 # |N,| and
take generators 7 € H,, and n € N,, as well as a primitive p"-the root of unity
& € K,,. Then

i (a7) = m(a7) = T(6ral ) = 7§ )al " £ Gral T = p(a!"")
shows the claim for suitable n. Therefore G,, is not abelian for some n. [

Corollary 2.39 Let a € 1 + mga such that al/? e Kb for alli > 1. Then
a 18 a p-power root of unity.

Example 2.40 Let a € 1+ mg be no root of unity and denote by o an
element of OCZ such that of = a. Set

1 = 1085 (T(@)) = Z (—1)”“M € B . and vy :=t € Bt

crys crys®
n>1 n
Investigating the G g-action on vy delivers the following:

9:01 = 108y, (7(90)) = 108y (7(2)) + 108y (1))

But (£2)F = 22 =1 and therefore we have

9% _ () for some (unique) ¢(g) € Z,.
o

Claim: c(g) satisfies c(gh) = c(g) + x(g)c(h) for all g,h € Gg. This is due
to:
(9P _ 9(e™a) _ my() 92 _ etorrtorcin,

0% « 0%

c<lah)

Therefore we get

g.v1 = logcrys(T(a)) + logcrys(T(EC(g))) =+ C(g) " U2
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and
gv2=g-t=x(g)-t
which implies that V, := Qpu1+Qpv2 1s a representation of Gi. We claim that

Vi is two-dimensional. Assume that there is an A € Q) such that vi = \vy
and obtain for all g € Gk

A x(g)va = g(Avg) = gvy = vy + ¢(g)ve = Avg + ¢(g)vs.

1

Thus c(g) = Ax(g) — 1) = 0 for all g € Gk, and ga = «, i.e. a?" €
Ko which contradicts Lemma 2.38. We wish to show that V, is crystalline.
Therefore we make use of Lemma 2.36 and obtain

Home[G’K](Vm Bcrys) = (Bcrys ®Qp VZ\)GK = Dcrys(va/\)'

Since dim g, Derys (Vo) = dimg,Derys (V) < dimg, (Va) it is enough to show
that there exists two Q,|Gkl-linear maps V, — Beys which are linear inde-
pendent. But

t: Vo — Berys

the canonical inclusion and

m: Vo= Vo/Quua =2 Q,

the canonical projection are such maps. Using that V, is crystalline we can
determine the Hodge polygon and Newton polygon associated to D,. Let x,
and x, denote the elements of (Beys ®q, V;A)GK corresponding to m and t.
Then we obtain:

zr, = 1®v] and thus p(z;) = (1) @ vy =1 R v} = 2,

xr, = v ®@v] + vy ®v; and thus gz, =p -z,
since 9(108,1ys(7(2))) = 108uys(1(29)) = p - Dy, (r(2)) Jor all x € Og,.
Therefore D) decomposes as a p-module and the Newton polygon is given by

PN(DC/L\) = {(070)7 (170)’ (2? 1>}

The admissibility of D implies that ty (D)) = 1 and since x, ¢ Fil'(D)) g
we conclude
Py(Dy) = Pn(Dy).
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Chapter 3

(B-)Admissible Representations

Notation: We will use the following way to denote a pair (F,G) of quasi-
inverse functors between two categories A and B:

F: A= B:gG,

where F: A — B and G: B — A satisfy Go F 2 idy and F o G ¥ idg.

3.1 Fontaine’s Equivalences of Categories

In order to state Fontaine’s Theorems we need to define the relevant cate-
gories initially.

Definition 3.1 The category of By-admissible (resp. Berys-admissible) rep-
resentations of Gy is denoted by Rep®™(Gk) (resp. Rep™*(Gy)) and we
call it the category of (p-adic) log-crystalline (resp. crystalline) representa-
tions of G. Similarly we denote the category of By -admissible (resp. Berys-
admissible) representations of I by Rep™(Ix) (resp. Rep™®(Ix)) and call
it the category of (p-adic) log-crystalline (resp. crystalline) representations

Of[K.

Definition 3.2 Let I be a field that contains Ky. A vector space V' over F
is called K -filtered if the scalar extension Vi := K ®k, V' is a filtered vector
space over K, i.e. Vi carries a decreasing exhaustive and separated filtration
Fil® (for details, see [BC0Y, Definition 4.1.1.]). A morphism f: (V;,Fil}) —
(Va, Fily) of K-filtered vector spaces over F is a F-linear map f: Vi — Va
such that the induced map fx = f @k, K satisfies fx(Fil}(Vy)) C Fily (Vi)
for all i € Z.

39
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Warning: Let F' be a field that contains K. The category of K-filtered
vector spaces over F'is not abelian.

Definition 3.3 Let (W, Fil*) be a filtered vector space over K. We define
the Hodge number

ty(W) o= tg(W,Fil*) := ) i - dimg (Fil'(W)/Fil'™ (W)

€L

Definition 3.4 We define the category of K-filtered (@, N)-modules over K
(resp. By) as follows:

o The objects are tuples D = (D, Fil®, ¢, N), where

— (D, Fil*) is a K-filtered vector space over Ky (resp. Fp),
— (D, p) is a p-module over Ky (resp. By) in the sense of section 1./,
— N: D — D is a Ky-linear (resp. Py-linear) endomorphism,
— Ny = ppN holds,
o A morphism f: (D1, Fil}, 1, N1) — (Do, Fil3, o, No) of K-filtered (¢, N)-
modules over Ko (resp. Py) is a Ky-linear (resp. Py-linear) map

f: D1 — Dy such that f is a morphism of K-filtered vector spaces
over Kg (resp. Py) and fop; = w0 f as well as fo Ny = Nyo f holds.

e The composition s the usual composition of maps.

Definition 3.5 We call a K-filtered (v, N)-module D = (D, Fil*, ¢, N) over
Ky (resp. Fy) admissible if tny(D) = ty(Dg) and tn(D') > ty(DY) holds
for all subobjects D' C D. (The Newton Number ty(D) of a p-module is
explained in Definition B.12.)

Remark 3.6 The full subcategory consisting of admissible objects in the cat-
egory of K-filtered (o, N)-modules over Ko (resp. Py) is an abelian tensor
category. This is a Theorem, see [BC09, Theorem 8.2.11.].

Due to the work of FONTAINE |Fon94a, Theorem 5.3.5.] we have the
following;:

Theorem 3.7 There are two pairs of quasi-inverse functors:
Dy : Rep*(Gx) = (admissible K-filtered (¢, N)-modules over Ko) : Vg

V = (BSt ®Qp V)GK
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Fil’(By ®x, D)?= "= <+ D

and
Dy : Rep™(Ix) = (admissible K-filtered (, N)-modules over Pp) : V,
V — (BSt ®Qp V)IK
Fil’(By ®p, D)#=4N=0 1 D.
In particular we have the following comparison isomorphisms
Qy . Bst ®K0 Dst(V) = Bst ®Qp V, (31)
.3 .3
6D: Bst ®Qp Vst(D) = Bst ®KO D, (32)
Zbﬂ@bj@’l)j — Z(blb])@)?]]
1, 1,J
in the first case and
dvi Bst ®p0 Dst(‘/) = Bst ®QP V; (33)
Bp: By ®q, Vat(D) = By ®p, D (3.4)

in the second case with maps in the same flavor as in the first case. Let V
be a log-crystalline (p-adic) representation of Gx. Then

Dy (V) = (By ®g, V)

(Bst ®Ko (Bst ®@p V)GK)IK
= Py Qo Dat(V)

IR2

shows that the diagram

Rep™ (Gg) — (adm. K-filt. (o, N)-mod./Kp) (CD1)

l]: l'@KOPO

Rep™ (Ir) —= (adm. K-filt. (0, N)-mod./Pp)

is commutative, where F denotes the forgetful functor. In particular ev-
ery log-crystalline representation of Gk is automatically log-crystalline as a
representation of I. The converse is also true:
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Lemma 3.8 Let V be a representation of Gi. V s log-crystalline as a
representation of G if and only if it is log-crystalline as a representation of
Ig.

Proof: Assume that V' is log-crystalline as a representation of [x and let
D := Dy (V) denote the module corresponding to V. Then

Dyt(V) = ((By ®g, V)'*)% = D%

But since H! (G}, GL,(P)) is trivial for any n > 1 [BC09, Proof of The-
orem 2.4.6.] we obtain an isomorphism P ®g, D% = D of vector spaces
over Py for any Py-representation of (. This implies that dimg,(D%) =

dimpo (D) = dlme (V) ]

3.2 Log-crystalline Weil Group Representations

Definition 3.9 A (p-adic) representation V' of W is called log-crystalline
(resp. de Rham, crystalline) if its restriction V|, is log-crystalline (resp. de
Rham, crystalline). We denote the full subcategory of Rep(Wi) consisting of
the log-crystalline (resp. de Rham, crystalline) representations by Rep®™ (Wi )
(resp. Rep™ (W), Rep™™* (Wk)).

Remark 3.10 By Lemma 3.8 and Remark 1.4 the category Rep®™(Gk) is a
full subcategory of Rep™ (Wi).

Let V denote a log-crystalline representation of Wy and D := Dst(V)
the corresponding filtered (¢, N)-module. We define the following bijective
self-map on By ®q, V:

Fy =F: Zbi@)vi)—)ZO‘K.bi@U}(l}i

Since Iy < Gk is a normal subgroup the linear maps F restricts to a o/-
semilinear (over I) bijective self-map of D. In particular F' is independent
of the choice of og.

We now want to use the additional datum F' to construct a category of
linear algebra data that is equivalent to Rep® (W) in the flavor of Theorem
1.17. Hence we need to check the assumptions made in Section 1.4 for B =
By, E=Q, (ie. r=1), G =Gk, I = Ix and ¢ = 0.

The category Cyw, from Section 1.4 is then the following.
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Definition 3.11 We define the category of admissible K-filtered (o, N, F')-
modules over Py as follows:

o The objects are pairs (D, F'), where D is an admissible K -filtered (o, N)-
module over Py and F: D — D is a bijective, o/ -semilinear map, that
18 strictly compatible with the filtration on Dy and commutes with ¢
and N.

o As morphisms we take the morphisms in the category of K-filtered
(p, N)-modules over Py that commute with F.

e The composition of morphisms is the usual composition of maps.

We need to check the axioms 1.1-1.4 from Section 1.4:

e ¢ commutes with the action of Gk on By and BgK = Ky resp. BSItK =
Py (compare Lemma 2.35) are fields. Furthermore By is (G, Q,)- and
(Ik,Qp)-regular [BC09, Proposition 9.2.11].

e We need to check Axiom 1.1. The forgetful functor
T: (adm. K-filtered (p, N, F')-mod. over Fy ) — (¢-mod. over Fp).
The natural transformations &, and 7, are given by
Ev: (ToDy)(V) = (B ®q, V)’
by the identity for any log-crystalline representation V' and
s V(D) = (B 9, T(D))7 400 < (By g, T(D))

is given by the canonical inclusion for any admissible K-filtered (¢, IV)-
module D over F,. Take the restrictions of the comparison isomor-
phisms in (3.3) resp. (3.4) for @, resp. B,. Then Axiom 1.1 is satisfied
by Theorem 3.7.

o ty(ox(D)) = v(det(of(p))) = v(det(p)) = tn(D) and tg (05 (D)) =
tg (D) holds for all K-filtered ¢-modules D = (D, ¢). Therefore o}, (D)
is admissible and Axiom 1.2 is satisfied.

e The monodromy operator N : By, — B is G g-equivariant (see Lemma
2.35), therefore F o N = N o F holds.
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e The injective map ¢: K ®g, Bst < Bar is G g-equivariant (see Lemma
2.35), hence Fg := K ®g, I is strictly compatible with the filtration
on DK7 1.e. FK(Fllz(DK)) = FllZ(DK)

e Axiom 1.3 is satisfied due to the two preceding points: The self-map
Fy™? restricts to V(D) since F is compatible with the Monodromy
operator N and strictly compatible with the filtration. We set Fi? :=
Fy™?lg.,py and obtain T(F}") = Fy™?.

e Using the G-equivariance of ¢ and N and the calculation from Re-
mark 1.14 we also receive that the map V(D) — V(D) given by
Y b ®d; — Y ok.b; ®d; is well-defined, i.e. Axiom 1.4 holds.

_ Let (D, F) be an object of the category we just defined. Then the map
Vo (D) = V(D) given by S2b; @ d; — S b; ® F(d;) is well-defined since F

(2 7
is strictly compatible with the filtration and commutes with ¢ and N. By
a similar calculation as in Remark 1.15 this is an isomorphism. Therefore
Axiom 1.5 is satisfied.

Theorem 3.12 There is an equivalence of categories given as follows:
D, : Rep® (Wg) = (admissible K-filtered (¢, N, F)-modules over Py ) : Vg
Ve (B ®q, V)™, Fy)
Fil’(By, ®p, D)7 4V=0 <« (D, F).
Proof: This is literally a corollary from Theorem 1.17. U

3.3 De Rham Weil Group Representations

At first we remark that any log-crystalline representation of G (resp. If)
is also de Rham. This comes from the fact (see Lemma 2.35) that there is
an injective morphism of K-algebras (which is Gk-equivariant)

K ®k, Byt — Bar
and the following calculation.
K ®, Dy(V) = K @k, (By ®q, V)<
= (K ®x, Bg ®q, V)%
5 (Bar ®g, V)% = Dar(V). (3.5)

Thus dimg, (V) = dimg (K ®k, Du(V)) < dimg(Dgr(V)) < dimg, (V) (for
the latter inequality, see [BC09, Theoreom 5.2.1.]) and V' is de Rham.
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Definition 3.13 Consider a finite extension L/K and a representation V
of Ix (resp. Gk ).

e We define a relative version of the functor Iﬁ)crys (resp. Derys) by
Derys, (V) := (Berys ®q, V)'*
(resp. Derys,r(V) = (Berys ®q, V).
o We define a relative version of the functor Dy, (resp. Dg;) by
Dy, (V) := (By ®g, V)™
(resp. Dy (V) := (By ®q, V)eL).
o In the same fashion we set

]DdR,L(V) = (BdR ®Qp V)]L.

o We call V potentially crystalline if V|, (resp. Vg, ) is crystalline
for some finite extension L/K. In the same manner we define V' to
be potentially log-crystalline if V|, (resp. Vg, ) is log-crystalline for
some finite extension LK

Remark 3.14 Any potentially log-crystalline representation V of G (resp.
Ik, resp. Wx ) is de Rham. Take a representation V of G and assume that
dimp, (D, (V) = dimg, (V). Without loss of generality we may enlarge L
by its Galois envelope and assume that L/ K is Galois. By Galois descent one
obtains an isomorphism

L @x (Bar ®g, V) = (Bar ®q, V).
Combine this and (3.5) to see that there exists an isomorphism
L®ry Dyt r.(V) 2 Dar (V) = L @k Dar(V),

in particular dimg, (V) = dimp,(Ds (V) = dimg(Dgr(V)) and V is de
Rham.

The following theorem due to BERGER [Ber02, Cor. 5.22.] is called p-adic

Monodromy theorem. Another proof, not using p-adic differential equations
can be found in [Fon00, Theo. A|.

Theorem 3.15 Let V' be representation of Gk (resp. I, resp. Wy ). Then
V' is potentially log-crystalline if and only if V' is de Rham.



46 CHAPTER 3. (B-)ADMISSIBLE REPRESENTATIONS

This theorem allows us to construct a category of (semi-)linear algebra
data which is equivalent Rep®(Gx) (resp. Rep®®(Ix), Rep®(W)).

For a potentially log-crystalline representation of Ix we set

D:=Dpu(V):= lim Dyr(V)

L/K finite

and remark that this is a vector space over Fy of dimension dimg, (V). Then

Dpst(V) = Dt (V) = Dyt (V) (3.6)

for a finite extension L/K. Hence there is a discrete action of Ix on D, i.e.
the action factors through a finite quotient. This allows us to endow D, (V)
with the usual structure of a (¢, N)-module. Furthermore we endow this
object with a K-filtration:

Fil'(Dz) :== K ®p, Fil'(Dg..(V)1).
If we assume L/K to be Galois we obtain
Fil'(Dg)'* = L @, Fil'(D'*)
by Galois descent. The above justifies the following definition.

Definition 3.16 We define the category of admissible K /K-filtered (p, N, I)-
modules (resp. admissible K /K -filtered (p, N, Gk )-modules) over Py (resp.
Ky) as follows:

e The objects are tuples (D, Fil®, o, N), where

— (D, Fil*) is a K-filtered vector space over Py (resp. Kj).
— (D, ) is a p-module over Py (resp. Ky).

— N: D — D is a Py-linear (resp. Ky-linear) endomorphism.

Ik (resp. Gk ) acts on D discretely.
— Noyp=p(poN) holds.
—pog=gopand Nog=goN forall g€ Iy (resp. g € Gg).
o A morphism f: (D1, Fil}, p1, N1) — (Do, Fil3, 2, No) is a I -equivariant
(resp. Gg-equivariant) Py-linear (resp. Ko-linear) map f: Dy — Dy

such that f is a morphism of K -filtered vector spaces and fop; = @o0 f
as well as f o Ny = Nyo f holds.



3.3. DE RHAM WEIL GROUP REPRESENTATIONS 47

o The composition is the usual composition of maps.
This leads to the equivalence of categories stated in [Fon94b, §5.6.7.]:
Theorem 3.17 There exists an equivalence of categories
D,y : Rep?™ (Ix) = (adm. K/K-filt. (¢, N, I)-mod./Py) : Vpy

given by

Vi lim o Dy (V)

L/K finite
Vpst (D) = D
where V(D) := {x € B4y®p, D | No =0, p(z) = 2, 1@ € Fil°(B4®D)%}.

Remark 3.18 Let D be an admissible K | K-filtered (¢, N, I)-module over
Py. By choosing a sufficiently large extension L/K we obtain

D = D™ and V,u(D) = V. 1(D).
In the next step we will generalize this to the case of Weil group repre-
sentations. Let V be a potentially log-crystalline representation of Wy and

D := D,y (V). Define

FV: D%Dby Zbi®vi'_>ZUKbi®aKUi-

Since we may assume that all L/K are Galois we obtain that I, < Gk is a
normal subgroup and therefore F' is well-defined, bijective and o/-semilinear.
One has to pay attention to the relation between £y, and the [x-action. For
all u € Iy and d = b; ® v; € D we have

Fy(u.d) = Fy()_ub ® uv,)
= Z oi-(u.b;) ® o .(u.v;)
= Z (oruoy).(ok.bi) @ (oguoy').(ok.v;)

= (oguogt).Fy(d). (3.7)

This justifies to define the following category.
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Definition 3.19 We define the category of admissible K /K -filtered
(o, N, I, F')-modules over Py as follows:

e The objects are pairs (D, F), where D is a K/K-filtered (¢, N, I)-
module over Py and F: D — D is a bijective, of-semilinear map that
is strictly compatible with the filtration on Dy, commutes with ¢ and
N and satisfies F(u.d) = (oguog’).F(d) for all u € Ig.

e A morphism f: (Dl,Fl)_—> (Do, Fy) is a morphism f: Dy — Dy in the
category of admissible K /K-filtered (¢, N, Ix)-modules over Py such
that f o Fy = Fy o f holds.

e The composition of morphisms is the usual composition of maps.

Theorem 3.12 leads to:
Theorem 3.20 There exist an equivalence of categories

D,y : Rep?™ (Wx) = (adm. K/K-filt. (@, N, Ix, F)-mod./Py) : V,y
given by

Vi (Dyse(V), Fv)
Vpst(D) — D

Proof: The only significant difference in the proofs of this theorem and The-
orem 3.12 is the fact that the group Ix acts on V,(D) diagonally. Hence
we have to check that

p: Wi xV — V given by (uolk,v) — (uok).v:= Z (uo).bi ® u.F"(d;)

forallv=> b ®d; € vpst(D), u € Ix and n € N defines a representation
of Wk. Take g1 = w10}, ga = ugoy? € W andv=>) b, ®d; € @pst(D) and
see that

(9192).v = (u10 Rt ugo ™) v

= Z (9192)1% ® (UlO';?UQO'inl).Fnl—i_nz(di)
= Z gl(ngz) X Ul.Fnl (UQ.FTLQ (dl))

= g1-(92.v)

Another way to interpret |[Fon94a, §5.6.7.] is:
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Theorem 3.21 There exists an equivalence of categories

Dpsi: Rep? (G) = (adm. K/K-filt. (¢, N,Gg)-mod./Q") : Vpy

given by
Vi— llﬂ Dst,L<v)
L/K finite
Vpst(D) “— D
where

Vpst(D) := {2 € By ®@qur D | Nz =0,¢p(z) =2,1® 1z € Fil’(By ® D)}

This leads to the following commutative diagram of functors:

Rep?™ (G) —= {adm. K/K-filt. (p, N, G)-mod. over Qi'}  (CD2)

Rep?™ (W) st {adm. K/K-filt. (¢, N, Ix, F)-mod. over Py}

By Lemma 3.8 the forgetful functor is well-defined. Let D be an admis-
sible K'/K-filtered (i, N, G )-module over Q). Then the commutativity
follows from

Dypst(Vpst (D)) = Dy £,(Vyput (D))
- Dst,L(Vst,L(DGL))
= -PO ®L0 DGL
= Py ®gpr Q)" @1, D = Py @gpr D.
~D
F'is given by
forallu € Ix,\€ Fyand d € D.

Remark 3.22 Let D be as above. The action of Ix on By Qqpr D 1s given
by
u.A®d) =u)) @u.d=X\®u.d

for allu e Ix, N\ € Py and d € D. Hence the semilinear action of Gx on D
becomes a linear action of Ix on Py @qnr D since I acts trivially on Fy.
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Chapter 4

Welil vs Galois group
representations

The first aim is to characterize the admissible filtered (¢, N, F')-modules over
Py that correspond to representations of the absolute Galois group G.

A

4.1 Lifting Maps from 7Z to Z

Our intermediate goal is to show that any group homomorphism Z — GL,(Or,)
has a continuous extension Z — GL,.(Op,).

Lemma 4.1 Let {G;}ic; be a projective system of groups such that each
element g € G; has finite order for all i € I. For any homomorphism

w: 7 — l£n G;
there exists a unique continuous extension
¢: 7 — @ G;
with respect to the projective limait topologies on both sides.

Proof: Set G := l‘&nGu denote by m;: G — G; the projection maps and by
eg, the neutral element in G;. We define m; € N to be the order of m;(¢(1))
for all i € I. For ¢ € I denote

N; :={n € N | m; divides n} = NNm;Z
and obtain a group homomorphism

ni: Z/nZ — Gy, given by 1+ m;(¢(1))

ol
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for all n € N;. If t;;: G; — G is the transition map for ¢, 5 € I such that
i > j, we know that ¢;;(m;(¢(1))) = m;(¢(1)) by the definition of a projective
system. In particular

mi(p(1))™ = ti(mi(p(1)))™ = eq;.

Hence m; = ord(m;(¢(1))) divides m; and we receive N; C N;. Therefore the
map ¢, is compatible with the transition maps, i.e. t;; 0 v,; = ¢, ; for all
¢ > jand n € N; € N;. By the universal property of the projective limit we
receive a continuous group homomorphism

$: lim(2Z/nZ) — G for N := | JN..

neN el

But N C N is a cofinal system and hence we get a continuous group homo-
morphism

~

o:Z—G
that extends .
O

Remark 4.2 Let R be a ring, r € N and I be a totally ordered set such that
R =, Ri for a family of finite rings {R; }ier such that R; C R; for alli > j.
Then each element in GL,(R) has finite order.

Combining Lemma 4.1 and Remark 4.2 has the following immediate con-
sequence. We can modify the proof of Corollary 1.6 and obtain:

Corollary 4.3 Let E be a local field with finite residue field. The forgetful
functor
F Repr (GE) — Repr (WE)

15 an equivalence of categories.
Lemma 4.4 Fach element of GL,(Op,/p"Op,) has finite order.

Proof: Choose a tower of finite sub-extensions Q, C Ly C L; C --- C Q;”'
such that Q)" = |J; Li- Then O, /p"Oy, is a finite ring for each i and we
can apply remark 4.2 to

Hence the elements of GL,(Ogpr/p"Oqnr) = GL.(Op,/p"Op,) are of finite
order. O]
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Corollary 4.5 For each group homomorphism ¢: Z — GL, (Op,) there ex-
ists a unique continuous group homomorphism ¢: 7 — GL, (Or,) with ng]Z =

o.

Proof: Apply Lemma 4.1 to GL,(Op,) = @GLT(OPO/p"OPO). d

Example 4.6 Let R be a discrete valuation ring with uniformizer w and E
its field of fractions, e.g. E =Q, or E = Py and w = p.

1. Denote by W := E? be the representation of Wy where I acts trivially
on W and ox has representing matrix

<(1) (1)> € GL(R).

We denote all prime numbers with pi,ps,... starting with p; = 3.

Then set ¢, := pipy---pr € Z and by Bezout’s Lemma there ezist

sequences (ap)n and (by)y, in Z such that 1 = ayc, + b,2". Therefore
= lim —a,c, s an element on since

n—o0
z=1]z,
pEP

and z, ‘= —a,c, converges to 1 in Zy and to 0 in Z, for p # 2. Now
we see that the element g 1= o}, acts on W via

plo) = Jim pto™ ) = (1 4).

n—oo

2. On the other hand let W = E? be the representation of Wy where I
acts trivially on W and ok has representing matriz

(g (1]) € GL(R).

Then we can not extend the action of Wx to an action of Gk via
continuily since

p(o%) = lim p(o ") = lim " (0 1)

n—o00 n—o00 w 0

does not exist in GLy(E).
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4.2 Identifying the Galois Group Representa-
tions

The following theorem gives a precise description of the log-crystalline Weil
group representations that can be lifted to a Galois group representation.

Theorem 4.7 Let V' be a log-crystalline representation of Wi of dimension
r and Dg(V) = (D, F) the corresponding module. The following statements
are equivalent:

1. V s a log-crystalline representation of G .
2. There exists a basis B of D such that F € GL,(Op,).

3. There exists a Op,-lattice M C D such that F(M) = M.

We state the following lemma of topological nature in order to prove the
theorem.

Lemma 4.8 Let (D, F) be an admissible K-filtered (p, N, F')-module over
Py such there exists a Op,-lattice M C D satisfying F(M) = M. Take a
basis B of D such that Fg € GL,.(Op,) and define (;AS: 7 — GL,(Op,) to be
the continuous map uniquely determined by 1 — Fg by Corollary 4.5. Let F*
denote the map represented by é(z) for all z € Z. Then:

1. ong0:<ponf0rallz€Z
2. onN:NoFZforalleZ
9. Fz(Fil'(Dg)) = Fil'(Dg) for all z € Z.

Proof: 7 = [1,Z, is metrizable by [Que76, Korollar 10.18] as a countable

product of metric spaces. Therefore we can choose for any z € 7 a sequence
(2zn)nen in Z converging to z. We obtain

Ffop= lim (F*op)= lim (po F*) =po F*

n—oo n—oo

for all z € Z. If one replaces ¢ with IV we also see that N commutes with
F? for any z € Z. Furthermore F7(d) = lim F(d) € Fil'(Dg) for all
n—oo

d € Fil'(Dg), z € Z and i € Z since Fil'(Dg) C Dy is closed. O

Now we prove Theorem 4.7.
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Proof: 2. and 3. are equivalent by definition. Assume 2. holds. Take a basis
B of D such that Fz € GL,(Op,) and define ¢: Z — GL,(Op,) to be the
continuous map uniquely determined by 1 +— Fp by Corollary 4.5. Let F*
denote the map represented by gg(z) for all z € Z. Define the map

p: G xV = Vviagv:=> gb @ =< (d;)

for v =7>).b; ®d;. We need to check that this is well-defined, i.e. that the
image of the map is contained in V = Fil’(By ®p, D)?~'4V=14 C By ®p, D.
But this is covered by the formulas in Lemma 4.8 as we see in the following.
Take v =), b;®d; € V and g € G and calculate

p(g.v) = 90(2 g.b; @ Fex9)(d,))
= 3 lgh) @ (po FUsK9)(a)
= Z g.¢0(b;) ® FdegK(g)<90(di))

=g.p(v) =gv
as well as

N(gv) = N(Y_ gbi @ Feex)(dy)

=Y " N(gbi) @ (N o Feex9)(d,)

For any i we have 1®b; ®d; € Fil (K ®g, Bs) ®x Fil ™ (D) for some j € Z.

g.(bi®@d;) = g.b; @ F*5x9(d;)
€ Fill (K @, Ba) ® F* 9 (Fil 7 (Dy))
= Fil (K ®p, By) ® Fil ™ (Dg)

Therefore g.(b; ® d;) € Fil’(By, ® D) for all i, hence g.v € Fil°(By ® D) and
overall we have g.v € V. By the same calculation as in (1.2) p defines a
group action of Gx on V. In order to show that this action is continuous we
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would like to apply Proposition 1.5. Hence it is necessary to show that the
map

I x 7 — I given by (u,z) — o*uc >
is continuous. Take an open subset of U C Ix and we may assume without
loss of generality that U is a normal open subgroup of I, in particular U is
a normal subgroup of Gi. Then the preimage of U under the map above is

UU*ZUUZx{z}:UUx{z}:UxZQIKXZ

ZGZ zEZ

We conclude that we are allowed to apply Proposition 1.5 and V is a con-
tinuous representation of Gx. The representation obtained this way is log-
crystalline since it is log-crystalline as a representation of I by Lemma 3.8.
Now assume 1. holds. Then G = Gk /I acts continuously (and diagonally)
on Dy(V) = (B ®g, V)'*. By Lemma 1.2 there exists an Op,-lattice M
which is invariant under the action of G. Now F' acts in the same way on
M as the topological generator ok of Gk /I and therefore the image of M
under F' is contained in M and F is of slope 0, i.e. F(M)= M. O

An easy reformulation can be given in terms of slopes in the spirit of
section B.3. We stress out that there are two Newton slopes on an admissible
K-filtered (¢, N, F))-module D over P,. On the one hand we have the usual
tn(D, @) := v(det(p)), which is the Newton number with respect to the map
. But we also have a Newton slope with respect to F' which is characterized
by the Newton number ¢y (D, F') := v(det(F)).

Corollary 4.9 Let V' be a log-crystalline representation of Wi of dimension
r and D, (V) = (D, F) the corresponding module. The following statements
are equivalent:

e V is a log-crystalline representation of G.

e (D, F) is isoclinic of Newton slope 0 (with respect to F).

We obtain the same result for potentially log-crystalline representations
from the following "division with remainder" in Z.

Lemma 4.10 Take two elements z € 7 and [ € Z. Then there exist two
unique elements B € {0,...,f — 1} CZ and a € Z such thal

z=f-a+p.
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Proof: First of all we remark that Z/fZ = Z/ f7Z holds. Let
pry: Z =limZ/nZ — 7/ 7

denote the projection to Z/fZ. Hence we find an unique element § €
{0,..., f =1} € Z such that pry(z) = 8+ fZ holds. We see that 2 — 3 =0
mod fZ and hence find an element o € Z such that z — 8 = f-a. If we have
two elements oy, as € Z such that z — 8 = f-q;, we receive f - (v —ap) = 0.
But Z is Z-torsion-free and hence o1 = Qa. ]

Corollary 4.11 Let V' be a potentially log-crystalline representation of Wi
of dimension r and D, (V') = (D, F) the corresponding module. The follow-
ing statements are equivalent:

o V is a potentially log-crystalline representation of G.
o (D, F) is isoclinic of Newton slope 0 (with respect to F).

Proof: We only need to show that the second point implies the first. As-
sume that L/K is a finite Galois extension such that V|, is a log-crystalline
representation of Iy, i.e. D't = D holds. Hence, by the previous Corollary
4.9, V is a log-crystalline representation of Gp. It is left to show that Gg
acts on V. By Theorem 3.20 we know that V' is already a representation of
Ix. Let f:= f(L/K) be the inertia index, take an element g € G and set
2 := degx(g9) € Z. By Lemma 4.10 we may write z = - f + 8 for some
o € 7 and B € Z. We define the map

Gr XV =V, (0%u,v) = (1) (6% (wv)) = (01)*. (6% (w.v))

for z € Z and u € Ix. This map is continuous since the G-action on V is
continuous and G C G is an open subgroup. It is left to show that this
defines an action of Gk on V. Take g1 = 03lu1, 92 = 02us € Gi and set
Uy = 0 tur0 € Ix. Write 2y = oy - f + 01 and 29 = as - f + (B2 such that
a1, 0 € Z and By, Ba € {0,...,f — 1} as in Lemma 4.10. Take sequences
(01n)n resp. (o), in Z converging to oy resp. as to obtain:

aytasg

(9192)-0 = o7 2 (0 2 ((Tu) )

= lim o7 (o ((fu) )

. « [} + ~
= lim (0" "o g2 P2y
L k%K
n—oo

10.1_((fa2,n+62))‘(<0_22,n0_?<2u2)'v))

:( a1 _pP1 fagn+B2 ~ —(faz,n+ﬁ2)))'(( as P2 )U))

ortoy (lim oy U0 g orroug = ¢1.(g2.v)
(l*}OO

~~
=UuU1
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for allv e V. O

The operator F' allows us to decompose the objects in the category of
linear algebra data corresponding to the category of representations of the
Weil group. This will be done in the next chapter.

4.3 Decomposition of Weil Group Representa-
tions

We need the following preparations that can be found in [Bou81, chapter
V, §10.4]. Let E be a field, ' C Aut(E) a subgroup and FEy := ET the
[-invariants of E. As usual [Bou74, chapter II, §8] an Fy-structure on V is
an Fj, subspace V5 C V such that the map

m: E®p, Vo =V, givenby A\@z+— -z

is bijective. Let Vo C V be such an FEy-structure. For any v € I' define V7
to be the vector space over F with the underlying additive group (F,+) and
scalar multiplication given by

Ex VYT = V7 (\v)—~v(A)-w.

Set X := @ V" and remark that the scalar multiplication on this E-vector
~yel'
space is given by

ExX =X, (A\z)—= (vy(A) - 2y)qer.
We finally define the map
Y E®p, V — X, given by A®@ 2 — (Y(A) - )er.
Then [Bou81, chapter V, §10.4, Proposition 8] tells us:
Proposition 4.12 ) is injective and it is bijective if I' s finite.
Now we will make use of the following refinement of FONTAINE’s equiva-

lences of categories which can be found in [Fon00, §4|. Let Q,r := W(Fpr)[%]
be the unique unramified extension of QQ, of degree r. Then we have

Gal(Q,r/Qy) = (0) = Z/rZ,
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where o denotes a generator and restricts to the p-th power Frobenius map
on [F,r. Take two vector spaces V and W over Q, and decompose its tensor
product over QQ, via Proposition 4.12:

V ®g, W =2V ®q, (Qp ®q, W)
~V g, (H W)

o<m<r

= @ V®Qpr,m W,

0<m<r

where
V @q,, Wi={z€V ey W|(1aNz=(c"(\)@1)z for all \ € Q,}.

Assume that Q,» C K and let W be a log-crystalline Q,-representation of
Ik, i.e. W is log-crystalline as a Q,-representation of Ix. Then

Du(W) = P (Ba g, W)
0<m<r

holds and we set Dy, (W) := (Bg ®q,r,, W) By [Fon00, §4] the following
diagram is commutative

stO

Repat (Ix) — (adm. K-filt. (¢", N)-mod./Fy) (CD3)
lf j@@p[m(@p[s&]

Repst (Ix) —> (adm. K-filt. (9, N)-mod./Fy)

and the horizontal arrows are equivalences of abelian tensor categories. Fur-
thermore let W be a log-crystalline QQ,r-representation of Wy, ie. W is
log-crystalline as a Q,-representation of Ix. We claim that @St,m(W) is sta-
ble under the map Fy, we defined on Dy, (V) to establish the equivalence of
categories in Theorem 3.12. Take z = > b, ®v; € DSt,m(V) and apply Fy to
obtain:
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for all A € Q,-. Hence Fy (x) € Dy, (V) and we have verified the claim. We
do the usual business in order to apply the results of section 1.4.

Definition 4.13 We define the category of K -filtered (¢, N, F')-modules over
Py as follows:

e An object is a pair (D, F), where D is an K-filtered (¢", N)-module
over Py and

F:D—D

is a bijective o7 -semilinear map such that

—poF=Foy,
— NoF=FoN and
— Fg(Fil'(Dg)) = Fil'(Dg) holds for all i € Z.
o A morphism f: (Dy, F1) — (Do, F3) is a morphism f: Dy — Dy in the
category of K-filtered (¢", N)-modules over Py such that Fyo f = foFy
holds.

e The composition of morphisms is the usual composition of maps.

We call an object (D, F') of this category admissible if D is admissible in the
category of K-filtered (¢", N)-modules over Py and denote the full subcategory
consisting of admissible objects by

(adm. K-filt. (¢", N, F')-mod./ ).

In the notation of section 1.4 we are in the following situation:
E =Qy, ¢ =0k and B = Bg.
As consequence of Theorem 1.17 we receive:

Theorem 4.14 There is an equivalence of categories given as follows:

Dao: Repy , (Wk) ~ (adm. K-filt. (¢, N, F)-mod./Fy) : Vg

V= <Dst,0(V), FV

Dst,o(\/))

Hom g py-fits. (o7, N)-modules over Po)(Fo, Bst ®p, D) = D.
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Proof: The verification of the axioms in section 1.4 is the same as in sec-
tion 3.2, taking into account that we already checked that Fy is well-defined.
O

Now we make use of Theorem B.18, i.e. the classification theorem of
Dieudonne and Manin that allows us to decompose the modules (D, F) as
follows.

Lemma 4.15 Let (D, F) be an admissible K-filtered (¢!, N, F')-module over
Py. We denote the decomposition of D into isoclinic components along F' (via

Theorem B.18) by
D =D,

q€Q
Then ¢! (D,) = D, and N(D,) C D, for all g € Q.

Proof: F~'o ¢/ is a Py-linear automorphism of D, that commutes with ¢,
and such maps from D,, to D,, are the zero if ¢; # ¢» by Lemma B.14. Thus
F~top/(D,) =D, forall g € Q, ie. ¢/(D,) = F(D,) = D,. For the same
reason the Fy-linear operator N has to map D, into itself. U

Lemma 4.16 We make the same assumptions as in the previous lemma and
assume that K/Ky is a finite Galois extension. Let

D =P s
qeQ

denote the decomposition of D along F into standard isocrystals (via Theorem

B.22). Then

Fil'(Dg) = K ®x, (@ quw)

q€J;

for a finite subset J; C Q, 1 <ng,;, <n, forallqge J; and i € Z.

Proof: By the definiton of (D, F") we have Fg(Fil'(Dg)) = Fil'(Dg) and set
W = Fil'(Dg)2(K/K0) Then the diagram

K ®k, W —Fil'(Dg)

b

K ®k, D Dy
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is commutative by Hilbert 90. In particular D = (D )S3(E/K0) where D —
Dy viad— 1®d. Thus

F(W) =D Fx(K &g, W)
= D N Fy(Fil'(Dg))
— D N Fil'(Dg)
— DY) A Fil (D) = W.

Therefore W = @, 57" and Fil'(Dx) = K @x, (e, Si™). a

qGJ

Remark 4.17 Let K be a field, (D, Fil) a K-filtered vector space and
Dy.....D,CD

sub-objects. Then D = @}, D; in the cateogry of K-filtered vector spaces if
and only if Fil/(D) = b, Fil/(D;) for all j € Z. Warning: This condition
may easily fail, even if the D; are endowed with the subspace filtration of D.
For instance take D = K2,

Fil°(D) = K? D Fil'(D) = K(e; + e3) D Fil? = 0
and D; = K- e; and Dy = Ke,.

With Lemma 4.16 we excluded this situation. Now we need [CF00, The-
orem 4.3.] to proceed.

Theorem 4.18 Let D be a K-filtered (¢, N)-module over Py of dimension
h > 1. Then V(D) has finite dimension over Q, if and only if ty(D') <
tn(D") for all sub-objects D' C D (in the category of K-filtered (o, N)-
modules over Py). In this case we have dimg, (Va(D)) < h.

Theorem 4.19 Let (D, F) be an admissible K-filtered (¢!, N)-module of di-
mension h > 1 over Py and let D = @qu D, denote its decomposition rela-
tive to F into isoclinic components (via Theorem B.18). Then the summands
D, are admissible.

Proof: By Lemma 4.16 this decomposition is a decomposition of K-filtered
vector spaces and by Lemma 4.15 it is a decomposition of (¢/, N)-modules.
D is admissible if and only if Q,[p] ®q,or) D is admissible as K-filtered
(¢, N)-module over P, by definition. Apply Theorem 4.18 to

vst(@p[Qp] Bq,lp D @ Vit (Qple] ] ®g,fpr D a)
q€Q
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and obtain
h = dim@p ~st((@P[ } ®Qp[‘ﬂ ] D)
= Zdlme st(Qp[p] ®q, 1) D )

qeQ

<dimp, (Qp[ }®Qp[¢f]D )

< dimPo (@p[QD] ®@p[<ﬁf] D) = h.

Hence dimg, V4 (Q,[¢] ®Rq, e Dg) = dimp, (Qp[0] ®q, .1 Dy) for all ¢ € Q, i.e.
all the Q,[p] ®q,pr] Dy are admissible. Therefore all the D, are admissible
in the category of K-filtered (¢, N, F')-modules over P. O

From the proof we extract the following.

Corollary 4.20 Let V' be a log-crystalline (p-adic) representation of Wi
that is coming from a Q,r-representation of Wy by scalar restriction. Then

Dst(V) admits a decomposition into isoclinic components along F in the cat-
egory of admissible K-filtered (¢, N, F')-modules over P,.

Remark that a combination of (CD2) and (CD3) gives us the following
commutative diagram of functors for any » < f:

Repfy, (Gi) ——> 8 (adm. K /K-filt. (¢, N, Gx)-mod. over Q) (CD4)

l/]: L~®Qgr Py

ReppSt (WK) Dpeto (adm. K/Kfilt. (¢", N, I, F)-mod. over Fp)

Corollary 4.21 Let V be a potentially log-crystalline representation of Wiy
that is coming from a Q,r-representation of Wy by scalar restriction. Then
]D)pst(V) admits a decomposition along F in the category of admissible K | K -
filtered (p, N, I, F')-modules over P.

Proof: This can be proven the same way Theorem 4.19 was proven with
the additional information that any u € Ix can be understood as a linear
operator u: D — D and therefore must respect the decomposition along F
into isoclinic components. Il

4.4 Generators of Abelian Tensor Categories

Initially we need to give the word "generating" a meaning in our context.
Since we are dealing with abelian tensor categories (even Tannakian cate-
gories) most of the time, it seems reasonable to adopt the usual definition
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of a tensor generating family from [DM82, §1, Tensor subcategories|. Never-
theless we refine the definition to state the results more precisely.

Definition 4.22 Let C be an abelian tensor category, U be a strictly full
subcategory and (X;)ier a collection of objects in C. We say that:

e U is a tensor subcategory if it is closed under the formation of finite
tensor products.

e (X))ier is a tensor generating family of C if every object of C is iso-
morphic to a subquotient of P(X;) for some P € N[(t;)ier]. (Interpret
multiplication as ® and addtion as @.)

o (X,)ier is a tensor integrally generating family of C if every object of C
is isomorphic to P(X;) for some P € N[(t;)ies].

e (Xi)iesr is a tensor rationally generating family of C if every object X
of C satisfies | - X = X = P(X;) for some l € N and P € N[(t;)ie1].

Remark 4.23 Clearly any tensor integrally generating family is a tensor ra-
tionally generating family. Take a tensor rationally generating family (X;);
in some abelian tensor category C and an arbitrary object X. Consider a
projection pr: X® — X such that X® =~ P(Xy,...,X,) for some ob-
jects Xq,...,X, in the tensor integrally generating family. We obtain an
isomorphism X = P(Xy,...,X,)/ker(pr) and therefore (X;); is a tensor
generating family in C.

4.5 Generators of the category of Weil group
representations

In this section we will construct a family of Weil group representations that
can’t be lifted to Galois group representations. Later on we will see that this

family and the family of Galois group representations are a tensor rationally
generating family of the category Rep®™ (Wi ).

Let € N and K, /K be the unramified extension of degree r and set
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Remark 4.24 Consider the one-dimensional representation Q,(| - |k,) of
Wik, gwen in Ezample 1.3. We recall that Ik, acts trivially on Qu(| - |k, )-
Then the induction Ind%ﬁ (Qu(] - |k,) is crystalline since

r—1
(Bcrys ®Qp (Iﬂdgﬁr (Qp(| ’ |Kr)))IK = (Bcrys ®@p (@ U% * Qp(| : |Kr))IK

=0
r—1
= Py ®q, (@ ok * Q| - Ix.)
=0
=

S =

Y

where S1 denotes the standard isocrystal over Py with respect to F' (compare
Definition B.20). This justifies to define

Vi = Indys (Q(] - |x,)) and V_i == Indy (Qy(] - |x,) ™)

T

forr € N, where Q,(|-|x,)~" denotes the character given by the composition
r . g1
Wy, —» WIa{IZ RGN HL)pZ CQ; RN Q.

Warning: The induction of a (log-)crystalline representation will not be
(log-)crystalline in general.

Now we can state the main theorem as follows.

Theorem 4.25 Rep® (W) (resp. Rep™®(Wk)) is rationally generated as
an abelian tensor category by Rep®™ (Gy) (resp. Rep™*(Gk)) and the family

{Vi}rezyoy-

Proof: Let V be a (p-adic) log-crystalline representation of Wy. Without
loss of generality we assume that V' is coming from a log-crystalline Q-
representation of Wy by considering Q,r ®q, V' = V@ instead of V. Use
Corollary 4.20 to decompose

n

D:=Dy(V)=E5Du
=1
such that Dr is isoclinic of slope * (reduced fraction such that r; > 1) with
respect of F. Then
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is isoclinic of slope 0 (with respect to F') by Lemma B.21. By Theorem 4.7
D; corresponds to an object of Rep™ (G ). Multiply the equation with Ss;—r;

T

and rearrange to obtain

Ssr ® 81 ®D; 2 Doy ® So = DY

7 T

If r; = s; holds we are done. In the case that s; > r; holds, take the rfi_”_l—

fold sum on both sides. By Corollary B.23 this leads to
s;—r;+1

S?(si—m) ® S5 ® DL ~ Diﬁ

T i

If s; < r; holds, take the r;""_si_l—fold sum on both sides and receive
r;—s;+1

Si@(i“i—&) ® S5, ® Dl ~ Diﬁ

T T

Set 1 := [, rii(sﬁri)ﬂ (where + is the appropriate sign from above de-

pending on the index i) and see that

- — S gt
D@l g @ (Sfi( [ z) ® Sl ® Di>®l/ A .

. Tg
i=1 ¢

Translating everything back to the category of representations gives the re-
sult. The same proof works for the crystalline case since the representations
Vi1 are crystalline for all » € Z\ {0} by Remark 4.24. O

We obtain the analogous result for potentially log-crystalline representa-
tions.

Corollary 4.26 Rep™ (W) is rationally generated as an abelian tensor cat-
egory by Rep” (Gk) and the family {V1},ez j0}-

Proof: Follow the proof above and use Corollary 4.11 as well as Corollary
4.21 in the appropriate places. O

Example 4.27 The following categories are equivalent:
Rep™ (Wi /Ixc) ~ Rep(Wi/Ix) ~ Rep(Z)
(all the representations are assumed to be vector spaces over Q,). Consider

p: Z — GL(V) = GLy(Q,)
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given by 1 = o — ((1) ]19> as an object of those categories. Then V is

neither decomposable nor irreducible and lifts to a representation on since
p(1) € GLy(Zy). Then D =Dy (V) = Poer + Poey with F(e1) = e +pes and
F(ey) = es. By Theorem B.22 D decomposes as an F-module into standard
wsocrystals. Therefore we find 0 # a,b, A € Py such that

F(aey + bey) = Aaey + bes).

Hence \ = UKTW and o (b) = A\b— o (a) - p. One might now think that D is
decomposable which s false:

plaer + bex) = ox(a)er + o (b)ea = ox(a)er + (Ab — ok (a)p)es
implies (by assuming decomposabilty) that there exists p € Py such that

ox(a)er + og(b)es = ok (a)e; + (Ao — o (a) - p)es = paey + pbey

and therefore p = JE;”) = X and hence og(a) -p = Ao — ub = 0 which
contradicts a # 0. In particular ¢ does not respect the decomposition along
F into standard isocrystals. Nevertheless it always respects the decomposition

into 1soclinic components.
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Chapter 5

(o, ', F')-Modules

Inspired by the results in the case of (potentially log-)crystalline representa-
tions we try to obtain similar results for general (p-adic) representations. As
we will see later this approach unfortunately is only successful to a limited
(and minor) extend.

Notations: We adopt the notations from [Sch17| and |[BCO09| as follows:

e Ej denotes the image of k[[X]] in Oy, via X +— w (for the definition of
w, see [Sch17, Lemma 1.4.14 and below|), which is a complete discrete

valuation ring with residue field £ and fraction field Ex isomorphic to
k((X)).

o Ei” denotes the separable closure of Eg in C).

e A denotes the image of the complete discrete valuation ring

{ E a; X" | a; € W(k) and lim a; = 0}
1——00
i€z

with residue field £((X)) in W (Eg) via a lift of the isomorphism k((X)) =
Ek (see [Sch17, Section 2.1]). Therefore A is a complete discrete val-
uation ring with residue field Ex and we denote its fraction field by
By, which is isomorphic to

1——00

, 1
(> a:X" | {a;}iez € W(k)[=] bounded and lim a; = 0}.
p

i€z
Ak is a Cohen ring of Ex in the sense of [GD64, Théoréme 19.8.6.|.

69
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o A}’ denotes the union of all unramified ring extensions of Ax with
respect to the residue field Ex. A% embeds into W(E}") and the G-
action on W (E%") preserves A} (see discussion before [Sch17, Remark
3.1.4.]).

e B% the fraction field of A%. B embeds into W(Eifp)[]%] and the G-
action on W(EP)[] preserves B

e A denotes the p-adic completion of A%". A is a complete discrete val-
uation ring with prime element p and residue field E3. A embeds
into W(E%") and the Frobenius map o as well as the Gg-action on
W (EP) preserve A. Furthermore ACGEL"/Ex) — A (see [Schl7,

Lemma 3.1.6.]).

e B denotes the fraction field of A. From the point above we see that
Bo=id = Q, as well as Bfx = By.

Note that we slightly differ from the notation in [Sch17] here. In SCHNEI-
DER’s notation the ring Ak above is the ring Ay 1.
P

The following two sections will seem redundant since we have already seen
that mod-p-representations of Gx and Wy coincide [Corollary 1.7]. Anyway
we will use the basic calculations later on. In addition this section should
serve as a reality check to see that our rather abstract arguments work out
correctly in a concrete situation.

5.1 (¢, F)-Modules and Mod-p-Representations
We use the following abbreviation:
Ex = Egnr = (E5P)Ex 2 F,((X)).

Definition 5.1 A p-module D (semilinear w.r.t. o) over By (resp. E ) is
called etale if the linearization

0*(D) — D given by A ® d — Ap(d)
15 an isomorphism.

Recall the equivalence of abelian tensor categories initially established by
FONTAINE |[BC09, Theo. 3.1.8.]:
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Theorem 5.2 There are equivalences of abelian tensor categories given by
Dinod : Repg, (Gry ) = (etale ¢-modules over Ef) : Vinoq

Vi (B @, V)95
(B @5, D)*~ 44 D

and

Dinod : Repy, (Ie, ) = (etale ¢-modules over Ex) : Vinod
Vi~ (E;?p ®IFP V)I]EK
(Ex? @z, D)?=¢ <= D.

In particular we have the following comparison isomorphisms

Qy . E;?p ®EK Dmod(v) = E;?p ®Fp ‘/7 (51)
1,3 1,3
Bp: E;?p ®Fp Vm0d<D> = E;?p QEx D, (52)

Zbi@)bj@vj — Z(blbj)@)vj
2% 2

in the first case and

ay: EXF ®z, Dmoa(V) = EX’ ®r, V, (5.3)
Bp: B @, Vinoa(D) = B ®5, D (5.4)
in the second case with maps in the same flavor as in the first case. These
restrict to natural isomorphisms Vieq © Dimoq = id (resp. Vined © Dinoa = id)

and Do © Vineg = id (resp. Dimod © Vineq = id).

We obtain the following commutative diagram of functors:

Repy, (Gry ) Dmod. (etale p-modules over Ex) (CD5)

l]—' LEK@)]EK'

mod

Repg, (Ir, ) — = (etale p-modules over Ex).

(The ¢-module structure on the scalar extension Ex ®g, D is given by

pA®@d) = 0a(A) @ p(d)
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for A\ € Ex and d € D.)

Now take V' € Repg (Wg,) and denote D := (Ei’ ®p, V) x. We fix
an element ox € Gg, such that degg, (0x) = 1 and obtain a ox-semilinear
bijective map by

Fy: D — D, Z)‘i ® v; > ZO’K<)\Z‘) R Ok .v;.

(This map is well-defined since Ig, is a normal subgroup of Gg,.) ¢ is
the p-th power map on Ex and ok is a ring homomorphism, therefore they
commute on [Eg. This implies

Fyop=ypokFy
and motivates the following definition.

Definition 5.3 We define the category of etale (p, F')-modules over Ex as
follows:

o The objects are pairs (D, F), where D is an etale @-module over Ef
and F: D — D is a bijective of -semilinear map that commutes with

®.

o A morphism f: (Dy, Fy) — (D2, F3) consists of a morphism f: Dy —
D5 in the category of etale p-modules such that f o Fy = Fy o f holds.

e The composition s the usual composition of maps.

In order to apply the results of section 1.4 we need to check the axioms.
The setup is the following:

B=E" E=TF,G=Gg,, [ =Ig, =Gz, and¢=og.
Take the forgetful functor
(etale p-modules over Ex) — (¢-modules over Eg)

for 7" (this functor is fully faithful), consider the natural isomoprhisms in (5.3)
and (5.4) for &, and f,. Insert the trivial (identity) natural transformations
for ne and &. Then Axiom 1.1 is satisfied by Theorem 5.2.

Let (D, ) be an etale p-module over Ex. Using the functoriality of o
on the isomorphism ¢*(D) = D we get

0" (ox (D)) = o (o7 (D)) = oy (D)
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by Lemma 1.12, i.e. o} (D) is an etale o} (¢)-module. Hence, the functor
0} extends to a self-equivalence of the category of etale p-modules over E,
i.e. Axiom 1.2 is satisfied. Axiom 1.3 holds since T is a fully faithful functor.
Remark 1.14 (resp. Remark 1.15) shows that Axiom 1.4 (resp. Axiom 1.5)
is satisfied.

From Theorem 1.17 one receives:

Theorem 5.4 There exists an equivalence of abelian tensor categories

Dyog: Rep]Fp(WEK) = (etale ¢-modules over ]EK) : Vinod

given by
Vi (B ®g, V)Ex

(Ex? @z, D)?~¢ <= D.

5.2 (¢,I', F)-Modules and Mod-p Representations

Now we want to transition to mod-p representations of Wy. This can be
realized, loosely speaking, by "adding" the action of

I:=Tg:=Ix/Hg = Gal(K, K" /K™) = Gal(K /K)
on both sides. We use the following abbreviations:
Hy = Gal(Q,/K) and Hy = Gal(Q,/K™ K.).

By the main theorem of the theory of norm fields [BC09, Theorem 13.4.3.
we have

Hy = Gal(ESP/Eg) and Hy = Gal(E5® /Eg) (5.5)

as topological groups. Hence we may interpret the element ox from the
previous section as an element ox € Hg such that degy_(ox) = 1.

Lemma 5.5 Let T/K be a Galois extension contained in K.

o Wi /Wr — Gal(T/K) is an injective continuous dense group homo-
morphism.

o Wi /Wr = Gal(T/K) if T/K is totally ramified.
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Proof: Consider the commutative diagram

N

1 Wy Wi Wi /Wy — 1

Lk

v
1 Gr—= Gy Gal(T/K) —= 1

with exact rows and remark that the left square is cartesian, i.e. Wp =
Gr N Wg. By an elementary diagram chase the dotted arrow ¢ exists and
has dense image since the middle vertical arrow has dense image. If T'/K is
totally ramified we have Ix/Ir = Gal(T' - K™ /K"™) = Gal(T/K). Consider
the commutative diagram

1 Ir—S= Iy Gal(T/K) —=1
LC jC 77
. v
1 Wy — Wk WK/WT —1

with exact rows. Again the left square is cartesian and hence 7 exists. ¢ and
71 are inverse to each other. 0

Now take V' € Repy (Wik) and denote D := (B’ ®p, V)Hx . Consider
the ox-semilinear bijective map given by

FV: D—)D,ZAZ®U1|—>ZO’K(A1)®O’K01

again. We check the compatibility with the action of I'. T" acts on D via the
residual action of Ix on B’ ®p, V' after taking H-invariants. For u € Ix
and d =Y\ ®v; € D we have

Fy(u.d) = Z (ox ou)(\) @ (0 o u).v;

= (UK ouo O'[_(l o) ufl).(u.FV(d)).

ou™! € Hy and therefore

Fy(v.d) =~.Fy(d)

for all y € I and d € D. ¢ is the p-th power map on Ex and ok is a ring
homomorphism, therefore they commute on Eg. This implies

But og ouooy

Fyop=ypokFy.

This motivates the following definition.
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Definition 5.6 We define the category of etale (p,T', F')-modules over Ex
as follows:

e The objects are pairs (D, F), where D is an etale (¢,T')-module over
Ex and F: D — D s a bijective ox-semilinear map that commutes
with ¢ and the action of T'.

o A morphism f: (D1, Fy) — (Da, Fy) consists of a morphism f: Dy —
Dy in the category of etale (p,I")-modules such that f o Fy = Fyo f
holds.

o The composition is the usual composition of maps.

From Theorem 5.4 one receives:
Theorem 5.7 There exists an equivalence of abelian tensor categories
Dyog : Repg, (Wk) = (etale (¢,T", F')-modules over EK) V.od

given by i
Vi (BR” @5, V)
(Ex? @z, D)?=¢ = D.
Proof: Denote the canonical projection
Wk — Wi /Hi = Wi /Ig. =T xZ

by g — (74, 2,) for all g € Wg. Take a module (D, F) from the right hand
side and define the map

Wi X Vinoa(D) = Vinea(D), (g,v) > g.v := Z 9.b; @ ,.F>(d;)
for v = Z b; ®d; € Vmod(D) and g € Wy. This map is well-defined since
plgv) = Zgb ® 7g.-F*(d;))
= Z 0(9:6:) © @7 F(dy))
—ngo ) @ 7,-(p 0 F*0)(dy)
= Zg p(bi) ® vg.F (0(ds))

=g
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holds for all g € Wx and v =) b, @ d; € Vmod(D). Furthermore this defines

a group action since

(gh).v = Z (gh).b; @ ~ygn.F*" (d;)

(2

= g(hbi) @ (Ygm).F>o > (d;)

%

= g(hby) @ vy P (. F(d;))

i

= g.(h.v)

holds for all g,h € Wi and v = > b; ®d; € vmod(D). It remains to check

that the map, that defines the WKl—action, is continuous. By assumption its
restriction to [x x V' — V is continuous and [k is open in Wx. Hence I XV
is open in Wy x V and Wy x V — V is therefore continuous. In addition
we need to check that Vg is still a functor after varying the source and
target category. Take a morphism f: (D, Fy) — (Do, F3). For all g € Wi
and v => b ®d; € @mod(D) we have

(]

Vanoa (£)(90) = Vrawa (F)(Y 9.0 © 7. F77(dy)
_ Zg.bi ® }(vg.ng(di))
. ig.@. &7 5 (£(d)))
. ig.bi & Fo F5(d)

= gﬁfrrmd(f) (v).
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For a morphism f: Vi — V5 of Wi-representations

Dusoa()(7.d) = Do (£ (7. 3 A @ )

holds for all d = >\, ®v; € ]f))mod(Vl) and v = uvﬁK € I'. We verify that

(2
the functors above are quasi-inverse to each other. It is enough to show that
the comparison maps

&y Vinod(Pmoa(V)) = V and Bp: Dimoa(Vimoa(D)) = D

are isomorphisms in the stated categories. For g € Wi, the image v, € I of
gand v =>Y"b; ®b;; @ vj € Viod(Dmea(V')) we have

2

ay(g.v) = dv(g-(z bi ® Z bij @ v;))

—_———
e]f))mod (V)

- dv(z 9.b; ® ngé-“’(Z bij ® ;)
&V(Z g.b; ® (Z 9.bi; ® g.v5))

? J

= g.(bibi)g.v;
i

= gCN‘év(U>

Hence &y is a Wi-equivariant linear bijection. For 7 = uvfl k € I' and
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d="b;®b; @ d; € Dyoa(Vinoa(D)) we have:
2

(B o N(@) = Ao(v(3bi© Y by 9 dy)

————
e@mod (D)

_ BD(Z Uy.b; ® uﬂ,.(z biy @ d;))

- BD(Z u'y-bi ® Zu7~bij & ,deeg(u—y)(dj))
i J

= us.(bibig) @ v(d;))
i,J
= (70 Bp)(d).
This shows that 8p is an isomorphism in the category of etale (p, T, F)-
modules which completes the proof. 0]

5.3 Reality Check

We remind that the actions of ¢ and o := oq, on the field k((X)) are given
as follows: A
o(f) =" and o(f) = 3 _al X’
>m

for all f = 3 a; Xt € k((X)).

i>m

One-dimensional etale (p,T')-modules over Eg, and Eg,:  We classify
all one-dimensional mod-p-representations of Gg, and Ig, as follows. Take
k € {F,,F,} and let D denote a one-dimensional etale (¢, T')-module over
k((X)). Fix a generator 0 # e € D and find h € k((X))* such that p(e) =
h-e. We write h = hgT*H with hy € k*,a € Z and H € 1+ Xk[[X]]. For
any u € k((X))* we have

o(ue) = p(u)he = o(u)u h(ue).

The map k[[X]]* — 1+ Xk[[X]] given by u — up(u)™" is surjective (a
preimage of an element b is given by [T72, ¢/(b)). Thus we find u € k[[X]]
such that p(ue) = hoX*(ue) and we may assume w.l.o.g. (by base change)
that

o(e) = hgX%e with0 <a <p-—1.
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Take g € k((X))* and a generator v € I" such that v.e = ge. Apply yo ¢ =
v o on e and obtain:

ho((1+ X)X —1)"ge = p(g)ho X “e.

Set z := x(7) € Z; and compare the leading coefficients of the above equa-
tion. One receives

X9, XM = gb XP" X1,
This implies m = 0, go € F,’ and therefore z* = 1. Then a = 0 since z # 1
and h = hyg € k*. We see that the one-dimensional mod-p-representations
of G, correspond to elements of F x F* and the one-dimensional mod-p-

representations of Ig, correspond to elements of ) X F; .

One-dimensional etale (¢, I, F)-modules over Eg,: Now we calcu-
late all one-dimensional mod-p-representations of Wg,. We can immediately

restrict to the situation k = [F, above and assume now that D is a (¢, T, F)-
module over k((X)). Take f € k((X))* such that F(e) = fe and apply
Fop=poF toe and receive

hbfe = fPhoe, ie. hof ' € FX.

This implies f = fy € k* and since taking the (p — 1)-th power on k* is
surjective we find u € k* such that o(u)u™' = f;'. Then we have

F(ue) = o(u) foe = ue.

and we change the base now by e +— ¢’ := ue. Hence ¢(¢’') = ¢o(u)u"'hg - €
and we set hy = ' := @(u)u" ho € k. Apply Fop = poF to ¢ and obtain

’

(ho)? - € = hy - €, in particular h, € F.
We see that the one-dimensional mod-p-representations of Wg, correspond
to elements of F x ) as predicted by Corollary 1.6.
5.4 (p, F)-Modules and p-adic Representations

As a start we remark that the theory of (¢, I')-modules developed by Fontaine
(see [Fon90| or [BC09, §13]) does not require the residue field of the p-adic
field K’, which we begin with, to be finite, hence we are free to start with
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a p-adic field K’ = K P, with residue field F,. This would now lead to a
category of (¢, T')-modules classifying the p-adic representations of G but
by the Theorem of Ax-Sen-Tate [Tat67, §(3.3), Theorem 1] we obtain

Gg = Gal(K'/K') 2 Auteon (C,/ K Py) & Gal(K/K™) = I.
In this situation the following rings matter.

o Ay denotes a Cohen ring for Ex which is isomorphic to

{ E a; X" | a; € W(F,) and lim a; = 0}
i——00
€7

via a lift of the isomorphism F,((X)) = E. For a precise construction
see [BC09, §13.5].

° IE%K denotes the quotient field of AK.
From [Sch17, Proposition 1.2.6.] and (5.5) we know that
Gg, = Hi = Gal(BY /By) and Iy, = Hy = Gal(BY /By)
as topological groups.

Definition 5.8 A p-module D over By (resp. By ) is called etale if there
exists an Ag-lattice (resp. A-lattice) M C D such that the linearization

(0|ag) (M) — M given by a ® x — ap(x)

(resp. (olz, ) (M) — M given by a ® x +— ap(x))

15 an isomorphism.

Warning: The meaning of being "etale" depends on the coefficient ring
of the p-modules. Maybe "p-module containing an etale lattice" would be
the better term but we stick to the literature here.

Recall the equivalence of abelian tensor categories initially established by
FONTAINE (see [BC09, Theo. 3.3.4.]):

Theorem 5.9 There are equivalences of abelian tensor categories given by
D: Rep(Gg, ) = (etale p-modules over By ) : V

V= (B ®q, V)GEK
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(B ®g, D)4« D

and

D: Rep(Ig, ) = (etale p-modules over By) : V
V= (B®g, V)™
(B ®g, D)*~ « D.

We immediately obtain the following commutative diagram of functors

Rep(Gg,. ) —— (etale p-modules over By) (CDG6)

l}' l'@]BKI@K

Rep(lg, ) —— (etale p-modules over By).
since By /B is a Galois extension with group Gy.

Definition 5.10 We define the category of etale (p, F')-modules over By as
follows:

o The objects are pairs (D, F'), where D is an etale p-module over By
and F: D — D is a bijective o/ -semilinear map that commutes with

®.

e A morphism f: (Dy, Fy) — (D2, F3) consists of a morphism f: Dy —
D5 in the category of etale p-modules such that f o Fy = Fy o f holds.

o The composition is the usual composition of maps.

In order to apply the results of section section 1.4 we need to check the
axioms. The setup is the following:

Take the forgetful functor for T' (which forgets the property of being etale)
and the trivial (identity) natural transformations for 7, and &. Then Axiom
1.1 is satisfied by Theorem 5.9.

Let (D, ) be an etale p-module over By. We set 0% (M) = A@4q, M
and verify that o}, (M) is an Ag-lattice in o (D):
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We claim that the canonical map o5 (M) — o}(D) given by a @ m +—
a ® m is injective. Take a linearly independent set of elements z1,...,2; €
(M) and by, ...,b € By such that

Since B is a discretely valued field with ring of integers Ay and uniformizer
p, we find N > 0 such that p’Vb; € Ax. Hence

and by linear independence over AK, we obtain pVNb; =0 foralli=1,...,1,
therefore b; = 0 for all i = 1,...,1. Now we show that (o3, )*(o%(M)) =
ox M. Using the functoriality of o} on the isomorphism (o[ )*(M) = M
we get
(0a,) (05 (M)) = 0% ((0lz,,)*(M)) = 03 (M),

by the same argument as in Lemma 1.12, i.e. o}(D) is an etale o} (p)-
module. Hence, the functor oy extends to a self-equivalence of the category
of etale p-modules over By, i.e. Axiom 1.2 is satisfied.

Axiom 1.3 holds since 7' is fully faithful. Remark 1.14 (resp. Remark
1.15) shows that Axiom 1.4 (resp. Axiom 1.5) is satisfied.

From Theorem 1.17 one receives:
Theorem 5.11 There exists an equivalence of abelian tensor categories

D: Rep(Wg,. ) = (etale (¢, F)-modules over By) : V

given by
Vo (B®g, V)Ex

(B @, D)7« D.

5.5 (p,I', F)-Modules and p-adic Representations
Now we extend to representations of Wi in the same way as in section 5.2

Definition 5.12 We define the category of etale (¢, 1, F')-modules over By
as follows:
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e The objects are pairs (D, F), where D is an etale (¢,T')-module over
By and F: D — D s a bijective ox-semilinear map that commutes
with ¢ and the action of T'.

e A morphism f: (Dy, F1) — (D2, F3) consists of a morphism f: Dy —
Dy in the category of etale (p,I")-modules such that f o Fy = Fyo f
holds.

e The composition is the usual composition of maps.

One replaces the field Ex by By and E by B in section 5.2 and the does
the same with the functors, i.e. we Con51der V instead of Vmod and D instead
of Dmod. Then all the modified calculations continue to be valid. Hence one
can imitate the proof of Theorem 5.7 and receive:

Theorem 5.13 There exists an equivalence of abelian tensor categories

D: Rep(W) = (etale (¢, ', F)-modules over By) : V

given by N
Vi (Beg, V)7

(B ®g, D)*= + D.

Proof: Imitate the proof of Theorem 5.7 using the modifications explained
above. O

Corollary 5.14 Let V' be an object of Rep(Wy). The Wi-action on V' can
be extended continuously to an action of Gk on'V (i.e. V is an object of
Rep(Gk)) if and only if there exists an etale (,1")-module D over By such
that ]D(V) >~ By ®p, D. Here the bijective ox-semilinear selfmap F on
By @, D is given by F(b® d) = o (b) @ d for all b € By and d € D.

Proof: Assume that V is an object of Rep(Gk). Then

Bx @5, D(V) = Bk ®p, (BRg, V)™ = (Bk ®g, V)'* =D(V).
Conversely assume that D(V) 2 Bx ®p, D as above. This implies
D(V) = (B ®g, V) = (B ®q, V)*)** 2 D(V)** = (Bx ®s, D)% = D

and therefore V' is a Galois representation. O
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Corollary 5.15 Let V be an object of Rep(Gx) C Rep(Wg) and D(V) =

(D, F) the associated (¢,T', F)-module over Byx. Then (D, F) satisfies
det(F) € A% i.e. vp, (det(F)) =0,
where vy, denotes the discrete valuation on By.

Now one would wish to apply the methods from chapter 4 to the current
case in order to establish sufficient criteria that distinguish Weil and Galois
group representations. The ring Ak is a discrete valuation ring with residue
field F,((X)). In general the elements of this residue field do not have finite
order, hence we are not able to lift a morphism Z — GLg(Ag) to a morphism
Z — GLy4(Ag) by using Lemma 4.1. Therefore this technique does not work
out in the present context.
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Appendix A

Divided Powers

The following paragraph is extracted from [BOT78]|.

Definition A.1 Let A be a ring. We call (I,v) a divided power structure
on A if I is an ideal in A and vy collection of maps {v;}i>0 such that the
following properties are satisfied:

1. yw(z) =1,m(z) = x,vi(x) € I forall x € 1,i > 1.
2. w(x+y) = szk Yi(x)v;(y) for all w,y € I.
3. (Az) = Moy () for all A\ € A,z € 1.

4. ix)y(w) = (ZT;!)!7i+j<l'> forallz e 1.

5 ’7}0(711( )) = p(z()q))'p’}/pq( ) fOT’ all T 6 ]

We call the triplet (A, I,7v) a divided powers ring which will be abbreviated
by "PD-ring". Similarly we call (I,v) a divided power ideal, abbreviated by
"PD-ideal”, and v a divided power structure, abbreviated by "PD-structure”.
Furthermore we call J C I a sub PD-ideal if J C A is an ideal and v;(z) € J
forallz e J and > 1.

Remark A.2 All rational coefficients appearing in the definition above are
integers.

Definition A.3 Let (A,1,7) and (B, J,d) be PD-rings and f: A — B a
ring homomorphism. We call f a PD-morphism if f(I) C J and §,(f(x)) =
f(yn(x)) for all x € 1.

Example A.4 A PD-ring of our interest will be (Z,, (p),~y) where v,(z) =
1. Obuiously ((0),7) is a sub PD-ideal of ((p),).

87
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Lemma A.5 Let (A,1,7) be a PD-ring and J C A an ideal. Denote the
canonical projection by m: A — A/J. There exists a unique PD-structure
y: 7 Y1) — 7 (1) such that w: (A, I,v) — (A/J, 7 ' (I),5) is a PD-
morphism if and only if JN I C I is a sub PD-ideal.

Proof: [BO78, Lemma 3.5]. O

A.1 Universal Enveloping Divided Power Ring
Let B be a ring and M be an B-module.

Definition A.6 We call (Up(M),U% (M), 1) universal enveloping PD-ring
of M if it is a PD-ring and there exists a B-module homomorphism

v M — UL (M)

satisfying the following universal property: For any PD-ring (C,J,6§) over B
and B-module homomorphism V: M — J there is a unique PD-morphism

U (Up(M), U (M), 1) — (C, J,9)
such that U o= V. If no confusion is possible we abbreviate
fin () = pan(e(2))
forx e M.
Theorem A.7 (Up(M), UL (M), 1) exists.

Proof: Set Gp(M) := B[{T(s,n) | * € M,n € N}] and consider the following
subsets of Gg(M):
E = {T(I’U) -1 | T € M}

E2 = {T(bx,n) - bnT(z,n) | YIS Ma be Ban € N}

(n+m)!
E3 = {T(x,n)T(x7m) — W . T(xm-i-m) ’ T € M, n,me N}
Ey = A{Trym) — Y Toily; | x,y € M,n € N}
i+j=n

Let Ig(M) denote the ideal generated by E; U Ey U E5 U Ey. There is an
obvious grading on G (M) given by

Gp(M) =D BTz | z € M]

n>0
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and Ip(M) is a homogenous ideal with respect to this grading. Therefore
Up(M) := Gg(M)/Ig(M) is a graded ring, i.e.

We define

We set zl" = Temn) + Ip(M) and
o: M — UL(M),z — 2,
By [BOT78, Theorem A9| there exists a unique PD-structure p such that
pi(xl)y = 2l

for all i > 1 and @ € M. Thus (Up(M),Us(M)*, 1) satisfies the universal
property. [

Corollary A.8 The assignment M — (Up(M), U (M), 1) defines a functor
from the category of B-modules into the category of PD-rings.

A.2 Divided Power Envelopes

Let (A,I,v) be a PD-ring, B an A-algebra and J an ideal in B.

Definition A.9 We say that v extends to B if there is a PD-structure 7' on
IB such that v: (A, I,v) = (B,IB,v') is a PD-morphism.

Proposition A.10 If I is principal, v extends to B.
Proof: [BO78, Proposition 3.15]. O

Proposition A.11 Assume that (J,0) is a PD-ideal in B. The following
statements are equivalent:

1. 7 extends to a PD-structure v’ on B and v'(x) = §(x) for allz € IBNJ.

2. K :=¢(I)B+J has a unique PD-structure 0’ such that 1: (A, I,7v) —
(B,K,?d) and idg: (B, J,0) = (B, K,d") are PD-morphisms.
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3. There is an ideal K C B with (I)B + J C K with a PD-structure
such that ¢: (A, 1,7) — (B,K,k) and idg: (B, J,0) — (B, K,k) are
PD-morphisms.

If the conditions hold we say that v and § are compatible.
Proof: [BO78, Proposition 3.16]|. O

Definition A.12 We call a PD-ring (D,J,n) PD-envelope of (B, J) with
respect to (A, 1,v) if JD C J, n is compatible with v and the following
universal property is satisfied: For any PD-ring (C, K,0) such that C is a
B-algebra, JC C K and § is compatible with v, there exists a unique PD-
morphism

(D, J,n) — (C, K,0)

making the obvious diagram commutative. We denote the PD-envelope of
(B, J) with respect to (A, 1,v) by Darq(B,J).

Theorem A.13 D4 (B,J) eists.

Proof: If I is not contained in J replace J by J + I. Let ¢: J — UL (J)
be the universal map from Theorem A.7. Since J C B we can interpret the
elements of J as elements of the B-algebra Up(J). Set

Fr={uz)—z|zeJ}

Fy = {pn((y) —m(y) |y € I}

and let Zp a1+ (J) denote the ideal in Up(J) generated by Fy and F,. One
can proof that the quotient Up(J)/Zp (a,1,,)(J) has the required properties,
compare for example [BO78, Theorem 3.19]. O

A.3 Compatibility with Tensor Products

The following is partly extracted from [Rob63].

Let B be an A-algebra and as in the previous section let (A, I,v) be a PD-
ring, R an B-algebra and J an ideal in B such that the canonical (surjective)
map

R®pJ — JRgivenbyr®@jwj-r (A1)
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is an isomorphism. This condition is for example satisfied if B C R is a ring
extension of integral domains and J is a principal ideal. It is our aim to show
that

'D(AJW)(R, JR) 2 R®p D(A[ﬁ)(B, J)

At first we need to understand the B-linear homomorphisms from Ug (M)
into R. For this purpose we introduce

exp(R) :={f € R[[T]] | f(0) = 1 and f(T1 +T2) = f(T1)f(T2)}

which is a subgroup of R[[T]]* and becomes an R-module via r.f(T) =
f(rT).

Lemma A.14 There is a bijection
Map(M, R([T]))  Homs_uy)(G (M), R)

given as follows: Let f: M — R[[T]] be a map. Then for each x € M we can
write

flz) = chwT” with ¢, , € R.

n>0

Define the image of f as the map p which is uniquely determined by
SD(T(x,n)) = Czn-
Proof: The inverse of the map given above is

o (x— Z ©(Tizm))T").

n>0

Proposition A.15 The map
HOHI(B_alg) (UB(M), R) — HOHI(B_mOd)(M, exp(R))

given by

o (1> o(pn(2)T™)

n>0

15 a bijection.
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Proof: The map defined in the assertion is a restriction of the map in Lemma
A14:
Map(M, R[[T“) — Hom(B—alg) (GB(M), R)

Take corresponding elements
fee

under this bijection. Calculations deliver the following:

f is additive if and only if p(FE4) = 0.

We have f(ax) = af(z) for all a € A,x € M if and only if p(F3) = 0.

We have f(z)(0) =1 if and only if ¢(E;) = 0.

We have f(z)(T) + Ts) = f(x)(T1) f(z)(T3) if and only if p(E3) = 0.

(E;’s as in the proof of Theorem A.7.) This shows the claim since Up(M) is
the quotient of Gg(M) by the ideal generated by the E;’s. 0

Proposition A.16 We have Ur(R®p M) = R®@p Up(M).

Proof: To prove this statement without confusion we fix the following nota-
tion. The PD-structures on

e Up(M) is given by pu.
e Up(R®p M) is given by n.
e Ur(R®p M) is given by 7.
We define the map
f: R M — & :=exp(R®pUp(M))

as the R-linear continuation of

One needs to check that this is well-defined. Since we have
fx)0)=1®1=1
it is enough to show that

f@) (T + To) = fa)(Th) f(2)(T2)
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forallz € Rop M. Takez =) . r,®m; € R®p M

fla)(Th)f(2)(T) = HZ ® i (i) TP)( HZ ® pin(mi))TY)
—Z Z ([Ict @ m mz))Tk)(H(T@m(mi))Tf)

n>0 k+l=n 1@

=>. > H @ e (my ul(ml))T e

n>0 k+l=n 1

i@ prger (my)) TETy

n>0 k+l=n 1

:Z Z H n—l W ™ ® 1, () T T

n>0 k+l=n 1

- ([t e w3 ()1

n>0 i =0
=> (]! ® pa(m))(T1 + To)"
n>0 7

= f(2)(T1 + 1T»)
Now we use Proposition A.15 and obtain an R-algebra homomorphism
v: Ug(R®p M) — R®@pUp(M)
corresponding to f satisfying
©([Tlzm)]) = Co for all z € R®p M,n € N

where f(z) = > ¢;,T". In particular
n>0

O([Troymn)) =" @ un(y) for all r € R,y € M,n € N.

To finish the prove we construct an inverse ¢ of ¢ as follows. Let N be
an R-module. By [Rob63, Proposition II1.4, p.261| there exists a unique
homomorphism of B-algebras

(SNI Z/[B<N) — Z/{R(N)

satisfying pipn(z) — ppn(z) for all x € N and n € N (where Up(N) =

(Up(N), U (N), ppn) and Ur(N) = (Ur(N), U (N), fir.n)). Apply the func-
tor Up to the canonical B-module homomorphism M — R ®p M given by
r +— 1 ® x and denote the resulting B-algebra homomorphism by

502 Z/{B(R &B M) —)Z/{R<R QB M)
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Then
0= 5R®BM 0502 Z/{B(M) —>Z/IR(R KB M)

satisfies 0(u,(z)) = (1 @ x). We define the B-bilinear map
Us(M) x R - Ur(R®p M), (u,r) — 6(u) - r
and by the universal property of the tensor product we finally obtain
Y Ug(M)®p R — Ur(R®p M)

given by u @ r +— 0(u) - r. For all r € R,z € M and n € N we have:

¢(¢([T(r®x,n)])) = (1" @ pin())
= 0(pn(x)) - 1"
=n,(1®z) r"
= N (r ® x)
= [Togam)

and

(Y (r @ pn())) = ©(0(pn(2)) - 7)
- @(0(pn(x)))
=7 o((1®))
=7 ¢([Thg))
=7 Mn(z)

This shows that ¢ and ¢ are inverse to each other since they are R-linear and
Ur(R ®@p M) is as a R-algebra generated by elements of the form [T(,g4.n)]
as above, furthermore Up(M) is as a B-algebra generated by U} (M). O

Corollary A.17 Let H denote the set of all f € Homp_moa)(J, exp(R)) that
satisfy the conditions

(a) f(z) =1+ 2T+ "terms of higher exponent” for all x € J.

(b) f(y) = > 1y)T™ for ally € I.

n>0

Then for M = J the bijection of Proposition A.15 restricts to a bijection

H — HOHI(B,alg) (D(A7177)(B, J), R)
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Proof: Tt is sufficient to check that for f € Homa_aq)(Ua(M), R) the condi-
tion (a) is equivalent to p(F;) = 0 and condition (b) is equivalent to p(F2) = 0
with F; and F3 given as in the proof of Theorem A.13. But this is true since

(11(12)) = P([Tem)) = o =2 = () for all € J

where ¢, ; is given by f(z) = > ¢, T" and
n>0

(e (t(¥))) = o([Tym]) = m(y) = @(a(y)) for all y € I.

g

With these tools we are now able to verify the statement we were looking
for.

Theorem A.18 There is an isomorphism
'D(A,]’,y)(R, JR) 2 R®p 'D(AJW)(B, J)
Proof: Set
5/ = eXp(R KB D(A,I,'y)<Ba J))
Define
f:JREYR®pJ— & given by r® j — Z (r @ [Tym)T"

n>0

in the same manner as in Proposition A.16. We claim that f satisfies condi-
tion (a) and (b) from Corollary A.17, i.e. f € H. Indeed let without loss of
generality x = r ® j be an element of R ®p J. Then

f@)=14+0rmU)T+...=1+0rG)T+... =14+ )T +...

by the relations due to Fy. This implies (a). For y € I we have

F) =Y 1@ um)T" =Y (1©y.y)1"

n>0 n>0

by the relations due to F5. This implies (b) and we fix a homomorphism of
R-algebras
p: 'D(AJW)(R, JR) — R®p D(AJW)(B, J)

corresponding to f. Now consider the homomorphism of R-algebras

’QDI UB(J) XpB R — Z/{R(R Xp J) — D(A»L’Y)(R7 JR)
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where the first map is the map 1 of Proposition A.16 composed with the
canonical projection. We claim that ¢ factorizes over R ®p Da 1) (B, J),
i.e. Ip(J) ®p R Ckertp. For x € J and 7 € R we have

since the relation Fy in Zr(R ®p J) implies (1 @ ) = (1 @ x). Fory € I
we have

Y((pa(e(y) —1(y) @ 1) = (0(paly)) — 6(va(y))) - 7
= ((1®@y) —my)) 7
= (m(y) =) -r=0

since the relation I in Zr(R ®p J) implies 1), (1 ® x) = v,(y). This shows
that i) can be interpreted as a homomorphism of R-algebras

EZ R®p D(A,I;y)(Ba J) — D(AJW)(R, JR)

which is inverse to . ([l



Appendix B

Slope filtrations

The formalism of slopes occurs in different areas in mathematics and often
is treated adjusted to the associated situation. In contrast to the many in-
carnations of slope filtrations in the literature ANDRE introduced a purely
category theoretical approach. Since there appear different slopes (more pre-
cisely slope functions) in the course of this thesis it is convenient to introduce
the basic results about them in this chapter. As announced the following is
extracted from [And09].

Let C denote an essentially small abelian category and let I' be a totally
ordered (abelian) group such that I' is divisible. One may always assume
'=Zx---xZorl'=Ryyx--- xRy with the lexicographic order.

B.1 Slopes

We denote by sk(C) a skeleton of C, i.e. a set of representatives for the
isomorphism classes in C. Furthermore we assume that there exists

e a rank function rk: sk(C) — N that maps the zero object to 0 and is
additive on short exact sequences, i.e. tk(N) = rk(M) + rk(P) for any
short exact sequence 0 - M — N — P — 0.

e a slope function p: sk(C) \ {0} — T, such that the degree function
deg := pu - rk is additive on short exact sequences.

Lemma B.1 1. For any short exact sequence 0 - M — N — P — 0 of
non-zero objects in C. Then

min(p(M), u(P)) < p(N) < max(u(M), u(P))

holds and both inequalities are strict unless p(M) = u(N) = p(P).

97
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2. Let 0= My C My C--- C M, =M denote a flag such that M;/M; 1 #
0 for1 <i<r. Then
min{pu(M;/M; 1) |1 <i<r} < p(M) <max{u(M;/M; 1) |1<i<r}.

Again, both inequalities are strict unless p(M;/M;_1) = p(M) for all
1< <.

Proof: deg is additive on short exact sequences, hence we obtain

;wwzu<>$%2+uwg§§§

-

k(M)
Set o := ()

sequences. But

and receive

min(p(M), u(P)) < p(M)a + p(P)(1 - @) < max(u(M), pu(P))

holds for any « € [0,1] and we have proven the first part. The second part
is proven by induction on 7. O

Definition B.2 0 # N € C is called (u-)semistable (resp. (u-)stable) if
(M) < p(N) (resp. p(M) < u(N)) holds for any subobject 0 # M C N.

Lemma B.3 Let N be a non-zero object of C.

1. N is semistable if and only if p(P) > pu(N) holds for any non-zero
quotient P of N.

2. Let N be semistable and 0 # M C N denote a subobject such that
w(M) = u(N) holds. Then M is semistable.

3. Let N be semistable and P # 0 denote a quotient of N such that u(P) =
w(N) holds. Then M is semistable.

4. Let N be semistable and M # 0 be a direct summand of N. Then M
is semistable of slope (M) = u(N).

5. Let 0 # M C N be a subobject of minimal rank, such that (M) > p(N)
holds. Then M 1is semistable.

6. Let P # 0 be a quotient of N of minimal rank, such that p(P) < u(N)
hold. Then P is semistable.
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7. Let 0 = M — N — P — 0 be an exact sequence in C of non-zero
objects. If two object in the sequence are semistable, the third is also
semistable.

Proof: Straightforward, see [And09, Lemma 1.3.7.]. O

The following lemma [And09, Lemma 1.3.8.] states that there are no
non-trivial morphisms between semistable objects of decreasing slope.

Lemma B.4 Let M and N be semistable objects of C. u(M) < u(N) holds
if there exists a non-zero morphism f: M — N.

Proof: Consider the factorization M — M/ ker(f) = Im(f) < N of f. Then
p(M) < p(M/ker(f)) = p(Im(f)) < p(N) holds by the semistability of M
and N. O

Definition B.5 Let N be a non-zero object of C. 0 # M C N s a universal
destabilizing subobject of N (with respect to u) if for any non-zero subobject
M'" C N the following holds:

o p(M') < (M)
o If u(M') = (M), then M' C M C N.

A universal destabilizing subobject M of N € C is semistable by definition
and unique. We have the following Lemma ([And09, Lemma 1.3.12.]).

Lemma B.6 Let N be a non-zero object of C. Then there exists a universal
destabilizing object of M.

Proof: We prove this by induction on rk(N). If N is already semistable we
are already done, in particular the statement is true for the case rk(N) = 1.
Assume that N is not semistable and consider all quotients 0 # P # N
of N such that u(P) < u(N). Choose such a P of minimal rank and set
N’ :=ker(N — P). P is semistable by item 6. of Lemma B.3 and we have
rk(N') < rk(V) since the rk is additive. We deduce u(P) < pu(N) < p(N')
from
min(u(N'), u(P)) < p(N) < max(u(N'), u(P)).

By induction we know that N’ has an universal destabilizing subobject M.
We claim that M is also an universal destabilizing object for N. It is imme-
diate that u(N) < p(N') < p(M). Take 0 # M’ C N such that N C M’
Thus M C N — P is nonzero and we obtain u(M’) < u(P) < u(N) < u(M)
by Lemma B.4. This verifies the claim. U
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B.2 Filtrations

Let C be an abelian category endowed with a rank function, defined as in
the previous paragraph. Furthermore let I" be a totally ordered, uniquely
divisible, abelian group. We consider I" as a category by Ob(I") :=T" and

{«} ify<o

Then composition of morphisms in I' is already uniquely determined.

Definition B.7 A (decreasing) filtration is a functor Fil*(:): P x C — C
that assigns to an object (v, M') a subobject Fil' (M) of M. We call a filtration

1. separated if
@FiIV(M) =0
~yel’

holds for any M in C.

2. exhaustive if
hﬂFilV(M) =M
yel’
holds for any M in C.
3. left continuous if
Fil"(M) = lim Fil’ (M)
o<y

holds for any v € I' and M in C.

For a separated, exhaustive and left continuous filtration Fil*(-) and any ob-
ject M, we receive a partition of

A= (=00, A\ ] U+ (Mg, M) U (Mg, 00)
such that Fil*(-) is constant on each of the intervals above. The values
AL> Ay > >\,
are called the breaks of Fil*(-). Set:
gr' (M) := Fil™ (M) /il (M),

deggy : sk(C) = A, M — Y A - tk(gr (M), (B.1)

i=1
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. degpy (M)
pri: sk(C) \ {0} = A, M — k(M)
We call Fil*(-) a slope filtration if

1. the filtration on Fil*(M) is induced by the filtration of M, i.e.

Fil"(M) ifn > A

Fil" (Fil (M) = {FilA(M) ifn<\

2. the filtration on M/Fil*(M) is induced by the filtration of M, i.e.

0 ifn>X\
3. upi s a slope function.

In the following we assume all filtrations to be exhaustive, separated and
left continuous.

Lemma B.8 Let Fil*(+) denote a slope filtration with breaks
)\1>)\2>"'>/\7‘

and let v be the corresponding slope function. An object 0 # N of C is
semistable (with respect to p) if and only if r = 1.

Proof: We assume r = 1 and define A := \;. Then N = gr*(N) and
u(N) = A. Now take a subobject 0 # M C N. By functoriality of Fil*(-) we

obtain
Fil"(M) C Fil"(N) = 0 for all n > .

Hence the breaks n; > 1, > --- > n, of M satisfy A > n;. We obtain
A-rk(M) = A7 rk(ge (M) = rk(M) - p(M),
i=1

in particular u(N) = X\ > u(M), i.e. N is semistable. Now assume that
r > 2 and prove by induction that N is not semistable. We abbreviate
N; := Fil*(N). We consider the case r = 2 and remark that

p(N1) = A1 and p(N/Np) = A
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since Fil®(-) is a slope filtration (N; and N/Nj carry the induced filtrations).
From p(Ny) = Ay > A2 = u(N/Np) and Lemma B.1 we see that

PN/N1) < pu(N) < (),

in particular N is not semistable. Now assume that r > 2 and that N is
semistable. For any subobject 0 # M C N; we receive

Therefore N; as well as N/N; are semistable. Consider the induced slope
filtration on N/N; given by

0C Ny/N; € --- C N,/Ny = N/N,

which has r — 1 breaks and hence N/N; can not be semistable by induction.
This is a contradiction and NV is not semistable. O

From this proof we get the following additional information.
Corollary B.9 Let Fil*(:) denote a slope filtration with breaks
A >N > > A\,

and let p be the corresponding slope function. Take an object N of C and
abbreviate N; := Fil*(N) fori=1,...,r.

1. All graded pieces N;/N;_1 are semistable.
2. u(N1) =M < pu(No/Np) =X < -+ < (N /N,—1) = Ay
Proposition B.10 Let Fil*(-) denote a slope filtration with breaks
AL > A > >\,

and let p be the corresponding slope function. Take an object N of C and
abbreviate N; := Fil*(N) fori=1,...,r. Then

F:0=NyCNCN,C---CN, =N
is the unique flag (up to unique isomorphism) satisfying:
1. Foralli=1,...,r the quotient N;/N;_ is semistable.

2. u(Ny) > u(No/Ny) > -+ > pu(N/N,_1) holds.
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Furthermore Nj; is the preimage of the universal destabilizing subobject of
N/N;_1 under the canonical projection N — N/N;_;.

Proof: Let M be a universal destabilizing subobject of N and set
ji=min{i=1,...,r | M C N;}.
Consider the nonzero morphism
M — M/N;_y = N;/N;_4

between semistable objects, given by the composition of the canonical projec-
tion and the natural inclusion. We deduce (M) < pu(N;/N;j_1) by Lemma
B.4. But since M is a universal destabilizing subobject of N we also have
p(N;/N;j—1) < p(Ny) < p(M) and this implies j = 1, hence M = N;. Now
proceed inductively. U

Theorem B.11 (Harder-Narasimhan) The map Fil*(-) — upy given as
in (B.2) establishes a bijection between slope filtrations and slope function on

C.

Proof: Injectivity immediately follows from Proposition B.10. Let p be an
arbitrary slope function on C and let N denote an object of N. As indicated
in Proposition B.10 we define a flag on N inductively by defining N; to
be the preimage of the universal destabilizing subobject of N under the
canonical projection N — N/N;_; (and Ny := 0). Let M; C N/N;_; denote
an universal destabilizing subobject. Then we receive an exact sequence

0— Nj—y =+ N, = M; — 0.

M; and N;_; are semistable by definition resp. induction and hence all N;
are semistable. The existence of the rank function implies that there are only
finitely many N;, assume N, = N. Set \; := u(N;/N;_1) and

Fil*(N) := N; for all A € (A1, A
as well as Fil*(N) = N for A > A, and Fil*(N) = 0 for A > \;. This filtration
is a slope filtration and we obtain surjectivity. U
B.3 Dieudonné-Manin Classification

Since we already introduced the concept of a Harder-Narasimhan filtration
the smoothest way to proof the Classification Theorem is the one executed
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by Y. W. Ding and Y. Ouyang in their short article [DO12|. For all technical
details we likewise refer to [DO12].

Let k£ be a perfect field of characteristic p > 0 and denote by F' the field
of fractions of the ring of Witt vectors W (k). We denote by v the discrete
valuation on F' induced by W (k). As usual a p-module D over F is a finite-
dimensional vector space over F' together with at o-semilinear map ¢ where
o :=W(@) and @: k — k is the Frobenius map given by x > z.

In the following definition we introduce the Newton slope uy of a -
module D over F. The rank function is the given by the dimension of D
and the degree function is the so called Newton number ty (compare [BC09,
Definition 8.1.7.]).

Definition B.12 Let D # 0 denote a p-module over F. Choose a basis of
D and denote by A the matriz representing the map ¢ with respect to this
basis. Set

tn(D) := v(det(A))

and

pn (D) = %

Furthermore D is called isoclinic of slope A € Q if there exists a W (k)-lattice
M C D such that

P (M) = p'M,
where \ = % and d,h € Z and h > 1. (The slope A € Q does not depend on

the choice of the lattice, which follows from the third point of the subsequent
Remark B.13.)

Remark B.13 1. The Newton number ty is independent of the choice of

a basis. Indeed a change of the basis results in o-conjugation of the
matriz A, i.e. A is replaced by o(B)AB™! for some B € GL(D). Bul

v(det(o(B)AB™)) = v(det(o(B)) + v(det(A)) + v(det(B™1))
v(o(det(B)) + v(det(A)) — v(det(B))
= v(det(A)).

2. ty s additive on exact sequences, i.e. for any exact sequence
0—-Di—>D—Dy—0

of p-modules over F' the equation ty(D) = tn(D1)+tn(D2) holds. This
s obvious since det is multiplicative on such exact sequences.
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3. Any w-module D over F, that is isoclinic of slope A = % € Q, has

Newton slope uy(D) = X. Let M be a W(k)-lattice in D such that
©"(M) = p?M holds and let A denote a matriz representing o with
respect to a basis of M. Then

ty(A") - dimp(D) ™

=

=

S
I

- v(det(p?1)) - dimp (D)™

I
>

S~

4. The subsequent Lemma B.14 shows that any isoclinic p-module over F
15 semistable.

5. It is not at all clear yet that a p-module D over F', which is semistable
(with respect to py ), is indeed isoclinic of Newton slope uy(D). This
fact is a crucial part of the proof of the Classification Theorem of
Dieudonné-Manin.

From the definition we may also draw the following conclusion.

Lemma B.14 1. Let 0 — (D1, ¢1) — (D, ) LN (Da,p2) — 0 be an
exact sequence of p-modules over F' and assume that (D, @) is isoclinic.
Then (D1, 1) and (Da, ¢2) are isoclinic and pn (D, ) = pun(D1,¢1) =
pn(Da, p2).

2. Let (Dy1,¢1) and (Da,¢2) be isoclinic p-modules over F of distinct

slopes, i.e. pn(D1, 1) # pun(Da, p2) and let y: (D1, 1) — (Do, p2) be
a morphism of p-modules over F'. Then v is the zero morphism.

Proof: Let M C D denote a lattice such that o"(M) = p? M holds for suitable
h,d € Z. We see that 3(M) C D, is a lattice and (8(M)) = B(p"(M)) =
B(p*M) = p?B(M), hence (Ds, p5) is isoclinic of slope £. By the second part
of Remark B.13 we obtain

D) = tn(Ds)
_ tn(D) — pn(D)dimp(D,)

_ (D) _
= dimp(D) = pin (D)
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This proves the first point. Now assume that v: (Dy, ¢1) — (D2, ¢2) is non-

zero. Then pin(Da, ¢2) = pn(Im(y)) = pn(D1/ ker(y)) = pn (D1, ¢1) holds
by the first part and contradicts the assumption. O

Now Theorem B.11 automatically provides a filtration for any p-module
D over F. We need to show that this filtration splits and propose that the
graded pieces, i.e. the direct summands, are isoclinic of the appropriate slope.

Definition B.15 Let D be a p-module over F. Choose a W (k)-lattice M C
D and set

Mya = () ona(M)

n>0

and we call Fil};, given by

. 1
Fily (D) := Mhd[];]

for A = % € Q the Newton filtration on D.

Remark B.16 Fily (D) is independent of the choices of the lattice M and
the choice of the pair (h,d) and Fil* is indeed a filtration. See [DO12, Pro-
postion 2.1.].

There are two facts that are crucial for the proof of the Classification
Theorem but also rather technical. We will source the details out by only
stating them and providing a (well-written) reference.

Proposition B.17 Let D be a p-module over F'.
1. Fily is a slope filtration and prn, = pn.

2. Assume that 0 — Dy — D — Dy — 0 is a short exact sequence of
w-modules. Then

0 — Fily(Dy) — Fily (D) — Fily(Dy) — 0
s also exact for any \ € Q.

Proof: Let Ay > Ay > --- > A, denote the break points of Fil}, and set
D; := Filyi((D) for all i = 1,...,r. Then D;/D;_, is isoclinic of slope \; by
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[DO12, Proposition 2.6.] and hence ux(D;/D;_1) = A; by the third part of
Remark B.13. Since ¢y is additive on exact sequences we obtain

pn (D) = (Z tn(Di/Dj-1))/dimp(D)

= (> Ai-dimp(D;/Di_y))/dimp(D)

i=1

= priy (D).

In particular gy, is a slope function and hence Fil} is a slope filtration.
The second part is subject of [DO12, Proposition 2.8.|. O

Theorem B.18 (Dieudonné-Manin) Let D be a p-module over F. Then

1.
D =D,
=1

where Dy, = FilX(D)/FilN (D), Ay > Ay > --- > A, are the break
points of Fily and \g > Ay is arbitrary.

2. There exists a W (k)-lattice M C Dy, such that ¢"i(M) = p% M where
\=% eq.
(] hz

Proof: The second part of the theorem follows directly from Proposition
B.17. Set D; := Fily(D) for all i = 1,...,7. Since ¢ is bijective we may
consider D as ¢~ '-module over F' (where ¢! is semilinear with respect to
o~ '). We denote the Newton slope with respect to ¢~ by py and remark
the following. A p-module is isoclinic of slope A if and only if it is isoclinic
of slope —\ considered as an ¢~ !-module. Denote the Harder-Narasimhan
filtration corresponding to 'y by Fily and set D, := Fil (D). Then the
chain
0=D,CD,C---CD,=D

has isoclinic quotients D;/D; | of slope un(D;/D; ) = —X, for all i =
1,...,s. Now we prove the following statements by induction on s:

/

e Fily(D) =D, iy forall A€ (=X\;_,—X]andi=1,...,s.

e Fily(D) =0 for all A > —),.

’

o —)\ =

; =N—ipp foralli=1,...,s.
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e D=, D;/D_;.

In the case that s = 1 all the conditions are satisﬁed since D is isoclinic of
slope \; = —\}. By induction we know that Fil™ (D, ;) = 0 and deduce

Fily™ (D) = Fily* (D) /Fily™(D,_,) = Fily™(D/D,_,) = D/D,_; #0

by applying Proposition B.17 and the fact that D/D, , is isoclinic of slope
—\.. Similarly

Fily (D) = Fil\ (D) /Fily(D,_,) = FilA(D/D._,) =0

holds for all A > — .. This provides A; = —\, and therefore Fil,* (D) = D;.
In particular we see that D, < D/D. ,and 0 — D, , — D — D/D, | — 0
splits. We finish the proof with the remark that for all ¢ = 1,... r we have
an isomorphism

D;/D;—l = Dr—i+1/DT—i~
O

Corollary B.19 Any p-module D over F, which is semistable (with respect
to pn ), is indeed isoclinic of Newton slope pun(D).

This corollary reveals a ’"down to earth’ meaning of the Classification The-
orem. Take a p-module D of dimension d over F' and pick a basis to form the
representing matrix A of ¢. If the determinant of A is contained in W (k)*,
then we may find a basis such that the representing matrix o(B)AB~! (for
some B € GLy(W (k))) is contained in GL4(W (k)).

Definition B.20 Let A = 2 € Q be a reduced fraction with r > 1. We call
the vector space F" endowed with the semilinear map given by

eippforall 1 <i<r—1
p(e;) = s ,
p*-eg fori=r

the standard isocrystal S= of slope A = 2, which is an isoclinic p-module over

F of slope A, that does not contain non-trivial sub objects in the category of
w-modules.

Lemma B.21 Let Dy and Dy denote isoclinic p-modules over F of slope
7% and j—i The tensor product D1 ®p Dy is endowed with the structure of a

p-module over F' given by
Q=1 ® P21 di @dy > p1(dy) ® pa(da).

Then D := D1 ®p Dy s isoclinic of Newton slope %
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Proof: There exist W (k)-lattices M; C D; and My C Dy such that
o (My) = p™ My and @i (M) = p*2 M.
Then M := M, ®wau) Ms is a W (k)-lattice in D and we obtain

(M) = o1 (Mr) @w k) 03" (Ma)
=p" My Qwy p" 7 Mo
— pT281+T182M.

g

Theorem B.22 Assume that the residue field of F' is algebraically closed.
Let D be an isoclinic p-module over F' of slope X € Q, where A = 2 is a
reduced fraction. Then D is isomorphic to a direct sum of (finitely many)

copies of the standard isocrystal Ss.

Proof: See |[Ked10, Remark 14.6.5.]. O

Applying this and a comparison of dimensions delivers:

Corollary B.23 Assume that the residue field of F is algebraically closed
and abbreviate ® = ®p. Let ri,r9,81,80 € Z such that ri,79 > 1 and
(ri,s1) = 1 = (r2,52) holds. We denote the reduced fraction representing
% + % by 2. Then there exists an isomorphism

@7‘17”2
S ® Ssz =

1 r

of w-modules over F'. In particular we have the following isomorphisms of
p-modules over F':

1. S ®57 s _S®T forr,s € Z such that r > 1 and (r,s) = 1.
2. 8¢ = S?’"Sfl forr,s € Z such that r,s > 1 and (r,s) = 1.
3. ST =S¥ forr s € Z such that r > 1,5 < —1 and (r,s) = 1.

Proof: The ¢-module 851 ® 552 has dimension 71 - r5, Newton slope 2 and is
isoclinic by Lemma B. 21 By Theorem B.22 it is isomorphic to a dlrect sum
of copies of S , which has dimension . We compare the dimensions and see
that the number of copies is 2. The isomorphism stated in 1. is a special
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case of this. We prove the isomorphism in 2. by induction. For s = 1 there
is nothing to show. Assume that the statement holds for s — 1 and see that

598 2 586 g g,
= S?;Tfi2 X S;
g (S& ® Sl‘)@r572
g S?T571

r

The isomorphism in 3. is proved the same way. 0
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