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Introduction

Let p be a prime number, L a finite extension of the field Qp of p-adic num-
bers, K a spherically complete extension of L and G a locally L-analytic
group of finite dimension with center Z and Lie algebra g.

The present paper is devoted to the study of the center D(G,K)G of the
K-algebra D(G,K) of locally analytic distributions on G whose definition
is recalled in section 1.1. At the heart of our approach lies the simple ob-
servation that for locally analytic distributions on G there is a well-defined
notion of support and that the support supp(δ) is a compact subset of G for
any distribution δ ∈ D(G,K). It follows from the definition of the convolu-
tion product in D(G, K) that any invariant distribution, i.e. any element of
D(G,K)G, is supported on a union of relatively compact conjugacy classes
in G. If G is the group of L-rational points of a connected, reductive, linear
algebraic group G all of whose simple factors are L-isotropic (e.g. an L-split
group) then the only conjugacy classes of G which are relatively compact are
the trivial ones, i.e. those belonging to the elements of Z. This is due to
K.-Y. Sit (cf. [32], Theorem 2.4) generalizing work of J. Tits’. Therefore, we
are led to the investigation of the K-algebra D(G,K)Z of centrally supported
distributions on G.
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If z denotes the Lie algebra of Z then we let U(z, K) (resp. U(g, K)) be the
subalgebra of D(Z,K) (resp. D(G,K)) consisting of distributions supported
in the unit element. There is a natural continuous K-linear map

(0.1) D(Z, K)⊗̂U(z,K),ιU(g, K) −→ D(G,K)Z

of locally convex D(Z,K)-U(g, K)op-bimodules (here ι indicates the induc-
tive tensor product topology). It is the main technical result of our work that
under the assumption that K is discretely valued this map is a topological
isomorphism (cf. Proposition 1.2.12). Its proof takes up most of section 1
and relies for one thing on certain compatibility conditions for global charts
of small open subgroups of G and Z, respectively (cf. Proposition 1.3.5 and
Corollary 1.3.6). On the other hand, we make extensive use of the fact that
D(G,K) is a K-Fréchet-Stein algebra (a notion introduced by P. Schneider
and J. Teitelbaum) and a structure theorem of D(G,K) as a module over
U(g, K) after a certain completion process. The latter is due to H. Frommer
who proved it for Qp as a ground field. We generalize it to any finite exten-
sion L|Qp (cf. Theorem 1.4.2).

G acts on U(g, K) and D(G,K)Z . If G is an open subgroup of the group of
L-rational points of a connected, algebraic L-group G then we derive from
(0.1) a topological isomorphism

(0.2) D(Z,K)⊗̂U(z,K),ιU(g, K)G −→ D(G,K)G
Z

of K-algebras (cf. Theorem 2.2.1). If moreover G satisfies the hypotheses
of Sit’s theorem then D(G,K)G = D(G,K)G

Z and it remains to examine the
“infinitesimal center” U(g, K)G.

Consider g as an abelian locally L-analytic group and let S(g, K) be the sub-
algebra of D(g, K) consisting of distributions supported in 0 ∈ g. S(g, K)
and U(g, K) carry actions of G and g. We show that Duflo’s famous iso-
morphism S(g)g → U(g)g extends to a topological isomorphism S(g, K)g →
U(g, K)g of K-Fréchet algebras (cf. Proposition 2.1.5; S(g) and U(g) de-
note the symmetric and the universal enveloping algebra of g, respectively).
If g is split semisimple with split maximal toral subalgebra t and corre-
sponding Weyl group W then W naturally acts on the algebra S(t, K) of
locally analytic distributions on t supported in 0 ∈ t. We show that the
classical isomorphism S(g)g → S(t)W extends to a topological isomorphism
S(g, K)g ' S(t, K)W of K-algebras (cf. Theorem 2.1.6). It follows that

(0.3) U(g, K)g ' S(t, K)W.
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Even more is true: Just as S(t)W is a polynomial ring in n := dimL(t) vari-
ables, S(t, K)W is the algebra of holomorphic functions on the rigid analytic
affine space (An

K)an of dimension n over K (loc.cit.). Thus,

(0.4) U(g, K)g ' O((An
K)an).

This isomorphism is constructed by showing that on the category of reduced
affine K-varieties the passage to quotients by finite groups commutes with
the rigid analytification functor (cf. Proposition 2.1.7 and Remark 2.1.8).

If G is the group of L-rational points of a connected, split reductive L-group
G then (0.2) – (0.4) enable us to give two different, explicit descriptions
of D(G,K)G. Using results on the Fourier transform of Z obtained by M.
Emerton, P. Schneider and J. Teitelbaum we deduce the existence of an ex-
plicitly computable quasi-Stein rigid analytic K-variety XK and a continuous
injection

D(G,K)G −→ O(XK)

with dense image (cf. Corollary 2.3.4 and Remark 2.3.5). If T is a maximal
L-split torus of G, T := T(L) and W := NG(T )/T the corresponding Weyl
group then we also construct a topological isomorphism

D(G,K)G ' D(T, K)W
Z

of separately continuous K-algebras extending Harish-Chandra’s isomorphism
U(g)g ' S(t)W (cf. Theorem 2.4.2).

In the final section 2.5 we study the relation between D(G,K)G and the cen-
ter Ẑ of the category of smooth representations of G (known as the Bernstein
center). We show that if G satisfies the hypotheses of Sit’s theorem then the
natural map D(G,K)G → Ẑ has dense image with respect to the projective
limit topology on Ẑ if and only if G is abelian (cf. Proposition 2.5.3). Thus,
in most cases of interest there is no way of directly studying the Bernstein
center through the center of D(G,K). Yet, since Harish-Chandra’s isomor-
phism plays such a fundamental role in the representation theory of the Lie
algebra g it is to be hoped that our extension will prove important for the
theory of locally analytic representations as studied by P. Schneider and J.
Teitelbaum.

The present work comprises the author’s thesis. He is deeply indebted to
Prof. Dr. P. Schneider without whose guidance it would not have come into
existence. He is also grateful to Prof. Dr. S. Bosch and Dr. M. Strauch for
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many helpful discussions.

Conventions and notation. Throughout this paper p denotes a prime
number and L a finite extension of Qp. Let oL be the ring of integers of L with
maximal ideal mL and uniformizer πL. We assume the valuation ω on L to
be normalized such that ω(π) = 1. Let further e := ω(p) be the ramification
index of the extension L|Qp and m its degree. The absolute value | · | of L
corresponding to ω is assumed to be normalized through |p| = p−1. We let
K be a fixed spherically complete extension of L which for many results will
have to be assumed to be discretely valued (cf. subsection 1.4, in particular).
Let oK denote its ring of integers. We assume the absolute value | · | on K
to extend the one on L. If V is a locally convex vector space over K then
we let V ′ := Homcont

K (V, K) denote the space of continuous functionals on V .
We write V ′

b (resp. V ′
s ) for the locally convex K-vector space V ′ endowed

with the topology of strong (resp. weak) convergence. G will always be a
locally L-analytic group of finite dimension d with center Z. The center of
the Lie algebra g of G will be denoted by z. We also fix an exponential map
exp : g // G defined locally around zero in g.

1 Locally analytic distributions

1.1 Functoriality

Let M be a paracompact, locally L-analytic manifold of finite dimension d.
Since M is automatically strictly paracompact (cf. [26], p. 35) the locally
convex K-vector space Can(M,K) of locally analytic functions on M with
values in K can be defined as in [18], Definition 2.1.10 (see also [29], section
2). It is the locally convex inductive limit

Can(M,K) = lim−→IFI(K),

where I runs through the inductive system of all “indices”. Here an index
I is a family of pairs {(Di, ϕi)}i∈I such that (Di)i∈I is a covering of M by
disjoint open subsets and such that every Di is analytically isomorphic to an
affinoid ball in Ld via the chart ϕi of M . Further,

FI(K) :=
∏
i∈I

Fϕi
(K)

is the locally convex direct product of the K-Banach spaces Fϕi
(K) of func-

tions f : Di → K such that f ◦ ϕ−1
i is a K-valued rigid analytic function on
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the affinoid ball ϕi(Di). The space of locally analytic distributions on M is
the locally convex K-vector space

D(M,K) := Can(M,K)′b.

If (Mi)i∈I is a covering of M by disjoint open subsets Mi then there is a
topological isomorphism

Can(M, K) '
∏
i∈I

Can(Mi, K)

dualizing to a topological isomorphism

(1.1) D(M,K) '
⊕
i∈I

D(Mi, K)

(cf. [18], Korollar 2.2.4). If M is compact, then Can(M, K) is a K-vector
space of compact type and, in particular, is reflexive (cf. [25], Proposition
16.10). In this case D(M, K) is a nuclear Fréchet space (cf. [29], Lemma 2.1
and Theorem 1.3).

There is an embedding M ↪→ D(M, K), sending m ∈ M to the Dirac distri-
bution δm := (f 7→ f(m)).

Lemma 1.1.1. The subspace K[M ] of D(M,K) generated by all Dirac dis-
tributions δm, m ∈ M , is dense.

In [29] this statement is proved for a locally L-analytic group G (loc.cit.
Lemma 3.1). The group structure on G is used in order to reduce to a sit-
uation where G is compact. However, this reduction step is not necessary
because Can(M,K) is reflexive without any assumptions on M : choosing a
covering of M by disjoint compact open subsets, the isomorphism preceding
(1.1) shows that Can(M,K) is the locally convex direct product of reflexive
K-vector spaces and hence is reflexive itself (cf. [25], Proposition 9.10 and
Proposition 9.11). Therefore, all arguments remain unchanged. For the sake
of completeness we repeat the proof:

Proof of Lemma 1.1.1: Let ∆ be the closure of K[M ] in D(M,K) and ` a
continuous linear functional on D(M,K) vanishing on ∆. By reflexivity of
Can(M, K), ` corresponds to a locally analytic function f on M . To say that
` vanishes on ∆ is to say that f is identically zero on M , i.e. ` = 0. But then
∆ = D(M,K) according to the Hahn-Banach theorem (cf. [25], Corollary
9.3 applied to D(M, K)/∆). ¤

7



Now let N,M be paracompact, locally L-analytic manifolds of finite di-
mension and ϕ : N → M be a morphism. ϕ defines a K-linear map
ϕ∗ : Can(M, K) → Can(N, K) via ϕ∗(f) := f ◦ ϕ for f ∈ Can(M,K) (cf.
[10], 5.4.5).

Proposition 1.1.2. ϕ∗ is continuous with respect to the locally convex topolo-
gies defined above.

Proof: Let (Ni)i∈I be a covering of N by disjoint compact open subsets.
Since ϕ∗ is continuous if and only if for all i ∈ I the compositions

Can(M, K)
ϕ∗−→ Can(N, K) '

∏
i∈I

Can(Ni, K) −→ Can(Ni, K)

are continuous, we may assume N to be compact.

Consider the K-linear map ϕ̃ : K[N ] → D(M, K) defined by ϕ̃(δn) := δϕ(n),
n ∈ N . We show that ϕ̃ is continuous if we endow K[N ] with the sub-
space topology of D(N, K). Let (τk)k∈N be a zero sequence in D(N, K) with
τk ∈ K[N ] for all k ∈ N. Since strong convergence implies convergence in the
weak topology, we have τk(f ◦ ϕ) → 0 in K for all f ∈ Can(M, K). Hence
we have limk→∞ ϕ̃(τk) = 0 in Can(M,K)′s given its weak topology. Following
the arguments given at the end of section 2 in [29], we show that this limit
formula even holds in Can(M, K)′b = D(M,K).

As the strong dual of a reflexive K-vector space, D(M,K) is reflexive it-
self (cf. [25], Lemma 15.4). Choose a closed, bounded oK-submodule A of
Can(M, K)′s containing all ϕ̃(τk), k ∈ N. Since D(M,K) is reflexive, the
strong topology on Can(M, K)′ is admissible (cf. [25], Proposition 15.5 and
Proposition 14.4). Hence A is a closed bounded oK-submodule in D(M,K)
(loc.cit. Proposition 14.2) and therefore is compactoid (loc.cit. Proposition
15.3). Now on any such module the weak and the given topology coincide
(loc.cit. Proposition 14.5). Thus, (ϕ̃(τk))k∈N converges to zero in D(M,K).
Since D(N, K) (and hence K[N ]) is metrizable and ϕ̃ is K-linear this suffices
to show that ϕ̃ is continuous.

According to Lemma 1.1.1 ϕ̃ extends uniquely to a continuous K-linear map
D(N, K) → D(M,K), again denoted by ϕ̃. The dual map ϕ̃′ : D(M,K)′b →
D(N, K)′b is continuous with respect to the strong topologies on both sides
(loc.cit. Remark 16.1).

Let ∆M : Can(M, K) → D(M,K)′b and ∆N : Can(N,K) → D(N,K)′b be the
canonical duality maps. They are topological isomorphisms because both
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Can(M, K) and Can(N,K) are reflexive. The continuous K-linear map ψ :=
∆−1

N ◦ ϕ̃′ ◦ ∆M : Can(M,K) → Can(N, K) has the property that for all
f ∈ Can(M, K) and all n ∈ N

ψ(f)(n) = δn(ψ(f)) = ∆N(ψ(f))(δn) = ϕ̃′(∆M(f))(δn) = ∆M(f)(ϕ̃(δn))

= ∆M(f)(δϕ(n)) = δϕ(n)(f) = f(ϕ(n)) = ϕ∗(f)(n),

i.e. ψ = ϕ∗. Hence ϕ∗ is continuous. ¤

Proposition 1.1.2 can also be proved more directly using the definition of
Can(M, K) and Can(N, K) via indices (cf. [26], p. 65 or [18], Bemerkung
2.1.11). In any case, ϕ∗ dualizes to a continuous K-linear map ϕ∗ : D(N, K) →
D(M, K) which, of course, coincides with the map ϕ̃ constructed in the above
proof (ϕ̃ and ϕ∗ coincide on the dense subspace K[N ] of D(N, K)).

Proposition 1.1.3. Let ϕ : N → M be a closed embedding of paracompact,
locally L-analytic manifolds of finite dimension, i.e. an immersion and a
homeomorphism onto its closed image. Then ϕ∗ : Can(M, K) → Can(N,K)
is a strict surjection and ϕ∗ : D(N, K) → D(M, K) is a topological embed-
ding.

Proof: Let f ∈ Can(N,K) and a ∈ N . Since ϕ is an immersion there is an
open neighborhood Ua of a in N , an open neighborhood Va of ϕ(a) in M and
a locally analytic manifold Za with the following properties: ϕ restricts to a
morphism ϕa : Ua → Va and there is an isomorphism g : Va → Ua × Za such
that prUa

◦ g ◦ϕa = idUa (cf. [10], 5.7.1; here prUa
is the projection onto Ua).

It follows that f |Ua = ϕ∗a((prUa
◦ g)∗(f |Ua)) ∈ im(ϕ∗a).

Let C be a closed and open subset of M with ϕ(N) ⊆ C ⊆ ∪a∈NVa. Such a
set C exists because ϕ(N) is closed, ∪a∈NVa is open in M and M is an ul-
trametric topological space (cf. [26], p. 37). Now choose a refinement (Vi)i∈I

of the open covering (C ∩ Va)a∈N of C consisting of disjoint open subsets Vi

of C. Then (M \C, (Vi)i∈I) is a covering of M by disjoint open subsets. For
each i ∈ I choose a point a ∈ N such that Vi ⊆ Va. According to our above
construction there is a function ga ∈ Can(Va, K) such that ϕ∗a(ga) = f |Ua.
Set gi := ga|Vi ∈ Can(Vi, K) (note that Vi is open in Va) and gM\C := 0 ∈
Can(M \ C,K). Then the family g := (gM\C , (gi)i∈I) ∈ Can(M,K) satisfies
ϕ∗(g) = f proving the surjectivity of ϕ∗.

In order to show that ϕ∗ is open we may assume N and M to be compact:
if (Mi)i∈I is a covering of M by disjoint compact open subsets then (Ni :=
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ϕ−1(Mi))i∈I is a covering of N of the same type. Under the topological
isomorphisms

Can(M, K) '
∏
i∈I

Can(Mi, K) and Can(N,K) '
∏
i∈I

Can(Ni, K)

the map ϕ∗ is the direct product of the maps ϕ∗i : Can(Mi, K) → Can(Ni, K)
with ϕi := ϕ|Ni : Ni → Mi. By definition of the product topology ϕ∗ is open
if and only if all ϕ∗i are.
If M and N are compact then both Can(M, K) and Can(N, K) are locally
convex K-vector spaces of compact type. In particular, they carry the lo-
cally convex final topology with respect to a countable family of BH-spaces.
Therefore, the claim follows from [25], Proposition 8.8, and the surjectivity
of ϕ∗.

If M and N are arbitrary again with coverings (Mi)i∈I and (Ni)i∈I as above
then ϕ∗ is the direct sum of the maps (ϕi)∗ : D(Ni, K) → D(Mi, K). Since
ϕ∗i is strict surjective and (ϕi)∗ is the corresponding dual map, (ϕi)∗ is a
topological embedding according to [29], Proposition 1.2 (i). The same is
then true for ϕ∗ by [25], Lemma 5.3 (i). ¤

Remark 1.1.4. In the situation of Proposition 1.1.3 we will henceforth
write D(N, K) ⊆ D(M,K) for the topological embedding ϕ∗ : D(N,K) →
D(M, K) of locally convex K-vector spaces. We shall see later that if M
is a compact locally L-analytic group and N is a closed locally L-analytic
subgroup then ϕ∗ is even compatible with the structures of K-Fréchet-Stein
algebras on D(M, K) and D(N, K), respectively (cf. Corollary 1.4.3).

If we assume M = G to be a finite dimensional, locally L-analytic group
then D(G,K) carries the structure of a unital, associative K-algebra with
separately continuous multiplication such that the natural inclusion K[G] ↪→
D(G,K) becomes a homomorphism of rings (cf. [29], section 2). It is explic-
itly given by

(1.2) (δ · δ′)(f) = δ′(g′ 7→ δ(g 7→ f(gg′)))

with δ, δ′ ∈ D(G,K) and f ∈ Can(G,K). If G0 is an open subgroup of G
then according to (1.1)

D(G,K) '
⊕

g∈G/G0

D(g ·G0, K) '
⊕

g∈G/G0

δg ·D(G0, K).

If further H is a closed locally L-analytic subgroup of G then the topological
embedding D(H, K) ⊆ D(G,K) is a homomorphism of algebras. This is due
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to the fact that its restriction K[H] ⊆ K[G] is a homomorphism of rings
whence the claim follows from Lemma 1.1.1 and the separate continuity of
the convolution product.

1.2 The notion of support

Definition 1.2.1. The support supp(δ) of a distribution δ ∈ D(M,K) is the
complement of the largest open subset U of M such that δ(f) = 0 for all
f ∈ Can(M,K) with supp(f) ⊆ U . If C is a subset of M and V ⊆ D(M,K)
a subspace then we denote by VC the subspace of all distributions δ ∈ V
whose support is contained in C. Similarly, if W is a subspace of Can(M,K)
then WC denotes the subspace of all locally analytic functions f ∈ W with
supp(f) ⊆ C.

Remark 1.2.2. The existence of supp(δ) for a locally analytic distribution
δ ∈ D(M, K) follows from the strict paracompactness of M : We need to show
that if U1, U2 are open subsets of M such that δ(f) = 0 for all f ∈ Can(M,K)
with supp(f) ⊆ U1 or supp(f) ⊆ U2 then δ(f) = 0 for all f ∈ Can(M,K) with
supp(f) ⊆ U1 ∪ U2. So let f ∈ Can(M, K) be supported on U1 ∪ U2. Since
supp(f) is closed and U1 ∪ U2 is open in M and since M is an ultrametric
topological space, there is a closed and open subset A of M with supp(f) ⊆
A ⊆ U1 ∪ U2 (cf. [26], p. 37). Since A is strictly paracompact, we can
choose a refinement (Vi)i∈I of the covering (U1 ∩ A,U2 ∩ A) of A consisting
of disjoint open subsets Vi of A. Then f |A ∈ Can(A,K) =

∏
i∈I Can(Vi, K)

and we can write f |A = (fi)i∈I with functions fi ∈ Can(Vi, K) for all i ∈ I.
Set f j := (f j

i )i∈I , j = 1, 2, with f 1
i := 0 if Vi 6⊆ U1 ∩ A (i.e. Vi ∩ U1 = ∅),

f 1
i := fi if Vi ⊆ U1 ∩ A, f 2

i := 0 if Vi ⊆ U1 ∩ A and f 2
i := fi if Vi 6⊆ U1 ∩ A.

Then f 1, f 2 ∈ Can(A,K) with f 1 + f 2 = f |A. Extending f 1, f 2 by zero
outside of A we obtain functions f 1, f 2 ∈ Can(M, K) with f 1 + f 2 = f and
supp(f j) ⊆ Uj, j = 1, 2. By assumption δ(f) = δ(f 1) + δ(f 2) = 0.

Remark 1.2.3. It follows from (1.1) that all locally analytic distributions
on M are compactly supported, i.e. supp(δ) is a compact subset of M for all
δ ∈ D(M, K).

If M = G is again a locally L-analytic group, g ∈ G and δ ∈ D(G,K) then
according to (1.2)

(1.3) supp(δg · δ) = g · supp(δ) and supp(δ · δg) = supp(δ) · g.

More generally:

Lemma 1.2.4. If δ1, δ2 ∈ D(G,K) then supp(δ1 · δ2) ⊆ supp(δ1) · supp(δ2).
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Proof: Assume that g ∈ supp(δ1 · δ2). Then for all open subgroups H ⊆ G
there is a locally analytic function f ∈ Can(G,K) supported on gH with
(δ1δ2)(f) = δ2(h 7→ δ1(Rhf)) 6= 0 (here Rh is the right translation opera-
tor associated with h). This implies (for fixed H and f) that supp(δ2) ∩
{γ ∈ G : δ1(Rγf) 6= 0} 6= ∅, i.e. there are elements γ2 ∈ supp(δ2) and h ∈ H
such that supp(δ1)∩(supp(f)·h−1 ·γ−1

2 ) 6= ∅ (note that H is open in G). Since
supp(f) ⊆ gH there is h′ ∈ H and γ1 ∈ supp(δ1) such that γ1 = gh′h−1γ−1

2 ,
i.e. g = γ1γ2h(h′)−1. It follows that g ∈ supp(δ1) · supp(δ2) because H is
arbitrary and supp(δ1) · supp(δ2) is closed: note that according to Remark
1.2.3 supp(δ1) · supp(δ2) is even compact because both supp(δ1) and supp(δ2)
are. ¤

For a closed subset C of G the locally convex K-vector space Cω
C(G,K) of

generalized germs in C was first introduced by C.T. Féaux de Lacroix (cf.
[18], Definition 2.3.3). It is the quotient space

(1.4) Cω
C(G,K) := Can(G,K)/Can(G,K)G\C .

If C is compact then there is a topological isomorphism

Cω
C(G,K) = lim−→UCan(U,K)

with U running through the inductive system of open subsets of G containing
C and transition maps defined by restriction of functions (cf. the remarks
preceding Definition 2.3.3 of [loc.cit.]). In this case the inductive limit topol-
ogy on Cω

C(G,K) is Hausdorff. If C = {g} is a singleton we prefer to write
Cω

g (G,K) instead of Cω
{g}(G,K).

Lemma 1.2.5. Can(G,K)C is a closed subspace of Can(G,K) for any subset
C of G. If C is closed then D(G,K)C is a closed subspace of D(G,K) and
there is a topological isomorphism

(1.5) D(G,K)C ' Cω
C(G,K)′b.

If C is compact then this is an isomorphism of nuclear Fréchet spaces.

Proof: Let C be an arbitrary subset of G. As mentioned in [loc.cit.], section
2.3.1, Can(G,K)C is the intersection of the kernels of all continuous surjec-

tions Can(G,K) // // Cω
g (G, K) , g ∈ G \ C, hence is closed in Can(G,K).

If C is closed in G it follows directly from the definition of support that
D(G,K)C is the orthogonal space of Can(G,K)G\C with respect to the nat-
ural pairing

D(G,K)× Can(G,K) → K.
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Therefore, D(G,K)C is closed, as well. Further, the reflexivity of D(G,K)
implies by means of [9], IV.2.2 Corollary, that

(D(G,K)C)′b ' D(G,K)′b/D(G,K)◦C

where D(G,K)◦C denotes the orthogonal subspace of D(G,K)C with re-
spect to the pairing D(G,K)′b × D(G,K) → K. Since Can(G,K) is re-
flexive this pairing can be identified with the one above so that D(G,K)◦C '
Can(G,K)◦◦G\C = Can(G,K)G\C because Can(G,K)G\C is closed (cf. [25],

Corollary 13.5). It follows that

(D(G,K)C)′b ' Can(G,K)/Can(G,K)G\C .

But if G0 is a compact open subgroup of G then by (1.1) and [25], Lemma
5.3 (i), there is a topological isomorphism

D(G,K)C = ⊕g∈G/G0D(gG0, K)gG0∩C

showing that D(G,K)C is reflexive: by our above reasoning D(gG0, K)gG0∩C

is a closed subspace of the nuclear Fréchet space D(gG0, K) and hence is
reflexive (loc.cit. Corollary 19.3 (ii) and Proposition 19.4 (i)). Thus, (1.5)
follows. The last claim is a consequence of [29], Theorem 1.1 and Theorem
1.3 because if C is compact then Cω

C(G,K) is a locally convex K-vector space
of compact type (cf. [18], Satz 2.3.2). ¤
Corollary 1.2.6. If C is a closed subset of G such that 1 ∈ C and C ·C ⊆ C
then D(G,K)C is a closed subalgebra of D(G,K). If in addition C is compact
then D(G,K)C is a nuclear K-Fréchet algebra. ¤
Remark 1.2.7. Let G0 be a compact open subgroup of G. If H is a locally
L-analytic subgroup of G and H0 := H ∩G0 then as seen above

D(G,K)H =
⊕

g∈G/G0

D(gG0, K)gG0∩H

as locally convex K-vector spaces. Note that D(gG0, K)gG0∩H 6= 0 if and only
if gG0∩H 6= ∅ (for 0 6= δ ∈ D(gG0, K)gG0∩H we have ∅ 6= supp(δ) ⊆ gG0∩H).
For any such h ∈ gG0 ∩H

D(gG0, K)gG0∩H = D(hG0, K)hG0∩H
(1.3)
= δh ·D(G0, K)H0 ,

so that we get

(1.6) D(G,K)H =
⊕

h∈H/H0

δh ·D(G0, K)H0 ,

with h running through a set of right coset representatives for H/H0.
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According to [18], Bemerkung 3.1.2 and Satz 3.3.4, the Lie algebra g of G
acts on Can(G,K) via continuous endomorphisms defined by

x(f)(g) :=
d

dt
f(exp(−tx)g)|t=0 for x ∈ g and f ∈ Can(G,K).

This action extends to an action of the universal enveloping algebra U(g) of
g on Can(G,K).

According to Lemma 1.2.5 the space Cω
1 (G,K)′b dual to the space of germs of

locally analytic functions in 1 ∈ G is topologically isomorphic to D(G, K){1}
which is a K-Fréchet subalgebra of D(G, K) by Corollary 1.2.6. Fixing an
ordered L-basis X = (x1, . . . , xd) of the Lie algebra g of G, the action of U(g)
on Can(G,K) leads to the following explicit description of Cω

1 (G,K)′b (cf.
[29], Lemma 2.4):

Cω
1 (G,K)′b =

{∑
α

dαXα| dα ∈ K, ∀r > 0 : sup |dα · α!|r−|α| < ∞
}

,

where |α| := α1 + . . . + αd and α! := α1! · . . . · αd!. Further, Xα := xα1
1 · · · xαd

d

for a multi-index α ∈ Nd, and any such monomial is viewed as a distribution
via

(1.7) Xα(f) = ((−x1)
α1 ◦ . . . ◦ (−xd)

αd(f))(1) for f ∈ Can(G,K).

Finally, the Fréchet topology of Cω
1 (G, K)′b is defined by the family of norms

(ν ′r)r>0 with ν ′r(
∑

α dαXα) := sup |dα · α!|r−|α|.

The explicit description above shows that letting (z 7→ ż) denote the unique
anti-automorphism of U(g) ⊗L K extending multiplication by −1 on g, the
natural homomorphism (z 7→ (f 7→ ż(f)(1))) : U(g) ⊗L K → Cω

1 (G,K)′b of
K-algebras is injective. In fact, we can prove:

Proposition 1.2.8. U(g)⊗L K is dense in Cω
1 (G, K)′b. We have

(1.8) Cω
1 (G,K)′b =

{∑
α

dαXα| dα ∈ K, ∀r > 0 : sup |dα|r−|α| < ∞
}

and the Fréchet topology of Cω
1 (G,K)′b can be defined by the family of norms

(νr)r>0 with νr(
∑

α dαXα) := supα |dα|r−|α|.
Proof: Since |α!| ≤ 1 the right hand side of (1.8) is contained in Cω

1 (G,K)′b.
Conversely,

|α!|−1 ≤ p|α|/(p−1)
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(cf. [24], Lemma 5.3.1), so that if supα |dα|r−|α| < ∞ for all r > 0 then also
supα |dα/α!|r−|α| < ∞ for all r > 0. This proves the reverse inclusion as well
as the fact that the two families of norms (ν ′r)r>0 and (νr)r>0 are equivalent.
It is clear that U(g)⊗L K is dense in the completion

{∑
α

dαXα | lim
|α|→∞

|dα|r−|α| = 0

}

of Cω
1 (G,K)′b with respect to any norm νr. But then it is also dense in the

topological projective limit (cf. [7], I.4.4 Corollaire). ¤
Remark 1.2.9. When working with Cω

1 (G,K)′b we will henceforth use the
description given by (1.8) and assume its topology to be defined by the family
of norms (νr)r>0. To simplify notation we write U(g, K) := Cω

1 (G,K)′b for
the K-Fréchet algebra of all locally analytic distributions on G supported in
1 ∈ G.

If H is a closed locally L-analytic subgroup of G there are two closed subalge-
bras of D(G,K) which are canonically attached to H. On the one hand, there
is D(H,K) := Can(H, K)′b with inclusion morphism D(H,K) ⊆ D(G,K)
coming from the canonical restriction map

Can(G, K) // // Can(H,K)

(cf. Proposition 1.1.3). According to Lemma 1.1.1 the group ring K[H] ⊆
D(H, K) is dense. On the other hand, there is the algebra D(G,K)H which
contains D(H, K): note that for any subset C of H we have D(H, K)C ⊆
D(G,K)C .
The only difference between D(H, K) and D(G,K)H is the fact that ac-
cording to Lemma 1.2.4 D(G,K)H is a (two-sided) U(g, K)-module whereas
D(H, K) is not:

Lemma 1.2.10. If C is a closed subset of G then the U(g, K)-submodule of
D(G,K)C generated by all Dirac distributions δc, c ∈ C, is dense.

Proof: Let ∆ be the closure of
∑

c∈C δc · U(g, K) in D(G,K). It follows
from Lemma 1.2.4 and Lemma 1.2.5 that ∆ ⊆ D(G,K)C . During the proof
of Lemma 1.2.5 we showed that the space Can(G, K)/Can(G, K)G\C is the
strong dual of the reflexive space D(G,K)C . Hence it is reflexive itself (cf.
[25], Lemma 15.4). Let ` be a continuous functional on D(G,K)C van-
ishing on ∆. By (1.5) and reflexivity, ` corresponds to an element f of
Can(G,K)/Can(G,K)G\C . To say ` vanishes on ∆ is to say that any repre-

sentative f of f in Can(G,K) vanishes in an open neighborhood of C. Hence
f ∈ Can(G,K)G\C , i.e. f = 0, and ∆ = D(G,K)C by the Hahn-Banach
theorem. ¤
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Remark 1.2.11. Let B and C be locally convex K-vector spaces carrying
separately continuous K-algebra structures. Assume that B and C possess a
common K-subalgebra A. If B⊗̂K,ιC denotes the Hausdorff completion of the
algebraic tensor product B⊗K,ι C endowed with its inductive tensor product
topology (cf. [25], section 17) then we let B⊗̂A,ιC be the quotient of B⊗̂K,ιC
by the closure of the subspace generated by all elements of the form

ba⊗ c− b⊗ ac, a ∈ A, b ∈ B and c ∈ C.

We endow B⊗̂A,ιC with the corresponding quotient topology. If B and C
are K-Fréchet spaces then the inductive and the projective tensor product
topologies on B ⊗K C coincide. Therefore, we omit the ι from the notation
and simply write B⊗̂KC and B⊗̂AC.
Note that B⊗̂A,ιC is naturally a B-Cop-bimodule where Cop is the K-algebra
whose underlying vector space is C and whose multiplication is defined by
(c, c′) 7→ c′ ·c: any element b ∈ B (resp. c ∈ C) defines a continuous K-linear
endomorphism `b of B (resp. rc of C) by left (resp. right) multiplication. The
continuous K-linear endomorphism `b ⊗ rc of B ⊗K,ι C extends to B⊗̂K,ιC
and leaves invariant the subspace constructed above. If A is contained in the
center of B and C then, similarly, B⊗̂A,ιC is naturally a module over B⊗K C
(via `b ⊗ `c) and even over B ⊗A C.

Let h denote the Lie algebra of H. Since the multiplication map

(1.9) D(H, K)× U(g, K) −→ D(G,K)H

is K-bilinear and separately continuous it induces a continuous K-linear map

D(H, K)⊗K,ι U(g, K) −→ D(G,K)H ,

extending to a continuous K-linear map

(1.10) D(H,K)⊗̂K,ιU(g, K) −→ D(G,K)H .

Let U be the closure of the subspace of D(H,K)⊗̂K,ιU(g, K) generated by
all elements of the form

λy⊗ x− λ⊗ yx with λ ∈ D(H,K), y ∈ U(h, K) and x ∈ U(g, K).

Since this space is contained in the kernel of the multiplication map (1.10),
the latter induces a continuous K-linear map

µ : D(H, K)⊗̂U(h,K),ιU(g, K) −→ D(G,K)H .
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Proposition 1.2.12. If K is discretely valued then µ is a topological iso-
morphism of D(H,K)-U(g, K)op-bimodules.

To prove the proposition we will first reduce to a local situation and then use
results on the K-Fréchet-Stein structures of D(H, K) and D(G,K). These
will be proved in subsection 1.4 under the assumption that K is discretely
valued.

Lemma 1.2.13. Let (Vi)i∈I and W be locally convex K-vector spaces. Then
the canonical K-linear bijection

(
⊕
i∈I

Vi)⊗K,ι W '
⊕
i∈I

(Vi ⊗K,ι W )

is a topological isomorphism.

Proof: For i ∈ I we denote by ϕi : Vi → V := ⊕i∈IVi the natural inclusion.
The composite map

Vi ×W
ϕi× id// V ×W // V ⊗K,ι W

is separately continuous so that by definition of the inductive tensor prod-
uct topology the induced map Vi ⊗K,ι W → V ⊗K,ι W is continuous. This
being true for all i ∈ I, the canonical K-linear bijection ⊕i∈I(Vi ⊗K,ι W ) →
(⊕i∈IVi)⊗K,ι W is continuous.
Conversely, if w ∈ W is fixed then the K-linear map

· ⊗ w : Vi −→ Vi ⊗K,ι W −→
⊕
i∈I

(Vi ⊗K,ι W )

is continuous for any i ∈ I. Therefore, so is the induced map · ⊗ w : V →
⊕i∈I(Vi ⊗K,ι W ). If on the other hand v = (vi)i∈I ∈ V is fixed then for each
i ∈ I the K-linear map

vi ⊗ · : W −→ Vi ⊗K,ι W −→
⊕
i∈I

(Vi ⊗K,ι W )

is continuous. Hence so is the finite sum (
∑

i∈I vi⊗·) ∈ HomK(W,⊕i∈I(Vi⊗K,ι

W )). Therefore, the natural map V × W → ⊕i∈I(Vi ⊗K,ι W ) induces a
continuous K-linear map V ⊗K,ι W → ⊕i∈I(Vi ⊗K,ι W ) inverse to the one
above. ¤
Corollary 1.2.14. If (Vi)i∈I and W are Hausdorff locally convex K-vector
spaces then there is a topological isomorphism

(
⊕
i∈I

Vi)⊗̂K,ιW '
⊕
i∈I

(Vi⊗̂K,ιW ).
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Proof: This follows from the above lemma together with [25], Lemma 7.8.¤

Proof of Proposition 1.2.12: We will prove in Corollary 1.3.6 and Corollary
1.4.3 that there is a compact open subgroup G0 of G with the following
properties: D(G0, K) is a K-Fréchet-Stein algebra with respect to a family
of norms || · ||r, r ∈ pQ, 1/p < r < 1, such that the completion Dr(G0, K) of
D(G0, K) with respect to the norm || · ||r is finitely generated and free as a
module over the closure Ur(g, K) of U(g, K) in Dr(G0, K); if H0 := H ∩G0

then D(H0, K) is a K-Fréchet-Stein algebra with respect to the family of
norms || · ||r restricted to D(H0, K); for each r the closure Dr(H0, K) of
D(H0, K) in Dr(G0, K) (' the Hausdorff completion of D(H0, K) with re-
spect to the norm || · ||r) is finitely generated and free as a module over the
closure Ur(h, K) of U(h, K) in Dr(H0, K); Ur(g, K) and Ur(h, K) are noethe-
rian K-Banach algebras.

By (1.6) and Corollary 1.2.14 the map (1.10) can be viewed as a continuous
K-linear map

(1.11)
⊕

h∈H/H0

(D(hH0, K)⊗̂KU(g, K)) −→
⊕

h∈H/H0

δh ·D(G0, K)H0 .

Considering supports of distributions on both sides, we see that it is the
direct sum of the continuous K-linear maps

D(hH0, K)⊗̂KU(g, K) −→ δh ·D(G0, K)H0

induced by multiplication, with h running through a set of right coset repre-
sentatives for H/H0 containing 1 ∈ H0. Under the topological isomorphism

D(H, K)⊗̂K,ιU(g, K) ' ⊕h∈H/H0(D(hH0, K)⊗̂KU(g, K))

the closed subspace U constructed above corresponds to the locally convex
direct sum ⊕h∈H/H0Uh, where Uh is the closure in D(hH0, K)⊗̂KU(g, K) of
the subspace generated by all elements of the form

δhλy⊗ x− δhλ⊗ yx with λ ∈ D(H0, K), y ∈ U(h, K) and x ∈ U(g, K).

By [25], Lemma 5.3, (1.11) induces a continuous K-linear map
⊕

h∈H/H0

(D(hH0, K)⊗̂KU(g, K))/Uh −→
⊕

h∈H/H0

δh ·D(G0, K)H0 .

Hence, restricting to the case h = 1, we only need to show that the induced
continuous K-linear map

D(H0, K)⊗̂U(h,K)U(g, K) −→ D(G0, K)H0
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is a topological isomorphism. We again denote this map by µ.
Let r ∈ pQ with 1/p < r < 1. The multiplication in Dr(G0, K) induces a
continuous K-linear map

µr : Dr(H0, K)⊗K Ur(g, K) −→ Dr(G0, K)H0 ;

here Dr(G0, K)H0 denotes the closure of D(G0, K)H0 in Dr(G0, K). In the
proof of Corollary 1.4.3 we will show that Dr(G0, K)H0 is free and finitely
generated as a module over Ur(g, K) and has a basis (bα)α∈A′ in K[H0] which
is simultaneously a basis for the free Ur(h, K)-module Dr(H0, K). Hence µr

induces a continuous K-linear bijection

(1.12) Dr(H0, K)⊗Ur(h,K) Ur(g, K) −→ Dr(G0, K)H0 .

Note that both Dr(H0, K) and Ur(g, K) are complete normed, continuous
modules over the noetherian K-Banach algebra Ur(h, K). Further, Dr(H0, K)
is a finitely generated, free Ur(h, K)-module and therefore topologically iso-
morphic to a direct sum of copies of Ur(h, K) (cf. [30], Proposition 2.1 (iii)).
A straightforward generalization to the non-commutative setting of [4], 2.1.7
Proposition 6, shows that Dr(H0, K)⊗Ur(h,K) Ur(g, K) is a complete normed
space with respect to the tensor product norm. By the open mapping the-
orem (1.12) then is a topological isomorphism. In addition, 3.1 Corollaire 1
of [8] shows that

Dr(H0, K)⊗Ur(h,K) Ur(g, K) = (Dr(H0, K)⊗K Ur(g, K))/kerµr

' (Dr(H0, K)⊗̂KUr(g, K))/kerµr.

Here kerµr is the closure of kerµr in Dr(H0, K)⊗̂KUr(g, K). Thus, for each
r as above, we obtain a short exact sequence of strict continuous K-linear
maps between Banach spaces

0 −→ kerµr −→ Dr(H0, K)⊗̂KUr(g, K) −→ Dr(G0, K)H0 −→ 0.

Since for r′ < r the inclusion maps Dr(H0, K) ⊆ Dr′(H0, K), Dr(G0, K) ⊆
Dr′(G0, K), Ur(h, K) ⊆ Ur′(h, K) and Ur(g, K) ⊆ Ur′(g, K) are continu-
ous homomorphisms of K-Banach algebras, the family of all these exact
sequences forms a projective system. Recall that U1 was defined to be the
closure of the subspace generated in D(H0, K)⊗̂KU(g, K) by all elements of
the form

λy⊗ x− λ⊗ yx with λ ∈ D(H0, K), y ∈ U(h, K) and x ∈ U(g, K).

Since by (1.12) the kernel of µr is the vector space generated by all elements
of the form

λy⊗ x− λ⊗ yx with λ ∈ Dr(H0, K), y ∈ Ur(h, K) and x ∈ Ur(g, K)
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we obtain from the definition of the tensor product norm that U1 ⊆ kerµr is
dense for all r. Therefore, the system (kerµr) with r ∈ pQ and 1/p < r < 1
satisfies the Mittag-Leffler property as formulated in [21], 13.2.4. By [loc.cit],
13.2.2, we obtain an exact sequence

0 −→ U1 = lim←−rkerµr −→ D(H0, K)⊗̂KU(g, K) −→ D(G0, K)H0 −→ 0,

because

lim←−r(Dr(H0, K)⊗̂KUr(g, K)) ' (lim←−rDr(H0, K))⊗̂K(lim←−rUr(g, K))

(cf. [17], Proposition 1.1.29). It induces a continuous K-linear bijection

D(H0, K)⊗̂U(h,K)U(g, K) −→ D(G0, K)H0

which is a topological isomorphism by the open mapping theorem. That it
coincides with µ is clear from the fact that for each r the restriction of µr to
D(H0, K)⊗K U(g, K) is induced by the multiplication in D(G0, K). ¤

Remark 1.2.15. Assume there is a compact open subgroup G0 of G and
a closed locally L-analytic subgroup C0 of G0 such that G0 = H0 × C0 as
locally L-analytic groups with H0 := H ∩ G0. Then the above proposition
can be proved without any allusion to Fréchet-Stein structures and simplifies
in the following manner: According to Proposition A.3 and Remark A.4 of
[31] there is a topological isomorphism

D(H0, K)⊗̂KD(C0, K) −→ D(G0, K)

induced by multiplication. It follows from Lemma 1.2.10 and [25], Corollary
17.5 (ii) and Proposition 19.10 (i), that the preimage of D(G0, K)H0 under
this map is D(H0, K)⊗̂KU(c, K) where c is the Lie algebra of C0. Hence we
obtain from Corollary 1.2.14 that

D(G,K)H ' D(H, K)⊗̂K,ιU(c, K).

1.3 Restriction of the base field

Let L0|Qp be a finite extension of fields with L0 ⊆ L and let RL|L0 be the
functor “restriction of the base field from L to L0” from the category of
paracompact locally L-analytic manifolds to the category of locally analytic
manifolds of the same type over L0 (cf. [10], 5.14; note that if M is a locally
L-analytic manifold then the underlying topological spaces of M and RL|L0M
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are identical).

In the special case of a locally L-analytic group G there is a natural embed-
ding

τ : Can(G,K) −→ Can(RL|L0G,K)

mapping Can(G,K) homeomorphically onto its closed image (cf. [28], Lemma
1.2; note that its proof does not make use of the commutativity assumption
on G).

Lemma 1.3.1. The dual map τ ′ : D(RL|L0G,K) → D(G,K) is a strict
surjection and a homomorphism of K-algebras.

Proof: Since τ ′ restricts distributions on RL|L0G to the subspace Can(G,K) of
Can(RL|L0G,K) it is clear that τ ′ is a homomorphism of K-algebras. Choose
a compact open subgroup G0 of G. Then τ is the direct product of the
maps τg : Can(gG0, K) → Can(gRL|L0G0, K), g ∈ G/G0, and dually τ ′

is the direct sum of the maps τ ′g : D(gRL|L0G0, K) → D(gG0, K). Since

D(gRL|L0G0, K) = δg ·D(RL|L0G0, K), likewise for gG0, and since τ ′ is a ho-
momorphism of algebras we only need to show that τ ′1 is a strict surjection.
But τ1 is a topological embedding of spaces of compact type so that the claim
follows from [29], Proposition 1.2 (i). ¤

Consider the ideal I := ker(τ ′) of D(RL|L0G,K). It is the orthogonal sub-
space of Can(G,K) with respect to the natural pairing

D(RL|L0G,K)× Can(RL|L0G,K) −→ K.

Since D(RL|L0G,K) is reflexive we obtain by means of [9], IV.2.2 Corollary,
that I ′b is topologically isomorphic to Can(RL|L0G,K)/Can(G,K). The topo-
logical isomorphism I ' ⊕g∈G/G0ker(τ ′g) for a compact open subgroup G0 of
G shows that I itself is reflexive: For any g ∈ G/G0 the kernel ker(τ ′g) of τ ′g is
a closed subspace of a nuclear Fréchet space, hence is itself a nuclear Fréchet
space and therefore reflexive (cf. [25], Corollary 19.3 (ii) and Proposition
19.4 (i)). Thus, there is a topological isomorphism

(1.13) I ' (Can(RL|L0G,K)/Can(G,K))′b.

In order to give an explicit description of the locally L-analytic functions
inside Can(RL|L0G,K) we follow the arguments given in section 1 of [28].
Let gL be the Lie algebra of G. If we write gL0 for gL viewed as a Lie algebra
over L0 then gL0 can be identified with the Lie algebra of RL|L0G and exp is
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also an exponential map for RL|L0G. gL0 (resp. gL) acts on Can(RL|L0G,K)
(resp. Can(G,K)) via continuous endomorphisms defined by

x(f)(g) :=
d

dt
f(exp(−tx)g)|t=0

for x ∈ gL0 (viewed also as an element of gL) and f ∈ Can(RL|L0G,K)
(resp. f ∈ Can(G,K)). The orbit maps of these actions are L0- and L-
linear, respectively, and the action of gL on Can(G,K) is compatible with
the inclusion Can(G,K) ⊆ Can(RL|L0G,K).

Lemma 1.3.2. Can(G,K) is the closed subspace of all those functions f ∈
Can(RL|L0G,K) for which (tx)(f) = t · x(f) for all t ∈ L and all x ∈ gL0.

Proof: Let W be the subspace of Can(RL|L0G,K) consisting of all functions
with the above property. Then Can(G,K) ⊆ W and we need to show the
reverse inclusion. Let f ∈ W . If x, y ∈ g and t ∈ L then

(tx)(y(f)) = y((tx)(f)) + [tx, y](f)

= y(t · x(f)) + (t · [x, y])(f)

= t · y(x(f)) + t · [x, y](f) = t · x(y(f))

shows that W is gL0-invariant. Therefore, the proof of [loc.cit.], Lemma 1.1,
generalizes to the non-commutative setting in the following manner: Fix an
L-basis X = (x1, . . . , xd) of gL. Choose an orthonormal basis (v1, . . . , vn) of
L as a vector space over L0 and put Y := (v1x1, v2x1, . . . , vnxd) which is an
L0-basis of gL0 . The corresponding system θL0 of canonical coordinates of
the second kind is defined by

θL0(
∑
i,j

tijvixj) := exp(t11v1x1)exp(t21v2x1) · · · exp(tndvnxd)

for tij sufficiently close to zero in L0 (cf. [5], III.4.3 Proposition 3). Given
g ∈ RL|L0G we have the expansion

(Rgf ◦ θL0)(
∑
i,j

tijvixj) =
∑

β∈Nn×Nd

cβt
β

converging for all tij near zero in L0; here cβ ∈ K, tβ :=
∏

i,j t
βij

ij and Rg

is the right translation operator associated with g. Letting Yβ(Rgf) :=
(v1x1)

β11 ◦ (v2x1)
β21 ◦ · · · ◦ (vnxd)

βnd(Rgf) it follows from the remarks after
Lemma 4.7.2 of [18] that

cβ =
(−1)|β|

β!
Yβ(Rgf)(1) =

(−1)|β|

β!
Yβ(f)(g)
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for all β ∈ Nn × Nd where |β| and β! are as in subsection 1.2. Letting
ϕ(β) := (α1, . . . , αd) with αj := β1j + . . . + βnj, bϕ(β) := c(α1,0,...,α2,0,...,αd,0,...)

and Xϕ(β)(Rgf) := xα1
1 ◦ · · · ◦ xαd

d (Rgf) we deduce

Yβ(f)(g) =
n∏

i=1

vβi1+...+βid
i · Xϕ(β)(f)(g)

from the assumption on f and the gL0-invariance of W . Thus

cβ = bϕ(β)
ϕ(β)!

β!

n∏
i=1

vβi1+...+βid
i

for all β. Since this is precisely the relation given in the proof of [28], Lemma
1.1, we may conclude that f is locally L-analytic at g: Setting tj := t1jv1 +
. . . + tnjvn we have

(Rgf ◦ θL0)(
∑
i,j

tijvixj) = (Rgf ◦ θL)(
∑

tjxj) =
∑

α∈Nd

bαtα1
1 · · · tαd

d

where θL denotes the system of canonical coordinates of the second kind
corresponding to the L-basis X of gL. Note that for all tij sufficiently close
to zero in L0 we have

θL0(
∑
i,j

tijvixj) = exp(t11v1x1)exp(t21v2x1) · · · exp(tndvnxd)

= exp(t1x1) · · · exp(tdxd) = θL(
∑

j

tjxj)

because [vixj, vkxj] = 0 in gL. ¤
Lemma 1.3.3. If J := I ∩ (U(gL0)⊗L0 K) then the vector space

∑
g∈G δg · J

is dense in I.

Proof: Let ∆ be the closure of
∑

g∈G δg · J in D(RL|L0G, K) and ` a con-
tinuous functional on I vanishing on ∆. By (1.13) and the reflexivity of
the space Can(RL|L0G,K)/Can(G, K), ` can be identified with an element
f ∈ Can(RL|L0G,K)/Can(G,K) represented by f ∈ Can(RL|L0G,K). Let
t ∈ L and x ∈ gL0 . Since (tx′) − t · x′ ∈ J for all x′ ∈ gL0 , ` vanishing on ∆
implies that for all g ∈ G

((tx)(f)− t · x(f))(g) = (δg · (tx′)− δg · t · x′)(f) = 0,

where x′ := Ad(g−1)(−x). Here we use that g ·exp(sx) ·g−1 = exp(s ·Ad(g)(x))
for all s sufficiently close to zero in L0 (cf. [5], III.4.4 Corollaire 3). Accord-
ing to Lemma 1.3.2 we have f ∈ Can(G,K) whence ` = 0 and ∆ = I by the
Hahn-Banach theorem. ¤
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Lemma 1.3.4. Let C ⊆ G be a closed subset, considered also as a subset of
RL|L0G. Then the image of D(RL|L0G,K)C under τ ′ is dense in D(G, K)C.

Proof: That τ ′(D(RL|L0G,K)C) is contained in D(G, K)C follows from

Can(G,K)G\C = Can(RL|L0G0, K)G\C ∩ Can(G,K).

The same equation shows that τ induces a continuous injection

Can(G,K)/Can(G,K)G\C ↪→ Can(RL|L0G, K)/Can(RL|L0G,K)RL|L0G\C .

We know from the proof of Lemma 1.2.10 that the locally convex K-vector
spaces on both sides are reflexive so that as a consequence of the Hahn-
Banach Theorem the dual map τ ′ : D(RL|L0G,K)C → D(G,K)C has to
have dense image. ¤

Now assume L0 = Qp. For further applications we need the following tech-
nical results:

Proposition 1.3.5. Let G be a locally L-analytic group. Then there is an
open subgroup G0 of G and a Zp-lattice Λ ⊂ gQp with the following properties:

i) there is an L-basis (x1, . . . , xd) of gL and a Zp-basis (v1, . . . , vm) of oL

such that (v1x1, . . . , vmxd) is a Zp basis of Λ;

ii) the corresponding canonical coordinates of the second kind give a well
defined isomorphism θQp : Λ → RL|QpG0 of locally Qp-analytic mani-
folds;

iii) RL|QpG0 is a uniform pro-p group (cf. [14], Definition 4.1).

Proof: Let (x1, . . . , xd) be an L-basis of gL and θL the corresponding system
of canonical coordinates of the second kind defined locally around zero in g.
Since θL is étale in 0 ∈ gL we may choose an open subgroup G′ of G and an
open neighborhood U of zero in gL such that θL : U → G′ is an isomorphism
of locally L-analytic manifolds. Let ΦL be its inverse. According to [5], III.7.3
Théorème 4 and its proof there is λ ∈ L∗ such that⊕imLxi ⊆ λ·ΦL(G′) = λ·U
and the group structure on ⊕iλ

−1mLxi obtained by transport of structure
from G′ is given by formal power series with coefficients in oL: if g, h ∈ G′

and λ · ΦL(g) =
∑

i λixi, λ · ΦL(h) =
∑

i µixi with λi, µi ∈ mL then

(1.14) λ · ΦL(gh−1) =
∑

i

Fi(λ1, . . . , λd, µ1, . . . , µd)xi
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where Fi(X1, . . . , Xd, Y1, . . . , Yd) ∈ oL[[(Xi), (Yi)]] without constant term.

If p is odd set Λ := ⊕iλ
−1me

Lxi and Λ := ⊕iλ
−1m2e

L xi otherwise. By [loc.cit.],
III.7.4 Proposition 5, G0 := θL(Λ) is an open subgroup of G. Choosing a
Zp-basis (v1, . . . , vm) of oL the canonical coordinates of the second kind

θQp : gQp
// RL|QpG

corresponding to the decomposition gQp = ⊕i,jQpλ
−1vjxi coincide with θL

(cf. the proof of Lemma 1.3.2).
Since me

L = poL (resp. 4oL if p = 2) (i) and (ii) are proved if for (i) we choose
(λ−1pxi) as an L-basis of gL (resp. (λ−14xi) if p = 2).

It remains to show that θQp(Λ) = RL|QpG0 is a uniform pro-p group. Accord-
ing to [14], Theorem 8.31, we only need to show that RL|QpG0 is a standard
group in the sense of [loc.cit.], Definition 8.22. Let g, h ∈ RL|QpG0 and write
λ · θ−1

Qp
(g) =

∑
i,j λijvjxi, λ · θ−1

Qp
(h) =

∑
i,j µijvjxi with λij, µij ∈ pZp (resp.

4Z2 if p = 2). Then according to (1.14)

λ · θ−1
Qp

(gh−1) = λ · ΦL(gh−1) =
∑

i

Fi((
∑

r

λkrvr)k, (
∑

r

µkrvr)k)xi

=
∑

i

∑
j

Gij((λkr), (µkr))vjxi.

Since vj ∈ oL for all j = 1, . . . , ` we have vivj =
∑

k cijkvk with cijk ∈ Zp.
Using this, one obtains that the functions Gij are given by formal power
series with coefficients in Zp. Since λ · θ−1

Qp
: RL|QpG0 → ⊕i,jpZpvjxi (resp.

⊕i,j4Z2vjxi if p = 2) is a global chart, the claim follows. ¤

Recall [14], Theorem 4.9, that if (a1, . . . , ad) is a basis of topological gen-
erators of a uniform pro-p group G0, d = dim G0, then every element has
a unique expression of the form aλ1

1 · · · aλd
d with λ1, . . . , λd ∈ Zp. If H0 is a

closed, uniform subgroup of G0 then we say that H0 is compatible with G0

if there is a basis of topological generators of H0 that can be extended to a
basis of topological generators of G0.

Corollary 1.3.6. Let G be a locally L-analytic group and H a closed locally
L-analytic subgroup. Then there is an open subgroup G0 of G as in Propo-
sition 1.3.5 such that H0 := H ∩ G0, as an open subgroup of H, satisfies
conditions (i) – (iii) of Proposition 1.3.5 and RL|QpH0 is compatible with
RL|QpG0.
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Proof: Extend an L-basis (x1, . . . , xj) of the Lie algebra hL of H to an L-
basis (x1, . . . , xd) of the Lie algebra gL of G, j ≤ d. When restricted to
hL the corresponding system θL : gL

// G of canonical coordinates of the
second kind is a system of canonical coordinates of the second kind for H
because exp restricts to an exponential map for H. Since this system is étale
in 0 ∈ hL we may assume U and G′ from the proof of Proposition 1.3.5 to
satisfy ΦL(H ∩ G′) ⊆ hL. Starting with G′ define Λ ⊆ U and G0 ⊆ G′ as
before. Then Λ′ := Λ ∩ hL is an open neighborhood of 0 in hL and a direct
summand of Λ. Indeed, Λ′ = ⊕j

i=1λ
−1me

Lxi (resp. ⊕j
i=1λ

−1m2e
L xi if p = 2). If

x ∈ Λ is such that θL(x) ∈ G0∩H then x ∈ Λ∩ΦL(G0∩H) ⊆ Λ∩ΦL(G′∩H) ⊆
Λ∩ hL = Λ′. Therefore, the restriction of θL from Λ to Λ′ is an isomorphism
Λ′ → H0 := G0 ∩H of locally L-analytic manifolds. It follows as above that
H0 satisfies conditions (i) – (iii) of Proposition 1.3.5 with respect to Λ′. By
definition of the canonical coordinates of the second kind Λ (resp. Λ′) gives
rise to the basis of topological generators (exp(vkxi)), 1 ≤ k ≤ m, 1 ≤ i ≤ d,
(resp. 1 ≤ k ≤ m, 1 ≤ i ≤ j) of RL|QpG0 (resp. RL|QpH0): Note that
exp(n · x) = exp(x)n for all x ∈ Λ and all n ∈ Z. Thus, RL|QpG0 and RL|QpH0

are compatible. ¤

1.4 Explicit Fréchet-Stein structures

The notion of K-Fréchet-Stein algebra was first introduced by P. Schneider
and J. Teitelbaum (cf. [30], section 3): A K-Fréchet algebra A is called a
K-Fréchet-Stein algebra if there is a sequence q1 ≤ q2 ≤ . . . of continuous
algebra seminorms on A defining its Fréchet topology such that for all n ∈ N
the Hausdorff completion Aqn of A with respect to qn is a (left) noetherian
K-Banach algebra and a flat Aqn+1-module via the natural map Aqn+1 → Aqn .
In this subsection we will assume K to be discretely valued.

Let G0 be a uniform pro-p group with a basis (a1, . . . , ad) of topological
generators. Putting bi := ai − 1 and bα := bα1

1 . . . bαd
d in K[G0] for a multi-

index α ∈ Nd, it is shown in section 4 of [loc.cit.] that D(G0, K) admits the
explicit description

D(G0, K) =

{∑
α

dαb
α | dα ∈ K, ∀ 0 < r < 1 : sup

α
|dα|rτα < ∞

}
.

Here τα =
∑

τiαi with rational numbers τi depending on the structure of
G0 as a p-valued group. The Fréchet topology of D(G0, K) can be defined
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by the family of norms (|| · ||r)0<r<1 given by

∣∣∣∣∣

∣∣∣∣∣
∑

α

dαb
α

∣∣∣∣∣

∣∣∣∣∣
r

:= sup
α
|dα|rτα.

The norms || · ||r are independent of the choice of a basis (a1, . . . , ad) of
topological generators. If we let Dr(G0, K) = {∑α dαb

α | lim|α|→∞ |dα|rτα =
0} be the completion of D(G0, K) with respect to the norm || · ||r then

D(G0, K) = lim←−rDr(G0, K)

as K-Fréchet spaces. We summarize some of the main results of [30] in the
following theorem (loc.cit. Theorem 4.5 and Theorem 4.9):

Theorem (Schneider-Teitelbaum). If K is discretely valued, r ∈ pQ and
1/p < r < 1 then the algebra structure of D(G0, K) extends to Dr(G0, K)
making it a K-Banach algebra with multiplicative norm || · ||r. Moreover, for
any two real numbers r, r′ ∈ pQ with 1/p < r′ < r < 1 the natural inclusion
Dr(G0, K) ↪→ Dr′(G0, K) is a flat map of noetherian rings. In other words:
D(G0, K) is a K-Fréchet-Stein algebra with respect to the family of norms
|| · ||r, r ∈ pQ, 1/p < r < 1.

For 0 < r < 1 we let Ur(g, K) be the closure of U(g, K) in Dr(G0, K) with
respect to the norm || · ||r. A careful analysis of orthogonal bases (cf. [20],
section 1) leads to the following result (loc.cit. 1.4 Lemma 3, Corollaries 1,
2 and 3):

Theorem (Frommer). If r ∈ pQ and 1/p < r < 1 then Ur(g, K) is a
noetherian subalgebra of Dr(G0, K). In fact, there are integers `i > 0 de-
pending on r such that Dr(G0, K) is free as a (right) module over Ur(g, K)
with basis consisting precisely of those bα ∈ K[G0] for which 0 ≤ αi < `i for
all i = 1, . . . , d. Further, Ur(g, K) is equal to the algebra

Ur(g, K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|||Xα||r = 0

}
,

where X is the Qp-basis (xi := log(1 + bi))1≤i≤d of g. The norm || · ||r can be
computed via ||∑α dαXα||r = supα |dα|||Xα||r.
Using compatible uniform pro-p groups we can slightly extend this result:

Corollary 1.4.1. Let G0 be a uniform pro-p group with closed, compatible
uniform subgroup H0. Then D(H0, K) is a K-Fréchet-Stein algebra with
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respect to the family of norms || · ||r, r ∈ pQ, 1/p < r < 1, restricted to
D(H0, K). The conclusions of Frommer’s theorem hold for D(H0, K). If
r ∈ pQ is a real number with 1/p < r < 1 then the closure Dr(G0, K)H0

of D(G0, K)H0 in Dr(G0, K) is a finitely generated, free Ur(g, K)-module
possessing a basis contained in K[H0].

Proof: Choose a basis (a1, . . . , ad) of topological generators of G0 such that
(a1, . . . , aj) is a basis of topological generators of H0, j := dim H0 ≤ d.
It follows directly from the definition of the norms || · ||r and the theorem
of Schneider-Teitelbaum that D(H0, K) is a K-Fréchet-Stein algebra with
respect to the restricted norms || · ||r, r ∈ pQ, 1/p < r < 1. Of course, H0

has to be viewed as a p-valued group with respect to the valuation coming
from G0. It is also clear that Frommer’s theorem applies to D(H0, K). Fix
r ∈ pQ with 1/p < r < 1. Let A ⊂ Nd be the set of all multi-indices
satisfying 0 ≤ αi < `i for all i and A′ ⊆ A be the subset of all α such that
αj+1 = . . . = αd = 0. If h denotes the Lie algebra of H then (bα)α∈A′ is a
basis of the free Ur(h, K)-module Dr(H0, K): The proof of [20], 1.4 Lemma
3, shows that writing xi = log(1 + bi) =

∑
n≥1(−1)n+1bn

i /n one can choose

`i = max{m ≥ 1 | sup
n≥1

|1/n|rnτi = |1/m|rmτi}.

Hence for 1 ≤ i ≤ j the integers `i do not depend on whether we consider bi

as an element of K[G0] or K[H0] as long as H0 is viewed as a p-valued group
with respect to the valuation coming from G0.

Now consider the free, finitely generated Ur(g, K)-submodule D of Dr(G0, K)
with basis (bα)α∈A′ . Since ⊕α∈A′b

αU(g, K) ⊆ D(G0, K)H0 , D is contained in
Dr(G0, K)H0 . Conversely, D contains Dr(H0, K) and Ur(g, K) and thereby
a dense subspace of Dr(G0, K)H0 (cf. Lemma 1.2.10). According to [30],
Proposition 2.1 (ii), D is closed. Hence D = Dr(G0, K)H0 . ¤

We are now going to extend Frommer’s theorem and Corollary 1.4.1 to the
case of a finite extension L|Qp. To do this we need to recall that if A is
a K-Fréchet-Stein algebra with respect to a sequence (qn)n≥1 of continuous
algebra seminorms and if I is a closed ideal of A then according to [30],
Proposition 3.7 and its proof, A/I is a K-Fréchet-Stein algebra with respect
to the sequence (qn)n≥1 of residue norms qn. It follows that if G0 is a lo-
cally L-analytic group such that RL|QpG0 is uniform pro-p then D(G0, K)
is a K-Fréchet-Stein algebra (loc.cit. Theorem 5.1). Namely, D(G0, K) is
topologically isomorphic as an algebra to the quotient of D(RL|QpG0, K) by
I := ker(τ ′) (cf. subsection 1.3).
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For 1/p < r < 1 we denote by || · ||r the residue norm on D(G0, K) induced
by || · ||r. The completion of D(G0, K) with respect to || · ||r is denoted by
Dr(G0, K). Let Ir be the closure of I in Dr(R

L|QpG0, K) and consider the
projection

(1.15) τr : Dr(R
L|QpG0, K) −→ Dr(R

L|QpG0, K)/Ir.

According to the proof of [30], Proposition 3.7, we have

(1.16) Dr(G0, K) = Dr(R
L|QpG0, K)/Ir.

As before we let Ur(gL, K) (resp. Ur(gQp , K)) denote the closure of U(gL, K)
(resp. U(gQp , K)) in Dr(G0, K) (resp. Dr(R

L|QpG0, K)). Set further Jr :=
Ir ∩ Ur(gQp , K).

Theorem 1.4.2. Let G be a locally L-analytic group and G0 as in Proposition
1.3.5. If r ∈ pQ with 1/p < r < 1 then Dr(G0, K) is a free, finitely generated
module over the noetherian subalgebra Ur(gL, K) with the same basis in K[G0]
as in Frommer’s theorem applied to RL|QpG0. Further, there is an L-basis X

of gL and a norm νr on Ur(gL, K) equivalent to || · ||r such that Ur(gL, K) is
equal to the algebra

Ur(gL, K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|νr(X
α) = 0

}
.

The norm νr can be computed via νr(
∑

α dαXα) = supα |dα|νr(X
α).

Proof: Let (bα)α∈A be the Ur(gQp , K)-basis of Dr(R
L|QpG0, K) considered

before and D the (right) Ur(gQp , K)-submodule D := ⊕α∈AbαJr. We claim
that D equals Ir. Since Ir is an ideal of Dr(R

L|QpG0, K) containing Jr, we
naturally have D ⊆ Ir. On the other hand, D contains a dense subspace of
Ir according to Lemma 1.3.3 since J := I ∩ (U(gQp) ⊗Qp K) ⊆ Jr and Jr is
an ideal of Ur(gQp , K):

∑

g∈RL|QpG0

δgJ ⊆ Dr(R
L|QpG0, K) · Jr = ⊕α∈AbαUr(gQp , K) · Jr = D.

Since D is closed according to [30], Proposition 2.1 (ii), we also have Ir ⊆ D.
It follows from (1.16) and Frommer’s theorem that there is an isomorphism

Dr(G0, K) ' ⊕α∈Abα(Ur(gQp , K)/Jr)

of (right) Ur(gQp , K)-modules. It becomes topological if Ur(gQp , K)/Jr is
equipped with its (Banach) quotient topology (cf. [30], Proposition 2.1). In
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particular, the image of Ur(gQp , K) under τr is closed. According to Lemma
1.3.4 it contains a dense subspace of Ur(gL, K) whence there is a topological
isomorphism

(1.17) Ur(gL, K) ' Ur(gQp , K)/Jr.

This proves the first statement of the theorem. We claim that the assertions
concerning the explicit description of Ur(gL, K) hold if we equip Ur(gL, K)
with the residue norm νr coming from (1.17). We make use of the notations
of Proposition 1.3.5.

According to Proposition 1.3.5 (i) there is an L-basis X = (x1, . . . , xd) of gL

and a Zp-basis (v1, . . . , vm) of oL such that Y := (vixj)i,j is a Zp-basis of
Λ. According to Proposition 1.3.5 (ii) Y gives rise to the set of topological
generators (exp(vixj))i,j of RL|QpG0 so that by Frommer’s theorem

Ur(gQp , K) =

{∑

β

cβYβ | lim
|β|→∞

|cβ|||Yβ||r = 0

}

with multiplicative norm ||∑β cβYβ||r = supβ |cβ|||Yβ||r. If β = (βij) ∈
Nm×Nd let ϕ(β) := (

∑m
i=1 βij)1≤j≤d ∈ Nd. For any β with ϕ(β) = α we have

τ ′(Yβ) =
∏

i,j v
βij

j Xα and |α| = |β|. Since τr continuously extends τ ′ we have

τr(
∑

β

cβYβ) =
∑

β

τr(cβYβ) =
∑

α∈Nd


 ∑

ϕ(β)=α

cβ

∏
i,j

v
βij

i


 Xα

and also∣∣∣∣∣∣
∑

ϕ(β)=α

cβ

∏
i,j

v
βij

i

∣∣∣∣∣∣
νr(X

α) ≤ max
ϕ(β)=α

|cβ|||Yβ||r → 0 as |α| → ∞.

Therefore, Ur(gL, K) ⊆ {∑α dαXα | lim|α|→∞ |dα|νr(X
α) = 0}. Conversely,

any series
∑

α dαXα with lim|α|→∞ |dα|νr(X
α) = 0 converges in Ur(gL, K) so

that we get equality.

We claim that J is dense in Jr. Note first that J is dense in I ∩U(gQp , K): If
δ =

∑
β cβYβ ∈ U(gQp , K) then by (1.8) lim|β|→∞ |cβ|ρ−|β| = 0 for all ρ > 0.

Hence τ ′(δ) =
∑

α(
∑

ϕ(β)=α cβ

∏
i,j v

βij

i )Xα converges in U(gL, K) because for
all ρ > 0

∣∣∣∣∣∣
∑

ϕ(β)=α

cβ

∏
i,j

v
βij

i

∣∣∣∣∣∣
ρ−|α| ≤ max

ϕ(β)=α
|cβ|ρ−|β| → 0 as |α| → ∞.
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If now δ ∈ I ∩ U(gQp , K) then due to uniqueness in U(gL, K) we have∑
ϕ(β)=α cβ

∏
i,j v

βij

i = 0 and hence
∑

ϕ(β)=α cβYβ ∈ J for all α. But the

sequence (
∑

|α|≤N

∑
ϕ(β)=α cβYβ)N≥0 converges to δ as N →∞.

To see that I ∩U(gQp , K) is dense in Jr we note that as a direct consequence
of Frommer’s theorem U(gQp , K) is a K-Fréchet-Stein algebra with respect
to the norms || · ||r. As a closed ideal I ∩U(gQp , K) is a coadmissible module
over U(gQp , K). Since J is dense in I ∩ U(gQp , K) we know from Theorem
A (cf. [30], section 3) that the corresponding coherent sheaf is given by the
Ur(gQp , K)-ideals J ′r where J ′r is the closure of J in Ur(gQp , K). The same
reasoning as above shows that Ir = ⊕α∈AbαJ ′r. Since also Ir = ⊕α∈AbαJr

and J ′r ⊆ Jr we obtain J ′r = Jr.

Let δ =
∑

α dαXα ∈ Ur(gL, K), i.e. lim|α|→∞ |dα|νr(X
α) = 0. Let ε > 0 be

given and choose N ∈ N so large that

sup
|α|≤N

|dα|νr(X
α) = sup

α
|dα|νr(X

α) and νr(
∑

|α|>N

dαXα) ≤ ε.

Note that the preimage of
∑

|α|≤N dαXα under τr contains elements in U(gQp)

⊗QpK. By our above claim there is then an element
∑

β cβYβ ∈ U(gQp)⊗QpK
mapping to

∑
|α|≤N dαXα under τr such that

νr(
∑

|α|≤N

dαXα) ≥ ||
∑

β

cβYβ||r − ε.

Uniqueness in U(gL) ⊗L K implies that τr(
∑

ϕ(β)=α cβYβ) = dαXα for all α

with |α| ≤ N . Therefore,

||
∑

β

cβYβ||r = sup
β
|cβ|||Yβ||r ≥ sup

|α|≤N

{
sup

ϕ(β)=α

|cβ|||Yβ||r
}

≥ sup
|α|≤N

|dα|νr(X
α) = sup

α
|dα|νr(X

α).

Hence for all ε > 0

max{ε, νr(δ)} ≥ νr(
∑

|α|≤N

dαXα) ≥ sup
α
|dα|νr(X

α)− ε,

i.e. νr(δ) ≥ supα |dα|νr(X
α). Since the opposite inequality holds trivially

we have νr(
∑

α dαXα) = supα |dα|νr(X
α). In particular, the expansion δ =∑

α dαXα of an element δ ∈ Ur(gL, K) is unique. ¤
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Corollary 1.4.3. Let G be a locally L-analytic group, H a closed locally
L-analytic subgroup and G0 as in Corollary 1.3.6. If H0 := H ∩ G0 then
D(H0, K) is a K-Fréchet-Stein algebra with respect to the family of norms
|| · ||r, r ∈ pQ, 1/p < r < 1, restricted from D(G0, K) to D(H0, K). The
conclusions of Theorem 1.4.2 hold for D(H0, K). If r ∈ pQ is a real number
with 1/p < r < 1 then the closure Dr(G0, K)H0 of D(G0, K)H0 in Dr(G0, K)
is a finitely generated, free Ur(gL, K)-module with the same basis in K[H0]
as in Corollary 1.4.1 applied to the pair (RL|QpG0, R

L|QpH0).

Proof: Since RL|QpH0 is compatible with RL|QpG0 we know from Corollary
1.4.1 that D(RL|QpH0, K) is a K-Fréchet-Stein algebra with respect to the
family of norms || · ||r, r ∈ pQ, 1/p < r < 1, obtained by restriction from
D(RL|QpG0, K). The commutativity of the diagram

D(RL|QpH0, K)
� � //

²²²²

D(RL|QpG0, K)

τ ′
²²²²

D(H0, K) � � // D(G0, K)

shows that the kernel of the left vertical arrow is I ′ := I ∩ D(RL|QpH0, K).
Applying Theorem 1.4.2 to H0 shows that if we let I ′r be the closure of I ′ in
Dr(R

L|QpH0, K) then D(H0, K) is a K-Fréchet-Stein algebra with respect to
the corresponding quotient norms and

Dr(H0, K) = Dr(R
L|QpH0, K)/I ′r

(cf. (1.16) applied to H0). Recall that we have

Dr(R
L|QpG0, K) =

⊕
α∈A

bαUr(gQp , K)

as K-Banach spaces and similarly

Dr(R
L|QpH0, K) =

⊕

α∈A′
bαUr(hQp , K)

with A′ ⊆ A (cf. Corollary 1.4.1 and its proof). Moreover, we know from
the proof of Theorem 1.4.2 that Ir = ⊕α∈AbαJr with Jr := Ir ∩ Ur(gQp , K)
and similarly I ′r = ⊕α∈A′b

α(I ′r ∩ Ur(hQp , K)). It follows that I ′r = Ir ∩
Dr(R

L|QpH0, K) and hence that

(1.18) Dr(H0, K) = Dr(R
L|QpH0, K)/(Ir ∩Dr(R

L|QpH0, K)).
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Once we can show that the image of Dr(R
L|QpH0, K) under the quotient map

(1.15) is closed it will follow from (1.16) that the right hand side of (1.18)
is topologically isomorphic to the closure of D(H0, K) in Dr(G0, K) with re-
spect to the residue norm || · ||r, thereby proving all statements on D(H0, K).
Making use of the above direct sum decompositions it suffices to show that
the image of Ur(hQp , K) under τr is closed. We make use of the nota-
tion introduced earlier: By construction we may assume X′ := (x1, . . . , xj),
1 ≤ j := dim H0 ≤ d, to be an L-basis of hL. Recall that Ur(gL, K) =
{∑α dαXα | lim|α|→∞ |dα|νr(X

α) = 0} with νr(
∑

α dαXα) = supα |dα|νr(X
α).

We claim that

τr(Ur(hQp , K)) = W := {
∑

α

dα(X′)α | lim
|α|→∞

|dα|νr((X
′)α) = 0}

which is a closed subspace of Ur(gL, K). Clearly, τr(Ur(hQp , K)) ⊆ W . Con-

versely, let δ =
∑

α dα(X′)α ∈ W and δ̃ =
∑

β∈Nm×Nd cβYβ ∈ Ur(gQp , K) be
a preimage of δ under τr (cf. (1.17)). Let γ̃ be the element of Ur(hQp , K)
obtained by summing up all those monomials cβYβ for which βik = 0 when-
ever k > j. We claim that τr(γ̃) = δ in which case we are done. Let
δ̃ − γ̃ =

∑
β eβYβ so that

τr(δ̃ − γ̃) =
∑

α∈Nd

(
∑

ϕ(β)=α

eβ

∏
i,j

v
βij

i )Xα.

If α ∈ Nd is such that αj+1 = . . . = αd = 0 then by construction eβ = 0 for
all β ∈ Nn × Nd for which ϕ(β) = α. If αk 6= 0 for some k > j then eβ = cβ

for all β with ϕ(β) = α. In this case the coefficient of Xα in the expan-
sion of τr(δ̃ − γ̃) equals the one of δ (here we make use of the uniqueness of
the expansion). Since the latter coefficient is zero it follows that τr(δ̃−γ̃) = 0.

According to the proof of Corollary 1.4.1 there is a finite basis (bα)α∈A

of the free Ur(gQp , K)-module Dr(R
L|QpG0, K) and a subset A′ ⊆ A such

that (bα)α∈A′ is a basis of the free, finitely generated Ur(gQp , K)-module
Dr(R

L|QpG0, K)H0 . It follows from the decomposition Ir = ⊕α∈AbαJr that
Ir ∩Dr(R

L|QpG0, K)H0 = ⊕α∈A′b
αJr. Thus, by (1.17)

(1.19) Dr(R
L|QpG0, K)H0/(Ir ∩Dr(R

L|QpG0, K)H0) ' ⊕α∈A′b
αUr(gL, K).

In particular, the image of Dr(R
L|QpG0, K)H0 under τr is closed. It follows

by means of Lemma 1.3.4 and (1.16) that the left hand side of (1.19) is
topologically isomorphic to Dr(G0, K)H0 .
Note that by Theorem 1.4.2 (bα)α∈A′ is also a basis for the free Ur(hL, K)-
module Dr(H0, K) and the free Ur(hQp , K)-module Dr(R

L|QpH0, K). ¤
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Corollary 1.4.4. If L|L0 is an extension of local fields containing Qp and
G is a locally L-analytic group then the natural homomorphism

D(RL|L0G,K)⊗̂U(gL0
,K),ιU(gL, K) −→ D(G, K)

of D(RL|L0G,K)-U(gL, K)op-bimodules is a topological isomorphism.

Proof: Let G0 be as in Proposition 1.3.5. According to Corollary 1.2.14 and
(1.1) it suffices to show that the map

(1.20) D(RL|L0G0, K)⊗̂U(gL0
,K)U(gL, K) −→ D(G0, K)

is a topological isomorphism. Let again I be the kernel of the surjection
τ ′ := D(RL|L0G0, K) → D(G0, K), 1/p < r < 1 and Ir be the closure of I in
Dr(R

L|L0G0, K). According to Theorem 1.4.2 the modules Dr(R
L|L0G0, K),

resp. Dr(G0, K), are finitely generated and free over the noetherian Ba-
nach algebras Ur(gL0 , K), resp. Ur(gL, K), with a common basis (bα)α∈A.
Therefore, the same arguments as in the proof of Theorem 1.4.2 show that
Ir = ⊕α∈AbαJr with Jr := Ir ∩ Ur(gL0 , K). It follows that the map

Dr(gL0 , K)⊗Ur(gL0
,K) Ur(gL, K) −→ Dr(G0, K)

is an isomorphism of Dr(gL0 , K)-Ur(gL, K)op-bimodules. The arguments
given in the proof of Proposition 1.2.12 show that it is bi-continuous and
that we may pass to the projective limit in order to obtain that (1.20) is a
topological isomorphism. ¤

Corollary 1.4.5. Let L|L0 be an extension of local fields containing Qp and
G be a locally L-analytic group. If H is a closed, locally L-analytic subgroup
of G then the map τ ′ : D(RL|L0G, K)H → D(G, K)H is surjective.

Proof: Let G0 and H0 be as in Corollary 1.3.6. According to (1.6) it suffices
to show that the map τ ′ : D(RL|L0G0, K)H0 → D(G0, K)H0 is surjective.
Because of the commutativity of the diagram

D(RL|L0G0, K)H0
// D(G0, K)H0

D(RL0|QpRL|L0G0, K)H0

OO

D(RL|QpG0, K)H0

OO

we may assume L0 = Qp.
Let 1/p < r < 1. According to Corollary 1.4.3 the modules Dr(R

L|QpG0, K)H0

and Dr(G0, K)H0 are finitely generated and free over the noetherian Ba-
nach algebras Ur(gQp , K) and Ur(gL, K), respectively. Further, they have
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a common basis (bα)α∈A′ in K[H0]. The map Ur(gQp , K) → Ur(gL, K)
is surjective (cf. (1.17)). It follows that the map Dr(R

L|QpG0, K)H0 →
Dr(G0, K)H0 is surjective for any r. According to the proofs of Theorem 1.4.2
and Corollary 1.4.3 its kernel is ⊕α∈A′b

αJr and contains the dense subspace∑
g∈RL|QpH0

δg · J ⊆ D(RL|QpG0, K)H0 . Referring once more to the Mittag-
Leffler arguments given in the proof of Proposition 1.2.12 we may conclude
that in the projective limit the map D(RL|QpG0, K)H0 → D(G0, K)H0 is still
surjective. ¤

2 Invariant distributions

G acts on itself via conjugation inducing an action by continuous automor-
phisms on the space Can(G,K) of locally analytic functions on G (cf. Propo-
sition 1.1.2). The contragredient action on D(G,K) is explicitly given by
(g ∗ δ)(f) = δ(h 7→ f(ghg−1)) = (δgδδg−1)(f) for g ∈ G, δ ∈ D(G, K) and
f ∈ Can(G,K) , i.e.

(2.1) g ∗ δ = δgδδg−1 .

We call a distribution δ ∈ D(G,K) invariant if g ∗ δ = δ for all g ∈ G. If U
is a G-invariant subspace of D(G,K) we denote by UG the subspace of all
invariant distributions contained in U .

The separate continuity of the multiplication together with the density of
K[G] in D(G,K) imply by means of (2.1) that the subspace D(G,K)G of
all invariant distributions on G coincides with the center of the ring D(G,K).

For later use we introduce the subspace

Dpt(G,K) :=
∑
g∈G

δg · (U(g)⊗L K)

of D(G,K). It is the space of all point distributions in the sense of [10], 13.2.1.

2.1 The infinitesimal center

The exponential map exp restricts to an analytic isomorphism of locally L-
analytic manifolds between a neighborhood of 0 in g and a neighborhood of
1 in G such that exp(0) = 1. By Proposition 1.1.2 it induces a topological
isomorphism

exp∗ : Cω
1 (G,K)

∼−→ Cω
0 (g, K)
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which does not depend on the choice of exp (cf. the remark following III.4.3
Définition 1 of [5]). Dualizing, we obtain a topological isomorphism

exp∗ : Cω
0 (g, K)′b

∼−→ U(g, K) = Cω
1 (G,K)′b

of vector spaces which for δ ∈ Cω
0 (g, K)′b and [f ] ∈ Cω

1 (G,K) is explicitly
given by

(exp∗δ)([f ]) = δ(exp∗[f ]) = δ([x 7→ f(exp(x))]).

Here [f ] denotes the germ in 1 of a locally analytic function f defined in an
open neighborhood of 1 ∈ G.

Viewing g as an abelian locally L-analytic group which is its own Lie algebra,
Proposition 1.2.8 shows that Cω

0 (g, K)′b admits an explicit description

Cω
0 (g, K)′b =

{∑
α

dαXα | dα ∈ K, ∀r > 0 : sup |dα|r−|α| < ∞
}

in terms of power series with commutative multiplication. Here we put Xα :=
xα1
1 · · · xαd

d , and the formula

x(f) =
d

dt
f(tx)|t=0 = (∂xf)(0) for x ∈ g and f ∈ Can(g, K)

is the analog of (1.7). Again, the Fréchet topology of Cω
0 (g, K)′b can be

defined by the family of norms (νr)r>0 with

νr(
∑

α

dαXα) := sup |dα|r−|α|.

Since according to Proposition 1.2.8 the symmetric algebra S(g) ⊗L K of g

is dense in Cω
0 (g, K)′b we prefer to write S(g, K) instead of Cω

0 (g, K)′b.

G acts on itself via conjugation and on g via the adjoint representation Ad.
According to Proposition 1.1.2 this gives rise to actions of G by continu-
ous automorphisms on Can(G,K) and Can(g, K), respectively: Note that
multiplication by a fixed element and taking inverses are locally analytic au-
tomorphisms of G and that Ad(g) for g ∈ G is linear on g and hence locally
analytic. In fact, the above G-action on Can(G,K) descends to Cω

1 (G,K)
which is a locally analytic G-representation in the sense of [29], section 3:
Since the closed subspace Can(G, K)G\{1} is G-invariant it follows from (1.4)
that G acts on Cω

1 (G, K). If G0 is a compact open subgroup of G and
the G-action on Can(G,K) is restricted to G0 then the natural projection
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Can(G,K) → Cω
1 (G, K) factors G0-equivariantly through Can(G0, K). By

[18], Satz 3.3.4, the G0-action on Can(G0, K) is locally analytic whence so
is the G0-action on the barrelled quotient Cω

1 (G,K) = Cω
1 (G0, K) (cf. [17],

Lemma 3.6.14). Since G0 is open in G the claim follows.
Similarly, the action of G on Can(g, K) descends to Cω

0 (g, K) because the
closed subspace Can(g, K)g\{0} is G-invariant. We explicitly have

g ∗ [f ] = [h 7→ f(g−1hg)] for g ∈ G and f ∈ Can(G,K),

g ∗ [f] = [x 7→ f(Ad(g−1)(x))] for g ∈ G and f ∈ Can(g, K).

Using the formula g · exp(x) · g−1 = exp(Ad(g)(x)) for g ∈ G and all x in a
neighborhood of zero in g depending on g (cf. [5], III.4.4 Corollaire 3) one
deduces that the topological isomorphism exp∗ is G-equivariant: For g ∈ G,
f ∈ Can(G,K) and x near zero in g we have

exp∗(g ∗ f)(x) = (g ∗ f)(exp(x)) = f(g−1 · exp(x) · g)

= f(exp(Ad(g−1)(x))) = (g ∗ exp∗f)(x).

Recall that if n ∈ N, y1, . . . , yn ∈ g and y1 · · · yn is their product in S(g) then
the symmetrization map sym : S(g) → U(g) is defined by

sym(y1 · · · yn) :=
1

n!

∑

σ∈Sn

yσ(1) · · · yσ(n)

through L-linear continuation. Here Sn denotes the symmetric group on n
letters and the right hand side of the above equation is computed in U(g).

Proposition 2.1.1. exp∗:Cω
1 (G,K) → Cω

0 (g, K) is an isomorphism of locally
analytic G-representations on locally convex K-vector spaces of compact type.
The corresponding dual map exp∗ : S(g, K) → U(g, K) is an isomorphism of
separately continuous (left) D(G,K)-modules. Its restriction to S(g) ⊗L K
coincides with sym ⊗ id and maps isomorphically onto U(g)⊗L K. Further,
if the D(G,K)-actions on S(g, K) and U(g, K) are denoted by ∗ then the
following formulae hold:

i) x ∗ y = [x, y] for all x, y ∈ g where x is considered as an element of
D(G,K) and y, [x, y] as elements of S(g, K) (or U(g, K));

ii) x ∗ δ = x · δ − δ · x in U(g, K) for all x ∈ g and δ ∈ U(g, K);

iii) x ∗ (δ1 · · · δn) = (x ∗ δ1)δ2 · · · δn + . . .+ δ1 · · · δn−1(x ∗ δn) for all x ∈ g and
δ1, . . . , δn ∈ S(g, K).
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Proof: As seen above, conjugation of germs gives rise to a locally ana-
lytic G-representation on the space Cω

1 (G,K) which is a locally convex K-
vector space of compact type (cf. [18], Satz 2.3.2). We also saw that
exp∗ : Cω

1 (G,K) → Cω
0 (g, K) is a G-equivariant topological isomorphism. It

is then automatic that also Cω
0 (g, K) is a locally analytic G-representation,

proving the first assertion of the proposition. It follows from general princi-
ples that the dual map exp∗ : S(g, K) → U(g, K) is a topological isomorphism
of nuclear Fréchet spaces carrying separately continuous D(G,K)-module
structures for which exp∗ is a homomorphism (cf. [29], Corollary 3.3). For
the statement about the restriction of exp∗ to S(g) ⊗L K confer [5], III.4.3
Théorème 4 and II.1.5 Proposition 9.

As for (i), note that the subspace g⊗LK of U(g, K) is a D(G,K)-submodule:
For g ∈ G, y ∈ g and f ∈ Can(G,K) we have

(g ∗ y)(f) = y(g−1 ∗ f) =
d

dt
f(g · exp(ty) · g−1)|t=0

=
d

dt
f(exp(tAd(g)(y)))|t=0 = Ad(g)(y)(f).

By linearity, g⊗L K is K[G]-invariant and hence a D(G,K)-submodule be-
cause of the separate continuity of ∗ and because g ⊗L K, as a finite di-
mensional subspace, is closed in U(g, K). We also see that the D(G,K)-
module structure on g ⊗L K comes from the adjoint representation of G
on g which is an analytic representation in the sense of [5], III.1.2 Exam-
ple 3: cf. [loc.cit.], III.3.11 Proposition 42. In this case, the action of
g ⊆ D(G,K) on g ⊗L K is obtained by differentiating the action of G (cf.
the formula x ∗ v = d/dt(exp(tx) · v)|t=0 in [29], section 3, for a locally an-
alytic G-representation on a locally convex barrelled Hausdorff space V , as
well as [loc.cit.], III.4.4 Corollaire 2). Thus, x ∗ y = ad(x)(y) = [x, y] (cf. [5],
III.3.12 Proposition 44). The reasoning for g⊗L K considered as a subspace
of S(g, K) is analogous.

For (ii) let n ≥ 2 and consider the continuous multilinear map

(g⊗L K)n → U(g, K), (yi ⊗ λi) 7→
∏

i

yiλi

whose image is contained in a G-invariant, finite dimensional and hence com-
plete normed subspace of U(g, K). By (2.1) the G-action on U(g, K) has the
property that

g ∗ (
∏

i

yiλi) = δg · (
∏

i

yiλi) · δg−1 =
∏

i

(δgyiλiδg−1) =
∏

i

(g ∗ (yiλi)).
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Let us put λ1 = . . . = λn = 1 for simplicity. Note that if V is a Banach space
then the notion of a locally analytic G-representation as given in [29], section
3, coincides with the notion of an analytic Banach space representation in the
sense of Bourbaki (cf. [18], Korollar 3.1.9). Using [5], III.3.11 Proposition 41
and (i) we may therefore conclude that

x ∗ (
∏

i

yi) = (x ∗ y1)y2 · · · yn + . . . + y1 · · · yn−1(x ∗ yn)

= [x, y1]y2 · · · yn + . . . + y1 · · · yn−1[x, yn]

for all x ∈ g. Since [x, yi] = xyi − yix in U(g) we obtain statement (ii) for all
x ∈ g and δ ∈ U(g)⊗L K. The general case follows by means of Proposition
1.2.8 and the separate continuity of ∗. Statement (iii) for S(g, K) is proved
analogously. ¤

According to the above proposition we have the following commutative dia-
gram of continuous K-linear maps:

g⊗L K // U(g)⊗L K � � // U(g, K)

g⊗L K // S(g)⊗L K

o sym⊗id

OO

� � // S(g, K),

o exp∗

OO

where we have identified g⊗L K ⊆ S(g, K) with its image in U(g, K) and the
right horizontal arrows have dense image. Taking g-invariants one obtains
the commutative diagram

Z(g)⊗L K � � // U(g, K)g

S(g)g ⊗L K

o
OO

� � // S(g, K)g

o
OO

because exp∗ is g-equivariant. Here Z(g) = U(g)g is the center of U(g) and
U(g, K)g is the center of the algebra U(g, K) as follows from Proposition
2.1.1 (ii) and Proposition 1.2.8.

If δ =
∑

α dαXα ∈ S(g, K) or U(g, K) and n ≥ 0 then we let δ≤n :=∑
|α|≤n dαXα and δ>n :=

∑
|α|>n dαXα denote the sum of the homogeneous

components of degree ≤ n and > n of δ, respectively. Note that if g ∈ G
then g ∗ δ≤n is of degree ≤ n for every n ∈ N. This follows from writing
g ∗ xi =

∑
j ajxj, aj ∈ L, and noting that by (2.1)

g ∗ (λ ·
∏

i

xαi
i ) = λ ·

∏
i

(g ∗ xi)
αi .
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In particular, G acts on S(g)⊗L K and U(g)⊗L K.

Proposition 2.1.2. Z(g)⊗L K and U(g)G⊗L K are dense in U(g, K)g and
U(g, K)G, respectively.

Proof: Since exp∗ is equivariant for the actions of g and G we may equally well
show that S(g)g ⊗L K and S(g)G ⊗L K are dense in S(g, K)g and S(g, K)G,
respectively. If δ ∈ S(g, K) is homogeneous of degree n then it follows from
Proposition 2.1.1 that for x ∈ g either x ∗ δ = 0 or x ∗ δ is again homogeneous
of degree n (write [x, xi] =

∑
j ajxj for x ∈ g, aj ∈ L). We have seen above

that similarly g ∗ δ will again be homogeneous of degree n. This shows that
if δ ∈ S(g, K) is a general g-invariant (resp. G-invariant) element then both
δ≤n and δ>n are g-invariant (resp. G-invariant). Since δ≤n ∈ S(g)⊗L K and
δ≤n → δ for n →∞, the assertion follows. ¤

Remark 2.1.3. If G is an open subgroup of the group of L-rational points
of a connected algebraic L-group G then [29], Proposition 3.7, shows that
Z(g)⊗LK consists of invariant distributions on G, i.e. Z(g)⊗LK = U(g)G⊗L

K. According to Proposition 2.1.2 the same is then true for U(g, K)g and
hence U(g, K)g = U(g, K)G. Similarly, S(g, K)g = S(g, K)G in this case.

Remark 2.1.4. Let ν denote a norm on S(g)⊗LK with respect to which the
action of G (resp. g) is continuous. If the completion Sν(g, K) of S(g)⊗L K
with respect to ν has the explicit description {∑α dαXα| lim|α|→∞ |dα|ν(Xα) =
0} with

ν(
∑

α

dαXα) = sup
α
|dα|ν(Xα),

then the above proof shows that S(g)G⊗L K and S(g)g⊗L K are even dense
in Sν(g, K)G and Sν(g, K)g, respectively.

In general, the restriction of exp∗ to S(g, K)g is not an isomorphism of alge-
bras although both S(g, K)g and U(g, K)g are commutative. Making use of
a construction of M. Duflo’s we will show, however, that one does obtain an
isomorphism

η : S(g, K)g → U(g, K)g

of K-Fréchet algebras if exp∗ is suitably normalized. This result is similar
to the conjecture of Kashiwara and Vergne for real Lie groups (cf. [1]) in-
volving, however, distributions on germs of functions rather than germs of
distributions.

For the following confer [15], p. 55. Let k be a field of characteristic zero
and h a Lie algebra of finite dimension over k. We identify S(h) with the
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algebra of polynomial functions on h∗ and S(h∗) with the algebra of dif-
ferential operators with constant coefficients on h∗: letting X = (x1, . . . , xd)
and X∗ = (x∗1, . . . , x

∗
d) be dual k-bases of h and h∗, respectively, we identify

S(h) and S(h∗) with the polynomial algebras k[x1, . . . , xd] and k[x∗1, . . . , x
∗
d],

respectively. If f =
∑

β µβXβ ∈ S(h) is given then we identify f with the
polynomial function

(
d∑

i=1

λix
∗
i 7→

∑

β

µβλβ1

1 · · ·λβd

d ) : h∗ → k.

If q =
∑

α λα(X∗)α ∈ S(h∗) is given then we let D(q) :=
∑

α λα(∂X)α ∈
Endk(S(h)) be the corresponding operator. Here (∂X)α := (∂x1)

α1 ◦ . . . ◦
(∂xd)

αd and ∂xi formally differentiates a polynomial with respect to the vari-
able xi. The completion Ŝ(h∗) of S(h∗) with respect to the topology defined
by the maximal ideal (x∗1, . . . , x

∗
d) may be identified with the algebra of formal

power series in the variables x∗i over k. If f ∈ S(h) is given and the order of
q ∈ S(h∗) is sufficiently large then D(q)(f) = 0. Hence for q ∈ Ŝ(h∗) one can
define D(q)(f) by continuity and set 〈q, f〉 := D(q)(f)(0). This identifies
S(h) with the space Ŝ(h∗)′ of continuous functionals on Ŝ(h∗) and D(q) coin-
cides with the transpose of multiplication by q in Ŝ(h∗) (loc.cit. Lemme II.1).

If S(h) is identified with the algebra of constant coefficient differential oper-
ators on h and f ∈ S(h) then we let D∗(f) be the corresponding operator.
D∗(f) is an endomorphism of Ŝ(h∗). If q ∈ Ŝ(h∗) is a power series we let
q(0) be its constant term. According to the remarks preceding Lemme II.2
of [loc.cit.] we have

(2.2) D∗(f)(q)(0) = D(q)(f)(0) = 〈q, f〉

for all q ∈ Ŝ(h∗) and f ∈ S(h).

Let ad(X) ∈ Md(k[x∗1, . . . , x
∗
d]) be the matrix ad(X) :=

∑
i x
∗
i Ai where Ai ∈

Md(k) represents ad(xi) ∈ Endk(h) with respect to the k-basis X of h. If
B2n ∈ Q denote the Bernoulli numbers of even degree and exp(t) ∈ Q[[t]] is
the usual exponential series then the formula

(2.3) q = q(x∗1, . . . , x
∗
d) := det

(
exp(ad(X)/2)− exp(−ad(X)/2)

ad(X)

)1/2

= exp(
∞∑

n=1

B2n

4n(2n)!
tr [ad(X)2n])
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defines a formal power series in the indeterminates x∗i with coefficients in k,
i.e. an element of Ŝ(h∗) (for the second formula cf. [1]). One of the main
results of [16] is the following theorem (loc.cit. Théorème 2):

Theorem (Duflo). If h is a finite dimensional Lie algebra over a field k of
characteristic zero then the normalized symmetrization map

η := sym ◦D(q) : S(h)h → Z(h)

is an isomorphism of k-algebras.

It is known that in the case of Lie algebras h over the fields k = R or C, the
formal power series q defines an analytic function around 0 in h. This is also
true for the Lie algebra g over the non-archimedean field L:

Proposition 2.1.5. The formal power series q defines an analytic function
in a neighborhood of 0 in g. If we let [q] ∈ Cω

0 (g, K) denote its germ in 0
then the normalized exponential map η : S(g, K) → U(g, K) defined by

η(δ)([f ]) := δ([q] · exp∗[f ]) for δ ∈ S(g, K) and [f ] ∈ Cω
1 (G,K),

restricts to a topological isomorphism of K-Fréchet algebras

η : S(g, K)g ∼−→ U(g, K)g.

Proof: Let x ∈ g and write ad(x) = (λij) ∈ Md(L) with respect to the L-
basis X of g. Choose indices i0 and j0 such that λ := λi0j0 is of maximal
absolute value among all λij. Since the entries of ad(x)2n are homogeneous
polynomials in the entries λij of degree 2n we obtain

|tr [ad(x)2n]| ≤ |λ|2n.

Using the estimates |n!| ≥ p−n/(p−1) and |B2n| ≤ p (cf. [24], Lemma 5.3.1
and Corollary 5.5.5) we obtain

∣∣∣∣
B2n

4n(2n)!
tr [ad(x)2n]

∣∣∣∣ ≤ 4np(|λ|p1/(p−1))2n → 0

as n →∞ for |λ| sufficiently small. Hence the formal power series

∞∑
n=1

B2n

4n(2n)!
tr [ad(X)2n]

defines an analytic function near zero in g. Since its value at zero is 0 ∈ L,
restricting further (if necessary) it can be composed with the exponential
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map defined in a neighborhood of zero in L. This proves that q defines an
analytic function in a neighborhood of zero in g.

The normalized exponential map η : S(g, K) → U(g, K) defined as above
is still a topological isomorphism of K-Fréchet spaces: Note that q(0) = 1
so that [q] is invertible in Cω

0 (g, K). If δ ∈ S(g) and [p] ∈ Cω
0 (g, K) is

represented by a formal power series p ∈ Ŝ(g∗) then by (2.2) and [15], Lemme
II.1,

δ([q] · [p]) = D∗(δ)(qp)(0) = D(qp)(δ)(0) = 〈qp, δ〉
= 〈p,D(q)(δ)〉 = D(q)(δ)([p]).

Since the restriction of exp∗ to S(g) ⊗L K coincides with sym (cf. Proposi-
tion 2.1.1) it follows that η|S(g, K)g extends Duflo’s isomorphism. Since by
Proposition 2.1.2 S(g)g ⊗L K (resp. U(g)g ⊗L K) is dense in S(g, K)g (resp.
U(g, K)g) it follows that η is an isomorphism of algebras onto U(g, K)g. ¤

We are now going to explicitly compute U(g, K)g in the special case that g is
semisimple and contains a split maximal toral subalgebra t (cf. [13], 1.9.10).
The Weyl group W = W(g, t) acts on t∗ by L-linear endomorphisms and
dually on t. It follows from Proposition 1.1.2 that W acts continuously on
Can(t, K). Since the closed subspace Can(t, K)t\{0} is W-invariant W acts on
the quotient Cω

0 (t, K) and hence on S(t, K).

For c ∈ K∗ with |c| > 1 and i ∈ N let Tn,i(K) := K〈c−iX1, . . . , c
−iXn〉 be

the generalized Tate algebra of all power series
∑

α∈Nn dαXα over K such
that lim|α|→∞ |dα||ci||α| = 0. We endow Tn,i(K) with the (complete) norm
| · |i defined by |∑α dαXα|i := supα |dα||ci||α|. Here X = (X1, . . . , Xn) and
Xα := Xα1

1 · · ·Xαn
n . If i ≤ j then there is a continuous embedding Tn,j(K) ⊆

Tn,i(K). The projective limit

O((An
K)an) := lim←−i∈NTn,i(K)

is the K-Fréchet algebra of holomorphic functions on the rigid analytic affine
space (An

K)an of dimension n over K.

Theorem 2.1.6. If g is split semisimple with t and W as above then there
are isomorphisms

U(g, K)g ' S(t, K)W ' O((An
K)an)

of K-Fréchet algebras with n := dimL(t).
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In order to construct the above isomorphisms we need some preparation. Let
k be a field which is complete with respect to a non-trivial, non-archimedean
valuation and let X be an affine scheme of finite type over k. If Γ is a finite
group acting on X by k-automorphisms then the quotient X/Γ exists and
is again an affine scheme of finite type over k (cf. [3], Proposition 6.15). In
fact, X/Γ = Spec(k[X]Γ) if k[X] denotes the ring of regular functions on X.
The ring extension k[X]|k[X]Γ is finite and the quotient map π : X → X/Γ
surjective. By Xan and (X/Γ)an we denote the rigid analytifications of X
and X/Γ, respectively. Note that Γ acts on Xan by functoriality and that π
induces a morphism πan : Xan → (X/Γ)an of rigid analytic k-varieties.

Proposition 2.1.7. Let X be a reduced affine scheme of finite type over
k and Γ a finite group of k-automorphisms of X whose order is prime to
the characteristic of k. The presheaf F on (X/Γ)an defined by F(U) :=
OXan((πan)−1(U))Γ is an O(X/Γ)an-submodule of πan

∗ OXan via the natural map
(πan)# : O(X/Γ)an → πan

∗ OXan. In fact, (πan)# is an isomorphism onto F .

Proof: Choose a representation k[X] = k[ζ1, . . . , ζn]/a of k[X] as a k-algebra
of finite type with an ideal a of k[ζ] := k[ζ1, . . . , ζn]. If c ∈ k∗ with |c| > 1 let
Ai be the k-affinoid algebra Ai := k〈c−iζ〉/(a). Letting ζj be the class of ζj in

k[ζ]/a we have Ai+1〈c−iζ〉 = Ai so that Sp(Ai) is an admissible affinoid sub-
domain of Sp(Ai+1). Pasting all Sp(Ai), one obtains Xan together with the
admissible covering (Sp(Ai))i∈N. The underlying set of Xan coincides with
Max(k[X]) ⊆ Spec(k[X]) = X. Similarly, one obtains (X/Γ)an = ∪i∈NSp(Bi)
with k-affinoid algebras Bi := k〈c−iξ〉/(b) once we choose a representation
k[X]Γ = k[ξ]/b with an ideal b of k[ξ]. The underlying set of (X/Γ)an coin-
cides with Max(k[X]Γ) ⊆ X/Γ (cf. [4], 9.3.4 Example 2).

With π also πan is surjective and we have the following commutative diagram
of locally G-ringed spaces:

(2.4) Xan πan
// //

_�

²²

(X/Γ)an
_�

²²
X

π // // X/Γ.

We see that if U ⊆ (X/Γ)an is admissible open then V := (πan)−1(U) ⊆ Xan

is admissible open and Γ-invariant. Thus, Γ acts on OXan(V ) so that the
presheaf F is well-defined. If (Ui)i∈I is an admissible covering of U and
Vi := (πan)−1(Ui) then we have the exact sequence

(2.5) OXan(V ) //
∏

i∈I OXan(Vi)
////
∏

i,j∈I OXan(Vi ∩ Vj).
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It follows from the exactness on the left that an element f ∈ OXan(V ) is
Γ-invariant if and only if so are all restrictions f |Vi ∈ OXan(Vi) (consider the
image of f − γ∗(f) for γ ∈ Γ). Therefore, (2.5) restricts to a well-defined
sequence

OXan(V )Γ //
∏

i∈I OXan(Vi)
Γ ////

∏
i,j∈I OXan(Vi ∩ Vj)

Γ

which is still exact, and F is a sheaf on (X/Γ)an.

Let U and V be as above. Since πan : V → U is Γ-invariant it follows that
for all γ ∈ Γ and g ∈ OXan(U)

γ∗((πan)∗(g)) = (πan ◦ γ)∗(g) = (πan)∗(g).

Hence (πan)# is indeed a homomorphism O(X/Γ)an → F of O(X/Γ)an-modules.

π is finite, hence proper, and according to [23], Satz 2.17, πan is proper, too.
The above diagram shows that πan has finite fibres whence it is finite by
[4], 9.6.3 Corollary 6. Thus, for each i ∈ N, there is a k-affinoid algebra
Ci such that (πan)−1(Sp(Bi)) = Sp(Ci) and the homomorphism Bi → Ci of
k-algebras is finite. We already know that it factors as Bi → CΓ

i ⊆ Ci, and to
prove that (πan)# : O(X/Γ)an → F is an isomorphism it suffices to show that
the map Bi → CΓ

i is an isomorphism for all i ∈ N (cf. [4], 9.4.1 Proposition
2). We denote this map by ϕi. Note that it is a finite homomorphism of
k-affinoid algebras because CΓ

i is a submodule of the finitely generated mod-
ule Ci over the noetherian ring Bi (CΓ

i is k-affinoid by [4], 6.3.3 Proposition 3).

We first show that the above map is injective. With X also X/Γ is reduced
and hence so is (X/Γ)an (cf. [23], Folgerung 2.6). It follows that

ker(ϕi) ⊆ ϕ−1
i (rad(Ci)) = rad(Bi)

because πan|Sp(Ci)
: Sp(Ci) → Sp(Bi) is surjective. Thus, ker(πan)∗ = 0.

There are indices j, k ∈ N depending on i such that Sp(Ci) ⊆ Sp(Aj) ⊆
Sp(Ck). πan restricts to an affinoid map Sp(Aj) → Sp(Bk). Since Sp(Bi) is a
Weierstrass domain in Sp(Bk) so is Sp(Ci) in Sp(Aj) (cf. [4], 7.2.3 Proposition
6). In particular, Aj is dense in Ci. Since k[X] is dense in Aj it follows that
k[X] is dense in Ci. Therefore, the natural map k[X] ⊗k[X]Γ Bi → Ci is
surjective: Since Bi → Ci is finite we may apply [4], 3.7.3 Proposition 1.
Choose generators η1, . . . , ηr of k[X] over k[X]Γ and let c ∈ CΓ

i . There are
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elements b1, . . . , br ∈ Bi such that c =
∑

i ϕi(bi)ηi. But then

c = |Γ|−1
∑

i

(
∑
γ∈Γ

γ∗(ηi))ϕi(bi) = ϕi(|Γ|−1
∑

i

(
∑
γ∈Γ

γ∗(ηi))bi)

because
∑

γ∈Γ γ∗(ηi) ∈ k[X]Γ for all i = 1, . . . , r. Thus, c ∈ im(ϕi). ¤

Remark 2.1.8. It follows from (2.4) that the underlying point space of
(X/Γ)an is the set theoretical quotient of Xan modulo Γ. Since accord-
ing to the above proposition the structure sheaf on (X/Γ)an is given by
O(X/Γ)an(U) = OXan((πan)−1(U))Γ it follows that (X/Γ)an can be identified
with the rigid analytic quotient Xan/Γ whose existence is claimed (but not
proved) in [19], 6.4.

Corollary 2.1.9. Under the hypotheses of Proposition 2.1.7 there is an iso-
morphism

O(X/Γ)an((X/Γ)an) ' OXan(Xan)Γ

of k-algebras. ¤
Proof of Theorem 2.1.6: Let t = (t1, . . . , tn) be an L-basis of t considered
also as a K-basis of t ⊗L K. Proposition 1.2.8 shows that there is a topo-
logical isomorphism S(t, K) → O((An

K)an) of K-Fréchet algebras identifying
the subalgebra S(t) ⊗L K with the polynomial algebra K[t1, . . . , tn] in the
variables ti, i.e. with the algebra of regular functions on the affine space An

K

of dimension n over K. There is a family s = (s1, . . . , sn) of n algebraically
independent, homogeneous elements in (S(t) ⊗L K)W such that the natural
map

(2.6) ϕ : K[X1, . . . , Xn] −→ (S(t)⊗L K)W, Xi 7→ si

is an isomorphism (cf. [13], 11.1.14). According to Corollary 2.1.9 it extends
to an isomorphism

(2.7) ϕ : O((An
K)an) −→ S(t, K)W = O((An

K)an)W

of K-algebras. If c ∈ K∗ with |c| > 1 and i ∈ N we denote by | · |i the natural
norm on the left hand side of (2.7) for which (sα)α∈Nn is an orthogonal basis
with |sαj

j |i = |ci|αj . Note that | · |i is multiplicative according to [4], 6.1.5
Proposition 2. Similarly, νi := ν|c−i| is the multiplicative norm on S(t, K)
for which (tα)α∈Nn is an orthogonal basis with νi(t

αj

j ) = |ci|αj . Given i ∈ N
choose i0 ∈ N such that maxj{νi(ϕ(sj))} ≤ |cio |. Then

νi(ϕ(
∑

α

dαs
α)) ≤ |

∑
α

dαs
α|i0 ,
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so that ϕ is continuous and in fact a topological isomorphism due to the open
mapping theorem.

Let Φ = Φ(g, t) be the root system of g with respect to t and choose an
eigenvector Xα of α in g for any α ∈ Φ. Extend t to the L-basis X =
(t1, . . . , tn, (Xα)α∈Φ) of g and let J be the closed ideal of S(g, K) generated
by {Xα}α∈Φ. The explicit descriptions of S(g, K) and S(t, K) show that

S(g, K) = S(t, K)⊕ J

first as abstract vector spaces but then also topologically due to the open
mapping theorem. We claim that the induced continuous, surjective homo-
morphism S(g, K) → S(t, K) of K-algebras restricts to a topological iso-
morphism θ : S(g, K)g ∼−→ S(t, K)W. By the open mapping theorem we
only need to show that θ is bijective. To prove this we make use of the
following fact from the theory of Lie algebras (cf. [13], Théorème 7.3.7):
If J := S(g) ∩ J then S(g) = S(t) ⊕ J and the corresponding projection
S(g) → S(t) restricts to an isomorphism

(2.8) S(g)g ' S(t)W

of algebras.

As in the proof of Proposition 2.1.2 one sees that if δ is an element of S(g, K)g

(resp. J) then both δ≤n and δ>n are elements of S(g, K)g (resp. J). Since
(S(g)g ⊗L K) ∩ (J ⊗L K) = 0 it follows that S(g, K)g ∩ J = 0 whence θ is
injective.

Let τ ∈ S(t, K)W be given. It follows from (1.2) that for x1, x2 ∈ S(t) ⊗L K
and w ∈ W

w · (x1 · x2) = (w · x1) · (w · x2).

Thus, the homogeneous components τk of τ of degree k with respect to the
variables t are W-invariant for all k ≥ 0. Write τk =

∑
α dα(k)sα and let

ξ1, . . . , ξn ∈ S(g)g be preimages of s1, . . . , sn under the map (2.8). Then
γk :=

∑
α dα(k)ξα ∈ S(g)g ⊗L K maps to τk and we need to show that

the series
∑

k γk converges in S(g, K). Note that the Fréchet topology on
S(g, K) can be defined by a family of multiplicative norms (νi)i∈N extending
the norms νi on S(t, K) because X extends the L-basis t of t (cf. Proposition
1.2.8). Since ϕ−1 is continuous we have limk→∞ |ϕ−1(τk)|i = 0 for all i ∈ N.
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Given i ∈ N, choose i0 ∈ N such that maxj{νi(ξj)} ≤ |ci0|. Then

νi(γk) ≤ sup
α
|dα(k)|νi(ξ

α) ≤ sup
α
|dα(k)||ci0||α|

= |
∑

α

dα(k)sα|i0 = |ϕ−1(τk)|i0 → 0

as k →∞.

Composing θ with the inverse of Duflo’s isomorphism we obtain the topolog-
ical isomorphism ξ := θ ◦ η−1 : U(g, K)g → S(t, K)W of K-Fréchet algebras.
¤

Corollary 2.1.10. Assume g to be reductive with center z and derived Lie
algebra d. If d contains a split maximal toral subalgebra t′ and W = W(d, t′)
is the corresponding Weyl group then there are isomorphisms

U(g, K)g ' S(z, K)⊗̂KS(t′, K)W ' O((An
K)an)

of K-Fréchet algebras with n := dimL(z) + dimL(t′).

Proof: Since g = z × d as locally L-analytic groups there is a topological
isomorphism D(g, K) ' D(z, K)⊗̂K,ιD(d, K) (cf. [31], Proposition A.3). It
restricts to an isomorphism S(g, K) ' S(z, K)⊗̂KS(d, K) (cf. the arguments
given in Remark 1.2.15). Applying the isomorphism exp∗ to S(g, K) and
S(d, K) one sees that the decomposition U(g) ' S(z) ⊗L U(d) extends to
a topological isomorphism U(g, K) ' S(z, K)⊗̂KU(d, K) of K-algebras (cf.
Lemma 2.2.2 below). Since (Z(g)⊗LK) ' (S(z)⊗LK)⊗K (Z(d)⊗LK) under
this isomorphism we obtain U(g, K)g ' S(z, K)⊗̂KU(d, K)d by taking com-
pletions (cf. [25], Proposition 17.5 (ii) and Proposition 19.10 (i)). By means
of Theorem 2.1.6 we obtain the first isomorphism of the statement. Since by
definition of the norms νr on S(z, K) we have S(z, K) = O((AdimL(z)

K )an) the
existence of the second isomorphism of the statement follows from Theorem
2.1.6 together with [17], Proposition 1.1.29, and [4], 6.1.1 Corollary 8. ¤

Remark 2.1.11. Let us keep the notation of the above corollary. Even if g

does not split over L it is true that Z(g) ⊗L K = S(z) ⊗L Z(d) ⊗L K is a
polynomial ring in dimL(z) + dimL(t) variables over K (cf. [13], Théorème
7.3.8 (ii)). According to Proposition 2.1.2 it is dense in U(g, K)g.

2.2 Centrally supported invariant distributions

According to (1.3) and (2.1) the closed subalgebra D(G,K)Z of centrally
supported distributions on G is invariant under the conjugation action of G.
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We are going to investigate the subalgebra D(G,K)G
Z of all centrally sup-

ported invariant distributions on G.

G acts on U(g, K) by continuous automorphisms and (trivially) on D(Z, K).
This induces a G-action on D(Z,K) ⊗K,ι U(g, K) extending to the Haus-
dorff completion D(Z,K)⊗̂K,ιU(g, K). The closed subspace U of the latter,
constructed in subsection 1.2, is G-invariant. Therefore, G acts on the cor-
responding quotient D(Z, K)⊗̂U(z,K),ιU(g, K).

Let similarly U ′ be the kernel of the quotient map

D(Z, K)⊗̂K,ιU(g, K)G → D(Z, K)⊗̂U(z,K),ιU(g, K)G,

i.e. the closure of the subspace of D(Z, K)⊗̂K,ιU(g, K)G generated by all
elements of the form

λy⊗ x− λ⊗ yx with λ ∈ D(Z, K), y ∈ U(z, K) and x ∈ U(g, K)G.

Theorem 2.2.1. If K is discretely valued and G is an open subgroup of the
group of L-rational points of a connected, algebraic group defined over L then
there are K-linear topological isomorphisms

D(Z,K)⊗̂U(z,K),ιU(g, K)G ' (D(Z, K)⊗̂U(z,K),ιU(g, K))G ' D(G,K)G
Z

of separately continuous K-algebras induced by multiplication in D(G,K)G
Z .

In particular, the subspace Dpt(G, K)G
Z of centrally supported invariant point

distributions is dense in D(G,K)G
Z .

Proof: We endow D(Z,K)⊗̂U(z,K),ιU(g, K)G and (D(Z, K)⊗̂U(z,K),ιU(g, K))G

with the D(Z, K)⊗U(z,K) U(g, K)G-module actions of Remark 1.2.11. Since
D(Z,K) and U(g, K)G are contained in the center of D(G,K) it is clear that
the maps

D(Z,K)⊗̂U(z,K),ιU(g, K)G −→ D(G,K)G
Z

(D(Z,K)⊗̂U(z,K),ιU(g, K))G −→ D(G,K)G
Z

induced by multiplication are homomorphisms of D(Z, K)⊗U(z,K) U(g, K)G-
modules. If we can show them to be topological isomorphisms then it
follows from the density of the image of D(Z, K) ⊗U(z,K) U(g, K)G in the
space D(Z, K)⊗̂U(z,K),ιU(g, K)G that D(Z,K)⊗̂U(z,K),ιU(g, K)G and likewise
(D(Z, K)⊗̂U(z,K),ιU(g, K))G carry unique K-algebra structures extending the
action of D(Z,K)⊗U(z,K) U(g, K)G and for which the above maps are homo-
morphisms.
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Now the D(Z,K)-U(g, K)op-bimodule isomorphism

µ : D(Z,K)⊗̂U(z,K),ιU(g, K) −→ D(G,K)Z

of Proposition 1.2.12 is G-equivariant by definition of the respective G-
actions. This gives the second isomorphism of the theorem because the re-
striction to U(g, K)G of the right U(g, K)op-action on either side coincides
with the natural left U(g, K)G-action (note that U(g, K)G is contained in the
center of U(g, K)).

Let Z0 be a compact open subgroup of Z. According to Corollary 1.2.14

D(Z, K)⊗̂K,ιU(g, K)G '
⊕

z∈Z/Z0

δz ·D(Z0, K)⊗̂KU(g, K)G

and similarly for D(Z,K)⊗̂K,ιU(g, K) (recall Remark 1.2.11 for our conven-
tion on omitting the ι from the notation). It follows from [25], Lemma 5.3
and Corollary 17.5 (ii), that D(Z, K)⊗̂K,ιU(g, K)G is a closed subspace of
D(Z,K)⊗̂K,ιU(g, K) via the closed embedding of U(g, K)G into U(g, K). We
need to show that the corresponding restriction of (1.10) with H = Z maps
surjectively onto D(G,K)G

Z with kernel U ′.

If G0 is a compact open subgroup of G and Z0 := G0 ∩ Z then the subspace
D(G,K)Z0 = D(G0, K)Z0 of D(G,K)Z is stable under the action of G (cf.
(1.3) and (2.1)). It follows from (1.6) that

D(G,K)G
Z =

⊕

z∈Z/Z0

δz ·D(G0, K)G
Z0

by taking G-invariants. Therefore, it is sufficient to show that the map

D(Z0, K)⊗̂U(z,K)U(g, K)G −→ D(G0, K)G
Z0

induced by multiplication is a topological isomorphism.

According to [5], III.7.2 Proposition 3, there are compact open subgroups
Λg and G0 of g and G, respectively, such that Λg lies in the domain of the
exponential map and exp : Λg → G0 is an isomorphism of locally L-analytic
manifolds. According to the proof of [loc.cit.], Λg may be chosen to be
contained in any open neighborhood of zero in g. If therefore Λz := Λg ∩ z

and Z0 := G0 ∩ Z then we may assume exp to restrict to an isomorphism
Λz → Z0 (note that exp is also an exponential map for Z0). The K-linear
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topological isomorphism exp∗ : D(Λg, K) → D(G0, K) therefore restricts to
isomorphisms

exp∗ : D(Λz, K) −→ D(Z0, K)

id : S(z, K) −→ U(z, K) and

exp∗ : S(g, K) −→ U(g, K).

Lemma 2.2.2. If λ ∈ D(Λz, K) and δ ∈ D(Λg, K) then exp∗(λ·δ) = exp∗(λ)·
exp∗(δ).

Proof: Let y ∈ Λz and f ∈ Can(G0, K). Then

exp∗(δy · δ)(f) = (δy · δ)(exp∗f)

= δ(x 7→ f(exp(y + x)))

= δ(x 7→ f(exp(y) · exp(x)))

= (exp∗(δy) · exp∗(δ))(f),

since y commutes with all x ∈ g. Since K[Λz] is dense in D(Λz, K), the as-
sertion follows from the linearity and continuity of exp∗. ¤

Together with Lemma 1.2.10 we obtain that exp∗ restricts to an isomorphism
D(Λg, K)Λz → D(G0, K)Z0 and that the diagram

D(Λz, K)⊗̂S(z,K)S(g, K)
µ //

exp∗⊗̂exp∗o
²²

D(Λg, K)Λz

exp∗o
²²

D(Z0, K)⊗̂U(z,K)U(g, K)
µ // D(G0, K)Z0

is commutative. G acts trivially on D(Λz, K) and D(Z0, K). Moreover, G
acts on S(g, K) in such a way that exp∗ : S(g, K) → U(g, K) is G-equivariant.
Thus, there is an action of G on D(Λg, K)Λz such that exp∗ : D(Λg, K)Λz →
D(G0, K)Z0 is G-equivariant. We obtain the commutative diagram

D(Λz, K)⊗̂S(z,K)S(g, K)G //

exp∗⊗̂exp∗o
²²

D(Λg, K)G
Λz

exp∗o
²²

D(Z0, K)⊗̂U(z,K)U(g, K)G // D(G0, K)G
Z0

and may equally well show the above statements in the setting of Λg and Λz.

Passing to an open subgroup of Λg, we may assume that Λg and Λz sat-
isfy the compatibility conditions of Corollary 1.3.6. Hence for r ∈ pQ with
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1/p < r < 1 the K-Banach algebra Dr(Λg, K)Λz admits a finite direct sum
decomposition

Dr(Λg, K)Λz =
⊕

α∈A′
bαSr(g, K)

with bα ∈ K[Λz] for all α ∈ A′ (cf. Corollary 1.4.3).

Lemma 2.2.3. The action of g on D(Λg, K)Λz induced by that of G extends
to a g-action on Dr(Λg, K)Λz.

Proof: By the above direct sum decomposition it suffices to show that
the action of g on S(g, K) extends to the closure Sr(g, K) of S(g, K) in
Dr(Λg, K). Note that by Corollary 1.4.5 there is a continuous K-linear sur-
jection τ ′ : S(gQp , K) → S(g, K). As a direct consequence of Frommer’s
theorem S(gQp , K) is a K-Fréchet-Stein algebra. Therefore, the kernel J of
τ ′ and S(g, K) are coadmissible modules over S(gQp , K). According to The-
orem B (cf. [30], section 3) the coherent sheaf corresponding to J is given by
the kernels Jr of the surjections Sr(gQp , K) → Sr(g, K) (cf. (1.17)). Since
the Lie brackets on gQp and g = gL coincide it can be seen directly from
Proposition 2.1.1 (i) and (iii) that τ ′ is g-equivariant. In particular, J is
g-invariant. If we can show that the action of g on S(gQp , K) extends con-
tinuously to Sr(gQp , K) then, by the density of J in Jr (cf. Theorem A of
[30], section 3), Jr will be g-invariant, too. The g-action will then descend
to an action of g on Sr(g, K) extending the action of g on S(g, K). Thus, we
may assume L = Qp and hence || · ||r = || · ||r to be multiplicative. We show
that for each x ∈ g the corresponding K-linear endomorphism of S(g, K) is
continuous with respect to the norm || · ||r.

Recall from Frommer’s theorem that there is a Qp-basis X = (x1, . . . , xd) of g

such that

Sr(g, K) =

{∑
α

dαXα | dα ∈ K, lim
|α|→∞

|dα|||Xα||r = 0

}

with ||∑α dαXα||r = supα{|dα|
∏d

i=1 ||xi||αi
r }. For x ∈ g choose λ ∈ Q∗p such

that ||ad(λx)(xi)||r ≤ ||xi||r for all i. Then |λ|·||x∗Xα||r ≤ ||Xα||r for all α ∈ Nd

(cf. Proposition 2.1.1 (i) and (iii)). It follows that ||x ∗ δ||r ≤ |λ−1| · ||δ||r for
all δ ∈ S(g, K). ¤

We obtain
Dr(Λg, K)g

Λz
=

⊕

α∈A′
bαSr(g, K)g.
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Since, as remarked in the proof of Corollary 1.4.3, (bα)α∈A′ is also a basis for
the free Sr(z, K)-module Dr(Λz, K) we obtain a topological isomorphism

Dr(Λz, K)⊗Sr(z,K) Sr(g, K)g −→ Dr(Λg, K)g
Λz

.

Passing to the projective limit we obtain a topological isomorphism

D(Λg, K)⊗̂S(z,K)S(g, K)g −→ D(Λg, K)g
Λz

as in the proof of Proposition 1.2.12: To satisfy the Mittag-Leffler condition
we need to know that S(g, K)g is dense in Sr(g, K)g for all r. This is true
according to Remark 2.1.4 and Theorem 1.4.2 and is in fact the reason for
our working with Λg and Λz instead of with G0 and Z0. By our assump-
tion on G and Remark 2.1.3 we have S(g, K)g = S(g, K)G. It follows that
D(Λg, K)g

Λz
⊆ D(Λg, K)G

Λz
. Since the reverse inclusion holds trivially it re-

mains to prove the last assertion of the theorem.

Since by Lemma 1.1.1 and Proposition 2.1.2 K[Z0] and U(g)G⊗LK are dense
in D(Z0, K) and U(g, K)G, respectively, it follows from [25], Lemma 19.10
(i), that the space K[Z0]⊗K (U(g)G⊗L K) is dense in D(Z0, K)⊗̂KU(g, K)G.
Therefore, so is its image in the quotient space D(Z0, K)⊗̂U(z,K)U(g, K)G.
Since the image of K[Z0]⊗K (U(g)G⊗L K) under µ is precisely Dpt(G0, K)G

Z0
,

the proof of the theorem is complete. ¤

Recall that a connected, reductive, linear algebraic L-group G is called L-
isotropic if it contains a non-trivial torus S which is defined and split over
L. The latter means that all rational characters of S are defined over L or,
equivalently, that S is L-isomorphic to a closed subgroup of Gr

m,L for some r
(cf. [3], Proposition 8.2 and its corollary). According to [loc.cit.], Proposition
14.2 and Theorem 22.10, G is the almost direct product of its center and the
finitely many minimal, closed, connected, normal L-subgroups Gi of positive
dimension of its derived subgroup D. Let us call G sufficiently L-isotropic
if all Gi are L-isotropic. This is the case, for example, if G is L-split, i.e.
contains a maximal torus that is split over L (loc.cit. Proposition 22.9).

It is a consequence of results of K.-Y. Sit’s that in many cases of interest
the methods we have developed so far suffice to describe all of the center of
D(G,K). This is essentially due to the following theorem (cf. [32], Theorem
2.4):

Theorem (Sit). Assume G to be the group of L-rational points of a con-
nected, reductive, sufficiently L-isotropic L-group G. If the conjugacy class
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of an element g ∈ G is relatively compact in G then g is contained in the
center of G.

Corollary 2.2.4. Assume G to be the group of L-rational points of a con-
nected, reductive, sufficiently L-isotropic L-group G. Then D(G, K)G =
D(G,K)G

Z . Let D be the derived group of G, D the group of L-rational points
of D and d the Lie algebra of D. If K is discretely valued then there is a
topological isomorphism

(2.9) D(G,K)G ' D(Z, K)⊗̂K,ιU(d, K)d

of separately continuous K-algebras.

Proof: According to (2.1) and Remark 1.2.3 any invariant distribution on G
is supported on a union of relatively compact conjugacy classes. As a conse-
quence of Sit’s theorem we have D(G,K)G = D(G,K)G

Z .

Since G = D ·Z with finite intersection D∩Z it follows from Remark 1.2.15
that there is a topological isomorphism

D(G,K)Z −→ D(Z, K)⊗̂K,ιU(d, K)

of D(Z,K)-U(d, K)op-bimodules. The image of Dpt(G,K)G under this iso-
morphism is Dpt(Z, K) ⊗K (Z(d) ⊗L K): Note that U(d)D = Z(d) by Re-
mark 2.1.3. Since Dpt(G,K)G, Dpt(Z,K) and Z(d) ⊗L K are dense in
D(G,K)G, D(Z, K) and U(d, K)d, respectively, (cf. Theorem 2.2.1, Lemma
1.1.1 and Proposition 2.1.2) the above isomorphism restricts to an isomor-
phism D(G,K)G ' D(Z, K)⊗̂K,ιU(d, K)d. The arguments given at the be-
ginning of the proof of Theorem 2.2.1 show that it may naturally be viewed
as a homomorphism of K-algebras. ¤

2.3 The Fourier transform

Let k be a field which is complete with respect to a non-trivial and non-
archimedean absolute value. Recall that a rigid analytic k-variety X is called
quasi-Stein if there is a countable, admissible affinoid covering (Xi)i∈N of X
such that Xi ⊆ Xi+1 and the image of the map O(Xi+1) → O(Xi) is dense
for all i ∈ N (cf. [22], Definition 2.3).

Lemma 2.3.1. Let X and Y be quasi-Stein, rigid analytic k-varieties and
k′ be a complete valued field extension of k.

i) If X ′ is a rigid analytic k-variety admitting a finite morphism f : X ′ →
X then X ′ is quasi-Stein.
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ii) The fibre product X ×k Y of X and Y over k is quasi-Stein.

iii) X admits a base extension to k′ and the resulting rigid analytic k′-
variety Xk′ is quasi-Stein.

Proof: (i) Let (Xi)i∈N be a covering of X as above and X ′
i := f−1(Xi).

Then (X ′
i)i∈N is an admissible covering of X ′ which, due to the finiteness

of f , consists of affinoid subsets of X ′. We clearly have X ′
i ⊆ X ′

i+1 for all
i ∈ N. Further, [4] 7.3.4 Proposition 2 and Proposition 6 show that Xi is a
Weierstrass domain in Xi+1. According to [loc.cit.], 7.2.3 Proposition 6, X ′

i

is a Weierstrass domain in X ′
i+1 so that O(X ′

i+1) has dense image in O(X ′
i)

(loc.cit. 7.3.4 Proposition 2).

(ii) Let (Xi)i∈N and (Yi)i∈N be coverings of X and Y as quasi-Stein spaces
where Xi = Sp(Ai) and Yi = Sp(Bi) with affinoid k-algebras Ai and Bi. By
construction X×k Y has the admissible affinoid covering (Xi×k Yi)i∈N where
Xi ×k Yi := Sp(Ai⊗̂kBi) and the natural map Xi ×k Yi → Xi+1 ×k Yi+1 is an
open immersion. The maps Ai+1 → Ai and Bi+1 → Bi having dense image
the same is true for the map Ai+1⊗̂kBi+1 → Ai⊗̂kBi.

(iii) Let (Xi)i∈N be a covering of X as a quasi-Stein space and U,U ′ ⊆ X
be admissible open, affinoid subsets. Then there is an index i0 ∈ N such
that Xi0 contains both U and U ′. The intersection U ∩ U ′ ⊆ Xi0 is then
affinoid (loc.cit. 7.2.2 Corollary 5). According to [loc.cit.], 9.3.6, the base
extension Xk′ exists and has ((Xi)k′)i∈N as an admissible affinoid covering
where (Xi)k′ := Sp(Ai⊗̂kk

′). As in (ii) one sees that Xk′ is quasi-Stein. ¤

Remark 2.3.2. If X is a quasi-Stein space over k and k′ is a complete
valued field extension of k then the algebra of global sections of Xk′ is a
k′-Fréchet-Stein algebra: If (Xi)i∈N is a covering of X as a quasi-Stein space
then

OXk′ (Xk′) = lim←−iOXk′ ((Xi)k′).

For each i ∈ N the algebra OXk′ ((Xi)k′) is a noetherian k′-Banach algebra for
which the map OXk′ ((Xi+1)k′) → OXk′ ((Xi)k′) is flat (loc.cit. 7.3.2 Corollary
6). Moreover, the natural map OXk′ (Xk′) → OXk′ ((Xi)k′) has dense image
because this is true for all transition maps (cf. [7], I.4.4 Corollaire).

Recall that if Z is a commutative locally L-analytic group and X is a rigid
analytic L-variety then the group Ẑ(X) of locally analytic characters of Z
with values in X consists of the homomorphisms Z → OX(X)∗ of groups such
that for any admissible open affinoid subset X0 = Sp(A) of X the induced
homomorphism Z → A∗ is an element of Can(Z,A) (cf. [17], Definition
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6.4.2). Here A carries its natural topology of an L-Banach algebra.
It is shown in [loc.cit.], Corollary 6.4.4, that Ẑ is a functor on the category
of all rigid analytic L-varieties. Generalizing work of P. Schneider and J.
Teitelbaum, M. Emerton proves the following representability result (loc.cit.
Proposition 6.4.5):

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, lo-
cally L-analytic, topologically finitely generated group then the functor Ẑ is
representable by a strictly σ-affinoid rigid analytic space over L.

Recall that according to [loc.cit.], Definition 2.1.17, a rigid analytic L-variety
X is called strictly σ-affinoid if X has an admissible covering (Xi)i∈N by
affinoid subdomains Xi such that for every i ∈ N Xi is relatively compact
in Xi+1 in the sense of [4], 9.6.2. As a corollary to the construction of Ẑ we
obtain:

Corollary 2.3.3. Ẑ is quasi-Stein.

Proof: By [17], Proposition 6.4.1, there is an isomorphism Z → Λ × Z0 of
locally L-analytic groups where Λ is a free abelian group of finite rank, say
r, and Z0 is a compact open subgroup of Z. Consequently, there is an iso-
morphism Ẑ → Λ̂× Ẑ0. Λ̂ is represented by the r-fold direct product of the
rigid analytification Gan

m,L of the multiplicative group Gm,L over L. As we
saw in our review of rigid analytifications of affine schemes of finite type over
a field at the beginning of the proof of Proposition 2.1.7, Gan

m,L is quasi-Stein.

Further, Ẑ0 admits a finite morphism to a finite direct product of copies of ôL

which is quasi-Stein by [28], p. 456. Thus, the assertion follows from Lemma
2.3.1 (i) and (ii). ¤

It follows that Ẑ admits a base extension to K which we denote by ẐK . The
ring of global sections of its structure sheaf is denoted by O(ẐK). Since ẐK

is quasi-Stein and strictly σ-affinoid it follows from Remark 2.3.2 and [17],
Proposition 2.1.16, that O(ẐK) is a nuclear K-Fréchet-Stein algebra. We
make use of the following result:

Theorem (Emerton-Schneider-Teitelbaum). If Z is a commutative, lo-
cally L-analytic, topologically finitely generated group then there is a natural
continuous injection D(Z, K) → O(ẐK) of topological K-algebras with dense
image.

Since we will need it for the proof of the next corollary we briefly recall the
construction of this map: As above we choose an isomorphism Z → Λ× Z0

of locally L-analytic groups where Λ is a finitely generated free abelian group
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of rank r, say, and Z0 is a compact open subgroup of Z. According to [31],
Proposition A.3, there is a topological isomorphism

D(Z, K) ' D(Λ, K)⊗̂K,ιD(Z0, K).

Λ being discrete, D(Λ, K) = K[Λ] is the topological direct sum of one di-
mensional K-vector spaces. Hence D(Λ, K) ⊗K,ι D(Z0, K) is complete (cf.
Corollary 1.2.14 and [25], Lemma 7.8) so that

D(Z, K) ' K[Λ]⊗K,ι D(Z0, K).

On the other hand, the Fourier transform of [28], Theorem 2.3, extends

to an isomorphism D(Z0, K) ' O((Ẑ0)K) of K-Fréchet algebras. Further,
D(Λ, K) = K[Λ] can be interpreted as the algebra of regular functions on
the algebraic Cartier dual D(Λ) = Gr

m,K of Λ. It admits an embedding into

O((Gr
m,K)an) = O(Λ̂K) with dense image. Since

O(ẐK) ' O(Λ̂K)⊗̂KO((Ẑ0)K) ' O(Λ̂K)⊗̂K,ιO((Ẑ0)K)

the claim follows.

Corollary 2.3.4. Let G be a locally L-analytic group and assume that either

i) G is commutative and topologically finitely generated or

ii) G is the group of L-rational points of a connected, split reductive L-
group G.

If K is discretely valued then there is a quasi-Stein rigid analytic L-variety
X and an injective, continuous homomorphism D(G, K)G → O(XK) of K-
algebras with dense image.

Proof: Case (i) is just the previous theorem because D(G,K)G = D(G,K).
In case (ii) let Z be the center of G and n be the dimension of the derived
group of G. Being L-split, Z is isomorphic to the product of a finite number
of copies of L∗. Thus, Z is topologically finitely generated and we may
define X := Ẑ ×L (An

L)an. Writing Z = Λ × Z0 as above we have O(XK) '
O(Λ̂K)⊗̂KO((Ẑ0)K)⊗̂KO((An

K)an). Further, Corollary 2.2.4 yields

(2.10) D(G,K)G ' K[Λ]⊗K,ι D(Z0, K)⊗̂K,ιU(d, K)d,

where d denotes the Lie algebra of the derived group of G. It follows from
our assumptions on G that d is semisimple and split (cf. the beginning
of subsection 2.4 below) whence by Theorem 2.1.6 there is a topological
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isomorphism U(d, K)d ' O((An
K)an) of K-Fréchet algebras. Together with

the isomorphism D(Z0, K) ' O((Ẑ0)K) we obtain an isomorphism

D(Z0, K)⊗̂K,ιU(d, K)d ' O((Ẑ0)K)⊗̂K,ιO((An
K)an)

which, by tensoring the embedding K[Λ] ⊆ O(Λ̂K), gives a continuous K-
linear injection

D(G,K)G ↪→ O(Λ̂K)⊗K,ι O((Ẑ0)K)⊗̂K,ιO((An
K)an)

⊆ O(Λ̂K)⊗̂K,ιO((Ẑ0)K)⊗̂K,ιO((An
K)an)

' O(XK)

(for the last isomorphism confer our convention concerning ι in Remark
1.2.11). Since K[Λ] is dense in O(Λ̂K) this injection has dense image (cf.
[25], Lemma 19.10) and, by construction, is a homomorphism of K-algebras.
¤

Remark 2.3.5. The isomorphism (2.9) makes it possible to explicitly com-
pute the center of D(G,K) if G is L-split. As recalled above, the structure
of U(d, K)d has been determined in Theorem 2.1.6: if n is the rank of d, i.e.
the dimension of a split maximal toral subalgebra, then U(d, K)d is the K-
algebra of all power series in n variables with infinite radius of convergence:

U(d, K)d ' O((An
K)an).

There are also ways to make explicit the structure of the commutative algebra
D(Z,K): If r is the dimension of Z then Z contains an open subgroup
isomorphic to or

L (as follows, for example, from Proposition 1.3.5). Thus,
Z ' A × or

L as locally L-analytic groups with a discrete, finitely generated
abelian group A. Consequently,

D(Z, K) ' K[A]⊗K,ι D(oL, K)⊗̂K · · · ⊗̂KD(oL, K)︸ ︷︷ ︸
r-times

(cf. [31], Proposition A.3). The structure of D(oL, K) has been investigated
in [28]. It is the K-algebra of holomorphic functions on a twisted form of the
open unit disk.

Corollary 2.3.6. Under the assumptions of Corollary 2.3.4 any maximal
ideal of D(G,K)G which is closed with respect to the topology induced by
O(XK) is of finite codimension.
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Proof: Let m be a maximal ideal of A := D(G,K)G which is closed with
respect to the metric topology induced by Â := O(XK) and let m̂ be the
closure of m in Â. Write Â = lim←−i∈NAi as a projective limit of K-affinoid

algebras Ai exhibiting Â as a K-Fréchet-Stein algebra (cf. Remark 2.3.2).
Let mi be the the ideal of Ai generated by the image of m̂ under the natural
map Â → Ai. Then B̂ := Â/m̂ = lim←−i∈NAi/mi (cf. [30], Proposition 3.7 and

its proof) where Bi := Ai/mi is a K-affinoid algebra. Since mi+1Ai = mi there
is a morphism ϕi : Sp(Bi) −→ Sp(Bi+1) making commutative the diagram

Sp(Ai) // Sp(Ai+1)

Sp(Bi)

OO

ϕi // Sp(Bi+1)

OO

Let n be a maximal ideal of Bi denoting also its preimages in Bi+1, Ai+1 and
Ai. Since Sp(Ai) −→ Sp(Ai+1) is an open immersion there is an isomorphism
(Ai)n ' (Ai+1)n. But then

(Bi)n ' (Ai)n/mi(Ai)n = (Ai)n/mi+1(Ai)n ' (Bi+1)n

showing that ϕi is an open immersion. According to Theorem A ([loc.cit.],
section 3) the image of B̂ in Bi is dense whence so is the image of Bi+1 in
Bi for every i ∈ N. Thus, we may view B̂ as the algebra of global sections
of a quasi-Stein rigid analytic K-variety Y admitting the admissible open
covering Y =

⋃
i∈N Sp(Bi).

Note that Â/m̂ is topologically isomorphic to the Hausdorff completion of
A/m (cf. [8], 3.1 Corollaire 1) so that in particular Â/m̂ 6= 0. Therefore, the
variety Y is nonempty and we may choose a point y lying in some Sp(Bi).
Let my be the corresponding maximal ideal of Bi. Consider the coherent
OY -ideal I := id({y}) (cf. [4], 9.5.2 Corollary 6). Due to Theorem B (cf.
[22], Satz 2.4) the exact sequence

0 −→ I −→ OY −→ OY /I −→ 0

of coherent sheaves on Y gives rise to the exact sequence

0 −→ I(Y ) −→ B̂ −→ OY /I(Y ) −→ 0

of B̂-modules. The support of OY being {y} we have

(OY /I)(Y ) = (OY /I)y ' OY,y/myOY,y
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which is nonzero (myOY,y being the maximal ideal of the local ring OY,y; cf.

[4], 7.3.2 Proposition 1). But B̂ is a field so that we must have I(Y ) = 0
and (due to Theorem A again) I(Sp(Bi)) = my = 0. Thus Bi is a field and,
being K-affinoid, is of finite dimension over K (loc.cit. 6.1.2 Corollary 3).
We obtain isomorphisms

A/m ' Â/m̂ ' Ai/mi

because finite dimensional subspaces of a locally convex K-vector space are
always closed. ¤

2.4 An extension of Harish-Chandra’s isomorphism

Let G be a connected, split reductive, linear algebraic group defined over L.
Let D and Z be the center and the derived group of G, respectively. Both
of them are defined over L (cf. [3], Corollary 2.3 and Theorem 18.2). Let
further T be a maximal L-split torus of G. Then D is L-split and T′ :=
(D ∩ T)◦ is a maximal L-split torus of D (loc.cit. 21.1). Let G,Z, D, T
and T ′ be the group of L-rational points of G,Z,D,T and T′, respectively,
and g, z, d, t and t′ be the respective Lie algebras. Note that by [loc.cit.],
Proposition 14.2, Proposition 7.8 and [12], II.6.2 Corollaire 2.2, d = [g, g] is a
semisimple Lie algebra and that t′ is a maximal toral subalgebra of d. Since
T′ is L-split the pair (d, t′) is split in the sense of [13], 1.9.10. Let finally
W = W (G, T ) := NG(T )/T be the Weyl group of G with respect to T . W
acts on T by conjugation and hence on D(T,K). According to (1.3) and (2.1)
the subalgebra S(t, K) of D(T,K) is stable under the action of W . W is also
the Weyl group of D with respect to T ′, hence acts on T ′ and D(T ′, K).
The corresponding action on S(t′, K) is induced by the adjoint action of W
on t′ (cf. the proof of Proposition 2.1.1). Since T′ is connected and L of
characteristic zero the homomorphism Ad : W → AutL(t′) is injective (cf.
[12], II.6.2 Proposition 2.1). Recall that S(t′, K) is also acted on by the Weyl
group W = W(d, t′) of the pair (d, t′) (cf. subsection 2.1). This action, too,
is induced by viewing W as a subgroup of AutL(t′).

Lemma 2.4.1. Ad : W → W is an isomorphism of groups. In particular,
S(t′, K)W = S(t′, K)W.

Proof: Since Ad : W → AutL(t′) is an injective homomorphism of groups it
suffices to show that Ad(W ) = W.

Let Φ = Φ(d, t′) be the root system of (d, t′) and let α ∈ Φ. If dα denotes the
corresponding eigenspace then [dα, dα] contains a unique element Hα such
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that α(Hα) = 2. If Xα ∈ dα is different from zero then there is a unique
element X−α ∈ d−α such that [Xα, X−α] = Hα (cf. [6], VIII.2.2 Théorème 1).
Let sα ∈ W be the simple reflection of (t′)∗ corresponding to α. Its transpose
acts on t′ via

θα := exp(ad(Xα))exp(ad(X−α))exp(ad(Xα))

(loc.cit. Théorème 2; here exp ∈ Q[[t]] is the usual exponential series). Since
Xα and X−α are nilpotent there are elements uα and u−α in D such that

exp(ad(Xα)) = Ad(uα) and exp(ad(X−α)) = Ad(u−α)

on d (cf. [12], II.6.3 (3.7)), i.e. θα = Ad(nα) with nα := uαu−αuα. Since
Ad(nα)(t′) = t′ we must have nα ∈ ND(T ′): Since L is of characteristic zero
this is due to the connectedness of T′ (loc.cit. II.6.2 Proposition 2.1). Thus,
nα represents an element of W and its action on t′ coincides with θα. It
follows that W ⊆ Ad(W ) because the reflections sα, α ∈ Φ, generate W.

Let Bt′ be the set of all Borel subalgebras of d containing t′ and BT′ be the
set of all L-Borel subgroups of D containing T′. By [6], VIII.3.3 Remarque,
(resp. [3], Proposition 11.19) W (resp. W ) acts simply transitively on Bt′

(resp. BT′). In particular, |W| = |Bt′| and |W | = |BT′|. We claim that
passage to the Lie algebra defines a bijection BT′ → Bt′ . This will complete
our proof.

Let B ∈ BT′ . Then T′ ⊆ B and hence t′ ⊆ Lie(B). Further, B is a max-
imal closed, connected solvable subgroup of D. Since for any two closed
subgroups D1, D2 of D the Lie algebra of the commutator group [D1,D2]
contains [Lie(D1), Lie(D2)] (cf. [3], Proposition 3.17) it follows that Lie(B)
is solvable. For dimension reasons Lie(B) has to be a maximal solvable sub-
algebra of d. Indeed, according to the Cartan decomposition any such has
dimension 1

2
(dimL(d)+dimL(t′)). But by [3], Theorem 13.18, this is precisely

the dimension of Lie(B). Thus, the map BT′ → Bt′ is well-defined. Since by
definition all elements of BT′ are connected subgroups of D it is injective (cf.
[12], II.6.2 Proposition 2.1) and we obtain

|W | = |BT′| ≤ |Bt′| = |W| ≤ |W |. ¤
Theorem 2.4.2. Let G be the group of L-rational points of a connected, split
reductive L-group G with T and W as above. If K is discretely valued then
there is a topological isomorphism

D(G,K)G ' D(T, K)W
Z

of separately continuous K-algebras.
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Proof: According to Corollary 2.2.4 there is a topological isomorphism

κ : D(G,K)G −→ D(Z,K)⊗̂K,ιU(d, K)d

of separately continuous K-algebras.

Since T = Z · T ′ with finite intersection Z ∩ T ′ one proves in an analogous
manner that there is a topological isomorphism of separately continuous K-
algebras

ψ : D(Z,K)⊗̂K,ιS(t′, K)W −→ D(T,K)W
Z .

According to Theorem 2.1.6 and Lemma 2.4.1 there is a topological isomor-
phism ξ : U(d, K)d → S(t′, K)W of K-Fréchet algebras so that

ψ ◦ (id⊗̂ξ) ◦ κ : D(G,K)G → D(T, K)W
Z

is as required. ¤

Remark 2.4.3. If G is semisimple then Z is finite and κ and ψ are the
obvious isomorphisms

K[Z]⊗K U(g, K)G −→ D(G,K)G
Z = D(G,K)Gand

K[Z]⊗K S(t, K)W −→ D(T, K)W
Z .

Since the construction of the isomorphism ξ : U(g, K)G → S(t, K)W was done
without any restriction on K it follows that the isomorphism D(G,K)G '
D(T, K)W

Z exists for any spherically complete coefficient field K.

2.5 Comparison with the Bernstein center

Let M be any paracompact, locally L-analytic manifold of finite dimension
and C∞

c (M,K) be the K-vector space of locally constant K-valued functions
on M with compact support. The elements of the algebraic dual C∞

c (M,K)∗

of C∞
c (M, K) are called distributions on M . As in Remark 1.2.2 one sees

that for distributions on M there is a well-defined notion of support.

Let further C∞(M,K) ⊆ Can(M,K) be the K-vector space of all locally
constant functions on M endowed with the subspace topology induced from
Can(M, K). Set D∞(M, K) := C∞(M, K)′b.

Lemma 2.5.1. Via restriction of functionals from C∞(M, K) to C∞
c (M,K)

the space D∞(M, K) can be identified with the space of all compactly sup-
ported distributions on M .
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Proof: Let (Mi)i∈I be a covering of M by disjoint, compact open subsets Mi.
As noted in [27], section 2, the space C∞(Mi, K) ⊆ Can(Mi, K) carries its
finest locally convex topology for any i ∈ I. It follows from Can(M,K) =∏

i∈I Can(Mi, K) that C∞(M, K) =
∏

i∈I C∞(Mi) and hence that

D∞(M,K) =
⊕
i∈I

C∞(Mi)
′
b =

⊕
i∈I

C∞(Mi)
∗.

This is precisely the subspace of

C∞
c (M, K)∗ = (

⊕
i∈I

C∞(Mi, K))∗ =
∏
i∈I

C∞(Mi, K)∗

consisting of compactly supported distributions. ¤

For the rest of this section we will again assume M = G to be a finite dimen-
sional, locally L-analytic group. G embeds in D∞(G,K) via (g 7→ δg). If δ
and δ′ are distributions on G at least one of which is compactly supported
then one can define their convolution product δ · δ′ as in (1.2). It is again
a distribution on G. If both supp(δ) and supp(δ′) are compact then so is
supp(δ · δ′); this follows from the analog of Lemma 1.2.4 for D∞(G,K) (with
the same proof). In particular, D∞(G,K) is an associative K-algebra with
unit element δ1.

We let HK(G) be the Hecke algebra of G over K, i.e. the subalgebra of
D∞(G,K) consisting of all compactly supported distributions δ for which
there is a compact open subgroup G0 of G such that δg · δ = δ for all g ∈ G0.
Note that δ1 6∈ HK(G), i.e. HK(G) is non-unital, unless G is discrete.

Remark 2.5.2. If µ denotes a (left invariant) Haar measure on G then it is
well-known that the map

(f 7→ f · µ) : C∞
c (G,K) → HK(G)

is an isomorphism of K-algebras if C∞
c (G,K) is endowed with the convolution

product

(f ∗ h)(x) :=

∫

G

f(g)h(g−1x)dµ(g).

We will from now on tacitly make use of this identification and write f · h
instead of f ∗h if the functions f, h ∈ C∞

c (G,K) are viewed as distributions.

If G0 is a compact open subgroup of G letHK(G,G0) denote the subalgebra of
HK(G) consisting of G0-biinvariant functions, i.e. of functions f ∈ C∞

c (G,K)
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for which f(g1gg2) = f(g) for all g ∈ G and g1, g2 ∈ G0. HK(G,G0) is a ring
with unit eG0 := µ(G0)

−1χG0 where χG0 denotes the characteristic function
of G0. eG0 is an idempotent in HK(G), we have HK(G,G0) = eG0HK(G)eG0

and HK(G) is an idempotented algebra in the sense that

HK(G) = lim−→G0HK(G,G0)

with G0 running through the system of all compact open subgroups of G0

(cf. [2], 1.1). If G0 and G′
0 are compact open subgroups of G with G0 ⊆ G′

0

then eG0 · eG′0 = eG′0 · eG0 = eG′0 and there is a natural map

(f · eG0 7→ f · eG′0) : HK(G)eG0 −→ HK(G)eG′0 .

The projective limit ĤK(G) := lim←−G0HK(G)eG0 is the completion of HK(G)

with respect to the topology defined by the (left) annihilators of all eG0 and
can be identified with the space of all distributions δ on G such that δ · eG0

is compactly supported for all compact open subgroups G0 of G (loc.cit. 1.2
and 1.4). The algebra structure on HK(G) extends to ĤK(G) and we have
the ascending chain

(2.11) HK(G) ⊆ D∞(G,K) ⊆ ĤK(G)

of K-algebras. The center Z(ĤK(G)) of ĤK(G) is the projective limit of the
centers Z(HK(G,G0)) of the algebras HK(G,G0) (loc.cit. Lemme 1.5 (ii)).
Since according to [loc.cit.], 1.3, the multiplication in ĤK(G) is continuous
with respect to the above defined topology and since D∞(G,K) is dense in
ĤK(G) we have Z(D∞(G,K)) ⊆ Z(ĤK(G)).

Let I(g) denote the closed ideal of D(G,K) generated by the Lie algebra g of
G. Restricting continuous functionals from Can(G,K) to C∞(G,K) induces
a strict, continuous surjection

(2.12) D(G,K) // // D∞(G,K)

of separately continuous K-algebras with kernel I(g) (cf. [27], section 2). It
follows from Lemma 1.1.1 that K[G] is dense in D∞(G,K). Since G acts on
D∞(G,K) as in (2.1) we see that D∞(G,K)G is the center of the algebra
D∞(G,K). Further, the surjection (2.12) restricts to a map D(G,K)G →
D∞(G,K)G. Altogether we obtain the following sequence of homomorphisms
of commutative K-algebras:

(2.13) D(G,K)G −→ D∞(G,K)G −→ Z(ĤK(G)).
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If G is compact and abelian then both maps in (2.13) are surjective by
(2.12) and since the right inclusion in (2.11) is an equality of commutative
K-algebras. In the case that we have mostly been concerned with so far we
find the following:

Proposition 2.5.3. Assume G to be the group of L-rational points of a
connected, reductive, sufficiently L-isotropic L-group G. Then the first arrow
in (2.13) is surjective. The second arrow has dense image with respect to the
projective limit topology on Z(ĤK(G)) if and only if G is abelian.

Proof: Let us put Z∞ := D∞(G,K)G and Ẑ := Z(ĤK(G)) for simplic-
ity. We know from Corollary 2.2.4 that D(G,K)G = D(G,K)G

Z due to our
assumption on G. The argument given for its proof shows that likewise
Z∞ = D∞(G,K)G

Z because all distributions in D∞(G,K) are compactly
supported (cf. Lemma 2.5.1). Thus, we obtain Z∞ = D∞(Z, K) from the
fact that D∞(G,K)Z = D∞(Z,K). Since D(Z, K) ⊆ D(G,K)G

Z and since
the map D(Z, K) → D∞(Z, K) is surjective, the first assertion is clear.

To prove the second assertion we need to find a compact open subgroup
G0 of G such that the restriction to Z∞ of the projection Ẑ → ẐeG0 =
Z(HK(G,G0)) is not surjective unless G is abelian. Let S be a maximal
L-split torus of G, M := ZG(S), S := S(L) and M := M(L). Let A be the
apartment of the Bruhat-Tits building B of G associated with S. We identify
A with the real vector space X∗(S)⊗Z R where X∗(H) denotes the group of
cocharacters defined over L of an algebraic L-group H. Let G0 ⊆ G be the
stabilizer of 0 ∈ B.

If Ω is a field containing both K and the field C of complex numbers (e.g.
the completion of an algebraic closure of K) then

HΩ(G,G0) = HK(G,G0)⊗K Ω = HC(G,G0)⊗C Ω.

It follows that HK(G,G0) is commutative because HC(G,G0) is. In fact, Sa-
take’s isomorphism (cf. [11], Theorem 4.1) gives a much more precise descrip-
tion of HC(G,G0) as being isomorphic to the C-algebra of Weyl invariants
of the group ring C[Λ]. Here Λ is a certain quotient of X∗(M) and is a free
abelian group of rank dim(S) parametrizing the unramified quasicharacters
of M. Thus, Z(HK(G,G0)) = HK(G,G0) with the characteristic functions
of the double cosets G0\G/G0 as a K-basis.

Since supp(eG0) = G0 we have supp(δeG0) = supp(eG0δeG0) ⊆ G0ZG0 for any
δ ∈ Z∞. It follows that Z∞eG0 = HK(G, G0) if and only if G = G0ZG0.
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Making use of the Iwasawa decomposition we will show that this forces G to
be abelian.

Let Φ = Φ(G, S) be the relative root system of the pair (G,S). Choose a set
Φ+ of positive roots in Φ and let U+ be the subgroup of G generated by all
root groups Uα with α ∈ Φ+. If U+ := U+(L) then G is the disjoint union of
the double cosets G0mU+, m ∈ M (cf. [33], 3.3.1). If G = G0ZG0 = G0Z =
G0ZU+ then we must have M = Z so that M is central (note that M is
Zariski dense in M because L is infinite). Since M contains a maximal torus
of G it follows from the conjugacy of all maximal tori that G has a unique
maximal torus. But then G is abelian by [3], Theorem 12.3. Note that in
this case Z∞ = D∞(G,K) is dense in Ẑ = ĤK(G) (cf. (2.11)). ¤

Remark 2.5.4. We do not know whether there are locally L-analytic groups
G for which the map D(G,K)G → D∞(G,K)G is not surjective.
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