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Abstract. Consider an algebraic family π : A → B of abelian varieties, defined over Q. We
shall be concerned with properties of the generic fiber of A which are preserved on restricting
to some (or ‘many’) suitable special fibers. We shall focus on instances like torsion for values
of a section, endomorphism rings, existence of generic and special isogenies, illustrating some
known results and some applications. Another, more recent, issue which we shall briefly
discuss concerns the existence of abelian varieties over Q not isogenous to a Jacobian. We
shall conclude with a few comments on other specialization issues.

1. Introduction

The present short article arises from the lecture I had the honor and pleasure
to deliver at the conference Arithmetic and Analysis, Münster, April 2018,
in celebration of Christopher Deninger’s 60th birthday. I had the fortune of
meeting him many years ago and learn from him things far from my panorama.

For my talk, I chose a theme embracing a relevant part of my interests and
work of the last few years. For a number of reasons, I preferred to adopt a
survey style, illustrating the results with simple and special examples, rather
than general detailed statements. In this note, though expanding the exposi-
tion and the topics a bit, I shall maintain the same principles. In particular, I
shall be far from complete in any of the touched descriptions. I shall mention
a few basic results, some of them going back to long ago, pausing with little
more detail on what I am more familiar with.

1.1. Specialization theorems. As in the title and abstract, I shall consider
some theorems concerning preservation of (arithmetical or geometrical) struc-
tures by ‘specialization’. Such results on the one hand limit a certain type of
‘degeneracy’, and on the other hand allow to construct objects defined over
residue fields, having ‘generic’ properties (see, e.g., Serre’s first letter to Ribet



598 Umberto Zannier

in [30] for instances of this viewpoint). Well-known typical examples are the
irreducibility theorem of Bertini and its arithmetical counterpart by Hilbert.

Our context. In this article I shall stick to families of abelian varieties. That
is, our ambient is a parameterized family (i.e., a scheme) A/B of abelian va-
rieties over an algebraic ‘base’ variety B. So, roughly, there is a morphism
π : A → B such that the fibers Ab := π−1(b), b ∈ B, are abelian varieties,
there are morphisms sum: A×B A → A and inv : A → A over B, representing
the group laws on the various Ab, and there is a 0-section o : B → A such that
o(b) is the origin of Ab. The parameter(s) run over B(k), for a field k over
which the above data are defined. The field k may be ‘large’ (e.g., algebraically
closed) or quite restricted (e.g., a number field). For us, usually, it shall be Q

(in other issues it may be also C, which is a more ‘geometric’ case).

Generic and special properties. We shall consider properties which hold
‘generically’ for the family, i.e., they hold for the generic fiber At (where t is a
k-generic point of B); then our task is to study the special values b ∈ B(k) of
the parameters which destroy the property.

Bad set: This is the (hopefully) exceptional set of values of the relevant
parameter(s) such that the property in question is destroyed. It will be denoted
E or E(k).
Main purpose: To show that the bad-set is really ‘sparse’, for instance,

(i) at least not the whole B(k) (a ‘minimal’ ambition),
(ii) or hopefully empty, or finite (a ‘maximal’ ambition),
(iii) or some intermediate conclusions.

Sometimes the issue (i) is already nontrivial or even false, and indeed we
plan to describe both positive cases and failures.

Remark 1.2. Of course, any specialization principle may be formulated some-
what in a ‘reverse’ order, i.e., as a contrapositive statement, whose pattern
would be: If property (P) holds for sufficiently many special members, then
it holds generically. It is a matter of taste which phrasing to adopt. (For
instance, the latter is more common to ‘local-global principles’ in arithmetic,
see §6.2.) We also note that in all specialization principles that we shall meet
a converse implication will hold trivially, i.e., in the last phrasing: If property
(P) holds generically, then it holds for (almost) all special members.

Important analogies: reduction modulo p is of course a kind of specializa-
tion; the corresponding results are commonly referred to as local-global princi-
ples. We shall leave such interesting context essentially out of our discussion,
just mentioning a celebrated example in the final section.

2. A failure

Let us start with an example illustrating how the ‘bad’ set may be sometimes
everything, contrary to (naive) expectation. Let us consider the Legendre
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elliptic curve Lt, defined (affinely) by the equation

(1) Lt : y2 = x(x− 1)(x− t) + point 0 at ∞,

by which we mean that, in fact, we consider the projective closure of the curves
Lt ⊂ P2.

Here t is a (variable) parameter, confined to P1 − {0, 1,∞} if we want to
avoid bad reduction, i.e., if we require that Lt is an elliptic curve; this is
the present base B. We choose 0 as the origin of Lt. This elliptic scheme,
denoted L, is a surface.

We may also view Lt as an elliptic curve over Q(t); for many issues t may
be taken as a variable, or also a transcendental number. By specialization
t → b ∈ Q \ {0, 1}, we obtain an elliptic curve Lb defined over Q.

Let us now note that the coordinate map x : Lt → P1 is branched precisely
above the four points 0, 1, t,∞, which are its critical values (or branch points).
Now, for some purposes it is desirable to have maps with few critical values,
so it makes sense to ask the following question.

Question. Are there non-constant rational maps on Lt with at most three
critical values?

We assert that the answer is NO, i.e., (at most) three critical values cannot
be achieved for any rational map f = ft : Lt → P1 (and this holds no matter
the field of definition of f).

Sketch of proof. Otherwise, by composing f on the left with a suitable
automorphism of P1 (which is 3-transitive), we could carry the branch points
inside {0, 1,∞}, so the set of branch points could be assumed to be independent
of t.

Now, by specializing t to numbers u in a small disk U ⊂ C− {0, 1}, we see
that all curves Lu, u ∈ U , would admit a rational map fu to P1, unbranched
outside 0, 1,∞, and the degree of such maps would be independent of u. But
it is well known that there are only finitely many compact Riemann surfaces
(up to isomorphism) with a holomorphic map onto P1(C) of given degree d
and given branch set (they are associated to the permutation representation
in Sd of the fundamental group of the complement in P1(C) of the branch
set). However, the j-invariant of Lu is a non-constant rational function of u,
hence the curves Lu, u ∈ U , represent infinitely many nonisomorphic classes
of elliptic curves.

This conclusion, i.e., the non-existence of any map as above, or equivalently
the fact that the minimum number of branch points of a non-constant rational
map is 4 represents our ‘generic’ property for the present example.

Now, we may specialize t to a complex number u and ask the same question
for the special curve Lu in place of Lt.

If u is a transcendental number, the question amounts to the same for the
generic curve Lt, so the answer will be NO, and then it is sensible to ask this
only for u ∈ Q. Now, for such u, the curve Lu is defined over Q, and the
following surprising fact holds.
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Theorem of Belyi. Each algebraic curve defined over Q admits a non-
constant rational map with at most three critical values.

See, e.g., the book [4] by Bombieri and Gubler or Serre’s [29] for a proof of
Belyi’s theorem, which is as short as ingenious.1

From Belyi’s theorem, in particular, we deduce that for each b ∈ Q, there
exists a non-constant map φb : Lb → P1 branched over ≤ 3 points, so a spe-
cialization (or local-global) principle badly fails in our context: E is the whole
B(Q).

We remark that the maps φb, b ∈ Q, provided by the known proof of Belyi’s
theorem, behave in a very puzzling irregular way, in particular, their degree
grows wildly depending on b; of course the above says that these maps cannot
be parameterized algebraically.

3. Torsion in abelian families

3.1. Torsion in elliptic surfaces. Let us consider again the Legendre elliptic
scheme defined by (1), and let us consider a(n algebraic) section, i.e., a(n
algebraic) map σ : B → L such that π ◦ σ is the identity of B; such a section
corresponds in practice to a point on the generic fiber Lt. To be specific (but
the results below hold generally), let us choose, for instance,

σ(t) = (t+ 1,
√

t(t+ 1)).

Note that in fact σ(t) ∈ Lt. To be precise, we should specify the sign of the
square root, by performing a base change from P1 − {0, 1,∞} to its double
cover defined by u2 = t(t+1), but here we shall avoid such details, immaterial
for the present discussion.

Now, an elliptic curve is endowed with a group law (here with origin 0), and
an important issue for a point, or section, is whether it is torsion or not. When
it is not torsion, we can produce infinitely many points by taking multiples.
For instance, when we set t = b := (a − 1)2/4a for a rational number a ∈ Q,
the value σ(b) of the section is defined over Q and we obtain a rational point
in Lb(Q); if σ(b) is not torsion, we obtain infinitely many rational points in Lb.
This already illustrates a possible interest in studying when a section becomes
torsion.

It is not difficult to see that σ is not torsion identically in t, i.e., as a section.
This fact itself could be established by specialization (e.g., t → b ∈ Q, and
then using, for instance, the Lutz–Nagell criterion or similar ones, see [33]),
but probably the simplest way is to notice that the minimal extension of C(t)
over which σ is defined is ramified above t = −1, so outside the locus {0, 1,∞}
of bad reduction of L, and it is known that this fact prevents torsion. Then
the natural specialization issue now is:

1The history of Belyi’s theorem, which was foreseen by Grothendieck but proved by
Belyi without knowing this, is also interesting. One could expect an analog holding for
curves defined over a field of transcendence degree r, admitting rational maps with ≤ 3 + r

branch points; but this is unknown for any r > 0.

Münster Journal of Mathematics Vol. 13 (2020), 597–619



Some specialization theorems 601

What can be said of the complex numbers b such that σ(b) is torsion on Lb?

So, the ‘bad’ set for this example is E = {b : nσ(b) = 0 for some n > 0}.
Through the usual ‘chord-tangent process’ we can compute the multiples

of σ on Lt, obtaining nσ(t) = (Rn(t), Sn(t)
√

t(t+ 1)), for suitable rational
functions Rn, Sn ∈ Q(t) (always defined since σ is not torsion) whose degrees
grow roughly proportionally to n2, and similarly for the Weil-heights of their
coefficients.2

So any torsion equation nσ(b) = 0 corresponds to b being a pole of Rn, and
in particular, E is automatically inside Q. This also follows a priori on noting
that any equation nσ(t) = 0 defines a Zariski-closed subvariety of P1, defined
over Q, which is proper since σ is non-torsion.

It would not be sensible to expect in this case that E is finite, since the
above computation involves divisions which are unlikely to confine the poles
of the various Rn to a finite set. In fact, one can prove that E is infinite
(and more) by appealing to Siegel’s theorem on integral points (see [33]) over
function fields: any infinite sequence of n with Rn having poles in the finite
set S ⊂ C would yield an infinite sequence of S-integral points on Lt, i.e., for
the ring of regular functions on P1 − S, contradicting the said result.

A much more precise conclusion can in fact be proved.

Theorem 3.2. E is dense in P1(C) for the complex topology.

One can see this by considering the so-called Betti map of the section. This
is obtained locally as follows. The elliptic curve Lt is analytically isomorphic
to C/Λt for a lattice Λt. Locally in simply connected domains Uα covering
C − {0, 1}, we can pick a basis of Λt made up of (two) analytic functions
of t; for instance in the domain {t ∈ C : max(|t|, |1 − t|) < 1)} this can be
done by hypergeometric functions (see [16] and also §6.1 below). Further,
we can express (locally in each Uα) an elliptic logarithm of σ(t) as a linear
combinations with real coefficients of such basis. The pair of coefficients defines
a map from Uα to R2. It may be proved that this map is (real analytic and)
locally submersive on an open dense set, whence it assumes rational values on
a dense set. On this set the section σ assumes torsion values, by construction.

Actually, this also proves that the torsion orders can be chosen arbitrarily
(if large enough). See the writer’s book [36, Ch. III] for details of these argu-
ments. The Betti map, which goes back implicitly to Manin, has been recently
studied also in the case of higher dimensional base, which is rather more del-
icate, and admits applications of several kinds (as in past work by Krichever
on the discrete Schrödinger operator, and in recent work by Voisin on Chow
groups). See, for instance, the paper [3], joint with André and Corvaja (with
an Appendix by Gao). In particular, the results allow to extend Theorem 3.2
to more general cases. See further the recent Séminaire Bourbaki by Serre [31]
(relevant also for Application I below).

2See [19] for a study of such type of rational functions. Their degree is related to the
canonical height of the section with respect to the function field.
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Galois equidistribution of E . In the case of elliptic surfaces with a section,
even more comes from the recent paper [11] by DeMarco and Mavraki. They
prove that there is a probability measure on B (depending on the section)
such that the elements of E tend to be Galois equidistributed, by which we
roughly mean that as the degree of b ∈ E(Q) tends to infinity, the percentage
of conjugates of b falling in a prescribed (sufficiently ‘regular’) region of B
tends to the measure of the region.3

So far we have seen that the set E is large in various meanings, hence going
somewhat contrary to a ‘positive’ specialization conclusion. However this does
not hold to the extent of the example illustrated in §2, and in fact now there
are also rather sharp positive results.

Theorem 3.3 (Silverman and Tate, 1980). E is a set of bounded Weil height.

We skip here any definition of the (logarithmic) Weil height, except on re-
calling that for a rational x = p/q in lowest terms, it is h(x) = logmax(|p|, |q|).
(See [4] or [29] for the theory.)

It is a celebrated useful theorem of Northcott (admitting a short proof)
that any set of algebraic numbers with bounded height and degree is finite.
Therefore. we deduce the following corollary.

Corollary 3.4. For each D, the set {b ∈ E : [Q(b) : Q] ≤ D} is finite.

In particular, we have finiteness of E(k) for any number field k, but the
corollary is much stronger. We have not attempted to compute E(Q), and we
only observe it contains −1. However, we remark that the result is effective
and would allow the computation of the relevant finite set, for any given D
(also for any given section defined over Q).

Remark 3.5. (i) The above Theorem 3.3 is only an extremely special case
of what had been proved by Silverman and Tate, and especially Silverman.
For instance, one can consider several sections σ1, . . . , σr, linearly independent
over Z, and ask for the points b ∈ B such that σ1(b), . . . , σr(b) become depen-
dent. We refer to Silverman’s paper [32] for general statements. See also the
book [36] for simple arguments valid for our examples (see [36, Appendix C],
by Masser, for the case of several sections). These results inspired a wealth of
research.

(ii) Prior to Silverman and Tate’s work, somewhat similar methods had been
applied by Manin and Demianenko, who worked however over fixed number
fields; see [29] for an account. Still before, Néron obtained somewhat weaker
conclusions using the Hilbert irreducibility theorem; he wanted to achieve large
rank over Q for an elliptic curve, by specializing from a curve of large rank
over a function field. See again [29] for an account of these arguments. See
also [5] and [37] for the case of multiplicative tori in place of abelian varieties.

3Recent work with Corvaja, Demeio, Masser, still in progress, shows that the said measure
naturally comes from the Betti map.
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(iii) In general, to achieve bounded height for the values of torsion (under
the appropriate conditions) is much more difficult when dimB > 1 (here one
has at least to impose that the relative dimension is ≥ dimB), essentially due
to the more varied possibilities for the Néron–Severi group; see the paper [15]
by Habegger for cases when a bound for the height can be proved.

3.6. Torsion in higher relative dimensions. When the relative dimension
is g > 1 (the base B still being a curve) it is more stringent, a constraint that
a non-torsion section becomes torsion; so to say, if B is a curve and g > 1,
we have ‘roughly’ one degree of freedom against g constraints. In fact, in such
cases, we can often go beyond the previous conclusions and prove finiteness for
E (disregarding a bound on the degree as in Corollary 3.4). For instance, we
have the following result, obtained with Masser in a series of papers culminating
with [20] and [22].

Theorem 3.7. Let A → B be a complex abelian family of relative dimension
g ≥ 2 over a curve B, and let σ : B → A be a section such that Zσ(B) is
Zariski-dense. Then the set of b ∈ B such that σ(b) is torsion in Ab is finite.

This is a special case of the so-called Zilber–Pink conjecture, which in partic-
ular extended to a relative context the celebrated conjecture raised by Manin
and Mumford (on torsion points on subvarieties of abelian varieties, solved by
Raynaud in the 80s).

This result had been actually conjectured by Shou-Wu Zhang [39] already
in 1998, prior to both Pink and Zilber. (Zhang was mainly interested in cer-
tain stronger height statements, but explicitly put forward this corollary as a
conjecture, to our knowledge the first explicit statement in this direction.) It
may be read as a (sharp) local-global principle.

We do not say anything here on our methods of proof, and refer to [36] for a
rather extended discussion, at any rate of the basic ingredients. These usually
work for varieties defined over Q, and something more is needed to extend
to C. In the paper [8], joint with Corvaja and Masser, this is achieved by
specialization on a higher dimensional base, to reduce to the case of algebraic
numbers (after viewing a finitely generated field of definition as a function field
of a variety). So, in a sense specialization plays a double role in this result.
Somewhat surprisingly, this last specialization does not run as smoothly as
one would hope and expect, due mainly to the non-compactness of the base,
so that the exceptional points coming from specializing E could ‘escape’ toward
the boundary, so to say.

Here is an example coming from a previous question of Masser; it amounts
to a special case of Theorem 3.7 and represented a first step towards it.

Example 3.8. Consider another section to Lt, for instance τ(t) := (t − 1,
√

(t− 1)(2− t)), in addition to σ. We can now ask about the set E of b ∈ C

such that both σ(b), τ(b) are torsion on Lb. Whereas, as we have seen, there
are infinitely many b which make torsion one of the sections, it follows from
Theorem 3.7 that this E (the intersection of the ‘bad’ sets for the two sections)
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is finite: just consider the pair of sections as a single section to the fiber-square
scheme Lt×BLt, and apply Theorem 3.7. The assumption in this case amounts
to the fact, not difficult to check, that σ, τ are linearly independent over Z on
Lt (one may use conjugation over Q(t)).

The case of a base B of dimension > 1 (with appropriate assumptions)
presents new difficulties and is essentially open. However several authors (as
Barroero, Bertrand, Capuano, Gao, Habegger, Pila, H. Schmidt, Tsimerman,
among others) have obtained results of the same flavour in extended contexts,
on which we cannot pause here. (See [36] and [38] for some references, which
are however not updated with recent results.) Instead, we shall present a
couple of further applications of Theorem 3.7.

Application I: Families of Pell’s equations in polynomials. The cele-
brated Pell’s equation, proposed in fact by Fermat and actually going back to
several centuries ago, is X2 −DY 2 = 1, with D a non-square positive integer,
to be solved in integers. But here we assume D = D(z) ∈ C[z] − C and we
want solutions in polynomials X = p(z), Y = q(z) 6= 0.

This polynomial case is probably less known than the former, however shows
as well a respectable history. For instance, already in 1826 Abel investigated
this equation in connection with integration of differentials, some years later
Chebyshev too dealt with it, and the equation subsequently appeared in a
number of different mathematical issues, apparently distant. (See, for example,
the survey [38] and the more recent Séminaire Bourbaki by Serre [31].)

Contrary to the classical case, in a sense this equation ‘seldom’ has solutions;
when this happens, D(z) ∈ k[z] is sometimes called Pellian (over k). Note that
the equation defines a pencil of affine conics and to be Pellian amounts to the
existence of a nontrivial section.

The distribution of complex Pellian polynomials leads to some intriguing is-
sues, which belong to the ‘specialization’ context, since the general polynomial
of any given degree > 2 is not Pellian. (See the quoted sources, and also [3]
for mention of other issues related with this.)

To give specific examples within pencils of polynomials, we note that it is not

difficult to prove that z4+z+ t is not Pellian over C(t) (see [36]) but z4+z+ b
becomes Pellian for an infinite set of b ∈ Q, of bounded height. This is related
to the elliptic scheme defined by w2 = z4 + z + t (to which one can apply
the above arguments for torsion values after the Criterion recalled below). If
we go to higher genus, Pellianity becomes a more stringent condition, and we
can prove more. For example, as before one can check that z6 + z + t is not
Pellian identically in t, but concerning specializations now we have a stronger
assertion.

Theorem 3.9. There are only finitely many b ∈ C such that z6 + z + b is
Pellian.

Here, z6 + z is Pellian: (2z5 + 1)2 − (z6 + z)(2z2)2 = 1; and Stoll found an
algebraic number b0 of degree 10 for which z6+z+b0 is Pellian. The continued
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fraction for
√
z6 + z + t = [z3, 2(z2− tz+ t2),−(2t3)−1z− (2t2)−1, . . .] helps to

find these identities, but I do not know how to compute effectively the whole
finite set in question.

The link with the above ‘torsion’ context is provided by the following simple
known result.

Criterion: A squarefree D(z) is Pellian if and only if the difference ∞+−∞−
of the points at infinity on the curve w2 = D(z) is torsion on its Jacobian.

Using this and the simplicity of the Jacobian of w2 = z6 + z + t (checked
by Stoll), it is an easy matter to deduce Theorem 3.9 from Theorem 3.7. See
the cited sources for further information.

Application II: Integration in finite terms. The problem of expressing
indefinite integrals in terms of simple functions goes back to long ago and
appeared among the first examples of differential algebra. By ‘simple’ it was
meant that the integral could be obtained by a finite tower of operations either
of algebraic type, or taking exponentials or taking logarithms (starting from
rational functions). We call IFT (Integrable in Finite Terms) a differential
whose integral can be likewise expressed. We have already mentioned Abel in
connection with Pell’s equations in polynomials, and indeed that research of
his involved also elementary integration. Subsequently the matter was studied
by Liouville, Ritt and Kolchin, among others, giving rise, for instance, to
differential Galois theory.

More recently, it was J. Davenport who investigated pencils of algebraic
differentials, to be integrated in finite terms; he sought to prove that if the
general member of the family cannot be likewise integrated, then the same
happens for the special members up to finitely many exceptions.

Masser and I took up the topic, especially since it is related to torsion in
(generalized) Jacobians, and thus to the results mentioned above. This link
comes from the Criterion above and a result of Liouville, which gives a fairly
simple necessary and sufficient condition for a differential to be IFT; in essence,
this says that if an elementary integral exists at all, one has only to perform
towers of length 1, seeking among sums of an exact differential plus a linear
combination of logarithmic-exact differentials (all from the same function field).
For a very good self-contained account, we refer to Rosenlichts’s article [25].

In the case of algebraic differentials, this criterion can be worked out, as done
by Ritsch [24], to obtain explicit integrability conditions in terms of torsion
conditions on certain divisor classes. This allows the applications of results like
Theorem 3.7, and just a very special instance of the output is the following.

Theorem 3.10. There are only finitely many b ∈ C such the integral
∫

(2z + b) dz√
z4 + z + b

is elementary.

Münster Journal of Mathematics Vol. 13 (2020), 597–619
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Example 3.11. The special value b = 1/2 is in the said finite set:
∫

(2z + 1/2) dz
√

z4 + z + 1/2

=
1

2
log

(

4z4 − 4z3 + 2z2 + 2z − 1 + (4z2 − 4z + 2)
√

z4 + z + 1/2
)

.

The analysis for such results now in fact involves torsion in generalized
Jacobians, which are algebraic groups obtained as extensions of usual Jaco-
bians by linear commutative groups. This requires additional results beyond
Theorem 3.7, however, of the same nature (in cases like Theorem 3.10 this was
worked out by H. Schmidt). For the present statement, the relevant generalized
Jacobian (family) is a non-split extension of the elliptic family w2 = z4+ z+ t
by the additive group Ga. (The formula of the example corresponds to a point
of order 4.)

In general, the ‘obvious’ expectation here would be Davenport’s, i.e., that
a pencil of algebraic differentials not identically integrable in finite terms has
only finitely many special members which are IFT. In the above phrasing this
would amount to the fact that the bad set E for this problem is finite (like in
the case of Theorem 3.10).

However, this is not generally true, which was for us quite surprising.

Example 3.12. The differential
z dz

(z2−t2)
√
z3−z (over C(t)) is not identically

IFT but it becomes IFT for infinitely many specializations t → b. Two proofs
are given in [22].

In this example, note the underlying elliptic curve w2 = z3 − z with CM:
this is no coincidence, since it can be shown that if the (usual) Jacobian of the
underlying curve (corresponding to the differential) does not contain CM ellip-
tic curves, then E is indeed finite. More generally, there is a rather complicated
analysis to decide if for a given pencil (defined over Q) it may happen that E
is infinite, and here for brevity I do not pause further. See the paper [22] for
complete detail.

4. Isogenies and Endomorphism rings

4.1. Specialization of endomorphism rings. Given an abelian family A/B
as above, say defined over Q, an important feature of it is the structure of
the ‘generic’ endomorphism ring, namely, the ring End(At) (or the Q-algebra
Q⊗ End(At)), where t is a generic point of B.

Then of course one may look, e.g., at algebraic points b ∈ B(Q) and ask
about the structure of End(Ab): what is the distribution of the bad set E for
this situation?

Example 4.2. (i) For instance, the property that At (resp. Ab) is ‘sim-
ple’, meaning it does not contain nontrivial abelian subvarieties, falls into this
realm, because simplicity amounts to the endomorphism ring to contain no
zero-divisor.
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(ii) Another illustrative example comes with a ‘general’ elliptic curve of j-
invariant t (e.g., y2 = 4x3 − cx − c, where c = 27t/(t − 1728)): the generic
endomorphism ring is Z, and when t = b ∈ Q is a singular modulus, i.e., equals
the value j(τ0) of the modular function j(τ) at an imaginary quadratic point
τ0 ∈ H , the curve acquires CM, and the degree [Q(b) : Q] equals the class-
number of the corresponding order. Hence, to understand the distribution
of these values in particular includes the class-number problem for imaginary
quadratic fields.

In general, a first consideration is as follows: by a simple specialization
argument it is not too difficult to check that for ‘most’ b ∈ B, namely, those
in a suitable Zariski-open-dense set, End(At) injects into End(Ab) (one may
look, e.g., at the action on regular 1-forms). And then we are essentially asking
when End(Ab) can be strictly larger than the generic ring End(At).

That this may be a highly nontrivial issue is suggested, e.g., by the fact that,
even in basic cases, already the computation of End(A), for a given abelian
variety A/Q, is known to be a deep problem.4

Now, in 1996, Masser [18] proved a very general theorem about specializa-
tions of endomorphisms of such families of abelian varieties; namely, he proved
that E is a sparse set, in a certain well-defined sense involving heights and de-
grees of the relevant algebraic numbers. Moreover, the bounds by Masser are
completely effective. (The proofs rely among other things on his endomorphism
estimates obtained with Wüstholz.)

It would be probably not ideal to state Masser’s full results in this kind of
exposition, so we limit to illustrate them through a simple (very) particular
situation, as in the special case object of the following subsection.

4.3. Specializations of non-isogenous elliptic curves. Let us consider
once more the Legendre curve defined by (1). For t a variable (or a transcen-
dental number), we can also consider simultaneously the elliptic curves Lt, L2t

(defined over Q(t)). We assert that they are not isogenous: their j-invariants
are given, respectively, by J(t), J(2t), where J(t) = 28(t2− t+1)3t−2(1− t)−2.
These rational functions of t have poles, respectively, at t = 0, 1,∞ and
t = 0, 1/2,∞, hence none of the two is an integral over the ring generated
by the other over C. This excludes any isogeny, in view of the (monic) struc-
ture of modular equations.5

Then the following specialization question looks spontaneous.

Question. What can be said of the ‘bad’ set

E = {b ∈ C : Lb, L2b are isogenous}?

4In the elliptic case, this may be done with more elementary methods, see, for instance,
[36, Rem. 4.2.1, p. 104]. As remarked below, already the case of dimension 2 to date requires
more sophisticated tools.

5Other arguments are available; for instance, one can observe that [C(J(t), J(2t)) :
C(J(t)] ≤ 6, hence there are only a few modular equations to check.
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Remark 4.4. We again stress that it appears to be a difficult issue even to
decide effectively if a given b is in E . In fact, I know of only two algorithms to
check whether two given elliptic curves, e.g., over Q, are isogenous or not: one
algorithm comes from isogeny-degree estimates due to Masser and Wüstholz,
and the other one comes from an effective refinement by Serre of a theorem of
Faltings on Galois representations.

As before, it is clear that E ⊂ Q. And E is nonempty: for instance, we have
1/

√
2 ∈ E .

Actually, it may be seen that E is an infinite set in Q. For a proof, one
can look at the equation λ(gτ) = 2λ(τ), where λ is the fundamental modular
function of level 2 and g ∈ PGL2(Q) (a bit patient analysis yields also that E
is dense in C).

Remark 4.5. The work of Habegger [14] shows that there is no analog of
Theorem 3.3 here, namely, E is a set of unbounded height (contrary to the case
of torsion values of a section). Of course, we recover the easy fact that E is
infinite, but Habegger’s result is much subtler.

To go in the opposite direction, i.e., ‘bounding E from above’ so to say, is
more delicate. The situation may be put into the framework of Masser’s above
mentioned results as follows. First, we note that, since the curves Lt, L2t

are not (identically) isogenous, and neither has CM, the ring End(Lt × L2t)
is isomorphic to Z × Z. On the other hand, if Lb, L2b are isogenous, then
End(Lb × L2b) is certainly larger than Z × Z, and hence is not isomorphic to
the ‘generic’ ring.

Then, on taking A as the abelian family with Q-generic point Lt×L2t (over
B = P1 \ {0, 1/2, 1,∞}) this reduces our issue to one in Masser’s context. And
now a very special corollary of his conclusions yields the following.

Theorem 4.6 (A corollary of [18]). There are computable numbers c1, c2 such
that, for every D,T > 0, the set {b ∈ E : [Q(b) : Q] ≤ D,h(b) ≤ T } has at
most c1(D + T )c2 elements.

Here h(b) denotes Weil (logarithmic) height. Since the number of algebraic
numbers of degree ≤ D and height ≤ T is ≫ exp(T + D), this shows that
the bad set is very sparse. For instance, the estimate immediately yields the
following corollary.

Corollary 4.7. There are at most c1(1 + logT )c2 integers b ∈ E ∩ [0, T ].

As remarked, Masser’s bounds are very general and maybe not very far from
the truth in the most general case. However, for our special issue, we could
now ask whether something stronger than Corollary 4.7 may be said. Indeed,
the paper [13] shows, in particular, that the following analog of Corollary 3.4
holds.

Theorem 4.8 ([13]). For every D, the set {b ∈ E , [Q(b) : Q] ≤ D} is finite.
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Remark 4.9. (i) Before Masser’s paper, some interesting results in the same
direction of this theorem were obtained by André, as a consequence of his
theory of G-functions (see [1]). However, they required further assumptions,
and we cannot pause on this here; see Masser’s paper for comments, also on
how the respective results could be joined in some cases.

André also used different methods, related to ℓ-adic representation of endo-
morphisms, to obtain some very general results in [2] (see Thm. 5.2 (3)). In
particular, he also proved the existence of ‘good’ algebraic specializations (i.e.,
not in the bad set E).

(ii) Note that in view of Habegger’s result quoted in Remark 4.5, this finite-
ness cannot be derived at once on invoking the theorem of Northcott (recalled
in §3). In fact, the proof in [13] is much more delicate than that, and relying
on deep tools.

Ellenberg, Hall and Kowalski actually prove in [13] several other results
in the same vein; the above may be obtained just as a special case of their
Theorem 6 (see also Example 15 in their paper).

Let us now very briefly comment on the differences of these last results
compared to Masser’s.

• Masser’s results are effective, and work for arbitrary abelian schemes.
• Ellenberg, Hall and Kowalski’s results are not effective, and, as they
stand, work only for abelian schemes over curves (satisfying moreover
certain additional hypotheses); the restriction to curves happens to
be a severe one, since certain diophantine results at the basis of the
methods are completely out of the present knowledge in dimension > 1.
As an important counterpart, they give the finiteness of Theorem 4.8
(moreover, with effective bounds for cardinality).6

4.10. A few words about the proofs. Let us describe in a few words some
of the principles which appear in the proofs of the two kinds of results, which
are quite different. In this article of course we may offer at most a very vague
description.

Masser’s results. A basic ingredient of the arguments consists of estimates
for degrees of a set of generators for the endomorphism ring, obtained by
the author and Wüstholz. (More precisely, the ‘Rosati quadratic form’ is
used to measure the ‘length’ of an endomorphsim.) This lies deep, and is
employed to bound the length of a possible endomorphism of the specialized
variety, not arising from specialization. Then still other tools are needed, as
effective elimination theory (Nullstellensatz by Brownawell), which is used after
parameterizing rationally the endomorphisms of bounded degree. Finally, also
certain zero estimates from transcendence theory play a role, in the deduction
that in fact the relevant endomorphism must come by specialization.

6Note also that Theorem 4.8 supersedes Corollary 4.7 but not the full Theorem 4.6, even
ignoring effectivity.
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Ellenberg, Hall and Kowalski’s results. A fundamental principle is to
look at the Galois representation associated to torsion points of large enough
fixed order, say a prime ℓ. On the one hand, since the generic elliptic curves
Lt, L2t are non-isogenous, this representation has ‘large’ image; on the other
hand, if the curves become isogenous by specialization t → b (with b algebraic
of bounded degree), the Galois image drastically decreases. On lifting b, this
creates a rational point of bounded degree on a suitable curve (depending
on ℓ).7 Now, due to celebrated results of Faltings, as applied by Frey, one
may prove finiteness of points of degree ≤ D on a curve whose gonality is
> 2D (see, e.g., [12], especially the article by van der Geer); this transfers
the issue in that of bounding below the gonality of the curves which appear.
In turn, this is done by a combination of rather surprising (and deep) facts,
which link the structure of Galois groups with expansion theory of graphs and
the eigenvalues of suitable Laplacians. Lower bounds for the minimal such
eigenvalue are applied, crucially for the argument, to bound from below the
gonality, after a discovery of Li and Yau linking these quantities.

Remark 4.11. Part of these methods, applied to the situation of Exam-
ple 4.2 (ii), lead to a lower bound for the class-number of imaginary quadratic
fields, tending to ∞ with the discriminant. To my knowledge this kind of
argument has not been written down; anyway most probably the bound will
be very weak, and certainly ineffective (contrary to the lower bounds coming
from Goldfeld, and Gross and Zagier). The corresponding ideas are at bottom
not unrelated to those exploited by Heegner for the problem of class-number 1.
See also the Appendix to [29].

Remark 4.12. A different ‘sparseness’ conclusion in this setting was obtained
by Maulik and Poonen in [23], by entirely different, sophisticated, methods.
Among other things they prove the very interesting fact that the ‘bad set’ is
nowhere dense in the p-adic topology. The paper contains also reference to
previous work by André and Serre, with different methods.

5. Moduli spaces of abelian varieties

To start with, we recall the definition of Ag as the (coarse moduli) space
of principally polarised abelian varieties (abbreviated p.p.a.v.) of dimension g
(where we think here of the complex points).

Namely, each isomorphism class (over C) of p.p.a.v. of dimension g corre-
sponds to a complex point of Ag. It turns out that Ag may be realized as a
complex quasi-projective algebraic variety of dimension g(g + 1)/2. (For this
and some other facts implicit in the discussion below, see, for instance, Milne’s
and Rosen’s articles in [7].)

Inside Ag, we have the subvariety corresponding to Jacobians of curves of
genus g. This is classically referred to as the Torelli locus, denoted here Tg; it

7As mentioned in [18], this kind of idea was already foreseen, e.g., by Bertrand after a
talk of Masser on his results.
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is a quasi-projective variety as well, of dimension 1 for g = 1 and 3g − 3 for
g > 1 (as essentially proved by Riemann).

Example 5.1. For instance, for g = 1, we have A1 = T1 = A1, in the sense
that A1 is the space of (isomorphism classes of) complex elliptic curves, param-
eterized by the value of their j-invariant, which can be any complex number,
so in A1(C) = C; and moreover the Jacobian of any curve of genus 1 is an
elliptic curve.8

For g = 2, 3, we have dimAg = dimTg, however, there is not exact equality,
and Tg misses the points in certain closed sets in the respective Ag.

For g ≥ 4, we have dimTg < dimAg, so that definitely Tg is a subset of Ag

‘much smaller’ than it.

Now, while it is true that every abelian variety is isomorphic to a quotient
of some Jacobian, in view of the results recalled in this example, we see that
for any g ≥ 4, there exist complex p.p.a.v. which are not isomorphic to any
Jacobian.9

We can now replace isomorphic with isogenous (which is a weak version of
the former notion), and ask about p.p.a.v. isogenous to some Jacobian. Now,
isogenies depend on finitely many rational parameters, so to say, so the set
of p.p.a.v. of dimension g isogenous to some Jacobian forms a denumerable
union of subvarieties of Ag of the same dimension as Tg. Hence, for g ≥ 4,
again we deduce the existence of complex p.p.a.v. of dimension g isogenous to
no Jacobian: no complex algebraic variety can be the union of denumerably
many subvarieties of smaller dimension.

This last argument involves denumerability and uses (implicitly) that C is
not countable. But then the issue arises on what happens on replacing C with
a denumerable field, e.g., Q. Note that the above remarks say that this may
indeed be considered a specialization issue.

In spite of the above argument not working anymore, intuition seems to sug-
gest that this change should not modify our conclusion; however, the example
in §2 shows that one has to be careful before drawing quick conclusions in this
kind of context.

And indeed, it seems not straight-forward to provide a definite answer, and
N. Katz and Oort independently have raised10 the following question.

Question. Are there a.v. over Q not isogenous to any Jacobian?

By the way, restriction to a.v. which are p.p. is immaterial for the question
and for its treatment, since any a.v. is isogenous to a p.p.a.v.

8In the case g = 1 a principal polarization always exists and is uniquely determined up
to isomorphism, hence we can forget about it.

9There is here a subtlety in whether we impose the isomorphisms to respect or not the
polarizations, and similarly for the considerations which follow. However, the assertion(s)
remains true anyway.

10In fact, it seems that each author attributes somewhat the question to the other; but
this quotation seems the standard reference, and we shall adopt it.
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The question proved to be (surprisingly?) difficult and Chai and Oort [6]
gave in 2012 an affirmative answer only assuming the so-called André–Oort
conjecture, still unproven at that time.

Their construction was soon afterwards reconsidered by Tsimerman [34],
who could prove a weak form of André–Oort conjecture, sufficient for an un-
conditional proof.11

It is to be remarked that these authors proved a more general result, valid
on replacing the Torelli locus by any subvariety of Ag of smaller dimension (so
the question and the answer become significant also for g = 2, 3).

The ingenious arguments of both papers of Chai and Oort, and Tsimerman
were built on observing that if an a.v. has CM of a certain type (see any of the
quoted papers for definitions) the same is true for any a.v. isogenous to it; so
the proof heavily uses the CM type as an isogeny invariant.

Note also that these a.v. are not ‘generic’, so to say, because certainly the
‘general’ complex abelian variety has not CM (these notions may be put on
more technical ground but we do not pause on this here). In fact, a further
point is that their field of definition is necessarily inside Q, and there is no
‘continuous’ family with similar properties, and moreover the minimal degree
of a field of definition is expected to grow to infinity (as happens for instance
with elliptic curves with CM).

Hence, it looks natural to try to provide an answer to the question by means
of ‘generic’ a.v. (in some sense). And since the very question considers the field
of definition, it looks also natural to limit as far as possible this field for the
sought a.v., i.e., those presented as evidence for an affirmative answer. (Indeed,
similar requirements are explicitly present in [6, Question 2, p. 604].

In a recent (forthcoming) work, Masser and I have developed a completely
different method to deal with this type of problem, obtaining conclusions which
may be regarded as complementary to the previous ones, and answering the
above issues.

We do not discuss this here in any detail, and we limit to state one of the
results that can be obtained by such analysis:

Theorem 5.2 (joint with Masser). Let X be any proper closed subvariety
of Ag. There exist points x ∈ Ag(Q) (corresponding to p.p.a.v.) that are
Hodge-generic and not isogenous to any y ∈ X.

More precisely, for given g, such points may be taken to be defined over
respective number-fields of bounded degree over Q (in terms of g), and so that
they are pairwise not isogenous and complex-dense in Ag(C).

11After steps by several authors, the André–Oort conjecture was proved for g ≤ 6 in
2013 by Pila and Tsimerman and eventually in full by Tsimerman in 2015, who introduced
a further ingredient related to a conjecture by Colmez on Faltings heights. In turn, a version
of this, sufficient for the said purpose, was proved by other (groups of) authors (Yuan-
Shouwu Zhang and Andreatta et al.). The André–Oort conjecture may be itself considered
a specialization issue; however our presentation at the conference did not include it as a
separate topic and we shall not further pause on this here as well.
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By ‘Hodge-generic’, we mean that the so-called Mumford–Tate group is
the whole of GSp2g; We skip here the latter definition and only say it is a
property holding for all points in Ag outside a certain denumerable union of
proper subvarieties. Actually, our proof of Theorem 5.2 allows to replace this
property with ℓ-Galois-generic (for any given prime ℓ), which is known to
imply the former. Roughly speaking, this last property says that the Galois
group of the field generated by ℓ-power torsion points over the ground number
field is nearly maximal, i.e., open in GSp2g(Zℓ).

In particular, all the a.v. with any of the said properties have a trivial ring of
endomorphisms (and hence they are simple), so they are somewhat ‘opposite’
to being CM.

For the case g = 4, the relevant a.v. may be even chosen to be defined
over Q, and for g = 5 over a fixed number field. (This depends on the fact
that A4,A5 are unirational. However, Ag is known to be of general type for
g ≥ 7, and well-known conjectures of Bombieri, Lang and Vojta would predict
the rational points not to be Zariski-dense. Hence, for general X , the same
conclusion is not expected to be true for g ≥ 7.)

The method of proof depends on several ingredients, as Masser-Wüstholz
isogeny estimates (actually in the more precise form involving the Rosati qua-
dratic form), Pila-Wilkie estimates, Serre’s method with Frattini groups for a
Hilbert Irreducibility for infinite towers, and some theory of Shimura varieties.

All of this in fact yields more precise results, in the shape of counting the-
orems saying that in a well-defined sense the majority of p.p.a.v. over Q are
not isogenous to any point in X . We skip here any further details and refer to
the paper [21].

Remark 5.3. (i) For the above alluded method devised by Serre, see [29]
and especially [30], Lettres a Ken Ribet, this last reference containing explicit
mention of specialization theorems. The method often allows to deal with
specialization of the Mumford–Tate group, through Galois groups obtained by
adding torsion points of ℓ-power order. This principle was also applied by
André in the paper [2], quoted in the previous section.

(ii) Of course, for g = 1, the above question is not sensible, but one can
pose a real analog, namely, asking whether, given a real algebraic curve X ⊂
A1

∼= A1, there are elliptic curves over Q not isogenous to one with j-invariant
in X . For instance, are there elliptic curves over Q not isogenous to anyone
whose j-invariant is of the shape a+ ia2, a ∈ R?

The methods lead to an affirmative answer also to this question (with an
easier proof), actually providing infinitely many examples defined over any
prescribed number field provided it is non-real (which is a necessary restriction
for any elliptic curve defined over R has j-invariant on the real line, which is
of the said type).

The restriction to real-algebraic curves looks natural, if not for the reason
that is more likely that a curve contains ‘many’ algebraic points if it is an
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algebraic curve. Also, and more important, it may be seen by easy interpo-
lation that the conclusion does not remain true if an arbitrary analytic curve
is allowed. (On the other hand, difficult questions seem to arise if one allows
analytic non-algebraic curves subject to other restrictions.)

6. Other contexts and open questions

In this section we discuss very briefly a couple of other contexts involv-
ing specialization problems. But again we shall leave aside issues related to
the Bertini theorem or the Hilbert irreducibility theorem, which are probably
better known (see, e.g., [4] or [29]).

6.1. Non-commutative groups. In place of an abelian variety, one may of
course consider other algebraic groups, e.g., linear ones. The commutative
linear groups are (up to isomorphism) of the shape Gr

a ×Gs
m (so we have only

iso-constant families) and here the situation is often similar to, and simpler
than, the abelian case (see, for instance, [36, Ch. I]). On the other hand, for
non-commutative linear groups, not much seems to be known, and already
easily formulated problems, in basic cases, present open questions.

Borrowing from a similar example in [29], consider for instance the matrices

Xt :=

(

1 t
0 1

)

, Yt :=

(

1 0
t 1

)

,

where t is a variable (or a transcendental number). They may be seen as
sections to SL2, viewed as a ‘constant’ family over A1. It is known that they
generate a free group (of sections), denoted here Γt.

This may be proved, e.g., by specialization t → 2: we obtain a well-known
group, denoted here Γ2, which is ‘almost’ Γ(2) := {A ∈ SL2(Z) : A ≡ I
(mod 2)}, i.e., together with −I it generates Γ(2).

To discuss further Γ2, since we met the Legendre family several times, it may
be not out of place to recall that Γ2 is naturally the image of the monodromy
representation of P1 − {0, 1,∞} by action on the periods of the elliptic curve
Lλ, given in the region max{|λ|, |1 − λ|} < 1 by the hypergeometric functions
πF (1/2, 1/2, 1, λ) and iπF (1/2, 1/2, 1, 1 − λ) (see [16, Ch. 9]). Here λ may
be seen as a variable in the said domain, but also as the well-known modular
function for the group Γ(2), which yields the universal covering map λ : H →
P1 − {0, 1,∞}.12

Given the structure of π1(C−{0, 1}) as a free group on two generators, and
observing that Γ(2)/± I = Γ2 acts faithfully on H , we deduce that Γ2 is also
free, on the above generators, as asserted.

Another argument for this conclusion, really simpler, is by the so-called
‘ping-pong’ reasoning: if we define A := {(x, y) ∈ C2, |x| < |y|} and B =
{(x, y) ∈ C2 : |x| > |y|}, we see that Xm

2 A ⊂ B and Y m
2 B ⊂ A for any nonzero

m ∈ Z, and it is then not difficult to check that this prevents any nontrivial
relation among X2, Y2.

12Under a lifting to H, the ratio of the said periods becomes the natural variable τ on H.
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It also follows that Xt, Yt generate a free group, i.e., Γt is indeed free. (Note
that this is the ‘trivial’ specialization implication ‘Γb free =⇒ Γt free’, whereas
we are mainly interested in the converse one.)

If one specializes more generally t → b ∈ Q, one obtains a group denoted
here Γb generated by the corresponding specializations Xb, Yb. The natural
analog of the problems of torsion considered in §3, and its extension to depen-
dence over Z (see especially Remark 3.5 (i)) would be to ask for the possible
relations among the specialized elements Xb, Yb. The ‘bad set’ E for this prob-
lem consists of the b such that Xb, Yb satisfy some nontrivial relation. As in
many examples above, it is a set of algebraic numbers, hence countable.

The above shows that 2 does not belong to E , and inspection through the
second argument shows that E is in fact contained in the open disk {z ∈ C :
|z| < 2}.

In the opposite direction, it is not difficult to see that E is infinite: for
instance, by the identites Xm

t = Xmt and Y m
t = Ymt, we have m−1E ⊂ E for

any nonzero integer m, so we only need to construct some nonzero element
of E . Here is just a possibility; consider the product XtY

±1
t , for any choice of

the sign. It is diagonalizable over a quadratic extension of Q(t), in fact over

Q(t,
√
t2 ± 4), with trace 2± t2. Equating the trace to 2 cos(2πr) for a rational

number r with denominator n > 2 yields eigenvalues which are roots of unity
of order n, with product 1, hence distinct eigenvalues producing a matrix of
finite order n. This gives a nontrivial relation among the specialized matrices:
(XbY

±1
b )n = I. The solutions t = b = ±

√

±2(1− cos(2πr)) so obtained (on
varying the sign) are dense in the segments (−2, 2) and i(−2, 2).

This kind of construction may be of course refined and extended. All of this
even shows that there are infinitely many elements of E of bounded height, or
also of bounded degree (hence unbounded height). So, many of the principles
we have seen to be true for abelian families fail here.13

However, in spite of these first observations, an ‘explicit’ simple description
of E (or of its closure) seems not known (see, e.g., the paper [17] by Lyndon
and Ullmann for some results and methods).

6.2. Families of quadratic forms. We have mentioned in the introduction
that specialization theorems may be (often) thought of as local-global princi-
ples, which is a terminology used especially in the arithmetical case, i.e., when
specialization is replaced by reduction modulo a prime.

Among the best known such results is the Hasse–Minkowski local-global
principle for quadratic forms, stating in its simplest nontrivial case that if a
ternary quadratic form aX2 + bY 2 + cZ2 (a, b, c ∈ Z) admits a nontrivial zero
(xp : yp : zp) ∈ P2(Qp) for each prime p, then it admits a nontrivial rational
zero (x : y : z) ∈ P2(Q).

13Bounded height is also found to fail in the case of iso-constant abelian families, and
in the case of families of tori, when the group of sections contains some nonidentical iso-
constant element; see for instance [36], Ch. I. However here, though the family is constant,
there are no constant sections 6= I (since Γt is free).
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Actually, this ternary case is implicit in work by Legendre (see [28, p. 74]
for a modern presentation of such proof). Hasse and Minkowski proved this
for arbitrary quadratic forms over Q. We also recall that the existence of a
p-adic zero amounts essentially to a congruence modulo a suitable power of p,
and is automatic for almost all primes.

One may consider a function-field analog, on replacing Z with a polynomial
ring, e.g., Q[t]. In place of the reduction modulo p one then has a specialization
t → s ∈ Q, whereas one would seek solutions this time in P2(Q(t)). In this
direction, Davenport, Lewis and Schinzel proved [10] the following elegant
statement.

Theorem 6.3 ([10]). Let a, b, c ∈ Q[t] be nonzero polynomials. If every arith-
metical progression contains an integer n such that a(n)X2 + b(n)Y 2 + c(n)Z2

has a zero in P2(Q), then a(t)X2 + b(t)Y 2 + c(t)Z2 has a zero in P2(Q(t)).

Example 6.4. We note that, unlike the classical case of integers, this result
has no analog in an arbitrary number of variables, as the following example
shows.

Consider the quadratic form in five variables over Q(t) given by Ft := 2X2
1−

X2
2+tX2

3+tX2
4+tX2

5 . Note that for every b ∈ Q∗, the resulting quadratic form
Fb is indefinite, hence by Mejer’s theorem (see [28]) it represents 0 over Q.

On the other hand, this form does not represent 0 over Q(t), for oth-
erwise there would exist coprime polynomials x1(t), . . . , x5(t) ∈ Q[t] with
Ft(x1(t), . . . , x5(t)) = 0. On setting t = 0, we would obtain 2x1(0)

2 = x2(0)
2,

hence x1, x2 would be both divisible by t in Q[t]: xi(t) = tyi(t) for i = 1, 2.
Therefore, we would have x3(t)

2 + x4(t)
2 + x5(t)

2 = ty2(t)
2 − 2ty1(t)

2. But
now setting t = 0 yields that all xi(t) would be divisible by t, a contradiction.

Therefore, this would violate a possible analog of Theorem 6.3 for this qua-
dratic form. (For an example in four variables, see [26, p. 214].)

The proof of Theorem 6.3 given in [10] (see also [27, Ch. V]) worked on
mimicking the proof by Legendre alluded to above. Another proof was possible
on realizing a connection of this issue with the topic of specialization of Brauer
groups, contributed to by Faddeev and Serre; for instance, we refer to our paper
[35] for a self-contained (quantitative) argument, different from the one in [10],
and for references to other works. Such an approach also allowed a function
field analog of Hasse’s local-global principle for norms from cyclic extensions,
the case of ternary quadratic forms being equivalent to the quadratic case of
such principle. This analog of Hasse’s principle includes Theorem 6.3 as a
special case.

Theorem 6.3 may be phrased in terms of a pencil of conics over the affine
line, the assumption becoming that the rational points in a certain set on the
base can be lifted to rational points of the corresponding conics, the conclusion
predicting the existence of a rational section defined over Q.14 One may ask

14We note that a theorem of Tsen asserts that a (rational) section defined over some
number field always exists; see, for instance, [35] for a simple proof and an application.

Münster Journal of Mathematics Vol. 13 (2020), 597–619



Some specialization theorems 617

what happens on replacing the base with another curve. Of course the issue
is sensible only on assuming at least that such a curve has infinitely many
rational points; but then by Faltings’ theorem it must have genus 0 or 1. The
case of genus 1 already had a negative answer concerning the existence of a
section (see [9] for a simple example).

Other similar questions arise on considering pencils of subvarieties of abelian
varieties, which brings us back nearer to the main context of this survey. The
simplest case is when the ambient abelian family is constant, for instance,
arising from a non-constant rational map π : A → P1, the fibers being the
relevant subvarieties. In [9, Thm. 3.47], it is shown, using deep theorems of
Faltings (or Faltings–Vojta) that there always exist infinitely many points in
P1(Q) which cannot be lifted to any rational point in the fiber (equivalently,
π(A(Q)) has infinite complement in P1(Q)). In this direction, it would be
not free of interest to have here some statements (even conjectural) for more
general cases.
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