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Abstract. For n ≥ 4 we discuss questions concerning global fixed points for isometric actions
of Aut(Fn), the automorphism group of a free group of rank n, on complete CAT(0) spaces.
We prove that whenever Aut(Fn) acts by isometries on complete d-dimensional CAT(0)
space with d < 2 ⌊n

4
⌋ − 1, then it must fix a point. This property has implications for

irreducible representations of Aut(Fn), which are also presented here. For SAut(Fn), the
unique subgroup of index two in Aut(Fn), we obtain similar results.

1. Introduction

In the mathematical world, this article is located in the area of geometric
group theory, a field at the intersection of algebra, geometry and topology.
Geometric group theory studies the interaction between algebraic and geomet-
ric properties of groups. One is interested in understanding on which ’nice’
geometric spaces a given group can act in a reasonable way and how geomet-
ric properties of these spaces are reflected in the algebraic structure of the
group. Here, the spaces will be CAT(0) metric spaces, while the groups will
be Aut(Fn) and SAut(Fn). The questions we shall investigate are concerned
with fixed point properties and the representation theory of these groups.

More precisely, let Zn be the free abelian group and Fn the free group of
rank n. One goal for a group theorist is to understand the structure of their au-
tomorphism groups, GLn(Z) resp. Aut(Fn). The abelianization map Fn↠ Zn

gives a natural epimorphism Aut(Fn) ↠ GLn(Z). The special automorphism
group of Fn, which we will denote by SAut(Fn), is defined as the preimage
of SLn(Z) under this map. Much of the work on Aut(Fn) and SAut(Fn) is
motivated by the idea that GLn(Z) and Aut(Fn) resp. SLn(Z) and SAut(Fn)
should have many properties in common. Here we follow this idea and present
analogies between these groups with respect to fixed point properties.

Let X be a class of metric spaces. A group G is said to have property FX
if any action of G by isometries on any member of X has a fixed point. Let
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A be the class of simplicial trees, Ad the class of complete CAT(0) spaces of
covering dimension d and A∗ the class of finite dimensional complete CAT(0)
spaces.

The starting point for our investigation is the study of group actions on sim-
plicial trees which was initiated by Serre, see [18], [19]. He proved that GLn(Z)
and SLn(Z) have property FA for n ≥ 3. Regarding Aut(Fn) and SAut(Fn),
Bogopolski was the first to prove that these groups also have property FA,
see [2].

A slight generalization of the class of simplicial trees is given by the class
of metric trees, which we will denote by R. Different methods were developed
by Culler and Vogtmann and later by Bridson to prove that Aut(Fn) and
SAut(Fn) have property FR, see [3], [8]. We obtain the fixed point property of
Aut(Fn) and SAut(Fn) for a much larger class of higher dimensional complete
CAT(0) spaces.

We present two results, Theorems A and B, regarding property FA∗ for the
groups Aut(Fn) and SAut(Fn). Using Bridson’s and Farb’s techniques from
[3] and [10], we prove:

Theorem A. If n ≥ 4 and d < min {k ⌊ n
k+2 ⌋ ∣ k = 2, . . . , d + 1}, then Aut(Fn)

has property FAd. In particular, if n ≥ 4 and d < 2 ⌊n
4
⌋ − 1, then Aut(Fn) has

property FAd.

Theorem B. If n ≥ 5 and d < min {k ⌊n−1
k+2 ⌋ ∣ k = 2, . . . , d + 1}, then SAut(Fn)

has property FAd. In particular, if n ≥ 5 and d < 2 ⌊n−1
4
⌋ − 1, then SAut(Fn)

has property FAd.

Our proofs of Theorems A and B involve three ingredients. First we con-
struct a generating set of Aut(Fn) such that each pair of elements generates
a finite subgroup. Next, we need an extended version of Helly’s Theorem for
higher dimensional CAT(0) spaces.

Theorem. Let X be a d-dimensional complete CAT(0) space and S a finite
family of nonempty closed convex subspaces. If the intersection of (d + 1)-
elements of S is always nonempty, then ⋂S is nonempty.

There exist several variations of this theorem in the literature, e.g. for finite
families of convex open resp. closed subsets of a CAT(0) space, see [4, 3.2], [9,
2], [10, 3.2] and [13, 5.3]. Here we include a complete proof for the case of a
finite family of closed convex subspaces.

Our main technique in the proofs of Theorems A and B is based on the
following corollary. Indeed, it was Farb who discovered the connection between
Helly’s Theorem and the combinatorics of generating sets for a large class of
groups.

Farb’s Fixed Point Criterion. Let G be a group, Y a finite generating set
of G and X a complete d-dimensional CAT(0) space. If Φ ∶ G → Isom(X) is
a homomorphism such that each (d+ 1)-element subset of Y has a fixed point
in X , then G has a fixed point in X .
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Farb used this criterion in [10] to obtain sharp results on property FAd for
various groups. For example, he proved that SLn(Z[1/p]) has property FAn−2
for semisimple actions, but not property FAn−1, since it acts without a global
fixed point on the affine building for SLn(Qp).

In a third step, we combine the extended version of Helly’s Theorem with
the following theorem by Bridson to prove our results.

Theorem. [4, 3.6] Let k and l be in N>0 and let X be a complete d-dimensional
CAT(0) space with d < k ⋅ l. Let S be a subset of Isom(X) and let S1, . . . , Sl be
conjugates of S such that [Si, Sj] = 1 holds for all i, j = 1, . . . , l, i ≠ j. If each
k-element subset of S has a fixed point in X, then each finite subset of S has
a fixed point in X.

Property FAd strongly affects the representation theory of groups. The
following result by Farb, partially based on work by Bass, illustrates this fact.

Theorem. [10, 1.8] Let K be an algebraically closed field and let G be a group.
If G has property FAd, then there are only finitely many conjugacy classes of
irreducible representations

ρ ∶ G→ GLd+1(K).
As an application of our Theorems A and B, we obtain the following similar

results for the representation theory of Aut(Fn) and SAut(Fn).
Corollary C. Let K be an algebraically closed field. If n ≥ 4 and d ≤ 2 ⌊n

4
⌋−1,

then there are only finitely many conjugacy classes of irreducible representa-
tions

ρ ∶ Aut(Fn) → GLd(K).
Corollary D. Let K be an algebraically closed field. If n ≥ 5 and d ≤ 2 ⌊n−1

4
⌋−1,

then there are only finitely many conjugacy classes of irreducible representa-
tions

ρ ∶ SAut(Fn)→ SLd(K).
Remark. A better bound for the complex representations of Aut(Fn) is
proved in [17, 3.1,3.2]. If n ≥ 3 and d ≤ 2 ⋅ n − 2, then there are only finitely
many conjugacy classes of irreducible representations

ρ ∶ Aut(Fn)→ GLd(C).
With Bridson’s and Vogtmann’s techniques from [6, 1.1] one can prove that
the linear representations of SAut(Fn) are very rigid. Let K be a field of
characteristic different from 2 and let

ρ ∶ SAut(Fn)→ SLd(K)
be a homomorphism. If n ≥ 3 and d < n, then ρ is trivial. In particular, if
n ≥ 3, then Aut(Fn) has only finitely many conjugacy classes of irreducible
representations in any dimension ≤ n − 1.
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2. A generating set of Aut(Fn)
The purpose of this section is to construct a generating set of the group

Aut(Fn) such that each pair of its elements generates a finite subgroup. Al-
though it may seem awkward at first glance, it is convenient and standard to
work with the right action of Aut(Fn) on Fn.

Convention 2.1. For α,β in Aut(Fn) the automorphism αβ is the composite
where α acts before β.

Let us first introduce a notations for some elements of Aut(Fn). We de-
fine the right Nielsen automorphism ρij , involutions (xi, xj) and ei for i, j =
1, . . . , n, i ≠ j as follows:

ρij(xk) ∶=
⎧⎪⎪⎨⎪⎪⎩
xixj if k = i,
xk if k ≠ i.

(xi, xj)(xk) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xj if k = i,
xi if k = j,
xk if k ≠ i, j.

ei(xk) ∶=
⎧⎪⎪⎨⎪⎪⎩
x−1i if k = i,
xk if k ≠ i.

It is easy to see that the image of X = {x1, . . . , xn} under any of these maps is
another basis of Fn, therefore these elements are automorphisms. It was proven
by Nielsen in [16, p. 173]) that for n ≥ 3 the group Aut(Fn) is generated by
the set

Y1 ∶= {ρ12, e1, (x1, x2), (x1, x2, . . . , xn)} ,
where (x1, x2, . . . , xn) denotes the composite (xn−1, xn)(xn−2, xn−1) . . . (x1, x2).

Our strategy in this section is to modify the set Y1 such that each pair of
elements in the new generating set generates a finite group, compare [3, 1.1,
1.2].

Proposition 2.2. Let n ≥ 3.
(i) The group Aut(Fn) is generated by

Y2 ∶= {(x1, x2)e1e2, (x2, x3)e1, (xi, xi+1), e2ρ12, en ∣ i = 3, . . . , n − 1} .
(ii) The subgroup generated by Y2 − {e2ρ12} is finite.
(iii) For α,β in Y2 the subgroup generated by {α,β} is finite.

Proof. Let us denote by Σn ⊆ Aut(Fn) the group of automorphisms which
permute the basis X . The conjugation by σ ∈ Σn sends ei to eσ(i): σ−1eiσ =
eσ(i), therefore Aut(Fn) is generated by the set {ρ12, en,Σn}. It is a well-
known result that the group Σn is generated by the involutions (xi, xi+1) with
i = 1, . . . , n−1. We can further replace ρ12 by the involution e2ρ12 and we obtain
the following generating set of Aut(Fn): {e2ρ12, en, (xi, xi+1) ∣ i = 1, . . . , n − 1}.
To see that Y2 is a generating set of Aut(Fn), we must show that the involutions
(x1, x2) and (x2, x3) are in ⟨Y2⟩. First we show this results for n = 3. We have

e2 = (x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

e3®
∈Y2

(x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

∈ ⟨Y2⟩
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and therefore (x1, x3) = (x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

(x1, x2)e1e2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

e2®
∈⟨Y2⟩

(x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

e3®
∈Y2

is contained

in ⟨Y2⟩. Using (x1, x3, x2) = (x1, x2)e1e2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

e2®
∈⟨Y2⟩

(x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y2

∈ ⟨Y2⟩ we obtain

(x1, x2) = (x1, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

(x1, x3, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

∈ ⟨Y2⟩,

(x2, x3) = (x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

(x1, x3, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

∈ ⟨Y2⟩.

For n ≥ 4 we have e3 = (x3, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

en

∈̄Y2

(x3, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y2⟩

∈ ⟨Y2⟩. The same arguments as

above show that the involutions (x1, x2) and (x2, x3) are contained in ⟨Y2⟩.
This finishes the proof of statement (i).

It easy to verify that the subgroup ⟨Y2 − {e2ρ12}⟩ of Aut(Fn) is isomorphic
to the semidirect product Sym(n)⋉Zn

2
, where we denote by Z2 the cyclic group

of order 2, and therefore finite.
Now we prove the last statement of the proposition. If {α,β} is a subset

of Y2 − {e2ρ12} then the statement is obvious. Otherwise we compute the
order of e2ρ12α for α ∈ Y2 in detail. The involution e2ρ12 commutes with
(xi, xi+1) for i = 3, . . . , n and with en. It follows that the order of e2ρ12(xi, xi+1)
and of e2ρ12en is equal to 2 and therefore the subgroups ⟨{e2ρ12, (xi, xi+1)}⟩
for i = 3, . . . , n and ⟨{e2ρ12, en}⟩ are isomorphic to Z2 × Z2. The order of
e2ρ12(x1, x2)e1e2 is equal to 3. It follows that the dihedral group D3 of order
6 has an epimorphism onto ⟨{e2ρ12, (x1, x2)e1e2}⟩ and this group is therefore
finite. The order of e2ρ12(x2, x3)e1 is equal to 4, and it follows that the dihedral
group D4 of order 8 has an epimorphism onto ⟨{e2ρ12, (x2, x3)e1}⟩ and this
group is therefore finite. �

3. A generating set of SAut(Fn)
In this section we construct a generating set for the group SAut(Fn) with

the same finiteness property as the set Y2 in the previous section.
For i, j = 1, . . . , n, i ≠ j we define the left Nielsen automorphism λij as

follows:

λij(xk) ∶=
⎧⎪⎪⎨⎪⎪⎩
xjxi if k = i,
xk if k ≠ i.

The group SAut(Fn) is generated by the set {ρij , λij ∣ i, j = 1, . . . , n, i ≠ j} for
n ≥ 3, see [11, 2.8]. An easy calculation shows that the commutator of ρij
and ρjk is equal to ρik and that the commutator of λij and λjk is equal to λik

for i, j, k = 1, . . . , n distinct, therefore SAut(Fn) is generated by the set

Y3 = {ρi(i+1), ρn1, λi(i+1), λn1 ∣ i = 1, . . . , n − 1} .
Münster Journal of Mathematics Vol. 7 (2014), 439–462
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Our strategy in this section is to modify the set Y3 to obtain a new gener-
ating set of SAut(Fn) which will have the additional property that each group
generated by any two of its elements is finite.

Proposition 3.1. Let n ≥ 4.

(i) The group SAut(Fn) is generated by

Y4 ∶= {(x1, x2)e1e2e3, (x2, x3)e1, (xi, xi+1)ei, e2e4ρ12, e3e4 ∣ i = 3, . . . , n − 1} .
(ii) The subgroup generated by Y4 − {e2e4ρ12} is finite.
(iii) For α,β in Y4 the subgroup generated by {α,β} is finite.

Proof. Using the relation eiejρijejei = λij for i, j = 1, . . . , n with i ≠ j we obtain
SAut(Fn) = ⟨{ρi(i+1), ρn1, eiei+1, ene1 ∣ i = 1, . . . , n − 1}⟩. As a next step in the
proof, we claim that SAut(Fn) is generated by the set

Y ′ = {(x1, x2)e1e2e3, (x2, x3)e1, (xi, xi+1)e3, e2e4ρ12, e3e4 ∣ i = 3, . . . , n − 1} .
The element e2e4 = (x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Y ′

e3e4±
∈Y ′

e1(x2, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

is contained in ⟨Y ′⟩, therefore

ρ12 = e4e2±
∈⟨Y ′⟩

e2e4ρ12´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

∈ ⟨Y ′⟩.

From the relation e2e3 = e2e4±
∈⟨Y ′⟩

e3e4±
∈⟨Y ′⟩

∈ ⟨Y ′⟩ we see that

(x2, x3)(x1, x2) = (x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e2e3±
∈⟨Y ′⟩

e3e2e1(x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

∈ ⟨Y ′⟩.

Using e1e4 = (x1, x2)e1e2e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e2e4±
∈⟨Y ′⟩

e3e2e1(x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

∈ ⟨Y ′⟩ and e3e1 = e1e4±
∈⟨Y ′⟩

e3e4±
∈⟨Y ′⟩

∈

⟨Y ′⟩ we see that

(x3, x4)(x2, x3) = (x3, x4)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e3e1±
∈⟨Y ′⟩

e1(x2, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

∈ ⟨Y ′⟩.

Now we show that the element e3(x1, xn) is contained in ⟨Y ′⟩. We consider
the relation e1e2 = (x2, x3)e1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Y ′

e1e3±
∈⟨Y ′⟩

e1(x2, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

∈ ⟨Y ′⟩, therefore (x1, x2)e3 =

Münster Journal of Mathematics Vol. 7 (2014), 439–462



Fixed points on CAT(0) spaces 445

(x1, x2)e1e2e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e1e2±
∈⟨Y ′⟩

is contained in ⟨Y ′⟩. If n is odd, then we have

e3(x1, xn) = e3(x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(x2, x3)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

e3(x3, x4)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

. . . e3(xn−2, xn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(xn−1, xn)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e3(xn−2, xn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

. . . (x2, x3)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

e3(x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

and if n is even, then

(x1, xn)e3 = (x1, x2)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

e3(x2, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(x3, x4)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

. . . e3(xn−2, xn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(xn−1, xn)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y ′

e3(xn−2, xn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

. . . e3(x2, x3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(x1, x2)e3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

.

Using e3(x1, xn) ∈ ⟨Y ′⟩ and (xn−1, xn)e3 ∈ Y ′ we obtain (x1, xn)(xn−1, xn) ∈
⟨Y ′⟩. From the relations

ρ(i+1)(i+2) = (xi, xi+1)(xi+1, xi+2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

ρi,i+1²
∈⟨Y ′⟩

(xi+1, xi+2)(xi, xi+1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

,

ei+1ei+2 = (xi, xi+1)(xi+1, xi+2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

eiei+1²
∈⟨Y ′⟩

(xi+1, xi+2)(xi, xi+1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

we see that ρi(i+1), eiei+1 are in ⟨Y ′⟩ for i = 1, . . . , n − 1. Using the relations

ρn1 = (xn−1, xn)(x1, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

ρ(n−1)n´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(x1, xn)(xn−1, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

,

ene1 = (xn−1, xn)(x1, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

en−1en´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

(x1, xn)(xn−1, xn)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y ′⟩

we obtain that ρn1, ene1 ∈ ⟨Y ′⟩ and therefore Y ′ is a generating set of SAut(Fn).
Now we show that (xi, xi+1)e3 is contained in ⟨Y4⟩ for i = 4, . . . , n−1. We have
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the relations

e5e3 = (x4, x5)e4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y4

e4e3±
∈⟨Y4⟩

e4(x4, x5)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y4⟩

∈ ⟨Y4⟩,

e6e3 = (x5, x6)e5´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y4

e5e3±
∈⟨Y4⟩

e5(x5, x6)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y4⟩

∈ ⟨Y4⟩,

. . .

en−1e3 = (xn−2, xn−1)en−2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y4

en−2e3´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∈⟨Y4⟩

en−2(xn−2, xn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⟨Y4⟩

∈ ⟨Y4⟩

and we see that eie3 ∈ ⟨Y4⟩ for i = 4, . . . , n − 1 and

(xi, xi+1)e3 = (xi, xi+1)ei´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y4

eie3±
∈⟨Y4⟩

∈ ⟨Y4⟩,

hence SAut(Fn) = ⟨Y4⟩.
Now we prove the second statement of the proposition. It is easy to verify

that the subgroup ⟨Y ′ − {e2e4ρ12}⟩ of SAut(Fn) is isomorphic to a subgroup
of the semidirect product Sym(n) ⋉Zn

2
and therefore finite.

For the proof of the last statement of the proposition we note that the el-
ements in Y4 have finite order. If {α,β} is a subset of Y4 − {e2e4ρ12}, then
the statement is obvious. Otherwise we consider the subset {e2e4ρ12, α} for
α ∈ Y4. If the commutator of e2e4ρ12 and α is equal to one, then the sub-
group ⟨{e2e4ρ12, α}⟩ is finite. If e2e4ρ12 does not commute with α, then
α ∈ {(x1, x2)e1e2e3, (x2, x3)e1, (x3, x4)e3, (x4, x5)e4}. We note that

ord((x1, x2)e1e2e3) = ord((x2, x3)e1) = 2,
ord(e2e4ρ12(x1, x2)e1e2e3) = 6

and

ord(e2e4ρ12(x2, x3)e1) = 4.
It follows that the subgroups

⟨{e2e4ρ12, (x1, x2)e1e2e3}⟩
and

⟨{e2e4ρ12, (x2, x3)e1}⟩
are finite. If α is equal to (x3, x4)e3 or (x4, x5)e4, then the dihedral group D4 ∶=⟨r, s ∣ r4 = s2 = 1, srs = r−1⟩ has an epimorphism onto ⟨{e2e4ρ12, (x3, x4)e3)}⟩
and ⟨{e2e4ρ12, (x4, x5)e4)}⟩ and hence these groups are finite. �

4. Some facts about CAT(0) spaces
In this section we briefly present the main definitions and properties con-

cerning CAT(0) metric spaces. A detailed description of these spaces and their
geometry can be found in [5].
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We start by reviewing the concept of geodesic spaces. Let (X,d) be a metric
space and x, y ∈ X . A geodesic joining x and y is a map cxy ∶ [0, l] → X , such
that cxy(0) = x, cxy(l) = y and d(cxy(t), cxy(t′)) = ∣t−t′∣ for all t, t′ ∈ [0, l]. The
image of cxy, denoted by [x, y], is called a geodesic segment. A metric space
(X,d) is said to be a geodesic space if every two points in X can be joined by a
geodesic. We say that X is uniquely geodesic if for all x, y ∈ X there is exactly
one geodesic joining x and y.

A geodesic triangle in X consists of three points p1, p2, p3 in X and a choice
of three geodesic segments [p1, p2], [p2, p3], [p3, p1]. Such a geodesic triangle

will be denoted by ∆(p1, p2, p3). A triangle ∆(p1, p2, p3) in Euclidian space
R2 is called a comparison triangle for ∆(p1, p2, p3) if it is a geodesic triangle
in R2 and if d(pi, pj) = d(pi, pj) for i, j = 1,2,3. A point x in [pi, pj] is called a
comparison point for x ∈ [pi, pj] if d(x, pi) = d(x, pi) and d(x, pj) = d(x, pj). A
geodesic triangle in X is said to satisfy the CAT(0) inequality if for all x and
y in the geodesic triangle and all comparison points x and y, the inequality
d(x, y) ≤ d(x, y) holds.
Definition 4.1. A metric space X is called a CAT(0) space if X is a geodesic
space and all of its geodesic triangles satisfy the CAT(0) inequality.

One can easily verify from the definition of a CAT(0) space that these
spaces are uniquely geodesic, therefore we may use the notation [x, y] for the
geodesic segment between x and y in the CAT(0) space X without ambiguity.
A subset Y of a CAT(0) space X is called convex if for all x and y in Y

the geodesic segment [x, y] is contained in Y . Indeed, convex subspaces of
a CAT(0) space are again CAT(0) spaces. The diameter of Y is defined as
diam(Y ) = sup{d(x, y) ∣ x, y ∈ Y }. The subset Y is called bounded if diam(Y )
is finite. We also note that the metric on a CAT(0) metric space is convex,
meaning that for each pair of geodesics c1 ∶ [0, a1] → X and c2 ∶ [0, a2] → X

with c1(0) = c2(0) the inequality d(c1(ta1), c2(ta2)) ≤ td(c1(a1), c2(a2)) holds
for all t ∈ [0,1].

The class of CAT(0) spaces is large. Perhaps the easiest examples of CAT(0)
spaces besides d-dimensional Euclidean spaces Rd are metric trees and in par-
ticular simplicial trees, where each edge of a simplicial tree has length 1.

Let us mentioned an important property of CAT(0) spaces which will be
needed later.

Proposition 4.2. [5, II.1.4] Any CAT(0) metric space is contractible, in par-
ticular all of its higher singular homology groups are trivial.

Now that we have introduced a class of spaces, we need, as in other math-
ematical theories, structure preserving maps. For a metric space (X,d) an
isometry f ∶ X → X is a bijection such that d(f(x), f(y)) = d(x, y) for all x
and y in X . The group of all isometries of X will be denoted by Isom(X).
One easily checks that the fixed point set of an isometry of a CAT(0) space is
closed and convex (or empty).
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The following version of the Bruhat-Tits Fixed Point Theorem [5, II.2.8] is
crucial for our arguments.

Proposition 4.3. Let G be a group acting on a complete CAT(0) space X by
isometries. Then the following conditions are equivalent:

(i) The group G has a global fixed point.
(ii) Each orbit of G is bounded.
(iii) The group G has a bounded orbit.

If the group G satisfies one of the conditions above, then G is called bounded
on X.

The implications (i)⇒(ii) and (ii)⇒(iii) are trivial, and (iii)⇒(i) is proven
in [5, II.2.8].

The following corollary is standard consequence of Proposition 4.3.

Corollary 4.4. Let G1, G2 be groups, X a complete CAT(0) space and

φ1 ∶ G1 → Isom(X),
φ2 ∶ G2 → Isom(X)

homomorphisms. If G1 and G2 are bounded on X and if φ1(g1) ○ φ2(g2) =
φ2(g2) ○ φ1(g1) holds for all g1 in G1 and g2 in G2, then the map

φ1 × φ2 ∶ G1 ×G2 → Isom(X)
(g1, g2)↦ φ(g1) ○ φ(g2)

is a homomorphism and G1 ×G2 is bounded on X.

5. Helly’s Theorem for complete CAT(0) spaces and homological
properties of nerves

The purpose of this section is to verify one important result of convexity
theory, Helly’s Theorem, for the class of finite dimensional CAT(0) spaces.
Theorem 5.1 (Helly’s classical Theorem, [12]). Let S be a finite family of
nonempty closed convex subspaces of Rd. If the intersection of (d+1)-elements
of S is always nonempty, then ⋂S is nonempty.

There exist numerous different versions of this theorem for CAT(0) spaces
in the literature, e.g. for finite families of nonempty convex open resp. closed
subspaces, see [4, 3.2], [9, 2], [10, 3.2] and [13, 5.3].

We will study the proof by Debrunner for this result [9]. Debrunner for-
mulated and proved Helly’s Theorem for a family of convex open subspaces
of Rd. As we will see in this section, the same line of arguments as in [9] also
works for a family of convex open subspaces of a d-dimensional CAT(0) space.
Farb observed in [10] that Helly’s Theorem for open convex subspaces of a
d-dimensional CAT(0) space implies the version for closed convex subspaces.
Here we include a complete proof for this version.

We require the following definition. For a topological space X we consider
the reduced singular homology groups H̃q(X) for q ∈ Z.
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Definition 5.2. A topological space X is said to be acyclic if H̃q(X) = 0 for
all q ∈ Z.

In particular, if X is acyclic then X is nonempty and connected. For exam-
ple, every contractible space is acyclic. Hence nonempty CAT(0) spaces are
acyclic, see Proposition 4.2.

The proof by Debrunner is based on the following proposition.

Proposition 5.3. [9, Lemma Am] Let X be a topological space and S, with
∣S ∣ ≥ 2, a finite family of open nonempty subspaces such that ⋂T is acyclic for
all T ⊂ S with ∣T ∣ = 1, . . . , ∣S ∣ − 1.
(i) If ⋂S is empty, then H̃∣S ∣−2(⋃S) ≠ 0.
(ii) If ⋂S is nonempty, then H̃∗(⋃S) ≅ H̃∗−∣S ∣+1(⋂S). In particular, ⋃S is

acyclic if and only if ⋂S is acyclic.

Proof. We prove both statements by induction on m ∶= ∣S ∣. Suppose that S =
{X1,X2}. If ⋂S is empty, then ⋃S is not connected and we have H̃0(⋃S) ≠ 0.
If ⋂S is nonempty, then we consider the reduced Mayer-Vietoris sequence for
the pair (X1,X2).
. . . → H̃q(X1)⊕H̃q(X2) → H̃q(X1∪X2) → H̃q−1(X1∩X2) → H̃q−1(X1)⊕H̃q−1(X2) → . . .

We know that X1 and X2 are acyclic, so we obtain

. . . → 0→ H̃q(X1 ∪X2) → H̃q−1X1 ∩X2)→ 0→ . . .

and therefore
H̃q(X1 ∪X2) ≅ H̃q−1(X1 ∩X2).

Now assume that m > 2. Let S = {X1, . . . ,Xm} be a family of open subspaces
such that the intersection of each r members of this family is acyclic when-
ever r = 1, . . . ,m − 1. We define U1 ∶= X1 ∪ . . . ∪Xm−1, U2 ∶= Xm and consider
the reduced Mayer-Vietoris sequence for the pair (U1, U2)
. . . → H̃q(U1)⊕ H̃q(U2) → H̃q(U1 ∪U2) → H̃q−1(U1 ∩U2) → H̃q−1(U1)⊕ H̃q−1(U2) → . . .

The subspace U2 is acyclic by assumption, and U1 is acyclic by part (ii) of the
induction hypothesis. We have

. . . → 0→ H̃q(U1 ∪U2)→ H̃q−1(U1 ∩U2) → 0→ . . .

and therefore
H̃q(U1 ∪U2) ≅ H̃q−1(U1 ∩U2).

Now we define S′ = {X1 ∩Xm,X2 ∩Xm, . . . ,Xm−1 ∩Xm}. This is a finite
family of open subspaces such that the intersection of each r members of this
family is acyclic whenever r = 1, . . . ,m − 2.

If ⋂S = ⋂S′ is empty, then we have

H̃m−2(⋃S) = H̃m−2(U1 ∪U2)
≅ H̃m−3(U1 ∩U2)
= H̃m−3(⋃S′) (U1 ∩U2 = ⋃S

′)

≠ 0. (Ind. hyp. (i))
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If ⋂S = ⋂S′ is nonempty, then

H̃q(⋃S) = H̃q(U1 ∪U2)
≅ H̃q−1(U1 ∩U2)
= H̃q−1(⋃S′) (U1 ∩U2 = ⋃S

′)

≅ H̃q−1−(m−1)+1(⋂S′) (Ind. hyp. (ii))

= H̃q−m+1(⋂S). (⋂S ′ = ⋂S)

�

Proposition 5.3 gives the following topological version of Helly’s Theorem.

Theorem 5.4. (compare [9, Thm. 2]) Suppose that X is a topological space,
d a natural number and that S is a finite family of open nonempty subspaces
with the properties

(i) H̃q(⋃T ) = 0 for all q ≥ d and all T ⊆ S,
(ii) ⋂T is acyclic for T ⊆ S with ∣T ∣ = 1, . . . , d + 1.

Then ⋂S is acyclic.

Proof. Assume that there exist families satisfying the hypotheses but not the
conclusion. Let {X1, . . . ,Xm} be such a family of minimal order. Using (ii) we
havem ≥ d+2. This family satisfies hypothesis of Proposition 5.3 by minimality
of m.

If X1∩. . .∩Xm is empty, then by Proposition 5.3 (i) we have H̃m−2(⋃S) ≠ 0.
This contradicts (i).

IfX1∩. . .∩Xm is nonempty, then there exists q ≥ 0 with H̃q(X1∩. . .∩Xm) ≠ 0.
By Proposition 5.3 (ii) follows that H̃q+m−1(X1 ∪ . . . ∪ Xm) ≠ 0. We have
q +m − 1 ≥ d. This contradicts (i). �

Using Theorem 5.4 we can easily prove the following version of Helly’s The-
orem for a family of convex open subspaces of a d-dimensional CAT(0) space.
Recall that here by dimension we mean the covering dimension of a metric
space. In contrast to that, the compact dimension of a space X is defined as

cdim(X) =max{dim(Y ) ∣ Y ⊆X compact} .
We note that for a metric space X we have clearly

cdim(X) ≤ dim(X),
since dim(Y ) ≤ dim(X) holds for all compact subsets Y ⊆X .

Before we turn to the proof we need the following result.

Proposition 5.5. Let X be a d-dimensional CAT(0) space. Then the reduced

singular homology groups are H̃q(U) = 0 for all open subspaces U ⊆ X and all
q ≥ d.
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Proof. For d = 0 there is nothing to prove. Assume that d ≥ 1. As shown by
Kleiner in [13, Thm. A] one has for any CAT(0) space X

cdim(X) =max{k ∣ Hk(U,V ) ≠ 0 for some open pair (U,V ) in X} .
We have d = dim(X) ≥ cdim(X), therefore we obtain H̃q(U,V ) = 0 for all open
pairs (U,V ) in X and all q > d. Let U ⊆X be an open subspace. We consider
the long exact sequence for the pair (X,U):

. . . → H̃n+1(X)→ H̃n+1(X,U)→ H̃n(U)→ H̃n(X)→ . . .

The CAT(0) space X is contractible, therefore H̃∗(X) = 0 and we have

H̃n+1(X,U) ≅ H̃n(U).
Using H̃q(X,U) = 0 for all q > d we obtain H̃q(U) = 0 for all q ≥ d. �

Theorem 5.6 (Helly’s Theorem for open convex subspaces of a CAT(0)
space). Let X be a d-dimensional complete CAT(0) space and S a finite family
of nonempty open convex subspaces. If the intersection of each (d+1)-elements
of S is nonempty, then ⋂S is nonempty.

Proof. The CAT(0) space X has covering dimension d, therefore by Proposi-

tion 5.5, we have H̃q(⋃T ) = 0 for all T ⊆ S and q ≥ d. Since the intersection
of convex sets in T ⊆ S with ∣T ∣ = 1, . . . , d + 1 is nonempty and convex, ⋂T is
by Proposition 4.2 contractible and hence acyclic. By Theorem 5.4 it follows
that ⋂S is acyclic, in particular nonempty. �

For our application we require a variation of Helly’s Theorem for closed
convex subspaces of a d-dimensional CAT(0) space and we include a complete
proof of this result here. Let us outline the structure of our proof: first we
replace each of the closed convex subspaces by a bounded closed convex sub-
space. For this new family we then construct a swelling consisting of open
convex bounded subspaces. Applying Helly’s Theorem 5.6 to this family we
obtain a nonempty intersection of it and hence the intersection of a family we
started with is also nonempty.

We need the following definition.

Definition 5.7. Let X be a topological space. A swelling of a family (Ai)i∈I
with Ai ⊆ X is a family (Bi)i∈I with Bi ⊆X , such that Ai ⊆ Bi for every i ∈ I
and for every finite subset J ⊆ I we have

⋂
j∈J

Aj = ∅ if and only if ⋂
j∈J

Bj = ∅.

Let us first recall an important property of a CAT(0) space which we will
need in the proof of the next proposition. By definition, a family of subsets
(Ai)i∈I of a metric space is said to have the finite intersection property if
the intersection of each finite subfamily is nonempty. Monod proved in [15,
Thm. 14] that a family consisting of bounded closed convex subsets of a
complete CAT(0) space with the finite intersection property has a nonempty
intersection.
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Proposition 5.8. Let X be a complete CAT(0) space and let A,B ⊆ X be
nonempty closed convex subsets with A ∩B = ∅ and A bounded, then

d(A,B) ∶= inf {d(a, b) ∣ a ∈ A, b ∈ B} > 0.
Proof. We assume that d(A,B) = 0. Then there exists a sequence (an)n∈N
in A and a sequence (bn)n∈N in B such that lim

n
d(an, bn) = 0. Let for all n ∈ N,

An ⊆ A be the closed convex hull of the set {ak ∣ k ≥ n} and consider the fam-
ily (An)n∈N. Since A is bounded, this family consists of bounded closed convex
subsets and has the finite intersection property. Therefore the intersection of
{An ∣ n ∈ N} is nonempty. Let x be in ⋂

n∈N
An ⊆ A. Further we define

Bn ∶= {y ∈X ∣ d(y,B) ≤ d(an, bn)} .
The set Bn is a closed convex set and An ⊆ Bn for n ∈ N. Therefore x is in

⋂
n∈N

Bn. Using d(x,B) ≤ d(an, bn) for all n ∈ N we obtain d(x,B) = 0. The set

B is closed, hence x ∈ B and therefore x ∈ A ∩B. A contradiction. �

Using Proposition 5.8 we can now construct a swelling of a finite family of
closed bounded convex subsets of a complete CAT(0) space which consists of
open bounded convex subsets.

Proposition 5.9. Let X be a complete CAT(0) space and F = {F1, . . . , Fk}
a finite family of nonempty closed bounded convex subsets. Then there exists
a swelling U = {U1, . . . , Uk} of F consisting of nonempty open bounded convex
subsets.

Proof. We define

F1 ∶= {⋂G ∣ G ⊆ F ,⋂G ≠ ∅,⋂G ∩F1 = ∅} .
By Proposition 5.8, min {1, d(F1, Si) ∣ Si ∈ F1} = ǫ1 > 0. The family

V1 = {V1, F2, . . . , Fk}
where V1 ∶= {x ∈X ∣ d(x,F1) ≤ ǫ1

2
} is a swelling of F which consists of nonempty

closed bounded convex subsets. More precisely, the subset V1 is convex because
the subset F1 and the CAT(0) metric are convex.

Now we assume that for i ∈ {1, . . . , j} the family Vj ∶= {V1, . . . , Vj , Fj+1, . . . ,

Fk} is defined and is a swelling of F which consists of nonempty closed bounded
subsets. We define

Fj+1 ∶= {⋂G ∣ G ⊆ Vj ,⋂G ≠ ∅,⋂G ∩Fj+1 = ∅} .
By Proposition 5.8, min {1, d(Fj+1, Si) ∣ Si ∈ Fj+1} = ǫj+1 > 0. The family

Vj+1 = {V1, . . . , Vj+1, Fj+2, . . . , Fk}
where Vj+1 ∶= {x ∈X ∣ d(x,Fj+1) ≤ ǫj+1

2
} is a swelling of F which consists of

nonempty closed bounded convex subsets. Thus, we can assume that Vk =
{V1, . . . , Vk} with Vi = {x ∈X ∣ d(x,Fi) ≤ ǫi} is defined and is a swelling of F .
The family U ∶= {U1, . . . , Uk} with Ui = {x ∈X ∣ d(x,Fi) < ǫi

2
} is a swelling of

F which consists of nonempty bounded open convex subsets. �
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We are now ready to prove Helly’s Theorem for a finite family of closed
convex subspaces of a CAT(0) space.
Theorem 5.10 (Helly’s Theorem for closed convex subspaces of a CAT(0)
space). Let X be a d-dimensional complete CAT(0) space and S a finite fam-
ily of nonempty closed convex subspaces. If the intersection of each (d + 1)-
elements of S is nonempty, then ⋂S is nonempty.

Proof. For each subset T of S of order equal to d + 1 we choose an element p
in ⋂T . Let the union of these elements be the set P . This set is finite and we
define

S′ = {conv{P ∩ S} ∣ S ∈ S} ,
where conv {P ∩ S} is the closure of the convex hull of {P ∩ S}. The set S′

consists of nonempty, closed bounded convex subspaces and the intersection
of each (d + 1)-elements of S′ is nonempty. By Proposition 5.9 there exists a
swelling U of S′ which consists of nonempty open convex subspaces. By Helly’s
Theorem 5.6 it follows that ⋂U is nonempty and therefore ⋂S′ is nonempty.
We have ∅ ≠ ⋂S′ ⊆ ⋂S. This completes the proof. �

Our main technique in the proofs of Theorems A and B is based on the
following crucial corollary. Indeed, it was Farb who discovered the connection
between Helly’s Theorem and the combinatorics of generating sets for a large
class of groups.

5.1. Farb’s Fixed Point Criterion. Let G be a group, Y a finite generating
set of G and X a complete d-dimensional CAT(0) space. Let Φ ∶ G→ Isom(X)
be a homomorphism. If each (d + 1)-element subset of Y has a fixed point in
X, then G has a fixed point in X.

Proof. Recall that Fix(y) ⊆ X , the fixed point set of y ∈ Y , is a closed convex
subset. Let y1 and y2 be in Y , then Fix(y1)∩Fix(y2) is equal to Fix(⟨y1, y2⟩)
and therefore the statement immediately follows from Helly’s Theorem for
closed convex subspaces of a CAT(0) space, 5.10. �

6. Some facts about simplicial complexes and nerves

In the previous section we presented an important tool concerning global
fixed point properties for isometric actions of groups, namely Farb’s Fixed
Point Criterion 5.1. Using this criterion it remains to find a ’nice’ generating
set Y of Aut(Fn) such that each of its (d+1)-element subsets has a fixed point.
The purpose of this section is to present techniques to show that an infinite
subgroup which is generated by (d + 1)-elements of Y has a fixed point. The
methods presented here are based on certain simplicial complexes.

Let us recall some basic properties of abstract simplicial complexes, see [5]
for details. A simplicial complex ∆ with a nonempty vertex set V is a collection
of finite subsets of V , called simplices, such that every one element subset of
V is a simplex and ∆ is closed under taking subsets. Let A ∈ ∆ be a simplex.
The cardinality r of A is called the rank of A and r − 1 is called the dimension
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of A. The dimension of ∆ is defined as: dim(∆) ∶= sup{dim(A) ∣ A ∈ ∆}. As
usual, we denote by ∣∆∣ the geometric realization of the simplicial complex ∆.

In the following we need one basic construction that allows us to produce
new simplicial complexes from old ones.

Definition 6.1. Let K1, K2 be simplicial complexes with vertex sets V1, V2.
The join K1 ∗K2 of K1 and K2 is a simplicial complex with vertex set equal
to the union V1 ∪ V2 and A ⊆ V1 ∪ V2 is a simplex in K1 ∗K2 if and only if
A = A1 ∪A2 where A1 is a simplex in K1 and A2 is a simplex in K2.

For example, the join of the standard n-simplex, with vertex set {0,1, . . . , n},
denoted by ∆n, and the standard m-simplex ∆m, with vertex set {n+1, . . . , n+
m + 1} is an (n +m + 1)-simplex with a vertex set {0,1, . . . , n +m + 1}, see for
example Figure 1.

∣∆1∣

∣∆0∣

∣∆1 ∗∆0∣
{0} {1}

{2}

{0,1}
{1,2}

Figure 1

If the geometric realization of a simplicial complex Ki is homeomorphic to
a sphere of dimension di for i = 1,2, then the geometric realization of K1 ∗K2

is homeomorphic to a sphere of dimension d1 + d2 + 1. In particular, we have:

∣∂∆n ∗ ∂∆m∣ ≅ Sn+m−1
for n,m > 0, where ∂∆n resp. ∂∆m is a boundary of ∆n resp. ∆m, see for
example Figure 2.

∣∆1∣ ∣∆1∣ ∣∂∆1 ∗ ∂∆1∣ ≅ S
1

Figure 2

In the following we want to represent a family of subspaces of a topological
space by a combinatorial structure. For this reason we need the following
definition.

Definition 6.2. Let X be a set and S a family of subsets of X . The nerve
N (S) is the simplicial complex whose vertex set is S and whose nonempty
simplices are all finite subsets {S1, . . . , Sk} ⊆ S with S1 ∩ . . . ∩ Sk ≠ ∅.
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For example, let S = {S0, . . . , Sk} be a set of nonempty closed convex sub-
spaces of a d-dimensional complete CAT(0) space. We consider N (S) as a
subcomplex of the standard k-simplex ∆k. If the nerve N (S) contains the full
d-skeleton of ∆k, then by Helly’s Theorem 5.10 it follows that ∣N (S)∣ ≅ ∣∆k ∣.

The main use of the nerve is the following proposition, due to McCord.
Recall that a cover of a topological space is said to be point-finite if every
point of this space is contained in only finitely many sets of this cover.

Proposition 6.3. [14, 2] Let Y be a topological space and U be a point-finite
open cover of Y such that the intersection of any finite subcollection of U is
either empty or contractible. Then H∗(N (U)) ≅ H∗(Y ).

The next important result is Theorem 6.5, whose proof relies on Proposition
6.3 and the following result.

Proposition 6.4. [4, 3.3] Let X be a complete CAT(0) space and let S1, . . . , Sl

be subsets of Isom(X) such that [Si, Sj] = 1 holds for all 1 ≤ i < j ≤ l. Let
Fi = {Fix(s) ∣ s ∈ Si} and Ni = N (Fi). Put N = N (F1 ∪ . . . ∪ Fl). Then we
have

N = N1 ∗ . . . ∗Nl.

Proof. We first note that the vertex sets of N and N1 ∗ . . . ∗Nl are equal.
Let A = {Fix(s1), . . . ,Fix(sk)} be a simplex in N . We write the set A as

A = A1 ∪ . . . ∪ Al with Ai ⊆ Fi for i in {1, . . . , l}. The intersection ⋂Ai is
nonempty for all i in {1, . . . , l} and therefore the set Ai is a simplex in Ni for
every i in {1, . . . , l}. It follows that the subset A is a union of simplices in Ni

and therefore a simplex in N1 ∗ . . .∗Nl. We have shown that N ⊆ N1 ∗ . . .∗Nl.
Now we prove the other inclusion. Let B be a simplex in N1 ∗ . . . ∗Nl. We

know that B = B1 ∪ . . . ∪ Bl where Bi is a simplex in Ni for i in {1, . . . , l}.
Now we have to show that ⋂B is nonempty. We consider the set S′i ∶={s ∈ Si ∣ Fix(s) ∈ Bi} and the group which is generated by S′i for i in {1, . . . , l}.
The subset Bi is a simplex in Ni and therefore the fixed point set Fix(⟨S′i⟩) is
nonempty for all i in {1, . . . , l}. Next we note that [⟨S′i⟩, ⟨S′j⟩] = 1 for i ≠ j. It
follows from Corollary 4.4 that

l

⋂
i=1

Fix(⟨S′i⟩) = Fix(
l

⋃
i=1
(⟨S′i⟩)) ≠ ∅.

In particular the set ⋂B is nonempty and therefore B is a simplex in N . This
completes the proof. �

Theorem 6.5. [4, 3.4] Let k1, . . . , kl be in N>0 and let X be a d-dimensional
complete CAT(0) space with 0 < d < k1 + . . . + kl. Let S1, . . . , Sl be subsets
of Isom(X) such that [Si, Sj] = 1 holds for all 1 ≤ i < j ≤ l. If each ki-
element subset of Si has a fixed point in X for all i ∈ {1, . . . , l}, then for some
j ∈ {1, . . . , l} every finite subset of Sj has a fixed point.
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Proof. Assume this is false, i.e. for each i ∈ {1, . . . , l} let k
′

i ≥ ki be minimal

such that there exists a (k′i + 1)-element subset

Ti = {si,1, . . . , si,k′
i
+1} ⊆ Si

with empty fixed point set. By minimality of k
′

i, we know that each k
′

i-element
subset of Ti has a fixed point. Therefore the nerve of

Fi = {Fix(si,1), . . . ,Fix(si,k′
i
+1)}

is the boundary of a k
′

i-simplex. It follows from Proposition 6.4 that

N (F1 ∪ . . . ∪Fl) ≅ ∂∆k′
1
∗ . . . ∗ ∂∆k′

l
.

The geometric realization of this nerve is homeomorphic to a sphere, hence

∣N (F1 ∪ . . . ∪Fl)∣ ≅ Sk′1+...+k′l−1.
Therefore the singular homology groups of the above spaces are isomorphic,
i.e.

H∗(∣N (F1 ∪ . . . ∪Fl)∣) ≅ H∗(Sk′1+...+k′l−1).
Now we replace {F1, . . . ,Fl} by a family consisting of a bounded convex closed
subsets, as in the proof of Theorem 5.10 and then by a swelling {F ′1, . . . ,F ′l}
consisting of bounded convex open subsets, see Proposition 5.9. We have

N (F1 ∪ . . . ∪Fl) ≅ N (F ′1 ∪ . . . ∪F ′l).
Using Proposition 6.3 we obtain

Hk′
1
+...+k′

l
−1(F ′1 ∪ . . . ∪F ′l) ≅ Hk′

1
+...+k′

l
−1(∣N (F ′1 ∪ . . . ∪F ′l)∣)

≅ Hk′
1
+...+k′

l
−1(∣N (F1 ∪ . . . ∪Fl)∣)

≅ Hk′
1
+...+k′

l
−1(Sk′1+...+k′l−1).

Because the CAT(0) space X is d-dimensional, we have by Proposition 5.5
that the singular homology groups Hq(F ′1 ∪ . . . ∪F ′l) = 0 for all q ≥ d. We have
the inequality k′

1
+ . . . + k′l − 1 ≥ d, in particular Hk′

1
+...+k′

l
−1(F ′1 ∪ . . . ∪ F ′l) ≅ 0.

This contradicts

Hk′
1
+...+k′

l
−1(Sk′1+...+k′l−1) ≅ Z. �

The following consequence of Theorem 6.5 is a crucial tool for proving global
fixed point results for infinite subgroups.

Corollary 6.6. [4, 3.6] Let k and l be in N>0 and let X be a complete d-
dimensional CAT(0) space, with d < k ⋅ l. Let S be a subset of Isom(X) and let
S1, . . . , Sl be conjugates of S such that [Si, Sj] = 1 for i ≠ j. If each k-element
subset of S has a fixed point in X, then each finite subset of S has a fixed point
in X.

Proof. This is clear from Theorem 6.5 since the fixed point sets of the sets Si

are conjugate. �
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7. Proof of Theorem A

Now we have all the ingredients to prove Theorem A.

Theorem A. If n ≥ 4 and d < min {k ⌊ n
k+2 ⌋ ∣ k = 2, . . . , d + 1}, then Aut(Fn)

has property FAd. In particular, if n ≥ 4 and d < 2 ⌊n
4
⌋ − 1, then Aut(Fn) has

property FAd.

Proof. Let X be a d-dimensional complete CAT(0) space and

Φ ∶ Aut(Fn) → Isom(X)
an action of Aut(Fn) onX . By Proposition 2.2 the group Aut(Fn) is generated
by the set

Y2 ∶= {(x1, x2)e1e2, (x2, x3)e1, (xi, xi+1), e2ρ12, en ∣ i = 3, . . . , n − 1} .
Let us outline the structure of the proof: combining the Bruhat-Tits Fixed
Point Theorem 4.3 with Corollaries 4.4 and 6.6 we show the following: if
k ≤ d + 1 and d <min {k ⌊ n

k+2 ⌋ ∣ k = 2, . . . , d + 1}, then each k-element subset of
Y2 has a fixed point. Then by Farb’s Fixed Point Criterion 5.1 the action Φ
has a global fixed point.

As seen in Proposition 2.2 each element in Y2 is an involution and the order
of the product of two elements is finite. Let us consider the Coxeter group

W = ⟨Y2 ∣ (fg)ord(fg) = 1, f, g ∈ Y2⟩
whose Coxeter diagram looks as follows.

e2ρ12

(x1, x2)e1e2

(x2, x3)e1

(x3, x4)

(x4, x5)

(x5, x6)
. . .

(xn−1, xn)

en

4

6

46

Figure 3

In particular, we obtain an epimorphism π ∶W → Aut(Fn) and an action

Φ ○ π ∶W → Aut(Fn) → Isom(X).
It is obvious that if a subgroup of W has a fixed point, then the image of

this subgroup under π, a subgroup in Aut(Fn), also has a fixed point. For
k = 2 we know by Proposition 2.2 that each pair of the generating set Y2 of
Aut(Fn) generates a finite subgroup, therefore by the Bruhat-Tits Fixed Point
Theorem 4.3 we obtain that each 2-element subset of Y2 has a fixed point. Now
we assume that each k-element subset of Y2 has a fixed point. Let Y ′ be a
(k + 1)-element subset of Y2.
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If e2ρ12 is not in Y ′, then it follows by Proposition 2.2 that ⟨Y ′⟩ is a fi-
nite subgroup of Aut(Fn) and this subgroup has by Bruhat-Tits Fixed Point
Theorem 4.3 a fixed point.

If e2ρ12 is in Y ′, we consider the Coxeter diagram of ⟨Y ′⟩ ⊆W . If it is not
connected, then it follows from hypothesis and from Corollary 4.4 that ⟨Y ′⟩
has a fixed point. If the Coxeter diagram of ⟨Y ′⟩ ⊆ W is connected, then we
have the following cases:

(1) Y ′ = {e2ρ12, (x1, x2)e1e2, (x2, x3)e1, (x3, x4), . . . , (xk, xk+1)},
(2) Y ′ = {e2ρ12, (x2, x3)e1, (x3, x4), . . . , (xk+1, xk+2)}.

The involution en is not in Y ′: assume that en is contained in Y ′, then Y ′

consists of at least n elements. Therefore we must have k + 1 ≥ n which
contradicts our assumption that k + 1 ≤ d + 1 < 2 ⌊n

4
⌋ + 1.

If Y ′ = {e2ρ12, (x1, x2)e1e2, (x2, x3)e1, (x3, x4), . . . , (xk, xk+1)}, then we de-
fine the permutations

τi ∶= (x1, x(k+1)⋅(i−1)+1)(x2, x(k+1)⋅(i−1)+2) . . . (xk+1, x(k+1)⋅(i−1)+k+1)
and the sets

Si ∶= τiY ′τ−1i

for i ∈ {1, . . . , ⌊ n
k+1
⌋}. The sets S1, . . . , S⌊ n

k+1
⌋ have the property that [Si, Sj] =

1 for i ≠ j as they act nontrivially only on disjoint subsets of X . By the
assumption each k-element subset of Y ′ has a fixed point and it follows from
Corollary 6.6 that for d < k ⌊ n

k+1
⌋ the set Y ′ has a fixed point.

If Y ′ is equal to {e2ρ12, (x2, x3)e1, (x3, x4), . . . , (xk+1, xk+2)}, then we define
the permutations

σi ∶= (x1, x(k+2)⋅(i−1)+1)(x2, x(k+2)⋅(i−1)+2) . . . (xk+2, x(k+2)⋅(i−1)+k+2)
and the sets

Ti ∶= σiY
′σ−1i .

for i ∈ {1, . . . , ⌊ n
k+2
⌋}. With similar arguments as above it follows that for

d < k ⌊ n
k+2
⌋ the set Y ′ has a fixed point.

So far we have shown that if n ≥ 4 and d < min{k ⌊ n
k+2
⌋ ∣ k = 2, . . . , d + 1},

then each (d + 1)-element subset of Y2 has a fixed point. By Farb’s Fixed
Point Criterion 5.1 it follows that Aut(Fn) has a global fixed point. An easy
calculation shows:

2 ⌊n
4
⌋ − 1 ≤min{k ⌊ n

k + 2
⌋ ∣ k = 2, . . . , d + 1} .

This completes the proof. �

Note that, as an immediate corollary of Theorem A, we obtain a similar
result for GLn(Z).
Corollary 7.1. If n ≥ 4 and d < min {k ⌊ n

k+2
⌋ ∣ k = 2, . . . , d + 1}, then GLn(Z)

has property FAd. In particular, if n ≥ 4 and d < 2 ⌊n
4
⌋ − 1, then GLn(Z) has

property FAd.
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8. Proof of Theorem B

Using the result of Theorem A, we prove

Theorem B. If n ≥ 5 and d < min {k ⌊n−1
k+2
⌋ ∣ k = 2, . . . , d + 1}, then SAut(Fn)

has property FAd. In particular, if n ≥ 5 and d < 2 ⌊n−1
4
⌋ − 1, then SAut(Fn)

has property FAd.

Proof. Let X be a d-dimensional complete CAT(0) space and

Φ ∶ SAut(Fn) → Isom(X)
an action of SAut(Fn) on X . By Proposition 3.1 the group SAut(Fn) is
generated by the set

Y4 ∶= {(x1, x2)e1e2e3, (x2, x3)e1, (xi, xi+1)ei, e2e4ρ12, e3e4 ∣ i = 3, . . . , n − 1} .
If n ≤ 8, then d < 2 and the conclusion of Theorem B follows from Proposition
3.1 and Farb’s Fixed Point Criterion 5.1. We hence may assume that n ≥ 9.
We show again the following: if k ≤ d+1 and d <min {k ⌊n−1

k+2
⌋ ∣ k = 2, . . . d + 1},

then each k-element subset of Y4 has a fixed point.
Let us consider the Coxeter-like diagram for the set Y4. We draw a graph

with Y4 as vertex set, joining vertices f and g by an edge iff [f, g] ≠ 1.

e3e4

(x2, x3)e1
e2e4ρ12

(x4, x5)e4

(x5, x6)e5 . . .
(xn−1, xn)en−1

(x3, x4)e3

(x1, x2)e1e2e3

Figure 4

If k is equal to 2, then we know by Proposition 3.1 and the Bruhat-Tits
Fixed Point Theorem 4.3 that each 2-element subset of Y4 has a fixed point.

Now we assume that each k-element subset of Y4 has a fixed point. Let Y ′

be a (k + 1)-element subset of Y4. If e2e4ρ12 is not in Y ′, then it follows from
Proposition 3.1 that ⟨Y ′⟩ is a finite subgroup of SAut(Fn) and this subgroup
has by the Bruhat-Tits Fixed Point Theorem 4.3 a fixed point. If e2e4ρ12 is in
Y ′ then we have the following cases:
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(1) If there exists a nonempty proper subset Y ′′ of Y ′ with the property

[Y ′′, Y ′ − Y ′′] = 1,
then it follows by the assumption and by Corollary 4.4 that Y ′ has a fixed
point.

(2) Otherwise we consider the determinant homomorphism

det ∶ Aut(Fn−1) → GLn−1(Z)→ Z2

and we define
Ψ ∶ Aut(Fn−1)→ SAut(Fn)

as follows
f ↦ f ′

f ′(xk) ∶=
⎧⎪⎪⎨⎪⎪⎩
f(xk) if k = 1, . . . , n − 1.
x
det(f)
k

if k = n.

The homomorphism Ψ is injective and Y ′ is contained in im(Ψ) because
the element (xn−1, xn)en−1 is not contained in Y ′. More precisely, assume
that (xn−1, xn)en−1 ∈ Y ′, therefore k + 1 ≥ n − 3 which contradicts our
assumption.

By Theorem A the group im(Ψ) ⊆ SAut(Fn) has a global fixed point
and therefore Y ′ has a fixed point.

Again, by Farb’s Fixed Point Criterion 5.1 it follows that SAut(Fn) has a
global fixed point. An easy calculation shows:

2 ⌊n − 1
4
⌋ − 1 ≤min{k ⌊n − 1

k + 2
⌋ ∣ k = 2, . . . , d + 1} .

This finishes the proof. �

Note that, as an immediate corollary of Theorem B we obtain a similar
result for SLn(Z).
Corollary 8.1. If n ≥ 5 and d < min {k ⌊n−1

k+2
⌋ ∣ k = 2, . . . , d + 1}, then SLn(Z)

has property FAd. In particular, if n ≥ 5 and d < 2 ⌊n−1
4
⌋ − 1, then SLn(Z) has

property FAd.

Remark 8.2.

(i) Bridson proved in personal communication a slightly better bound for
Aut(Fn) for property FAd, namely the bound ⌊2n

3
⌋.

(ii) There exists an upper bound on the dimension d such that Aut(Fn) can
have property FAd. Consider the symmetric space Pn(R) of positive
definite real n × n matrices. This space is a complete CAT(0) space
of dimension 1

2
n(n + 1). The group GLn(R) acts by isometries on this

space via X ↦ AXAt, where A ∈ GLn(R), X ∈ Pn(R) and t denotes the
transposition. Therefore we have

Aut(Fn)→ GLn(R)→ Isom(Pn(R))
and this action is fixed point free.
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