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Abstract

In analogy to the definition of the assembly map of Baum-Connes one can construct a homomorphism
µBA from Ktop(G,B) to K0(A(G,B)), whereG is a locally compact group,B is aG-C∗-algebra and
A(G) is an unconditional completion ofCc(G), that is, a completion with respect to a norm‖·‖A such
that‖f‖A only depends on the functiong 7→ |f(g)|. IsµBA an isomorphism? This question was raised
by Vincent Lafforgue, who has also given affirmative answers in many important cases. Moreover, he
considered the more general situation where the groupG is replaced by a locally compact Hausdorff
groupoidG.

In the present thesis the setting is generalised further, takingB to be a non-degenerateG-Banach
algebra instead of aG-C∗-algebra. The main result asserts that the mapµBA is split surjective if
the G-Banach algebraB is proper (andA(G) satisfies some mild condition). The proof rests on
the following generalised version of the Green-Julg theorem: IfG is proper andB is a G-Banach
algebra (andA(G) satisfies some mild condition), thenKKban

G (C0(X), B) is naturally isomorphic to
RKKban(C0(X/G); C0(X/G), A(G, B)), whereX denotes the unit space ofG.

Building on the work of Lafforgue, the necessary tools to show these results are systematically
developed, rounding out some parts of Lafforgue’sKKban-theory. In particular, a Banach algebra ver-
sion ofRKK is introduced and the functoriality of the groupoid version ofKKban under generalised
morphisms of groupoids is proved.

Zusammenfassung

Analog zur Definition der Assembly-Abbildung von Baum-Connes kann man auch einen Homomor-
phismusµBA vonKtop(G,B) nachK0(A(G,B)) konstruieren, wobeiG eine lokalkompakte Gruppe,
B eineG-C∗-Algebra undA(G) eine unbedingte Vervollständigung vonCc(G) ist, wobei letzteres
eine Vervollständigung bezüglich einer Norm‖·‖A mit der Eigenschaft ist, daß‖f‖A nur von der
Betragsfunktiong 7→ |f(g)| abhängt. IstµBA ein Isomorphismus? Vincent Lafforgue, der diese
Vermutung als erster in dieser Allgemeinheit behandelt hat, konnte sie bereits in vielen wichtigen
Fällen bestätigen. Er ging auch die allgemeinere Situation an, in welcher er die GruppeG durch ein
lokalkompaktes GruppoidG ersetzt hat.

Die vorliegende Arbeit geht noch einen Schritt weiter, indem stattG-C∗-Algebren nicht-entartete
G-Banachalgebren betrachtet werden. Als Hauptresultat wird bewiesen, daß der Homomorphismus
µBA surjektiv ist und einen natürlichen Schnitt hat, falls dieG-BanachalgebraB eigentlich (und die Ver-
vollständigungA(G) nicht zu exotisch ist). Die wichtigste Zutat zum Beweis dieses Hauptsatzes ist
die folgende Verallgemeinerung des Satzes von Green-Julg: WennG eigentlich undB eineG-Banach-
algebra ist (undA(G) wiederum gewissen schwachen Bedingungen genügt), dann gibt es einen natür-
lichen Isomorphismus zwischenKKban

G (C0(X), B) und RKKban(C0(X/G); C0(X/G), A(G, B)),
wobeiX den Einheitenraum vonG bezeichne.

Ausgehend von den Arbeiten von Vincent Lafforgue werden die für die Beweise der genannten
Sätze notwendigen Hilfsmittel systematisch zusammengetragen, wobei einige gundlegenden Bereiche
seinerKKban-Theorie ausgebaut werden. So wird etwa eine Variante derRKK-Theorie für Banachal-
gebren entwickelt und gezeigt, daß die Gruppoid-Version derKKban-Theorie unter verallgemeinerten
Morphismen von Gruppoiden funktoriell ist.
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Introduction

The Bost conjecture

LetG be a locally compact Hausdorff group and letEG denote the classifying space for proper actions
of G on locally compact Hausdorff spaces. For everyG-C∗-algebraB one definesKtop

∗ (G,B) to be
the grouplim→ KKG (C0(Z), B) where the limit is taken over theG-equivariant andG-compact
subsetsZ of EG. In [BCH94], Baum, Connes and Higson define a homomorphism

µBr : Ktop
∗ (G,B) → K∗ (B or G) ,

whereB or G denotes the reduced crossed product ofB by G. We say thatG satisfies theBaum-
Connes conjecture with coefficientsif µBr is a bijection for allG-C∗-algebrasB. The Baum-Connes
conjecture has been proved for a large number of groups; the main method to prove the injectivity
of the Baum-Connes map, the “Dirac-dual-Dirac” method of Kasparov, makes use of Kasparov’s
equivariantKK-theory for C∗-algebras (see [Kas95]).

Formidable progress was achieved by Vincent Lafforgue by the introduction of his bivariantK-
theoryKKban for general Banach algebras in [Laf02]. In that article he puts forward the following
variant of the Baum-Connes conjecture: Let the Banach algebraA(G) be an unconditional completion
of the convolution algebraCc(G), i.e., a completion for a norm onCc(G) such that‖f‖ only depends
on g 7→ |f(g)|; the most prominent example of such a completion isL1(G). If B is aG-Banach
algebra, i.e., a Banach algebra on whichG acts continuously by isometries, then Lafforgue defines
the Banach algebraA(G,B), in complete analogy withL1(G,B), as a completion ofCc(G,B). For
G-C∗-algebrasB he then constructs a homomorphism

µBA : Ktop
∗ (G,B) → K∗ (A(G,B)) .

One can now ask whetherµBA is an isomorphism (this generalises a conjecture of Jean-Benôit Bost1

which is the special caseB = C andA(G) = L1(G)). Using his bivariantK-theoryKKban, Lafforgue
was able to show that forG in a large class of groupsµBA is an isomorphism for allG-C∗-algebrasB
and all unconditional completionsA(G). By comparing theK-theories ofA(G) andC*

r(G) he could
thus prove the Baum-Connes conjecture for many groupsG.

There is an obvious version of the Bost conjecture for general Banach algebras: LetB be aG-
Banach algebra andA(G) be an unconditional completion ofCc(G). DefineKtop,ban

∗ (G,B) :=
lim→ KKban

G (C0(Z), B), where the limit is again taken over theG-equivariant andG-compact
subsetsZ of EG. Then there is a homomorphism2

µBA : Ktop,ban
∗ (G,B) → K∗ (A(G,B)) .

Is µBA an isomorphism?

1See the acknowledgements at the end of the introduction of [Laf02].
2Note that forG-C∗-algebrasB, the two versions ofµB

A have different domains of definition. Because we are going to
concentrate on general Banach algebras,µB

A will always denote the second, the Banach algebra version, in later chapters.

1
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Although Lafforgue has carried out most of his basic constructions for general Banach algebras,
most notably the definition of his bivariantK-theory, important arguments in [Laf02] only work for
C∗-algebras. For instance, it is proved thatµBA is an isomorphism for all properG-C∗-algebrasB. But
the proof rests on the fact proved in [CEM01] thatµBr is an isomorphism for such algebras and hence
this proof cannot serve as a model for an analogous result for more general Banach algebras.

One aim of the present work is to make it possible to prove Banach algebra results using only Ba-
nach algebra techniques. A central tool, which is not available (and not necessary) in the C∗-algebra
world, is a very useful sufficient condition for the homotopy ofKKban-cycles3: Homomorphisms
between certain cycles which are isomorphisms in the C∗-algebra world have only dense image in
the Banach algebra world; we state and prove a condition which tells us that nevertheless these ho-
momorphisms often induce homotopies between the cycles. A first application of this tool is the
systematic treatment of the invariance ofK-theory of Banach algebras under Morita equivalences4 by
the introduction of so-called Morita morphisms between Banach algebras.

Expanding the the purely Banach algebraic theory will probably also prove useful when attacking
C∗-algebra problems. For example, if one considers generalisations of iterated crossed products of C∗-
algebras (as used in [CE01] to prove permanence properties of the Baum-Connes conjecture), then the
first step of a stepwise “unconditional descent” would lead out of the category of C∗-algebras.

Groupoids and the Green-Julg theorem

A properG-C∗-algebraB is aG-C∗-algebra which is at the same time aC0(X)-algebra for some
properG-spaceX such that the actions ofG andC0(X) onB are compatible. We can think of such
an algebra as a C∗-algebra on which the transformation groupoidX o G acts. SinceX is a proper
G-space, the groupoidX oG is proper.

For this reason it is natural to consider actions of (proper) groupoids on Banach algebras. Laf-
forgue has recently translated most of his concepts and results into the framework of actions of
groupoids (see [Laf06]). In his article, the fundamental concept is the notion of an upper semi-
continuous field of Banach algebras, and ifG is a topological groupoid, then aG-Banach algebra is in
particular an upper semi-continuous field of Banach algebras over the unit spaceG(0) of G. Lafforgue
constructs a bivariantK-theory forG-Banach algebras. The present thesis gives a rather detailed and
systematic account of this construction, including a proof of the functoriality under generalised mor-
phisms of groupoids in the sense of Le Gall (see [LG94]), which is only mentioned in [Laf06]. From
this functoriality we deduce:

Theorem. LetG andH be locally compact Hausdorff groupoids carrying Haar systems. LetΩ be an
equivalence betweenG andH. LetA andB beH-Banach algebras. Then

KKban
H (A, B) ∼= KKban

G (Ω∗A, Ω∗B) .

Here, Ω∗A denotes the pull-back ofA along Ω, which could also be denoted as the induced
algebraIndGHA. We also show that equivalence is preserved under the descent construction defined in
[Laf06]: The Banach algebraA(H, A) is Morita equivalent toA(G,Ω∗A), whereA(G) andA(H) are
unconditional completions that are compatible in a certain sense: This applies in particular toL1(G)
andL1(H).

3The underlying construction is used in special cases already in [Laf02] and more explicitly in [Laf04].
4The invariance was proved in the unpublished note [Laf04]; our result is somewhat more general.
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Recall that upper semi-continuous fields of C∗-algebras over some locally compact spaceX can
alternatively be described asC0(X)-C∗-algebras. This is no longer completely true for Banach al-
gebras and we clarify the subtle differences between the two concepts. ForC0(X)-Banach algebras
we define an equivariant bivariantK-theory that we callRKKban

G (C0(X);A,B), and compare it to
the equivariantKK-theory for groupoids defined in [Laf06]. Both theories have their natural applica-
tions; the descent construction might serve as an example: We show that it not only takes values in
KKban (A(G, A), A(G, B)), but is a homomorphism

jA : KKban
G (A, B) → RKKban (C0 (X/G) ; A (G, A) , A (G, B)) ,

whereG is a locally compact Hausdorff groupoid with unit spaceX which carries a Haar system,
A(G) is an unconditional completion ofCc(G) andA andB areG-Banach algebras.

We also use theRKKban-theory as the right-hand side in the following variant of the Green-Julg
theorem. The C∗-algebraic version of this theorem is proved in [Tu99].

Theorem. 5 Let G be a proper locally compact Hausdorff groupoid with unit spaceX and which
carries a left Haar system. LetA(G) be an unconditional completion ofCc(G) (satisfying some mild
conditions). Then for all non-degenerateG-Banach algebrasB we have an isomorphism

KKban
G (C0(X), B) ∼= RKKban (C0 (X/G) ; C0 (X/G) , A(G, B)) .

If X/G is compact, we therefore get an isomorphism

KKban
G (C0(X), B) ∼= KKban (C, A(G, B)) ∼= K0 (A(G, B)) .

Note that ifG is a compact groupG andX is a one-point space, then this theorem says that
KG

0 (B) is isomorphic toK0 (A(G,B)). ForA(G) = L1(G) this is a form of the Green-Julg theorem
(compare [Jul81]).

As a consequence of the generalised Green-Julg theorem we can prove the following positive
partial answer to the Bost-conjecture for proper Banach algebras. To this end we introduce the notion
of a properG-Banach algebra for locally compact Hausdorff groupoidsG and show:

Theorem. 6 LetB be a non-degenerate properG-Banach algebra and letA(G) be an unconditional
completion ofCc(G) (again satisfying some mild regularity condition). Then the homomorphism

µBA : Ktop,ban (G, B) → K0 (A (G, B))

is split surjective.

Possible further developments

Expansion

With the toolbox put together in this thesis it should be easier to translate further results for C∗-
algebras into the language of Banach algebras. For some results it might even be possible to use the
brute force method to translate proofs word for word. On the other hand, even proofs of simple facts
for KKban can be much more technical than their C∗-algebraic counterparts; in particular it can be
tiresome if Kasparov cycles that should be isomorphic are only contained densely into one another,
making it necessary to construct homotopies.

5See Theorem 7.1.9.
6See Theorem 8.4.4.
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Abstraction

To keep this thesis comprehensible without losing precision and completeness, I have tried to be as
systematic as possible (even at the risk of being a bit wordy from time to time). An outcome of being
systematic is a certain amount of repetition which might have been avoided by a higher degree of
abstraction. However, an elaboration of the necessary categorial concepts would be extensive and too
much of a diversion, so I decided to just sketch a possible general construction for now:

The definition of equivariant bivariantK-theory for Banach algebras is presented in the first chap-
ter of this thesis; in the second chapter the construction is repeated forC0(X)-Banach algebras; and
in the third chapter for upper semi-continuous fields of Banach algebras. The underlying blue-print
is always the same: Start with a category which is enriched over the category of Banach spaces so
that the morphism sets are Banach spaces and the composition is bilinear and contractive (e.g. take
the category ofG-Banach spaces and continuous linear maps between them, whereG is some locally
compact group). Distinguish a certain class of morphisms (theG-equivariant contractive linear maps
in our example). There should be an associative tensor product compatible with the distinguished
morphisms (the projective tensor product ofG-Banach spaces) which has a unit (the trivialG-Banach
spaceC). This data could be called amonoidal Banach category. Functors between such categories
which are compatible with the tensor product could be calledmonoidal Banach functors.

Using the tensor product of such a category, one can define algebras (theG-Banach algebras in
our example) and homomorphisms between them (they should be distinguished morphisms — in our
example they are theG-equivariant contractive homomorphisms ofG-Banach algebras). Similarly,
one can define modules and pairs, etc. (e.g.G-Banach modules andG-Banach pairs overG-Banach
algebras) and homomorphisms and linear operators between them. To define “generalised Kasparov
cycles” in such a setting you need some additional information, most prominently a definition of
“compact operators”. You also need some notion of direct image under homomorphisms of alge-
bras and a homotopy relation. The so-constructed variant ofKK-theory should be compatible with
monoidal Banach functors that respect compact operators, etc.

The exposition in each of the first three chapters of this thesis follows the same fundamental
plan. First the underlying monoidal Banach category is introduced. Then the induced categories
of algebras, modules and pairs are defined. In a third step, the additional information is given, for
instance the compact operators are defined. Finally, the resulting version ofKK-theory is derived.

There are several instances of monoidal Banach functors giving homomorphisms ofKK-type
groups, and we also use a standardised scheme to define them: They are first introduced as func-
tors between the underlying monoidal Banach categories, then it is shown how they induce functors
between the derived categories of algebras, of pairs, of modules and ofKK-cycles.

A precise abstract treatment of monoidal Banach categories would make it necessary to keep track
of a large number of natural isomorphisms and natural transformations that come with the categories
and functors, e.g. the natural isomorphism that is needed for a correct statement of the associativity of
the tensor product of a monoidal category. This might better be done in a separate exposition.

Connection tokk

It was remarked already in [Laf02] that it would be desirable to connectKKban to Cuntz’kk-theory
defined in [Cun97], and recent work of Cuntz7 strongly indicates that there is indeed a way to turn cy-
cles forKKban(A,B) into elements ofkk(A,B). Becausekk has a number of advantageous features,
this would pave the way for a considerable transfer of the techniques and results for C∗-algebras into
the realm of Banach algebras. For example, the “Dirac-dual-Dirac” method makes use of the Kasparov

7J. Cuntz, personal communication, 2006.
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product, andkk possesses a product. So far, the product inKKban is only defined for very special
elementary cases (such as the action ofKKban on K-theory and the product betweenKKban-cycles
and Morita equivalences) and it is not clear whether it could be constructed for generalKKban-cycles
at all. Moreover, the “algebraic” definition ofkk and its computational features should make it easier
to find algebraic proofs of results which might only have rather technical analytic proofs in the world
of KKban.

Organisation of this work

The first chapter recalls the definition of Banach pairs and ofKKban
G (A,B). The basic concepts are

introduced rather systematically, one cornerstone being the notion of a (concurrent) homomorphism
of Banach pairs (which appears only implicitly in [Laf02]). This new notion also plays a prominent
rôle in the statement of the above-mentioned sufficient condition for homotopy ofKKban-cycles,
which is proved in the first chapter and is used (in several variants) about thirty times throughout this
thesis. The third important part of the first chapter introduces the notion of Morita morphisms between
Banach algebras, generalising both (homotopy classes of) homomorphisms and Morita equivalences
of Banach algebras.

The second chapter examines what happens if one adds a compatible non-degenerate action of
the Banach algebraC0(X) to all the definitions of the first chapter, whereX is a locally compact
Hausdorff space. Because the first chapter is rather detailed, the second chapter merely summarises
the necessary changes. The Banach algebras carrying a compatible action ofC0(X) are calledC0(X)-
Banach algebras, and the resulting bivariantK-theory forC0(X)-Banach algebras, defined in Chapter
2, is calledRKKban

G (C0(X); A, B).
Technically more demanding than the study ofC0(X)-Banach algebras is the study of upper semi-

continuous fields of Banach algebras which we undertake in Chapter 3. This chapter comprises a
systematic development of theKKban-theory for Banach algebras equipped with actions of groupoids,
as introduced in [Laf06].

The notions of upper semi-continuous fields of Banach algebras overX and ofC0(X)-Banach
algebras are really very close, and Chapter 4 explores how the two concepts are related to each other.
It might be worth mentioning that unlike upper semi-continuous fields of C∗-algebras, upper semi-
continuous fields of Banach algebras are more special thanC0(X)-Banach algebras; they correspond
to so-called “locallyC0(X)-convexC0(X)-Banach algebras”, as discussed in Chapter 4.

Chapters 5 and 6 address the descent and generalised morphisms of groupoids. The exposition of
the descent is more systematic than in [Laf06], giving quite a lot of the technical details of the proofs,
and the definition of theRKKban-theory allows us to obtain results that are a little more precise.
We also show thatKKban is functorial under generalised morphisms of groupoids and that (Morita)
equivalence of groupoids is compatible with the descent map.

In Chapter 7 we use the theory presented in the first six chapters to show the generalised version
of the Green-Julg theorem mentioned above. The proof demands a fair amount of technical care.
We divide the proof into two parts: Split surjectivity and split injectivity. This is worth mentioning
here because the surjectivity part of the proof needs fewer technical conditions on the unconditional
completion that is involved.

In the final chapter we use the split surjectivity part of the generalised Green-Julg theorem to prove
the split surjectivity of the Bost homomorphism for proper coefficients. For the formulation of this
result we first say what properG-Banach algebras are in the case thatG is a locally compact Hausdorff
groupoid.
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The appendices collect technical results and proofs which were banned from the main part of the
thesis to increase readability. A noteworthy example is the proof of the fact that the projective tensor
product overC0(X) of locally C0(X)-convex Banach spaces is again locallyC0(X)-convex.
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Notational conventions

Throughout this work, all normed spaces and Banach spaces are complex (and so are all Banach
algebras, Banach modules, etc.). A linear mapT between normed spaces is calledcontractiveif
‖T‖ ≤ 1. If E is a normed space andE0 is a subset ofE then we writecl (E0) for the closed linear
span ofE0 in E.
If k ∈ N andE1, . . . , Ek andF are Banach spaces, then the set of continuousk-linear maps from
E1 × · · · × Ek to F is denoted byM(E1, . . . , Ek;F ). Endowed with the normµ 7→ ‖µ‖ =
sup‖ei‖≤1 ‖µ(e1, . . . , ek)‖F , it is itself a Banach space. A mapµ ∈ M(E1, . . . , Ek;F ) is called
non-degenerateif the span of its image is a dense subset ofF .
If E is a Banach space andX is a locally compact Hausdorff space, then we writeEX for the Banach
spaceC0(X,E) of continuous functions fromX toE vanishing at infinity. We regard this as a closed
subspace of the spaceCb(X,E) of all bounded continuous functions fromX toE, equipped with the
normf 7→ ‖f‖∞ = supx∈X ‖f(x)‖E .



Chapter 1

KK-Theory for Banach Algebras

The equivariant and bivariantK-theoryKKban for Banach algebras defined by Vincent Lafforgue is
modelled after theKK-theory for C∗-algebras as introduced by Kasparov. The cycles for theKK-
theory for C∗-algebras are given by operators on graded equivariant Hilbert modules, the correspond-
ing notion for Banach algebras which is used to define cycles forKKban is the notion of a graded
equivariant Banach pair.

In this chapter we present Lafforgue’s theory in some detail. We first discuss elementary notions
such as Banach algebras, Banach modules and the balanced tensor product. In a second step, Banach
pairs are introduced along with the linear and compact operators between them. It is worth mentioning
that there is an additional type of morphisms between Banach pairs, generalising the homomorphisms
(with coefficient maps) between Hilbert modules; we coin the term “concurrent homomorphisms” for
them.

On our way to the definition ofKKban (finally given in Section 1.8) we also define gradings and
group actions. To show how these definitions fit into the general scheme sketched in the introduction
and to have a model for similar definitions in the later chapters we define gradings first on Banach
spaces, then on Banach algebras, Banach modules, and, finally, on Banach pairs. The same systematic
approach is repeated for actions of locally compact Hausdorff groups.

As a technical tool which will prove very helpful throughout this thesis we prove in Section 1.9
a sufficient condition for the homotopy ofKKban-cycles; this condition is then used to systematically
present and extend a result of V. Lafforgue that says that theK-theory of Banach algebras is invariant
under Morita equivalences.

A general reference for the first part of this chapter is [Laf02], the last two sections are partly
based on ideas appearing in [Laf04].

1.1 Banach algebras and Banach modules

1.1.1 Banach algebras

For us, aBanach algebraB is a Banach spaceB endowed with a bilinear associative multiplication
such that‖bc‖ ≤ ‖b‖ ‖c‖. It is calledunital if it has a unit of norm one. In this work, a homomorphism
of Banach algebras will always be contractive. A Banach algebraB is callednon-degenerateif the
span ofB ·B is dense inB.

Let B be a Banach algebra. We define the unitalisationB̃ of B to be the unital Banach algebra
given by the following data: The underlying Banach space isB ⊕ C with the norm‖(b, λ)‖

B̃
:=

7
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‖b‖B+ |λ| for everyb ∈ B, λ ∈ C. The multiplication is given by(a, λ) ·(b, µ) := (ab+λb+µa, λµ)
for everya, b ∈ B, λ, µ ∈ C. Note that the unit element of̃B is given by(0, 1). Moreover,B is
canonically contained iñB as a closed two-sided ideal.

If B andC are Banach algebras andθ : B → C is a homomorphism of Banach algebras, then the
unitalisationθ̃ of θ is the canonical unital homomorphism(θ, IdC) from B̃ to C̃.

If B is a Banach algebra, then a net(uλ)λ∈Λ in B is called aleft approximate identityfor B if
limλ∈Λ uλb = b for all b ∈ B. It is bounded(by one), if‖uλ‖ ≤ 1 for everyλ ∈ Λ. Analogously,
we define a (bounded) right approximate identity. A (bounded) approximate identity is a (bounded)
left approximate identity which is at the same time a right approximate identity. Note thatB is non-
degenerate ifB has an approximate identity.

1.1.2 Banach modules

Definition 1.1.1 (Banach module).Let B be a Banach algebra. Aright BanachB-moduleE is
a Banach space which is at the same time a rightB-module satisfying the norm-condition‖eb‖ ≤
‖e‖ ‖b‖ for all b ∈ B ande ∈ E. We writeEB to emphasise the fact thatE is a rightB-module.

In the same manner we define left BanachA-modulesAE and BanachA-B-bimodulesAEB for
Banach algebrasA andB. If B is a Banach algebra, then we can regardB as a BanachB-B-bimodule
(called thestandard BanachB-B-bimodule). In the following we are going to concentrate on right
Banach modules; the left-handed analogues of the definitions and propositions are immediate.

Definition 1.1.2 (LB(E,F )). LetB be a Banach algebra and letEB andFB be BanachB-modules.
ThenLB(E,F ) is defined as the set ofC-linear continuous maps fromE to F satisfying

∀e ∈ E ∀b ∈ B : T (eb) = (T (e))b,

i.e., the elements ofLB(E,F ) areB-linear. We writeLB(E) for LB(E,E). In the case of left Banach
B-modules we writeB L(E,F ) rather thanLB(E,F ).

Note that the setLB(E,F ) is a Banach space (being a closed subspace ofLC(E,F )) and that the com-
position of suchB-linear continuous operators is againB-linear and continuous. The spaceLB(E) is
hence a unital Banach algebra.

Between Banach modules there is also a second type of morphisms:

Definition 1.1.3 (Homomorphism with coefficient maps).LetB andB′ be Banach algebras and let
EB andE′

B′ be Banach modules overB andB′, respectively. AhomomorphismΦ (of right Banach
modules) with coefficient mapϕ from EB to E′

B′ is a pair(Φ, ϕ) such thatΦ: E → E′ is C-linear
andcontractive, ϕ : B → B′ is a homomorphism of Banach algebras and

∀e ∈ E ∀b ∈ B : Φ(eb) = Φ(e)ϕ(b).

We also writeΦϕ for the pair(Φ, ϕ). In the caseB = B′ a homomorphism with coefficient mapIdB
is just a contractiveB-linear map.

Remark 1.1.4. The main objective of requiring homomorphisms of Banach modules to be contractive
rather than just continuous is to align them with homomorphisms of Banach algebras and homomor-
phisms of Hilbert modules. I consider it beneficial for the intellectual hygiene to put these kinds
of homomorphisms into a single box, whereas the continuousB-linear maps between BanachB-
modules are akin to (and generalisations of) continuousC-linear maps between Banach spaces and
(adjointable) operators between Hilbert modules. We will label the first kind of morphisms “homo-
morphisms” to distinguish them from the second kind, which we prefer to call “operators”.
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The definition of homomorphisms with coefficient maps extends naturally to Banach bimodules.
There we have to consider triples consisting of a linear map between the modules and two coeffi-
cient maps.

Definition 1.1.5 (Non-degenerate Banach module).Let B be a Banach algebra. A right Banach
B-moduleE is called non-degenerate1 if the span ofEB is dense inE.

Proposition 1.1.6 ([Rie67], Proposition 3.4).LetB be a Banach algebra with bounded approximate
identity(uλ)λ∈Λ. LetE be a right BanachB-module. Then the following are equivalent:

1. E is non-degenerate;

2. ∀e ∈ E : e = limλ∈Λ euλ;

3. ∀e ∈ E ∃f ∈ E ∃b ∈ B : e = fb.

1.1.3 Tensor products of Banach modules

LetA, B andC be Banach algebras, letE be a BanachA-B-bimodule and letF be a BanachB-C-
bimodule.

Definition 1.1.7 (Balanced bilinear maps).LetG be a BanachA-C-bimodule.

• The spaceAM(E,F ;G) is defined to be the set of allβ ∈ M(E,F ;G) such that

∀e ∈ E, f ∈ F, a ∈ A : β(ae, f) = aβ(e, f).

• The spaceMC(E,F ;G) is defined to be the set of allβ ∈ M(E,F ;G) such that

∀e ∈ E, f ∈ F, c ∈ C : β(e, fc) = β(e, f)c.

• The spaceMbal(E,F ;G) is defined to be the set of allβ ∈ M(E,F ;G) which areB-balanced:

∀e ∈ E, f ∈ F, b ∈ B : β(eb, f) = β(e, bf).

One can combine these notations to defineAMC(E,F ;G), AMbal
C (E,F ;G), etc. All the mentioned

sets are Banach spaces when endowed with the canonical vector space structures and norms.

Definition 1.1.8 (Balanced tensor product).A (projective)balanced tensor productof the bimodules
E andF is a BanachA-C-bimoduleE ⊗B F together with an elementπ of AMbal

C (E,F ;E ⊗B F )
of norm≤ 1 such that, for every BanachA-C-bimoduleG and everyµ ∈ AMbal

C (E,F ;G), there is a
uniqueµ̂ ∈ ALC(E ⊗B F,G) such that

µ = µ̂ ◦ π

and‖µ‖ = ‖µ̂‖.

That such a balanced tensor product exists can be shown by forming a quotient of the usual projective
tensor product2; uniqueness follows from general nonsense. It is easy to show that the balanced tensor
product is associative.

1“Essential” in Rieffel’s article [Rie67]; see also [Laf02], page 11.
2See [Laf02], page 12.
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Lemma 1.1.9. If F is non-degenerate from the right, then so isE ⊗B F .

Definition 1.1.10 (Tensor product of linear operators).LetE′ be a BanachA-B-bimodule and let
F ′ be a BanachB-C-bimodule andS ∈ ALB(E,E′) andT ∈ BLC(F, F ′). Then there is a unique
elementS ⊗ T in ALC(E ⊗ E′, F ⊗ F ′) such that

(S ⊗ T )(e⊗ f) = S(e)⊗ T (f)

for all e ∈ E andf ∈ F . We have‖S ⊗ T‖ ≤ ‖S‖ ‖T‖.

Definition 1.1.11 (Tensor product of homomorphisms).LetA′, B′, C ′ be Banach algebras and let
E′ be a BanachA′-B′-bimodule andF ′ be a BanachB′-C ′-bimodule. Letϕ : A → A′, ψ : B → B′

andθ : C → C ′ be homomorphisms of Banach algebras. LetϕΦψ : AEB → A′E
′
B′ andψΨθ : BFC →

B′F
′
C′ be homomorphisms with coefficient maps. Then there is a unique homomorphismΦ ⊗ Ψ of

Banach bimodules fromE ⊗B F toE′ ⊗B′ F ′ with coefficient mapsϕ andθ such that

(Φ⊗Ψ)(e⊗ f) = Φ(e)⊗Ψ(f)

for all e ∈ E andf ∈ F .

1.1.4 The pushout

Note that, ifB is a Banach algebra, then every BanachB-module is also a Banach̃B-module, where
B̃ is the unitalisation ofB, and vice versa. The same is true for Banach bimodules.

Definition 1.1.12 (The pushout of Banach modules).3 LetB,B′ be Banach algebras and letE be a
BanachB-module. Ifψ : B → B′ is a morphism of Banach algebras, then define the pushoutψ∗(E)
of E alongψ to be the BanachB′-moduleE⊗

ψ̃
B̃′ (regardingE as a right Banach̃B-module and̃B′

as a Banach̃B-B′ bimodule viaψ̃).

Definition 1.1.13 (The pushout of linear operators).LetB,B′ be Banach algebras, letψ : B → B′

be a morphism of Banach algebras, and letE andF be BanachB-modules. IfT ∈ LB(E,F ), then
defineψ∗(T ) ∈ LB′(ψ∗(E), ψ∗(F )) by

ψ∗(T )(e⊗ (b′ + λ1)) := T (e)⊗ (b′ + λ1)

for everye ∈ E, b′ ∈ B′ andλ ∈ C. In other words we defineψ∗(T ) to beT ⊗ Id
B̃′

.

Proposition 1.1.14. The mapψ∗ defines a functor from the category of BanachB-modules to the
category of BanachB′-modules which is linear and contractive on the morphism sets.

Proposition 1.1.15 (Functorial properties of the pushout).4

• LetB be a Banach algebra. Then the functor(IdB)∗ is naturally isometrically isomorphic to
the identity functor on the category of BanachB-modules.

• LetB, B′, B′′ be Banach algebras and letψ : B → B′, ψ′ : B′ → B′′ be homomorphisms.
Thenψ′∗ ◦ ψ∗ and(ψ′ ◦ ψ)∗ are naturally isometrically isomorphic functors from the category
of BanachB-modules to the category of BanachB′′-modules.

3What we call “pushout” is called “image directe” in [Laf02].
4See [Laf02], Lemme 1.1.1.
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Proposition 1.1.16 (The pushout of a non-degenerate Banach module).5 LetB, B′ be Banach
algebras, letψ : B → B′ be a homomorphism and letE be a non-degenerate BanachB-module.
Thenψ∗(E) is a non-degenerate BanachB′-module.

Proof. BecauseE is non-degenerate we know thatEBB is dense inE. Let e ∈ E, b, c ∈ B and
b′ + λ1 ∈ B̃′. Then

(ebc)⊗
ψ̃

(b′ + λ1) =
(
e⊗

ψ̃
ψ(b)

)
ψ(c)(b′ + λ1)︸ ︷︷ ︸

∈B′

.

By this we know that the subspace(E ⊗ ψ(B))B′ is dense inψ∗(E) = E ⊗ B̃′, soψ∗(E) is non-
degenerate.

1.2 Banach pairs

Definition 1.2.1 ((Banach)B-pair). LetB be a Banach algebra. Then a(Banach)B-pair E is a pair
E = (E<, E>), whereE< is a left BanachB-module andE> is a right BanachB-module, endowed
with a bilinear bracket〈·, ·〉E : E< × E> → B satisfying the following conditions:

• ∀b ∈ B ∀e< ∈ E< ∀e> ∈ E> : 〈be<, e>〉E = b〈e<, e>〉E .

• ∀b ∈ B ∀e< ∈ E< ∀e> ∈ E> : 〈e<, e>b〉E = 〈e<, e>〉Eb.

• ∀e< ∈ E< ∀e> ∈ E> : ‖〈e<, e>〉E‖ ≤ ‖e<‖ ‖e>‖.

We will often omit the index of the bracket and simply write〈·, ·〉. Sometimes, if we want to stress
the algebraB into which the bracket maps we even write〈·, ·〉B.

Definition 1.2.2 (Non-degenerate).LetB be a Banach algebra. A BanachB-pairE = (E<, E>) is
callednon-degenerateif E< is a non-degenerate left BanachB-module andE> is a non-degenerate
right BanachB-module.

Note that in6 [Laf02] a BanachB-pair is required to be non-degenerate by definition.

1.2.1 Linear, compact and finite rank operators

Definition 1.2.3 (Linear operator betweenB-pairs). 7 LetE = (E<, E>) andF = (F<, F>) be
B-pairs.

• A linear operatorfrom E to F is a pairT = (T<, T>), with T< ∈ BL(F<, E<) andT> ∈
LB(E>, F>), satisfying

∀f< ∈ F< ∀e> ∈ E> : 〈f<, T>e>〉F = 〈T<f<, e>〉E .

• The set of all linear operators fromE to F will be denoted byLB(E,F ).

5See [Laf02], page 12.
6Compare [Laf02], Définition 1.1.3.
7Linear operators are called “morphismes deB-paires” in [Laf02].
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• If T = (T<, T>) ∈ LB(E,F ), then we define

‖T‖LB(E,F ) := max
{∥∥T<∥∥ ,∥∥T>∥∥} .

With this normLB(E,F ) is a Banach space.

• If G is anotherB pair,T ∈ LB(E,F ), andS ∈ LB(F,G), then

S ◦ T :=
(
T< ◦ S<, S> ◦ T>

)
∈ LB(E,G).

We have‖S ◦ T‖ ≤ ‖S‖ ‖T‖.

• We setLB(E) := LB(E,E). The pair(IdE< , IdE>) is an element ofL(E) that we denote by
IdE . It is the unit of the Banach algebraLB(E).

From time to time we will use the following convention which obscures things a little bit but leads
to some handy formulae: IfB is a Banach algebra andE, F are aB-pairs, then we write for every
T = (T<, T>) ∈ L(E,F ):

(1.1) f<T := T<(f<) and Te> := T>(e>)

for everyf< ∈ F< and everye> ∈ E>. The fact thatT ∈ L(E,F ) can then be expressed via the
formula

∀f< ∈ F< ∀e> ∈ E> : 〈f<, T e>〉F = 〈f<T, e>〉E .

Definition 1.2.4 (Finite rank operator). Let E andF beB-pairs. For everyf> ∈ F> and every
e< ∈ E<, we define

∣∣f>〉〈e<∣∣ ∈ L(E,F ) by∣∣f>〉〈e<∣∣<(f<) := 〈f<, f>〉e< for all f< ∈ F<,

and ∣∣f>〉〈e<∣∣>(e>) := f>〈e<, e>〉 for all e> ∈ E>.
The span inL(E,F ) of all such operators is denoted byF(E,F ). An element ofF(E,F ) is called
an operator of finite rank. We setF(E) := F(E,E).

Using the notation introduced in (1.1), we can write the above formulae as

f<
∣∣f>〉〈e<∣∣ = 〈f<, f>〉e< and

∣∣f>〉〈e<∣∣e> = f>〈e<, e>〉.

Proposition 1.2.5. LetE, F andG beB-pairs. Then

• The map
∣∣ · 〉〈 · ∣∣ : F> × E< → L(E,F ) is bilinear, of norm≤ 1, andB-balanced.

• If f> ∈ F>, e< ∈ E< andT ∈ L(F,G) then

T ◦
∣∣f>〉 〈e<∣∣ = ∣∣T>(f>)

〉 〈
e<
∣∣ 1.1=

∣∣Tf>〉 〈e<∣∣ .
• If g> ∈ G>, f< ∈ F< andS ∈ L(E,F ) then∣∣g>〉 〈f<∣∣ ◦ T =

∣∣g>〉 〈T<(f<)
∣∣ 1.1=

∣∣g>〉 〈f<T ∣∣ .
• If S ∈ F(E,F ) andT ∈ L(F,G) thenT ◦ S ∈ F(E,G).

• If S ∈ L(E,F ) andT ∈ F(F,G) thenT ◦ S ∈ F(E,G).

• F(E) is an ideal ofL(E).
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Definition 1.2.6 (Compact operator). Let E andF beB-pairs. The closure of the finite rank op-
eratorsF(E,F ) in L(E,F ) is denoted byK(E,F ). An element ofK(E,F ) is called acompact8

operator. We setK(E) := K(E,E).

Proposition 1.2.7. LetE, F andG beB-pairs.

• If S ∈ K(E,F ) andT ∈ L(F,G), thenT ◦ S ∈ K(E,G).

• If S ∈ L(E,F ) andT ∈ K(F,G), thenT ◦ S ∈ K(E,G).

• K(E) is an ideal ofL(E).

Definition 1.2.8 (BanachA-B-pair). Let A andB be Banach algebras. ABanachA-B-pair9 E
is aB-pair endowed with a homomorphismπA : A → LB(E). In other words,E< is a Banach
B-A-bimodule,E> is a BanachA-B-bimodule and

∀a ∈ A, e< ∈ E<, e> ∈ E> : 〈e<a, e>〉B = 〈e<, ae>〉B.

Note that the situation of the preceding definition is not symmetric as there is noA-valued bracket
around. It should be pointed out that a BanachA-B-pair is called non-degenerate in this work if it is
a non-degenerateB-pair; we do not require theA-action to be non-degenerate in this case.

Let B be a Banach algebra. IfE is a BanachB-pair, thenE is a BanachL(E)-B-pair and a
BanachK(E)-B-pair. And if we considerB as a right as well as a leftB-module then the pair(B,B)
with the multiplication ofB as bracket is called thestandardB-pair. We will denote it byB or,
usually, simply byB. TheB-pairB with the obvious additional structure is a BanachB-B-pair.

1.2.2 Concurrent homomorphisms

Definition 1.2.9 (Concurrent homomorphism ofB-pairs). LetB,B′ be Banach algebras, letE be
aB-pair andE′ aB′-pair. A concurrent homomorphismΨ from E to E′ is a pairΨ = (Ψ<,Ψ>)
together with a so-called coefficient mapψ of Ψ, where

• Ψ< : E< → E′< is C-linear and contractive,

• Ψ> : E> → E′> is C-linear and contractive,

• ψ : B → B′ is a (contractive) homomorphism of Banach algebras,

such that

1. ∀b ∈ B, e< ∈ E< : Ψ<(be<) = ψ(b)Ψ<(e<), i.e., Ψ< is a homomorphism of left Banach
modules with coefficient mapψ,

2. ∀b ∈ B, e> ∈ E> : Ψ>(e>b) = Ψ>(e>)ψ(b), i.e.,Ψ> is a homomorphism of right Banach
modules with coefficient mapψ,

3. ∀e< ∈ E<, e> ∈ E> : ψ (〈e<, e>〉B) = 〈Ψ<(e<),Ψ>(e>)〉B′ .

To indicate the coefficient map we writeΨψ for Ψ.

8Conceptually, it would be better to call such operators “approximable”.
9These are called “(A,B)-bimodule de Banach” in [Laf02].
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Remark 1.2.10. The concurrent homomorphisms of Banach pairs generalise the homomorphisms of
Hilbert modules. The term “concurrent” is chosen to (further) distinguish the homomorphisms of this
type from the linear operators: The homomorphisms consist of two “arrows” pointing in the same
direction whereas the linear operators consist of two “arrows” pointing in opposite directions. The
word “concurrent” could be translated into “nebenläufig” in German (as opposed to “gegenläufig”)
and perhaps to “dirigé” in French.

If B andB′ are Banach algebras andψ : B → B′ is a contractive homomorphism, then(ψ,ψ)ψ is a
concurrent homomorphism fromB toB′.

Definition 1.2.11 (Concurrent homomorphism ofA-B-pairs). Let A, B, A′, B′ be Banach alge-
bras, letE be anA-B-pair andE′ anA′-B′-pair. A concurrent homomorphismΨ fromE toE′ is a
pairΨ = (Ψ<,Ψ>) together with two coefficient mapsφ andψ of Ψ, where

• Ψ< : E< → E′< is C-linear and contractive,

• Ψ> : E> → E′> is C-linear and contractive,

• φ : A→ A′ andψ : B → B′ are contractive homomorphisms,

such that

1. ∀a ∈ A, b ∈ B, e< ∈ E< : Ψ<(be<) = ψ(b)Ψ<(e<) ∧ Ψ<(e<a) = Ψ<(e<)φ(a),

2. ∀a ∈ A, b ∈ B, e> ∈ E> : Ψ>(e>b) = Ψ>(e>)ψ(b) ∧ Ψ>(ae>) = φ(a)Ψ>(e>),

3. ∀e< ∈ E<, e> ∈ E> : ψ (〈e<, e>〉B) = 〈Ψ<(e<),Ψ>(e>)〉B′ .

To indicate the coefficient maps we writeφΨψ for Ψ.

1.3 Sums, tensor products and the pushout

1.3.1 Sums of Banach pairs

Definition 1.3.1 (Sum of Banach pairs).Let B be a Banach algebra and letE1, E2 be BanachB-
pairs. Then we define the sumE1⊕E2 ofE1 andE2 to be the BanachB-pair(E<1 ⊕ E<2 , E

>
1 ⊕ E>2 ),

where the left-hand side is endowed with the norm(e<1 , e
<
2 ) 7→ ‖e<1 ‖ + ‖e<2 ‖ and the canonical left

B-action; the right-hand side carries the norm(e>1 , e
>
2 ) 7→ ‖e>1 ‖ + ‖e>2 ‖ and the canonical right

B-action; the bracket is given by〈(e<1 , e<2 ), (e>1 , e
>
2 )〉 := 〈e<1 , e>1 〉+ 〈e<2 , e>2 〉.

Note that this is not the categorial sum in the category of BanachB-pairs and linear operators (in
this case, one should rather take thesup-norm on the left-hand side); it is the sum in the category of
Banach pairs and homomorphisms with coefficient maps. More precisely, it is the universal object
for pairs of homomorphisms intoE1 andE2 with identical coefficient map. Note that the sum is
associative and commutative up to isomorphism.

Definition 1.3.2 (Sum of linear operators).Let B be a Banach algebra and letE1, E2, F1, F2 be
BanachB-pairs. LetT1 ∈ LB(E1, F1) andT2 ∈ LB(E2, F2). Then we define

T1 ⊕ T2 :=
(
T<1 ⊕ T<2 , T

>
1 ⊕ T>2

)
∈ LB (E1 ⊕ E2, F1 ⊕ F2) .

This operator satisfies‖T1 ⊕ T2‖ = max{‖T1‖ , ‖T2‖}.

Similarly one can define the sum of concurrent homomorphisms.
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1.3.2 The balanced tensor product of Banach pairs

Definition 1.3.3 (The balanced tensor product of Banach pairs).LetA, B, C be Banach algebras
and letE be a BanachA-B-pair andF a BanachB-C-pair. Then we define a BanachA-C-pair
E ⊗B F by

• (E ⊗B F )> := E> ⊗B F>,

• (E ⊗B F )< := F< ⊗B E<,

• 〈·, ·〉 : F< ⊗B E< × E> ⊗B F> → C, (f< ⊗ e<, e> ⊗ f>) 7→ 〈f<, 〈e<, e>〉f>〉.

Note that the balanced tensor product is compatible with the sum of Banach pairs. IfE is just aB-pair,
then we can takeA := C to make it anA-B-pair. Then the preceding definition gives us aC-C-pair,
i.e., we get just aC-pair.

From the corresponding result for Banach modules (Lemma 1.1.9) we can easily deduce:

Proposition 1.3.4.LetB,C be Banach algebras and letE be a BanachB-pair and letF be a Banach
B-C-pair. If F is non-degenerate, then so isE ⊗B F .

Definition 1.3.5 (Tensor product of concurrent homomorphisms).Let A, B, C, A′, B′, C ′ be
Banach algebras and letAEB, BFC , A′E′

B′ andB′F ′
C′ be Banach pairs. Letϕ : A→ A′, ψ : B → B′

andθ : C → C ′ be homomorphisms of Banach algebras. LetϕΦψ : AEB → A′E
′
B′ andψΨθ : BFC →

B′F
′
C′ be concurrent homomorphisms with coefficient maps. Then

Φ⊗Ψ :=
(
Ψ< ⊗ Φ<, Φ> ⊗Ψ>

)
is a concurrent homomorphism fromE ⊗B F to E′ ⊗B′ F ′ with coefficient mapsϕ andθ, where
the left- and the right-hand side, being tensor products of homomorphisms of Banach modules, are
defined in 1.1.11.

1.3.3 Operators of the typeT ⊗ 1

LetA,B andC be Banach algebras and letE, E′ be BanachB-pairs andF a BanachB-C-pair.

Definition 1.3.6. For everyT ∈ LB(E,E′), defineT ⊗ 1 ∈ LC (E ⊗B F, E′ ⊗B F ) to be

T ⊗ 1 =
(
IdF< ⊗T<, T> ⊗ IdF>

)
.

The assignmentT 7→ T ⊗ 1 is a functor from the category of BanachB-pairs to the category of
BanachC-pairs, linear and contractive on the spaces of morphisms.

Proof. Let e′< ∈ E′<, e> ∈ E>, f< ∈ F< andf> ∈ F>. Then〈(
IdF< ⊗T<

)
(f< ⊗ e′<), e> ⊗ f>

〉
=

〈
f< ⊗ T<(e′<), e> ⊗ f>

〉
=

〈
f<,

〈
T<e′<, e>

〉
f>
〉

=
〈
f<,

〈
e′<, T>e>

〉
f>
〉

=
〈
f< ⊗ e′<, T>(e>)⊗ f>

〉
=

〈
f< ⊗ e′<,

(
T> ⊗ IdF>

) (
e> ⊗ f>

)〉
.

SoT ⊗ 1 ∈ LC (E ⊗B F, E′ ⊗B F ).
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Proposition 1.3.7. Let the actionπB : B → LC(F ) onB of F satisfyπB(B) ⊆ KC(F ). Assume
thatE or E′ is non-degenerate. IfT ∈ KB(E,E′), thenT ⊗ 1 ∈ KC (E ⊗B F, E′ ⊗B F ).

Proof. It suffices to show the assertion forT =
∣∣e′>〉〈be<∣∣ for all e′> ∈ E′>, e< ∈ E< andb ∈ B,

because the functionT 7→ T ⊗ 1 is linear and continuous and the span of all operatorsT of the given
form is dense inKB(E,E′); to prove the latter one uses thatE orE′ is non-degenerate (note that we
can also writeT =

∣∣e′>b〉〈e<∣∣).
We now expressT ⊗ 1 as the composition of three operators, one of them being compact. To this

end we define

M〈e<| :=
(
f< 7→ f< ⊗ e<, (e> ⊗ f>) 7→ 〈e<, e>〉f>

)
∈ LC (E ⊗B F, F )

and
M|e′>〉 :=

(
f< ⊗ e′< 7→ f<〈e′<, e′>〉, f> 7→ e′> ⊗ f>

)
∈ LC

(
F,E′ ⊗B F

)
.

The operatorM〈e<| can be regarded as a kind of annihilation operator (at least on the ket-side), the
operatorM|e′>〉 can be regarded as a creation operator (on the ket-side).

We have

(T> ⊗ 1)(e> ⊗ f>) = (e′>b〈e<, e>〉)⊗ f> = e′> ⊗ (b〈e<, e>〉f>)

=
[
M>
|e′>〉 ◦ πB(b)> ◦M>

〈e<|

] (
e> ⊗ f>

)
for all e> ∈ E> andf> ∈ F> and

(1⊗ T<)(f< ⊗ e′<) = f< ⊗ 〈e′<, e′>〉be< = (f<〈e′<, e′>〉b)⊗ e<

=
[
M<
〈e<| ◦ πB(b)< ◦M<

|e′>〉

] (
f< ⊗ e′<

)
for all f< ∈ F< ande′< ∈ E′<.

Together, this yields
T ⊗ 1 = M|e′>〉 ◦ πB(b) ◦M〈e<|.

Now πB(b) is compact, soT ⊗ 1 is compact.

Corollary 1.3.8. LetE be anA-B-pair such thatA acts onE by compact operators andB acts on
F by compact operators. IfE isB-non-degenerate, thenA acts onE ⊗B F by compact operators.

1.3.4 The pushout

LetB,B′ be Banach algebras and letψ : B → B′ be a homomorphism.

Definition 1.3.9 (The pushout of a pair).For allB-pairsE, define thepushoutψ∗(E) of E alongψ
to be theB′-pair

ψ∗(E) := E ⊗
ψ̃
B̃′ =

(
B̃′ ⊗

ψ̃
E<, E> ⊗

ψ̃
B̃′
)

=
(
ψ∗(E<), ψ∗(E>)

)
.

Note that this is indeed aB′-pair and not only ãB′-pair because the bracket ofψ∗(E) takes its values
in the idealB′ of B̃′.
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Definition 1.3.10 (The pushout of a linear operator).LetE, F beB-pairs. For allT ∈ LB(E,F ),
defineψ∗(T ) ∈ LB′ (ψ∗(E), ψ∗(F )) by

ψ∗(T ) :=
(
ψ∗(T<), ψ∗(T>)

)
=
(
Id
B̃′
⊗T<, T> ⊗ Id

B̃′

)
= T ⊗ 1.

The mapψ∗ defines a functor from the category of BanachB-pairs to the category of BanachB′-pairs
that is linear and contractive on the morphism sets. It is compatible with the sum of BanachB-pairs.

Proposition 1.3.11 (Functorial properties of the pushout).10

• The functor(IdB)∗ is naturally isometrically equivalent to the identity functor on the category
of BanachB-pairs in the following sense: Define for everyB-pair E the homomorphism of
pairs with coefficient mapIdB

ηE = (η<E , η
>
E) : E ⊗

B̃
B̃ → E

by b̃ ⊗ e< 7→ b̃e< ande> ⊗ b̃ 7→ e>b̃, wherẽb ∈ B̃, e< ∈ E< ande> ∈ E>. If E andF are
B-pairs andT ∈ LB(E,F ), then

(IdB)∗ (T )> ◦ η>E = η>F ◦ T
> and (IdB)∗ (T )< ◦ η<F = η<E ◦ T

<,

i.e.,ηE andηF intertwine(IdB)∗(T ) = T ⊗ 1 andT .

• LetB′′ be another Banach algebra and letψ′ : B′ → B′′ be another homomorphism. Then
ψ′∗ ◦ ψ∗ and (ψ′ ◦ ψ)∗ are naturally isometrically equivalent functors from the category of
BanachB-pairs to the category of BanachB′′-pairs.

Proof. This follows from the analogous Proposition 1.1.15 for Banach modules.

From the analogous Proposition 1.1.16 for Banach modules we get:

Proposition 1.3.12 (The pushout of a non-degenerate Banach pair).If E is a non-degenerate
BanachB-pair, thenψ∗(E) is a non-degenerate BanachB′-pair.

Proposition 1.3.13. 11 LetE andF be BanachB-pairs. Then for allT ∈ KB(E,F ) the operator
ψ∗(T ) = T ⊗ 1 is contained inKB′ (ψ∗(E), ψ∗(F )).

Proof. We give two arguments for this simple fact: The first is that it suffices to show the result forT
of the form

∣∣f>〉〈e<∣∣ with e< ∈ E< andf> ∈ F>. In this case the operator
∣∣f>〉〈e<∣∣ ⊗ 1 equals∣∣f> ⊗ 1

B̃′

〉〈
1
B̃′
⊗ e<

∣∣ and is therefore compact.
The other argument uses Proposition 1.3.7. It is easy to show thatB acts by compact operators

on B̃′ if we regardB̃′ as aB̃′-pair. It follows thatKB(E) ⊗ 1 ⊆ K
B̃′

(ψ∗(E), ψ∗(F )) by Proposi-
tion 1.3.7, andK

B̃′
(ψ∗(E), ψ∗(F )) = KB′ (ψ∗(E), ψ∗(F )).

10See [Laf02], page 15.
11See [Laf02], page 16.
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1.4 The multiplier algebra

LetB be a Banach algebra.

Definition 1.4.1 (The multiplier algebra M(B)). The unital Banach algebraL(B) is called the
multiplier algebra ofB and will be denoted byM(B).

One usually defines the multiplier algebra ofB as the algebra of (continuous) double centralisers,
and in fact, that is what we have done here as well. To see this, letT = (T<, T>) be an element of
the algebraM(B) = L (B). Then

1. ∀a, b ∈ B : T<(ab) = aT<(b), i.e.,T< is a right centraliser,

2. ∀a, b ∈ B : T>(ba) = T>(b)a, i.e.,T> is a left centraliser,

3. ∀a, b ∈ B : aT>(b) = T<(a)b, i.e., T is a double centraliser.

Using the notation introduced in 1.1 we can rewrite the three formulae(ab)T = a(bT ), T (ba) =
(Tb)a anda(Tb) = (aT )b for all a, b ∈ B. This constitutes three of the possible number of eight
laws of associativity betweenB andL(B). The lawsR(ST ) = (RS)T anda(bc) = (ab)c are trivially
satisfied. The way the composition of operators is defined guarantees the laws(ST )b = S(Tb) and
b(ST ) = (bS)T . The only law that is left to check is(Sb)T = S(bT ), what can be paraphrased by
T< ◦S> = S> ◦ T<. As we will see below, this law does not hold in general, but we can give simple
conditions onB under which it is true.

Lemma 1.4.2. If B is non-degenerate,12 then we have

∀S, T ∈ M(B) : T< ◦ S> = S> ◦ T<

or, equivalently,
∀S, T ∈ M(B), b ∈ B : (Sb)T = S(bT ).

Proof. For all b, c ∈ B andS, T ∈ M(B) we have

(T< ◦ S>)(bc) = T<
(
S>(bc)

)
= T<

(
S>(b)c

)
= S>(b)T<(c) = S>(bT<(c)) = (S> ◦ T<)(bc).

ThusT< ◦ S> equalsS> ◦ T< onBB. The rest follows from linearity and continuity ofT< ◦ S>
andS> ◦ T< and the fact thatB is non-degenerate.

That the condition thatB is non-degenerate cannot simply be dropped can be seen from the following
example.

Example 1.4.3.Let E be a Banach space. Equipped with the trivial product it is a Banach algebra.
Every pair ofC-linear continuous maps fromE to E gives an element ofM(E). So if E is of
dimension more than one, the above equality fails in general.

If B is a C∗-algebra, thenB is isomorphic toKB(B) andB is “contained” in the multiplier algebra.
If we model the multiplier algebra asLB(B), then we can rephrase this as follows: The canonical
homomorphism fromB to LB(B) is an isomorphism onto its imageKB(B). This is no longer true
for general Banach algebras: The canonical homomorphism does not need to be injective and its
image does not need to beKB(B). However there are some relations betweenB andKB(B) that we
are going to state now.

12The lemma is also true ifB has no annihilators (as defined right after 1.4.4). The current and more relevant version of
the lemma has been suggested by Ralf Meyer.
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Definition 1.4.4. We define a contractive homomorphism

ψB : B → M(B), b 7→ (c 7→ cb, c 7→ bc).

If we view B as aB-B-bipair, then the actionB → LB(B) is precisely given byψB. We call
the elements of the kernel ofψB the annihilatorsof B and say thatB hasno annihilatorsif ψB is
injective. If B has a bounded approximate identity thenψB is isometric and hence injective. The
homomorphismψB is an isomorphism precisely ifB is unital. The image ofψB is a two-sided ideal
of M(B). More precisely we have

T ◦ ψB(b) = ψB(T>(b)) = ψB(Tb) and ψB(b) ◦ T = ψB(T<(b)) = ψB(bT )

for all b ∈ B andT ∈ M(B).

Proposition 1.4.5. 13

1. ∀b, c ∈ B : |b〉〈c| = ψB(bc).

2. KB(B) is contained inψB(B).

3. IfB is non-degenerate, thenKB(B) = ψB(B).

4. IfB is non-degenerate andψB is isometric, thenψB is an isomorphism fromB ontoKB(B).

1.5 Graded Banach pairs

1.5.1 Graded Banach spaces

Definition 1.5.1 (Graded Banach space).Let E be a Banach space. Agrading automorphismσE
of E is an isometric linear endomorphism ofE such thatσ2

E = IdE . A graded Banach spaceis a
Banach space endowed with a grading automorphism.

Definition 1.5.2 (Homogeneous element, degree).If E is a graded Banach space with grading auto-
morphismσE , then we defineE0 := {e ∈ E : σE(e) = e} andE1 := {e ∈ E : σE(e) = −e}. The
elements ofE0 are called even, the elements ofE1 are called odd. The elements ofE0∪E1 are called
homogeneous. Ife ∈ E \ {0} is homogeneous, then we define the degreedeg e of e to be0 ∈ Z2 if
e ∈ E0 and1 ∈ Z2 if e ∈ E1. Note thatE = E0 ⊕ E1.

Definition 1.5.3 (Odd and even operators).Let E, F be graded Banach spaces with grading au-
tomorphismsσE and σF , respectively. OnL(E,F ) define a grading operatorσL(E,F ) by T 7→
σF ◦ T ◦ σE . A linear operatorT ∈ L(E,F ) is then calledgradedor evenif

T ◦ σE = σF ◦ T,

or, equivalently, ifT (E0) ⊆ F0 andT (E1) ⊆ F1. It is calledodd if T ◦ σE = −σF ◦ T or, equiva-
lently, if T (E0) ⊆ F1 andT (E1) ⊆ F0. The set of all even and of all odd elements ofL(E,F ) will
be denoted byLeven(E,F ) andLodd(E,F ), respectively.

13Compare the more general version Lemme 1.1.6 of [Laf02].
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Definition 1.5.4 (Odd and even bilinear maps).Let E1, E2 andF be graded Banach spaces with
grading automorphismσE1 , σE2 andσF , respectively. On the Banach spaceM(E1, E2;F ) define a
grading automorphismσM(E1,E2;F ) by setting

σM(E1,E2;F )(µ) (e1, e2) := σF (µ (σE1(e1), σE2(e2)))

for all µ ∈ M(E1, E2;F ), e1 ∈ E1, ande2 ∈ E2. An elementµ ∈ M(E1, E2;F ) is consequently
calledgradedor evenif

σF (µ(e2, e2)) = µ (σE1(e1), σE2(e2))

for all e1 ∈ E1 ande2 ∈ E2. It is calledodd if the same equality is true with a minus sign.

Note thatµ ∈ M(E1, E2;F ) is graded if and only ifµ(e1, e2) is homogeneous for all homogeneous
e1 ∈ E1 ande2 ∈ E2 with

degµ(e1, e2) = deg e1 + deg e2.

Definition 1.5.5 (The graded tensor product).LetE1 andE2 be graded Banach spaces with grading
automorphismσE1 andσE2 , respectively. Then the graded tensor product ofE1 andE2 is defined as
the projective tensor productE1 ⊗ E2 with the grading operatorσE1 ⊗ σE2 which is also called the
diagonal grading operator. It has the universal property for graded continuous bilinear maps.

Note that the graded tensor product is associative.

1.5.2 Graded Banach algebras

Definition and Lemma 1.5.6 (Graded Banach algebra).Let B be a Banach algebra with a linear
grading automorphismσB. Then the following are equivalent:

1. σB is multiplicative, i.e.,σB is a Banach algebra automorphism.

2. The product ofB is even with respect toσB.

3. If a, b ∈ B are homogeneous thenab is homogeneous anddeg ab = deg a+ deg b.

If one (and therefore all) of these conditions is (are) satisfied, then we callσB agrading automorphism
of the Banach algebraB andB agraded Banach algebra.

Example 1.5.7.LetB be a Banach algebra. Then the identity ofB is a grading automorphism. If we
endowB with this grading automorphism, then we call ittrivially graded.

Example 1.5.8.LetE be a graded Banach space. ThenL(E) is a graded Banach algebra.

1.5.3 Graded Banach modules

Definition 1.5.9 (Graded Banach module).LetB be a graded Banach algebra with grading automor-
phismσB. LetE be a right BanachB-module. Agrading automorphismσE ofE is an automorphism
of E with coefficient mapσB such thatσ2

E = IdE . A graded right BanachB-moduleis a right Ba-
nachB-module endowed with a grading automorphism. Similarly, graded left Banach modules and
graded Banach bimodules are defined.

One can characterise grading automorphisms of graded Banach modules just as we have done for
grading automorphisms for Banach algebras in 1.5.6.
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Example 1.5.10.LetB be a graded Banach algebra. ThenB is also a graded BanachB-B-bimodule.

Definition and Lemma 1.5.11 (Odd and even operators).If E andF are graded right BanachB-
modules, thenLB(E,F ) is a graded subspace ofL(E,F ). In particular,LB(E) is a graded subalgebra
of L(E). The set of all even and of all odd elements ofLB(E,F ) will be denoted byLeven

B (E,F ) and
Lodd
B (E,F ), respectively.

Definition 1.5.12 (Graded homomorphism).LetB andB′ be graded Banach algebras with grading
automorphismsσB andσB′ , respectively. LetEB andE′

B′ be graded Banach modules with grading
operatorsσE andσE′ . A homomorphismΨ: E → E′ with coefficient mapψ : B → B′ is called
gradedif

(σE′)σB′
◦Ψψ = Ψψ ◦ (σE)σB

or, equivalently, ifΨ andψ are graded maps.

Definition 1.5.13 (Graded sum of Banach modules).Let B be a graded Banach algebra, and let
E1 andE2 be graded BanachB-modules. On the sumE1 ⊕ E2 define the grading automorphism
σE1⊕E2 := σE1 ⊕ σE2 .

Definition 1.5.14 (Graded tensor product of Banach modules).LetA,B andC be graded Banach
algebras, and letAEB andBFC be graded Banach bimodules. On the balanced tensor productE⊗BF
define the grading automorphismσE⊗BF := σE⊗σF . With this grading automorphism, the balanced
tensor product has the universal property for continuous graded balanced bilinear maps and is called
thegraded balanced tensor productof E andF .

Note that the automorphismσE ⊗ σF is the tensor product of homomorphisms with coefficient maps
defined in 1.1.11. The graded balanced tensor product is compatible with the graded sum.

Definition 1.5.15 (The graded pushout of Banach modules).Let B andB′ be graded Banach
algebras, and letE be a right graded BanachB-module. Letψ : B → B′ be a graded homomorphism
of Banach algebras. Extend the grading automorphismσB′ onB′ to a grading automorphism of the
unitalisationB̃′ by letting the unit1 be even. Define thegraded pushoutψ∗(E) of E to be the right
graded BanachB′-moduleE ⊗

ψ̃
B̃′.

The mapψ∗ defines a functor from the category of graded BanachB-modules to the category of graded
BanachB′-modules which is linear, contractive and even on the morphism sets. The functoriality
properties of the pushout listed in Proposition 1.1.15 carry over to the graded case. Also, the graded
pushout is compatible with the sum of BanachB-modules.

1.5.4 Graded Banach pairs

Definition 1.5.16 (Graded Banach pair).LetB be a graded Banach algebra with grading automor-
phismσB. LetE = (E<, E>) be a BanachB-pair. A grading automorphismof E is a concurrent
automorphismσE = (σ<E , σ

>
E) with coefficient mapσB such thatσ2

E = IdE . A graded BanachB-
pair is a BanachB-pair endowed with a grading automorphism. Similarly one defines graded Banach
A-B-pairs ifA is another graded Banach algebra.

Note that in particular the left and right parts ofσE are grading automorphisms ofE< andE>,
respectively. We hence writeσ>E or σE> , interchangeably.

Example 1.5.17.LetB be a graded Banach algebra. ThenB is a graded BanachB-pair (and also a
graded BanachB-B-pair).
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Definition 1.5.18 (Odd and even operators).LetE andF be graded BanachB-pairs with grading
automorphismsσE andσF . Then we define a grading on the Banach spaceLB(E,F ) by setting

σLB(E,F )(T ) :=
(
σ<E ◦ T

< ◦ σ<F , σ
>
F ◦ T

> ◦ σ>E
)

=
(
σ

B L(F<,E<)(T
<), σLB(E>,F>)(T

>)
)

for all T ∈ LB(E,F ). The set of all even and of all odd elements ofLB(E,F ) will be denoted by
Leven
B (E,F ) andLodd

B (E,F ), respectively.

Note that composition of operators is an even bilinear map. This also means thatLB(E) is a graded
Banach algebra for every graded BanachB-pairE.

Lemma 1.5.19. Let E and F be graded BanachB-pairs. ThenKB(E,F ) is a graded subspace
of LB(E,F ). The bilinear map(f>, e<) 7→

∣∣f>〉〈e<∣∣ from F> × E< to KB(E,F ) is even. In
particular, KB(E) is a graded Banach algebra.

Note that, building on the respective notions for Banach modules, there are obvious definitions of
graded concurrent homomorphism between graded Banach pairs, of the graded sum, the graded tensor
product and the graded pushout of graded Banach pairs; these notions are pairwise compatible.

1.6 Group actions

LetG be a locally compact Hausdorff group.

1.6.1 G-Banach spaces

Definition 1.6.1 (G-Banach space).Let E be a Banach space. We callE aG-Banach spaceif it is
equipped with a strongly continuousG-actionη : G→ L(E) by isometries.

We will usually writese instead ofηs(e) for all s ∈ G ande ∈ E.

Definition 1.6.2. LetE andF beG-Banach spaces. Then we define an action by isometries (which
is not necessarily continuous) onL(E,F ) by setting

(sT )(e) := s(T (s−1e))

for all s ∈ G, e ∈ E, andT ∈ L(E,F ).

Definition 1.6.3 (G-equivariant linear operator). LetE andF beG-Banach spaces. An elementT
of L(E,F ) is calledG-equivariantif

s(T (e)) = T (s(e))

for all s ∈ G ande ∈ E, i.e., if T is invariant under theG-action onL(E,F ).

Definition 1.6.4 (G-equivariant bilinear maps). Let E1, E2 andF beG-Banach spaces, and let
µ : E1 × E2 → F be inM(E1, E2;F ). Thenµ is calledG-equivariantif

µ(se1, se2) = sµ(e1, e2)

for all e1 ∈ E1, e2 ∈ E2, ands ∈ G.
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Definition 1.6.5 (TheG-tensor product). Let E1 andE2 beG-Banach spaces. ThenE1 ⊗ E2 is a
G-Banach space with the action given by

s(e1 ⊗ e2) := (se1)⊗ (se2)

for all s ∈ G ande1 ∈ E1, e2 ∈ E2. The tensor product map fromE1 × E2 to E1 ⊗ E2 is thenG-
equivariant by definition and ifF is aG-Banach space andµ ∈ M(E1, E2;F ) thenµ isG-equivariant
if and only if µ̂ : E1 ⊗ E2 → F isG-equivariant.

1.6.2 G-Banach algebras andG-Banach modules

Definition 1.6.6 (G-Banach algebra).An action ofG on a Banach algebraB is a strongly continuous
homomorphism ofG into Aut(B). A Banach algebra endowed with an action ofG is called aG-
Banach algebra.

Definition 1.6.7 (G-equivariant homomorphism of Banach algebras).LetB andB′ beG-Banach
algebras. A homomorphism of Banach algebrasψ : B → B′ is calledG-equivariant ifψ(sb) =
s(ψ(b)) for all b ∈ B ands ∈ G.

Definition 1.6.8 (G-Banach module).LetB be aG-Banach algebra. Then aG-BanachB-moduleis
aG-Banach space which is at the same time a BanachB-module such that the module action ofB on
E isG-equivariant.

Note that this can also be expressed as follows: Ifβ is the action ofG on B andη is a strongly
continuous action ofG on the BanachB-moduleE, thenE is aG-BanachB-module if and only if
ηs is a homomorphism with coefficient mapβs fromEB onto itself.

Lemma 1.6.9.LetB be aG-Banach algebra, and letEB andFB beG-BanachB-modules. Then the
setLB(E,F ) ofB-linear operators is aG-invariant subspace ofL(E,F ). SoG acts onLB(E,F ).
The composition ofB-linear operators isG-equivariant.

Definition 1.6.10 (G-equivariant homomorphism of Banach modules).LetB andB′ beG-Banach
algebras, and letEB andE′

B′ be rightG-Banach modules. A homomorphismΨψ : EB → E′
B′ (with

coefficient mapψ) is calledG-equivariantif ψ andΨ are bothG-equivariant maps.

Definition 1.6.11 (The equivariant balanced tensor product ofG-Banach modules).LetA,B and
C beG-Banach algebras and letAEB andBFC beG-Banach bimodules. Then we define aG-action
on the balanced tensor productE ⊗B F by settings(e⊗ f) := (se)⊗ (sf) for all s ∈ G, e ∈ E and
f ∈ F . This is well-defined by 1.1.11 and it is easy to see that this defines a strongly continuous action
of G onE ⊗B F . With this action,E ⊗B F has the universal property for continuousG-equivariant
balanced bilinear maps and will be called theG-equivariant balanced tensor productof E andF .

Definition 1.6.12 (The equivariant pushout ofG-Banach modules).Let B andB′ beG-Banach
algebras and letE be a rightG-BanachB-module. Letψ : B → B′ be an equivariant homomorphism
of G-Banach algebras. Extend the action ofG onB′ to an action on the unitalisatioñB′ by letting
G act trivially on the unit1. Define theequivariant pushoutψ∗(E) of E to be the rightG-Banach
B′-moduleE ⊗

ψ̃
B̃′.
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1.6.3 G-Banach pairs

Definition 1.6.13 (G-BanachB-pair). Let B be aG-Banach algebra. AG-BanachB-pair is a
BanachB-pair (E<, E>) such thatE< andE> areG-BanachB-modules and the bracket isG-
equivariant.

Similarly,G-BanachA-B-pairs are defined ifA andB areG-Banach algebras.

Definition 1.6.14 (The action on linear operators).LetE andF beG-BanachB-pairs with action
ηE andηF , respectively. Then we define an action ofG onLB(E,F ) by

sT := (sT<, sT>) =
(
ηE

<

s ◦ T< ◦ ηF<

s−1 , η
F>

s ◦ T> ◦ ηE>

s−1

)
for all T ∈ LB(E,F ) and all s ∈ G (this is an action by isometries, but it does not have to be
continuous in any interesting sense). Composition of operators is equivariant.

Definition 1.6.15 (G-equivariant concurrent homomorphism). Let B andB′ beG-Banach alge-
bras and letEB andE′

B′ beG-Banach pairs. A concurrent homomorphismΨψ from EB to E′
B′ is

calledG-equivariant ifψ , the left partΨ< : E< → E′< and the right partΨ> : E> → E′> are
G-equivariant. A similar definition can be made forG-Banach pairs that carry additional left actions
of G-Banach algebras.

Proposition 1.6.16.LetE andF beG-BanachB-pairs. ThenKB(E,F ) is aG-invariant subspace
of LB(E,F ). The bilinear map(f>, e<) 7→

∣∣f>〉〈e<∣∣ fromF> × E< to KB(E,F ) is equivariant.

Proposition 1.6.17.The action ofG on KB(E,F ) is strongly continuous and thusKB(E) is aG-
Banach algebra.

Proof. Let f> ∈ F> ande< ∈ E<. Now the maps 7→ (sf>, se<) is continuous and so is the
map (f̃>, ẽ<) 7→

∣∣f̃>〉〈ẽ<∣∣. Now s
∣∣f>〉〈e<∣∣ =

∣∣sf>〉〈se<∣∣ for all s ∈ G, so s 7→ s
∣∣f>〉〈e<∣∣

is continuous as a composition of continuous maps. So for every finite-rank operatorT , the map
s 7→ sT is continuous. But the space of all finite-rank operators is dense inKB(E,F ) and the action
is by isometries, so the action is strongly continuous.

Definition 1.6.18 (The equivariant sum ofG-Banach pairs). LetB be aG-Banach algebra and let
E1 andE2 beG-BanachB-pairs. Then the obvious action ofG onE1 ⊕ E2 makes it aG-Banach
B-pair.

Definition 1.6.19 (The equivariant balanced tensor ofG-Banach pairs). Let A, B andC beG-
Banach algebras and letAEB andBFC beG-Banach pairs. Then we define theG-equivariant bal-
anced tensor productof E andF to be the BanachA-C-pairE ⊗B F = (F< ⊗B E<, E> ⊗B F>)
taking theG-equivariant tensor product of Banach modules on both sides.

The definition of theG-equivariant pushout ofG-Banach pairsis just as simple minded. The func-
toriality properties of the pushout given in Proposition 1.1.15 carry over to the equivariant case. The
equivariant tensor product and the equivariant pushout are both compatible with the sum ofG-Banach
pairs.
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1.6.4 Group actions and gradings

Definition 1.6.20 (GradedG-Banach space).A gradedG-Banach spaceE is a graded Banach space
E together with a strongly continuous action ofG onE which commutes with the grading automor-
phism.

Remark 1.6.21. Let E be aG-Banach space and letσE be a grading operator on the Banach space
E. Then the action ofG andσE commute if and only if they give rise to a strongly continuous action
of G× Z2 onE. Hence all the notions that we have forG-actions carry over toG-actions on graded
spaces, graded algebras, etc.

Let us elaborate on two highlights:

Proposition 1.6.22. If E is a gradedG-Banach space, then the subspaces of odd and even elements
are invariant under the action ofG. If F is another gradedG-Banach space, then the spaces of odd
and even operators fromE to F are invariant under the action ofG on L(E,F ). Similar things are
true for gradedG-Banach modules and gradedG-Banach pairs.

Proposition 1.6.23.LetE be a gradedG-BanachB-pair. ThenKB(E) is a gradedG-Banach alge-
bra.

1.7 Example: Trivial bundles overX

LetX be a locally compact Hausdorff space.

Definition 1.7.1 (The Banach spaceEX). Let E be a Banach space. Then we defineEX as the
Banach spaceC0(X,E) of continuous functions fromX to E that vanish at infinity. For allx ∈ X,
we defineevEx : EX → E, ξ 7→ ξ(x). It is a contractive linear map.

Definition 1.7.2 (The Banach algebraBX). Let B be a Banach algebra. ThenBX = C0(X,B)
is a Banach algebra with the pointwise product. For allx ∈ X, the mapevBx : BX → B is a
homomorphism of Banach algebras.

Lemma 1.7.3. If B is a non-degenerate Banach algebra, thenBX is non-degenerate as well.

Proof. Let Γ be the subspace ofBX spanned by all productsββ′ with β, β′ ∈ BX. ThenΓ is closed
under the multiplication with functions inCc(X). Moreover, ifx ∈ X, then{γ(x) : γ ∈ Γ} is dense
in B. A short argument using partitions of unity shows that this suffices forΓ to be dense inBX.

Definition 1.7.4 (The BanachBX-moduleEX). LetB be a Banach algebra and letE be a Banach
B-module. ThenEX = C0(X,E) is a BanachBX-module. For allx ∈ X, the mapevEx : EX → E
is an equivariant homomorphism with coefficient mapevBx .

If A is another Banach algebra andE is a BanachA-B-bimodule, thenEX is a BanachAX-
BX-bimodule.

As above, one proves:

Lemma 1.7.5. LetB be a Banach algebra andE a non-degenerate right BanachB-module. Then
EX is a non-degenerate BanachBX-module.



26 CHAPTER 1. KK-THEORY FOR BANACH ALGEBRAS

Proposition 1.7.6. LetA andB be Banach algebras and letAEB be aB-non-degenerate Banach
A-B-bimodule. Then the BanachAX-BX-bimoduleAXEXBX has the property

evBx,∗ (EX) ∼= evA,∗x (E)

asAX-B-bimodules for everyx ∈ X.

Example 1.7.7.LetA,B be Banach algebras and letE be a BanachA-B-bimodule. ThenE[0, 1] is
a BanachA[0, 1]-B[0, 1]-bimodule. For allt ∈ [0, 1], we haveevBt,∗ (E[0, 1]) ∼= evA,∗t (E).

Definition 1.7.8 (The BanachBX-pair EX). LetA, B be Banach algebras and letE be a Banach
A-B-pair. ThenEX := (E<X, E>X) is a BanachAX-BX-pair when equipped with the pointwise
bracket.

Proposition 1.7.9. LetA andB be Banach algebras and letAEB be aB-non-degenerate Banach
A-B-pair. Then the BanachAX-BX-pair AXEXBX has the property

evBx,∗ (EX) ∼= evA,∗x (E)

asAX-B-pairs for everyx ∈ X.

Proposition 1.7.10.LetB be a Banach algebra and letE andF be BanachB-pairs. Then

KB(E,F )X ∼= KBX (EX,FX) .

Proof. First we define an isometric linear map fromKB(E,F )X to KBX (EX,FX). We do this by
showing that the isometric homomorphism of Banach algebras

Ψ : Cb(X,LB(E,F )) → LBX(EX,FX),
T 7→

(
η< 7→ (x 7→ T (x)<η<(x)), ξ> 7→ (x 7→ T (x)>ξ>(x))

)
mapsC0(X,KB(E,F )) to KBX (EX,FX). SinceΨ is isometric, it suffices to show thatΨ maps
a dense subset ofC0(X,KB(E,F )) into KBX(EX,FX). By the use of a partition of unity we can
show that for a subsetS of C0(X,KB(E,F )) to be dense it is enough to be pointwise dense, i.e., it
suffices that, for everyx ∈ X, the set{s(x) : s ∈ S} is dense inKB(E,F ). TakeS to be the span
of all functions of the formx 7→ χ1(x)χ2(x) |f>〉 〈e<| whereχ1, χ2 run throughCc(X), e< runs
throughE< andf> runs throughF>. Now

Ψ
(
x 7→ χ1(x)χ2(x)

∣∣f>〉〈e<∣∣) =
∣∣x 7→ χ1(x)f>

〉〈
x 7→ χ2(x)e<

∣∣ ∈ KBX(EX,FX).

So Ψ mapsKB(E,F )X isometrically intoKBX (EX,FX). To show that the image is dense let
ξ< ∈ E<X andη> ∈ F>X. Thenx 7→

∣∣η>(x)
〉〈
ξ<(x)

∣∣ is in KB(E,F )X and

Ψ
(
x 7→

∣∣η>(x)
〉〈
ξ<(x)

∣∣) =
∣∣η>〉〈ξ<∣∣.

So all finite rank operators are in the (closed) image ofΨ, soΨ(KB(E,F )X) = KBX (EX,FX).

Remark 1.7.11 (Gradings and group actions).LetG be a locally compact Hausdorff group. If the
Banach spaces, Banach algebras, etc. in the preceding definitions are all graded orG-equivariant, then
all the constructions are compatible with these structures.

To be more precise, letE be a graded Banach space with grading operatorσE ; thenEX is graded
with grading operatorξ 7→ (x 7→ σE(ξ(x))). Similarly, if E is aG-Banach space, then a standard
argument shows that the pointwise action ofG onEX is strongly continuous, soEX is aG-Banach
space.
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1.8 Equivariant KK-theory

The equivariantKK-theoryKKban
G (A,B) was introduced in [Laf02], Définition 1.2.2. The exposi-

tion there is very clear but also somewhat brief; we try to follow a very systematic and elaborate
approach here to be able to easily refer to this section later on when we generalise the definitions in
the subsequent chapters.

LetG be a locally compact Hausdorff group. Most of the following definitions and propositions
concerning theG-equivariantKK-theoryKKban

G (A,B) make sense for gradedG-Banach algebrasA
andB. However, we restrict our attention to the case thatA andB are trivially graded. Nevertheless,
we formulate most definitions and statements in a way that makes it easy to construct the suitable
generalisations to the graded case.

1.8.1 KKban
G -cycles

Definition 1.8.1 (KKban
G -cycle). 14 Let A andB beG-Banach algebras. AKKban

G -cycle from A
to B is a pair(E, T ) such thatE is a non-degenerate gradedG-BanachA-B-pair (i.e.,E is a non-
degenerate gradedG-BanachB-pair together with an evenG-equivariant homomorphismπA : A →
LB(E)) andT is an odd element ofLB(E) such that15

[πA(a), T ] , πA(a) (Id−T 2) ∈ KB(E)

and

s 7→ πA(a) (T − sT ) ∈ C (G,KB(E))

for all a ∈ A. We writeEban
G (A,B) for the class of allKKban

G -cycles fromA toB. If G is trivial, we
just writeEban(A,B).

Definition 1.8.2 (The sum ofKKban
G -cycles). Let A andB beG-Banach algebras. If(E1, T1) and

(E2, T2) are elements ofEban
G (A,B), then we define(E1, T1)⊕ (E2, T2) := (E1 ⊕ E2, T1 ⊕ T2). It

is an element ofEban
G (A,B).

Definition 1.8.3 (The inverse of aKKban
G -cycle). Let A andB beG-Banach algebras. If(E, T ) is

in Eban
G (A,B), then we define−(E, T ) to be(E, T ), but equipped with the opposite grading. It is an

element ofEban
G (A,B).

Definition 1.8.4 (The pullback of aKKban
G -cycle). Let A, B andC beG-Banach algebras. Let

(E, T ) ∈ Eban
G (B,C) andϕ : A→ B be aG-equivariant homomorphism. Then we defineϕ∗(E, T )

to be just the cycle(E, T ) with the exception that the leftB-actionπB on E is replaced by the
A-actionπB ◦ ϕ.

Definition 1.8.5 (The pushout of aKKban
G -cycle). Let A, B andC beG-Banach algebras. Let

(E, T ) be an element ofEban
G (A,B) and letθ : B → C be an equivariant homomorphism fromB

to C. Then the pushoutθ∗(E, T ) of (E, T ) alongθ is defined as(θ∗(E), T ⊗ 1) whereθ∗(E) is the

pair
(
C̃ ⊗

B̃
E<, E> ⊗

B̃
C̃
)

with the diagonal grading operator and the diagonalG-action and the

A-action given bya 7→ a⊗ 1.

14Alternative names could perhaps be “generalised Kasparov cycles” or “Kasparov-Lafforgue cycles”.
15Later on, we will often identifyπA(a) with a; for instance, we will write[a, T ] instead of[πA(a), T ].
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Proof. We have to check thatθ∗(E, T ) is indeed inEban
G (A,C). Clearly,θ∗(E) is a gradedG-A-

C-bimodule andT ⊗ 1 is an odd element ofLC(θ∗(E)). Let a be a homogeneous element ofA.
Then

[πA(a)⊗ 1, T ⊗ 1] = (πA(a)⊗ 1) (T ⊗ 1)− (−1)deg a(T ⊗ 1) (πA(a)⊗ 1) = [πA(a), T ]⊗ 1.

From Proposition 1.3.13 it follows that this is compact. Similarly,(πA(a)⊗ 1)
(
Id−(T ⊗ 1)2

)
∈

KC (θ∗(E)). For alls ∈ S, we have, using some obvious abbreviations:

(πA(a)⊗ 1) (T ⊗ 1− s(T ⊗ 1)) = (πA(a)⊗ 1) (T ⊗ 1− T ⊗ s1)
= (πA(a)(T − sT )) ⊗ 1 ∈ KC (θ∗(E))

becauses1 = 1. Now the mapS 7→ S⊗ 1 is a linear and contractive map fromLB(E) to LC(θ∗(E)),
so the maps 7→ (πA(a)⊗ 1) (T ⊗ 1− s(T ⊗ 1)) is continuous as the composition of continuous
maps.

1.8.2 Morphisms betweenKKban-cycles

Let A, A′ andB, B′ beG-Banach algebras. Letϕ : A → A′ andψ : B → B′ beG-equivariant
morphisms of Banach algebras.

Definition 1.8.6 (Morphism of KKban
G -cycles). Let (E, T ) and(E′, T ′) be elements ofEban

G (A,B)
andEban

G (A′, B′), respectively. Then amorphismfrom (E, T ) to (E′, T ′) with coefficient mapsϕ
andψ is a homomorphismΦ = (Φ<,Φ>) of gradedG-BanachA-B-pairs fromAEB to A′E

′
B′ with

coefficient mapsϕ andψ which intertwinesT andT ′, i.e.,

T ′< ◦ Φ< = Φ< ◦ T< and T ′> ◦ Φ> = Φ> ◦ T>.

The classEban
G (A,B) together with the morphisms of cycles (withIdA andIdB as coefficient maps)

forms a category. This gives us a notion ofisomorphicKKban-cyclesin Eban
G (A,B).

Proposition 1.8.7 (Associativity of the sum of cycles).If (E1, T1), (E2, T2), and (E3, T3) are in
Eban

G (A,B), then there is a natural isomorphism

(E1, T1)⊕ ((E2, T2)⊕ (E3, T3)) ∼= ((E1, T1)⊕ (E2, T2))⊕ (E3, T3).

Proposition 1.8.8 (Functoriality of the pushout). Let C and D be G-Banach algebras and let
ϕ : B → C andψ : C → D beG-equivariant homomorphisms. Let(E, T ) ∈ Eban

G (A,B). Then
there is a natural isomorphism

(ψ ◦ ϕ)∗(E, T ) ∼= ψ∗ (ϕ∗(E, T )) ∈ Eban
G (A,D).

Moreover,IdB,∗(E, T ) ∼= (E, T ) ∈ Eban
G (A,B), naturally.

Note that the pullback and the pushout ofKKban
G -cycles are compatible with the addition of cycles

(up to isomorphism).
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1.8.3 Homotopies

LetA,B be gradedG-Banach algebras.

Definition 1.8.9 (Homotopies).A homotopybetween cycles(E0, T0) and(E1, T1) in Eban
G (A,B) is

a cycle(E, T ) in Eban
G (A,B[0, 1]) such thatev0,∗(E, T ) is isomorphic to(E0, T0) andev1,∗(E, T ) is

isomorphic to(E1, T1). If such a homotopy exists, then(E0, T0) and(E1, T1) are calledhomotopic.
We will denote by∼ the equivalence relation onEban

G (A,B[0, 1]) generated by homotopy.

Remark 1.8.10. It is easy to see that homotopy is reflexive and symmetric. In the case of C∗-algebras
and ordinary Kasparov cycles the homotopy relation is also transitive, but I was not able to show this
in the Banach algebra situation, and the article [Laf02] does not elaborate this point. Indeed, there
is evidence that homotopy is not transitive in general (see the discussion in Section 4.8.1), but the
equivalence relation generated by homotopy is good enough to make all the definitions work.

Definition 1.8.11 (KKban
G (A,B)). The class of all∼-equivalence classes inEban

G (A,B) is denoted
by KKban

G (A,B). The addition of cycles induces a law of composition onKKban
G (A,B) making it an

abelian group.16

ThatKKban
G (A,B) is an abelian group was proved in [Laf02], Lemme 1.2.5; the following result is

Proposition 1.2.6 of the same article.

Proposition 1.8.12 (Functoriality of KKban
G (A,B)). Let A′ andB′ beG-Banach algebras. Let

ϕ : A′ → A andψ : B → B′ be equivariant homomorphisms. If(E, T ) ∈ Eban
G (A,B), then the

homotopy class ofψ∗(E, T ) andϕ∗(E, T ) depends only on the homotopy class of(E, T ). We hence
get homomorphisms

ϕ∗(·) : KKban
G (A,B) → KKban

G (A′, B) and ψ∗(·) : KKban
G (A,B) → KKban

G (A,B′).

Note thatϕ∗(·) andψ∗(·) commute.

1.8.4 Basic properties ofKKban
G (A, B)

In [Laf02] it is shown17 that KKban(C, B) ∼= K0(B) for all non-degenerate Banach algebrasB,
and an action ofKKban on theK-theory is constructed (which could be interpreted as a product
KKban(C, A)×KKban(A,B) → KKban(C, B) with B non-degenerate).

In the same article, Lafforgue introduces the notion of an “unconditional completion” ofCc(G),
usually calledA(G): It is a completion for a so-called unconditional norm onCc(G), i.e., a norm
which makesCc(G) a normed algebra and satisfies‖f1‖ ≤ ‖f2‖ for all f1, f2 ∈ Cc(G) with |f1(g)| ≤
|f2(g)| for all g ∈ G. A main example isL1(G). We are going to define unconditional completions in
the context of groupoids in Chapter 5 and refer to [Laf02] for the construction of the “crossed product”
A(G,B), whereB is aG-Banach algebra, and the descent homomorphismjA : KKban

G (A,B) →
KKban (A(G,A), A(G,B)) in the group case.

16At least if we restrict the cardinality of a dense subset of the involved Banach modules by some fixed cardinality to
obtain a setKKban

G (A,B) rather than just a class.
17See Théorème 1.2.8 and Proposition 1.2.9
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1.9 A sufficient condition for homotopy

The sufficient condition for homotopy ofKKban
G -cycles that we put forward in this section is already

present in a rudimentary form in18 [Laf02] and more explicitly in the unpublished note [Laf04]. Here,
we state and prove it in full generality and give some abstract background which might perhaps lead
to further developments and is for now just reflected in some fancy notation. The condition itself is
fundamental to large parts of this work because it is the main technical tool to construct homotopies.

Theorem 1.9.1 (Sufficient condition for homotopy ofKKban
G -cycles). LetG be a locally compact

Hausdorff group and letA andB beG-Banach algebras. Let(E, T ), (E′, T ′) be inEban
G (A,B). If

there is a morphismΦ from (E, T ) to (E′, T ′) (with coefficient mapsIdA andIdB) such that

1. ∀a ∈ A : [a, (T, T ′)] = ([a, T ], [a, T ′]) ∈ K(Φ,Φ) ,

2. ∀a ∈ A : a((T, T ′)2 − 1) =
(
a(T 2 − 1), a(T ′2 − 1)

)
∈ K(Φ,Φ) ,

3. ∀a ∈ A ∀g ∈ G : a (g(T, T ′)− (T, T ′)) = (a(gT − T ), a(gT ′ − T ′)) ∈ K(Φ,Φ) ,

then(E, T ) ∼ (E′, T ′); hereK(Φ,Φ) denotes the set of all pairs of operators(S, S′) ∈ L(E)×L(E′)
such that

∀ε > 0 ∃n ∈ N ∃e<1 , . . . , e<n ∈ E<, e>1 , . . . , e>n ∈ E> :∥∥∥∥∥S −
n∑
i=1

∣∣e>i 〉〈e<i ∣∣
∥∥∥∥∥ ≤ ε and

∥∥∥∥∥S′ −
n∑
i=1

∣∣Φ>(e>i )
〉〈

Φ<(e<i )
∣∣∥∥∥∥∥ ≤ ε.

Moreover, ifT = 0 andT ′ = 0, then the homotopy can be chosen to have trivial operator as well.

1.9.1 Some useful categories

Definition 1.9.2 (The category Hom(BanSp)). The objects of the categoryHom(BanSp) are the
contractive linear mapsρ : E → E′ between Banach spaces. Ifρ : E → E′ andσ : F → F ′ are such
maps, then a morphism fromρ to σ is a pair(T, T ′) ∈ L(E,F )×L(E′, F ′) satisfyingσ ◦T = T ′ ◦ρ,
i.e., the following diagram commutes:

E
ρ //

T
��

E′

T ′

��
F

σ // F ′

The set of all morphisms fromρ to σ will be denoted byL(ρ, σ); it actually has a canonical Banach
space structure. The composition of morphisms is defined componentwise.

Definition 1.9.3 (The category of homomorphisms of Banach modules).Let ψ : B → B′ be a
homomorphism of Banach algebras. Then the objects of the categoryModψ (Hom(BanSp)) are the
homomorphismsΦψ : EB → E′

B′ of Banach modules (with coefficient mapψ). If Φψ : EB → E′
B′

andΨψ : FB → F ′
B′ are two such homomorphisms, then a morphism fromΦ to Ψ is a pair(T, T ′) ∈

LB(E,F )× LB′(E′, F ′) satisfying
Ψ ◦ T = T ′ ◦ Φ.

The morphism set will be denoted byLψ (Φ,Ψ), being a Banach space in a canonical way. The
composition is defined componentwise.

18For example, there is an argument using mapping cylinders on page 24.
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Definition 1.9.4 (The category of homomorphisms of Banach pairs).Let ψ : B → B′ be a ho-
momorphism of Banach algebras. Then the objects of the categoryPairψ (Hom(BanSp)) are the
homomorphismsΦψ : EB → E′

B′ of Banach pairs (with coefficient mapψ). If Φψ : EB → E′
B′ and

Ψψ : FB → F ′
B′ are two such homomorphisms, then a morphism fromΦ to Ψ is a pair(T, T ′) ∈

LB(E,F )× LB′(E′, F ′) satisfying

Ψ> ◦ T> = T ′> ◦ Φ> and T ′< ◦Ψ< = Φ< ◦ T<.

This means that the following diagrams are commutative:

E>
Φ>

//

T>

��

E′>

T ′>

��
F>

Ψ>
// F ′>

E<
Φ<

// E′<

F<
Ψ<

//

T<

OO

F ′<

T ′<

OO

The morphism set will be denoted byLψ (Φ,Ψ), which is a Banach space. The composition is defined
componentwise.

Remark 1.9.5 (A categorial interpretation). There is a good and systematic reason for the notation
chosen in the preceding definitions:

To arrive at the notion of a Banach pair, one starts with the category of Banach spaces. It has an
associative tensor product (the projective tensor product in this case) which allows us to build from
it the category of Banach algebras. As a next step, one considers the Banach modules, and from
them one constructs the Banach pairs. The main ingredient is the category of Banach spaces and its
tensor product. The underlying categorial concept is the notion of a “monoidal Banach category”, a
monoidal category enriched over the category of Banach spaces.

If we take the categoryHom(BanSp) as a starting point and if we imitate the construction of the
category of Banach algebras from the categoryBanSpof Banach spaces, then the analogous category
of “Banach algebras” constructed fromHom(BanSp) is the categoryAlg (Hom(BanSp)) of homo-
morphismsψ of Banach algebras. The categoryModψ (Hom(BanSp)) of “Banachψ-modules” con-
structed fromHom(BanSp) is the category of homomorphisms of Banach modules with coefficient
mapψ. And the categoryPairψ (Hom(BanSp))of “Banachψ-pairs” stemming fromHom(BanSp)
is the category of homomorphisms of (ordinary) Banach pairs, again with coefficient mapψ.

If Φψ andΨψ are objects of this category, i.e., if they are homomorphisms of Banach pairs, then it
makes sense to talk aboutψ-linear operators between them, because we can regardψ as an “algebra”.
The definition one gets from this is the definition ofLψ (Φ,Ψ) given above.

Remark 1.9.6. The above definitions can also be made for the category ofgradedBanach spaces.
In this case, you should substitute “graded Banach algebra” for “Banach algebra” and “graded ho-
momorphism” for homomorphism. Also, the definitions can be adapted toG-equivariantandgraded
G-equivariantBanach spaces (whereG is a locally compact Hausdorff group). Instead of writing
down all the definitions to the bitter end, we confine ourselves to pointing out that in all the cases we
just impose the additional conditions (being graded, etc.) on the homomorphisms ( = the objects of
the categories) but not on the pairs of operators ( = the morphisms). Instead, we get a grading (or a
G-action) on the morphism sets. In particular, this allows us to talk about odd or even elements in
Lψ (Φ,Ψ) ( = pairs of odd / even operators) ifψ, Φ andΨ are graded.



32 CHAPTER 1. KK-THEORY FOR BANACH ALGEBRAS

1.9.2 KKban
G -cycles of homomorphisms of Banach algebras

Although the categorial viewpoint sketched above gives us a systematic background to construct the
“ψ-linear operators”, it does not tell us how to construct the “compact operators” between homomor-
phisms of Banach pairs. However, there is the following natural choice:

Definition 1.9.7 (The spaceKψ (Φ,Ψ)). LetB andB′ be Banach algebras andψ : B → B′ a mor-
phism. LetΦ: E → E′ andΨ: F → F ′ be homomorphisms of pairs with coefficient mapψ. For all
f> ∈ F> ande< ∈ E<, the pair(∣∣f>〉〈e<∣∣, ∣∣Ψ>(f>)

〉〈
Φ<(e<)

∣∣)
is contained inLψ (Φ,Ψ). Denote byKψ (Φ,Ψ) (or justK(Φ,Ψ)) the closed linear span of all such
operators, writingKψ(Φ) or Kψ (Φ: E → E′) for Kψ (Φ,Φ).

Remark 1.9.8. Note that if (T, T ′) ∈ Kψ (Φ,Ψ), thenT ∈ KB(E,F ) andT ′ ∈ KB′(E′, F ′).
However, the condition of being inKψ (Φ,Ψ) is (a priori) stronger than the condition of being in
KB(E,F )×KB′(E′, F ′) ∩ Lψ (Φ,Ψ) as it means that the approximation ofT andT ′ by finite rank
operators can be done simultaneously:

∀ε > 0 ∃n ∈ N ∃f>1 , . . . , f>n ∈ F>, e<1 , . . . , e<n ∈ E< :∥∥∥∥∥T −
n∑
i=1

∣∣f>i 〉〈e<i ∣∣
∥∥∥∥∥ < ε ∧

∥∥∥∥∥T ′ −
n∑
i=1

∣∣Ψ>
(
f>i
) 〉〈

Φ<
(
e<i
) ∣∣∥∥∥∥∥ < ε.

Proposition 1.9.9.LetΞ: G→ G′ be another homomorphism of pairs with coefficient mapψ (withG
andG′ being Banach pairs). ThenL(Ψ,Ξ) ◦K(Φ,Ψ) ⊆ K(Φ,Ξ) and likewiseK(Ψ,Ξ) ◦L(Φ,Ψ) ⊆
K(Φ,Ξ).

Proof. Let (T, T ′) ∈ L(Ψ,Ξ). Then the map(T, T ′) ◦ · : L(Φ,Ψ) → L(Φ,Ξ) is linear and contin-
uous, so it suffices to show that(T, T ′) ◦

(∣∣f>〉〈e<∣∣, ∣∣Ψ>(f>)
〉〈

Φ<(e<)
∣∣) is contained inK(Φ,Ξ)

for all f> ∈ F> ande< ∈ E<. ButT ◦
∣∣f>〉〈e<∣∣ = ∣∣T>(f>)

〉〈
e<
∣∣ and

T ′ ◦
∣∣Ψ>(f>)

〉〈
Φ<(e<)

∣∣ = ∣∣T ′> (Ψ>(f>)
) 〉〈

Φ<(e<)
∣∣ = ∣∣Ξ> (T>(f>)

) 〉〈
Φ<(e<)

∣∣
because(T, T ′) ∈ L(Ψ,Ξ). So we are done with the first inclusion. The second inclusion can be
proved similarly.

Definition 1.9.10 (The classEban
G (ϕ,ψ)). Let ϕ : A → A′ andψ : B → B′ beG-equivariant ho-

momorphisms ofG-Banach algebras. AKKban-cycle fromϕ to ψ is a pair(Φ: E → E′, (T, T ′))
such thatE is a non-degenerate gradedG-BanachA-B-pair,E′ is a non-degenerate gradedG-Banach
A′-B′-pair,Φ is an evenG-equivariant homomorphism fromAEB to A′E

′
B′ with coefficient mapsϕ

andψ, and(T, T ′) ∈ Lψ (Φ,Φ) is a pair of odd linear operators such that

1. ∀a ∈ A : [a, (T, T ′)] = ([a, T ], [ϕ(a), T ′]) ∈ K(Φ,Φ) ;

2. ∀a ∈ A : a((T, T ′)2 − 1) =
(
a(T 2 − 1), ϕ(a)(T ′2 − 1)

)
∈ K(Φ,Φ) ;

3. ∀a ∈ A : g 7→ a (g(T, T ′)− (T, T ′)) = (a(gT − T ), ϕ(a)(gT ′ − T ′)) ∈ C (G, K(Φ,Φ)) .

The class of all such cycles will be denoted byEban
G (ϕ,ψ).
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Remark 1.9.11. If (Φ: E → E′, (T, T ′)) is an element ofEban
G (ϕ,ψ), then(E, T ) ∈ Eban

G (A,B)
andϕ∗(E′, T ′) ∈ Eban

G (A,B′), and, if (E′, T ′) is itself aKKban-cycle (which is automatic ifϕ is
surjective), thenΦ is a morphism ofKKban-cycles from(E, T ) to (E′, T ′). But not all morphisms
of KKban-cycles seem to giveKKban-cycles of morphisms. Being a cycle is a regularity condition
which ensures that a morphism ofKKban-cycles induces a homotopy as we shall see below.

Remark 1.9.12. Now that we have defined the classEban
G (ϕ,ψ), it is a natural question to ask what

KKban
G (ϕ,ψ) could be. To answer this, one could define morphisms between elements ofEban

G (ϕ,ψ)
providing us with a notion of isomorphic cycles. In a second step, one should define the pushout
of cycles making it possible to define homotopies (using the homomorphismψ[0, 1] : B[0, 1] →
B′[0, 1], ψ[0, 1](β)(t) = ψ(β(t)) as a starting point). With a little bit of luck one ends up with an
abelian groupKKban

G (ϕ,ψ) which is somehow related toKKban
G (A,B) andKKban

G (A′, B′).
In this work, we just need theKKban-cycles inEban

G (ϕ,ψ) as a source of (ordinary) homotopies
and do not pursue these considerations any further.

1.9.3 Mapping cylinders

Let G be a locally compact Hausdorff group. In the following paragraphs we are going to consider
gradedG-Banach spaces and evenG-equivariant linear maps between them. Of course all definitions
and results also apply, in a simpler form, to plain Banach spaces and linear maps. These simple
definitions and results are contained as subcases in the following (just let the groupG and the grading
be trivial).

Mapping cylinders of contractive linear maps between gradedG-Banach spaces

Definition 1.9.13 (The mapping cylinder of linear maps between Banach spaces).Let E and
E′ be gradedG-Banach spaces with grading automorphismsσE andσE′ and letρ ∈ L(E,E′) be
contractive, even andG-equivariant. LetevE

′
0 : E′[0, 1] → E′ be evaluation at zero. Then the mapping

cylinderZ (ρ) is the fibre product ofρ : E → E′ andevE
′

0 : E′[0, 1] → E′:

Z (ρ) //

��

E′[0, 1]

evE′
0

��
E ρ

// E′

SoZ (ρ) is the gradedG-Banach space{(e, ξ′) ∈ E × E′[0, 1] : ξ′(0) = ρ(e)} ⊆ E × E′[0, 1] with
the norm‖(e, ξ′)‖ = max{‖e‖ , ‖ξ′‖∞}; the grading operator onZ (ρ) sends a pair(e, ξ′) to the pair
(σE(e), t 7→ σE′(ξ′(t))); theG-action is given byg(e, ξ′) := (ge, t 7→ g(ξ′(t))) for all g ∈ G.

Definition 1.9.14 (The mapping cylinder construction as a functor).One can regard the mapping
cylinder construction as a functor from the category of graded contractive linearG-equivariant maps
to the category of gradedG-Banach spaces in the following way:

Let ρ : E → E′ andσ : F → F ′ be graded contractive linearG-equivariant maps between graded
G-Banach spaces. Let(T, T ′) ∈ L(ρ, σ), which means thatT ∈ L(E,F ) andT ′ ∈ L(E′, F ′) such
thatσ ◦ T = T ′ ◦ ρ. To make the mapping cylinder construction a functor one defines

Z
(
T, T ′

)
: Z (ρ) → Z (σ) , (e, ξ′) 7→

(
T (e), t 7→ T ′(ξ′(t))

)
.
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Then Z (T, T ′) ∈ L (Z (ρ) ,Z (σ)). The so-defined functor is linear and contractive on the mor-
phism sets. It respects the canonical grading automorphisms and theG-actions onL(ρ, σ) and
L (Z (ρ) ,Z (σ)).

Definition 1.9.15. There is a canonical action ofC[0, 1] onZ (ρ); it is given by

χ · (e, ξ′) =
(
χ(0)e, χξ′

)
for all χ ∈ C[0, 1], (e, ξ′) ∈ Z (ρ).

Mapping cylinders of homomorphisms of gradedG-Banach algebras

Definition 1.9.16 (The mapping cylinder of a homomorphism of Banach algebras).LetB andB′

be gradedG-Banach algebras and letψ : B → B′ be a graded equivariant homomorphism. Then the
mapping cylinderZ (ψ) of ψ is a gradedG-Banach algebra with the componentwise product.

Lemma 1.9.17.LetB andB′ be Banach algebras and letψ : B → B′ be a morphism. ThenZ (ψ) is
non-degenerate ifB andB′ are non-degenerate.

Proof. LetB andB′ be non-degenerate. WriteS for the span ofZ (ψ) Z (ψ). We have to show thatS
is dense inZ (ψ). Let (b, β′) ∈ Z (ψ), i.e.,b ∈ B, β′ ∈ B′[0, 1] andψ(b) = β′(0). Let ε > 0. Findc
in the span ofBB such that‖b− c‖ ≤ ε/2. Let γ′ := (t 7→ ψ(c)) ∈ B′[0, 1]. Note that(c, γ′) ∈ S.
Find a neighbourhoodU of 0 in [0, 1] such that‖β′(t)− β′(0)‖ ≤ ε/2 for all t ∈ U . BecauseB′[0, 1]
is non-degenerate, we can find someβ̃′ in the span ofB′[0, 1] B′[0, 1] such that‖β′ − β̃′‖∞ ≤ ε.
Find a functionχ ∈ C[0, 1] with the following properties:χ(0) = 1, 0 ≤ χ ≤ 1, suppχ ⊆ U . Then
(0, (1− χ)β̃′) is in S. Also (c, χγ′) is in S. So we have(

0, (1− χ)β̃′
)

+
(
c, χγ′

)
=
(
c, (1− χ)β̃′ + χγ′

)
∈ S.

Note that∥∥∥(b, β′)− (c, (1− χ)β̃′ + χγ′
)∥∥∥ = max

{
‖b− c‖ ,

∥∥∥β′ − (1− χ)β̃′ − χγ′
∥∥∥
∞

}
.

The first term is≤ ε/2 by the choice ofc. If t ∈ U then∥∥∥β′(t)− (1− χ(t))β̃′(t)− χ(t)γ′(t)
∥∥∥ ≤ (1− χ(t))

∥∥∥β′(t)− β̃′(t)
∥∥∥+ χ(t)

∥∥∥β′(t)− γ′(t)
∥∥∥

≤ (1− χ(t))
∥∥∥β′ − β̃′

∥∥∥
∞

+ χ(t)
(∥∥∥β′(t)− b

∥∥∥+
∥∥∥b− c

∥∥∥)
≤ (1− χ(t))ε+ χ(t)ε = ε.

If t /∈ U , thenχ(t) = 0 so
∥∥∥β′(t)− (1− χ(t))β̃′(t)− χ(t)γ′(t)

∥∥∥ ≤ ε as well. So all in all we get∥∥∥(b, β′)− (c, (1− χ)β̃′ + χγ′
)∥∥∥ ≤ ε

and hence we are done.

Remark 1.9.18. In Chapter 2 we are going to introduce the notion of aC[0, 1]-Banach space. The
C[0, 1]-action on the mapping cylinderZ (ρ) for a contractive linear mapρ between Banach spaces
actually makesZ (ρ) a C[0, 1]-Banach space and the mapping cylinder construction is a functor with
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values in the category ofC[0, 1]-Banach spaces andC[0, 1]-linear maps. Moreover, the mapping cylin-
der of a homomorphism of Banach algebras is a so-calledC[0, 1]-Banach algebra. Later on, we will
define the notion of the fibres of such aC[0, 1]-Banach algebra, and the fibre of the aboveZ (ψ) at
0 is isomorphic toB and the fibre att ∈]0, 1] is isomorphic toB′. It will also follow that Z (ψ) is
non-degenerate if and only if its fibres are non-degenerate. But this result, though not very deep, is
still quite far away, so I decided to include the above non-systematic proof of Lemma 1.9.17.

Lemma 1.9.19.For every Banach algebraB, the mapping cylinder ofIdB is isomorphic toB[0, 1].

Mapping cylinders of homomorphisms between gradedG-Banach modules

Definition 1.9.20 (The mapping cylinder of a homomorphism of Banach modules).Let EB and
E′
B′ be gradedG-Banach modules and letΦψ : EB → E′

B′ be a gradedG-equivariant homomor-
phism. Then the mapping cylinderZ (Φ) of Φ is a gradedG-BanachZ (ψ)-module with the compo-
nentwise action ofZ (ψ).

Remark 1.9.21.Conceptually, the mapping cylinderZ (Φ) is a fibre product: Letev0 : B′[0, 1] → B′

andEv0 : E′[0, 1] → E′ be the evaluation maps at zero. Then(Ev0)ev0
is a gradedG-equivariant

homomorphism fromF ′[0, 1]B′[0,1] to F ′
B′ andZ (Ψ) is the fibre product ofΦψ : EB → E′

B′ and
(Ev0)ev0

: E′[0, 1]B′[0,1] → E′
B′ :

Z (Φ) //

��

E′[0, 1]

Ev0

��
E

Φ // E′

Analogously to Lemma 1.9.17 one proves:

Lemma 1.9.22.LetEB andE′
B′ be Banach modules and letΦψ : EB → E′

B′ be a homomorphism.
If EB andE′

B′ are non-degenerate, thenZ (Φ) is a non-degenerate BanachZ (ψ)-module.

Proposition 1.9.23. Let EB andE′
B′ be non-degenerate graded rightG-Banach modules and let

Φϕ : EB → E′
B′ be a gradedG-equivariant homomorphism. OnZ (ϕ) define the evaluation homo-

morphismsev0 : Z (ϕ) → B, (b, β′) 7→ b andev1 : Z (ϕ) → B′, (b, β′) 7→ β′(1). Then

ev0,∗ (Z (Φ)) ∼= E and ev1,∗ (Z (Φ)) ∼= E′.

Proof. Define
Ψ0

IdC
: Z (Φ)⊗ẽv0

B̃ → E, (e, ξ′)⊗ b̃ 7→ eb̃.

This is a contractive gradedG-equivariant homomorphism. Define

Ξ0
IdC

: E → Z (Φ)⊗ẽv0
B̃, e 7→ (e, t 7→ Φ(e))⊗ 1.

This too is a contractive gradedG-equivariant homomorphism. We haveΨ0 ◦ Ξ0 = IdE , soΨ0 is
surjective. Letτ :=

∑
n∈N(en, ξ′n)⊗ b̃n ∈ Z (Φ)⊗ B̃. SinceEB is non-degenerate, we can show that

(1.2) χτ = χ(0)τ

for everyχ ∈ C([0, 1]). Let U be a neighbourhood of0 in [0, 1]. Find χ ∈ C([0, 1]) such that
0 ≤ χ ≤ 1, χ(0) = 1 andsuppχ ⊆ U . Then∑

n∈N
(en, ξ′n)⊗ b̃n =

∑
n∈N

χ(en, ξ′n)⊗ b̃n =
∑
n∈N

(en, χξ′n)⊗ b̃n.
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Then

‖T‖ ≤

∥∥∥∥∥∑
n∈N

(en, χξ′n)⊗ b̃n

∥∥∥∥∥ =

∥∥∥∥∥∑
n∈N

(
enb̃n, χξ

′
nϕ̃(̃bn)

)
⊗ 1

∥∥∥∥∥
=

∥∥∥∥∥
(∑
n∈N

(enb̃n, χξ′nϕ̃(̃bn)

)
⊗ 1

∥∥∥∥∥ ≤
∥∥∥∥∥
(∑
n∈N

enb̃n,
∑
n∈N

χξ′nϕ̃(̃bn)

)∥∥∥∥∥ .
Since ∥∥∥∥∥∑

n∈N
χξ′nϕ̃(̃bn)(0)

∥∥∥∥∥ =

∥∥∥∥∥ϕ
(∑
n∈N

enb̃n

)∥∥∥∥∥ ≤
∥∥∥∥∥∑
n∈N

enb̃n

∥∥∥∥∥
andU can be chosen arbitrarily small, we get∥∥∥T∥∥∥ ≤ ∥∥∥∑

n∈N
enb̃n

∥∥∥ =
∥∥∥Ψ0(T )

∥∥∥ ≤ ∥∥∥T∥∥∥,
soΨ0 is isometric. It follows thatΨ0 is an isomorphism.

We still have to show (1.2). LetS ∈ Z (Φ), s ∈ Z (ϕ) andb̃ ∈ B̃. Letχ ∈ C([0, 1]). Then

χSs⊗ b̃ = S(χs)⊗ b̃ = S ⊗ χ(0) ev0(s)̃b = Ss⊗ χ(0)̃b = χ
(
Ss⊗ b̃

)
.

BecauseZ (Φ) is non-degenerate we have this equality for allτ ∈ Z (Φ)⊗ B̃.
The second assertion is shown similarly.

Proposition 1.9.24.LetEB, FB, E′
B′ , F

′
B′ be right Banach modules and letΦψ : EB → E′

B′ and
Ψψ : FB → F ′

B′ be concurrent homomorphisms. Let(T, T ′) ∈ L (Φ,Ψ). ThenZ (T, T ′) as defined
in 1.9.14 is inLZ(ψ) (Z (Φ) ,Z (Ψ)).

Proof. If (b, β′) ∈ Z (ψ) and(e, ξ′) ∈ Z (Φ), then

Z
(
T, T ′

) (
(b, β′) · (e, ξ′)

)
= Z

(
T, T ′

) (
be, β′ξ′

)
=
(
T (be), t 7→ T ′

(
β′(t)ξ′(t)

))
=

(
bT (e), t 7→ β′(t)T ′

(
ξ′(t)

))
= (b, β′)

(
T (e), t 7→ T ′(ξ′(t))

)
= (b, β′)

(
Z
(
T, T ′

)
(e, ξ′)

)
.

So the linear operatorZ (T, T ′) is Z (ψ)-linear.

Mapping cylinders of homomorphisms between gradedG-Banach pairs

Definition 1.9.25 (The mapping cylinder of a homomorphism of Banach pairs).LetEB andE′
B′

be gradedG-Banach pairs and letΦψ : EB → E′
B′ be a gradedG-equivariant concurrent homo-

morphism. Then the mapping cylinderZ (Φ) of Φ is defined to be the gradedG-BanachZ (ψ)-pair
(Z (Φ<) , Z (Φ>)) with the componentwise bracket

Z
(
Φ<
)
× Z

(
Φ>
)
Z (ψ) ,

(
(e<, ξ′<), (e>, ξ′>)

)
7→
(
〈e<, e>〉, 〈ξ′<, ξ′>〉

)
.

The mapping cylinderZ (Φ) can be realised as a fibre product, compare Remark 1.9.21. From the
corresponding Lemma 1.9.22 and Proposition 1.9.23 for Banach modules we can deduce the following
two facts.
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Lemma 1.9.26.LetEB andE′
B′ be Banach pairs and letΦψ : EB → E′

B′ be a concurrent homo-
morphism. IfEB andE′

B′ are non-degenerate Banach pairs, thenZ (Φ) is a non-degenerate Banach
Z (ψ)-pair.

Proposition 1.9.27.LetEB andE′
B′ be non-degenerate gradedG-Banach pairs and letΦψ : EB →

E′
B′ be a gradedG-equivariant concurrent homomorphism. Letev0 : Z (ψ) → B, (b, f) 7→ b and

ev1 : Z (ψ) → B′, (b, f) 7→ f(1). Then

ev0,∗ (Z (Φ)) ∼= E and ev1,∗ (Z (Φ)) ∼= E′.

Definition 1.9.28 (The mapping cylinder construction as a functor).LetEB,FB,E′
B′ ,F

′
B′ be non-

degenerate Banach pairs and letΦψ : EB → E′
B′ andΨψ : FB → F ′

B′ be concurrent homomorphisms.
Let (T, T ′) ∈ Lψ (Φ,Ψ), i.e., T ∈ LB(E,F ), T ′ ∈ LB′(E′, F ′) andΨ> ◦ T> = T ′> ◦ Φ> and
T ′< ◦ Ψ< = Φ< ◦ T<. As stated above, this implies(T>, T ′>) ∈ Lψ (Φ>,Ψ>) and(T<, T ′<) ∈
Lψ (Ψ<,Φ<). We have

Z
(
T>, T ′>

)
∈ LZ(ψ)

(
Z
(
Φ>
)
,Z
(
Ψ>
))

and Z
(
T<, T ′<

)
∈ LZ(ψ)

(
Z
(
Ψ<
)
,Z
(
Φ<
))
.

DefineZ (T, T ′) ∈ LZ(ψ) (Z (Φ) ,Z (Ψ)) to be the pair(Z (T<, T ′<) , Z (T>, T ′>)).

The mapsΦ 7→ Z (Φ) and (T, T ′) 7→ Z (T, T ′) define a functor from the category of graded
G-equivariant homomorphisms of Banach pairs with coefficient mapψ to the category of Banach
Z (ψ)-pairs. It is linear, even,G-equivariant and contractive on the morphisms sets.

Definition 1.9.29 (Mapping cylinders and left actions on pairs).Let AEB andA′E′
B′ be graded

G-Banach pairs and letϕΦψ : E → E′ be a gradedG-equivariant concurrent homomorphism. Then
the mapping cylinderZ (Φ) = (Z (Φ<) , Z (Φ>)) of Φ is a gradedG-BanachZ (ϕ)-Z (ψ)-pair when
equipped with the componentwise action ofZ (ϕ).

Proposition 1.9.30.LetAEB andA′E′
B′ be non-degenerate gradedG-Banach pairs and letϕΦψ be

a gradedG-equivariant concurrent homomorphism between them. Letev0 : Z (ψ) → B, (b, β′) 7→ b
andev1 : Z (ψ) → B′, (b, β′) 7→ β′(1) andιA : A→ Z (ϕ) , a 7→ (a, t 7→ ϕ(a)). Then

A (ι∗A (ev0,∗ (Z (Φ))))B ∼= AEB and A′ (ev1,∗ (Z (Φ)))B′ ∼= A′E
′
B′ .

Proof. In view of Proposition 1.9.27 the first assertion is obvious. For the second, we just have to
specify the action ofA′ on ev1,∗ (Z (Φ)). Let χ be some function inC[0, 1] such thatχ(1) = 1,
0 ≤ χ ≤ 1 andχ(0) = 0. Then define

a′(f, g)⊗ b̃′ := (0, χa′g)⊗ b̃′

for all a′ ∈ A′, (f, g) ∈ Z (Φ>) andb̃′ ∈ B̃′. This can easily be shown to be a well-defined action of
A′ onZ (Φ>) and we can do the same forZ (Φ<).
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Mapping cylinders and compact operators

Proposition 1.9.31.LetEB, FB,E′
B′ , F

′
B′ be non-degenerate Banach pairs and letΦψ : EB → E′

B′

andΨψ : FB → F ′
B′ be concurrent homomorphisms. Let(T, T ′) ∈ Lψ (Φ,Ψ). Then the following

are equivalent:

1. (T, T ′) ∈ Kψ (Φ,Ψ);

2. Z (T, T ′) ∈ KZ(ψ) (Z (Φ) ,Z (Ψ)).

Proof. 1.⇒ 2.: Since the map(T, T ′) 7→ Z (T, T ′) is linear and contractive, it suffices to consider the
case that(T, T ′) is of the form

(∣∣f>〉〈e<∣∣, ∣∣Ψ>(f>)
〉〈

Φ<(e<)
∣∣) for somef> ∈ F> ande< ∈ E<.

What isZ := Z (T, T ′)? Let(e>, ξ>) ∈ Z (Φ>). Then

Z>(e>, ξ′>) =
(
T>e>, t 7→ T ′>(ξ′>(t))

)
=
(
f>〈e<, e>〉, t 7→ Ψ>(f>)〈Φ<(e<), ξ′>(t)〉

)
.

Definef̃> := (f>, t 7→ Ψ>(f>)) ∈ Z (Ψ>) andẽ< := (e<, t 7→ Φ<(e<)) ∈ Z (Φ<). Then we have
shown thatZ> =

∣∣f̃>〉〈ẽ<∣∣>. The analogous formula holds for the left-hand side, soZ =
∣∣f̃>〉〈ẽ<∣∣.

In particular,Z is compact.
2.⇒ 1.: LetZ := Z (T, T ′) be compact. Letε > 0. Findn ∈ N and(f>1 , η

′>
1 ), . . . , (f>n , η

′>
n ) ∈

Z (Ψ>), (e<1 , ξ
′<
1 ), . . . , (e<n , ξ

′<
n ) ∈ Z (Φ<) such that∥∥∥∥∥Z −

n∑
i=1

∣∣(f>i , η′>i )
〉〈

(e<i , ξ
′<
i )
∣∣∥∥∥∥∥ ≤ ε.

Define

(S, S′) :=
n∑
i=1

(∣∣f>i 〉〈e<i ∣∣, ∣∣Ψ>(f>i )
〉〈

Φ<(e<i )
∣∣) .

We show‖(T − S, T ′ − S′)‖ ≤ ε, i.e., we show‖T − S‖ ≤ ε and‖T ′ − S′‖ ≤ ε: Let e> ∈ E>.
Defineξ′>(t) := Φ>(e>) for all t ∈ [0, 1]. Then(e>, ξ′>) ∈ Z (Φ>). Now(

Z −
n∑
i=1

∣∣(f>i , η′>i )
〉〈

(e<i , ξ
′<
i )
∣∣)> (e>, ξ′>)

=

(
(T − S)>(e>), t 7→

(
T ′ −

n∑
i=1

∣∣η′>i (t)
〉〈
ξ′<i (t)

∣∣)> (ξ′>(t))

)
.

The norm of this expression is≤ ε ‖(e>, ξ′>)‖ = ε ‖e>‖. So in particular‖(T − S)>(e>)‖ ≤
ε ‖e>‖ and hence‖(T − S)>‖ ≤ ε. After applying a similar argument to the left-hand side we get
‖T − S‖ ≤ ε.

Let e′> ∈ E′>. Let t0 ∈]0, 1]. Find a functionχt0 ∈ C[0, 1] such that0 ≤ χt0 ≤ 1 andχt0 = 1
andχt0(0) = 0. Then(0, t 7→ χt0(t)e

′>) is in Z (Φ)> and(
Z −

n∑
i=1

∣∣(f>i , η′>i )
〉〈

(e<i , ξ
′<
i )
∣∣)> (0, t 7→ χt0(t)e

′>)

=

(
0, t 7→ χt0(t)

(
T ′ −

n∑
i=1

∣∣η′>i (t)
〉〈
ξ′<i (t)

∣∣)> (e′>).

)
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The norm of this expression is≤ ε ‖e′>‖, so in particular∥∥∥∥∥T ′>(e′>)−
n∑
i=1

∣∣η′>i (t0)
〉〈
ξ′<i (t0)

∣∣>(e′>)

∥∥∥∥∥
=

∥∥∥∥∥
(
T ′ −

n∑
i=1

∣∣η′>i (t0)
〉〈
ξ′<i (t0)

∣∣)> (e′>)

∥∥∥∥∥ ≤ ε
∥∥e′>∥∥ .

The mapt0 7→
∑n

i=1

∣∣η′>i (t0)
〉〈
ξ′<i (t0)

∣∣>(e′>) depends continuously ont0 ∈ [0, 1], so we also get
the inequality in zero:∥∥∥∥∥T ′>(e′>)−

n∑
i=1

∣∣η′>i (0)
〉〈
ξ′<i (0)

∣∣>(e′>)

∥∥∥∥∥ ≤ ε
∥∥e′>∥∥ .

Now η′>i (0) = Ψ>(f>i ) andξ′<i (0) = Φ<(e<i ). It follows that∥∥T ′>(e′>)− S′>(e′>)
∥∥ ≤ ε

∥∥e′>∥∥
for all e′> ∈ E′>, and hence‖T ′> − S′>‖ ≤ ε. After a similar argumentation for the left-hand side
we arrive at‖T ′ − S′‖ ≤ ε.

Mapping cylinders and KKban-cycles

Theorem 1.9.32.LetA, B, A′, B′ beG-Banach algebras and letϕ : A → A′ andψ : B → B′ be
equivariant homomorphisms of Banach algebras. Let(Φ: E → E′, (T, T ′)) ∈ Eban

G (ϕ,ψ). WriteιA
for the canonical injectionA→ Z (ϕ). Then

ι∗A
(
Z (Φ) , Z

(
T, T ′

))
∈ Eban

G (A, Z (ψ)) .

If we writeev0 for the canonical mapZ (ψ) → B andevt for the mapZ (ψ) → B′, (b, β′) 7→ β′(t)
for all t ∈]0, 1], then

ev0,∗
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))) ∼= (E, T )

and
evt,∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))) ∼= ϕ∗(E′, T ′)

for all t ∈]0, 1].

Proof. First of all, Z (Φ) is a non-degenerate gradedG-BanachZ (ψ)-pair that carries a left even
action of Z (ϕ), and hence it also carries a left even action ofA. The operatorZ (T, T ′) is odd.
Let a ∈ A. Then(a, t 7→ ϕ(a)) ∈ Z (ϕ), and the action ofa ∈ A is given as multiplication by
(a, t 7→ ϕ(a)). Now[

(a, t 7→ ϕ(a)), Z
(
T, T ′

)]
= Z

(
[a, T ] ,

[
ϕ(a), T ′

])
∈ KZ(ψ) (Z (Φ))

and

(a, t 7→ ϕ(a))
(
Z
(
T, T ′

)2 − 1
)

= Z
(
a(T 2 − 1), ϕ(a)(T ′2 − 1)

)
∈ KZ(ψ) (Z (Φ))

for all a ∈ A. For allg ∈ G anda ∈ A, we have

(a, ϕ(a))
(
g Z
(
T, T ′

)
− Z

(
T, T ′

))
= Z

(
a(gT − T ), ϕ(a)(gT ′ − T ′)

)
∈ KZ(ψ) (Z (Φ))

and, because the mapZ (·) is continuous, this expression depends continuously ong ∈ G. Hence
ι∗A (Z (Φ) , Z (T, T ′)) ∈ Eban

G (A, Z (ψ)).
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Remark 1.9.33. If (E′, T ′) ∈ Eban
G (A′, B′) (which is automatic ifϕ is surjective), then one could

possibly show that(Z (Φ) , Z (T, T ′)) ∈ Eban
G (Z (ϕ) , Z (ψ)). However, we have confined ourselves

to the somewhat simpler objectι∗A (Z (Φ) , Z (T, T ′)), because we are only interested in the case that
ϕ = IdA andA′ = A and use this machinery to construct homotopies as in the following proposition.

Proposition 1.9.34.LetA,B, A′,B′ beG-Banach algebras and letϕ : A→ A′ andψ : B → B′ be
equivariant morphisms of Banach algebras. Let(Φ: E → E′, (T, T ′)) ∈ Eban

G (ϕ,ψ). Write ιA for
the canonical injectionA→ Z (ϕ) andpB′[0,1] for the canonical mapZ (ψ) → B′[0, 1]. Then(

pB′[0,1]

)
∗
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
∈ Eban

G

(
A, B′[0, 1]

)
.

This is a homotopy
ψ∗(E, T ) ∼ ϕ∗(E′, T ′).

Proof. The first assertion follows from the fact thatι∗A (Z (Φ) , Z (T, T ′)) ∈ Eban
G (A, Z (ψ)). For the

second, we have to calculate the fibres of
(
pB′[0,1]

)
∗ (ι∗A (Z (Φ) , Z (T, T ′))) at0 and1. We have

(
pB′[0,1]

)
∗
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
t

=
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))
⊗pB′[0,1]

B̃′[0, 1]
)
⊗

evB′
t
B̃′

∼= ι∗A
(
Z (Φ) , Z

(
T, T ′

))
⊗

evB′
t ◦pB′[0,1]

B̃′

=
(
evB

′
t ◦pB′[0,1]

)
∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
for all t ∈ [0, 1]. If we write ev0 for the canonical mapZ (ψ) → B, thenevB

′
0 ◦pB′[0,1] = ψ ◦ ev0 and

hence we can deduce that(
evB

′
t ◦pB′[0,1]

)
∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
= ψ∗

(
ev0,∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))) ∼= ψ∗(E, T ).

On the other hand, ifevt : Z (ψ) → B′, (b, β) 7→ β(t), thenevB
′

t ◦pB′[0,1] = evt for all t ∈]0, 1], so(
evB

′
t ◦pB′[0,1]

)
∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
= evt,∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))) ∼= ϕ∗(E′, T ′).

Corollary 1.9.35. LetA andB beG-Banach algebras and let(Φ: E → E′, (T, T ′)) be an element
of Eban

G (IdA, IdB). Then(E, T ), (E′, T ′) ∈ Eban
G (A,B) and(E, T ) ∼ (E′, T ′).

1.10 Morita theory and KKban

V. Lafforgue proves in his unpublished note [Laf04] that theK-theory of Banach algebras is invariant
under Morita equivalence. He also introduces a rather flexible notion of Morita equivalence and
gives a version of the above sufficient condition for homotopy. The present section is dedicated to
a systematic study of the relation between Morita equivalences andKKban, building on Lafforgue’s
notion of “flèches de Morita”, called “Morita cycles” in this work. A category of “Morita morphisms”
is introduced which acts onKKban from the right. Morita equivalences give isomorphisms in this
category, soKKban is invariant under Morita equivalences at least in the second component. Although
our main interest is the non-equivariant situation, the equivariant case comes for free by adding the
word “equivariant” to all the definitions and propositions, so we include it.

LetG be a locally compact Hausdorff group.



1.10. MORITA THEORY AND KKban 41

1.10.1 Morita equivalences

Definition 1.10.1 (Full Banach pair). Let B be a Banach algebra and letE be a BanachB-pair.
ThenE is calledfull if the span of〈E<, E>〉 is dense inB.

Definition 1.10.2 ((Equivariant) Morita equivalence). LetA,B beG-Banach algebras. A (G-equi-
variant) Morita equivalence betweenA andB is a pair

(
BE

<
A ,AE

>
B

)
endowed with an equivariant

bilinear bracket〈·, ·〉B : E< × E> → B and an equivariant bilinear bracketA〈·, ·〉 : E> × E< → A
satisfying the following conditions:

1. (E<, E>) with 〈·, ·〉B is anA-B-pair.

2. (E>, E<) with A〈·, ·〉 is aB-A-pair.

3. The two brackets are compatible:

〈e<, e>〉Bf< = e<A〈e>, f<〉 and e>〈f<, f>〉B = A〈e>, f<〉f>.

for all e<, f< ∈ E< ande>, f> ∈ E>.

4. The pairs(E<, E>) and(E>, E<) are full and non-degenerate.

A andB are called Morita equivalent if there is a Morita equivalence betweenA andB.

If B is a non-degenerateG-Banach algebra, then the standardB-pairB = (B,B) with the obvious
additional structure is aG-equivariant Morita equivalence betweenB and itself. Conversely, ifA and
B are Morita equivalent, thenA andB are non-degenerate.

If A andB areG-Banach algebras andE is a Morita equivalence fromA to B, thenE =
(E>, E<) is a Morita equivalence fromB toA, called theinverse Morita equivalence. And finally, if
A,B,C areG-Banach algebras,E is a Morita equivalence fromA toB andF is a Morita equivalence
from B to C, thenE ⊗B F with the obvious operations is a Morita equivalence fromA to C (use
Proposition 1.3.4 to see thatE ⊗B F is non-degenerate).

Gathering these facts we can conclude:

Proposition 1.10.3.G-equivariant Morita equivalence is an equivalence relation on the class of non-
degenerateG-Banach algebras.

Proposition 1.10.4.LetE be a full and non-degenerateG-BanachB-pair. ThenE is aG-equivariant
Morita equivalence betweenK(E) andB.

Proof. Obviously,(E>, E<) is a full BanachK(E)-pair. The question is whether it is non-degenerate.
But this follows easily because(E<, E>) is a full and non-degenerateB-pair.

Corollary 1.10.5. LetE be a full and non-degenerateB-pair. ThenK(E) is non-degenerate.

Remark 1.10.6. It is not clear which further regularity conditions are satisfied by the algebraK(E),
even ifB is a rather nice algebra. There are examples of Banach spacesE where the closureF (E)
of the algebra of finite rank operators onE (which we callK(E) in this thesis) has no bounded
approximate identity. We can even find Banach spacesE where the canonical map from theπ-tensor
productF (E)⊗ F (E) to F (E) is not surjective.19

19See [Pis00].
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1.10.2 Corners and the linking algebra

Let A be a non-degenerateG-Banach algebra and letp be aG-invariant projection inM(A). Then
pAp is aG-Banach subalgebra ofA. Under which circumstances ispAp Morita equivalent toA? A
natural choice for the Morita equivalence is(pA,Ap). The right action ofpAp, the left action ofA and
thepAp-valued andA-valued brackets are all given by the product onA. SinceA is non-degenerate,
we have

cl (pA ·Ap) = p cl (AA) p = pAp.

and
cl (A ·Ap) = cl (A ·A) p = Ap and cl (pA ·A) = p cl (AA) = pA.

So thepAp-valued bracket is full and the leftA-action is non-degenerate. We just need a criterion for
theA-valued bracket to be full and thepAp-action to be non-degenerate. It is easy to see that both
conditions are equivalent to the following property ofp:

Definition 1.10.7 (Full projection). Let A be a Banach algebra. Then a projectionp in M(A) is
calledfull if cl (ApA) = A.

So we can formulate the following fact:

Proposition 1.10.8.LetA be a non-degenerateG-Banach algebra and letp ∈ M(A) be aG-invariant
full projection. ThenpAp is a non-degenerateG-Banach algebra and(pA,Ap) is aG-equivariant
Morita equivalence fromA to pAp.

Definition 1.10.9 ((Full, complementary) corner).LetA be a non-degenerateG-Banach algebra. A
cornerof A is a subalgebraB of A such there is aG-invariant idempotentp ∈ M(A) with pAp = B.
A corner is said to befull if there is a fullG-invariant idempotentp ∈ M(A) with pAp = B. Two
cornersB andC are (full) complementaryif there are (full)G-invariant idempotentsp, q ∈ M(A)
such thatp+ q = 1 andB = pAp andC = qAq.

By using the transitivity of being Morita equivalent we get the following consequence:

Corollary 1.10.10. LetB andC be full complementary corners of a non-degenerateG-Banach alge-
braA. ThenB andC areG-equivariantly Morita equivalent toA and hence to each other.

There is also a direct construction of a Morita equivalence betweenpAp andqAq, namely(qAp, pAq)
with the obvious operations.

Definition 1.10.11 (Linking algebra). Let A andB beG-Banach algebras and letE = (E<, E>)
be an equivariant Morita equivalence betweenA andB. Define thelinking algebra

L :=
(
A E>

E< B

)
to be the followingG-Banach algebra: The underlyingG-Banach space is the direct sumA⊕ E> ⊕
E< ⊕ B; the product is given by the operations onA, B andE if we write the elements ofL as
matrices according to the pattern suggested by our notation.

The linking algebra is non-degenerate and we findA andB as full complementary corners inL.
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1.10.3 Morita cycles and Morita morphisms

Definition 1.10.12 (Morita cycle). 20 Let A andB be non-degenerateG-Banach algebras. Then a
Morita cycle21 F from A to B is a non-degenerateG-BanachA-B-pairF such thatA acts onF by
compact operators, i.e., ifπA : A → LB(F ) is the action ofA onF , then (πA isG-equivariant and)
πA(A) ⊆ KB(F ). The class of all Morita cycles fromA toB is denoted byMban

G (A,B).

Morita cycles are hence exactly the trivially graded elements ofEban
G (A,B) with zero-operator. We

can thus apply almost all the definitions we have made forKKban-cycles also to Morita cycles (mor-
phisms between them, pullback, push-forward, homotopy, etc.). The extra conditions (trivial grading,
zero operator) are compatible with almost all of the constructions and will usually make them simpler.

Definition 1.10.13 (Various elementary constructions).LetA, A′, B, B′, C,D be non-degenerate
G-Banach algebras.

1. LetF ∈ Mban
G (A,B) andF ′ ∈ Mban

G (A′, B′). A morphismΨ betweenF andF ′ is a concur-
rentG-equivariant homomorphismϕΨψ from AFB to A′F

′
B′ . If we are only considering mor-

phismsΨ between elements ofMban
G (A,B), we will usually impose the conditionsϕ = IdA

andψ = IdB.

2. If F, F ′ ∈ Mban
G (A,B), thenF andF ′ are calledisomorphicif there is a concurrent isomor-

phism ofG-BanachA-B-pairs with trivial coefficient maps between them.

3. Let F1, F2 ∈ Mban
G (A,B). ThenF1 ⊕ F2 is also inMban

G (A,B). The so-defined operation
is associative and commutative up to isomorphism. Moreover, the zero-pair0 = (0, 0) ∈
Mban

G (A,B) is a neutral element inMban
G (A,B) (up to isomorphism).

4. If ϑ : A→ B andψ : C → D are equivariant homomorphisms andF ∈ Mban
G (B,C), then

ϑ∗(F ) ∈ Mban
G (A,C) and ψ∗(F ) ∈ Mban

G (B,D)

and the mapsϑ∗(·) andψ∗(·) commute and are additive up to isomorphism.

Also the notion of homotopy carries over to Morita cycles, and the use of this notion seems to give a
picture of Morita cycles which is even more conceptual than the one presented in [Laf04].

Definition 1.10.14 (Homotopy).Let A andB be non-degenerateG-Banach algebras andF0, F1 ∈
Mban

G (A,B). Then ahomotopyfrom F0 to F1 is anF ∈ Mban
G (A,B[0, 1]) such thatev0,∗ (F) ∼= F0

andev1,∗ (F) ∼= F1. If such a homotopy exists,F0 andF1 are calledhomotopic. The equivalence
relation onMban

G (A,B) generated by homotopy will be denoted by∼h.

It is easy to show (e.g. using Proposition 1.7.10 and Proposition 1.7.9) that homotopy is a reflexive and
symmetric relation onMban

G (A,B). But just as forKKban-cycles, I was not able to prove transitivity.
However, using the relation generated by homotopy is just as good.

Definition 1.10.15 (Morita morphism, Morban
G (A,B)). LetA andB be non-degenerateG-Banach

algebras. Then we define
Morban

G (A,B) := Mban
G (A,B)/ ∼h .

The elements ofMorban
G (A,B), i.e., the homotopy classes of Morita cycles fromA to B, are called

Morita morphisms fromA toB.

20Compare [Laf04], definition 2.2.
21In French they are called “flèches de Morita”.
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The addition of cycles lifts to a well-defined abelian law of composition of Morita morphisms with
neutral element[0]∼h. A straightforward argument shows that homotopy is also compatible with the
pullback and pushout of cycles; more precisely:
If A, B, C andD are non-degenerateG-Banach algebras,F0, F1 ∈ Mban

G (B,C), ϑ : A → B and
ψ : C → D are homomorphisms ofG-Banach algebras, then

F0 ∼h F1 ⇒ ϑ∗(F0) ∼h ϑ
∗(F1) ∧ ψ∗(F0) ∼h ψ∗(F1).

We therefore have additive maps

ϑ∗(·) : Morban
G (B,C) → Morban

G (A,C) and ψ∗(·) : Morban
G (B,C) → Morban

G (A,C).

Using Proposition 1.3.7 we can define the composition of Morita cycles as follows:

Definition 1.10.16 (Composition of Morita cycles).22 Let A, B, C be non-degenerateG-Banach
algebras andAEB ∈ Mban

G (A,B), BFC ∈ Mban
G (B,C). Then

AE ⊗B FC ∈ Mban
G (A,C)

is called thecompositionof Morita cycles.

The composition of Morita cycles is biadditive up to isomorphism. It is also associative up to isomor-
phism since the tensor product of pairs is. An interesting question is whether we have left or right
identities for this tensor product:

If B is a non-degenerateG-Banach algebra, thenBBB is a Morita cycle (the homomorphism23

ψB : B → LB(B) satisfiesψB(B) ⊆ KB(B)). However, it does not in general act identically on
cycles, neither on the left nor on the right.24 So the isomorphism classes of Morita cycles are not a
veritable category (not even mentioning the set-theoretic difficulties). To overcome this problem we
switch to homotopy classes, i.e., to Morita morphisms.

Definition and Proposition 1.10.17 (Composition of Morita morphisms).Let A, B, C be non-
degenerateG-Banach algebras. The composition of cycles⊗B : Mban

G (A,B) × Mban
G (B,C) →

Mban
G (A,C) lifts to a biadditive associative law of composition on the level of Morita morphisms

which we are going to denote by⊗B or by◦ (with the order of the factors reversed).

Proof. LetA, B, C be non-degenerateG-Banach algebras. LetE0, E1 ∈ Mban
G (A,B) andF0, F1 ∈

Mban
G (B,C). LetE be a homotopy fromE0 toE1 andF a homotopy fromF0 to F1.

First we show thatF := E0⊗BF ∈ Mban
G (A,C[0, 1]) is a homotopy fromE0⊗BF0 toE0⊗BF1.

This is almost trivial since

evCi,∗(F) =
(
E0 ⊗B F

)
⊗evC

i
C̃ ∼= E0 ⊗B

(
F ⊗evC

i
C̃
)

= E0 ⊗B evCi,∗(F ) ∼= E0 ⊗B Fi

for all i ∈ {0, 1}.

22Compare [Laf04], Proposition 2.6.
23See Definition 1.4.4.
24An exception are, by definition, cycles(E, T ) such that the underlying Banach modules areB-induced in the sense of

[Grø96], i.e.,E>⊗B B ∼= E> andB⊗B E
< ∼= E<. If B has a bounded approximate identity, then every non-degenerate

B-pair is automaticallyB-induced in this sense.
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Now we show thatF ′ := E ⊗B[0,1] F1[0, 1] ∈ Mban
G (A,C[0, 1]) is a homotopy fromE0 ⊗B F1

toE1 ⊗B F1:

evCi,∗
(
F ′) = evCi,∗

(
E ⊗B[0,1] F1[0, 1]

)
= E ⊗B[0,1] evCi,∗ (F1[0, 1])

1.7.9∼= E ⊗B[0,1] evB,∗i (F1) ∼= evBi,∗(E)⊗B F1
∼= Ei ⊗B F1

for all i ∈ {0, 1}.

The remainder of this section is primarily concerned with the proof of the following result:

Theorem 1.10.18.The non-degenerateG-Banach algebras together with the Morita morphisms form
a category (apart from the fact that the morphism classes might not be sets). IfA is a non-degenerate
G-Banach algebra, then the identity morphism onA is given by the equivalence class ofAAA.

We have already proved that the composition is associative. What is missing is the statement about the
identity morphisms. We are actually going to show a little bit more, and to formulate this, we define:

Definition 1.10.19 (Mban
G (ϕ), Morban

G (ϕ)). LetA andB be non-degenerateG-Banach algebras and
let ϕ : A → B be aG-equivariant homomorphism. ThenA acts onBB from the left viaϕ and the
so-constructed Morita cycle will be denoted byMban

G (ϕ) and its homotopy class byMorban
G (ϕ) or

simply by[ϕ].

Theorem 1.10.20.The mapϕ 7→ Morban
G (ϕ) is a functor from the category of non-degenerateG-

Banach algebras and equivariant homomorphisms to the category of non-degenerateG-Banach alge-
bras and Morita morphisms. It has the following property:

If A, B, C are non-degenerateG-Banach algebras andϕ : A → B, ψ : B → C are equivariant
homomorphisms, and iff ∈ Morban

G (A,B), g ∈ Morban
G (B,C) are Morita morphisms, then

(1.3) f ⊗B Morban
G (ψ) = ψ∗(f) and Morban

G (ϕ)⊗B g = ϕ∗(g).

Before we come to the proof of Theorem 1.10.18 and Theorem 1.10.20 note that the most important
thing to prove is Equation (1.3):
Let A, B, C be non-degenerateG-Banach algebras. Letϕ : A → B andψ : B → C be homomor-
phisms ofG-Banach algebras. ThenMban

G (ψ ◦ ϕ) = ϕ∗
(
Mban

G (ψ)
)
. It follows that

Morban
G (ψ ◦ ϕ) = ϕ∗(Morban

G (ψ))
(1.3)
= Morban

G (ϕ)⊗B Morban
G (ψ).

So Equation (1.3) implies thatMorban
G (·) is functorial. And usingϕ = Id or ψ = Id one can also

deduce the missing bit of Theorem 1.10.18 from Equation (1.3). The first part of the equation is
proved in Lemma 1.10.22, the second part in Lemma 1.10.24.

The main technical tool is the following sufficient condition for homotopy. It is Theorem 1.9.1 in
the case that the involved operatorsT andT ′ vanish, which corresponds to the case of Morita cycles.

Proposition 1.10.21 (Sufficient condition for homotopy for Morita cycles).25 LetG be a locally
compact Hausdorff group and letA andB be non-degenerateG-Banach algebras. LetF, F ′ be
elements ofMban

G (A,B) with A-actionsπ and π′. If there is a morphismΦ from F to F ′ (with
coefficient mapsIdA and IdB) such that(π(a), π′(a)) ∈ K(Φ,Φ) for all a ∈ A, thenF andF ′ are

25Compare Proposition 2.10 of [Laf04].
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homotopic; here, as above,K(Φ,Φ) denotes the set of all pairs of operators(S, S′) ∈ L(E)×L(E′)
such that

∀ε > 0 ∃n ∈ N ∃e<1 , . . . , e<n ∈ E<, e>1 , . . . , e>n ∈ E> :∥∥∥∥∥S −
n∑
i=1

∣∣e>i 〉〈e<i ∣∣
∥∥∥∥∥ ≤ ε and

∥∥∥∥∥S′ −
n∑
i=1

∣∣Φ>(e>i )
〉〈

Φ<(e<i )
∣∣∥∥∥∥∥ ≤ ε.

Lemma 1.10.22.Let A, B andC be non-degenerateG-Banach algebras,F ∈ Mban
G (A,B) and

ψ : B → C aG-equivariant homomorphism. Then

ψ∗(F ) ∼h F ⊗B Mban
G (ψ).

Proof. Recall thatψ∗(F ) = F⊗
ψ̃
C̃. Letπ be the action ofA onF . We give an equivariant concurrent

homomorphismΦ fromF⊗BC toF⊗B C̃ which satisfies the sufficient condition for homotopy given
above. It is simply defined by

Φ> : F> ⊗B C → F> ⊗B C̃, f> ⊗ c 7→ f> ⊗ c

and analogously forΦ<. It is clear that this defines an equivariant concurrent homomorphism with
coefficient mapsIdA andIdB. Leta ∈ A. We have to show that

(
π(a)⊗ 1C , π(a)⊗ 1

C̃

)
is contained

in K(Φ,Φ). We do this by showing the following more general result:

(1.4) ∀S ∈ KB(F ) :
(
S ⊗ 1C , S ⊗ 1

C̃

)
∈ K(Φ,Φ).

Because the map that sendsS ∈ LB(F ) to
(
S ⊗ 1C , S ⊗ 1

C̃

)
is linear and contractive, it suffices to

show (1.4) in the case thatS is a rank one operator. BecauseF is non-degenerate, it even suffices to
consider the case thatS =

∣∣f>b>〉〈b<f<∣∣ for f> ∈ F>, f< ∈ F< andb>, b< ∈ B. Now

(S ⊗ 1C)>(f ′> ⊗ c) =
(∣∣f>b>〉〈b<f<∣∣⊗ 1C

)
(f ′> ⊗ c)

= f>b>b<
〈
f<, f ′>

〉
⊗ c

= f> ⊗ ϕ
(
b>
) 〈
ϕ
(
b<
)
⊗ f<, f ′> ⊗ c

〉
=

∣∣f> ⊗ ϕ
(
b>
) 〉〈

ϕ
(
b<
)
⊗ f<

∣∣>(f ′> ⊗ c)

for all c ∈ C andf ′> ∈ F>. This and a similar calculation for the right-hand side show

S ⊗ 1C =
∣∣f> ⊗ ϕ

(
b>
) 〉〈

ϕ
(
b<
)
⊗ f<

∣∣ ∈ KC (F ⊗B C) .

The same calculation for̃C instead ofC results in

S ⊗ 1
C̃

=
∣∣Φ>(f> ⊗ ϕ

(
b>
)
)
〉〈

Φ<(ϕ
(
b<
)
⊗ f<)

∣∣ ∈ KC

(
F ⊗B C̃

)
.

So trivially
(
S ⊗ 1C , S ⊗ 1

C̃

)
∈ K(Φ,Φ).

Lemma 1.10.23.LetA andB be non-degenerateG-Banach algebras andF ∈ Mban
G (A,B). De-

fineAF :=
(
F<A, AF>

)
:= (cl (F<A) , cl (AF>)) which is aG-BanachA-B-pair. ThenA ⊗A

F,AF ∈ Mban
G (A,B) and

A⊗A F ∼h AF ∼h F.

Note thatA⊗AF andAF areA-non-degenerate, so every Morita morphism is homotopic to a Morita
morphism with non-degenerate left action.
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Proof. Let π be the action ofA on F . We are going to define concurrent homomorphisms ofG-
BanachA-B-pairs fromA⊗A F toAF and fromAF toF which satisfy the Condition (1.4). On the
way we are going to show thatAF is indeed a Morita morphism.

Define
Φ> : A⊗A F> → AF>, a⊗ f> 7→ af>

and similarly for the left-hand side. This clearly gives an equivariant concurrent homomorphism with
trivial coefficient maps. Letι denote the obvious concurrent homomorphism fromAF to F .

SinceA is non-degenerate, it suffices to show Condition (1.4) forabc instead ofa wherea, b, c ∈
A. Letε > 0. Sinceπ(b) is compact, we can findn ∈ N andf>1 , . . . , f

>
n ∈ F> andf<1 , . . . , f

<
n ∈ F<

such that ∥∥∥∥∥π(b)−
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
∥∥∥∥∥ ‖a‖ ‖c‖ ≤ ε.

Define

S :=
n∑
i=1

∣∣a⊗ f>i
〉〈
f<i ⊗ c

∣∣ ∈ KB (A⊗A F ) ,

S′ :=
n∑
i=1

∣∣af>i 〉〈f<i c∣∣ ∈ KB

(
AF
)
,

S′′ :=
n∑
i=1

∣∣af>i 〉〈f<i c∣∣ ∈ KB (F ) .

If d ∈ A andf> ∈ F>, then

S>(d⊗ f>) =
n∑
i=1

(
a⊗ f>i

) 〈
f<i , π(〈c, d〉)f>

〉
= a⊗

(
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
)
π(〈c, d〉)f>

=

(
M|a〉 ◦

(
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
)
◦M〈c|

)>
(d⊗ f>),

whereM|a〉 ∈ LB (F, A⊗A F ) andM〈c| ∈ LB (A⊗A F, F ) are defined as in the proof of Proposi-
tion 1.3.7. This and a similar calculation for the left-hand side show

S = M|a〉 ◦

(
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
)
◦M〈c|.

Let φ be the action ofA onA⊗A F . Then for everyd ∈ A andf> ∈ F>:

φ(abc)(d⊗ f>) = (abcd)⊗ f> = a⊗ bcdf> =
(
M|a〉 ◦ π(b) ◦M〈c|

)
(d⊗ f>).

Similarly for the left-hand side. So

φ(abc) = M|a〉 ◦ π(b) ◦M〈c|.



48 CHAPTER 1. KK-THEORY FOR BANACH ALGEBRAS

Hence

‖φ(abc)− S‖ =

∥∥∥∥∥M|a〉 ◦

(
π(b)−

n∑
i=1

∣∣f>i 〉〈f<i ∣∣
)
◦M〈c|

∥∥∥∥∥
≤ ‖a‖

∥∥∥∥∥π(b)−
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
∥∥∥∥∥ ‖c‖ ≤ ε.

Let π0 denote the action ofA onAF . Note that∥∥π0(abc)− S′
∥∥ ≤ ∥∥π(abc)− S′′

∥∥ .
Now

S′′ =
n∑
i=1

∣∣af>i 〉〈f<i c∣∣ = π(a)
n∑
i=1

∣∣f>i 〉〈f<i ∣∣π(c)

and hence

∥∥π(abc)− S′′
∥∥ =

∥∥∥∥∥π(abc)−
n∑
i=1

∣∣af>i 〉〈f<i c∣∣
∥∥∥∥∥ =

∥∥∥∥∥π(a)

(
π(b)−

n∑
i=1

∣∣f>i 〉〈f<i ∣∣
)
π(c)

∥∥∥∥∥
≤ ‖a‖

∥∥∥∥∥π(b)−
n∑
i=1

∣∣f>i 〉〈f<i ∣∣
∥∥∥∥∥ ‖c‖ ≤ ε.

From this it also follows that ∥∥π0(abc)− S′
∥∥ ≤ ε

and hence thatπ0(abc) ∈ KB

(
AF
)
. So in particularAF ∈ Mban

G (A,B).

Lemma 1.10.24.Let A, B andC be non-degenerateG-Banach algebras,F ∈ Mban
G (B,C) and

ϕ : A→ B aG-equivariant homomorphism. Then

Mban
G (ϕ)⊗B F ∼h ϕ∗(F ).

Proof. Note that

Mban
G (ϕ)⊗B F = ϕ∗ (B ⊗B F ) .

We have already shown thatF andB ⊗B F are homotopic elements ofMban
G (B,C). So by Lemma

1.10.23,ϕ∗(F ) andMban
G (ϕ)⊗B F are homotopic elements ofMban

G (A,C).

1.10.4 Morita equivalences induce Morita isomorphisms

We are going to call the isomorphisms in the category of Morita morphismsMorita isomorphisms.

Proposition 1.10.25.Let A andB be non-degenerateG-Banach algebras and letE be a Morita
equivalence betweenA andB. ThenE, regarded as aG-BanachA-B-pair with trivial grading, is in
Mban

G (A,B). LetMorban
G (E) or [E] denote the Morita morphism associated toE.
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Proof. We have to show that the image of theA-actionπ : A → LB(E) is contained inKB(E).
Sinceπ is continuous and linear and sinceA 〈E>, E<〉 is dense inA, it suffices to check that
π (A 〈e>, e<〉) ∈ KB(E) for all e> ∈ E> ande< ∈ E<. If x> ∈ E>, then

π
(
A

〈
e>, e<

〉)> (x>) = A

〈
e>, e<

〉
x> = e>

〈
e<, x>

〉
B

=
∣∣e>〉〈e<∣∣>(x>).

Similarly on the left-hand side. Hence

(1.5) π
(
A

〈
e>, e<

〉)
=
∣∣e>〉〈e<∣∣ ∈ KB(E).

Lemma 1.10.26.LetA,B be non-degenerateG-Banach algebras and letE andE′ be Morita equiv-
alences fromA to B. Assume thatIdA

θIdB
: AEB → AE

′
B is a concurrent morphism of Morita

equivalences (meaning that it is an equivariant morphism of Morita cycles that also preserves the left
bracket). Then

[E] = [E′] ∈ Morban
G (A,B).

Proof. We use Condition (1.4). Letπ andπ′ be the action ofA onE and onE′, respectively. Since

A〈E>, E<〉 is dense inA, it suffices to consider only sucha ∈ A which are of the formA〈e>, e<〉
for somee> ∈ E> ande< ∈ E<. We have seen in Equation (1.5) thatπ(a) =

∣∣e>〉〈e<∣∣ ∈ KB(E).
Now

π′(a) = π′
(
A

〈
e>, e<

〉)
= π′

(
A

〈
θ>(e>), θ<(e<)

〉)
∈ KB(E′).

So Condition (1.4) is trivially satisfied.

Theorem 1.10.27.LetA andB be non-degenerateG-Banach algebras and letE be a Morita equiva-
lence betweenA andB. Then the Morita morphism[E] is anisomorphismwith inverse[E]−1 =

[
E
]
.

Proof. Write A〈, 〉 : E> × E< → A for the left bracket and〈, 〉B : E< × E> → B for the right
bracket of the Morita equivalenceE.

Note that the composition of Morita morphisms given by Morita equivalences is the Morita mor-
phism given by the composition of the equivalences. We will thus show that the Morita equivalence
F := AE ⊗B EA gives the identity Morita morphism, and we will do so by providing an equivariant
concurrent homomorphismθ from F = AE ⊗B EA to the Morita equivalenceF ′ := AAA. We have
F> = E> ⊗B E< = F<. Note thatE> ⊗B E< is itself a Banach algebra when equipped with the
multiplication that is given on elementary tensors by the formula

(e> ⊗ e<) · (e′> ⊗ e′<) := e> ⊗ 〈e<, e′>〉Be′<

for all e>, e′> ∈ E> ande<, e′< ∈ E<. Writeµ for this product onE> ⊗B E<. Note that

e> ⊗ e<A〈e′>, e′<〉 = e> ⊗ 〈e<, e′>〉Be′< = e>〈e<, e′>〉B ⊗ e′< = A〈e<, e>〉e′> ⊗ e′<.

We define
ζ : E> ⊗B E< → A, e> ⊗ e< 7→ A

〈
e>, e<

〉
.

This is a homomorphism of Banach algebras:

ζ
(
(e> ⊗ e<) · (e′< ⊗ e′<)

)
= ζ

(
e> ⊗ e<A〈e′>, e′<〉

)
= A

〈
e>, e<A〈e′>, e′<〉

〉
= A〈e>, e<〉A〈e′>, e′<〉
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for all e>, e′> ∈ E> ande<, e′< ∈ E<. The right bracket and the left bracket fromF< × F> toA
are both given byζ ◦µ. We check thatθ := (ζ, ζ) is aG-equivariant concurrent homomorphism with
coefficient mapIdA on both sides. Note that

ζ(a(e> ⊗ e<)) = ζ((ae>)⊗ e<) = A

〈
ae>, e<

〉
= a A

〈
e>, e<

〉
= aζ(e> ⊗ e<)

for all a ∈ A, e< ∈ E<, ande> ∈ E>, soζ isA-linear on the left. Similarly on the right-hand side.
Moreover,

A〈s, t〉 = 〈s, t〉A = ζ (s · t) = ζ(s) · ζ(t) ∈ A

for all s, t ∈ E>⊗BE<. Asζ isG-equivariant,θ is indeed an equivariant concurrent homomorphism.

1.10.5 The action of Morita morphisms onKKban
G

Definition and Proposition 1.10.28.Let A, B andC be non-degenerateG-Banach algebras. Let
(E, T ) be an element ofEban

G (A,B) andF an element ofMban
G (B,C). Then we define

µF (E, T ) := (E, T )⊗B F := (E ⊗A F, T ⊗ 1) ∈ Eban
G (A,C).

Proof. We have to show that(E, T )⊗BF is indeed inEban
G (A,C). LetπA : A→ LB(E) be the action

of A. Recall from Proposition 1.3.7 that operators of the form “compact tensor one” are compact
becauseB acts onF by compact operators.

1. The operatorT ⊗ 1 is odd.

2. If a ∈ A, then[(πA(a)⊗ 1), T ⊗ 1] = [πA(a), T ]⊗ 1 ∈ KC(E ⊗B F ).

3. If a ∈ A, then

(πA(a)⊗ 1)
(
IdE⊗BF −T

2 ⊗ 1
)

=
(
πA(a)(IdE −T 2)

)
⊗ 1 ∈ KC (E ⊗B F ) .

4. If a ∈ A andg ∈ G then

(πA(a)⊗ 1) (g(T ⊗ 1)− T ⊗ 1) = (πA(a) (gT − T ))⊗ 1 ∈ KC (E ⊗B F ) .

Moreover, this expression depends continuously ong ∈ G.

Definition and Proposition 1.10.29.Let A, B, C be non-degenerateG-Banach algebras. Then the
product⊗B : Eban

G (A,B)×Mban
G (B,C) → Eban

G (A,C) is compatible with the respective homotopy
relations, so it lifts to a product

⊗B : KKban
G (A,B)×Morban

G (B,C) → KKban
G (A,C).

Proof. We split the proof into two parts and treat the compatibility in the first and in the second
component separately:
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1. Let (E0, T0), (E1, T1) ∈ Eban
G (A,B) be homotopic andF ∈ Mban

G (B,C). We show that
(E0, T0) ⊗B F and(E1, T1) ⊗B F are homotopic inEban

G (A,C): Find a homotopy(E, T ) ∈
Eban

G (A,B[0, 1]) such thatevB0,∗(E, T ) ∼= (E0, T0) andevB0,∗(E, T ) ∼= (E1, T1). TheKKban-
cycle (E, T ) ⊗B[0,1] F [0, 1] ∈ Eban

G (A,C[0, 1]) is the homotopy from(E0, T0) ⊗B F to
(E1, T1)⊗B F we are looking for:

evCt,∗
(
E ⊗B[0,1] F [0, 1]

)
= evCt,∗

(
E ⊗B[0,1] F [0, 1]

)
= E ⊗B[0,1] evCt,∗ (F [0, 1])

∼= E ⊗B[0,1] evB,∗t (F ) ∼= evBt,∗(E)⊗B F

for all t ∈ [0, 1], and these isomorphisms of the underlying pairs are compatible with the re-
spective operators.

2. LetF0, F1 ∈ Mban
G (B,C) be homotopic and(E, T ) ∈ Eban

G (A,B). We show that(E, T )⊗BF0

and (E, T ) ⊗B F1 are homotopic elements ofEban
G (A,C): Let F ∈ Mban

G (B,C[0, 1]) be a
homotopy fromF0 to F1. Then

evCi,∗ ((E, T )⊗B F ) ∼= (E, T )⊗B evCi,∗(F ) ∼= (E, T )⊗B Fi

as elements ofEban
G (A,C) for all i ∈ {0, 1}. Hence(E, T )⊗BF is a homotopy from(E, T )⊗B

F0 to (E, T )⊗B F1.

The action ofMorban
G onKKban has the following properties:

Proposition 1.10.30.LetA,B, C,D be non-degenerateG-Banach algebras.

1. Letx, y ∈ KKban
G (A,B) andf ∈ Morban

G (B,C). Then

(x⊕ y)⊗B f = (x⊗B f)⊕ (y ⊗B f).

2. Letx ∈ KKban
G (A,B) andf, f ′ ∈ Morban

G (B,C). Then

x⊗B (f ⊕ f ′) = (x⊗B f)⊕ (x⊗B f ′).

3. Letx ∈ KKban
G (A,B), f ∈ Morban

G (B,C) andf ′ ∈ Morban
G (C,D). Then26

x⊗B (f ⊗B f ′) = (x⊗B f)⊗C f ′.

4. Letx ∈ KKban
G (B,C), f ∈ Morban

G (C,D), andϕ : A → B a homomorphism ofG-Banach
algebras. Then

ϕ∗ (x⊗B f) = ϕ∗ (x)⊗B f.

5. Letx ∈ KKban
G (A,B) andψ : B → C a homomorphism ofG-Banach algebras. Then

x⊗B [ψ] = ψ∗(x).

26Compare Proposition 2.9 in [Laf04].
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Proof. The properties 1. to 4. are already true on the level ofKKban-cycles (at least up to isomor-
phism). We omit their straightforward proofs. We prove property 5.:
Let x = [(E, T )] with (E, T ) ∈ Eban

G (A,B). We show that(E ⊗B C, T ⊗ 1C) is homotopic to
(E ⊗B C̃, T ⊗ 1

C̃
) using the sufficient condition given in Theorem 1.9.1.

Remember that we have proved 5. in the caseT = 0 in Lemma 1.10.22. DefineΦ: E⊗BC → E⊗BC̃
as in the proof of Lemma 1.10.22 (withE instead ofF ). Now we use Equation (1.4) to show that(
T ⊗ 1C , T ⊗ 1

C̃

)
satisfies the hypotheses of Theorem 1.9.1. Letπ be the action ofA onE.

Let a ∈ A. Then[π(a)⊗ 1C , T ⊗ 1C ] = [π(a), T ] ⊗ 1C and the same is true for1
C̃

. Letting
S := [π(a), T ] in Equation (1.4) we can conclude that(

[π(a)⊗ 1C , T ⊗ 1C ] ,
[
π(a)⊗ 1

C̃
, T ⊗ 1

C̃

])
∈ K(Φ,Φ).

For the other two conditions of Theorem 1.9.1 proceed analogously.

Note that 1. implies that Morita morphisms act as group homomorphisms onKKban
G , whereas 5. im-

plies that the identity morphism acts identically, which, together with 3. implies that Morita isomor-
phisms act as group isomorphisms onKKban

G . Now Theorem 1.10.27 tells us that Morita equivalences
induce Morita isomorphisms, so we can deduce the following theorem:

Theorem 1.10.31.27 Let A, B, C be non-degenerateG-Banach algebras and letE be a Morita
equivalence fromB toC. Then· ⊗B [E] is an isomorphism fromKKban

G (A,B) to KKban
G (A,C) with

inverse· ⊗B
[
E
]
.

Remark 1.10.32 (Graded Morita morphisms).The Morita cycles presented in this work areKKban-
cycles with trivial operator and trivial grading. The second condition can be deleted, and ifA andB
are non-degenerate (trivially graded) Banach algebras, then a graded Morita cycleF fromA toB can
be thought of as a pair(F+, F−) of non-graded Morita cycles fromA toB. The advantage of this more
general setting is that we can define a structure of an abelian group on the Morita morphisms, making
the theory a bit more systematic. We confine ourselves to non-graded Morita cycles because we do not
need the graded ones in the rest of the work and we want to avoid further technical difficulties: The
suitable equivalence relation on the graded Morita cycles would no longer be the equivalence relation
generated by homotopy, but also cycles of the form(F, F ), whereF is a non-graded Morita cycle,
should be equivalent to zero; this is automatic in the case ofKKban-cycles as degenerate cycles are
homotopic to zero, but the homotopy used in this case can only be constructed if non-zero operators
are allowed.

27Compare Théorème 1.4 in [Laf04], the corresponding result forK0.



Chapter 2

KK-Theory for C0(X)-Banach Algebras

Let X be a locally compact Hausdorff space. The notion of aC0(X)-C∗-algebra is well-known in
the literature, and it has already been generalised to the concept of aC0(X)-Banach algebra.1 For
C0(X)-C∗-algebras there is a natural variant ofKK-theory calledRKK. This chapter is dedicated to
the development of an analogous theory forC0(X)-Banach algebras. This can be thought of as an
intermediate step betweenKKban as defined in the first chapter and the variant ofKKban for fields
of Banach algebras that we are going to define in the third chapter (following the path of [Laf06]).
The RKKban-theory defined in the present chapter is really just a straightforward generalisation of
KKban: The introduction toKKban in the first chapter has been rather detailed to enable us to say
that the reader should just browse through the first chapter and add an action ofC0(X) everywhere.
All results from the first chapter carry over, especially the sufficient condition for homotopy and the
theory of Morita morphisms.

The starting point for our definition ofRKK is the following observation: IfA andB areC0(X)-
C∗-algebras and(E, T ) is a cycle forRKK(A,B), thenE carries a canonical action ofC0(X) defined
through the identificationE ∼= E ⊗B B (just letC0(X) act on the second factor). This action is the
unique action ofC0(X) onE that is compatible with the module action ofB. The usual condition
on aRKK-cycle, namely that(χa)(eb) = (ae)(χb) for all a ∈ A, e ∈ E, b ∈ B andχ ∈ C0(X),
then just means that the actions ofC0(X) onA andE should be compatible. SoE is what could be
called aC0(X)-HilbertA-B-module. The corner stone for the definition ofRKKban should hence be
the notion of aC0(X)-BanachA-B-pair (if A andB areC0(X)-Banach algebras). The fundamental
notion underlying all this is of course a notion of aC0(X)-Banach space, which turns out to be rather
simple:

2.1 C0(X)-Banach spaces

Definition 2.1.1 (The category ofC0(X)-Banach spaces).A C0(X)-Banach space is by definition
a non-degenerate BanachC0(X)-module. IfE andF areC0(X)-Banach spaces, then we take the
bounded linearC0(X)-linear maps fromE to F as morphisms fromE to F . We are going to denote
the morphisms fromE to F by LC0(X)(E,F ).

Example 2.1.2.LetE be a Banach space. ThenEX = C0(X,E) is aC0(X)-Banach space with the
canonical action ofC0(X).

1See [Bla96].
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Definition 2.1.3 (The product ofC0(X)-Banach spaces).LetE1 andE2 beC0(X)-Banach spaces.
LetE1×E2 be the product Banach space (with the sup-norm). We define an action ofC0(X) onE by
ϕ(e1, e2) := (ϕe1, ϕe2) for all ϕ ∈ C0(X), e1 ∈ E1 ande2 ∈ E2. ThenE1 × E2 is aC0(X)-Banach
space.

There is also an obvious notion of the sumE1 ⊕ E2 of C0(X)-Banach spacesE1 andE2 using the
sum-norm. It is compatible with theC0(X)-tensor product that we are going to define next.

Definition 2.1.4 (C0(X)-bilinear). LetE1,E2,F beC0(X)-Banach spaces. An elementµ ∈ M(E1, E2;F )
is calledC0(X)-bilinear ifµ isC0(X)-linear in every component. The (closed) subspace ofM(E1, E2;F )
formed by theC0(X)-bilinear maps will be denoted byMC0(X)(E1, E2;F ).

Definition and Proposition 2.1.5 (C0(X)-tensor product). LetE1 andE2 beC0(X)-Banach spaces.
ConsiderE1 andE2 as BanachC0(X)-C0(X)-bimodules. Then we can form the (projective) balanced
tensor productE1⊗C0(X)E2, being itself aC0(X)-Banach space. It has the obvious universal property
for continuousC0(X)-bilinear maps. We will denote theC0(X)-tensor product ofE1 andE2 by
E1 ⊗C0(X) E2.

2.2 C0(X)-Banach algebras, modules and pairs

2.2.1 C0(X)-Banach algebras

Definition 2.2.1 (C0(X)-Banach algebra).A C0(X)-Banach algebraB is a Banach algebraB which
is at the same time aC0(X)-Banach space such that the multiplication ofB is C0(X)-bilinear.

We discuss an alternative definition of aC0(X)-Banach algebra using the so-called structure homo-
morphism in Appendix E.1.

Definition 2.2.2 (Homomorphism ofC0(X)-Banach algebras).Let A andB be C0(X)-Banach
algebras. A homomorphism ofC0(X)-Banach algebrasϕ : A→ B is a homomorphismϕ of Banach
algebras which is at the same time a homomorphism ofC0(X)-Banach spaces (i.e., it isC0(X)-linear).

Definition 2.2.3 (The fibrewise unitalisation). Let B be aC0(X)-Banach algebra. Then we define
the fibrewise unitalisation ofB to beB ⊕ C0(X). The norm onB ⊕ C0(X) is the sum-norm and the
product is given by

(b, ϕ) · (c, ψ) := (bc+ ψb+ ϕc, ϕψ)

for all b, c ∈ B, ϕ,ψ ∈ C0(X). The action ofC0(X) onB ⊕ C0(X) is given componentwise. Note
thatB is contained as aC0(X)-invariant ideal inB ⊕ C0(X) and thatB ⊕ C0(X) is non-degenerate,
it even has a bounded approximate unit.

2.2.2 C0(X)-Banach modules

Definition 2.2.4 (C0(X)-Banach module). Let B, C be C0(X)-Banach algebras. Then aC0(X)-
BanachB-module is a BanachB-moduleE which is at the same time aC0(X)-Banach space such
that the module action isC0(X)-bilinear. Analogously we defineC0(X)-BanachB-C-bimodules.

Lemma 2.2.5. If B is a C0(X)-Banach algebra andE is a non-degenerate BanachB-module, then
there is at most oneC0(X)-structure onE such thatE is aC0(X)-BanachB-module.
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Proof. LetE have aC0(X)-BanachB-module structure. Then for allϕ ∈ C0(X), e ∈ E andb ∈ B,
we have(eb)ϕ = e(bϕ), so onEB the C0(X)-action is known from theC0(X)-action onB. By
linearity and continuity it is known onE.

Lemma 2.2.6. LetB be aC0(X)-Banach algebra and letE be a rightB-induced BanachB-module
in the sense of [Grø96], i.e., assume thatE ⊗B B ∼= E, canonically. Then there exists a (unique)
C0(X)-structure onE such thatE is aC0(X)-BanachB-module.

Proof. We haveE ∼= E ⊗B B so we can letC0(X) act on the factorB of the tensor product to get an
action onE.

Definition 2.2.7 (LC0(X)
B (E,F )). LetB be aC0(X)-Banach algebra and letE, F beC0(X)-Banach

B-modules. Then we writeLC0(X)
B (E,F ) for the subspace ofLB(E,F ) of operators which are also

C0(X)-linear.

Lemma 2.2.8. LetB be aC0(X)-Banach algebra and letE, F beC0(X)-BanachB-modules such
that E is non-degenerate. Then all elements ofLB(E,F ) are automaticallyC0(X)-linear, i.e., we
have

LB(E,F ) = LC0(X)
B (E,F ).

Proof. Let e ∈ E, b ∈ B andϕ ∈ C0(X). Then

T (ϕ(eb)) = T (e(ϕb)) = T (e)(ϕb) = ϕ(T (e)b) = ϕT (eb).

SinceEB is dense inE we haveT (ϕe) = ϕT (e) for all e ∈ E.

Lemma 2.2.9.LetE be aC0(X)-BanachB-module. Then for everyϕ ∈ C0(X), the mape 7→ ϕe on

E is in LC0(X)
B (E).

The definition of homomorphisms with coefficient maps betweenC0(X)-Banach modules is the ob-
vious variation of the basic Definition 1.1.3, requiring all maps to beC0(X)-linear.

The balancedC0(X)-tensor product of C0(X)-Banach modules

LetA,B, C beC0(X)-Banach algebras, letE be aC0(X)-BanachA-B-bimodule, letF be aC0(X)-
BanachB-C-bimodule and letG be aC0(X)-BanachA-C-bimodule.

Definition 2.2.10 (BalancedC0(X)-bilinear maps). The set of all balanced bilinear maps fromE×F
toG that are alsoC0(X)-bilinear will be denoted byMbal,C0(X) (E,F ;G). In the same spirit we use

the notationAMbal,C0(X)
C (E,F ;G), etc.

Lemma 2.2.11. Let µ ∈ AMbal
C (E,F ;G). If E is B-non-degenerate andF is C-non-degenerate,

thenµ is automaticallyC0(X)-multilinear.

Definition 2.2.12 (The balancedC0(X)-tensor product of Banach modules).ThebalancedC0(X)-
tensor productE ⊗C0(X)

B F of E andF overB is defined to be the universal object for the balanced
C0(X)-multilinear maps onE×F . It can be obtained by takingE⊗B F and dividing out elements of
the formeϕ⊗ f − e⊗ ϕf . Alternatively (and more conceptually) it can be constructed by taking the
C0(X)-tensor productE⊗C0(X) F as a substitute for the projective tensor product (of Banach spaces)
and proceed exactly as in the construction of the usual balanced tensor product.

Proposition 2.2.13. If in the preceding definitionE or F is B-non-degenerate, then the usual bal-
anced tensor product and the balancedC0(X)-tensor product agree:

E ⊗C0(X)
B F = E ⊗B F.
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The pushout

Definition 2.2.14 (The pushout).Let B andB′ beC0(X)-Banach algebras and letψ : B → B′ be
a C0(X)-linear homomorphism. LetE be a rightC0(X)-BanachB-module. Note thatE is also a
BanachB ⊕ C0(X)-module andψ can be extended to a morphism fromB ⊕ C0(X) toB′ ⊕ C0(X).
Now we define

ψ∗(E) := E ⊗B⊕C0(X) (B′ ⊕ C0(X)),

being aC0(X)-BanachB′-module. IfE is a non-degenerate BanachB-module, then one could take
the tensor product overB instead ofB⊕C0(X) andψ∗(E) is non-degenerate as a BanachB′-module.

Proof. By definition,ψ∗(E) is a BanachB′⊕C0(X)-module, so it also is aC0(X)-BanachB′-module.
If E is non-degenerate then the bilinear map(e, (b′, χ)) 7→ e ⊗ (b′, χ) from E × (B′ ⊕ C0(X)) to
E⊗B (B′⊕C0(X)) is not onlyB-balanced but automaticallyB⊕C0(X)-balanced. Hence the tensor
products overB and overB ⊕ C0(X) agree. The fact thatψ∗(E) is non-degenerate as aB′-module
follows as in the case of the ordinary pushout.

Lemma 2.2.15.LetB be aC0(X)-Banach algebra and letE be aC0(X)-BanachB-module. Then
the mape⊗ (b, f) 7→ eb+ ef induces an isometric isomorphism ofC0(X)-BanachB-modules

IdB,∗(E) = E ⊗B⊕C0(X) (B ⊕ C0(X)) ∼= E.

Proof. Denote the map byΦ, being aC0(X)-linear homomorphism with coefficient mapIdB. We
show that it is injective and a quotient map.

To see that it is injective lett be an element of its kernel. We show thattχ = 0 for all χ ∈
C0(X). As this is also true for an approximate unit inC0(X), this showst = 0. Representt as∑

n∈N en ⊗ (bn, fn) with en ∈ E, bn ∈ B andfn ∈ C0(X). Then0 = Φ(t) =
∑

n∈N enbn + enfn.
Now

tχ =
∑
n∈N

en ⊗ [(bn, fn)(0, χ)] =
∑
n∈N

en(bn, fn)⊗ (0, χ)

=

[∑
n∈N

enbn + enfn

]
⊗ (0, χ) = 0⊗ (0, χ) = 0.

To see thatΦ is a quotient map lete ∈ E andε > 0. By Cohen’s Factorisation Theorem we can find
e′ ∈ E andf ∈ C0(X) such thate′f = e, ‖e− e′‖ < ε and‖f‖ ≤ 1. Let t := e′⊗(0, f) ∈ IdB,∗(E).
Then‖t‖ ≤ ‖e′‖ ‖f‖ ≤ ‖e‖+ ε andΦ(t) = e′f = e. SoΦ is a quotient map.

Because this construction is clearly natural inB, we get the first part of the following proposition.
The second part is proved similarly.

Proposition 2.2.16 (Functorial properties of the pushout).

• LetB be aC0(X)-Banach algebra. Then the functor(IdB)∗ is naturally isometrically isomor-
phic to the identity functor on the category ofC0(X)-BanachB-modules.

• LetB, B′, B′′ beC0(X)-Banach algebras and letψ : B → B′, ψ′ : B′ → B′′ be homomor-
phisms. Thenψ′∗ ◦ ψ∗ and (ψ′ ◦ ψ)∗ are naturally isometrically isomorphic functors from the
category ofC0(X)-BanachB-modules to the category ofC0(X)-BanachB′′-modules.
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2.2.3 C0(X)-Banach pairs

Definition 2.2.17 (C0(X)-Banach pair). Let B be aC0(X)-Banach algebra. AC0(X)-BanachB-
pair E is aB-pair E such thatE< andE> areC0(X)-BanachB-modules and such that the inner
product isC0(X)-bilinear. If A is anotherC0(X)-Banach algebra, then a BanachA-B-pair E is a
C0(X)-BanachA-B-pair if it is a C0(X)-BanachB-pair and the actions ofA on E< andE> are
C0(X)-bilinear.

Example 2.2.18.LetB be aC0(X)-Banach algebra. ThenB is aC0(X)-BanachB-pair.

The following lemmas are the Banach pair versions of Lemma 2.2.5 and Lemma 2.2.6 for Banach
modules.

Lemma 2.2.19.If B is aC0(X)-Banach algebra andE is a non-degenerate BanachB-pair such that
E< andE> areC0(X)-BanachB-modules, then the inner product is automaticallyC0(X)-bilinear.

Lemma 2.2.20.LetB be aC0(X)-Banach algebra and letE be aB-induced BanachB-pair, i.e.,
B ⊗B E< ∼= E< andE> ⊗B B ∼= E>. Then there exists a uniqueC0(X)-action onE such thatE
becomes aC0(X)-BanachB-pair.

Definition 2.2.21 (Linear operators betweenC0(X)-Banach pairs). LetE andF beC0(X)-Banach
B-pairs. Then an elementT of LB(E,F ) is calledC0(X)-linear if T< andT> areC0(X)-linear. The

subspace of allC0(X)-linear maps inLB(E,F ) is denoted byLC0(X)
B (E,F ).

Lemma 2.2.22. Let E and F be C0(X)-BanachB-pairs. If E and F are non-degenerate, then

LB(E,F ) = LC0(X)
B (E,F ), i.e.,C0(X)-linearity is automatic.

Lemma 2.2.23. Let E be aC0(X)-BanachB-pair. Then for everyϕ ∈ C0(X), the pair of maps

(e< 7→ ϕe<, e> 7→ ϕe>) is in LC0(X)
B (E).

As in the case ofC0(X)-Banach modules the definition of concurrent homomorphisms with coefficient
maps betweenC0(X)-Banach pairs is the obvious variation of the basic Definitions 1.2.9 and 1.2.11,
requiring all maps to beC0(X)-linear.

Compact operators betweenC0(X)-Banach pairs

Proposition 2.2.24.LetE andF beC0(X)-BanachB-pairs. ThenKB(E,F ) is always contained in

LC0(X)
B (E,F ), i.e.,C0(X)-linearity is automatic for compact operators.

Proof. Let f> ∈ F> ande< ∈ E<. Let T :=
∣∣f>〉〈e<∣∣. To show thatT> is C0(X)-linear let

e> ∈ E> andϕ ∈ C0(X). Then

T>(ϕe>) = f>〈e<, ϕe>〉 = f>(ϕ〈e<, e>〉) = ϕ(f>〈e<, e>〉) = ϕT>(e>).

Similarly one shows thatT< is C0(X)-linear. Now the set of allC0(X)-linear elements inLB(E,F )
is a closed subspace, so it contains the whole ofKB(E,F ).

Proposition 2.2.25.LetE andF beC0(X)-BanachB-pairs. ThenKB(E,F ) is a C0(X)-Banach
space. The canonical bilinear map fromF> × E< → KB(E,F ) is C0(X)-bilinear.
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Proof. We have to show thatKB(E,F ) is invariant under theC0(X)-action and thatKB(E,F ) is a
non-degenerate BanachC0(X)-module.

Let f> ∈ F> ande< ∈ E<. Letϕ ∈ C0(X). Then

ϕ
(
|f>〉〈e<|

)
(e>) = ϕ

(
f>〈e<, e>〉

)
=
∣∣ϕf>〉〈e<∣∣(e>)

for all e> ∈ E>. Similarly on the left-hand side. So

ϕ
(∣∣f>〉〈e<∣∣) =

∣∣ϕf>〉〈e<∣∣ = ∣∣f>〉〈ϕe<∣∣.
By linearity and continuity we can conclude thatKB(E,F ) is invariant under theC0(X)-action. We
also see that|f>〉〈e<| can be approximated by elements of the formϕ|f>〉〈e<|, soKB(E,F ) is a
non-degenerateC0(X)-module.

Proposition 2.2.26.LetE, F andG beC0(X)-BanachB-pairs. Then the composition of elements of
KB(F,G) andKB(E,F ) is C0(X)-bilinear andKB(E) is aC0(X)-Banach algebra.

Definition 2.2.27 (Locally compact operator).LetE andF beC0(X)-BanachB-pairs. ThenT ∈
LC0(X)
B (E,F ) is calledlocally compactif χT is compact for allχ ∈ C0(X).

If T is in LB(E,F ) such thatχT is compact for allχ ∈ C0(X), thenT is automaticallyC0(X)-linear.
Moreover, it suffices to checkχT ∈ KB(E,F ) for all χ ∈ Cc(X). The bounded locally compact

operators form a closed subset ofLC0(X)
B (E,F ).

Balanced tensor product and the pushout

The definition of the balanced tensor product ofC0(X)-Banach pairs is the obvious result of pairing
Definition 1.3.3, the definition of the balanced product of ordinary Banach pairs, and Definition 2.2.12,
the definition of the balancedC0(X)-tensor product of Banach modules. If all the Banach pairs are
non-degenerate, then one does not even need to take theC0(X)-tensor product, the ordinary balanced
tensor product does the job.

Similar things can be said about the pushout: Just take the definition of the pushout of Banach
pairs (Definition 1.3.9) and pair it with the definition of the pushout ofC0(X)-Banach modules (Def-
inition 2.2.14) to get the definition of the pushout of aC0(X)-Banach pair under a homomorphism
of C0(X)-Banach algebras. It has the desired functorial properties (compare Proposition 1.3.11 and
Proposition 2.2.16).

2.3 The pullback

LetX andY be locally compact Hausdorff spaces andp : Y → X be continuous.

2.3.1 The pullback ofC0(X)-Banach spaces

Definition 2.3.1 (The pullback). For everyC0(X)-Banach spaceE, we define

p∗(E) := θ∗(E) := E ⊗C0(X) C0(Y )

being aC0(Y )-Banach space, whereθ : C0(X) → Cb(Y ), ϕ 7→ ϕ ◦ p.
If E andF areC0(X)-Banach spaces andT ∈ LC0(X)(E,F ), then we define

p∗(T ) := T ⊗ 1: E ⊗C0(X) C0(Y ) → F ⊗C0(X) C0(Y ), e⊗ χ 7→ T (e)⊗ χ.
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The so defined map is a functor from the category ofC0(X)-Banach spaces to the category ofC0(Y )-
Banach spaces, linear and contractive on the morphism sets.

Example 2.3.2.We have

p∗ (C0(X)) = C0(X)⊗C0(X) C0(Y ) ∼= C0(Y )

asC0(Y )-Banach spaces where the isomorphism is given by the product.

Remark 2.3.3. In the proof of the following proposition we use some machinery which we just want
to sketch here to avoid yet another appendix: IfB andB′ areC0(X)-Banach algebras, then theC0(X)-
tensor productB ⊗C0(X) B′ carries a canonicalC0(X)-Banachalgebrastructure. IfEB andE′

B′ are
C0(X)-Banach modules, thenE ⊗C0(X) E′ is aC0(X)-BanachB ⊗C0(X) B′-module in a canonical
way. If E andE′ are non-degenerate, then so isE ⊗C0(X) E′. And finally, if BF andB′F ′ are
non-degenerate leftC0(X)-Banach modules, then

(E ⊗B F )⊗C0(X)

(
E′ ⊗B′ F ′) ∼= (E ⊗C0(X) E′

)
⊗B⊗C0(X)B′

(
F ⊗C0(X) F ′

)
.

Proposition 2.3.4. The functorp∗(·) commutes with the tensor product: IfE1 andE2 are C0(X)-
Banach spaces, then there is a natural isometric isomorphism

p∗(E1)⊗C0(Y ) p∗(E2) ∼= p∗
(
E1 ⊗C0(X) E2

)
.

Proof. Define a mapmp∗

E1,E2
: p∗(E1) ⊗C0(Y ) p∗(E2) → p∗

(
E1 ⊗C0(X) E2

)
sending(e1 ⊗ ϕ1) ⊗

(e2 ⊗ ϕ2) to (e1 ⊗ e2)⊗ (ϕ1ϕ2). Now we use Remark 2.3.3:C0(X)⊗C0(X) C0(Y ) ∼= C0(Y ) is also
isomorphic toC0(Y ) as aC0(X)-Banach algebra and it follows that

p∗(E1)⊗C0(Y ) p∗(E2) =
(
E1 ⊗C0(X) C0(Y )

)
⊗C0(X)⊗C0(X)C0(Y )

(
E2 ⊗C0(X) C0(Y )

)
∼=

(
E1 ⊗C0(X) E2

)
⊗C0(X)

(
C0(Y )⊗C0(Y ) C0(Y )

)
∼=

(
E1 ⊗C0(X) E2

)
⊗C0(X) C0(Y ) = p∗

(
E1 ⊗C0(X) E2

)
.

The composition of these isomorphisms ism
p∗

E1,E2
. It is natural: LetF1, F2 be some otherC0(X)-

Banach spaces andTi ∈ LC0(X)(Ei, Fi). Then for alle1 ∈ E1, e2 ∈ E2 andχ1, χ2 ∈ C0(X):

m
p∗

F1,F2
((p∗(T1)⊗ p∗(T2)) ((e1 ⊗ χ1)⊗ (e2 ⊗ χ2)))

= m
p∗

F1,F2
(p∗(T1)(e1 ⊗ χ1) ⊗ p∗(T2)(e2 ⊗ χ2))

= m
p∗

F1,F2
(T1(e1)⊗ χ1, T2(e2)⊗ χ2)

= (T1(e1)⊗ T2(e2))⊗ (χ1χ2)
= ((T1 ⊗ T2)(e1 ⊗ e2))⊗ (χ1χ2)
= p∗ (T1 ⊗ T2) ((e1 ⊗ e2)⊗ (χ1χ2))

= p∗ (T1 ⊗ T2)
(
m
p∗

E1,E2
((e1 ⊗ χ1)⊗ (e2 ⊗ χ2))

)
.

In shortmp∗

F1,F2
◦ (p∗(T1)⊗ p∗(T2)) = p∗ (T1 ⊗ T2) ◦m

p∗

E1,E2
, so the isomorphism is natural.
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Definition 2.3.5. Let E1, E2 andF beC0(X)-Banach spaces and letµ : E1 × E2 → F beC0(X)-
bilinear and continuous. Then the map

p∗(µ) : p∗(E1)× p∗(E2) → p∗(F ), (e1 ⊗ χ1, e2 ⊗ χ2) 7→ µ(e1, e2)⊗ χ1χ2

is aC0(Y )-bilinear continuous map such that‖p∗(µ)‖ ≤ ‖µ‖.

If we identify p∗(E1)⊗C0(Y ) p∗(E2) andp∗(E1 ⊗C0(X) E2), then we have

p̂∗(µ) = p∗ (µ̂) .

Proposition 2.3.6 (Preservation of associativity).LetE1, E2, E3, F1, F2 andG beC0(X)-Banach
spaces. Letµ1 ∈ MC0(X) (E1, E2;F1), µ2 ∈ MC0(X) (E2, E3;F2), ν1 ∈ MC0(X) (F1, E3;G), and
ν2 ∈ MC0(X) (E1, F2;G). Assume that

ν̂1 ◦ (µ̂1 ⊗ IdE3) = ν̂2 ◦ (IdE1 ⊗µ̂2) .

Then the same law holds after applying the pullback functor:

p̂∗ (ν1) ◦
(
p̂∗ (µ1)⊗ Idp∗(E3)

)
= p̂∗ (ν2) ◦

(
Idp∗(E1)⊗p̂∗ (µ2)

)
.

Proposition 2.3.7. 1. If X = Y and p = IdX , thenp∗ is naturally isomorphic to the identity
functor on the category ofC0(X)-Banach spaces, the natural transformation being linear and
isometric and compatible with the tensor product.

2. If Z is another locally compact Hausdorff space andq : Z → Y is continuous, thenq∗ ◦ p∗ and
(p ◦ q)∗ are naturally isomorphic, the natural transformation being linear and isometric and
compatible with the tensor product.

Proof. We just give the isomorphisms and leave it to the reader to check naturality and the other
properties.

1. The natural isomorphismId∗X(E) = E ⊗C0(X) C0(X) ∼= E is given by the module action.

2. The natural isomorphismq∗ (p∗(E)) ∼= (p ◦ q)∗ (E) is defined as the map that sendse ⊗ χ ⊗
χ′ to e ⊗ (χ ◦ q)χ′, so it is the tensor product ofIdE and the canonical isomorphism from
C0(Y )⊗C0(Y ) C0(Z) to C0(Z) and hence it is an isomorphism.

Proposition 2.3.8. If T ∈ LC0(X)(E,F ) has dense image, then so hasp∗(T ).

Proposition 2.3.9. LetE1, E2 andF beC0(X)-Banach spaces and letµ : E1 × E2 → F beC0(X)-
bilinear and continuous. Letp : Y → X be continuous. Ifµ is non-degenerate, then so isp∗(µ).

Proof. If µ is non-degenerate, then̂µ has dense image. Then alsop∗(µ̂) has dense image, sôp∗(µ)
has dense image, too. This just means thatp∗(µ) is non-degenerate.
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2.3.2 The pullback of Banach algebras, etc.

Let B be aC0(X)-Banach algebra with productµ. Thenp∗B is aC0(Y )-Banach algebra with mul-
tiplication p∗µ. If B′ is anotherC0(X)-Banach algebra andψ : B → B′ is a homomorphism of
C0(X)-Banach algebras, thenp∗ψ is a homomorphism ofC0(Y )-Banach algebras fromp∗B to p∗B′.

If E is a rightC0(X)-BanachB-module, thenp∗E is a rightC0(Y )-Banachp∗B-module. IfF
is anotherC0(X)-BanachB-module, thenp∗(E ⊕ F ) ∼= (p∗E) ⊕ (p∗F ). Similar things can be said

about left Banach modules. IfT ∈ LC0(X)
B (E,F ), thenp∗T ∈ LC0(Y )

p∗B (p∗E, p∗F ).
If E is a rightC0(X)-BanachB-module andF is a leftC0(X)-BanachB-module, then

p∗
(
E ⊗C0(X)

B F
)
∼= p∗E ⊗C0(Y )

p∗B p∗F.

If B̃ is the Banach algebraB ⊕ C0(X), thenp∗(B̃) ∼= p̃∗B. Finally, if ψ : B → B′ is aC0(X)-linear
homomorphism of Banach algebras, thenp∗ (ψ∗(E)) ∼= (p∗ψ)∗p∗E for all right C0(X)-BanachB-
modules.

If E = (E<, E>) is a C0(X)-BanachB-pair, thenp∗E = (p∗E<, p∗E>) is a C0(Y )-Banach
p∗B-pair in a canonical way. The pullback alongp is compatible with linear operators, homomor-
phisms, the balanced tensor product, the direct sum and the pushout (just as for Banach modules).

The pullback of a compact operator is not compact in general. However, we have the following result:

Proposition 2.3.10.LetE andF beC0(X)-BanachB-pairs over someC0(X)-Banach algebraB.
LetT be a locally compact bounded operator fromE to F . Thenp∗T is a locally compact bounded
operator fromp∗E to p∗F satisfying‖p∗T‖ ≤ ‖T‖.

Proof. Let χ ∈ C0(Y ). Findχ1, χ2 ∈ C0(Y ) such thatχ = χ1χ2. Let e< ∈ E< andf> ∈ F>. Then

χp∗
∣∣f>〉〈e<∣∣>(e> ⊗ ϕ) = f>〈e<, e>〉 ⊗ χ1χ2ϕ =

∣∣f> ⊗ χ1

〉〈
e< ⊗ χ2

∣∣>(e> ⊗ ϕ)

for all e> ∈ E> andϕ ∈ C0(Y ) (and similarly for the left-hand side). It follows thatχp∗
∣∣f>〉〈e<∣∣ =∣∣f> ⊗ χ1

〉〈
e< ⊗ χ2

∣∣. In particular,p∗
∣∣f>〉〈e<∣∣ is locally compact. It follows thatp∗S is locally

compact wheneverS is compact.
Let T be locally compact. BecauseC0(Y ) is a non-degenerateC0(X)-module, we can factorise

every element ofC0(Y ) in a product of an element ofC0(X) and an element ofC0(Y ). If χ ∈ C0(Y )
andχ′ ∈ C0(X), then(χχ′)p∗T = χp∗(χ′T ), which is compact becauseχ′T is compact. Hencep∗T
is locally compact.

2.4 Gradings and group actions

Definition 2.4.1 (GradedC0(X)-Banach space).A gradedC0(X)-Banach spaceis aC0(X)-Banach
spaceE endowed with a grading automorphism commuting with theC0(X)-action.

Let G be a locally compact Hausdorff group that acts continuously onX. Note thatC0(X) is aG-
Banach algebra when equipped with theG-action(gχ)(x) := χ(g−1x), χ ∈ C0(X), g ∈ G, x ∈ X.

Definition 2.4.2 (G-C0(X)-Banach space).A G-C0(X)-Banach spaceis aG-Banach spaceE which
is at the same time aC0(X)-Banach space such that the actions ofG andC0(X) are compatible in the
following sense:

g(χe) = (gχ)(ge), χ ∈ C0(X), g ∈ G, e ∈ E,

i.e., the productC0(X)× E → E isG-equivariant.
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From these definitions we also get an obvious definition for a gradedG-C0(X)-Banach space.
Taking this as a starting point one can define gradedC0(X)-Banach algebras, homomorphisms of
gradedC0(X)-Banach algebras, gradedC0(X)-Banach modules,G-C0(X)-Banach algebras, graded
G-C0(X)-Banach pairs, etc. All constructions we have made for graded and equivariant structures in
Chapter 1 are compatible with the additionalC0(X)-structure; we skip the details.

Also, the pullback alongG-equivariant maps between locally compact Hausdorff spaces on which
G acts is compatible with the additionalG-action onG-C0(X)-Banach spaces, etc.

Remark 2.4.3. The way we have defined the pullback forC0(X)-Banach spaces is not really com-
patible with the pullback of upper semi-continuous fields of Banach spaces that we are going to meet
later; in fact, to obtain the same structure one has to consider locallyC0(X)-convexC0(X)-Banach
spaces and the pullback has to be adjusted so that we stay in the same category.

We will see that in the context of upper semi-continuous fields of Banach spaces an action of
a groupoid can be modelled using the pullback. This is not possible in the setting ofC0(X)-Banach
spaces, at least not in an obvious way (apart from the fact that we can shift everything to the category of
upper semi-continuous fields, do the modelling there, and transfer everything back toC0(X)-Banach
spaces using the functors introduced in Chapter 4).

I would like to thank Ralf Meyer for providing me with the following example which shows that
the above construction of the pullback really is not suitable to model actions of groupoids. There
might be a better choice of the involved tensor product which remedies the problem, but we do not
venture into this.

Example 2.4.4.LetG be a discrete group and defineE := l1(G). ThenE = l1(G) carries a canonical
action ofG, namely(gξ)(h) = ξ(g−1h) for all ξ ∈ l1(G) andg, h ∈ G. Let p : G → {∗} be the
projection onto the one-point space (being the range and source map ofG regarded as a groupoid).
Can the action ofG onE be encoded in a continuous map fromp∗E to p∗E? Note thatp∗E is the
projective tensor productc0(G)⊗π l1(G) which can be identified withl1 (G, c0(G)). If f ∈ c0(G) has
finite support andξ ∈ l1(G), then the map we are looking for should sendf⊗ξ to

∑
g∈G f(g)δg⊗gξ.

Let ξ = δeG be the indicator function of the identity elementeG of G. Then∑
g∈G

f(g)δg ⊗ gδeG =
∑
g∈G

f(g)δg ⊗ δg

for all f ∈ c0(G) with finite support. If we identifyc0(G) ⊗π l1(G) with l1 (G, c0(G)), then this
element corresponds tog 7→ f(g)δg. The norm off ⊗ δeG is ‖f‖∞ ‖δeG‖1 = ‖f‖∞, the norm of∑

g∈G f(g)δg ⊗ δg is equal to‖g 7→ f(g)δg‖1 =
∑

g∈G ‖f(g)δg‖∞ = ‖f‖1. This is true for all
f ∈ c0(G) with finite support. Obviously, the map we are looking for is not isometric and, more
dramatically, cannot be extended to a continuous map onp∗E. The reason is of course that we have
taken the “wrong” tensor product; for the injective tensor product everything would work fine in this
particular situation. So far I have not checked whether the injective tensor product leads to a theory
that works smoothly in general.
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2.5 RKKban
G (C0(X); A, B)

2.5.1 Definition

Definition 2.5.1 (Eban
G (C0(X);A,B)). Let A andB beG-C0(X)-Banach algebras. Then the class

Eban
G (C0(X);A,B) is defined to be the class of pairs(E, T ) such thatE is a non-degenerate graded

G-C0(X)-BanachA-B-pair and, if we forget theC0(X)-structure, the pair(E, T ) is an element of
Eban

G (A,B).

The constructions from Section 1.8 are obviously compatible with the additionalC0(X)-structure, so
we can form the sum ofKKban-cycles and take their pushout along homomorphisms ofG-C0(X)-
Banach algebras. We also have aC0(X)-linear notion of morphisms ofKKban-cycles, giving us a
C0(X)-linear version of isomorphisms ofKKban-cycles. Hence also the notion of homotopy makes
sense in theC0(X)-setting so we can formulate the following definition:

Definition 2.5.2 (RKKban
G (C0(X);A,B)). The class of all homotopy classes inEban

G (C0(X);A,B)
is denoted byRKKban

G (C0(X);A,B). The addition of cycles induces a law of composition on
RKKban

G (C0(X);A,B) making it an abelian group.

The fact that the composition onRKKban
G (C0(X);A,B) has inverses can be proved just as in the

case without theC0(X)-structure, i.e., Lemme 1.2.5 of [Laf02] and its proof are compatible with the
additionalC0(X)-module action. There is an obvious forgetful group homomorphism

RKKban
G (C0(X);A,B) → KKban

G (A,B) .

2.5.2 The pullback ofRKKban
G -cycles

In this paragraph letY be another locally compact HausdorffG-space andp : Y → X be continuous
andG-equivariant.

Let E be aC0(X)-BanachA-B-pair overC0(X)-Banach algebrasA andB. Let T ∈ LB(E).
Then[a, T ] is compact for alla ∈ A if (and only if) [a, T ] is locally compact for alla ∈ A: Let a ∈ A.
Findχ ∈ C0(X) anda′ ∈ A such thata = χa′. If [a′, T ] is locally compact, then[a, T ] = χ[a′, T ] is
compact. It follows that we can replace the condition that[a, T ] is compact in the definition of cycles
for RKKban with the condition that these operators are locally compact. The same is true for the other
compactness conditions in the definition ofRKKban. Hence we have the following lemma:

Lemma 2.5.3.LetA andB beG-C0(X)-Banach algebras and(E, T ) ∈ Eban
G (C0(X); A, B). Then

p∗(E, T ) = (p∗E, p∗T ) ∈ Eban
G (C0(Y ); p∗A, p∗B) .

Proof. The pairp∗E carries a canonical grading andp∗T surely is an odd linear operator onp∗E for
this grading. Leta ∈ A andχ ∈ C0(Y ). Then[a⊗ χ, p∗T ] = χ ([a, T ]⊗ 1) = χp∗[a, T ]. Now
p∗[a, T ] is locally compact (andχp∗[a, T ] is compact).

Similar arguments are valid for the other compactness conditions.

Let B be aG-C0(X)-Banach algebra. LetφB be the canonical homomorphism fromp∗ (B[0, 1]) to
(p∗B)[0, 1] which sendsβ ⊗ χ to t 7→ β(t) ⊗ χ. This map might not be an isomorphism, but it
nevertheless satisfiesp∗(evBt ) = evp

∗B
t ◦φB for all t ∈ [0, 1]. If (E, T ) ∈ Eban

G (C0(X); A, B[0, 1]),
thenp∗(E, T ) ∈ Eban

G (C0(Y ); p∗A, p∗(B[0, 1])). It follows that (φB)∗(p∗(E, T )) is an element
of Eban

G (C0(Y ); p∗A, (p∗B)[0, 1]). The functoriality of the pushout shows that this is a homotopy
betweenp∗(E0, T0) and p∗(E1, T1) where(Ei, Ti) = evBi,∗(E, T ) for all i ∈ {0, 1}. Hence the
pullbacks of homotopic elements are homotopic. We can therefore say:
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Proposition 2.5.4. LetA andB beG-C0(X)-Banach algebras. Then the pullback alongp induces a
homomorphism

p∗ : RKKban
G (C0(X); A, B) → RKKban

G (C0(Y ); p∗A, p∗B) .

2.6 Homotopy and Morita equivalence

2.6.1 The sufficient condition for homotopy

All the constructions of Section 1.9, in particular the sufficient condition for homotopy presented in
Theorem 1.9.1, are compatible with an additionalC0(X)-structure. We explicitly state one definition
for further reference:

Definition 2.6.1 (The classEban
G (C0(X);ϕ,ψ)). Let ϕ : A → A′ andψ : B → B′ beG-equivariant

C0(X)-linear homomorphisms ofG-C0(X)-Banach algebras. AKKban-cycle fromϕ to ψ is a pair
(Φ: E → E′, (T, T ′)) such thatE is a non-degenerate gradedG-C0(X)-BanachA-B-pair,E′ is a
non-degenerate gradedG-C0(X)-BanachA′-B′-pair,Φ is an evenG-equivariantC0(X)-linear homo-

morphism fromAEB to A′E
′
B′ with coefficient mapsϕ andψ and(T, T ′) ∈ LC0(X)

ψ (Φ,Φ) is a pair

of odd linear operators such that2

1. ∀a ∈ A : [a, (T, T ′)] = ([a, T ], [ψ(a), T ′]) ∈ K(Φ,Φ) ;

2. ∀a ∈ A : a((T, T ′)2 − 1) =
(
a(T 2 − 1), ψ(a)(T ′2 − 1)

)
∈ K(Φ,Φ) ;

3. ∀a ∈ A : g 7→ a (g(T, T ′)− (T, T ′)) = (a(gT − T ), ψ(a)(gT ′ − T ′)) ∈ C (G, K(Φ,Φ)) .

The class of all such cycles will be denoted byEban
G (C0(X);ϕ,ψ).

Note that it is not necessary to introduce the notationKC0(X) (Φ,Φ) in the preceding definition (i.e.,
imposing the extra condition ofC0(X)-linearity on the compact operators) since compact operators
are automaticallyC0(X)-linear. Moreover, the condition onT andT ′ to be C0(X)-linear is also
automatic becauseE andE′ are non-degenerate.

We now state the new version of the sufficient condition for homotopy of cycles:

Theorem 2.6.2 (Sufficient condition for homotopy ofRKKban
G -cycles).LetG be a locally compact

Hausdorff group acting on the locally compact Hausdorff spaceX. LetA andB beG-C0(X)-Banach
algebras and let(E, T ), (E′, T ′) be elements ofEban

G (C0(X);A,B). If there is aG-equivariant
C0(X)-linear morphismΦ from (E, T ) to (E′, T ′) (with coefficient mapsIdA andIdB) such that

1. ∀a ∈ A : [a, (T, T ′)] = ([a, T ], [a, T ′]) ∈ K(Φ,Φ) ,

2. ∀a ∈ A : a((T, T ′)2 − 1) =
(
a(T 2 − 1), a(T ′2 − 1)

)
∈ K(Φ,Φ) ,

3. ∀a ∈ A ∀g ∈ G : a (g(T, T ′)− (T, T ′)) = (a(gT − T ), a(gT ′ − T ′)) ∈ K(Φ,Φ) ,

then(E, T ) and(E′, T ′) are homotopic (and thus give the same elements ofRKKban
G (C0(X);A,B)).

If T = 0 andT ′ = 0, then the homotopy can be chosen to have trivial operator as well.

2See Theorem 1.9.1 or Definition 1.9.7 for a definition ofK (Φ,Φ).
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2.6.2 Morita theory and RKKban
G

Also the definitions and constructions of Section 1.10 are compatible with the additionalC0(X)-
structure.

Definition 2.6.3 (C0(X)-linear Morita cycle). Let A andB be non-degenerateG-C0(X)-Banach
algebras. Then aC0(X)-linear Morita cycleF from A to B is a non-degenerateG-C0(X)-Banach
A-B-pairF such thatA acts onF by compact operators. The class of all Morita cycles fromA toB
is denoted byMban

G (C0(X);A,B).

Similarly, aG-C0(X)-Morita equivalence of non-degenerateG-C0(X)-Banach algebras is an equiv-
ariant Morita equivalence which also carries a compatibleC0(X)-structure such that all structure maps
areC0(X)-bilinear.

All the tensor products that appear in Section 1.10 should be madeC0(X)-tensor products to fit
into theC0(X)-setting, but this is automatic because at least one of the involved modules (or pairs)
will always be non-degenerate (see Proposition 2.2.13).

After having made all the necessary changes in Chapter 1, we end up with the following version
of Theorem 1.10.31:

Theorem 2.6.4. Let A, B, C be non-degenerateG-C0(X)-Banach algebras and letE be aG-
equivariantC0(X)-linear Morita equivalence fromB toC. Then· ⊗B [E] is an isomorphism

RKKban
G (C0(X);A,B) ∼= RKKban

G (C0(X);A,C)

with inverse· ⊗B
[
E
]
.

2.7 The pushforward

Let G be a locally compact Hausdorff group andX andY be locally compact Hausdorff spaces on
which G acts continuously. Letp : Y → X be a continuousG-equivariant map. Then the map
p∗ : ϕ 7→ ϕ ◦ p is a continuous homomorphism fromC0(X) to Cb(Y ) which is non-degenerate in the
sense thatp∗ (C0(X)) C0(Y ) is dense inC0(Y ). It follows that we can turn everyG-C0(Y )-Banach
space into aG-C0(X)-Banach space:

Definition 2.7.1. Let E be aG-C0(Y )-Banach space. Then we define an action ofC0(X) onE by
ϕe := (ϕ ◦ p)e for all e ∈ E andϕ ∈ C0(X). With this actionE is aG-C0(X)-Banach space which
we callp∗E.

Every C0(Y )-linear map betweenC0(Y )-Banach spaces is alsoC0(X)-linear, so we get a functor
p∗ from the category ofC0(Y )-Banach spaces to the category ofC0(X)-Banach spaces. Similarly,
C0(X)-bilinearity is weaker thanC0(Y )-bilinearity. SoC0(Y )-Banach algebras are alsoC0(X)-
Banach algebras and the same is true for Banach modules and Banach pairs. The result is a for-
getful map on the level ofKKban-cycles: IfA andB areG-C0(Y )-Banach algebras and(E, T ) is
in Eban

G (C0(Y );A,B), thenp∗(E, T ) = (p∗E, p∗T ) is in Eban
G (C0(X); p∗A, p∗B). Sometimes

we regardA andB simply also asG-C0(X)-Banach algebras without renaming them, so we write
Eban

G (C0(X); A, B) instead ofEban
G (C0(X); p∗A, p∗B), etc. This construction respects direct sums,

pushouts (the pairs are non-degenerate!) and homotopies. Hence:

Proposition 2.7.2. If p : Y → X isG-equivariant and continuous, then there is a canonical “forget-
ful” homomorphism

p∗ : RKKban
G (C0(Y );A,B) → RKKban

G (C0(X); p∗A, p∗B).
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Note that this applies in particular to the case thatX is just a single point; thenC0(X) is isomor-
phic toC andRKKban

G (C0(X); p∗A, p∗B) = RKKban
G (C0(X);A,B) is equal toKKban

G (A,B).

2.8 Special case:X compact

LetG be a locally compact Hausdorff group andX be acompactHausdorff space on whichG acts.
LetA be a non-degenerateG-Banach algebra and letB be a non-degenerateG-C(X)-Banach algebra.
Then the projective tensor productA⊗ C(X) is a non-degenerateG-C(X)-Banach algebra.

Remember that there is a canonical forgetful homomorphism

RKKban
G (C(X);A⊗ C(X), B) → KKban

G (A⊗ C(X), B) .

Secondly, there is a canonical homomorphismjA ofG-Banach algebras fromA toA⊗C(X), namely
the mapa 7→ a⊗1. This gives a group homomorphism fromKKban

G (A⊗C(X);B) to KKban
G (A,B).

Let
κ : RKKban

G (C(X);A⊗ C(X), B) → KKban
G (A,B)

be the composition of these two homomorphisms.

Proposition 2.8.1. The homomorphismκ is an isomorphism.

Proof. We first prove surjectivity: Let(E, T ) ∈ Eban
G (A,B). Instead of defining aC(X)-structure

on E, which we do not know how to do, we define a structure on the cycle(E ⊗B B, T ⊗ 1) ∈
Eban

G (A,B). Note that(E ⊗B B, T ⊗ 1) = (E, T ) ⊗B Morban
G (IdB), so it is homotopic to(E, T ).

On E> ⊗B B we define theC(X)-structure as in Lemma 2.2.6, i.e., ife> ∈ E> andb ∈ B and
ϕ ∈ C(X), thenϕ(e> ⊗ b) := e> ⊗ (ϕb). This makesE> ⊗B B a rightG-C(X)-BanachB-module.
We proceed similarly on the left-hand side. It is easy to see thatE ⊗B B is aG-C(X)-BanachB-pair
with thisC(X)-action. The operatorT⊗1 is clearlyC(X)-linear (which is automatic anyway, because
E ⊗B B is non-degenerate).

Now we have to define an action ofA ⊗ C(X) onE ⊗B B: If a ∈ A, χ ∈ C(X), e> ∈ E>

andb ∈ B then we define(a ⊗ χ)(e> ⊗ b) := (ae>) ⊗ (χb). This gives an action ofA ⊗ C(X) on
E> ⊗B B making it aG-C(X)-BanachA ⊗ C(X)-B-bimodule. A similar definition can be made
for the left-hand side. We check thatA ⊗ C(X) acts onE ⊗B B by elements ofLB(E ⊗B B). Let
therefore bea ∈ A, χ ∈ C(X), e< ∈ E<, e> ∈ E> andb<, b> ∈ B. Then〈

b< ⊗ e<, (a⊗ χ)(e> ⊗ b>)
〉

=
〈
b< ⊗ e<, (ae>)⊗ (χb>)

〉
= b<

〈
e<, ae>

〉
(χb>)

= (χb<)
〈
e<a, e>

〉
b> =

〈
(b< ⊗ e<)(a⊗ χ), e> ⊗ b>

〉
.

By trilinearity and continuity of both sides this equation can be extended from the elementary tensors
to all ofA⊗C(X),B⊗B E< andE>⊗B B. SoE⊗B B is in Eban

G (C(X);A⊗C(X), B). Applying
κ to it means forgetting theC(X)-structure and reducing theA ⊗ C(X)-action back to theA-action
onE ⊗B B, so we are back where we started. Henceκ is surjective.

The same argument shows thatκ is injective: Let(E0, T0) and (E1, T1) be elements of the class
Eban

G (C(X);A⊗C(X), B) such thatκ(E0, T0) andκ(E1, T1) are homotopic inEban
G (A,B). Without

loss of generality we can assume thatκ(E0, T0) andκ(E1, T1) can be connected through a single
homotopy (otherwise we use the surjectivity to find inverse images of the intermediate steps and
proceed step by step). Let(E, T ) ∈ Eban

G (C(X);A ⊗ C(X), B[0, 1]) be such thatκ(E, T ) ∈
Eban

G (A,B[0, 1]) is a homotopy fromκ(E0, T0) to κ(E1, T1). Now evBi,∗(E, T ) is contained in
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Eban
G (C(X);A ⊗ C(X), B) for all i ∈ {0, 1} andκ(evBi,∗(E, T )) is isomorphic (inEban

G (A,B))
to (Ei, Ti). Now Ei is a non-degenerateB-pair, so theC(X)-structure onE is unique.3 Hence the
isomorphism betweenκ(evBi,∗(E, T )) and(Ei, Ti) must beC(X)-linear. Also the action ofA⊗C(X)
is uniquely determined by the actions ofA and C(X), so the isomorphism fromκ(evBi,∗(E, T ))
and (Ei, Ti) must also respect this structure. In other words, it is an isomorphism of cycles in
Eban

G (C(X);A⊗ C(X), B). So(E0, T0) and(E1, T1) are homotopic. Henceκ is injective.

If we takeA to beC with the trivialG-action, thenA⊗C(X) is isomorphic toC(X). The proposition
then reduces to the following statement:

Corollary 2.8.2. LetB be a non-degenerateG-C(X)-Banach algebra. IfX is compact, then

RKKban
G (C(X); C(X), B) ∼= KKban

G (C, B) .

3See Lemma 2.2.5.
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Chapter 3

KK-Theory for Fields of Banach algebras
and Groupoids

To define the action of a groupoidG on a Banach algebraB it is inevitable to have some sort of bundle
structure over the unit space ofG onB. There are different ways to formalise the notion of a bundle
of Banach algebras over some base spaceX.

First, one could consider a continuous surjectionp : B → X whereB is some topological space
(the total space of the bundle) carrying some of extra structure which makes sure that, in particular,
the fibresp−1({x}) are Banach algebras. This bundle point of view was taken in1 [FD88].

Second, it is possible to concentrate on the space of continuous sections rather than on the total
space. IfX is a locally compact Hausdorff space, then the continuous sections vanishing at infinity of
a bundle of Banach algebras overX form a Banach algebra with a non-degenerate action ofC0(X).
SoC0(X)-Banach algebras can serve as a starting point for a formalisation of what a bundle of Banach
algebras overX should be.

Third, one could start with a family of Banach algebras(Bx)x∈X , corresponding to the fibres in
the bundle picture, and say what the “continuous sections” should be (each such sectionξ being a
function defined onX such thatξ(x) ∈ Bx). This leads to the definition of an upper semi-continuous
field of Banach algebras overX (generalising the notion of a continuous field of [Dix64]). The field
picture is the one that V. Lafforgue has devised in [Laf06] to define actions of groupoids on Banach
algebras, and we want to systematically develop his theory in the present chapter, adding a number of
technical details.

It would be interesting to compare the field picture with the bundle picture in our context, but it
seems advisable to exclude the bundle picture totally because this thesis is already rather voluminous.
On the other hand, theC0(X)-Banach algebra picture appears quite natural in applications and is
obviously not very challenging on the technical level, so I decided to introduce it and to compare it
to the field picture.2 Unfortunately, theC0(X)-Banach algebra picture seems not to be suitable to
formalise actions of general locally compact groupoids,3 making it necessary to head for the realm of
fields of Banach algebras.

Technically, the basic notion underlying the whole theory is the notion of an upper semi-contin-
uous (u.s.c.) field of Banach spaces. We define tensor products of such fields, which allows us to
define fields of Banach algebras, modules and pairs. Moreover, we define pullbacks of u.s.c. fields of

1See Definition 13.4 in [FD88]; see also 13.18 of the same book for a comparison of bundles and fields of Banach spaces.
2See Chapter 2 and Chapter 4, respectively.
3See Example 2.4.4.
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Banach spaces, which allows us to define actions of groupoids on fields of Banach spaces, algebras,
etc. The other important ingredient that we need for a version ofKKban-theory in this setting is the
definition of compact operators on (fields of) Banach pairs; in this chapter, we define what we call
“locally compact operators” instead, the main reason for this being that we do not assume the base
space to be locally compact. Later on we will see that if the base space is locally compact, then there
also is a canonical notion of compact operators which can be used instead.4

The resultingKKban-theory generalises the theory introduced in the first chapter (just take the
base space to be a single point). However, it does not generaliseRKKban as introduced in the second
chapter.More precisely, not everyC0(X)-Banach algebra comes from a u.s.c. field of Banach algebras
overX. In Chapter 4 we are going to compare the two situations in greater detail.

The main tools forKKban as developed in the first chapter for ordinary Banach algebras generalise
to theKKban-theory for fields of Banach algebras presented in this chapter. In particular, Section 3.7
explains how to translate the sufficient condition 1.9.1 for homotopy of cycles to the setting of fields
of Banach algebras equipped with groupoid actions. Furthermore, one can also define equivariant
Morita morphisms for fields of Banach algebras, and the respective results of the first chapter carry
over in full generality (this is summarised in Section 3.8).

Note that there is an additional section in this chapter, namely Section 3.2, which discusses the
simple and basic notion of a monotone completion. This section is not needed for the development of
KKban for fields of Banach algebras, but it is needed at several points in the remaining chapters. It is
too short to deserve to be made into an entire chapter and does not have a canonical place somewhere
else in this thesis, so I have put this section at the first place where all the required definitions are
available.

3.1 Upper semi-continuous fields of Banach spaces

Before defining what an upper semi-continuous field of Banach spaces is, we introduce some useful
vocabulary. Some of the definitions even make sense for families of Banach spaces over a set (without
any topology on the base space). For example, this is the natural place to say what a selection is. In
a second step, we discuss families of Banach spaces over a topological space, which enables us to
talk about the support of a selection or a selection being locally bounded. The latter notion is already
rather useful and turns out to be the technical heart of a lot of arguments for upper semi-continuous
fields of Banach spaces.

Subsection 3.1.3 then gives an elaborate introduction to upper semi-continuous fields of Banach
spaces. After that we finally define u.s.c. fields of Banach algebras, Banach modules and Banach pairs
as well as locally compact operators.

3.1.1 Families of Banach spaces over a set

Let X be a set. A family of Banach spaces overX is a family (Ex)x∈X such thatEx is a Banach
space for allx ∈ X.

Definition 3.1.1 (Selections).LetE be a family of Banach spaces overX.

1. An elementξ of the complex vector space
∏
x∈X Ex is called aselectionof E.

2. For every selectionξ of E we define|ξ| : X → R≥0, x 7→ ‖ξ(x)‖Ex
.

4See Section 4.7.1, in particular Proposition 4.7.5.
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3. For every selectionξ of E define‖ξ‖∞ := ‖|ξ|‖∞ = supx∈X ‖ξ(x)‖Ex
∈ [0,∞].

4. For everyx0 ∈ X define the mapevEx0
on
∏
x∈X Ex to be the projection map ontoEx0 .

If E is a family of Banach spaces overX, then the subspace of bounded selections ofE is a Banach
space in its canonical norm.

Definition 3.1.2 (Total subset).LetX be a set andE be a family of Banach spaces overX. Let Γ0

be a subset of
∏
x∈X Ex. Let 〈Γ0〉 be the linear subspace generated byΓ0. ThenΓ0 is calledtotal if

for everyx ∈ X the space{evEx ξ : ξ ∈ 〈Γ0〉} is dense inEx.

Definition 3.1.3 (Families of linear maps).LetE andF be families of Banach spaces overX. Then
a family of bounded linear maps fromE to F is a family(Tx)x∈X such thatTx ∈ L(Ex, Fx) for all
x ∈ X, i.e., a selection of the family(L(Ex, Fx))x∈X of Banach spaces overX.

Definition 3.1.4 (Composition). LetE, F , G be families of Banach spaces overX. If S is a family
of bounded linear maps fromE to F andT is a family of bounded linear maps fromF to G, then
their compositionT ◦ S := (Tx ◦ Sx)x∈X is a family of bounded linear maps fromE toG. If S and
T are bounded, then the familyT ◦ S is also bounded with‖T ◦ S‖ ≤ ‖T‖ ‖S‖.

Definition 3.1.5 (Evaluation). Let E andF be families of Banach spaces overX. If (Tx)x∈X is a
family of bounded linear maps fromE toF andξ is a selection ofE, then we define a selection ofF
as follows:

T ◦ ξ : x 7→ Tx(ξ(x)).

The mapξ 7→ T ◦ ξ defines a linear map from the selections ofE to the selections ofF . If T is
bounded, thenξ 7→ T ◦ ξ is a continuous linear map from the bounded selections ofE to the bounded
selections ofF , bounded by‖T‖∞.

Definition 3.1.6 (The internal product and and the internal sum). Let E andF be families of
Banach spaces overX. Then theinternal productE ×X F of E andF is the family(Ex × Fx)x∈X
overX where we take the sup-norm on the fibres. Analogously, theinternal sumE ⊕X F of E and
F is the family(Ex ⊕ Fx)x∈X overX where we take the sum-norm on the fibres.

Definition 3.1.7 (Families of continuous bilinear maps).Let E, F andG be families of Banach
spaces overX. Then a family of continuous bilinear maps fromE ×X F to G is a family (µx)x∈X
such thatµx is a continuous bilinear map fromEx × Fx toGx for all x ∈ X, i.e.,µ is a selection in
the family(M(Ex, Fx;Gx))x∈X of Banach spaces overX. We say thatµ is non-degenerateif µx is
non-degenerate for allx ∈ X, i.e., the image ofµx spans a dense subset ofGx.

Definition 3.1.8 (Evaluation). Let E, F andG be families of Banach spaces overX and letµ be a
family of continuous bilinear maps fromE ×X F toG. If ξ is a selection ofE andη is a selection of
F , then we define a selection ofG as follows

µ ◦ (ξ, η) : x 7→ µx (ξ(x), η(x)) .

The evaluation map(ξ, η) 7→ µ ◦ (ξ, η) is bilinear. If µ is bounded, then the evaluation map is a
continuous bilinear map when restricted to the bounded selections; it is bounded by‖µ‖.

Definition 3.1.9 (The internal tensor product). LetE andF be families of Banach spaces overX.
DefineE ⊗X F to be the family(Ex ⊗ Fx)x∈X , where⊗ denotes the projective tensor product of
Banach spaces. It is universal for bounded families of continuous linear maps. This tensor product is
associative since the projective tensor product of Banach spaces is associative.
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If E, E′, F andF ′ are families of Banach spaces overX, S is a family of continuous linear maps
from E to E′ andT is a family continuous linear maps fromF to F ′, then we defineS ⊗X T to be
the family(Sx ⊗ Tx)x∈X ; it is a family of continuous linear maps fromE ⊗X F toE′ ⊗X F ′. If S
andT are bounded then so isS ⊗ T and we have‖S ⊗X T‖ ≤ ‖S‖ ‖T‖.

3.1.2 Families of Banach spaces over a topological space

For the rest of Section 3.1, letX be atopological space.

Definition 3.1.10 (Locally bounded selection).LetE be a family of Banach spaces overX.

1. A selectionξ of E is calledlocally boundedif every point inX has neighbourhood on whichξ
is bounded. The space of locally bounded selections ofE will be denoted byΣ(X,E).

2. The set of all bounded selections ofE will be denoted byΣb(X,E).

3. A selectionξ of E is said tovanish at infinityif for all ε > 0 there is a compact subsetK ⊆ X
such that|ξ| (x) = ‖ξ(x)‖Ex

≤ ε for all x ∈ X \K. The set of all locally bounded selections
of E vanishing at infinity is denoted byΣ0(X,E).

Note thatΣ0(X,E) ⊆ Σb(X,E), and both spaces are Banach spaces.

Definition 3.1.11 (The support of a selection).LetX be a topological space and letE be a family
of Banach spaces overX. Let ξ be a selection ofE. Then the support ofξ is defined as

supp ξ := {x ∈ X : ξ(x) 6= 0}.

The following definition will only be of interest for us if the underlying spaceX is locally compact
and Hausdorff. Nonetheless, it also makes sense for general topological spaces.

Definition 3.1.12 (Selections of compact support).We defineΣc(X,E) to be the space of all (lo-
cally) bounded selections ofE which have compact support.

Note that any locally bounded selection with compact support is bounded. Moreover,

Σc(X,E) ⊆ Σ0(X,E) ⊆ Σb(X,E) ⊆ Σ(X,E).

Definition 3.1.13 (Local approximation). Let X be a topological space and letE be a family of
Banach spaces overX. Let Γ be a subset of the space

∏
x∈X Ex of all selections ofE.

1. If ξ ∈
∏
x∈X Ex andx0 ∈ X, then we say thatξ is approximable nearx0 by elements of

Γ if for all ε > 0 there is anη ∈ Γ and an open neighbourhoodU of x0 in X such that
‖η(u)− ξ(u)‖ ≤ ε for all u ∈ U .

2. If ξ ∈
∏
x∈X EX , then we say thatξ is locally approximable by elements ofΓ if ξ is approx-

imable nearx0 by elements ofΓ for all x0 ∈ X.

3. We defineΓ to be the set of selections ofE which are locally approximable by elements ofΓ.

Proposition 3.1.14.LetX be a topological space and letE be a family of Banach spaces overX.
LetΓ,∆ be subsets of the space

∏
x∈X Ex of all selections ofE. Then

1. If Γ ⊆ ∆, thenΓ ⊆ ∆.
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2. Γ = Γ.

3. ∅ = ∅.

4. If Γ is a linear subspace of
∏
x∈X Ex, thenΓ is a linear subspace as well.

Proof. 1. Obvious from the definition.

2. From 1. it follows thatΓ ⊆ Γ. Let ξ be an element ofΓ. Let x0 ∈ X andε > 0. Find a neigh-
bourhoodU1 of x0 inX and a selectionη1 ∈ Γ such thatsupx∈U1

‖ξ(x)− η1(x)‖ ≤ ε/2. Now
find a neighbourhoodU2 of x0 in X and someη2 ∈ Γ such thatsupx∈U2

‖η1(x)− η2(x)‖ ≤
ε/2. LetU beU1 ∩ U2. Thensupx∈U ‖ξ(x)− η2(x)‖ ≤ ε, soξ ∈ Γ.

3. Obvious from the definition.

4. Letξ1, ξ2 ∈ Γ, x0 ∈ X andε > 0. Find neighbourhoodsU1 andU2 of x0 in X andη1, η2 ∈ Γ
such thatsupx∈Ui

‖ξi(x)− ηi(x)‖ < ε/2 for all i ∈ {1, 2}. DefineU := U1 ∩ U2. Letx ∈ U .
Then

‖(ξ1 + ξ2)(x)− (η1 + η2)(x)‖ ≤ ‖ξ1(x)− η1(x)‖+ ‖ξ2(x)− η2(x)‖ ≤ ε.

As η1 + η2 belongs toΓ this shows thatξ1 + ξ2 ∈ Γ. Similarly one shows thatΓ is closed under
scalar multiplication.

Remark 3.1.15. What we have called closure is not a proper closure operator since, in general, it
fails to satisfy the conditionΓ ∪∆ = Γ ∪ ∆. To see this letX := {1, 2} be a discrete space with
two points. LetE0 be a non-trivial Banach space ande, f ∈ E0 with e 6= f . LetE be(E0)x∈X and
let Γ and∆ be the sets containing only the constant selection which sends everyx ∈ X to e andf ,
respectively. ThenΓ = Γ and∆ = ∆. On the other hand, the selection which sends1 to e and2 to f
is in Γ ∪∆.

Lemma 3.1.16.LetX be a topological space and letE be a family of Banach spaces overX. Then
the spaceΣ(X,E) satisfiesΣ(X,E) = Σ(X,E).

Proof. Let ξ be a selection ofE which lies inΣ(X,E). Let x0 ∈ X. We show thatξ is bounded
nearx0. Let ε := 1. Find someη ∈ Σ(X,E) and some neighbourhoodU1 of x0 such that
supx∈U1

‖ξ(x)− η(x)‖ ≤ ε = 1. Find some neighbourhoodU2 of x0 such thatη is bounded onU2.
DefineU := U1 ∩ U2. Let x ∈ X. Then‖ξ(x)‖ ≤ ‖η(x)‖+ ‖ξ(x)− η(x)‖ ≤ supu∈U ‖η(u)‖+ ε.
Soξ is bounded onU .

Locally bounded families of linear and bilinear maps

If E andF are families of Banach spaces overX, then it is natural to consider the locally bounded
families of linear maps as morphisms between them, i.e., the locally bounded selections in the family
(L (Ex, Fx))x∈X . It is easy to see that the composition of locally bounded families of linear maps is
again locally bounded.

Locally bounded families of linear maps have the following continuity property:

Lemma 3.1.17.LetT be a locally bounded family of linear operators fromE to F .



74 CHAPTER 3. KK-THEORY FOR FIELDS OF BANACH ALGEBRAS AND GROUPOIDS

1. If ξ is a locally bounded selection ofE, thenT ◦ ξ is a locally bounded selection ofF , in other
words, we have

T ◦ Σ(X,E) ⊆ Σ(X,F ).

2. If Γ is a subset ofΣ(X,E) and ξ ∈ Σ(X,E) is locally approximable by elements ofΓ, then
T ◦ ξ is locally approximable by elements ofT ◦Γ = {T ◦ γ : γ ∈ Γ}, in other words, we have

T ◦ Γ ⊆ T ◦ Γ.

Proof. We only prove the second assertion. Letε > 0 andx0 ∈ X. Find a neighbourhoodU of x0 in
X such thatT is bounded by some constantC > 0 onU . Find a neighbourhoodV of x0 in X and an
elementη ∈ Γ such that‖ξ(x)− γ(x)‖ ≤ ε/C for all x ∈ V . If x ∈ U ∩ V , then∥∥Tx(ξ(x))− Tx(η(x))

∥∥ ≤ ‖Tx‖
∥∥ξ(x)− η(x)

∥∥ ≤ ‖Tx‖ ε/C ≤ ε.

SoT ◦ η is sufficiently close toT ◦ ξ nearx.

Similarly, one can consider locally bounded families of bilinear maps: IfE, F andG are families of
Banach spaces overX, then a locally bounded family of bilinear maps fromE×X F toG is a locally
bounded selection in(M (Ex × Fx;Gx))x∈X . It has continuity properties that are analogous to those
given above for locally bounded families of linear operators:

Lemma 3.1.18.Letµ be a locally bounded field of bilinear maps fromE ×X F toG.

1. If ξ ∈ Σ(X,E) andη ∈ Σ(X,F ), thenµ ◦ (ξ, η) ∈ Σ(X,G).

2. Let Γ ⊆ Σ(X,E), ∆ ⊆ Σ(X,F ), ξ ∈ Σ(X,E) and η ∈ Σ(X,F ). Assume thatξ and
η are locally approximable by elements ofΓ and ∆, respectively. Thenµ ◦ (ξ, η) is locally
approximable by elements of{µ ◦ (γ, δ) : γ ∈ Γ, δ ∈ ∆}.

Proof. Again, we only proof 2.: Letε > 0 andx0 ∈ X. Sinceµ is locally bounded nearx0, we can
find a neighbourhoodUµ of x0 in X and a constantCµ ≥ 0 such thatµ is bounded byCµ onUµ.

Sinceξ andη are locally bounded, we can find neighbourhoodsUξ andUη of x0 in X such thatξ
is bounded onUξ by some constantCξ andη is bounded onUη byCη.

Sinceξ andη are approximable nearx0 by elements ofΓ and∆, respectively, we can find a
neighbourhoodU ⊆ Uξ ∩ Uη of x0 in X and elementsγ ∈ Γ andδ ∈ ∆ such that

CµCη sup
u∈U

‖ξ(u)− γ(u)‖ ≤ ε/3, CµCξ sup
u∈U

‖η(u)− δ(u)‖ ≤ ε/3

as well as
Cµ sup

u∈U
‖ξ(u)− γ(u)‖ ‖η(u)− δ(u)‖ ≤ ε/3.

For allu ∈ U ∩ Uµ, we have

‖µu(ξ(u), η(u))− µu(γ(u), δ(u))‖

≤ ‖µu‖
(
‖ξ(u)− γ(u)‖ ‖η(u)‖+ ‖ξ(u)‖ ‖η(u)− δ(u)‖+ ‖ξ(u)− γ(u)‖ ‖η(u)− δ(u)‖

)
≤ Cµ

(
Cη ‖ξ(u)− γ(u)‖+ Cξ ‖η(u)− δ(u)‖+ ‖ξ(u)− γ(u)‖ ‖η(u)− δ(u)‖

)
≤ ε/3 + ε/3 + ε/3 = ε.

Soµ ◦ (γ, δ) is sufficiently close toµ ◦ (ξ, η) onU ∩ Uµ.
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3.1.3 Upper semi-continuous fields of Banach spaces

Definition and basic properties

Definition 3.1.19 (Upper semi-continuous field of Banach spaces).An upper semi-continuous field
of Banach spacesover the topological spaceX is a pairE = ((Ex)x∈X , Γ), where(Ex)x∈X is a
family of Banach spaces andΓ ⊆

∏
x∈X Ex is a set of selections, which has the following properties:

(C1) Γ is a complex linear subspace of
∏
x∈X Ex;

(C2) for allx ∈ X, the evaluation mapevx : Γ → Ex, ξ 7→ ξ(x), has dense image;

(C3) for all ξ ∈ Γ, the map|ξ| : X → R≥0, x 7→ ‖ξ(x)‖Ex
, is upper semi-continuous;

(C4) if ξ ∈
∏
x∈X Ex and if, for all x0 ∈ X and all ε > 0, there is an elementγ ∈ Γ and a

neighbourhoodU of x0 in X such that for allx ∈ U we have‖ξ(x)− γ(x)‖Ex
≤ ε, then also

ξ belongs toΓ.

Condition (C4) just says that a selection which can be approximated locally by elements ofΓ is itself
in Γ, i.e. Γ = Γ. Note that all elements ofΓ are locally bounded by (C3). Instead of “upper semi-
continuous field” we will usually say “u.s.c. field” or just “field” of Banach spaces. If|ξ| is continuous
for all ξ ∈ Γ, then we callE a continuous field of Banach spaces. However, we are not going to use
this notion in this thesis very often.

Sections

Definition 3.1.20 (Sections).LetE = ((Ex)x∈X , Γ) be a u.s.c field of Banach spaces.

1. The elements ofΓ are called thesections ofE. We will also writeΓ(X,E) for Γ.

2. The Banach space of bounded sections is denoted byΓb(X,E).

3. The Banach space of all sections ofE vanishing at infinity is denoted byΓ0(X,E).

4. The linear space of all sections ofE with compact support is denoted byΓc(X,E).

Note that
Γc(X,E) ⊆ Γ0(X,E) ⊆ Γb(X,E) ⊆ Γ(X,E).

Example 3.1.21 (Constant fields).LetE be a Banach space. For everyx ∈ X, setEx := E and let
Γ be the spaceC(X,E) of all continuous maps fromX toE. Then this gives a continuous fieldEX
of Banach spaces, called theconstantfield overX with fibreE.

Example 3.1.22 (Mapping cylinders).Let E andF be Banach spaces and letT ∈ L≤1(E,F )
be a contractive operator. Then themapping cylinderZ (T ) of T , considered as a u.s.c. field of
Banach spaces, is the field

(
(Gx)x∈[0,1], Γ

)
such thatG0 = E, Gx = F for all x > 0 andΓ =

E ⊕ C0(]0, 1], F ) (where an elemente ∈ E corresponds to the sectionξ(0) = e andξ(x) = T (e) for
x > 0).

Example 3.1.23 (Fields over discrete spaces).LetX be a discrete topological space and letE be a
u.s.c. field of Banach spaces overX. ThenΓ(X,E) =

∏
x∈X Ex. This follows from conditions (C2)

and (C4). Vice versa, ifE is just a family of Banach spaces over a setX, then equippingX with the
discrete topology makesE into a continuous field of Banach spaces with sections

∏
x∈X Ex.
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Proposition 3.1.24.5 LetE be a u.s.c. field of Banach spaces and letx0 ∈ X. If ξ ∈ Γ(X,E) is a
section ofE andχ ∈ C(X), thenχξ ∈ Γ(X,E).

Lemma 3.1.25.6 LetX be uniformisable and letE be a u.s.c. field of Banach spaces overX. Then
for all x ∈ X, the evaluation mapevx : Γ(X,E) → Ex has not only dense image but is a metric
surjection when restricted to the bounded sections. IfX is locally compact Hausdorff, then this is
also true for the sections vanishing at infinity.

Proof. Letx0 ∈ X. Lete ∈ E andε > 0. Find aξ ∈ Γ(X,E) such that‖e− ξ(x0)‖Ex0
≤ ε/2. Find

a neighbourhoodU of x0 such that‖ξ(x)‖Ex
≤ ‖ξ(x0)‖x0

+ ε/2 for all x ∈ U . Find a continuous
functionϕ onX such that0 ≤ ϕ(x) ≤ 1 for all x ∈ X, ϕ(x0) = 1 andϕ(x) = 0 for x 6= U . Let
η := ϕξ. Note thatη ∈ Γ(X,E). Then‖η(x)‖ ≤ ‖ξ(x0)‖ + ε/2 ≤ ‖e‖ + ε for all x ∈ X, so
‖η‖∞ ≤ ‖e‖ + ε. On the other hand, we haveη(x0) = ϕ(x0)ξ(x0) = ξ(x0). We can now apply
Corollary E.3.2 to see thatevx0 is indeed a metric surjection.

If X is locally compact Hausdorff, then the same argument goes through withΓ0(X,E) instead
of Γb(X,E). The neighbourhoodU can be chosen to be compact.

Total subsets

Proposition 3.1.26.7 Let (Ex)x∈X be a family of Banach spaces andΛ ⊆
∏
x∈X Ex. Let〈Λ〉 be the

complex linear subspace of
∏
x∈X Ex generated byΛ. If 〈Λ〉 satisfies condition (C1), (C2), and (C3)

(with 〈Λ〉 instead ofΓ) then there is a unique subsetΓ of
∏
x∈X Ex containingΛ and satisfying (C1),

(C2), (C3), (C4). This set is given by

Γ =

{
ξ ∈

∏
x∈X

Ex : ∀x0 ∈ X, ε > 0 ∃η ∈ 〈Λ〉, x0 ∈ U
open
⊆ X ∀x ∈ U : ‖η(x)− ξ(x)‖ ≤ ε

}
,

i.e., the closure〈Λ〉 in the sense of Definition 3.1.13.

Proof. To see existence we have to check that the elements ofΓ (defined as above) satisfy (C1)-
(C4): Firstly, the closure of the total linear subspace〈Λ〉 is indeed total and linear, so (C1) and (C2)
are trivial. We also already know that taking the closure a second time does not change anything
anymore, so (C4) is also true. What is left to show is (C3). Letξ ∈ Γ andx0 ∈ X. Let ε > 0. Find
a neighbourhoodU1 of x0 in X and a selectionη ∈ 〈Λ〉 such thatsupx∈U1

‖ξ(x)− η(x)‖ < ε/3.
Now η has an upper semi-continuous modulus function, so we can find a neighbourhoodU2 of x0 in
X such that‖η(x)‖ ≤ ‖η(x0)‖+ ε/3 for all x ∈ U2. DefineU := U1 ∩ U2. Letx ∈ X. Then

‖ξ(x)‖ ≤ ‖ξ(x)− η(x)‖+ ‖η(x)− η(x0)‖+ ‖η(x0)− ξ(x0)‖+ ‖ξ(x0)‖ ≤ ‖ξ(x0)‖+ ε.

Henceξ has an upper semi-continuous modulus function.
To prove uniqueness assume thatΓ′ is another subspace of

∏
x∈X Ex containingΛ and satisfying

(C1)-(C4). SinceΓ′ is a vector space it contains〈Λ〉, and since it satisfies (C4) it containsΓ. To see
the reverse inclusion letξ be an element ofΓ′. Let x0 ∈ X andε > 0. Find a selectionη ∈ 〈Λ〉 such
that‖ξ(x0)− η(x0)‖ < ε/2. This is possible because〈Λ〉 satisfies (C2). Nowξ − η ∈ Γ′, which
implies that its modulus function is upper semi-continuous. We can therefore find a neighbourhoodU
of x0 in X such that‖ξ(x)− η(x)‖ ≤ ‖ξ(x0)− η(x0)‖ + ε/2 ≤ ε for all x ∈ U . This implies that
ξ ∈ 〈Λ〉 = Γ.

5See [Laf06], Proposition 1.1.3, and compare Proposition IX.10.1.9 in [Dix64].
6Compare [Laf06], Proposition 1.1.6, and Proposition IX.10.1.10 in [Dix64].
7See [Laf06], Proposition 1.1.4, and compare Proposition IX.10.2.3 in [Dix64].
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Proposition 3.1.27.LetE be a u.s.c. field of Banach spaces over locally compact HausdorffX. Let
Λ be a subset ofΓ0(X,E) which is invariant under multiplication with elements ofCc(X). ThenΛ is
dense in the Banach spaceΓ0(X,E) if and only if it is total.

Proof. If Λ is dense inΓ0(X,E), then it is clearly fibrewise dense as the evaluation maps are metric
surjections.

Let Λ be fibrewise dense. Letε > 0. Let ξ ∈ Γ0(X,E). Without loss of generality we
can assume thatξ has compact support. For everyx ∈ X, find an elementλx ∈ Λ such that
‖λx(x)− ξ(x)‖ ≤ ε/2. Since the function ofy 7→ ‖λx(y)− ξ(y)‖ is upper semi-continuous we
can find a neighbourhoodUx of x such that‖λx(y)− ξ(y)‖ ≤ ε for all y ∈ Ux.

LetK := supp ξ be a the compact support ofξ and letL be a compact neighbourhood ofK. Then
{Ux : x ∈ L} is an open cover ofL, so we can find a finite setS ⊆ L such that{Us : s ∈ S} is a
cover ofL. Let (χs)s∈S be a continuous partition of unity onK subordinate to this cover consisting
of non-negative elements ofCc(X) supported inL such that their sum does not exceed 1 onL. Define

λ :=
∑
s∈S

χsλs ∈M.

For everyy ∈ X, we have‖ξ(y)− λ(y)‖ ≤ ε: If y /∈ L, thenλ(y) = 0 andξ(y) = 0. If y ∈ L \K,
thenξ(y) = 0 and for everys ∈ S:

‖χs(y)λs(y)‖ ≤ χs(y) ‖λs(y)− ξ(y)‖ ≤ χs(y)ε

so‖λ(y)‖ ≤ ε. If y ∈ K, then similarly‖ξ(y)− λ(y)‖ ≤ ε.

Continuous fields of linear maps

A continuous field of linear maps between fields of Banach spaces is a locally bounded family of
linear maps which sends sections to sections. Here is the stand-alone version of the definition:

Definition 3.1.28 (Continuous field of linear maps).LetE andF be u.s.c. fields of Banach spaces.
Then acontinuous field of linear mapsfromE to F is a family(Tx)x∈X such that

1. Tx ∈ L (Ex, Fx) for all x ∈ X;

2. ∀ξ ∈ Γ(X,E) : T ◦ ξ : x 7→ Tx(ξ(x)) ∈ Γ(X,F );

3. the functionx 7→ ‖Tx‖ is locally bounded8 onX.

The set of all continuous fields of linear maps fromE toF will be denoted byLloc(E,F ). The subset
of (globally) bounded continuous fields of linear maps fromE to F is denoted byL(E,F ).

We call an elementT ∈ Lloc(E,F ) acontinuousfield because we think of property 2. as a continuity
property ofT . AlthoughT is a locally bounded selection of the family(L(Ex, Fx))x∈X of Banach
spaces overX, it wont be generally true that|T | is upper semi-continuous. So the spaceLloc(E,F )
will generally not define a u.s.c. field of Banach spaces.

Note that the composition of continuous fields of linear maps is again continuous, the same applies
to bounded continuous fields of linear maps. We hence have several choices for the morphisms of the

8In [Laf06] continuous fields of linear maps are defined leaving out our third condition (Définition 1.1.7), however,
Proposition 1.1.9 of the same article states that Condition 3. is automatic ifX is metrisable. A more general result along
these lines is proved in Appendix E.2.
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u.s.c. fields of Banach spaces overX: The continuous fields of linear maps, the bounded continuous
fields and the continuous fields bounded by one. We hence also get three different notions of an iso-
morphism of u.s.c. fields of Banach spaces; we will call these isomorphisms “continuous”, “bounded”
and “isometric”.

Example 3.1.29.Let E andF be constant fields overX with fibresE0 andF0, respectively. Then
the condition on a locally bounded family of operators(Tx)x∈X , whereTx ∈ L(E0, F0), for being a
continuous field of linear maps reads

∀ξ ∈ C(X,E0) : T ◦ ξ ∈ C(X,F0).

This is the case if and only if the familyT is strongly continuous.

Proposition 3.1.30 (A test for continuity). LetE andF be u.s.c. fields of Banach spaces overX. Let
(Tx)x∈X be a locally bounded family (not necessary continuous) of linear maps fromE toF . ThenT
is a continuous field of linear maps fromE to F if and only ifT ◦ ξ ∈ Γ(X,F ) for all elementsξ of
some total subsetΛ ⊆ Γ(X,E).

Proof. SinceT is a family of linear maps it takes the span〈Λ〉 into Γ(X,E). SinceT is locally
bounded, it is continuous with respect to the closure operator defined in 3.1.13 by Lemma 3.1.17, so
Γ(X,E) = 〈Λ〉 is mapped intoΓ(Y, F ) = Γ(Y, F ).

Let E andF be u.s.c. fields of Banach spaces overX. ThenLloc (E,F ) carries a canonical vector
space structure. Moreover, it is aC(X)-module and the mapLloc (E,F ) × Γ(X,E) → Γ(X,F ) is
C(X)-bilinear.

Proposition 3.1.31.LetE andF be u.s.c. fields of Banach spaces overX. Then the spaceLloc (E,F )
of selections in(L(Ex, Fx))x∈X is closed with respect to the closure operator defined in 3.1.13, i.e., if
T = (Tx)x∈X is a family of continuous linear maps fromE to F which can be locally approximated
by elements ofLloc (E,F ), thenT is itself inLloc (E,F ).

Proof. Let T be a family of continuous linear maps fromE to F which can be locally approximated
by elements ofLloc(E,F ). ThenT is locally bounded because it can be approximated locally by
locally bounded selections (see Lemma 3.1.16).

Now let ξ ∈ Γ(X,E). We show thatT ◦ ξ ∈ Γ(X,F ) by using condition (C4) of the definition
of a u.s.c. field of Banach spaces. So letx0 ∈ X andε > 0. Sincex 7→ ‖ξ(x)‖Ex

is upper semi-
continuous it is locally bounded and we can find a constantC ≥ 0 and a neighbourhoodUξ of x0 in
X such that‖ξ(u)‖Eu

≤ C for all u ∈ Uξ. We can find a neighbourhoodU ⊆ Uξ of x0 in X and a
continuous field of linear maps(Sx)x∈X fromE to F such thatC ‖Tu − Su‖ ≤ ε for all u ∈ U . We
now compareT ◦ ξ to S ◦ ξ ∈ Γ(X,F ) onU :

‖(T ◦ ξ)(u)− (S ◦ ξ)(u)‖Fu
≤ ‖Tu(ξ(u))− Su(ξ(u))‖Fu

≤ ‖Tu − Su‖ ‖ξ(u)‖Eu
≤ C ‖Tu − Su‖ ≤ ε.

for all u ∈ U . It follows thatT ◦ ξ ∈ Γ(X,E) by (C4), and henceT is continuous.

Proposition 3.1.32. If E andF are u.s.c. fields of Banach spaces overX, thenL(E,F ) is a Banach
space. The evaluation mapL(E,F )× Γb(X,E) → Γb(X,F ) is bilinear and bounded by1.

If T ∈ L(E,F ), then it is easy to show thatT ◦ ξ ∈ Γ0(X,F ) for all ξ ∈ Γ0(X,F ). We we also have
a continuous bilinear mapL(E,F )× Γ0(X,E) → Γ0(X,F ).
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Continuous fields of bilinear maps

In this subsection, letE, F ,G be u.s.c. fields of Banach spaces over the topological spaceX.

Definition 3.1.33 (The internal product and the internal sum). Theinternal productE×X F of E
andF is the upper semi-continuous field of Banach spaces overX given by the following data: The
underlying family of Banach spaces is just the familyE ×X F = (Ex × Fx)x∈X , and the space of
sections is

Γ := {x 7→ (ξ(x), η(x)) : ξ ∈ Γ(X,E), η ∈ Γ(X,F )} .

The setΓ satisfies condition (C1) - (C4), thus it defines the structure of a u.s.c. field of Banach spaces
onE ×X F . Similarly we define theinternal sumE ⊕X F of E andF overX, the difference being
that we take the sum-norm instead of the sup-norm on the fibres.

Definition 3.1.34 (Continuous fields of bilinear maps).A continuous field of bilinear maps from
E ×X F to G is a family (µy)y∈Y of continuous bilinear mapsµy ∈ M(Eγ(y), Fγ(y);Gy) for all
y ∈ Y such that

1. ∀ξ ∈ Γ(X,E) ∀η ∈ Γ(X,F ) : x 7→ µx (ξ(x), η(x)) ∈ Γ(X,G).

2. µ is locally bounded.

We writeMloc(E,F ;G) for the linear space of all continuous fields of bilinear maps fromE ×X F
toG. The linear space of (globally) bounded elements ofMloc(E,F ;G) is denoted byM(E,F ;G).

Analogously to the case of continuous fields of linear maps we have:

Proposition 3.1.35 (A test for continuity). Letµ be a locally bounded family of bilinear maps from
E×X F toG. Thenµ is continuous if and only if there is a total linear subspaceΓ0 ⊆ Γ(X,E×X F )
such thatµ ◦ ζ ∈ Γ(X,G) for all ζ ∈ Γ0.

Definition and Proposition 3.1.36 (Internal tensor product).9We defineE⊗XF to be the following
u.s.c. field of Banach spaces overX: The underlying family of Banach spaces is what we have already
calledE⊗X F , i.e., for allx ∈ X the fibre overx isEx⊗π Fx. To define the sections ofE⊗X F , let
Λ be theC-linear span of all selections of the familyE⊗X F given byx 7→ ξ(x)⊗η(x), whereξ runs
throughΓ(X,E) andη runs throughΓ(X,F ). ThenΛ satisfies conditions (C1), (C2) and (C3) so by
the use of Proposition 3.1.26 we get the structure of a u.s.c. field of Banach spaces onE⊗X F . There
is a canonical contractive continuous field of bilinear mapsπ = (πx)x∈X fromE ×X F toE ⊗X F .

Proof based on an argument of V. Lafforgue.We check thatΛ satisfies the conditions (C1), (C2) and
(C3). Firstly,Λ is a linear subspace of

∏
x∈X Ex ⊗ Fx by definition. Condition (C2) is also obvious.

For (C3) we have to show: For allx0 ∈ X and allζ ∈ Λ:

lim sup
x→x0

‖ζ(x)‖Ex⊗Fx
≤ ‖ζ(x0)‖Ex0⊗Fx0

.

So letx0 ∈ X. Define the bilinear maps

θx0 : Γ(X,E)× Γ(X,F ) → Ex0 ⊗ Fx0 , (ξ, η) 7→ ξ(x0)⊗ η(x0),

and
θ : Γ(X,E)× Γ(X,F ) →

∏
x∈X

Ex ⊗ Fx, (ξ, η) 7→ [x 7→ ξ(x)⊗ η(x)] .

9Compare Proposition 1.1.19 in [Laf06].
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Since both maps areC-bilinear, they give linear mapsΓ(X,E) ⊗alg Γ(X,F ) to Ex0 ⊗ Fx0 and to∏
x∈X Ex ⊗ Fx, respectively. Call them̂θx0 andθ̂. The image of̂θ is Λ. OnΛ define the semi-norm

‖ζ‖x0,lim
:= lim sup

x→x0

‖ζ(x)‖Ex⊗Fx
, ζ ∈ Λ.

For everyξ ∈ Γ(X,E) and everyη ∈ Γ(X,F ), we have

‖θ(ξ, η)‖x0,lim
= lim sup

x→x0

‖ξ(x)⊗ η(x)‖Ex⊗Fx

≤ lim sup
x→x0

‖ξ(x)‖Ex
‖η(x)‖Fx

≤ ‖ξ(x0)‖Ex0
‖η(x0)‖Fx0

.

This implies that there is a bilinear mapµ fromEx0 × Fx0 to the Hausdorff completionΛ of Λ with
respect to the above norm such that‖µ‖ ≤ 1 andµ(ξ(x0), η(x0)) = ι(θ(ξ, η)), whereι denotes
the canonical map fromΛ to its completion. From the universal property of the projective tensor
product we know that there is a unique continuous linear mapµ̂ from Ex0 ⊗ Fx0 to Λ such that
µ̂(e⊗ f) = µ(e, f) for all e ∈ Ex0 andf ∈ Fx0 , and‖µ̂‖ ≤ 1. We have

µ̂ (θx0(ξ, η)) = µ̂(ξ(x0)⊗ η(x0)) = µ(ξ(x0), η(x0)) = ι(θ(ξ, η))

for all ξ ∈ Γ(X,E) andη ∈ Γ(X,F ), so we also havêµ(θ̂x0(ω)) = ι(θ̂(ω)) for all ω ∈ Γ(X,E)⊗alg

Γ(X,F ). From this it follows that̂µ(ζ(x0)) = ι(ζ) for all ζ ∈ Λ. By ‖µ̂‖ ≤ 1 it follows that

‖ζ‖x0,lim
= ‖ι(ζ)‖Γ0

≤ ‖ζ(x0)‖Ex0⊗Fx0
.

But this is exactly what we wanted to show.

Proposition 3.1.37 (Universal property). For every (bounded / contractive) continuous fieldµ of
bilinear maps fromE ×X F to G, there is a unique (bounded / contractive) continuous fieldµ̂ of
linear maps fromE ⊗X F toG such that the following diagram commutes

E ×X F
µ //

π

��

G

E ⊗X F

µ̂
;;v

v
v

v
v

The familyµ̂ is given by(µ̂x)x∈X .

Corollary 3.1.38. LetE, E′, F andF ′ be u.s.c. fields of Banach spaces overX. For all (bounded /
contractive) continuous fieldsS of linear maps fromE to E′ andT fromF to F ′, there is a unique
(bounded / contractive) continuous fieldS ⊗ T of linear maps fromE ⊗X F to E′ ⊗Y F ′ such that
the following diagram commutes

E ×X F
S×XT//

��

E′ ×X F ′

��
E ⊗X F

S⊗T //___ E′ ⊗X F ′

This assignment is functorial.
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3.1.4 Fields of Banach algebras

Definition 3.1.39 (Field of Banach algebras).A u.s.c. field of Banach algebras overX is an upper
semi-continuous fieldA of Banach spaces overX together with a continuous field of bilinear maps
µ : A×XA→ A such that(Ax, µx) is a Banach algebra for allx ∈ X. In particular, this means thatµ
is bounded by 1. A field of Banach algebrasA overX (with multiplicationµ) is callednon-degenerate
if µx is non-degenerate for allx ∈ X, i.e., the span ofAxAx is dense inAx.

Example 3.1.40 (Constant fields of Banach algebras).Let A be a Banach algebra with multipli-
cationµ. Then the constant fieldAX as defined in Example 3.1.21, together with the multiplication
(µ)x∈X , is a continuous field of Banach algebras called theconstant fieldoverX with fibreA.

Definition 3.1.41 (Homomorphism of fields of Banach algebras).Let A andB be u.s.c. fields of
Banach algebras overX. Then ahomomorphism (of fields of Banach algebras) fromA to B is a
continuous field of homomorphisms of Banach algebras fromA toB, i.e., a continuous field(ϕx)x∈X
of linear maps fromA to B such thatϕx is a (contractive) homomorphism of Banach algebras from
Ax toBx. In particular, such aϕ is bounded by 1.

Definition 3.1.42 (Fibrewise unitalisation of a field of Banach algebras).LetB be a u.s.c. field of
Banach algebras overX. Then we define thefibrewise unitalisation

B̃ = B ⊕ CX =
(
B̃x

)
x∈X

to be the following u.s.c. field of Banach algebras: For allx ∈ X, the fibre ofB̃ is the unitalisation
B̃x of the fibreBx of B. The sections of̃B areΓ(X,B)⊕ C(X).

3.1.5 Fields of Banach modules

LetA,B andC be u.s.c. fields of Banach algebras overX.

Definition 3.1.43 (Field of Banach modules).A right BanachB-moduleis an upper semi-continuous
fieldE of Banach spaces overX together with a continuous field of bilinear mapsµE : E×X B → E
such that, for allx ∈ X, Ex is a right BanachBx-module with theBx-actionµEx . In particular, this
means thatµE is bounded by 1. The moduleE is called non-degenerate ifµEx is non-degenerate for
all x ∈ X, i.e., the span ofExBx is dense inEx.

Left BanachA-modules and BanachA-B-bimodules are defined similarly.

Definition 3.1.44 (Linear operator between fields of Banach modules).Let E andF be right
BanachB-modules. Then aB-linear field of operators fromE toF (or just aB-linear operator from
E toF ) is a continuous fieldT of linear maps fromE toF such thatTx isBx-linear (on the right) for
all x ∈ X. We denote the space of all suchT by Lloc

B (E,F ).
As usual, the fieldT is called bounded if‖T‖ := supx∈X ‖Tx‖ < ∞, i.e., if T is a bounded

continuous field of linear maps. We denote the boundedB-linear operators fromE toF byLB(E,F ).

Definition 3.1.45 (Homomorphism between fields of Banach modules).Let B′ be another field
of Banach algebras overX and letψ : B → B′ be a continuous field of homomorphisms. LetE
be a right BanachB-module andE′ be a right BanachB′-module. Then a homomorphismΦψ (of
u.s.c. fields of Banach modules) fromEB to E′

B′ with coefficient mapψ is acontractivecontinuous
field Φ of linear maps fromE to E′ such thatΦx is a homomorphism with coefficient mapψx from
(Ex)Bx to (E′

x)B′x .
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An analogous definition can be made for left Banach modules and Banach bimodules.

Definition 3.1.46 (Field of balanced bilinear maps).Let E1 be a right BanachB-module andE2

a left BanachB-module. LetF be a u.s.c. field of Banach spaces overX. A continuous fieldµ of
bilinear maps fromE1×X E2 toF is calledB-balancedif µx : (E1)x× (E2)x → Fx isBx-balanced
for all x ∈ X.

The following definition is analogous to 3.1.36 (and what has to be shown can also proved in much
the same way). See also Proposition 1.1.19 of [Laf06].

Definition 3.1.47 (The balanced tensor product of fields of Banach modules).Let E be a right
BanachB-module andF a left BanachB-module. Define theB-balanced tensor productE ⊗B F of
E andF to be the following u.s.c. field of Banach spaces: For allx ∈ X, the fibre atx isEx⊗Bx Fx;
to define the sections ofE ⊗B F , let Λ be theC-linear span of all selections of the familyE ⊗B F
given byx 7→ ξ(x) ⊗ η(x), whereξ runs throughΓ(X,E) andη runs throughΓ(X,F ). ThenΛ
satisfies conditions (C1), (C2) and (C3) so by the use of Proposition 3.1.26 we get the structure of a
u.s.c. field of Banach spaces onE ⊗B F .

There is a canonical contractive continuous field of bilinear mapsπ = (πx)x∈X from E ×X F to
E ⊗B F and a canonical fibrewise surjective and open contractive continuous field of linear maps
from E ⊗X F to E ⊗B F . The fieldE ⊗B F has the universal property for continuous fields of
B-balanced bilinear maps. IfF is not only a left BanachB-module but a BanachB-C-bimodule,
thenE ⊗B F is a right BanachC-module in an obvious way.

Definition 3.1.48. LetE andE′ be right BanachB-modules andF a BanachB-C-bimodule. For all
T ∈ Lloc

B (E,E′) defineT ⊗ 1 ∈ Lloc
C (E ⊗B F, E′ ⊗B F ) as the family(Tx ⊗Bx IdFx)x∈X .

Note that the assignmentT 7→ T ⊗ 1 is linear and functorial. IfT is bounded, then‖T ⊗ 1‖ ≤ ‖T‖.

Definition 3.1.49 (The pushout of fields of Banach modules).Let B′ be a u.s.c. field of Banach
algebras andψ : B → B′ a continuous field of homomorphisms. LetE be a right BanachB-module.
Thenψ(E) := E ⊗

B̃
B̃′ is a right BanachB′-module, called thepushout ofE alongψ. The fibre of

ψ(E) atx isψx(Ex).

The pushout has the usual functorial properties, compare Proposition 1.3.11.

3.1.6 Fields of Banach pairs

LetA andB be u.s.c. fields of Banach algebras overX.

Definition 3.1.50 (Field of Banach pairs).A BanachB-pair is a pairE = (E<, E>) such thatE< is
a left BanachB-module andE> is a right BanachB-module, together with a contractive continuous
field of bilinear maps〈, 〉 : E< ×X E> → B, B-linear on the left and on the right.E is called
non-degenerate ifE< andE> are non-degenerate BanachB-modules.

DefineEx := (E<x , E
>
x ) which is aBx-pair when equipped with the bracket〈, 〉x.

Definition 3.1.51 (Linear operator between fields of Banach pairs).Let E andF be BanachB-
pairs. Then acontinuous field ofB-linear operators fromE to F (or just aB-linear operator from
E to F ) is a pair(T<, T>) whereT> is a continuous field ofB-linear operators fromE> to F>

andT< is a continuous field ofB-linear operators fromF< to E< such thatTx := (T<x , T
>
x ) is in

LBx(Ex, Fx) for all x ∈ X. We denote the linear space of all suchT by Lloc
B (E,F ).
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A B-linear operator fromE to F is calledboundedif T< andT> are bounded. The space of all
boundedB-linear operators fromE to F will be denoted byLB(E,F ). It is a Banach space when
equipped with the obvious operations and the norm‖T‖ := max{‖T<‖ , ‖T>‖} = supx∈X ‖Tx‖.

The condition on a pair ofB-linear operators(T<, T>) presented in the preceding definition can be
conveniently written as

〈, 〉E ◦
(
T< ×X IdE>

)
= 〈, 〉F ◦

(
IdF< ×XT>

)
,

where the two sides represent fields of maps fromF< ×X E> toB.

Definition 3.1.52 (Homomorphism between fields of Banach pairs).LetB andB′ be u.s.c. fields
of Banach algebras overX and letψ : B → B′ be a continuous field of homomorphisms of Banach
algebras. LetEB andE′

B′ be Banach pairs. Then acontinuous fieldΦ of homomorphisms fromE to
E′ with coefficient mapψ is a pair(Φ<,Φ>) whereΦ> is a continuous field of homomorphisms from
E> to E′> andΦ< is a continuous field of homomorphisms fromE< to E′<, both with coefficient
mapψ, such thatΦx := (Φ<

x ,Φ
>
x ) is a homomorphism with coefficient mapψx from the pairExBx

to the pairE′
xB′x

.

Note that the composition of linear operators is again a linear operator and the composition of homo-
morphisms is again a homomorphism.

Definition 3.1.53 (BanachA-B-pair). A BanachA-B-pair E = (E<, E>) is a BanachB-pair
E such thatE< is a BanachB-A-bimodule andE> is a BanachA-B-bimodule and the bracket
〈, 〉 : E<×XE> → B isA-balanced (which means that for allx ∈ X the map〈, 〉x : E<x ×E>x → Bx
isAx-balanced).

There is an obvious notion of a homomorphism with coefficient maps between BanachA-B-pairs.

Using the definition of the balanced tensor product of fields of Banach modules (Definition 3.1.47)
we can define the balanced tensor product of fields of Banach pairs, just as in Definition 1.3.3, the
definition of the ordinary balanced tensor product of Banach pairs. Similarly, we can define the
pushout of fields of Banach pairs along continuous fields of homomorphisms between u.s.c. fieds of
Banach algebras. It has the usual functorial properties, compare Proposition 1.3.11.

Locally compact operators

Definition 3.1.54 (Rank one operator).LetE andF be BanachB-pairs. Then we define for allξ< ∈
Γ(X,E<) and allη> ∈ Γ(X,F>) the continuous field of operators

∣∣η>〉〈ξ<∣∣ := (∣∣η>〉〈ξ<∣∣
x

)
x∈X ∈

Lloc
B (E,F ) by ∣∣η>〉〈ξ<∣∣

x
:=
∣∣η>(x)

〉〈
ξ<(x)

∣∣ ∈ KBx (Ex, Fx)

for all x ∈ X.

If ξ< andη> are bounded then
∣∣η>〉〈ξ<∣∣ is bounded by‖ξ<‖ ‖η>‖. If ξ< andη> vanish at infinity,

then so does
∣∣η>〉〈ξ<∣∣.

Definition 3.1.55 (Locally compact Operator). 10 Let E andF be BanachB-pairs. A continuous
field T of B-linear operators is calledlocally compactif for all x ∈ X and allε > 0 there is an open
neighbourhoodU of x, ann ∈ N andξ<1 , . . . , ξ

<
n ∈ Γ(X,E<) andη>1 , . . . , η

>
n ∈ Γ(X,F>) such that∥∥Tu −∑n

i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣∥∥ ≤ ε for all u ∈ U . The space of all locally compact operators fromE
to F is denoted byKloc

B (E,F ).
10V. Lafforgue calls such operators “partout compact” in [Laf06].
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In other words: IfF denotes the linear span of the operators of the form
∣∣η>〉〈ξ<∣∣, with ξ< ∈

Γ(X,E<) andη> ∈ Γ(X,F>), in the spaceLloc
B (E,F ), thenKloc

B (E,F ) is the space of all operators
that are locally approximable by elements ofF , i.e.,Kloc

B (E,F ) = F in the sense of Definition 3.1.13.

Lemma 3.1.56.LetE, F andG be BanachB-pairs. ThenLloc
B (F,G) ◦ Kloc

B (E,F ) ⊆ Kloc
B (E,G)

andKloc
B (F,G) ◦ Lloc

B (E,F ) ⊆ Kloc
B (E,G).

Proof. Let S ∈ Kloc
B (E,F ) andT ∈ Lloc

B (F,G). Let ε > 0 andx0 ∈ X. BecauseT is locally
bounded, we can find a neighbourhoodUT of x0 in X and a constantCT > 0 such that‖Tu‖ ≤ CT
for all u ∈ UT .

BecauseS is locally compact we can find a neighbourhoodUS of x0 in X, an n ∈ N and
ξ<1 , . . . , ξ

<
n ∈ Γ0(X,E<) andη>1 , . . . , η

>
n ∈ Γ0(X,F>) such that∥∥∥∥∥Su −
n∑
i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣∥∥∥∥∥ ≤ ε

CT

for all u ∈ US . Note thatT ◦
∣∣η>i 〉〈ξ<i ∣∣ =

∣∣(T> ◦ η>i )
〉〈
ξ<i
∣∣ for all i ∈ {1, . . . , n} (with T> ◦ η>i ∈

Γ0(X,G>)), and ∥∥∥∥∥(T ◦ S)u −
n∑
i=1

∣∣ (T> ◦ η>i ) (u)
〉〈
ξ<i (u)

∣∣∥∥∥∥∥
=

∥∥∥∥∥Tu ◦
(
Su −

n∑
i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣)∥∥∥∥∥ ≤ ∥∥Tu∥∥ · ε

CT
≤ ε

for all u ∈ US ∩ UT . HenceT ◦ S is locally compact. Similarly one shows the other assertion.

Example 3.1.57.Let B be a non-degenerate u.s.c. field of Banach algebras overX. ThenΓ(X,B)
acts by locally compact operators on the BanachB-pair (B,B).

Operators of the form T ⊗ 1

Operators of the formT⊗1 for fields of Banach modules where defined in 3.1.48. From this definition,
we get a straightforward generalisation for fields of Banach pairs:

Definition 3.1.58. Let E andE′ be BanachB-pairs andF a BanachB-C-pair. For all operators
T ∈ Lloc

B (E,E′) defineT ⊗ 1 ∈ Lloc
C (E ⊗B F, E′ ⊗B F ) as(1⊗ T<, T> ⊗ 1).

The assignmentT 7→ T ⊗ 1 is linear and functorial, and ifT is bounded, then‖T ⊗ 1‖ ≤ ‖T‖.

Proposition 3.1.59. Let E and E′ be BanachB-pairs andF a BanachB-C-pair. Assume that
Γ(X,B) acts onF by locally compact operators, call the actionπ : Γ(X,B) → Kloc

C (F ). Assume
moreover thatE or E′ is non-degenerate. Then

T ∈ Kloc
B (E,E′) ⇒ T ⊗ 1 ∈ Kloc

C

(
E ⊗B F, E′ ⊗B F

)
.

Proof. Let x0 ∈ X andε > 0. Assume thatE is non-degenerate. ThenΓ(X,E) is non-degenerate
in the following sense: The space of all sections of the formx 7→ ξ>(x)β(x), with ξ> ∈ Γ(X,E>)
andβ ∈ Γ(X,B), spans a total subset ofΓ(X,E>) (and similarly forΓ(X,E<)). From the upper
semi-continuity of the sections it follows that for allξ< ∈ Γ(X,E<), all x0 ∈ X and allδ > 0 there
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is anm ∈ N andβ1, . . . , βm ∈ Γ(X,B), ξ<1 , . . . , ξ
<
m ∈ Γ(X,E<) and a neighbourhoodU of x0 in

X such that‖ξ<(u)−
∑m

i=1 βi(u)ξ
<
i (u)‖ ≤ δ.

From this it follows that we can find a neighbourhoodV of x0 in X andn ∈ N, ξ′>1 , . . . ξ′>n ∈
Γ(X,E′>), β1, . . . , βn ∈ Γ(X,B) andξ<1 , . . . , ξ

<
n ∈ Γ(X,E<) such that for allv ∈ V :∥∥∥∥∥∥T (v)−

n∑
j=1

∣∣ξ′>j (v)
〉〈
βj(v)ξ<j (v)

∣∣∥∥∥∥∥∥ ≤ ε.

Now for all x ∈ X ∣∣ξ′>j (x)
〉〈
βj(x)ξ<j (x)

∣∣⊗ 1 = M|ξ′>j (x)〉 ◦ π(βj)x ◦M〈ξ<
j (x)|

as in the proof of Proposition 1.3.7. By Lemma 3.1.56 the continuous field of operatorsM|ξ′>j 〉 ◦
π(βj) ◦M〈ξ<

j |
is locally compact becauseπ(βj) is locally compact. We have∥∥∥∥∥∥(T ⊗ 1)(v)−

n∑
j=1

M|ξ′>j (v)〉 ◦ π(βj)v ◦M〈ξ<
j (v)|

∥∥∥∥∥∥ ≤ ε

for all v ∈ V . HenceT ⊗ 1 is locally compact as well.

As in Proposition 1.3.13 one proves

Proposition 3.1.60.LetB′ be another u.s.c. field of Banach algebras andψ : B → B′ a continuous
field of homomorphisms. LetE andF be BanachB-pairs. For all operatorsT ∈ Kloc

B (E,F ), the
operatorψ∗(T ) = T ⊗ 1 is contained inKloc

C (ψ∗(E), ψ∗(F )).

3.2 Monotone completions

In [Laf02] and [Laf06] the notion of an unconditional completion11 was introduced which is a special
case of what we propose to call amonotonecompletion. The article [Laf02] provides us with some
interesting examples of monotone completions which are not unconditional completions,12 but we also
meet and need this more general notion in two situations in this thesis, namely in Subsection 7.2.3
and in Section 7.3. It therefore seems advisable to dedicate an entire and separate section to the
introduction of this basic notion.

In Section 3.2, letX be a locally compact Hausdorff space.

Definition 3.2.1 (Monotone (semi-)norm, monotone completion).A semi-norm‖·‖H on Cc(X) is
calledmonotoneif the following condition holds:

(3.1) ∀ϕ1, ϕ2 ∈ Cc(X) : (∀x ∈ X : |ϕ1(x)| ≤ |ϕ2(x)|) ⇒ ‖ϕ1‖H ≤ ‖ϕ2‖H .

Let H(X) denote the (Hausdorff-)completion ofCc(X) with respect to this semi-norm; this Banach
space is called amonotone completionof Cc(X).

11Unconditional completions are discussed in extenso in Section 5.2.
12For exampleH2(G,A) defined after Lemme 1.6.5 or the “normalised” completionsLp,l

norm(G,A) appearing in 4.5.



86 CHAPTER 3. KK-THEORY FOR FIELDS OF BANACH ALGEBRAS AND GROUPOIDS

By “let H(X) be a monotone completion ofCc(X)” we mean in the sequel “let‖·‖H be a monotone
semi-norm onCc(X) and letH(X) denote its completion”. If‖·‖H is a norm we can think ofCc(X)
as a subspace ofH(X). For the rest of the section, letH(X) be a monotone completion ofCc(X).

In [Laf06], unconditional norms onCc(G) are extended to the non-negative upper semi-continuous
functions with compact support onG (whereG is a locally compact Hausdorff groupoid with Haar
measure); this however is not sufficient because we want to apply unconditional norms also to the
absolute value of continuous fields of operators (with compact support), which are not upper semi-
continuous in general. This problem can be overcome very easily by extending unconditional norms
or, more generally, monotone semi-norms to an even larger class of functions:

Definition 3.2.2 (The extension of a monotone semi-norm).Let Fc (X) be the set of all (locally)
boundedfunctionsϕ : X → R with compact support. LetF+

c (X) be the set of elements ofFc (X)
which are non-negative. Define

‖ϕ‖H := inf {‖ψ‖H : ψ ∈ Cc(X), ψ ≥ ϕ}

for all ϕ ∈ F+
c (X).

Note that by Property (3.1) the new semi-norm agrees onC+
c (X) with the semi-norm we started with.

We now deduce some computational rules for the extension:

Lemma 3.2.3. The following holds for allϕ1, ϕ2, ϕ ∈ F+
c (X) and all c ≥ 0:

1. ϕ1 + ϕ2 ∈ F+
c (X) and‖ϕ1 + ϕ2‖H ≤ ‖ϕ1‖H + ‖ϕ2‖H;

2. cϕ ∈ F+
c (X) and‖cϕ‖H = c ‖ϕ‖H;

3. if ϕ1 ≤ ϕ2, then‖ϕ1‖H ≤ ‖ϕ2‖H.

Proof. 1. ϕ1+ϕ2 is obviously bounded, non-negative and has compact support. Ifψ1, ψ2 ∈ Cc(X)
are such thatϕi ≤ ψi, thenϕ1 + ϕ2 ≤ ψ1 + ψ2, and hence

‖ϕ1 + ϕ2‖H ≤ ‖ψ1 + ψ2‖H ≤ ‖ψ1‖H + ‖ψ2‖H .

Taking the infimum on the right-hand side we get the desired inequality.

2. Proceed as in 1. to show‖cϕ‖H ≤ c ‖ϕ‖H. By symmetry the we get equality.

3. This is trivial.

For the rest of the section, letE andF be a u.s.c. fields of Banach spaces overX.

Definition 3.2.4 (H(X,E)). We define the following semi-norm onΓc(X,E):

‖ξ‖H :=
∥∥x 7→ ‖ξ(x)‖Ex

∥∥
H .

The Hausdorff completion ofΓc(X,E) with respect to this semi-norm will be denoted byH(X,E).

Note that the functionx 7→ ‖ξ(x)‖ appearing in the preceding definition is not necessarily continuous.
However, it has compact support and is non-negative upper semi-continuous, so we can apply the
extended semi-norm onF+

c (X) to it.
If E is the trivial bundle overX with fibre E0, thenΓc(X,E) is Cc(X,E0). The completion

H(X,E) of Cc(X,E0) could hence also be denoted asH(X,E0) and might be considered as a sort
of tensor product ofH(X) andE0. If in particularE0 = C, thenH(X,E) = H(X,C) = H(X).
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Definition 3.2.5 (H(X,T )). Let T be a bounded continuous field of linear maps fromE to F . Then
ξ 7→ T ◦ ξ is a linear map fromΓc(X,E) to Γc(X,F ) such that‖T ◦ ξ‖H ≤ ‖T‖ ‖ξ‖H. HenceT
induces a canonical continuous linear map fromH(X,E) toH(X,F ) with norm≤ ‖T‖.

This way, we define a functor from the category of u.s.c. fields of Banach spaces overX to the
category of Banach spaces, which is linear and contractive on the morphism sets.

Proposition 3.2.6.The canonical map fromΓc(X,E) toH(X,E) is continuous if we take the induc-
tive limit topology onΓc(X,E) and the norm topology onH(X,E).

Proof. Let K ⊆ X be compact. We just have to show that the mapιK : ΓK(X,E) → H(X,E) is
continuous for the rest follows from the universal property of the inductive limit topology. Find a
functionχ ∈ Cc(X) such that0 ≤ χ ≤ 1 andχ ≡ 1 onK. DefineCK := ‖χ‖H. Let ξ ∈ ΓK(X,E).
Then

‖ξ(x)‖Ex
≤ sup

x′∈X

∥∥ξ(x′)∥∥
Ex
χ(x)

for all x ∈ X, so

‖ιK(ξ)‖H(G,E) = ‖x 7→ ‖ξ(x)‖‖H ≤ ‖x 7→ χ(x)‖H ‖ξ‖K = CK ‖ξ‖K .

Corollary 3.2.7. If Ξ is dense inΓc(X,E) for the inductive limit topology, then its canonical image
in H(X,E) is dense for the norm topology.

3.3 The pullback

In this section letX andY be topological spaces and letp : Y → X be continuous.

3.3.1 The pullback of fields of Banach spaces

Definition 3.3.1 (The pullback). 13 LetE be a u.s.c. field of Banach spaces overX. Then we define
a u.s.c. fieldp∗(E) of Banach spaces overY as follows: The underlying family of Banach spaces is
(Ep(y))y∈Y . Let

Λ := {ξ ◦ p : ξ ∈ Γ(X,E)}.

ThenΛ is a subspace of
∏
y∈Y Ep(y) satisfying (C1), (C2), and (C3). By Proposition 3.1.26, the set

Γ := Λ is the unique subset of
∏
y∈Y Ep(y) containingΛ and satisfying (C1)-(C4). Letp∗(E) be(

(Ep(y))y∈Y , Γ
)
.

Example 3.3.2.LetE0 be a Banach space. ConsiderE0 as a continuous field of Banach spaces over
a one-point set{∗} and letp : Y → {∗} be the projection map. Thenp∗(E0) is the constant field with
fibreE0 overY .

Definition and Lemma 3.3.3 (The pullback as a functor).Let E andF be u.s.c. fields of Banach
spaces overX and letT be a continuous field of linear maps fromE to F . Define

p∗(T )y := Tp(y) ∈ L
(
Ep(y), Fp(y)

)
for all y ∈ Y . Thenp∗(T ) is a continuous field of linear maps fromp∗(E) to p∗(F ). If T is bounded,
then so isp∗T with ‖p∗T‖ ≤ ‖T‖. The assignmentT 7→ p∗(T ) is a functor from the category of
fields of Banach spaces overX to the category of fields of Banach spaces overY .

13See [Laf06], page 3.
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Proof. Proposition 3.1.30 allows us to check the continuity ofp∗(T ) just on the total subset{ξ ◦ p :
ξ ∈ Γ(X,E)}. So letξ ∈ Γ(X,E). Then(p∗(T )◦(ξ ◦p))(y) = Tp(y)(ξ(p(y))) = ((T ◦ξ)◦p)(y) for
all y ∈ Y , i.e.,p∗(T )◦(ξ◦p) = (T ◦ξ)◦p. BecauseT ◦ξ ∈ Γ(X,F ), we have(T ◦ξ)◦p ∈ Γ(Y, p∗F )
by definition, soT is continuous.

Proposition 3.3.4 (Composition and pullback).LetZ be another topological space and letq : Z →
Y be continuous. LetE be a u.s.c. field of Banach spaces overX. Then the u.s.c. fieldsq∗p∗E and
(p ◦ q)∗E of Banach spaces overZ are identical. The same is true for the pullback of continuous
fields of linear maps.

Proof. Let z ∈ Z. Then(q∗p∗E)z = (p∗E)q(z) = Ep(q(z)) = ((p ◦ q)∗E)z. So the fibres of the two
fields agree. We have to check that also the set of sections are the same.

Let Λ := {ξ ◦ p : ξ ∈ Γ(X, E)} andM := {ξ ◦ p ◦ q : ξ ∈ Γ(X, E)}. DefineM ′ := {η ◦ q :
ξ ∈ Γ(X, p∗E)}. ThenM ⊆ M ′ becauseΛ ⊆ Γ(X, p∗(E)) by the definition ofΓ(X, p∗(E)). Let
η ∈ Γ(X, p∗(E)). We show thatζ := η ◦ q ∈ M ′ is locally approximable by elements ofM . Let
z0 ∈ Z andε > 0. Sinceη is in Γ(X, p∗E) = Λ, we can find a neighbourhoodV of q(z0) and a
η0 ∈ Λ such that the norm ofη − η0 is less thanε onV . Sinceq is continuous, the setW := q−1(V )
is a neighbourhood ofz0. Defineζ0 := η0 ◦ q ∈M . Then for allz ∈W we have

‖ζ(z)− ζ0(z)‖ = ‖η(q(z))− η0(q(z))‖
q(z)∈V
< ε.

Corollary 3.3.5. Suppose thatE is a u.s.c. field of Banach spaces overX. Letx0 ∈ p(Y ) ⊆ X. Then
p∗(E)|p−1({x0}) is a constant field overp−1({x0}) with fibreEx0 .

Proof. This follows from the identityp ◦ ιp−1({x0}) = ι{x0} ◦ p|p−1({x0}), whereι∗ stands for the
respective inclusion maps.

Corollary 3.3.6. The pullback of a constant field is constant with the same fibre.

Proposition 3.3.7 (Pullback and product). LetE andF be u.s.c. fields of Banach spaces overX.
Then the internal productp∗(E)×Y p∗(F ) andp∗ (E ×X F ) are identical.

Proof. Let y ∈ Y . Then(p∗E ×Y p∗F )y = (p∗E)y × (p∗F )y = Ep(y) × Fp(y) = (E ×X F )p(y). So
the fibres are equal. The sets of sections are also the same because the set

{y 7→ (ξ(p(y)), η(p(y))) : ξ ∈ Γ(X,E), η ∈ Γ(X,F )}

is total and contained both inΓ (Y, p∗E ×Y p∗F ) and inΓ (Y, p∗(E ⊗X F )).

Definition and Lemma 3.3.8 (Pullback and bilinear maps).LetE, F ,G be u.s.c. fields of Banach
spaces overX. If µ is a continuous field of bilinear maps fromE ×X F to G, then the family
p∗(µ) := (µp(y))y∈Y is a continuous field of bilinear maps fromp∗(E)×Y p∗(F ) = p∗(E ×X F ) to
p∗(G). If µ is bounded, then so isp∗µ with ‖p∗µ‖ ≤ ‖µ‖.

Proof. p∗(µ) is obviously locally bounded. Letξ ∈ Γ(X,E) and η ∈ Γ(X,F ). Thenξ ◦ p ∈
Γ(Y, p∗E) andη ◦ p ∈ Γ(Y, p∗F ). Using Proposition 3.1.35, the test for continuity of bilinear maps,
it suffices to show thaty 7→ p∗(µ)y(ξ(p(y)), η(p(y))) ∈ Γ(Y, p∗(G)). Now

p∗(µ)y(ξ(p(y)), η(p(y))) = µp(y)(ξ(p(y)), η(p(y))) = (µ ◦ (ξ, η)) (p(y))

for all y ∈ Y . Sinceµ ◦ (ξ, η) is in Γ(X,G), we are done.
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Remark 3.3.9. If µ in the preceding definition is non-degenerate (i.e., the image ofµy spans a dense
subset ofGy for all y ∈ Y ), thenp∗(µ) is non-degenerate as well.

Proposition 3.3.10 (Pullback and tensor products).LetE andF be u.s.c. fields of Banach spaces
overX. Thenp∗(E) ⊗Y p∗(F ) andp∗ (E ⊗X F ) are identical. The analogous statement is true for
the tensor product and the pullback of continuous fields of linear maps.

Proof. The underlying families of Banach spaces are in both cases(Ep(y) ⊗ Fp(y))y∈Y . We have to
show that also the sets of sections agree. Letξ ∈ Γ(X,E) andη ∈ Γ(X,F ). Thenξ ◦p ∈ Γ(Y, p∗E)
andη ◦ p ∈ Γ(Y, p∗F ) and hencey 7→ ξ(p(y))⊗ η(p(y)) ∈ Γ (Y, p∗E ⊗Y p∗F ). On the other hand,
x 7→ ξ(x)⊗η(x) ∈ Γ (X, E ⊗X F ) and hencey 7→ ξ(p(y))⊗η(p(y)) ∈ Γ (Y, p∗(E ⊗X F )). Note
that the span of such selections is total, so we have found a total set of selections that are sections for
both fields, so the fields are equal.

Proposition 3.3.11 (Pullback and linearisations).LetE, F ,G be u.s.c. fields of Banach spaces over

X. Letµ be a continuous field of bilinear maps fromE ×X F toG. Thenp̂∗(µ) = p∗(µ̂) as families
of linear maps fromp∗(E ⊗X F ) = p∗E ⊗Y p∗F to p∗G.

Proof. Let y ∈ Y . Thenp∗(µ)y = µp(y) by definition. Hencep̂∗(µ)y = µ̂p(y). On the other hand,
p∗(µ̂) = µ̂p(y) = µ̂p(y).

Proposition 3.3.12.LetE, F ,E′, F ′ be u.s.c. fields of Banach spaces overX. LetS be a continuous
field of linear maps fromE toE′ andT be a continuous field of linear maps fromF to F ′. Then

p∗ (S ⊗ T ) = p∗(S)⊗ p∗(T ).

Proof. Let y ∈ Y . Thenp∗(S ⊗ T )y = (S ⊗ T )p(y) = Sp(y) ⊗ Tp(y) and (p∗(S)⊗ p∗(T ))y =
p∗(S)y ⊗ p∗(T )y = Sp(y) ⊗ Tp(y).

Proposition 3.3.13 (Preservation of associativity).LetE1, E2, E3, F1, F2 andG be u.s.c. fields of
Banach spaces overX. Letµ1 ∈ Mloc (E1, E2;F1), µ2 ∈ Mloc (E2, E3;F2), ν1 ∈ Mloc (F1, E3;G),
andν2 ∈ Mloc (E1, F2;G). Assume that

ν̂1 ◦ (µ̂1 ⊗ IdE3) = ν̂2 ◦ (IdE1 ⊗µ̂2)

which could be regarded as a formulation of a very general associativity law. Then the same law holds
after applying the functorp∗(·):

p̂∗(ν1) ◦
(
p̂∗(µ1)⊗ Idp∗E3

)
= p̂∗(ν2) ◦

(
Idp∗E1 ⊗p̂∗(µ2)

)
.

3.3.2 The pullback of fields of Banach algebras and Banach modules

Because the pullback construction preserves associativity, we can pull back algebras and modules and
obtain algebras and modules again:

Definition 3.3.14 (The pullback of a field of Banach algebras).LetA be a field of Banach algebras
overX with multiplicationµ. Then we equipp∗(A) with the multiplicationp∗(µ) to give a field of
Banach algebras overY . If A is non-degenerate, thenp∗(A) is non-degenerate as well.
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Let A andB be fields of Banach algebras overX andϕ : A → B a homomorphism. Thenp∗(ϕ) is
a homomorphism of fields of Banach algebras fromp∗(A) to p∗(B), and this defines a functor from
the category of fields of Banach algebras overX to those overY .
If Z is another topological space andq : Z → Y is continuous, then

(p ◦ q)∗(A) = q∗(p∗(A))

as fields of Banach algebras overZ (compare 3.3.4). This is also true for homomorphisms in the sense
that(p ◦ q)∗(ϕ) = q∗(p∗(ϕ)) if ϕ : A→ B is a homomorphism of fields of Banach algebras overX.

Proposition 3.3.15.LetA be a u.s.c. field of Banach algebras overX. Then the fibrewise unitalisation
commutes with the pullback, i.e., we havẽp∗A = p∗(Ã).

Definition 3.3.16 (The pullback of a field of Banach modules).LetA be a field of Banach algebras
overX. LetE be a left BanachA-module withA-actionµE . Then we equipp∗(E) with thep∗(A)-
actionp∗(µE) : p∗(A) ×Y p∗(E) → p∗(E) to give a Banachp∗(A)-module. IfE is non-degenerate,
thenp∗(E) is non-degenerate as well.

The pullback of fields of bimodules is defined similarly. The pullback ofA-linear operators gives
p∗A-linear operators and also the pullback of homomorphisms with coefficient maps gives homomor-
phisms with coefficient maps. The pullback is functorial with respect to both homomorphisms and
linear operators. Moreover, the pullback of fields of Banach modules, linear operators and homomor-
phisms is compatible with the composition of continuous maps: IfZ is another topological space and
q : Z → Y is continuous, then(p ◦ q)∗(E) = q∗(p∗(E)) as Banach(p ◦ q)∗A-modules (compare
3.3.4).

Lemma 3.3.17.LetB be a u.s.c. field of Banach algebras overX. LetEB, BF be BanachB-modules
andG a field of Banach spaces overX. Letµ be aB-balanced continuous field of bilinear maps from
E ×X F toG. Thenp∗µ is p∗B-balanced.

As in Proposition 3.3.10, the corresponding result for fields of Banach spaces, one proves:

Proposition 3.3.18.LetA, B, C be u.s.c. fields of Banach algebras overX. LetAEB andBFC be
Banach bimodules. Thenp∗(E ⊗B F ) = (p∗E) ⊗p∗B (p∗F ) as Banachp∗A-p∗C-bimodules. The
analogous statement is true for the pullback and the tensor product of homomorphisms.

Proposition 3.3.19.LetB andB′ be u.s.c. fields of Banach algebras overX and letψ : B → B′ be a
continuous field of homomorphisms. LetE be a BanachB-module. Then(p∗ψ)∗ (p∗E) = p∗ (ψ∗E).

3.3.3 The pullback of fields of Banach pairs

Definition 3.3.20 (The pullback of a field of Banach pairs).Let B be a field of Banach algebras
overX and letE = (E<, E>) be a BanachB-pair. Thenp∗(E) := (p∗(E<), p∗(E>)) is a Banach
p∗(B)-pair when equipped with the obvious bracket.

This defines a functor from the category of BanachB-pairs to the category of Banachp∗(B)-pairs,
linear and contractive on the spaces of linear operators. As for Banach modules, the pullback of
a homomorphism is a homomorphism and the pullback commutes with the tensor product and the
pushout.

We now study how the pullback and locally compact operators are related.
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Lemma 3.3.21.LetE andF be BanachB-pairs. If η> ∈ Γ(X,F>) andξ< ∈ Γ(X,E<), then(
p∗
∣∣η>〉〈ξ<∣∣)

y
=
∣∣η>(p(y))

〉〈
ξ<(p(y))

∣∣
for all y ∈ Y .

Proposition 3.3.22. LetE andF be BanachB-pairs and letT be aB-linear operator fromE to
F . If T is locally compact, then so isp∗(T ) : p∗(E) → p∗(F ). Conversely, every operator̃T ∈
Kloc
p∗B (p∗E, p∗F ) can be locally approximated by operators of the formp∗T with T ∈ Kloc

B (E,F ).

Proof. Let T be locally compact. Lety0 ∈ Y . Let ε > 0. Find a neighbourhoodU of x0 := p(y0) in
X andn ∈ N andξ<1 , . . . , ξ

<
n ∈ Γ(X,E<), η>1 , . . . , η

>
n ∈ Γ(X,F>) such that∥∥∥∥∥Tu −

n∑
i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣∥∥∥∥∥ ≤ ε

for all u ∈ U . Let V := p∗(V ). ThenV is a neighbourhood ofy0 in Y . For all i ∈ {1, . . . , n}, the
sectionsξ<i ◦ p andη>i ◦ p belong toΓ(Y, p∗E<) andΓ(Y, p∗F>), respectively. Letv ∈ V and define
u := p(v) ∈ U . Then∥∥∥∥∥p∗(T )v −

n∑
i=1

∣∣η>i (p(v))
〉〈
ξ<i (p(v))

∣∣∥∥∥∥∥ =

∥∥∥∥∥Tu −
n∑
i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣∥∥∥∥∥ ≤ ε.

Hencep∗(T ) is locally compact.
Now let T̃ ∈ Kloc

p∗B (p∗E, p∗F ). Without loss of generality we can assume thatT̃ is of the

form
∣∣η̃>〉〈ξ̃<∣∣ with η̃> ∈ Γ(Y, p∗F>) and ξ̃< ∈ Γ(Y, p∗E<). Let y0 ∈ Y andε > 0. Find a

neighbourhoodVη of y0 in Y such thatη̃> is bounded onVη by some constantCη > 0. Find an
analogous neighbourhoodVξ for ξ̃< and the constantCξ > 0. Find a neighbourhoodV contained
in Vη ∩ Vξ andη> ∈ Γ(X,F>), ξ< ∈ Γ(X,E<) such that‖η̃>(v) − η>(p(v))‖ ≤ ε/(3Cη) and
‖ξ̃<(v)− ξ<(p(v))‖ ≤ ε/(3Cξ) and‖η̃>(v)− η>(p(v))‖ ‖ξ̃<(v)− ξ<(p(v))‖ ≤ ε/3 for all v ∈ V .
Then ∥∥∥ ∣∣η̃>(v)

〉〈
ξ̃<(v)

∣∣− ∣∣η>(p(v))
〉〈
ξ<(p(v))

∣∣ ∥∥∥ ≤ ε

for all v ∈ V .

3.4 Groupoids

3.4.1 Some notation and examples

A groupoid14 is a small category such that every morphism is invertible. IfG is a groupoid, then
we will denote the set of composable pairs of morphisms byG(2) ⊆ G × G or G ∗ G, and the set of
identity morphisms byG(0) ⊆ G. The setG(0), called the unit space, can also be regarded as the set
of objects ofG. The range and source mapsG → G(0) will be denoted byrG andsG (or r ands if G
is understood).

Often we will think ofG(0) as being a set that is not a subset ofG but a distinct set on which the
groupoid “acts”. IfX is a set andG is a groupoid such thatG(0) = X, then we say thatG is a groupoid

14See [LG99], section 2.1.
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overX. The map that sends somex ∈ X to the associated identity morphism inG will usually be
calledε. In calculations, we will usually omit the mapε.

Let G be a groupoid. IfK andL are subsets ofG(0), thenGL := {γ ∈ G : r(γ) ∈ L},
GK := {γ ∈ G : s(γ) ∈ K} andGLK := GL ∩ GK . If g, h ∈ G(0), thenGg := G{g}, Gh := G{h} and
Ghg := Gg ∩ Gh = {γ ∈ G : r(γ) = h, s(γ) = g}.

A topological groupoid15 G is a groupoid which is at the same time a topological space such that
the composition, inversion and the range and source maps are continuous. IfG is a groupoid over a set
X, then we also have to assume thatX is a topological space and the mapε : X → G is continuous.

Example 3.4.1.LetX be a topological space. Then we define the structure of a topological groupoid
onX by settingr := s := IdX (so there are only units).

Example 3.4.2.LetG be a topological group. ThenG can be regarded as a topological groupoid if
we letr ands be the projection on the identity element ofG.

Example 3.4.3.LetX be a topological space. Then we define the structure of a topological groupoid
onX ×X by setting

(X ×X)(0) := X and ε : X → X ×X, x 7→ (x, x),

r : X ×X → X, (y, x) 7→ y and s : X ×X → X, (y, x) 7→ x,

∀x, y, z ∈ X : (z, y) ◦ (y, x) := (z, x) and (y, x)−1 = (x, y).

Note thatr ands are open maps.

Example 3.4.4.LetX andZ be topological spaces and letp : X → Z be a continuous map. Extend-
ing the preceding example we define the structure of a topological groupoid onX ×Z X = X ×p X
by setting

(X ×Z X)(0) := X and ε : X → X ×Z X, x 7→ (x, x),

r : X ×Z X → X, (y, x) 7→ y and s : X ×Z X → X, (y, x) 7→ x,

∀x, y, z ∈ X, p(x) = p(y) = p(z) : (z, y) ◦ (y, x) := (z, x) and (y, x)−1 = (x, y).

If p is open, then Lemma 3.4.5 guaranties thatr ands are open, too.

Lemma 3.4.5. Let X, Y and Z be topological spaces. LetfX : X → Z and fY : Y → Z be
continuous maps. LetX ×Z Y be the fibre product{(x, y) ∈ X × Y | fX(x) = fY (y)} ofX andY
overZ. If fY is open (and surjective), then the canonical projectionpX : X ×Z Y → X is open (and
surjective).

Proof. Let (x, y) ∈ X ×Z Y . Let U be a neighbourhood of(x, y) in X ×Z Y . Then there are
UX ⊆ X andUY ⊆ Y such that(UX × UY ) ∩ X ×Z Y ⊆ U . SincefY is open, we know that
fY (UY ) is a neighbourhood offY (y). SincefY (y) = fX(x) andfX is continuous, we know that
U ′
X := f−1

X (fY (UY )) is a neighbourhood ofx. SoUX ∩ U ′
X is also a neighbourhood ofx. Let x′ be

an element of this neighbourhood. ThenfX(x′) ∈ fY (Uy), and hence we can find any′ ∈ UY such
thatfX(x′) = fY (y′). Note that(x, y) ∈ U . But this means thatpX(U) containsUX ∩ U ′

X and is
hence a neighbourhood ofx. SopX is open.

15See [LG99], section 2.1.
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Definition 3.4.6 (Strict morphism). 16 LetG andH be topological groupoids. Then astrict morphism
f from G toH is a continuous map fromG toH which also is a homomorphism of groupoids (i.e., a
functor).

The topological groupoids, together with the strict morphisms, form a category.

Example 3.4.7.LetX be a topological space and letG be a topological groupoid overX. Then there
is a canonical strict morphism fromG to the groupoidX × X introduced in Example 3.4.3, namely
the map that sends aγ ∈ G to the pair(r(γ), s(γ)).

3.4.2 G-Banach spaces

For the rest of Section 3.4, letG be a topological groupoid with unit spaceG(0) = X.

Definition 3.4.8 (G-Banach space).A G-Banach spaceE is a u.s.c. fieldE of Banach spaces over
G(0) together with an isometric isomorphismα : s∗(E) → r∗(E) such that

1. ∀g ∈ G(0) : αg = IdEg ;

2. ∀(γ, γ′) ∈ G ∗ G : αγ◦γ′ = αγ ◦ αγ′ ;

3. ∀γ ∈ G : αγ−1 = α−1
γ .

The Axioms 1. and 3. follow from Axiom 2. They are just stated to give a clearer impression of a
G-Banach space. The second axiom can also be stated asµ∗(α) = π∗1(α)◦π∗2(α) whereµ : G∗G → G
is the composition inG andπi : G ∗ G → G is the projection onto theith coordinate.

Example 3.4.9.LetX be a topological space. If we regardX as a groupoid with unit spaceX, then
every u.s.c. field of Banach spaces overX is, canonically, anX-Banach space (and everyX-Banach
space is, trivially, a u.s.c. field overX).

Definition 3.4.10 (G-equivariant fields of linear maps). Let E andF be G-Banach spaces with
actionsα andβ, respectively. AG-equivariant continuous field of linear maps fromE to F is a
continuous field(Tx)x∈X of linear maps fromE to F such that the following diagram commutes

s∗(E)
s∗(T ) //

α

��

s∗(F )

β

��
r∗(E)

r∗(T ) // r∗(F )

This means thatTr(γ) ◦ αγ = βγ ◦ Ts(γ) for all γ ∈ G.

Definition 3.4.11 (The product and the sum ofG-Banach spaces).LetE andF beG-Banach spaces
with actionsα andβ, respectively. Thenr∗(E×XF ) = r∗E×G r∗F ands∗(E×XF ) = s∗E×G s∗F .
We hence get a continuous field of isomorphismsα ×G β : s∗(E ×X F ) → r∗(E ×X F ). It is an
action onE×X F which we call theproduct actionof α andβ. Similarly, we define an actionα⊕G β
onE ⊕X F .

16See [LG99], Définition 2.1.
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Definition 3.4.12 (Equivariant bilinear maps betweenG-Banach spaces).Let E1, E2 andF be
G-Banach spaces withG-actionsα1, α2 andβ, respectively. Letµ : E1 ×X E2 → F be a continuous
field of bilinear maps. Thenµ is calledG-equivariantif the following diagram commutes

s∗(E1 ×X E2)
s∗(µ) //

α1×Gα2

��

s∗(F )

β

��
r∗(E1 ×X E2)

r∗(µ) // r∗(F )

This means thatγµs(γ) (e1, e2) = µr(γ) (γe1, γe2) for all γ ∈ G ande1 ∈ (E1)s(γ) ande2 ∈ (E2)s(γ).

Definition 3.4.13 (The tensor product ofG-Banach spaces).LetE andF beG-Banach spaces with
actionsα andβ, respectively. Then we can form the tensor productE ⊗X F of the continuous fields
of Banach spacesE andF . Now

s∗ (E ⊗X F ) = s∗(E)⊗G s∗(F ) and r∗ (E ⊗X F ) = r∗(E)⊗G r∗(F ).

Nowα⊗β is a continuous field of isometric isomorphisms froms∗(E)⊗G s∗(F ) to r∗(E)⊗G r∗(F ).
This induces onE ⊗X F the structure of aG-Banach spaces.

Proof. To see thatα⊗ β is an action onE ⊗X F we calculate

µ∗ (α⊗ β) = µ∗ (α)⊗ µ∗ (β) = (π∗1(α) ◦ π∗2(α))⊗ (π∗1(β) ◦ π∗2(β))
= (π∗1(α)⊗ π∗1(β)) ◦ (π∗2(α)⊗ π∗2(β)) = π∗1(α⊗ β) ◦ π∗2(α⊗ β).

Note thatE ⊗X F has the universal property forG-equivariant continuous fields of bilinear maps.

Definition 3.4.14 (The trivial G-Banach space).Let CX denote the constant field of Banach spaces
overX with fibre C. Note thats∗(CX) = CG = r∗(CX). SoCX is aG-Banach space if we take
(IdC)γ∈G as the action ofG.

3.4.3 G-Banach algebras andG-Banach modules

Definition 3.4.15 (G-Banach algebra). A G-Banach algebraA is a u.s.c. fieldA of Banach algebras
over G(0) together with a continuous field of isometric Banach algebra isomorphisms between the
continuous fields of Banach algebrass∗(A) andr∗(A) which makesA aG-Banach space.

Definition 3.4.16 (Homomorphism ofG-Banach algebras).If A andB areG-Banach algebras, then
a G-equivariant homomorphism fromA to B is a homomorphism of fields of Banach algebras over
G(0) which is at the same time aG-equivariant continuous field of linear maps.

Definition 3.4.17 (Unitalisation). Let A be aG-Banach algebra withG-actionα. Let ι denote the
canonical action ofG on the constant fieldCX . Then we take the actionα ⊕G ι on the unitalisation
Ã = A⊕X CX of A.

LetB be aG-Banach algebra withG-actionα : s∗(B) → r∗(B).
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Definition 3.4.18 (G-Banach module). A right G-BanachB-moduleE is a right Banach module
E over the u.s.c. fieldB of Banach algebras overG(0) together with a continuous field of isometric
isomorphismsαE : s∗(E) → r∗(E) with coefficient mapα between the Banachs∗(B)-modules∗(E)
and the Banachr∗(B)-moduler∗(E) which makesE aG-Banach space.

Analogously one defines leftG-Banach modules andG-Banach bimodules.

Definition 3.4.19 (G-equivariant linear operator). If E andF areG-BanachB-modules, then aG-
equivariantB-linear operator fromE to F is aB-linear operator between BanachB-modules which
also is aG-equivariant continuous field of linear maps.

Analogously one definesG-equivariant homomorphisms with coefficient maps betweenG-Banach
modules andG-Banach bimodules.

The balanced tensor product ofG-Banach modules is defined analogously to the tensor product of
G-Banach spaces, using that the balanced tensor product commutes with the pullback alongr ands.
Similarly, the pushout along a continuous equivariant field of homomorphisms of Banach algebras is
defined.

3.4.4 G-Banach pairs

LetB be aG-Banach algebra withG-actionα.

Definition 3.4.20 (G-BanachB-pair). A G-BanachB-pairE is a BanachB-pairE = (E<, E>)
together with an isometric isomorphismsαE : s∗(E) → r∗(E) with coefficient mapα between the
Banachs∗(B)-pairs∗(E) and the Banachr∗(B)-pairr∗(E) which makesE< andE> intoG-Banach
spaces.

Remark 3.4.21. In [Laf06] the definition of aG-Banach pair is formulated differently: Quite obvi-
ously, the aim of Définition 1.2.4 in [Laf06] is to define the same kind of object that we have defined
here, but in [Laf06] the notion of a homomorphism with coefficient maps is missing (or at least it has
not been made explicit); hence the definition of aG-Banach pair makes use of continuous fields of
linear operators (as we prefer to call them here), which leads to a result which is certainly not intended
by the author.
On the other hand, the notation in [Laf06] is a bit simpler as a consequence of this imprecision because
thinking of the action ofG onE as an invertible linear operatorV from s∗E to r∗E makes it possi-
ble to conjugate operators of the forms∗T , whereT ∈ LB(E,E), to get an operatorV s∗TV −1 ∈
Lr∗B (r∗E, r∗E). In our notation, it is not obvious what the composition of an operator and a con-
current morphism should be. In this particular case, there is not much choice, but we prefer to stay
systematic and writeαL(E)s∗T for the operatorV s∗TV −1, see Definition 3.4.23 and 3.4.24 and com-
pare also Definition 3.5.2.

Definition 3.4.22 (G-equivariant operator). If E andF areG-BanachB-pairs, then aG-equivariant
B-linear operator fromE to F is anB-linear operatorT = (T<, T>) between theB-pairsE andF
such thatT< : F< → E< andT> : E> → F> areG-equivariant continuous fields of linear maps.

Similarly defineG-equivariant homomorphisms with coefficient maps. The definitions of the balanced
equivariant tensor product ofG-Banach pairs and the definition and properties of the pushout are
straightforward.
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3.4.5 TheG-action on operators

LetB be aG-Banach algebra withG-actionα.

Definition and Proposition 3.4.23 (G-action on fields of linear maps).Let E andF beG-Banach
spaces with the respectiveG-actionsαE andαF . LetS ∈ Lloc (s∗E, s∗F ). Then we define

γ(Sγ) := αFγ ◦ Sγ ◦
(
αEγ
)−1 ∈ L

(
Er(γ), Fr(γ)

)
for all γ ∈ G and

αL(E,F )(S) := (γ(Sγ))γ∈G ∈ Lloc (r∗E, r∗F ) .

αL(E,F ) is aC-linear andC0 (G)-linear bijection, compatible with the composition of fields of linear
maps. IfS is bounded, then so isαL(E,F )(S) with the same norm, so the restriction ofαL(E,F ) is an
isometric bijectionL(s∗E, sF ) ∼= L(r∗E, r∗F ).

Proof. We just check thatαL(E,F )(S) is a continuous field of linear maps. Letξ∈Γ(G, r∗E). Then

αL(E,F )(S) (ξ(γ)) = αFγ

(
Sγ

((
αEγ
)−1

(ξ(γ))
))

for all γ ∈ G. Now γ 7→ (αEγ )−1(ξ(γ)) is a section ofs∗E, soγ 7→ Sγ((αEγ )−1(ξ(γ))) is a section
of s∗F . It follows thatγ 7→ αL(E,F )(S) (ξ(γ)) is a section ofr∗F . Moreover,αL(E,F )(S) is clearly
locally bounded, so it is inLloc (r∗E, r∗F ).

If in the preceding definitionE andF are not onlyG-Banach spaces butG-BanachB-modules over
someG-Banach algebraB, thenαL(E,F ) preservesB-linearity and hence gives bijections

Lloc
s∗B (s∗E, s∗F ) ∼= Lloc

r∗B (r∗E, r∗F ) and Ls∗B (s∗E, s∗F ) ∼= Lr∗B (r∗E, r∗F ) .

Definition and Proposition 3.4.24 (G-action on operators between pairs).Let E andF be G-
BanachB-pairs. LetS ∈ Lloc

s∗B (s∗E, s∗F ). Then we define aC(Y )-linear bijection, compatible with
the composition of linear operators,

αL(E,F )(S) :=
(
αL(F<,E<)(S<), αL(E>,F>)(S>)

)
∈ Lloc

r∗B (r∗E, r∗F ) .

If S is bounded, then so isαL(E,F )(S) and both have the same norm.

Proof. Let γ ∈ G, e>r(γ) ∈ E
>
r(γ) andf<r(γ) ∈ F

<
r(γ). Then〈

αL(E,F )(S)<γ f
<
r(γ), e

>
r(γ)

〉
=
〈
γS<γ γ

−1f<r(γ), e
>
r(γ)

〉
= γ

〈
S<γ γ

−1f<r(γ), γ
−1e>r(γ)

〉
= γ

〈
γ−1f<r(γ), S

>
γ γ

−1e>r(γ)

〉
=
〈
f<r(γ), γS

>
γ γ

−1e>r(γ)

〉
=
〈
f<r(γ), α

L(E,F )(S)>γ e
>
r(γ)

〉
.

Proposition 3.4.25.LetE andF beG-BanachB-pairs. If ξ< ∈ Γ(G, s∗E<) andη> ∈ Γ(G, s∗F>),
then

(3.2) αL(E,F )
(∣∣η>〉〈ξ<∣∣) =

∣∣αF> ◦ η>
〉〈
αE

< ◦ ξ<
∣∣.

If S ∈ Kloc
s∗B (s∗E, s∗F ), thenαL(E,F )(S) ∈ Kloc

r∗B (r∗E, r∗F ). ThusαL(E,F ) restricts to aC(G)-
linear bijectionαK(E,F ) between the spaces of locally compact operators.
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Proof. We check formula (3.2): Letγ ∈ G ande>r(γ) ∈ E
>
r(γ). Then

αL(E,F )
(∣∣η>〉〈ξ<∣∣)> (e>r(γ)) = γ

∣∣η>〉〈ξ<∣∣>
γ
γ−1e>r(γ) = γ

(
η>(γ)

〈
ξ<(γ), γ−1e>r(γ)

〉)
= (γη>(γ))

〈
γξ<(γ), γγ−1e>r(γ)

〉
=
∣∣γη>(γ)

〉〈
γξ<(γ)

∣∣> (e>r(γ)) .
A similar calculation can be done for the left-hand side, which shows (3.2).

Remark 3.4.26. In Section 4.7.1 we are going to introduce the set of compact operatorsKB(E,F ) ⊆
Kloc
B (E,F ) and discuss in Section 4.8.3 to what extend one can think ofαK(E,F ) as an action ofG on

KB(E,F ) (which would makeKB(E) aG-Banach algebra).

If E is aG-BanachA-B-pair, then the action ofA on E regarded as a homomorphism fromA to
LB(E), isG-equivariant in the following sense:

Lemma 3.4.27.LetE be aG-BanachA-B-pair with A andB beingG-Banach algebras. Let̃a ∈
Γ(G, s∗A). Then

αL(E)(πs∗A(ã)) = πr∗A
(
αA ◦ ã

)
whereπs∗A andπr∗A are the actions ofs∗A on s∗E andr∗A on r∗E (regarded as homomorphisms
into the linear operators) andαA is the action ofG onA.

Proof. Let γ ∈ G ande>r(γ) ∈ E
>
r(γ). Then

αL(E)(πs∗A(ã))>γ (e>r(γ)) = αE
>

γ

(
(πs∗A(ã))>γ

((
αE

>

γ

)−1
(e>r(γ))

))
= γ

(
ã(s(γ)) · (γ−1e>r(γ))

)
= (γã(s(γ))) · (γγ−1)e>r(γ) = πr∗A

(
αA ◦ ã

)>
γ

(e>r(γ)).

A similar calculation can be done for the left-hand side, yieldingαL(E)(πs∗A(ã))γ = πr∗A
(
αA ◦ ã

)
γ

for all γ ∈ G.

3.5 KKban
G (A, B)

Let G be a topological groupoid with unit spaceX.

3.5.1 Gradings

Definition 3.5.1 (A gradedG-Banach space).LetE be aG-Banach space. Then agrading automor-
phismσE of E is aG-equivariant contractive continuous field of linear maps fromE to E such that
σ2
E = IdE . A G-Banach space endowed with a grading automorphism is called agradedG-Banach

space.

Just as for gradings of ordinary Banach spaces or Banach spaces with group actions we can define
the notions of graded ( =even) and oddG-equivariant continuous fields of linear maps between graded
G-Banach spaces, gradedG-Banach algebras, gradedG-Banach modules and gradedG-Banach pairs.
All the above constructions are compatible with this additional structure, e.g., the tensor product or
the pullback along a strict morphism of groupoids.
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3.5.2 KKban
G -cycles

LetA andB beG-Banach algebras.

Definition 3.5.2 (KKban
G -cycle). A KKban-cyclefrom A toB is a pair(E, T ) such thatE is a non-

degenerate gradedG-A-B-bimodule andT is an odd element ofLB(E) such that

[πA(a), T ] , πA(a) (Id−T 2) ∈ Kloc
B (E)

for all a ∈ Γ(X,A) and

π(ã)
(
αL(E)(s∗T )− r∗T

)
∈ Kloc

r∗B (r∗E)

for all ã ∈ Γ (G, r∗A), whereαL(E) : Lloc
s∗B (s∗E) → Lloc

r∗B (r∗E) denotes the “action” ofG onL(E)
defined in 3.4.24. We writeEban

G (A,B) for the class of allKKban
G -cycles fromA toB.

Definition 3.5.3 (The sum ofKKban
G -cycles). If (E1, T1) and(E2, T2) are elements ofEban

G (A,B),
then we define(E1, T1)⊕ (E2, T2) := (E1 ⊕ E2, T1 ⊕ T2). It is an element ofEban

G (A,B).

Definition 3.5.4 (The inverse of aKKban
G -cycle). If (E, T ) is in Eban

G (A,B), then we define−(E, T )
to be(E, T ), but equipped with the opposite grading. This is an element ofEban

G (A,B).

Using the facts that the pushout of locally compact operators is again locally compact (Proposi-
tion 3.1.60) and that the pullback commutes with the pushout (Proposition 3.3.19), we can define
the pushout for cycles:

Definition 3.5.5 (The pushout ofKKban
G -cycles). LetB′ be anotherG-Banach algebra andψ : B →

B′ aG-equivariant homomorphism fromB toB′. Let (E, T ) be an element ofEban
G (A,B). Then the

pushoutψ∗(E, T ) of (E, T ) alongψ is defined as(ψ∗(E), T ⊗ 1). It is contained inEban
G (A,B′).

3.5.3 Morphisms betweenKKban
G -cycles

Let A, A′ andB, B′ be G-Banach algebras. Letϕ : A → A′ andψ : B → B′ be G-equivariant
homomorphisms.

Definition 3.5.6. Let (E, T ) and(E′, T ′) be elements ofEban
G (A,B) andEban

G (A′, B′), respectively.
Then a morphism from(E, T ) to (E′, T ′) with coefficient mapsϕ andψ is a pairΦ = (Φ<,Φ>) such
that

• (Φ<,Φ>) is an equiv. homomorphism of graded Banach pairs with coefficient mapsϕ andψ;

• we have

T ′< ◦ Φ< = Φ< ◦ T< and T ′> ◦ Φ> = Φ> ◦ T>.

The classEban
G (A,B), together with the morphisms of cycles (withIdA andIdB as coefficient maps),

forms a category. This gives us an obvious notion ofisomorphicKKban-cyclesin Eban
G (A,B). Just

as for ordinaryKKban-cycles, the sum of cycles is associative and the pushout is functorial up to
isomorphism (compare Propositions 1.8.7 and 1.8.8).
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3.5.4 Homotopies betweenKKban-cycles

The G-Banach algebraB[0, 1]

Definition 3.5.7 (TheG-Banach spaceE[0, 1]). LetE be aG-Banach space withG-actionα : s∗E →
r∗E. Then we define theG-Banach spaceE[0, 1] by the following data:

1. the underlying family of Banach spaces is(Ex[0, 1])x∈X ;

2. a sectionξ of E[0, 1] is continuous if and only if(x, t) 7→ ξ(x)(t) is a continuous section in
p∗1(E), wherep1 : X × [0, 1] → X denotes the projection onto the first component;

3. the actionα[0, 1] : s∗(E[0, 1]) → r∗(E[0, 1]) is defined by

E[0, 1]s(γ) = Es(γ)[0, 1] 3 ξγ 7→ (t 7→ αγ(ξγ(t))) ∈ Er(γ)[0, 1].

For all t ∈ [0, 1], define the continuous family of linear contractionsevt : E[0, 1] → E given by
(evt)x : Ex[0, 1] → Ex, ξx 7→ ξx(t) for all x ∈ X.

Proposition 3.5.8. If B is a G-Banach algebra, thenB[0, 1] is a G-Banach algebra as well (when
equipped with the obvious multiplication). The fieldevt : B[0, 1] → B is a continuous field of homo-
morphisms in this case. Similar statements hold for Banach modules and pairs.

Note that(evt,∗E)x = (evt)x,∗Ex for everyG-BanachB[0, 1]-pairE.

Homotopies andKKban

LetA,B beG-Banach algebras.

Definition 3.5.9 (Homotopies).A homotopybetween cycles(E0, T0) and(E1, T1) in Eban
G (A,B) is

a cycle(E, T ) in Eban
G (A,B[0, 1]) such thatev0,∗(E, T ) is isomorphic to(E0, T0) andev1,∗(E, T ) is

isomorphic to(E1, T1). If such a homotopy exists then(E0, T0) and(E1, T1) are calledhomotopic.
We will denote by∼ the equivalence relation onEban

G (A,B[0, 1]) generated by homotopy (note that
homotopy is reflexive and symmetric). The equivalence classes for∼ are called homotopy classes.

Definition and Proposition 3.5.10 (KKban
G (A,B)). The class of all homotopy classes inEban

G (A,B)
is denoted byKKban

G (A,B). The addition of cycles induces a law of composition onKKban
G (A,B)

making it an abelian group (at least if we restrict the cardinality of dense subsets of the involved Ba-
nach modules by some cardinality to obtain a setKKban

G (A,B) rather than just a class).KKban
G (A,B)

is functorial in both variables with respect toG-equivariant continuous fields of homomorphisms of
Banach algebras.

The fact thatKKban
G (A,B) has inverses should be proved by adjusting Lemme 1.2.5 in [Laf02] to

the situation ofG-Banach algebras. The above definition is part of Définition-Proposition 1.2.6 in
[Laf06]. The functoriality result is analogous to Proposition 1.8.12 for the ordinaryKKban-groups.

The following Lemma is the obvious generalisation of Lemme 1.2.3 in [Laf02].

Lemma 3.5.11.Let (E, T ) ∈ Eban
G (A,B) and assume thatT ′ ∈ L(E) is odd bounded operator such

thata(T − T ′), (T − T ′)a ∈ Kloc
B (E) for all a ∈ Γ0(X,A). Then(E, T ′) ∈ Eban

G (A,B) and there
is a homotopy from(E, T ) to (E, T ′).
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Proof. First we prove that(E, T ′) is aKKban-cycle:
Let a ∈ Γ(X,A). Then

[a, T ′] = aT ′ − T ′a = aT − a(T − T ′)− Ta+ (T − T ′)a
= [a, T ]− a(T − T ′) + (T − T ′)a ∈ Kloc

B (E).

Secondly,

a(T ′2 − 1) = a((T − (T − T ′))2 − 1)
= a(T 2 − T (T − T ′)− (T − T ′)T + (T − T ′)2 − 1)
= a(T 2 − 1)− [a, T ](T − T ′)− Ta(T − T ′)− a(T − T ′)T + a(T − T ′)2 ∈ Kloc

B (E)

for all a ∈ Γ(X,A). Thirdly, if ã ∈ Γ(G, r∗A):

ã
(
r∗T ′ − αL(E)(s∗T ′)

)
= ã

(
r∗T − αL(E)(s∗T )

)
− ãr∗(T − T ′)− ãαL(E)(s∗(T − T ′)) ∈ Kloc

B (E).

The first term is locally compact because(E, T ) is aKKban-cycle. The second term is locally compact
becausẽa can be approximated locally by sections of the forma◦r with a ∈ Γ(X,A); hencẽar∗(T −
T ′) can be approximated locally by operators of the form(a◦r)r∗(T −T ′) = r∗(a(T −T ′)) and such
operators are locally compact. The third term can be rewritten asαL(E)

[(
(αA)−1(ã)

)
s∗(T − T ′)

]
whereαA is theG-action onA (see Lemma 3.4.27 for a more precise statement). Now(αA)−1(ã) is
in Γ(G, s∗A), so by a similar argument as for the second term,

(
(αA)−1(ã)

)
s∗(T − T ′) is locally

compact. Hence the third term is locally compact.
Now we construct the homotopy: The idea is to connect(E, T ) to (E, T ′) through cycles of the

form (E, (1 − t)T + tT ′) for t ∈ [0, 1]. First note thatE[0, 1] is a non-degenerate gradedG-Banach
B[0, 1]-pair and(E[0, 1], T [0, 1]) is in Eban

G (A[0, 1], B[0, 1]). We can also regard it as an element
of Eban

G (A,B[0, 1]). Moreover, ifS ∈ Kloc
B (E), thenS[0, 1] ∈ Kloc

B[0,1] (E[0, 1]). It follows that

a(T ′ − T )[0, 1] ∈ Kloc
B[0,1] (E[0, 1]) for all a ∈ Γ(X,A). The multiplication withId[0,1] in every fibre

is in LB[0,1](E[0, 1]), soId[0,1] a(T ′ − T )[0, 1] is also inKloc
B[0,1] (E[0, 1]) for all a ∈ Γ(X,A).

Applying the first part of the proof toT [0, 1] and T [0, 1] + Id[0,1](T ′ − T )[0, 1] shows that(
E[0, 1], T [0, 1] + Id[0,1](T ′ − T )[0, 1]

)
is aKKban-cycle. For allt ∈ [0, 1] the pushout alongevBt

of this cycle is isomorphic to(E, T+t(T ′−T )) = (E, (1−t)T+tT ′). So we have found a homotopy
from (E, T ) to (E′, T ′).

3.6 KKban-cycles and strict morphisms of groupoids

3.6.1 The pullback along strict morphisms

LetG andH be topological groupoids and letf : H → G be a strict morphism of topological groupoids
as defined in 3.4.6.

The pullback of G-Banach spaces

Definition 3.6.1 (The pullback of aG-Banach space).Let E be anG-Banach space with actionα.
Write f0 for f |H(0) : H(0) → G(0). Thenf∗0 (E) is a u.s.c. field of Banach spaces overH(0). Now
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sG ◦ f = f0 ◦ sH andrG ◦ f = f0 ◦ rH, so

s∗H(f∗0 (E)) = (f0 ◦ sH)∗(E) = (sG ◦ f)∗(E) = f∗(s∗G(E))

and similarly for the range maps. Sof∗(α) is a continuous field of isometric isomorphisms from
s∗H(f∗0 (E)) to r∗H(f∗0 (E)). It is an action ofH.

TheH-Banach spacef∗0 (E) with the actionf∗(α) is called thepullback ofE along f and is
denoted byf∗(E).

Proof. LetµG andµH denote the composition maps ofG andH, respectively, and writeπGi : G ∗G →
G andπHi : H ∗ H → H for the respective projections onto theith component. Letf ∗ f denote the
mapH∗H → G∗G which sends(η, η′) to (f(η), f(η′)). ThenπGi ◦(f ∗f) = f ◦πHi for all i ∈ {1, 2}
andµG ◦ (f ∗ f) = f ◦ µH. Now

µ∗H(f∗(α)) = (f ◦ µH)∗ (α) = (µG ◦ (f ∗ f))∗ (α) = (f ∗ f)∗
(
µ∗G(α)

)
= (f ∗ f)∗

((
πG1
)∗

(α) ◦
(
πG2
)∗

(α)
)

= (f ∗ f)∗
((
πG1
)∗

(α)
)
◦ (f ∗ f)∗

((
πG2
)∗

(α)
)

=
(
πG1 ◦ (f ∗ f)

)∗
(α) ◦

(
πG2 ◦ (f ∗ f)

)∗
(α)

=
(
f ◦ πH2

)∗
(α) ◦

(
f ◦ πH1

)∗
(α)

=
(
πH2
)∗

(f∗(α)) ◦
(
πH1
)∗

(f∗(α)) .

Sof∗(α) is an action.

Proposition 3.6.2.The pullback commutes with the tensor product: LetE andF beG-Banach spaces.
Thenf∗

(
E ⊗G(0) F

)
= f∗(E)⊗H(0) f∗(F ) asH-Banach spaces.

Proof. The identity is true for the underlying u.s.c. fields of Banach spaces. We have to show that the
actions ofH on the spaces are the same. Letα andβ denote the action ofG onE andF , respectively.
Then it follows from the last sentence of Proposition 3.3.10 thatf∗ (α⊗ β) = f∗(α)⊗ f∗(β).

Proposition 3.6.3.LetE andF beG-Banach spaces and letT ∈ Lloc(E,F ) beG-equivariant. Then
f∗T ∈ Lloc(f∗E, f∗F ) isH-equivariant.

Proof. WriteαE andαF for theG-action onE andF , respectively. Fromr∗G(T ) ◦αE = αF ◦ s∗G(T )
we can deduce that

r∗H(f∗(T )) ◦ f∗(αE) = f∗(r∗G(T )) ◦ f∗(αE) = f∗
(
r∗G(T ) ◦ αE

)
= f∗

(
αF ◦ s∗G(T )

)
= f∗(αF ) ◦ f∗(s∗G(T )) = f∗(αF ) ◦ s∗H(f∗(T )).

An analogous statement is true for equivariant bilinear maps.

Proposition 3.6.4. The pullback alongf is a functor from the category ofG-Banach spaces to the
category ofH-Banach spaces, linear and contractive on the sets of bounded continuous fields of linear
maps, and sending equivariant continuous fields of linear maps to equivariant continuous fields.
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Proposition 3.6.5. LetK be another topological groupoid and letg : K → H be a strict morphism.
Then(f ◦g)∗ = g∗◦f∗ as functors from the category ofG-Banach spaces to the category ofK-Banach
spaces.

Proof. Let E be aG-Banach space withG-actionα. Then(f0 ◦ g0)∗(E) = g∗0 (f∗0 (E)) and (f ◦
g)∗(α) = g∗ (f∗(α)).

Proposition 3.6.6. Id∗G is the identity functor of the category ofG-Banach spaces.

Lemma 3.6.7. LetE andF beG-Banach spaces. For allS ∈ Lloc
(
s∗GE, s

∗
GF
)
, we have

αL(f∗E,f∗F )(f∗S) = f∗
(
αL(E,F )(S)

)
∈ Lloc

(
f∗r∗GE, f

∗r∗GF
)
.

Note thatLloc
(
f∗r∗GE, f

∗r∗GF
)

= Lloc (r∗Hf
∗E, r∗Hf

∗F ) and similarly forsG andsH.

The pullback of G-Banach algebras andG-Banach modules

Let B be aG-Banach algebra. Thenf∗B is anH-Banach algebra. Also the pullback alongf of a
G-equivariant homomorphism of Banach algebras is aH-equivariant homomorphism.

If E is aG-BanachB-module, thenf∗E is anH-Banachf∗B-module in an obvious way. Sim-
ilarly for G-Banach bimodules. The pullback alongf of a G-equivariant linear operator or of a
G-equivariant homomorphism with coefficient maps is anH-equivariant linear operator or anH-
equivariant homomorphism with coefficient maps.

The pullback alongf respects balanced equivariant bilinear maps and balanced tensor products
of equivariant Banach modules. Regarding the pushout of equivariant Banach modules we have the
following result:

Proposition 3.6.8. Let B be aG-Banach algebra andE a right G-BanachB-module. LetB′ be
anotherG-Banach algebra and letψ : B → B′ be aG-equivariant homomorphism. Then

f∗ (ψ∗(E)) = (f∗(ψ))∗ (f∗(E))

as rightH-Banachf∗(B′)-modules.

The pullback of G-Banach pairs

The functorf∗ from the category ofG-Banach spaces to the category ofH-Banach spaces induces a
functorf∗ from the category ofG-BanachB-pairs to the category ofH-Banachf∗(B)-pairs. It sends
a G-BanachB-pair E = (E<, E>) to theH-Banachf∗B-pair f∗(E) = (f∗(E<), f∗(E>)). A
(G-equivariant)B-linear operatorT = (T<, T>) is sent to the (H-equivariant)f∗(B)-linear operator
f∗(T ) = (f∗(T<), f∗(T>)).

One proceeds similarly forG-BanachA-B-pairs and homomorphisms with coefficient maps. The
functor respects the tensor product of Banach pairs. Also the pushout of Banach pairs is preserved
just as in Proposition 3.6.8.

Lemma 3.6.9. LetE andF beG-BanachB-pairs. For allS ∈ Lloc
s∗GB

(
s∗GE, s

∗
GF
)
, we have

αL(f∗E,f∗F )(f∗S) = f∗
(
αL(E,F )(S)

)
.

Note thatLloc
f∗r∗GB

(
f∗r∗GE, f

∗r∗GF
)

= Lloc
r∗Hf

∗B (r∗Hf
∗E, r∗Hf

∗F ) and similarly forsG andsH. The
preceding lemma could be interpreted as a way to give meaning to the formula

f∗αL(E,F ) = αL(f∗E,f∗F ).



3.6. KKban-CYCLES AND STRICT MORPHISMS OF GROUPOIDS 103

3.6.2 The pullback ofKKban-cycles along strict morphisms

Let G andH be topological groupoids overX andY , respectively, and letf : H → G be a strict
morphism of topological groupoids. LetA andB beG-Banach algebras.

Proposition 3.6.10. Let (E, T ) ∈ Eban
G (A,B). Thenf∗(E, T ) := (f∗E, f∗T ) is an element of

Eban
H (f∗A, f∗B).

Proof. We already know thatf∗E is a non-degenerateH-Banachf∗A-f∗B-pair. If σE is the grading
automorphism ofE, thenf∗σE = (f∗σ<E , f

∗σ>E) is a grading automorphism forf∗E. The operator
f∗T is odd for this grading. Leta ∈ Γ(X,A). Thena ◦ f ∈ Γ (Y, f∗A). Now Proposition 3.3.22
says that the pullback of locally compact operators is again locally compact, so

[π(a ◦ f), f∗T ] = [f∗(π(a)), f∗T ] = f∗ [π(a), T ] ∈ Kloc
f∗B (f∗E) .

Now let b ∈ Γ(Y, f∗Y ). Let ε > 0 and y0 ∈ Y . Then we can find ana ∈ Γ(X,A) and a
neighbourhoodV of y0 in Y such that‖T‖ ‖b(v)− a(f(v))‖ ≤ ε for all v ∈ V . For allv ∈ V , we
have

‖[π(b), f∗T ]v − [π(a ◦ f), f∗T ]v‖ = ‖[π(b− a ◦ f), f∗T ]v‖

=
∥∥∥[πAf(v)

(b(v)− a(f(v))), Tf(v)

]∥∥∥
≤ ‖T‖ ‖b(v)− a(f(v))‖ ≤ ε.

So [π(b), f∗T ] is locally approximable by locally compact operators, so it is itself locally compact.
Analogously one shows thatπ(b)

(
Id−f∗T 2

)
is locally compact.

Now let ã ∈ Γ
(
G, r∗GA

)
. Thenã ◦ f ∈ Γ

(
H, f∗r∗GA

)
= Γ (H, r∗Hf∗A); note thatf∗r∗GA =

r∗Hf
∗A. Now

π(ã ◦ f)
(
αL(f∗E) (s∗Hf

∗T )− r∗Hf
∗T
)

= f∗π(ã)
(
αL(f∗E)

(
f∗s∗GT

)
− f∗r∗GT

)
= f∗

(
π(ã)

(
αL(E)(s∗GT )− r∗GT

))
∈ Kloc

f∗r∗GB

(
f∗r∗GE

)
= Kloc

r∗Hf
∗B (r∗Hf

∗E) .

As above, one can extend this to allb̃ ∈ Γ (H, r∗Hf∗A) (instead of̃a ◦ f ).
Sof∗(E, T ) ∈ Eban

H (f∗A, f∗B).

The pullback alongf respects the direct sum of cycles, the pushout andf∗(B[0, 1]) = (f∗B)[0, 1]. It
follows that the pullback also respects homotopies. Hence we get the following theorem:

Theorem 3.6.11.The pullback along the strict morphismf : H → G induces a homomorphism

f∗ : KKban
G (A,B) → KKban

H (f∗A, f∗B) .

It is natural with respect toG-equivariant homomorphisms in both variables.
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3.7 The sufficient condition for homotopy

Let X be a topological space and letG be a topological groupoid overX. We now reformulate the
sufficient condition 1.9.1 for the homotopy ofKKban-cycles forG-Banach algebras. The notation
Kloc(r∗Φ, r∗Φ) will be explained in Definition 3.7.4. This very general form of the sufficient condi-
tion will become important in the proof of the injectivity part of the generalised Green-Julg Theorem
in Chapter 7 and is going to be proved at the end of this section.

Theorem 3.7.1 (Sufficient condition for homotopy ofKKban
G -cycles). LetA andB beG-Banach

algebras. Let(E, T ), (E′, T ′) be elements ofEban
G (A,B). If there is a morphismΦ from (E, T ) to

(E′, T ′) (with coefficient mapsIdA andIdB) such that

1. ∀a ∈ Γ (X,A) : [a, (T, T ′)] = ([a, T ], [a, T ′]) ∈ Kloc (Φ,Φ) ,

2. ∀a ∈ Γ (X,A) : a((T, T ′)2 − 1) =
(
a(T 2 − 1), a(T ′2 − 1)

)
∈ Kloc (Φ,Φ) ,

3. ∀a ∈ Γ (G, r∗A) a
((
αL(E,F )s∗T, αL(E′,F ′)s∗T ′

)
− (r∗T, r∗T ′)

)
∈ Kloc (r∗Φ, r∗Φ) ,

then(E, T ) ∼ (E′, T ′). Moreover, ifT = 0 andT ′ = 0, then the homotopy can be chosen to have
trivial operator as well.

3.7.1 Some notation

Definition 3.7.2 (Lloc(ρ, σ)). Let ρ : E → E′ andσ : F → F ′ be contractive continuous fields of
linear maps between u.s.c. fields of Banach spaces overX. Then a morphism fromρ to σ is a pair
(T, T ′) such thatT ∈ Lloc(E,F ) andT ′ ∈ Lloc(E′, F ′) andσ ◦ T = T ′ ◦ ρ. The vector space of all
morphisms betweenρ andσ is denoted byLloc(ρ, σ). The Banach space of all pairs inLloc(ρ, σ) of
bounded fields of operators will be calledL(ρ, σ).

Just as in Section 1.9.1 and based on the preceding definition one can define morphisms between
u.s.c. fields of Banach modules and Banach pairs. We make the last definition explicit:

Definition 3.7.3 (Lloc
ψ (Φ,Ψ)). Let ψ : B → B′ be a continuous field of homomorphisms between

u.s.c. fields of Banach algebras overX. LetΦψ : EB → E′
B′ andΨψ : FB → F ′

B′ be contractive con-
tinuous fields of concurrent homomorphisms with coefficient mapψ between u.s.c. fields of Banach
pairs overX. Then the vector spaceLloc

ψ (Φ,Ψ) of morphisms fromΦψ to Ψψ is defined to be the set

of pairs(T, T ′) such thatT ∈ Lloc
B (E,F ), T ′ ∈ Lloc

B′ (E
′, F ′) satisfying

Ψ> ◦ T> = T ′> ◦ Φ> and T ′< ◦Ψ< = Φ< ◦ T<.

The Banach spaceLψ (Φ,Ψ) is the subspace ofLloc
ψ (Φ,Ψ) of bounded pairs.

Now we proceed in analogy to Section 1.9.2:

Definition 3.7.4 (Kloc(Φ,Ψ)). Let Φψ : EB → E′
B′ and Ψψ : FB → F ′

B′ be as above. Then
Kloc
ψ (Φ,Ψ) is the vector space of pairs(T, T ′) ∈ Lloc

B (E,F ) × Lloc
B′ (E

′, F ′) such that for allε > 0
and allx ∈ X there is a neighbourhoodU of x in X, ann ∈ N, ξ<1 , . . . , ξ

<
n ∈ Γ(X,E<) and

η>1 , . . . , η
>
n ∈ Γ(X,F>) such that∥∥∥∥∥Tu −

n∑
i=1

∣∣η>i (u)
〉〈
ξ<i (u)

∣∣∥∥∥∥∥ ≤ ε and

∥∥∥∥∥T ′u −
n∑
i=1

∣∣Ψ>
u (η>i (u))

〉〈
Φ<
u (ξ<i (u))

∣∣∥∥∥∥∥
for all u ∈ U .
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If (T, T ′) ∈ Kloc
ψ (Φ,Ψ), thenT ∈ Kloc

B (E,F ), T ′ ∈ Kloc
B′ (E

′, F ′) and(T, T ′) ∈ Lloc
ψ (Φ,Ψ).

Proposition 3.7.5. Let ρ : E → E′ andσ : F → F ′ be contractive continuous fields of linear maps
between u.s.c. fields of Banach spaces overX. Let(T, T ′) ∈ Lloc(ρ, σ). LetY be a topological space
and letp : Y → X be continuous. Then(p∗T, p∗T ′) ∈ Lloc (p∗ρ, p∗σ).

This proposition carries over to fields of Banach pairs and also applies to locally compact operators:

Proposition 3.7.6. Let ψ : B → B′ be a continuous field of homomorphisms between u.s.c. fields
of Banach algebras overX. Let Φψ : EB → E′

B′ and Ψψ : FB → F ′
B′ be contractive continuous

fields of concurrent homomorphisms with coefficient mapψ between u.s.c. fields of Banach pairs over
X. LetY be a topological space and letp : Y → X be continuous. If(T, T ′) ∈ Lloc

ψ (Φ,Ψ), then

(p∗T, p∗T ′) ∈ Lloc
p∗ψ (p∗Φ, p∗Ψ). Moreover, if(T, T ′) is locally compact, then so isp∗(T, T ′) :=

(p∗T, p∗T ′).

Definition 3.7.7 (The classEban
G (ϕ,ψ)). Let ϕ : A → A′ andψ : B → B′ beG-equivariant homo-

morphisms ofG-Banach algebras. AKKban-cycle fromϕ to ψ is a pair(Φ: E → E′, (T, T ′)) such
thatE is a non-degenerate gradedG-BanachA-B-pair,E′ is a non-degenerate gradedG-BanachA′-
B′-pair,Φ is an evenG-equivariant homomorphism fromAEB to A′E

′
B′ with coefficient mapsϕ and

ψ and(T, T ′) ∈ Lψ (Φ,Φ) is a pair of odd bounded continuous fields of linear operators such that

1. ∀a ∈ Γ (X,A) : [a, (T, T ′)] = ([a, T ], [ϕ ◦ a, T ′]) ∈ Kloc
ψ (Φ,Φ) ,

2. ∀a ∈ Γ (X,A) : a((T, T ′)2 − 1) =
(
a(T 2 − 1), (ϕ ◦ a)(T ′2 − 1)

)
∈ Kloc

ψ (Φ,Φ) ,

3. ∀a ∈ Γ (G, r∗A) : a
((
αL(E,F )s∗T, αL(E′,F ′)s∗T ′

)
− (r∗T, r∗T ′)

)
∈ Kloc

r∗ψ (r∗Φ, r∗Φ) ,

The class of all such cycles will be denoted byEban
G (ϕ,ψ).

With this notation we can restate Theorem 3.7.1: IfIdA
ΦIdB

is a morphism between elements(E, T )
and(E′, T ′) of Eban

G (A,B) for G-Banach algebrasA andB, then a sufficient condition for(E, T )
and(E′, T ′) to be homotopic is thatΦ ∈ Eban

G (IdA, IdB).

3.7.2 Mapping cylinders

Mapping cylinders of contractive fields of linear maps between gradedG-Banach spaces

Definition 3.7.8. Let ρ : E → E′ be a contractiveG-equivariant graded continuous field of linear
maps between gradedG-Banach spaces. LetevE

′
0 denote the canonical contractiveG-equivariant

graded continuous field of linear maps fromE′[0, 1] toE′ obtained by evaluation at zero as defined in
3.5.7. Then the mapping cylinderZ (ρ) of ρ is defined to be the fibre product ofρ andevE

′
0 :

Z (ρ) //

��

E′[0, 1]

evE′
0

��
E ρ

// E′

In particular,Z (ρ) is a gradedG-Banach space. For allx ∈ X, the fibreZ (ρ)x of Z (ρ) atx is Z (ρx).
The sections ofZ (ρ) have the form(ξ, ξ′) whereξ is a section ofE andξ′ is a section ofE′[0, 1] such
that (ξ(x), ξ′(x)) ∈ Z (ρx), i.e.,ρx(ξ(x)) = ξ′(x)(0). The grading automorphism ofZ (ρ) is given
fibrewise.
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A technical detail that needs to be checked to make sure that this definition makes sense is that there are
indeed enough such sections, i.e., that condition (C2) is satisfied: For allx ∈ X, the set(ξ(x), ξ′(x))
is dense inZ (ρx) if (ξ, ξ′) runs through the sections defined above. So let(ex, ξ′x) ∈ Z (ρx).

If ex = 0, then we first find a sectioñξ′ of E′[0, 1] such thatξ̃′(x) is close toξ′x. By cutting
ξ̃′ down with a functionχ ∈ C[0, 1] which satisfies0 ≤ χ ≤ 1 andχ(0) = 0 andχ(t) = 1 for
all t ∈ [0, 1] outside some small neighbourhood of0 one can assume without loss of generality that
ξ̃′(y)(0) = 0 for all y ∈ X. Then(0, ξ̃′) satisfies that(0, ξ̃′)(x) is close to(ex, ξ′x).

Secondly, ifex is arbitrary butξ′x(t) = ρx(ex) for all t ∈ [0, 1], then it is rather trivial to find a
section ofZ (ρ) such that its value atx is close to(ex, ξ′x).

Combining these two facts one can treat the general case.

Definition 3.7.9 (The mapping cylinder construction as a functor).Let ρ : E → E′ andσ : F →
F ′ be contractiveG-equivariant graded continuous fields of linear maps between gradedG-Banach
spaces. Let(T, T ′) ∈ Lloc (ρ, σ). Define

Z
(
T, T ′

)
:=
(
Z
(
Tx, T

′
x

))
x∈X .

ThenZ (T, T ′) ∈ Lloc (Z (ρ) , Z (σ)).

The mapping cylinder construction carries over to gradedG-Banach algebras,G-Banach modules and
G-Banach pairs. We skip most of the details and give an overview:

If ψ : B → B′ is a homomorphism of gradedG-Banach algebras, thenZ (ψ) is a gradedG-Banach
algebra. IfB andB′ are non-degenerate, then so isZ (ψ). The mapping cylinder ofIdB is isomorphic
toB[0, 1].

If Φψ : EB → E′
B′ is a homomorphism of gradedG-Banach modules with coefficient mapψ,

thenZ (Φ) is a gradedG-BanachZ (ψ)-module. IfEB andE′
B′ are non-degenerate, then so isZ (Φ)

and ev0,∗ (Z (Φ)) ∼= E and evt,∗ (Z (Φ)) ∼= E′ for all t ∈]0, 1]. If Ψψ : FB → F ′
B′ is another

homomorphism of gradedG-Banach modules with coefficient mapψ and(T, T ′) ∈ Lloc
ψ (Φ,Ψ), then

Z (T, T ′) ∈ Lloc
Z(ψ) (Z (Φ) , Z (Ψ)).

The same is true for Banach pairs. The main technical result for Banach pairs is the following:

Proposition 3.7.10. Let Φψ : EB → E′
B′ and Ψψ : FB → F ′

B′ be concurrent homomorphisms of
gradedG-Banach pairs. Let(T, T ′) ∈ Lloc

ψ (Φ, Ψ). Then the following are equivalent:

1. (T, T ′) ∈ Kloc
ψ (Φ,Ψ);

2. Z (T, T ′) ∈ Kloc
Z(ψ) (Z (Φ) , Z (Ψ))

Proof. 1. ⇒ 2.: By straightforward linearity and continuity arguments it suffices to consider the
case that(T, T ′) is of the form(T, T ′) =

(∣∣η>〉〈ξ<∣∣, ∣∣Ψ> ◦ η>
〉〈

Φ< ◦ ξ<
∣∣) for η> ∈ Γ (X, F>)

and ξ< ∈ Γ (X, E<). Define η̃>(x) := (η>(x), t 7→ Ψ>(η>(x))) ∈ Z (Ψ>
x ) and ξ̃<(x) :=

(ξ<(x), t 7→ Φ<(ξ<(x))) ∈ Z (Φ<
x ) for all x ∈ X. Then we havẽη> ∈ Γ (X, Z (Ψ>)) and

ξ̃< ∈ Γ (X, Z (Φ<)). Just as in the proof of Proposition 1.9.31 one can now show thatZ (T, T ′) =∣∣η̃>〉〈ξ̃<∣∣. SoZ (T, T ′) is in particular locally compact.
2.⇒ 1.: LetZ (T, T ′) be locally compact. Letε > 0 andx ∈ X. Find a neighbourhoodU of x in

X and findn ∈ N and(η>1 , η
′>
1 ) , . . . , (η>n , η

′>
n ) ∈ Z (Ψ>) and(ξ<1 , ξ

′<
1 ) , . . . , (ξ<n , ξ

′<
n ) ∈ Z (Φ<)

such that ∥∥∥∥∥ Z
(
T, T ′

)
u
−

n∑
i=1

∣∣ (η>i (u), η′>i (u)
) 〉〈 (

ξ<i (u), ξ′<i (u)
) ∣∣ ∥∥∥∥∥ ≤ ε
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for all u ∈ U . Define

(S, S′) :=
n∑
i=1

(∣∣η>i 〉〈ξ<i ∣∣, ∣∣Ψ> ◦ η>i
〉〈

Φ< ◦ ξ<i
∣∣) .

In the proof of 1.9.31 it is shown that‖(Tu, T ′u)− (Su, S′u)‖ ≤ ε for all u ∈ U . Hence(T, T ′) is
locally compact.

Mapping cylinders and KKban-cycles

Theorem 3.7.11.Letϕ : A → A′ andψ : B → B′ be homomorphisms ofG-Banach algebras. Let
(Φ: E → E′, (T, T ′)) be an element ofEban

G (ϕ,ψ). Let ιA : A → Z (ϕ) be the field of canonical
injections(ιA)x = ιAx : Ax → Z (ϕx) wherex runs throughX. Then

ι∗A
(
Z (Φ) , Z

(
T, T ′

))
∈ Eban

G (A, Z (ψ)) .

If we writeev0 for the canonical homomorphismZ (ψ) → B andevt for the homomorphismZ (ψ) →
B′, (bx, β′x) 7→ β′x(t) for all t ∈]0, 1], then

ev0,∗
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))) ∼= (E, T )

and
evt,∗

(
ι∗A
(
Z (Φ) , Z

(
T, T ′

))) ∼= ϕ∗(E′, T ′)

for all t ∈]0, 1].

Proof. The operatorZ (T, T ′) is indeed bounded and odd on the non-degenerate gradedG-Banach
Z (ψ)-moduleZ (Φ) which carries a left action ofZ (ϕ). Let a ∈ Γ(X,A). Then(ιA ◦ a)(x) =
(a(x), t 7→ ϕx(a(x))) for all x ∈ X. Now[

(a(x), t 7→ ϕx(a(x)))x∈X , Z
(
T, T ′

)]
= Z

(
[a, T ] ,

[
ϕ ◦ a, T ′

])
∈ Kloc

Z(ψ) (Z (Φ)) .

Similarly, (a(x), t 7→ ϕx(a(x)))x∈X
(
Z (T, T ′)2 − 1

)
is locally compact. Now leta ∈ Γ (G, r∗A).

Then for allγ ∈ G: [
a
(
αL(Z(Φ),Z(Φ))s∗ Z

(
T, T ′

)
− r∗ Z

(
T, T ′

))]
γ

= a(γ)
(
γ Z
(
T, T ′

)
s(γ)

− Z
(
T, T ′

)
r(γ)

)
= a(γ)

(
Z
(
γTs(γ), γT

′
s(γ)

)
− Z

(
Tr(γ), T

′
r(γ)

))
= Z

(
a(γ)(γTs(γ) − Tr(γ)), ϕr(γ)(a(γ))(γT

′
s(γ) − T ′r(γ))

)
= Z

(
a(αL(E,E)s∗T − r∗T ), (ϕ ◦ a)(αL(E′,E′)s∗T ′ − r∗T ′)

)
γ
.

By definition ofEban
G (ϕ,ψ) the pair

(
a(αL(E,E)s∗T − r∗T ), (ϕ ◦ a)(αL(E′,E′)s∗T ′ − r∗T ′)

)
is lo-

cally compact, so we are done.
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The following Proposition is proved just as its analogue 1.9.34 for groups instead of groupoids.

Proposition 3.7.12. Let ϕ : A → A′ andψ : B → B′ be homomorphisms ofG-Banach algebras.
Let (Φ: E → E′, (T, T ′)) be an element ofEban

G (ϕ,ψ). Write ιA for the canonical “injection”
A→ Z (ϕ) andpB′[0,1] for the canonical homomorphismZ (ψ) → B′[0, 1]. Then(

pB′[0,1]

)
∗
(
ι∗A
(
Z (Φ) , Z

(
T, T ′

)))
∈ Eban

G

(
A, B′[0, 1]

)
.

This is a homotopy
ψ∗(E, T ) ∼ ϕ∗(E′, T ′).

Theorem 3.7.1 can now be restated as the following corollary:

Corollary 3.7.13. LetA andB beG-Banach algebras and(Φ: E → E′, (T, T ′)) ∈ Eban
G (IdA, IdB).

Then(E, T ), (E′, T ′) ∈ Eban
G (A,B) and(E, T ) ∼ (E′, T ′).

3.8 Morita theory

Let G be a topological groupoid overX. The results and definitions of Section 1.10 all carry over to
the case ofG-Banach algebras:

3.8.1 Morita equivalences, Morita cycles, Morita morphisms

Definition 3.8.1 (G-equivariant Morita equivalence). Let A andB beG-Banach algebras. AG-
equivariant Morita equivalencebetweenA andB is a pair

(
BE

<
A ,AE

>
B

)
of G-Banach bimodules

endowed with an equivariant continuous field of bilinear maps〈·, ·〉B : E< ×E> → B and an equiv-
ariant continuous field of bilinear mapsA〈·, ·〉 : E> × E< → A such that for allx ∈ X the pair
(E<x , E

>
x ) with the brackets〈·, ·〉B,x andA〈·, ·〉x is a Morita equivalence betweenAx andBx.

This notion of Morita equivalence is an equivalence relation on the class of non-degenerateG-Banach
algebras.

Definition 3.8.2 (G-equivariant Morita cycle). LetA andB be non-degenerateG-Banach algebras.
Then aG-equivariant Morita cycleF from A to B is a non-degenerateG-BanachA-B-pairF such
thatΓ (X,A) acts onF by locally compact operators, i.e., ifπA : Γ (X,A) → Lloc

B (F ) is the action of
Γ (X,A) onF , thenπA (Γ(X,A)) ⊆ Kloc

B (F ). The class of all Morita cycles fromA toB is denoted
by Mban

G (A,B).

Just as in the first chapter the Morita cycles are just the trivially gradedKKban-cycles with zero
operator. There are obvious notions of (iso)morphisms between Morita cycles, the sum of Morita
cycles and of the pullback and the pushout of Morita cycles also in theG-equivariant setting (com-
pare Definition 1.10.13). Hence there is also a canonical notion ofhomotopyof G-equivariant Morita
cycles. The homotopy classes ofG-equivariant Morita cycles are calledG-equivariant Morita mor-
phisms.

Using Proposition 3.1.59, which says that operators of the formT ⊗ 1 are locally compact ifT is
and the left action of the second factor is by locally compact operators, one can define the composition
of Morita cycles just as in the first chapter. The composition, the homotopy, the sum, the pullback and
the pushout are all pairwise compatible.

From Example 3.1.57 we know thatΓ(X,B) acts by locally compact operators on the standard
BanachB-pair (B,B) if B is non-degenerate. We can therefore make the following definition:
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Definition 3.8.3 (Mban
G (ϕ), Morban

G (ϕ)). LetA andB be non-degenerateG-Banach algebras and let
ϕ : A → B be aG-equivariant homomorphism. ThenΓ(X,A) acts onBB from the left viaϕ and
the so-constructed Morita cycle will be denoted byMban

G (ϕ) and its homotopy class byMorban
G (ϕ) or

simply by[ϕ].

In particular, the standardB-pair (B,B) is a Morita cycle fromB to B for every non-degenerate
G-Banach algebraB.

Theorem 3.8.4.The non-degenerateG-Banach algebras together with theG-equivariant Morita mor-
phisms form a category (apart from the fact that the classes of morphisms are not sets). IfB is a
non-degenerateG-Banach algebra, then the identity morphism onB is given by the equivalence class
of (B,B).

To prove this one can proceed as in Chapter 1 and show the following lemmas:

Lemma 3.8.5. Let A, B and C be non-degenerateG-Banach algebras,F ∈ Mban
G (A,B) and

ψ : B → C a G-equivariant homomorphism. Then

ψ∗(F ) ∼h F ⊗B Mban
G (ψ).

Lemma 3.8.6. LetA andB be non-degenerateG-Banach algebras andF ∈ Mban
G (A,B). Define

theG-BanachA-B-pair AF as
(
F<x Ax, AxF

>
X

)
x∈X

:= (cl (F<x Ax) , cl (AxF
>
x ))x∈X (the sections

being just the sections ofF that take their values inAF ) being aG-BanachA-B-pair. ThenA ⊗A
F, AF ∈ Mban

G (A,B) and
A⊗A F ∼h AF ∼h F.

Note thatA⊗AF andAF areA-non-degenerate so every Morita morphism is homotopic to a Morita
morphism with non-degenerate left action.

Lemma 3.8.7. Let A, B and C be non-degenerateG-Banach algebras,F ∈ Mban
G (B,C) and

ϕ : A→ B a G-equivariant homomorphism. Then

Mban
G (ϕ)⊗B F ∼h ϕ∗(F ).

Proposition 3.8.8 (Morita equivalences are Morita morphisms).LetA andB be non-degenerate
G-Banach algebras and letE = (E<, E>) be aG-equivariant Morita equivalence betweenA andB.
ThenE, regarded as aG-BanachA-B-pair with trivial grading, is inMban

G (A,B). Let Morban
G (E)

or [E] denote the Morita morphism associated toE.

Proof. We have to show thatΓ(X,A) acts onE by locally compact operators. Leta ∈ Γ(X,A),
x0 ∈ X andε > 0. Because theAx0-valued inner product on(E>x0

, E<x0
) is full, we can find an

n ∈ N andξ>1 , . . . , ξ
>
n ∈ Γ(X,E>) andξ<1 , . . . , ξ

<
n ∈ Γ(X,E<) such that∥∥∥∥∥a(x0)−

n∑
i=1

A

〈
ξ>i (x0), ξ<i (x0)

〉∥∥∥∥∥ ≤ ε/2.

Now x 7→ A 〈ξ>i (x), ξ<i (x)〉, and hence alsox 7→ a(x) −
∑n

i=1 A 〈ξ
>
i (x), ξ<i (x)〉, is a section of

A. Because the modulus of sections is upper semi-continuous, we can find a neighbourhoodU of x0

such that‖a(x)−
∑n

i=1 A 〈ξ
>
i (x), ξ<i (x)〉‖ for all x ∈ U . As in the proof of Proposition 1.10.25

one shows thatx 7→ A 〈ξ>i (x), ξ<i (x)〉 acts onE as the locally compact operator
∣∣ξ>i 〉〈ξ<i ∣∣, so we

can approximate the action ofa onE by the locally compact operator
∑n

i=1

∣∣ξ>i 〉〈ξ<i ∣∣ up toε onU .
Hence the action ofa onE is locally compact.
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As in the case for group actions and Banach algebras one proves:

Lemma 3.8.9. LetA, B be non-degenerateG-Banach algebras and letE andE′ beG-equivariant
Morita equivalences betweenA andB. Assume thatIdA

θIdB
: AEB → AE

′
B is a concurrent mor-

phism of Morita equivalences (meaning that it is a equivariant morphism of Morita cycles that also
preserves the left bracket). Then

[E] = [E′] ∈ Morban
G (A,B).

Using this lemma the following theorem is straightforward to show, compare Theorem 1.10.27.

Theorem 3.8.10.LetA andB be non-degenerateG-Banach algebras and letE be aG-equivariant
Morita equivalence betweenA andB. Then theG-equivariant Morita morphism[E] is an isomor-
phismwith inverse[E]−1 =

[
E
]
.

3.8.2 The action of Morita morphisms onKKban
G

Definition and Proposition 3.8.11. Let A, B andC be non-degenerateG-Banach algebras. Let
(E, T ) be an element ofEban

G (A,B) andF an element ofMban
G (B,C). Then we define

µF (E, T ) := (E, T )⊗B F := (E ⊗A F, T ⊗ 1) ∈ Eban
G (A,C).

Proof. We have to show that(E, T ) ⊗B F is indeed inEban
G (A,C). Let πA : Γ(X,A) → LB(E)

be the action ofΓ(X,A) onE. Recall from Proposition 3.1.59 that operators of the form “locally
compact tensor one” are locally compact becauseΓ(X,B) acts onF by locally compact operators.

1. The operatorT ⊗ 1 is odd.

2. If a ∈ Γ(X,A), then[(πA(a)⊗ 1), T ⊗ 1] = [πA(a), T ]⊗ 1 ∈ Kloc
C (E ⊗B F ).

3. If a ∈ Γ(X,A), then

(πA(a)⊗ 1)
(
IdE⊗BF −T

2 ⊗ 1
)

=
(
πA(a)(IdE −T 2)

)
⊗ 1 ∈ Kloc

C (E ⊗B F ) .

4. We user∗ (E ⊗B F ) = r∗E ⊗r∗B r∗F : If a ∈ Γ(G, r∗A), then

(πA(a)⊗ 1)
(
αL(E⊗F,E⊗F )(s∗(T ⊗ 1))− r∗(T ⊗ 1)

)
= (πA(a)⊗ 1)

(
αL(E⊗F,E⊗F )(s∗T ⊗ 1)− r∗T ⊗ 1

)
= (πA(a)⊗ 1)

([
αL(E,E)s∗T

]
⊗
[
αL(F,F )1

]
− r∗T ⊗ 1

)
= (πA(a)⊗ 1)

(
αL(E,E)s∗T ⊗ 1− r∗T ⊗ 1

)
=

(
πA(a)

(
αL(E,E)s∗T − r∗T

))
⊗ 1 ∈ Kloc

r∗C (r∗(E ⊗B F )) .

Just as 1.10.29 one now proves:
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Definition and Proposition 3.8.12. Let A, B, C be non-degenerateG-Banach algebras. Then the
product⊗B : Eban

G (A,B)×Mban
G (B,C) → Eban

G (A,C) is compatible with the respective homotopy
relations, so it lifts to a product

⊗B : KKban
G (A,B)×Morban

G (B,C) → KKban
G (A,C).

This action of the Morita morphisms onKKban
G is biadditive, associative and compatible with pullback

and pushout (compare Proposition 1.10.30). We can therefore conclude

Theorem 3.8.13.LetA, B, C be non-degenerateG-Banach algebras and letE be aG-equivariant
Morita equivalence betweenB and C. Then · ⊗B [E] is an isomorphism fromKKban

G (A,B) to
KKban

G (A,C) with inverse· ⊗B
[
E
]
.
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Chapter 4

C0(X)-Banach Spaces and Fields overX

Let X be a locally compact Hausdorff space. In the preceding two chapters we have defined two
different but very similar notions: TheC0(X)-Banach spaces and the upper semi-continuous fields
of Banach spaces overX. We have also seen how these notions can be used to define categories of
Banach algebras, Banach modules and Banach pairs, giving two constructions of aKKban-theory.
The present chapter is dedicated to a comparison of these two points of view.

The central tools are two rather obvious functorsM andF: Given a u.s.c. fieldE of Banach
spaces overX one can form theC0(X)-moduleΓ0(X,E) of sections vanishing at infinity; we call
this moduleM (E). On the other hand, ifE is aC0(X)-Banach space, then there is a straight-forward
notion of a fibreEx over x for every pointx ∈ X, and these fibres give a field of Banach spaces
(Ex)x∈X which we callF (E). It is not hard to check that these functorsM andF descent to the
categories of Banach algebras, etc., and give homomorphisms on the level ofKKban-theory (see
Propositions 4.7.10 and 4.7.14).

The compositionF ◦ M is naturally equivalent to the identity on the category of u.s.c. fields of
Banach spaces overX. Unfortunately, the compositionM ◦ F does not give back the originalC0(X)-
Banach spaces. We call this composition the Gelfand functorG. TheC0(X)-Banach spaces which
are “invariant” underG can be characterised: They are the so-called locallyC0(X)-convexC0(X)-
Banach spaces, a notion which is well-known in the literature.1 We discuss this notion here and also in
Appendix A where the hitherto unknown fact is proved that the projective tensor product overC0(X)
of two such spaces is again locallyC0(X)-convex.

The main result of this chapter is, as one might have expected, that for locallyC0(X)-convex
Banach algebras one really can go back and forth between the two definitions ofKKban-theory (see
Theorem 4.7.20). This is notcompletelytrivial because in the definition ofRKKban, even for locally
C0(X)-convex Banach algebras, the cycles that turn up do not have to be modeled on locallyC0(X)-
convex Banach spaces.

4.1 The functor M: from fields to C0(X)-Banach spaces

Definition 4.1.1 (The functorM). LetE be a u.s.c. field of Banach spaces overX. Then

M (E) := Γ0(X,E)

1See [Gie82] and [KR89b].
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is a C0(X)-Banach space with the pointwise product. IfF is another u.s.c. field of Banach spaces
overX andT is a bounded continuous field of linear maps fromE to F , then the map

M (T ) : Γ0(X,E) → Γ0(X,F ), ξ 7→ (x 7→ Tx(ξ(x))),

defines an element ofLC0(X) (M (E) ,M (F )) such that‖M (T )‖ = ‖T‖.

Proof. We show the statement about the norm: Clearly,‖M (T )‖ ≤ ‖T‖. To see the opposite in-
equality, letε > 0. Then we can find anx ∈ X such that‖Tx‖ ≥ ‖T‖ − ε/2. By definition of
the operator norm there is anex ∈ Ex such that‖ex‖ < 1 and‖T (ex)‖ ≥ ‖T‖ − ε. Since the map
ξ 7→ ξ(x) is a metric surjection fromΓ0(X,E) to Ex, there is anξ ∈ Γ0(X,E) such that‖ξ‖ ≤ 1
andξ(x) = ex. It follows that

‖M (T )‖ ≥ ‖M (T ) (ξ)‖ ≥ ‖M (T ) (ξ)(x)‖ = ‖Tx(ξ(x))‖ = ‖Tx(ex)‖ ≥ ‖T‖ − ε.

Proposition 4.1.2. M is a functor from the category of u.s.c. fields of Banach spaces overX and
bounded continuous fields of linear maps to the category ofC0(X)-Banach spaces and bounded
C0(X)-linear maps. It is linear and isometric on the morphism sets and compatible with the ten-
sor products.

Proof. ThatM is a functor and linear on the morphism sets is straightforward to show. We already
know that it is isometric. That it is compatible with the tensor products is surprisingly hard to show.
This statement is actually equivalent to the statement, proved in Appendix A.2.4, that theC0(X)-
tensor product of locallyC0(X)-convexC0(X)-Banach spaces is again locallyC0(X)-convex. We
show how multiplicativity of the functorM follows from this fact, using some results and concepts
from Appendix A:

LetE1 andE2 be u.s.c. fields of Banach spaces overX. We define a natural isomorphismmM
E1,E2

from M(E1)⊗C0(X) M(E2) to M(E1 ⊗X E2). For allξ1 ∈ Γ0(X,E1) andξ2 ∈ Γ0(X,E2) define

µ (ξ1, ξ2) (x) := ξ1(x)⊗ ξ2(x) ∈ E1
x ⊗ E2

x

for all x ∈ X. Thenµ (ξ1, ξ2) is in Γ0

(
X, E1 ⊗X E2

)
by definition of the sections onE1 ⊗X

E2. Moreover,µ is a contractive bilinearC0(X)-balanced map fromΓ0(X,E1) × Γ0(X,E2) to
Γ0

(
X, E1 ⊗X E2

)
. Hence we have a contractive linear map

(4.1) mM
E1,E2 : Γ0

(
X,E1

)
⊗C0(X) Γ0

(
X,E2

)
→ Γ0(X, E1 ⊗X E2), ξ1 ⊗ ξ2 7→ µ(ξ1, ξ2).

This clearly is a natural transformation. Fibrewise (see 4.2.3), this map is an isometric isomor-
phism. In Proposition A.2.8 we will meet a criterion which tells us thatmM

E1,E2 is an isometric

isomorphism if the left-hand sideΓ0

(
X,E1

)
⊗C0(X) Γ0

(
X,E2

)
is a so-called locallyC0(X)-convex

C0(X)-Banach space. This notion is defined in 4.4.1, and Theorem A.2.15 together with Exam-
ple A.2.4 shows that the left-hand side is indeed locallyC0(X)-convex.

We can exploit the fact thatM is multiplicative, i.e., that it commutes with the tensor product, to
defineM (µ) for bounded continuous fieldsµ of multilinear maps. However, it is more natural to
defineM (µ) directly.

Definition 4.1.3. LetE1,E2 andF be u.s.c. fields of Banach spaces overX and letµ : E1×X E2 →
F be a bounded continuous field of bilinear maps. Then the map

M (µ) : M
(
E1
)
×M

(
E1
)
→ M (F ) , (ξ1, ξ2) 7→ (x 7→ µx(ξ1(x), ξ2(x))

is C0(X)-bilinear and bounded by‖µ‖.
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Proposition 4.1.4. LetE1, E2 andF be u.s.c. fields of Banach spaces overX and letµ : E1 ×X
E2 → F be a bounded continuous field of bilinear maps. If we identifyM

(
E1
)
⊗C0(X) M

(
E2
)

and
M
(
E1 ⊗X E2

)
, then

M̂ (µ) = M (µ̂) : M
(
E1
)
⊗C0(X) M

(
E2
)
→ M (F ) .

Corollary 4.1.5. Associativity of bilinear maps is preserved underM.

A precise statement of how associativity is preserved can be obtained by adopting Proposition 3.3.13
(which says the same for another functor).

4.2 The functor F: from C0(X)-Banach spaces to fields

4.2.1 Fibres

Definition 4.2.1 (The fibres of aC0(X)-Banach space).Let E be aC0(X)-Banach space andx ∈ X.
RegardC0(X\{x}) as the closed subalgebra ofC0(X) of functions vanishing atx. ThenC0(X\{x})E
is a closed subspace ofE . Define the fibreEx of E atx to be the quotient Banach space

Ex := E/ (C0(X \ {x})E) .

For alle ∈ E we will denote byex the corresponding element of the fibreEx. The canonical projection
map fromE ontoEx will be denoted byπEx or just byπx, if the spaceE is understood.

The construction and the properties of the fibres of aC0(X)-Banach space, being a special case of the
restriction of aC0(X)-Banach space to a closed subset ofX, is discussed in Appendix A.1. There the
following propositions and examples are proved, most of them for the restriction on arbitrary closed
subsetsV ⊆ X instead of a single pointx ∈ X.

Example 4.2.2.LetE be a Banach space. ThenE := C0(X,E) is aC0(X)-Banach space andEx ∼= E
for all x ∈ X. The same is true forE ′ := C0(X)⊗π E.

Definition and Proposition 4.2.3. Let E andF be C0(X)-Banach spaces andT ∈ LC0(X)(E ,F).
Then there is a unique linear operatorTx ∈ L (Ex,Fx) such that the following diagram is commuta-
tive:

E T //

πEx
��

F
πFx

��
Ex

Tx // Fx
It satisfies‖Tx‖ ≤ ‖T‖.

Proposition 4.2.4. The mapsE 7→ Ex andT 7→ Tx define a functor from the category ofC0(X)-
Banach spaces to the category of Banach spaces, linear and contractive on the morphism sets and
respecting the tensor product. The mapsπEx : E → Ex define a natural transformation if we consider
the category of Banach spaces as a subcategory of the category ofC0(X)-Banach spaces.

Here “respecting the tensor product” means: IfE1 andE2 areC0(X)-Banach spaces, then for every
x ∈ X there is a natural isometric isomorphism(

E1 ⊗C0(X) E2

)
x

∼= (E1)x ⊗ (E2)x.
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There is also the notion of the fibre of bilinear maps: Ifµ : E1×E2 → F is aC0(X)-bilinear continuous
map betweenC0(X)-Banach spaces, thenµx : (E1)x × (E2)x → (F)x is a bilinear continuous map
such thatµx((e1)x, (e2)x) = (µ(e1, e2))x for all e1 ∈ E1 ande2 ∈ E2.

Proposition 4.2.5. LetE andF beC0(X)-Banach spaces andT ∈ LC0(X) (E ,F). Letx ∈ X.

1. If T is isometric, then alsoTx is isometric.

2. If T is surjective and a quotient map, then so isTx.

3. If T has dense image, then so hasTx.

4. If T is an isometric isomorphism, then so isTx.

4.2.2 Definition of the functorF

The following lemma is a special case of Lemma A.1.6, the analogous result for the restriction to
closed subsets.

Lemma 4.2.6. LetE be aC0(X)-Banach space. For everyx ∈ X and everye ∈ E , we have

‖ex‖ = inf {‖ϕe‖ : ϕ ∈ Cc(X) ∃U ⊆ X open: ϕ|U = 1, 0 ≤ ϕ ≤ 1, x ∈ U} .

We use this lemma to prove:

Proposition 4.2.7. Let E be aC0(X)-Banach space. Then for alle ∈ E the functionx 7→ ‖ex‖ is
upper semi-continuous and vanishes at infinity.

Proof. Let e ∈ E .
Upper semi-continuity: Letx ∈ X. Let ε > 0. By Lemma 4.2.6 find aψ ∈ Cc(X) such thatψ

equals one on a neighbourhoodU of x and such that0 ≤ ψ ≤ 1 and such that‖ψe‖ ≤ ‖ex‖ + ε.
Then for everyy ∈ U , we have‖ey‖ ≤ ‖ψe‖ ≤ ‖ex‖+ ε.

Behaviour at infinity: Let(χλ)λ∈Λ be an approximate unit forC0(X) such that allχλ have com-
pact support. The(χλ)λ∈Λ is also an approximate unit forE . Let ε > 0. Find aλ ∈ Λ such that
‖e− χλe‖ ≤ ε. Then for everyx ∈ X \ suppχλ we have

(e− χλe)x = ex − χλ(x)ex = ex

and hence
‖ex‖ = ‖(e− χλe)x‖ ≤ ‖e− χλe‖ ≤ ε.

Definition 4.2.8 (The functorF). Let E be aC0(X)-Banach space. Then

F (E) := (Ex)x∈X

is a u.s.c. field of Banach spaces overX if we defineΓ0 := {x 7→ ex : e ∈ E}, noting thatΓ0 satisfies
(C1) - (C3), and let the sections ofF (E) be defined byΓ0 according to Proposition 3.1.26. IfF is
anotherC0(X)-Banach space andT ∈ LC0(X) (E ,F), then we define

F (T ) := (Tx)x∈X : (Ex)x∈X → (Fx)x∈X
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Proposition 4.2.9. (Tx)x∈X is a continuous field of linear maps fromF (E) to F (F), bounded by
‖T‖. Moreover,F defines a contractive functor from the category ofC0(X)-Banach spaces to the
category of continuous fields of Banach spaces overX, linear and contractive on the morphism sets
and compatible with the tensor product.

Proof. F (T ) is certainly a family of linear maps fromF (E) to F (F), bounded by‖T‖. To see that
F (T ) is continuous we can appeal to Proposition 3.1.30 which says that it suffices that a total subset
of the sections ofF (E) is mapped to the sections ofF (F). We check that for alle ∈ E the family
(ex)x∈X is taken to some section ofF (F); indeed(F (T ) ◦ (ex)x∈X)(x) = Tx(ex) = (T (e))x for all
x ∈ X, so we get something inΓ(X,F).

Compatibility with the tensor product: LetE1 andE2 be C0(X)-Banach spaces. We define a
natural isometric isomorphismmF

E1,E2 from F
(
E1
)
⊗X F

(
E2
)

to F
(
E1 ⊗C0(X) E2

)
. For allx ∈ X,

let mF
E1,E2,x

denote the natural isomorphism fromE1
x⊗E2

x to (E1⊗C0(X)E2)x. If e1 ∈ E1 ande2 ∈ E2,

then this isomorphism by definition sendse1x ⊗ e2x to (e1 ⊗ e2)x. Consider the family

(4.2) mF
E1,E2 :=

(
mF
E1,E2,x

)
x∈X

.

It is a family of isometric isomorphisms fromF
(
E1
)
⊗X F

(
E2
)

to F
(
E1 ⊗C0(X) E2

)
. It is continuous

because it sendsx 7→ e1x ⊗ e2x to x 7→ (e1 ⊗ e2)x which is an element ofΓ0

(
X, F

(
E1 ⊗C0(X) E2

))
.

Bilinear maps

Definition 4.2.10. Let E1, E2 andF be C0(X)-Banach spaces. Letµ ∈ MC0(X)(E1, E2;F) be a
continuousC0(X)-bilinear map. DefineF (µ) := (µx)x∈X , whereµx : (E1)x × (E2)x → Fx. We
have‖µx‖ ≤ ‖µ‖. ThenF (µ) is a continuous field of bilinear maps2 from F (E1)×X F (E2) to F (F)
, bounded by‖µ‖.

Proof. For allx ∈ X, we have‖µx‖ ≤ ‖µ‖, soF (µ) is bounded by‖µ‖. Let e1 ∈ E1 ande2 ∈ E2.
Thenξ : x 7→ ((e1)x, (e2)x) is a section of the internal productF (E1) ×X F (E2), and it suffices to
checkF (µ) ◦ ξ ∈ Γ (X,F (F)) for such a sectionξ. We have

(F (µ) ◦ ξ)(x) = F (µ) ((e1)x, (e2)x) = µ(e1, e2)x

for all x ∈ X, soF (µ) ◦ ξ = gF (µ(e1, e2)) ∈ Γ0 (X,F (F)).

Proposition 4.2.11.Let E1, E2 andF beC0(X)-Banach spaces. Letµ ∈ MC0(X) (E1, E2;F). Then
under the identificationF (E1)×X F (E2) = F

(
E1 ⊗C0(X) E2

)
we have

F (µ̂) = F̂ (µ)

where µ̂ and F̂ (µ) are the linearisations ofµ and F (µ), respectively, i.e., the following diagram
commutes

F
(
E1 ⊗C0(X) E2

)
F(µ̂) ''NNNNNNNNNNN

∼= // F (E1)⊗X F (E2)

F̂(µ)wwpppppppppppp

F (F)

2See Definition 3.1.34.
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Proof. Let e1 ∈ E1, e2 ∈ E2 andx ∈ X. We trace the element(e1 ⊗ e2)x through the above triangle.
It is mapped toµ(e1 ⊗ e2)x by F (µ̂) and it corresponds to(e1)x ⊗ (e2)x in the upper right corner.
This element is also mapped toµx((e1)x ⊗ (e2)x) = µ(e1 ⊗ e2)x.

Corollary 4.2.12. Associativity of bilinear maps is preserved underF.

4.3 The compositions ofF and M (and the Gelfand functor)

4.3.1 What isF (M (E))?

Theorem 4.3.1.The functorE 7→ F (M (E)) is equivalent to the identity functor on the category of
u.s.c. fields of Banach spaces; the natural isomorphism between these functors is linear and isometric
and compatible with the tensor product.

Proof. The definition of the transformation: Let E be a u.s.c. field of Banach spaces overX. We
show that for allx ∈ X the mapevx : Γ0(X,E) → Ex, ξ 7→ ξ(x) induces an isometric isomor-
phismJEx : M (E)x → Ex and that(JEx )x∈X is an isometric continuous field of isomorphisms from
F (M (E)) ontoE.

That evx is a metric surjection follows from Lemma 3.1.25. Its kernel is given byC0(X \
{0})Γ0(X,E): This set is certainly contained in the kernel. On the other hand, the kernel is a non-
degenerateC0(X \ {0})-module, so every element of the kernel can be factorized into an element of
C0(X \ {0}) and an element of the kernel. So it is obviously contained inC0(X \ {0})Γ0(X,E).

JE is hence a family of isometric linear isomorphisms. Ifξ ∈ Γ0(X,E), then we have to check
that (ξx)x∈X , as a section inF (M (E)), is mapped to a section ofE. Indeedevx(ξ) = ξ(x) and
henceJEx (ξx) = ξ(x) for all x ∈ X. In other words,(ξx)x∈X is mapped toξ, soJE is a continuous
field of linear maps.

Naturality: To see thatE 7→ JE is natural letE andF be u.s.c. fields of Banach spaces overX
and letT be a bounded continuous field of continuous linear maps fromE to F . ThenF (M (T ))x
sendsξx ∈ Γ0(X,E)x to (T ◦ ξ)x ∈ Γ0(X,F )x for all x ∈ X andξ ∈ Γ0(X,E). But then

Tx
(
JEx (ξx)

)
= Tx(ξ(x)) = (T ◦ ξ)(x) = JFx ((T ◦ ξ)x) = JFx (F (M (T )) (ξx)) ,

soT ◦ JE = JF ◦ F (M (T )). HenceJ is natural.

Compatibility with the tensor product: We show that the following diagram commutes for all
u.s.c. fields of Banach spacesE1 andE2 overX:

F (M (E1))⊗X F (M (E2))
∼= //

JE1⊗JE2

��

F
(
M (E1)⊗C0(X) M (E2)

) ∼= // F (M (E1 ⊗X E2))

JE1⊗E2

��
E1 ⊗X E2

= // E1 ⊗X E2
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In the fibre overx ∈ X this means

M (E1)x ⊗M (E2)x
∼= //

J
E1
x ⊗JE2

x

��

(
M (E1)⊗C0(X) M (E2)

)
x

∼= // M (E1 ⊗X E2)x

J
E1⊗E2
x

��
E1,x ⊗ E2,x

= // E1,x ⊗ E2,x

This diagram is commutative: ifξ1 ∈ Γ0(X,E1) andξ2 ∈ Γ0(X,E2), then

(ξ1)x ⊗ (ξ2)x
� //

_

J
E1
x ⊗JE2

x

��

(ξ1 ⊗ ξ2)x
� // (y 7→ ξ1(y)⊗ ξ2(y))x_

J
E1⊗E2
x

��
ξ1(x)⊗ ξ2(x)

� = // ξ1(x)⊗ ξ2(x)

4.3.2 What isM (F (E))?

Definition 4.3.2 (The Gelfand functor). Define the functorG := M◦F, which is called theGelfand
functor.

There is a natural transformation from the identity functor on the category ofC0(X)-Banach spaces
to the Gelfand functor. It is defined as follows:

Definition 4.3.3 (The Gelfand transformation). For all C0(X)-Banach spacesE define a mapgE
from E to G(E) by gE(e) = (ex)x∈X for all e ∈ E . We will call this map theGelfand transformation
of E .

Proposition 4.3.4 (Properties of the Gelfand transformation).g is a natural transformation from
the identity functor toG; it is linear and contractive and compatible with the tensor product. More-
over, for allC0(X)-Banach spacesE the spacegE(E) is dense inG(E) soG(E) can be considered to
be the Hausdorff-completion ofE with respect to the semi-norme 7→ supx∈X ‖ex‖.

Proof. First of all,gE is surely an element ofLC0(X)(E ,G(E)) of norm≤ 1.

1. g is a natural transformation: If F is anotherC0(X)-Banach space andT ∈ LC0(X)(E ,F),
then for alle ∈ E :

G(T ) (gE(e)) = M (F (T )) (ex)x∈X = (Txex)x∈X = (T (e)x)x∈X = gF (T (e)) ,

sog is a natural transformation.

2. G(E) is a completion ofE :

We have to show thatΓ0 (X, F (E)) is a completion ofΓ0 := {gE(e) : e ∈ E} in the sup-norm.
Now Γ0 (X, F (E)) is a Banach space containingΓ0, so we just have to check that this subspace



120 CHAPTER 4. C0(X)-BANACH SPACES AND FIELDS OVER X

is dense for the sup-norm. Letξ ∈ Γ0 (X, F (E)). Without loss of generality letξ have compact
support. Letε > 0. For allx ∈ X we can find a neighbourhoodUx of x in X and anex ∈ E
such that‖gE(ex)(y)− ξ(y)‖ < ε for all y ∈ Ux. Now the supportK of ξ is compact. Hence
we can find a finite setS ⊆ K such thatK ⊆

⋃
s∈S Us. Find a continuous partition of unity

(ϕs)s∈S onK in X subordinate to the cover(Us)s∈S . Define

η :=
∑
s∈S

ϕsgE (es) =
∑
s∈S

gE (ϕses) ∈ Γ0.

Then‖ξ − η‖∞ ≤ ε.

3. g is compatible with the tensor product: Let E1 andE2 beC0(X)-Banach spaces. We define
a natural isometric isomorphismmG

E1,E2 making the following diagram commutative:

Id(E1)⊗C0(X) Id(E2) = //

gE1⊗gE2

��

Id(E1 ⊗C0(X) E2)

gE1⊗E2

��
G
(
E1
)
⊗C0(X) G

(
E2
) mG

E1,E2
// G
(
E1 ⊗C0(X) E2

)
It is given as the composition

mG
E1,E2 := M

(
mF
E1,E2

)
◦mM

F(E1),F(E2),

where the natural isomorphism

mM
F(E1),F(E2) : M

(
F
(
E1
))
⊗C0(X) M

(
F
(
E2
))
→ M

(
F
(
E1
)
⊗X F

(
E2
))

is defined in Equation (4.1) in the proof of Proposition 4.1.2 andmF
E1,E2 : F(E1) ⊗X F(E2) →

F(E1 ⊗C0(X) E2) is defined in (4.2) in the proof of Proposition 4.2.9.

Let ξ1 ∈ E1 andξ2 ∈ E2. ThengE1(ξ1) : x 7→ ξ1x is an element ofG
(
E1
)

= M
(
F
(
E1
))

and
gE2(ξ2) : x 7→ ξ2x is in G

(
E2
)

= M
(
F
(
E2
))

. The mapmM
F(E1),F(E2) sendsgE1

(
ξ1
)
⊗ gE2

(
ξ2
)

to x 7→ ξ1x ⊗ ξ2x. And M(mF
E1,E2) sendsx 7→ ξ1x ⊗ ξ2x to x 7→ (ξ1 ⊗ ξ2)x which happens to be

gE1⊗E2

(
ξ1 ⊗ ξ2

)
. Together, this means

mG
E1,E2

(
gE1

(
ξ1
)
⊗ gE2

(
ξ2
))

= gE1⊗E2

(
ξ1 ⊗ ξ2

)
.

Since the set of all elements of the formgE1

(
ξ1
)
⊗ gE2

(
ξ2
)

spans a dense subset of the tensor
productG

(
E1
)
⊗C0(X) G

(
E2
)
, we can conclude that the above square commutes.

The following example shows, in a rather dramatic case, thatG is not isomorphic to the identity, i.e.,
thatF andM are not inverses of each other.

Example 4.3.5.LetX be the unit interval[0, 1] andE := L1(X,C, λ), whereλ denotes the Lebesgue
measure on[0, 1]. ThenE is aC0(X)-Banach space with theC0(X)-module action given by pointwise
multiplication. NowEx = 0 for all x ∈ [0, 1] and henceG(E) = 0 andgE = 0, so in particulargE is
not an isomorphism.
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Proof. Let f be anL1-function on[0, 1]. In order to showfx = 0 it suffices to consider the case
that f is bounded since the boundedL1-functions are dense inL1. W.l.o.g. letf be bounded by
1. Let ε > 0. Find an open neighbourhoodU of x with measure less thenε. Find a continuous
functionχ ∈ C[0, 1] such thatχ(x) = 1, 0 ≤ χ ≤ 1 andχ ≡ 0 outsideU . Thenfx = (χf)x and
‖χf‖1 =

∫
[0,1] |χ(t)f(t)| dt ≤ ‖χ1‖ ≤ ε. So‖fx‖ ≤ ε for all ε > 0 and hencefx = 0.

4.4 Locally C0(X)-convexC0(X)-Banach spaces

The following notion is discussed extensively in Appendix A.

Definition 4.4.1 (LocallyC0(X)-convex). Let E be aC0(X)-Banach space. ThenE is calledlocally
C0(X)-convexif ‖e‖ = supx∈X ‖ex‖ for all e ∈ E , i.e., if the Gelfand transformation is isometric.

In [DG83], Theorem 2.5., it is shown thatE is locallyC0(X)-convex if and only if

∀χ1, χ2 ∈ C0(X), χ1, χ2 ≥ 0, χ1 + χ2 ≤ 1 ∀e1, e2 ∈ E : ‖χ1e2 + χ2e2‖ ≤ max{‖e1‖ , ‖e2‖}

which justifies the name.
For all C0(X)-Banach spacesE , locally C0(X)-convex or not, theC0(X)-Banach spaceG(E) is

locally C0(X)-convex, and applying the Gelfand functor twice does not change anything anymore. So
we can regard the Gelfand functor as a projection functor to the subcategory of locallyC0(X)-convex
C0(X)-Banach spaces (a so-called reflector).

This shows that the category of locallyC0(X)-convexC0(X)-Banach spaces is isomorphic to
the category of u.s.c. fields of Banach spaces over the locally compact Hausdorff spaceX (with the
bounded continuous fields of linear maps as morphisms).

Closed subspaces, quotientsandfinite productsof locally C0(X)-convexC0(X)-Banach spaces
are again locallyC0(X)-convex. The same is true for theC0(X)-tensor product, but this seems to
be much harder to prove (see Appendix A for the details). Note that it follows that the balanced
C0(X)-tensor product of locallyC0(X)-convexC0(X)-Banach modules is also locallyC0(X)-convex
because it is a quotient of theC0(X)-tensor product.

It is worth mentioning that thesumof locally C0(X)-convex spaces needs not be locallyC0(X)-
convex. However, the Gelfand functor applied to the ordinary sum of two locallyC0(X)-convex
C0(X)-Banach spaces is the (abstract) sum in the category of locallyC0(X)-convexC0(X)-Banach
spaces. This just means switching to an equivalent norm:

Definition 4.4.2 (The locallyC0(X)-convex sum).Let E1 andE2 be locallyC0(X)-convexC0(X)-
Banach spaces. Then we define thelocally C0(X)-convex sumE1 ⊕l.c. E2 of E1 andE2 to be the
ordinary sumE1 ⊕ E2 of C0(X)-Banach spaces with the new norm

‖(e1, e2)‖ := sup
x∈X

(‖(e1)x‖+ ‖(e2)x‖)

for all (e1, e2) ∈ E1 ⊕ E2.

We also adjust the definition of the unitalisation of aC0(X)-Banach algebra to the locallyC0(X)-
convex setting:

Definition 4.4.3 (The locallyC0(X)-convex unitalisation). Let B be a locallyC0(X)-convexG-
C0(X)-Banach algebra. Then we define thelocallyC0(X)-convex unitalisationofB to beB⊕l.c.C0(X)
which is a fibrewise unital, locallyC0(X)-convexG-C0(X)-Banach algebra in a canonical way.

In the following we are going to take the locallyC0(X)-convex unitalisation whenever it is necessary
without further mentioning it.
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4.5 Group actions and gradings

As gradings can be regarded as a special case of group actions, we wont discuss gradings explic-
itly; it is obvious that gradings of fields of Banach spaces and gradings ofC0(X)-Banach spaces are
interchanged by the functorsF andM.

LetG be a locally compact Hausdorff group acting continuously onX. LetG nX be the trans-
formation groupoid (see Definition 6.1.3). We identify3 G n X with G × X in such a way that
rGnX(g, x) = x, sGnX(g, x) = g−1x and(g, x)(g′, x′) = (gg′, x) for all (g, x), (g′, x′) ∈ G × X
such thatx′ = g−1x. We writer ands for rGnX andsGnX , respectively.

4.5.1 Group actions andM

Definition and Proposition 4.5.1. LetE be aGnX-Banach space (being in particular a u.s.c. field
of Banach spaces overX) with actionα : s∗E → r∗E. For allg ∈ G and allξ ∈ M (E) = Γ0(X,E)
define

(gξ)(x) := [α ◦ (ξ ◦ s)] (g, x) = α(g,x)ξ(g
−1x), x ∈ X.

Thengξ ∈ M (E) = Γ0(X,E) andg 7→ gξ is continuous for allξ ∈ Γ0(X,E). This defines the
structure of aG-C0(X)-Banach space onM (E).

Proof. gξ is in Γ0(X,E): Let g ∈ G andξ ∈ Γ0(X,E). The continuous mapϕg : X → GnX, x 7→
(g, x) satisfiesr ◦ϕg = IdX . Now ξ ◦ s ∈ Γ(GnX, s∗E) and henceα ◦ (ξ ◦ s) ∈ Γ(GnX, r∗E).
Sogξ = [α ◦ (ξ ◦ s)] ◦ ϕg ∈ Γ(X, ϕ∗gr

∗E) = Γ(X,E). It is easy to see thatgξ vanishes at infinity,
i.e., thatgξ ∈ Γ0(X,E) = M (E).
g 7→ gξ defines an action ofG: Let ξ ∈ Γ0(X,E) andg andh be elements ofG. Then

g(hξ)(x) = α(g,x)

(
(hξ)(g−1x)

)
= α(g,x)

(
α(h,g−1x)ξ(h

−1g−1x)
)

= α(g,x)·(h,g−1x)ξ((gh)
−1x) = α(gh,x)ξ((gh)

−1x) = ((gh)ξ)(x)

for all x ∈ X. Moreover,eGξ = ξ.
The action is continuous:We haveα ◦ (ξ ◦ s) ∈ Γb (GnX, r∗E). Moreover, ifχ ∈ C0 (G), then it
is easy to see thatχ ·α ◦ (ξ ◦ s) ∈ Γ0 (GnX, r∗E). So by Lemma 4.5.2,g 7→ χ(g)gξ is continuous
with values inΓ0(X,E). Since this is true for allχ ∈ C0(G), also the mapg 7→ gξ is continuous.
Compatibility with the C0(X)-action: Let χ ∈ C0(X), g ∈ G andξ ∈ Γ0(X,E). Then

[g(χξ)](x) = α(g,x)[(χξ)(g
−1x)] = χ(g−1x) (gξ) (x)

for all x ∈ X, sog(χξ) = (gχ)(gξ).

By elementary means one can show:

Lemma 4.5.2. Let Y and Y ′ be locally compact Hausdorff spaces and letp : Y × Y ′ → Y and
p′ : Y × Y ′ → Y ′ be the canonical projections. LetE be a u.s.c. field of Banach spaces over
Y ′. Thenp′∗E is a u.s.c. field of Banach spaces overY × Y ′. Let η be a selection ofp′∗E.
Thenη ∈ Γ0 (Y × Y ′, p′∗E) if and only if ηy : y′ 7→ η(y, y′) is in Γ0 (Y ′, E) for all y ∈ Y and
y 7→ ηy ∈ C0 (Y, Γ0 (Y ′, E)). Moreover,η 7→ (y 7→ ηy) is an isometric linear isomorphism from
Γ0 (Y × Y ′, p′∗E) to C0 (Y, Γ0 (Y ′, E)).

3There is another, equivalent way to identifyGnX andG×X which differs from our convention by the homeomorphism
G×X → G×X, (g, x) 7→ (g, g−1x); for technical reasons we prefer our identification.



4.5. GROUP ACTIONS AND GRADINGS 123

Proposition 4.5.3. LetE andF beG n X-Banach spaces and letT : E → F be a bounded equiv-
ariant continuous field of linear maps. ThenM (T ) : M (E) → M (F ) is G-equivariant for the
G-actions onM (E) andM (F ) defined above.

Proof. Writeα andβ for theGnX-actions onE and onF , respectively. Letξ ∈ M (E) = Γ0(X,E)
andg ∈ G. Then

[M (T ) (gξ)] (x) = Tx ((gξ)(x)) = Tx
(
α(g,x)ξ(g

−1x)
)

= β(g,x)

(
Tg−1xξ(g

−1x)
)

= β(g,x)

(
(M (T ) (ξ))(g−1x)

)
= (g(M (T ) (ξ))) (x)

for all x ∈ X, soM (T ) (gξ) = g(M (T ) (ξ)). HenceM (T ) isG-equivariant.

Similarly one proves thatM (µ) isG-equivariant ifµ is a boundedGnX-equivariant continuous field
of bilinear maps. Moreover, ifE1 andE2 areGnX-Banach spaces and if we identifyM (E1)⊗C0(X)

M (E2) andM (E1 ⊗X E2), then theG-action coming from theGnX-action onE1⊗X E2 and the
tensor product of the actions onM (E1) andM (E2) agree. In other words:M is compatible with
equivariant tensor products.

4.5.2 Group actions andF

Definition and Proposition 4.5.4. Let E be aG-C0(X)-Banach space. Then we define an action of
the groupoidG n X on the u.s.c. field of Banach spacesF (E) = (Ex)x∈X as follows: If g ∈ G,
thene 7→ ge is not aC0(X)-linear map fromE to E , but C0(X)-linear “with a twist”: It maps the
fibreEs(g,x) = Eg−1x isometrically and isomorphically to the fibreEr(g,x) = Ex. Letα(g,x) denote this
isomorphism fromEs(g,x) = Eg−1x to Er(g,x) = Ex for everyx ∈ X. Thenα is a continuous action of
GnX onF (E).

Proof. α is a continuous field of linear maps froms∗F (E) to r∗F (E): Let e ∈ E . Thenx 7→ ex is
by definition a section ofF (E). Hence(g, x) 7→ es(g,x) = eg−1x is a section ofs∗F (E). This section
is mapped byα to the section(g, x) 7→ (ge)x of r∗F (E). Soαmaps a total set of sections to sections,
so it is continuous.
α is an action ofGnX: Letg, h ∈ G andx ∈ X. Then(h, x) and(g, h−1x) are (typical) composable
elements ofGnX. If e ∈ E , then

α(h,x)

(
α(g,h−1x)(eg−1(h−1x))

)
= α(h,x) ((ge)h−1x) = (h(ge))x = ((hg)e)x = α(hg,x)e(hg)−1x.

Soα(h,x)α(g,h−1x) = α(hg,x), andα is hence an action ofGnX onF (E).

Proposition 4.5.5. Let E and F be G-C0(X)-Banach spaces and letT ∈ LC0(X)(E ,F) be G-
equivariant. ThenF (T ) : F (E) → F (F) isGnX-equivariant.

Proof. Let α andβ denote theGnX-actions onF (E) andF (F), respectively. Let(g, x) ∈ GnX
ande ∈ E . Then

F (T )r(g,x)
(
α(g,x)es(g,x)

)
= Tx ((ge)x) = (T (ge))x = (g(Te))x

= β(g,x) (Te)s(g,x) = β(g,x)

(
Ts(g,x)es(g,x)

)
.

This meansF (T )r(g,x) ◦ α(g,x) = β(g,x)F (T )s(g,x), in other words:F (T ) isGnX-equivariant.

Similarly one shows thatF (µ) isGnX-equivariant forG-equivariant boundedC0(X)-bilinear maps
µ. Moreover,F (µ) is compatible with the equivariant tensor product.
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4.5.3 Group actions andG

Proposition 4.5.6.LetE be aG-C0(X)-Banach space. Then the Gelfand functorG takesE to a locally
C0(X)-convexG-C0(X)-Banach spaceG(E). The Gelfand transformationgE isG-equivariant.

Proof. Let α denote the induced action ofG n X on F (E). We have to proof theG-equivariance of
the Gelfand transformation. Lete ∈ E andg ∈ G. Thenα(g,x)es(g,x) = (ge)r(g,x) for all x ∈ X by
definition. Hence

(ggE(e)) (x) = α(g,x)

(
gE(e) (g−1x)

)
= α(g,x)

(
eg−1x

)
= (ge)x = gE(ge) (x)

for all x ∈ X, sog (gE(e)) = gE(ge), andgE is henceG-equivariant.

4.6 Algebras, modules and pairs and the functorsF, M and G

BecauseM, F andG are compatible with the (graded equivariant) tensor products we get functors on
the “derived” categories of Banach algebras, Banach modules and Banach pairs. They map operators
to operators and homomorphisms with coefficient map to homomorphisms with coefficient maps. We
omit the details of all these definitions and just give some models and highlights.

4.6.1 The functorM

Definition 4.6.1. Let B be a u.s.c. field of Banach algebras overX with multiplication µ. Then
M (B) = Γ0(X,B) is a locallyC0(X)-convexC0(X)-Banach algebra when equipped with the mul-
tiplicationM (µ). If B is non-degenerate, then so isM (B). If B is carries an action ofGnX, then
M (B) is aG-C0(X)-Banach algebra. Moreover,M is a functor from theGnX-Banach algebras to
the locallyC0(X)-convexG-C0(X)-Banach algebras.

Proposition 4.6.2.LetB be aG×X-Banach algebra,E a rightGnX-BanachB-module andF a
leftGnX-BanachB-module. Then

M (E)⊗C0(X)
M(B) M (F ) ∼= M (E ⊗B F ) .

Proof. Define

µ : M (E)×M (F ) → M (E ⊗B F ) , (ξ, η) 7→ (x 7→ ξ(x)⊗ η(x)) .

This map is well-defined,C-bilinear, C0(X)-bilinear and contractive. Moreover, ifβ ∈ M (B) =
Γ0(X,B), ξ ∈ M (E) andη ∈ M (F ), then

µ (ξβ, η) (x) = (ξβ)(x)⊗ η(x) = (ξ(x)β(x))⊗ η(x) = ξ(x)⊗ (β(x)η(x)) = µ (ξ, βη) (x)

for all x ∈ X. Soµ is M (B)-balanced. Hence it induces a linear and contractive map

µ̂ : M (E)⊗C0(X)
M(B) M (F ) → M (E ⊗B F ) .

BecauseM (E) andM (F ) are both locallyC0(X)-convex, so is theirC0(X)-tensor product; because
the balancedC0(X)-tensor product is a quotient of theC0(X)-tensor product, it is locallyC0(X)-
convex as well. We can therefore check thatµ̂ is an isomorphism by checking it on the fibres. Let
x ∈ X. Then the fibre ofM (E) ⊗C0(X)

M(B) M (F ) at x is isomorphic toM (E)x ⊗M(B)x
M (F )x =
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Ex ⊗Bx Fx which happens to be the fibre ofM (E ⊗B F ) at x. The isometric isomorphism on the
fibre overx is induced bŷµ and thuŝµ is an isometric isomorphism.

We now check that̂µ is alsoG-equivariant by checking thatµ isG-equivariant. WriteαE andαF

for the actions ofG n X onE andF , respectively. Letg ∈ G, ξ ∈ Γ0(X,E) andη ∈ Γ0(X,F ).
Then

µ (gξ, gη) (x) = (gξ)(x)⊗ (gη)(x) =
[
αE(g,x)ξ(g

−1x)
]
⊗
[
αF(g,x)η(g

−1x)
]

=
(
αE ⊗ αF

)
(g,x)

[
ξ(g−1x)⊗ η(g−1x)

]
= [g (µ(ξ, η))] (x)

for all x ∈ X, i.e.,µ(gξ, gη) = gµ(ξ, η). Soµ andµ̂ areG-equivariant.

Lemma 4.6.3. LetB be aGnX-Banach algebra. ThenM(B̃) = M (B)⊕ C0(X).

Proposition 4.6.4.LetB andB′ beG×X-Banach algebras andE a rightGnX-BanachB-module.
Letψ : B → B′ be an equivariant field of homomorphisms. Then

M (ψ)∗ (M (E)) = M (E)⊗
M(B̃) M(B̃′) ∼= M(E ⊗

B̃
B̃′) = M (ψ∗(E)) ,

canonically.

4.6.2 The functorF

Definition 4.6.5. LetB be aC0(X)-Banach algebra with multiplicationµ. ThenF (B) is a u.s.c. field
of Banach algebras overX when equipped with the multiplicationF (µ) = (µx)x∈X . If B is non-
degenerate, then so isF (B). If B is aG-C0(X)-Banach algebra, thenF (B) is aG n X-Banach
algebra. Moreover,F is a functor from theG-C0(X)-Banach algebras to theGnX-Banach algebras.

Proposition 4.6.6. Let B be aG-C0(X)-Banach algebra and letE be a rightG-C0(X)-BanachB-
module andF a leftG-C0(X)-BanachB-module. Then

F (E)⊗F(B) F (F) ∼= F
(
E ⊗C0(X)

B F
)
.

Lemma 4.6.7. LetB be aG-C0(X)-Banach algebra. ThenF (B ⊕ C0(X)) ∼= F̃ (B).

Proposition 4.6.8.LetB andB′ beG-C0(X)-Banach algebras and letE be a rightG-C0(X)-Banach
B-module. Letψ : B → B′ be aG-equivariantC0(X)-linear homomorphism. Then

F (ψ)∗ (F (E)) ∼= F (ψ∗(E)) ,

canonically.

4.6.3 The functorG

Definition 4.6.9. Let B be aC0(X)-Banach algebra with multiplicationµ. ThenG(B) is a locally
C0(X)-convexC0(X)-Banach algebra when equipped with the multiplicationG(µ). If B is non-
degenerate, then so isG(B). If B is aG-C0(X)-Banach algebra, then so isG(B). The mapgB is a
(graded,G-equivariant) homomorphism fromB to G(B) with dense image. Moreover,G is a functor
from the gradedG-C0(X)-Banach algebras to the graded locallyC0(X)-convexG-C0(X)-Banach
algebras.
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Definition 4.6.10. Let A andB be gradedG-C0(X)-Banach algebras and letE = (E<, E>) be a
gradedG-C0(X)-BanachA-B-pair. ThenG(E) = (G(E<) , G(E>)) is a graded locallyC0(X)-
convexG-C0(X)-BanachG(A)-G(B)-pair. The pair(gE< , gE>) is a a gradedG-equivariant concur-
rentC0(X)-linear homomorphism fromE to G(E) with coefficient mapsgA andgB.

Proposition 4.6.11. Let B be a gradedG-C0(X)-Banach algebra and letE be a graded rightG-
C0(X)-BanachB-module andF a graded leftG-C0(X)-BanachB-module. Then

G(E)⊗G(B) G(F) ∼= G
(
E ⊗C0(X)

B F
)
.

Lemma 4.6.12.If B is a gradedG-C0(X)-Banach algebra, thenG(B ⊕ C0(X)) ∼= G(B)⊕l.c.C0(X).

Proposition 4.6.13. Let B and B′ beG-C0(X)-Banach algebras and letE be a graded rightG-
C0(X)-BanachB-module. Letψ : B → B′ be an evenG-equivariantC0(X)-linear homomorphism.
Then

G(ψ)∗ (G(E)) ∼= G(ψ∗(E)) ,

canonically.

4.7 KKban, RKKban and the functorsM, F and G

4.7.1 Compact operators on fields of Banach pairs

LetB be a u.s.c. field of Banach algebras over the locally compact Hausdorff spaceX.

Definition 4.7.1 (Compact operators).Let E andF be BanachB-pairs. A continuous fieldT of
B-linear operators is calledcompactif for all ε > 0 there is ann ∈ N andξ<1 , . . . , ξ

<
n ∈ Γ0(X,E<)

andη>1 , . . . , η
>
n ∈ Γ0(X,F>) such that∥∥∥∥∥T −

n∑
i=1

∣∣η>i 〉〈ξ<i ∣∣
∥∥∥∥∥ = sup

x∈X

∥∥∥∥∥Tx −
n∑
i=1

∣∣η>i (x)
〉〈
ξ<i (x)

∣∣∥∥∥∥∥ ≤ ε.

The compact operators fromE to F are denoted byKB(E,F ).

Note that the sections are taken to be vanishing at infinity. This means that, ifT is compact, then
(‖Tx‖)x∈X is also vanishing at infinity. It follows thatKB(E,F ) ⊆ LB(E,F ) andKB(E,F ) is the
closed linear span inLB(E,F ) of all operators of the form

∣∣η>〉〈ξ<∣∣. In particular,KB(E,F ) is a
Banach space.

We will now justify the choice of the name “locally compact operator”:

Proposition 4.7.2 (Characterisation of locally compact operators).Let E andF be BanachB-
pairs and letT be a continuous field ofB-linear operators fromE to F . Then the following are
equivalent:

1. T is locally compact.

2. For all compact subsetsK ofX and all ε > 0 there is ann ∈ N andξ<1 , . . . , ξ
<
n ∈ Γ(X,E<)

andη>1 , . . . , η
>
n ∈ Γ(X,F>) such that

∥∥Tk −∑n
i=1

∣∣η>i (k)
〉〈
ξ<i (k)

∣∣∥∥ ≤ ε for all k ∈ K.

3. For all x ∈ X and all ε > 0 there is an open neighbourhoodU of x and a compact operator
S ∈ KB(E,F ) such that‖Tu − Su‖ ≤ ε for all u ∈ U .
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4. For all compact subsetsK ⊆ X and all ε > 0 there is a operatorS ∈ KB(E,F ) such that
‖Tk − Sk‖ ≤ ε for all k ∈ K.

5. For all ϕ ∈ Cc(X) the fieldϕT is compact.

Proof. Assume that 1. holds. LetK ⊆ X be a compact subset. Letε > 0. For allx ∈ X, findUx, nx,
ξ<x,1, . . . , ξ

<
x,nx

∈ Γ(X,E<) andη>x,1, . . . , η
>
x,nx

∈ Γ(X,F>) as in the definition of local compactness
for T . Then{Ux : x ∈ K} is an open cover ofK so we can find a finite subsetA of K such that
K ⊆

⋃
a∈A Ua. Find a partition of unity(χa)a∈A onK subordinate to the cover(Ua)a∈A. Then for

all k ∈ K: ∥∥∥∥∥Tk −∑
a∈A

χa(k)
na∑
i=1

∣∣∣η>a,i(k)〉〈ξ<a,i(k)∣∣∣
∥∥∥∥∥ ≤ ε.

This shows 1.⇒ 2..
The same argument shows 3.⇒ 4.. SinceX is locally compact the implications 2.⇒ 1. and 4.⇒

3. are trivial. Moreover, it is clear that 4. implies 2. and 3. implies 1.. Cutting down the sections used
in the approximation in 2. easily shows 2.⇒ 4.. So the first four conditions are mutually equivalent.
It is straightforward to show 4.⇔ 5. (note that ifS is compact, thenϕS is also compact for all
ϕ ∈ Cc(X)).

Proposition 4.7.3. Let E andF be BanachB-pairs and letT : E → F be a continuous field of
operators. ThenT is compact if and only ifT is locally compact andx 7→ ‖Tx‖ vanishes at infinity.

Proof. LetT be compact. It is clear from the definitions thatT is locally compact. Moreover we have
already noted thatx 7→ ‖Tx‖ vanishes at infinity.

Conversely, letT be locally compact and letx 7→ ‖Tx‖ vanish at infinity. Letε > 0. Find a
compact setK ⊆ X such that‖Tx‖ ≤ ε for all x /∈ K. Find a functionχ ∈ Cc(X) such that
0 ≤ χ ≤ 1 andχ ≡ 1 onK. Find a compact operatorS ∈ KB(E,F ) such that‖Tl − Sl‖ ≤ ε for
all l ∈ suppχ (using the above characterisation of local compactness). Then also‖Tl − (ϕS)l‖ ≤ ε
for all l ∈ suppϕ andTx = (ϕS)x = 0 for all x /∈ suppϕ. Hence‖T − ϕS‖ ≤ ε. SoT can be
approximated by compact operators and is therefore compact.

Lemma 4.7.4. LetE1, E2 andE3 be BanachB-pairs. Then we haveLB(E2, E3) ◦ KB(E1, E2) ⊆
KB(E1, E3) andKB(E2, E3) ◦ LB(E1, E2) ⊆ KB(E1, E3).

Proof. The composition of a compact operator and a bounded linear operator is surely locally compact
and vanishes at infinity. Hence it is compact. One can also easily prove this by direct calculation.

In the definition ofKKban-cycles in the setting of fields of Banach space (Definition 3.5.2) we have
used locally compact operators. If the underlying spaceX is locally compact Hausdorff, then we can
actually use compact operators instead. More precisely, we have the following characterisation of
KKban-cycles:

Proposition 4.7.5. Let G be a locally compact Hausdorff groupoid overX and letA andB beG-
Banach algebras. Then a pair(E, T ) such thatE is a non-degenerate gradedG-A-B-bimodule and
T is an odd element ofLB(E) is a KKban-cycle fromA toB, i.e., an element ofEban

G (A,B), if and
only if

[πA(a), T ] , πA(a) (Id−T 2) ∈ KB(E)
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for all a ∈ Γ0(X,A) and

π(ã)
(
αL(E)(s∗T )− r∗T

)
∈ Kr∗B (r∗E)

for all ã ∈ Γ0 (G, r∗A).

Proof. If (E, T ) is a KKban-cycle, then we know that[πA(a), T ] is locally compact for alla ∈
Γ(X,A). In particular this is true ifa ∈ Γ0(X,A). SinceT is bounded andx 7→ ‖πA(a)x‖ vanishes
at infinity alsox 7→ [πA(a), T ]x vanishes at infinity. So[πA(a), T ] is compact. The same argument
works for the other operators which have to be shown to be compact.

4.7.2 KKban, RKKban and the functor M

Proposition 4.7.6. LetB be a u.s.c. field of Banach algebras and letE andF be BanachB-pairs.
Let ξ< ∈ Γ0(X,E<) andη> ∈ Γ0(X,F>). Then

M
(∣∣η>〉〈ξ<∣∣) =

∣∣ξ>〉〈η<∣∣ ∈ KM(B) (M (E) ,M (F )) .

It follows that, ifS ∈ KB(E,F ), thenM (S) ∈ KM(B) (M (E) ,M (F )).

Definition and Proposition 4.7.7 (M and KKban-cycles).LetA andB beGnX-Banach algebras.
Let (E, T ) ∈ Eban

GnX (A,B). Then

M (E, T ) := (M (E) , M (T )) ∈ Eban
G (C0(X); M (A) , M (B)) .

Proof. First of all M (E) is a graded non-degenerateG-C0(X)-BanachM (A)-M (B)-pair. The op-
eratorM (T ) is odd. Ifa ∈ M (A) = Γ0(X,A), then[

πM(A)(a), M (T )
]

= [M (πA(a)) , M (T )] = M ([πA(a), T ]) ∈ KM(B) (M (E)) .

Similarly πM(A)(a)
(
M (T )2 − 1

)
is compact. What is left to check is that

g 7→ πM(A)(a) (gM (T )−M (T ))

is a continuous map fromG into KM(B) (M (E)). Define as aboveϕg : X → G × X, x 7→ (g, x)
for all g ∈ G. Then a short calculation shows thatgM (T ) = M(x 7→

(
αL(E)(s∗T )

)
ϕg(x)

) =

M
(
ϕ∗g(α

L(E)(s∗T ))
)

whereαL(E) denotes the isomorphism fromLloc
s∗B(s∗E) to Lloc

r∗B(r∗E) induced
by the action ofGnX onE (recall thatr : GnX → X, (g, x) 7→ x ands : GnX → X, (g, x) 7→
g−1x). It follows that

πM(A)(a) (gM (T )−M (T )) = M
(
ϕ∗g

(
πr∗A(a ◦ r)

(
αL(E)(s∗T )− r∗T

)))
.

Because by assumptionπr∗A(a ◦ r)
(
αL(E)(s∗T )− r∗T

)
∈ Kloc

r∗B (r∗E), we have

ϕ∗g

(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

))
∈ Kloc

ϕ∗gr
∗B

(
ϕ∗gr

∗E
)
.

Becauser ◦ ϕg = IdX , we haveKloc
ϕ∗gr

∗B

(
ϕ∗gr

∗E
)

= Kloc
B (E). Becausea vanishes at infinity, we

thus haveϕ∗g
(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

))
∈ KB(E). It follows that

M
(
ϕ∗g

(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

)))
∈ KM(B) (M (E))
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for all g ∈ G. For all χ ∈ C0(G), we haveχπÃ(a ◦ r)
(
αL(E)(s∗T )− r∗T

)
∈ Kr∗B (r∗E). By

Lemma 4.7.8 it follows thatg 7→ χ(g)ϕ∗g
(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

))
is in C0 (G, KB(E)).

Hence alsog 7→ ϕ∗g
(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

))
is continuous. This implies that also

g 7→ M
(
ϕ∗g

(
πÃ(a ◦ r)

(
αL(E)(s∗T )− r∗T

)))
is continuous.

Using Lemma 4.5.2 one can show:

Lemma 4.7.8. Let Y and Y ′ be locally compact Hausdorff spaces and letp′ : Y × Y ′ → Y ′ be
the canonical projection onto the second component. LetB be a u.s.c. field of Banach algebras
over Y ′ and letE and F be BanachB-pairs. Thenp′∗E is a Banachp′∗B-pair. Let T be in
Lp′∗B (p′∗E, p′∗F ). ThenT is compact if and only if for ally ∈ Y the fieldTy :=

(
T(y,y′)

)
y′∈Y ′

is in KB(E,F ) andy 7→ Ty is in C0 (Y, KB(E,F )).

Lemma 4.7.9. LetA be aGnX-Banach algebra. ThenM (A) [0, 1] is isomorphic toM (A[0, 1]).

Proof. The isomorphism is

Φ: M (A) [0, 1] → M (A[0, 1]) , ξ 7→ (x 7→ (t 7→ (ξ(t))(x))) .

This is a bijection by the definition ofA[0, 1]. It is obviously isometric andC0(X)-linear. What is
left to check is that it isG-equivariant. Letα denote the action ofG nX onA. If ξ ∈ M (A) [0, 1],
g ∈ G, x ∈ X, andt ∈ [0, 1], then

(Φ(gξ)(x))(t) def. Φ= ((gξ)(t))(x)
def.G-action onM (A) [0, 1]

= (g(ξ(t)))(x)
def.G-action onM (A)

= α(g,x)

[
(ξ(t))(g−1x)

]
def. Φ= α(g,x)

[
(Φ(ξ)(g−1x))(t)

]
def.GnX-action onA[0, 1]

=
[
(α[0, 1])(g,x)(Φ(ξ)(g−1x))

]
(t)

def.GnX-action onM (A[0, 1])
= [(gΦ(ξ))(x)] (t)

SoΦ isG-equivariant.

Because the functorM is compatible with the pushout — at least up to a delicate point where it comes
to comparing the locallyC0(X)-convex unitalisation and the ordinary unitalisation which we will just
leave aside — the functorM also respects homotopy. So it lifts fromKKban-cycles to the level of
KK-theory:

Proposition 4.7.10.LetA andB beG n X-Banach algebras. Then(E, T ) 7→ M (E, T ) lifts to a
group homomorphism

M : KKban
GnX(A,B) → RKKban

G (C0(X); M (A) , M (B)) .

To show thatM is a group homomorphism we have to check that it is compatible with direct sum.
This is the case at least up to equivalence of norms, so it is true up to homotopy which is certainly
sufficient for our purposes.
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4.7.3 KKban, RKKban and the functor F

Proposition 4.7.11.LetB be aC0(X)-Banach algebra and letE andF beC0(X)-BanachB-pairs.
Then for alle< ∈ E< andf> ∈ F>, we have

F
(∣∣f>〉〈e<∣∣) =

∣∣x 7→ f>x
〉〈
x 7→ e<x

∣∣ ∈ KF(B) (F (E) ,F (F)) .

It follows that, ifS ∈ KB (E ,F), thenF (S) ∈ KF(B) (F (E) ,F (F)).

Definition and Proposition 4.7.12. Let A and B be G-C0(X)-Banach algebras. Let(E , T ) ∈
Eban

G (C0(X);A,B). Then

F (E , T ) := (F (E) , F (T )) ∈ Eban
GnX (F (A) , F (B)) .

Proof. First note thatF (E) is a graded non-degenerateGnX-BanachF (A)-F (B)-pair andF (T ) is
an odd and bounded continuous field of operators onF (E). Let a ∈ A. ThengA(a) = (ax)x∈X is in
Γ0 (X,F (A)) and the set of sections of this form is dense. Now

[gA(a), F (T )]x = [ax, Tx] = F ([a, T ])x

for all x ∈ X, so[gA(a), F (T )] = F ([a, T ]) is compact. Similarly,gA(a)(F (T )2−1) can be shown
to be compact. BecausegA has dense image, this is true for all sectionsa in Γ0(X,A).

Let χ ∈ C0(G). Thenχ · (gA(a) ◦ r) ∈ Γ0 (GnX, r∗F (A)) and the span of such sections is
dense inΓ0 (GnX, r∗F (A)). A short calculation shows that

S(g,x) :=
(
χ · (gA(a) ◦ r) ·

(
αL(F(E))(s∗F (T ))− r∗F (T )

))
(g,x)

= F
(
χ(g)a

(
gTg−1 − T

))
x

for all (g, x) ∈ G n X. This implies thatg 7→
[
x 7→ S(g,x)

]
is in C0

(
G, KF(B) (F (E))

)
. Now

Lemma 4.7.8 implies that
(
S(g,x)

)
(g,x)∈GnX is compact.

Lemma 4.7.13.LetB be aG-C0(X)-Banach algebra. ThenF (B) [0, 1] is isomorphic toF (B[0, 1]).

Proof. The isomorphism is(Ψx)x∈X : F (B[0, 1]) → F (B) [0, 1] with

Ψx : F (B[0, 1])x → F (B)x [0, 1], βx 7→ (t 7→ β(t)x)

for all x ∈ X (whereβ ∈ B[0, 1] = C([0, 1],B)). For allx ∈ X, the mapΨx is well-defined, linear, a
quotient map and injective (and hence an isomorphism).Ψ is continuous because it takesx 7→ βx to
x 7→ (t 7→ β(t)x) ∈ Γ0(X,F (B) [0, 1]) for all β ∈ B[0, 1] (use Lemma 4.5.2).

Now we check thatΨ isGnX-equivariant. Letα andα′ denote the actions ofGnX onF (B) and
F (B[0, 1]), respectively. Thenα[0, 1] denotes the action ofGnX onF (B) [0, 1]. Let (g, x) ∈ GnX
andβ ∈ B[0, 1]. Then

α[0, 1](g,x) [Ψx(βx)]
def. Ψ= α[0, 1](g,x) (t 7→ β(t)x)

def.α[0, 1]
=

(
t 7→ α(g,x)β(t)x

)
def.α= (t 7→ (g(β(t)))gx)

def.G-action onB[0, 1]
= (t 7→ ((gβ)(t))gx)

def. Ψ= Ψgx ((gβ)gx)
def.α′= Ψgx

(
α′(g,x)(βx)

)
.

SoΨ is equivariant.
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Because the functorF is compatible with the pushout, it is also compatible with the homotopy relation.
As it is also compatible with the direct sum we get the following result.

Proposition 4.7.14.LetA andB beG-C0(X)-Banach algebras. Then(E , T ) 7→ F (E , T ) lifts to a
group homomorphism

F : RKKban
G (C0(X);A,B) → KKban

GnX (F (A) , F (B)) .

4.7.4 KKban, RKKban and the functor G

Lemma 4.7.15. Let A andB beG n X-Banach algebras. Then every(E, T ) ∈ Eban
GnX(A,B) is

isomorphic toF (M (E, T )). It follows that

KKban
GnX (A, B) ∼= KKban

GnX (F (M (A)) , F (M (B))) .

Lemma 4.7.16.Let B be aC0(X)-Banach algebra and letE andF beC0(X)-BanachB-modules.
Lete< ∈ E< andf> ∈ F>. Then

G
(∣∣f>〉〈e<∣∣) =

∣∣gF>(f>)
〉〈

gE<(e<)
∣∣ ∈ KG(B) (G(E) , G(F)) .

Proposition 4.7.17.LetB be aC0(X)-Banach algebra and letE andF beC0(X)-BanachB-modules.
If S ∈ KB (E ,F), thenG(S) ∈ KG(B) (G(E) , G(F)). Moreover, we have

(S, G(S)) ∈ K(gE , gF ) .

Lemma 4.7.18.LetA andB beG-C0(X)-Banach algebras and(E , T ) ∈ Eban
G (C0(X);A,B). Then

(gE : E → G(E) , (T,G(T ))) ∈ Eban
G (C0(X); gA, gB) .

Proof. We already know thatgE is a gradedG-equivariantC0(X)-linear concurrent homomorphism
from E to G(E) with coefficient mapsgA andgB. BecausegE< andgE> are natural transformations
we can deduce thatgE intertwinesT andG(T ), both being odd boundedC0(X)-linear operators. If
a ∈ A, then

[a, (T,G(T ))] = [(π(a), π(gA(a))), (T,G(T ))]
= [(π(a),G(π(a))) , (T, G(T ))] = ([a, T ], G([a, T ])) ∈ K(gE , gE) .

Similarly one shows that
a
(
(T,G(T ))2 − 1

)
∈ K(gE , gE) .

For allg ∈ G, we have

a (g(T,G(T ))− (T,G(T ))) = (a(gT − T ), G(a(gT − T ))) ∈ K(gE , gE) ,

and this expression depends continuously ong.

Lemma 4.7.19. Let A and B be locally C0(X)-convexG-C0(X)-Banach algebras and(E , T ) ∈
Eban

G (C0(X);A,B). If we identifyG(A) andA as well asG(B) andB, then

(gE : E → G(E) , (T,G(T ))) ∈ Eban
G (C0(X); IdA, IdB)

and(E , T ) is homotopic to(G(E) , G(T )) in Eban
G (C0(X); A, B).
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Theorem 4.7.20.LetA andB beGnX-Banach algebras. ThenM is an isomorphism

KKban
GnX (A,B) ∼= RKKban

G (C0(X); Γ0(X,A), Γ0(X,B))

with inverseF.

Proof. We already know thatF ◦ M is the identity onKKban
GnX (A,B). We have to show that

the Gelfand functor is the identity onRKKban
G (C0(X); M (A) , M (B)). Now A := M (A) =

Γ0(X,A) andB := M (B) = Γ0(X,B) are locallyC0(X)-convex. If(E , T ) ∈ Eban
G (C0(X); A, B),

then it is homotopic toG(E , T ) by Lemma 4.7.19. SoG is surjective onRKKban
G (C0(X);A,B). Be-

causeG(B) [0, 1] ∼= G(B[0, 1]) and the Gelfand functor commutes with the pushout, we also have
that two locallyC0(X)-convex elements ofEban

G (C0(X);A,B) which are homotopic can also be
connected via a locallyC0(X)-convex homotopy. This means that the Gelfand functor is also injec-
tive.

In other words: In the definition ofRKKban for locally C0(X)-convex Banach algebras one can
assume without loss of generality that all cycles are locallyC0(X)-convex.

4.8 KB(E) as aG-Banach algebra

In this section, letB be a u.s.c. field of Banach algebras overX and letE andF be BanachB-pairs.

4.8.1 KB(E, F ) as aC0(X)-Banach space

Lemma 4.8.1. For all T ∈ KB(E,F ) andϕ ∈ Cb(X), we haveϕ · T ∈ KB(E,F ). Moreover,
KB(E,F ) is a non-degenerate BanachC0(X)-module, i.e., it is aC0(X)-Banach space.

Proof. SinceKB(E,F ) is a left BanachLB(F )-module andCb(X) can be mapped homomorphically
intoLB(F ) as multiplication operators, it follows thatKB(E,F ) is a left BanachCb(X)-module (with
the pointwise product). One can easily show that the elements ofKB(E,F ) with compact support are
dense inKB(E,F ). HenceKB(E,F ) is a non-degenerateC0(X)-module.

The preceding lemma makes it possible to speak of the fibres ofKB(E,F ) as aC0(X)-Banach
space. An immediate conjecture is that the fibre ofKB(E,F ) atx ∈ X is KBx (Ex, Fx). This is true
for Hilbert modules and C∗-algebras, but it isfalsefor general Banach pairs as the following example
shows. More precisely, we are going to present a counterexample for the following two statements
which hold true for Hilbert modules:

1. For allT ∈ KB(E,F ) the functionx 7→ ‖Tx‖ is upper semi-continuous.

2. For allx ∈ X the evaluation map induces an isomorphism(KB(E,F ))x ∼= KBx (Ex, Fx).

Example 4.8.2.LetX = N = N∪{∞} and letB be the constant field of Banach spaces overN with
fibre C. The left and right parts ofE andF are also constant fields overN, namelyE<, F< andF>

with fibre C, andE> with constant fibrec0(N). The action ofB onE andF are the obvious ones.
The bracket onF is the zero-bracket.

For alln ∈ N define the map

〈·, ·〉n : C× c0(N) → C, (λ, x) 7→ 〈λ, x〉n := λxn.
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Define
〈·, ·〉∞ : C× c0(N) → C, (λ, x) 7→ 〈λ, x〉∞ := 0.

All these maps areC-bilinear. Moreover, the family(〈·, ·〉n)n∈N is a continuous field of bilinear maps
on E< ×N E>. To show this, let(λm)m∈N be an element ofΓ

(
N, E<

)
and let(xm)m∈N be an

element ofΓ
(
N, E>

)
. We have to show that the sequence(λnxnn)n∈N converges to zero.

Let ε > 0. Becauseλ∞x∞ ∈ c0(N), we can find anM ∈ N such that|λ∞x∞m | < ε/2 for
all m ≥ M . Becausexn → x∞ in c0(N) andλn → λ∞ in C, we can find anN ∈ N such that
‖λ∞x∞ − λnxn‖∞ < ε/2 for all n ≥ N . Letn ≥ max{M,N}. Then

|λnxnn| ≤ |λ∞x∞n |+ |λ∞x∞n − λnxnn| ≤ ε/2 + ε/2.

Note that forλ ∈ C the map〈λ, ·〉n is of norm |λ| for all n ∈ N and of norm0 if n = ∞.
In particular, the family(〈1, ·〉n)n∈N is not upper semi-continuous in norm. But this family can be

written as the right part of a compact fieldT of operators inKB(E,F ), namely as
∣∣1〉〈1∣∣>, where1

is a short-hand notation for the constant function onN with value 1. Because the inner product ofF
is zero, the left-hand part ofT is zero. So the norm-function ofT is given by the norm-function of
the right-hand part. So in this particular case,T =

∣∣1〉〈1∣∣ ∈ KB(E,F ), but the norm function ofT is
not upper semi-continuous.

The spaceKB∞(E∞, F∞) is zero, because the involved inner products vanish. However, the fibre
KB(E,F )∞ does not vanish, because the fibre of the elementT in ∞ has non-zero norm, namely
lim supn→∞ ‖Tn‖ = 1.

This example should make it possible to construct two homotopies ofKKban-cycles which cannot be
linked in any obvious way, showing that the homotopy relation forKKban-cycles is not transitive and
we thus have to take equivalence relation generated by homotopy instead.

Although we do not know the fibres ofKB(E,F ) exactly we nevertheless know thatKB(E,F )
as aC0(X)-Banach space is not too bad:

Proposition 4.8.3.KB(E,F ) is a locallyC0(X)-convexC0(X)-Banach space. In particular,KB(E)
is a locallyC0(X)-convexC0(X)-Banach algebra.

Proof. LetT = (Tx)x∈X be an element ofKB(E,F ). If πx denotes the quotient map fromKB(E,F )
to its fibre atx ∈ X, then

‖πx(T )‖ = lim sup
y→x

‖Ty‖ .

It follows thatsupx∈X ‖πx(T )‖ = ‖T‖.

4.8.2 The pullback ofKB(E, F ) along an (open) continuous map

Lemma 4.8.4. For all x ∈ X, let ψx denote the canonical map fromKB(E,F )x to KBx(Ex, Fx).4

Let Y be a locally compact Hausdorff space and letp : Y → X be continuous. For allT ∈
Γ (Y, p∗F (KB(E,F ))), let

Ψ(T )y := ψp(y)(T (y)) ∈ KBp(y)

(
Ep(y), Fp(y)

)
for all y ∈ Y . ThenΨ(T ) ∈ Kloc

p∗B (p∗E, p∗F ). The mapΨ is C(Y )-linear. If T is bounded, then so
is Ψ(T ) with ‖Ψ(T )‖ ≤ ‖T‖. If T vanishes at infinity, then so doesΨ(T ) and is hence compact.

4ψx is continuous with norm≤ 1 and has dense image; however, we know that it need not be injective (see Exam-
ple 4.8.2).
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Proof. To check that the mapΨ is well-defined we first approximateT locally in the following way:
Let y ∈ Y andε > 0. By the definition of the sections of the pullbackp∗F (KB(E,F )) we can

approximateT neary by the product of the pullback of a section ofF (KB(E,F )) and a continuous
function ofY . We can even assume that both, the section and the function, have compact support.
Using the Gelfand transformation for theC0(X)-Banach spaceKB(E,F ) we can then assume that
the section comes from an element ofKB(E,F ). More precisely: We can find a compact operator
S ∈ KB(E,F ) and a functionχ ∈ Cc(Y ) such that0 ≤ χ ≤ 1 andχ ≡ 1 on a neighbourhood ofy
and such that

∥∥χ(T − gK(E,F )(S) ◦ p)
∥∥ ≤ ε.

What isΨ(χ(gK(E,F )(S) ◦ p))? We have

Ψ(χ(gK(E,F )(S) ◦ p))y = χ(y)ψp(y)(gK(E,F )(S)(p(y))) = χ(y)Sp(y)

for all y ∈ Y . In other words:Ψ(χ(gK(E,F )(S) ◦ p)) = χ p∗S, so Ψ(χ(gK(E,F )(S) ◦ p)) is, in
particular, a continuous field of linear operators. Nowp∗S is locally compact asS is (locally) compact
(see Proposition 3.3.22), and henceΨ(χ(gK(E,F )(S) ◦ p)) is compact.

Let us check thatΨ(T ) really is a continuous field of linear operators: Letξ> ∈ Γ(Y, p∗E>).
Now ‖Ψ(χT )> ◦ ξ> − (χ p∗S)> ◦ ξ>‖ ≤ ε; because(χ p∗S)> ◦ ξ> is a section for allχ ∈ Cc(Y ),
alsoΨ(T )> ◦ ξ> is a section ofp∗F> (use Property (C4) of the definition of a u.s.c. field). Similarly
one shows thatΨ(T )< sends sections to sections. HenceΨ(T ) ∈ Lloc

p∗B (p∗E, p∗F ).
To see thatΨ(T ) is compact note that‖χΨ(T )− χp∗S‖ ≤ ε, so Ψ(T ) can be approximated

neary by compact operators, henceΨ(T ) is compact neary. On the other hand,‖Ψ(T )y‖ → 0 for
y →∞, soΨ(T ) is compact.

Proposition 4.8.5.LetY , p andΨ be as in Lemma 4.8.4. Then the image ofΓ0 (Y, p∗F (KB(E,F )))
underΨ is dense inKp∗B (p∗E, p∗F ). If p is open, thenΨ is isometric on the sections vanishing at
infinity and we hence have aC0(Y )-linear isometric isomorphism

Γ0 (Y, p∗F (KB(E,F ))) ∼= Kp∗B (p∗E, p∗F )

and aC(Y )-linear bijection

Γ (Y, p∗F (KB(E,F ))) ∼= Kloc
p∗B (p∗E, p∗F ) .

Proof. Ψ has dense image: Letξ< ∈ Γc(Y, p∗E<) andη> ∈ Γc(Y, p∗F>). It suffices to check that∣∣η>〉〈ξ<∣∣ can be approximated by elements in the image ofΨ. Moreover, it suffices to check this
whenξ< is of the formχ′(ξ<0 ◦ p) with χ′ ∈ Cc(Y ) andξ<0 ∈ Γc(X,E<) andη> is of the form
χ′′(η>0 ◦ p) with χ′′ ∈ Cc(Y ) andη>0 ∈ Γc(X,F>). But in this case,S :=

∣∣η>0 〉〈ξ<0 ∣∣ ∈ KB(E,F )
andχ′χ′′(gK(E,F )(S) ◦ p) do the job:Ψ(χ′χ′′(gK(E,F )(S) ◦ p)) = χ′χ′′p∗S.

Now assume thatp is open. We show that for allT ∈ Γ (Y, p∗F (KB(E,F ))) and ally ∈ Y
we have‖Ψ(T )‖lim,y = ‖T (y)‖. This shows thatΨ is isometric on the sections vanishing at infinity
(even on the bounded sections) and that (the unrestricted)Ψ is a bijection.

Let T ∈ Γ (Y, p∗F (KB(E,F ))) andy ∈ Y . As above, findS ∈ KB(E,F ) andχ ∈ Cc(Y ) such
that0 ≤ χ ≤ 1 andχ ≡ 1 on a neighbourhood ofy and such that

∥∥χ(T − gK(E,F )(S) ◦ p)
∥∥ ≤ ε.

Then ∥∥Ψ(χgK(E,F )(S) ◦ p)
∥∥

lim,y
= ‖p∗S‖lim,y

(?)
= ‖S‖lim,p(y)

=
∥∥gK(E,F )(S)(p(y))

∥∥ =
∥∥(χgK(E,F )(S) ◦ p)(y)

∥∥ .
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The equality(?) follows from the fact thatp is open. We have∣∣∣ ‖Ψ(T )‖lim,y − ‖T (y)‖
∣∣∣ ≤

∣∣∣‖χΨ(T )‖lim,y −
∥∥χΨ(gKB(E,F )(S) ◦ p)

∥∥
lim,y

∣∣∣
+
∣∣∣ ∥∥(χgKB(E,F )(S) ◦ p)(y)

∥∥− ‖χT (y)‖
∣∣∣ ≤ ε+ ε.

Sinceε was arbitrary, we have‖Ψ(T )‖lim,y = ‖T (y)‖ for all y ∈ Y .

Note that the proposition says in particular that the fibre ofKp∗B (p∗E, p∗F ) aty ∈ Y is isometrically
isomorphic to the fibre ofKB(E,F ) atp(y) (if p is open).

Corollary 4.8.6. If p = IdX , then the mapΨ gives aC0(X)-linear isometric isomorphism

Γ0 (X, F (KB(E,F ))) ∼= KB (E, F )

(namely the inverse of the Gelfand transform) and aC(X)-linear bijection

Γ (X, F (KB(E,F ))) ∼= Kloc
B (E, F ) .

4.8.3 IsF (KB(E, F )) a G-Banach space?

In this subsection, letB be aG-Banach algebra and letE andF beG-BanachB-pairs. LetαB, αE

andαF denote theG-actions onB, E andF , respectively. Note that we already have an “action”
of G on KB(E,F ), namely the isomorphismαK(E,F ) : Kloc

s∗B (s∗E, s∗F ) → Kloc
r∗B (r∗E, r∗F ) de-

fined in Proposition 3.4.25. The restriction clearly is an isometric isomorphismKs∗B (s∗E, s∗F ) →
Kr∗B (r∗E, r∗F ). If s andr areopenmaps, then we can identify these spaces (regarded as fields of
Banach spaces) withs∗F (KB(E,F )) andr∗F (KB(E,F )), respectively, and can used it to define an
action onF (KB(E,F )):

Definition and Proposition 4.8.7. Let G haveopenrange and source maps. LetΨs denote the iso-
metric isomorphismΓ0 (G, s∗F (KB(E,F ))) → Ks∗B (s∗E, s∗F ) and defineΨr analogously. Then
there is a unique continuous field of linear maps

αF(K(E,F )) : s∗F (KB(E,F )) → r∗F (KB(E,F ))

such that the following diagram is commutative

Γ0 (G, s∗F (KB(E,F ))) T 7→αF(K(E,F ))◦T //

Ψs

��

Γ0 (G, r∗F (KB(E,F )))

Ψr

��
Ks∗B (s∗E, s∗F ) αK(E,F )

// Kr∗B (r∗E, r∗F )

It is an isometric continuous field of isomorphisms.

Proof. The mapΨ−1
r ◦ αK(E,F ) ◦ Ψs from Γ0 (G, s∗F (KB(E,F ))) to Γ0 (G, r∗F (KB(E,F ))) is

an isometricC0(G)-linear isomorphism. It therefore comes from an isometric continuous field of
isomorphisms froms∗F (KB(E,F )) to r∗F (KB(E,F )) which we callαF(K(E,F )).

Conjecture 4.8.8. Let G have open range and source maps. ThenαF(K(E,F )) is an action ofG on
F (KB(E,F )).
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We already know thatα := αF(K(E,F )) is an isometric continuous field of isomorphisms. It
remains to show the (algebraic) identityαγ ◦ αγ′ = αγγ′ for all γ, γ′ ∈ G such thats(γ) = r(γ′).
This looks fairly innocent, and if it is true, then the proof is probably rather simple. Nevertheless,
this question remains open for now, and fortunately, the result is not needed for other parts of this
thesis; however, it would make some constructions more systematic, in particular Subsection 5.2.7:
The convolution with fields of compact operators would then be closer to the ordinary convolution
product. Note that the conjecture implies in particular thatF (KB(E)) is aG-Banach algebra because
the “action” ofG is clearly compatible with the composition.



Chapter 5

The Descent

The descent for locally compact Hausdorff groupoidsG and forG-C∗-algebras was first considered
in [LG94]; the descent forG-Banach algebras was introduced in [Laf06] in Section 1.3, being a
homomorphism

jA : KKban
G (A,B) → KKban(A(G, A), A(G, B)),

whereA andB areG-Banach algebras andA(G, A) andA(G, B) are completions ofΓc(G, r∗A) and
Γc(G, r∗B), respectively, for semi-norms which are induced by an unconditional completion1 A(G)
of Cc(G). In the present chapter, we improve this homomorphism a little bit, showing that it is indeed
a homomorphism

jA : KKban
G (A,B) → RKKban(C0(X/G); A(G, A), A(G, B)).

Note that we assume in this chapter that the topology onX/G is locally compact Hausdorff whenever
we want to take the extraC0(X/G)-structure into account. This is automatic ifG is proper. We try
to give a rather detailed and systematic treatment of the descent, and this means in particular that we
follow two rules:

1. We standardise the formulae for the convolution product; this is done by always using the pull-
back along the range map instead of sometimes pulling back along the source map, i.e., we use
alwaysΓc(G, r∗E) instead ofΓc(G, s∗E). The result is that we can always work with the same
convolution formula (5.2). Note that we therefore arrive at a definition of the descent which is
slightly different from but equivalent to the one in [Laf06].

2. We try to prove as much as possible on the level of sections with compact support. Most of the
definitions make sense already on this level, and algebraic questions and questions concerning
the density of certain subsets can be settled in this framework. After forming the (unconditional)
completions the corresponding questions can then easily be answered in the setting of Banach
algebras.

The last part of the chapter deals with the question what happens if we change the underlying groupoid.
Later on we will discuss this question in the framework of generalised morphisms of groupoids2, but
for now we confine ourselves to the case of moving to a subgroupoid of a special kind; actually, this
case will later turn out to be rather close to the general case of (Morita) equivalent groupoids.

1See Definition 5.2.1.
2See Chapter 6, in particular Subsection 6.6.4.
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5.1 Convolution and sections with compact support

A topological groupoidG is called locally compact ifG is locally compact as a topological space,
i.e., every point inG has a compact neighbourhood. In this thesis we will assume that our locally
compact groupoids are Hausdorff; in this case it is quite trivial thatG(0) is closed, locally compact
and Hausdorff.3

Definition 5.1.1 (Haar system).Let G be a locally compact Hausdorff groupoid. A left Haar system
λ on G is a faithful continuous field4 (λg)g∈G(0) of measures onG overG(0) with coefficient mapr
such that

(5.1) ∀γ ∈ G ∀ϕ ∈ Cc(G) :
∫
γ′∈Gr(γ)

ϕ(γ′) dλr(γ)(γ′) =
∫
γ′∈Gs(γ)

ϕ(γγ′) dλs(γ)(γ′).

Note that such a Haar system need not exist. IfG is a locally compact Hausdorff groupoid admitting
a Haar system, then it follows from Lemma B.2.4 that its range and source maps are open.

For the rest of this section, letG be a locally compact Hausdorff groupoid with left Haar systemλ.
WriteX for the unit spaceG(0).

5.1.1 Bilinear maps and the convolution product

Definition and Proposition 5.1.2. LetE1, E2 andF beG-Banach spaces.5 Let µ : E1 ×X E2 → F
be a continuous field of bilinear maps (so thatµx : (E1)x × (E2)x → Fx for all x ∈ X = G(0)). We
define

(5.2) µ(ξ1, ξ2)(γ′) :=
∫
Gr(γ′)

µr(γ′)
(
ξ1(γ), γ

(
ξ2(γ−1γ′)

) )
dλr(γ

′)(γ)

for all ξ1 ∈ Γc(G, r∗E1), ξ2 ∈ Γc(G, r∗E2) and γ′ ∈ G. Thenµ(ξ1, ξ2) is in Γc(G, r∗F ) and
(ξ1, ξ2) 7→ µ(ξ1, ξ2) defines a separately continuous bilinear map which is non-degenerate ifµ is
non-degenerate.

If µ is written as a product, then we simply writeξ1 ∗ ξ2 for µ(ξ1, ξ2). If µ is written as a bracket
〈·, ·〉 then we write〈ξ1, ξ2〉 for µ(ξ1, ξ2).

The proof of 5.1.2 is a refined version of the proof of Proposition 7.1.1 in [LG94]; this proposition
states that the above formula makes sense forµ being the multiplication of aG-C∗-algebra. We are
not only interested in the fact thatµ(ξ1, ξ2) is a well-defined element ofΓc(G, r∗F ), but also in the
continuity and non-degeneracy of the product of sections, and therefore we have to work a little more.
In [Laf06] the general Definition 5.1.2 is not stated and the special cases given there are not proved
explicitly, although some variant of the proof given here is certainly in the background.

Our proof rests on the following lemma which is proved in Appendix C.1.

Lemma 5.1.3. Let ξ1 ∈ Γ(G, r∗E1) andξ2 ∈ Γ(G, r∗E2) be sections (with arbitrary support). Then

µ̃(ξ1, ξ2)(γ, γ′) = µr(γ)
(
ξ1(γ), αγ(ξ2(γ′))

)
3As shown in [Tu04], Proposition 2.5, the unit spaceG(0) of a locally compact (possibly non-Hausdorff)G is locally

closed inG and hence locally compact as well.
4See Definition B.2.1.
5For the definition and some of the basic properties, it suffices to assume thatE1 andF are u.s.c. fields of Banach spaces

overG(0).
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is in Γ(G(2), π∗1r
∗F ), whereπ1 : G(2) → G is the projection onto the first coordinate. The mapµ̃ is

bilinear and jointly continuous for uniform convergence on compact subsets. The support ofµ̃(ξ1, ξ2)
is contained insupp ξ1 × supp ξ2, so if ξ1 and ξ2 have compact support, so has their product. On
the sections with compact support,µ̃ is separately continuous. Ifµ is non-degenerate, theñµ is
non-degenerate in two senses: Firstly, it sends the product of two total subsets to a total subset, and
secondly, the setΞ := {µ̃(ξ1, ξ2) : ξi ∈ Γc(G, r∗Ei)} spans a subset ofΓc(G(2), π∗1r

∗F ) which is
dense for the inductive limit topology.

Proof of 5.1.2.First define the mapΦ: G ∗r,r G → G(2) = G ∗s,r G, (γ, γ′) 7→ (γ, γ−1γ′). This is a
homeomorphism. Letp1 andp2 denote the projections ofG∗r,rG onto the first and second component,
respectively. Thenπ1 ◦ Φ = p1 (quite trivially), and we haveΦ∗(π∗1r

∗F ) = p∗1r
∗F = p∗2r

∗F . The
mapΦ therefore induces an isomorphism

Γc(G(2), π∗1r
∗F ) → Γc (G ∗r,r G, p∗2r∗F )

which sends someη to (γ, γ′) 7→ η(γ, γ−1γ′). In particular, it sends our̃µ(ξ1, ξ2) to

(γ, γ′) 7→ µr(γ)
(
ξ1(γ), αγ

(
ξ2(γ−1γ′)

))
.

Note that this is the integrand in the convolution formula and a section of compact support.
Now we define a suitable continuous field of measures onG∗r,rG. Consider the mapp2 : G∗r,rG →

G. Its fibres are of the formp−1
2 ({γ′}) = {(γ, γ′) : γ ∈ G, r(γ) = r(γ′)} for eachγ′ ∈ G. These

fibres are homeomorphic toGr(γ′), so we can put the measureλr(γ
′) on them. Technically, we are

forming the pullbackr∗λ by r of the continuous field of measuresλ onG with coefficient mapr (see
Definition B.2.8):

(G, λ)

r

��

(G ∗r,r G, r∗λ)

p2

��

p1
oo

X = G(0) Gr
oo

By Proposition B.3.1 we can deduce thatr∗λ mapsΓc(G ∗r,r G, p∗2r∗F ) to Γc(G, r∗F ), and this
map is onto sinceλ is faithful and so isr∗λ. The composition of̃µ, the isomorphism induced byΦ
andr∗λ is our convolution product(ξ1, ξ2) 7→ µ(ξ1, ξ2), which is therefore well-defined, separately
continuous and non-degenerate ifµ is non-degenerate.

By direct calculation of the involved integrals one can prove:

Proposition 5.1.4 (Preservation of associativity).Let E1, E2, E3, F1, F2 and G be G-Banach
spaces. Letµ1 : E1×XE2 → F1, µ2 : E2×XE3 → F2, ν1 : F1×XE3 → G andν2 : E1×X F2 → G
be continuous fields of bilinear maps. Assume that the following associativity law holds:

(ν1)x
(
(µ1)x(e1, e2), e3

)
= (ν2)x

(
e1, (µ2)x(e2, e3)

)
for all x ∈ X = G(0), e1 ∈ (E1)x, e2 ∈ (E2)x, ande3 ∈ (E3)x. If, in addition,µ2 is G-equivariant,
then the same associativity law holds on the level of sections with compact support:

ν1

(
µ1(ξ1, ξ2), ξ3

)
= ν2

(
ξ1, µ2(ξ2, ξ3)

)
for all ξ1 ∈ Γc(G, r∗E1), ξ2 ∈ Γc(G, r∗E2), andξ3 ∈ Γc(G, r∗E3).
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5.1.2 Linear maps

Definition and Proposition 5.1.5. Let E andF be G-Banach spaces andT a continuous field of
linear maps between them. Thenξ 7→ (γ 7→ Tr(γ)ξ(γ)) defines a continuous linear map, we call it
T ∗ · or Γc(G, r∗T ), from Γc(G, r∗E) to Γc(G, r∗F ).

The notationT ∗ · for the linear map defined in 5.1.5 is justified by the following consideration:
If one thinks ofT = (Tg)g∈G(0) as a kind of distribution onG which assigns to everyg ∈ G(0) = X
the operatorTg with mass 1 and zero to all other elements ofG, then the convolution productT ∗ ξ for
ξ ∈ Γc(G, r∗E) can be calculated as

(T ∗ ξ)(γ) =
∫
Gr(γ)

Tγ′γ
′ξ
(
γ′−1γ

)
dλr(γ)(γ′)

where the integrand is zero forγ′ 6= r(γ). If γ′ = r(γ), then the integrand (and hence the integral)
gives(T ∗ ξ)(γ) = Tr(γ)ξ(γ) as desired.

Now the questions arises what happens if we letT act on the right onE, a phenomenon which
must be discussed because we are going to meet this situation when considering the left-hand side of
a Banach pair. In this case we can formally calculate

(ξ ∗ T )(γ) =
∫
Gr(γ)

ξ(γ′)γ′Tγ′−1γ dλr(γ)(γ′).

Now the integrand vanishes ifγ′ 6= γ, whereas the caseγ′ = γ yields (ξ ∗ T )(γ) = ξ(γ)γTs(γ).
To further evaluate this, it would be desirable to translate theG-action onE into an action on the
right. However, we just translate the right action ofT back into a left action to get(ξ ∗ T )(γ) =[
γTs(γ)

]
ξ(γ) = γ

[
Ts(γ)(γ−1ξ(γ))

]
. Of course, this only makes sense ifG acts onE andF (instead

of E andF just being continuous fields overG(0) as above). As a conclusion, we have the following
proposition:

Definition and Proposition 5.1.6. Let E andF beG-Banach spaces andT a bounded continuous
field of linear maps between them. Thenξ 7→ γ

[
Ts(γ)(γ−1ξ(γ))

]
defines a continuous linear map,

which we denote by·∗T , fromΓc(G, r∗E) to Γc(G, r∗F ). Note thatT ∗· = ·∗T if T isG-equivariant.

The interplay of linear and bilinear maps and the descent procedure can be summarized in the follow-
ing general proposition. It can be proved by direct calculation.

Proposition 5.1.7 (Linear and bilinear maps). LetE1, E2, F , E′
1, E′

2 andF ′ beG-Banach spaces.
Let Si : Ei → E′

i for i = 1, 2 andT : F → F ′ be continuous fields of linear maps. Letµ : E1 ×X
E2 → F andµ′ : E′

1 ×X E′
2 → F ′ be continuous fields of bilinear maps. Assume that

µ′ ◦ (S1 ×X S2) = T ◦ µ.

1. If S2 is G-equivariant, then

µ′ (S1 ∗ ξ1, ξ2 ∗ S2) = T ∗ µ (ξ1, ξ2)

for all ξ1 ∈ Γc(G, r∗E1) andξ2 ∈ Γc(G, r∗E2).

2. If the linear mapS1 and the bilinear mapsµ andµ′ areG-equivariant, then

µ′ (S1 ∗ ξ1, ξ2 ∗ S2) = µ (ξ1, ξ2) ∗ T

for all ξ1 ∈ Γc(G, r∗E1) andξ2 ∈ Γc(G, r∗E2).
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5.1.3 Banach algebras, modules and pairs

We have seen above how one can lift fields of bilinear maps to bilinear maps between the respective
spaces of sections of compact support. This applies in particular to the multiplication ofG-Banach
algebras and the other fields of bilinear maps that appear in the definition ofG-Banach modules and
G-Banach pairs. In the preceding paragraph we have discussed the interplay of the lifts of linear and
bilinear maps. We now apply these considerations to homomorphisms betweenG-Banach algebras,
G-Banach modules etc.

Banach algebras and Banach modules

As a special case of 5.1.2 we obtain the following result:

Proposition 5.1.8. LetB be aG-Banach algebra. ThenΓc(G, r∗B) is an associative algebra with
the convolution product

(ξ1 ∗ ξ2)(γ′) :=
∫
Gr(γ′)

ξ1(γ) γξ2(γ−1γ′) dλr(γ
′)(γ)

for all γ′ ∈ G, ξ1, ξ2 ∈ Γc(G, r∗B). If B is non-degenerate, then the linear span ofΓc(G, r∗B) ∗
Γc(G, r∗B) is dense inΓc(G, r∗B) for the inductive limit topology.

We can lift homomorphism ofG-Banach algebras:

Proposition 5.1.9. Let B andC be G-Banach algebras and letϕ denote aG-equivariant field of
homomorphisms between them. ThenΓc(G, r∗ϕ) is a continuous homomorphism of algebras from
Γc(G, r∗B) to Γc(G, r∗C).

Proof. Use the first part of Proposition 5.1.7 withE1 = E2 = F = B, E′
1 = E′

2 = F ′ = C,
S1 = S2 = T = ϕ andµ andµ′ being the multiplication ofB andC, respectively.

What we have done forG-Banach algebras also applies toG-Banach modules (and equivariant homo-
morphism between them):

Proposition 5.1.10.LetB be aG-Banach algebra andE a rightG-BanachB-module. Then the right
module action ofB onE gives rise to a right module action of the algebraΓc(G, r∗B) onΓc(G, r∗E).
If the action ofB onE is non-degenerate, then the linear span ofΓc(G, r∗E) ∗ Γc(G, r∗B) is dense
in Γc(G, r∗E) for the inductive limit topology.

Proposition 5.1.11. Let B andB′ be G-Banach algebras and letϕ denote aG-equivariant field
of homomorphisms between them. LetE be a rightG-BanachB-module and letE′ be a rightG-
BanachB′-module. LetΦ be aG-equivariant homomorphism fromE to E′ with coefficient mapϕ.
ThenΓc(G, r∗Φ) is a continuous homomorphism of modules fromΓc(G, r∗E) to Γc(G, r∗E′) with
coefficient mapΓc(G, r∗ϕ).

Proof. Use the first part of Proposition 5.1.7 withE1 = F = E, E2 = B, E′
1 = F ′ = E′, E′

2 =
B′, S1 = T = Φ, S2 = ϕ, andµ andµ′ being the module action ofB on E and ofB′ on E′,
respectively.
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Not only equivariant homomorphisms lift to the level of sections of compact support, but also linear
operators. Note that we do not require the linear operators to be equivariant. This makes it necessary
to discuss left and right modules separately:

Proposition 5.1.12.LetB be aG-Banach algebra and letE, E′ be rightG-BanachB-modules. Let
T be aB-linear continuous field of linear operators fromE toE′ (not necessarily equivariant). Then
Γc(G, r∗T ) is a continuousΓc(G, r∗B)-linear map fromΓc(G, r∗E) to Γc(G, r∗E′).

Proof. Use the first part of Proposition 5.1.7 withE1 = F = E, E2 = E′
2 = B, E′

1 = F ′ = E′,
S1 = T , S2 = IdB, andµ andµ′ being the module action ofB onE and onE′, respectively.

Proposition 5.1.13.LetB be aG-Banach algebra and letE, E′ be leftG-BanachB-modules. LetT
be aB-linear continuous field of linear operators fromE to E′ (not necessarily equivariant). Then
· ∗ T is a continuousΓc(G, r∗B)-linear map fromΓc(G, r∗E) to Γc(G, r∗E′).

Proof. Use the second part of Proposition 5.1.7 withE2 = F = E, E1 = E′
1 = B, E′

2 = F ′ = E′,
S2 = T , S1 = IdB, andµ andµ′ being the module action ofB onE and onE′, respectively.

Banach pairs

We can also lift the bracket of aG-Banach pair to the level of sections with compact support:

Proposition 5.1.14.LetB be aG-Banach algebra and letE be aG-BanachB-pair. Then the space
Γc(G, r∗E>) is a right Γc(G, r∗B)-module andΓc(G, r∗E<) is a left Γc(G, r∗B)-module. More-
over, the bracket ofE induces a bilinear map

〈·, ·〉Γc(G, r∗E) : Γc(G, r∗E<)× Γc(G, r∗E>) → Γc(G, r∗B)

which isΓc(G, r∗B)-linear on the left and on the right.

The following proposition says that the descent of a linear operator betweenG-Banach pairs is a for-
mally adjoint pair of linear operators between the respective pairs of spaces of sections with compact
support. More precisely:

Proposition 5.1.15. Let B be aG-Banach algebra and letE and F be G-BanachB-pairs. Let
T = (T<, T>) be an element ofLB(E,F ). Then

1. T> ∗ · is a continuous linear operator fromΓc(G, r∗E>) to Γc(G, r∗F>) beingΓc(G, r∗B)-
linear on the right;

2. · ∗ T< is a continuous linear operator fromΓc(G, r∗F<) to Γc(G, r∗E<) beingΓc(G, r∗B)-
linear on the left;

3. for all ξ> ∈ Γc(G, r∗E>) and allη< ∈ Γc(G, r∗F<) we have〈
η<, T> ∗ ξ>

〉
Γc(G, r∗F )

=
〈
η< ∗ T<, ξ>

〉
Γc(G, r∗E)

∈ Γc(G, r∗B).

Proof. 1. This is Proposition 5.1.12.

2. This is Proposition 5.1.13.
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3. Letξ> ∈ Γc(G, r∗E>) and allη< ∈ Γc(G, r∗F<). For allγ ∈ G, we have〈
η<, T> ∗ ξ>

〉
Γc(G, r∗F )

(γ) =
∫
Gr(γ)

〈
η<(γ′), γ′

(
T> ∗ ξ>

)
(γ′−1γ)

〉
dλr(γ)(γ′)

=
∫
Gr(γ)

〈
η<(γ′), γ′

(
Ts(γ′)ξ

>(γ′−1γ)
)〉

dλr(γ)(γ′)

=
∫
Gr(γ)

〈
η<(γ′), γ′

(
Ts(γ′)γ

′−1γ′ξ>(γ′−1γ)
)〉

dλr(γ)(γ′)

=
∫
Gr(γ)

〈
γ′
(
Ts(γ′)γ

′−1η<(γ′)
)
, γ′ξ>(γ′−1γ)

〉
dλr(γ)(γ′)

=
〈
η< ∗ T<, ξ>

〉
Γc(G, r∗E)

(γ).

5.1.4 The actions ofC(X) and C(X/G)

Definition 5.1.16. LetE be aG-Banach space. Then we define

• a “left” module action ofC(X) onΓc(G, r∗E) by setting

(χ · ξ)(γ) = χ(r(γ))ξ(γ) χ ∈ C(X), ξ ∈ Γc(G, r∗E), γ ∈ G;

• a “right” module action ofC(X) onΓc(G, r∗E) by setting

(ξ · χ)(γ) = χ(s(γ))ξ(γ) χ ∈ C(X), ξ ∈ Γc(G, r∗E), γ ∈ G;

• a module action ofC(X/G) onΓc(G, r∗E) by setting

(χ · ξ)(γ) = χ(π(γ))ξ(γ) χ ∈ C(X/G), ξ ∈ Γc(G, r∗E), γ ∈ G,

whereπ : G → X/G denotes the mapγ 7→ [r(γ)] = [s(γ)].

Γc(G, r∗E) is aC(X)-bimodule when equipped with the left and right action.

Note that the action ofC(X/G) is coherent with the left and right action ofC(X) on Γc(G, r∗E)
in the sense that pulling back a functionχ ∈ C(X/G) to a function inC(X) and letting it act on
Γc(G, r∗E) gives the same action, no matter whether we choose the left or the right action ofC(X).

Let E be aG-Banach space. For allξ ∈ Γc(G, r∗E) there is a functionχ ∈ Cc(X) such that
χξ = ξ and such thatξχ = ξ; and there is a functionχ′ ∈ Cc(X/G) such thatχ′ξ = ξ. So the actions
of Cc(X) andCc(X/G) are non-degenerate in a strong sense.

By direct calculation we get the following formulae.

Proposition 5.1.17.LetE1,E2 andF beG-Banach spaces. Letµ : E1 ×X E2 → F be a continuous
field of bilinear maps. LetG act onE2. Then for allξ1 ∈ Γc(G, r∗E1), ξ2 ∈ Γc(G, r∗E2), χ ∈ C(X)
andχ′ ∈ C(X/G):

1. χ · µ (ξ1, ξ2) = µ (χ · ξ1, ξ2),

2. µ (ξ1, ξ2) · χ = µ (ξ1, ξ2 · χ),

3. µ (ξ1 · χ, ξ2) = µ (ξ1, χ · ξ2),

4. χ′ · µ (ξ1, ξ2) = µ (χ′ · ξ1, ξ2) = µ (ξ1, χ′ · ξ2).



144 CHAPTER 5. THE DESCENT

5.2 Unconditional completions

Let G be a locally compact Hausdorff groupoid with left Haar-systemλ. WriteX for G(0).

5.2.1 Unconditional norms and fields of Banach spaces

The notion of an unconditional norm forCc(G) was first defined in [Laf02] for the group case and in
[Laf06] for G being a groupoid.

Definition 5.2.1. An unconditional completionA(G) of Cc(G) is a Banach algebra containingCc(G)
as a dense subalgebra and having the following property

(5.3) ∀f1, f2 ∈ Cc(G) :
(
∀γ ∈ G : |f1(γ)| ≤ |f2(γ)|

)
⇒ ‖f1‖A(G) ≤ ‖f2‖A(G) .

In this case we say that the norm ofA(G) is unconditional. We also write‖·‖A for the norm onA(G).

An unconditional norm is a special case of a monotone norm, compare Section 3.2. In particular,
we can extend the norm to a semi-norm onF+

c (G).

Examples 5.2.2. 1. For allχ ∈ Cc(G), define

‖χ‖1 := sup
x∈X

∫
Gx

|χ(γ)| dγ.

This is an unconditional norm onCc(G) and the corresponding unconditional completion is
calledL1(G).

2. If we defineχ∗(γ) := χ(γ−1) for all γ ∈ G andχ ∈ Cc(G), then we can define a symmetrised
version of theL1-norm onCc(G) by setting

‖χ‖ := max {‖χ‖1 , ‖χ
∗‖1}

for all χ ∈ Cc(G). In [Ren80], the completion for this norm is calledL1(G), but we follow
[Laf06] and call itL1(G) ∩ L1(G)∗.

3. In [Laf06], Section 3, the following unconditional completion is defined: For allχ ∈ Cc(G), set

‖χ‖Amax(G) :=
∥∥∥γ 7→ |χ(γ)|

∥∥∥
C*

r(G)
.

Note thatC*
r(G) itself is very rarely unconditional.

4. If the groupoidG carries a length function6 l andA(G) is an unconditional completion ofCc(G),
then one can define the weighted norm

‖χ‖Al(G) :=
∥∥∥γ 7→ el(γ)χ(γ)

∥∥∥
A(G)

for all χ ∈ Cc(G). This gives an unconditional completionAl(G).

5. In the fourth chapter of [Laf02] V. Lafforgue defines generalised Schwartz spacesS lt(G,A) on
which the convolution product (sometimes) defines a continuous multiplication. After renor-
malisation of the norm this would also be an example of an unconditional completion.

6See Définition 1.2.1 of [Laf06].
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6. LetG be a locally compact Hausdorff group acting on some locally compact Hausdorff space
X. DefineG := GnX. OnCc(G) there is the unconditional norm‖·‖1 from the first example,
which can be calculated as

‖χ‖1 = sup
x∈X

∫
G
|χ(g, x)| dg

for all χ ∈ Cc(GnX). There is an alternative unconditional norm onCc(GnX) coming from
the algebraL1(G, C0(X)):

‖χ‖L1(G, C0(X)) :=
∫
G

sup
x∈X

|χ(g, x)| dg.

Note that we have‖χ‖L1(G, C0(X)) ≤ ‖χ‖1 for all χ ∈ Cc(GnX).

Fix an unconditional completionA(G) for the rest of this chapter.

If E is aG-Banach space, thenr∗E is a u.s.c. field of Banach spaces overG. We can use the
construction given in Definition 3.2.4 for general monotone semi-norms:

Definition 5.2.3 (The Banach spaceA(G, E)). Let E be aG-Banach space. Then we define the
following semi-norm onΓc(G, r∗E):

‖ξ‖A :=
∥∥∥γ 7→ ‖ξ(γ)‖Er(γ)

∥∥∥
A
.

The Hausdorff completion ofΓc(G, r∗E) with respect to this semi-norm will be denoted byA(G, E)
(and not byA(G, r∗E) to save some letters).

Note that the functionγ 7→ ‖ξ(γ)‖ is not necessarily continuous but has at least compact support
and is non-negative upper semi-continuous, so we can apply the extended norm onF+

c (G) to it. If E
is the trivial bundle overG(0) with fibreE0, thenΓc(G, r∗E) is Cc(G, E0) andA(G, E) could also be
denoted asA(G, E0); in particular, ifE0 = C, thenA(G, E) = A(G,C) = A(G).

From the corresponding general result 3.2.6 for monotone completions we can deduce:

Proposition 5.2.4.LetE be aG-Banach space. Then the canonical map fromΓc(G, r∗E) toA(G, E)
is continuous with respect to the inductive limit topology onΓc(G, r∗E) and the norm topology on
A(G, E).

In particular, ifΞ is dense inΓc(G, r∗E) for the inductive limit topology, then its canonical image in
A(G, E) is dense for the norm topology.

5.2.2 Bilinear maps and the convolution product

In addition to the computational rules 3.2.3 for monotone completions we also have the following:

Lemma 5.2.5. If ϕ1 ∗ϕ2 is defined forϕ1, ϕ2 ∈ F+
c (G), thenϕ1 ∗ϕ2 is inF+

c (G) and‖ϕ1 ∗ ϕ2‖A ≤
‖ϕ1‖A ‖ϕ2‖A
Proof. Assume thatϕ1 ∗ ϕ2 is defined by which we mean that the defining integral exists pointwise.
Then the support ofϕ1∗ϕ2 is compact and the function is bounded by‖ϕ1‖∞ ‖ϕ2‖∞ ‖λ(χ)‖∞ where
χ is some function inC+

c (G) which is1 on suppϕ1.
Let ψ1, ψ2 ∈ Cc(G) such thatϕ1 ≤ ψ1 andϕ2 ≤ ψ2. Then for allγ, γ′ ∈ G such thatr(γ) =

r(γ′):
ϕ1(γ)ϕ2(γ−1γ′) ≤ ψ1(γ)ψ2(γ−1γ′).
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Since the integral is monotonous, it follows that(ϕ1 ∗ ϕ2)(γ′) ≤ (ψ1 ∗ ψ2)(γ′) for all γ′ ∈ G. Now
ϕ1 ∗ ϕ2 is bounded, non-negative and of compact support andψ1 ∗ ψ2 is, in addition, continuous. It
follows that

‖ϕ1 ∗ ϕ2‖A ≤ ‖ψ1 ∗ ψ2‖A ≤ ‖ψ1‖A ‖ψ2‖A .

Taking the infimum on the right-hand side gives‖ϕ1 ∗ ϕ2‖A ≤ ‖ϕ1‖A ‖ϕ2‖A.

Definition and Proposition 5.2.6.LetE1,E2, F beG-Banach spaces and letµ : E1 ×X E2 → F be
a bounded continuous field of bilinear maps. Then for allξ1 ∈ Γc(G, r∗E1) andξ2 ∈ Γc(G, r∗E2):

‖µ (ξ1, ξ2)‖A(G,F ) ≤ ‖µ‖∞ ‖ξ1‖A(G,E1) ‖ξ2‖A(G,E2) .

Soµ lifts to a continuous bilinear mapA(G, µ) from A(G, E1) × A(G, E2) to A(G, F ) (with norm
less than or equal to‖µ‖∞). If µ is non-degenerate, then so isA(G, µ).

Proof. For allγ′ ∈ G, we have∥∥µ(ξ1, ξ2)(γ′)
∥∥
Fr(γ′)

=
∥∥∥∥∫

Gr(γ′)
µr(γ′)

(
ξ1(γ), γ

(
ξ2(γ−1γ′)

))
dλr(γ

′)(γ)
∥∥∥∥
Fr(γ′)

≤
∫
Gr(γ′)

∥∥µr(γ′)∥∥ ‖ξ1(γ)‖(E1)r(γ)

∥∥γ (ξ2(γ−1γ′)
)∥∥

(E2)r(γ)
dλr(γ

′)(γ)

≤ ‖µ‖∞
∫
Gr(γ′)

‖ξ1(γ)‖(E1)r(γ)

∥∥ξ2(γ−1γ′)
∥∥

(E2)r(γ−1γ′)
dλr(γ

′)(γ)

= ‖µ‖∞ (|ξ1| ∗ |ξ2|) (γ′),

where we use|ξ1| to denoteγ 7→ ‖ξ1(γ)‖(E1)r(γ)
and similar forξ2. Note that|ξ1| and |ξ2| are

not only7 upper semi-continuous but also continuous on the fibres ofr in the following sense: For
fixed γ′ ∈ G, the functionsγ 7→ |ξ1| (γ′) = ‖ξ1(γ)‖(E1)r(γ′)

and γ 7→
∥∥ξ2(γ−1γ′)

∥∥
(E2)s(γ)

=∥∥γ(ξ2(γ−1γ′))
∥∥

(E2)r(γ′)
are continuous onGr(γ′). So the convolution|ξ1| ∗ |ξ2| exists and we can

apply Lemma 5.2.5 to derive

‖µ(ξ1, ξ2)‖A(G,F ) ≤ ‖µ‖∞
∥∥∥ |ξ1| ∗ |ξ2|∥∥∥

A
≤ ‖µ‖∞ ‖ξ1‖A(G,E1) ‖ξ2‖A(G,E2) .

Proposition 5.2.7 (Preservation of associativity).Let E1, E2, E3, F1, F2 and G be G-Banach
spaces. Letµ1 : E1×XE2 → F1, µ2 : E2×XE3 → F2, ν1 : F1×XE3 → G andν2 : E1×X F2 → G
beboundedcontinuous fields of bilinear maps. Assume that the following associativity law holds:

(ν1)x
(
(µ1)x(e1, e2), e3

)
= (ν2)x

(
e1, (µ2)x(e2, e3)

)
for all x ∈ X = G(0), e1 ∈ (E1)x, e2 ∈ (E2)x, ande3 ∈ (E3)x. If, in addition,µ2 is G-equivariant,
then the same associativity law holds on the level of the unconditional completions:

A(G, ν1)
(
A(G, µ1)(ξ1, ξ2), ξ3

)
= A(G, ν2)

(
ξ1, A(G, µ2)(ξ2, ξ3)

)
for all ξ1 ∈ A(G, E1), ξ2 ∈ A(G, E2), andξ3 ∈ A(G, E3).

7Actually, upper semi-continuity is enough for the convolution to exist: Since upper semi-continuous functions are Borel
measurable and bounded Borel measurable functions with compact support are integrable, the function which appears under
the integral in the convolution product is easily seen to be integrable when the involved functions are upper semi-continuous
and of compact support. Thomas Timmermann brought this argument to my attention.
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5.2.3 Linear maps

Let E andF beG-Banach spaces and letT be a bounded continuous field of linear maps between
them. We are now constructing linear maps betweenA(G, E) toA(G, F ); there are two different ways
to do this and both rely on 3.2.5, the corresponding construction for the general case of monotone
completions.

LetE andF beG-Banach spaces andT a bounded continuous field of linear maps between them.

Proposition 5.2.8. We have

‖T ∗ ξ‖A(G,F ) =
∥∥γ 7→ Tr(γ) (ξ(γ))

∥∥
A(G,F )

≤ ‖T‖∞ ‖ξ‖A(G,E)

for all ξ ∈ Γc(G, E). Soξ 7→ r∗T ◦ ξ defines a continuous linear operator, calledT ∗ ·, A(G, T ·) or
A(G, T ), fromA(G, E) toA(G, F ) of norm less than or equal to‖T‖∞.

The so-defined mapT 7→ A(G, T ) makesE 7→ A(G, E) a functor from theG-Banach spaces to the
Banach spaces. The same is true for the following “right-hand version” of the construction:

Proposition 5.2.9. We have

‖ξ ∗ T‖A(G,F ) =
∥∥∥γ 7→ γ

[
Ts(γ)(γ

−1ξ(γ))
] ∥∥∥

A(G,F )
≤ ‖T‖∞ ‖ξ‖A(G,E)

for all ξ ∈ Γc(G, E). Soξ 7→ (γ 7→ γTs(γ)(γ−1ξ(γ))) defines a continuous linear operator, called
· ∗ T or A(G, ·T ), fromA(G, E) toA(G, F ) of norm less than or equal to‖T‖∞.

Note thatA(G, ·T ) = A(G, T ·) if T is G-equivariant.

5.2.4 The actions ofC0(X) and C0(X/G)

Definition and Proposition 5.2.10.LetE be aG-Banach space. We have

‖χξ‖A ≤ ‖χ‖∞ ‖ξ‖A

for all χ ∈ Cb(X) andξ ∈ Γc(G, r∗E). So the left action ofCb(X) on Γc(G, r∗E) can be extended
to a left action ofCb(X) onA(G, E). This gives rise to a left action ofC0(X) onA(G, E) which is
non-degenerate. The same is true for the right actions ofCb(X) andC0(X) and the actions ofCb(X/G)
andC0(X/G).

Proof. For all ξ ∈ Γc(G, r∗E) and for allγ ∈ G, we have‖(χξ)(γ)‖ ≤ ‖χ‖∞ ‖ξ(γ)‖. It follows
that‖χξ‖A ≤ ‖χ‖∞ ‖ξ‖A. The action ofC0(X) onA(G, E) which we can therefore define is non-
degenerate, because the action ofCc(X) onΓc(G, r∗E) is non-degenerate.

The arguments for the right action ofC0(X) and the action ofC0(X/G) are identical.

Proposition 5.2.11. 1. LetE andF beG-Banach spaces andT a bounded continuous field of
linear maps between them. ThenA(G, T ·) : A(G, E) → A(G, F ) is C0(X/G)-linear. The
same applies toA(G, ·T ).

2. LetE1,E2, F beG-Banach spaces. Letµ : E1×X E2 → F be a bounded equivariant continu-
ous field of bilinear maps. Then the continuous bilinear mapA(G, µ) fromA(G, E1)×A(G, E2)
toA(G, F ) is C0(X/G)-bilinear.

Similar results hold for the actions ofC0(X); compare Proposition 5.1.17.
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5.2.5 Banach algebras and Banach modules

Proposition 5.2.12. If B is a G-Banach algebra (with productµB), thenA(G, B) is a C0(X/G)-
Banach algebra (with the convolution productA(G, µB)). If B is non-degenerate, then so isA(G, B).
In particular,A(G) is a non-degenerateC0(X/G)-Banach algebra.

If B andC are G-Banach algebras andϕ denotes aG-equivariant field of homomorphisms be-
tween them, thenA(G, ϕ) is a continuous homomorphism ofC0(X/G)-Banach algebras fromA(G, B)
toA(G, C).

Proposition 5.2.13. If B is a G-Banach algebra andE is a right / leftG-BanachB-module, then
A(G, E) is a right / left C0(X/G)-BanachA(G, B)-module. IfE is non-degenerate, then so is
A(G, E).

If B andB′ areG-Banach algebras, ifϕ is aG-equivariant field of homomorphisms between them,
if E is a rightG-BanachB-module, ifE′ is a rightG-BanachB′-module and ifΦ is aG-equivariant
homomorphism fromE to E′ with coefficient mapϕ, thenA(G, Φ) is a continuous homomorphism
of C0(X/G)-Banach modules fromA(G, E) toA(G, E′) with coefficient mapA(G, ϕ).

A similar result is true for operators betweenG-Banach modules:

Proposition 5.2.14.LetB be aG-Banach algebra and letE, E′ be rightG-BanachB-modules. Let
T be aB-linear continuous field of linear operators fromE toE′ (not necessarily equivariant). Then
A(G, T ·) = T ∗ · is a continuousA(G, B)-linear andC0(X/G)-linear operator fromA(G, E) to
A(G, E′).

An analogous statement is true for leftG-BanachB-modules (ifT ∗ · is replaced with· ∗ T ).

5.2.6 Banach pairs

Definition and Proposition 5.2.15 (The Banach pairA(G, E)). LetB be aG-Banach algebra and let
E be aG-BanachB-pair. ThenA(G, E>) is a rightC0(X/G)-BanachA(G, B)-module andA(G, E<)
is a leftC0(X/G)-BanachA(G, B)-module. Moreover, the bracket ofE induces a bilinear map

〈·, ·〉A(G,E) : A
(
G, E<

)
×A

(
G, E>

)
→ A (G, B)

which isC0(X/G)-bilinear andA(G, B)-linear on the left and on the right.
In other words,(A(G, E<), A(G, E>)) is a C0(X/G)-BanachA(G, B)-pair. We denote it by

A(G, E).

Proposition 5.2.16. Let B be aG-Banach algebra and letE and F be G-BanachB-pairs. Let
T = (T<, T>) be an element ofLB(E,F ). Then

1. T> ∗ · is aC0(X/G)-linear operator fromA(G, E>) toA(G, F>) beingA(G, B)-linear on the
right and of norm‖T> ∗ cdot‖ ≤ ‖T>‖;

2. · ∗T< is aC0(X/G)-linear operator fromA(G, F<) toA(G, E<) beingA(G, B)-linear on the
left and of norm‖· ∗ T>‖ ≤ ‖T<‖;

3. The pair(· ∗ T<, T> ∗ ·) is in LC0(X/G)
A(G,B) (A(G, E), A(G, F )) and of norm less than or equal to

‖T‖. It will be denoted byA(G, T ).

The assignmentE 7→ A(G, E) andT 7→ A(G, T ) defines a functor from the category ofG-Banach
B-pairs to the category ofC0(X/G)-BanachA(G, B)-pairs.
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5.2.7 The convolution with fields of compact operators

This paragraph contains a technical tool for the proof of 5.2.19, namely operators which are given by
the convolution with a (locally) compact operator with compact support. More details and the proofs
are given in Appendix C.2, compare also Lemme 1.3.5 of [Laf06] which we brake up into several
pieces here.
LetE andF beG-Banach spaces and letS = (Sγ)γ∈G be a continuous field of linear maps fromr∗E
to r∗F with compact support. For allξ ∈ Γc(G, r∗E), define

(S ∗ ξ) (γ) :=
∫
Gr(γ)

Sγ′ γ
′ξ(γ′−1γ) dλr(γ)(γ′)

and

(ξ ∗ S) (γ) :=
∫
Gr(γ)

ξ(γ′) γ′Sγ′−1γ dλr(γ)(γ′) =
∫
Gr(γ)

γ′
[
Sγ′−1γ

(
γ′−1ξ(γ′)

)]
dλr(γ)(γ′)

for all γ ∈ G. ThenS ∗ ξ, ξ ∗ S ∈ Γc(G, r∗F ). For allξ ∈ Γc(G, r∗E), we have

‖S ∗ ξ‖A(G,F ) ≤
∥∥∥γ 7→ ‖Sγ‖

∥∥∥
A
‖ξ‖A(G,E)

and

‖ξ ∗ S‖A(G,F ) ≤ ‖ξ‖A(G,E)

∥∥∥γ 7→ ‖Sγ‖
∥∥∥
A
.

In particular,ξ 7→ S ∗ ξ andξ 7→ ξ ∗ S extend to linear andC0(X/G)-linear continuous maps from
A(G, E) toA(G, F ). If E andF are not onlyG-Banach spaces but rightG-BanachB-modules over
someG-Banach algebraB, thenξ 7→ S ∗ ξ isA(G, B)-linear on the right. An analogous statement is
true for leftG-Banach modules andξ 7→ ξ ∗ S.

Definition 5.2.17. Let B be aG-Banach algebra and letE andF beG-BanachB-pairs. LetS =
(S<, S>) ∈ Lr∗B(r∗E, r∗F ) have compact support. Then, for allξ> ∈ Γc (G, r∗E>) andη< ∈
Γc (G, r∗F<), we have 〈

η<, S> ∗ ξ>
〉

=
〈
η< ∗ S<, ξ>

〉
.

It follows that

Ŝ :=
(
η< 7→ η< ∗ S<, ξ> 7→ S> ∗ ξ>

)
∈ LA(G,B) (A (G, E) , A (G, F ))

with ∥∥Ŝ∥∥ ≤ max
{∥∥γ 7→ ‖S<γ ‖

∥∥
A,
∥∥γ 7→ ‖S>γ ‖

∥∥
A
}
≤
∥∥ γ 7→ max

{∥∥S<γ ∥∥ ,∥∥S>γ ∥∥} ∥∥A .
Proposition 5.2.18.LetB be aG-Banach algebra and letE andF beG-BanachB-pairs. IfS is an
element ofKr∗B(r∗E, r∗F ) with compact support, then̂S is compact, i.e., we have

Ŝ ∈ KA(G,B) (A(G, E), A(G, F )) .
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5.2.8 The descent andKKban-cycles

LetA andB beG-Banach algebras. IfE is aG-BanachA-B-pair, then there is8 a canonical action of
theC0(X/G)-Banach algebraA(G, A) on theC0(X/G)-BanachA(G, B)-pairA(G, E).

Definition and Proposition 5.2.19.9 Let (E, T ) ∈ Eban
G (A,B). Then define

jA(E, T ) := (A(G, E), A(G, T )) ∈ Eban (C0(X/G); A(G, A), A(G, B)) .

Proof. If σ ∈ LB(E) is the grading operator forE, then the grading onA(G, E) is given byA(G, σ).
ThenA(G, T ) is clearly odd. We have to check the compactness conditions.

1. Let α ∈ Γc(G, r∗A). It is easy to check by direct computation that[α, A(G, T )] acts on
A(G, E>) andA(G, E<) by convolution with a continuous field of linear operators, namely
with

γ 7→ α(γ)γTs(γ) − Tr(γ)α(γ) ∈ Lr∗B(r∗E)c.

Note that this field can be conveniently written asα ∗ T − T ∗ α. Now

α(γ)γTs(γ) − Tr(γ)α(γ) = α(γ)
(
γTs(γ) − Tr(γ)

)
+ α(γ)Tr(γ) − Tr(γ)α(γ)

for all γ ∈ G. The termγ 7→ α(γ)(γTs(γ) − Tr(γ)) is compact by assumption, the second
term can be rewritten as[α, r∗T ]. This operator can be approximated by operators of the form
χ[α′ ◦ r, r∗T ] = χr∗[α′, T ] with χ ∈ Cc(G) andα′ ∈ Γc(X,A). But these operators are
compact, so[α, r∗T ] is compact as well. So[α, A(G, T )] is compact by Proposition 5.2.18.

2. Letα ∈ Γc(G, r∗A). Also α(A(G, T )2 − 1) acts by convolution with a continuous field of
operators, namely with

γ 7→ α(γ)
(
(γTs(γ))

2 − 1
)
∈ Lr∗B (r∗E)c .

To show that this is a compact operator we will now transform the fieldγ 7→ α(γ)(γTs(γ))2 by
adding or subtracting compact operators until we get toγ 7→ α(γ). The relation “≡” will be
used, somewhat imprecisely, for “differs by a compact operator”:

α(γ)
(
γTs(γ)

)2 = α(γ)
(
γTs(γ) − Tr(γ)

)
γTs(γ) + α(γ)Tr(γ)γTs(γ)

≡ α(γ)Tr(γ)γTs(γ) ≡ Tr(γ)α(γ)γTs(γ)
≡ Tr(γ)α(γ)Tr(γ) ≡ α(γ)(Tr(γ))

2 ≡ α(γ)

for all γ ∈ G. Soα(A(G, T )2 − 1) is compact by Proposition 5.2.18.

The following lemmas are proved in Appendix C.3.3.

Lemma 5.2.20.The mapjA : Eban
G (A,B) → Eban(C0(X/G); A(G, A), A(G, B)) respects the direct

sum of cycles up to homotopy.

Lemma 5.2.21.LetA, B andC beG-Banach algebras. Letψ : B → C be aG-equivariant homo-
morphism. Let(E, T ) ∈ Eban

G (A,B). Then

A (G, ψ)∗ (jA (E, T )) ∼ jA (ψ∗ (E, T ))

in Eban(C0(X/G); A(G, A), A(G, C)).
8Compare Proposition 1.3.3 of [Laf06].
9Compare Définition-Proposition 1.3.4 of [Laf06].
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Lemma 5.2.22.LetB be aG-Banach algebra. Define a map

φB : A (G, B[0, 1]) → A (G, B) [0, 1]

by

(φB(β)(t)) (γ) = β(γ)(t) ∈ Br(γ)

for all β ∈ Γc(G, r∗B[0, 1]), t ∈ [0, 1] andγ ∈ G. This is a contractive homomorphism ofC0(X/G)-
Banach algebras that satisfies the equation

evA(G,B)
t ◦φB = A

(
G, evBt

)
for all t ∈ [0, 1], whereevBt denotes the canonicalG-equivariant homomorphism fromB[0, 1] to B

andevA(G,B)
t denotes the canonical morphism fromA(G, B)[0, 1] toA(G, B), both given by evalua-

tion at t.

Proposition 5.2.23.LetA andB beG-Banach algebras. If(E, T ) ∈ Eban
G (A,B[0, 1]) is a homotopy

from (E0, T0) to (E1, T1), thenjA(E0, T0) andjA(E1, T1) are homotopic.

Proof. First note that

jA (E, T ) ∈ Eban (C0(X/G); A(G, A), A(G, B[0, 1]))

by 5.2.19 and henceφB,∗(jA(E, T )) is an element ofEban(C0(X/G); A(G, A), A(G, B)[0, 1]).
The pushoutevA(G,B)

t,∗ (φB,∗(jA(E, T ))) of this cycle along the evaluation map is isomorphic to
A(G, evBt )∗(jA(E, T )) for all t ∈ [0, 1]. For all t ∈ {0, 1}, we have

jA (Et, Tt) ∼= jA
(
evBt,∗(E, T )

) 5.2.21∼ A
(
G, evBt

)
∗ (jA(E, T ))

5.2.22∼=
(
evA(G,B)
t ◦φB

)
∗
(jA(E, T )) ∼= evA(G,B)

t,∗ (φB,∗ (jA(E, T ))) ,

soφB,∗(jA(E, T )) is a homotopy fromjA(E0, T0) to jA(E1, T1).

Lemma 5.2.24.LetA, B andC beG-Banach algebras. Letθ : A → B be aG-equivariant homo-
morphism. Let(E, T ) ∈ Eban

G (B,C). Then

A (G, θ)∗ (jA (E, T )) = jA (θ∗ (E, T ))

in Eban(C0(X/G); A(G, A), A(G, C)).

Theorem 5.2.25.Let A andB be G-Banach algebras andA(G) an unconditional completion of
Cc(G). ThenjA induces a group homomorphism

jA : KKban
G (A,B) → RKKban (C0(X/G); A(G, A), A(G, B)) .

It is natural with respect toG-equivariant homomorphisms in both variables.
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5.2.9 The descent and Morita morphisms

Let A andB be non-degenerateG-Banach algebras. IfF ∈ Mban
G (A,B) is aG-equivariant Morita

cycle, then a close inspection of the definition of the descent of aKKban-cycle tells us thatA(G, F )
is in Mban(C0(X/G); A(G, A), A(G, B)), i.e., the descent sends Morita cycles to Morita cycles.
Moreover, the descent respects the direct sum and the pushout of Morita cycles (this can be deduced
from the fact that the homotopies in the Lemmas 5.2.20 and 5.2.21 can be taken to have zero operator
if the involved cycles have zero operator). It follows that homotopic elements ofMban

G (A,B) give
homotopic elements ofMban(C0(X/G); A(G, A), A(G, B)). Thus we have

Proposition 5.2.26.For all non-degenerateG-Banach algebrasA andB and all unconditional com-
pletionsA(G) of Cc(G), the descent mapjA induces a homomorphism of monoids

jA : Morban
G (A,B) → Morban (C0(X/G); A(G, A), A(G, B)) .

It is natural with respect toG-equivariant homomorphisms in both variables.

The following proposition is proved in Appendix C.3.3.

Proposition 5.2.27.LetA, B, C be non-degenerateG-Banach algebras. Let(E, T ) ∈ Eban
G (A,B)

be aKKban-cycle andF ∈ Mban
G (B,C) be aG-equivariant Morita cycle. Then

jA (E, T )⊗C0(X/G)
A(G,B) jA(F ) ∼ jA ((E, T )⊗B F )

in Eban(C0(X/G); A(G, A), A(G, C)). If T = 0, then the homotopy can be taken to have zero
operator as well.

Corollary 5.2.28. The descent is a functor from the category of non-degenerateG-Banach algebras
andG-equivariant Morita morphisms to the category of non-degenerateC0(X/G)-Banach algebras
andC0(X/G)-linear Morita morphisms.

Proof. Let A, B andC be non-degenerateG-Banach algebras. The identity morphism onA is
given by the homotopy class[A] of the standard BanachA-A-pair AAA. We havejA(AAA) =
A(G,A)A(G, A)A(G,A), so [A] is mapped to the identity morphism onA(G, A). Secondly, ifE ∈
Mban
G (A,B) andF ∈ Mban

G (B,C), thenjA(E) ⊗C0(X/G)
A(G,B) jA(F ) ∼ jA(E ⊗B F ) by the preceding

proposition. SojA([E])⊗C0(X/G)
A(G,B) jA([F ]) = jA([E]⊗B [F ]). SojA is a functor.

Corollary 5.2.29. The action of the Morita morphisms onKKban is compatible with the descent.

Because the descent is a functor, it maps isomorphisms to isomorphisms, and from this we know that
it maps the homotopy class of aG-equivariant Morita equivalence to an isomorphism. We can actually
easily obtain a result that is a bit more precise:

Remark 5.2.30. If A andB are non-degenerateG-Banach algebras andE is aG-equivariant Morita
equivalence betweenA andB, thenA(G, E) is a C0(X/G)-linear Morita equivalence between the
non-degenerate Banach algebrasA(G, A) andA(G, B).
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5.3 The descent and open subgroupoids

5.3.1 The setting

If H andG are topological groupoids,f : H → G is a strict morphism andA andB areG-Banach
algebras, then Theorem 3.6.11 says that we have a homomorphism

f∗ : KKban
G (A,B) → KKban

H (f∗A, f∗B) .

If G andH are locally compact Hausdorff overX andY , respectively, and carry Haar systems, and if
A(G) andB(H) are unconditional completions, then we can ask whether the following diagram can
be completed

KKban
G (A,B)

f∗ //

jA
��

KKban
H (f∗A, f∗B)

jB
��

RKKban (C0(X/G); A(G, A), A(G, B)) RKKban (C0(Y/H); B(H, f∗A), B(H, f∗B))//?oo_ _ _

There is no hope for an affirmative answer if the question is formulated in this generality. However,
one can obtain some results if one restricts attention to some special class of strict morphisms. We
will do this quite drastically and only consider the case thatH is anopen subgroupoidof G (andY
is hence an open subspace ofX) andf = ιH is the inclusion ofH into G. In this case,Cc(H) is
contained as a subalgebra inCc(G) and ifA(G) is an unconditional completion ofCc(G), then the
norm onCc(G) restricts to an unconditional norm onCc(H). We call the completion ofCc(H) for this
normA(H). There is a canonical homomorphism fromA(H) toA(G).

If A is aG-Banach algebra, thenι∗HA is just the restriction ofA to Y with the restricted action of
H. There is a canonical homomorphism of Banach algebras fromA(H, ι∗HA) toA(G, A). We denote
A(H, ι∗HA) byA(H, A) to save some letters.

Let p : Y/H → X/G be the unique map making the following square commutative:

Y
ιH //

��

X

��
Y/H p //___ X/G

where the vertical arrows are the canonical quotient maps. The mapp is continuous. Using Defini-
tion 2.7.1 that discusses the change of the base space we can turn everyC0(Y/H)-Banach space into
a C0(X/G)-Banach space and everyC0(Y/H)-Banach algebra into aC0(X/G)-Banach algebra, etc.
As a special case of Proposition 2.7.2 we therefore get a homomorphism

p∗ : RKKban (C0(Y/H); A(H, A), A(H, B)) → RKKban (C0(X/G); A(H, A), A(H, B)) .

The pushout along the canonical map fromA(H, B) to A(G, B), which happens to beC0(X/G)-
linear, gives a homomorphism

RKKban (C0(X/G); A(H, A), A(H, B)) → RKKban (C0(X/G); A(H, A), A(G, B)) .

The pullback along the canonical homomorphism fromA(H, A) to A(G, A) in the first component
gives a homomorphism

RKKban (C0(X/G); A(G, A), A(G, B)) → RKKban (C0(X/G); A(H, A), A(G, B)) .
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So we get a diagram:

(5.4) KKban
G (A,B)

ι∗H //

jA
��

KKban
H (A|Y , B|Y )

jA
��

RKKban (C0(X/G); A(G, A), A(G, B))

��

RKKban (C0(Y/H); A(H, A), A(H, B))

p∗
��

RKKban (C0(X/G); A(H, A), A(G, B)) RKKban (C0(X/G); A(H, A), A(H, B))oo

We are now going to show that the above diagram is commutative. For this, we need the following
lemma which is proved in Appendix C.2.3.

Lemma 5.3.1. LetE andF beG-BanachB-pairs. LetS ∈ Kr∗B(r∗E, r∗F ) have compact support
contained inH. Then the convolution byS as an operator fromA(G, E) toA(G, F ), denoted above
by Ŝ, is not only inKA(G,B)(A(G, E), A(G, F )), but can be approximated by sums of operators of
the form

∣∣η>〉〈ξ<∣∣ with η> ∈ Γc(G, r∗F>) andξ< ∈ Γc(G, r∗E<), both having their support inH.

Theorem 5.3.2.Diagram (5.4) is commutative.

Proof. Let (E, T ) be inEban
G (A,B). We have to trace(E, T ) through diagram (5.4) and prove that the

two cycles that we get in the lower left corner are homotopic. If we go down and down in the diagram,
then we get the cycle(A(G, E),A(G, T )) where we regardA(G, E) as aC0(X/G)-BanachA(H, A)-
A(G, B)-pair. If we start with going right, then we get the cycle(E|Y , T |Y ) ∈ Eban

H (A|Y , B|Y ). If
we go right and down and down, then we are left with the cycle(A(H, E|Y ), A(H, T |Y )) regarded as
a C0(X/G)-BanachA(H, A)-A(H, B)-pair. Finally, if we go right-down-down-left, then we get the
cycle(A(H, E|Y )⊗A(H,B)⊕C0(X/G) (A(G, B)⊕C0(X/G)), A(H, T |Y )⊗1). Into this cycle there is a
canonical homomorphism from the cycle(A(H, E|Y )⊗A(H,B)A(G, B), A(H, T |Y )⊗1); it induces
a homotopy, so we restrict our attention to this simplerRKKban-cycle.

We now define a homomorphismΦ fromA(H, E|Y )⊗A(H,B)A(G, B) toA(G, E) with coefficient
mapsIdA(H,A) andIdA(G,B). Define

Φ> : A(H, E>|Y )⊗A(H,B) A(G, B) → A(G, E>),
ξ> ⊗ β 7→ ξ> ∗ β

where we regardξ> ∈ A(H, E>|Y ) as an element ofA(G, E>). DefineΦ< similarly. By the associa-
tivity of the convolution the pairΦ := (Φ<,Φ>) is a concurrent homomorphism. It isC0(X/G)-linear.
We show that it induces a homotopy:

Let α ∈ Γc(H, r∗A) andε > 0. Then[α, A(G, T )] is given by convolution with the compact
continuous field of operators with compact support

γ 7→ α(γ)γTs(γ) − Tr(γ)α(γ) ∈ Kr∗B (r∗E)c .

The support of this field is actually contained inH becauseα is supported inH. By the above lemma
we can approximate[α, A(G, T )] by sums of operators of the form

∣∣η>〉〈ξ<∣∣with ξ> ∈ Γc(G, r∗E>)
andξ< ∈ Γc(G, r∗E<), both having their support inH. BecauseA(H, E>) is a non-degenerate right
BanachA(H, B)-module andA(H, E<) is a non-degenerate left BanachA(H, B)-module, we can
actually approximate[α, A(G, T )] as follows: We can find ann ∈ N andξ<1 , . . . , ξ

<
n ∈ Γc(G, r∗E<),
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ξ>1 , . . . , ξ
>
n ∈ Γc(G, r∗E>) andβ<1 , . . . , β

<
n , β

>
1 , . . . , β

>
n ∈ Γc(G, r∗B) which all are supported in

H such that ∥∥∥∥∥[α, A(G, T )]−
n∑
i=1

∣∣ξ>i ∗ β>i 〉〈β<i ∗ ξ<i ∣∣
∥∥∥∥∥ ≤ ε.

Note that we can regard theξ>i and theξ<i also as sections living onH. If we do so, we have
ξ>i ∗ β

>
i = Φ>(ξ>i ⊗ β>i ) andβ<i ∗ ξ

<
i = Φ<(β<i ⊗ ξ<i ) for all i ∈ {1, . . . , n}.

The operator[α, A(G, T )]−
∑n

i=1

∣∣ξ>i ∗β>i 〉〈β<i ∗ ξ<i ∣∣ leaves the subspaceA(H, E|Y ) invariant.
The norm of the restricted operator is of course less than or equal to the norm of the operator itself.

Note that
∣∣ξ>i ⊗ β>i

〉〈
β<i ⊗ ξ<i

∣∣ = ∣∣ξ>i ∗ β>i 〉〈β<i ∗ ξ<i ∣∣⊗ 1 and hence∥∥∥∥∥[α⊗ 1, A (H, T |Y )⊗ 1]−
n∑
i=1

∣∣ξ>i ⊗ β>i
〉〈
β<i ⊗ ξ<i

∣∣∥∥∥∥∥
=

∥∥∥∥∥
(

[α, A (H, T |Y )]−
n∑
i=1

∣∣ξ>i ∗ β>i 〉〈β<i ∗ ξ<i ∣∣
)
⊗ 1

∥∥∥∥∥
≤

∥∥∥∥∥[α, A (H, T |Y )]−
n∑
i=1

∣∣ξ>i ∗ β>i 〉〈β<i ∗ ξ<i ∣∣
∥∥∥∥∥ ≤ ε.

A similar calculation can be done forα(A(G, T )2−1). This shows thatΦ induces a homotopy. Hence
the above diagram is commutative.

5.3.2 The descent and Morita equivalence

There is a case when much more can be said about the Diagram (5.4): IfU is an open and closed
subset ofX andH = GUU .

Definition and Proposition 5.3.3. LetA be aG-Banach algebra andU an open and closed subset of
X = G(0). Define continuous linear maps

p>U : Γc(G, r∗A) → Γc(G, r∗A), ξ 7→ ξ|GU

and
p<U : Γc(G, r∗A) → Γc(G, r∗A), ξ 7→ ξ|GU ,

where the restricted sections should be extended by zero to all ofG. Then(p<U )2 = p<U and(p>U )2 =
p>U . Moreover,p<U is Γc(G, r∗A)-linear on the right,p>U is Γc(G, r∗A)-linear on the left. Both maps
areC(X/G)-linear. Finally, for allξ1, ξ2 ∈ Γc(G, r∗A):

p>U (ξ1) ∗ ξ2 = ξ1 ∗ p<U (ξ2).

SopU = (p<U , p
>
U ) could be called an (idempotentC(X/G)-linear) multiplier ofΓc(G, r∗A). We have

pUΓc(G, r∗A)pU = Γc(GUU , r∗A).

Definition and Proposition 5.3.4. Let A be aG-Banach algebra andU an open and closed subset
of X = G(0). Let A(G) be an unconditional completion ofCc(G). Let ι denote the embedding of
Γc(G, r∗A) intoA(G, A). Then there is a unique multiplierPU = (P<U , P

>
U ) of A(G, A) such that

ι ◦ p<U = P<U ◦ ι and ι ◦ p>U = P>U ◦ ι.
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It is idempotent,C0(X/G)-linear and contractive. We have

PUA(G, A)PU = A(GUU , A).

If we want to stress that the underlying Banach algebra isA, then we writePAU for PU .

Proof. Uniqueness is trivial. To prove existence note that the mapsp<U andp>U are contractive on
the level of sections with compact support becauseA(G) is unconditional. Hencep<U andp>U give
contractive operatorsP<U andP>U onA(G, A) such thatι ◦ p<U = P<U ◦ ι andι ◦ p>U = P>U ◦ ι. The
operatorsPU inherit the algebraic properties of thepU .

Proposition 5.3.5. If U is open and closed inX andH := GUU andY := U , then the homomorphism
p∗ in Diagram (5.4) is an isomorphism, i.e.,

RKKban (C0(Y/H); A(H, A), A(H, B)) ∼= RKKban (C0(X/G); A(H, A), A(H, B)) .

Proof. Note thatY/H = U/(GUU ) can be identified withU/G ⊆ X/G, i.e., we can think ofY/H
as a closed and open subset ofX/G. Let (E, T ) ∈ Eban(C0(X/G); A(H, A), A(H, B)). Let χ ∈
Cc(X/G) such thatχ|Y/H = 0. Then for allξ> ∈ E> andβ ∈ A(H, B), we have(ξ>β)χ =
ξ>(βχ) = ξ>0 = 0. BecauseE> is non-degenerate, it follows thatξ>χ = 0 for all ξ> ∈ E>. So
E> is already a non-degenerate BanachC0(Y/H)-module, i.e., aC0(Y/H)-Banach space. The same
is true forE<. In other words,

Eban (C0(X/G); A(H, A), A(H, B)) ⊆ Eban (C0(Y/H); A(H, A), A(H, B)) .

The other inclusion is trivial. As the same is true for homotopies we can deduce thatp∗ is actually the
identity homomorphism.

Definition 5.3.6 (Connected/full subsets).We call two subsetsU andV of G(0) connectedif

GVU GUV = GVV and GUV GVU = GUU .

A subsetU is calledfull if it is connected to the whole ofG (which means thatGUGU = G).

Two open subsetsU andV are connected if and only if the range and source maps, restricted toGVU ,
are surjective ontoV andU , respectively.

In Section 6.2 we are going to meet the construction of the linking groupoid of an equivalence
of groupoids: If two groupoidsG andH are equivalent in the sense of Definition 6.1.28 andL is the
linking groupoid, thenL(0) is the union ofU := G(0) andV := H(0), both being open, closed, full
and connected subsets, andG = LUU andH = LVV ; so the situation discussed in the following theorem
is of some relevance. To prove it, we need the following Lemma which is proved in Appendix C.1:

Lemma 5.3.7. Let U , V andW be open pairwise connected subsets ofG(0). Let E1, E2 and F
beG-Banach spaces and letµ : E1 ×X E2 → F be a continuous field of bilinear maps. The map
(ξ1, ξ2) 7→ µ(ξ1, ξ2) is a separately continuous bilinear map fromΓc(GWV , r∗E1)×Γc(GVU , r∗E2) to
Γc(GWU , r∗F ), and ifµ is non-degenerate, then{

µ(ξ1, ξ2) : ξ1 ∈ Γc(GWV , r∗E1), ξ2 ∈ Γc(GVU , r∗E2)
}

spans a dense subset ofΓc(GWU , r∗F ).
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The idea of the proof is to writeµ, restricted toΓc(GWV , r∗E1)× Γc(GVU , r∗E2), as a composition of
carefully chosen maps, imitating the proof for the special caseU = V = W = G(0) given above.

The lemma has an immediate consequence:

Lemma 5.3.8. LetA be a non-degenerateG-Banach algebra. LetA(G) be an unconditional com-
pletion ofCc(G). If U andV are open subsets ofG(0), then letA(GVU , A) denote the completion of
Γc(GVU , r∗A) for the restricted norm. LetU , V andW be open pairwise connected subsets ofG(0).
Then(ξ1, ξ2) 7→ ξ1∗ξ2 induces a non-degenerate contractive bilinear mapA(GWV , A)×A(GVU , A) →
A(GWU , A).

Theorem 5.3.9.LetA be a non-degenerateG-Banach algebra andU an open and closed subset of
G(0). LetA(G) be an unconditional completion ofCc(G). If U is full, thenPU is full in the sense of
Definition 1.10.7, i.e.,A(G, A)PUA(G, A) is dense inA(G, A). In particular,A(G, A) andA(GUU , A)
are Morita equivalentC0(X/G)-Banach algebras:

A(G, A) ∼M A
(
GUU , A

)
.

Proof. We show thatp>U (Γc(G, r∗A))∗p<U (Γc(G, r∗A)) is dense inΓc(G, r∗A). Butp>U (Γc(G, r∗A))
is the same asΓc(GU , r∗A) andp<U (Γc(G, r∗A)) is the same asΓc(GU , r∗A), so we are done using
Lemma 5.3.8. Explicitly, the Morita equivalence can be obtained as follows: LetA(GU , A) be the
completion ofΓc(GU , r∗A) for the restriction of the unconditional norm onΓc(G, r∗A). Analogously
defineA(GU , A). Then(A(GU , A), A(GU , A)) is an equivalence betweenA(G, A) andA(GUU , A).

Corollary 5.3.10. LetU be a full open and closed subset ofX, letH := GUU andY := U . LetB be
non-degenerate. Then the lower horizontal arrow in Diagram (5.4) is an isomorphism:

KKban
G (A,B)

ι∗H //

jA
��

KKban
H (A|Y , B|Y )

jA
��

RKKban (C0(X/G); A(G, A), A(G, B))

��

RKKban (C0(Y/H); A(H, A), A(H, B))

∼=
��

RKKban (C0(X/G); A(H, A), A(G, B)) RKKban (C0(X/G); A(H, A), A(H, B))∼=
oo

By inverting the two isomorphisms in this diagram we can construct a homomorphism from
RKKban(C0(X/G); A(G, A), A(G, B)) to RKKban(C0(Y/H); A(H, A), A(H, B)) making the
following diagram commutative:

(5.5) KKban
G (A,B)

ι∗H //

jA
��

KKban
H (A|Y , B|Y )

jA
��

RKKban (C0(X/G); A(G, A), A(G, B)) // RKKban (C0(Y/H); A(H, A), A(H, B))

Note that we can identifyC0(Y/H) andC0(X/G) if Y is full: We have already seen that we can think
of Y/H as a closed and open subset ofX/G. If Y is full, then it meets everyG-orbit, soY/H can be
identified withX/G.
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If A is non-degenerate as well, then it is very likely that the homomorphism

RKKban (C0(X/G); A(G, A), A(G, B)) → RKKban (C0(Y/H); A(H, A), A(H, B))

is actually an isomorphism, a statement which is equivalent to the homomorphism

RKKban (C0(X/G); A(G, A), A(G, B)) → RKKban (C0(X/G); A(H, A), A(G, B))

being an isomorphism. AsA(G, A) andA(H, A) are Morita equivalent, this could well be true, but
we need new methods to show this because we do not have a Kasparov product in the Banach algebra
setting.

Note that there is an obvious generalisation of Theorem 5.3.9:

Theorem 5.3.11.LetA be a non-degenerateG-Banach algebra and letU andV be open and closed
connected subsets ofX = G(0). LetA(G) be an unconditional completion ofCc(G). Then the pair
(A(GUV , A), A(GVU , A)) is aC0(X/G)-linear Morita equivalence betweenA(GVV , A) andA(GUU , A).

Note that this Morita equivalence gives an isomorphism

RKKban
(
C0(X/G); C, A(GVV , A)

) ∼= RKKban
(
C0(X/G); C, A(GUU , A)

)
for everyC0(X/G)-Banach algebraC. This construction is transitive in the following sense:

Proposition 5.3.12.LetU , V ,W be open and closed pairwise connected subsets ofX = G(0) and let
A be a non-degenerateG-Banach algebra. LetA(G) be an unconditional completion ofCc(G). Then
the restriction of the multiplication defines a concurrent homomorphism(
A
(
GVW , A

)
, A

(
GWV , A

))
⊗A(GV

V ,A)
(
A
(
GUV , A

)
, A

(
GWU , A

))
→
(
A
(
GUW , A

)
, A

(
GVU , A

))
which is a morphism ofC0(X/G)-linear Morita equivalences. It induces a homotopy of Morita cycles,
so the two Morita equivalences give the same (C0(X/G)-linear) Morita morphism.

Proof. This follows from theC0(X/G)-linear version of Lemma 1.10.26.

5.4 The descent and local convexity

Definition 5.4.1 (Locally convex unconditional norm). An unconditional norm‖·‖A on Cc(G)
is called locally C0(X/G)-convexor simply locally convexif A(G) is a locally C0(X/G)-convex
C0(X/G)-Banach algebra.

Proposition 5.4.2. Let E be a G-Banach space. IfA(G) is locally C0(X/G)-convex, then so is
A(G, E).

Proof. Let ξ be an element ofΓc(G, r∗E). Then for allχ ∈ C0(X/G):

‖χξ‖A(G,E) =
∥∥∥ γ 7→ |χ(π(γ))| ‖ξ(γ)‖

∥∥∥
A

=
∥∥∥ |χ| |ξ|∥∥∥

A
.

We therefore have for allx ∈ X:∥∥(ξ)[x]∥∥ = inf
{
‖χξ‖A(G,E) : χ ∈ Cc (X/G) , 0 ≤ χ ≤ 1, χ([x]) = 1

}
= inf {‖χ |ξ|‖A : χ ∈ Cc (X/G) , 0 ≤ χ ≤ 1, χ([x]) = 1} =

∥∥(|ξ|)[x]∥∥ .
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Now the local convexity ofA(G) implies

‖ξ‖A(G,E) =
∥∥ |ξ|∥∥A = sup

x∈X

∥∥(|ξ|)[x]∥∥ = sup
x∈X

∥∥(ξ)[x]∥∥.
This identity carries over to all elements of the completionA(G, E) of Γc(G, r∗E), soA(G, E) is
locally C0(X/G)-convex.

If A(G) is a locally convex unconditional completion ofCc(G), then the descent can be considered to
be a homomorphism

jA : KKban
G (A,B) → KKban

X/G (A(G, A), A(G, B)) .
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Chapter 6

Generalised Morphisms of Locally
Compact Groupoids

The aim of this chapter is to define a homomorphism1

Ω∗ : KKban
H (A,B) → KKban

G (Ω∗A, Ω∗B),

whereG andH are locally compact Hausdorff groupoids (with open range and source maps),Ω is a
generalised morphism fromG to H, andA andB areH-Banach algebras. This homomorphism is
functorial and generalises the pullback homomorphism along strict morphisms. In particular, it is an
isomorphism ifΩ is an equivalence of groupoids.

The construction follows the same fundamental plan as the analogous construction for C∗-algebras
given by Le Gall in [LG94]: IfΩ is as above and has anchor mapsρ : Ω → G(0) andσ : Ω → H(0),
then we can putΩ in the following commutative triangle

ρ∗(G)

ρ

��

fΩ

!!B
BB

BB
BB

BB
BB

BB
BB

BB

G Ω // H

where we identify generalised morphisms with their graphs.2 The locally compact groupoidρ∗(G)
(with unit spaceΩ) is the pullback ofG alongρ, it would be calledGΩ in the notation of [LG99] and
G[Ω] in [Tu04]. The morphismfΩ is actually a strict morphism, and the graph of the strict morphism
ρ : ρ∗(G) → G turns out to be a rather simple equivalence of groupoids. We already know how to
pull H-Banach spaces (andH-Banach algebras, etc.) back alongfΩ, which gives usρ∗(G)-Banach
spaces (andρ∗(G)-Banach algebras, etc.). What we need is a way of turningρ∗(G)-Banach spaces
into G-Banach spaces, i.e., we want to invert the pullback functorρ∗ from the category ofG-Banach
spaces to the category ofρ∗(G)-Banach spaces. This is done in Section3 6.5, and the resulting functor
is calledρ!.

1V. Lafforgue mentions in [Laf06] that such a homomorphism exists without giving any details.
2See Diagram (6.3) for a more precise statement.
3See the beginning of that section for a more precise statement of what is being constructed.
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This way, we construct a functorΩ∗ := ρ! ◦ f∗Ω from the category ofH-Banach spaces to the
category ofG-Banach spaces. The functor descends to functors between the respective categories of
Banach algebras, modules and pairs, and finally gives us a homomorphismΩ∗ between theKKban-
groups with the above-mentioned properties.4

The chapter is organised as follows: The first section recalls the definition of generalised mor-
phisms of groupoids (in the sense of [LG94]) and also the definition of equivalences of groupoids
(which are shown to be precisely the generalised isomorphisms). Most of the results are proved
somewhere in the literature, especially in [LG94] and [Tu99], or are folklore (in particular, the rather
unpleasant matter of showing the continuity of the various operations appearing in the construction of
certain groupoids seems to be traditionally regarded as folklore; we introduce the notion of an inner
product on aG-spaces to be able to treat these questions without too much ado). As a technical tool
we also introduce the linking groupoid of an equivalence of groupoids, in complete analogy to the
linking algebra of a Morita equivalence of (Banach) algebras. The linking groupoid can be used to
prove that equivalent groupoids have equivalentL1-algebras; this is actually true in greater generality
(with coefficients and for more general unconditional completions).5 The corresponding theorem for
C∗-algebras is well-known in the literature (for instance, see [MRW87]), but to my knowledge, this is
not the case for theL1-version (although it might have been around somewhere as well).

The third section is introduces the pullback of groupoids, which leads to the factorisation result
for generalised homomorphisms sketched above (this is inspired heavily by [LG94] and [LG99]). In
Section 6.4, we introduce Haar systems on groupoids and on spaces carrying actions of groupoids,
and show that these notions are compatible with taking pullbacks or forming the linking groupoid.

Technically, Section 6.5 is the heart of this chapter, introducing the functorp! between equivariant
fields of Banach spaces and showing how it descends to theKKban-groups, which is applied to define
the pullback along generalised morphisms in the next section. The C∗-version of this construction can
be found in [LG94], the Banach algebra version needs some more technical care. The final section
relates equivalences of groupoids to induction from closed subgroups of locally compact groups and
shows how to obtain a version of a theorem of Green concerning induced algebras.

6.1 Generalised morphisms

6.1.1 G-spaces

We will only consider actions of locally compact Hausdorff groupoids on locally compact Hausdorff
spaces. Many of the results and constructions that are collected in this section have analogous coun-
terparts for actions of (possibly non-Hausdorff) locally compact groupoids on locally compact spaces.
A general reference for this is [Tu04].

So letG be a locally compact Hausdorff groupoid.

Definition 6.1.1 ((Free/proper/principal) G-spaces).A left G-spaceis a locally compact Hausdorff
spaceΩ together with a continuous so-called anchor mapρ : Ω → G(0) and a continuous mapµ : G ∗
Ω → Ω, whereG ∗ Ω = {(γ, ω) ∈ G × Ω : s(γ) = ρ(ω)}, such that

1. ρ(µ(γ, ω)) = r(γ) for all (γ, ω) ∈ G ∗ Ω;

2. µ(ρ(ω), ω) = ω for all ω ∈ Ω;

4Take this with a grain of salt, there is a little twist in the definition ofΩ∗ for KKban-cycles; compare Lemma 6.5.17.
5See Theorem 6.6.10 and Section 6.7.
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3. µ(γ · γ′, ω) = µ(γ, µ(γ′, ω)) for all (γ, γ′) ∈ G ∗ G and(γ′, ω) ∈ G ∗ Ω;

A right G space is defined similarly (and the anchor map of a rightG-space will usually be calledσ).
The actionµ is usually written multiplicatively, i.e.,µ(γ, ω) is denoted byγ · ω or γω. The action is
calledfree if for all (g, ω) ∈ G ∗Ω we haveγ · ω = ω ⇒ γ ∈ G(0), i.e., only units have fixed points.
The action is calledproper if the map(µ, Id) : G ∗ Ω → Ω × Ω, (γ, ω) 7→ (γ · ω, ω) is proper. The
spaceΩ is called aprincipal G-space if it is free and proper.

To get a notion of isomorphicG-spaces we define morphisms ofG-spaces as follows:

Definition 6.1.2 (Equivariant maps). Let Ω andΩ′ be left G-spaces with anchor mapsρ andρ′,
respectively. A continuous mapτ : Ω → Ω′ is calledG-equivariantif ρ′(τ(ω)) = ρ(ω) for all ω ∈ Ω
and

τ(γ · ω) = γ · τ(ω)

for all γ ∈ G andω ∈ Ω such thats(γ) = ρ(ω). In a similar manner one can define equivariant maps
between rightG-spaces.

The leftG-spaces, together with theG-equivariant continuous maps, form a category. The isomor-
phisms in this category are theG-equivariant homeomorphisms.

Definition 6.1.3 (The crossed product).Let Ω be a leftG-space. Then the crossed product groupoid
G n Ω is defined as the subgroupoid ofG × (Ω × Ω) consisting of elements(γ, ω′, ω) such that
s(γ) = ρ(ω) andω′ = γω. The unit space ofGn Ω can be identified withΩ. If G has open range and
source maps, then the range and source mapsG n Ω → Ω are open as well.6

In a similar fashion one defines crossed products for right actions. The map fromG n Ω to G ×r,ρ Ω
given by(γ, ω′, ω) 7→ (γ, ω′) is a homeomorphism, the groupoidG n Ω can thus also be considered
as a subspace ofG × Ω, and this is what we will do most of the time.7

Definition 6.1.4 (The quotientG \ Ω). Let Ω be a leftG-space. Then we define the quotient space
G \Ω to be the set{[ω] = {γω : s(γ) = ρ(ω)} : ω ∈ Ω} of all orbits of theG-action onΩ equipped
with the quotient topology.

If G acts from the right onΩ, then we writeΩ/G for the quotient space.

Proposition 6.1.5. The following are equivalent:

1. r : G → G(0) is open;

2. for every leftG-spaceΩ the canonical mapΩ → G \ Ω is open.

Proof. This is a special case of Lemma 2.30 of [Tu04].

Proposition 6.1.6.LetΩ be a leftG-space. IfΩ is a properG-space and the quotient mapΩ 7→ G \Ω
is open (for example, ifr : G → G(0) is open), thenG \ Ω is a locally compact Hausdorff space.

Proof. This follows from Proposition 2.12 of [Tu04].

6This is a special case of Lemma 2.24 in [Tu04] and also follows from our Lemma 3.4.5, applied toGnΩ ∼= G×G(0) Ω.
7Compare [Tu04], 1.1.
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Definition 6.1.7 (The flippedG-space). If Ω is a leftG-space with anchor mapρΩ, then we define
Ω−1 to be the rightG-space with underlying spaceΩ and the same anchor mapσΩ−1 := ρΩ and
multiplication fromΩ−1 ∗ G = {(ω−1, γ) ∈ Ω × G : σΩ−1(ω−1) = ρΩ(ω) = s(γ) = r(γ−1)} to
Ω−1 given by(ω−1, γ) 7→ (γ−1 · ω)−1. If Ω is proper or free, then so isΩ−1.

Definition 6.1.8 (Products ofG-spaces).Let Ω1 andΩ2 be leftG-spaces. Letρi be the anchor map
of Ωi for eachi ∈ {1, 2}. Then define

Ω := Ω1 ∗ Ω2 =
{
(ω1, ω2) ∈ Ω1 × Ω2 : ρ1(ω1) = ρ2(ω2)

}
andρ : Ω → G(0), ω 7→ ρ1(ω1) = ρ2(ω2). Define the map

G ∗ Ω → Ω, (γ, ω) 7→ (γ · ω1, γ · ω2).

ThenΩ is a leftG-space and the just defined action is called thediagonal action.

Proposition 6.1.9. LetΩ1 andΩ2 be leftG-spaces. IfΩ1 or Ω2 is proper, thenΩ1 ∗ Ω2 is proper.

Proof. This is proved in Appendix D.1 on page 291; compare Proposition 2.20 of [Tu04].

Definition 6.1.10. Let Ω be a rightG-space andΩ′ a left G-space. Then defineΩ ×G Ω′ to be the
quotient ofΩ−1 ∗ Ω′ by the diagonal (left) action ofG.

If the action ofG onΩ or Ω′ is proper and the canonical mapΩ×G(0) Ω′ → Ω×G Ω′ is open (which
is the case ifG has open range and source maps), thenΩ×G Ω′ is locally compact Hausdorff.

6.1.2 PrincipalG-spaces and inner products

In this section letΩ be a leftG-space with open anchor mapρ. The map which sends someω ∈ Ω to
its orbit [ω] ∈ G \ Ω will be denoted byσ.

Definition 6.1.11. An inner productonΩ is a continuous map〈·, ·〉 : Ω×σ Ω → G such that

1. r(〈ω, ω′〉) = ρ(ω) ands(〈ω, ω′〉) = ρ(ω′) for all (ω, ω′) ∈ Ω×σ Ω;

2. 〈γω, ω′〉 = γ〈ω, ω′〉 for all (ω, ω′) ∈ Ω×σ Ω andγ ∈ G such thats(γ) = ρ(ω);

3. 〈ω, γω′〉 = 〈ω, ω′〉γ−1 for all (ω, ω′) ∈ Ω×σ Ω andγ ∈ G such thats(γ) = ρ(ω′);

4. 〈ω, ω〉 = ρ(ω) for all ω ∈ Ω;

5. 〈ω′, ω〉 = 〈ω, ω′〉−1 for all (ω, ω′) ∈ Ω×σ Ω.

Proposition 6.1.12.An inner product exists onΩ if and only ifΩ is a principalG-space, in case of
which the inner product of(ω, ω′) ∈ Ω×σ Ω is the unique element〈ω, ω′〉 such that

ω = 〈ω, ω′〉ω′.

Proof. This is proved in Appendix D.1 on page 291.

Proposition 6.1.13. If Ω is a left principalG space, then

G n Ω ∼= Ω×σ Ω

as locally compact Hausdorff groupoids.

Proof. By definition,GnΩ is a subspace ofG× (Ω×σΩ), and the strict isomorphism we are looking
for is given by the “projection” onto the second component. Alternatively, if we regardG n Ω as
G ×r,ρ Ω, then the isomorphism is given by the map fromG n Ω to Ω ×σ Ω which sends(γ, ω) to
(ω, γ−1ω).
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6.1.3 The groupoidΩ−1 ×G Ω

Let Ω be aG-space with anchor mapρ. Then by Example 3.4.4 the spaceΩ∗Ω = Ω×G0 Ω = Ω×ρΩ
carries the structure of a topological groupoid. BecauseΩ is locally compact and Hausdorff so is
Ω×ρ Ω.

In what follows we will define the structure of a locally compact groupoid on the factor space
Ω−1×G Ω = G \Ω∗Ω. This structure is related to the above-mentioned groupoid structure onΩ×ρΩ
and can be regarded as the structure of a “quotient groupoid”.

We will assume that the locally compact Hausdorff groupoidG hasopenrange and source maps
and thatΩ is a leftprincipal G-space. Then we know in particular thatΩ−1 ×G Ω is locally compact
Hausdorff.

The map which sends someω ∈ Ω to its orbit [ω] ∈ G \ Ω will again be denoted byσ (note that
this map is open by Proposition 6.1.5). The map fromΩ×σ Ω to G which assigns to each(ω, ω′) the
unique elementγ ∈ G such thatω = γω′ will be denoted by〈·, ·〉. It is the inner product described
above (in particular, it is continuous).

Definition and Proposition 6.1.14.The spaceH := Ω−1 ×G Ω carries the following structure of a
locally compact Hausdorff groupoid:

H(0) := G \ Ω and εH : G \ Ω → Ω−1 ×G Ω, [ω] 7→ [ω−1, ω],

rH : Ω−1 ×G Ω → G \ Ω, [ω−1, ω′] 7→ [ω] and sH : Ω−1 ×G Ω → G \ Ω, [ω−1, ω′] 7→ [ω′].

If ρ is open, thenrH andsH are open. The composition is defined as follows: Let(ω1, ω
′
1), (ω2, ω

′
2) ∈

Ω×G(0) Ω be such that[ω′1] = [ω2]. Then

[ω−1
1 , ω′1] ◦ [(ω2)−1, ω′2] := [ω−1

1 , 〈ω′1, ω2〉ω′2].

It follows that[ω−1, ω′]−1 = [ω′−1, ω].
The maps(ω, ω′) 7→ [ω′−1, ω] andω 7→ [ω] define a strict morphismq from Ω×G0 Ω ontoH. The

locally compact groupoidH = Ω−1 ×G Ω could also be calledGK(Ω) in analogy with the compact
operators on a (left) Hilbert module.

Proof. This is proved in Appendix D.1 on page 292.

Proposition 6.1.15.The locally compact Hausdorff groupoidH := Ω−1×GΩ actsfreelyandproperly
from the right onΩ.

The action is defined as follows: The anchor map isσ and ifω ∈ Ω and [(ω′)−1, ω′′] ∈ H such
thatσ(ω) = σ(ω′) = rH([(ω′)−1, ω′′]), thenω · [(ω′)−1, ω′′] := 〈ω, ω′〉ω′′.

The mapρ : Ω → G(0) induces a continuous injectioñρ from Ω/H to G(0). If ρ is open and
surjective, theñρ is homeomorphism.

Proof. This is proved in Appendix D.1 on page 294.

6.1.4 Bimodules

Let G,H andK be locally compact Hausdorff groupoids.

Definition 6.1.16 (G-H-bimodule). A G-H-bimoduleor G-H-space is a locally compact Hausdorff
spaceΩ which is at the same time a leftG-space and a rightH-space (with anchor mapsρ : Ω → G(0)

andσ : Ω → H(0), respectively) such that the actions commute, i.e.,
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1. ρ(ω · η) = ρ(ω) for all (ω, η) ∈ Ω ∗ H;

2. σ(γ · ω) = σ(ω) for all (γ, ω) ∈ G ∗ Ω; and

3. γ · (ω · η) = (γ · ω) · η for all (γ, ω) ∈ G ∗ Ω and(ω, η) ∈ Ω ∗ H.

Example 6.1.17.Let Ω be a principal leftG-space with anchor mapρ, where the range and source
maps ofG are open. LetH := Ω−1 ×G Ω. ThenΩ is a G-H-bimodule when equipped with the
H-action defined above.

Definition 6.1.18 (The flipped bimodule). Let Ω be aG-H-bimodule. Then we define anH-G-
bimoduleΩ−1 as follows:

1. The underlying space ofΩ−1 is simplyΩ.

2. The anchor maps are given byσΩ−1(ω−1) := ρ(ω), defining a map fromΩ−1 to G(0), and
ρΩ−1(ω−1) := σ(ω), defining a mapΩ−1 → H(0).

3. The left action ofH onΩ−1 is given byH ∗ Ω−1 → Ω−1, (η, ω−1) 7→ (ωη−1)−1.

4. The right action ofG onΩ−1 is given byΩ−1 ∗ G → Ω−1, (ω−1, γ) 7→ (γ−1ω)−1.

That the following definition makes sense is proved in Appendix D.1 on page 166.

Definition 6.1.19 (Product of bimodules).LetΩ be a proper rightH-space andΩ′ anH-K-bimodule.
LetH have open range and source maps. Then the quotient spaceΩ′′ := Ω×H Ω′ of Ω×H(0) Ω′ is a
locally compact Hausdorff space.

1. Define

σ′′ : Ω′′ → K(0), [(ω, ω′)] 7→ σ′(ω′)

whereσ′ is the right anchor map ofΩ′. Define aK-action onΩ′′ (with anchor mapσ′′) by
setting

[(ω, ω′)] · κ := [(ω, ω′κ)]

for all (ω, ω′) ∈ Ω×H(0) Ω′ andκ ∈ K such thatσ′(ω′) = r(κ).

2. If Ω is not only a proper rightH space but also aG-H-bimodule, then we can define aG-K-
bimodule structure onΩ′′ by defining

ρ′′ : Ω′′ → G(0), [(ω, ω′)] 7→ ρ(ω)

and

γ · [(ω, ω′)] := [(γω, ω′)]

for all (ω, ω′) ∈ Ω×H(0) Ω′ andγ ∈ G such thats(γ) = ρ(ω).
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6.1.5 Principal fibrations, graphs and morphisms

Let G, H andK be locally compact Hausdorff groupoids with open range and source maps. The
openness of these maps is not a dramatic restriction because our main interest is to be able to treat
the case that the groupoids carry Haar systems, and in this case, the range and source maps are
automatically open. For the definition of principal fibrations and generalised morphisms, we can
thus go back to the definitions of [LG94] instead of the more elaborate concepts8 of [LG99].

Definition 6.1.20 (Principal fibration). LetH act on the locally compact Hausdorff spaceΩ on the
right. A mapp from Ω to another topological spaceX is calledprincipal fibration with structure
groupoidH if

1. Ω is a principalH-space;

2. p is continuous, open and surjective;

3. p is invariant under the action ofH, i.e.,∀(ω, η) ∈ Ω ∗ H : p(ω) = p(ωη).

4. H acts transitively on each fibre ofp, i.e., for allω, ω′ ∈ Ω such thatp(ω) = p(ω′) there is an
η ∈ H such thatωη = ω′; note thatη is unique asΩ is free.

Becausep is invariant under the action ofH it induces a continuous map̃p : Ω/H → X. Because
H acts transitively on each fibre,p̃ is injective and hence a homeomorphism.

If p : Ω → X is a principal fibration with structure groupoidH, then there is a canonical contin-
uousH-valued inner product onΩ ×p Ω. More precisely,Ω ×p Ω = Ω ×σ Ω whereσ : Ω → Ω/H
denotes the quotient map. SinceΩ is a principalH space, we can now take the inner product from
Ω ×σ Ω to H which assigns to each(ω, ω′) the unique elementη of H such thatωη = ω′. We will
denote this elementη by 〈ω, ω′〉H.

A generalised morphism of locally compact Hausdorff groupoids is an isomorphism class of
graphs, and such a graph is defined as follows:

Definition 6.1.21 (Graph). A graphΩ (of a morphism) fromG toH is aG-H-bimodule (with anchor
mapsρ andσ, say), such thatρ : Ω → G(0) is a principal fibration with structure groupoidH.

Proposition 6.1.22.LetΩ be a graph fromG toH. Sinceρ is a principal fibration, there is an inner
product〈·, ·〉H fromΩ×ρ Ω toH. It is G-balanced in the sense that

(6.1)
〈
ω, γω′

〉
H =

〈
γ−1ω, ω′

〉
H

for all ω, ω′ ∈ Ω and γ ∈ G such thatρ(ω′) = s(γ) and r(γ) = ρ(ω′). It follows that the inner
product factors throughΩ−1 ×G Ω to give a continuousH-H-bimodule map fromΩ−1 ×G Ω toH.

Proof. The elementη = 〈ω, γω′〉H has the propertyωη = γω′. It follows that(γ−1ω)η = ω′, soη
has the defining property of〈γ−1ω, ω′〉H.

Definition 6.1.23 ((Generalised) morphism, equivalence of graphs).Two graphsΩ andΩ′ from G
to H are calledequivalentif there is a homeomorphism fromΩ to Ω′ which intertwines the anchor
maps and the actions ofG andH, i.e., an isomorphism ofG-H-bimodules. A(generalised) morphism
fromG toH is simply an equivalence class of graphs. IfΩ is a graph, then we denote the corresponding
morphism by[Ω].

8For groupoids with open range and source maps, the definitions of [LG99] seem to amount to much the same picture
as the one presented in the earlier article. The concepts of [LG94] are somewhat easier to handle, and another reason to use
them here is that I was not able to check all the technical details of the more recent article.
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Definition and Proposition 6.1.24 (Strict morphisms are morphisms).Let f : G → H be a strict
morphism of groupoids. Then we defineGraph(f) to be the following graph fromG toH:

Graph(f) := Ω := G(0) ×H0 H,

where the fibre product is taken over the mapsf |G(0) andr : H → H(0). The anchor maps are given
by

ρ : Ω → G(0), (g, η) 7→ g and σ : Ω → H(0), (g, η) 7→ s(η).

The action ofG onΩ is given by
γ(g, η) := (r(γ), f(γ)η)

for all γ ∈ G, g ∈ G(0) andη ∈ H such thats(γ) = g andf(g) = r(η). The action ofH on Ω is
given by multiplication from the right in the second component. The morphism[Graph(f)] given by
Graph(f) is denoted byMorph(f).

Proof. Straightforward calculations show thatΩ is indeed a bimodule. The mapρ is clearly invariant
under the action ofH and open because the range map ofH is open (see Lemma 3.4.5). We have to
show thatH acts freely and properly onΩ and transitively on its fibres.

• Let (g, η) ∈ Ω andη′, η′′ ∈ H such thats(η) = r(η′) = r(η′′) and(g, η)η′ = (g, η)η′′. Then
this meansηη′ = ηη′′ and thereforeη′ = η′′. SoH acts freely onΩ.

• Consider the map fromΩ ∗ H to Ω × Ω which maps((g, η), η′) to ((g, η), (g, ηη′)). This is
composed of maps which are proper such asg 7→ (g, g) and(η, η′) 7→ (η, ηη′), and standard
arguments show that it is proper itself; hence the action ofH onΩ is proper.

• Let g ∈ G(0) andη, η′ ∈ H such thatf(g) = r(η) = r(η′). Defineη′′ := η−1η′. Then
ηη′′ = η(η−1η′) = (ηη−1)η′ = η′. Moreover,r(η′′) = s(η) = σ(g, η) and(g, η)η′′ = (g, η′).
SoH acts transitively on the fibres ofΩ.

Definition 6.1.25 (Identity morphism). Theidentity morphism ofG is defined asMorph(IdG), where
IdG is the (strict) identity (morphism) onG. It is the equivalence class of the graphG, where we
considerG to be a bimodule over itself, asG(0) ×G(0) G is equivalent toG. For obvious reasons we
will denote this morphism also asIdG .

Definition 6.1.26 (Composition of graphs).Let Ω be a graph fromG toH andΩ′ a graph fromH
to K. Then we define onΩ′′ := Ω ×H Ω′ the structure of aG-K-bimodule as in 6.1.19. Then this
bimodule is a graph fromG toK, called thecomposition ofΩ andΩ′.

ThatΩ′′ really is a graph is proved in Appendix D.1 on page 295.
The definition of the composition of graphs lifts to equivalence classes. Hence we have also

defined thecomposition of morphisms. The locally compact Hausdorff groupoids, together with their
morphisms, form a category: Associativity can be shown by a lengthy series of standard arguments. To
see that the identity morphisms deserve their name letΩ be a graph fromG toH. Then the left action
µG from G ∗ Ω to Ω lifts to a continuous map fromG ×G Ω to Ω. This map clearly is a morphism of
G-H-bimodules. It is inverted by the mapω 7→ [(ρ(ω), ω)] which is continuous. Similarly one shows
thatΩ×H H ∼= Ω.

Proposition 6.1.27.The assignmentf 7→ Morph(f) is a functor from the category of locally compact
Hausdorff groupoids (with open range and source maps) with the strict morphisms as morphisms to
the category of locally compact Hausdorff groupoids (with open range and source maps) with all
(generalised) morphisms.

Proof. This is proved in Appendix D.1 on page 296.
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6.1.6 Equivalences

LetG,H andK be locally compact Hausdorff groupoids with open range and source maps (to require
the range and source maps to be open is a natural condition because we want equivalences to be
morphisms).

Definition 6.1.28 (G-H-equivalence).A G-H-bimoduleΩ is called aG-H-equivalence bimodule if

1. it is free and proper both as aG- and anH-space;

2. the anchor mapρ : Ω → G(0) induces a homeomorphisms fromΩ/H to G(0); and

3. the anchor mapσ : Ω → H(0) induces a homeomorphism fromG \ Ω toH(0).

We callG andH (Morita) equivalent, and writeG ∼M H, if such an equivalence exists.

Gathering what we have said above about the groupoidΩ−1 ×G Ω we get the following funda-
mental example of an equivalence of groupoids:

Example 6.1.29.Let Ω be a free proper leftG-space with open and surjective anchor mapρ. ThenΩ
is an equivalence and

G ∼M Ω−1 ×G Ω.

Proposition 6.1.30. Let Ω be aG-H-equivalence. Then the locally compact groupoidΩ−1 ×G Ω
is strictly isomorphic toH through an isomorphism that also respects the canonicalH-H-bimodule
structures onΩ−1 ×G Ω andH.

Proof. This is proved in Appendix D.1 on page 296.

Corollary 6.1.31. If Ω is aG-H-equivalence bimodule, thenΩ is the graph of an isomorphism from
G toH, the inverse having graphΩ−1.

The converse of this corollary is also true, so we have:

Proposition 6.1.32.G andH are equivalent if and only if they are isomorphic (in the generalised
sense). More precisely: IfΩ is a graph of a generalised isomorphism fromG toH andΩ′ is a graph of
its inverse fromH toG, thenΩ is aG-H-equivalence andΩ−1 is isomorphic toΩ′ asH-G-bimodules.

Proof. This is proved in Appendix D.1 on page 297.

The following corollaries can also easily be obtained from direct calculation.

Corollary 6.1.33. LetΩ be aG-H-equivalence andΩ′ anH-K-equivalence. ThenΩ′′ := Ω×H Ω′ is
a G-K-equivalence.

Corollary 6.1.34. Morita equivalence defines an equivalence relation on the locally compact Haus-
dorff groupoids with open range and source maps.

Proposition 6.1.35. Let Ω be an equivalence fromG to H. Write 〈·, ·〉H for theH-valued inner
productΩ−1×G(0) Ω → H andG〈·, ·〉 for theG-valued inner productΩ×H(0) Ω−1 → G. Then for all
ω, ω′, ω′′ ∈ Ω such thatσ(ω) = σ(ω′) andρ(ω′) = ρ(ω′′) we have

(6.2) G〈ω, ω′〉 ω′′ = ω 〈ω′, ω′′〉H.

Proof. We have

G〈ω, ω′〉 ω′′〈ω′, ω′′〉−1
H = G〈ω, ω′〉 ω′′〈ω′′, ω′〉H = G〈ω, ω′〉 ω′ = ω.

Multiplying this by 〈ω′, ω′′〉H on both sides gives (6.2).
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6.2 The linking groupoid

6.2.1 Definition

Let G andH be locally compact Hausdorff groupoids with open range and source maps. LetΩ be a
G-H-equivalence.

Definition 6.2.1 (The linking groupoid). Let L be the locally compact Hausdorff spaceL := G t
Ω t Ω−1 tH andL(0) := G(0) tH(0). Define the range and source maps ofL as

rL : L → L,


G 3 γ 7→ rG(γ) ∈ G(0)

Ω 3 ω 7→ ρ(ω) ∈ G(0)

Ω−1 3 ω−1 7→ ρ(ω−1) = σ(x) ∈ H(0)

H 3 η 7→ rH(η) ∈ H(0)

 ,

and

sL : L → L,


G 3 γ 7→ sG(γ) ∈ G(0)

Ω 3 ω 7→ σ(ω) ∈ H(0)

Ω−1 3 ω−1 7→ σ(ω−1) = ρ(ω) ∈ G(0)

H 3 η 7→ sH(η) ∈ H(0)

 .

With these definitions,

L ∗ L = G∗G t G∗Ω t Ω∗Ω−1 t Ω∗H t Ω−1∗G t Ω−1∗Ω t H∗Ω−1 t H∗H.

Define a composition map fromL ∗ L toL as the obvious map on the componentsG∗G, G∗Ω, Ω∗H,
Ω−1 ∗G, H∗Ω−1, andH∗H; on Ω−1 ∗Ω andΩ∗Ω−1 we take the factor map ontoΩ−1 ×G Ω and
Ω ×H Ω−1, which we identify withH andG, respectively. In other words, a(ω−1, y) ∈ Ω−1∗Ω is
mapped to its inner product〈ω, ω′〉H ∈ H, which is the unique elementη of H such thatω′ = ωη
(and similarly forΩ∗Ω−1).

Proposition 6.2.2.L is a locally compact Hausdorff groupoid with open range and source maps. The
inversion onL is the map

L → L,


G 3 γ 7→ γ−1 ∈ G
Ω 3 ω 7→ ω−1 ∈ Ω−1

Ω−1 3 ω−1 7→ ω ∈ Ω
H 3 η 7→ η−1 ∈ H

 .

6.2.2 Full subsets

Recall from Definition 5.3.6 that a subsetU ⊆ G(0) of the unit space of a locally compact Hausdorff
groupoidG is calledfull if GU ◦GU = G, i.e., if every elementγ of G can be written as a productγ1γ2

with γ1 starting inU andγ2 ending inU .

Proposition 6.2.3. LetG be a locally compact Hausdorff groupoid with open range and source maps
andU ⊆ G(0) a full open subset. ThenGUU is a locally compact Hausdorff groupoid with open range
and source maps andGU is aGUU -G-equivalence.
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Proof. First of all,Ω := GU is an open subset ofG such thatGUU ⊆ Ω. The range mapρ := r|Ω : Ω →
U is open and surjective (siceGUU ⊆ Ω). Also the source mapσ := s|Ω : Ω → G(0) is open and
surjective sinceU is full. GUU acts from the left andG acts from the right onΩ by multiplication. The
map(γ, γ′) 7→ γ−1γ′ is a continuous inner productΩ ×ρ Ω → G, soρ is a principal fibration with
structure groupoidG, and the map(γ, γ′) 7→ γγ−1 is a continuous inner productΩ×σ Ω → GUU , soσ
is a principal fibration with structure groupoidGUU . HenceΩ is an equivalence.

Corollary 6.2.4. LetG andH be locally compact Hausdorff groupoids with open range and source
maps and letΩ be aG-H-equivalence. Form the linking groupoidL as above. ThenU := G(0) is a
full open and closed subset ofL(0) andLUU can be identified withG. SoG is equivalent toL. In a
similar fashion,H is equivalent toL.

6.3 The pullback of groupoids

Definition 6.3.1 (The pullback of a topological groupoid).9 LetX andY be topological spaces, let
G be a topological groupoid overX and letp : Y → X = G(0) be a continuous map. Then we define
p∗(G) to be the fibre product ofY × Y andG overX ×X = G(0) ×G(0), i.e.,p∗(G) is defined as the
pullback in the following diagram:

p∗(G)

��

// Y × Y

p×p
��

G
(r,s) // X ×X

It can be realised as follows:

p∗(G) ∼= {(z, γ, y) ∈ Y × G × Y : s(γ) = p(y), r(γ) = p(z)}

and the unit space ofp∗(G) can be identified withY . The source and range function are

R : p∗(G) → Y, (z, γ, y) 7→ z, S : p∗(G) → Y, (z, γ, y) 7→ y.

Moreover,
ε : Y → p∗(G), y 7→ (y, ε(p(y)), y).

The composition is given by

(z, γ, y) ◦ (z′, γ′, y′) = (z, γ ◦ γ′, y′)

and is defined if and only ify = z′. The inverse is given by(z, γ, y)−1 = (y, γ−1, z).
There is a canonical strict morphism fromp∗(G) to G, appearing in the above diagram, which we

call pG or simplyp if the context is clear. It is given explicitly by(z, γ, y) 7→ γ.

Proposition 6.3.2. 10 If G and Y are Hausdorff, second countable or locally compact, then so is
p∗(G). If r, s andp are open, then so are the mapsR andS.

9What we callp∗(G) is calledGY in [LG99] andG[Y ] in [Tu04].
10See [Tu04], Proposition 2.7 and Lemma 2.24, for more precise results.
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Example 6.3.3.LetX andY be topological spaces and letp : Y → X be continuous. ThenX itself
can be regarded as a topological groupoid overX as we have seen in Example 3.4.1. We have

p∗(X) ∼= Y ×X Y.

The isomorphism fromp∗(X) to Y ×X Y sends(y′, x, y) to (y′, y), wherey, y′ ∈ Y , x ∈ X and
p(y′) = x = p(y).

If G is a topological groupoid overX andX is closed inG (which is automatic ifG is Hausdorff),
thenp∗(X) = Y ×X Y is contained as a closed subgroupoid inp∗(G).

Proposition 6.3.4. LetX, Y , Z be topological spaces and letG be a topological groupoid overX.
Assume thatp : Y → X andq : Z → Y are continuous maps. Then there is a canonical isomorphism
from q∗(p∗(G)) to (p ◦ q)∗(G) such that the following diagram commutes:

q∗(p∗(G)) //

��

(p ◦ q)∗(G)

����
��

��
��

��
��

��
��

��
�

p∗(G)

��
G

Proof. The groupoidq∗(p∗(G)) can be realised as

{(z′, y′, γ, y, z) : q(z′) = y′, r(γ) = p(y′), s(γ) = p(y), q(z) = y}.

The isomorphism to(p ◦ q)∗(G) is given by

(z′, y′, γ, y, z) 7→ (z′, γ, z),

whereas its inverse is given by

(z′, γ, z) 7→ (z′, q(z′), γ, q(z), z).

Proposition 6.3.5. If G is a topological groupoid, thenId∗G(0)(G) ∼= G where the isomorphism is given
by “ Id”, the canonical mapId∗G(0)(G) → G. The inverse is given byγ 7→ (r(γ), γ, s(γ)).

Under certain conditions, the graph ofp : p∗(G) → G is an equivalence:

Proposition 6.3.6. Let G be a locally compact Hausdorff groupoid overX with open range and
source maps. LetY be a locally compact Hausdorff space and letp : Y → X be continuous. The
strict morphismp : p∗(G) → G has graph

Ω := p∗(G)(0) ×G(0) G = Y ×G(0) G = {(y, γ) ∈ Y × G : p(y) = r(γ)}.

If p : Y → X is open and surjective, thenΩ is an equivalence.

Proof. BecauseΩ is a graph, it is a principalG-space and the mapρ is a surjective and open principal
fibration with structure groupoidG. Moreover,σ : Ω → G(0), (y, γ) 7→ s(γ), is open and surjective
becausep is open and surjective ands is open and surjective. We have to show thatσ is a principal
fibration with structure groupoidp∗(G).
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Define a map

〈·, ·〉 : Ω×σ Ω → p∗(G), ((y1, γ1), (y2, γ2)) 7→ 〈(y1, γ1), (y2, γ2)〉 := (y1, γ1γ
−1
2 , y2).

If (y1, γ1), (y2, γ2) ∈ Ω with σ(y1, γ1) = s(γ1) = s(γ2) = σ(y2, γ2), then

〈(y1, γ1), (y2, γ2)〉 · (y2, γ2) = (y1, γ1γ
−1
2 , y2) · (y2, γ2) = (y1, γ1γ

−1
2 γ2) = (y1, γ1).

This implies that the fibres ofσ are the orbits of thep∗(G)-action onΩ, i.e.,

Ω×σ Ω = Ω×p∗(G)\Ω Ω.

We show that〈·, ·〉 is an inner product onΩ in the sense of Definition 6.1.11. To this end we check
the properties 2. and 4. of the definition: Let(y1, γ1) and(y2, γ2) in Ω such thats(γ1) = s(γ2) and
(z, γ, y) ∈ p∗(G) such thaty = s((z, γ, y)) = ρ((y1, γ)) = y1. Then

〈(z, γ, y) · (y1, γ1), (y2, γ2)〉 = 〈(z, γγ1), (y2, γ2)〉 =
(
z, γγ1γ

−1
2 , y2

)
= (z, γ, y)

(
y1, γ1γ

−1
2 , y2

)
= (z, γ, y) 〈(y1, γ1), (y2, γ2)〉

and
〈(y1, γ1), (y1, γ1)〉 =

(
y1, γ1γ

−1
1 , y1

)
= (y1, p(y1), y1) .

This shows that〈·, ·〉 is an inner product. SoΩ is a free and properp∗(G)-space andσ is a principal
fibration with structure groupoidp∗(G).

Definition and Proposition 6.3.7 (The strict morphismfΩ). LetG andH be locally compact Haus-
dorff groupoids with open range and source maps and letΩ be a graph fromG toH. Write 〈·, ·〉H for
theH-valued inner product fromΩ×ρ Ω toH, i.e.,〈ω, ω′〉H is defined to be the unique element ofH
such thatω′〈ω′, ω〉H = ω.

DefinefΩ(ω′, γ, ω) := 〈ω′, γω〉H for all (ω′, γ, ω) ∈ ρ∗(G). ThenfΩ : ρ∗(G) → H is a strict
morphism extendingσ : Ω = ρ∗(G)(0) → H(0).

Proof. • Let ω ∈ Ω. Then fΩ(ω, ρ(ω), ω) = 〈ω, ρ(ω)ω〉H = 〈ω, ω〉H = σ(ω). Hence
fΩ|ρ∗(G)(0) = σ.

• Let (ω′′, γ′, ω′), (ω′, γ, ω) ∈ ρ∗(G). Then

fΩ(ω′′, γ′, ω′)fΩ(ω′, γ, ω) =
〈
ω′′, γ′ω′

〉 〈
ω′, γω

〉
=
〈
ω′′, γ′ω′

〈
ω′, γω

〉〉
=

〈
ω′′, γ′γω

〉
= fΩ(ω′′, γ′γ, ω) = fΩ

(
(ω′′, γ′, ω′)(ω′, γ, ω)

)
.

SofΩ is a homomorphism of groupoids.

• Since the inner product is continuous, it follows thatfΩ is continuous.

Proposition 6.3.8.LetG andH be locally compact Hausdorff groupoids with open range and source
maps and letΩ be a graph fromG toH. ThenMorph(fΩ) makes the following diagram commutative

(6.3) ρ∗(G)

Morph(ρ)

��

Morph(fΩ)

!!B
BB

BB
BB

BB
BB

BB
BB

BB

G
[Ω] // H
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Proof. The composition ofGraph(ρ) andΩ is given by(Ω×G(0) G)×G Ω ∼= Ω×G(0) Ω and the graph
of fΩ is given byΩ×H(0) H = Ω ∗ H. Define the map

ι : Ω ∗ H → Ω×ρ Ω, (ω, η) 7→ (ω, ωη).

Note that, sinceρ is a principal fibration,Ω ×ρ Ω = Ω ×Ω/H Ω. As Ω is a free and properH-space,
the mapι is a homeomorphism.

The action ofH onΩ×G(0) H is given by multiplication from the right in the second component.
The action ofH onΩ×H(0) Ω is given by(ω, ω′)η := (ω, ω′η). Now

ι(ω, η)η′ = (ω, ωη)η′ = (ω, ωηη′) = ι(ω, ηη′)

for all ω ∈ Ω, η, η′ ∈ H such thatσ(ω) = r(η) ands(η) = r(η′).
The action ofρ∗(G) onΩ×G(0) H is given by

(ω′, γ, ω)(ω, η) = (ω′, fΩ(ω′, γ, ω)η) = (ω′, 〈ω′, γω〉η).

The action ofρ∗(G) onΩ×H(0) Ω is given by(ω′, γ, ω)(ω, ω′′) = (ω′, γω′′). Now

(ω′, γ, ω)ι(ω, η) = (ω′, γ, ω)(ω, ωη) = (ω′, γωη)

and
ι
(
(ω′, γ, ω)(ω, η)

)
= ι
(
ω′, 〈ω′, γω〉η

)
= (ω′, ω′〈ω′, γω〉η).

Becauseω′〈ω′, γω〉 = γω by definition, we have thus shown thatι respects the bimodule structure.

Corollary 6.3.9. Every generalised morphism can be written as the composition of an equivalence
and a strict morphism.

Remark 6.3.10. The triangle (6.3) can be completed to give the following square:

(6.4) ρ∗(G)

Morph(ρ)

��

Morph(fΩ)

""FFFFFFFFFFFFFFFFFF

Morph(FΩ) // σ∗(H)

Morph(σ)

��
G

[Ω] // H

where the top arrow is given by the strict morphism

FΩ : ρ∗(G) → σ∗(H), (ω′, γ, ω) 7→ (ω′, fΩ(ω′, γ, ω), ω).

Ω is an equivalence if and only ifFΩ is a strict isomorphism. Note that this implies that every equiv-
alence can be written as a product of three very special equivalences, namely an strict isomorphism
and two equivalences stemming from the pullback construction described above.

Tu11 has shown that ifΩ is an equivalence, thenρ∗(G) ∼= G n (Ω oH), i.e.,ρ∗(G) is the iterated
crossed product of groupoids (which we have not defined here). It follows by symmetry thatσ∗(H) ∼=
(G n Ω) o H. Since the two different iterated crossed products are isomorphic, there is an induced
isomorphism betweenρ∗(G) andσ∗(H), which turns out to be the one we have given above.

11See [Tu04], Proof of Proposition 2.29.
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6.4 Locally compact groupoids with Haar systems

We have used Haar systems on groupoids already in the preceding chapter when we discussed the
descent. We will now analyse how Haar systems behave under the constructions we have introduced
above: Can one lift Haar systems to equivalent groupoids, to the pullback of a groupoids or to linking
groupoids? To be able to discuss these questions systematically, we will introduce Haar systems not
only on groupoids but also on spaces on which groupoids act.

6.4.1 Haar systems

Let G andH be locally compact Hausdorff groupoids.

Definition 6.4.1 (Haar system).A left Haar system on a leftG-spaceΩ with (open and) surjective
anchor mapρ is a faithful continuous field12 (λgΩ)g∈G(0) of measures onΩ overG(0) with coefficient
mapρ such that

(6.5) ∀γ ∈ G ∀ϕ ∈ Cc(Ω) :
∫
ω∈Ω

ϕ(ω) dλr(γ)Ω (ω) =
∫
ω∈Ω

ϕ(γω) dλs(γ)Ω (ω).

Similarly, right Haar systems are defined.

Definition 6.4.2 (Haar system onG). Using thatG acts on itself on the left, we define a left Haar
system on the groupoidG to be a left Haar system for this action.

Note that such a Haar system need not exist. IfG is a locally compact Hausdorff groupoid admitting
a Haar system, then it follows from Lemma B.2.4 that its range and source maps are open.

Example 6.4.3.Let X andY be locally compact Hausdorff spaces and letp : Y → X be an open
continuous map. OnY ×X Y there is a structure of a locally compact Hausdorff groupoid with unit
spaceY as we have seen in 3.4.4.

1. Let (µx)x∈X be a faithful continuous field of measures onY overX with coefficient mapp.
For everyy ∈ Y and all Borel subsetsA of Y ×X Y , define

λy(A) := µp(y)({y′ ∈ Y : (y, y′) ∈ A})

Then(λy)y∈Y is a left Haar system onY ×X Y .

2. Conversely, ifλ is a left Haar system onY ×X Y , then this meansλy = λy
′

for all (y, y) ∈
Y ×X Y . If we thus defineµx := λy for everyy ∈ Y such thatp(y) = x and ifp is (open and)
surjective, then(µx)x∈X is a faithful continuous field of measures onY overX.

Proof. 1. To see thatλ is a continuous field of measures, note thatλ is the same asp∗(µ), where
the pullbackp∗(µ) is defined as in B.2.8. This also shows thatλ is faithful. Let us check the
invariance property (6.5). Let(y′, y) ∈ Y ×X Y andϕ ∈ Cc(Y ×X Y ). By definition,r(y′, y) =
y′ ands(y′, y) = y; moreover, the fibre(Y ×X Y )y is the set{(y, y′′) : y′′ ∈ Y, p(y′′) = p(y)}
and can thus be identified withYp(y). We have to show∫

y′′∈Yp(y)

ϕ((y′, y) · (y, y′′)) dλy(y, y′′) =
∫
y′′∈Yp(y′)

ϕ(y′, y′′) dλy
′
(y′, y′′).

But this is trivial since both sides are equal to
∫
y′′∈Yp(y)

ϕ(y′, y′′) dµp(y)(y′′).

12See Definition B.2.1.
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2. We have to show thatµ is a faithful continuous field of measures. It is easy to see thatµ
is faithful once we have established that it is continuous. To see the latter, letχ ∈ Cc(Y ).
Define χ̃(y, y′) := χ(y′) for all (y, y′) ∈ Y ×X Y . Then the support of̃χ is proper and
λ(χ̃)(y) = µ(χ)(p(y)). The functionλ(χ̃) is continuous and constant on the fibres ofp, so
µ(χ) is continuous. Henceµ is continuous.

Definition and Proposition 6.4.4 (Haar systems onH give Haar systems onΩ). Let Ω be a graph
from G to H and letH carry a left Haar systemλH. Then we define a faithful continuous field of
measures(λgΩ)g∈G(0) onΩ overG(0) with the canonical projectionρ as coefficient map by

λgΩ(ϕ) :=
∫
η∈Hσ(ω)

ϕ(ωη) dλσ(ω)
H (η)

for all g ∈ G(0) andϕ ∈ Cc(Ω), whereω is some arbitrary element ofΩ such thatρ(ω) = g. This
continuous field of measures is a left Haar system onΩ for the action ofG.

Proof. First we prove thatλΩ(ϕ) is well-defined. Note that the defining integral makes sense because
the action ofH on Ω is proper; we have to check that it is independent of the choice ofω. Let
ω, ω′ ∈ Ω with ρ(ω) = g = ρ(ω′). Becauseρ is a principal fibration with structure groupoidH, we
can find a unique elementη̃ ∈ H such thatω′ = ωη̃. Now∫

η∈Hσ(ω′)
ϕ(ω′η′) dλσ(ω′)

H (η′) =
∫
η′∈Hσ(ω′)

ϕ(ωη̃η′) dλσ(ω′)
H (η′) =

∫
η∈Hσ(ω)

ϕ(ωη) dλσ(ω)
H (η)

by the left invariance ofλH. So the integral definingλgΩ(ϕ) is independent of the choice ofω ∈
ρ−1(g).

We now show thatλΩ is continuous. Instead of making all the calculations by hand we are going to
give some background information which shows how the Haar system can be obtained systematically.
Consider the following diagram

H
r

��

Ω ∗ H
π2oo µ //

π1

��

Ω

ρ

��
H(0) Ωσ

oo
ρ

// G(0)

OnH there is, by assumption, the faithful continuous fieldλH of measures overH(0) with coefficient
mapr. This induces a faithful continuous field of measuresλΩ∗H := σ∗(λH) on Ω ∗ H overΩ with
coefficient mapπ1, the projection onto the first component.13 Note that for allω ∈ Ω we have

λωΩ∗H(ϕ) =
∫
η∈Hσ(ω)

ϕ(ω, η) dλσ(ω)
H (η)

for all ϕ ∈ Cc(Ω ∗ H). This integral can be extended to all functionsϕ on Ω ∗ H with proper
support (here “proper support” means that for all compact subsetsK of Ω the setsuppϕ ∩ π−1

1 (K)
is compact). Ifϕ ∈ Cc(Ω), thenϕ ◦ µ is a function onΩ ∗ H with proper support (because the action
of H on Ω is proper). Moreover, ifϕ ∈ Cc(Ω), thenλωΩ∗H(ϕ ◦ µ) depends only onρ(ω) (that is
what we have shown in the first part of the proof). The mapω 7→ λωΩ∗H(ϕ ◦ µ) is continuous on
Ω and constant on the fibres ofρ. Hence there is a unique continuous functionψ on G(0) such that
λΩ∗H(ϕ◦µ) = ψ◦ρ. This function has compact support and equalsλΩ(ϕ). HenceλΩ is a continuous
field of measures. It is faithful.

13See B.2.8 for the definition of the pullback of a continuous field of measures.
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The following proposition is straightforward:

Proposition 6.4.5 (The Haar system on the linking groupoid).LetG andH carry left Haar systems
λG andλH, respectively. LetΩ be a Morita equivalence betweenG andH. Then the Haar system on
H induces a left Haar system for theG-action onΩ, and the Haar system onG induces a left Haar
system for the left action ofH onΩ−1. Together, these four Haar systems define a left Haar system on
the linking groupoid.

We have a partial inverse of the construction presented in 6.4.4. There, a Haar system on the “range
groupoid” of a graph between groupoids induces a Haar system on the graph. Vice versa, a Haar
system on a graph induces a Haar system on the range groupoid, at least in the case of a Morita
equivalence:

Definition and Proposition 6.4.6. Let Ω be a Morita equivalence betweenG andH and letλΩ be
a left Haar system onΩ. Define a left Haar systemλH onH as follows: Ifω ∈ Ω, thenHσ(ω) is
homeomorphic to{ω′ ∈ Ω : ρ(ω′) = ρ(ω)} = ρ−1(ρ(ω)). On this fibre we take the Haar measure

λ
ρ(ω)
Ω . On functionsϕ ∈ Cc(H) this amounts to the following integral:∫

η∈Hσ(ω)

ϕ(η) dλσ(ω)
H (η) =

∫
ω′∈ρ−1(ρ(ω))

f(〈ω, ω′〉) dλρ(ω)
Ω (ω′)

for all ω ∈ Ω, where〈ω, ω′〉 denotes the unique elementη of H such thatωη = ω′.

Proof. Consider the following diagram

Ω

ρ

��

Ω×ρ Ωπ2oo 〈,〉 //

π1

��

H
rH

��
G(0) Ωρ

oo
σ

// H(0)

Now proceed as in the proof of 6.4.4.

6.4.2 Haar systems and pullbacks

Lemma 6.4.7. Let G be a topological groupoid acting on the left on a topological spaceΩ with
anchor mapρ. Let ρ̃ : G ∗ Ω → G(0), (γ, ω) 7→ r(γ). Then, for everyg ∈ G(0), there is a canonical
homoeomorphism betweenρ̃−1(g) ⊆ G ∗ Ω andr−1(g)× ρ−1(g) ⊆ G × Ω.

Proof. For every(γ, ω) ∈ ρ̃−1(g), the element(γ, γω) is in r−1(G) × ρ−1(g). On the other hand, if
(γ, ω′) ∈ r−1(g) × ρ−1(g) then(γ, γ−1ω′) ∈ ρ̃−1(g). The two maps are obviously continuous and
inverses of each other.

Definition and Proposition 6.4.8. Let G be a locally compact Hausdorff groupoid with left Haar
systemλ and letΩ be a left HaarG-space with anchor mapρ. Letω ∈ Ω. Then we define a measure
µω onρ∗(G) by

µω(ϕ) =
∫
ω′∈ρ−1(ρ(ω))

∫
γ∈Gρ(ω)

ϕ(ω′, γ, γ−1ω) dλρ(ω)(γ) dλρ(ω)
Ω (ω′)

for all ϕ ∈ Cc(ρ∗(G)). The family(µω)ω∈Ω defines a left Haar system onρ∗(G).
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Note that the measureµω onρ∗(G) has support

R−1({ω}) = {(ω, γ, ω′) : γ ∈ G, ω′ ∈ Ω, ρ(ω) = r(γ), ρ(ω′) = s(γ)}

that can be identified with{(γ, ω′) ∈ G ∗ Ω : s(γ) = ρ(ω′)} which can, by the preceding lemma,
further be identified withr−1(ρ(ω)) × ρ−1(ρ(ω)). This space can be equipped with the measure

λρ(ω) × λ
ρ(ω)
Ω , and this measure corresponds toµω under the identification.

The Haar system defined in the preceding definition could also be obtained by defining a left Haar
system onG ∗ Ω, sinceG ∗ Ω implements a Morita equivalence betweenG andρ∗(G).

Corollary 6.4.9. LetG andH be locally compact Hausdorff groupoids carrying left Haar measures.
Let Ω be a graph fromG to H. ThenΩ carries a left Haar system by 6.4.4 and henceρ∗(G) also
carries a canonical Haar system.

6.5 The functor p!

Let Y andX be locally compact Hausdorff spaces and letp : Y → X be continuous, open, and
surjective. LetG be a locally compact Hausdorff groupoid overX. We denote the canonical strict
morphism fromp∗(G) ontoG also byp. In this section we are going to investigate the relationship
between the category ofG-Banach spaces and the category ofp∗(G)-Banach spaces.

If E is a u.s.c. field of Banach spaces overX, thenp∗(E) is not only a u.s.c. field of Banach
spaces overY , but also aY ×X Y -Banach space. As a consequence, a condition on the linear op-
erators betweenp∗(G)-Banach spaces which is natural in our context isY ×X Y -equivariance. Ev-
ery continuous field of linear maps betweenp∗(G)-Banach spaces which isp∗(G)-equivariant is also
Y ×X Y -equivariant (recall thatY ×X Y can be found as a closed subgroupoidp∗(X) in p∗(G), we
just identify some(y′, y) ∈ Y ×X Y with (y′, p(y), y) ∈ p∗(G)). Our goal is to show that the pullback
functorp∗ implements the following one-to-one correspondences:

1. G-Banach spaces correspond top∗(G)-Banach spaces;

2. continuous fields of linear maps betweenG-Banach spaces correspond toY ×X Y -equivariant
continuous fields of linear maps betweenp∗(G)-Banach spaces;

3. G-equivariant continuous fields of linear maps correspond top∗(G)-equivariant fields of linear
maps.

We reach this goal by defining a functorp! which invertsp∗; it points in the opposite direction, from
thep∗(G)-Banach spaces to theG-Banach spaces. The functorp! is obtained by “factoring out” the
action of theY ×X Y -action on the givenp∗(G)-Banach space.

For technical reasons, we assume that there exists a faithful continuous field of measures onY
overX with coefficient mapp. From Example 6.4.3 we know that this condition is equivalent to the
condition that the locally compact Hausdorff groupoidY ×X Y admits a left Haar system. Note that
such a faithful continuous field of measures onY (and hence a Haar system onY ×X Y ) exists if
C0(Y ) is separable.14 In the situation we are interested in, the spaceY is actually a graphΩ from G
into some other locally compact Hausdorff groupoidH. We have learned above that such anΩ carries
a canonical left Haar system ifH carries a left Haar system, so the existence of a faithful continuous
field of measures onY = Ω will be automatic in this case.

14This can bee deduced from Proposition 3.9 in [Bla96].
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6.5.1 The caseG = X and p∗ (G) = Y ×X Y

We will first consider the case thatG is the trivial groupoidX and thatp∗ (G) is therefore isomorphic
to Y ×X Y . The following is proved in Appendix D.2 on page 300; the proof uses the existence of a
faithful continuous field of measures onY overX.

Definition and Proposition 6.5.1 (The u.s.c. fieldp!E). Let E be aY ×X Y -Banach space with
actionα. Assume that there exists a faithful continuous field of measures onY overX. We define a
u.s.c. field of Banach spacesp!E overX as follows: For everyx ∈ X, define

(p!E)x :=
{

(ey)y∈Yx

∣∣∣ ∀y, y′ ∈ Yx : ey ∈ Ey ∧ α(y′,y) (ey) = ey′

}
⊆
∏
y∈Yx

Ey,

where we take thesup-norm on
∏
y∈Yx

Ey. Note that(p!E)x is a closed linear subspace of the product.
Sinceα is a field of isometries, it follows that the norm of a family(ey)y∈Yx ∈ (p!E)x equals the norm
of eachey, y ∈ Yx; hence(p!E)x is isometrically isomorphic toEy for eachy ∈ Yx (note thatY ×XY
acts freely onY ).

To define the structure of a u.s.c. field of Banach spaces overX on (p!Ex)x∈X , we set

∆ := ∆E :=
{
δ ∈ Γ (Y,E)

∣∣∣ ∀(y, y′) ∈ Y ×X Y : α(y′,y) (δ(y)) = δ(y′)
}
.

In other words:∆ consists of those sections ofE which are invariant under the action ofY ×X Y . If
δ ∈ ∆ andx ∈ X, then define

(p!δ)(x) := (δ(y))y∈Yx
∈ (p!E)x

Now
Γ := {p!(δ) : δ ∈ ∆}

satisfies conditions (C1)-(C4), so(p!E, Γ) is a u.s.c. field of Banach spaces overX.

Definition and Proposition 6.5.2 (p! for morphisms). LetE andF beY ×X Y -Banach spaces. Let
T be anY ×X Y -equivariant continuous field of linear maps fromE to F . Define for allx ∈ X and
e = (ey)y∈Yx ∈ (p!E)x:

(p!T )x (e) := (Tyey)y∈Yx
∈ (p!F )x .

Thenp!T is a continuous field of linear maps fromp!E to p!F . If T is bounded, then‖p!T‖ = ‖T‖.

Proof. Let α andβ denote the respective actions ofY ×X Y onE andF .
First, p!T is a well-defined family of linear operators becauseβ(z,y)(Tyey) = Tz(α(z,y)ey) =

Tzez. The statement about the norm is obvious, so we only have to care about the continuity ofp!T .
Let ζ ∈ Γ(X, p!E) = p!∆E . Then there is aδ ∈ ∆E such thatp!δ = ζ. Now T ◦ δ ∈ ∆F because
β(z,y)(Tyδ(y)) = Tz(α(z,y)δ(y)) = Tzδ(z) for all (z, y) ∈ Y ×X Y . We have

(p!T ) ◦ p!δ = p! (T ◦ δ) ,

because
(p!T ) ((p!δ) (x)) = (p!T ) (δ(y))y∈Yx

= (Tyδ(y))y∈Yx
= (p! (T ◦ δ))x

for all x ∈ X. In particular,(p!T ) ◦ ζ ∈ p!∆F = Γ(X, p!F ). Hencep!T is continuous.
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Proposition 6.5.3. The mapsE 7→ p!E andT 7→ p!T define a functor from the category ofY ×X
Y -Banach spaces with the bounded equivariant continuous fields of linear maps to the category of
u.s.c. fields of Banach spaces overX, isometric and linear on the morphism sets and respecting the
tensor product.

Proof. This is proved in Appendix D.2 on page 301.

Proposition 6.5.4. The functorp! from the category ofY ×X Y -Banach spaces to the category of
X-Banach spaces is an equivalence which invertsp∗; more precisely:

1. Define for allY ×X Y -Banach spacesE and ally ∈ Y the linear map

IEy : (p∗p!E)y = (p!E)p(y) → Ey, (ez)z∈Yp(y)
→ ey.

Then
IE : p∗p!E ∼= E

is a natural isometric isomorphism, compatible with the tensor product (=“multiplicative”).

2. For allX-Banach spacesE there is a natural multiplicative isometric isomorphism

JE : p!p
∗E ∼= E.

To defineJE , let us analyse the actionα of Y ×X Y on p∗E and the fibres ofp!p
∗E: The

actionα is the pullback of the trivial action ofX onE, so for all (z, y) ∈ Y ×X Y we have
p∗(E)z = Ep(z) = Ep(y) = p∗(E)y andα(z,y) = IdEp(y)

. So ifx ∈ X, then the elements of
(p!p

∗E)x are of the form(e)y∈Yx with e ∈ Ex; so it makes sense to define

JEx : (p!p
∗E)x → Ex, (e)y∈Yx

7→ e.

Proof. This is proved in Appendix D.2 on page 302.

6.5.2 The functorp! for general G

Actions of groupoids on fields of Banach spaces are defined using the pullback construction. It is
therefore advisable to study the interplay of the functorp! and the pullback:

Proposition 6.5.5. The functorp! commutes with the pullback in the following sense: LetX ′ andY ′

be locally compact Hausdorff spaces and letp′ : Y ′ → X ′ be continuous, open and surjective. Let
fY : Y ′ → Y be a continuous function. Assume that there is a functionfX fromX ′ to X such that
the following diagram commutes

Y ′

p′

��

fY // Y

p

��
X ′ fX // X

Note that this map fromX ′ to X is unique with this property and that it is continuous. The map
Y ′ ×X′ Y ′ → Y ×X Y, (y′2, y

′
1) 7→ (fY (y′2), fY (y′1)), which we also callfY , is a continuous strict

morphism.
There is a natural isomorphism of u.s.c. fields of Banach spaces overX ′

f∗X (p!(E)) ∼= p′! (f
∗
Y (E))

for all Y ×X Y -Banach spacesE. This natural transformation is isometric and multiplicative.
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Proof. First note thatp∗p!E is naturally isomorphic toE. So f∗Y p
∗p!E is naturally isomorphic to

f∗YE. But f∗Y p
∗p!E = p′∗f∗Xp!E. Sof∗YE is naturally isomorphic top′∗f∗Xp!E, and hencep′!f

∗
YE is

naturally isomorphic top′!p
′∗f∗Xp!E, which is naturally isomorphic tof∗Xp!E. All the isomorphisms

are isometric and compatible with the tensor product, sop′!f
∗
YE is naturally isometrically and multi-

plicatively isomorphic tof∗Xp!E .
An explicit isomorphism(f∗Xp!E)x′ = (p!E)fX(x′) to (p′!f

∗
YE)x′ is given by

(6.6) (ey)y∈YfX (x′)
7→
(
efY (y′)

)
y′∈Y ′

x′
.

Definition and Proposition 6.5.6 (TheG-action onp!E). LetE be ap∗(G)-Banach space with action
α. Then we define aG-action onp!(E) as follows: LetR,S : p∗(G) = Y ×p,r G ×s,p Y → Y be the
range and source maps. Then the following diagrams commute

p∗(G)

p

��

R // Y

p

��
G r // X

p∗(G)

p

��

S // Y

p

��
G s // X

This means thats∗(p!E) ∼= p!(S∗E) andr∗(p!E) ∼= p!(R∗E). Now p!(α) is an isometric isomor-
phism fromp!(S∗E) to p!(R∗E), and this defines an actionp!α onp!E. It has the property that for all
γ ∈ G, e = (ey)y∈Ys(γ)

∈ (p!E)s(γ), andy ∈ Ys(γ):

(6.7) (p!α)γ(e) = (α(z,γ,y)ey)z∈Yr(γ)
.

Proof. If we know thatp!α satisfies equation (6.7), then we can check fibrewise thatp!α is an action
G (actually, one can take (6.7) to define the actionp!α, but then one has to check that this gives a
continuous field of isomorphisms which is automatic in our approach): Let thereforeγ, γ′ ∈ G such
thatr(γ) = s(γ′). Let y ∈ Ys(γ) ande = (ey)y∈Ys(γ)

∈ (p!E)s(γ). Then(
(p!α)γ′γ(e)

)
z

= α(z,γ′γ,y)ey = α(z,γ,y′)α(y′,γ,y)ey = α(z,γ,y′) ((p!α)γ(e))y′ = (p!α)γ′ ((p!α)γ(e))z

for all z ∈ Yr(γ′) (herey′ is an arbitrary element ofY with p(y) = r(γ) = s(γ′)). So(p!α)γ′γ =
(p!α)γ′(p!α)γ .

To show that the familyp!α indeed satisfies equation (6.7), we make the identifications of fields
p!(S∗(E)) = s∗(p!(E)) andp!(R∗(E)) = r∗(p!(E)) visible. Letγ ∈ G ande = (ey)y∈Ys(γ)

∈
(p!E)s(γ). This e is identified via (6.6) with(ey)(z,γ,y)∈p∗(G) ∈ (p!(S∗(E)))γ (usex′ = γ, y′ =
(z, γ, y), fX = s andfY = S, sofY (z, γ, y) = y). Now

(p!α)γ (ey)(z,γ,y)∈p∗(G) =
(
α(z,γ,y)ey

)
(z,γ,y)∈p∗(G)

∈ (p!(R∗(E)))γ .

The identificationp!(R∗(E)) = r∗(p!(E)) maps this to
(
α(z,γ,y)ey

)
z∈r(γ) ∈ r∗(p!(E))γ , wherey ∈

Ys(γ) is arbitrary. This shows (6.7).

Proposition 6.5.7. If E andF are p∗(G)-Banach spaces andT : E → F is a p∗(G)-equivariant
continuous field of linear maps, thenp!T : p!E → p!F is G-equivariant.

Proof. ThatT is equivariant means that

S∗(E)
S∗(T ) //

α

��

S∗(F )

β

��
R∗(E)

R∗(T ) // R∗(F )
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commutes. Sincep! is functorial, where we mean this time byp the mapp : p∗(G) → G, this implies

p! (S∗(E))
p!(S

∗(T )) //

p!α

��

p! (S∗(F ))

p!β

��
p! (R∗(E))

p!(R
∗(T )) // p! (R∗(F ))

The identification that was used to define the actionsp!α andp!β is natural by Proposition 6.5.5, so
the following square commutes

s∗(p!(E))
s∗(p!(T )) //

p!α

��

s∗(p!(F ))

p!β
��

r∗(p!(E))
r∗(p!(T )) // r∗(p!(F ))

This means thatp!(T ) is equivariant.

Proposition 6.5.8. The functorE 7→ p!E is an isometric multiplicative functor from the category of
p∗(G)-Banach spaces to the category ofG-Banach spaces.

Proof. We know that it is a well-defined isometric functor. That it is multiplicative follows from the
fact that the natural isomorphism in 6.5.5 is multiplicative.

Theorem 6.5.9.The functorp! from the category ofp∗(G)-Banach spaces to the category ofG-Banach
spaces is a multiplicative equivalence which invertsp∗.

Proof. We have to show that the natural transformationsE 7→ IE andE 7→ JE appearing in 6.5.4
arep∗(G)- andG-equivariant, respectively.

1. IE is p∗(G)-equivariant: Let E be ap∗(G)-Banach space with actionα and lety ∈ Y . Let
e = (ez)z∈Yp(y)

∈ (p∗p!E)y = (p!E)p(y). Let (y′, γ, y) ∈ p∗(G). Note thatp(y′) = r(γ) and
p(y) = s(γ). We have

(p∗p!α)(y′,γ,y) (ez)z∈Ys(γ)
= (p!α)γ (ez)z∈Ys(γ)

(6.7)
=
(
α(z′,γ,y)ey

)
z′∈Yr(γ)

.

IEy′ maps this toα(y′,γ,y)ey, which happens to beα(y′,γ,y)I
E
y (e). SoIE is equivariant.

2. JE isG-equivariant: LetE be aG-Banach space with actionα andx ∈ X. Let e ∈ Ex so that
(e)y∈Yx ∈ (p!p

∗E)x. Let γ ∈ G such thats(γ) = x. Findy′ ∈ Y such thatp(y′) = x. Then

(p!p
∗α)γ (e)y∈Yx =

(
(p∗α)(z,γ,y′) e

)
z∈Yr(γ)

= (αγe)z∈Yr(γ)
.

JEr(γ) maps this toαγe = αγJ
E
x ((e)y∈Yx), soJE is equivariant.

Proposition 6.5.10.LetZ be another locally compact Hausdorff space and letq : Z → Y be open,
continuous and surjective. Assume that there is a faithful continuous field of measures onZ overY .
Then(p◦q)! andp!◦q! both invert(p◦q)∗ = q∗◦p∗. So(p◦q)! andp!◦q! are naturally multiplicatively
isometrically isomorphic as functors from the(p ◦ q)∗(G)-Banach spaces to theG-Banach spaces.
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Proof. Note that there is a faithful continuous field of measures onZ overX: If µ is a faithful
continuous field of measures onY overX and if ν is a faithful continuous field of measures onZ
overY , thenϕ 7→ µ(ν(ϕ)), as a map fromCc(Z) to Cc(X), defines a faithful continuous field of
measures onZ overX.

6.5.3 The functorp! for Banach algebras, etc.

The functorp! is multiplicative and contractive on the morphism sets. The multiplicativity gives
us a way to define the functor also for equivariant fields of bilinear maps. We can therefore also
define aG-Banach algebrap!A for p∗(G)-Banach algebrasA andG-equivariant homomorphismsp!ϕ
for p∗(G)-equivariant homomorphisms of Banach algebras. Similarly, we can definep!E for p∗(G)-
Banach modules andp∗(G)-equivariant homomorphisms of Banach modules. Moreover, ifT is a
Y ×X Y -equivariant continuous field of linear operators betweenp∗(G)-Banach modulesEB and
FB, thenp!T is a continuous field of linear operators betweenp!Ep!B andp!Fp!B (whereB is some
p∗(G)-Banach algebra). All this culminates in the following definition:

Definition 6.5.11. Let B be ap∗(G)-Banach algebra and letE = (E<, E>) be ap∗(G)-BanachB-
pair. Thenp!E = (p!E

<, p!E
>) is aG-Banachp!B-pair. If F is anotherp∗(G)-BanachB-pair and

T ∈ Lloc
B (E,F ) is Y ×X Y -equivariant, thenp!T = (p!T

<, p!T
>) is in Lloc

p!B
(p!E, p!F ).

This defines a functor form the category ofp∗(G)-BanachB-pairs to the category ofG-Banachp!B-
pairs. It inverts the functorp∗ and respects grading automorphisms.

As a variant of Proposition 3.3.22 one proves:

Proposition 6.5.12.LetB be ap∗(G)-Banach algebra and letE andF bep∗(G)-BanachB-pairs. If
T ∈ Kloc

B (E,F ) is Y ×X Y -equivariant, thenp!T ∈ Kloc
p!B

(p!E, p!F ).

It is obvious that the functorp! is compatible with the direct sum ofp∗(G)-Banach spaces and of
G-Banach spaces and that the same is true for Banach modules and Banach pairs. Becausep! is also
compatible with the (balanced) tensor product, we obtain:

Proposition 6.5.13. Let B and C be p∗(G)-Banach algebras and letψ : B → C be a p∗(G)-
equivariant homomorphism. LetE be a rightp∗(G)-BanachB-module. Thenp!CY is isomorphic to
CX , p!C̃ = p!(C⊕Y CY ) is isomorphic tõp!C = p!C⊕X CX and, finally,p!(ψ∗(E)) = p!(E⊗B̃ C̃)
is isomorphic to(p!ψ)∗(p!E).

Moreover,p! is also compatible with the construction of trivial fields over[0, 1]; in particular, we have:

Proposition 6.5.14.LetB bep∗(G)-Banach algebra. Thenp!(B[0, 1]) is isomorphic to(p!B)[0, 1].
The isomorphism in the fibre overx ∈ X sends(βy)y∈Yx ∈ p!(B[0, 1])x to t 7→ (βy(t))y∈Yx ∈
(p!B)[0, 1]x.

6.5.4 The functorp! and KKban-cycles

This section is a translation of Section 7.2 in [LG99] into the language of Banach algebras; in partic-
ular, the method to make the operator of aKKban-cycle equivariant is borrowed from Lemma 7.1 of
that article.

Let A andB be p∗(G)-Banach algebras. LetEban,Y×XY
p∗(G) (A, B) be the class of those cycles

(E, T ) in Eban
p∗(G)(A, B) such thatT is Y ×X Y -equivariant. In an obvious manner, we define

KKban,Y×XY
p∗(G) (A, B).
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Proposition 6.5.15.Let (E, T ) ∈ Eban,Y×XY
p∗(G) (A, B). Then

p!(E, T ) := (p!E, p!T ) ∈ Eban
G (p!A, p!B) .

Proof. Let a ∈ Γ(X, p!A). Then we can find ãa ∈ Γ(Y,A) which is invariant under the action of
Y ×X Y such thatp!ã = a. Now

[a, p!T ] = [p!ã, p!T ] = p! [ã, T ] ∈ Kloc
p!B

(p!E)

where we have used the fact that the action ofa on p!E is p! of the action ofã on E. Similarly,
a(p!T

2−1) is locally compact. For the third condition that we have to check use Proposition 6.5.5.

Up to isomorphism of cycles,p! invertsp∗ as a map fromEban
G (p!A, p!B) to Eban,Y×XY

p∗(G) (A, B). And
up to isomorphism,p! commutes with the push-forward and the pullback of cycles. It also commutes
with homotopies. We therefore get:

Proposition 6.5.16.The mapp! defines an isomorphism

p! : KKban,Y×XY
p∗(G) (A, B) ∼= KKban

G (p!A, p!B) ,

invertingp∗.

Lemma 6.5.17. Let there exist a faithful continuous field of measures onY overX and letX be
σ-compact. Let(E, T ) ∈ Eban

p∗(G)(A, B). Then there is an oddY ×X Y -equivariant linear operator̃T

onE such thata(T − T̃ ) and(T − T̃ )a are locally compact for alla ∈ Γ(Y,A). In particular, (E, T )
is homotopic to(E, T̃ ). The construction is compatible with the pullback and hence with homotopies
of cycles.

Proof. Letµ be a faithful continuous field of measures onY overX. Then the locally compact Haus-
dorff groupoidY ×XY admits a left Haar system. BecauseX isσ-compact, we can find a cut-off func-
tion15 c : Y → [0,∞[ for Y ×X Y , i.e., a continuous functionc onY such that

∫
y∈Yx

c(y) dµx(y) = 1
for all x ∈ X andp−1(K) ∩ supp c is compact for all compactK ⊆ X.
Define

T̃y :=
∫
y′∈Yp(y)

c(y′) α(y,y′)Ty′α(y′,y) dµp(y)(y
′)

for all y ∈ Y , whereα denotes the action ofp∗(G) (and hence also ofY ×X Y ) onE (actually, the
formula makes sense for the right-hand side of the pairE and should be interpreted properly for the
left-hand side). This definition is a special case of 7.2.5: The groupoidY ×X Y is proper in the sense
of Definition 7.1.2. HencẽT is aY ×X Y -equivariant bounded continuous field of linear operators on
E. It is obviously odd. Just as in Lemma 7.2.6 one can show thata(T − T̃ ) and(T − T̃ )a are locally
compact for alla ∈ Γ(Y,A).

The preceding lemma implies the following proposition.

Proposition 6.5.18.The obvious homomorphism fromKKban,Y×XY
p∗(G) (A, B) to KKban

p∗(G)(A, B) is an
isomorphism.

Corollary 6.5.19. p! is a well-defined isomorphism

p! : KKban
p∗(G) (A, B) ∼= KKban

G (p!A, p!B) ,

invertingp∗.
15See [Tu99] for a proof for the case thatG is σ-compact. Cut-off functions are also discussed at the beginning of

Chapter 7 of this thesis.
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6.6 The pullback along generalised morphisms

LetG andH be locally compact Hausdorff groupoids (with open range and source maps) carrying left
Haar systems. Note that the existence of a left Haar system onH implies the existence of a left Haar
system on each graph fromG toH by 6.4.4.

6.6.1 The pullback of Banach spaces

Definition 6.6.1. Let Ω be a graph fromG to H with anchor mapsρ andσ. ThenfΩ as defined in
6.3.7 is a strict morphism fromρ∗(G) toH, which extendsσ : Ω → H(0). For allH-Banach spaces
E, define

Ω∗ (E) := ρ!f
∗
Ω (E) .

This will also be written asρ!σ
∗E. The strict homomorphismfΩ : ρ∗(G) → H is defined in 6.3.7.

If Ω is as above, thenE 7→ Ω∗E is a functor from the category ofH-Banach spaces with the
H-equivariant (bounded, contractive) continuous fields of linear maps to the category ofG-Banach
spaces with theG-equivariant (bounded, contractive) continuous fields of linear maps. It commutes
with the tensor product and has the (characterising) property thatρ∗Ω∗E is naturally isomorphic to
f∗Ω(E).

Proposition 6.6.2.LetK be another locally compact Hausdorff groupoid carrying a left Haar system.
LetΩ be a graph fromG toH andΩ′ a graph fromH toK. Then

Ω∗ ◦ (Ω′)∗ ∼=
(
Ω×H Ω′)∗

as multiplicative functors from theK-Banach spaces to theG-Banach spaces.

Proof. Let ρ andσ be the anchor maps ofΩ andρ′ andσ′ those ofΩ′. Let π1 andπ2 denote the
projections fromΩ×H(0) Ω′ to the first and second component. Asρ′ is open and surjective, so isπ1.
Write p for the (open and surjective) quotient map fromΩ×H(0) Ω′ ontoΩ′′ := Ω×H Ω′, and denote
the anchor maps ofΩ′′ by ρ′′ andσ′′. Consider the diagram

Ω×H(0) Ω′

π1

��

π2

%%KKKKKKKKKKK

Ω

ρ

��

σ

%%LLLLLLLLLLL Ω′

ρ′

��

σ′

""FF
FF

FF
FF

F

G(0) H(0) K(0)

This a diagram just for the unit spaces, but of course there is a corresponding commutative diagram
also for the groupoids themselves:

(ρ ◦ π1)∗ (G)

π1

��

f̃Ω

&&NNNNNNNNNN

ρ∗ (G)

ρ

��

fΩ

''NNNNNNNNNNNN
ρ′∗ (H)

ρ′

��

fΩ′

""FF
FF

FF
FF

F

G H K
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Here the strict morphism̃fΩ is defined as follows: It sends((ω2, ω
′
2), γ, (ω1, ω

′
1)) ∈ (ρ ◦ π1)∗(G) to

(ω′2, fΩ(ω2, γ, ω1), ω′1). It follows that

Ω∗ ◦ (Ω′)∗ = ρ! ◦
(
f∗Ω ◦ ρ′!

)
◦ f∗Ω′ ∼= ρ! ◦

(
(π1)! ◦ f̃∗Ω

)
◦ f∗Ω′ ∼= (ρ ◦ π1)! ◦

(
fΩ′ ◦ f̃Ω

)∗
.

On the other hand, also the following diagrams commute

Ω×H(0) Ω′

p

��
ρ◦π1

����
��
��
��
��
��
��
��
��
��
��

σ′◦π2

��2
22

22
22

22
22

22
22

22
22

22
2

Ω′′

ρ′′

yysssssssssss
σ′′

%%LLLLLLLLLL

G(0) K(0)

(ρ ◦ π1)∗ (G) = (ρ′′ ◦ p)∗ (G)

p

��
ρ◦π1

����
��

��
��

��
��

��
��

��
��

��
��

��

fΩ′◦f̃Ω

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<

ρ′′ (G)
ρ′′

uulllllllllllllllll
fΩ′′

))RRRRRRRRRRRRRRRRR

G K

To check thatfΩ′ ◦ f̃Ω = fΩ′′ ◦ p let ((ω2, ω
′
2), γ, (ω1, ω

′
1)) be an element of(ρ ◦ π1)∗(G). Then

fΩ′′(p((ω2, ω
′
2), γ, (ω1, ω

′
1))) is defined to be the unique elementκ ∈ K such that[ω2, ω

′
2]κ =

γ[ω1, ω
′
1]. Also fΩ(ω2, γ, ω1) is the unique elementη ∈ H such thatω2η = γω1 andfΩ′(ω′2, η, ω

′
1)

is the unique elementκ′ ∈ K such thatω′2κ
′ = ηω′1. Now

[ω2, ω
′
2]κ

′ = [ω2, ω
′
2κ

′] = [ω2, ηω
′
1] = [ω2η, ω

′
1] = [γω1, ω

′
1] = γ[ω1, ω

′
1],

soκ = κ′, which is what we wanted to verify.
So it follows that(

Ω′′)∗ = ρ′′! ◦ f∗Ω′′ ∼= ((ρ ◦ π1)! ◦ p∗) ◦
(
p! ◦

(
fΩ′ ◦ f̃Ω

)∗) ∼= (ρ ◦ π1)! ◦
(
fΩ′ ◦ f̃Ω

)∗
.

Proposition 6.6.3. Letf be a strict morphism fromG toH. ThenGraph(f)∗ ∼= f∗. In particular we
haveG∗ ∼= Id∗G .

Proof. Write Ω for Graph(f) = G(0) ×H(0) H and denote the anchor maps ofΩ by ρ andσ. Then
ρ∗(G) = Ω ×G(0) G ×G(0) Ω, andfΩ : ρ∗(G) → H sends(g, η, γ, g′, η′) to η−1f(γ)η′. If E is an
H-Banach space andg ∈ G(0), then the fibre(Ω∗E)g of Ω∗E atg is, by definition, given by{(

e(g,η)
)
(g,η)∈Ω

∣∣∣ ∀(g, η, g, g, η′) ∈ ρ∗(G) : e(g,η) ∈ (σ∗E)(g,η) ∧ e(g,η) = (g, η, g, g, η′)e(g,η′)

}
.

Analysing the action ofρ∗(G) on σ∗(E) gives (g, η, γ, g′, η′)e = (η−1f(γ)η′)e for all elements
(g, η, γ, g′, η′) ∈ ρ∗(G) and e ∈ (σ∗(E))(g′,η′) = Es(η′). We can therefore simplify the above
expressions:

(Ω∗E)g =
{(

e(g,η)
)
(g,η)∈Ω

∣∣∣ ∀η, η′ ∈ Hf(g) : e(g,η) ∈ Es(η) ∧ e(g,η) = η−1η′e(g,η′)

}
.

For allg ∈ G(0), the fibre off∗E atg is simply(f∗E)g = Ef(g). If e ∈ Ef(g), then define

Φg(e) :=
(
η−1e

)
(g,η)∈Ω

∈ (Ω∗E)g.

This defines an isometric bijection between(f∗E)g and(Ω∗E)g; the inverse sends(e(g,η))(g,η)∈Ω to
e(g,f(g)) ∈ Ef(g). It can be shown thatΦ is aG-equivariant continuous field of isometric linear maps
and that this construction is compatible with the tensor product.
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Corollary 6.6.4. Let Ω be an equivalence betweenG andH. ThenE 7→ Ω∗E is an equivalence of
the categories ofH-Banach spaces andG-Banach spaces, isometric and linear on the morphism sets
of equivariant bounded continuous fields of linear maps and compatible with the tensor product.

6.6.2 The pullback ofKKban-cycles along generalised morphisms

For the rest of this chapter, assume that all the unit spaces of the appearing groupoids areσ-compact.

Because the functorΩ∗ is compatible with the tensor product, we can define aG-Banach algebra
Ω∗A for everyH-BanachA. This defines a functor form the category ofH-Banach algebras together
with theH-equivariant homomorphisms to the category ofG-Banach algebras with theG-equivariant
homomorphisms. IfΩ is an equivalence, thenΩ∗ is an equivalence of these categories.

Similar statements are true for Banach modules and equivariant homomorphisms of Banach mod-
ules, and for Banach pairs and equivariant homomorphisms of Banach pairs. Note thatΩ∗ is not
defined for linear operators between Banach modules or between Banach pairs. The problem is that
f∗Ω makes sense for linear operators, but the resulting operator between, say,ρ∗G-Banach modules is
not necessarilyΩ×ρ Ω-invariant. Soρ! of this operator cannot be defined in general.

However, we still get a map on the level ofKK-groups because in the intermediate step, we can
makethe operator of theKKban-cycle Ω ×ρ Ω-invariant (recall that we have assumedG(0) to be
σ-compact). This was done in Lemma 6.5.17, which enables us to defineΩ∗ on the level ofKKban-
groups.

Definition 6.6.5. Let Ω be a graph fromG toH. Then Theorem 3.6.11 gives a homomorphism

f∗Ω : KKban
H (A,B) → KKban

ρ∗(G) (f∗ΩA, f
∗
ΩB) .

Corollary 6.5.19 gives us an isomorphism

ρ! : KKban
ρ∗(G) (f∗ΩA, f

∗
ΩB) ∼= KKban

G (Ω∗A, Ω∗B) .

Define
Ω∗ := ρ! ◦ f∗Ω : KKban

H (A,B) → KKban
G (Ω∗A, Ω∗B) .

A variant of the proof of Proposition 6.6.2, the corresponding statement for Banach spaces, shows:

Proposition 6.6.6.LetK be another locally compact Hausdorff groupoid carrying a left Haar system.
LetΩ be a graph fromG toH andΩ′ a graph fromH toK. Then

Ω∗ ◦ (Ω′)∗ =
(
Ω×H Ω′)∗ : KKban

K (A,B) → KKban
G
(
Ω∗Ω′∗A, Ω∗Ω′∗B

)
.

Proposition 6.6.7. Letf : G → H be a strict morphism. Then

f∗ = Graph(f)∗ : KKban
H (A,B) → KKban

G (f∗A, f∗B)

if we identifyf∗A with Graph(f)∗A and f∗B with Graph(f)∗B (which is possible according to
Proposition 6.6.3).

Proof. This is proved in Appendix D.2 on page 304.

Corollary 6.6.8. The homomorphism

G∗ : KKban
G (A, B) → KKban

G (A, B)

is the identity.
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Corollary 6.6.9. LetΩ be a Morita equivalence fromG toH. Then

Ω∗ : KKban
H (A,B) ∼= KKban

G (Ω∗A, Ω∗B)

is an isomorphism with inverse map(Ω−1)∗.

6.6.3 KKban-cycles and the linking groupoid

Let Ω be a Morita equivalence betweenG andH and letA andB beH-Banach algebras. LetL denote
the linking groupoid as defined in Section 6.2.

There are two canonicalL-Banach algebras which we can construct from theH-Banach algebraA.
Note that anL-Banach algebra is in particular a u.s.c. field of Banach algebras overL(0) = G(0)tH(0).
Now Ω∗A is aG-Banach algebra and hence a u.s.c. field of Banach algebras overG(0). We form a
family of Banach algebras overL(0) by makingΩ∗A andA into a single family overL(0). It is a
L-Banach algebra in a canonical way.

Alternatively, we can use the fact thatΩ t H = LH(0) is a Morita equivalence betweenL andH.
Hence(ΩtH)∗A is anL-Banach algebra. A straightforward calculation shows the plausible fact that
these two constructions give the sameL-Banach algebra. We are going to call itΩ∗A tA.

The pullback along the inclusionsιG of G andιH ofH as open and closed subgroupoids ofL give
backΩ∗A andA. The graphs of the inclusions are Morita equivalences such thatGraph(ιG)−1 ×L
Graph(ιH) is equivalent toΩ.

So we have isomorphisms

ι∗H : KKban
L (Ω∗A tA, Ω∗B tB) ∼= KKban

H (A, B)

and
ι∗G : KKban

L (Ω∗A tA, Ω∗B tB) ∼= KKban
G (Ω∗A, Ω∗B)

satisfyingι∗G ◦ (ι∗H)−1 = Ω∗.

6.6.4 Morita equivalence and descent

Again, let Ω be a Morita equivalence betweenG andH and letA andB be non-degenerateH-
Banach algebras. LetL denote the linking groupoid. Note that we have assumed thatG andH carry
left Haar systems; so there is an induced left Haar system onΩ and also onL. Let A(L) be an
unconditional completion ofCc(L). This completion also gives unconditional completionsA(G) of
Cc(G) andA(H) of Cc(H). Note thatG(0) andH(0) are open, closed, full and connected subsets of
L(0). From Theorem 5.3.9 we can therefore conclude:

Theorem 6.6.10.TheC0(L(0)/L)-Banach algebrasA(G, Ω∗A) andA(H, A) are Morita equivalent.

A C0(L(0)/L)-linear Morita equivalence can be obtained be taking the completions ofΓc(Ω, σ∗A)
andΓc(Ω−1, σ∗A) for the unconditional norm inherited fromCc(L).

We now come back to the other considerations of Section 5.3, in particular to Diagram (5.5). Note
that the notation we have used in this diagram is somewhat different from the notation of the present
chapter, in particular the groupoidG is now calledL. The translated version of the diagram (which is
flipped to allow it to be typeset properly) is

KKban
L (Ω∗A tA, Ω∗B tB)

ι∗H
��

jA // RKKban
(
C0

(
L(0)/L

)
; A(L, Ω∗A tA), A(L, Ω∗B tB)

)
��

KKban
H (A, B)

jA // RKKban
(
C0

(
H(0)/H

)
; A(H, A), A(H, B)

)
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There is a similar diagram for the embedding ofG into L. We now know that the left arrow is an
isomorphism, however, we still do not know whether the right arrow is an isomorphism as well (see
the discussion following Corollary 5.3.10). If it is, then the following conjecture is true:

Conjecture 6.6.11.There is a canonical isomorphism

RKKban
(
C0(H(0)/H); A(H, A), A(H, B)

)
→ RKKban

(
C0(G(0)/G); A(G, Ω∗A), A(G, Ω∗B)

)
making the following diagram commutative

KKban
H (A, B)

Ω∗

��

jA // RKKban
(
C0

(
H(0)/H

)
; A(H, A), A(H, B)

)
��

KKban
G (Ω∗A, Ω∗B)

jA // RKKban
(
C0

(
G(0)/G

)
; A(G, Ω∗A), A(G, Ω∗B)

)

6.7 Examples

6.7.1 Writing pullbacks as induction

If Ω is a graph fromG to H andB is aH-Banach algebra, then we could call theG-Banach alge-
bra Ω∗B also IndGHB. In this notation, we have defined a homomorphism fromKKban

H (A,B) to
KKban

G (IndGHA, IndGHB) for allH-Banach algebrasA andB. We have also shown thatIndGG B ∼= B
for all G-Banach algebrasB and

IndGH IndHK B ∼= IndGKB

for all K-Banach algebrasB (if K is another locally compact Hausdorff groupoid with Haar system
and we are given a graph fromH to K which we can use to define the induction fromK to H).
Additionally, we have seen that the corresponding (functoriality) rules are also true on the level of
KKban-theory. As a consequence, ifΩ is an equivalence betweenG andH, then

KKban
H (A,B) ∼= KKban

G
(
IndGHA, IndGHB

)
for all H-Banach algebrasA andB.

Moreover, ifΩ is an equivalence betweenG andH and if L denotes the linking groupoid and
A(L) is an unconditional completion ofCc(L), then this also gives unconditional completionsA(G)
andA(H) of Cc(G) andCc(H), respectively. IfB is aH-Banach algebra, thenIndGH is aG-Banach
algebra and we have shown that

A (H, B) ∼M A
(
G, IndGHB

)
.

In particular, this applies to the unconditional completionL1(L) which induces the completionsL1(G)
andL1(H) onCc(G) andCc(H):

L1 (H, B) ∼M L1
(
G, IndGHB

)
.
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6.7.2 The special case of groups and group actions

LetG be a locally compactσ-compact Hausdorff group and letH be a closed subgroup ofG. LetH be
H, regarded as a groupoid, and letG be the transformation groupoidGnG/H for the left action ofG
on the quotient spaceG/H. ThenG is an equivalence of the groupoidsG andH. If B is anH-Banach
algebra, thenB is also anH-Banach algebra (with just one fibre). TheG-Banach algebraIndGHB is
a u.s.c. field of Banach algebras overG/H. If we form the algebraΓ0(G/H, IndGHB) of sections
vanishing at infinity ofIndGHB, then this Banach algebra carries aG-action (see Definition 4.5.1)
and is canonically isomorphic toIndGH B. The construction ofIndGH B is of course much simpler as
the construction of the induction functor in the groupoid case, and some of the above results have
counterparts forIndGH B which can be proved directly. However, using the general machinery, we get
the following results:

Induction is an isomorphism

KKban
H (A,B) ∼= KKban

G
(
IndGHA, IndGHB

) ∼= RKKban
G

(
C0(G/H); IndGH A, IndGH B

)
for all H-Banach algebrasA andB. For the second isomorphism, see Theorem 4.7.20, it is given by
M (·).

If B is a non-degenerateH-Banach algebra andA(L) is an unconditional completion ofCc(L),
whereL is the linking groupoid for the equivalenceG betweenGnG/H andH, then

A (H,B) ∼M A
(
G, IndGHB

)
.

In particular we have
L1 (H,B) ∼M L1

(
G, IndGHB

)
.

Note that the right-hand side is the completion ofΓc(G×G/H, r∗G IndGHB) for the norm

‖β‖1 = sup
g∈G

∫
g′∈G

∥∥β (g′, gH)∥∥ dg′

for all β ∈ Γc(G×G/H, r∗G IndGHB); in general, this is smaller than the norm

‖β‖ =
∫
g′∈G

sup
g∈G

∥∥β (g′, gH)∥∥ dg′.

Note thatsupg∈G ‖β(g′, gH)‖ = ‖gH 7→ β(g′, gH)‖∞ is the norm ofβ(g′, ·) in IndGH B for all
g′ ∈ G. We can regardβ as a continuous map fromG to IndGH B having compact support, and the
norm ofβ given above is then the norm inL1(G, IndGH B). It is easy to see that the completion of
Γc(G×G/H, r∗G IndGHB) for the second norm will then be (isomorphic to)L1(G, IndGH B). Hence
we have a canonical homomorphism

L1
(
G, IndGH B

) ι→ L1
(
G, IndGHB

)
∼M L1 (H,B) .

Compare this to Green’s theorem16 for H-C∗-algebrasB:

IndGH B or G ∼M B or H.

In Example 8.2.7 we will show that the homomorphismι is an isomorphism inK-theory (it has dense
and hereditary image and a nilpotent kernel), so that we have in particular

K0

(
L1
(
G, IndGH B

)) ∼= K0

(
L1 (H,B)

)
for all non-degenerateH-Banach algebrasB.

16See, for example, [EKQR02], Theorem B.2.



Chapter 7

A Generalised Green-Julg Theorem for
Proper Groupoids

7.1 The theorem and its generalisation

One version of the theorem of Green-Julg is the following:

Theorem 7.1.1 (Green-Julg).LetG be a compact Hausdorff group and letB be aG-C∗-algebra.
Then

KG
0 (B) ∼= K0(B or G).

This theorem remains true if we replace the C∗-algebra algebraB or G by the Banach algebra
L1(G,B) on the right-hand side. This chapter deals with a version of this latter formulation for
proper groupoids; note that the proper groupoids which are groups (i.e., those which have trivial unit
space) are precisely the compact groups.

7.1.1 Proper groupoids

Definition 7.1.2 (Proper groupoid). A locally compact Hausdorff groupoid is calledproper if the
following map is proper:

G → G(0) × G(0), γ 7→ (r(γ), s(γ)).

Examples 7.1.3. 1. LetG be a locally compact Hausdorff group acting from the left on a locally
compact Hausdorff spaceX. Then the transformation groupoidGnX is proper if and only if
the action ofG onX is proper.

2. More generally, ifG is a locally compact Hausdorff groupoid andX is a left G-space, then
G nX is proper if and only ifX is a properG-space.

3. A locally compact Hausdorff group is proper (as a groupoid) if and only ifG is compact.

4. If the range and source maps of a locally compact Hausdorff groupoidG are equal, the groupoid
can be regarded as a bundle of groups. If such aG is proper, then all the fibres are compact
groups.

For the remainder of this chapter, letG be a locally compact proper Hausdorff groupoid with unit
spaceX and carrying a Haar systemλ. Assume moreover that there exists a cut-off function forG.
Recall from [Tu04] that there is a cut-off function forG if X/G is σ-compact:

191
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Definition 7.1.4 (Cut-off function). 1 A continuous functionc : X → [0,∞[ is calledcut-off function
for G if

1. ∀x ∈ X :
∫
Gx c(s(γ)) dλx(γ) = 1;

2. r : supp(c ◦ s) → X is proper.

The latter condition means thatsupp c ∩ GK is compact for all compact subsetsK of X.

7.1.2 Generalising the Green-Julg theorem

In [Tu99] the following version of the Green-Julg theorem is proved:23

Theorem 7.1.5 (Tu). Let G beσ-compact and letB be aG-C∗-algebra. Then there is a canonical
isomorphism

(7.1) KKG(C0(X), B) ∼= KKX/G(C0(X/G), B or G).

In order to translate this theorem into the language ofKKban we proceed as follows: We re-
place theG-C∗-algebraB by a G-Banach algebra so the left-hand side of (7.1) should then be re-
placed by4 KKban

G (C0(X), B). The crossed product ofB with G should be replaced byA(G, B),
whereA(G) is some unconditional completion ofCc(G). BecauseA(G, B) is not necessarily a lo-
cally C0(X/G)-convexC0(X/G)-Banach algebra, we have to useRKK-theory on the right-hand side
instead ofKKban

X/G . So the theorem becomes the following conjecture

KKban
G (C0(X), B) ∼= RKKban(C0(X/G); C0(X/G), A(G, B)).

7.1.3 The plan of attack and an outline of the proof

To prove this conjecture we are going to proceed as follows:

1. We define a homomorphismJBA from the left-hand side to the right-hand side.

2. We define a homomorphismMB
A in the other direction.

3. We show thatJBA ◦MB
A = Id if A(G) satisfies some (mild) regularity condition.

4. We show that alsoMB
A ◦ JBA = Id if A(G) satisfies some additional regularity condition.

Note that already the split surjectivity is an interesting result as it implies the split surjectivity of the
Bost-map with proper coefficients for many unconditional completions, as shown in Chapter 8.

To get an idea of the construction of the two homomorphisms let us take a look at the correspond-
ing constructions for C∗-algebras that one can use for a proof of Theorem 7.1.5.

1Compare [Tu99], Définition 6.7.
2Actually, Proposition 6.25 of [Tu99] is more general than cited here: It allows C∗-algebras in the first variable that are

of a more general form. For now, we confine ourselves to “trivial” coefficients in the first variable.
3This theorem also generalises Theorem 5.4 in [KS03].
4Actually, it shouldbe replaced byKKban

G (CX , B) whereCX denotes the constant field overX with fibre C. We will
sometimes identifyC0(X) andCX to obtain statements of theorems which look familiar.
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The construction of the homomorphismJBr in the C∗-context, I

How is the homomorphismJBr from KKG(C0(X), B) to KKX/G(C0(X/G), B or G) defined? The
descent is at least a homomorphism

jr : KKG(C0(X), B) → KKX/G(C*
r(G), B or G).

To define a homomorphism fromKKX/G(C*
r(G), B or G) to KKX/G(C0(X/G), B or G) which we

can compose withjr, we define aC0(X/G)-linear homomorphism of C∗-algebras fromC0(X/G) to
C*
r(G). To this end we introduce the following simple notion (already in the generality we are going

to need later in this chapter).

Definition 7.1.6 (Cut-off pair). A cut-off pairfor G is a pair(c<, c>) such that

1. c< ∈ C(X)≥0 with r : supp(c< ◦ s) → X proper;

2. c> ∈ C(X)≥0 with r : supp(c> ◦ s) → X proper;

3. ∀x ∈ X :
∫
Gx c

<(s(γ))c>(s(γ)) dλx(γ) = 1.

In particular,x 7→ c<(x)c>(x) is a cut-off function. Conversely, ifc is a cut-off function forG and
p, p′ ∈]1,∞[ such that1p + 1

p′ = 1, then(c1/p
′
, c1/p) is a cut-off pair. We can extend this to the case

p = 1 as follows:

Proposition 7.1.7. If G is such thatX/G is σ-compact andc is a cut-off function forG, then there
exists a functiond ∈ C(X) with ‖d‖∞ = 1 such that(d, c) is a cut-off pair.

Proof. Let (Kn)n∈N be an exhausting sequence of compacts inX/G such thatKn is contained in the
interior ofKn+1 for all n ∈ N. DefineLn := supp c ∩ π−1(Kn) for all n ∈ N (whereπ denotes
the canonical surjection fromX to X/G). Then theLn are all compact. Recursively find functions
f1, f2, f3 . . . such thatfn ∈ Cc(π−1(Kn)), 0 ≤ fn ≤ 1 andfn|Ln ≡ 1 andfn ⊆ fn+1 for all n ∈ N.
Definef :=

⋃
n∈N fn. Then this is a well-defined continuous function onX such that0 ≤ f ≤ 1. It

satisfiesf |supp c ≡ 1. Moreover, it satisfies the support condition: LetK ⊆ X/G be compact. Find an
n ∈ N such thatK ⊆ Kn. Then the closed setπ−1(K) is contained inπ−1(Kn), soπ−1(K)∩supp f
is contained inπ−1(Kn) ∩ supp f = π−1(Kn) ∩ supp fn = supp fn. Now supp fn is a compact
subset ofπ−1(Kn), soπ−1(K) ∩ supp f is compact as a closed subset of a compact subset.

On the level of functions with compact support we can define a homomorphism fromCc(X/G) to
Cc(G) quite generally; it is a delicate question for which completions ofCc(G) this homomorphism
can be extended continuously toC0(X/G).

Definition and Proposition 7.1.8. Let (c<, c>) be a cut-off pair forG. For allχ ∈ Cc(X/G), define

(ϕ(χ))(γ) := c>(r(γ))χ(π(γ))c<(s(γ))

for all γ ∈ G. Thenϕ(χ) ∈ Cc(G) andϕ is a continuous homomorphism of algebras fromCc(X/G)
to Cc(G) (with the convolution product).

Proof. Let π : X → X/G denote the quotient map and letK ⊆ X/G be the support ofχ. Then
K1 := supp c< ∩ π−1(K) is compact inX and so isK2 := supp c> ∩ π−1(K). So{γ ∈ G : s(γ) ∈
K1, r(γ) ∈ K2} is compact and contains the support ofϕ(χ). Soϕ(χ) ∈ Cc(G).
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Let χ1, χ2 ∈ Cc(G). Then for allγ ∈ G:

(ϕ(χ1) ∗ ϕ(χ2)) (γ)

=
∫
Gr(γ)

c>(r(γ′))χ1(π(γ′)) c<(s(γ′)) c>(r(γ′−1γ))χ2(π(γ′−1γ)) c<(s(γ′−1γ)) dλr(γ)(γ′)

= c>(r(γ)) (χ1χ2)(π(γ)) c>(s(γ))
∫
Gr(γ)

c<(s(γ′)) c>(s(γ′)) dλr(γ)(γ′)︸ ︷︷ ︸
=1

= (ϕ(χ1χ2))(γ).

In the C∗-algebra case the interesting cut-off pair is of course(c
1
2 , c

1
2 ), wherec is a cut-off

function for G. In this case,5 the homomorphismϕ : Cc(X/G) → Cc(G) preserves the involution
and can be extended to a∗-homomorphism fromC0(X/G) to C*

r(G). The pullback along this∗-ho-
momorphism gives us the desired homomorphismJBr of groups fromKKX/G(C*

r(G), B or G) to
KKX/G(C0(X/G), B or G).

Can the same homomorphismϕ : Cc(X/G) → Cc(G) be extended to a homomorphism from
C0(X/G) toA(G) if A(G) is an unconditional completion ofCc(G)? This would be needed to accom-
plish a completely analogous construction for Banach algebras because the Banach algebra descent
for the unconditional completionA(G) is a homomorphism

JBA : KKban
G (C0(X), B) → RKKban(C0(X/G); A(G), A(G, B)).

Apparently,ϕ is not bounded even for rather elementary unconditional completions likeL1(G) and
rather simple cut-off pairs. The construction works for C∗-algebras because the choice of the cut-off
pair is compatible with the norm onC*

r(G) which is defined through the action ofCc(G) on L2(G).
We have to find another way to define the homomorphism for our generalised Green-Julg theorem if
we do not want to deal with the technical problems that come with unbounded homomorphisms or
with the compression of a Banach algebra by an unbounded projection.

The construction of the homomorphism in the C∗-context, II

A possible solution is to define the homomorphismJBA from the groupKKban
G (C0(X), B) to the group

RKKban(C0(X/G); C0(X/G), A(G, B)) directly (on the level of cycles). We sketch the analogous
construction for C∗-algebras:6

Let (E, T ) ∈ EG(C0(X), B). Without loss of generality one can assume thatT is G-equivariant.
We are going to define a cycle inE(C0(X/G); C0(X/G), B or G) as follows.

The underlying module is a completion ofΓc(X,E) which we obtain by embeddingΓc(X,E)
into E or G: if e ∈ Γc(X,E), thenι(e) ∈ Γc(G, r∗E) is defined byι(e)(γ) = c1/2(r(γ))γe(s(γ))
for all γ ∈ G (wherec is some cut-off function forG). It is easy to show that the image ofι is
a subspace ofΓc(G, r∗E) that is invariant under the action ofΓc(G, r∗B); hence we can define a
HilbertB or G-module by taking the closurẽE in E or G. Let us see what the inner product is. The
Bor G-valued inner product onE or G is given forξ1, ξ2 ∈ Γc(G, r∗E) as follows: It is the element

5See Proposition 6.23 in [Tu99] for a proof.
6The construction is inspired by the wayEY is embedded inC*(Γ, C0(Y )) on page 178 of [KS03] and by the way

Theorem 5.4 of this article is proved.
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of Γc(G, r∗B) defined asγ 7→
∫
Gr(γ) γ′〈ξ1(γ′−1), ξ2(γ′−1γ)〉dλr(γ)(γ′). We therefore have

〈
ι(e1), ι(e2)

〉
(γ) =

∫
Gr(γ)

γ′
〈
c1/2(s(γ′)) γ′−1e1(r(γ′)), c1/2(s(γ′)) γ′−1γe2(s(γ))

〉
dλr(γ)(γ′)

=
∫
Gr(γ)

c1/2(s(γ′)) c1/2(s(γ′))
〈
e1(r(γ)), γe2(s(γ))

〉
dλr(γ)(γ′) = 〈e1(r(γ)), γe2(s(γ))〉

for all e1, e2 ∈ Γc(X,E) ⊆ Ẽ andγ ∈ G. Note that this does not depend on the particular choice of
the cut-off functionc. Similarly, the action ofΓc(G, r∗B) inherited byΓc(X,E) is independent ofc,
so the same applies to theB or G-action onẼ. Because the norm ofι(e), wheree ∈ Γc(X,E), just
depends on the inner product, it follows that also the norm onẼ does not depend onc.

Moreover, it is easy to see thatG-equivariant operators such asT give canonical operator̃T on
Ẽ with ‖T̃‖ ≤ ‖T‖. One now shows that(Ẽ, T̃ ) ∈ E(C0(X/G); C0(X/G), B or G) and that this
defines a homomorphism on the level ofKK-theory. It is the same as the homomorphismJBr that we
have constructed above, but the alternative construction can be imitated easier in the Banach algebraic
context (see below).

The construction of the inverse homomorphism in the C∗-context

The standard procedure to show that(E, T ) 7→ (Ẽ, T̃ ) induces an isomorphism inKK-theory is
the following: The first observation is that this construction is compatible with the sum of Kasparov
cycles. Secondly, ifE = L2(G, B), then one shows that̃E ∼= Bor G. One can then reduce to the case
thatE is of the standard form

⊕∞
n=1 L2(G, B) (and thereforẽE ∼=

⊕∞
n=1B or G) using a suitable

form of the stabilisation theorem.
This procedure is not viable in the Banach algebra context, but there is another way in the C∗-

algebra context to show that(E, T ) 7→ (Ẽ, T̃ ) induces an isomorphism, namely by construction of an
inverse homomorphismMB

r : The spaceL2(G, B) is, by definition, a (right) HilbertB-module. It also
carries an action ofC0(X) and an action ofG. In other words, it is aG-HilbertB-module. On the other
hand, it also carries a leftB or G-action (by definition ofB or G) making it a bimodule. The idea is
now very simple: If(E , T ) is a cycle inE(C0(X/G); C0(X/G), B or G), thenE ⊗BorG L2(G, B) is
aG-HilbertB-module, whereB andG are acting only on the second factor, and(

E ⊗BorG L2(G, B), T ⊗ 1
)
∈ EG(C0(X); B)

with the extra feature thatT ⊗ 1 is G-equivariant. This surely defines a homomorphism on the level
of KK-theory, we call itMB

r .
To check that the two homomorphisms are really inverses of each other, one checks that for each

G-Hilbert B-moduleE we haveẼ ⊗BorG L2(G, B) ∼= E, which boils down to the isomorphism
(E or G) ⊗BorG L2(G, B) ∼= L2(G, E) and is quite straightforward to show.7 The construction for
linear operators is compatible with this isomorphism.

On the other hand, ifE is aC0(X/G)-HilbertBorG-module, then ˜E ⊗BorG L2(G, B) ∼= E⊗BorG
˜L2(G, B) with ˜L2(G, B) ∼= B or G. Also these isomorphisms are compatible with the constructions

for the linear operators.

7Compare the proof of Proposition 6.24 of [Tu99].
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The theorem in the Banach algebra context

The homomorphismJBA from KKban
G(C0(X), B) to RKKban(C0(X/G); C0(X/G), A(G, B)) is

defined similarly to the homomorphismJBr in the C∗-case (using our second construction). This time,
we embedΓc(X,E) intoA(G, E) (again using a cut-off pairc = (c<, c>)). Unfortunately, the norm
that we get onΓc(X,E) now depends not only on the norm ofA(G), but also on the cut-off pairc. In
Section 7.2 we will show that this is not a serious problem because the homomorphismJBA turns out
to be independent of the choice ofc.
The inverse homomorphismMB

A can be constructed similarly as in the C∗-algebra case, but we have
to be careful to find a suitable substitute forL2(G, B): If A(G) isL1(G)∩L1(G)∗, the version ofL1(G)
with the symmetrized norm, thenA(G) acts on the left onL2(G). For more general unconditional
completionsA(G) (already for the non-symmetrizedL1(G)), this might not be the case. The solution
that I suggest in Section 7.3 is the following: ReplaceL2(G) by a general monotone completionH(G)
of Cc(G) (defined as in the Section 3.2) on whichA(G) acts on the left (and insert in the theorem the
extra hypothesis that such a completion should exist). More precisely, being in the world of Banach
pairs, we actually need a pair of completions. Examples are(L2(G), L2(G)), but also(Lp

′
(G), Lp(G))

for p, p′ ∈]1,∞[ with 1
p + 1

p′ = 1. Another example is(C0(G), L1(G)) on whichL1(G) acts. Each

such pairH(G), or rather the version8 H(G, B) with coefficients inB, gives a homomorphism from
RKKban(C0(X/G); C0(X/G), A(G, B)) to KKban

G (C0(X), B). This is shown in Section 7.5, where
it is also proved that all possible choices ofH(G) give the same homomorphism, which we callMB

A .
To show that the two homomorphisms are inverses of each other we can no longer use that they

are inverses already on the level of cycles (up to isomorphism) as in the C∗-algebra case. However,
we can construct homotopies using our sufficient condition for homotopy of cycles (resulting in a
large number of technical considerations, see Sections 7.6 and 7.8). To make this possible, we have
to make sure that the monotone completionH(G) and the cut-off pairc are compatible (for such a
cut-off pair we coin the term “H(G)-cut-off pair”, see Section 7.7). The theorem we can prove using
this technique reads as follows:

Theorem 7.1.9 (Generalised Green-Julg Theorem).LetA(G) be an unconditional completion of
Cc(G) such that there exists an equivariant locally convex pairH(G) = (H<(G), H>(G)) of mono-
tone completions ofCc(G) such thatA(G) acts onH(G) and such that there exists anH(G)-cut-off
pair for G. Then there is an isomorphism

JBA : KKban
G (C0(X), B) ∼= RKKban(C0(X/G); C0(X/G), A(G, B)),

natural in the non-degenerateG-Banach algebraB.

We will show a partial result which is interesting because it has slightly less restrictive assumptions:

Theorem 7.1.10.LetA(G) be an unconditional completion ofCc(G) such that there exists an equiv-
ariant locally convex pairH(G) = (H<(G), H>(G)) of monotone completions ofCc(G) such that
A(G) acts onH(G). Let there exists a cut-off function forG. Then the natural homomorphism

JBA : KKban
G (C0(X), B) ∼= RKKban(C0(X/G); C0(X/G), A(G, B))

is split surjective (with natural splitMB
A ) for all non-degenerate Banach algebrasB.

We will also show that the unconditional completionL1(G) and its symmetrised versionL1(G) ∩
L1(G)∗ satisfy the hypotheses of both theorems ifX/G is σ-compact.

8Note thatL2(G, B) for aG-C∗-algebra has two different meanings in our context: It can denote a Hilbert module and
also a completion ofΓc(G, r∗B) for some unconditional norm. There is a subtle difference between these spaces, and we
always mean the second space.
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7.2 The homomorphismJBA

7.2.1 Making operatorsG-equivariant

Before we start with the construction, we want to proof the following fact:

Proposition 7.2.1. If B is aG-Banach algebra (withG being proper and allowing a cut-off function),
then the operators and homotopies in the definition ofKKban

G (C0(X), B) can be assumed to beG-
equivariant.

The basic idea here, as in the proof of the corresponding result for C∗-algebras, is to use the cut-off
function and the integration with respect to the Haar system to make given operators equivariant. On a
technical level, we do this by integrating fields of operators with compact support; note that we define
this integration pointwise:

Definition 7.2.2. LetE andF beG-Banach spaces. IfT ∈ L(r∗E, r∗F ) has compact support, then
we define, for allx ∈ X,∫

Gx

Tγ dλx(γ) : Ex → Fx, ex 7→
∫
Gx

Tγex dλx(γ).

This is a continuous field of operators fromE to F of compact support. The same definition makes
sense ifT has proper support, i.e., if the support of(χ ◦ r) · T is compact for allχ ∈ Cc(X).

Definition and Lemma 7.2.3. LetB be aG-Banach algebra and letE andF beG-BanachB-pairs.
Let T = (T<, T>) ∈ Lr∗B (r∗E, r∗F ) have compact (proper) support. Then∫

Gx

Tγ dλx(γ) :=
(∫

Gx

T<γ dλx(γ),
∫
Gx

T>γ dλx(γ)
)

is a continuous field of linear operators fromE to F . It is compact ifT ∈ Kr∗B (r∗E, r∗F ).

Proof. We just proof the statement about the compactness. Assume thatT is compact. First consider

the case thatT =
(
χ(γ)

∣∣f>r(γ)〉〈e<r(γ)∣∣)γ∈G with e< ∈ Γ(X,E<), f> ∈ Γ(X,F>) andχ ∈ Cc(G).

Then ∫
Gx

Tγ dλx(γ) =
∫
Gx

χ(γ)
∣∣f>r(γ)〉〈e<r(γ)∣∣ dλx(γ) =

∫
Gx

χ(γ) dλx(γ) ·
∣∣f>x 〉〈e<x ∣∣

for all x ∈ X. So (
∫
Gx Tγ dλx(γ))x∈X is compact. The linear span of the operators which are of

the same form asT is dense in the compact operators with compact support in the inductive limit
topology. As the integral is continuous, we are done.

If the operatorT in the preceding lemma is just of proper support and just locally compact, then
the integral yields a locally compact operator.

Now we use these definitions to make operators equivariant.We fix a cut-off functionc for G.

Definition 7.2.4. LetE andF beG-Banach spaces. IfT ∈ L(E,F ) is arbitrary, then

T Gx =
∫
Gx

c(s(γ)) γTs(γ) dλx(γ), x ∈ X,

is a G-equivariant continuous field of operators fromE to F such that
∥∥T G∥∥ ≤ ‖T‖. The map

T 7→ T G is C-linear. IfT is alreadyG-equivariant, thenT G = T .
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Definition and Lemma 7.2.5. LetB be aG-Banach algebra and letE andF beG-BanachB-pairs.
Let T = (T<, T>) ∈ LB(E,F ). ThenT G :=

(
(T<)G , (T>)G

)
is an element ofLB(E,F ). The

construction commutes with the pushout: IfB′ is anotherG-Banach algebra andϕ : B → B′ is a
G-equivariant homomorphism, then

ϕ∗
(
T G
)

= (ϕ∗(T ))G ∈ LGB′ (ϕ∗(E), ϕ∗(F )) .

Proof. We check onlyϕ∗
(
T G
)

= (ϕ∗(T ))G and only for the right-hand side: Letx ∈ X, e>x ∈ E>x
andb′x ∈ B̃′

x. Then

ϕ∗
(
T>,G

)
x
(e>x ⊗ b′x) =

(
(T>,G)x(e>x )

)
⊗ b′x =

(∫
Gx

c(s(γ))γT>s(γ)e
>
x dλx(γ)

)
⊗ b′x

=
∫
Gx

c(s(γ))γϕ∗(T>)s(γ)
(
e>x ⊗ b′x

)
dλx(γ) =

(
ϕ∗(T>)

)G
x

(
e>x ⊗ b′x

)
.

The following two lemmas show Proposition 7.2.1.

Lemma 7.2.6.Let (E, T ) ∈ Eban
G (C0(X), B). Then

(
E, T G

)
is in Eban

G (C0(X), B) and homotopic
to (E, T ).

Proof. For allx ∈ X, we have

(
T>x − (T>)Gx

)
(e>x ) =

∫
Gx

c(s(γ))
(
T>r(γ) − γT>s(γ)

)
(e>x ) dλx(γ).

The same is true for the left-hand side. The familyγ 7→ c(s(γ))(Tr(γ) − (γTs(γ)) is locally compact
and of proper support, so the integral is locally compact. SoT andT G differ by a locally compact
operator. By Lemma 3.5.11,(E, T G) is aKKban-cycle and homotopic to(E, T ).

Lemma 7.2.7. If (E0, T0) and (E1, T1) are homotopic inEban
G (C0(X), B) and if T0 and T1 are

equivariant, then there is an equivariant homotopy between them.

Proof. Let (E, T ) ∈ Eban
G (C0(X), B[0, 1]) be a homotopy from(E0, T0) to (E1, T1). Then

(Et, Tt) ∼= (evt,∗(E, T )) = (evt,∗(E, T ))G 7.2.5= evt,∗
(
E, T G

)
for both,t = 0 andt = 1. So(E, T G) is aG-equivariant homotopy from(E0, T0) to (E1, T1).

7.2.2 The algebraic construction ofJBA on the level of sections with compact support

Definition and Lemma 7.2.8.LetB be aG-Banach algebra and letE be aG-BanachB-pair. Define
the operations

(e>β)(x) :=
∫
Gx

γe > (s(γ))γβ(γ−1) dλx(γ)

and

(βe<)(x) :=
∫
Gx

β(γ)γe<(s(γ)) dλx(γ),
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wherex ∈ X, and theΓc(G, r∗B)-valued bracket〈〈
e<, e>

〉〉
(γ) :=

〈
e<(r(γ)), γe>(s(γ))

〉
Er(γ)

,

whereγ ∈ G, for all e< ∈ Γc(X,E<), e> ∈ Γc(X,E>) andβ ∈ Γc (G, r∗B).
This turnsΓc(X,E>) into a rightΓc (G, r∗B)-module andΓc(X,E<) a leftΓc (G, r∗B)-module.

These module actions are separately continuous, and non-degenerate for the inductive limit topologies
if E is non-degenerate. The bracket isC-bilinear andΓc (G, r∗B)-linear on the left and on the right.
Moreover, it is separately continuous for the inductive limit topologies.

Moreover, there are canonical actions ofC(X/G) on the modulesΓc(X,E<) and Γc(X,E>)
given by

(χe>)(x) := χ(π(x))e>(x)

for all χ ∈ C (X/G), e> ∈ Γc(X,E>) andx ∈ X (and analogously for the left-hand side). The
module actions and the bracket are compatible with these actions.

Proof. One can check by direct computation that the above formula give module actions; that these
module actions are separately continuous and non-degenerate can be shown by proving that the map
(e>, β) 7→

[
γ 7→ γe>(s(γ))γβ(γ−1)

]
is a separately continuous and non-degenerate bilinear map

(and similarly for the left-hand side). We show now, as an example, that the bracket isΓc (G, r∗B)-
linear on the right. Let thereforee< ∈ Γc(X,E<), e> ∈ Γc(X,E>) andβ ∈ Γc (G, r∗B). Then for
all γ ∈ G:〈〈

e<, (e>β)
〉〉

(γ) =
〈
e<(r(γ)), γ

[(
e>β

)
(s(γ))

]〉
=

〈
e<(r(γ)), γ

∫
Gs(γ)

γ′e>(s(γ′))γ′β(γ′−1) dλs(γ)(γ′)
〉

=
〈
e<(r(γ)),

∫
Gs(γ)

(γγ′)e>(s(γ′))(γγ′)β(γ′−1) dλs(γ)(γ′)
〉

=
∫
Gs(γ)

〈
e<(r(γ)), (γγ′)e>(s(γ′))

〉
(γγ′)β(γ′−1) dλs(γ)(γ′)

=
∫
Gr(γ)

〈
e<(r(γ)), γ′e>(s(γ′))

〉
γ′β(γ′−1γ) dλr(γ)(γ′)

=
(〈〈
e<, e>

〉〉
∗ β

)
(γ).

Definition 7.2.9. LetE andF beG-BanachB-pairs and letT be aG-equivariant continuous field of
operators fromE to F . For alle> ∈ Γc(X,E>), define

(T>e>)(x) := T>x e
>(x)

for all x ∈ X. Thene> 7→ T>e> is C-linear,C (X/G)-linear,Γc (G, r∗B)-linear on the right and
continuous for the inductive limit topology. The same formula defines an operatorf< 7→ T<f<

on the left-hand side. The pair of operators(f< 7→ T<f<, e> 7→ T>e>) is formally adjoint with
respect to the brackets on(Γc(X,E<), Γc(X,E>)) and(Γc(X,F<), Γc(X,F>)):〈〈

f<T<, e>
〉〉

=
〈〈
f<, T>e>

〉〉
.
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Proof. We proof rightΓc (G, r∗B)-linearity of e> 7→ T>e>. Let e> ∈ Γc(X,E>) and β ∈
Γc (G, r∗B). Letx ∈ X. Then

(T>(e>β))(x) = T>x (e>β(x)) = T>x

(∫
Gx

γe>(s(γ))γβ(γ−1) dλx(γ)
)

=
∫
Gx

T>r(γ)
(
γe>(s(γ))

)
γβ(γ−1) dλx(γ)

=
∫
Gx

γT>s(γ)
(
e>(s(γ))

)
γβ(γ−1) dλx(γ) = ((T>e>)β)(x).

Note that we made use of theG-equivariance ofT>.

Definition 7.2.10. Let E andF be G-BanachB-pairs, f> ∈ Γc(X,F>) and e< ∈ Γc(X,E<).
Define ∣∣f>〉〉〈〈e<∣∣> : Γc(X,E>) → Γc(X,F>), e> 7→ f>

〈〈
e<, e>

〉〉
and ∣∣f>〉〉〈〈e<∣∣< : Γc(X,F<) → Γc(X,E<), f< 7→

〈〈
f<, f>

〉〉
e<.

Definition and Lemma 7.2.11. Let E andF be G-BanachB-pairs,f> ∈ Γc(X,F>) ande< ∈
Γc(X,E<). Then for alle> ∈ Γc(X,E>), f< ∈ Γc(X,F<) andx ∈ X, we have(∣∣f>〉〉〈〈e<∣∣>(e>)

)
(x) =

∫
Gx

∣∣γf>(s(γ))
〉〈
γe<(s(γ))

∣∣>(e>(x)) dλx(γ)

and (∣∣f>〉〉〈〈e<∣∣<(f<)
)

(x) =
∫
Gx

∣∣γf>(s(γ))
〉〈
γe<(s(γ))

∣∣<(f<(x)) dλx(γ).

So we define for allx ∈ X:∣∣f>〉〉〈〈e<∣∣
x

:=
∫
Gx

∣∣γf>(s(γ))
〉〈
γe<(s(γ))

∣∣ dλx(γ) ∈ LBx (Ex, Fx) .

Then(
∣∣f>〉〉〈〈e<∣∣

x
)x∈X is aG-equivariant element ofLB(E,F ). By 7.2.3 it is locally compact.

Proof. On the right-hand side we have(∣∣f>〉〈e<∣∣>(e>)
)

(x) =
(
f>
〈
e<, e>

〉)
(x) =

∫
Gx

γf>(s(γ)) γ
(〈
e<, e>

〉
(γ−1)

)
dλx(γ)

=
∫
Gx

γf>(s(γ)) γ
〈
e<(r(γ−1)), γ−1e>(s(γ−1))

〉
dλx(γ)

=
∫
Gx

γf>(s(γ))
〈
γe<(s(γ)), e>(r(γ))

〉
dλx(γ)

=
∫
Gx

∣∣γf>(s(γ))
〉〈
γe<(s(γ))

∣∣>e>(x) dλx(γ).

The calculation for the left-hand side is similar.

Note that we have just defined two different objects which carry the name
∣∣f>〉〉〈〈e<∣∣: One is the

pair of operators(
∣∣f>〉〉〈〈e<∣∣<, ∣∣f>〉〉〈〈e<∣∣>), the other is the field of operators(

∣∣f>〉〉〈〈e<∣∣
x
)x∈X .

Now 7.2.11 implies in particular that this convention does not lead to much ambiguity. It also gives
us a source of locally compact fields of operators fromE to F . The following lemma says that this
source is rather rich.
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Lemma 7.2.12.LetE andF beG-BanachB-pairs and letT ∈ LB(E,F ) be locally compact and
G-equivariant. Then for allε > 0 and all compact subsetsK ⊆ X/G there existsn ∈ N, and
f>1 , . . . , f

>
n ∈ Γc(X,F>), e<1 , . . . , e

<
n ∈ Γc(X,E<) such that for allx ∈ π−1(K):∥∥∥∥∥Tx −

n∑
i=1

∣∣f>i 〉〉〈〈e<i ∣∣x
∥∥∥∥∥

L(Ex,Fx)

≤ ε.

Proof. Let c be a cut-off function forG. Sinceπ : X → X/G is open, the setK is the image under
π of a compact subset ofX. In other words,π−1(K) is the saturation of some compact subset ofX.
Hence the setL := π−1(K) ∩ supp c is compact.

SinceT is locally compact, we can findn ∈ N, f>1 , . . . , f
>
n ∈ Γc(X,F>), e<1 , . . . , e

<
n ∈

Γc(X,E<) such that ∥∥∥∥∥Tl −
n∑
i=1

∣∣f>i (l)
〉〈
e<i (l)

∣∣∥∥∥∥∥ ≤ ε

for all l ∈ L. Now letx ∈ π−1(K). Then∥∥∥∥∥Tx −
∫
Gx

c(s(γ))
n∑
i=1

∣∣γf>i (s(γ))
〉〈
γe<i (s(γ))

∣∣ dλx(γ)∥∥∥∥∥
=

∥∥∥∥∥
∫
Gx

c(s(γ))

[
γTs(γ) −

n∑
i=1

∣∣γf>i (s(γ))
〉〈
γe<i (s(γ))

∣∣] dλx(γ)

∥∥∥∥∥
≤

∫
Gx

c(s(γ))

∥∥∥∥∥γTs(γ) −
n∑
i=1

∣∣γf>i (s(γ))
〉〈
γe<i (s(γ))

∣∣∥∥∥∥∥ dλx(γ)

≤
∫
Gx

c(s(γ))ε dλx(γ) = ε.

Note that for alli ∈ {1, . . . , n} and allx ∈ X we have∫
Gx

c(s(γ))
∣∣γf>i (s(γ))

〉〈
γe<i (s(γ))

∣∣ dλx(γ)
=

∫
Gx

∣∣γ(c1/2f>i )(s(γ))
〉〈
γ(c1/2e<i )(s(γ))

∣∣ dλx(γ) =
∣∣c1/2f>i 〉〉〈〈c1/2e<i ∣∣x,

so ∥∥∥∥∥Tx −
n∑
i=1

∣∣c1/2f>i 〉〉〈〈c1/2e<i ∣∣x
∥∥∥∥∥ ≤ ε

for all x ∈ π−1(K).

Proposition 7.2.13.LetE andF beG-BanachB-pairs. Then the map

Γc(X,F>)× Γc(X,E<) → LB(E,F ), (f>, e<) 7→
(∣∣f>〉〉〈〈e<∣∣

x

)
x∈X

is bilinear and separately continuous for the inductive limit topologies onΓc(X,F>) andΓc(X,E<)
and the norm topology onLB(E,F ).
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Proof. We show continuity in the second component: Letf> ∈ Γc(X,F>) be fixed. DefineC :=
supx∈X

∫
γ∈Gx ‖f>(s(γ))‖ dλx(γ). Then for alle< ∈ Γc(X,E<):∥∥∥∣∣f>〉〉〈〈e<∣∣x∥∥∥ ≤

∫
Gx

∥∥γf>(s(γ))
∥∥ ∥∥γe<(s(γ))

∥∥ dλx(γ) ≤ C
∥∥e<∥∥∞

for all x ∈ X. Soe< 7→
∣∣f>〉〉〈〈e<∣∣ is continuous even onΓ0(X,E<) with norm≤ C.

As a consequence, we obtain the following version of Lemma 7.2.12 which we are going to need
later on:

Corollary 7.2.14. Let E and F be non-degenerateG-BanachB-pairs and letT ∈ LB(E,F ) be
locally compact andG-equivariant. Then for allε > 0 and all compact subsetsK ⊆ X/G, there
existsn ∈ N and f>1 , . . . , f

>
n ∈ Γc(X,F>), e<1 , . . . , e

<
n ∈ Γc(X,E<), β1, . . . , βn ∈ Γc(G, r∗B)

such that for allx ∈ π−1(K):∥∥∥∥∥Tx −
n∑
i=1

∣∣f>i · βi
〉〉〈〈

e<i
∣∣
x

∥∥∥∥∥
L(Ex,Fx)

≤ ε.

7.2.3 The analytic part of the construction ofJBA

In the C∗-world, the right moduleΓc(G, r∗B)-action and the inner product onΓc(X,E) is sufficient
to define the structureB or G-Hilbert module ifE is a HilbertB-module. There can only be one
norm onΓc(X,E) which completes to a Hilbert module and the bracket actually gives such a norm.

In the Banach-world, the situation is more complicated. LetB be aG-Banach algebra and letE
andF beG-BanachB-pairs.LetA(G) be an unconditional completion ofCc(G). As sketched in the
introduction to this chapter, every cut-off pairc will give an embedding ofΓc(X,E) intoA(G, E) and
the completion will be aC0(X/G)-BanachA(G, B)-pair with the extended versions of the operations
defined above. This construction turns out not to be flexible enough for our purposes, and I propose
a simple generalisation: Because the norm onA(G, E) comes from an unconditional completion of
Cc(G), the inherited norm onΓc(X,E) comes from a monotone completion ofCc(X). This monotone
completion is compatible with the norm ofA(G) in a sense that we will now make into a definition.

Compatible pairs of monotone completions ofCc(X)

Definition 7.2.15 (Compatible pair of monotone completions ofCc(X)). LetD<(X) andD>(X)
be monotone completions9 of Cc(X) . Then the pairD(X) := (D<(X), D>(X)) is calledcompati-
ble withA(G) if

1. ∀χ< ∈ Cc(X), β ∈ Cc(G) : ‖βχ<‖D< ≤ ‖β‖A ‖χ<‖D< ;

2. ∀χ> ∈ Cc(X), β ∈ Cc(G) : ‖χ>β‖D> ≤ ‖χ>‖D> ‖β‖A;

3. ∀χ< ∈ Cc(X), χ> ∈ Cc(X) :
∥∥〈〈χ<, χ>〉〉∥∥A ≤ ‖χ<‖D< ‖χ>‖D> .

With the extended bilinear maps,D(X) is a BanachA(G)-pair.

Note that the action ofC0(X/G) on Cc(X) also gives a continuous non-degenerate action of
C0(X/G) onD<(X) andD>(X) making it aC0(X/G)-BanachA(G)-pair.

9Monotone completions are defined in Definition 3.2.1.
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Definition 7.2.16 (D(X,E)). Let D(X) be a pair of monotone completions ofCc(X), compatible
withA(G), and letE = (E<, E>) be aG-BanachB-pair. OnΓc(X,E<) define the norm‖ξ<‖D< :=
‖ x 7→ ‖ξ<(x)‖ ‖D< as in Definition 3.2.4 and define a semi-norm‖·‖D> on Γc(X,E>) similarly.
Then the actions ofΓc(G, r∗B) onΓc(X,E<) and onΓc(X,E>) and the bracket satisfy∥∥βξ<∥∥D< ≤ ‖β‖A

∥∥ξ<∥∥D< ,
∥∥ξ>β∥∥D> ≤

∥∥ξ>∥∥D> ‖β‖A ,
∥∥〈〈ξ<, ξ>〉〉∥∥A ≤ ∥∥ξ<∥∥D<

∥∥ξ>∥∥D>

for all β ∈ Γc(G, r∗B), ξ< ∈ Γc(X,E<) and ξ> ∈ Γc(X,E>). As in Definition 3.2.4 write
D<(X,E<) for the completion ofΓc(X,E<) for the semi-norm‖·‖D< ; defineD>(X,E>) analo-
gously. With the extensions of the actions ofΓc(G, r∗B) and the extension of the bracket,

D(X,E) :=
(
D<(X,E<), D>(X,E>)

)
is aC0(X/G)-BanachA(G, B)-pair.

For the remainder of this subsection, letD(X) be a pair of monotone completions ofCc(X), com-
patible withA(G). The construction of linear maps between monotone completions was discussed in
3.2.5.

Definition 7.2.17. Let T ∈ LB(E,F ) beG-equivariant. Thene> 7→ T>e> is a boundedC-linear,
C0 (X/G)-linear andΓc (G, r∗B)-linear map fromΓc(X,E>) to Γc(X,F>) with norm≤ ‖T>‖, so
it extends to a boundedC-linear,C0 (X/G)-linear andA(G, B)-linear mapD(X,T>) fromD(X,E>)
toD(X,F>) of the same norm. Similarly, one gets a mapD(X,T<) fromD(X,F<) toD(X,E<)
of norm≤ ‖T<‖. Together, this defines a pair

D(X,T ) :=
(
D(X,T<), D(X,T>)

)
∈ LC0(X/G)

A(G,B) (D(X,E), D(X,F ))

of norm≤ ‖T‖.

The assignmentE 7→ D(X,E) andT 7→ D(X,T ) is a contractive functor from the categoryG-
BanachB-pairs and boundedG-equivariant operators to the category ofC0 (X/G)-BanachA(G, B)-
pairs. Similarly one can defineD(X,Φ) for G-equivariant concurrent homomorphisms.

Lemma 7.2.18.For all f> ∈ Γc(X,F>) ande< ∈ Γc(X,E<), we have

D
(
X,
(∣∣f>〉〉〈〈e<∣∣

x

)
x∈X

)
=
∣∣f>〉〉〈〈e<∣∣.

This lemma follows from 7.2.11 and maybe needs some explanation: The operator
∣∣f>〉〉〈〈e<∣∣

x

on the left-hand side is the element
∫
Gx

∣∣γf>(s(γ))
〉〈
γe<(s(γ))

∣∣ dλx(γ) of LBx (Ex, Fx) as defined
in 7.2.11. The operator

∣∣f>〉〉〈〈e<∣∣ on the right-hand side is the compact operator fromD(X,E)
to D(X,F ) given byf> ande<. The ambiguous but suggestive notation was chosen to avoid yet
another hat or another tilde on top of an operator.

Proposition 7.2.19. Let S ∈ LB(E,F ) be bounded,G-equivariant and locally compact. Then
D(X,S) is locally compact in the sense of Definition 2.2.27, i.e.,χD(X,S) is compact for all
χ ∈ Cc (X/G).

Proof. In order to show thatD(X,S) is locally compact, it suffices to show thatD(X,S) is compact
if π(suppS) is compact. Letε > 0. LetK := π(suppS) ⊆ X/G. We now approximateD(X,S) on
K by finite rank operators:
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By Lemma 7.2.12 we can findn ∈ N, andf>1 , . . . , f
>
n ∈ Γc(X,F>), e<1 , . . . , e

<
n ∈ Γc(X,E<)

such that for allx ∈ π−1(K ′) (whereK ′ is some compact neighbourhood ofK):∥∥∥∥∥Sx −
n∑
i=1

∣∣f>i 〉〉〈〈e<i ∣∣x
∥∥∥∥∥

L(Ex,Fx)

≤ ε.

BecauseS vanishes outsideπ−1(K), we can assume without loss of generality that this inequality is
true for allx ∈ X. Then

ε ≥

∥∥∥∥∥D(X,S)−
n∑
i=1

D
(
X,
(∣∣f>i 〉〉〈〈e<i ∣∣x)x∈X)

∥∥∥∥∥ =

∥∥∥∥∥D(X,S)−
n∑
i=1

∣∣f>i 〉〉〈〈e<i ∣∣
∥∥∥∥∥ .

SoD(X,S) is compact.

Theorem 7.2.20.Let (E, T ) be a cycle inEban
G (C0(X), B) with T G-equivariant. EquipD (X,E)

with the obvious grading operator. ThenD (X,T ) is odd and

JBA,D(E, T ) := (D(X,E), D(X,T )) ∈ Eban (C0 (X/G) ; C0 (X/G) , A (G, B)) .

Proof. The important property that we have to check is thatD(X,T )2 − 1 is locally compact. But

D(X,T )2 − 1 = D(X, T 2 − 1),

andT 2 − 1 is locally compact. SinceT 2 − 1 is alsoG-equivariant, we can apply the preceding
proposition which implies thatD(X, T 2 − 1) is locally compact.

Proposition 7.2.21.LetB andB′ beG-Banach algebras andϕ : B → B′ be aG-equivariant mor-
phism. If(E, T ) ∈ Eban

G (C0(X), B) with T G-equivariant, then

JBA,D (ϕ∗(E, T )) ∼ (A(G, ϕ))∗
(
JBA,D(E, T )

)
.

Proof. The pairs underlying the left- and the right-hand side are

D
(
X, E ⊗B B̃′

)
and D(X,E)⊗A(G,B)

˜A(G, B′),

respectively. Straightforward but technical argumentations using our sufficient condition for ho-
motopy show that we can leave away the (fibrewise) unitalisations and reduce to the simpler pairs
D (X, E ⊗B B′) andD(X,E) ⊗A(G,B) A(G, B′), the first equipped withD (X,T ⊗ 1), the second
with D (X,T )⊗ 1.

We now proceed in three steps: First we define a homomorphismΦ from D(X,E) ⊗A(G,B)

A(G, B′) toD (X, E ⊗B B′), second we show that it intertwinesD(X,T )⊗1 andD(X,T ⊗1), and
third we prove thatΦ induces a homotopy.

1. For alle> ∈ Γc(X,E>) and allβ′ ∈ Γc(G, r∗B′), define

µ>(e>, β′) (x) :=
∫
Gx

γe>(s(γ))⊗ γβ′(γ−1) dλx(γ)

for all x ∈ X. Thenµ>(e>, β′) ∈ Γc (X, E> ⊗B B′). Moreover,µ> isΓc (G, r∗B)-balanced
and satisfies ∥∥µ>(e>, β′)

∥∥
D> ≤

∥∥e>∥∥D>

∥∥β′∥∥A .
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Moreover,µ> is Cc(G, r∗B′)-linear on the right andC0(X/G)-bilinear. µ> can hence be
extended to anA(G, B)-balanced contractive bilinear mapµ> : D>(X,E>) × A(G, B′) →
D> (X, E ⊗B B′) which isA(G, B′)-linear on the right andC0(X/G)-bilinear. This gives a
contractive linear mapΦ> : D>(X,E>) ⊗A(G,B) A(G, B′) → D> (X, E ⊗B B′) which is
A(G, B′)-linear on the right andC0(X/G)-linear.

For the left-hand side, we define

µ<(β′, e<)(x) :=
∫
Gx

β′(γ)⊗ γe<(s(γ)) dλx(γ)

for all β′ ∈ Γc(G, r∗B′), e< ∈ Γc(X,E<) andx ∈ X. This defines a contractiveA(G, B′)-
linear mapΦ< from A(G, B′) ⊗A(G,B) D(X,E<) to D (X, B′ ⊗B E<) which isA(G, B′)-
linear on the left andC0(X/G)-linear. We check that(Φ<,Φ>) is a homomorphism by direct
computation:

〈〈
Φ<(β′< ⊗ e<), Φ>(e> ⊗ β′>)

〉〉
(γ)

=
〈
µ<(β′<, e<)(r(γ)), γµ>(e>, β′>)(s(γ))

〉
=

〈∫
Gr(γ)

β′<(γ′)⊗ γ′e<(s(γ′)) dλr(γ)(γ′), γ
∫
Gs(γ)

γ′′e>(s(γ′′))⊗ γ′′β′>(γ′′−1) dλs(γ)(γ′′)
〉

=
〈∫

Gr(γ)

β′<(γ′)⊗ γ′e<(s(γ′)) dλr(γ)(γ′),
∫
Gr(γ)

γ′′e>(s(γ′′))⊗ γ′′β′>(γ′′−1γ) dλr(γ)(γ′′)
〉

=
∫
Gr(γ)

∫
Gr(γ)

〈
β′<(γ′)⊗ γ′e<(s(γ′)), γ′′e>(s(γ′′))⊗ γ′′β′>(γ′′−1γ)

〉
dλr(γ)(γ′) dλr(γ)(γ′′)

=
∫
Gr(γ)

∫
Gr(γ′′)

β′<(γ′) ϕ
(〈
γ′e<(s(γ′)), γ′′e>(s(γ′′))

〉)
γ′′β′>(γ′′−1γ) dλr(γ

′′)(γ′) dλr(γ)(γ′′)

=
∫
Gr(γ)

∫
Gr(γ′′)

β′<(γ′) γ′ϕ
(〈
e<(s(γ′)), γ′−1γ′′e>(s(γ′′))

〉)
dλr(γ

′′)(γ′) γ′′β′>(γ′′−1γ) dλr(γ)(γ′′)

=
∫
Gr(γ)

∫
Gr(γ′′)

β′<(γ′) γ′ϕ
(〈〈
e<, e>

〉〉
(γ′−1γ′′)

)
dλr(γ

′′)(γ′) γ′′β′>(γ′′−1γ) dλr(γ)(γ′′)

=
∫
Gr(γ)

∫
Gr(γ′′)

β′<(γ′) γ′A(G, ϕ)
(〈〈
e<, e>

〉〉)
(γ′−1γ′′) dλr(γ)(γ′) γ′′β′>(γ′′−1γ) dλr(γ)(γ′′)

=
∫
Gr(γ)

(
β′< ∗ A(G, ϕ)

(〈〈
e<, e>

〉〉))
(γ′′) γ′′β′>(γ′′−1γ) dλr(γ)(γ′′)

=
(
β′< ∗ A(G, ϕ)

(〈〈
e<, e>

〉〉)
∗ β′>

)
(γ) = 〈β′< ⊗ e<, e> ⊗ β′>〉 (γ),

for all γ ∈ G, so
〈〈

Φ<(β′<⊗ e<), Φ>(e>⊗β′>)
〉〉

= 〈β′<⊗ e<, e>⊗β′>〉 for all β′<, β′> ∈
Γc(G, r∗B), e< ∈ Γc(X,E<) ande> ∈ Γc(X,E>).

2. Φ intertwinesD(X,T )⊗1 andD(X,T⊗1): For alle> ∈ Γc(X,E>) and allβ′ ∈ Γc(G, r∗B′),
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we have

Φ>
((
D(X,T )>e>

)
⊗ β′

)
=

∫
Gx

γ
(
T>s(γ)e

>(s(γ))
)
⊗ γβ′(γ−1) dλx(γ)

=
∫
Gx

T>x
(
γe>(s(γ))

)
⊗ γβ′(γ−1) dλx(γ)

=
∫
Gx

(T> ⊗ 1)x
(
γe>(s(γ)) ⊗ γβ′(γ−1)

)
dλx(γ)

= (T> ⊗ 1)x

(∫
Gx

γe>(s(γ)) ⊗ γβ′(γ−1) dλx(γ)
)

= D (X, T ⊗ 1)>
(
Φ>(e> ⊗ β′)

)
.

A similar calculation can be done for the left-hand side.

3. Let S be aG-equivariant and locally compact element ofLB(E) such thatπ(suppS) is a
compact subset ofX/G. We are now going to approximateD(X,S) ⊗ 1 andD(X, S ⊗ 1)
simultaneously by finite rank operators. Letε > 0. As in the proof of Proposition 7.2.19 and
using, in addition, the non-degeneracy of the modulesΓc(X,F>) andΓc(X,E<) we can find
n ∈ N, e>1 , . . . , e

>
n ∈ Γc(X,E>), e<1 , . . . , e

<
n ∈ Γc(X,E<) andβ<1 , . . . , β

<
n , β

>
1 , . . . , β

>
n ∈

Γc(G, r∗B) such that ∥∥∥∥∥Sx −
n∑
i=1

∣∣f>i β>i 〉〉〈〈β<i e<i ∣∣x
∥∥∥∥∥ ≤ ε

for all x ∈ X. It follows that∥∥∥∥∥D(X,S)−
n∑
i=1

∣∣f>i β>i 〉〉〈〈β<i e<i ∣∣
∥∥∥∥∥ ≤ ε

and henceD(X,S)⊗ 1 can be approximated by

n∑
i=1

∣∣f>i β>i 〉〉〈〈β<i e<i ∣∣⊗ 1 =
n∑
i=1

∣∣f>i ⊗ (ϕ ◦ β>i )
〉〈

(ϕ ◦ β<i )⊗ e<i
∣∣

up toε.

On the other hand, a long but straightforward calculation shows

D
(
X,
(∣∣f>i β>i 〉〉〈〈β<i e<i ∣∣x ⊗ 1

)
x∈X

)
=
∣∣Φ>(f>i ⊗ (ϕ ◦ β>i ))

〉〉〈〈
Φ<((ϕ ◦ β<i )⊗ e<i )

∣∣
for all i, and because ∥∥∥∥∥Sx ⊗ 1−

n∑
i=1

∣∣f>i β>i 〉〉〈〈β<i e<i ∣∣x ⊗ 1

∥∥∥∥∥ ≤ ε

for all x ∈ X, it follows thatD(X,S ⊗ 1) can be approximated by

n∑
i=1

∣∣Φ>(f>i ⊗ (ϕ ◦ β>i ))
〉〉〈〈

Φ<((ϕ ◦ β<i )⊗ e<i )
∣∣

up toε. The homomorphismΦ intertwines these approximations.

Applying these considerations toS = χ(T 2 − 1) with χ ∈ Cc(X/G) shows thatΦ satisfies the
technical conditions for a homomorphism to induce a homotopy, see Theorem 2.6.2.
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As in Proposition 5.2.23 one proves:

Proposition 7.2.22.LetB be aG-Banach algebras. If(E, T ) ∈ Eban
G (C0(X), B[0, 1]) is a homotopy

from (E0, T0) to (E1, T1) with T equivariant, thenJBA,D (E0, T0) andJBA,D (E1, T1) are homotopic.

Proposition 7.2.23.LetB be aG-Banach algebra. If(E1, T1), (E2, T2) ∈ Eban
G (C0(X), B), then

JBA,D ((E1, T1)⊕ (E2, T2)) ∼ JBA,D(E1, T1)⊕ JBA,D(E2, T2).

Proof. We define a homomorphismΦ: JBA,D ((E1, T1)⊕ (E2, T2)) → JBA,D(E1, T1)⊕JBA,D(E2, T2):
For alle>1 ∈ Γc(X,E>1 ) ande>2 ∈ Γc(X,E>2 ), define

Φ>(e>1 , e
>
2 )(x) := (e>1 (x), e>2 (x)), x ∈ X.

ThenΦ>(e>1 , e
>
2 ) ∈ Γc(X,E>1 ⊕ E>2 ). Now Φ>(e>1 , e

>
2 ) = (x 7→ (e>1 (x), 0)) + (x 7→ (0, e>2 (x))),

so ∥∥Φ>(e>1 , e
>
2 )
∥∥
D ≤

∥∥e>1 ∥∥D +
∥∥e>2 ∥∥D .

So Φ> can be extended to a contractive,C-linear, C0(X/G)-linear andA(G, B)-linear map from
D(X,E>1 ) ⊕ D(X,E>2 ) to D(X,E>1 ⊕ E>2 ). One can define a similar mapΦ< for the left-hand
side and a short calculation shows thatΦ = (Φ<,Φ>) is a homomorphism intertwiningD(X,T1) ⊕
D(X,T2) andD(X,T1 ⊕ T2).

Φ satisfies the conditions of Theorem 2.6.2: the first and the last condition are void, the second is
satisfied becauseΦ> andΦ< are bijective with continuous inverse (with norm≤ 2). SoΦ induces a
homotopy.

Proposition 7.2.24.The map(E, T ) 7→ (D(X,E), D(X,T )) gives rise to a group-homomorphism
from

JBA,D : KKban
G (C0(X), B) → RKKban (C0 (X/G) ; C0 (X/G) , A (G, B))

which is natural in the non-degenerateG-Banach algebraB.

Definition and Proposition 7.2.25. Let D′(X) = (D′<(X), D′>(X)) be another pair of mono-
tone completions ofCc(X), compatible withA(G). ThenJBA,D = JBA,D′ as homomorphisms from

KKban
G (C0(X), B) to RKKban (C0 (X/G) ; C0 (X/G) , A (G, B)). We hence writeJBA for this ho-

momorphism.

Proof. We first consider the case that‖·‖D< ≤ ‖·‖D′< and‖·‖D> ≤ ‖·‖D′> . Let (E, T ) be a cycle
in Eban

G (C0(X), B) with G-equivariantT . Then there is a canonical homomorphismΦ = (Φ<,Φ>)
from D′(X,E) to D(X,E) which intertwinesD′(X,T ) andD(X,T ). Let χ ∈ Cc(X/G) and de-
fine S := χ

(
T 2 − 1

)
. The proof of Proposition 7.2.19 also shows that(D′(X,S), D(X,S)) ∈

KIdA(G,B)
(Φ), soJBA,D′(E, T ) is homotopic toJBA,D(E, T ) by our sufficient condition for homotopy.

Now letD′ be a general pair of monotone completions ofCc(X) compatible withA(G). Define
‖χ‖D′′< := max {‖χ‖D< , ‖χ‖D′<} and‖χ‖D′′> := max {‖χ‖D> , ‖χ‖D′>} for all χ ∈ Cc(X).
ThenD′′(X) := (D′′<(X), D′′>(X)) is also a pair of monotone completions ofCc(X) compatible
with A(G). By the first part of the proof we haveJBA,D = JBA,D′′ = JBA,D′ .
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Existence of compatible pairs of monotone completions

Now that we have seen how compatible pairs of monotone completions can be used to construct the
homomorphismJBA the natural question is of course whether such pairs exist. We now show that
this is the case ifG admits a cut-off function. There are even quite a few of them, for every cut-off
pair c we construct a compatible pair of monotone completions that we callAc(X). Although the
homomorphismJBA does not depend on the particular choice ofc (as shown above) we are going to
need the precise form of the construction later on when we specify certain cut-off pairs to be able to
perform calculations on the level of cycles.

So letc = (c<, c>) be a cut-off pair forG.

Definition 7.2.26. LetE be aG-BanachB-pair. Define

j<E,c : Γc
(
X,E<

)
→ Γc

(
G, E<

)
, e< 7→

(
γ 7→ c<(s(γ))e<(r(γ))

)
and

j>E,c : Γc
(
X,E>

)
→ Γc

(
G, E>

)
, e> 7→

(
γ 7→ c>(r(γ))γe>(s(γ))

)
.

One can think ofj<E,c(e
<) ase< ∗ c< and ofj>E,c(e

>) asc> ∗ e>.

The following proposition can be checked by direct calculation.

Proposition 7.2.27.LetE be aG-BanachB-pair. ThenjE,c = (j<E,c, j
>
E,c) is a pair of injective maps

such that

1. j<E,c is C-linear, Γc (X/G)-linear andΓc (G, r∗B)-linear on the left,

2. j>E,c is C-linear, Γc (X/G)-linear andΓc (G, r∗B)-linear on the right,

3. for all e< ∈ Γc(X,E<) ande> ∈ Γc(X,E>), we have〈
j<E,c(e

<), j>E,c(e
>)
〉

Γc(G,r∗B)
=
〈〈
e<, e>

〉〉
.

Proposition 7.2.28.LetE andF beG-BanachB-pairs. LetT = (T<, T>) be aG-equivariantfield
of operators fromE to F . Then

j>F,c(T
>e>) = T> ∗ j>E,c(e

>) and j<E,c(f
<T<) = j<F,c(f

<) ∗ T<

for all e> ∈ Γc(X,E>) andf< ∈ Γc(X,F<).

Proof. We just show this for the right-hand side: Lete> ∈ Γc(X,E>) andγ ∈ G. Then

j>F,c(T
>e>) (γ) = c>(r(γ)) γ(T>e>)(s(γ)) = c>(r(γ)) γ

(
T>s(γ)e

>(s(γ))
)

= c>(r(γ)) T>r(γ)
(
γe>(s(γ))

)
=
(
T> ∗ j>E,c(e

>)
)

(γ).

Definition 7.2.29 (Ac(X,E)). LetB be aG-Banach algebra and letE be aG-BanachB-pair. Define
aC0 (X/G)-BanachA(G, B)-pairAc(X,E) = (Ac(X,E<), Ac(X,E>)) by pulling back the norm



7.3. MONOTONE COMPLETIONS AS ANALOGUES OF L2(G, B) 209

of A(G, E) along jE,c and completingΓc(X,E) for this norm. Alternatively, one could take the
closure of the image ofjE,c. In particular, the norms on the left and the right part are given by∥∥e<∥∥Ac(X,E<)

:=
∥∥∥j<E,c(e<)

∥∥∥
A(G,E<)

=
∥∥∥ γ 7→ c<(s(γ))

∥∥e<(r(γ))
∥∥ ∥∥∥

A

and ∥∥e>∥∥Ac(X,E>)
:=
∥∥∥j>E,c(e>)

∥∥∥
A(G,E>)

=
∥∥∥ γ 7→ c>(r(γ))

∥∥e>(s(γ))
∥∥ ∥∥∥

A

for all e< ∈ Γc(X,E<) ande> ∈ Γc(X,E>).

Note that the norms depend onA(G) as well as onc. The pairAc(X) = ((Ac)<(X), (Ac)>(X)) is
a pair of monotone completions ofCc(X) compatible withA(G) and the notationAc(X,E) is unam-
biguous. IfA(G) is locally C0 (X/G)-convex, thenAc(X,E) is locally C0 (X/G)-convex. Note that
JBA,Ac as a homomorphism fromKKban

G (C0(X), B) to RKKban (C0 (X/G) ; C0 (X/G) , A (G, B))
does not depend onc by 7.2.25; without the detour via more general compatible pairsD(X) of mono-
tone completions this latter fact seems to be hard to prove.

7.3 Monotone completions as analogues ofL2(G, B)

As sketched in the introduction to this chapter, a possible proof of the C∗-algebra version of the gen-
eralised Green-Julg theorem makes use of the tensor product with theG-HilbertB-moduleL2(G, B)
which carries a left action ofB or G by locally compact operators. We want to find analogues of the
moduleL2(G, B) for the case thatB is aG-Banach algebra. Apparently, ifB is aG-Banach algebra,
it is not sufficient (or not systematic, at least) to just consider pairs of the type(L2(G, B), L2(G, B));
we want to treat rather general unconditional completions, so it seems advisable to consider rather
general completions of the spaceΓc(G, r∗B), and our treatment should also cover pairs of the form
(L1(G, B), Γ0(G, B)) or (Lp

′
(G, B), Lp(G, B)) for p, p′ ∈]1,∞[ with 1/p+ 1/p′ = 1 (compare the

precise definitions below).
Our substitute forL2(G) is what we call (not very imaginatively) a pair of monotone completions;

we will usually denote such a pair byH(G), and writeH(G, B) for its version with coefficients inB.
It seems advisable to even consider pairs of the formH(G, E) whereE is aG-BanachB-pair because
this makes the constructions a bit clearer. The important result is that (under certain compatibility
conditions) the unconditional completionA(G, B) acts onH(G, B) by locally compact operators. To
prove this, we need a result concerning the compactness of operators which are given by kernels which
is presented in detail in Appendix E.8.

7.3.1 Pairs of monotone completions ofCc(G)

Recall that in this chapterG denotes a locally compact Hausdorff groupoid with left Haar systemλ
andX denotes the unit space ofG.

Definition 7.3.1 (Pair of monotone completions (H(G)). A pair of monotone completions ofCc(G)
is a pairH(G) = (H<(G), H>(G)) such thatH<(G) andH>(G) are monotone completions ofCc(G)
and such that the bilinear map

〈·, ·〉Cc(X) : Cc(G)× Cc(G) → Cc(X), (ϕ<, ϕ>) 7→
(
x 7→

∫
Gx

ϕ<(γ) ϕ>(γ−1) dλx(γ)
)
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satisfies ∥∥〈ϕ<, ϕ>〉Cc(X)

∥∥
∞ ≤

∥∥ϕ<∥∥H<

∥∥ϕ>∥∥H>

for all ϕ<, ϕ> ∈ Cc(G). In this case〈·, ·〉Cc(X) can be extended to a continuous bilinear map
〈·, ·〉C0(X) : H<(G)×H>(G) → C0(X) which isC0(X)-bilinear if we consider the following actions
of C0(X):

(χξ<)(γ) := χ(r(γ))ξ<(γ) and (ξ>χ)(γ) := ξ>(γ)χ(s(γ))

for all χ ∈ C0(X), ξ< ∈ Cc(G) ⊆ H<(G), ξ> ∈ Cc(G) ⊆ H>(G) andγ ∈ G.

Examples 7.3.2.Let p ∈ [1,∞[. Define the norm

∥∥χ<∥∥
p,r

:= sup
x∈X

(∫
Gx

∣∣χ<(γ)
∣∣p dλx(γ)

) 1
p

for all χ< ∈ Cc(G). The corresponding monotone completion is calledLpr(G). Note thatL1(G) =
L1
r(G). Secondly, define

∥∥χ>∥∥
p,s

:= sup
x∈X

(∫
Gx

∣∣χ>(γ−1)
∣∣p dλx(γ)

) 1
p

for all χ> ∈ Cc(G). The corresponding monotone completion is calledLps (G)

1. The pairs(L1(G), C0(G)) and(C0(G), L1
s(G)) are pairs of monotone completions in the above

sense.

2. If p, p′ ∈]1,∞[ such that1p + 1
p′ = 1, then(Lp

′
r (G), Lps(G)) is also a pair of monotone comple-

tions.

3. In particular this applies to(L2
r(G), L2

s(G)).

Definition 7.3.3 (The pairH(G, E)). Let B be aG-Banach algebra and letE be aG-BanachB-
pair. LetH(G) be a pair of monotone completions ofCc(G). Define a right action ofΓ(X,B) on
Γc(G, r∗E>) by

(ξ>β)(γ) := ξ>(γ)γβ(s(γ)), ξ> ∈ Γc(G, r∗E>), β ∈ Γ(X,B), γ ∈ G,

and a left action ofΓ(X,B) onΓc(G, r∗E<) by

(βξ<)(γ) := β(r(γ))ξ<(γ), β ∈ Γ(X,B), ξ< ∈ Γc(G, r∗E<), γ ∈ G.

These actions define continuous actions ofΓ0(X,B) onH>(G, E>) (from the right) andH<(G, E<)
(from the left). Define a bilinear map

〈·, ·〉Γc(X,B) : Γc(G, r∗E<)× Γc(G, r∗E>) → Γc(X,B),

(ξ<, ξ>) 7→
(
x 7→

∫
Gx

〈
ξ<(γ), γξ>(γ−1)

〉
Er(γ)

dλx(γ)
)
.

This map extends to a contractive bracket fromH<(G, E<)×H>(G, E>) to Γ0(X,B) which makes
H(G, E) := (H<(G, E<),H>(G, E>)) aC0(X)-BanachΓ0(X,B)-pair. IfE is non-degenerate, then
so isH(G, E).
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Proof. We just check that the bracket is bilinear to make sure that we have adjusted the definition of
the actions ofΓ0(X,B) correctly: Letβ ∈ Γ0(X,B), ξ< ∈ Γc (G, r∗E<) andξ> ∈ Γc (G, r∗E>).
Then 〈

βξ<, ξ>
〉

(x) =
∫
Gx

〈
(βξ<)(γ), γξ>(γ−1)

〉
Er(γ)

dλx(γ)

=
∫
Gx

〈
β(x) ξ<(γ), γξ>(γ−1)

〉
Er(γ)

dλx(γ) = β(x)
〈
ξ<, ξ>

〉
(x)

and 〈
ξ<, ξ>β

〉
(x) =

∫
Gx

〈
ξ<(γ), γ

(
(ξ>β)(γ−1)

)〉
Er(γ)

dλx(γ)

=
∫
Gx

〈
ξ<(γ), γ

(
ξ>(γ−1)γ−1β

(
s(γ−1)

))〉
Er(γ)

dλx(γ)

=
∫
Gx

〈
ξ<(γ),

(
γξ>(γ−1)

)
β (x)

〉
Er(γ)

dλx(γ) =
〈
ξ<, ξ>

〉
(x) β(x)

for all x ∈ X.

Note that in the preceding definition, theC0(X)-structures onH<(G, E<) andH>(G, E>) are
not the same in general: on the left-hand side, it is induced by the range mapr, on the right-hand
side by the source maps. This implies that the fibre ofH<(G, E<) over somex ∈ X should be
regarded as a completion ofΓc(Gx, E<x ), whereas the fibre ofH>(G, E>) overx should be regarded
as a completion ofΓc(Gx, (r∗E)|Gx); compare Proposition E.8.5. The difference can of course be
remedied by the application of the pullback along the inversion of the groupoid (we formulate this as
a general statement about a single monotone completion ofCc(G) instead of a pair):

Lemma 7.3.4. LetH(G) be a monotone completion ofCc(G). Then also the semi-norm‖ϕ‖Ȟ :=∥∥γ 7→ ϕ(γ−1)
∥∥
H is a monotone semi-norm onCc(G). The mapϕ 7→ (γ 7→ ϕ(γ−1)) induces an

isometric isomorphism from the Banach spaceH(G) to Ȟ(G). It is an isomorphism ofC0(X)-Banach
spaces if we take onH(G) theC0(X)-action induced byr and onȞ(G) the action induced bys (or
vice versa).

Note that ifH(G) is a pair of monotone completions and if we put theC0(X)-structure which is
induced by the range map on both sides, then the bracket ofH(G, E) no longer has the shape of a
restricted convolution. It thus seems to be more systematic to have differentC0(X)-structures on both
sides of the pair.

7.3.2 A(G) acting on pairs of monotone completions ofCc(G)

Recall thatG denotes a locally compact Hausdorff groupoid with left Haar systemλ andX denotes
the unit space ofG. LetA(G) be an unconditional completion ofCc(G).

Definition 7.3.5 (A(G) acting onH(G)). A(G) is said toact on a pairH(G) = (H<(G), H>(G))
of monotone completions ofCc(G)∥∥χ ∗ ξ>∥∥H>(G)

≤ ‖χ‖A(G)

∥∥ξ>∥∥H>(G)

and ∥∥ξ< ∗ χ∥∥H<(G)
≤
∥∥ξ<∥∥H<(G)

‖χ‖A(G)

for all χ, ξ<, ξ> ∈ Cc(G).
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Definition and Proposition 7.3.6 (A(G, A) acting onH(G, E)). LetA(G) act on the pair of mono-
tone completionsH(G). LetA andB beG-Banach algebras and letE be aG-BanachA-B-pair. For
all a ∈ Γc(G, r∗A), all ξ< ∈ Γc(G, r∗E<) and allξ> ∈ Γc(G, r∗E>), define

(a ξ>)(γ) = (a ∗ ξ>)(γ) =
∫
Gr(γ)

a(γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)

and

(ξ< a)(γ) = (ξ< ∗ a)(γ) =
∫
Gr(γ)

ξ<(γ′)γ′a(γ′−1γ) dλr(γ)(γ′)

for all γ ∈ G. These actions lift to actions ofA(G, A) onH>(G, E>) andH<(G, E<), respectively.
Equipped with them,H(G, E) (as defined in 7.3.3) becomes aC0(X)-BanachΓ0(X,B)-pair on which

A(G, A) by elements ofLC0(X)
Γ0(X,B) (H(G, E)).

Proof. Let a ∈ Γc(G, r∗A), ξ> ∈ Γc(G, r∗E>), andβ ∈ Γ(X,B). Then

((a ∗ ξ>)β)(γ) = (a ∗ ξ>)(γ)γβ(s(γ))

=
∫
Gr(γ)

a(γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)γβ(s(γ))

=
∫
Gr(γ)

a(γ′)γ′ξ>(γ′−1γ)γ′(γ′−1γ)β(s(γ′−1γ)) dλr(γ)(γ′)

= (a ∗ (ξ>β))(γ)

for all γ ∈ G. This shows thatΓc(G, r∗E>) is a Γc(G, r∗A)-Γ(X,B)-bimodule. Similarly one
shows thatΓc(G, r∗E<) is a Γ(X,B)-Γc(G, r∗A)-bimodule. Because the actions are given by
convolution and also the bracket is given by (the restriction of) convolution, it is easy to see that
〈ξ<, aξ>〉Γc(X,B) = 〈ξ<a, ξ>〉Γc(X,B).

BecauseA(G) acts onH(G), we have∥∥aξ>∥∥H> ≤ ‖a‖A
∥∥ξ>∥∥H> and

∥∥ξ<a∥∥H< ≤
∥∥ξ<∥∥H< ‖a‖A

and the actions on the sections with compact support lift to actions on the completions. Moreover,
these actions are surely byC0(X)-linear operators.

Proposition 7.3.7. LetH(G) = (H<(G), H>(G)) be a pair of monotone completions ofCc(G) on
whichA(G) acts. LetA andB beG-Banach algebras and letE be aG-BanachA-B-pair. If Γ(X,A)
acts onE by locally compact operatorsandG is proper, thenA(G, A) acts onH(G, E) by locally
compact operators.

Proof. Let a ∈ Γc(G, r∗A). If we can show that the action ofa onH(G, E), denoted byπ(a) ∈
LΓ0(X,B) (H(G, E)), is locally compact, then we are done. Letχ ∈ Cc(X). We have to show that
χπ(a) is compact. Define

k(γ1,γ2) := χ(s(γ1))πA(a(γ2)) ∈ LBr(γ1)

(
Er(γ1)

)
for all (γ1, γ2) ∈ G ∗r,r G. Then the action ofχπ(a) onΓc (G, r∗E>) is given by

(χπ(a))>(ξ>)(γ) = χ(s(γ))
∫
Gr(γ)

a(γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

χ(s(γ))a(γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

k(γ,γ′)γ
′ξ>(γ′−1γ) dλr(γ)(γ′)
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for all ξ> ∈ Γc (G, r∗E>) andγ ∈ G.
On the left-hand side, forξ< ∈ Γc (G, r∗E<), we calculate:

(χπ(a))<(ξ<)(γ) = χ(r(γ))
∫
Gr(γ)

ξ<(γ′)γ′a(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

ξ<(γ′)χ(r(γ′))γ′a(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

ξ<(γ′)γ′k(γ′−1,γ′−1γ) dλr(γ)(γ′)

for all ξ> ∈ Γc (G, r∗E>) andγ ∈ G.
The field of operators(πA(a(γ2)))(γ1,γ2)∈G∗r,rG is locally compact, so the same is true fork.

Moreover, the support ofk is compact: SinceG is proper, the setK := {γ ∈ G : r(γ) ∈
suppχ, s(γ) ∈ r(supp a)} is compact. Let(γ1, γ2) ∈ G ∗r,r G. Thenk(γ1,γ2) 6= 0 impliesγ1 ∈ K
andγ2 ∈ supp a. So(γ1, γ2) is contained inK × supp a. Hencek has compact support. Now the
proposition can be deduced from the following lemma.

Lemma 7.3.8 (Operators given by kernels).LetH(G) = (H<(G), H>(G)) be a pair of monotone
completions ofCc(G). Let B be aG-Banach algebra and letE be aG-BanachB-pair. Let k ∈
Lp∗B (p∗E) be a continuous field of operators with compact support, wherep : G ∗r,r G → G(0) =
X, (γ1, γ2) 7→ r(γ1) = r(γ2). Define an operatorTk onH(G, E) by

T>k
(
ξ>
)
(γ) :=

∫
Gr(γ)

k>(γ,γ′)γ
′ξ>(γ′−1γ) dλr(γ)(γ′)

and

T<k
(
ξ<
)
(γ) :=

∫
Gr(γ)

γ′k<(γ′−1,γ′−1γ) ξ
<(γ′) dλr(γ)(γ′)

for all ξ> ∈ Γc (G, r∗E>), ξ< ∈ Γc (G, r∗E<) andγ ∈ G.
If k is compact thenTk is compact.

Proof. This is Lemma E.8.12 in disguise. On the surface, the formulae in that lemma look different,
but this is a consequence of the fact that we have altered the definition ofH(G, E) by taking a different
but equivalent bracket.

As a corollary of Proposition 7.3.7 we get:

Corollary 7.3.9. Let H(G) = (H<(G), H>(G)) be a pair of monotone completions ofCc(G) on
whichA(G) acts. LetB be a non-degenerateG-Banach algebra. IfG is proper, thenA(G, B) acts on
H(G, B) by locally compact operators.

7.3.3 G acting on pairs of monotone completion ofCc(G)

If we are given a pairH(G) of monotone completions in the above sense and aG-BanachB-pairE,
then we want to put an action ofG onH(G, E). Technically, we have to replaceH(G, E) with the
u.s.c. fieldF(H(G, E)) of pairs overX, so it is a natural to assume that all theC0(X)-Banach spaces
that appear are locallyC0(X)-convex. Moreover, we have to make sure that theG-action that we
define is isometric. We hence formulate the following definition:
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Definition 7.3.10 ((Locally convex, equivariant) pair of monotone completions).Let H(G) be a
pair of monotone completions. ThenH(G) is called locally convexif H<(G) is a locallyC0(X)-
convexC0(X)-Banach space (with respect to theC0(X)-action induced byr) and alsoH>(G) is
locally C0(X)-convex (with respect to the action induced bys).

For allγ ∈ G, define a mapα<γ from Cc
(
Gs(γ)

)
to Cc

(
Gr(γ)

)
by

χ< 7→ α<γ (χ<) = γχ< =
(
γ′ 7→ χ<(γ−1γ′)

)
and a mapα>γ from Cc

(
Gs(γ)

)
to Cc

(
Gr(γ)

)
by

χ> 7→ α>γ (χ>) = γχ> =
(
γ′ 7→ χ>(γ′γ)

)
.

If H(G) is locally convex, then it is calledequivariantif α< andα> are families of isometric
maps, i.e., if we have that∥∥γχ<∥∥H<(Gr(γ)) =

∥∥χ<∥∥H<(Gs(γ)) and
∥∥γχ>∥∥H>(Gr(γ)) =

∥∥χ>∥∥H>(Gs(γ))

for all χ< ∈ Cc(Gs(γ)), χ> ∈ Cc(Gs(γ)) and allγ ∈ G.

Examples 7.3.11.All the examples of 7.3.2 are locallyC0(X)-convex and equivariant.

Definition and Proposition 7.3.12 (TheG-action on F(H(G, E))). Let H(G) be a locally convex
equivariant pair of monotone completions ofCc(G) and letE be aG-BanachB-pair. Define

(7.2) α<γ : Γc
(
Gs(γ), r∗E<

)
→ Γc

(
Gr(γ), r∗E<

)
, ξ< 7→ γξ< :=

(
γ′ 7→ γξ<(γ−1γ′)

)
,

and

(7.3) α>γ : Γc
(
Gs(γ), r∗E>

)
→ Γc

(
Gr(γ), r∗E>

)
, ξ> 7→ γξ> :=

(
γ′ 7→ ξ>(γ′γ)

)
,

for all γ ∈ G. Thenα<γ andα>γ are isometric for allγ ∈ G and extend to isometric isomorphisms
H<(Gs(γ), r∗E<) → H<(Gr(γ), r∗E<) andH>(Gs(γ), r∗E>) → H>(Gr(γ), r∗E>), respectively.
The field(α<γ , α

>
γ )γ∈G is a continuous field of isomorphisms makingF(H(G, E)) aG-BanachB-pair.

Proof. We have to check that(α<γ )γ∈G and(α>γ )γ∈G are continuous families of isomorphisms. We
check this only on the left-hand side, the proof for the right-hand side being analogous. Define

α< : Γc
(
G ×r,s G, Q∗

r,sE
<
)
→ Γc

(
G ×r,r G, Q∗

r,rE
<
)
, ξ< 7→

[
(γ, γ′) 7→ γξ<(γ−1γ′)

]
whereQr,s : G ×r,s G → G(0), (γ′, γ) 7→ r(γ′) = s(γ) andQr,r is defined analogously. We check
that α is isometric for the norms‖·‖s∗H< and ‖·‖r∗H< defined as in Definition E.8.13. Ifξ< ∈
Γc
(
G ×r,s G, Q∗

r,sE
<
)
, then∥∥α<(ξ<)
∥∥
r∗H< = sup

γ∈G

∥∥∥Gr(γ) 3 γ′ 7→ ∥∥α<(ξ<)(γ, γ′)
∥∥∥∥∥

H<
r(γ)

= sup
γ∈G

∥∥∥Gr(γ) 3 γ′ 7→ ∥∥γξ<(γ−1γ′)
∥∥∥∥∥

H<
r(γ)

= sup
γ∈G

∥∥∥Gr(γ) 3 γ′ 7→ ∥∥ξ<(γ−1γ′)
∥∥∥∥∥

H<
r(γ)

= sup
γ∈G

∥∥∥Gs(γ) 3 γ′ 7→ ∥∥ξ<(γ′)
∥∥∥∥∥

H<
s(γ)

=
∥∥ξ<∥∥

s∗H< .
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Soα< is an isometric isomorphism froms∗H< (Gr,sG, s∗E<) to r∗H< (Gr,rG, r∗E<). Identify-
ing the fieldF (s∗H< (Gr,sG, s∗E<)) with s∗F (H< (G, E<)) and F (r∗H< (Gr,rG, r∗E<)) with
r∗F (H< (G, E<)) (using E.8.14) makes the fieldα< an action ofG on the left BanachB-module
F(H< (G, E<)).

The proof of the algebraic properties ofα< andα> is straightforward. We only check explic-
itly that the bracket and the module action onF(H(G, E)) areG-equivariant. Letγ ∈ G, ξ< ∈
Γc
(
Gs(γ), r∗E<

)
andξ> ∈ Γc

(
Gs(γ), r∗E>

)
. Then

〈γξ<, γξ>〉r(γ) =
∫
Gr(γ)

〈
(γξ<)(γ′), γ′((γξ>)(γ′−1))

〉
dλr(γ)(γ′)

=
∫
Gr(γ)

〈
γξ<(γ−1γ′), γ′ξ>(γ′−1γ)

〉
dλr(γ)(γ′)

=
∫
Gr(γ)

〈
γξ<(γ−1γ′), γγ−1γ′ξ>(γ′−1γ)

〉
dλr(γ)(γ′)

= γ

∫
Gr(γ)

〈
ξ<(γ−1γ′), γ−1γ′ξ>((γ−1γ′)−1)

〉
dλr(γ)(γ′)

= γ

∫
Gs(γ)

〈
ξ<(γ′), ξ>(γ′−1)

〉
dλs(γ)(γ′)

= γ〈ξ<, ξ>〉s(γ).

This shows that the bracket is equivariant. To see that the actions ofB are compatible with theG-
actions we calculate forb ∈ Bs(γ)

γ
(
ξ>b
)

= γ
(
Gs(γ) 3 γ′ 7→ ξ>(γ′)γ′b

)
=

[
Gr(γ) 3 γ′ 7→ ξ>

(
γ′γ
)
· γ′(γb)

]
= (γξ>) (γb)

and

γ
(
bξ<
)

= γ
(
Gs(γ) 3 γ′ 7→ bξ<(γ′)

)
=

[
Gr(γ) 3 γ′ 7→ γb · γξ<(γ−1γ′)

]
= (γb)

(
γξ<

)
.

Corollary 7.3.13. If H(G) is a locally convex equivariant pair of monotone completions ofCc(G),
thenF (H(G)) is aG-BanachCX -pair.

Proposition 7.3.14.LetH(G) be a locally convex equivariant pair of monotone completions ofCc(G).
LetB be aG-Banach algebra and letE be aG-BanachB-module. Then the convolution

Γc(G, r∗E<)× Γc(G, r∗E>) → Γc(G, r∗B),

(ξ<, ξ>) 7→ ξ< ∗ ξ> =
(
γ 7→

∫
Gr(γ)

〈
ξ<(γ′), γ′ξ>(γ′−1γ)

〉
Er(γ)

dλr(γ)(γ′)
)

extends to a contractive bilinear map

H<(G, E<)×H>(G, E>) → Γ0(G, r∗B),

also written as a convolution product, such that the bracket onH(G, E) is the composition of this map
and the restriction map fromΓ0(G, r∗B) to Γ0(X,B).
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Proof. Let ξ< ∈ Γc(G, r∗E<) andξ> ∈ Γc(G, r∗E>). For allγ ∈ G, we have

(ξ< ∗ ξ>)(γ) =
〈
ξ<r(γ), γξ

>
s(γ)

〉
r(γ)

and hence∥∥(ξ< ∗ ξ>)(γ)
∥∥ =

∥∥∥∥〈ξ<r(γ), γξ>s(γ)〉r(γ)
∥∥∥∥ ≤ ∥∥∥ξ<r(γ)∥∥∥H<(G,E<)r(γ)

∥∥∥γξ>s(γ)∥∥∥H>(G,E>)r(γ)

=
∥∥∥ξ<r(γ)∥∥∥H<(G,E<)r(γ)

∥∥∥ξ>s(γ)∥∥∥H>(G,E>)s(γ)

≤
∥∥ξ<∥∥H<(G,E<)

∥∥ξ>∥∥H>(G,E>)
,

becauseH>(G) is equivariant. Hence the convolution is continuous with norm≤ 1 and extends to a
mapH<(G, E<)×H>(G, E>) → Γ0(G, r∗B) with the desired properties.

In the 7.3.6 we have not assumed thatH(G) is locally convex or equivariant. If it is, we can refine the
result as follows:

Proposition 7.3.15.LetH(G) = (H<(G), H>(G)) be a locally convex equivariant pair of monotone
completions on whichA(G) acts. LetA andB beG-Banach algebras and letE be aG-BanachA-B-
pair. ThenF(H(G, E)) is aG-BanachB-pair on whichA(G, A) acts by bounded equivariant fields of
linear operators. IfG is proper andΓ(X,A) acts onE by locally compact operators, then the action
ofA(G, A) onF(H(G, E)) is byG-equivariantbounded locally compact fields of operators.

The only thing that we really have to check is that the action ofA(G, A) is equivariant. This is a
consequence of the following lemma:

Lemma 7.3.16.LetA andB beG-Banach algebras and letE be aG-BanachA-B-pair. Then the
action ofΓc(G, r∗A) onΓc(G, r∗E<) andΓc(G, r∗E>) commutes with the action ofG in the obvious
sense.

Proof. Let γ ∈ G, a ∈ Γc(G, r∗A), ξ< ∈ Γc(G, r∗E<), ξ> ∈ Γc(G, r∗E>). Then(
γ(a ∗ ξ>)s(γ)

)
(γ′) = (a ∗ ξ>)s(γ)(γ

′γ)

=
∫
Gs(γ)

a(γ′′)γ′′ξ>(γ′′−1γ′γ) dλs(γ)(γ′′)

= a ∗ (γξ>s(γ))(γ
′)

for all γ′ ∈ Gr(γ). Secondly,(
γ(ξ< ∗ a)s(γ)

)
(γ′) = γ (ξ< ∗ a)s(γ)(γ−1γ′)

= γ

∫
Gs(γ)

ξ<(γ′′)γ′′a(γ′′−1γ−1γ′) dλs(γ)(γ′′)

=
∫
Gs(γ)

γξ<(γ−1(γγ′′))γγ′′a((γγ′′)−1γ′) dλs(γ)(γ′′)

=
∫
Gr(γ)

γξ<(γ−1γ′′)γ′′a(γ′′−1γ′) dλr(γ)(γ′′)

= ((γξ<)r(γ) ∗ a)(γ′)

for all γ′ ∈ Gr(γ).

Corollary 7.3.17. LetH(G) = (H<(G), H>(G)) be a locally convex equivariant pair of monotone
completions ofCc(G) on whichA(G) acts. LetB be a non-degenerateG-Banach algebra. IfG is
proper, thenA(G, B) acts onFH(G, B) by locally compactG-equivariant operators.
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7.4 Regular unconditional completions

For simplicity, we introduce the following abbreviation:

Definition 7.4.1 (Regular unconditional completion).An unconditional completionA(G) of Cc (G)
is said to be aregular unconditional completionif there exists an equivariant pair of locally convex
monotone completions ofCc (G) on whichA(G) acts.

Note that there might exist many different equivariant pairs of monotone completions on which
a regular unconditional completion acts, the important part of the definition really is the existence of
such a pair, not its particular shape.

Examples 7.4.2.Most examples of unconditional completions that we have come across so far (com-
pare 5.2.2) are regular for rather obvious reasons:

1. The unconditional completionL1 (G) acts on the pair
(
L1 (G) , C0 (G)

)
.

2. The symmetrised versionL1 (G)∩L1 (G)∗ is also regular because the norm defining it dominates
the norm‖·‖1. Moreover, it acts on the pair

(
L2
r (G) , L2

s (G)
)

(see [Ren80]). It should not be

too hard to check that it also acts on
(
Lp

′
r (G) , Lps (G)

)
for all p, p′ ∈]1,∞[ such that1p+

1
p′ = 1.

3. The completionAmax (G) acts on
(
L2
r (G) , L2

s (G)
)

by definition.

4. If G is a locally compact Hausdorff group acting on some locally compact Hausdorff space
X, thenL1 (G, C0(X)) is a regular completion ofCc (GnX) because its norm dominates the
norm of the regular completionL1 (GnX).

Regularity is essential in our construction of the homomorphismMB
A down below. It also makes

some arguments in the next chapter simpler (but might perhaps be avoided in some instances).
Note that in [Laf02] there is an argument which seems to hold in general but is definitely simpler

in the case of regular unconditional completions: The proof of Lemme 1.7.8 uses a concept very
similar to regularity, and the subsequent arguments show thatB(G,B) andC*

r(G,B) have the same
K-theory but do not explain explicitly whyB(G,B) andA(G,B) have the sameK-theory, too.10 If
A(G) is regular, then one can use the same argument as forC*

r(G,B).
The issue recurs in [Laf06], the respective result there is Lemme 1.5.7. Note that there is a very

similar statement (for regular completions) in Chapter 8 of this thesis, namely Proposition 8.4.3.

7.5 The (inverse) homomorphismMB
A

Let G be a proper locally compact Hausdorff groupoid with unit spaceX and Haar systemλ. Let
A(G) be a regular unconditional completion ofCc(G) acting on the equivariant pairH(G) of locally
convex monotone completions. LetB be a non-degenerateG-Banach algebra.

10V. Lafforgue has recently given me an argument why Lemme 1.7.8 is true in general; it consists of a careful estimate
showing directly thatΓc(G,B) is always a hereditary subalgebra ofA(G,B).
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7.5.1 The first step: The tensor product withH(G, B)

If E be is a non-degenerateC0 (X/G)-BanachA(G, B)-pair, then we can form the tensor product
E ⊗A(G,B) H(G, B). This is a non-degenerateC0(X)-BanachΓ0(X,B)-pair. Actually, this con-
struction defines a functor from the category of non-degenerateC0 (X/G)-BanachA(G, B)-pairs with
the bounded linear operators to the category of non-degenerateC0(X)-BanachΓ0(X,B)-pairs with
the bounded linear operators, linear and contractive on the morphism sets. BecauseA(G, B) acts on
H(G, B) by locally compact operators, it follows that locally compact operators are mapped to locally
compact operators under this functor. We therefore have

Lemma 7.5.1. If (E, T ) ∈ Eban (C0(X/G); C0(X/G), A(G, B)), then(
E ⊗A(G,B) H(G, B) , T ⊗ 1

)
∈ Eban (C0(X); C0(X), Γ0(X,B)) .

The map(E, T ) 7→
(
E ⊗A(G,B) H(G, B), T ⊗ 1

)
induces a homomorphism· ⊗A(G,B) H(G, B)

RKKban (C0(X/G); C0(X/G), A(G, B)) → RKKban (C0(X); C0(X), Γ0(X,B)) .

To verify that we really have a well-defined homomorphism we have to check that(E, T ) 7→(
E ⊗A(G,B) H(G, B), T ⊗ 1

)
respects the sum of cycles (which is trivial) and that is compatible with

homotopy. The latter fact can be proved just as in 1.10.29, i.e., by using the BanachA(G, B)[0, 1]-
Γ0(X,B)[0, 1]-pairH(G, B)[0, 1].

An alternative picture of the first step

Note thatH(G, B) is not exactly a Morita cycle fromA(G, B) to Γ0(X,B), becauseA(G, B) is
a C0(X/G)-Banach algebra andΓ0(X,B) is C0(X)-Banach algebra. However, we can change the
setting a little bit and use the theory that we have provided in the earlier chapters by regardingH(G, B)
as aC0(X)-linear Morita cycle.

Let π denote the canonical projection fromX to X/G. Recall from Chapter 2 thatπ∗E is de-
fined asC0(X)⊗C0(X/G) E for everyC0(X/G)-Banach spaceE. If A is aC0(X/G)-Banach algebra,
thenπ∗A is a C0(X)-Banach algebra. As a special case we haveπ∗C0(X/G) = C0(X) ⊗C0(X/G)

C0(X/G) ∼= C0(X) (asC0(X)-Banach algebras). By what we have shown in Chapter 2 we can now
deduce that(E, T ) 7→ (π∗E, π∗T ) defines a homomorphism

π∗ : RKKban (C0(X/G); C0(X/G), A(G, B)) → RKKban (C0(X); C0(X), π∗A(G, B)) .

Combining the givenC0(X)-action onH(G, B) with the left action ofA(G, B) we get a left action
of π∗A(G, B) = C0(X) ⊗C0(X/G) A(G, B) on H(G, B). It is also an action by locally compact
operators. NowH(G, B) is an element ofMban (C0(X); C0(X),Γ0(X,B)) when equipped with this
action. Tensoring with this Morita cycle will thus yield a homomorphism⊗π∗A(G,B)H(G, B)

RKKban (C0(X); C0(X), π∗A(G, B)) → RKKban (C0(X); C0(X), Γ0(X,B)) .

Let E be a non-degenerateC0(X/G)-BanachA(G, B)-pair. Then we can actually compute what the
composition ofπ∗ and⊗A(G,B)H(G, B) does toE:

(π∗E)⊗π∗A(G,B) H(G, B)
∼=

(
C0(X)⊗C0(X/G) E

)
⊗C0(X)⊗C0(X/G)A(G,B)

(
C0(X)⊗C0(X) H(G, B)

)
∼=

(
C0(X)⊗C0(X) C0(X)

)
⊗C0(X/G)⊗C0(X/G)C0(X)

(
E ⊗A(G,B) H(G, B)

)
∼= C0(X)⊗C0(X)

(
E ⊗A(G,B) H(G, B)

)
∼= E ⊗A(G,B) H(G, B).
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It is easy to check that this isomorphism intertwinesπ∗T ⊗1 andT ⊗1 if (E, T ) is a cycle. Hence we
have shown that this alternative approach gives the same result as tensoring withH(G, B) right away.

7.5.2 The second step: FromC0(X)-Banach spaces to fields

Recall from Chapter 4 thatF (·) is a functor from theC0(X)-Banach spaces to the u.s.c. fields of
Banach spaces overX that sends a spaceE to (Ex)x∈X whereEx is the fibre ofE over x. We
have shown that this functor induces a homomorphism onKKban-theory by sending aRKKban-cycle
(E, T ) to F (E, T ) = (F (E) , F (T )). Note thatF (·) takes bounded locally compact operators to
bounded locally compact operators.

Definition 7.5.2. LetE be aC0 (X/G)-BanachA(G, B)-pair. Define

MB
A,H(E) := F

(
E ⊗C0(X/G)

A(G,B) H(G, B)
)
.

ThenMB
A,H(E) is a of BanachB-pair.

Note thatMB
A,H(·) is actually a functor from theC0(X/G)-BanachA(G, B)-pairs to the BanachB-

pairs which sends locally compact operators to locally compact operators.

Lemma 7.5.3. If (E, T ) ∈ Eban (C0(X/G); C0(X/G), A(G, B)), then11

MB
A,H(E, T ) :=

(
MB
A,H(E), MB

A,H(T )
)
∈ Eban

X (CX , B) .

The map(E, T ) 7→MB
A,H(E, T ) induces a homomorphism

MB
A,H(E, T ) : RKKban (C0(X/G); C0(X/G), A(G, B)) → KKban

X (CX , B) .

7.5.3 The third step: TheG-action

Let E be aC0 (X/G)-BanachA(G, B)-pair. Then, for allx ∈ X, the fibre ofMB
A,H(E) at x can be

identified with
Eπ(x) ⊗A(G,B)π(x)

H(G, B)x.

Definition and Proposition 7.5.4. LetE be aC0 (X/G)-BanachA(G, B)-pair. For allγ ∈ G, define
a map

Eπ(s(γ)) ⊗A(G,B)π(s(γ))
H(G, B)s(γ) → Eπ(r(γ)) ⊗A(G,B)π(r(γ))

H(G, B)r(γ),

by Id⊗αγ whereα denotes the action ofG onH(G, B). This defines an action ofG onMB
A,H(E)

calledId⊗α. With this action,MB
A,H(E) is aG-BanachB-pair.

To see that this really is a continuous action we provide a conceptional alternative picture of the
construction in the upcoming subsection. For now, we just state the results that we are going to
obtain:

Proposition 7.5.5. Let E and F be C0 (X/G)-BanachA(G, B)-pairs. LetT ∈ LC0(X/G)
A(G,B) (E,F ).

Then
MB
A,H(T ) := F (T ⊗ 1) ∈ LB

(
MB
A,H(E), MB

A,H(F )
)

is G-equivariant.

11During the technical part of this chapter we will distinguishC0(X) andCX to have clearer statements.
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Hence the mapsE 7→ MB
A,H(E) andT 7→ MB

A,H(T ) define a functor from theC0 (X/G)-Banach
A(G, B)-pairs with the bounded fields of linear operators to theG-BanachB-pairs with theG-equi-
variant bounded fields of operators. It maps locally compact operators to locally compact operators.

Proposition 7.5.6. Let (E, T ) ∈ Eban (C0 (X/G) ; C0 (X/G) , A(G, B)). Then

MB
A,H(E, T ) :=

(
MB
A,H(E), MB

A,H(T )
)
∈ Eban

G (CX , B)

with G-equivariantT . The mapMB
A,H induces a natural homomorphism of groups

MB
A,H : RKKban (C0 (X/G) ; C0 (X/G) , A(G, B)) → KKban

G (CX , B) .

To show that this homomorphism is indeed natural is rather straightforward but requires a bit of
work. The key ingredient is the obvious homomorphismΦ with coefficient mapϕ fromH(G, B) to
H(G, B′) if ϕ is aG-equivariant homomorphism fromB toB′; one has to show that this homomor-
phism is compatible with the actions ofA(G, B) andA(G, B′) in the sense that one can approximate
the action of someβ ∈ Γc(G, r∗B) onH(G, B) and ofϕ ◦ β onH(G, B′) simultaneously by finite
rank operators. We leave out the details.

7.5.4 An alternative picture of the construction

Recall that we used the nameπ for the canonical projection fromX to X/G. Let π also denote the
map fromG toX/G that mapsγ toπ(r(γ)) = π(s(γ)) (which extends theπ : X → X/G). Regarding
X/G as a locally compact Hausdorff groupoid the mapπ : G → X/G is actually a strict morphism of
groupoids. IfE is a u.s.c. field of Banach spaces overX/G, thenπ∗E is aG-Banach space (with a
rather trivial action). IfT is a continuous field of linear maps between u.s.c. fields of Banach spaces
overX/G, thenπ∗T is anG-equivariant continuous field of linear maps betweenG-Banach spaces.
We use these facts to define our “inverse homomorphism”:

1. The first step is the mapF (·), this time giving a homomorphism

F (·) : RKKban (C0(X/G); C0(X/G), A(G, B)) → KKban
X/G

(
CX/G , F (A(G, B))

)
.

2. The second step is the pullback homomorphism alongπ:

π∗ : KKban
X/G

(
CX/G , F (A(G, B))

)
→ KKban

G (CX , π
∗F (A(G, B))) .

Note that this homomorphism, on the level of cycles, just produces cycles withG-equivariant
operator.

3. We have discussed above howH(G, B) can be regarded as aC0(X)-linear Morita cycle from
π∗A(G, B) to Γ0(X,B). Observe thatF (π∗A(G, B)) ∼= π∗F (A(G, B)), so we can regard
F (H(G, B)) as a Morita cycle fromπ∗F (A(G, B)) toB ∼= F (Γ0(X,B)). The important point
is that this Morita cycle carries an action ofG which makes it aG-equivariant Morita cycle!
Hence we get a homomorphism

⊗π∗F(A(G,B))F (H(G, B)) : KKban
G (CX , π

∗F (A(G, B))) → KKban
G (CX , B) .

On the level of cycles: If a cycle has aG-equivariant operator, then it stays equivariant under
this homomorphism.

The composition of these three homomorphisms gives the desired natural homomorphism

MB
A,H : RKKban (C0 (X/G) ; C0 (X/G) , A(G, B)) → KKban

G (CX , B)

which produces cycles withG-equivariant operators.
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7.5.5 The uniqueness of the inverse homomorphism

For every regular unconditional completionA(G) of Cc(G), we have a canonical homomorphism from
RKKban (C0 (X/G) ; C0 (X/G) , A(G, B)) → KKban

G (CX , B), canonical in the sense that it does
not depend on the particular shape of the equivariant pair of monotone completions on whichA(G)
acts:

Proposition 7.5.7. LetH′(G) = (H′<(G), H′>(G)) be another equivariant pair of locally convex
completions ofCc(G) on whichA(G) acts. Then the natural homomorphismsMB

A,H andMB
A,H′ are

equal. We call this natural homomorphismMB
A .

Proof. We first consider the case that‖·‖H< ≤ ‖·‖H′< and‖·‖H> ≤ ‖·‖H′> . We then have a canonical
homomorphismΦ from H′(G, B) to H(G, B) which gives us an equivariant homomorphismF (Φ)
from F (H′(G, B)) to F (H(G, B)). The homomorphismF (Φ) is actually a morphism of equivariant
Morita cycles fromπ∗F (A(G, B)) to B. A careful revision of the proof thatπ∗F (A(G, B)) acts
by compact operators onF (H′(G, B)) and onF (H(G, B)) shows thatF (Φ) satisfies the conditions
of Theorem 3.7.1 and hence induces a homotopy fromF (H′(G, B)) to F (H(G, B)). SoMB

A,H′ =
MB
A,H.

Now consider the case thatH′ is a general equivariant pair of locally convex completions ofCc(G)
on whichA(G) acts. By taking the maximum of the norms onH<(G) andH′<(G) we can define an
equivariant locally convex completionH′′<(G) of Cc(G) on whichA(G) acts; similarly we can define
H′′>(G). The pairH′′(G) := (H′′<(G), H′′>(G)) is a pair of locally convex completions on which
A(G) acts. By the first part of the proof we can concludeMB

A,H = MB
A,H′′ = MB

A,H′ .

7.6 JBA ◦MB
A = Id on the level ofKKban

Let G be a proper locally compact Hausdorff groupoid with unit spaceX and Haar systemλ. Let
A(G) be a regular unconditional completion ofCc(G). LetB be a non-degenerateG-Banach algebra.
Assume that there exists a pairD(X) of monotone completions ofCc(X) compatible withA(G) (this
is the case ifG admits a cut-off function which, in turn, is true ifX/G is σ-compact).

Theorem 7.6.1.JBA ◦MB
A = Id as an endomorphism ofRKKban (C0(X/G); C0(X/G), A (G, B)).

Idea of the proof

BecauseA(G) is regular, we can find an equivariant pairH(G) = (H<(G), H>(G)) of monotone
completions ofCc (G) on whichA(G) acts. Let(E, T ) ∈ Eban (C0(X/G); C0(X/G), A (G, B)). We
have to show that(E, T ) is homotopic toJBA,D(MB

A,H(E, T )). The obvious strategy is to define a
morphism fromJBA,D(MB

A,H(E)) toE which induces a homotopy; there is a canonical candidate for
such a morphism defined on a dense subspace, but this candidate does not extend to a continuous
morphism on the entire space: The norms onJBA,D(MB

A,H(E)) andE seem to be difficult to compare
in general.

We overcome this problem by constructing a pairẼ := (Ẽ<, Ẽ>) of C-vector spaces which are
equipped with compatibleCc(X/G)-module structures and left/rightΓc (G, r∗B)-module structures
and a bilinear map from̃E< × Ẽ> to Γc (G, r∗B). On this pair, which could be called a “pre-
A(G, B)-pair”, we construct a pair of formally adjoint operatorsT̃ . Moreover, we define canonical
“homomorphisms”ΦE from Ẽ toE andΨE from Ẽ to JBA,D(MB

A,H(E)) which intertwineT̃ andT
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andJBA,D(MB
A,H(T )), respectively:

(Ẽ, T̃ )
ΦE

yyssssssssss
ΨE

''OOOOOOOOOOOO

(E, T ) JBA,D(MB
A,H(E, T ))

One can think ofẼ as a dense subspace of both,E andJBA,D(MB
A,H(E)). Now we put onẼ the

supremum of the semi-norms which are induced by the two homomorphisms, making the homomor-
phisms continuous. The completion ofẼ together with the continuous extension ofT̃ will then be in
Eban (C0(X/G); C0(X/G), A (G, B)) and the two homomorphisms will induce homotopies. Hence
also(E, T ) andJBA,D(MB

A,H(E, T )) are homotopic.

The construction of Ẽ, ΦE and ΨE

We are going to cut the proof into a series of lemmas and definitions. In this section, letE andF be
C0(X/G)-BanachA(G, B)-pairs.

Definition 7.6.2 (The pair Ẽ). Define

Ẽ> := E> ⊗Γc(G, r∗B) Γc (G, r∗B)

and
Ẽ< := Γc (G, r∗B)⊗Γc(G, r∗B) E

<.

These vector spaces carry canonical and compatible actions ofΓc (G, r∗B) andCc (X/G). A bracket
on Ẽ is defined by

〈·, ·〉 : Ẽ< × Ẽ> → Γc (G, r∗B) ,〈
β< ⊗ e<, e> ⊗ β>

〉
(γ) := β< ∗ 〈e<, e>〉 ∗ β> =

〈
β<e<, e>β>

〉
.

We check that the bracket has indeed its values inΓc(G, r∗B): The element〈e<, e>〉 is inA(G, B) by
definition, and we now show that the productβ< ∗ β ∗ β> is in Γc(G, B) for all β<, β> ∈ Γc(G, B)
andβ ∈ A(G, B). If we regardβ< as an element ofH<(G, B) andβ> as an element ofH>(G, B),
then we can conclude from Proposition 7.3.14 that the mapβ 7→ β< ∗β ∗β> is continuous fromA(G)
to Γ0(G, B) becauseA(G) acts onH(G). Moreover, the support of the productβ< ∗ β ∗ β> is always
contained in the set{γ ∈ G : r(γ) ∈ r(suppβ<), s(γ) ∈ s(suppβ>)}, which is compact because
G is proper.12

Definition 7.6.3 (The mapΦE). Define

Φ>
E : Ẽ> → E>, e> ⊗ β> 7→ e>β>

and
Φ<
E : Ẽ< → E<, β< ⊗ e< 7→ β<e<.

Both maps are clearlyΓc (G, r∗B)- andCc (X/G)-linear. The pairΦE =
(
Φ<
E ,Φ

>
E

)
is compatible

with the brackets oñE andE.
12Compare the proof of Lemma 8.2.4.
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Definition 7.6.4 (The mapΨE). Lete> ∈ E> andβ> ∈ Γc (G, r∗B). Sinceβ> has compact support,
the functionx 7→ (e> ⊗ β>)x = e>π(x) ⊗ β

>
x is in Γc

(
X, F

(
E> ⊗A(G,B) H>(G, B)

))
which we can

regard as an elementΨ>
E (e> ⊗ β>) of D>

(
X, F

(
E> ⊗A(G,B) H>(G, B)

))
; hereπ : G → X/G

denotes the canonical projection. This gives rise to a mapΨ>
E from Ẽ> to JBA,D(MB

A,H(E))>.
Similarly we define

Ψ<
E

(
β< ⊗ e<

)
x

:= β<x ⊗ e<π(x) ∈ H
<(G, B)x ⊗A(G,B)π(x)

E<π(x)

for all e< ∈ E<, β< ∈ Γc (G, r∗B) andx ∈ X, giving us aΓc(G, r∗B)-linear andCc(X/G)-linear
mapΨ<

E from Ẽ< to JBA,D(MB
A,H(E))<.

Lemma 7.6.5. ΨE =
(
Ψ<
E ,Ψ

>
E

)
is a pair ofCc(X/G)-linear andΓc(G, r∗B)-linear maps, compati-

ble with the brackets oñE andJBA,D(MB
A,H(E)).

Proof. Let e> ∈ E> andβ> ∈ Γc (G, r∗B). Letχ ∈ Cc(X/G). Then

Ψ>
E

(
χe> ⊗ β>

)
x

= (χe>)π(x) ⊗ β>x = χ(π(x))Ψ>
E

(
e> ⊗ β>

)
x

soΨ>
E is Cc(X/G)-linear. Ifβ ∈ Γc(G, r∗B), then

Ψ>
E

(
(e> ⊗ β>)β

)
x

= e>π(x) ⊗ (β>β)x

whereas (
Ψ>
E(e> ⊗ β>)β

)
x

=
∫
Gx

γ(e>π(x) ⊗ β>s(γ))γβ(γ−1) dλx(γ)

= e>π(x) ⊗
∫
Gx

γβ>s(γ)γβ(γ−1) dλx(γ).

Now (
γβ>s(γ)γβ(γ−1)

)
(γ′) = β>(γ′γ)γ′(γβ(γ−1))

for all γ′ ∈ Gx, and[∫
Gx

γβ>s(γ)γβ(γ−1) dλx(γ)
]

(γ′) =
∫
Gx

[
γβ>s(γ)γβ(γ−1)

]
(γ′) dλx(γ)

=
∫
Gx

β>(γ′γ)(γ′γ)β(γ−1) dλx(γ) =
∫
Gx

β>(γ)γβ(γ−1γ′) dλx(γ) = (β> ∗ β)(γ′),

so (
Ψ>
E(e> ⊗ β>)β

)
x

= e>π(x) ⊗ (β> ∗ β)x

as well. HenceΨ>
E is Γc(G, r∗B)-linear. Similar calculations can be done for the left-hand side.

To see thatΨE =
(
Ψ<
E ,Ψ

>
E

)
is compatible with the brackets lete< ∈ E<, e> ∈ E>, β<, β> ∈

Γc (G, r∗B) andγ ∈ G. Then〈〈
Ψ<
E

(
β< ⊗ e<

)
, Ψ>

E

(
e> ⊗ β>

) 〉〉
(γ)

=
〈
Ψ<
E

(
β< ⊗ e<

)
r(γ)

, γΨ>
E

(
e> ⊗ β>

)
s(γ)

〉
MB
A,H(E)r(γ)

=
〈
β<r(γ) ⊗ e<π(γ), γ

(
e>π(γ) ⊗ β>s(γ)

)〉
MB
A,H(E)r(γ)

=
〈
β<r(γ),

〈
e<π(γ), e

>
π(γ)

〉
Eπ(x)

γβ>s(γ)

〉
H(G,B)r(γ)

=
〈
β<r(γ),

(〈
e<, e>

〉
E

)
π(γ)

γβ>s(γ)

〉
H(G,B)r(γ)

.
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Write α := 〈e<, e>〉 ∈ Γc(G, r∗B). Now[
απ(γ)γβ

>
s(γ)

]
(γ′) =

∫
Gr(γ′)

α(γ′′)γ′′(γβ>s(γ))(γ
′′−1γ′) dλr(γ

′)(γ′′)

=
∫
Gr(γ′)

α(γ′′)γ′′β>(γ′′−1γ′γ) dλr(γ
′)(γ′′) = (α ∗ β>)(γ′γ)

for all γ′ ∈ Gr(γ). So 〈
β<r(γ),

(〈
e<, e>

〉
E

)
π(γ)

γβ>s(γ)

〉
H(G,B)r(γ)

=
∫
Gr(γ)

β<(γ′)γ′
[(
α(π(γ))γβ>s(γ)

)
(γ′−1)

]
dλr(γ)(γ′)

=
∫
Gr(γ)

β<(γ′)γ′
[
(α ∗ β>)(γ′−1γ)

]
dλr(γ)(γ′)

= (β< ∗ α ∗ β>)(γ).

Hence 〈〈
Ψ<
E

(
β< ⊗ e<

)
, Ψ>

E

(
e> ⊗ β>

) 〉〉
= β< ∗ α ∗ β> = β< ∗ 〈e<, e>〉 ∗ β>

= 〈β< ⊗ e<, e> ⊗ β>〉Ẽ .

Definition 7.6.6. LetS ∈ LA(G,B)(E,F ) be an operator between theC0(X/G)-BanachA(G, B)-pairs
E andF . Define

S̃> : Ẽ> → F̃>, ξ> ⊗ β> 7→ S>(ξ>)⊗ β>

and
S̃< : F̃< → Ẽ<, β< ⊗ ξ< 7→ β< ⊗ S<(ξ<).

Note thatS̃ :=
(
S̃<, S̃>

)
is formally adjoint in the following sense:〈
S̃<
(
β< ⊗ ξ<

)
, ξ> ⊗ β>

〉
= β< ∗

〈
S<(ξ<), ξ>

〉
∗ β>

= β< ∗
〈
ξ<, S>(ξ>)

〉
∗ β> =

〈
β< ⊗ ξ<, S̃>

(
ξ> ⊗ β>

)〉
for all β<, β> ∈ Γc(G, r∗B), ξ< ∈ Γc(X,F<) andξ> ∈ Γc(X,E>).

Lemma 7.6.7. 1. The mapsΦE andΦF intertwineS̃ andS in the obvious sense.

2. The mapsΨE andΨF intertwineS̃ andJBA,D

(
MB
A,H(S)

)
.

Proof. We only show thatΨ>
E andΨ>

F intertwineS̃> andJBA,D(MB
A,H(S))>. The situation forΨ<

E

andΨ<
F is similar, and also the situation forΦE andΦF is similar and (even) simpler.

Let ξ> ∈ Γc(X,E>) andβ> ∈ Γc (G, r∗B). Then

Ψ>
F

(
S̃>(ξ> ⊗ β>)

)
x

= Ψ>
F

(
S>(ξ>)⊗ β>

)
x

= S>(ξ>)π(x) ⊗ β>x = (S> ⊗ 1)x
(
ξ>π(x) ⊗ β>x

)
for all x ∈ X.
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Putting a norm on Ẽ

Definition 7.6.8 (The completionE of Ẽ). If ẽ> ∈ Ẽ>, then define∥∥ẽ>∥∥ := max
{∥∥Φ>

E(ẽ>)
∥∥ , ∥∥Ψ>

E(ẽ>)
∥∥} .

This is a semi-norm oñE>. Let E
>

be the (Hausdorff-) completion of̃E> with respect to this
semi-norm. In an analogous fashion, define a semi-norm onẼ< and call the completionE

<
.

Lemma 7.6.9. The actions ofΓc(G, r∗B) and Cc(X/G) on Ẽ extend to non-degenerate actions of
A(G, B) andC0(X/G) onE. The bracket oñE extends to a continuous bracket onE.

Proof. If ẽ> ∈ Ẽ>, β> ∈ Γc (G, r∗B), andχ ∈ Cc(X/G), then∥∥ẽ>β>∥∥ = max
{∥∥Φ>

E(ẽ>)β>
∥∥ , ∥∥Ψ>

E(ẽ>)β>
∥∥}

≤ max
{∥∥Φ>

E(ẽ>)
∥∥∥∥β>∥∥A , ∥∥Ψ>

E(ẽ>)
∥∥∥∥β>∥∥A} =

∥∥ẽ>∥∥∥∥β>∥∥A
and similarly, ∥∥χẽ>∥∥ ≤ ‖χ‖∞

∥∥ẽ>∥∥ .
So the actions ofΓc(G, r∗B) andCc(X/G) on Ẽ> extend to actions ofA(G, B) andC0(X/G) onE

>
.

Similarly forE
<

. It is clear that all the actions are non-degenerate.
If ẽ< ∈ Ẽ< andẽ> ∈ Ẽ>, then∥∥〈ẽ<, ẽ>〉∥∥ =

∥∥〈Φ<(ẽ<), Φ>(ẽ>)
〉∥∥ ≤ ∥∥Φ<(ẽ<)

∥∥∥∥Φ>(ẽ>)
∥∥ ≤ ∥∥ẽ<∥∥∥∥ẽ>∥∥ .

So the bracket oñE is contractive.

Definition and Lemma 7.6.10.The mapΦ>
E extends by continuity to a continuous linear map from

E
>

toE which isA(G, B)- andC0(X/G)-linear. Similar things can be said aboutΦ<
E , Ψ>

E andΨ<
E .

We get homomorphismsΦE fromE toE andΨE fromE to JBA,D(MB
A,H(E)).

Definition and Lemma 7.6.11.Let S ∈ LA(G,B)(E,F ) as above. Then the map̃S> satisfies∥∥∥S̃>(ẽ>)
∥∥∥ ≤ ∥∥S>∥∥∥∥ẽ>∥∥

for all ẽ> ∈ Ẽ> and extends therefore to an operatorS
>

fromE
>

to F
>

. Analogously forS̃<. We
thus get an elementS ∈ LA(G,B)

(
E,F

)
of norm≤ ‖S‖. The mapS 7→ S is C-linear and functorial.

The homomorphismsΦE andΦF intertwineS andS in the obvious sense and the homomorphisms
ΨE andΨF intertwineS andJBA,D(MB

A,H(S)).

By direct comparison of the operators one can show:

Lemma 7.6.12.Lete< ∈ Γ0(X,E<), f> ∈ Γ0(X,F>), β<, β> ∈ Γc(G, r∗B). If

S =
∣∣f>β>〉〈β<e<∣∣ ∈ KA(G,B) (E,F ) ,

then
S =

∣∣f> ⊗ β>
〉〈
β< ⊗ e<

∣∣ ∈ KA(G,B)

(
E,F

)
and

JBA,D
(
MB
A,H(S)

)
=
∣∣Ψ>

F (f>⊗β>)
〉〈

Ψ<
E(β<⊗e<)

∣∣ ∈ KA(G,B)

(
JBA,D

(
MB
A,H(E)

)
, JBA,D

(
MB
A,H(F )

))
.

It follows for all S ∈ KA(G,B) (E,F ) that S andJBA,D(MB
A,H(S)) are compact and that(S, S) ∈

K(ΦE ,ΦF ) as well as(S, JBA,D(MB
A,H(S))) ∈ K(ΨE ,ΨF ).
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The proof of Theorem 7.6.1

Let (E, T ) ∈ Eban (C0(X/G); C0(X/G), A(G, B)). We show that
(
E, T

)
is homotopic to(E, T ) as

well as toJBA,D

(
MB
A,H(E, T )

)
.

If χ ∈ Cc(X/G) andS := χ(T 2 − 1), then(S, S) is in K(ΦE) and
(
S, JBA,D

(
MB
A,H(S)

))
∈

K(ΨE) by Lemma 7.6.12. If follows that(E, T ) is in Eban (C0(X/G); C0(X/G), A(G, B)) and,

using Theorem 2.6.2, that it is homotopic to(E, T ) as well as toJBA,D

(
MB
A,H(E, T )

)
.

7.7 EmbeddingE into H(G, E) as a summand

An important technical step in the proof of the C∗-algebraic version of the generalised Green-Julg
theorem is the following: IfE is aG-HilbertB-module, thenE is a direct summand ofL2(G, E). The
proof of this observation makes use of a cut-off function forG.

In the Banach algebraic situation, something similar is true: We can embed aG-BanachB-pairE
into the pairH(G, E), provided thatH(G) is a locally convex equivariant pair of monotone comple-
tions ofCc(G) and provided that there exists a suitable cut-off pair forG. Actually, we are not going to
embedE intoH(G, E), but, which is the technically correct way of rephrasing this, embedΓ0(X,E)
in H(G, E).

7.7.1 The embedding on the level of sections with compact support

Definition and Proposition 7.7.1. Let c = (c<, c>) be a cut-off pair forG. Let E be aG-Banach
space. Define

π>E : Γc (G, r∗E) → Γc(X,E),
(
π>E(ξ)

)
(x) :=

∫
Gx

c<(s(γ′))γ′ξ(γ′−1) dλx(γ′)

and

ι>E : Γc(X,E) → Γc (G, r∗E) ,
(
ι>E(e)

)
(γ) := c>(r(γ))γe(s(γ)).

Then both maps areC-linear,C(X)-linear13 and continuous for the inductive limit topologies. More-
over,π>E ◦ ι

>
E = IdΓc(X,E) andP>E := ι>E ◦ π

>
E is a projection.

Proof. Let us first considerπ>E : Let ξ be an element ofΓc (G, r∗E). Write K for the support of
ξ. The support ofγ′ 7→ c<(s(γ′))γ′ξ(γ′−1) is contained inK−1, so this is a continuous section
of compact support.s(K) is a compact subset ofX and if x /∈ s(K) then π>E(ξ)(x) = 0, so
π>E(ξ) is a section of compact support, too. The mapπ>E is clearlyC-linear andC(X)-linear. Note
that

∥∥π>E(ξ)
∥∥
∞ ≤ ‖ξ‖∞ supx∈s(K)

∫
Gx c

<(s(γ)) dλx(γ), soπ>E is continuous for the inductive limit
topology.

Let us now considerι>E : Let e be inΓc(X,E). Then the support ofγ 7→ c>(r(γ))γe(s(γ)) is
compact by the support property ofc>. Moreover, it is a continuous section, soι>E is well-defined.
The mapι>E is C(X)-linear andC-linear. From

∥∥ι>E(e)
∥∥
∞ ≤ ‖e‖∞ sups(γ)∈supp e c

>(r(γ)) it is easy
to deduce thatι>E is continuous for the inductive limit topology by noting that the support ofι>E(e)
depends monotonously on the support ofe.

13If we take the action(ξχ)(γ) = ξ(γ)χ(s(γ)), ξ ∈ Γc (G, r∗E), χ ∈ C(X), γ ∈ G.
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If e ∈ Γc(X,E), then

π>E
(
ι>E(e)

)
(x) = π>E

(
γ 7→ c>(r(γ))γe(s(γ))

)
(x)

=
∫
Gx

c<(s(γ′))c>(r(γ′−1))γ′γ′−1e(s(γ′−1)) dλx(γ) = e(x)

for all x ∈ X, soπ>E ◦ ι
>
E is the identity. It follows thatι>E ◦ π

>
E is an idempotent.

Definition 7.7.2. Let c = (c<, c>) be a cut-off pair forG. LetE be aG-Banach space. Define

π<E : Γc (G, r∗E) → Γc(X,E),
(
π<E(ξ)

)
(x) :=

∫
Gx

c>(s(γ′))ξ(γ′) dλx(γ′)

and

ι<E : Γc(X,E) → Γc (G, r∗E) ,
(
ι<E(e)

)
(γ) := c<(s(γ))e(r(γ)).

Then both maps areC-linear,C(X)-linear and continuous for the inductive limit topologies. More-
over,π<E ◦ ι

<
E = IdΓc(X,E) andP<E := ι<E ◦ π

<
E is a projection.

Proposition 7.7.3. Let c = (c<, c>) be a cut-off pair forG. LetB be aG-Banach algebra and letE
be aG-BanachB-pair. The map

π>E> : Γc
(
G, r∗E>

)
→ Γc(X,E>)

is Γc(X,B)-linear and so is the map

ι<E< : Γc(X,E<) → Γc
(
G, r∗E<

)
.

The pair
(
ι<E< , π

>
E>

)
satisfies

∀e< ∈ Γc
(
X,E<

)
∀ξ> ∈ Γc

(
G, r∗E>

)
:
〈
e<, π>E>(ξ>)

〉
=
〈
ι<E<(e<), ξ>

〉
.

A similar formula is true for the pair
(
π<E< , ι

>
E>

)
and thus for the pair

(
P<E< , P

>
E>

)
which we also

denote byPE .

Proof. Let e< ∈ Γc (X,E<) andξ> ∈ Γc (G, r∗E>). Then

〈
e<, π>E>(ξ>)

〉
(x) =

〈
e<(x), π>E>(ξ>)(x)

〉
=
〈
e<(x),

∫
Gx

c<(s(γ))γξ>(γ−1) dλx(γ)
〉

=
∫
Gx

〈
e<(x), c<(s(γ))γξ>(γ−1)

〉
dλx(γ)

=
∫
Gx

〈
c<(s(γ))e<(r(γ)), γξ>(γ−1)

〉
dλx(γ) =

〈
ι<E<(e<), ξ>

〉
(x)

for all x ∈ X. The calculations for the other pair is similar.
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7.7.2 H(G)-cut-off pairs

LetH(G) = (H<(G), H>(G)) be an equivariant pair of monotone completions ofCc(G).

Definition 7.7.4 (H(G)-cut-off pair). Let c = (c<, c>) be a cut-off pair forG. Thenc is called an
H(G)-cut-off pair if

(7.4) ∀x ∈ X :
∥∥∥Gx 3 γ 7→ c>(r(γ))

∥∥∥
H>(Gx)

≤ 1

and

(7.5) ∀x ∈ X :
∥∥∥Gx 3 γ 7→ c<(s(γ))

∥∥∥
H<(Gx)

≤ 1.

Examples 7.7.5.Assume thatX/G is σ-compact. Letc be a cut-off-function forG.

1. The Proposition 7.1.7 gives aH(G)-cut-off pair(c, d) for the pairH(G) =
(
L1(G), C0 (G)

)
.

2. If p, p′ ∈]1,∞[ such that1p + 1
p′ = 1, then

(
c

1
p′ , c

1
p

)
is aH(G)-cut-off pair for the pair

H(G) =
(
Lp

′
r (G) , Lps (G)

)
.

Lemma 7.7.6. If c = (c<, c>) is anH(G)-cut-off pair, then equality holds in (7.4) and (7.5).

Proof. Let x ∈ X. Then〈c<x , c>x 〉x =
∫
Gx c

<(s(γ))c>(r(γ−1)) dλx(γ) = 1. It follows that

1 ≤
∥∥∥Gx 3 γ 7→ c<(s(γ))

∥∥∥
H<(Gx)

∥∥∥Gx 3 γ 7→ c>(r(γ))
∥∥∥
H>(Gx)

.

If c is anH(G)-cut-off pair, then it follows that both norms have got to be one.

Proposition 7.7.7.Letc = (c<, c>) be a cut-off pair forG. Thenc is anH(G)-cut-off pair if and only
if

∀χ ∈ Cc(X) :
∥∥∥γ 7→ c>(r(γ))χ(s(γ))

∥∥∥
H>(G)

= ‖χ‖∞

and
∀χ ∈ Cc(X) :

∥∥∥γ 7→ c<(s(γ))χ(r(γ))
∥∥∥
H<(G)

= ‖χ‖∞ .

Proof. Assume thatc is anH(G)-cut-off pair. Letχ ∈ Cc(X). For allx ∈ X, we have∥∥∥Gx 3 γ 7→ c>(r(γ))χ(s(γ))
∥∥∥
H>(Gx)

= |χ(x)|
∥∥∥Gx 3 γ 7→ c>(r(γ))

∥∥∥
H>(Gx)

= |χ(x)| .

SinceH>(G) is locally convex it follows that∥∥∥γ 7→ c>(r(γ))χ(s(γ))
∥∥∥
H>(G)

= sup
x∈X

∥∥∥Gx 3 γ 7→ c>(r(γ))χ(s(γ))
∥∥∥
H>(Gx)

= sup
x∈X

|χ(x)| = ‖χ‖∞ .

A similar argumentation works for the left-hand side.
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To show the reverse implication suppose that the conditions given in the proposition hold. Let
x ∈ X. Letχ ∈ Cc(X) be such thatχ(x) = 1 and0 ≤ χ ≤ 1. Then by assumption∥∥∥γ 7→ c<(s(γ))χ(r(γ))

∥∥∥
H<(G)

= ‖χ‖∞ = 1.

Moreover, for allγ ∈ Gx: c<(s(γ))χ(r(γ)) = c<(s(γ)) and hence∥∥∥Gx 3 γ 7→ c<(s(γ))
∥∥∥
H<(Gx)

=
∥∥∥Gx 3 γ 7→ c<(s(γ))χ(r(γ))

∥∥∥
H<(Gx)

=
∥∥∥G 3 γ 7→ c<(s(γ))χ(r(γ))

∥∥∥
H<(G)x

.

This last norm is the infimum of‖G 3 γ 7→ c<(s(γ))χ(r(γ))χ′(r(γ))‖H<(G) for all χ′ ∈ Cc(X) with
χ′(x) = 1 and0 ≤ χ ≤ 1. But this is1. A similar argument holds forc>.

7.7.3 The embedding ofΓ0(X, E) into H(G, E)

LetH(G) = (H<(G), H>(G)) be an equivariant pair of monotone completions ofCc(G).

Proposition 7.7.8. LetB be aG-Banach algebra and letE be aG-BanachB-pair. Letc = (c<, c>)
be anH(G)-cut-off pair forG. Thenπ>E> : Γc (G, r∗E>) → Γc(X,E>) satisfies∥∥π>E>(ξ>)

∥∥
∞ ≤

∥∥ξ>∥∥H>(G,E>)

and ∥∥ι<E<(e<)
∥∥
H<(G,E<)

=
∥∥e<∥∥∞

for all ξ> ∈ Γc (G, r∗E>) ande> ∈ Γc(X,E<). So we can extendπ>E> to a contractive operator
H>(G, E>) fromΓ0 (G, r∗E>) andι<E< to an isometric operator fromΓ0 (G, r∗E<) toH>(G, E<),
bothC0(X)-linear andΓ0 (X,B). This gives a pair

πE :=
(
ι<E< , π

>
E>

)
∈ LC0(X)

Γ0(X,B) (H(G, E), Γ0 (X,E)) .

Similarly, we can construct a pair

ιE =
(
π<E< , ι

>
E>

)
∈ LB (Γ0(X,E), H(G, E))

of norm≤ 1. The operators satisfy
πE ◦ ιE = IdE .

We hence get an idempotent

PE := ιE ◦ πE ∈ LB (H(G, E), H(G, E))

of norm≤ 1.

Proof. Let ξ> ∈ Γc (G, r∗E>). Find a functionχ ∈ Cc(X) such that0 ≤ χ ≤ 1 andχ ≡ 1 on
s(supp ξ>). It follows thatξχ = ξ. We calculate∥∥π>E>(ξ>)

∥∥
∞ =

∥∥∥∥x 7→ ∫
Gx

c<(s(γ))γξ>(γ−1) dλx(γ)
∥∥∥∥
∞

≤
∥∥∥∥x 7→ ∫

Gx

c<(s(γ))χ(r(γ))
∥∥ξ>(γ−1)

∥∥ dλx(γ)
∥∥∥∥
∞

≤
∥∥∥γ 7→ c<(s(γ))χ(r(γ))

∥∥∥
H<(G)︸ ︷︷ ︸

≤1

∥∥∥ γ 7→ ∥∥ξ>(γ)
∥∥ ∥∥∥

H>(G)

≤ ‖ξ‖H>(G,E>) .
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Now lete< ∈ Γc(X,E<). Letχ ∈ Cc(X) be such that0 ≤ χ ≤ 1 andχ ≡ 1 on supp e<. We have∥∥∥γ 7→ c<(s(γ))e<(r(γ))
∥∥∥
H<(G,E<)

=
∥∥∥γ 7→ c<(s(γ))

∥∥χ(r(γ))e<(r(γ))
∥∥ ∥∥∥

H<(G,E<)

≤
∥∥e<∥∥∞ ∥∥∥γ 7→ c<(s(γ))χ(r(γ))

∥∥∥
H<(G)

≤
∥∥e<∥∥∞ .

The calculations forιE (and hence forPE) are almost identical.

Corollary 7.7.9. If anH(G)-cut-off pair exists, then we can regardE as a summand ofH(G, E).

7.8 MB
A ◦ JBA = Id on the level ofKKban

Let G be a proper locally compact Hausdorff groupoid with unit spaceX and Haar systemλ. Let
A(G) be a regular unconditional completion ofCc(G) acting on the equivariant pairH(G) of locally
convex monotone completions. LetB be a non-degenerateG-Banach algebra. Assume that there
exists anH(G)-cut-off pairc = (c<, c>).

Theorem 7.8.1.MB
A ◦ JBA = Id as an endomorphism ofRKKban(C0(X/G); C0(X/G), A(G, B)).

Idea of the proof: If (E, T ) ∈ Eban
G (C0(X), B) with G-equivariantT . Then we define a homomor-

phismΦE from MB
A,H(JBA,Ac(E)) to E that commutes with the operatorMB

A,H(JBA,Ac(T )) andT .
Note that we use the particular pairAc(X) of monotone completions ofCc(X) here; in our proof it is
important that we takeAc(X) for theH(G)-cut-off pairc to make the calculations work.

The main difficulty of the proof will then be to check thatΦE really gives a homotopy between
MB
A,H(JBA,Ac(E, T )) and(E, T ); this is carried out at the end of this section.

To defineΦE we introduce a bilinear contractive mapµ>E from Ac(X,E>) × H>(G, B) to
Γ0(X,E>), and similar on the left-hand side, and show that these maps give rise to a homomorphism
µ̂E fromAc(X,E) ⊗A(G,B) H(G, B) to Γ0(X,E) that intertwinesJBA,Ac(T ) ⊗ 1 andM (T ). Then
ΦE := F (µ̂E) is the homomorphism we are looking for; we just have to show that it isG-equivariant.
This part of the construction can and will be carried out for generalG-BanachB-modulesE and not
only for cycles(E, T ).

Construction of µ>E and µ̂>E : LetE be aG-BanachB-pair. Lete> ∈ Γc(X,E>) ⊆ Ac(X,E>) and
β> ∈ Γc(G, r∗B) ⊆ H(G, B). Thenj>E,c(e

>) ∈ Γc(G, r∗E>) ⊆ A(G, E>). More generally, if
ξ> ∈ Γc (G, r∗E>) ⊆ A (G, E>), then define

(ξ>β>)(γ) := (ξ> ∗ β>)(γ) =
∫
Gr(γ)

ξ>(γ′)γ′β>(γ′−1γ) dλr(γ)(γ′)

for all γ ∈ G. This defines an element ofΓc (G, r∗E>) ⊆ H> (G, E>) with ‖ξ>β>‖H>(G,E>) ≤
‖ξ>‖A(G,E>) ‖β>‖H>(G,B). So this product extends to a bilinear mapA (G, E>) × H> (G, B) →
H> (G, E>) which isA(G, B)-balanced,C0(X/G)-balanced, andΓ0(X,B)-linear as well asC0(X)-
linear ont the right.



7.8. MB
A ◦ JBA = Id ON THE LEVEL OF KKban 231

Now

(
j>E,c(e

>)β>
)

(γ) =
∫
Gr(γ)

(j>E,c(e
>))(γ′) γ′β>(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

c>(r(γ′))γ′e>(s(γ′)) γ′β>(γ′−1γ) dλr(γ)(γ′)

= c>(r(γ))
∫
Gr(γ)

γ′e>(s(γ′)) γ′β>(γ′−1γ) dλr(γ)(γ′)

= c>(r(γ)) γ
∫
Gs(γ)

γ′e>(s(γ′)) γ′β>(γ′−1) dλs(γ)(γ′)

for all γ ∈ G. Define

µ>E(e>, β>) (x) := (e>β>)(x) :=
∫
Gx

γe>(s(γ)) γβ>(γ−1) dλx(γ)

for all x ∈ X. Thenj>E,c(e
>)β> = ι>E(e>β>) or, equivalently,e>β> = π>E

(
j>E,c(e

>)β>
)

. It

follows that

∥∥e>β>∥∥∞ =
∥∥∥π>E (j>E,c(e>)β>

)∥∥∥
∞

7.7.8
≤
∥∥∥j>E,c(e>)β>

∥∥∥
H>(G,E>)

≤
∥∥e>∥∥Ac(X,E>)

∥∥β>∥∥H>(G,B)
.

So we get a contractive bilinear mapµ>E : Ac(X,E>)×H>(G, B) → C0(X,E>) which isA(G, B)-
balanced,C0(X/G)-balanced, andΓ0(X,B)-linear as well asC0(X)-linear on the right. This map
µ>E induces a contractive linear map̂µ>E : Ac(X,E>) ⊗A(G,B) H>(G, B) → Γ0(X,E>) which is
C0(X)-linear andΓ0(X,B)-linear on the right.

Construction of µ<E and µ̂<E : A similar argument on the left-hand side gives a a contractive bilinear
mapµ<E : H<(G, B) × Ac(X,E<) → C0(X,E<) which isA(G, B)-balanced,C0(X/G)-balanced,
andΓ0(X,B)-linear as well asC0(X)-linear on the left. Forβ< ∈ Γc (G, r∗B) ⊆ H<(G, B) and
e< ∈ Γc(X,E<) ⊆ Ac(X,E<), it is given by

µ<E(β<, e<) (x) := (β<e<)(x) =
∫
Gx

β<(γ)γe<(s(γ)) dλx(γ)

for all x ∈ X. This induces a contractive linear map̂µ<E : H<(G, B) ⊗A(G,B) Ac(X,E<) →
C0(X,E<) which isC0(X)-linear andΓ0(X,B)-linear on the left.

The concurrent homomorphism µ̂E : We check that̂µE = (µ̂<E , µ̂
>
E) is a homomorphism; this fol-

lows almost by construction, but we give a direct proof: Letβ<, β> ∈ Γc (G, r∗B), e< ∈ Γc(X,E<)
ande> ∈ Γc(X,E>). We have

〈
β< ⊗ e<, e> ⊗ β>

〉
=
〈
β<, 〈e<, e>〉β>

〉
.
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Now (〈
e<, e>

〉
β>
)
(γ) =

∫
Gr(γ)

(
〈e<, e>〉(γ′)

)
γ′β>(γ′−1γ) dλr(γ)(γ′)

=
∫
Gr(γ)

〈
e<(r(γ′)), γ′e>(s(γ′))

〉
γ′β>(γ′−1γ) dλr(γ)(γ′)

=
〈
e<(r(γ)),

∫
Gr(γ)

γ′e>(s(γ′)) γ′β>(γ′−1γ) dλr(γ)(γ′)
〉

=
〈
e<(r(γ)), γ

∫
Gs(γ)

γ′e>(s(γ′)) γ′β>(γ′−1) dλs(γ)(γ′)
〉

=
〈
e<(r(γ)), γ(e>β>)(s(γ))

〉
for all γ ∈ G and hence〈

β<, 〈e<, e>〉β>
〉
(x) =

∫
Gx

β<(γ)γ
(〈
e<, e>

〉
β>
)
(γ−1) dλx(γ)

=
∫
Gx

β<(γ)γ
〈
e<(s(γ)), γ−1(e>β>)(r(γ))

〉
dλx(γ)

=
∫
Gx

β<(γ)
〈
γe<(s(γ)), (e>β>)(r(γ))

〉
dλx(γ)

=
〈∫

Gx

β<(γ)γe<(s(γ)) dλx(γ), (e>β>)(x)
〉

= 〈(β<e<)(x), (e>β>)(x)〉 = 〈β<e<, e>β>〉(x)
=

〈
µ<E(β<, e<), µ>E(e>, β>)

〉
(x)

=
〈
µ̂<E(β< ⊗ e<), µ̂>E(e> ⊗ β>)

〉
(x)

for all x ∈ X. Soµ̂E respects the brackets.

The G-equivariant concurrent homomorphism ΦE : DefineΦE := F (µ̂E), which is a concurrent
homomorphism fromMH(E) to F (Γ0(X,E)) ∼= E. We now show thatΦE is G-equivariant.

Let γ ∈ G, e> ∈ Γc(π(γ), E>) ⊆ Ac(X,E>)π(γ) andβ> ∈ Γc(Gs(γ), r∗B) ⊆ H>(G, B)s(γ).
Thene> ⊗ β> ∈

(
Ac(X,E>)⊗A(G,B) H>(G, B)

)
s(γ)

and

γ(e> ⊗ β>) = e> ⊗
(
γ′ 7→ β>(γ′γ)

)
,

so

(Φ>
E)r(γ)

(
γ(e> ⊗ β>)

)
=

∫
Gr(γ)

γ′e>(s(γ′))γ′β>(γ′−1γ) dλr(γ)(γ′)

=
∫
Gs(γ)

γγ′e>(s(γγ′))γγ′β>(γ′−1) dλs(γ)(γ′)

= γ

∫
Gs(γ)

γ′e>(s(γ′))γ′β>(γ′−1) dλs(γ)(γ′)

= γ
[
(Φ>

E)s(γ)
(
e> ⊗ β>

)]
.

SoΦ>
E is equivariant. Now lete< ∈ Γc(π(γ), E<) ⊆ Ac(X,E<)π(x) andβ< ∈ Γc(Gs(γ), r∗B) ⊆

H<(G, B)s(γ). Thenβ< ⊗ e< ∈
(
H<(G, B)⊗A(G,B) Ac(X,E<)

)
s(γ)

and

γ(β< ⊗ e<) =
(
γ′ 7→ γ′β<(γ′−1γ)

)
⊗ e<,
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so

(Φ<
E)r(γ)

(
γ(β< ⊗ e<)

)
=

∫
Gr(γ)

γ′β<(γ−1γ′)γ′e<(s(γ′)) dλr(γ)(γ′)

=
∫
Gs(γ)

γγ′β<(γ′)γγ′e<(s(γγ′)) dλs(γ)(γ′)

= γ

∫
Gs(γ)

γ′β<(γ′)γ′e<(s(γ′)) dλs(γ)(γ′)

= γ
[
(Φ<

E)s(γ)
(
β< ⊗ e<

)]
.

Hence alsoΦ<
E is G-equivariant.

µ̂E intertwines Ac(X,T ) ⊗ 1 and M (T ): Let E and F be aG-BanachB-pair and letT =
(T<, T>) ∈ LB(E,F ) be aG-equivariant operator. We show

µ̂>F ◦
(
Ac(X,T )> ⊗ 1

)
= M (T )> ◦ µ̂>E

and the analogous equation for the left-hand side. Lete> ∈ Γc(X,E>) ⊆ Ac(X,E>) andβ> ∈
Γc (G, r∗B) ⊆ H>(G, B). Then

µ̂>F
((
Ac(X,T )> ⊗ 1

)
(e> ⊗ β>)

)
(x) = µ̂>F

(
(x′ 7→ T>x′ e

>(x′))⊗ β>
)
(x)

=
∫
Gx

γT>s(γ)e
>(s(γ))γβ>(γ−1) dλx(γ) =

∫
Gx

T>r(γ)γe
>(s(γ))γβ>(γ−1) dλx(γ)

= T>x

(∫
Gx

γe>(s(γ))γβ>(γ−1) dλx(γ)
)

= T>x
(
µ̂>E(e> ⊗ β>)(x)

)
= M (T )>

(
µ̂>E(e> ⊗ β>)

)
(x)

for all x ∈ X. A similar calculation goes through on the left-hand side.

ΦE intertwines F (Ac(X,T )⊗ 1) and T : This follows from the fact thatF (·) is a functor (on the
level of Banach spaces, say).

µ̂E induces a homotopy:Now we show that ifS is a bounded locally compactG-equivariant operator
fromE to F , then not only isAc(X,S)⊗ 1 bounded and locally compact, but the pair(Ac(X,S)⊗
1,M (S)) is a locally compact element ofLId(µ̂E , µ̂F ), i.e., we can approximateAc(X,S) ⊗ 1 and
M (S) simultaneously with finite rank operators.This is the main technical difficulty of this part of
the proof. Applying this result to the operatorS = T 2 − 1, where(E, T ) is aKKban-cycle, shows
that(M (E) ,M (T )) and(Ac(X,E) ⊗A(G,B) H(G, B), Ac(X,T ) ⊗ 1) are homotopic elements of
Eban(C0(X); C0(X), Γ0(X,B)); for this, we use the sufficient condition for homotopy given in
Theorem 2.6.2. It also follows, this time from Theorem 3.7.1, that(E, T ) andMB

A,H(JBA,Ac(E, T ))
areG-equivariantly homotopic (becauseΦE is G-equivariant).

By Corollary 7.2.14 it suffices to consider the caseS = (
∣∣f> · β

〉〉〈〈
e<
∣∣
x
)x∈X with f> ∈

Γc(X,F>), β ∈ Γc(G, r∗B) ande< ∈ Γc(X,E <). Let χ ∈ Cc(X). We show that(χAc(X,S) ⊗
1, χM (S)) is in K(µ̂E , µ̂F ). Let ε > 0. We now concentrate on the right-hand side of the operators
because the calculations for the left-hand side are similar and similarly unedifying.

Let k ∈ Γc(G ×r,r G, p∗B) with p : G ×r,r G → X, (γ1, γ2) 7→ r(γ1) = r(γ2). Define

τ>k
(
e>
)
(x) :=

∫
Gx

∫
Gx

γf>(s(γ))γk(γ−1, γ−1γ′)〈γ′e<(s(γ′)), e>(x)〉dλx(γ′) dλx(γ)
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for all e> ∈ Γc(X,E>) andx ∈ X. Thenτ>k (e>) ∈ Γc(X,F>).
Definek0(γ, γ′) = χ(s(γ))β(γ′) for all (γ, γ′) ∈ G ×r,r G. Then

τ>k0
(
e>
)
(x) =

∫
Gx

∫
Gx

γf>(s(γ))γχ(r(γ))β(γ−1γ′)〈γ′e<(s(γ′)), e>(x)〉dλx(γ) dλx(γ′)

= χ(x)
∫
Gx

∫
Gs(γ′)

γ′γf>(s(γ))γ′γβ(γ−1) dλs(γ
′)(γ)〈γ′e<(s(γ′)), e>(x)〉dλx(γ′)

= χ(x)
∫
Gx

γ′
(
(f> · β)(s(γ′))

)
〈γ′e<(s(γ′)), e>(x)〉dλx(γ′)

= χ(x)
∫
Gx

∣∣γ′(f> · β)(s(γ′))
〉〈
γ′e<(s(γ′))

∣∣ e>(x)〉dλx(γ′)

= χ(x)
∣∣f> · β〉〉〈〈e<∣∣>

x
(e>(x))

for all e> ∈ Γc(X,E>) andx ∈ X, so(τ>k0)x = χ(x)
∣∣f> · β〉〉〈〈e<∣∣>

x
in this case.

If k(γ, γ′) = h>(γ)γh<(γ−1γ′) for all (γ, γ′) ∈ G ×r,r G, whereh>, h< ∈ Γc(G, r∗B), then

τ>k
(
e>
)
(x) =

∫
Gx

∫
Gx

γf>(s(γ))γ
(
h>(γ−1)γ−1h<(γ′)

)
〈γ′e<(s(γ′)), e>(x)〉dλx(γ′) dλx(γ)

=
∫
Gx

∫
Gx

γf>(s(γ))γh>(γ−1)h<(γ′)γ′〈e<(r(γ′−1)), γ′−1e>(s(γ′−1))〉dλx(γ′) dλx(γ)

=
∫
Gx

γf>(s(γ))γh>(γ−1)
∫
Gx

h<(γ′)γ′
〈〈
e<, e>

〉〉
(γ′−1) dλx(γ′) dλx(γ)

=
∫
Gx

γf>(s(γ))γh>(γ−1) dλx(γ)
〈
h<,

〈〈
e<, e>

〉〉〉
(x)

=
(
f> · h>

)
(x)

〈
h<,

〈〈
e<, e>

〉〉〉
(x)

=
∣∣µ̂>F (f> ⊗ h>)

〉〈
µ̂<E(h< ⊗ e<)

∣∣>(e>)(x)

for all e> ∈ Γc(X,E>) andx ∈ X, soτ>k =
∣∣µ̂>F (f> ⊗ h>)

〉〈
µ̂<E(h< ⊗ e<)

∣∣>.
The idea is to approximatek0 : (γ, γ′) 7→ χ(s(γ))β(γ′) by functions of the formk : (γ, γ′) 7→∑n
i=1 h

>
i (γ)γh<i (γ−1γ′) (in a sense which we have to specify) so that

∑n
i=1

∣∣f> ⊗ h>i
〉〈
h<i ⊗ e<

∣∣>
approximatesχAc(X,S)⊗1 = χ

∣∣f>·β〉〉〈〈e<∣∣>⊗1 andτ>k =
∑n

i=1

∣∣µ̂>F (f>⊗h>i )
〉〈
µ̂<E(h<i ⊗e<)

∣∣>
approximates at the same timeM (S) = τ>k0 = M((χ(x)

∣∣f> ·β〉〉〈〈e<∣∣>
x
)x∈X). To prove this we will

show thatτ>k depends continuously (in a sense that we have to specify as well) on the functionk.
OnΓc (G ×r,r G, p∗B) we take the inductive limit topology.
If we mapk ∈ Γc (G ×r,r G, p∗B) to the functions

T>k : Γc (G, r∗B) → Γc (G, r∗B) , ξ> 7→
[
γ 7→

∫
Gr(γ)

k(γ, γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)
]

and

T<k : Γc (G, r∗B) → Γc (G, r∗B) , ξ< 7→
[
γ 7→

∫
Gr(γ)

ξ<(γ′)γ′k(γ′−1, γ′−1γ) dλr(γ)(γ′)
]
,

then(T<k , T
>
k ) extends continuously to an element ofTk ∈ LΓ0(X,B) (H(G, B)). The operatorTk
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depends continuously onk. If k(γ, γ) = h>(γ)γh<(γ−1γ′), then

T>k (ξ>)(γ) =
∫
Gr(γ)

h>(γ)γh<(γ−1γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)

= h>(γ)γ
∫
Gs(γ)

h<(γ′)γ′ξ>(γ′−1) dλs(γ)(γ′)

=
(
h>〈h<, ξ>〉H(G,B)

)
(γ) =

(∣∣h>〉〈h<∣∣>(ξ>)
)

(γ)

for all ξ> ∈ Γc (G, r∗B) andγ ∈ G, soT>k =
∣∣h>〉〈h<∣∣>. A similar calculation for the left-hand

side showsTk =
∣∣h>〉〈h<∣∣. On the other hand, we have

T>k0(ξ
>)(γ) =

∫
Gr(γ)

χ(s(γ))β(γ′)γ′ξ>(γ′−1γ) dλr(γ)(γ′)

=
(
χ(β ∗ ξ>)

)
(γ),

for all ξ> ∈ Γc (G, r∗B) andγ ∈ G, soT>k0 = χπ(β)>, whereπ denotes the action ofA(G, B) on
H(G, B). We actually haveTk0 = χπ(β).

Note that, in the obvious notation,

∣∣f> ⊗ h>
〉〈
h< ⊗ e<

∣∣ = ∣∣f>〉〉 ◦ ∣∣h>〉〈h<∣∣ ◦ 〈〈e<∣∣.
As in the proof of Lemma E.8.12,Tk depends continuously onk and we can approximatek0 in

the inductive limit topology by sections of the formk : (γ, γ′) 7→
∑n

i=1 h
>
i (γ)γh<i (γ−1γ′) so thatTk

approximatesTk0 = χπ(β). Since

∣∣f>〉〉 ◦ χπ(β) ◦
〈〈
e<
∣∣ = χ

(∣∣f> · β〉〉〈〈e<∣∣⊗ 1
)

it follows that ∣∣f>〉〉 ◦ Tk ◦ 〈〈e<∣∣ = n∑
i=1

∣∣f> ⊗ h>i
〉〈
h<i ⊗ e<

∣∣
approximatesχ

(∣∣f> · β〉〉〈〈e<∣∣⊗ 1
)

as desired.

Define

L := {γ ∈ G : r(γ) ∈ suppχ ∧ s(γ) ∈ supp f>}

and

L′ := {γ′ ∈ G : r(γ′) ∈ suppχ ∧ s(γ′) ∈ supp e<}.

Both of these sets are compact becauseG is proper. Find functionsδ, δ′ ∈ Cc(G) with 0 ≤ δ, δ′ ≤ 1
and such thatδ ≡ 1 andδ′ ≡ 1 on a compact neighbourhoodM of L andM ′ of L′, respectively.
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Let k ∈ Γc (G ×r,r G, p∗B) such thatsupp k ⊆M ×M ′. Then

∥∥τk(e>)(x)
∥∥ =

∥∥∥∥∫
Gx

∫
Gx

γf>(s(γ))γk(γ−1, γ−1γ′)〈γ′e<(s(γ′)), e>(x)〉dλx(γ′) dλx(γ)
∥∥∥∥

≤
∫
Gx

∫
Gx

∥∥f>(s(γ))
∥∥∥∥k(γ−1, γ−1γ′)

∥∥∥∥e<(s(γ′))
∥∥∥∥e>(x)

∥∥ dλx(γ′) dλx(γ)

=
∫
Gx

∫
Gx

∥∥f>(s(γ))
∥∥ δ(γ−1)δ′(γ−1γ′)

∥∥k(γ−1, γ−1γ′)
∥∥∥∥e<(s(γ′))

∥∥∥∥e>(x)
∥∥ dλx(γ′) dλx(γ)

≤
∫
Gx

∫
Gx

δ(γ−1)δ′(γ−1γ′) dλx(γ′) dλx(γ)
∥∥f>∥∥∞ ‖k‖∞

∥∥e<∥∥∞ ∥∥e>∥∥∞
=

∫
Gx

δ(γ−1)
∫
Gs(γ)

δ′(γ′) dλs(γ)(γ′) dλx(γ)
∥∥f>∥∥∞ ‖k‖∞

∥∥e<∥∥∞ ∥∥e>∥∥∞
≤ ‖δ‖1

∥∥δ′∥∥
1

∥∥f>∥∥∞ ‖k‖∞
∥∥e<∥∥∞ ∥∥e>∥∥∞

for all e> ∈ Γc(X,E>) andx ∈ X; here‖·‖1 denotes the symmetrised version of theL1-norm. Write
C := ‖δ‖1 ‖δ′‖1 ‖f>‖∞ ‖e<‖∞ then we have shown that∥∥τ>k ∥∥ ≤ C ‖k‖∞

provided thatsupp k ⊆M ×M ′; a similar result is true for the left-hand side. Since we can approxi-
matek0 by sections of the form(γ, γ′) 7→

∑n
i=1 h

>
i (γ)γh<i (γ−1γ′) which are supported inM×r,rM ′

in the sup-norm (which is at the same time and by definition an approximation in the inductive limit
topology), we are done.



Chapter 8

The Surjectivity of the Bost Map for
Proper Banach Algebras

Let G be a locally compact Hausdorff groupoid with unit spaceX. Assume1 that there is a locally
compact classifying spaceEG for proper actions ofG, unique up to homotopy.

In the first section of this chapter we introduce the groupKtop,ban(G, B) for everyG-Banach
algebraB (this is really just the obvious variant ofKtop(G, B) for G-C∗-algebrasB) and the Banach
algebraic version of the Baum-Connes map. Then we prove that this map, called the Bost map, is split
surjective ifG is proper. This is a special case and also the main ingredient of the proof of the split
surjectivity for generalG and properB. The notion of a properG-Banach algebra is introduced in the
third section, the exact definition being somewhat technical: The main idea is of course that a proper
G-Banach algebra is aG-Banach algebra which is at the same time aG nZ-algebra, whereZ is some
properG-space. The trouble is, thatB then is, technically, a u.s.c. field of Banach algebras overX
and at the same time a u.s.c. field overZ, and this does not make much sense. The solution that I
propose is that a properG-Banach algebraB is aG-Banach algebra such there exists a properG-space
Z and aG n Z-Banach algebrâB which is “practically the same asB”, i.e., B is the pushforward
of B̂ along the anchor map ofZ (we define the pushforward in the third section of this chapter; one
can think of it as a “partially forgetful map”). This definition of a properG-Banach algebra makes it
necessary to think about the relation of unconditional completions ofCc(G) and ofCc(G n Z) etc.

The actual proof of the split surjectivity of the Bost map for proper groupoids is then contained in
the final section of this thesis. It is inspired by the proof of the corresponding C∗-algebraic result for
group actions (see, for example, Proposition 5.11 in [KS03]).

ForG-C∗-algebras, the analogous constructions were carried out by V. Lafforgue in [Laf06], where
it is also proved that the Bost homomorphism is an isomorphism for all properG-C∗-algebras (with
the ordinary topologicalK-theory on the left-hand side and with arbitrary unconditional completions).
The techniques are nevertheless rather different from ours because we cannot make use of the corre-
sponding results for C∗-algebras and crossed products.

1In [Tu00] it is said that such a space always exists and is unique (at least if everything is assumed to beσ-compact), the
given reference [Tu99] shows this in the case of étale metrisable groupoids. We do not venture into the details but content
ourselves with the assumption thatEG exists and is unique.

237
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8.1 TopologicalK-theory and the general Bost conjecture

8.1.1 TopologicalK-theory for Banach algebras and groupoids

Definition 8.1.1 (TopologicalK-theory). For everyG-Banach algebraB, define

Ktop,ban (G, B) := lim
→

KKban
G (C0(Y ), B) ,

whereY runs through the closed properG-compact subspaces ofEG.

To make sense of this definition we have to clarify some technical details:

• If Y is a locally compact Hausdorff leftG-space (with anchor mapρ), then we would like to
think of C0(Y ) as aG-Banach space. A technical obstacle is thatC0(Y ) (or ratherCY ) is a field
of Banach spaces overY and not a field of Banach spaces overX. But C0(Y ) is of course a
C0(X)-Banach space with the multiplicationχχ′ = (χ◦ρ)χ′ for all χ ∈ C0(X) andχ′ ∈ C0(Y ).
The fibre ofC0(Y ) overx ∈ X can be identified withC0(Yx) whereYx = ρ−1({x}). This way
we get a u.s.c. field of Banach algebras overX that we callρ∗ (CY ). There is also a canonical
action ofG onρ∗ (CY ): Letγ ∈ G. Then we get an isomorphismαγ fromC0(Ys(γ)) toC0(Yr(γ))
by definingαγ(χ) (y) = χ

(
γ−1y

)
for all χ ∈ C0(Ys(γ)) andy ∈ Yr(γ). If we write C0(Y ),

regarding it as aG-Banach algebra, then what we mean isρ∗(CY ).

This is an example of a rather general pushforward construction which is needed for the defini-
tion of properG-Banach algebras, presented in Section 8.3. It is also a version for u.s.c. fields
of Banach spaces of the simple construction presented in Section 2.7 forC0(X)-Banach spaces.

• We also have to show thatKKban
G (C0(Y ), B), for Y as above, forms a directed system. If

Y andY ′ are closed, proper,G-compact subspaces ofEG such thatY ⊆ Y ′, then we would
like to get a homomorphism between theKKban-groups. More generally, letY andY ′ be
G-proper locally compactG-spaces (with anchor mapsρ and ρ′) and letf : Y → Y ′ be a
G-equivariant continuous proper map. This induces a non-degenerateC0(X)-linear homomor-
phism f̃ : C0(Y ′) → C0(Y ). Becausef is equivariant, the map̃f , thought of as a homomor-
phism fromρ′∗(CY ′) to ρ∗(CY ), isG-equivariant.

From the functoriality of BanachKK-theory we get a map2

f̃∗ : KKban
G (C0(Y ), B) → KKban

G
(
C0(Y ′), B

)
.

If Y = Y ′ andf = Id, we haveĨd = IdC0(Y ) and thereforẽId
∗

= Id. If Y ′′ is another proper
G-compactG-space andg : Y ′ → Y ′′ is proper andG-equivariant, theng ◦ f is proper and

G-equivariant and̃g ◦ f = f̃ ◦ g̃. Now g̃ ◦ f
∗

= g̃∗ ◦ f̃∗, so indeed, we have a directed system
of abelian groups.

8.1.2 Functoriality for equivariant homomorphisms and Morita morphisms

LetB andC beG-Banach algebras and letϕ : B → C be aG-equivariant homomorphism.

2Compare Proposition 1.2.6 of [Laf02].
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If Y andY ′ are properG-compact locally compact HausdorffG-spaces andf : Y → Y ′ is continu-
ous, proper andG-equivariant, then the following diagram commutes becauseKKban

G is bifunctorial:3

KKban
G (C0(Y ), B)

ϕ∗ //

f̃∗

��

KKban
G (C0(Y ), C)

f̃∗

��
KKban

G (C0(Y ′), B)
ϕ∗ // KKban

G (C0(Y ′), C)

Passing to the direct limit we get a group homomorphism

ϕtop
∗ : Ktop,ban(G, B) → Ktop,ban(G, C).

The assignmentB 7→ Ktop,ban(G, B) together withϕ 7→ ϕtop
∗ is a covariant functor from the category

of G-Banach algebras andG-equivariant homomorphisms into the category of abelian groups. The
same construction works ifB andC are non-degenerateG-Banach algebras andF ∈ Mban

G (B,C) is
aG-equivariant Morita cycle. In this case we get a group homomorphism

· ⊗B [F ] : Ktop,ban(G, B) → Ktop,ban(G, C).

The assignmentB 7→ Ktop,ban(G, B) together with[F ] 7→ · ⊗B [F ] is a covariant functor from
the category ofG-Banach algebras andG-equivariant Morita morphisms into the category of abelian
groups.

Corollary 8.1.2. If B andC are equivariantly Morita equivalentG-Banach algebras, then

Ktop,ban(G, B) ∼= Ktop,ban(G, C).

8.1.3 The Baum-Connes map in the Banach algebra context

Let G carry a Haar system and letA(G) be an unconditional completion ofCc(G).

Definition 8.1.3 (Bost map).Let B be aG-Banach algebra. Define the homomorphism of abelian
groups

µBA : Ktop,ban (G, B) → K0 (A (G, B))

to be the direct limit of the group homomorphisms

KKban
G (C0(Y ), B)

jA→ KKban (A (G, C0(Y )) , A (G, B))
Σ(·)(λY,G,A)

→ K0 (A (G, B))

whereY runs through all closed,G-compact, proper subspaces ofEG.

Again, we discuss the details of this definition:

What is λY,G,A?4 If Y is aG-compact properG-space, then the elementλY,G,A of K0 (A(G, C0(Y )))
(or rather ofK0 (A(G, ρ∗CY ))) was defined in [Laf06], paragraph 1.5.2, as follows (with some tech-
nical changes): Consider the groupoidG n Y . It is locally compact Hausdorff and proper and sat-
isfies (G n Y )(0) = Y andY/(G n Y ) ∼= G\Y , this space being compact. We can hence find a

3See Definition and Proposition 3.5.10.
4That we also use the letterλ for the Haar system onG does not lead to much notational inconvenience: instead of

dλx(γ) we just writedγ in the integrals that appear in this chapter.
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cut-off-function forG n Y . For technical reasons, we identifyG n Y with G ×r,ρ Y : The range
and source maps are then given byrGnY (γ, y) = y andsGnY (γ, y) = γ−1y, and the product is
given by(γ1, y1) · (γ2, y2) = (γ1γ2, y1) for all (γ1, y1), (γ2, y2) ∈ G ×r,ρ Y such thatγ−1

1 y1 = y2.
The Haar system onG n Y is the following (expressed as an integral): Ifχ ∈ Cc(G n Y ), then∫
(GnY )y′ χ(γ, y) d(γ, y) :=

∫
Gρ(y′) χ(γ, y′) dγ for all y′ ∈ Y . A cut-off function forG n Y is a

function fromY to R≥0 with compact support such that
∫
Gy c(γ−1y) dγ = 1 for all y ∈ Y .

Now consider the functionγ 7→
(
YrG(γ) 3 y 7→ c1/2(y) c1/2(γ−1y)

)
with γ ∈ G. This is an idempo-

tent element ofΓc
(
G, r∗Gρ∗CY

)
(actually, we can think of it as an idempotent element of the algebra

Γc
(
G n Y, r∗GnY CY

)
= Cc (G n Y )). It therefore gives an idempotent element ofA (G, ρ∗CY ), and

the element ofK0 (A(G, ρ∗CY )) that it determines is denoted byλY,G,A.
This definition is independent of the choice of the cut-off functionc; actually, we could take any cut-
off pair (c<, c>) instead of(c1/2, c1/2) in the formula for the idempotent: if(c<, c>) is a cut-off pair
for GnY , thenγ 7→

(
YrG(γ) 3 y 7→ c>(y) c<(γ−1y)

)
defines an idempotent element ofA (G, ρ∗CY )

which depends continuously on the cut-off pair. Using linear homotopies (and an additional correction
factor) one can connect any two cut-off pairs forG n Y through a continuous path of cut-off pairs
with respect to the inductive limit topology (here we use that fact thatG\Y is compact). HenceλY,G,A
does not depend on the cut-off pair (or the cut-off function).
What is Σ(·) (λY,G,A)? The actionΣ of KKban on the K-theory was defined in5 [Laf02]. In
our case,Σ is a homomorphism fromKKban (A(G, ρ∗CY ), A(G, B)) to the group of homomor-
phisms fromK0 (A(G, ρ∗CY )) to K0 (A(G, B)). Evaluating atλY,G,A gives a homomorphism from
KKban (A(G, ρ∗CY ), A(G, B)) to K0 (A(G, B)). BecauseλY,G,A is given by an idempotent of
A(G, ρ∗CY ) we can actually obtain a more concrete description ofΣ(·) (λY,G,A): If (E, T ) is a
cycle in Eban (A(G, ρ∗CY ), A(G, B)) andp is a choice of an idempotent inA(G, ρ∗CY ) giving
λY,G,A such thatp commutes withA(G, T ), then the cycle

(
pA(G, E), T |pA(G,E)

)
(with the canoni-

cal left C-action) gives the elementΣ([(E, T )]) (λY,G,A) ∈ KKban (C, A(G, B)) ∼= K0 (A(G, B)),
wherepA(G, E) = (A(G, E<)p, pA(G, E>)).
Passing to the direct limit: To see that Definition 8.1.3 makes sense we check that the group homo-
morphisms are compatible with continuous equivariant proper maps between the subspaces, allowing
us to take the limit. Let thereforeY andY ′ be properG-compactG-spaces and letf : Y → Y ′ be
a properG-equivariant continuous map. Let̃f : C0(Y ′) → C0(Y ) be the induced homomorphism of
G-Banach algebras. Then we have to show that the following diagram commutes

(8.1) KKban
G (C0(Y ), B)

jA //

f̃∗

��

KKban (A (G, C0(Y )) , A (G, B))
Σ(·)(λY,G,A)

**UUUUUUUUUUUUUUUUU

A(G, f̃)∗

��

K0 (A (G, B))

KKban
G (C0(Y ′), B)

jA // KKban (A (G, C0(Y ′)) , A (G, B))

Σ(·)(λY ′,G,A)
44iiiiiiiiiiiiiiiii

That the left part of the diagram commutes follows from Theorem 5.2.25. The right part commutes
because of Proposition 1.2.9 of [Laf02] and Proposition E.7.1.

Proposition 8.1.4. The assignmentB 7→ µBA is a natural transformation from the functorB 7→
Ktop,ban(G, B) to the functorB 7→ K0 (A(G, B)) (where we can take as our source category the
category of non-degenerateG-Banach algebras with the Morita morphisms as morphisms).

5See Proposition 1.2.9 of [Laf02] and the discussion thereafter.
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Proof. LetB andC be non-degenerateG-Banach algebras and letF be a Morita cycle fromB to C
(and let[F ] denote the corresponding Morita morphism). We have to show that the following diagram
commutes:

Ktop,ban (G, B)
µB
A //

⊗B [F ]

��

K0 (A (G, B))

⊗A(G,B)[A(G,F )]

��
Ktop,ban (G, C)

µB
A // K0 (A (G, C))

Most of the objects in this diagram are defined as direct limits, so we check the corresponding diagram
before taking the limit. To this end letY andY ′ be properG-compactG-spaces and letf : Y → Y ′

be a properG-equivariant continuous map. Then we have to take the 5-vertex diagram (8.1), once for
B and once forC, and connect the two diagram by five morphisms coming from the tensor products
with F andA(G, F ). The resulting diagram has the shape of a prism with ten vertices, eight squares
and two triangles. The two triangles and two of the squares commute because Diagram (8.1) is
commutative (in the version forB and the version forC). One of the remaining squares is

KKban
G (C0(Y ), B)

jA //

⊗B [F ]

��

KKban
G (A(G, C0(Y )),A(G, B))

⊗A(G,B)[A(G,F )]

��
KKban

G (C0(Y ), C)
jA // KKban

G (A(G, C0(Y )),A(G, C))

This an the corresponding square forY ′ commute because the descent is compatible with Morita
morphisms.6 The square

KKban
G (A(G, C0(Y )),A(G, B))

⊗A(G,B)[A(G,F )]

��

Σ(·)(λY,G,A)
// K0 (A (G, B))

⊗A(G,B)[A(G,F )]

��
KKban

G (A(G, C0(Y )),A(G, C))
Σ(·)(λY,G,A)

// K0 (A (G, C))

commutes because the action ofKKban on theK-theory is compatible with Morita morphisms (we
only know this for ordinary homomorphisms7 yet, but in our particular case the action onλY,G,A is
given by the pushforward along a homomorphism fromC to A(G, C0(Y )) in the first variable given
by an idempotent ofA(G, C0(Y )), and this clearly commutes with the multiplication by a Morita
morphism from the right). The same is true for the corresponding diagram forY ′. Similarly and just
as in Subsection 8.1.2, the square

KKban
G (C0(Y ), B)

f̃∗ //

⊗B [F ]
��

KKban
G (C0(Y ′), B)

⊗B [F ]

��
KKban

G (C0(Y ), C)
f̃∗ // KKban

G (C0(Y ′), C)

as well as the the corresponding square after the descent commute.

6 See Corollary 5.2.29.
7This is included in Proposition 1.2.9 of [Laf02].
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8.1.4 The Bost map and varying unconditional completions

Let G carry a Haar system and letA(G) andB(G) be unconditional completions ofCc(G) such that
‖χ‖B ≤ ‖χ‖A for all χ ∈ Cc(G).

Definition and Proposition 8.1.5. Let B be aG-Banach algebra and letιA andιB be the canonical
maps fromΓc(G, r∗B) to A(G, B) andB(G, B), respectively. Letψ : A(G, B) → B(G, B) be the
homomorphism of Banach algebras such thatψ ◦ ιA = ιB. Then

ψ∗ : K∗ (A(G, B)) → K∗ (B(G, B))

is a homomorphism making the following diagram commutative

Ktop,ban (G, B)
µB
A //

µB
B **UUUUUUUUUUUUUUUU

K0 (A (G, B))

ψ∗
��

K0 (B (G, B))

Proof. This follows from Proposition 1.4.8 in [Laf06], compare also Proposition 1.5.4 of the same
article which is the above assertion forG-C∗-algebras.

8.2 The Bost conjecture and proper groupoids

In this section letG be proper and equipped with a Haar system. LetA(G) be an unconditional
completion ofCc(G).

Definition 8.2.1 (Hereditary subalgebra). LetB0 be a subalgebra of a complex algebraB. ThenB
is calledhereditaryif B0 B B0 ⊆ B0.

The following lemma is a variant of Lemme 1.7.9 of [Laf02], inspired by a remark of Cuntz that his
kk-theory is invariant under a similar relation.

Lemma 8.2.2.LetB be a Banach algebra andA be a topological algebra (with separately continuous
multiplication) and letϕ : A→ B be a continuous homomorphism such thatϕ(A) is a dense heredi-

tary subalgebra ofB and such that the kernel ofϕ is nilpotent. Thenϕ : π0

(
Ã−1

)
→ π0

(
B̃−1

)
is

a bijection.

Proof. Let x ∈ A such that1 + ϕ(a) ∈ B̃−1. Let 1 + b be the inverse of1 + ϕ(a) in B̃. Then, as in
the proof of Lemma 1.7.9 of [Laf02],b = −ϕ(a)+ϕ(a)2 +ϕ(a)bϕ(a) belongs toϕ(A). Finda′ ∈ A
such thatϕ(a′) = b. Thenϕ̃ ((1 + a)(1 + a′)) = (1 + ϕ(a))(1 + ϕ(a′)) = 1 = ϕ̃ ((1 + a′)(1 + a)).
This means that(1+ a)(1+ a′) = 1+n for somen in the kernel ofϕ. But such an element is always
invertible, so1 + a is right-invertible inÃ. Similarly, 1 + a is left-invertible inÃ, so it is invertible.
This shows the surjectivity ofϕ on the level ofπ0.

To show injectivity we remark thatϕ[0, 1] is a continuous homomorphism fromA[0, 1] toB[0, 1]
with dense hereditary image and nilpotent kernel; we can hence use the first part of the proof: Let
a0, a1 ∈ A such that1 + b0 and1 + b1 are in the same connected component ofB̃ wherebi = ϕ(ai)
for i = 0, 1. BecauseB̃−1 is open in the Banach spacẽB there is a path̃β in B̃−1 betweenb0 and
b1. It is of the formβ̃ = χ + β with χ ∈ C[0, 1] andβ ∈ C([0, 1], B). Becauseχ(t) = 0 for all
t ∈ [0, 1], we can invertχ, and1 + χ−1β is also a path from1 + b0 to 1 + b1 in B̃−1. Because the
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imageϕ[0, 1] is dense inB[0, 1], we can find anα ∈ A[0, 1] such thatχ−1β is so close toϕ[0, 1] (α)

that1 + ϕ[0, 1] (α) is invertible inB̃[0, 1]; we can even achieve this withϕ(α(0)) = b0 = ϕ(a0) and

ϕ(α(1)) = b1 = ϕ(a1). Now the first part of the proof shows that1 + α is invertible inÃ[0, 1], so it
is a path from1 +α(0) to 1 +α(1) in Ã−1. The differencen0 of 1 +α(0) and1 + a0 is in the kernel
of ϕ, so it is nilpotent. Sotn0 is also nilpotent for allt ∈ [0, 1]. The mapt 7→ 1 + a0 + tn0 is hence a
path in the invertible elements of̃A from 1 + a0 to 1 + α(0). Similarly, there is a path from1 + α(1)
to 1 + a1. Putting the three paths together we get a path from1 + a0 to 1 + a1 in Ã−1. Hence1 + a0

and1 + a1 are in the same connected component.

The following lemma is an elaborate version of Lemme 1.7.10 of [Laf02]; there are two minor
differences: The first is that we allow‖·‖1 and‖·‖2 to be semi-norms rather than norms (with the
restriction that the kernel of the homomorphisms into the completions are nilpotent), and secondly,
we do not ask the homomorphismψ to be injective. The first generalisation is necessary because
we want to apply the result to unconditional completions in the groupoid setting where semi-norms
appear naturally, the second generalisation seems to be already necessary in the setting of [Laf02],
because in the proof of Lemme 1.7.8 there is no explicit argument given why the homomorphism
fromB(G,B) toA(G,B) is injective (although I have the feeling that I just lack a trivial argument).

Lemma 8.2.3. LetA be a topological algebra (with separately continuous multiplication). Let‖·‖1

and‖·‖2 be continuous semi-norms onA such that the completion ofA with respect to both norms is
a Banach algebra. Letι1 be the canonical continuous homomorphism fromA into its completionB1

with respect to‖·‖1 and defineι2 andB2 analogously. Assume that‖a‖1 ≥ ‖a‖2 for all a ∈ A, and
letψ : B1 → B2 the homomorphism of Banach algebras that we get from this inequality. Assume also
that ιi(A) is hereditary inBi and that the kernel ofιi is nilpotent for alli ∈ {1, 2}. Then the map

ψ∗ : K∗(B1) → K∗(B2)

is an isomorphism.

Proof. This is proved analogously to Lemme 1.7.10 of [Laf02], based on our Lemma 8.2.2.

Lemma 8.2.4. Let B be a non-degenerateG-Banach algebra and letA(G) be a regularuncon-
ditional completion ofCc (G). Let ι be the canonical map fromΓc(G, r∗B) to A(G, B). Since
G is proper, ι (Γc(G, r∗B)) is a hereditary subalgebra ofA(G, B) and the kernelN of ι satisfies
Γc(G, r∗B) N Γc(G, r∗B) = 0; in particular, it is nilpotent withN3 = 0.

Proof. LetA(G) act on the equivariant pairH(G) of locally convex monotone completions ofCc(G).
Letβ<, β> ∈ Γc (G, r∗B). LetKr := r (suppβ<) andKs := s (suppβ>). The two setsKr andKs

are compact subsets ofG(0). BecauseG is proper, the setK := {γ ∈ G : r(γ) ∈ Kr, s(γ) ∈ Ks} is
compact. For allβ ∈ Γc (G, r∗B), we havesupp (β< ∗ β ∗ β>) ⊆ K. BecauseA(G) acts onH(G),
we also have (by 7.3.14 and 7.3.6)∥∥β< ∗ β ∗ β>∥∥∞ ≤

∥∥β<∥∥H< ‖β‖A
∥∥β>∥∥H> .

It follows that (β< ∗ βn ∗ β>)n∈N is a Cauchy-sequence inΓK (G, r∗B) whenever(βn)n∈N is a
Cauchy-sequence inΓc (G, r∗B) for the semi-norm‖·‖A; in this case,(β< ∗ βn ∗ β>)n∈N converges
to some element ofΓK (G, r∗B), and henceι (β< ∗ βn ∗ β>) = ι(β<)ι(βn)ι(β>) converges to some
element in the image ofι if n→∞. Thus the image ofι is hereditary inA(G, B).

Now let β ∈ Γc (G, r∗B) satisfy ι(β) = 0 ∈ A(G, B). Let β<, β> be arbitrary elements of
Γc (G, r∗B). BecauseA(G) acts onH(G), we have‖β< ∗ β ∗ β>‖∞ ≤ ‖β<‖H< ‖β‖A ‖β>‖H> =
0, soβ<∗β∗β> = 0. This shows that the kernelN of ι satisfiesΓc(G, r∗B)N Γc(G, r∗B) = 0.
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For properG theK-theory ofA(G, B) does not depend on the particular (regular) completionA(G):

Proposition 8.2.5.LetB be a non-degenerateG-Banach algebra. LetB(G) be another unconditional
completion ofCc(G) such that‖χ‖B ≤ ‖χ‖A for all χ ∈ Cc(G). Let ψ : A(G, B) → B(G, B) be
canonical the homomorphism of Banach algebras introduced in 8.1.5. IfB(G) is a regular uncondi-
tional completion ofC(G), then alsoA(G) is regular and

ψ∗ : K∗ (A(G, B)) → K∗ (B(G, B))

is an isomorphism.

Proof. This follows from Lemma 8.2.3 and Lemma 8.2.4.

Corollary 8.2.6. LetA1(G) andA2(G) be regular unconditional completions ofCc(G). LetB be a
non-degenerateG-Banach algebra. ThenK∗ (A1(G, B)) andK∗ (A2(G, B)) are canonically isomor-
phic.

Proof. Let ‖·‖B be an unconditional norm onCc(G) such that‖χ‖Ai
≤ ‖χ‖B for all χ ∈ Cc(G)

and alli ∈ {1, 2}, define, for example,‖χ‖B := max
{
‖χ‖A1

, ‖χ‖A2

}
for all χ ∈ Cc(G). By the

preceding proposition it follows thatK∗ (B(G, B)) ∼= K∗ (Ai(G, B)) for all i ∈ {1, 2}. The resulting
isomorphismK∗ (A1(G, B)) ∼= K∗ (A2(G, B)) does not depend on the particular norm‖·‖B, we
could have taken any unconditional norm dominating‖·‖A1

and‖·‖A2
.

Example 8.2.7.LetG be a locally compact Hausdorff group action properly on some locally compact
Hausdorff spaceX. ThenL1 (GnX) andL1 (G, C0(X)) are two regular unconditional completions
of Cc (GnX). BecauseGnX is a proper groupoid, we have a canonical isomorphism

K0

(
L1 (G, C0(X))

) ∼= K0

(
L1 (GnX)

)
.

Because the unconditional norm given byL1 (G, C0(X)) dominates‖·‖1, the isomorphism inK-
theory is given by the canonical homomorphism fromL1 (G, C0(X)) to L1 (GnX).

Lemma 8.2.8. If G is proper, thenX = G(0) is a model forEG. If G is proper andX/G is compact,
then the canonical homomorphism

KKban
G (C0(X), B) → Ktop,ban (G, B)

is an isomorphism for allG-Banach algebrasB.

Proposition 8.2.9. Assume thatG is proper and thatX/G is compact. Then the following diagram
commutes:

KKban
G (C0(X), B)

JB
A //

∼=
��

RKKban (C0 (X/G) ; C0 (X/G) , A(G, B))

∼=
��

Ktop,ban (G, B)
µB
A // K0 (A(G, B))

The isomorphism on the right-hand side is the given by the embeddingC 7→ C0 (X/G) as constant
functions (compare Corollary 2.8.2). Before we come to the proof of Proposition 8.2.9 we state an
immediate corollary:
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Corollary 8.2.10. If G is as above andA(G) is regular andB is non-degenerate, then Theorem 7.1.10
says that there is a natural splitMB

A of JBA . Hence alsoµBA has a natural split.

Proof of Proposition 8.2.9.We show that the diagram already commutes (up to isomorphism) on the
level of cycles. Let therefore(E, T ) be in Eban

G (C0(X), B) and assume thatT is G-equivariant
(which can be done becauseG is proper, see Proposition 7.2.1). Choose a cut-off pairc = (c<, c>)
for G. Applying the Bost map to(E, T ) gives

(
pA(G, E), T |pA(G,E)

)
wherep is the idempotent in

A(G) given byγ 7→ c>(r(γ))c<(s(γ)) ∈ Γc (G) as discussed after Definition 8.1.3 (p commutes
with A(G, T ) becauseT is G-equivariant).

On the other hand,JBA,Ac (E, T ) can be realised as precisely the same cycle using the homomor-
phismj<E,c andj>E,c introduced in Definition 7.2.26, compare also Definition 7.2.29.

8.3 The pushforward construction

The pushforward construction that we are going to present here in some detail is needed for a pre-
cise discussion of the notion of a properG-Banach algebra, whereG is a locally compact Hausdorff
groupoid. The underlying idea is very simple: IfX andY are locally compact Hausdorff spaces and
p : Y → X is continuous, then we want to know how to transform a field of Banach spaces overY
into a field overX. One way is to assemble, for everyx ∈ X, all the fibres over pointsy ∈ Y that
satisfyp(y) = x and make a single fibre out of them.

In the first part of this section we introduce the pushforward construction in a non-equivariant
setting. The groupoidG comes back into play in the second part of the section, and in the third
subsection, we discuss the relations between the descent and the pushforward (in the case thatG
carries a Haar system). The non-equivariant construction can also be found in the book [FD88],
Paragraph 14.9; it is formulated in the language of Banach bundles rather than in the language of
u.s.c. fields of Banach spaces.

8.3.1 The pushforward for fields

LetX andY be locally compact Hausdorff spaces and letp : Y → X be continuous.

Definition and Proposition 8.3.1. Let E be a u.s.c. field of Banach spaces overY . For allx ∈ X,
define8

p∗(E)x := Γ0 (Yx, E|Yx) .

On this family of Banach spaces overX define a structure of a u.s.c. field of Banach spaces over
X as follows: For allξ ∈ Γ0(Y,E), define the selectionp∗(ξ) : x 7→ ξ|Yx of p∗(E). ThenΓ0 :=
{p∗(ξ) : ξ ∈ Γ0(Y,E)} satisfies conditions (C1) - (C3) of the definition of a u.s.c. field of Banach
spaces and therefore defines a structure of a u.s.c. field of Banach spaces overX onp∗(E). It has the
propertyΓ0 = Γ0 (X, p∗E).

Proof. Let x ∈ X. ThenYx is a closed subspace ofY , so we can apply Proposition E.5.2 which
says that the mapξ 7→ ξ|Yx is a metric surjection fromΓ0 (Y,E) ontoΓ0 (Yx, E|Yx). In particular,
the setΓ0 defined above is total. It clearly is aC-linear subspace of the space of all selections of

8This definition makes sense ifx ∈ p(Y ), and can and should be interpreted asp∗(E)x = 0 if x /∈ p(Y ).
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p∗(E). So we have checked (C1) and (C2). As for (C3), letx0 ∈ X, ε > 0 andξ ∈ Γ0 (Y,E). Let
L := {y ∈ Y : ‖ξ(y)‖ ≥ ‖p∗(ξ)(x0)‖+ ε}. ThenL is a compact subset ofY becauseξ is vanishing
at infinity. Hence its imageK := p(L) is a compact subset ofX. This setK does not containx0, so
its complementU := X \K is an open neighbourhood ofx0 such that foru ∈ U we have

‖p(ξ)(u)‖ = sup
y∈Yx

‖ξ(y)‖ ≤ ‖p∗(ξ)(x0)‖+ ε,

where the supremum is assumed to be zero if taken over the empty set. Hence we have shown that
|p∗(ξ)| is upper semi-continuous.

It remains to show thatΓ0 = Γ0 (X, p∗E). Let ξ be inΓ0 (Y,E) andε > 0. Find a compact
subsetL of Y such that‖ξ(y)‖ ≤ ε whenevery ∈ Y \ L. LetK := p(L). ThenK is a compact
subset such that‖p∗(ξ)(x)‖ = supy∈Yx

‖ξ(y)‖ ≤ ε for all x ∈ X \K. Sop∗(ξ) vanishes at infinity.
This shows thatξ 7→ p∗ξ is an (isometric) map fromΓ0 (Y, E) to Γ0 (X, p∗E). The image is total
and invariant under multiplication with elements ofCc(X), so it is dense. Hence the image is all of
Γ0 (X, p∗E).

Definition and Proposition 8.3.2.LetE andF be u.s.c. fields of Banach spaces overY and letT be
a bounded continuous field of linear maps fromE to F . For allx ∈ X, define

p∗(T )x : p∗(E)x → p∗(F )y, ξ 7→ [Yx 3 y 7→ Ty(ξ(y))] .

Thenp∗T is a continuous field of linear maps bounded by‖T‖.

Proof. If ξ ∈ Γ0(X,E), thenp∗T ◦ p∗ξ = p∗(T ◦ ξ) ∈ Γ0(X, p∗F ). Sop∗T maps a total subset of
Γ(X, p∗E) into Γ(X, p∗F ) and is hence continuous.

Definition 8.3.3. LetE1,E2 andF be u.s.c. fields of Banach spaces overY and letµ : E1×Y E2 → F
be a bounded continuous field of bilinear maps. For allx ∈ X, define

p∗(µ)x : p∗(E1)x × p∗(E2)x → p∗(F )x, (ξ1, ξ2) 7→ [Yx 3 y 7→ µy(ξ1(y), ξ2(y))] .

Thenp∗µ is a continuous field of bilinear maps bounded by‖µ‖. If µ is non-degenerate, then so is
p∗µ, and vice versa. This definition respects the associativity of bilinear maps.

Using these definitions one can define a u.s.c. fieldp∗A of Banach algebras overX if A is a
u.s.c. field of Banach algebras overY . Similar definitions can be made for Banach modules and pairs.

Lemma 8.3.4. LetZ be another locally compact Hausdorff space and letq : Z → Y be continuous.
Let E be a u.s.c. field of Banach spaces overZ. Then(p ◦ q)∗E ∼= p∗q∗E. This is also true for
bounded continuous fields of linear and bilinear maps.

Proof. Let x ∈ X. WriteZx for (p ◦ q)−1({x}) ⊆ Z. The fibre of(p ◦ q)∗E atx is Γ0 (Zx, E|Zx).
The fibre ofp∗q∗E is Γ0 (Yx, (q∗E)|Yx). If ξ ∈ Γ0 (Zx, E|Zx), thenq∗ξ ∈ Γ0 (Yx, q∗(E|Zx)). Note
that (q∗E)|Yx = q∗ (E|Zx). So ξ 7→ q∗ξ defines an isometric isomorphism from[(p ◦ q)∗E]x to
[p∗q∗E]x. Now Γ0 (X, (p ◦ q)∗E) andΓ0 (X, p∗q∗E) both come fromΓ0 (Z, E), in the first case
throughξ 7→ (p ◦ q)∗ξ, in the second case throughξ 7→ p∗q∗ξ. Hence(p ◦ q)∗E andp∗q∗E are
isomorphic.
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Proposition 8.3.5 (Pushforward and Pullback).LetY ′ be another locally compact Hausdorff space
and letp′ : Y ′ → X be continuous. Letq : Y ′ ×X Y → Y andq′ : Y ′ ×X Y → Y ′ be the canonical
“projections”. Let E be a u.s.c. field of Banach spaces overX. Thenp′∗(p∗E) ∼= q′∗(q

∗E), i.e., the
two ways of going from the upper right to the lower left corner in the following diagram yield the
same result:

Y ′ ×X Y
q //

q′

��

Y

p

��
Y ′ p′ // X

Proof. Let y′ ∈ Y ′. Then the fibre ofY ′ ×X Y over y′ is {(y′, y) : y ∈ Yp′(y′)} and hence
it is canonically homeomorphic toYp′(y′); let ϕy′ : (Y ′ ×X Y )y′ → Yp′(y′), (y′, y) 7→ y be the
homoeomorphism.

The fibre(p′∗(p∗E))y′ of p′∗(p∗E) over y′ is (p∗E)p′(y′) = Γ0

(
Yp′(y′), E|Yp′(y′)

)
. The fibre

(q′∗(q
∗E))y′ of q′∗(q

∗E) overy′ is Γ0

(
(Y ′ ×X Y )y′ , (q∗E)|(Y ′×XY )y′

)
. Now

(
ϕ∗y′(E|Yp′(y′))

)
(y′,y)

= Eϕy′ (y
′,y) = Ey = (q∗E)(y′,y)

for all y ∈ Yp′(y′). If ξy′ ∈ Γ0

(
Yp′(y′), E|Yp′(y′)

)
, then define the selectionΦy′

(
ξy′
)

by

Φy′
(
ξy′
)

(y′, y′) := ξy′(y)

for all y ∈ Yp′(y′). This is an isometric linear map fromΓ0(Yp′(y′), E|Yp′(y′)) to the space of selections
Σ0((Y ′×X Y )y′ , (q∗E)|(Y ′×XY )y′

). If ξy′ ∈ Γ0(Yp′(y′), E|Yp′(y′)), then there exists aξ ∈ Γ0 (Y, E)
such thatξy′ = ξ|Yp′(y′) . Thenξ ◦q is a section inΓ (Y ′ ×X Y, q∗E). Now (ξ ◦q)|(Y ′×XY )y′

(y′, y) =
ξ(q(y′, y)) = ξ(y) = Φy′(ξy′) (y′, y) for all y ∈ Yp′(y′), soΦy′(ξy′) is a section, soΦy′ takes it values
in Γ0((Y ′ ×X Y )y′ , (q∗E)|(Y ′×XY )y′

). The image is clearly total and invariant under the action of

Cc
(
(Y ′ ×X Y )y′

)
, so it is dense and henceΦy′ is (isometric and) surjective.

Now let Φ := (Φy′)y′∈Y ′ . We show thatΦ is an isomorphism of the u.s.c. fieldsp′∗(p∗E) and
q′∗(q

∗E) overY ′. We already know that it is a family of isometric isomorphisms between the fibres.
Let ξ ∈ Γ0 (Y,E). Thenp∗ξ ∈ Γ0 (X, p∗E). Moreover,(p∗ξ) ◦ p′ ∈ Γ (Y ′, p′∗p∗E). If χ′ ∈
C0 (Y ′), thenχ′ ((p∗ξ) ◦ p′) ∈ Γ0 (Y ′, p′∗p∗E). On the other hand,ξ ◦ q ∈ Γ (Y ′ ×X Y, q∗E) and
(χ′ ◦ q′)(ξ ◦ q) ∈ Γ0 (Y ′ ×X Y, q∗E). This impliesq′∗ ((χ′ ◦ q′)(ξ ◦ q)) ∈ Γ0 (Y ′, q′∗q

∗E). We have

Φy′
(
χ′
(
(p∗ξ) ◦ p′

)
(y′)
)

(y′, y) = χ′(y′)Φy′
(
(p∗ξ)(p′(y′))

)
(y′, y)

= χ′(y′)Φy′

(
ξ|Yp′(y′)

)
(y′, y) = χ′(y′)ξ(y) =

(
(χ′ ◦ q′)(ξ ◦ q)

)
(y′, y)

=
(
(χ′ ◦ q′)(ξ ◦ q)

)
|(Y ′×XY )y′

(y′, y)

for all y′ ∈ Y ′ and ally ∈ Yp′(y′). So

Φ ◦
(
χ′
(
(p∗ξ) ◦ p′

))
= q′∗

(
(χ′ ◦ q′)(ξ ◦ q)

)
.

In both cases, the set of such sections is total and henceΦ is continuous in both directions.
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8.3.2 The pushforward for equivariant fields

In this subsection letY be a locally compact Hausdorff leftG-space with anchor mapρ : Y → X.
LetE be aGnY -Banach space. Then we define the structure of aG-Banach space onρ∗E as follows:

Definition and Proposition 8.3.6. Let E be aG n Y -Banach space with actionα. Let γ ∈ G
and ξs(γ) ∈ (ρ∗E)s(γ) = Γ0

(
Ys(γ), E|Ys(γ)

)
. Define a sectionγξs(γ) ∈ Γ0

(
Yr(γ), E|Yr(γ)

)
=

(ρ∗E)r(γ) by (
γξs(γ)

)
(y) := (γ, y)

(
ξs(γ)

(
γ−1y

))
for all y ∈ Yr(γ). This defines an action ofG onρ∗E.

Proof. The actionα of GnY onE is an isomorphism froms∗GnYE andr∗GnYE. Recall that we have
identifiedG n Y with G ×r,ρ Y . Defineπ1 : G n Y → G, (γ, y) 7→ γ. Thenπ1,∗α is an isomorphism
from π1,∗s

∗
GnYE to π1,∗r

∗
GnYE. Note that we have commutative squares

G n Y
rGnY //

π1

��

Y

ρ

��
G

rG // X

G n Y
sGnY //

π1

��

Y

ρ

��
G

sG // X

Applying Proposition 8.3.5 we haveπ1,∗s
∗
GnYE

∼= s∗Gρ∗E andπ1,∗r
∗
GnYE

∼= r∗Gρ∗E, and the result-
ing isomorphism froms∗Gρ∗E to r∗Gρ∗E is precisely the action ofG onρ∗E defined above:

Let γ ∈ G and letξsG(γ) ∈ (ρ∗E)sG(γ) = Γ0(YsG(γ), E|YsG(γ)
). Our identification(ρ∗E)sG(γ) =

(π1,∗s
∗
GnYE)γ identifiesξsG(γ) with (γ, y) 7→ ξsG(γ)(γ−1y). Applying (π1,∗α)γ to this section gives

the section(γ, y) 7→ (γ, y)ξsG(γ)(γ−1y) in (π1,∗r
∗
GnYE)γ . The identification(π1,∗r

∗
GnYE)γ with

(r∗Gρ∗E)γ = (ρ∗E)rG(γ) gives the sectiony 7→ (γ, y)ξsG(γ)(γ−1y).
We also check the algebraic properties of the action: Letγ, γ′ ∈ G such thatsG(γ) = rG(γ′). Let

ξsG(γ′) ∈ (ρ∗E)sG(γ′) = Γ0(YsG(γ′), E|YsG(γ′)). Then(
(γγ′)ξsG(γ′)

)
(y) = (γγ′, y) ξsG(γ′)

(
(γγ′)−1y

)
= (γ, y) (γ′, γ−1y) ξsG(γ′)

(
γ′−1

(
γ−1y

))
= (γ, y)

[(
γ′ξsG(γ′)

)
(γ−1y)

]
= γ

(
γ′ξsG(γ′)

)
(y)

for all y ∈ YsG(γ′), so(γγ′)ξsG(γ′) = γ(γ′ξsG(γ′)). Hence we have defined an action ofG onρ∗E.

Definition and Proposition 8.3.7. Let E andF beG n Y -Banach spaces and letϕ : E → F be a
GnY -equivariant contractive continuous field of linear maps. Thenρ∗ϕ is aG-equivariant contractive
continuous field of linear maps fromρ∗E to ρ∗F .

Proof. Let γ ∈ G andξs(γ) ∈ (ρ∗E)s(γ) = Γ0

(
Ys(γ), E|Ys(γ)

)
. Then[

γ(ρ∗ϕ)s(γ)ξs(γ)
]
(y) = (γ, y)

(
ρ∗ϕ)s(γ)ξs(γ)

)
(γ−1y) = (γ, y)

(
ϕγ−1yξs(γ)(γ

−1y)
)

= ϕy
(
(γ, y)ξs(γ)(γ

−1y)
)

= ϕy
(
(γξs(γ))(y)

)
=
[
(ρ∗ϕ)r(γ)

(
γξs(γ)

)]
(y)

for all y ∈ Yr(γ), which means thatρ∗ϕ is G-equivariant.

Hence we have a functor from theG n Y -Banach spaces to theG-Banach spaces. The same type of
calculation shows:
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Definition and Proposition 8.3.8.LetE1,E2 andF beGnY -Banach spaces and letµ : E1×Y E2 →
F be aG n Y -equivariant contractive continuous field of bilinear maps. Thenρ∗µ is aG-equivariant
contractive continuous field of bilinear maps fromρ∗E1 ×X ρ∗E2 to ρ∗F .

Lemma 8.3.9. LetZ andY be locally compact HausdorffG-spaces with anchor mapsρZ andρY ,
respectively. Letq : Z → Y be a continuousG-equivariant map. ThenZ is also aG n Y -space: The
anchor map isq and the continuous action is defined by(γ, y)z := γz for all (γ, z) ∈ G n Y and
y ∈ Y such thats(γ, y) = γ−1y = q(z). Note thatρY ◦ q = ρZ . If E is aG n Z-Banach space, then
q∗E is aG n Y -Banach space and

ρZ∗ E
∼= ρY∗ q∗E.

This construction respects equivariant bounded continuous fields of linear and bilinear maps.

Proof. We just check that the isomorphism given by Lemma 8.3.4 isG-equivariant: Letγ ∈ G and
ξ ∈ Γ0(Zs(γ), E|Zs(γ)

). Then (
γρZ∗ ξ

)
(z) = (γ, z)

[
ξ(γ−1z)

]
for all z ∈ Zr(γ). On the other hand, we have, for ally ∈ Yx,(

γ
(
ρY∗ (q∗ξ)

))
(y) = (γ, y)

[
(q∗ξ)(γ−1y))

]
and thus for allz ∈ Zy (usingy = q(z)):[(

γ
(
ρY∗ (q∗ξ)

))
(q(z))

]
(z) = (γ, q(z))

[
(q∗ξ)(γ−1q(z)))

]
(z)

= (γ, z)
[(

(q∗ξ)(q(γ−1z))
)
(γ−1z)

]
= (γ, z)

[
ξ(γ−1z)

]
.

Hence the isomorphism isG-equivariant.

This construction respects the associativity of equivariant bilinear maps. Hence we can make the
following definitions:

Definition and Proposition 8.3.10.Let B be aG n Y -Banach algebra with multiplicationµ. Then
ρ∗B together withρ∗µ is aG-Banach algebra. Ifϕ : B → B′ is aG n Y -equivariant homomorphism
betweenG n Y -Banach algebras, thenρ∗ϕ is aG-equivariant homomorphism fromρ∗B to ρ∗B′.

Definition and Proposition 8.3.11.Let B be aG n Y -Banach algebra and letE be a rightG n Y -
BanachB-module with multiplicationµE . Thenρ∗E together withρ∗µE is a rightG-Banachρ∗B-
module. This construction respects equivariant homomorphisms of Banach modules. IfF is another
right G n Y -BanachB-module andT ∈ LB(E,F ) is aB-linear bounded continuous field of linear
maps, thenρ∗T is in Lρ∗ (ρ∗E, ρ∗F ) with ‖ρ∗T‖ ≤ ‖T‖.

Definition and Proposition 8.3.12.Let B be aG n Y -Banach algebra and letE = (E<, E>) be
a G n Y -BanachB-pair with bracket〈·, 〉̇E . Thenρ∗E = (ρ∗E<, ρ∗E>) together withρ∗〈·, 〉̇E is
aG-Banachρ∗B-pair. This construction respects equivariant concurrent homomorphisms of Banach
pairs. IfF is another rightGnY -BanachB-pair andT ∈ LB(E,F ) is aB-linear bounded continuous
field of operators, thenρ∗T is in Lρ∗ (ρ∗E, ρ∗F ) with ‖ρ∗T‖ ≤ ‖T‖.

Proposition 8.3.13.LetB be aG n Y -Banach algebra and letE andF beG n Y -BanachB-pairs.
Let ξ< ∈ Γ0(X,E<) andη> ∈ Γ0(X,F>). Then

ρ∗
(∣∣η>〉〈ξ<∣∣) =

∣∣ρ∗(η>)
〉〈
ρ∗(ξ<)

∣∣ ∈ Kρ∗B (ρ∗E, ρ∗F ) .

It follows thatρ∗ (KB(E,F )) ⊆ Kρ∗B (ρ∗E, ρ∗F ).



250 CHAPTER 8. THE BOST MAP AND PROPER BANACH ALGEBRAS

Proof. We check this formula only on the right-hand side: Letx ∈ X and ξ>x ∈ ρ∗(E>)x =
Γ0 (Yx, E>|Yx). Then for ally ∈ Yx:[

ρ∗
(∣∣η>〉〈ξ<∣∣)>

x
(ξ>x )

]
(y) =

∣∣η>〉〈ξ<∣∣>
y

(
ξ>x (y)

)
=
∣∣η>(y)

〉〈
ξ<(y)

∣∣>(ξ>x (y))

= η>(y)
〈
ξ<(y), ξ>x (y)

〉
= ρ∗(η>)x(y)

〈
ρ∗(ξ<), ξ>

〉
(y) =

[∣∣ρ∗(η>)
〉〈
ρ∗(ξ<)

∣∣>(ξ>x )
]
(y).

Lemma 8.3.14.LetB be aGnY -Banach algebra and letE andF beGnY -BanachB-pairs. Define
π1 : G n Y → G, (γ, y) 7→ γ. Then for allT ∈ LB(E,F ), we have

αL(ρ∗E,ρ∗F )s∗G(ρ∗T ) = π1,∗

(
αL(E,F )s∗GnY T

)
,

where we identifyr∗Gρ∗E andπ1,∗r
∗
GnYE (and similar forF andB).

Proof. Let γ ∈ G andξ>r(γ) ∈ ρ∗E
>
rG(γ) = Γ0

(
YrG(γ), E

>|YrG(γ)

)
. Then for ally ∈ YrG(γ):[

αL(ρ∗E,ρ∗F )s∗G(ρ∗T )
]
γ

(
ξ>r(γ)

)
(y) = γ

[(
s∗G(ρ∗T )

)
γ

(
γ−1ξ>r(γ)

)]
(y)

= γ
[
(ρ∗T )sG(γ)

(
γ−1ξ>r(γ)

)]
(y) = (γ, y)

([
(ρ∗T )sG(γ)

(
γ−1ξ>r(γ)

)]
(γ−1y)

)
= (γ, y)

(
Tγ−1y

[(
γ−1ξ>r(γ)

)
(γ−1y)

])
= (γ, y)

(
Tγ−1y

[
(γ−1, γ−1y)

(
ξ>r(γ)(γγ

−1y)
)])

= (γ, y)
(
Tγ−1y

[
(γ, y)−1

(
ξ>r(γ)(y)

)])
=
(
αL(E,F )(s∗GnY T )

)
(γ,y)

(ξ>r(γ)(y)).

A similar calculation holds for the left-hand side.

Proposition 8.3.15.LetA andB beG n Y -Banach algebras. Let(E, T ) ∈ Eban
GnY (A, B). Then

(ρ∗E, ρ∗T ) is in Eban
G (ρ∗A, ρ∗B).

Proof. SurelyE is a graded non-degenerateG-Banachρ∗A-ρ∗B-pair andρ∗T is an odd continuous
field of linear operators onρ∗E. Now leta ∈ Γ0 (X, ρ∗A). Then there is aa′ ∈ Γ0 (Y, A) such that
a = ρ∗a

′. Now
[a, ρ∗T ] =

[
ρ∗a

′, ρ∗T
]

= ρ∗
[
a′, T

]
∈ Kρ∗B (ρ∗E) .

Similarly,
a
(
ρ∗T

2 − 1
)

= ρ∗
(
a′(T 2 − 1)

)
∈ Kρ∗B (ρ∗E) .

Now let ã ∈ Γ0

(
G, r∗Gρ∗A

)
. As above, defineπ1 : G n Y → G, (γ, y) 7→ γ. We identifyr∗Gρ∗A and

π1,∗r
∗
GnYA (and do the same forB andE) and regard̃a as an element ofΓ0

(
G, π1,∗r

∗
GnYA

)
. We

can then find an elementã′ ∈ Γ0

(
G n Y, r∗GnYA

)
such thatπ1,∗ã

′ = ã. Using Lemma 8.3.14 and
suitable identifications we can now conclude

ã
(
αL(ρ∗E)(s∗Gρ∗T )− r∗Gρ∗T

)
= π1,∗ã

′
(
π1,∗α

L(E)s∗GnY (T )− π1,∗r
∗
GnY (T )

)
= π1,∗

(
ã′
(
αL(E)s∗GnY − r∗GnY T

))
∈ Kπ1,∗r∗GnY B

(
π1,∗r

∗
GnYE

)
= Kr∗Gρ∗B

(
r∗Gρ∗E

)
.

Proposition 4.7.5 tells us that we can defineKKban
G -cycles betweenG-Banach algebras with locally

compact HausdorffG also using compact instead of locally compact operators, so we have shown that
(ρ∗E, ρ∗T ) is aKKban

G -cycle.
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Lemma 8.3.16.LetB be aG n Y -Banach algebra. Thenρ∗(B[0, 1]) is canonically isomorphic to
(ρ∗B)[0, 1].

Proof. DefineπY2 : [0, 1] × Y → Y, (t, y) 7→ y andπX2 : [0, 1] × X → X, (t, x) 7→ x. Then
a careful inspection of the definition ofB[0, 1] shows thatB[0, 1] = (πY2 )∗(πY2 )∗B and similarly
(ρ∗B)[0, 1] = (πX2 )∗(πX2 )∗(ρ∗B). Now ρ ◦ πY2 = πX2 ◦ (ρ× Id[0,1]) implies that

ρ∗(B[0, 1]) = ρ∗(πY2 )∗(πY2 )∗B ∼= (ρ ◦ πY2 )∗(πY2 )∗B = (πX2 ◦ (ρ× Id[0,1])∗(π
Y
2 )∗B

∼= (πX2 )∗(ρ× Id[0,1])∗(π
Y
2 )∗B ∼= (πX2 )∗(πX2 )∗ρ∗B = (ρ∗B)[0, 1].

Lemma 8.3.17.LetB be aG n Y -Banach algebra. LetE be a leftG n Y -BanachB-module andF
a right G n Y -BanachB-module, one of them being non-degenerate. Then

ρ∗(E)⊗ρ∗(B) ρ∗(F ) ∼= ρ∗ (E ⊗B F ) .

Proof. Let µ : E ×Y F → E ⊗B F be the canonical field of bilinear maps. Then there is a canonical
homomorphism from the left-hand to the right-hand side, namelyρ∗µ. We check that it is a fibre-wise
isomorphism:

Let x ∈ X. The fibre of the left-hand side overx is Γ0 (Yx, E|Yx) ⊗C0(Yx)
Γ0(Yx,B|Yx ) Γ0 (Yx, F |Yx),

the fibre of the right-hand side overx is Γ0 (Yx, (E ⊗B F )|Yx). Both sides areC0(Yx)-Banach spaces
and the canonical map(ρ∗µ)x isC0(Yx)-linear and an isomorphism on the fibres. By Theorem A.2.15,
which says that theC0(Yx)-tensor product of locally convexC0(Yx)-Banach spaces is locallyC0(Yx)-
convex (plus the fact that quotients of locally convexC0(Yx)-Banach spaces are locally convex), both
sides are locallyC0(Yx)-convex and hence we have an isomorphism.

By the two preceding lemmas and arguments that appeared several times in this thesis we can con-
clude:

Proposition 8.3.18.LetA andB beG n Y -Banach algebras. Thenρ∗ gives a homomorphism

ρ∗ : KKban
GnY (A,B) → KKban

G (ρ∗A, ρ∗B) .

8.3.3 The pushforward and the descent

Assume thatG carries a Haar system.

Definition 8.3.19. LetE be aG n Y -Banach space. For allξ ∈ Γc
(
G n Y, r∗GnYE

)
, defineι̂E(ξ) ∈

Γc
(
G, r∗Gρ∗E

)
by

ι̂E(ξ) (γ) :=
[
YrG(γ) 3 y 7→ ξ(γ, y)

]
∈ ρ∗ErG(γ)

for all γ ∈ G.

Lemma 8.3.20.If E is aGnY -Banach space, then̂ιE is continuous for the inductive limit topologies,
injective, and has dense image.

Proof. The map̂ιE is isometric for the sup-norm, so in particular, it is injective. This also shows that
ι̂E is continuous for the inductive limit topologies. The image ofι̂E is dense because it is pointwise
dense and invariant under multiplication with functions inCc (G).
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Lemma 8.3.21.LetE1,E2 andF beGnY -Banach spaces and letµ : E1×Y E2 → F be a bounded
equivariant continuous field of bilinear maps. Then(ρ∗µ) (ι̂E1(ξ1), ι̂E2(ξ2)) = ι̂F (µ(ξ1, ξ2)) for all
ξ1 ∈ Γc

(
G n Y, r∗GnYE1

)
andξ2 ∈ Γc

(
G n Y, r∗GnYE2

)
; this could also be written as

ι̂E1(ξ1) ∗ ι̂E2(ξ2) = ι̂F (ξ1 ∗ ξ2) .

Proof. We have

[ι̂F (ξ1 ∗ ξ2) (γ)] (y) = (ξ1 ∗ ξ2)(γ, y) =
∫
Gr(γ)

µy
(
ξ1(γ′, y), (γ′, y)ξ2

(
(γ′, y)−1(γ, y)

))
dγ′

=
∫
Gr(γ)

µy
(
ξ1(γ′, y), (γ′, y)ξ2

(
γ′−1γ, γ′−1y

))
dγ′

=
∫
Gr(γ)

µy
(
ι̂E1(ξ1)(γ

′) (y),
[
γ′ι̂E2(ξ2)(γ

′−1γ)
]
(y)
)

dγ′

=
[∫

Gr(γ)

(ρ∗µ)r(γ)
(
ι̂E1(ξ1)(γ

′), γ′ι̂E2(ξ2)(γ
′−1γ)

)
dγ′
]

(y)

= [(ι̂E1(ξ1) ∗ ι̂E2(ξ2)) (γ)] (y)

for all γ ∈ G andy ∈ Yr(γ).

Proposition 8.3.22.For everyG n Y -Banach algebraB, the map̂ιB is a continuous injective homo-
morphism with dense image.

Definition and Proposition 8.3.23. Let H(G) be a monotone completion ofCc(G) and letE be a
G n Y -Banach space. For allξ ∈ Γc

(
G n Y, r∗GnYE

)
, define

‖ξ‖HY
:= ‖ι̂E(ξ)‖H .

This defines a semi-norm onΓc
(
G n Y, r∗GnYE

)
. If B = CY , then Γc

(
G n Y, r∗GnY CY

)
=

Cc (G n Y ) and ‖·‖HY
is a monotone semi-norm onCc (G n Y ). The mapι̂E extends to an iso-

morphism on the completions

ι̂E : HY (G n Y, E) ∼= H (G, ρ∗E) .

Proposition 8.3.24.If A(G) is an unconditional completion ofCc (G), thenAY (G n Y ) is an uncon-
ditional completion ofCc (G n Y ). If B is aG n Y -Banach algebra, then

ι̂B : AY (G n Y, B) ∼= A (G, ρ∗B)

as Banach algebras.

Proposition 8.3.25. Let A andB be G n Y -Banach algebras and letA(G) be an unconditional
completion ofG. Then the following diagram is commutative:

KKban
GnY (A, B)

ρ∗
��

jAY // KKban (AY (G n Y,A) , AY (G n Y,B))

∼=
��

KKban
G (ρ∗A, ρ∗B)

jA // KKban (A (G, ρ∗A) , A (G, ρ∗B))

where the isomorphism on the right-hand side is given by the isomorphism of Proposition 8.3.24 in
both variables.
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Proof. This is true already on the level of cycles: Let(E, T ) ∈ Eban
GnY (A, B). Thenρ∗(E, T ) =

(ρ∗E, ρ∗T ) by definition. The moduleA (G, ρ∗E>) is a completion ofΓc
(
G, r∗Gρ∗E>

)
for the norm

‖·‖A. Using the continuous injective linear mapι̂E> from Γc
(
G n Y, r∗GnYE

>
)

to Γc
(
G, r∗Gρ∗E>

)
introduced in 8.3.19 we get, as in 8.3.23, a linear isometric isomorphismι̂E> : AY (G n Y, E>) →
A (G, ρ∗E>); analogously, we get a linear isomorphismι̂E< : AY (G n Y, E<) → A (G, ρ∗E<).
Together, this gives an isomorphism of Banach pairsι̂E from AY (G n Y, E) to A (G, ρ∗E) with
coefficient mapŝιA andι̂B (the algebraic properties follow from Lemma 8.3.21). It is straightforward
to show that this isomorphism is compatible with the grading and intertwines the operators, i.e., it is
an isomorphism of cycles.

Proposition 8.3.26. If A(G) is a regular unconditional completion ofCc (G), alsoAY (G n Y ) is
regular.

Proof. LetA(G) act on aG-equivariant pairH(G) = (H<(G), H>(G)) of locally convex monotone
completions ofCc (G). ThenAY (G n Y ) acts onHY (G n Y ) =

(
H<
Y (G n Y ) , H>

Y (G n Y )
)
.

There is a canonical non-degenerate action ofC0 (Y ) on HY (G n Y ) making it aC0(Y )-Banach
space; the trouble is thatHY (G n Y ) needs not be locallyC0(Y )-convex. But it is easy to see that
the Gelfand transformG(HY ) (G n Y ) :=

(
G
(
H<
Y (G n Y )

)
, G
(
H>
Y (G n Y )

))
is a pair of locally

convex monotone completions ofCc (G n Y ) on whichAY (G n Y ) acts. We check that this pair is
GnY -equivariant (we only consider the left-hand side, the right-hand side can be treated analogously).

Let y ∈ Y andχ ∈ Cc ((G n Y )y) with χ ≥ 0. The semi-norm ofχ as an element of the fibre of
H<
Y (G n Y ) overy is the infimum over the semi-norm of all extensions ofχ to non-negative elements

of Cc (G n Y ); these extensions are the same as all the non-negative extensions toCc (G n Y ) of all
extensions toCc

(
(G n Y )ρ(y)

)
of χ, where(GnY )ρ(y) = {(γ′, y′) ∈ GnY : r(γ′) = ρ(y) = ρ(y′)}.

So we can calculate the semi-norm ofχ also as the infimum over all non-negative extensionsχ̃ of χ
to Cc

(
(G n Y )ρ(y)

)
of the semi-norm‖ι̂CY

χ̃‖(H<)ρ(y)
.

Now let (γ, y) ∈ G n Y . Note that(G n Y )s(γ,y) = {(γ′, y′) ∈ G n Y : y′ = γ−1y}. Let

χ ∈ Cc
(
(G n Y )s(γ,y)

)
with χ ≥ 0. We have to show that‖χ‖(H<

Y )γ−1y
= ‖(γ, y) · χ‖(H<

Y )y
,

where(γ, y) · χ =
[
(G n Y )y 3 (γ′, y′) 7→ χ

(
(γ, y)−1(γ′, y′)

)
= χ

(
γ−1γ′, γ−1y

)]
. By symmetry,

it suffices to show that‖χ‖ ≥ ‖(γ, y) · χ‖.
Let χ̃ ∈ Cc

(
(G n Y )s(γ)

)
be a non-negative extension ofχ. Then

γχ̃ :=
[
(G n Y )r(γ) 3 (γ′, y′) 7→ χ̃

(
γ−1γ′, γ−1y′

)]
is a non-negative extension of(γ, y)χ to (G n Y )r(γ). Hence‖(γ, y)χ‖ ≤ ‖γχ̃‖H<

r(γ)
= ‖χ̃‖H<

s(γ)
,

where we have used thatH<(G) is G-equivariant. The infimum over the right-hand side is‖χ‖, so we
have shown‖χ‖ ≥ ‖(γ, y) · χ‖.

8.4 ProperG-Banach algebras

Definition 8.4.1 (ProperG-Banach algebra). A G-Banach algebraB is calledproper if there is a
proper locally compact HausdorffG-spaceZ (with anchor mapρ) and aG n Z-Banach algebrâB
such that theG-Banach algebraρ∗B̂ is isomorphic toB.

Proposition 8.4.2.AG-Banach algebraB is a proper if and only if there is aGnEG-Banach algebra
B̂ such that̃ρ∗B̃ is isomorphic toB, whereρ̃ denotes the anchor map ofEG. This means that we can
assume without loss of generality that the spaceZ appearing in the above definition is equal toEG.
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Proof. Let B be a properG-Banach algebra and letZ be a proper locally compact HausdorffG-
space with anchor mapρ and letB̂ be aG n Z-Banach algebra such thatρ∗B̂ is isomorphic toB.
From the universal property ofEG we can find a continuousG-equivariant mapq from Z to EG.
The equivariance ofq means in particular that̃ρ ◦ q = ρ. Now B ∼= ρ∗B̂ ∼= ρ̃∗q∗B̂ andq∗B̂ is a
G n EG-Banach algebra.

For the rest of this chapter, letG carry a Haar system.
The following proposition generalises Proposition 8.2.5, which discusses the case thatG itself is

proper. We are going to prove it by reducing it to this special case.

Proposition 8.4.3. LetB be a proper non-degenerateG-Banach algebra and letA(G) andB(G) be
unconditional completions ofCc(G) such that‖χ‖A ≥ ‖χ‖B for all χ ∈ Cc(G). Letψ : A(G, B) →
B(G, B) be the canonical homomorphism of Banach algebras introduced in 8.1.5. IfB(G) is a regular
unconditional completion ofC(G), then

ψ∗ : K∗ (A(G, B)) → K∗ (B(G, B))

is an isomorphism making the following diagram commutative

Ktop,ban (G, B)
µB
A //

µB
B **UUUUUUUUUUUUUUUU

K0 (A (G, B))

ψ∗
��

K0 (B (G, B))

Proof. That the diagram is commutative was already stated in 8.1.5; it remains to show thatψ∗ is an
isomorphism.

Find a proper locally compact HausdorffG-spaceZ with anchor mapρ and aG n Z-Banach
algebraB̂ such thatρ∗B̂ is isomorphic toB. ThenB̂ is non-degenerate. BecauseB(G) is a regular
unconditional completion ofCc (G), alsoA(G) is regular andAZ (G n Z) andBZ (G n Z) are regular
unconditional completions ofCc (G n Z) by Proposition 8.3.26. Moreover,‖χ‖AZ

≥ ‖χ‖BZ
for all

χ ∈ Cc (G n Z), hence there is a canonical homomorphismψZ : AZ(G n Z, B̂) → BZ(G n Z, B̂).
The following diagram commutes

AZ

(
G n Z, B̂

)
ψZ

//

∼=
��

BZ
(
G n Z, B̂

)
∼=

��
A (G, B)

ψ // B (G, B)

Hence also the following diagram commutes

K0

(
AZ

(
G n Z, B̂

))
ψZ
∗ //

∼=
��

K0

(
BZ
(
G n Z, B̂

))
∼=

��
K0 (A (G, B))

ψ∗ // K0 (B (G, B))

By Proposition 8.2.5,ψZ∗ is an isomorphism, soψ∗ is an isomorphism as well.
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Theorem 8.4.4. Let B be a non-degenerate properG-Banach algebra and letA(G) be a regular
unconditional completion ofCc(G). Then the homomorphism

µBA : Ktop,ban (G, B) → K0 (A (G, B))

is split surjective. The split is natural inB.

This applies in particular to the regular unconditional completionL1(G) and its symmetrised version
L1(G) ∩ L1(G)∗.

Lemma 8.4.5. LetB be a non-degenerate properG-Banach algebra such that there exists a proper
G-compactG-spaceZ with anchor mapρ and aG n Z-Banach algebraB̂ such thatρ∗B̂ ∼= B. Let
A(G) be a regular unconditional completion ofCc(G). ThenµBA is split surjective, the split being
natural inB.

Proof. Let Z, ρ andB̂ as in the statement of the lemma. BecauseG n Z is proper and the quotient
(Z n G)\Z is compact, we can apply Lemma 8.2.8 to get

Ktop,ban
(
G n Z, B̂

)
= KKban

GnZ

(
C0(Z), B̂

)
.

By Proposition 8.3.26,AZ (G n Z) is a regular unconditional completion ofCc (G n Z) because
A(G) is regular. So by Corollary 8.2.10, the homomorphism

µB̂AZ
: Ktop,ban

(
G n Z, B̂

)
→ K0

(
AZ

(
G n Z, B̂

))
has a natural split. The diagram

KKban
GnZ

(
CZ , B̂

) jAZ //

ρ∗

��

KKban
(
AZ (G n Z, CZ) , AZ

(
G n Z, B̂

))
∼=

��
KKban

G (ρ∗CZ , B)
jA // KKban (A (G, ρ∗CZ) , A (G, B))

commutes by Proposition 8.3.25. Also the diagram

KKban
(
AZ (G n Z, CZ) , AZ

(
G n Z, B̂

))
∼=

��

Σ(·)(λZ,GnZ,AZ )
// K0

(
AZ

(
G n Z, B̂

))
ι̂B̂,∗

��
KKban (A (G, ρ∗CZ) , A (G, B))

Σ(·)(λZ,G,A)
// K0 (A (G, B))

is commutative, because
(
ι̂B̂
)
∗ λZ,GnZ,AZ

= λZ,G,A (this follows because the idempotents that define
the twoK-theory classes are identified underι̂B̂). Putting the two commuting squares together we get
the following commutative diagram:

KKban
GnZ

(
CZ , B̂

)
//

ρ∗

��

K0

(
AZ

(
G n Z, B̂

))
∼=

��

tt

KKban
G (ρ∗CZ , B) // K0 (A (G, B))

uu
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Because the top-arrow has a natural split (dashed arrow), also the bottom-arrow has a natural split (the
other dashed arrow). But this means thatµBA has a natural split:

KKban
G (ρ∗CZ , B) //

��

K0 (A (G, B))
vv

Ktop,ban (G, B)
µB
A

66llllllllllllll

Proof of Theorem 8.4.4.Let B̂ be aG n EG-Banach algebra and letρ : EG → X = G(0) be the
anchor map of the proper action ofG onEG; assume thatρ∗B̂ ∼= B asG-Banach algebras. Then̂B is
non-degenerate. For every openG-invariant subspaceU of EG, defineB̂U to be theG n EG-Banach
algebra with the following fibres: Ifu ∈ U , then the fibre overu is B̂u, if y ∈ EG \U , then the fibre
overy is zero; the spaceΓ(EG, B̂U ) is defined to be the set of all elements ofΓ(EG, B̂) that vanish
outsideU . By definition, there is aG n EG-equivariant “injection”̂U from B̂U to B̂. It descends to
aG-equivariant homomorphismjU := ρ∗̂U fromBU := ρ∗B̂U toB := ρ∗B̂. We can regardBU as
a subalgebra ofB.

The B̂U , whereU runs through the openG-invariant subsets ofEG such thatG\U is relatively
compact, form a directed system: IfU andV are openG-invariant andG-relatively compact subsets of
EG with U ⊆ V , then there is an obvious homomorphism̂U,V : B̂U → B̂V such that̂U = ̂V ◦ ̂U,V .
Also theBU form a directed system, just take thejU,V := ρ∗̂U,V as connecting maps. We can
regardB as the direct limit of theBU . More importantly, theA (G, BU ) form a directed system with
connecting mapsαU,V := A(G, jU,V ) : A(G, BU ) → A(G, BV ). The Banach algebraA(G, B) is the
direct limit of this system with embeddingsαU := A(G, jU ) : A(G, BU ) → A(G, B). Because the
K-theory of Banach algebras is continuous, we get:

K∗ (A(G, B)) = lim
→

K∗ (A(G, BU ))

whereU runs through theG-invariant open subsets ofEG such thatG\U is relatively compact.
Now let U be such a set. Find a closed setZ ⊆ EG such thatU ⊆ Z andG\Z is compact.

DefineρZ := ρ|Z . ThenB̂U |Z is aG n Z-Banach algebra and(ρZ)∗B̂U |Z is isomorphic toBU . So
BU satisfies the hypotheses of Lemma 8.4.5, soµBU

A : Ktop,ban (G, BU ) → K0 (A (G, BU )) is split
surjective. LetσU denote the natural split constructed above. It is easy to see, using the naturality
of the split, thatσV ◦ (αU,V )∗ = (jU,V )∗ ◦ σU . DefineτU := (jU )∗ ◦ σU : K0 (A (G, BU )) →
Ktop,ban (G, B). ThenτV = τU ◦ (αU,V )∗. The universal property of the direct limit shows that there
exists a natural homomorphismτ : K0 (A (G, B)) → Ktop,ban (G, B) such thatτ ◦ (αU )∗ = τU for
all U .

Note that µBA ◦ τU = µBA ◦ (jU )∗ ◦ σU = (αU )∗ ◦ µBU
A ◦ σU = (αU )∗

becauseσU is a split. Passing to the limit shows thatµBA ◦ τ = Id, i.e.,τ is a natural split.

Remark 8.4.6 (The case of locally compact groups).Let G = G be a locally compact Hausdorff
group. IfZ is a properG-space, then we can model an action of the groupoidG n Z on a Banach
algebra usingG-C0(Z)-Banach algebras, as we have discussed in Chapter 4. More precisely, we can
regard aGn Z-Banach algebra as aG-C0(Z)-Banach algebra which is locallyC0(Z)-convex. In this
situation we have the following corollary of the above theorem:
If B is a properG-Banach algebra andA(G) is a regular unconditional completion ofCc(G), then

µBA : Ktop,ban (G,B) → K0(A(G,B))

is split surjective. In particular this is true forA(G) = L1(G).



Appendix A

Locally C0(X)-ConvexC0(X)-Banach
Spaces

LetX be a locally compact Hausdorff space.

A.1 Restriction and fibres

A.1.1 Restriction

Let V be aclosedsubspace of the locally compact Hausdorff spaceX. Let ιV denote the inclusion
map fromV toX. LetrV = ι∗V denote the restriction map fromC0(X) ontoC0(V ), being a homomor-
phism and a quotient map (with kernelC0(X \ V )). If E is aC0(V )-Banach space, then we can make
it a C0(X)-Banach space by usingrV ; the category ofC0(V )-Banach spaces sits as a subcategory in
the category ofC0(X)-Banach spaces.

The restriction functor is a left inverse of this inclusion:

Two pictures of the restriction functor

Definition A.1.1 (Restriction (tensor product picture)). Let E be aC0(X)-Banach space. Then we
define therestriction ofE to V to be theC0(V )-Banach space

E|V := ι∗V (E) = E ⊗C0(V ) C0(V ).

If F is anotherC0(X)-Banach space andT ∈ LC0(X) (E ,F), then we define

T |V := ι∗V (T ) = T ⊗ 1: E ⊗C0(V ) C0(V ) → F ⊗C0(V ) C0(V ).

This defines a functor from the category ofC0(X)-Banach spaces to the category ofC0(V )-Banach
spaces, linear and contractive on the morphisms sets and compatible with the tensor product.

There is an alternative and equivalent definition of the restrictionE|V which constructs it as a quotient
of E . To give this definition we first introduce some additional notation.

Definition A.1.2. Let E be aC0(X)-Banach space. For every open subsetU ⊆ X, define

EU := C0(U)E .

Note thatEU is a (closed)C0(X)-Banach subspace ofE .

257
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Definition A.1.3 (Restriction (quotient picture)). Let E be aC0(X)-Banach space. Define the re-
striction ofE to V to be

E|V := E
/
EX\V .

This space has a canonicalC0(X)-action which induces aC0(V )-action such thatE|V is a C0(V )-
Banach space.

For alle ∈ E , we will denote bye|V the corresponding element of the restrictionE|V . The canon-
ical projection map fromE ontoE|V will be denoted byπEV or justπV , if the spaceE is understood.
The mapπEV is a homomorphism of Banach modules with coefficient maprV .

Also in this picture there is a canonical way of turning the restriction ofC0(X)-Banach spaces into a
functor:

Definition and Lemma A.1.4. Let E andF beC0(X)-Banach spaces andT ∈ LC0(X)(E ,F). Then
there is a unique mapT |V : E|V → F|V such that the following diagram commutes:

E T //

πEV
��

F
πFV

��
E|V

T |V // F|V

It is in LC0(X) (E|V , F|V ) and satisfies‖T |V ‖ ≤ ‖T‖.

Proof. Note that ifU ⊆ X is open, thenT mapsEU into FU . So in particular,T mapsEX\V into
FX\V . Hence the mapT |V exists and is unique. By linear algebra it is linear andC0(X)-linear, by
Banach space theory it is continuous with‖T |V ‖ ≤ ‖T‖.

To be able to switch between the two pictures of the restriction we construct natural connecting
maps. This can be done using some suitable universal properties. For the moment, writeE|tpV andE|qV
for the restriction ofE in the tensor product and the quotient picture.

We already have a map fromE ontoE|qV , namely the quotient mapπEV . There is a corresponding
map in the tensor product picture which is, maybe, a bit less obvious: We haveE ∼= E ⊗C0(X) C0(X)
and the quotient maprV : C0(X) → C0(V ). Together this gives a map

Id⊗rV : E ∼= E ⊗C0(X) C0(X) → E ⊗C0(X) C0(V ).

This map is surjective and a quotient map asrV andId are surjective and quotient maps.

Proposition A.1.5. There are contractiveC0(V )-linear maps fromE|tpV to E|qV and vice versa such
that the following diagram commutes.

E

πEV
��

rv⊗Id // E|tpV

~~||
||

||
||

E|qV

>>||||||||

From this it follows thatE|tpV andE|qV are isometrically isomorphic.
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Proof. First we use Lemma E.6.6: The mapπEV is a homomorphism with coefficient maprV . The
BanachC0(V )-moduleE ⊗C0(X) C0(V ) = E|tpV has the universal property for such homomorphisms,
so there is a uniqueC0(V )-linear contractive map fromE|tpV to E|qV such that the diagram commutes.

For the inverse map, note thatId⊗rV is C-linear and contractive. Ife ∈ E andϕ ∈ C0(X \ V ),
thenϕe is in the kernel ofrV ⊗ Id. By the definition of the quotient Banach space structure onE|qV
there is a unique contractive and linear map fromE|qV to E|tpV such that the diagram commutes.

Standard constructions and restriction

Lemma A.1.6. LetE be aC0(X)-Banach space. For alle ∈ E, we have

‖e|V ‖ = inf {‖ϕe‖ : ϕ ∈ Cb(X), ϕ|V ≡ 1, 0 ≤ ϕ ≤ 1}
= inf {‖ϕe‖ , ϕ ∈ Cb(X); ∃U ⊆ X open: ϕ|U ≡ 1, 0 ≤ ϕ ≤ 1, V ⊆ U,X \ U comp.} .

Proof. Denote the three terms that are to be shown to be equal byA, B, andC. We now prove
A ≤ B ≤ C ≤ A.

A ≤ B: Let ϕ ∈ Cb(X) such that0 ≤ ϕ ≤ 1 andϕ|V ≡ 1. Then1 − ϕ ∈ Cb(X) such that
0 ≤ 1−ϕ ≤ 1 andϕ|V ≡ 0. By Cohen’s Factorisation Theorem we can writee = χf with f ∈ E and
χ ∈ C0(X). Then(1−ϕ)e = (1−ϕ)χf ∈ C0(X \V )E , soe|V = ϕe|V . In particular,‖e|V ‖ ≤ ‖ϕe‖.
Taking the infimum we obtainA ≤ B.

B ≤ C: This is trivial.
C ≤ A: Let ε > 0. Find ak ∈ N andϕ1, . . . , ϕk ∈ C0(X \ V ) ande1, . . . , ek ∈ E such that

‖e−
∑k

i=1 ϕiei‖ ≤ ‖e|V ‖+ε/2. For everyi ∈ {1, . . . , k}, we can find a compact subsetKi ofX \V
such that|ϕi(x)| ‖ei‖ ≤ ε

2k for all x ∈ X \ Ki. LetK :=
⋃k
i=1Ki. ThenK is a compact subset

of the open subsetX \ V so we can find a compact neighbourhoodK ′ of K that is still contained in
X \ V . DefineU := X \ K ′. Let ϕ be an element ofCb(X) such that0 ≤ ϕ ≤ 1, ϕ|U ≡ 1 and
ϕ|K ≡ 0. Note that‖ϕϕi‖ ‖ei‖ ≤ ε

2k . Now∥∥∥∥∥ϕe− ϕ
k∑
i=1

ϕiei

∥∥∥∥∥ ≤
∥∥∥∥∥e−

k∑
i=1

ϕiei

∥∥∥∥∥ ≤ ∥∥∥e|V ∥∥∥+ ε/2

and therefore

∥∥ϕe∥∥ ≤ ∥∥∥∥∥ϕe− ϕ

k∑
i=1

ϕiei

∥∥∥∥∥+

∥∥∥∥∥ϕ
k∑
i=1

ϕiei

∥∥∥∥∥ ≤ ∥∥e|V ∥∥+
ε

2
+

k∑
i=1

∥∥ϕϕi∥∥∥∥ei∥∥ ≤ ∥∥e|V ∥∥+ ε.

So the infimumC is less than or equal to‖e|V ‖ = A.

The preceding lemma shows that the functionV 7→ ‖e|V ‖, defined on the set of closed subsets ofX,
is upper semi-continuous (in an appropriate sense).

Proposition A.1.7. LetE andF beC0(X)-Banach spaces andT ∈ LC0(X)(E ,F).

1. If T is isometric, then alsoT |V is isometric.

2. If T is surjective and a quotient map, then so isT |V .

3. If T has dense image, then so hasT |V .

4. If T is an isometric isomorphism, then so isT |V .
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Proof. 1. We have for alle ∈ E :

‖T (e)|V ‖ = inf {‖ϕT (e)‖ : ϕ ∈ Cb(X) ϕ|V = 1, 0 ≤ ϕ ≤ 1}
= inf {‖T (ϕe)‖ : ϕ ∈ Cb(X) ϕ|V = 1, 0 ≤ ϕ ≤ 1}

T isom.= inf {‖ϕe‖ : ϕ ∈ Cb(X) ϕ|V = 1, 0 ≤ ϕ ≤ 1} = ‖e|V ‖ .

2. In the commuting square defining the operatorT |V three arrows are quotient maps, hence so is
the fourth.

3. From abstract non-sense we can deduce that reflectors (such as·|V ) respect epimorphisms.
But the epimorphisms in the categories ofC0(X)- andC0(V )-Banach spaces are precisely the
morphisms with dense image.

For a direct argument, letf ∈ F andε > 0. We want to finde ∈ E with ‖T |V (e|V )− f |V ‖ ≤
ε. SinceT has dense image, we can finde ∈ E such that‖T (e)− f‖ ≤ ε. Now T |V (e|V ) =
T (e)|V and hence‖T |V (e|V )− f |V ‖ = ‖(T (e)− f)|V ‖ ≤ ‖T (e)− f‖ ≤ ε.

4. This follows, for example, from 1. and 2.

Because restriction is a special case of the pullback construction, we know that restriction commutes
with the tensor product:

Proposition A.1.8. LetE1 andE2 beC0(X)-Banach spaces. Then there is a natural isomorphism(
E1 ⊗C0(X) E2

)
|V ∼= (E1)|V ⊗C0(V ) (E2)|V

interchanging the canonical bilinear maps fromE1 ⊗ E2 into the two spaces.

Definition A.1.9. Let E1, E2 andF beC0(X)-Banach spaces and letµ : E1 × E2 → F beC0(X)-
bilinear and continuous. Defineµ|V := ι∗V (µ).

µ|V is the uniqueC0(V )-bilinear continuous map making the following diagram commutative:

E1 × E2
µ //

πE
1

V ×πE2

V
��

F

πFV
��

E1|V × E2|V
µ|V // F|V

Moreover, we havêµ|V = µ̂|V if we identify
(
E1 ⊗C0(X) E2

)
|V and(E1)|V ⊗C0(V ) (E2)|V .

A.1.2 Fibres

Definition A.1.10 (The fibres of aC0(X)-Banach space).LetE be aC0(X)-Banach space. Ifx ∈ X,
then define

Ex := E|{x} = E ⊗evx C.

The spaceEx is a Banach space calledthe fibre ofE in x. For all e ∈ E , we will denote byex the
corresponding element of the fibreEx. The canonical projection map fromE ontoEx will be denoted
by πEx or justπx, if the spaceE is understood.
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Definition A.1.11. Let x ∈ X. Let E andF beC0(X)-Banach spaces andT ∈ LC0(X) (E ,F). Write
Tx for the pullback

Tx := T |{x} = 1⊗evx T ∈ L (Ex, Fx) .

It is the unique map such that the following diagram commutes

E T //

πEx
��

F
πFx

��
Ex

Tx // Fx

and satisfies‖Tx‖ ≤ ‖T‖.

In the same spirit we defineµx := µ|{x} for C0(X)-bilinear continuous mapsµ. As the fibre
construction is a special case of the restriction, it follows that the fibre construction commutes with
the tensor product, etc.

Example A.1.12. Let E be a Banach space. ThenE := C0(X,E) is a C0(X)-Banach space and
Ex ∼= E for all x ∈ X. The same is true forE ′ := C0(X)⊗π E.

Proof. To determine the fibres ofE it is probably the easiest to use the quotient picture for the fibres.
The spaceEX\{x} can be identified withC0(X \{x}, E). Consider the evaluation map fromC0(X,E)
to E which evaluates a function atx. Its kernel isC0(X \ {x}, E). From our knowledge about
continuous fields of Banach spaces we can deduce that this evaluation map is a quotient map. So the
fibre ofE can indeed be identified withE.

To determine the fibres ofE ′ one can use the tensor product picture. Note thatC⊗evx C0(X) ∼= C
by Example 2.3.2. Now

C⊗evx (C0(X)⊗C E) ∼= (C⊗evx C0(X))⊗C E ∼= C⊗ E ∼= E.

This can also be understood in the following way: Ifp : X → {x} denotes the constant map and
ιx : x→ X the inclusion, thenp ◦ ιx = Id{x}. SinceE ′ = p∗(E) it follows that

E ′x = ι∗x(E ′) = ι∗x(p
∗(E)) ∼= (p ◦ ιx)∗(E) ∼= E.

A.2 Local C0(X)-convexity

A.2.1 Definition of localC0(X)-convexity

Definition A.2.1. Let E be aC0(X)-Banach space. For alle ∈ E , define

|e| : X → [0,∞[, x 7→ ‖ex‖Ex
.

As we have seen in 4.2.7 this function is upper semi-continuous and vanishes at infinity. Define

9e9 := ‖ |e| ‖∞ = ‖gE(e)‖ .

Then9 · 9 is a semi-norm onE such that9e9 ≤ ‖e‖ for all e ∈ E .

Definition A.2.2 (Locally C0(X)-convex). Let E be aC0(X)-Banach space. ThenE is calledlocally
C0(X)-convexif 9e9 = ‖e‖ for all e ∈ E , i.e., if the Gelfand transformation is isometric.
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Example A.2.3. Let E be a Banach space. ThenEX is locallyC0(X)-convex.

Example A.2.4. Let E be a u.s.c. field of Banach spaces overX. ThenM (E) is locally C0(X)-
convex.

Proof. As we have seen in the proof of Theorem 4.3.1, the fibres ofM (E) are isometrically isomor-
phic to the fibres ofE in a way that identifiesξx with ξ(x) for all ξ ∈ M (E) = Γ0(X,E) and all
x ∈ X. So9ξ9 = supx∈X ‖ξx‖ = supx∈X ‖ξ(x)‖ = ‖ξ‖M(E) for all ξ ∈ M (E). SoM (E) is
locally C0(X)-convex.

Example A.2.5. TheC[0, 1]-Banach spaceL1[0, 1] of Example 4.3.5 fails to be locallyC[0, 1]-convex.

The name “locallyC0(X)-convex” is motivated by the following proposition:

Proposition A.2.6. 1 LetE be aC0(X)-Banach space. Then the following are equivalent:

1. E is locallyC0(X)-convex.

2. ∀χ1, χ2 ∈ Cb(X), χ1, χ2 ≥ 0, χ1+χ2 = 1 ∀e1, e2 ∈ E : ‖χ1e2 + χ2e2‖ ≤ max{‖e1‖ , ‖e2‖}.

3. ∀χ1, χ2 ∈ C0(X), χ1, χ2 ≥ 0, χ1+χ2 ≤ 1 ∀e1, e2 ∈ E : ‖χ1e2 + χ2e2‖ ≤ max{‖e1‖ , ‖e2‖}.

Remark A.2.7. The locallyC0(X)-convexC0(X)-Banach spaces form a full subcategory of the cat-
egory of allC0(X)-Banach spaces.

Proposition A.2.8. LetE andF beC0(X)-Banach spaces andT ∈ LC0(X) (E ,F) such that‖T‖ ≤ 1.

1. If for all x ∈ X the operatorTx : Ex → Fx is isometric andE is locallyC0(X)-convex, thenT
is isometric.

2. If for all x ∈ X the operatorTx : Ex → Fx has dense image andF is locally C0(X)-convex,
thenT has dense image.

3. If for all x ∈ X the operatorTx : Ex → Fx is surjective and a quotient map andE andF are
locally C0(X)-convex, thenT is surjective and a quotient map.

4. If for all x ∈ X the operatorTx : Ex → Fx is an isometric isomorphism and bothE andF , are
locally C0(X)-convex, thenT is an isometric isomorphism.

Proof. 1. Let e ∈ E . SinceE is locally C0(X)-convex, we have‖e‖ = 9e9. Now 9e9 =
9T (e)9 ≤ ‖T (e)‖ ≤ ‖e‖, so we have equality throughout, and henceT is isometric.

2. The image ofT is fibrewise dense. SinceF is locallyC0(X)-convex, we can conclude that the
image ofT , being aC0(X)-invariant subspace, is dense.

3. We use Lemma E.3.1. Letf ∈ F andε > 0. For everyx ∈ X, we pick someex ∈ E such
that‖(T (ex)− f)x‖ ≤ ε/2, ‖ex‖ ≤ ‖fx‖ (this is possible sinceTx ◦ πx is a quotient map for
all x ∈ X). Find a compact subsetK of X such that‖fx‖ ≤ ε for all x ⊆ X \ K. Since
for all x ∈ X the function|T (ex)− f | is upper semi-continuous, the setsUx := {y ∈ X :
‖(T (ex)− f)y‖ < ε are open (and containx). So the set{Ux : x ∈ K} forms an open
cover ofK. Let S ⊆ K be a finite set such that{US : s ∈ S} is a cover ofK. Find a

1Compare [DG83], Theorem 2.5.
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continuous partition of unity onK subordinate to this cover, i.e., a family(ϕs)s∈S of elements
of C0(X) such that0 ≤ ϕs ≤ 1, suppϕs ⊆ Us and

∑
s∈S ϕs(k) = 1 for all k ∈ K as well as∑

s∈S ϕs ≤ 1 on the whole ofX. Define

e :=
∑
s∈S

ϕse
s ∈ E .

SinceE is locally C0(X)-convex, we can conclude that‖e‖ ≤ sups∈S ‖fs‖ ≤ ‖f‖. Let ψ :=
1−

∑
s∈S ϕs. Note thatf =

∑
s∈S ϕsf + ψf .

Let x ∈ X. Let s ∈ S. If x ∈ U s, then‖T (es)x − fx‖ ≤ ε, so‖T (ϕses)x − (ϕsf)x‖ ≤
ϕs(x)ε. If x /∈ Us, then‖T (ϕses)x − (ϕsf)x‖ = 0 ≤ ϕs(x)ε. So∥∥∥∥∥T (e)x −

∑
s∈S

ϕsf

∥∥∥∥∥ ≤∑
s∈S

ϕs(x)ε ≤ ε.

On the other hand,‖(ψf)x‖ ≤ ε, so

∥∥∥T (e)x − fx

∥∥∥ ≤ ∥∥∥∥∥T (e)x −
∑
s∈S

ϕsf

∥∥∥∥∥+ ‖(ψf)x‖ ≤ 2ε.

This is true for allx ∈ X, so 9T (e) − f9 ≤ 2ε. Now F is locally C0(X)-convex, so
‖T (e)− f‖ ≤ ε. SoT is surjective and a quotient map.

4. This follows from 1. and 2. (or 3.).

Examples A.2.9. The following examples show that the hypotheses on the localC0(X)-convexity
that appear in the preceding proposition cannot simply be dropped:

1. LetX = [0, 1] andE beL1[0, 1] as in Example 4.3.5. LetF := 0 andT := 0. ThenTx = 0
for all x ∈ [0, 1]. But alsoEx = 0 for all x ∈ [0, 1], so0: Ex → 0 is an isometric isomorphism.
But T is not isometric. This shows that the condition thatE is locallyC0(X)-convex cannot be
dropped in 1., 3. and 4.

2. LetX := [0, 1]; E := 0 andF := L1[0, 1]. Let T be the zero-map from0 to F . ThenTx is
zero for allx ∈ X, but, again, this is an isometric isomorphism. However, the image ofT is not
dense inF . This shows that the condition thatF is locallyC0(X)-convex cannot be dropped in
2., 3. and 4.

Corollary A.2.10. Let E and F be u.s.c. fields of Banach spaces overX and let (Tx)x∈X be a
bounded continuous field of morphisms fromE to F .

1. If for all x ∈ X the operatorTx : Ex → Fx is isometric, thenM (T ) is isometric.

2. If for all x ∈ X the operatorTx has dense image, thenM (T ) has dense image.

3. If for all x ∈ X the operatorTx is injective, thenM (T ) is injective.

4. If for all x ∈ X the operatorTx is surjective and a quotient map, thenM (T ) is surjective and
a quotient map.
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5. If for all x ∈ X the operatorTx is an isometric isomorphism, thenM (T ) is an isometric
isomorphism.

Proof. The only one of these assertions that does not follow directly from Example A.2.4 and Propo-
sition A.2.8 is 3.: Assume that all theTx are injective and letξ be inΓ0(X,E) such thatT ◦ ξ = 0.
Let x ∈ X. Then(T ◦ ξ)(x) = Tx(ξ(x)) = 0 and thusξ(x) = 0. It follows thatξ = 0, soM (T ) is
injective.

A.2.2 The Gelfand transformation and local convexity

Proposition A.2.11. Let E be aC0(X)-Banach space. ThenG(E) is locally C0(X)-convex. The
Gelfand transformgE induces isometric isomorphisms of the fibres ofE onto the fibres ofG(E).

Proof. SinceG(E) = M (F (E)), it follows from Example A.2.4 thatG(E) is locallyC0(X)-convex.
The fibres ofG(E) can be identified with the fibres ofF (E) which are the fibres ofE . The identifica-
tion maps are induced bygE .

So the Gelfand functorG(·) is a Banach functor from the category ofC0(X)-Banach spaces to the full
subcategory of locallyC0(X)-convexC0(X)-Banach spaces.

Proposition A.2.12. The Gelfand functor has the following properties:

1. If E is a locallyC0(X)-convexC0(X)-Banach space, thengE is an isometric isomorphism from
E to G(E).

2. G(·) is a reflector: IfE andF are C0(X)-Banach spaces withF locally C0(X)-convex and if
T ∈ LC0(X) (E ,F), then there is a uniquêT ∈ LC0(X) (G(E) ,F) such thatT = T̂ ◦ gE . It
satisfies‖T̂‖ ≤ ‖T‖.

3. The functorG(·) is naturally isomorphic to the functorG(G(·)).

4. If T ∈ LC0(X) (E ,F) is isometric (has dense image / is surjective and a quotient map), then so
is (has / is)G(T ).

Proof. 1. This follows directly from the definition of localC0(X)-convexity.

2. LetE andF beC0(X)-Banach spaces withF locally C0(X)-convex and letT ∈ LC0(X) (E ,F).
The homomorphismgF is an isometric isomorphism and hence the operatorT̂ := g−1

F ◦G(T )
is continuous with norm≤ ‖T‖. Note thatT̂ ◦ gE = g−1

F ◦G(T ) ◦ gE = T . The operator̂T is
unique with this property since the image ofgE is dense inG(E).

3. This can, for example, be deduced from 1. and Proposition A.2.11.

4. LetT ∈ LC0(X) (E ,F) be isometric. ThenTx is isometric for everyx ∈ X by Proposition 4.2.5.
HenceG(T ) is isometric by Proposition A.2.8. Similarly one shows the statements for the maps
with dense image2 and the quotient maps.

2This also follows since the reflectorG(·) respects epimorphisms.



A.2. LOCAL C0(X)-CONVEXITY 265

A.2.3 Standard constructions and local convexity

Proposition A.2.13. The category of locallyC0(X)-convexC0(X)-Banach spaces is stable under the
following constructions:

1. closed subspaces,

2. quotients,

3. finite products, and

4. finite fibre products.

Proof. 1. LetE be a locallyC0(X)-convexC0(X)-Banach space. IfE0 is a closedC0(X)-invariant
subspace, then the embedding is isometric in every fibre, so it is isometric for the semi-norms
9 ·9. SinceE is C0(X)-convex, the norm onE coincides with the semi-norm, so the same holds
onE0.

2. LetE andF beC0(X)-Banach spaces and letT ∈ L (E ,F) beC0(X)-linear, surjective and a
quotient map. Letf1, f2 ∈ F , ϕ1, ϕ2 ∈ C0(X) such that0 ≤ ϕ1, ϕ2 andϕ1 + ϕ2 ≤ 1. Let
ε > 0. Finde1, e2 ∈ E such thatT (ei) = fi and‖ei‖ ≤ ‖fi‖+ ε for i = 1, 2. Then

‖ϕ1f1 + ϕ2f2‖ = ‖T (ϕ1e1 + ϕ2e2)‖ ≤ ‖ϕ1e1 + ϕ2e2‖
≤ max{‖e1‖ , ‖e2‖} ≤ max{‖f1‖ , ‖f2‖}+ ε.

Sinceε was arbitrary, it follows that‖ϕ1f1 + ϕ2f2‖ ≤ max{‖f1‖ , ‖f2‖}. SoF is locally
C0(X)-convex.

3. LetE1 andE2 beC0(X)-convexC0(X)-Banach spaces. Then the fibres of the productE1 × E2

are (isometrically isomorphic to) the products of the fibres. If(e1, e2) ∈ E1 × E2 andx ∈ X,
then

∥∥(e1, e2)x∥∥ =
∥∥(e1x, e2x)∥∥ = sup{

∥∥e1x∥∥ ,∥∥e2x∥∥} and hence∥∥(e1, e2)∥∥ = sup{
∥∥e1∥∥ ,∥∥e2∥∥} = sup

i∈{1,2}
sup
x∈X

∥∥eix∥∥
= sup

x∈X
sup

i∈{1,2}

∥∥eix∥∥ = sup
x∈X

∥∥(e1, e2)x∥∥ = 9(e1, e2) 9 .

4. This follows from 1. and 3.

Sums of locallyC0(X)-convexC0(X)-Banach spaces need not beC0(X)-convex:

Example A.2.14. Let X have at least two points and letE1 = E2 = C0(X). ThenE1 ⊕ E2 carries
the norm‖(e1, e2)‖1 = ‖e1‖+ ‖e2‖ = supx∈X |e1(x)|+ supx∈X |e2(x)| where(e1, e2) ∈ E1 ⊕ E2.
This is generally not the same assupx∈X(|e1(x)| + |e2(x)|) as the following example shows: Let
x1, x2 ∈ X be two distinct points. Find functionse1, e2 ∈ C0(X) such thatei(xi) = 1, 0 ≤ ei ≤ 1
ande1 · e2 = 0. Then‖(e1, e2)‖ = 2 whereas the other norm is1.

However, one can use the Gelfand-functor to find products in the category of locallyC0(X)-convex
C0(X)-Banach spaces: Just apply the Gelfand functor to the ordinary product.
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A.2.4 Tensor products

In this section we show that theC0(X)-tensor product of locallyC0(X)-convex spaces is again locally
C0(X)-convex.3 When proving this, we have to be careful not to use the multiplicativity of the Gelfand
functor, since we have deduced this multiplicativity from the multiplicativity of the functorsF (·) and
M (·). But in the proof of the multiplicativity ofM (·), which is part of the proof of Proposition 4.1.2,
we have already used the fact that we are going to prove now, so applying the multiplicativity ofG(·)
would result in a circular argument.

Theorem A.2.15. Let E andF be locallyC0(X)-convexC0(X)-Banach spaces. Then theirC0(X)-
tensor productE ⊗C0(X) F is locallyC0(X)-convex.

The starting point of the proof is the following proposition:

Proposition A.2.16. LetE be aC0(X)-Banach space. Then the following are equivalent:

1. E is locallyC0(X)-convex.

2. ∀e ∈ E ∀ϕ1, ϕ2 ∈ Cb(X) : ϕ1ϕ2 = 0 ⇒ ‖(ϕ1 + ϕ2)e‖ = max{‖ϕ1e‖ , ‖ϕ2e‖}.

3. ∀e ∈ E ∀ϕ1, ϕ2 ∈ C0(X) : ϕ1ϕ2 = 0 ⇒ ‖(ϕ1 + ϕ2)e‖ = max{‖ϕ1e‖ , ‖ϕ2e‖}.

4. ∀e ∈ E ∀ϕ1, ϕ2 ∈ Cc(X) : ϕ1ϕ2 = 0 ⇒ ‖(ϕ1 + ϕ2)e‖ = max{‖ϕ1e‖ , ‖ϕ2e‖}.

Proof. 1.⇔ 2.: This is part of proposition 7.14 of [Gie82].
The implications 2.⇒ 3. and 3.⇒ 4. are trivial.
4.⇒ 2.: Take a bounded approximate unit(χλ)λ∈Λ of C0(X) which is contained inCc(X). Lete ∈ E
andϕ1, ϕ2 ∈ Cb(X) such thatϕ1ϕ2 = 0. Then

‖(ϕ1 + ϕ2)e‖ = lim
λ
‖(χλϕ1 + χλϕ2)e‖ = lim

λ
max{‖χλϕ1e‖ , ‖χλϕ2e‖} = max{‖ϕ1e‖ , ‖ϕ2e‖}

since(χλϕ1)(χλϕ2) = 0 for everyλ ∈ Λ (allowing us to apply 4.).

For technical reasons, we want to refine this proposition a tiny bit. The conditionϕ1ϕ2 = 0 says that
the setsUϕi := {x ∈ X : ϕi(x) 6= 0}, i = 1, 2, are disjoint. We can impose the slightly stronger
condition that the supports, being the closures of these sets, do not intersect either. This is an easy
consequence of the following trivial observation:

Lemma A.2.17. Letϕ be an element ofC0(X) andε > 0. LetUϕ := {x ∈ X : ϕ(x) 6= 0}. Then
there is a functionϕε ∈ Cc(X) of compact support contained inUϕ such that‖ϕ− ϕε‖ ≤ ε.

From this follows:

Lemma A.2.18. LetE be aC0(X)-Banach space. ThenE is locallyC0(X)-convex if and only if

4.’ ∀e ∈ E ∀ϕ1, ϕ2 ∈ Cc(X) : suppϕ1 ∩ suppϕ2 = ∅ ⇒ ‖(ϕ1 + ϕ2)e‖ = max{‖ϕ1e‖ , ‖ϕ2e‖}.

3In [KR89b] the tensor product of locallyC0(X)-convexC0(X)-Banach spaces was defined to beG(·) of theC0(X)-
tensor product. With the result presented here, applying the Gelfand functor is no longer necessary which simplifies some
considerations in [KR89b].
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Proof. It is clear that 4.⇒ 4.’. For the opposite direction, lete ∈ E andϕ1, ϕ2 ∈ C0(X) such that
ϕ1ϕ2 = 0. Let ε > 0. Find functionsϕε1 andϕε2 in Cc(X) such that the support ofϕεi is contained
Uϕi := {x ∈ X : ϕi(x) 6= 0} and such that‖ϕi − ϕεi‖ ≤ ε. Note that the supports of these two
functions are separated by the open setsUϕi . We can hence apply 4.’ to get

‖(ϕ1 + ϕ2)e‖ = ‖((ϕ1 − ϕε1) + ϕε1 + (ϕ2 − ϕε2) + ϕε2)e‖
≤ ‖(ϕε1 + ϕε2)e‖+ ‖(ϕ1 − ϕε1)e‖+ ‖(ϕ2 − ϕε2)e‖
≤ ‖(ϕε1 + ϕε2)e‖+ 2ε ‖e‖
4.’= max{‖ϕε1e‖ , ‖ϕε2e‖}+ 2ε ‖e‖
≤ max{‖ϕ1e‖+ ε ‖e‖ , ‖ϕ2e‖+ ε ‖e‖}+ 2ε ‖e‖
= max{‖ϕ1e‖ , ‖ϕ2e‖}+ 3ε ‖e‖ .

Sinceε was arbitrary, we get the desired result.

Definition A.2.19. LetE be aC0(X)-Banach space ande ∈ E . Then the supportsupp e of e is defined
as

supp e := X \ {x ∈ X : ∃U ⊆ X,x ∈ U,Uopen∀ϕ ∈ C0(U) : ϕe = 0} .

Define
Ec := {e ∈ E : supp e is compact}.

Lemma A.2.20. Let E be aC0(X)-Banach space ande ∈ E . If ϕ ∈ Cc(X) such thatsuppϕ ∩
supp e = ∅, thenϕe = 0.

Proof. LetK be the support ofϕ. For allk ∈ K ⊆ X \ supp e, there is an open neighbourhoodUk
of k such thatψe = 0 for all ψ ∈ C0(Uk). Now {Uk : k ∈ K} is an open covering ofK, so we
can find a finite setS ⊆ K such that{Us : s ∈ S} coversK. Find a continuous partition of unity
(χs)s∈S onK subordinate to(Us)s∈S (with χs ∈ Cc(X)). Thenχsϕ is in C0(Us) soχsϕe = 0. But∑

s∈S χsϕ = ϕ, soϕe = 0.

Lemma A.2.21. LetE be aC0(X)-Banach space. Ife ∈ E andϕ ∈ C0(X), then

supp(ϕe) ⊆ suppϕ ∩ supp e.

Proof. Let x ∈ X such thatx /∈ (suppϕ ∩ supp e). If x /∈ suppϕ, thenU := X \ suppϕ is
a neighbourhood ofx. Let ψ ∈ C0(U). Thenψ(ϕe) = (ψϕ)e = 0e = 0, sox /∈ supp(ϕe). If
x /∈ supp e, thenU := X \ supp e is a neighbourhood ofx. Letψ ∈ C0(U). Thenψ(ϕe) = ϕ(ψe) =
ϕ0 = 0, sox /∈ supp(ϕe).

Lemma A.2.22. Let E be aC0(X)-Banach space ande ∈ E . Thene ∈ Ec if and only if there is
anϕ ∈ Cc(X) such thatϕe = e. If e ∈ Ec, then theϕ can be chosen to be supported in any given
compact neighbourhood ofsupp e and such that0 ≤ ϕ ≤ 1.

Proof. If ϕe = e for someϕ ∈ Cc(X) then this meanssupp e ⊆ suppϕ, so the support ofe is
compact.

If K := supp e is compact andL is a compact neighbourhood ofK, then we can find a function
ϕ ∈ Cc(X) such thatϕ|L = 1 and0 ≤ ϕ ≤ 1. LetM be a compact set containing the support ofϕ
andχM be a function inCc(X) such thatχM |M = 1 and0 ≤ χM ≤ 1. ThenχMϕ = ϕ and hence
χMϕe = ϕe. On the other hand we havesupp(χM − ϕ) ⊆ X \K and hence(χM − ϕ)e = 0, i.e.,
χMe = ϕe. If M gets larger and larger, thenχMe approachese, soe = ϕe.
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Lemma A.2.23. Let E andF be C0(X)-Banach spaces ande ∈ Ec, f ∈ Fc such thatsupp e ∩
supp f = ∅. Thene⊗ f = 0 ∈ E ⊗C0(X) F .

Proof. LetK be a compact neighbourhood ofsupp e and letL be a compact neighbourhood ofsupp f
such thatK ∩ L = ∅. Find functionsϕ andψ in Cc(X) such thatsuppϕ ⊆ K andϕe = e and
suppψ ⊆ L andψf = f . Now e⊗ f = (ϕe)⊗ (ψf) = e⊗ (ϕψf) = e⊗ 0 = 0.

Lemma A.2.24. LetE be aC0(X)-Banach space. ThenE is locallyC0(X)-convex if and only if

5. ∀e1, e2 ∈ Ec : supp e1 ∩ supp e2 = ∅ ⇒ ‖e1 + e2‖ = max{‖e1‖ , ‖e2‖}.

Proof. Assume that 5. is satisfied. We show 4.’. Lete ∈ E andϕ1, ϕ2 ∈ Cc(X) such thatsuppϕ1 ∩
suppϕ2 = ∅. Let ei := ϕie for i = 1, 2. Thensupp ei ⊆ suppϕi so supp e1 ∩ supp e2 = ∅. An
application of 5. now gives 4.’.

Assume now that 4.’ holds. Lete1, e2 ∈ Ec such thatsupp e1∩supp e2 = ∅. Findϕ1, ϕ2 ∈ Cc(X)
such thatϕiei = ei for i = 1, 2 and suppϕ1 ∩ suppϕ2 = ∅. Definee := e1 + e2. Note that
ϕ2e1 = 0 = ϕ1e2, soϕie = ei. An application of 4.’ now gives 5.

Proof of Theorem A.2.15.We use Lemma A.2.24. Lett1, t2 ∈
(
E ⊗C0(X) F

)
c

such thatsupp t1 ∩
supp t2 = ∅. Without loss of generality we assume that both,t1 andt2, are non-zero. LetL1, L2 be
compact neighbourhoods ofsupp t1 andsupp t2, respectively, such thatL1 ∩ L2 = ∅.

Find functionsϕ1 andϕ2 such thatsuppϕi ⊆ Li, 0 ≤ ϕi ≤ 1 andϕiti = ti, for i = 1, 2. Note
that

‖ti‖ = ‖ϕi(t1 + t2)‖ ≤ ‖ϕi‖ ‖t1 + t2‖ = ‖t1 + t2‖

for i = 1, 2, which shows‖t1 + t2‖ ≥ max {‖t1‖ , ‖t2‖}.
The other inequality is the non-trivial one. Letε > 0. Find sequences(e1n)n∈N and(e2n)n∈N in E

and(f1
n)n∈N and(f2

n)n∈N in F such that

(A.1) ti =
∑
n∈N

ein ⊗ f in and
∑
n∈N

∥∥ein∥∥∥∥f in∥∥ ≤ ‖ti‖+ ε

for i = 1, 2.
Without loss of generality we can assume

(A.2) ∀i ∈ {1, 2} ∀n ∈ N : supp ein, supp f in ⊆ Li,

(A.3) ∀i ∈ {1, 2} ∀n ∈ N :
∥∥f in∥∥ = 1,

(A.4) ∀n ∈ N :
∥∥e1n∥∥ ≥ ∥∥e2n∥∥ or ∀n ∈ N :

∥∥e1n∥∥ ≤ ∥∥e2n∥∥
Before justifying these assumptions we show how to use them to finish the proof. Assume that the
first part of (A.4) holds. From (A.2) it follows that

∀n ∈ N : e1n ⊗ f2
n = 0 = e2n ⊗ f1

n,

and hence ∑
n∈N

(e1n + e2n)⊗ (f1
n + f2

n) =
∑
n∈N

e1n ⊗ f1
n +

∑
n∈N

e2n ⊗ f2
n = t1 + t2.
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Moreover, we have ∥∥e1n + e2n
∥∥ (A.2)

= max
{∥∥e1n∥∥ ,∥∥e2n∥∥} (A.4)

=
∥∥e1n∥∥

and ∥∥f1
n + f2

n

∥∥ (A.2)
= max

{∥∥f1
n

∥∥ ,∥∥f2
n

∥∥} (A.3)
= 1 =

∥∥f1
n

∥∥
for all n ∈ N. It follows that

‖t1 + t2‖ ≤
∑
n∈N

∥∥e1n + e2n
∥∥∥∥f1

n + f2
n

∥∥ =
∑
n∈N

∥∥e1n∥∥∥∥f1
n

∥∥ ≤ ‖t1‖+ ε ≤ max {‖t1‖ , ‖t2‖}+ ε.

If the second part of (A.4) holds, then we arrive at the same inequality. Since we have shown this for
all ε > 0, it follows that

‖t1 + t2‖ ≤ max {‖t1‖ , ‖t2‖} .

Now we justify the assumptions (A.2)-(A.4), step by step.

1. For (A.2), consider the sequences(ϕiein)n∈N and (ϕif in)n∈N for i = 1, 2. They satisfy the
conditionssuppϕiein ⊆ Li andsuppϕif in ⊆ Li for all n ∈ N, i = 1, 2. Moreover,∑

n∈N
ϕie

i
n ⊗ ϕif

i
n = ϕ2

i

∑
n∈N

ein ⊗ f in = ϕ2
i ti = ti

for i = 1, 2 becauseϕiti = ti. Additionally,∑
n∈N

∥∥ϕiein∥∥∥∥ϕif in∥∥ ≤∑
n∈N

∥∥ein∥∥∥∥f in∥∥ ≤ ‖ti‖+ ε,

so substitutingein with ϕiein andf in with ϕif in gives sequences which satisfy (A.1) as well as
(A.2).

2. We show that we can assume (A.3). Leti ∈ {1, 2}. We can assume thatf in 6= 0 for all n ∈ N:
Becauseti 6= 0 by assumption, there has to exist anf i0 ∈ F such thatsupp f i0 ⊆ Li andf i0 6= 0.
If n ∈ N such thatf in = 0, then substituteein by zero andf in by f i0.

Now consider the sequences(
∥∥f in∥∥ ein)n∈N and( 1

‖f i
n‖
f in)n∈N. If we take these sequences instead

of (ein)n∈N and(f in)n∈N, then (A.1), (A.2) and (A.3) are satisfied.

3. For (A.4), we have to work a little harder. First of all, without loss of generality we may assume∑
n∈N ‖e1n‖ ≥

∑
n∈N ‖e2n‖. We show that in this case we can assume∀n ∈ N : ‖e1n‖ ≥ ‖e2n‖.

Note that we have the freedom to rearrange the sequences(ein, f
i
n)n∈N in any order we like and

that we can, informally speaking, replace some entry(ein, f
i
n) by the two entries(λein, f

i
n) and

((1 − λ)ein, f
i
n) for anyλ ∈ [0, 1]. Both moves will not affect the properties (A.1), (A.2) or

(A.3). Our strategy is to take one entry of(e2n)n∈N after the other and split it up into smaller
entries which we can match with entries of(e1n)n∈N of the same size. Since

∑
n∈N

∥∥e1n∥∥ ≥∑
n∈N

∥∥e2n∥∥ it will be possible to match all entries of the sequence(e2n)n∈N with entries of the
other sequence. There might still be some bits of(e1n)n∈N which are left over, but these entries
will be matched with zero entries.

For technical reasons, we would like to assume that(e2n)n∈N has infinitely many non-zero en-
tries: Becauset2 6= 0 we know that at least one entry is non-zero. Substitute this entry by
infinitely many “copies with weight2−n”, wheren runs through the natural numbers.
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To gain space, we want the sequences to be indexed over a larger set, for notational convenience,
we takeZ. So definee1k := e2k := 0 ∈ E for all k ∈ {0,−1,−2, . . .} and choose arbitraryf1

k

andf2
k in F with norm 1 such thatsupp f ik ⊆ Li. Then the double-sequences(eik)k∈Z and

(f ik)k∈Z satisfy the relations (A.1), (A.2) and (A.3) (withZ replacingN).

Description of the inductive procedure: We are going to give an inductive definition of a
sequence

(
ne

1, nf
1, ne

2, nf
2
)
n∈N0

of such four-tuples of double-sequences, starting with the

four double-sequences
(
e1, f1, e2, f2

)
=:
(
0e

1, 0f
1, 0e

2, 0f
2
)

we have just defined. In each
step, an entry of the sequence corresponding to(e2k)k∈N is set to zero and “moved to the negative
part of the double-sequence”. Also some (parts of) entries of the sequence corresponding to
(e1k)k∈N are moved to the negative part, to ensure that the negative part of the sequences is
always “balanced” in the sense that

(A.5) ∀n ∈ N0 ∀k ∈ Z≤0 :
∥∥
ne

1
k

∥∥ =
∥∥
ne

2
k

∥∥ .
Also, the procedure is designed in a way ensuring that the relations (A.1), (A.2) and (A.3)
remain true.

In the limit, all positive entries of the sequences corresponding to(e2k)k∈N vanish and we are
left with sequences which are “balanced” on the negative side. There might still some non-
vanishing entries of the sequence corresponding to(e1k)n∈N, but the sequence corresponding to
(e2k)k∈N vanishes, the condition (A.4) holds. Also the other relations hold for the limit.

The inductive definition: Let n ∈ N and assume that we have already defined the quadruple(
n−1e

1, n−1f
1, n−1e

2, n−1f
2
)
, satisfying the relations (A.1), (A.2) and (A.3) as well as∀k ∈

Z≤0 :
∥∥
n−1e

1
k

∥∥ =
∥∥
n−1e

2
k

∥∥ and
∑

k∈N
∥∥
n−1e

1
k

∥∥ ≥
∑

k∈N
∥∥
n−1e

2
k

∥∥, and such that the set
{k ∈ Z≤0 : n−1e

2
k 6= 0} is finite whereas{k ∈ N : n−1e

2
k 6= 0} is infinite.

Note that
∥∥
n−1e

2
n

∥∥ < ∑m∈N
∥∥
n−1e

2
m

∥∥ ≤ ∑m∈N
∥∥
n−1e

1
m

∥∥ so we can find ap ∈ N such that

r :=
∑p−1

m=1

∥∥
n−1e

1
m

∥∥ < ∥∥n−1e
2
n

∥∥ and
∑p

m=1

∥∥
n−1e

1
m

∥∥ ≥ ∥∥n−1e
2
n

∥∥. FindN ∈ Z≤0 such that
n−1e

2
k = 0 for all k < N .

Define

ne
1
k :=



n−1e
1
l if k = N − l for somel ∈ {1, . . . , p− 1}

‖n−1e2n‖−r
n−1e1p

n−1e
1
p if k = N − p

0 if k ∈ {1, . . . , p− 1}
‖n−1e1n‖−(‖n−1e2n‖−r)

‖n−1e1p‖ n−1e
1
p = n−1e

1
p − ne

1
N−p if k = p

n−1e
1
k else,

nf
1
k :=

{
n−1f

1
l if k = N − l for somel ∈ {1, . . . , p}

n−1f
1
k else,

ne
2
k :=



‖n−1e1l ‖
‖n−1e2n‖ n−1e

2
n if k = N − l for somel ∈ {1, . . . , p− 1}

‖n−1e2n‖−r
‖n−1e2n‖ n−1e

2
n if k = N − p

0 if k = n

n−1e
2
k else,
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nf
2
k :=

{
n−1f

2
l if k = N − l for somel ∈ {1, . . . , p}

n−1f
2
k else.

The resulting quadruple
(
ne

1, nf
1, ne

2, nf
2
)

has all the properties of the original quadruple(
n−1e

1, n−1f
1, n−1e

2, n−1f
2
)

that are listed above, plus it satisfiesne
2
n = 0.

Note that
∥∥
ne

1 − n−1e
1
∥∥

1
= 2

∥∥e2n∥∥ =
∥∥
ne

2 − n−1e
2
∥∥

1
. Hence(ne1)n∈N and(ne2)n∈N con-

verge in l1. The sequences(nf1)n∈N and (nf2)n∈N converge pointwise and are uniformly
bounded by 1. Let

(
∞e

1,∞f
1,∞e

2,∞f
2
)

denote the limit-quadruple. The recursively defined
sequences

(
(ne1k ⊗ nf

1
k )k∈Z

)
n∈N and

(
(ne2k ⊗ nf

2
k )k∈Z

)
n∈N converge inl1. Hence the limit-

quadruple satisfies (A.1). The relations (A.2), and (A.3) are stable under pointwise convergence
of the involved sequences, hence they remain true in the limit as they are true in each step of
the induction. The negative part of the sequences are balanced in every step of the induction,
and∞e2k = 0 for all k ∈ N. Hence (A.4) is true in the limit.

Corollary A.2.25. LetE1 andE2 be Banach spaces. Then

E1X ⊗C0(X) E2X ∼=
(
E1 ⊗ E2

)
X.

Proof. Define

Φ: E1X ⊗C0(X) E2X →
(
E1 ⊗ E2

)
X,

f1 ⊗ f2 7→ (x 7→ f1(x)⊗ f2(x)) .

This map isC0(X)-linear and of norm≤ 1. Let x ∈ X. If we identify the fibre atx on both sides
with E1 ⊗ E2, thenΦx is simply the identity and hence an isometric isomorphism.

From Theorem A.2.15 and Proposition A.2.8, 4., we can deduce thatΦ is an isometric isomor-
phism.

Corollary A.2.26. LetE1 andE2 beC0(X)-Banach spaces. Then

(A.6) G
(
E1 ⊗C0(X) E2

)
∼= G

(
E1
)
⊗C0(X) G

(
E2
)
.

Proof. A direct argument for this is thatgE1⊗gE2 is a contractiveC0(X)-linear map fromE1⊗C0(X)E2

to G
(
E1
)
⊗C0(X) G

(
E2
)
. So it factors throughG

(
E1 ⊗C0(X) E2

)
. The resulting map is a fibrewise

isometric isomorphism and, since both sides are locallyC0(X)-convex, it follows that it is an isometric
isomorphism.

A.2.5 The Gelfand functor and multilinear maps

In much the same way in which we have defined the Gelfand transform of a continuous linear operator
betweenC0(X)-Banach spaces we can define it for continuous multilinear maps. Of course, in light
of formula (A.6) it would actually possible to use tensor products to treat the multilinear case as a
special case of the linear case. But for the sake of greater clarity, we present a direct construction for
multilinear maps here in a separate section:

Proposition A.2.27. LetE1, E2 andF beC0(X)-Banach spaces. Letµ ∈ MC0(X)
(
E1, E2;F

)
. Then

there is a unique bilinear and continuous mapG(µ) ∈ MC0(X)
(
G
(
E1
)
,G
(
E2
)
;G(F)

)
such that the
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following diagram is commutative:

E1 × E2
µ //

��

F

��
G
(
E1
)
×G

(
E2
) G(µ) //______ G(F)

It satisfies‖G(µ)‖ ≤ ‖µ‖.

Proof. Uniqueness is obvious. To show existence defineG(µ) on the dense subspacegE1(E1) ×
gE2(E2). If ei ∈ E i for all i ∈ {1, 2}, then define

G(µ) (gE1(e1), gE2(e2)) := gF (µ(e1, e2)) .

Suppose thate′1 ∈ E1 and e′2 ∈ E2 such thatgE1(e1) = gE1(e′1) andgE2(e2) = gE2(e′2). Then
(e1)x = (e′1)x and(e2)x = (e′2)x for all x ∈ X and hence

(µ(e1, e2))x = µx((e1)x, (e2)x) = µx((e′1)x, (e
′
2)x) =

(
µ(e′1, e

′
2)
)
x

which shows that
gF (µ(e1, e2)) = gF

(
µ
(
e′1, e

′
2

))
.

HenceG(µ) is well-defined on a dense subspace. To calculate its norm just consider

‖gF (µ(e1, e2))‖ = sup
x∈X

‖(µ(e1, e2))x‖

≤ ‖µ‖ sup
x∈X

‖(e1)x‖ ‖(e2)x‖ ≤ ‖µ‖ ‖gE1(e1)‖ ‖gE2(e2)‖ .

So the norm ofG(µ) is≤ ‖µ‖, so it can be extended toG
(
E1
)
×G

(
E2
)

by continuity.

Proposition A.2.28. Let E1, E2,F be C0(X)-Banach spaces. Letµ ∈ MC0(X)
(
E1, E2;F

)
. Then

under the identification (A.6) we have

G(µ̂) = Ĝ(µ)

whereµ̂ andĜ(µ) are the linearisations ofµ andG(µ), respectively.

Proof. Let e1 ∈ E1 ande2 ∈ E2. Then by definition

G(µ) (gE1(e1), gE2(e2)) = gF (µ(e1, e2)) .

Hence
Ĝ(µ) (gE1(e1)⊗ gE2(e2)) = gF (µ(e1, e2)) .

On the other hand
µ̂ (e1 ⊗ e2) = µ (e1, e2) .

So
G(µ̂) gE1⊗E2 (e1 ⊗ e2) = gF (µ (e1, e2)) .

Now the identification (A.6) identifiesgE1⊗E2 (e1 ⊗ e2) with gE1(e1)⊗ gE2(e2), so we are done.



Appendix B

Continuous Fields of Measures

The notion of a (faithful) continuous field of measures is underlying the definition of a Haar system.
This appendix is a systematic collection of facts concerning continuous fields of measures and in-
tegration of sections in u.s.c. fields of Banach spaces. The results presented here that just concern
continuous fields of measures and do not involve fields of Banach spaces are to a large extend folklore
or appear in a similar form in the literature, compare [MRW87], for example.

B.1 Sections of compact support

LetX be a locally compact Hausdorff space.

B.1.1 Selections of compact support and linear maps

Let E be a family of Banach spaces overX. We now topologise the spaceΣc(X,E) of bounded
selections with compact support turning it into a locally convex space:

If K is a compact subset ofX, then we writeΣK(X,E) for the space of all (locally) bounded
selections ofE with support contained inK. For all compactK ⊆ X, the vector spaceΣK(X,E)
becomes a Banach space when equipped with the sup-norm which we denote by‖·‖K . If K andL are
compact subsets ofX such thatK ⊆ L, then the inclusion ofΣK(X,E) into ΣL(X,E) is a linear
and isometric map. Hence we have an inductive system of Banach spaces indexed over the compact
subsets ofX. Since these spaces exhaustΣc(X,E), we can identify the inductive limit (as a vector
space) withΣc(X,E). The inductive limit topology onΣc(X,E) is then defined to be the inductive
topology in the category of locally convex vector spaces.

By definition, the inductive limit topology has the following universal property: The inclusion of
ΣK(X,E) into Σc(X,E) is continuous for all compactK ⊆ X and ifF is a locally convex space
andT : Σc(X,E) → F is a linear map, thenT is continuous if and only if it is continuous when
restricted to allΣK(X,E), whereK runs through the compact subsets ofX.

We can regard the mapE 7→ Σc(X,E) as a functor: LetF be another family of Banach spaces
overX and letT : E → F be a locally bounded family of linear maps. Then the mapξ 7→ T ◦ ξ
is a continuous linear map fromΣc(X,E) to Σc(X,F ) which we denote byΣc(X,T ). In this way
E 7→ Σc(X,E) becomes a functor from the category of families of Banach spaces overX and locally
bounded families of morphisms to the category of locally convex spaces and continuous linear maps.

273
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B.1.2 Sections of compact support and linear maps

LetE be a u.s.c. field of Banach spaces overX.
For every compact subsetK ⊆ X, let ΓK(X,E) be the set of sections ofE with (compact) sup-

port contained inK, i.e., ΓK(X,E) = Γc(X,E) ∩ ΣK(X,E). We equip the spaceΓK(X,E)
with the sup-norm‖·‖K inherited fromΣK(X,E). With this norm,ΓK(X,E) is a closed sub-
space ofΣK(X,E), so in particular it is a Banach space. IfK andL are compact subsets ofX
with K ⊆ L, then the embedding fromΓK(X,E) into ΓL(X,E) is isometric. As above, define on
Γc(X,E) the inductive limit topologyas the finest locally convex topology such that all the embed-
dingsΓK(X,E) ↪→ Γc(X,E) are continuous.

Definition and Proposition B.1.1. LetX be a locally compact Hausdorff space and letE andF be
u.s.c. fields of Banach spaces overX. Let T be a continuous field of linear maps fromE to F . Then
ξ 7→ T ◦ ξ defines a continuous linear mapΓc(X,T ) from Γc(X,E) to Γc(X,F ).

Proof. Let K ⊆ X be compact. SinceT is continuous, it is locally bounded by definition, so it
is also bounded onK by some constantC ≥ 0. For all k ∈ K and ξ ∈ ΓK(X,E), we have
‖Tk(ξ(k))‖ ≤ ‖Tk‖ ‖ξk‖ ≤ C ‖ξ(k)‖, soξ 7→ T ◦ ξ is a continuous linear map toΓK(X,F ) when
restricted toΓK(X,E). So it is also continuous as a map fromΓc(X,E) to Γc(X,F ) by the universal
property of the inductive limit topology.

Proposition B.1.2. The assignmentE 7→ Γc(X,E) andT 7→ Γc(X,T ) defines a functor from the
category of u.s.c. fields of Banach spaces overX to the category of locally convex vector spaces.

Lemma B.1.3. LetK be a compact subset ofX. Suppose thatΞ is a subset ofΓ(X,E) such that the
span of{ξ(k) : ξ ∈ Ξ} is dense inEk for all k ∈ K. For each compactL ⊆ X let ΞL be the closure
in ΓL(X,E) of the span of allχξ, withχ ∈ CL(X) andξ ∈ Ξ. If L contains an open neighbourhood
ofK thenΓK(X,E) ⊆ ΞL.

Proof. Let L be a compact neighbourhood ofK, let η ∈ ΓK(X,E) and letε > 0. For all k ∈ K,
find a sectionξk ∈ Ξ such that‖η(k)− ξk(k)‖Ek

≤ ε/2. Find a neighbourhoodUk of k in L such
that‖η(x)− ξk(x)‖Ex

≤ ε for all x ∈ Uk. Find a finite subsetS of K such that{Us : s ∈ S} is an
open cover ofK. Find a continuous partition of unity(χs)s∈S relative toK, subordinate to this cover.
Note that the support ofχs is contained inUs ⊆ L, soχs ∈ CL(X). Defineη′ :=

∑
s∈S χsξs. Then

‖η − η′‖ ≤ ε.

Remark B.1.4. The preceding lemma does not seem to work ifK = L. In general, the norm function
of the η appearing in the proof might be non-continuous but merely upper semi-continuous. So it
might happen that the norm does not vanish on the boundary ofK. On the other hand, the product
χsξs will always have vanishing norm on the boundary, what makes approximation really difficult.

Corollary B.1.5. If Ξ ⊆ Γ(X,E) is a total subset, then the span ofCc(X)Ξ is dense inΓc(X,E).

Proposition B.1.6. LetE andF be u.s.c. fields of Banach spaces overX. LetT be a continuous field
of linear maps fromE to F . If Tx has dense image for allx ∈ X, thenξ 7→ T ◦ ξ from Γc(X,E) to
Γc(X,F ) has dense image.

Proof. Let Ξ be the set{T ◦ ξ : ξ ∈ Γc(X,E)}. ThenΞ is a total subset ofF by assumption (and
sinceΓc(X,E) is total inE). It is closed under multiplication withCc(X) and linear combinations,
so by the preceding corollary,Ξ is dense inΓc(X,F ).
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B.1.3 Sections of compact support and bilinear maps

Analogously to B.1.1, one can prove the following proposition.

Proposition B.1.7. LetE, F andG be u.s.c. fields of Banach spaces overX. Letµ be a continuous
field of continuous bilinear maps fromE ×X F toG. Then(ξ, η) 7→ µ ◦ (ξ, η) defines a separately
continuous bilinear mapΓc(X,µ) fromΓc(X,E)× Γc(X,F ) to Γc(X,G).

Similarly to B.1.6 one proves:

Proposition B.1.8. LetE, F andG be u.s.c. fields of Banach spaces overX. Letµ be a continuous
field of continuous bilinear maps fromE ×X F to G. If µ is non-degenerate, i.e., if the span of
µx(Ex, Fx) is dense inGx, then (ξ, η) 7→ µ ◦ (ξ, η) is a non-degenerate map fromΓc(X,E) ×
Γc(X,F ) to Γc(X,G), i.e., its image spans a dense subset.

Conjecture B.1.9. If we give a suitable definition for theCc(X)-balanced projective (!) tensor product
Γc(X,E)⊗Cc(X) Γc(X,F ) of Γc(X,E) andΓc(X,F ), then

Γc(X,E)⊗Cc(X) Γc(X,F ) ∼= Γc(X, E ⊗X F ).

B.2 Continuous fields of measures

LetX andY be topological spaces and letp : Y → X be a continuous map.

Definition B.2.1 ((Faithful) continuous fields of measures).A continuous field of measureson Y
overX (with coefficient mapp) is a family(µx)x∈X of measures1 onY such thatsuppµx ⊆ Yx :=
p−1({x}) and such that, for allϕ ∈ Cc(Y ),

(B.1) µ(ϕ) : X → C, x 7→
∫
y∈Yx

ϕ(y) dµx(y),

is an element ofCc(X). It is calledfaithful if suppµx = Yx.

Proposition B.2.2. The mapϕ 7→ µ(ϕ) appearing in the preceding definition is a continuous linear
map fromCc(Y ) to Cc(X). It is Cc(X)-linear and positive in the sense that it maps non-negative
functions to non-negative functions.

Proof. We show continuity. LetK be a compact subset ofY . ThenL := p(K) ⊆ X is compact as
well. Find a functionχ in Cc(Y ) such that0 ≤ χ ≤ 1 andχ|K = 1. Thenµ(χ) ∈ Cc(X) with µ ≥ 0.
Letϕ ∈ Cc(Y ) be a function with support inK. Thenµ(ϕ) has support inL. For allx ∈ L, we have

|µ(ϕ)(x)| =
∣∣∣∣∫
y∈Yx

ϕ(y) dµx(y)
∣∣∣∣ ≤ ∫

y∈Yx

|ϕ(y)| dµx(y)

≤
∫
y∈Yx

χ(y) sup
y′∈Yx

∣∣ϕ(y′)
∣∣ dµx(y) = µ(χ)(x) sup

y′∈Yx

∣∣ϕ(y′)
∣∣ ≤ ‖µ(χ)‖L ‖ϕ‖K .

It follows that
‖µ(ϕ)‖L ≤ ‖µ(χ)‖L ‖ϕ‖K .

1Here we just consider positive measures. With a bit of extra work it is probably be possible to show most of what is
said here also for signed measures.



276 APPENDIX B. CONTINUOUS FIELDS OF MEASURES

To see thatχ 7→ µ(χ) is Cc(X)-linear, letϕ ∈ Cc(Y ) andχ ∈ Cc(X). Thenχϕ is defined as the
functiony 7→ χ(p(y))ϕ(y) and we obtain

µ(χϕ)(x) =
∫
y∈Yx

χ(x)ϕ(y) dµx(y) = χ(x) µ(ϕ)(x)

for all x ∈ X.

Proposition B.2.3. Let M be a continuous and positiveCc(X)-linear map fromCc(Y ) to Cc(X).
Then there is a unique continuous field of measuresµ such thatM(ϕ) = µ(ϕ) for all ϕ ∈ Cc(Y ).

Proof. Let x ∈ X. Defineµx(ϕ) := M(ϕ)(x). This is / defines a measure onY and it is obvious that
this is our unique choice. We prove:

If ϕ ∈ Cc(Y ) such thatϕ|Yx = 0, thenµx = 0, i.e.,suppµx ⊆ Yx.
To see this, letϕ ∈ Cc(Y ) such thatϕ|Yx = 0. Letε > 0. LetLε denote the set{y ∈ Y : |ϕ| ≥ ε}.

ThenLε is compact. HenceKε := p(Lε) is compact. Note thatKε does not containx, so there is a
continuous functionχε ∈ Cc(X) such that0 ≤ χε ≤ 1, χε(x) = 1, andχε|Kε = 0. Now χεϕ is a
function onY such that‖χεϕ‖∞ ≤ ε. Note that the support ofχεϕ is contained in the support ofϕ.
By continuity ofM we see thatM(χεϕ) becomes arbitrarily small ifε→ 0. Then we also have

M(ϕ)(x) = χε(x)M(ϕ)(x) = M(χεϕ)(x) → 0,

and henceM(ϕ)(x) = 0.

Lemma B.2.4. Letµ be a faithful continuous field of measures on the locally compact spaceY over
X with coefficient mapp. Thenp is open.

Proof. Let y ∈ Y . Let V be a neighbourhood ofy in Y . We can find a continuous functionϕ
of compact support contained inV such thatϕ ≥ 0 andϕ(y) > 0. Then the restriction ofϕ to
Yp(y) is also a non-negative continuous function with compact support, positive iny, so from the
faithfulness ofµ we getµp(y)(ϕ) > 0. By continuity ofµ the functionµ(ϕ) is in Cc(X). It is a
non-negative function and satisfiesp(y) > 0. So it is positive on a neighbourhoodU of p(y). Since
U is contained in the image underp of the set whereϕ is positive, we can deduce that the image ofV
is a neighbourhood ofp(y) in X, sop is open.

Lemma B.2.5. LetX andY be locally compact Hausdorff spaces and letp : Y → X be continuous,
open and surjective. Then for every compact setK ⊆ X, there is a compact subsetL ⊆ Y such that
K = p(L). If V is an open subset ofY andK ⊆ p(V ) is compact, thenL can be chosen to be a
subset ofV .

Proof. Let A := p−1(K). Sincep is continuous andK is compact, the setA is closed. Sincep is
surjective, we havep(A) = K. For everya ∈ A, choose a compact neighbourhoodUa of a in Y .
Sincep is open, the setp(Ua) is a neighbourhood ofp(a) for everya ∈ A. So we can find a finite
subsetS of A such that{p(Us) : s ∈ S} is a cover ofK. NowL′ :=

⋃
s∈S Us is a compact set and

p(L′) ⊇ K. DefineL to beL′ ∩A, which is compact. Note that we havep(L) = K by construction.
Applying this result toV andp(V ) instead ofY andX shows that we can takeL ⊆ V if K ⊆

p(V ) for openV ⊆ Y .



B.2. CONTINUOUS FIELDS OF MEASURES 277

Lemma B.2.6 (Local cut-off functions). LetX andY be locally compact Hausdorff spaces and let
p : Y → X be continuous, open and surjective. Let(µx)x∈X be a faithful continuous field of measures
on Y overX with coefficient mapp. For all openV ⊆ Y and all compactK ⊆ p(V ), there is a
functionχ ∈ Cc(Y ) such thatsuppχ ⊆ V , χ ≥ 0 andµ(χ)(x) =

∫
y∈Yx

χ(y) dµx(y) = 1 for all
x ∈ K.

Proof. Use the preceding lemma to find a compact subsetL ⊆ V such thatp(L) = K. Find a function
χ′ ∈ Cc(Y ) such thatsuppχ′ ⊆ V , 0 ≤ χ ≤ 1 andχ′ ≡ 1 on L. Thenµ(χ′) is continuous and
positive onK, so it is strictly positive there. Find a functionδ ∈ Cc(X) such thatsupp δ ⊆ p(V ),
δ ≥ 0 andδ(x) = 1

µ(χ′)(x) for all x ∈ K. Now define

χ(y) := χ′(y)δ(p(y))

for all y ∈ Y . Thenχ is clearly continuous with support contained in the support ofχ′, which is, in
turn, contained inV . Moreover,χ ≥ 0 and for allx ∈ K, we have

µ(χ)(x) =
∫
y∈Yx

χ(y) dµx(y) = δ(x)
∫
y∈Yx

χ′(y) dµx(y) =
1

µ(χ′)(x)
µ(χ′)(x) = 1.

The following result is Lemma 2.13 of [MRW87] (the only change is that we skip the unnecessary
condition thatµ : Cc(Y ) → Cc(X) should be onto).

Lemma B.2.7. Let (µx)x∈X be a faithful continuous field of measures onY overX with (open)
coefficient mapp. Then for all openV ⊆ Y and for all ψ ∈ Cc(X) with suppψ ⊆ p(V ), there is
a ϕ ∈ Cc(Y ) with suppϕ ⊆ V such thatµ(ϕ) = ψ. In particular, µ : Cc(Y ) → Cc(X) is onto. If
ψ ≥ 0, then we can chooseϕ ≥ 0.

Proof. By the preceding lemma, we can find a functionχ ∈ Cc(Y ) such thatsuppχ ⊆ V , χ ≥ 0 and
µ(χ) ≡ 1 onK := suppψ. Define

ϕ(y) := χ(y)ψ(p(y))

for all y ∈ Y . Thenϕ ∈ Cc(Y ), suppϕ ⊆ V andϕ ≥ 0 if ψ ≥ 0. For allx ∈ K we have

µ(ϕ)(x) = µ(χ)(x)ψ(x) = ψ(x).

For allx /∈ K, this formula is also true sinceψ(x) = 0. Soµ(ϕ) = ψ.

Definition and Proposition B.2.8 (Pullback of continuous fields of measures).Let µ be a con-
tinuous field of measures onY overX with coefficient mapp. Assume thatX ′ is another locally
compact Hausdorff space and thatq : X ′ → X is continuous. LetY ′ := q∗(Y ) := Y ×X X ′ and
p′ := q∗(p) : Y ′ → X ′. In order to define a continuous field of measures(µ′x′)x′∈X′ (or q∗(µ)) onY ′

we define it on each fibre as an integral: For allx′ ∈ X ′ and allϕ ∈ Cc(Y ′
x′), define

µ′x′(ϕ) :=
∫
y∈Yq(x′)

ϕ(y, x′) dµq(x′)(y).

We claim thatµ′ is continuous.
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Proof. We organise this proof so that its similarities to the proof of B.3.1 (see below) become obvious.
There probably is a common basis for the two propositions.

If ϕ ∈ Cc(Y ′) is of the form(χ⊗ ψ)|Y ′ with χ ∈ Cc(Y ) andψ ∈ Cc(X ′), then

µ′(ϕ)(x′) =
∫
y∈Yq(x′)

ϕ(y, x′) dµq(x′)(y) =
∫
y∈Yq(x′)

χ(y) dµq(x′)(y)ψ(x′) = µ(χ)(q(x′))ψ(x′)

for all x′ ∈ X ′, so µ′(ϕ) = (µ(χ) ◦ q)ψ ∈ Cc(X ′). For generalϕ ∈ Cc(Y ′) we have to use
some approximation argument: LetK be a compact subset ofY ′. Find someχ0 ∈ Cc(Y ) such that
0 ≤ χ0 ≤ 1 andχ0 ≡ 1 onπ1(K) (whereπ1 : Y ×XX ′ → Y is the projection to the first coordinate).
Thenµ(χ0) is in Cc(X) and therefore bounded by someC ≥ 0. Letϕ ∈ CK(Y ′). Then∣∣µ′(ϕ)(x′)

∣∣ =
∣∣µ′(ϕ(χ0 ◦ π1))(x′)

∣∣ ≤ ∫
y∈Yq(x′)

χ0(y)
∣∣ϕ(y, x′)

∣∣ dµq(x′)(y)

≤ ‖ϕ‖∞ µ(χ0)(q(x0)) ≤ C ‖ϕ‖∞

for all x′ ∈ X ′. Since the support ofµ′(ϕ) is contained inp′(K), which is compact, it follows that
µ defines a continuous linear map with norm≤ C from CK(Y ′) to the spaceSp′(K)(X) of bounded
functions onX ′ with support inp′(K). Note thatCp′(K)(X) is a closed subspace of this space.

LetL be a compact subset ofY ′ of the formL = M ×N withM ⊆ Y andN ⊆ X ′ compact and
such thatL is a compact neighbourhood ofK in Y ′. Then everyϕ ∈ CK(Y ′) can be approximated
in thesup-norm by sums of elements of the form(χ⊗ ψ)|Y ′ with χ ∈ CM (Y ) andψ ∈ CN (X ′). So
µ′(ϕ) can be approximated in thesup-norm by elements ofSp′(L)(X) which are continuous. But this
means thatµ′(ϕ) is continuous as well and hence it is inCc(X ′). Soµ′ is continuous.

Remark B.2.9. If the µ in the preceding proposition is faithful, thenµ′ is faithful as well.

Definition and Proposition B.2.10 (Restriction of a field of measures).Let µ be a continuous field
of measures onY overX with coefficient mapp and letV be an open subset ofY . DefineU := p(V )
and assume thatU is open inX (which is automatic ifp is open). Thenµ|V := (µu|V )u∈U defines a
continuous field of measures onV overU with coefficient mapp|V . If µ is faithful, then so isµ|V .

Proof. SinceV is open inY andU is open inX, we can embedCc(V ) into Cc(Y ) andCc(U) into
Cc(X). The mapµ : Cc(Y ) → Cc(X), restricted toCc(V ), gives a linear, continuous and positive map
µ|V : Cc(V ) → Cc(U). Soµ|V is a continuous field of measures.

Let µ now be faithful. Letu ∈ U andχ 6= 0 be a non-negative function onp−1({u}) ∩ V with
compact support. Then this function can be extended by zero to a non-negative functionχ̃ of compact
support on the whole ofp−1({u}). Then0 < µu(χ̃) = µu|V (χ). Soµ|v is faithful.

Definition B.2.11. One says that a continuous field of measuresµ onY overX hascompact support
if
⋃
x∈X suppµx is relatively compact inY . The support of(µx)x∈X is said to beproper if, for all

compactK ⊆ X, the set
⋃
x∈K suppµx ⊆ Y is relatively compact.

Definition B.2.12. For all continuous fields of measuresµ on Y overX and allχ ∈ C(Y ), χ ≥ 0,
define

(χµ)x(ϕ) :=
∫
y∈Yx

χ(y)ϕ(y) dµx(y)

for all x ∈ X andϕ ∈ Cc(Y ). Note that this simply means(χµ)(ϕ) = µ(χϕ).
If χ ∈ C(X), χ ≥ 0, thenχ ◦ p ∈ C(Y ) and we defineχµ := (χ ◦ p)µ. Note that(χµ)(ϕ) =

µ(χϕ) = χ(µ(ϕ)) for all ϕ ∈ Cc(Y ).
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Lemma B.2.13. 2 Letµ be a continuous field of measures onY overX with compact support. For
all ϕ ∈ C(Y ), defineµ(ϕ) as in (B.1). Thenµ(ϕ) is an element ofCc(X).

Proof. Let ϕ be in C(Y ). Find a functionχ ∈ Cc(Y ) such thatχ ≥ 0 andχ(y) = 1 for all y ∈⋃
x∈X suppµx. Thenχµ = µ andµ(ϕ) = µ(χϕ) ∈ Cc(X) becauseχϕ ∈ Cc(Y ).

Lemma B.2.14. Let µ be a continuous field of measures onY overX with proper support. For all
ϕ ∈ C(Y ), defineµ(ϕ) as in (B.1). Thenµ(ϕ) is an element ofC(X).

Proof. Let ϕ be in C(Y ) and letx ∈ X. We check thatµ(ϕ) is continuous inx. Find a compact
neighbourhoodK of x and a functionχ ∈ Cc(X) such thatχ ≥ 0 andχ = 1 onK. Thenχµ has
compact support and(χµ)(ϕ)(x′) = µ(ϕ)(x′) for all x′ ∈ K. Since(χµ)(ϕ) is continuous inx, so
is µ(ϕ).

B.3 Continuous fields of measures and fields of Banach spaces

Let X andY be locally compact Hausdorff spaces and letp : Y → X be continuous. LetE be a
u.s.c. field of Banach spaces overX and let(µx)x∈X be a continuous field of measures onY overX
with coefficient mapp.

Definition and Proposition B.3.1.For every sectionξ ∈ Γc(Y, p∗E) with compact support and every
x ∈ X, the functionYx → Ex, y 7→ ξ(y), is an element ofCc(Yx, Ex) so we can define

(B.2) µ(ξ)(x) :=
∫
y∈Yx

ξ(y) dµx(y).

Thenµ(ξ) is an element ofΓc(X,E) and the functionξ 7→ µ(ξ) is a continuous linear map from
Γc(Y, p∗E) to Γc(X,E). It is C(X)-linear in the following way: Ifψ ∈ C(X) andξ ∈ Γc(Y, p∗E),
then we can define(ψξ)(y) := ψ(p(y))ξ(y) for all y ∈ Y . This defines aC(X)-action onΓc(Y, p∗E).
Then

µ(ψξ) = ψµ(ξ).

Proof. First we have to check that our map is well-defined. For every elementξ of Γc(Y, p∗E), the
mapµ(ξ) surely is a well-defined section ofE with compact support. The question is whether it is
continuous. Recall that ifK ′ is a compact subset ofX, thenΣK′(X,E) denotes the space of all
bounded selections ofE with support contained inK ′.

If K is a compact subset ofY , thenµ(ξ) ∈ ΣK′(X,E) for all ξ ∈ ΓK(Y, p∗E) whereK ′ :=
p(K); actually,µ defines a continuous linear map fromΓK(Y, p∗E) to ΣK′(X,E). Indeed, find a
functionχ ∈ Γc(Y ) such that0 ≤ χ ≤ 1 andχ ≡ 1 onK. Then for allξ ∈ ΓK(Y , p∗E) and all
x ∈ X, we have

‖µ(ξ)(x)‖Ex
=

∥∥∥∥∫
y∈Yx

ξ(y) dµx(y)
∥∥∥∥
Ex

=
∥∥∥∥∫

y∈Yx

χ(y)ξ(y) dµx(y)
∥∥∥∥
Ex

≤
∫
y∈Yx

χ(y) dµx(y) sup
y∈Yx

‖ξ(y)‖Ex
≤ µ(χ)(x) ‖ξ‖K .

It follows that
‖µ(ξ)‖K′ ≤ ‖µ(χ)‖K′ ‖ξ‖K .

2Compare [LG99], Lemma 3.1.
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Note that‖µ(χ)‖K′ <∞ sinceµ(χ) is in CK′(X,E) by the continuity ofµ. Asµ is obviously linear
onΓK(Y, p∗E), it is a continuous linear map.

Let ξ be inΓc(Y, p∗E). Now we check thatµ(ξ) is a section. LetK denote the support ofξ. Find
a compact neighbourhoodL of K. Then we can approximateξ by sums of sections of the formχ · η,
whereχ ∈ CL(Y ) andη ∈ Γ(Y, p∗E) is such that there is anη′ ∈ Γ(X,E) with η(y) = η′(p(y)) for
all y ∈ Y (this follows from Lemma B.1.3 applied to the setΞ of all such sections ofp∗E). We show
thatµ(χη) ∈ Γp(L)(X,E), and, since this is a Banach space andµ is continuous, it follows thatµ(ξ)
is in the closed subspaceΓp(L)(X,E) of Σp(L)(X,E) (and hence inΓp(K)(X,E)). Now

µ(χη)(x) =
∫
y∈Yx

χ(y)η(y) dµx(y) =
∫
y∈Yx

χ(y)η′(x) dµx(y) =
∫
y∈Yx

χ(y) dµx(y) · η′(x),

for all x ∈ X, or, in other words,

µ(χη) = µ(χ)η′ ∈ Γp(L)(X,E).

Together with the continuity result derived above we now know thatµ is a continuous linear map
from ΓK(Y, p∗E) to Γp(K)(X,E) for all compactK ⊆ Y . Soµ is a continuous linear map on all of
Γc(Y, p ∗ E) with values inΓc(X,E) by the universal property of the inductive limit topology.

To seeC(X)-linearity, letψ ∈ C(X) andξ ∈ Γc(Y, p∗E). Then

µ(ψξ)(x) =
∫
y∈Yx

ψ(x)ξ(y) dµx(y) = ψ(x)
∫
y∈Yx

ξ(y) dµx(y) = (ψµ(ξ))(x)

for all x ∈ X.

Proposition B.3.2. If p is surjective andµ is faithful, thenξ 7→ µ(ξ) is surjective.

Proof. Let η ∈ Γc(X,E). Find aχ ∈ Cc(X) such thatχ ≡ 1 on supp η. By the surjectivity of the
mapµ : Cc(Y ) → Cc(X) we can find aχ′ ∈ Cc(Y ) such thatµ(χ′) = χ. Defineξ(y) := χ′(y)η(p(y))
for all y ∈ Y . This surely is inΓc(Y, p∗E) and we obtain

µ(ξ)(x) =
∫
y∈Yx

ξ(y) dµx(y) =
∫
y∈Yx

χ′(y)η(x) dµx(y)

=
∫
y∈Yx

χ′(y) dµx(y) · η(x) = µ(χ′)(x)η(x) = χ(x)η(x)

for all x ∈ X. Becauseχ ≡ 1 on supp η, it follows thatµ(ξ) = η.

The following lemmas are proved as in the scalar case (Lemma B.2.13 and Lemma B.2.14).

Lemma B.3.3. 3 Let the continuous field of measuresµ onY overX have compact support. For all
ξ ∈ Γ(Y, p∗E), defineµ(ξ) as in (B.2). Thenµ(ξ) ∈ Γc(X,E).

Lemma B.3.4. Let µ have proper support. For allξ ∈ Γ(Y, p∗E), defineµ(ξ) as in (B.2). Then
µ(ξ) ∈ Γ(X,E).

3Compare [LG99], Lemma 3.1.



Appendix C

Some Details Concerning Chapter 5

C.1 Some proofs of results of Section 5.1

C.1.1 Proof of Lemma 5.1.3

The trick is to represent̃µ as a composition of continuous maps on the sections of suitably chosen
fields of Banach spaces; continuity means here continuity for the uniform convergence on compact
subsets if we are talking about the spaces of all sections and convergence in the inductive limit topol-
ogy if we are talking about the sections with compact support. First, observe that the mapξ1 7→ ξ1◦π1

is a continuous map fromΓ(G, r∗E1) to Γ(G(2), π∗1r
∗E1). Similarly,ξ2 7→ ξ2 ◦π2 is continuous from

Γ(G, r∗E2) to Γ(G(2), π∗2r
∗E2), whereπ2 is defined analogously toπ1. Now r ◦ π2 = s ◦ π1 by

definition ofG(2), soπ∗2r
∗E2 = π∗1s

∗E2. Sinceα is a continuous field of linear isomorphisms from
s∗E2 to r∗E2, the pullbackπ∗1α is a continuous field of linear isomorphisms fromπ∗1s

∗E2 to π∗1r
∗E2.

This defines a continuous linear map (actually, a linear homeomorphism) fromΓ(G(2), π∗1s
∗E2) to

Γ(G(2), π∗1r
∗E2). Now there is the canonical map

Γ
(
G(2), π∗1r

∗E1

)
× Γ

(
G(2), π∗1r

∗E2

)
→ Γ

(
G(2), π∗1r

∗E1 ×G(2) π∗1r
∗E2

)
mapping(η1, η2) to (γ, γ′) 7→ (η1(γ), η2(γ′)). Since this map defines the structure of a continuous
field on the product field, it is continuous and takes total subsets to total subsets, a property shared
also by the other maps we have used so far. Putting this together we have constructed a continuous
linear map

(ξ1, ξ2) 7→
[
(γ, γ′) 7→

(
ξ1(π1(γ, γ′)), ((π∗1α) ◦ ξ2 ◦ π2)(γ, γ′)

)
= (ξ1(γ), αγξ2(γ′))

]
.

Note that this map takes the product of two total subsets to a total subset. Sinceµ is a continu-
ous field of bilinear maps, we can pull it back to a continuous field of bilinear mapsπ∗1r

∗µ from
π∗1r

∗E1 ×G(2) π∗1r
∗E2 to π∗1r

∗F . Composing this map and the map defined above givesµ̃, which is
therefore continuous and well-defined.

Separate continuity on the sections of compact support follows from continuity for the uniform
convergence on compact subsets and the (trivial) statement about the supports given in the lemma.

If µ is non-degenerate, then so isπ∗1r
∗µ, so it takes total subsets to total subsets. Hence the

compositionµ̃ of maps that send (products of) total subsets to total subsets does the same.
Since the continuous sections of compact support form a total subset, it follows that theΞ defined

in the lemma is total. As a consequence, the span ofCc(G(2))Ξ is dense inΓc(G(2), π∗1r
∗F ). Since the
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multiplication betweenCc(G(2)) andΓc(G(2), π∗1r
∗F ) is (separately) continuous, it therefore suffices

to find a subsetΨ of Cc(G(2)) which generates a dense subspace and such that products of elements
ψ ∈ Ψ with ξ ∈ Ξ are again inΞ. Such a set is given by

Ψ := {(χ1 ◦ π1) · (χ2 ◦ π2) : χ1, χ2 ∈ Cc(G)}.

By the definition ofµ̃ it follows that for allχ1, χ2 ∈ Cc(G), ξ1 ∈ Γc(G, r∗E1) andξ2 ∈ Γc(G, r∗E2):

µ̃(χ1ξ1, χ2ξ2) = (χ1 ◦ π1) · (χ2 ◦ π2) · µ̃(ξ1, ξ2).

What is left to show is thatΨ spans a dense subset ofCc(G(2)). To see this note that the algebraic
tensor productΦ := Cc(G)⊗alg Cc(G) spans a dense subset inCc(G ×G). Furthermore, the restriction
map fromCc(G ×G) to Cc(G(2)) is continuous and surjective by Lemma E.4.1. The image ofΦ under
this restriction is the span ofΨ which therefore is dense.

C.1.2 Proof of Lemma 5.3.7

In this section we prove Lemma 5.3.7 which is a generalisation of 5.1.2. The proofs of these two
results are completely analogous and the proof of the generalisation is only included to make it un-
necessary for the reader to puzzle out the technical details (which took me some time).

We first state a lemma analogous to Lemma 5.1.3.

Lemma C.1.1. Let ξ1 ∈ Γ(GWV , r∗E1) andξ2 ∈ Γ(GVU , r∗E2) be sections (with arbitrary support).
Then

µ̃(ξ1, ξ2)(γ, γ′) = µr(γ)
(
ξ1(γ), αγ(ξ2(γ′))

)
is in Γ(GWV ∗s,r GVU , π∗1r∗F ), whereπ1 : GWV ∗s,r GVU → G is the projection onto the first coordinate.
If µ is non-degenerate, theñµ is non-degenerate in two senses: Firstly, it sends the product of two
total subsets to a total subset, and secondly, the setΞ := {µ̃(ξ1, ξ2) : ξ1 ∈ Γc(GWV , r∗E1), ξ2 ∈
Γc(GVU , r∗E2)} spans a dense subset ofΓc(GWV ∗s,r GVU , π∗1r∗F ).

The proof of this lemma is almost identical to the proof of Lemma 5.1.3. We just include it here
because it was rather tedious to find the right places for all theUs,V s andWs, and if somebody needs
this result, then it might save some work to find the proof spelled out in detail.

Proof. The first step is given by the mapsξ1 7→ ξ1 ◦ π1 andξ2 7→ ξ2 ◦ π2, where the first map starts
in Γ(GWV , r∗E1) and ends inΓ(GWV ∗s,r GVU , π∗1r∗E1), the second starts inΓ(GVU , r∗E2) and ends in
Γ(GWV ∗s,r GVU , π∗2r∗E2). Hereπ1 andπ2 are the projections on the first and second coordinate on the
fibre productGWV ∗s,r GVU . By definition, these maps are linear, continuous and map total sets to total
sets.

As above,r ◦ π2 = s ◦ π1, soπ∗2r
∗E2 = π∗1s

∗E2. Sinceα is an isometric isomorphism from
s∗E2 to r∗E2, we know thatπ∗1α is an isometric isomorphism fromπ∗1s

∗E2 to π∗2r
∗E2 (as fields

overGWV ∗s,r GVU ). This defines a continuous linear isomorphism fromΓ(GWV ∗s,r GVU , π∗1s∗E2) to
Γ(GWV ∗s,r GVU , π∗1r∗E2). And as above, there is a canonical map

Γ
(
GWV ∗s,r GVU , π∗1r∗E1

)
×Γ
(
GWV ∗s,r GVU , π∗1r∗E2

)
→ Γ

(
GWV ∗s,r GVU , π∗1r∗E1 ×GW

V ∗s,rGV
U
π∗1r

∗E2

)
mapping(η1, η2) to (γ, γ′) 7→ (η1(γ), η2(γ′)). Since this map defines the structure of a continuous
field on the product field, it (is continuous and) takes total subsets to total subsets, a property shared
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also by the other maps we have used so far. Putting this together we have constructed a continuous
linear map

(ξ1, ξ2) 7→
[
(γ, γ′) 7→

(
ξ1(π1(γ, γ′)), ((π∗1α) ◦ ξ2 ◦ π2)(γ, γ′)

)
= (ξ1(γ), αγξ2(γ′))

]
.

Note that this map takes the product of two total subsets to a total subset.
Sinceµ is a continuous field of bilinear maps, we can pull it back to a continuous field of bilinear

mapsπ∗1r
∗µ from π∗1r

∗E1 ×GW
V ∗s,rGV

U
π∗1r

∗E2 to π∗1r
∗F . Composing this map and the map defined

above gives̃µ, which is therefore (continuous and) well-defined.
If µ is non-degenerate, then so isπ∗1r

∗µ, so it takes total subsets to total subsets. Hence, the
compositionµ̃ of maps that send (products of) total subsets to total subsets does the same.

Since the sections of compact support form a total subset, it follows that theΞ defined above is
total. As a consequence, the span ofCc(GWV ∗s,r GVU )Ξ is dense inΓc(GWV ∗s,r GVU , π∗1r∗F ). Since
the multiplication betweenCc(GWV ∗s,r GVU ) andΓc(GWV ∗s,r GVU , π∗1r∗F ) is (separately) continuous,
it therefore suffices to find a subsetΨ of Cc(GWV ∗s,r GVU ) which generates a dense subspace and such
that products of elementsψ ∈ Ψ with ξ ∈ Ξ are again inΞ. Such a set is given by

Ψ := {(χ1 ◦ π1) · (χ2 ◦ π2) : χ1 ∈ Cc(GWV ), χ2 ∈ Cc(GVU )}.

By the definition ofµ̃ it follows that for allχ1 ∈ Cc(GWV ), χ2 ∈ Cc(GVU ), ξ1 ∈ Γc(GWV , r∗E1) and
ξ2 ∈ Γc(GVU , r∗E2):

µ̃(χ1ξ1, χ2ξ2) = (χ1 ◦ π1) · (χ2 ◦ π2) · µ̃(ξ1, ξ2).

What is left to show is thatΨ spans a dense subset ofCc(GWV ∗s,rGVU ). To see this note that the algebraic
tensor productΦ := Cc(GWV ) ⊗alg Cc(GVU ) spans a dense subset inCc(GWV × GVU ). Furthermore, the
restriction map fromCc(GWV × GWU ) to Cc(GWV ∗s,r GVU ) is continuous and surjective. The image ofΦ
under this restriction is the span ofΨ which therefore is dense.

Now we can proceed with the Proof of 5.3.7. Again, this is just a variant of the proof of the special
caseU = V = W = G that has been discussed above.

First define the mapΦ: GWV ∗r,r GWU → GWV ∗s,r GVU , (γ, γ′) 7→ (γ, γ−1γ′). This is a homeo-
morphism. Letp1 andp2 denote the projections ofGWV ∗r,r GWU onto the first and second component,
respectively. Thenπ1 ◦Φ = p1, and we haveΦ∗(π∗1r

∗F ) = p∗1r
∗(F ) = p∗2r

∗F . The mapΦ therefore
induces an isomorphism

Γc
(
GWV ∗s,r GVU , π∗1r∗F

)
→ Γc

(
GWV ∗r,r GWU , p∗2r

∗F
)

which sends someη to (γ, γ′) 7→ η(γ, γ−1γ′). In particular, it sends our̃µ(ξ1, ξ2) to

(γ, γ′) 7→ µr(γ)
(
ξ1(γ), αγ

(
ξ2(γ−1γ′)

))
.

Note that this is the integrand in the convolution formula and a section of compact support.
Now we define a suitable continuous field of measures onGWV ∗r,r GWU . Consider the map

p2 : GWV ∗r,r GWU → GWU . It is surjective sincer : GWV → W is surjective. Its fibres are of the
form p−1

2 ({γ′}) = {(γ, γ′) : γ ∈ GWV , r(γ) = r(γ′)} for eachγ′ ∈ GWU . These fibres are homeomor-

phic toGr(γ
′)

V ⊆ GWV ⊆ G. If, for eachw ∈ W , we restrict the measureλw onG to the open setGWV ,
then we get a faithful continuous fieldλ′ := λ|GW

V
of measures onGWV overW with coefficient map

r (see Proposition B.2.10). So we can put the measureλ′r(γ
′) on the fibrep−1

2 ({γ′}). Technically, we
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are forming the pullbackr∗λ′ by r of the continuous field of measuresλ′ onGWV with coefficient map
r (compare Definition B.2.8):(

GWV , λ′
)

r

��

(
GWV ∗r,r GWU , r∗λ′

)
p2

��

p1
oo

W GWUr
oo

By Proposition B.3.1 we can deduce thatr∗λ′ mapsΓc
(
GWV ∗r,r GWU , p∗2r

∗F
)

to Γc
(
GWU , r∗F

)
, and

this map is onto sinceλ′ is faithful and so isr∗λ′.
The composition of the three maps̃µ, the isomorphism induced byΦ, andr∗λ′ is our convo-

lution product(ξ1, ξ2) 7→ µ(ξ1, ξ2), which is therefore (well-defined, separately continuous and)
non-degenerate ifµ is non-degenerate.

C.2 The convolution with fields of compact operators

LetE andF be u.s.c. fields of Banach spaces over some topological space. Then we writeL(E,F )c
for those continuous fields of linear maps that have compact support. In the same spirit we use the
notationLB(E,F )c andKB(E,F )c. LetA(G) be an unconditional completion ofCc(G).

C.2.1 The convolution with fields of linear maps

Definition and Proposition C.2.1. Let E andF be G-Banach spaces. Let the field of operators
S = (Sγ)γ∈G ∈ L(r∗E,∗ F )c have compact support. For allξ ∈ Γc (G, r∗E), define

(S ∗ ξ) (γ) :=
∫
Gr(γ)

Sγ′ γ
′ξ(γ′−1γ) dλr(γ)(γ′)

and

(ξ ∗ S) (γ) :=
∫
Gr(γ)

ξ(γ′) γ′Sγ′−1γ dλr(γ)(γ′) =
∫
Gr(γ)

γ′
[
Sγ′−1γ

(
γ′−1ξ(γ′)

)]
dλr(γ)(γ′)

for all γ ∈ G. ThenS ∗ ξ, ξ ∗ S ∈ Γc (G, r∗F ) and the mapsξ 7→ S ∗ ξ andξ 7→ ξ ∗ S are linear,
C0 (X/G)-linear, and continuous with respect to the inductive limit topologies. We have

‖S ∗ ξ‖A(G,F ) ≤
∥∥∥γ 7→ ‖Sγ‖

∥∥∥
A
‖ξ‖A(G,E)

and
‖ξ ∗ S‖A(G,F ) ≤ ‖ξ‖A(G,E)

∥∥∥γ 7→ ‖Sγ‖
∥∥∥
A
.

In particular,ξ 7→ S ∗ ξ andξ 7→ ξ ∗ S extend to linear andC0 (X/G)-linear continuous maps from
A(G, E) toA(G, F ) (being alsoC0(X)-linear from the right and from the left, respectively).

Proof. Let us only considerS ∗ ξ, the arguments forξ ∗ S being very similar.
LetG∗r,rG denote the space{(γ, γ′) ∈ G×G : r(γ) = r(γ′)} and letπi : G∗r,rG → G denote the

projection onto theith component. Then the map(γ, γ′) 7→ ξ(γ′−1γ) is in Γ (G ∗r,r G, π∗2s∗E). If we
writeα for theG-action onE, thenπ∗2α sendsΓ (G ∗r,r G, π∗2s∗E) toΓ (G ∗r,r G, π∗2r∗E), so the map
(γ, γ′) 7→ γ′ξ(γ′−1γ) is in Γ (G ∗r,r G, π∗2r∗E). Thirdly, the mapπ∗2S sendsΓ (G ∗r,r G, π∗2r∗E) to
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Γ (G ∗r,r G, π∗2r∗F ), so(γ, γ′) 7→ Sγ′γ
′ξ(γ′−1γ) is in Γ (G ∗r,r G, π∗2r∗F ). More precisely, it is in

Γc (G ∗r,r G, π∗2r∗F ). The map which sendsξ to this element ofΓc (G ∗r,r G, π∗2r∗F ) is continuous
for the inductive limit topology. Note thatr ◦ π2 = r ◦ π1, soπ∗2r

∗F = π∗1r
∗F .

Now the integral sendsΓc (G ∗r,r G, π∗1r∗F ) to Γc (G, r∗F ) and is continuous for the inductive
limit topology, so the mapξ 7→ S ∗ ξ is well-defined and continuous.

The proof of the inequalities for the norm is a variant of the proof of 5.2.6. Note that the map
γ 7→ ‖Sγ‖ is in general neither continuous nor upper semi-continuous. However, it is locally bounded
(by definition of a continuous field of operators) and has compact support.

Proposition C.2.2. LetB be aG-Banach algebra and letE andF be rightG-BanachB-modules. Let
S be inLr∗B(r∗E, r∗F )c. Then the mapξ 7→ S ∗ ξ fromΓc (G, r∗E) to Γc (G, r∗F ) is Γc (G, r∗B)-
linear on the right. Hence the mapξ 7→ S ∗ ξ fromA (G, E) toA (G, F ) isA (G, B)-linear on the
right. A similar statement is true for left modules and the mapξ 7→ ξ ∗ S.

Proof. The assertion is proved just as the associativity of the convolution.

Equipped with this knowledge, we can now analyse Definition 5.2.17: The equation〈η<, S> ∗ ξ>〉 =
〈η< ∗ S<, ξ>〉 that appears in the definition can again be proved similarly to the associativity of the
convolution. This equation implies that the operatorŜ that is defined in 5.2.17 is an element of
LA(G,B) (A (G, E) , A (G, F )).

C.2.2 Fields of compact operators

LetB be aG-Banach algebra and letE andF beG-BanachB-pairs. For allη> ∈ Γc (G, r∗F>) and
all ξ< ∈ Γc (G, r∗E<), define

η> ./ ξ< :=
(∫

Gr(γ)

∣∣η>(γ′)
〉〈
γ′ξ<(γ′−1γ)

∣∣ dλr(γ)(γ′))
γ∈G

.

Then η> ./ ξ< is in Kr∗B (r∗E, r∗F )c by 7.2.3, where the subscriptc means that we are only
considering those fields of operators which have compact support. Direct calculation yields

̂η> ./ ξ< =
∣∣η>〉〈ξ<∣∣ ∈ KA(G,B) (A(G, E), A(G, F )) .

The fields of compact operators of the formη> ./ ξ< span a dense subspace ofKr∗B (r∗E, r∗F )c and
the map(η>, ξ<) 7→ η> ./ ξ< is continuous for the inductive limit topology. OnLr∗B (r∗E, r∗F )c
we can define the semi-norm

‖S‖A :=
∥∥∥γ 7→ ‖Sγ‖

∥∥∥
A
.

We have already seen that the mapS 7→ Ŝ is contractive for this norm. Because a dense subset of
Kr∗B (r∗E, r∗F )c (dense for the inductive limit topology and hence dense for the norm) is mapped
to KA(G,B) (A(G, E), A(G, F )), it follows that all ofKr∗B (r∗E, r∗F )c is mapped into this closed
subset. We can summarise this as follows:

Proposition C.2.3. LetB be aG-Banach algebra and letE andF beG-BanachB-pairs. LetA(G)
be an unconditional completion ofCc(G). If S is an element ofKr∗B (r∗E, r∗F )c, thenŜ is compact,
i.e., we have

Ŝ ∈ KA(G,B) (A(G, E), A(G, F )) .
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C.2.3 The proof of Lemma 5.3.1

This Lemma can be proved by a careful revision of the argumentation in the previous paragraph: IfH
is an open subgroupoid ofG andη> andξ< have their support inH, then alsoη> ./ ξ< has its support
in H. Conversely, ifS ∈ Kr∗B (r∗E, r∗F )c has its support inH, then we can choose summands of
an approximation in the inductive limit topology to be of the formη> ./ ξ< with η> andξ< having
their support inH. This shows Lemma 5.3.1.

C.3 Some details concerning unconditional completions (Section 5.2)

C.3.1 TheA(G)-bimodule structure of A(G, E)

If E is aG-Banach space, thenE is a BanachCX -bimodule, whereCX denotes the constant field of
Banach algebras overX with fibre C, carrying the canonicalG-action. It follows thatA(G, E) is a
C0(X/G)-BanachA(G)-bimodule. BecauseE is CX -non-degenerate, it follows thatA(G, E) is also
non-degenerate, both as a left and a rightA(G)-Banach module.

If T : E → F is aG-equivariant bounded continuous field of linear maps, thenA(G, T ) isA(G)-
linear, both on the left and on the right. Similarly, ifE1,E2 andF areG-Banach spaces andµ : E1×X
E2 → F is aG-equivariant bounded continuous field of bilinear maps, thenA(G, µ) isA(G)-linear on
the left in the first component,A(G)-linear on the right in the second component andA(G)-balanced.

The assignmentE 7→ A(G, E) defines a functor from the category ofG-Banach spaces to the
category ofC0(X/G)-BanachA(G)-bimodules.

If B is aG-Banach algebra, then the multiplication on theC0(X/G)-Banach algebraA(G, B) and
theC0(X/G)-structure are compatible with theA(G)-bimodule structure. Similar statements are true
for G-Banach modules andG-Banach bimodules.

C.3.2 The descent, sums and tensor products

Proposition C.3.1. LetE andF beG-Banach spaces. Then there is a canonical bijectiveC0(X/G)-
linear map

sAE,F := s : A(G, E)⊕A(G, F ) → A (G, E ⊕X F )

such that‖s‖ ≤ 1 and
∥∥s−1

∥∥ ≤ 2 and respecting theA(G)-bimodule structures.

Proof. We defines = sAE,F on a dense subset: Letξ ∈ Γc (G, r∗E) and letη ∈ Γc (G, r∗F ). Then
(ξ, η) can be regarded as an element ofA(G, E)⊕A(G, F ), whereass(ξ, η) := γ 7→ (ξ(γ), η(γ)) is
an element ofA (G, E ⊕X F ). We have

‖s(ξ, η)‖A(G,E⊕F ) =
∥∥∥ γ 7→ ‖ξ(γ)‖+ ‖η(γ)‖

∥∥∥
A

=
∥∥∥ |ξ|+ |η|

∥∥∥
A

≤
∥∥ |ξ| ∥∥A +

∥∥ |η| ∥∥A = ‖(ξ, η)‖A(G,E)⊕A(G,F ) .

Sos is aC0(X/G)-linear map with norm‖s‖ ≤ 1 on Γc (G, r∗E) ⊕ Γc (G, r∗F ). Hence it extends
to aC0(X/G)-linear map of norm less than or equal to 1 on the completionA(G, E)⊕A(G, F ).

For the aboveξ andη, we have|ξ| ≤ |s(ξ, η)| and|η| ≤ |s(ξ, η)|. It follows from the properties
of the unconditional norm that‖ξ‖A(G,E) ≤ ‖s(ξ, η)‖A(G,E⊕F ) and the same is true for the norm of
η. This yields

‖(ξ, η)‖A(G,E)⊕A(G,F ) = ‖ξ‖A(G,E) + ‖η‖A(G,F ) ≤ 2 ‖s(ξ, η)‖A(G,E⊕F ) ,

which shows thats−1 is continuous with norm‖s−1‖ ≤ 2.
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The preceding proposition remains true ifE andF are not onlyG-Banach spaces butG-BanachB-
modules over someG-Banach algebraB. In this case,Ψ is alsoA(G, B)-linear.

Definition and Proposition C.3.2. LetE andF beG-Banach spaces. Then there is a unique contrac-
tive linear map

mA
E,F : A(G, E)⊗C0(X/G)

A(G) A(G, F ) → A (G, E ⊗X F )

such that

(C.1)
(
mA
E,F (ξ ⊗ η)

)
(γ′) :=

∫
Gr(γ′)

ξ(γ)⊗ γ η(γ−1γ′) dλr(γ
′)(γ)

for all ξ ∈ Γc(G, r∗E), η ∈ Γc(G, r∗F ) andγ′ ∈ G. The mapmA
E,F is C0(X/G)-linear,A(G)-linear

on the left and on the right and has dense image.

Proof. Note that⊗ : E ×X F → E ⊗X F is aG-equivariant contractive continuous field of bilinear
maps. It therefore gives a contractiveC0(X/G)-linear andA(G)-balanced mapA(G,⊗) : A(G, E)×
A(G, F ) → A (G, E ⊗X F ). The linearisation ofA(G,⊗) is the mapmA

E,F . Because⊗ is non-
degenerate so isA(G,⊗). Hence alsomA

E,F is non-degenerate.

In exactly the same way one proves:

Definition and Proposition C.3.3. If EB andBF areG-BanachB-modules over someG-Banach
algebraB, then there is a unique contractive linear map

mA
E,F : A(G, E)⊗C0(X/G)

A(G,B)⊕A(G) A(G, F ) → A (G, E ⊗B F )

such that

(C.2)
(
mA
E,F (ξ ⊗ η)

)
(γ′) :=

∫
Gr(γ′)

ξ(γ)⊗ γ η(γ−1γ′) dλr(γ
′)(γ)

for all ξ ∈ Γc(G, r∗E), η ∈ Γc(G, r∗F ) andγ′ ∈ G. The mapmA
E,F is C0(X/G)-linear,A(G)-linear

on the left and on the right and has dense image. IfF is not only a leftG-BanachB-module but a
G-BanachB-C-bimodule, whereC is anotherG-Banach algebra, thenmA

E,F isA(G, C)-linear on the
right (and similarly on the left-hand side).

Note thatA(G, E) andA(G, F ) areA(G, B)-non-degenerate ifE andF areB-non-degenerate,
respectively. It follows that theA(G, B)-balanced tensor product is automaticallyA(G)-balanced and
C0(X/G)-balanced if eitherE or F isB-non-degenerate, i.e.,

A(G, E)⊗C0(X/G)
A(G,B)⊕A(G) A(G, F ) = A(G, E)⊗A(G,B) A(G, F ).

C.3.3 Some proofs concerning Section 5.2.8

Proof of Lemma 5.2.20.Let (E1, T1) and(E2, T2) be elements ofEban
G (A,B), whereA andB are

G-Banach algebras. Then there is a canonicalC0(X/G)-linear homomorphism

s := sAE1,E2
: A(G, E1)⊕A(G, E2) → A (G, E1 ⊕X E2)

which is bijective such that the inverse maps on the left- and right-hand side both have norm≤ 2
(compare Proposition C.3.1). Moreover, this homomorphism clearly respects the grading and the
operators of the cycles, so it is a morphism ofKKban-cycles. Such a morphism certainly induces a
homotopy.
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Proof of Lemma 5.2.21.On the one hand we have

A (G, ψ)∗ (E) = A(G, E)⊗C0(X/G)
A(G,B) (A(G, C)⊕ C0(X/G)) ;

on the other hand
A (G, ψ∗(E)) = A (G, E ⊗B⊕XCX

(C ⊕X CX)) .

There is a canonicalC0(X/G)-linear concurrent homomorphism

mA
E,C⊕XCX

: A(G, E)⊗C0(X/G)
A(G,B⊕XCX) A (G, C ⊕X CX) → A (G, E ⊗B⊕XCX

(C ⊕X CX))

with coefficient mapsIdA(G,A) and IdA(G,C). Note that non-degeneracy of the involved modules
implies

A(G, E)⊗C0(X/G)
A(G,B⊕XCX) A (G, C ⊕X CX) = A(G, E)⊗A(G,B) A (G, C ⊕X CX) .

There is a canonical homomorphism ofC(X/G)-Banach algebras

sAC,CX
: A(G, C)⊕A(G) → A (G, C ⊕X CX) ,

where the multiplication in the first algebra is defined as(c, f)(c′, f ′) := (cc′ + cf ′ + fc′, ff ′) for all
c, c′ ∈ A(G, C) andf, f ′ ∈ A(G). It induces a canonical concurrentC0(X/G)-linear homomorphism

A(G, E)⊗A(G,B) (A (G, C)⊕A(G)) → A(G, E)⊗A(G,B) A (G, C ⊕X CX) .

Now there are canonical concurrentC0(X/G)-linear homomorphisms

A(G, E)⊗A(G,B) A (G, C) → A(G, E)⊗A(G,B) (A (G, C)⊕A(G))

and
A(G, E)⊗A(G,B) A (G, C) → A(G, E)⊗A(G,B) (A (G, C)⊕ C0(X/G)) .

So we have connectedA (G, ψ)∗ (E) andA (G, ψ∗(E)) through a sequence of (inverses) of canonical
C0(X/G)-linear concurrent homomorphisms having coefficient mapsIdA(G,A) andIdA(G,C). Straight-
forward calculations show that these homomorphisms can be regarded as morphisms ofKKban-cycles
(if we take the canonical choices of operators on the above pairs). Moreover, all these morphisms give
rise to homotopies. SoA (G, ψ)∗ (jA (E, T )) andjA (ψ∗ (E, T )) are homotopic.

Proof of Lemma 5.2.22.We have to check that‖φB(β)‖ ≤ ‖β‖ for all β ∈ Γc(G, r∗B[0, 1]). The
first term is by definition

‖β‖ =
∥∥∥ γ 7→ sup

t∈[0,1]
‖β(γ)(t)‖

∥∥∥
A
.

The second term is
‖φB(β)‖ = sup

t∈[0,1]

∥∥∥ γ 7→ ‖β(γ)(t)‖
∥∥∥
A
.

From the properties of the unconditional norm and the fact that for allt ∈ [0, 1] and allγ ∈ G we have

‖β(γ)(t)‖ ≤ sup
s∈[0,1]

‖β(γ)(s)‖
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we can deduce that for allt ∈ [0, 1]∥∥∥ γ 7→ ‖β(γ)(t)‖
∥∥∥
A
≤ ‖β‖ ,

so‖φB(β)‖ ≤ ‖β‖ as desired.
For the second part of the lemma, lett0 ∈ [0, 1]. Letβ ∈ Γc(G, r∗B[0, 1]). The mapφB sendsβ to

t 7→ (γ 7→ β(γ)(t)). Now evA(G,B)
t0

sends this function toγ 7→ β(γ)(t0) in Γc(G, r∗B) ⊆ A(G, B).
On the other hand,A(G, evBt0) sendsβ to evBt0 ∗β, i.e., toγ 7→ (evBt0)r(γ)β(γ) = β(γ)(t0). So

evA(G,B)
t0

◦φB andA(G, evBt0) agree on a dense subset and are thus equal.

Proof of Proposition 5.2.27.There is a canonicalC0(X/G)-linear concurrent homomorphism with
coefficient mapsIdA(G,A) andIdA(G,C)

m := mA
E,F : A(G, E)⊗C0(X/G)

A(G,B) A(G, F ) → A(G, E ⊗B F )

defined as in Equation (C.2). We show thatm induces a homotopy.
In a first step, assume thatS ∈ K(r∗E)c is a compact operator onr∗E with compact support.

Let Ŝ be as in 5.2.17, i.e., let̂S denote the action ofS on A(G, E) by convolution. Then Propo-
sition 5.2.18 says that̂S is a compact operator onA(G, E). BecauseA(G, B) acts onA(G, F ) by
compact operators, it follows that̂S ⊗ 1 is a compact operator onA(G, E) ⊗A(G,B) A(G, F ) (see
Proposition 1.3.7). On the other hand, Proposition 3.1.59 says thatS⊗1 is a locally compact operator
on r∗E ⊗r∗B r∗F = r∗(E ⊗B F ). It has compact support (the support is contained in the support of
S). SoS ⊗ 1 is a compact operator with compact support. HencêS ⊗ 1 ∈ KA(G,C)(A(G, E ⊗B F )).
We show that the pair(Ŝ⊗1, Ŝ ⊗ 1) is in K(m, m), i.e., we show thatm intertwines the two operators
and that we can approximate them simultaneously with finite rank operators.

Because the mapS 7→ (Ŝ⊗1, Ŝ ⊗ 1) is linear and contractive (if one takes the semi-norm‖S‖ =
‖γ 7→ ‖Sγ‖‖A on Lr∗B(r∗E)c), it suffices to show this forS = ξ> ./ ξ< with ξ< ∈ Γc(G, r∗E<)
andξ> ∈ Γc(G, r∗E>) (see Paragraph C.2.2 for the definition of./). Because(ξ>, ξ<) 7→ ξ> ./ ξ<

is continuous it is sufficient to consider the case thatS = ξ> ./ (β ∗ ξ<) = (ξ> ∗ β) ./ ξ< with
ξ< ∈ Γc(G, r∗E<) andξ> ∈ Γc(G, r∗E>) andβ ∈ Γc(G, r∗B). Let ε > 0.

The map(η>, η<) 7→ η> ./ η< is separately continuous and non-degenerate for the inductive
limit topologies onΓc(G, r∗F>), Γc(G, r∗F<) and Kr∗C(r∗F ). We can therefore findn ∈ N,
η<1 , . . . , η

<
n ∈ Γc(G, r∗F<) andη>1 , . . . , η

>
n ∈ Γc(G, r∗F>) such that

∥∥ξ>∥∥A ∥∥ξ<∥∥A
∥∥∥∥∥γ 7→ ∥∥∥π(β(γ))−

n∑
i=1

(
η>i ./ η<i

)
γ

∥∥∥∥∥∥∥∥
A

≤ ε.

Because the maps./, m> and the action ofS ⊗ 1 onA (G, E ⊗B F )> are given by a convolution
formula we use, for a moment, the symbol∗ for all of them; a short calculation yields

Ŝ ⊗ 1
> (

m>(ξ′> ⊗ η′>)
)

= (S> ⊗ 1) ∗ ξ′> ∗ η′> = ξ> ∗ β ∗ ξ< ∗ ξ′> ∗ η′>

for all ξ′> ∈ Γc (G, r∗E>) andη′> ∈ Γc (G, r∗F>). Note that we have implicitly use some straight-
forward associativity laws. Now∥∥∥ξ> ∗ β ∗ ξ< ∗ ξ′> ∗ η′> − ξ> ∗

[∑n

i=1
η>i ∗ η

<
i

]
∗ ξ< ∗ ξ′> ∗ η′>

∥∥∥
A

≤
∥∥ξ>∥∥A ∥∥∥(γ 7→ π(β(γ)))−

∑n

i=1
η>i ∗ η

<
i

∥∥∥
A

∥∥ξ<∥∥A ∥∥ξ′> ∗ η′>∥∥A ≤ ε
∥∥ξ′> ∗ η′>∥∥A .
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A similar formula is true for the left-hand side (= the bra-side). Using the density of the image ofm

one can conclude that∥∥∥ξ> ∗ β ∗ ξ< ∗ · − ξ> ∗
[∑n

i=1
η>i ∗ η

<
i

]
∗ ξ< ∗ ·

∥∥∥ ≤ ε.

Now
ξ> ∗

[∑n

i=1
η>i ∗ η

<
i

]
∗ ξ< ∗ · =

∑n

i=1
(ξ> ∗ η>i ) ∗ (η<i ∗ ξ

<) ∗ ·;

in other words, we can approximatêS ⊗ 1 = ξ>∗β∗ξ<∗· up toε by
∑n

i=1

∣∣m>(ξ>⊗η>i )
〉〈

m<(η<i ⊗
ξ<)
∣∣.
In a similar manner one can show that we can approximateŜ ⊗ 1 by

∑n
i=1

∣∣ξ> ⊗ η>i
〉〈
η<i ⊗ ξ<

∣∣
up toε. Hence(Ŝ ⊗ 1, Ŝ ⊗ 1) is in K(m,m).

Now we show thatm satisfies the conditions of Theorem 2.6.2, the sufficient condition for homo-
topy of KKban-cycles which will tell us thatm induces a homotopy. Leta ∈ A (G, A). As in the
proof of 5.2.19 we have[a,A(G, T )] = Ŝ with S = a ∗ T − T ∗ a ∈ Kr∗B (r∗E)c and similarly

[a,A(G, T ⊗ 1)] = Ŝ ⊗ 1. It follows that

[a, (A(G, T )⊗ 1, A(G, T ⊗ 1))] = ([a⊗ 1, A(G, T )⊗ 1] , [a, A(G, T ⊗ 1)])
= ([a, A(G, T )]⊗ 1, [a, A(G, T ⊗ 1)])

=
(
Ŝ ⊗ 1, Ŝ ⊗ 1

)
∈ K(m,m) .

The second condition of Theorem 2.6.2 is checked analogously (and the third condition is void).



Appendix D

Some Details Concerning Chapter 6

D.1 Some proofs of results of Section 6.1

In this appendix we collect the proofs of most of the technical results of Section 6.1.

Proof of Proposition 6.1.9.Without loss of generality we may assume thatΩ1 is proper. We have to
check whether the map

µ : G ∗ (Ω1 ∗ Ω2) → (Ω1 ∗ Ω2)× (Ω1 ∗ Ω2), (γ, ω1, ω2) 7→ (ω1, ω2, γω1, γω2)

is proper. Define the map

π : (Ω1 ∗ Ω2)× (Ω1 ∗ Ω2) → Ω1 × Ω1 × Ω2, (ω1, ω2, ω
′
1, ω

′
2) 7→ (ω1, ω

′
1, ω2).

Since this map is continuous, it suffices to show thatπ ◦ µ is proper. But

(π ◦ µ)(γ, ω1, ω2) = (ω1, γω1, ω2)

for all (γ, ω1, ω2) ∈ G∗(Ω1∗Ω2) which can be extended continuously to(G∗Ω1)×Ω2. This extension
is the product of a proper map and the identity onΩ2 and hence proper, soπ ◦ µ is proper.

Proof of Proposition 6.1.12.Firstly, we show thatΩ is free if and only if a map exists which has the
properties of an inner product apart from continuity. Then we show that a free spaceΩ is proper if
and only this “inner product” is continuous.

If Ω is free, then we define〈ω, ω′〉 to be the uniqueγ ∈ G such thatγω′ = ω. Then by definition
property 1, 4 and 5 hold. Ifγ′ ∈ G such thats(γ′) = ρ(ω), thenγ′ω = (γ′〈ω, ω′〉)ω′ so〈γ′ω, ω′〉 has
got to be equal toγ′〈ω, ω′〉 by its defining property. Similarly, ifγ′′ ∈ G such thats(γ′′) = ρ(ω′),
thenω = 〈ω, ω′〉ω′ =

(
〈ω, ω′〉γ−1

)
(γω′) so〈ω, γω′〉 = 〈ω, ω′〉γ−1. So〈·, ·〉 has the properties 1-5.

Now let 〈·, ·〉 be an inner product onΩ. Let (ω, ω′) ∈ Ω ×σ Ω. By definition of this fibre-
product there is aγ ∈ G such thatω = γω′. We have to show that it is unique and we do this
by showing that it is〈ω, ω′〉. Because of 4 we have〈ω′, ω′〉 = ρ(ω′), and from 2 it follows that
〈ω, ω′〉 = 〈γω′, ω′〉 = γ〈ω′, ω′〉 = γρ(ω′) = γ. HenceΩ is free.

Now letΩ be a freeG-space. This implies that the continuous map

µ : G ∗ Ω → Ω×σ Ω, (γ, ω) 7→ (γω, ω)

is a bijection. Its inverse map is given by

(ω′, ω) 7→
(
〈ω′, ω〉ω, ω

)
.

291
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This shows thatµ is a homeomorphism if and only if the inner product is continuous.
We now show thatµ is a homeomorphism if and only ifΩ is proper (Note thatΩ ×σ Ω is closed

in Ω× Ω sinceG \ Ω is Hausdorff, soΩ×σ Ω is locally compact Hausdorff).
If µ is a homeomorphism, then it is a proper if we consider it to have its values in the larger space

Ω×Ω. But this exactly means thatΩ is proper. On the other hand, ifΩ is proper then ourµ is proper
as well (with values inΩ×σ Ω). So by Lemma D.1.1 the mapµ, being a continuous proper bijection
between locally compact Hausdorff spaces, is a homeomorphism.

Lemma D.1.1. LetY andZ be locally compact Hausdorff spaces and letf : Y → Z be a continuous
bijection. Iff is proper, thenf is a homeomorphism.

Proof. SinceZ is locally compact its topology is compactly generated. LetA be a closed subset of
Y . Then we want to check thatf(A)∩L is closed (or compact) for all compact subsetsL of Z. LetL
be such a compact set. ThenK := f−1(L) is compact becausef is proper. SoK ∩A is compact. As
f is continuous we can deduce thatf(K ∩A) is compact, too. Nowf is bijective andZ is Hausdorff,
soL ∩ f(A) = f(K) ∩ f(A) = f(K ∩ A) is closed. It follows thatf(A) is closed andf is a
homeomorphism.

Proof of Proposition 6.1.14.Note that the mapq : Ω×G0 Ω → Ω−1×G Ω is well-defined, continuous,
surjective, and open. We check that the other maps are well-defined and continuous, too. Then we
check that we have defined a locally compact groupoid in this way.

1. The map εH: Let (γ, ω) ∈ G ∗ Ω. Then[γω] = [ω] by definition. On the other hand we have
[(γω)−1, γω] = [ω−1γ−1, γω] = [ω−1, (γ−1γ)ω] = [ω−1, ω]. SoεH is a well-defined (and, by
much the same argument, injective) map. The following square is commutative

Ω //

p

��

Ω×G(0) Ω

q

��
G \ Ω

εH // H

where the top arrow is the continuous mapω 7→ (ω, ω) andp is the quotient map. By the
definition of the quotient topology ofG \ Ω the mapεH is continuous as well.

2. The mapsrH and sH: Let (ω, ω′) ∈ Ω ×G(0) Ω andγ ∈ G such thatρ(ω) = ρ(ω′) = s(γ).
Then [ω−1, ω′] = [(γω)−1, γω′] and [ω] = [γω] as well as[ω′] = [γω′]. SorH andsH are
well-defined. The following square is commutative:

Ω×G(0) Ω π1 //

q

��

Ω

p

��
H

rH // G \ Ω

whereπ1 is the continuous map that sends(ω, ω′) to ω. By definition of the quotient topology
onH the maprH is continuous. The analogously constructed diagram fors is commutative so
alsosH is continuous.

3. The multiplication µ: Define the map̃µ from Y to Ω×ρ Ω to be

µ̃((ω1, ω
′
1), (ω2, ω

′
2)) := (ω1, 〈ω′1, ω2〉ω′2)
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for all ω′1, ω1, ω
′
2, ω2 ∈ Ω such thatρ(ω′1) = ρ(ω1), ρ(ω′2) = ρ(ω2) and [ω′1] = σ(ω′1) =

σ(ω2) = [ω2]. If γ ∈ G such thats(γ) = ρ(ω1) = ρ(ω′1), then

µ̃(γ(ω1, ω
′
1), (ω2, ω

′
2)) =

(
γω1, 〈γω′1, ω2〉ω′2

)
=
(
γω1, γ〈ω′1, ω2〉ω′2

)
= γµ̃((ω1, ω

′
1), (ω2, ω

′
2)).

So the multiplicationµ is well-defined.

Since the fibre-product of open maps is open the canonical map fromY := (Ω×ρΩ)×σ(Ω×ρΩ)
toH(2) = (Ω−1 ×G Ω) ×σ (Ω−1 ×G Ω) is open and continuous. Since〈·, ·〉 is continuous we
know thatµ̃ is continuous. By the definition ofµ it is the map that makes the following square
commutative:

Y
µ̃ //

q×σq

��

Ω×ρ Ω

q

��
H(2)

µ // H

Sinceq ×σ q is open and surjective it follows thatµ is continuous.

4. The inversion ι: Let ι̃ denote the map(ω, ω′) 7→ (ω′, ω) from Ω ×ρ Ω onto itself. Theñι is
continuous. If(ω, ω′) ∈ Ω×ρ Ω andγ ∈ G such thatρ(ω) = ρ(ω′) = s(γ) thenι̃(γ(ω, ω′)) =
ι̃(γω, γω′) = (γω′, γω) = γ(ι̃(ω, ω′)). So the map[ω−1, ω′] 7→ [ω′−1, ω] is well-defined on
Ω−1 ×G Ω. Since it makes the following diagram commutative it is continuous:

Ω×ρ Ω ι̃ //

q

��

Ω×ρ Ω

q

��
H ι // H

Now we check the algebraic properties:

1. Associativity: Let (ω1, ω
′
1), (ω2, ω

′
2), (ω3, ω

′
3) ∈ Ω×ρΩ such that[ω′1] = [ω2] and[ω′2] = [ω3].

Now([
ω−1

1 , ω′1
] [

(ω2)−1, ω′2
]) [

(ω3)−1, ω′3
]

=
[
ω−1

1 , 〈ω′1, ω2〉ω′2
] [

(ω3)−1, ω′3
]

=
[
ω−1

1 ,
〈
〈ω′1, ω2〉ω′2, ω3

〉
ω′3
]

=
[
ω−1

1 ,
〈
ω′1, ω2

〉 〈
ω′2, ω3

〉
ω′3
]

=
[
ω−1

1 , ω′1
] [

(ω2)−1,
〈
ω′2, ω3

〉
ω′3
]

=
[
ω−1

1 , ω′1
] ([

(ω2)−1, ω′2
] [

(ω3)−1, ω′3
])
.

2. Units: Let (ω, ω′) ∈ Ω ×ρ Ω. Then the elements[ω−1, ω] and[ω−1, ω′] are composable and
[ω−1, ω][ω−1, ω′] = [ω−1, 〈ω, ω〉ω′] = [ω−1, ω′]. Similarly on the right-hand side.

3. Inversion: Let (ω, ω′) ∈ Ω×ρ Ω. Then[ω−1, ω′][(ω′)−1, ω] = [ω−1, 〈ω′, ω′〉ω] = [ω−1, ω].

SoH is a topological groupoid. It is locally compact Hausdorff since it is a quotient of a proper
G-space. The above diagrams show in particular that the quotient map fromΩ ×ρ Ω to H is a strict
morphism.
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The range and source maps are open: As above, the following square is commutative:

Ω×G(0) Ω π1 //

q

��

Ω

p

��
H

rH // G \ Ω

whereπ1 is the map that sends(ω, ω′) to ω. If ρ is open, thenπ1 is open by lemma 3.4.5. Nowq is
surjective and continuous andp ◦ π1 is open, sorH is open. Similarly forsH.

Proof of Proposition 6.1.15.Note that the action is well-defined since we have〈ω, γω′〉 (γω′′) =
〈ω, ω′〉 γ−1(γω′′) = 〈ω, ω′〉ω′ for all γ such thatρ(ω′) = s(γ). Now we check that this map is indeed
a continuous action onΩ:

1. Compatibility with sH: Let ω ∈ Ω and [(ω′)−1, ω′′] ∈ H such thatσ(ω) = σ(ω′). Then
σ
(
ω[(ω′)−1, ω′′]

)
= σ (〈ω, ω′〉ω′′) = σ(ω′′) = sH

(
[(ω′)−1, ω′′]

)
.

2. Units act trivially: Let ω ∈ Ω. Thenω[ω−1, ω] = 〈ω, ω〉ω = ω, so [ω] acts identically onω
from the right.

3. Associativity: Let ω ∈ Ω, [(ω′1)
−1, ω′′1 ], [(ω′2)

−1, ω′′2 ] ∈ H such thatσ(ω) = σ(ω′1) and
σ(ω′′1) = σ(ω′2).(

ω[(ω′1)
−1, ω′′1 ]

)
[(ω′2)

−1, ω′′2 ] =
(
〈ω, ω′1〉ω′′1

)
[(ω′2)

−1, ω′′2 ] =
〈
〈ω, ω′1〉ω′′1 , ω′2

〉
ω′′2

and

ω
(
[(ω′1)

−1, ω′′1 ][(ω′2)
−1, ω′′2 ]

)
= ω

[
(ω′1)

−1, 〈ω′′1 , ω′2〉ω′′2
]

=
〈
ω, ω′1

〉 〈
ω′′1 , ω

′
2

〉
ω′′2 .

4. Continuity: σ is continuous by definition. The actionµ of H on Ω is continuous because it
makes the following diagram commutative:

Ω×σ (Ω×ρ Ω)
µ̃ //

Id×σq

��

Ω

Id

��
Ω ∗ H

µ // Ω

Here µ̃ denotes the map that sends(ω, (ω′, ω′′)) to 〈ω, ω′〉ω′′. This map is continuous and
Id×σq is surjective and open, soµ is continuous.

Now we check thatρ induces a continuous injectioñρ : Ω/H → G(0): Let ω andω′ be inΩ such
thatρ(ω) = ρ(ω′). Then[ω−1, ω′] ∈ H andω[ω−1, ω′] = ω′, soω andω′ are in the sameH-orbit of
Ω. Vice versa, ifω, ω′ ∈ Ω such that there is a[(ω′′)−1, ω′] ∈ Hwith ω[(ω′′)−1, ω′] = 〈ω, ω′′〉ω′ = ω′

thenρ(ω′) = ρ (〈ω, ω′′〉ω′) = r(〈ω, ω′′〉) = ρ(ω), so we are done.
That the action ofH onΩ is free and proper follows from the following lemma.

Lemma D.1.2. The map(ω, ω′) 7→ [(ω)−1, ω′] is an inner product on the rightH-spaceΩ.
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Proof. First note thatΩ ×ρ Ω is the same asΩ ×ρ̃ Ω whereρ̃ denotes the canonical map fromΩ to
Ω/H. Now the map(ω, ω′) 7→ [(ω)−1, ω′] is the map that we have calledq earlier on, the quotient
map. In particular,q is continuous. In order to show thatq is an inner product we just check properties
2 and 4 of the definition of the inner product (and the first half of 1). This already implies the other
conditions. Note that we have to reflect the formulae in the conditions because we are dealing with
right spaces.

Let (ω, ω′) ∈ Ω ×ρ Ω. ThensH
(
[ω−1, ω′]

)
= σ(ω′) by definition (which shows property 1). If

(ω′′, ω′′′) ∈ Ω×ρ Ω such thatσ(ω′) = σ(ω′′) then[
ω−1, ω′[(ω′′)−1, ω′′′]

]
=
[
ω−1, 〈ω′, ω′′〉ω′′′

]
=
[
ω−1, ω′

] [
(ω′′)−1, ω′′′

]
.

Hence we have property 2. Finally, ifω ∈ Ω, then[ω−1, ω] = εH(ω) which shows 4.

Proof of 6.1.19. 1. The mapσ′′ is well-defined sinceσ′(ηω′) = σ′(ω′) for all (η, ω′) ∈ H ∗ Ω′.
The universal property of the quotient topology shows thatσ′′ is continuous because(ω, ω′) 7→
σ′(ω′) is continuous fromΩ×H(0) Ω′ toK(0).

Let µ̃ denote the map((ω, ω′), κ) → (ω, ω′κ) from Ω ×H(0) Ω′ ×K(0) K to Ω ×H(0) Ω′. It is
continuous since the action ofK on Ω′ is. For allη ∈ H such thatσ(ω) = ρ′(ω′) = s(η), we
have

η · µ̃
(
(ω, ω′), κ

)
= η(ω, ω′κ) = (ωη−1, η(ω′κ)) = (ωη−1, (ηω′)κ) = µ̃

(
(η(ω, ω′)), κ

)
.

Hence the actionµ of K onΩ′′ is a well-defined map. It makes the following square commuta-
tive:

Ω×H(0) Ω′ ×K(0) K
µ̃ //

q×K(0) IdK

��

Ω×H(0) Ω′

q

��
Ω′′ ∗ K

µ // Ω′′

whereq denotes the canonical quotient map. Sinceµ̃ is continuous andq×K(0) IdK is open and
surjective we can deduce thatµ is continuous.

2. Proceed as in 1. to see that our formulae indeed define a continuousG-action onΩ′′. It is
trivially checked that we have defined aG-K-bimodule.

Proof of 6.1.26.First we check that the fibres ofρ′′ : Ω′′ → G(0) are the orbits of theK-action:
Let [(ω1, ω

′
1)], [(ω2, ω

′
2)] be elements ofΩ′′ such thatρ(ω1) = ρ(ω2). Sinceρ is a principal

fibration with structure groupoidH, we can find someη ∈ H such thatr(η) = σ(ω1) andω2 = ω1η.
Now [(ω2, ω

′
2)] = [(ω1η, ω

′
2)] = [(ω1, ηω

′
2)]. Becauseρ′(ηω′2) = r(η) = σ(ω1) = ρ′(ω′1) andρ′ is a

principal fibration with structure groupoidK we can find someκ ∈ K such thatr(κ) = σ′(ω′2) and
ηω′2κ = ω′1. Now this means

[(ω2, ω
′
2)]κ = [(ω1, ηω

′
2)]κ = [(ω1, ηω

′
2κ)] = [(ω1, ω

′
1)].

So [(ω1, ω
′
1)] and [(ω2, ω

′
2)] are in the sameK-orbit. SinceΩ′′ is aG-K-bimodule theK-orbits are

thus exactly the fibres ofρ′′.
To show thatΩ′′ is a free and properK-space we define aK-values inner product〈·, ·〉′′ on Ω′′,

using theH-valued inner product〈·, ·〉 on Ω and theK-valued inner product〈·, ·〉′ on Ω′′. Note that
we have just shown thatΩ′′ ×Ω′′/K Ω′′ is equal toΩ′′ ×ρ′′ Ω′′.
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We define 〈
[(ω1, ω

′
1)], [(ω2, ω

′
2)]
〉′′ := 〈ω′1, 〈ω1, ω2〉ω′2

〉′
for all [(ω1, ω

′
1)], [(ω2, ω

′
2)] ∈ Ω′′×ρ′′Ω′′. By standard arguments this is a well-defined and continuous

map which clearly satisfies the axioms of an inner product.
Note thatρ′′ is open becauseρ andρ′ are open.
SoΩ′′ is a graph fromG toK.

Proof of Proposition 6.1.27.The strict identity morphism are mapped to the (generalised) identity
morphisms as we have seen above. Now letf : G → H andf ′ : H → K be strict morphisms. The
productGraph(f)×H Graph(f ′) is given by

Ω′′ :=
(
G(0) ×H(0) H

)
×H

(
H(0) ×K(0) K

)
.

Define a mapλ from Ω′′ to Morph (f ′ ◦ f) = G(0) ×K(0) K by setting

λ ([((g, η), (h, κ))]) :=
(
g, f ′(η)κ

)
for all g ∈ G(0), η ∈ H, h ∈ H(0), κ ∈ K such thatf(g) = r(η), s(η) = h andf ′(h) = r(κ). That
this map is well-defined can be shown as follows: Ifη′ ∈ H such thats(η) = s(η′) = h then(

g, f ′ (η)κ
)

=
(
g, f ′

(
ηη′−1

)
f ′(η′)κ

)
so the right-hand side is “invariant under the action ofH” which we factor out on the left-hand side.
This also shows thatλ is continuous. By standard arguments the mapλ respects the actions ofG and
K. λ is (continuously) inverted by the map which sends(g, κ) to [(g, f(g)), (f(g), κ)].

Proof of Proposition 6.1.30.Consider the following diagram:

Ω×ρ Ω

q

��

〈·,·〉

##HHHHHHHHHHHHHHHHHHHH Ω ∗ H

π2

��

∼=
µoo

Ω−1 ×G Ω ν //_______ H

Hereµ denotes the map which sends(ω, η) to (ω, ωη). Since the action ofH onΩ is free and proper,
we can deduce that this map is a proper and continuous bijection fromΩ ∗ G ontoΩ×Ω/H Ω. Sinceρ
is a principal fibration, the latter space is equal toΩ×ρ Ω. By Lemma D.1.1, which we have already
applied in almost the same situation,µ is a homeomorphism.

We writeπ2 for the projection onto the second component. By Lemma 3.4.5 and becauseσ is
open and surjective,π2 is open and surjective.

By definition, theH-valued inner product on the principalH-spaceΩ is π2 ◦ µ−1. This map
happens to be continuous, open and surjective. The mapq is the quotient map (remember thatΩ−1×G
Ω is constructed by factoring out theG action onΩ ×ρ Ω; since this action is proper,Ω−1 ×G Ω is
locally compact Hausdorff). By definition,q is open and surjective.

We claim thatµ factors to a mapν from Ω−1 ×G Ω to H which is the desired isomorphism of
groupoids and ofH-H-bimodules. In particular,ν is a homeomorphism.
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To check thatν is well-defined and injective it suffices to check that elements ofΩ ∗ H which
have the same image underq ◦ µ are precisely those which have the same image underπ2. So let
(ω1, η1), (ω2, η2) ∈ Ω ∗ H. Nowπ2(ω1, η1) = π2(ω2, η2) is equivalent toη1 = η2.

If this is the case, thenµ(ω1, η1) = (ω1, ω1η1) andµ(ω2, η2) = (ω2, ω2η1). Now σ is a principal
fibration andσ(ω2η1) = s(η1) = σ(ω1η1). So there is aγ ∈ G such thatγω1η1 = ω2η2. This implies
γω1 = ω2 andγ(ω1, ω1η1) = (ω2, ω2η2). Henceq(µ(ω1, η1)) = q(µ(ω2, η2)).

On the other hand, assume thatq(µ(ω1, η1)) = q(µ(ω2, η2)). This implies that there is aγ ∈ G
such thatγ(ω1, ω1η1) = (ω2, ω2η2). This meansγω1 = ω2 andγω1η1 = ω2η2. From this we have
ω2η1 = ω2η2. Now the action ofH is free, soη1 = η2.

It follows that ν is well-defined and injective. Sinceq is open and surjective,ν is continuous.
Sinceπ2 andµ−1 are open and surjective andq is continuous and surjective,ν is open and surjective.
Soν is a homeomorphism.

To have a better feeling forν note that it maps a class[ω−1
1 , ω2] with ρ(ω1) = ρ(ω2) to the unique

η ∈ H such thatω2 = ω1η (which happens to be〈ω1, ω2〉).
To see that it even is aH-H-bimodule isomorphism let(ω1, ω2) ∈ Ω ×ρ Ω andη1, η2 ∈ H such

thatσ(ω2) = r(η2) andσ(ω1) = s(η1). Now, withη1ω
−1
1 =

(
ω1η

−1
1

)−1
,

ν
([

(ω1η
−1
1 )−1, ω2η2

])
=
〈
ω1η

−1
1 , ω2η2

〉
= η1 〈ω1, ω2〉 η2 = η1ν

([
(ω1)−1, ω2

])
η2.

Now we prove thatν is also a homomorphism of groupoids: Let(ω1, ω2), (ω′1, ω
′
2) ∈ Ω×ρΩ such

thatσ(ω2) = σ(ω′1). Then

ν
([
ω−1

1 , ω2

] [
ω′−1

1 , ω′2
])

= ν
([
ω−1

1 , G
〈
ω2, ω

′
1

〉
ω′2
])

=: η.

HereG〈ω2, ω
′
1〉 denotes the unique elementγ ∈ G such thatω2 = γω′1. On the other hand,η is the

unique element ofH such thatω1η = γω′2. But

ω1ν
([
ω−1

1 , ω2

])
ν
([
ω′−1

1 , ω′2
])

= ω2ν
([
ω′−1

1 , ω′2
])

= γω′1ν
([
ω′−1

1 , ω′2
])

= γω′2.

By the uniqueness ofη we get

ν
([
ω−1

1 , ω2

] [
ω′−1

1 , ω′2
])

= ν
([
ω−1

1 , ω2

])
ν
([
ω′−1

1 , ω′2
])
.

Soν is a homomorphism of groupoids.

Proof of Proposition 6.1.32.Let Ω be a graph of a generalised isomorphism fromG toH and letΩ′

be a graph of the inverse isomorphism fromH to G. Let Ω have the anchor mapsρ andσ andΩ′ have
the anchor mapsρ′ andσ′.

We first show that the left actions onΩ andΩ′ are free and define an (algebraic) isomorphism
betweenΩ′ andΩ−1. In a second step we show that this isomorphism also is a homeomorphism,
implying that the left actions onΩ andΩ′ are proper (because the right actions onΩ′ andΩ are
proper).

Because the morphisms[Ω] and [Ω′] are inverses of each other we can find an isomorphism
ϕG : GΩ×H Ω′

G → GGG of G-G-bimodules and an isomorphismϕH : HΩ′ ×G ΩH → HHH of H-H-
bimodules. Define an “inner product”

〈·, ·〉G : Ω×H(0) Ω′ → G, (ω, ω′) 7→ ϕG
(
[ω, ω′]

)
where[ω, ω′] denotes the equivalence class of(ω, ω′) in the quotient spaceΩ ×H Ω′ of Ω ×H(0) Ω′

by the (diagonal) action ofH. The inner product ifG-linear in both components andH-balanced
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in the sense that〈ωη, ω′〉G = 〈ω, ηω′〉G . Similarly define aH-bilinearG-balanced inner product
〈·, ·〉H : Ω′ ×G(0) Ω → H.

As a first consequence, it is obvious that the mapsσ : Ω → H(0) andσ′ : Ω′ → G(0) are surjective
becauseϕG andϕH are surjective. Secondly, we can immediately deduce that the left actions onΩ
andΩ′ are free: Letω ∈ Ω andγ ∈ G such thats(γ) = ρ(ω) andγω = ω. Find someω′ ∈ Ω′ such
thatρ′(ω′) = σ(ω). Then

〈ω, ω′〉G = 〈γω, ω′〉G = γ〈ω, ω′〉G

and henceγ = ρ(ω). Similarly, the left action ofH onΩ′ can be shown to be free.
The “inner product”〈·, ·〉G is “faithful”:

1. If ω1, ω2 ∈ Ω andω′ ∈ Ω′ such thatσ(ω1) = σ(ω2) = ρ′(ω′) and〈ω1, ω
′〉G = 〈ω2, ω

′〉G , then
ω1 = ω2: This follows because by definition of the inner product and by the injectivity ofϕG
we have[ω1, ω

′] = [ω2, ω
′], so there is anη ∈ H such that(ω1η, η

−1ω′) = (ω2, ω
′); because

Ω′ is a free leftH-space it follows thatη = ρ′(ω′) and henceω1 = ω2.

2. Using the freeness of the right action onΩ one proves: Ifω ∈ Ω andω′1, ω
′
2 ∈ Ω′ such that

σ(ω) = ρ′(ω′1) = ρ′(ω′2) and〈ω, ω′1〉G = 〈ω, ω′2〉G , thenω′1 = ω′2.

As a consequence, we have for allω1, ω2 ∈ Ω andω′ ∈ Ω′ such thatσ(ω1) = σ(ω2) = ρ′(ω′):〈
ω1, ω

′〉−1

G ω1 =
〈
ω2, ω

′〉−1

G ω2,

because〈〈
ω1, ω

′〉−1

G ω1, ω
′
〉

=
〈
ω1, ω

′〉−1

G
〈
ω1, ω

′〉 = σ′(ω′) =
〈〈
ω2, ω

′〉−1

G ω2, ω
′
〉
.

This implies that the canonical map fromG \ Ω to H(0) is not only surjective, but also injective: If
ω1, ω2 ∈ Ω with σ(ω1) = σ(ω2), then we can find anω′ ∈ Ω such thatρ′(ω′) = σ(ω1) = σ(ω2).
Then

ω2 =
〈
ω2, ω

′〉
G
〈
ω1, ω

′〉−1

G ω1,

soω1 andω2 are in the sameG-orbit.
We now define a bijection fromΩ′ to Ω which is a bimodule homomorphism (if we regardΩ as

Ω−1): For allω ∈ Ω define
Φ(ω′) =

〈
ω, ω′

〉−1

G ω

whereω is an arbitrary element ofΩ such thatσ(ω) = ρ′(ω′). We have just seen that this definition is
independent of the choice ofω. If γ ∈ G andη ∈ H such thats(η) = ρ′(ω′) andr(γ) = σ′(ω′), then

Φ
(
ηω′
)

=
〈
ω, ηω′

〉−1

G ω =
〈
ωη, ω′

〉−1

G ωηη−1 = Φ(ω′)η−1

(with ω ∈ Ω such thatσ(ω) = r(η)) and

Φ
(
ω′γ
)

=
〈
ω, ω′γ

〉−1

G ω = γ−1
〈
ω, ω′

〉−1

G ω = γ−1Φ(ω′)

(with ω ∈ Ω such thatσ(ω) = ρ′(ω′)).
Note that for allω′ ∈ Ω′, the elementΦ(ω′) of Ω is unique with the property〈Φ(ω′), ω′〉G =

σ′(ω′). This could also have been our definition ofΦ. We define an inverse homomorphismΨ: Ω →
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Ω′ as follows: For allω ∈ Ω, the elementΨ(ω) is the unique element ofΩ′ such that〈ω, Ψ(ω)〉G =
ρ(ω). Such an element exists, because we can find someω′ ∈ Ω′ such thatσ(ω) = ρ′(ω′); then〈

ω, ω′〈ω, ω′〉−1
G
〉
G = ρ(ω).

It is unique because the inner product is faithful. We show thatΨ is the inverse ofΦ: If ω ∈ Ω, then

〈Φ(Ψ(ω)), Ψ(ω)〉G = σ′ (Ψ(ω)) = 〈ω, Ψ(ω)〉G ;

if ω′ ∈ Ω′, then 〈
Φ(ω′), Ψ(Φ(ω′))

〉
G = ρ

(
Φ(ω′)

)
=
〈
Φ(ω′), ω′

〉
G .

What is left to show is thatΦ andΨ are continuous. ForΨ, this follows from the commutativity
of the diagram

Ω×σ,ρ′ Ω′ //

��

Ω′ ×ρ′,ρ′ Ω′

��
Ω

Ψ // Ω′

where the top arrow is given by the continuous map(ω, ω′) 7→
(
ω′〈ω, ω′〉−1

G , ω′
)

and the vertical
arrows are the projections onto the first component (which are both continuous, surjective and open).
The continuity ofΦ is proved similarly.

Remark D.1.3. There is an interesting subtlety about the preceding proof (or rather about the Propo-
sition that is proved): We have constructed an isomorphismΨ from Ω−1 to Ω′, and there is a canonical
isomorphism fromΩ×H Ω−1 to G. In the proof, we have chosen an isomorphismϕH from Ω×H Ω′

to G. The resulting diagram

Ω−1 ×G Ω //

$$III
III

III
I

Ω′ ×G Ω

{{wwwwwwwww

H

is not commutativein general (whereas the corresponding forG does commute). The reason is that we
have used only the inner product coming from the isomorphismϕG in the construction ofΨ. There
still is some freedom to chose the isomorphismϕH: One could change it by some isomorphism of
theH-H-bimoduleH without changing anything in the proof. The above diagram can be shown to
commute up to such an isomorphism. Such isomorphisms can exists: for example, ifH is a group,
then multiplication by any element in the center will give an isomorphism.

The same isomorphism also enters the following equality in the sense that it is only true if one
correctsϕH (and hence theH-valued inner product) by the isomorphism:〈

ω1, ω
′〉
G ω2 = ω1

〈
ω′, ω2

〉
H

for all ω1, ω2 ∈ Ω andω′ ∈ Ω′ such thatσ(ω1) = ρ′(ω′) andσ′(ω′) = ρ(ω2).
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D.2 Some proofs of results of Section 6.5

Proof of 6.5.1.We show thatΓ satisfies the axioms (C1)-(C4):

(C1) First,∆ is a linear subspace ofΓ (Y,E). The mapδ 7→ p!δ is linear, so its image is a linear
subspace.

(C2) To show (C2) we use the existence of a faithful continuous field of measures onY overX;
therefore we need the following lemma, which rephrases Lemma 3.2 of [LG99] in our context.1

Lemma D.2.1. Letν be a continuous field of measures onY overX with proper2 support. For
all ξ ∈ Γ(Y,E) and ally ∈ Y , define

(ν ∗ ξ) (y) :=
∫
z∈Yp(y)

α(y,z) (ξ(z)) dνp(z).

Thenν ∗ ξ is an element of∆.

To prove it we proceed as in [LG99]:

Proof. Let ξ be an element ofΓ(Y,E). DefineR : Y×XY → Y, (y, z) 7→ y andS : Y×XY →
Y, (y, z) 7→ z. Definep∗ν to be a continuous field of measures onY ×X Y over Y with
coefficient mapR which is given, for eachy ∈ Y , by (p∗ν)y = νp(y) onR−1({y}) ∼= Yp(y).
This field is the pullback ofν in the diagram

(Y, ν)

p

��

(Y ×X Y, p∗ν)

R

��

S
oo

X Yp
oo

If L is a compact subset ofY , thenp(L) = K is compact. Now

⋃
l∈L

supp(p∗ν)l =
⋃
l∈L

(
supp νp(l) × {l}

)
⊆

(⋃
k∈K

supp νk

)
× L,

which is compact since the support ofν is proper. So the support ofp∗ν is proper, too.

For all (y, z) ∈ Y ×X Y , we haveα(y,z)(ξ(z)) = (α ◦ (ξ ◦ S)) (y, z), so(y, z) 7→ α(y,z)(ξ(z))
belongs toΓ (Y ×X Y, R∗E). Now Lemma B.3.4 says thatν ∗ ξ = ν (ξ) is an elementr of
Γ (Y,E) becausep∗ν has proper support. By construction,ν ∗ ξ is in ∆.

Let us continue with the proof of (C2). By assumption, we can find a faithful continuous fieldµ
of measures onY overX. Let y ∈ Y . We show that for alle ∈ Ey andε > 0 there is aξ ∈ ∆
such that‖ξ(y)− e‖ ≤ ε. This implies (C2). So lete ∈ Ey andε > 0. Find an arbitrary section
ξ′ ∈ Γ(Y,E) such thatξ′(y) = e. The functionζ : z 7→ α(y,z)ξ

′(z) is in C
(
Yp(y), Ey

)
. Find an

open neighbourhoodV of y in Y such that‖ζ(z)− ζ(y)‖ < ε for all z ∈ V ∩ Yp(y). Now we

1Le Gall uses this lemma in conjunction with a strong result of E. Blanchard (see Proposition 3.13 of [Bla96]). However,
this can only be done in case thatC0(Y ) is separable. We wish to use the more general condition that we can find a faithful
field of measures onY , which is more natural in our setting.

2We only need compact support, but the proper case comes for free.
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can find a local cut-off function in the sense of Lemma B.2.6, i.e., a functionχ ∈ Cc(Y ) such
thatχ ≥ 0, suppχ ⊆ V , and such thatµ(χ)(p(y)) =

∫
z∈Yp(y)

χ(z) dµp(y)(z) = 1.

Defineν := χµ. Thenν has compact support. By what we have just proved in Lemma D.2.1,
ξ := ν ∗ ξ′ is contained in∆. Now

ξ(y) =
(
ν ∗ ξ′

)
(y) =

∫
z∈Yp(y)

α(y,z)(ξ
′(z)) dνp(y) =

∫
z∈Yp(y)

χ(z)α(y,z)(ξ
′(z)) dµp(y),

so that

‖ξ(y)− e‖ =

∥∥∥∥∥
∫
z∈Yp(y)

χ(z)α(y,z)(ξ
′(z)) dµp(y) −

∫
z∈Yp(y)

χ(z)edµp(y)

∥∥∥∥∥
≤

∫
z∈Yp(y)∩suppχ

χ(z)
∥∥α(y,z)(ξ

′(z))− e
∥∥ dµp(y)

≤
∫
z∈Yp(y)∩suppχ

χ(z)ε dµp(y) = ε.

(C3) Letδ ∈ ∆, x ∈ X andε > 0. Find somey ∈ Y with p(y) = x. Sinceδ is a section we can find
an open neighbourhoodV of y in Y such that‖δ(v)‖ ≤ ‖δy‖ + ε for all v ∈ V . Becausep is
open, the setU := p(V ) is an open neighbourhood ofx in X. Let u ∈ U . Find av ∈ V such
thatp(v) = u. Then

‖p!δ(u)‖ = ‖δ(v)‖ ≤ ‖δ(y)‖+ ε = ‖p!δ(x)‖+ ε.

(C4) Letζ be a selection ofp!E such that for allx ∈ X and allε > 0 there is a neighbourhoodU of
x and aδ ∈ ∆ such that‖p!δ(u)− ζ(u)‖ < ε for all u ∈ U . We show that there is aδ′ ∈ ∆
such thatp!δ

′ = ζ.

For ally ∈ Y , defineδ′(y) := ζ(p(y))y ∈ Ey. Thenδ′ is a selection ofE. By definition ofp!E,
the selectionδ′ satisfiesα(z,y)δ

′(y) = δ′(z) for all (z, y) ∈ Y ×X Y . We have to show thatδ′

is in Γ(Y,E). To this end, lety ∈ Y andε > 0. Find a neighbourhoodU of p(y) in X and a
δ ∈ ∆ such that‖p!δ(u)− ζ(u)‖ < ε for all u ∈ U . LetV := p−1(U), being a neighbourhood
of y in Y . Then∥∥δ′(v)− δ(v)

∥∥ = ‖ζ(p(v))v − p!δ(p(v))v‖ = ‖ζ(p(v))− p!δ(p(v))‖ < ε

for all v ∈ V . Soδ′ is a section, and, by definition,p!δ
′ = ζ.

Proof of Proposition 6.5.3.We obviously have a functor which is isometric and linear on the mor-
phism sets. LetE andF beY ×X Y -Banach spaces with actionα andβ, respectively. We have to
comparep! (E ⊗Y F ) and(p!E) ⊗X (p!F ). The fibre atx ∈ X of the firstX-Banach space consist
of the families(ty)y∈Yx

with ty ∈ Ey ⊗ Fy and(α ⊗ β)(z,y)ty = tz for all z, y ∈ Yx. The fibre atx
of the second space is(p!E)x ⊗ (p!F )x. We construct an isometric isomorphism from the second to
the first space:

For all e = (ey)y∈Yx ∈ (p!E)x andf = (fy)y∈Yx ∈ (p!F )x, defineµx (e, f) := (ey ⊗ fy)y∈Yx
.

Thenµx(e, f) ∈ p! (E ⊗Y F )x because(µx(e, f))y ∈ Ey ⊗ Fy and

(α⊗ β)(z,y)(ey ⊗ fy) =
(
α(z,y)ey

)
⊗
(
β(z,y)fy

)
= ez ⊗ fz = µx (e, f)z
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for all (z, y) ∈ Y ×X Y . Moreover,µx is a contractive bilinear map. So it gives rise to a contractive
linear map

µ̂x : (p!E)x ⊗ (p!F )x → p! (E ⊗Y F )x .

We show that, this way, we get a contractive continuous field of linear maps fromp!E ⊗X p!F to
p! (E ⊗Y F ). The sections of the formx 7→ (p!δ)(x) ⊗ (p!δ

′)(x) with δ ∈ ∆E andδ′ ∈ ∆F form a
total subset inΓ (X, p!E ⊗X p!F ). Now

µ̂x
(
(p!δ)(x)⊗ (p!δ

′)(x)
)

= µx

(
(δ(y))y∈Yx

,
(
δ′(y)

)
y∈Yx

)
=
(
δ(y)⊗ δ′(y)

)
y∈Yx

for all x ∈ X. Sincey 7→ δ(y)⊗ δ′(y) is in ∆E⊗Y F , this shows that̂µ is continuous.
Now we show that̂µ is a continuous field of isometric isomorphisms. Letx ∈ X. Fix ay ∈ Yx.

Then
(p!E)x ⊗ (p!F )x ∼= Ey ⊗ Fy ∼= (p! (E ⊗Y F ))x ,

where the first isomorphism is given by componentwise evaluation atx and the second isomorphism
(as a map from the right to the left) is given by (global) evaluation atx. The composition of the
isomorphisms iŝµx.

A straightforward calculation shows thatµ̂ is natural and respects the associativity of the tensor
products.

Proof of Proposition 6.5.4. 1. LetE be aY ×X Y -Banach space.

• IE is an isomorphism: Fibrewise, it is easy to see thatIE is an isometric isomorphism.
The set of all(p!δ) ◦ p, whereδ ∈ ∆E , is total inp∗p!E. Let δ be an element ofδ, then

IEy ((p!δ)(p(y))) = IEy

(
(δ(z))y∈Yp(y)

)
= δ(y).

In other words,IE identifies(p!δ) ◦ p andδ. In particular,IE is a continuous field. It
clearly isY ×X Y -equivariant.

• E 7→ IE is natural: LetE andF beY×XY -Banach spaces and letT be a bounded equiv-
ariant isomorphism fromE to F . Let y ∈ Y and(ez)z∈Yp(y)

∈ (p∗p!E)y = (p!E)p(y).
Then

IFy ((p∗p!T )y(e)) = IFy
(
(p!T )p(y)(e)

)
= IFy

(
(Tzez)z∈Yp(y)

)
= Tyey = Ty

(
IEy (e)

)
.

SoIF ◦ (p∗p!T ) = T ◦ IE .

• E 7→ IE is multiplicative: Let E andF beY ×X Y -Banach spaces. We have to check
that the following diagram commutes:

(p∗p!E)⊗Y (p∗p!F ) = //

IE⊗IF

��

p∗ (p!E ⊗X p!F )
p∗(µ̂) // p∗p! (E ⊗Y F )

IE⊗F

��
E ⊗Y F

= // E ⊗Y F

Let y ∈ Y and (ez)z∈Yp(y)
∈ (p∗p!E)y = (p!E)p(y) and (fz)z∈Yp(y)

∈ (p∗p!F )y =
(p!F )p(y). The map

(
IE ⊗ IF

)
y

= IEy ⊗IFy sends this toey⊗fy ∈ (E⊗Y F )y = Ey⊗Fy.
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On the other hand,p∗(µ̂) sends it to(ez ⊗ fz)z∈Yp(y)
∈ (p!E ⊗X p!F )p(y). This is, in turn,

mapped byIE⊗Y F
y to ey ⊗ fy, so we are done.

2. LetE be aX-Banach space.

• JE is an isomorphism: Fibrewise, this is clear. We just have to check thatJE is a
continuous field. To this end, we determine∆p∗E . It is the set of sectionsδ ∈ Γ (Y, p∗E)
such thatδ(y) = IdEp(y)

δ(y) = α(z,y)δ(y) = δ(z). Let δ be such a section. We have to

check thatJE ◦ p!δ ∈ Γ (X,E). ButJEx p!δ(x) = δ(y) for all x ∈ X andy ∈ Y such that
p(y) = x. Soδ =

(
JE ◦ p!δ

)
◦ p. By Lemma D.2.2 the fact thatδ ∈ Γ(Y, p∗E) implies

JE ◦ p!δ ∈ Γ(X,E). SoJE is continuous,

• E 7→ JE is natural: LetE andF beX-Banach spaces and letT : E → F be a bounded
continuous field of linear maps. Letx ∈ X and(e)y∈Yx

be an element of(p!p
∗E)x. Then

JFx

(
(p!p

∗T )x (e)y∈Yx

)
= JFx

(
((p∗T )y(e))y∈Yx

)
= JFx

(
(Tx(e))y∈Yx

)
= Tx(e) = Tx

(
JEx (e)y∈Yx

)
.

SoJF ◦ (p!p
∗T ) = T ◦ JE .

• E 7→ JE is multiplicative: LetE andF beX-Banach spaces. We have to check that the
following diagram commutes:

(p!p
∗E)⊗X (p!p

∗F )
µ̂ //

JE⊗JF

��

p! (p∗E ⊗Y p∗F ) = // p!p
∗ (E ⊗X F )

JE⊗F

��
E ⊗X F

= // E ⊗X F

Let x ∈ X and(e)y∈Yx
∈ (p!p

∗E)x and(f)y∈Yx
∈ (p!p

∗F )x. Then(
JE ⊗ JF

)
x

(
(e)y∈Yx

⊗ (f)y∈Yx

)
= JEx (e)y∈Yx

⊗ JFx (f)y∈Yx

= e⊗ f = JE⊗XF (e⊗ f)x∈Yx
= JE⊗XF

(
µ̂
(
(e)y∈Yx

⊗ (f)y∈Yx

))
.

This means that the diagram is indeed commutative.

Lemma D.2.2. LetE be a continuous field of Banach spaces overX and letξ be a selection ofE
(continuous or not). Thenξ is in Γ(X,E) if and only ifξ ◦ p is in Γ(Y, p∗E).

Proof. If ξ is a section, thenξ ◦ p is a inΓ(Y, p∗E) by the definition of the sections ofp∗E.
Assume now thatξ ◦ p is a section ofp∗E. Let x ∈ X andε > 0. Find ay ∈ Y such that

p(y) = x. Find a neighbourhoodV of y in Y and a sectionζ of E such that‖ξ(p(v))− ζ(p(v))‖ ≤ ε
for all v ∈ V . LetU := p(V ). ThenU is an open neighbourhood ofx in X. Letu ∈ U . Then we can
find av ∈ V such thatp(v) = u. Now

‖ξ(u)− ζ(u)‖ = ‖ξ(p(v))− ζ(p(v))‖ ≤ ε.

Henceξ is a section.
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Proof of Proposition 6.6.7.Define Ω := Graph(f) = G(0) ×H(0) H. Let (E, T ) be a cycle in
Eban
H (A,B). We have a canonical concurrent homomorphismΦ from f∗E to Ω∗E from Proposi-

tion 6.6.3. We have to check that this is indeed an isomorphism ofKKban-cycles. AsΦ is already
an isometric isomorphism and is surely compatible with the gradings, it is only left to check that it
intertwines the operators. But here, we have to be a little bit more precise: The operator onΩ∗E is
not uniquely defined, and it will suffice to find one “version ofΩ∗T ” which is compatible withΦ.
BecauseΦ is an isomorphism, we can write down exactly what this means forΩ∗T ; the result is, that
the version we are looking for has to satisfy(

Ω∗T>
)
g

(
e>g,η
)
f(g)=r(η)

=
(
ηT>f(g)η

−1e>g,η

)
f(g)=r(η)

for all g ∈ G(0) and (e>g,η)f(g)=r(η) ∈ (Ω∗E>)g (and similarly on the left-hand side). Define

an operatorT̃ ∈ Lσ∗B(σ∗E) by settingT̃>(g,η)(e
>
(g,η)) := η−1T>f(g)ηe

>
(g,η) for all (g, η) ∈ Ω and

e>(g,η) ∈ (σ∗E>)(g,η) = E>s(η) (and analogously on the left-hand side). Using the notation of 3.4.24,

this operator can be written asπ∗2((α
L(E))−1(r∗T )), whereπ2 denotes the canonical map from

Ω = G(0) ×H(0) H to the second componentH. If we can show that(f∗ΩE, T̃ ) is homotopic in
Eban
ρ∗(G)(f

∗
ΩA, f

∗
ΩB) to (f∗ΩE, f

∗
ΩT ), then we are done, becauseΦ intertwinesf∗T andρ!T̃ (note that

T̃ is Ω×ρ Ω-equivariant).
This homotopy can be constructed using Lemma 3.5.11: Letã ∈ Γ(Ω, f∗ΩA). We show that

ã(f∗ΩT − T̃ ) and(f∗ΩT − T̃ )ã are locally compact. For this, it suffices to consider the case thatã is of
the forma ◦ π2 with a ∈ Γ(H, s∗A). Note thatf∗ΩT = σ∗T = π∗2s

∗T . Now

(a ◦ π2)
(
f∗ΩT − T̃

)
= (a ◦ π2)

(
π∗2s

∗T − π∗2

((
αL(E)

)−1
(r∗T )

))
= π∗2

(
a

(
s∗T −

(
αL(E)

)−1
(r∗T )

))
= π∗2

((
αL(E)

)−1 (
αA(a)

(
αL(E)(s∗T )− r∗T

)))
.

HereαA denotes theG-action onA. The operatorαA(a)(αL(E)(s∗T ) − r∗T ) is locally compact
because(E, T ) is a KKban-cycle. So(αL(E))−1 of this operator is locally compact by Proposi-
tion 3.4.25. By Proposition 3.3.22, the pullback byπ2 of the resulting operator is also locally compact.
The same arguments show that(f∗ΩT − T̃ )ã is locally compact.



Appendix E

Some Remarks

E.1 A note concerningC0(X)-Banach algebras

There is an alternative definition ofC0(X)-Banach algebras using structure homomorphisms which
might be more familiar in the context of C∗-algebras. In this appendix we would like to show how
this definition is related to the definition in Section 2.2 (including a subtlety).

Definition E.1.1 (Structure homomorphism). Let B be aC0(X)-Banach algebra. Define a right
action ofC0(X) onB by settingbϕ := ϕb for all b ∈ B andϕ ∈ C0(X). Define

θB : C0(X) → M(B), ϕ 7→ (b 7→ bϕ, b 7→ ϕb).

This map is a well-defined homomorphism of Banach algebras, called thestructure homomorphism
of theC0(X)-Banach algebraB.

Definition E.1.2 (Non-degenerate homomorphism).LetB andC be Banach algebras andϕ : B →
C a homomorphism. Thenϕ is callednon-degenerateif ϕ(B)C andCϕ(B) are dense inC.

The composition of non-degenerate homomorphisms is non-degenerate. The identity map on
a Banach algebra is non-degenerate if and only the Banach algebra is non-degenerate. The non-
degenerate Banach algebras together with the non-degenerate homomorphisms form a category.

Proposition E.1.3. LetB be a Banach algebra and letθB be a non-degenerate homomorphism from
C0(X) to M(B) such that

∀b ∈ B ∀ϕ ∈ C0(X) : θB(ϕ) b = b θB(ϕ).

ThenB is aC0(X)-Banach algebra.

The condition given in the preceding proposition is in general not equivalent to the condition that
the image ofθB is contained in the centre ofM(B). But if B is non-degenerate or has no annihilators,
then they are equivalent by the following lemma.

Lemma E.1.4. LetB be a non-degenerate Banach algebra and letm ∈ M(B). Then the following
statements are equivalent:

1. m ∈ Z M(B);

2. ∀b ∈ B : mb = bm.

305
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Proof. 1.⇒ 2.: Letb, c ∈ B. Then

m(bc) = m(ψB(b)c) = (mψB(b))c 1.= (ψB(b)m)c = ψB(b)(mc)

= b(mψB(c)) 1.= b(ψB(c)m) = (bc)m.

By linearity and continuity of the mapsb 7→ mb andb 7→ bm and by non-degeneracy ofB we can
conclude thatmb = bm for all b ∈ B.

2.⇒ 1.: Letm′ ∈ M(B). In order to showmm′ = m′m, let b ∈ B. Then

(mm′)b = m(m′b) 2.= (m′b)m 1.4.2= m′(bm) 2.= m′(mb) = (m′m)b.

Also
b(mm′) = (bm)m′ 2.= (mb)m′ 1.4.2= m(bm′) 2.= (bm′)m = b(m′m).

Somm′ = m′m.

The lemma also holds for Banach algebras without annihilators (instead of being non-degenerate).
However, it does not hold in general, as the following example shows:

Example E.1.5. Let E be a Banach space. LetB beE equipped with the trivial multiplication.
ThenM(B) is L(E)×L(E). The centre ofM(B) is Z L(E)×Z L(E). The set of elements ofM(B)
satisfying 2. is the diagonal ofL(E)×L(E). If E has dimensionn ∈ N then the centre has dimension
2n and the other set has dimensionn2. Obviously, already ifn = 1, the two sets are not contained in
one another.

E.2 A note concerning the local boundedness of fields of linear maps

A weaker form of the following result was mentioned in Section 3.1.

Proposition E.2.1. LetX be a topological space. LetE andF be u.s.c. fields of Banach spaces over
X and letT be a family of linear maps fromE to F satisfyingT ◦ Γ(X,E) ⊆ Γ(X,F ). If X is
completely regular and first countable, thenT is locally bounded.

Note that every metrisable space is completely regular and first countable, but the converse is false
in general (a counterexample is the right half-open interval topology onR; see Counterexamples in
Topology [SS95], 51.).

Proof of Proposition E.2.1.(compare Proposition 1.1.9 of [Laf04]) Suppose thatX is completely reg-
ular and first countable and thatT is a field of morphisms. We show that ifT is not locally bounded,
then it cannot be a continuous. Suppose thatx ∈ X is such thatsupu∈U ‖Tu‖ = ∞ for every
neighbourhoodU of x. Then, using the countable basis of neighbourhoods ofx, we can find a se-
quence(xn)n∈N converging tox such thatlimn→∞ ‖Txn‖ = ∞. Without loss of generality we can
assume that the members of this sequence are pairwise distinct and distinct fromx. This means that
we can find a sequence(en)n∈N such thaten ∈ Exn for all n ∈ N and limn→∞ ‖en‖Exn

= 0 and
limn→∞ ‖Txn(en)‖Fxn

= ∞. By taking a subsequence of(xn)n∈N (and of(en)n∈N) we can even
assume

∑
n∈N ‖en‖Exn

<∞.
Let n ∈ N. Then the subsetVn := {xm : m ∈ N \ {n}} ∪ {x} is compact inX. SinceX is

Hausdorff, the setVn is closed. SinceX is completely regular, we can find a function1 ϕn ∈ C(X,C)
1Here, it would probably be enough thatX is regular instead of completely regular.
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such that0 ≤ ϕ ≤ 1, ϕ(xn) = 1 andϕ(v) = 0 for all v ∈ Vn. And we can find a continuous
sectionξn ∈ Γb(X,E) such that‖ξn‖∞ ≤ 2 ‖en‖Exn

andξn(xn) = en. Nowϕnξn is an element of
Γb(X,E) such that‖ϕnξn‖∞ ≤ 2 ‖en‖Exn

, (ϕnξn)(xn) = en, and(ϕnξn)(v) = 0 for all v ∈ Vn.
Since

∑
n∈N ‖en‖Exn

<∞ we can deduce that(ϕnξn)n∈N is absolutely summable in the Banach
spaceΓb(X,E), let ξ :=

∑
n∈N ϕnξn be the sum of this family. Then for eachn ∈ N, we have

ξ(xn) = (ϕnξn)(xn) = en. So what aboutT ◦ ξ? For everyn ∈ N, we haveTxn(ξ(xn)) =
T (xn)(en), solimn→∞ ‖Txn(ξ(xn))‖Exn

= ∞ by assumption. SoT ◦ ξ is not locally bounded atx,
hence it is not upper semi-continuous atx, henceT ◦ ξ is not contained inΓ(X,F ). It follows thatT
is not continuous.

E.3 A lemma concerning quotient maps between Banach spaces

Lemma E.3.1. LetX andY be Banach spaces. IfT ∈ L(X,Y ) is a linear operator with norm≤ 1
such that

(E.1) ∀y ∈ Y ∀ε > 0 ∃x ∈ X : ‖y − T (x)‖ ≤ ε ∧ ‖x‖ ≤ ‖y‖ ,

thenT is surjective and a quotient map, i.e.,

∀y ∈ Y ∀ε > 0 ∃x ∈ X : T (x) = y ∧ ‖x‖ ≤ ‖y‖+ ε.

Proof. Let y ∈ Y and ε > 0. Definey0 := y. Find anx0 ∈ X by property (E.1) such that
‖y0 − T (x0)‖ ≤ ε/2 and‖x0‖ ≤ ‖y0‖. For everyn ∈ N0, define recursivelyyn+1 := yn − T (xn)
and find an elementxn+1 ∈ X such‖yn+1 − T (xn+1)‖ ≤ 2−n−2ε and‖xn+1‖ ≤ ‖yn+1‖. By this
choice it follows that

yn+1 = y0 −
n∑
i=0

T (xi)

for everyn ∈ N0. Note that

‖xn+1‖ ≤ ‖yn+1‖ = ‖yn − T (xn)‖ ≤ 2−n−1ε

for everyn ∈ N0 so we can deduce that
∑∞

i=0 xi converges to somex ∈ X. But then

T (x) =
∞∑
i=0

T (xi) = y0 = y

and

‖x‖ =
∥∥∥ ∞∑
i=0

xi

∥∥∥ =
∞∑
i=0

‖xi‖ ≤
∞∑
i=0

‖yi‖ ≤ ‖y0‖+
∞∑
i=1

2−iε = ‖y0‖+ ε.

We can improve the above lemma by anε:

Corollary E.3.2. LetX andY be Banach spaces. IfT ∈ L(X,Y ) is a linear operator with norm
≤ 1 such that

(E.2) ∀y ∈ Y ∀ε > 0 ∃x ∈ X : ‖y − T (x)‖ ≤ ε ∧ ‖x‖ ≤ ‖y‖+ ε,

thenT is surjective and a quotient map, i.e.,

∀y ∈ Y ∀ε > 0 ∃x ∈ X : T (x) = y ∧ ‖x‖ ≤ ‖y‖+ ε.
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Proof. We show that (E.1) follows from (E.2): Lety ∈ Y andε > 0. By (E.2) we can find anx′ ∈ X
such that‖y − T (x′)‖ ≤ ε/2 and‖x′‖ ≤ ‖y‖+ ε/2. Definex := ‖y‖x′

‖y‖+ε/2 . Then

‖x‖ =
∥∥x′∥∥ ‖y‖

‖y‖+ ε/2
≤ (‖y‖+ ε/2)

‖y‖
‖y‖+ ε/2

= ‖y‖

and

‖y − T (x)‖ =
∥∥y − T (x′)

∥∥+
∥∥T (x′)− T (x)

∥∥ ≤ ε/2 +
∥∥x− x′

∥∥
= ε/2 +

∥∥x′∥∥ ∣∣∣∣‖y‖ − (‖y‖+ ε/2)
‖y‖+ ε/2

∣∣∣∣ ≤ ε/2 + ε/2 = ε.

Corollary E.3.3. If (E.2) is true for some dense subspaceY0 of Y instead ofY , then it is true for all
of Y and henceT is a metric surjection.

Proof. Let y ∈ Y and ε > 0. Find ay0 ∈ Y0 such that‖y − y0‖ < ε/2. Use (E.2) fory0 to
find anx ∈ X such that‖y0 − T (x)‖ < ε/2 and‖x‖ ≤ ‖y0‖ + ε/2. Then‖y − T (x)‖ < ε and
‖x‖ ≤ ‖y‖+ ε.

E.4 Some facts concerningC0(X) and Cc(X)

LetX be a locally compact Hausdorff space.

E.4.1 Cc(X) and subspaces

The following lemma is used in the proof of Lemma 5.1.3, see page 282.

Lemma E.4.1. LetV be a closed subspace ofX. Then the restriction mapG : Cc(X) → Cc(V ) which
sendsϕ toϕ|V is continuous and surjective.

Proof. Continuity is obvious. To show surjectivity letψ ∈ Cc(V ). There are now two ways to
proceed:

One can consider the Alexandroff compactificationX+. The functionψ is continuous onX+

and vanishes on some neighbourhood of∞. SinceX+ is compact, it is normal. We can hence apply
Tietze’s extension theorem to construct a continuous function onX+ which agrees withψ on the
closed setV ∪ {∞}. Cut this function down by some function inCc(X) which is 1 on the support of
ψ to obtain an extension ofψ.

Alternatively, find a compact neighbourhoodK of the support ofψ in X and a compact neigh-
bourhoodL of this setK. SinceL is compact and therefore normal, we can find an extensionϕ of
ψ|L∩V to L of the same norm. Find a functionχ ∈ Cc(X) which is 1 onK and vanishes outside
the interior ofL. Then the product ofχ andϕ is a continuous extension ofψ to L which can be
continuously extended by zero outside (the interior of)L.

Remark E.4.2. Note that in the proof of the preceding lemma we have shown that a continuous
functionψ onV with compact support can be extended toX preserving its sup-norm.
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E.4.2 A short exact sequence

If U ⊆ X is open then we embedC0(U) into C0(X) by continuation with zero.

Lemma E.4.3. LetU1, U2 be open subsets ofX. Define

Φ: C0(U1 ∩ U2) → C0(U1)× C0(U2), f 7→ (f,−f)

and
Ψ: C0(U1)× C0(U2) → C0(U1 ∪ U2), (f1, f2) 7→ f1 + f2.

Then the following sequence is an exact sequence of Banach spaces (withΦ isometric andΨ a quotient
map)

0 → C0(U1 ∩ U2)
Φ→ C0(U1)× C0(U2)

Ψ→ C0(U1 ∪ U2) → 0.

Proof. The mapΦ is linear and isometric. Its image is clearly contained in the kernel ofΨ. Let
(f1, f2) be in the kernel ofΨ, i.e.,f1 + f2 = 0. OnX \U1 the functionsf1 andf1 + f2 vanish, sof2

has to vanish there as well. Analogously,f1 has to vanish onX \ U2. So both functions,f1 andf2,
are supported inU1 ∩ U2. Because we havef1 = −f2, it follows that(f1, f2) = Φ(f1).

The only assertion that is left to show and that is not completely trivial is the fact thatΨ is
surjective and a quotient map. We use Lemma E.3.1: Letf ∈ C0(U1 ∪ U2) and ε > 0. Then
we can find a compact setK ⊆ U1 ∪ U2 such that|f | is less thanε/2 outsideK. The setsU1

andU2 form an open cover ofK, so we can find functionsϕi ∈ C0(Ui) such that0 ≤ ϕi ≤ 1
andϕ1(k)ϕ2(k) = 1 for all k ∈ K. Definef1 := ϕ1f andf2 := ϕ2f . Thenfi ∈ C0(Ui) and
(f1 + f2)(k) = (ϕ1(k) + ϕ2(k))f(k) = f(k) for all k ∈ K. If x ∈ X \K, then|(f1 + f2)(x)| =
|ϕ1(x)f(x) + ϕ2(x)f(x)| ≤ 2 |f(x)| < ε. So ‖f1 + f2 − f‖ ≤ ε. On the other hand, we have
‖fi‖ ≤ ‖f‖ and hence‖(f1, f2)‖ ≤ ‖f‖. SoΨ is surjective and a quotient map by Lemma E.3.1.

E.4.3 Regularity conditions onX and C0(X)

Proposition E.4.4. The following are equivalent for the locally compact Hausdorff spaceX:

1. X is σ-compact.

2. C0(X) is σ-unital.

Proof. 1. ⇒ 2.: Let (Kn)n∈N be a sequence of compact subsets ofX such thatKn ⊆ Kn+1 and⋃
n∈N Un = X. Define inductively an increasing sequence(χn)n∈N in Cc(X) such that0 ≤ χn ≤ 1

andχ ≡ 1 onKn for all n ∈ N. Then(χn)n∈N is an approximate unit forC0(X).
2.⇒ 1.: Let (χn)n∈N be an approximate unit forC0(X). LetKn := {x ∈ X : χn(x) ≥ 1/2}

for all n ∈ N. Then(Kn)n∈N is an increasing sequence of compact subsets ofX. Let x ∈ X. Find
a functionf in C0(X) such thatf(x) = 1. Find ann ∈ N such that‖χnf − f‖ < 1/2. Then
|χn(x)− 1| = |χn(x)f(x)− f(x)| < 1/2, soχn(x) > 1/2. In particular,x ∈ Kn.

Proposition E.4.5. The following are equivalent:

1. X is first countable.

2. X is metrisable andσ-compact.

3. The Alexandroff compactificationX+ ofX is metrisable.



310 APPENDIX E. SOME REMARKS

4. X is metrisable and separable.

5. C0(X) is separable.

Proof. The equivalence 1.⇔ 2. ⇔ 3. is the corollary of Proposition in IX.2.10 of [Bou89]. IfX
is metrisable, thenX is first countable if and only if it is separable (by Proposition 12 of IX.2.9 of
the same book). This shows 4.⇒ 1., and, via the detour 2.⇔ 1., it shows 2.⇒ 4. Thus we have
established the equivalence of the first four conditions.

1.⇒ 5.: LetX be first countable. Chose a countable base(Un)n∈N of its topology. LetM be
the set of all pairs(m,n) ∈ N × N such that the closure ofUm is compact and lies inUn. For
all (m,n) ∈ M , find a functionχm,n ∈ Cc(X) such that0 ≤ χ ≤ 1, χ ≡ 1 on Um andχ ≡ 0
outsideUn. We claim that the countable setC := {χm,n : (m,n) ∈ M} separates the points of
X: If x, y ∈ X with x 6= y, then we can find an elementUn in the base of the topology such that
x ∈ Un andy /∈ Un. Furthermore, we can find a compact neighbourhood ofx which lies inUn. This
compact neighbourhood must contain an elementUm of the base containingx. Now (m,n) ∈ M
andχm,n(x) = 1, whereasχm,n(y) = 0. Now theQ + Qi-linear algebra-span ofC is a countable
∗-invariant subalgebra ofC0(X) separating the points ofX, hence it is dense inC0(X).

5.⇒ 1.-4.: Conversely, ifC0(X) is separable, the unit ball ofC0(X)∗ is metrisable. This unit ball
contains a homeomorphic image ofX as a subspace, soX is metrisable, too. Moreover,C0(X) is
σ-unital, soX is σ-compact by the preceding proposition. Hence we have shown 5.⇒ 2.

Alternatively, let(fn)n∈N be a dense sequence of the unit ball ofC0(X). For alln ∈ N, define
Un := |fn|−1 (]1/2, ∞[). We claim that{Un : n ∈ N} is a basis of the topology ofX: Let x ∈ X
and letU be an open neighbourhood ofx. Find a functionχ ∈ Cc(X) such that0 ≤ χ ≤ 1, χ(x) = 1
andχ ≡ 0 outsideU . Find somen ∈ N such that‖fn − χ‖ < 1/2. Then|fn(y)| < 1/2 for all
y ∈ X \ U , soUn ⊆ U . On the other hand,χ(x) = 1, so|fn(x)| ≥ |χ(x)| − |χ(x)− fn(x)| > 1/2,
hencex ∈ Un.

E.5 Restriction of u.s.c. fields onto closed subspaces

LetX be a topological space and letV be a closed subspace. LetE be a u.s.c. field of Banach spaces
overX. If ιV denotes the inclusion map fromV toX, then the restrictionE|V of E ontoV is defined
to be the pullbackι∗V (E). By definition, the sections ofE|V are the local closure of the restrictions of
the sections ofE. In Appendix E.5 we discuss under which circumstances all sections ofE|V arise
as restrictions, i.e., whether one can extend sections ofE|V to sections ofE.

Lemma E.5.1. LetX be locally compact Hausdorff. Then for allξ ∈ Γc (V, E|V ) and all ε > 0,
there is anη ∈ Γc(X,E) such thatξ = η|V and‖η‖ ≤ ‖ξ‖+ ε.

Proof. It is not hard to prove this lemma directly, but we prefer to reduce it to Proposition E.5.3 below.
Let ξ ∈ Γc(V,E|V ) andε > 0. LetK be a compact neighbourhood ofsupp ξ in X (!). Find a

functionχ ∈ Cc(X) such that0 ≤ χ ≤ 1,χ|supp ξ = 1 andχ = 0 outside the interior ofK. SinceK is
compact, it is paracompact. The sectionξ|K∩V is bounded so we can find a sectionη′ ∈ Γb(K,E|K)
extendingξ|K∩V and such that‖η′‖ ≤ ‖ξ‖ + ε. Now η := χη′ can be extended by zero toX and
‖η‖ ≤ ‖η′‖ ≤ ‖ξ‖ + ε. Sinceχ|supp ξ = 1 we haveη(v) = η′(v) = ξ(v) for all v ∈ V ∩ K and
η(v) = 0 = ξ(v) for all v ∈ V \K.

Proposition E.5.2. LetX be locally compact Hausdorff. Then the mapξ 7→ ξ|V from Γ0 (X,E) to
Γ0 (V, E|V ) is a metric surjection.
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Proof. Let ξ ∈ Γ0(V,E|V ) andε > 0. Find aξ′ ∈ Γc(V,E|V ) such that‖ξ − ξ′‖ ≤ ε/2. Using
Lemma E.5.1, find a sectionη ∈ Γc(X,E) such thatη|V = ξ′ and‖η‖ ≤ ‖ξ′‖ + ε/2 ≤ ‖ξ‖ + ε.
Then‖η|V − ξ‖ ≤ ε/2. So by Corollary E.3.2 the restriction map is a metric surjection.

Proposition E.5.3. LetX be paracompact. Then the mapξ 7→ ξ|V fromΓb (X,E) to Γb (V, E|V ) is
a metric surjection. Moreover, every section ofE|V can be extended to a section ofE.

Proof. Note thatX is uniformisable and henceΓb(X,E) is total forE and the restriction toV of
sections inΓb (X,E) is total for E|V . Let ξ ∈ Γ(V,E|V ) and ε > 0. For all v ∈ V , find a
neighbourhoodUv of v in X and an elementηv ∈ Γb(X,E) such that‖ξ(u)− ηv(u)‖ ≤ ε for all
u ∈ Uv ∩ V and such that‖ηv‖∞ ≤ ‖ξ(v)‖ + ε. We can find a locally finite refinement(Wi)i∈I of
{Uv : v ∈ V }∪ {X \V }. For everyi ∈ I such thatWi intersectsV , there must be av ∈ V such that
Wi ⊆ Uv; pick such av ∈ V and call itvi. Define

ζi :=

{
ηvi , Wi ∩ V 6= ∅
0, Wi ∩ V = ∅

for all i ∈ I. Let (χi)i∈I be a continuous partition of unity subordinate to(Wi)i∈I . Define

θ(x) :=
∑
i∈I

χi(x)ζi(x)

for all x ∈ X. It is not hard to see thatθ is a section ofE.
Let v ∈ V andJ := {i ∈ I : v ∈ Wi}. Thenθ(v) =

∑
j∈J χj(v)ζj(v). If j ∈ J , then

v ∈Wj ⊆ Uvj and hence‖ξ(v)− ζj(v)‖ =
∥∥ξ(v)− ηvj

∥∥ ≤ ε. It follows that‖ξ(v)− θ(v)‖ ≤ ε.
This argument has two consequences:

1. If we start with a boundedξ, then allζi are bounded by‖ξ‖ + ε, hence alsoθ is bounded by
‖ξ‖+ ε. Summarizing: For allξ ∈ Γb(V,E|V ) and allε > 0, there is aθ ∈ Γb(X,E) such that
‖θ‖ ≤ ‖ξ‖+ ε and‖ξ − θ|V ‖ < ε. An application of Corollary E.3.2 shows that the restriction
map fromΓb(X,E) to Γb(V,E|V ) is a metric surjection.

2. If we start with a generalξ, then we have constructed someθ ∈ Γ (X,E) such that‖ξ − θ|V ‖ ≤
ε. In particular,ξ − θ|V is bounded and we can find, by the first part of the argument, a
θ′ ∈ Γb (X,E) such thatξ − θ|V = θ′|V . Soθ + θ′ is an extension ofξ to all ofX.

E.6 The pushout ofB-induced Banach modules

Definition E.6.1 (Pushout, version II). Let B, C be Banach algebras and letE be a BanachB-
module. Ifθ : B → C is a morphism of Banach algebras, then define the pushoutθ×(E) of E under
θ to be the BanachC-moduleE ⊗θ C.

Definition E.6.2. Let B, C be Banach algebras, letθ : B → C be a morphism of Banach algebras,
and letE, E′ be BanachB-modules. IfT ∈ LB(E,E′), then defineθ×(T ) ∈ LC(E,E′) by

θ×(T )(e⊗ c) := T (e)⊗ c

for everye ∈ E, c ∈ C. In other words, we defineθ×(T ) to beT ⊗ IdC .
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The mapθ× defines a functor from the category of BanachB-modules to the category of Banach
C-modules, linear and contractive on the morphism sets.

Definition E.6.3. Let B, C be Banach algebras and letEB, FC be Banach modules. Assume that
Θθ is a homomorphism fromEB to FC with coefficient mapθ : B → C. Then define aC-linear and
contractive map

Θ̂ : θ×(E) → F, e⊗ c 7→ Θ(e)c.

Proposition E.6.4 (The pushout of aB-induced Banach module).LetB, C be Banach algebras,
let θ : B → C be a homomorphism and letE be aB-induced Banach module. Then

θ∗(E) ∼= θ×(E).

More precisely, theθ∗ andθ× are naturally isometrically equivalent Banach functors from the cate-
gory ofB-induced BanachB-modules to the category of BanachC-modules.

Proof. Define the contractive natural homomorphism

ηE : E ⊗θ C → E ⊗
θ̃
C̃ = θ∗(E), e⊗ c 7→ e⊗ c.

We first show that it is injective. Lett ∈ E ⊗θ C lie in the kernel ofηE . Then we can write
t =

∑
k∈N ek ⊗ ck with

∑
k∈N ‖ek‖ ‖ck‖ ≤ ∞.

We are going to show the following: For everyε > 0, there is anN ∈ N andf1, . . . , fN ∈ E,
b1, . . . , bN ∈ B, andd1, . . . , dN ∈ C such that∥∥∥∥∥∑

k∈N
ek ⊗ ck −

N∑
n=1

(fnbn ⊗ dn − fn ⊗ θ(bn)dn)

∥∥∥∥∥
E⊗πC

≤ ε.

Let ε > 0. We know that thist is zero as an element ofE ⊗
θ̃
C̃, so we can find anN ∈ N and

f1, . . . , fN ∈ E, b1, . . . , bN ∈ B, d1, . . . , dN ∈ C andλ1, . . . , λN , µ1, . . . , µN ∈ C such that∥∥∥∥∥∑
k∈N

ek ⊗ ck −
N∑
n=1

(fn(bn + λn)⊗ (dn + µn)− fn ⊗ (θ(bn) + λn)(dn + µn))

∥∥∥∥∥
E⊗πC̃

≤ ε/3.

Sorting out what this norm is we first note that all the terms disappear in which there is aλ, so we
obtain∥∥∥∥∥∑
k∈N

ek ⊗ ck −
N∑
n=1

(fnbn ⊗ dn − fn ⊗ θ(bn)dn) +
N∑
n=1

fnbn ⊗ µn −
N∑
n=1

fn ⊗ θ(bn)µn

∥∥∥∥∥
E⊗πC̃

≤ ε/3.

Let ρ : C̃ → C̃, c + λ 7→ λ. This is aC-linear projection of norm 1 by the definition of̃C.
Consider the map1 ⊗ ρ : E ⊗π C̃ → E ⊗π C̃. It is also a projection of norm≤ 1. Using this
projection one immediately sees that the canonical map fromE ⊗π C intoE ⊗π C̃ is an isometry. If
we apply this projection to the expression in the norm we get∥∥∥∥∥

N∑
n=1

fnbn ⊗ µn

∥∥∥∥∥
E⊗πC̃

≤ ε/3.
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It remains to show that
∥∥∥∑N

n=1 fn ⊗ θ(bn)µn
∥∥∥ ≤ ε/3, but this can be achieved using the above

estimate on
∥∥∥∑N

n=1 fnbn ⊗ µn

∥∥∥:∥∥∥∥∥
N∑
n=1

fn(µnbn)

∥∥∥∥∥
E

=

∥∥∥∥∥
N∑
n=1

fn(µnbn)⊗ 1

∥∥∥∥∥
E⊗πC̃

=

∥∥∥∥∥
N∑
n=1

fnbn ⊗ µn

∥∥∥∥∥
E⊗πC̃

≤ ε/3.

Because2 E isB-induced it follows that∥∥∥∥∥
N∑
n=1

fn ⊗B µnθ(bn)

∥∥∥∥∥
E⊗BC̃

≤ ‖1⊗ θ‖

∥∥∥∥∥
N∑
n=1

fn ⊗B µnbn

∥∥∥∥∥
E⊗BB

≤

∥∥∥∥∥
N∑
n=1

fn(µnbn)

∥∥∥∥∥
E

≤ ε/3.

Hence we have shown injectivity.
We now show thatηE is surjective and a quotient map: Lett ∈ E⊗

θ̃
C̃. Letε > 0. Find sequences

(en)n∈N in E, (cn)n∈N in C and(λn)n∈N in C such that
∑

n∈N ‖en‖ ‖cn + λn‖ ≤ ‖t‖ + ε/2 and
t =

∑
n∈N en ⊗ (cn + λn). For everyn ∈ N, find sequences(ekn)k∈N in E and(bkn)k∈N in C such

that
∑

k∈N
∥∥ekn∥∥∥∥bkn∥∥ ‖cn + λn‖ ≤ ‖en‖ ‖cn + λn‖+2−n−1ε anden =

∑
k∈N e

k
nb
k
n (this is possible

becauseE isB-induced). Then∑
k,n∈N

ekn ⊗ bkn(cn + λn) =
∑
n∈N

∑
k∈N

eknb
k
n ⊗ (cn + λn) =

∑
n∈N

en ⊗ (cn + λn) = t

and ∑
k,n∈N

∥∥∥ekn∥∥∥∥∥∥bkn(cn + λn)
∥∥∥ ≤

∑
n∈N

∑
k∈N

∥∥∥ekn∥∥∥∥∥∥bkn∥∥∥ ‖cn + λn‖

≤
∑
n∈N

‖en‖ ‖cn + λn‖+ 2−n−1ε = ‖t‖+ ε.

Definition E.6.5. Let B, C be Banach algebras and letθ : B → C be a morphism. LetE be aB-
induced BanachB-module. LetµE : E ⊗B B → E be the continuousB-linear map given through
µE(e⊗ b) = eb. Note thatµE is an isometric isomorphism. Define

θ×E := (IdE ⊗θ) ◦ µ−1
E : E → θ×(E).

Note thatθ×E is a contractive homomorphism with coefficient mapθ.

Lemma E.6.6 (Universal property of
(
θ×(E), θ×E

)
). LetB, C be Banach algebras and letEB, FC

be Banach modules. LetΘθ be a homomorphism with coefficient mapθ fromE toF . ThenΘ̂, defined
as above, is the unique continuousC-linear map fromθ×(E) to F such that

Θθ = Θ̂IdC
◦
(
θ×E
)
θ
.

Proof. Let e ∈ E andb ∈ B. Then

Θ̂
(
θ×E(eb)

)
= Θ̂ ((IdE ⊗θ) (e⊗ b)) = Θ̂ (e⊗ θ(b)) = Θ(e)θ(b) = Θ(eb).

SinceE is non-degenerate, this proves the above equality.
We still have to show uniqueness. LetΓ ∈ LC (θ×(E), F ) such thatΘ = Γ ◦ θ×E . Then

Γ ◦ (IdE ⊗θ) = Γ ◦ θ×E ◦ µ = Θ ◦ µ = Θ̂ ◦ (IdE ⊗θ) .

BecauseE is non-degenerate, we can deduce thatΓ = Θ̂.
2We use thatE ⊗B B → E is isometric.
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E.7 Cut-off pairs for actions of groupoids

Let G be a locally compact Hausdorff groupoid carrying a Haar systemλ and having unit spaceX.
Let Y be a locally compact Hausdorff leftG-space with anchor mapρ. A cut-off pairfor theG-action
on Y (or just a cut-off pair forY if G is understood) is a pair(c<, c>) of elements ofCb(Y ) which
form a cut-off pair3 for the groupoidG n Y , i.e., such thatc<, c> ≥ 0, such thatsupp c< ∩ GK is
compact for all compact subsetsK ⊆ Y , such that the same property holds forc> and such that∫

Gρ(y)

c<
(
γ−1y

)
c>
(
γ−1y

)
dλρ(y)(γ) = 1

for all y ∈ Y . Such cut-off pairs exist if the quotient spaceG \ Y is σ-compact.4 For the rest of this
section, letG \ Y even be compact (i.e., letY beG-compact). Letc = (c<, c>) be a cut-off forY .
Then we define

p̃c : G n Y → R, (γ, y) 7→ c>(y) · c<(γ−1y).

This is an element ofCc (G n Y ). Define

(pc(γ))(y) := p̃c(γ, y) = c>(y) · c<(γ−1y)

for all (γ, y) ∈ Y n Y , so thatpc(γ) ∈ Cc
(
Yr(γ)

)
for all γ ∈ G. Then pc is an element of

Γc (G, r∗ρ∗CY ), where the push-forwardρ∗CY is defined as in Section 8.3 (it could also be writ-
tenC0(Y ), regarded as aG-Banach space). We have5 pc = ι̃CY

(p̃c) and

p̃2
c = p̃c and p2

c = pc.

We just check the first equality, the second is then a consequence of the fact thatι̃CY
is a homomor-

phism (see Proposition 8.3.22). We have

(p̃c)2(γ, y) =
∫
Gρ(y)

p̃c
(
γ′, y

)
p̃c
(
(γ′, y)−1(γ, y)

)
dλρ(y)(γ′)

=
∫
Gρ(y)

c>(y)c<
(
γ′−1y

)
c>
(
(γ′−1y

)
c<
((
γ′−1γ

)−1
γ′−1y)

)
dλρ(y)(γ′)

= c>(y)c<(γ−1y)
∫
Gρ(y)

c<
(
γ′−1y

)
c>
(
γ′−1y

)
dλρ(y)(γ′) = p̃c(γ, y)

for all (γ, y) ∈ G n Y . If A(G) is an unconditional completion ofCc (G), then pc defines an
idempotent inA (G, ρ∗CY ) which we also callpc. This idempotent determines a classλY,G,A in
K0 (A (G, ρ∗CY )). It is not hard to see that this class does not depend on the choice of the cut-off
pair.

Now let Y ′ be another locally compact HausdorffG-compact properG-space (with anchor map
ρ′) and letf : Y → Y ′ be a properG-equivariant continuous map. Writẽf for the homomorphism of
G-Banach algebras fromρ′∗CY ′ to ρ∗CY induced byf .

Proposition E.7.1. We have

λY ′,G,A = A
(
G, f̃

)
∗
(λY,G,A) .

3See Definition 7.1.6.
4See the discussion after Definition 7.1.6 for a way to construct cut-off pairs from cut-off functions; a cut-off function

exists according to [Tu04].
5See 8.3.19 for a definition of̃ι.
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Proof. Let c′ = (c′<, c′>) be a cut-off pair forY ′. Thenc′ ◦ f := (c′< ◦ f, c′> ◦ f) is a cut-off
pair forY : c′< ◦ f andc′> ◦ f are obviously non-negative, continuous and of compact support (f is
proper!). For ally ∈ Y , we have∫
Gρ(y)

c′<
(
f(γ−1y)

)
c′>
(
f(γ−1y)

)
dλρ(y)(γ) =

∫
Gρ(y)

c′<
(
γ−1f(y)

)
c′>
(
γ−1f(y)

)
dλρ(y)(γ) = 1,

where we have used the equivariance off and the fact thatc′ is a cut-off pair. We also have

p̃c′ ◦ (IdG nf) = p̃c′◦f

as can be shown as follows: Let(γ, y) ∈ G n Y . Then(γ, f(y)) ∈ G n Y ′ and

p̃c′ (γ, f(y)) = c′>(f(y))c′<(γ−1f(y)) = (c′> ◦ f)(y) (c′< ◦ f)(γ−1y) = p̃c′◦f (γ, y) .

It follows that f̃ ◦ pc′ = pc◦f and finallyλY ′,G,A = A
(
G, f̃

)
∗
(λY,G,A).
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E.8 Monotone completions and operators given by kernels

LetX andY be locally compact Hausdorff spaces and letq : Y → X be a continuous map. For all
x ∈ X, writeYx for q−1({x}) ⊆ Y . Forχ ∈ C(X) andϕ ∈ Cc(Y ) defineϕχ := ϕ · (χ ◦ q) ∈ Cc(Y ).
In this way,Cc(Y ) is aC(X)-module and also a non-degenerateCc(X)-module.

Let H(Y ) be a monotone completion ofCc(Y ) (for the definition of a monotone semi-norm see
3.2.1). The monotone completionH(Y ) is a C0(X)-Banach space. The semi-norm‖·‖H is called
locally C0(X)-convex (or simply locally convex) ifH(Y ) is locallyC0(X)-convex.

Examples E.8.1. 1. One of the simplest examples for a monotone semi-norm onCc (Y ) is the
sup-norm‖χ‖∞ = supy∈Y |χ(y)|; in this case,H(Y ) is justC0(Y ) as a (locally convexC0(X)-
Banach space).

2. Letµ = (µx)x∈X be a continuous field of measures onY overX and letp ∈ [1,∞[. Then we
define thep-semi-norm‖·‖p onCc(Y ) (with respect toµ) by

‖χ‖p := sup
x∈X

(∫
Yx

|χ(y)|p dµx(y)
) 1

p

for all χ ∈ Cc(Y ). The completion ofCc(Y ) for this semi-norm is denoted byLp (Y, µ) or
simply byLp (Y ) if µ is understood. Note thatLp (Y ) is a locally convexC0(X)-Banach space.

E.8.1 Monotone completions and fields of Banach spaces

LetE be a u.s.c. field of Banach spaces overX.
The following definition should be compared to Definition 3.2.4 which covers the special case that

X = Y andq = IdX .

Definition E.8.2 (H(Y,E)). We define the following semi-norm onΓc(Y, q∗E):

‖ξ‖H :=
∥∥∥y 7→ ‖ξ(y)‖Eq(y)

∥∥∥
H
.

The Hausdorff completion ofΓc(Y, q∗E) with respect to this semi-norm will be denoted byH(Y,E)
(and usually not byH(Y, q∗E)). The Banach spaceH(Y,E) carries a canonical action ofC0(X) such
that it is aC0(X)-Banach space.

The canonical map fromΓc(Y, q∗E) toH(Y,E) is continuous if we take the inductive limit topol-
ogy onΓc(Y, q∗E) and the norm topology onH(Y,E). It follows that if Ξ is dense inΓc(Y, q∗E) for
the inductive limit topology, then its canonical image inH(Y,E) is dense for the semi-norm topology.

Definition E.8.3. Letx ∈ X. For allϕ ∈ Cc(Yx)≥0, define‖ϕ‖H(Yx) to be the value of the semi-norm
of the extension ofϕ to Y by 0. This defines a monotone semi-norm onCc(Yx). The completion of
Cc(Yx, Ex) with respect to this semi-norm will be denoted byH(Yx, E). The restriction map yields a
linear map of norm≤ 1 fromH(Y,E) toH(Yx, E).

Example E.8.4. If p ∈ [1,∞[, if µ is some continuous field of measures onY overX, if H(Y ) =
Lp(Y, µ) andx ∈ X, then the semi-norm‖·‖Lp(Yx) onCc(Yx) is simply given by

‖χ‖Lp(Yx) =
(∫

Yx

|χ(y)|p dµx(y)
) 1

p

for all χ ∈ Cc(Yx).
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Proposition E.8.5. If q is open, then there is an isometric isomorphism

H(Y,E)x ∼= H(Yx, E).

Proof. Let Px : H(Y,E) → H(Yx, E) denote the linear map induced by the restriction map and let
πx : H(Y,E) → H(Y,E)x denote the quotient map.

First we show that the kernel ofπx, which isC0(X \ {x})H(Y,E) by definition, is contained in
the kernel ofPx: Let ϕ ∈ C0(X \ {x}) andξ ∈ Γc(Y, q∗E). Then(ϕξ)(y) = ϕ(q(y))ξ(y) = 0
for all y ∈ Yx. SoPx(ϕξ) = 0. By continuity, this is also true for allξ ∈ H(Y,E). This means in
particular that we get a continuous linear mapΦx fromH(Y,E)x toH(Yx, E) of norm≤ 1.

Now we show that‖Px(ξ)‖H(Yx,E) = ‖πx(ξ)‖H(Y,E)x
for all ξ ∈ Γc(Y, q∗E). This will show

thatΦx is isometric on a dense subset, so it is isometric throughoutH(Y,E)x. SincePx has dense
image it follows thatΦx has dense image and thus we are done.

The inequality≤ is already known, we have to show≥. Let ξ ∈ Γc(Y, q∗E) andε > 0. Find a
functionϕ ∈ Cc(Y )+ such that‖ξ(y)‖ ≤ ϕ(y) for all y ∈ Yx and‖ϕ‖H(Y ) ≤ ‖ξ‖H(Yx,E) + ε.

Let K be a compact neighbourhood inY of the support ofϕ and the support ofξ. Let ε′ > 0.
We are going to show that we can find a functionψ ∈ Cc(Y )+ and a functionχ ∈ Cc(X)+ such that
‖ξ(y)‖ ≤ ψ(y) for all y ∈ Y , suppχψ ⊆ K and‖χψ − ϕ‖∞ ≤ ε′. Using the fact that the “inclusion”
CK(Y, q∗E) → H(Y,E) is continuous, we can chooseε′ so small that‖ψχ− ϕ‖H(Y ) ≤ 2ε and hence
‖χψ‖H(Y ) ≤ ‖ξ‖H(Yx,E) + ε. But ‖πx(ξ)‖H(Y,E)x

≤ ‖χψ‖H(Y ), so we are done. Note that by the
monotony of the semi-norm it suffices to findχ andψ such thatχ(q(y))ψ(y) ≤ ϕ(y) + ε′ for all
y ∈ Y (instead of‖χψ − ϕ‖∞ ≤ ε′).

For all y ∈ Yx, we can find a functionψy ∈ Cc(Y )+ such that|ξ| ≤ ψy andψ(y) ≤ ϕ(y) + ε′.
Using a compactness argument and the continuity ofϕ we can thus find a functionψ ∈ Cc(Y )+ such
that |ξ| ≤ ψ andψ(y) ≤ ϕ(y) + 2ε′ for all y ∈ Yx. By multiplying ψ with a function inCc(Y )
between0 and1 which is1 on the support ofξ and vanishes outsideK, we can assume without loss
of generality that the support ofψ is contained inK.

Both functions,ϕ andψ, are continuous, soy 7→ max{ψ(y) − ϕ(y), 0} is continuous. By
Lemma E.8.6 the functions : x′ 7→ supy∈Yx′

|ψ(y)− ϕ(y)| is continuous. Note thats(x) ≤ 2ε′. Find
a functionχ ∈ Cc(X) such that0 ≤ χ ≤ 1, χ(x) = 1 andχ(x′)s(x′) ≤ 3ε′ for all x′ ∈ X. It follows
thatχ(q(y))ψ(y) ≤ ϕ(y) + 3ε′ for all y ∈ Y .

Lemma E.8.6. Let f ∈ Cc(Y )+ and q : Y → X be open and surjective. Then the maps : X →
R, x 7→ supy∈Yx

f(y), is continuous.

Proof. Let x0 ∈ X. We show thats is lower and upper semi-continuous inx0.
Let ε > 0. The set{f(y) : y ∈ Yx0} is compact, so there is any0 ∈ Yx0 such thaty0 =

supy∈Yx0
f(y). LetV be a neighbourhood ofy0 in Y such thatf(v) > f(y0)− ε for all v ∈ V . Then

U := q(V ) is an open neighbourhood ofx0 in X. For allu ∈ U , we haves(u) > s(x0) − ε, sos is
lower semi-continuous inx0.

Let ε > 0. For all compact neighbourhoodsK of x0 in X, define

AK := {y ∈ Y : f(y) ≥ s(y0) + ε, q(y) ∈ K}.

These sets are closed and contained in the compact support off . The intersection
⋂
K AK is the set

{y ∈ Yx0 : f(y) ≥ s(y0) + ε} which is empty. So the intersection of a finite number ofAK has to
be empty. It follows, that there is a compact neighbourhoodK of x0 in X such thatAK is empty. So
s(x) ≤ s(x0) + ε for all x ∈ K. In other words:s is upper semi-continuous.
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E.8.2 Monotone completions, modules and pairs

Definition E.8.7 (The right Γ0(X,B)-module structure). Let ‖·‖H denote a monotone semi-norm
on Cc(Y ). LetB be a u.s.c. field of Banach algebras overX and letE be a right BanachB-module.
Define

(ξβ)(y) := ξ(y) β(q(y))

for all ξ ∈ Γc(Y, q∗E), β ∈ Γ(X,B) andy ∈ Y . This defines an action ofΓ(X,B) — and hence
of Γ0(X,B)) — onΓc(Y, q∗(E)) which is compatible with the action ofC(X) (and ofC0(X)). The
action ofΓ0(X,B) satisfies

‖ξβ‖H ≤ ‖ξ‖H ‖β‖∞
for all ξ ∈ Γc(Y, q∗E) andβ ∈ Γ0(X,B); it therefore lifts to an action ofΓ0(X,B) onH(Y,E). If
E is non-degenerate, then so isH(Y,E).

A similar definition can be made for left BanachB-modules.

Definition E.8.8 ((Locally convex) pair of monotone completions).Let (µx)x∈X be a continuous
field of measures onY overX. A (locally convex) pair of monotone completionswith respect toµ
is a pairH(Y ) = (H<(Y ), H>(Y )) such thatH<(Y ) andH>(Y ) are (locally convex) monotone
completions ofCc(Y ) and such that the bilinear map

〈·, ·〉Cc(X) : Cc(Y )× Cc(Y ) → Cc(X), (ϕ<, ϕ>) 7→
(
x 7→

∫
Yx

ϕ<(y)ϕ>(y) dµx(y)
)
,

satisfies ∥∥〈ϕ<, ϕ>〉Cc(X)

∥∥
∞ ≤

∥∥ϕ<∥∥H<

∥∥ϕ>∥∥H>

for all ϕ<, ϕ> ∈ Cc(Y ). Note that in this case the map〈·, ·〉Cc(X) can be extended to a continuous
bilinear map〈·, ·〉C0(X) : H<(Y )×H>(Y ) → C0(X) which isC0(X)-bilinear.

Examples E.8.9.Let µ be a continuous field of measures onY overX.

1. The pairs
(
L1(Y ), C0 (Y )

)
and

(
C0(Y ), L1 (Y )

)
are certainly locally convex pairs of mono-

tone completions.

2. If p, p′ ∈]1,∞[ such that1p + 1
p′ = 1, then

(
Lp

′
(Y ) , Lp (Y )

)
is a locally convex pair of

monotone completions.

Definition and Proposition E.8.10 (The pairH(Y,E)). Let (µx)x∈X be a continuous field of mea-
sures onY overX. Let H(Y ) be a pair of monotone completions with respect toµ. Let B be a
u.s.c. field of Banach algebras overX and letE be a BanachB-pair. Then the pairH(Y,E) :=
(H<(Y,E<), H>(Y,E>)) is aC0(X)-BanachΓ0(X,B)-pair if we equip it with the bracket

〈·, ·〉Γc(X,B) : Γc(Y, q∗E<)× Γc(Y, q∗E>) → Γc(X,B),

(ξ<, ξ>) 7→
(
x 7→

∫
Yx

〈
ξ<(y), ξ>(y)

〉
Eq(y)

dµx(y)
)
,

which extends to a bracket onH<(Y,E<) × H>(Y,E>) which is C0(X)-bilinear andC0(X,B)-
bilinear.
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Proof. We have to check that the bracket〈·, ·〉Γc(X,B) satisfies∥∥〈ξ<, ξ>〉Γc(X,B)

∥∥
∞ ≤

∥∥ξ<∥∥H<

∥∥ξ>∥∥H>

for all ξ< ∈ Γc(Y, q∗E<) andξ> ∈ Γc(Y, q∗E>). Letx ∈ X. Then∥∥∥∥∫
Yx

〈
ξ<(y), ξ>(y)

〉
Eq(y)

dµx(y)
∥∥∥∥ ≤

∫
Yx

∥∥ξ<(y)
∥∥∥∥ξ>(y)

∥∥ dµx(y)

≤
∫
Yx

ϕ<ϕ> dµx(y) ≤
∥∥ϕ<∥∥H<

∥∥ϕ>∥∥H>

for all ϕ<, ϕ> ∈ Cc(Y ) such that|ξ<| ≤ ϕ< and|ξ>| ≤ ϕ>. By taking the infimum on the right-hand
side we obtain ∥∥∥∥∫

Yx

〈
ξ<(y), ξ>(y)

〉
Eq(y)

dµx(y)
∥∥∥∥ ≤ ∥∥ξ<∥∥H<

∥∥ξ>∥∥H> .

E.8.3 Operators given by kernels

Let Y ′ be another locally compact Hausdorff space and letq′ : Y ′ → X be continuous. Let(µ′x)x∈X
be a continuous field of measures onY ′ overX. LetY ×X Y ′ be the fibre product ofY andY ′ over
X andQ : Y ′ ×X Y → X, (y′, y) 7→ q(y) = q′(y′).

Definition E.8.11 (The tensor product of monotone semi-norms).LetH(Y ) be a monotone com-
pletion ofCc(Y ) andH′(Y ′) a monotone completion ofCc(Y ′). For allζ ∈ Cc(Y ′ ×X Y ), define

‖ζ‖H′⊗H := inf

{
n∑
i=1

∥∥χ′i∥∥H′ ‖χi‖H : χi ∈ Cc(Y ), χ′i ∈ Cc(Y ′),
∣∣ζ(y′, y)∣∣ ≤ n∑

i=1

χ′i(y
′)χi(y)

}
.

The semin-norm‖·‖H′⊗H onCc(Y ′ ×X Y ) is monotone; the completion is calledH′⊗H (Y ′×XY ).

Lemma E.8.12. LetB be a u.s.c. field of Banach algebras overX and letE,E′ be BanachB-pairs.
Letk =

(
k(y′,y)

)
(y′,y)∈Y ′×XY

∈ LQ∗B (Q∗E, Q∗E′) be a continuous field of operators with compact

support. Define an operatorTk fromH(Y,E) toH′(Y ′, E′) by

T>k
(
ξ>
)
(y′) :=

∫
Yq′(y′)

k>(y′,y)ξ
>(y) dµq′(y′)(y), y′ ∈ Y ′,

and

T<k
(
ξ′<
)
(y) :=

∫
Y ′

q(y)

k<(y′,y)ξ
′<(y′) dµq(y)(y

′), y ∈ Y,

for all ξ> ∈ Γc (Y, q∗E>), ξ′< ∈ Γc (Y ′, q′∗E′<).
This operator is continuous and satisfies

‖Tk‖ ≤ ‖k‖H′>⊗H< .

If k is compact, thenTk is compact.
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Proof. Assume that
∥∥k(y′,y)

∥∥ ≤ ∑n
i=1 χ

′
i(y

′)χi(y) for all (y′, y) ∈ Y ′ ×X Y with χi ∈ Cc(Y ) and
χ′i ∈ Cc(Y ′). This implies that

∥∥T>k (ξ>) (y′)
∥∥ ≤

∫
Yq′(y′)

∥∥∥k>(y′,y)∥∥∥∥∥ξ>(y)
∥∥ dµq′(y′)(y)

≤
∫
Yq′(y′)

n∑
i=1

χ′i(y
′)χi(y)

∥∥ξ>(y)
∥∥ dµq′(y′)(y)

≤
n∑
i=1

χ′i(y
′) ‖χi‖H<

∥∥ξ>∥∥H>

for all y′ ∈ Y ′. By the monotony of the semi-norm‖·‖H′> this yields

∥∥T>k (ξ>)∥∥H′> ≤
n∑
i=1

∥∥χ′i∥∥H′> ‖χi‖H<

∥∥ξ>∥∥H> ,

soT>k is continuous with norm≤
∑n

i=1 ‖χ′i‖H′> ‖χi‖H< . Taking the infimum yields

∥∥T>k ∥∥ ≤ ‖k‖H′>⊗H< .

On the left-hand side we have for allξ′< ∈ Γc (Y ′, q′∗E′<):

∥∥T<k (ξ′<) (y)
∥∥ ≤

∫
Y ′

q(y)

∥∥∥k<(y′,y)∥∥∥∥∥ξ′<(y′)
∥∥ dµ′q(y)(y

′)

≤
∫
Y ′

q(y)

n∑
i=1

χ′i(y
′)χi(y)

∥∥ξ′<(y′)
∥∥ dµ′q(y)(y

′)

≤
n∑
i=1

χi(y)
∥∥χ′i∥∥H′> ∥∥ξ′<∥∥H′<

for all y ∈ Y , and hence

∥∥T<k (ξ′<)∥∥H< ≤
n∑
i=1

∥∥χ′i∥∥H′> ‖χi‖H<

∥∥ξ′<∥∥H′< .
As above, this shows thatT>k is continuous with norm≤

∑n
i=1 ‖χ′i‖H′> ‖χi‖H< , implying

∥∥T<k ∥∥ ≤ ‖k‖H′>⊗H< .

Together, we get‖T‖ ≤ ‖k‖H′>⊗H< .
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If ξ′< ∈ Γc (Y ′, q′∗E′<) andξ> ∈ Γc (Y, q∗E>), then〈
ξ′<, T>k ξ

>
〉
x

=
∫
Y ′x

〈
ξ′<(y′), (T>k ξ

>)(y′)
〉

dµ′x(y
′)

=
∫
Y ′x

〈
ξ′<(y′),

(∫
Yq′(y′)

k>(y′,y)ξ
>(y) dµx(y)

)〉
dµ′x(y

′)

=
∫
Y ′x

∫
Yx

〈
ξ′<(y′), k>(y′,y)ξ

>(y)
〉

dµx(y) dµ′x(y
′)

=
∫
Yx

∫
Y ′x

〈
k<(y′,y)ξ

′<(y′), ξ>(y)
〉

dµ′x(y
′) dµx(y)

=
∫
Yx

〈∫
Y ′x

k<(y′,y)ξ
′<(y′) dµ′x(y

′), ξ>(y)

〉
dµx(y)

=
∫
Yx

〈(
T<k ξ

′<) (y), ξ>(y)
〉

dµx(y) =
〈
T<k ξ

′<, ξ>
〉
x

for all x ∈ X. SinceT>k andT<k are clearlyΓ0(X,B)- andC0(X)-linear, the pairTk is an element of

LC0(X)
Γ0(X,B) (H(Y,E), H′(Y ′, E′)).

Note that the mapk 7→ Tk is, in particular, continuous for the inductive limit topology on the
space of elements ofLQ∗B (Q∗E, Q∗E′) with compact support.

Assume now thatk is compact, i.e., assume thatk is an element ofKloc
Q∗B(Q∗E,Q∗E′) with

compact support. We first showTk is compact ifk is of a very simple form; we then move on to the
general situation step by step.

1. If η< ∈ Γc (Y, q∗E<) andη′> ∈ Γc (Y ′, q′∗E′>), then the operator
∣∣η′>〉〈η<∣∣>, as a map

from Γc (Y, q∗E>) ⊆ H>(Y,E>) to Γc (Y ′, q′∗E′>) ⊆ H′>(Y ′, E′>), is given by∣∣η′>〉〈η<∣∣>(ξ>)(y′) = η′>(y′)〈η<, ξ>〉q′(y′) = η′>(y′)
∫
Yq′(y′)

〈η<(y), ξ>(y)〉dµq′(y′)(y)

=
∫
Yq′(y′)

∣∣η′>(y′)
〉〈
η<(y)

∣∣>(ξ>(y)) dµq′(y′)(y)

for all ξ> ∈ Γc (Y, q∗E>). A similar expression can be derived for
∣∣η′>〉〈η<∣∣<, showing that∣∣η′>〉〈η<∣∣ is given by the kernelk(y′,y) =

∣∣η′>(y′)
〉〈
η<(y)

∣∣. Conversely, ifk is such a kernel,
thenTk is compact. The same holds for linear combinations of such kernels.

2. Let η< ∈ Γc (Y ′ ×X Y, Q∗E<) andη′> ∈ Γc (Y ′ ×X Y, Q∗E′>). Assume thatk(y′,y) :=∣∣η′>(y′, y)
〉〈
η<(y′, y)

∣∣ for all (y′, y) ∈ Y ′ ×X Y .

(a) If η< is of the formη<(y′, y) = χ′(y′)η̃<(y) with χ′ ∈ Cc(Y ′) andη̃< ∈ Γc(Y, q∗E<)
and if the sectionη′> is of the formη′>(y′, y) = η̃′>(y′)χ(y) with χ ∈ Cc(Y ) and
η̃′> ∈ Γc(Y ′, q′∗E′>), then

k(y′,y) =
∣∣η′>(y′, y)

〉〈
η<(y′, y)

∣∣ = ∣∣η̃′>(y′) χ(y)
〉〈
χ′(y′) η̃<(y)

∣∣
=

∣∣χ′(y′) η̃′>(y′)
〉〈
χ(y) η̃<(y)

∣∣,
so we are back in case 1.



322 APPENDIX E. SOME REMARKS

(b) Approximate the sectionη′> in the inductive limit topology by sections which are of the
form (y′, y) 7→

∑n
i=1 η

′>
i (y′)χi(y) with η′>i ∈ Γc (Y ′, q′∗E′>) andχi ∈ Cc(Y ). Do the

same forη<. Then the resulting kernel approximatesk in the inductive limit topology.
HenceTk is compact also in this case.

3. Now consider a generalk. Since it is locally compact, we can approximate it locally by oper-
ators which are sums of those considered in 2. By using continuous partitions of unity we can
approximatek by such operators in the inductive limit topology. HenceTk is compact.

E.8.4 The pullback of monotone completions

Assume thatq : Y → X is continuous and open. LetY ′ be another locally compact Hausdorff space
and letq′ : Y ′ → X be another continuous and open map. WriteY ×X Y ′ for the fibre product ofY
andY ′ over the mapsq andq′, and letπ : Y ×X Y ′ → Y andπ′ : Y ×X Y ′ → Y ′ be the canonical
projections. LetQ : Y ×X Y ′ → X, (y, y′) 7→ q(y) = q′(y′).

LetH(Y ) be a monotone completion ofCc(Y ). We are now going to define a monotone comple-
tion q′∗H(Y ×X Y ′) of Cc(Y ×X Y ′) such that

q′∗F (H(Y,E)) ∼= F
(
q′∗H

(
Y ×X Y ′, q′∗E

))
for all u.s.c. fields of Banach spacesE over Y . We need such a construction in order to properly
define groupoid actions on monotone completions.

Definition E.8.13 (The completionq′∗H(Y ×X Y ′)). On Cc(Y ×X Y ′) define the monotone semi-
norm

‖χ‖q′∗H := sup
y′∈Y ′

∥∥∥Yq′(x′) 3 y 7→ χ(y, y′)
∥∥∥
H(Yq′(x′))

for all χ ∈ Cc(Y ×X Y ′).

To see that‖χ‖q′∗H < ∞, let K := π (suppχ) ⊆ Y . Find a functionδ ∈ Cc (Y ) such that
0 ≤ δ ≤ 1 andχ|K = 1. For ally′ ∈ Y ′, we have∥∥∥Yq′(x′) 3 y 7→ χ(y, y′)

∥∥∥
H(Yq′(x′))

≤
∥∥∥Yq′(x′) 3 y 7→ δ(y) ‖χ‖∞

∥∥∥
H(Yq′(x′))

≤ ‖χ‖∞ ‖δ‖H .

Definition and Proposition E.8.14. Let E be a u.s.c. field of Banach spaces overX. For all ξ ∈
Γc (Y ×X Y ′, Q∗E), define

Φ(ξ) (y′) := ιE,q′(y′)
(
Yq′(y′) 3 y 7→ ξ(y, y′)

)
∈ H (Y,E)q′(y′)

for all y′ ∈ Y ′, whereιE,x denotes the canonical map fromΓc (Yx, (q∗E)|Yx) to H (Y,E)x ∼=
H (Yx, E) for all x ∈ X. ThenΦ(ξ) is in Γc (Y ′, q′∗F (H(Y,E))) and‖Φ(ξ)‖∞ = ‖ξ‖q′∗H.

Because the image ofΦ is dense, it follows that we can realiseΓ0 (Y ′, q′∗F (H(Y,E))) as the
completion ofΓc (Y ×X Y ′, Q∗E) for the semi-norm‖·‖q′∗H, in other words:

q′∗F (H(Y,E)) ∼= F
(
q′∗H

(
Y ×X Y ′, q′∗E

))
as u.s.c. fields of Banach spaces overY ′.
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Proof. The mapΦ(ξ) surely is a boundedselectionof compact support, and almost by definition we
have‖Φ(ξ)‖∞ = ‖ξ‖q′∗H. Moreover,ξ 7→ Φ(ξ) is linear and if the support ofξ is contained inL,
then the support ofΦ(ξ) is contained inq′(L). It hence suffices to check thatΦ(ξ) is a sectionfor
ξ taken from a dense subset ofΓc (Y ×X Y ′, Q∗E). If ξ0 ∈ Γc (Y, q∗E) andδ′ ∈ Cc (Y ′), then
ξ : (y, y′) 7→ δ′(y′)ξ0(y) is in Γc (Y ×X Y ′, Q∗E) and the linear span of such sections is dense. Ifξ
is of this form, then

Φ(ξ) (y′) = ιE,q′(y′)
(
Yq′(y′) 3 y 7→ δ′(y′)ξ0(y)

)
= δ′(y′)ιE,q′(y′)

(
ξ0|Yq′(y′)

)
= δ′(y′) (ιE(ξ0))q′(y′)

for all y′ ∈ Y ′, soΦ(ξ) = (δ ◦ q′) · (gH(Y,E) (ιE(ξ0)) ◦ Q), whereιE is the canonical map from
Γc (Y, q∗E) to H(Y,E). In particular, becausegH(Y,E) (ιE(ξ0)) is in Γ (X, F (H(Y,E))), we can
conclude thatΦ(ξ) is a section.
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projection, 42
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G-Banach ..., 22–24
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Gelfand functor, 119
Gelfand transformation, 119, 264
G-Banach ..., 93–95
Grading, 19–97
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Group action, 22
Groupoid, 91
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G -cycles, 99

327



328 INDEX

of Morita cycles, 43

Inner product, 164
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for C0(X)-Banach algebras, 63
for homomorphisms, 32

KKban
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strict, 93
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Regular unconditional completion, 217
Restriction, 257, 310
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Section, 75
Sections of compact support, 273
Selection, 70
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Structure homomorphism, 305
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Theorem
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