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Abstract

In analogy to the definition of the assembly map of Baum-Connes one can construct a homomorphism
pf from K*P (G, B) to Ko(A(G, B)), whereG is a locally compact groug is aG-C*-algebra and
A(G) is an unconditional completion 6.(G), that is, a completion with respect to a nojrj 4 such
that| f|| , only depends on the functian— | f(g)|. Is 1 an isomorphism? This question was raised
by Vincent Lafforgue, who has also given affirmative answers in many important cases. Moreover, he
considered the more general situation where the g@ipreplaced by a locally compact Hausdorff
groupoidg.

In the present thesis the setting is generalised further, takitmbe a non-degenerageBanach
algebra instead of g-C*-algebra. The main result asserts that the mé&pis split surjective if
the G-Banach algebra3 is proper (andA(G) satisfies some mild condition). The proof rests on
the following generalised version of the Green-Julg theoreng i proper andB is a G-Banach
algebra (and4(G) satisfies some mild condition), th&fK g™ (Co(X), B) is naturally isomorphic to
RKKP*(Cy(X/G); Co(X/G), A(G, B)), whereX denotes the unit space gf

Building on the work of Lafforgue, the necessary tools to show these results are systematically
developed, rounding out some parts of Lafforgd€lsP2"-theory. In particular, a Banach algebra ver-
sion of RKK is introduced and the functoriality of the groupoid versiorkat"*" under generalised
morphisms of groupoids is proved.

Zusammenfassung

Analog zur Definition der Assembly-Abbildung von Baum-Connes kann man auch einen Homomor-
phismusu; vonK™P (G, B) nachK(A(G, B)) konstruieren, wobeir eine lokalkompakte Gruppe,

B eine G-C*-Algebra undA(G) eine unbedingte Vervollstandigung vép(G) ist, wobei letzteres

eine Vervollstandigung beziiglich einer Notr| , mit der Eigenschatft ist, daff|| , nur von der
Betragsfunktiong — |f(g)| abhangt. IstuZ ein Isomorphismus? Vincent Lafforgue, der diese
Vermutung als erster in dieser Allgemeinheit behandelt hat, konnte sie bereits in vielen wichtigen
Fallen bestatigen. Er ging auch die allgemeinere Situation an, in welcher er die Gruhypeh ein
lokalkompaktes Gruppoid ersetzt hat.

Die vorliegende Arbeit geht noch einen Schritt weiter, indem sta@t -Algebren nicht-entartete
G-Banachalgebren betrachtet werden. Als Hauptresultat wird bewiesen, dal3 der Homomorphismus
%3 surjektiv ist und einen naturlichen Schnitt hat, falls @i®anachalgebr eigentlich (und die Ver-
vollstandigungA(G) nicht zu exotisch ist). Die wichtigste Zutat zum Beweis dieses Hauptsatzes ist
die folgende Verallgemeinerung des Satzes von Green-Julg: Weigentlich undB eineG-Banach-
algebra ist (und4(G) wiederum gewissen schwachen Bedingungen genlgt), dann gibt es einen natir-
lichen Isomorphismus zwischdfKg™ (Co(X), B) und RKK"*(Co(X/G); Co(X/G), A(G, B)),
wobei X den Einheitenraum vo@ bezeichne.

Ausgehend von den Arbeiten von Vincent Lafforgue werden die fur die Beweise der genannten
Satze notwendigen Hilfsmittel systematisch zusammengetragen, wobei einige gundlegenden Bereiche
seinerKK""-Theorie ausgebaut werden. So wird etwa eine Variant®#d€-Theorie fiir Banachal-
gebren entwickelt und gezeigt, daR die Gruppoid-Versiorkde?>*-Theorie unter verallgemeinerten
Morphismen von Gruppoiden funktoriell ist.
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Introduction

The Bost conjecture

Let G be alocally compact Hausdorff group andligt denote the classifying space for proper actions
of G on locally compact Hausdorff spaces. For everC*-algebraB one defined!” (G, B) to be
the grouplim_, KK (Co(Z), B) where the limit is taken over th&-equivariant andz-compact
subsetsZ of EG. In [BCH94], Baum, Connes and Higson define a homomorphism

pZ: K (G, B) —» K, (B %, G),

where B x,. G denotes the reduced crossed producBdfy G. We say that= satisfies thdBaum-
Connes conjecture with coefficierits:” is a bijection for allG-C*-algebrasB. The Baum-Connes
conjecture has been proved for a large number of groups; the main method to prove the injectivity
of the Baum-Connes map, the “Dirac-dual-Dirac” method of Kasparov, makes use of Kasparov’s
equivariant<K-theory for C'-algebras (seé [KasDb5]).

Formidable progress was achieved by Vincent Lafforgue by the introduction of his bivErant
theory KK for general Banach algebras [n [Laf02]. In that article he puts forward the following
variant of the Baum-Connes conjecture: Let the Banach algé be an unconditional completion
of the convolution algebré.(G), i.e., a completion for a norm ai.(G) such that| f|| only depends
ong — |f(g)|; the most prominent example of such a completiofi§G). If B is a G-Banach
algebra, i.e., a Banach algebra on whi€tacts continuously by isometries, then Lafforgue defines
the Banach algebrd (G, B), in complete analogy with!' (G, B), as a completion of.(G, B). For
G-C*-algebrasB he then constructs a homomorphism

uB: K (G, B) — K. (A(G, B)).

One can now ask Wheth@ﬁ is an isomorphism (this generalises a conjecture of Jean-Ben()ﬁ Bost
which is the special caseé = C andA(G) = L(G)). Using his bivarianK-theoryKK"", Lafforgue
was able to show that faF in a large class of grougsf{ is an isomorphism for all7-C*-algebrasB
and all unconditional completion4(G). By comparing thé<-theories ofA(G) andC;.(G) he could
thus prove the Baum-Connes conjecture for many graéxips

There is an obvious version of the Bost conjecture for general Banach algebra8:Hesa G-
Banach algebra andl(G) be an unconditional completion @t(G). Define K" (G, B) :=
lim_, KK (Co(Z), B), where the limit is again taken over tifg-equivariant andz-compact
subsetsZ of EG. Then there is a homomorphigm

pB . Ktopban (G B) 5 K, (A(G, B)).

Is 15 an isomorphism?

1See the acknowledgements at the end of the introductidn of [Laf02].
2Note that forG-C*-algebrasB, the two versions of.Z have different domains of definition. Because we are going to
concentrate on general Banach algebrdbwill always denote the second, the Banach algebra version, in later chapters.
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Although Lafforgue has carried out most of his basic constructions for general Banach algebras,
most notably the definition of his bivariaht-theory, important arguments in [Laf02] only work for
C*-algebras. For instance, itis proved ttmﬁtis an isomorphism for all prop&r-C*-algebras3. But
the proof rests on the fact proved in [CEMO1] thdt is an isomorphism for such algebras and hence
this proof cannot serve as a model for an analogous result for more general Banach algebras.

One aim of the present work is to make it possible to prove Banach algebra results using only Ba-
nach algebra techniques. A central tool, which is not available (and not necessary) indlygera
world, is a very useful sufficient condition for the homotopyK)Kba“-cycleﬁ: Homomorphisms
between certain cycles which are isomorphisms in th&algebra world have only dense image in
the Banach algebra world; we state and prove a condition which tells us that nevertheless these ho-
momorphisms often induce homotopies between the cycles. A first application of this tool is the
systematic treatment of the invariancelotheory of Banach algebras under Morita equivale[ﬂb&ys
the introduction of so-called Morita morphisms between Banach algebras.

Expanding the the purely Banach algebraic theory will probably also prove useful when attacking
C*-algebra problems. For example, if one considers generalisations of iterated crossed products of C
algebras (as used in [CE01] to prove permanence properties of the Baum-Connes conjecture), then the
first step of a stepwise “unconditional descent” would lead out of the categori-afg€bras.

Groupoids and the Green-Julg theorem

A proper G-C*-algebraB is a G-C*-algebra which is at the same timeCg( X )-algebra for some
properG-spaceX such that the actions @F andCy(X) on B are compatible. We can think of such
an algebra as a*Galgebra on which the transformation groupdidx G acts. SinceX is a proper
G-space, the groupoid x G is proper.

For this reason it is natural to consider actions of (proper) groupoids on Banach algebras. Laf-
forgue has recently translated most of his concepts and results into the framework of actions of
groupoids (see_[Laf06]). In his article, the fundamental concept is the notion of an upper semi-
continuous field of Banach algebras, an@ ik a topological groupoid, then@&Banach algebra is in
particular an upper semi-continuous field of Banach algebras over the unit@faoég. Lafforgue
constructs a bivariariX-theory forG-Banach algebras. The present thesis gives a rather detailed and
systematic account of this construction, including a proof of the functoriality under generalised mor-
phisms of groupoids in the sense of Le Gall (see [LG94]), which is only mentioned in |[Laf06]. From
this functoriality we deduce:

Theorem. LetG andH be locally compact Hausdorff groupoids carrying Haar systems{lle¢ an
equivalence betweghandX. Let A and B be’H-Banach algebras. Then

KKy™ (A, B) = KKg™ ("4, Q*B).

Here, Q* A denotes the pull-back ofi along (2, which could also be denoted as the induced
aIgebraInd% A. We also show that equivalence is preserved under the descent construction defined in
[Laf06]: The Banach algebrd (7, A) is Morita equivalent to4(G, Q* A), whereA(G) and A(H) are
unconditional completions that are compatible in a certain sense: This applies in partidulégjo
andL!(H).

The underlying construction is used in special cases alreafy in [Laf02] and more expliditly in/[Laf04].
4The invariance was proved in the unpublished riote [Laf04]; our result is somewhat more general.



Recall that upper semi-continuous fields df-&gebras over some locally compact spatean
alternatively be described &g(X)-C*-algebras. This is no longer completely true for Banach al-
gebras and we clarify the subtle differences between the two concept€y (Foy-Banach algebras
we define an equivariant bivariaki-theory that we calRKKP*™ (Co(X); A, B), and compare it to
the equivarianKK-theory for groupoids defined ih [Laf06]. Both theories have their natural applica-
tions; the descent construction might serve as an example: We show that it not only takes values in
KK (A(G, A), A(G, B)), butis a homomorphism

ja: KKg" (A, B) — RKK"™ (Co (X/G); A(G,A), A(G,B)),

whereg is a locally compact Hausdorff groupoid with unit spakewhich carries a Haar system,
A(G) is an unconditional completion ¢%.(G) and A and B areG-Banach algebras.

We also use th® KK *"-theory as the right-hand side in the following variant of the Green-Julg
theorem. The Galgebraic version of this theorem is proved(in [Tu99].

Theorem. E] Let G be a proper locally compact Hausdorff groupoid with unit spa€eand which
carries a left Haar system. Le4(G) be an unconditional completion 6f(G) (satisfying some mild
conditions). Then for all non-degeneraieBanach algebras$3 we have an isomorphism

KKg™ (Co(X), B) = RKK™™ (Co (X/G); Co(X/G), AG. B)).
If X/G is compact, we therefore get an isomorphism
KK§™ (Co(X), B) = KK"™ (C, A(G, B)) = Ko (A(G, B)).

Note that ifG is a compact grougs and X is a one-point space, then this theorem says that
K§ (B) is isomorphic tdK, (A(G, B)). For A(G) = L}(G) this is a form of the Green-Julg theorem
(comparel[[Jul81]).

As a consequence of the generalised Green-Julg theorem we can prove the following positive
partial answer to the Bost-conjecture for proper Banach algebras. To this end we introduce the notion
of a properg-Banach algebra for locally compact Hausdorff group@idmnd show:

Theorem. E]LetB be a non-degenerate propgrBanach algebra and letl(G) be an unconditional
completion of’.(G) (again satisfying some mild regularity condition). Then the homomorphism

Wl K9P (G B) - Ko (A (G, B))

is split surjective.

Possible further developments

Expansion

With the toolbox put together in this thesis it should be easier to translate further result$-for C
algebras into the language of Banach algebras. For some results it might even be possible to use the
brute force method to translate proofs word for word. On the other hand, even proofs of simple facts
for KKP2" can be much more technical than their-&lgebraic counterparts; in particular it can be
tiresome if Kasparov cycles that should be isomorphic are only contained densely into one another,
making it necessary to construct homotopies.

5See Theoremn 7.1.9.
5See Theorein 8.4.4.




Abstraction

To keep this thesis comprehensible without losing precision and completeness, | have tried to be as
systematic as possible (even at the risk of being a bit wordy from time to time). An outcome of being
systematic is a certain amount of repetition which might have been avoided by a higher degree of
abstraction. However, an elaboration of the necessary categorial concepts would be extensive and too
much of a diversion, so | decided to just sketch a possible general construction for now:

The definition of equivariant bivariaff-theory for Banach algebras is presented in the first chap-
ter of this thesis; in the second chapter the construction is repeaté€g(f&)-Banach algebras; and
in the third chapter for upper semi-continuous fields of Banach algebras. The underlying blue-print
is always the same: Start with a category which is enriched over the category of Banach spaces so
that the morphism sets are Banach spaces and the composition is bilinear and contractive (e.g. take
the category of5-Banach spaces and continuous linear maps between them, @lesome locally
compact group). Distinguish a certain class of morphisms@eguivariant contractive linear maps
in our example). There should be an associative tensor product compatible with the distinguished
morphisms (the projective tensor product®Banach spaces) which has a unit (the tricdiaBanach
spaceC). This data could be calledraonoidal Banach categoryrunctors between such categories
which are compatible with the tensor product could be catbedoidal Banach functors

Using the tensor product of such a category, one can define algebras-Bheach algebras in
our example) and homomorphisms between them (they should be distinguished morphisms — in our
example they are thé'-equivariant contractive homomorphisms@ Banach algebras). Similarly,
one can define modules and pairs, etc. (&:@anach modules an@-Banach pairs ovefr-Banach
algebras) and homomorphisms and linear operators between them. To define “generalised Kasparov
cycles” in such a setting you need some additional information, most prominently a definition of
“compact operators”. You also need some notion of direct image under homomorphisms of alge-
bras and a homotopy relation. The so-constructed variaRiloftheory should be compatible with
monoidal Banach functors that respect compact operators, etc.

The exposition in each of the first three chapters of this thesis follows the same fundamental
plan. First the underlying monoidal Banach category is introduced. Then the induced categories
of algebras, modules and pairs are defined. In a third step, the additional information is given, for
instance the compact operators are defined. Finally, the resulting verdidg-ttieory is derived.

There are several instances of monoidal Banach functors giving homomorphidiis-tfpe
groups, and we also use a standardised scheme to define them: They are first introduced as func-
tors between the underlying monoidal Banach categories, then it is shown how they induce functors
between the derived categories of algebras, of pairs, of modules &fid-af/cles.

A precise abstract treatment of monoidal Banach categories would make it necessary to keep track
of a large number of natural isomorphisms and natural transformations that come with the categories
and functors, e.g. the natural isomorphism that is needed for a correct statement of the associativity of
the tensor product of a monoidal category. This might better be done in a separate exposition.

Connection tokk

It was remarked already in [Laf02] that it would be desirable to conRé&t* to Cuntz’ kk-theory
defined in[[Cun97], and recent work of Culﬂsztrongly indicates that there is indeed a way to turn cy-
cles forKKb*"( A, B) into elements okk(A, B). Becausék has a number of advantageous features,
this would pave the way for a considerable transfer of the techniques and resultsdlyeBras into

the realm of Banach algebras. For example, the “Dirac-dual-Dirac” method makes use of the Kasparov

7J. Cuntz, personal communication, 2006.
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product, andkk possesses a product. So far, the produdfiP>® is only defined for very special
elementary cases (such as the actioi&k®°*" on K-theory and the product betwe&K *"-cycles

and Morita equivalences) and it is not clear whether it could be constructed for g&fi€tal-cycles

at all. Moreover, the “algebraic” definition &k and its computational features should make it easier
to find algebraic proofs of results which might only have rather technical analytic proofs in the world
of KKPan,

Organisation of this work

The first chapter recalls the definition of Banach pairs anKIégan(A, B). The basic concepts are
introduced rather systematically, one cornerstone being the notion of a (concurrent) homomorphism
of Banach pairs (which appears only implicitly [n_[Laf02]). This new notion also plays a prominent
réle in the statement of the above-mentioned sufficient condition for homotop§idf*-cycles,

which is proved in the first chapter and is used (in several variants) about thirty times throughout this
thesis. The third important part of the first chapter introduces the notion of Morita morphisms between
Banach algebras, generalising both (homotopy classes of) homomorphisms and Morita equivalences
of Banach algebras.

The second chapter examines what happens if one adds a compatible non-degenerate action of
the Banach algebré,(X) to all the definitions of the first chapter, wheke is a locally compact
Hausdorff space. Because the first chapter is rather detailed, the second chapter merely summarises
the necessary changes. The Banach algebras carrying a compatible a€tiQK pére called’y (X)-

Banach algebras, and the resulting bivarigrtheory forCy (X )-Banach algebras, defined in Chapter
2, is calledRKKR™ (Co(X); A, B).

Technically more demanding than the studygfX )-Banach algebras is the study of upper semi-
continuous fields of Banach algebras which we undertake in Chapter 3. This chapter comprises a
systematic development of th&< 2"-theory for Banach algebras equipped with actions of groupoids,
as introduced in [Laf06].

The notions of upper semi-continuous fields of Banach algebrasovend of Cy (X )-Banach
algebras are really very close, and Chapter 4 explores how the two concepts are related to each other.
It might be worth mentioning that unlike upper semi-continuous fields*eélgebras, upper semi-
continuous fields of Banach algebras are more specialdf@s)-Banach algebras; they correspond
to so-called “locallyCy (X )-convexCy (X )-Banach algebras”, as discussed in Chapter 4.

Chapters 5 and 6 address the descent and generalised morphisms of groupoids. The exposition of
the descent is more systematic thari in [Laf06], giving quite a lot of the technical details of the proofs,
and the definition of th& KK"*"-theory allows us to obtain results that are a little more precise.

We also show thakKP2" is functorial under generalised morphisms of groupoids and that (Morita)
equivalence of groupoids is compatible with the descent map.

In Chapter 7 we use the theory presented in the first six chapters to show the generalised version
of the Green-Julg theorem mentioned above. The proof demands a fair amount of technical care.
We divide the proof into two parts: Split surjectivity and split injectivity. This is worth mentioning
here because the surjectivity part of the proof needs fewer technical conditions on the unconditional
completion that is involved.

In the final chapter we use the split surjectivity part of the generalised Green-Julg theorem to prove
the split surjectivity of the Bost homomorphism for proper coefficients. For the formulation of this
result we first say what propérBanach algebras are in the case tha a locally compact Hausdorff
groupoid.



The appendices collect technical results and proofs which were banned from the main part of the
thesis to increase readability. A noteworthy example is the proof of the fact that the projective tensor
product ovelCy(X) of locally Cy(X)-convex Banach spaces is again loc&iy X )-convex.
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Notational conventions

Throughout this work, all normed spaces and Banach spaces are complex (and so are all Banach
algebras, Banach modules, etc.). A linear nTappetween normed spaces is calleohtractiveif
|T|| < 1. If Eis a normed space arith is a subset of2 then we writecl (E;) for the closed linear
span ofEy in E.

If Kk € NandF,..., E, and F' are Banach spaces, then the set of continuelisear maps from
Ey x -+ x E to F is denoted byM (E1, ..., Ey; F'). Endowed with the normu — ||u|] =
SUp|ie,<1 lu(er, - - ex)llp, it is itself a Banach space. A map € M (Ey,..., Ey; F) is called
non-degeneratdé the span of its image is a dense subsef'of

If E'is a Banach space ardidis a locally compact Hausdorff space, then we wht& for the Banach
space&ly (X, F) of continuous functions fronX to E vanishing at infinity. We regard this as a closed
subspace of the spa€g(X, E) of all bounded continuous functions from to F, equipped with the

normf — || fll = supex |/ ()] -



Chapter 1

KK-Theory for Banach Algebras

The equivariant and bivariaf-theory KK"2" for Banach algebras defined by Vincent Lafforgue is
modelled after thd{K-theory for C-algebras as introduced by Kasparov. The cycles foii{he

theory for C-algebras are given by operators on graded equivariant Hilbert modules, the correspond-
ing notion for Banach algebras which is used to define cycle&i§P*" is the notion of a graded
equivariant Banach pair.

In this chapter we present Lafforgue’s theory in some detail. We first discuss elementary notions
such as Banach algebras, Banach modules and the balanced tensor product. In a second step, Banach
pairs are introduced along with the linear and compact operators between them. It is worth mentioning
that there is an additional type of morphisms between Banach pairs, generalising the homomorphisms
(with coefficient maps) between Hilbert modules; we coin the term “concurrent homomorphisms” for
them.

On our way to the definition KK (finally given in Secti08) we also define gradings and
group actions. To show how these definitions fit into the general scheme sketched in the introduction
and to have a model for similar definitions in the later chapters we define gradings first on Banach
spaces, then on Banach algebras, Banach modules, and, finally, on Banach pairs. The same systematic
approach is repeated for actions of locally compact Hausdorff groups.

As a technical tool which will prove very helpful throughout this thesis we prove in Setidn 1.9
a sufficient condition for the homotopy 8fK*"-cycles; this condition is then used to systematically
present and extend a result of V. Lafforgue that says thakttieeory of Banach algebras is invariant
under Morita equivalences.

A general reference for the first part of this chapter_is [Laf02], the last two sections are partly
based on ideas appearing(in [LafO4].

1.1 Banach algebras and Banach modules

1.1.1 Banach algebras

For us, aBanach algebraB is a Banach spacB endowed with a bilinear associative multiplication
such that|bc|| < [|b]| ||c||- Itis calledunitalif it has a unit of norm one. In this work, a homomorphism
of Banach algebras will always be contractive. A Banach algébis callednon-degeneraté the
span ofB - B is dense inB.

Let B be a Banach algebra. We define the unitalisafioof B to be the unital Banach algebra
given by the following data: The underlying Banach spac&is C with the norm||(b, \)

5 :

7
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Ibl| 5+ |A| for everyb € B, X € C. The multiplication is given bya, \) - (b, 1) := (ab+ Ab+ pa, M)
for everya,b € B, A\, € C. Note that the unit element a is given by(0,1). Moreover,B is
canonically contained i as a closed two-sided ideal.

If B andC are Banach algebras afld B — C'is a homomorphism of Banach algebras, then the
unitalisationd of @ is the canonical unital homomorphisi, Idc) from B to C.

If B is a Banach algebra, then a rfet\) ca in B is called aleft approximate identityor B if
limycp upb = b forall b € B. Itis boundedby one), if||uy|| < 1 for every\ € A. Analogously,
we define a (bounded) right approximate identity. A (bounded) approximate identity is a (bounded)
left approximate identity which is at the same time a right approximate identity. Notétisanhon-
degenerate iB has an approximate identity.

1.1.2 Banach modules

Definition 1.1.1 (Banach module).Let B be a Banach algebra. Aght BanachB-moduleE is
a Banach space which is at the same time a rigdthodule satisfying the norm-conditigfed|| <
lle]| ||b]| for all b € B ande € E. We write E to emphasise the fact thatis a right B-module.

In the same manner we define left Banatimodules, £ and Banach4-B-bimoduless E g for
Banach algebrad andB. If B is a Banach algebra, then we can reg8ras a Banacli- B-bimodule
(called thestandard BanaclB-B-bimodulg. In the following we are going to concentrate on right
Banach modules; the left-handed analogues of the definitions and propositions are immediate.

Definition 1.1.2 Lp(E, F)). Let B be a Banach algebra and B and Fz be BanachB-modules.
ThenLp(E, F) is defined as the set @f-linear continuous maps froifa to F' satisfying

Vee EYbe B: T(eb) = (T(e))b,

i.e., the elements dfz(F, F') are B-linear. We writeL.z (F) for Lp(E, E). In the case of left Banach
B-modules we write; L(E, F') rather tharL.g(E, F).

Note that the sdtz (F, F') is a Banach space (being a closed subspate @F, F')) and that the com-
position of suchB-linear continuous operators is agdslinear and continuous. The spdcg(F) is
hence a unital Banach algebra.

Between Banach modules there is also a second type of morphisms:

Definition 1.1.3 (Homomorphism with coefficient maps).Let B and B’ be Banach algebras and let
Ep andE’,, be Banach modules ovét and B’, respectively. Ahomomorphisn® (of right Banach
modules) with coefficient map from Ep to E’, is a pair(®, ¢) such thatb: E — E’ is C-linear
andcontractive ¢: B — B’ is a homomorphism of Banach algebras and

Vee EVbe B: ®(eb) = ®(e)p(b).

We also writed,, for the pair(®, ). In the caseB = B’ a homomorphism with coefficient mdgz
is just a contractiveB-linear map.

Remark 1.1.4. The main objective of requiring homomorphisms of Banach modules to be contractive
rather than just continuous is to align them with homomorphisms of Banach algebras and homomor-
phisms of Hilbert modules. | consider it beneficial for the intellectual hygiene to put these kinds
of homomorphisms into a single box, whereas the continugdismear maps between Banadh
modules are akin to (and generalisations of) continuddimear maps between Banach spaces and
(adjointable) operators between Hilbert modules. We will label the first kind of morphisms “homo-
morphisms” to distinguish them from the second kind, which we prefer to call “operators”.
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The definition of homomorphisms with coefficient maps extends naturally to Banach bimodules.
There we have to consider triples consisting of a linear map between the modules and two coeffi-
cient maps.

Definition 1.1.5 (Non-degenerate Banach module)Let B be a Banach algebra. A right Banach
B-moduleF is called non-degener&té the span ofE'B is dense ink.

Proposition 1.1.6 ([Rie67], Proposition 3.4)Let B be a Banach algebra with bounded approximate
identity (uy ) ca- Let E be a right BanachB-module. Then the following are equivalent:

1. Eis non-degenerate;
2. Ve € E: e=limyep euy;

3.Vee Edfe Edbe B: e= fb.

1.1.3 Tensor products of Banach modules

Let A, B andC be Banach algebras, |1& be a Banacti-B-bimodule and lef’ be a BanactB-C-
bimodule.

Definition 1.1.7 (Balanced bilinear maps).Let G be a Banachi-C-bimodule.

e The spaceM(E, F'; G) is defined to be the set of all €« M(E, F'; G) such that

Veec E,f e Fiac A: [B(ae, f) =afle, f).

e The spacdlq(FE, F;G) is defined to be the set of afl € M(E, F'; G) such that

Vee E,f € F,ce C: e, fc) = Ble, f)c.

¢ The spac@I®®(E, F'; G) is defined to be the set of all € M(E, F; G) which areB-balanced

Vee E,f € F,be€ B: f((eb, f) = [(e,bf).

One can combine these notations to defibéc (F, F; G), aM2(E, F; G), etc. All the mentioned
sets are Banach spaces when endowed with the canonical vector space structures and norms.

Definition 1.1.8 (Balanced tensor product).A (projective)balanced tensor produci the bimodules
E andF is a Banachd-C-bimodule F ® 5 F together with an element of ,MP(E, F; E @5 F)
of norm < 1 such that, for every Banach-C-bimoduleG and everyu € AM%""'(E, F;G), thereis a
uniquei € 4Lo(F ®p F,G) such that

A~

p=fom
and||pf| = |4l

That such a balanced tensor product exists can be shown by forming a quotient of the usual projective
tensor produE]: uniqueness follows from general nonsense. It is easy to show that the balanced tensor
product is associative.

l«Essential” in Rieffel's article[[Rie67]; see also [Laf02], page 11.
2See([Laf0?], page 12.
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Lemma 1.1.9.If F' is non-degenerate from the right, then s g F.

Definition 1.1.10 (Tensor product of linear operators).Let £’ be a Banachi-B-bimodule and let
F’' be a BanachB-C-bimodule andS € 4Lg(E, E’) andT € gLo(F, F'). Then there is a unique
elementS ® T'in 4Lo(E ® E', F® F') such that

(SeT)(e® f)=5(e)@T(f)
foralle € Eandf € F. We havel|S @ T|| < ||S] |7

Definition 1.1.11 (Tensor product of homomorphisms).Let A’, B’, C' be Banach algebras and let
E’ be a Banack!’-B’-bimodule andr” be a BanactB’-C’-bimodule. Letp: A — A’,¢: B — B’
andd: C — C’ be homomorphisms of Banach algebras. J®},: 4Ep — 4 E, andy¥y: pFo —
p'F{, be homomorphisms with coefficient maps. Then there is a unique homomorghisnir of
Banach bimodules froft @ g F' to E' ® g F’ with coefficient maps> andé such that

(@@ V)(e® f) = 0(e) @ U(f)

foralle € Eandf € F.

1.1.4 The pushout

Note that, if B is a Banach algebra, then every Bandtimodule is also a Banach-module, where
B is the unitalisation o3, and vice versa. The same is true for Banach bimodules.

Definition 1.1.12 (The pushout of Banach modulesﬂ Let B, B’ be Banach algebras and IBtbe a
BanachB-module. Ify): B — B’ is a morphism of Banach algebras, then define the pushdu)
of E alongv to be the BanacB’-moduleE i B (regardingE as a right BanactB-module and3’

as a BanactB-B’ bimodule viai)).

Definition 1.1.13 (The pushout of linear operators).Let B, B’ be Banach algebras, l¢t B — B’
be a morphism of Banach algebras, andAednd F' be BanachB-modules. IfT" € Lg(E, F), then

definev,(T) € Ly (4 (E), 4.(F)) by
Vu(T)(e® (0 + A1) :=T(e) @ (b + A1)
for everye € E,b' € B’ and\ € C. In other words we defing..(T') to beT © Id;.

Proposition 1.1.14. The mapy, defines a functor from the category of BanaBkhmodules to the
category of BanacHB’-modules which is linear and contractive on the morphism sets.

Proposition 1.1.15 (Functorial properties of the pushout)E]

e Let B be a Banach algebra. Then the funct@d), is naturally isometrically isomorphic to
the identity functor on the category of BanaBhmodules.

e Let B, B’, B” be Banach algebras and let: B — B’, +¢': B’ — B” be homomorphisms.
Theny, o v, and (¢’ o v), are naturally isometrically isomorphic functors from the category
of BanachB-modules to the category of Bana&#f-modules.

SWhat we call “pushout” is called “image directe” in [Laf02].
4See[[[af0?], Lemme 1.1.1.
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Proposition 1.1.16 (The pushout of a hon-degenerate Banach modul@.LetB, B’ be Banach
algebras, lety): B — B’ be a homomorphism and Iéf be a non-degenerate Banadhmodule.
Theny,(E) is a non-degenerate Banadbi-module.

Proof. BecauseF is non-degenerate we know thats B is dense inE. Lete € E, b,c € B and
b+ Xl € B’. Then

(ebe) @7 (' + A1) = (e ®7 w(b)> B(e) (B + A1)
eB’

By this we know that the subspa¢& ® ¢ (B))B' is dense inj,(E) = E ® B', s01,(E) is non-
degenerate. O

1.2 Banach pairs

Definition 1.2.1 ((Banach)B-pair). Let B be a Banach algebra. TherfBanach)B-pair E is a pair
E = (E<, E~), whereE< is a left BanachB-module and~~ is a right BanachB-module, endowed
with a bilinear bracket:, -)rp: E< x E~ — B satisfying the following conditions:

e Vbe BVe< € E<Ve” € E7 : (be<,e”)p = b(e<,e”)p.
e Vbe BVe< € ESVe” € E7: (eS,e”byp = (e<,e”)gb.
o Vet € ExVe” € E7 : |[{e™,e7)pll < [le=] [le” ]|

We will often omit the index of the bracket and simply write-). Sometimes, if we want to stress
the algebraB into which the bracket maps we even write-) 5.

Definition 1.2.2 (Non-degenerate)Let B be a Banach algebra. A BanaBhpair £ = (E<,E~) is
callednon-degeneraté E< is a non-degenerate left BanaBhmodule andE~ is a non-degenerate
right BanachB-module.

Note that i [Laf02] a BanachB-pair is required to be non-degenerate by definition.

1.2.1 Linear, compact and finite rank operators

Definition 1.2.3 (Linear operator betweenB-pairs). [|Let E = (E<, E>) andF = (F<,F>) be
B-pairs.

e A linear operatorfrom E to F'is a pairl’ = (T<,T~), with T< € gL(F<,E<)andT” €
Lp(E~, F~), satisfying

V<€ F<Ve” € B> : (f<,T7¢)p = (T<f<,e>)p.

e The set of all linear operators frofi to F' will be denoted byL.z(E, F)).

5See[[Laf0?2], page 12.
5Comparel[Laf0R], Définition 1.1.3.
Linear operators are called “morphismesRigaires” in [Laf02].
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o If T =(T<,T”) € Lg(E, F), then we define
T,y = max (7<), |7}
With this normLg(E, F') is a Banach space.
e If G is anotherB pair,T € Lp(E, F), andS € Lp(F,G), then
SoT:=(T<08%,5 oT”) € Lp(E,G).
We havel|S o T < [|S]] |IT].

e We setlLp(F) := Lp(F, E). The pair(Idg<,Idg>) is an element of.(E) that we denote by
Idg. Itis the unit of the Banach algebla; (E).

From time to time we will use the following convention which obscures things a little bit but leads
to some handy formulae: IB is a Banach algebra anfd, F' are aB-pairs, then we write for every
T=(T<,T”) € L(E,F):

(1.1) ST :=T<(f<) and Te :=T"(e”)

for every f< € F< and everye” € E~. The fact thatl' € L(E, F') can then be expressed via the
formula
Vi< e F<Ve” € B> : (f<,Te”)p = (f<T,e”)p.

Definition 1.2.4 (Finite rank operator). Let E and F' be B-pairs. For everyf~ € F~ and every
e~ € E<, we define| f>)(e<| € L(E, F) by

/70T (%) = (5, f7)e forall f= € P,
and

‘f>><e<‘>(e>) = f7(eS,e”) foralle” € E~.
The span irL.(E, F') of all such operators is denoted B E, F'). An element ofF(E, F') is called
an operator of finite rank. We s@t(E) := F(E, E).

Using the notation introduced i (1.1), we can write the above formulae as
f<}f>><e<‘ _ <f<,f>>e< and ‘f>><e<‘e> _ f><e<,e >

Proposition 1.2.5. Let F, F andG be B-pairs. Then

Themap - )(-|: F~ x E< — L(E, F) is bilinear, of norm< 1, and B-balanced.

If /= € F7,e< € E<andT € L(F, Q) then

To|f) (5| = |77 (£)) (| = [TF) (e

If g~ € G~, f< € F<andS € L(E, F) then
l97) (<[0T = |7 ) (T=(r)| = |g7) (£<T].

If Se F(E,F)andT € L(F,G)thenT o S € F(E,G).

If S e L(E,F)andT € F(F,G)thenT o S € F(E,G).
F(E)is anideal ofL(E).
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Definition 1.2.6 (Compact operator). Let £ and F' be B-pairs. The closure of the finite rank op-
eratorsF(E, F) in L(E, F) is denoted byK(E, F). An element ofK(E, F) is called acompa(ﬂ
operator. We sék(F) := K(E, E).

Proposition 1.2.7. Let F, F andG be B-pairs.
o If Se K(E,F)andT € L(F,G),thenT o S € K(E,G).
o If SeL(E,F)andT € K(F,G),thenT o S € K(E,G).
e K(F)is anideal ofL(E).

Definition 1.2.8 (BanachA-B-pair). Let A and B be Banach algebras. BanachA-B-paitﬂ E
is a B-pair endowed with a homomorphismy: A — Lp(E). In other words,E< is a Banach
B-A-bimodule,E~ is a Banach4-B-bimodule and

Va € A,eS € ES;e” € E7 1 (eSa,e”)p = (e“,ae”)p.

Note that the situation of the preceding definition is not symmetric as there isvatued bracket
around. It should be pointed out that a BanattB-pair is called non-degenerate in this work if it is
a non-degeneratB-pair; we do not require thd-action to be non-degenerate in this case.

Let B be a Banach algebra. K is a BanachB-pair, thenE' is a Banach.(F)-B-pair and a
BanachK(F)-B-pair. And if we considef3 as a right as well as a le-module then the paiiB, B)
with the multiplication of B as bracket is called thetandard B-pair. We will denote it byB or,
usually, simply byB. The B-pair B with the obvious additional structure is a BandghB-pair.

1.2.2 Concurrent homomorphisms

Definition 1.2.9 (Concurrent homomorphism of B-pairs). Let B, B’ be Banach algebras, I&tbe
a B-pair andE’ a B’-pair. A concurrent homomorphisnir from E to E’ is a pair? = (<, ¥~)
together with a so-called coefficient mgmf ¥, where

e U<: F< — E'< isC-linear and contractive,

e U~: F~ — E'> is C-linear and contractive,

e 1): B — B’is a (contractive) homomorphism of Banach algebras,
such that

1. Vb € B,e< € E< : ¥<(be<) = ¢(b)T<(e~), i.e., ¥< is a homomorphism of left Banach
modules with coefficient map,

2.Vb € B,e” € EZ : U~ (e”b) = ¥~ (e”)(b), i.e., ¥~ is a homomorphism of right Banach
modules with coefficient map,

3. Ve< € E<,e> € B> : Y ((e<,e”)B) = (U<(e%), ¥ (e”)) -

To indicate the coefficient map we writie, for .

8Conceptually, it would be better to call such operators “approximable”.
“These are called(4, B)-bimodule de Banach” in [Laf02].
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Remark 1.2.10. The concurrent homomorphisms of Banach pairs generalise the homomorphisms of
Hilbert modules. The term “concurrent” is chosen to (further) distinguish the homomorphisms of this
type from the linear operators: The homomorphisms consist of two “arrows” pointing in the same
direction whereas the linear operators consist of two “arrows” pointing in opposite directions. The
word “concurrent” could be translated into “nebenlaufig” in German (as opposed to “gegenlaufig”)
and perhaps to “dirigé” in French.

If B andB’ are Banach algebras agd B — B’ is a contractive homomorphism, thén, ¢),;, is a
concurrent homomorphism froif to B’.

Definition 1.2.11 (Concurrent homomorphism of A- B-pairs). Let A, B, A’, B’ be Banach alge-
bras, letE’ be anA-B-pair andE’ an A’-B’-pair. A concurrent homomorphis@ from E to E’ is a
pair¥ = (U<, ¥~) together with two coefficient magsand+ of ¥, where

e U<: F< — E'<isC-linear and contractive,
e U~: E> — E'> is C-linear and contractive,

e ¢: A— A’ andy: B — B’ are contractive homomorphisms,

such that
1. Va€ Abe B,es € E<: U<(be<) =(b)T<(e<) A U<(e“a)=T¥<(e“)¢(a),
2.Va€ Abe B,e”> € B> U>(e7b) =W (e>)p(b) A U7 (ae>) = ¢(a)V>(e>),
3. Ve< € E<,e” € B~ : Y ((es,e”)p) = (T<(e%), ¥~ (7)) p-

To indicate the coefficient maps we writé,, for W.

1.3 Sums, tensor products and the pushout

1.3.1 Sums of Banach pairs

Definition 1.3.1 (Sum of Banach pairs).Let B be a Banach algebra and |g{, F» be BanachB-
pairs. Then we define the sufy & F» of E; andE; to be the BanacB-pair (E; ¢ E5, E7 & E5),
where the left-hand side is endowed with the ndef, e5) — |les|| + ||es || and the canonical left
B-action; the right-hand side carries the nofeq,e;) — |le7|| + |le5 || and the canonical right
B-action; the bracket is given biyey, e5), (e7,e5)) := (eT,e7) + {e5, e5).

Note that this is not the categorial sum in the category of Bar&glairs and linear operators (in

this case, one should rather take th@-norm on the left-hand side); it is the sum in the category of
Banach pairs and homomorphisms with coefficient maps. More precisely, it is the universal object
for pairs of homomorphisms inté; and E5 with identical coefficient map. Note that the sum is
associative and commutative up to isomorphism.

Definition 1.3.2 (Sum of linear operators).Let B be a Banach algebra and Ig{, E,, F}, F> be
BanachB-pairs. Letl; € Lp(FE1, Fy) andT; € Lp(FEs, F»). Then we define

TyeT,:=(ITeTy, Ty ©T;y) € Lp (E1 @ Ea, Fi & F).
This operator satisfigsl} @ T»|| = max{||T3|, || 2|}

Similarly one can define the sum of concurrent homomorphisms.
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1.3.2 The balanced tensor product of Banach pairs

Definition 1.3.3 (The balanced tensor product of Banach pairs)Let A, B, C' be Banach algebras
and let ' be a Banach-B-pair andF' a BanachB-C-pair. Then we define a Banach-C-pair
E®p F by

O(E®BF)>::E>®BF>,
O(E®BF)<::F<®BE<,
o () FT@pESXE”®@pF” —=C, (f~@e,e”®[7)— ([T, (e5,e7)f7).

Note that the balanced tensor product is compatible with the sum of Banach paiiis.jifst aB-pair,
then we can takel := C to make it anA- B-pair. Then the preceding definition gives u€-aC-pair,
i.e., we get just &'-pair.

From the corresponding result for Banach modules (Leinma]1.1.9) we can easily deduce:

Proposition 1.3.4.Let B, C be Banach algebras and |&t be a BanaclB-pair and letF’ be a Banach
B-C-pair. If F'is non-degenerate, then sofis®p F'.

Definition 1.3.5 (Tensor product of concurrent homomorphisms).Let A, B, C, A’, B’, C' be
Banach algebras and IgE's, pFc, 4’ Ey andp F{, be Banach pairs. Let: A — A’,¢: B — B’
andf: C' — C’ be homomorphisms of Banach algebras. J®},: 4Ep — a4/ Ey andy¥y: pFo —
p F, be concurrent homomorphisms with coefficient maps. Then

PRV = (V-0 &~ U”)

is a concurrent homomorphism frofl @ g F to £’ @ F’ with coefficient mapsp and#, where
the left- and the right-hand side, being tensor products of homomorphisms of Banach modules, are
defined il Z1.1.T01.

1.3.3 Operators of the typel’ ® 1
Let A, B andC be Banach algebras and I8t £’ be BanachB-pairs andF’ a BanachB-C-pair.

Definition 1.3.6. For everyl' € Lp(E,E'), defineT ® 1 € L¢ (E ®p F, E' ®p F) to be
T®l=(Idp<®T<, T” @ Idp>).

The assignmeni” — T ® 1 is a functor from the category of Banadhpairs to the category of
BanachC-pairs, linear and contractive on the spaces of morphisms.

Proof. Lete’< € E'<,e” € E~, f< € F<andf~ € F~. Then

<(IdF< ®T<) (f< ® €/<)’ €> ® f>> — <f< ®T<(€/<), €> ® f>>
_ <f<, <T<e'<, e>>f>>
_ <f<, <e/<7 T>e>>f>>
_ <f<®€,<, T>(e>)®f>>
(fc@e<, (T7@Idp>) (e @ f7)).

SoT®1¢€Le(E®pF, E @pF). 0
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Proposition 1.3.7. Let the actionrg: B — Lo(F) on B of F satisfyrg(B) C K¢ (F). Assume
that £ or E’ is non-degenerate. If € Kg(F,E’),thenT ® 1 € K¢ (E®p F, E' ®p F).

Proof. It suffices to show the assertion for= |¢’>)(be<| for all ¢~ € E’>, e< € E< andb € B,
because the functidh — 7' ® 1 is linear and continuous and the span of all oper&ioos the given
form is dense iiKz(E, E’); to prove the latter one uses thator E’ is non-degenerate (note that we
can also writel' = |~ b) (e~ ).

We now expres$’ ® 1 as the composition of three operators, one of them being compact. To this
end we define

Me<:=(fS— fS®eS, (7 ® f7) — (e5,e”)f”) € Lc (E®p F,F)

and
Misy = (fS®€<— (€<, e7), f[7—e” @ f7) ele (F,E'®pF).

The operator)M < can be regarded as a kind of annihilation operator (at least on the ket-side), the
operator)|.>, can be regarded as a creation operator (on the ket-side).
We have

(T7@1)(e” @ f7) = (7ble,e”))@ f~ =€~ @ (ble<,e”) )
= [Mzay oms0) o MZ | (7 @ 1)
foralle> € E~ andf~ € F'~ and
AT (fC®S) = @<, e>)beS = (f<(/<,e)b) @ =
_ [Mé<‘ omp(b)< o M|§,>)} (f<®e)

forall f< € F< ande’< € E'<.
Together, this yields
T®1= M‘€/>> omp(b)o M<€<|.

Now 7(b) is compact, sd” ® 1 is compact. O

Corollary 1.3.8. Let £ be anA-B-pair such that4 acts onE by compact operators ang acts on
F by compact operators. F is B-non-degenerate, the# acts onF ®p F' by compact operators.

1.3.4 The pushout

Let B, B’ be Banach algebras and et B — B’ be a homomorphism.

Definition 1.3.9 (The pushout of a pair). For all B-pairs E, define thepushouty). (E) of E alongy
to be theB’-pair

Uu(B) = By B = (B @y BN, B> @5 B') = (U.(E%), 4.(E”)).

Note that this is indeed B’-pair and not only @-pair because the bracketof (F) takes its values
in the idealB’ of B’.
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Definition 1.3.10 (The pushout of a linear operator).Let F, F' be B-pairs. For alll' € Lp(E, F),
deﬁnew*<T) €Lp (%(E), Qb*(F)) by

Pul(T) = ($u(T%), (7)) = (ldg @T<, T” @1dg) =T ® 1.

The mapy, defines a functor from the category of Bandgipairs to the category of Banadh-pairs
that is linear and contractive on the morphism sets. It is compatible with the sum of BBraains.

Proposition 1.3.11 (Functorial properties of the pushout)
e The functor(Idg), is naturally isometrically equivalent to the identity functor on the category

of BanachB-pairs in the following sense: Define for eveBypair £ the homomorphism of
pairs with coefficient majd g

nE:(ng,ng):E®]§B—>E

byb @ e< — be< ande> @ b — ¢>b, whereb € B, e< € E< ande> € E>. If E and F are
B-pairs andT" € Lp(FE, F), then

(Idp), (1)” ong =npoT” and (ldp), (I)~onp =ngoT™,
i.e.,ng andnp intertwine(Idg).(7) =T ® 1 andT.

e Let B” be another Banach algebra and l¢t: B’ — B” be another homomorphism. Then
Y, o ¢, and (¢’ o ¢), are naturally isometrically equivalent functors from the category of
BanachB-pairs to the category of Banadh”-pairs.

Proof. This follows from the analogous Propositjon 1.1.15 for Banach modules. O

From the analogous Proposition 1.7.16 for Banach modules we get:

Proposition 1.3.12 (The pushout of a non-degenerate Banach pair)f E is a non-degenerate
BanachB-pair, theny.(E) is a non-degenerate Banadhl-pair.

Proposition 1.3.13.@ Let £ and F' be BanachB-pairs. Then for alll’ € Kg(E, F') the operator
Yo (T) =T ® 1is contained inKp: (Y« (E), ¥« (F)).

Proof. We give two arguments for this simple fact: The first is that it suffices to show the resiilt for
of the form|f>)(e<| with e< € E< and f> € F~. In this case the operatdf~)(e<| @ 1 equals
|/~ ®15)(15 © e~| and is therefore compact.

‘The other argument uses Proposifion 1.3.7. Itis easy to showBtlaats by compact operators
on B’ if we regardB’ as aB’-pair. It follows thatKz(E) @ 1 C Kg; (¥«(E),¥«(F)) by Proposi-
tion’ and{E/ (¢*(E)a ¢*(F)) = Kp (¢*(E)v'¢*(F)) O

1see([[af02], page 15.
see([Laf02], page 16.
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1.4 The multiplier algebra

Let B be a Banach algebra.

Definition 1.4.1 (The multiplier algebra M(B)). The unital Banach algebrh(B) is called the
multiplier algebra of B and will be denoted byI(B).

One usually defines the multiplier algebraf®fas the algebra of (continuous) double centralisers,
and in fact, that is what we have done here as well. To see thif, {et(7<,7~) be an element of
the algebraVl(B) = L (B). Then

1. Va,b € B: T<(ab) = aT<(b), i.e., T< is aright centraliser,
2. Va,be B: T~ (ba) =T~ (b)a,i.e.,T~ is a left centraliser,
3. Va,be B: aT~(b) =T<(a)b, i.e., Tis a double centraliser.

Using the notation introduced |n 1.1 we can rewrite the three formWag” = a(bT), T'(ba) =
(Tb)a anda(Th) = (aT')b for all a,b € B. This constitutes three of the possible number of eight
laws of associativity betweeB andL(B). The lawsR(ST') = (RS)T anda(bc) = (ab)c are trivially
satisfied. The way the composition of operators is defined guarantees theStaws= S(7'b) and
b(ST) = (bS)T. The only law that is left to check i65b)T = S(bT"), what can be paraphrased by
T<0S> =S8~ oT<. As we will see below, this law does not hold in general, but we can give simple
conditions onB under which it is true.

Lemma 1.4.2.If B is non-degeneraf& then we have
VS, TeM(B): T<0S” =87 0oT<
or, equivalently,
VS, T € M(B),be B: (Sb)T = S(bT).
Proof. For allb,c € B andS,T € M(B) we have
(T< 0 87)(bc) = T< (57 (bc)) =T< (S7(b)c) = S7(b)T<(c) = S~ (bT<(c)) = (S~ o T<)(bc).

ThusT'< o S~ equalsS~ o T< on BB. The rest follows from linearity and continuity @< o S~
andS~ o T< and the fact thaB is non-degenerate. O

That the condition thaB is non-degenerate cannot simply be dropped can be seen from the following
example.

Example 1.4.3.Let E be a Banach space. Equipped with the trivial product it is a Banach algebra.
Every pair of C-linear continuous maps frod' to E gives an element oM(E). So if E is of
dimension more than one, the above equality fails in general.

If Bis a C-algebra, therB is isomorphic tok z(B) and B is “contained” in the multiplier algebra.

If we model the multiplier algebra dsz(B), then we can rephrase this as follows: The canonical
homomorphism fromB to L (B) is an isomorphism onto its imadé€z(B). This is no longer true

for general Banach algebras: The canonical homomorphism does not need to be injective and its
image does not need to b&; (B). However there are some relations betwéeandK z (B) that we

are going to state now.

12The lemma is also true iB has no annihilators (as defined right after 1.4.4). The current and more relevant version of
the lemma has been suggested by Ralf Meyer.
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Definition 1.4.4. We define a contractive homomorphism
Yp: B— M(B), b+ (¢ cb, ¢+ be).

If we view B as aB-B-bipair, then the actiolB — Lp(B) is precisely given by)s. We call
the elements of the kernel @fg the annihilatorsof B and say thai3 hasno annihilatorsif 5 is
injective. If B has a bounded approximate identity thep is isometric and hence injective. The
homomorphism) g is an isomorphism precisely B is unital. The image ol is a two-sided ideal
of M(B). More precisely we have

T op(b) =vp(T7 (b)) = ¢p(Tb) and ¥p(b) o T =p(T~(b) = ¢p(bT)
forallb € BandT € M(B).
Proposition 1.4.5.[13

1. Vb,c € B: |b){c| = ¢¥p(bc).

2. Kp(B) is contained inp(B).

3. If Bis non-degenerate, thékiz(B) = ¢¥p(B).

4. If B is non-degenerate andp is isometric, then) g is an isomorphism fron onto Kz (B).

1.5 Graded Banach pairs

1.5.1 Graded Banach spaces

Definition 1.5.1 (Graded Banach space)Let E be a Banach space. drading automorphisna g
of E is an isometric linear endomorphism Bfsuch thatr?, = Idz. A graded Banach spads a
Banach space endowed with a grading automorphism.

Definition 1.5.2 (Homogeneous element, degredf. F is a graded Banach space with grading auto-
morphismo g, then we defindsy := {e € E : og(e) = e} andE; :={e€ E: og(e) = —e}. The
elements off, are called even, the elementsiof are called odd. The elementsBf U E; are called
homogeneous. ¥ € E \ {0} is homogeneous, then we define the degkege of e to be0 € Zj if

e € Egandl € Zy if e € E1. Note thatE = Ey @ E;.

Definition 1.5.3 (Odd and even operators).Let E, F' be graded Banach spaces with grading au-
tomorphismsor and o, respectively. OnL(E, F') define a grading operater, g r) by 7'
or oT oop. Alinear operatofl” € L(E, F') is then calledyradedor evenif

Toog=0cpoT,
or, equivalently, ifT'(Ey) C Fy andT'(E;) C Fy. Itis calledoddif T'o o = —op o T or, equiva-

lently, if T(Ey) C Fy andT(E;) C Fy. The set of all even and of all odd elementd9f, F') will
be denoted by.?Y®\ E, F)) andL°Y(E, F), respectively.

13Compare the more general version Lemme 1.1.6 of [[af02].
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Definition 1.5.4 (Odd and even bilinear maps).Let £, E5 and F' be graded Banach spaces with
grading automorphisrag,, o, andor, respectively. On the Banach spadéFE,, Es; F') define a
grading automorphism g, g, by setting

OM(Ey,EosF) (1) (€1, €2) == 0F (1 (0E, (€1), 08, (€2)))

forall p € M(E1, Eq; F), e1 € E1, andey € Es. An elementy € M(FE4, Eo; F') is consequently
calledgradedor evenif
OF (M(627 62)) =p (UE1 (61)’ OFE, (62))
forall e; € F; andey € FEs. Itis calledoddif the same equality is true with a minus sign.
Note thatu € M(E1, Eq; F) is graded if and only ifu(e1, e2) is homogeneous for all homogeneous

e1 € F1 ande; € E5 with
deg p(eq,e2) = degey + deges.

Definition 1.5.5 (The graded tensor product).Let £; andE> be graded Banach spaces with grading
automorphisnv g, andog,, respectively. Then the graded tensor produdtpfind E; is defined as
the projective tensor produdi; ® E» with the grading operatarg, ® og, which is also called the
diagonal grading operator. It has the universal property for graded continuous bilinear maps.

Note that the graded tensor product is associative.

1.5.2 Graded Banach algebras

Definition and Lemma 1.5.6 (Graded Banach algebra)Let B be a Banach algebra with a linear
grading automorphismz. Then the following are equivalent:

1. op is multiplicative, i.e.op is a Banach algebra automorphism.
2. The product oBB is even with respect tos.
3. If a,b € B are homogeneous thenh is homogeneous antbg ab = deg a + deg b.

If one (and therefore all) of these conditions is (are) satisfied, then wegalgrading automorphism
of the Banach algebrB and B agraded Banach algebra

Example 1.5.7.Let B be a Banach algebra. Then the identityis a grading automorphism. If we
endowB with this grading automorphism, then we calfrivially graded

Example 1.5.8.Let E be a graded Banach space. The€il) is a graded Banach algebra.

1.5.3 Graded Banach modules

Definition 1.5.9 (Graded Banach module)Let B be a graded Banach algebra with grading automor-
phismo . Let E be aright Banacl#-module. Agrading automorphism g of £ is an automorphism

of E with coefficient maprp such that? = Idg. A graded right BanachB-moduleis a right Ba-

nach B-module endowed with a grading automorphism. Similarly, graded left Banach modules and
graded Banach bimodules are defined.

One can characterise grading automorphisms of graded Banach modules just as we have done for
grading automorphisms for Banach algebrgs in 1.5.6.
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Example 1.5.10.Let B be a graded Banach algebra. THeis also a graded Banadb+B-bimodule.

Definition and Lemma 1.5.11 (Odd and even operators)lf £ andF' are graded right BanacB-
modules, theh.p(E, F) is a graded subspacelofE, F'). In particularLz(E) is a graded subalgebra
of L(E). The set of all even and of all odd elementd.gf( £, F) will be denoted byL%*\ E, F') and
Lo E, ), respectively.

Definition 1.5.12 (Graded homomorphism).Let B and B’ be graded Banach algebras with grading
automorphisms g ando g/, respectively. Lefs and E';, be graded Banach modules with grading
operatorssg ando . A homomorphism¥: £ — E’ with coefficient mapy: B — B’ is called
gradedif

(UE/)UB/ oWy =W, o (O‘E)UB
or, equivalently, if andv are graded maps.

Definition 1.5.13 (Graded sum of Banach modules)Let B be a graded Banach algebra, and let
E; and E, be graded BanacB-modules. On the sumt; & FE, define the grading automorphism

OB\®E; ‘= OF; © OE,.

Definition 1.5.14 (Graded tensor product of Banach modules)Let A, B andC' be graded Banach
algebras, and let 'z andg F be graded Banach bimodules. On the balanced tensor pradugtt’

define the grading automorphisfig , r := o ® or. With this grading automorphism, the balanced
tensor product has the universal property for continuous graded balanced bilinear maps and is called
thegraded balanced tensor produat £ and F'.

Note that the automorphistry ® o is the tensor product of homomorphisms with coefficient maps
defined irf I.1.7]1. The graded balanced tensor product is compatible with the graded sum.

Definition 1.5.15 (The graded pushout of Banach modules)Let B and B’ be graded Banach
algebras, and lef be a right graded BanadB-module. Let): B — B’ be a graded homomorphism
of Banach algebras. Extend the grading automorphigmon B’ to a grading automorphism of the
unitalisationB’ by letting the unitl be even. Define thgraded pushout).(E) of E to be the right
graded BanactB’-module £ ®g B

The mapy. defines a functor from the category of graded Bandahnodules to the category of graded
BanachB’-modules which is linear, contractive and even on the morphism sets. The functoriality
properties of the pushout listed in Proposition 1.]1.15 carry over to the graded case. Also, the graded
pushout is compatible with the sum of Banagkmodules.

1.5.4 Graded Banach pairs

Definition 1.5.16 (Graded Banach pair).Let B be a graded Banach algebra with grading automor-
phismop. Let E = (E<, E~) be a BanaclB-pair. A grading automorphisnof E is a concurrent
automorphisnv = (05, 05) with coefficient maprs such that?, = Idg. A graded BanachB-

pair is a BanachB-pair endowed with a grading automorphism. Similarly one defines graded Banach
A-B-pairs if A is another graded Banach algebra.

Note that in particular the left and right parts @f; are grading automorphisms &< and £~
respectively. We hence write;, or o>, interchangeably.

Example 1.5.17.Let B be a graded Banach algebra. Theiis a graded BanacB-pair (and also a
graded BanaclB-B-pair).
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Definition 1.5.18 (Odd and even operators)Let E andF' be graded BanacB-pairs with grading
automorphisms g ando . Then we define a grading on the Banach sgdag€F, F') by setting

ULB(E,F)(T) = (O‘E OT< OU;, O‘; OT> OUE) == (UBL(F<,E<)(T<)a ULB(E>,F>)(T>))

forall T € Lg(E, F). The set of all even and of all odd elementslgf( £, F') will be denoted by
L&Y E, F) andLYY E, F), respectively.

Note that composition of operators is an even bilinear map. This also mearns;tiaj is a graded
Banach algebra for every graded Bandgipair F.

Lemma 1.5.19.Let F and F' be graded BanactB-pairs. ThenKp(E, F') is a graded subspace
of Lg(E, F). The bilinear map(f~,e<) — |f>)(e<| from F> x E< to Kg(E,F) is even. In
particular, Kg(F) is a graded Banach algebra.

Note that, building on the respective notions for Banach modules, there are obvious definitions of
graded concurrent homomorphism between graded Banach pairs, of the graded sum, the graded tensor
product and the graded pushout of graded Banach pairs; these notions are pairwise compatible.

1.6 Group actions

Let G be a locally compact Hausdorff group.

1.6.1 G-Banach spaces

Definition 1.6.1 (G-Banach space).Let E' be a Banach space. We célla G-Banach spacH it is
equipped with a strongly continuodsactionn: G — L(E) by isometries.

We will usually writese instead ofy,(e) for all s € G ande € E.

Definition 1.6.2. Let £ and F' be G-Banach spaces. Then we define an action by isometries (which
is not necessarily continuous) Gt E, F') by setting

(sT)(e) := s(T (s te))
foralls € G,e € E,andT € L(E, F).

Definition 1.6.3 (G-equivariant linear operator). Let ¥ andF' beG-Banach spaces. An eleméfit
of L(E, F) is calledG-equivariantif

forall s € G ande € E, i.e., if T'is invariant under thé&-action onL(E, F').

Definition 1.6.4 (G-equivariant bilinear maps). Let Fy, F5 and F' be G-Banach spaces, and let
w: By x By — F beinM(E1, Eq; F). Theny is calledG-equivariantif

u(ser, sea) = spu(er,es)

foralle; € Eq, es € By, ands € G.
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Definition 1.6.5 (TheG-tensor product). Let E; and F, be G-Banach spaces. Thdiy ® F» is a
G-Banach space with the action given by

s(e1 ® ez) := (se1) ® (se2)

forall s € G ande; € E1, es € E5. The tensor product map froi; x Es to B ® E5 is thenG-
equivariant by definition and if is aG-Banach space ande M(E, E; F') theny is G-equivariant
ifand only if i: Fy ® Es — F'is G-equivariant.

1.6.2 G-Banach algebras and>-Banach modules

Definition 1.6.6 (G-Banach algebra). An action of G on a Banach algebra is a strongly continuous
homomorphism of7 into Aut(B). A Banach algebra endowed with an action(®is called aG-
Banach algebra.

Definition 1.6.7 (G-equivariant homomorphism of Banach algebras).Let B and B’ be G-Banach
algebras. A homomorphism of Banach algebfasB — B’ is called G-equivariant ifi(sb) =
s(y(b)) forallb € B ands € G.

Definition 1.6.8 (G-Banach module). Let B be aG-Banach algebra. Then@BanachB-moduleis
aG-Banach space which is at the same time a Bart&echodule such that the module action®fon
E is G-equivariant.

Note that this can also be expressed as followss i§ the action ofG on B andn is a strongly
continuous action of7 on the BanactB-module E, thenE is aG-BanachB-module if and only if
ns IS @ homomorphism with coefficient maj from E5 onto itself.

Lemma 1.6.9.Let B be aG-Banach algebra, and etz and F'z be G-BanachB-modules. Then the
setLp(E, F) of B-linear operators is a5-invariant subspace di(E, F'). SoG acts onLg(E, F').
The composition aB-linear operators ig=-equivariant.

Definition 1.6.10 (G-equivariant homomorphism of Banach modules).Let B andB’ be G-Banach
algebras, and leb'z and E;, be rightG-Banach modules. A homomorphisin,: Eg — E;, (with
coefficient mapy) is calledG-equivariantif {» andW¥ are bothG-equivariant maps.

Definition 1.6.11 (The equivariant balanced tensor product of7-Banach modules).Let A, B and

C be(G-Banach algebras and gz and g F= be G-Banach bimodules. Then we definé&aaction

on the balanced tensor productz 5 F' by settings(e ® f) := (se) ® (sf) forall s € G, e € E and

f € F. Thisis well-defined by 1.1.11 and it is easy to see that this defines a strongly continuous action
of G on E ®p F. With this action,FF ® g F' has the universal property for continuatisequivariant
balanced bilinear maps and will be called theequivariant balanced tensor produat £ and F'.

Definition 1.6.12 (The equivariant pushout ofG-Banach modules).Let B and B’ be G-Banach
algebras and lel be a rightG-BanachB-module. Let): B — B’ be an equivariant homomorphism
of G-Banach algebras. Extend the action(®bn B’ to an action on the unitalisatioB’ by letting
G act trivially on the unitl. Define theequivariant pushout).(E) of E to be the rightG-Banach

B’-moduleE ®7 B'.
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1.6.3 (G-Banach pairs

Definition 1.6.13 (G-Banach B-pair). Let B be aG-Banach algebra. A7-BanachB-pair is a
BanachB-pair (E<, E~) such thatE< and E~ are G-BanachB-modules and the bracket -
equivariant.

Similarly, G-BanachA- B-pairs are defined il and B areGG-Banach algebras.

Definition 1.6.14 (The action on linear operators).Let £ and F' be G-BanachB-pairs with action
n¥ andn®’, respectively. Then we define an actiont®bnLg(E, F) by

ST = (sT<,sT”) = (nf< oT< onfj, 775> 0T~ 0775_>1>

forall T € Lg(FE,F) and alls € G (this is an action by isometries, but it does not have to be
continuous in any interesting sense). Composition of operators is equivariant.

Definition 1.6.15 (G-equivariant concurrent homomorphism). Let B and B’ be G-Banach alge-
bras and leZz and E;, be G-Banach pairs. A concurrent homomorphidm from Ep to £, is
called G-equivariant if , the left partv<: E< — E’< and the right parv~: E~ — E'> are
G-equivariant. A similar definition can be made f@rBanach pairs that carry additional left actions
of G-Banach algebras.

Proposition 1.6.16.Let E and F' be G-BanachB-pairs. ThenKz(E, F') is a G-invariant subspace
of Lg(E, F). The bilinear magf~,e<) — | f>)(e<| from F> x E< toKp(FE, F) is equivariant.

Proposition 1.6.17. The action ofG on Kp(E, F') is strongly continuous and thusg(F) is a G-
Banach algebra.

Proof. Let f~ € F~ ande< € E<. Now the maps — (sf~,se<) is continuous and so is the
map (f>,é<) — ‘f>><é<}. Now s|f>><e<‘ = ‘sf>><se<‘ forall s € G, sos — S‘f>><e<}
is continuous as a composition of continuous maps. So for every finite-rank opératioe map
s — sT'is continuous. But the space of all finite-rank operators is denBg;i(¥’, F') and the action
is by isometries, so the action is strongly continuous. O

Definition 1.6.18 (The equivariant sum ofGG-Banach pairs). Let B be aG-Banach algebra and let
E; and E» be G-BanachB-pairs. Then the obvious action 6f on E; & FE» makes it aG-Banach
B-pair.

Definition 1.6.19 (The equivariant balanced tensor of7-Banach pairs). Let A, B andC be G-
Banach algebras and Igtt'z and g F be G-Banach pairs. Then we define theequivariant bal-
anced tensor produaf £ andF to be the Banaci-C-pair E @5 F = (F< ®@p E<, E” ®p F~)
taking theG-equivariant tensor product of Banach modules on both sides.

The definition of thez-equivariant pushout ofr-Banach pairgs just as simple minded. The func-
toriality properties of the pushout given in Proposition 1.]..15 carry over to the equivariant case. The
equivariant tensor product and the equivariant pushout are both compatible with the GuBaatch

pairs.
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1.6.4 Group actions and gradings

Definition 1.6.20 (GradedG-Banach space) A graded(-Banach spacé#’ is a graded Banach space
FE together with a strongly continuous action@fon £ which commutes with the grading automor-
phism.

Remark 1.6.21. Let E be aG-Banach space and let; be a grading operator on the Banach space
E. Then the action off andoz commute if and only if they give rise to a strongly continuous action
of G x Z- on E. Hence all the notions that we have fGractions carry over té--actions on graded
spaces, graded algebras, etc.

Let us elaborate on two highlights:

Proposition 1.6.22.1f E' is a gradedG-Banach space, then the subspaces of odd and even elements
are invariant under the action aF. If F' is another graded~-Banach space, then the spaces of odd
and even operators frori to F' are invariant under the action af on L(E, F'). Similar things are

true for gradedG-Banach modules and gradééBanach pairs.

Proposition 1.6.23.Let E be a graded~-BanachB-pair. ThenK z(E) is a gradedG-Banach alge-
bra.

1.7 Example: Trivial bundles over X

Let X be a locally compact Hausdorff space.

Definition 1.7.1 (The Banach spacd’X). Let E be a Banach space. Then we defii& as the
Banach spacé(X, E) of continuous functions fronX to E that vanish at infinity. For alt € X,
we defineev?: EX — E, ¢ — &(z). Itis a contractive linear map.

Definition 1.7.2 (The Banach algebraBX). Let B be a Banach algebra. ThéhX = Cy(X, B)
is a Banach algebra with the pointwise product. Forzale X, the mapev?: BX — Bis a
homomorphism of Banach algebras.

Lemma 1.7.3.If B is a non-degenerate Banach algebra, tHeX is non-degenerate as well.

Proof. LetT" be the subspace @& X spanned by all product$3’ with 3, 3 € BX. Thenl is closed
under the multiplication with functions i6.(X). Moreover, ifz € X, then{~(z) : v € I'} is dense
in B. A short argument using partitions of unity shows that this sufficeF forbe dense iBX. [

Definition 1.7.4 (The BanachBX-module EX). Let B be a Banach algebra and Iétbe a Banach
B-module. ThenEX = Cy(X, F) is a BanachB X -module. For alk: € X, the mapev?: EX — E
is an equivariant homomorphism with coefficient ma(¥ .

If A is another Banach algebra afdis a Banach4-B-bimodule, thent X is a BanachA X -
BX-bimodule.

As above, one proves:

Lemma 1.7.5. Let B be a Banach algebra anfl a non-degenerate right Banadi-module. Then
FE X is a non-degenerate BanaéhX-module.
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Proposition 1.7.6. Let A and B be Banach algebras and lgtE'g be a B-non-degenerate Banach
A-B-bimodule. Then the BanaM—BX—bimoduleAXEXBX has the property

(EX) >~ evA*(E)
as AX-B-bimodules for every € X.

Example 1.7.7.Let A, B be Banach algebras and [Btbe a Banact-B-bimodule. Then¥|0, 1] is

a BanachA[0, 1]-B(0, 1]-bimodule. For alk € [0, 1], we haveevy, (E[0,1]) = ev;4 “(E).

Definition 1.7.8 (The BanachBX-pair £X). Let A, B be Banach algebras and IBtbe a Banach
A-B-pair. ThenEX := (E<X, E~ X)is a Banachd X-B X -pair when equipped with the pointwise
bracket.

Proposition 1.7.9. Let A and B be Banach algebras and IgtE'z be a B-non-degenerate Banach
A-B-pair. Then the Banacth—BX—pair ax E X gx has the property

(EX) >~ ovA*(E)
as AX-B-pairs for everyr € X.
Proposition 1.7.10.Let B be a Banach algebra and Iéf and F' be BanachB-pairs. Then
Kp(E,F)X 2Kpx (EX,FX).

Proof. First we define an isometric linear map frdfi (F, F) X to Kpx (EX, FX). We do this by
showing that the isometric homomorphism of Banach algebras

U i G(X,Lp(E,F)) — Lpx(EX,FX),
T = (5= (@=T@) (), & = (@ T(x)7E (1))

mapsCo(X,Kp(E, F)) to Kpx (EX, FX). SinceV is isometric, it suffices to show thadt maps

a dense subset 6 (X,Kp(E, F)) into Kpx (EX, FX). By the use of a partition of unity we can
show that for a subsef of Co (X, Kp(E, F)) to be dense it is enough to be pointwise dense, i.e., it
suffices that, for every € X, the set{s(z) : s € S}isdense iKg(E, F). TakeS to be the span

of all functions of the forme — x1(z)x2(z)|f~) (e<| wherex1, x2 run throughC.(X), e< runs
throughE< and f~ runs through#'~. Now

\I/(xHxl(x)xg(:v)‘f>><e<‘) = ’x»—>xl(w)f>><x»—>xg(a:)e<} € Kpx(EX,FX).

So ¥ mapsKp(E, F)X isometrically intoKgx (EX, FX). To show that the image is dense let
(< € E<X andp” € F>X. Thenz — |n”(z)){¢<(z)| isinKp(E, F)X and

V(2 = [ (@) @)]) = |n7)(E]-

So all finite rank operators are in the (closed) imag&@pso¥(Kp(E, F)X) = Kpx (EX, FX).
O

Remark 1.7.11 (Gradings and group actions).Let GG be a locally compact Hausdorff group. If the
Banach spaces, Banach algebras, etc. in the preceding definitions are all gra@deguvariant, then
all the constructions are compatible with these structures.

To be more precise, |t be a graded Banach space with grading operatothen £.X is graded
with grading operatof — (x — og(&(x))). Similarly, if £ is aG-Banach space, then a standard
argument shows that the pointwise actiorbbn FE X is strongly continuous, sf' X is aG-Banach
space.
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1.8 Equivariant KK-theory

The equivarianKK—theoryKK'gfn(A, B) was introduced in [Laf02], Définition 1.2.2. The exposi-
tion there is very clear but also somewhat brief; we try to follow a very systematic and elaborate
approach here to be able to easily refer to this section later on when we generalise the definitions in
the subsequent chapters.

Let G be a locally compact Hausdorff group. Most of the following definitions and propositions
concerning the?—equivarianﬁ(K—theoryKK‘éan(A, B) make sense for gradegBanach algebrad
and B. However, we restrict our attention to the case thand B are trivially graded. Nevertheless,
we formulate most definitions and statements in a way that makes it easy to construct the suitable
generalisations to the graded case.

1.8.1 KKp™-cycles

Definition 1.8.1 KKg*-cycle). [ Let A and B be G-Banach algebras. XK -cyclefrom A
to B is a pair(E,T) such thatE is a non-degenerate gradédBanachA-B-pair (i.e., E' is a non-
degenerate graded-BanachB-pair together with an eve@-equivariant homomaorphismy,: A —
Lp(FE)) andT is an odd element df z(E) such thﬁ

[ma(a), T], ma(a) Md-T?) e Kp(E)

and
s mala) (T —sT) € C(G,Kp(E))

foralla € A. We writeEX™" (A, B) for the class of alKKg™"-cycles fromA to B. If G is trivial, we
just write EPa" (A, B).

Definition 1.8.2 (The sum ofKKP"-cycles). Let A and B be G-Banach algebras. (fE;, 1) and
(E2, T») are elements dEX" (A, B), then we defing £y, T1) @ (B2, T3) := (Ey @ Ea, Th @ Th). It
is an element oEX" (A, B).

Definition 1.8.3 (The inverse of aKK‘éan—cycIe). Let A and B be G-Banach algebras. (£, T) is
in E22( A, B), then we define-(E, T') to be(E, T'), but equipped with the opposite grading. It is an
element ofER™ (A, B).

Definition 1.8.4 (The pullback of aKK'gf”-cycIe). Let A, B andC be GG-Banach algebras. Let
(E,T) € EX(B,C) andp: A — B be aG-equivariant homomorphism. Then we defipg £, T)
to be just the cycld E,T") with the exception that the lefB-action 7z on E is replaced by the
A-actionmg o ¢.

Definition 1.8.5 (The pushout of aKK'&an-cycIe). Let A, B andC be G-Banach algebras. Let
(E,T) be an element o2 (A, B) and letd: B — C be an equivariant homomorphism frof
to C. Then the pushowt.(F,T) of (E,T) alongé is defined a36.(E),T @ 1) whered,(E) is the

pair (5 ®5 E<, E” ®5 5) with the diagonal grading operator and the diagafiaction and the
A-action given bys — a ® 1.

14Alternative names could perhaps be “generalised Kasparov cycles” or “Kasparov-Lafforgue cycles”.
BLater on, we will often identifyr 4 (a) with a; for instance, we will writda, T instead of wa (a), T).
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Proof. We have to check that.(F, T) is indeed inEX" (A, C). Clearly,0.(E) is a graded’-A-
C-bimodule andl’ ® 1 is an odd element df.c(6.(F)). Leta be a homogeneous element 4f
Then

[ra(a) © 1L, T®©1] = (1a(a) @ 1) (T ®1) = (~1)* YT @ 1) (ma(a) © 1) = [ra(a), T @ 1.

From Propositiof 1.3.13 it follows that this is compact. Similaflya(a) ® 1) (Id—(T ©1)?) €
K¢ (6+(F)). For alls € S, we have, using some obvious abbreviations:

(ra(a)®@1) (T®1-5s(T®1) = (mrala)®1) (T®1-T®sl)
= (ma(a)(T =sT)) ® 1 € Kc(0(E))

becausel = 1. Now the mapS — S ® 1 is a linear and contractive map froing (E) to Lo (6.(E)),
so the maps — (ma(a)®1) (T'®1—s(T ®1)) is continuous as the composition of continuous
maps. O

1.8.2 Morphisms betweerKK""-cycles

Let A, A and B, B’ be G-Banach algebras. Let: A — A’ and+: B — B’ be G-equivariant
morphisms of Banach algebras.

Definition 1.8.6 (Morphism of KKP**-cycles). Let (E,T) and(E’,T") be elements oE2* (A, B)
and ER*(A’, B'), respectively. Then anorphismfrom (E,T) to (E',T") with coefficient mapsp
andq is a homomorphisn® = (&<, ~) of gradedG-BanachA-B-pairs fromy Eg to 4 E};, with
coefficient maps andv which intertwinesl” and7”, i.e.,

T<o0d~ =307~ and 7" o0d” =~ 0 T".

The clas€2* (A, B) together with the morphisms of cycles (witthy andId as coefficient maps)
forms a category. This gives us a notionisdmorphicKKP2"-cyclesin E‘gfn(A, B).

Proposition 1.8.7 (Associativity of the sum of cycles)If (Ey,T1), (Eq,T»), and (E3,T3) are in
ER (A, B), then there is a natural isomorphism

(B, Th) @ (B2, T2) @ (E3,T3)) = ((E1,Th) @ (B2, T2)) @ (E3, T3).
Proposition 1.8.8 (Functoriality of the pushout). Let C' and D be G-Banach algebras and let

¢: B — Candvy: C — D be G-equivariant homomorphisms. LéE,T) € Ega“(A, B). Then
there is a natural isomorphism

(Vo )(B,T) = ¢ (pu(E,T)) € EG(A,D).
Moreoverldp .(E,T) = (E,T) € EZ"(A, B), naturally.

Note that the pullback and the pushouﬂéKgan—cycles are compatible with the addition of cycles
(up to isomorphism).
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1.8.3 Homotopies

Let A, B be graded~-Banach algebras.

Definition 1.8.9 (Homotopies).A homotopybetween cycle$E, Ty) and(E, T1) in 2 (A, B) is
acycle(E,T) in Eg*(A, B[0, 1]) such thatv .(E, T) is isomorphic to Ey, Ty) andevy . (E, T) is
isomorphic to( Eq,T1). If such a homotopy exists, théiy, Ty) and(E1, T7) are callechomotopic
We will denote by~ the equivalence relation di%a“(A, BJ[0,1]) generated by homotopy.

Remark 1.8.10.1tis easy to see that homotopy is reflexive and symmetric. In the caseaf€bras

and ordinary Kasparov cycles the homotopy relation is also transitive, but | was not able to show this
in the Banach algebra situation, and the article [Laf02] does not elaborate this point. Indeed, there
is evidence that homotopy is not transitive in general (see the discussion in $ectipn 4.8.1), but the
equivalence relation generated by homotopy is good enough to make all the definitions work.

Definition 1.8.11 KKP™" (4, B)). The class of alk-equivalence classes &P (4, B) is denoted
by KK (A, B). The addition of cycles induces a law of compositiontaki™ (A, B) making it an
abelian grou

ThatKKgan(A, B) is an abelian group was proved in [Laf02], Lemme 1.2.5; the following result is
Proposition 1.2.6 of the same article.

Proposition 1.8.12 (Functoriality of KK (A, B)). Let A’ and B’ be G-Banach algebras. Let
p: A — Aandi: B — B’ be equivariant homomorphisms. (I£,T') € EX"(A, B), then the

homotopy class ab.(E,T) andp*(E,T) depends only on the homotopy clasg Bf 7). We hence
get homomorphisms

©*(-): KKPM(A, B) — KK (A, B) and ,.(-): KK (A, B) — KKX¥"(A, B').

Note thatp*(-) and,(-) commute.

1.8.4 Basic properties ofKK2™ (A, B)

In [Laf02] it is showﬂ that KK*(C, B) = Kg(B) for all non-degenerate Banach algebias
and an action oliKKP?" on the K-theory is constructed (which could be interpreted as a product
KKP*1(C, A) x KK (A, B) — KKP*(C, B) with B non-degenerate).

In the same article, Lafforgue introduces the notion of an “unconditional completiofy/(6f),
usually calledA(G): It is a completion for a so-called unconditional norm@iG), i.e., a norm
which make&.(G) a normed algebra and satisfig§ || < || f2|| for all f1, f2 € C.(G) with | f1(g)| <
|f2(g)| forall g € G. A main example i€.!(G). We are going to define unconditional completions in
the context of groupoids in Chapféer 5 and refef to [Laf02] for the construction of the “crossed product”
A(G, B), whereB is a G-Banach algebra, and the descent homomorphismKKP*" (A4, B) —
KK (A(G, A), A(G, B)) in the group case.

18At least if we restrict the cardinality of a dense subset of the involved Banach modules by some fixed cardinality to
obtain a seKK2*" (A, B) rather than just a class.
17See Théoréme 1.2.8 and Proposition 1.2.9
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1.9 A sufficient condition for homotopy

The sufficient condition for homotopy @{K'gfn—cycles that we put forward in this section is already
present in a rudimentary forn‘@[LafOZ] and more explicitly in the unpublished note [Laf04]. Here,

we state and prove it in full generality and give some abstract background which might perhaps lead
to further developments and is for now just reflected in some fancy notation. The condition itself is
fundamental to large parts of this work because it is the main technical tool to construct homotopies.

Theorem 1.9.1 (Sufficient condition for homotopy ofKK'g}a“-cycIes). Let G be a locally compact
Hausdorff group and let! and B be G-Banach algebras. LetE, T), (E',T") be inEX™"(A, B). If
there is a morphisnd® from (E,T') to (E’, T") (with coefficient mapkl 4 andIdg) such that

1. Vae A: [a,(T,T)] = (la, T}, [a,T"]) € K(®, D),
2.YaeA: a((T,T)? —1) = (a(T2 ~ 1), a(T"? - 1)) cK(®,),

3.Vae AVge G: a(g(T, T") — (T,T") = (a(9T = T), a(¢T' —T")) € K (P, D),

then(E,T) ~ (E',T"); hereK (®, ®) denotes the set of all pairs of operatdt$ S’) € L(E)xL(E")
such that

Ve >03neNdey,...,es € ES,e7,...,e; € B

S =3 Jer )(er] S’—Zj\q>>(e?)><<b<<ef>|

i=1

<e and <e.

Moreover, ifT" = 0 andT” = 0, then the homotopy can be chosen to have trivial operator as well.

1.9.1 Some useful categories

Definition 1.9.2 (The category HoniBanSp)). The objects of the categoitom(BanSp) are the
contractive linear maps: £ — E’ between Banach spacesylf E — E' ando: F — F’ are such
maps, then a morphism fropto o is a pair(T, T7") € L(E, F) x L(E', F') satisfyingoc o T' = T" o p,
i.e., the following diagram commutes:

E—Lsp

Tl |

F—2=F

The set of all morphisms from to o will be denoted byL.(p, o); it actually has a canonical Banach
space structure. The composition of morphisms is defined componentwise.

Definition 1.9.3 (The category of homomorphisms of Banach modules)lety: B — B’ be a
homomorphism of Banach algebras. Then the objects of the catbipaty, (Hom(BanSp)) are the
homomorphism®,,: Eg — EJ;, of Banach modules (with coefficient map. If ®,: Ep — E,
and¥,: Fg — FJ, are two such homomorphisms, then a morphism fioto U is a pair(7,1") €
Lp(E,F) x Lg/(E', F') satisfying

VoT =T 0.

The morphism set will be denoted ky;, (®, ), being a Banach space in a canonical way. The
composition is defined componentwise.

18For example, there is an argument using mapping cylinders on page 24.
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Definition 1.9.4 (The category of homomorphisms of Banach pairs)Let i): B — B’ be a ho-
momorphism of Banach algebras. Then the objects of the catéymiry, (Hom(BanSp)) are the
homomorphism®,,: Eg — E’;, of Banach pairs (with coefficient map). If ¢,,: Eg — E7;, and
U, Fp — Fp, are two such homomorphisms, then a morphism fibrto ¥ is a pair(7,7") €

Lp(E,F) x Lg/(E', F') satisfying

U”oT” =T""0® and T'<oUS =@<~oT<.
This means that the following diagrams are commutative:

o> o<

E> s E/> E< s El<
S
v> <
F> s F/> F< s F/<

The morphism set will be denoted by, (®, ¥), which is a Banach space. The composition is defined
componentwise.

Remark 1.9.5 (A categorial interpretation). There is a good and systematic reason for the notation
chosen in the preceding definitions:

To arrive at the notion of a Banach pair, one starts with the category of Banach spaces. It has an
associative tensor product (the projective tensor product in this case) which allows us to build from
it the category of Banach algebras. As a next step, one considers the Banach modules, and from
them one constructs the Banach pairs. The main ingredient is the category of Banach spaces and its
tensor product. The underlying categorial concept is the notion of a “monoidal Banach category”, a
monoidal category enriched over the category of Banach spaces.

If we take the categoridiom(BanSp) as a starting point and if we imitate the construction of the
category of Banach algebras from the catedg@enSp of Banach spaces, then the analogous category
of “Banach algebras” constructed frafom(BanSp) is the categonAlg (Hom(BanSp)) of homo-
morphisms) of Banach algebras. The categdfpd,, (Hom(BanSp)) of “Banachi-modules” con-
structed fromHom(BanSp) is the category of homomorphisms of Banach modules with coefficient
map+. And the categoryair,, (Hom(BanSp))of “Banachi)-pairs” stemming fronHom(BanSp)
is the category of homomorphisms of (ordinary) Banach pairs, again with coefficient map

If , and¥,, are objects of this category, i.e., if they are homomorphisms of Banach pairs, then it
makes sense to talk abautlinear operators between them, because we can regaschn “algebra”.

The definition one gets from this is the definitionlgf (¢, ¥) given above.

Remark 1.9.6. The above definitions can also be made for the categograrfedBanach spaces.

In this case, you should substitute “graded Banach algebra” for “Banach algebra” and “graded ho-
momorphism” for homomorphism. Also, the definitions can be adaptéddéquivariantandgraded
G-equivariantBanach spaces (where is a locally compact Hausdorff group). Instead of writing
down all the definitions to the bitter end, we confine ourselves to pointing out that in all the cases we
just impose the additional conditions (being graded, etc.) on the homomorphisms ( = the objects of
the categories) but not on the pairs of operators ( = the morphisms). Instead, we get a grading (or a
G-action) on the morphism sets. In particular, this allows us to talk about odd or even elements in
Ly (®, W) (= pairs of odd / even operatorsyjf ® and¥ are graded.
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1.9.2 KK -cycles of homomorphisms of Banach algebras

Although the categorial viewpoint sketched above gives us a systematic background to construct the
“4-linear operators”, it does not tell us how to construct the “compact operators” between homomor-
phisms of Banach pairs. However, there is the following natural choice:

Definition 1.9.7 (The space,, (®, ¥')). Let B and B’ be Banach algebras and B — B’ a mor-
phism. Let®: £ — E’ and¥: F — F’ be homomorphisms of pairs with coefficient mapFor all
f~ € F~ ande< € E<, the pair

([77) (e[ [ (7)) (@™ (™))

is contained irL,, (¢, ¥). Denote by, (®, V) (or justK (®, ¥)) the closed linear span of all such
operators, writing<,,(®) or K, (®: £ — E’) for Ky, (®, ®).

Remark 1.9.8. Note that if (7,7") € Ky (®, V), thenT € Kg(E,F) andT’ € Kp/(E', F').
However, the condition of being i, (®, V) is (a priori) stronger than the condition of being in
Kp(E,F) x Kp/(E', F') N Ly (P, ¥) as it means that the approximation®fand7” by finite rank
operators can be done simultaneously:

Ve>03IneNIfy,....f e F7,el,...,en € ES:

NIl

n

= w7 (£7) @< (e7) |

=1

<e A < Ee.

Proposition 1.9.9.Let=: G — G’ be another homomorphism of pairs with coefficient mdwith G
and G’ being Banach pairs). Then(¥, =) o K(®, ¥) C K(®, =) and likewiseK (¥, Z) o L(®, ¥) C
K(®, ).

Proof. Let (T,7") € L(¥,=). Then the mag7,7”) o -: L(®,¥) — L(®, =) is linear and contin-
uous, so it suffices to show thé, T") o (| f>)(e=|, ¥~ (f>)){@=(e<)]|) is contained ifK(®, =)
forall f> € F> ande~ € E<. ButT o |f~)(e~| = |T>(f>)){e~| and

T'o [0 (f7) (@ (eN)] = [T77 (7 (7)) {@=(e)| = [E7 (T (7)) }{@=(e9))
becausdT,7") € L(¥,=). So we are done with the first inclusion. The second inclusion can be
proved similarly. O

Definition 1.9.10 (The classER* (¢, )). Letp: A — A’ andy: B — B’ be G-equivariant ho-
momorphisms of7-Banach algebras. XKb*"-cycle from¢ to ¢ is a pair(®: E — E', (T,T"))
such thatF is a non-degenerate gradéeBanachA-B-pair, E’ is a non-degenerate gradéeBanach
A'-B’-pair, @ is an evenG-equivariant homomorphism fromE g to 4/ E';, with coefficient mapsp
andy, and(T,T") € Ly, (®, ®) is a pair of odd linear operators such that

1.Vae A: [a,(T, 1)) = ([a, T], [¢(a),T']) € K (P, P);
2.VaeA: a(T,T)? - 1) = (a(T2 — 1), pla)(T"? - 1)) K (D,d);
3. VaeA: g—a(g(T,T") — (T,T")) = (a(¢gT — T), p(a)(¢T' —T")) € C(G, K(®,D)).

The class of all such cycles will be denotedE§™ (i, ).
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Remark 1.9.11.1f (®: E — E', (T,T")) is an element oEX" (¢, v), then(E, T) € ER*(A, B)
andp*(E',T') € EX"(A, B'), and, if (E',T") is itself aKKP*"-cycle (which is automatic it is
surjective), therb is a morphism ofKK"*"-cycles from(E,T) to (E’, T'). But not all morphisms
of KKP*-cycles seem to giv&KP2"-cycles of morphisms. Being a cycle is a regularity condition
which ensures that a morphismI§k"2"-cycles induces a homotopy as we shall see below.

Remark 1.9.12. Now that we have defined the claB§™ (y, ), it is a natural question to ask what
KKP (¢, ) could be. To answer this, one could define morphisms between elemés'6p, v)
providing us with a notion of isomorphic cycles. In a second step, one should define the pushout
of cycles making it possible to define homotopies (using the homomorphidni|: B[0,1] —
B’[0,1],]0,1](8)(t) = %(B(t)) as a starting point). With a little bit of luck one ends up with an
abelian grougKKP2" (¢, 1)) which is somehow related 6K (A, B) andKKP (A4, BY).

In this work, we just need thEKP2"-cycles inIEga“(gp, 1) as a source of (ordinary) homotopies
and do not pursue these considerations any further.

1.9.3 Mapping cylinders

Let G be a locally compact Hausdorff group. In the following paragraphs we are going to consider
gradedG-Banach spaces and evérequivariant linear maps between them. Of course all definitions
and results also apply, in a simpler form, to plain Banach spaces and linear maps. These simple
definitions and results are contained as subcases in the following (just let the(gamgthe grading

be trivial).

Mapping cylinders of contractive linear maps between graded~-Banach spaces

Definition 1.9.13 (The mapping cylinder of linear maps between Banach spaced)et £/ and
E' be graded7-Banach spaces with grading automorphismsandog and letp € L(E, E’) be
contractive, even an@-equivariant. Leb,vOE' : E'[0,1] — E' be evaluation at zero. Then the mapping
cylinderZ (p) is the fibre product op: E — E’ andevy : E'[0,1] — E":

Z(p) E'[0,1]
L
E £

p

SoZ (p) is the gradeds-Banach spacé(e,&’) € E x E'[0,1] : £'(0) = p(e)} C E x E’[0,1] with
the norm||(e, &')|| = max{|le]|| , ||¢'|| . }; the grading operator 0f (p) sends a paife, {’) to the pair
(ocp(e), t — or/(&'(t))); theG-action is given byy(e, &) := (ge, t — g(£'(t))) forall g € G.

Definition 1.9.14 (The mapping cylinder construction as a functor).One can regard the mapping
cylinder construction as a functor from the category of graded contractive lineguivariant maps
to the category of grade@-Banach spaces in the following way:

Letp: F — FE'ando: F — F' be graded contractive line&-equivariant maps between graded
G-Banach spaces. LéT,7") € L(p, o), which means thal’ € L(E, F) andT’ € L(F’, F') such
thato o T = T’ o p. To make the mapping cylinder construction a functor one defines

Z(T.T') : Z(p) = Z(0), (e,§) = (T(e), t = T'(€'(1))) -
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ThenZ (T, T") € L(Z(p),Z(0)). The so-defined functor is linear and contractive on the mor-
phism sets. It respects the canonical grading automorphisms an@-#wions onL(p, o) and

L(Z(p),Z(0)).

Definition 1.9.15. There is a canonical action 6f0, 1] onZ (p); it is given by

X (675/) - (X(O)€7 Xg,)
forall xy € C[0,1], (e,&') € Z (p).

Mapping cylinders of homomorphisms of gradedG-Banach algebras

Definition 1.9.16 (The mapping cylinder of a homomorphism of Banach algebras).et B and B’
be graded~-Banach algebras and l¢t B — B’ be a graded equivariant homomorphism. Then the
mapping cylindet (1) of ¢ is a graded~-Banach algebra with the componentwise product.

Lemma 1.9.17.Let B and B’ be Banach algebras and lét: B — B’ be a morphism. Theh (v) is
non-degenerate i and B’ are non-degenerate.

Proof. Let B andB’ be non-degenerate. Writefor the span of (¢') Z (¢). We have to show thatt
is dense irZ (v). Let (b, 5') € Z (v), i.e.,b € B, 3’ € B'[0,1] andy(b) = #'(0). Lete > 0. Findc
in the span oBB such that|b — ¢|| < e/2. Lety’ := (¢t — 1(c)) € B'[0, 1]. Note that(c, v') € S.
Find a neighbourhoot of 0 in [0, 1] such that|3'(¢t) — 3'(0)|| < e/2forallt € U. Becaus&3’[0, 1]
is non-degenerate, we can find sop¥dn the span ofB’[0,1] B'[0,1] such that|’ — 3|« < e.
Find a functiony € C[0, 1] with the following propertiesx(0) = 1,0 < x < 1,supp x € U. Then
(0,(1—x)3)isinS. Also (¢, x7') isin S. So we have

(0.0-07) + (@) = (e 1-0F +x7) €5
Note that

H(b, 3 - (c> (1—x)3 + xv’)

g —1-x)0 —xY

| = max {|lb e,

o

The first term is< £/2 by the choice of. If t € U then

|7® - a—xF® - x| = a-xo) |0 -so|+xo|on -0
< (1 —x)||g = || _+x (|| -+ |o - <)
< (T=x(t)e+x)e=e.

If t ¢ U, theny(t) =0 so’

A1) — (1= x()A(t) — x(t)’y’(t)” < ¢ as well. So all in all we get

H(l% 8 — (67 (1—x)B + xv’)

<

and hence we are done. O

Remark 1.9.18.In Chapteﬂz we are going to introduce the notion af[@, 1]-Banach space. The
C[0, 1]-action on the mapping cylindét (p) for a contractive linear map between Banach spaces
actually make. (p) aC|0, 1]-Banach space and the mapping cylinder construction is a functor with
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values in the category @f{0, 1]-Banach spaces a0, 1]-linear maps. Moreover, the mapping cylin-

der of a homomorphism of Banach algebras is a so-cdl|edl|-Banach algebra. Later on, we will
define the notion of the fibres of suchC{), 1]-Banach algebra, and the fibre of the ab@ve)) at

0 is isomorphic toB and the fibre at €]0, 1] is isomorphic toB’. It will also follow thatZ () is
non-degenerate if and only if its fibres are non-degenerate. But this result, though not very deep, is
still quite far away, so | decided to include the above non-systematic proof of Lémma]1.9.17.

Lemma 1.9.19.For every Banach algebr®, the mapping cylinder did is isomorphic taB]0, 1].

Mapping cylinders of homomorphisms between graded>-Banach modules

Definition 1.9.20 (The mapping cylinder of a homomorphism of Banach modules)Let Eg and
E';, be graded5-Banach modules and ldt,,: Ez — E7%, be a gradeds-equivariant homomor-
phism. Then the mapping cylind&r(®) of ® is a graded7-BanachZ (¢))-module with the compo-
nentwise action of. (v)).

Remark 1.9.21. Conceptually, the mapping cylind&r(®) is a fibre product: Letv,: B’[0,1] — B’
andEvo: E'[0,1] — E’ be the evaluation maps at zero. Th@ivo),,, is a gradeds-equivariant
homomorphism from#’[0, 1] g/ 1) t0 Fp, andZ (¥) is the fibre product ofb,: Ep — Ej, and

(EVO)GVO : E,[O, 1]3/[0’1} — E/B/
7. (®) E'[0,1]
l \LEVO
E - B

Analogously to Lemmp 1.9.17 one proves:

Lemma 1.9.22.Let Ep and E';, be Banach modules and I&t,: Epz — E’;, be a homomorphism.
If Ep and E';, are non-degenerate, theh(®) is a non-degenerate Bana&h(v)-module.

Proposition 1.9.23. Let Ep and E;, be non-degenerate graded right-Banach modules and let
®,: Ep — E'; be a graded7-equivariant homomorphism. Gfi(y) define the evaluation homo-
morphismsvy: Z(¢) — B, (b,3') — bandevy: Z () — B, (b,3') — ('(1). Then

evo« (Z(®) = E and evi,(Z(®)=FE.
Proof. Define N ~ )

Py Z(®) ®eg B— E, (e,&') @b eb.
This is a contractive grade@d-equivariant homomorphism. Define

20 B — Z(®) ®a B, e (e, t — ®(e)) @ 1.

evo
This too is a contractive grade@-equivariant homomorphism. We have o =° = Idg, so ¥ is

surjective. Letr := " _n(en, &) b, €7 (®) ® B. SinceEp is non-degenerate, we can show that

(1.2) X7 = x(0)7
for every x € C([0,1]). LetU be a neighbourhood df in [0,1]. Find x € C([0,1]) such that
0<x<1,x(0)=1andsuppx C U. Then

Z(envfé) ®Zn = ZX(equ/@) ®gn = Z(enaXﬂz) ®f5n‘

neN neN neN
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Then
171 < | (enx€) @bl = |32 (enbus x€056a) ) @1
neN neN
- | (Sebrgstn) ot < |(Sehe Saeiet) |
neN neN neN
Since
neN neN neN
andU can be chosen arbitrarily small, we get
|7 < [ enb]| = o] <]
neN

so Y is isometric. It follows thatr? is an isomorphism. L
We still have to shOV\.Z) Lef € Z (), s € Z(p)andb € B. Lety € C([0,1]). Then

xSs@b=S(xs)®b=9® x(0)evo(s)b = Ss @ x(0)b = x <Ss ®5> :

Becausé () is non-degenerate we have this equality forrall Z (®) @ B.
The second assertion is shown similarly. O

Proposition 1.9.24.Let Eg, Fp, E%,, Fj, be right Banach modules and 1&t;,: Ep — E7, and
U,,: Fg — Fp, be concurrent homomorphisms. L@t 7") € L (®, ¥). ThenZ (T,T") as defined

in[L-9.13 is inLy(y) (Z (®),Z (1)).

Proof. If (b,8") € Z (¢) and(e, &) € Z (P), then

HET) )0 = DET) (0 6) = (10 0T (F10510)
= (0T(e), t = BT ('(1)) = (b, ) (T(e), t = T'(£'(1)))
0,8) (2 (1,7") (e.€)) .

So the linear operatdt (T, 7") is Z (¢)-linear. O

Mapping cylinders of homomorphisms between graded>-Banach pairs

Definition 1.9.25 (The mapping cylinder of a homomorphism of Banach pairs)Let Eg and £,
be gradedG-Banach pairs and leb,,: Ep — EJ;, be a graded>-equivariant concurrent homo-
morphism. Then the mapping cylindér(®) of @ is defined to be the grade&-BanachZ (v)-pair
(Z (®<), Z (®~)) with the componentwise bracket

Z(®<) xZ (D7) Z (), ((e5,8%),(e7,£7)) — ((e%,e7), (£<,&7)).

The mapping cylindeZ () can be realised as a fibre product, compare Refnark 1.9.21. From the
corresponding Lemnja 1.9]22 and Proposition 1]9.23 for Banach modules we can deduce the following
two facts.
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Lemma 1.9.26.Let Ep and E};, be Banach pairs and leb,,: Eg — E’;, be a concurrent homo-
morphism. IfEg and E’;, are non-degenerate Banach pairs, tHe®) is a non-degenerate Banach

Z (¢)-pair.

Proposition 1.9.27.Let Ep and E';, be non-degenerate grad€dBanach pairs and le®,,: Ep —
E’;, be a graded5-equivariant concurrent homomorphism. leety: Z (v)) — B, (b, f) — band
evi: Z () — B, (b, f) — f(1). Then

evo. (Z(P)=E and evy, (Z(D) = E'.

Definition 1.9.28 (The mapping cylinder construction as a functor) Let Eg, Fs, E';,, F, be non-
degenerate Banach pairs and¥et: Ep — E’;, andV,,: Fg — Fp, be concurrent homomorphisms.
Let (T,T") € Ly (®,V),i.e.,T € Lg(E,F), T" € Lg/(E',F') and¥~ o T~ = T"> o > and
T'< o U< = @< o T<. As stated above, this implidd’~,7">) € Ly (®~,¥~) and(T<,1"<) €
Ly (<, ®<). We have

Z(T7,T) € Ly (2(7),2(07)) and 2(T<,T%) € Ly (2 (%), 2(27))..
DefineZ (T, T") € Ly y) (Z(®),Z (V)) to be the paikZ (T<,7"), Z(T~,T"7)).

The maps® — Z(®) and (T,7") — Z(T,T') define a functor from the category of graded
G-equivariant homomorphisms of Banach pairs with coefficient map the category of Banach
Z (v)-pairs. Itis linear, evert;-equivariant and contractive on the morphisms sets.

Definition 1.9.29 (Mapping cylinders and left actions on pairs).Let 4 Ep and 4/ E;, be graded
G-Banach pairs and let®,,: E — E’ be a graded7-equivariant concurrent homomorphism. Then
the mapping cylinde? (®) = (Z (®<), Z (®~)) of ® is a graded7-BanachZ (y)-Z ()-pair when
equipped with the componentwise actiorZofy).

Proposition 1.9.30.Let 4 Ep and 4 E’' g be non-degenerate gradé€dBanach pairs and lef®,, be
a gradedG-equivariant concurrent homomorphism between themetgt Z (v) — B, (b,5') — b
andevy: Z(¢) — B, (b,8")— p'(1)andita: A — Z(p), a— (a,t — p(a)). Then

A (evos (Z (D)= aEp and y (eviy (Z(D))) pr = 4 E .

Proof. In view of Propositiorj 1.9.37 the first assertion is obvious. For the second, we just have to
specify the action ofA’ onevy . (Z(®)). Let x be some function ir€[0, 1] such thaty(1) = 1,
0 < x <landx(0) = 0. Then define

d(f,9) @V = (0,xd'g) @V

foralla’ € A', (f,g) € Z(®>) andb € B'. This can easily be shown to be a well-defined action of
A" onZ (®~) and we can do the same far(®<). O
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Mapping cylinders and compact operators

Proposition 1.9.31.LetEg, Fi, E;,, Fy, be non-degenerate Banach pairs anddet: Eg — E;,
and¥,: Fg — FJj, be concurrent homomorphisms. L&t T") € Ly (®, V). Then the following
are equivalent:

1. (T,T") € Ky (@, 0);
2. Z(T,T") € Ky (Z (D), Z (V).

Proof. 1.= 2.: Since the mapl’,7") — Z (T, T") is linear and contractive, it suffices to consider the
case thatT, T") is of the form(| /> ) {e<|, ¥~ (f>))(®<(e)|) for somef> € F> ande< € E*<.
WhatisZ :=Z (T,T")? Let(e”,&~) € Z(®~). Then

Z7(e”,67) = (IT7e”, t = T7(£7 (1)) = (f7 (€™, e7), t = W7 (f7)(2(e7), €7 (1))

Definef> := (f>, t — ¥>(f>)) € Z(¥>) ande< := (e<, t — ®<(e<)) € Z (®<). Then we have
shown thatz> = | f>)(¢<|”. The analogous formula holds for the left-hand sideZse |f>)(¢<|.
In particular,Z is compact.

2.=> 1. LetZ :=7Z (T, T’) be compact. Let > 0. Findn € Nand(f{,n7),...,(f7.ny) €
Z(07), (e5,&5), ..., (e5,&<) € Z(P~) such that

n7
Z‘ z’nz z’§;<)‘

<e.

Define

n

(5.5 1= 3 (1F7)ex], WU (E).

=1

We show||(T — S, T’ — 5")|| < ¢, i.e., we show|T — S|| < e and||T" — §'|| < e: Lete” € E~.
Define¢’> (t) := ®~(e”) forall t € [0,1]. Then(e”,£”) € Z(®~). Now

(2- Sl aenenel) e
_ ((T—S)>( m(r Z!n e 1) (£’>(t))>-

The norm of this expression is ¢ ||(e”,&”)|| = e|le”|. So in particular]|(T"— S)~ (e”)]] <
e |le> || and hencd|(T' — S)>|| < e. After applying a similar argument to the left-hand side we get
1T = 5] <e.

Lete’> € E'~. Letty €]0,1]. Find a functiony,, € C[0, 1] such thaD < y;, < 1andy, =1
andyy, (0) = 0. Then(0,t — x4, (t)e’>) isinZ (&)~ and

n >
(Z Z’ % anz 17§;<)’> (Ovt*_’Xto(t)6,>)

_ (o, - (T' S ) e <t>|) <e'>>.)
=1
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The norm of this expression is ¢ ||¢/~||, so in particular
T (e Z 17 (t0) ) (&= (to \ ()

= ‘(T’ Z‘n tO <£/< to ‘> (€/>)

The mapt — Y1, (77 (to) )(€/<(to)|” (¢”>) depends continuously diy € [0,1], so we also get
the inequality in zero:

<.

T (e Z }77 <§/< ‘ )

Now /> (0) = W™ (f7) and&/<(0) = ®<(e5). It follows that
|77 (%) = 87 (€7)]| < ele”]]

forall ¢~ € E'>, and hencd|T’> — S’ || < e. After a similar argumentation for the left-hand side
we arrive aff|7" — 5’| < e. O

<l

Mapping cylinders and KKP2"-cycles

Theorem 1.9.32.Let A, B, A’, B’ be G-Banach algebras and let: A — A" andvy: B — B’ be
equivariant homomorphisms of Banach algebras.(@et E — E’, (T,T")) € E2* (i, ). Writev4
for the canonical injectiom — Z (¢). Then

G (Z(®), Z(T,T)) € E&™(A Z(1).

If we writeev for the canonical mag (¢) — B andev, for the mapZ (¢v) — B’, (b,5') — ('(¢)
for all ¢ €]0, 1], then
evou (4 (Z2(®@), Z(T,T"))) = (B, T)
and
eves (U4 (Z2(®), Z(T,T))) = *(E",T)
forall ¢ €]0, 1].

Proof. First of all, Z (®) is a non-degenerate gradédBanachZ (i)-pair that carries a left even
action of Z (¢), and hence it also carries a left even action4of The operatofZ (7,7") is odd.
Leta € A. Then(a,t — ¢(a)) € Z(y), and the action of: € A is given as multiplication by
(a,t — ©(a)). Now

[(a,t— p(a), Z(T,T")] =Z([a,T], [p(a),T]) € Ky (Z(®))
and
(a,t — o(a)) (Z (1,7')* - 1) — 7, (a(T? = 1), p(a)(T" — 1)) € Ky (Z(D))
foralla € A. Forallg € G anda € A, we have
(a,0(a)) (92 (T, T") = Z (T, T")) = Z (a(gT —T), (a)(gT’ —T")) € Ky (Z(®))

and, because the maj(-) is continuous, this expression depends continuously enG. Hence
vy (Z(®), Z(T, 1) € EE™ (A, Z(v)). O
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Remark 1.9.33.1f (E',T") € EP(A’, B') (which is automatic ify is surjective), then one could
possibly show thatZ (@), Z (T,T")) € EX™ (Z (), Z (1)). However, we have confined ourselves
to the somewhat simpler object (Z (®), Z (T,T")), because we are only interested in the case that
¢ =1d4 andA’ = A and use this machinery to construct homotopies as in the following proposition.

Proposition 1.9.34.Let A, B, A’, B’ be G-Banach algebras and let: A — A’ and+: B — B’ be
equivariant morphisms of Banach algebras. (&t E — E', (T,T")) € EX™ (¢, 1b). Write ¢4 for
the canonical injectio — Z () andpp/o ) for the canonical mag (v) — B’[0, 1]. Then

(peon), (¢4 (Z(®), Z(T,T")) € E&" (A, B'[0,1]).

This is a homotopy

V(B T) ~ 9" (B, T).
Proof. The first assertion follows from the fact th&t (Z
second, we have to calculate the flbrei@ 0 1) (%

(@), Z(T,T")) € E&™ (A, Z (3)). For the
(Z(®), Z(T,T"))) at0 and1. We have

(pero), (4 (Z2(@), Z(T.T))), = (A4(2(®), 2(T.T)) @y, BIO1]) @y B
~ 5 (2(®), Z(T,T) ®, p B

Vi ©PB’[0,1]

= (v opmom), (4 (2(2). 2(1.T))

for all t € [0, 1]. If we write ev, for the canonical maf (1)) — B, thenevy’ oppio1] = ¥ o evp and
hence we can deduce that

(v opminn) (14 (@), Z(2,77)) = v (evo. (14 (2(®), 2 (1,T))) = (B, 7).
On the other hand, ifv;: Z (1)) — B, (b, 8) — S(t), thenev?’ opprjo,1] = eve forall ¢ €]0, 1], so

(vf opmpo) (va (2(®), Z(T.T"))) = evie (14 (2(®), Z(T,T'))) = ¢"(E,T'). O

Corollary 1.9.35. Let A and B be G-Banach algebras and l€: £ — E’, (T, T")) be an element
of ERn(Id 4, Idg). Then(E, T), (E',T') € E?*(A, B) and (E,T) ~ (E',T").

1.10 Morita theory and KK

V. Lafforgue proves in his unpublished note [Laf04] that Kx¢heory of Banach algebras is invariant
under Morita equivalence. He also introduces a rather flexible notion of Morita equivalence and
gives a version of the above sufficient condition for homotopy. The present section is dedicated to
a systematic study of the relation between Morita equivalence&&id", building on Lafforgue’s
notion of “fléches de Morita”, called “Morita cycles” in this work. A category of “Morita morphisms”
is introduced which acts oKKP** from the right. Morita equivalences give isomorphisms in this
category, s&K"?" is invariant under Morita equivalences at least in the second component. Although
our main interest is the non-equivariant situation, the equivariant case comes for free by adding the
word “equivariant” to all the definitions and propositions, so we include it.

Let G be a locally compact Hausdorff group.
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1.10.1 Morita equivalences

Definition 1.10.1 (Full Banach pair). Let B be a Banach algebra and IBtbe a BanachB-pair.
ThenE is calledfull if the span of E<, E~) is dense inB.

Definition 1.10.2 ((Equivariant) Morita equivalence). Let A, B beG-Banach algebras. A{-equi-
variant) Morita equivalence betweehand B is a pair(BEj, AEE) endowed with an equivariant
bilinear bracket:,-)5: E< x E~ — B and an equivariant bilinear brackgf-,-): £~ x E< — A
satisfying the following conditions:

1. (E<,E~) with (-,-) g is an A-B-pair.
2. (E~, E<)with 4(,) isaB-A-pair.
3. The two brackets are compatible:
(e, e7)pf~=e“ale”, f%) and e (f~,f7)p=ale”, f7)f".
foralle~, f< € E< ande”, f~ € E~.
4. The pair E<, E~) and(E~, E<) are full and non-degenerate.
A andB are called Morita equivalent if there is a Morita equivalence betwkand B.

If B is a non-degeneraté-Banach algebra, then the stand#t¢pair B = (B, B) with the obvious
additional structure is &-equivariant Morita equivalence betwe&rand itself. Conversely, il and
B are Morita equivalent, thed and B are non-degenerate.

If A and B are G-Banach algebras anB is a Morita equivalence fromi to B, thenE =
(E~, E<) is a Morita equivalence froms to A, called thenverse Morita equivalenceAnd finally, if
A, B, C areG-Banach algebragy is a Morita equivalence from to B andF' is a Morita equivalence
from B to C, thenE ®p F' with the obvious operations is a Morita equivalence frdnto C' (use
Propositiod 1.34 to see that® g F is non-degenerate).

Gathering these facts we can conclude:

Proposition 1.10.3.G-equivariant Morita equivalence is an equivalence relation on the class of non-
degeneraté&r-Banach algebras.

Proposition 1.10.4.Let £’ be a full and non-degenerafg-BanachB-pair. ThenFE is aG-equivariant
Morita equivalence betwedgi(FE) and B.

Proof. Obviously,(E~, E<) is afull BanacH{(F)-pair. The question is whether itis non-degenerate.
But this follows easily becaugd’<, £~) is a full and non-degenerafe-pair. O

Corollary 1.10.5. Let E be a full and non-degenerafe-pair. ThenK(E) is non-degenerate.

Remark 1.10.6. It is not clear which further regularity conditions are satisfied by the alg&ibfa),
even if B is a rather nice algebra. There are examples of Banach spaad®re the closuré’(E)

of the algebra of finite rank operators dn (which we callK(E) in this thesis) has no bounded
approximate identity. We can even find Banach spdcegere the canonical map from thetensor
productF(E) ® F(E)to F(E) is not surjective-]

195ee[[Pis00].
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1.10.2 Corners and the linking algebra

Let A be a non-degeneratg-Banach algebra and lptbe aG-invariant projection inM((A). Then
pAp is aG-Banach subalgebra of. Under which circumstances jislp Morita equivalent tcA? A
natural choice for the Morita equivalencegjsd, Ap). The right action op Ap, the left action ofd and
the pAp-valued andA-valued brackets are all given by the product4anSinceA is non-degenerate,
we have

cl(pA- Ap) =pcl(AA)p = pAp.

and
cl(A-Ap)=cl(A-A)p=Ap and cl(pA-A)=pcl(AA) =pA.

So thep Ap-valued bracket is full and the left-action is non-degenerate. We just need a criterion for
the A-valued bracket to be full and thedp-action to be non-degenerate. It is easy to see that both
conditions are equivalent to the following propertypof

Definition 1.10.7 (Full projection). Let A be a Banach algebra. Then a projectipm M(A) is
calledfull if cl (ApA) = A.

So we can formulate the following fact:

Proposition 1.10.8.Let A be a non-degenerat&-Banach algebra and lgt € M(A) be aG-invariant
full projection. TherpAp is a non-degeneraté&’-Banach algebra andpA, Ap) is a G-equivariant
Morita equivalence fromd to p Ap.

Definition 1.10.9 ((Full, complementary) corner).Let A be a non-degenerafé-Banach algebra. A
cornerof A is a subalgebr® of A such there is &-invariant idempotent € M(A) with pAp = B.
A corner is said to béull if there is a full G-invariant idempotenp € M(A) with pAp = B. Two
cornersB andC are (full) complementaryf there are (full) G-invariant idempotentg, ¢ € M(A)
suchthap + ¢=1andB = pAp andC = ¢Agq.

By using the transitivity of being Morita equivalent we get the following consequence:

Corollary 1.10.10. Let B andC be full complementary corners of a non-degenetatBanach alge-
bra A. ThenB andC are G-equivariantly Morita equivalent tel and hence to each other.

There is also a direct construction of a Morita equivalence betwederandgAq, namely(qAp, pAq)
with the obvious operations.

Definition 1.10.11 (Linking algebra). Let A and B be G-Banach algebras and &t = (E<, E~)
be an equivariant Morita equivalence betwetand B. Define thdinking algebra

A E~
v (g )

to be the followingG-Banach algebra: The underlyidg-Banach space is the direct suinp £~ @
E=< @ B; the product is given by the operations dn B and E if we write the elements of. as
matrices according to the pattern suggested by our notation.

The linking algebra is non-degenerate and we finand B as full complementary corners in
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1.10.3 Morita cycles and Morita morphisms

Definition 1.10.12 (Morita cycle).@ Let A and B be non-degenerat@-Banach algebras. Then a
Morita cycI@ F from A to B is a non-degenerat&-BanachA-B-pair F' such thatA acts onF' by
compact operators, i.e.,if4: A — Lp(F) is the action ofA on F', then @4 is G-equivariant and)
ma(A) C Kg(F). The class of all Morita cycles from to B is denoted byMP" (A, B).

Morita cycles are hence exactly the trivially graded eIement@'@?(A, B) with zero-operator. We
can thus apply almost all the definitions we have madéf&P>*-cycles also to Morita cycles (mor-
phisms between them, pullback, push-forward, homotopy, etc.). The extra conditions (trivial grading,
zero operator) are compatible with almost all of the constructions and will usually make them simpler.

Definition 1.10.13 (Various elementary constructions)Let A, A’, B, B/, C, D be non-degenerate
G-Banach algebras.

1. LetF € MY (A, B) andF' € M2 (A’, B'). A morphism¥ betweenF and F’ is a concur-
rentG-equivariant homomorphisg¥,, from 4 Fp to 4/ Fy,. If we are only considering mor-
phismsV¥ between elements Mgan(A, B), we will usually impose the conditions = Id 4
andy = Idp.

2. f F F' ¢ ME’f‘“(A, B), thenF and F’ are calledsomorphicif there is a concurrent isomor-
phism of G-BanachA- B-pairs with trivial coefficient maps between them.

3. LetFy, Fy € M (A, B). ThenFy & F; is also inMP™ (A, B). The so-defined operation
is associative and commutative up to isomorphism. Moreover, the zer®-pair(0,0) €
MPn (A, B) is a neutral element iI2 (A, B) (up to isomorphism).

4. If¥: A — Bandy: C — D are equivariant homomorphisms afds M2 (B, C), then
U*(F) € Mg™(A,C) and ¢.(F) € ME"(B, D)
and the map#*(-) and,(-) commute and are additive up to isomorphism.

Also the notion of homotopy carries over to Morita cycles, and the use of this notion seems to give a
picture of Morita cycles which is even more conceptual than the one presented inl [Laf04].

Definition 1.10.14 (Homotopy).Let A and B be non-degenerat@-Banach algebras ank,, F; €
MR (A, B). Then ahomotopyfrom Fy to Fy is anF € M (A, B0, 1]) such thaevo . (F) & F
andevy . (F) = Fj. If such a homotopy existdi, and F; are callechomotopic The equivalence
relation onMP*" (A, B) generated by homotopy will be denoted-by.

Itis easy to show (e.g. using Propositjon 1.7.10 and Propo§itior] 1.7.9) that homotopy is a reflexive and
symmetric relation o2 (A, B). But just as folKKP* -cycles, | was not able to prove transitivity.
However, using the relation generated by homotopy is just as good.

Definition 1.10.15 (Morita morphism, Morgan(A, B)). Let A and B be non-degeneraté-Banach
algebras. Then we define

MorPf (A, B) := M (A, B)/ ~n .
The elements oMorgan(A, B), i.e., the homotopy classes of Morita cycles freio B, are called
Morita morphisms fromi to B.

2Compare[[Laf04], definition 2.2.
2ln French they are called “fléches de Morita”.
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The addition of cycles lifts to a well-defined abelian law of composition of Morita morphisms with
neutral elemen0]..,. A straightforward argument shows that homotopy is also compatible with the
pullback and pushout of cycles; more precisely:

If A, B, C and D are non-degeneratg-Banach algebrasiy, F; € M@ (B,C), 9: A — B and

1: C — D are homomorphisms @f-Banach algebras, then

Foron F1oo= 0 07(F0) ~n 07 (F1) A €u(F0) ~n ¥u(F1).
We therefore have additive maps
9*(-): Mor®™(B,C) — Mor2®™(A,C) and .(-): Mork(B,C) — Mor2™(A, C).
Using Propositiof 1.3]7 we can define the composition of Morita cycles as follows:

Definition 1.10.16 (Composition of Morita cycIes)B Let A, B, C be non-degeneraté-Banach
algebras and Ep € MP*™(A, B), pFo € M2"(B, C). Then

AE ®@p Fo € MP1(A,C)
is called thecompositiorof Morita cycles.

The composition of Morita cycles is biadditive up to isomorphism. It is also associative up to isomor-
phism since the tensor product of pairs is. An interesting question is whether we have left or right
identities for this tensor product:

If B is a non-degenerat@-Banach algebra, thepBy is a Morita cycle (the homomorphi@m
Yp: B — Lp(B) satisfiesyp(B) C Kp(B)). However, it does not in general act identically on
cycles, neither on the left nor on the rig@ So the isomorphism classes of Morita cycles are not a
veritable category (not even mentioning the set-theoretic difficulties). To overcome this problem we
switch to homotopy classes, i.e., to Morita morphisms.

Definition and Proposition 1.10.17 (Composition of Morita morphisms).Let A, B, C' be non-
degenerates-Banach algebras. The composition of cycleg: MP"(A, B) x MP(B,C) —
MPan( A, C) lifts to a biadditive associative law of composition on the level of Morita morphisms
which we are going to denote kg or by o (with the order of the factors reversed).

Proof. Let A, B, C be non-degeneraté-Banach algebras. Ld{,, F; € Mgan(A, B) andFy, F} €
Mga“(B, (). Let E be a homotopy fronk to £; and F' a homotopy from#j to F3.

First we show thafF := Ey@pgF € M‘gf“(A, (0, 1]) is a homotopy fronty @ Fy to Eg®p F}.
This is almost trivial since

VEAF) = (Bo@p F) @0 C = Byop (Fo,eC) = Byopevl,(F) = FyopF

foralli € {0,1}.

22Compare[[Laf04], Proposition 2.6.

*>see Definitior) 1.4]4.

24An exception are, by definition, cyclé®, ') such that the underlying Banach modules Brinduced in the sense of
[Grg9%6],i.e.E~ ®5 B = E~ andB®p E< = E<. If B has a bounded approximate identity, then every non-degenerate
B-pair is automaticallyB-induced in this sense.
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Now we show thatF" := E ®po1) F1[0,1] € MR (A, C[0,1]) is @ homotopy fromEy @5 F
to By ®p Fi:

ovil (F) = evi, (E@ppoy Fi[0,1]) = E @pjoq) evi, (F1[0,1])

B,x B
= Eoppyev; (I1)=Zev, (E)®p I 2 E;®pF

foralli € {0,1}. =
The remainder of this section is primarily concerned with the proof of the following result:

Theorem 1.10.18.The non-degeneraté-Banach algebras together with the Morita morphisms form
a category (apart from the fact that the morphism classes might not be sedsis # non-degenerate
G-Banach algebra, then the identity morphism.biis given by the equivalence class,of 4.

We have already proved that the composition is associative. What is missing is the statement about the
identity morphisms. We are actually going to show a little bit more, and to formulate this, we define:

Definition 1.10.19 Mgan(gp), Mor‘&an(go)). Let A and B be non-degeneraté-Banach algebras and
let p: A — B be aG-equivariant homomorphism. Thet acts onB ; from the left viap and the
so-constructed Morita cycle will be denoted K\rg}éan(go) and its homotopy class uyforgan(gp) or

simply by[¢].

Theorem 1.10.20.The mapy — Morgan(go) is a functor from the category of non-degeneréte
Banach algebras and equivariant homomorphisms to the category of non-degefieBateach alge-
bras and Morita morphisms. It has the following property:

If A, B, C are non-degenerat&-Banach algebras ang: A — B, ¢): B — C are equivariant
homomorphisms, and ff € Mor2*(A, B), g € Mor2™ (B, C) are Morita morphisms, then

(1.3) f @ Morg™ (1) = ¢ (f) and Morg" () ®5 g = ¢™(g).

Before we come to the proof of Theor¢m 1.10.18 and Thegrem 1]10.20 note that the most important
thing to prove is Equatiorn (11.3):

Let A, B, C be non-degeneratg-Banach algebras. Lei: A — B andy: B — C be homomor-
phisms ofG-Banach algebras. Thé¥igi (v o ) = ¢* (M2 (¢))). It follows that

Morg™ (¢ 0 ¢) = ¢*(Morci™ (1)) "= Morg™ () @5 Mor¢!" ().

So Equation3) implies that[or‘g}an(-) is functorial. And usingp = Id or ¢ = Id one can also
deduce the missing bit of Theorgm 1.10.18 from Equation (1.3). The first part of the equation is
proved in Lemma 1.10.22, the second part in Lerpma 1.10.24.

The main technical tool is the following sufficient condition for homotopy. It is Thegrem|1.9.1 in
the case that the involved operat@tsnd7” vanish, which corresponds to the case of Morita cycles.

Proposition 1.10.21 (Sufficient condition for homotopy for Morita cycles).@ Let G be a locally
compact Hausdorff group and let and B be non-degenerat&'-Banach algebras. Lef, F’ be
elements oM (A, B) with A-actions7 and 7’. If there is a morphismd from F' to F’ (with
coefficient map$d 4 andIdg) such that(w(a),7'(a)) € K(®,®) for all a € A, thenF and F’ are

Compare Proposition 2.10 ¢f [Laf04].
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homotopic; here, as abovK, (, @) denotes the set of all pairs of operatdr$, S’) € L(E) x L(E")
such that

Ve>03neN3el,...,es € ES,e7,...,e. € B
S = e )ef]
i=1
Lemma 1.10.22.Let A, B and C be non-degenerat&-Banach algebrasf' € MP™(4, B) and
¥: B — C aG-equivariant homomorphism. Then

u(F) ~n F @ MZE ().

Proof. Recall that), (F) = F®{55. Letn be the action ofi on F'. We give an equivariant concurrent

n

5" =D 197 (e7))(2(e)))

=1

<e and <e.

homomorphisn® from FepCto F®p C which satisfies the sufficient condition for homotopy given
above. Itis simply defined by

" FPepC —>F o5C, fPRc— f7®c

and analogously fo®<. It is clear that this defines an equivariant concurrent homomorphism with
coefficient map$d 4 andldg. Leta € A. We have to show thdtr(a) ® 1¢, 7(a) ® 15) is contained
in K(®, ®). We do this by showing the following more general result:

(1.4) VS eKp(F): (S®lc, S®1g) € K(®,d).
Because the map that senfiss Lp(F) to (S ® 1¢, S ® 1) is linear and contractive, it suffices to
show [1.4) in the case thatis a rank one operator. BecauBds non-degenerate, it even suffices to
consider the case that= | f>b>)(b=<f<| for f> € F>, f< € F< andb”, b=~ € B. Now
S@le)”(f®c) = (|/707)5f~|@le) (f” ®c)
— f>b>b< <f<, f/>>®c
= Peel) (et e s e
|17 @0 (07) e () @ £ (£~ @ o)
forall c € C'andf’> € F~. This and a similar calculation for the right-hand side show
Swlo=[7®¢ 7)) (e (%) @ /7 eKe(Fop ).
The same calculation faf' instead ofC results in
S @15 =07 (/7 @ ¢ (b)) (@<(¢ (v5) & f°)| € Ke (Fop ).

So trivially (S ® 1¢, S®15) € K(®, D). O

Lemma 1.10.23.Let A and B be non-degeneraté-Banach algebras and” € M* (A, B). De-
fine AF := (F<A, AF>) := (cI(F<A),cl(AF~)) which is aG-BanachA-B-pair. ThenA ®4
F,AF € M%™" (A, B) and

ARp F ~p AF ~n F.

Note thatA ® 4 F and AF are A-non-degenerate, so every Morita morphism is homotopic to a Morita
morphism with non-degenerate left action.
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Proof. Let m be the action ofA on F. We are going to define concurrent homomorphismsef
BanachA-B-pairs fromA ® 4 F to AF and fromAF to I which satisfy the Conditio.4). On the
way we are going to show thatF is indeed a Morita morphism.
Define
O ARAF” — AF>, a® f~ — af”

and similarly for the left-hand side. This clearly gives an equivariant concurrent homomorphism with
trivial coefficient maps. Let denote the obvious concurrent homomorphism ftéfto F'.
SinceA is non-degenerate, it suffices to show Condit[on|(1.4)ferinstead ofa wherea, b, c €

A. Lete > 0. Sincer(b) is compact, we canfind € Nandf{,..., f,; € F~andf;,..., [~ € F<
such that
7 (®) = Y [0S Nall llell < e
i=1
Define
S = > [a@ 7)o € Kp(A®aF),
=1
S = Z‘afi>><fi<c‘ € Kp (AF),
i=1
S’ = Z’afi>><fi<c‘ € Kp(F).
i=1

If d € Aandf~ € F~, then

SPdef7) = Y (a® f7) {5, (e, d)f”)

=1

_ e (z \fi>><ff\> w((e.d)) £

=1
(Ma> 0 (Z !fz->><ff\> oM<c) d® f),
=1

whereM,,y € Lp (F, A®a F)andM € Lp (A®4 F, F) are defined as in the proof of Proposi-
tion[1.3.7. This and a similar calculation for the left-hand side show

§= Mg o (Z \fi>><fi<1> o M.
=1

Let ¢ be the action ofA on A ® 4 F. Then for everyl € Aandf~ € F~:

p(abe)(d @ f7) = (abed) @ f7 = a® bedf” = (Mg o w(b) 0 M) (d @ f7).
Similarly for the left-hand side. So

p(abc) = Mgy o m(b) o M.



48 CHAPTER 1. KK-THEORY FOR BANACH ALGEBRAS

Hence

¢(abe) — S|| = HM'”” 0 <w<b> -3 \ff><ff\> oM
=1
=S N
=1

IN

[lall || (®) lefl <.

Let 7o denote the action ol on AF. Note that
| mo(abe) — || < ||w(abe) — S"]|.

Now

n

S" =3 "af7 ) {fe| = 7(a Z\f> (f|m(c)

i=1

and hence

Hﬂ(abc)—S"H = ||m(abc) — Z‘af> f<c‘

—2\f$><ff|

(”@ > \ff><ff\) w(c)

IN

lall || (b lell < e

From this it also follows that
|mo(abe) — S| < e

and hence thaty(abc) € Kp (AF). So in particulatAF € MP™ (A, B). O

Lemma 1.10.24.Let A, B and C be non-degeneraté-Banach algebrasf’ € M (B,C) and
p: A — B aG-equivariant homomorphism. Then

M (p) @ F ~h ¢*(F).
Proof. Note that
Mg (p) ©p F = ¢* (B@p F).
We have already shown thatand B ® g F' are homotopic elements M'gfn(B, C). So by Lemma
1.10.23,0*(F) andMP** () @5 F are homotopic elements 2" (A, C). O
1.10.4 Morita equivalences induce Morita isomorphisms

We are going to call the isomorphisms in the category of Morita morphMorga isomorphisms

Proposition 1.10.25.Let A and B be non-degeneraté&-Banach algebras and leE be a Morita
equivalence betwees and B. ThenF, regarded as &'-BanachA- B-pair with trivial grading, is in
MR (A, B). LetMor2™(E) or [E] denote the Morita morphism associatedo
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Proof. We have to show that the image of tieaction7: A — Lg(FE) is contained inKg(E).
Since r is continuous and linear and singg(E~, E<) is dense in4, it suffices to check that
m(a(e”, ev)) e Kp(E)foralle € E~ ande< € E<. If z~ € E~, then

T (A <e>, e<>)> (7)) =a <e>,e<>x> =e” <e<,x>>B = ‘e>><e<|>(x>).
Similarly on the left-hand side. Hence
(1.5) m(ale”, %)) = ‘e>><e<‘ € Kp(E). O

Lemma 1.10.26.Let A, B be non-degenerat6-Banach algebras and I€f and £’ be Morita equiv-
alences fromA to B. Assume thafy,61a,: aE, — aE'p is a concurrent morphism of Morita
equivalences (meaning that it is an equivariant morphism of Morita cycles that also preserves the left
bracket). Then

[E] = [E'] € Mor®™(A, B).

Proof. We use Conditior| (1]4). Let and#’ be the action of4 on E and onE’, respectively. Since
A({E~, E<) is dense in4, it suffices to consider only sueche A which are of the formy (e~, e<)
for somee> € E> ande< € E<. We have seen in Equatidn (IL.5) thea) = |¢>)(e<| € Kp(E).
Now

m(a) = 7' (ale”, €5)) =" (a(67(e7), 05(e%))) € Kp(E).
So Condition[(T.}) is trivially satisfied. O

Theorem 1.10.27.Let A and B be non-degeneratg-Banach algebras and |€f be a Morita equiva-
lence betweerl and B. Then the Morita morphisiiE] is anisomorphisnwith inversgE]~* = [E].

Proof. Write 4(,) : E~ x E< — A for the left bracket and, ) : E< x E~ — B for the right
bracket of the Morita equivalendg.

Note that the composition of Morita morphisms given by Morita equivalences is the Morita mor-
phism given by the composition of the equivalences. We will thus show that the Morita equivalence
F := 4,FE ®p E 4 gives the identity Morita morphism, and we will do so by providing an equivariant
concurrent homomorphisthfrom F = 4 E ®@p E 4 to the Morita equivalencé” := 4 A 4. We have
F~ = E- ®p E< = F<. Note thatE~ ®p E< is itself a Banach algebra when equipped with the
multiplication that is given on elementary tensors by the formula

(€> ® 6<) . (e/> ®€/<) e e> ® <€<,€,>>Be,<
forall e, e’ € E~ ande<,e’< € E<. Write y for this product onE~ @5 E<. Note that
6> ® €<A<€,>76/<> — 6> ® <6<,6/>>B€,< — 6><6<,6,>>B ®6,< — A<€<,6>>6/> ® €/<.

We define
(:EZ@pES — A e ®@eS |—>A<e>, e<>.
This is a homomorphism of Banach algebras:

C((e> ®€<) . (6/< ® €/< ) — C (€> ® €<A<€,>,€/<>)

— A<6>7 €<A<6/>,6,<> — A<6>,6<>A<6/>,6,<>
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foralle”, e’ € E~ ande<,e’< € E<. The right bracket and the left bracket frafit x '~ to A
are both given by o . We check thaf := (¢, ¢) is aG-equivariant concurrent homomorphism with
coefficient madd 4 on both sides. Note that

Clale” ® %)) =(((ae”) @ e=) = a{ae”, e*) =a a(e”, e~) = al(e” ®e~)

foralla € A, e~ € E<, ande” € E~, so( is A-linear on the left. Similarly on the right-hand side.
Moreover,

A<57 t) = <Sa t>A = C(S ’ t) - C(S) ' <<t> €A

forall s,t € E~ ®p E<. As( is G-equivariantf is indeed an equivariant concurrent homomorphism.
O

1.10.5 The action of Morita morphisms onKKg™

Definition and Proposition 1.10.28.Let A, B and C be non-degeneratg-Banach algebras. Let
(E,T) be an element dEZ™" (A, B) andF an element oM (B, C). Then we define

pr(E,T):=(E,T)®p F:=(E®4 F, T®1) € E¥"(A,C).

Proof. We have to show thdtz, T')® g F is indeed ifE2* (A4, C). Letw4: A — Lp(E) be the action
of A. Recall from Proposition 1.3.7 that operators of the form “compact tensor one” are compact
becauseB acts onF' by compact operators.

1. The operatof” ® 1 is odd.
2. Ifae A then[(ma(a) 1), T ®1] = [m4(a), T]®1 € Ka(F ®p F).
3. Ifa € A, then

(mala) ®1) (ldpgyr —T?®1) = (7a(a)(ldg —T%)) ® 1 € K¢ (E®p F).

4. If a € Aandg € G then
(ma(a) @ 1) (g(T®1) =T ®1) = (rala) (T -T))®1 € Ke (E®p F).
Moreover, this expression depends continuously enG.
O
Definition and Proposition 1.10.29.Let A, B, C' be non-degeneratg-Banach algebras. Then the
product® g: ER (A, B) x MP™(B, C) — En(A, C) is compatible with the respective homotopy
relations, so it lifts to a product

®p: KKX(A, B) x Mord®™ (B, C) — KKX1(A, C).

Proof. We split the proof into two parts and treat the compatibility in the first and in the second
component separately:
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1. Let (Ey, Ty), (Er, T1) € ER*(A, B) be homotopic and” € M (B,C). We show that
(Eo,To) ®p F and(E1,T1) ®p F are homotopic irE2™ (A, C): Find a homotopy(E, T) €
Een(A, B[0,1]) such thaevf, (E,T) = (Eo, Tp) andev(,(E,T) = (Ey,T1). TheKKP"-
cycle (E,T) ®@p1) F[0,1] € Eg"(A,C[0,1]) is the homotopy from(Ey, Ty) ®@p F to
(E1,T1) ®@p F we are looking for:

evy, (E®pjo F[0,1]) = evi, (E®pp F[0,1]) = E @pp 1 eve, (F[0,1])
E @B, vy (F) = eVE*(E) ®p F

12

for all ¢t € [0, 1], and these isomorphisms of the underlying pairs are compatible with the re-
spective operators.

2. LetFy, Fy € MP™(B, C') be homotopic andF, T) € ER* (A, B). We show thatE, T) @5 Fy
and (E,T) ®p I, are homotopic elements & (A, C): Let F € M2 (B, C[0,1]) be a
homotopy fromFj to ;. Then

evil (B.T) ®p F) = (B,T) ®p evi,(F) = (E,T) ®p F;

as elements @il (A, C) foralli € {0,1}. Hence(E, T)® g F is a homotopy fromE, T) @ 5
Fyto (E,T) ®p Fi. O

The action ofMorP™ on KK has the following properties:
Proposition 1.10.30.Let A, B, C, D be non-degeneraté-Banach algebras.

1. Letx,y € KKP*(A, B) and f € MorP* (B, C). Then
(z®y) ®p f= (@5 f) @ (y®s f).
2. Letr € KKP* (A, B) and f, f' € Mor2™(B, C). Then
z@p(fof)=(epf)® @@ [)
3. Letz € KK¥™(A, B), f € Mor2(B, C) and f' € Mor™(C, D). Theff§
x®p (f@p )= (x5 f)@c f.

4. Letz € KK (B,C), f € Morg™(C, D), andp: A — B a homomorphism of-Banach
algebras. Then

¢ (zop f)=¢" (r) @B [
5. Letz € KKX"(A, B) andy: B — C a homomorphism af-Banach algebras. Then

T ®@p [] = Yu(2).

%Compare Proposition 2.9 in [Lafd4].
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Proof. The properties 1. to 4. are already true on the levekBP*"-cycles (at least up to isomor-
phism). We omit their straightforward proofs. We prove property 5.:
Letzx = [(E,T)] with (E,T) € EX"(A, B). We show tha{E ®5 C, T ® 1¢) is homotopic to

(E®p C, T ® 1z) using the sufficient condition given in TheorF 9.1.

Remember that we have proved 5. in the cAse 0 in Lemm2. Definé: E@pC — E®pC

as in the proof of Lemmia 1.10.22 (withi instead ofF"). Now we use Equationj (J.4) to show that
(T'® 1o, T ® 15) satisfies the hypotheses of Theofem 1.9.1.7 e the action ofd on E.

Leta € A. Then[r(a) ® ¢, T ® 1¢] = [r(a),T] ® 1¢ and the same is true fdrs. Letting
S := [r(a),T] in Equation[(1.4) we can conclude that

([r(a) ®1c, T® 1], [r(a)®15 T®15]) € K(®,®).
For the other two conditions of Theor¢m 1]9.1 proceed analogously. O

Note that 1. implies that Morita morphisms act as group homomorphisrlﬁigﬁn, whereas 5. im-
plies that the identity morphism acts identically, which, together with 3. implies that Morita isomor-
phisms act as group isomorphismsKJKgan. Now Theore7 tells us that Morita equivalences
induce Morita isomorphisms, so we can deduce the following theorem:

Theorem 1.10.31.@ Let A, B, C be non-degeneraté’-Banach algebras and leE be a Morita
equivalence froni to C. Then ® 5 [E] is an isomorphism frofKKP (A4, B) to KKP" (A, C) with
inverse: @p [E].

Remark 1.10.32 (Graded Morita morphisms). The Morita cycles presented in this work &f&P2"-

cycles with trivial operator and trivial grading. The second condition can be deleted, Arahifl B

are non-degenerate (trivially graded) Banach algebras, then a graded Morit&'dyaia A to B can

be thought of as a paf’;, F.) of non-graded Morita cycles from to B. The advantage of this more
general setting is that we can define a structure of an abelian group on the Morita morphisms, making
the theory a bit more systematic. We confine ourselves to non-graded Morita cycles because we do not
need the graded ones in the rest of the work and we want to avoid further technical difficulties: The
suitable equivalence relation on the graded Morita cycles would no longer be the equivalence relation
generated by homotopy, but also cycles of the f@émF'), whereF' is a non-graded Morita cycle,
should be equivalent to zero; this is automatic in the cad€lof*"-cycles as degenerate cycles are
homotopic to zero, but the homotopy used in this case can only be constructed if non-zero operators
are allowed.

ZICompare Théoréme 1.4 in [Laf04], the corresponding resulkfor



Chapter 2

KK-Theory for Cy(X )-Banach Algebras

Let X be a locally compact Hausdorff space. The notion ¢} @aX)-C*-algebra is well-known in

the literature, and it has already been generalised to the concepf¢Xg-Banach algeblﬁ. For
Co(X)-C*-algebras there is a natural varianttoK-theory calledRKK. This chapter is dedicated to

the development of an analogous theory §g(X )-Banach algebras. This can be thought of as an
intermediate step betwedfK*" as defined in the first chapter and the varianKa€®*" for fields

of Banach algebras that we are going to define in the third chapter (following the path_of/[Laf06]).
The RKKP*-theory defined in the present chapter is really just a straightforward generalisation of
KKP2": The introduction tdKKb2" in the first chapter has been rather detailed to enable us to say
that the reader should just browse through the first chapter and add an adfigiXofeverywhere.

All results from the first chapter carry over, especially the sufficient condition for homotopy and the
theory of Morita morphisms.

The starting point for our definition &KX is the following observation: 11 and B areCy(X)-
C*-algebras andE, T) is a cycle forRKK( A, B), thenFE carries a canonical action 6§(X) defined
through the identificatiol® = £ ®p B (just letCy(X) act on the second factor). This action is the
unique action of’y(X) on E that is compatible with the module action Bf The usual condition
on aRKK-cycle, namely thatxa)(eb) = (ae)(xb) foralla € A,e € E,b € Bandy € Cy(X),
then just means that the actions@f X') on A and E should be compatible. SB is what could be
called aCy(X)-Hilbert A-B-module. The corner stone for the definitionRIKK"*" should hence be
the notion of aCy(X)-BanachA-B-pair (if A and B areCy(X )-Banach algebras). The fundamental
notion underlying all this is of course a notion of@ X )-Banach space, which turns out to be rather
simple:

2.1 Cy(X)-Banach spaces

Definition 2.1.1 (The category ofCy(X)-Banach spaces)A Cy(X)-Banach space is by definition
a non-degenerate Bana€h(X )-module. If E and F' areCy(X)-Banach spaces, then we take the
bounded linea€(X )-linear maps fron¥ to F' as morphisms fronk to F'. We are going to denote
the morphisms fronk to F by LX)(E, F).

Example 2.1.2.Let E be a Banach space. ThéhX = Cy(X, E) is aCy(X )-Banach space with the
canonical action of,(X).

1See([Blags].
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Definition 2.1.3 (The product ofCy(X)-Banach spaces)Let £, and E, beCy(X)-Banach spaces.
Let F; x E5 be the product Banach space (with the sup-norm). We define an actig(oj on E by
v(e1,e2) := (pe1, pez) forall p € Co(X), e € Ey andes € E,. ThenE; x Es is aCy(X)-Banach
space.

There is also an obvious notion of the sutn & E> of Cy(X)-Banach space®; and Es using the
sum-norm. It is compatible with thé&, (X )-tensor product that we are going to define next.

Definition 2.1.4 Co (X )-bilinear). Let £y, E5, F' beCy(X)-Banach spaces. An element M(E, Ey; F)
is calledCy (X )-bilinear if 11 is Co (X )-linear in every component. The (closed) subspadé @t , Es; F)
formed by they(X)-bilinear maps will be denoted by (X) (Ey, Ey; F).

Definition and Proposition 2.1.5 Cy (X )-tensor product). Let E;, andE; beCy(X)-Banach spaces.
ConsiderE; andE; as Banaclf (X )-Co(X )-bimodules. Then we can form the (projective) balanced
tensor productl; ®¢, (x) L2, being itself &y (X )-Banach space. It has the obvious universal property
for continuousCy (X )-bilinear maps. We will denote th&)(X)-tensor product of; and E; by

Ey ®C0(X) FEs.

2.2 Cy(X)-Banach algebras, modules and pairs

2.2.1 Cy(X)-Banach algebras

Definition 2.2.1 Cy (X )-Banach algebra). A Cy(X)-Banach algebr#® is a Banach algebrB which
is at the same time @&, (X )-Banach space such that the multiplicationfs Cy (X )-bilinear.

We discuss an alternative definition o€g( X )-Banach algebra using the so-called structure homo-
morphism in Appendik E]1.

Definition 2.2.2 (Homomorphism of Cy(X)-Banach algebras).Let A and B be Cy(X)-Banach
algebras. A homomorphism 6f (X )-Banach algebrag: A — B is a homomorphisnp of Banach
algebras which is at the same time a homomorphis@ 0X )-Banach spaces (i.e., itég (X )-linear).

Definition 2.2.3 (The fibrewise unitalisation). Let B be aCy(X)-Banach algebra. Then we define
the fibrewise unitalisation ab to be B & Cy(X). The norm onB & Cy(X) is the sum-norm and the
product is given by

(b7 90) : (C) 1/)) = (bC + ¢b + pc, ¢¢)
forall b,c € B, ¢,1 € Co(X). The action ol’y(X) on B ¢ Cy(X) is given componentwise. Note

that B is contained as &y(X )-invariant ideal inB @ Cy(X) and thatB & Cy(X) is non-degenerate,
it even has a bounded approximate unit.

2.2.2 Cy(X)-Banach modules

Definition 2.2.4 Cy(X)-Banach module). Let B, C' be Cy(X)-Banach algebras. ThenGa(X)-
BanachB-module is a BanaclB-module E which is at the same time & (X )-Banach space such
that the module action i§)(X)-bilinear. Analogously we defing, (X )-BanachB-C-bimodules.

Lemma 2.2.5.1f B is aCy(X)-Banach algebra and” is a non-degenerate Banadb-module, then
there is at most oné (X )-structure onE such that®' is aCy (X )-BanachB-module.
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Proof. Let E have aCy(X )-BanachB-module structure. Then for ali € Cy(X), e € E andb € B,
we have(eb)y = e(by), so onEB the Cy(X)-action is known from the&(X)-action onB. By
linearity and continuity it is known ot O

Lemma 2.2.6. Let B be aCy(X )-Banach algebra and let’ be a right B-induced BanactB-module
in the sense of [Grg96], i.e., assume thHatkz B = F, canonically. Then there exists a (unique)
Co(X)-structure onE such thatE is aCy(X )-BanachB-module.

Proof. We haveF = FE ®p B so we can le€y(X) act on the facto3 of the tensor product to get an
action onk. O]

Definition 2.2.7 (L%’(X)(E, F)). Let B be aCy(X)-Banach algebra and |ét, F' beCy(X )-Banach
B-modules. Then we writE%O(X) (E, F) for the subspace dfs(FE, F') of operators which are also
Co(X)-linear.
Lemma 2.2.8. Let B be aCy(X)-Banach algebra and le, F' be Cy(X)-BanachB-modules such
that £ is non-degenerateThen all elements dig(E, F') are automaticallyCy(X)-linear, i.e., we
have

Lp(E,F) =19 (E, F).
Proof. Lete € E,b € B andy € Cyp(X). Then

T (p(eb)) =T (e(pb)) = T(e)(wb) = p(T(e)b) = ¢T'(eb).
SinceE B is dense inE we havel' (pe) = ¢T'(e) foralle € E. O

Lemma 2.2.9.Let E be aCy(X)-BanachB-module. Then for every € Cy(X), the mape — pe on
EisinLeY(E),

The definition of homomorphisms with coefficient maps betw@&grX )-Banach modules is the ob-
vious variation of the basic Definitign 1.1.3, requiring all maps t@§(eX )-linear.

The balancedCy (X )-tensor product of Co (X )-Banach modules

Let A, B, C beCy(X)-Banach algebras, |éf be aCy(X)-BanachA-B-bimodule, letF" be aCy(X)-
BanachB-C-bimodule and leti be aCy(X )-BanachA-C-bimodule.

Definition 2.2.10 (Balanced’, (X )-bilinear maps). The set of all balanced bilinear maps frdix F
to G that are als@y (X )-bilinear will be denoted b1P€0(X) (£ F; @). In the same spirit we use

the notationy M2 ) (B, F; @), etc.

Lemma 2.2.11.Lety € 4MP3(E, F;G). If E is B-non-degenerate and’ is C-non-degenerate,
theny is automaticallyCy (X )-multilinear.

Definition 2.2.12 (The balanced’, (X )-tensor product of Banach modules).Thebalanced’ (X )-
tensor productty ®CB°(X) I of E andF over B is defined to be the universal object for the balanced
Co(X)-multilinear maps orE x F. It can be obtained by taking ® g F' and dividing out elements of

the formep ® f — e ® ¢ f. Alternatively (and more conceptually) it can be constructed by taking the
Co(X)-tensor produckE @ (X) F as a substitute for the projective tensor product (of Banach spaces)
and proceed exactly as in the construction of the usual balanced tensor product.

Proposition 2.2.13.If in the preceding definitiorE’ or F' is B-non-degenerate, then the usual bal-
anced tensor product and the balana&gd X )-tensor product agree:

(X)

E%Y F=EgyF.
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The pushout

Definition 2.2.14 (The pushout).Let B and B’ be Cy(X )-Banach algebras and let B — B’ be
a Co(X)-linear homomorphism. LeE be a rightCy (X )-BanachB-module. Note tha¥ is also a
BanachB & Cy(X )-module and) can be extended to a morphism frdsn® Co(X) to B’ & Co(X).
Now we define

Pu(E) == E @pacy(x) (B’ @ Co(X)),

being aCy (X )-BanachB’-module. If E is a non-degenerate Banaghmodule, then one could take
the tensor product oves instead ofB @ Cy(X) andy, (E) is non-degenerate as a Bandaghmodule.

Proof. By definition,. (E) is a BanactB’'&Cy(X )-module, so it also is & (X )-BanachB’-module.
If E is non-degenerate then the bilinear njap(t’, x)) — e ® (¥, x) from E x (B’ @ Cyp(X)) to
E®p (B ®Cy(X)) is not only B-balanced but automatically @ Cy(X )-balanced. Hence the tensor
products overB3 and overB & Cy(X) agree. The fact that.(FE) is non-degenerate asid-module
follows as in the case of the ordinary pushout. O

Lemma 2.2.15.Let B be aCy(X)-Banach algebra and leE’ be aCy(X )-BanachB-module. Then
the mape ® (b, f) — eb + ef induces an isometric isomorphism@f( X )-BanachB-modules

IdB7*(E) =F ®B€BC0(X) (B EBCU(X)) ~ F.

Proof. Denote the map by, being aCy(X)-linear homomorphism with coefficient magg. We
show that it is injective and a quotient map.

To see that it is injective let be an element of its kernel. We show thigt = 0 for all x €
Co(X). As this is also true for an approximate unitd@p(X), this showst = 0. Represent as
> nen €n @ (bn, fn) With e, € E, b, € Bandf, € Co(X). Then0 = &(t) = > enbn + enfn.
Now

tX = Z €n ® [(bna fn)(oa X)] = Z €n(bn, fn) ® (Oa X)

neN neN
) [Zenbn+enfn @ (0.%) =08 (0.%) = 0.
neN

To see thatb is a quotient map let € E ande > 0. By Cohen’s Factorisation Theorem we can find
¢ € Eandf € Co(X) suchthat'f =e, |le — €| < eand| f|| < 1. Lett := €' ®(0, f) € Idp «(E).
Then||t]| < ||| | f]] < |lell + e and®(t) = €' f = e. S0P is a quotient map. O

Because this construction is clearly naturalBnwe get the first part of the following proposition.
The second part is proved similarly.

Proposition 2.2.16 (Functorial properties of the pushout).

e Let B be aCy(X)-Banach algebra. Then the funct@iiz), is naturally isometrically isomor-
phic to the identity functor on the category@f( X )-BanachB-modules.

e Let B, B, B” beCy(X)-Banach algebras and let: B — B’, ¢': B’ — B” be homomor-
phisms. Ther), o v, and (¢’ o ¢), are naturally isometrically isomorphic functors from the
category o’y (X )-BanachB-modules to the category 6§ (X )-BanachB”-modules.
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2.2.3 Co(X)-Banach pairs

Definition 2.2.17 Cy(X)-Banach pair). Let B be aCy(X)-Banach algebra. &£,(X)-BanachB-
pair E is a B-pair E such thatE< and E~ are(Cy(X)-BanachB-modules and such that the inner
product isCy(X)-bilinear. If A is anotherCy(X)-Banach algebra, then a BanadhB-pair E is a
Co(X)-BanachA-B-pair if it is a Co(X)-BanachB-pair and the actions ofl on E< and E~ are
Co(X)-bilinear.

Example 2.2.18.Let B be aCy(X)-Banach algebra. Thef is aCy (X )-BanachB-pair.

The following lemmas are the Banach pair versions of Lenima]2.2.5 and L€mmfp 2.2.6 for Banach
modules.

Lemma 2.2.19.1f Bis aCy(X)-Banach algebra an@ is a non-degenerate Banadh-pair such that
E< andE~ are(Cy(X)-BanachB-modules, then the inner product is automaticaly X )-bilinear.

Lemma 2.2.20. Let B be aCy(X)-Banach algebra and le&’ be a B-induced BanactB-pair, i.e.,
B®p E< = E<andE~ ®p B = E~. Then there exists a uniqul(X)-action onE such thatF
becomes &, (X )-BanachB-pair.

Definition 2.2.21 (Linear operators betweerf (X )-Banach pairs). Let E andF' beCy(X)-Banach
B-pairs. Then an elemefitof L(E, F) is calledCy(X)-linear if T< andT~ areCy(X)-linear. The

subspace of ally (X )-linear maps iz (£, F') is denoted b)L%O(X)(E, F).

Lemma 2.2.22.Let F and F' be Cy(X)-BanachB-pairs. If E and F' are non-degenerate, then
Lp(E,F) = L%’(X)(E, F),i.e.,Co(X)-linearity is automatic.

Lemma 2.2.23.Let E be aCy(X)-BanachB-pair. Then for everyp € Co(X), the pair of maps
Co(X)

(eS = e, e” = pe”)isinLy "/ (E).

As inthe case of (X )-Banach modules the definition of concurrent homomorphisms with coefficient
maps betweed, (X )-Banach pairs is the obvious variation of the basic Definitjons [1.2.9 and [1.2.11,
requiring all maps to b&(X)-linear.

Compact operators betweerCy (X )-Banach pairs

Proposition 2.2.24.Let E and F’' beCy(X )-BanachB-pairs. TherKz(E, F') is always contained in
L(;)(X)(E, F), i.e.,Co(X)-linearity is automatic for compact operators.

Proof. Let f> € F~ ande< € E<. LetT := |f>)(e<|. To show thatl™ is Cy(X)-linear let
e” € E~ andy € Cy(X). Then

T7(pe”) = f7{e™, pe7) = [7(p(e™, e7)) = p(f7{e™, 7)) = ¢T7 (e”).

Similarly one shows thdf'< is Cy(X)-linear. Now the set of ally(X)-linear elements ilug(E, F')
is a closed subspace, so it contains the wholE gt E, F). O

Proposition 2.2.25. Let E and F' be Cy(X )-BanachB-pairs. ThenKpz(E, F') is aCy(X)-Banach
space. The canonical bilinear map frafv x E< — Kg(FE, F) is Co(X)-bilinear.
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Proof. We have to show th& g (E, F') is invariant under th€, (X )-action and thaKg(E, F') is a
non-degenerate Bana€h(X )-module.
Let f~ € F~ ande<~ € E<. Lety € Cy(X). Then

e (IF7)es]) (€)= p (f7(es,e7)) = |pf~)(e"](e”)
for all e= € E~. Similarly on the left-hand side. So
o (IF7)(e]) = lef7)(e=] = [£7){we=].

By linearity and continuity we can conclude tiég (E, F) is invariant under thé€, (X )-action. We
also see thalff~)(e<| can be approximated by elements of the fapif~)(e<|, sOKg(E, F) is a
non-degeneraté) (X )-module. O

Proposition 2.2.26.Let £, F' andG beCy(X )-BanachB-pairs. Then the composition of elements of
Kp(F,G)andKp(E, F) is Cy(X)-bilinear andK 3 (E) is aCy(X)-Banach algebra.

Definition 2.2.27 (Locally compact operator).Let E and F' be Cy(X )-BanachB-pairs. Therl’ €
L%O(X)(E, F) is calledlocally compacif x7" is compact for ally € Co(X).

If TisinLp(E, F) such thatyT" is compact for ally € Cyo(X), thenT is automaticallyCy (X )-linear.
Moreover, it suffices to checkT € Kg(F, F) for all x € C.(X). The bounded locally compact
operators form a closed subset[fg(x)(E, F).

Balanced tensor product and the pushout

The definition of the balanced tensor productefX )-Banach pairs is the obvious result of pairing
Definition[1.3.3, the definition of the balanced product of ordinary Banach pairs, and Definitior] 2.2.12,
the definition of the balanceth (X )-tensor product of Banach modules. If all the Banach pairs are
non-degenerate, then one does not even need to takg(tkg-tensor product, the ordinary balanced
tensor product does the job.

Similar things can be said about the pushout: Just take the definition of the pushout of Banach
pairs (Definitior] 1.3.9) and pair it with the definition of the pushoufg(fX )-Banach modules (Def-
inition [2.2.14) to get the definition of the pushout of® X )-Banach pair under a homomorphism
of Cy(X)-Banach algebras. It has the desired functorial properties (compare Pro 1.3.11 and

Propositior} 2.2.76).

2.3 The pullback

Let X andY be locally compact Hausdorff spaces andy” — X be continuous.

2.3.1 The pullback ofCy(X)-Banach spaces
Definition 2.3.1 (The pullback). For everyCy(X )-Banach spac&, we define
PpH(E) = 0,(E) = E %X Cy(Y)

being aCy(Y')-Banach space, whete Co(X) — Cp(Y), o +— @ op.
If EandF areCy(X)-Banach spaces ande L¢,(x)(E, F'), then we define

p(T):=T®1: ECX Cy(Y) = F@0X) Cy(Y), e® x — T(e) ® x.
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The so defined map is a functor from the categorg@fX )-Banach spaces to the categoryCefY")-
Banach spaces, linear and contractive on the morphism sets.

Example 2.3.2.We have

P (Co(X)) = Co(X) @) Cy(Y) = Co(Y)
asCy(Y)-Banach spaces where the isomorphism is given by the product.

Remark 2.3.3. In the proof of the following proposition we use some machinery which we just want
to sketch here to avoid yet another appendid3 Bind B’ areCy (X )-Banach algebras, then thg( X )-
tensor produc @ (X) B’ carries a canonicdl, (X )-Banachalgebrastructure. IfE and E,, are
Co(X)-Banach modules, them @°0(X) E’ is aCy(X)-BanachB @%X) B’-module in a canonical
way. If E and E' are non-degenerate, then sofs2(X) E’. And finally, if zF and g/ F’ are
non-degenerate leff) (X )-Banach modules, then

(E®p F) ®c,y(x) (E' @p F') = (E g El) ® Beco(X) pr (F @) F,> '

Proposition 2.3.4. The functorp*(-) commutes with the tensor product: A% and E, are Cy(X)-
Banach spaces, then there is a natural isometric isomorphism

P (B 800 () 2 p (B1 690 B).
Proof. Define a mapmy, . : p*(E1) @) p*(By) — p* (B ) E,) sending(e; ® ¢1) ®

(62 ® p2) 10 (1 @ e) ® (p1592). Now we use Remark 2.3.8(X) @) ¢y(Y) = Cy(Y) is also
isomorphic toCy (Y) as aCy(X )-Banach algebra and it follows that

p(E1) @90 p*(By) = <E1 @C0(X) co(y)> ®o(X)2% Xy (Y) <E2 &Co(X) CO(Y)>
® (e o o= )
~ (E1 ®Co(X) Eg) ®%) (Y (E1 g0 E2>~

The composition of these isomorphismsmi%*1 B, Itis natural: Letr, I, be some othe€o(X)-
Banach spaces arfd € LX) (E;, F;). Then for alle; € E1, es € Es andy, x2 € Co(X):

mZ}){,FZ ((p*(Th) @ p"(T2)) ((e1 ® x1) @ (€2 ® Xx2)))
= ml}):l,FQ (p*(T1)(e1 ®@ x1) ® p*(T2)(e2 ® x2))

= mzzz;l,FQ (Ti(e1) ® x1, To(e2) ® x2)
(T1(e1) ® Ta(e2)) ® (x1x2)

(Th @ To)(e1 ® €2)) ® (x1X2)

= p"(T1 ®7T32)((e1 ®e2) ® (x1x2))

P (T @ D) (m, g, (1@ 1) @ (29 x2)))

In shortm?, ;. o (p*(T1) ® p*(T2)) = p* (1 @ Ty) om¥, 1, , so the isomorphism is natural. [



60 CHAPTER 2. KK-THEORY FOR Cy(X)-BANACH ALGEBRAS

Definition 2.3.5. Let £y, E; and F' be Cy(X )-Banach spaces and lgt £y x Ey — F beCy(X)-
bilinear and continuous. Then the map

p*(n): p*(E1) x p*(E2) — p"(F), (e1® x1, e2 ® x2) + p(e1, e2) ® x1X2
is aCy(Y)-bilinear continuous map such thigt* ()| < [|u]|-

If we identify p*(E;) @) p*(E,) andp*(E; @0X) Es), then we have

—

p(p) =p" (A).

Proposition 2.3.6 (Preservation of associativity)Let F1, Es, Es3, Fy, F» and G be Cy(X)-Banach
spaces. Lefi; € M) (B, Ey; Fy), po € MOWX) (Ey, Es; Fy), v1 € MOX) (Fy, E5: G), and
vy € MOWX) (Ey, Fy; G). Assume that

2 Re) (Iil ® IdEg) =1yo0 (IdE1 ®/f2) .

Then the same law holds after applying the pullback functor:
) o (07 (1) ® 1y () = 07 (v2) © 1y ) @7 (12) ) -
Proposition2.3.7. 1. If X = Y andp = Idy, thenp* is naturally isomorphic to the identity

functor on the category af, (X )-Banach spaces, the natural transformation being linear and
isometric and compatible with the tensor product.

2. If Z is another locally compact Hausdorff space andZ — Y is continuous, then* o p* and
(p o q)* are naturally isomorphic, the natural transformation being linear and isometric and
compatible with the tensor product.

Proof. We just give the isomorphisms and leave it to the reader to check naturality and the other
properties.

1. The natural isomorphistid’ (F) = E ®%(X) ¢y(X) = E is given by the module action.

2. The natural isomorphisit (p*(E)) = (po q)* (E) is defined as the map that sends y ®
X' toe® (x oq)y, soitis the tensor product dfly and the canonical isomorphism from
Co(Y) @) ¢y(Z) to Cy(Z) and hence it is an isomorphism. O

Proposition 2.3.8.1f T' € L, (x) (¥, F') has dense image, then so h&sT).

Proposition 2.3.9. Let E, E» and F' beCy(X)-Banach spaces and lgt £} x Ey — F beCy(X)-
bilinear and continuous. Let: Y — X be continuous. If: is non-degenerate, then sop$(u).

Proof. If i is non-degenerate, thgnhas dense image. Then alst/:) has dense image, 35(;)
has dense image, too. This just means tfigt) is non-degenerate. O
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2.3.2 The pullback of Banach algebras, etc.

Let B be aCy(X)-Banach algebra with produgt Thenp*B is aCy(Y)-Banach algebra with mul-
tiplication p*u. If B’ is anotherCy(X)-Banach algebra and: B — B’ is a homomorphism of
Co(X)-Banach algebras, theriy is a homomorphism afy(Y)-Banach algebras fromi* B to p* B'.

If Eis a rightCy(X)-BanachB-module, therp*E is a rightCy(Y')-Banachp* B-module. If F
is anothelCy (X )-BanachB-module, therp*(E & F') = (p*E) @ (p*F'). Similar things can be said
about left Banach modules.Tf € L%’(X)(E, F), thenp*T € Lg(jg) (p*E,p*F).

If E is a rightCy(X )-BanachB-module andF is a leftCy (X )-BanachB-module, then

p* (E g% ™) F) ~ p*E &f

S(BY) p*F.
If B is the Banach algebr& @ Co(X), thenp*(B) = p*B. Finally, if ¢o: B — B’ is aCo(X)-linear
homomorphism of Banach algebras, theér(vy.(E)) = (p*y).p* E for all right Co(X )-BanachB-
modules.

If E = (E<,E”)is aCy(X)-BanachB-pair, thenp*E = (p*E<, p*E~) is aCy(Y)-Banach
p*B-pair in a canonical way. The pullback alopgs compatible with linear operators, homomor-
phisms, the balanced tensor product, the direct sum and the pushout (just as for Banach modules).

The pullback of a compact operator is not compact in general. However, we have the following result:

Proposition 2.3.10. Let £ and F' be Cy(X )-BanachB-pairs over som&, (X )-Banach algebrab.
LetT be a locally compact bounded operator frathto £'. Thenp*T is a locally compact bounded
operator fromp*E to p* F' satisfying||p*T’|| < ||T]].

Proof. Let y € Co(Y). Findx1, x2 € Co(Y) such thaty = x1x2. Lete< € E< andf~ € F~. Then
Xp* |7 )eS|7 (e @ p) = f7 (e, e”) @ xixap = [f7 @ xi) e @ xa| (€™ ® )

foralle> € E~ andy € Co(Y') (and similarly for the left-hand side). It follows thap*| f>){e<| =
|/~ ® x1){e< @ x2|. In particular,p*|f>)(e<| is locally compact. It follows thap*S is locally
compact wheneve$ is compact.

Let T" be locally compact. Becaugi(Y') is a non-degenerat& (X )-module, we can factorise
every element of(Y") in a product of an element ¢4,(X) and an element afy(Y"). If x € Co(Y)
andy’ € Cy(X), then(xx')p*T = xp*(X'T), which is compact becausé? is compact. Hencg*T
is locally compact. O

2.4 Gradings and group actions

Definition 2.4.1 (GradedCy (X )-Banach space) A gradedCy (X )-Banach spaces aCy(X )-Banach
spaceF endowed with a grading automorphism commuting with@heX )-action.

Let G be a locally compact Hausdorff group that acts continuouslyXorNote thatCy(X) is aG-
Banach algebra when equipped with theaction(gx)(z) := x(¢7'2), x € Co(X),g € G,z € X.

Definition 2.4.2 (G-Cy(X )-Banach space) A G-Cy(X )-Banach spaces aG-Banach spac& which
is at the same time @&, (X )-Banach space such that the action&/adndCy(X) are compatible in the
following sense:

g9(xe) = (9x)(ge), x €Co(X), g€ G e€E,

i.e., the producf,(X) x F — E is G-equivariant.
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From these definitions we also get an obvious definition for a gré&&€d(X)-Banach space.
Taking this as a starting point one can define gra@gd\)-Banach algebras, homomorphisms of
gradedCy (X )-Banach algebras, grad€d(.X )-Banach modules7-Cy(X )-Banach algebras, graded
G-Co(X)-Banach pairs, etc. All constructions we have made for graded and equivariant structures in
Chapte[}L are compatible with the additiofdg( X )-structure; we skip the details.

Also, the pullback along--equivariant maps between locally compact Hausdorff spaces on which
G acts is compatible with the addition@+action onG-Cy (X )-Banach spaces, etc.

Remark 2.4.3. The way we have defined the pullback tGy( X )-Banach spaces is not really com-
patible with the pullback of upper semi-continuous fields of Banach spaces that we are going to meet
later; in fact, to obtain the same structure one has to consider lagglly)-convexCy(X)-Banach
spaces and the pullback has to be adjusted so that we stay in the same category.

We will see that in the context of upper semi-continuous fields of Banach spaces an action of
a groupoid can be modelled using the pullback. This is not possible in the setiilagX6f-Banach
spaces, at least not in an obvious way (apart from the fact that we can shift everything to the category of
upper semi-continuous fields, do the modelling there, and transfer everything bagkktpBanach
spaces using the functors introduced in Chgpter 4).

I would like to thank Ralf Meyer for providing me with the following example which shows that
the above construction of the pullback really is not suitable to model actions of groupoids. There
might be a better choice of the involved tensor product which remedies the problem, but we do not
venture into this.

Example 2.4.4.Let G be a discrete group and defife= (' (G). ThenE = [1(G) carries a canonical

action of G, namely(g€)(h) = &(g71h) for all ¢ € 11(G) andg,h € G. Letp: G — {x} be the

projection onto the one-point space (being the range and source ndapegfarded as a groupoid).

Can the action of7 on E be encoded in a continuous map frginE to p* E? Note thap* F is the

projective tensor produet (G)®™ 1! (G) which can be identified with (G, co(G)). If f € co(G) has

finite support ang < 1*(G), then the map we are looking for should sef@ ¢ to > gec [(9)6,®4€.
Let¢ = 6., be the indicator function of the identity elemest of G. Then

D F(9)8g @ g0 = Y F(9)5g @6,

geG geCG

for all f € ¢o(G) with finite support. If we identifyco(G) @™ I1(G) with i1 (G, ¢o(G)), then this
element corresponds ip+— f(g)d,4. The norm off @ de, iS || fl [[ec|ly = I|f]lo, the norm of

Sgeq F(9)8y @ 6y is equal 10lg — £(9)0,ll, = e [/(9)dgll., = [ flly. This is true for all

f € ¢o(G) with finite support. Obviously, the map we are looking for is not isometric and, more
dramatically, cannot be extended to a continuous map*@h The reason is of course that we have
taken the “wrong” tensor product; for the injective tensor product everything would work fine in this
particular situation. So far | have not checked whether the injective tensor product leads to a theory
that works smoothly in general.



2.5. RKK2™ (Co(X); A, B) 63

2.5 RKKX™(Cy(X); A, B)

2.5.1 Definition

Definition 2.5.1 E&™" (Co(X); 4, B)). Let A and B be G-Cy(X)-Banach algebras. Then the class
EPA1 (Co(X); A, B) is defined to be the class of paii&, T') such thatZ is a non-degenerate graded
G-Cy(X )-BanachA-B-pair and, if we forget th€,(X)-structure, the paifE,T') is an element of
EPn (A, B).

The constructions from Sectidn 1.8 are obviously compatible with the additigfal)-structure, so
we can form the sum dKKb*"-cycles and take their pushout along homomorphism&-g (X)-
Banach algebras. We also hav€# X )-linear notion of morphisms dKKP2"-cycles, giving us a
Co(X)-linear version of isomorphisms &K""-cycles. Hence also the notion of homotopy makes
sense in th€, (X )-setting so we can formulate the following definition:

Definition 2.5.2 RKK2™ (Co(X); A, B)). The class of all homotopy classesif™" (Co(X); A, B)
is denoted byRKKR™ (Co(X); A, B). The addition of cycles induces a law of composition on
RKKP (Co(X); A, B) making it an abelian group.

The fact that the composition dRKK2™ (Cy(X); A, B) has inverses can be proved just as in the
case without th&, (X )-structure, i.e., Lemme 1.2.5 of [Laf02] and its proof are compatible with the
additionalCy (X' )-module action. There is an obvious forgetful group homomorphism

RKKP™ (Co(X); A, B) — KK (A, B).

2.5.2 The pullback of RKKP™-cycles

In this paragraph leY” be another locally compact Hausdofffspace angh: Y — X be continuous
andG-equivariant.

Let £ be aCy(X)-BanachA-B-pair overCy(X)-Banach algebragl andB. LetT € Lg(F).
Then[a, T is compact for alk € A if (and only if) [a, T is locally compact for al € A: Leta € A.
Find x € Co(X) anda’ € A such thate = xd'. If [d/, T is locally compact, thefu, T'] = x[a/, T] is
compact. It follows that we can replace the condition thaf’] is compact in the definition of cycles
for RKKP " with the condition that these operators are locally compact. The same is true for the other
compactness conditions in the definitionRIKK*". Hence we have the following lemma:

Lemma 2.5.3.Let A and B be G-Cy(X )-Banach algebras anfZ, T') € EX*" (Co(X); A, B). Then
p*(E,T) = (p*E, p*T) € E&" (Co(Y); p*A, p*B).

Proof. The pairp* E carries a canonical grading aptl’ surely is an odd linear operator phFE for
this grading. Letn € Aandy € Cy(Y). Thenja® x, p*T] = x ([a,T]® 1) = xp*[a,T]. Now
p*[a, T is locally compact (angp*[a, T'] is compact).

Similar arguments are valid for the other compactness conditions. O

Let B be aG-Cy(X)-Banach algebra. Letp be the canonical homomorphism frgeh (B0, 1]) to
(p*B)[0,1] which sends3 ® x to ¢t — [(t) ® x. This map might not be an isomorphism, but it
nevertheless satisfigs(ev?) = ev? B ogp forall ¢ € [0,1]. If (E,T) € E2n (Co(X); A, B0,1]),
thenp*(E,T) € E2™ (Co(Y); p*A, p*(B[0,1])). It follows that (¢5).(p*(E,T)) is an element
of ER1 (Co(Y); p* A, (p*B)[0,1]). The functoriality of the pushout shows that this is a homotopy
betweenp*(Ey, Tp) and p*(Ey,T1) where (E;,T;) = evP (E,T) for all i € {0,1}. Hence the
pullbacks of homotopic elements are homotopic. We can therefore say.
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Proposition 2.5.4. Let A and B be G-Cy(X )-Banach algebras. Then the pullback algniduces a
homomorphism

p*: RKKE™ (Co(X); A, B) — RKKg™ (Co(Y); p*A, p*B).

2.6 Homotopy and Morita equivalence

2.6.1 The sufficient condition for homotopy

All the constructions of Sectidn 1.9, in particular the sufficient condition for homotopy presented in
Theorenj 1.9]1, are compatible with an additiofglX )-structure. We explicitly state one definition
for further reference:

Definition 2.6.1 (The clasE ™ (Co(X); ¢, 1)). Letp: A — A’ andy: B — B’ be G-equivariant
Co(X)-linear homomorphisms af-Cy(X)-Banach algebras. KK"*"-cycle from to v is a pair
(¢: E — FE’, (T,T")) such thatF is a non-degenerate gradédC,(X )-BanachA-B-pair, E’ is a
non-degenerate grad€dCy (X )-BanachA’-B’-pair, @ is an everG-equivarianCy (X )-linear homo-
morphism fromy E5 to 4 E';, with coefficient mapsy andy and(7,7”) LiO(X) (P, D) is a pair

of odd linear operators such tRat

1.VaeA: [a,(T,T")] = ([a,T], [¥(a), T"]) € K (&, ®);

2.VaeA: a(T,T)? — 1) = (a(T2 — 1), P(a)(T? - 1)) e K(D,d);

3.VaeA: g a(g(T,T') — (T,T) = (a(gT — T), ¥(a)(gT" — T")) € C(G, K (B, d)).
The class of all such cycles will be denotedB§™ (Co(X): ¢, 1)

Note that it is not necessary to introduce the notatiénX) (®, @) in the preceding definition (i.e.,
imposing the extra condition @, (X )-linearity on the compact operators) since compact operators
are automaticallyCy(X)-linear. Moreover, the condition off and 7" to be Cy(X)-linear is also
automatic becausk and E’ are non-degenerate.

We now state the new version of the sufficient condition for homotopy of cycles:

Theorem 2.6.2 (Sufficient condition for homotopy oRKK%a“—cycles). LetG be a locally compact
Hausdorff group acting on the locally compact Hausdorff spacd.et A and B be G-Cy (X )-Banach
algebras and let( F, T), (E',T") be elements oEP* (Co(X); A, B). If there is aG-equivariant
Co(X)-linear morphism® from (E,T') to (E’, T") (with coefficient map&l 4 and1d ) such that

1.VaeA: [a,(T,T)] = (la, T}, [a,T"]) € K(®, D),
2.VaeA: a(T,T)? — 1) = (a(T2 — 1), (T - 1)) €K (D),
3. Vae AVge G: a(g9(T,T") — (T,T") = (a(¢gT = T), a(¢gT" = T")) e K(,P),

then(E, T) and(E’, T") are homotopic (and thus give the same elemerBIgK 2™ (Co(X); A, B)).
If T =0andT” = 0, then the homotopy can be chosen to have trivial operator as well.

>See Theorerh 1.9.1 or Definitipn 1.p.7 for a definitiorkof®, ®).
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2.6.2 Morita theory and RKK2™

Also the definitions and constructions of Sectjon .10 are compatible with the addifig(é)-
structure.

Definition 2.6.3 Co(X)-linear Morita cycle). Let A and B be non-degenerat&-Cy(X )-Banach
algebras. Then é,(X)-linear Morita cycle F' from A to B is a non-degeneratg-Cy (X )-Banach
A-B-pair F' such thatd acts onF’ by compact operators. The class of all Morita cycles ftério B
is denoted byI2™ (Co(X); A, B).

Similarly, aG-Cy(X )-Morita equivalence of non-degenerateCy(X )-Banach algebras is an equiv-
ariant Morita equivalence which also carries a compatip(eX )-structure such that all structure maps
areCo(X)-bilinear.

All the tensor products that appear in Secfion JL.10 should be @gd€)-tensor products to fit
into theCy(X)-setting, but this is automatic because at least one of the involved modules (or pairs)
will always be non-degenerate (see Proposition 2}2.13).

After having made all the necessary changes in Chapter 1, we end up with the following version
of TheoreniZ1.70.31:

Theorem 2.6.4.Let A, B, C' be non-degeneraté&’-Cy(X)-Banach algebras and leE be a G-
equivariantCy (X )-linear Morita equivalence froni3 to C. Then- ® 5 [E] is an isomorphism

RKKg™ (Co(X); A, B) = RKKg™ (Co(X); A, C)
with inverse @p [E].

2.7 The pushforward

Let G be a locally compact Hausdorff group afdandY be locally compact Hausdorff spaces on
which G acts continuously. Lep: Y — X be a continuougr-equivariant map. Then the map
p*: ¢ — popisacontinuous homomorphism frofg(X) to C,(Y) which is non-degenerate in the
sense thap* (Co(X)) Co(Y') is dense irCy(Y'). It follows that we can turn everg-Cy (Y )-Banach
space into &-Cy (X )-Banach space:

Definition 2.7.1. Let E be aG-Cy(Y)-Banach space. Then we define an actio€gfX) on E by
ve ;= (popleforalle € Eandy € Co(X). With this actionE is aG-Cy(X )-Banach space which
we callp, FE.

Every Cy(Y)-linear map betwee, (Y )-Banach spaces is al€l (X )-linear, so we get a functor

p« from the category o€, (Y )-Banach spaces to the categorydgf X )-Banach spaces. Similarly,
Co(X)-bilinearity is weaker tharCy(Y)-bilinearity. SoCy(Y)-Banach algebras are algly(X)-

Banach algebras and the same is true for Banach modules and Banach pairs. The result is a for-
getful map on the level oKKP2"-cycles: If A and B are G-Cy(Y )-Banach algebras and?, T') is

in EXn(Co(Y); A, B), thenp,(E,T) = (p.E, p.T) is in EX*"(Co(X); p+A, p.B). Sometimes

we regardA and B simply also as7-Cy(X)-Banach algebras without renaming them, so we write
ER(Co(X); A, B)instead ofE2(Co(X); p.A, p.B), etc. This construction respects direct sums,
pushouts (the pairs are non-degenerate!) and homotopies. Hence:

Proposition 2.7.2.1f p: Y — X is G-equivariant and continuous, then there is a canonical “forget-
ful” homomorphism

pe: RKKE™(Co(Y); A, B) — RKKE™(Co(X); peA, piB).
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Note that this applies in particular to the case tRait just a single point; the6(X) is isomor-
phic toC andRKK2™ (Co(X ); p« A, p« B) = RKKZ™ (Co(X); A, B) is equal toKK2™ (A, B).

2.8 Special caseX compact

Let G be a locally compact Hausdorff group akdbe acompactHausdorff space on whicy acts.

Let A be a non-degenerafe-Banach algebra and Iét be a non-degeneraféC (X )-Banach algebra.

Then the projective tensor produdt C(X) is a non-degeneraté-C (X )-Banach algebra.
Remember that there is a canonical forgetful homomorphism

RKKP™ (C(X); A®C(X),B) — KKM" (A®C(X), B).

Secondly, there is a canonical homomorphjsimof G-Banach algebras from to A ® C(X ), namely
the map — a ® 1. This gives a group homomorphism frafKP" (A ® C(X); B) to KKP*1(A4, B).
Let

r: RKKE™ (C(X); A®C(X), B) — KK (A, B)

be the composition of these two homomorphisms.
Proposition 2.8.1. The homomorphism is an isomorphism.

Proof. We first prove surjectivity: LetE, T') € E2* (A, B). Instead of defining &(X)-structure
on E, which we do not know how to do, we define a structure on the c{fleop B, T ® 1) €
EP(A, B). Note that(E ®p B, T® 1) = (E,T) @ Mor2(Idg), so it is homotopic td £, 7).

On E~ ®p B we define theC(X)-structure as in Lemma 2.2.6, i.e.,df € E~ andb € B and

p € C(X), thenp(e” ®b) := e~ ® (pb). This makesE~ ®p B a rightG-C(X)-BanachB-module.
We proceed similarly on the left-hand side. It is easy to seefih@g B is aG-C(X )-BanachB-pair
with thisC(X')-action. The operatdf ® 1 is clearlyC (X )-linear (which is automatic anyway, because
FE ®p B is non-degenerate).

Now we have to define an action df @ C(X) on E ®@p B: If a € A, x € C(X), e~ € E~
andb € B then we definda ® x)(e” ® b) := (ae”) ® (xb). This gives an action afi ® C(X) on
E~ ®p B making it aG-C(X)-BanachA @ C(X)-B-bimodule. A similar definition can be made
for the left-hand side. We check that® C(X) acts onE ®p B by elements oL.z(E ®p B). Let
therefore ber € A, x € C(X), e~ € E<,e” € E~ andb<,b” € B. Then

b<@e<, (a2 x)(e @b7)) = (=@, (@)@ (xb)) = b= (%, ae”) (xb)
(xb<)(e“a, e)b” = (b~ ®e“)(a®@x), e @b”).

By trilinearity and continuity of both sides this equation can be extended from the elementary tensors
toallof A®C(X), Bep E<andE” ®p B. SOE ®p BisinEZ"(C(X); A®C(X), B). Applying

k to it means forgetting thé( X )-structure and reducing thé ® C(X)-action back to thed-action

on F ®p B, so we are back where we started. Herdsg surjective.

The same argument shows thais injective: Let(FEy,Ty) and (Eq,7:) be elements of the class
ER(C(X); A®C(X), B) such that(Ey, Tp) andx(Ey, T1) are homotopic ifE2™ (A, B). Without

loss of generality we can assume tha¥,, Ty) and x(FE;,71) can be connected through a single
homotopy (otherwise we use the surjectivity to find inverse images of the intermediate steps and
proceed step by step). LéE,T) € EX™(C(X); A ® C(X), B[0,1]) be such that:(E,T) €
EPan(A, B[0,1]) is a homotopy fromk(Ep, Tp) to x(F1,T1). Now evf*(E, T) is contained in
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E™(C(X); A® C(X), B) for all i € {0,1} andk(ev? (E,T)) is isomorphic (inE¢™(A, B))
to (E;,T;). Now E; is a non-degeneratB-pair, so theC(X)-structure onE is uniqueﬁ Hence the
isomorphism between(evf*(E, T)) and(E;, T;) must beC (X )-linear. Also the action o ® C(X)

is uniquely determined by the actions df and C(X), so the isomorphism from(evf*(E,T))
and (E;, T;) must also respect this structure. In other words, it is an isomorphism of cycles in
ER(C(X); A® C(X), B). So(FEy, Tp) and(E;, T ) are homotopic. Hence is injective. O

If we take A to beC with the trivial G-action, thenA ® C(X) is isomorphic ta’ (X ). The proposition
then reduces to the following statement:

Corollary 2.8.2. Let B be a non-degenerat@-C (X )-Banach algebra. I1fX is compact, then

RKKX™ (C(X); C(X),B) = KK (C,B).

3See Lemm5.
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Chapter 3

KK-Theory for Fields of Banach algebras
and Groupoids

To define the action of a groupoiflon a Banach algeb& it is inevitable to have some sort of bundle
structure over the unit space @fon B. There are different ways to formalise the notion of a bundle
of Banach algebras over some base spéce

First, one could consider a continuous surjecgion3 — X whereB is some topological space
(the total space of the bundle) carrying some of extra structure which makes sure that, in particular,
the fibresp~!({x}) are Banach algebras. This bundle point of view was tal@[HBSS].

Second, it is possible to concentrate on the space of continuous sections rather than on the total
space. IfX is a locally compact Hausdorff space, then the continuous sections vanishing at infinity of
a bundle of Banach algebras ovErform a Banach algebra with a non-degenerate actiaty X ).
SoCy(X)-Banach algebras can serve as a starting point for a formalisation of what a bundle of Banach
algebras oveX should be.

Third, one could start with a family of Banach algeb(a, ), x, corresponding to the fibres in
the bundle picture, and say what the “continuous sections” should be (each such gdatiog a
function defined onX such that(z) € B,). This leads to the definition of an upper semi-continuous
field of Banach algebras ovéf (generalising the notion of a continuous field|of [Dix64]). The field
picture is the one that V. Lafforgue has devised in [La4f06] to define actions of groupoids on Banach
algebras, and we want to systematically develop his theory in the present chapter, adding a number of
technical details.

It would be interesting to compare the field picture with the bundle picture in our context, but it
seems advisable to exclude the bundle picture totally because this thesis is already rather voluminous.
On the other hand, thé,(X)-Banach algebra picture appears quite natural in applications and is
obviously not very challenging on the technical level, so | decided to introduce it and to compare it
to the field picturﬂ Unfortunately, theCy (X )-Banach algebra picture seems not to be suitable to
formalise actions of general locally compact groupdsaking it necessary to head for the realm of
fields of Banach algebras.

Technically, the basic notion underlying the whole theory is the notion of an upper semi-contin-
uous (u.s.c.) field of Banach spaces. We define tensor products of such fields, which allows us to
define fields of Banach algebras, modules and pairs. Moreover, we define pullbacks of u.s.c. fields of

1See Definition 13.4 il [FD&8]; see also 13.18 of the same book for a comparison of bundles and fields of Banach spaces.

’See Chapt1 2 and Cha;ﬂzr 4, respectively.

3See Examplk 2.4/ 4.
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Banach spaces, which allows us to define actions of groupoids on fields of Banach spaces, algebras,
etc. The other important ingredient that we need for a versiddlof*"-theory in this setting is the
definition of compact operators on (fields of) Banach pairs; in this chapter, we define what we call
“locally compact operators” instead, the main reason for this being that we do not assume the base
space to be locally compact. Later on we will see that if the base space is locally compact, then there
also is a canonical notion of compact operators which can be used iﬁ]stead.

The resultingK K 2*-theory generalises the theory introduced in the first chapter (just take the
base space to be a single point). However, it does not geneRiB&*" as introduced in the second
chapter.More precisely, not evefy(X )-Banach algebra comes from a u.s.c. field of Banach algebras
over X. In Chapte[ ## we are going to compare the two situations in greater detail.

The main tools foiKK*" as developed in the first chapter for ordinary Banach algebras generalise
to theKKP2"-theory for fields of Banach algebras presented in this chapter. In particular, ion 3.7
explains how to translate the sufficient condition 1.9.1 for homotopy of cycles to the setting of fields
of Banach algebras equipped with groupoid actions. Furthermore, one can also define equivariant
Morita morphisms for fields of Banach algebras, and the respective results of the first chapter carry
over in full generality (this is summarised in Sectjon| 3.8).

Note that there is an additional section in this chapter, namely S¢ctipn 3.2, which discusses the
simple and basic notion of a monotone completion. This section is not needed for the development of
KKP2" for fields of Banach algebras, but it is needed at several points in the remaining chapters. It is
too short to deserve to be made into an entire chapter and does not have a canonical place somewhere
else in this thesis, so | have put this section at the first place where all the required definitions are
available.

3.1 Upper semi-continuous fields of Banach spaces

Before defining what an upper semi-continuous field of Banach spaces is, we introduce some useful
vocabulary. Some of the definitions even make sense for families of Banach spaces over a set (without
any topology on the base space). For example, this is the natural place to say what a selection is. In
a second step, we discuss families of Banach spaces over a topological space, which enables us to
talk about the support of a selection or a selection being locally bounded. The latter notion is already
rather useful and turns out to be the technical heart of a lot of arguments for upper semi-continuous
fields of Banach spaces.

Subsectiof 3.1}3 then gives an elaborate introduction to upper semi-continuous fields of Banach
spaces. After that we finally define u.s.c. fields of Banach algebras, Banach modules and Banach pairs
as well as locally compact operators.

3.1.1 Families of Banach spaces over a set

Let X be a set. A family of Banach spaces ovéris a family (E,).cx such thatE, is a Banach
space foralk € X.

Definition 3.1.1 (Selections) .Let E be a family of Banach spaces ovE&r
1. An element of the complex vector spadq, . i E. is called aselectionof E.

2. For every selectiog of ' we definel¢| : X — Rxo, 2 — [|{(z) ]|, -

“See Sectioh 4.71, in particular Proposifion 4.7.5.
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3. For every selectiog of E define[|¢]|, := [|I€]llo = supzex [I§()] 5, € [0, 00].

4. For everyry € X define the mamf0 on[[,cx £ to be the projection map ont,,, .

If £ is a family of Banach spaces ov&r, then the subspace of bounded selectiong @ a Banach
space in its canonical norm.

Definition 3.1.2 (Total subset).Let X be a set and’ be a family of Banach spaces ov&r LetT’y
be a subset of [,y E.. Let(I'g) be the linear subspace generated gy ThenI', is calledtotal if
for everyz € X the spacdev? ¢ : ¢ € (Ty)} is dense in&,.

Definition 3.1.3 (Families of linear maps).Let E and F' be families of Banach spaces ov€r Then
a family of bounded linear maps frofi to F' is a family (7;,).cx such thatl}, € L(E,, F,) for all
xz € X, i.e., aselection of the familfl.(E,, F;)).cx of Banach spaces ové¥.

Definition 3.1.4 (Composition). Let E, F', G be families of Banach spaces ovEr If S is a family
of bounded linear maps frorf to F' andT is a family of bounded linear maps froii to GG, then
their compositioril” o S := (T, o S;).ex is a family of bounded linear maps fromto G. If S and
T are bounded, then the familyo S is also bounded withT" o S|| < ||T|| | S]|-

Definition 3.1.5 (Evaluation). Let £ and F' be families of Banach spaces ou&r If (7,).cx is a
family of bounded linear maps frot to ' and¢ is a selection o2, then we define a selection &6f
as follows:

Tot:xm Tu(€(2)).

The map{ — T o & defines a linear map from the selectionsfoto the selections of'. If T is
bounded, the — T o ¢ is a continuous linear map from the bounded selectioris taf the bounded
selections of’, bounded by|7T'|| ..

Definition 3.1.6 (The internal product and and the internal sum). Let £ and F' be families of
Banach spaces ovéf. Then theinternal productE’ x x F' of E and F' is the family(E, x F,),ex

over X where we take the sup-norm on the fibres. Analogouslyirtteznal sumF ©x F of E and
Fis the family(E, ® F,).cx over X where we take the sum-norm on the fibres.

Definition 3.1.7 (Families of continuous bilinear maps).Let E, F andG be families of Banach
spaces oveKX. Then a family of continuous bilinear maps frafhx x F to G is a family (1) e x
such thafu, is a continuous bilinear map from, x F, to G, forall x € X, i.e.,u is a selection in
the family (M(E,, F.; G.)).cx Of Banach spaces ovef. We say thaj: is non-degeneraté 1 is
non-degenerate for all € X, i.e., the image ofi, spans a dense subset®jf.

Definition 3.1.8 (Evaluation). Let F, F andG be families of Banach spaces ovErand letu be a
family of continuous bilinear maps froth x x F'to G. If £ is a selection of2 andn is a selection of
I, then we define a selection 6fas follows

po(&m): i g (§(z),n(x)).

The evaluation mags, n) — p o (€,n) is bilinear. If 1 is bounded, then the evaluation map is a
continuous bilinear map when restricted to the bounded selections; it is boundlgdl.by

Definition 3.1.9 (The internal tensor product). Let ¥ and £’ be families of Banach spaces ovEr
Define £ ® x F to be the family(E, ® F,).cx, where® denotes the projective tensor product of
Banach spaces. It is universal for bounded families of continuous linear maps. This tensor product is
associative since the projective tensor product of Banach spaces is associative.
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If £, ', F andF’ are families of Banach spaces ovEr S is a family of continuous linear maps
from F to £’ andT is a family continuous linear maps from to F’, then we defin&s @ x T to be
the family (S, ® T..).cx; it is a family of continuous linear maps frofi @ y F'to E' @ x F'. If S
andT are bounded then so#® T and we have{.S @ x T'|| < ||S] ||

3.1.2 Families of Banach spaces over a topological space

For the rest of Sectidn 3.1, Iéf be atopological space

Definition 3.1.10 (Locally bounded selection)Let E be a family of Banach spaces ovEr

1. A selectiore of E is calledlocally boundedf every point in.X has neighbourhood on whigh
is bounded. The space of locally bounded selections wfill be denoted by (X, E).

2. The set of all bounded selectionsifwill be denoted by, (X, E).

3. A selectiort of E is said tovanish at infinityif for all ¢ > 0 there is a compact subskt C X
such thaté| (z) = [|§(x)||p, < eforallz € X \ K. The set of all locally bounded selections
of E vanishing at infinity is denoted by, (X, F).

Note thatyy(X, F) C ¥(X, E), and both spaces are Banach spaces.

Definition 3.1.11 (The support of a selection)Let X be a topological space and [Btbe a family
of Banach spaces ovéf. Let¢ be a selection ofs. Then the support of is defined as

suppé :={z € X : {(z) # 0}.

The following definition will only be of interest for us if the underlying spakds locally compact
and Hausdorff. Nonetheless, it also makes sense for general topological spaces.

Definition 3.1.12 (Selections of compact support)We defineX.(X, F) to be the space of all (lo-
cally) bounded selections @ which have compact support.

Note that any locally bounded selection with compact support is bounded. Moreover,

Definition 3.1.13 (Local approximation). Let X be a topological space and létbe a family of
Banach spaces ovef. LetI be a subset of the spafg, _ . of all selections of?.

1. 1f¢ € [[,ex Bz andzg € X, then we say thaf is approximable near, by elements of
I if for all & > 0 there is anp € T and an open neighbourhodd of xy in X such that
In(u) — &(u)|| < eforallu e U.

2. It ¢ € [[,ex Ex, then we say thaf is locally approximable by elements Bfif ¢ is approx-
imable nearr by elements of for all zy € X.

3. We defind" to be the set of selections & which are locally approximable by elementslof

Proposition 3.1.14.Let X be a topological space and |éf be a family of Banach spaces ov&r.
LetI’, A be subsets of the spafg, . £, of all selections of2. Then

1. IfT C A, thenl C A.
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2.T=T.
3.0=0.
4. If'is a linear subspace df[ . y E., thenI is a linear subspace as well.

Proof. 1. Obvious from the definition.

2. From 1. it follows thal' C T. Let¢ be an element df. Letzy € X ande > 0. Find a neigh-
bourhood; of 2 in X and a selection, € I such thatup,;;, [|£(x) — m(z)|| < /2. Now
find a neighbourhood’; of z( in X and somey; € I' such thakup,.., ||71(z) — n2(z)|| <
/2. LetU beU; N Us. Thensup,cp [|€(x) — n2(2)| < e, so& € T.

3. Obvious from the definition.

4. Leté, & €T, 29 € X ande > 0. Find neighbourhoods; andU; of zg in X andn;,n, € T
such thasup,cy;, [|&i(2) — ni(x)|| < e/2foralli € {1,2}. DefineU := Uy N Us. Letz € U.
Then

161 + &2)(2) — (m 4+ m2) ()| < I§(2) —m(@)]| + [[§2(2) — na2(2)]| <e.

As 11 + 12 belongs td" this shows thaf; + &, € T'. Similarly one shows that is closed under
scalar multiplication. O

Remark 3.1.15. What we have called closure is not a proper closure operator since, in general, it
fails to satisfy the conditiod UA = T' U A. To see this letX := {1,2} be a discrete space with

two points. LetE, be a non-trivial Banach space andf € Ey with e # f. Let E be (Ey).cx and

letI" and A be the sets containing only the constant selection which sendsewery to e and f,
respectively. Thei = I" andA = A. On the other hand, the selection which sehtise and2 to f
isinl"UA.

Lemma 3.1.16.Let X be a topological space and Iéf be a family of Banach spaces ov&r Then

the space’(X, F) satisfiesE(X, E) = X(X, E).

Proof. Let ¢ be a selection oF which lies inX(X, E). Letzy € X. We show that is bounded
nearzg. Lete := 1. Find somen € X(X, FE) and some neighbourhodd; of z, such that
sup,ep, [1€(z) —n(z)|| < e = 1. Find some neighbourhodd, of = such that; is bounded o).
Definel := Uy N Uy. Letz € X. Then|(x)[| < [n(x)] + [I€(x) — n()]| < sup,ep [n(w)] +e.
So¢ is bounded oV . O

Locally bounded families of linear and bilinear maps

If £ andF are families of Banach spaces ov€r then it is natural to consider the locally bounded
families of linear maps as morphisms between them, i.e., the locally bounded selections in the family
(L (Ez, F)),cx- Itis easy to see that the composition of locally bounded families of linear maps is
again locally bounded.

Locally bounded families of linear maps have the following continuity property:

Lemma 3.1.17.LetT be a locally bounded family of linear operators fratto F'.
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1. If ¢ is alocally bounded selection éf, thenT o £ is a locally bounded selection &f, in other
words, we have
ToX(X,E) CX(X,F).

2. IfI"is a subset o (X, F) and¢ € X (X, E) is locally approximable by elements Bf then
T o ¢ is locally approximable by elementsBb I' = {T'o~ : v € I'}, in other words, we have

Tol CTol.

Proof. We only prove the second assertion. ket 0 andzg € X. Find a neighbourhooll of z in
X such thafl" is bounded by some constatit> 0 onU. Find a neighbourhootl’ of zy in X and an
element) € I" such that|{(z) — y(z)|| <e/Cforallz € V. If z € UNV, then

| T2 (&(2)) = Tu(n(@))|| < 1Tl [[€() —n(@)|| < | Tulle/C < e
SoT o n is sufficiently close td’ o £ nearz. O

Similarly, one can consider locally bounded families of bilinear map&, If' andG are families of
Banach spaces ovéf, then a locally bounded family of bilinear maps frdinx x F' to G is a locally
bounded selection itM (E, x Fy;G.)),cx- It has continuity properties that are analogous to those
given above for locally bounded families of linear operators:

Lemma 3.1.18.Let i be alocally bounded field of bilinear maps frdihx x F' to G.
1. If¢ € ¥(X,F)andn € (X, F), thenpo (§,n) € (X, G).

2. Letl’ C ¥(X,E), A C X(X,F), £ € ¥(X,E)andn € (X, F). Assume that and
7n are locally approximable by elements Bfand A, respectively. Thep o (£,7) is locally
approximable by elements ffi o (v,0) : v €I, € A},

Proof. Again, we only proof 2.: Let > 0 andzy € X. Sincey is locally bounded near,, we can
find a neighbourhood, of 2y in X and a constan®', > 0 such thaf is bounded by, onU,,.
Since¢ andn are locally bounded, we can find neighbourhoddsandU,, of = in X such that
is bounded ort/; by some constanf: andn is bounded ori/;, by C;,.
Since¢ andn are approximable neaty by elements o and A, respectively, we can find a
neighbourhood/ C Us N U, of 2o in X and elementy € I andd € A such that

CuChy sup 1€(u) =v(u)ll < /3, CuC sup In(u) = d0(u)] <e/3

as well as
Cu sup [€(w) = v(w)[ In(w) —d(u)|| < &/3.

Forallu € U NU,, we have

1 (€ (1) m(w)) = g (Y (w0), 6 () )

<l (Hf(u) = y(@)[HIn(w + 11§ [In(u) = d(w)| + [1§(w) — y(w)|| [[n(uw) — 5(“)”)
< Cyu (Cn [€(u) = v(w)|| + C¢ [In(u) = d(u)|| + [|§(w) — ()] [[n(w) — d(u)]] )
< ¢/3+¢/3+¢/3=c¢.

Sop o (v, 0) is sufficiently close tq: o (§,17) onU N U,,. O
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3.1.3 Upper semi-continuous fields of Banach spaces
Definition and basic properties

Definition 3.1.19 (Upper semi-continuous field of Banach spaceshn upper semi-continuous field
of Banach spacesver the topological spac¥ is a pairE = ((Ey)zex, '), where(E,)cx is a
family of Banach spaces aitdC [] .  E. is a set of selections, which has the following properties:

(C1) T'is a complex linear subspace[of, . y E.;
(C2) forallz € X, the evaluation mapv,: I' — E,, £ — &(x), has dense image;
(C3) forall§ € T, the mapé| : X — Rx>o, x — [|{()]| g, , is upper semi-continuous;

(C4) if & € [[ex £z and if, for allzp € X and alle > 0, there is an element € I" and a
neighbourhood’ of z in X such that for al: € U we have||{(z) — v(z)|| 5, < €, then also
& belongs ta".

Condition (C4) just says that a selection which can be approximated locally by eleméhissitdelf
inT, i.e.T = I'. Note that all elements df are locally bounded by (C3). Instead of “upper semi-
continuous field” we will usually say “u.s.c. field” or just “field” of Banach spacegs|lfs continuous
for all £ € T, then we callE’ acontinuous field of Banach spacddowever, we are not going to use
this notion in this thesis very often.

Sections

Definition 3.1.20 (Sections)Let E = ((E,).cx, I') be a u.s.c field of Banach spaces.
1. The elements df are called theections of£'. We will also writel'(X, E) for T".
2. The Banach space of bounded sections is denotég by, £).
3. The Banach space of all sectionsfofanishing at infinity is denoted by, (X, E).
4. The linear space of all sections Bfwith compact support is denoted by(X, F).

Note that

Example 3.1.21 (Constant fields)Let E be a Banach space. For evary X, setFE, := E and let
T be the spacé(X, E) of all continuous maps fronX to E. Then this gives a continuous fielty
of Banach spaces, called thenstanffield over X with fibre E.

Example 3.1.22 (Mapping cylinders).Let E and F' be Banach spaces and [EBt € L<;(E, F)
be a contractive operator. Then theapping cylinderZ (T") of T, considered as a u.s.c. field of
Banach spaces, is the fie(dG.),cjo,1, T') such thatGy = E, G, = F forall z > 0 andl’ =

E & Cy(]0,1], F') (where an element € E corresponds to the sectig0) = e and{(z) = T'(e) for

x > 0).

Example 3.1.23 (Fields over discrete spaces)et X be a discrete topological space anditbe a

u.s.c. field of Banach spaces ovér ThenI'(X, E) = [[,cx £.. This follows from conditions (C2)
and (C4). Vice versa, iF’ is just a family of Banach spaces over a &tthen equippingX with the

discrete topology makeg into a continuous field of Banach spaces with sectidns y E.
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Proposition 3.1.24.E] Let F be a u.s.c. field of Banach spaces anddgte X. If ¢ € I'(X, E)isa
section ofF andx € C(X), thenx¢ € I'(X, E).

Lemma 3.1.25.f| Let X be uniformisable and leE be a u.s.c. field of Banach spaces o%r Then
for all x € X, the evaluation mapv,: I'(X, £) — E, has not only dense image but is a metric
surjection when restricted to the bounded sectionsX lis locally compact Hausdorff, then this is
also true for the sections vanishing at infinity.

Proof. Letzy € X. Lete € E ande > 0. Find a¢ € I'(X, E) such that|e — g(xo)HEIO < ¢/2. Find
a neighbourhood’ of zy such that|{(z)| z, < [I{(z0)l,, + /2 forallz € U. Find a continuous
functionp on X such that) < ¢(z) < 1forall z € X, p(z9) = 1 andp(x) = 0 for x # U. Let
n = . Note thaty € T'(X, E). Then|n(x)| < (|£(zo)]] + /2 < |le|| + ¢ forall z € X, so
Il < lle]l + €. On the other hand, we havgxy) = ¢(x0)&(z0) = &(xo). We can now apply
Corollary[E.3.2 to see that .., is indeed a metric surjection.

If X is locally compact Hausdorff, then the same argument goes throughi w(ifti, £') instead
of I'y(X, E). The neighbourhoo®d can be chosen to be compact. O

Total subsets

Proposition 3.1.26[] Let(E.).cx be afamily of Banach spaces andc [,y E.. Let(A) be the
complex linear subspace 9f, .  E. generated by\. If (A) satisfies condition (C1), (C2), and (C3)
(with (A) instead ofl") then there is a unique subseof [ | .y £, containingA and satisfying (C1),
(C2), (C3), (C4). This setis given by

__ open
= §€HE$:V3:0€X,5>OE|77€< proelU C XVeeU: |nx) &) <ep,
zeX

i.e., the closurdA) in the sense of Definitign 3.1[13.

Proof. To see existence we have to check that the elemenis (defined as above) satisfy (C1)-
(C4): Firstly, the closure of the total linear subspaae is indeed total and linear, so (C1) and (C2)

are trivial. We also already know that taking the closure a second time does not change anything
anymore, so (C4) is also true. What is left to show is (C3).4.etT" andzy € X. Lete > 0. Find

a neighbourhood/; of z, in X and a selectiom € (A) such thatup,;, [|{(x) — n(z)|| < /3.

Now n has an upper semi-continuous modulus function, so we can find a neighbourhobd, in

X such that|n(z)|| < ||n(xo)|| + &/3 for all x € Us. DefineU := U; NU,. Letx € X. Then

1€ < N1EC) = (@) + lIn(z) —n(zo)ll + [In(zo) — E(@o) | + (o) | < IE(zo0)[| + &

Hence¢ has an upper semi-continuous modulus function.

To prove uniqueness assume thais another subspace P, £, containingA and satisfying
(C1)-(C4). Sincd” is a vector space it contaifd), and since it satisfies (C4) it contaifis To see
the reverse inclusion Igtbe an element df’. Letxy € X ande > 0. Find a selectiom € (A) such
that||{(x0) — n(zo)|| < €/2. This is possible becausd) satisfies (C2). Now — n € I, which
implies that its modulus function is upper semi-continuous. We can therefore find a neighbolirhood
of 2 in X such that|¢{(x) — n(z)|| < [|£(xo) — n(zo)|| +¢/2 < eforall z € U. This implies that
ce(h)=T. O

5See|[Laf06], Proposition 1.1.3, and compare Proposition 1X.10.1[9in [Dix64].
5Comparel[[Laf08], Proposition 1.1.6, and Proposition 1X.10.1.101n [Dix64].
’See[Laf06], Proposition 1.1.4, and compare Proposition 1X.10.2[37in [Dix64].
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Proposition 3.1.27.Let E be a u.s.c. field of Banach spaces over locally compact Haus#lorHet
A be a subset dfy (X, E') which is invariant under multiplication with elements@f X). ThenA is
dense in the Banach spafg(X, F) if and only if it is total.

Proof. If Ais dense imy(X, E), then it is clearly fibrewise dense as the evaluation maps are metric
surjections.

Let A be fibrewise dense. Let > 0. Let¢ € I'o(X,E). Without loss of generality we
can assume that has compact support. For every € X, find an element\* € A such that
IA*(z) — &(z)|| < e/2. Since the function of) — [|[\*(y) — &(y)]| is upper semi-continuous we
can find a neighbourhodd, of = such thaf|\*(y) — &(y)|| < e forally € U,.

Let K := supp & be a the compact supportoaind letL be a compact neighbourhood &f Then
{U; : = € L} is an open cover of, so we can find a finite s&t C L such tha{U, : s € S}isa
cover of L. Let (x*)ses be a continuous partition of unity o subordinate to this cover consisting
of non-negative elements 6f(X) supported in_ such that their sum does not exceed 1orDefine

A=) XA\ € M.
seS

For everyy € X, we havel|{(y) — A\(y)|| <e: If y ¢ L, then\(y) =0and¢(y) =0.Ify e L\ K,
then{(y) = 0 and for everys € S:

XN W < x*@W) 1A (y) =Wl < x°(y)e

So|[A(y)| < e. If y € K, then similarly||¢(y) — A(y)|| <e. O

Continuous fields of linear maps

A continuous field of linear maps between fields of Banach spaces is a locally bounded family of
linear maps which sends sections to sections. Here is the stand-alone version of the definition:

Definition 3.1.28 (Continuous field of linear maps).Let £ andF' be u.s.c. fields of Banach spaces.
Then acontinuous field of linear magsom E to F'is a family (T, ). x such that

1. T, e L(E,, Fy) forallz € X;
2. V¢ e(X,E): To&:xw—T.(&(x)) € T(X,F),
3. the functionz — ||T,| is locally boundef§on X.

The set of all continuous fields of linear maps frémo F will be denoted byi!°¢(E, F). The subset
of (globally) bounded continuous fields of linear maps fréhto £ is denoted byL.(E, F').

We call an elemeril’ € 11°¢(E, F) acontinuoudield because we think of property 2. as a continuity
property of 7. AlthoughT is a locally bounded selection of the famill.(E,, F.)).cx of Banach
spaces ovek, it wont be generally true thaf'| is upper semi-continuous. So the spal¥(E, F)
will generally not define a u.s.c. field of Banach spaces.

Note that the composition of continuous fields of linear maps is again continuous, the same applies
to bounded continuous fields of linear maps. We hence have several choices for the morphisms of the

8In [Caf08] continuous fields of linear maps are defined leaving out our third condition (Définition 1.1.7), however,
Proposition 1.1.9 of the same article states that Condition 3. is automafiésfmetrisable. A more general result along
these lines is proved in Appendix E.2.
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u.s.c. fields of Banach spaces ovér The continuous fields of linear maps, the bounded continuous
fields and the continuous fields bounded by one. We hence also get three different notions of an iso-
morphism of u.s.c. fields of Banach spaces; we will call these isomorphisms “continuous”, “bounded”
and “isometric”.

Example 3.1.29.Let F and F' be constant fields oveX with fibres Ey and Fy, respectively. Then
the condition on a locally bounded family of operat¢¥$ ). x, whereT,, € L(Ey, Fp), for being a
continuous field of linear maps reads

V§€C(X,EQ)Z ToEe C(X,Fo)
This is the case if and only if the famillj is strongly continuous.

Proposition 3.1.30 (A test for continuity). Let £ and F' be u.s.c. fields of Banach spaces o¥erlLet
(T,)zcx be alocally bounded family (not necessary continuous) of linear mapsHrtor¥". ThenT
is a continuous field of linear maps fromto F if and only if 7o £ € T'(X, F) for all elementg of
some total subset C I'( X, E).

Proof. SinceT is a family of linear maps it takes the span) into I'( X, E'). SinceT is locally
bounded, it is continuous with respect to the closure operator defified in|3.1.13 by 3.1.17, so

I'(X,E) = (A)ismapped intd'(Y, F) = ['(Y, F). O

Let E and F' be u.s.c. fields of Banach spaces osér ThenL!°¢ (E, F') carries a canonical vector
space structure. Moreover, it iSC4X )-module and the mapi°® (E, F) x I'(X, E) — I'(X, F) is
C(X)-bilinear.

Proposition 3.1.31.Let E and F be u.s.c. fields of Banach spaces a¥erThen the spacE°° (E, F)

of selections ifL(E., F:)), x is closed with respect to the closure operator defingdin 3/1.13, i.e., if
T = (Ty)zex is a family of continuous linear maps fromto F' which can be locally approximated

by elements dfl°¢ (E, F), thenT is itself inL!°¢ (E, F).

Proof. Let T be a family of continuous linear maps frafto F' which can be locally approximated
by elements of!l°¢(E, F). ThenT is locally bounded because it can be approximated locally by
locally bounded selections (see Lemima 3.1..16).

Now leté € I'(X, E). We show thafl" o £ € T'(X, F) by using condition (C4) of the definition
of a u.s.c. field of Banach spaces. Soagte X ande > 0. Sincex — [|{()|g, is upper semi-
continuous it is locally bounded and we can find a constant 0 and a neighbourhood; of z in
X such that|{(u)| g, < C forallu € Us. We can find a neighbourhodd C Uy of 2o in X and a
continuous field of linear maps,).cx from E to F' such thaC' | T,, — S, || < eforallu € U. We
now compard’ o {to So & € I'(X, F)onU:

(T 0 &)(u) = (S o &)(u)llp, 1Tu(€(w)) = Su(€(w))llp,

<
< Tu = Sull 1)l g, < ClITw = Sull <e.
forallu € U. Itfollows thatT o £ € T'(X, E) by (C4), and henc@' is continuous. O

Proposition 3.1.32.1f E and F' are u.s.c. fields of Banach spaces oserthenL(E, F') is a Banach
space. The evaluation magE, F') x I'y(X, E) — I'y(X, F) is bilinear and bounded by.

If T'e L(E, F), thenitis easy to show thdto { € T'o(X, F') forall ¢ € T'o(X, F'). We we also have
a continuous bilinear map(E, F) x I'g(X, E) — T'g(X, F).
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Continuous fields of bilinear maps
In this subsection, leE, F', G be u.s.c. fields of Banach spaces over the topological sgace

Definition 3.1.33 (The internal product and the internal sum). Theinternal productE' x x F' of £
and F' is the upper semi-continuous field of Banach spaces &vgiven by the following data: The
underlying family of Banach spaces is just the familyx x F' = (E, x F;).cx, and the space of
sections is

I = {z — (£(2),n(2) : € €T(X,E),neT(X,F)}.

The sefl” satisfies condition (C1) - (C4), thus it defines the structure of a u.s.c. field of Banach spaces
on E x x F. Similarly we define théenternal sumE @ x F' of E andF over X, the difference being
that we take the sum-norm instead of the sup-norm on the fibres.

Definition 3.1.34 (Continuous fields of bilinear maps).A continuous field of bilinear maps from
E xx Fto G is a family (u,),ey of continuous bilinear maps, € M(E,y,), F,,; G,) for all
y € Y such that

1LV eT(X,E)Vn eT(X,F):  z v s (E(2), n(2)) € T(X,G).
2. pis locally bounded.

We write Mi°¢(E, F; @) for the linear space of all continuous fields of bilinear maps figm x F
to G. The linear space of (globally) bounded elementSi5F (E, F; G) is denoted b\ (E, F; G).

Analogously to the case of continuous fields of linear maps we have:

Proposition 3.1.35 (A test for continuity). Let . be a locally bounded family of bilinear maps from
E x x F'toG. Theny is continuous if and only if there is a total linear subspageC I'( X, E x x F)
suchthatuo ¢ e T'(X, G) forall ¢ € T'y.

Definition and Proposition 3.1.36 (Internal tensor product).ﬂNe defineE® x I to be the following
u.s.c. field of Banach spaces ovér The underlying family of Banach spaces is what we have already
calledE ®x I, i.e., forallx € X the fibre over is £, ™ F,.. To define the sections &f ® x I, let

A be theC-linear span of all selections of the family® x F' given byz — £(x) ®n(x), wheref runs
throughI'( X, E) andn runs through' (X, F'). ThenA satisfies conditions (C1), (C2) and (C3) so by
the use of Propositign 3.1.26 we get the structure of a u.s.c. field of Banach spdtesyoR'. There

is a canonical contractive continuous field of bilinear maps (7;),cx fromE xx F'to E ®x F.

Proof based on an argument of V. Lafforgu&e check that\ satisfies the conditions (C1), (C2) and
(C3). Firstly,A is a linear subspace ¢f, . £, ® F, by definition. Condition (C2) is also obvious.
For (C3) we have to show: For ath € X and all € A:

limsup [|{(7)[| g, o, < HC(QUO)HEZ@FZO'

T—T0
So letzy € X. Define the bilinear maps
Oy : T'(X, E) x T(X, F) — Eqy @ Fay, (§,1) — &(20) © n(20),

and
0:T(X,E)xT(X,F) = [[ B2 ® Fa, (§,1) — [ — &(z) @ ()]
reX

9Compare Proposition 1.1.19 in [Laf086].
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Since both maps ar€-bilinear, they give linear mapB(X, F) @a'g I'X,F) to E;, ® Fy, and to
[L.cx Ex ® F;, respectively. Call therfi,, andd. The image of is A. On A define the semi-norm

HCon,lim := lim sup HC(‘T)HEZ(@FZ ) ¢eA.

T—T0

For every{ € T'(X, E) and everyy € I'( X, F'), we have

10 Ml = limsup |[§(z) @ n(2)| g, oF,

T—To

limsup [|£(2)| g, [n(2)l[r, <lI€(@0)lg,, [In(zo)lls,, -

T—To

IN

This implies that there is a bilinear mapfrom E,,, x F,, to the Hausdorff completion of A with
respect to the above norm such thjat] < 1 and u(&(x0),n(zo)) = (0(£,n)), where. denotes
the canonical map from to its completion. From the universal property of the projective tensor
product we know that there is a unique continuous linear fdpm E,, ® F,, to A such that
fle® f) = ple, f)foralle € E,, andf € F,,, and||| < 1. We have

fi (020 (&,m)) = 1(§(w0) @ n(x0)) = p(&(w0), n(w0)) = ¢(0(&,1m))

forall ¢ € (X, E) andy € T'(X, F), so we also havg(f,, (w)) = +(f(w)) forallw € (X, E) 219
['(X, F). From this it follows thafi(¢(z¢)) = ¢(¢) for all ¢ € A. By ||z]] < 1 it follows that

1€l 2g pim = (O Irg < IS(@0) |, 00r,, -
But this is exactly what we wanted to show. O

Proposition 3.1.37 (Universal property). For every (bounded / contractive) continuous figlef
bilinear maps fromE x x F' to G, there is a unique (bounded / contractive) continuous fielof
linear maps fromF @ x F' to GG such that the following diagram commutes

ExxFX—q
7
EF®x F
The familyz is given by(fiz)zex -

Corollary 3.1.38. Let E, E’, F and F’ be u.s.c. fields of Banach spaces ower For all (bounded /
contractive) continuous fieldS of linear maps fron¥ to £’ and T from F' to F’, there is a unique
(bounded / contractive) continuous figddz T of linear maps fromE @ x F' to ' ®y F’ such that
the following diagram commutes

Exxy F2Xprw B

| st

ERx F-=>FE @x F'

This assignment is functorial.
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3.1.4 Fields of Banach algebras

Definition 3.1.39 (Field of Banach algebras)A u.s.c. field of Banach algebras ov&ris an upper
semi-continuous field of Banach spaces oveé¥ together with a continuous field of bilinear maps
u: Axx A — Asuchthat{4,, u,) is a Banach algebra for atl € X. In particular, this means that

is bounded by 1. A field of Banach algebra®ver X (with multiplication ) is callednon-degenerate
if u, is non-degenerate for afl € X, i.e., the span ofi, A, is dense in4,.

Example 3.1.40 (Constant fields of Banach algebras)l.et A be a Banach algebra with multipli-
cationy. Then the constant field x as defined in Example 3.1]21, together with the multiplication
(1) ,ex is a continuous field of Banach algebras calleddtestant fieldbver X with fibre A.

Definition 3.1.41 (Homomorphism of fields of Banach algebras)Let A and B be u.s.c. fields of
Banach algebras ove¥. Then ahomomorphism (of fields of Banach algebras) frdmo B is a
continuous field of homomorphisms of Banach algebras fAoim B, i.e., a continuous fielfy, ) .c x

of linear maps fromA to B such thatp, is a (contractive) homomorphism of Banach algebras from
A, to B,.. In particular, such & is bounded by 1.

Definition 3.1.42 (Fibrewise unitalisation of a field of Banach algebras)Let B be a u.s.c. field of
Banach algebras ove¥. Then we define thébrewise unitalisation

5-soce=(B),,

to be the following u.s.c. field of Banach algebras: Foralt X, the fibre of B is the unitalisation
B, of the fibreB, of B. The sections oB arel'(X, B) @ C(X).

3.1.5 Fields of Banach modules
Let A, B andC be u.s.c. fields of Banach algebras oxer

Definition 3.1.43 (Field of Banach modules)A right BanachB-moduleis an upper semi-continuous
field £ of Banach spaces ovéf together with a continuous field of bilinear map%: £ xx B — E
such that, for alke € X, E, is a right BanachB,-module with theBx—action/,LxE. In particular, this
means that.” is bounded by 1. The modulg is called non-degenerateyif’ is non-degenerate for
allz € X, i.e., the span ok’ B, is dense ink,.

Left BanachA-modules and Banach-B-bimodules are defined similarly.

Definition 3.1.44 (Linear operator between fields of Banach modules)Let E and F' be right
BanachB-modules. Then @-linear field of operators fronk' to F' (or just aB-linear operator from
E'to F) is a continuous field” of linear maps fron¥ to F' such thatl’, is B,-linear (on the right) for
all z € X. We denote the space of all suetby I!8¢(E, F).

As usual, the fieldl" is called bounded if/T’|| := sup,cx [|T:|| < oo, i.e., if T is a bounded
continuous field of linear maps. We denote the bounBdithear operators fronk' to F' by L (E, F).

Definition 3.1.45 (Homomorphism between fields of Banach modules).et B’ be another field
of Banach algebras oveX and lety): B — B’ be a continuous field of homomorphisms. Lgt
be a right BanactB-module andE’ be a right BanactB’-module. Then a homomorphistin, (of
u.s.c. fields of Banach modules) fraRy to E’,, with coefficient mapy) is acontractivecontinuous
field ® of linear maps from¥ to £’ such that®, is a homomorphism with coefficient majfg. from
(Ex)B, t0 (E}) By
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An analogous definition can be made for left Banach modules and Banach bimodules.

Definition 3.1.46 (Field of balanced bilinear maps).Let E, be a right BanaciB-module andEs
a left BanachB-module. LetF' be a u.s.c. field of Banach spaces o¥er A continuous fieldu of
bilinear maps fronE; x x E» to F'is calledB-balancedf p,: (E1), x (E2), — F is B-balanced
forallx € X.

The following definition is analogous fo 3.1|36 (and what has to be shown can also proved in much
the same way). See also Proposition 1.1.19 of [Llaf0é].

Definition 3.1.47 (The balanced tensor product of fields of Banach modules).et FE be a right
BanachB-module andF' a left BanachB-module. Define thé3-balanced tensor produét @ g F' of

E andF to be the following u.s.c. field of Banach spaces: Forall X, the fibre atv is E, ®p, F;;

to define the sections df @p F, let A be theC-linear span of all selections of the family @ 5 F’

given byz — £(z) ® n(x), where runs throught'(X, E) andn runs throughl'(X, F'). ThenA
satisfies conditions (C1), (C2) and (C3) so by the use of Propogition B.1.26 we get the structure of a
u.s.c. field of Banach spaces éhgp F'.

There is a canonical contractive continuous field of bilinear maps (7,).cx from E x x F' to

E ®p F and a canonical fibrewise surjective and open contractive continuous field of linear maps
from F ®@x F to E ®@p F. The field E @p F has the universal property for continuous fields of
B-balanced bilinear maps. K is not only a left BanachB-module but a Banacl-C-bimodule,
thenE @p F'is a right Banach-module in an obvious way.

Definition 3.1.48. Let E and £’ be right BanachB-modules and” a BanachB-C-bimodule. For all
T € U3S(E,E) defineT ® 1 € I2° (E ®p F, E' ®p F) as the family(T, ®p, 1dr, ) ,c x-

Note that the assignmefit— 7' ® 1 is linear and functorial. I1T" is bounded, thefiT' @ 1|| < ||T||.

Definition 3.1.49 (The pushout of fields of Banach modules).et B’ be a u.s.c. field of Banach
algebras ang: B — B’ a continuous field of homomorphisms. LEEtbe a right Banacli-module.
Theny(E) := E ®5 B’ is aright BanachB’-module, called theushout ofF’ along+). The fibre of

Y(E) ate is v, (E,).
The pushout has the usual functorial properties, compare Propgsition| 1.3.11.

3.1.6 Fields of Banach pairs
Let A andB be u.s.c. fields of Banach algebras oxer

Definition 3.1.50 (Field of Banach pairs).A BanachB-pair is a pairE = (E<, E~) such thatZ'< is
a left BanachB-module andE~ is a right BanachB-module, together with a contractive continuous
field of bilinear maps(,): E< xx E~ — B, B-linear on the left and on the rightE is called
non-degenerate i< and £~ are non-degenerate BanaBhmodules.

DefineE, := (E5, E7) which is aB,-pair when equipped with the brackegb..

Definition 3.1.51 (Linear operator between fields of Banach pairs)Let £ and F' be BanachB-

pairs. Then aontinuous field of3-linear operators fromE to F' (or just aB-linear operator from
E to F) is a pair(T<,T~) whereT~ is a continuous field oB-linear operators fronk~ to F~

andT'< is a continuous field oB-linear operators fron¥'< to E< such thatl, := (T, 7, ) isin

L, (E,, F,) for all z € X. We denote the linear space of all sty L'S¢(E, F).
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A B-linear operator fron¥ to F' is calledboundedf 7< and7~ are bounded. The space of all
boundedB-linear operators fronk to F' will be denoted byL.z(E, F'). It is a Banach space when
equipped with the obvious operations and the n¢#) := max{[|T<||, |77} = supgex |Tz|-

The condition on a pair oB-linear operator§7'<, T~ ) presented in the preceding definition can be
conveniently written as

(,)Eo (T< X x IdE>) ={(,)ro (IdF< XxT>> ,
where the two sides represent fields of maps fiomx x £~ to B.

Definition 3.1.52 (Homomorphism between fields of Banach pairs)Let B and B’ be u.s.c. fields
of Banach algebras ove¥ and letyy: B — B’ be a continuous field of homomorphisms of Banach
algebras. LeEz and E;, be Banach pairs. Thenantinuous field> of homomorphisms frord’ to

E' with coefficient map is a pair(®<, &~ ) whered~ is a continuous field of homomorphisms from
E~ to E’> and®< is a continuous field of homomorphisms frafit to E’<, both with coefficient
map4), such thatb, := (@5, ®;) is a homomorphism with coefficient map. from the pairE, 5,

to the pairky s, .

Note that the composition of linear operators is again a linear operator and the composition of homo-
morphisms is again a homomorphism.

Definition 3.1.53 (BanachA-B-pair). A BanachA-B-pair E = (E<,E~) is a BanachB-pair

E such thatE'< is a BanachB-A-bimodule andE~ is a BanachA-B-bimodule and the bracket

(,): E< xx E~ — Bis A-balanced (which means that for alk X the map(,),: Ex x E; — B,
is A,-balanced).

There is an obvious notion of a homomorphism with coefficient maps between BanBepairs.

Using the definition of the balanced tensor product of fields of Banach modules (Defjnition 3.1.47)
we can define the balanced tensor product of fields of Banach pairs, just as in Definition 1.3.3, the
definition of the ordinary balanced tensor product of Banach pairs. Similarly, we can define the
pushout of fields of Banach pairs along continuous fields of homomorphisms between u.s.c. fieds of
Banach algebras. It has the usual functorial properties, compare Propjosition 1.3.11.

Locally compact operators

Definition 3.1.54 (Rank one operator).Let E andF’ be BanachB-pairs. Then we define for g~
I'(X, E~)andallp” € T'(X, F~) the continuous field ofoperato\r7$>><§<\ = (‘n>><£<’m)x€X e
L'5°(E, F) by

7)€, = 07 (2)) (6% (2)| € Kp, (B, Fu)
forall x € X.

If £< andn™ are bounded thefy™ )(¢<| is bounded by[£<|| [~ ||. If £ andn™ vanish at infinity,
then so doeg™ ) (<.

Definition 3.1.55 (Locally compact Operator).@ Let £ and F' be BanachB-pairs. A continuous
field T of B-linear operators is callddcally compacif for all x € X and alle > 0 there is an open
neighbourhood’ of z, ann € Nand{y, ..., &5 € T(X, E<)andny,...,n, € I'(X, F~) such that
| T = S0y |07 (w) (&7 (w)]|| < eforallu € U. The space of all locally compact operators frém
to F is denoted byk!S¢(E, F).

0y, Lafforgue calls such operators “partout compactTin [Laf06].
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In other words: IfF denotes the linear span of the operators of the f¢rvﬁ‘1><§<], with €< €
I'(X, E<)andp” € I'(X, F>), inthe spac&!s(E, F), thenK!S¢(E, F) is the space of all operators
that are locally approximable by elementsAfi.e., KIS¢(E, F) = F in the sense of Definitign 3.1.1.3.

Lemma 3.1.56.Let E, F and G be BanachB-pairs. Thenl'S¢(F, G) o KIS¢(E, F) C KIi$¢(E, Q)
andKIS¢(F, Q) o !9¢(E, F) C KIS¢(E, G).

Proof. Let S € KIS¢(E,F) andT € L!S¢(F,G). Lete > 0 andzy € X. Becausel is locally
bounded, we can find a neighbourhddd of z( in X and a constant's > 0 such that|T,| < Cr
forall u € Up.

BecauseS is locally compact we can find a neighbourhobid of =y in X, ann € N and
&, 6y €eTo(X, E<)andny,...,n, € To(X, F~) such that

Su —Zlm (u)]

for all u € Usg. Note thatl" o | )(&5| = [(T™ o n7) (& | foralli € {1,...,n} (with T> on;” €
I'y(X,G?)), and

<7
Cr

(T 0S), Z} > on?) (u) )& (u)

(5 —Zm ))& (u \)

forallu € Us N Up. HenceT o S is locally compact. Similarly one shows the other assertion(]

g
<|nl- & <e

Example 3.1.57.Let B be a non-degenerate u.s.c. field of Banach algebrasXvérenI'(X, B)
acts by locally compact operators on the Ban&chair (B, B).

Operators of the form T' ® 1

Operators of the forrfi'® 1 for fields of Banach modules where defineflin 3.]L.48. From this definition,
we get a straightforward generalisation for fields of Banach pairs:

Definition 3.1.58. Let F and E’ be BanachB-pairs andF' a BanachB-C-pair. For all operators
T el8(E,E')defineT®1 €12 (E®p F, E'®p F)as(1@T<, T> ®1).

The assignmerit’ — 7' ® 1 is linear and functorial, and if is bounded, thefiT' ® 1|| < ||T||.

Proposition 3.1.59. Let F and E’ be BanachB-pairs and F' a BanachB-C-pair. Assume that
I'(X, B) acts onF by locally compact operators, call the actian T'(X, B) — K2¢(F). Assume
moreover thatt or E’ is non-degenerate. Then

TeKP(BE,E) = TolecKe(E®pF, E'@pF).

Proof. Let zp € X ande > 0. Assume that is non-degenerate. Théi{.X, ) is non-degenerate
in the following sense: The space of all sections of the farm £~ (z)[(x), with &~ € T'(X, E~)
andg € T'(X, B), spans a total subset 6{ X, £~) (and similarly forl['( X, E<)). From the upper
semi-continuity of the sections it follows that for gif € I'(X, E<), allzy € X and all§ > 0 there
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isanm € Nandfy,...,0n € I'(X, B), &5, ..., &y, € I'(X, E<) and a neighbourhooll of z( in

X such that|¢=(u) — 3212 Bi(w)& (w)]| < 0.
From this it follows that we can find a neighbourhoddof z( in X andn € N, 7,...&7 €
I(X,E~), 31,...,0n € (X, B) and¢y, ..., & € I'(X, E<) suchthat foralb € V:

T(v) =Y €7 (0))(B;(0)& )| < e
j=1

Now forallz € X
|67 (2)) (B (@)€5 ()| ® 1 = Migr> (4 0 (B))z © M= sy

as in the proof of Proposm.7. By Lem W .56 the continuous field of opem%&g o
7(Bj) o Me<| is locally compact becausg3;) is locally compact. We have
J

(T @ 1)) =Y Moy 0 m(Bi)o 0 Mig< (|| <
j=1

forallv € V. HenceT ® 1 is locally compact as well. O

As in Proposition 1.3.73 one proves

Proposition 3.1.60.Let B’ be another u.s.c. field of Banach algebras andB — B’ a continuous
field of homomorphisms. Lét and F be BanachB-pairs. For all operatorsI’ € K\%¢(E, F), the
operatory,(T) = T ® 1 is contained inki2¢ (1. (E), 1. (F)).

3.2 Monotone completions

In [Laf02] and [Laf06] the notion of an unconditional comple@was introduced which is a special

case of what we propose to calh@onotonecompletion. The article [Laf02] provides us with some
interesting examples of monotone completions which are not unconditional comp@tmtswe also

meet and need this more general notion in two situations in this thesis, namely in Suljsection 7.2.3
and in Section 7]3. It therefore seems advisable to dedicate an entire and separate section to the
introduction of this basic notion.

In Sectiorf 3.p, lefX be a locally compact Hausdorff space.

Definition 3.2.1 (Monotone (semi-)norm, monotone completion)A semi-norm||-||,, onC.(X) is
calledmonotonéf the following condition holds:

3.1 Vior, 2 € Co(X) 0 (Vo € X+ i (2)] < lpa(@)]) = ll@rlly < ll@2lly -

Let H(X) denote the (Hausdorff-)completion 6f(X') with respect to this semi-norm; this Banach
space is called monotone completioof C.(X).

“Unconditional completions are discussed in extenso in Sectipn 5.2.
12ror exampleH 2 (G, A) defined after Lemme 1.6.5 or the “normalised” completibfign(G, A) appearing in 4.5.
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By “let H(X) be a monotone completion Gf(X )" we mean in the sequel “ldt||,, be a monotone
semi-norm orC.(X) and letH(X) denote its completion”. If-||,, is a norm we can think of.(X)
as a subspace @f(X). For the rest of the section, [&(X ) be a monotone completion 6f(.X).

In [Laf06], unconditional norms ofi.(G) are extended to the non-negative upper semi-continuous
functions with compact support an (whereg is a locally compact Hausdorff groupoid with Haar
measure); this however is not sufficient because we want to apply unconditional norms also to the
absolute value of continuous fields of operators (with compact support), which are not upper semi-
continuous in general. This problem can be overcome very easily by extending unconditional norms
or, more generally, monotone semi-norms to an even larger class of functions:

Definition 3.2.2 (The extension of a monotone semi-norm)Let 7. (X) be the set of all (locally)
boundedfunctionsy: X — R with compact support. LeF," (X) be the set of elements df. (X)
which are non-negative. Define

[@llyg == mf {{liblly, + € Ce(X), ¥ = o}
forall p € F (X).

Note that by Propert.l) the new semi-norm agree§ ofiX ) with the semi-norm we started with.
We now deduce some computational rules for the extension:

Lemma 3.2.3. The following holds for allp, @2, ¢ € FF(X) and allc > 0:
L g1+ @2 € FF(X) and|lo1 + pally < llonlly + llez2lly
2. cp € FF(X) and|lcolly = c|lolly;
3. if o1 < o, then|pr]ly < [lo2lly-

Proof. 1. 149 isobviously bounded, non-negative and has compact suppatt, #f; € C.(X)
are such thap; < 1;, thenyp; + w9 < 11 + b9, and hence

o1 + @2lly < 11 +bally < W1l + 1920l -
Taking the infimum on the right-hand side we get the desired inequality.
2. Proceed as in 1. to shdy||,, < c||¢|,. By symmetry the we get equality.
3. This is trivial. O
For the rest of the section, |&t and F’ be a u.s.c. fields of Banach spaces ao¥er

Definition 3.2.4 (H(X, E)). We define the following semi-norm dn.(X, E):

€]l = [Ja = [1€(2) |,
The Hausdorff completion df .( X, F) with respect to this semi-norm will be denoted By X, E).

He

Note that the function — ||{(z)|| appearing in the preceding definition is not necessarily continuous.
However, it has compact support and is non-negative upper semi-continuous, so we can apply the
extended semi-norm af," (X) to it.

If E is the trivial bundle overX with fibre Ey, thenT'.(X, E) is C.(X, Ey). The completion
H(X, E) of C.(X, Ey) could hence also be denoted7d$X, Ey) and might be considered as a sort
of tensor product oH (X)) andEj. If in particular Ey = C, thenH(X, E) = H(X,C) = H(X).
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Definition 3.2.5 (H(X,T)). Let T be a bounded continuous field of linear maps fréBnto F'. Then
§ — T o¢isalinear map froni'.(X, E) to I'.(X, F) such thatl|T o £[|,, < [|T||[|£l,- HenceT'
induces a canonical continuous linear map fraffiX, £) to H(X, F) with norm < ||T||.

This way, we define a functor from the category of u.s.c. fields of Banach spaces{otethe
category of Banach spaces, which is linear and contractive on the morphism sets.

Proposition 3.2.6. The canonical map frofi.(X, F) to H(X, E) is continuous if we take the induc-
tive limit topology ol’.(X, £) and the norm topology oK (X, F).

Proof. Let K C X be compact. We just have to show that the map ' (X, E) — H(X, E) is
continuous for the rest follows from the universal property of the inductive limit topology. Find a
functiony € C.(X) suchthad < x < 1andyx = 1on K. DefineCg := || x|, Let{ e T (X, E).
Then

I1€(@) I 5, < sup [|€(")][ 5, x(2)
r’'eX
forall z € X, so

e (Ollng,my = llz = 1€ I3 < Ml = x(@)ll3 1€l e = Cr N1l - 0

Corollary 3.2.7. If Zis dense iT'.(X, E) for the inductive limit topology, then its canonical image
in H(X, E) is dense for the norm topology.

3.3 The pullback

In this section letX andY be topological spaces and jetY — X be continuous.

3.3.1 The pullback of fields of Banach spaces

Definition 3.3.1 (The pullback). B Let £/ be a u.s.c. field of Banach spaces oXerThen we define
a u.s.c. fielp*(E) of Banach spaces ovéf as follows: The underlying family of Banach spaces is
(Ep(y))er- Let

A:={op: £€(X,E)}.
ThenA is a subspace df], ., E,(,) satisfying (C1), (C2), and (C3). By Proposition 3.1.26, the set
I' := A is the unigue subset c[f[yey E,,) containingA and satisfying (C1)-(C4). Let*(E) be
((Ep(y))y€Y7 F)'

Example 3.3.2.Let £, be a Banach space. Considegy as a continuous field of Banach spaces over
aone-point sef«} and letp: Y — {x} be the projection map. Theri(E)) is the constant field with
fibre £y overY'.

Definition and Lemma 3.3.3 (The pullback as a functor).Let £ and F' be u.s.c. fields of Banach
spaces oveX and letT’ be a continuous field of linear maps frainto F'. Define

p(T)y = Ty €L (Ep(y)v Fp(y))

forally € Y. Thenp*(T) is a continuous field of linear maps froph(E) to p*(F). If T is bounded,
then so isp*T with ||p*T|| < ||T||. The assignmert — p*(T) is a functor from the category of
fields of Banach spaces ov&rto the category of fields of Banach spaces dver

135ee[[Laf0B], page 3.
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Proof. Propositior] 3.1.30 allows us to check the continuitytfT’) just on the total subsgt o p :
¢ € T(X, E)}. Solett € (X, ). Then(p*(T) o (£0p))(y) = Ty (£(p(y))) = ((T'0&) o) (y) for
ally eY,i.e.,p*(T)o((op) = (To&)op. Becausd o € I'(X, F'), we havegT o&)op € T'(Y, p*F)
by definition, sal” is continuous. O

Proposition 3.3.4 (Composition and pullback).Let Z be another topological space and et 7 —

Y be continuous. LeE be a u.s.c. field of Banach spaces ovér Then the u.s.c. fieldg'p*E and

(p o q)*E of Banach spaces ovéf are identical. The same is true for the pullback of continuous
fields of linear maps.

Proof. Letz € Z. Then(¢*p*E). = (p"E)q(z) = Epq(z)) = ((p 0 ¢)*E).. So the fibres of the two
fields agree. We have to check that also the set of sections are the same.

LetA:={fop: £ €T(X, E)}andM :={lopoq: £ e (X, E)}. DefineM’ :={nogq:
¢ el'(X, p*E)}. ThenM C M’ because\ C I'(X, p*(F)) by the definition ofl'(X, p*(E)). Let
n € T'(X, p*(E)). We show that := n o ¢ € M’ is locally approximable by elements 1. Let
20 € Z ande > 0. SincenisinT(X, p*E) = A, we can find a neighbourhodd of ¢(z) and a
no € A such that the norm of — 1 is less tharr on V. Sinceg is continuous, the sét := ¢~ (V)
is a neighbourhood ofy. Define(y := 1y o ¢ € M. Then for allz € W we have

q(z)ev
<

1€(2) = Go(2)[ = lIn(a(2)) = m(g(2))ll . O

Corollary 3.3.5. Suppose thak is a u.s.c. field of Banach spaces ovérLetxy € p(Y) C X. Then
P*(E)|p-1 ({1 is @ constant field ovep~ ({xo}) with fibre .

Proof. This follows from the identityp o v,-1((41) = t{ao} © Plp-1({z0}), Wherec, stands for the
respective inclusion maps. O

Corollary 3.3.6. The pullback of a constant field is constant with the same fibre.

Proposition 3.3.7 (Pullback and product). Let £ and F' be u.s.c. fields of Banach spaces oxer
Then the internal produgt*(E) xy p*(F') andp* (E x x F) are identical.

Proof. Lety €Y. Then(p*E Xy p*F)y = (p*E)y X (p*F)y = Ep(y) X Fp(y) = (E Xx F)p(y). So
the fibres are equal. The sets of sections are also the same because the set

{y = &®):np®))) : £ €T(X,E),nel(X,F)}
is total and contained both in(Y, p*E xy p*F) and inl' (Y, p*(FE ®x F)). O

Definition and Lemma 3.3.8 (Pullback and bilinear maps).Let F, F', G be u.s.c. fields of Banach
spaces ovelX. If p is a continuous field of bilinear maps frofd x x F' to G, then the family
p* (1) := (Hp(y) )yey is @ continuous field of bilinear maps froph(E) xy p*(F) = p*(E xx F) to
p*(G). If pis bounded, then so 8 1 with ||p*ul|| < |||

Proof. p*(u) is obviously locally bounded. Lef € I'(X,E) andn € I'(X,F). Then{op €
I'(Y,p*E) andn o p € T'(Y,p*F). Using Proposition 3.1.35, the test for continuity of bilinear maps,
it suffices to show thay — p* (1), (£(p(y)), n(p(y))) € I'(Y,p*(G)). Now

P (1)y(E(P(Y)), n(P(Y))) = tp(y) (), n(p(Y))) = (o (&) (p(y))
forally € Y. Sincep o (¢,7n) isinT'(X, G), we are done. O
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Remark 3.3.9. If 1 in the preceding definition is non-degenerate (i.e., the imagg epans a dense
subset of, for all y € Y'), thenp* (1) is non-degenerate as well.

Proposition 3.3.10 (Pullback and tensor products).Let £ and F' be u.s.c. fields of Banach spaces
overX. Thenp*(E) ®y p*(F') andp* (F ®x F) are identical. The analogous statement is true for
the tensor product and the pullback of continuous fields of linear maps.

Proof. The underlying families of Banach spaces are in both ceBgs) ® Fj,,))yey- We have to

show that also the sets of sections agree{letl’ (X, E) andn € T'(X, F'). Then{op € T'(Y, p*E)

andnop € I'(Y, p*F) and henceg — &£(p(y)) @n(p(y)) € I' (Y, p*E ®y p*F). On the other hand,

x— E(r)@n(r) e T (X, E®x F)andhence — £(p(y)) @n(p(y)) € T (Y, p*(F ®x F)). Note

that the span of such selections is total, so we have found a total set of selections that are sections for
both fields, so the fields are equal. O

Proposition 3.3.11 (Pullback and linearisations) Let F, F', G be u.s.c. fields of Banach spaces over

X. Letyu be a continuous field of bilinear maps frafhx x F' to G. Thenm = p*(n) as families
of linear maps fromp*(E @ x F) = p*E ®y p*F to p*G.

Proof. Lety € Y. Thenp*(u)y = pu,(,) by definition. Hencqaf(;)y = Iiy(y)- On the other hand,
P () = Tip(y) = Fip()- -
Proposition 3.3.12.Let E, F, E', F’ be u.s.c. fields of Banach spaces oXerLet S be a continuous
field of linear maps fron¥ to £/ andT be a continuous field of linear maps frafhto . Then

P (S®T) =p"(S)©p"(T).

Proof. Lety € Y. Thenp*(S @ T)y = (S @ T)py) = Spy) @ Ty and (p*(S) @ p*(T)), =
P*(8)y @ p*(T)y = Spy) @ Tyy)- -

Proposition 3.3.13 (Preservation of associativity)Let £y, Es, E3, F1, F» andG be u.s.c. fields of
Banach spaces ove¥. Letu; € M°C (Ey, Eo; F1), jp € M (Esy, E3; Fy), vy € M°° (F}, E3; G),
andvy € M°° (Ey, Fy; G). Assume that

V1o (i ® IdE3) = vy o (Idg, ®p2)

which could be regarded as a formulation of a very general associativity law. Then the same law holds
after applying the functop*(-):

) o (70 & s, = 700 (10, 0773

3.3.2 The pullback of fields of Banach algebras and Banach modules

Because the pullback construction preserves associativity, we can pull back algebras and modules and
obtain algebras and modules again:

Definition 3.3.14 (The pullback of a field of Banach algebras)Let A be a field of Banach algebras
over X with multiplication .. Then we equip*(A) with the multiplicationp*(u) to give a field of
Banach algebras ovéf. If A is non-degenerate, theii(A) is non-degenerate as well.
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Let A and B be fields of Banach algebras ow&randy: A — B a homomorphism. Thep*(y) is

a homomorphism of fields of Banach algebras frofA) to p*(B), and this defines a functor from
the category of fields of Banach algebras a¥eto those ovel’.

If Z is another topological space apdZ — Y is continuous, then

(poq)*(A) =" (p*(4))

as fields of Banach algebras ovéfcomparé¢ 3.3]4). This is also true for homomorphisms in the sense
that(p o q)*(¢) = q¢*(p*(p)) if p: A — B is a homomorphism of fields of Banach algebras over

Proposition 3.3.15.Let A be a u.s.c. field of Banach algebras over Then the fibrewise unitalisation
commutes with the pullback, i.e., we haxel = p*(A).

Definition 3.3.16 (The pullback of a field of Banach modules)Let A be a field of Banach algebras
over X. Let E be a left Banacti-module withA-actionu”. Then we equip*(E) with thep* (A)-
actionp*(u”): p*(A) xy p*(E) — p*(F) to give a Banach*(A)-module. If E is non-degenerate,
thenp*(E) is non-degenerate as well.

The pullback of fields of bimodules is defined similarly. The pullbackdelinear operators gives

p* A-linear operators and also the pullback of homomorphisms with coefficient maps gives homomor-
phisms with coefficient maps. The pullback is functorial with respect to both homomorphisms and

linear operators. Moreover, the pullback of fields of Banach modules, linear operators and homomor-
phisms is compatible with the composition of continuous maps&:if another topological space and

q: Z — Y is continuous, therip o ¢)*(E) = ¢*(p*(F)) as Banachp o ¢)* A-modules (compare

B.3.4).

Lemma 3.3.17.Let B be a u.s.c. field of Banach algebras ovér Let Eg, gF' be BanachB-modules
and@ a field of Banach spaces ovar. Letu be aB-balanced continuous field of bilinear maps from
E xx FtoG. Thenp*u is p* B-balanced.

As in Propositiorn 3.3.70, the corresponding result for fields of Banach spaces, one proves:

Proposition 3.3.18.Let A, B, C be u.s.c. fields of Banach algebras ovér Let 4 £ and g F be
Banach bimodules. Thest(E @p F) = (p*E) ®,+p (p*F) as Banachp* A-p*C-bimodules. The
analogous statement is true for the pullback and the tensor product of homomorphisms.

Proposition 3.3.19.Let B and B’ be u.s.c. fields of Banach algebras ovéand lety): B — B’ be a
continuous field of homomorphisms. IEebe a BanachB-module. Thep*y), (p*E) = p* (V. E).

3.3.3 The pullback of fields of Banach pairs

Definition 3.3.20 (The pullback of a field of Banach pairs).Let B be a field of Banach algebras
over X and letE = (E<, E~) be a BanaclB-pair. Thenp*(E) := (p*(E<), p*(E~)) is a Banach
p*(B)-pair when equipped with the obvious bracket.

This defines a functor from the category of Bandgipairs to the category of Banagfi(B)-pairs,
linear and contractive on the spaces of linear operators. As for Banach modules, the pullback of
a homomorphism is a homomorphism and the pullback commutes with the tensor product and the
pushout.

We now study how the pullback and locally compact operators are related.
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Lemma 3.3.21.Let £ and F’' be BanachB-pairs. Ifn~ € T'(X, F~) and¢< € T'(X, E<), then

(p*|n7)(E5)), = |7 () ) (€= (p(v))]
forally e Y.

Proposition 3.3.22.Let £ and I be BanachB-pairs and letT" be a B-linear operator fromE to
F. If T is locally compact, then so ig*(T"): p*(E) — p*(F'). Conversely, every operatdr €
KI;’*CB (p*E, p*F) can be locally approximated by operators of the fgrfi” with T ¢ KI2¢(E, F).

Proof. Let T be locally compact. Leg, € Y. Lete > 0. Find a neighbourhooll of g := p(y) in
X andn € Nand{y,.... &5 e (X, E<),ny,...,n, € I'(X,F~) such that

O]
=1

forallu € U. LetV := p*(V). ThenV is a neighbourhood af, in Y. Foralli € {1,...,n}, the
sections(~ o p andr;” o p belong tol'(Y, p* E<) and['(Y, p* F~), respectively. Lev € V and define
u:=p(v) € U. Then

<e

<e.

- S \H

Hencep*(T) is locally compact.

Now let T e K‘}?*CB (p*E, p*F). Without loss of generality we can assume thiats of the
form |7 )(£<| with 7> € T(Y,p*F>) and{< € I'(Y,p*E<). Lety, € Y ande > 0. Find a
neighbourhood/;, of yo in Y such that;~ is bounded ori/, by some constant’,, > 0. Find an
analogous neighbourhodg for £< and the constant’s > 0. Find a neighbourhoodl” contained
in vV, N Vg andn~ € T'(X, F~), £ € T'(X, E<) such that|7~ (v) — 7~ (p(v))|| < &/(3C;) and
Hé:(v) — &= (p(w))ll < €/(3C¢) and|[7j~ (v) — 0~ (p)) | 1€ (v) = &= (p(v))]| < &/3forallv e V.
Then

3 |07 ()5 ()|
=1

| 177 @) (€= @)] = [ een) (=) |

forallv € V. O

3.4 Groupoids

3.4.1 Some notation and examples

A groupoi is a small category such that every morphism is invertibleG I a groupoid, then
we will denote the set of composable pairs of morphismgy C G x G or G * G, and the set of
identity morphisms by(®) C G. The setG(?, called the unit space, can also be regarded as the set
of objects ofg. The range and source maps— G(©) will be denoted by-g andsg (or r ands if G
is understood).

Often we will think of G(¥) as being a set that is not a subsetidfut a distinct set on which the
groupoid “acts”. IfX is a set and; is a groupoid such th&@®) = X, then we say thag is a groupoid

145ee[[LGY9Y), section 2.1.
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over X. The map that sends somec X to the associated identity morphismdnwill usually be
callede. In calculations, we will usually omit the map

Let G be a groupoid. IfK and L are subsets of(?), thenG” := {y € G : r(y) € L},
Gk ={y€G: s(y) € K} andGE := GE N Gk. If g, h € GV, theng, := Gy, G" := G{"} and
Gl =G,NG"={y€G: r(y)=h,s(y) =g}

A topological groupoi@g is a groupoid which is at the same time a topological space such that
the composition, inversion and the range and source maps are continugisal§roupoid over a set
X, then we also have to assume thats a topological space and the mapX — G is continuous.

Example 3.4.1.Let X be a topological space. Then we define the structure of a topological groupoid
on X by settingr := s := Idx (so there are only units).

Example 3.4.2.Let G be a topological group. The@ can be regarded as a topological groupoid if
we letr ands be the projection on the identity element®@f

Example 3.4.3.Let X be a topological space. Then we define the structure of a topological groupoid
onX x X by setting

XxX)9.=X and e: X - X x X, 2 — (z,2),

r XxX—-X (yz)—y and s: X x X — X, (y,x) — z,
Va,y,2 € X1 (z,y)0 (y,@) = (z,2) and (y,2)7" = (2,y).
Note thatr ands are open maps.

Example 3.4.4.Let X andZ be topological spaces and jet X — Z be a continuous map. Extend-
ing the preceding example we define the structure of a topological groupoidop X = X x, X
by setting

(X xzX)0:=X and e X - X xz X, z— (2,2),

r: XxzX—-X, (y,x)—y and s: X xz X - X, (y,z) — x,

Va,y,z € X,p(z) = p(y) = p(2) : (2,9) 0 (y,2) = (z,2) and (y,2)7" = (z,).
If pis open, then Lemnja 3.4.5 guaranties thahds are open, too.

Lemma 3.4.5. Let X, Y and Z be topological spaces. Lety: X — Z and fy: Y — Z be
continuous maps. LeX x; Y be the fibre producf(z,y) € X x Y| fx(z) = fy(y)} of X andY

overZ. If fy is open (and surjective), then the canonical projectign X xz Y — X is open (and
surjective).

Proof. Let (z,y) € X xz Y. LetU be a neighbourhood dfr,y) in X xz Y. Then there are
Ux C X andUy C Y suchthatUx x Uy)N X xzY C U. Sincefy is open, we know that
fy(Uy) is a neighbourhood ofy (y). Sincefy(y) = fx(z) and fx is continuous, we know that
U = fx' (fy(Uy)) is a neighbourhood aof. SoUx N U is also a neighbourhood af Letz’ be
an element of this neighbourhood. Thén(z') € fy(U,), and hence we can find af € Uy such
that fx (z') = fy(v'). Note that(x,y) € U. But this means thaix (U) containsUx N U and is
hence a neighbourhood of Sopx is open. O

155ee[[LGY9Y], section 2.1.
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Definition 3.4.6 (Strict morphism). Letg andH be topological groupoids. Therstrict morphism
f from G to H is a continuous map fror§ to H which also is a homomorphism of groupoids (i.e., a
functor).

The topological groupoids, together with the strict morphisms, form a category.

Example 3.4.7.Let X be atopological space and lgbe a topological groupoid ovef. Then there
is a canonical strict morphism frog to the groupoidX x X introduced in Example 3.4.3, namely
the map that sendsac G to the pair(r(v), s(v))-

3.4.2 G-Banach spaces
For the rest of Secti.4, I6tbe a topological groupoid with unit spagé” = X.

Definition 3.4.8 G-Banach space).A G-Banach spacé is a u.s.c. fielde of Banach spaces over
G together with an isometric isomorphism s*(E) — r*(E) such that

1.Yg €GO ay=1dg,;
2. v(’Ya’)/) €gxG: Qyory! = Qiy O a,y,;

3. Vyeg: Q1 :oql.

The Axioms 1. and 3. follow from Axiom 2. They are just stated to give a clearer impression of a
G-Banach space. The second axiom can also be stajed@s= 7 () oms (o) Wwherep: GxG — G
is the composition iy andr;: G * G — G is the projection onto thé&h coordinate.

Example 3.4.9.Let X be a topological space. If we regakilas a groupoid with unit spack, then
every u.s.c. field of Banach spaces o¥ers, canonically, anX -Banach space (and evel+Banach
space is, trivially, a u.s.c. field oveéf).

Definition 3.4.10 G-equivariant fields of linear maps). Let E and F' be G-Banach spaces with
actionsa and 3, respectively. AG-equivariant continuous field of linear maps frafto F' is a
continuous field T, ) .c x of linear maps from¥ to F’ such that the following diagram commutes

5*(E) 5*(F)
<lE> Lt (i;)

This means that,.,) o ay = 3, 0 Ty forally € G.

Definition 3.4.11 (The product and the sum ofj-Banach spaces)Let E andF beG-Banach spaces
with actionsa andg, respectively. Then*(Ex x F') = r*Exgr*F ands*(Exx F) = s*Exgs*F.
We hence get a continuous field of isomorphismsg §: s*(E xx F) — r*(E xx F). Itis an
action onE x x F which we call thgproduct actionof « and3. Similarly, we define an action &g 3
onE &x F.

165ee[[LG99], Définition 2.1.
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Definition 3.4.12 (Equivariant bilinear maps betweeng-Banach spaces)Let E,, E; and F' be
G-Banach spaces witfi-actionsay, as andg, respectively. Lel: E1 x x Es — F be a continuous
field of bilinear maps. Thep is calledG-equivariantif the following diagram commutes

s*(p)

S*(El XX Eg)

\Langag i,@

T‘*(El Xx Eg)

This means thaf/i, ) (€1, e2) = fip(4) (ve1, vez) forally € Gandey € (E1)y,) andez € (Ea) (-

Definition 3.4.13 (The tensor product ofG-Banach spaces)Let £ andF' be G-Banach spaces with
actionsa andg, respectively. Then we can form the tensor produch x F' of the continuous fields
of Banach spacek andF'. Now

s"(BEox F)=s"(E)©g s"(F) and 1" (E@x F) =r(E) @g 1" (F).

Now a ® 3 is a continuous field of isometric isomorphisms freliE) @g s*(F') tor*(E) @g r*(F).
This induces orE ® x F' the structure of &-Banach spaces.

Proof. To see thaty ® (3 is an action onE’ ® x F' we calculate
pla@p) = p (o) @u (B) = (ri(a)oms(a) @ (71(B) o m3(3))
= (m() @7((B)) o (m3(er) @ m3(B)) = 7 (a® B) o m3(a ® B).
O

Note thatE' ® x F' has the universal property fgrequivariant continuous fields of bilinear maps.

Definition 3.4.14 (The trivial G-Banach space).Let Cx denote the constant field of Banach spaces
over X with fibre C. Note thats*(Cx) = Cg = r*(Cx). SoCx is aG-Banach space if we take
(Idc), g as the action of.

3.4.3 G-Banach algebras and7-Banach modules

Definition 3.4.15 G-Banach algebra). A G-Banach algebra is a u.s.c. field4d of Banach algebras
over G\ together with a continuous field of isometric Banach algebra isomorphisms between the
continuous fields of Banach algebra$A) andr*(A) which makesA aG-Banach space.

Definition 3.4.16 (Homomorphism ofG-Banach algebras).If A andB areG-Banach algebras, then
a G-equivariant homomorphism from to B is a homomorphism of fields of Banach algebras over
G which is at the same time@equivariant continuous field of linear maps.

Definition 3.4.17 (Unitalisation). Let A be aG-Banach algebra witly-action«. Let: denote the
canonical action off on the constant fiel@x. Then we take the actiom ©g ¢ on the unitalisation
A=Adx Cx of A

Let B be aG-Banach algebra witf-actiona: s*(B) — r*(B).
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Definition 3.4.18 G-Banach module). A right G-BanachB-module £ is a right Banach module
F over the u.s.c. field3 of Banach algebras ovel?) together with a continuous field of isometric
isomorphisms/” : s*(E) — r*(E) with coefficient mapy between the Banactt (B)-modules*(E)
and the Banach*(B)-moduler*(E) which makest’ aG-Banach space.

Analogously one defines left-Banach modules an@Banach bimodules.

Definition 3.4.19 G-equivariant linear operator). If E andF' areG-BanachB-modules, then §-
equivariantB-linear operator fronk to F' is a B-linear operator between Banaéiimodules which
also is ag-equivariant continuous field of linear maps.

Analogously one define§-equivariant homomorphisms with coefficient maps betwgeBanach
modules and@j-Banach bimodules.

The balanced tensor product@Banach modules is defined analogously to the tensor product of
G-Banach spaces, using that the balanced tensor product commutes with the pullbackaidrg
Similarly, the pushout along a continuous equivariant field of homomorphisms of Banach algebras is
defined.

3.4.4 G-Banach pairs

Let B be ag-Banach algebra witfy-actionc.

Definition 3.4.20 G-Banach B-pair). A G-BanachB-pair E is a BanachB-pair E = (E<,E~)
together with an isometric isomorphism$’: s*(E) — r*(E) with coefficient map between the
Banachs*(B)-pair s*(E) and the Banach*(B)-pairr*(E) which makesE'< and E~ into G-Banach
spaces.

Remark 3.4.21. In [Laf06] the definition of aG-Banach pair is formulated differently: Quite obvi-
ously, the aim of Définition 1.2.4 in [Laf06] is to define the same kind of object that we have defined
here, but in[[Laf0B] the notion of a homomorphism with coefficient maps is missing (or at least it has
not been made explicit); hence the definition af-@anach pair makes use of continuous fields of
linear operators (as we prefer to call them here), which leads to a result which is certainly not intended
by the author.

On the other hand, the notation in [Laf06] is a bit simpler as a consequence of this imprecision because
thinking of the action ofj on E as an invertible linear operatdf from s*E to r* E makes it possi-

ble to conjugate operators of the fowhl’, whereT € Lg(FE, E), to get an operatovs*TV ! ¢

L.«p (r*E, r*E). In our notation, it is not obvious what the composition of an operator and a con-
current morphism should be. In this particular case, there is not much choice, but we prefer to stay
systematic and write“(¥) s* T for the operatol’ s*T'V !, see Definition 3.4.23 and 3.4)24 and com-
pare also Definitiop 3.5/2.

Definition 3.4.22 G-equivariant operator). If £ andF areG-BanachB-pairs, then &-equivariant
B-linear operator fronE to F' is an B-linear operatofl’ = (7'<,T~) between theB-pairs E and F’
suchthatl'<: F< — E< andT~: E~ — F~ areG-equivariant continuous fields of linear maps.

Similarly defineG-equivariant homomorphisms with coefficient maps. The definitions of the balanced
equivariant tensor product @f-Banach pairs and the definition and properties of the pushout are
straightforward.
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3.4.5 Theg-action on operators
Let B be ag-Banach algebra witfy-actionc.

Definition and Proposition 3.4.23 (-action on fields of linear maps).Let £ and F' be G-Banach
spaces with the respectigeactionsa” anda’". Let S € 11°¢ (s*E, s* F). Then we define

-1
’)/(S«» = CE,}; o S7 o (CV,JYE) el (Er(’y)v Fr('y))

forallv € G and
aL(E’F)(S) — (’V(S“/))weg c loc (rE, r*F).

oEF) is aC-linear andC, (G)-linear bijection, compatible with the composition of fields of linear
maps. IfS is bounded, then so is“(?-¥)(S) with the same norm, so the restrictiond@df®-) is an
isometric bijectionL(s*E, s'') = L(r*E,r*F).

Proof. We just check that“(Z-¥) (S) is a continuous field of linear maps. LET(G, r* E). Then
-1
oHE(S) (1) = o (8 ((0F) ™ €())

forally € G. Now~y — (a)~(¢(v)) is a section ok*E, soy — S, ((ef)1(£(7))) is a section
of s*F. It follows thaty — o5F)(S) (£(v)) is a section of* F. Moreover,o“(Z:F)(S) is clearly
locally bounded, so it is i!°¢ (7*E, r*F). O

If in the preceding definitior? and F are not onlyG-Banach spaces bgtBanachB-modules over
someG-Banach algebr#®, thena () preserves3-linearity and hence gives bijections

1)9% (s*E, s*F) = 11%% (+*E, 7*F) and Lgp (s*E, s*F) 2 Ly (r*E, r*F).

Definition and Proposition 3.4.24 (G-action on operators between pairs).Let £ and F' be G-
BanachB-pairs. LetS € 1/25; (s*E, s*F). Then we define &(Y")-linear bijection, compatible with
the composition of linear operators,

aL(E,F)(S) — <aL(F<,E<)(S<)’ aL(E>,F>)(S>)) S Llrch (r"E,r*F).

If S is bounded, then so is“(*>¥)(S) and both have the same norm.

Proof. Lety € G, 67”>(7) € Ejm andfi € F< .. Then

r(y)"

(MBS 50 €)= (15577 £ 7’(7)> 7< )
- 7<7_ fiv)’s“/ 7_167?(7)> - <f§7)’75> > < ol F) S)V er?(v)>'
0

Proposition 3.4.25.Let F and F' be G-BanachB-pairs. If €< € T'(G, s*E<) andn~ € (G, s*F~),
then

©2 QMO (g7 )(€5]) = |o 07 Yo" 07,

If S € K% (s*F, s*F), thena™PF)(8) € K%, (r* E, r*F). Thusa™:F) restricts to aC(G)-
linear bijectionaX(£:F) between the spaces of locally compact operators.
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Proof. We check formul2): Let € Gande ) € E7 ). Then

MER (|7 ) (€5))7 (e) = A NE T e, = () (650, 77 e))
= (m” () <v£<('v), 77‘167?(7)> = |y (MY~ (6?(7)) :
A similar calculation can be done for the left-hand side, which shpws (3.2). O

Remark 3.4.26.n Sectior] 4.7 1 we are going to introduce the set of compact opet&ai&, F') C
K'9°(E, F) and discuss in Secti¢n 4.8.3 to what extend one can think6f-") as an action of on
Kp(E, F) (which would make< 5 (E) aG-Banach algebra).

If £ is aG-BanachA-B-pair, then the action off on E regarded as a homomorphism fra#nto
Lp(FE), is G-equivariant in the following sense:

Lemma 3.4.27.Let E be aG-BanachA-B-pair with A and B beingG-Banach algebras. Lei <
I'(G,s*A). Then

o) (12 4(@)) = Tpea (@ 0 &)
wherer,« 4 and .« 4 are the actions 0§*A on s*FE andr*A onr*E (regarded as homomorphisms
into the linear operators) and* is the action oG on A.

> >
Proof. Lety € G ander(v) € ET(V). Then

aMB) (m g p(@)F (e7)) = of ((WS*A(d))i ((af)_l (er>('y))>)

= 7 (als()- (7))
= (als() - (7l = T (0t 0d) (e,

A similar calculation can be done for the left-hand side, yieldiftf”) (g 4(@)), = 7 4 (a?oa)
forallv € G. OJ

3.5 KK{™(A,B)

Let G be a topological groupoid with unit spaée

3.5.1 Gradings

Definition 3.5.1 (A gradedG-Banach space) Let E be aG-Banach space. Thergaading automor-
phismog of E is aG-equivariant contractive continuous field of linear maps frBrio E such that
0% = Idg. A G-Banach space endowed with a grading automorphism is calfgddedg-Banach
space

Just as for gradings of ordinary Banach spaces or Banach spaces with group actions we can define
the notions of graded ( =even) and ag@léequivariant continuous fields of linear maps between graded
G-Banach spaces, gradgeBanach algebras, gradgdBanach modules and gradgeBanach pairs.

All the above constructions are compatible with this additional structure, e.g., the tensor product or
the pullback along a strict morphism of groupoids.
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3.5.2 KKg*-cycles

Let A and B beG-Banach algebras.

Definition 3.5.2 &(Kg“—cycle). A KKPa2-cyclefrom A to B is a pair(E,T) such thatF is a non-
degenerate grade&gt A- B-bimodule andl’ is an odd element df z(F) such that

[a(a), T], ma(a) (14 -T?) € K§(E)

foralla € I'(X, A) and
(@) (aL(E)(s*T) - r*T) e K¢, (1 E)

foralla € T (G,r*A), whereaF) . 1/9% (s*E) — 119% (r*E) denotes the “action” of onL(F)
defined ir} 3.4.24. We writB5*" (A, B) for the class of alKKg™-cycles fromA to B.

Definition 3.5.3 (The sum ofKKga“-cycIes). If (E1,T1) and(Es, T,) are elements dEga“(A, B),
then we defin€ £, 71) @ (Ea, Ta) := (E1 @ Eq,T1 ® T»). Itis an element o]Egan(A, B).

Definition 3.5.4 (The inverse of d{Kgan-cycle). If (E,T)isin IEE“(A, B), then we define-(E, T)
to be(E, T'), but equipped with the opposite grading. This is an eIeme%'df(A, B).

Using the facts that the pushout of locally compact operators is again locally compact (Proposi-
tion[3.1.60) and that the pullback commutes with the pushout (Propogition [3.3.19), we can define
the pushout for cycles:

Definition 3.5.5 (The pushout ofKKgan-cycIes). Let B’ be anotheg-Banach algebra and: B —
B’ ag-equivariant homomorphism frod to B’. Let (E, T') be an element dEgan(A, B). Then the
pushout),(E,T) of (E,T) along is defined agy.(F),T ® 1). Itis contained iriEga“(A, B').

3.5.3 Morphisms betweerKKg*"-cycles

Let A, A’ and B, B’ be G-Banach algebras. Let: A — A’ andvy: B — B’ be G-equivariant
homomorphisms.

Definition 3.5.6. Let (E,T) and(E’,T") be elements ofig™” (A, B) andEg™" (A’, B'), respectively.
Then a morphism from\E, T') to (E’, T") with coefficient maps andy is a pair® = (&<, ®~) such
that

e (<, ®~)is an equiv. homomorphism of graded Banach pairs with coefficient mapsl;

e we have
T<o0d<~=®~oT< and T"” od” =D~ 0T".

The classEgan(A, B), together with the morphisms of cycles (wiihy andld g as coefficient maps),
forms a category. This gives us an obvious notiomsofmorphicKK"*"-cyclesin Eg*"(A, B). Just
as for ordinaryKKb2"-cycles, the sum of cycles is associative and the pushout is functorial up to

isomorphism (compare Propositigns 1}8.7 and 1.8.8).
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3.5.4 Homotopies betweeiK K *"-cycles
The G-Banach algebraB|0, 1]

Definition 3.5.7 (TheG-Banach space?|0, 1]). Let E be aG-Banach space witg-actiona: s*E —
r*E. Then we define thg-Banach spac&|0, 1] by the following data:

1. the underlying family of Banach spaces s, [0,1]),. v;

2. a sectiorg of E0, 1] is continuous if and only ifz,t) — &(x)(t) is a continuous section in
pi(E), wherep;: X x [0,1] — X denotes the projection onto the first component;

3. the actiony[0, 1]: s*(E[0,1]) — r*(EI0, 1]) is defined by

E[07 1]3(7) = Es('y) [07 1] > 5’7 = (t = aﬁ(gv(t))) € Er('y) [07 1]‘

For all¢ € [0,1], define the continuous family of linear contractiong: E[0,1] — E given by
(evi)e: E2[0,1] — By, & — &(t) forallz € X.

Proposition 3.5.8. If B is a G-Banach algebra, the®[0, 1] is a G-Banach algebra as well (when
equipped with the obvious multiplication). The field: B[0, 1] — B is a continuous field of homo-
morphisms in this case. Similar statements hold for Banach modules and pairs.

Note that(ev, . E), = (ev¢). «E, for everyG-BanachB(0, 1]-pair E.

Homotopies andKKba»

Let A, B beG-Banach algebras.

Definition 3.5.9 (Homotopies).A homotopybetween cycle$Ey, Ty) and(E1, 1) in E§*(A, B) is
acycle(E,T)in Egan(A, B0, 1]) such thatvy . (£, T') is isomorphic ta Ey, Tp) andev .(E, T) is
isomorphic to(E1, T1). If such a homotopy exists thei, Ty) and (4, T;) are callechomotopic
We will denote by~ the equivalence relation dbga“(A, B0, 1]) generated by homotopy (note that
homotopy is reflexive and symmetric). The equivalence classes &oe called homotopy classes.

Definition and Proposition 3.5.10 KKgan(A, B)). The class of all homotopy cIasseQE@‘fm(A, B)

is denoted b)KKgan(A, B). The addition of cycles induces a law of compositionIéKga“(A, B)
making it an abelian group (at least if we restrict the cardinality of dense subsets of the involved Ba-
nach modules by some cardinality to obtain aIéK@an(A, B) rather than just a cIassB(Kga“(A, B)

is functorial in both variables with respect deequivariant continuous fields of homomorphisms of
Banach algebras.

The fact thatKKga“(A, B) has inverses should be proved by adjusting Lemme 1.2/5 in [Laf02] to
the situation ofG-Banach algebras. The above definition is part of Définition-Proposition 1.2.6 in
[Laf06]. The functoriality result is analogous to Proposi.12 for the ordiRa&€)>*-groups.

The following Lemma is the obvious generalisation of Lemme 1.2.3 in [Llaf02].

Lemma3.5.11.Let(E, T) € Eg*"(A, B) and assume thal” € L(E) is odd bounded operator such
thata(T — T"), (T —T")a € KI(E) for all a € T'y(X, A). Then(E,T") € Eg*(A, B) and there
is a homotopy froniE, T') to (E, T").
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Proof. First we prove thatE, T") is aKKP*"-cycle:
Leta € T'(X, A). Then

[a, T = aT'=Ta=al —a(T—T)—Ta+ (T —T")a
= [0,T)—a(T =T+ (T - Ta € K2(E).

Secondly,

a(T? —1)=a((T — (T -T"))*> -1)
= a(T*-T(T-T)— (T -TT+ (T -T")?-1)
= a(T?-1) = [a,T(T —T") = Ta(T —T') —a(T =TT + (T —T')? € KS(E)
foralla € I'(X, A). Thirdly, if a € T'(G, r*A):
a (r*T’ - aL(E)(s*T’)>
_ (r*T - aL(E)(s*T)) — @ (T —T') — aaB) (s*(T — T')) € KI8¢(B).

The first term is locally compact becaude, T) is aKKP2"-cycle. The second term is locally compact
becaus@ can be approximated locally by sections of the faron with « € T'(X, A); hencear™ (T —

T") can be approximated locally by operators of the fétmar)r* (T —T") = r*(a(T —T")) and such
operators are locally compact. The third term can be rewritten™&® [((a?)~1(a)) s*(T — T")]
wherea is theG-action onA (see Lemm7 for a more precise statement). MoW (@) is
inI'(G, s*A), so by a similar argument as for the second teffa,*)~!(a)) s*(T' — T") is locally
compact. Hence the third term is locally compact.

Now we construct the homotopy: The idea is to conr{é&tT’) to (E,T”) through cycles of the
form (E, (1 — )T + tT") for t € [0,1]. First note thatZ[0, 1] is a non-degenerate gradéeBanach
B0, 1]-pair and(E[0, 1], T[0,1]) is in Egan (A[0, 1], B][0,1]). We can also regard it as an element
of Eg™ (A, B[0,1]). Moreover, ifS € Kg°(E), thensS[0,1] € K5f, ; (E[0,1]). It follows that
a(T" = T)[0,1] € Klgfoﬂ (E[0,1]) for all a € T'(X, A). The multiplication withldy, ;) in every fibre
is in Lgjo,11(£[0,1]), soldjg 1 a(T" — T)[0, 1] is also inK‘ng’l] (E[0,1])foralla e T'(X, A).

Applying the first part of the proof td’[0, 1] and T'[0, 1] + Idjo (7" — T)[0, 1] shows that
(E[0,1], T[0,1] + Id 1y(T" — T)[0,1]) is aKK"*-cycle. For allt € [0, 1] the pushout alongv/
of this cycle is isomorphic toF, T+t(T'—T)) = (E, (1—t)T+tT"). So we have found a homotopy
from (E,T) to (E',T"). O

3.6 KK"*-cycles and strict morphisms of groupoids

3.6.1 The pullback along strict morphisms

LetG andH be topological groupoids and Igt H — G be a strict morphism of topological groupoids
as defined in_3.416.

The pullback of G-Banach spaces

Definition 3.6.1 (The pullback of aG-Banach space).Let E be anG-Banach space with action
Write fo for f|,0: H® — G©. Thenf;(E) is a u.s.c. field of Banach spaces o¢¢f”). Now
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sgo f= foosyandrgo f = foory,so
sp(fo(E)) = (foo sn)"(E) = (sg o [)"(E) = [*(sg(E))

and similarly for the range maps. S6(«) is a continuous field of isometric isomorphisms from
sy (fo(E)) tory (f5(E)). Itis an action ofH.

The H-Banach spacg(E) with the actionf*(«) is called thepullback of E along f and is
denoted byf*(F).

Proof. Let ug andyuy, denote the composition maps®@fandH, respectively, and Writel.g: GG —
g andwzﬂz ‘H « H — H for the respective projections onto tkth component. Lef x f denote the
mapH xH — GG which sendsn, ') to (f(n), f(1)). Thenr¥ o (f+ f) = fontforalli € {1,2}
andug o (f * f) = f o up. Now

i (f*(@) = (foun) (a)=(ugo (f+*f) (a) = (f*f) (ug(a))
= (fx 1) (w%*a )" (@)
= (e (D) @) o (F ) ((7)" (@)
= (wfo(f* 1) (@) o (7fo(f*]) (a)
= (fom ) (@) o (forl®) (@)
= ()" (/@) o (#]1)" (f*(a)).
So f*(«) is an action. O

Proposition 3.6.2. The pullback commutes with the tensor product: Eeind F' beG-Banach spaces.
Thenf* (E @gwo) F) = f*(E) @y f*(F) asH-Banach spaces.

Proof. The identity is true for the underlying u.s.c. fields of Banach spaces. We have to show that the
actions ofH{ on the spaces are the same. k&tnd( denote the action @ on E andF', respectively.
Then it follows from the last sentence of Proposifion 3.3.10 ftidtx @ 8) = f*(a) ® f*(8). O

Proposition 3.6.3. Let E and F beG-Banach spaces and It c 1!°¢(E, F') beG-equivariant. Then
f*T € II°¢(f*E, f*F) is H-equivariant.

Proof. Write o anda’" for the G-action onE and F', respectively. From(T) o o = o' o s§(T)
we can deduce that

r(f(T)) o f*(a¥) =

An analogous statement is true for equivariant bilinear maps.

Proposition 3.6.4. The pullback alongf is a functor from the category @f-Banach spaces to the
category ofH-Banach spaces, linear and contractive on the sets of bounded continuous fields of linear
maps, and sending equivariant continuous fields of linear maps to equivariant continuous fields.
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Proposition 3.6.5. Let K be another topological groupoid and let X — H be a strict morphism.
Then(fog)* = g*o f* as functors from the category GfBanach spaces to the categoryi@Banach
spaces.

Proof. Let E be aG-Banach space witlg-actiona. Then(fy o go)*(E) = g5 (f§(E)) and(f o
9)" (@) = g (f*(e)). -

Proposition 3.6.6.1dg; is the identity functor of the category GfBanach spaces.
Lemma 3.6.7. Let E and I beG-Banach spaces. For ali € L!°° (s3E, s;F), we have

aL(f*E,f*F)(f*S) — f* (aL(E,F)(S)> c Lloc (f*TéE, f*TéF) .

Note thatl!*® (f*rgE, f*riF) = L°° (v, f*E, r3,f*F) and similarly forsg andsy,.

The pullback of G-Banach algebras and7-Banach modules

Let B be ag-Banach algebra. Thefi*B is an’H-Banach algebra. Also the pullback alofigof a
G-equivariant homomorphism of Banach algebrasig-aquivariant homomorphism.

If Eis aG-BanachB-module, thenf*E is anH-Banachf* B-module in an obvious way. Sim-
ilarly for G-Banach bimodules. The pullback alorfgof a G-equivariant linear operator or of a
G-equivariant homomorphism with coefficient maps is 7requivariant linear operator or aH-
equivariant homomorphism with coefficient maps.

The pullback alongf respects balanced equivariant bilinear maps and balanced tensor products
of equivariant Banach modules. Regarding the pushout of equivariant Banach modules we have the
following result:

Proposition 3.6.8. Let B be aG-Banach algebra and? a right G-Banach B-module. LetB’ be
anotherG-Banach algebra and lep: B — B’ be aG-equivariant homomorphism. Then

[T (W(E)) = (f* (), (f*(E))
as rightH-Banachf*(B’)-modules.

The pullback of G-Banach pairs

The functorf* from the category ofj-Banach spaces to the categoryr¢Banach spaces induces a
functor f* from the category ofj-BanachB-pairs to the category dfi-Banachf*(B)-pairs. It sends
ag-BanachB-pair E = (E<, E~) to theH-Banachf*B-pair f*(E) = (f*(E<), f*(E”)). A
(G-equivariant)B-linear operatofl’ = (7'<,T~) is sent to theX{-equivariant)f*(B)-linear operator
FH(T) = (f*(T<), [*(T)).

One proceeds similarly fa¥-BanachA- B-pairs and homomorphisms with coefficient maps. The
functor respects the tensor product of Banach pairs. Also the pushout of Banach pairs is preserved
just as in Proposition 3.6.8.

Lemma 3.6.9. Let E and F be G-BanachB-pairs. For all S € LI%CB (sgE, sgF), we have
MBI (f15) = g+ (aMPI(S))

Note thatL‘j?fTéB (f*rsE, f7rpF) = Llﬁ’gf*B (r3, f*E, r3,f*F) and similarly forsg andss. The
preceding lemma could be interpreted as a way to give meaning to the formula
f*aL(E7F) fr— aL(f*Ehf*F).
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3.6.2 The pullback ofKK"*-cycles along strict morphisms

Let G and’H be topological groupoids oveX andY’, respectively, and lef: H — G be a strict
morphism of topological groupoids. Let and B be G-Banach algebras.

Proposition 3.6.10. Let (E,T) € Eg*(A, B). Thenf*(E,T) := (f*E, f*T) is an element of
E7b_{an (f*A, f*B)

Proof. We already know thaf* E is a non- degeneraﬂé-Banachf*A-f*B-pair. If o is the grading
automorphism of, thenf*or = (f*o5, f*oy) is a grading automorphism fgt*E. The operator
f*T is odd for this grading. Let € T'(X, A). Thena o f € I'(Y, f*A). Now Propositiof 3.3.22
says that the pullback of locally compact operators is again locally compact, so

[m(ac f), fT) = [f"(x(a), f*T] = f"[r(a), T] € K (f*E).

Now letb € I'(Y, f*Y). Lete > O andyy € Y. Then we can find am € I'(X,A) and a
neighbourhood” of yy in Y such that|T'|| ||b(v) — a(f(v))|| < eforallv € V. Forallv € V, we
have

lix(®), £, = [x(ao f). FTII = llx®—ao ), fT],|
= |[Fas0 0@) = alr @), Ty
I 1b() — a(f @) <e.

IN

So[n(b), f*T] is locally approximable by locally compact operators, so it is itself locally compact.
Analogously one shows thatb) (Id —f*TQ) is locally compact.

Now leta € I' (G, r5A). Thenao f € T (H, f*r5A) = T'(H, rj,f*A); note thatf*r5 A =
ry [T A. Now

w(ao f) ("B (5 T) =i T) = frm(a@) (™02 (£55T) = 75T

P (s (o011

l})fr * B (f*""EE) = Kr;‘_[f*B (r3f°E).

m

As above, one can extend this to &k I (H, r3, f*A) (instead ofa o f).
Sof*(E,T) € EXn (f*A, f*B). O

The pullback alongf respects the direct sum of cycles, the pushout@nid|[0, 1]) = (f*B)][0, 1]. It
follows that the pullback also respects homotopies. Hence we get the following theorem:

Theorem 3.6.11.The pullback along the strict morphisfn H — G induces a homomorphism
f*: KKg™ (A, B) — KK (f*A, f*B).

It is natural with respect t§-equivariant homomorphisms in both variables.
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3.7 The sufficient condition for homotopy

Let X be a topological space and igtbe a topological groupoid oveX. We now reformulate the
sufficient conditiol for the homotopy 8fKP2"-cycles forG-Banach algebras. The notation
Kloc(r*®, r*®) will be explained in Definitio4. This very general form of the sufficient condi-
tion will become important in the proof of the injectivity part of the generalised Green-Julg Theorem
in Chaptef ¥ and is going to be proved at the end of this section.

Theorem 3.7.1 (Sufficient condition for homotopy ofKK'gm-cycIes). Let A and B be G-Banach
algebras. Le{E,T), (E',T') be elements dEg™™ (A, B). If there is a morphisn® from (E,T) to
(E',T") (with coefficient mapkl 4 andIdg) such that

1. Va e (X, A): [a,(T,T")] = ([a,T], [a,T"]) € K°¢ (D, D),

2.Ya el (X,A): a(T,T')? — 1) = <a(T2 ~1), a(T"? - 1)) € K¢ (3, 3) ,

3. Vael(G,m*A) a ((aL(E’F)s*T, aL(E/’F/)s*T’) — (r*T, T*T/)) € Kl°¢ (7@, r*®) ,

then(E,T) ~ (E',T"). Moreover, ifT = 0 and7” = 0, then the homotopy can be chosen to have
trivial operator as well.

3.7.1 Some notation

Definition 3.7.2 [!°(p,0)). Letp: E — E’ ando: F — F' be contractive continuous fields of
linear maps between u.s.c. fields of Banach spacesX¥verhen a morphism fromp to o is a pair
(T,T") such thafl’ € 1}°¢(E, F) andT’ € L!°¢(E’, F') ando o T = T" o p. The vector space of all
morphisms betweep ando is denoted by[!°¢(p, o). The Banach space of all pairsiit*®(p, o) of
bounded fields of operators will be callédp, o).

Just as in Section 1.9.1 and based on the preceding definition one can define morphisms between
u.s.c. fields of Banach modules and Banach pairs. We make the last definition explicit:

Definition 3.7.3 Q‘gc(q),\ll)). Let+: B — B’ be a continuous field of homomorphisms between
u.s.c. fields of Banach algebras ovér Let®,,: Egp — E5, and¥,,: Fg — FJ, be contractive con-
tinuous fields of concurrent homomorphisms with coefficient mdmetween u.s.c. fields of Banach
pairs overX. Then the vector spadéf;c (®, ¥) of morphisms fromb,;, to ¥, is defined to be the set

of pairs(T,T") such thatl’ € 1)8¢(E, F), T' € 1)8¢(FE', F') satisfying

U>oT” =T70®> and T'<oU¥< =d<oT<.
The Banach spade,, (¢, ¥) is the subspace dffp’c (®, ) of bounded pairs.
Now we proceed in analogy to Section 1]9.2:

Definition 3.7.4 K!°¢(®, ¥)). Let &y: Eg — FEl, and¥y: Fg — Fj, be as above. Then
K\9° (@, W) is the vector space of paitd’,T") € L'3°(E, F) x L'3¢(E’, F’) such that for alk > 0
and allz € X there is a neighbourhootl of z in X, ann € N, {,...,¢s € T'(X, E<) and
ny,...,n, € D(X, F~) such that

<e and

Ty =3 |07 (u) ) (&5 (w)]
=1

- \W(nf(@»@i(&f(@)\“
=1

forallu e U.



3.7. THE SUFFICIENT CONDITION FOR HOMOTOPY 105

If (T,7) € Kig° (@, ¥), thenT € K§°(E, F), T' € KigF(E', F') and(T, T") € L (@, ).

Proposition 3.7.5.Letp: E — E' ando: F — F’ be contractive continuous fields of linear maps
between u.s.c. fields of Banach spaces dvetet(T,T") € 11°¢(p, o). LetY be atopological space
and letp: Y — X be continuous. Thefp*T, p*T") € LI°¢ (p*p, p*o).

This proposition carries over to fields of Banach pairs and also applies to locally compact operators:

Proposition 3.7.6. Let+): B — B’ be a continuous field of homomorphisms between u.s.c. fields
of Banach algebras ovek. Let®,: Ep — Ej, and¥,: ' — Fp, be contractive continuous
fields of concurrent homomorphisms with coefficient mdgetween u.s.c. fields of Banach pairs over
X. LetY be a topological space and lgt Y — X be continuous. If7,7") € ngc (P, ¥), then
(p*T, p*T') € L‘;’fw (p*®, p*¥). Moreover, if(T,T") is locally compact, then so is*(7,7") :=

(p*T, p*T").

Definition 3.7.7 (The claséEga“(go,qp)). Letp: A — A’ andvy: B — B’ be G-equivariant homo-
morphisms ofG-Banach algebras. KKP*"-cycle frome to v is a pair(®: E — E’, (T,T")) such
that £ is a non-degenerate gradéeBanachA-B-pair, E’ is a non-degenerate gradéeBanachA’-
B’-pair, @ is an everg-equivariant homomorphism fromE s to 4 E7;, with coefficient mapsy and

Y and(T,T") € Ly (P, ®) is a pair of odd bounded continuous fields of linear operators such that

1. Va el (X,A): [a,(T,7)] = ([a,T], [poa,T']) € K (®,9),
2.Va el (X,A): a(T,T')? — 1) = (a(T2 — 1), (poa)(T? - 1)) € Ko° (0, ),
3. Yael'(G,r*A): a ((aL(E’F)s*T, ozL(E,’F/)s*T’> — (r*T, T*T’)) € K5, (e, r* @),

The class of all such cycles will be denotedB" (¢, ).

With this notation we can restate Theorem 3.7.%; |fb1q,, is @ morphism between elemerifs, T')
and(E',T") of IEB”(A, B) for G-Banach algebrad and B, then a sufficient condition fofE, T")
and(E’,T") to be homotopic is thab € Eg™ (Id4,1dp).

3.7.2 Mapping cylinders

Mapping cylinders of contractive fields of linear maps between graded-Banach spaces

Definition 3.7.8. Let p: E — E’ be a contractiv&j-equivariant graded continuous field of linear
maps between gradgg@-Banach spaces. Letv{;;' denote the canonical contractigeequivariant
graded continuous field of linear maps frdif{0, 1] to £’ obtained by evaluation at zero as defined in
. Then the mapping cylind@r(p) of p is defined to be the fibre product phndevg':

Z(p) E'[0,1]
[
E E’

p

In particular,Z (p) is a gradedj-Banach space. For alle X, the fibreZ (p), of Z (p) atx isZ (p,).
The sections of. (p) have the forn(¢, {’) whereg is a section o2 and¢’ is a section of2’[0, 1] such
that ({(z), & (z)) € Z(pg), 1.€., pz(£(x)) = &'(2)(0). The grading automorphism & (p) is given
fibrewise.
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Atechnical detail that needs to be checked to make sure that this definition makes sense is that there are
indeed enough such sections, i.e., that condition (C2) is satisfied: Foeal, the set(¢(z), &'(x))
is dense ir¥ (p,) if (¢,&’) runs through the sections defined above. S¢dete’) € Z (p.).
If e, = 0, then we first find a sectio@ of E'[0, 1] such that’(z) is close to¢’. By cutting
¢ down with a functiony e C[0,1] which satisfied) < xy < 1 andy(0) = 0 andx(t) = 1 for
all't € [0,1] outside some small neighbourhood(obne can assume without loss of generality that
¢'(y)(0) = 0 forall y € X. Then(0,¢’) satisfies that0, £')(z) is close to(e,, £.).
Secondly, ife, is arbitrary but¢/.(t) = p.(e,) for all ¢ € [0, 1], then it is rather trivial to find a
section ofZ (p) such that its value at is close to(e,, £).
Combining these two facts one can treat the general case.

Definition 3.7.9 (The mapping cylinder construction as a functor).Letp: E — E’ ando: F —
F’ be contractiveg-equivariant graded continuous fields of linear maps between gigdgahach
spaces. LetT, T") € 1!°¢ (p, o). Define

Z(T,T") = (Z (T2, T})) e x -
ThenZ (T,T") € }°(Z (p), Z (o).

The mapping cylinder construction carries over to gra@dganach algebras;-Banach modules and
G-Banach pairs. We skip most of the details and give an overview:

If »: B — B’is a homomorphism of gradé€itBanach algebras, théh(v)) is a gradedj-Banach
algebra. IfB and B’ are non-degenerate, then s@ig)). The mapping cylinder did  is isomorphic
to B[O, 1].

If ®,: Ep — EJ, is a homomorphism of grade@-Banach modules with coefficient majg
thenZ (®) is a gradedj-BanachZ (¢)-module. If E5 and E’;, are non-degenerate, then sd.igd)
andevo, (Z(®)) = E andevy, (Z(®)) = FE forall ¢t €]0,1]. If ¥: Fg — Fp, is another
homomorphism of grade@d-Banach modules with coefficient mapand(7,7") Llfb’c (®, V), then

Z(T,T') € Lgly, (Z(®), Z(¥)).
The same is true for Banach pairs. The main technical result for Banach pairs is the following:

Proposition 3.7.10.Let ®,: Ep — Ej, and¥,: Fg — Fp, be concurrent homomorphisms of
gradedG-Banach pairs. LetT,7") € Llfp"’ (®, ¥). Then the following are equivalent:

1L (T,T') € K9° (@, 0);

2. Z(T,T') € Kgf)y (Z(®), Z(¥))

Proof. 1. = 2.: By straightforward linearity and continuity arguments it suffices to consider the
case thatT,T") is of the form(T,T") = (|n”){¢<|, ¥~ o> (@< 0 &<|) for n” € T (X, F~)
and¢< e I'(X, E<). Definei”(z) := (7 (x), t — ¥ (n”(z))) € Z(¥>) and£<(z) =
((x), t— ®<(¢<(x))) € Z(Ps) forall z € X. Then we have;” € T'(X, Z(¥~)) and
€< e T'(X, Z(®<)). Just as in the proof of Proposm bn 1.9.31 one can now showztiatT") =
7> )(£<|. SOZ (T, T") is in particular locally compact.

2.= 1.: LetZ (T, T') be locally compact. Let > 0 andxz € X. Find a neighbourhoodf of z in
X and findn € Nand(ny, 7). ..., (n7, n7) € Z(¥~)and(&5, &%) ,. .., (&5, &5) € Z(P<)
such that

<e

Z(T,T), Z\ n (w)s i () ) (& (W), &7 (w) |
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for all w € U. Define

n

(8,8 = (|n7 )(ET|s [0 on7 (@< 0 &5]).

=1
In the proof of 1.9.31 it is shown th&{(7,,T},) — (Su,S.)|| < eforall u € U. Hence(T,T") is
locally compact. O
Mapping cylinders and KKP#"-cycles

Theorem 3.7.11.Lety: A — A’ and+: B — B’ be homomorphisms ¢f-Banach algebras. Let
(®: E — E', (T,T")) be an element dE™ (p,v)). Letia: A — Z(p) be the field of canonical
injections(ta), = ta,: Az — Z () wherezx runs throughX'. Then

G (Z(®), Z(T,T')) € E™ (A, Z(1)).

If we writeev for the canonical homomorphisi()) — B andev; for the homomorphisra (¢) —
B, (b, 5,) — BL(¢) forall t €]0, 1], then

evos (U4 (Z(®), Z(T,T"))) = (E,T)

and
evis (U3 (2 (@), Z(T,T))) = o*(E', T
forall ¢ €]0, 1].

Proof. The operatotZ (7, T") is indeed bounded and odd on the non-degenerate g@diahach
Z (1p)-moduleZ () which carries a left action df (¢). Leta € I'(X, A). Then(ta o a)(z) =
(a(x), t — @g(a(x))) forall z € X. Now

[(a(2), t = r(a(@))yex » Z (T, T)] = Z ([0, T, [poa,T']) € K25 (Z()).

Similarly, (a(z), t — z(a())),cx (Z (T, T")* - 1) is locally compact. Now let, € T' (G, 7*A).
Then for ally € G:

[a <aL(Z(q’>’Z<‘I’>>s* Z(T,T') - Z (T, T’))} i

= o) (vZ(1.T) )~ Z(T.T), )
= a(’y) (Z <7TS("/)77T5/(7)> - Z (Tr('\/)aT,’i(,y))>
= Z(a(V)(Taty) = Tr(y)s Pr(m) (@) (VT 5y — Tvi('y)))

= Z(a(a" BB T — p*T), (¢ o a)(a“FE) g T’ — T*T'))

/N N

v

By definition of EZ™ (¢, ) the pair(a(aL(EﬁE)s*T —7*T), (¢ oa)(a"EF) g7 — r*T’)) is lo-
cally compact, so we are done. O
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The following Proposition is proved just as its analogue 1]9.34 for groups instead of groupoids.

Proposition 3.7.12.Letp: A — A’ andvy: B — B’ be homomorphisms @f-Banach algebras.
Let (®: E — FE’, (T,T')) be an element o}Ega“ (p,9). Write 14 for the canonical “injection”
A — Z (p) andpp 1) for the canonical homomorphis#(y)) — B’[0, 1]. Then

(o). (5 (Z(®), Z(T,T)) € EE" (A, B01]).

This is a homotopy
¢*(Ea T) ~ w*(E/7T,)'

Theorenj 3.7]1 can now be restated as the following corollary:

Corollary 3.7.13. Let A and B beG-Banach algebras antb: £ — E’, (T,T")) € Eg™ (Id4, Idp).
Then(E,T),(E',T') € EF*™ (A, B) and(E,T) ~ (E',T").

3.8 Morita theory

Let G be a topological groupoid oveX. The results and definitions of Section 1.10 all carry over to
the case of-Banach algebras:

3.8.1 Morita equivalences, Morita cycles, Morita morphisms

Definition 3.8.1 (G-equivariant Morita equivalence). Let A and B be G-Banach algebras. &-
equivariant Morita equivalencéetweenA and B is a pair(BEj, AEE) of G-Banach bimodules
endowed with an equivariant continuous field of bilinear map$p: E< x E~ — B and an equiv-
ariant continuous field of bilinear maps-,-): £~ x E< — A such that for alle € X the pair
(Ey, E7) with the brackets-, -) g, and 4 (-, -), is a Morita equivalence betweeh, andB,,.

This notion of Morita equivalence is an equivalence relation on the class of non-degeh&atach
algebras.

Definition 3.8.2 (G-equivariant Morita cycle). Let A and B be non-degeneratg-Banach algebras.
Then agG-equivariant Morita cyclef’ from A to B is a non-degeneratg-BanachA- B-pair F' such
thatT" (X, A) acts onF by locally compact operators, i.e.ify : T' (X, A) — I!8¢(F) is the action of
['(X,A)onF,thenr, (T'(X, A)) C KIS¢(F). The class of all Morita cycles from to B is denoted
by ME™ (A, B).

Just as in the first chapter the Morita cycles are just the trivially grad€bP"-cycles with zero
operator. There are obvious notions of (iso)morphisms between Morita cycles, the sum of Morita
cycles and of the pullback and the pushout of Morita cycles also igtbquivariant setting (com-
pare Definitior) 1.10.13). Hence there is also a canonical notitiwiotopyof G-equivariant Morita
cycles. The homotopy classes @fequivariant Morita cycles are callggequivariant Morita mor-
phisms

Using Propositiof 3.1.59, which says that operators of the fbrm1 are locally compact if" is
and the left action of the second factor is by locally compact operators, one can define the composition
of Morita cycles just as in the first chapter. The composition, the homotopy, the sum, the pullback and
the pushout are all pairwise compatible.

From Exampl¢ 3.1.57 we know thB(X, B) acts by locally compact operators on the standard
BanachB-pair (B, B) if B is non-degenerate. We can therefore make the following definition:
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Definition 3.8.3 (MB”(@, Morgan(cp)). Let A and B be non-degeneratg-Banach algebras and let
¢: A — B be ag-equivariant homomorphism. Thdh X, A) acts onB g from the left viay and
the so-constructed Morita cycle will be denotedMEa“(go) and its homotopy class tMor'gm(cp) or
simply by [¢].

In particular, the standaré&-pair (B, B) is a Morita cycle fromB to B for every non-degenerate
G-Banach algebrd.

Theorem 3.8.4.The non-degeneratg-Banach algebras together with tigeequivariant Morita mor-
phisms form a category (apart from the fact that the classes of morphisms are not sdisjs &
non-degeneratg-Banach algebra, then the identity morphism8is given by the equivalence class
of (B, B).

To prove this one can proceed as in Chapter 1 and show the following lemmas:

Lemma 3.8.5. Let A, B and C' be non-degenerat§-Banach algebrasF ¢ Mga“(A, B) and
¥: B — C ag-equivariant homomorphism. Then

Vu(F) ~n F @p MG ().
Lemma 3.8.6. Let A and B be non-degeneratgé-Banach algebras and’ < Mg‘fm(A, B). Define
the G-BanachA-B-pair AF as (F;Ax, AIF)?) T (cl(F5Ay),cl(AzF})),cx (the sections
TEX
being just the sections d@f that take their values i F’) being aG-BanachA-B-pair. ThenA ® 4
F, AF € Mg (A, B) and
ARp F ~p AF ~n F.
Note that4 ® 4 F' and AF are A-non-degenerate so every Morita morphism is homotopic to a Morita
morphism with non-degenerate left action.

Lemma 3.8.7. Let A, B and C' be non-degenerat§-Banach algebras}t' < Mga“(B,C) and
p: A — B ag-equivariant homomorphism. Then

Mg (p) @p F ~h ¢*(F).

Proposition 3.8.8 (Morita equivalences are Morita morphisms).Let A and B be non-degenerate
G-Banach algebras and Iéf = (E<, E~) be aG-equivariant Morita equivalence betweeénand B.
ThenE, regarded as &-BanachA-B-pair with trivial grading, is inI\\/JIBa“(A, B). Let Morg“m(E)
or [E] denote the Morita morphism associatedAo

Proof. We have to show thdf (X, A) acts onE by locally compact operators. Lete I'(X, A),
zo € X ande > 0. Because thel,,-valued inner product oE;, , Ey; ) is full, we can find an
neNand¢y,..., & e (X, E”)andss, ..., & € T(X, E<) such that

n

a(xg) — ZA (&7 (w0), & (20))

=1

<e/2.

Now z +— 4 (& (), &~ (x)), and hence alse — a(z) — Y1, 4 (&7 (2), &~ (x)), is a section of
A. Because the modulus of sections is upper semi-continuous, we can find a neighbdiirbioag
such thatfja(z) — Y7 4 (€7 (x), & ()] for all z € U. As in the proof of Propositioh 1.10.25
one shows that — 4 (7 (z), &~ (x)) acts onE as the locally compact operatf;” ) (¢~[, so we
can approximate the action afon E by the locally compact operatdr,;" , \§f><§z<\ uptoe onU.
Hence the action of on E is locally compact.
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As in the case for group actions and Banach algebras one proves:

Lemma 3.8.9. Let A, B be non-degeneraté-Banach algebras and lef and £’ be G-equivariant
Morita equivalences betweefand B. Assume thay, 014, : 4E, — aE’'p is a concurrent mor-
phism of Morita equivalences (meaning that it is a equivariant morphism of Morita cycles that also
preserves the left bracket). Then

[E] = [E'] € Mor™(A, B).
Using this lemma the following theorem is straightforward to show, compare Th¢orem 1.10.27.

Theorem 3.8.10.Let A and B be non-degeneratg-Banach algebras and lef be aG-equivariant
Morita equivalence betweed and B. Then theG-equivariant Morita morphismg] is anisomor-
phismwith inverse[E]~! = [ E].

3.8.2 The action of Morita morphisms onKKg**

Definition and Proposition 3.8.11.Let A, B and C' be non-degeneratg-Banach algebras. Let
(E,T) be an element dE*" (A, B) andF an element oM™ (B, C). Then we define

pr(B,T) = (E,T)@p F:=(E®s F, T®1) € Eg"(A,C).
Proof. We have to show thatt), T') ®p F' is indeed inIEgan(A, C). Letma: I'(X,A) — Lp(E)

be the action of’(X, A) on E. Recall from Propositioh 3.1.59 that operators of the form “locally
compact tensor one” are locally compact becdusg, B) acts onF' by locally compact operators.

1. The operatof” ® 1 is odd.
2. Ifa € T(X, A), then[(ma(a) ® 1), T ® 1] = [ra(a), T @1 € K&(E @5 F).
3. IfaeT'(X,A),then

(mala) ®1) (Idpgyr —T? @ 1) = (1ala)(ldp -T?)) ® 1 € K (E®p F).

4. Weuse™ (E®@p F) =r*"EQmpr*F:If a € I'(G, r*A), then

Just a§ 1.10.29 one now proves:
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Definition and Proposition 3.8.12.Let A, B, C' be non-degeneraig-Banach algebras. Then the
productes I_EB?“(A, B) x Mg™™(B,C) — Eg(A, C) is compatible with the respective homotopy
relations, so it lifts to a product

®@p: KKG"(A, B) x Morg™ (B, C) — KK§™ (A, 0).

This action of the Morita morphisms dﬁKga“ is biadditive, associative and compatible with pullback
and pushout (compare Propositjon 1.10.30). We can therefore conclude

Theorem 3.8.13.Let A, B, C be non-degeneraté-Banach algebras and |ef be aG-equivariant
Morita equivalence betweeB and C. Then- ®p [E] is an isomorphism fronKKg"“‘(A, B) to
KK§™ (A, C) with inverse @5 [E].
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Chapter 4

Co(X)-Banach Spaces and Fields ovek

Let X be a locally compact Hausdorff space. In the preceding two chapters we have defined two
different but very similar notions: Thé&)(X)-Banach spaces and the upper semi-continuous fields
of Banach spaces ovef. We have also seen how these notions can be used to define categories of
Banach algebras, Banach modules and Banach pairs, giving two constructiod&§kdf&theory.

The present chapter is dedicated to a comparison of these two points of view.

The central tools are two rather obvious funct@ifsand§: Given a u.s.c. field® of Banach
spaces oveX one can form the&,(X)-modulely (X, E) of sections vanishing at infinity; we call
this module?t (E). On the other hand, & is aCy(X)-Banach space, then there is a straight-forward
notion of a fibre&, overx for every pointz € X, and these fibres give a field of Banach spaces
(Ex)zex Which we call§ (£). It is not hard to check that these funct®$ and § descent to the
categories of Banach algebras, etc., and give homomorphisms on the |&&t-theory (see
Proposition$ 4.7.10 afd 4.7]14).

The compositior§ o M is naturally equivalent to the identity on the category of u.s.c. fields of
Banach spaces ovéf. Unfortunately, the compositidiit o § does not give back the origing (X )-
Banach spaces. We call this composition the Gelfand furétoimhe Cy (X )-Banach spaces which
are “invariant” under® can be characterised: They are the so-called lo@l(yX')-convexCy(X)-
Banach spaces, a notion which is well-known in the Iiterdﬂm discuss this notion here and also in
Appendix A where the hitherto unknown fact is proved that the projective tensor produalgvey
of two such spaces is again locadly( X )-convex.

The main result of this chapter is, as one might have expected, that for |dkgél)-convex
Banach algebras one really can go back and forth between the two definitiBii§"®f-theory (see
TheoreO). This is nebmpletelytrivial because in the definition GKK"*", even for locally
Co(X)-convex Banach algebras, the cycles that turn up do not have to be modeled ondpcal)y
convex Banach spaces.

4.1 The functor 9t: from fields to Cy(X)-Banach spaces
Definition 4.1.1 (The functor ). Let F be a u.s.c. field of Banach spaces oXerThen

M (E) = To(X, E)

1See[[Gie8R] and [KR89b].
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is aCy(X)-Banach space with the pointwise product.Flfis another u.s.c. field of Banach spaces
over X andT is a bounded continuous field of linear maps fréhto F', then the map

M(T) : To(X, E) — Lo(X, F), £ — (x — T(§(2))),
defines an element &) (9 (E) , M (F)) such that|m (T)|| = || 7).

Proof. We show the statement about the norm: Cled#i (7')|| < ||T'||. To see the opposite in-
equality, lete > 0. Then we can find an € X such that|Z,|| > ||T|| — /2. By definition of
the operator norm there is ap € E, such that|e,| < 1 and||T(e;)| > ||T|| — . Since the map
¢ — &(x) is a metric surjection front'y(X, E) to E,, there is art € T'y(X, F) such that|¢|| < 1
and¢{(z) = e,. It follows that

[ ()| = 122 (T) ()N = [[MAT) () ()| = [T (€@ = [Telex)| = [T =2 O

Proposition 4.1.2. 99t is a functor from the category of u.s.c. fields of Banach spaces &vand
bounded continuous fields of linear maps to the categorg,6X )-Banach spaces and bounded
Co(X)-linear maps. It is linear and isometric on the morphism sets and compatible with the ten-
sor products.

Proof. That91 is a functor and linear on the morphism sets is straightforward to show. We already
know that it is isometric. That it is compatible with the tensor products is surprisingly hard to show.
This statement is actually equivalent to the statement, proved in App A.2.4, they(tKe-
tensor product of locallyZ, (X )-convexCy(X)-Banach spaces is again locally( X )-convex. We
show how multiplicativity of the functof)t follows from this fact, using some results and concepts
from AppendiXA:

Let E' andE? be u.s.c. fields of Banach spaces a¥erWe define a natural isomorphiaﬂgﬁﬂg

from M(EY) @) 9 (E2) to M(E* @x E?). Forallg, € To(X, E') and¢, € Iy(X, E?) define

(&, &) (2) = &i(2) © &(o) € B, ® E;

forall z € X. Thenp (&,&) isin Ty (X, E' ®x E?) by definition of the sections o' @y
E?. Moreover, . is a contractive bilinea€y(X)-balanced map froni'y(X, E') x I'o(X, E?) to
Iy (X, E' ®x E?). Hence we have a contractive linear map

4.1)  mP g Do (X, E") @°X) Ty (X, E?) - To(X, E' @x E?), & ® & — p(é, ).
This clearly is a natural transformation. Fibrewise (see $.2.3), this map is an isometric isomor-

phism. In Propositio8 we will meet a criterion which tells us thdfl ., is an isometric

isomorphism if the left-hand sid&, (X, E') @) Ty (X, E?) is a so-called locallyy (X )-convex
Co(X)-Banach space. This notion is defined in 4.4.1, and Thegrem A.2.15 together with Exam-
ple[A.2.4 shows that the left-hand side is indeed loc&llyX )-convex. O

We can exploit the fact thabt is multiplicative, i.e., that it commutes with the tensor product, to
defineMt (1) for bounded continuous fields of multilinear maps. However, it is more natural to
definedt (1) directly.

Definition 4.1.3. Let E', E? andF be u.s.c. fields of Banach spaces o¥eand let;,: E' x y E? —
F be a bounded continuous field of bilinear maps. Then the map

M (p) = M(E') x M (B') = M(F), (&1,&) = (2= po(é(w), &(x))
is Co(X)-bilinear and bounded bjjj||.
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Proposition 4.1.4. Let E', E? and F be u.s.c. fields of Banach spaces oxerand letu: E' x x
E? — F be a bounded continuous field of bilinear maps. If we ideffifyE") ¢, vy M (E?) and
M (E* @x E?), then

M (1) = M(7) : M (EY) @) 9t (B2) — M (F).
Corollary 4.1.5. Associativity of bilinear maps is preserved unégr

A precise statement of how associativity is preserved can be obtained by adopting Proposition 3.3.13
(which says the same for another functor).

4.2 The functor §: from Cy(X)-Banach spaces to fields

4.2.1 Fibres

Definition 4.2.1 (The fibres of aCy (X )-Banach space) Let £ be aCy(X )-Banach space ande X.
Regard’y (X \{z}) as the closed subalgebra®f X ) of functions vanishing at. ThenCy(X \{z})E
is a closed subspace 8f Define the fibre€,, of £ atx to be the quotient Banach space

& = E/ (Co(X \ {z})E).

For alle € £ we will denote bye, the corresponding element of the filsfg The canonical projection
map from& onto&, will be denoted byr¢ or just by, if the spacef is understood.

The construction and the properties of the fibres 6§@X )-Banach space, being a special case of the
restriction of &y (X )-Banach space to a closed subseXofis discussed in Append.l. There the
following propositions and examples are proved, most of them for the restriction on arbitrary closed
subsetd” C X instead of a single point € X.

Example 4.2.2.Let E be a Banach space. Thén= Cy(X, E) is aCy(X)-Banach space arflj = F
forall z € X. The same is true faf’ := Cy(X) @™ E.

Definition and Proposition 4.2.3. Let £ and F be Cy(X)-Banach spaces arid € LX) (g, F).
Then there is a unique linear operafar € L (€,, F,) such that the following diagram is commuta-
tive:

T
Emm—

80

<"

f
&

T,
> F.

8

It satisfies|| T, || < ||T]].

Proposition 4.2.4. The maps — &, andT — T, define a functor from the category 6§(X)-

Banach spaces to the category of Banach spaces, linear and contractive on the morphism sets and
respecting the tensor product. The mags £ — &, define a natural transformation if we consider

the category of Banach spaces as a subcategory of the categ6sy0j-Banach spaces.

Here “respecting the tensor product” means&ilfand &, areCy (X )-Banach spaces, then for every
x € X there is a natural isometric isomorphism

(160M &) =(@E). o ()
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There is also the notion of the fibre of bilinear mapsg:1f€; x €2 — F is aCy(X)-bilinear continuous
map betweert, (X )-Banach spaces, then.: (£1). x (&2). — (F), is a bilinear continuous map
such thafu,((e1)z, (e2)z) = (u(e1,e2)), forall ey € £ andey € &Es.

Proposition 4.2.5. Let£ and F beCy(X)-Banach spaces arifl € LX) (&, F). Letx € X.
1. If T is isometric, then als@}, is isometric.
2. If T'is surjective and a quotient map, then sdls
3. If T has dense image, then so H&s

4. If T'is an isometric isomorphism, then sdlis.

4.2.2 Definition of the functor §

The following lemma is a special case of Lemma A.1.6, the analogous result for the restriction to
closed subsets.

Lemma 4.2.6.Let€ be aCy(X)-Banach space. For everyc X and everye € £, we have
llex|| = inf {||pe]l : ¢ € Co(X)IU C X open: ply=1,0<p<1l,zeU}.
We use this lemma to prove:

Proposition 4.2.7. Let £ be aCy(X)-Banach space. Then for all € £ the functionz — |le,|| is
upper semi-continuous and vanishes at infinity.

Proof. Lete € £.

Upper semi-continuity: Let € X. Lete > 0. By Lemmg 4.2.6 find @ € C.(X) such that)
equals one on a neighbourhobdof = and such that < ¢) < 1 and such thafjie| < |les] + .
Then for everyy € U, we have|e, || < |[¢e]| < |leq| + €.

Behaviour at infinity: Letfx)xca be an approximate unit fafy(X) such that ally, have com-
pact support. Théx,).ca IS also an approximate unit fé. Lete > 0. Find aX € A such that
le — xxell < e. Then for everyr € X \ supp x, we have

(6 - X/\e)ac = €x — X/\(x)em =€y

and hence
ezl = [[(e = xae)zll < lle — xaell <e. O

Definition 4.2.8 (The functor §). Let & be aCy(X)-Banach space. Then
§ (&) == (Ex)aex

is a u.s.c. field of Banach spaces oeif we definel’y := {z — e, : e € £}, noting thatl’, satisfies
(C1) - (C3), and let the sections @f(£) be defined byl'y according to Proposition 3.1.26. f is
anotherCy(X)-Banach space arifl € LX) (£, F), then we define

3<T) = (Tﬂﬂ)l‘EX: (ga:)xEX - (fa:)zeX
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Proposition 4.2.9. (T,).cx is a continuous field of linear maps froj(€) to § (F), bounded by
IIT||. Moreover,§ defines a contractive functor from the categoryCefX )-Banach spaces to the
category of continuous fields of Banach spaces d¥glinear and contractive on the morphism sets
and compatible with the tensor product.

Proof. § (T) is certainly a family of linear maps froi (£) to § (F), bounded byl|T’||. To see that
§ (T) is continuous we can appeal to Proposifion 3]1.30 which says that it suffices that a total subset
of the sections off (£) is mapped to the sections §f(F). We check that for alk € £ the family
(ex)zex is taken to some section §f(F); indeed(F (T') o (ex)zex)(x) = Ty(es) = (T'(e)), for all
x € X, so we get something IH(X, F).

Compatibility with the tensor product: Let! and €2 be Co(X)-Banach spaces. We define a
natural isometric isomorphism, ., from § (£1) @x § (€2) to § (€' %) £2). Forallz € X,
letmy, ., denote the natural isomorphism fra &7 to (€1 @@ €2),.. If ¢! € €' ande® € €2,

then this isomorphism by definition sends © e2 to (e! ® e2),. Consider the family

(4.2) mgl’y = (mgl’SQJ)xEX.

Itis a family of isometric isomorphisms frof (£!) @ x § (£2) to § (&1 %X £2). Itis continuous
because it sends — el ® €2 to z — (e! ® €2), which is an element df (X, § (£ @@ £2)).
O]

Bilinear maps

Definition 4.2.10. Let &;, & and F be Cy(X)-Banach spaces. Let € M%(X) (g, &: F) be a
continuousCy (X )-bilinear map. Defing (1) := (tz)zex, Wherep,: (£1)z X (E2)y — Fo. We
have||u,|| < ||x]]. ThenF (u) is a continuous field of bilinear m@ﬁom&(&) Xx & (&2) 10§ (F)
, bounded byj| ]|

Proof. For allz € X, we have||uz| < ||x]|, s0F (1) is bounded byj|u||. Lete; € £ andes € &s.
Then¢: z — ((e1)s, (e2):) is @ section of the internal produgt(&:1) x x § (&2), and it suffices to
checks (u) o & € I' (X, § (F)) for such a sectioq. We have

(& (1) 0 &) () = § (1) ((e1)e, (€2)) = pler, €2)a
forallz € X,s0F (1) o & = gr(uler,e2)) € To (X, T (F)). O

Proposition 4.2.11.Let &y, & and F beCy(X)-Banach spaces. Let € MC(X) (£, &; F). Then
under the identificatioF (£1) x x § (£2) = § (£1 ®°X) &) we have

—

where i and § (1) are the linearisations of. and § (1), respectively, i.e., the following diagram
commutes

~

F (&1 @90 &) 5 (&1) @x § (&)

3 (F)

*See Definition 3.1.34.
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Proof. Lete; € &1, e5 € & andx € X. We trace the elemerié; ® ez), through the above triangle.
It is mapped tqu(e; ® e2), by § (&) and it corresponds t(e;), ® (ez2), in the upper right corner.
This element is also mapped i@ ((e1); ® (e2)z) = u(er ® e2)z. O

Corollary 4.2.12. Associativity of bilinear maps is preserved unger

4.3 The compositions of§ and 2t (and the Gelfand functor)

431 Whatisg (I (E))?

Theorem 4.3.1.The functorE — §F (9t (E)) is equivalent to the identity functor on the category of
u.s.c. fields of Banach spaces; the natural isomorphism between these functors is linear and isometric
and compatible with the tensor product.

Proof. The definition of the transformation: Let E be a u.s.c. field of Banach spaces oxer We
show that for allz € X the mapev,: I'o(X,E) — E,, £ — &(x) induces an isometric isomor-
phismJE: 9 (E), — E, and that(JZ),cx is an isometric continuous field of isomorphisms from
S (M (E)) onto E.

That ev, is a metric surjection follows from Lemnia 3.1]25. Its kernel is givenChyX \
{0}H)T'o(X, E): This set is certainly contained in the kernel. On the other hand, the kernel is a non-
degenerat€)(X \ {0})-module, so every element of the kernel can be factorized into an element of
Co(X \ {0}) and an element of the kernel. So it is obviously containath{X \ {0})I'o(X, E).

J¥ is hence a family of isometric linear isomorphisms¢ IE T'y(X, E), then we have to check
that ({,).ex, as a section ir§ (M (E)), is mapped to a section df. Indeedev,({) = &(x) and
henceJZ(¢,) = &(x) for all z € X. In other words(¢,).cx is mapped td&, soJ¥ is a continuous
field of linear maps.

Naturality: To see thaiZ — J¥ is natural letF and F' be u.s.c. fields of Banach spaces o¥er
and letT’ be a bounded continuous field of continuous linear maps fbta F'. Then§ (M (7)),
sendst, € I'o(X, E)zt0 (T o&), € I'o(X, F), forallz € X and{ € Ty (X, E). But then

T, (JF (&) = Tu(é(x)) = (T o &)(x) = JL (T o&)s) = J& (F(OM(T)) (&)

soT o JE = JF o F (O (T)). HenceJ is natural.

Compatibility with the tensor product: We show that the following diagram commutes for all
u.s.c. fields of Banach spacgs and £, over X:

F(OM(E1)) @x F (M (Bs)) —=F (M (By) @0 90 (By)) — F (M (E1 @x E))
JE1®JE2 JE19E;y

E1 ®x Fo E1®x Fo
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In the fibre overr € X this means

M(Er), @ M (Er), —> (M (E1) @) M (By)) ——= M (E1 ©x Ea),

By _ E E1®F

El,:): X E2,x — El,:r X EQ,m
This diagram is commutative: & € I'o(X, E1) and&, € Iy (X, E»), then

(1) © (&2)e — (1 @ &2), — (¥ — &1(y) @ &2(Y)),

TP ek I8

1(z) @ &a(x) - &1(z) ® &)

4.3.2 Whatisin (3 (£))?

Definition 4.3.2 (The Gelfand functor). Define the functo® := 9t o §, which is called th&elfand
functor.

There is a natural transformation from the identity functor on the catego€y(df )-Banach spaces
to the Gelfand functor. It is defined as follows:

Definition 4.3.3 (The Gelfand transformation). For all Cy(X )-Banach space$ define a mage
fromEto &(E) by ge(e) = (ex)zex forall e € £. We will call this map theGelfand transformation
of £.

Proposition 4.3.4 (Properties of the Gelfand transformation).g is a natural transformation from
the identity functor ta®; it is linear and contractive and compatible with the tensor product. More-
over, for allCy(X)-Banach space§ the spaces (&) is dense ins (&) so®(€) can be considered to
be the Hausdorff-completion &fwith respect to the semi-noren— sup,¢ x ||ex||-

Proof. First of all, g¢ is surely an element df%(X) (&, &(&)) of norm< 1.

1. g is a natural transformation: If F is anotheiCy(X)-Banach space arifl € L) (g, F),
then for alle € &:

&(T) (ge(e)) = M(F(T)) (ex)aoex = (Taea)oex = (T(€)z)zex = g7 (T'(€)),
SOg is a natural transformation.

2. (&) is a completion ofé€:

We have to show thdt, (X, § (£)) is a completion ofy := {ge(e) : e € £} inthe sup-norm.
Now Ty (X, §(€)) is a Banach space containifig, so we just have to check that this subspace
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is dense for the sup-norm. Lete Ty (X, § (£)). Without loss of generality let have compact
support. Let > 0. For allz € X we can find a neighbourhodd, of x in X and ane® € &
such that|gs (e®)(y) — &(y)|| < e forall y € U,. Now the supporfs of ¢ is compact. Hence
we can find a finite se§ C K such thatk’ C |J,.q Us. Find a continuous partition of unity
(ps)ses on K in X subordinate to the covét/;)scs. Define

ni=Y_ @gr () = gr(pse’) € To.

SES SES

Then|l¢ — 7l <e.

g is compatible with the tensor product: Let £' and&£? beCy (X )-Banach spaces. We define
a natural isometric isomorphism?l <2 making the following diagram commutative:

Id(EY) @C(X) 1d(£2) = Id(E' @(X) £2)

91 ®gg2 Ielge2

®
Mel g2

&(&h) %) ¢(£2)

& (£ @) £2)
It is given as the composition

mg%’gg = m <m§1’82> o m%jggl),g(gz),

where the natural isomorphism

W) 5 M (S (£1) @0 M (F(£7)) — M (3 (£1) @x §(£7))
is defined in Equatio.l) in the proof of Proposi.1.2 mﬁql e2t F(EYH ox F(E?) —
F(E! @C(X) £2) is defined in[(4.R) in the proof of Propositipn 4[2.9.
Leté! € £ andé? € €2 Thengei (¢1): o +— &L is an element o8 (E1) = M (F (£')) and
ge2(€2): 2 — 2isin®(£2) = M (§ (£?)). The mapn%’gglm(gg) sendge: (€') ® ge2 (£2)
toz — ¢ @ &2 AndM(m, ) sendsy — ¢l @ 2 toz — (¢! @ £2), which happens to be
geigez (£ ® €%). Together, this means

m?1752 (ggl (fl) ®ggQ (52)) = geige? (61 X 62) .

Since the set of all elements of the foma (¢!) ® ge2 (¢?) spans a dense subset of the tensor
product® (1) @%X) & (£2), we can conclude that the above square commutes. [

The following example shows, in a rather dramatic case,&hiatnot isomorphic to the identity, i.e.,
thatg and9)t are not inverses of each other.

Example 4.3.5.Let X be the unitinterval0, 1] and€ := L'(X, C, \), where) denotes the Lebesgue
measure ofD, 1]. Then€ is aCy(X)-Banach space with th& (X )-module action given by pointwise
multiplication. Nowé&,, = 0 for all z € [0, 1] and henceb(€) = 0 andge = 0, so in particulafg is
not an isomorphism.
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Proof. Let f be anL!-function on[0,1]. In order to showf, = 0 it suffices to consider the case
that f is bounded since the bound&d-functions are dense ih!. W..o.g. let f be bounded by
1. Lete > 0. Find an open neighbourhodd of x with measure less then Find a continuous
function x € C|0, 1] such thaty(z) = 1,0 < x < 1 andx = 0 outsideU. Thenf, = (xf). and
Ixfll; = f[o,u IxX(t)f(t)] dt < ||x1]| <e. So|fz| < eforalle > 0and hencef, = 0. O

4.4 Locally Cy(X)-convexCy(X)-Banach spaces

The following notion is discussed extensively in Apperjd]x A.

Definition 4.4.1 (Locally Co (X )-convex). Let £ be aCy(X )-Banach space. Thehis calledlocally
Co(X)-convexf |le|| = sup,cx ||| forall e € &, i.e., if the Gelfand transformation is isometric.

In [DG83], Theorem 2.5., it is shown thétis locally Cy(X)-convex if and only if

Vxi, x2 € Co(X), x1,x2 > 0, x1 + x2 < 1 Ve, ep € £ ||x1e2 + x2e2|| < max{|lei]|, |[e2]l}

which justifies the name.

For all Cy(X)-Banach spaces, locally Cy(X)-convex or not, the&,(X)-Banach space(€) is
locally Cy(X)-convex, and applying the Gelfand functor twice does not change anything anymore. So
we can regard the Gelfand functor as a projection functor to the subcategory of @gally-convex
Co(X)-Banach spaces (a so-called reflector).

This shows that the category of locally;(X )-convexCy(X)-Banach spaces is isomorphic to
the category of u.s.c. fields of Banach spaces over the locally compact HausdorfP§jaith the
bounded continuous fields of linear maps as morphisms).

Closed subspaceguotientsandfinite productsof locally Cy(X )-convexCy(X )-Banach spaces
are again locallyCy (X )-convex. The same is true for tiil (X )-tensor productbut this seems to
be much harder to prove (see Appendix A for the details). Note that it follows that the balanced
Co(X)-tensor product of locallg, (X )-convexCy (X )-Banach modules is also localf (X )-convex
because it is a quotient of tilg (X )-tensor product.

It is worth mentioning that theumof locally Cy(X')-convex spaces needs not be locally X )-
convex. However, the Gelfand functor applied to the ordinary sum of two lo€all) )-convex
Co(X)-Banach spaces is the (abstract) sum in the category of lo€glly )-convexCy (X )-Banach
spaces. This just means switching to an equivalent norm:

Definition 4.4.2 (The locallyCy (X )-convex sum).Let & and&; be locallyCy(X)-convexCy(X )-
Banach spaces. Then we define theally Cy(X)-convex sunt; @l &, of & and&, to be the
ordinary sum€; @ &; of Cy(X)-Banach spaces with the new norm

I(e1 e)l == sup ([[(er) |l + [[(e2)zl)
zeX

forall (e1,e2) € &1 @ &s.

We also adjust the definition of the unitalisation of# X )-Banach algebra to the localt(X)-
convex setting:

Definition 4.4.3 (The locally Cy (X )-convex unitalisation). Let 5 be a locallyCy(.X)-convexG-
Co(X)-Banach algebra. Then we define theally Cy (X )-convex unitalisationf 5 to beBa'¢Cy(X)
which is a fibrewise unital, locallg, (X )-convexG-Cy(X )-Banach algebra in a canonical way.

In the following we are going to take the locallyy( X )-convex unitalisation whenever it is necessary
without further mentioning it.



122 CHAPTER 4. Cy(X)-BANACH SPACES AND FIELDS OVER X

4.5 Group actions and gradings

As gradings can be regarded as a special case of group actions, we wont discuss gradings explic-
itly; it is obvious that gradings of fields of Banach spaces and gradindg(of)-Banach spaces are
interchanged by the functofsand1.

Let G be a locally compact Hausdorff group acting continuouslyXanLet G x X be the trans-
formation groupoid (see Definitidn 6.1.3). We iderffif x X with G x X in such a way that
rawx(9,%) = x, saux(g,z) = g 'z and(g,z)(¢,2') = (g9¢’, ) for all (¢g,2), (¢',2') € G x X
such that’ = g~ '2. We writer ands for rgw x andsgy x, respectively.

4.5.1 Group actions andt

Definition and Proposition 4.5.1. Let £ be aGG x X-Banach space (being in particular a u.s.c. field
of Banach spaces ovéf) with actiona: s*E — r*E. Forallg € Gand all¢ € M (E) =Ty(X, E)
define

(9€)(2) = [ao (€0 8)] (g,2) = agmélg~'z), z€X.

Thengé € M(E) = I'y(X, E) andg — ¢¢ is continuous for alk € T'y(X, E). This defines the
structure of a3-Cy(X )-Banach space dit (E).

Proof. g¢isinT'g(X, E): Letg € G and¢ € T'y(X, E). The continuous map,: X — Gx X, z —
(9, ) satisfies o g, = Idx. Now{os € I'(G x X, s*E) and hencevo ((os) e I'(G x X, r*E).
Sogé = [ao(§os) oy, € I'(X, pr*E) = T'(X, E). Itis easy to see thg vanishes at infinity,
i.e., thatg€ € I'o(X, E) = M (E).

g — g¢& defines an action ofG: Let¢ € T'y(X, E) andg andh be elements ofs. Then

9(h&)(@) = (g ((B)(97'2)) = g (A(ng-10)6(h g )
= ga)hg-é((97)7'2) = ann€((gh) " z) = ((gh)€)()

forall x € X. Moreoveregé = €.

The action is continuous:We havex o (o s) € I'y (G x X, r*E). Moreover, ify € Cy (G), then it
is easy to see that- a o (£os) € Iy (G x X, r*E). So by Lemm@ 4.5|% — x(g)g¢ is continuous
with values inl'o (X, E). Since this is true for alf € Cy(G), also the mag — ¢¢ is continuous.
Compatibility with the Co(X)-action: Let x € Co(X), g € G andé € I'y(X, E). Then

l9(xO)(@) = (g [(XE) (9™ )] = x(97 ') (9€) (2)

forallz € X, sog(x¢) = (9x)(9¢)- =

By elementary means one can show:

Lemma 4.5.2. LetY and Y’ be locally compact Hausdorff spaces andgetY x Y’ — Y and
p':Y x Y’ — Y’ be the canonical projections. Léf be a u.s.c. field of Banach spaces over
Y’. Thenp™E is a u.s.c. field of Banach spaces o¥rx Y’. Letn be a selection op/*FE.
Thenn € Ty (Y x Y, p”E) if and only ifn,: v — n(y,y’)isinTy(Y',E) forall y € Y and
yr—ny € Co(Y, To(Y',E)). Moreover,y — (y — n,) is an isometric linear isomorphism from
Lo (Y xY', p*E)t0Cy (Y, Ty (Y', E)).

3There is another, equivalent way to ideniffy< X andG x X which differs from our convention by the homeomorphism
Gx X — GxX, (g9,z) — (9,9~ z); for technical reasons we prefer our identification.
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Proposition 4.5.3. Let £ and F' be G x X-Banach spaces and 1&t: £ — F be a bounded equiv-
ariant continuous field of linear maps. ThéR (T) : M (E) — M (F) is G-equivariant for the
G-actions ort (E) andt (F') defined above.

Proof. Write « and for theG x X -actions onE and onF’, respectively. Lef € MM (E) =Ty(X, E)
andg € G. Then

[T (9)] (2) = Tu((98)(@)) = Tu ( ( 0€(972)) = Biga) (Ty-12€(97 )
= Bl (M(T) ()97 2)) = (9(M(T) (€))) ()
forallz € X, soM (T') (¢¢) = g(M(T) (¢))-

Similarly one proves thabt (n) is G-equivariant if is a boundedr x X -equivariant continuous field
of bilinear maps. Moreover, if; andE, areG x X -Banach spaces and if we identif§ (E;) @0 (X)
M (E-) andM (E; @x E9), then theG-action coming from thé& x X -action onE; @ x E, and the
tensor product of the actions @ (£;) andt (E>) agree. In other wordsht is compatible with
equivariant tensor products.

Hencedn (T') is G-equivariant. O

4.5.2 Group actions andy

Definition and Proposition 4.5.4. Let £ be aG-Cy(X )-Banach space. Then we define an action of
the groupoidG' x X on the u.s.c. field of Banach spacgés) = (&), as follows: Ifg € G,
thene — ge is not aCy(X)-linear map from& to &, butCO(X)—Iinear “with a twist”: It maps the

fibre £y 2) = £4-1, iIsometrically and isomorphically to the fibée , ,) = &.. Letqa, ,) denote this
isomorphism front, .y = £;-1, t0 &,y 2) = &, for everyz € X. Thena is a continuous action of
Gx Xong(€E).

Proof. « is a continuous field of linear maps froms*§ (£) to r*§ (£): Lete € £. Thenx — e, is
by definition a section of (£). Hence(g, ¥) — ey(y.2) = €41, iS @ section ok*F (£). This section
is mapped byx to the sectior{g, z) — (ge). of r*F (£). Soa maps a total set of sections to sections,
S0 it is continuous.
aisanaction ofGx X: Letg, h € G andx € X. Then(h,x) and(g, h~1x) are (typical) composable
elements ofy x X. If e € £, then

A ha) (g n-12)(€g-1(h-12))) = ¥(nz) (9€)n-12) = (h(ge))z = ((hg)€)z = A(ngw)€(hg)~1x
SO0Q(h2) (g, 12) = A(ng,)» @Nda is hence an action @& x X ong (£). O
Proposition 4.5.5. Let £ and F be G-Cy(X)-Banach spaces and &t € L&) (&, F) be G-
equivariant. Therg (T') : §(£) — § (F) is G x X-equivariant.

Proof. Let a andj denote the x X-actions or§ (£) andg (F), respectively. Lefg, z) € G x X
ande € £. Then

§(Driga) (Agnesioa) = Te((ge)e) = (T(ge))e = (9(Te))a
= Biow) (T€)s(g0) = Big.) (T(g)es(9)) -
This means§ (1), ) © A(gx) = B(g.0)8 () 54,1 IN Other words (T) is G x X-equivariant. [

Similarly one shows the§ (u) is G x X—equwarlant forG-equivariant bounde@, (X )-bilinear maps
u. Moreover§ (1) is compatible with the equivariant tensor product.
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4.5.3 Group actions and®

Proposition 4.5.6.Let& be aG-Cy(X )-Banach space. Then the Gelfand funeidakese to a locally
Co(X)-convexG-Cy(X )-Banach space&(€). The Gelfand transformatioge is G-equivariant.

Proof. Let « denote the induced action 6f x X onF (£). We have to proof thé&-equivariance of
the Gelfand transformation. Lete £ andg € G. Thenay ) eq4.2) = (g€) forall z € X by
definition. Hence

r(g,®)

(g9e(e)) () = (g (ge(e) (97 2)) = g (eg-12) = (g€), = ge(ge) (x)

forallx € X, sog (ge(e)) = ge(ge), andge is henceG-equivariant. O

4.6 Algebras, modules and pairs and the functorg, 2t and &

Becausélt, § and® are compatible with the (graded equivariant) tensor products we get functors on
the “derived” categories of Banach algebras, Banach modules and Banach pairs. They map operators
to operators and homomorphisms with coefficient map to homomorphisms with coefficient maps. We
omit the details of all these definitions and just give some models and highlights.

4.6.1 The functordn

Definition 4.6.1. Let B be a u.s.c. field of Banach algebras ovérwith multiplication . Then
M (B) =T'o(X, B) is a locallyCy (X )-convexCy (X )-Banach algebra when equipped with the mul-
tiplication Mt (1). If B is non-degenerate, then s (B). If B is carries an action ai x X, then

M (B) is aG-Cy(X)-Banach algebra. Moreoven; is a functor from the> x X-Banach algebras to
the locallyCy (X )-convexG-Cy(X )-Banach algebras.

Proposition 4.6.2. Let B be aG x X-Banach algebraF aright G x X-BanachB-module andF’ a
left G x X-BanachB-module. Then

C ~
M (E) @) M (F) =M (B @p F).

Proof. Define
p: M(E) x M(F) = M(E@p F), (§n1)— (2 @) @n(z)).
This map is well-definedC-bilinear, Cy (X )-bilinear and contractive. Moreover, if € 9 (B) =
I'o(X,B), £ € M(F) andn € M (F), then
(&0, n) (x) = (£8)(x) @ n(z) = (£(z) B(z)) @ n(x) = £(x) ® (B(x)n(x)) = p (&, Bn) (z)

forall z € X. Sop is M (B)-balanced. Hence it induces a linear and contractive map

fi: M (E) @) M(F) — M(E@p F).

Becausént (E) and9t (F') are both locallyCy (X )-convex, so is thei€, (X )-tensor product; because
the balanced’, (X )-tensor product is a quotient of thig (X )-tensor product, it is locallyZy(X)-
convex as well. We can therefore check thas an isomorphism by checking it on the fibres. Let

x € X. Then the fibre ot (E) ®§§zg)) M (F) atz is isomorphic t (E), ®gpp), M(F), =
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E, ®p, F, which happens to be the fibre 9k (F ®p F) atz. The isometric isomorphism on the
fibre overz is induced by and thusi is an isometric isomorphism.
We now check thafi is alsoG-equivariant by checking thatis G-equivariant. Writex” anda’”
for the actions ofZ x X on E and F, respectively. Ley € G, ¢ € Ty(X, E) andn € T'y(X, F).
Then
(g6, gn) () = (96)(@) @ (gn)(@) = [af) (g™ 0)] @ [af] (s ™')

= (" ®a") (€T 2) @nlg )] = [g (u(& )] (x)
forall z € X, i.e.,u(g€, gn) = gu(&,n). Sou andj areG-equivariant. O
Lemma 4.6.3. Let B be aG x X-Banach algebra. Thefit(B) = M (B) & Co(X).

Proposition 4.6.4.Let B and B’ be G x X-Banach algebras ané’ a right G'x X-BanachB-module.
Lety: B — B’ be an equivariant field of homomorphisms. Then

M (1), (M(E)) = M(E) gpepy M(B) = ME @5 B') = M(4u(E)),

canonically.

4.6.2 The functorg

Definition 4.6.5. Let B be aCy(X)-Banach algebra with multiplicatiom. ThenF (B) is a u.s.c. field
of Banach algebras oveY when equipped with the multiplicatiodi (1) = (¢z),cx- If B is non-
degenerate, then so §(B). If B is a G-Cy(X)-Banach algebra, thegi(B) is aG x X-Banach
algebra. Moreovef§ is a functor from the=-Cy(.X )-Banach algebras to th& x X-Banach algebras.

Proposition 4.6.6. Let B be aG-Cy(X )-Banach algebra and lef be a right G-Co (X )-BanachB-
module andF a left G-Cy (X )-Banach5-module. Then

3(&) o3 §(F) = §(£ap™ F).

—

Lemma 4.6.7. Let B be aG-Cy(X)-Banach algebra. Thef (B & Co(X)) = § (B).

Proposition 4.6.8.Let 5 and B’ be G-Cy (X )-Banach algebras and I&t be a rightG-Cy (X )-Banach
B-module. Let): B — B’ be aG-equivariantCy(X)-linear homomorphism. Then

§(¥), (5 (E)) =3 (¢«(E)),

canonically.

4.6.3 The functor®

Definition 4.6.9. Let B be aCy (X )-Banach algebra with multiplication. Then®(B) is a locally
Co(X)-convexCy(X)-Banach algebra when equipped with the multiplicaté®(). If B is non-
degenerate, then so®&(B). If B is aG-Cy(X )-Banach algebra, then sod&(3). The mapgz is a
(graded G-equivariant) homomorphism froifi to &(3) with dense image. Moreoves is a functor
from the graded>-Cy(X)-Banach algebras to the graded locally X )-convex G-Cy(X )-Banach
algebras.
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Definition 4.6.10. Let .A and B be graded>-Cy(X )-Banach algebras and I€&t = (£<,£~) be a
gradedG-Cy(X)-BanachA-B-pair. Then®(&) = (&(E<), &(E~)) is a graded locallyCy(X)-
convexG-Co(X)-Banach®(A)-&(B)-pair. The pair{ge<, ge>) is a a gradedr-equivariant concur-
rentCo (X )-linear homomorphism frori to & (&) with coefficient mapg 4 andgp.

Proposition 4.6.11. Let B be a gradedG-Cy(X )-Banach algebra and lef be a graded rightG-
Co(X)-BanachB-module andF a graded left5-Cy (X )-BanachB-module. Then

B(E) Do) O(F) = @(5 ay ) F).

Lemma 4.6.12.1f B is a gradedG-Cy (X )-Banach algebra, the® (B & Co(X)) = &(B) @ Cy(X).

Proposition 4.6.13. Let B and B’ be G-Cy(X)-Banach algebras and lef be a graded rightG-
Co(X)-BanachB-module. Let): B — B’ be an everz-equivariantCy (X )-linear homomorphism.
Then

&), (6(E)) = 6(4.(E)),

canonically.

4.7 KKPa» RKKP™ and the functors9t, § and &

4.7.1 Compact operators on fields of Banach pairs
Let B be a u.s.c. field of Banach algebras over the locally compact Hausdorff Zpace

Definition 4.7.1 (Compact operators).Let £ and F' be BanachB-pairs. A continuous field" of
B-linear operators is callecbmpactf for all ¢ > 0 there is am € Nand{;y,...,&y € To(X, EX)
andny,...,n; € I'o(X, F~) such that

<e.

-3 e

The compact operators frofi to F' are denoted bX 5 (E, F).

7, - 3 7 @) @)

= sup
zeX

Note that the sections are taken to be vanishing at infinity. This means tiias dompact, then
(IIT%]|)zex is also vanishing at infinity. It follows th& z(E, F') C Lg(E, F) andKg(E, F) is the
closed linear span ihp(FE, F') of all operators of the forn’m>><§<]. In particular, Kp(E, F) is a
Banach space.

We will now justify the choice of the name “locally compact operator”:

Proposition 4.7.2 (Characterisation of locally compact operators)Let F and ' be BanachB-
pairs and letT" be a continuous field aB-linear operators fromE' to F'. Then the following are
equivalent:

1. Tis locally compact.

2. For all compact subset®” of X and alle > 0 thereis amn € Nand{;, ..., &5 € I'(X, E<)
andny,...,n; € I(X,F~)suchthat|T, — 31, |n7 (k) (&~ (k)||| < e forall k € K.

3. Forallz € X and alle > 0 there is an open neighbourhoad of x and a compact operator
S € Kg(E, F) such that|T,, — S,|| < eforallu e U.
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4. For all compact subset8® C X and alle > 0 there is a operatorlS € Kg(F, F') such that
|Tx — Sk|| <eforall k € K.

5. Forall ¢ € C.(X) the fieldpT is compact.

Proof. Assume that 1. holds. Lét C X be a compact subset. Let> 0. Forallz € X, findU,, n,,

a1 bom, ED(X, ES)andn, ... 15, € (X, F~)asin the definition of local compactness
forT. Then{U, : = € K} is an open cover of{ so we can find a finite subset of K such that
K C U,ea Ua- Find a partition of unity(x,).c4 0N K subordinate to the cove&t/,).c4. Then for
allk € K:

Na

Ty — Z Xa(k) Z
acA =1

nza(k)) (50|

<e.

This shows 1= 2..
The same argument shows=3.4.. SinceX is locally compact the implications 2> 1. and 4=
3. are trivial. Moreover, it is clear that 4. implies 2. and 3. implies 1.. Cutting down the sections used
in the approximation in 2. easily shows=2. 4.. So the first four conditions are mutually equivalent.
It is straightforward to show 4= 5. (note that ifS is compact, therpS is also compact for all
¢ € Ce(X)). O

Proposition 4.7.3. Let £ and F' be BanachB-pairs and let7: E — F be a continuous field of
operators. Thefl" is compact if and only i" is locally compact and: — ||T,|| vanishes at infinity.

Proof. Let T be compact. Itis clear from the definitions thats locally compact. Moreover we have
already noted that — ||7;|| vanishes at infinity.

Conversely, lefl” be locally compact and let — ||T;|| vanish at infinity. Letz > 0. Find a
compact setX C X such that|7,|| < e forall z ¢ K. Find a functiony € C.(X) such that
0 < x < 1landy = 1onK. Find a compact operatst € Kg(E, F) such that|T; — S;|| < « for
all I € supp x (using the above characterisation of local compactness). ThetjBlso(xS);|| < e
forall I € suppy andT, = (pS), = 0 for all ¢ supp ¢. Hence||T — ¢S|| < e. SoT can be
approximated by compact operators and is therefore compact. O

Lemma 4.7.4.Let £, E, and E3 be BanachB-pairs. Then we haveg(Es, E3) o Kp(E1, E2) C
KB(El, Eg) andKB(Eg, Eg) ¢} LB(El, EQ) - KB(El, E3)

Proof. The compaosition of a compact operator and a bounded linear operator is surely locally compact
and vanishes at infinity. Hence it is compact. One can also easily prove this by direct calculation.

In the definition ofKKP2"-cycles in the setting of fields of Banach space (Defini.5.2) we have
used locally compact operators. If the underlying sp&ds locally compact Hausdorff, then we can
actually use compact operators instead. More precisely, we have the following characterisation of
KKPba-cycles:

Proposition 4.7.5. Let G be a locally compact Hausdorff groupoid ov&r and let A and B be G-
Banach algebras. Then a paj#, T') such that¥ is a non-degenerate grad&s A- B-bimodule and
T is an odd element diz(E) is a KKP*"-cycle fromA to B, i.e., an element dEga“(A, B), if and
only if

(ma(a),T], wa(a) (Id =T?) € Kp(E)
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forall a € T'o(X, A) and
m(a) (aL(E)(s*T) - T*T) € Kp (r'E)

foralla € Ty (G,7*A).

Proof. If (E,T) is a KKP*-cycle, then we know thaltr4(a), T is locally compact for alla €
['(X, A). In particular this is true it. € T'o(X, A). SinceT is bounded and — |74 (a).| vanishes
at infinity alsox — [m4(a),T], vanishes at infinity. Sér4(a),T] is compact. The same argument
works for the other operators which have to be shown to be compact. O

4.7.2 KKbPa RKK"™ and the functor Ot

Proposition 4.7.6. Let B be a u.s.c. field of Banach algebras and fetand F' be BanachB-pairs.
Letés e Tg(X, E<)andn” € T'o(X, F~). Then

M (|n”)(&=)) = &)~ € Koy (M(E), M(F)).
It follows that, ifS € Kg(E, F'), thenM (S) € Koy(p) (M (E), M (F)).

Definition and Proposition 4.7.7 (it and KK""-cycles). Let A andB beG x X-Banach algebras.
Let(E,T) € E22ny (A, B). Then

M(E,T):=(M(E), M(T)) € EF"(Co(X); M(A), M(B)).

Proof. First of all9t (E) is a graded non-degenerateCy (X )-Banacht (A)-9t (B)-pair. The op-
eratordt (T') is odd. Ifa € M (A) = Ty(X, A), then

[Tan(ay (@), M(T)] = [M (a(a)), M(T)] =M ([ra(a),T]) € Koncm) (M(E)).
Similarly mop 4)(a) (zm (T)? — 1) is compact. What is left to check is that

g — mon(a)(a) (¢M(T') — M(T))

is a continuous map frorG into Koy p) (M (£)). Define as above,: X — G x X, z +— (g, )
for all g € G. Then a short calculation shows thgt (') = M(z — (O‘L(E)(S*T))@g(m)) =

M (0} (MB)(s*T))) wherea(®) denotes the isomorphism frobff%; (s* E) to L% (r* F) induced
by the action of x X on E (recall thatr: G x X — X, (g,z) — zands: G x X — X, (g,z) —
g~ 'z). It follows that

Ton(ay(a) (g9 (T) —M(T)) = M (gp; (777-*,4((1 or) (OéL(E)(S*T) _ r*T))) .
Because by assumption- 4 (a o r) (o E)(s*T) — r*T) € K% (r*E), we have
902 (ﬂg(a or) (aL(E)(s*T) — T*T)) € KI;’;CT*B (wgr*E) .

Because o ¢, = Idx, we haveKlggr*B («p;r*E) = KI9¢ (E). Because: vanishes at infinity, we
thus havep;; (z(aor) (¥ B)(s*T) — r*T)) € Kp(E). It follows that

m ((p; (WA(a or) (aL(E)(s*T) - r*T))) € Koppy (M (E))
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forall g € G. For allx € Co(G), we haveyr j(a o 7) (aVB)(s*T) — 1*T) € K,+p (r*E). By
Lemma[4.7.B it follows thay — x(g)¢} (7 z(a o) (aXB)(s*T) —r*T)) is in Co (G, Kp(E)).
Hence alsq — ¢} (7 5(a o r) (5 (s*T) — r*T)) is continuous. This implies that also

g—M (cp; (WA((Z or) (aL(E)(s*T) — r*T)))
is continuous. O

Using Lemma 4.5]2 one can show:

Lemma 4.7.8. Let Y and Y’ be locally compact Hausdorff spaces andpetY x Y’ — Y’ be
the canonical projection onto the second component. Bdie a u.s.c. field of Banach algebras
overY’ and let E and F' be BanachB-pairs. Thenp*E is a Banachp™ B-pair. LetT be in
Ly« (p™E, p*F). ThenT is compact if and only if for aly € Y the fieldT, := (T{, )

isinKg(E, F)andy — T, isinCy (Y, Kg(E, F)).

y ey’

Lemma 4.7.9. Let A be aG x X-Banach algebra. Theft (A4) [0, 1] is isomorphic tdt (A[0, 1]).
Proof. The isomorphism is
®: M (A)[0,1] = M(A[0,1]), § = (z — (t — (£(1))(2))).-

This is a bijection by the definition afl[0, 1]. It is obviously isometric and(X)-linear. What is
left to check is that it ig7-equivariant. Letv denote the action af x X on A. If £ € M (A) [0, 1],
g€ G,z e X,andt € [0,1], then

(@(9€)(2))(2) ie® ((96)(1)(x)
def. G—action:onSm(A) [0,1] (g(f(t)))(:b)
def. G-actio:n ont (A) O g0) [(g(t))(g_l:rﬂ
deL. Ay [(PE) (g7 2))(1))]

def. G x X-action onA[0, 1]

def. G x X-action ont (A[0, 1])

So® is G-equivariant. O

Because the functdpt is compatible with the pushout — at least up to a delicate point where it comes
to comparing the locallg, (X )-convex unitalisation and the ordinary unitalisation which we will just
leave aside — the functdpt also respects homotopy. So it lifts froRKP2"-cycles to the level of
KK-theory:

Proposition 4.7.10.Let A and B be G x X-Banach algebras. Thet¥, 7)) — 9 (E,T) lifts to a
group homomorphism

M: KKED (A, B) — RKKX™ (Co(X); M (A), M(B)).

To show that)t is a group homomorphism we have to check that it is compatible with direct sum.
This is the case at least up to equivalence of norms, so it is true up to homotopy which is certainly
sufficient for our purposes.
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4.7.3 KKP»» RKK"™ and the functor §

Proposition 4.7.11.Let B be aCy(X)-Banach algebra and lef and F be Cy(X)-BanachB-pairs.
Then for alle< € £< and f~ € F~, we have

(e =lem ) @mer] € Kyp E(E).3(F)-
It follows that, ifS € K (€, F), then§ (S) € Kg) (5 (£),3 (F)).
Definition and Proposition 4.7.12. Let A and B be G-Cy(X)-Banach algebras. L&t€,7) €
EPA1 (Co(X); A, B). Then
FET):=@E),F(T) € Eg&ix @A, I(B)).

Proof. First note thaf (£) is a graded non-degenerdtex X-Banach§ (A)-5 (B)-pair andg (T) is
an odd and bounded continuous field of operatorg ¢fi). Leta € A. Theng4(a) = (az)zex iSin
I'o (X, 3 (A)) and the set of sections of this form is dense. Now

[04(a), S (D)), = laz, T:] = § ([a, T]),
forall z € X, so[g4(a), (T)] = & (Ja, T) is compact. Similarlyg 4(a)(F (T)* — 1) can be shown
to be compact. Becausgg has dense image, this is true for all sectians I'y(X, A).
Let x € Co(G). Theny - (ga(a) or) € Ty (G x X, r*F (A)) and the span of such sections is
dense iy (G x X, r*§ (A)). A short calculation shows that
Stgw = (X (@a(@) o7) - (" (5 (1) =15 (1)) =5 (x(g)a (979"~ T)),

(9,2)
forall (g,2) € G x X. This implies thaty — [z +— S(,,] is in Co (G, Kgz) (3 (£))). Now
Lemm implies thaltS(g,.)) (, . x 1S COMPACt. O

Lemma 4.7.13.Let B be aG-Cy(X)-Banach algebra. The§ (5) [0, 1] is isomorphic ta§ (B]0, 1]).
Proof. The isomorphism i$¥,).cx: § (B[0,1]) — F (B) [0, 1] with
Wy: §(B0,1]), — §(B),[0,1], Bz = (t = S(t))

forall z € X (whereg € B[0,1] = C([0, 1], B)). For allz € X, the map¥,, is well-defined, linear, a
quotient map and injective (and hence an isomorphigims continuous because it takes— (g, to
z— (t— B(t)s) € To(X,F (B)[0,1]) for all 3 € B[0,1] (use Lemma 4.5]2).

Now we check tha¥ is G x X -equivariant. Letv anda’ denote the actions @f x X on§ (B) and
§ (BJ0, 1]), respectively. Ther|0, 1] denotes the action @F x X ong (B) [0, 1]. Let(g,z) € Gx X
andg € BJ[0,1]. Then

00 Uom [a()] LY al0, 1 (e B0))
def. [0, 1] (t = (g0 B(t))
def.a (t = (9(B(1)))gz)
det-Gracton oS0y s ((98) (1)) ge)
def. Uy ((98)g2)
def. o/ U, (o/(g’x) (ﬂx))

SoV is equivariant. O
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Because the funct@ is compatible with the pushout, it is also compatible with the homotopy relation.
As it is also compatible with the direct sum we get the following result.

Proposition 4.7.14. Let A and B be G-Cy(X )-Banach algebras. Thef€,T") — § (£,T) lifts to a
group homomorphism

F: RKKg™ (Co(X); A, B) — KKgilx (3 (A), 3 (B)).

4.7.4 KKba RKK"* and the functor &

Lemma 4.7.15.Let A and B be G x X-Banach algebras. Then eve(¥,T) € EX% (4, B) is
isomorphic toF (9 (E,T)). It follows that

KKMIy (A, B) = KKEI (§(M(4)), §(ON(B))).

Lemma 4.7.16. Let B be aCy(X)-Banach algebra and lef and F be Cy(X)-BanachB-modules.
Lete< € £<andf~ € F~. Then

&(|f7)(eS]) = |ar>(f7)){ge<(e5)| € Kgn) (B(E), 6(F)).

Proposition 4.7.17.Let 5 be aCy (X )-Banach algebra and lef and F beCy (X )-Banachi3-modules.
If S € Kp (€, F), then®(S) € Kgp) (B(E), &(F)). Moreover, we have

(S, 8(5) € Kige 97)-
Lemma 4.7.18.Let A and B be G-Co (X )-Banach algebras ant€, T') € E2* (Co(X); A, B). Then
(ge: € = 6(6), (T.6(T)) € EG"(Co(X): g4, 95)-

Proof. We already know thag¢ is a graded>-equivariantCy(X )-linear concurrent homomorphism
from £ to &(&) with coefficient mapg 4 andgs. Becausgye< andge> are natural transformations
we can deduce thafs intertwinesT and&(T"), both being odd bounded (X )-linear operators. If
a € A, then

[a, (T, 6(T))] = [(w(a),7(ga(a))), (T,&(T))]
= [(n(a),&(n(a))), (T, &(T))] = ([a,T], &(la, T1)) € K(ge,0¢)-

—~

Similarly one shows that
a((T,8(T))* 1) € K(ge ge) -
Forallg € G, we have
a(g(T,&(T)) — (T,8(T))) = (a(gT = T), &(a(gT - T))) € K(ge,8¢),
and this expression depends continuously;on O

Lemma 4.7.19. Let A and B be locally Cy(X)-convexG-Cy(X )-Banach algebras and&,T) €
EPA1 (Co(X); A, B). If we identify® (.A) and A as well as$(B) and B, then

(ge: £ = B(E), (T,6(T))) € EG"(Co(X); Idy, 1dp)
and (&, T) is homotopic tq&(€) , &(T)) in E2* (Co(X); A, B).
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Theorem 4.7.20.Let A and B be G x X-Banach algebras. Thelt is an isomorphism
KKty (A, B) = RKK&™ (Co(X); To(X, A), To(X, B))
with inverseg.

Proof. We already know tha§ o 91 is the identity onKKP, (4, B). We have to show that
the Gelfand functor is the identity cRKK™ (Co(X); M (A), M (B)). Now A := M (A) =
I'o(X, A) andB := M (B) = I'((X, B) are locallyCy(X)-convex. If(€,T) € EX™ (Co(X); A, B),

then it is homotopic t@ (&, T') by Lemmd 4.7.19. S@ is surjective orRKK™ (Co(X); A, B). Be-
cause®(B) [0,1] = &(BJ0,1]) and the Gelfand functor commutes with the pushout, we also have
that two locally Co(X)-convex elements oER* (Co(X);.A, B) which are homotopic can also be
connected via a locallg, (X )-convex homotopy. This means that the Gelfand functor is also injec-
tive. O

In other words: In the definition cRKK"" for locally Co(X)-convex Banach algebras one can
assume without loss of generality that all cycles are log@JlyX )-convex.

4.8 Kg(F)as ag-Banach algebra

In this section, leB be a u.s.c. field of Banach algebras oxeand letE and F' be BanachB-pairs.

4.8.1 Kg(E,F)asaCy(X)-Banach space

Lemma 4.8.1. Forall T € Kg(E,F) andy € Cy(X), we havep - T' € Kp(E, F). Moreover,
Kp(E, F) is a non-degenerate Banach(X)-module, i.e., it is &, (X )-Banach space.

Proof. SinceKg(FE, F) is a left Banach. g (F')-module and’, (X ) can be mapped homomorphically
into Lz (F") as multiplication operators, it follows thBiz (£, F') is a left Banaclt, (X )-module (with
the pointwise product). One can easily show that the elemeiidg;0F, F') with compact support are
dense inKp(F, F'). HenceK g (E, F') is a non-degenerat® (X )-module. O

The preceding lemma makes it possible to speak of the fibré&ss0F, F') as aCy(X)-Banach
space. An immediate conjecture is that the fibr&ef(E, F') atz € X isKp, (E;, F;). Thisis true
for Hilbert modules and Galgebras, but it ifalsefor general Banach pairs as the following example
shows. More precisely, we are going to present a counterexample for the following two statements
which hold true for Hilbert modules:

1. ForallT € Kg(FE, F) the functionz — ||T;|| is upper semi-continuous.
2. Forallz € X the evaluation map induces an isomorphigty (£, F)), = Kp, (Ey, Fy).

Example 4.8.2.Let X = N = NU{oo} and letB be the constant field of Banach spaces ovavith
fiore C. The left and right parts of and F’ are also constant fields ovB; namelyE<, F< andF~
with fibre C, and E~ with constant fibre:s(N). The action ofB on E and F' are the obvious ones.
The bracket orF’ is the zero-bracket.

For alln € N define the map

(-, n: Cxcp(N) = C, (M x)— (N, T)p := Axp.
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Define
(-,%00: Cxc(N) = C, (\,z) — (A, )00 :=0.

All these maps ar€-bilinear. Moreover, the family(-, -)..),, i iS @ continuous field of bilinear maps
on E< xx E~. To show this, let\™), g be an element of (N, E<) and let(z"), 5 be an
element of”’ (N, E~). We have to show that the sequerid&z! ), cn converges to zero.

Lete > 0. Because\>*z> € ¢o(N), we can find an\/ € N such thatA\*z°| < ¢/2 for
all m > M. Becauser” — z* in ¢o(N) and\” — \*° in C, we can find anV € N such that
APz — A"z < e/2foralln > N. Letn > max{M, N}. Then

A2 < APz 4 APz — A" < e/2 + /2.

Note that forA € C the map(},-),, is of norm|)| for all n € N and of norm0 if n = oc.
In particular, the family((1, -)),,c5 iS not upper semi-continuous in norm. But this family can be
written as the right part of a compact fi€ldof operators iz (F, F'), namely as§1><1\>, wherel
is a short-hand notation for the constant functiombwith value 1. Because the inner productfof
is zero, the left-hand part df is zero. So the norm-function &f is given by the norm-function of
the right-hand part. So in this particular cae= |1)(1| € Kp(E, F), but the norm function o is
not upper semi-continuous.

The spac&K p__ (Fw, Fio) is zero, because the involved inner products vanish. However, the fibre
Kp(F, F) does not vanish, because the fibre of the elerfiéint co has non-zero norm, namely
limsup,,_,, [|Tx| = 1.

This example should make it possible to construct two homotopiBEBF=-cycles which cannot be
linked in any obvious way, showing that the homotopy relatior&°*"-cycles is not transitive and
we thus have to take equivalence relation generated by homotopy instead.

Although we do not know the fibres &z (FE, F') exactly we nevertheless know thag (F, F)
as aCy(X)-Banach space is not too bad:

Proposition 4.8.3. K (E, F) is a locallyCy (X )-convexCy (X )-Banach space. In particulak g (E)
is a locallyCy (X )-convexCy (X )-Banach algebra.

Proof. LetT = (T,).cx be anelementdiz(E, F). If 7, denotes the quotient map frafs (E, F)
to its fibre atz € X, then
|2 (T = limsup [T ]| .
y—x

It follows thatsup,c x [|7(T)| = ||| O

4.8.2 The pullback ofKz(F, F') along an (open) continuous map

Lemma 4.8.4.For all z € X, letv, denote the canonical map frokz(E, F), to Kp, (Em,Fx)ﬂ
Let Y be a locally compact Hausdorff space and tetY — X be continuous. For alll’ €
I'(Y, p*§ (Kp(E, F))), let

U(T)y = by (T(Y) € Kp,, (Epgy)s Fyy))

forally € Y. Then¥(T) € K‘;{% (p*E, p*F). The map¥ isC(Y)-linear. If T is bounded, then so
is (7)) with [|T(T)|| < ||T||. If T vanishes at infinity, then so do@§7") and is hence compact.

4, is continuous with nornk 1 and has dense image; however, we know that it need not be injective (see Exam-

ple[4.8.2).
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Proof. To check that the may is well-defined we first approximafg locally in the following way:

Lety € Y ande > 0. By the definition of the sections of the pullbagks (Kz(F, F')) we can
approximatel’ neary by the product of the pullback of a section®{K (£, F)) and a continuous
function of Y. We can even assume that both, the section and the function, have compact support.
Using the Gelfand transformation for tidg(X )-Banach spac&z(F, F') we can then assume that
the section comes from an elementlog (E, F'). More precisely: We can find a compact operator
S € Kg(F, F) and a functiony € C.(Y') such thaD < x < 1 andy = 1 on a neighbourhood of
and such thall x (T — gk (.7 (S) o p)|| <e.

What is¥ (x(gk(g,r)(S) o p))? We have

‘I’(X(QK(E,F)(S) Op))y = X(y)%(y) (GK(E,F)(S)(p(Z/))) = X(y)Sp(y)

forally € Y. In other words: W (x(gx(g,7)(S) o p)) = x p*S, sO¥(x(gk(k,F)(S) o p)) is, in
particular, a continuous field of linear operators. Ng is locally compact a$'is (locally) compact
(see PropositioZ), and henkgy (gi (g, ) (S) o p)) is compact.

Let us check thav(T') really is a continuous field of linear operators: lsgt € T'(Y, p*E~).
Now ||¥(xT)” 0 &~ — (x p*S)” 0 &7 < e; becauséx p*S)~ o £~ is a section for ally € C.(Y),
alsoW(T)~ o £~ is a section op* I~ (use Property (C4) of the definition of a u.s.c. field). Similarly
one shows tha¥ (T")< sends sections to sections. Herod") € LI;’*CB (p*E, p*F).

To see thatl(T') is compact note thatx¥(71") — xp*S|| < &, so¥(T) can be approximated
neary by compact operators, henggT") is compact neag. On the other hand\¥(7"), | — 0 for
y — 00, S0 (T) is compact. O

Proposition 4.8.5.LetY, pand ¥ be as in Lemmia 4.§.4. Then the imag&etY, p*F (Kg(E, F)))
underV¥ is dense ik, (p*E, p*F). If p is open, thenl is isometric on the sections vanishing at
infinity and we hence haveG(Y')-linear isometric isomorphism

Lo (Y, p*8 (KB(E, F))) = Kpp (°E, p'F)
and aC(Y)-linear bijection
L (Y, p'8 (Kp(E, F))) = Kp% (0", p°F).

Proof. ¥ has dense image: Let € I'.(Y,p*E<) andn” € ['.(Y,p*F~). It suffices to check that
\n>><§<\ can be approximated by elements in the imag& ofMoreover, it suffices to check this
when¢< is of the form /(&5 o p) with X' € C.(Y) and{; € T'.(X, E<) andn” is of the form
X" (ng o p) with x” € C.(Y) andng € I'e(X, F>). Butin this caseS := |5 ) (&5 | € Kp(E, F)
andx'x"(gx (&, r) (S) o p) do the job:¥ (x'X" (gk(z,r)(S) o p)) = X'X"p*S.

Now assume thap is open. We show that for al' € I' (Y, p*§ (Kp(E, F))) and ally € Y
we have|| ¥ (1|}, , = [IT'(y) . This shows tha is isometric on the sections vanishing at infinity
(even on the bounded sections) and that (the unrestridgtésia bijection.

LetT € T' (Y, p*§ (Kp(E, F))) andy € Y. As above, findS € Kp(E, F') andx € C.(Y) such
that0 < x < 1 andy = 1 on a neighbourhood aof and such thall x (T — gk g, r)(S) o p)|| < e.
Then

[Tk (m,7) (S) 0P, = 1P"S iy u 15 1 i ()
lox(z,m ()W) = || (xoxz.r)(S) o p))||-
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The equality(x) follows from the fact thap is open. We have

1Y (D) i,y — 1T ()l \ < ‘IIX\II(T)Hhm’y — I ¥ (oK .5 (S) op)Hhmyy‘
| @a () o W) = INTWI| < < +e.

Sincees was arbitrary, we havg¥ (7') = ||T(y)||forally € Y. O

Hlim,y

Note that the proposition says in particular that the fibrEpfp (p*E, p*F) aty € Y is isometrically
isomorphic to the fibre oK g (E, F') atp(y) (if p is open).

Corollary 4.8.6. If p = Id x, then the mag gives aCy(X)-linear isometric isomorphism
Io (X, §(Kp(E,F))) =Kp (E, F)
(namely the inverse of the Gelfand transform) ar@ & )-linear bijection

I'(X, §(Kp(E,F)) =K (E, F).

4.8.3 Is§ (Kp(FE, F)) ag-Banach space?

In this subsection, leB be aG-Banach algebra and It and F' be G-BanachB-pairs. Leta?, o
andaf’ denote theg-actions onB, E and F, respectively. Note that we already have an “action”
of G onKp(E, F), namely the isomorphism®X(Z:F): Klo%, (s*E, s*F) — K% (m*E, r*F) de-

fined in Propositiof 3.4.25. The restriction clearly is an isometric isomorpKism (s*E, s*F) —

K.« (r*E, r*F). If s andr areopenmaps, then we can identify these spaces (regarded as fields of
Banach spaces) with'§ (K (E, F')) andr*§ (Kp(E, F)), respectively, and can used it to define an
action ong (Kp(E, F)):

Definition and Proposition 4.8.7. Let G haveopenrange and source maps. L&} denote the iso-
metric isomorphisni’y (G, s*§ (Kp(E, F))) — Ksp (s*E, s*F) and definel,. analogously. Then
there is a unique continuous field of linear maps

oSKED) . % (Kp(E, F)) — r*F (Kp(E, F))
such that the following diagram is commutative

Tro oS K(E.F)) o

Lo (G, s"5 (Kp(E, F))) Lo (G, 3 (Kp(E, F)))

QK(B,F)

Kgp (s*E, s*F) Ky« (rE, r*F)

It is an isometric continuous field of isomorphisms.

Proof. The mapW¥! o oX(E:F) o W, from Ty (G, s*F (Kp(E, F))) to Ty (G, r*F (Kp(E, F))) is
an isometricCy(G)-linear isomorphism. It therefore comes from an isometric continuous field of
isomorphisms from*§ (Kz(E, F)) to r*F (Kp(F, F)) which we callaSK ), O

Conjecture 4.8.8. Let G have open range and source maps. Th&K(Z:F) js an action ofg on
§ (Kp(E, F)).
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We already know thatr := oS5K(E:F) s an isometric continuous field of isomorphisms. It
remains to show the (algebraic) identity o .,y = a for all 7,7’ € G such thats(y) = r(v').
This looks fairly innocent, and if it is true, then the proof is probably rather simple. Nevertheless,
this question remains open for now, and fortunately, the result is not needed for other parts of this
thesis; however, it would make some constructions more systematic, in particular Suljsection 5.2.7:
The convolution with fields of compact operators would then be closer to the ordinary convolution
product. Note that the conjecture implies in particular &K z(E)) is aG-Banach algebra because
the “action” ofG is clearly compatible with the composition.



Chapter 5

The Descent

The descent for locally compact Hausdorff groupaidand for G-C*-algebras was first considered
in [LG94]; the descent foGg-Banach algebras was introduced in_[Laf06] in Section 1.3, being a
homomorphism

ja: KK§"(A,B) — KK"™(A(G, A), A(G, B)),

whereA and B areG-Banach algebras andi(G, A) and.A(G, B) are completions of .(G, r*A) and

I'.(G, r*B), respectively, for semi-norms which are induced by an unconditional comﬂeﬁ@)

of C.(G). In the present chapter, we improve this homomorphism a little bit, showing that it is indeed
a homomorphism

JA: KKgan(Av B) - RKKban(CO(X/g); A(gvA)v A(g7B))

Note that we assume in this chapter that the topologx @6 is locally compact Hausdorff whenever

we want to take the extré,(X/G)-structure into account. This is automatidifis proper. We try

to give a rather detailed and systematic treatment of the descent, and this means in particular that we
follow two rules:

1. We standardise the formulae for the convolution product; this is done by always using the pull-
back along the range map instead of sometimes pulling back along the source map, i.e., we use
alwaysI'.(G, r*E) instead of'.(G, s*E). The resultis that we can always work with the same
convolution formula[(5]2). Note that we therefore arrive at a definition of the descent which is
slightly different from but equivalent to the one in [Laf06].

2. We try to prove as much as possible on the level of sections with compact support. Most of the
definitions make sense already on this level, and algebraic questions and questions concerning
the density of certain subsets can be settled in this framework. After forming the (unconditional)
completions the corresponding questions can then easily be answered in the setting of Banach
algebras.

The last part of the chapter deals with the question what happens if we change the underlying groupoid.
Later on we will discuss this question in the framework of generalised morphisms of gr(ﬁlpnids

for now we confine ourselves to the case of moving to a subgroupoid of a special kind; actually, this
case will later turn out to be rather close to the general case of (Morita) equivalent groupoids.

lsee Definitiol.

>See Chaptdi|6, in particular Subsecfion §.6.4.
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5.1 Convolution and sections with compact support

A topological groupoidj is called locally compact ifj is locally compact as a topological space,
i.e., every point inG has a compact neighbourhood. In this thesis we will assume that our locally
compact groupoids are Hausdorff; in this case it is quite trivial g8k is closed, locally compact
and Hausdorff3)

Definition 5.1.1 (Haar system).Let G be a locally compact Hausdorff groupoid. A left Haar system
A on g is a faithful continuous fie@l(/\g)geg(o) of measures og overG(® with coefficient map-
such that

61 Wegvee@): [ wmNOE) = [ a0y
~'eGr(M) ~'eGs()

Note that such a Haar system need not exisfi i§ a locally compact Hausdorff groupoid admitting
a Haar system, then it follows from Lemina BJ2.4 that its range and source maps are open.

For the rest of this section, It be a locally compact Hausdorff groupoid with left Haar system
Write X for the unit spac&(©).

5.1.1 Bilinear maps and the convolution product

Definition and Proposition 5.1.2. Let 1, E> and F' be G-Banach spac@Letu: By xx By — F
be a continuous field of bilinear maps (so that (E1), x (E), — F, forallz € X = G(0). We
define

2 HEn )00 = /g,m ey (6100), 7 (€2(3719) ) OO ()

forall & € T.(G,r*Ey), & € To(G,r*Ey) andy' € G. Thenpu(&,&) is in T'w(G,r*F) and
(&1,&2) — u(&1, &) defines a separately continuous bilinear map which is non-degeneyats if
non-degenerate.

If w is written as a product, then we simply wrge x & for p(&1,&2). If pis written as a bracket

(-,-) then we write(&1, &) for (&1, &2).

The proof of 5.1.R is a refined version of the proof of Proposition 7.11 in [LG94]; this proposition
states that the above formula makes sense: floeing the multiplication of &-C*-algebra. We are
not only interested in the fact tha(¢;, &) is a well-defined element df.(G,r*F’), but also in the
continuity and non-degeneracy of the product of sections, and therefore we have to work a little more.
In [LafO6] the general Definition 5.1).2 is not stated and the special cases given there are not proved
explicitly, although some variant of the proof given here is certainly in the background.

Our proof rests on the following lemma which is proved in Appendi¥ C.1.

Lemma5.1.3.Let¢; € I'(G, r*Ey) and&, € T'(G, r* E2) be sections (with arbitrary support). Then

1(61,2)(7,7) = te(y) (£1(7), ay(&2(7)))

3As shown in[[Tu04], Proposition 2.5, the unit spag€’ of a locally compact (possibly non-Hausdorff)is locally
closed inG and hence locally compact as well.

‘See Definitioml.

5Fczr)the definition and some of the basic properties, it suffices to assunié,thatd F" are u.s.c. fields of Banach spaces
overG\,
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isinT(G?), wir*F), wherer; : G — G is the projection onto the first coordinate. The myas

bilinear and jointly continuous for uniform convergence on compact subsets. The suppt,ah)

is contained insupp &1 x supp &2, SO if&; and & have compact support, so has their product. On

the sections with compact suppoft,is separately continuous. Ji is hon-degenerate, them is
non-degenerate in two senses: Firstly, it sends the product of two total subsets to a total subset, and
secondly, the s€E := {ji(£1,&) : & € T'e(G,r*E;)} spans a subset df.(G?), 71 F) which is

dense for the inductive limit topology.

Proof of(5.1.2. First define the ma@: G ,, G — G® =G x,, G, (v,7) — (7,7 '9'). Thisis a
homeomorphism. Let; andp, denote the projections 6f+,. .G onto the first and second component,
respectively. Them; o ® = p; (quite trivially), and we hav@*(7ir*F) = pir*F = pir*F. The
map® therefore induces an isomorphism

TGP, 71" F) = To (G %0 G, por*F)
which sends someto (v,7) — n(v,v~1v'). In particular, it sends ouyi(¢y, &) to

(7:7") = ) (£2(7), ay (E2(v719)) -

Note that this is the integrand in the convolution formula and a section of compact support.

Now we define a suitable continuous field of measureggnG. Consider the map, : G, ,G —
G. lts fibres are of the form, ' ({v'}) = {(7,7) : v € G,7(v) = r(')} for eachy’ € G. These
fibres are homeomorphic © "), so we can put the measuk&(™”) on them. Technically, we are
forming the pullback* X by r of the continuous field of measuraon G with coefficient map- (see
Definition[B.2.8):

(G, N) = (G #rr G. TN)

X =g - g

By Propositio{ B.3]l we can deduce théi mapsl'.(G *,, G, p3r*F) to (G, r*F), and this
map is onto since is faithful and so is*\. The composition ofi, the isomorphism induced bl
andr* X is our convolution producf¢;, &2) — u(&1,&2), which is therefore well-defined, separately
continuous and non-degenerate ifs non-degenerate. O

By direct calculation of the involved integrals one can prove:

Proposition 5.1.4 (Preservation of associativity)Let Fy, E», E3, I}, F5, and G be G-Banach
spaces. Le,ltblt Fixx FEy — Fl,,ugi Eoxx FEy — Fo,v: i1 xx E3 — Gandwvy: By xx Fy — G
be continuous fields of bilinear maps. Assume that the following associativity law holds:

(1) ((11) (€1, €2), €3) = (v2)z(e1, (12)z(e2,e3))

forall z € X =GO, e; € (E1)y, €2 € (E2)s, andes € (E3),. If, in addition, u; is G-equivariant,
then the same associativity law holds on the level of sections with compact support:

v1(p1(61,&2), &3) = va(&r, pa(ée, &3))

forall &, € T'o(G,r*Eq), & € (G, r*Ey), andés € T'.(G, r* E3).
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5.1.2 Linear maps

Definition and Proposition 5.1.5. Let £ and F' be G-Banach spaces aril a continuous field of
linear maps between them. Then— (v — 7,,){(v)) defines a continuous linear map, we call it
Tx-orle(G,r*T), fromL.(G,r*E)to (G, r*F).

The notatioril” « - for the linear map defined [n 5.1.5 is justified by the following consideration:
If one thinks ofT' = (T})) ) as a kind of distribution og which assigns to every € () = X
the operatofl;, with mass 1 and zero to all other elementg/pthen the convolution produdt « £ for
¢ eT'.(G,r*F) can be calculated as

(T+&)(v) = /gm) Ty'E (v 1) AN ) ()

where the integrand is zero fof # r(v). If v/ = (), then the integrand (and hence the integral)
gives(T' * ) () = T,(,)§(7) as desired.

Now the questions arises what happens if welletct on the right ony, a phenomenon which
must be discussed because we are going to meet this situation when considering the left-hand side of
a Banach pair. In this case we can formally calculate

(ExT)(v) = /g o EV Ty, AN D).

Now the integrand vanishesif # -, whereas the casg¢ = v yields (£ « T)(v) = £(7)7Ts(y)-

To further evaluate this, it would be desirable to translateGkaction onE into an action on the
right. However, we just translate the right actionTfack into a left action to geg « T)(y) =
(V5] €(7) = 7 [Ts() (v €(7))]- Of course, this only makes sensgificts onE and F' (instead

of E and F" just being continuous fields ovéf?) as above). As a conclusion, we have the following
proposition:

Definition and Proposition 5.1.6. Let £ and F' be G-Banach spaces arild a bounded continuous
field of linear maps between them. Thénr— ~ [TS(V) (fy—lg(fy))] defines a continuous linear map,
which we denote by« T', fromI'.(G,7*E) to'.(G, r*F'). Note thatl'«- = -« T'if T'is G-equivariant.

The interplay of linear and bilinear maps and the descent procedure can be summarized in the follow-
ing general proposition. It can be proved by direct calculation.

Proposition 5.1.7 (Linear and bilinear maps). Let E1, Es, F, E}, E} and F’ be G-Banach spaces.
LetS;: E; — E!fori =1,2andT: F — F’ be continuous fields of linear maps. Let E; x x
E, — Fandy': E] xx EY — F' be continuous fields of bilinear maps. Assume that

@ o(S1xx S9)=Topu.
1. If S, is G-equivariant, then
' (S1% &1, &% S2) =T * p (&, &2)
forall & € T'.(G,r*Ey) andés € T'o(G, r*Es).
2. If the linear mapS; and the bilinear mapg andy’ are G-equivariant, then
p(S1x &1, §ax S2) = p (6, &)+ T
forall &, € T'o(G,r*Eq) andés € T'o(G, r*Es).
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5.1.3 Banach algebras, modules and pairs

We have seen above how one can lift fields of bilinear maps to bilinear maps between the respective
spaces of sections of compact support. This applies in particular to the multiplicatipahach
algebras and the other fields of bilinear maps that appear in the definit@Bahach modules and
G-Banach pairs. In the preceding paragraph we have discussed the interplay of the lifts of linear and
bilinear maps. We now apply these considerations to homomorphisms befisRanach algebras,
G-Banach modules etc.

Banach algebras and Banach modules
As a special case pf5.1.2 we obtain the following result:

Proposition 5.1.8. Let B be aG-Banach algebra. Theh.(G,r*B) is an associative algebra with
the convolution product

(61 % &)(Y) = /g L, &0 Ay (v)
forall v € G, &,& € T'.(G,r*B). If B is non-degenerate, then the linear spanlpfG, r*B) x*
I'.(G,r*B)is denseil.(G,r*B) for the inductive limit topology.

We can lift homomorphism af-Banach algebras:

Proposition 5.1.9. Let B and C be G-Banach algebras and lep denote aG-equivariant field of
homomorphisms between them. Thegg, r*¢) is a continuous homomorphism of algebras from
.G, r*B)toT'.(G, r*C).

Proof. Use the first part of Propositign 5.1.7 with = E, = F = B, E| = E}, = F' = C,
S1 = S =T = p andu andy’ being the multiplication of3 andC, respectively. O

What we have done fa§-Banach algebras also appliesieéBanach modules (and equivariant homo-
morphism between them):

Proposition 5.1.10.Let B be aG-Banach algebra and’ a right G-BanachB-module. Then the right
module action o3 on E gives rise to a right module action of the algelitg G, r*B) onT'.(G, r*E).

If the action of B on E is non-degenerate, then the linear spai’ofG, »*F) = '.(G,r*B) is dense
inT'.(G,r*E) for the inductive limit topology.

Proposition 5.1.11. Let B and B’ be G-Banach algebras and lep denote aG-equivariant field
of homomorphisms between them. Eebe a rightG-BanachB-module and letF’ be a rightG-
BanachB’-module. Le® be aG-equivariant homomorphism frofi to £’ with coefficient mapp.
ThenT'.(G, r*®) is a continuous homomorphism of modules fioG, »*E) to T'.(G, r*E’) with
coefficient mafg'.(G, r*¢).

Proof. Use the first part of Propositign 5.1.7 with, = FF = F, F, = B, E} = F' = E', B} =
B',S =T = ®,85 = ¢, andu andy’ being the module action aB on E and of B’ on E’,
respectively. O
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Not only equivariant homomorphisms lift to the level of sections of compact support, but also linear
operators. Note that we do not require the linear operators to be equivariant. This makes it necessary
to discuss left and right modules separately:

Proposition 5.1.12.Let B be aG-Banach algebra and leF, E’ be rightG-BanachB-modules. Let
T be aB-linear continuous field of linear operators fromMto £’ (not necessarily equivariant). Then
I'.(G, r*T) is a continuoud’.(G, r*B)-linear map froml'.(G, r*E) toT'.(G, r*E’).

Proof. Use the first part of Propositign 5.1.7 wifty = F = E, E; = E}, = B, B} = F' = F/,
S1 =T, S, =1dg, andu andy’ being the module action d® on E and onE’, respectively. O

Proposition 5.1.13.Let B be ag-Banach algebra and e, £’ be leftG-BanachB-modules. Lef’
be aB-linear continuous field of linear operators frofi to £’ (not necessarily equivariant). Then
-+ T is a continuoud’.(G, r*B)-linear map froml'.(G, r*E) toT'.(G, r*E’).

Proof. Use the second part of Propositjon 5]1.7 with= F = E, Fy, = E{ = B, Ey = F' = F/,
Sy =T,S; =1dg, andu andy’ being the module action d® on E and onE’, respectively. O

Banach pairs

We can also lift the bracket of@Banach pair to the level of sections with compact support:

Proposition 5.1.14.Let B be aG-Banach algebra and lel’ be ag-BanachB-pair. Then the space
T.(G, r*E~) is arightT.(G, r*B)-module and’.(G, r*E<) is a leftT'.(G, r* B)-module. More-
over, the bracket oF induces a bilinear map

(5 )reg,rE): Tel9, r*E<)xT(G, r"E”) — T'o(G, r*B)
which isT'.(G, r*B)-linear on the left and on the right.

The following proposition says that the descent of a linear operator bet#8amach pairs is a for-
mally adjoint pair of linear operators between the respective pairs of spaces of sections with compact
support. More precisely:

Proposition 5.1.15. Let B be aG-Banach algebra and leE and F' be G-Banach B-pairs. Let
T = (T<,T~)be anelementol.z(E, F'). Then

1. T~ « - is a continuous linear operator from.(G, r*E~) to I'.(G, r*F~) beingT'.(G, r*B)-
linear on the right;

2. - % T< is a continuous linear operator from.(G, r*F<) to'.(G, r*E<) beingl'.(G, r*B)-
linear on the left;

3. forall§” e T.(G, r*E~)and alln< € (G, r*F<) we have
(n=, T” * §>>FC(Q7T*F) = (< *T<, £>>FC(Q,T*E) e T.(G, r*B).

Proof. 1. Thisis Proposition 5.1.12.
2. This is Proposition 5.1.13.
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3. Leté” e To(G, r*E~) and allp< € T'.(G, r*F<). For ally € G, we have
0 T ) g ony ) = [ F0) A (7€) () v O
= / (), ¥ Ty & (Y1) ) A O (y)
Ggr(v
= /g o 5O A (T ™A€ (1)) ()

= /gr(w)< ( s(y' )’7, 177<( )) 7£> >d)‘T(,Y )
= <77 *T< §>> gr*E)(fY)

5.1.4 The actions oC(X) andC(X/G)
Definition 5.1.16. Let E' be aGg-Banach space. Then we define
e a“left” module action ofC(X) onT'.(G, r*E) by setting

OO0 =xrM)E()  xeC(X), £ele(G, 1" E), v € G;
e a “right” module action o’ (X) onT'.(G, r*E) by setting

(€200 =x(s(M)(y)  x€C(X), £€Te(G,r7E), v €G;
e a module action of (X/G) onT' (G, r*E) by setting

(X - =x(r())&(y)  x€C(X/G), {€Te(G, r"E), v €0,
wherer: G — X/G denotes the map — [r(v)] = [s(7)].
I'.(G, r*E) is aC(X)-bimodule when equipped with the left and right action.

Note that the action af (X /G) is coherent with the left and right action 6{X) onT'.(G, r*E)
in the sense that pulling back a functigne C(X/G) to a function inC(X) and letting it act on
I'.(G, r*F) gives the same action, no matter whether we choose the left or the right acioX pf

Let £ be aG-Banach space. For &l € I'.(G, r*F) there is a functiony € C.(X) such that
x¢ = £ and such thagy = &; and there is a functiop’ € C.(X/G) such thaty’¢ = €. So the actions
of C.(X) andC.(X/G) are non-degenerate in a strong sense.

By direct calculation we get the following formulae.

Proposition 5.1.17.Let E4, F, and F' beG-Banach spaces. Let: F4 x x F, — F be a continuous
field of bilinear maps. Lef act onEs. Thenforallg; € I'.(G, 7 E1), & € Te(G, r*Es), x € C(X)
andy’ € C(X/G):

Lox-p(&r &) =nlx &, &)
2. p(&, &) - x=n&, &-x),
3w x, &) =n(é, x- &),
4. X" (€1, S2) = p(X - &1, o) = (&1, X &2).
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5.2 Unconditional completions

Let G be a locally compact Hausdorff groupoid with left Haar-systeriVrite X for G(©).

5.2.1 Unconditional norms and fields of Banach spaces

The notion of an unconditional norm f6.(G) was first defined in [Laf02] for the group case and in
[Laf06] for G being a groupoid.

Definition 5.2.1. An unconditional completiotd(G) of C.(G) is a Banach algebra containigg(G)
as a dense subalgebra and having the following property

(5.3) Vi, feeClG): (VyeG: A <IM]) = 1110l acg) < 1f2ll ag) -
In this case we say that the norm.4fG) is unconditional. We also writg || , for the norm onA(G).

An unconditional norm is a special case of a monotone norm, compare Section 3.2. In particular,
we can extend the norm to a semi-norm&Bn(G).

Examples 5.2.2. 1. Forally € C.(G), define

Il = sup [ ()] o
reX Jg=

This is an unconditional norm 06.(G) and the corresponding unconditional completion is
calledL}(G).

2. If we definex*(v) := x(y~!) forally € G andx € C.(G), then we can define a symmetrised
version of thel.!-norm onC,.(G) by setting

[l = max {lixlly X7l

for all x € C.(G). In [Ren80], the completion for this norm is calléd(G), but we follow
[Laf06] and call itL(G) N LY(G)*.

3. In[Laf06], Section 3, the following unconditional completion is defined: Fox &l C.(G), set

Cr(9)

X1 Aar(e) = H’Y = x()] )

Note thatC(G) itself is very rarely unconditional.

4. Ifthe groupoidj carries a length functi@i and.A(G) is an unconditional completion 6%.(G),
then one can define the weighted norm

X149y = H7 H 6Z(V)X(V)HA(G)

for all x € C.(G). This gives an unconditional completiof)(G).

5. In the fourth chapter of [Laf02] V. Lafforgue defines generalised Schwartz sSa@@sA) on
which the convolution product (sometimes) defines a continuous multiplication. After renor-
malisation of the norm this would also be an example of an unconditional completion.

5See Définition 1.2.1 of [Laf06].
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6. LetG be a locally compact Hausdorff group acting on some locally compact Hausdorff space
X. DefineG := G x X. OnC.(G) there is the unconditional norin||, from the first example,
which can be calculated as

Ixll, = Sup/ Ix(g, )| dg
zeX JG

forall x € C.(G x X). There is an alternative unconditional norm@uG x X') coming from
the algebrd.} (G, Co(X)):

= su ,x)| dg.
o6, ey = [ sup (o) dg

Note that we havéix|l;: (¢ ¢, (x)) < [Ixl; forall x € Co(G x X).
Fix an unconditional completios(G) for the rest of this chapter.

If £ is ag-Banach space, therf £ is a u.s.c. field of Banach spaces oger We can use the
construction given in Definition 3.7.4 for general monotone semi-norms:

Definition 5.2.3 (The Banach spaced(g, E)). Let E be aG-Banach space. Then we define the
following semi-norm or’.(G, r*E):

A

lellai= |l = 16,

The Hausdorff completion df.(G, r* E) with respect to this semi-norm will be denoted AyG, E)
(and not byA(G, r*FE) to save some letters).

Note that the function — ||£(+)|| is not necessarily continuous but has at least compact support
and is non-negative upper semi-continuous, so we can apply the extended ngihi@nto it. If £
is the trivial bundle oveg(®) with fibre Ey, thenl'.(G, 7*E) is C.(G, Ey) and.A(G, E) could also be
denoted asA(G, Ey); in particular, ifEy = C, thenA(G, E) = A(G,C) = A(G).

From the corresponding general re§ult 3.2.6 for monotone completions we can deduce:

Proposition 5.2.4.Let E be aG-Banach space. Then the canonical map fios(G, r*FE) to A(G, E)

is continuous with respect to the inductive limit topologylonG, »* E) and the norm topology on
A(G, E).

In particular, if= is dense il'.(G, r* E') for the inductive limit topology, then its canonical image in
A(G, E) is dense for the norm topology.

5.2.2 Bilinear maps and the convolution product
In addition to the computational rulgs 3.2.3 for monotone completions we also have the following:

Lemma 5.2.5.1f o1 x @ is defined forpy, 2 € FF(G), thenp: xpq isin F7(G) and||¢1 * pa]| 4 <
o1l 4 ll2ll 4

Proof. Assume thatp; * @9 is defined by which we mean that the defining integral exists pointwise.
Then the support af; 9 is compact and the function is bounded|y || . [|©2]] o |A(X) |l Where
x is some function i€ (G) which is1 onsupp ¢;.
Let 1,79 € C.(G) such thatp; < 11 andyy < v5. Then for ally, 4’ € G such that(y) =
r(Y):
e1(Me2(v 1Y) < vr(Na(v ).
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Since the integral is monotonous, it follows thiat * p2)(7") < (Y1 * ¥2)(7') for all 4/ € G. Now
©1 * 9 IS bounded, non-negative and of compact supportiane - is, in addition, continuous. It
follows that

o1 % w2l 4 < llvbr # ol 4 < (191l 4 2]l 4 -
Taking the infimum on the right-hand side givigs; * 2| 4 < [[¢1] 4 [[©2]] 4- O

Definition and Proposition 5.2.6.Let F, E5, F beG-Banach spaces and let £ xx Fs — F be
a bounded continuous field of bilinear maps. Then fo€ak I'.(G, r*E;) and&; € T'.(G, 7*E>):

I (Er&)lLagomy < Walloo Il ago.y €21l ago

So lifts to a continuous bilinear mag@ (G, 1) from A(G, Eq) x A(G, E») to A(G, F') (with norm
less than or equal tipu|| . ). If 1« is non-degenerate, then sad$g, p).

Proof. For ally’ € G, we have

&, = | [, o (@6) 3 @) ave)

/gr(“/’)

1y o)
I [ 1O e €67 g, )
=l (6] * €D (),

where we use¢;| to denotey — ||51(7)H(E1)7-<7> and similar foré». Note that|¢;| and |&2| are
not onlﬂ upper semi-continuous but also continuous on the fibresinfthe following sense: For
fixed v € G, the functionsy — || () = Hfl(’y)H(El)m/) andy — H&(TIV/)H(EQ)SW —
“7(52(7_17/))H(Eg)rw) are continuous 0" ("), So the convolution¢, | = |¢| exists and we can
apply Lemma45.2]5 to derive

vy

16Nz, 0, 17 G gy, NG)

()

IN

‘“T(v’)

IN

(& llagr < Il || 1615162l |, < Nillo IE1ag.m0) I2lan- O

Proposition 5.2.7 (Preservation of associativity).Let £, E», E3, I, F>, and G be G-Banach
spaces. Le/fl,ll E1 XxEQ — Fl,/,LQZ E2 XXE3 — FQ, v F1 Xng — GandVQ: E1 XxFQ — G
beboundedcontinuous fields of bilinear maps. Assume that the following associativity law holds:

(1) ((11)z (€1, €2), €3) = (v2)z(e1, (12)z(e2, e3))

forallz € X =G0, e; € (E1)y €2 € (E2)e, andes € (E3),. If, in addition, u, is G-equivariant,
then the same associativity law holds on the level of the unconditional completions:

A(G, 1) (A(G, 11)(&1,&2), &) = A(G,12) (&1, A(G, p2)(&2,€3))
forall & € A(G, Ev), & € A(G, E»), andés € A(G, E3).

"Actually, upper semi-continuity is enough for the convolution to exist: Since upper semi-continuous functions are Borel
measurable and bounded Borel measurable functions with compact support are integrable, the function which appears under
the integral in the convolution product is easily seen to be integrable when the involved functions are upper semi-continuous
and of compact support. Thomas Timmermann brought this argument to my attention.
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5.2.3 Linear maps

Let F and F' be G-Banach spaces and [€tbe a bounded continuous field of linear maps between
them. We are now constructing linear maps betwdég, F) to A(G, F'); there are two different ways
to do this and both rely on 3.2.5, the corresponding construction for the general case of monotone
completions.

Let £ andF beG-Banach spaces afida bounded continuous field of linear maps between them.

Proposition 5.2.8. We have

| T f||,4(g,F) = H“Y = Ty (f(V))HA(g,F) < 7Tl ||5||A(g,E)

forall £ € T'.(G, E). Sof — r*T o £ defines a continuous linear operator, callédk -, A(G,T") or
A(G,T), fromA(G, E) to A(G, F) of norm less than or equal || ..

The so-defined map — A(G,T) makesE — A(G, E) a functor from thej-Banach spaces to the
Banach spaces. The same is true for the following “right-hand version” of the construction:

Proposition 5.2.9. We have

I€ % Tl g,y = 7= 7 [T 6N ||, . <IN g

A(G,F)

forall § € T'e(G, E). So§ — (v — 7Ty (v~1&(7))) defines a continuous linear operator, called
-xTor A(G, -T), fromA(G, E) to A(G, F') of norm less than or equal || _.

Note thatA(G, -T') = A(G, T-) if T is G-equivariant.

5.2.4 The actions of’s(X) and Co(X/G)

Definition and Proposition 5.2.10.Let £ be ag-Banach space. We have

€l < lIxlloo [1€]1].4

forall x € Cp(X) and{ € I'.(G, r*E). So the left action o€, (X) onI'.(G, r*E) can be extended
to a left action ofC,(X) on A(G, E). This gives rise to a left action @k (X) on A(G, E) which is
non-degenerate. The same is true for the right actiofs(df ) andCy (X ) and the actions af,(X/G)
andCy(X/G).

Proof. For all{ € T'.(G, r*F) and for ally € G, we have||(x&)(v)]] < [Ixlls 1E(Y)]. It follows
that ||x¢[| 4 < [Ixlls [I€]l4- The action ofCy(X) on A(G, E) which we can therefore define is non-
degenerate, because the actiogdfX') onT'.(G, r*F) is non-degenerate.

The arguments for the right action @f(.X ) and the action of(X/G) are identical. O

Proposition 5.2.11. 1. Let E and F' be G-Banach spaces and a bounded continuous field of
linear maps between them. TheW{G, T-): A(G,E) — A(G,F) is Co(X/G)-linear. The
same applies tod(G, -T).

2. LetEy, Es, F beG-Banach spaces. Let: E; x x E» — F be a bounded equivariant continu-
ous field of bilinear maps. Then the continuous bilinear &g, 1) from A(G, E1)x.A(G, E2)
to A(G, F) is Co(X/G)-bilinear.

Similar results hold for the actions 6§(X); compare Propositidn 5.117.
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5.2.5 Banach algebras and Banach modules

Proposition 5.2.12.1f B is a G-Banach algebra (with productz), then A(G, B) is a Co(X/G)-
Banach algebra (with the convolution produdtg, 1.5)). If B is non-degenerate, then sa4§G, B).
In particular, A(G) is a non-degeneraté)(X/G)-Banach algebra.

If B andC are G-Banach algebras ang denotes aj-equivariant field of homomorphisms be-
tween them, theAd (G, ¢) is a continuous homomorphism@f( X /G )-Banach algebras froml(G, B)
to A(G,C).

Proposition 5.2.13.If B is a G-Banach algebra and is a right / left G-Banach B-module, then
A(G,E) is a right / left Co(X/G)-Banach A(G, B)-module. IfE is non-degenerate, then so is
A(G,E).

If B andB’ are G-Banach algebras, ip is aG-equivariant field of homomorphisms between them,
if E is arightG-BanachB-module, ifE is a right G-BanachB’-module and i is a G-equivariant
homomorphism fronk’ to £’ with coefficient map, then. A(G, ®) is a continuous homomorphism
of Cp(X/G)-Banach modules from(G, E) to A(G, E’) with coefficient mapd(g, ).

A similar result is true for operators betweg@rBanach modules:

Proposition 5.2.14.Let B be aG-Banach algebra and leF, £’ be rightG-BanachB-modules. Let
T be aB-linear continuous field of linear operators fromMto £’ (not necessarily equivariant). Then
A(G, T-) = T % - is a continuousA(G, B)-linear andCy(X/G)-linear operator fromA(G, E) to
A(G,E").

An analogous statement is true for I§fBanachB-modules (ifT" « - is replaced with x T').

5.2.6 Banach pairs

Definition and Proposition 5.2.15 (The Banach paitd(G, E)). Let B be aG-Banach algebra and let
E be ag-BanachB-pair. ThenA(G, E~) is arightCy(X/G)-BanachA(G, B)-module andA(G, E<)
is a leftCy(X/G)-BanachA(G, B)-module. Moreover, the bracket éf induces a bilinear map

(- ag.e: A(G,ES) x A(G,E”) — A(G,B)

which isCy(X/G)-bilinear andA(G, B)-linear on the left and on the right.
In other words,(A(G, E<), A(G,E~)) is aCy(X/G)-BanachA(G, B)-pair. We denote it by
A(G, E).

Proposition 5.2.16. Let B be aG-Banach algebra and leff and F' be G-Banach B-pairs. Let
T = (T<,7~) be an elementoL.z(E, F). Then

1. T> - isaCy(X/G)-linear operator fromA(G, E~) to A(G, F~) being. A(G, B)-linear on the
right and of norm||T~> x cdot|| < [|T~|;

2. -xT<isaCy(X/G)-linear operator fromA(gG, F<) to A(G, E<) being A(G, B)-linear on the
left and of norm||- « T~ || < ||T"<

3. Thepair(- «T<, T~ %) isin Lff((g)(g%) (A(G, E), A(G, F)) and of norm less than or equal to
IIT||. 1t will be denoted byA(G, T).

The assignment — A(G, F) andT — A(G,T) defines a functor from the category @fBanach
B-pairs to the category a@f,(X/G)-BanachA(G, B)-pairs.
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5.2.7 The convolution with fields of compact operators

This paragraph contains a technical tool for the pro¢f of 5]2.19, namely operators which are given by
the convolution with a (locally) compact operator with compact support. More details and the proofs
are given in Appendik C|2, compare also Lemme 1.3.5 of [laf06] which we brake up into several
pieces here.

Let E andF' beG-Banach spaces and I6t= (S, ),cg be a continuous field of linear maps frome

to r* F with compact supportror all§ € T'.(G, r*F), define

5+ ()= [ Syvel )
Ggr(v
and

€+8))= [

o E(Y) A Sy-1, AN (7)) = / Y [Sy-1y (Y TEEW))] AN (7))

gr(m

forally € G. ThenS x &, £« S € T.(G, r*F). Forall§ € T'.(G, r*E), we have

15 % €lagry < |7 = 1511 |, 1lLage

and

1€ % SlLaig.ry < IElLag.zy ||y = 151
In particular,{ — S x £ and¢ — £ « S extend to linear andy(X/G)-linear continuous maps from
A(G,E)to A(G, F). If E andF are not onlyG-Banach spaces but riggtBanachB-modules over

someg-Banach algebr#®, then{ — S £ is A(G, B)-linear on the right. An analogous statement is
true for leftG-Banach modules ard— & x S.

Definition 5.2.17. Let B be aG-Banach algebra and léf and F' be G-BanachB-pairs. LetS =
(S<,8%) € L«p(r*E, r*F) have compact support. Then, for gt € T'. (G, 7*E~) andn< €
I'. (G, r*F<), we have

(=, §7 &) = (™ %5, ¢7).
It follows that
Si= ("= n%8%, & — 87 %) € Lygp (AG,E), A(G,F))
with

S

< max { ||y —~ [IS7l|

w = ISTILS < [y = max (ST ST 1]

Proposition 5.2.18.Let B be aG-Banach algebra and leE' and F' be G-BanachB-pairs. If S is an
element oK, (r* E, r*F') with compact support, thesi is compact, i.e., we have

S € Kug,p) (A(G, E), A(G,F)).
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5.2.8 The descent andKK"*"-cycles

Let A and B beG-Banach algebras. It is aG-BanachA-B-pair, then there f5a canonical action of
theCy(X/G)-Banach algebral(G, A) on theCy(X/G)-BanachA(G, B)-pair A(G, E).

Definition and Proposition 5.2.19.E| Let(E,T) € EE“(A B). Then define

ja(B,T) = (A(G, ), A(G,T)) € E™ (Co(X/G); A(G, A), A(G,B)).
Proof. If o € Lp(F) is the grading operator fdt, then the grading ol (G, F) is given by A(G, o).
Then A(G,T) is clearly odd. We have to check the compactness conditions.

1. Leta € T'.(G, r*A). Itis easy to check by direct computation that .A(G, T')] acts on
A(G,E~) and A(G, E<) by convolution with a continuous field of linear operators, namely
with

vy O‘(W)’)/Ts(v) - Tr(v)a(/y) € LT*B(T*E)C‘
Note that this field can be conveniently writtencas T' — T * a.. Now

O‘(’Y)’VTS(W) - Tr(v)a(7> = 05(7) (’YTS(’Y) - TT‘(’Y)) + a(’y)Tr(w) - T’I‘(’Y)O[(’Y)

forallv € G. The termy — a(y)(vTy) — T,(y)) is compact by assumption, the second
term can be rewritten gs;, »*7T']. This operator can be approximated by operators of the form
X[/ or, r*T| = xr*[o/,T] with x € C.(G) anda/ € T'.(X, A). But these operators are
compact, sda, 7*T'] is compact as well. Sy, A(G, T')] is compact by Propositidn 5.2]18.

2. Leta € T.(G, r*A). Also a(A(G,T)? — 1) acts by convolution with a continuous field of
operators, namely with

v = a(y) ((’YTS(’Y))Q —1) €Lyp (r*E),.

To show that this is a compact operator we will now transform the field a(’y)(’yTSw)y by
adding or subtracting compact operators until we get te> «(y). The relation =" will be
used, somewhat imprecisely, for “differs by a compact operator”:

a(7) (0 Tu)” = alv) (Vi) = Tri) 1Lty + N T Lo
= oML s = Loy (T
= Tya(N Ty = a()(Thy)? = av)
forall v € G. Soa(A(G,T)? — 1) is compact by Propositign 5.2]18. O
The following lemmas are proved in Appenlix C]3.3.

Lemma5.2.20.The mapj4: Eg*"(A, B) — EP*(Co(X/G); A(G, A), A(G, B)) respects the direct
sum of cycles up to homotopy.

Lemma 5.2.21.Let A, B andC be G-Banach algebras. Let: B — C be aG-equivariant homo-
morphism. LetE, T) € Eg*(A, B). Then

AG, 1), Ga(E,T)) ~ ja(¥« (B, T))
in B (Co(X/G); A(G, A), A(G,C)).

8Compare Proposition 1.3.3 ¢f[Laf06].
9Compare Définition-Proposition 1.3.4 6f [Lai06].
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Lemma 5.2.22.Let B be aG-Banach algebra. Define a map
¢B: A(gv B[Ov 1]) - A(ng) [07 1]

by
(@(B)(1)) (v) = B(V)(t) € By

forall g € I'.(G, r*BJ[0,1]),t € [0,1] andy € G. This is a contractive homomorphism@f X /G)-
Banach algebras that satisfies the equation

evf(g’B) opp=A (g, thB)

for all t € [0, 1], whereev? denotes the canonica-equivariant homomorphism from|0, 1] to B

and evf‘(g’B) denotes the canonical morphism fro#tG, B)|0, 1] to A(G, B), both given by evalua-
tion att.

Proposition 5.2.23.Let A and B beG-Banach algebras. IfE, T') € Ega“(A, B0, 1]) is a homotopy
from (Ey, Tp) to (E1, T1), thenja(Ey, To) andj4(E1, T1) are homotopic.

Proof. First note that
ja(E,T) € E™ (Co(X/G); A(G, A), A(G,B[0,1]))

by [5.2.19 and hencép.(j4(E,T)) is an element ofE*(Co(X/G); A(G, A), A(G, B)[0,1)).
The pushoutevf;fg’B)(gbB,*(jA(E,T))) of this cycle along the evaluation map is isomorphic to
A(G, evP).(ja(E,T)) forall t € [0,1]. For allt € {0,1}, we have

JA(ELT) = ja(evB (B, T)PETA(G, o), (ju(E,T))

=7 (v 00p) (Ja(BT)) 2 eV O (6, (ja(E,T)),

S0¢15,.(jA(E, T)) is @ homotopy frony4(Eo, T) t0 j4(Er, Th). O

Lemma 5.2.24.Let A, B andC be G-Banach algebras. Let: A — B be aG-equivariant homo-
morphism. LetE, T') € Eg*(B,C). Then

A(G,0)" (Ja (B, T)) = ja (0" (E,T))
in E*22(Co(X/G); A(G, 4), A(G,C)).

Theorem 5.2.25.Let A and B be G-Banach algebras and4(G) an unconditional completion of
Cc(G). Thenj 4 induces a group homomorphism

ja: KKG™ (4, B) — RKK™ (Co(X/G); A(G,A), A(G,B)).

It is natural with respect t@;-equivariant homomorphisms in both variables.



152 CHAPTER 5. THE DESCENT

5.2.9 The descent and Morita morphisms

Let A and B be non-degeneratg-Banach algebras. If' € Mgan(A, B) is aG-equivariant Morita

cycle, then a close inspection of the definition of the descenttok&*'-cycle tells us thatd(G, F)

is in M (Co(X/G); A(G, A), A(G,B)), i.e., the descent sends Morita cycles to Morita cycles.
Moreover, the descent respects the direct sum and the pushout of Morita cycles (this can be deduced
from the fact that the homotopies in the Lemrpas 5J2.20 and 5.2.21 can be taken to have zero operator
if the involved cycles have zero operator). It follows that homotopic eIemerRQBB‘F(A, B) give
homotopic elements a¥"2"(Co(X/G); A(G, A), A(G, B)). Thus we have

Proposition 5.2.26. For all non-degenerat§-Banach algebrasi and B and all unconditional com-
pletionsA(G) of C.(G), the descent mafy induces a homomorphism of monoids

jaz Morg™ (4, B) — Mor®™ (Co(X/G); A(G, A), A(G, B)).
It is natural with respect t@;-equivariant homomorphisms in both variables.
The following proposition is proved in Appendix C.B.3.

Proposition 5.2.27.Let A, B, C be non-degeneratg-Banach algebras. LetE, T') € ]E'gm(A, B)
be aKKP?"-cycle andF ¢ Mgan(B, () be ag-equivariant Morita cycle. Then

ja(B,T) &30 ja(F) ~ ja((E,T) @5 F)
in EP2(Co(X/G); A(G, A), A(G,C)). If T = 0, then the homotopy can be taken to have zero
operator as well.

Corollary 5.2.28. The descent is a functor from the category of non-degenér&anach algebras
and G-equivariant Morita morphisms to the category of non-degenefat&/G)-Banach algebras
andCy(X/G)-linear Morita morphisms.

Proof. Let A, B and C be non-degeneraté-Banach algebras. The identity morphism dnis
given by the homotopy classi] of the standard BanacH-A-pair 444. We havej(a4a) =
AG,A)A(G, A) 4,4), SO[A] is mapped to the identity morphism o#(G, A). Secondly, ifE

MY (A, B) andF € ME(B,C), thenja(E) @35 5 ja(F) ~ ja(E @p F) by the preceding

proposition. Sgi4([E]) ®i{’(g§) JA([F]) = ja([E] ®p [F]). S0j.4 is a functor. O

Corollary 5.2.29. The action of the Morita morphisms &K is compatible with the descent.

Because the descent is a functor, it maps isomorphisms to isomorphisms, and from this we know that
it maps the homotopy class offaequivariant Morita equivalence to an isomorphism. We can actually
easily obtain a result that is a bit more precise:

Remark 5.2.30. If A andB are non-degeneratg-Banach algebras anfd is aG-equivariant Morita
equivalence betweed and B, then A(G, E) is aCy(X/G)-linear Morita equivalence between the
non-degenerate Banach algeb#(/, A) and.A(G, B).
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5.3 The descent and open subgroupoids

5.3.1 The setting

If H andgG are topological groupoids,: H — § is a strict morphism andl and B are G-Banach
algebras, then Theorgm 3.6.11 says that we have a homomorphism

f*: KK§™ (A, B) — KK (f*A, f*B).

If G andH are locally compact Hausdorff ovéf andY’, respectively, and carry Haar systems, and if
A(G) andB(H) are unconditional completions, then we can ask whether the following diagram can
be completed

f*

KKH™ (A, B) KK2™ (f*A, f*B)

B B

RKK ™ (Co(X/G); A(G, A), A(G, B)) =<~ = RKK"™ (Co(Y/H); B(H, f*A), B(H, f*B))

There is no hope for an affirmative answer if the question is formulated in this generality. However,
one can obtain some results if one restricts attention to some special class of strict morphisms. We
will do this quite drastically and only consider the case tHais anopen subgroupoidf G (andY
is hence an open subspacef and f = .4 is the inclusion ofH into G. In this case(.(H) is
contained as a subalgebradp(G) and if A(G) is an unconditional completion @f.(G), then the
norm onC,(G) restricts to an unconditional norm @p(H). We call the completion of.(H) for this
norm.A(H). There is a canonical homomorphism frof#) to A(G).

If Ais aGg-Banach algebra, thej, A is just the restriction o to Y with the restricted action of
H. There is a canonical homomorphism of Banach algebras #¢Ha, ., A) to A(G, A). We denote
A(H, 1;,A) by A(H, A) to save some letters.

Letp: Y/H — X/G be the uniqgue map making the following square commutative:

LH

Y X
|
Y/H-2>X/G

where the vertical arrows are the canonical quotient maps. Theprigpontinuous. Using Defini-
tion[2.7.] that discusses the change of the base space we can tur@g¥ét¥)-Banach space into
aCy(X/G)-Banach space and evefy(Y/H)-Banach algebra into & (X/G)-Banach algebra, etc.
As a special case of Propositipn 2]7.2 we therefore get a homomorphism

Pt RKK™™ (Co(Y/H); A(H, A), A(H, B)) — RKK™ (Co(X/G); A(H, A), A(K, B)).

The pushout along the canonical map frofiH, B) to A(G, B), which happens to bé&,(X/G)-
linear, gives a homomorphism

RKK™ (Co(X/G); A(H, A), A(H, B)) — RKK™ (Co(X/G); A(H, A), A(G, B)).

The pullback along the canonical homomorphism fraif#, A) to A(G, A) in the first component
gives a homomorphism

RKK"™" (Co(X/G); A(G, A), A(G, B)) — RKK™™ (Co(X/G); A(H, A), A(G, B)).
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So we get a diagram:

(5.4) KKY™ (4, B) KK3™ (Aly, Bly)

B i

RKK™ (Co(X/G); A(G, A), A(G, B)) RKK" (Co(Y/H); A(H,A), A(H,B))

l lp*

RKKbPan (Co(X/G); A(H,A), A(G,B)) ~— RKKbPa» (Co(X/G); A(H,A), A(H, B))

We are now going to show that the above diagram is commutative. For this, we need the following
lemma which is proved in Appendix C.2.3.

Lemma 5.3.1.Let F and F be G-BanachB-pairs. LetS € K,-p(r*E, r*F') have compact support
contained inH. Then the convolution by as an operator from4(G, E) to A(G, F'), denoted above
by S, is not only inK 4¢,8)(A(G, E), A(G, F')), but can be approximated by sums of operators of
the form|n>)(¢<| withn™ € Tc(G, r*F>) and{< € Te(G, r* E<), both having their support if.

Theorem 5.3.2. Diagram [5.4) is commutative.

Proof. Let (E,T) be inEgan(A, B). We have to tracéF, T') through diagra4) and prove that the
two cycles that we get in the lower left corner are homotopic. If we go down and down in the diagram,
then we get the cycleA(G, E), A(G,T)) where we regardi(G, E) as aCy(X/G)-BanachA(H, A)-
A(G, B)-pair. If we start with going right, then we get the cy¢B|y, T|y) € E2(Aly, Bly). If
we go right and down and down, then we are left with the cyeléH, E|y), A(H,T|y)) regarded as
aCy(X/G)-BanachA(H, A)-A(H, B)-pair. Finally, if we go right-down-down-left, then we get the
cycle(A(H, Ely) @ acn,Byaco(x/g) (A(G, B)©Co(X/G)), A(H,T|y)®1). Into this cycle there is a
canonical homomorphism from the cydld(H, Ely ) ® 4(x,p) A(G, B), A(H,T|y) ®1); itinduces
a homotopy, so we restrict our attention to this simpl&K"*"-cycle.

We now define a homomorphisinfrom A(H, Ely)® 4x,5)A(G, B) to A(G, E) with coefficient
mapsld 47,4y andld 4g, py- Define

>~ ‘A(H7 E>|Y) ®A(H,B) A(g7B) - A(g7E>)7
B — &xp

where we regard” € A(H, E~|y) as anelementofl(G, E~). Define®< similarly. By the associa-
tivity of the convolution the pai := (&<, ~) is a concurrent homomorphism. Itdg(X/G)-linear.
We show that it induces a homotopy:

Leta € T.(H,r*A) ande > 0. Then|a, A(G,T)] is given by convolution with the compact
continuous field of operators with compact support

Y O‘(’Y)’YTS('y) - TT(’V)Q(’Y) € Kpp (T*E)c :

The support of this field is actually containedifibecausey is supported irt{. By the above lemma
we can approximatigy, A(G, T')] by sums of operators of the forfn™ ) (¢<| with £~ € T.(G, r*E>)
and¢< € T'.(G, r*E<), both having their support it(. Becaused(H, E~) is a non-degenerate right
BanachA(H, B)-module andA(H, E<) is a non-degenerate left Banagt{?{, B)-module, we can
actually approximatgy, A(G, T)] as follows: We can findan € Nand¢ys, ... &5 € To(G, r*E<),
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&, & € Te(G, r*E”)and Sy, ..., 05,67, ..., 87 € Te(G, r*B) which all are supported in
‘H such that

[, A(G,T)] Z{§>*ﬂ> (Brxef]| <

i=1

Note that we can regard tifg” and the¢~ also as sections living of. If we do so, we have

& * 37 =07 (& ®@B7) andﬁ< * §< (B @) foralli e {1,...,n}.
The operatofo, A(G,T)] -1y |&7 87 ) (85 & | leaves the subspao@(?ﬂ E|y) invariant.

The norm of the restricted operator is of course less than or equal to the norm of the operator itself.
Note that|é” ® 87 )87 @ &°| = | = 87 )(B = &°| ® 1 and hence

le®1, A(H, Tly) ® Z|€>®ﬁ>><ﬁ<®£<\

i=1

= ([a,A(H, le)]—Z\if*ﬁ?Xﬁf*fff\) ®1

=1

< o AR TV = )& # 87085 # &7

i=1

A similar calculation can be done fer(A(G, T)? —1). This shows tha® induces a homotopy. Hence
the above diagram is commutative. O
5.3.2 The descent and Morita equivalence

There is a case when much more can be said about the Diagrdm (5(4)s lén open and closed
subset ofX andH = Gf.

Definition and Proposition 5.3.3. Let A be aG-Banach algebra and an open and closed subset of
X = G, Define continuous linear maps

0:Te(G, r"A) = Te(G, r™A), &= &g,

and
o Fc(g7 T*A) - Fc(g7 T*A)7 5 = §|gU7

where the restricted sections should be extended by zero to@ll Bfien(p;)? = pi; and(pg;)? =
p;;- Moreoverpg; isTc(G, r*A)-linear on the rightpy; isT'c(G, r*A)-linear on the left. Both maps
areC(X/G)-linear. Finally, for all§;, & € T.(G, r*A):

pp (&) * & = & * pi(&2)-
Sopu = (pg5,py;) could be called an (idempote@it X /G)-linear) multiplier of (G, r*A). We have
pule(G, 7" A)py = Te(Gh, 7 A).

Definition and Proposition 5.3.4. Let A be ag-Banach algebra antd an open and closed subset
of X = GO, Let.A(G) be an unconditional completion 6£(G). Let. denote the embedding of
I'.(G, r*A)into A(G, A). Then there is a unique multipli¢?; = (P, P;) of A(G, A) such that

Lop;=P5or and top] =Pjou.
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It is idempotent(y (X /G)-linear and contractive. We have
Py A(G, A)Py = A(GY, A).
If we want to stress that the underlying Banach algebra ien we writePg‘ for Py.

Proof. Uniqueness is trivial. To prove existence note that the mépandp;; are contractive on
the level of sections with compact support becad$g) is unconditional. Hence;; andp; give
contractive operatorg;; andP; on A(G, A) such that o pj; = P5 ovandi o p;; = P o The
operatorsP; inherit the algebraic properties of the. O

Proposition 5.3.5.If U is open and closed iX andH := gg andY := U, then the homomorphism
p« in Diagram [5.4) is an isomorphism, i.e.,

RKK™™ (Co(Y/H); A(M, A), A(H, B)) = RKK™" (Co(X/G); A(H, A), A(H,B)).

Proof. Note thatY/H = U/(GY) can be identified wittU/G C X/G, i.e., we can think ofy’/H
as a closed and open subsetofG. Let (E,T) € EP*(Co(X/G); A(H, A), A(H, B)). Letx €
Cc.(X/G) such thaty|y,» = 0. Then for all§” € E~ and € A(H, B), we have({~f)x =
£~ (Bx) = €70 = 0. Because:~ is non-degenerate, it follows that x = 0 for all &~ € E~. So
E~ is already a non-degenerate Ban&ghy’/H)-module, i.e., & (Y/H)-Banach space. The same
is true for E<. In other words,

EP™ (Co(X/G); A(H, A), A(H, B)) C EP*™ (Co(Y/H); A(H,A), A(H,B)).

The other inclusion is trivial. As the same is true for homotopies we can deduge tisatctually the
identity homomorphism. O

Definition 5.3.6 (Connected/full subsets)We call two subset& andV of G(©) connectedf
GuGy =Gy and GGy =Gy
A subsetl is calledfull if it is connected to the whole @ (which means thag Gy = G).

Two open subset§ andV are connected if and only if the range and source maps, restric&&l,to
are surjective ontd” andU, respectively.

In Sectior{ 6.2 we are going to meet the construction of the linking groupoid of an equivalence
of groupoids: If two groupoid§ and’ are equivalent in the sense of Definitjon 6.1.28 @nid the
linking groupoid, thenZ(©) is the union ofU := G(© andV := 1, both being open, closed, full
and connected subsets, ahe= £} andH = LV; so the situation discussed in the following theorem
is of some relevance. To prove it, we need the following Lemma which is proved in Apgendlix C.1:

Lemma 5.3.7.Let U, V and W be open pairwise connected subsetg6¥. Let Ey, Fy and F

be G-Banach spaces and let: F; xx Es — F be a continuous field of bilinear maps. The map
(&1,&) — (&, &) is a separately continuous bilinear map fral(G}Y , r*E1) x (G}, r*E») to
I.(GY, r*F), and if u is non-degenerate, then

{u(é1, ) & eTu(GY, " Er), & € Te(GY, r*Es)}

spans a dense subsetlofi G, 7 F).
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The idea of the proof is to writg, restricted td".(GY , r*E1) x (G}, r*E2), as a composition of
carefully chosen maps, imitating the proof for the special ¢ase V = W = G(©) given above.
The lemma has an immediate consequence:

Lemma 5.3.8. Let A be a non-degeneratg-Banach algebra. Le#(G) be an unconditional com-
pletion ofC.(G). If U and V' are open subsets &f"), then letA(G), A) denote the completion of
I'.(GY, r*A) for the restricted norm. Let/, V and W be open pairwise connected subsetg 1.
Then(&, &2) — & & induces a non-degenerate contractive bilinear mgg! , A) x A(G;, A) —
A(GY . A).

Theorem 5.3.9.Let A be a non-degenerai@-Banach algebra and/ an open and closed subset of
G, Let A(G) be an unconditional completion 6£(G). If U is full, then Py is full in the sense of
Definition[1.10.7, i.e.A(G, A) Py A(G, A) is dense ind(G, A). In particular, A(G, A) and A(GY, A)
are Morita equivalent,(X/G)-Banach algebras:

AG, A) ~u A (GY, A).

Proof. We show thap; (Te(G, 7* A))*p5 (Te(G, r*A)) is denseilo(G, r*A). Butpg; (Te(G, r*A))
is the same ab.(Gy, r*A) andpj;(Tc(G, r*A)) is the same ab.(GY, r*A), so we are done using
Lemma[5.3.B. Explicitly, the Morita equivalence can be obtained as follows:A(6t;, A) be the
completion ofl".(Gy, 7* A) for the restriction of the unconditional norm (G, r*A). Analogously
defineA(GY, A). Then(A(GY, A), A(Gu, A)) is an equivalence betweet(G, A) and A(G, A).
U

Corollary 5.3.10. LetU be a full open and closed subsetXf letH := gg andY :=U. LetB be
non-degenerate. Then the lower horizontal arrow in Diagram](5.4) is an isomorphism:

*

ban A B " ban A
KKg™ (4, B) KK7™ (Aly, Bly)

B B

RKK"™" (Co(X/G); A(G,A), A(G,B))  RKK"™ (Co(Y/H); A(H, A), A(H, B))

| -

RKKban (C()(X/g), A(H’ A)’ A(g7 B)) ~= RKKban (C()(X/g), A(H, A)7 -A(Hv B))

By inverting the two isomorphisms in this diagram we can construct a homomorphism from
RKK™(Co(X/G); A(G,A), A(G,B)) to RKK"™(Co(Y/H); A(H,A), A(H,B)) making the
following diagram commutative:

(5.5) KK (A4, B) & KK (Aly, Bly)

\LJ'A ijA
RKKban (CO(X/g)7 A(g7 A)7 A(ga B)) - RKKban (CO(Y/H), A(Ha A)a A(H7 B))
Note that we can identifg¢, (Y /H) andCy(X/G) if Y is full: We have already seen that we can think

of Y/'H as a closed and open subsetdfG. If Y is full, then it meets everg-orbit, soY/H can be
identified with X/G.
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If Ais non-degenerate as well, then it is very likely that the homomorphism
RKK"™ (Co(X/G); A(G, A), A(G, B)) — RKK"™ (Co(Y/H); A(H,A), A(H,B))
is actually an isomorphism, a statement which is equivalent to the homomorphism
RKKP™ (Co(X/G); A(G, A), A(G, B)) — RKK" (Co(X/G); A(H, A), A(G, B))

being an isomorphism. Ag(G, A) and. A(H, A) are Morita equivalent, this could well be true, but
we need new methods to show this because we do not have a Kasparov product in the Banach algebra
setting.

Note that there is an obvious generalisation of Thegrem|5.3.9:

Theorem 5.3.11.Let A be a non-degeneratg-Banach algebra and Idt and V' be open and closed
connected subsets &f = G(). Let. A(G) be an unconditional completion 6£(G). Then the pair
(A(GY, A), A(GY, A)) is aCy(X/G)-linear Morita equivalence betweet(Gy,, A) and A(GY, A).

Note that this Morita equivalence gives an isomorphism
RKK"™ (Co(X/G); C., A(Gy, A)) = RKK™™ (Co(X/G); C, A(Gy, A))
for everyCy(X/G)-Banach algebré&'. This construction is transitive in the following sense:

Proposition 5.3.12.LetU, V, W be open and closed pairwise connected subsels ef G(©) and let
A be a non-degenerai@-Banach algebra. Let(G) be an unconditional completion 6£(G). Then
the restriction of the multiplication defines a concurrent homomorphism

(A(Gh.A). AGY.A)) @ ugpa) (AGA), A(GF.4)) — (A(G-4). A(GH.4))

which is a morphism af, (X /G)-linear Morita equivalences. It induces a homotopy of Morita cycles,
so the two Morita equivalences give the sadig X /G)-linear) Morita morphism.

Proof. This follows from theCy(X/G)-linear version of Lemma 1.10.P6. O

5.4 The descent and local convexity

Definition 5.4.1 (Locally convex unconditional norm). An unconditional norm|-|| , on C.(G)
is calledlocally Cy(X/G)-convexor simply locally convexif A(G) is a locally Co(X/G)-convex
Co(X/G)-Banach algebra.

Proposition 5.4.2. Let E be aG-Banach space. [fA(G) is locally Cy(X/G)-convex, then so is
A(G, E).

Proof. Let¢{ be an element df (G, »*E). Then for allx € Cy(X/G):
IxElagmy = || = eI ||, = | xtel |,
We therefore have for alt € X:

l©mll = inf {Ix€lagr : x €C(X/G), 0<x <1, x(la]) =1}
inf (I €]]L4: X € Ce(X/G), 0= x < 1, x([a]) = 1} = | (€D
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Now the local convexity ofA(G) implies
181146, = 1611l = sup ([ (1Dt [| = s [|©)pa

This identity carries over to all elements of the completié(y, £) of I'.(G,7*E), so A(G, E) is
locally Cy(X/G)-convex. O

If A(G) is a locally convex unconditional completion@f(G), then the descent can be considered to
be a homomorphism

ja: KKF"(A,B) — KK, (A(G, A), A(G,B)).
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Chapter 6

Generalised Morphisms of Locally
Compact Groupoids

The aim of this chapter is to define a homomorpﬁsm
Q*: KK (A, B) — KKg™"(* A4, Q*B),

whereG and are locally compact Hausdorff groupoids (with open range and source nfasss
generalised morphism frog to H, and A and B are H-Banach algebras. This homomorphism is
functorial and generalises the pullback homomorphism along strict morphisms. In particular, it is an
isomorphism ifQ2 is an equivalence of groupoids.

The construction follows the same fundamental plan as the analogous constructibrafgeiras
given by Le Gall in[[LG94]: IfQ) is as above and has anchor map$2 — G ando: Q — HO),
then we can puf2 in the following commutative triangle

p*(G)

fa

g H

where we identify generalised morphisms with their gr@ﬂﬁae locally compact groupoig*(G)

(with unit space?) is the pullback ofG alongp, it would be calledj, in the notation of[[LG99] and

G[€Q] in [Tu04]. The morphisny, is actually a strict morphism, and the graph of the strict morphism
p: p*(G) — G turns out to be a rather simple equivalence of groupoids. We already know how to
pull H-Banach spaces (arfd-Banach algebras, etc.) back alofig which gives us*(G)-Banach
spaces (ang*(G)-Banach algebras, etc.). What we need is a way of turpiiig)-Banach spaces
into G-Banach spaces, i.e., we want to invert the pullback funetdrom the category of-Banach
spaces to the category pf(G)-Banach spaces. This is done in Se, and the resulting functor

is calledp,.

V. Lafforgue mentions i [Laf06] that such a homomorphism exists without giving any details.
>See Diagran{ (6]3) for a more precise statement.
3See the beginning of that section for a more precise statement of what is being constructed.

161



162 CHAPTER 6. GENERALISED MORPHISMS OF LOCALLY COMPACT GROUPOIDS

This way, we construct a functér* := p, o f5 from the category of{-Banach spaces to the
category ofG-Banach spaces. The functor descends to functors between the respective categories of
Banach algebras, modules and pairs, and finally gives us a homomor@hibetween tha<KbPan-
groups with the above-mentioned properﬂes.

The chapter is organised as follows: The first section recalls the definition of generalised mor-
phisms of groupoids (in the sense bf [LG94]) and also the definition of equivalences of groupoids
(which are shown to be precisely the generalised isomorphisms). Most of the results are proved
somewhere in the literature, especiallylin [LG94] and [Tu99], or are folklore (in particular, the rather
unpleasant matter of showing the continuity of the various operations appearing in the construction of
certain groupoids seems to be traditionally regarded as folklore; we introduce the notion of an inner
product on &j-spaces to be able to treat these questions without too much ado). As a technical tool
we also introduce the linking groupoid of an equivalence of groupoids, in complete analogy to the
linking algebra of a Morita equivalence of (Banach) algebras. The linking groupoid can be used to
prove that equivalent groupoids have equivalehtlgebras; this is actually true in greater generality
(with coefficients and for more general unconditional completin‘EI)ue corresponding theorem for
C*-algebras is well-known in the literature (for instance, see [MRW87]), but to my knowledge, this is
not the case for the!-version (although it might have been around somewhere as well).

The third section is introduces the pullback of groupoids, which leads to the factorisation result
for generalised homomorphisms sketched above (this is inspired heavily by|[LG94] and [LG99]). In
Sectior] 6.4, we introduce Haar systems on groupoids and on spaces carrying actions of groupoids,
and show that these notions are compatible with taking pullbacks or forming the linking groupoid.

Technically, Sectiop 6]5 is the heart of this chapter, introducing the fupchmtween equivariant
fields of Banach spaces and showing how it descends & ki&"-groups, which is applied to define
the pullback along generalised morphisms in the next section. ThwefSion of this construction can
be found in[LG94], the Banach algebra version needs some more technical care. The final section
relates equivalences of groupoids to induction from closed subgroups of locally compact groups and
shows how to obtain a version of a theorem of Green concerning induced algebras.

6.1 Generalised morphisms

6.1.1 G-spaces

We will only consider actions of locally compact Hausdorff groupoids on locally compact Hausdorff
spaces. Many of the results and constructions that are collected in this section have analogous coun-
terparts for actions of (possibly non-Hausdorff) locally compact groupoids on locally compact spaces.
A general reference for this is [Tu04].

So letG be alocally compact Hausdorff groupoid.

Definition 6.1.1 ((Free/proper/principal) G-spaces).A left G-spaceis a locally compact Hausdorff
space) together with a continuous so-called anchor mag — G(© and a continuous map: G *
Q — Q,whereG « Q = {(v,w) € G x Q: s(v) = p(w)}, such that

1. p(p(y, w)) =r(y) forall (v,w) € G * Q;
2. pp(w), w) =wforallw e Q;

“Take this with a grain of salt, there is a little twist in the definitiorfffor KK"*"-cycles; compare Lemnja 6.5]17.

5See TheoreO and Sec 6.7.
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3. pu(y -9y w) = ply, p(', w)) forall (v,9) € G+ G and(v',w) € G x ;

A right G space is defined similarly (and the anchor map of a riggepace will usually be called).
The actionu is usually written multiplicatively, i.e (v, w) is denoted byy - w or yw. The action is
calledfreeif for all (g,w) € GxQwe havey-w =w = ~ < G, i.e., only units have fixed points.
The action is callegroperif the map(p,Id): G« Q — Q x Q, (v,w) — (v - w,w) is proper. The
space is called aprincipal G-space if it is free and proper.

To get a notion of isomorphig-spaces we define morphisms@®@ipaces as follows:

Definition 6.1.2 (Equivariant maps). Let Q2 and Q' be left G-spaces with anchor mapsand o/,
respectively. A continuous map 2 — Q' is calledG-equivariantif p'(7(w)) = p(w) forallw € Q
and

r(r-w) =7 7(w)

forall v € G andw € Q such thats(y) = p(w). In a similar manner one can define equivariant maps
between rightj-spaces.

The left G-spaces, together with thg-equivariant continuous maps, form a category. The isomor-
phisms in this category are tideequivariant homeomorphisms.

Definition 6.1.3 (The crossed product).Let €2 be a leftG-space. Then the crossed product groupoid
G x Q is defined as the subgroupoid Gfx (©2 x Q) consisting of element§y,w’, w) such that
s(v) = p(w) andw’ = yw. The unit space of x  can be identified witl. If G has open range and
source maps, then the range and source rgaps$? — () are open as Wdﬂ.

In a similar fashion one defines crossed products for right actions. The magfrof to G x,. , Q
given by (v,w’,w) — (v,«’) is @ homeomorphism, the groupdidx 2 can thus also be considered
as a subspace 6f x 2, and this is what we will do most of the tirffe.

Definition 6.1.4 (The quotientG \ 2). Let Q2 be a leftG-space. Then we define the quotient space
G\ Qto be the sefjw] = {yw: s(7) = p(w)} : w € Q} of all orbits of theG-action on(2 equipped
with the quotient topology.

If G acts from the right o2, then we write2 /G for the quotient space.
Proposition 6.1.5. The following are equivalent:

1. r: G — G is open;

2. for every lefiG-spacef) the canonical mag — G \ Q2 is open.

Proof. This is a special case of Lemma 2.30]of [Tu04]. O

Proposition 6.1.6. Let{2 be a leftG-space. I is a properG-space and the quotient m&p— G\
is open (for example, if: ¢ — G(¥ is open), ther \ Q is a locally compact Hausdorff space.

Proof. This follows from Proposition 2.12 of [Tu04]. O

*This is a special case of Lemma 2.24[in [Tu04] and also follows from our L§mm4 3.4.5, appied(®= G x ;) Q.
"Compare[[Tu04], 1.1.
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Definition 6.1.7 (The flippedG-space).If ) is a leftG-space with anchor mag,, then we define
Q! to be the rightG-space with underlying spade and the same anchor magp,-: := po and

multiplication fromQ=! + G = {(w™,7) € Ax G : gg-1(w™!) = pa(w) = s(y) = r(y 1)} to

Q1 given by(w=t,7) — (y~1-w)~L If Qis proper or free, then so 3.

Definition 6.1.8 (Products ofG-spaces).Let Q2; and(2s be leftG-spaces. Lep; be the anchor map
of Q; for eachi € {1,2}. Then define

Q=01 %0y = {(wl,wQ) €M X Q: pr(wy) = pg(wg)}
andp: Q — GO w i pi(w;) = p2(ws). Define the map
GxQ—Q, (v,w)— (v w17 w2).
Then(2 is a leftG-space and the just defined action is calleddiagonal action
Proposition 6.1.9. Let2; and{2- be leftG-spaces. If2; or €2, is proper, ther(2; % Q5 is proper.
Proof. This is proved in Appendix D]1 on pafe 291; compare Proposition 2.20 of [Tu04]. [

Definition 6.1.10. Let Q be a rightG-space and?’ a left G-space. Then defin@ x¢ Q' to be the
quotient of Q! x €’ by the diagonal (left) action af.

If the action ofG on Q2 or Q' is proper and the canonical m&px ;o) Q' — 2 xg Q' is open (which
is the case ifj has open range and source maps), flerg €)' is locally compact Hausdorff.
6.1.2 Principal G-spaces and inner products

In this section lef2 be a leftG-space with open anchor map The map which sends somec 2 to
its orbit[w] € G \ © will be denoted by

Definition 6.1.11. An inner producton 2 is a continuous map, -): Q x, 2 — G such that
1. r({w,0) = p(w) ands((w, o)) = p(') for all (w,w') € Q@ x4 O;
2. (yw,w') = y{w,w’) forall (w,w’) € Q x, Qandy € G such thats(y) = p(w);
3. (w, W) = (w, )y~ forall (w,w’) € Q x, Qandy € G such thats(y) = p(w');

N

Aw,w) = p(w) forall w € O;

5. (W, w) = (w,w) " Horall (w,w) € Q x4 0.

Proposition 6.1.12. An inner product exists of? if and only ifQ2 is a principal G-space, in case of
which the inner product ofw,w’) € Q x, Q is the unique elemeriv, w’) such that

w = (w,w '
Proof. This is proved in Appendix D]1 on pafe 291. O

Proposition 6.1.13.1f € is a left principalG space, then
G QEQ X, 0
as locally compact Hausdorff groupoids.

Proof. By definition,G x Q is a subspace @ x (2 x, ), and the strict isomorphism we are looking
for is given by the “projection” onto the second component. Alternatively, if we regarxd(2 as
G X, §, then the isomorphism is given by the map froim< Q to 2 x, £ which sendg~,w) to
(w, v~ w). O
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6.1.3 The groupoidQ—! x¢ Q

Let2 be aG-space with anchor map Then by Examplg 3.4.4 the spaee Q = Q xg, 2 = 2 x,Q
carries the structure of a topological groupoid. Because locally compact and Hausdorff so is
0 x, .

In what follows we will define the structure of a locally compact groupoid on the factor space
Q1 xgQ = G\ QxQ. This structure is related to the above-mentioned groupoid structutegi2
and can be regarded as the structure of a “quotient groupoid”.

We will assume that the locally compact Hausdorff grouggidasopenrange and source maps
and thatQ? is a leftprincipal G-space. Then we know in particular tHat! x g Q is locally compact
Hausdorff.

The map which sends somee Q to its orbit[w] € G \ © will again be denoted by (note that
this map is open by Propositi.5). The map fi@m , 2 to G which assigns to eadlw, w’) the
unique elemeny € G such thatv = yw’ will be denoted by(-, -). It is the inner product described
above (in particular, it is continuous).

Definition and Proposition 6.1.14. The spacé{ := Q! x¢ Q carries the following structure of a
locally compact Hausdorff groupoid:

HO =g\ Q and ex: G\Q— Q' xgQ, [w]— [wluw],

g U xg Q= G\ Q, wh = w and sy QP xgQ =G\ Q, [w W] [W].

If pis open, them, ands;, are open. The composition is defined as follows: (gt w}), (w2, wh) €
Q x5 Q be such thakw|] = [ws]. Then
[wl_lﬂ")i] ° [(WQ)ilvwé] = [wl_lv <w/17w2>w/2]'

It follows that[w ™!, W]~ = [ ™1, w].

The mapgw,w’) — [~} w] andw — [w] define a strict morphismfrom Q x o  onto’H. The
locally compact groupoid{ = Q! x¢ Q could also be calleg/(Q) in analogy with the compact
operators on a (left) Hilbert module.

Proof. This is proved in Appendix D]1 on pape 292. O

Proposition 6.1.15.The locally compact Hausdorff groupdtd := Q! x ;Q actsfreelyandproperly
from the right on(2.

The action is defined as follows: The anchor map &nd ifw €  and[(w')~!,w”] € H such
thato(w) = o (W) = ry([(W) 71 W), thenw - [(W) 7, W] i= (W, W )W".

The mapp: Q — G© induces a continuous injectiof from Q/H to GO, If p is open and
surjective, therp is homeomorphism.

Proof. This is proved in AppendiX D]1 on pafe 294. O

6.1.4 Bimodules
Let G, H andX be locally compact Hausdorff groupoids.

Definition 6.1.16 G-H-bimodule). A G-H-bimoduleor G-H-space is a locally compact Hausdorff
space which is at the same time a lgftspace and a righ-space (with anchor maps Q — G(©)
ando: Q — H©O), respectively) such that the actions commute, i.e.,
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1. p(w-n) = p(w)forall (w,n) € Q*H;
2. 0(y-w) =o(w) forall (v,w) € G *; and
37 (w-n)=(y-w) -nforall (y,w) € GxQand(w,n) € Q*H.
Example 6.1.17.Let Q2 be a principal leftG-space with anchor map, where the range and source

maps ofG are open. LetH := Q~! xg Q. Then(Q is aG-H-bimodule when equipped with the
‘H-action defined above.

Definition 6.1.18 (The flipped bimodule). Let ©2 be aG-H-bimodule. Then we define al-G-
bimoduleQ~! as follows:

1. The underlying space 6f~! is simply(2.

2. The anchor maps are given by,—1(w™!) := p(w), defining a map fron2~! to G(¥, and
po-1(w™1) := o(w), defining a mam ! — HO).

3. The left action of{ onQ~!is given byH + Q! — Q=1 (n, w™!) = (wn~ 1)L
4. The right action off onQ~'isgiven byQ~ '+ G — Q71 (w7l 7) — (v w) L.
That the following definition makes sense is proved in Appehndix D.1 on[pade 166.

Definition 6.1.19 (Product of bimodules).Let (2 be a proper right{-space an€’ an’+-X-bimodule.
Let H have open range and source maps. Then the quotient 8Faee) x4 Q' of Q x ;0 Q' isa
locally compact Hausdorff space.

1. Define

o Q" /C(O), [(w’w/)] N O'/(w,)

wherec’ is the right anchor map df’. Define aK-action onQ)” (with anchor map”) by
setting

[(w, )] = [(w,0'K)]

forall (w,w’) € Q x40 ' andx € K such thav’(w') = r(k).

2. If Q is not only a proper right{ space but also g-H-bimodule, then we can defineGak-
bimodule structure of” by defining

Pl = GO [(w,0)] = p(w)

and
v (W, ") = [(yw,w')]

forall (w,w’) € Q x40 Q" andy € G such thats(y) = p(w).
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6.1.5 Principal fibrations, graphs and morphisms

Let G, H and K be locally compact Hausdorff groupoids with open range and source maps. The
openness of these maps is not a dramatic restriction because our main interest is to be able to treat
the case that the groupoids carry Haar systems, and in this case, the range and source maps are
automatically open. For the definition of principal fibrations and generalised morphisms, we can
thus go back to the definitions of [LG94] instead of the more elaborate coa:ﬂmtsG99].

Definition 6.1.20 (Principal fibration). LetH act on the locally compact Hausdorff spdeen the
right. A mapp from € to another topological spac¥ is calledprincipal fibration with structure
groupoidH if

1. Qis a principalH-space;
2. pis continuous, open and surjective;
3. pisinvariant under the action 6{, i.e.,V(w,n) € QxH : p(w) = p(wn).

4. 'H acts transitively on each fibre pf i.e., for allw,w’ € Q such thap(w) = p(w’) there is an
n € 'H such thatvn = ’; note that; is unique as? is free.

Because is invariant under the action @{ it induces a continuous map €2/H — X. Because
‘H acts transitively on each fibrg,is injective and hence a homeomorphism.

If p: Q@ — X is a principal fibration with structure groupaid, then there is a canonical contin-
uous’H-valued inner product of x, 2. More precisely() x, Q = Q x, Q whereo: Q — Q/H
denotes the quotient map. SinQes a principal{ space, we can now take the inner product from
Q x, Q to H which assigns to eacfw,w’) the unique elemenf of H such thatvn = «'. We will
denote this elementby (w, w')x.

A generalised morphism of locally compact Hausdorff groupoids is an isomorphism class of
graphs, and such a graph is defined as follows:

Definition 6.1.21 (Graph). A graph2 (of a morphism) frong to H is aG-H-bimodule (with anchor
mapsp ando, say), such that: Q — G is a principal fibration with structure groupoid.

Proposition 6.1.22.Let(2 be a graph frony to H. Sincep is a principal fibration, there is an inner
product(:, -)» from$ x, Q to H. Itis G-balanced in the sense that

(6.1) <w, 7w'>H = <’y_1w, w'>H

for all w,w’ € 2 andv € G such thatp(w') = s(y) andr(y) = p(w’). It follows that the inner
product factors througlf2—! x g €2 to give a continuoug{-H-bimodule map fron2—! x5 Q to H.

Proof. The element) = (w, yw')y has the propertyn = yw'. It follows that(y~lw)n = ', son
has the defining property @f ~'w, w’')%. O

Definition 6.1.23 ((Generalised) morphism, equivalence of graphs)iwo graphs? and$’ from G

to H are calledequivalentif there is a homeomorphism frof to Q' which intertwines the anchor
maps and the actions gfandX, i.e., an isomorphism a@f-H-bimodules. A(generalised) morphism
from G to 'H is simply an equivalence class of graphd2 ik a graph, then we denote the corresponding
morphism by[Q2].

8For groupoids with open range and source maps, the definitions of [LG99] seem to amount to much the same picture
as the one presented in the earlier article. The concefits of [LG94] are somewhat easier to handle, and another reason to use
them here is that | was not able to check all the technical details of the more recent article.
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Definition and Proposition 6.1.24 (Strict morphisms are morphisms).Let f: G — H be a strict
morphism of groupoids. Then we defifieaph( f) to be the following graph frong to H:

Graph(f) :=Q := G X1, H,
where the fibre product is taken over the mgpso andr: H — H(©). The anchor maps are given
b
’ p: Q2 — GO, (g,m) — g and o: Q—HO, (g,m) — s(n).
The action ofG on Q2 is given by
Y(g,m) = (r(7), f(v)n)
forally € G, g € G andn € H such thats(y) = g and f(g) = r(n). The action ofH on Q is

given by multiplication from the right in the second component. The morpfismph(f)] given by
Graph(f) is denoted byMorph(f).

Proof. Straightforward calculations show thatis indeed a bimodule. The mags clearly invariant
under the action oK and open because the range maf{as open (see Lemnja 3.4.5). We have to
show thatH acts freely and properly of and transitively on its fibres.

e Let(g,n) € Qandy’,n" € H such thats(n) = r(n') = r(n") and(g,n)n" = (g,m)n". Then
this means)n’ = nn” and therefore = »”. SoH acts freely o).

e Consider the map fror « H to  x Q which maps((g,n),n’) to ((g,n), (g,m7’)). This is
composed of maps which are proper suclyas (g,g) and(n,n') — (n,7n’), and standard
arguments show that it is proper itself; hence the actioH @i (2 is proper.

e Letg € GO andn,n’ € H such thatf(g) = () = r(1). Definen” := n~'n'. Then
m" = n(n~'n') = (m~)n' = n'. Moreover,r(i") = s(n) = o(g,n) and(g,n)n" = (g:7').
SoH acts transitively on the fibres 6f. O

Definition 6.1.25 (Identity morphism). Theidentity morphism of is defined adlorph(Idg), where
Idg is the (strict) identity (morphism) og. It is the equivalence class of the graghwhere we
considerg to be a bimodule over itself, a&®) X g G Is equivalent taj. For obvious reasons we
will denote this morphism also ddg.

Definition 6.1.26 (Composition of graphs).Let 2 be a graph frong to H and()’ a graph fronf+
to K. Then we define of)” := Q x4 ' the structure of &-/C-bimodule as i 6.1.19. Then this
bimodule is a graph frorg to K, called thecomposition of2 and(’.

ThatQ)” really is a graph is proved in Appendix D.1 on page|295.

The definition of the composition of graphs lifts to equivalence classes. Hence we have also
defined thecomposition of morphismdhe locally compact Hausdorff groupoids, together with their
morphisms, form a category: Associativity can be shown by a lengthy series of standard arguments. To
see that the identity morphisms deserve their name le¢ a graph frong to . Then the left action
ug from G x Q to Q2 lifts to a continuous map frorg x¢ €2 to 2. This map clearly is a morphism of
G-H-bimodules. It is inverted by the map— [(p(w),w)] which is continuous. Similarly one shows
thatQ x4 H = Q.

Proposition 6.1.27.The assignment — Morph( f) is a functor from the category of locally compact
Hausdorff groupoids (with open range and source maps) with the strict morphisms as morphisms to
the category of locally compact Hausdorff groupoids (with open range and source maps) with all
(generalised) morphisms.

Proof. This is proved in Appendix D]1 on pafge 296. O
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6.1.6 Equivalences

LetG, H andK be locally compact Hausdorff groupoids with open range and source maps (to require
the range and source maps to be open is a natural condition because we want equivalences to be
morphisms).

Definition 6.1.28 G-H-equivalence).A G-H-bimodulef? is called aG-H-equivalence bimodule if
1. itis free and proper both agja and an*-space;

2. the anchor map: Q — G induces a homeomorphisms fram to G(9); and

3. the anchor map: © — H(® induces a homeomorphism frogh\ € to H(©),
We callG andH (Morita) equivalentand writeG ~y H, if such an equivalence exists.

Gathering what we have said above about the groufioitl xg Q we get the following funda-
mental example of an equivalence of groupoids:

Example 6.1.29.Let (2 be a free proper leff-space with open and surjective anchor mpaphen(2
is an equivalence and
g ~M Q_l Xg Q.

Proposition 6.1.30. Let 2 be aG-H-equivalence. Then the locally compact grouptid! xg Q
is strictly isomorphic tagH through an isomorphism that also respects the canorfitat-bimodule
structures of2~! x¢g Q andH.

Proof. This is proved in Appendix D]1 on pafge 296. O

Corollary 6.1.31. If Q is a G-H-equivalence bimodule, thénis the graph of an isomorphism from
G to H, the inverse having grapi—!.
The converse of this corollary is also true, so we have:

Proposition 6.1.32.G andH are equivalent if and only if they are isomorphic (in the generalised
sense). More precisely: {1 is a graph of a generalised isomorphism frghto H and(Y’ is a graph of
its inverse fronf{ to G, then( is aG-H-equivalence an€l—! is isomorphic td?’ asH-G-bimodules.

Proof. This is proved in Appendix D]1 on pafe 297. O

The following corollaries can also easily be obtained from direct calculation.

Corollary 6.1.33. Let(2 be ag-H-equivalence an€’ anH-K-equivalence. Theft” := Q x4 V' is

a G-K-equivalence.

Corollary 6.1.34. Morita equivalence defines an equivalence relation on the locally compact Haus-
dorff groupoids with open range and source maps.

Proposition 6.1.35. Let 2 be an equivalence frorg to H. Write (-, )3 for the H-valued inner
productQ ™! x50 © — H andg(-, -) for theG-valued inner producf2 x ;) ' — G. Then for all
w,w,w"” € Qsuch thatr(w) = o(w’) andp(w’) = p(w”) we have

(6.2) g(“}v wl> W'=w <w,a wu>7‘l-

Proof. We have

g(w,w'> w//<w/aw”>'}7—{1 = g<w,w') w”<w”7wl>7'( = Q'(waw/> W = w.

Multiplying this by (w’, w”)2, on both sides give$ (6.2). O
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6.2 The linking groupoid

6.2.1 Definition

Let G and’H be locally compact Hausdorff groupoids with open range and source mapQ. heeta
G-H-equivalence.

Definition 6.2.1 (The linking groupoid). Let £ be the locally compact Hausdorff spafe= G LI
QUO T UHandL© = g 1O, Define the range and source map<ads

G > v o~ rg(7) c ¢gO
_ Q 5 w = pw) e gO
LT g S T e ) —oe) € HO [
H > n — rr(n) c HO
and
g > v = sg(7) e g0
' Q > w — o(w) c HO
sc: L — L, Ol 5wl e o) =pw) e GO
H > 1 — spn) e HO

With these definitions,
LxL=0xG U GxQ U QxQ7 " U Q«H U Q%G U Q'O U HxQ™' U HxH.

Define a composition map froifd « £ to £ as the obvious map on the componahtsj, G2, QxH,
QO 1%G, H+Q7 ! andH+H; on Q1+ Q andQ+ Q! we take the factor map ontd—! xg Q and
Q x3 Q~1, which we identify withY andg, respectively. In other words, @~!,y) € Q~1xQ s
mapped to its inner produ¢i, w’)y, € H, which is the unique elementof + such that,’ = wn
(and similarly forQ«Q1).

Proposition 6.2.2. L is a locally compact Hausdorff groupoid with open range and source maps. The
inversion onZ is the map

G > v -yt eg

Q > w — wl e Q1
L—L, Ol 5 vl w c Q

H > n — nt € H

6.2.2 Full subsets

Recall from Definitior] 5.3J6 that a subgétC G(©) of the unit space of a locally compact Hausdorff
groupoidg is calledfull if Gy o GY = G, i.e., if every elemeny of G can be written as a produgty,
with ~; starting inU and~, ending inU.

Proposition 6.2.3. LetG be a locally compact Hausdorff groupoid with open range and source maps
andU C G a full open subset. The@‘g is a locally compact Hausdorff groupoid with open range
and source maps an@” is aG{/-G-equivalence.
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Proof. First of all, 2 := GY is an open subset ¢f such thagl C Q. The range map := r|q: Q —
U is open and surjective (sig8/ C Q). Also the source map := s|q: @ — G is open and
surjective sincé/ is full. gg acts from the left ang acts from the right o by multiplication. The
map(v,v’) — v~ 14/ is a continuous inner produ€t x, @ — G, sop is a principal fibration with
structure groupoid, and the magy,+') — vy~ is a continuous inner produg x , Q — gg, Soo
is a principal fibration with structure groupodt/. HenceQ is an equivalence. O

Corollary 6.2.4. LetG andH be locally compact Hausdorff groupoids with open range and source
maps and lef2 be ag-H-equivalence. Form the linking groupoitias above. Thet/ := G0 is a

full open and closed subset 6f2 and Lg can be identified witly. Sog is equivalent taZ. In a
similar fashion,H is equivalent to’.

6.3 The pullback of groupoids

Definition 6.3.1 (The pullback of a topological groupoid).ﬁ] Let X andY be topological spaces, let
G be a topological groupoid ove¥ and letp: Y — X = G(©) be a continuous map. Then we define
p*(G) to be the fibre product df x Y andgG overX x X = G0 x G0 i.e.,p*(G) is defined as the
pullback in the following diagram:

It can be realised as follows:

p*(G) 2 {(z,7,y) €Y x G x Y : s(v) =p(y), r(v) =p(2)}

and the unit space ¢f*(G) can be identified witty". The source and range function are
R:p*(G) =Y, (z,v,y) =z, S:p(G) =Y, (2,7y) — v

Moreover,
e:Y = p"(G), yr (y,e(p(y)),y).

The composition is given by
(z7,9) 0 (2,7, y) = (2,707, y)

and is defined if and only i = 2’. The inverse is given biz, v,y) ™! = (y,7 7}, 2).
There is a canonical strict morphism frgi(G) to G, appearing in the above diagram, which we
call p¢ or simplyp if the context is clear. Itis given explicitly bgz, v, ) — 7.

Proposition 6.3.2.@ If G andY are Hausdorff, second countable or locally compact, then so is
p*(G). If r, s andp are open, then so are the mafisand S.

*What we callp*(G) is calledGy in [LG99] andG[Y] in [Tu04].
195ee[[Tu04], Proposition 2.7 and Lemma 2.24, for more precise results.
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Example 6.3.3.Let X andY be topological spaces and jet Y — X be continuous. TheX itself
can be regarded as a topological groupoid oYeas we have seen in Example 3]4.1. We have

PHX)2Y xx Y.

The isomorphism from*(X) to Y xx Y sends(y’, z,y) to (v/,y), wherey,y’ € Y,z € X and
py) =z =py).

If G is a topological groupoid oveX andX is closed inG (which is automatic if; is Hausdorff),
thenp*(X) =Y xx Y is contained as a closed subgroupoighifg).

Proposition 6.3.4. Let X, Y, Z be topological spaces and Igtbe a topological groupoid ovek'.
Assumethgb: Y — X andq: Z — Y are continuous maps. Then there is a canonical isomorphism
fromg¢*(p*(G)) to (p o ¢)*(G) such that the following diagram commutes:

q*(p"i‘(g)) — (poq)*(9)
p*(9)

g

Proof. The groupoid;*(p*(G)) can be realised as
{(\ ¢, 7,y.2) - az)) =9, r(7) = (), s(7) = p(y), a(2) = y}.
The isomorphism tdp o ¢)*(G) is given by
(97 9,2) = (2,7, 2),
whereas its inverse is given by
(2',7,2) = (4(2)), 7, 4(2), 2). O

Proposition 6.3.5.1f G is a topological groupoid, the]idg(o) (G) = G where the isomorphism is given

by “Id”, the canonical madd, (G) — G. The inverse is given by — (r(7), v, s(7)).

Under certain conditions, the graphzefp*(G) — G is an equivalence:
Proposition 6.3.6. Let G be a locally compact Hausdorff groupoid ové&r with open range and

source maps. LeY be a locally compact Hausdorff space andpetY — X be continuous. The
strict morphisnp: p*(G) — G has graph

Q:=p"(0)Y x50 G =Y xg0 G ={(y,7) €Y x G : p(y) =r(7)}.
If p: Y — X is open and surjective, thenis an equivalence.

Proof. Becausd? is a graph, it is a principay-space and the mapis a surjective and open principal
fibration with structure groupoi@. Moreover,c: Q — G (y,~) — s(v), is open and surjective
because is open and surjective andis open and surjective. We have to show thas a principal
fibration with structure groupoigt(G).
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Define a map

() Qxe Q= p"(G), (y1,m), (2.72)) = (W1, M), (W2,72)) := (1,172 " v2)-
If (y1,71), (y2,72) € Qwith o(y1,71) = s(71) = s(72) = o(y2,72), then

((y1,7)s (W2,72)) - (2,72) = (1, Mm% S y2) - (2,72) = (Wi, 11%s v2) = (Y1, 71)-
This implies that the fibres of are the orbits of the*(G)-action on(2, i.e.,

A x,02=0 Xp*(G\Q Q.

We show that(-, -} is an inner product ofi in the sense of Definition 6.1.]11. To this end we check
the properties 2. and 4. of the definition: Lgt, ;) and(y2,y2) in © such thats(y;) = s(y2) and

(2,7,y) € p*(G) such thay = s((2,7v,y)) = p((y1,7)) = y1. Then
((z,%9) - (y1.m)s (12,72)) = ((z.9m): (2.72)) = (291173 5 v2)
= (2,79 (y1.1m73 L y2) = (2.7,9) (1. 1) (y2,72))

and
((y1.m), (1,m)) = (y1, M9 " w1) = (1, p(w1), 1) -

This shows that:, -) is an inner product. S@ is a free and proper* (G)-space and is a principal
fibration with structure groupoigh(G). O

Definition and Proposition 6.3.7 (The strict morphism f). LetG and™ be locally compact Haus-
dorff groupoids with open range and source maps and ke a graph fron@ to H. Write (-, -)4 for
theH-valued inner product frorf x , Q to H, i.e., (w,w’)# is defined to be the unique elementiof
such thato’ (W', w)y = w.

Define fo(w',v,w) := (W', yw)y for all (W', v,w) € p*(G). Thenfq: p*(G) — H is a strict
morphism extending: Q = p*(G)(©) — H(©,

Proof. o letw € Q. Then fo(w, p(w),w) = (w,p(w)w)y = (w,w)y = o(w). Hence
folygyo =0

o Let(w”,y,u), (W, v,w) € p*(G). Then
fal@" 7 @) ol pw) = (@A) (W qw) = (@ ()
<w”a 7l7w> = fﬁ(wﬂv 7/'73 w) = fa ((w”a ’/a w/)(w/a s w)) :
So fo is a homomorphism of groupoids.

e Since the inner product is continuous, it follows thfatis continuous. O

Proposition 6.3.8. LetG andH be locally compact Hausdorff groupoids with open range and source
maps and lef) be a graph frong to H. ThenMorph( fo) makes the following diagram commutative

(6.3) p*(9)

Morph(p)
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Proof. The composition oGraph(p) and(2 is given by(2 x g G) xg Q2 = Q x50 ©2 and the graph
of fq is given byQ x,,0) H = Q * ‘H. Define the map

L QxH—Qx,Q, (w,n) — (w,wn).

Note that, since is a principal fibration{2 x, Q = Q xq 3, 2. AsQ is a free and propek{-space,
the map is a homeomorphism.

The action ofH on§2 x5 H is given by multiplication from the right in the second component.
The action ofH on§ x ;) Q is given by(w, w’)n := (w,w'n). Now

Hw,mn = (w,wn)n’ = (w,wnn’) = t(w,n’)

forallw € Q, n,n' € H such that(w) = r(n) ands(n) = r(1).
The action ofp*(G) onQ x5 H is given by

(w/7 7, w)(wv 7]) = (wla fQ (U.)/7 Y, W)W) = (w/7 (wlv ’YW>77)
The action ofp*(G) onQ x4, Q2 is given by(w’, v,w)(w,w") = (W', yw"). Now

and
(W ysw)(w,m) = ¢ (W' (W' w)n) = (W, (W' yw)n).
Because) (W', yw) = yw by definition, we have thus shown thatespects the bimodule structure.
O

Corollary 6.3.9. Every generalised morphism can be written as the composition of an equivalence
and a strict morphism.

Remark 6.3.10. The triangle|[(6.8) can be completed to give the following square:

Morph (F;
(6.4) p(G) P v (1)
Morph
Morph(p) ph(fo) Morph(o)
(€]
g H

where the top arrow is given by the strict morphism
Fo: p*(g) - J*(H)v (w/? s w) = (wlv fQ(w,a Vs w)a w)'

Q2 is an equivalence if and only fiy, is a strict isomorphism. Note that this implies that every equiv-
alence can be written as a product of three very special equivalences, nhamely an strict isomorphism
and two equivalences stemming from the pullback construction described above.

TL@ has shown that if2 is an equivalence, thew (G) = G x (2 x H), i.e.,p*(G) is the iterated
crossed product of groupoids (which we have not defined here). It follows by symmetsy thét =
(G x ) x H. Since the two different iterated crossed products are isomorphic, there is an induced
isomorphism betweep(G) ando™(H), which turns out to be the one we have given above.

115ee[[Tu04], Proof of Proposition 2.29.
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6.4 Locally compact groupoids with Haar systems

We have used Haar systems on groupoids already in the preceding chapter when we discussed the
descent. We will now analyse how Haar systems behave under the constructions we have introduced
above: Can one lift Haar systems to equivalent groupoids, to the pullback of a groupoids or to linking
groupoids? To be able to discuss these questions systematically, we will introduce Haar systems not
only on groupoids but also on spaces on which groupoids act.

6.4.1 Haar systems

Let G and’H be locally compact Hausdorff groupoids.

Definition 6.4.1 (Haar system).A left Haar system on a leff-spacef2 with (open and) surjective
anchor map is a faithful continuous fie (M%) gego) of measures ofe overG(©) with coefficient
mapp such that

(6.5) Wegpec: [ L P ) = / PO D).

Similarly, right Haar systems are defined.

Definition 6.4.2 (Haar system ong). Using thatG acts on itself on the left, we define a left Haar
system on the groupoid to be a left Haar system for this action.

Note that such a Haar system need not exist; i§ a locally compact Hausdorff groupoid admitting
a Haar system, then it follows from Lemina BJ2.4 that its range and source maps are open.

Example 6.4.3.Let X andY be locally compact Hausdorff spaces andgety” — X be an open
continuous map. Ol x x Y there is a structure of a locally compact Hausdorff groupoid with unit
spaceY” as we have seen(in 3.4.4.

1. Let(us)zex be a faithful continuous field of measures Bnover X with coefficient mapp.
For everyy € Y and all Borel subsetd of Y x x Y, define

A(A) = pyy({y' €Y 1 (y,9) € A})
Then(\Y),ecy is a left Haar system ol x x Y.

2. Conversely, if\ is a left Haar system ol x x Y, then this meana? = X\¥' for all (y,y) €
Y xx Y. If we thus define., := \Y for everyy € Y such thap(y) = = and ifp is (open and)
surjective, therju, )< x is a faithful continuous field of measures Brover X .

Proof. 1. To see thah is a continuous field of measures, note thas the same ag*(u), where
the pullbackp* (1) is defined as if B.2]8. This also shows thais faithful. Let us check the
invariance property (6]5). L€/, y) € Y x x Y andy € C.(Y x xY). By definition,r(y/, y) =
y" ands(y’,y) = y; moreover, the fibréY x x Y)Y is the set{(y,v") : v" € Y,p(y") = p(y)}
and can thus be identified witt},,). We have to show

/ oW y) - (v, y") AN (y, ") = / ey, y") A (Y, y").
y"€Yp) y”er(y/>

But this is trivial since both sides are equa'ﬁﬁeypm oW y") Ay (8")-

?See Definition B.2J1.
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2. We have to show that is a faithful continuous field of measures. It is easy to see ghat
is faithful once we have established that it is continuous. To see the lattar, deC.(Y).
Define x(y,y') := x(v/) for all (y,3') € Y xx Y. Then the support of is proper and
A(X)(y) = w(x)(p(y)). The functionA(x) is continuous and constant on the fibregppto
w(x) is continuous. Hencg is continuous. O

Definition and Proposition 6.4.4 (Haar systems ori{ give Haar systems or2). Let (2 be a graph
from G to H and letH carry a left Haar systemy. Then we define a faithful continuous field of
measure@%)gegm) onQ overG(® with the canonical projectiop as coefficient map by

Mo (i) = / o(m) AT ()
neHo W)

forall g € GO andy € C.(Q), wherew is some arbitrary element 6f such thatp(w) = g. This
continuous field of measures is a left Haar systerf2dar the action oiG.

Proof. First we prove thahq () is well-defined. Note that the defining integral makes sense because
the action ofH on (2 is proper; we have to check that it is independent of the choice. of et

w,w’ € Qwith p(w) = g = p(v'). Because is a principal fibration with structure groupoid, we

can find a unique elemente H such that,’ = wr. Now

[ el = [ i) = [ el g
nEHU(WI) 77/67'{‘7(“’,) neHo’(w)

by the left invariance of\;. So the integral defining,(¢) is independent of the choice af €

-1
p(9)-

We now show thakq, is continuous. Instead of making all the calculations by hand we are going to
give some background information which shows how the Haar system can be obtained systematically.

Consider the following diagram

2 14

H Q+xH Q
Tl lﬂl \LP
HO ~— QO > gl0)

OnH there is, by assumption, the faithful continuous figjd of measures over(9) with coefficient
mapr. This induces a faithful continuous field of measukesy := o*(Ay) onQ x H overQ with
coefficient mapry, the projection onto the first compon@tNote that for allw € 2 we have

Gar () = / o(w, 1) AL ()
r]EHU(W)

for all ¢ € C.(Q x H). This integral can be extended to all functiopson 2 « H with proper
support (here “proper support” means that for all compact suliseit(2 the setsupp ¢ N wl‘l(K)

is compact). Ifp € C.(2), theny o i is a function o) x H with proper support (because the action
of H on Q) is proper). Moreover, ifp € C.(Q2), thenXg,,, (¢ o 1) depends only omp(w) (that is
what we have shown in the first part of the proof). The map- g, (¢ o p) is continuous on
Q) and constant on the fibres pf Hence there is a unique continuous functioon G(©) such that
Aasr(pop) = 1o p. This function has compact support and equal§p). Hence\g, is a continuous
field of measures. It is faithful. O

'*Sed B.2.B for the definition of the pullback of a continuous field of measures.
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The following proposition is straightforward:

Proposition 6.4.5 (The Haar system on the linking groupoid) LetG andH carry left Haar systems

Ag and Ay, respectively. Lef2 be a Morita equivalence betweénandH. Then the Haar system on

H induces a left Haar system for tifeaction on(2, and the Haar system o induces a left Haar
system for the left action @ onQ~!. Together, these four Haar systems define a left Haar system on
the linking groupoid.

We have a partial inverse of the construction presentgd in|6.4.4. There, a Haar system on the “range
groupoid” of a graph between groupoids induces a Haar system on the graph. Vice versa, a Haar
system on a graph induces a Haar system on the range groupoid, at least in the case of a Morita
equivalence:

Definition and Proposition 6.4.6. Let (2 be a Morita equivalence betweéhandH and let\g be
a left Haar system of2. Define a left Haar systeny, on H as follows: Ifw € Q, thenH°“) is
homeomorphic tdw’ € Q : p(w') = p(w)} = p~(p(w)). On this fibre we take the Haar measure

)\g(“’). On functionsy € C.(H) this amounts to the following integral:

/ () AN () = / F({w,w')) X (W)
neHs ) w'ep~t(p(w))

forallw € Q, where(w, w') denotes the unique elemepnof H such thaton = w'.

Proof. Consider the following diagram

0 bk Qx,0 H
G© 5 Q = H(0)
Now proceed as in the proof pf 6.4.4. O

6.4.2 Haar systems and pullbacks

Lemma 6.4.7. Let G be a topological groupoid acting on the left on a topological sp&ceiith
anchor mapp. Letj: G« Q — GO, (y,w) — r(v). Then, for every € GO, there is a canonical
homoeomorphism betwegn!(g) C G * Q andr—!(g) x p~(g) € G x Q.

Proof. For every(y,w) € 5~ !(g), the elemen{y, yw) isinr~1(G) x p~'(g). On the other hand, if
(7,w') € 77Hg) x p~Y(g) then(y,y ') € p~1(g). The two maps are obviously continuous and
inverses of each other. O

Definition and Proposition 6.4.8. Let G be a locally compact Hausdorff groupoid with left Haar
system) and let(2 be a left HaaG-space with anchor map Letw € Q. Then we define a measure
p onp*(G) by
wie) = [ [ ey ) v ) W)
w'epL(p(w)) JyeGP)

forall ¢ € C.(p*(G)). The family (u*).cq defines a left Haar system @i(G).
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Note that the measuyé’ on p*(G) has support

R ({w}) ={(w,7,e) s v€G,w €Qpw) =r(),p(w) = s(7)}

that can be identified with(v,w') € G *xQ : s(y) = p(w’)} which can, by the preceding lemma,
further be identified withr—!(p(w)) x p~1(p(w)). This space can be equipped with the measure
AP(@) Ag(‘”), and this measure correspondstounder the identification.

The Haar system defined in the preceding definition could also be obtained by defining a left Haar
system org x €2, sinceg * 2 implements a Morita equivalence betwegandp*(G).

Corollary 6.4.9. LetG and™ be locally compact Hausdorff groupoids carrying left Haar measures.
LetQ be a graph fromG to H. Then( carries a left Haar system Hy 6.4.4 and henc¢g) also
carries a canonical Haar system.

6.5 The functor p

Let Y and X be locally compact Hausdorff spaces andgetY” — X be continuous, open, and
surjective. LetG be a locally compact Hausdorff groupoid ov&r We denote the canonical strict
morphism fromp*(G) onto G also byp. In this section we are going to investigate the relationship
between the category gFBanach spaces and the category;)-Banach spaces.

If Eis a u.s.c. field of Banach spaces oy thenp*(E) is not only a u.s.c. field of Banach
spaces ovel’, but also aY x x Y-Banach space. As a consequence, a condition on the linear op-
erators betweep*(G)-Banach spaces which is natural in our context’is y Y-equivariance. Ev-
ery continuous field of linear maps betweeiiG)-Banach spaces which jg (G)-equivariant is also
Y xx Y-equivariant (recall that” x x Y can be found as a closed subgroupgifX) in p*(G), we
justidentify somey/, y) € Y x x Y with (v/, p(vy),y) € p*(G)). Our goal is to show that the pullback
functorp* implements the following one-to-one correspondences:

1. G-Banach spaces correspondt@G)-Banach spaces;

2. continuous fields of linear maps betwegiBanach spaces correspondfox x Y-equivariant
continuous fields of linear maps betwegrG)-Banach spaces;

3. G-equivariant continuous fields of linear maps correspongt {¢)-equivariant fields of linear
maps.

We reach this goal by defining a functarwhich invertsp*; it points in the opposite direction, from
the p*(G)-Banach spaces to tigBanach spaces. The functaris obtained by “factoring out” the
action of theY” x x Y'-action on the givep*(G)-Banach space.

For technical reasons, we assume that there exists a faithful continuous field of meastires on
over X with coefficient magp. From Exampl¢ 6.4]3 we know that this condition is equivalent to the
condition that the locally compact Hausdorff group®idx x Y admits a left Haar system. Note that
such a faithful continuous field of measuresYr(and hence a Haar system dnx x Y) exists if
Co(Y)is separabl@ In the situation we are interested in, the sp&ces actually a graplf) from G
into some other locally compact Hausdorff groupdidWe have learned above that suchtaoarries
a canonical left Haar system’H carries a left Haar system, so the existence of a faithful continuous
field of measures ol = 2 will be automatic in this case.

This can bee deduced from Proposition 3.9in [Bla96].
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6.5.1 Thecasg = X andp*(G) =Y xx Y

We will first consider the case thétis the trivial groupoidX and thap* (G) is therefore isomorphic
toY xx Y. The following is proved in Appendix D2 on page 300; the proof uses the existence of a
faithful continuous field of measures éhover X.

Definition and Proposition 6.5.1 (The u.s.c. fieldy E). Let E be aY x x Y-Banach space with
actiona. Assume that there exists a faithful continuous field of measurés over X. We define a
u.s.c. field of Banach spacgd” over X as follows: For every: € X, define

(ME)y = { (ey)yEYz ‘ Vy,y' € Yo ey € By A Ay ) (ey) = ey’} c H E,y,
yeYy

where we take theap-normon[ [, ., E,. Note thaf(p E),; is a closed linear subspace of the product.
Sincea is afield of isometries, it follows that the norm of a family,),cy, € (pE), equals the norm
of eache,, y € Y,; hence(p E), is isometrically isomorphic t&, for eachy € Y, (note thaft” x x Y’
acts freely ort).

To define the structure of a u.s.c. field of Banach spacesXwan (p £, ).cx, we set

A:=Ap:= {5 eT(YVE)|Y(y,y) €Y xx Y : agyy) (6(y)) = (5(y’)}.

In other words:A consists of those sections Bfwhich are invariant under the actionBfx x Y. If
6 € A andx € X, then define

(210)(x) == (6(y))yey, € (PE)x
Now
C:={pm():6e A}
satisfies conditions (C1)-(C4), $p F, T') is a u.s.c. field of Banach spaces ovér

Definition and Proposition 6.5.2 {, for morphisms). Let £ andF beY x x Y-Banach spaces. Let
T be anY x x Y-equivariant continuous field of linear maps frdiito F'. Define for allz € X and
e = (ey)yey, € (ME)a:

(1T), () := (Tyey) ey, € (F), -

Thenp T is a continuous field of linear maps framE to p F'. If T' is bounded, thefip,T'|| = ||T]|.

Proof. Let « andg denote the respective actions¥ofx x Y on E andF'.

First, p/T is a well-defined family of linear operators becauke,\(Tye,) = T.(a(. y)ey) =
T,e,. The statement about the norm is obvious, so we only have to care about the continpuity of
Let{ € I'(X, pF) = mAg. Then thereis @ € Ag such thapd = (. NowT o § € Ap because
Bzy) (Tyo(y)) = T y)0(y)) = T20(2) forall (z2,y) € Y xx Y. We have

(pT) opid =pi (T 09),

because
(2T) ((pd) (x)) = (1 T) (6(¥))yey, = (Tyd(¥))yey, = (o1 (T ©9)),
forall z € X. In particular,(pT) o ¢ € pAr = I'(X, piF'). Hencep T is continuous. O
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Proposition 6.5.3. The mapstl — pF andT — pT define a functor from the category Bf x x
Y-Banach spaces with the bounded equivariant continuous fields of linear maps to the category of
u.s.c. fields of Banach spaces ovérisometric and linear on the morphism sets and respecting the
tensor product.

Proof. This is proved in Appendix D]2 on pafge 301. O

Proposition 6.5.4. The functorp, from the category ot” x x Y-Banach spaces to the category of
X-Banach spaces is an equivalence which invgttanore precisely:

1. Define for allY” x x Y-Banach space& and ally € Y the linear map
Ifi (P*PE), = (D E),q) — Ey, (ez)zeyp<y) — Cy-
Then
If: p'mE~FE
is a natural isometric isomorphism, compatible with the tensor product (=“multiplicative”).
2. For all X-Banach space# there is a natural multiplicative isometric isomorphism
JE: pp*E~ E.

To defineJ”, let us analyse the action of Y x x Y onp*E and the fibres opip*E: The
action « is the pullback of the trivial action ok on E, so for all (z,y) € Y xx Y we have
P (E): = By = Eyy) = p"(E)y anda(,,) = Idg, . Soifz € X, then the elements of
(pp*E), are of the form(e),cy, withe € E,; so it makes sense to define

JIE: (p'p*E)x - E$7 (e)yEYI = €.
Proof. This is proved in Appendix D]2 on pafe 302. O

6.5.2 The functorp, for general G

Actions of groupoids on fields of Banach spaces are defined using the pullback construction. It is
therefore advisable to study the interplay of the fungiaand the pullback:

Proposition 6.5.5. The functorp, commutes with the pullback in the following sense: XéandY”’

be locally compact Hausdorff spaces andgetY’ — X’ be continuous, open and surjective. Let
fy: Y’ — Y be a continuous function. Assume that there is a funcfiprirom X’ to X such that
the following diagram commutes

Y/L)Y
, Ix
X —X

Note that this map fronX’ to X is unique with this property and that it is continuous. The map
Yxx Y =Y xxY, (v5,v1) — (fy(¥h), fy(v})), which we also callfy, is a continuous strict
morphism.

There is a natural isomorphism of u.s.c. fields of Banach spaces¢ver

fx (n(E)) = pi (£ (E))

forall Y x x Y-Banach spaceg&’. This natural transformation is isometric and multiplicative.
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Proof. First note thap*p £ is naturally isomorphic t&2. So fyp*p E is naturally isomorphic to
[y E. But fyp*mE = p™* fxpmE. So f{ E is naturally isomorphic to’ f5x p E, and hence| f- E is
naturally isomorphic tp"™ f%p E, which is naturally isomorphic tgp E. All the isomorphisms
are isometric and compatible with the tensor produciy|$¢ E is naturally isometrically and multi-
plicatively isomorphic tof y p ' .

An explicit isomorphism(fxp E)r = (nE) £, (o) 10 (91 f3- E) IS given by

(66) (ey)erfX(m/) = (efY(y/)>y’€Y1/., ’ -

Definition and Proposition 6.5.6 (TheG-action onp E). Let E be ap*(G)-Banach space with action
a. Then we define g-action onp,(E) as follows: LetR, S: p*(G) =Y x,, G X, Y — Y be the
range and source maps. Then the following diagrams commute

POy G Ty
Pi ) lp PJ/ S J/p
g g X

This means that*(p E) = pi(S*E) andr*(p E) = pi(R*E). Now pi(«) is an isometric isomor-
phism fromp,(S*E) to py(R*E), and this defines an actigno onp, E. It has the property that for all
yEG, e= (ey)yGYs (pIE) ()1 andy S Y(’Y)

(6.7) (Pra)y(€) = (A(zpy ) €0) v,y -

Proof. If we know thatp,« satisfies equatiofi (6.7), then we can check fibrewisethais an action

G (actually, one can také¢ (6.7) to define the actiom, but then one has to check that this gives a
continuous field of isomorphisms which is automatic in our approach): Let therefofec G such
thatr(y) = s(7'). Lety € Y,y ande = (ey)yev,,, € (P1E)s(y)- Then

((p!a)v’v(€>) = Qzyvy)Cy = Qzqyy) Xy ) €y = Yzy) ((p;a)v(e)) = (pa)y ((ma),(e)),

forall z € Y, (herey’ is an arbitrary element of with p(y) = r(v) = s(7')). So(pa)y, =

(pra)yr (prcv) .
To show that the familya indeed satisfies equatidn (.7), we make the identifications of fields

p(S*(E)) = s*(p(E)) andp(R*(E)) = r*(p(E)) visible. Lety € G ande = (ey)yev,,, €
(ME)s(y)- Thise is identified via [(6.5) with(ey) . yy)eprg) € (11(S*(E))), (usea’ = v, ¢ =
(27’7>y)! fX =S ande =S5, Son(Z77a y) = y) Now

(Pra) (€y) (2 epr(g) = (O‘(Zmy)ey)( 2rw)er Q) € (P (B (E))), -

The identificationp; (R*(E)) = r*(pi(E)) maps this to(a .., )ey) () € 7 (1(E)),, wherey €
Yy, is arbitrary. This show@.?) O

Proposition 6.5.7. If E and F' are p*(G)-Banach spaces and: £ — [ is a p*(G)-equivariant
continuous field of linear maps, therl": ;£ — pi F' is G-equivariant.

Proof. ThatT is equivariant means that

s+(B) 2 5+(p)

e 17
R (1)

R*(E) “ L R*(F)
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commutes. Sinceg is functorial, where we mean this time pythe mapp: p*(G) — G, this implies

p (57(E) 2L (5 (F))
ip!a p(R*(T)) lp!ﬂ
p (R*(E)) p (R*(F))

The identification that was used to define the actipnsandp:5 is natural by Proposition 6.5.5, so
the following square commutes

s™(p(T))

s*(p(E)) s*(p(F))
lpla lplﬁ
P () 2 ()
This means that(7") is equivariant. O

Proposition 6.5.8. The functorE — p E' is an isometric multiplicative functor from the category of
p*(G)-Banach spaces to the categorydbBanach spaces.

Proof. We know that it is a well-defined isometric functor. That it is multiplicative follows from the
fact that the natural isomorphism[in 6.5.5 is multiplicative. O

Theorem 6.5.9.The functomp, from the category g5* (G)-Banach spaces to the categorydoBanach
spaces is a multiplicative equivalence which inverts

Proof. We have to show that the natural transformatiéhs- I” andE — J¥ appearing i} 6.5]4
arep*(G)- andG-equivariant, respectively.

1. I¥ is p*(G)-equivariant: Let E be ap*(G)-Banach space with actiom and lety € Y. Let
e = (e2)zev,,, € P'PE)y = (ME)yy) Let(y',v,y) € p*(G). Note thatp(y') = r(v) and
p(y) = s(y). We have

(PP ) (€2)zev, ) = (Pr) (€2):ev) = (O‘(Z’my)ey>z'eym>'

E E . . .
L7 (e). SoI” is equivariant.

17 maps this tay(, -, e,, which happens to be(, .,

2. JE is G-equivariant: Let FE be aG-Banach space with actianandz € X. Lete € E, so that
(€)yey, € (Mp*E),. Lety € G such thats(y) = . Findy’ € Y such thap(y’') = z. Then

(p!p*a)v (€)yey, = <(p*a)(zy%y’) 6) - (ave)zeyr(’v) '

2€¥r()

JE

() Maps this tax,e = ayJE((e)yey, ), soJF is equivariant.

O]

Proposition 6.5.10.Let Z be another locally compact Hausdorff space andyletZ — Y be open,
continuous and surjective. Assume that there is a faithful continuous field of measufesvenY .
Then(poq); andp;oq both invert(pog)* = ¢* op*. So(poq), andp,oq are naturally multiplicatively
isometrically isomorphic as functors from theo ¢)*(G)-Banach spaces to thg-Banach spaces.
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Proof. Note that there is a faithful continuous field of measuresZoonver X: If p is a faithful
continuous field of measures dhover X and if v is a faithful continuous field of measures @n
overY, theny — u(r(y)), as a map fronC.(Z) to C.(X), defines a faithful continuous field of
measures o over.X. ]

6.5.3 The functorp, for Banach algebras, etc.

The functorp, is multiplicative and contractive on the morphism sets. The multiplicativity gives
us a way to define the functor also for equivariant fields of bilinear maps. We can therefore also
define aG-Banach algebrg, A for p*(G)-Banach algebrad andG-equivariant homomorphismsy

for p*(G)-equivariant homomorphisms of Banach algebras. Similarly, we can defihéor p*(G)-
Banach modules ang(G)-equivariant homomorphisms of Banach modules. Moreovefr, i a

Y xx Y-equivariant continuous field of linear operators betwgéf@)-Banach module€’z and

Fpg, thenp T is a continuous field of linear operators betweeh,, 5 andp F}, g (whereB is some
p*(G)-Banach algebra). All this culminates in the following definition:

Definition 6.5.11. Let B be ap*(G)-Banach algebra and Iéf = (E<, E~) be ap*(G)-BanachB-
pair. ThenpE = (pE<, pE~) is aG-Banachp, B-pair. If F' is anothep*(G)-BanachB-pair and
T € U3°(E,F)isY xx Y-equivariant, themT = (pT<, pT>)isin LG (p E, piF).

This defines a functor form the category6f G )-BanachB-pairs to the category @f-Banachp, B-
pairs. It inverts the functgr* and respects grading automorphisms.

As a variant of Proposition 3.3.22 one proves:

Proposition 6.5.12.Let B be ap*(G)-Banach algebra and leE' and F' be p*(G)-BanachB-pairs. If
T e K§°(E,F)isY xx Y-equivariant, themT € K°%(p E, piF).

It is obvious that the functay, is compatible with the direct sum of (G)-Banach spaces and of
G-Banach spaces and that the same is true for Banach modules and Banach pairs. Beécalse
compatible with the (balanced) tensor product, we obtain:

Proposition 6.5.13. Let B and C be p*(G)-Banach algebras and le¢: B — C be ap*(G)-
equivariant homomorphism. Lét be a rightp*(G)-BanachB-module. Them,Cy is isomorphic to
Cx, pC = pi(C @y Cy) is isomorphic tgnC = pC @ x Cx and, finally,p (¢.(E)) = p(E @5 C)
is isomorphic ta(py) . (p E).

Moreover,p, is also compatible with the construction of trivial fields o{@&r1]; in particular, we have:

Proposition 6.5.14.Let B bep*(G)-Banach algebra. Thep (B0, 1]) is isomorphic to(p B)[0, 1].
The isomorphism in the fibre over € X sends(8y)ycy, € pi(B[0,1]), t0t — (By(t))yey, €

(p!B)[Ov 1]96-

6.5.4 The functorp, and KK"*"-cycles

This section is a translation of Section 7.2[in [LG99] into the language of Banach algebras; in partic-
ular, the method to make the operator dK*"-cycle equivariant is borrowed from Lemma 7.1 of
that article.

Let A and B be p*(G)-Banach algebras. Lﬂ?i‘?ngY(A, B) be the class of those cycles
(E,T) in E';f?g)(A, B) such thatT" is Y xx Y-equivariant. In an obvious manner, we define

KK Y (4, B).
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Proposition 6.5.15.Let (E, T) € E)!i2" " (4, B). Then

p(E,T) = (pE, pT) € EF" (p A, pB).

Proof. Leta € I'(X,pA). Then we can find @ € T'(Y, A) which is invariant under the action of
Y xx Y such thapia = a. Now

la,pT] = [pa, pT] =p [a, T| € KpG (mE)

where we have used the fact that the actiorm @ p F is p, of the action ofa on E. Similarly,
a(pT?—1) is locally compact. For the third condition that we have to check use Propasitioh 6(5.5.

Up to isomorphism of cyclegy invertsp* as a map fI’OI”ﬂEEan(pgA, mB)to E;f?g”)/XXY(A, B). And
up to isomorphismy, commutes with the push-forward and the pullback of cycles. It also commutes
with homotopies. We therefore get:

Proposition 6.5.16. The mapp, defines an isomorphism

pr KKZf?g’))/XXY (A, B) = KKg™" (nA, pB),
invertingp*.

Lemma 6.5.17. Let there exist a faithful continuous field of measurestoover X and let X be
o-compact. LetFE,T) € ng?g)(A, B). Then there is an odH x x Y'-equivariant linear operatof’
on E such thai (T —~T) and (T — T')a are locally compact for alk, € T'(Y, A). In particular, (E, T)
is homotopic tq E, T'). The construction is compatible with the pullback and hence with homotopies

of cycles.

Proof. Let i be a faithful continuous field of measuresYrover X. Then the locally compact Haus-
dorff groupoidY x x Y admits a left Haar system. Becauseés o-compact, we can find a cut-off func-
tiorﬁc: Y — [0,00[forY xx Y, i.e., acontinuous functiononY such thag[yeyz c(y)dpz(y) =1

forallz € X andp~!(K) N supp c is compact for all compadk C X.
Define
T, = / c(¥) ey, Ty oy ) () (Y)
Yo

for all y € Y, wherea denotes the action ¢f*(G) (and hence also df x x Y) on E (actually, the
formula makes sense for the right-hand side of the pa@ind should be interpreted properly for the
left-hand side). This definition is a special casg of 7.2.5: The grougoid; Y is proper in the sense
of Definition. Hencd is aY x x Y-equivariant bounded continuous field of linear operators on
E. ltis obviously odd. Just as in Lem2.6 one can showifiat- 7) and(T — T)a are locally
compact for alk € T'(Y, A). O

The preceding lemma implies the following proposition.

Proposition 6.5.18. The obvious homomorphism frcﬂﬁK;’f?é})/XXY(A, B)to KK';?;‘?Q) (A, B)isan
isomorphism.

Corollary 6.5.19. p, is a well-defined isomorphism
pr: KK, (4, B) = KKg™ (mA, piB),

invertingp*.

15See [Tu99] for a proof for the case th@tis o-compact. Cut-off functions are also discussed at the beginning of
Chaptef ¥ of this thesis.
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6.6 The pullback along generalised morphisms

Let G andH be locally compact Hausdorff groupoids (with open range and source maps) carrying left
Haar systems. Note that the existence of a left Haar systeh ionplies the existence of a left Haar
system on each graph froghto H by[6.4.4.

6.6.1 The pullback of Banach spaces

Definition 6.6.1. Let Q2 be a graph frong to H with anchor map® ando. Then f, as defined in
is a strict morphism from* (G) to H, which extendsr: @ — H(®). For all H-Banach spaces
F, define

Q" (E) = pufiy (E).
This will also be written ag,c* E. The strict homomorphisryi, : p*(G) — H is defined iff 6.3]7.

If ©is as above, thelv — Q*FE is a functor from the category 6f-Banach spaces with the
H-equivariant (bounded, contractive) continuous fields of linear maps to the categgripafach
spaces with thg/-equivariant (bounded, contractive) continuous fields of linear maps. It commutes
with the tensor product and has the (characterising) propertytli#tE is naturally isomorphic to

fo(E).

Proposition 6.6.2. Let X be another locally compact Hausdorff groupoid carrying a left Haar system.
LetQ) be a graph frong to H and 2’ a graph from* to K. Then

Qo ()" = (Axy Q)
as multiplicative functors from thi€-Banach spaces to thg-Banach spaces.

Proof. Let p ando be the anchor maps ¢t and o’ ando’ those of()’. Let m; andm, denote the
projections from2 x ;) €’ to the first and second component. Ass open and surjective, sois.
Write p for the (open and surjective) quotient map fréh ) €’ ontoQ” := Q x4, ', and denote
the anchor maps @’ by p” ands”. Consider the diagram

Q X14(0) Q
"
T
Q Q
p\ i p\
() HO O

This a diagram just for the unit spaces, but of course there is a corresponding commutative diagram
also for the groupoids themselves:

(pom)*(9)

|

p*(G) P (H)

\L \l, far
p P
g H K
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Here the strict morphisnf, is defined as follows: It sendgws, wh), 7, (w1,w})) € (pom)*(G) to
(Wh, folwa,y,w1), ). Itfollows that

0o (V) = pro (fao ) o fiy = o ((mhro fa) o fiy = (pomhro (foro fo)

On the other hand, also the following diagrams commute

Q X000y (pom)*(G) = (p"op)* (G)

farofa

poT1 o’omy poT

G KO g K

To check thatfo o fo = for o p let ((we,w)), 7, (w1,w))) be an element ofp o 71)*(G). Then
far(p((we,wh),, (w1,w)))) is defined to be the unique elemente K such thatjws, w)lk =
v[wi, w]]. Also fo(ws,~,w:) is the unique element € H such thatven = yw; and for (W), n, w))
is the unique element € K such thatvbx’ = nw}. Now

[CL)Q,W&]H, = [w27wé’€/] = [w2777wi] = [w2777w/1] = [’levw/l} = 7[“11""/1]7

sok = «/, which is what we wanted to verify.
So it follows that

*

()" =pl' o for = ((pom)op*)o (p! o (fszf o fg)*) >~ (pomy) o (fQ/ o fQ) . O

Proposition 6.6.3. Let f be a strict morphism frorg to H. ThenGraph(f)* = f*. In particular we
haveG* = Idg.

Proof. Write Q for Graph(f) = G(© X400 H and denote the anchor maps{aby p ando. Then
p*(G) = Q xg0 G Xgo Q and fa: p*(G) — H sends(g,n,7,¢',7') o~ f(y)y. If Eis an
H-Banach space ange G\, then the fiorQ* £, of Q*E atg is, by definition, given by

{ (e(g,n))(gm)eg ‘ V(Qﬂ%ﬁ],gﬂ?/) € p*(g) D egm € (U*E>(g,n) A €gm) — (9777797977]/)6(57,7]’)}'

Analysing the action op*(G) on o*(E) gives (g,7,7,9',m")e = (n~1f(7)n')e for all elements
(9,m7.9',m") € p*(G) ande € (0" (E))(yw) = Esqyy- We can therefore simplify the above
expressions:

(@ E)y = { (elom) (gupeer | ¥ € IO 2 ey € Bugy Aeign) = nln'e(gm}-
Forallg € G, the fibre off*E atg is simply (f*E), = Ey (. If e € E},), then define

P,4(e) == (77716)(!],,7)69 € (E),.

This defines an isometric bijection betwegft &), and (2" E),; the inverse send, .,)) (gm0 tO
€(g,f(9)) € Er(g)- It can be shown thab is ag-equivariant continuous field of isometric linear maps
and that this construction is compatible with the tensor product. O
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Corollary 6.6.4. Let() be an equivalence betweénand . ThenE — Q*F is an equivalence of
the categories of{-Banach spaces ang@-Banach spaces, isometric and linear on the morphism sets
of equivariant bounded continuous fields of linear maps and compatible with the tensor product.

6.6.2 The pullback of KK"*-cycles along generalised morphisms

For the rest of this chapter, assume that all the unit spaces of the appearing groupoidsampact.

Because the functde* is compatible with the tensor product, we can defitgRanach algebra
Q* A for every’H-BanachA. This defines a functor form the categoryl@fBanach algebras together
with the H-equivariant homomorphisms to the categorgeBanach algebras with th@-equivariant
homomorphisms. If2 is an equivalence, thel* is an equivalence of these categories.

Similar statements are true for Banach modules and equivariant homomorphisms of Banach mod-
ules, and for Banach pairs and equivariant homomorphisms of Banach pairs. Nof¥ tisatot
defined for linear operators between Banach modules or between Banach pairs. The problem is that
[ makes sense for linear operators, but the resulting operator betweep;G&8anach modules is
not necessaril§? x , Q-invariant. Sop; of this operator cannot be defined in general.

However, we still get a map on the level BiK-groups because in the intermediate step, we can
makethe operator of th&KK"*"-cycle Q x, Q-invariant (recall that we have assumét to be
o-compact). This was done in Lemma 6.5.17, which enables us to define the level ofkK KP2"-
groups.

Definition 6.6.5. Let Q2 be a graph frong to . Then Theorerp 3.6.11 gives a homomorphism
f&: KK (A, B) — KK, (f6A, f&B).
Corollary[6.5.1P gives us an isomorphism
pr: KKDo) (f6A, foB) = KKg™ (%A, Q*B).

Define
Q" := pro f&: KKy (A, B) — KKg™ (0 A, Q*B).

A variant of the proof of Propositign 6.6.2, the corresponding statement for Banach spaces, shows:

Proposition 6.6.6.Let X be another locally compact Hausdorff groupoid carrying a left Haar system.
LetQ be a graph fronj to H and)’ a graph from* to K. Then

Qo () = (2 xpy Q)" 1 KK (A4, B) — KK§™" (0*Q* A4, Q*Q*B) .
Proposition 6.6.7.Let f: G — H be a strict morphism. Then
f* = Graph(f)*: KK (A, B) — KKg™ (f*A, f*B)

if we identify f* A with Graph(f)*A and f*B with Graph(f)*B (which is possible according to
Propositior{ 6.6.B).
Proof. This is proved in Appendix D]2 on pafe 304. O

Corollary 6.6.8. The homomorphism
G*: KKg™ (A, B) — KKg™ (A, B)

is the identity.
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Corollary 6.6.9. Let() be a Morita equivalence frord to H. Then
Q*: KK (A, B) 2 KK§™ (A, Q*B)

is an isomorphism with inverse mg@—!)*.

6.6.3 KKP*-cycles and the linking groupoid

Let ) be a Morita equivalence betwegrand’ and letA and B be’H-Banach algebras. Létdenote
the linking groupoid as defined in Sectjon|6.2.

There are two canonicdl-Banach algebras which we can construct fronfiBanach algebra.
Note that anC-Banach algebra is in particular a u.s.c. field of Banach algebragt®Ver GO (),
Now Q* 4 is aG-Banach algebra and hence a u.s.c. field of Banach algebrag/®eiWe form a
family of Banach algebras ove?(®) by makingQ*A and A into a single family overz®). It is a
L-Banach algebra in a canonical way.

Alternatively, we can use the fact thatLi H = £, is a Morita equivalence betweehand/.
Hence(2UH)* A is anL-Banach algebra. A straightforward calculation shows the plausible fact that
these two constructions give the saf¥Banach algebra. We are going to caliitA L1 A.

The pullback along the inclusiong of G and.y, of H as open and closed subgroupoid€ajive
backQ*A and A. The graphs of the inclusions are Morita equivalences suchthath(ig)~! x ¢
Graph(cy) is equivalent td.

So we have isomorphisms

G KKP™ (Q*AU A, Q"B U B) 2 KK (A, B)
and
1 KK (Q* AU A, Q*BUB) 2 KK§™ (24, Q*B)
satisfyingey; o (.3,) ™' = Q*.

6.6.4 Morita equivalence and descent

Again, let() be a Morita equivalence betweéhand X and letA and B be non-degeneratg-
Banach algebras. Let denote the linking groupoid. Note that we have assumedilaatd 7 carry

left Haar systems; so there is an induced left Haar systef? amd also onl. Let . A(L) be an
unconditional completion of.(£). This completion also gives unconditional completiod&7) of
C.(G) and A(H) of C.(H). Note thatG(®) andH(?) are open, closed, full and connected subsets of
£, From Theore 9 we can therefore conclude:

Theorem 6.6.10.TheCy(£(?) /£)-Banach algebrasi(G, Q* A) and A(H, A) are Morita equivalent.

A Co(£©)/)-linear Morita equivalence can be obtained be taking the completiofis(6f, o* A)
andl'.(271, o* A) for the unconditional norm inherited fro.(£).

We now come back to the other considerations of Seftidn 5.3, in particular to Didgram (5.5). Note
that the notation we have used in this diagram is somewhat different from the notation of the present
chapter, in particular the groupoiflis now calledZ. The translated version of the diagram (which is
flipped to allow it to be typeset properly) is

KK (0 AU A, Q°B U B) 2> RKK"™ (Cy (£O/L£) ; AL, Q" AU A), AL, @*BU B))

o |

KK};_?H (A7 B) JA RKKban (C() (H(O)/H) 7 A(H7 A)’ A(H7 B))
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There is a similar diagram for the embeddingdinto £. We now know that the left arrow is an
isomorphism, however, we still do not know whether the right arrow is an isomorphism as well (see
the discussion following Corollafy 5.3]10). If it is, then the following conjecture is true:

Conjecture 6.6.11.There is a canonical isomorphism
RKKP™ (CO(H(O) JH): A(H, A), A(H, B)> — RKKP™ (Co(g(o)/g); A(G, O A), A(G, Q*B)>

making the following diagram commutative

KK,’b_tan (A’ B) ja RKKPan (Co (H(O)/H) ; A(Ha A)> -A(H’ B))

- |

KK2™ (Q*A, Q*B) —2>= RKK"™ (Cy (6©/G) ; A(G, *A), AG, *B))

6.7 Examples

6.7.1 Writing pullbacks as induction

If Q is a graph fromG to H and B is a H-Banach algebra, then we could call tieBanach alge-
braQ*B aIsoInd% B. In this notation, we have defined a homomorphism s> (A, B) to
KKg™(Ind§, A, Indf, B) for all H-Banach algebrad and B. We have also shown thhidg, B = B
for all G-Banach algebra® and

Ind§, Ind}f B = Ind{. B

for all KC-Banach algebra8® (if X is another locally compact Hausdorff groupoid with Haar system
and we are given a graph frofi to I which we can use to define the induction fratnto H).
Additionally, we have seen that the corresponding (functoriality) rules are also true on the level of
KKP2"-theory. As a consequence(lfis an equivalence betweghand?, then

KK§" (A, B) = KKg™ (Indf, A, Ind§, B)
for all H-Banach algebrad andB.
Moreover, ifQ2 is an equivalence betweghand’+ and if £ denotes the linking groupoid and
A(L) is an unconditional completion @%.(£), then this also gives unconditional completion&’)

and A(H) of C.(G) andC.(H), respectively. IfB is aH-Banach algebra, thdmd% is ag-Banach
algebra and we have shown that

A(H,B) ~m A(G, Ind§, B) .

In particular, this applies to the unconditional complefigii£) which induces the completiofis (G)
andL'(H) onC.(G) andC.(H):

L' (H,B) ~u L' (G, Ind}, B) .
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6.7.2 The special case of groups and group actions

Let G be alocally compact-compact Hausdorff group and |Bt be a closed subgroup 6f. Let’H be
H, regarded as a groupoid, anddebe the transformation groupoid x G/ H for the left action ofG
on the quotient spad&/ H. ThenG is an equivalence of the groupoidsand’. If B is anH-Banach
algebra, therB is also arH-Banach algebra (with just one fibre). TGeBanach algebrand% Bis
a u.s.c. field of Banach algebras ov&fH. If we form the algebrd’o(G/H, Ind% B) of sections
vanishing at infinity oﬂnd% B, then this Banach algebra carriegzaaction (see Definitio.l)
and is canonically isomorphic ﬂimdfl B. The construction oIndg B is of course much simpler as
the construction of the induction functor in the groupoid case, and some of the above results have
counterparts foIndg B which can be proved directly. However, using the general machinery, we get
the following results:

Induction is an isomorphism

KKY™ (A, B) 2 KK§™ (Ind§, A, Ind§, B) = RKK™ (Co(G/H); Ind% A, Ind$; B)

for all H-Banach algebrad andB. For the second isomorphism, see Theorem 4]7.20, it is given by
M ().

If B is a non-degeneratd-Banach algebra and(£) is an unconditional completion @f.(£),
where/ is the linking groupoid for the equivalencebetweenG x G/H andH, then

A(H,B) ~m A(G, Ind§, B) .

In particular we have
L' (H,B) ~w L' (G, Ind§, B) .

Note that the right-hand side is the completiolofG x G/H, r Ind% B) for the norm

ol =suw [ (13 9t1)]| ag
geG Jg'eG

forall p € I'.(G x G/H, r§ Ind% B); in general, this is smaller than the norm
81 = [ sup |3 (" 91)]| ag’
g eqG geG

Note thatsup,c 3(9', 9H)|| = |lgH — B(g’, gH)ll,, is the norm of3(g’,-) in Ind$ B for all

g € G. We can regard as a continuous map frodi to Ind% B having compact support, and the
norm of 3 given above is then the norm In' (G, Ind%, B). Itis easy to see that the completion of
L(GxG/H, 1§ Ind% B) for the second norm will then be (isomorphic 6)(G, Ind% B). Hence
we have a canonical homomorphism

L' (G, Ind§; B) - L' (G, Ind§, B) ~w L' (H,B).
Compare this to Green’s theor&fifor H-C*-algebrass:
nd% B %, G ~m B x, H.

In Examplg 8.2]7 we will show that the homomorphisia an isomorphism ii-theory (it has dense
and hereditary image and a nilpotent kernel), so that we have in particular

Ko (L' (G, Ind§} B)) 2 K, (L' (H,B))

for all non-degeneraté/-Banach algebraB.

185ee, for example] [EKQRD2], Theorem B.2.



Chapter 7

A Generalised Green-Julg Theorem for
Proper Groupoids

7.1 The theorem and its generalisation

One version of the theorem of Green-Julg is the following:

Theorem 7.1.1 (Green-Julg).Let G be a compact Hausdorff group and |IBtbe aG-C*-algebra.
Then
K§(B) = Ko(B %, G).

This theorem remains true if we replace th&-d@gebra algebraB %, G by the Banach algebra
LY(G, B) on the right-hand side. This chapter deals with a version of this latter formulation for
proper groupoids; note that the proper groupoids which are groups (i.e., those which have trivial unit
space) are precisely the compact groups.

7.1.1 Proper groupoids

Definition 7.1.2 (Proper groupoid). A locally compact Hausdorff groupoid is callguloper if the
following map is proper:
G =GO x GO, 5 (r(7),5(7)).

Examples 7.1.3. 1. LetG be alocally compact Hausdorff group acting from the left on a locally
compact Hausdorff spacg. Then the transformation groupodd x X is proper if and only if
the action ofG on X is proper.

2. More generally, ifG is a locally compact Hausdorff groupoid add is a left G-space, then
G x X is proper if and only ifX is a propeiG-space.

3. Alocally compact Hausdorff group is proper (as a groupoid) if and ordy/ig compact.

4. If the range and source maps of a locally compact Hausdorff grogpaid equal, the groupoid
can be regarded as a bundle of groups. If suc¢his proper, then all the fibres are compact
groups.

For the remainder of this chapter, I€t be a locally compact proper Hausdorff groupoid with unit
spaceX and carrying a Haar system. Assume moreover that there exists a cut-off functiorg;for
Recall from [Tu04] that there is a cut-off function f@rif X /G is o-compact:
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Definition 7.1.4 (Cut-off function). E]A continuous functior: X — [0, co| is calledcut-off function
for G if

1. Vee X: fgw c(s())dA*(vy) = 1;
2. r: supp(cos) — X is proper.

The latter condition means thaipp ¢ N GK is compact for all compact subseatsof X.

7.1.2 Generalising the Green-Julg theorem

In [Tu99] the following version of the Green-Julg theorem is prc@d:

Theorem 7.1.5 (Tu). Let G be o-compact and leB be aG-C*-algebra. Then there is a canonical
isomorphism

(7.2) KKg(Co(X), B) = KKy/g(Co(X/9), B x, G).

In order to translate this theorem into the languagd{®i**" we proceed as follows: We re-
place theG-C*-algebraB by a G-Banach algebra so the left-hand side[of|(7.1) should then be re-
placed b@ KKE*‘“(CO(X),B). The crossed product d8 with G should be replaced byi(G, B),
where A(G) is some unconditional completion 6£(G). BecauseA(G, B) is not necessarily a lo-
cally Co(X/G)-convexCy(X/G)-Banach algebra, we have to U3&K-theory on the right-hand side

instead oﬁ{K‘j‘(a/“g. So the theorem becomes the following conjecture

KKg™(Co(X), B) = RKK"(Co(X/G); Co(X/G), A(G, B)).

7.1.3 The plan of attack and an outline of the proof

To prove this conjecture we are going to proceed as follows:
1. We define a homomorphisif; from the left-hand side to the right-hand side.
2. We define a homomorphisit 7 in the other direction.
3. We show that/’¥ o M% = 1d if A(G) satisfies some (mild) regularity condition.
4. We show that alsa/% o J% = Id if A(G) satisfies some additional regularity condition.

Note that already the split surjectivity is an interesting result as it implies the split surjectivity of the
Bost-map with proper coefficients for many unconditional completions, as shown in Chiapter 8.

To get an idea of the construction of the two homomorphisms let us take a look at the correspond-
ing constructions for Galgebras that one can use for a proof of Thedrem|7.1.5.

YCompare[[Tu99], Définition 6.7.

2Actually, Proposition 6.25 of [Tu99] is more general than cited here: It alloivalGebras in the first variable that are
of a more general form. For now, we confine ourselves to “trivial” coefficients in the first variable.

3This theorem also generalises Theorem 5.41n [KS03].

4Actually, it shouldbe replaced bnga“(cX, B) whereC x denotes the constant field ov&rwith fibre C. We will
sometimes identify, (X)) andCx to obtain statements of theorems which look familiar.
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The construction of the homomorphistf in the C*-context, |

How is the homomorphisni? from KKg(Co(X), B) to KKx/6(Co(X/G), B x, G) defined? The
descent is at least a homomorphism

jr: KKg(Co(X), B) — KKx/g(Cy(G), B x, G).

To define a homomorphism froKlKX/g(Ci(g), B %, G) 10 KK x/6(Co(X/G), B x, G) which we

can compose withi,., we define & (X/G)-linear homomorphism of Galgebras fronCy(X/G) to
C(G). To this end we introduce the following simple notion (already in the generality we are going
to need later in this chapter).

Definition 7.1.6 (Cut-off pair). A cut-off pairfor G is a pair(c<, ¢~) such that
1. ¢= € C(X)>o with r: supp(c= o s) — X proper;
2. ¢ € C(X)>p with r: supp(c” o s) — X proper;

3. Ve € Xt [g. cS(s(7))e” (s(7)) dN(y) = 1.

In particular x — c¢<(x)c” (z) is a cut-off function. Conversely, if is a cut-off function forg and
p,p €]1, 00[ such that1 i =1, then(cl/P/, cl/P) is a cut-off pair. We can extend this to the case
= 1 as follows:

Proposition 7.1.7. If G is such thatX /G is o-compact and: is a cut-off function foiG, then there
exists a functionl € C(X) with ||d|| ., = 1 such that(d, c) is a cut-off pair.

Proof. Let (K, ),en be an exhausting sequence of compact’ /¥ such that,, is contained in the
interior of K, for all n € N. DefineL,, := suppc N 7 !(K,) for all n € N (wherer denotes
the canonical surjection frotX to X/G). Then theL,, are all compact. Recursively find functions
fi, f2, f3...such thatf, € C.(n71(K,)),0 < f, <landf,|,, =1andf, C f,4 foralln € N.
Define f := (J,,cy fn- Then this is a well-defined continuous function 8nsuch thad) < f < 1. It
satisfiesf|supp . = 1. Moreover, it satisfies the support condition: IF6tC X /G be compact. Find an
n € Nsuchthatk C K,,. Then the closed set ! (K) is contained inr—(K,,), sor~(K)Nsupp f

is contained it~ (K,,) Nsupp f = 7~ (K,) Nsupp f, = supp f». Now supp f, is a compact
subset ofr ! (K,,), sor ! (K) N supp f is compact as a closed subset of a compact subset. [

On the level of functions with compact support we can define a homomorphismdrakyg) to
C.(9) quite generally; it is a delicate question for which completion€ ;) this homomorphism
can be extended continuouslydg(X/g).

Definition and Proposition 7.1.8. Let (¢, ¢”) be a cut-off pair foiG. For ally € C.(X/G), define

() () =~ (r(M)x(m(7)e=(s(7))

forall v € G. Theng(x) € C.(G) andyp is a continuous homomorphism of algebras frér.X/G)
to C.(G) (with the convolution product).

Proof. Let 7: X — X/G denote the quotient map and I&t C X /G be the support ok. Then
K1 :=suppc< N7~ 1(K) is compact inX and so isk := suppc” N7 H(K). So{y € G : s(y) €
Ky, r(v) € Ky} is compact and contains the supportafy). Sop(x) € C.(G).
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Let x1, x2 € C.(G). Then for ally € G:

(e(x1) * (x2)) (7)
= /g7'(’Y) ¢ (r('yl)) Xl(ﬂ‘(’}/)) cs (8(’7/)) c (T(’y/_lfy)) X2(7T(»Y’_1fy)) < (S(’)/_l’)/)) d)\r(y) (7/)

= C>(T(7))(X1><2)(7T(7))C>(S(7))/gw cS(s(v) ¢ (s(v) D) = (plxax2) (7)-

=1

O]

In the C'-algebra case the interesting cut-off pair is of cou(rela c%), wherec is a cut-off
function for G. In this cas@ the homomorphisnp: C.(X/G) — C.(G) preserves the involution
and can be extended toxehomomorphism fronty(X/G) to C..(G). The pullback along this-ho-
momorphism gives us the desired homomorphigfhof groups fromKKX/g(C:(g), B %, G)to
KKX/Q(CO(X/Q), B X g)

Can the same homomorphismt C.(X/G) — C.(G) be extended to a homomorphism from
Co(X/G) t0 A(G) if A(G) is an unconditional completion 6%.(G)? This would be needed to accom-
plish a completely analogous construction for Banach algebras because the Banach algebra descent
for the unconditional completiod (G) is a homomorphism

JE: KK (Co(X), B) — RKK"™(Co(X/G); A(G), A(G, B)).

Apparently,¢ is not bounded even for rather elementary unconditional completion.likg) and

rather simple cut-off pairs. The construction works fér&gebras because the choice of the cut-off
pair is compatible with the norm ofi;.(G) which is defined through the action 6£(G) on L2(G).

We have to find another way to define the homomorphism for our generalised Green-Julg theorem if
we do not want to deal with the technical problems that come with unbounded homomorphisms or
with the compression of a Banach algebra by an unbounded projection.

The construction of the homomorphism in the C-context, Il

A possible solution is to define the homomorphi.,%ﬁ\from the groupKKgan(Co(X), B) to the group
RKKP*(Co(X/G); Co(X/G), A(G, B)) directly (on the level of cycles). We sketch the analogous
construction for C-algebrag]

Let (E,T) € Eg(Co(X), B). Without loss of generality one can assume fhas G-equivariant.
We are going to define a cycle B(Cy(X/G); Co(X/G), B %, G) as follows.

The underlying module is a completion Bf(.X, E') which we obtain by embedding.(X, E)
into E %, G: if e € T'o(X, E), thenu(e) € T.(G, r*E) is defined by.(e)(y) = ¢'/2(r(7))ve(s(7))
for all v € G (wherec is some cut-off function foG). It is easy to show that the image ois
a subspace of .(G, r*F) that is invariant under the action ©f.(G, »*B); hence we can define a
Hilbert B x,, G-module by taking the closutl in E x, G. Let us see what the inner product is. The
B %, G-valued inner product o/ x,. G is given foréy, &, € T'.(G, r*E) as follows: It is the element

5See Proposition 6.23 i [Tud9] for a proof.
5The construction is inspired by the wasy is embedded ifC" (T, Co(Y)) on page 178 of [KS03] and by the way
Theorem 5.4 of this article is proved.
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of (G, r*B) defined asy — [, ¥ (€1(v'™1), &(7'17)) dA" (7). We therefore have

(en)s slen) () = [ o (R0 (), )7 eals2)) ()
gr(m
B LM H2(s()) 20 (er(r(m): vea(s(1)) ) = {er(r(1), vea(s()

forall ej,es € To(X, E) C E and~ € G. Note that this does not depend on the particular choice of
the cut-off functionc. Similarly, the action of’.(G, r*B) inherited byl'.(X, E) is independent of,
so the same applies to th& x,. G-action onE. Because the norm ofe), wheree € I'.(X, E), just
depends on the inner product, it follows that also the norntatoes not depend an
Moreover, it is easy to see thgtequivariant operators such @sgive canonical operatdf on
E with ||T|| < ||T|. One now shows thatE, T) € E(Co(X/G); Co(X/G), B x, G) and that this
defines a homomorphism on the levelloK-theory. It is the same as the homomorphigfhthat we
have constructed above, but the alternative construction can be imitated easier in the Banach algebraic
context (see below).

The construction of the inverse homomorphism in the C-context

The standard procedure to show tli@t, 7)) — (E,T) induces an isomorphism iKK-theory is

the following: The first observation is that this construction is compatible with the sum of Kasparov
cycles. Secondly, iff = L?(G, B), then one shows thd = B x,.G. One can then reduce to the case
that E is of the standard forndd°° , L%(G, B) (and therefores = @°° , B x, G) using a suitable
form of the stabilisation theorem.

This procedure is not viable in the Banach algebra context, but there is another way it the C
algebra context to show thaE, T') — (E,T') induces an isomorphism, namely by construction of an
inverse homomorphismZ?: The spacd.?(G, B) is, by definition, a (right) Hilber3-module. It also
carries an action afy(X') and an action of . In other words, itis &-Hilbert B-module. On the other
hand, it also carries a leff x,. G-action (by definition ofB x,. G) making it a bimodule. The idea is
now very simple: If(€, 7) is a cycle inE(Co(X/G); Co(X/G), B %, G), thenf ®pw.¢ L%(G, B) is
aG-Hilbert B-module, whereB andgG are acting only on the second factor, and

(€ @png 129, B), T®1) € Eg(Co(X); B

with the extra feature thal ® 1 is G-equivariant. This surely defines a homomorphism on the level
of KK-theory, we call itM P.
To check that the two homomorphisms are really inverses of each other, one checks that for each
G-Hilbert B-module E we haveFE ®py, g L%(G, B) = E, which boils down to the isomorphism
(E %, G) ®px,¢ L*(G, B) = L(G, F) and is quite straightforward to sh@The construction for
linear operators is compatible with this isomorphism.

—_—~—

On the other hand, & is aCy(X/G)-Hilbert B x,G-module, thelf @py, ¢ L3(G, B) = £R@px,g

L2(G, B) with L?(G, B) = B x, G. Also these isomorphisms are compatible with the constructions
for the linear operators.

"Compare the proof of Proposition 6.24 pf [T99].



196 CHAPTER 7. A GENERALISED GREEN-JULG THEOREM FOR PROPER GROUPOIDS

The theorem in the Banach algebra context

The homomorphism J% from KK (Co(X), B) to RKK"*(Co(X/G); Co(X/G), A(G, B)) is
defined similarly to the homomorphisif in the C'-case (using our second construction). This time,
we embed’.(X, E) into A(G, E) (again using a cut-off pair = (¢<, ¢”)). Unfortunately, the norm
that we get od’.(X, £') now depends not only on the norm.dfG), but also on the cut-off pair. In
Sectior] 7.p we will show that this is not a serious problem because the homomorpfiisms out
to be independent of the choice of
The inverse homomorphisme{ can be constructed similarly as in th&-@lgebra case, but we have
to be careful to find a suitable substitute Id(G, B): If A(G) isL'(G)NL(G)*, the version of.}(G)
with the symmetrized norm, thed(G) acts on the left oi.?(G). For more general unconditional
completionsA(G) (already for the non-symmetrizéd (G)), this might not be the case. The solution
that | suggestin Secti.3 is the following: Repladég) by a general monotone completidf{(G)
of C.(G) (defined as in the Secti¢n B.2) on whigt{G) acts on the left (and insert in the theorem the
extra hypothesis that such a completion should exist). More precisely, being in the world of Banach
pairs, we actually need a pair of completions. Example$lates), L*(G)), butalso(L” (G), LP(G))
for p,p’ €]1, 00[ with  + -, = 1. Another example i$Co(G), L'(G)) on whichL'(G) acts. Each
such pairH(G), or rather the versitﬁﬂ-t(g, B) with coefficients inB, gives a homomorphism from
RKK"™(Co(X/G); Co(X/G), A(G, B)) to KK (Co(X), B). This is shown in Section 7.5, where
it is also proved that all possible choices®tG) give the same homomorphism, which we dmff.

To show that the two homomorphisms are inverses of each other we can no longer use that they
are inverses already on the level of cycles (up to isomorphism) as in*taég€bra case. However,
we can construct homotopies using our sufficient condition for homotopy of cycles (resulting in a
large number of technical considerations, see Sedfiofis 76 dnd 7.8). To make this possible, we have
to make sure that the monotone completig(iG) and the cut-off pair are compatible (for such a
cut-off pair we coin the term?{(G)-cut-off pair”, see Sectioh 7.7). The theorem we can prove using
this technique reads as follows:

Theorem 7.1.9 (Generalised Green-Julg Theorem)Let A(G) be an unconditional completion of
C.(G) such that there exists an equivariant locally convex g&ig) = (H<(G), H~(G)) of mono-
tone completions af.(G) such thatA(G) acts onH(G) and such that there exists &ti(G)-cut-off
pair for G. Then there is an isomorphism

JE: KKg™(Co(X), B) = RKK"™(Co(X/G); Co(X/G), A(G, B)),
natural in the non-degenerate-Banach algebraB.
We will show a partial result which is interesting because it has slightly less restrictive assumptions:

Theorem 7.1.10.Let A(G) be an unconditional completion 6£(G) such that there exists an equiv-
ariant locally convex paitH(G) = (H<(G), H~(G)) of monotone completions 6f(G) such that
A(G) acts onH(G). Let there exists a cut-off function fGt Then the natural homomorphism

J3: KKE"(Co(X), B) = RKK™(Co(X/G): Co(X/G), A(G, B))
is split surjective (with natural spIiMff) for all non-degenerate Banach algebr&s

We will also show that the unconditional completibh(G) and its symmetrised versidn' (G) N
L1(G)* satisfy the hypotheses of both theoremXjfG is o-compact.

8Note thatl.?(G, B) for aG-C*-algebra has two different meanings in our context: It can denote a Hilbert module and
also a completion of' (G, r* B) for some unconditional norm. There is a subtle difference between these spaces, and we
always mean the second space.
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7.2 The homomorphismJ%

7.2.1 Making operatorsG-equivariant
Before we start with the construction, we want to proof the following fact:

Proposition 7.2.1.1f B is aG-Banach algebra (witl$ being proper and allowing a cut-off function),
then the operators and homotopies in the definitioﬂa(ﬁfgan(co(X), B) can be assumed to lig
equivariant.

The basic idea here, as in the proof of the corresponding result fafgebras, is to use the cut-off
function and the integration with respect to the Haar system to make given operators equivariant. On a
technical level, we do this by integrating fields of operators with compact support; note that we define
this integration pointwise:

Definition 7.2.2. Let £ and F' be G-Banach spaces. If € L(r*E, r*F') has compact support, then
we define, for alk € X,
/ T, AN (y) : By — Fy, €5 — Tyep dX (7).
x gm
This is a continuous field of operators frafhto F' of compact support. The same definition makes
sense ifl" has proper support, i.e., if the support(gfo ) - T'is compact for ally € C.(X).

Definition and Lemma 7.2.3. Let B be aG-Banach algebra and Iét and £’ be G-BanachB-pairs.
LetT = (T<,T”) € L« (r*E, r*F) have compact (proper) support. Then

[ = ([ mrao. [ o)

is a continuous field of linear operators frathto F'. It is compact ifl’ € K,«p (r*E, r*F).

Proof. We just proof the statement about the compactness. Assuni€ thabmpact. First consider
the case thal’ = <X(7)’f’?7)><e7"<(’7)‘>weg with e< € T'(X, E<), f~> € I'(X, F>) andy € C.(G).
Then

Lrave) = [ ol oo = [ xmare) 1)

forall z € X. So(fggc T, dA\*(7))zex is compact. The linear span of the operators which are of
the same form ag’ is dense in the compact operators with compact support in the inductive limit
topology. As the integral is continuous, we are done. O

If the operatofT” in the preceding lemma is just of proper support and just locally compact, then
the integral yields a locally compact operator.
Now we use these definitions to make operators equivaNs@tix a cut-off function for G.

Definition 7.2.4. Let E and F be G-Banach spaces. I € L(E, F) is arbitrary, then
79 = / (1) Ly AN (7), e X,

is a G-equivariant continuous field of operators frafhto F such that||79|| < ||T||. The map
T — TY is C-linear. If T is alreadyG-equivariant, thedY = T.
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Definition and Lemma 7.2.5. Let B be aG-Banach algebra and Iét and I’ be G-BanachB-pairs.
LetT = (T<,T”) € Lg(E,F). ThenTY := ((T<)Y, (T>)9) is an element oL.5(E, F). The
construction commutes with the pushout: Bf is anotherg-Banach algebra and: B — B’ is a
G-equivariant homomorphism, then

0 (T9) = (0u(1))7 € LY, (0u(E), 0u(F)).

Proof. We check onlyp, (T9) = (¢+(T))¢ and only for the right-hand side: Lete X, ¢> € E>
andb/, € B,. Then

o (179), (9t = () ot = ([ dotry, e ave)) st

x

- /g (5N 12u(T)a(e (€ @B,) AX(7) = (9u(T7)) (e7 @ 1)
]

The following two lemmas show Propositipn 7]2.1.

Le(rnma)7.2.6. Let(E,T) € Eg*™ (Co(X), B). Then(E,T9) isinE™ (Co(X), B) and homotopic
to (E,T).

Proof. For allz € X, we have
(@ @9 () = [ elstn) (T2, ~1T7,) () .

The same is true for the left-hand side. The famjily- c(s(v))(T}(,) — (7Ts()) is locally compact
and of proper support, so the integral is locally compact.7Sand 79 differ by a locally compact
operator. By Lemmp 3.5.11F, 79) is aKK*'-cycle and homotopic tF, T). O

Lemma 7.2.7.If (Ey,Ty) and (E;,T1) are homotopic inEy™ (Co(X), B) and if Ty and T} are
equivariant, then there is an equivariant homotopy between them.

Proof. Let (E,T) € E&*" (Co(X), BI0,1]) be a homotopy froniEy, Tp) to (E1,T1). Then

72

(B, T}) = (evia(E,T)) = (evia(E,T))Y evi. (B, T9)

for both,t = 0 andt = 1. So(E, TY) is aG-equivariant homotopy frorEy, Ty) to (Ey, Ty). O

7.2.2 The algebraic construction of/% on the level of sections with compact support

Definition and Lemma 7.2.8. Let B be ag-Banach algebra and I1ét be aG-BanachB-pair. Define
the operations

@B)@) = [ ae> (s8N ()

and

(BeS)(z) = [ By)ye=(s(y)) dA*(v),

gz
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wherez € X, and thel'.(G, r*B)-valued bracket

(e, D) = {e=(r(), 1™ (M), ., »
wherey € G, foralle< e T'.(X,E<),e” € (X, E~)andg € I'. (G, r*B).

This turnsl'.(X, E~) into arightT’. (G, r* B)-module and’.(X, E<) aleftT’. (G, r*B)-module.
These module actions are separately continuous, and non-degenerate for the inductive limit topologies
if E is non-degenerate. The brackeTsilinear andl’. (G, r* B)-linear on the left and on the right.
Moreover, it is separately continuous for the inductive limit topologies.

Moreover, there are canonical actions®fX/G) on the moduled’.(X, E<) and (X, E~)
given by

(xe”)(@) = x(7(z))e” (z)

forall x € C(X/G), e~ € T'.(X,E~) andx € X (and analogously for the left-hand side). The
module actions and the bracket are compatible with these actions.

Proof. One can check by direct computation that the above formula give module actions; that these
module actions are separately continuous and non-degenerate can be shown by proving that the map
(e7,8) — [y e (s(v)vB(y1)] is a separately continuous and non-degenerate bilinear map
(and similarly for the left-hand side). We show now, as an example, that the bradkeids r*B)-

linear on the right. Let therefore~ € I'.(X, E<), e~ € I'.(X, E~) andj € I'. (G, r*B). Then for

ally e gG:

(e €B) (1) = (e=(r( [( 7B8) (s())])

_ < Ve (s() B ANy >>
gs7
_ < (W’)€>(8(7’>)(’w’)ﬁ(7"1)dAS”)(v’)>
gS(v)
= /g ) ). 67 (5(7) (6B AN O)
- / LA (s(V) A'BO T AN ()
Gre

= ({5 e >> )
O

Definition 7.2.9. Let E and F be G-BanachB-pairs and lefl” be aG-equivariant continuous field of
operators fron¥ to F. For alle” € T'.(X, E~), define

(T%e>) () == T2 > ()

forall z € X. Thene” — T~e~ is C-linear,C (X/G)-linear,T'. (G, r*B)-linear on the right and
continuous for the inductive limit topology. The same formula defines an opefator> T<f<
on the left-hand side. The pair of operat@ys~ — T<f<, e~ — T~e”) is formally adjoint with
respect to the brackets ¢0.(X, E<), I'.(X, E~)) and(T.(X, F<), T.(X, F~)):

(f=T=, 7)) = (=, T7e).
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Proof. We proof rightT'. (G, r*B)-linearity of e — T~e”. Lete” € T (X,E”) andj €
I'. (G, r*B). Letz € X. Then

(T (@P)) = T (>Bl) = T2 ( / w76>(8(7))76(71)d>\””(v))
= [ 17, (e ) w80 )
= [ AT (€ G0) B0 N 0) = (7e)8) @)

Note that we made use of tifeequivariance of ™~ . O

Definition 7.2.10. Let E and F' be G-BanachB-pairs, f~ € I'.(X,F~) ande~ € I'.(X, E<).
Define
PN TelX, B7) = Te( X, F2), ¢ = f7((e5,67)

and

(DS][ TelX, F) = De(X, BS), f< = (f5, 7 )e
Definition and Lemma 7.2.11. Let F and F' be G-BanachB-pairs, f~ € T'.(X,F~) ande<
I'.(X,E<). Thenforalle € T'.(X, E”), f< € T'«(X, F<) andz € X, we have

(170 ) / 77 (30 (eI (e (@) dX*(7)

and
(177 D<= (@) = [} ) (e (s T (= (@) AN ().

So we define for alk € X:
7 ) e / Iy £ (s (e (s(1) | dN"(7) € L, (Bn, F)

Then(|f>))((e<|,)zcx is ag-equivariant element di 3 (£, F). By[7.2.3 itis locally compact.

Proof. On the right-hand side we have

(X @) @ = (e N @ = [ a6y (e ) (67h) i)
= [ PO (G e 60 ) )
- /vf> ) (1e=(s()), € (r(1))) ()
= / v f7 (s( )7 e (z) dX" (v

The calculation for the left-hand side is similar. O

Note that we have just defined two different objects which carry the j@mg ((e<|: One is the
pair of operatorg| f> ) {(e<|~, | f>)){(e<|7), the other is the field of operatoff>)){(e<| )sex-
Now([7.2.1] implies in particular that this convention does not lead to much ambiguity. It also gives
us a source of locally compact fields of operators frBrto F'. The following lemma says that this
source is rather rich.




7.2. THE HOMOMORPHISM J% 201

Lemma 7.2.12.Let E and F' be G-BanachB-pairs and letT’ € Lg(F, F') be locally compact and
G-equivariant. Then for ale > 0 and all compact subsets” C X/G there exists» € N, and
I f7 €T(X, F7), €7, .., e5 € To(X, E<) such that for alle € 7~ 1(K):

- Z 72N

<e.

L(Eg,Fz)

Proof. Let ¢ be a cut-off function folG. Sincer: X — X/G is open, the sek is the image under
7 of a compact subset of. In other wordsy—!(K) is the saturation of some compact subsekof
Hence the sef := 7! (K) N supp c is compact.

SinceT is locally compact, we can find € N, f{,...,f7 € T (X,F~), ef,...,e5 €
I'.(X, E<) such that

T, — Z ‘fi><l)><e<

foralll € L. Now letz € #—!(K). Then

T, - / ZW D) (e (s(1)] AN ()

[ etstn)
[ etstn |4

< [ dstmeare) =

VT () — Z |7fi>(8(7))><76i<(5(7))\] dA*(v)

IN

dA* ()

T(y) — Z V£ (s())(ves (s(7))]

=1

Note that for alli € {1,...,n} and allx € X we have

/gx (s f7 (s(3))){ves (s(7))| AN (7)
L D) (e e s X (3) = o217 (e

x?

SO

Ty =Y | 217 ) (e 2er],
=1
forallz € 7~ 1(K). O
Proposition 7.2.13.Let E and F’ be G-BanachB-pairs. Then the map
Lo(X, F7) x De(X, B<) — Lp(B, F), (f7,e%) = (|7 ) {e"],) ex

is bilinear and separately continuous for the inductive limit topologies diX, F~) andT'.(X, E<)
and the norm topology ohg(E, F').



202 CHAPTER 7. A GENERALISED GREEN-JULG THEOREM FOR PROPER GROUPOIDS

Proof. We show continuity in the second component: [fét € T'.(X, F’~) be fixed. DefineC' :=
SWgex [yege [IF7(s(0))I dAT(7). Then for alle= € T'o(X, E<):

177D es],

forallz € X. Soe< — | f>))((e<| is continuous even oFy (X, E<) with norm< C. O

< / 17> )| e () <l
g:c

As a consequence, we obtain the following version of Lefnma 7.2.12 which we are going to need
later on:

Corollary 7.2.14. Let E and F' be non-degenerat§-Banach B-pairs and letT” € Lg(FE, F) be
locally compact andj-equivariant. Then for alk > 0 and all compact subset&8 C X/g, there
existsn € Nand f7, ..., f7 € T X, F~), el,...,exn € To(X,EV), B1,...,8n € Te(G,r*B)
such that for allz € 7=1(K):

<e.
L(Ey,Fy)

- 3167 e,

7.2.3 The analytic part of the construction of.J§

In the C*-world, the right moduld’.(G, r* B)-action and the inner product dh.(X, E) is sufficient
to define the structur® x,. G-Hilbert module if £ is a Hilbert B-module. There can only be one
norm onl'.(X, E') which completes to a Hilbert module and the bracket actually gives such a norm.
In the Banach-world, the situation is more complicated. Bdie aG-Banach algebra and Iét
and F' be G-BanachB-pairs. Let A(G) be an unconditional completion 6£(G). As sketched in the
introduction to this chapter, every cut-off paiwill give an embedding of .(X, F) into A(G, FE) and
the completion will be &,(X/G)-BanachA(G, B)-pair with the extended versions of the operations
defined above. This construction turns out not to be flexible enough for our purposes, and | propose
a simple generalisation: Because the norm4i¢, E') comes from an unconditional completion of
C:(G), the inherited norm ofi.(X, F') comes from a monotone completion®{ X ). This monotone
completion is compatible with the norm gf(G) in a sense that we will now make into a definition.

Compatible pairs of monotone completions of.(X)

Definition 7.2.15 (Compatible pair of monotone completions of.(X)). Let D<(X) andD~ (X)
be monotone completidfi®f C.(X) . Then the paiD(X) := (D<(X), D> (X)) is calledcompati-
ble with A(G) if

LVx® €Ce(X), BeCe(9) = [1BxTllp< < 1Blallx™lp<;

2.Yx7 €Ce(X), BeCe(G) X Blp> < Ix7llp> 181].a;

3. VX< €Ce(X), x” € Ce(X) : [[{XS XD L4 < IxSllp< X7 Nl p>-
With the extended bilinear mapB,( X) is a BanachA(G)-pair.

Note that the action ofy(X/G) on C.(X) also gives a continuous non-degenerate action of
Co(X/G) onD<(X) andD~ (X) making it aCy(X/G)-BanachA(G)-pair.

*Monotone completions are defined in Definitjon 32.1.
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Definition 7.2.16 (O(X, E)). Let D(X) be a pair of monotone completions @f(X'), compatible
with A(G), and letE = (E<, E~) be aG-BanachB-pair. OnI'.(X, E<) define the nornfj{< || o< :=

| z — I€=(2)|| ||p< as in Definition 3.2}4 and define a semi-noffrfj,,~ onT'.(X, E~) similarly.

Then the actions df.(G, »*B) onT'.(X, E<) and onl'.(X, E~) and the bracket satisfy

186~ p< < 181l llp< s 1€78]p> < 167 o> 1814 (16667 €Dl < €7 Ip< l1€7 [l

forall 8 € Tc(G, r*B), £ € To(X,E<) and¢” € T'.(X,E>). As in Definition[3.2.4 write
D<(X, E<) for the completion of’.(X, E<) for the semi-nornj|-|| ,<; defineD~ (X, E~) analo-
gously. With the extensions of the actionslof G, »* B) and the extension of the bracket,

D(X,E) := (D<(X,E<), D7 (X,E))
is aCy(X/G)-BanachA(G, B)-pair.

For the remainder of this subsection, 12¢X ) be a pair of monotone completions @f(X ), com-
patible with.A(G). The construction of linear maps between monotone completions was discussed in

B.2.5.

Definition 7.2.17. Let T' € Lg(F, F) be G-equivariant. Ther~ — T~¢~ is a boundedC-linear,
Co (X/G)-linear andl’. (G, r*B)-linear map fronT'.(X, E~) toT'.(X, F~) with norm < ||T~ ||, so
it extends to a bounde@-linear,Cy (X/G)-linear andA(G, B)-linear mapD(X, T~ ) fromD(X, E~)
to D(X, F~) of the same norm. Similarly, one gets a nlapX, 7<) from D(X, F<) to D(X, E<)
of norm< ||T<||. Together, this defines a pair

D(X,T) = (D(X,T<), D(X,T%)) € LY (D(X, E), D(X, F))

of norm< ||T||.

The assignment’ — D(X, F) andT — D(X,T) is a contractive functor from the categayy
BanachB-pairs and bounded-equivariant operators to the categoryCaf(X/G)-BanachA(G, B)-
pairs. Similarly one can defirl(X, ®) for G-equivariant concurrent homomorphisms.

Lemma 7.2.18.Forall f~ € (X, F~) ande< € T'.(X, E<), we have

D (X, (17794, wex) = 1.

This lemma follows fronj 7.2.11 and maybe needs some explanation: The oggratpf(e<|,
on the left-hand side is the elemefat. |7/~ (s(7)))(ve<(s(v))| d\*(7) of Lp, (E., F:) as defined
in[7.2.11. The operatoli/>))((e<| on the right-hand side is the compact operator B, E)
to D(X, F) given by f~ ande<. The ambiguous but suggestive notation was chosen to avoid yet
another hat or another tilde on top of an operator.

Proposition 7.2.19.Let S € Lp(FE, F) be boundedG-equivariant and locally compact. Then
D(X,S) is locally compact in the sense of Definitipn 2.2.27, ixD(X, S) is compact for all
X € Cc (X/G).

Proof. In order to show thaD(X, S) is locally compact, it suffices to show thB( X, S) is compact
if w(supp S) is compact. Let > 0. Let K := mw(supp .S) C X/G. We now approximat® (X, S) on
K by finite rank operators:



204 CHAPTER 7. A GENERALISED GREEN-JULG THEOREM FOR PROPER GROUPOIDS

By Lemma 7.2.12 we can find € N, andf{", ..., 7 € To(X, F~), ey, ..., e5 € [(X,EX)
such that for all € 7=1(K’) (whereK' is some compact neighbourhood/s):

S,

=1

<e.
L(Ey,Fy)

BecauseS vanishes outside ! (K), we can assume without loss of generality that this inequality is

true for allx € X. Then
-3 (x. (7)1, mex)\ - 31

SoD(X, S) is compact. O

Theorem 7.2.20.Let (E, T') be a cycle iriEl‘gan (Co(X), B) with T' G-equivariant. EquipgD (X, E)
with the obvious grading operator. Théh(X,T") is odd and

Jip(E,T) = (D(X,E), D(X,T)) € E™ (Co (X/G); Co (X/G), A(G,B)).
Proof. The important property that we have to check is thak, T')%> — 1 is locally compact. But
D(X,T)> -1=D(X, T? - 1),

and7T? — 1 is locally compact. Sincd? — 1 is alsoG-equivariant, we can apply the preceding
proposition which implies tha®(X, T2 — 1) is locally compact. O

Proposition 7.2.21.Let B and B’ be G-Banach algebras an¢: B — B’ be aG-equivariant mor-
phism. If(E,T) € Ega“ (Co(X), B) with T' G-equivariant, then

Tip (0x(B,T)) ~ (A(G, 9)« (Jip(E,T)).

Proof. The pairs underlying the left- and the right-hand side are
D (X, E®p ]37/) and D(X, E) @ 4.5 AlG, B'),

respectively. Straightforward but technical argumentations using our sufficient condition for ho-
motopy show that we can leave away the (fibrewise) unitalisations and reduce to the simpler pairs
D (X, E®p B') andD(X, E) ® 4(¢,) A(G, B'), the first equipped witD (X, T ® 1), the second
with D (X, T) @ 1.

We now proceed in three steps: First we define a homomorplisinom D (X, E) ® 4, )
A(G,B)toD (X, E ®p B’), second we show that it intertwin@¥ X, 7) ® 1 andD(X,T ®1), and
third we prove that induces a homotopy.

1. Foralle e T.(X,E~)and allg’ e T'.(G, r*B’), define
W@ ) @) = [ ae st s 6N )

forallz € X. Thenu~(e”, ') e T'. (X, E~ ®p B’). Moreoveryu~ isT'. (G, r*B)-balanced
and satisfies

1= (€, B)llp> < lle” llp> 11614
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Moreover, u~ is C.(G, r*B’)-linear on the right and’y(X/G)-bilinear. p~ can hence be
extended to and(G, B)-balanced contractive bilinear map : D~ (X,E~) x A(G,B') —
D~ (X, E®p B’) which is A(G, B')-linear on the right and,(X/G)-bilinear. This gives a
contractive linear ma@~: D~ (X, E~) ®4g,p) A(G,B') — D~ (X, E®p B’) which is
A(G, B')-linear on the right andy(X/G)-linear.

For the left-hand side, we define

p= (B eS) (@) = | B'(y) @veS(s(y)) dX*(v)

gz

forall 3 € T'.(G, r*B’), e~ € T.(X, E<) andz € X. This defines a contractivd(g, B’)-
linear map®=< from A(G, B") ® 4¢,3) D(X, E<) to D (X, B’ ®p E<) which is A(G, B')-
linear on the left andy(X/G)-linear. We check that®<, ®~) is a homomorphism by direct
computation:

(@<(B~®e%), 27 (e” ®@37)) (7)
(u=(f'<,e) )) v (€7, 87)(s(7)))
_ < B @SN AN, o [ 7”e>(8(’y”))®v”ﬁ’>(7”1)dAS(”(7”)>

gr(w Gs(v)

B @SN, [ e s @8 (" 17)dA’"”)(’Y”)>

gr(w gr(v

- /grm /gr(w @ e<(s(y), Ve (s(v") @487 (")) AN () AN D (y")
- /grm /gr(v”> @ ((YeS(s(1), "€ (s("N)) 287 (V") AT () A ()
- /gr(w /gr(v”) "o ({e<(s(V)), 7 71"e” (s(4")))) AN () 487 (7" 1y) O ()

B /w/ (o) "o ((e=, N AT () B () AN (")
/ / LAG.0) (=, € N) (19" AN () "B (5" y) ANTE) (")
[ (B 4G (5 ) () 287y ax e

= (B = A(G,¢) ((e* 6>>>) «37) (1) = (BT @, e ®67) (v),

//)

forally € G, so((®<(B<®e<), ®>(e” ®3>))) = (I~ ®e=, e> ®3>) forall /<, 5> €
[.(G, 7*B), e~ € T(X, E<) ande” € T'.(X, E~).

2. ®intertwinesD(X,T)®1andD(X,T®1): Foralle” € T'.(X, E~)andalls’ € T'.(G, r*B’),
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we have
¢~ (DX, T)e”) @ f) = /g”(Ts?wf@@)))mﬁ’“‘”””
- /g T7 (7e7 (s(+)) @98 () AN ()
_ / (T @ 1) (767 (s() @ 98/ (7)) AN ()

- e, ( | e @ 4867 d%))
= DX, T®l) (27(e 7).
A similar calculation can be done for the left-hand side.

3. Let S be agG-equivariant and locally compact elementlof(F) such thatr(supp S) is a
compact subset ak/G. We are now going to approximafe(X, S) ® 1 andD(X, S ® 1)
simultaneously by finite rank operators. let- 0. As in the proof of Propositioh 7.2.]19 and
using, in addition, the non-degeneracy of the modiilgs\, F~) andI".(X, E<) we can find
neNer,....,e; €T(X,E”), ef,....ex € To(X,E<)andfy,....05,67,....0; €

I'.(G, r*B) such that

<e

=1

for all z € X. It follows that

D(X,8) = > |7 87 N{(B e
=1

<e¢

and hencé® (X, S) ® 1 can be approximated by

S BNUBTes | @1 =Y |7 ® (w0 B7)){(poB5) @ef|
i=1 =1

up toe.
On the other hand, a long but straightforward calculation shows

D (X, (|78 W(BEeE], ©1),0x) = 107 (7 @ (00 NN (@=((0 0 B7) @ )|

for all 7, and because

<e

Se@1=) [f7B7N{(Bef|, @1
=1

forall z € X, it follows thatD(X, S ® 1) can be approximated by
Y77 @ (po B7NUR((wo 57) @)
=1

up toe. The homomorphisn® intertwines these approximations.

Applying these considerations = x(7? — 1) with x € C.(X/G) shows thatb satisfies the
technical conditions for a homomorphism to induce a homotopy, see Thgorein 2.6.2. [J
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As in Propositior 5.2.43 one proves:

Proposition 7.2.22.Let B be ag-Banach algebras. IfE, T) € Egan(CO(X), BJ0,1]) is a homotopy
from (Ey, Tp) to (E1, T1) with T equivariant, then]fiD (Ey,Ty) and JED (E1,Ty) are homotopic.

Proposition 7.2.23.Let B be ag-Banach algebra. If Ey, T1), (E2, T2) € EB”(CO(X), B), then
Jip (B1,Th) @ (By, To)) ~ JE p(B1, Th) & JZ p(E2, Ta).

Proof. We define a homomorphisth: J% 1, ((E1, Ty) @ (Ea, T)) — J5 (B, T1)@J% p(Ea, Ty):
Foralle; € T'(X, Ey) ande; € I'.(X, E3 ), define

SO

127 (et ex)llp < llet llp + llez [l -

So &~ can be extended to a contractiv@slinear, Co(X/G)-linear and.A(G, B)-linear map from
D(X,E7) @ D(X,FEy) to D(X,E{ & Ey). One can define a similar map=< for the left-hand
side and a short calculation shows that (®<, ®~) is a homomorphism intertwinin@(X, 71) &
D(X, TQ) andD(X, T & Tg).

® satisfies the conditions of Theorém 2]6.2: the first and the last condition are void, the second is
satisfied becausé~ and®< are bijective with continuous inverse (with norn2). So® induces a
homotopy. O

Proposition 7.2.24.The map(E,T) — (D(X, E), D(X,T)) gives rise to a group-homomorphism
from
J3p: KKg™ (Co(X), B) — RKK™ (Co (X/G); Co(X/G), A(G,B))

which is natural in the non-degenerafeBanach algebras.

Definition and Proposition 7.2.25.Let D'(X) = (D'<(X), D'>(X)) be another pair of mono-
tone completions of.(X), compatible withA(G). Then JE,D = Jff}D, as homomorphisms from
KK§™ (Co(X), B) to RKK"™ (Co (X/G); Co (X/G), A(G, B)). We hence write/§ for this ho-
momorphism.

Proof. We first consider the case thiat| ,< < ||| p< and||-[|p> < ||-||p~. Let (E,T) be a cycle
in Ega“ (Co(X), B) with G-equivariantl’. Then there is a canonical homomorphiém= (&<, &)
from D'(X, E) to D(X, E) which intertwinesD'(X,T) andD(X,T). Let x € C.(X/G) and de-
fine S := x (T —1). The proof of Propositioh 7.2.19 also shows th&(X, S), D(X,5)) €
Kid 4.5 (®), SOJEVD, (E,T) is homotopic to]f{’D(E,T) by our sufficient condition for homotopy.
Now let D’ be a general pair of monotone completion€gfX ) compatible with4(G). Define
IXllpr< = max {||xllp< . [X[lp<} and[xlipr> == max {[[xllp- . [x]lp-} forall x € C.(X).
ThenD"(X) := (D"<(X), D"~ (X)) is also a pair of monotone completions@®f{ X) compatible
with A(G). By the first part of the proof we havgf ,, = J% 1, = J§ .. O
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Existence of compatible pairs of monotone completions

Now that we have seen how compatible pairs of monotone completions can be used to construct the
homomorphism/% the natural question is of course whether such pairs exist. We now show that
this is the case iff admits a cut-off function. There are even quite a few of them, for every cut-off
pair ¢ we construct a compatible pair of monotone completions that we4dlX'). Although the
homomorphism]f{ does not depend on the particular choice ¢s shown above) we are going to
need the precise form of the construction later on when we specify certain cut-off pairs to be able to
perform calculations on the level of cycles.

So lete = (¢=, ¢”) be a cut-off pair fog.

Definition 7.2.26. Let E be aG-BanachB-pair. Define
JBei Te (X, ET) =T (G, ET), e = (v c(s(7)e=(r(7)))

and
Jgei Te(X,B7) = Te (G, E7), e = (v ¢ (r(y))ve” (s(7))) -

One can think ofi; .(e<) ase~ = c< and ofj; .(e”) asc” * e”.
The following proposition can be checked by direct calculation.

Proposition 7.2.27.Let E be ag-BanachB-pair. Thenjz . = (j5 ., jz.) IS a pair of injective maps
such that

1. jgyc is C-linear,I'. (X/G)-linear andI'. (G, r*B)-linear on the left,
2. jgyc is C-linear,I'. (X/G)-linear andl'; (G, r*B)-linear on the right,

3. foralles e T'.(X,E<)ande” € T'.(X, E~), we have

(3560, Bele”)) = {(e=. 7).

Ic(G,r*B)

Proposition 7.2.28.Let E and F' be G-BanachB-pairs. LetT = (T<,T~) be aG-equivarianfield
of operators fromE to F'. Then

Jr(T7e”) =T = jp (e7) and jp (f~T7) =j5.(f7) =T
foralle” e T.(X,E”)and f< e T.(X, F~).

Proof. We just show this for the right-hand side: et € T'.(X, E~) andy € G. Then

TR T7E) () = () AT7e)(s(1) = ¢ (r(1) 7 (T3¢ (1)
= ) T, (€7 () = (T % jz.(e”)) (7).
O

Definition 7.2.29 (A¢(X, E)). Let B be aG-Banach algebra and I1ét be aG-BanachB-pair. Define
aCy (X/G)-BanachA(G, B)-pair A°(X, E) = (A%(X, E<), A°(X, E~)) by pulling back the norm
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of A(G, E) along jg . and completingl'.(X, £) for this norm. Alternatively, one could take the
closure of the image ofz .. In particular, the norms on the left and the right part are given by

le=]

) H v eS(s() le=(r()]| HA

— |[4< <
A(X,E<) " H]E70(6 )HA(Q,E<

and
le”]

s = |35 g oy = [ 7 D N
foralle< € T.(X, E<) ande” € I'.(X, E~).

Note that the norms depend of{G) as well as ore. The pairA¢(X) = ((A°)<(X), (A%~ (X)) is
a pair of monotone completions 6f(X ) compatible withA(G) and the notatiotA“(X, E) is unam-
biguous. If A(G) is locally Cy (X/G)-convex, thend<(X, E) is locally Cy (X/G)-convex. Note that
JB 4 as a homomorphism froKg™ (Co(X), B) to RKK™" (Co (X/G); Co (X/G), A(G, B))
does not depend anby[7.2.25; without the detour via more general compatible [fit% ) of mono-
tone completions this latter fact seems to be hard to prove.

7.3 Monotone completions as analogues of (G, B)

As sketched in the introduction to this chapter, a possible proof of thalgebra version of the gen-
eralised Green-Julg theorem makes use of the tensor product wighHlilbert B-moduleL?(G, B)
which carries a left action aB .. G by locally compact operators. We want to find analogues of the
moduleL?(G, B) for the case thaB is aG-Banach algebra. Apparently, & is aG-Banach algebra,
it is not sufficient (or not systematic, at least) to just consider pairs of theiy{¢, B), L?(G, B));
we want to treat rather general unconditional completions, so it seems advisable to consider rather
general completions of the spatg(g, r*B), and our treatment should also cover pairs of the form
(LY(G,B), T'o(G, B))or (L” (G, B), LP(G, B)) for p,p’ €]1, 00| with 1/p+1/p’ = 1 (compare the
precise definitions below).

Our substitute fof.?(G) is what we call (not very imaginatively) a pair of monotone completions;
we will usually denote such a pair B¥(G), and writeH(G, B) for its version with coefficients 3.
It seems advisable to even consider pairs of the faff@, ) whereFE is aG-BanachB-pair because
this makes the constructions a bit clearer. The important result is that (under certain compatibility
conditions) the unconditional completioh(G, B) acts onH(G, B) by locally compact operators. To
prove this, we need a result concerning the compactness of operators which are given by kernels which
is presented in detail in Appendix E.8.

7.3.1 Pairs of monotone completions f.(G)

Recall that in this chapte¥ denotes a locally compact Hausdorff groupoid with left Haar system
and.X denotes the unit space 6f

Definition 7.3.1 (Pair of monotone completions¥/(G)). A pair of monotone completions ¢%.(G)
isapairH(G) = (H<(9), H~(G)) such that{<(G) andH~ (G) are monotone completions 6f(G)
and such that the bilinear map

(e Cel0) X ColG) — Co(X), (0%.67) o ( - [ o) so><v-1>dv<w>)

x
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satisfies
(0=, @7 )ea0ll oo < N llpge 197 ]

for all p=,¢0> € C.(G). In this case(, )¢, (x) can be extended to a continuous bilinear map
(- )eox): HS(G) x HZ(G) — Co(X) which isCy(X)-bilinear if we consider the following actions
of Co(X):

(XES) () =x(r()6=(7) and (£7x)(7) == & ()x(s(7))

forall x € Co(X), < € C(G) CHS(G),£” €C.(G) CH”(G)andy € G.

Examples 7.3.2.Letp € [1, oo[. Define the norm

bl = ([ o v

for all Y< € C.(G). The corresponding monotone completion is callédG). Note thatl!(G) =
L1(G). Secondly, define

1

p

= sup ([ el ave)
’ reX gz

for all y~ € C.(G). The corresponding monotone completion is callédg)

1. The pairgL'(G), Co(G)) and(Co(G), LL(G)) are pairs of monotone completions in the above
sense.

2. If p,p’ €]1,00[ such tha% + I% = 1, then(L¥ (G), L2(G)) is also a pair of monotone comple-
tions.

3. In particular this applies td.2(G), L2(G)).

Definition 7.3.3 (The pair H(G, E)). Let B be aG-Banach algebra and léf be aG-BanachB-
pair. LetH(G) be a pair of monotone completions 6f(G). Define a right action of'(X, B) on
(G, r*E~) by

(& B)(7) =& (MB(s(7)), € €Te(G,7"E”),BeT(X,B),y€G,
and a left action of (X, B) onT'.(G,r*E<) by
(BE=)(7) = B(r(1)6=(7), BET(X,B),£" €Te(G, r"E),y€G.

These actions define continuous actions§fX, B) onH~ (G, E~) (from the right) and<< (G, E<)
(from the left). Define a bilinear map

< >F (XB (g T*E<)><F (g T*E>) — FC(X,B),
€)= (o [ EDAE6T),,, w0).

This map extends to a contractive bracket frlm(G, E<) x H~ (G, E~) to'y(X, B) which makes
H(G,E) := (H<(G,E<),H” (G, E~)) aCy(X)-Banachl'y (X, B)-pair. If E' is non-degenerate, then
soisH(G, E).
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Proof. We just check that the bracket is bilinear to make sure that we have adjusted the definition of
the actions of((X, B) correctly: Lets € T'o(X, B), (< € T (G, r*E~) and¢” € T (G, r*E~).
Then

(9%, &) /<ﬁ€< )26, ()
aN'(7) = () (€5, €) (@)

(€5, 670) (=) = /g (€, v (€A g, AN ()
- /gr <§<(7)7 Y (§>(771)771/6 (5(*}/71)))>E A" (v)

()

— [0 66N 8@, ) = (65, ) )G
forall x € X. O

Note that in the preceding definition, tidg(X)-structures orfH<(G, E<) andH~ (G, E~) are
not the same in general: on the left-hand side, it is induced by the range,noapthe right-hand
side by the source magp This implies that the fibre of{<(G, E<) over somer € X should be
regarded as a completion Bf(G*, E), whereas the fibre dft~ (G, E~) overz should be regarded
as a completion of.(G,, (r*E)|g,); compare Proposition E.§.5. The difference can of course be
remedied by the application of the pullback along the inversion of the groupoid (we formulate this as
a general statement about a single monotone completi6n @§ instead of a pair):

Lemma 7. 3 4.Let H(G) be a monotone completion 6£(G). Then also the semi-norifip||,; :=
|¥ = ©(v1)]|,, is @ monotone semi-norm af(G). The mapy — (v — ©(y~')) induces an
isometric isomorphism from the Banach sp&t@) to H(G). Itis an isomorphism afy (X )-Banach
spaces if we take oH/(G) the Cy(X)-action induced by and on(G) the action induced by (or
vice versa).

Note that if H(G) is a pair of monotone completions and if we put thé.X )-structure which is
induced by the range map on both sides, then the brack&t(Gf E') no longer has the shape of a
restricted convolution. It thus seems to be more systematic to have diftgetj-structures on both
sides of the pair.

7.3.2 A(G) acting on pairs of monotone completions of.(G)

Recall thatG denotes a locally compact Hausdorff groupoid with left Haar systeand X denotes
the unit space of. Let.A(G) be an unconditional completion 6£(G).

Definition 7.3.5 (A(G) acting on H(G)). A(G) is said toact on a pairH(G) = (H<(G), H”(9))
of monotone completions @f.(G)

X %€ [l () < Ixlla) 1167 3> g

and
H§< * XHH<(Q) < H€<HH<(Q) HXHA(Q)

forall x,£<,£” € C.(9).
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Definition and Proposition 7.3.6 (4(G, A) acting on’H(G, E)). Let A(G) act on the pair of mono-
tone completiong{(G). Let A and B be G-Banach algebras and |&tbe aG-BanachA-B-pair. For
alla eT.(G, r*A),all{s € T (G, r*E<)and alle” € T'.(G, r*E~), define

@) =@ €)0) = [ a1 ) )

and
(€= a)(y) = (£ xa)(y) = / ()Y aly' ) AN O()
gr(m

for all v € G. These actions lift to actions of(G, A) onH~ (G, E~) andH<(G, E<), respectively.
Equipped with thent (G, E) (as defined i 7.3]3) become&§# X )-Banach( (X, B)-pair on which
A(G, A) by elements oLCO(())?B) (H(G, E)).

Proof. Leta € T.(G, r*A), &~ € (G, r*E~),andf € T'(X, B). Then
((ax£7)B)(7) = (ax&7)(MVB(s(7))
= [ s G YO )(e()

B /gm) a(y )& (I (TIB(s( 1)) O ()

= (ax(£76)(7)

for all v € G. This shows that'.(G, r*E~) is al.(G, r*A)-I'(X, B)-bimodule. Similarly one
shows thatl'.(G, r*E<) is al'(X, B)-T'.(G, r*A)-bimodule. Because the actions are given by
convolution and also the bracket is given by (the restriction of) convolution, it is easy to see that

(€<, af>>rc X,B) = ({=a, 5>>FC (X,B)"
Becauseél(Q) acts onH(G), we have

€ [l < llall 4 [|€7 15> and [€%allyyc < (|65 ]lp< llalla
and the actions on the sections with compact support lift to actions on the completions. Moreover,
these actions are surely By(X)-linear operators. O

Proposition 7.3.7. Let H(G) = (H<(G), H~(G)) be a pair of monotone completions@f(G) on
which A(G) acts. LetA and B beG-Banach algebras and let be aG-BanachA-B-pair. If T'( X, A)
acts onFE by locally compact operatomnd G is proper then A(G, A) acts onH(G, E) by locally
compact operators

Proof. Leta € T'.(G, r*A). If we can show that the action efon H(G, F), denoted byr(a) €
Lry(x,) (H(G, E)), is locally compact, then we are done. bete C.(X). We have to show that
x7(a) is compact. Define

Ky ) = X(s(71))mala
for all (y1,72) € G %, G. Then the action of7(a

(xm(a))”(€7)(7) = X(S(’y))/ () E (1) AN (7))
gr(m
- /grm X(s(7)a(y)V € (/1) AN (+)

= / k€ (Y 1) AN (Y)
gr(v

2)) € LBr(aﬂ) (ET(Wl))

(7
yonI'. (G, r*E~) is given by
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forall ¢~ €T (G, r*E~) andy € G.
On the left-hand side, fg< € T'. (G, r*E<), we calculate:

x(r(7)) o () a(y ) AT ()

- Kgrm ES(YIXr(y))Y a(y' " ) AN ()

(x7(a))=(£%)(7)

- /QT("/) £<(7/)7/k(7’*1,7/717) dx ™) (’)’/)

forall¢” e . (G, r*E~) andy € G.

The field of operatorgma(a(v2))) (4, 4,)egs,,¢ 1S locally compact, so the same is true far
Moreover, the support of is compact: Sinc&; is proper, the sef{ = {y € G : r(y) €
supp X, s(7) € r(suppa)} is compact. Lety1,72) € G *.» G. Thenk(,, ., # 0 impliesy; € K
and~y, € suppa. So(vy1,72) is contained inK x supp a. Hencek has compact support. Now the
proposition can be deduced from the following lemma. O

Lemma 7.3.8 (Operators given by kernels)Let H(G) = (H<(G), H~(G)) be a pair of monotone
completions of.(G). Let B be aG-Banach algebra and leff be aG-BanachB-pair. Letk €
L,+p (p*E) be a continuous field of operators with compact support, wperg *, , G — GO =
X, (71,72) — r(m) = r(72). Define an operatof, onH (G, E) by

7 (€7) () 22/

. k2 V€ () A ()

and
TEE) ()= [ AHGs ) € O)

forall &~ €T (G, m*E~), (S €T (G, r*E<)andy € G.
If & is compact thefl}, is compact.

Proof. This is Lemm4 E.8.12 in disguise. On the surface, the formulae in that lemma look different,
but this is a consequence of the fact that we have altered the definitio(ofE) by taking a different
but equivalent bracket. m

As a corollary of Proposition 7.3.7 we get:

Corollary 7.3.9. Let H(G) = (H<(G), H~(G)) be a pair of monotone completions Gf(G) on
which A(G) acts. LetB be a non-degeneratg-Banach algebra. I is proper, then4(gG, B) acts on
H(G, B) by locally compact operators.

7.3.3 G acting on pairs of monotone completion of’.(G)

If we are given a paif{(G) of monotone completions in the above sense agedBanachB-pair F,
then we want to put an action ¢f on H(G, E'). Technically, we have to replade(g, E) with the
u.s.c. field§(H(G, E)) of pairs overX, so it is a natural to assume that all thg X )-Banach spaces
that appear are locallg, (X )-convex. Moreover, we have to make sure that dhaction that we
define is isometric. We hence formulate the following definition:
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Definition 7.3.10 ((Locally convex, equivariant) pair of monotone completions)Let H(G) be a
pair of monotone completions. Théi(G) is calledlocally convexif H<(G) is a locally Cy(X)-
convexCy(X)-Banach space (with respect to tlg(X)-action induced by-) and alsoH~ (G) is
locally Cy(X)-convex (with respect to the action inducedd)y

For ally € G, define a map:s from C. (G*)) to C. (")) by

XS o () =" = (= X))
and a mapy; fromC, (Gs(y)) 10 Ce (Gr(y)) bY
X aZ () =" = (V= X" () -

If H(G) is locally convex, then it is calledquivariantif o< and«~ are families of isometric
maps, i.e., if we have that

H’YX<HH<(QT(7)) = HX<HH<(gs(v)) and H7X>HH>(QT(7)) = HX>HH>(QS(V))

for all X< € C.(G*1), x> € C(Gy(y)) and ally € G.
Examples 7.3.11.All the examples of 7.3]2 are local§ (X )-convex and equivariant.

Definition and Proposition 7.3.12 (TheG-action on §(H(G, F))). Let H(G) be a locally convex
equivariant pair of monotone completions®fG) and letE be aG-BanachB-pair. Define

(7.2) Ck,?: J (QS(V), T*E<> — T, <Q’”(7), T*E<> , §< — fy§< = (’y/ — fy§<(7_1fyl)) ,
and

(73) O‘;: I'e (gs(fy)v T’*E>) —I'e (gr(fy)v T*E>) ) €> = ’Y§> = (’7/ = €>(’Y,’Y)> )

forall v € G. Thena§ andai are isometric for alty € G and extend to isometric isomorphisms
H(G*D, r*E<) = H<(G", r*E<) andH> (Gy(), r*E~) — H>(G,(y), r*E>), respectively.
The field(a5, a7 ),eg is a continuous field of isomorphisms makigigH (G, £)) aG-BanachB-pair.

Proof. We have to check thdixs ),eg and(az ),eg are continuous families of isomorphisms. We
check this only on the left-hand side, the proof for the right-hand side being analogous. Define

aS:Te (G %rs G, QfES) = Te(G %rr G, Q5 ES), €5 = [(1,7) =€~ (v )]

whereQ,.s: G x5 G — GO, (v/,7) = r(7) = s(y) andQ,., is defined analogously. We check
that o is isometric for the normg-||,.,,< and ||-||,.,.< defined as in Definitioh E.8.13. §< €
L. (G %rs G, Qi E<), then

|aS(€)| e = sup QT(V)BV'HHO‘<(5<)(%7,)H‘HT<W
= sup g7 5 = eS|
= sup[[g 5"~ e | .
= sup G0 54 H€<(7’)H‘H§w = (€% o<
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So o< is an isometric isomorphism from*H< (G, G, s*E<) to r*H< (G,,G, r*E<). |dentify-
ing the field§ (s*H< (G, sG, s*E<)) with s*F (H< (G, E<)) and§ (r*H= (GG, r*E<)) with
r*F (K=< (G, E<)) (using[E.8.14) makes the field~ an action ofG on the left BanackB-module
(M= (G, E%)).

The proof of the algebraic properties @f and«~ is straightforward. We only check explic-
itly that the bracket and the module action §(H (G, F)) are G-equivariant. Lety € G, £< €
. (G*", r*E<) and¢> € I (Gy(), r*E~). Then

(VS )y = /gw (), A ((E)ETH)) AN
= /g o (v<(vH), Y€ (1)) AN ()
= /g o (VES(THY), TIE (Y TI)) dATO)(Y)
= v/gw (€Y, yTHE((IY)TY) AN (Y)

— <(A/ > -1 s(Y) (A
v [ 00 EE) O w)
- 7<§<7€>>s('y)'

This shows that the bracket is equivariant. To see that the actioRsawé compatible with th¢-
actions we calculate fdre By,

Y(E7b) = 7 (Gsy 27— E(Y)V'D)
= [Gry 27 = € (7'7) A ()] = (&) (D)

and
V(%) = (00 39/ = bE<())
= [QT”) 54 vb-7§<('f1’/>} = (7b) (¢7)-
0

Corollary 7.3.13. If H(G) is a locally convex equivariant pair of monotone completion§ 6§ ),
then§ (H(G)) is aG-BanachC x-pair.

Proposition 7.3.14.Let’H(G) be a locally convex equivariant pair of monotone completiors @).
Let B be aG-Banach algebra and leE be aG-BanachB-module. Then the convolution

Le(G, 7" E<) x (G, 7"E”) — T.(G,7*B),
€)= e = (v [ (E@ e, WOW)
extends to a contractive bilinear map
H<(G,E<) x H™(G,E”) — I'o(G,r*B),

also written as a convolution product, such that the bracket@g, E) is the composition of this map
and the restriction map fromy(G,r*B) to'y(X, B).
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Proof. Let(< e T'.(G,r*E<) and{” € I'.(G,r*E~). For ally € G, we have
(€ )0 =&y i),

and hence

[(€= =)

W)‘H< (G,EX), 5(7 ‘

H 758(’7) H>(g7E>)'r('y)

< H€<HH<<g,E<) Il

becausé{~ (G) is equivariant. Hence the convolution is continuous with nefnh and extends to a
mapH=<(g, E<) x H> (G, E~) — T'o(G, r* B) with the desired properties. O

()

v)’ W)‘ (G.E>)”

HGE)r(y) H>(G,E>)s()

In the[7.3.6 we have not assumed th&() is locally convex or equivariant. If it is, we can refine the
result as follows:

Proposition 7.3.15.LetH(G) = (H<(G), H~(G)) be alocally convex equivariant pair of monotone
completions on whicll(G) acts. LetA and B be G-Banach algebras and Idf be aG-BanachA-B-
pair. Theng(H(G, E)) is aG-BanachB-pair on whichA(G, A) acts by bounded equivariant fields of
linear operators. IfG is proper andl’( X, A) acts onE by locally compact operators, then the action
of A(G, A) on§(H(G, E)) is by G-equivariantbounded locally compact fields of operators.

The only thing that we really have to check is that the actiodl@, A) is equivariant. This is a
consequence of the following lemma:

Lemma 7.3.16.Let A and B be G-Banach algebras and let be aGg-BanachA-B-pair. Then the
action ofl'.(G,r*A) onT'.(G,r*E<) andT'.(G, r* E~) commutes with the action gfin the obvious
sense.

Proof. Lety € G,a € T'o(G,7*A), (< € To(G,7*E<), &~ € T'o(G,r*E~). Then
( (a*§ ) 7))( /) = (a*§ )5(7( )
= [ a0 YO ) )
Gs()

= ax(1€,)(7)
forally' € G,(,). Secondly,

(7(£< * a)s(v)) (7/) = 7 (£< * a)s(v) (7_1’7/)
= 9 / SO (" ) AN ()
Gs(v)

= [ e I () ) )

= [ G ) a0
= (¥ )y xa)(Y)
forally/ € gr™), O

Corollary 7.3.17. Let H(G) = (H<(G), H~(G)) be a locally convex equivariant pair of monotone
completions of.(G) on which A(G) acts. LetB be a non-degeneraté-Banach algebra. 1T is
proper, thenA(G, B) acts on§H (G, B) by locally compact-equivariant operators.
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7.4 Regular unconditional completions
For simplicity, we introduce the following abbreviation:

Definition 7.4.1 (Regular unconditional completion).An unconditional completiotd(G) of C. (G)
is said to be aegular unconditional completioii there exists an equivariant pair of locally convex
monotone completions @f. (G) on which A(G) acts.

Note that there might exist many different equivariant pairs of monotone completions on which
a regular unconditional completion acts, the important part of the definition really is the existence of
such a pair, not its particular shape.

Examples 7.4.2.Most examples of unconditional completions that we have come across so far (com-
parg 5.2.p) are regular for rather obvious reasons:

1. The unconditional completid' (G) acts on the pai(L' (G), Co (G)).

2. The symmetrised versidrt (G)NL! (G)* is also regular because the norm defining it dominates
the norm|-||;. Moreover, it acts on the pa(iL.? (), L2 (G)) (see[Ren80]). It should not be

too hard to check that it also acts éhgf’ (G), Lt (g)) forall p,p’ €]1, co[ such thatzl;+ﬁ =1.

3. The completiomd,,.x (G) acts on(L2 (G), L2 (G)) by definition.

4. If G is a locally compact Hausdorff group acting on some locally compact Hausdorff space
X, thenL! (G, Cy(X)) is a regular completion af. (G x X) because its norm dominates the
norm of the regular completioh! (G x X).

Regularity is essential in our construction of the homomorprMﬁ] down below. It also makes
some arguments in the next chapter simpler (but might perhaps be avoided in some instances).

Note that in[Laf02] there is an argument which seems to hold in general but is definitely simpler
in the case of regular unconditional completions: The proof of Lemme 1.7.8 uses a concept very
similar to regularity, and the subsequent arguments show3f@t B) andC. (G, B) have the same
K-theory but do not explain explicitly whi(G, B) and A(G, B) have the samg&-theory, too@ If
A(G) is regular, then one can use the same argument & {c¥, B).

The issue recurs in [Laf06], the respective result there is Lemme 1.5.7. Note that there is a very
similar statement (for regular completions) in Chapter 8 of this thesis, namely Proppsitign 8.4.3.

7.5 The (inverse) homomorphism\/ %
Let G be a proper locally compact Hausdorff groupoid with unit spAcand Haar system. Let

A(G) be a regular unconditional completion@f(G) acting on the equivariant pah((G) of locally
convex monotone completions. LBtbe a non-degenerageBanach algebra.

0y, Lafforgue has recently given me an argument why Lemme 1.7.8 is true in general; it consists of a careful estimate
showing directly that’. (G, B) is always a hereditary subalgebra4f{G, B).
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7.5.1 The first step: The tensor product with(G, B)

If E be is a non-degenerath (X/G)-Banach.A(G, B)-pair, then we can form the tensor product

E ® 4, H(G, B). This is a non-degeneratg (X )-Banachl'y(X, B)-pair. Actually, this con-
struction defines a functor from the category of non-degenépdt& /G)-BanachA(G, B)-pairs with

the bounded linear operators to the category of non-degen@&rate)-Banachl' (X, B)-pairs with

the bounded linear operators, linear and contractive on the morphism sets. Bd¢gu#®d acts on

H(G, B) by locally compact operators, it follows that locally compact operators are mapped to locally
compact operators under this functor. We therefore have

Lemma 7.5.1.1f (E,T) € EP (Co(X/G); Co(X/G), A(G, B)), then
(E ®a¢.5 H(G.B), T®1) € E** (Co(X); Co(X), To(X, B)).
The map(E,T) — (E ®4g,5) H(G,B), T ® 1) induces a homomorphisn® 4g 5) H(G, B)
RKK"" (Co(X/G); Co(X/G). A(G, B)) — RKK™ (Co(X); Co(X), To(X, B)).

To verify that we really have a well-defined homomorphism we have to check that) —
(E ®a,) H(G,B), T® 1) respects the sum of cycles (which is trivial) and that is compatible with
homotopy. The latter fact can be proved just as in 1.10.29, i.e., by using the Baiiéci)[0, 1]-
I'y(X, B)[0, 1]-pairH(G, B)|0, 1].

An alternative picture of the first step

Note thatH(G, B) is not exactly a Morita cycle fromA(G, B) to I'y(X, B), becauseA(G, B) is
aCy(X/G)-Banach algebra andy (X, B) is Cy(X)-Banach algebra. However, we can change the
setting a little bit and use the theory that we have provided in the earlier chapters by regéfding)

as aCy(X)-linear Morita cycle.

Let = denote the canonical projection froM to X/G. Recall from Chapte|2 that*E is de-
fined asCo(X) ®¢,(x/g) E for everyCo(X/G)-Banach spacé. If A is aCy(X/G)-Banach algebra,
then7* A is aCo(X)-Banach algebra. As a special case we haié (X/G) = Co(X) ®¢,(x/g)
Co(X/G) = Co(X) (asCy(X)-Banach algebras). By what we have shown in Chdgter 2 we can now
deduce thatF,T') — (7*E, n*T') defines a homomorphism

m*: RKK™ (Co(X/G); Co(X/G), A(G. B)) — RKK™ (Co(X); Co(X), 7"A(G, B)).

Combining the giver®, (X )-action onH(G, B) with the left action ofA(G, B) we get a left action
of 7 A(G, B) = Co(X) ®c,(x/g) A(G, B) on H(G, B). Itis also an action by locally compact
operators. NowH(G, B) is an element oMP*" (Co(X); Co(X),To(X, B)) when equipped with this
action. Tensoring with this Morita cycle will thus yield a homomorphism 4 5yH(G, B)

RKK"™ (Co(X); Co(X), 7™ A(G, B)) — RKK"™ (Co(X); Co(X), To(X, B)).

Let E be a non-degenerati (X /G)-BanachA(G, B)-pair. Then we can actually compute what the
composition ofr* and® 4 ¢, g)H (G, B) does toE:

(7*E) @ - a(0.5) H(G, B)

(Co(X) @cy(x/9) B) @co(x)@cyx/0yA0.8) (Co(X) ®cyx) H(G, B))
(Co(X) ®co(x) Co(X)) Bcy(x/G)@ey (x/6)Co(X) (E ®ag,n) H(G, B))
Co(X) @cyo(x) (E @a(g,8 H(G,B))

E ® 4,B) H(G, B).

1

12
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It is easy to check that this isomorphism intertwinéd’ ® 1 and7' ® 1 if (E,T) is a cycle. Hence we
have shown that this alternative approach gives the same result as tensoriti @itR) right away.

7.5.2 The second step: Fronf, (X )-Banach spaces to fields

Recall from Chaptelr|4 tha§ () is a functor from theCy(X)-Banach spaces to the u.s.c. fields of
Banach spaces ove¥ that sends a spac€ to (E,).cx WhereE, is the fibre of &' overz. We
have shown that this functor induces a homomorphisf Et?"-theory by sending RKK"**-cycle
(B, T)to§(E,T) = (§(F), §(T)). Note thatF (-) takes bounded locally compact operators to
bounded locally compact operators.

Definition 7.5.2. Let E be aCy (X/G)-BanachA(G, B)-pair. Define
¢
MEy(B) =5 (BEeSG) HG.B)).
ThenM?%,,(E) is a of BanachB-pair.

Note thathf’H(-) is actually a functor from thé€,(X/G)-BanachA(G, B)-pairs to the Banacti-
pairs which sends locally compact operators to locally compact operators.

Lemma 7.5.3.1f (E,T) € E**" (Co(X/G); Co(X/G), A(G, B)), theft]
ME,H(Eﬂ T) = (ME,H(E>7 ME,H(T» € E?{an (CX, B)
The mapE,T) — ME’H(E, T') induces a homomorphism

MZE, (B, T): RKK"™ (Co(X/G); Co(X/G), A(G, B)) — KKR" (Cx, B).

7.5.3 The third step: ThegG-action

Let E be aCy (X/G)-BanachA(G, B)-pair. Then, for alle € X, the fibre OfME,H(E) atz can be
identified with

Er(z) ®AG.B) (o) H(G: B)a-

Definition and Proposition 7.5.4. Let E be aCy (X/G)-BanachA(G, B)-pair. For ally € G, define
amap

Er(s(v) ®AG.B)n(sryy (G5 B)s(r) = En(r(v)) ®AG.B)rriryy THG: B

by Id ®a, wherea denotes the action @ on H(G, B). This defines an action @ on ME,H(E)
calledld @a. With this action,M 7 ,,(E) is ag-BanachB-pair.

To see that this really is a continuous action we provide a conceptional alternative picture of the

construction in the upcoming subsection. For now, we just state the results that we are going to
obtain:

Proposition 7.5.5. Let E and F' be Cy (X/G)-Banach A(G, B)-pairs. LetT € LCO((X/? (E,F).
Then
MEn(T):=F(T®1) € Lp (MEn(E), MZx(F))

is G-equivariant.

MDuring the technical part of this chapter we will distingu&{X ) andCx to have clearer statements.
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Hence the map& — ME,H(E) andT — Mff,H(T) define a functor from thé€, (X/G)-Banach
A(G, B)-pairs with the bounded fields of linear operators toghBanachB-pairs with theG-equi-
variant bounded fields of operators. It maps locally compact operators to locally compact operators.

Proposition 7.5.6.Let (E, T) € EP* (Cy (X/G); Co (X/G), A(G, B)). Then
MZw(B,T) = (M{yn(E), MZ3(T)) € E§" (Cx, B)
with G-equivariantT'. The mapMﬁH induces a natural homomaorphism of groups
MZE ;0 RKK (Co (X/G); Co (X/G), A(G, B)) — KKg" (Cx, B).

To show that this homomorphism is indeed natural is rather straightforward but requires a bit of
work. The key ingredient is the obvious homomorphignmwith coefficient mapp from H (G, B) to
H(G, B') if ¢ is aG-equivariant homomorphism fro® to B’; one has to show that this homomor-
phism is compatible with the actions @f(G, B) and.A(G, B’) in the sense that one can approximate
the action of some € T'.(G, r*B) on'H(G, B) and ofp o 5 on H(G, B’) simultaneously by finite
rank operators. We leave out the details.

7.5.4 An alternative picture of the construction

Recall that we used the namefor the canonical projection frolX to X/G. Letr also denote the

map fromg to X /G that mapsy to«(r(v)) = w(s()) (which extends the: X — X/G). Regarding

X /G as a locally compact Hausdorff groupoid the mapG — X /G is actually a strict morphism of
groupoids. IfE is a u.s.c. field of Banach spaces ovéfg, thenw*E is aG-Banach space (with a
rather trivial action). IfI" is a continuous field of linear maps between u.s.c. fields of Banach spaces
over X/G, thent*T is anG-equivariant continuous field of linear maps betwg&eBanach spaces.

We use these facts to define our “inverse homomorphism”:

1. The first step is the m&ap(-), this time giving a homomorphism
() : RKK™™ (Co(X/G); Co(X/G), A(G, B)) — KK (Cx/g, § (A(G, B))) -
2. The second step is the pullback homomorphism atang
™ KK (Cxyg, 3 (A(G, B))) — KKg™ (Cx, 7*F (A(G, B))) .

Note that this homomorphism, on the level of cycles, just produces cyclegiwatiuivariant
operator.

3. We have discussed above h#{G, B) can be regarded asCa(X)-linear Morita cycle from
™ A(G,B) to I'y(X, B). Observe thaf (7*A(G, B)) = 7*§ (A(G, B)), so we can regard
§ (H(G, B)) as a Morita cycle from*§ (A(G, B)) to B = § (I'0(X, B)). The important point
is that this Morita cycle carries an action @fwhich makes it &;-equivariant Morita cycle!
Hence we get a homomorphism

RnzaG,8)S (H(G,B)) : KKg™ (Cx, 7*F (A(G, B))) — KK¢™ (Cx, B).

On the level of cycles: If a cycle hasaequivariant operator, then it stays equivariant under
this homomorphism.

The composition of these three homomorphisms gives the desired natural homomorphism
MZ 5 RKKP™ (Co (X/G); Co (X/G), A(G, B)) — KKg™ (Cx, B)

which produces cycles witfi-equivariant operators.
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7.5.5 The uniqueness of the inverse homomorphism

For every regular unconditional completigi{G) of C.(G), we have a canonical homomorphism from
RKK"™ (Cy (X/G); Co (X/G), A(G,B)) — KK§™ (Cx, B), canonical in the sense that it does
not depend on the particular shape of the equivariant pair of monotone completions on4ggich
acts:

Proposition 7.5.7. Let H'(G) = (H'<(G), H'~(G)) be another equivariant pair of locally convex
completions o€.(G) on whichA(G) acts. Then the natural homomorphistig} ,, and M % ,,, are

equal. We call this natural homomorphissz.

Proof. We first consider the case thafl,,< < [|-||,< and||-||;> < |||y~ We then have a canonical
homomorphism® from H'(G, B) to H(G, B) which gives us an equivariant homomorphignd)
from § (H'(G, B)) to § (H(G, B)). The homomorphisr§ (®) is actually a morphism of equivariant
Morita cycles fromn*§ (A(G, B)) to B. A careful revision of the proof that*3 (A(G, B)) acts
by compact operators af(*'(G, B)) and on§ (H (G, B)) shows thaff (®) satisfies the conditions
of Theorel and hence induces a homotopy fga’ (G, B)) to § (H(G, B)). SoMiH, =
M%,,.

Now consider the case that is a general equivariant pair of locally convex completion§ 06 )
on which A(G) acts. By taking the maximum of the norms BT (G) and’H’<(G) we can define an
equivariant locally convex completiod”<(G) of C.(G) on which A(G) acts; similarly we can define
H">(G). The pairH”(G) := (H"<(G), H"~(G)) is a pair of locally convex completions on which
A(G) acts. By the first part of the proof we can concludg; ,, = M7, = M ;. O

7.6 J% o M% =1d on the level of KK

Let G be a proper locally compact Hausdorff groupoid with unit spacand Haar system. Let
A(G) be a regular unconditional completion@f(G). Let B be a non-degenerageBanach algebra.
Assume that there exists a p@l X' ) of monotone completions @f.(X ) compatible withA(G) (this
is the case iff admits a cut-off function which, in turn, is true ¥ /G is o-compact).

Theorem 7.6.1.J% o M% = 1d as an endomorphism &KK"™" (Cy(X/G); Co(X/G), A(G, B)).

Idea of the proof

BecauseA(G) is regular, we can find an equivariant p&ifG) = (H<(g), H~(g)) of monotone
completions of’, (G) on which A(G) acts. Let(E, T) € EP* (Co(X/G); Co(X/G), A (G, B)). We

have to show thatF,T') is homotopic toJiD(ME’H(E, T)). The obvious strategy is to define a
morphism fromeﬁD(MfﬁH(E)) to E which induces a homotopy; there is a canonical candidate for
such a morphism defined on a dense subspace, but this candidate does not extend to a continuous
morphism on the entire space: The norms]ﬁb(MﬁH(E)) andE seem to be difficult to compare

in general.

We overcome this problem by constructing a pait= (E<, E>) of C-vector spaces which are
equipped with compatiblé.(X/G)-module structures and left/riglit. (G, »*B)-module structures
and a bilinear map fronE< x E> to T (G, r*B). On this pair, which could be called a “pre-
A(G, B)-pair”, we construct a pair of formally adjoint operatdfs Moreover, we define canonical
“homomorphisms’® ; from E to E and ¥ ; from E to J4 ,(M%,,(E)) which intertwineT' andT
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andJ % p(MZ%,,(T)), respectively:

(E,T)
y &
(E,T) TZp(MZ4(E,T))

One can think ofF’ as a dense subspace of bohand JE,D(ME,H(E))' Now we put onE the
supremum of the semi-norms which are induced by the two homomorphisms, making the homomor-
phisms continuous. The completion Bftogether with the continuous extensionfvill then be in

EPa (Co(X/G); Co(X/G), A(G, B)) and the two homomorphisms will induce homotopies. Hence
also(E, T) andJ% (M3, (E,T)) are homotopic.

The construction of £, & and ¥

We are going to cut the proof into a series of lemmas and definitions. In this sectidghaled F' be
Co(X/G)-BanachA(G, B)-pairs.

Definition 7.6.2 (The pair E). Define
E> = E> ®Fc(g7 T*B) Fc (g, T*B)

and

E< = FC (g, T'*B) ®Fc(g’ T‘*B) E<.

These vector spaces carry canonical and compatible actidng(f r*B) andC. (X/G). A bracket
on F is defined by

(+,-): E<xE> — T, (G, r*B),
(B@es, e”@07)(y) = BTx(eS,e7)xf7 = (6%, e767).
We check that the bracket has indeed its valuds.(¢, »* B): The elemente<,e”) isin A(G, B) by
definition, and we now show that the produtt « 3« 5~ isinT'.(G, B) for all 5=, 3~ € I'.(G, B)
andg € A(G, B). If we regard3=< as an element of(<(G, B) and3~ as an element of(~ (G, B),
then we can conclude from Propositjon 7.3.14 that the fhep 3= * 3% 3~ is continuous from4(G)

to'y(G, B) becaused(G) acts onH(G). Moreover, the support of the produgt = 3 « 5~ is always
contained in the sety € G : r(v) € r(supp 8%), s(vy) € s(supp 3~)}, which is compact because

G is proper[t
Definition 7.6.3 (The map® ;). Define
@EZE>—>E>, 6>®5>|—>8>ﬂ>

and
5 EX — E<, S ®@e~ — e .

Both maps are clearly. (G, r*B)- andC. (X/G)-linear. The paiby = (@E,@E) is compatible
with the brackets o’ andE.

*?Compare the proof of Lemnja 8.2.4.
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Definition 7.6.4 (The mapV ). Lete” € E~ ands~ € I'. (G, r*B). Since3~ has compact support,
the functions — (e” ® 87)s = €7, ® 67 isinT'c (X, § (E~ ® 46,3 H” (G, B))) which we can
regard as an elemesit; (e> ® 37) of D> (X, § (E~ ® 4,5 H”(G,B))); herer: ¢ — X/G
denotes the canonical projection. This gives rise to a igagrom £~ to JED(MEH(E))Z
Similarly we define

U5 (B~ ®e™), =07 @ery € MG, B)a @a0,8),,) Enia

foralles € E<, 3~ € ' (G,r*B) andx € X, giving us al'.(G, " B)-linear andC.(X/G)-linear
map¥y; from E< to J5 (M5, (E))=~.

Lemma 7.6.5. ¥ = (¥, ¥;) is a pair ofC.(X/G)-linear andI'.(G,r* B)-linear maps, compati-
ble with the brackets ot and J% (M5 ,,(E)).
Proof. Lete” € E~ and3~ € I'. (G,r*B). Let x € C.(X/G). Then
Vg (xe” @ 87), = (xe”)n() @ 87 = x(m(2))¥5 (7 ® 57),
so¥ isC.(X/G)-linear. If 3 € T'.(G,r*B), then
‘I’J>E ((e> X ﬂ>)ﬁ)x = ei(m) b2 (/6>ﬁ)z
whereas

(Ve e5)0), = [ ez @ 8,)0007) ax)

= e [ WmeTh ).

Now
(482, ¥80:71)) () = B (/)Y (8(7H)
forally € G,, and

[ /g 185180 dm)] (7) = /g B seh] ) e)

= BZ(YNNBY AN (y) = | B ()BT AN (y) = (B7 * B)(7),

ge Ge
SO
(\PE(6> ® ﬁ>)ﬁ)x = €7>r(m) ® (87 % 0)e
as well. Hencel' 7 isT'.(G, r*B)-linear. Similar calculations can be done for the left-hand side.
To see thatl ; = (U5, ¥7) is compatible with the brackets let € E<, e> € E~, 5<,6~ €
I'. (G, r*B) andy € G. Then

(w5 (8= @), 5 (7@ 57))) (7)

B << o < > (> >
= <\I’E(ﬁ Ke )T(,Y)afY\I’E(e ®p )8(7)>M£H(E)r('y)

(50555 6 5 g
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Write a := (e<,e”) € I'¢(G,r*B). Now
[awmﬂﬁfm)} () = /g o Yy 7)) A ()

= [y @ E O ) N = (57 )
forally' € G,(,). So
< o (€5 €n)ags) Vﬁ;(ﬂ>n(g,3)w
= /gm B0 [(ate0)8%,)) (V)] D)

= /. B [(ax 7)1 )] AN ()
= (B xaxp37)(y)
Hence
(5 (B @e), U5 (e” @ 67))
= B xaxB =%, e”)*x 3
= (B<®eS, € @57,
L]

Definition 7.6.6. LetS € L 4¢,5) (¥, ) be an operator between thg( X /G)-BanachA(G, B)-pairs
E andF'. Define o }

S>5E>—>F>, §>®5>'—>S>(§>)®ﬁ>
and o .

S<:F<HE<, ,8< ®€<Hﬂ<®5<(€<)

Note thatS := (§<,S’>> is formally adjoint in the following sense:
(5<(8<®¢%), & @87 ) = B<+ (SS(E%), €) + 8
= B (€5, 7@ 57 = (07 wES, § (€ 0 p))
forall <,5” € T.(G,r*B), (< € To(X, F<)and{” € T'o(X, E”).

Lemma7.6.7. 1. The map®z and®p intertwine.S and S in the obvious sense.
2. The mapp and ¥ > intertwine S and J % , (MfﬁH(S))

Proof. We only show thatl; and ¥';. intertwine S> andJ% (M4 ,,(5))>. The situation forl';;
and '3 is similar, and also the situation f@r; and® is similar and (even) simpler.
Leté” e T'.(X,E~)ands” € ' (G,7*B). Then

v (P es) = v (STE)es),
= () @07 = (5 @) (£, @57
forallz € X. m
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Putting a norm on E
Definition 7.6.8 (The completionE of E). If ¢~ € E>, then define
1e7]] == max {[|@z@E)]|, [wEE)]}-
This is a semi-norm o>, Let E~ be the (Hausdorff-) completion oE> with respect to this
semi-norm. In an analogous fashion, define a semi-nord®mnd call the completio@<.

Lemma 7.6.9. The actions of.(G,r*B) and C.(X/G) on E extend to non-degenerate actions of
A(G, B) andCy(X/G) on E. The bracket orZ extends to a continuous bracket 6

Proof. If &> € E>, 3~ € I, (G, r*B), andy € C.(X/G), then
le787|| = max{[|egE)s”||, [[¥5H(E)5” ||}
< max {[|e5@E)| 870, P25} = €115 ]| 4

and similarly,
x| < lIxllo 1]

So the actions of (G, 7* B) andC.(X/G) on > extend to actions afl(G, B) andCy(X/G) onE~ .
Similarly for~E<. Itis clear that all the actions are non-degenerate.
If &< € E< ande” € E~, then

[(&=.e7)] = (@), @)l < o=@ o> )| < [le=]] ]|
So the bracket ot is contractive. O
Definition and Lemma 7.6.10. The map®7. extends by continuity to a continuous linear map from

E” to E which is A(G, B)- andCy(X/G)-linear. Similar things can be said abakff, ¥ and ¥'s.
We get homomorphisms; from E to E and ¥ ; from E to J5 (M7, (E)).

Definition and Lemma 7.6.11.Let S € L 4g ) (E, ) as above. Then the map” satisfies
|8>@)|| < 15> 111>

for all & € E> and extends therefore to an opera$or from E~ to . Analogously forS<. We
thus get an elemettt € L 4 p) (E, F') of norm < ||S||. The mapS — S is C-linear and functorial.

The homomorphism® z and® - intertwine S and.S in the obvious sense and the homomorphisms
U and ¥ intertwineS and J % 1, (M7 ;,(9)).

By direct comparison of the operators one can show:
Lemma 7.6.12.Lete< € I'o(X, E<), f> € To(X, F>), <, 5> € T(G,r*B). If
S=f757)(B%e"| € Ku,p) (B, F),

then B -

S=|f7®p7)(B~@e"| €Kug,p (E.F)
and
TEp (MEx(9)) = [V(f7087)) (V56 2e®)| € Kag.p) (Jip (MAn(E)), Jip (MEn(F))).
It follows for all S € K 4g,5) (E, F) that S and J% (M5 ,,(S)) are compact and thatS, 5) ¢
K(®p, ®r) aswell as(S, J p(M%5,,(5))) € K(Vg, V).
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The proof of Theorem[7.6.1
Let (E,T) € EP* (Co(X/G); Co(X/G), A(G, B)). We show tha{ E, T') is homotopic to E, T') as
well as toJ % (Mff’H(E, T)).

If x € C.(X/G) andS := x(T% — 1), then(S, S) is in K(®5) and (E, 5 (ME’H(S)» e
K (V) by Lemma 7.6.12. If follows thatF, T) is in EP® (Co(X/G); Co(X/G), A(G, B)) and,
using Theorer 2.6,2, that it is homotopic(tB, T') as well as to/§ 1, (MEH(E, T)).

7.7 EmbeddingF into H(G, E) as a summand

An important technical step in the proof of thé-@lgebraic version of the generalised Green-Julg
theorem is the following: I is aG-Hilbert B-module, then is a direct summand df?(G, E). The
proof of this observation makes use of a cut-off functiondor

In the Banach algebraic situation, something similar is true: We can em@dgbaachB-pair £
into the pairH (G, E), provided that(G) is a locally convex equivariant pair of monotone comple-
tions of C.(G) and provided that there exists a suitable cut-off paifoActually, we are not going to
embedE into H(G, E), but, which is the technically correct way of rephrasing this, enfhgd, £)
inH(G, E).

7.7.1 The embedding on the level of sections with compact support

Definition and Proposition 7.7.1.Let ¢ = (¢<,¢”) be a cut-off pair forg. Let E be aG-Banach
space. Define

T3 LG, 1'E) = TXE), (75 () (@) = | eS(sr)el ™) aw(y)

and
15 Te(X,E) = Te(G, r*E), (15(e)) (7) = ¢~ (r(7))ve(s(7)).

Then both maps ar@-linear,C(X)-IineaB and continuous for the inductive limit topologies. More-
over,m; o vy = Idp,(x,5) @nd P := 13, o my; is a projection.

Proof. Let us first considerr;: Let £ be an element of . (G, r*E). Write K for the support of
¢. The support ofy’ +— c¢<(s(7'))y&(y'~1) is contained inK ~!, so this is a continuous section
of compact support.s(K') is a compact subset of and if z ¢ s(K) thenwz(€)(z) = 0, so
1 (€) is a section of compact support, too. The mgpis clearlyC-linear andC(X)-linear. Note
that || 7z (6)]| . < 1€l SUPses(x) Jg= ¢ (s(7)) AA*(7), som; is continuous for the inductive limit
topology.

Let us now consider;;: Lete be inT'.(X, E). Then the support of — ¢ (r(v))ve(s(y)) is
compact by the support property ef. Moreover, it is a continuous section, sp is well-defined.
The map.;; is C(X)-linear andC-linear. From||c7(e)|| . < llelloo SuPy(y)esuppe ¢ (r(7)) it is easy
to deduce that, is continuous for the inductive limit topology by noting that the support;df)
depends monotonously on the support.of

131f we take the actioriéx)(v) = £(7)x(s(7)), € € T (G, r*E), x € C(X),v € G.
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If ec I'.(X, E), then
5 (t5(e) (2) = 7 (v < (r())re(s()) (@)
= [ el ) () = ela)
forall z € X, sony; o017 is the identity. It follows thatz, o 77, is an idempotent. O

Definition 7.7.2. Let ¢ = (¢<, ¢”) be a cut-off pair foiG. Let E be ag-Banach space. Define
751 Lo (G, 1*E) — Lo(X, ), (n5(6)) (2) = / S (s()E0) AN ()

and
1 De(X, B) = Te (G, 7°E), (15(e) (7) := e~ (s(7))e(r(7)).

Then both maps ar€-linear,C(X)-linear and continuous for the inductive limit topologies. More-
over,mg oty = Idp (x gy andPj; := 3 o mj; is a projection.

Proposition 7.7.3. Letc = (¢<, ¢”) be a cut-off pair forg. Let B be ag-Banach algebra and leE
be ag-BanachB-pair. The map

T Lo (G, r*E”) = To(X, E”)
isT.(X, B)-linear and so is the map
Lp<: De(X,ES) = Tc (G, r*E<) .
The pair (5, 77 ) satisfies
VeS € To (X, ES) V& €T, (G,r*E?) : (e, 75-(67)) = (15 (e%), £7).

A similar formula is true for the paif7 5., 7. ) and thus for the pai( P5., Pz ) which we also
denote byPg.

Proof. Lete< e I'. (X, E<)and{” € T, (G, r*E~). Then
(T ) @) = (@), 5 (©)@) = (@, [ Emnehh )
= [ (@, e ) de)
= [ {E D), 1€ (7)) = (), €) (@)

for all x € X. The calculations for the other pair is similar. O
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7.7.2 'H(G)-cut-off pairs
LetH(G) = (H<(G), H~(G)) be an equivariant pair of monotone completion€di).

Definition 7.7.4 (H(G)-cut-off pair). Letc = (¢<,c¢”) be a cut-off pair forG. Thenc is called an
H(G)-cut-off pairif

(7.4) Vo e X : ‘gxavwf(r(v))\mg)_
and
(7.5) Vo e X (g""f 97Hc<(s(7))‘H<(Qm) <1

Examples 7.7.5.Assume thatX /G is o-compact. Let be a cut-off-function foG.

1. The Propositioh 7.1, 7 givest(G)-cut-off pair (¢, d) for the pairH(G) = (L'(G), Co (G)).

1
v

2. If p,p’ €]1,00[ such that}—l7 + % = 1, then (cp , c%> is a H(G)-cut-off pair for the pair
(@) = (17 (9). 12(9)).
Lemma 7.7.6.1f c = (¢, ¢”) is an’H(G)-cut-off pair, then equality holds i (7.4) arld (7.5).

Proof. Letz € X. Then(cs, ¢;)z = [g. ¢<(s(7))c” (r(v~1)) dA*(y) = 1. It follows that

1§‘

G 37— c<(s(+)

G, 37 ¢ (r(7)|

H<(G%) H>(Ge)

If cis anH(G)-cut-off pair, then it follows that both norms have got to be one. O

Proposition 7.7.7.Letc = (¢, ¢”) be a cut-off pair forG. Thenc is anH(G)-cut-off pair if and only
if
VX € Ce(X) 1 [y = & r ()X ()

oy = Nl

and
VX € CX) ¢ ||y = eS(s)IXE ()

ey = Xl

Proof. Assume that is an(G)-cut-off pair. Lety € C.(X). For allz € X, we have

|62 27 = G0, o =@ |23 = @), o =@
SinceH~(G) is locally convex it follows that
| = e, , = swloe2r = emxeml,. .

= sup [x(2)] = [l -
zeX

A similar argumentation works for the left-hand side.
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To show the reverse implication suppose that the conditions given in the proposition hold. Let
x € X. Letx € C.(X) be such thak(xz) = 1 and0 < x < 1. Then by assumption

= =1.
e = Xl

Nx(r(7)) = c¢<(s(v)) and hence
) G" 55 = e (s(NX(r(7))|

R COINGEE]
Moreover, for ally € G*: ¢<

(s(v
|67 37 = ()

He(gs) ‘

H<(G®)
_ <
= 927 = XM, . g -
This last norm is the infimum dfg = v — ¢=(s(7))x(r(7))X'(r(7)) ly< (g) for all ¥ € Cc(X) with
X'(z) =1and0 < x < 1. But this is1. A similar argument holds for~. O

7.7.3 The embedding of (X, E) into H(G, E)

LetH(G) = (H<(G), H~(G)) be an equivariant pair of monotone completion€diG).
Proposition 7.7.8. Let B be aG-Banach algebra and lek be ag-BanachB-pair. Letc = (¢<,¢”)
be anH(G)-cut-off pair forG. Thenr;. : T (G, 7 E~) — I'.(X, E~) satisfies

75> (€)oo < 167 > 0.5
and

HLJ<E<(€<)HH<(Q,E<) = He<Hoo
forall & € I'. (G, r*E~) ande” € I'.(X, E<). So we can extend. to a contractive operator
H>(G,E~) fromTy (G, r*E~) and.;. to an isometric operator frof (G, r*E<)to H~ (G, E<),
bothCy(X)-linear andI'y (X, B). This gives a pair

Co(X
T = (15, 7o) € LY, (H(G, B), To (X, B)).
Similarly, we can construct a pair
g = (7T§<’ LE>) €Lp (FO(X? E)a H(ng))
of norm< 1. The operators satisfy
TE Ol = Id]_:; .
We hence get an idempotent
PE = LR OTE € LB (H(g, E), H(g, E))

of norm< 1.

Proof. Let ¢~ € T'. (G, r*E~). Find a functiony € C.(X) such that) < y < 1andy = 1 on
s(supp &~). It follows thatéxy = £. We calculate

@l = o [ Gome e have)
< o [ oo e o) ave)
< = e |, [ 1800 e

v~

<1

IN

1€llpe> 0.5 -
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Now lete< € T'.(X, E<). Letx € C.(X) be such that < y < 1andy = 1 onsuppe<. We have

|y = ese<tr)|

= | <o) Ixereneem] |

le<[l,o || = e<tsxr ()|

H<(9,E<) H<(G,E<)

IN

H<(G) S H6<Hoo :

The calculations forg (and hence foPg) are almost identical. O

Corollary 7.7.9. If an H(G)-cut-off pair exists, then we can regakias a summand 6 (G, E).

7.8 MZ% o J¥ =1d on the level of KK

Let G be a proper locally compact Hausdorff groupoid with unit spAcand Haar system. Let
A(G) be a regular unconditional completion@f(G) acting on the equivariant pah((G) of locally
convex monotone completions. L& be a non-degeneratg-Banach algebra. Assume that there
exists arH(G)-cut-off pairc = (¢<,¢”).

Theorem 7.8.1. M % o 7% = 1d as an endomorphism &KK"* (Co(X/G); Co(X/G), A(G, B)).

Idea of the proof: If (E,T) € ]Ega“(co(X), B) with G-equivariantl’. Then we define a homomor-
phism®p from M%, (J5 4.(E)) to E that commutes with the operatdt }, (J% 4.(T)) andT.
Note that we use the particular padf (X') of monotone completions @f.(X ) here; in our proof it is
important that we takel“(X) for the H(G)-cut-off pairc to make the calculations work.

The main difficulty of the proof will then be to check th@g; really gives a homotopy between
MZE 3 (JE 4-(E,T)) and(E, T); this is carried out at the end of this section.

To define®y we introduce a bilinear contractive mag; from A°(X,E~) x H”(G,B) to
I'y(X, E~), and similar on the left-hand side, and show that these maps give rise to a homomorphism
fip from A°(X, E) ® 4,8) H(G, B) to ['g(X, E) that intertwines]jiAc (T) ® 1 andMt (7). Then
®p = F (i1p) is the homomorphism we are looking for; we just have to show thatjteguivariant.
This part of the construction can and will be carried out for gengBhnachB-modulesE and not
only for cycles(E, T).

Construction of n7, and i7: Let E be ag-BanachB-pair. Lete” € I'.(X, E~) C A%(X, E~) and
B> € Te(G, r*B) C H(G, B). Thenjg (e”) € Te(G, r*E~) C A(G, E~). More generally, if
& el (G, r"E”) C A(G, E~), then define

(€ 57)(7) = (€ * 57)(7) = / & (B (1) AN O ()

Ggr(v
forall v € G. This defines an element 6% (G, r*E~) C H~ (G, E~) with [[£7 87 |35 g 5>y <
167 1| g, ) 1187 [l34> (g, - So this product extends to a bilinear madgg, £~) x H> (G, B) —

H> (G, E~)whichis.A(G, B)-balancedy(X/G)-balanced, anfly (X, B)-linear as well ag (X )-
linear ont the right.
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Now

() () = [ GReN0 78 ) )
= [ OO0 Y ) )
= SO0 [ A6 A0 )

— S / Ve (s(+)) 757 (1) O ()
Gs(v)
for all v € G. Define
HH(E57) (@) = () (@) = [ 2¢”(s(0)) 987 (7 AN ()

forall z € X. Thenjz (e7)3” = iz(e”3~) or, equivalentlye” 3~ = g (jgﬁc(e>)ﬂ>). It
follows that

|8 Il = |73 (7.8 | .27 i.te2)7]

< le”]

"> (G,E>) a2 187 gy

So we get a contractive bilinear mag.: A°(X, E~) x H~ (G, B) — Co(X, E~) whichis A(G, B)-
balanced(,(X/G)-balanced, and'y (X, B)-linear as well a€y(X)-linear on the right. This map
pz; induces a contractive linear may; : A°(X, E”) ® 4g,5) H” (G, B) — To(X, E~) which is
Co(X)-linear andl'(X, B)-linear on the right.

Construction of x5, and /i5;: A similar argument on the left-hand side gives a a contractive bilinear
mapuy: H<(G, B) x A°(X, E<) — Co(X, E<) which is A(G, B)-balanced(,(X/G)-balanced,
andl'y(X, B)-linear as well a&;(X)-linear on the left. Fop=< € I'. (G, r*B) C H<(G, B) and

e €T(X,E<) C A°(X, E<), itis given by

pp(B=,e%) (x) = (B%e)(z) = . B=(V)ve=(s(v)) dA*(7)

for all z € X. This induces a contractive linear mag;: H<(G, B) ® 4g,5) AY(X, E<) —
Co(X, E<) which isCy(X)-linear andl'o(X, B)-linear on the left.

The concurrent homomorphism fiz: We check thafigp = (45, fi7) is @ homomorphism; this fol-

lows almost by construction, but we give a direct proof: B&t 3~ € T'. (G, r*B), e~ € T'.(X, E<)
ande” € I'.(X, E~). We have

<I3< ®€<’ 6> ®ﬁ>> — <ﬁ<7 <€<, 6>>ﬁ>> .
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Now
((es, e”)B7) () = / ((e=,e)(¥") V37 (Y ') AN D (y)
- /grm (eS(r(V)): A€ (s(V) 487 (I A ()
(<00 [ A G780 ave) )
= <e<(7"('y)), 'y/gsm 7’e>(8(7’))7’ﬁ>(7’1)dAs”)(7’)>
= (eS(r(), 7(e”B7)(s(7)))

for all v € G and hence

<ﬂ<, <6<, 6>>,8>> (ZL‘) — /g ﬁ< >>ﬂ>) 71 dAx( )
— / ﬂ< ) ( >ﬁ> >d)\x
g
= |50 (e, (@87 ) v ()

_ < | 55 6nesstnane), (e>ﬂ>)(x)>
gz

(8% (@), (>ﬁ>)( ) = (3, &3 (@)

W), 13 ) ()

_ <uE<ﬁ<®e> < ® 5)) (2)

forall x € X. Sojg respects the brackets.

The G-equivariant concurrent homomorphism ®z: Define®y := § (iig), which is a concurrent
homomorphism from\f(E) to § (T'o(X, E)) = E. We now show tha® g is g -equivariant.

Lety € G, e € Te(n(y), E7) C AC(X E>) (y) aNdB~ € Le(Gy(y), 7" B) € H7(G, B)s(y)-
Thene” @ 3~ € (A(X,E”) @ a(g,8) H )S and

Ve ®B7)=e @ (Y — 7(V7),

SO
(@7)r(y) (e~ @B7)) = /g A6 () AN
= e (s(ry )87 (Y1) AN (+)

L CCR A ()

= 7[(@R)sy) (7 @57)]

So<I>> is equivariant. Now let< € Tc(n(7), E<) € AYX, E<) ()
(g B)sy)- ThenB< @ e< € (H=(G, B) ®a(g,p) A°(X, E7)) |

<

VB ®@eS) = (v = B(Y 1)) ®eS,

Il
)

and3< e I'.(G°"),r*B) C
and
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SO
(®5)ry) (VBT ®e)) = /g VBT Y (s()) AN
= [ B sy ) X O )

= 4 / VB (W e (5(+/)) X ()
Gs(v)
= Y [(@5)s(y) (65 @eT)].

Hence alsabj; is G-equivariant.

fp intertwines A¢(X,T) ® 1 and 9 (T'): Let E and F' be aG-BanachB-pair and letT" =
(T<,T~) € Lp(FE, F) be ag-equivariant operator. We show

fiz o (AC(X, T)” ® 1) =M(T)” o 0%

and the analogous equation for the left-hand side.eket TI'.(X, E~) C A°(X,E~) and3~ €
I'.(G,7*B) C H” (G, B). Then

p7 (A T) ©1) (¢ © 57)) (@) = (xHT >(@) © 87) (@)
= [ AT N0 / T2 e (s())v8” () ()

= 17 ([ 1€ eome e aen)) = 72 (e 8 57))
— S)JT(T)> (ﬂg(e> ® ﬁ>)) (z)
forall x € X. A similar calculation goes through on the left-hand side.

& intertwines § (A°(X,T) ® 1) and T": This follows from the fact tha§ (-) is a functor (on the
level of Banach spaces, say).

i1 induces a homotopy:Now we show that ifS' is a bounded locally compagtequivariant operator
from E to F, then not only isA°(X, S) ® 1 bounded and locally compact, but the pait‘(X, S) ®
1,91 (9)) is a locally compact element &fi4(/ig, iir), i.€., we can approximatd®(X, S) ® 1 and
M (S) simultaneously with finite rank operatorghis is the main technical difficulty of this part of
the proof. Applying this result to the operatdt = 72 — 1, where(E, T) is aKK*"-cycle, shows
that (9 (E) , M (T)) and (A°(X, E) ®4(g,) H(G, B), A°(X,T) ® 1) are homotopic elements of
EPan(Co(X); Co(X), To(X, B)); for this, we use the sufficient condition for homotopy given in
Theoren] 2.6]2. It also follows, this time from Theor.?.l, thatT) and M %, (J5 4 (B, T))
areG-equivariantly homotopic (becaude; is G-equivariant).

By Corollary[7.2.14 it suffices to consider the caSe= (|f> - B)){(e<|, )sex With [~ €
I (X,F~), 3 €T.(G,r*B) ande< € I'(X, E <). Lety € C.(X). We show tha{x.A°(X, S) ®
LxM(S))isinK(ag, ir). Lete > 0. We now concentrate on the right-hand side of the operators
because the calculations for the left-hand side are similar and similarly unedifying.

Letk € I'c(G %, G, p*B) Withp: G X, G — X, (71, 72) — 7(71) = r(72). Define

= / / VI (s()vE( AT ) (Y e (s(7)), €7 (@) AN (y') dX" ()
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foralle” e T'.(X, E”) andz € X. Thent; () € T(X, F~).
Defineko(v,7') = x(s(7))B(y) forall (v,7") € G x;,» G. Then

T (@)@ = [ AP e )sa )0 (), ¢ (@) ) )
= xw [ [ ,)77f> SO AN ) e (5(7)), ¢ () X ()
= X(@) [ A (7 B)0) eS(6(), (@) X ()

- / (-5 (s € (@) N ()
= x@)][f~-B) (e <\w 7 ()
foralle> € T.(X, E~) andx e X,80(77 )z = x(x)|f~ - 8 B){(e<|” inthis case.

If k(v,v') = h>(y)yh<(y~1%) for all (v, 'y) € G X,, G, whereh” , h< € T'.(G,r*B), then

@)@ = [ [ e (70 E) e (), € @) () )
= [ A s TR O e ), e (s ) AN () A ()
= [ AP [ (e, N0 ) av)
g g*
= e (N ) (S (e ) @
= (/7-h7) (@) (h=, (e, e7))) ()
= |ap(r” @ b)) = o )7 (e
foralle> € To.(X, B>) andz € X, sor; = |az(f> @ b)) ag(h< @ e<)|”.

The idea is to approximate,: (v,7') — x(s(v))B(7') by functions of the formk: (v,~') —
S kT ()RS (1Y) (inasense WhICh we have to specn‘y) sothelt | |/~ @~ ){(hi® e<\
approximatesA°(X, S)@1 = x| f>- B0 {(e<| " @1andry = S0, [a7(f>©h)) (ag(hi®e<)|”
approximates at the same i (S) = 7> = M((x(x)|f~ BN {e<|”)zex). To prove this we will
show thatr;” depends continuously (in a sense that we have to specify as well) on the fukction

OnT. (G x,, G, p*B) we take the inductive limit topology.

If we mapk € I'. (G x,., G, p*B) to the functions

;1 Le(G, r"B) = Tc(G, r"B), & = [v — /g o k(v /)€ () dxm(y’)]
and
T :Te(G, r"B) = Te(G, r*B), €5 [’y = [ym ENWEO ™A T) d/\’"(”)(v’)} :

then (7=, T;”) extends continuously to an element®f € Ly, (x, 5y (H(G, B)). The operatofl},
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depends continuously on If k(vy,v) = b~ (y)yh<(y~'4'), then

TN = [ W ) )
= hm () [} e T Ay

= (0=, mgm) (1) = (IP) (<€) ()

for all ¢ € T (G, r*B) andy € G, soTy = |h>)(h<|". A similar calculation for the left-hand
side showd}, = |h>)(h=|. On the other hand, we have

T = [ Ms)InE ) O w)
= (56 ()

forall ¢~ € T (G, r*B) andy € G, soT; = x7(B)~, wherer denotes the action oA(G, B) on
H(G, B). We actually havd}, = xm(3).

Note that, in the obvious notation,
[f7 @h”)(hs @ eS| = |f7)) o [n7)(h=[ o ((e=].

As in the proof of Lemm@ E.8.12}; depends continuously dnand we can approximate, in
the inductive limit topology by sections of the forkm (v,~') — Y-, hZ (v)vh (v ~14/) so thatT,
approximatedy, = xm(3). Since

£ 0 oxm(B)o (=] =x ([f7-B){e"| 1)
it follows that

[N o To (=] = D_If7 @h?)(hi @

i=1

approximates (| f~ - 8)){(e<| ® 1) as desired.
Define

L:={yeG: r(y) esuppx As(y) €supp [~}

and

L':={y€G: r(y) e suppx As(y) € suppe~}.

Both of these sets are compact becagise proper. Find functions, §’ € C.(G) with 0 < 4,8 < 1
and such thai = 1 andd’ = 1 on a compact neighbourhodd of L andM’ of L', respectively.
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Letk € I'c (G %, G,p*B) such thatupp £ C M x M'. Then
@@l = | [ [ 6ome e ), @) e ave)|
< [ L1 Gl el le @) ae)axe
=/ eI 6T [RGH AT He= (O e” @) dA™() dA" ()
< / | O0TDIGTH) AN () AN ) 157 o Il e o le”

= [ a6 / 76N D) N0 17 o 1ol e e
Gz Gs(

181 181 157 oo 1o loo lle™llog e 1o

IN

foralle> € T.(X, E>) andz € X; here|-||, denotes the symmetrised version of tHenorm. Write
=[]l [|6"11 1~ 1l le= 1| o then we have shown that

Il < Clikll

provided thatupp k C M x M’; a similar result is true for the left-hand side. Since we can approxi-
mateky by sections of the fornfry,v') — Y"1 | h (v)vh (y~'4/) which are supported it/ x.., M’

in the sup-norm (which is at the same time and by definition an approximation in the inductive limit
topology), we are done.



Chapter 8

The Surjectivity of the Bost Map for
Proper Banach Algebras

Let G be a locally compact Hausdorff groupoid with unit space Assumthat there is a locally
compact classifying spad&g for proper actions off, unique up to homotopy.

In the first section of this chapter we introduce the gradip®"*(G, B) for every G-Banach
algebraB (this is really just the obvious variant &*°? (G, B) for G-C*-algebrasB) and the Banach
algebraic version of the Baum-Connes map. Then we prove that this map, called the Bost map, is split
surjective ifG is proper. This is a special case and also the main ingredient of the proof of the split
surjectivity for genera and propeiB. The notion of a propef-Banach algebra is introduced in the
third section, the exact definition being somewhat technical: The main idea is of course that a proper
G-Banach algebra is@-Banach algebra which is at the same timga Z-algebra, where’ is some
properGg-space. The trouble is, th&t then is, technically, a u.s.c. field of Banach algebras dier
and at the same time a u.s.c. field overand this does not make much sense. The solution that |
propose is that a propérBanach algebr® is ag-Banach algebra such there exists a pr@pspace
Z and aG x Z-Banach algebrd which is “practically the same aB”, i.e., B is the pushforward
of B along the anchor map &f (we define the pushforward in the third section of this chapter; one
can think of it as a “partially forgetful map”). This definition of a progeBanach algebra makes it
necessary to think about the relation of unconditional completio@s(6f) and ofC.(G x Z) etc.

The actual proof of the split surjectivity of the Bost map for proper groupoids is then contained in
the final section of this thesis. It is inspired by the proof of the correspondirgdebraic result for
group actions (see, for example, Proposition 5.11 in [KS03]).

ForG-C*-algebras, the analogous constructions were carried out by V. Lafforgue in [Laf06], where
it is also proved that the Bost homomorphism is an isomorphism for all p@gr-algebras (with
the ordinary topologicdK-theory on the left-hand side and with arbitrary unconditional completions).
The techniques are nevertheless rather different from ours because we cannot make use of the corre-
sponding results for Calgebras and crossed products.

In [TuOQ] it is said that such a space always exists and is unique (at least if everything is assumedttorggact), the
given reference [Tu99] shows this in the case of étale metrisable groupoids. We do not venture into the details but content
ourselves with the assumption thia@ exists and is unique.

237
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8.1 TopologicalK-theory and the general Bost conjecture

8.1.1 TopologicalK-theory for Banach algebras and groupoids

Definition 8.1.1 (TopologicalK-theory). For everyG-Banach algebr#, define
K'orban (G B) = lim KKg™ (Co(Y), B),

whereY runs through the closed prop@rcompact subspaces Bfj.

To make sense of this definition we have to clarify some technical details:

e If Y is a locally compact Hausdorff lefi-space (with anchor map), then we would like to
think of Cy(Y') as aG-Banach space. A technical obstacle is thgt") (or ratherCy') is a field
of Banach spaces ovéf and not a field of Banach spaces ovér But Cy(Y') is of course a
Co(X)-Banach space with the multiplicatiany’ = (xop)x’ forall x € Co(X ) andy’ € Co(Y).
The fibre ofCy(Y') overz € X can be identified witl€, (Y, ) whereY, = p~!({x}). This way
we get a u.s.c. field of Banach algebras a¥ethat we callp.. (Cy ). There is also a canonical
action ofG onp. (Cy): Lety € G. Then we get an isomorphism, from Co(Y(,)) t0 Co(Y;())
by defininga, (x) (y) = x (v~ 'y) for all x € Co(Ys(,)) andy € Y, . If we write Co(Y),
regarding it as &-Banach algebra, then what we meap.iéCy-).

This is an example of a rather general pushforward construction which is needed for the defini-
tion of properG-Banach algebras, presented in Sedfion 8.3. It is also a version for u.s.c. fields
of Banach spaces of the simple construction presented in Sectjon Z¢ #6)-Banach spaces.

e We also have to show tha{Kgan (Co(Y), B), for Y as above, forms a directed system. If
Y andY”’ are closed, propefj-compact subspaces B such thaty” C Y”, then we would
like to get a homomorphism between tRé&2"-groups. More generally, et andY”’ be
G-proper locally compacg-spaces (with anchor mapgsandp’) and letf: Y — Y’ be a
g-equivariant continuous proper map. This induces a non-degerdg(atg-linear homomor-
phism f: Co(Y') — Co(Y). Becausef is equivariant, the may, thought of as a homomor-
phism fromp!,(Cy~) to p.(Cy), is G-equivariant.

From the functoriality of BanacKk K-theory we get a mﬁ)
f* KKG™ (Co(Y), B) — KKg™ (Co(Y'), B).

If Y =Y’ andf = Id, we haveld = Idco( ) and therefordd” = Id. If Y” is another proper
G-compactg- space a and;: Y — Y is Is proper andj-equivariant, thery o f is proper and

G-equivariant an@ of=fog Nowgo f = §* o f*, so indeed, we have a directed system
of abelian groups.

8.1.2 Functoriality for equivariant homomorphisms and Morita morphisms

Let B andC beg-Banach algebras and let B — C be aG-equivariant homomorphism.

2Compare Proposition 1.2.6 ¢f [Laf02].
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If Y andY” are propegt;-compact locally compact Hausdogffspaces and: Y — Y’ is continu-
ous, proper an@-equivariant, then the following diagram commutes bec&(K@a“ is bifunctorial

KKE" (Co(Y), B) ———=KKZF" (Co(Y), C)

fl I

KKE™ (Co(Y"), B) —2> KKE™ (Co(Y'), C)
Passing to the direct limit we get a group homomorphism
(Piop: Ktop,ban(g7 B) N Ktop,ban(g7 C).

The assignmenB — K'P:"22 (G B) together withy — '°? is a covariant functor from the category

of G-Banach algebras an@equivariant homomorphisms into the category of abelian groups. The
same construction works B andC' are non-degeneratg-Banach algebras and € Mgan(B, C)is
aG-equivariant Morita cycle. In this case we get a group homomorphism

- ®p [F] Ktop,ban(g7 B) N Ktop,ban(g’ C)

The assignmenB +— K'©PPa% (G B) together with[F] — - ®p [F] is a covariant functor from
the category ofj-Banach algebras ar@equivariant Morita morphisms into the category of abelian
groups.

Corollary 8.1.2. If B andC are equivariantly Morita equivaler@-Banach algebras, then

Ktop,ban(g’ B) o~ Ktop,ban(g’ C)

8.1.3 The Baum-Connes map in the Banach algebra context
Let G carry a Haar system and l&lt(G) be an unconditional completion 6£(G).

Definition 8.1.3 (Bost map). Let B be aG-Banach algebra. Define the homomorphism of abelian
groups
pa: KPP (G, B) — Ko (A(G, B))

to be the direct limit of the group homomorphisms

KIban C JA ban 2()(Av,g.4)
G oY), B) =5 KK"™ (A(G,Cy(Y)), A(G,B)) — Ko (A (G, B))

whereY runs through all closed;-compact, proper subspaceshkys.

Again, we discuss the details of this definition:

What is )\y7g7.,4’ﬂ If Y is aG-compact propeg-space, then the elemekf g 4 of Ko (A(G,Co(Y)))

(or rather ofK (A(G, p«Cy))) was defined in[[Laf06], paragraph 1.5.2, as follows (with some tech-
nical changes): Consider the groupdidx Y. It is locally compact Hausdorff and proper and sat-
isfies (G x Y)© = Y andY/(G x Y) = G\Y, this space being compact. We can hence find a

3See Definition and PropositilO.
“That we also use the letter for the Haar system of does not lead to much notational inconvenience: instead of
dA® () we just write dy in the integrals that appear in this chapter.
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cut-off-function forG x Y. For technical reasons, we identify x Y with G x, , Y: The range
and source maps are then giveniyiy (v,y) = y andsgxy (v,y) = v~ 'y, and the product is
given by (vi,y1) - (72,42) = (12, y1) for all (v1,91), (2, 52) € G X1, Y such thaty; 'y = yo.
The Haar system og x Y is the following (expressed as an integral):xife C.(G x Y), then
f(ngY)y’ X(v,9)d(7,y) = Jgow x(7,¥') dy for all y’ € Y. A cut-off function forG x Y is a
function fromY” to R, with compact support such thﬁéy c(yly)dy=1forally cY.

Now consider the function — (Y;,(,) > y — c"/2(y) ¢'/?(y~'y)) with v € G. This is an idempo-
tent element of . (g, rép*(Cy) (actually, we can think of it as an idempotent element of the algebra
L. (GxY, 15,4 Cy) =C. (G x Y)). It therefore gives an idempotent element4fG, p.Cy), and
the element oK, (A(G, p«Cy)) that it determines is denoted By 4.

This definition is independent of the choice of the cut-off functipactually, we could take any cut-
off pair (¢<, ¢) instead of(¢!/2, ¢!/2) in the formula for the idempotent: {:<, ¢>) is a cut-off pair
forGxY, theny — (Y, () 2 y — ¢ (y) ¢c~(7~'y)) defines an idempotent elementfg, p.Cy)

which depends continuously on the cut-off pair. Using linear homotopies (and an additional correction
factor) one can connect any two cut-off pairs < Y through a continuous path of cut-off pairs
with respect to the inductive limit topology (here we use that factghat is compact). Hencgy g 4

does not depend on the cut-off pair (or the cut-off function).

What is %(-) (Ayg.4)? The action® of KK on the K-theory was defined |§]1[Laf02]. In

our case Y. is a homomorphism fronKKb* (A(G, p.Cy), A(G, B)) to the group of homomor-
phisms fromKj (A(G, p.Cy)) to Ko (A(G, B)). Evaluating at\y,g 4 gives a homomorphism from
KKPan (A(G, p«Cy), A(G, B)) to Ko (A(G, B)). Because\yg 4 is given by an idempotent of
A(G, p«Cy) we can actually obtain a more concrete descriptiorE0f) (A\y,g 4): If (E,T) is a

cycle inEP* (A(G, p.Cy), A(G, B)) andp is a choice of an idempotent id(G, p.Cy) giving

Ay,g.4 such thatp commutes withA(G, T'), then the cyclepA(G, E), T'|,4(g,r)) (with the canoni-

cal left C-action) gives the elemedt([(E,T)]) (A\vg.4) € KKP* (C, A(G, B)) = K, (A(G, B)),
wherepA(G, E) = (A(G, E<)p, pA(G, E7)).

Passing to the direct limit: To see that Definition 8.1.3 makes sense we check that the group homo-
morphisms are compatible with continuous equivariant proper maps between the subspaces, allowing
us to take the limit. Let thereforE andY”’ be properG-compactG-spaces and lef: Y — Y’ be

a properg-equivariant continuous map. Lét Co(Y’) — Co(Y") be the induced homomorphism of
G-Banach algebras. Then we have to show that the following diagram commutes

JA

KK (A(G,Co(Y)), A(G, B))
() (Av,g,4)

(81) KKg™ (Co(Y), B)

7 AG, ) Ko (A(G,B))
S (Ayrg.oa)

JA

KKZ™" (Co(Y'), B)

KK (A(G,Co(Y")), A(G,B))

That the left part of the diagram commutes follows from Thedrem 5.2.25. The right part commutes
because of Proposition 1.2.9 of [Laf02] and Proposition .7.1.

Proposition 8.1.4. The assignmenB +— ufj is a natural transformation from the functag +—
Ktorban(g B\ to the functorB — K (A(G, B)) (Where we can take as our source category the
category of non-degenerae Banach algebras with the Morita morphisms as morphisms).

5See Proposition 1.2.9 df [Lafd2] and the discussion thereafter.
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Proof. Let B andC' be non-degeneratg-Banach algebras and I&t be a Morita cycle fromB to C'
(and let[F'] denote the corresponding Morita morphism). We have to show that the following diagram
commutes:
B
Kiopban (G, B) —A—~Ko (A (G, B))
®B[F]\L i@’A(g,B)[A(ng)}
B

KtOp,ban (g’ C) Ha KO (.A (g’ C))

Most of the objects in this diagram are defined as direct limits, so we check the corresponding diagram
before taking the limit. To this end l& andY”’ be properG-compactG-spaces and lef: Y — Y’

be a propeg-equivariant continuous map. Then we have to take the 5-vertex diagrgm (8.1), once for
B and once folC, and connect the two diagram by five morphisms coming from the tensor products
with F" and. A(G, F). The resulting diagram has the shape of a prism with ten vertices, eight squares
and two triangles. The two triangles and two of the squares commute because Diagiam (8.1) is
commutative (in the version faB and the version fo€’). One of the remaining squares is

KKY™ (Co(Y), B) —4— KK (A(G, Co(Y)), A(G, B))
®B[F]l l®A(g,B)[A(Q,F)]

KKE™ (Co(Y),C) — =KK™ (A(G,C0(Y)). A(G. )

This an the corresponding square 6t commute because the descent is compatible with Morita
morphism&]| The square

—— S0 (ws.a)
b (A(G, Col(Y)), A(G, B)) Ko (A(G. B))

®A(g,B)[A(ngﬂ\L ®.4(g,B)AG,F)]

Kban () (Av,g,4)
" (A(G,C(Y)), A(G,C)) Ko (A(G,0))

commutes because the actionloKP*" on theK-theory is compatible with Morita morphisms (we
only know this for ordinary homomorphisﬁ]\yet, but in our particular case the action dpg 4 is
given by the pushforward along a homomorphism fr@rnto A(G, Cy(Y')) in the first variable given
by an idempotent ofA(G,Cy(Y)), and this clearly commutes with the multiplication by a Morita
morphism from the right). The same is true for the corresponding diagrai¥ fd@imilarly and just
as in Subsection 8.1.2, the square

KK§™ (Co(Y), B) —— KK§" (Co(Y”), B)

®B[F]l l@B[F]
JF*
KK§™ (Co(Y), C) ——= KK&™ (Co(Y"), C)

as well as the the corresponding square after the descent commute. O

® See Corollar} 5.2.39.
"This is included in Proposition 1.2.9 of [Laf02).
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8.1.4 The Bost map and varying unconditional completions

Let G carry a Haar system and lgt(G) and B(G) be unconditional completions ¢}.(G) such that
Ixlls < lixll.4 forall x € Ce(G).

Definition and Proposition 8.1.5. Let B be aG-Banach algebra and ley; andz be the canonical
maps froml'.(G, r*B) to A(G, B) andB(G, B), respectively. Let): A(G,B) — B(G, B) be the
homomorphism of Banach algebras such that. 4 = ¢5. Then

¥y Ki (A(G, B)) — K. (B(G, B))
is a homomorphism making the following diagram commutative

B

Ktop,ban (g’ B) Ha Ko (.A (g, B))

m l%

Ko (B(9, B))

Proof. This follows from Proposition 1.4.8 in_[Laf06], compare also Proposition 1.5.4 of the same
article which is the above assertion f+C*-algebras. O

8.2 The Bost conjecture and proper groupoids

In this section letG be proper and equipped with a Haar system. J¢g) be an unconditional
completion ofC.(G).

Definition 8.2.1 (Hereditary subalgebra). Let By be a subalgebra of a complex algelitaThenB
is calledhereditaryif By B By C By.

The following lemma is a variant of Lemme 1.7.9 pbf [Laf02], inspired by a remark of Cuntz that his
kk-theory is invariant under a similar relation.

Lemma 8.2.2.Let B be a Banach algebra and be a topological algebra (with separately continuous
multiplication) and letp: A — B be a continuous homomorphism such thé#) is a dense heredi-

tary subalgebra o8 and such that the kernel gf is nilpotent. Therp: (ﬁ*) — T <§—1> is
a bijection.

Proof. Letz € A such thatl + ¢(a) € B~. Let1 + b be the inverse of + ¢(a) in B. Then, as in
the proof of Lemma 1.7.9 of [Laf02h, = —p(a) + ¢(a)? + ¢(a)by(a) belongs tap(A). Finda' € A
such thatp(a’) = b. Theng (1 +a)(1+d')) = (1+ ¢(a)(1+¢(d)) =1=¢((1+d)(1+ a)).
This means thafl + a)(1 +a’) = 14 n for somen in the kernel ofp. But such an element is always
invertible, sol + a is right-invertible inA. Similarly, 1 + a is left-invertible in A, so it is invertible.
This shows the surjectivity gp on the level ofry.

To show injectivity we remark that[0, 1] is a continuous homomorphism fror{0, 1] to B[0, 1]
with dense hereditary image and nilpotent kernel; we can hence use the first part of the proof: Let
ap,a; € A suchthatl + by and1 + b; are in the same connected componenBcWhereb = ¢(a;)
fori =0, 1. BecauseB ! is open in the Banach spad:bthere is a patli in B~ betweenp, and
bi. Itis of the form3 = y + 8 with y € C[0,1] and3 € C([0,1], B). Becausex(t) = 0 for all
t € [0,1], we can inverty, and1 + x '3 is also a path from + by to 1 + by in B~1. Because the
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image|0, 1] is dense inB[0, 1], we can find amv € A[0, 1] such thaty~! 3 is so close ta[0, 1] («)
thatl + [0, 1] («) is invertible in B[0, 1]; we can even achieve this with(«(0)) = by = ¢(ap) and
¢(a(1)) = b1 = p(a1). Now the first part of the proof shows thatt « is invertible in A[0, 1], so it
is a path froml + a(0) to 1 + (1) in A~L. The difference: of 1 + «(0) and1 + aq is in the kernel
of ¢, so itis nilpotent. San, is also nilpotent for alt € [0, 1]. The mapt — 1+ ag + tno is hence a
path in the invertible elements af from 1 + ag to 1 + «(0). Similarly, there is a path from + (1)
to 1 + a;. Putting the three paths together we get a path ftopug to 1 + a1 in A~1. Hencel + aq
and1 + a; are in the same connected component. O

The following lemma is an elaborate version of Lemme 1.7.10 of [Laf02]; there are two minor
differences: The first is that we allojy||, and||-||, to be semi-norms rather than norms (with the
restriction that the kernel of the homomorphisms into the completions are nilpotent), and secondly,
we do not ask the homomorphisinto be injective. The first generalisation is necessary because
we want to apply the result to unconditional completions in the groupoid setting where semi-norms
appear naturally, the second generalisation seems to be already necessary in the setting| of [Laf02],
because in the proof of Lemme 1.7.8 there is no explicit argument given why the homomorphism
from B(G, B) to A(G, B) is injective (although | have the feeling that | just lack a trivial argument).

Lemma 8.2.3. Let A be a topological algebra (with separately continuous multiplication). [L-£f
and||-||, be continuous semi-norms ehsuch that the completion of with respect to both norms is
a Banach algebra. Let; be the canonical continuous homomorphism frdrimto its completionB;
with respect td|-||, and define, and B, analogously. Assume th@t||, > ||a||, for all a € A, and

letvy: By — Bo the homomorphism of Banach algebras that we get from this inequality. Assume also
that;(A) is hereditary inB; and that the kernel of; is nilpotent for alli € {1,2}. Then the map

¢*Z K*<B1) — K*(BQ)
is an isomorphism.
Proof. This is proved analogously to Lemme 1.7.10[of [Laf02], based on our L§mma 8.2.2. [

Lemma 8.2.4. Let B be a non-degeneratg-Banach algebra and letd(G) be aregularuncon-
ditional completion ofC. (G). Let. be the canonical map froi.(G, r*B) to A(G, B). Since
G is proper,. (I'.(G, r*B)) is a hereditary subalgebra ofl(G, B) and the kernelV of . satisfies
T.(G, 7*B) N T.(G, r*B) = 0; in particular, it is nilpotent withN3 = 0.

Proof. Let.A(G) act on the equivariant paiti(G) of locally convex monotone completions@f(G).
Let3<,3” € T. (G, r*B). LetK, := r (supp 5<) andK, := s (supp 5~ ). The two setd(, and K
are compact subsets 6f°). Because is proper, the sek := {y € G : r(y) € K,, s(y) € K} is
compact. For al € T'. (G, r*B), we havesupp (5= * 3 x 3~) C K. Because4(G) acts onH(G),
we also have (bly 7.3.14 ahd 7.3.6)

16 85 87 oo < 181y 18I N18 1> -

It follows that (5< * 3, * ~),,cy is @ Cauchy-sequence ing (G, r*B) whenever(3,), .y iS a
Cauchy-sequence in. (G, r*B) for the semi-nornj|-|| 4; in this case(3< x 3, * 7)), CONverges
to some element dfi (G, »*B), and hence (3= 3, * 5~) = +(3%)(6,)t(8”) converges to some
element in the image afif n — co. Thus the image afis hereditary inA(G, B).

Now let 8 € T'. (G, r*B) satisfy.(3) = 0 € A(G, B). Let 3,3~ be arbitrary elements of
I'.(G. r*B). BecauseA(G) acts ont(G), we have|[3< « 5+ 5|, < [|8= [y 18] 4167 12> =
0,s03< (%3~ = 0. This shows that the kern@l of . satisfied".(G, r*B) NT'.(G, r*B) =0. U
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For properg the K-theory of A(G, B) does not depend on the particular (regular) completldg):

Proposition 8.2.5. Let B be a non-degeneratg-Banach algebra. LeB(G) be another unconditional
completion ofC.(G) such that|| x|z < [[x||4 for all x € C.(G). Lety: A(G,B) — B(G,B) be
canonical the homomorphism of Banach algebras introducS.llS(.gI)‘ is a regular uncondi-
tional completion o€ G), then alsaA(G) is regular and

e Ki (A9, B)) — K (B(G, B))
is an isomorphism.
Proof. This follows from Lemma 8.2]3 and Lemrpa 8J2.4. O

Corollary 8.2.6. Let.A;(G) and.A>(G) be regular unconditional completions 6f(G). Let B be a
non-degeneratg§-Banach algebra. TheK, (A; (G, B)) andK, (A2(G, B)) are canonically isomor-
phic.

Proof. Let ||-||5 be an unconditional norm ofi.(G) such that||x| 4. < x|l for all x € C.(9)
and alli € {1,2}, define, for example||x||z := max {|[x 4, , xll4,} for all x € Cc(G). By the
preceding proposition it follows thaf.. (B(G, B)) = K. (Ai(G, B)) forall ¢ € {1,2}. The resulting
isomorphismK., (A4:(G, B)) = K, (A2(G, B)) does not depend on the particular noffj ;, we
could have taken any unconditional norm dominafjng,, and||-[| 4, O

Example 8.2.7.Let G be a locally compact Hausdorff group action properly on some locally compact
Hausdorff spac&’. ThenL! (G x X) andL! (G, Cy(X)) are two regular unconditional completions
of C. (G x X). Becaus&r x X is a proper groupoid, we have a canonical isomorphism

Ko (L' (G, Co(X))) 2 Ko (L' (G x X)).

Because the unconditional norm given by (G, Co(X)) dominates|-||,, the isomorphism irK-
theory is given by the canonical homomorphism frbf(G, Co(X)) toL! (G x X).

Lemma 8.2.8.If G is proper, thenX = G is a model forEG. If G is proper andX/gG is compact,
then the canonical homomorphism

KK&™ (Co(X), B) — K'PPan (G, B)
is an isomorphism for alj-Banach algebra$3.

Proposition 8.2.9. Assume thag is proper and thatX/G is compact. Then the following diagram
commutes:

KKg™ (Co(X), B) RKK"™ (Co (X/G); Co (X/G), A(G, B))

. B |

Ktop,ban (g7 B) Ha KO (A(g, B))

14

The isomorphism on the right-hand side is the given by the embedtling Cy (X/G) as constant
functions (compare Corollafy 2.8.2). Before we come to the proof of Propogitior} 8.2.9 we state an
immediate corollary:
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Corollary 8.2.10. If G is as above and!(G) is regular andB is non-degenerate, then Theorem 7.1.10
says that there is a natural spli/ ? of /5. Hence alsq. has a natural split.

Proof of Propositiori 8.2]9We show that the diagram already commutes (up to isomorphism) on the
level of cycles. Let therefor¢E,T") be in ]Egan (Co(X), B) and assume thaf' is G-equivariant
(which can be done becau§eis proper, see Propositi¢n 7.2.1). Choose a cut-off pair (c<, ¢”)
for G. Applying the Bost map t4E, T") gives (pA(Q,E),T]pA(g,E)) wherep is the idempotent in
A(G) given byy — ¢ (r(7))c<(s(y)) € T.(G) as discussed after Definitipn 8.1 3 ¢ommutes
with A(G, T) becausd’ is G-equivariant).

On the other hand]f{yAc (E,T) can be realised as precisely the same cycle using the homomor-
phismj; . and;z , introduced in DefinitioG, compare also Definifion 7.p.29. O

8.3 The pushforward construction

The pushforward construction that we are going to present here in some detail is needed for a pre-
cise discussion of the notion of a proggBanach algebra, wheg is a locally compact Hausdorff
groupoid. The underlying idea is very simple:XfandY are locally compact Hausdorff spaces and

p: Y — X is continuous, then we want to know how to transform a field of Banach space¥ over
into a field overX. One way is to assemble, for everyc X, all the fibres over pointg € Y that
satisfyp(y) = = and make a single fibre out of them.

In the first part of this section we introduce the pushforward construction in a non-equivariant
setting. The groupoidj comes back into play in the second part of the section, and in the third
subsection, we discuss the relations between the descent and the pushforward (in the gase that
carries a Haar system). The non-equivariant construction can also be found in the book [FD88],
Paragraph 14.9; it is formulated in the language of Banach bundles rather than in the language of
u.s.c. fields of Banach spaces.

8.3.1 The pushforward for fields

Let X andY be locally compact Hausdorff spaces andle” — X be continuous.

Definition and Proposition 8.3.1. Let E be a u.s.c. field of Banach spaces oVerFor allz € X,
definé
p*(E)x =Ty (Y:Jc> E|Y:r) .

On this family of Banach spaces ov&r define a structure of a u.s.c. field of Banach spaces over
X as follows: For allé € T'w(Y, E), define the selectiop,.(§): = — |y, of p.(E). ThenTy :=
{p«(&) : £ €Ty(Y,E)} satisfies conditions (C1) - (C3) of the definition of a u.s.c. field of Banach
spaces and therefore defines a structure of a u.s.c. field of Banach spacEsamver(F). It has the
propertyl’y = Iy (X, p.E).

Proof. Letz € X. ThenY, is a closed subspace &f, so we can apply Propositi¢n E.p.2 which
says that the map — &|y, is a metric surjection fronty (Y, E') ontoT'y (Y., Ely,). In particular,
the setl’y defined above is total. It clearly is@linear subspace of the space of all selections of

8This definition makes sensedfc p(Y'), and can and should be interpretechabE),, = 0 if = ¢ p(Y).
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p«(E). So we have checked (C1) and (C2). As for (C3)detc X, e > 0andé € I'y (Y, E). Let
L:={yeY: || > Ilp«&)(zo)| +¢}. ThenL is a compact subset &f because is vanishing
at infinity. Hence its imagé := p(L) is a compact subset df. This setK” does not contaim, SO
its complement/ := X \ K is an open neighbourhood of such that for: € U we have

Ip(€)(w)l] = sup [E@)II < llp«(E)(xo)]l + &,

yeEYy

where the supremum is assumed to be zero if taken over the empty set. Hence we have shown that
|p«(€)| is upper semi-continuous.
It remains to show thafy, = T'g (X, p.E). Let{ be inTy (Y, E) ande > 0. Find a compact
subsetl of Y such that|{(y)|| < ¢ whenevery € Y \ L. Let K := p(L). ThenK is a compact
subset such thdlp..(§)(z)|| = sup,ey, [[€(y)]| < eforallz € X \ K. Sop.(§) vanishes at infinity.
This shows that — p.¢ is an (isometric) map fron (Y, E) toT'g (X, p.E). The image is total
and invariant under multiplication with elements@f{ X ), so it is dense. Hence the image is all of
Iy (X, p.E). O

Definition and Proposition 8.3.2.Let £ and F' be u.s.c. fields of Banach spaces o¥eand letT” be
a bounded continuous field of linear maps frénto F'. For allz € X, define

Pe(T)a: pe(E)a = pu(F)y, &= [Yo 3y = Ty(E(y))] -
Thenp, T is a continuous field of linear maps bounded||y|.

Proof. If ¢ € Ty(X, E), thenp, T o p.§ = p.(T o &) € To(X, p.F). Sop.T maps a total subset of
I'X, p.E)into'(X, p,.F) and is hence continuous. O

Definition 8.3.3. Let 1, E5 andF be u.s.c. fields of Banach spaces oveand lety: Fy xy Fo — F
be a bounded continuous field of bilinear maps. Foratl X, define

p*(,UJ):r: p*(El):r X p*(E2)x - p*(F)x, (£1a£2) — [Yx Sy My(fl(y)a 52(3;/))] .

Thenp,u is a continuous field of bilinear maps bounded|hy|. If 1 is non-degenerate, then so is
P« 4, @nd vice versa. This definition respects the associativity of bilinear maps.

Using these definitions one can define a u.s.c. figld of Banach algebras ovexX if A is a
u.s.c. field of Banach algebras ovér Similar definitions can be made for Banach modules and pairs.

Lemma 8.3.4. Let Z be another locally compact Hausdorff space andjletZ — Y be continuous.
Let E be a u.s.c. field of Banach spaces over Then(p o ¢).F = p.q.E. This is also true for
bounded continuous fields of linear and bilinear maps.

Proof. Letz € X. Write Z, for (po ¢)~'({z}) C Z. The fibre of(p o q). E atz isTg (Z, E|z,).
The fibre ofp,q. E isT (Ym, (q*E)‘yx) If Eely (Zx, E’Zx), thenq*é’ el (YI, Q*(E‘ZJ:)) Note
that (¢.E)|y, = ¢« (E|z,). S0 — ¢.£ defines an isometric isomorphism frojtp o ¢).E],, to
[p«q+E],. Now Ty (X, (poq)«F) andTl'y (X, p.q.E) both come fronl'y (Z, E), in the first case
through¢ — (p o )&, in the second case through— p.q.{. Hence(p o q).E andp.q.E are
isomorphic. O
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Proposition 8.3.5 (Pushforward and Pullback).LetY”’ be another locally compact Hausdorff space
and letp’: Y/ — X be continuous. Lej: Y/ xx Y — Y andq¢: Y’ xx Y — Y’ be the canonical
“projections”. Let F be a u.s.c. field of Banach spaces over Thenp™ (p.E) = ¢.(¢*E), i.e., the

two ways of going from the upper right to the lower left corner in the following diagram yield the
same result:

Y xxY >y

y —2 > x

Proof. Let y' € Y’. Then the fibre oft”” xx Y overy' is {(v',y) : vy € Yy} and hence
it is canonically homeomorphic t&,(,; let o, : (Y xx Y)y — Yy, (V,y) — y be the
homoeomorphism.

The fibre (p™ (p+E)),, of p"™*(p.E) overy’ is (p«E)yn = Lo (Yp/@/), E!yp,(y,))- The fibre

(6.(4"B),y of ¢, (¢ F) overy/ Ty (Y xx V), (4°F)liyrexy),, )- Now

(“’Z’ (E|Yp'<y'>)) = Eo i w) = By = (€ E)y )

')

forally € Yy (y). If & € To (YI,/(y/), E|yp,(y,)), then define the selectiab, (£,/) by

cI)y’ (gy’) (y/7 y,) = Sy’(y)

forally € Y, (. Thisis anisometric linear map frofiy (Y, (), E\yp,(y,)) to the space of selections
Eo((Y/ X x Y)y/, (q*E)|(Y/><XY)y/). If fy/ S FO(YZU’(y/)a E‘Yp’(y’))’ then there eXiStS@E | (Y, E)
such that,, = €|yp,(y,>. Then¢ogisasectionii (Y’ xx Y, ¢*F). Now (foq)|(yx><xy)y, (v, y) =
Eq(y,y)) = E(y) = (&) (v, y) forally € Yy, S0P, (&) is a section, s@,, takes it values
iNnTo((Y xxY)y, (q*E)\(Y,XXy)y,). The image is clearly total and invariant under the action of
Ce ((Y’ X x Y)y/), so itis dense and hendg, is (isometric and) surjective.

Now let® := (®,/),cy’. We show thatb is an isomorphism of the u.s.c. fielg§ (p. E) and
q.(¢*E) overY’. We already know that it is a family of isometric isomorphisms between the fibres.
Let¢ € Ty (Y, E). Thenp.& € Ty (X,p.E). Moreover,(p.&) op’ € T (Y, p*p.E). If X' €
Co (Y'), theny' ((p«&) op') € Ty (Y, p*p.E). On the other handoq € T' (Y’ xx Y, ¢*E) and
(X' 0q)(€oq) €To (Y xx Y, ¢"F). Thisimpliesq, ((x' o ¢')(§ o q)) € To (Y', ¢.¢*E). We have

Oy (X' (26 20) () (W) = X' () 2y (2P (W) (¥ 9)
X (y) @y (élyp,(y,)> v\ y) =Xy = (X' o d)E0q) ¥,y)
= (W od)€0a)lyrxxy), ¥ y)

forally’ € Y/ and ally € Yy, (). So

®o (X ((p€) op)) = . (X' 0 ) (€2 9)).-

In both cases, the set of such sections is total and hénseontinuous in both directions. O
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8.3.2 The pushforward for equivariant fields

In this subsection leY” be a locally compact Hausdorff left-space with anchor map: Y — X.
Let F be ag x Y-Banach space. Then we define the structure@Banach space gn, F as follows:

Definition and Proposition 8.3.6. Let £ be ag x Y-Banach space with action. Lety € G
and&,y) € (psE)sy) = To (YS(V), E\Ysm). Define a section¢,(,) € F0< () E\yw> =
(p+E), () by

(Vestn) @) = (7. 9) (6s¢) (V1))

forall y € Y,(,). This defines an action ¢f on p.. E.
Proof. The actionn of G x Y on E is an isomorphism fromag;, - £ andrg, - E. Recall that we have

identifiedG x Y with G x,., Y. Definerr: G x Y — G, (v,y) — ~. Thenm .« is an isomorphism
from my .55,y F tom .15, E. Note that we have commutative squares

gxy&)y gxyLY
T T
G g X G sg X

Applying Propositior 8.3]5 we have .s§, . E = sgp. E andm 1§,y E = r5p. E, and the result-
ing isomorphism from;gp*E torgp.E is precisely the action @ on p. £ defined above:
Lety € Gand leté,; () € (p«E)s;(y) = Fo(Ysg(y E\Ysgm). Our identification(p £) () =

(718G 0y )~y |dent|f|es§sg with (7 Y) = Esg(y ( Ly). Applying (71 .«), to this section gives
the section(~,y) — (v, )gsm (v~ ly) in (m, *TQIXYE)’Y' The identification(my .7,y )~ With

(rgpeE)y = (p+E)rg () 9ives the section — (v,y)€sq () (v 'v)-
We also check the algebraic properties of the actlon nl.et € G such thatsg(v) = rg(7). Let

Es5(r) € (PeB)sgr) = To(Vsg )y Ely,(,s))- Then
()esstv)) @) = (13 9) &gty () 7'Y) = (159) (Vv ) Esgiry (V1 (7 10))
= ('Yay) [('Vlgsg(v’)) ('Y )] =7 (’7 55@(’7 )) ( )
forally € Y, (1), S0(vY)s5() = 7(7'€s5(+))- HENCE we have defined an actiorgbn p, E. [

Definition and Proposition 8.3.7. Let £ and F' be G x Y-Banach spaces and let £ — F be a
G x Y-equivariant contractive continuous field of linear maps. Themis aG-equivariant contractive
continuous field of linear maps from E to p. F'.

Proof. Lety € § andé, ) € (p.B)s) = To (Y, Elv,,, ). Then
V() s Estm ] @) = (1) (p+0) s Estn) (0 0) = (1, 9) (04-198s( (Y '0))
= 0y (W& (T Y) = 0y (Es) W) = [(p«2)r(y) (Vesi))] ()
forally € Y,.(,), which means that. is G-equivariant. O

Hence we have a functor from tlgeix Y-Banach spaces to tiieBanach spaces. The same type of
calculation shows:
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Definition and Proposition 8.3.8.Let F1, F», andF beG x Y-Banach spaces and jet Fy xy Fs —
F be ag x Y-equivariant contractive continuous field of bilinear maps. Thanis aG-equivariant
contractive continuous field of bilinear maps frgmE; X x p«Fo 10 p, F.

Lemma 8.3.9. Let Z and Y be locally compact Hausdorfi-spaces with anchor maps’ and pY’,
respectively. Leg: Z — Y be a continuousgj-equivariant map. Thed is also ag x Y-space: The
anchor map isy and the continuous action is defined by, y)z := vz for all (v,2) € G x Y and
y € Y such thats(y,y) = v~ 'y = ¢(2). Note thatp¥ o ¢ = pZ. If Eis aG x Z-Banach space, then
g« F is aG x Y-Banach space and

p?E = p) ¢.E.

This construction respects equivariant bounded continuous fields of linear and bilinear maps.
Proof. We just check that the isomorphism given by Lenjma 8.3@-exqjuivariant: Lety € G and
¢ e Fo(ZS(A/), E|ZS(A/)>- Then

(107€) (2) = (1,2) [€(v12)]
forall z € Zy(y)- ON the other hand, we have, for ale Y,,

(v (pY (4:€))) () = (v, ) [(@:E) (v 'w))]

and thus for alk € Z, (usingy = ¢(2)):

[(v (0 (0:9))) (2(2))] (2) = (v,a(2)) [(@:©) (v a(2)))] (2)
= (71.2) [((@8) (v '2)) (v '2)] = (v,2) [€(v"2)] .

Hence the isomorphism {&-equivariant. O

This construction respects the associativity of equivariant bilinear maps. Hence we can make the
following definitions:

Definition and Proposition 8.3.10.Let B be ag x Y-Banach algebra with multiplication. Then
p« B together withp, i1 is aG-Banach algebra. b: B — B’ is ag x Y -equivariant homomorphism
betweerng x Y-Banach algebras, theny is aG-equivariant homomorphism from. B to p. B’'.

Definition and Proposition 8.3.11.Let B be ag x Y-Banach algebra and Iéf be a rightG x Y-
BanachB-module with multiplicationuz. Thenp, E together withp, g is a rightG-Banachp, B-
module. This construction respects equivariant homomorphisms of Banach modulés. dhother
right G x Y-BanachB-module andl’ € Lg(E, F') is a B-linear bounded continuous field of linear
maps, them, T'isinL,, (p.E, p«F) with || p,.T|| < ||T||.

Definition and Proposition 8.3.12.Let B be aG x Y-Banach algebra and léf = (E<, E~) be
ag x Y-BanachB-pair with bracket(-, ) ;. Thenp,E = (p.E<, p.E~) together withp,(-,) ; is

a G-Banachp, B-pair. This construction respects equivariant concurrent homomorphisms of Banach
pairs. If F'is another rightj x Y-BanachB-pair andl’ € Lp(E, F') is aB-linear bounded continuous

field of operators, thep, T is inL,, (p«E, p.F) with || p,.T|| < || T

Proposition 8.3.13.Let B be ag x Y-Banach algebra and leE’ and F' be G x Y-BanachB-pairs.
Leté< e Tg(X, E<)andn” € T'y(X, F~). Then

pe (|7 )E5]) = |pe(7)) (pu(67)| € K, (poE, puF) .
It follows thatp, (Kp(E, F)) C K, B (p«E, p«F).
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Proof. We check this formula only on the right-hand side: kete X and¢{; € p.(E~), =
I'o (Y, E”y,). Thenforally € Yy:

[p* (In™)(&<))s (65)} () = ") (=], (&2 ) = \n>(y)><§<(y)\>(€§(y))
= ) (€W, EW) = p 7)) (€9, €) 1) = [lo-0)) (€7 (€D)] ).
O

Lemma 8.3.14.Let B be ag x Y-Banach algebra and lef and F' beG x Y -BanachB-pairs. Define
m:GxXY — G, (v,y) — 7. ThenforallT € Lg(E, F), we have

(P Eops F) ox G(psT) = T4 (OZL(E’F)SEKYT> ’

where we identify;p. E andm .1, E (and similar for 7' and B).

Proof. Lety € G and@?m € p*EZ«(w) =Ty (Yrg(w E>‘yrg(v>). Then forally € Y, ()

M0 Pe D55 (0.1 (€7)) W) =7 [ (56T, (vE7)] W)

= 7[ oo (7€ )] =(1,9) ([(p*T)sQ.m (7‘16?(7))] (v‘ly))
= ( [ 1£>,Y>) ' y)]) =(1,9) (Tfly [(7‘1,7‘131)(iv)(vv‘ly))})

= () (T [0 (€ )]) = (PP 50 D)) (605 0D

A similar calculation holds for the left-hand side. O

Proposition 8.3.15.Let A and B be G x Y-Banach algebras. LetE,T) € Ega;“y (A, B). Then
(p«E, pT)isin Egan (psA, peB).

Proof. Surely E is a graded non-degeneraieBanachp, A-p, B-pair andp, T is an odd continuous
field of linear operators op. E. Now leta € Ty (X, p.A). Thenthereisa’ € I'y (Y, A) such that
a = pya’. Now

la, pT] = [pud’, pT) = pu [d',T] € Ky, 5 (pE).

Similarly,
a(pT? = 1) = p, (d(T* - 1)) € K, 5 (0 E).

Now leta € Ty (G, ré,o*A). As above, defing: G x Y — G, (v,y) — ~. We identifyr§p. A and
T1475y A (and do the same faB and E) and regard; as an element df (G, m1.75,,A4). We
can then find an element € I'g (G x Y, r§,y A) such thatr; .a’ = a. Using Lemma 8.3.14 and
suitable identifications we can now conclude

a (aL(p*E)(sEp*T) — ré,o*T> =Ty .d <7r17*aL(E)sZD<Y(T) — WlV*Téxy(Tj)

= T (&/ (aL(E)SEIXY — T(ED(YT>> € KWL*TEKYB (W17*T5><YE) = K'I‘ép*B (Tép*E) .

Propositior] 4.7]5 tells us that we can defliB5™-cycles betweeg-Banach algebras with locally
compact Hausdorff also using compact instead of locally compact operators, so we have shown that
(p+ 2, p.T) is aKK§™-cycle. O



8.3. THE PUSHFORWARD CONSTRUCTION 251

Lemma 8.3.16.Let B be aGg x Y-Banach algebra. Thep,(B]0, 1]) is canonically isomorphic to
(p«B)[0, 1].

Proof. Definen : [0,1] x Y — Y, (t,y) — yandns:[0,1] x X — X, (t,z) — x. Then
a careful inspection of the definition d@[0, 1] shows thatB[0,1] = (73 ).(7Y)*B and similarly
(p«B)[0,1] = (m5°)u(73°)* (p«B). Now p o 73" = m5° o (p x Idg 1)) implies that

po(B[0,1]) = pu(my)ul(my )" B = (pomy )(my )*B = (3 o (p x 1o 1))«(m3 )" B
(m3)(p x Ido,1))s (13 )" B 2 (73 ) (3 )" pu B = (p. B)[0, 1].

1

O]

Lemma 8.3.17.Let B be ag x Y-Banach algebra. LeE be a leftG x Y-BanachB-module andF’
aright G x Y-BanachB-module, one of them being non-degenerate. Then

p«(E) ®,,(B) p+(F) = ps (E®p F).

Proof. Letu: E xy F' — E ®p F be the canonical field of bilinear maps. Then there is a canonical
homomorphism from the left-hand to the right-hand side, namgly We check that it is a fibre-wise
isomorphism:

Letz € X. The fibre of the left-hand side overis 'y (Y, Ely,) ®§Z((}Z{B‘Y ) To (Y, Fly,),
the fibre of the right-hand side oveiisT'y (Y., (E ®p F)|y, ). Both sides aréo(Y;)-Banach spaces
and the canonical map...1), is Co (Y, )-linear and an isomorphism on the fibres. By Thegrem A]2.15,
which says that thé&, (Y, )-tensor product of locally conveg (Y, )-Banach spaces is local} (Y )-
convex (plus the fact that quotients of locally con@gxY,.)-Banach spaces are locally convex), both
sides are locally, (Y, )-convex and hence we have an isomorphism. O

By the two preceding lemmas and arguments that appeared several times in this thesis we can con-
clude:

Proposition 8.3.18.Let A and B beG x Y -Banach algebras. Them,. gives a homomorphism

pi: KKG (A, B) — KKg™ (pu A, puB).

8.3.3 The pushforward and the descent

Assume thag; carries a Haar system.

Definition 8.3.19. Let E be ag x Y-Banach space. For &le I'. (G x Y, réwy E), defineip(§) €
L (G, 15p+E) by

ip(€) (7)== [Yog) 2 ¥ — (1, 9)] € puErg(y)
forallv € G.

Lemma 8.3.20.1f E'is ag x Y -Banach space, thely; is continuous for the inductive limit topologies,
injective, and has dense image.

Proof. The mapig is isometric for the sup-norm, so in particular, it is injective. This also shows that
g is continuous for the inductive limit topologies. The image gfis dense because it is pointwise
dense and invariant under multiplication with function€in(G). O
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Lemma 8.3.21.Let F, E> and F beG x Y-Banach spaces and lgt E; xy Es — F be a bounded
equivariant continuous field of bilinear maps. Thenu) (ig, (&1), tr,(§2)) = ir (u(&1,&2)) for all
&LeT(GY, 15,y Er) andé € Te (G x Y, 15,4 Es); this could also be written as

g, (&1) * i, (§2) =i (§1%&2).

Proof. We have

ir(&1x&) ()] () = (&*x&)(7,y) =/ Hy &0 ), (& () ) &y

griy

= /W py (107, 9), (Vs 9)éa (V1,27 ly)) 4
= /g oyl (ie, (€)(Y) W), [Vie (&)™) (v) &Y

- [érm(p*u)r(v) (i (E)(Y), Vi (&) (Y1) 4| ()

= (g, (&) *ip,(&2)) ()] ()
forally € G andy € Y,.(). O

Proposition 8.3.22.For everyG x Y-Banach algebraB, the map z is a continuous injective homo-
morphism with dense image.

Definition and Proposition 8.3.23. Let H(G) be a monotone completion 6%.(G) and letE be a
G x Y-Banach space. Forale I'. (G x Y, 1§,y E), define

1€ll7¢, == N2 (E)l3 -

This defines a semi-norm of. (G x Y, 7§, E). If B = Cy, thenT.(Gx Y, r5,,Cy) =
Cc(GxY) and |||, is @ monotone semi-norm af. (G x Y). The mapig extends to an iso-
morphism on the completions

ip: Hy (G Y, E) 2 H(G, p.E).

Proposition 8.3.24.1f A(G) is an unconditional completion 6% (G), then Ay (G x Y) is an uncon-
ditional completion o, (G x Y). If Bis ag x Y-Banach algebra, then

ip: Ay (G XY, B) 2 A(G, p«B)
as Banach algebras.

Proposition 8.3.25. Let A and B be G x Y-Banach algebras and letl(G) be an unconditional
completion ofG. Then the following diagram is commutative:

JAy

KKlg)z;nY (A7 B) KKban (.AY (g X Yv, A) s AY (g X Y7 B))

| -

KKg™ (p.4, p.B) KK (A(G, peA), A(G: p.B))

where the isomorphism on the right-hand side is given by the isomorphism of Proppsition 8.3.24 in
both variables.
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Proof. This is true already on the level of cycles: Lgt,T) € Egi?y (A, B). Thenp.(E,T) =

(p«E, p«T) by definition. The modulel (G, p. E~) is a completion of". (g, rg‘;p*E>) for the norm

||| 4- Using the continuous injective linear map- from ', (G x Y, rf,E~) toL (G, r5p.E”)
introduced irf 8.3.19 we get, as[in 8.3.23, a linear isometric isomorphism Ay (G x Y, E~) —

A (G, p+E~); analogously, we get a linear isomorphiggx : Ay (G x Y, E<) — A(G, p<E<).
Together, this gives an isomorphism of Banach paéirdrom Ay (G x Y, E) to A (G, p.E) with
coefficient map$ 4 andip (the algebraic properties follow from Lemina 8.3.21). It is straightforward

to show that this isomorphism is compatible with the grading and intertwines the operators, i.e., it is
an isomorphism of cycles. O

Proposition 8.3.26.If A(G) is a regular unconditional completion @, (G), also Ay (G x Y) is
regular.

Proof. Let A(G) act on aG-equivariant paif(G) = (H<(G), H~(G)) of locally convex monotone
completions ofC, (G). Then Ay (G x Y) acts onHy (G xY) = (Hy (GxY), Hy (G xY)).
There is a canonical non-degenerate actio€ofY’) on Hy (G x Y') making it aCy(Y')-Banach
space; the trouble is théty (G x Y') needs not be locallgy(Y')-convex. But it is easy to see that
the Gelfand transform (Hy ) (G x V) := (8(H5 (G x Y)), &(Hy (G x Y))) is a pair of locally
convex monotone completions 6f (G x Y') on which Ay (G x Y') acts. We check that this pair is
gxY-equivariant (we only consider the left-hand side, the right-hand side can be treated analogously).
Lety € Y andy € C. ((G x Y),) with x > 0. The semi-norm of as an element of the fibre of
Hy (G x Y') overy is the infimum over the semi-norm of all extensiongab non-negative elements
of C. (G x Y); these extensions are the same as all the non-negative extens@rigta Y') of all
extensions t@, ((G x Y)?®)) of x, where(Gx Y)*W) = {(v/,y/) € GxY : r(v) = p(y) = p(¥/)}.
So we can calculate the semi-normyphlso as the infimum over all non-negative extensigrg x
to C, ((G x Y)P®)) of the semi-norrﬂ]ZCYXH(H<)p(y>.

Now let (v,y) € G x Y. Note that(G x Y)*% = {(y/,y/) € Gx Y : o = ly}. Let
x € Cc ((g X y)s(%y)) with x > 0. We have to show ththH(H;)fly = (v, v) 'X||(H§)y’

where(y,y) - x = [(Gx Y)Y 3 (v, ¢) — x (. ») (7, ¥)) = x (v 19, v 1y)]. By symmetry,
it suffices to show thatx|| > ||(v, y) - x||-

Lety € C. ((g X Y)S(”) be a non-negative extensionpf Then

1= [Gx YD 3 () e X (7 )]

is a non-negative extension 6f, )y to (G x Y) ). Hence||(v, ) x| < IXllyes = IXlles s
(v s(vy

where we have used that<(G) is G-equivariant. The infimum over the right-hand sidg g/, so we

have shown|x[| > [|(,y) - xI- O

8.4 Properg-Banach algebras

Definition 8.4.1 (Proper G-Banach algebra). A G-Banach algebrd is calledproperif there isAa
proper locally compact Hausdordf-spaceZ (with anchor mayp) and ag x Z-Banach algebrd
such that th&7-Banach algebra, B is isomorphic toB.

Rroposition 8.4.2.Ag-Banach algebraB is a proper if and only if there is & x EG-Banach algebra
B such thatp, B is isomorphic taB, wherep denotes the anchor map Bfj. This means that we can
assume without loss of generality that the spacappearing in the above definition is equalig .
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Proof. Let B be a propeiG-Banach algebra and lgf be a proper locally compact Hausdogft
space with anchor mapand let3 be aG x Z-Banach algebra such thatB is isomorphic toB.
From the universal property diG we can find a continuou§-equivariant map; from Z to EG.
The equivariance of means in particular thaio ¢ = p. Now B = p,B = j,q.B andg, B is a
G x EG-Banach algebra. O

For the rest of this chapter, I6tcarry a Haar system.
The following proposition generalises Propositjion §.2.5, which discusses the cageitdeit is
proper. We are going to prove it by reducing it to this special case.

Proposition 8.4.3. Let B be a proper non-degenerafeBanach algebra and letl(G) and B(G) be
unconditional completions @.(G) such that||x|| , > [|x||z for all x € C.(G). Lety: A(G,B) —
B(G, B) be the canonical homomorphism of Banach algebras introduded irj 8. 135G Jfis a regular
unconditional completion cﬂ(g), then

et Ki (A(G, B)) — K. (B(9, B))
is an isomorphism making the following diagram commutative

B

Ktopban (G By — - K (A(G, B))

R l¢*

K0 (B (ga B))

Proof. That the diagram is commutative was already stat¢d in|8.1.5; it remains to shay. tisan
isomorphism.

Find a proper locally compact Hausdog#spaceZ with anchor mapp and ag x Z-Banach
algebraB such thatp, B is isomorphic toB. ThenB is non-degenerate. BecauséJ) is a regular
unconditional completion af, (G), also.A(G) is regular andd; (G x Z) andBz (G x Z) are regular
unconditional completions @ (G x Z) by Propositiorj 8.3.36. Moreovefx| 4, > [[x|lz, for all
x € Ce (G x Z), hence there is a canonical homomorphisft Az (G x Z, B) — Bz(G x Z, B).
The following diagram commutes

Az(gxz, B) Ll BZ<QD<Z, B)
A(G,B) i B(gl, B)

Hence also the following diagram commutes

Ko (AZ (Ngl w7, B)) K, (BZ (g w7, B))

Ko (A(G, B)) o Ko (B (G, B))

By Proposition 8.2]5yZ is an isomorphism, s¢.. is an isomorphism as well. O



8.4. PROPER G-BANACH ALGEBRAS 255

Theorem 8.4.4.Let B be a non-degenerate propér-Banach algebra and le#d(G) be a regular
unconditional completion af.(G). Then the homomorphism

wh: KPP (G, B) — Ko (A(G, B))
is split surjective. The split is natural iB.

This applies in particular to the regular unconditional complefib() and its symmetrised version
LY(G) nLYG)".

Lemma 8.4.5. Let B be a non-degenerate propgrBanach algebra such that there exists a proper
G-compactg-spaceZ with anchor mapp and ag x Z-Banach algebraB such thatp, B = B. Let
A(G) be a regular unconditional completion 6£(G). Thenpﬁ is split surjective, the split being
natural in B.

Proof. Let Z, p and B as in the statement of the lemma. Becadse Z is proper and the quotient
(Z x G)\Z is compact, we can apply Lemiha 8]2.8 to get

K top;ban (g X Z, B) = KKIQ)E;HZ (CO(Z)7 B) .

By Proposition 8.3.26,4 (G x Z) is a regular unconditional completion 6f (G x Z) because
A(G) is regular. So by Corollary 8.2.]10, the homomorphism

ph_: Ktopban (g X Z, B) — K, (AZ (g X Z, B))
has a natural split. The diagram

JA,

s 8) 200 (92,00, 52,5

| -

KK (p.Cz, B) KK (A(G, p.C7), A(G, B))

commutes by Propositign 8.3]25. Also the diagram

S()(Azgxz.4,)

0 (.0, 4e (05 8)

b i () (Az,6.4) J’ )
KK (A (G, p«Cz), A(G,B)) Ko (A (G, B))

Ko (A7 (9% 2, B))

is commutative, becauge;) Azgxz.4, = Azg, A (this follows because the idempotents that define
the twoK-theory classes are identified undg). Putting the two commuting squares together we get
the following commutative diagram:

ki, (€, B) —= o (A2 (6 % 2, B))

KK&" (p.Cz, B) Ko (A(G,B))
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Because the top-arrow has a natural split (dashed arrow), also the bottom-arrow has a natural split (the
other dashed arrow). But this means th§thas a natural split:

P

KKY™ (p,Cz, B) —= Ko (A(G, B)) =

e

Ktop,ban (g’ B)

Proof of Theorerp 8.4 4Let B be ag x EG-Banach algebra and let EG — X = G pe the
anchor map of the proper action@fon EG; assume that, B = B asG-Banach algebras. Theh is
non-degenerate. For every op@nvariant subspac¥ of EG, defineB;; to be theG x EG-Banach
algebra with the following fibres: I, € U, then the fibre over is B,,, if y € EG \U, then the fibre
overy is zero; the spacE(EG, BU) is defined to be the set of all elementdgEg, B) that vanish
outsideU. By definition, there is & x EG-equivariant * |nject|on”jU from BU to B. It descends to
a G-equivariant homomorphisnt; := p.jy from By := p*BU toB := p*B We can regardy as
a subalgebra oB.

The By, whereU runs through the opegi-invariant subsets dEG such thatg\U is relatively
compact, form a directed system:UfandV are operg-invariant andz- relatlvely compact subsets of
EG with U C V, then there is an obvious homomorphigin, : By — By suchthatiy = jv ojuv-
Also the By form a directed system, just take thigy := p.juy,v as connecting maps. We can
regardB as the direct limit of theB;;. More importantly, thed (G, Byy) form a directed system with
connecting mapay v := A(G, juv): A(G, By) — A(G, By). The Banach algebtd (G, B) is the
direct limit of this system with embeddings; := A(G, ju): A(G, By) — A(G, B). Because the
K-theory of Banach algebras is continuous, we get:

K. (A(G,B)) = liLn K. (A(G, Br))
whereU runs through thg-invariant open subsets &G such thaG\U is relatively compact.

Now let U be such a set. Find a closed s&tC EG such thatU C Z andG\Z is compact.
Definep? := p|,. ThenBy|z is aG x Z-Banach algebra ang?), By is isomorphic toB;;. So
By satisfies the hypotheses of Lem.4.5y§6: Ktopban (G By — Ko (A (G, By)) is split
surjective. Letsy; denote the natural split constructed above. It is easy to see, using the naturality
of the Split, thatoy o (Ozva>* = (jU,V)* o oy. Definery = (]U)* ooy: Koy (A (Q,BU)) —
KtPban (G B). Thenry = 77 o (ar.y )« The universal property of the direct limit shows that there
exists a natural homomorphism K (A (G, B)) — K'Pban (G B) such thatr o (ay ). = 7 for
alU.

Note that 1oy =k o (ju)s ooy = (ap)s o u ooy = (av)s
becausey is a split. Passing to the limit shows thaﬁ o7 =1Id, i.e.,7 is a natural split. O

Remark 8.4.6 (The case of locally compact groups).et G = G be a locally compact Hausdorff
group. If Z is a properG-space, then we can model an action of the grougdid Z on a Banach
algebra using7-Cy(Z)-Banach algebras, as we have discussed in Cr@pter 4. More precisely, we can
regard &G x Z-Banach algebra as@-Cy(Z)-Banach algebra which is localy(Z)-convex. In this
situation we have the following corollary of the above theorem:

If B is a propeiG-Banach algebra and(G) is a regular unconditional completion 6f(G), then

pa: KPP (G, B) — Ko(A(G, B))

is split surjective. In particular this is true fot(G) = LY(G).



Appendix A

Locally Cy(X)-ConvexCy(X )-Banach
Spaces

Let X be a locally compact Hausdorff space.

A.1 Restriction and fibres

A.1.1 Restriction

Let V' be aclosedsubspace of the locally compact Hausdorff spAcelet i, denote the inclusion
map fromV to X. Letry = ., denote the restriction map frod (.X') ontoCy(V'), being a homomor-
phism and a quotient map (with kerr@l(X \ V')). If £ is aCy(V')-Banach space, then we can make
it a Co(X)-Banach space by using; the category of,(V')-Banach spaces sits as a subcategory in
the category o€, (X )-Banach spaces.

The restriction functor is a left inverse of this inclusion:

Two pictures of the restriction functor

Definition A.1.1 (Restriction (tensor product picture)). Let £ be aCy(X)-Banach space. Then we
define therestriction of€ to V' to be theCy(V')-Banach space

Elv == (&) = £ %W ¢y (V).
If F is anotheCy(X)-Banach space aril € LX) (£, F), then we define
Tly = (T) =T ®1: £V Cy(V) — F W) cy(V).

This defines a functor from the category@f( X )-Banach spaces to the categoryCgfV')-Banach
spaces, linear and contractive on the morphisms sets and compatible with the tensor product.

There is an alternative and equivalent definition of the restridignwhich constructs it as a quotient
of £. To give this definition we first introduce some additional notation.

Definition A.1.2. Let & be aCy(X )-Banach space. For every open suliset X, define
Eu =Co(U)E.

Note that&y is a (closedf (X )-Banach subspace 6f

257
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Definition A.1.3 (Restriction (quotient picture)). Let £ be aCy(X)-Banach space. Define the re-
striction of £ to V to be

5|V = E/EX\V

This space has a canonid/(X )-action which induces &,(V')-action such that|y is aCy(V)-
Banach space.

For alle € £, we will denote bye|y the corresponding element of the restrict&jg. The canon-
ical projection map fron€ onto |y will be denoted byrf/ or justmy, if the spacef is understood.
The mapr$, is a homomorphism of Banach modules with coefficient map

Also in this picture there is a canonical way of turning the restrictiof,0X )-Banach spaces into a
functor:

Definition and Lemma A.1.4. Let £ and F beCy(X)-Banach spaces afid € LX) (&, F). Then
there is a uniqgue map|y : €|y — F|y such that the following diagram commutes:

T

£ F
ng lﬂ}—
\%4 1%
7|
Ely Y > Flv

Itis in LX) (&]y,, F|v) and satisfie§ 7|y || < ||T].

Proof. Note that ifU C X is open, therl" maps&y into ;. So in particular,” mapsEx,y into
Fx\v- Hence the mafi’|y exists and is unique. By linear algebra it is linear &dX )-linear, by
Banach space theory it is continuous wjth|y || < ||| O

To be able to switch between the two pictures of the restriction we construct natural connecting
maps. This can be done using some suitable universal properties. For the momemLt&\mimg\?,
for the restriction of in the tensor product and the quotient picture.
We already have a map frothonto £ ?/ namely the quotient map‘g,. There is a corresponding
map in the tensor product picture which is, maybe, a bit less obvious: Weghawvé % (X) Cy(X)
and the quotient mapy, : Co(X) — Co(V'). Together this gives a map

Id@ry: €2 E@2X ¢y(X) — € @%X) ¢y(V).
This map is surjective and a quotient map-asandId are surjective and quotient maps.

Proposition A.1.5. There are contractiv€,(V)-linear maps from€|t‘9 to €|}, and vice versa such
that the following diagram commutes.

o ®Id tp
E——=E|,

From this it follows that|{? and €| are isometrically isomorphic.
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Proof. First we use Lemm@ .6: The ma@ is @ homomorphism with coefficient magp. The
BanachCy(V)-module& ¢ = 8[ has the universal property for such homomorphisms,
so there is a uniqué, (V')-linear contractlve map fr0|ﬁ| to 5|‘€/ such that the diagram commutes.
For the inverse map, note that @ry is C-linear and contractive. ¥ € £ andy € Co(X \ V),
thenye is in the kernel ofry ® Id. By the definition of the guotient Banach space structur€|($/n
there is a unique contractive and linear map fr@j‘b to 5\ such that the diagram commutes. [

Standard constructions and restriction

Lemma A.1.6. Let& be aCy (X )-Banach space. For all € E, we have

lelvIl = inf{[[pell: ¢ € C(X), ply =1, 0< o <1}
= inf {||pel|, ¢ € Cp(X); IU C X open: ply =1, 0< 9 <1,V CU, X\ U comp}.

Proof. Denote the three terms that are to be shown to be equal, b, andC. We now prove
A<B<C<A

A < B: Lety € Cp(X) such thatd) < ¢ < 1 andy|y = 1. Thenl — ¢ € Cp(X) such that
0 <1—¢ < 1landp|y = 0. By Cohen’s Factorisation Theorem we can weite y f with f € £ and
X € Co(X). Then(1—p)e = (1—¢)xf € Co(X\V)E, soe|ly = pe|y. In particular,|e|y | < ||pel.
Taking the infimum we obtaid < B.

B < C: Thisis trivial.

C < A: Lete > 0. Findak € Nandyy,...,¢or € Co(X \ V) andey, ..., e, € € such that
He—Zf:l pieil] < ||e|V||—|—z—:/2 Foreveryi € {1,...,k}, we can find a compact subg€t of X \ V'
such thatp;(z)| [le;|| < o7 forall z € X\ K. LetK = U . K;. ThenK is a compact subset
of the open subseX \ V' so we can find a compact nelghbourhdédof K that is still contained in
X \ V. DefineU := X \ K'. Letgo be an element of,(X) such thatd < ¢ < 1, ¢|y = 1 and
¢|x = 0. Note that]| ;|| ||e;|| < 5. Now

k
pe— 0> pie;
=1

< H6|vH —|—€/2

k
€— E Pi€i
i=1

and therefore

liee <

k
pe—¢ > wiei| +

=1

‘PZ PiCi

=1

< [lelv]l + 3 + Z lewill leal < flelv ] +e.

So the infimumC' is less than or equal tte|y/ || = A. O

iS upper semi-continuous (in an appropriate sense).
Proposition A.1.7. Let€ and F beCy(X)-Banach spaces arifl € LX) (g, F).
1. If T is isometric, then als@'|y is isometric.
2. If T is surjective and a quotient map, then sd7s .
3. If T has dense image, then so Héls .
4

. If T is an isometric isomorphism, then sdli§; .
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Proof. 1. We have for alk € &:

IT@WI = nf{lleT(e)]: ¢ eC(X) @y =1, 0< o <1}
— it {|T(ee): p €C(X) gl =1, 0< o<1}

Tisom. |
2™ inf el : @ €C(X) plv =1,0<p <1} =|lefv].

2. In the commuting square defining the oper&tar three arrows are quotient maps, hence so is
the fourth.

3. From abstract non-sense we can deduce that reflectors (sugh) asspect epimorphisms.
But the epimorphisms in the categoriesdgf X )- andCy(V')-Banach spaces are precisely the
morphisms with dense image.

For a direct argument, let € F' ande > 0. We want to finde € E with ||T|y (e|ly) — flv] <
e. SinceT has dense image, we can fiad: E such that|T'(e) — f|| < e. NowT|y (ely) =

T(e)lv and hence| Ty (e|v) — flv]l = [[(T(e) = NlvI < [T(e) - fll <e.

4. This follows, for example, from 1. and 2.

O

Because restriction is a special case of the pullback construction, we know that restriction commutes
with the tensor product:

Proposition A.1.8. Let&! and £2 beCy(X)-Banach spaces. Then there is a natural isomorphism
(81 ®CO(X) 52)“/ o (51)"/ ®CO(V) (52)“/

interchanging the canonical bilinear maps frath ® £2 into the two spaces.

Definition A.1.9. Let £%, £2 and F be Cy(X)-Banach spaces and let £! x £2 — F beCy(X)-
bilinear and continuous. Defingy := ¢}, (1).

w|y is the uniqueCy (V')-bilinear continuous map making the following diagram commutative:

o

£ x &2 F
7r€1><7r‘£/2l lﬂ"]}_
£y x €2y Fly

Moreover, we haver|y = |y if we identify (1 @) £2)|,, and(€1)]y @V (£2)]y.

A.1.2 Fibres

Definition A.1.10 (The fibres of aCy(X')-Banach space) Let £ be aCy (X )-Banach space. If € X,
then define
&y = 5‘{1} = &€ Qev, C.

The space, is a Banach space calléde fibre of€ in x. For alle € £, we will denote bye, the
corresponding element of the fibfg. The canonical projection map froéhonto £, will be denoted
by ¢ or justr,, if the spacef is understood.
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Definition A.1.11. Letz € X. Let£ andF beCy(X)-Banach spaces affd e LX) (£, F). Write
T, for the pullback
T, := T|{m} =1®ev, T € L(&, Fr).

It is the unique map such that the following diagram commutes

T

—_

80

<"

f
X
T

S ‘;E'

8

and satisfiedT,| < ||7||.

In the same spirit we defing, := |,y for Co(X)-bilinear continuous mapg. As the fibre
construction is a special case of the restriction, it follows that the fibre construction commutes with
the tensor product, etc.

Example A.1.12. Let E be a Banach space. Thén:= Cy(X, E) is aCy(X)-Banach space and
&, 2 Eforallz € X. The same is true faf’ := Cp(X) @™ E.

Proof. To determine the fibres & it is probably the easiest to use the quotient picture for the fibres.
The spac€x ¢, can be identified witldo (X \ {z}, £). Consider the evaluation map fralp(.X, £)
to F which evaluates a function at Its kernel isCo(X \ {z}, E). From our knowledge about
continuous fields of Banach spaces we can deduce that this evaluation map is a quotient map. So the
fibre of € can indeed be identified with'

To determine the fibres & one can use the tensor product picture. Note@hat., Co(X) = C

by Examplg 2.3]2. Now
C Devy (CO(X) Xc E) = ((C Qev, CO(X)) ®c E=2CoLE=E.

This can also be understood in the following way:ptf X — {z} denotes the constant map and
tz: * — X theinclusion, thep o ¢, = Idy,,. Sincel’ = p*(E) it follows that

& = 13(&) = (p"(E)) = (po )" (E) = E. O

A.2 Local Cy(X)-convexity
A.2.1 Definition of local Cy (X )-convexity
Definition A.2.1. Let £ be aCy(X )-Banach space. For allc £, define
’6’ X — [0700[7 T HeIHSI .
As we have seen jn 4.2.7 this function is upper semi-continuous and vanishes at infinity. Define
llelll = [ el loo = llge(e)ll-
Thenl||| - ||| is a semi-norm o such that||e||| < ||| forall e € £.

Definition A.2.2 (Locally Co(X)-convex). Let £ be aCy(X)-Banach space. Thehis calledlocally
Co(X)-convexf ||e]|| = |le| for all e € &, i.e., if the Gelfand transformation is isometric.
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Example A.2.3. Let £ be a Banach space. ThéX is locally Cy (X )-convex.

Example A.2.4. Let £ be a u.s.c. field of Banach spaces oyer Thent (£) is locally Co(X)-
convex.

Proof. As we have seen in the proof of Theorem 4.3.1, the fibréBl¢¥) are isometrically isomor-
phic to the fibres ofF in a way that identifies, with £(z) for all ¢ € M (E) = T'y(X, E) and all
v € X. SOElll = suppex 6]l = supzex €@ = [[Ellonp) forall & € M(E). SoM(E) is
locally Cy (X )-convex. O

Example A.2.5. The([0, 1]-Banach spack! [0, 1] of Exampl fails to be locally]0, 1]-convex.
The name “locallyCy (X )-convex” is motivated by the following proposition:
Proposition A.2.6. E] Let& be aCy(X)-Banach space. Then the following are equivalent:
1. &islocally Co(X)-convex.
2. Vx1,Xx2 € Cp(X), X1, X2 = 0, x1+X2 = 1 Ver, ez € 1 |[x1e2 + xz2e2|| < max{|lei|, [le2]|}-
3. Vx1, X2 € Co(X), X1, X2 = 0, x1+x2 < 1Ver ez € € [[xaes + xae2|| < max{[le1]], [[e2][}-

Remark A.2.7. The locallyCy (X )-convexCy (X )-Banach spaces form a full subcategory of the cat-
egory of allCy(X)-Banach spaces.

Proposition A.2.8. Let€ and F beCy (X )-Banach spaces arffl € L) (£, F) such that|T|| < 1.

1. Iffor all z € X the operatorT, : £, — F, is isometric ancf is locally Cy(X )-convex, thed’
is isometric.

2. If for all z € X the operatorT,: £, — F, has dense image an# is locally Cy(X)-convex,
thenT has dense image.

3. Iffor all z € X the operatorT, : £, — F, is surjective and a quotient map addand F are
locally Cy(X)-convex, thefI" is surjective and a quotient map.

4. Ifforall z € X the operatorT,: £, — F, is an isometric isomorphism and bafrand 7, are
locally Cy (X )-convex, thed" is an isometric isomorphism.

Proof. 1. Lete € &£. Since€ is locally Cy(X)-convex, we haveéle|| = |[e]|. Now [|le]| =
T )|l < |T(e)| < |le|l, so we have equality throughout, and heffitis isometric.

2. The image of is fibrewise dense. SincE is locally Cy (X )-convex, we can conclude that the
image ofT’, being aCy (X )-invariant subspace, is dense.

3. We use Lemmp E.3.1. Lg¢te F ande > 0. For everyz € X, we pick some* € £ such
that||(T(e®) — f)e|| < /2, ||e*| < || /2| (this is possible sinc&, o =, is a quotient map for
all z € X). Find a compact subséf of X such that||f,| < eforallz C X \ K. Since
for all x € X the function|T'(e*) — f| is upper semi-continuous, the séfs := {y € X :
|(T'(e*) — f)yl| < € are open (and contain). So the se{U, : = € K} forms an open
cover of K. LetS C K be a finite set such thgt/s : s € S} is a cover of K. Find a

1Comparel[DG88], Theorem 2.5.



A.2. LOCAL Cy(X)-CONVEXITY 263

continuous partition of unity o subordinate to this cover, i.e., a familys)scs of elements
of Co(X) such thah) < ¢, < 1,suppys € Usand)_ s @s(k) = Lforall k € K as well as
> ses ¢s < 1 on the whole ofX. Define

€= Zg@ses ef.

ses

Since€ is locally Cy(X)-convex, we can conclude thi|| < sup,cg ||fsl| < || f]]. Lety :=
1—> cqws- Notethatf =3 oo f+vf.

Letx € X. Lets € S. If x € U?, then||T(e®), — fzl| < &, SO||T(pse®)z — (@sf)all <
ps(x)e. If 2 ¢ U, then||T(pse®)e — (@sf)el = 0 < ps(x)e. So

T(e)e — Y osf

ses

< ngs(x)a <e.

seS

On the other hand|(v f).|| < e, so

|7~ £

<

+ 1@ )zl < 2.

T(e)e — Y osf
ses

This is true for allz € X, so||T(e) — f]|| < 2e. Now F is locally Cy(X)-convex, so
IT(e) — f|| <e.SoT is surjective and a quotient map.

4. This follows from 1. and 2. (or 3.). O

Examples A.2.9. The following examples show that the hypotheses on the IGgat )-convexity
that appear in the preceding proposition cannot simply be dropped:

1.

LetX = [0,1] and& beL![0,1] as in Exampl¢ 4.3]5. LeF := 0 andT := 0. ThenT, = 0
forall x € [0, 1]. Butalso&, = 0 for all z € [0, 1], so0: & — 0 is an isometric isomorphism.
But 7" is not isometric. This shows that the condition th&s locally Cy (X )-convex cannot be
droppedin 1., 3. and 4.

Let X := [0,1]; £ := 0 andF := L'[0,1]. Let T be the zero-map fror to 7. ThenT, is
zero for allx € X, but, again, this is an isometric isomorphism. However, the imagéighot
dense inF. This shows that the condition th&tis locally Cy (X )-convex cannot be dropped in
2.,3.and 4.

Corollary A.2.10. Let E and F' be u.s.c. fields of Banach spaces ovérand let (7,).cx be a
bounded continuous field of morphisms fréhto F'.

1.

2.

If for all z € X the operator7, : E, — F, is isometric, the®t (T') is isometric.
If for all z € X the operator7), has dense image, théi (7') has dense image.
If for all z € X the operatorT’, is injective, therd)t (T') is injective.

If for all z € X the operatorT, is surjective and a quotient map, thén (7') is surjective and
a quotient map.
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5. If for all x € X the operatorT, is an isometric isomorphism, thent (7°) is an isometric
isomorphism.

Proof. The only one of these assertions that does not follow directly from Exgmple| A.2.4 and Propo-
sition[A.2.8 is 3.: Assume that all tHE, are injective and leg be inT'y(X, E) such thafl’ o £ = 0.
Letz € X. Then(T o &)(x) = T(&{(x)) = 0 and thu{(z) = 0. It follows that¢ = 0, so9M (T) is
injective. O

A.2.2 The Gelfand transformation and local convexity

Proposition A.2.11. Let £ be aCy(X)-Banach space. The& (&) is locally Co(X)-convex. The
Gelfand transformys induces isometric isomorphisms of the fibreg @into the fibres o ().

Proof. Since®(&) = M (F (£)), it follows from Examplg A.2.}4 that(€) is locally Co (X )-convex.
The fibres of(€) can be identified with the fibres gf(£) which are the fibres of . The identifica-
tion maps are induced k. O

So the Gelfand functab(-) is a Banach functor from the category@f( X )-Banach spaces to the full
subcategory of locallg, (X )-convexCy (X )-Banach spaces.

Proposition A.2.12. The Gelfand functor has the following properties:

1. If £ is alocallyCy(X)-convexCy(X )-Banach space, thegr is an isometric isomorphism from
EtoB(E).

2. &(:) is areflector: If€ and F are Co(X)-Banach spaces witl locally Co (X )-convex and if
T € LW (£, F), then there is a uniqué € LX) (6(€), F) such thatl’ = T o ge. It
satisfieq|T'|| < |||

3. The functo®(-) is naturally isomorphic to the functa®(&(-)).

4. If T e LX) (€, F) is isometric (has dense image / is surjective and a quotient map), then so
is (has /is)&(T).

Proof. 1. This follows directly from the definition of local, (X )-convexity.

2. Let€ andF beCy(X)-Banach spaces with locally Co(X)-convex and leT” e LX) (£, F).
The homomorphisng = is an isometric isomorphism and hence the operator g;l o &(T)
is continuous with normx ||T'||. Note thatl" o g¢ = g' 0 &(T) o g¢ = T. The operatofl” is
unique with this property since the imagegfis dense ins(&).

3. This can, for example, be deduced from 1. and Proposition A.2.11.

4. LetT € LX) (&, F) be isometric. Theff}, is isometric for every: € X by PropositioS.
Hence®(T') is isometric by Propositign A.2.8. Similarly one shows the statements for the maps
with dense imag and the quotient maps. O

2This also follows since the reflectér(-) respects epimorphisms.
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A.2.3 Standard constructions and local convexity

Proposition A.2.13. The category of locallg, (X )-convexCy (X )-Banach spaces is stable under the
following constructions:

1. closed subspaces,
2. quotients,

3. finite products, and
4. finite fibre products.

Proof. 1. Let& be alocallyCy (X )-convexCy(X )-Banach space. ¥y is a closed’y (X )-invariant
subspace, then the embedding is isometric in every fibre, so it is isometric for the semi-norms
Il |ll. Since€ is Cy (X )-convex, the norm o# coincides with the semi-norm, so the same holds
oné&y.

2. Let& andF beCy(X)-Banach spaces and [étc L (€, F) beCy(X)-linear, surjective and a
quotient map. Leff;, fo € F, p1,02 € Co(X) such tha) < ¢1,ps andy; + p2 < 1. Let
e > 0. Findey, ex € € suchthatl'(e;) = f; and||e;|| < ||fi|| + & fori=1,2. Then

lerfi +@afall = [ T(p1e1 + pae2)|| < |lprer + paeal|
< max{|ler]],[le2l|} < max{||f1]l, [l f2]l} +e.

Sincee was arbitrary, it follows thafj¢1 f1 + w2 fol| < max{| fi]|,[[f2|l}. SoF is locally
Co(X)-convex.

3. Let&! andé&? beCy(X)-convexCy(X)-Banach spaces. Then the fibres of the prodick £2
are (isometrically isomorphic to) the products of the fibregelf ¢?) € £ x £2 andz € X,

then||(e!, e?).|| = ||(el, €2)|| = sup{]||eL]| . ||e2||} and hence
et el = sl ey = s sup [
= sup sup e = sup |(e, ) [ = (e I
4. This follows from 1. and 3. O

Sums of locallyCy (X )-convexCy (X )-Banach spaces need not®g X )-convex:

Example A.2.14. Let X have at least two points and &t = £2 = Cy(X). Then&! @ £2 carries
the norml|(e1, e2)ll; = [lex]| + [le2l| = sup,ex le1(2)] + supgex [e2(x)| where(er, e2) € £ @ £2.
This is generally not the same asp,. x (Je1(x)| + |e2(z)|) as the following example shows: Let
x1,x2 € X be two distinct points. Find functions, es € Cy(X) such thak;(z;) = 1,0 < e; <1
ande; - ez = 0. Then||(ey, e2)|| = 2 whereas the other norm1s

However, one can use the Gelfand-functor to find products in the category of I6g@Ky-convex
Co(X)-Banach spaces: Just apply the Gelfand functor to the ordinary product.



266 APPENDIX A. LOCALLY Cy(X)-CONVEX Co(X)-BANACH SPACES

A.2.4 Tensor products

In this section we show that tfil (X )-tensor product of locallg, (X )-convex spaces is again locally
CO(X)-conve>E| When proving this, we have to be careful not to use the multiplicativity of the Gelfand
functor, since we have deduced this multiplicativity from the multiplicativity of the fung§qr$ and

<M (). Butin the proof of the multiplicativity of)t (-), which is part of the proof of Propositi¢n 4.1..2,
we have already used the fact that we are going to prove now, so applying the multiplicatigity) of
would result in a circular argument.

Theorem A.2.15. Let £ and F be locallyCy(X)-convexCy(X )-Banach spaces. Then thels(X)-
tensor product @) F is locally Co( X )-convex.

The starting point of the proof is the following proposition:
Proposition A.2.16. Let£ be aCy(X)-Banach space. Then the following are equivalent:
1. &islocally Cy(X)-convex.
2. Ve € EVp1,p2 € Cp(X) 1 12 = 0= [[(p1 + w2)e| = max{[[p1e|, [|p2e]}.
3. Ve € EVp1, 02 € Co(X) 1 @192 = 0= [[(01 + p2)e| = max{[[re]| , [[p2e] }-
4. Ve € EVp1, 02 € Ce(X) 1 w102 = 0= ||(¢1 + p2)el| = max{|p1ell, [[pae] }.

Proof. 1. & 2.: This is part of proposition 7.14 df [Gie82].

The implications 2= 3. and 3.= 4. are trivial.

4. = 2.: Take a bounded approximate ufit,) ca 0f Co(X) which is contained i€, (X). Lete € E
andeq, p2 € Cp(X) such thatpp2 = 0. Then

(01 + @2)el| = lim [ (xagr + xap2)ell = liinmax{llxww\\ s Ixawzell} = max{|[¢1ell, [[p2e]l}

since(xxp1)(xap2) = 0 for every\ € A (allowing us to apply 4.). O

For technical reasons, we want to refine this proposition a tiny bit. The conditipn = 0 says that

the setd/,, := {z € X : ¢;(x) # 0}, ¢ = 1,2, are disjoint. We can impose the slightly stronger
condition that the supports, being the closures of these sets, do not intersect either. This is an easy
consequence of the following trivial observation:

Lemma A.2.17. Let p be an element afy(X) ande > 0. LetU, := {z € X : ¢(x) # 0}. Then
there is a functiony® € C.(X') of compact support contained U/, such that|¢ — ¢°|| < e.

From this follows:

Lemma A.2.18. Let& be aCy (X )-Banach space. Thehis locally Cy(X)-convex if and only if

4! Yee EVoi,p2 € Co(X) 1 supp g1 Nsupp w2 = 0 = [[(¢1 + p2)e| = max{||¢re]|, [[2e] }-

%In [KR89K] the tensor product of locallg (X )-convexCo (X )-Banach spaces was defined todg) of the Co(X)-
tensor product. With the result presented here, applying the Gelfand functor is no longer necessary which simplifies some
considerations ir [KR89Db].
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Proof. It is clear that 4= 4.. For the opposite direction, lete & andyy, p2 € Co(X) such that
p1p2 = 0. Lete > 0. Find functionsy] andy5 in C.(X) such that the support of; is contained
Uy, = {x € X : pi(x) # 0} and such thaljy; — ¢5|| < . Note that the supports of these two
functions are separated by the open $&ts We can hence apply 4." to get

1((p1 = 1) + 1 + (P2 — ¥5) + @3)ell
101 + el + [1(e1 — ph)ell + [[(w2 — g5 )el
(1 + 5)ell + 2¢ e]]

1(e1 + @2)ell

IE-IVANPVAN

max{||iell, [vaell} + 2¢ ]l
max{||prell + ¢ lell, lpaell + € fle][} + 2¢ [le]
max{|[rell, [[pzell} + 3¢ el -

IN

Sincee was arbitrary, we get the desired result. O

Definition A.2.19. Let £ be aCy (X )-Banach space ande £. Then the supporupp e of e is defined
as
suppe:= X \{z e X: U C X,z € U,Uopenvy € Co(U) : pe =0}.

Define
E.:={e €& : suppeis compac}.

Lemma A.2.20. Let £ be aCy(X)-Banach space and € £. If ¢ € C.(X) such thatsupp ¢ N
supp e = (), thenye = 0.

Proof. Let K be the support op. For allk € K C X \ supp e, there is an open neighbourhobd
of k£ such thatpe = 0 for all » € Co(Uy). Now {Uy : k € K} is an open covering ok, so we
can find a finite seb C K such that{U : s € S} coversK. Find a continuous partition of unity
(xs)ses on K subordinate tqUs)ses (With x5 € C.(X)). Thenxse is in Co(Us) SO xspe = 0. But

ZSES XsP = @, SOpe = 0. 0
Lemma A.2.21. Let€& be aCy(X)-Banach space. ¥ € £ andy € Cy(X), then

supp(ye) C supp ¢ Nsuppe.

Proof. Let z € X such thatr ¢ (suppy Nsuppe). If = ¢ suppyp, thenU := X \ suppyp is
a neighbourhood of. Lety € Co(U). Theny(pe) = (Yp)e = 0e = 0, sox ¢ supp(pe). If
x ¢ suppe, thenU := X \ supp e is a neighbourhood af. Lety € Co(U). Theny(pe) = p(ve) =
©0 = 0, sox ¢ supp(pe). O

Lemma A.2.22. Let £ be aCy(X)-Banach space and € £. Thene € &, if and only if there is
any € C.(X) such thatpe = e. If e € &, then thep can be chosen to be supported in any given
compact neighbourhood efipp e and such that < ¢ < 1.

Proof. If pe = e for someyp € C.(X) then this meansuppe C supp ¢, So the support of is
compact.

If K := supp e is compact and. is a compact neighbourhood &f, then we can find a function
¢ € C.(X) such thatp|, = 1 and0 < ¢ < 1. Let M be a compact set containing the supporgof
andy s be a function irC.(X) such thaty/|a = 1 and0 < xps < 1. Theny ¢ = ¢ and hence
xmpe = ge. On the other hand we havepp(xi — ¢) € X \ K and hencéx s — ¢)e =0, i.e.,
xume = pe. If M gets larger and larger, then,se approaches, soe = pe. O
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Lemma A.2.23. Let £ and F be Cy(X)-Banach spaces and € &, f € F. such thatsuppe N
supp f = ). Thene ® f =0 € £ ®¢,(x) F-

Proof. Let K be a compact neighbourhoodsafpp e and letZ. be a compact neighbourhoodsafpp f
such thatX' N L = . Find functionsy and in C.(X) such thatuppy C K andye = e and

suppy C Landyf = f. Nowe ® f = (ve) ® (Vf) =e® (ppf) =e®0 = 0. O

Lemma A.2.24. Let€ be aCy (X )-Banach space. Thehis locally Cy(X)-convex if and only if
5. Vei,ea € & : suppe; Nsuppes = 0 = ||e1 + ea]| = max{||e1||, |le2]l}-

Proof. Assume that 5. is satisfied. We show 4.'. ket E andp;, 2 € C.(X) such thatupp ¢; N
supp o2 = ). Lete; := p;e fori = 1,2. Thensuppe; C supp ¢; SOsuppe; Nsuppes = (. An
application of 5. now gives 4.’.

Assume now that 4." holds. Let, e; € . such thatupp e; Nsupp ez = 0. Findp1, p2 € Co(X)
such thatp;e; = ¢; for i = 1,2 andsupp ¢1 Nsupp s = 0. Definee := e; + es. Note that
poe1 = 0 = p1e9, SOp;e = ¢;. An application of 4. now gives 5. O

Proof of Theorerff A-Z-15We use Lemma A.2.24. Let,t; € (€ %) F) such thatuppt; N
supp to = (). Without loss of generality we assume that bathandts, are non-zero. Lek, L, be
compact neighbourhoods @ipp ¢; andsupp ¢, respectively, such thdt; N Ly = ().
Find functionsp; andys such thasupp ¢; C L;, 0 < ; < 1 andp;t; = t;, fori = 1,2. Note
that
il = llpi(ts + t2)Il < lloall t1 + tall = ([t + t2|

for i = 1,2, which shows|t; + t2| > max {||t1]|, [|£2]|}-
The other inequality is the non-trivial one. Let> 0. Find sequence&),), ey and(e2 ) ey in €
and(f)en and(f2),en in F such that

(A1) ti= en@fy and Y [len ] [fall < litill +<
neN neN

fori =1,2.
Without loss of generality we can assume

(A.2) Vi€ {1,2} Vn € N: suppel,supp f: C L,
(A.3) Vie{l,2}VneN: ||fi]| =1,
(A4) meN: bl 2 2] or  vaeN: i < |

Before justifying these assumptions we show how to use them to finish the proof. Assume that the
first part of [A.4) holds. Fronf (A]2) it follows that

VneN: e @ fP=0=ea f!,
and hence

Ylente)@Un+f)= en®@fa+d> en®fr=ti+t

neN neN neN
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Moreover, we have

leb + €2 &2 masc {[led . [le2l1} & fleh
and
I+ 22 &2 &=

for all n € N. It follows that

ltr+tall <D Nlen + x| 152+ £21 =D llenll 1£all < Neall + & < max {|jtall, |ta]l} + .

neN neN

If the second part of (A]4) holds, then we arrive at the same inequality. Since we have shown this for
all e > 0, it follows that
[t + t2]l < max {[[t[], 2]} -

Now we justify the assumptionf (A.2)-(A.4), step by step.

1. For [A.2), conS|der the sequendgse’, ), en and (;f: )nen for i = 1,2. They satisfy the
conditionssupp p;e!, C L; andsupp ¢; fi C L; foralln € N, i = 1,2. Moreover,

Y pieh @oifi =91y €@ f=giti=t;

neN neN

fori = 1,2 becausep;t; = t;. Additionally,

2_ llesenlllleafull < 2 llenll 1]l < ltall + <.

neN neN

so substituting:?, with p;e, and fi with ; f2 gives sequences which satisfy (A.1) as well as

A2

2. We show that we can assurhe (A.3). Let {1,2}. We can assume thdf # 0 for all n € N:
Because; # 0 by assumption, there has to exist#ne F such thatupp f§ C L; andf} # 0.
If n € N such thatf! = 0, then substitute, by zero andf: by fi.

Nowconsiderthesequenc(eﬁsnge" nen and( ;7 L f")neN If we take these sequences instead
of (€%, )nen and(f2)nen, then [A.1),[(A.2) and (A3) are satisfied.

3. For[A.4), we have to work a little harder. First of all, without loss of generality we may assume
Snen lledll = >, en le2 ||, We show that in this case we can asstimes N : |lel || > ||€2]].

Note that we have the freedom to rearrange the sequéeicet )< in any order we like and
that we can, informally speaking, replace some ef#fy f!) by the two entrieg\e , f) and
((1 — N)eb, fi) for any A € [0,1]. Both moves will not affect the propertigs (A.1), (A.2) or
. Our strategy is to take one entry @£ ),.c after the other and split it up into smaller
entries which we can match with entries (@f, )<y of the same size. Sincg, .y ||en| =

> nen ||€2]| it will be possible to match all entries of the sequefigg),c with entries of the
other sequence. There might still be some bitéeff,.cy Which are left over, but these entries
will be matched with zero entries.

For technical reasons, we would like to assume (h&},cn has infinitely many non-zero en-
tries: Because, # 0 we know that at least one entry is non-zero. Substitute this entry by
infinitely many “copies with weigh2—"", wheren runs through the natural numbers.
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To gain space, we want the sequences to be indexed over a larger set, for notational convenience,
we takeZ. So definee) := e} := 0 € £ forall k € {0,—1,—2,...} and choose arbitrary;;

and fZ in F with norm 1 such thasupp f; C L;. Then the double-sequenc@s)ycz and

(f§)kez satisfy the relationg (A|1)] (Al2) anfl (4.3) (with replacingN).

Description of the inductive procedure: We are going to give an inductive definition of a
sequence{nel,nfl,ne2,nf2)n€NO of such four-tuples of double-sequences, starting with the
four double-sequences?, f1,e?, /) =: (oe',0f',0€?,0/%) we have just defined. In each

step, an entry of the sequence correspondir@gzmceN is setto zero and “moved to the negative

part of the double-sequence”. Also some (parts of) entries of the sequence corresponding to
(e}ﬁ)keN are moved to the negative part, to ensure that the negative part of the sequences is
always “balanced” in the sense that

(A.5) Vn € NoVk € Z<o : ||nex|| = |[ner]| -

Also, the procedure is designed in a way ensuring that the relafions (A.I), (A.2) ard (A.3)
remain true.

In the limit, all positive entries of the sequences correspondid@i{QGN vanish and we are

left with sequences which are “balanced” on the negative side. There might still some non-
vanishing entries of the sequence correspondir(g;th,cn, but the sequence corresponding to
(e2)ren Vanishes, the conditio.4) holds. Also the other relations hold for the limit.

The inductive definition: Letn € N and assume that we have already defined the quadruple
(n-1€', no1f1, no1€?,n_1f?), satisfying the relation$ (A1), (A.2) and (A.3) as well'ds €

Z<o : |ln-1ep]| = |ln-1€2]| and> ey |ln-1€k]| = > pen [[n-1€i||, and such that the set
{k € Z<o : n—1€2 # 0} is finite whereagk € N : ,,_1e2 = 0} is infinite.

Note that|[,—1€2|| < 3,en [[n—1€2 || £ Xmen |[n—1€h|| SO We can find @ € N such that
r= er)r::ll ‘n,16717.LH < Hn,le%H andZﬁlzl anle}ﬂH > ||n,1€721H. Find N e ZSO such that
n—1€; =0forallk < N.

Define
n—1€} if k=N —[forsomel € {1,...,p—1}
”";iﬁin—l% if k=N —p

nep =140 if ke{l,....p—1}
e NN T S M P
n—1€; else,

1 n1f} if k=N —1lforsomel € {1,...,p}
nfk = 1

[[nmrer]] 2

Titez[n—16n if k=N —[forsomel € {1,...,p—1}

2
n—1€5||—"

= 7”7%16%“ nfle,% |f k,‘ = N —p
if k=n
n—1€; else,

Do
(e |—



A.2. LOCAL Cy(X)-CONVEXITY 271

5 n-1ff if k=N —1forsomel € {1,...,p}
nfk = 9
n—1fj; else.

The resulting quadruplé.e’, . f*, »e?,, %) has all the properties of the original quadruple
(n—1€',n—1 /1, n_1€% n—1f?) that are listed above, plus it satisfigs) = 0.

Note that||,e* —,_1et||, = 2||eZ|| = |[ne? —n-1€?||,- Hence(,e')nen and(,e?)nen con-

verge inl'. The sequence§, f!),cn and (,.f?).en converge pointwise and are uniformly
bounded by 1. Lefse!, o /1, €2, o f?) denote the limit-quadruple. The recursively defined
sequence$(ne; @ nfi)kez) ey @Nd ((n€} @ nfP)rez), oy CONVerge in'. Hence the limit-
quadruple satisfies (A.1). The relatiops (|A.2), §nd [A.3) are stable under pointwise convergence
of the involved sequences, hence they remain true in the limit as they are true in each step of
the induction. The negative part of the sequences are balanced in every step of the induction,
and..e? = 0 for all k € N. Hence[(A.4) is true in the limit. O

Corollary A.2.25. Let E' and E? be Banach spaces. Then
E'X X)) g2 ~ (B' ® F?) X.
Proof. Define

o: p'X @M g2X - (F'e E?) X,
hefa = (2 filz) ® faz)).

This map isCy(X)-linear and of norn 1. Letz € X. If we identify the fibre atc on both sides
with E' ® E?, then®,, is simply the identity and hence an isometric isomorphism.

From Theorenmi A.2.715 and Propositipn AJ2.8, 4., we can deducelthigtan isometric isomor-
phism. O

Corollary A.2.26. Let&! and&? beCy(X)-Banach spaces. Then
(A.6) B(g a0 ) = () a% o (e?).

Proof. A direct argument for this is thak: ®g.2 is a contractive, (X )-linear map fromg! @Co(X) £2
to & (&) %) ¢(£2). So it factors througl® (€1 @ (X) £2). The resulting map is a fibrewise
isometric isomorphism and, since both sides are locallyX )-convex, it follows that it is an isometric
isomorphism. O

A.2.5 The Gelfand functor and multilinear maps

In much the same way in which we have defined the Gelfand transform of a continuous linear operator
betweerC,(X)-Banach spaces we can define it for continuous multilinear maps. Of course, in light
of formula [A.6) it would actually possible to use tensor products to treat the multilinear case as a
special case of the linear case. But for the sake of greater clarity, we present a direct construction for
multilinear maps here in a separate section:

Proposition A.2.27. Let&?, £2 and F beCy(X)-Banach spaces. Lete M@ (€1 £2; F). Then
there is a unique bilinear and continuous mépy) € M@ (& (£1), & (£2) ; B(F)) such that the
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following diagram is commutative:

£l x &2 - F
6(€)) x 6(£2) - - . 6(F)

It satisfies||& (u)|| < || u|l-

Proof. Uniqueness is obvious. To show existence deéiri@) on the dense subspage: (1) x
gg2(E2). If ¢; € E for all i € {1,2}, then define

&(u) (ge1(e1), gez(e2)) == g7 (uler, e2)) -

Suppose that], € £ ande), € £2 such thatgei(e1) = ggi(e]) andgez2(ea) = gez(eh). Then
(e1)z = (€})z and(ez), = (€}), for all z € X and hence

(ne1; €2)), = ta((e1)e: (€2)2) = pa((€1)a, (€3)a) = (nel, €d)),

which shows that
g7 (u(er,e2)) = g7 (1 (eh,e3)) -
Hence® (u) is well-defined on a dense subspace. To calculate its norm just consider

|97 (1u(e1, e2))[| = sup [[(u(er, e2)), |l
reX

< lpell sup Ie)zll I(e2)all < Il llggr (en)l lgg2(e2)l -
x

So the norm of5 (1) is < ||||, S0 it can be extended (£') x &(£?) by continuity. O

Proposition A.2.28. Let £, £2, F be Cy(X)-Banach spaces. Let € M) (g1 £2, F). Then
under the identificatior] (Al6) we have

—

whereji and & () are the linearisations of. and & (), respectively.

Proof. Lete; € £! ande, € £2. Then by definition

B () (ger(e1), ge2(e2)) = g7 (uler, e2)) .

Hence -
& (1) (ger(e1) @ gez(e2)) = gr (uler, e2)) -
On the other hand
fi(er ®e2) = p(er,e2).
So

B(f1) gerez (€1 @ e2) = gr (n (€1, €2)) -
Now the identification[(A.Jp) identifiege1 e (€1 ® e2) With gei1(e1) ® ge2(e2), SO we are done. [



Appendix B

Continuous Fields of Measures

The notion of a (faithful) continuous field of measures is underlying the definition of a Haar system.
This appendix is a systematic collection of facts concerning continuous fields of measures and in-
tegration of sections in u.s.c. fields of Banach spaces. The results presented here that just concern
continuous fields of measures and do not involve fields of Banach spaces are to a large extend folklore
or appear in a similar form in the literature, compare [MRW87], for example.

B.1 Sections of compact support

Let X be a locally compact Hausdorff space.

B.1.1 Selections of compact support and linear maps

Let E be a family of Banach spaces ov&. We now topologise the spaée.(X, E) of bounded
selections with compact support turning it into a locally convex space:

If K is a compact subset of, then we writeX (X, E) for the space of all (locally) bounded
selections ofF’ with support contained id. For all compact’ C X, the vector spacE (X, F)
becomes a Banach space when equipped with the sup-norm which we defidtg blf K andL are
compact subsets of such thatX’ C L, then the inclusion oEx (X, F) into X1 (X, E) is a linear
and isometric map. Hence we have an inductive system of Banach spaces indexed over the compact
subsets ofX. Since these spaces exhalist X, F), we can identify the inductive limit (as a vector
space) withr.(X, E). The inductive limit topology orE.(X, E) is then defined to be the inductive
topology in the category of locally convex vector spaces.

By definition, the inductive limit topology has the following universal property: The inclusion of
Yk (X, E)into ¥.(X, E) is continuous for all compadt’ C X and if F' is a locally convex space
andT: ¥.(X,FE) — Fis a linear map, theff" is continuous if and only if it is continuous when
restricted to alb i (X, E), whereK runs through the compact subsets’of

We can regard the map — X.(X, F) as a functor: Lef’ be another family of Banach spaces
over X and letT: E — F be a locally bounded family of linear maps. Then the nfap> T o £
is a continuous linear map frol. (X, F) to X.(X, F) which we denote by..(X,T). In this way
E — X.(X, E) becomes a functor from the category of families of Banach spaces¥oged locally
bounded families of morphisms to the category of locally convex spaces and continuous linear maps.
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B.1.2 Sections of compact support and linear maps

Let £ be a u.s.c. field of Banach spaces oXer

For every compact subsét C X, letI'x (X, E) be the set of sections @& with (compact) sup-
port contained ink, i.e., ' (X, E) = T'.(X,E) N Ex (X, E). We equip the spacEx (X, E)
with the sup-normy|-||, inherited fromX (X, E). With this norm,T'x (X, E) is a closed sub-
space of¥k (X, F), so in particular it is a Banach space. Af and L are compact subsets of
with K C L, then the embedding fromix (X, E) into T'1 (X, E) is isometric. As above, define on
I'.(X, F) theinductive limit topologyas the finest locally convex topology such that all the embed-
dingsT'x (X, E) — I'.(X, E) are continuous.

Definition and Proposition B.1.1. Let X be a locally compact Hausdorff space andAeand £’ be
u.s.c. fields of Banach spaces ovér Let T be a continuous field of linear maps frafhto F'. Then
¢ — T o ¢ defines a continuous linear map(X,T") from (X, F) to (X, F).

Proof. Let K C X be compact. Sinc& is continuous, it is locally bounded by definition, so it
is also bounded ok by some constant’ > 0. For allk € K and{ € I'x(X, E), we have
1Tk (N < [Tkl 1€kl < C ||E(K)||, sO& — T o & is a continuous linear map 0y (X, F') when
restricted td" (X, E). So itis also continuous as a map fréip( X, E) toT'.(X, F') by the universal
property of the inductive limit topology. O

Proposition B.1.2. The assignment — I'.(X,E) andT — I'.(X,T) defines a functor from the
category of u.s.c. fields of Banach spaces o¥dp the category of locally convex vector spaces.

Lemma B.1.3. Let K be a compact subset &f. Suppose theE is a subset of (X, F) such that the
span of{¢(k) : ¢ € E} is dense inEy, for all k € K. For each compack C X let=;, be the closure
inT'z (X, E) of the span of ally¢, with y € C(X) and¢ € =. If L contains an open neighbourhood
of K then'x (X, E) C Zf.

Proof. Let L be a compact neighbourhood &f, letn € I'x (X, E) and lete > 0. For allk € K,
find a sectiorg, € = such that|n(k) — & (k)| 5, < /2. Find a neighbourhoot;, of k in L such
that|n(x) — & (z)|lp, < eforall x € Uy. Find a finite subse$ of K such tha{Us : s € S}isan
open cover of{. Find a continuous partition of unityys)scs relative tok’, subordinate to this cover.
Note that the support of; is contained irl/; C L, sox, € Cr(X). Definer/ := 3" __¢ xs&. Then
[ln—=n'll <e. O

Remark B.1.4. The preceding lemma does not seem to woiK if= L. In general, the norm function

of the , appearing in the proof might be non-continuous but merely upper semi-continuous. So it
might happen that the norm does not vanish on the boundaky. dDn the other hand, the product
xs&s Will always have vanishing norm on the boundary, what makes approximation really difficult.

Corollary B.1.5. If = C I'( X, E) is a total subset, then the span®{ X )= is dense i1'.(X, E).

Proposition B.1.6. Let F and F’ be u.s.c. fields of Banach spaces aoXerLetT be a continuous field
of linear maps fron¥ to F'. If T, has dense image for all € X, then{ — T o ¢ fromT'.(X, E) to
I'.(X, F) has dense image.

Proof. Let= bethesefT' o ¢ : £ € I'.(X, E)}. ThenZ is a total subset of’ by assumption (and
sincel'.(X, E) is total in E). It is closed under multiplication witfl.(X) and linear combinations,
so by the preceding corollarg, is dense il (X, F'). O
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B.1.3 Sections of compact support and bilinear maps
Analogously tg B.1]1, one can prove the following proposition.

Proposition B.1.7. Let F, F and G be u.s.c. fields of Banach spaces o¥erLet . be a continuous
field of continuous bilinear maps frofd x x F'to G. Then(&,n) — po (&,n) defines a separately
continuous bilinear map'.(X, u) fromI.(X, E) x T'.(X, F) toT'.(X, G).

Similarly to[B.1.6 one proves:

Proposition B.1.8. Let F, F' and G be u.s.c. fields of Banach spaces o¥erLety be a continuous
field of continuous bilinear maps frofd x x F to G. If p is non-degenerate, i.e., if the span of
w(Ey, Fy) is dense inG,, then(¢,n) — uo (&,7) is a non-degenerate map frof.(X, E) x
I'.(X,F)tol'.(X,G), i.e., itsimage spans a dense subset.

Conjecture B.1.9. If we give a suitable definition for thé.( X )-balanced projective (!) tensor product
Le(X, B) ®c,(x) Te(X, F) of T'e(X, E) andl.(X, F), then

To(X, E) @c.(x) Te(X, F) 2 To(X, E@x F).

B.2 Continuous fields of measures

Let X andY be topological spaces and jet Y — X be a continuous map.

Definition B.2.1 ((Faithful) continuous fields of measures)A continuous field of measures Y
over X (with coefficient mapp) is a family (u,) e x Of measur@on Y such thasupp p, C Y, :=
p~t({z}) and such that, for alp € C.(Y),

(B.1) ) X - C, zs / ¢ din),
yery

is an element of.(X). It is calledfaithful if supp p, = Y.

Proposition B.2.2. The mapp — u(y) appearing in the preceding definition is a continuous linear
map fromC.(Y) to C.(X). Itis C.(X)-linear and positive in the sense that it maps non-negative
functions to non-negative functions.

Proof. We show continuity. Lef< be a compact subset &f. ThenL := p(K) C X is compact as
well. Find a functiony in C.(Y') such that) < x < 1andy|x = 1. Thenu(x) € C.(X) with x> 0.
Letp € C.(Y) be a function with support itx. Thenu(y) has support ir.. For allz € L, we have

() (@) =

/erz ¢(y) dux(y)‘ < /yeyz |o(y)] dpa(y)

IN

/ X(@) sup o] dialy) = 1)@ sup o] < 10O, [l -
yEYy y' €Yy y' €Yy

It follows that
(o)l < NGOl el -

IHere we just consider positive measures. With a bit of extra work it is probably be possible to show most of what is
said here also for signed measures.
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To see thaty — u(x) is C.(X)-linear, lety € C.(Y) andy € C.(X). Thenyy is defined as the
functiony — x(p(y))e(y) and we obtain

p(xe) () =/ x(@)e(y) du(y) = x(x) p(p)(x)

yeYy

forallz € X. O

Proposition B.2.3. Let M be a continuous and positiv&.(X)-linear map fromC.(Y") to C.(X).
Then there is a unique continuous field of measureach thatM (¢) = u(ye) forall ¢ € C.(Y).

Proof. Letx € X. Defineu,(p) := M(p)(x). Thisis / defines a measure ®nand it is obvious that
this is our unique choice. We prove:

If ¢ € C.(Y) such thatp|y, = 0, thenu, = 0, i.e.,supp u, C Y.

To see this, lep € C.(Y') suchthatp|y, = 0. Lete > 0. LetL. denotethesdly € Y : |¢| > ¢}.
Then L. is compact. Henc&. := p(L.) is compact. Note thak’. does not contair, so there is a
continuous function. € C.(X) such thal < x. < 1, x.(z) = 1, andx:|x. = 0. Now x.¢ is a
function onY” such that|x.¢||., < . Note that the support of.¢ is contained in the support of.
By continuity of M we see thaf/ (x.) becomes arbitrarily small § — 0. Then we also have

M(p)(x) = xe(2)M(p)(z) = M(xep)(x) — 0,

and hencéV/(y)(z) = 0. O

Lemma B.2.4. Let i be a faithful continuous field of measures on the locally compact spameer
X with coefficient map. Thenp is open.

Proof. Lety € Y. LetV be a neighbourhood af in Y. We can find a continuous functiopn
of compact support contained i such thaty > 0 andg(y) > 0. Then the restriction of to
Y, Is also a non-negative continuous function with compact support, positiye so from the
faithfulness ofu we gety,,\(») > 0. By continuity of x the functionu(y) is in C.(X). Itis a
non-negative function and satisfigg/) > 0. So it is positive on a neighbourhodd of p(y). Since
U is contained in the image undeof the set where is positive, we can deduce that the imagé/of
is a neighbourhood gf(y) in X, sop is open. O

Lemma B.2.5. Let X andY be locally compact Hausdorff spaces anddety” — X be continuous,
open and surjective. Then for every compactfset X, there is a compact subsétC Y such that
K = p(L). If V is an open subset &f and K C p(V') is compact, therl can be chosen to be a
subset ol

Proof. Let A := p~!(K). Sincep is continuous ands is compact, the set is closed. Since is
surjective, we have(A) = K. For everya € A, choose a compact neighbourhaodg of a in Y.
Sincep is open, the set(U,) is a neighbourhood gf(a) for everya € A. So we can find a finite
subsetS of A such that{p(Us) : s € S} is a cover ofK. Now L := | J,. 4 Us is a compact set and
p(L') O K. DefineL to beL’ N A, which is compact. Note that we hayél) = K by construction.
Applying this result toV” andp(V) instead ofY” and X shows that we can takk C V if K C
p(V) for openV C Y. O
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Lemma B.2.6 (Local cut-off functions). Let X andY be locally compact Hausdorff spaces and let
p: Y — X be continuous, open and surjective. [et).cx be afaithful continuous field of measures
onY over X with coefficient map. For all openV C Y and all compactk’ C p(V), there is a
functionx € C.(Y') such thatsuppx C V, x > 0 and u(x)(x) = ferx x(y) dpz(y) = 1 for all

r e K.

Proof. Use the preceding lemma to find a compact subsetV” such thap(L) = K. Find a function
X' € C.(Y) such thasuppx’ € V,0 < x < landy’ = 1onL. Thenu(x’) is continuous and
positive onk, so it is strictly positive there. Find a functione C.(X) such thasuppd C p(V),

§>0anddi(z) = m for all z € K. Now define

x(y) == X' (y)d(p(y))

for all y € Y. Theny is clearly continuous with support contained in the support’ofvhich is, in
turn, contained ii/. Moreover,y > 0 and for allz € K, we have

waz/ xyduxy=5x/ X' () dpe(y) = ———=p(X)(z)=1. O
() () - (y) dpa(y) = 6(x) -~ (y) dpa(y) 00 @) (X' ()

The following result is Lemma 2.13 of [MRW87] (the only change is that we skip the unnecessary
condition thatu: C.(Y) — C.(X) should be onto).

Lemma B.2.7. Let (u,).cx be a faithful continuous field of measures Bnover X with (open)
coefficient magp. Then for all openV C Y and for all ¢ € C.(X) with suppvy C p(V), there is
ap € C.(Y) withsupp ¢ C V such thatu(¢) = +. In particular, u: C.(Y) — C.(X) is onto. If
1 > 0, then we can choose > 0.

Proof. By the preceding lemma, we can find a functipre C.(Y") such thatupp xy C V, x > 0 and
u(x) =1onK :=supp . Define

o) = x()v(p(y))

forally € Y. Theny € C.(Y), suppp C V andy > 0if ¢ > 0. For allz € K we have

For allz ¢ K, this formula is also true sinaé(xz) = 0. Sou(y) = 1. O

Definition and Proposition B.2.8 (Pullback of continuous fields of measures).et i be a con-
tinuous field of measures on over X with coefficient mapgp. Assume thatX’ is another locally
compact Hausdorff space and thhatX’ — X is continuous. Let” := ¢*(Y) := Y xx X’ and
P :==q*(p): Y’ — X'. In order to define a continuous field of measuigs ), x+ (or ¢*(u)) onY”’

we define it on each fibre as an integral: Fordle X’ and ally € C.(Y],), define

() = / oy, ") dttgian (4).
YEY@)

We claim that. is continuous.
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Proof. We organise this proof so that its similarities to the pro¢f of B.3.1 (see below) become obvious.
There probably is a common basis for the two propositions.
If ¢ € C.(Y’)is of the form(x ® )|y+ with x € C.(Y') andy € C.(X"), then

1 (p)(x") = / y ey, ') dpgy (y) = / y X(¥) dptg(an ()9 (2") = p(x) (q(2"))(2")
yeY, yer,

(') ()

forall 2/ € X', sou/'(p) = (u(x) o )¢ € C.(X'). For generalp € C.(Y') we have to use
some approximation argument: L&t be a compact subset &f. Find somey, € C.(Y") such that
0 < xo <landyg=1lonm(K) (wherer;: Y xx X' — Y is the projection to the first coordinate).
Thenu(xo) isinC.(X) and therefore bounded by sorie> 0. Letp € Cx(Y'). Then

W ()] = \u’(tp(xOom))(w’)\S/ y xo) (v, 2")| dpgan (y)
YEY g(at)

< lellae #(x0)(a(0)) < C el

for all 2/ € X’. Since the support gf’(¢) is contained irp’(K), which is compact, it follows that
u defines a continuous linear map with nornC' from C (Y”) to the spaces,, k) (X) of bounded
functions onX’ with support iny’(K'). Note thatC,, k) (X) is a closed subspace of this space.
Let L be a compact subset &f of the formL = M x N with M C Y andN C X’ compact and
such thatL is a compact neighbourhood &f in Y’. Then everypy € Cx(Y’) can be approximated
in thesup-norm by sums of elements of the forfq @ )|y with x € Cp/(Y) andy € Cn(X'). So
1/ () can be approximated in thep-norm by elements af ) (X) which are continuous. But this
means that/() is continuous as well and hence it isdp( X’). Soy’ is continuous. O

Remark B.2.9. If the 1 in the preceding proposition is faithful, thenis faithful as well.

Definition and Proposition B.2.10 (Restriction of a field of measures)Let ;. be a continuous field
of measures ol over X with coefficient magp and letV be an open subset &f. DefineU := p(V)
and assume thaf is open inX (which is automatic ifp is open). Them|y := (uu|v)uer defines a
continuous field of measures dhoverU with coefficient magp|y. If u is faithful, then so iy .

Proof. SinceV is open inY andU is open inX, we can embed. (V) into C.(Y') andC.(U) into
Ce(X). The mapu: C.(Y) — C.(X), restricted taC.(V), gives a linear, continuous and positive map
ply: Ce(V) — C.(U). Sopuly is a continuous field of measures.

Let 1 now be faithful. Letu € U andx # 0 be a non-negative function g !({u}) NV with
compact support. Then this function can be extended by zero to a non-negative fiinatioompact
support on the whole gf ! ({u}). Then0 < 1, (X) = pulv (X). SOul, is faithful. O

Definition B.2.11. One says that a continuous field of measures Y over X hascompact support
if U, x supp . is relatively compact iry”. The support of i1, ).c x is said to beproperif, for all
compact’ C X, the set . ; supp . C Y is relatively compact.

Definition B.2.12. For all continuous fields of measurgsonY over X and allx € C(Y), x > 0,
define

(xi)a(p) = / X)) i)

forallz € X andy € C.(Y). Note that this simply mearisx)(¢) = n(xe).
If x € C(X),x > 0, theny op € C(Y) and we definequ := (x o p)u. Note that(xu)(¢) =

n(xp) = x(u(p)) forall p € Cc(Y).
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Lemma B.2.13.E] Let . be a continuous field of measures Brover X with compact support. For
all ¢ € C(Y), defineu(y) asin [B.1). Them(y) is an element of .(X).

Proof. Let ¢ be inC(Y'). Find a functiony € C.(Y') such thaty > 0 andx(y) = 1 forall y €
Uzex supp pa. Thenxp = pandpu(e) = p(xy) € Ce(X) becausep € Co(Y). O

Lemma B.2.14. Let i, be a continuous field of measures Brover X with proper support. For all
¢ € C(Y), defineu(yp) asin [B.1). Them(y) is an element of (X).

Proof. Let ¢ be inC(Y) and letz € X. We check thaj:(y) is continuous inz. Find a compact
neighbourhood¥ of = and a functiony € C.(X) such thaty > 0 andxy = 1 on K. Thenyu has
compact support an@y i) (¢)(z') = u(p)(2’) forall 2’ € K. Since(xu)(p) is continuous inc, so

is pu(p).- O

B.3 Continuous fields of measures and fields of Banach spaces

Let X andY be locally compact Hausdorff spaces andgety” — X be continuous. LeFE be a
u.s.c. field of Banach spaces ov€rand let(u,).c x be a continuous field of measures Brover X
with coefficient magp.

Definition and Proposition B.3.1. For every sectiog € I'.(Y, p* E) with compact support and every
x € X, the functionY, — E,, y — £(y), is an element of.(Y,, E,) so we can define

(8.2) u(€)(x) = / €0 (o).

Thenu(€) is an element of (X, E) and the functior¢ — p(§) is a continuous linear map from
LY, p*E)to (X, E). Itis C(X)-linear in the following way: Ify € C(X) and¢ € T'.(Y,p*E),
then we can defin@)¢) (y) := ¥ (p(y))&(y) forally € Y. This defines &(X)-action onl.(Y, p*E).
Then

() = Pu(§).

Proof. First we have to check that our map is well-defined. For every elegheht’.(Y, p*E), the
map u(§) surely is a well-defined section @& with compact support. The question is whether it is
continuous. Recall that if{’ is a compact subset of, thenX (X, FE) denotes the space of all
bounded selections df with support contained id’.

If K is a compact subset of, thenu(§) € Yx/ (X, F) for all ¢ € Tk (Y, p*FE) where K’ :=
p(K); actually, . defines a continuous linear map frdmx (Y, p*E) to X/ (X, E). Indeed, find a
functiony € T'.(Y) such thad < y < landx = 1on K. Then forall§ € Tx(Y ,p*E) and all
x € X, we have

@), = \ [ cwanm| =] swemano

By ‘ By

< / X(®) dita(y) sup (€W g, < 1) (@) €] -
yeYy YyEYy

It follows that
1) e < MO g 1€l -

2Compare[[LG90], Lemma 3.1.
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Note that|| () || < oo sincep(x) isinCx(X, E) by the continuity of:. As y is obviously linear
onT'k (Y, p*E), itis a continuous linear map.

Let¢ beinT'.(Y, p*E). Now we check that(¢) is a section. Lef denote the support gf Find
a compact neighbourhoddof K. Then we can approximateby sums of sections of the form- 7,
wherey € Cr(Y) andn € T'(Y, p*E) is such that there is ajf € T'(X, E) with n(y) = n'(p(y)) for
ally € Y (this follows from Lemma B.1]3 applied to the $ebf all such sections gf*E). We show
thaty(xn) € ')y (X, E), and, since this is a Banach space arig continuous, it follows that(¢)
is in the closed subspatg (X, E) of 3,1y (X, E) (and hence il', x (X, E)). Now

u(xn)(x) = / o x(y)n(y) dpa(y) = / o x()n' (x) dpe(y) = / o x(y) dpx(y) - ' (),

for all z € X, or, in other words,

1(xn) = pO)n € Ty (X, B).

Together with the continuity result derived above we now know thigta continuous linear map
from Tk (Y, p*E) to L'y i) (X, E) for all compactK’ C Y. Sou is a continuous linear map on all of
I'.(Y, px E) with values in['.( X, F) by the universal property of the inductive limit topology.

To seeC(X)-linearity, lety) € C(X) and§ € T' (Y, p*E). Then

p(g)(x) = (#)€(y) dpa () 21/1(1‘)/ . §(y) dpa(y) = (Pu(&))(x)
YEYy

yeYy
forallx € X. O
Proposition B.3.2. If p is surjective and. is faithful, then¢ — () is surjective.

Proof. Letn € T'.(X, E). Find ax € C.(X) such thaty = 1 onsuppn. By the surjectivity of the
mapp: C.(Y) — C.(X) we canfind a € C.(Y) such thap(x') = x. Define¢(y) := x'(y)n(p(y))
forally € Y. This surely is inl'.(Y, p* E') and we obtain

WO @) = / ) () = / X)) dpelo)
YEYy YEYy
_ / X)) 1(e) = ) @n(z) = X(@n(z)
YyEYy

forall x € X. Becausey = 1 onsuppn, it follows thatu (&) = 7. O
The following lemmas are proved as in the scalar case (Lgmma B.2.13 and B.2.14).

Lemma B.3.3.ﬁLet the continuous field of measue®n Y over X have compact support. For all
¢ e T(Y, p*E), defineu(§) as in [B.2). Them(¢) € T (X, E).

Lemma B.3.4. Let 1, have proper support. For af € T'(Y, p*E), defineu(¢) as in [B.2). Then
n(§) € (X, E).

3Compare[[LG90], Lemma 3.1.



Appendix C

Some Details Concerning Chapter 5

C.1 Some proofs of results of Section 5.1
C.1.1 Proof of Lemma5.1B

The trick is to represeni as a composition of continuous maps on the sections of suitably chosen
fields of Banach spaces; continuity means here continuity for the uniform convergence on compact
subsets if we are talking about the spaces of all sections and convergence in the inductive limit topol-
ogy if we are talking about the sections with compact support. First, observe that thfg mag, o m;

is a continuous map froM(G, r*E1) toT(G?), 7ir*Ey). Similarly, & — & oy is continuous from
[(G,r*Ey) to T(G?), wir*Ey), wheren, is defined analogously to;. Now r o 1y = s o 7y by
definition of G, so7jr* By = mfs* Ey. Sincea is a continuous field of linear isomorphisms from
s*Ey tor* By, the pullbackr] « is a continuous field of linear isomorphisms frarfs* E's to wir* Es.

This defines a continuous linear map (actually, a linear homeomorphism)IftGfd), mis*Ey) to

I'(G?), 7ir* Ey). Now there is the canonical map

L (99, 7ir B ) x T (99, 7ir*Bz) — T (6, i7" By xga) 71" B )

mapping(n1,n2) to (v,v") — (m(v),m2(7')). Since this map defines the structure of a continuous
field on the product field, it is continuous and takes total subsets to total subsets, a property shared
also by the other maps we have used so far. Putting this together we have constructed a continuous
linear map

(&1,&) = [(1,7) = (&(m(1,7), (mfa) 0 & om)(v,7") = (£1(7), aréa(v))] -

Note that this map takes the product of two total subsets to a total subset. ;Siace continu-
ous field of bilinear maps, we can pull it back to a continuous field of bilinear m§p%: from
"By X g it By to nir* F. Composing this map and the map defined above giyeghich is
therefore continuous and well-defined.
Separate continuity on the sections of compact support follows from continuity for the uniform
convergence on compact subsets and the (trivial) statement about the supports given in the lemma.
If 1 is non-degenerate, then so7$r*p, so it takes total subsets to total subsets. Hence the
compositioni of maps that send (products of) total subsets to total subsets does the same.
Since the continuous sections of compact support form a total subset, it follows tEatéfimed
in the lemma is total. As a consequence, the spah(@?)= is dense iT.(G?), 7ir*F). Since the

281
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multiplication betweert.(G(?)) andT.(G?), n*r*F) is (separately) continuous, it therefore suffices
to find a subset of C.(G()) which generates a dense subspace and such that products of elements
1 € U with £ € = are again irE. Such a set is given by

W= {(x1om)  (x2om): x1,x2 € Cc(G)}.

By the definition off it follows that for all x1, x2 € Cc(G), &1 € Te(G,r*Eq) andés € T'.(G, r* E»):

(X161, x282) = (x1071) - (x2 © T2) - fi(&1, &2)-

What is left to show is thal spans a dense subset®{G?)). To see this note that the algebraic
tensor product := C.(G) @8 C.(G) spans a dense subsetif{G x G). Furthermore, the restriction
map fromC.(G x G) to C.(G?) is continuous and surjective by Lem4.1. The image ohder
this restriction is the span df which therefore is dense.

C.1.2 Proof of Lemma’.3.\7

In this section we prove Lemma 5.B.7 which is a generalisatign of]|5.1.2. The proofs of these two
results are completely analogous and the proof of the generalisation is only included to make it un-
necessary for the reader to puzzle out the technical details (which took me some time).

We first state a lemma analogous to Lemima $.1.3.

Lemma C.1.1. Let&; € P(g“ﬁ/,r*El) andé; € r(gg, r*Ey) be sections (with arbitrary support).
Then

ﬂ(fl) 52)(’77 /7,) = Hr(vy) (51 (’7)’ a’Y(f? (7/)))

isinT(GY *s, Gy, mir*F), wherer;: GI¥ . Gi; — G is the projection onto the first coordinate.

If 1 is non-degenerate, thei is non-degenerate in two senses: Firstly, it sends the product of two
total subsets to a total subset, and secondly, th&set {ji(&1,&2) @ & € Te(GY, 1 Ey), & €
I'.(GY,r*E>)} spans a dense subsetlof( Gl «, . G/, mir* F).

The proof of this lemma is almost identical to the proof of Lenima $.1.3. We just include it here
because it was rather tedious to find the right places for allthé’s andV's, and if somebody needs
this result, then it might save some work to find the proof spelled out in detail.

Proof. The first step is given by the mags — &; o m; andés — & o mo, Where the first map starts
in[(GYY,r*Ey) and ends i (G} *, G}, mir*E1), the second starts iR(G};,7* E») and ends in
F(g“j" kg gg, mr* Ey). Heremr; andmy are the projections on the first and second coordinate on the
fibre produciGl! =, GJ;. By definition, these maps are linear, continuous and map total sets to total
sets.

As above,r o my = s o my, SOmyr*Ey = wjs*Ey. Sincea is an isometric isomorphism from
s*Ey to r*Ey, we know thatrj«a is an isometric isomorphism from{s*Ey to w5r*Es (as fields
overGlY 5, GY/). This defines a continuous linear isomorphism frot@} «,, G/, 77s*E») to
F(Q‘V/V g gg, mir*Ey). And as above, there is a canonical map

r (Q‘I}V *g 1 g(‘]/, Wfr*El) xT (Q‘I;V g gg, WTT*E2> —7T (g‘V,V g gg, mirtEy XGW s, GV, WTT*Eg)

mapping(n1,72) to (v,v") — (m(v),m2(7')). Since this map defines the structure of a continuous
field on the product field, it (is continuous and) takes total subsets to total subsets, a property shared
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also by the other maps we have used so far. Putting this together we have constructed a continuous
linear map

(61,62) = [(1,7) = (&(m(1, 7)), ((7fa) 0 & om)(1,7)) = (§1(7), ar2(7))] -

Note that this map takes the product of two total subsets to a total subset.

Sincey is a continuous field of bilinear maps, we can pull it back to a continuous field of bilinear
mapsnir*p from 7ir* Eq XGW 0 1GY mir*Ey to mir* F. Composing this map and the map defined
above givegi, which is therefore (continuous and) well-defined.

If 1 is non-degenerate, then so7$r*y, so it takes total subsets to total subsets. Hence, the
compositioni of maps that send (products of) total subsets to total subsets does the same.

Since the sections of compact support form a total subset, it follows that tefined above is
total. As a consequence, the sparCefGl? *s, G/)= is dense i.(GY s, G, i7" F). Since
the multiplication betweeB.(GlY s, G;) andL'.(G}} xs, G}, m{r*F) is (separately) continuous,
it therefore suffices to find a subsgtof CC(Q‘V}’ *g gg) which generates a dense subspace and such
that products of elements € ¥ with £ € = are again irE. Such a set is given by

U= {(x10m) (x20m): x1 €C(GV ), x2 € Cc(G))}-

By the definition off it follows that for allx; € C.(GY), x2 € C.(GY), & € T(GYY,r*Ey) and
& €T (G),r* By):
(x1é1, x262) = (x10m1) - (X2 0 m2) - fi(€1, E2)-

What is left to show is tha¥ spans a dense subseﬂgtg“j" *S,TQ‘U’). To see this note that the algebraic
tensor produc® := C.(GV) @8 C.(G};) spans a dense subsetdn(Gl¥ x GY). Furthermore, the
restriction map fron€.(G{¥ x G¥) 10 C.(GYY =5, G7) is continuous and surjective. The imagedof
under this restriction is the span wfwhich therefore is dense. O

Now we can proceed with the Prooflof 53.7. Again, this is just a variant of the proof of the special
casel/ = V = W = G that has been discussed above.

First define the ma@: G «,, G — GV *s, G)f, (7,7') — (v,7~19/). This is a homeo-
morphism. Lefp; andp, denote the projections @“7 *p gIV]V onto the first and second component,
respectively. Themr; o ® = p;, and we have®*(njr*F) = pir*(F) = pir*F. The map® therefore
induces an isomorphism

Lo (G s, Gy i7" F) = T (GY %00 GY, p3r*F)
which sends someto (v,7) — n(y,v~1v'). In particular, it sends oyi(¢1, &) to

(1:7) =ty (E207), ay (2(9719))) -

Note that this is the integrand in the convolution formula and a section of compact support.

Now we define a suitable continuous field of measuregGPn«,, G;/'. Consider the map
p2: GV % GY — GIV. Itis surjective since': G}Y — W is surjective. Its fibres are of the
formpy ' ({v'}) = {(7,7) : v € GV, r(y) = r(y')} for eachy’ € GI¥. These fibres are homeomor-
phic tog(/('*/) C GYY CG. If, for eachw € W, we restrict the measuré’ on g to the open sefy,
then we get a faithful continuous fiel := Agw of measures o6y’ over W with coefficient map

r (see PropositioO). So we can put the meastif¢) on the fibrepgl({fy’}). Technically, we
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are forming the pullback* )\’ by r of the continuous field of measur&son g“?/ with coefficient map
r (compare Definition B.2]8):

GV, N) = (GV *rr G, 7N

r lpz

w . Gy

By Proposition) B.3]1 we can deduce thad' mapsT'. (Gl #r, G}Y, psr*F) toT. (G}, r*F), and
this map is onto sincg’ is faithful and so is*\’.

The composition of the three maps the isomorphism induced b, andr*)\’ is our convo-
lution product(&;1,&2) — w(&1,&2), which is therefore (well-defined, separately continuous and)
non-degenerate ji is non-degenerate.

C.2 The convolution with fields of compact operators

Let £ and F' be u.s.c. fields of Banach spaces over some topological space. Then wk (@ite)..
for those continuous fields of linear maps that have compact support. In the same spirit we use the
notationLz(E, F'). andKp(E, F).. Let A(G) be an unconditional completion 6£(G).

C.2.1 The convolution with fields of linear maps

Definition and Proposition C.2.1. Let £ and F' be G-Banach spaces. Let the field of operators
S = (Sy)yeg € L(r*E.* F'). have compact support. For dllke I'. (G, r*E), define

5+ (0= [ Syvel )

Ggr(v

and

€)= [ ) oSy O = [ [8m0, ()] XYO)
Y Ty
forally € G. ThenS «x ¢, £ xS € T'. (G, r*F) and the mapg — S x £ and¢ — & = S are linear,
Co (X/G)-linear, and continuous with respect to the inductive limit topologies. We have

15 €llag.m < |y = 15,01, €N ace.

and
1€ * SNl ag,r) < 1€l e,k H’Y = 1S, HA-

In particular,§ — S % £ and{ — £ xS extend to linear and, (X/G)-linear continuous maps from
A(G, E)to A(G, F) (being alsaCy(X)-linear from the right and from the left, respectively).

Proof. Let us only conside$ « £, the arguments fof « S being very similar.

LetG«, G denote the spadé~y,~') € GxG: r(y) =r(y')} and letr;: G*,,,G — G denote the
projection onto théth component. Then the m&p, 7') — &(v' 1) isinT (G %, G, m5s*E). If we
write o for theG-action onE, thenmya sendd” (G *,., G, m5s*E)toI' (G *,, G, m3r*E), so the map
(v,7") = Y€1) isinT (G *,, G, m5r*E). Thirdly, the maprsS sends (G .., G, T3r*E) to
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I (G .y G, m3r*F), s0(7,7) — SvE(y 1) isinT (G *,, G, m3r*F). More precisely, it is in
(G #pr G, m3r*F). The map which sendsto this element of'. (G *,., G, 73r*F') is continuous
for the inductive limit topology. Note thato 7y = r o 7y, sow3r*F = wjr*F.

Now the integral sendB. (G *,, G, mir*F') to . (G, r*F') and is continuous for the inductive
limit topology, so the mag — S * £ is well-defined and continuous.

The proof of the inequalities for the norm is a variant of the prodf of $.2.6. Note that the map
v+ ||Sy|| is in general neither continuous nor upper semi-continuous. However, it is locally bounded
(by definition of a continuous field of operators) and has compact support. O

Proposition C.2.2. Let B be ag-Banach algebra and lef and F' be rightG-BanachB-modules. Let
SbeinLg(r*E,r*F).. Thenthe mag — S ¢ fromI'. (G, r*E)tol'. (G, r*F)isT. (G, r*B)-
linear on the right. Hence the map— S * ¢ from A (G, E)to A(G, F)is.A(G, B)-linear on the
right. A similar statement is true for left modules and the gap & % S.

Proof. The assertion is proved just as the associativity of the convolution. O

Equipped with this knowledge, we can now analyse Definftion 5|2.17: The eqyafiors™ « £~) =
(n< % S<, £~) that appears in the definition can agajn be proved similarly to the associativity of the
convolution. This equation implies that the operatbthat is defined i 7 is an element of

Lag,p) (A(G, E), A(G,F)).

C.2.2 Fields of compact operators

Let B be ag-Banach algebra and Iét and ' be G-BanachB-pairs. For all)” € T'. (G, r*F~) and
all¢s e T (G, r*E<), define

N7 €S = < /g o 77 (Y)Y E (Y1) | A" (7’))

YEG

Thenn” > €< is in K,-p (r*E, r*F), by[7.2.3, where the subscriptmeans that we are only
considering those fields of operators which have compact support. Direct calculation yields

0" €< = |7 )(€°| € Ka.m (AG. B), AG.F)).

The fields of compact operators of the fonfn > < span a dense subspacé®f s (r* E, r*F)_ and
the map(n~,£<) — 1~ > £ is continuous for the inductive limit topology. Qn.«g (r*E, r*F),
we can define the semi-norm

I1S1a:= [y = 15,01,

We have already seen that the m&p— S is contractive for this norm. Because a dense subset of
K,«p (r*E, r*F'), (dense for the inductive limit topology and hence dense for the norm) is mapped
to K 4(g,5) (A(G, E), A(G, F)), it follows that all ofK,.-p (r*E, r*F)_ is mapped into this closed
subset. We can summarise this as follows:

Proposition C.2.3. Let B be aG-Banach algebra and lek and F' be g-BanachB-pai[s. LetA(G)
be an unconditional completion 6§(G). If S'is an element oK,- g (r*E, 7*F)_, thensS is compact,
i.e., we have

S € Kug,p) (A(G, E), AG.F)).
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C.2.3 The proof of Lemmg5.3.1L

This Lemma can be proved by a careful revision of the argumentation in the previous paragtéph: If
is an open subgroupoid ¢fandr~ and¢< have their support ifif, then also;” < £< has its support

in H. Conversely, ifS € K,«p (r*E,r*F), has its support iri{, then we can choose summands of
an approximation in the inductive limit topology to be of the fongm > €< with = and£< having
their support irf{. This shows Lemma5.3.1.

C.3 Some details concerning unconditional completions (Section 5.2)

C.3.1 TheA(G)-bimodule structure of A(G, F)

If £ is aG-Banach space, thefi is a Banact x-bimodule, whereC x denotes the constant field of
Banach algebras oveY with fibre C, carrying the canonicaf-action. It follows that4(G, E) is a
Co(X/G)-BanachA(G)-bimodule. Becaus# is Cx-non-degenerate, it follows that(G, E) is also
non-degenerate, both as a left and a rigi¢)-Banach module.

If T: E — Fis ag-equivariant bounded continuous field of linear maps, tH¢6, T') is A(G)-
linear, both on the left and on the right. SimilarlyAf, E> andF' areG-Banach spaces and Fp x x
E, — F'is ag-equivariant bounded continuous field of bilinear maps, théa, 1) is A(G)-linear on
the left in the first component#d(G)-linear on the right in the second component ah(@ )-balanced.

The assignmentl — A(G, E) defines a functor from the category GiBanach spaces to the
category of’y(X/G)-BanachA(G)-bimodules.

If Bis ag-Banach algebra, then the multiplication on thé X /G)-Banach algebral(G, B) and
theCy(X/G)-structure are compatible with thé(G)-bimodule structure. Similar statements are true
for G-Banach modules ang-Banach bimodules.

C.3.2 The descent, sums and tensor products

Proposition C.3.1. Let E and F' be G-Banach spaces. Then there is a canonical bijeafieX /G )-
linear map
sppi=5: AG, E)® AG, F) — A(G, E®x F)

such that|s|| < 1 and||s~!|| < 2 and respecting thet(G)-bimodule structures.

Proof. We defines = sg{F on a dense subset: Léete T'. (G, »*E) and letn € T'. (G, r*F'). Then
(&,n) can be regarded as an elementdty, E) & A(G, F'), whereas(&,n) = v — (&(v),n(y)) is
an element of4 (G, F ©x F). We have

s llagzsry = |7 1N+ Il |, = || lel+1l ||,

A

< | lel L+ 1 1l g = 1E M ag.meag.F -

Sos is aCy(X/G)-linear map with normj|s|| < 1onT. (G, r*E) ® . (G, r*F). Hence it extends
to aCy(X/G)-linear map of norm less than or equal to 1 on the completi¢g, £) & A(G, F).

For the above andn, we havel(| < |s(¢,n)| and|n| < |s(&,n)|. It follows from the properties
of the unconditional norm thal|| 4 gy < [5(¢, )| 4(g,psr) @and the same is true for the norm of
7n. This yields

||(5,77)\|A(Q,E)@A(g,F) = ”fHA(g,E) + ||77||A(g,F) <2 ||5(577I)”,4(g,E@F) )

which shows that~* is continuous with nornfis—!|| < 2. O
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The preceding proposition remains truetifand F' are not onlyG-Banach spaces bgt-BanachB-
modules over somé-Banach algebr®. In this caseY is also.A(G, B)-linear.

Definition and Proposition C.3.2. Let £ andF’ beG-Banach spaces. Then there is a unique contrac-
tive linear map
wg i A(G, B) 85409 A(G, F) — A(G, Eax F)

such that
(€4 (mEr (€@m) (V) = /g o E @Y (9)

forall¢ e T.(G,7*E), n € T'(G,r*F) andy’ € G. The mapmg‘f is Co(X/G)-linear, A(G)-linear
on the left and on the right and has dense image.

Proof. Note that®: ¥ xx FF — E ®x F' is ag-equivariant contractive continuous field of bilinear
maps. It therefore gives a contractitig X /G)-linear andA(G)-balanced mapi(G, ®): A(G, E) X
AG,F) — A(G,E®x F). The linearisation of4(G, ®) is the mapm“EfF. Becausex is non-
degenerate so id(G, ®). Hence alsong"F is non-degenerate. O

In exactly the same way one proves:

Definition and Proposition C.3.3. If Ez and gF' are G-BanachB-modules over somg-Banach
algebraB, then there is a unique contractive linear map

mg p 2 AG, B) @5 hrs a0 AG F) — A(G, E@p F)

such that
(€.2) (mz.r (@) () = /grw) () @y n(y 1) A ()

forall ¢ € T.(G,r*E),n € T.(G,7*F) andy’ € G. The mapm4. ;. is Co(X/G)-linear, A(G)-linear
on the left and on the right and has dense imagé: I§ not onlﬂl a leftG-BanachB-module but a
G-BanachB-C-bimodule, where&” is anotheiG-Banach algebra, theﬂjgl s A(G, C)-linear on the
right (and similarly on the left-hand side). ’

Note thatA(G, E) and A(G, F') are A(G, B)-non-degenerate i and F' are B-non-degenerate,
respectively. It follows that thel(G, B)-balanced tensor product is automaticadlyG )-balanced and
Co(X/G)-balanced if eithe® or F' is B-non-degenerate, i.e.,

A(G, B) 85010 46y AG F) = A(G, E) @ ag.5) A(G, F).

C.3.3 Some proofs concerning Sectign 5.2.8

Proof of Lemm@5.2.20Let (E1,T1) and (E», T») be elements oEg™ (A, B), whereA and B are
G-Banach algebras. Then there is a canorigéX /G)-linear homomorphism

5= 5}%1,,32: A(G, E1) @ A(G,Er) — A(G, E1 ®&x E»)

which is bijective such that the inverse maps on the left- and right-hand side both have<n®rm
(compare Proposition C.3.1). Moreover, this homomorphism clearly respects the grading and the
operators of the cycles, so it is a morphismidK2"-cycles. Such a morphism certainly induces a
homotopy. O
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Proof of Lemm@5.2.210n the one hand we have

A(G,v)" () = A9, B) 854G 1) (A9, C) & Co(X/G));

on the other hand
A(G, v*(E)) = A(G, E®Baycy (Cox Cx)).

There is a canonicdly (X /G)-linear concurrent homomorphism
Co(X
W cocy t AGE) @55 b o) AG, Cox Cx) = A(G, E@poycy (C@x Cx))

with coefficient mapdd 4(g,4) andId 4 ). Note that non-degeneracy of the involved modules
implies

A9, E) ®,Cf((<j),({%xcx) A(G, Cox Cx) = A(G,E) ® 4,8 A(G, Cox Cx).
There is a canonical homomorphism@{fX /G)-Banach algebras
oyt AG,C) @A) — A(G, Cex Cx),

where the multiplication in the first algebra is definedas) (¢, f') := (e +cf' + f, ff) for all
e, d € A(G,C)andf, f' € A(G). Itinduces a canonical concurrefi( X /G)-linear homomorphism

A(G,E) @46, (A(G,C) ® A(G)) — A(G, E) ®a.B) A(G, C &x Cx).
Now there are canonical concurréht X /G)-linear homomorphisms
A(G, E) ® 4,8) A(G,C) = A(G, E) ®ag,5) (A(G,C) & A(G))

and
A(G,E) @46, A(G,C) — A(G, E) ®46,8) (A(G,C) @ Co(X/G))

So we have connected (G, )" (E) andA (G, ¢*(F)) through a sequence of (inverses) of canonical
Co(X/G)-linear concurrent homomorphisms having coefficient mdpgg 4y andld 4(g ¢y- Straight-
forward calculations show that these homomorphisms can be regarded as morpHidité'otycles

(if we take the canonical choices of operators on the above pairs). Moreover, all these morphisms give
rise to homotopies. Sd (G, ), (ja (E,T)) andj (¢« (E,T)) are homotopic. O

Proof of Lemm@5.2.22We have to check thaty(3)|| < ||5] for all 5 € T'.(G, r*BJ[0,1]). The
first term is by definition

181 = | v~ sup 1B |

The second term is

l6s@)l = sup | v I8l |
t€[0,1] A
From the properties of the unconditional norm and the fact that forallo, 1] and ally € G we have

1B @I < sup [[B()(s)]

s€[0,1]
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we can deduce that for alle [0, 1]

| 7= 1seen |, <81,

sollés(5)| < [|5] as desired.
For the second part of the lemma, gt [0, 1]. Lets € T'.(G, r*B|0, 1]). The mappp sends3 to
t— (v B()()). NOWevtA(g’B) sends this function to — 3(v)(to) inT.(G, r*B) C A(G, B).

On the other handA(G, evy)) sendsp to evy =03, i.e., toy — (eve),(B(7) = B(7)(to). SO
A(G,B

evy, ) opp andA(G, evf) agree on a dense subset and are thus equal. O
Proof of Proposition 5.2.37There is a canonicaly(X/G)-linear concurrent homomorphism with
coefficient mapsd 4(g, 4y andld 4(g ¢

mi=mp p: AG, B) @55 ) AG, F) — A(G, E @5 F)

defined as in Equatiof (G.2). We show thainduces a homotopy.

In a first step, assume that € K(r*E). is a compact operator orf E with compact support.
Let S be as i7, i.e., lef denote the action of on A(G, E) by convolution. Then Propo-
sition says thaf is a compact operator ad(G, ). BecauseA(G, B) acts onA(G, F) by
compact operators, it follows that ® 1 is a compact operator QA(G, E) ® 4g,B) A(G, F) (see
Propositiorj 1.3]7). On the other hand, Proposition 3]|1.59 says$'thatis a locally compact operator
onr*E ®«pr*F =r*(F ®p F). It has compact support (the support is contained in the support of
S). SoS ® 1 is a compact operator with compact support. Hefice 1 € Kag,o)(AG, E®p F)).

We show that the paitS @1, @) isinK(m, m), i.e., we show that intertwines the two operators
and that we can approximate them simultaneously with finite rank operators.

Because the maf — (S®1, @) is linear and contractive (if one takes the semi-ng$if =
v = [1S51lll 4 onLy«p(r*E).), it suffices to show this fob = £~ va £< with £< € T.(G, r*E<)
and¢> € I'o(G, r*E~) (see Paragragh C.2.2 for the definition-of. Becausé{™,£<) — £ > €<
is continuous it is sufficient to consider the case thiat £~ < (5% <) = (£ x ) < £ with
¢S ele(G,r*E<~)and¢” € T'.(G, r*E~) andg € (G, r*B). Lete > 0.

The map(n~,n<) — n~ < n< is separately continuous and non-degenerate for the inductive
limit topologies onl'.(G, 7*F~), T'.(G, r*F<) and K,«c(r*F). We can therefore find € N,
Ny, oy €0:(G, r*F<)andny,...,n, €(G, r*F~) such that

(34 PR

3 B - 3 7 ), | || <e
A

=1

Because the maps;, m> and the action o ® 1 on A (G, E ®p F)~ are given by a convolution
formula we use, for a moment, the symbdbr all of them; a short calculation yields

ST (m™(€” @n>)) = (87 @ 1) %€ wn/” =€ Bt x> 0>

forall¢> e T'. (G, r*E~) andn’> € T, (G, 7*F~). Note that we have implicitly use some straight-
forward associativity laws. Now

| pressem s> =[S0 w7 wnt] v x> wn
< €14 || mBem =D 0 wmi

.
Nl sl el s
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A similar formula is true for the left-hand side (= the bra-side). Using the density of the image of
one can conclude that

H§>*[3*§<*._§>* {Z;ﬁf*ﬂﬂ c €<%

’SE.

Now

£ * [Zizl ;o nﬂ #ESw=) (€7 wn) x (g E5) x5
in other words, we can approximaﬁ/egi =7 BxE5x-uptoe by Y1 [m” (€7 @n) ) (m=(nF®
£9)|.

In a similar manner one can show that we can approxirfiatel by >/ &> @07 ) {nT ® 5|
up toe. Hence(S @ 1, S® 1) isin K (m, m).

Now we show thain satisfies the conditions of Theorém 216.2, the sufficient condition for homo-
topy of KKP*"-cycles which will tell us thatn induces a homotopy. Let € A(G, A). As in the
proof of we havén, A(G,T)] = Swith S = a+«T — T xa € K,«p (r*E), and similarly
[a, A(G, T ®1)] =S ® 1. It follows that

[a, (A(G,T)®1, AG,T®1))] = ([e®1, AG,T)®1], [a, AG,T ®1)])
= ([CL, A(gvT)] ®1, [CL, A(g’T ® 1)])
= (§®1, @)GK(m,m).

The second condition of Theorgm 2J6.2 is checked analogously (and the third condition is vaid).



Appendix D

Some Detalls Concerning Chapter 6

D.1 Some proofs of results of Section 6.1

In this appendix we collect the proofs of most of the technical results of S¢ctipn 6.1.

Proof of Propositiori 6.1]9Without loss of generality we may assume tkatis proper. We have to
check whether the map

e Gk (Q Q) — (21 %xQ2) X (21 %xQ2), (7,w1,ws2) — (w1, ws, YW1, Yw2)
is proper. Define the map

7 (Q1 % Qo) x (1 %Q2) — Q1 x Q1 x Vo, (wy,ws,w),wh) — (wi,w],ws).
Since this map is continuous, it suffices to show thatu is proper. But

(mop)(y,wr,w2) = (w1, yw1,wa)

forall (v, w1, ws) € G*(Q1%Q9) which can be extended continuously <2, ) x Q9. This extension
is the product of a proper map and the identity{@nand hence proper, soo 1 is proper. O

Proof of Proposition 6.1.12Firstly, we show thaf2 is free if and only if a map exists which has the
properties of an inner product apart from continuity. Then we show that a free Qpiageroper if
and only this “inner product” is continuous.

If Qis free, then we definév, w’) to be the unique’ € G such thatyw’ = w. Then by definition
property 1, 4 and 5 hold. §’ € G such thats(7) = p(w), theny'w = (7' {(w, w’))w’ so(y'w,w’) has
got to be equal to/{(w,w’) by its defining property. Similarly, if” € G such thats(v") = p(w'),
thenw = (w,w’)w’ = ((w,w)7™1) (W') S0 (w,1w') = (w,w’)y~ . So(-,-) has the properties 1-5.

Now let (-,-) be an inner product of2. Let (w,w’) € Q X, Q. By definition of this fibre-
product there is & € G such thatv = yw’. We have to show that it is unique and we do this
by showing that it is(w,w’). Because of 4 we have)’,w’) = p(v’), and from 2 it follows that
(w, ) = (W' W) =y (W, ') = vp(w') = v. HenceQ is free.

Now let(2 be a fregj-space. This implies that the continuous map

p: GxQ— Qx, 0, (v,w) — (Yw,w)
is a bijection. Its inverse map is given by

(W w) — (W, ww, w).

291
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This shows that: is a homeomorphism if and only if the inner product is continuous.

We now show that: is a homeomorphism if and only 2 is proper (Note tha® x, 2 is closed
in Q x Q sinceg \ 2 is Hausdorff, sq? x, 2 is locally compact Hausdorff).

If 1 is a homeomorphism, then it is a proper if we consider it to have its values in the larger space
Q x €. But this exactly means th&t is proper. On the other hand (ifis proper then ouy is proper
as well (with values if2 x, €2). So by Lemma D.I]1 the map being a continuous proper bijection
between locally compact Hausdorff spaces, is a homeomorphism. O

LemmaD.1.1.LetY and Z be locally compact Hausdorff spaces andfiety” — Z be a continuous
bijection. If f is proper, thenf is a homeomorphism.

Proof. SinceZ is locally compact its topology is compactly generated. Adie a closed subset of
Y. Then we want to check thg{ A) N L is closed (or compact) for all compact subsktsf Z. Let L
be such a compact set. Th&h:= f~!(L) is compact becausgis proper. Sk N A is compact. As
f is continuous we can deduce thgtk’ N A) is compact, too. Nowy is bijective andZ is Hausdorff,
soLnN f(A) = f(K)n f(A) = f(K N A)is closed. It follows thatf(A) is closed andf is a
homeomorphism. ]

Proof of Propositiori 6.1.14Note that the map: Q xgo Q — Q! x¢ Q is well-defined, continuous,
surjective, and open. We check that the other maps are well-defined and continuous, too. Then we
check that we have defined a locally compact groupoid in this way.

1. The mapey: Let (v,w) € G x Q. Then[yw] = [w] by definition. On the other hand we have
[(vw) ] = [w iy ] = [w™h, (v 19)w] = [w™h, w]. Soey is a well-defined (and, by
much the same argument, injective) map. The following square is commutative

0)—— Q Xg(o) Q
lp lq

(AN —

where the top arrow is the continuous map— (w,w) andp is the quotient map. By the
definition of the quotient topology @ \ €2 the mapey; is continuous as well.

2. The mapsry and sy Let (w,w') € Q xg0) Q andy € G such thapp(w) = p(w') = s(7).
Thenw™! W] = [(yw) ! yw'] andw] = [yw] as well asjw’] = [yw']. Sory andsy are
well-defined. The following square is commutative:

Q Xg(o) Q m 0

T

H—" G\ Q

wherer is the continuous map that sends «’) to w. By definition of the quotient topology
onH the mapry is continuous. The analogously constructed diagrans fsrcommutative so
alsosy is continuous.

3. The multiplication . Define the mag: fromY to Q2 x, Q2 to be

ﬂ((wlawll)v (vawé)) = (wla <w/1’w2>wé)
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for all w,wi,wh,ws € Q such thatp(w)) = p(w1), p(wh) = p(we) and[wi] = o(w)) =
o(w2) = [wa]. If ¥ € G such thats(y) = p(w1) = p(w}), then

[L(’Y(wlvwll)a (w2vwé)) = (7"‘}1? <’7wivw2>wé) = (’7”177<w/17w2>wé) =7 ((wlvwll)v (w2vwé))'

So the multiplicationu is well-defined.

Since the fibre-product of open maps is open the canonical mapfrem(Qx ,£2) x » (2 x )

to H® = (07! xg Q) x, (27! xg Q) is open and continuous. Sinée-) is continuous we
know thatf is continuous. By the definition gf it is the map that makes the following square
commutative:

y — L ax,0

quaq iq

HE - H

Sinceq %, ¢ is open and surjective it follows thatis continuous.

4. The inversion .: Let 7 denote the magw,w’) — (w',w) from Q x, Q onto itself. Thert is
continuous. Iflw,w’) € Q x, Qandy € G such thap(w) = p(w’) = s(7) theni(y(w,w’)) =
i(yw, ') = (W', 7w) = (i(w,w’)). So the magw!,w'] — [w' !, w] is well-defined on
Q! xg Q. Since it makes the following diagram commutative it is continuous:

Qx,0—L50x,0

P,k

H H

Now we check the algebraic properties:

1. Associativity: Let (w1, w), (w2, w)), (w3, wh) € 2 x,Q such thafw|] = [wo] and[ws] = [w3].
Now

(Jwrwt] [(wo) ™ wh]) [(ws) ™t wh] =

Il
—_——— — —
€

‘ —-

2. Units: Let (w,w’) € Q x, Q. Then the elements, !, w] and[w™!,w'] are composable and
whwlw™ W] = [w (w,w)w'] = [w™t,W']. Similarly on the right-hand side.

_17 <w/7w/>w] = [w

3. Inversion: Let (w,w’) € Q x, Q. Thenjw™!, W][(W) o] = [w
SoH is a topological groupoid. It is locally compact Hausdorff since it is a quotient of a proper
G-space. The above diagrams show in particular that the quotient mag¥repm(2 to  is a strict
morphism.
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The range and source maps are open: As above, the following square is commutative:

Q Xg(o) Q m 0

Pk

H ".G\Q

wherer is the map that sendsy, ') to w. If p is open, therr is open by lemmp 3.4.5. Nowis
surjective and continuous amp 7 is open, soy is open. Similarly forsy. O

Proof of Proposition 6.1.15Note that the action is well-defined since we hgueyw’) (yw”) =
(w, W) 7 H(w") = (w,w )’ for all vy such thap(w') = s(v). Now we check that this map is indeed
a continuous action oft:

1. Compatibility with sy Letw € Q and[(w')~!,w”] € H such thatr(w) = o(w’). Then
o (w[(W) W) =0 ((w,w)") = o(W") = sy ([(W) 7, w"]).

2. Units act trivially: Letw € Q. Thenwjw !, w] = (w,w)w = w, sow] acts identically onv
from the right.

3. Associativity: Letw € Q, [(w))~!w!], [(wh) ", wh] € H such thato(w) = o(w)) and
o(wy) = o(w)).

(wlw) ™ wi]) (W)™ wh] = ((w,wi)ef) [(wh) ™ wi] = ((w, wh)wl, wy)ws

and
w ([(w) ™ will(ws) 7 wh]) = w [(@) ™ (Wi, wh)wy] = (w,wh) (Wi, wh) wh.

4. Continuity: ¢ is continuous by definition. The actignof H on 2 is continuous because it
makes the following diagram commutative:

QO xg (2 x, Q) - 0
J/Idxgq lld
QxH - Q

Here ;i denotes the map that sen@s, (', w"”)) to (w,w’)w”. This map is continuous and
Id x,q Is surjective and open, $0is continuous.

Now we check thap induces a continuous injectigh Q/H — G(): Letw andw’ be inQ such
thatp(w) = p(w'). Thenjw™!, '] € H andwlw™!,w'] = ', sow andw’ are in the sam@{-orbit of
Q. Vice versa, ifv, w’ € Q2 such thatthere isfiw”) !, w'] € H with w[(w”) ™ W] = (W, W)W =
thenp(w') = p ((w, ")) = r((w,w”)) = p(w), SO we are done.

That the action of{ on 2 is free and proper follows from the following lemma. O

Lemma D.1.2. The mapw,w’) — [(w)~!,w'] is an inner product on the right(-space.
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Proof. First note that) x, 2 is the same aQ x; {2 wherep denotes the canonical map frdmto
Q/H. Now the map(w,w’) — [(w)~!,w'] is the map that we have callgdearlier on, the quotient
map. In particularg is continuous. In order to show thats an inner product we just check properties
2 and 4 of the definition of the inner product (and the first half of 1). This already implies the other
conditions. Note that we have to reflect the formulae in the conditions because we are dealing with
right spaces.
Let (w,w’) € Q x, Q. Thensy ([w™!,w']) = o(w’) by definition (which shows property 1). If
(W, w") € Q x, Qsuchthav(w') = o(w”) then

[w—17 w/[(w”)_l,w”/]] — [w—l’ <w/7w//>w///:| — [w_l,w/] [(w//>—l’w///j| .
Hence we have property 2. Finallyif € ©, thenjw™!, w] = ex(w) which shows 4. O

Proof of6.1.1D. 1. The maps” is well-defined since’ (nw') = o'(w) for all (n,w’) € H * Q.
The universal property of the quotient topology shows #fais continuous becauge, w’) —
o' (w') is continuous fronf2 x ) Q' to K.

Let 2 denote the map(w, '), k) — (w,w's) from Q X0 Q' X0 K10 Q x40 Q. Itis
continuous since the action &fon Q' is. For alln € H such thav(w) = p/(v') = s(n), we
have

1

i ((w,0), 5) = n(w,w's) = (W, nw's) =y, (W)k) =i ((w,w), k).

Hence the actiop of K on " is a well-defined map. It makes the following square commuta-
tive:

i
Q X34(0) Q X jc(0) K Q X11(0) Q

quK(O)IdIC iq
Q// * IC s Q//

whereq denotes the canonical quotient map. Sifide continuous ang x ) Idx is open and
surjective we can deduce thais continuous.

2. Proceed as in 1. to see that our formulae indeed define a contigiacson onQ”. It is
trivially checked that we have definedjakC-bimodule. O

Proof of[6.1.2p.First we check that the fibres pf : Q" — G(©) are the orbits of théC-action:

Let [(w1,w))], [(we,w))] be elements of)” such thatp(wi) = p(w2). Sincep is a principal
fibration with structure groupoi@, we can find some@ € H such that-(n) = o(w;) andws = wyn.
Now [(w2, w)] = [(win, wh)] = [(w1,7ws)]. Becaus'(nws) = r(n) = o(w1) = p'(wy) andy’is a
principal fibration with structure groupoik we can find some € K such thatr(x) = ¢’(w)}) and
nwhk = wi. Now this means

[(wa, wh)]i = [(wr, nw)lk = [(w1, nwpk)] = [(wr,w))].

So [(w1,w))] and[(we,w})] are in the saméC-orbit. SinceQ” is aG-K-bimodule thelC-orbits are
thus exactly the fibres of”.

To show that?” is a free and propef-space we define E-values inner product, )" on Q”,
using theH-valued inner product:, -) on 2 and theK-valued inner product:, -)’ on Q”. Note that
we have just shown th&"” x o/ Q" is equal ta” x ,» Q.
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We define
<[(w17wi)]7 [(vawé)DH = <w17 <w17 w2> wé>/

forall [(wy,w))], [(w2,w))] € Q% ,»Q". By standard arguments this is a well-defined and continuous
map which clearly satisfies the axioms of an inner product.

Note thatp” is open becauseandy’ are open.

SoQ)" is a graph frong to K. O

Proof of Propositioti 6.1.37The strict identity morphism are mapped to the (generalised) identity
morphisms as we have seen above. Nowflet; — H and f’': H — K be strict morphisms. The
productGraph(f) x4 Graph(f’) is given by

Q"::(g@>wayH)>q{(H@>me>K).
Define a map\ from Q" to Morph (' o f) = G(©) x - K by setting

A([((g:m), (hys))]) = (g, f'(n)K)

forallg € G, neH, heHO, ke Ksuchthatf(g) = r(n), s(n) = handf'(h) = r(x). That
this map is well-defined can be shown as followsy'IE H such thats(n) = s(n') = h then

(9. ) k) = (g.f (m™") f'()k)

so the right-hand side is “invariant under the actiorH3fwhich we factor out on the left-hand side.
This also shows that is continuous. By standard arguments the mapspects the actions gfand
KC. \is (continuously) inverted by the map which selids<) to [(g, f(g)), (f(g9), k)] O

Proof of Propositioti 6.1.30Consider the following diagram:

Qx,0 - QOxH
<'7'>

q 2

Ol xgQ--2--->H

Herey denotes the map which sen@s, n) to (w, wn). Since the action off on(2 is free and proper,
we can deduce that this map is a proper and continuous bijectiortiregonto 2 x q 3 2. Sincep
is a principal fibration, the latter space is equaito, 2. By Lemmd D.1.L, which we have already
applied in almost the same situatignis a homeomorphism.

We write 7 for the projection onto the second component. By Lemima]3.4.5 and becdsse
open and surjectiver, is open and surjective.

By definition, theH-valued inner product on the principa-spaceS is m o ~!. This map
happens to be continuous, open and surjective. Thegisihe quotient map (remember ti§at! x g
Q is constructed by factoring out thg action on{2 x, ; since this action is propef2—! xg Q is
locally compact Hausdorff). By definitior,is open and surjective.

We claim thaty factors to a map from Q! x¢ Q to ‘H which is the desired isomorphism of
groupoids and ot-H-bimodules. In particulat; is a homeomorphism.
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To check that is well-defined and injective it suffices to check that element& efH which
have the same image undgp 1 are precisely those which have the same image ungleiSo let
(wl, 771), (wg, 772) € QxH. NOWﬂ'Q(wl, ?’]1) = 71'2((4}2, 1’]2) is equivalent toy = no.

If this is the case, thep(wi,m1) = (w1, win1) andp(wa, n2) = (w2, wan1). Now o is a principal
fibration ands (wan1) = s(n1) = o(win1). So there is & € G such thatywn; = wane. This implies
Ywi = wp andy(wi,wim) = (we, wanz). Henceg(u(wi, m)) = q(p(ws2, n2)).

On the other hand, assume th@t (w1, 71)) = q(u(we,n2)). This implies that there isa € G
such thaty(w1,w1n1) = (w2, wane). This Meansyw; = we andywin; = wane. From this we have
wom = wone. Now the action of{ is free, sap; = n5,.

It follows that v is well-defined and injective. Sinagis open and surjective; is continuous.
Sincer, andu~! are open and surjective apds continuous and surjective,is open and surjective.
Sov is a homeomorphism.

To have a better feeling farnote that it maps a clags; ', ws] with p(w;) = p(w2) to the unique
n € H such thatv, = win (which happens to bév, ws)).

To see that it even is &-H-bimodule isomorphism letw, ws) € Q x, Q andn;, 72 € H such

thato (we) = 7(n2) ando(wy) = s(n1). Now, withnmw; ! = (wml_l)_l,

v ([(wml_l)*l, w2772]) = <w1n1_1, w2n2> = (w1, w2) M2 = mv ([(Wl)fl, wQ]) 2.

Now we prove that is also a homomorphism of groupoids: l(et, w), (W}, wh) € Q x,Q such
thato (ws) = o(w}). Then
v ([, wal (Wi, wh]) = (wrh, glwnwl) whl) =
Hereg(ws,w!) denotes the unique elemente G such thatve = yw). On the other hand, is the
unique element of{ such thatv;n = yw}. But

o ([, wa]) v ([, @) = wa ([0, whl) =t ([0, wt]) = v

By the uniqueness of we get

v ([orh, w] [ w]) = v (o, wal) v ([, wh])
Sov is a homomorphism of groupoids. O

Proof of Proposition 6.1.32Let 2 be a graph of a generalised isomorphism frgrto H and letQ/
be a graph of the inverse isomorphism fréfrto G. Let 2 have the anchor mapsands andQ?’ have
the anchor mapg’ ando’.

We first show that the left actions db and 2’ are free and define an (algebraic) isomorphism
between)’ andQ2~!. In a second step we show that this isomorphism also is a homeomorphism,
implying that the left actions of2 and )’ are proper (because the right actions{@nand () are
proper).

Because the morphisni§)] and [QY'] are inverses of each other we can find an isomorphism
wg: ¢ X1 Qg — gGg of G-G-bimodules and an isomorphisgy : ' xg Qy — 9 Hy Of H-H-
bimodules. Define an “inner product”

<'7 '>g: Q X p(0) Q - g, (wvwl) = ¥g ([Waw/])

where[w, w'] denotes the equivalence class(of w’) in the quotient spac x3 Q' of Q x40
by the (diagonal) action of{. The inner product iG-linear in both components arfd-balanced
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in the sense thatwn, w')g = (w, nw')g. Similarly define aH-bilinear G-balanced inner product
()1 @ xgo) @ — H.

As a first consequence, it is obvious that the map§! — H© ando’: ' — G are surjective
becausepg andy, are surjective. Secondly, we can immediately deduce that the left actiofls on
and()’ are free: Letw € Q andy € G such thats(y) = p(w) andyw = w. Find somev’ € Q' such
thatp'(w') = o(w). Then

(w,)g = (yw,w)g = 7{w,w)g
and hencey = p(w). Similarly, the left action of{ on 2’ can be shown to be free.
The “inner product’(-, -)¢ is “faithful”:

1. fwi,we € Qandw’ € ' such that (w;) = o(w2) = p' (&) and{wy, w')g = (w2, w')g, then

w1 = wy: This follows because by definition of the inner product and by the injectivityof

we havew;,w’] = [ws,w'], so there is am € H such that(w;n, n~w’) = (w2, w’); because

) is a free leftH-space it follows thay = p’(w’) and hences; = ws.

2. Using the freeness of the right action @rone proves: Ilv € Q andw/,w) € Q' such that
0(w) = /(W) = p/(wh) and(w, wh)g = {w, Wh)g, thenw} = wh.

As a consequence, we have forall, we € Q andw’ € Q' such thav (w;) = o(w2) = p/(W):
N —1 N —1
(1, )" wr = (wa, )5 ws,
because
-1 -1 -1
<<w1, w'>g w1, w’> = (w1, w/>g (wy, W) =o' (W) = <<w2, w/>g wa, w/>.

This implies that the canonical map frogh\ © to H(©) is not only surjective, but also injective: If
wi,wa € Q with o(w;) = o(ws2), then we can find an’ € Q such thaty' (w') = o(w1) = o(wa).
Then

wy = (w2, w'>g {wi, w/>;1w1,

sow; andwsy are in the samg-orbit.
We now define a bijection frorf2’ to 2 which is a bimodule homomorphism (if we regdidas
Q~1): For allw € € define
(W) = (w, w'>;1w

wherew is an arbitrary element &2 such that (w) = p/(w’). We have just seen that this definition is
independent of the choice of If v € G andn € H such thats(n) = p/ (') andr(y) = o’ (w'), then

® (') = (w, n')g' w=(wn, ) wpy™! = W)y
(with w € © such that (w) = r(n)) and

@ () = {w, )5 w =7 o, W5 w =710
(with w € © such that (w) = p/(w')).

Note that for allw’ € €/, the elementb(w’) of Q2 is unique with the property®(w’), w')g =
o'(w"). This could also have been our definitiondaf We define an inverse homomorphigm Q —
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Y as follows: For all € Q, the element(w) is the unique element ¢t’ such thatw, ¥(w))g =
p(w). Such an element exists, because we can find sgme’ such thatr(w) = p/(w’); then

<w, w'(w,w’>§1>g = p(w).

It is unique because the inner product is faithful. We showdhit the inverse ofb: If w € €2, then

if w' € Y, then
(®(w), \I/(<I>(w’))>g =p (®(W)) = (D(), w'>g.

What is left to show is tha® and ¥ are continuous. Fo¥, this follows from the commutativity
of the diagram

Q Xo,p! Q Q Xl pf Q
Q0 v o

where the top arrow is given by the continuous njapw’) — (w/<w,w’)§1,w/) and the vertical
arrows are the projections onto the first component (which are both continuous, surjective and open).
The continuity of® is proved similarly. O

Remark D.1.3. There is an interesting subtlety about the preceding proof (or rather about the Propo-
sition that is proved): We have constructed an isomorphisiom Q! to €/, and there is a canonical
isomorphism fronf2 x» Q! to G. In the proof, we have chosen an isomorphigmfrom € x4

to G. The resulting diagram

01! XgQ Q/XgQ
H

is not commutativén general (whereas the correspondinggatoes commute). The reason is that we
have used only the inner product coming from the isomorphignin the construction oft. There
still is some freedom to chose the isomorphigm: One could change it by some isomorphism of
the H-H-bimodule’H without changing anything in the proof. The above diagram can be shown to
commute up to such an isomorphism. Such isomorphisms can exists: for exaniples, & group,
then multiplication by any element in the center will give an isomorphism.

The same isomorphism also enters the following equality in the sense that it is only true if one
correctspy, (and hence thé{-valued inner product) by the isomorphism:

<w1, w'>g w9 = W1 <w'7 w2>H

for all wy,ws € N andw’ € ' such thav (w;) = p/ (') ando’ (W) = p(wa).
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D.2 Some proofs of results of Section 6.5

Proof of[6.5.1. We show thal” satisfies the axioms (C1)-(C4):

(C1) First,A is a linear subspace a&f(Y, E). The mapj — pd is linear, so its image is a linear
subspace.

(C2) To show (C2) we use the existence of a faithful continuous field of measur€sawer X;
therefore we need the following lemma, which rephrases Lemma 3.2 of [LG99] in our cEntext.

Lemma D.2.1. Letr be a continuous field of measuresYBrover X with propeﬂ support. For
al¢ eT'(Y,E)andally € Y, define

9w = [ g (EE) diygy

2€Yp(y)

Thenv x £ is an element oA.

To prove it we proceed as in [LGB9]:

Proof. Let{ be anelementdf(Y, F). DefineR: YxxY — Y, (y,z) —yandS: YxxY —
Y, (y,2z) — z. Definep*r to be a continuous field of measures Bnx x Y overY with

coefficient mapR which is given, for eacly € Y, by (p*v), = yonR™({y}) =
This field is the pullback of in the diagram

(Vo0) =5 (Y xx Yip'v)
pl lR
X Y

p

If L is a compact subset &f, thenp(L) = K is compact. Now

U supp(pv) = | (supp vy x {1}) € (U supp Vk:) x L,

leL leL keK

which is compact since the supportwofs proper. So the support gfv is proper, too.

Forall(y,2) € Y xx Y, we haven, .y (£(2)) = (a0 (§ 0 5)) (y, 2), SO(y, 2) > a2 (§(2))
belongs tol’ (Y xx Y, R*E). Now Lemmd B.3}4 says that« £ = v (£) is an elementr of
I (Y, F) becausg*v has proper support. By constructions £ is in A. O

Let us continue with the proof of (C2). By assumption, we can find a faithful continuous/field
of measures ol over X. Lety € Y. We show that for alt € £/, ande > O thereis & € A
such that|¢(y) — e]| < e. Thisimplies (C2). Solet € E, ande > 0. Find an arbitrary section
¢ € T(Y, E) such that’(y) = e. The function(: z — «ay, ,)&'(z) isinC (Y, E,). Find an
open neighbourhool of y in Y such that|((z) — ((y)|| < e forall z € V N Y. Now we

!Le Gall uses this lemma in conjunction with a strong result of E. Blanchard (see Proposition 3.13 of [Bla96]). However,
this can only be done in case tiiat(Y") is separable. We wish to use the more general condition that we can find a faithful
field of measures of", which is more natural in our setting.

2We only need compact support, but the proper case comes for free.
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can find a local cut-off function in the sense of Lemima B.2.6, i.e., a fungtienC.(Y") such
thatx > 0, supp x C V, and such that(x)(p(y)) = [.ey,  X(2) ditpy)(2) = 1.

Definev := xu. Thenv has compact support. By what we have just proved in Leima |D.2.1,
¢ := v« ¢ is contained imA. Now

€= ) 0)= [ o€ = [ M) i
2€Xp(y) #

€¥p(y)

so that

1€(y) —ell =

/ X(z)a(y,z) (gl(z)) d:up(y) _/ X(z)ed:up(y)
2€Yp(y)

2€¥p(y)

IN

/ X(2) lagy (€' (2)) = €] gy
ZEYp(y)ﬂSUPPX

/ X(2)e Ay = €.
ZGYp(y)ﬂsupr

IN

(C3) Leto € A,z € X ande > 0. Find somey € Y with p(y) = z. Sinced is a section we can find

(C4)

an open neighbourhodd of y in Y such that|d(v)|| < ||dy|| + ¢ for allv € V. Because is
open, the sel := p(V) is an open neighbourhood ofin X. Letu € U. Find av € V such
thatp(v) = u. Then

o)l = o)l < o)l + & = [[pd(x)]| + &

Let( be a selection of £ such that for alk € X and alle > 0 there is a neighbourhodd of
xz and ad € A such that|pd(u) — ((u)|| < e foralluw € U. We show that there is@ € A
such thaip,é’ = (.

Forally € Y, defined’(y) := ((p(y))y € E,. Thend' is a selection of. By definition ofp, E,
the selection’ satisfies . ,)0'(y) = ¢'(2) for all (z,) € Y xx Y. We have to show that
isinT'(Y, E). To this end, lety € Y ande > 0. Find a neighbourhootl’ of p(y) in X and a

§ € Asuch thatl|pié(u) — ((u)|| < eforallu € U. LetV := p~1(U), being a neighbourhood
ofyinY. Then

[6"(v) = 6()|| = [IK(p(v))s = prd(p(V))o]l = I(p(v)) = PE(p(V)]| <

forallv € V. Sod’ is a section, and, by definitiop,é’ = (. O

Proof of Propositior 6.5]3We obviously have a functor which is isometric and linear on the mor-
phism sets. Lef andF' beY x x Y-Banach spaces with actianand 3, respectively. We have to
comparep, (E @y F) and(pE) ®x (pF). The fibre atz € X of the first X-Banach space consist
of the families(t, ), ., witht, € E, @ Iy, and(a ® ).ty = t; forall z,y € Y,. The fibre at
of the second space (p F), ® (p1F'),. We construct an isometric isomorphism from the second to
the first space:

Foralle = (ey)yey, € (mE), andf = (fy)yev, € (pF),, defines (e, f) := (ey @ fy) ey, -
Thenpy (e, f) € p (E ®y F), becauséu,(e, f)), € E, ® F, and

(a & ﬁ)(z,y) (ey ® fy) = (a(z,y)ey) ® (ﬁ(z,y)fy) =e, ®f = s (ea f)z
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forall (z,y) € Y xx Y. Moreover,u, is a contractive bilinear map. So it gives rise to a contractive
linear map

fio: (PE), ® (0F), — p(E®y F),.
We show that, this way, we get a contractive continuous field of linear mapsgrbn® x piF' to

p (E ®y F). The sections of the form — (p1d)(z) @ (pd’)(z) with § € Ag andd’ € Ap form a
total subset i (X, pE ®@x pF). Now

i (p0)(@) @ (00)(@)) = 1o (60, » (W) ey, ) = (O6W) © T W)) oy,

forall z € X. Sincey — 6(y) ® §'(y) is in Agg, r, this shows that is continuous.
Now we show thaf: is a continuous field of isometric isomorphisms. ke X. Fixay € Y;.
Then

(pE)s @ (pF)s = Ey® Fy = (p (E @y F)),,

where the first isomorphism is given by componentwise evaluatieread the second isomorphism
(as a map from the right to the left) is given by (global) evaluation..afThe composition of the
isomorphisms igi,.

A straightforward calculation shows thatis natural and respects the associativity of the tensor
products. O

Proof of Propositior 6.514. 1. LetE be aY x x Y-Banach space.

e I is an isomorphism: Fibrewise, it is easy to see th&f is an isometric isomorphism.
The set of all(p;d) o p, whered € Ag, is total inp*p E. Leté be an element of, then

IE () (p(w)) = I (5D e, ) = 0(w).

In other words,I” identifies(pi§) o p andd. In particular,I” is a continuous field. It
clearly isY x x Y-equivariant.

e [+ I¥isnatural: Let F andF beY x yY-Banach spaces and [Etbe a bounded equiv-
ariant isomorphism fronk' to F. Lety € Y and(e:).ev,,, € (P"'nE), = (DE),q)-
Then

I (7 pT)ye) = IE (T )y (0) = 1F ((Teea).y,,, ) = Toew = Ty (I2(e))

SoIf o (p*pT) =T o IF.
e E +— I¥ is multiplicative: Let E andF beY xx Y-Banach spaces. We have to check
that the following diagram commutes:

(p*pE) @y (p*pF) —— p* (mE ®x pF) p'p (E®y F)
IE®IF IE®F
E®y F = E®y F

Lety € V and (ez)zEYp(y) € (p*ng)y = (p!E)p(y) and (fz)zer(y) € (p*p!F)y
(P F)p()- Themap(I” ® I7) = IF 1 sendsthiste,® f, € (E®y F), = E,®F,.
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On the other hangy*(/1) sends ittqe, ® fz)zey( , € (mE ®x piF),,- Thisis, inturn,
prly
mapped by v to e, ® f,, so we are done.

2. Let E' be aX-Banach space.

e JE is an isomorphism: Fibrewise, this is clear. We just have to check thét is a
continuous field. To this end, we determifg- . It is the set of section§ € I (Y, p* E)
such that(y) = Idg,, 6(y) = a(.4)0(y) = 6(2). Letd be such a section. We have to
check that/F op)§ € T (X, E). But J¥pd(x) = 6(y) forallz € X andy € Y such that
py) = z. S06 = (J¥ o p6) o p. By Lemmg D.2. the fact thadt € T'(Y, p*E) implies
JE opé € T(X, E). SoJ¥ is continuous,

e £ +— JFisnatural: Let E andF be X-Banach spaces and [Et £ — F be a bounded
continuous field of linear maps. Lete X and(e), ., be an element ofpip™E),.. Then

I (0w T), (0),er, ) =I5 (0" T)y(@),ey, )
= I ((Ta(@)yey, ) = Tole) = Tu (JE (), ) -

SoJ o (pp*T) =T o JF,
e I — JF is multiplicative: Let E andF be X-Banach spaces. We have to check that the
following diagram commutes:

(pp*E) @x (pp*F) p (p*E @y p*F) pp* (E®x F)
JE®]F JE®F
E@x F = E®x F

Letz € X and(e),cy, € (pp*E), and(f),cy, € (pp*F),. Then

(JE ® JF)x (<e)erx ® (f)erx) = Jf (e)erm ® Jf (f)yGYx
= @ =TI (08 ey, = 7 (i (Oyer, © (Fyey,) )
This means that the diagram is indeed commutative. O

Lemma D.2.2. Let FE be a continuous field of Banach spaces a¥eand let¢ be a selection oy
(continuous or not). ThegisinT'(X, E) ifand only if¢ o pisinT'(Y, p*E).

Proof. If £ is a section, theg o pis ainl'(Y, p*E) by the definition of the sections pf F.

Assume now that o p is a section op*E. Letx € X ande > 0. Find ay € Y such that
p(y) = z. Find a neighbourhooll of y in Y and a sectioq of £ such that|{(p(v)) — ((p(v))|| < e
forallv € V. LetU := p(V). ThenU is an open neighbourhood ofin X. Letu € U. Then we can
find av € V such thap(v) = u. Now

1€(u) = C(w)]] = [|€(p(v)) = C(p(V))]| <.

Hences is a section. O
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Proof of Proposition 6.6]7Define Q := Graph(f) = G x,, H. Let (E,T) be a cycle in
E%an(A, B). We have a canonical concurrent homomorphisrfrom f*E to Q*E from Proposi-

tion . We have to check that this is indeed an isomorphisKigf"-cycles. As® is already

an isometric isomorphism and is surely compatible with the gradings, it is only left to check that it
intertwines the operators. But here, we have to be a little bit more precise: The oper&tbEas

not uniquely defined, and it will suffice to find one “version@fT” which is compatible withd.
Becauseb is an isomorphism, we can write down exactly what this mean8fdr, the result is, that

the version we are looking for has to satisfy

. o -1
(Q T>)g (e;”)f(g)ﬂ(n) - (an>(g)77 69>”7> f(g)=r(n)

forall g € G and (egn) f(g)=rtn) € (X*E7), (and similarly on the left-hand side). Define

an operatotl’ € Ly-p(0*E) by setting; (¢f, ) = 0 Tf e, for all (g,m) € @ and

efgm € (0"E” ) (g = E;n) (and analogously on the left-hand side). Using the notati 4.24,

this operator can be written as;((o*))~1(+*T)), wherer, denotes the canonical map from
Q = GO x,,0 H to the second componeft. If we can show thaf f3E, T) is homotopic in
El‘jf?g)(fggA, foB) o (fSF, f5T), then we are done, becaubentertwinesf*T andp T (note that
T is Q x, Q-equivariant).

This homotopy can be constructed using Lenima 3}5.11:aLet T'(2, fA4). We show that
a(foT —T) and(f4T — T)a are locally compact. For this, it suffices to consider the caseitisanf

the forma o mp with a € I'(H, s*A). Note thatf5T = o*T = 75s*T. Now

(@oms) (faT ~T) = (aom) <7r;s*T o <<aL(E)> o (r*T)>>
(o) )
= 7 <<aL(E)>_1 (aA(a) (aL(E)(s*T) - r*T))) .

Here o” denotes thej-action onA. The operator” (a)(a"®) (s*T) — +*T) is locally compact
becauseg F, T) is a KKP* -cycle. So(a(#))~1 of this operator is locally compact by Proposi-
tion[3.4.2%. By Propositign 3.3.p2, the pullbackhyof the resulting operator is also locally compact.
The same arguments show thi# 7" — T)a is locally compact. O



Appendix E

Some Remarks

E.1 A note concerningCy(X)-Banach algebras

There is an alternative definition 6f (X )-Banach algebras using structure homomorphisms which
might be more familiar in the context of‘@lgebras. In this appendix we would like to show how
this definition is related to the definition in Sectfon]2.2 (including a subtlety).

Definition E.1.1 (Structure homomorphism). Let B be aCy(X)-Banach algebra. Define a right
action ofCy(X') on B by settingby := b forall b € B andy € Cy(X). Define

0p: Co(X) — M(B), ¢ — (b bp, b— pb).

This map is a well-defined homomorphism of Banach algebras, callestringture homomorphism
of theCy (X )-Banach algebr#.

Definition E.1.2 (Non-degenerate homomorphism)Let B andC' be Banach algebras and B —
C a homomorphism. Thep is callednon-degeneraté ¢(B)C andCy(B) are dense i€

The composition of non-degenerate homomorphisms is non-degenerate. The identity map on
a Banach algebra is non-degenerate if and only the Banach algebra is non-degenerate. The non-
degenerate Banach algebras together with the non-degenerate homomorphisms form a category.

Proposition E.1.3. Let B be a Banach algebra and 16§z be a non-degenerate homomorphism from
Co(X) to M(B) such that

Vbe BVyp e Co(X) : HB(QO) b = beB(tp).
ThenB is aCy(X)-Banach algebra.

The condition given in the preceding proposition is in general not equivalent to the condition that
the image of is contained in the centre &i(B). But if B is non-degenerate or has no annihilators,
then they are equivalent by the following lemma.

Lemma E.1.4. Let B be a non-degenerate Banach algebra anditet M(B). Then the following
statements are equivalent:

1. m € ZM(B);
2.Vbe B: mb=bm.

305
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Proof. 1.= 2.: Letb,c € B. Then

m(be) = mpd)e) = (mpp(h))e = (bp(b)ym)e = g (b)(me)
= b(mp(c)) = b(pp(c)m) = (be)m.

By linearity and continuity of the mapgs+— mb andb — bm and by non-degeneracy & we can
conclude thatnb = bm for all b € B.
2= 1.: Letm’ € M(B). In order to shownm’' = m’m, letb € B. Then

(mm’)b = m(m'b) Z (m’b)m@]m'(bm) Z m/(mb) = (m'm)b.

Also

;2

2 (mbym' " m(bm’) 2 (

b(mm') = (bm)m bm/Ym = b(m'm).

Somm' = m'm. O

The lemma also holds for Banach algebras without annihilators (instead of being non-degenerate).
However, it does not hold in general, as the following example shows:

Example E.1.5. Let £ be a Banach space. Lét be E equipped with the trivial multiplication.
ThenM(B) isL(E) x L(E). The centre oM(B) isZL(E) x ZL(E). The set of elements &fi(B)
satisfying 2. is the diagonal &f( E') x L(E). If E has dimensiom € N then the centre has dimension
2n and the other set has dimensioh Obviously, already if» = 1, the two sets are not contained in
one another.

E.2 A note concerning the local boundedness of fields of linear maps

A weaker form of the following result was mentioned in Secfion 3.1.

Proposition E.2.1. Let X be a topological space. Lét and F' be u.s.c. fields of Banach spaces over
X and letT" be a family of linear maps fron' to F' satisfyingT o I'( X, F) C I'(X, F). If X is
completely regular and first countable, th&nis locally bounded.

Note that every metrisable space is completely regular and first countable, but the converse is false
in general (a counterexample is the right half-open interval topologit;asee Counterexamples in
Topology [SS95], 51.).

Proof of Propositiori E.Z2]1(compare Proposition 1.1.9 6f [Laf04]) Suppose thias completely reg-
ular and first countable and thAtis a field of morphisms. We show thatifis not locally bounded,
then it cannot be a continuous. Suppose that X is such thatup,c;; ||Tu| = oo for every
neighbourhood/ of x. Then, using the countable basis of neighbourhoods, efe can find a se-
quence(z, )nen converging tar such thatlim,, . || 7%, || = co. Without loss of generality we can
assume that the members of this sequence are pairwise distinct and distinet fidns means that
we can find a sequence,, ),cy such that,, € E, foralln € N andlim,, . ||enHEz = 0and
limy, oo |y, (en)||r, = oo. By taking a subsequence 0f;,),en (@nd of (e,)nen) we can even
assume., .y ||enHE; < 0.

Letn € N. Then the subsét,, := {z,, : m € N\ {n}} U {z} is compact inX. SinceX is
Hausdorff, the set, is closed. Since&X is completely regular, we can find a funcﬁmn €C(X,C)

'Here, it would probably be enough th&tis regular instead of completely regular.
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such thatd < ¢ < 1, p(z,) = 1 andp(v) = 0 for all v € V,,. And we can find a continuous
section,, € T'y(X, E) such that|é, ||, < 2(lenllp, andé,(z,) = en. Now ¢, is an element of
[y (X, E) such that| .6l < 2lenllp, (©n&n)(Tn) = €n, and(pnén)(v) = 0 forall v € V,.
Since)_, e llenll,, < oowecan deduce thét,, &, )nen is absolutely summable in the Banach
spacel',(X, E), let{ := > .y ené, be the sum of this family. Then for eaeh < N, we have
&(zn) = (pnén)(zn) = en. SO what aboufl” o £? For everyn € N, we haveTy,, ({(z,)) =
T'(xy)(en), SOlimy oo || T2, (§(2n))||p, = oo by assumption. S@ o ¢ is not locally bounded at,
hence it is not upper semi-continuoustahencel o ¢ is not contained i (X, F'). It follows thatT
is not continuous. O]

E.3 Alemma concerning quotient maps between Banach spaces

Lemma E.3.1. Let X andY be Banach spaces. Tf € L(X,Y) is a linear operator with nornx 1
such that

(E.1) VyeYVe>03zeX: [ly—T(z)| <e A |zl < lyll,
thenT is surjective and a quotient map, i.e.,
VyeYVe>03xeX: T(x)=y A |z|| < |y +e.

Proof. Lety € Y ande > 0. Definey, := y. Find anzy € X by property [(E.]L) such that
lyo — T(x0)]] < e/2 and||zo|| < |jyo||. For everyn e Ny, define recursively, .1 := y, — T'(zy)
and find an element,, 1 € X such||y, 1 — T(zns1)|| < 27" % and||z, 1] < ||[yns1]. By this
choice it follows that

n
Yni1 =0 — > T(x)
i=0
for everyn € Ny. Note that

41l < Nynsll = llyn — T(zn)[ < 27" '€

for everyn € Ny so we can deduce that;°  x; converges to some € X. But then

T(x)=> T(x) =y =y
1=0

and

o o0 oo o0 ‘
ol = | > = D laall < 3 Nl < llwoll + Y- 27" = ol + <. =
=0 =0 =0 =1

We can improve the above lemma byan

Corollary E.3.2. Let X andY be Banach spaces. Tf € L(X,Y) is a linear operator with norm
< 1 such that

(E.2) VyeYVe>03re X: [ly-T ()] <e A |lz|| <[yl +e¢,
thenT is surjective and a quotient map, i.e.,

VyeYVe>0dzeX: T(x)=y A |z| <yl +e.
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Proof. We show thaf (E]1) follows froni (E.2): Lete Y ands > 0. By (E.3) we can find an’ € X

such thatly — T(2")|| < /2 and||'|| < [ly|| + £/2. Definex := LI Then
[yl [yl
te/2)—2 =
Izl = ||2'|| 775 Tl +e2 = < (lyll +¢/ )”3/H+5/2 [yl
and
ly=T@]I = lly=T@)|+[|TE) - T@)]| < /24 o -2
_ 5/2""“ H Iyl — (HyH—i—E/Q) <ef24e/2=¢.

1yl +&/2

O]

Corollary E.3.3. If (E.7) is true for some dense subspageof Y instead ofY, then it is true for all
of Y and hencd is a metric surjection.

Proof. Lety € Y ande > 0. Find ayy € Yj such that|jy — yo| < /2. Use [E.R) fory, to
find anz € X such that|yyo — T'(z)|| < /2 and||z| < ||yo|| + /2. Then|ly — T'(z)|| < e and
]l < flyll +e. O

E.4 Some facts concerning(X) and C.(X)

Let X be a locally compact Hausdorff space.

E.4.1 C.(X) and subspaces
The following lemma is used in the proof of Lemina 5]1.3, see 282.

LemmaE.4.1. LetV be aclosed subspace &f. Then the restriction ma@': C.(X) — C.(V') which
sendsp to p|y is continuous and surjective.

Proof. Continuity is obvious. To show surjectivity let € C.(V). There are now two ways to
proceed:

One can consider the Alexandroff compactificatiin. The functiony is continuous onX ™
and vanishes on some neighbourhoodxafSinceX ™ is compact, it is normal. We can hence apply
Tietze's extension theorem to construct a continuous functiolX onwhich agrees with) on the
closed se¥” U {oo}. Cut this function down by some functiond(X') which is 1 on the support of
1) to obtain an extension af.

Alternatively, find a compact neighbourhodd of the support of) in X and a compact neigh-
bourhoodL of this setK. Sincel is compact and therefore normal, we can find an extengioh
Y|nv to L of the same norm. Find a functiop € C.(X) which is1 on K and vanishes outside
the interior of L. Then the product of andy is a continuous extension af to L which can be
continuously extended by zero outside (the interior/af) O

Remark E.4.2. Note that in the proof of the preceding lemma we have shown that a continuous
functiony on V' with compact support can be extendedi@reserving its sup-norm.
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E.4.2 A short exact sequence

If U C X is open then we embe&@)(U) into Co(X) by continuation with zero.

Lemma E.4.3. LetUy, U, be open subsets &f. Define
D Co(Ul N Uz) — C()(Ul) X CO(U2)7 fr (f7 _f)

and
. Co(Ul) X C[)(UQ) — Co(Ul U U2)7 (flan) = fl + f2'

Then the following sequence is an exact sequence of Banach spaces iguithetric andl a quotient
map)

0 — Co(U; NU7) 2 Co(Uy) x Co(Us) AN Co(U1 UU3) — 0.

Proof. The map® is linear and isometric. Its image is clearly contained in the kernell.ofLet
(f1, f2) beinthe kernel of?, i.e., f1 + fo = 0. On X \ U; the functionsf; and f; + f2 vanish, sof,
has to vanish there as well. Analogousfy,has to vanish oX \ U,. So both functionsf; and f,
are supported iV; N Us. Because we havf = — fs, it follows that(f1, f2) = ®(f1).

The only assertion that is left to show and that is not completely trivial is the factithiat
surjective and a quotient map. We use Lenjma E.3.1: flet Co(U; U Uz) ande > 0. Then
we can find a compact sét C U; U U, such that|f| is less thare/2 outside K. The setd/;
and U, form an open cover of{, so we can find functiong; € Cy(U;) such thatd < ¢; < 1
and o (k)p2(k) = 1forall k € K. Definef; := p1f and fo := pof. Thenf; € Cy(U;) and
(f1+ F2)(K) = (o1(k) + @a(k) f(k) = f(k) forall k € K. If z € X \ K, then|(fi + f2)(z)| =
lo1(z) f(z) + a(z) f(x)] < 2|f(z)] < e. Sol/fi+ fa— f|| < e. On the other hand, we have
I fill < |||l and hencé{(f1, f2)| < ||f||. So¥ is surjective and a quotient map by Lemma B.3.0

E.4.3 Regularity conditions onX and Cy(X)

Proposition E.4.4. The following are equivalent for the locally compact Hausdorff sp&ce
1. X iso-compact.
2. Cyp(X) is o-unital.

Proof. 1. = 2.: Let (K,),en be a sequence of compact subsetsXosuch thatk,, C K, ; and
Unen Un = X. Define inductively an increasing sequerig ) cn in C.(X) such thad < y, <1
andy = 1 on K, for all n € N. Then(x,)nen iS @an approximate unit fafy (X).

2.= 1. Let(xn)nen be an approximate unit fafy(X). Let K, := {x € X : x,(x) > 1/2}
for all n € N. Then(K,),en is an increasing sequence of compact subsef§.ofetz € X. Find
a function f in Co(X) such thatf(x) = 1. Find ann € N such that|x,f — f|| < 1/2. Then
Ixn(x) — 1] = |xn(x) f(z) — f(z)| < 1/2, s0xn(z) > 1/2. In particular,x € K,,. O

Proposition E.4.5. The following are equivalent:
1. X is first countable.
2. X is metrisable and-compact.

3. The Alexandroff compactification™ of X is metrisable.
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4. X is metrisable and separable.
5. Cp(X) is separable.

Proof. The equivalence 1= 2. < 3. is the corollary of Proposition in 1X.2.10 of [Bou89]. K

is metrisable, therX is first countable if and only if it is separable (by Proposition 12 of 1X.2.9 of
the same book). This shows 4: 1., and, via the detour 2> 1., it shows 2= 4. Thus we have
established the equivalence of the first four conditions.

1. = 5.: Let X be first countable. Chose a countable b@sg),cn oOf its topology. LetM be
the set of all pairgm,n) € N x N such that the closure df,, is compact and lies i/,,. For
all (m,n) € M, find a functionx,, , € C.(X) suchthat) < y <1, x =1onU, andy = 0
outsideU,,. We claim that the countable sét := {x,,, : (m,n) € M} separates the points of
X: If x,y € X with z # y, then we can find an elemedt, in the base of the topology such that
x € U, andy ¢ U,. Furthermore, we can find a compact neighbourhoadwhich lies inU,,. This
compact neighbourhood must contain an eleniéptof the base containing. Now (m,n) € M
andx,, »(z) = 1, whereasy,, »(y) = 0. Now theQ + Qi-linear algebra-span @ is a countable
x-invariant subalgebra afy(X) separating the points of, hence it is dense i€y (X).

5.= 1.-4.: Conversely, i€y(X) is separable, the unit ball 65(.X)* is metrisable. This unit ball
contains a homeomorphic image &f as a subspace, s¥ is metrisable, too. Moreove€y(X) is
o-unital, soX is o-compact by the preceding proposition. Hence we have shown 2.

Alternatively, let(f,)n,en be a dense sequence of the unit balCefX ). For alln € N, define
Up = |fn] 7" (]1/2, oc[). We claim that{U,, : n € N} is a basis of the topology of : Letz € X
and letU be an open neighbourhoodef Find a functiony € C.(X) suchthat) < y <1, x(z) =1
andx = 0 outsideU. Find somen € N such that|f,, — x|| < 1/2. Then|f,.(y)| < 1/2 for all
y € X\ U,soU, CU.Ontheother handg(x) = 1, so|f,(x)| > |x(x)| — |x(z) — fu(z)| > 1/2,
hencer € U,. O

E.5 Restriction of u.s.c. fields onto closed subspaces

Let X be a topological space and Etbe a closed subspace. Ligtbe a u.s.c. field of Banach spaces
over X. If .y denotes the inclusion map fromto X, then the restrictiod|, of £ ontoV is defined

to be the pullbackj, (£). By definition, the sections df |y, are the local closure of the restrictions of
the sections ofZ. In Appendiq E.b we discuss under which circumstances all sectiofgofrise
as restrictions, i.e., whether one can extend sectiogpfto sections oft.

Lemma E.5.1. Let X be locally compact Hausdorff. Then for &lle T'. (V, E|y) and alle > 0,
there is amy € T'.(X, F) such that = n|y and||n| < ||€]] + &.

Proof. Itis not hard to prove this lemma directly, but we prefer to reduce it to Propogition E.5.3 below.
Let¢ € T'.(V, E|y) ande > 0. Let K be a compact neighbourhoodofpp ¢ in X (!). Find a

functiony € C.(X) suchthad < x <1, x|suppe = 1 andy = 0 outside the interior of’. SinceK is

compact, it is paracompact. The sectidr v is bounded so we can find a sectigne T',(K, E|x)

extendingé| x~y and such thalin/|| < ||€]| + e. Nown := xn' can be extended by zero # and

Inll < 7]l < €]l + . Sincexl|suppe = 1 we haven(v) = 7/(v) = £(v) forallv € V N K and

nv) =0=¢(w)forallv e V\ K. O

Proposition E.5.2. Let X be locally compact Hausdorff. Then the mgp- ¢|y fromT'y (X, E) to
Iy (V, Elyv) is a metric surjection.
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Proof. Let ¢ € Th(V, E|y) ande > 0. Find a¢’ € T'.(V, E|y) such that|{ — ¢'|| < e/2. Using
Lemma E.5.1L, find a sectiop € T'.(X, E) such thaty|y = & and||n|| < ||| +e/2 < ||€] +e.
Then||n|y — &|| < /2. So by Corollary E.3]2 the restriction map is a metric surjection. O

Proposition E.5.3. Let X be paracompact. Then the map- |y fromT, (X, E) to Ty, (V, E|y) is
a metric surjection. Moreover, every sectioniyfi, can be extended to a section/of

Proof. Note thatX is uniformisable and hendg,(X, E) is total for E and the restriction td” of
sections inl', (X, E) is total for E|y. Let¢ € I'(V,E|y) ande > 0. For allv € V, find a
neighbourhood/, of v in X and an elemeny, € I'y(X, E) such that|{(u) — n,(u)|| < e for all
u € U, NV and such than, ||, < [|{(v)|| + . We can find a locally finite refinemefV;);c; of
{Uy : v e V}U{X \V}. Foreveryi € I such thal¥; intersectd/, there must be a € V such that
W; C U,; pick such a € V and call itv;. Define

C' L U WZﬂV?é@

lo, winv =0

foralli € I. Let (x;)icsr be a continuous partition of unity subordinatg1®;);c;. Define

0(x) ==Y xi(w)¢i(x)
i€l
forall x € X. Itis not hard to see thdtis a section of~.
Letv € VandJ := {i € I : v € W;}. Thenf(v) = > .. ;x;(v)¢(v). If j € J, then
v € W; C U,, and hencél¢(v) — ¢;(v)|| = ||€(v) — mu, || < e. It follows that|[£(v) — O(v)|| < e.
This argument has two consequences:

1. If we start with a bounded, then all¢; are bounded by¢|| + ¢, hence als@ is bounded by
||| + €. Summarizing: For alf € T',(V, E|y) and alle > 0, there is & € T',(X, F) such that
10]] < [I€]l + e and||€ — 6]v|| < e. An application of Corollar) E.3]2 shows that the restriction
map fromI', (X, E) to T'y(V, E|y) is a metric surjection.

2. If we start with a generd], then we have constructed sothe I' (X, E) suchthat|{ — 0|y <
e. In particular,§ — 6|y is bounded and we can find, by the first part of the argument, a
0’ € Ty (X, E) such that — 0|y = ¢'|y. Sof + 6’ is an extension of to all of X. O

E.6 The pushout of B-induced Banach modules

Definition E.6.1 (Pushout, version 1l). Let B, C be Banach algebras and |IEtbe a Banach3-
module. If§: B — C'is a morphism of Banach algebras, then define the pughduf) of E under
f to be the Banacly-moduleE ®q4 C.

Definition E.6.2. Let B, C be Banach algebras, 186t B — C be a morphism of Banach algebras,
and letE, E' be BanachB-modules. IfT" € Lg(E, E'), then defind (T') € Lo (E, E') by

0.(T)(e®c):=T(e)®c

for everye € E, c € C. In other words, we defin@, (T") to beT ® Idc.
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The mapf, defines a functor from the category of BanaBhmodules to the category of Banach
C-modules, linear and contractive on the morphism sets.

Definition E.6.3. Let B, C be Banach algebras and IBf3, F~ be Banach modules. Assume that
Oy is a homomorphism fronk'z to F» with coefficient mag: B — C. Then define &'-linear and
contractive map

o: 0« (E) = F, e®cr O(e)c.

Proposition E.6.4 (The pushout of aB-induced Banach module).Let B, C be Banach algebras,
letd: B — C be a homomorphism and |ét be a B-induced Banach module. Then

More precisely, thé, and 0, are naturally isometrically equivalent Banach functors from the cate-
gory of B-induced BanaclB-modules to the category of BanaChmodules.

Proof. Define the contractive natural homomorphism

nE: E@gC — E®;C =0,(E), e®@c—e®ec.

We first show that it is injective. Let € E ®q C lie in the kernel ofngz. Then we can write
t= Y pen ek ® cxWith 3y flewll [lexll < oo

We are going to show the following: For every> 0, there isanV € Nandfi,..., fx € E,
bi,...,by € B,anddy,...,dy € C such that

N
Zek®ck_Z(fnbn®dn_fn®9(bn)dn) <e.
keN n=1 E®:.C

Lete > 0. We know that thig is zero as an element & ®jz C~*, so we can find alV € N and
fi,--, [NEEb,...,by € B,dy,...,dy € CandAy,..., AN, u1,...,un € Csuch that

N
keN n=1 ~

E®.C

Sorting out what this norm is we first note that all the terms disappear in which therk, iscawe
obtain

N

N N
Yok @cr = (fabn @ dy = fr @0(bn)dn) + Y fabn © pin = Y fr @ 0(bp)pin
n=1 n=1

keN n=1

<e/3.

E®.C

Let p: C — 5, ¢+ X — A This is aC-linear projection of norm 1 by the definition ol.
Consider the map @ p: E ®, C — E ®, C. Itis also a projection of norn& 1. Using this
projection one immediately sees that the canonical map ffogy. C into E @, C is an isometry. If
we apply this projection to the expression in the norm we get

<e/3.

E®.C

N
n=1
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It remains to show thaHZﬁval fn ®0(bn)pn|| < €/3, but this can be achieved using the above

estimate orﬂZnN:1 fubn @ pin|:

N N
(tnbn)|| = Z Jn(pinbn) @1 = ‘ Z fnbn @ pin <e/3.
E n=1 E®C n=1 E®C
Becaus@ E is B-induced it follows that
N N N
an ®p (b <[l an ®B finbn an(,“nbn) <e/3.
n=1 E®pC n=1 E®gB n=1 E

Hence we have shown injectivity.

We now show thatz is surjective and a quotient map: let E®55. Lete > 0. Find sequences
(én)nen IN E, (cn)nen in C and (A, )pen in € such thatheN llenll llen + Anll < ||t + /2 and
t =3 ,enen @ (cn + An). Foreveryn € N, find sequenceg? ) en in E and( FYken in C such
that> o [[eX || [|6E || llen + Anll < llenll len + Anll +27" e ande, = > o ek bfl (this is possible
because” is B-induced). Then

Ze ®bk (cn + An) ZZ kbk Cn+)\n):Zen®(cn+)\n):t

k,neN neN keN neN
and
k k
> [lerf[lohten+ 2] < + Al
k,neN
< > el llen + Anll +27" e = [lt] + &

neN
L]

Definition E.6.5. Let B, C' be Banach algebras and ket B — C be a morphism. LeE be aB-
induced BanactB-module. Letur: E ®p B — E be the continuou$-linear map given through
e (e ® b) = eb. Note thatu g is an isometric isomorphism. Define

05 = (Idg®0)ouy' : E— 04(E).
Note thatf; is a contractive homomorphism with coefficient mtap

Lemma E.6.6 (Universal property of (OX (E), 9;)). Let B, C' be Banach algebras and |étg, Fo

be Banach modules. L&t be a homomorphism with coefficient mafsom E' to F'. Then®, defined
as above, is the unique continuotisinear map fromd (E) to F' such that

O = Orac © (05), -
Proof. Lete € E andb € B. Then
© (05 (eb)) = © (Idp ®0) (e @ b)) = O (e ® A(b)) = O(e)A(b) = O(eb).

SinceF is non-degenerate, this proves the above equality.
We still have to show uniqueness. Ue& L¢ (6« (E), F) such tha® =T o 6. Then

FO(IdE®9):POQEO/L:@OM:@O(IdE@e).

Becausé? is hon-degenerate, we can deduce that o. O

2We use thaFl @ 5 B — E is isometric.
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E.7 Cut-off pairs for actions of groupoids

Let G be a locally compact Hausdorff groupoid carrying a Haar systeand having unit spacg’.
LetY be a locally compact Hausdorff left-space with anchor mgp A cut-off pairfor the G-action
onY (or just a cut-off pair forY” if G is understood) is a paic<, ¢”) of elements of’,(Y") which
form a cut-off paﬂ for the groupoidg x Y, i.e., such that<, ¢~ > 0, such thakuppc~ N GK is
compact for all compact subsehks C Y, such that the same property holds é6rand such that

/ () & (vly) ANW(y) =1
Gr)

forall y € Y. Such cut-off pairs exist if the quotient spagg Y is a—compacﬂ For the rest of this
section, letG \ Y even be compact (i.e., |&f be G-compact). Let = (¢<,¢”) be a cut-off forY".
Then we define

Pt GXY =R, (1,y) = ¢ (y) - c“(77'y).
This is an element .. (G x Y'). Define

(Pe(N) (W) = Pe(v,y) = (y) - (v )

for all (v,y) € Y x Y, so thatp.(y) € Cc(Y,(,) forally € G. Thenp, is an element of
L. (G,r*p.Cy), where the push-forward,Cy is defined as in Sectidn 8.3 (it could also be writ-
tenCy(Y'), regarded as g-Banach space). We hﬁﬁc = ic, (pe) and

ﬁz = Pe and pz = Pec-

We just check the first equality, the second is then a consequence of the fagt tisa homomor-
phism (see Propositign 8.3]22). We have

(Be)*(1y) = / e (739) Be (Vs 9) 7 (0,m)) ANW(y)
Gr(y)
- / e (V') e (V) e (V) T ) vy
Gr(y)

= (ye (v 'y) /g L0 Ty) e () AP = pelr,y)
pr(y

for all (v,y) € G x Y. If A(G) is an unconditional completion df. (G), thenp. defines an
idempotent inA (G, p.Cy) which we also callp.. This idempotent determines a clasgg 4 in
Ko (A (G, p«Cy)). Itis not hard to see that this class does not depend on the choice of the cut-off
pair.

Now let Y’ be another locally compact Hausdogfcompact propeg-space (with anchor map
p)andletf: Y — Y’ be a propeg-equivariant continuous map. Wriefor the homomorphism of
G-Banach algebras fromi,Cy to p.Cy induced byf.

Proposition E.7.1. We have
Ayrg.a=A <Q, f>* (Av,g,4) -

*See Definitior 7.16.

“See the discussion after Definiti1.6 for a way to construct cut-off pairs from cut-off functions; a cut-off function
exists according to [Tu04].

°Seq 8.3.19 for a definition of
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Proof. Let ¢ = (¢'<,¢”) be a cut-off pair forY’. Thenc o f := (<o f, ¢~ o f) is a cut-off
pair forY: ¢< o f andc’~ o f are obviously non-negative, continuous and of compact suppast (
proper!). For ally € Y, we have

/g o CSIETY) ¢ (F ) () = /g S OTW) (T W) () =1,
where we have used the equivarianceg @nd the fact that’ is a cut-off pair. We also have
Per © (Idg X f) = perog
as can be shown as follows: Let,y) € G x Y. Then(y, f(y)) € G x Y’ and
e (7 F() = <7 (F) (7 (W) = (7 0 ) (< o )Yy y) = Beroy (1,9) -

It follows that f o p. = Peoy and finallyAy: g 4 = A (g, f) (Avg.A)- O

*
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E.8 Monotone completions and operators given by kernels

Let X andY be locally compact Hausdorff spaces andgle” — X be a continuous map. For all
r € X, write Y, forg~'({z}) C Y. Fory € C(X) andy € C.(Y) definepy := ¢ - (xoq) € C(Y).
In this way,C.(Y") is aC(X )-module and also a non-degenergteX )-module.

Let H(Y') be a monotone completion 6£(Y") (for the definition of a monotone semi-norm see
[8.2.1). The monotone completidti(Y') is aCy(X)-Banach space. The semi-noify|,, is called
locally Cy(X')-convex (or simply locally convex) iH(Y) is locally Cy (X )-convex.

Examples E.8.1. 1. One of the simplest examples for a monotone semi-norrG.@i") is the
sup-normj|x||, = sup,cy [x(y)l; in this caseH(Y) is justCo(Y") as a (locally conveg,(X)-
Banach space).

2. Lety = (pz)zex be a continuous field of measures Brover X and letp € [1, c0[. Then we
define thep-semi-normy-||, onC.(Y") (with respect tqu) by

Il = sup [ dnx<y>>’1’

for all x € C.(Y). The completion of.(Y") for this semi-norm is denoted by’ (Y, 1) or
simply byL? (Y) if u is understood. Note thaf (V) is a locally convex’y (X )-Banach space.

E.8.1 Monotone completions and fields of Banach spaces

Let £ be a u.s.c. field of Banach spaces oXer
The following definition should be compared to Definitjon 3] 2.4 which covers the special case that
X =Y andq = Idyx.

Definition E.8.2 (H(Y, E)). We define the following semi-norm dn.(Y, ¢*E):

€l = v = €@, , |-

The Hausdorff completion df.(Y, ¢* E') with respect to this semi-norm will be denoted’ByY’, E)
(and usually not by (Y, ¢*E)). The Banach spadk (Y, E) carries a canonical action 6§(X) such
that it is aCy (X' )-Banach space.

a(y)

The canonical map from.(Y, ¢*E) to H(Y, E) is continuous if we take the inductive limit topol-
ogy onI'.(Y, ¢* E') and the norm topology oK/ (Y, E). It follows that if = is dense iT'.(Y, ¢* E) for
the inductive limit topology, then its canonical imageHitY, F) is dense for the semi-norm topology.

Definition E.8.3. Letz € X. Forallp € C(Yz)>0, definel|¢||,y, ) to be the value of the semi-norm
of the extension of to Y by 0. This defines a monotone semi-norm@Y;). The completion of
C.(Yz, E,) with respect to this semi-norm will be denotedHyY.,, E). The restriction map yields a
linear map of nornx 1 from H (Y, E) to H(Yz, E).

Example E.8.4.1f p € [1,00], if u is some continuous field of measuresYrover X, if H(Y) =
LP(Y, ) andz € X, then the semi-normy- || »(y, ) onCe(Yz) is simply given by

IXNe vy = (/Y X ()" dua:(y)>;

for all x € C.(Yz).
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Proposition E.8.5. If ¢ is open, then there is an isometric isomorphism
H(Y,E), 2 H(Y,, E).

Proof. Let P,: H(Y,E) — H(Y,, E) denote the linear map induced by the restriction map and let
= H(Y, E) — H(Y, E), denote the quotient map.

First we show that the kernel af,, which isCy(X \ {z})H(Y, F) by definition, is contained in
the kernel ofP,: Let ¢ € Co(X \ {z}) and{ € ' (Y, ¢*E). Then(¢€)(y) = ¢(q(y))&(y) = 0
forally € Y. SoP,(¢£) = 0. By continuity, this is also true for alf € H(Y, E). This means in
particular that we get a continuous linear mpfrom H(Y, E), to H(Y;, E) of norm< 1.

Now we show thaf| P (&) 14y, z) = 1m2(E)llw(v,p), forall & € Te(Y, ¢*E). This will show
that ®,, is isometric on a dense subset, so it is isometric throughdf, £),. SinceP, has dense
image it follows thatb, has dense image and thus we are done.

The inequality< is already known, we have to show Let{ € T'.(Y, ¢*E) ande > 0. Find a
functiony € Cc(Y)4 such that|{(y)[| < ¢(y) for ally € Yz and||ollyy) < [€llny, p) + &

Let K be a compact neighbourhood ¥h of the support ofp and the support of. Lete’ > 0.
We are going to show that we can find a functiore C.(Y"), and a functiony € C.(X), such that
1E(y)|| < (y)forally € Y, supp xy C K and||xy — ¢l < €’. Using the fact that the “inclusion”
Ck(Y,q*E) — H(Y, E) is continuous, we can chooseso small thaf{y)x — ¢l|,y < 2¢ and hence
IXVl3yy < N€llpevs, ) + € BUtlme(©)llayy.m), < X%y, SO We are done. Note that by the
monotony of the semi-norm it suffices to findand+ such thatx(q(y))¥(y) < ¢(y) + &’ for all
y €Y (instead of| xy) — ¢||, < ¢€).

For ally € Y,, we can find a function, € C.(Y)4 such that¢| < ¢, andy(y) < p(y) + €.
Using a compactness argument and the continuity we can thus find a functiont € C.(Y')4 such
that |¢] < ¢ andy(y) < ¢(y) + 2¢’ for all y € Y,. By multiplying v with a function inC.(Y")
betweerD and1 which is1 on the support of and vanishes outsid&, we can assume without loss
of generality that the support @f is contained ink.

Both functions,y and+, are continuous, sg — max{¥(y) — ¢(y),0} is continuous. By
Lemmg E.8.5 the functios: z’ — sup,cy , [¢(y) — ¢ (y)| is continuous. Note that(z) < 2¢’. Find
a functiony € C.(X) such that < x <1, x(z) = 1 andx(z')s(z’) < 3¢’ forall 2’ € X. It follows
thatx (q(y))¥(y) < o(y) + 3¢ forally € Y. O

Lemma E.8.6.Let f € C.(Y);+ andq: Y — X be open and surjective. Then the mapX —
R, &+ sup,cy, f(v), is continuous.

Proof. Let zy € X. We show that is lower and upper semi-continuousa.

Lete > 0. The set{f(y) : y € Y} is compact, so there is ap € Y, such thaty, =
SUDyey,, f(y). LetV be a neighbourhood af, in Y such thatf (v) > f(yg) —eforallv € V. Then
U := ¢q(V') is an open neighbourhood of in X. For allu € U, we haves(u) > s(zg) — ¢, SOs is
lower semi-continuous imy.

Lete > 0. For all compact neighbourhoods of z( in X, define

Ag ={yeY: f(y) > s(w) +e, qy) € K}.

These sets are closed and contained in the compact suppfrilie intersectiofi),; Ak is the set
{y € Yo, : f(y) > s(yo) + €} which is empty. So the intersection of a finite numberdgf has to
be empty. It follows, that there is a compact neighbourh&odf = in X such thatd i is empty. So
s(z) < s(xg) + ¢ forall z € K. In other words:s is upper semi-continuous. O
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E.8.2 Monotone completions, modules and pairs

Definition E.8.7 (The right I'y (X, B)-module structure). Let ||-||,, denote a monotone semi-norm
onC.(Y). Let B be a u.s.c. field of Banach algebras o¥&rand letE be a right BanactB-module.
Define

(€6)(y) == &(y) Bla(y))

forall ¢ e T.(Y, ¢*F), p € I'(X, B) andy € Y. This defines an action df(X, B) — and hence
of I'y(X, B)) —onTI.(Y, ¢*(E)) which is compatible with the action 6f(X') (and ofCy(X)). The
action of'y (X, B) satisfies

168117 < N1€lla 118l
forall ¢ e I'.(Y, ¢*FE) andf € I'g(X, B); it therefore lifts to an action dfy (X, B) on H(Y, E). If
E is non-degenerate, then scHgY’, E).

A similar definition can be made for left Bana¢ghmodules.

Definition E.8.8 ((Locally convex) pair of monotone completions)Let (u,).cx be a continuous
field of measures of” over X. A (locally convex) pair of monotone completionih respect tqu
isapairH(Y) = (H<(Y), H~(Y)) such that{<(Y) and’H~ (Y") are (locally convex) monotone
completions of’.(Y") and such that the bilinear map

(Ve CelY) X ColY) = CulX), (9%, 67) (w [ s wew dux<y>>,

x

satisfies
1= e7)ex)lle < N2 g 197 e
for all o<, ¢~ € C.(Y). Note that in this case the madp )¢, (x) can be extended to a continuous
bilinear map(-, -)¢,(x): H=(Y) x H”(Y') — Co(X) which isCy(X)-bilinear.
Examples E.8.9.Let i be a continuous field of measuresBrover X .

1. The pairs(L'(Y), Co (Y)) and (Co(Y), L' (Y')) are certainly locally convex pairs of mono-
tone completions.

2. If p,p’ €]1,00[ such that, + ; = 1, then (Lp/ (Y), LP (Y)> is a locally convex pair of
monotone completions.

Definition and Proposition E.8.10 (The pairH(Y, E)). Let (u.).cx be a continuous field of mea-
sures onY” over X. Let H(Y) be a pair of monotone completions with respecutoLet B be a
u.s.c. field of Banach algebras ov&r and letE be a BanachB-pair. Then the paif{(Y, E) :=
(H<(Y,E<), H”(Y, E~)) is aCy(X)-Banachl'o (X, B)-pair if we equip it with the bracket

<'7 '>FC(X,B): FC(}/; q*E<) X PC(Yv q*E>) - FC(Xa B)7

) = (o= [ (€00, d).

which extends to a bracket di<(Y, E<) x H~ (Y, E~) which is Cy(X)-bilinear andCy(X, B)-
bilinear.
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Proof. We have to check that the bracket-)r x, ) satisfies

6=, € rxm oo < 1165 e 1€ e

forallé< e T (Y, ¢"E<)andé” € I'.(Y, ¢*E~). Letz € X. Then

forall <, p~ € C.(Y) such that{<| < o= and|¢~| < »~. By taking the infimum on the right-hand
side we obtain

IN

[ o e, wet) < [ 1€0lle o)

< /Yso<so>dux(y)§H90<||H< [P

[ (00 € W), s < 1€ e 1€ - :

E.8.3 Operators given by kernels

Let Y’ be another locally compact Hausdorff space and’let” — X be continuous. Lefu! ).cx
be a continuous field of measures¥hover X. LetY x x Y’ be the fibre product of” andY” over

XandQ:Y' xx Y — X, (v,y) — qly) = /).

Definition E.8.11 (The tensor product of monotone semi-norms)Let H(Y) be a monotone com-
pletion ofC.(Y") andH'(Y’) a monotone completion @f.(Y”). For all{ € C.(Y' xx Y), define

1€l = inf {Z XG5 Ixillag = xi € Ce(Y), Xi € Ce(Y"), [C( s w)| < Zxé(y’)m(y)} :
=1

i=1
The semin-norm/-||,,/.,;, ONC.(Y' x x Y') is monotone; the completion is called @H (Y’ x xY').

Lemma E.8.12. Let B be a u.s.c. field of Banach algebras ovérand letE, £’ be BanachB-pairs.
Leth = (k(y.)) (mey'xxy € L@ B (Q*E, Q*E’) be a continuous field of operators with compact

support. Define an operatdr;, fromH (Y, E) to H'(Y’, E’) by
1) W)= [ K 0 i) €Y
a' (")

and
T (€7) ) ::/, ko€ W) gy (), v ey,

a(y)

forall &~ e T. (Y, ¢*E~), < e T. (Y, ¢*E'<).
This operator is continuous and satisfies

IT5ll < (1&g e -

If & is compact, thefl}, is compact.
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Proof. Assume that|k, ., || < >r, Xi(¥)xi(y) forall (y/,y) € Y’ xx Y with x; € C.(Y) and
X; € Cc(Y"). This implies that

Iz €)Wl < / Il @l aunw
< Xz Xz £> d/L
LA@; D€ W) disgiy

<

Z Xi (y') Xl H5> HH>
i=1

forall 4/ € Y’. By the monotony of the semi-norfp||,,- this yields

177 (€)1

s < Zsz

> [Ixéll< H5>HH> ’

soT;; is continuous with normx Y7 [[xill> [Ixill<- Taking the infimum yields
TN < MEll> gae

On the left-hand side we have for &l € T'. (Y, ¢*E'<):

7 €l < [, i le=60l i )
< [ SO €] iy )
q(y) 1=1
< ZXZ HX@ H’> ‘5/<‘H’<

forall y € Y, and hence

HTk< (§/< HH< > Z HXz H> HXZH’H< H€/<‘

H< -

As above, this shows thay” is continuous with norm< -7 (X[l [|xill5<, implying

ITEN < 1kl e -

Together, we geftT'|| < ||k||H,>®H<.
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If &< el (Y, ¢*E'<)and¢” € T'. (Y, ¢*E~), then

(€<, T7e7), = / (E<W), (T2E)W)) dul ()

= /Y <£’<(y/>7 (/Y

q'(y')
_ /Y , /Y <g’<(y’), k@,7y)§>(y)> dpz(y) dp(y')

K€~ W); 5>(y)> dp (y") dpra(y)

K€ ) dﬂx(y)> > dpaz,(y')

- /y /y ko€~ @) diz (), £>(y)> dpiz(y)
- / <(Tk:<£/<) (v), §>(y)> dps(y) = <Tk:<£/<a §>>x

forallz € X. SinceT};” andT}; are clearlyl'g (X, B)- andCy(X)-linear, the paif}, is an element of
L g (Y, B), H(Y', E")).
ote that the mag: — T} is, in particular, continuous for the inductive limit topology on the
space of elements &fy-5 (Q*E, Q*E’) with compact support.
Assume now thak is compact, i.e., assume thiatis an element OKBEB(Q*E, Q*E’) with
compact support. We first shaty, is compact ifk is of a very simple form; we then move on to the
general situation step by step.

1. If n< € T.(Y, ¢"E<) andy’> € T.(Y’, ¢*E’), then the operatop>)(n<|", as a map
fromT. (Y, ¢*E~) C H>(Y,E”)to. (Y, ¢*E’>) C H'>(Y', E'>), is given by

) 0<[7 €)= a0 gy =17 () /Y M=), & W) dig ) )
q'(y')

_ /Y 7> () @)]” (€ @) ditg ) )

a’(y")

forall ¢~ € T'. (Y, ¢*E~). A similar expression can be derived ﬂ@l‘>><77< <, showing that
7"~ ){n<| is given by the kernet,, ., = |7">(y'))(n=(y)|. Conversely, if is such a kernel,
thenT} is compact. The same holds for linear combinations of such kernels.

2. Letn= € T. (Y xx Y, Q*E~) andn” € T.(Y' xx Y, Q*E'>). Assume thak, , :=
7> (', )Y (n<(y/,y)| forall (v, y) €Y' xx Y.
n-\y,y))\n-\y,y Y,y X

(@) If n=is of the formn=<(v',y) = X' (v')7<(y) with x' € C.(Y') and= € T.(Y, ¢*E~)
and if the section;> is of the form#>(y/,y) = 7" (y')x(y) with x € C.(Y) and
7> € T,(Y', ¢*E™), then

ko = 17 9) 0=,y
= X&) 7)) {xw) 75 (y).

so we are back in case 1.
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(b) Approximate the section’~ in the inductive limit topology by sections which are of the
form (v',y) — >0 n” (Y )xi(y) with i~ € T (Y', ¢*E'>) andy; € C.(Y'). Do the
same forp<. Then the resulting kernel approximatesn the inductive limit topology.
HenceTy, is compact also in this case.

3. Now consider a gener&l Since it is locally compact, we can approximate it locally by oper-
ators which are sums of those considered in 2. By using continuous partitions of unity we can
approximatek by such operators in the inductive limit topology. Herlgeis compact. O

E.8.4 The pullback of monotone completions

Assume that;: Y — X is continuous and open. L&' be another locally compact Hausdorff space
and let¢’: Y/ — X be another continuous and open map. Writex x Y for the fibre product ot
andY” over the mapg andq/, andletr: Y xx Y/ — Y andn’: Y xx Y’ — Y’ be the canonical
projections. Le): Y xx Y' — X, (v,¥) — q(y) = ¢ (/).

Let H(Y) be a monotone completion 6£(Y"). We are now going to define a monotone comple-
tion " H(Y xx Y’') of C.(Y xx Y’) such that

¢"F(H(Y,E) =2 ("H (Y xx Y', ¢"E))

for all u.s.c. fields of Banach spacésoverY. We need such a construction in order to properly
define groupoid actions on monotone completions.

Definition E.8.13 (The completiong*H(Y xx Y’)). OnC.(Y xx Y') define the monotone semi-
norm

Il = sup [ Yo 3 4 x|
T ey ) H(Yy @)
forall x € C.(Y xx Y).

To see that|x||,.;y < oo, let K := m(suppx) C Y. Find a functions € C. (Y) such that
0 <d <landy|x =1.Forally €Y', we have

oy = xS [Pty 20 060 ke [, < Il Bl

H(Yy (ar

Definition and Proposition E.8.14. Let E be a u.s.c. field of Banach spaces ovér For all¢ €
. (Y xxY', Q*FE), define

) (v) = tmgw) Yow) 2y = EW,1)) € K, E)yqy
for all v’ € Y’, where.p, denotes the canonical map frof (Y;, (¢*E)ly,) to H(Y, E), =
H (Y, E) forallz € X. Then®(¢) isinl'c (Y', ¢"F (H(Y, E))) and||®(§)[| oo = [I§]l+3-

Because the image df is dense, it follows that we can realisg (Y, ¢*F (H(Y, E))) as the
completion o (Y xx Y’, Q*E) for the semi-nornj- | .,,, in other words:

q/*g (H(Y, E)) o~ g (q/*rH (Y X x Y/, q’*E))

as u.s.c. fields of Banach spaces avér
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Proof. The map®(¢) surely is a boundedelectionof compact support, and almost by definition we
have||®(&) ., = lI€ll - Moreover — @(¢) is linear and if the support of is contained inZ,
then the support ob(¢) is contained iny/(L). It hence suffices to check thét¢) is a sectionfor

¢ taken from a dense subsetBf (Y xx Y/, Q*F). If & € T (Y, ¢*E) andd’ € C.(Y”), then

& (y,y) — 8 (yY)é(y)isinT. (Y xx Y, Q*F) and the linear span of such sections is densé. If
is of this form, then

(&) (V) = tegw) Yow) 2y — 8 W)W) =8 W )eqw) (é*olyq,(y,)) =0'(y") (tB(&0)) g ()

forall ' € Y', s0®(§) = (6 0¢') - (gn(v,p) (tE(&0)) © Q), where.g is the canonical map from
Lo (Y, ¢"E) to H(Y, E). In particular, becausgy(y,g) (tr($)) is inT' (X, §(H(Y, E))), we can
conclude that (&) is a section. O
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