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Abstract

Moduli spaces of global G-shtukas play a crucial role in the Langlands-program for func-
tion fields. We analyze their functoriality properties concerning a change of the curve and
a change of the group scheme G under various aspects. In particular we prove two finite-
ness results that could lead to a formulation of an André-Oort conjecture for G-shtukas.
Furthermore we define five axioms concerning stratifications of the considered moduli
spaces, which are analogous to the axioms defined by Rapoport and He for Shimura
varieties. The proof of these axioms requires some of our previous functoriality results.

Zusammenfassung

Modulraume fiir globale G-Shtukas spielen eine wichtige Rolle im Langlands-Programm
fiir Funktionenkorper. Wir untersuchen ihre Funktorialitatseigenschaften beziiglich einem
Wechsel der Kurve und einem Wechsel des Gruppenschemas G unter verschiedensten As-
pekten. Insbesondere beweisen wir zwei Endlichkeitsresultate, die zu einer Formulierung
einer André-Oort Vermutung fiir globale G-Shtukas fiihren kénnten. Des Weiteren definieren
wir fiinf Axiome beziiglich Stratifizierungen der betrachteten Modulrdume, welche analog
sind zu den Axiomen, die Rapoport und He fiir Schimura-Varietdten definiert haben.Fiir
deren Beweise werden Teile unserer vorherigen Funktorialitétsresultate benotigt.
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1 Introduction

Global G-shtukas are the function field analogue of abelian varieties. Their moduli spaces play
a crucial role in the Langlands-programm for function fields. This thesis is concerned about
functoriality properties of these moduli spaces in various aspects as well as their stratifications
and their geometry. Let us give a more detailed overview.

We choose a smooth projective geometrically irreducible curve C' over a finite field F, with ¢
elements. Let further G be a smooth affine group scheme over C' and denote by o the F,-
Frobenius of a scheme S over F,. Then a global G-shtuka G = (G, s1,...,sp,7g) over S consists
of a G-torsor G over Cg = C xp, S, n sections s; : § - (' called paws and an isomorphism
TG U*g|Cs\uiFsi - Q|CS\UZ.1~S1_ outside the union of the graphs I';,. The precise definition of all
the notations used in the introduction and the thesis are given in the preliminaries in the second
chapter. The stack whose S-valued points parametrize the global G-shtukas over S with n paws
is denoted by Vv, #1(C,G). Once we fix n closed points (v1,...,v,) = v in C to which we refer
as characteristic places we can introduce boundedness conditions Z, for all v € v and H-level
structures. Here a bound Z, is roughly a L*G, invariant closed subscheme of the affine flag
variety F lg, (see § 2.6 for a correct definition) and H is a open compact subgroup of G(AY),
where A% denotes the ring of the adeles outside v. Then we denote by vl L(C,G) the stack
which parametrize G-shtukas G over S bounded by (Z,)vey together with an H-level structure.
At the beginning of the third chapter we define all the parameters (C,G,v, Z,, H) as a shtuka
datum. This definition comes with the natural question if an appropriate change of this shtuka
datum induces a morphism of the corresponding moduli spaces and what properties it has.

In section 3.1 we define a morphism of shtuka data and clarify what an appropriate change of
the shtuka datum should be. Actually a morphism from (C,G, v, ZAE, H) to (C",G',w, Z' ,H') is
a pair (7, f), where m: C'—> C" is a finite morphism and f is a morphism of group schemes from

the Weil restriction 7,G to G such that w, Z,w and H' satisfy certain conditions.

In the following sections we answer then the questions about the functoriality of VfE’H%” L, G).
More precisely we consider in section 3.2 firstly the case that we only change the curve C, which

yields the following main result of this section.

Theorem 1.1 (cf. Theorem 3.14). Let (C,G,uv, ZAE,H) be a shtuka datum and 7 : C — C" a
finite morphism of smooth geometrically irreducible curves over F, with w; := w(v;) and w :=
(wi,...,wp). Then the morphism (7, id;,g) : (C’,G@,ZQ,H) - (C’,W*G,MJT*ZAQ,TF*H) of
shtuka data (see definition 3.9 and remark 3.10) induces a finite morphism of the moduli stacks

Zy,

mo v (0,6 » v T N L G).

The construction of this morphism and the proof of the theorem relies on a lemma in section
3.1 that states an equivalence of categories between G-torsors over C' and 7,G over C’. In this
thesis this theorem will find an application in the proof of the non-emptiness of K R-strata.
The next section 3.3 addresses then the questions about functoriality in the case that we only
change the group scheme G. Whereas we construct a morphism

Zy,

v 01 (0,6) - v e, 6
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for all morphisms (id¢c, f) of shtuka data, we need to make different assumptions to state dif-
ferent results on the properties of this morphism. Assuming that f: G - G’ is generically an

isomorphism we have the following first main result of this section.

Theorem 1.2 (cf. Theoremm 3.20). Let (idc, f) : (C,G,Q,ZAE,H) - (C,G,v, ZQ,H) be a

morphism of shtuka data, where f: G — G’ is an isomorphism over C\w. Then the morphism

Zy,

oo V2T N 0,G) - vt YOG, (G H) > (.G, 7H)

is schematic and quasi-projective. In the case that G is a parahoric Bruhat-Tits group scheme

72! H
this morphism is projective. For any morphism (G',7'H): S — v,* #1(C,G")

ZlH
the fiber product S x 4 4 Vn" %I(C’,G) s given by a closed subscheme of
Vo A(CG)

S x5, (L, (6)/L*Guy) xw, -+ x5, (L, ()L Gu,,)) -

If ZAE arises as a base change of Zé for all v e v, the morphism f, is surjective.

This result will again be important in the fifth chapter about axioms on the moduli space
Z’U7
Vi

isomorphism we get the second result of this section.

" YC,G). If we assume that f : G - G’ is a closed immersion instead of a generic

Theorem 1.3 (cf. Theorem 3.23). Let f: G — G’ be a closed immersion of smooth affine group
schemes over C. Then the induced morphism f. : Vo1 (C,G) — v, (C,G") is unramified

and schematic.
Assuming additionally that G is a parahoric Bruhat-Tits group scheme, we prove as well:

Theorem 1.4 (cf. Theorem 3.26). Let G be a parahoric Bruhat-Tits group scheme and f : G - G’
be a closed immersion of smooth affine group schemes and v = (vy,...,v,) be a set of closed points

i C. Then the induced morphism
fo: VN (C, G2 - v, (C,G")Y  is proper and in particular finite.

Also the morphism in this theorem occurs again in the fifth chapter and is needed to proof the

non-emptiness of K R-strata.

The second part of the thesis is concerned about stratifications of the special fiber of the moduli
space VﬁE’HL%” L(C,G). One can ask a lot of interesting questions about these stratifications,
what is their dimension, are they equi-dimensional, are they smooth, are they affine or quasi-
affine, what is their relation, are they non-empty, ... A lot of work about these questions has
been done for stratifications of the special fiber of Shimura varieties. In [HR17] Rapoport and He
introduce five axioms on Shimura varieties concerning these stratifications. Once these axioms
are proved one can conclude the definition and existence of these characteristic subsets as Newton-
stratification, Kottwitz-Rapoport stratification and EKOR-stratification in a most general way.
Also their natural index set and some relations follow then from these axioms.

We translate these axioms to the moduli space VfE’HJf L(C,G). Whereas in the fourth chapter



we discuss the necessary preparations to do this, we formulate these axioms in first section of the
fiftth chapter and prove some of them in its second section. The first axiom is about a change
of the parahoric subgroup at the characteristic places and requires that this induces a surjective
and projective morphism between the corresponding moduli spaces. This axiom is used to reduce
some statements to the case of Iwahori-level. The proof of this axiom is mostly done in theorem
3.19. The second axiom is about the existence of local models, which allows to define the K R-
stratification on VTZLE’H%”I(C, G). The existence of these local models follows from [AH16]. The
third axiom is about the existence of the Newton stratification. Once the global-local functor
is established, the proof is known from [HV11|. The fourth axiom gives a relation between
the Newton- and KR-stratification by requiring the existence of some central leaves. The fifth
axiom is a basic non-emptiness statement and states that for all groups with Iwahori-level at
the characteristic places the minimal KR-stratum is non-empty. We will explain the different
steps of the proof of this axiom and also why we can not finish the second step completely at
the moment and how a better understanding of the connected components of vfﬂ’Hﬁ” Y(C,G)
would help us to do so. In the case of Shimura varieties this basic non-emptiness is proven by
M. Kisin and C.-F. Yu for this axiom under certain conditions on the Shimura datum. Although
the idea to construct firstly an object lying in the basic Newton-stratum is similar to the case
of Shimura varieties, the construction of this element works differently. In the sixth chapter we
will draw some conclusions of the axioms. In the seventh chapter we discuss Drinfeld’s moduli

space with Iwahori level structure as an example of vgﬂ’H%” L, G).

2 Preliminaries

Before we start with the functoriality of v,,7'(C,G), we introduce the basic objects and nota-
tions that we use in this thesis. Most of the notations introduced in this chapter, can also be
found in [AH13| and [AH14].

Let ¢ be a power of some prime number p. We start with a smooth projective geometrically
irreducible curve C' over the field F, with ¢ elements. We denote by @ := F,(C) its function
field. For a closed point v € C' we denote by A, the completion of the stalk O¢, and by @, the
fraction field of A,. Furthermore we choose a uniformizer z, in A,, denote the residue field of v
by F, and set deg v = [F, : [Fy].

Let G be a smooth affine group scheme over C' and G := G x¢ @) its generic fiber. Later, from
chapter 4 on, we assume G to be a parahoric Bruhat-Tits group scheme, which we will define
in § 2.17. We write G, := G x¢ Spec A, and G, := G x¢ Spec Q, = G, x4, Spec @, for the
appropriate base changes.

For an [Fy-scheme S we denote by og: .S — S the absolut F,-Frobenius, which acts as the g-power
map on the structure sheaf. Further we define o as the endomorphism idc x o5 of Cg := C xp, S.
For a morphism s :.S - C' we denote as usual by I'y : § - Cg the graph of s, which is a closed
immersion.

Let X be a site with a final object  and G a sheaf of groups on X. Then a (right) G-torsor
is a sheaf G on X with a right action of G on G such that GxG ~Gx G, (g,h) —» (hg,h) is

an isomorphism and G(U) # @ for some covering U - X. When we speak about a torsor, we
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always mean a right torsor and if nothing else is mentioned we mean a sheaf on the big étale site
of a scheme. For any scheme S we write S, for the big étale site of this scheme. We denote
by #(C,G) the stack fibered over (Fy) z,, whose fiber category ' (C,G)(S) is given by the

category of G-torsors over Cyg.

§ 2.1 Global G-Shtukas:
Let S be an F,-scheme. A global G-shtuka over S is a tuple G = (G, s1,...,5p,7g), where

— @G is a G-torsor over Cg,
- S1,-...,8p are morphisms S — C and

- 1G: J*g|Cs\(UFSV) N g|CS\(UFSV) is an isomorphism of the G-torsors ¢*G and G restricted
to Cs\(T's, U---UT,).

We take the notation v, #'(C,G) from [AH14, Definition 2.12] for the stack fibered over
(Fy)z, whose S-valued points for a scheme S are given by G-shtukas G over S. Morphisms
from (G, 81,...,8n,7) to (G',s7,...,s,7") in the fiber category v, #'(C,G)(S) only exist if
s; = s; and are given by morphisms f : G - G’ of G-torsors over Cs such that for =7"00"f.
Given two G-shtukas G and G’ over S with s; = s} as before, we also define a quasi-isogeny from
G to G’ to be an isomorphism f : Glog\pg = G'lcg\pg Of G-torsors satisfying for =7"00"f,
where D is some effective divisor on C. The moduli space vV, (C,G) is an ind-algebraic stack
that is ind-separated and locally of ind-finite type [AH13, Theorem 3.14].

§ 2.2 Loop Groups:

Let I be a finite field and H be a smooth affine group scheme over D := Spec F[z], with generic
fiber H := H xp D where ) := Spec F((2)). We are mainly interested in the case that I ~ Spec A,
and H = G, for some closed point v € C'.

We recall that the sheaf of groups L™H on F,, whose R-valued points for an F-algebra R are
given by

L™H(R) := H(R[z]) := H(Dg) := Homp(Dg,H)  with Dg := Spec R[z],

is an infinite-dimensional affine group scheme over F. It is called the group of positive loops

associated with H. The group of loops associated with H is the sheaf of groups LH on F,,

whose R-valued points are defined by
LH(R) = H(R((2))) := H(Dg) := Homy (Dg, H) ,

where we write R((2)) = R[z] [é] and Dp = Spec R((z)). The loop group LH is an ind-scheme of
ind-finite type over F.

§ 2.3 Torsors for Loop Groups:

We write 51 (F, L*H) for the stack fibered over (F)p, whose fiber category #*(F,L*H)(S)
is the category of L*H-torsors over S. In the same way . (F, LH) denotes the stack fibered



over (F) z, whose fiber category 5! (FF, LH)(S) is the category of LH-torsors over S. There is

a natural 1-morphism

L: " (F,L'H) - #"(F,LH), L'~ L (1)

induced by the inclusion of sheaves L*H c LH.

We now consider also the z-adic completions of D and H and denote them by D := Spf F[z]
and H := H xp D. Later when we pass from global G-shtukas to local G,-shtukas we often need
to know that L*H-torsors are equivalent to formal H-torsors. So we recall that for an F-scheme
S a z-adic formal scheme H over ]ﬁ)s = D%FS together with an action H%DH — H of H is
called a formal H-torsor if there is an étale covering S - S and an H—equivariant isomorphism
’HQDSHA))SI —H X5 Dgr, where H is acting on itself by right multiplication.

We denote by #'(D,H) the category fibered in groupoids over (F) ;¢ Whose fiber category
21 (D, H)(S) is the groupoid of formal H-torsors over S. We remark that Arasteh Rad and Hartl
proved in [AH14, Proposition 2.4 that there is a natural isomorphism of stacks (D, H) —
AN (F, L"H). It sends a formal H-torsor # to the sheaf

L*: Sy, —~Sets, T Homy (Dr,H)

which becomes a L*H-torsor under the action of L*H(T") = Homg (Dp, H).

§ 2.4 Local H-Shtukas:

Let S be a F-scheme and ¢ its absolut F-Frobenius. If F equals F, or F,, we will write o and o,
respectively, instead of 6. With the previous notations a local H-shtuka over S is a pair (L, 72)

where
- L" is a L™H-torsor over S and
- 7p:6"L — L is an isomorphism of the associated loop group torsors from (1) in § 2.3.

A morphism from £ = (£*,7z) to £ = (L*',7},) of two local H-shtukas over S is a mor-
phism f: £" — £*" of L*H-torsors over S satisfying 7, o f = 70/ 06*f. A quasi-isogeny from
L= (L 1z) to L = (L, 7},) is an isomorphism f: £ - L' of the associated LH-torsors satisfy-
ing rpof=1p006"f.

A local H-shtuka (L*,7,) is called étale if 7 : 6*L£ — L comes already from an isomorphism
Tr 0" LY = L of the L*H-torsors. We denote the category of local H-shtukas over S by Shty(S)
and the category of étale local H-shtukas over S by EtShty(S).

We recall the Corollary [AH14, Corollary 2.9| that states that if H has a connected special fiber,
then any étale local shtuka over an separably closed field k is already isomorphic to (L*Hy, 1-6*
Let F[¢] be the power series ring over F in a variable (. We denote by Nilme the category of
schemes over Spec F[(] on which ( is locally nilpotent in the structure sheaf. Therefore N/ ilpre)
is the full subcategory of formel schemes over Spf F[(] consisting of ordinary schemes. We will

define boundedness conditions only for local shtukas over a scheme S in N- ilppe]-
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§ 2.5 The Affine Flag Variety:

Let H be a smooth affine group scheme over Spec F[z] as before, then the affine flag variety Fiy

is defined as the quotient sheaf LH/L"H on F,, that is the sheaf associated to the pre-sheaf

T~ LH(T)/L H(T).

By [PRO8, Theorem 1.4] Fly is represented by an ind-scheme which is ind-quasi-projective and
in particular ind-separated and of ind-finite type over F. By |Ricl6a, Theorem A| Fly is ind-
projective if and only if H is a Bruhat-Tits group scheme over F[z] in the sense of [BT84,
Definition 5.2.6]. We also remark that L™H acts from the left on Fly.

§ 2.6 Bounds in Fly

We fix an algebraic closure F((¢))®9 of F((¢)). For a finite extension R of discrete valuation rings
F[¢] ¢ R c F((¢)™ with residue field kg we denote similar as before with Nilpg the category
of R-schemes on which ( is locally nilpotent. Furthermore we set F I, g = FluxpSpf R as well
as Fly = Flu el

Now let R and R’ be two such finite extensions of discrete valuation rings and let Zr ¢ Fly p and
Z' R C F I, r be two closed ind-subschemes. We call A r and VA r equivalent if there is a finite
extension R of discrete valuation rings as above containing R and R’ such that Zrx Spf RODS R-=
Z'R' xspf R OPf R as closed ind-subschemes of jj—lH,ﬁ'

Now a bound is defined (compare [AH14, Definition 4.8] and [AH13, Definition 4.5]) as an
equivalence class Z = [Z r] of closed ind-subschemes ZpcF I r satisfying

— firstly that all subschemes Z R are stable under the left action of L*H on F Im r and

— secondly that all the special fibers Zp := Zg x Spf R Spec ki are quasi-compact and con-

nected subschemes of FlgXpkrg.

We remark that in [AH13] and [AH14]| the definition of a bound does not require the special
fibers to be connected. Actually we make this assumption, because it does not change the theory
and simplifies the formulation of certain statements. In fact if Z is the disjoint union of two
bounds Z; L Z» then the moduli space vf%l((}, G) that will be defined in paragraph § 2.11 is
the disjoint union of the moduli spaces vfl%l(C,G) and Vf'ﬂ%ﬂl(c, G).

§ 2.7 The Reflex Ring:

For an equivalence class Z = [Zg] as above we set Gyi={ye AUtF[d](]F((C))alg) | v(2) = Z}.
The ring R, is defined as the intersection of the fixed field of G, in F((¢ )9 with all the finite
extensions R over which a representative Zp of Z exists. In the case that Z is a bound, we call
R the reflex ring of Z.

It is not always clear if there exists a representative of Z over R,. We write k, and kg for
the residue fields of R, and R respectively. Then the special fiber Zg := VA R XSpf R KR arises
from a unique closed subscheme Z c Fly xp k. This follows from Galois descent for closed

ind-subschemes of Fly, which is effective. The subscheme Z is called the special fiber of Z.



§ 2.8 Boundedness of Local H-Shtukas:

Let Z be a bound with reflex ring R, . Furthermore let £ and LY be two L*H-torsors over a
scheme S in N/ ilpr, and d: L — L' an isomorphism of the associated LH-torsors. We choose
a covering S’ — S such that there are trivializations o : £ <> L*Hg and o' : £ = L*Hg.
Then the automorphism o’ o §oa™' : LHg <> LHg defines a morphism S’ - LH.

For any finite extension R of R, we have an induced morphism
S’ xsps v, Spf R — LH3pSpf R — Fly p. (2)

Now § is said to be bounded by Z if for all trivializations o and o’ and all finite extensions R of
R, with a representative Z g, this morphism (2) factors through Zr. By [AH14, Remark 4.9] ¢ is
bounded if and only if this condition is satisfied for one trivialization and for one such extension
R. By definition a local H-shtuka (£*,7.) is bounded by Z if 7/ is bounded by Z.

§ 2.9 A Version of the Theorem of Beauville-Laszlo:

Let v € C be a closed point and set C* := C'\{v} as well as Cf := CV xp, S. We define ! (C",G)
as the category fibered in groupoids over (F,), whose fiber category #!(C",G)(S) consists
of those G-torsors over Cg that can be extended to a G-torsor over Cs. By restricting a G-
torsor G over Cg to C% we get a morphism #!(C,G) - 7' (CY,G). We introduce further the
notation G, = Resz,p,[2,]Gv and G, =G, X, [z] Fq(20)). For G € H1(C,G) the base change
Gv =G xcg (Spf Ay XF, S) defines a formal G,-torsor over Spf Ayxp,S and its Weil restriction
Res g, /r,[2,]9v defines a formal G,-torsor over Spf Fy[20]xF,S. Using the category equivalence
in § 2.3 it corresponds to an object in #(F,, L*G,)(S) that we denote by L} (G) which defines

a functor

Ly #NC,G) — #(Fy, L'G,), G LI(G).
Furthermore we have the functor

Ly : #HC",G) - #(F,, LG,), G

o = LLI(9)) = L(9)

which is independent of the extension G of G Now a version of the theorem of Beauville-Laszlo,

cy
that is proven in [AH14, Lemma 5.1], states that the following diagram is cartesian.

A (C,G) A (CV,G)

Lil Lvl

AR, L*G,) — A (F,, LG,)

§ 2.10 The Global-Local Functor:

Now we fix n closed points v = {vy,...,v,} of C. Then define A, as the completion of the local

ring Ocn ,, at the closed point v and furthermore: This

V' (C,G)2 = v, 0 (C,G) xcn Spf Ay
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So an S-valued point of v, 1 (C,G) is given by a global G-shtuka G=(G,51,...,5n,7g) such
that s; : S - C factors through Spf A,,. We now want to associate with such a global G-
shtuka a local G,,-shtuka for all v; € v. We write D,, := Spec A,, and HA])UZ, = Spf Ay, as well as
]]3)%5 = Dvi%FviS. Then we have:

D'Ui;(ﬁrqs = LI V(a’Ui,l) = U ]ﬁ)vi,S

leZ]deg v; leZ/deg v;

where a,, ;= (a®1-1® s*(a)ql | a € Fy,) and V' (a,, ;) is the closed subscheme given by this ideal.
We remark that o cyclically permutes these components and that the I, -Frobenius od¢9 Vi leaves
all these components V (a,, ;) stable. For G € v, (C,G) the base change

gUi = g;(CS(Spf AviquS) = H g%CSV(avi,l)
leZ]deg v;

defines a formal G, -torsor over 11 D,, s which is an object in s (D,,, Gy, )( T 9.
leZ]deg v; leZ]deg v;

Each component G xcg V(ay, ;) defines a formal ((A}Uz.-torsor. Similar to the notation in § 2.3 we
denote by L] the L*G,,-torsor associated by [AH14, Proposition 2.4] with the formal Gvi—torsor
G xcg V(ay,0). Then (ﬁzo,Tdeg Y1) is a local G,,-shtuka, where rdeg vi ; (gdeg Y)Y Lio = Lio
is the isomorphism of LG,,-torsors induced by 7g (compare also [AH14, Lemma 5.1]). More
precisely one should write 799 ¥i = 70 g*7 0+ 0 (099 Vi=2)*1 o (g%9 Vi=l)*r,

This now defines the global-local functor:

Ly, : Voot (C,G)(S) — Shig,, ()
G=(G.51,....80,7) —> (Lo, 779 ) =T, (9).

We remark that this functor transforms by [AH14, Definition 5.4| quasi-isogenies into quasi-
isogenies. If v ¢ v the component V' (a, ) exists only if S is an F,-scheme.

If we do not restrict G xgg (Spf Ay, xp, ) to the component V' (a,,0) but consider its Weil
restriction Ly, (G) we get in a similar way a local G, -shtuka (L3, (G),7s;) where 7y, := Ly, (1g)
0*Ly,(G) = Ly,(G). We denote this local G,,-shtuka by L3 (G) = (L;,(G),Tv; ). We remark that
L} (G) does not only exists for v € v but also for other places v € C. In the case that v ¢ v the
local shtuka L; (G) is étale.

§ 2.11 Boundedness of Global G-Shtukas:

Recall that we fixed n closed points v = (v1,...,v,) in C. If the group scheme G is fixed we
write for each of these points Fl,, = F lei for the corresponding affine flag variety over F,, and
flvi,R = ﬁlei,R = flvi%ﬁrvi Spf R for a finite extension A,, ¢ R. In each of these affine flag
varietes Fl,, = Fly, A,, we choose a bound Z, = [Zu;.r] with reflex ring R, and we write Z, for
the tuple (ZUI, e Zvn) Choosing a uniformizer m,, in RZv. and defining F;{ as the compositum
of all the residue fields R, /(my,), we set Ry := Fg[m, . 3 , T, |- In particular the morphism
Spf R, - C™ factors throlugh Spf Ay. This means that every point G = (G, s1,...,5p,7g) in
A (6’, G) xcon Spf RZU(S) defines also an S-valued point in v, (C,G)¥ so that we write
T,,(G) for its associated local G,,-shtuka over S. The fact that S e N ilpr,, allows us to ask if



I'y,(G) is bounded by Z,.

We define VTZZE,%” L(C,G) to be the stack consisting of these bounded global G-shtukas. That

means the fiber category Vfg,%ﬂl (C,G)(S) is the full subcategory of vV, (C,G)xcn Spf R, (9)
that consists of those global G-shtukas G over S that are bounded by ZQ . By [AH13, Remark 772]

the moduli space VZE%”I(C, G) is a closed ind-substack of vV, 1 (C,G) xcn Spf R, . Moreover

we denote by VfEHl(C’,G)FR = Vngl(C,G)xSprZ Fr the special fiber of vfﬂ%l(c, G).

§ 2.12 D-Level Structures:

Let D be a proper closed subscheme of C' and let Dg := D xp, S for some Fg -scheme S and
G a G-torsor on Cg. By [AH13, Definition 3.1] a D-level structure on G is a trivialization
U : G xcg Dg = G x¢ Dg and #5(C,G) denotes the stack fibered over (F,), whose fiber
category #3(C,G)(S) consists of pairs (G, ¥) where G € #1(C,G)(S) and V¥ is a D-level
structure. A morphism from (G, ¥) to (G', ') in this fiber category is given by an isomorphism
[ :G — G of G-torsors such that ¥ = W' o (f xidpy). The moduli stack of global G-shtukas
with D-level structure is denoted by anfDl(C ,G). Tts fiber category over S is given by tuples
(G, V) = (G,51,...,8n,7g,¥) where G € vV, (C,G) xcn (C\D)"(S) (i.e. s;: S — C factors
through C\D) and ¥ is a S-level structure on G satisfying W o (7 x idpy) = 0*(¥). A morphism
from (G, W) to (G',¥’) in this fiber category is a morphism f € v, (C,G)(S) (in particular
an isomorphism f:G — G of G-torsors) satistying ¥ = U o (f x idp,).

If D =@ we have vV, 5(C,G) = v, (C,G). If vy,...,v, ¢ D and Z, is a bound as before
we use the intuitive notations v, %7} (C,G)® for the base change v, 75 (C,G) xcn Spf A, and
V,ZLE%%(C, G) for the stack of G-shtukas G in Vf%%”l(C, G) with a D-level structure.

§ 2.13 Local Shtukas and Local GL,-Shtukas:
The category of local GL,-shtukas over an Fj-scheme S can be defined more explicitly. We

briefly describe this here since it is useful for the definition of the Tate functors.

We denote by Og[z] the sheaf of Og-algebras on Sy, which associates with every S-scheme Y
the ring Og[2](Y) :=T(Y,Oy)[z]. Now every sheaf of Og[z]-modules that is fqqc-locally free
of rank r is by [HV11, Prop 2.3| already Zariski locally free of rank r. We call these locally
free sheafes of Og[z]-modules of rank r. For a commutative ring R we set R((z)) := R[z] [%]
This leads to the intuitive notation Og((2)) for the sheaf on S, associated to the pre-sheaf
Y » I'(Y,0y)((2)). The absolut F Frobenius was denoted 6 and we use the same notation for
the endomorphism of Og[z] and Og((z)) that acts as & on sections of Og and as the identity
on z. For a sheaf M of Og[z]-modules we can consider the pullback 6*M = M ®¢ .16 Oslz].
Now by [HV11, Definition 4.1] a local shtuka of rank r over S is a pair (M, 7)) consisting of a

locally free sheaf M of Og[z]-modules of rank r and an isomorphism
™M 0T M ®pg.) Os(2)) = M o421 Os(2))-

The local shtuka (M, 7yr) is called étale if )7 arises from an isomorphism 6*M — M of Og[z]-
modules. A morphism from (M, ) to (M’ 7p7) between two local shtukas over S is a morphism

f M —> M’ of Og[z]-modules satisfying a0 6* f = f o 7py. A quasi-isogeny from (M, 7yr) to
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(M',1prr) is a morphism f: M ®p 1.1 Os((2)) = M’ ®p41.1 Os((2)) of Os((2))-modules satisfying
T o6” f = fory. We denote the category of local shtukas over S by Shtg, (5) and the category
of étale local shtukas over S by EtSht]Fq(S).

Now there is a category equivalence between local GL,-shtukas as defined in § 2.4 and the
category of local shtukas of rank r over S with isomorphisms as the only morphisms. It is
naturally induced by the category equivalence [HV11, Lemma 4.2] of 2#1(F, L*GL,)(S) and the

category of locally free sheaves of Og[z]-modules of rank r with isomorphisms as morphisms.

§ 2.14 Tate Functors on Local H-Shtukas:

Now let S be a connected F,-scheme with geometric base point 5 € S and algebraic fundamental
group 71(S5,5). We denote by FModg[.1(r, (55)] (resp. IModr(2)[r (s,5)] ) the category of finite
and free F,[ z]-modules (resp. F((2)) vector spaces) equipped with a continuous action of 71 (.S, 5).
Then the dual Tate functor T on étale local shtukas is defined as

T_: EtShts,(S) - §MoVp((m (s5)] M= (M, 7ar) = Toy = (M @04 £(5)[2])™

where the superscript 737 denotes the 7); invariants. The rational dual Tate functor is defined
by

V_: EtShtg, (S) » §Modpoyim(ssy) M= (M, 7ar) = Vi = Ty @12 F(2))

We also need Tate functors for local H-shtukas. To define these we denote by Reppp,jH the
category of representations p : H — GL(V') where V' is a finite free F[z]-module and p a morphism
of algebraic groups over F[z]. Any such p naturally induces, as described in [AH14, section 3,
above Definition 3.5], a functor p, : EtShtg(S) — EtShty(S) that is compatible with quasi-
isogenies.

Let Funct®(RepppH, §9M0dp.)(x,(s,5)]) and Funct®(Repp.yH, $Modp(.)(x, (s,5]) be the
categories of the appropriate tensor functors whose morphisms are isomorphisms of functors.
Now the dual Tate functor 7 and the rational dual Tate functor V_ are defined by

T E'tShtH(S) — Funct®(R€p]F[[zﬂH, S'mUDF[[ZMm(S’g)]) L (E tpe T L)

V_: EtShtH(S) — Funct®(R€p]F((z))H, SEJJIODF((Z))W(SS)]) L~ (Vé p V, L)

§ 2.15 Tate Functors on Global G-Shtukas:

Now we assume that the tuple v = (v1,...,v,) is given by n pairwise different places on C' and
set C = C\{v1,...,v,}. We denote by QU := [Toe(c\w) Av the integral adeles of C outside v
and by A% := Q% ®0x Q= H,’Ue(c\y) Q. the adeles of C' outside v. Let RepgeG be the category
of representations p : G x¢ Spec O¥ — GL@u (V') where V is a finite free O%-module and p a
morphism of group schemes over O“. Let S be a connected scheme over Spf A, with a fixed
geometric base point 5. We denote by 9MModqgu(r (s,5)] (resp. Modyur (s,5)]) the category of
O%modules (resp. A¥-modules) with a continuous 71 (S, 5) action. For a finite subscheme D c C'

we set Dz = D xp, 5 as well as G|p, =G xcg Ds. Then the dual Tate functor 7- and the rational



dual Tate functor V_ on global G-shtukas are defined by

T_: V' (C,G)Y(S) — Funct®(RepoeG, Modou(r,(s.5)])

G |Tg:pr lim(p.Glp,)™
DcC

V. Vn%I(C,G)E(S) — Funct®(RepAgG, f)ﬁODAg[ﬂ.l(S’g)])

G| Vg:pe lim (p.Glp)™ ®0: A .
DcC

We remark that the functor V transforms by [AH13, section 6] quasi-isogenies into isomor-
phisms. Furthermore it is useful to know that there is a natural isomorphism LiLnDCC( p+G|p.)79 ~
[Toecro Toi(g) (pv) Writing p = (pv) oz With py := pxida,. Here Lj(G) is the étale local G,-shtuka
and Tr1gy(pv) = Tri(g)(Pv) where py is the representation of G, induced from p, by Weil re-
striction 7(see [AH14, remark 5.6]).

§ 2.16 H-Level Structures:
Let H be an open compact subgroup of G(A%). In this paragraph we define H-level structures

which is a generalization of the previous D-level structures. We denote by
woe : RepoeG — Modge wie : ReppeG — Modpw

the forgetful functors and by Isom®(wge, Tg) and Isom® (wf&bvg ) the sets of isomorphisms of
tensor functors which are defined for every global G-shtuka G over S, where S is as before a scheme
over Spf A, with geometric base point s € S. By the definition of the Tate functor (.S, s) acts
on E and G(O%) (resp. G(AY)) acts on wgy (resp. wj.) since we have G(0%) = Aut®(wgy)
by the generalized tannakian formalism [Wed04, corollary 5.20]. This induces an action of
G(0%) xm (8, 5) on Isom®(wgy, Tg) and of G(AY) x 1 (S, 5) on Isom®(wj., Vg). Now by [AH14,
Definition 6.3] a rational H-level structure 4 on a global G-shtuka G in v, (C,G)%(S) is de-
fined as a 71(S, 5)-invariant H-orbit 4 = vH in Isom®(wi.,Vg). We denote by VI #1(C,G)2
the category fibered in groupoids over (F,) g, with the following fiber categories. An object in
VE 1 (C,G)Y(S) is a tuple (G,7), where G € V,, 1 (C,G)%(S) and 7 is a H-level structure on
G. A morphism from (G,7) to (G',7") over S is a quasi-isogeny f : G — G’ that is an isomorphism
at the characteristic places v; and that satisfies Vo yH =+'H. (So f: Gleg\rs == G'leg\ry for
a finite subscheme 7" c C' with vy,...,v, ¢ T.)

Now let D be a finite subscheme D c C' with vq,...,v, ¢ D and let Hp be the open and compact
subgroup ker(G(0%) - G(Op)) of G(A®). Then we remark hat by [AH13, Theorem 6.4| there

is a canonical isomorphism of stacks
Vndp(C.G)* = v, P A (C,G)* (3)

Furthermore we note that for the conjugated group gHg ! with g € G(AY) there is by [AH13,
Remark 6.6] a natural isomorphism VZ.#1(C,G)¥ = V%Hgflc%”l(C,G)E sending (G,vH) to
(G vg~ (9Hg™)).

11
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In addition we remark that by [AH13, section 6| for a open compact subgroup H c G(AZ)

contained in H we have a natural finite étale morphism
Vi AN (C,G)* = vl AN (C,G)Y, (G,vH) ~ (G,7H) (4)

If we have additionally given a bound Z, at all places v € v we denote by VnE’HJ“i” YC,G) the
closed substack of VX 71(C,G) xspf A, SPf R that consists of those points (G,7) such that
G is bounded by Z,.

§ 2.17 Parahoric Bruhat-Tits Group Schemes

From the fourth chapter forward we will assume G to be a parahoric Bruhat-Tits group scheme,

where we call a smooth affine group scheme G over C a parahoric Bruhat-Tits group scheme, if
— all fibers are connected,
— the generic fiber G is a connected reductive group over () and

— for all v € |C| the group G(A,) c G(Q,) = G(Qy) is a parahoric subgroup in the sense of
[BT84, Definition 5.2.6].

For each parahoric subgroup in G,(Q,) there is a unique smooth affine group scheme H over
A, with connected special fiber, with generic fiber equal to G, and with H(A,) equal to this
parahoric subgroup. Since this group scheme is exactly given by G, our definition of parahoric
Bruhat-Tits group scheme coincides with the one in [AH13, Definition 3.11].

Now Bruhat-Tits group schemes can be constructed as follows. We start with a reductive
group scheme G over the function field @), which has a reductive model G' over an open sub-
scheme C' \ {wy,...,wy,} of C. For each of the pairwise different closed points w € w :=
{w1,...,wy,} we choose futhermore a parahoric subgroup H,, € G(Q,). Then H,, corresponds
as explained above to a smooth affine group scheme H,, over A,, with generic fiber G xg Q..
Consequently ( Hwew Hw) LI G is a group scheme over ( Hwew SpecAw) [IC\{wi,...,w,}. Since
(I_IwEM SpecAw) [HC\{w1,...,w,} — C is an fpqc covering and the identification H,, x4, Q. =
G xofw) Quw gives a descent datum for (I_Iw@ Hw) LI G, we can glue this group scheme using
faithfully flat descent [BLR90, section 6.1, theorem 6] to a group scheme G over C. This group
scheme is by [Gro65, Proposition 2.7.1] smooth and by [Gro67, Proposition 17.7.1] affine over C.
Therefore G is by construction a parahoric Bruhat-Tits group scheme satisfying G, = H, and
CrxoQ=Q.

Further we remark that if 7 : C' - C is a generically étale covering of C' and G is a parahoric
Bruhat-Tits group scheme over C' then by [Heil0, Example (3) page 2| the Weil restriction
.G (see also lemma 3.2) of G along 7 is again a parahoric Bruhat-Tits group scheme. In
addition we remark that parahoric Bruhat-Tits group schemes give an interesting class of smooth
affine group schemes over C since moduli spaces of global G-shtukas for such parahoric Bruhat-
Tits group schemes G are used by Lafforgue to establish in [Lafl2] and [Lafl4] the Langlands-

parametrization over the function field Q.



3 Functoriality of V7Z;”’H<%”1(C, G)

In this chapter we establish and analyze morphisms between moduli spaces of global G-shtukas,
which are functorial in changing the curve C and the group scheme G. Apart from the interest
of these morphisms in the study of VHE’H% 1(C,G) in general, there are two other motivations.
The first one is that the finiteness results in theorem 3.14 and theorem 3.26 supposedly enables us
to formulate in some future work a André-Oort conjecture for moduli spaces of global G-shtukas,
as explained more detailed in remark 3.28. The second motivation is the study of stratifications
of v L(C,G) in the following chapters.

Now the third chapter is divided into three sections. In the first section we define a shtuka datum
and morphisms of these. A shtuka datum contains all the necessary parameters to define a moduli
space of G-shtukas. Then a morphism is defined in such a way that it satisfies exactly the prop-
erties to induce a morphism of the corresponding moduli spaces. The fact that VnE’H%” L, G)
is indeed functorial in the shtuka datum is then seen in the following two sections. The second
section discusses the case that we only change the curve C' in the shtuka datum. The induced
morphism is constructed and it is proven in theorem 3.14 proven to be finite. In the fifth chapter
we use it again, when we sketch the proof of the fifth axiom.

A change f : G - G’ of the group schemeAG is analyzed in the third section. Before mak-
ing any assumptions on f the morphism VHE’HL%”I(C,G) - VZIEH’,%”I(C, G') is constructed
in general. Then, assuming that f is generically an isomorphism, we prove in theorem 3.20 a
projectivity and surjectivity result that is needed again for the first axiom in the fifth chap-
ter. Afterwards we consider closed immersions of group schemes. In this situation we prove
VTZ;E’H%M(C,G) - Vflg’H’ffl(C, G") to be unramified (theorem 3.23) and even finite if G is a
parahoric Bruhat-Tits group scheme (theorem 3.26). This morphism is used as well for the fith
axiom in the fifth chapter.

3.1 The Shtuka Datum

In this section, we define the category of Shtuka-data. While we can easily define the objects,

we need some further explanations to define the morphisms.
Definition 3.1. A Shtuka-datum is a tuple (C,G,v, Z,, H) where
- C is a smooth projective geometrically irreducible curve over F,
— G is a smooth affine group scheme over C,
- v=(v1,...,0p) is a tuple of n closed points in C' (not necessarily disjoint),

Zy 15 a bound in the sense of § 2.0,

— H is an open compact subgroup of G(AY).

Before we can define morphisms, we need the following lemmas. Let 7 : X — Y be a morphism
of schemes. We recall that for any functor F' : (Sch/X)? — Set the push forward =, F :
(Sch/Y)°? — Set with respect to 7 is defined by (T' - Y) — F(T xy X). In the case that F’

13
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is a scheme (i.e. representable) and ., F' is also representable, we call 7, F' the Weil restriction
Ry vy (F) of F'. The basic properties and some conditions for the existence of Weil restrictions
are discussed and developed in [BLR90, Paragraph 7.6] and [CGP10]. We have the following
lemma, where we call a morphism of schemes finite locally free, if it is finite, flat and of finite

presentation.

Lemma 3.2. Let m: X = Y be a surjective, finite locally free morphism of schemes, let G be a

smooth affine group scheme over X and let G be a G-torsor on the big étale site of X, then
1. .G is a smooth affine group scheme over Y
2. .G is a m.G-torsor on the big étale site of Y.

Proof: Since 7 is finite and faithfully flat we can apply theorem 4 in [BLR90, Paragraph 7.6] to
see that the Weil restriction 7. G exists indeed as a scheme. Let U, V,W € Fun ((Sch/X ), Set)
be arbitrary with natural transformations f; : U - W and fy: V — W, then for S € (Sch/Y") we

have

(U xw V)(S) = Homx(Sxy X,Uxwy V)
= {(f,9) [f e Hom(S xy X,U), ge Hom(S xy X, V), fiof=faog}
= (mU xzw 7 V)(5).

This shows that m. commutes with fiber products and it follows that 7.G becomes a group
scheme over Y.

Let U c Y be an affine open. Then 7, (X xy U) = U and the compatibility with the fiber product
implies 7, (G xx X xy U) =7,.G xy U. Now 7,G xy U is affine because G is affine over X and =
is finite. Since the Weil restriction of an affine scheme is by construction affine we conclude that
.G is affine over Y. Furthermore we know by [BLR90, Chapter 7.6, Proposition 5| that 7.G is
again of finite type and smooth over Y, which proves the first part.

Now let G be a G-torsor over X. Since G is smooth and affine, G is represented by a smooth
affine scheme over X, by faithfully flat descent, [Gro65, Proposition 2.7.1] and [Gro67, Proposi-
tion 17.7.1]. [BLR90, paragraph 7.6, Theorem 4| and [BLR90, paragraph 7.6, Proposition 5| tell
us again, that 7, G is a smooth scheme over Y. Using once more the compatibility of the fiber
product with the Weil restriction, the action of G on G induces an action of 7,G on 7,G and
additionally the isomorphism G xx G ~ G xx G yields an isomorphism 7,G xy 7,G ~ 7,G xy 7.G.
It remains to show that m,G has étale locally on Y a section to m,G. Since .G — Y is smooth

and surjective this is content of proposition [BLR90, paragraph 2.2, Prop. 14]. a

Now morphisms between G-torsors are sent by 7, to morphisms of m.G-torsors and in fact we

have the following lemma.

Lemma 3.3. Let m: X = Y be a surjective, finite locally free morphism and G a smooth affine

group scheme over X. Then the functor

Tyt {G—torsors on X} — {W*G—torsors on Y} ,
G r—mg



3.1  The Shtuka Datum

induced by lemma 3.2, is an equivalence of categories. The inverse functor sends some m,G-torsor
G’ to Q’Xﬂ*mG G.

Proof:  First we prove that m, is fully faithful. So let g,@' be two G-torsors over X and
f": 7.G - 7.G be a morphism of 7, G-torsors. We choose an étale covering U’ — Y with
m.G(U") + @ # m.G(U'). Now this implies automatically that U = U’ xy X - X is an étale
covering with G(U) = @ + G(U). We choose two sections u € G(U) = m,.G(U’) and @ € G(U) =

7.G(U"), which determine trivializations

o 1 Gxy U - m,.Gxy U & mGxy U - 7m1,.Gxy U’

a:GxxU->GxxU &:ngUeGXXU

with o'71(1) = a™!(1) = w and @ 1(1) = @ (1) = &. Now we consider the following diagrams,
where Uy := Uxx U, Uy := U’ xy U’ with projections py, p2, pj and py and h := & o (f'xidyr)oa’t,
Note that since h is 7.G-equivariant h is determined by h := h(1) e 7. G(U") = G(U). This same
h defines then a morphism of h : G xx U - G xx U of G-torsors on U and we set f x idy :=
dlohoa:GxxU—>GxxU.

.G(U") h m.G(U") G(U) h G(U)
o o’ o4 o
/p’1 p'2 /)1 p2 /
m.G(U") —— m.G(U") pi| py  G(U) : G(U) p1| |p2
fixidg [xidy
Yk P | Pe ‘ pin | |72
Py | [Pl m.G(U3) 7.G(US) p1]| |p2 G(Uz) G(U7)
pye’ py'h ey P p3h pia
py o X Py Py - p3a
T.G(U; T.G(U3) G(Us) G(Us)

frxidy, Ixidy,
Now by definition of the Weil restriction we have equal sets at the corresponding vertices of the
two cubes and the maps p!, p} coincide with p; and py. Furthermore by definition of o', h, @' these
maps coincide with the maps «, h, @ in the right hand cube. The morphisms pi*a’ : 7.G xy Uy —
.G xy U} and pja are uniquely determined by the preimage of 1 € m.G(Uj}) = G(Uz). But
this preimage is in both cases given as pj(u) = p1(a™1(1)) = pj(a/71(1)) € 7.G(U}) = G(Uz).
Hence the maps p|“a’ and pja coincide and equally pi*h, p"@’, pia’, pyh, pi@ coincide with
pih, pi@, pio, psh and pi@ respectively.

We further denote g’ := p5a’ o pi*a’~1(1) € m.G(U}) and §' = py@ o pf*@ (1) € . G(US). So
that we have ¢’ = g == paopia™(1) e G(Uz) and §’ =G := pia o pja (1) € G(Uz). With these

notations we get the following bijections:

frhe=(@o( fxidy )oa1)(1)
1:1

Homg(G,0) {heG(U) |gopih=pshog}
|

|
Y

Homﬂ*G(T(*ga W*g)

f’Hh'::(a’o(‘f’XidU’)00/71)(1)
1:1

{h' em.G(U") |G opih=p5hog'}

15
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Here the horizontal bijections are due to faithfully flat descent [BLR9I0, paragraph 6.1, Theorem 6]
and the fact that the condition Gopjh = p3hog is equivalent by definition of g,§ to pj (& lohoa) =
p3(@tohoa) and for § o p*h’ = pih' o g’ respectively. The equality on the right follows from
the identifications in the above cubes. To prove the fully faithfulness it remains to show that the

bijective dashed arrow is given by m,. By definition of 7, f the following diagram commutes

Hom(U',7.G) -t Hom(U',7,G)

Hom(U' xy X,G) —f>Hom(U’ xy X,m.G)

which shows that f and 7, f map to the same h on the right hand side.

It remains to show that , is essentially surjective. So let G be a 7, G-torsor over Y and choose
again an étale covering U’ — Y and a trivialization o/ : G xy U’ <> 1,G xy U'. Let Uy = U’ xy U’
and ¢’ = pha’ o pl* a1 (1) € m.G(U}), where pya’ o pi*a’™! : 7.G xy Uy = 7.G xy Uj. So
the descent datum of G is isomorphic to (m.G xy U’,¢'). Now U := U’ xy X — X is an “étale
covering and we set Gy = G xx U as well as U := U xx U = Uj xy X with projections p1,ps.
Let g € G(Uz2) be equal to ¢’ using G(Uz) = 7.G(Us). Then (Gy,g) is a descent datum that
comes by [BLR90, beginning of paragraph 6.5 and paragraph 6.1, Theorem 6| from a G-torsor
G on X. Now it is clear that (7.Gy,7.g) = (7:G xy U’,g"). Therefore we have 7,G ~ G which
proves that . is essentially surjective. We only need to prove that for every G-torsor G on X
the torsor 77, G x™ ™G G s isomorphic to G. With the same notation as above G is given by
the (G xx U, g) and 7,.G is given by the descent datum (7,G xy U’,g"). Restricting the latter
torsor to X we get the descent datum (7*(7.G xy U'),g x idx) = (m.G xy U’ xy X, g x idx).
Using the adjunction Homy (7.G,7.G) = Homx (7*7.G,G) we denote by ¢ : 7*m,.G - G the

™ mG¢G gives us the descent

morphism corresponding to id,,g. Now applying the functor x
data (7% (.G xy U’) x™ ™6 G, (¢ xidy, 1g)). Since ¢ maps (g’ x idy) to g this descent data

is isomorphic to (G xx U, g), which proves the lemma. O

Now let 7: C' - C’ be a finite morphism from C' to some other smooth projective geometrically
irreducible curve C’. This morphism is then automatically faithfully flat [Har77, chapter II Prop.
6.8 and chapter III Prop. 9.7]. Let further (C,G,v, Z,, H) be a shtuka datum as in definition
3.1. Since G is a smooth affine group scheme over C, this allows us to apply lemma 3.2 and 3.3

in this situation.

Remark 3.4. We denote by 7! (C,G) the category fibered in groupoids, whose S-valued points
for some F,-scheme S are given by isomorphy classes of G-torsors over Cg. By lemma 3.3 7,
induces an isomorphism #(C,G) — 1 (O, 7, G).

Let w; = m(v;) and w = (wy,...,wy). Our next goal is to define the bound 7,72, = (Z,,); at the
points w;. We need the following lemma and general remark, where w is a closed point in C’, Al
is the completion of the local ring O¢r y, and 7, = T xidspee A7, : Cxcr Spec Ay, = Lo Spec A, —
Spec Al,.

Remark 3.5. In the next lemma, we need the following general fact about Weil restrictions.

Let X,Y,S be schemes over some base scheme Z, 7 : X - Y a Z-morphism, M an X-scheme
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and Yo=Y xz 5, Xg=X xz 5 and Mg = M x5 S the appropriate base changes. Then we have
(mxidg) (M xz S)=m.M xzS. This is easily seen by the equation for T' € Sch/Yg:

(me M xz S)(T)

(meM xy Y)(T) = Homy (T, m. M) = Homx (T xy X, M)
Homxy (T xy X, Ms) = (w x idg).(M xz S)(T).

Lemma 3.6. We have (7w )+(Iper—1(w) Gv) = (7:G)w as a group scheme over SpecAj,.

Proof: This follows formally from remark 3.5 with M =G, X =C,Y =Z =C" and S = Spec A,

since we have

(mw)«(J [ Gv) = (7)<« (G x¢ [ [ Spec Ay) = (7w)+ (G x¢r Spec Ay) = mG xcr Spec Ay = (1.G ).

vlw vlw

O
Corollary 3.7. We have HL+@U = L (m.G)y as group schemes over F,.
v|w
Proof: Let R be a connected Fy-algebra, then we have:
LT (7m.G)w(R) = (m.G)(R[2w]) = Homsgpee a,, (Spec R[zy] ®F, Fu, (1:G)w)
= Homgpee A, (Spec R@Fqu, (m:G)w)
= HomSpec Ay (Spf R®Fqu7 (Ww)*(]_[ Gv))
v|w
= Hom]_[v‘w Spee Av(Spec R@]Fqu ® A, H Ay, H G»U)
v|w vjw
= I—[HomgpeC A, (Spec R[z,] ®r, Fy,Gy) = H@;(R[[zv]])
v|w vlw
=[] L*Gu(R).
v|w
O
We have the following 2-cartesian diagrams:
]\'[]-'l@; F, ]-'Z(W’V*G)w F,

|

A (Fy L'Go) —= IANFLLE) ) (Fy L (125 a) —= (B, L(T.B))
vlw

v|w

By corollary 3.7 the lower stacks in the diagrams are isomorphic, so that we get an isomorphism

[Tojw Flg; — Fl . and by the base change with the compositum F of the finite fields F, for
all vjw we get an isomorphism [T,y [Tiez/deg v FlG, ¥, F = Iliez/deq w Fl(r. ), ¥F, F- Since gdeg w

deg w

invariant components are mapped to o invariant components, it restricts to an isomorphism

H H ‘FZGU XFU F = fl(W*G)w XFw ]F

vlw leZ/deg v
deg wll

17
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Now let R be a DVR with F ¢ R and such that there exists a representative Zv, R of Zv for all
v € v. Consider the ind-closed subscheme

[T II ZucIl II Fle, xe, Sof R

vlw leZ/deg v vlw leZ/deg v
deg wl|l deg wl|l

where ZAUJ is always the closed stratum S(1) xp, Spf R except for v € v and [ = 0, where we set
ZAUMO = Zv g. Here S(1) denotes the closed Schubert cell in 1-L*G, € Flg,. Via the previous
isomorphism this defines an ind-closed subscheme in Fl (. g), *F, Spf R. ThlS defines a bound

Z, in the sense of [AH14, Definition 4.8] in Fl(r,c), and we set T Zy = Ly = (Zw, )i

Next we define 7, H. We recall that H was an open compact subgroup of G(A%). Since v c
7 (w) c |C| we have a quotient map of topological rings A% — AT @),

Since this map is open, it induces by [Conl2, theorem 3.6] an open continuous group homo-
morphism G(A%) — G(AT™ 1(“’)) We have A¥ xcr C' = A% xr ) = A™ (@) where n and 7’
are the generic points of C' and C’. This gives us with the definition of the Weil restriction
m.G(AY) = G(A”_l@)), where both groups carry the same topology by [Conl2, example 2.4].
Now the image of H under this morphism gives us an open compact subgroup in 7,G(AY) that

we denote by 7, H.

Remark 3.8. We have seen in § 2.12 that there is the possibility to define level structures using
finite closed subschemes D of C' and in § 2.16 we have seen that D-level structures of a G-shtuka
correspond bijectively to Hp-level structures, where Hp = ker(G(0%) - G(Op)). Now we
can also consider the Weil restriction m,D of D. It is a closed finite subset of C’ consisting
of the points {w € |C’'| | w x¢» C ¢ D}. And with a D-level structure of some G-shtuka G
we could associate a 7, D-level structure of the corresponding 7,G-shtuka 7,G (which will be
defined in proposition 3.12). But compared to the associated 7. H-level structure that we will
define in theorem 3.14 we would lose some information at the points D\(7.D x¢r C'), which is
seen in the following way. Since we have 7.D xcr C' ¢ D we have Hp c Hy, px.,c and hence

m«Hp c e Hr, px 0. Now

Hr.p= ker(ﬂ-*G(@Q) - F*G(Oﬂ'*D)) = keT(G((O)TF_lw) - G(OW*DXclc))
= Hﬂ*DXc/C n G(Aw_l(ﬂ)) =1m (Hﬂ'*DXc/C - G(Aw_l(w))) = 7"'*]L—lvﬂ'*Dxc/C’ >m.Hp

shows that m, Hp is in general a finer level than 7, D (or equivalently H, p) and the previous

equation shows that the information is lost exactly at the points D\(7.D x¢r C).

All these previous explanations concerned the case that we change the curve in the shtuka datum
but we can also change the group scheme in this datum. Let f: G — G’ be any morphism of
smooth affine group schemes over C' and v a closed point in C'. Firstly this induces a morphism
L*G, - L*G], of the positive loop groups as well as a morphism LG, - LG/ of the loop groups.
Consequently we also get a morphism Flg, — Flg; of the affine flag varieties. Secondly such
a morphism induces a morphism fgo : G(A2) - G'(A2) of locally compact Hausdorf spaces by

[Con12, Proposition 2.1]. Now we can define morphisms of shtuka data.
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Definition 3.9. A morphism between two shtuka data (C,G,v, ZAQ,H) and (C",G', w, ZA’M H")
is a pair (7, ) such that:

- 7:C = C" is a finite morphism with 7(v;) = w;
- f:7.G > G’ is a morphism of smooth affine group schemes over C’

— The morphism (7. Zy)r — || fl(mG)w,R -1 ]:_ZG;U,R factores through Z'%R, where R is

wew wew

a DVR such that there exists representatives (. ZQ)R and Z{U,R of the corresponding bounds
= faw(m.H)c H'

With this definition we have reached the goal of this section. In the next two sections we will prove
that such a morphism induces a morphism of the corresponding moduli stacks and determine

some of its properties. But before we give some remarks.

Remark 3.10.

— Let m: C' - C' be a finite morphism and w = 7(v). With the definition of 7, H and 7. Z,
on page 18 it is clear that (w,idr,¢): (C,G,v,2Z,,H) - (C',m.G,w, 7. Zy, 7. H) defines a

morphism of shtuka data
— Every morphism (7, f) of shtuka data factorizes as (id¢, f) o (7,id,G)-

- If f:7.G - G’ is an isomorphism in the generic fiber we have 7,G(A%) = G'(A%) so that

we can naturally choose H = H'.

- If f:7.G - G’ is smooth in the generic fiber, then fyw : m,G(A%) - G'(A%) is an open
map by [Conl2, Theorem 4.5 so that we can naturally choose H' = fpw (7, H)

- If f:7.G - G’ is proper in the generic fiber, then fyw : 7,G(A%) - G'(AY) is a topologi-
cally proper map by [Conl2, Proposition 4.4| so that we can naturally choose H = f&i, (H")

3.2 Changing the Coefficients

In this section we prove that a morphism of shtuka data (7,id), where we only change the curve,
induces a finite morphism of the corresponding moduli stacks. We firstly prove this for the
moduli stack V,,.2#1(C,G), where the characteristic sections are not fixed and no boundedness

condition or level structures are imposed. For this purpose we need the following lemma:

Lemma 3.11. Let S be an Fy-scheme with n morphisms s; : S — C for i =1,...,n. Then the

scheme theoretic image of Cg := Cs\U; T's, in Cg equals Cg.

Proof: Since D :=U; T, is an effective Cartier-Divisor on Cg over S, we find an affine covering
(Uj)jes of Cg with U; = Spec Bj such that D is the vanishing locus of an element f; € B;
that can be written as f; = Z—j with two regular elements a;,b; € B; (see [GW10, after definition
11.24]). Now the ring homomorphism B;j - I'(U;\D, O) is injective, which is seen as follows. An

element z € Bj is send to 0 if and only if f]mx =0 for some m € N. The latter condition implies
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m
J
dense in Spec B; (compare also [Gro67, Lemma 20.2.9]). Now gluing all the U; shows that for

ax = 0 and since a; is a non-zero divisor this means x = 0 so that Spec B;\D is schematically
every affine open V' c Cg the ring homomorphism I'(V,0) - I'(V\D, Q) is injective and we
conclude that Cy is schematically dense in Cg (see [Gro67, p. 20.2.1]). o

Proposition 3.12. Let 7 : C - C' be a finite morphism of smooth projective geometrically
irreducible curves over Fy and let G be a smooth affine group scheme over C. This induces a

finite morphism of the moduli stacks
T VpN(C,G) - v, (C 7, G).
which factors through a closed immersion V, 1 (C,G) < V1 (C', 7.G) xcm C™.

Proof: Let S be an Fy-scheme and (G, s1,. .., 8n,7g) € Vo 2 (C,G)(S). We describe its image
(G',s],...,8,,7g) to define the morphism. The torsor G’ is given by (7g).G and the sections
si + S = C are mapped to the composition s} := mos; : .S — C’. This implies 75(U; T's,) c U; I’s; c
C§. Let 6:9 = C'g\(Uz‘Fs;) and Cg = Cs\(u;il's,). Then U :=C x¢r 6@ =Cyg xcr, 6@ is open in Cg.
We denote by 7y := 7 x4q,, id(fﬁs :U - C§ and we have (1) (G xc U) = m.G xcr Cf. Now we
restrict 7g : U*g|6§ -G |55 to Ug and apply lemma 3.3 to my. The category equivalence gives
us the desired morphism 7g/ : (70)«(0"G xcr, C) = a*g'|5v,s = (10)+(G xcy, Cg) = g’|5g. This
defines a global 7, G-shtuka (G',s1,...,s;,75) over S and therefore the morphism of the moduli
stacks.

We now show that this morphism is representable and finite. Let S be again an arbitrary
scheme over F, and G’ : S - v, (C’,7.G) be given by G' = (G',7,s},...,s),). Then
Vo (C,G) Xy, 21 (Cr.c) S s the category fibered in groupoids over Sch/F, whose fiber cat-

egory over an Iy -scheme 7T is given by
{(ng :T - S, 3) ‘ G =(G,7G,51,--,6n) € Vp ' (C,G)(T) and B:g*G = Tr*g}.

Using the n sections s},...,s,, : S - C’ and the morphism 7 : C' - C" we set S = S xgm C™.
Since S'x 1 (v 7, @) A1 (C,G) = S by remark 3.4 we know that Homy, (T, S) is in bijection with
the tuples {g: T - S,G: T - #1(C,G),a : g*G' = m.G}. Consequently the F,-morphisms
T — S are in bijection with the tuples (G, 81y, 8n,9,), where (G,g,a) € S(T') as before and

S1,.--,8n : T'— C are morphisms making the following diagram commutative for all i=1,...,n

_ 9.9
Si st
/

EEYe [

Q=<—4

We claim that we get a morphism v, (C,G) X A(Cl G S S that is injective on T-valued
points (hence a monomorphism) and satisfies the valuative criterion for properness. Then this
implies by [Gro66, Proposition 8.11.5] that v, (C,G) Xy (Cm.G) S 1s a closed subscheme of
S. So first of all a given object (G,7g,51,...,5n,9,a) in (V.5 (C,G) xg (i) S)(T)
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is sent to (G,s1,...,80,9,a). Since a : ¢*G" <> m.G is not only an isomorphism of tor-
sors, but also of m.G-shtukas the n-sections g o s; of ¢*G" and (s; o 7) of .G have to co-
incide, so that (G,s1,...,8n,9,a) is a well defined object in S(T). This induces the mor-
phism Vv, (C,G) Xy (O G) S = S. Further it was claimed, that this morphism is in-
jective on T-valued points. So given two points (G, 7g, 1, - - -, 8n, 9, @) and (G,7g, 81, -, Sn, g, @)

we need to show that this implies 7g = 7Tg. Since « is an isomorphism of m,G-shtukas, we
1 1

have a o, 7g = g*7' o o*a”l = a”t oG 0*(7.G) & — 9°G'|5r, where we write again
T T

CA'; = CT\U; I’S;. This implies m.7g = 7.7 and using lemma 3.3 applied to 7 x id@;xclc we
T xenC = TG T e C We even need to know that 7g = 75. In the following diagram the
restriction of (7g, Té) to C7. x¢r C factors by the previous observation through the diagonal A.

see Tg

(76,75)
G*Q‘GT e QIGT o g|5T

T &

__ N .
CT xeiC g‘cT

Since G is separated over Cp the diagonal is a closed immersion and (7g, Té) factors already over

Cr through the diagonal if the scheme theoretic image of o*G
Since taking the scheme theoretic image is stable under flat base change by [Gro66, Théoreme
11.10.5], this is the case if the scheme theoretic image of 6’; xcr C'in Cp equals Cp. By the same

argument this follows if the scheme theoretic image of C’i} in C7. equals C.. Now this is content

: * - ~*C| _
T xenC no g|5T equals o Q‘CT.

of lemma 3.11 so that we can conclude as desired 7g = 7.

Next we claimed that the morphism satisfies the valuative criterion for properness. So let

(H9T’H )Tl 7"'7rn9f75)

Spec K S Xvnjfl(C’Jr*(G) Vnﬁl(c, G)
Spec R (G,81,-8n,9,) 5 finite S

be a commutative diagram, where R is a complete discrete valuation ring with fraction field K,

maximal ideal m and algebraically closed residue field kg = R/m. Note that R is a kr-algebra.

We have to prove that there exists a unique dashed arrow making everything commutative. The
commutativity of the square shows H = j*G, s;0j =1r;: Spec K - C, f=goj:Spec K - S
and j*a = . To define this dashed arrow we have to extend (G,si,...,s,) to a G-shtuka

(G,7G,51,--.,8n) over R such that « extends to an isomorphism « : ¢*G’' — .G and j*7g = 4.

So we define this isomorphism 7g : U*Q|5§ - gy@} Since J#1(Ch, 7, G) and %1(6’7% xor C,G)

1

are isomorphic, Tg|c"r;; e is defined by a o g*1gr o 0*a™". Furthermore we know that 7¢g is

defined on the generic fiber Cx ¢ Cg by Tg|5; =j"1g=Ty. Solet pe 5;\((7; xor CUCk), ie.

pe ((Uz Fs; xor C)\U; Fsi) N CRjm- It remains to show, that 7g extends to p. Since p is closed
we choose an open V c C’VR/m with VN(U; Ty xor C) = p and set V = V\p. Then we consider the

21



22

3 FUNCTORIALITY OF V2" #1(C,G)

2-cartesian diagram of stacks fibered over kgp, (compare [AH14, Lemma 5.1]):

ANV, G) AN V,G)

1| |

%l(lﬁ}R,LJer) —>¢%01(HR,LGP) .

Here s (V,G)(X) is the full subcategory of ' (V,G)(X) consisting of those G-torsors over
Vy=Vx xr X that can be extended to a G-torsor over Vx. Now o*G|y, and Gly,, define two R-
valued points in 71 (V,G) and 7gly,, is an isomorphism in A1V ,G)(R) that is already defined.
Since R has algebraically closed residue field, we can choose trivializations o : L, (07G) = LG,

and ay : L} (G) - LG, (JAH14, Proposition 2.4]). Then a3' o 7g o ay : LGy g — LGy g is an
isomorphism in ! (kg, LG)(R) given by an element h € LG,(R). We know by assumption that
the pull back of h to K is given by an element hy € L*G,(K), since 7g is generically already an
isomorphism over V. But since L*G,, is closed in LG, it follows that h € L*G,(R). This implies
that the isomorphism 7¢|i; comes from an isomorphism in 7 (V,G)(R). So 7¢ extends uniquely
to p and the valuative criterion is proved. This proves that v, 2! (C, G)xg 1 (C'7.G)S 1s a closed
subscheme of S and since S is finite over S it proves as well that v, (C,G) - v, (C', 7, G)

is a finite morphism. O

The next goal is to prove that for any shtuka datum (C,G,v Zv,H) the morphism 7 : C' - C’

induces also a finite morphism Vyzf’He%ﬁl(C,G) - VZ*Z”’W*H%”I(C’,W*G). For this we need

the following lemma that concerns the boundedness condition. Given a global G-shtuka G in
Vo (C,G) over S, we recall that we introduced in § 2.10 the global-local functor T',, that
associates with it a local G,,-shtuka I',,(G) over S. On the other hand we explained (compare
also [AH14, Remark 5.6]) that base change with Spf Ay, xp, S = [Tiez/deg v; V (@;,1) gives a local
Go,-shtuka L} .(G) over S. Here G, denotes the Weil restriction Res 4, JFql20,1Gv;- Now let Z,,
be a bound in F lg,, and R an DVR over Ay, = Fy,[ 2, ] with a representative Z,, r ¢ F lG,, .r- We

have ]:l XF o[, 1Spf R = H ]:ZGWR. Let S(1) = Ly, Gy, -1 ¢ Flg,, be the closed Schubert
Z/deg v;

variety and S(1)g = S(1) xg, Spf R then Zy, rxS(1)gx---xS(1) g defines a bound in .7:"1@; that
we also denote by Z,, x S(1) x ---x §(1). We have the following lemma.

Lemma 3.13. Let G € v, (C,G)¥(S) as before. The local G, -shtuka T, (G) is bounded by
Zy, if and only if the local Gy, -shtuka L (G) is bounded by Z,, x S(1) x --- x S(1).

Proof: ~ We choose an étale covering S” of S that trivializes L, (G) as well as o*L; (G).

particular " trivializes also T',(G) and ¢%*T,,(G). We fix such trivializations and call them
a:Ly(G)s — L* GUiS,, a oL (G)s — L*Gvis,, a:T1,(G)s — G x¢ V(ay,0) and
o o™, (G)sr — G x¢ V(ay0). Denote by 7; the Frobenius morphism 7g restricted to
V(ay, ;) for j=0,...,d -1, where d = deg v; = [[F,, : Fy]. So the local shtuka I, (G) is given by
(GxcV(ay,0), 900 Ty 0- 0o D* 7, 1) and aorgoo* - 00D 1y joa’ T LG,, s = LG, s
computed in s (F,,, LG,,)(S") defines a morphism S" — LG,,. Now I';,(G) is bounded by Z,,
if and only if the morphism S’ X Ry, Spf R - LGy, XF,, Spf R — flei,R factors through
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Zy; - Since T is an isomorphism outside the graphs of s;, 71,...,74-1 are isomorphisms. Hence
o*ri0---00(@™ D 7y 1 0o/t comes from some other trivialization 3~ : G xc V (ay,0) = 0Ty, (G).
This shows that 7o o*770-+-0 U(d_l)*Td_l is bounded by Z,, if and only if 79 is bounded by
Zy;. Now @oto(al)™: Lé;ys, = Lé:,;s, computed in s (F,, LG,,)(S") defines in the same
way a morphism S’ — L@; which induces a morphism S’ *Ry,, Spf R - ]—"l@vi xp, Spf R =

H F ZGUZ- XF,, Spf R. Note that the morphism in the j-th component of [T F ZG,%_ X, Spf R
leZ]degv;
is exactly defined by @o 7; o (&@)~!. Since 1,...,741 are isomorphisms the morphism into the

j-th component with j > 1 always factors through S(1)r. This implies that 7 is bounded by
Zy, xS(1) x---x §(1) if and only if 79 is bounded by Z,,. ]

Now we can prove:

Theorem 3.14. Let (C,G,v, 2Q,H) be a shtuka datum and w: C — C' a finite morphism of
smooth geometrically irreducible curves over Fq with w; == w(v;) and w := (wn,...,wy,). Then the
morphism (m,idr,c) : (C,G,v, ZAQ,H) - (C", .G, w, 71'*22, m.H) of shtuka data (see definition

3.9 and remark 3.10) induces a finite morphism of the moduli stacks
mo v 0,6 - v T e e L G).

Proof:  Let S be an Fy-scheme and (G, s1,..., s, 7g,7) € VnE’ijl(C,G)(S). We describe
again its image (G',s1,...,s},7¢/,7") in Vnﬂ’ﬂ*H,%”l(C',mG)(S) to define the morphism. The
m.G-torsor G' = (G',s!,...,s!,7g) is already defined by the morphism in proposition 3.12, but
we have to prove that it lies indeed in Vf%%”l(c, m.G)(S). We will do this first and then
define the m, H-level structure 4'. Since the section s; : S — C' is mapped to s, := mos; and
s; 1s required to factor through Spf A,,, we easily see with 7(v;) = w; that s; factors through
Spf Ay,. Furthermore this shows that C'¢\U; Ly o C"™ xp, S and Cs\U;T's; o C* xp, S where
we use the notation C* = C\{v,...,v,} and C"™ = C"\{w1,...wy}. It remains to show that 7g
is bounded by Z,, to see G’ € Vgﬂﬁol(C”,w*G)(S).

Now by assumption 7g is bounded by Z,,, which means by definition that the local shtukas
I'y,(G) are bounded by Z,, for all 4. By lemma 3.13 this is equivalent to the fact that L; (G) is
bounded by Z,, x S(1) x---x S§(1). Now consider the following 2-cartesian diagram (compare §
2.9 and [AH14, Lemma 5.1]) where we set U := C"* x¢r C.

HH(C,G) K (U,G) ()
nv L;l H'u L’Uj
Hveﬂ‘l(y) A (FQa L+@;) - Hveﬂ‘l(g) A (an Lé’i)) :

Here 21 (U,G)(S) is the full subcategory of #'(U,G)(S) consisting of those G-torsors over
Us that can be extended to a G-torsor over Cs. Now the categories #1(C,G) and 21 (U, G)
are by lemma 3.3 equivalent to /#!(C’,7.G) and ' (C",m.G). Furthermore the categories

[1 #'(F,L'G,)=]]#"F, [] L'G,) and

ver~1(w) wew ver—1(w)
[1 #'(FLGy) =] #'(F,, ] LGu)
ver—1(w) wew ver~1(w)
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are by corollary 3.7 equivalent to [T,e,, 7" (Fg, L'7.G,,) and [Ty, 7 (Fq, L7, G,,). Therefore

the whole diagram (5) is equivalent to the diagram

HNC, 7. G) AN (O™, 7.G)

[ LE] [ Lwt
Hweg ‘%pl(an L+7T*Gw) - Hwey %1 (Ftb Lﬂ—*Gw) :

Now we choose some covering S over S that trivializes L;G,o* LG for all v € 77! (w) and fix
some trivializations oy, : L} (G)s: - L*Gygr, o, : 6*L¥(G)sr = L*G,g. Then (G,7) defines a
tuple [Tyew ( o L*Gyg, o @w o Lu(T|v) © 0/;1) and the equivalence of the diagrams shows
that it corresponds to the tuple [Tie, (LWZ@;,S/, Oy © Loy (m,T|or ) © 0/;1) defined in the same
way by the shtuka (7.G, 7. 7). Here ay,, ), are the trivializations corresponding to [Tojw v and
Hv‘w o',. Now choose some finite extension R o [F4[¢] such that there are representatives Z, r
for all v € v. Using the 2-cartesian diagram

I Flg F,

ver~(w)

l

Moen-t(w) 7" (Fg, L*Gy) — [yer-1(w) 2" (Fq, LGo)

the tuple (ITyjw L*G,sr, [Tojw @ © Lo(Tlrr) © o/;') defines an S’ xR, Spf R-valued point in
oo Flg: *xk, SPf R = Tlojw [liczjdeg v Fle, xr, Spf R. By lemma 3.13 the boundedness of
G at all the points v € (vna ' (w)) by Z, is equivalent to the boundedness of L;(G) by
[liez/deg v Zvi With Zy o = Z, for all v € v and Z,; = S(1)g for all v ¢ v and [ # 0, which means
by definition, that the above S’ xg, Spf R valued point factors through [1,, [Tiez/deg v Zov,i-
The tuple (L' .Gy 51,5, gy © Lw(wjr|c*) o al;l) defines in the same way a morphism S’ XR,
Spf R — fl(mw xr, SPf R =1licz/deg w F ln.G,, ¥F, SPf R. Composing with the isomorphism
o Flg; = Fl 5, the above morphism factors also through [Ty, [Tiez/deg v Zv- With lemma
3.13 and the definition of m,Z, on page 18 it follows, that 7.G is bounded by 7. Z,.

Next we have to define the 7, H-level structure 7. We fix a geometric base point 5 € S and we
choose for all closed points v € C\v a trivialization L;G_ =~ (L+(,GTU7N(§)’T = 1), which exists by
[AH14, Corollary 2.9]. This provides also trivializations
Li(m.Gs) = [1LiGs = [1 LGy s(s) = L' TG o)
vlw vjw
We denote by £, and L, the shtukas L;G_ and L;(7.Gs). Now these trivializations induce

isomorphisms

Brwge= [] Trg = [] Teu=Tg

veC\v veC\v
T w(c[)))ﬂ = H 7-L+7r*Gw = H Tﬁiw = 7;1'*9'
weC\w weC\w

We write wfo = wdy ®ge AL and w'jw = wiw ®guw AL Now 7' oy e Aut®(w3.) is given
by an element g € G(AY) and the H-orbit of v is S o gH. Now we can use the projection
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G(AY) > G(A”fl@)) = m,G(AY) to define 7,g € m,G(AY) as the image of g. This corresponds
to an element in Aut(w'3w). Therefore m, 3o, g defines an element ' and consequently an , H-
orbit in Isom®(w' jw, Vw*g ). This orbit is independent of the representative 7 since w, H was de-
fined as the image of H under the above projection. Let p € 71(S,3) since vH c Isom®(w$., Vg)
is m(S,3) invariant, we know that there is h € H such that py = vh. This defines a group
homomorphism ¢ : m1(5,5) - H and we set ¢ : m(5,5) - H — w,H. Let p € m,.(S,3)
and v € Isom®(w'gg,vﬁ*g) be as above, then p operates by py = v'%(p) and in particular
71(S5,8)y ¢ v'm H. This means that the orbit v'm, H is 71(95,5) invariant and defines a level

structure 4" of G'.

After constructing this morphism, we now prove that it is reprebentable by a scheme and finite.
By proposition 3.12 it is clear that the morphism Vn N (C,G) - Vn LN (C, 7, G) is finite.
Now we find some finite subscheme D c C such that Hp := ker(G(0%) - G(Op)) is a subgroup
of finite index in H. Then we have by § 2.16 the following diagram:

Zv7 finite étale Zv7 finite étale

HV(C,G) 1o 10, 6) VEALC,G) VAN C,G)

| | | e

nite étale Zw

g2t o100, GY U A P tin ot (00 1, GY e VI (O B 2 1 (1 G

where the horizontal arrows are finite (and even étale) by [AH13, section 6]. This implies firstly
that the morphism Vn”’HDjfl(C G) —» Zw’ P 1 (C',7,G) is finite and consequently that
v2l 010 G) - 22 0 (7 .G s finite. O

3.3 Changing the Group G

Now let f: G - G’ be a morphism of smooth affine group schemes over C. In this section we
explain how this induces a morphism between the moduli stacks of G-shtukas and G’-shtukas.
Further we prove some of its properties, depending on f. First of all we recall, that given a sheaf
M on C, with an action of G, we can define the sheaf M xCG’ whose R-valued points are given by
the set {(a,b) | a e M(R),beG'(R)}/ ~, where (a,b) ~ (c,d) if and only if (a,b) = (cg, f(g71)d)
for some g € G(R). Actually this construction works for any sheaf of groups on any site. Now this
construction is functorial for G-equivariant morphisms ¢ : M; — M3 and commutes obviously
with base change. We also write f, M = M x® G’ and note that if M is a G-torsor then f, M is a
G'-torsor. With these facts we see that for a given G-shtuka (G, s1,...,s,,7g) over S, the tuple
(f«G,81,--.,8n, [+7¢) defines a G'-shtuka over S. Therefore we get a morphism

vnjfl(caG)_)vnﬁl(CaG,) (g,517---,3n77—g)'_)(f*g,31,~--75n,f*7-g)- (6)

Now we want to show that this morphism also induces a morphism of these moduli stacks with
additional H-level structure. So we fix n closed points v = (v1,...,v,) in C and let H c G(AY)
be an open and compact subgroup. Let further S be a connected Fg-scheme with a geometric
base point 5 € S and (G,7v) = (G, s1,...,5n,7g,7) be a G-shtuka over S with an H-level structure
vH. We already mentioned that by [Conl2, Proposition 2.1] f: G — G’ induces a continuous
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homomorphism far : G(AY) > G'(AY) (see also above definition 3.9). For an open compact
subgroup H' ¢ G'(A%) satisfying fae(H) ¢ H' we now construct an H'-level structure on the
shtuka f.G = (f.G,s1,...,5n, f+75).

We choose for every v e C' = C\v a trivialization a, : L} (G;) = (L+@;,§, 1-0*) which exists
by [AH14, Proposition 2.9]. Since f. commutes with base change this induces trivializations
feaw + LI((fG)s) = (L*@Zs,l +0"). We denote by wge : RepoeG — Modgu(r, (s,5)] and
woe : RepoeG’ — Modge,, (s,5)] the forgetful functors and by £, and L', the local shtukas L, (G.)

and L) ((f.G)s). Then the previous trivializations provide isomorphisms of tensor functors

Biwge= [1 Tpog; = T Tz.=Ta

veC\v veC\v
poss I Tog = T1 T =Trg
veC\v veC\v

It follows that 87! oy € Aut®(wg,) is given by an element g € G(A%) and the H-orbit of v is
given by 5o gH. Now we view the image f(g) of g under the map fao : G(AY) - G'(AY) as
an automorphism in Aut®(w(y,) and define v := f,y:= f.fo f(g). Since fau(H) c H' the H'
orbit of f(g) is independent of the chosen representative 7 in the orbit yH. Since 71(S, 3) leaves
~vH invariant there is for all p € m1(S,5) an h € H such that p-~ = -h. This defines a group

Taelm

homomorphism ¢ : 71(S5,5) — H and we set ¢’ : m1(S,5) > H —— H'. Now p € m1(S5,3)
operates on ' € Isom(w’, Vg) by p-v' =+"-@'(p). In particular 71(S,5)y" c v H' so that v'H' is
m1(S, §) invariant and defines a H'-level structure on f.G. A morphism (G,7) to (F,7) induces
naturally a morphism (f.G,7") = (f.F,7’) so that we get a morphism of moduli stacks

vEN(C,G) -V N (C, G (6.7)~ (£.6,7). (7)

Next we show that this morphism behaves well with respect to boundedness conditions. We note
that for all v € v the morphism f : G - G’ induces a morphism L*G,, - L*G) as well as a

morphism LG, - LG;, and consequently also a morphism Flg, - Flg .

Lemma 3.15. Let ZE be a bound in I}, ﬂ@vi and G a G-shtuka over S bounded by Zg. Let
further Zé be a bound in T1j-, .7-"7@;, such that after choosing representatives over some DVR R
the morphism Zg,R - 17, .7-:1@;‘ factors through Z;R. Then f.G is bounded by ZAé

Proof:  We have to prove that for v € v the local shtuka I',(f.G) is bounded by ZA{) We choose
some covering S’ — S with S’/Spec R that trivializes L7o*G and L} G at the same time and fix
such trivializations, which we denote by a: Li0*Gsr - L*G, ¢ and o' : L} Ggr - L*G,, gr. Then
fraand f.a' are trivializations of L} (f.0*G)s and L; (f.G)s/. Now we have the automorphism
o' o719 671 LG, s => LG, s and we let 1gr : S” - LG, g be the unit morphism. The

deg v

composition defines an S’ valued point 1groa’ o7 a™lin LG, s/. The composition of this

point with the morphism LG, s — LG;, g induced by f defines an S’-valued point in LG;,S,.

Since the diagram
1

oo LGU,S’

IS’ a/OTdEQ v
S 5 LGy

L f*(Oé’OTdEg voa—l) L
LG, LG/
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commutes, this is exactly the S’ valued point defined by

F(@) £ (77 ) fo(a7) = Fu(a' 7 V).

deg v 5 o1 factors

By assumption G is bounded by Zg and consequently the morphism 1lgroa’ o7
after projection to ‘7:7@1,’5/ through ZU’R and maps then into ZAQ') p- This means exactly that

I',(f.G) is bounded by Z}, so that f.G is bounded by Z}.

O
This lemma and the previous explanations show.
Corollary 3.16. The morphism (id, f) : (C, G, v, ZE,H) - (C,G,v, Zé, H'") of shtuka data
induces a morphism fu: Vfg’Hﬁl(C,G) — Vfé’H,jfl(C, G")
(G, 815y SnsTG,Y) — (f+G,S1y. v, Sny [T, [477)-
Proof: Follows directly from lemma 3.15 and the morphism (7) on page 26. a

Now we are interested in some special classes of morphisms f: G — G'.

Generic Isomorphisms of G

First of all we want to consider morphisms f : G - G’ which are generically an isomorphism,
that means fxidg : G <> G'. In this case f : G - G’ is already an isomorphism over some open
subscheme in C'. So we fix such an f: G - G’ and denote by U the maximal open subscheme in
C such that f xidy : Gy - Gy, is an isomorphism and denote by w = (w1, ..., wy,) the finite set
of closed points in the complement C\U.

Before we come to the moduli stacks of the global G-shtukas, we prove a proposition that describes
the morphism ! (C,G) - #'(C,G"). For this proposition we need the following lemma.

Lemma 3.17. Let L' be an L*Gl, torsor over an F,-scheme S. Then the quotient stack
[EL/LWE:U] is represented by a scheme L' |L* Gy, over S that is étale locally on S isomorphic to
L*Gl/L*Gy. In the case that G, is parahoric L |L*G,, is projective.

Proof: Let L' := L, LG, LGI, be the associated LG/ -torsor of £". By |[AH14, Theorem 4.4]
the quotient stack [E' / L+@:U] is represented by an ind-quasi-projective ind-scheme £'/L*G,, over
S. The closed morphism L, - £’ realizes [EQ/LJ’@;] as a closed sub-sheaf of £'/L*G,,. Since
L', is affine over S the quotient [£, /L+@;] is given by a closed subscheme in £'/L*G,,. It is
clear that after passing to a covering S’ — S that trivializes £, the scheme £’ /L*G,, becomes
isomorphic to L*G!, /L*G,, xp, S'. Since L'/L*G,, is by [AH14, Theorem 4.4] ind-projective if
Gy, is parahoric, we see that the last statement about the projectivity of £/, /LW@; follows. O

Now we can prove:

Proposition 3.18. Let f: G - G’ be a morphism of smooth affine group schemes over C, which

is an isomorphism over C\w. Then the morphism

for HNC,G)»H(C,G), G f.G
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is schematic and quasi-projective. Etale locally it is relatively representable by the morphism
(L*Gl,, /L*Gy,) x5, - x5, (L'G, |L*G,,,) — F,.

That means that for any Fy-morphism S — H(C,G') there is an étale covering S' — S such that
the fiber product ' x y1(c Gy AN(C,G) is given by S"xx, (] L*G! |L*G,), where the product

wWeW
is taken over F,. In the case that the fibers G, for all w € w are parahoric group schemes this

morphism is projective.

Proof: Let S — #'(C,G’) be given by a G-torsor G’ over Cg. Let g: T — S be an S-scheme.
Then a T-valued point of the fiber product S x 1 (¢ g A1(C,G) is given by a tuple (g,G, )
where G € #1(C,G) and o : f.G = ¢*G'. Using the theorem of Beauville-Laszlo from §
2.9 we write G = (Gluy, [Tyew Lus ) With Ur = (C\w) xp, T, Ly € A (Fy, L*G,)(T) and
© = (Pw)wew * Hwew Lw(G) == [Nwew L(Lw). In the same way we write G’ = (G'|vg, [Twew L1y ¥)-
In particular f.G is given by (f.(Gluy)s fw,«Lw, [+¢) and the isomorphism « is determined by
ay: f.G = ¢"G" and vy, ¢ fu L > L7 (g*G") satistying

Lu(f+(Gl2)) 5 L(fue (L)
le(aU) jL(aw)

Lulg"(@'lur)) =5 L(gi L)
Since fly = id we have f.(Glu;) = G|y, and the point (Glu,, [Tyew Lw, @) is equivalent to
(9" G|t Twew Lovs (9w © Luy(agt))) by the isomorphism (g, [Tidz, ). This shows that the
category of tuples (G, «) as above is equivalent to the category of tuples (L, )wepw Where
Ly € ANC,L*Gy)(T) and v @ fily <> g*L!. Namely we associate with some ;Lrbitrary
tuple (L, @ )wep the tuple ((¢*G'|v,, Lw, @), B) where S|y = id and Sy, = o, and ¢ is uniquely
determined by the condition f,¢ =1 o L(ay!). This is unique because f x idg, : Gy~ G, is an
isomorphism.
Now we note that the isomorphisms o, : f. Ly, = ¢g* L] are in bijection with the L*G,, equiv-
ariant morphisms £, — g*£!,. This shows that the tuples (L, ) parametrize exactly the
T-valued points of the quotient stack [g*ﬁw / L*@;] over [F,. It follows with the lemma 3.17 that
the fiber product Sx:;fl(aG/)jfl (C,G) is given by the scheme g* Loy, /L* Gy, %+ -xg* Lo, | LG, .
In particular the morphism f, is representable and the remaining statements follow directly from

the previous lemma. O

Now let us turn to the moduli stacks of global G-shtukas. The following results will be again of
interest in later chapters. Let us firstly assume that w c v and that all the closed points w are
Fg-rational. In particular the group homomorphism f: G — G’ is an isomorphism outside the

fixed characteristic places vy, ...,v,. Then we have the following theorem.

Proposition 3.19. Let f: G — G’ be a morphism of smooth affine group schemes over C, which
is an isomorphism over C\w with w c v and w; € C(Fy) for all w; € w. Let H c G(AY) = G'(AY)
be an open compact subgroup, let Z{h be a bound in Flg, for alli and let ZAUZ. be the base change

of Z{,Z under the map ]:le,. — Flg: . Then the morphism

oo V2 0 (0,6) - vt N 0,6, (GoyH) — (f.G,7H)
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is schematic and quasi-projective. Etale locally it is relatively representable by the morphism
(L*Gl,, /L*Gy,) x5, - x5, (L*G], [L*G,,,) — F,.

That means that for any Fy-scheme S there is an étale covering S" — S such that the fiber product

S"% zyn Zme%ﬂl(C' G’) is given by S" xg, ([ L*G,,/L*Gy), where the product is
Y %1(07@’) WEW

taken over F,. In particular f. is a surjective morphism. In the case that G is a parahoric

Bruhat-Tits group scheme this morphism is projective.

Proof: Since f is an isomorphism outside w, for two open subgroups H ¢ H c G(AZ) = G'(A2)
the diagram

vl 10,6y —— v ' (0,6)

} )
Z! H Z! H
Vnﬂ %1(0, G’) — V- %1(07 G,)
is cartesian. In particular we can assume H c G(0%) = G'(0Q%), because otherwise we can prove
the theorem for the compact open subgroup H:=Hn G(OQ%). This implies the assertions of

the theorem for the group H since the vertical arrows on the left and the right in the previous

diagram are relatively represented by the same morphism. Now for each S-valued point (G,vH)

in V,ZL”’ #1(C,G) we find an isomorphic point (G',7'H) with ' € Isom®(w(aﬂ,7v'g). This is

due to the fact, that we can pull back global G-shtukas along quasi-isogenies of local G,-shtukas
[AH13, Theorem 5.2] and is explained in the proof of [AH13, Theorem 6.4]. We get a mor-
phism va’ijl(C G) » #1(C,G) sending (G,vH) = (G',v'H) to G'. This is the morphism

Z”’ H(O,G) - Z”’G(@)E)%M(C, G) from (4) in § 2.16 composed with the morphism (3) with
D = @ in § 2.16 and the natural morphism v, #!(C,G) - #'(C,G). Now using proposition

3.18 it suffices to prove that VTZL“ A(C,G) is given by the fiber product

M= v e,e) w10 ' (C,G).

There is a natural morphism p : VnE’H% 1(C,G) - M which sends an S-valued point (G,vH),
where we can assume as before v € Isom® (w(%)g,'f'g), to ((f+G,vH),G,idys,g), which is well de-
fined by 3.16. We need to prove that this morphism induces an equivalence of the fibered
categories. First we see that it is fully faithful. Let (G,,71H) and (G,,72H) be two S-
valued points in VTZZE’H%M(C’,G), where we assume again 1,79 € Isom®(w6g,7§). Let g €
Hom((G,,71H),(G,,72H)). Since V, 071 =72 mod H we see that V, = 9 0 ho~y! for some
h e H, which implies that V, already comes from a tensor isomorphism in Isom®(7g,,7g,). By
[AH14, Proposition 3.6] it follows that ¢ is not only a quasi-isogeny but also a morphism of
the global G-shtukas G, — G,. Therefore Hom((G,,71H),(G,,72H)) equals the morphisms of
G-torsors such that g is a morphism of the global G-shtukas G, and G, compatible with the
level structure. Since f, is an isomorphism outside of v the latter condition is equivalent to the
statement that f.g is a morphism of G’-shtukas compatible with the level structure. But this
says exactly that

Hom((g17’71H)> (QQ,WH)) = HomM(((f*gp'71H)7g17idf*gl)v ((f*Q2772H)a g2»idf*g2))-
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For the essential surjectivity let ((E, s1,...,8n, 75, 7£H),G,1) be an S-valued point in M, with
vE € Isom® (wéﬂ,’fﬁ) as before. This is isomorphic to

((f*gasly" -7Sna0—*onE Ow_lvn OVEH)vgvidf*g)

by (471, idg). We need to show that it comes from an element

Z’UY
(Qv’ng):(gﬂgla'--asnﬂ—ga’ng)Evﬂ ‘%01(07@’)
Here s1,...,s, and G are already uniquely defined. Therefore we need to define the isomor-

phism 7g : 0"G|cg\ur,, = Glog\ur,,- Since all the closed points w are Fg-rational (C\w)s is
contained in Cg\ U fsl Note th&it this is not the case if w; splits, because in this case w; xp, S
has deg w; compz)nents isomorphic to S and I, surjects only to one of these. By assump-
tion f xids : Gg - GY is an isomorphism over (C\w)gs. This together with the fact that
7 has to satisfy f.7g = 0" o 7z 0™ an the inclusion (C\w)s c Cs\uTy, defines therefore
a unique 7g : O'*g|cs\ur‘si - Q|Cs\upsi. Now G is a global G-shtuka V:Iith H-level structure
g = 7:# o yg that is n;apped to ((127 veH),G,v¥) € M(S). It just remains to prove that G is
bounded by Z, to see that (G,7g) lies indeed in vl 1(C,G). Let R be an extension of
A, with representatives ZU .r and Z’ R of the bounds Z and Z ' . We choose an étale cover-
ing S” of S and trivializations « : L+Gvi75f - I'y,(Gsr) and o L+Gw7sr - I'y.(6*Gsr). Then
atorgoa' = (f,).(a"torgoa’) : LGy, 5» - LG, g defines an S’-valued point of LG, and hence
an induced morphism §’ - F lg,, k= F lG/ k- By assumption £ and hence f.§G is bounded by
Z ' This means that this morph1sm factors through Z ! ..r and since Z arises from base change
it factors by the universal property of the fiber product also through ZU k- This shows that G
is bounded by Zvi for all v; € v. ]

If (ide, f) = (C,G, v, ZQ,H) - (C,G, v, Zé,H) is a morphism of shtuka data, where ZA2 does
not arise as a base change of Zé or if f: G - G’ is an isomorphism outside w without

any conditions relating w to the characteristic points v or their residue field, the morphism
I Z”’ A C,G) - Vn %”I(C G"), (G,vH) ~ (f.G,vH) is still representable, but in

general not surjective anymore. More precisely, we have the following theorem.

Theorem 3.20. Let (idc, f): (C,G,v, ZQ,H) - (C,G,v, ZL,H) be a morphism of shtuka data,

where f: G — G’ is an isomorphism over C\w. Then the morphism

for VR ANCG) - Vi AN CG), (GovH) > (£.9,7H)

is schematic and quasi-projective. In the case that G is a parahoric Bruhat-Tits group scheme

70 H
this morphism is projective. For any morphism (G',v'H):S - v,,*" #'(C,G')

Z! H
the fiber product S x ; y Vo ANC,G) s given by a closed subscheme of
Vit HL(C,G")

S g, (L, (G)/L'Guy) %+ %k, (L, (9)/ LG,y )

If ZA2 arises as a base change of Zé for all v e v, the morphism f, is surjective.
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Proof: In the case that Zvi does not arise by base change from Z the immersion Z - F lg,, fac-

tors through the base change ZAq’}’l = 21/11 Xf:l@' Flg, . Since Vn”’ %I(C G) - Vf“ %I(C G)

is a closed substack we may therefore assume from the beginning that ZUZ. arises by base change

from ZLZ for all v; € v. Furthermore we can as in the previous theorem assume that H c G(0Q%).
ZlH . .

Let S - v,*" #'(C,G’) be an S-valued point given by (G',v'H) = (G',s},...,sh,7¢,7v H),

where we can assume as before that 7" € Isom® (wg, ’7'g/) There is a natural morphism

Z’U7

S x HN(C,G) > S x 1oy H(C,G)

o2 o "
sending an T-valued point (g,G,vH,v) to (g,G,v), where g:T — S is a morphism of schemes,
(G,vH) is a T-valued point in VyzLE’ijl(C,G) and ¢ : f.(G,vH) = ¢*(G',~'H) is an isomor-
phism of global G’-shtukas. By proposition 3.18 it is now enough to show that this is a closed
immersion.

Given a T-valued point (g,G,9) in S XA (CG) H(C,G), there can be at most one T-valued

point (g, (G,vH),®) in Sx z 4 V2t 301 (C,G) with G = (Gys1, ..., 5m7g) and 7 €
- Vo %’1(0,(}’)

Isom®(w(‘[’))2,7v'g) mapping to (g,(G,vH),). This is because ¢ : f.(G,vH) = g*(G',v'H) is

an isomorphism of global G-shtukas. That means namely that si,...,s, are determined by

siog,...,s,0g, that vH equals 72_1 og*y'H and that there is at most one 7¢ since over the open

subset X := (C\w)s N(Cs\UT's;) ¢ Cs the isomorphism 7g is determined by f.7g = 0*¢og*7groe.
7

Therefore we have to answer the question if the morphism Tg‘ v o g ‘ ¥~ g ‘ « can be extended
to Cs\UL's,. Note that if this is possible, then the global G-shtuka G is automatically bounded
(A

by ZQ as we have seen at the end of the proof of the previous proposition 3.19.

Let IF be the compositum of all IF,, with v; € v and let vl.(o) € Cf be the closed point lying over v;

that equals the image of the characteristic morphism s;. Then the definition Cy = C’]F\(LJ vz.(o))
K2

satisfies Cp xp S = Cs\ (U Fsi) Let further

I-= {w € CF ’ w|w; for some w; € w, w # vi(o) for all v; ev } (8)
In other words that means that I is determined by U I's; ¢ (Cp\I) xp S = CL and ((Cp\I) xp

SHI\ ( U Fsi) = (C\w) xF, S. The definition satisfies also the equation (Cg\I) xg S = U. Then

v EwNU
by the theorem of Beauville-Laszlo from § 2.9 we have the following cartesian diagram

‘%01(671177@]17) ‘%1(@\17(6}15')
I1 L3, L [T Lw
wel wel

[1#YF,L*G,) — [1 #'(F,LG,)

wel wel

which means that J*Q|Cs\up and g|cs\up _are given by tuples (o* G|y, H L} (07G), H idr,, (o+G))
and (G|y, HL*(Q) szL (¢))- The morphism Tg‘U :0"Gly = Glu determlnes 1somorphlsms
Ly(1g) : L (a G) - L (G) for all w e I. The question if 7g can be extended to CS\U Iy, is
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then equivalent to the question if all isomorphisms L., (7g) in J#*(F, L@;) already come from
an isomorphism L} (0*G) — L (G) in #*(F,L*G,). Since L*G, c LG, is a quasi-compact

closed subscheme, this is a closed condition on 1" which shows that

Z’U7

S x HN(C,G) = S % 1oy H(C,G)

ZlH
Vi WI(GG’)
is a closed immersion. It rests to show that under our assumption on Z, the morphism f, is

surjective. This is not clear yet, since the closed subscheme

Zv,H 01 ~ oI
S va;—’ijl(C’G/) vni % (C’ G) > S ><IF‘q ((L:j—n (g,)/L+Gw1) XFq T XIFq (L:l—)m (g,)/L+Gwm))

does not necessarily surject to S. For the proof of the surjectivity we show that for any alge-
braically closed field K and every global G'-shtuka G' = (G', 51, ..., 8p,7Tg/) in Vfé,%”l(C, G")(K),
there is a global G-shtuka G = (G, s1,...,5p,7g) in V,ZLE,%M(C,G)(K) with f.G = G'. By propo-
sition 3.18 and the fact that K is algebraically closed the choice of a G-torsor G over C'x with
f+G =G’ corresponds to an element in Hwew(LJr@Z/L*@;)(K). Now let F’ be the compositum
of the fields IF,, for all w € w. For a closed point w € w c C there are exactly deg w different closed
points in Cg lying above w. We denote them by w(®, ... w(@9 v~ where w(®) is a randomly
chosen one and the others arise by applying successively ¢ on the residue field. If w € v we choose
w® as before to be the image of the characteristic morphism s;. Now once again Beauville and

Laszlo help us with the diagram

A (Crr, Gl ANV, Glr)
ML ML,
veJ veJ
[N (F L*G!) — [1 5 (F',G!) ,
veJ veJ

where J = {v € Cp | v|w for some w € w} and V := Cp\J. Tt allows us to identify G’
with the tuple (G'|v,, I1 H L+Gw( ),(ew )w(ey) Where e L, (G") = LG! , already

wew =1
comes from an isomorphism of L*G’ (»-torsors. Consequently o*G' is identified with the tuple
(i-1

(U*Q ’VK7 ]._I H L+G/ w(@)? (U €w

wew =1

))w( hey) With 0% ey =1 : Ly (0*G") = LG/ ;) coming again

from an isomorphism of L* G;U (-torsors. Note that the index i is computed in Z/deg w so that
-1 =deg w—1. We use again the intuitive notation T,( o = Ly (761) + Ly (0°G") = Ly (G")
and define for all w® € J the element c( D 678,) T (@ °0 (e(l 1)) Yin LG (K). The fact

that 7g/ is an isomorphism over Cp\ U I's, implies that ¢ is an element in L*G/ oy (J) for
k=1

all w® e Jy = J\( U w®). Equivalently we have e L*G ! () for all w e wnwv and

’LUE’UJn”U
i=1,...,deg w—1 as well as for all w e w\(wnw) and all i = 0,...,deg w—-1. We will now
define the tuple (bﬁj))w@q € [1 L'G /LG, (K) that will determine by proposition 3.18
w®eJ

the G-torsor G over C'x mapping under f, : /1 (C,G) — 1 (C,G') to G'. If w e wnv we define

bfl?) :=1 and bg) = J*bg_l) . (cq(ui))_1 € L+G:U(i)(K) foralli=1,...,deg w-1
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Now if w ¢ v we can choose by [AH14, Corollary 2.9] an element d9 e L*G! o) (K) with a0

- ges wr (d)~1 = 1. Additionally we define d) = o*d( ™" - () € L*G! ) (K) for all i =

1,...,degw-1. In partlcularﬁ'( ) = g(deg w_l)*(cg))_loa(deg “}_2)*(0&2))_1 (deg w= 1)) !

dq(;leg w— 1))—1 _ O.(deg w)*(dg)))—l 6'1(1?)

00" (e
satisfies the equation o*( . Moreover we choose again by
[AH14, Corollary 2.9] an element d¥ in L*G! o) (K) with A o AY o gdeg w*(&g)))*l =1 and

use it to define
b = o™ dP) - d() e L*G! () (K) for all i=0,...,deg w-1.
This choice results nicely into the equations

B D0 (D) = A - dD ) o (D) o (@) -1

=1

foralli=1,...,deg w—1 as well as

b(O) o (b(deg w— 1))— C’i’(O) d(O) w . (d(deg w— 1))— O_deg w*(c'i‘g)))—l

ot () 12
_ 3(0) ’C“(u?) . ode9 w*(c‘l‘(u?))_l 1

w

deg w-1
Now the G-torsor over Ck, determined by the choice of (b )w( ey € T1 H LG ) (K)
wew =0

and lying in the pre-image of G’ under f, : #(C,G) - 1 (C,G"), is given, as described in
proposition 3.18, by

deg w-1

G=0Gw, IT TI LG, (0 0 ey, De)-
wew  1=0
deg w—1 () ()
It lies indeed in the pre-image of G since f.G (g l, TI H L*G, (s, (biy’ © €1’ )i )eJ) is
wew =0

isomorphic to G/ by (idg, . ((bg))—l)w (%J). Now we show that there is g 0" Glo\ur,, ~

glCK\UFSk with f.7g = 7g. We set Tg‘U := 7¢» and need to convince ourself that it extends to
k

Ck\ U I's,. This is the case if and only if for all w® € J the vertical right hand side morphism

b o eq(j) oL, (1g)o 0*(61(5_1))_1 o (7*(()1(5_1))_1 € LG, ) (K) in the diagram

x (i-1) O'*bgjil)

Ly (0*G) — LG, LG,
Twu):Lw(i)(Tg)l jc&f) j
Lw(i) (g) T LGw(i) ) LGw(Z)
€w bw

is given by an element in L*G, ) (K). By construction we have b(z) o cz(j) o o*bg_l) =1 for all
w( € J. This proves f,G = G’ and finally the theorem. o
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Closed Subgroups of G’

Secondly we take a closer look to the case that f: G — G’ is a closed immersion of group schemes

over C'. We start with the following lemma that we mainly need for theorem 3.23.

Lemma 3.21. Let f: G — G’ be a closed immersion of smooth affine group schemes over C.
Then the diagonal morphism A : 7 (C,G) - #(C,G) X 1 (C,G1) HHC,G) of the induced
morphism f, : #(C,G) - 1(C,G') is a monomorphism. The same is true for the diagonal
morphism A : vV, 1 (C,G) - v, (C,G) X G A (C,G) VO, G) of the induced morphism
fo : VN C,G) - v, (C,G).

Proof:  For the first diagonal morphism we have to prove that for any F,-scheme S the functor
Ag: HNC,G)(S) » AN C,G) x 106y 2 (C,G)(S) is fully faithful. Let G e #71(C,G)(S5),
then this functor is cleary always faithful since ¢ € Aut(G) is send to (¢,¢) € Aut(A(G)),
where A(G) = (G,G,idy,g). Note that it suffices to consider ¢ € Aut(G) since all morphisms in
HH(C,G) are isomorphisms. To show that Ag is full, let (p,1) € Aut(A(G)) which means by
definition that
fep
f*g —_— f*g

idf, g l jidf* g

f*gﬁf*g

commutes. Therefore we have f,¢ = f,1 and since f: G - G’ is a closed immersion this implies
=1 and hence that Ag is full.

More precisely, to see this, one chooses a covering U — Cg that trivializes G so that ¢ and
1 correspond to morphisms ¢, : U — G satisfying the corresponding cocycle condition. The
morphisms f, and f,1y correspond to the compositions U Ll G R G’ and the equality
f« = fetp means fop = for. Since f is a closed immersion this implies ¢ = 1, which proves that
the first diagonal morphism is a monomorphism. The proof for the second diagonal morphism
A:v,C,G) - v, (C,G) X9, (C,G) Va1 (C,G) works literally in the same way. O

Corollary 3.22. The morphism f, : #(C,G) - A (C,G') is representable by an algebraic
space. In particular for every Fy,-morphism G' : S — HH(C,G') and the natural projection
ps : Cs — S, the Weil restriction ps.(G'|Gg) is an algebraic space, that equals the fiber product
S X 10,6 H(C,G).

Proof:  Since the diagonal morphism in lemma 3.21 is a monomorphism it follows by [LMB00,
Corollary 8.1.2] that f, : 1 (C,G) - #'(C,G’) is representable by an algebraic space. By
definition this means that the fiber product S x 41 (¢ g H#1(C,G) is an algebraic space and
in particular given by a functor (Sch/S) — Set. We show that this functor coincides with
the Weil restriction functor ps.(G’/Gg). By definition a T-valued point of this fiber product
S X 10,61 H(C,G) is given by a tuple (g,G,a) where g: T — S is a morphism of schemes, G
is a G-torsor over Cr and « is an isomorphism of G'-torsors f,G = ¢*G’. Since isomorphisms
f+G => g*G’ are in bijection with G-equivariant morphisms G — G’ the category of the tuples
above is equivalent to the set of morphisms from C7r to the quotient G'/Gg.

Since Homcy (Cr, [G'/Gs]) = Homs(T,ps,«([G'/Gs])) by definition of the Weil restriction, the
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fiber product S x 1 (¢ g1 HH(C,G) is given by ps.(G'/Gg). ]

Theorem 3.23. Let f: G — G’ be a closed immersion of smooth affine group schemes over C.
Then the induced morphism f. : V1 (C,G) - vV, 1 (C,G') is unramified and schematic.

Proof: We first show that f, is unramified and then conclude that it is representable by a scheme.

Let B be any ring and I ¢ B an ideal with I? = 0 and p : Spec B := Spec B/I — Spec B the

natural projection arising in a diagram of the form

Spec BJI ! VN (C,G)
a _ - ’/;
_ - -7 92

!

Spec B = - Va1 (C,G)
g

To prove that f, : V, 2 (C,G) - v, (C,G’) is unramified, we need to show that for any
diagram of this kind there exists at most one dashed arrow making the diagram commutative,
that means g; = go. This suffices since v, (C,G) and v, (C,G’) are locally of ind-finite
type over the notherian scheme C™.

The morphism g : Spec B — v, (C, G) corresponds to a global G-shtuka G := (G, 31, . . ., 5, )
over Spec B, where g; and gy correspond to global G-shtukas G, = (G1,s],...,s,,7g,) and
G,=(G2,5s7,...,s,,,7g,) over Spec B. The commutativity of the upper triangle means that there
are isomorphisms 3 : p*G, = Q and 32 :p*G, g of global G-shtukas over Spec B. Therefore
we have to prove, that the isomorphism 35 Lo 3 arises already from an isomorphism g, -9,
of global G-shtukas over Spec B. Furthermore we denote by G’ := (G', s1,...,sp,7g’) the global
G’-shtuka over Spec B corresponding to ¢’ : Spec B — v, (C,G’). The commutativity of the
lower triangle gives us isomorphisms oy : f.G, = G and s : J+G, = G’ of global G'-shtukas
over Spec B satisfying v = p*ago f. 33! = p*ay o f.f7! where v f*g = p.G' is the isomorphism

of global G’-shtukas over Spec B coming from the commutativity of the square.

Now these isomorphisms imply directly that the paws s;, s; and s;’ coincide for all ¢ with 1 <7 <n.

Although f: G — G’ is a closed immersion it is by the following remark 3.24 a priori not so clear
that the torsors G; and Gy are isomorphic, but we now prove this as follows.

The G-torsors G; and G over Cg come with G-equivariant maps to G’ which are induced by aq :

fxG1 =~ G" and a9 : fLGy - G'. Therefore they define two Cg-valued points hy,hs : Cp — G'/Gp.

In other words one can describe them as follows. Since

SpecBAji”l(C,G) and SpecBie%”l(C,G)

o b e

HHC,G) HHC,G)

commute, that means f,G; ~ G" ~ f,Gs, the G-torsors G; and Gy induce morphisms hi, hs from
Spec B to the fiber product Spec Bx 1 (ccr) H1(C,G). In corollary 3.22 this fiber product was
seen to be pp.(G'/Gp) and by definition of the Weil restriction we have Home,, (Cp, (G'/Gp)) =
Homp(Spec B,pp«(G'/Gg)), so that hy and ho correspond consequently to morphisms Cp —
G'|/Gp. First we show that they coincide on Cp:= Cp\U; T,.
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The F,-Frobenius induces a morphism j : B/I - B, b~ b? which is well defined, because I% =0

and in particular 19 =0. We get the following commutative diagram:

J

Spec B Spec BJ1 A C,G)
g
\ pl /
B Ga
Spec B

which implies

"G =G = G = j'p Ga=0"Ga.
J*B Bt

By restricting this isomorphism to Cz and composing with TG, and 7g, we get

60:Gi|y = 0'Gi|s = §7G|s <> 0" G| = Gols
Cp Téll CUB j*p, Cp 7851 Cp g, Cp

an isomorphism &g := 7, 0 j* 51 0 j* 31 0 Tg_ll of G-torsors over Cg. Tt satisfies

-1 % a1 , 11

sl o fbooailly, = aso furg,ofuf B3t o fof* B oot al org
[ —_—
=Tgroo*az :j*(f*ﬁlop*oql)

=tgroatage j* fufly o jT (fufrop ayt) o 1gt = idgils, -

In other words dy is an isomorphism from (Gilz . 1lz,) to (Golg,, a2lz,) of Cp-valued points
in G'/Gp. Therefore the restriction of (hy,h2): Cp = G'|Gp xc, G'/Gp to the open subscheme
Cp in Cp factors through the diagonal in the following diagram

(h1,h2)

Cp - - G'/Gp xc, G'/GR 9)
=
53 QI\GB

To see that G ~ Go over Cp we have to show that the morphism (hy, ho) factors through the
diagonal A as well. Now since f is a closed immersion, the quotient G'/Gp exists as a scheme
by [Ana73, Theorem 4.C| and it is smooth and separated by [SGA70, VIg, Proposition 9.2(xii)
and (x)]. In particular the diagonal A is a closed immersion. Therefore Cp factors through the
diagonal if the scheme theoretic image of Cp in C equals Cg. This was proven in lemma 3.11.
As a result of this, we conclude that g extends to an isomorphism ¢ : G; = G5 of G-torsor over

Cp. The computation

Gy' 0 TG, 00" 80 =7g, 0 j* B 0 j a0 TG, 0T, 00 TG, 007 Byt 00 ¥ B o TG

=j* g

. | -k * ok * -1
=7g,07 B1 °J TG00 ] (b1 00 TG, = TG

—F*
=0 ’Tgl

shows that § : G, = G, is an isomorphism of G-shtukas over B, which finishes the proof that
fr 1V (C,G) » v, (C,G") is an unramified morphism.
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It rests to show that this morphism is schematic. We have proven in lemma 3.21 that the diago-
nal Ay, of f, is a monomorphism, which implies together with [LMB00, Corollary 8.1.2| that the
morphism f, is representable by an algebraic space. It is clear that f. is a separated morphism,
since the moduli spaces of global G-shtukas are separated. Furthermore we have proven that
f« is unramified and in particular locally quasi-finite [Gro67, Corollaire 17.4.3]. All together
this allows us to apply [LMBO0O0, Theorem A.2| which states that a separated, locally quasi-finite
morphism of algebraic stacks that is representable by an algebraic space is already schematic.
This finishes the proof of the theorem. O

Remark 3.24. Note that this is a particular property of the morphism of shtukas. Even if
f:G - G’ is a closed immersion, it is not true that ##1(C,G) - #1(C,G’) is an unramified
morphism.

Corollary 3.25. Let (ido, f) : (C,G,v, ZQ,H) - (C,G,v, Zé, H'") be a morphism of shtuka
data, where f: G — G’ is a closed immersion of smooth affine group schemes over C. Then the

induced morphism A
I e R RO e (eN )
is unramified and schematic.
Proof: ~ We first consider the induced morphism f, : Vf%%” Y(0,G) - V,Zﬁ%” Y(C,G") of the

moduli spaces of global G-shtukas without level structures. We have the following commutative

diagram

VN, G) v, H(C, G)L

f*l f*

V20,6 VAN (C, G

The vertical arrow on the right is an unramified morphism by theorem 3.23, where the horizontal

arrows are closed immersions and in particular also unramified. As a consequence the vertical
arrow on the left is unramified as well. To prove the statement for the morphism f, of moduli
spaces of global G-shtukas with level H-structure, we choose similar to 3.14 some finite subscheme
D c C such that Hp := ker(G(0%) - G(Op)) and H}, := ker(G'(0%) — G'(Op)) are subgroups
of finite index in H (resp. H’). Then we have by § 2.16 the following commutative diagram

vZl o1 (g i vZeto 010, G) < V2L (C,G) T vAN(C,6)
L l l unramifiedl
vZ ' o, @) i vZeth 010,61 = vl (C,T) e (O,

All the horizontal arrows are étale and in particular unramified. Furthermore we have seen
that the vertical arrow on the right is unramified. As a result it follows that the morphism
V,%%%%(C,G) - v %I(C G’) is unramified [Gro67, Proposition 17.3.3 (v)| and finally that
fe: VHE’HL%”I(C,G) - Vny %I(C,G) is unramified [Gro67, Proposition 17.7.7]. It is clear

that it is also schematic, which proves the corollary. a
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Theorem 3.26. Let G be a parahoric Bruhat-Tits group scheme and f: G — G’ be a closed
immersion of smooth affine group schemes and v = (v1,...,v,) be a set of closed points in C.

Then the induced morphism
fo: VpdHC, G - v, (C,G)2  is proper and in particular finite.

Proof: ~ We know by theorem 3.23 that this morphism is unramified and schematic and in
particular locally quasi-finite. Moreover the morphism is quasi-compact. Since v, #(C,G) —
(O, G) is of ind-finite type, this follows from [AH13, Theorem 2.5| after choosing a representa-
tion p: G - GL(Vp) for some vector bundle Vy such that the quotient GL(Vy)/G is quasi-affine
(see [AH13, Proposition 2.2]). Therefore it suffices to prove that f, satisfies the valuative crite-
rion for properness to see that this morphism is proper and consequently also finite, due to the
quasi-finiteness. Thus let R be a complete discrete valuation ring with uniformizer 7 such that
its residue field kr = R/7 is algebraically closed and let K = Frac(R) be the fraction field of R.
Let us further denote by K9 an algebraic closure of K and by R the integral closure of R in

K% We need to prove that in every diagram of the form

Spec K9 e Spec K N V. HN(C,G)Y (10)
Spec RM9 - ZR Spec R 7 v (O,G )Y

there exists a unique dashed arrow making the diagram commutative.

Here g¢1,9¢2,ik,ir,j and j are defined by the diagram. Choosing the closed embedding p :
G' = GL()p) it suffices, due to the separateness of the moduli spaces, to prove the valuative
criterion for the composition p, o f, : V, 1 (C,G)% —» v, (C,GL(V,))2. Therefore we may
assume that G’ equals GL(Vy). We denote by G = (G, s1,..., Sp,7g) the global G-shtuka over K

/

corresponding to g1 and by G’ = (G, s}, ..., s}, 7g) the global G'-shtuka over R corresponding to

’n)

g2. Furthermore the commutativity of the square gives an isomorphism « : f.G — G’ of global
G'-shtukas over K.

Let S := {v e C | G x¢F, is not reductive } Uv. Then G'/G x¢c (C\S) is by [Alpl4, Theorem
9.4.1 and Corollary 9.7.7] an affine scheme over C'\S and in particular G'/Gr x¢, (C\S)r is an
affine scheme over (C\S)g. Now the G-torsor G |(C\5)  with its G equivariant morphism G - G’
induced by « defines an (C\S)x valued point of the quotient G'/Gpg.

(C\S)k = G'/G xc,, (C\S)r (11)

|

(C\S)r

Now the proof consists of several steps. In a first step we want to show that s factors through
(C\S)r which means that it gives a section sg : (C\S)r = G'/Gr xcp (C\S)r of the vertical
morphism in diagram (11). This morphism sp corresponds to a unique G-torsor £ over (C\S)g
together with an isomorphism ap : f,& = G'l(c\s)p satisfying G*E = Glie\s) -

In the second step of the proof we then show that the base change of & to R*9 extends uniquely

to a G-torsor over the whole relative curve C'raiy. More precisely we show that there is a G-torsor
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& over Cpaiy such that firstly the restriction €|\ S) paty 18 180MoOTphic to the G-torsor z&g over
(C\S) gaty and secondly f,& ~i%G" and j*€ ~i}.G.

Then we show in the third step that this G-torsor £ over Craiy gives rise to a unique G-shtuka
(E,71,...,mn,Te) in VN (C,G)2(RY¥) making the diagram (10) commutative. This will then
finish the proof.

(Step 1) We can assume that Spec A = C\S is affine by enlarging S if necessary. Since we
have seen that G'/Gr x¢c, (C\S)r is affine over (C\S)g = Spec Ag = Spec (A xg, R) we can
set G'/GRr xcy, Spec Ag =: Spec B for some ring B. Therefore, to prove the assertion of the
first step, namely that s in diagram (11) factors through (C\S)g it is enough to show that
the ring morphism s* : B - A®p, K = A factors through Ag. We write L := Frac(Ag) for
the function field of Cr and O := (AR)(W) c L for the localisation of Ar at the prime ideal
(m) := ker(Ar - A, ). The fact that Ag is normal due to the smoothness of Cr over R and the
fact that the prime ideal (1) ¢ Ag corresponding to the generic point of Spec Ay, is of height

1 in Apg, implies that O is a discrete valuation ring with uniformizer m. The normality of Apr

KR

allows us also by [Har77, chapter II, 6.3.A] to write Ar = N Apyp. For all prime
pcApR p of height 1
ideals p ¢ A of height 1 we have either p = (7) or 7w ¢ p. In the second case p comes from a

closed point in Spec Ax which means Ay, = A . Since Ag = N Ak q we conclude
qcA g maz.ideal
AR =0n AK c L.

Due to this equation it is enough to show that the composition sy, : Spec L N Spec Ak %
Spec B of s|a, with n:Spec L - Spec A factors through Spec O.

The Frobenius pullback (6*Gr, 0" ar) with o*ay, : (fo0*G) - 0* G} gives an L-valued point of the
quotient 0*G'/Gg. As before this quotient is affine over Ar and given exactly by 0*G'/Gg x¢,,
Spec Ap = Spec(B®4,, - Ar) = Spec Ar, where the Ag-algebra structure of B® 4,, » Ar is given
by multiplication in the second component. This means that the L-valued point (0*Gr,0*ay)
is given by an Ap-morphism Spec L - Spec(B ®4,,.+ Ar). In other words we can describe this
morphism as follows. The Frobenius o :=ids ® op : Ap — Apr induces of course a morphism of
the fraction field L which we denote again by o: L - L, § = ola) gy a,b e Ar. It is not the

a(b)
absolut I -Frobenius. Now the composition o o s} : B — L is not an Ag-linear morphism, but

it induces a unique Ag-linear morphism o*s} : B®4, - Ar = L making the following diagram

commutative.
b B i L
| | ¥
a*s*L
b1l B®apo Ar L

This morphism ¢*s] is the one coming from the tuple (¢*Gr,0*ar).
The G'-shtuka G’ is defined over R. In particular the restriction of 7g: to Spec Ap is an isomor-

phism 0*G’|a, - G'|a, that induces an isomorphism 7gr of Ag-algebras

Tgr : Spec (B®ay.o Ar) = Spec B. (12)
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It sends a T-valued point (&y,d) with & : fi& = 0*G" to (&y,7gr 0 §). We then would like to

know, that the following diagram

B®ARJAR (13)

\/

of Ar-morphisms commutes, which can be seen as follows. By assumption (see diagram (10))

the diagram

feo*GL, U*—LM*QL (14)

is a commutative diagram of isomorphisms of G'-torsors over L. (Actually the whole diagram
is already defined over Ax and the vertical arrow on the right is even defined over Ar.) Now
o*sy, was corresponding to (0*Gp,0"ay), so that by the description of the morphism (12) the
composition 7gr o 0* sy, corresponds to the L-valued point (0*Gr,7gr o 0*ar) of Spec B. This
point in the fiber category (Spec B)(L) is by 7'9?1 isomorphic to (Gr,7gr oo ey o f*T_C:l), which
is by diagram (14) equal to (Gr,ayr). Since (Gr,ayr) is exactly the L-valued point s;, the com-
mutativity of diagram (13) follows.

Now we choose a closed point v € C\S. Then we can consider the associated étale local G/ -shtuka
Lo(G") = (Li(G"), 7} == Ly(7g/)) over R, which arises from the formal G!-torsor G’ xc,, Spf Ay
as described in § 2.10. Since R is strictly henselian the L*G!-torsor L} (G') is trivial so that
we choose a trivialization g : L} (G") = L*@Z. In particular the composition o7/ oc*f7t :
L*G! = L*G/, is given by an element be L*G/ (R) so that 3: L,(G') = (L*G,b).

We define R; := R/7rqi and b; € L*G! (R;) as the image of the projection of b under the map
L*G!(R) - L*GI(R;), b+~ b;.

Since Ry = kg is algebraically closed, there exists by [AH14, Corollary 2.9] a ¢ € L*@’: with
co = by -0”cy. Note that o ¢ € L;(@Z)(Rl) We set inductively ¢; := b; - 0*¢;—1 for ¢ > 1 and
c:=lime; = limb-o*b----- oD pak*cy e L (G!)(R) which satisfies ¢ = b-o*c. Replacing the

1—00 k—o0

trivialization 8 by ¢™' o 3 gives therefore an isomorphism of local G/ -shtuka ¢™' - 3 : L,(G') =

(L:G!,id) as becomes clear from the diagram

*L*(g) Sy ANy Sl

F TR

L)~ LG < LT,

Let Ay g := Ay®p, R and I'(A, G'/G) the ring of sections of G'/G over Spec A. The trivializations
clof: Li(G) - LiGl and o* (¢ tof) : 0" LE(G') — LG/ and the isomorphism 7, induces after
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passing to the v-adic completion morphisms ¢ 13, o*(¢713) and 7, as in the following diagram

—3
['(A,G'|G)®s Avr . B®a, Avr (15)
X
id P L':=L®a, Ayr
, o (c1B) 7’
F(Av G /G) ®A AU,R B ®Ap,o AU,R

The right hand side of the diagram arises as the v-adic completion of the diagram (13), where
57" and 057" denote the induced morphism of the completion. Since ord,(c(x)) = ¢ -ord;(z)

for all x € LY the diagram (15) implies

ordz(sp’ 0™ B(y)) = ordz (0" (s1’ o ' B)(y)) = - ordx(s” o ¢ 5(y))
for y e T'(A,G'/G). This means that ord,(s;" o c™13(y)) equals 0 or co. In particular we have
s 0c1B:T(A,G'|G)®4s Ay r > {w e L' | ord,(z) >0}

which implies

* U

B®a, Avr L {ze L’ | orde(z) >0}
B L fz el | orde(z)20YnL=0

This finishes the first step.

(Step 2) As we have described above, the proof of the first step gives us a G-torsor € over
E,C\S)R with j*& = Gl(c\s), and an isomorphism ap : f.& = G'l(c\s)- We now show that
E x(\8)r (C\S) gaty extends to a G-torsor £ over Cray with € x¢,
f*g - g;%alg .

Now the field I := Quot( A gay) has transcendence degree one over K9 so that its cohomological

alg CKalg = gKalg and apR -

dimension equals one by [Ser94, §2.3 Théoreme 1 and remark page 140]. Since Gy, is reductive
this implies by [BS68, subsection 8.6] that € is trivial over L. Therefore we can choose a
finite extension K’/K and a trivialization vy : & - Gps, where L' := Quot(Ag/) and where
R’ is the integral closure in K’. We recall that we denoted by z, a uniformizer of C' at v, so
that 4,®R’ = R'[2,] (do not confuse A, with A) and L’ is contained in Quot(R'[2,]). In
particular the trivialization ~;, implies that the G-torsor £ is trivial over Quot(R'[z,]). This
fact allows us to apply [Ans18, 1) in Theorem 1.2] to see that gQuot( R[zpv]) €Xtends to a G-
torsor &, over R'[z,]. (Note that [Ans18| use the notation O for our ring xr[z,] and z for a
uniformizer 7’ in our ring R’.) This corresponds by [AH14, Proposition 2.4] to a L*G,-torsor
L*(&,) over R’ which becomes trivial after base change to the strictly henselian ring R™9. We
fix such a trivialization 8, : L} (Eypats) <> L*Gypaty for all v € S. They induce trivializations
L(By) : Lv(g Ralg ) ——> LG, patg and therefore isomorphisms

ngRalg/L+@v7Ralg = (.7:1@;) X, R™9 = Flypalg .
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An T-valued point (£*,8) with 6 : £ - LyEpay is send to (L*,5, 048). By the theorem of

Beauville-Laszlo in § 2.9 we have the following cartesian diagram

HHC,G) HHC\S,G) (16)
l 1Ly l I Lo
veS veS

[14"(F,, L*G,) 14" (F,, LG,)
vesS vesS

Due to this diagram the torsor Gyaig corresponds to the tuple (g|(C\S)Kalg , T L3 (Grato), (€0)ues)
veS
with €, =id: L(L;(G)) — LU(Q|(C\5)KGZQ ). Now for all v € S the tuple (L} (Ggatg), (Syxidgag)o

€,) gives an K%-valued point of the affine flag variety FI,, Ralg. By assumption G, is parahoric
so that Fl, gy is ind-projective over R% by [Ricl6a, Theorem A]. As a consequence we can
lift (L?(Greats ), (Bo % idgeatg) © €,) to a unique R*-valued point (&,, 3, o 6,) € Fl,(RY) with
(& X Ratg K49, (By08,) x idpag) = (Ly(Gicars), (Bu x idgcatg) © €p).

In particular the tuple (g(c\s)Ralg Tyes Evy 0,) defines a unique R*9-valued point in 21 (C,G)

given by a G-torsor £ over Craiy with € x¢_,,, Craly = Gcatg. By diagram (16) with G replaced

alg
!

by G’ we get an isomorphism agaig : f+€ <> G-

This finishes the second step.

(Step 3) We now have to show that the G-torsor £ over Cray is part of a global G-shtuka
E = (& r1,...,mn,7e) defining the dashed arrow in diagram (10). The condition that apag :
[+€ = i3G" needs to be an isomorphism of global G'-shtukas defines r; by r; = s} o i for all
1 <7< n. So we have to construct 7¢.

From the proof of the first step we get the commutative diagram

(C\S)r (17)
"G |Gr xcpy (C\S)R il G'/Gr xcy (C\S)R

We defined (€,ax) with ax : f.€ - G’ to be the (C\S)g-valued point in G'/Gp corresponding
to sp. Hence (0*5,0*647:5) corresponds to o*sp and the composition % o 0*sp corresponds
to (6*E,7gr o 0*a@R). The commutativity of (17) means that (0*&,7gr o 0™ ag) and (&,aR)
are isomorphic as (C\S)g-valued points in G'/Gg. This gives us therefore an isomorphism
Ty 0*E - £ of G-torsors over (C\S)g satisfying 7¢/ o 0*@g = ag o f+7g. This defines the
isomorphism 7¢ restricted to (C\S)gaig by Tg|(c\s)Ralg = Tg xR idRay and we have to extend it

to Crats \UL'y,. We know additionally by 5|CKazg =G and a: f,.§g = j*G that 7¢ extends to

,[(alg
Crag\UT',. Therefore we only have to extend 7¢ at finitely many closed points of Craig\UT'y,.

(2 7
This works similar as at the end of the proof of proposition 3.12. So for p € Cpats\(UT'y; U Ccaty)
7
we choose an open neighboorhood V' ¢ Cj, with (V x,, R™)N((UL'y,) U(C\S) gais) = p. We
2
write V := V\p so that 7¢ is defined on Vja, and need to be extended to Viay. Moreover the
o and Ely_ - are two R™-valued points in S (V,G)(RY) so that 7|3 , 18
Ra

an isomorphism in sZ1(V,G)(R%9). Thanks again to Beauville and Laszlo (§ 2.9) the cartesian

G-torsors o* &y
R
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diagram
HN(V,G) AN (V,G)

- -

A (kg, L*G) A (R, LG))

makes it sufficient to show that the isomorphism L, (7¢) : Ly(0*E) = Ly(E) in # (kp, LG))
comes from an isomorphism in ! (kg, L*G,). After trivializing L,(€) the morphism L,(7¢) is
given by an element h € L@;,(R“lg ). Since ¢ is already defined on Via, the pullback of h to
hg € L@;(K“ZQ) is already given by an element in L*@;J(K“lg). Since L*@; c LG; is a closed
subgroup we conclude that A is already an element in L+@;(R“l~" ). This shows that 7¢ extends
uniquely to Vgay and hence to Craig\UL'y,. Hereby we found the G-shtuka £ over R™9 defining

K3
a unique dashed arrow in the diagram (10), which ends the proof of the theorem. O

Corollary 3.27. Let G be a parahoric Bruhat-Tits group scheme and (idc, f) : (C,G, v, ZQ, H) -
(C,G, v, Zé, H') be a morphism of shtuka data, where f : G — G’ is a closed immersion of smooth

affine group schemes over C. Then the induced morphism
7 Z! H'
for v ANC,8) - VT AN(C,E)
is finite.

Proof: The proof of this corollary works literally in the same way as the proof of corollary 3.25

with replacing unramified by finite. a

Remark 3.28. The results of this chapter can maybe used in some future work to formulate and
prove some kind of André-Oort conjecture for global G-shtukas. To formulate such a conjecture
one needs the notion of special points and special subvarieties. In the case of Drinfeld modular
curves an analogue of the André-Oort conjecture has been formulated and proved in [Bre05|.
Later the notion of special subvarieties and the formulation of the André Oort conjecture was
generalized in |Brel2| to the higher dimensional Drinfeld modular varieties. In the same paper
this André-Oort conjecture was proven in some special cases. These results were extended in
[Hub13]. To define Drinfeld modular varieties, one fixes a point oo € C' so that C'\ oo =: Spec A is
affine and M, contains Drinfeld A-modules of rank . Now for certain finite extensions A’ c A
coming from a morphism C' — C’ of curves, Breuer shows that there is a proper morphism
My - MQ{, of moduli spaces and he uses the image of this morphism to define special subvari-
eties. R

Now Drinfelds modular variety M”, can be embedded into VQZE,%” YC,GL;) for n = 2 and
some specific choosen bound Zy. The morphism M’ — MTA’, corresponds then to a mor-
phism VQZEL%”I(C, GL,;) - Vflﬂﬁﬂl(C’,GLr,[cch]) coming from a morphism of shtuka data
(C,GL,,v, Zg) - (C'",GLy ooy w, Zg) So extending the coefficients for Drinfeld modules gen-
eralizes to changing the curve for global G-shtukas as in section 3.2, since we are not restricted
to choose n = 2, G = GL, or some specific bound. Moreover we have seen that additionally to
changing the curve, we can also change the group scheme G as in section 3.3. Although we do

not know if this is precisely the correct definition it is conceivable to define a special subvariety
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Z!, H'
of v, A (C',G’) to be the image of the morphism

foom vl (0,6) - vt (@)

arising from a morphism (7, f) of shtuka data, where f : 7,G — G’ is a closed immersion of
Z!' H'
(Bruhat-Tits) group schemes. Special points in vV, #(C’,G’) would then be defined to be

those points which arise in the image of a morphism f, : V,Z;H’H,%”l(C', T) > Vf,ﬂ’H’,%”l (C',G"Y,
where f: T — G’ is a closed (Bruhat-Tits) group scheme that is generically a torus in G'.

Following this, an André-Oort conjecture for global G-shtukas would then say that given a set
S of special points, the Zariski closure of these points is a finite union of special subvarieties.
Again, this is not a precise formulation but should give an impression of the flavor of a possible

statement.



4 Stratifications

We now move our interest to the stratifications of the special fiber Vﬁg’

T #1(C,G)p,, of the
moduli space of global G-shtukas . From now on (C,G,v, Zy» H) will be a shtuka datum where
G is a parahoric Bruhat-Tits group scheme as defined in § 2.17. In the fifth chapter we will define
five axioms on this moduli space. Their verification will then imply several statements on the
Newton and Kottwitz-Rapoport stratification. In this chapter we do the necessary preparations
to formulate these axioms. In particular we define in the first section a stratification map and

explain how it determines a stratification of an algebraic stack. The second section is about

the set B(G,) of o-conjugacy classes and ends with the definition of the Newton stratification.

In the third section we introduce the local model for 52’1{%1(0, G). This results then in the

definition of the Kottwitz-Rapoport stratification. In the fifth and the last section of this chapter
we recall the definition of affine Deligne-Lusztig varieties and introduce the notion of o-straight
elements from [HN14, Section 1.3] and [HR17, Section 5.1]

4.1 Stratifications of Stacks

A stratification of a topological space X is defined to be a locally closed partition X = [];.; X;.

It is said to have the strong stratification property if the closure of any stratum X; is the union
of other strata X; = Ljes X;j for J c I. Now this notion of a stratification generalizes in very

much the same way to an algebraic stack X.

Definition 4.1. A stratification of an algebraic stack X is a family (X;)ier of locally closed
reduced substacks X; ¢ X such that the 1-morphism 11;c; X; = X s representable and universally

bijective.

The locally closed substacks X; are called strata and later we give them specific names depending
on the stratification (Newton, Kottwitz-Rapoport, ...) we are talking about. Now we will prove
that giving a stratification on X is the same as giving a stratification map on X in the following

sense.

Definition 4.2. Let X be an algebraic stack fibered over the category of schemes and I an index
set, which we view as a groupoid. Then a Stratification map of X with index set I is given by
a collection of functors @i : X(k) — I for every algebraically closed field k with the following

properties:
1. For every f: Spec k — Spec k' we have o o X(f) = k.
2. For every morphism of a scheme S to X the partition S = 11,1 S; defined by
Si={seS| Pr(s)als (n(s)alg -S> X)=i}

1s a stratification of S in the sense of definition 4.1. Here S; is well defined by the first

condition.

Lemma 4.3. The stratifications of X are in bijection to the stratification maps on X.
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Proof: Tt is not difficult to see that every stratification (X;);c; give rise to a stratification map.
Namely let z : Spec k — X be an object in X (k) with k = k%9, By the universal bijectivity of
[Tic; X = X we know that k xx [];c; X; is a scheme consisting of one point that factors through
exactly one stratum X;. We define ¢y (x) = 4. This gives a collection of functors ¢y, : X(k) - 1
that are compatible with X' (k - k') : X(k) - (k’). Let S be a scheme with S — X. Since X; are
locally closed the partition (X; xx S);er gives a stratification of S and the underlying topological
space of X; xx S is exactly given by S; from Definition 4.2. So (¢) is a stratification map. Now
starting with some stratification map (¢x)r we want to associate with it a stratification. We
recall that the algebraic stack has an underlying topological space |X| as defined in [LMBOO,
Definition 5.1 and (5.5)]. The compatibility of () guarantees that we have a map ¢ : |X| - I.
We set X; := ¢_1(i). Now choosing an atlas f : A - X induces a surjective continuous open
map |f|: |A] - |X|. Let (Ai)ier be the stratification of A from Definition 4.2. It is also given
as A; = (@ o |f)7H4) = |f71(X;). We conclude that X; is locally closed as follows. Let U; be
an open in |A| such that A; c U; is closed. Then |f|(U;) is an open in |X| that contains X; and
we have | f|(U)\X; = f(U;\A;) by the surjectivity of |f| and A; = |f|™1(X;). Since |f| is an open
map and U;\A; is open in U; we conclude that X; is closed in |f|(U;) and hence locally closed
in |X|. Now the open set |f|(U;) corresponds by [LMBO00, (5.5)] to an open substack X of X
with |X7| = [f|(U;). By [LMBO00, Lemma 4.10 and Corollary 5.6.1| there exists then a unique
reduced closed substack &; ¢ X7 with |&;| = X;. Now the locally closed substacks X; define a

stratification. Here the universal bijectivity follows again from the fact that |S xy X;| =S;. O

Remark 4.4. The proof shows that we also could define a stratification of X simply as a
stratification of |X.

The next lemma tells us that in a given stratification of an algebraic stack X locally of finite type
over k the strata are already defined by the closed points of X;. Of course it is not true, that any
partition of closed points of |X| give rise to a stratification. We remark as well that the lemma fails
if X is not locally of finite type. For example let m = (z,y) in k[z,y]. Then X = Spec k[z,y]n
has exactly one closed point m and this point generalizes to several points x;, which correspond
to the curves intersecting with m. Now {m,x;} and X\{m,z;} give stratifications that can not

be distinguished by knowing a partition of the closed points (only m in this case).

Lemma 4.5. Let X be an algebraic stack locally of finite type over some field K and let (op )
and (Yx ) be two stratification maps with

@Kalg = 'l/]Kalg : XKalg i I
Then the stratification maps are equal.

Proof: Assume (¢g)r and () are not equal, then the maps ¢ : |X| - I and v : |X| - I would
be different as well. Now we choose an atlas A - X and the surjectivity |A| - |X| implies that
the stratifications (Ag;)ier and (Ay ;)ier are different. The lemma follows therefore from the
following claim:

Let S be a scheme locally of finite type over K and denote by C' its closed points. By Hilberts
Nullstellensatz C' consists exactly of those points in S that have a finite residue field over K. Let
S1 and S be two locally closed subsets of S with S1nC =550 C. Then we claim S; = Ss.
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The set S := .51 1S5 c S is another locally closed subset in .S with S3nC = 51 nC and it suffices
to prove S1 = S3 which implies analogously S5 = S5. Since S3 is also locally closed in S7 we can

even assume without loss of generality S; = 5. Now choose an open subset U € S such that Sj is

closed in U. Since S is locally of finite type the set C'is dense in S and we have S3=UnC =U.

Then C' c U so that S\ U is closed without containing a closed point which implies S3=.5. O

4.2 Notations related to Weyl Groups

We denote by Qv the completion of the maximal unramified extension of @, in an algebraic
closure @, of Q, and A, its ring of integers. Using the identification @, = F,,((2,)) this means
Q, = Fglg((zv)). We denote by Lo = Gal(Q,, Qv) the inertia group, by ¥ the Galois group
Gal(Qy,Q,) and by X, the Galois group Gal(@v, @), which is generated by the F,-Frobenius

Op.

Since G is a parahoric Bruhat-Tits group scheme, the group G, is a connected reductive group
over @, and G,(A4,) c G(Qy) is a parahoric group in the sense of [BT84, Definition 5.2.6] or
[HROS8, Definition 1]. We denote by %, = Z(G,,Q,) the Bruhat-Tits building. Let F c 4,
be the maximal facet that is fixed (point wise) by G(A,) and choose an apartment <7, in 2%,
that contains F. We denote by A the maximal @Q,-split torus of G, that corresponds to the
appartement 7, so that <7, = @ (G,, A,Q,). Let S, be a maximal Qv—split torus of G, defined
over (), that contains A, this exists by [BT84, Corollaire 5.1.12].

Since Gy xq, Q, is quasi-split by [BS68, subsection 8.6] the centralizer T, = Zg,(S,) is a
maximal torus (defined over @),) and we can choose a Borel subgroup B, c G, xq, QU that
contains 715, xq, QU. Furthermore we denote by N, := N(T,) the normalizer of T} in G,. Let
m1(Gy) be the algebraic fundamental group of G,. It is the quotient of the the cocharacters
X.(Ty) by the coroot lattice. The action of ¥ (resp. ¥p) on X, (T},) induces an action on 71 (Gy)
and we denote by m1(Gy)yx, (resp.m1(Gy)x) the coinvariants under this action. Now we recall
that Kottwitz [Kot97, §7] (see also [PRO8, Section 2.a.2|) defines a surjective homomorphism

RGy * G’U(Qv) - 7Tl(G"v)Zo (18)

which is functorial in the group G,. We denote as usual by TU(Q,,)l the kernel of

ki, t To(Qu) = m1(To)sy = X (To)s,- (19)

The [HRO8, Lemma 5| implies that the group TU(QU)l equals also the intersection (G(flv) N
TU(QU). In the cited paper Rapoport and Haines work over a strictly henselian field. So let
B, = B(Gy, QU) be the building of G, over Q, and 7, = A (Gy, Sy, CUQU) be the appartement
corresponding to the split torus S,. Then we have a natural 3, equivariant embedding %, — B,
and @7, < <7, that identifies %, (resp. 7,) with the X, fixed points in B, (resp. gzZ,) [BT84,
p. 5.1.20]. The factes of ., correspond to X,, invariant facets of 42{; so let F' be the X,
invariant facet in <7, corresponding to F. The associated parahoric subgroup to Fis Gv(fvlv)
and the unique smooth affine group scheme over A, with connected special fiber, generic fiber
equal to G, xq, QU and the condition that the A, valued points equal this parahoric group is
equal to G, x4, /vlv.
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Definition 4.6 ([HROS8, Definition 7]). The (finite) Weyl group Wy of G, is defined as

Wy = Nv(év)/Tv(Qv)

The Twahori-Weyl group W, of G, associated with S is defined as

Wv = Nv(Qv)/Tv(Qv)l

In the case that S, =T, i.e. that G, is split over Qv this group W is often called extended Weyl
group and sometimes also extended affine Weyl group. Together with the definition of Tv(Qv)l

as the kernel of (19) we get an exact sequence
0 X.(T)s, -~ W, - Wy - 0. (20)
For any parahoric subgroup K c G(QU) that corresponds to a facet in A, we set
Wi = (No(Qu) 0 K)[T(Qu)1 € W,

We fix a special vertex p c A, and denote by K, the associated parahoric subgroup of GU(Qv).
Since the vertex is special the projection W, — W, induces an isomorphism Wk, = Wy (see
[HRO8, Proposition 13]). This gives a section in (20) and hence a presentation of W, as semi-
direct product

W, = X (To)s, » Wo

We denote by G, 1 the kernel of kg, and by N, 1 the kernel of xy,. We fix a base alcove a, in
o7, whose closure contains p. We denote by S the set of reflections at the walls of a, and by I,
the corresponding Iwahori subgroup. Then the quadrupel (Gy 1,1y, Ny1,S) is a Tits system by
[BT84, p. 5.2.12].

Definition 4.7. The affine Weyl group of G, is defined as
Wv,af = Nv,l/(Nv,l N Iv)

It is a cozxeter group with S as a system of generators and carries therefore the Bruhat order <

and a length function [.

Now by |[Ric16b, Lemma 1.2] we have N, NI, = T,1 and No(Qy)/Ny1 = Go(Qy)/Gy1 which

induces an exact sequence
P K/G’U
1= Wyaf > Wy —=m1(Gy)s, = 1 (21)

Now W, . acts simply transitiv on the set of alcoves in ;z{; and the stabilizer €) c Wv of a,
maps isomorphically to m(G,)x,. This gives a section of (21) so that we can write W, =
Wa.af X m1(Gy)sy = Wy o x Q. This semi-direct product is used to extend the Bruhat-order of
Wy ar to W,. Namely we set (a1, 81) < (aa, 82) if and only if 81 = B2 and a; < @y in Wy.af. Also
we extend the length function of W, ¢ to W, by 1(8) =0 for all B €.

In the following we denote by K, the parahoric subgroup (Gv(;lv) in GU(QU). Then the Bruhat-
order on W, induces a partial order on the double coset space W, \Wv /Wk,. Namely for each

double coset w € Wk, \Wv /W, there exists a unique representative @ € Wv with @ < @ for all
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T € w [PRS13, page 51 above 4.2.7|. Using this representative we define w; < wo if and only if
w1 < .

We recall from [PRO8, Proposition 8.1] that we have I, - N(Qy) - I, = G(Q,) which induces a
bijection I,\Gy(Qy)/I, ~ W,. More generally we have

Kv\Gv(Qv)/Kv = WKU\WU/WKU- (22)
This set enumerates the Schubert cells in the affine flag varierty F1 pa,. We recall its definition:
g

Definition 4.8 ( [PRO08, Definition 8.3] ). Let w € WKU\WU/WKU, then the Schubert cell C,, is

the reduced subscheme L*Gy -ny, - L*G,/L*G, c Fl, gaig, where ny, € Nv(QU) s a representative
g o

of w. The Schubert variety S, is the reduced scheme with underlying set the Zariski closure C,

of the Schubert cell C,,. It is a projective variety over Fglg.

From [Ricl3, Proposition 2.8] it follows that we have S, ¢ S, if and only if w < w’. We would
like to recall this proposition which describes these closure relations and also the dimension of
the Schubert varieties using particular representatives in every coset of Wi, \Wv Wk, .

By [Ric13, Lemma 1.6] there exists for all & € W,, a unique element ,w’* € W, with

I(g,w")= Maz  Min [(wGws) (23)

wi GWKU UJQGWKU

As it is commonly done in the literatur we denote by g, WXv the set {f,w’" |w e W, }. Then
&, WX maps bijectively to Wi, \W,/Wk, and we recall:

Proposition 4.9 ( [Ricl3, Proposition 2.8] ). Let we , WX then we have

- Sw = U Cw’
w’GKUWUKU
w/<w

- dim S, = (w)

Now let Z, be any bound in Fl, as in § 2.6 and let Z, be its special fiber and Z, = Z, X, IE‘Zlg c

Fl, gatg. By definition of the boundedness condition in § 2.6 the special fiber Z, is a projective
g

closed L*G, invariant subscheme of F lv,,{z . The definition 4.8 of Schubert varieties shows that

we can write 27 = U S, for some subset I ¢ Wy, \W,/Wk,. Since we used Schubert varieties
wel
here, the union is not disjoint. This leads to the following definition:

Definition 4.10. We define the Z,-admissible subset of Wi, \W,/Wx, to be the set
Adm(Zy) = {w e Wi, \Wo/Wi, | Su € Zy} € Wi, \Wo/ Wi,

The proposition 4.9 tells us directly that w € Adm(Z,) and w’ < w implies w’ € Adm(ZU) and

that ded = U C, 1s a stratification of ZU.
weAdm(Zy)

In the setting of Shimura varieties the p-admissible subset Adm(u) corresponding to some
dominant minuscule cocharacter p is defined by {w eWw | w < (1) for some x € Wo} (compare
[HR17]). This cocharacter u corresponds in our setting to the bound Z,. Now Adm(u) is the nat-
ural index set of the Kottwitz-Rapoport strata in the special fiber of a Shimura variety. We will

see in theorem 6.2 that our definition of Adm(Zv) satisfy this property for the Kottwitz-Rapoport
stratification of VfE’H%ﬂl(C, G) as well.
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4.3 The Set B(G,) and the Newton Stratification

In this section we introduce the necessary notations to define the Newton stratification. The idea
of the Newton stratification is to define two geometric points of VnE’H% L(C,G) to lie in the
same Newton stratum if their associated local-shtukas are quasi-isogenuous at a choosen subset
of the characteristic places v.

Let k be an algebraically closed field over F,, and v € v, then we define
B(Gy) := {b € LG”(k)}/N , where by ~ bo if there exists g € LG (k) with by = g byt g

This set is independent of k by [RR96, Lemma 1.3]. The set of quasi-isogeny classes of local
G, -shtukas over k is in bijection to this set B(G,). It sends a local G,-shtuka £ = (L*G,, b) with
be LG, (k) to [b]. Since k is algebraically closed every L*G,-torsor is trivial over k and changing
L by a quasi-isogeny ¢ € LG, would change b to ¢g'bo,*g, so that the map is well defined and
bijective. Furthermore we note that for a local shtuka £ over any field & its quasi-isogeny class
in B(G,) does not depend on an algebraic closure (k' )alg . For such a local G,-shtuka we denote
by [£L] the corresponding element in B(Gy).

The Kottwitz-map (18) on page 47 induces a map

kG, : B(Gy) = m(Gy)s

which we denote again by rg,. Let X.(Ty)s, = X.(Ty)/{(ya - aly € ¥, a € X.(Ty)) be the
coinvariants and X, (7,)>° the fixpoints of X, (T},) under the action of ¥y. Note that

Xo(Ty)g = Xu(T0)™ ©2Q = X, (T)sy 0, @~ @ (24)
is a bijection.
Let (X. (Tv)éo)+ c X, (Tv)g0 be the dominant elements with respect t o the chosen Borel sub-

group B, and let ((X . (Tv)é°)+)<gv) be the o,-invariants. Furthermore we denote as usual by

vg, : B(Gy) —» ((X*(Tv)éo)+)<gv> (25)

the Newton-map, compare [Kot97|. By [Kot97, p. 4.13| the product of the Newton- and Kottwitz-

map
B(G,) - (X.(1)3)) " xm(Goxs ] (e, (b)), re. ([8) (26)

is injective and used to equip B(G,) with a partial order as follows.

The choice of the Borel subgroup B, determines a set of simple roots and the dominance order
on X, (Tv)b. By definition « < @' in this dominance order if and only if o’ — « is a non-negative
@Q-sum of the simple roots. Now this dominance order defines together with rvg, and kg, a
partial order on B(G,). Namely for [b],[b'] € B(G,) we set

[b] <[6'] if and only if v, ([b]) < va, ([V']) and ke, ([b]) = e, ([0']).

We will also equip the product [T B(G,) with the partial ordering defined by ([by])vey < ([0],])ven

VEV

if and only if [b,] < []] for all v € v. Now we recall the following proposition.



4.4 The Local Model and the Kottwitz-Rapoport Stratification

Proposition 4.11 (compare [RR96, Theorem 3.6], [HV11, Theorem 7.3] ). Let S be an F,-
scheme and L a local G, -shtuka over S and b € B(Gy). Then the set {s € S |[L,] < b} is a
Zariski closed subset of S. We equip it with the reduced subscheme structure and denote this
subscheme with Ng¢,. Furthermore Ny := {s € S | [L,] = b} defines an open subset of N¢, and

hence a locally closed subscheme of S. Ny is called the Newton stratum associated with £ and b.

Proof: Compare [RR96, Theorem 3.6] and [HV11, Theorem 7.3|. ]

This proposition implies directly that we get the following stratification maps in the sense of

definition 4.2 on V7ZLE’H’H1(C,G)FR = Vgg’Hﬂl(C,G)xSprZFR.

Definition 4.12 (Newton stratification). For every algebraically closed field k over Fy we define

Sewn: Vo AN (C, Gy (k) 2 Sht, (k) — B(G,)
(g>317 .. '?37%7—7’7) i Fv(g) = (L+Gmbv) = [bv]

Furthermore we define

5G,k = (H(SG,U,]C) : Vfngt%pl(CvG)FR(k) - HB(Gv)

vev VeV

(G,7) — (6c.01(9))

VEV

Then by proposition 4.11 ég = (0Gwk)k and 6 = (0g k) are stratification maps in the sense
of definition 4.2 and for b, € B(Gy) (resp. b= (by)vev € [Tyey B(Gy)) we denote by Ny, (resp.
Ny) the associated locally closed substack of VnE’H'Hl(C,G)FR and call it the Newton stratum
associated with b, (resp. b).

4.4 The Local Model and the Kottwitz-Rapoport Stratification

We recall the definition of the local model of V.2 7! (C,G) from [AH16, §4.4]. Using this local
model roof we can then define the Kottwitz-Rapoport stratification.

We denote by VnE’H%i(?;G) the stack fibered over (IF;);, whose S-valued points consists
of tuples (G,7, (ev)ve), Where (G,7) € VnE’He%”l(C,G)(S) and €, : L'G, g = I',(c7G) is a
trivialization of the L*G,-torsor I'y,(c*G) over S. The map

ZU) ZAE’

Vit AN(C.G) — v ANC,G) (G (€0)oew) = (G27) (27)

is a [lyey L*G,-torsor. Furthermore we fix for all v € v a finite extension R, of R, with a

representative Z, g, ¢ Flg,,g, of Z,. Choosing for all v; € v a uniformizer 7, in R,, we write '

/
vy

H%“(C, G) xr, R, the base change to the ring R,. There

for the compositum of all the residue fields R,,/(7,,) and define R, = '[7
denote by VnBHL%”l(C, G)p, = V?’ZLE7

is a smooth morphism

!
.7y, ] Then we

bt ACG) g, — [T Zor, (28)

VeV

defined as follows (compare [AH16]|). Let (G,7v, (€y)vew) With G = (G, s1,...,80,7g) be an S-

valued point in VfE’H,%”l(C,G)RU(S) and choose a trivialization a, : I'y(G)sr = L*G,, g over
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some étale covering S — S. The composition oy, o I'y(7g) 0 €, : LG, g0 = LGy, g defines an
S’-valued point in Flg, which is independent of «, and hence descends to an S-valued point in
Flg,. The induced morphism S — F lg, R, factors by the boundedness condition through ZA% Ry -
This defines the map (28).

v

Definition 4.13. The product ],e, Zy.R, is called a local model for VnE’H%I(C,G).
We recall the following theorem:
Theorem 4.14 (|JAH16, Theorem 4.4.6]). Consider the local model roof

v AT E)y,

T

(0,6, [1Zur,

vew
induced from the T] L*G,-torsorin (27) and the smooth morphism U in (28). Lety be a geometric
VEV

point of VfE’Hﬁl(C,G)RU. Then the T] L*G,-torsor

VEV

ZU, Zv;

HNC.G) > V" AHNC,G) (G, (en)uew) = (G:7)
admits locally over an étale neighboorhood of y a section s such that the composition with 1& 18

étale.

As we have already explained in § 2.7 the special fiber ZA% R, XSpf R, KR, arises by Galois descent

from a unique closed subscheme Z, c Flg, xr, & 2 which we called the special fiber of Zy. In

Z”’ AT, G),, — T[1Z, . induced by (28) arises from a

VEV

particular the morphism z[} X il 1

morphism ) : VfE’Hﬁﬂl(C,G)FR — [1Z,r, (that means " XSpf R, it = 9 xp,, id,r). This
VEV -

gives the local model roof in the special fiber:

vl TGy, (29)

/X

A(C,G)g,, 1 Zurp

VeV

ZU7

Concerning the left [],c, L*G, action on []Z, the morphism 1 is [[L*G, equivariant. The

VEV vey
diagram (29) induces by definition of the quotient stack a morphism

Ag: VnBH%l(C,G)FR —

HL*GU\HZU,FR] :
VeV VEV

This morphism completes together with the projection []Z,r, — [ [1L°G \H Ly ]FR:| the dia-
VEV

VeV VeV

gram (29) to a cartesian diagram. In particular Ag is a smooth morphism.
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Now a morphism f:G — G’ of smooth affine group schemes that induces a morphism of shtuka
data (id, f) : (C, G, v, ZU,H) - (C,G,v, Z{}) induces also a morphism of the local models. Later

we will need the following lemma.

Lemma 4.15. Let (id, f): (C,G,v, Zy, H) » (C,G', v, Z") be a morphism of shtuka data such
that f: G - G’ is a morphism of parahoric Bruhat-Tits group schemes over C, such that f|C\y

s an isomorphism and such that ZAg arises from base change of 2; Then the induced morphism
PG,G' v+ Z’U - Zq,)

of the special fibers of the local models is proper and surjective. We denote the induced morphism

HL*GU\HZU,FR]a HUGZ\HZL,FR] by v

VEV VeV VeV vev

PG -

Proof:  Since Z, and Z] are both projective it is clear that the morphism is projective. The

surjectivity follows by the surjectivity of Flg, - Flg: and the condition Z, = Z, x Fu, Fly. O

Now we use the constructed morphism Ag to define the Kottwitz-Rapoport stratification of

Vf”’He%”l(C, G)ry,. Before we do this we take a closer look to the stack HL*GU\ I1 ZUJFR]-

VeV VeV

HLJ“GU\HZU] is given by the

VeV VeV

Lemma 4.16. The topological space of the quotient stack [

set HAdm(Zv) endowed with the product topology, where each set Adm(év) carries the topol-

oqy irgduced by the partial order of Wi, \W,/Wk,. In particular each element w = (Wo)vew 0
HL+GU\HZU:| (resp.

VeV VeV

[1Adm(Z,) (resp. w, € Adm(Z,)) defines a locally closed substack [

VeV

LngGv\ Il Z] ) of [

]_[L+Gv\]_[ ZU:|, which defines a stratification on it.

VEV » VEY VEY
Proof: This follows by the stratification of Z, = U  C, (see definition 4.10). An Fglg -valued
weAdm(Z,)
point of [H L+GU\ 1 Zv] is namely given by an [] L*G,-torsor (which is trivial over Fglg ) and an
vEV VeV veyY

equivariant map to [] ZUJFR, which is given by an element in [T L*G, -ny, L*G, / L*G, for some
VeV VeV

Wy € Adm(Zv) and some representatives n,,, of w,. The isomorphy classes of ]Fglg—valued points

are therefore given by HAdm(Zv). The claim on the topology and locally closed substacks

VEV
follows by the closure relations in proposition 4.9. |

Definition 4.17 (Kottwitz-Rapoport stratification). For every algebraically closed field k over
F, we define
Z,

Mgt VAN G) gy () 2 = [TAdm(Z,)

VEV

[HL*Gv\HZv]

VeV VEV

Furthermore we define for vewv

Mk Vi A (CLG) o (k) 25 [T Adm(Z) — Adm(Zy)

Vev
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Then Ag = (Agk)k and Agy = (Agwk)k are stratification maps in the sense of definition 4.2
and for w = (wy)y € T1AdM(Z,) (resp. w, € Adm(Z,)) we denote by KR, (resp. KR,,) the
vev

associated locally closed substack of VnE’H’Hl(C, G)gatg and call it the Kottwitz-Rapoport stratum
q
associated with w (resp. wy ). That means KRy, (k) = )\ak(k).

It is clear, that KR, is given as the pullback of [HL*GU\ I1 Zv] under the map Ag.

VeV VeV

4.5 o-Straight Elements and Affine Deligne-Lusztig Varieties

As before we denote by o, the F,-Frobenius that generates Gal(@v /Qy). Since N, and T, are
defined over ), the definition 4.6 of the Iwahori-Weyl group shows directly that we have a natural
action of (o) on W,. We call the group G, residually split if this action of o, is trivial and we
note as in [HZ16, beginning of section 7| that split implies residually split, whereas residually
split implies quasi-split.

The above action gives us a semi-direct product W, x (5,) which allows us to write (wo,)" =
woy(w) ..o (w)o™, where w € W,. We extend the length function on W, to W, x (ov) by

defining I(0,) = 0 and we recall the following definition.

Definition 4.18 (compare also [HN14, section 1.3] and [HR17, section 5.1]).

An element w € W, is called o,-straight if [((wo,)™) = mi(w) for allm € N. Let B(W,) = W,/ ~,
with wy ~ wy if and only if wy = g waoy(g) for some g € W,, denote the o, conjugacy classes of
W,,. Then such a oy-conjugacy class [w] € B(Wv) 1s called o -straight if there is a representative
g woy(g) € [w] which is o,-straight. We denote the set of o,-straight conjugacy classes by
B(Wv)gv_str. If (oy) operates trivially on Wv, we only speak about straight elements and straight

conjugacy classes.

Remark 4.19. In [Hel4, section 2.4] He defines w ¢ W, to be o,-straight if and only if I(w) =
(vg,(w),2p) with the remark that this definition coincides with the previous one by [HN14,

Lemma 1.1]. Here we denote as usual by p the halfsum of all positive coroots.

We recall that we have W, = X, (T)x, » Wy and that we denoted its projection to m1(G)y, in
section 4.2 by kqg,. Its projection to 71 (G)y is invariant under o,-conjugation and we denote
the resulting map still by
kG, BW,) = m(G)s

Furthermore we referred in equation (25) in section 4.3 to the Newton-map vg,. Viewing it as
a map G,(Q,) - ((X . (Tv)éof)(av) which is invariant under o,-conjugacy, we can describe its
restriction to N, (@) as follows (compare also [Hel4, section 1.7 and [HR17, section 5.1]). For
w € Nv(Qv) let w be its image in W, = NU(QU)/TUJ = X.(Ty)s, » Wy. Then there is a natural
number n such that (wo,)" = X € X, (T,)x, and o," acts trivially on W,. In particular, using the

bijection (24) in section 4.3, we get an element % in (X, (Tv)éo)<””), which is independent of n.
(o)
The unique dominant element in its Wy-orbit is then defined to be vg, (w) € ((X*(T U)éo)*) .

v —_ (UU
Since the described map N,(Q,) - W, — ((X*(Tv)éo)Jr) is invariant under o, it induces a
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map

— (ov)
B(W,) — ((X* (Tv)éo)Jr) ,  still denoted by vg,.
L. — 20\ * (ov)
Wiiting 0, BT,) — ((X.(T)F) )" xm(@s, w1 (6, (0] ha, ([w])
we recall the following proposition. Note that in contrast to the map (26) in section 4.3 this map

0, 18 not injective.

Theorem 4.20 ([Hel4, Theorem 3.5]). Let w € W, be o-straight, & € Ny(Q,) a representative
and I, the chosen Iwahori subgroup. Then the set I,wl, c NU(QU) 1s contained in a single

o-conjugacy class of GU(QU).
Then He uses this theorem to prove:
Proposition 4.21 ([Hel4, Proposition 3.6]). Let [w],[w'] € B(W,) such that w € W, and

w' € W, are of minimal length in their o,-conjugacy classes [w],[w']. Choose furthermore two

representatives w,w’ € NU(QU) of w and w' respectively. Then w and &' are in the same o,-
conjugacy class of G(Q,) if and only if 0,([w]) = o([w']).

In particular we have a well defined map:
B(W,) - B(G.)
and the following theorem implies that it restricts to a bijection
U : B(Wy)o-str — B(Gy) (30)

Theorem 4.22 (|Hel4, Theorem 3.7|). For any o,-straight o,-conjugacy class x € B(Wv)gv_str

we choose a minimal length representativ w, € Wv with some lift w, then:

Gv(Qv) = H Gv(Qv) U'v Wy

IEB(WU )Cffl;*st’l‘

where g - Gy =g Wy 0ng L

Affine Deligne-Lusztig varieties

Let K be any o,-invariant parahoric subgroup of GU(QU), for example the group K, := Gv(fvlv).
Recall from equation (22) on page 49 that choosing a representative w € NU(QU) of we WK\WU /Wi
gives

G(Q,) = [[ Kwk

weW g \W, /Wi
Definition 4.23. Letb, € B(G,) andw € WK\WU/WK. Then the affine Deligne-Lusztig variety
associated with by, w, K is defined as
Xrkw(by) = {gK € LG(F¥9)/K | g"'byo(g) e KwK}
For a subset C c WK\WU/WK we set

XK,C(bv) = U XK,w(bv)'
weC

If K equals the chosen Twahori group I,,, we obmit it from the notation and write X, (b,) (resp.
Xc(by)).
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Note that X, (b) are the Fglg -valued points of a locally closed ind-subscheme of the partial affine
flag variety Flg, which is actually a scheme locally of finite type over Fglg by the theorem [AH14,
Theorem 4.18]. If C' ¢ Wi \W, /Wi is closed under the Bruhat order (for example C' = Adm(Z,))
then X, (b) are the Fglg -valued points of a closed subvariety of the partial affine flag variety
Flg. Its irreducible components are projective by [AH14, Corollary 4.26].



5 Axioms on the Moduli Space V2 #1(C,G)

There is an analogous definition of the stratifications, which we introduced in the fourth chapter,
for the special fiber of Shimura varieties. In general one can ask a lot of interesting questions
about these stratifications: what is their dimension, are they equi-dimensional, are they smooth,
are they affine or quasi-affine, what is their relation, do they have the strong stratification
property, are they non-empty, ... A lot of work about these questions has been done in the case
of Shimura varieties, which is spread out in the literature.

In [HR17] Rapoport and He define five axioms on Shimura varieties. Once these axioms are
verified, one can conclude the definition and existence of these characteristic subsets as Newton
stratification, Kottwitz-Rapoport stratification and EKOR-stratification in a most general setup.
Moreover one can specify precisely their natural index set and draw some further conclusions.
In this chapter we firstly define and then verify five analogous axioms for the moduli space
v
of our setting to the analogous case of Shimura varieties. Here the setting is given as follows

" 1(C,G) of global G-shtukas. But before we start doing this, we give a comparison

(compare also [HR17, chapter 3|):

We start with a Shimura datum (G, {h}) and an open compact subgroup K = KPK of G(Ay),
where K ¢ G (AZ}) and where K = K, is a parahoric subgroup of G(Q),) for a fixed prime number
p. We set Gg, = G ®y Q, and denote by {u} the conjugacy class of cocharacters of Gg, corre-
sponding to {h}. The corresponding Shimura variety Shx = Sh(G,{h})k is a quasi-projective
variety defined over the refelex field E. Let E be the completion of E at a prime p over p and
Opg be its ring of integers with residue field k. Furthermore let Sk be an integral model over
Op and Shi = Sk Xspec 0 KE its special fiber. Then the comparison to the analogous setting
of moduli spaces of global G-shtukas is given by the following table:

VTZLQ’H%M(C, G) over Ry the integral model Sk over Of
G = G x¢ Spec Q) notice that G can vary in | Gq,

the fibers

fixed characteristic places v = (v1,...,v2) fixed prime p

H c G(AY) = G(AY) an open compact subgroup | K? c G(A‘?)

(G(Av)) ey © (G(Qv)) yey = (G@(Qv)) ey, K c G(Qp) a parahoric subgroup

this subgroup is uniquely determined by G
morphism f : G - G’ which is an isomorphism | changing the subgroup K c K’ c G(Q,)

over C\v

the bound Z, the cocharacter {u}
[1Adm(Z,) Adm({u})

VEV

global G-shtukas abelian varieties
local G,-shtukas p-divisible groups

Table 1: Comparision of the settings
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5.1 The Axioms
The first axiom concerns a change of the parahoric structure at the characteristic places.

Axiom 1. Let (ido, f) : (C,G,v, ZE,H) - (C,G, v, ZAL,H) be a morphism of Shtuka data,
such that f: G - G’ is a morphism of parahoric Bruhat-Tits group schemes over C, such that
f |C\y is an isomorphism and such that ZQ arises from basechange of Zé . Then there is a natural
morphism of stacks

Zy,

reo Vel o (0,6) - vt e (e, @)

which is projective and surjective.

The second axiom concerns the local model of the moduli space Vrzlﬁ’H%” 1(C,G), which guaran-

tees the existence of the Kottwitz-Rapoport stratification.

Axiom 2 (Existence of the Kottwitz-Rapoport stratification). There is a smooth morphism of
algebraic stacks

Ae: Vi AN (C, G, —

HUGU\HZU,FR] .

VeV VeV
This morphism is compatible with a change of the group scheme G as in axiom 1 and lemma

4.15, that means g’ o T 6 = PG, © AG-
The third axiom is about the existence of the Newton stratification and its closure relations.

Axiom 3 (Existence of the Newton stratification). There is a stratification map (see definition
4.2)
H,ZU 1
og : Vn " (C,G)g, ~ [[B(Gy).

VEV

For b = (by)vew € [1 B(Gy) we denote by N}, the associated locally closed substack and call it the

VeV
Newton stratum associated with b. For a scheme S — VnE’H%“(C, G)r, we denote by N, g the
pullback of N} to S. We require that the map dg, satisfies the following two conditions

(i) For every map 7g g/ as in Axiom 1 we have dg = dgr o g G-

(ii) If there is a scheme S — VnE’Hz%”l(C, G)ry and b,0" € [1 B(Gy) with Nj s "Ny g # @ then

VEV

we have b < b in the partial ordered set [1 B(Gy,).

VeV

Note that we do not require this stratification to have the strong stratification property. As long
as G is not hyperspecial this property may not be satisfied.

Our next axiom relates the two previous axioms about the Newton and the Kottwitz-Rapoport
stratification. To formulate it, we denote by L*G,(F&9),, c L*G,(F¥9) x L*G,(F4") the graph
of the Frobenius. It operates on LG, (F;lg) by

l al l -1
L*GU(Fgg)% x LGy(FgY) » LGy (F?)  ((h,00(h)),g) = h™ goy(h)

so that the set of L*G,—0,-conjugacy classes is given by LG, (Fglg)/L+GU(Fglg)UU = LG, (F&9)/ ~
with g1 ~ ¢go if and only if there exists a h € L+GU(IFZZQ) with g1 = h™tgao,(h). Note that we
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can similar denote by LGU(FZlg)JU c LGU(FZIQ) x LGU(IF'Zlg) the graph of the Frobenius on

LG, (IE‘ZIQ), which allows us to write B(Gy) = LG, (F;lg)/LGv (F;lg)gv. The reader should be

alg
q

by some other algebraically closed field. Now we have the two embeddings L*GU(FZZQ )o, C
L*GU(IFZZg) x L+GU(FZIQ) and L*GU(IFZZQ)% c LGU(FZZQ)% which induce the two projection

maps

aware, that unlike for B(G,) (see [RR96, Lemma 1.3|) this quotient changes if we replace F

le: [T LGu(F§'?) [ L' Go(F§'9)g, — T] L*Go(F5')\ LGy (F5?) [ LG, (Fg?)

and
dg : [] LG, (Fa%) /L*GU(IFZIQ)UU — [ LG, (F) /LGU(FZZQ)% -1 B(G.)

VEY VEY vey

We already mentioned on page 49 in (22) that we can identify L+(GU(]FZIQ)\LGU (]Fglg)/LJer (IFZZQ)
with the set Wg, \Wv / Wg,. Note also that if f : G - G’ is a morphism as in axiom 1,
which implies LG, = LG/, then the embedding L*G,(Fi¥),, c L*G!(F¥9),, gives a projec-
tion LGU(]FZIQ)/LJer(IFZlg)UU - LG;(Fglg)/LJrG; (Fglg)gv compatible with dg and Ig.

Now we can formulate the fourth axiom, which guarantees the existence of the so called central

leaves.

Axiom 4 (Central leaves).

(i) There exist a natural map

To: Vi AN (C,8) () — T]LG(F5) [ L*G, (¥,

VEV

such that the following diagram commutes

o LG () \ LG (F5') /LGy (')
v )
Vit (€8 (Fy1) —— = TILG(FY") /L Gu(F5),,
v .
. [1B(G,)

VeV
where Ag and dg are the maps from the second and the third axiom. Furthermore we
require that for every morphism mg ¢/ as in the first axiom the diagram

Zy,

v AN, G) () - TILG(F) [ L7y (B, (31)

VeV

e l

7 Ygr
VAN (OGN ()~ TTLGY (F3) [ L G (Fg),,
VeV

commutes as well.
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(i) ImYg =Ig'(Im Ag). Note that the inclusion c already follows from the definition.

(iii) Let f: G — G’ as in the first axiom and y € Im(Yg). Denote by 3’ the image under the
projection in the above diagram (31). Then we require that the restriction

moo(FG9)] Ly, T8 W) — T3

is surjective with finite fibers.

Remark 5.1. The fibers of T are called central leaves, they give a partition of closed points,
but are not a stratification. Now for w € Im(Ag) the set Ig'(w) is the potential index set of the

central leaves, which lie in the K R,,.

The fifth axiom is a weak non-emptiness statement for the Kottwitz-Rapoport stratification. We
recall that if G, = I, is an Iwahori group scheme of G,, we have Wg, = {id}. In particular
Adm(Z,) is a subset of W, = Wg,\W,/Wg,. Now the connected components of F1,, are given by
m1(Gy)x, = © (see [PRO8|) and a schubert cell C,, lies in the connected component corresponding
to B € Q if and only if w equals by (21) to (o, 5) € Wy, o5 %2 for some o € W, ¢. Since Z, c Fl, is
by definition of the boundednes conditions connected it follows by 4.9 there is a 1, € 71 (Gy)x, = 2
such that all elements w € Adm(Z,) are of the form (e, j1,) € Wy ar x Q. In particular there is a
unique element 7, € Adm(Z,) of length 0.

Axiom 5 (basic non-emptiness). Let G be a group scheme such that G, is an Iwahori subgroup of
G, for all v € v. Let 7, € Adm(Z,) be the unique length 0 element and 7 = (7, )vey € [1 Adm(Zy).

VEV

o (weak version) Then KR, is not empty.

e (strong version) The map KR; - TrU(Vng’ijl(C, G)F”‘lg) is surjective.
q

Here we write Wo(VnE’He%ﬂ YC,G)_,,) for the geometric connected components of the moduli

alg
]Fq

space VfE’H% l(C,G)Falg. So in other words the strong version expresses that the Kottwitz-
q

Rapoport stratum K R intersects all the geometric connected components of Vgﬂ’H,%” e, G)]Fazg.
In particular it implies the weak version. In analogy to Shimura varieties one should expect alqso
the strong version of this axiom to be true. However, proving such a result requires to have a
good understanding of the connected components of VnE’H:%” L, G)ngg, what we do not have

at the moment.

5.2 Verification of the Axioms

In this section we will verify some of the axioms. For the proof of first axiom, all the work is
done in the third chapter and we just give a reference to it. The second and the third axiom
follow mostly from our explanations and citations in the fourth chapter. Therefore most of the
work we do in this section concerns the fourth and fifth axiom. The proof of the fifth axiom is

not totally complete, but we sketch an idea how to prove it.



5.2 Verification of the Axioms

(Axiom 1) The construction of the morphism is done in subsection 3.3. The fact that the mor-
phism 7g g is projective and surjective under the desired assumptions this is proved in theorem

3.20. Here the morphism was called f..

(Axiom 2) The smooth morphism Ag was constructed in section 4.4 and it was explained af-
terwards that it induces indeed a stratification map (compare definition 4.17). To prove the
compatibility with a change of the group, let f : G - G’ be a morphism as in the first axiom
and (G,s1,...,8n,76,7) an k = k®-valued point in VﬁE’H%”I(C’,G). Choosing a trivializa-
tion I'y(G) =~ (L*Gy,by) we have TI'y(nmge(G)) ~ (LG, by). Using the bijection in (22) from
section 4.2, let w, and w) be the projections of b, in WGU\Wv/WGv and WG;\m/WG; re-
spectively. This means Ag x(G) = wy and Ag vk (7e,6/(G)) = w;, and shows the compatibility
AG’ © TG,G! = PG,G' © AG-

(Axiom 3) The map dg was described in definition 4.12. Right after this definition it was also
explained that dg is indeed a stratification map in the sense of definition 4.2. For the first con-
dition in the third axiom we need to show dg = dgr o 7 g+ for all morphisms 7g g/ as in the first
axiom. So let f:G — G’ be again a morphism as in the first axiom, let k£ be an algebraically
closed field and (G,7) € VﬁE’H%I(C,G)(k). We choose a trivialization I',(G) ~ (L* Gy, b,) for

all v e v so that 0g(G,7) = ([bu])vew € [T B(Gy). As before we have mg ¢/(G,7) = (f.G,7) which

VeV

implies I'y (76,6 (G)) ~ (L*G,, by). This means (dg'ome.6)(G,7) = ([by])vey and proves the first
condition. The second condition in the third axiom follows also from proposition 4.11, because

it tells us that []N_g is a closed subscheme of S containing NQI, g and consequently also J\/’er g

c<b’

This means [N, sNANps # @ which implies b<b'.

<t -
(Axiom 4) To verify (i) we describe Y as follows. Actually the set LGU(IFglg ) / L+(GU(]FZlg )ow
determines precisely the set of isomorphism classes of local G,-shtukas over Fglg . Note that this
is different from B(G,) which determines the isogeny classes. Now the map T¢ sends a global
G-shtuka G = (G, s1,. .., Sn,Tg) to the elemenents corresponding to the isomorphism class of the

associated local G,-shtukas:

Yo : o2 #N(C,C) = [] LG, (F29) /L' G, (F9),,

VeV

(G) = (by)vew with T'y(G) = (L7 Gy, by).

It is clear by construction that Ag and dg = lg o Yg and dg = dg o Yg. Let f: G - G as in
the first axiom, G € V.2 1 (C,G)(F) and T'y(G) = (L*G,b,). Then Ty(£.G) = (L' G/, b,)

which implies the commutativity of diagram (31).

We don’t prove the (i7) condition, but we will see in lemma 6.5 that it suffices to check this

condition in the Iwahori case.

Now the statement of (ii7) can actually be concluded from a detailed study of the proof of
theorem 3.20. The crucial point is that we had some freedom to choose the element bg,? ), but let

us explain the proof. We firstly show the surjectivity. We choose 3’ € Im(Yg/) and a pre-image
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y = ([y»]) in HLGU(IFZZQ)/L+GU(IFZM)UU under the natural projection, where y, € LGU(FZZQ)
vey

denotes a representative. Now let G' = (G',s1, ..., 5n,7g/) € Voo (C,G')(FA9) with T(G') = '
which means I',(G") ~ (L*G),y,) for all v € v. Let F be the compositum of all finite fields F,, for
v e v and denote for all v € v as in theorem 3.20 by v(¥), ... v(@9 v=1) the closed points in Cg
lying above v. Here v(?) is the image of the characteristic morphism and the other points arise
from applying o to the residue field. We set U := (C\v)r as well as I := {v() e Cp | v@|v } so

that following Beauville and Laszlo as in § 2.9, we can again write down the cartesian diagram

A (Cr, Gp) AN (U, Gr)
MLy [1Ly
vel vel

[17Y(F,L*G!) —— 1'1%”1(1? G!)
vel

- (H L*Gyw, () ywep) where el : Ly (G') - LG
v(Del
are trivializations coming from an isomorphism L’ (G") > L*G/ ) of L*G,-torsors. Then for

vewvandi= .,deg v—1 the element ¢}/ LG ) (F3'9) was defined as = ePor o (Tgr) ©
o (e(l 1)) ! For i > 11t is even an element in L*G (,)(Fa 9) and by definition of the global local
functor we have I',(G") ~ (L*G',¢,) with ¢, := c,(JO) o {19 VD) L g2 ldeg v72) L pdeg v-lx
In particular we find 61(,0) € L*G;(Fglg) with bq(, ) -Gy - o9 7J*(bq(,o))_1 = y,. Using this element
b(o) we set inductively b(i) *b(i_l) (c (i))’1 fori=1,...,deg v and all v € v. Then (b(i)) €

[1L°G )(Falg) defines by 3.18 a G-torsor G = (G|, Tl L+G'( - (b(l o€y ))v( her) and extends

v(@®el v(@el

Using this we write as before G’ = (G’

similar as in theorem 3.20 to a G-shtuka G = (G, s1,...,sp,7g) with Tg‘U =71g/|,; and f.G =G".
That 7g| o extends to 7g is seen from the equation (). V) ‘U*(bq()i_l)) L= 1 for i > 1 coming from
a*ef,ifl) O'*bq()iil)

L, (0*G) LG LG )

L, (7g )L lcg“ z’dl

L, (9) o LG,u) T LG
€ b'u
This equation together with the equation
b(O) o (b(deg v— 1))( 1) _ b(O) ( ). o (o_deg v—l*bQ()O) . O_deg v—2*(c£1))—1 _____ (ngeg v—l))—l)—l
= b§°> .cq(J ) .U*ngeg v-1) .. o (deg ”_1)*07(J1) . odeg vx (bgO))—l - bSJU) T, - olleg ax (bf)o))‘l =y

and the definition of the global local functor implies I',(G) ~ (LG, y,). This shows Y¢(G) =y

and hence the surjectivity of

moe ()| L, YE W) — Te ().

It rests to prove that the fibers of this map are finite. Now for any other tuple (d(i)) (i)ey N

deg v

I1 H L*G,u) defining a G-torsor G = (g’

VeV =1

G-shtuka G with £,G = G’ and Tg(G) =y, we have dg Do (@) e LGy (FO9) for i > 1

L*G ), (d( Do el ))U( yey) which is part of a

%)

o I

and dV -7, - o (d) ! =y, in LG,(F2)/L* G, (F'9),,.
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By choosing some e L*G, (Fglg ) and defining
oD = i) 0% (D) @) 110 (B

we can replace (dz(,i))v(i)E ; by (agi) .dg,i)) o)y Which defines a G-torsor @ isomorphic to g with
f*Q; =G’ and Tg(@) =y. Since by definition

al - dD Do (@GN o (@) =1 for i > 1 and
al® - d® - (- g% v (dD) T g% v (o) =y, in LGy (F39) /LGy (FS9),,,

we can assume that the tuple (dl(,i))v(i)d satisfies dy) -cf,i) -(f*(dpf,i_l))’1 =1 for ¢ > 1. Therefore

the fibers of WG,G'(FZZQ)‘T ) are given by the product over v € v of the sets
My

{ho € L*GL(F{) [L* Gu(F?) | hy-yo-osh™ =y} (32)

and we prove that this set is finite. Since G, is connected, we find by [AH14, Remark 4.15]
an element f € LGU(FZZQ) defining a quasi-isogeny (L*G,,y) — (L*G,, f-y -0} f~!) such that
z = f"ly,0,f is decent. That means that there exists a positive integer s > 0 with (zoy)® =

vy (2y)oy®, where v, = vg,(x) is the Newton point and z, the uniformizer in A,. Now for all

elements h in the above set (32) the element Af lies by [AH14, Remark 4.16] in LG(F),), where
F!, denotes the finite field with [F] : F, ] = s. Moreover hf lies in the image of the morphism

LG, — Fl, b~ bf.

Since Fl, is ind-projective and since L*G] is affine and hence quasi-compact, this morphism
factors through a projective subscheme, [HV11, Lemma 5.4|. Therefore hf is an F,-valued point

of an projective scheme. The set of these points is finite. O

Actually the proof even shows a stronger result as formulated in the fourth axiom:

Lemma 5.2. For every y' € Im(Yg/) and every preimage y of y' under the projection

[1LG(Fg') [L* Gy (F3'),, — [TLG,(F3) [ LG/ (F3'9)s, , the map

Ve vEU

WG’G,(FZlg)|T‘1(y) (TG (y) — Y (y') , is finite surjective.
G

In particular y is an element in Im(Yg).

Proof: Follows from the previous discussion. O

(Axiom 5) We explain the idea of the proof of the weak version of this axiom and remark the
step that is missing. The strategy is as follows. We construct explicitly a G-shtuka G over ]Fglg
in v, (C,G)" that lies in the basic locus corresponding to the unique basic element ([by])ves
with kg, ([by]) = po. Here p,, was the element in 7 (G, )y corresponding to the connected com-

ponent of FI, containing Z,. That means that G should satisfy dg(G) = ([by]). A priori G lies
only in v,,#1(C,G)¥ and not in Vfgﬁl(C,G) since we can a priori not say if G is bounded
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by ZQ . Then we will use a known result about Deligne-Lusztig varieties to transform our global
G-shtuka G to a global G-shtuka G" over ]F'Zlg that lies in the K R-strata K R,, where 7, was the
unique length zero element in Adm(Z,) and T = (7,)yep. This global G-shtuka G’ will then be
bounded by ZQ. The explicit construction of G takes place in three steps. In the first step we
define two smooth affine group schemes T and T over C, whose generic fiber is a maximal torus
of G with some well choosen properties. The group scheme T will be the Weil restriction of G .0
for some morphism of curves 7 : C' — C. In the second step, we need then to construct a global
G-shtuka £ in v, (C,G,,). Then we will apply the morphism 7, from 3.14 to £ to get a
global T and then a global T-shtuka. Then we will apply the morphism in theorem 3.20. In the
third step we will then explain how we transform G to G'. So far about the strategy, now let us

start with the first step and construct explicitly this global G-shtuka G in V,,. 22 (C, G)2(F29)
with 06(G) = ([bv])vev-

(Step 1) To begin with the first step we fix for all v € v a maximal @Q,-torus T} in G, such that T},
modulo the center Z(G,) is anisotropic. The existence of such a torus follows from the following

theorem.

Theorem 5.3 (compare [PR94, Theorem 6.21 page 326]).
Let G be a reductive group over a mon-Archimedian local field K, then there exists always a

mazximal torus T in G, which is modulo the center of G an anisotropic K-torus.

Proof:  Actually the theorem in [PR94] differs in two points from this one. Firstly the cited book
only considers local fields of characteristic 0. But knowing that all maximal tori of G are split
and conjugated over an separabel closure K*? (see [Conl4, Corollary B.3.6]) the same proof
works in positive characteristic. Secondly the theorem is only formulated for semisimple groups
and states that there is a maximal K-torus, which is anisotropic over K.

Now once we know this, we write Z for the center and G for the adjoint group of G so that we

can consider the short exact sequence
0>Z->G->G>0

and choose a maximal K-torus 77 in the semisimple group G which is anisotropic. Since
G - G is an epimorphism of connected algebraic groups, there exists by [Conl4, Corollary
3.3.5] (see also [Hum?75, Section 21.3 Coroallary C]) a maximal torus 7" in G such that the image
of T equals T". Since the image of T is exaclty T'/Z and since T' = T'/Z was anisotropic, we see

that T satisfies the desired properties. O

We recall that we say that an algebraic variety X over () satisfies the weak approximation
property if the embedding X (Q) — H X (Qy) is dense, where X (Q,) carries the topology induced

by the v-adic on @, (see [Con12]) and S is any finite subset of |C|. This concept of weak
approximation exists also for number fields K and there is the following useful corollary of
the [PR94, Proposition 7.3 page 402| that states that an irreducible smooth K-rational variety

satisfies the weak approximation property.

Corollary 5.4 (|[PR94, Section 7.1, Corollary 3, page 405]).

Let G be a reductive algebraic group over a number field K, and let T be the variety of its maximal
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tori. Then T has weak approzimation. In particular, if S is a finite subset of places of K and,
for each v e S, T(v) is a given mazimal K,-torus in G, then there exists a mazimal K-torus T

of G which, for any v in S, is conjugated to T'(v) via an element of G(Ky).

Although this corollary is only formulated for characteristic 0 it holds as well for our group G
over ). The main ingrediant in the proof of the corollary is the rationality of the scheme of
maximal tori. So let T be the Q-scheme of maximal tori in G. Choosing some maximal torus in
G and writing N for its normalizer in G, the scheme 7 is represented by G/N and since G is
smooth, 7 is in particular a smooth homogenous space for G (see for example [Conl4, Theorem
3.2.6]). The Q-rationality of 7 (including the positive characteristic case) is proven in [BS68,
Theorem 7.9|, so that 7T satisfies the weak approximation property.

Now let z, € T(Q,) be the point corresponding to the torus 7}, with normalizer N, in G, and
let

Dy :Gy > Ty:=T xQ Qu = Gy/ Ny, g g-Ty.

Since the differential map 7, ®,, : T,,G,, - T, T, is surjective, we can apply the theorem in [Ser92,
chapter 3, §10, 2)]. The second part of this theorem tells us that every point in the set

Vi={g-zy | g€ Gu(Qu)} € T(Qv)

has an open neighborhood that lies in the image of the map G(Q,) - T(Q.,) (i.e. completely
in V,). In particular V,, is open in 7(Q,). Now using the weak approximation property we
fix a maximal @Q-torus 7' ¢ G (corresponding to some = € 7(Q)) such that T, := T xg @, is
G, (Qy)-conjugated to the choosen torus 7, (i.e. Ty, lies in V,) for all v € v. In particular T,
modulo the center of G, is an anisotropic torus. Let L be the splitting field of the maximal

torus 7. It is a finite separable extension of (). By [PR94, Proposition 2.2, page 55| T arises as

l
a quotient of T := [T Resr oG, 1, that means that we have an short exact sequence
i=1

0-F-T-T-0

of @Q-tori which split over L. Now the field extension L/Q corresponds to a curve C’ over C

l

and we set C := UC". We denote by 7 : C' > C and 7 : C' — C the natural morphisms to C.
i=1

Further we set T := ReSG/CGm,é = ’ﬁ*Gmﬁ for the Weil restriction of Gm,é to C'. Since T is

generically étale it is by § 2.17 a parahoric group scheme over C. Note that we always used bold
letters for the generic fiber of a group scheme over C'. This concides with the previous notation,
since we have indeed T x¢ Spec @ =T and since we do not consider an integral model over C' of
the Q-torus T, there is no confusion about this torus. Although we have the generic morphism
T - T - G we do not know if this extends to a morphism T — G. But we will now define a

smooth affine group scheme T over C' with two C-morphisms
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and the property that the generic fiber of T coincides with T. It is clear that there is a Zariski
open set U c C such that T — G extends to Ty — Gy. Therefore we only need to modify T at
finitely many places C\U to get the group scheme T.
Let w € C\U and z,, an uniformizer in A,,. Since G(A, ) is an open compact subgroup in G(Q,,)
we can fix a natural number n such that the A,-group scheme T,, whose R-valued points are
given by

Tw(R) = {z e T(R) | z € ker(Tw(R) - T(R/z})) }

maps into G,,. Here T,, is indeed a subgroup scheme of T,, (although not parahoric any more)
since it can be written as k:er(Tw = Pu(Tw XSpec A, SPEC Aw/zg)) where p : Spec Ay [z —
Spec Ay, is the natural projection so that Ty, = p.(Ty XSpec A, SPEC Ayy/2;,) arises naturally from
the adjunction of the Weil restriction. Once we fix such a group scheme T,, for all w € C\U we can

use faithfully flat descent [BLR90, section 6.1, theorem 6] for the group scheme ( H Tw) H Ty
weC\U

over ( ]_[ Spec Aw) U U to glue these to a group scheme T over C' satisfying, which is of finite
weC\U
type by|Gro65, Proposition 2.7.1], smooth by [Gro67, Proposition 17.7.1] and satisfies the desired

properties. We denote by u the morphism T > T and by f the morphism T > G.

(Step 2) Now we write w = (w1, ...,wy,) for the set of all closed points in C which lie in the
preimage of v under 7 : C — C. Moreover let £ := (L,7r1,...,7m,7z) be any global G,,-shtuka in
V(TG )2(F2). Then we have the morphism

Tt V' (C,Gp)* — Vol (C,T)*

which is a product of morphisms as in proposition 3.12 from section 3.2. Under this morphism
L is send to a global T-shtuka 7, £ in V,,. 2 (C, T)2(F2). Due to the fact that u: T — T is

generically an isomorphism, the induced morphism
Uyt Vo (C, T — v, (C,T)Y

is surjective by theorem 3.20. This is good for us, because it means that 7, L is coming from a
global T-shtuka £ in v, I(C,T)E(Fglg ). Afterwards we apply the morphism

fo: VO, T — v, (C,G)Y

from theorem 3.26 to £ and call its image G. In particular for all v € v the local G,-shtuka I',(G)
arise from the local T,-shtuka T'y(£) by applying fy.. Over Fglg the local T,-shtuka I',(G)
is isomorphic to (L+,']I‘;,bv) for some b, € LT, (F,). Since T, is anisotropic modulo its center,
the Newton point of b,, wich is a morphism form the pro-algebraic multiplicative group D (see
[Kot85]) to T, factors through the center of T,. This means by definition that b, is a basic
element in B(Gy).

Note that we didn’t work with any boundedness conditions yet. For sure there exists appropriate
bounds Z! in Flg, such that G is even an element in VfL%I(C,G)Q. If we denote by 7, the
unique length zero element in Adm(Z!) and 7/ = (7/)yey, then the third step will show that G
can be modified to a global G-shtuka G’ thatilies in the minimal Kottwitz-Rapoport stratum
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KR of V%,%”I(C, G)®. So if we are lucky then Zé equals Z, and we are done with the proof.
But in general we startet with an arbitrary bound ZQ. Therefore the goal of the second step
is to construct for any bound 22 a global Gy,-shtuka £ over Ffjlg in V,, 1(5, Gy,) such that

the global G-shtuka resulting as in the explanation above lies in v L, G)(IFZZQ ). Actually
the third step shows that it suffices that G is bounded by some larger bound lying in the same
connected component in Flg, as Z,. Or in other words that the Kottwitz point of b, equals to
fty, where T'y(G) ~ (L*G, b,) and p, is the element in 7 (G, )s corresponding to the connected

component of Zy.

Now unfortunately we can not construct this £ at the moment, but let us explain the idea how

the construction should work. There is a condition on the bound Zy or rather the elements

ty € m1(Gy)y, that has to be satisfied to guarantee that the space Vﬁ%%”l(C’,G) is non-empty.
Let us look at the example GL, and let G be a GL,-shtuka. In that case G and 0*G correspond
to vector bundles of the same degree. Since the number of zeros and poles of 7g, counted with
multiplicity, add to zero, we see that the sum UXEIU/% should equal to 0 in 71 (G)y, = Z. Now it is
not really clear to us how to formulate the righticondition for a general group G. This question
is maybe also related to the question of the connected components of V,%E’ij L, ).

Once we know this condition, it should give us in some way a divisor D on C that defines the
desired global G,,-shtuka £ in the following way:

First we note that the Picard variety Pic% /7, is an abelian variety with a surjective endomorphism

L= Froby:  Picg, (Fg9) — Picg, (Fg")
L—Leo L

Therefore we find for every line bundle Og y (D) a line bundle £ with Og y (D)~L®o* L}
a ]Fa,

F,

q q
or equivalently £ with 0" L ® O l (D) ~ L. The chosen divisor D should have support in w so
F&9

q
that c* L ® Oawglg (D)‘Cvﬁ:alg =0 E‘éﬂ;alg\Ui r, Then we can define
q q

Tz U*ﬁ\@ - 5‘@

alg\Ui FTi u.lg\Ui Fri
q q

to be the above isomorphism, which gives us a global G,,-shtuka. Moreover the chosen divisor
D should also guarantee that the Kottwitz point of kg, (by), arising from the afterwards con-
structed G, equals p,, so that £ gives the desired global G,,-shtuka in Vv, 1(5, Gm)¥. Note
that it is not clear that this is possible under the restriction that D has degree zero on every

component of C.

(Step 3) We have constructed a global G-shtuka G over IFZlg in v, (C,G) lying in N}, where
b= (by)vey and b, is the chosen basic element from the beginning. We now show that it can be
modified to a global G-shtuka G’ which lies in K R,, where T = (7,)yey With 7, the length zero
element in Adm(Z,).

For this purpose we need to know that the affine Deligne-Lusztig variety X, (b,) is non-empty

for all v € v. This can be seen as follows: The length 0 element 7, is by definition o,-straight and
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defines a o,-conjugacy class [7,] € B(W,). We recall that we introduced the bijective map (30)
v B(Wv)au—str - B(Gv)

We can equip B(W,)s,—sr with a partial ordering by defining [w] < [w'] if and only if this is
the case for some o,-straight representatives in W,. Then by [Hel6, Theorem B| the map ¥
respects this order on B (Wv)av_str and the order of B(G,). In particular [7,] is send to b,,
since the basic element b, is minimal as well. Knowing that 7, is o,-straight we can choose a

representative 7, in NU(QU), apply [Hel4, Theorem 4.5] and conclude
Ity Iy c[7] = [bu] ={g-Tw-0h97 } € B(Gy).

This means in particular X (b,) # @. Following this we can choose an element g, € X, (b,) for

all v € v. This defines (up to isomorphism) a quasi-isogeny
v (L*Gy,1p) — (L Gy, by) for all v € v.

We recall that we have I',(G) ~ (L*G,, b,) by construction, so that we can use [AH14, Proposition
5.7) to pull back G along the quasi-isogenies g, to a global G-shtuka G satisfying I',(G") =~
(L*Gy, 7). In particular G" is bounded by ZQ and lies in KR, .

Apart from the missing argument in step 2 this proves the weak version of the fifth axiom.



6 Consequences of the Axioms

In this chapter we collect some consequences of the axioms on V,{E’H,%” L, G).

6.1 Kottwitz-Rapoport Stratification

The second axiom guarantees that we can define the Kottwitz-Rapoport stratification definition
as in definition 4.17. By this definition it is clear that for all w € HAdm(ZU) we have

VeV

KRy = | KRy

w'sw

so that the Kottwitz-Rapoport stratification satisfies the strong stratification property. Using
theorem 4.14 from the fourth chapter and the known results about affine flag varieties we can
prove the following proposition about the dimension and smoothness of K R-strata. As before
we denote by K, the parahoric subgroup G,(A,) in G,(Q,). The question when a KR-Strata

is non-empty will be answered in theorem 6.2.

Proposition 6.1 (compare [HR17, remark 3.4|). Let w = (wy)vev With wy € WKv\Wv/WKU- If
the Kottwitz-Rapoport stratum KR, is non-empty, then it is smooth of dimension 3, l(KUwff”),
VEV

where KUwK” is the element in KUWUK” corresponding to w by (23).

Proof:  The smoothness follows from the fact that Ag is smooth by the second axiom. Now

let y € KR,. Then by theorem 4.14 there is an étale neighboorhood U of y with a section to

V,ZLE’H% 1(C,G) such that the composition with 1 is ¢tale. By definition of K R,, the element y

lands in the product of the Schubert cells []C, =: C. Then C xz;, (KR,nU) - C is étale and
VeV

since C' has dimension Y. I(j, w, ") by proposition 4.9 the proposition follows. O
VEV

By the definition of the Kottwitz-Rapoport stratification, the image of A\g is contained in

n
vev

datum (C,G,v, ZQ, H) and every w € [] Adm(Z,) the Kottwitz-Rapoport stratum KR, is non-

VeV

Adm(Zv). Using the weak version of the fifth axiom we now prove that for every shtuka

empty. In other words:

Theorem 6.2 (compare [HR17, theorem 4.1]). Assume that the weak version of the fifth aziom

holds true. Then we have

Ae(vit et (c, G)ges) = [TAdm(Z,).

vev

Proof: We firstly prove the theorem in the case that (C,G, v, ZQ, H) is a shtuka datum, where

G, is an Iwahori group scheme for all characteristic points v € v. By the second axiom Ag is

nUGW\nZU].

smooth and hence open. Therefore the image Im(Ag) is an open substack of [
VeV VeV

I L+Gv\ I Z] defined

VeV VeV

Let M be the preimage of Im(\g) under the projection map [] Zy > [

VeV
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as the cartesian product

Im(\g) — [HL*Gv\ I Zv] .

It is an open subscheme of [] Z, invariant under the action of [1L*G,. Now | I1 Zv| is a disjoint
VeV VeV VeV

~

union of finitely many orbits O, with w in [T Adm(Z,) by the second axiom and definition 4.10.

VeV
Assume that one of these orbits O, does not lie in M. Since M is open this implies that also

the closure @ does not lie in M. Since the element 7 = (7,,) from the fifth axiom is the unique

minimal element in [] Adm(Zv) we conclude from the closure relations of the Kottwitz-Rapoport
VEV

stratification that O; c @ and consequently O, n M # @. Now this implies that 7 does not
lie in the image of Ag which is a contradiction to the weak version of the fifth axiom hence

AG(vnﬂ’Hﬂl(C,G)Fgm) - [T Adm(Z,).

Now let (C,G,v, ZAé , H) be a general shtuka datum. Choosing for all v € v an Iwahori subgroup
in G, we find a morphism f:G — G’ of group schemes as in the first axiom such that G, is the
chosen Iwahori subgroup for all v € v. Defining ZQ by base change from ZA; as in the first axiom

we get by the second axiom the following commutative diagram

U AN (C G g —— > T Adm(Z,)
vev
TG,6!
7! Y ~
AP (o e Wop— T Adm(Z!)
q

vev

The vertical arrow on the right hand side is surjective by construction and we just proved that

Ag is surjective. This implies the subjectivity of Ag/ and finishes the proof. O

Remark 6.3. If we know the strong version of the fifth axiom to be true, this theorem would even
imply A\g(Xg) = 1 Adm(Zv) for every geometric connected component Xg in VnE’H% L, G) patg -
q

VeV

6.2 Newton Stratification

We have the following results that connects certain Kottwitz-Rapoport strata with Newton strata

in the Iwahori case.

Proposition 6.4. Let (C,G,v, ZB,H) be a shtuka datum such that G, is a Twahori subgroup

for allvev and let w = (wy)pey € HAdm(Zv) c HWv such that all w, are o,-straight elements
VeV VeV

in W,. Denote by [wy] their av-conj';gacy class in B(WU)JU_S” and by by, := VU ([wy]) their image
in B(Gy) under the map ¥ in (30). Then we have KR, c Ny, where b:= (by)yey-

Proof: The preimage of w under the map [g in the fourth axiom is given by

algy - al al
L*Gy(F)in LGy (Fe9) [L* Gy (F39),



6.3 Central Leaves

for some representative w, € N,(Q,). By proposition [Held, Proposition 4.5] we know that
L*GU(IE‘ZZQ)@UL*GU(F?Q) is containted in the single o,-conjugacy class b, = [w,] € B(Gy).

Therefore we have

dg (HL*GU(IF;”H)@UUGU(Fglg)/UGU(IFglg)%) = ([Wo])vew = (by)vew =1 b€ [[B(Gy).

vev vevy

In particular we can for all G € VnE’H%”l(C,G)(IFZlg) with A\g(9) = w conclude by the com-
mutativity of the diagram in the fourth axiom dg(G) = dg o Y(G) = (by)vew. Hence we have
KR, (Fglg )c ./\/'Q(IFZZQ ) and by lemma 4.5 this is enough to conclude KR, c NV. o

6.3 Central Leaves

The central leaves of vfﬂ’H% L(C,G) are defined as the substacks whose closed points equal the
fibers of Tg. Concerning the image of Tg we start with the following lemma, which tells us in
combination with theorem 6.2 that it suffices to check condition (ii) in the fourth axiom only for

an Iwahori subgroup.

Lemma 6.5 (compare [HR17, Lemma 3.1]). Let f:G - G' induce a morphism of shtuka data

as in the first axziom. In particular Zy arises as a base change of Zl Then we have:

Im(Yg) =I5 (HAdm(Zv)) if and only if Im(Yg) =lgr (HAdm(Z;))

VeV vey

Proof: Let us prove the first direction and assume Im(Yg) = Ig! ( HAdm(ZU)) which means
vev

that T in the following diagram

Z 7
s

R (eXc) pu—_ lél(““‘dm@v))

| Ny

R (eX e R (n Adm(zg))
GI

VEV

is surjective. Now by definition of Ag/ we know I'm(\g/) ¢ [T Adm(Z,) and due to A\g = Ygrolg

vey
we know Im(Yg) c lgr (HAdm(ZA{})) Therefore to prove Im(Yg) = lé}(HAdm(Zv)) it
vev vev

suffices to prove that the vertical morphism on the right hand side in the above diagram is
surjective. This follows directly from the definitions, because Zg arises from base change of ZAL .

On the other hand, let us assume that YTgs in the above diagram is surjective. Then we take

an element y € g (HAdm(ZU)) and denote by y' € Ig (HAdm(Z{})) its image under the

vEV vEU

vertical map on the right hand side. In particular T(I}}(y' ) #+ @. Moreover lemma 5.2 states

that WG’G’(FZZQ)‘T—l(y) 1Y (y) — Ygi(y') is finite surjective. Consequently Y'(y) # @ which
G

implies that T is surjective and hence the lemma. O
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7 Drinfeld’s Moduli Space with Iwahori Level

In this chapter we discuss Drinfeld “s moduli space as an example of the moduli stack Vfﬂjf L, G),
to see that our results also apply to this more classical object. To connect Drinfeld’s moduli
space to some VTZLE% L(C,G) we will choose G to be a group scheme over C such that G, is an
Iwahori group scheme for some fixed point v € C' and such that G|e\ () equals GL, xg, C\{v}.
We will begin the first section with a precise definition for more general group schemes of this
kind, where we also allow other parahoric group schemes at several points. This is followed by a
useful description of the torsors for these group schemes in terms of elementary modifications of

vector bundles.

7.1 Torsors for Parahoric Bruhat-Tits Group Gchemes with Generic Fiber

GL,

We take some smooth projective geometrically irreducible curve over F, and fix n closed points
C1,...,cp € C. The diagonal torus in GL, determines a standard appartement in the Bruhat-
Tits building of GL, over )., and the Borel subgroup of upper triangular matrices determines
a base alcove 7 in this appartement (see appendix page 85). We define the standard Iwahori
subgroup Z as the stabelizer of 7. It has also another description. Namely if we define Ag.i) c Qy,

1 -1 :
€1,...4%; €j,€j41,...,€r, Where z; is

for j = 0,...,r as the free A.-submodule with basis z;
some uniformizer in A, we have 7 = N; S’tabGLn(QCi)A;i). Now we choose for each of the
points ¢; a parahoric subgroup P; in GL,(A.,) that contains the standard Iwahori subgroup.
Such a parahoric subgroup corresponds to a facet in 7 and is determined by its type T; ¢ S
with so ¢ T;, where (W,s¢,S) is the affine Weyl group with the Coxeter generating system S
as described in the appendix on page 85. We will explain in remark 7.5 why it is not really
a restriction to allow only the parahoric subgroups with sg ¢ 7T; and containing Z. We have

Pi= N StabGLT(QCI)A](j). The construction of Bruhat and Tits (see |[BT84, page 356] and
k,SkﬁTi ‘
|Tit79, subsection 3.4.1]) gives us a unique smooth affine group scheme P; over Spec A, such

that the generic fiber P; g, = GL;q. , such that Pi(Ae,) = Pi ¢ GL,(Q.,) and such that the
special fiber is connected. We can describe this group scheme on R-valued points for every A, -
algebra R quite explicitely as follows (compare also [Hai05, section 3.2]). For simplicity we will
write the complete flag of the type T; with [; := #(T;\S) — 1 now as {0 = k‘(()i) <... < k:l(:)} by
identifying {0,...,r -1} with {so,...,s,—1} =S.

Then consider the lattice chain of n + 1 lattices

L) = L[()i) > oo LD

@) _. . _7@  _ @) @ _..._7@  _ @
where L0 == Lk§i)_1 = Ao ) Lkﬁi) - Lkéi)_l - Ak§i)’
L](:()i) == Lf,z_)l = A,(:(Z) and L,(f) = zi_lA(()z). By defining LflfLz = le) ®4,, R we can describe the
1 1

R-valued points of P; as an r-tuple (go,...,gr-1) € AutR(L(()ig%) XX AutR(Lff_)l ) such that the
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diagram
(i) (1) (2)
LO,R T ’ Lr—l,R ’ Lr,R
l/g() lgr—l lg()
(4) (@) (2)
LO,R Lr—l,R ’ Lr,R

commutes. Of course an R-valued point is in fact given by a [;-tuple, but the redundant lattices
in the chain are advantegous when we describe the global group scheme over C'. The description

gives us in this way morphisms py, : P; > GL; 4., (905, 9r-1) = Gk-

Remark 7.1. There is exactly one parabolic subgroup P; in GL, of type T; containing the Borel
subgroup of upper triangular matrices . Now P; equals the preimage of P;(A.,/(z;)) under the
projection GL,(A.,) = GL, (A, /(z)). We can define the functor:

{flat A.,-algebras} - Groups R {geGL,(R) | g mod z e P(R/(%))}

By [Yul5] this functor is representable by P;. One should be aware that this description of the

functor of points for P; is only true for flat A -algebras.

Now we have the group scheme (LI; P;) [1 GL,xg,C\{c1,...,cn} = (LI; Spec A,) LI C\{et, ... cn ).
As described in § 2.17 we use faithfully flat descent along the map (LI; Spec A.,) [1C\{c1,...,cn} —
C with the descent datum ¢ = id to glue it to a group scheme G — C'. Like in the local case we
would like to have a description of this group scheme as an automorphism group.

We will define a category pVec fibered over Uy, of certain chains of vector bundles. G will
then be the automorphism group of one of its objects. Let D be the divisor Y.i*; ¢; on C. For
f:S = C let Q be some locally free Of+p-module on the divisor f*D. Given a map V Rva
of two vector bundles over S, we recall that we call Vy an elementary modification of V; by Q if
there is a quotient map V; SN Q — 0 such that Vj % V), is the kernel of ©.

We now define the category pVec as the category fibered over €'y, whose fiber category pVecg
for some scheme S with f:5 — C has the objects

{(V.,Oé-)zvoﬂvl g--'ﬂ’vr:VO(f*D)}

where V; are vector bundles over S and «; are elementary modifications by some locally free

sheaf Q; on S x¢ D, where Qj|CiXCS is locally free of rank dj(.i) = dim L(i) /Léi). The category

J+1
pVec therefore depends on C', on r and the dimensions dg.i), but we omit this in the notation. A
morphism from (Vs, a.) to (V,, ) in pVecg is given by a tuple (go, ..., g--1) where g; : V; -V}
is an isomorphism of vector bundles such that g;,1 c; = a}og;. There is the following "standard"
object (V,,a,) in pVecy. Let Dy for j=1,...,r—=1and I =1,...,r be the divisor on C' defined
by Dj = Z cx- In particular we have Dj; = @ if j <. Then we define

k, sm¢T) for some I<m<j

Qr-1

‘/.:‘/Og—>‘/7.

as the chain of vector bundles with Vy = @]_; Oc-e; and Vj = @]_; Oc(Dj;)e; for j=1,...,r-1 and

Vr = Vo(D). Here the a; are given by the natural inclusion of the sheafs and a; is an elementary
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j+1/L§i). Using this stan-
dard object we define the group scheme G — C by G(R) = Aut(Ve®c Spec R) for every Spec R —
C'. The construction of V, shows that the pullback of V, to Spec A., gives exactly the chain of
modules L and the pullback to C\{c1,...,e,} gives the trivial modules I'(O¢, C\{c1,...,cn})"
with ailc\(c,,....c,} = id. In particular this shows G x¢ Spec Ag, =P; and G xo (C\{ec1,...,cn}) =
GL, xF, (C\{c1,...,¢n}). So G restricted to (LI; Spec Ae,) LI(C\{c1,...,¢n}) is isomorphic to
G with the same descent datum which shows G = G.

The following lemma is the crucial step to see afterwards that the category of G-torsors over Cg

modification by the locally free sheaf on D associated to the module &; L

is equivalent to the fiber category pVecq,. Actually pVec is not only a fibered category over
Cp, but also a stack, since objects can be constructed locally by gluing.

Therefore the following lemma tells us exactly that pVec is a gerb in the sense of definition
[Gir71, Def 2.1.1].

Lemma 7.2. Let S be a scheme over C. Then any two objects (Ve,e) and (V,, ) in pVecg
are Zariski locally isomorphic. That means there is a covering U — S such that (Ve,ae) xg U =~

(V:,Q,.) xg U.

Proof: Tt is clearly enough to show that each object in pVec is locally isomorphic to (Vs, ae )¢ S.
So let (V., ) be any object over S — C. Since the question is local we can assume that S is
affine and consider the problem only for S x¢ (C\{ca,...,¢cn}) =0 SpecA. The argumentation
over the other opens of the form C\{U;;c;} is analogous. Let C\{ca,...,c,} = SpecR and
let my ¢ R be the maximal ideal corresponding to ¢;. Now (V., @.) corresponds to a chain of
locally free A-modules My 20, My a4 M, such that a,._1 o--- 0« equals the inclusion
My = my M, = M, and Mj,1/M; is a locally free A/m; A module of rank dimp,, Lgi)l/Lél). Let P;
be the parabolic subgroup of GL, as in remark 7.1. It is the stabilizer of the flag 0 c Lgl)/L(()l) c
e C L,(})/L(()l). Let E == Mj/Mp then 0 - M- < M, gives us an A/mj-valued point in
the partial flag variety GL,/P; =: Flag. This morphism has Zariski locally a section (compare
[Spr98, Theorem 8.5.2]). So after passing to a Zariski covering of Spec A the A/m;-valued point
of Flag comes from an element g € GL,(A/m;) and we can identify 0 - M; - --- - M, with

0—g(Vi/Vo®r, Afmi) == g(Vo/Vo®,, A/my), where V;/Vo®r, Afmi=L;/Lo®r, Almi=
dims, V;/Vo
P Ajmy - e;. We define (71,...,7;) = (geq,...,ge;) as a basis of M, and choose lifts

i=1
V1,..., 0 € M, with v LU ) € My, for L =1,...,l = #(S\T1) - 1. Now the Nakayama
l

(1) .o
k+1U

lemma [Eis95, corollary 4.7] applied to Mkl“) /A shows that there is an

Ukl(}i+1 +--'+A-'Ukl(1)

x € my A such that v V) 18 a basis for M, @) on Spec A[ﬁ] =: U. This means that
1 l

NONTERE
VoxcU — - > Vo xo lUlis isomorphic to VO‘U > VT‘U' Now Spec Axc ey = Spec AjmyAcU
and on Spec A\Spec A/m; A the object (Vs, ) is clearly locally isomorphic to (Vs, ae) since all
the a; are isomorphisms. This proves the lemma. |
Once we know that pVec is a gerb and that G is the automorphism group of (Vs,as) it follows
by [Gir71, Corollaire 2.2.6] that pVec is equivalent to the gerb of G-torsors on C',, which means
in particular that for any F,-scheme S the fiber category pVecs is equivalent to the category
HH(C,G)(S) of G-torsors over C's. We describe this equivalence more explicitely, so let S be a,

[F4-scheme.
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Proposition 7.3. We have a category equivalence
¢ :pVecq, — AH(C,G)(9)
Proof: Let (Vo,a,) in pVecg, then the functor ® sends (V,ae) to Isom((V.,a.), (Ve,a4) ®c

C’S), where the latter sheaf becomes an Aut(Vs,as) = G torsor by composition on the right with
an element in G.

Now let U - Cg be a covering with an isomorphism 7 : (V,,ae) xcg U = (Vs,ae) xc U as in
7.2 and set U" := U x¢g U. Then (V., as) is isomorphic to the object coming from the descent
datum ((V. xco U, a.),gp) with ¢ = piyopiy™t € Aut(Vs,ae)(U"). Now the same 7 induces an

isomorphism
Isom((V.,a.) xcg U, (Ve,ae) X U) - Isom((V.,a.) xo U, (Ve,ae) x¢ U) =GxcU.

Hence Isom((V., as), (Vs, a.)) is isomorphic to the torsor coming from the descent datum (G x¢
U, ) and it follows that ® is essentially surjectiv. Namelly if G is any G-torsor in s#*(C,G)(S)
isomorphic to the one coming from the descent datum (G x¢ V, 1)) for some covering V' — Cg
and ¢ € G(U"), then let (V.,a.) be the object in pVecgg coming from the descent datum
((V., ae) XC V,q/J). This means U(V,,a.) ~ G. Since the automorphisms of the descent data are

the same, the proposition follows. O

Remark 7.4. Actually the proof shows more generally that we also have a category equivalence

from pVec; to the category of G-torsors over U for all schemes U over C.

Remark 7.5. When we defined the group scheme G, we have choosen a parahoric subgroup for
every point ¢; and made some assumptions on these subgroups (sg ¢ 7; and Z c P;). We would
like to explain why this does not cause any loss of generality. If we choose for every point ¢; some
arbitrary parahoric P then the associated parahoric group scheme over Spec A, can be realized
as the automorphisms of some other periodic lattice chain L® in Qe -

We can use these lattice chains to glue them to a chain of vector bundles (Vi, @) over C' with

(Ve,@s) xc Spec A, = LY and (Ve,ae) xc C\{c1,...,cn} = ((9’"0\{01...cn},id.). Then we can as

before define a group scheme G over C' by G(S) = Aut((Vi,@.) xc S). Since we can always
find a g € GL,(Q,) that transforms Lsi) to some lattice chain Lsi) of the form described at the

beginning of this section, it follows that (V,,@.) is locally isomorphic to (Vi,as) which implies

that G is locally, but not necesarrily globally, isomorphic to G. Now the functor
pVecg, —~ H(C,G)(S) (Vs, ta) = Isom((Ve, te), (Va, @)

gives a category equivalence as well. Nevertheless one should be aware that a G-torsor G is in
general not a G-torsor, since G does not act in general on .

Above we chose a g € GL,(Q.,) with gLsi) = Lsi) which implies gP;g~! = P;. Parahoric subgroups
of the same type are always conjugate, but since the operation of €2 does not fix the type there
are further parahoric subgroups that are conjugate. In the case of GL, we can find for every
parahoric subgroup P; with type T} a conjugated parahoric subgroup P of type T satisfying the
condition s ¢ T', since the operation of ) translates the type. This parahoric subgroup P can
then be conjugated to the unique parahoric subgroup P; of the same type T; =T containing the
standard Iwahori subgroup Z.
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7.2 Drinfeld’s Moduli Space with Iwahori Level Structure

In this section we will first of all fix a particular Shtuka data (C,G,uv, ZQ,H ) in the sense of
definition 3.1 that defines a moduli space VTZLE’H%” YC,G) of G-shtukas. We give a definition of

Drinfelds moduli space with Iwahori level structure and prove that this is isomorphic to a closed
substack of VRR’H%”I(C,G).

We fix a curve C' with the two closed points v; = oo and vy with residue fields F,, and F,,
lying in the opens U; = Spec A and Us of C. Let [, be the Iwahori group scheme defined over
Spec A,,, that corresponds to the standard Iwahori group of GL,. Its R-valued points I,,(R)
for an A,,-algebra R are given as the automorphisms of the lattice chain A, r as described at the
beginning of chapter 7.1. Then we use faithfully flat descent along the map U [] Spec A,, » C
to glue the group scheme GL,y, [11,, = Ui [ Spec A,, to a Bruhat-Tits group scheme over
C. As explained in the chapter 7.1 it is also the automorphism group of some chain of vector
bundles.

Let @ be the function field of C' and let G := G x¢ Spec @ = GL, be the generic fiber of G. For
the completions of the stalks at the points v; and vy we have A,, = Fy,[21] and A,, = F,,[22]
and its quotient fields are Q,, = Fy, (21)) and Q,, = Fy, (22)) respectively. By construction the

base changes of G to these rings are given as

Gy, =G *p1 Spec Ay, = GLy 4,, Gy, =G x¢o Spec Qu, = GLT,Qvl
q

Gy, =G *p1 Spec Ay, =1, Gy, =G xc Spec Qu, = GLT,QvZ
q

Now we define the bounds 21 and 22 as the scheme theoretic closure of the orbits
1 0

Zy, = (L*Gy, x5, Fo [GD | (L* G, xr,, Fo, [1]) .
0 (za-¢)7! (LG, xa,, Fuu[G1]) © Flg,,

and

22— (2 0
ZU2 = LI-/%/ (L+GU2 X]Fv2 Fv2 [Kﬂ])s 3_1(L+Gv2 XFUQ ]Fv2 [[Cﬂ])/ .
seWyp C.Fl
0 1 (L* Gy, XF,, Fu, [¢]) Brz

where s denotes here the permutation matrix corresponding to s € Wy. This definition has also

the advantage that Z1 and Z are reduced and irreducible and in particular flat [Har77, chapter
IIT proposition 9.7| so that VQZE%” L(C,G) is flat. The reflex rings of these bounds are A,, and
Ay,. Now (C,G,v, Zg) defines the moduli stack V;E%I(C,G) over Spf A, = Spf k[z1, 22],
where k is the compositum of F,, and F,,. There is the covering VQZE%”T_(\C_,’G) of this moduli

stack whose S-valued points are given by

P G e vy A (C,G)(S)
vzﬂ(%ﬁl(C,G)(S) = (975173277'9761762) ‘ and €;: Fvi((f*g) - L+G”L)i,s

is a trivialization
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Actually the map VQZE,%M(C,G) — VQZE,%M(C,G), (G,€1,€2) = G is an LG, x L*G,,-torsor.

Furthermore for a point (G, €1, €2) € VQZE%”l(C, G)(S) and a trivialization «; : I'y,,(G) = L*G,, 5
the composition
L(a;) oLy (1g) o L(e; ") : LGy, 5 = LGy, 5

corresponds to a morphism S - LG,, and induces therefore an S-valued point in F1,, that is
independent of «;. In particular it gives a morphiS{n S F ly; which factors by the boundedness
condition through Z,,. This defines a morphism VQZ%%”T_(\C_,/G) > Zn, XF, Z, that forms the local
model roof

VEAT(C,G)

— T

VA (C,G) D55, Zu

Let & be the residue field of Spf A,. Since we are interested in the stratifications of the special
fiber VQZ%%”I(C, G)x,, its worth to describe the special fibers Z,,, := Zvi XSpf Ay, Ko, I terms of
Schubert varieties.

By the Bruhat decomposition X, (T") = L*G,,\LG,,/L*G,, and since p; = (0,...,0,-1) is a
minimal element in X*(7) the special fiber Z,, is given by the Schubert variety S(z#1).

For G,, we have the Cartan decomposition W = X, (T) x Wy = L*G,,\LG,/L*G,,. We recall
that we can identify W in this case with a subgroup of LG,,(F,) by sending 2" - s € W with

Ul
2y 0
w=(u1,...,u.) to - s where s € Wy corresponds to some permutation matrix.
u
0 Zyy

Furthermore we can write W = Wagr = € where 2 is the stabilizer of the base alcove and in

this case given by Q = Z- 8 with g = 2(0-0Dg | s; (see appendix A). In particular j3 is

0 1
a length 0 element that corresponds to the matrix C and s7...s,.-13 corresponds
Zug 0
2y
1 (-1,0,...,0,1) :
to ) Recall that sg = z\7"" % s189,...,8..1...,8281 corresponds to the matrix
!
0 Zys, (-1,0,...,0,1,0...)
1 . ~ .
so that one verifies z i =8;...8_15081...5;-98+_1...81 fori=2,...,7.
Zug 0

Multiplying this element from the left to s;...s,_18 = 2(1:920) gives the identities

(0,1,0,”-)

(10,0 g9 5, 1818 =2 ;e 80 s =200 (33)

$1...8-18 ==z

The generic fiber Z,, is therefore the union of the Schubert varieties Ugew, S(26m2))y with
w2 = (1,0,...,0) and it contains the L*G,, orbits of all the elements w € W with w < 2°(#2) for

some s € Wy. This is by definition the admissible subset
Adm(pz) = {w e W | Is € Wy with w < »5(n2) 1,

that can also be described as follows.

7
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Lemma 7.6. The set Adm(us2) corresponds bijectively to the set

A is monomial with exactly one entry equal to z
(aij) = Ae GL.(Fy(2)) | and -1 entries equal to 1 satisfying
(aij) # 1 fori>j and (aij) # z fori<j

Proof: Let A be as in the set described above and aj; = z with k > [. This implies a;; = 1 for
all ¢ > k and all 4 <. Denote by (wi,...,wy,) the set {j e N |1 < j < kandaj; =1}. Now
A in the above set is uniquely determined by these conditions (ay; = z and ay,w, = 1). The
element sg...8y-15081...51-20 (if k=7 let sg...s,-1 =id and if [ =1 let spsy...s;_9 = id) corre-
sponds to the monomial matrix with ag; = z and a;; = 1 if and only if 4 > k or ¢ < [. It follows
W = Sy - - Sw,y, Sk -+ - Sr—15051 - . . Sj—23 corresponds to A. NOwW Sy, ... Sw,,Sk--.Sr-15051 -..5-2 1s
obviously a subword of one of the elements in (33) so that w lies in Adm(uz2). Furthermore it is
clear that all subwords of s(ug) with s € Wy and therefore all elements in Adm(us) arises from

a matrix A as above. O

Let us further denote with by the basic Newton polygon (%,,%) in B(Gy,). Let Ay, be
the Neyvton stratum corresponding to by. That means Ny, (S) corresponds of those points
G« VQZE%M(C,(G),i such that for all geometric points 5 € S the local shtuka I',, (G)s is iso-
morpic to (L*Gy, . (s),bo)-

The Drinfeld moduli space

We just recall the definition of the Drinfeld moduli varieties and then define the Drinfeld moduli
space with Iwahori level structure. Let d € N and Uy = Spec A. The Drinfeld moduli space D"
(without level structure) is defined as the category fibered over (F,),, whose fiber category for

some scheme S is given by

, where v:.5 - Spec A and (F, ) is a
D(S)={(E,<p,7)| ! (B,) }

Drinfeld A-module of rank r over (.S,7)

We refer to the appendix B for the definition of Drinfeld modules. Morphisms from (E, ¢,v) to
(E',¢",~") in this fiber category only exist if v =4’ and are given by isomorphisms of Drinfeld
A-modules. D" is a Deligne-Mumford stack of finite type over F,. There is a map D" — Spec A
sending (E,¢,7) to v and we can consider the base change D" Xgpec 4 SPf Ay, = Dgw as well
as its special fiber D" xgpec 4 Spec Fy, =: Dy, . The fibercategory ’Df4v2 (S) (resp. Dy, (9)) of this
stack consists only of Drinfeld A-modules whose characteristic  factors through SpfA,, (resp.
Spec Fy,). Now we define the Drinfeld moduli space with Iwahori level at vy D} Ay, 3 the stack
fibered over (IF,), whose fiber category D?AUQ (S) has the objects

{Ey <+ E,<*...<E,}

where E; := (Ej;, ;) are Drinfeld A-modules in DQUQ(S) and «; : E; - E, ; are isogenies of
order ¢, (i.e. ker(a;) is a finite group scheme of order #[F,,) and the composition a, o---0a :

underlineE, - E, has kernel E_[va].

A morphism in the fiber category from (E, a0 & E,) to (E| Q& E)) is given by
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a tuple (0o, ...,d,) where 0; : E; » E! is an isogeny with aj 0 d; = §;_1 oa; for i = 1,...,r. We
denote by Dy, the special fiber DQW XSpf Ay, Fv,- Now we have the following remark.

Remark 7.7. Using the category (anti) equivalence [Harl7, Theorem 3.5| of Drinfeld A-modules
over R and effective Anderson A-motives (M, 7ys) of dimension 1 over R with the condition that
M is finitely generated as R{7} module, we see that the category D7 Au,y is equivalent to the

category whose objects are given as
o, 2y

where Mj,..., M, are pure Anderson A-Motives of rank r and dimension 1 over (S,7:S —

Spf Ay,) and Bi,..., B, are isogenies of degree 1.
Proposition 7.8. We have a faithful essentially surjective functor ¥ : Ny, — Dj ,,-

Proof:  Let S = Spec R be a scheme over F, and G = (G, s1,52,7) € Np,(S). The equiva-
lence in 7.3 maps G and 0*G to a chain of vector bundles V, o, Ve o, V, and o*Vy RN
0V oo, 0*V,, where all the arrows are elementary modifications by Ogy,,. Further-
more T : O'*g|cs\(l“51ul“52) - g|cs\(F51Ur52) induces by the same equivalence and remark 7.4 a
tuple (79,...,7,), where 7; : U*Vi|cs\(pS1Ups2) - V¢|Cs\(1~s1ups2) satisfying 7; o a; = 0" o 71
for i+ = 1,...,r. Let M; be the locally free Ar-module of rank r corresponding to VZ-]CS\F51
where Cg\I'y, = Spec Ar. Then M, = (M;,7p;,) is an Anderson A-motive and we get a chain
(M, 425y ,) of isogenies of degree 1 of Anderson A-motives that are isomorphisms out-
side I's,.

We want to prove that all the M, are effective of dimension 1 and pure. To prove the dimension
and the effectivity it suffices to prove it for the local shtuka M, ® 4, R[z22] associated to M.
Now we can choose a covering Spec R' — Spec R and a trivialisation ' : Ly (G) xgp R’
L*Gy, g and B:0" L} (G) xgp R' => L* Gy, r. This corresponds by remark 7.4 to trivialisations
Bi:M; ®a, R'[22] > R'[22]" and f;: 0" M; ® 4, R'[22] = R'[22]" such that

(1) (=) (1)

R'[z]" R'[z]" e R[]

B! Bt Bt

o* o1 xid
0" Moy ®a, R'[[zz}]iia*Ml ®a, R[] 0" M, ®4, R[]

o*agxid o* o xid

70 T1 Tr
Mo ®AR RI[[ZQH g xid M1 ®AR RI[ZQ]] agxid - xid Mr ®AR R,[[Zgﬂ
1
By B By
S G N O G I
R’[ZQHT - R,HZZHT . ce - R,[[Zgﬂ

commutes. Since 3'o7037! factors through Z,, we can choose the trivializations 8" and 3 in such
a way, that 3’07071 is given by a matrix T as in lemma 7.6. Since ﬂéoTOOBal arises as (po)« (8o
T0B71) where py : I,, = GL;, A, Was the standard representation, it follows that also Syorgo 3y Lig
given by T'. Since T' € Mat, (R[22]) and S, Bo € L, (R'[22]) € GL,(R'[22]) this implies 7o xidpr €
Mat,(R'[22]). In addition coker(ry x idgs) is locally free of rank 1 over R’ and annihilated by
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(22) since cokerT has this property. The fact that R’ is faithfully flat over R implies that the

same is true for 79 which means that M is an effective Anderson A-motive of dimension 1. We

have 3] o1;0B;1 = diag(za,...,2,0,...,0) By o o0 B +0diag(z3",...,231,0,...,0) and by the
—_— [ — —_—
7 T 7

conditions on T this gives again a monomial matrix lying in Mat,(R[z2]) with determinant ¢.
Similar as above it follows that M, = (M;, 7;) is an effective Anderson motive of dimension 1.

Since G lies in the Newton stratum N, the local shtuka I, (G)s is for every geometric point
-1
%2

0
5 € Spec R isomorphic to the iso-shtuka (/@5[[%}], ( 1 )) Since I'y, (G) equals the local shtuka

1.0
of M; at vy for all ¢ this means by definition that M, is pure. By proposition ?? in the appendix

M, is pure if and only if M; is finitely generated as R{7} module. Therefore the chain of
Anderson motives (M, 2 .25 M) defines by remark 7.7 an object in Dj,,(S) and it is
clear, gives a functor ¥: Ny, > D}, .

Now let f1, fa: G = G’ be two morphisms in Ay, with ¥(f1) = U(f2). The construction of the
functor and the equivalence 7.3 that this implies f1|CS\F51 = f2|CS\F51- As before we deduce with
lemma 3.11 f; = fo, which means that ¥ is faithful.

To see that the functor is essentially surjective, let (M, a0 M,) e D;,FUQ (S). One
has to extend the locally free module My to a locally free module Vy of rank r over C'g. This
determines then extensions V; of M; satisfying the condition that «; extends to V; and that «; is
an isomorphism outside of I'y,. Using proposition 7.3 this corresponds to an G-torsor G with an
Frobenius morphism 7 : J*Q|CS\(F51uF52) N g|CS\(F51UF52)' The matrices 7' in lemma 7.6 are the
only ones that corresponds to an element w € W and that satisfies the condition that det(T') €
29(Fy,[22])" and that T' conjugated by diag(za, ..., 22,0,...,0) liies again in Mat,(R[z2]). This
implies that 7 is bounded by Z,,. Since all the M, are pure G = (G, s1,52,7) is an element in
Ny (8) with U(G) = (M, = ... =5 M,). o

Remark 7.9. If one choose the extension of M for all points in D?sz in a compatible way one

gets a fully faithful functor D;,IFUQ = Ny,



A GL, over Local Fields

For the discussion about Dinfeld’s moduli space with Iwahori level structure a good knowledge of
the combinatorics of GL,, over local fields is advantageous. We discuss the notions of root datum,
dominant coroots, positiv coroots, coroot basis, (affine, extended) Weyl group, fundamental

group, Bruhat order, the standard appartement and the Bruhat-Tits building.

- is gi ' = Z[ X5, Y |1<ijsn
As a scheme G = Gl,, is given by Spec A, with A : J J /(Ydet(Xij) _1) The maps
m:GxG -G m:A->A®A X’ij"’ZXil@le
=1
e:Spec Z - G e A7 Xij v 0ij
i:G->G i":A-A Xy v (1) - (§,i — minor)

make Spec A into a group scheme.

We choose the subgroup of upper triangular matrices as a Borel subgroup B. For the maximal
Torus T we chose the diagonal matrices. Now the character group X*(7T) := Hom(T,G,,) is
isomorphic to Z". Let o € Hom(T,G,y,) given by o* : Z[z,27'] » A, z — I, z} with r; € Z.
Then this « is mapped to (r1,...,7,). We denote by x; the corresponding basis in X * (7).

The Cocharactergroup X, (7T) := Hom(G,,,T) is also isomorphic to Z".

Z" - X.(T) (ri,...,mn) >~y with z; — 2"

We denote by e; € X,(T) the image of the standard basis vectors in Z". (Note that in
[bruhat gorups| the negative of this basis is choosen.) Note that there is a natural pairing
X*(T) x X.(T) — Z = End(G,,). Now we will consider Gl,, over some base field K. At the

moment this can be any field, later we will require K to be a non-archimedean local field.

The finite Weyl group and its longest element: Let N := Ng(x)(T'(K)) be the normalizer of
T in G. It is given by the subgroup of the general permutation matrices, i.e. monomoial matrices
with entries in K. We define Wy := N/T'(K'). Therefore Wy is given by the permutation matrices
with entries in {0,1} and we have a natural isomorphism Wy ~ S,,. S, is a Coxetergroup of type
Ay-1, the set of generators is given by s; := 0541 fori=1,...,n-1. Wy has a longest element wy
which is given by (n,n—1,...,1). One possible representation is $182...8,-181 ... 8p-2...515281.
The length of this element is @ The length equals always the cardinality of a positive system
(see [Hum75, section 1.8] ).

Now Wy acts on X, (7') as well as on X*(T'). Namely let for we Wy ¢, : T — T, t = wtw™! be

the well defined conjugation, then we have
Wox X*(T) = X*(T): (@x) &> x ot Wox X.(T) > X, (T): (@A) > ey 0\
Using the identifications Wy ~ S,,, X*(T) ~Z"™ and X, (T') ~ Z™ this operation is given by
SpxZ" = 7" (0,(71, .., 20)) = (To(1)s - -+ Ta(n)) SpxZ" = 7" (0,(A1, -5 0)) = (Ag1)s- -+ Ao(n))

The adjoint representation: The Lie-algebra is gl,, = TcG = Dery(A, k) = (0;5). Since T.G
is also given as the kernel of k:er(G(k(e)/(eQ)) - G(k)), we identify gl,, with M, (k), where
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the Lie bracket is given by [X,Y] = XY - Y X. For all g € G(k) we note the conjugation by
cg:G -G hm ghg™!, this corresponds to a morphism CyA—> A

Now G operates on gl,, by G x gl, (g,x) = ¢; o x € Derg(A, k). Identifying gl, with M, (k),
this operation is given by G x M,, - M,, (g, M)~ gMg™'.

This gives a n?-dimensional representaion of G' which is called adjoint representation. Now we

are interested in the operation of 7" on gl,,

- %all %aln
. -1 . x;
Txgh—ol,  (v=("~ ). (@) »aa)a=| & ey
n zn zn
=1 nl zp (T

We denote by x; the character (0,...,1,...,0), so that T operates on the one dimensional sub-
vectorspace (0;;) by the character o;; := x; — x;j. In particular T operates trivially on the one

dimensional subvector spaces 0;; for every i.

The root datum: We would like to describe the root datum (X, ®, X, ®) of G. Like always we
have X = X*(T) and X = X, (T). The adjoint representation shows us ® = {x; - x; | i # j} and
with the identification X*(7T") ~ Z" we have ® = {x; — x| i # j}.

It rests to specify ®. For a = y; — x; € ¢ we have T, := ker(a)® = {(m zn) | x; = mj} and

Go = Cq(Ty) = ( : * i ) (with two stars in the i-th and j-th colum/row). Let No(T) = {g €
(j*; ) UT. Then there is exactly one element id # s, € Wo(Gqo,T) =

*

Go |gT = Tg} :(
1

No(T)/T c¢ Wy. This element is represented by n,, = (1) 1 (1) ) € C(Ty). Now the coroot & is

1
defined to be the unique element in X, (7") such that

Sa(x) =2 - (x,d)a Vo e X*(T).

Now if x = (z1,...,2y,) € X.(T) and « = x; — x; we have

so(®) = (21,... x5,z ..., xn) =2 — (2,6, —ej)(e; — e;)
—— —
i J

Consequently we have & = e; —e; and we set ® = {u € X,(T) |u = & for some o € ®}. This

defines the root datum.

Positive roots: For each o € ® the root group U, is the unique subgroup of G, that is isompor-

phic to the additive group G, and satisfies tU, (x)t ™ = U,(a(t)x) for all z in some ring R and

t € T(R), here we write U, (z) for the elment in U, (R) = R corresponding to . For a = x;—x; € ®
1

1 .o .
the subgroup U, is given by L ), where the star is at position (i,7). Now a root is called

1
positiv if U, c¢ BN Gq. Therefore the set of positive roots is given by ®* = {x; — x; |i < j}. This
is a positive system in the sense of [Spr98, (7.46)|. Note that it depends on a choice of the Borel

subgroup. The bijection between ® and @ gives us also a system of positive coroots given by

{ei—ej|7j<j}.



The algebraic fundamental group of G: We define @ to be Z-submodul of X*(T') gen-
erated by ® and analogously @) as the Z-submodul of X.(T) generated by ®. We have Q =
{(u1,--spn)| Xipi =0}. Then the algebraic fundamental group is given by

71'1(G) ::X*(T)/Q ~ 7 (Mla"'nun)HZMi

Simple roots and simple coroots: We set furthermore:
V=X"(T)ozR V=X (T)®zR Vo=Q&zR Vz:=Q&zR

Now a subset D c ® is called basis of the root system if D is a vectorspace basis of Vg and if we
can write all a € ® as a = ¥ 5. p ngf3, such that ng are integers with the same sign. Now every pos-
itive system contains exactly one basis and conversely each basis of the root system is contained
in exactly one positive system. The root basis conatined in our positive system ®* is given by
the set D = {xi — xis1] i = 1,...,n}. The elements o € D (respectively & € D := {& | a € D}) are

called simple roots (resp. simple coroots).

The largest positive (co)root Now the set of positive (co)roots is partially ordered by a > 8
if and only if @ — 8 is a non-negative linear combination of simple (co)roots. There is a largest
root which is given by (1,0,...,0,-1). Similary there is a largest positive coroot given by
(1,0,...,0,-1).

Dominant characters and dominant cocharacters: A character x € X*(7T') is called domi-
nant if (z, 3) > 0 for all B € D. It is clear that (zy,...,x,) is dominant if and only if z1 > ... > z,,.
Analogously we define a cocharacter € X, (T') to be dominant if (3, u) > 0 for all 5 € D, which
means that a cocharacter p = (u1,..., ) € Xu(7T') is dominant if and only if gy > ... > py,.

Fundamental weights and the halfsum of positive coroots: For each 5 € D let wg ¢ Va
be the linear form defined by wg(a) = (o,wp) = 64,5 for all @ € D. So the fundamental weight

attached to the simple root § = e; — ;41 is given by (%,...,%, %1,,_71) We denote by p :=
™ ~
(2 n—1

% Y aea+ @ the halfsum of all positive coroots. There is a theorem [Bou68, Chapitre 6, §1, proposi-
tion 29| telling us that we have p = ¥ ,cp wa. Hence we have p = %(n—l7 n-3,n-5,...,+3-n,1-n).

The center of G: The center of GG is equal to the kernel of the adjoint representation and this
is easily seen to be the intersection Nyeq ker(a). Therefore the center of G is seen to be Gy,

diagonally embedded in G.
The derived group of G: It is equal to Si,.
The affine (co-)roots

The affine roots are by definition given as ®qff := ® x Z ¢ X*(T') x Z. Here we define @, :=
D" x{0}u® xZso and ;= @ x {0} U P x Zg as the positive and negative affine roots. Note
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that every affine root a = (o, k) € @477 defines an affine function a : VR, ze (o, x) — k. These
affine functions make our definition of affine roots equivalent to the one in [Tit79, Section 1.6]
and [Lan96, Defintion 7.1]. We call « the vector part of a.

From now on let K be a non archimedean local field. Let m be a uniformizer in K and wg a

valuation with wg () = 1.

The extended Weyl group: The centralizer Z(T') of the maximal Torus 7" is T itself. Then the
morphism v : T(K) - V ~ R" defined by (v(t),x) = —wx (x(t)) for all t € T(K) and x € X*(T)
is given by (tl . ) — ( ::;(((:3 ) We denote the kernel of v by Z;,, which is given by ( i " o )
We define A := T(K)/Z, ~ Z". We use the identification X, (T) = A, pu ~ pu(w) - Zp. This
results also in the identification Z" - A,  (r1,...,7,) — (ﬂ: )

The extended Weylgroup is defined by W = N(K)/Z. }t projects to the finite Weyl group
Wo = N(K)/Z(K) and we have always a section Wy — W, since we can identify Wy with
Ngo,)T(Ok)/T(Ok). Using the short exact sequence 0 - A — W — Wy — 0 a version of the
splitting lemma implies that W is a semidirect product A x, Wo, where ¢ : Wy - Aut(A) is
given by conjugation. In the case of Gl,,, Wi embedds in N(K') as the permutation matrices, so
W =Z"» S,. We write the elements in W as t*w with u € A = X, (T) and w € Wj.

The standard appartement attached to 7: Note that there is the extended Bruhat-Tits
building and the reduced Bruhat-Tits building. Whereas [Tit79| uses the extended building,
[BT84] and [Lan96] deal with the reduced building. We follow [Tit79| for the construction (but
compare also Landvogt).

Furthermore we set Vg := {v € V| {(a,v) = 0 Va € ®} = (1) -R. Now the affine space of the
appartement in the extended building is V. The affine space of the reduced appartement is given
by Vo = V/[Vs.

Now A acts on V by (A-v) = v +v()\) and Wy acts by conjugation on T and hence on V. This
gives an action of W on V defined by WxV -V, (tfw,v) = w(v)+v(u), where we abbreviate
v(t") by v(p) (compare [Lan96, 1.5 and 1.6]). This action induces of course an action of N(K')
on V. With the identification A ~ X, (T) ~ Z" we have v(u) = —p. We remark that there is a
choice of this action as one could also define (A-v) = v—v(\). With this action the choice of the
base alcove would result in a different standard Iwahori subgroup.

So far we have an affine space with an action of N(K). Landvogt calls it the empty appartement,

since there is missing the structure of a polysimplex.

The half appartements and walls: For some affine root (a,k) € ®,5¢ the halfappartement
Aq i is defined to be the subset {v eV | (a,v)—k >0}. We call 9A, x a wall of the appartement.
In the case of Gl,, the walls 0A, ) are hyperplanes defined by the equation v; —v; —k = 0. We
denote by s,  the reflection at the wall A, j for every affine root. We have s () = z—(a, ).
Note that v e A, 1, implies v+ (1,...,1)R e 0A, k.



We illustrate this in the case of Gly and Gl3.

Figure 1: Standard appartement of Gls and Gls.

In the figure for GLy the only simple root is marked by aq = (1,-1). The lines show the walls
in the appartement. Let oy = (1,-1,0) and as = (0,1,-1) be the simple roots for GL3. The
figure for GL3 only shows the plane Vg in V that is spanned by 0, a1, . So for V there is the
additional axis Vg = (1,1,1) - R coming vertically out of the paper. We mark the projections of
the standard basis in Vg by €1, & and 3. The lines show the intersection of the walls 0A, 1 with
V.

The facets and the alcoves: For z,y eV, weset z~y = {(a, k) e® |ve Ay} = {(a,k) €
P |y € Ay ). The equivalence classes of this relation are the facets in the appartement. The
facets of maximal dimension are called alcoves. The alcoves are also determined as the connected

components of V'\ Ua,k)ed, ;; OAak- There is exactly one alcove which lies in the B positive Weyl

chamber Ugeqp+ Aa,o and w}igse closure contains the origin. We call it the base alcove and denote
it by 7. For GL, it is explicitely given as 7 = {v e V | 0 < (@, v) <1 Ya e ®*} = {v = (v1,...,v,) €
1% | 0<wvj—v; <1 foralll<i<j<n}. Itdepends on the choice of a Borel, since the Borel
subgroup determines a set of positive roots.

(Note that the negative choice of the basis e; of X, (T') affects that the coefficients v; are ascend-

ing instead of descending.)

The affine Weyl group: The affine Weylgroup W, is the subgroup of w generated by the
reflections on the walls that are adjacent to 7. If we denote by «; = (0,...,1,-1,...,0) the i-th
simple root (1 <i<mn—-1) and by s; the reflection s,, at the wall A, o, then Wy is generated
by Wy =< s1,...,8,-1 > and the element sg := t(l’o*'“’o”l)slsg...sn_l...8281. Here sg is the

reflection at the additional wall 0A, 1 adjacent to 7, where a = Z?_ll a; =(1,0...,-1) was the
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largest positive coroot. This is easily seen since dA,1 equals {v = (v1,...,v,) €V | vy —v, = 1}
which shows that the relfection sg fixes 0Aq 1.
We note that (Wgsr,S) with S := {sg,...,5,-1} is a Coxeter group. One checks also that

{50,...,8n-1} generates exactly @ x Wy = Woys.

The type of a facet: There is a bijection of P(S)\S to the set of facets contained in 7, where
P(S) denotes the power set of S. A subset T' c S is send to the facet Fp:={ae7 [{se€S|ac
Lg} =T}, where Ly is the wall consisting of the fixpoints of s. Now for every facet F' in the
appartment, there is exactly one element w € W, s such that w-F'is a facet in 7. So w-F = Fr for
some subset 7' c S and we call T" the type of the facet. The facets of type @ are the alcoves. In
particular W, s acts simply transitiv on the set of alcoves, so that w = w7 is a bijection of W
to the set of alcoves. In the figure for GLs we marked the facets of type {sg} with green and
the facets of type {s1} with red. In the figure for GL3 the facets of type {so,s1} (resp. {so,s2},
{s1,s2}) are the blue (resp. red, green) points.

The group Q: The group 2 is defined as the stabilizer of 7 (not pointwise). Since W, s operates
simply transitiv on alcoves and ) is the stabilizer of 7 we see W =W, 7 %€, where Q operates
by conjugation on W,rr. The exact sequence 0 - Wy sr — W - Q - 0 shows Q ~ 7m1(G). Note
that in contrast to W,y the type of the facets in the appartement is not invariant under the
operation of €.

To be explicit in the case of GL,, we set 8 = t0-0Dg | s3s1, so that 8- (v1,...,vp) =
(vo,v3...,0n,v1 — 1) for (v1,...,v,) € V which shows that 3 stabilizes 7 = {v = (v1,...,v,) €
V]0<wv-vj<1 forall1<i<j<n} Since Q= m(GL,) is free of rank one, this implies
already € = Z - 5, because if there were some other element B = t(a120) ) with m - B = 8 and

m > 1 this would imply m - >.i"; a; = 1 which is not possible.

B Drinfeld A-Modules and Anderson A-Motives

We recall the definition of a Drinfeld A-module and Anderson A-motive from |[Harl7|. Let C be
a smooth projective geometrically irreducible curve over F,. We fix a closed point oo € C' and
set A=T(C~o00,0¢)). Let R be a ring with an ring homomorphism v : A - R. We denote
with o :=id ® Frobg g the endomorphism of Ag := Axp, R with (a®b) - (a®b?) for a € A and
b e R. Furthermore we denote by J the ideal ker(y®idr: Ap > R)=(a®1-1®~(a):acA)

and recall

Definition B.1 (|Harl7, Definition 3.7]).
A Drinfeld A-module of rank r € N over R is a pair E = (E,p) consisting of a smooth affine
group scheme E over Spec R of relative dimension 1 and a ring homomorphism ¢ : A —

Endp-groups(E),a = @a satisfying the following conditions:

1. Zariski-locally on Spec R there is an isomorphism o : E = G, g of Fg-module schemes
such that



2. the coefficients of @, = a0 pea™t = Y50 bi(a)T! € Endr_groupsFy-1in(Ga,r) = R{T} satisfy
bo(a) =7(a),br(qy € R* and b;(a) is nilpotent for all i > r(a) = ~[Fe : FyJorde(a).

If bj(a) =0 for all i > r(a) we say that E is in standard form.

A morphism between two Drinfeld A-modules (E, ¢) and (E’, ') is a morphism of group schemes
f:+E — E'such that fog, =¢) o fVae A An isogeny from (E,¢) to (E',¢") is a morphism
that is finite and surjective. As described in [Harl7| every Drinfeld A-module is isomorphic to
one in standard form. We note that Drinfeld A-modules generalize to Anderson A-modules (see
[Har17, Theorem 3.9]). We also recall the Definition of an effective Anderson A-motive. For an
Ap-module M we set 0" M := M ®a, 0 Ar = M ®R Frob, p 1.

Definition B.2 ([Harl7, Definition 1.1|). An effective A-motive of rank r over an A-ring (R,~y) is
a pair M = (M, yr) consisting of a locally free Ar-module M of rank v and an Ag-homomorphism
v 0" M — M whose cokernel is annihilated by J" for some positive integer n. We say that
M has dimension d if coker Ty is a locally free R-module of rank d and annihilated by J¢. We
write rkM =1 and dimM = d for the rank and the dimension of M.

A morphism [ : (M,mp) - (N,7n) between effective A-motives is an Ag-homomorphism f :
M — N which satisfies fory =Tnyoo™f.
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