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Abstract

Moduli spaces of global G-shtukas play a crucial role in the Langlands-program for func-
tion fields. We analyze their functoriality properties concerning a change of the curve and
a change of the group scheme G under various aspects. In particular we prove two finite-
ness results that could lead to a formulation of an André-Oort conjecture for G-shtukas.
Furthermore we define five axioms concerning stratifications of the considered moduli
spaces, which are analogous to the axioms defined by Rapoport and He for Shimura
varieties. The proof of these axioms requires some of our previous functoriality results.

Zusammenfassung

Modulräume für globale G-Shtukas spielen eine wichtige Rolle im Langlands-Programm
für Funktionenkörper. Wir untersuchen ihre Funktorialitätseigenschaften bezüglich einem
Wechsel der Kurve und einem Wechsel des Gruppenschemas G unter verschiedensten As-
pekten. Insbesondere beweisen wir zwei Endlichkeitsresultate, die zu einer Formulierung
einer André-Oort Vermutung für globale G-Shtukas führen könnten. Des Weiteren definieren
wir fünf Axiome bezüglich Stratifizierungen der betrachteten Modulräume, welche analog
sind zu den Axiomen, die Rapoport und He für Schimura-Varietäten definiert haben.Für
deren Beweise werden Teile unserer vorherigen Funktorialitätsresultate benötigt.
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n H 1(C,G) 57

5.1 The Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Verification of the Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Consequences of the Axioms 69
6.1 Kottwitz-Rapoport Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Newton Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Central Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Drinfeld’s Moduli Space with Iwahori Level 72
7.1 Torsors for Parahoric Bruhat-Tits Group Gchemes with Generic Fiber GLr . . . 72
7.2 Drinfeld’s Moduli Space with Iwahori Level Structure . . . . . . . . . . . . . . . . . 76

A GLr over Local Fields 81

B Drinfeld A-Modules and Anderson A-Motives 86

References 89





1 Introduction

Global G-shtukas are the function field analogue of abelian varieties. Their moduli spaces play
a crucial role in the Langlands-programm for function fields. This thesis is concerned about
functoriality properties of these moduli spaces in various aspects as well as their stratifications
and their geometry. Let us give a more detailed overview.
We choose a smooth projective geometrically irreducible curve C over a finite field Fq with q

elements. Let further G be a smooth affine group scheme over C and denote by σ the Fq-
Frobenius of a scheme S over Fq. Then a global G-shtuka G = (G, s1, . . . , sn, τG) over S consists
of a G-torsor G over CS ∶= C ×Fq S, n sections si ∶ S → C called paws and an isomorphism
τG ∶ σ⋆G∣CS/∪iΓsi

→ G∣CS/∪iΓsi
outside the union of the graphs Γsi . The precise definition of all

the notations used in the introduction and the thesis are given in the preliminaries in the second
chapter. The stack whose S-valued points parametrize the global G-shtukas over S with n paws
is denoted by ∇nH 1(C,G). Once we fix n closed points (v1, . . . , vn) = v in C to which we refer
as characteristic places we can introduce boundedness conditions Zv for all v ∈ v and H-level
structures. Here a bound Zv is roughly a L+Gv invariant closed subscheme of the affine flag
variety F̂ lGv (see § 2.6 for a correct definition) and H is a open compact subgroup of G(Av),
where Av denotes the ring of the adeles outside v. Then we denote by ∇Ẑv ,H

n H 1(C,G) the stack
which parametrize G-shtukas G over S bounded by (Ẑv)v∈v together with an H-level structure.
At the beginning of the third chapter we define all the parameters (C,G, v,Zv,H) as a shtuka
datum. This definition comes with the natural question if an appropriate change of this shtuka
datum induces a morphism of the corresponding moduli spaces and what properties it has.
In section 3.1 we define a morphism of shtuka data and clarify what an appropriate change of
the shtuka datum should be. Actually a morphism from (C,G, v, Ẑv,H) to (C ′,G′, w, Ẑ ′

w,H
′) is

a pair (π, f), where π ∶ C → C ′ is a finite morphism and f is a morphism of group schemes from
the Weil restriction π⋆G to G such that w, Ẑ ′

w and H ′ satisfy certain conditions.

In the following sections we answer then the questions about the functoriality of ∇Ẑv ,H
n H 1(C,G).

More precisely we consider in section 3.2 firstly the case that we only change the curve C, which
yields the following main result of this section.

Theorem 1.1 (cf. Theorem 3.14). Let (C,G, v, Ẑv,H) be a shtuka datum and π ∶ C → C ′ a
finite morphism of smooth geometrically irreducible curves over Fq with wi ∶= π(vi) and w ∶=
(w1, . . . , wn). Then the morphism (π, idπ⋆G) ∶ (C,G, v, Ẑv,H) → (C ′, π⋆G, w, π⋆Ẑv, π⋆H) of
shtuka data (see definition 3.9 and remark 3.10) induces a finite morphism of the moduli stacks

π⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇π⋆Ẑv ,π⋆H

n H 1(C ′, π⋆G).

The construction of this morphism and the proof of the theorem relies on a lemma in section
3.1 that states an equivalence of categories between G-torsors over C and π⋆G over C ′. In this
thesis this theorem will find an application in the proof of the non-emptiness of KR-strata.
The next section 3.3 addresses then the questions about functoriality in the case that we only
change the group scheme G. Whereas we construct a morphism

∇Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′)

1



1 INTRODUCTION

for all morphisms (idC , f) of shtuka data, we need to make different assumptions to state dif-
ferent results on the properties of this morphism. Assuming that f ∶ G → G′ is generically an
isomorphism we have the following first main result of this section.

Theorem 1.2 (cf. Theoremm 3.20). Let (idC , f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H) be a

morphism of shtuka data, where f ∶ G→ G′ is an isomorphism over C/w. Then the morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

n H 1(C,G′), (G, γH) ↦ (f⋆G, γH)

is schematic and quasi-projective. In the case that G is a parahoric Bruhat-Tits group scheme

this morphism is projective. For any morphism (G′, γ′H) ∶ S → ∇Ẑ′v ,H
n H 1(C,G′)

the fiber product S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑ′v ,H

n H 1(C,G) is given by a closed subscheme of

S ×Fq ((L+
w1
(G′)/L+G̃w1) ×Fq ⋅ ⋅ ⋅ ×Fq (L+

wm
(G′)/L+G̃wm)) .

If Ẑv arises as a base change of Ẑ ′
v for all v ∈ v, the morphism f⋆ is surjective.

This result will again be important in the fifth chapter about axioms on the moduli space
∇Ẑv ,H

n H 1(C,G). If we assume that f ∶ G → G′ is a closed immersion instead of a generic
isomorphism we get the second result of this section.

Theorem 1.3 (cf. Theorem 3.23). Let f ∶ G→ G′ be a closed immersion of smooth affine group
schemes over C. Then the induced morphism f⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C,G′) is unramified
and schematic.

Assuming additionally that G is a parahoric Bruhat-Tits group scheme, we prove as well:

Theorem 1.4 (cf. Theorem 3.26). Let G be a parahoric Bruhat-Tits group scheme and f ∶ G→ G′

be a closed immersion of smooth affine group schemes and v = (v1, . . . , vn) be a set of closed points
in C. Then the induced morphism

f⋆ ∶ ∇nH 1(C,G)v → ∇nH 1(C,G′)v is proper and in particular finite.

Also the morphism in this theorem occurs again in the fifth chapter and is needed to proof the
non-emptiness of KR-strata.

The second part of the thesis is concerned about stratifications of the special fiber of the moduli
space ∇Ẑv ,H

n H 1(C,G). One can ask a lot of interesting questions about these stratifications,
what is their dimension, are they equi-dimensional, are they smooth, are they affine or quasi-
affine, what is their relation, are they non-empty, ... A lot of work about these questions has
been done for stratifications of the special fiber of Shimura varieties. In [HR17] Rapoport and He
introduce five axioms on Shimura varieties concerning these stratifications. Once these axioms
are proved one can conclude the definition and existence of these characteristic subsets as Newton-
stratification, Kottwitz-Rapoport stratification and EKOR-stratification in a most general way.
Also their natural index set and some relations follow then from these axioms.
We translate these axioms to the moduli space ∇Ẑv ,H

n H 1(C,G). Whereas in the fourth chapter
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we discuss the necessary preparations to do this, we formulate these axioms in first section of the
fifth chapter and prove some of them in its second section. The first axiom is about a change
of the parahoric subgroup at the characteristic places and requires that this induces a surjective
and projective morphism between the corresponding moduli spaces. This axiom is used to reduce
some statements to the case of Iwahori-level. The proof of this axiom is mostly done in theorem
3.19. The second axiom is about the existence of local models, which allows to define the KR-
stratification on ∇Ẑv ,H

n H 1(C,G). The existence of these local models follows from [AH16]. The
third axiom is about the existence of the Newton stratification. Once the global-local functor
is established, the proof is known from [HV11]. The fourth axiom gives a relation between
the Newton- and KR-stratification by requiring the existence of some central leaves. The fifth
axiom is a basic non-emptiness statement and states that for all groups with Iwahori-level at
the characteristic places the minimal KR-stratum is non-empty. We will explain the different
steps of the proof of this axiom and also why we can not finish the second step completely at
the moment and how a better understanding of the connected components of ∇Ẑv ,H

n H 1(C,G)
would help us to do so. In the case of Shimura varieties this basic non-emptiness is proven by
M. Kisin and C.-F. Yu for this axiom under certain conditions on the Shimura datum. Although
the idea to construct firstly an object lying in the basic Newton-stratum is similar to the case
of Shimura varieties, the construction of this element works differently. In the sixth chapter we
will draw some conclusions of the axioms. In the seventh chapter we discuss Drinfeld’s moduli
space with Iwahori level structure as an example of ∇Ẑv ,H

n H 1(C,G).

2 Preliminaries

Before we start with the functoriality of ∇nH 1(C,G), we introduce the basic objects and nota-
tions that we use in this thesis. Most of the notations introduced in this chapter, can also be
found in [AH13] and [AH14].
Let q be a power of some prime number p. We start with a smooth projective geometrically
irreducible curve C over the field Fq with q elements. We denote by Q ∶= Fq(C) its function
field. For a closed point v ∈ C we denote by Av the completion of the stalk OC,v and by Qv the
fraction field of Av. Furthermore we choose a uniformizer zv in Av, denote the residue field of v
by Fv and set deg v = [Fv ∶ Fq].
Let G be a smooth affine group scheme over C and G ∶= G ×C Q its generic fiber. Later, from
chapter 4 on, we assume G to be a parahoric Bruhat-Tits group scheme, which we will define
in § 2.17. We write Gv ∶= G ×C Spec Av and Gv ∶= G ×C Spec Qv = Gv ×Av Spec Qv for the
appropriate base changes.
For an Fq-scheme S we denote by σS ∶ S → S the absolut Fq-Frobenius, which acts as the q-power
map on the structure sheaf. Further we define σ as the endomorphism idC ×σS of CS ∶= C ×Fq S.
For a morphism s ∶ S → C we denote as usual by Γs ∶ S → CS the graph of s, which is a closed
immersion.
Let X be a site with a final object x and G a sheaf of groups on X . Then a (right) G-torsor
is a sheaf G on X with a right action of G on G such that G × G ≃ G × G, (g, h) ↦ (hg, h) is
an isomorphism and G(U) ≠ ∅ for some covering U → X. When we speak about a torsor, we
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2 PRELIMINARIES

always mean a right torsor and if nothing else is mentioned we mean a sheaf on the big étale site
of a scheme. For any scheme S we write SÉt for the big étale site of this scheme. We denote
by H 1(C,G) the stack fibered over (Fq)Ét, whose fiber category H 1(C,G)(S) is given by the
category of G-torsors over CS .

§ 2.1 Global G-Shtukas:

Let S be an Fq-scheme. A global G-shtuka over S is a tuple G = (G, s1, . . . , sn, τG), where

− G is a G-torsor over CS ,

− s1, . . . , sn are morphisms S → C and

− τG ∶ σ⋆G∣CS/(⋃
i
Γsi)

→ G∣CS/(⋃
i
Γsi)

is an isomorphism of the G-torsors σ⋆G and G restricted

to CS/(Γs1 ⋃⋅ ⋅ ⋅⋃Γsn).

We take the notation ∇nH 1(C,G) from [AH14, Definition 2.12] for the stack fibered over
(Fq)Ét whose S-valued points for a scheme S are given by G-shtukas G over S. Morphisms
from (G, s1, . . . , sn, τ) to (G′, s′1, . . . , s′n, τ ′) in the fiber category ∇nH 1(C,G)(S) only exist if
si = s′i and are given by morphisms f ∶ G → G′ of G-torsors over CS such that f ○ τ = τ ′ ○ σ⋆f .
Given two G-shtukas G and G′ over S with si = s′i as before, we also define a quasi-isogeny from
G to G′ to be an isomorphism f ∶ G∣CS/DS

→ G′∣CS/DS
of G-torsors satisfying f ○ τ = τ ′ ○ σ⋆f ,

where D is some effective divisor on C. The moduli space ∇nH 1(C,G) is an ind-algebraic stack
that is ind-separated and locally of ind-finite type [AH13, Theorem 3.14].

§ 2.2 Loop Groups:

Let F be a finite field and H be a smooth affine group scheme over D ∶= Spec F⟦z⟧, with generic
fiber H ∶= H×D Ḋ where Ḋ ∶= Spec F((z)). We are mainly interested in the case that D ≃ Spec Av

and H = Gv for some closed point v ∈ C.
We recall that the sheaf of groups L+H on FÉt, whose R-valued points for an F-algebra R are
given by

L+H(R) ∶= H(R⟦z⟧) ∶= H(DR) ∶=HomD(DR,H) with DR ∶= Spec R⟦z⟧,

is an infinite-dimensional affine group scheme over F. It is called the group of positive loops
associated with H. The group of loops associated with H is the sheaf of groups LH on FÉt,
whose R-valued points are defined by

LH(R) ∶=H(R((z))) ∶=H(ḊR) ∶=Hom
Ḋ
(ḊR,H) ,

where we write R((z)) = R⟦z⟧ [1z ] and ḊR = Spec R((z)). The loop group LH is an ind-scheme of
ind-finite type over F.

§ 2.3 Torsors for Loop Groups:

We write H 1(F, L+H) for the stack fibered over (F)Ét whose fiber category H 1(F, L+H)(S)
is the category of L+H-torsors over S. In the same way H 1(F, LH) denotes the stack fibered
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over (F)Ét whose fiber category H 1(F, LH)(S) is the category of LH-torsors over S. There is
a natural 1-morphism

L ∶H 1(F, L+H) →H 1(F, LH), L+ ↦ L (1)

induced by the inclusion of sheaves L+H ⊂ LH.
We now consider also the z-adic completions of D and H and denote them by D̂ ∶= Spf F⟦z⟧
and Ĥ ∶= H ×D D̂. Later when we pass from global G-shtukas to local Gv-shtukas we often need
to know that L+H-torsors are equivalent to formal Ĥ-torsors. So we recall that for an F-scheme
S a z-adic formal scheme H over D̂S ∶= D̂×̂FS together with an action Ĥ×̂

D̂
H → H of Ĥ is

called a formal Ĥ-torsor if there is an étale covering S′ → S and an Ĥ-equivariant isomorphism
H×̂

D̂S
D̂S′ �→ Ĥ ×

D̂
D̂S′ , where Ĥ is acting on itself by right multiplication.

We denote by H 1(D̂, Ĥ) the category fibered in groupoids over (F)Ét whose fiber category
H 1(D̂, Ĥ)(S) is the groupoid of formal Ĥ-torsors over S. We remark that Arasteh Rad and Hartl
proved in [AH14, Proposition 2.4] that there is a natural isomorphism of stacks H 1(D̂, Ĥ) �→
H 1(F, L+H). It sends a formal Ĥ-torsor H to the sheaf

L+ ∶ SÉt → Sets, T ↦ Hom
D̂S
(D̂T ,H)

which becomes a L+H-torsor under the action of L+H(T ) = Hom
D̂
(D̂T , Ĥ).

§ 2.4 Local H-Shtukas:

Let S be a F-scheme and σ̂ its absolut F-Frobenius. If F equals Fq or Fv we will write σ and σv

respectively, instead of σ̂. With the previous notations a local H-shtuka over S is a pair (L+, τL)
where

− L+ is a L+H-torsor over S and

− τL ∶ σ̂⋆L �→ L is an isomorphism of the associated loop group torsors from (1) in § 2.3.

A morphism from L = (L+, τL) to L′ = (L+′, τ ′L′) of two local H-shtukas over S is a mor-
phism f ∶ L+ → L+′ of L+H-torsors over S satisfying τL ○ f = τL′ ○ σ̂⋆f . A quasi-isogeny from
L = (L+, τL) to L′ = (L+′, τ ′L′) is an isomorphism f ∶ L → L′ of the associated LH-torsors satisfy-
ing τL ○ f = τL′ ○ σ̂⋆f .
A local H-shtuka (L+, τL) is called étale if τL ∶ σ̂⋆L → L comes already from an isomorphism
τL ∶ σ̂⋆L+ → L+ of the L+H-torsors. We denote the category of local H-shtukas over S by ShtH(S)
and the category of étale local H-shtukas over S by ÉtShtH(S).
We recall the Corollary [AH14, Corollary 2.9] that states that if H has a connected special fiber,
then any étale local shtuka over an separably closed field k is already isomorphic to (L+Hk, 1⋅σ̂⋆).
Let F⟦ζ⟧ be the power series ring over F in a variable ζ. We denote by N ilpF⟦ζ⟧ the category of
schemes over Spec F⟦ζ⟧ on which ζ is locally nilpotent in the structure sheaf. Therefore N ilpF⟦ζ⟧

is the full subcategory of formel schemes over Spf F⟦ζ⟧ consisting of ordinary schemes. We will
define boundedness conditions only for local shtukas over a scheme S in N ilpF⟦ζ⟧.
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2 PRELIMINARIES

§ 2.5 The Affine Flag Variety:

Let H be a smooth affine group scheme over Spec F⟦z⟧ as before, then the affine flag variety F lH

is defined as the quotient sheaf LH/L+H on FÉt, that is the sheaf associated to the pre-sheaf

T ↦ LH(T )/L+H(T ).

By [PR08, Theorem 1.4] F lH is represented by an ind-scheme which is ind-quasi-projective and
in particular ind-separated and of ind-finite type over F. By [Ric16a, Theorem A] F lH is ind-
projective if and only if H is a Bruhat-Tits group scheme over F⟦z⟧ in the sense of [BT84,
Definition 5.2.6]. We also remark that L+H acts from the left on F lH.

§ 2.6 Bounds in F̂ lH

We fix an algebraic closure F((ζ))alg of F((ζ)). For a finite extension R of discrete valuation rings
F⟦ζ⟧ ⊂ R ⊂ F((ζ))alg with residue field κR we denote similar as before with N ilpR the category
of R-schemes on which ζ is locally nilpotent. Furthermore we set F̂ lH,R ∶= F lH×̂FSpf R as well
as F̂ lH ∶= F lH,F⟦ζ⟧.
Now let R and R′ be two such finite extensions of discrete valuation rings and let ẐR ⊂ F̂ lH,R and
Ẑ ′

R′ ⊂ F̂ lH,R′ be two closed ind-subschemes. We call ẐR and Ẑ ′
R′ equivalent if there is a finite

extension R̃ of discrete valuation rings as above containing R and R′ such that ẐR×Spf RSpf R̃ =
Ẑ ′

R′ ×Spf R′ Spf R̃ as closed ind-subschemes of F̂ l
H,R̃.

Now a bound is defined (compare [AH14, Definition 4.8] and [AH13, Definition 4.5]) as an
equivalence class Ẑ = [ẐR] of closed ind-subschemes ẐR ⊂ F̂ lH,R satisfying

− firstly that all subschemes ẐR are stable under the left action of L+H on F̂ lH,R and

− secondly that all the special fibers ZR ∶= ẐR ×Spf R Spec κR are quasi-compact and con-
nected subschemes of F lH×̂FκR.

We remark that in [AH13] and [AH14] the definition of a bound does not require the special
fibers to be connected. Actually we make this assumption, because it does not change the theory
and simplifies the formulation of certain statements. In fact if Ẑ is the disjoint union of two
bounds Ẑ1∐ Ẑ2 then the moduli space ∇Ẑ

nH 1(C,G) that will be defined in paragraph § 2.11 is
the disjoint union of the moduli spaces ∇Ẑ1

n H 1(C,G) and ∇Ẑ2
n H 1(C,G).

§ 2.7 The Reflex Ring:

For an equivalence class Ẑ = [ẐR] as above we set GẐ ∶= {γ ∈ AutF⟦ζ⟧(F((ζ))alg) ∣ γ(Ẑ) = Ẑ}.
The ring RẐ is defined as the intersection of the fixed field of GẐ in F((ζ))alg with all the finite
extensions R over which a representative ẐR of Ẑ exists. In the case that Ẑ is a bound, we call
RẐ the reflex ring of Ẑ.
It is not always clear if there exists a representative of Ẑ over RẐ . We write κẐ and κR for
the residue fields of RẐ and R respectively. Then the special fiber ZR ∶= ẐR ×Spf R κR arises
from a unique closed subscheme Z ⊂ F lH ×F κẐ . This follows from Galois descent for closed
ind-subschemes of F lH, which is effective. The subscheme Z is called the special fiber of Ẑ.
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§ 2.8 Boundedness of Local H-Shtukas:

Let Ẑ be a bound with reflex ring RẐ . Furthermore let L+ and L+′ be two L+H-torsors over a
scheme S in N ilpRẐ

and δ ∶ L → L′ an isomorphism of the associated LH-torsors. We choose
a covering S′ → S such that there are trivializations α ∶ L+ ∼�→ L+HS′ and α′ ∶ L+′ ∼�→ L+HS′ .
Then the automorphism α′ ○ δ ○ α−1 ∶ LHS′

∼�→ LHS′ defines a morphism S′ → LH.
For any finite extension R of RẐ we have an induced morphism

S′ ×Spf RẐ
Spf R �→ LH×̂FSpf R �→ F̂ lH,R. (2)

Now δ is said to be bounded by Ẑ if for all trivializations α and α′ and all finite extensions R of
RẐ with a representative ẐR, this morphism (2) factors through ẐR. By [AH14, Remark 4.9] δ is
bounded if and only if this condition is satisfied for one trivialization and for one such extension
R. By definition a local H-shtuka (L+, τL) is bounded by Ẑ if τL is bounded by Ẑ.

§ 2.9 A Version of the Theorem of Beauville-Laszlo:

Let v ∈ C be a closed point and set Cv ∶= C/{v} as well as Cv
S ∶= Cv ×Fq S. We define H 1

e (Cv,G)
as the category fibered in groupoids over (Fq)Ét whose fiber category H 1

e (Cv,G)(S) consists
of those G-torsors over Cv

S that can be extended to a G-torsor over CS . By restricting a G-
torsor G over CS to Cv

S we get a morphism H 1(C,G) →H 1
e (Cv,G). We introduce further the

notation G̃v = ResAv/Fq⟦zv⟧Gv and G̃v ∶= G̃v ×Fq⟦zv⟧ Fq((zv)). For G ∈ H 1(C,G) the base change
Gv ∶= G ×CS

(Spf Av ×Fq S) defines a formal Gv-torsor over Spf Av×̂FqS and its Weil restriction
ResAv/Fq⟦zv⟧Gv defines a formal G̃v-torsor over Spf Fq⟦zv⟧×̂FqS. Using the category equivalence
in § 2.3 it corresponds to an object in H 1(Fq, L

+G̃v)(S) that we denote by L+
v(G) which defines

a functor

L+
v ∶H 1(C,G) �→H 1(Fq, L

+G̃v), G ↦ L+
v(G).

Furthermore we have the functor

Lv ∶H 1
e (Cv,G) →H 1(Fq, LG̃v), G∣

Cv
S

↦ L(L+
v(G)) = Lv(G)

which is independent of the extension G of G∣
Cv

S

. Now a version of the theorem of Beauville-Laszlo,
that is proven in [AH14, Lemma 5.1], states that the following diagram is cartesian.

H 1(C,G) ��

L+v
��

H 1
e (Cv,G)

Lv

��
H 1(Fq, L

+G̃v) �� H 1(Fq, LG̃v)

§ 2.10 The Global-Local Functor:

Now we fix n closed points v = {v1, . . . , vn} of C. Then define Av as the completion of the local
ring OCn,v at the closed point v and furthermore: This

∇nH 1(C,G)v ∶= ∇nH 1(C,G) ×Cn Spf Av.

7



2 PRELIMINARIES

So an S-valued point of ∇nH 1(C,G)v is given by a global G-shtuka G = (G, s1, . . . , sn, τG) such
that si ∶ S → C factors through Spf Avi . We now want to associate with such a global G-
shtuka a local Gvi-shtuka for all vi ∈ v. We write Dvi ∶= Spec Avi and D̂vi ∶= Spf Avi as well as
D̂vi,S ∶= Dvi ×̂Fvi

S. Then we have:

D̂vi ×̂FqS = ∐
l∈Z/deg vi

V (avi,l) = ∐
l∈Z/deg vi

D̂vi,S

where avi,l ∶= ⟨a⊗1−1⊗s⋆(a)ql ∣ a ∈ Fvi⟩ and V (avi,l) is the closed subscheme given by this ideal.
We remark that σ cyclically permutes these components and that the Fvi-Frobenius σdeg vi leaves
all these components V (avi,l) stable. For G ∈ ∇nH 1(C,G)v the base change

Gvi ∶= G×̂CS
(Spf Avi ×̂FqS) = ∐

l∈Z/deg vi

G×̂CS
V (avi,l)

defines a formal Ĝvi-torsor over ∐
l∈Z/deg vi

D̂vi,S which is an object in H 1(D̂vi , Ĝvi)( ∐
l∈Z/deg vi

S).

Each component G ×CS
V (avi,l) defines a formal Ĝvi-torsor. Similar to the notation in § 2.3 we

denote by L+i,0 the L+Gvi-torsor associated by [AH14, Proposition 2.4] with the formal Ĝvi-torsor
G ×CS

V (avi,0). Then (L+i,0, τdeg vi) is a local Gvi-shtuka, where τdeg vi ∶ (σdeg vi)⋆Li,0
∼�→ Li,0

is the isomorphism of LGvi-torsors induced by τG (compare also [AH14, Lemma 5.1]). More
precisely one should write τdeg vi = τ ○ σ⋆τ ○ ⋅ ⋅ ⋅ ○ (σdeg vi−2)⋆τ ○ (σdeg vi−1)⋆τ .
This now defines the global-local functor:

Γvi ∶ ∇nH 1(C,G)v(S) �→ ShtGvi
(S)

G = (G, s1, . . . , sn, τ) "→ (L+i,0 , τdeg vi) = Γvi(G).

We remark that this functor transforms by [AH14, Definition 5.4] quasi-isogenies into quasi-
isogenies. If v ∉ v the component V (av,0) exists only if S is an Fv-scheme.
If we do not restrict G ×CS

(Spf Avi ×Fq S) to the component V (avi,0) but consider its Weil
restriction L+

vi(G) we get in a similar way a local G̃vi-shtuka (L+
vi(G), τvi) where τvi ∶= Lvi(τG) ∶

σ⋆Lvi(G) → Lvi(G). We denote this local G̃vi-shtuka by L+
vi(G) = (L

+
vi(G), τvi). We remark that

L+
v(G) does not only exists for v ∈ v but also for other places v ∈ C. In the case that v ∉ v the

local shtuka L+
v(G) is étale.

§ 2.11 Boundedness of Global G-Shtukas:

Recall that we fixed n closed points v = (v1, . . . , vn) in C. If the group scheme G is fixed we
write for each of these points F lvi ∶= F lGvi

for the corresponding affine flag variety over Fvi and
F̂ lvi,R = F̂ lGvi ,R

= F lvi ×̂Fvi
Spf R for a finite extension Avi ⊂ R. In each of these affine flag

varietes F̂ lvi = F̂ lvi,Avi
we choose a bound Ẑvi = [Ẑvi,R] with reflex ring RẐvi

and we write Ẑv for

the tuple (Ẑv1 , . . . , Ẑvn). Choosing a uniformizer πvi in RẐvi
and defining FR as the compositum

of all the residue fields RẐvi
/(πvi), we set RẐv

∶= FR⟦πv1 . . . , πvn⟧. In particular the morphism
Spf RẐv

→ Cn factors through Spf Av. This means that every point G = (G, s1, . . . , sn, τG) in
∇nH 1(C,G) ×Cn Spf RẐv

(S) defines also an S-valued point in ∇nH 1(C,G)v so that we write
Γvi(G) for its associated local Gvi-shtuka over S. The fact that S ∈ NilpRẐvi

allows us to ask if
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Γvi(G) is bounded by Ẑvi .

We define ∇Ẑv
n H 1(C,G) to be the stack consisting of these bounded global G-shtukas. That

means the fiber category∇Ẑv
n H 1(C,G)(S) is the full subcategory of∇nH 1(C,G)×CnSpf RẐv

(S)
that consists of those global G-shtukas G over S that are bounded by Ẑv. By [AH13, Remark 7.2]

the moduli space ∇Ẑv
n H 1(C,G) is a closed ind-substack of ∇nH 1(C,G)×CnSpf RẐv

. Moreover

we denote by ∇Ẑv
n H1(C,G)FR

∶= ∇Ẑv
n H1(C,G)×SpfRẐv

FR the special fiber of ∇Ẑv
n H1(C,G).

§ 2.12 D-Level Structures:

Let D be a proper closed subscheme of C and let DS ∶= D ×Fq S for some Fq-scheme S and
G a G-torsor on CS . By [AH13, Definition 3.1] a D-level structure on G is a trivialization
Ψ ∶ G ×CS

DS → G ×C DS and H 1
D(C,G) denotes the stack fibered over (Fq)Ét whose fiber

category H 1
D(C,G)(S) consists of pairs (G,Ψ) where G ∈ H 1(C,G)(S) and Ψ is a D-level

structure. A morphism from (G,Ψ) to (G′,Ψ′) in this fiber category is given by an isomorphism
f ∶ G → G′ of G-torsors such that Ψ = Ψ′ ○ (f × idDS

). The moduli stack of global G-shtukas
with D-level structure is denoted by ∇nH 1

D(C,G). Its fiber category over S is given by tuples
(G,Ψ) = (G, s1, . . . , sn, τG ,Ψ) where G ∈ ∇nH 1(C,G) ×Cn (C/D)n(S) (i.e. si ∶ S → C factors
through C/D) and Ψ is a S-level structure on G satisfying Ψ ○ (τ × idDS

) = σ⋆(Ψ). A morphism
from (G,Ψ) to (G′,Ψ′) in this fiber category is a morphism f ∈ ∇nH 1(C,G)(S) (in particular
an isomorphism f ∶ G → G′ of G-torsors) satisfying Ψ = Ψ′ ○ (f × idDS

).
If D = ∅ we have ∇nH 1

D(C,G) = ∇nH 1(C,G). If v1, . . . , vn ∉ D and Ẑv is a bound as before
we use the intuitive notations ∇nH 1

D(C,G)v for the base change ∇nH 1
D(C,G) ×Cn Spf Av and

∇Ẑv
n H 1

D(C,G) for the stack of G-shtukas G in ∇Ẑv
n H 1(C,G) with a D-level structure.

§ 2.13 Local Shtukas and Local GLr-Shtukas:

The category of local GLr-shtukas over an Fq-scheme S can be defined more explicitly. We
briefly describe this here since it is useful for the definition of the Tate functors.
We denote by OS⟦z⟧ the sheaf of OS-algebras on SÉt which associates with every S-scheme Y

the ring OS⟦z⟧(Y ) ∶= Γ(Y,OY )⟦z⟧. Now every sheaf of OS⟦z⟧-modules that is fqqc-locally free
of rank r is by [HV11, Prop 2.3] already Zariski locally free of rank r. We call these locally
free sheafes of OS⟦z⟧-modules of rank r. For a commutative ring R we set R((z)) ∶= R⟦z⟧ [1z ].
This leads to the intuitive notation OS((z)) for the sheaf on SÉt associated to the pre-sheaf
Y ↦ Γ(Y,OY )((z)). The absolut F Frobenius was denoted σ̂ and we use the same notation for
the endomorphism of OS⟦z⟧ and OS((z)) that acts as σ̂ on sections of OS and as the identity
on z. For a sheaf M of OS⟦z⟧-modules we can consider the pullback σ̂⋆M ∶=M ⊗OS⟦z⟧,σ̂ OS⟦z⟧.
Now by [HV11, Definition 4.1] a local shtuka of rank r over S is a pair (M,τM) consisting of a
locally free sheaf M of OS⟦z⟧-modules of rank r and an isomorphism

τM ∶ σ̂⋆M ⊗OS⟦z⟧ OS((z)) →M ⊗OS⟦z⟧ OS((z)).

The local shtuka (M,τM) is called étale if τM arises from an isomorphism σ̂⋆M →M of OS⟦z⟧-
modules. A morphism from (M,τM) to (M ′, τM ′) between two local shtukas over S is a morphism
f ∶M →M ′ of OS⟦z⟧-modules satisfying τM ′ ○ σ̂⋆f = f ○ τM . A quasi-isogeny from (M,τM) to

9
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(M ′, τM ′) is a morphism f ∶M ⊗OS⟦z⟧OS((z)) →M ′⊗OS⟦z⟧OS((z)) of OS((z))-modules satisfying
τM ′ ○ σ̂⋆f = f ○τM . We denote the category of local shtukas over S by ShtFq(S) and the category
of étale local shtukas over S by ÉtShtFq(S).
Now there is a category equivalence between local GLr-shtukas as defined in § 2.4 and the
category of local shtukas of rank r over S with isomorphisms as the only morphisms. It is
naturally induced by the category equivalence [HV11, Lemma 4.2] of H 1(F, L+GLr)(S) and the
category of locally free sheaves of OS⟦z⟧-modules of rank r with isomorphisms as morphisms.

§ 2.14 Tate Functors on Local H-Shtukas:

Now let S be a connected Fq-scheme with geometric base point s ∈ S and algebraic fundamental
group π1(S, s). We denote by FModF⟦z⟧[π1(S,s)] (resp. FModF((z))[π1(S,s)] ) the category of finite
and free Fq⟦z⟧-modules (resp. F((z)) vector spaces) equipped with a continuous action of π1(S, s).
Then the dual Tate functor Ť on étale local shtukas is defined as

Ť− ∶ ÉtShtFq(S) → FModF⟦z⟧[π1(S,s)] M ∶= (M,τM) ↦ ŤM ∶= (M ⊗OS⟦z⟧ κ(s)⟦z⟧)
τM

where the superscript τM denotes the τM invariants. The rational dual Tate functor is defined
by

V̌− ∶ ÉtShtFq(S) → FModF((z))[π1(S,s)] M ∶= (M,τM) ↦ V̌M ∶= ŤM ⊗F⟦z⟧ F((z))

We also need Tate functors for local H-shtukas. To define these we denote by RepF⟦z⟧H the
category of representations ρ ∶ H→ GL(V ) where V is a finite free F⟦z⟧-module and ρ a morphism
of algebraic groups over F⟦z⟧. Any such ρ naturally induces, as described in [AH14, section 3,
above Definition 3.5], a functor ρ⋆ ∶ ÉtShtH(S) → ÉtShtF(S) that is compatible with quasi-
isogenies.
Let Funct⊗(RepF⟦z⟧H, FModF⟦z⟧[π1(S,s̄)]) and Funct⊗(RepF((z))H, FModF((z))[π1(S,s̄)]) be the
categories of the appropriate tensor functors whose morphisms are isomorphisms of functors.
Now the dual Tate functor Ť− and the rational dual Tate functor V̌− are defined by

Ť− ∶ ÉtShtH(S) �→ Funct⊗(RepF⟦z⟧H, FModF⟦z⟧[π1(S,s̄)]) L ↦ (ŤL ∶ ρ↦ Ťρ⋆L)
V̌− ∶ ÉtShtH(S) �→ Funct⊗(RepF((z))H, FModF((z))[π1(S,s̄)]) L ↦ (V̌L ∶ ρ↦ V̌ρ⋆L).

§ 2.15 Tate Functors on Global G-Shtukas:

Now we assume that the tuple v = (v1, . . . , vn) is given by n pairwise different places on C and
set C̃ = C/{v1, . . . , vn}. We denote by Ov ∶= ∏v∈(C/v)Av the integral adeles of C outside v

and by Av ∶= Ov ⊗OC̃
Q = ∏′

v∈(C/v)Qv the adeles of C outside v. Let RepOvG be the category
of representations ρ ∶ G ×C Spec Ov → GLOv(V ) where V is a finite free Ov-module and ρ a
morphism of group schemes over Ov. Let S be a connected scheme over Spf Av with a fixed
geometric base point s̄. We denote by ModOv[π1(S,s̄)] (resp. ModAv[π1(S,s̄)]) the category of
Ov-modules (resp. Av-modules) with a continuous π1(S, s̄) action. For a finite subscheme D ⊂ C
we set Ds̄ =D ×Fq s̄ as well as G∣Ds̄ = G ×CS

Ds̄. Then the dual Tate functor Ť− and the rational
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dual Tate functor V̌− on global G-shtukas are defined by

Ť− ∶ ∇nH 1(C,G)v(S) �→ Funct⊗(RepOvG, ModOv[π1(S,s̄)])

G ↦
⎛
⎜
⎝
ŤG ∶ ρ↦ lim←�

D⊂C̃

(ρ⋆G∣Ds̄)τG
⎞
⎟
⎠

V̌− ∶ ∇nH 1(C,G)v(S) �→ Funct⊗(RepAvG, ModAv[π1(S,s̄)])

G ↦
⎛
⎜
⎝
V̌G ∶ ρ↦ lim←�

D⊂C̃

(ρ⋆G∣Ds̄)τG ⊗Ov Av
⎞
⎟
⎠
.

We remark that the functor V̌ transforms by [AH13, section 6] quasi-isogenies into isomor-
phisms. Furthermore it is useful to know that there is a natural isomorphism lim←�D⊂C

(ρ⋆G∣Ds̄)τG ≃
∏v∈C/v ŤL+v(G)(ρv) writing ρ = (ρv)v∈C̃ with ρv ∶= ρ×idAv . Here L+

v(G) is the étale local G̃v-shtuka
and ŤL+v(G)(ρv) ∶= ŤL+v(G)(ρ̃v) where ρ̃v is the representation of G̃v induced from ρv by Weil re-
striction (see [AH14, remark 5.6]).

§ 2.16 H-Level Structures:

Let H be an open compact subgroup of G(Av). In this paragraph we define H-level structures
which is a generalization of the previous D-level structures. We denote by

ω○
Ov ∶ RepOvG�→ModOv , ω○

Av ∶ RepAvG�→ModAv

the forgetful functors and by Isom⊗(ω○
Ov , ŤG) and Isom⊗(ω○

Av , V̌G) the sets of isomorphisms of
tensor functors which are defined for every global G-shtuka G over S, where S is as before a scheme
over Spf Av with geometric base point s̄ ∈ S. By the definition of the Tate functor π1(S, s̄) acts
on ŤG and G(Ov) (resp. G(Av)) acts on ω○

Ov (resp. ω○
Av) since we have G(Ov) = Aut⊗(ω○

Ov)
by the generalized tannakian formalism [Wed04, corollary 5.20]. This induces an action of
G(Ov)×π1(S, s̄) on Isom⊗(ω○

Ov , ŤG) and of G(Av)×π1(S, s̄) on Isom⊗(ω○
Av , V̌G). Now by [AH14,

Definition 6.3] a rational H-level structure γ̄ on a global G-shtuka G in ∇nH 1(C,G)v(S) is de-
fined as a π1(S, s̄)-invariant H-orbit γ̄ = γH in Isom⊗(ω○

Av , V̌G). We denote by ∇H
n H 1(C,G)v

the category fibered in groupoids over (Fq)Ét with the following fiber categories. An object in
∇H

n H 1(C,G)v(S) is a tuple (G, γ), where G ∈ ∇nH 1(C,G)v(S) and γ̄ is a H-level structure on
G. A morphism from (G, γ̄) to (G′, γ̄′) over S is a quasi-isogeny f ∶ G → G′ that is an isomorphism
at the characteristic places vi and that satisfies V̌f ○ γH = γ′H. (So f ∶ G∣CS/TS

∼�→ G′∣CS/TS
for

a finite subscheme T ⊂ C with v1, . . . , vn ∉ T .)
Now let D be a finite subscheme D ⊂ C with v1, . . . , vn ∉D and let HD be the open and compact
subgroup ker(G(Ov) → G(OD)) of G(Av). Then we remark hat by [AH13, Theorem 6.4] there
is a canonical isomorphism of stacks

∇nH 1
D(C,G)v ∼�→ ∇HD

n H 1(C,G)v (3)

Furthermore we note that for the conjugated group gHg−1 with g ∈ G(Av) there is by [AH13,
Remark 6.6] a natural isomorphism ∇H

n H 1(C,G)v ∼�→ ∇gHg−1
n H 1(C,G)v sending (G, γH) to

(G, γg−1(gHg−1)).
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In addition we remark that by [AH13, section 6] for a open compact subgroup H̃ ⊂ G(Av)
contained in H we have a natural finite étale morphism

∇H̃
n H 1(C,G)v ∼�→ ∇H

n H 1(C,G)v, (G, γH̃) ↦ (G, γH) (4)

If we have additionally given a bound Ẑv at all places v ∈ v we denote by ∇Ẑv ,H
n H 1(C,G) the

closed substack of ∇H
n H 1(C,G)v ×Spf Av Spf RẐv

that consists of those points (G, γ̄) such that

G is bounded by Ẑv.

§ 2.17 Parahoric Bruhat-Tits Group Schemes

From the fourth chapter forward we will assume G to be a parahoric Bruhat-Tits group scheme,
where we call a smooth affine group scheme G over C a parahoric Bruhat-Tits group scheme, if

− all fibers are connected,

− the generic fiber G is a connected reductive group over Q and

− for all v ∈ ∣C ∣ the group G(Av) ⊂ G(Qv) = G(Qv) is a parahoric subgroup in the sense of
[BT84, Definition 5.2.6].

For each parahoric subgroup in Gv(Qv) there is a unique smooth affine group scheme H over
Av with connected special fiber, with generic fiber equal to Gv and with H(Av) equal to this
parahoric subgroup. Since this group scheme is exactly given by Gv our definition of parahoric
Bruhat-Tits group scheme coincides with the one in [AH13, Definition 3.11].
Now Bruhat-Tits group schemes can be constructed as follows. We start with a reductive
group scheme G over the function field Q, which has a reductive model G over an open sub-
scheme C ∖ {w1, . . . ,wm} of C. For each of the pairwise different closed points w ∈ w ∶=
{w1, . . . , wm} we choose futhermore a parahoric subgroup Hw ∈ G(Qw). Then Hw corresponds
as explained above to a smooth affine group scheme Hw over Aw with generic fiber G ×Q Qw.
Consequently (∐w∈wHw)∐G is a group scheme over (∐w∈w SpecAw)∐C/{w1, . . . , wn}. Since
(∐w∈w SpecAw)∐C/{w1, . . . ,wn} → C is an fpqc covering and the identification Hw ×Aw Qw =
G ×C∖{w} Qw gives a descent datum for (∐w∈wHw)∐G, we can glue this group scheme using
faithfully flat descent [BLR90, section 6.1, theorem 6] to a group scheme G over C. This group
scheme is by [Gro65, Proposition 2.7.1] smooth and by [Gro67, Proposition 17.7.1] affine over C.
Therefore G is by construction a parahoric Bruhat-Tits group scheme satisfying Gv = Hv and
G ×C Q =Q.
Further we remark that if π ∶ C̃ → C is a generically étale covering of C and G is a parahoric
Bruhat-Tits group scheme over C̃ then by [Hei10, Example (3) page 2] the Weil restriction
π⋆G (see also lemma 3.2) of G along π is again a parahoric Bruhat-Tits group scheme. In
addition we remark that parahoric Bruhat-Tits group schemes give an interesting class of smooth
affine group schemes over C since moduli spaces of global G-shtukas for such parahoric Bruhat-
Tits group schemes G are used by Lafforgue to establish in [Laf12] and [Laf14] the Langlands-
parametrization over the function field Q.
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3 Functoriality of ∇Ẑv,H
n H 1(C,G)

In this chapter we establish and analyze morphisms between moduli spaces of global G-shtukas,
which are functorial in changing the curve C and the group scheme G. Apart from the interest
of these morphisms in the study of ∇Ẑv ,H

n H 1(C,G) in general, there are two other motivations.
The first one is that the finiteness results in theorem 3.14 and theorem 3.26 supposedly enables us
to formulate in some future work a André-Oort conjecture for moduli spaces of global G-shtukas,
as explained more detailed in remark 3.28. The second motivation is the study of stratifications
of ∇Ẑv ,H

n H 1(C,G) in the following chapters.
Now the third chapter is divided into three sections. In the first section we define a shtuka datum
and morphisms of these. A shtuka datum contains all the necessary parameters to define a moduli
space of G-shtukas. Then a morphism is defined in such a way that it satisfies exactly the prop-
erties to induce a morphism of the corresponding moduli spaces. The fact that ∇Ẑv ,H

n H 1(C,G)
is indeed functorial in the shtuka datum is then seen in the following two sections. The second
section discusses the case that we only change the curve C in the shtuka datum. The induced
morphism is constructed and it is proven in theorem 3.14 proven to be finite. In the fifth chapter
we use it again, when we sketch the proof of the fifth axiom.
A change f ∶ G → G′ of the group scheme G is analyzed in the third section. Before mak-

ing any assumptions on f the morphism ∇Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′) is constructed
in general. Then, assuming that f is generically an isomorphism, we prove in theorem 3.20 a
projectivity and surjectivity result that is needed again for the first axiom in the fifth chap-
ter. Afterwards we consider closed immersions of group schemes. In this situation we prove

∇Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′) to be unramified (theorem 3.23) and even finite if G is a
parahoric Bruhat-Tits group scheme (theorem 3.26). This morphism is used as well for the fith
axiom in the fifth chapter.

3.1 The Shtuka Datum

In this section, we define the category of Shtuka-data. While we can easily define the objects,
we need some further explanations to define the morphisms.

Definition 3.1. A Shtuka-datum is a tuple (C,G, v,Zv,H) where

− C is a smooth projective geometrically irreducible curve over Fq,

− G is a smooth affine group scheme over C,

− v = (v1, . . . , vn) is a tuple of n closed points in C (not necessarily disjoint),

− Ẑv is a bound in the sense of § 2.6,

− H is an open compact subgroup of G(Av).

Before we can define morphisms, we need the following lemmas. Let π ∶ X → Y be a morphism
of schemes. We recall that for any functor F ∶ (Sch/X)op �→ Set the push forward π⋆F ∶
(Sch/Y )op �→ Set with respect to π is defined by (T → Y ) "→ F (T ×Y X). In the case that F
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is a scheme (i.e. representable) and π⋆F is also representable, we call π⋆F the Weil restriction
RX/Y (F ) of F . The basic properties and some conditions for the existence of Weil restrictions
are discussed and developed in [BLR90, Paragraph 7.6] and [CGP10]. We have the following
lemma, where we call a morphism of schemes finite locally free, if it is finite, flat and of finite
presentation.

Lemma 3.2. Let π ∶ X → Y be a surjective, finite locally free morphism of schemes, let G be a
smooth affine group scheme over X and let G be a G-torsor on the big étale site of X, then

1. π⋆G is a smooth affine group scheme over Y

2. π⋆G is a π⋆G-torsor on the big étale site of Y .

Proof: Since π is finite and faithfully flat we can apply theorem 4 in [BLR90, Paragraph 7.6] to
see that the Weil restriction π⋆G exists indeed as a scheme. Let U,V,W ∈ Fun ((Sch/X)op,Set)
be arbitrary with natural transformations f1 ∶ U →W and f2 ∶ V →W , then for S ∈ (Sch/Y ) we
have

π⋆(U ×W V )(S) = HomX(S ×Y X,U ×W V )
= {(f, g) ∣f ∈Hom(S ×Y X,U), g ∈Hom(S ×Y X,V ), f1 ○ f = f2 ○ g}
= (π⋆U ×π⋆W π⋆V )(S).

This shows that π⋆ commutes with fiber products and it follows that π⋆G becomes a group
scheme over Y .
Let U ⊂ Y be an affine open. Then π⋆(X ×Y U) = U and the compatibility with the fiber product
implies π⋆(G×X X ×Y U) = π⋆G×Y U . Now π⋆G×Y U is affine because G is affine over X and π

is finite. Since the Weil restriction of an affine scheme is by construction affine we conclude that
π⋆G is affine over Y . Furthermore we know by [BLR90, Chapter 7.6, Proposition 5] that π⋆G is
again of finite type and smooth over Y , which proves the first part.
Now let G be a G-torsor over X. Since G is smooth and affine, G is represented by a smooth
affine scheme over X, by faithfully flat descent, [Gro65, Proposition 2.7.1] and [Gro67, Proposi-
tion 17.7.1]. [BLR90, paragraph 7.6, Theorem 4] and [BLR90, paragraph 7.6, Proposition 5] tell
us again, that π⋆G is a smooth scheme over Y . Using once more the compatibility of the fiber
product with the Weil restriction, the action of G on G induces an action of π⋆G on π⋆G and
additionally the isomorphism G×X G ≃ G ×X G yields an isomorphism π⋆G×Y π⋆G ≃ π⋆G ×Y π⋆G.
It remains to show that π⋆G has étale locally on Y a section to π⋆G. Since π⋆G → Y is smooth
and surjective this is content of proposition [BLR90, paragraph 2.2, Prop. 14]. ◻

Now morphisms between G-torsors are sent by π⋆ to morphisms of π⋆G-torsors and in fact we
have the following lemma.

Lemma 3.3. Let π ∶ X → Y be a surjective, finite locally free morphism and G a smooth affine
group scheme over X. Then the functor

π⋆ ∶ {G-torsors on X} �→ {π⋆G-torsors on Y } ,

G "→ π⋆G

14
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induced by lemma 3.2, is an equivalence of categories. The inverse functor sends some π⋆G-torsor
G̃ to G̃ ×π⋆π⋆G G.

Proof: First we prove that π⋆ is fully faithful. So let G, G̃ be two G-torsors over X and
f ′ ∶ π⋆G → π⋆G̃ be a morphism of π⋆G-torsors. We choose an étale covering U ′ → Y with
π⋆G(U ′) ≠ ∅ ≠ π⋆G̃(U ′). Now this implies automatically that U ∶= U ′ ×Y X → X is an étale
covering with G(U) ≠ ∅ ≠ G̃(U). We choose two sections u ∈ G(U) = π⋆G(U ′) and ũ ∈ G̃(U) =
π⋆G̃(U ′), which determine trivializations

α′ ∶ π⋆G ×Y U ′ → π⋆G ×Y U ′ α̃′ ∶ π⋆G̃ ×Y U ′ → π⋆G ×Y U ′

α ∶ G ×X U → G ×X U α̃ ∶ G̃ ×X U → G ×X U

with α′−1(1) = α−1(1) = u and α̃′−1(1) = α̃−1(1) = ũ. Now we consider the following diagrams,
where U2 ∶= U×XU , U ′

2 ∶= U ′×Y U ′ with projections p1, p2, p′1 and p′2 and h ∶= α̃′○(f ′×idU ′)○α′−1.
Note that since h is π⋆G-equivariant h is determined by h ∶= h(1) ∈ π⋆G(U ′) = G(U). This same
h defines then a morphism of h ∶ G ×X U → G ×X U of G-torsors on U and we set f × idU ∶=
α̃−1 ○ h ○ α ∶ G ×X U → G̃ ×X U .

π⋆G(U ′) h �� π⋆G(U ′)

π⋆G(U ′)

α′
��

f ′×idU ′
�� π⋆G̃(U ′)

α̃′
��

π⋆G(U ′
2)

p′⋆1 h
��

p′⋆2 h
��

��

p′1

��

p′2

π⋆G(U ′
2)

��

p′1

��

p′2

π⋆G(U ′
2)

��

p′1

��

p′2
p′⋆1 α′

��

p′⋆2 α′

��

f ′×idU ′
2

�� π⋆G̃(U ′
2)

��

p′1

��

p′2

p′⋆1 α̃′
��

p′⋆2 α̃′

��

G(U) h �� G(U)

G(U)

α
��

f×idU
�� G̃(U)

α̃
��

G(U2)
p⋆1h ��

p⋆2h
��

��

p1

��

p2

G(U2)
��

p1

��

p2

G(U2)
��

p1

��

p2

p⋆1α
��

p⋆2α

��

f×idU2

�� G̃(U2)
��

p1

��

p2

p⋆1α̃
��

p⋆2α̃

��

Now by definition of the Weil restriction we have equal sets at the corresponding vertices of the
two cubes and the maps p′1, p

′
2 coincide with p1 and p2. Furthermore by definition of α′, h, α̃′ these

maps coincide with the maps α,h, α̃ in the right hand cube. The morphisms p′⋆1 α
′ ∶ π⋆G ×Y U ′

2 →
π⋆G ×Y U ′

2 and p⋆1α are uniquely determined by the preimage of 1 ∈ π⋆G(U ′
2) = G(U2). But

this preimage is in both cases given as p⋆1(u) = p1(α−1(1)) = p′1(α′−1(1)) ∈ π⋆G(U ′
2) = G(U2).

Hence the maps p′⋆1 α
′ and p⋆1α coincide and equally p′⋆1 h, p

′⋆
1 α̃

′, p′⋆2 α
′, p′⋆2 h, p

′⋆
2 α̃

′ coincide with
p⋆1h, p⋆1α̃, p⋆2α, p⋆2h and p⋆2α̃ respectively.
We further denote g′ ∶= p′⋆2 α

′ ○ p′⋆1 α′−1(1) ∈ π⋆G(U ′
2) and g̃′ ∶= p′⋆2 α̃

′ ○ p′⋆1 α̃′−1(1) ∈ π⋆G(U ′
2). So

that we have g′ = g ∶= p⋆2α ○ p⋆1α−1(1) ∈ G(U2) and g̃′ = g̃ ∶= p⋆2α̃ ○ p⋆1α̃−1(1) ∈ G(U2). With these
notations we get the following bijections:

HomG(G, G̃) 1∶1

f↦h∶=(α̃○(f×idU )○α
−1)(1) ��

��

{h ∈ G(U) ∣ g̃ ○ p⋆1h = p⋆2h ○ g}

Homπ⋆G(π⋆G, π⋆G̃) 1∶1

f ′↦h′∶=(α̃′○(f ′×idU ′)○α
′−1)(1) �� {h′ ∈ π⋆G(U ′) ∣ g̃′ ○ p′⋆1 h = p′⋆2 h ○ g′}

.
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Here the horizontal bijections are due to faithfully flat descent [BLR90, paragraph 6.1, Theorem 6]
and the fact that the condition g̃○p⋆1h = p⋆2h○g is equivalent by definition of g, g̃ to p⋆1(α̃−1○h○α) =
p⋆2(α̃−1 ○ h ○ α) and for g̃′ ○ p′⋆1 h′ = p′⋆2 h

′ ○ g′ respectively. The equality on the right follows from
the identifications in the above cubes. To prove the fully faithfulness it remains to show that the
bijective dashed arrow is given by π⋆. By definition of π⋆f the following diagram commutes

Hom(U ′, π⋆G)
π⋆f �� Hom(U ′, π⋆G̃)

Hom(U ′ ×Y X,G) f �� Hom(U ′ ×Y X,π⋆G̃)

which shows that f and π⋆f map to the same h on the right hand side.
It remains to show that π⋆ is essentially surjective. So let G̃ be a π⋆G-torsor over Y and choose
again an étale covering U ′ → Y and a trivialization α′ ∶ G̃ ×Y U ′ ∼�→ π⋆G×Y U ′. Let U ′

2 ∶= U ′×Y U ′

and g′ ∶= p′⋆2 α
′ ○ p′⋆1 α′−1(1) ∈ π⋆G(U ′

2), where p′⋆2 α
′ ○ p′⋆1 α′−1 ∶ π⋆G ×Y U ′

2
∼�→ π⋆G ×Y U ′

2. So
the descent datum of G̃ is isomorphic to (π⋆G ×Y U ′, g′). Now U ∶= U ′ ×Y X → X is an ´étale
covering and we set GU ∶= G ×X U as well as U2 ∶= U ×X U = U ′

2 ×Y X with projections p1, p2.
Let g ∈ G(U2) be equal to g′ using G(U2) = π⋆G(U ′

2). Then (GU , g) is a descent datum that
comes by [BLR90, beginning of paragraph 6.5 and paragraph 6.1, Theorem 6] from a G-torsor
G on X. Now it is clear that (π⋆GU , π⋆g) = (π⋆G ×Y U ′, g′). Therefore we have π⋆G ≃ G̃ which
proves that π⋆ is essentially surjective. We only need to prove that for every G-torsor G on X

the torsor π⋆π⋆G ×π
⋆π⋆G G is isomorphic to G. With the same notation as above G is given by

the (G ×X U, g) and π⋆G is given by the descent datum (π⋆G ×Y U ′, g′). Restricting the latter
torsor to X we get the descent datum (π⋆(π⋆G ×Y U ′), g × idX) = (π⋆G ×Y U ′ ×Y X,g × idX).
Using the adjunction HomY (π⋆G, π⋆G) = HomX(π⋆π⋆G,G) we denote by ϕ ∶ π⋆π⋆G → G the
morphism corresponding to idπ⋆G. Now applying the functor ×π⋆π⋆G,ϕG gives us the descent
data (π⋆(π⋆G ×Y U ′) ×π⋆π⋆G G, (g′ × idX ,1G)). Since ϕ maps (g′ × idX) to g this descent data
is isomorphic to (G ×X U, g), which proves the lemma. ◻

Now let π ∶ C → C ′ be a finite morphism from C to some other smooth projective geometrically
irreducible curve C ′. This morphism is then automatically faithfully flat [Har77, chapter II Prop.
6.8 and chapter III Prop. 9.7]. Let further (C,G, v,Zv,H) be a shtuka datum as in definition
3.1. Since G is a smooth affine group scheme over C, this allows us to apply lemma 3.2 and 3.3
in this situation.

Remark 3.4. We denote by H 1(C,G) the category fibered in groupoids, whose S-valued points
for some Fq-scheme S are given by isomorphy classes of G-torsors over CS . By lemma 3.3 π⋆

induces an isomorphism H 1(C,G) �→H 1(C ′, π⋆G).

Let wi = π(vi) and w = (w1, . . . ,wn). Our next goal is to define the bound π⋆Zv = (Zwi)i at the
points wi. We need the following lemma and general remark, where w is a closed point in C ′, A′

w

is the completion of the local ring OC′,w and πw = π×idSpec A′w ∶ C×C′Spec Aw = ∐v∣w Spec Av →
Spec A′

w.

Remark 3.5. In the next lemma, we need the following general fact about Weil restrictions.
Let X,Y,S be schemes over some base scheme Z, π ∶ X → Y a Z-morphism, M an X-scheme

16



3.1 The Shtuka Datum

and YS = Y ×Z S, XS = X ×Z S and MS =M ×Z S the appropriate base changes. Then we have
(π × idS)⋆(M ×Z S) = π⋆M ×Z S. This is easily seen by the equation for T ∈ Sch/YS :

(π⋆M ×Z S)(T ) = (π⋆M ×Y YS)(T ) =HomY (T,π⋆M) =HomX(T ×Y X,M)
= HomXS

(T ×Y X,MS) = (π × idS)⋆(M ×Z S)(T ).

Lemma 3.6. We have (πw)⋆(∐v∈π−1(w)Gv) = (π⋆G)w as a group scheme over SpecA′
w.

Proof: This follows formally from remark 3.5 with M = G, X = C, Y = Z = C ′ and S = Spec Aw

since we have

(πw)⋆(∐
v∣w

Gv) = (πw)⋆(G×C∐
v∣w

Spec Av) = (πw)⋆(G×C′ Spec Aw) = π⋆G×C′ Spec Aw = (π⋆G)w.

◻

Corollary 3.7. We have ∏
v∣w

L+G̃v = L+ ̃(π⋆G)w as group schemes over Fq.

Proof: Let R be a connected Fq-algebra, then we have:

L+ ̃(π⋆G)w(R) = ̃(π⋆G)w(R⟦zw⟧) =HomSpec Aw(Spec R⟦zw⟧ ⊗Fq Fw, (π⋆G)w)
=HomSpec Aw(Spec R⊗̂FqAw, (π⋆G)w)
=HomSpec Aw(Spf R⊗̂FqAw, (πw)⋆(∐

v∣w

Gv))

=Hom∐v∣w Spec Av(Spec R⊗̂FqAw ⊗Aw ∏
v∣w

Av,∐
v∣w

Gv)

=∏
v∣w

HomSpec Av(Spec R⟦zv⟧ ⊗Fq Fv,Gv) =∏
v∣w

G̃v(R⟦zv⟧)

=∏
v∣w

L+G̃v(R).

◻
We have the following 2-cartesian diagrams:

∏
v∣w
F l

G̃v
��

��

Fq

��

F l ̃(π⋆G)w

��

�� Fq

��

∏
v∣w

H 1(Fq, L
+G̃v) �� ∏

v∣w
H 1(Fq, LG̃v) H 1(Fq, L

+ ̃(π⋆G)w) �� H 1(Fq, L ̃(π⋆G)w)

By corollary 3.7 the lower stacks in the diagrams are isomorphic, so that we get an isomorphism
∏v∣wF l

G̃v

∼�→ F l ̃(π⋆G)w
and by the base change with the compositum F of the finite fields Fv for

all v∣w we get an isomorphism∏v∣w∏l∈Z/deg v F lGv×FvF ≃ ∏l∈Z/deg wF l(π⋆G)w×FwF. Since σdeg w

invariant components are mapped to σdeg w invariant components, it restricts to an isomorphism

∏
v∣w

∏
l∈Z/deg v

deg w∣l

F lGv ×Fv F ≃ F l (π⋆G)w ×Fw F.
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Now let R be a DVR with F ⊂ R and such that there exists a representative Ẑv,R of Ẑv for all
v ∈ v. Consider the ind-closed subscheme

∏
v∣w

∏
l∈Z/deg v

deg w∣l

Ẑv,l ⊂∏
v∣w

∏
l∈Z/deg v

deg w∣l

F lGv ×Fv Spf R

where Ẑv,l is always the closed stratum S(1) ×Fv Spf R except for v ∈ v and l = 0, where we set
Ẑvi,0 = Ẑvi,R. Here S(1) denotes the closed Schubert cell in 1 ⋅ L+Gv ∈ F lGv . Via the previous
isomorphism this defines an ind-closed subscheme in F l (π⋆G)w ×Fw Spf R. This defines a bound
Ẑw in the sense of [AH14, Definition 4.8] in F l(π⋆G)w and we set π⋆Ẑv ∶= Ẑw ∶= (Ẑwi)i.

Next we define π⋆H. We recall that H was an open compact subgroup of G(Av). Since v ⊂
π−1(w) ⊂ ∣C ∣ we have a quotient map of topological rings Av �→ Aπ−1(w).
Since this map is open, it induces by [Con12, theorem 3.6] an open continuous group homo-
morphism G(Av) �→ G(Aπ−1(w)). We have Aw ×C′ C = Aw ×η′ η = Aπ−1(w) where η and η′

are the generic points of C and C ′. This gives us with the definition of the Weil restriction
π⋆G(Aw) = G(Aπ−1(w)), where both groups carry the same topology by [Con12, example 2.4].
Now the image of H under this morphism gives us an open compact subgroup in π⋆G(Aw) that
we denote by π⋆H.

Remark 3.8. We have seen in § 2.12 that there is the possibility to define level structures using
finite closed subschemes D of C and in § 2.16 we have seen that D-level structures of a G-shtuka
correspond bijectively to HD-level structures, where HD = ker(G(Ov) → G(OD)). Now we
can also consider the Weil restriction π⋆D of D. It is a closed finite subset of C ′ consisting
of the points {w ∈ ∣C ′∣ ∣ w ×C′ C ⊂ D}. And with a D-level structure of some G-shtuka G
we could associate a π⋆D-level structure of the corresponding π⋆G-shtuka π⋆G (which will be
defined in proposition 3.12). But compared to the associated π⋆H-level structure that we will
define in theorem 3.14 we would lose some information at the points D/(π⋆D ×C′ C), which is
seen in the following way. Since we have π⋆D ×C′ C ⊂ D we have HD ⊂ Hπ⋆D×C′C and hence
π⋆HD ⊂ π⋆Hπ⋆D×C′C . Now

Hπ⋆D = ker(π⋆G(Ow) → π⋆G(Oπ⋆D)) = ker(G(Oπ−1w) → G(Oπ⋆D×C′C))

=Hπ⋆D×C′C ∩G(A
π−1(w)) = im(Hπ⋆D×C′C → G(Aπ−1(w))) =∶ π⋆Hπ⋆D×C′C ⊃ π⋆HD

shows that π⋆HD is in general a finer level than π⋆D (or equivalently Hπ⋆D) and the previous
equation shows that the information is lost exactly at the points D/(π⋆D ×C′ C).

All these previous explanations concerned the case that we change the curve in the shtuka datum
but we can also change the group scheme in this datum. Let f ∶ G → G′ be any morphism of
smooth affine group schemes over C and v a closed point in C. Firstly this induces a morphism
L+Gv → L+G′

v of the positive loop groups as well as a morphism LGv → LG′
v of the loop groups.

Consequently we also get a morphism F lGv → F lG′v of the affine flag varieties. Secondly such
a morphism induces a morphism fAv ∶ G(Av) → G′(Av) of locally compact Hausdorf spaces by
[Con12, Proposition 2.1]. Now we can define morphisms of shtuka data.
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Definition 3.9. A morphism between two shtuka data (C,G, v, Ẑv,H) and (C ′,G′, w, Ẑ ′
w,H

′)
is a pair (π, f) such that:

− π ∶ C → C ′ is a finite morphism with π(vi) = wi

− f ∶ π⋆G→ G′ is a morphism of smooth affine group schemes over C ′

− The morphism (π⋆Zv)R → ∏
w∈w

F̂ l(π⋆G)w,R → ∏
w∈w

F̂ lG′w,R factores through Ẑ ′
w,R, where R is

a DVR such that there exists representatives (π⋆Ẑv)R and Ẑ ′
w,R of the corresponding bounds

− fAw(π⋆H) ⊂H ′

With this definition we have reached the goal of this section. In the next two sections we will prove
that such a morphism induces a morphism of the corresponding moduli stacks and determine
some of its properties. But before we give some remarks.

Remark 3.10.

− Let π ∶ C → C ′ be a finite morphism and w = π(v). With the definition of π⋆H and π⋆Zv

on page 18 it is clear that (π, idπ⋆G) ∶ (C,G, v,Zv,H) → (C ′, π⋆G, w, π⋆Zv, π⋆H) defines a
morphism of shtuka data

− Every morphism (π, f) of shtuka data factorizes as (idC , f) ○ (π, idπ⋆G).

− If f ∶ π⋆G→ G′ is an isomorphism in the generic fiber we have π⋆G(Aw) = G′(Aw) so that
we can naturally choose H =H ′.

− If f ∶ π⋆G → G′ is smooth in the generic fiber, then fAw ∶ π⋆G(Aw) → G′(Aw) is an open
map by [Con12, Theorem 4.5] so that we can naturally choose H ′ = fAw(π⋆H)

− If f ∶ π⋆G → G′ is proper in the generic fiber, then fAw ∶ π⋆G(Aw) → G′(Aw) is a topologi-
cally proper map by [Con12, Proposition 4.4] so that we can naturally choose H = f−1Aw(H ′)

3.2 Changing the Coefficients

In this section we prove that a morphism of shtuka data (π, id), where we only change the curve,
induces a finite morphism of the corresponding moduli stacks. We firstly prove this for the
moduli stack ∇nH 1(C,G), where the characteristic sections are not fixed and no boundedness
condition or level structures are imposed. For this purpose we need the following lemma:

Lemma 3.11. Let S be an Fq-scheme with n morphisms si ∶ S → C for i = 1, . . . , n. Then the
scheme theoretic image of C̃S ∶= CS/⋃i Γsi in CS equals CS.

Proof: Since D ∶= ⋃i Γsi is an effective Cartier-Divisor on CS over S, we find an affine covering
(Uj)j∈J of CS with Uj ∶= Spec Bj such that D is the vanishing locus of an element fj ∈ Bj

that can be written as fj = aj
bj

with two regular elements aj , bj ∈ Bj (see [GW10, after definition
11.24]). Now the ring homomorphism Bj → Γ(Uj/D,O) is injective, which is seen as follows. An
element x ∈ Bj is send to 0 if and only if fm

j x = 0 for some m ∈ N. The latter condition implies
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amj x = 0 and since aj is a non-zero divisor this means x = 0 so that Spec Bj/D is schematically
dense in Spec Bj (compare also [Gro67, Lemma 20.2.9]). Now gluing all the Uj shows that for
every affine open V ⊂ CS the ring homomorphism Γ(V,O) → Γ(V /D,O) is injective and we
conclude that C̃S is schematically dense in CS (see [Gro67, p. 20.2.1]). ◻

Proposition 3.12. Let π ∶ C → C ′ be a finite morphism of smooth projective geometrically
irreducible curves over Fq and let G be a smooth affine group scheme over C. This induces a
finite morphism of the moduli stacks

π⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C ′, π⋆G).

which factors through a closed immersion ∇nH 1(C,G) ↪ ∇nH 1(C ′, π⋆G) ×C′n Cn.

Proof: Let S be an Fq-scheme and (G, s1, . . . , sn, τG) ∈ ∇nH 1(C,G)(S). We describe its image
(G′, s′1, . . . , s′n, τG′) to define the morphism. The torsor G′ is given by (πS)⋆G and the sections
si ∶ S → C are mapped to the composition s′i ∶= π ○ si ∶ S → C ′. This implies πS(⋃i Γsi) ⊂ ⋃i Γs′i

⊂
C ′
S . Let C̃ ′

S = C ′
S/(∪iΓs′i

) and C̃S = CS/(∪iΓsi). Then U ∶= C ×C′ C̃ ′
S = CS ×C′S C̃ ′

S is open in C̃S .
We denote by πU ∶= π ×idC′ idC̃′S ∶ U → C̃ ′

S and we have (πU)⋆(G ×C U) = π⋆G ×C′ C̃ ′
S . Now we

restrict τG ∶ σ⋆G∣C̃S
→ G∣C̃S

to US and apply lemma 3.3 to πU . The category equivalence gives
us the desired morphism τG′ ∶ (πU)⋆(σ⋆G ×C′S C̃ ′

S) = σ⋆G′∣
C̃′S
→ (πU)⋆(G ×C′S C̃ ′

S) = G′∣C̃′S . This
defines a global π⋆G-shtuka (G′, s′1, . . . , s′n, τ ′G) over S and therefore the morphism of the moduli
stacks.
We now show that this morphism is representable and finite. Let S be again an arbitrary
scheme over Fq and G′ ∶ S → ∇nH 1(C ′, π⋆G) be given by G′ = (G′, τ ′, s′1, . . . , s′n). Then
∇nH 1(C,G) ×∇nH 1(C′,π⋆G) S is the category fibered in groupoids over Sch/Fq whose fiber cat-
egory over an Fq-scheme T is given by

{(G, g ∶ T → S,β) ∣ G = (G, τG , s1, . . . , sn) ∈ ∇nH 1(C,G)(T ) and β ∶ g⋆G′ ∼�→ π⋆G}.

Using the n sections s′1, . . . , s
′
n ∶ S → C ′ and the morphism π ∶ C → C ′ we set S̃ ∶= S ×C′n Cn.

Since S×H 1(C′,π⋆G)H
1(C,G) = S by remark 3.4 we know that HomFq(T,S) is in bijection with

the tuples {g ∶ T → S,G ∶ T → H 1(C,G), α ∶ g⋆G′ ∼�→ π⋆G}. Consequently the Fq-morphisms
T → S̃ are in bijection with the tuples (G, s1, . . . , sn, g, α), where (G, g, α) ∈ S(T ) as before and
s1, . . . , sn ∶ T → C are morphisms making the following diagram commutative for all i = 1, . . . , n

T

si
��

g �� S

s′i
��

C
π �� C ′ .

We claim that we get a morphism ∇nH 1(C,G)×∇H 1(C′,π⋆G)S → S̃ that is injective on T -valued
points (hence a monomorphism) and satisfies the valuative criterion for properness. Then this
implies by [Gro66, Proposition 8.11.5] that ∇nH 1(C,G)×∇H 1(C′,π⋆G)S is a closed subscheme of
S̃. So first of all a given object (G, τG , s1, . . . , sn, g, α) in (∇nH 1(C,G) ×∇H 1(C′,π⋆G) S)(T )
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is sent to (G, s1, . . . , sn, g, α). Since α ∶ g⋆G′ ∼�→ π⋆G is not only an isomorphism of tor-
sors, but also of π⋆G-shtukas the n-sections g ○ s′i of g⋆G′ and (si ○ π) of π⋆G have to co-
incide, so that (G, s1, . . . , sn, g, α) is a well defined object in S̃(T ). This induces the mor-
phism ∇nH 1(C,G) ×∇H 1(C′,π⋆G) S → S̃. Further it was claimed, that this morphism is in-
jective on T -valued points. So given two points (G, τG , s1, . . . , sn, g, α) and (G, τ̃G , s1, . . . , sn, g, α)
we need to show that this implies τG = τ̃G . Since α is an isomorphism of π⋆G-shtukas, we
have α−1 ○ π⋆τG = g⋆τ ′ ○ σ⋆α−1 = α−1 ○ π⋆τ̃G ∶ σ⋆(π⋆G)∣C̃′T

∼�→ g⋆G′∣
C̃′T

, where we write again

C̃ ′
T ∶= C ′

T /⋃i Γs′i
. This implies π⋆τG = π⋆τ̃G and using lemma 3.3 applied to π × id

C̃′T×C′C
we

see τG ∣C̃′T×C′C
= τ̃G ∣C̃′T×C′C

. We even need to know that τG = τ ′G . In the following diagram the

restriction of (τG , τ ′G) to C̃ ′
T ×C′ C factors by the previous observation through the diagonal Δ.

σ⋆G∣
C̃T

(τG ,τ
′
G) �� G∣

C̃T
×C̃T

G∣
C̃T

σ⋆G∣
C̃′T×C′C

��

��

G∣
C̃T

.

Δ

��

Since G is separated over CT the diagonal is a closed immersion and (τG , τ ′G) factors already over
C̃T through the diagonal if the scheme theoretic image of σ⋆G∣

C̃′T×C′C
in σ⋆G∣

C̃T
equals σ⋆G∣

C̃T
.

Since taking the scheme theoretic image is stable under flat base change by [Gro66, Théoreme
11.10.5], this is the case if the scheme theoretic image of C̃ ′

T ×C′C in C̃T equals C̃T . By the same
argument this follows if the scheme theoretic image of C̃ ′

T in C ′
T equals C ′

T . Now this is content
of lemma 3.11 so that we can conclude as desired τG = τ ′G .

Next we claimed that the morphism satisfies the valuative criterion for properness. So let

Spec K

j

��

(H,τH,r1,...,rn,f,β)�� S ×∇nH 1(C′,π⋆G) ∇nH 1(C,G)

��
Spec R

��

(G,s1,...,sn,g,α)
�� S̃

finite
�� S

be a commutative diagram, where R is a complete discrete valuation ring with fraction field K,
maximal ideal m and algebraically closed residue field κR = R/m. Note that R is a κR-algebra.
We have to prove that there exists a unique dashed arrow making everything commutative. The
commutativity of the square shows H = j⋆G, si ○ j = ri ∶ Spec K → C, f = g ○ j ∶ Spec K → S

and j⋆α = β. To define this dashed arrow we have to extend (G, s1, . . . , sn) to a G-shtuka
(G, τG , s1, . . . , sn) over R such that α extends to an isomorphism α ∶ g⋆G′ → π⋆G and j⋆τG = τH.
So we define this isomorphism τG ∶ σ⋆G∣C̃R

→ G∣C̃R
. Since H 1(C̃ ′

R, π⋆G) and H 1(C̃ ′
R ×C′ C,G)

are isomorphic, τG ∣C̃′R×C′C
is defined by α ○ g⋆τG′ ○ σ⋆α−1. Furthermore we know that τG is

defined on the generic fiber C̃K ⊂ C̃R by τG ∣C̃K
= j⋆τG = τH. So let p ∈ C̃R/(C̃ ′

R ×C′ C ∪ C̃K), i.e.
p ∈ ((⋃i Γs′i

×C′ C)/⋃i Γsi)⋂CR/m. It remains to show, that τG extends to p. Since p is closed
we choose an open V ⊂ C̃R/m with V ⋂(⋃i Γs′i

×C′ C) = p and set Ṽ = V /p. Then we consider the
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2-cartesian diagram of stacks fibered over κRÉt (compare [AH14, Lemma 5.1]):

H 1(V,G) ��

L+p
��

H 1
e (Ṽ ,G)

Lp

��
H 1(κR, L+Gp) �� H 1(κR, LGp) .

Here H 1
e (Ṽ ,G)(X) is the full subcategory of H 1(Ṽ ,G)(X) consisting of those G-torsors over

ṼX ∶= Ṽ ×κR
X that can be extended to a G-torsor over VX . Now σ⋆G∣VR

and G∣VR
define two R-

valued points in H 1(V,G) and τG ∣ṼR
is an isomorphism in H 1

e (Ṽ ,G)(R) that is already defined.
Since R has algebraically closed residue field, we can choose trivializations α1 ∶ L+

p(σ⋆G) → L+Gp

and α2 ∶ L+
p(G) → L+Gp ([AH14, Proposition 2.4]). Then α−12 ○ τG ○ α1 ∶ LGp,R → LGp,R is an

isomorphism in H 1(κR, LG)(R) given by an element h ∈ LGp(R). We know by assumption that
the pull back of h to K is given by an element hK ∈ L+Gp(K), since τG is generically already an
isomorphism over V . But since L+Gp is closed in LGp it follows that h ∈ L+Gp(R). This implies
that the isomorphism τG ∣Ṽ comes from an isomorphism in H 1(V,G)(R). So τG extends uniquely
to p and the valuative criterion is proved. This proves that ∇nH 1(C,G)×∇H 1(C′,π⋆G)S is a closed
subscheme of S̃ and since S̃ is finite over S it proves as well that ∇nH 1(C,G) → ∇nH 1(C ′, π⋆G)
is a finite morphism. ◻

The next goal is to prove that for any shtuka datum (C,G, v, Ẑv,H) the morphism π ∶ C → C ′

induces also a finite morphism ∇Ẑv ,H
n H 1(C,G) → ∇π⋆Ẑv ,π⋆H

n H 1(C ′, π⋆G). For this we need
the following lemma that concerns the boundedness condition. Given a global G-shtuka G in
∇nH 1(C,G) over S, we recall that we introduced in § 2.10 the global-local functor Γvi that
associates with it a local Gvi-shtuka Γvi(G) over S. On the other hand we explained (compare
also [AH14, Remark 5.6]) that base change with Spf Avi ×Fq S ≃ ∏l∈Z/deg vi V (avi,l) gives a local
G̃vi-shtuka L+

vi(G) over S. Here G̃vi denotes the Weil restriction ResAvi/Fq⟦zvi⟧
Gvi . Now let Zvi

be a bound in F̂ lGvi
and R an DVR over Avi = Fvi⟦zvi⟧ with a representative Ẑvi,R ⊂ F̂ lGvi ,R

. We
have F̂ l

G̃vi
×̂Fq⟦zvi⟧

Spf R = ∏
Z/deg vi

F̂ lGvi ,R
. Let S(1) ∶= L+

viGvi ⋅ 1 ⊂ F lGvi
be the closed Schubert

variety and S(1)R = S(1)×Fq SpfR then Ẑvi,R×S(1)R× ⋅ ⋅ ⋅×S(1)R defines a bound in F̂ l
G̃v

that
we also denote by Zvi × S(1) × ⋅ ⋅ ⋅ × S(1). We have the following lemma.

Lemma 3.13. Let G ∈ ∇nH 1(C,G)v(S) as before. The local Gvi-shtuka Γvi(G) is bounded by
Ẑvi if and only if the local G̃vi-shtuka L+

v(G) is bounded by Ẑvi × S(1) × ⋅ ⋅ ⋅ × S(1).

Proof: We choose an étale covering S′ of S that trivializes L+
vi(G) as well as σ⋆L+

vi(G). In
particular S′ trivializes also Γvi(G) and σd⋆Γvi(G). We fix such trivializations and call them
α̃ ∶ L+

vi(G)S′ �→ L+G̃viS′ , α̃′ ∶ σ⋆L+
vi(G)S′ �→ L+G̃viS′ , α ∶ Γvi(G)S′ �→ G ×C V (avi,0) and

α′ ∶ σd⋆Γvi(G)S′ �→ G ×C V (avi,0). Denote by τj the Frobenius morphism τG restricted to
V (avi,j) for j = 0, . . . , d − 1, where d = deg vi = [Fvi ∶ Fq]. So the local shtuka Γvi(G) is given by
(G×CV (avi,0), τ0○σ⋆τ1○⋅ ⋅ ⋅○σ(d−1)⋆τd−1) and α○τ0○σ⋆τ1○⋅ ⋅ ⋅○σ(d−1)⋆τd−1○α′−1 ∶ LGvi,S′

∼�→ LGvi,S′

computed in H 1(Fvi , LGvi)(S′) defines a morphism S′ → LGvi . Now Γvi(G) is bounded by Zvi

if and only if the morphism S′ ×RZvi
Spf R → LGvi ×Fvi

Spf R → F̂ lGvi ,R
factors through
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Zvi,R. Since τ is an isomorphism outside the graphs of si, τ1, . . . , τd−1 are isomorphisms. Hence
σ⋆τ1 ○ ⋅ ⋅ ⋅ ○σ(d−1)⋆τd−1 ○α′−1 comes from some other trivialization β′−1 ∶ G×C V (avi,0) → σ⋆Γvi(G).
This shows that τ0 ○ σ⋆τ1 ○ ⋅ ⋅ ⋅ ○ σ(d−1)⋆τd−1 is bounded by Zvi if and only if τ0 is bounded by
Zvi . Now α̃○τ ○(α̃′)−1 ∶ LG̃vi ,S′

∼�→ LG̃vi ,S′ computed in H 1(Fq, LG̃vi)(S′) defines in the same
way a morphism S′ → LG̃vi which induces a morphism S′ ×RZvi

Spf R → F l
G̃vi

×Fq Spf R =
∏

l∈Z/degvi

F lGvi
×Fvi

Spf R. Note that the morphism in the j-th component of ∏F lGvi
×Fvi

Spf R

is exactly defined by α̃ ○ τj ○ (α̃′)−1. Since τ1, . . . , τd−1 are isomorphisms the morphism into the
j-th component with j ⩾ 1 always factors through S(1)R. This implies that τ is bounded by
Zvi × S(1) × ⋅ ⋅ ⋅ × S(1) if and only if τ0 is bounded by Zvi . ◻

Now we can prove:

Theorem 3.14. Let (C,G, v, Ẑv,H) be a shtuka datum and π ∶ C → C ′ a finite morphism of
smooth geometrically irreducible curves over Fq with wi ∶= π(vi) and w ∶= (w1, . . . , wn). Then the
morphism (π, idπ⋆G) ∶ (C,G, v, Ẑv,H) → (C ′, π⋆G, w, π⋆Ẑv, π⋆H) of shtuka data (see definition
3.9 and remark 3.10) induces a finite morphism of the moduli stacks

π⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇π⋆Ẑv ,π⋆H

n H 1(C ′, π⋆G).

Proof: Let S be an Fq-scheme and (G, s1, . . . , sn, τG , γ) ∈ ∇
Ẑv ,H
n H 1(C,G)(S). We describe

again its image (G′, s′1, . . . , s′n, τG′ , γ′) in ∇Ẑw,π⋆H
n H 1(C ′, π⋆G)(S) to define the morphism. The

π⋆G-torsor G′ = (G′, s′1, . . . , s′n, τG′) is already defined by the morphism in proposition 3.12, but

we have to prove that it lies indeed in ∇Ẑw
n H 1(C,π⋆G)(S). We will do this first and then

define the π⋆H-level structure γ′. Since the section si ∶ S → C is mapped to s′i ∶= π ○ si and
si is required to factor through Spf Avi , we easily see with π(vi) = wi that s′i factors through
Spf Awi . Furthermore this shows that C ′

S/⋃i Γs′i
⊃ C ′⋆ ×Fq S and CS/⋃i Γsi ⊃ C⋆ ×Fq S where

we use the notation C⋆ = C/{v1, . . . , vn} and C ′⋆ = C ′/{w1, . . . wn}. It remains to show that τG′

is bounded by Zw to see G′ ∈ ∇Ẑw
n H 1(C ′, π⋆G)(S).

Now by assumption τG is bounded by Zvi , which means by definition that the local shtukas
Γvi(G) are bounded by Zvi for all i. By lemma 3.13 this is equivalent to the fact that L+

vi(G) is
bounded by Zvi × S(1) × ⋅ ⋅ ⋅ × S(1). Now consider the following 2-cartesian diagram (compare §
2.9 and [AH14, Lemma 5.1]) where we set U ∶= C ′⋆ ×C′ C.

H 1(C,G) ��

∏v L
+
v
��

H 1
e (U,G)

∏v Lv

��

∏v∈π−1(w) H 1(Fq, L
+G̃v) �� ∏v∈π−1(w) H 1(Fq, LG̃v) .

(5)

Here H 1
e (U,G)(S) is the full subcategory of H 1(U,G)(S) consisting of those G-torsors over

US that can be extended to a G-torsor over CS . Now the categories H 1(C,G) and H 1
e (U,G)

are by lemma 3.3 equivalent to H 1(C ′, π⋆G) and H 1
e (C ′⋆, π⋆G). Furthermore the categories

∏
v∈π−1(w)

H 1(Fq, L
+G̃v) = ∏

w∈w

H 1(Fq, ∏
v∈π−1(w)

L+G̃v) and

∏
v∈π−1(w)

H 1(Fq, LG̃v) = ∏
w∈w

H 1(Fq, ∏
v∈π−1(w)

LG̃v)
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are by corollary 3.7 equivalent to ∏w∈w H 1(Fq, L
+π̃⋆Gw) and ∏w∈w H 1(Fq, Lπ̃⋆Gw). Therefore

the whole diagram (5) is equivalent to the diagram

H 1(C ′, π⋆G) ��

∏w L+w
��

H 1
e (C ′⋆, π⋆G)

∏w Lw

��

∏w∈w H 1(Fq, L
+π̃⋆Gw) �� ∏w∈w H 1(Fq, Lπ̃⋆Gw) .

Now we choose some covering S′ over S that trivializes L+
vG, σ⋆L+

vG for all v ∈ π−1(w) and fix
some trivializations αv ∶ L+

v(G)S′ → L+G̃vS′ , α′v ∶ σ⋆L+
v(G)S′ → L+G̃vS′ . Then (G, τ) defines a

tuple ∏w∈w (∏v∣w L+G̃v,S′ , ∏v∣w αv ○Lv(τ ∣U) ○α′−1v ) and the equivalence of the diagrams shows
that it corresponds to the tuple ∏w∈w (L+π̃⋆Gw,S′ , αw ○Lw(π⋆τ ∣C′⋆) ○α′−1w ) defined in the same
way by the shtuka (π⋆G, π⋆τ). Here αw, α

′
w are the trivializations corresponding to ∏v∣w αv and

∏v∣w α′v. Now choose some finite extension R ⊃ Fq⟦ζ⟧ such that there are representatives Zv,R

for all v ∈ v. Using the 2-cartesian diagram

∏
v∈π−1(w)

F l
G̃v

��

��

Fq

��

∏v∈π−1(w) H 1(Fq, L
+G̃v) �� ∏v∈π−1(w) H 1(Fq, LG̃v)

the tuple (∏v∣w L+G̃v,S′ , ∏v∣w αv ○ Lv(τ ∣U) ○ α′−1v ) defines an S′ ×RẐ
Spf R-valued point in

∏v∣wF l
G̃v
×Fq Spf R = ∏v∣w∏l∈Z/deg v F lGv ×Fv Spf R. By lemma 3.13 the boundedness of

G at all the points v ∈ (v ∩ π−1(w)) by Zv is equivalent to the boundedness of L+
v(G) by

∏l∈Z/deg v Zv,l with Zv,0 = Zv for all v ∈ v and Zv,l = S(1)R for all v ∉ v and l ≠ 0, which means
by definition, that the above S′ ×RẐ

Spf R valued point factors through ∏v∣w∏l∈Z/deg v Zv,l.

The tuple (L+π̃⋆Gw,S′ , S
′, αw ○ Lw(π⋆τ ∣C⋆) ○ α′−1w ) defines in the same way a morphism S′ ×RẐ

Spf R → F l ̃(π⋆G)w
×Fq Spf R = ∏l∈Z/deg wF lπ⋆Gw

×Fw Spf R. Composing with the isomorphism
∏v∣wF l

G̃v
≃ F l π̃⋆Gw

, the above morphism factors also through ∏v∣w∏l∈Z/deg v Zv,l. With lemma
3.13 and the definition of π⋆Zv on page 18 it follows, that π⋆G is bounded by π⋆Zv.

Next we have to define the π⋆H-level structure γ′. We fix a geometric base point s ∈ S and we
choose for all closed points v ∈ C/v a trivialization L+

vGs
≃ (L+G̃v,κ(s), τ = 1), which exists by

[AH14, Corollary 2.9]. This provides also trivializations

L+
w(π⋆Gs) =∏

v∣w

L+
vGs ≃∏

v∣w

L+G̃v,κ(s) = L+π̃⋆Gw,κ(s).

We denote by Lv and Lw the shtukas L+
vGs

and L+
w(π⋆Gs). Now these trivializations induce

isomorphisms

β ∶ ω○
Ov = ∏

v∈C/v

TL+G̃v
≃ ∏
v∈C/v

TLv = TG

π⋆β ∶ ω○
Ow = ∏

w∈C′/w

TL+π̃⋆Gw
≃ ∏
w∈C′/w

TLw = Tπ⋆G .

We write ω○
Av ∶= ω○

Ov ⊗Ov Av and ω′○
Aw ∶= w○

Ow ⊗Ow Aw. Now β−1 ○ γ ∈ Aut⊗(ω○
Av) is given

by an element g ∈ G(Av) and the H-orbit of γ is β ○ gH. Now we can use the projection
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G(Av) ↠ G(Aπ−1(w)) = π⋆G(Aw) to define π⋆g ∈ π⋆G(Aw) as the image of g. This corresponds
to an element in Aut(ω′○

Aw). Therefore π⋆β ○π⋆g defines an element γ′ and consequently an π⋆H-
orbit in Isom⊗(ω′○

Aw , V̌π⋆G). This orbit is independent of the representative γ since π⋆H was de-
fined as the image of H under the above projection. Let ρ ∈ π1(S, s) since γH ⊂ Isom⊗(ω○

Av , V̌G)
is π1(S, s) invariant, we know that there is h ∈ H such that ργ = γh. This defines a group
homomorphism ϕ ∶ π1(S, s) → H and we set ϕ ∶ π1(S, s) → H → π⋆H. Let ρ ∈ π⋆(S, s)
and γ′ ∈ Isom⊗(ω′○

Aw , V̌π⋆G) be as above, then ρ operates by ργ = γ′ϕ(ρ) and in particular
π1(S, s)γ′ ⊂ γ′π⋆H. This means that the orbit γ′π⋆H is π1(S, s) invariant and defines a level
structure γ′ of G′.

After constructing this morphism, we now prove that it is representable by a scheme and finite.
By proposition 3.12 it is clear that the morphism ∇

ˆ̂Zv
n H 1(C,G) → ∇Ẑw

n H 1(C ′, π⋆G) is finite.
Now we find some finite subscheme D ⊂ C such that HD ∶= ker(G(Ov) → G(OD)) is a subgroup
of finite index in H. Then we have by § 2.16 the following diagram:

∇Ẑv ,H
n H 1(C,G)

��

∇Ẑv ,HD
n H 1(C,G)

��

∼ ��finite étale�� ∇Ẑv
n H 1

D(C,G)

��

finite étale �� ∇Ẑv
n H 1(C,G)

finite
��

∇Ẑw,π⋆H
n H 1(C ′, π⋆G) ∇Ẑw,Hπ⋆D

n H 1(C ′, π⋆G) ∼ ��finite étale�� ∇Ẑw
n H 1

π⋆D
(C ′, π⋆G)

finite étale�� ∇Ẑw
n H 1(C ′, π⋆G)

where the horizontal arrows are finite (and even étale) by [AH13, section 6]. This implies firstly

that the morphism ∇Ẑv ,HD
n H 1(C,G) → ∇Ẑw,Hπ⋆D

n H 1(C ′, π⋆G) is finite and consequently that

∇Ẑv ,H
n H 1(C,G) → ∇Ẑw,π⋆H

n H 1(C ′, π⋆G) is finite. ◻

3.3 Changing the Group G

Now let f ∶ G → G′ be a morphism of smooth affine group schemes over C. In this section we
explain how this induces a morphism between the moduli stacks of G-shtukas and G′-shtukas.
Further we prove some of its properties, depending on f . First of all we recall, that given a sheaf
M on CÉt with an action of G, we can define the sheaf M×GG′ whose R-valued points are given by
the set {(a, b) ∣ a ∈M(R), b ∈ G′(R)}/ ∼, where (a, b) ∼ (c, d) if and only if (a, b) = (cg, f(g−1)d)
for some g ∈ G(R). Actually this construction works for any sheaf of groups on any site. Now this
construction is functorial for G-equivariant morphisms ϕ ∶ M1 → M2 and commutes obviously
with base change. We also write f⋆M =M ×GG′ and note that if M is a G-torsor then f⋆M is a
G′-torsor. With these facts we see that for a given G-shtuka (G, s1, . . . , sn, τG) over S, the tuple
(f⋆G, s1, . . . , sn, f⋆τG) defines a G′-shtuka over S. Therefore we get a morphism

∇nH 1(C,G) �→ ∇nH 1(C,G′) (G, s1, . . . , sn, τG) ↦ (f⋆G, s1, . . . , sn, f⋆τG). (6)

Now we want to show that this morphism also induces a morphism of these moduli stacks with
additional H-level structure. So we fix n closed points v = (v1, . . . , vn) in C and let H ⊂ G(Av)
be an open and compact subgroup. Let further S be a connected Fq-scheme with a geometric
base point s ∈ S and (G, γ) = (G, s1, . . . , sn, τG , γ) be a G-shtuka over S with an H-level structure
γH. We already mentioned that by [Con12, Proposition 2.1] f ∶ G → G′ induces a continuous
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homomorphism fAv ∶ G(Av) → G′(Av) (see also above definition 3.9). For an open compact
subgroup H ′ ⊂ G′(Av) satisfying fAv(H) ⊂ H ′ we now construct an H ′-level structure on the
shtuka f⋆G = (f⋆G, s1, . . . , sn, f⋆τG).
We choose for every v ∈ C̃ = C/v a trivialization αv ∶ L+

v(Gs
) ∼�→ (L+G̃v,s,1 ⋅ σ⋆) which exists

by [AH14, Proposition 2.9]. Since f⋆ commutes with base change this induces trivializations
f⋆αv ∶ L+

v((f⋆G)s) ∼�→ (L+G̃′
v,s,1 ⋅ σ⋆). We denote by ω○

Ov ∶ RepOvG → ModOv[π1(S,s̄)] and
ω′○
Ov ∶ RepOvG′ →ModOv[π1(S,s̄)] the forgetful functors and by Lv and L′v the local shtukas L+

v(Gs
)

and L+
v((f⋆G)s). Then the previous trivializations provide isomorphisms of tensor functors

β ∶ ω○
Ov = ∏

v∈C/v

TL+G̃v

∼�→ ∏
v∈C/v

TLv = TG

f⋆β ∶ ω′○
Ov = ∏

v∈C/v

TL+G̃′v
∼�→ ∏

v∈C/v

TL′v = Tf⋆G .

It follows that β−1 ○ γ ∈ Aut⊗(ω○
Av) is given by an element g ∈ G(Av) and the H-orbit of γ is

given by β ○ gH. Now we view the image f(g) of g under the map fAv ∶ G(Av) → G′(Av) as
an automorphism in Aut⊗(ω′○

Ov) and define γ′ ∶= f⋆γ ∶= f⋆β ○ f(g). Since fAv(H) ⊂ H ′ the H ′

orbit of f(g) is independent of the chosen representative γ in the orbit γH. Since π1(S, s̄) leaves
γH invariant there is for all ρ ∈ π1(S, s̄) an h ∈ H such that ρ ⋅ γ = γ ⋅ h. This defines a group

homomorphism ϕ ∶ π1(S, s̄) → H and we set ϕ′ ∶ π1(S, s̄) → H
f
A
v ∣H���→ H ′. Now ρ ∈ π1(S, s̄)

operates on γ′ ∈ Isom(ω′, V̌G) by ρ ⋅γ′ = γ′ ⋅ ϕ̄′(ρ). In particular π1(S, s̄)γ′ ⊂ γ′H ′ so that γ′H ′ is
π1(S, s̄) invariant and defines a H ′-level structure on f⋆G. A morphism (G, γ) to (F , η) induces
naturally a morphism (f⋆G, γ′) → (f⋆F , η′) so that we get a morphism of moduli stacks

∇H
n H 1(C,G) → ∇H′

n H 1(C,G′) (G, γ) ↦ (f⋆G, γ′). (7)

Next we show that this morphism behaves well with respect to boundedness conditions. We note
that for all v ∈ v the morphism f ∶ G → G′ induces a morphism L+Gvi → L+G′

v as well as a
morphism LGv → LG′

v and consequently also a morphism F lGv → F lG′v .

Lemma 3.15. Let Ẑv be a bound in ∏n
i−1 F̂ lGvi

and G a G-shtuka over S bounded by Ẑv. Let
further Ẑ ′

v be a bound in ∏n
i=1 F̂ lG′vi

such that after choosing representatives over some DVR R

the morphism Ẑv,R →∏n
i=1 F̂ lG′vi

factors through Ẑ ′
v,R. Then f⋆G is bounded by Ẑ ′

v.

Proof: We have to prove that for v ∈ v the local shtuka Γv(f⋆G) is bounded by Ẑ ′
v. We choose

some covering S′ → S with S′/Spec R that trivializes L+
vσ

⋆G and L+
vG at the same time and fix

such trivializations, which we denote by α ∶ L+
vσ

⋆GS′ → L+Gv,S′ and α′ ∶ L+
vGS′ → L+Gv,S′ . Then

f⋆α and f⋆α
′ are trivializations of L+

v(f⋆σ⋆G)S′ and L+
v(f⋆G)S′ . Now we have the automorphism

α′ ○ τdeg v ○ α−1 ∶ LGv,S′
∼�→ LGv,S′ and we let 1S′ ∶ S′ → LGv,S′ be the unit morphism. The

composition defines an S′ valued point 1S′ ○α′ ○ τdeg v ○α−1 in LGv,S′ . The composition of this
point with the morphism LGv,S′ → LG′

v,S′ induced by f defines an S′-valued point in LG′
v,S′ .

Since the diagram

S′ 1S′ ��

		

LGv,S′

��

α′○τdeg v○α−1 �� LGv,S′

��
LG′

v,S′
f⋆(α′○τdeg v○α−1) �� LG′

v,S′
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commutes, this is exactly the S′ valued point defined by

f⋆(α′)f⋆(τdeg v)f⋆(α−1) = f⋆(α′τdeg vα−1).

By assumption G is bounded by Ẑv and consequently the morphism 1S′ ○α′ ○ τdeg v ○α−1 factors
after projection to F̂ lGv ,S′ through Ẑv,R and maps then into Ẑ ′

v,R. This means exactly that
Γv(f⋆G) is bounded by Ẑ ′

v, so that f⋆G is bounded by Ẑ ′
v.

◻
This lemma and the previous explanations show.

Corollary 3.16. The morphism (id, f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H

′) of shtuka data

induces a morphism f⋆ ∶ ∇Ẑv ,H
n H 1(C,G) �→ ∇Ẑ′v ,H

′

n H 1(C,G′)
(G, s1, . . . , sn, τG , γ) "→ (f⋆G, s1, . . . , sn, f⋆τG , f⋆γ).

Proof: Follows directly from lemma 3.15 and the morphism (7) on page 26. ◻

Now we are interested in some special classes of morphisms f ∶ G→ G′.

Generic Isomorphisms of G

First of all we want to consider morphisms f ∶ G → G′ which are generically an isomorphism,
that means f ×idQ ∶G ∼�→G′. In this case f ∶G→G′ is already an isomorphism over some open
subscheme in C. So we fix such an f ∶ G→ G′ and denote by U the maximal open subscheme in
C such that f × idU ∶ GU → G′

U is an isomorphism and denote by w = (w1, . . . , wm) the finite set
of closed points in the complement C/U .
Before we come to the moduli stacks of the global G-shtukas, we prove a proposition that describes
the morphism H 1(C,G) →H 1(C,G′). For this proposition we need the following lemma.

Lemma 3.17. Let L′+ be an L+G̃′
w torsor over an Fq-scheme S. Then the quotient stack

[L′+/L+G̃w] is represented by a scheme L′+/L+G̃w over S that is étale locally on S isomorphic to
L+G̃′

w/L+G̃w. In the case that Gw is parahoric L′+/L+G̃w is projective.

Proof: Let L′ ∶= L′+ ×L
+G̃′w LG̃′

w be the associated LG̃′
w-torsor of L′+. By [AH14, Theorem 4.4]

the quotient stack [L′/L+G̃w] is represented by an ind-quasi-projective ind-scheme L′/L+G̃w over
S. The closed morphism L′+ → L′ realizes [L′+/L+G̃w] as a closed sub-sheaf of L′/L+G̃w. Since
L′+ is affine over S the quotient [L′+/L+G̃w] is given by a closed subscheme in L′/L+G̃w. It is
clear that after passing to a covering S′ → S that trivializes L′+, the scheme L′+/L+G̃w becomes
isomorphic to L+G̃′

w/L+G̃w ×Fq S
′. Since L′/L+G̃w is by [AH14, Theorem 4.4] ind-projective if

Gw is parahoric, we see that the last statement about the projectivity of L′+/L+G̃w follows. ◻

Now we can prove:

Proposition 3.18. Let f ∶ G→ G′ be a morphism of smooth affine group schemes over C, which
is an isomorphism over C/w. Then the morphism

f⋆ ∶ H 1(C,G) →H 1(C,G′), G ↦ f⋆G
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is schematic and quasi-projective. Étale locally it is relatively representable by the morphism

(L+G̃′
w1
/L+G̃w1) ×Fq ⋅ ⋅ ⋅ ×Fq (L+G̃′

wm
/L+G̃wm) �→ Fq.

That means that for any Fq-morphism S →H 1(C,G′) there is an étale covering S′ → S such that
the fiber product S′ ×H 1(C,G′) H 1(C,G) is given by S′ ×Fq (∏

w∈w

L+G̃′
w/L+G̃w), where the product

is taken over Fq. In the case that the fibers Gw for all w ∈ w are parahoric group schemes this
morphism is projective.

Proof: Let S → H 1(C,G′) be given by a G-torsor G′ over CS . Let g ∶ T → S be an S-scheme.
Then a T -valued point of the fiber product S ×H 1(C,G′) H 1(C,G) is given by a tuple (g,G, α)
where G ∈ H 1(C,G) and α ∶ f⋆G ∼�→ g⋆G′. Using the theorem of Beauville-Laszlo from §
2.9 we write G = (G∣UT

,∏w∈w Lw, ϕ) with UT ∶= (C/w) ×Fq T , Lw ∈ H 1(Fq, L
+G̃w)(T ) and

ϕ = (ϕw)w∈w ∶ ∏w∈w Lw(G) ∼�→∏w∈w L(Lw). In the same way we write G′ = (G′∣US
,∏w∈w L′w, ψ).

In particular f⋆G is given by (f⋆(G∣UT
), fw,⋆Lw, f⋆ϕ) and the isomorphism α is determined by

αU ∶ f⋆G → g⋆G′ and αw ∶ fw,⋆Lw → L+
w(g⋆G′) satisfying

Lw(f⋆(G∣UT
)) f⋆ϕ ��

Lw(αU )

��

L(fw,⋆(Lw))

L(αw)

��
Lw(g⋆(G′∣UT

)) g⋆ψ �� L(g⋆wL′w) .

Since f ∣U = id we have f⋆(G∣UT
) = G∣UT

and the point (G∣UT
,∏w∈w Lw, ϕ) is equivalent to

(g⋆G′∣UT
,∏w∈w Lw, (ϕw ○ Lw(α−1U ))) by the isomorphism (α−1U ,∏ idLw). This shows that the

category of tuples (G, α) as above is equivalent to the category of tuples (Lw, αw)w∈pw where
Lw ∈ H 1(C,L+G̃w)(T ) and αw ∶ f⋆Lw

∼�→ g⋆L′w. Namely we associate with some arbitrary
tuple (Lw, αw)w∈D the tuple ((g⋆G′∣UT

,Lw, ϕ), β) where β∣U = id and βw = αw and ϕ is uniquely
determined by the condition f⋆ϕ = ψ ○L(α−1w ). This is unique because f × idQw ∶Gw →G′

w is an
isomorphism.
Now we note that the isomorphisms αw ∶ f⋆Lw

∼�→ g⋆L′w are in bijection with the L+G̃w equiv-
ariant morphisms Lw → g⋆L′w. This shows that the tuples (Lw, αw) parametrize exactly the
T -valued points of the quotient stack [g⋆Lw/L+G̃w] over Fq. It follows with the lemma 3.17 that
the fiber product S×H 1(C,G′)H

1(C,G) is given by the scheme g⋆Lw1/L+G̃w1×⋅ ⋅ ⋅×g⋆Lwm/L+G̃wm .
In particular the morphism f⋆ is representable and the remaining statements follow directly from
the previous lemma. ◻

Now let us turn to the moduli stacks of global G-shtukas. The following results will be again of
interest in later chapters. Let us firstly assume that w ⊂ v and that all the closed points w are
Fq-rational. In particular the group homomorphism f ∶ G → G′ is an isomorphism outside the
fixed characteristic places v1, . . . , vn. Then we have the following theorem.

Proposition 3.19. Let f ∶ G→ G′ be a morphism of smooth affine group schemes over C, which
is an isomorphism over C/w with w ⊂ v and wi ∈ C(Fq) for all wi ∈ w. Let H ⊂ G(Av) = G′(Av)
be an open compact subgroup, let Ẑ ′

vi be a bound in F lG′vi
for all i and let Ẑvi be the base change

of Ẑ ′
vi under the map F lGvi

→ F lG′vi
. Then the morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

n H 1(C,G′), (G, γH) ↦ (f⋆G, γH)
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is schematic and quasi-projective. Étale locally it is relatively representable by the morphism

(L+G̃′
w1
/L+G̃w1) ×Fq ⋅ ⋅ ⋅ ×Fq (L+G̃′

wm
/L+G̃wm) �→ Fq.

That means that for any Fq-scheme S there is an étale covering S′ → S such that the fiber product

S′ ×
∇

Ẑ′v,H

n H 1(C,G)
∇Ẑv ,H

n H 1(C ′,G′) is given by S′ ×Fq (∏
w∈w

L+G′
w/L+Gw), where the product is

taken over Fq. In particular f⋆ is a surjective morphism. In the case that G is a parahoric
Bruhat-Tits group scheme this morphism is projective.

Proof: Since f is an isomorphism outside w, for two open subgroups H̃ ⊂ H ⊂ G(Av) = G′(Av)
the diagram

∇Ẑv ,H̃
n H 1(C,G)

f⋆��

�� ∇Ẑv ,H
n H 1(C,G)

f⋆��

∇Ẑ′v ,H̃
n H 1(C,G′) �� ∇Ẑ′v ,H

n H 1(C,G′)

is cartesian. In particular we can assume H ⊂ G(Ov) = G′(Ov), because otherwise we can prove
the theorem for the compact open subgroup H̃ ∶= H ∩ G(Ov). This implies the assertions of
the theorem for the group H since the vertical arrows on the left and the right in the previous
diagram are relatively represented by the same morphism. Now for each S-valued point (G, γH)
in ∇Ẑv ,H

n H 1(C,G) we find an isomorphic point (G′, γ′H) with γ′ ∈ Isom⊗(ω○
Ov , ŤG′). This is

due to the fact, that we can pull back global G-shtukas along quasi-isogenies of local Gv-shtukas
[AH13, Theorem 5.2] and is explained in the proof of [AH13, Theorem 6.4]. We get a mor-

phism ∇Ẑv ,H
n H 1(C,G) → H 1(C,G) sending (G, γH) = (G′, γ′H) to G′. This is the morphism

∇Ẑv ,H
n H 1(C,G) → ∇Ẑv ,G(Ov)

n H 1(C,G) from (4) in § 2.16 composed with the morphism (3) with
D = ∅ in § 2.16 and the natural morphism ∇nH 1(C,G) → H 1(C,G). Now using proposition

3.18 it suffices to prove that ∇Ẑv ,H
n H 1(C,G) is given by the fiber product

M ∶= ∇Ẑ′v ,H
n H 1(C,G′) ×H 1(C,G′) H 1(C,G).

There is a natural morphism p ∶ ∇Ẑv ,H
n H 1(C,G) →M which sends an S-valued point (G, γH),

where we can assume as before γ ∈ Isom⊗(ω○
Ov , ŤG), to ((f⋆G, γH),G, idf⋆G), which is well de-

fined by 3.16. We need to prove that this morphism induces an equivalence of the fibered
categories. First we see that it is fully faithful. Let (G

1
, γ1H) and (G

2
, γ2H) be two S-

valued points in ∇Ẑv ,H
n H 1(C,G), where we assume again γ1, γ2 ∈ Isom⊗(ω○

Ov , ŤG). Let g ∈
Hom((G

1
, γ1H), (G2

, γ2H)). Since V̌g ○ γ1 = γ2 mod H we see that V̌g = γ2 ○ h ○ γ−11 for some
h ∈ H, which implies that V̌g already comes from a tensor isomorphism in Isom⊗(ŤG1 , ŤG2). By
[AH14, Proposition 3.6] it follows that g is not only a quasi-isogeny but also a morphism of
the global G-shtukas G

1
→ G

2
. Therefore Hom((G

1
, γ1H), (G2

, γ2H)) equals the morphisms of
G-torsors such that g is a morphism of the global G-shtukas G

1
and G

2
compatible with the

level structure. Since f⋆ is an isomorphism outside of v the latter condition is equivalent to the
statement that f⋆g is a morphism of G′-shtukas compatible with the level structure. But this
says exactly that

Hom((G
1
, γ1H), (G2

, γ2H)) =HomM(((f⋆G1
, γ1H),G1, idf⋆G1

), ((f⋆G2
, γ2H),G2, idf⋆G2

)).
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For the essential surjectivity let ((E, s1, . . . , sn, τE , γEH),G, ψ) be an S-valued point in M, with
γE ∈ Isom⊗(ω○

Ov , ŤE) as before. This is isomorphic to

((f⋆G, s1, . . . , sn, σ⋆ψ ○ τE ○ ψ−1, Ťψ ○ γEH),G, idf⋆G)

by (ψ−1, idG). We need to show that it comes from an element

(G, γGH) = (G, s1, . . . , sn, τG , γGH) ∈ ∇
Ẑv ,H
n H 1(C,G).

Here s1, . . . , sn and G are already uniquely defined. Therefore we need to define the isomor-
phism τG ∶ σ⋆G∣CS/∪

i
Γsi

→ G∣CS/∪
i
Γsi

. Since all the closed points w are Fq-rational (C/w)S is

contained in CS/ ∪
i
Γsi . Note that this is not the case if wi splits, because in this case wi ×Fq S

has deg wi components isomorphic to S and Γsi surjects only to one of these. By assump-
tion f × idS ∶ GS → G′

S is an isomorphism over (C/w)S . This together with the fact that
τG has to satisfy f⋆τG = σ⋆ψ ○ τE ○ ψ−1 an the inclusion (C/w)S ⊂ CS/ ∪

i
Γsi defines therefore

a unique τG ∶ σ⋆G∣CS/∪
i
Γsi

→ G∣CS/∪
i
Γsi

. Now G is a global G-shtuka with H-level structure

γG ∶= Ťψ ○ γE that is mapped to ((E,γEH),G, ψ) ∈ M(S). It just remains to prove that G is

bounded by Ẑv to see that (G, γG) lies indeed in ∇Ẑv ,H
n H 1(C,G). Let R be an extension of

Avi with representatives Ẑvi,R and Ẑ ′
vi,R

of the bounds Ẑvi and Ẑ ′
vi . We choose an étale cover-

ing S′ of S and trivializations α ∶ L+Gvi,S′ → Γvi(GS′) and α′ ∶ L+Gvi,S′ → Γvi(σ⋆GS′). Then
α−1○τG ○α′ = (fv)⋆(α−1○τG ○α′) ∶ LGvi,S′ → LGvi,S′ defines an S′-valued point of LGvi and hence
an induced morphism S′ → F̂ lGvi ,R

→ F̂ lG′vi ,R
. By assumption E and hence f⋆G is bounded by

Ẑ ′
v. This means that this morphism factors through Ẑ ′

vi,R
and since Ẑvi arises from base change

it factors by the universal property of the fiber product also through Ẑvi,R. This shows that G
is bounded by Ẑvi for all vi ∈ v. ◻

If (idC , f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H) is a morphism of shtuka data, where Ẑv does

not arise as a base change of Ẑ ′
v or if f ∶ G → G′ is an isomorphism outside w without

any conditions relating w to the characteristic points v or their residue field, the morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

n H 1(C,G′), (G, γH) ↦ (f⋆G, γH) is still representable, but in
general not surjective anymore. More precisely, we have the following theorem.

Theorem 3.20. Let (idC , f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H) be a morphism of shtuka data,

where f ∶ G→ G′ is an isomorphism over C/w. Then the morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

n H 1(C,G′), (G, γH) ↦ (f⋆G, γH)

is schematic and quasi-projective. In the case that G is a parahoric Bruhat-Tits group scheme

this morphism is projective. For any morphism (G′, γ′H) ∶ S → ∇Ẑ′v ,H
n H 1(C,G′)

the fiber product S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑ′v ,H

n H 1(C,G) is given by a closed subscheme of

S ×Fq ((L+
w1
(G′)/L+G̃w1) ×Fq ⋅ ⋅ ⋅ ×Fq (L+

wm
(G′)/L+G̃wm)) .

If Ẑv arises as a base change of Ẑ ′
v for all v ∈ v, the morphism f⋆ is surjective.
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Proof: In the case that Ẑvi does not arise by base change from Ẑvi the immersion Ẑvi → F̂ lGvi
fac-

tors through the base change Ẑ ′′
vi ∶= Ẑ

′
vi ×F̂ l

G′vi

F̂ lGvi
. Since ∇Ẑv ,H

n H 1(C,G) → ∇Ẑ′′v ,H
n H 1(C,G)

is a closed substack we may therefore assume from the beginning that Ẑvi arises by base change
from Ẑ ′

vi for all vi ∈ v. Furthermore we can as in the previous theorem assume that H ⊂ G(Ov).

Let S → ∇Ẑ′v ,H
n H 1(C,G′) be an S-valued point given by (G′, γ′H) = (G′, s′1, . . . , s′n, τG′ , γ′H),

where we can assume as before that γ′ ∈ Isom⊗(ω○
Ov , ŤG′). There is a natural morphism

S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑv ,H

n H 1(C,G) → S ×H 1(C,G′) H 1(C,G)

sending an T -valued point (g,G, γH,ψ) to (g,G, ψ), where g ∶ T → S is a morphism of schemes,

(G, γH) is a T -valued point in ∇Ẑv ,H
n H 1(C,G) and ψ ∶ f⋆(G, γH) ∼�→ g⋆(G′, γ′H) is an isomor-

phism of global G′-shtukas. By proposition 3.18 it is now enough to show that this is a closed
immersion.
Given a T -valued point (g,G, ψ) in S ×H 1(C,G′) H 1(C,G), there can be at most one T -valued

point (g, (G, γH), ψ) in S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑv ,H

n H 1(C,G) with G = (G, s1, . . . , sn, τG) and γ ∈

Isom⊗(ω○
Ov , ŤG) mapping to (g, (G, γH), ψ). This is because ψ ∶ f⋆(G, γH) ∼�→ g⋆(G′, γ′H) is

an isomorphism of global G-shtukas. That means namely that s1, . . . , sn are determined by
s′1 ○g, . . . , s′n ○g, that γH equals Ťψ−1 ○g⋆γ′H and that there is at most one τG since over the open
subset X ∶= (C/w)S ⋂(CS/⋃

i
Γsi) ⊂ CS the isomorphism τG is determined by f⋆τG = σ⋆ψ○g⋆τG′○ψ.

Therefore we have to answer the question if the morphism τG ∣X ∶ σ⋆G∣
X
→ G∣

X
can be extended

to CS/⋃
i
Γsi . Note that if this is possible, then the global G-shtuka G is automatically bounded

by Ẑv as we have seen at the end of the proof of the previous proposition 3.19.
Let F be the compositum of all Fvi with vi ∈ v and let v(0)i ∈ CF be the closed point lying over vi
that equals the image of the characteristic morphism si. Then the definition C̃F ∶= CF/(⋃

i
v
(0)
i )

satisfies C̃F ×F S = CS/ (⋃
i
Γsi) Let further

I = {w ∈ CF ∣ w∣wj for some wj ∈ w, w ≠ v(0)i for all vi ∈ v } . (8)

In other words that means that I is determined by ⋃
i
Γsi ⊂ (CF/I) ×F S =∶ CI

S and ((CF/I) ×F

S)/( ⋃
vi∈w∩v

Γsi) = (C/w)×Fq S. The definition satisfies also the equation (C̃F/I)×F S = U . Then

by the theorem of Beauville-Laszlo from § 2.9 we have the following cartesian diagram

H 1(C̃F,GF) ��

∏
w∈I

L+w

��

H 1
e (C̃F/I,GF)

∏
w∈I

Lw

��

∏
w∈I

H 1(F, L+G̃w) �� ∏
w∈I

H 1(F, LG̃w)

which means that σ⋆G∣CS/∪
i
Γsi

and G∣CS/∪
i
Γsi

are given by tuples (σ⋆G∣U , ∏
w∈I

L+
w(σ⋆G), ∏

w∈I
idLw(σ⋆G))

and (G∣U , ∏
v∈I

L+
v(G), ∏

v∈I
idLv(G)). The morphism τG ∣U ∶ σ⋆G∣U → G∣U determines isomorphisms

Lw(τG) ∶ Lw(σ⋆G) → Lw(G) for all w ∈ I. The question if τG can be extended to CS/⋃
i
Γsi is
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then equivalent to the question if all isomorphisms Lw(τG) in H 1(F, LG̃w) already come from
an isomorphism L+

w(σ⋆G) → L+
w(G) in H 1(F, L+G̃w). Since L+G̃w ⊂ L̃Gw is a quasi-compact

closed subscheme, this is a closed condition on T which shows that

S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑv ,H

n H 1(C,G) → S ×H 1(C,G′) H 1(C,G)

is a closed immersion. It rests to show that under our assumption on Ẑv the morphism f⋆ is
surjective. This is not clear yet, since the closed subscheme

S ×
∇

Ẑ′v,H

n H 1(C,G′)
∇Ẑv ,H

n H 1(C,G) ↪ S ×Fq ((L+
w1
(G′)/L+G̃w1) ×Fq ⋅ ⋅ ⋅ ×Fq (L+

wm
(G′)/L+G̃wm))

does not necessarily surject to S. For the proof of the surjectivity we show that for any alge-

braically closed field K and every global G′-shtuka G′ = (G′, s1, . . . , sn, τG′) in ∇Ẑ′v
n H 1(C,G′)(K),

there is a global G-shtuka G = (G, s1, . . . , sn, τG) in ∇Ẑv
n H 1(C,G)(K) with f⋆G = G′. By propo-

sition 3.18 and the fact that K is algebraically closed the choice of a G-torsor G over CK with
f⋆G = G′ corresponds to an element in ∏w∈w(L+G̃′

w/L+G̃w)(K). Now let F′ be the compositum
of the fields Fw for all w ∈ w. For a closed point w ∈ w ⊂ C there are exactly deg w different closed
points in CF lying above w. We denote them by w(0), . . . , w(deg w−1), where w(0) is a randomly
chosen one and the others arise by applying successively σ on the residue field. If w ∈ v we choose
w(0) as before to be the image of the characteristic morphism si. Now once again Beauville and
Laszlo help us with the diagram

H 1(CF′ ,G
′
F′) ��

∏
v∈J

L+v

��

H 1
e (V,G′

F′)
∏
v∈J

Lv

��
∏
v∈J

H 1(F′, L+G′
v) �� ∏

v∈J
H 1(F′,G′

v) ,

where J = {v ∈ CF′ ∣ v∣w for some w ∈ w} and V ∶= CF′/J . It allows us to identify G′

with the tuple (G′∣VK
, ∏
w∈w

deg w

∏
i=1

L+G′
w(i)

, (ε(i)w )w(i)∈J) where ε
(i)
w ∶ Lw(i)(G′) ∼�→ LG′

w(i)
already

comes from an isomorphism of L+G′
w(i)

-torsors. Consequently σ⋆G′ is identified with the tuple

(σ⋆G′∣VK
, ∏
w∈w

deg w

∏
i=1

L+G′
w(i)

, (σ⋆ε(i−1)w )w(i)∈J) with σ⋆ε
(i−1)
w ∶ Lw(i)(σ⋆G′) ∼�→ LG′

w(i)
coming again

from an isomorphism of L+G′
w(i)

-torsors. Note that the index i is computed in Z/deg w so that
−1 = deg w − 1. We use again the intuitive notation τ ′

w(i)
∶= Lw(i)(τG′) ∶ Lw(i)(σ⋆G′) → Lw(i)(G′)

and define for all w(i) ∈ J the element c
(i)
w ∶= ε

(i)
w ○ τ ′

w(i)
○ σ⋆(ε(i−1)w )−1 in LGw(i)(K). The fact

that τG′ is an isomorphism over CK/
n

⋃
k=1

Γsk implies that c
(i)
w is an element in L+G′

w(i)
(K) for

all w(i) ∈ J0 ∶= J/( ⋃
w∈w∩v

w(0)). Equivalently we have c
(i)
w ∈ L+G′

w(i)
(K) for all w ∈ w ∩ v and

i = 1, . . . , deg w − 1 as well as for all w ∈ w/(w ∩ v) and all i = 0, . . . , deg w − 1. We will now
define the tuple (b(i)w )w(i)∈J ∈ ∏

w(i)∈J

L+G′
w(i)

/L+Gw(i)(K) that will determine by proposition 3.18

the G-torsor G over CK mapping under f⋆ ∶H 1(C,G) →H 1(C,G′) to G′. If w ∈ w∩v we define

b(0)w ∶= 1 and b(i)w ∶= σ⋆b(i−1)w ⋅ (c(i)w )−1 ∈ L+G′
w(i)

(K) for all i = 1, . . . , deg w − 1

32



3.3 Changing the Group G

Now if w ∉ v we can choose by [AH14, Corollary 2.9] an element d
(0)
w ∈ L+G′

w(0)
(K) with d

(0)
w ⋅

c
(0)
w ⋅ σdeg w⋆(d(0)w )−1 = 1. Additionally we define d

(i)
w ∶= σ⋆d(i−1)w ⋅ (c(i)w )−1 ∈ L+G′

w(i)
(K) for all i =

1, . . . , deg w−1. In particular c̃(0)w ∶= σ(deg w−1)⋆(c(1)w )−1 ○σ(deg w−2)⋆(c(2)w )−1 ○⋅ ⋅ ⋅○σ⋆(c(deg w−1)
w )−1

satisfies the equation σ⋆(d(deg w−1)
w )−1 = σ(deg w)⋆(d(0)w )−1 ⋅ c̃(0)w . Moreover we choose again by

[AH14, Corollary 2.9] an element d̃
(0)
w in L+G′

w(0)
(K) with d̃

(0)
w ○ c̃(0)w ○ σdeg w⋆(d̃(0)w )−1 = 1 and

use it to define

b(i)w ∶= σi⋆d̃(0)w ⋅ d(i)w ∈ L+G′
w(i)

(K) for all i = 0, . . . , deg w − 1 .

This choice results nicely into the equations

b(i)w ⋅ c(i)w ⋅ σ⋆(b(i−1)w )−1 = σi⋆d̃(0)w ⋅ d(i)w ⋅ c(i)w ⋅ σ⋆(d(i−1)w )−1
JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ

=1

⋅σi⋆(d̃(0)w )−1 = 1

for all i = 1, . . . , deg w − 1 as well as

b(0)w ⋅ c(0)w ⋅ σ⋆(b(deg w−1)
w )−1 = d̃(0)w ⋅ d(0)w ⋅ c(0)w ⋅ σ⋆(d(deg w−1)

w )−1
JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ

=σ(deg w)⋆(d
(0)
w )−1 ⋅̃c

(0)
w

⋅σdeg w⋆(d̃(0)w )−1

= d̃(0)w ⋅ c̃(0)w ⋅ σdeg w⋆(d̃(0)w )−1 = 1 .

Now the G-torsor over CK , determined by the choice of (b(i)w )w(i)∈J ∈ ∏
w∈w

deg w−1

∏
i=0

L+G′
w(i)

(K)

and lying in the pre-image of G′ under f⋆ ∶ H 1(C,G) → H 1(C,G′), is given, as described in
proposition 3.18, by

G = (G′∣U , ∏
w∈w

deg w−1

∏
i=0

L+Gw(i) , (b(i)w ○ ε(i)w )w(i)∈J).

It lies indeed in the pre-image of G′ since f⋆G = (G′∣U , ∏
w∈w

deg w−1

∏
i=0

L+G′
w(i)

, (b(i)w ○ ε(i)w )w(i)∈J) is

isomorphic to G′ by (idG′ ∣U , ((b
(i)
w )−1)

w(i)∈J
). Now we show that there is τG ∶ σ⋆G∣CK/∪

k
Γsk

→
G∣CK/∪

k
Γsk

with f⋆τG = τG′ . We set τG ∣U ∶= τG′ and need to convince ourself that it extends to

CK/ ∪
k
Γsk . This is the case if and only if for all w(i) ∈ J the vertical right hand side morphism

b
(i)
w ○ ε(i)w ○Lw(i)(τG) ○ σ⋆(ε

(i−1)
w )−1 ○ σ⋆(b(i−1)w )−1 ∈ LGw(i)(K) in the diagram

Lw(i)(σ⋆G)
τ
w(i)

∶=L
w(i)

(τG)

��

σ⋆ε
(i−1)
w �� LGw(i)

σ⋆b
(i−1)
w ��

c
(i)
w

��

LGw(i)

��
Lw(i)(G)

ε
(i)
w

�� LGw(i)
b
(i)
w

�� LGw(i)

is given by an element in L+Gw(i)(K). By construction we have b
(i)
w ○ c(i)w ○ σ⋆b(i−1)w = 1 for all

w(i) ∈ J . This proves f⋆G = G′ and finally the theorem. ◻
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Closed Subgroups of G′

Secondly we take a closer look to the case that f ∶ G→ G′ is a closed immersion of group schemes
over C. We start with the following lemma that we mainly need for theorem 3.23.

Lemma 3.21. Let f ∶ G → G′ be a closed immersion of smooth affine group schemes over C.
Then the diagonal morphism Δ ∶ H 1(C,G) → H 1(C,G) ×H 1(C,G′) H 1(C,G) of the induced
morphism f⋆ ∶ H 1(C,G) → H 1(C,G′) is a monomorphism. The same is true for the diagonal
morphism Δ ∶ ∇nH 1(C,G) → ∇nH 1(C,G) ×∇nH 1(C,G′) ∇nH 1(C,G) of the induced morphism
f⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C,G′).

Proof: For the first diagonal morphism we have to prove that for any Fq-scheme S the functor
ΔS ∶H 1(C,G)(S) →H 1(C,G) ×H 1(C,G′) H 1(C,G)(S) is fully faithful. Let G ∈H 1(C,G)(S),
then this functor is cleary always faithful since ϕ ∈ Aut(G) is send to (ϕ,ϕ) ∈ Aut(Δ(G)),
where Δ(G) = (G,G, idf⋆G). Note that it suffices to consider ϕ ∈ Aut(G) since all morphisms in
H 1(C,G) are isomorphisms. To show that ΔS is full, let (ϕ,ψ) ∈ Aut(Δ(G)) which means by
definition that

f⋆G
idf⋆G

��

f⋆ϕ �� f⋆G
idf⋆G
��

f⋆G
f⋆ψ

�� f⋆G

commutes. Therefore we have f⋆ϕ = f⋆ψ and since f ∶ G→ G′ is a closed immersion this implies
ϕ = ψ and hence that ΔS is full.
More precisely, to see this, one chooses a covering U → CS that trivializes G so that ϕ and
ψ correspond to morphisms ϕ,ψ ∶ U → G satisfying the corresponding cocycle condition. The
morphisms f⋆ϕ and f⋆ψ correspond to the compositions U

ϕ,ψ�→ G
f�→ G′ and the equality

f⋆ϕ = f⋆ψ means f ○ϕ = f ○ψ. Since f is a closed immersion this implies ϕ = ψ, which proves that
the first diagonal morphism is a monomorphism. The proof for the second diagonal morphism
Δ ∶ ∇nH 1(C,G) → ∇nH 1(C,G) ×∇nH 1(C,G′) ∇nH 1(C,G) works literally in the same way. ◻

Corollary 3.22. The morphism f⋆ ∶ H 1(C,G) → H 1(C,G′) is representable by an algebraic
space. In particular for every Fq-morphism G′ ∶ S → H 1(C,G′) and the natural projection
pS ∶ CS → S, the Weil restriction pS⋆(G′/GS) is an algebraic space, that equals the fiber product
S ×H 1(C,G′) H 1(C,G).

Proof: Since the diagonal morphism in lemma 3.21 is a monomorphism it follows by [LMB00,
Corollary 8.1.2] that f⋆ ∶ H 1(C,G) → H 1(C,G′) is representable by an algebraic space. By
definition this means that the fiber product S ×H 1(C,G′) H 1(C,G) is an algebraic space and
in particular given by a functor (Sch/S)op → Set. We show that this functor coincides with
the Weil restriction functor pS⋆(G′/GS). By definition a T -valued point of this fiber product
S ×H 1(C,G′) H 1(C,G) is given by a tuple (g,G, α) where g ∶ T → S is a morphism of schemes, G
is a G-torsor over CT and α is an isomorphism of G′-torsors f⋆G ∼�→ g⋆G′. Since isomorphisms
f⋆G ∼�→ g⋆G′ are in bijection with G-equivariant morphisms G → G′ the category of the tuples
above is equivalent to the set of morphisms from CT to the quotient G′/GS .
Since HomCS

(CT , [G′/GS]) =HomS(T, pS,⋆([G′/GS])) by definition of the Weil restriction, the
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fiber product S ×H 1(C,G′) H 1(C,G) is given by pS⋆(G′/GS). ◻

Theorem 3.23. Let f ∶ G → G′ be a closed immersion of smooth affine group schemes over C.
Then the induced morphism f⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C,G′) is unramified and schematic.

Proof: We first show that f⋆ is unramified and then conclude that it is representable by a scheme.
Let B be any ring and I ⊂ B an ideal with I2 = 0 and p ∶ Spec B ∶= Spec B/I → Spec B the
natural projection arising in a diagram of the form

Spec B/I
p

��

g �� ∇nH 1(C,G)

f⋆
��

Spec B
g′

��

g1




g2





∇nH 1(C,G′) .

To prove that f⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C,G′) is unramified, we need to show that for any
diagram of this kind there exists at most one dashed arrow making the diagram commutative,
that means g1 = g2. This suffices since ∇nH 1(C,G) and ∇nH 1(C,G′) are locally of ind-finite
type over the notherian scheme Cn.
The morphism g ∶ Spec B → ∇nH 1(C,G) corresponds to a global G-shtuka G ∶= (G, s1, . . . , sn, τG)
over Spec B, where g1 and g2 correspond to global G-shtukas G

1
= (G1, s′1, . . . , s′n, τG1) and

G
2
= (G2, s′′1 , . . . , s′′n, τG2) over Spec B. The commutativity of the upper triangle means that there

are isomorphisms β1 ∶ p⋆G1
∼�→ G and β2 ∶ p⋆G2

∼�→ G of global G-shtukas over Spec B. Therefore
we have to prove, that the isomorphism β−12 ○ β1 arises already from an isomorphism G

1
→ G

2

of global G-shtukas over Spec B. Furthermore we denote by G′ ∶= (G′, s1, . . . , sn, τG′) the global
G′-shtuka over Spec B corresponding to g′ ∶ Spec B → ∇nH 1(C,G′). The commutativity of the
lower triangle gives us isomorphisms α1 ∶ f⋆G1

∼�→ G′ and α2 ∶ f⋆G2
∼�→ G′ of global G′-shtukas

over Spec B satisfying γ = p⋆α2 ○f⋆β−12 = p⋆α1 ○f⋆β−11 where γ ∶ f⋆G ∼�→ p⋆G′ is the isomorphism
of global G′-shtukas over Spec B coming from the commutativity of the square.
Now these isomorphisms imply directly that the paws si, s′i and s′′i coincide for all i with 1 ⩽ i ⩽ n.
Although f ∶ G→ G′ is a closed immersion it is by the following remark 3.24 a priori not so clear
that the torsors G1 and G2 are isomorphic, but we now prove this as follows.
The G-torsors G1 and G2 over CB come with G-equivariant maps to G′ which are induced by α1 ∶
f⋆G1 → G′ and α2 ∶ f⋆G2 → G′. Therefore they define two CB-valued points h1, h2 ∶ CB → G′/GB.
In other words one can describe them as follows. Since

Spec B
G1 ��

G′ ��

H 1(C,G)

f⋆
��

H 1(C,G′)

and Spec B
G2 ��

G′ ��

H 1(C,G)

f⋆
��

H 1(C,G′)

commute, that means f⋆G1 ≃ G′ ≃ f⋆G2, the G-torsors G1 and G2 induce morphisms h1, h2 from
Spec B to the fiber product Spec B×H 1(C,G′)H

1(C,G). In corollary 3.22 this fiber product was
seen to be pB⋆(G′/GB) and by definition of the Weil restriction we have HomCB

(CB, (G′/GB)) =
HomB(Spec B, pB⋆(G′/GB)), so that h1 and h2 correspond consequently to morphisms CB →
G′/GB. First we show that they coincide on C̃B ∶= CB/⋃i Γsi .
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N H 1(C,G)

The Fq-Frobenius induces a morphism j ∶ B/I → B, b ↦ bq which is well defined, because I2 = 0

and in particular Iq = 0. We get the following commutative diagram:

Spec B

σB ��

j �� Spec B/I
p

��

G �� H 1(C,G)

Spec B

G1





G2





which implies
σ⋆G1 = j⋆p⋆G1 ∼�→

j⋆β1

j⋆G ∼�→
j⋆β−12

j⋆p⋆G2 = σ⋆G2.

By restricting this isomorphism to C̃B and composing with τG1 and τG2 we get

δ0 ∶ G1∣C̃B

∼�→
τ−1G1

σ⋆G1∣C̃B

∼�→
j⋆β1

j⋆G∣
C̃B

∼�→
j⋆β−12

σ⋆G2∣C̃B

∼�→
τG2

G2∣C̃B
,

an isomorphism δ0 ∶= τG2 ○ j⋆β−12 ○ j⋆β1 ○ τ−1G1
of G-torsors over C̃B. It satisfies

α2∣C̃B
○ f⋆δ0 ○ α−11 ∣C̃B

= α2 ○ f⋆τG2

JKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKQ
=τG′○σ

⋆α2

○f⋆j⋆β−12 ○ f⋆j⋆β1 ○ σ⋆α−11
JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ
=j⋆(f⋆β1○p⋆α−11 )

○τ−1G′

=τG′ ○ σ⋆α2 ○ j⋆f⋆β−12 ○ j⋆(f⋆β2 ○ p⋆α−12 ) ○ τ−1G′ = idG′ ∣C̃B
.

In other words δ0 is an isomorphism from (G1∣C̃B
, α1∣C̃B

) to (G2∣C̃B
, α2∣C̃B

) of C̃B-valued points
in G′/GB. Therefore the restriction of (h1, h2) ∶ CB → G′/GB ×CB

G′/GB to the open subscheme
C̃B in CB factors through the diagonal in the following diagram

CB
(h1,h2)��

��

G′/GB ×CB
G′/GB

C̃B
��

��

G′/GB .

Δ

��
(9)

To see that G1 ≃ G2 over CB we have to show that the morphism (h1, h2) factors through the
diagonal Δ as well. Now since f is a closed immersion, the quotient G′/GB exists as a scheme
by [Ana73, Theorem 4.C] and it is smooth and separated by [SGA70, VIB, Proposition 9.2(xii)
and (x)]. In particular the diagonal Δ is a closed immersion. Therefore CB factors through the
diagonal if the scheme theoretic image of C̃B in CB equals CB. This was proven in lemma 3.11.
As a result of this, we conclude that δ0 extends to an isomorphism δ ∶ G1 ∼�→ G2 of G-torsor over
CB. The computation

δ−10 ○ τG2 ○ σ⋆δ0 = τG1 ○ j⋆β−11 ○ j⋆β2 ○ τ−1G2
○ τG2 ○ σ⋆τG2 ○ σ⋆j⋆β−12

JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ
=j⋆τ

G

○σ⋆j⋆β1 ○ σ⋆τ−1G1

= τG1 ○ j⋆β−11 ○ j⋆τG ○ σ
⋆j⋆β1

JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ
=σ⋆τG1

○σ⋆τ−1G1
= τG1

shows that δ ∶ G
1

∼�→ G
2

is an isomorphism of G-shtukas over B, which finishes the proof that
f⋆ ∶ ∇nH 1(C,G) → ∇nH 1(C,G′) is an unramified morphism.
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It rests to show that this morphism is schematic. We have proven in lemma 3.21 that the diago-
nal Δf⋆ of f⋆ is a monomorphism, which implies together with [LMB00, Corollary 8.1.2] that the
morphism f⋆ is representable by an algebraic space. It is clear that f⋆ is a separated morphism,
since the moduli spaces of global G-shtukas are separated. Furthermore we have proven that
f⋆ is unramified and in particular locally quasi-finite [Gro67, Corollaire 17.4.3]. All together
this allows us to apply [LMB00, Theorem A.2] which states that a separated, locally quasi-finite
morphism of algebraic stacks that is representable by an algebraic space is already schematic.
This finishes the proof of the theorem. ◻

Remark 3.24. Note that this is a particular property of the morphism of shtukas. Even if
f ∶ G → G′ is a closed immersion, it is not true that H 1(C,G) → H 1(C,G′) is an unramified
morphism.

Corollary 3.25. Let (idC , f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H

′) be a morphism of shtuka
data, where f ∶ G → G′ is a closed immersion of smooth affine group schemes over C. Then the
induced morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′)

is unramified and schematic.

Proof: We first consider the induced morphism f⋆ ∶ ∇
Ẑv
n H 1(C,G) → ∇Ẑ′v

n H 1(C,G′) of the
moduli spaces of global G-shtukas without level structures. We have the following commutative
diagram

∇Ẑv
n H 1(C,G) ��

f⋆ ��

∇nH 1(C,G)v

f⋆

��
∇Ẑ′v

n H 1(C,G′) �� ∇nH 1(C,G′)v.
The vertical arrow on the right is an unramified morphism by theorem 3.23, where the horizontal
arrows are closed immersions and in particular also unramified. As a consequence the vertical
arrow on the left is unramified as well. To prove the statement for the morphism f⋆ of moduli
spaces of global G-shtukas with level H-structure, we choose similar to 3.14 some finite subscheme
D ⊂ C such that HD ∶= ker(G(Ov) → G(OD)) and H ′

D ∶= ker(G′(Ov) → G′(OD)) are subgroups
of finite index in H (resp. H’). Then we have by § 2.16 the following commutative diagram

∇Ẑv ,H
n H 1(C,G)

��

∇Ẑv ,HD
n H 1(C,G) ∼�→ ∇Ẑv

n H 1
D(C,G)

��

finite

étale
��

��

finite

étale
�� ∇Ẑv

n H 1(C,G)

unramified
��

∇Ẑv ,H′

n H 1(C,G′) ∇Ẑv ,H′D
n H 1(C,G′) ∼�→ ∇Ẑv

n H 1
D(C,G′)finite

étale
�� finite

étale
�� ∇Ẑv

n H 1(C,G′)

All the horizontal arrows are étale and in particular unramified. Furthermore we have seen
that the vertical arrow on the right is unramified. As a result it follows that the morphism
∇Ẑv

n H 1
D(C,G) → ∇Ẑv

n H 1
D(C,G′) is unramified [Gro67, Proposition 17.3.3 (v)] and finally that

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′) is unramified [Gro67, Proposition 17.7.7]. It is clear
that it is also schematic, which proves the corollary. ◻
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Theorem 3.26. Let G be a parahoric Bruhat-Tits group scheme and f ∶ G → G′ be a closed
immersion of smooth affine group schemes and v = (v1, . . . , vn) be a set of closed points in C.
Then the induced morphism

f⋆ ∶ ∇nH 1(C,G)v → ∇nH 1(C,G′)v is proper and in particular finite.

Proof: We know by theorem 3.23 that this morphism is unramified and schematic and in
particular locally quasi-finite. Moreover the morphism is quasi-compact. Since ∇nH 1(C,G) →
H 1(C,G) is of ind-finite type, this follows from [AH13, Theorem 2.5] after choosing a representa-
tion ρ ∶ G′ → GL(V0) for some vector bundle V0 such that the quotient GL(V0)/G is quasi-affine
(see [AH13, Proposition 2.2]). Therefore it suffices to prove that f⋆ satisfies the valuative crite-
rion for properness to see that this morphism is proper and consequently also finite, due to the
quasi-finiteness. Thus let R be a complete discrete valuation ring with uniformizer π such that
its residue field κR = R/π is algebraically closed and let K = Frac(R) be the fraction field of R.
Let us further denote by Kalg an algebraic closure of K and by Ralg the integral closure of R in
Kalg. We need to prove that in every diagram of the form

Spec Kalg iK ��

j̃
��

Spec K
g1 ��

j

��

∇nH 1(C,G)v

f⋆
��

Spec Ralg
iR

��

��

Spec R g2
�� ∇H 1(C,G′)v

(10)

there exists a unique dashed arrow making the diagram commutative.
Here g1, g2, iK , iR, j and j̃ are defined by the diagram. Choosing the closed embedding ρ ∶
G′ ↪ GL(V0) it suffices, due to the separateness of the moduli spaces, to prove the valuative
criterion for the composition ρ⋆ ○ f⋆ ∶ ∇nH 1(C,G)v → ∇nH 1(C,GL(V0))v. Therefore we may
assume that G′ equals GL(V0). We denote by G = (G, s1, . . . , sn, τG) the global G-shtuka over K
corresponding to g1 and by G′ = (G′, s′1, . . . , s′n, τG′) the global G′-shtuka over R corresponding to
g2. Furthermore the commutativity of the square gives an isomorphism α ∶ f⋆G → j⋆G′ of global
G′-shtukas over K.
Let S ∶= {v ∈ C ∣ G ×C Fv is not reductive }⋃v. Then G′/G ×C (C/S) is by [Alp14, Theorem
9.4.1 and Corollary 9.7.7] an affine scheme over C/S and in particular G′/GR ×CR

(C/S)R is an
affine scheme over (C/S)R. Now the G-torsor G∣(C/S)R with its G equivariant morphism G → G′

induced by α defines an (C/S)K valued point of the quotient G′/GR.

(C/S)K s ��

��

G′/G ×CR
(C/S)R

��
(C/S)R

(11)

Now the proof consists of several steps. In a first step we want to show that s factors through
(C/S)R which means that it gives a section sR ∶ (C/S)R → G′/GR ×CR

(C/S)R of the vertical
morphism in diagram (11). This morphism sR corresponds to a unique G-torsor Ẽ over (C/S)R
together with an isomorphism αR ∶ f⋆Ẽ ∼�→ G′∣(C/S)R satisfying j⋆Ẽ = G∣(C/S)K .
In the second step of the proof we then show that the base change of Ẽ to Ralg extends uniquely
to a G-torsor over the whole relative curve CRalg . More precisely we show that there is a G-torsor
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E over CRalg such that firstly the restriction E∣(C/S)
Ralg

is isomorphic to the G-torsor i⋆RẼ over
(C/S)Ralg and secondly f⋆E ≃ i⋆RG′ and j̃⋆E ≃ i⋆KG.
Then we show in the third step that this G-torsor E over CRalg gives rise to a unique G-shtuka
(E , r1, . . . , rn, τE) in ∇nH 1(C,G)v(Ralg) making the diagram (10) commutative. This will then
finish the proof.

(Step 1) We can assume that Spec A = C/S is affine by enlarging S if necessary. Since we
have seen that G′/GR ×CR

(C/S)R is affine over (C/S)R = Spec AR ∶= Spec (A ×Fq R) we can
set G′/GR ×CR

Spec AR =∶ Spec B for some ring B. Therefore, to prove the assertion of the
first step, namely that s in diagram (11) factors through (C/S)R it is enough to show that
the ring morphism s⋆ ∶ B → A ⊗Fq K =∶ AK factors through AR. We write L ∶= Frac(AR) for
the function field of CR and O ∶= (AR)(π) ⊂ L for the localisation of AR at the prime ideal
(π) ∶= ker(AR → AκR

). The fact that AR is normal due to the smoothness of CR over R and the
fact that the prime ideal (π) ⊂ AR corresponding to the generic point of Spec AκR

is of height
1 in AR, implies that O is a discrete valuation ring with uniformizer π. The normality of AR

allows us also by [Har77, chapter II, 6.3.A] to write AR = ⋂
p⊂AR p of height 1

AR,p. For all prime

ideals p ⊂ AR of height 1 we have either p = (π) or π ∉ p. In the second case p comes from a
closed point in Spec AK which means AR,p = AK,p. Since AK = ⋂

q⊂AKmax.ideal
AK,q we conclude

AR = O ∩AK ⊂ L.

Due to this equation it is enough to show that the composition sL ∶ Spec L
η�→ Spec AK

s∣AK���→
Spec B of s∣AK

with η ∶ Spec L→ Spec AK factors through Spec O.
The Frobenius pullback (σ⋆GL, σ⋆αL) with σ⋆αL ∶ (f⋆σ⋆G) → σ⋆G′L gives an L-valued point of the
quotient σ⋆G′/GR. As before this quotient is affine over AR and given exactly by σ⋆G′/GR ×CR

Spec AR = Spec(B⊗AR,σAR) → Spec AR, where the AR-algebra structure of B⊗AR,σAR is given
by multiplication in the second component. This means that the L-valued point (σ⋆GL, σ⋆αL)
is given by an AR-morphism Spec L → Spec(B ⊗AR,σ AR). In other words we can describe this
morphism as follows. The Frobenius σ ∶= idA ⊗ σR ∶ AR → AR induces of course a morphism of
the fraction field L which we denote again by σ ∶ L → L, a

b ↦
σ(a)
σ(b) for a, b ∈ AR. It is not the

absolut Fq-Frobenius. Now the composition σ ○ s⋆L ∶ B → L is not an AR-linear morphism, but
it induces a unique AR-linear morphism σ⋆s⋆L ∶ B ⊗AR,σ AR → L making the following diagram
commutative.

b�

��

B
s⋆L ��

��

L

σ

��
b⊗ 1 B ⊗AR,σ AR

σ⋆s⋆L �� L

This morphism σ⋆s⋆L is the one coming from the tuple (σ⋆GL, σ⋆αL).
The G′-shtuka G′ is defined over R. In particular the restriction of τG′ to Spec AR is an isomor-
phism σ⋆G′∣AR

→ G′∣AR
that induces an isomorphism τG′ of AR-algebras

τG′ ∶ Spec (B ⊗AR,σ AR) → Spec B. (12)
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It sends a T -valued point (E0, δ) with δ ∶ f⋆E0 → σ⋆G′ to (E0, τG′ ○ δ). We then would like to
know, that the following diagram

B

s⋆L ��

τ⋆
G′ �� B ⊗AR,σ AR
σ⋆s⋆L

��
L

(13)

of AR-morphisms commutes, which can be seen as follows. By assumption (see diagram (10))
the diagram

f⋆σ
⋆GL

σ⋆αL ��

f⋆τG
��

σ⋆G′L
τG′

��
f⋆GL

αL �� G′L

(14)

is a commutative diagram of isomorphisms of G′-torsors over L. (Actually the whole diagram
is already defined over AK and the vertical arrow on the right is even defined over AR.) Now
σ⋆sL was corresponding to (σ⋆GL, σ⋆αL), so that by the description of the morphism (12) the
composition τG′ ○ σ⋆sL corresponds to the L-valued point (σ⋆GL, τG′ ○ σ⋆αL) of Spec B. This
point in the fiber category (Spec B)(L) is by τ−1G isomorphic to (GL, τG′ ○ σ⋆αL ○ f⋆τ−1G ), which
is by diagram (14) equal to (GL, αL). Since (GL, αL) is exactly the L-valued point sL the com-
mutativity of diagram (13) follows.

Now we choose a closed point v ∈ C/S. Then we can consider the associated étale local G̃′
v-shtuka

Lv(G′) = (L+
v(G′), τ ′v ∶= Lv(τG′)) over R, which arises from the formal Ĝ′

v-torsor G′ ×CR
Spf Av,R

as described in § 2.10. Since R is strictly henselian the L+G̃′
v-torsor L+

v(G′) is trivial so that
we choose a trivialization β ∶ L+

v(G′) ∼�→ L+G̃′
v. In particular the composition β ○ τ ′v ○ σ⋆β−1 ∶

L+G̃′
v

∼�→ L+G̃′
v is given by an element b ∈ L+G̃′

v(R) so that β ∶ Lv(G′) ∼�→ (L+G̃′
v, b).

We define Ri ∶= R/πqi and bi ∈ L+G̃′
v(Ri) as the image of the projection of b under the map

L+G̃′
v(R) → L+G̃′

v(Ri), b↦ bi.
Since R0 = κR is algebraically closed, there exists by [AH14, Corollary 2.9] a c0 ∈ L+G̃′

v with
c0 = b0 ⋅ σ⋆c0. Note that σ⋆c0 ∈ L+

v(G̃′
v)(R1). We set inductively ci ∶= bi ⋅ σ⋆ci−1 for i ⩾ 1 and

c ∶= lim
i→∞

ci = lim
k→∞

b ⋅ σ⋆b ⋅ ⋅ ⋅ ⋅ ⋅ σ(k−1)⋆bσk⋆c0 ∈ L+
v(G̃′

v)(R) which satisfies c = b ⋅ σ⋆c. Replacing the

trivialization β by c−1 ○ β gives therefore an isomorphism of local G̃′
v-shtuka c−1 ⋅ β ∶ Lv(G′) ∼�→

(L+
v G̃

′
v, id) as becomes clear from the diagram

σ⋆L+
v(G′)

σ⋆β ��

τv

��

L+
v G̃

′
v

σ⋆c ��

b
��

L+
v G̃

′
v

id
��

L+
v(G′)

β �� L+
v G̃

′
v

c−1 �� L+
v G̃

′
v

Let Av,R ∶= Av⊗̂FvR and Γ(A,G′/G) the ring of sections of G′/G over Spec A. The trivializations
c−1○β ∶ L+

v(G′) → L+
v G̃

′
v and σ⋆(c−1○β) ∶ σ⋆L+

v(G′) → L+
v G̃

′
v and the isomorphism τv induces after
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passing to the v-adic completion morphisms c−1β, σ⋆(c−1β) and τv as in the following diagram

Γ(A,G′/G) ⊗A Av,R

id

��

c−1β �� B ⊗AR
Av,R

τ⋆v

��

s⋆vL

��
Lv ∶= L⊗AR

Av,R

Γ(A,G′/G) ⊗A Av,R
σ⋆(c−1β) �� B ⊗AR,σ Av,R

σ⋆s⋆vL





(15)

The right hand side of the diagram arises as the v-adic completion of the diagram (13), where
s⋆vL and σ⋆s⋆vL denote the induced morphism of the completion. Since ordπ(σ(x)) = q ⋅ ordπ(x)
for all x ∈ Lv the diagram (15) implies

ordπ(s⋆vL ○ c−1β(y)) = ordπ(σ⋆(s⋆vL ○ c−1β)(y)) = q ⋅ ordπ(s⋆vL ○ c−1β(y))

for y ∈ Γ(A,G′/G). This means that ordπ(s⋆vL ○ c−1β(y)) equals 0 or ∞. In particular we have

s⋆vL ○ c−1β ∶ Γ(A,G′/G) ⊗A Av,R → {x ∈ Lv ∣ ordπ(x) ⩾ 0}

which implies

B ⊗AR
Av,R

s⋆vL �� {x ∈ Lv ∣ ordπ(x) ⩾ 0}

B
s⋆L ��

��

{x ∈ Lv ∣ ordπ(x) ⩾ 0} ∩L = O

This finishes the first step.

(Step 2) As we have described above, the proof of the first step gives us a G-torsor Ẽ over
(C/S)R with j⋆Ẽ = G∣(C/S)K and an isomorphism α̃R ∶ f⋆Ẽ ∼�→ G′∣(C/S)R . We now show that
Ẽ ×(C/S)R (C/S)Ralg extends to a G-torsor E over CRalg with E ×C

Ralg
CKalg = GKalg and αR ∶

f⋆E ∼�→ G′
Ralg .

Now the field L̃ ∶= Quot(ARalg) has transcendence degree one over Kalg so that its cohomological
dimension equals one by [Ser94, §2.3 Théoreme 1 and remark page 140]. Since GL is reductive
this implies by [BS68, subsection 8.6] that Ẽ is trivial over L̃. Therefore we can choose a
finite extension K ′/K and a trivialization γL′ ∶ Ẽ → GL′ , where L′ ∶= Quot(AR′) and where
R′ is the integral closure in K ′. We recall that we denoted by zv a uniformizer of C at v, so
that Av⊗̂R′ = R′⟦zv⟧ (do not confuse Av with A) and L′ is contained in Quot(R′⟦zv⟧). In
particular the trivialization γL implies that the G-torsor Ẽ is trivial over Quot(R′⟦zv⟧). This
fact allows us to apply [Ans18, 1) in Theorem 1.2] to see that ẼQuot(R′⟦zpv⟧) extends to a G-
torsor Ẽv over R′⟦zv⟧. (Note that [Ans18] use the notation OE for our ring κR⟦zv⟧ and z for a
uniformizer π′ in our ring R′.) This corresponds by [AH14, Proposition 2.4] to a L+G̃v-torsor
L+(Ẽv) over R′ which becomes trivial after base change to the strictly henselian ring Ralg. We
fix such a trivialization βv ∶ L+

v(ẼvRalg) ∼�→ L+G̃vRalg for all v ∈ S. They induce trivializations
L(βv) ∶ Lv(ẼRalg) ∼�→ LG̃vRalg and therefore isomorphisms

LvẼRalg/L+G̃v,Ralg
∼�→ (F l

G̃v
) ×Fq R

alg =∶ F lvRalg .
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An T -valued point (L+, δ) with δ ∶ L → LvẼRalg is send to (L+, βv ○ δ). By the theorem of
Beauville-Laszlo in § 2.9 we have the following cartesian diagram

H 1(C,G) ��

∏
v∈S

L+v

��

H 1
e (C/S,G)

∏
v∈S

Lv

��

∏
v∈S

H 1(Fq, L
+G̃v)

L
�� ∏
v∈S

H 1(Fq, LG̃v)

. (16)

Due to this diagram the torsor GKalg corresponds to the tuple (G∣(C/S)
Kalg

, ∏
v∈S

L+
v(GKalg), (εv)v∈S)

with εv = id ∶ L(L+
v(G)) → Lv(G∣(C/S)

Kalg
). Now for all v ∈ S the tuple (L+

v(GKalg), (βv×idKalg)○
εv) gives an Kalg-valued point of the affine flag variety F lvRalg . By assumption G̃v is parahoric
so that F lvRalg is ind-projective over Ralg by [Ric16a, Theorem A]. As a consequence we can
lift (L+

v(GKalg), (βv × idKalg) ○ εv) to a unique Ralg-valued point (Ev, βv ○ δv) ∈ F lv(Ralg) with
(Ev ×Ralg Kalg, (βv ○ δv) × idKalg) ≃ (L+

v(GKalg), (βv × idKalg) ○ εv).
In particular the tuple (Ẽ(C/S)

Ralg
,∏v∈S Ev, δv) defines a unique Ralg-valued point in H 1(C,G)

given by a G-torsor E over CRalg with E ×C
Ralg

CKalg = GKalg . By diagram (16) with G replaced
by G′ we get an isomorphism αRalg ∶ f⋆E ∼�→ G′

Ralg . This finishes the second step.

(Step 3) We now have to show that the G-torsor E over CRalg is part of a global G-shtuka
E = (E , r1, . . . , rn, τE) defining the dashed arrow in diagram (10). The condition that αRalg ∶
f⋆E ∼�→ i⋆RG′ needs to be an isomorphism of global G′-shtukas defines ri by ri = s′i ○ iR for all
1 ⩽ i ⩽ n. So we have to construct τE .
From the proof of the first step we get the commutative diagram

(C/S)R
σ⋆sR

��

sR

��
σ⋆G′/GR ×CR

(C/S)R
τG′ �� G′/GR ×CR

(C/S)R

(17)

We defined (Ẽ , α̃R) with α̃R ∶ f⋆Ẽ → G′ to be the (C/S)R-valued point in G′/GR corresponding
to sR. Hence (σ⋆Ẽ , σ⋆α̃R) corresponds to σ⋆sR and the composition τ ′G ○ σ⋆sR corresponds
to (σ⋆Ẽ , τG′ ○ σ⋆α̃R). The commutativity of (17) means that (σ⋆Ẽ , τG′ ○ σ⋆αR) and (Ẽ , α̃R)
are isomorphic as (C/S)R-valued points in G′/GR. This gives us therefore an isomorphism
τẼ ∶ σ⋆Ẽ → Ẽ of G-torsors over (C/S)R satisfying τG′ ○ σ⋆α̃R = α̃R ○ f⋆τẼ . This defines the
isomorphism τE restricted to (C/S)Ralg by τE ∣(C/S)

Ralg
= τẼ ×R idRalg and we have to extend it

to CRalg/⋃
i
Γri . We know additionally by E∣

CKalg = G and α ∶ f⋆G ∼�→ j⋆G′
Kalg that τE extends to

CKalg/⋃
i
Γri . Therefore we only have to extend τE at finitely many closed points of CRalg/⋃

i
Γri .

This works similar as at the end of the proof of proposition 3.12. So for p ∈ CRalg/(⋃
i
Γri ⋃CKalg)

we choose an open neighboorhood V ⊂ CκR
with (V ×κR

Ralg)⋂((⋃
i
Γri)⋃(C/S)Ralg) = p. We

write Ṽ ∶= V /p so that τE is defined on ṼRalg and need to be extended to VRalg . Moreover the
G-torsors σ⋆E∣V

Ralg
and E∣V

Ralg
are two Ralg-valued points in H 1(V,G)(Ralg) so that τE ∣Ṽ

Ralg
is

an isomorphism in H 1
e (Ṽ ,G)(Ralg). Thanks again to Beauville and Laszlo (§ 2.9) the cartesian
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diagram
H 1(V,G) ��

L+p
��

H 1(Ṽ ,G)

Lp

��
H 1(κR, L+G̃p) �� H 1(κR, LG̃p)

makes it sufficient to show that the isomorphism Lp(τE) ∶ Lp(σ⋆E) → Lp(E) in H 1(κR, LG̃p)
comes from an isomorphism in H 1(κR, L+G̃p). After trivializing Lp(E) the morphism Lp(τE) is
given by an element h ∈ LG̃p(Ralg). Since τE is already defined on VKalg the pullback of h to
hK ∈ LG̃p(Kalg) is already given by an element in L+G̃p(Kalg). Since L+G̃p ⊂ LG̃p is a closed
subgroup we conclude that h is already an element in L+G̃p(Ralg). This shows that τE extends
uniquely to VRalg and hence to CRalg/⋃

i
Γri . Hereby we found the G-shtuka E over Ralg defining

a unique dashed arrow in the diagram (10), which ends the proof of the theorem. ◻

Corollary 3.27. Let G be a parahoric Bruhat-Tits group scheme and (idC , f) ∶ (C,G, v, Ẑv,H) →
(C,G′, v, Ẑ ′

v,H
′) be a morphism of shtuka data, where f ∶ G→ G′ is a closed immersion of smooth

affine group schemes over C. Then the induced morphism

f⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

′

n H 1(C,G′)

is finite.

Proof: The proof of this corollary works literally in the same way as the proof of corollary 3.25
with replacing unramified by finite. ◻

Remark 3.28. The results of this chapter can maybe used in some future work to formulate and
prove some kind of André-Oort conjecture for global G-shtukas. To formulate such a conjecture
one needs the notion of special points and special subvarieties. In the case of Drinfeld modular
curves an analogue of the André-Oort conjecture has been formulated and proved in [Bre05].
Later the notion of special subvarieties and the formulation of the André Oort conjecture was
generalized in [Bre12] to the higher dimensional Drinfeld modular varieties. In the same paper
this André-Oort conjecture was proven in some special cases. These results were extended in
[Hub13]. To define Drinfeld modular varieties, one fixes a point ∞ ∈ C so that C ∖∞ =∶ Spec A is
affine and Mr

A contains Drinfeld A-modules of rank r. Now for certain finite extensions A′ ⊂ A

coming from a morphism C → C ′ of curves, Breuer shows that there is a proper morphism
Mr

A →Mr′

A′ of moduli spaces and he uses the image of this morphism to define special subvari-
eties.
Now Drinfelds modular variety Mr

A can be embedded into ∇Ẑv

2 H 1(C,GLr) for n = 2 and
some specific choosen bound Ẑv. The morphism Mr

A → Mr′

A′ corresponds then to a mor-

phism ∇Ẑv

2 H 1(C,GLr) → ∇Ẑ′w
2 H 1(C ′,GLr⋅[C ∶C′]) coming from a morphism of shtuka data

(C,GLr, v, Ẑv) → (C ′,GLr⋅[C ∶C′],w, Ẑw). So extending the coefficients for Drinfeld modules gen-
eralizes to changing the curve for global G-shtukas as in section 3.2, since we are not restricted
to choose n = 2, G = GLr or some specific bound. Moreover we have seen that additionally to
changing the curve, we can also change the group scheme G as in section 3.3. Although we do
not know if this is precisely the correct definition it is conceivable to define a special subvariety
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3 FUNCTORIALITY OF ∇ẐV ,H
N H 1(C,G)

of ∇Ẑ′w,H′

n H 1(C ′,G′) to be the image of the morphism

f⋆ ○ π⋆ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′w,H′

n H 1(C ′,G′)

arising from a morphism (π, f) of shtuka data, where f ∶ π⋆G ↪ G′ is a closed immersion of

(Bruhat-Tits) group schemes. Special points in ∇Ẑ′w,H′

n H 1(C ′,G′) would then be defined to be

those points which arise in the image of a morphism f̃⋆ ∶ ∇
Ẑw,H
n H 1(C ′,T) → ∇Ẑ′w,H′

n H 1(C ′,G′)v,
where f̃ ∶ T→ G′ is a closed (Bruhat-Tits) group scheme that is generically a torus in G′.
Following this, an André-Oort conjecture for global G-shtukas would then say that given a set
S of special points, the Zariski closure of these points is a finite union of special subvarieties.
Again, this is not a precise formulation but should give an impression of the flavor of a possible
statement.
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4 Stratifications

We now move our interest to the stratifications of the special fiber ∇Ẑv ,H
n H 1(C,G)FR

of the
moduli space of global G-shtukas . From now on (C,G, v, Ẑv,H) will be a shtuka datum where
G is a parahoric Bruhat-Tits group scheme as defined in § 2.17. In the fifth chapter we will define
five axioms on this moduli space. Their verification will then imply several statements on the
Newton and Kottwitz-Rapoport stratification. In this chapter we do the necessary preparations
to formulate these axioms. In particular we define in the first section a stratification map and
explain how it determines a stratification of an algebraic stack. The second section is about
the set B(Gv) of σ-conjugacy classes and ends with the definition of the Newton stratification.

In the third section we introduce the local model for ∇Ẑv ,H
n H 1(C,G). This results then in the

definition of the Kottwitz-Rapoport stratification. In the fifth and the last section of this chapter
we recall the definition of affine Deligne-Lusztig varieties and introduce the notion of σ-straight
elements from [HN14, Section 1.3] and [HR17, Section 5.1]

4.1 Stratifications of Stacks

A stratification of a topological space X is defined to be a locally closed partition X = ∐i∈I Xi.
It is said to have the strong stratification property if the closure of any stratum Xi is the union
of other strata Xi = ∐j∈J Xj for J ⊂ I. Now this notion of a stratification generalizes in very
much the same way to an algebraic stack X .

Definition 4.1. A stratification of an algebraic stack X is a family (Xi)i∈I of locally closed
reduced substacks Xi ⊂ X such that the 1-morphism ∐i∈I Xi → X is representable and universally
bijective.

The locally closed substacks Xi are called strata and later we give them specific names depending
on the stratification (Newton, Kottwitz-Rapoport, ...) we are talking about. Now we will prove
that giving a stratification on X is the same as giving a stratification map on X in the following
sense.

Definition 4.2. Let X be an algebraic stack fibered over the category of schemes and I an index
set, which we view as a groupoid. Then a Stratification map of X with index set I is given by
a collection of functors ϕk ∶ X (k) → I for every algebraically closed field k with the following
properties:

1. For every f ∶ Spec k → Spec k′ we have ϕk′ ○ X(f) = ϕk.

2. For every morphism of a scheme S to X the partition S = ∐i∈I Si defined by

Si = {s ∈ S ∣ ϕκ(s)alg (κ(s)alg → S → X) = i}

is a stratification of S in the sense of definition 4.1. Here Si is well defined by the first
condition.

Lemma 4.3. The stratifications of X are in bijection to the stratification maps on X .
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4 STRATIFICATIONS

Proof: It is not difficult to see that every stratification (Xi)i∈I give rise to a stratification map.
Namely let x ∶ Spec k → X be an object in X(k) with k = kalg. By the universal bijectivity of
∏i∈I Xi → X we know that k ×X ∏i∈I Xi is a scheme consisting of one point that factors through
exactly one stratum Xi. We define ϕk(x) = i. This gives a collection of functors ϕk ∶ X (k) → I

that are compatible with X(k → k′) ∶ X (k) → (k′). Let S be a scheme with S → X . Since Xi are
locally closed the partition (Xi×X S)i∈I gives a stratification of S and the underlying topological
space of Xi ×X S is exactly given by Si from Definition 4.2. So (ϕk) is a stratification map. Now
starting with some stratification map (ϕk)k we want to associate with it a stratification. We
recall that the algebraic stack has an underlying topological space ∣X ∣ as defined in [LMB00,
Definition 5.1 and (5.5)]. The compatibility of (ϕk) guarantees that we have a map ϕ ∶ ∣X ∣ → I.
We set Xi ∶= ϕ−1(i). Now choosing an atlas f ∶ A → X induces a surjective continuous open
map ∣f ∣ ∶ ∣A∣ → ∣X ∣. Let (Ai)i∈I be the stratification of A from Definition 4.2. It is also given
as Ai = (ϕ ○ ∣f ∣)−1(i) = ∣f ∣−1(Xi). We conclude that Xi is locally closed as follows. Let Ui be
an open in ∣A∣ such that Ai ⊂ Ui is closed. Then ∣f ∣(Ui) is an open in ∣X ∣ that contains Xi and
we have ∣f ∣(Ui)/Xi = f(Ui/Ai) by the surjectivity of ∣f ∣ and Ai = ∣f ∣−1(Xi). Since ∣f ∣ is an open
map and Ui/Ai is open in Ui we conclude that Xi is closed in ∣f ∣(Ui) and hence locally closed
in ∣X ∣. Now the open set ∣f ∣(Ui) corresponds by [LMB00, (5.5)] to an open substack X ○

i of X
with ∣X ○

i ∣ = ∣f ∣(Ui). By [LMB00, Lemma 4.10 and Corollary 5.6.1] there exists then a unique
reduced closed substack Xi ⊂ X ○

I with ∣Xi∣ = Xi. Now the locally closed substacks Xi define a
stratification. Here the universal bijectivity follows again from the fact that ∣S ×X Xi∣ = Si. ◻

Remark 4.4. The proof shows that we also could define a stratification of X simply as a
stratification of ∣X ∣.

The next lemma tells us that in a given stratification of an algebraic stack X locally of finite type
over k the strata are already defined by the closed points of Xi. Of course it is not true, that any
partition of closed points of ∣X ∣ give rise to a stratification. We remark as well that the lemma fails
if X is not locally of finite type. For example let m = (x, y) in k[x, y]. Then X = Spec k[x, y]m
has exactly one closed point m and this point generalizes to several points xi, which correspond
to the curves intersecting with m. Now {m, xi} and X/{m, xi} give stratifications that can not
be distinguished by knowing a partition of the closed points (only m in this case).

Lemma 4.5. Let X be an algebraic stack locally of finite type over some field K and let (ϕk)k
and (ψk)k be two stratification maps with

ϕKalg = ψKalg ∶ XKalg → I

Then the stratification maps are equal.

Proof: Assume (ϕk)k and (ψk)k are not equal, then the maps ϕ ∶ ∣X ∣ → I and ψ ∶ ∣X ∣ → I would
be different as well. Now we choose an atlas A → X and the surjectivity ∣A∣ → ∣X ∣ implies that
the stratifications (Aϕ,i)i∈I and (Aψ,i)i∈I are different. The lemma follows therefore from the
following claim:
Let S be a scheme locally of finite type over K and denote by C its closed points. By Hilberts
Nullstellensatz C consists exactly of those points in S that have a finite residue field over K. Let
S1 and S2 be two locally closed subsets of S with S1 ∩C = S2 ∩C. Then we claim S1 = S2.
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The set S3 ∶= S1 ∩S2 ⊂ S is another locally closed subset in S with S3 ∩C = S1 ∩C and it suffices
to prove S1 = S3 which implies analogously S3 = S2. Since S3 is also locally closed in S1 we can
even assume without loss of generality S1 = S. Now choose an open subset U ∈ S such that S3 is
closed in U . Since S is locally of finite type the set C is dense in S and we have S3 = U ∩C = U .
Then C ⊂ U so that S ∖U is closed without containing a closed point which implies S3 = S. ◻

4.2 Notations related to Weyl Groups

We denote by Q̆v the completion of the maximal unramified extension of Qv in an algebraic
closure Qv of Qv and Ăv its ring of integers. Using the identification Qv = Fv((zv)) this means
Q̆v = F

alg
v ((zv)). We denote by Σ0 = Gal(Qv, Q̆v) the inertia group, by Σ the Galois group

Gal(Qv,Qv) and by Σnr the Galois group Gal(Q̆v,Qv), which is generated by the Fv-Frobenius
σv.

Since G is a parahoric Bruhat-Tits group scheme, the group Gv is a connected reductive group
over Qv and Gv(Av) ⊂ G(Qv) is a parahoric group in the sense of [BT84, Definition 5.2.6] or
[HR08, Definition 1]. We denote by Bv = B(Gv,Qv) the Bruhat-Tits building. Let F ⊂ Bv

be the maximal facet that is fixed (point wise) by G(Av) and choose an apartment Av in Bv

that contains F . We denote by A the maximal Qv-split torus of Gv that corresponds to the
appartement Av so that Av = A (Gv,A,Qv). Let Sv be a maximal Q̆v-split torus of Gv defined
over Qv that contains A, this exists by [BT84, Corollaire 5.1.12].
Since Gv ×Qv Q̆v is quasi-split by [BS68, subsection 8.6] the centralizer Tv ∶= ZGv(Sv) is a
maximal torus (defined over Qv) and we can choose a Borel subgroup Bv ⊂ Gv ×Qv Q̆v that
contains Tv ×Qv Q̆v. Furthermore we denote by Nv ∶= N(Tv) the normalizer of Tv in Gv. Let
π1(Gv) be the algebraic fundamental group of Gv. It is the quotient of the the cocharacters
X⋆(Tv) by the coroot lattice. The action of Σ (resp. Σ0) on X⋆(Tv) induces an action on π1(Gv)
and we denote by π1(Gv)Σ0 (resp.π1(Gv)Σ) the coinvariants under this action. Now we recall
that Kottwitz [Kot97, §7] (see also [PR08, Section 2.a.2]) defines a surjective homomorphism

κGv ∶Gv(Q̆v) �→ π1(Gv)Σ0 (18)

which is functorial in the group Gv. We denote as usual by Tv(Q̆v)1 the kernel of

κTv ∶ Tv(Q̆v) → π1(Tv)Σ0 =X⋆(Tv)Σ0 . (19)

The [HR08, Lemma 5] implies that the group Tv(Q̆v)1 equals also the intersection G(Ăv) ∩
Tv(Q̆v). In the cited paper Rapoport and Haines work over a strictly henselian field. So let
B̆v = B(Gv, Q̆v) be the building of Gv over Q̆v and Ăv = A (Gv, Sv, Q̆v) be the appartement
corresponding to the split torus Sv. Then we have a natural Σnr equivariant embedding Bv ↪ B̆v

and Av ↪ Ăv that identifies Bv (resp. Av) with the Σnr fixed points in B̆v (resp. Ăv) [BT84,
p. 5.1.20]. The factes of Av correspond to Σnr invariant facets of Ăv. so let F̆ be the Σnr

invariant facet in Ăv corresponding to F . The associated parahoric subgroup to F̆ is Gv(Ăv)
and the unique smooth affine group scheme over Ăv with connected special fiber, generic fiber
equal to Gv ×Qv Q̆v and the condition that the Ăv valued points equal this parahoric group is
equal to Gv ×Av Ăv.
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Definition 4.6 ([HR08, Definition 7]). The (finite) Weyl group W0 of Gv is defined as

W0 ∶= Nv(Q̆v)/Tv(Q̆v)

The Iwahori-Weyl group W̃v of Gv associated with S is defined as

W̃v = Nv(Q̆v)/Tv(Q̆v)1

In the case that Sv = Tv, i.e. that Gv is split over Q̆v this group W̃ is often called extended Weyl
group and sometimes also extended affine Weyl group. Together with the definition of Tv(Q̆v)1
as the kernel of (19) we get an exact sequence

0→X⋆(Tv)Σ0 → W̃v →W0 → 0. (20)

For any parahoric subgroup K ⊂ G(Q̆v) that corresponds to a facet in Ăv we set

WK ∶= (Nv(Q̆v) ∩K)/Tv(Q̆v)1 ⊂ W̃v.

We fix a special vertex p ⊂ Ăv and denote by Kp the associated parahoric subgroup of Gv(Q̆v).
Since the vertex is special the projection W̃v → W0 induces an isomorphism WKp

∼�→ W0 (see
[HR08, Proposition 13]). This gives a section in (20) and hence a presentation of W̃v as semi-
direct product

W̃v =X⋆(Tv)Σ0 ⋊W0

We denote by Gv,1 the kernel of κGv and by Nv,1 the kernel of κNv . We fix a base alcove av in
Ăv whose closure contains p. We denote by S the set of reflections at the walls of av and by Iv

the corresponding Iwahori subgroup. Then the quadrupel (Gv,1, Iv,Nv,1,S) is a Tits system by
[BT84, p. 5.2.12].

Definition 4.7. The affine Weyl group of Gv is defined as

Wv,af ∶= Nv,1/(Nv,1 ∩ Iv)

It is a coxeter group with S as a system of generators and carries therefore the Bruhat order ≼
and a length function l.

Now by [Ric16b, Lemma 1.2] we have Nv,1 ∩ Iv = Tv,1 and Nv(Q̆v)/Nv,1 ≃ Gv(Q̆v)/Gv,1 which
induces an exact sequence

1→Wv,af → W̃v
κGv��→ π1(Gv)Σ0 → 1 (21)

Now Wv,af acts simply transitiv on the set of alcoves in Ăv and the stabilizer Ω ⊂ W̃v of av

maps isomorphically to π1(Gv)Σ0 . This gives a section of (21) so that we can write W̃v =
Wv,af ⋊ π1(Gv)Σ0 = Wv,af ⋊Ω. This semi-direct product is used to extend the Bruhat-order of
Wv,af to W̃v. Namely we set (α1, β1) ≼ (α2, β2) if and only if β1 = β2 and α1 ≼ α2 in Wv,af . Also
we extend the length function of Wv,af to W̃v by l(β) = 0 for all β ∈ Ω.
In the following we denote by Kv the parahoric subgroup Gv(Ăv) in Gv(Q̆v). Then the Bruhat-
order on W̃v induces a partial order on the double coset space WKv/W̃v/WKv . Namely for each
double coset ω ∈ WKv/W̃v/WKv there exists a unique representative ω̃ ∈ W̃v with ω̃ ≼ x̃ for all
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x̃ ∈ ω [PRS13, page 51 above 4.2.7]. Using this representative we define ω1 ≼ ω2 if and only if
ω̃1 ≼ ω̃2.
We recall from [PR08, Proposition 8.1] that we have Iv ⋅N(Q̆v) ⋅ Iv = Gv(Q̆v) which induces a
bijection Iv/Gv(Q̆v)/Iv ≃ W̃v. More generally we have

Kv/Gv(Q̆v)/Kv ≃WKv/W̃v/WKv . (22)

This set enumerates the Schubert cells in the affine flag varierty F l
v,Falg

q
. We recall its definition:

Definition 4.8 ( [PR08, Definition 8.3] ). Let ω ∈WKv/W̃v/WKv , then the Schubert cell Cω is
the reduced subscheme L+Gv ⋅ nω ⋅L+Gv/L+Gv ⊂ F l

v,Falg
q

, where nω ∈ Nv(Q̆v) is a representative

of ω. The Schubert variety Sω is the reduced scheme with underlying set the Zariski closure Cω

of the Schubert cell Cω. It is a projective variety over F
alg
q .

From [Ric13, Proposition 2.8] it follows that we have Sω ⊂ Sω′ if and only if ω ⩽ ω′. We would
like to recall this proposition which describes these closure relations and also the dimension of
the Schubert varieties using particular representatives in every coset of WKv/W̃v/WKv .
By [Ric13, Lemma 1.6] there exists for all ω̃ ∈ W̃v a unique element Kvω

Kv ∈ W̃v with

l(Kvω
Kv) = Max

ω1∈WKv

Min
ω2∈WKv

l(ω1ω̃ω2) (23)

As it is commonly done in the literatur we denote by KvW̃
Kv
v the set {Kvω

Kv ∣ω ∈ W̃v }. Then

KvW̃
Kv
v maps bijectively to WKv/W̃v/WKv and we recall:

Proposition 4.9 ( [Ric13, Proposition 2.8] ). Let ω ∈ KvW̃
Kv
v then we have

− Sω = ⋃
ω′∈Kv W̃

Kv
v

ω′⩽ω

Cω′

− dim Sω = l(ω)

Now let Ẑv be any bound in F̂ lv as in § 2.6 and let Zv be its special fiber and Z̆v = Zv ×κẐv
F
alg
q ⊂

F l
v,Falg

q
. By definition of the boundedness condition in § 2.6 the special fiber Zv is a projective

closed L+Gv invariant subscheme of F lv,κẐv
. The definition 4.8 of Schubert varieties shows that

we can write Z̆red
v = ⋃

ω∈I
Sω for some subset I ⊂WKv/W̃v/WKv . Since we used Schubert varieties

here, the union is not disjoint. This leads to the following definition:

Definition 4.10. We define the Ẑv-admissible subset of WKv/W̃v/WKv to be the set

Adm(Ẑv) = {ω ∈WKv/W̃v/WKv ∣ Sω ⊂ Z̆v} ⊂WKv/W̃v/WKv

The proposition 4.9 tells us directly that ω ∈ Adm(Ẑv) and ω′ ≼ ω implies ω′ ∈ Adm(Ẑv) and
that Z̆red

v = ⋃
ω∈Adm(Ẑv)

Cω is a stratification of Z̆v.

In the setting of Shimura varieties the μ-admissible subset Adm(μ) corresponding to some
dominant minuscule cocharacter μ is defined by {w ∈ W̃ ∣ w ⩽ tx(μ) for some x ∈W0} (compare
[HR17]). This cocharacter μ corresponds in our setting to the bound Ẑv. Now Adm(μ) is the nat-
ural index set of the Kottwitz-Rapoport strata in the special fiber of a Shimura variety. We will
see in theorem 6.2 that our definition of Adm(Ẑv) satisfy this property for the Kottwitz-Rapoport

stratification of ∇Ẑv ,H
n H 1(C,G) as well.
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4.3 The Set B(Gv) and the Newton Stratification

In this section we introduce the necessary notations to define the Newton stratification. The idea
of the Newton stratification is to define two geometric points of ∇Ẑv ,H

n H 1(C,G) to lie in the
same Newton stratum if their associated local-shtukas are quasi-isogenuous at a choosen subset
of the characteristic places v.
Let k be an algebraically closed field over Fv and v ∈ v, then we define

B(Gv) ∶= {b ∈ LGv(k)} ∼ , where b1 ∼ b2 if there exists g ∈ LGv(k) with b1 = g−1b2σv⋆g

This set is independent of k by [RR96, Lemma 1.3]. The set of quasi-isogeny classes of local
Gv-shtukas over k is in bijection to this set B(Gv). It sends a local Gv-shtuka L = (L+Gv, b) with
b ∈ LGv(k) to [b]. Since k is algebraically closed every L+Gv-torsor is trivial over k and changing
L by a quasi-isogeny g ∈ LGv would change b to g−1bσv

⋆g, so that the map is well defined and
bijective. Furthermore we note that for a local shtuka L over any field k′ its quasi-isogeny class
in B(Gv) does not depend on an algebraic closure (k′)alg. For such a local Gv-shtuka we denote
by [L] the corresponding element in B(Gv).
The Kottwitz-map (18) on page 47 induces a map

κGv ∶ B(Gv) → π1(Gv)Σ

which we denote again by κGv . Let X⋆(Tv)Σ0 ∶= X⋆(Tv)/⟨γα − α∣γ ∈ Σ0, α ∈ X⋆(Tv)⟩ be the
coinvariants and X⋆(Tv)Σ0 the fixpoints of X⋆(Tv) under the action of Σ0. Note that

X⋆(Tv)Σ0
Q
∶=X⋆(Tv)Σ0 ⊗Z Q ∼�→X⋆(Tv)Σ0,Q, α ↦ α (24)

is a bijection.
Let (X⋆(Tv)Σ0

Q
)+ ⊂ X⋆(Tv)Σ0

Q
be the dominant elements with respect t o the chosen Borel sub-

group Bv and let ((X⋆(Tv)Σ0
Q
)+)

⟨σv⟩
be the σv-invariants. Furthermore we denote as usual by

νGv ∶ B(Gv) → ((X⋆(Tv)Σ0
Q
)+)

⟨σv⟩
(25)

the Newton-map, compare [Kot97]. By [Kot97, p. 4.13] the product of the Newton- and Kottwitz-
map

B(Gv) → ((X⋆(Tv)Σ0
Q
)+)

⟨σv⟩ × π1(Gv)Σ [b] ↦ (νGv([b]), κGv([b])) (26)

is injective and used to equip B(Gv) with a partial order as follows.
The choice of the Borel subgroup Bv determines a set of simple roots and the dominance order
on X⋆(Tv)+Q. By definition α ⩽ α′ in this dominance order if and only if α′ −α is a non-negative
Q-sum of the simple roots. Now this dominance order defines together with νGv and κGv a
partial order on B(Gv). Namely for [b], [b′] ∈ B(Gv) we set

[b] ⩽ [b′] if and only if νGv([b]) ⩽ νGv([b′]) and κGv([b]) = κGv([b′]).

We will also equip the product ∏
v∈v

B(Gv) with the partial ordering defined by ([bv])v∈v ⩽ ([b′v])v∈v
if and only if [bv] ⩽ [b′v] for all v ∈ v. Now we recall the following proposition.
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Proposition 4.11 (compare [RR96, Theorem 3.6], [HV11, Theorem 7.3] ). Let S be an Fv-
scheme and L a local Gν-shtuka over S and b ∈ B(Gv). Then the set {s ∈ S ∣[Ls] ⩽ b} is a
Zariski closed subset of S. We equip it with the reduced subscheme structure and denote this
subscheme with N⩽b. Furthermore Nb ∶= {s ∈ S ∣ [Ls] = b} defines an open subset of N⩽b and
hence a locally closed subscheme of S. Nb is called the Newton stratum associated with L and b.

Proof: Compare [RR96, Theorem 3.6] and [HV11, Theorem 7.3]. ◻

This proposition implies directly that we get the following stratification maps in the sense of
definition 4.2 on ∇Ẑv ,H

n H1(C,G)FR
∶= ∇Ẑv ,H

n H1(C,G)×SpfRZ
FR.

Definition 4.12 (Newton stratification). For every algebraically closed field k over Fq we define

δG,v,k ∶ ∇
Ẑv ,H
n H 1(C,G)FR

(k) Γν�→ ShtGv(k) �→ B(Gv)
(G, s1, . . . , sn, τ, γ) "→ Γv(G) ≃ (L+Gv, bv) ↦ [bv]

Furthermore we define

δG,k ∶=
⎛
⎝∏v∈v

δG,v,k

⎞
⎠
∶ ∇Ẑv ,H

n H 1(C,G)FR
(k) �→∏

v∈v

B(Gv)

(G, γ) "→ (δG,v,k(G))v∈v

Then by proposition 4.11 δG,v = (δG,v,k)k and δG = (δG,k)k are stratification maps in the sense
of definition 4.2 and for bv ∈ B(Gv) (resp. b ∶= (bv)v∈v ∈ ∏v∈v B(Gv)) we denote by Nbv (resp.

Nb) the associated locally closed substack of ∇Ẑv ,H
n H1(C,G)FR

and call it the Newton stratum
associated with bv (resp. b).

4.4 The Local Model and the Kottwitz-Rapoport Stratification

We recall the definition of the local model of ∇Ẑv ,H
n H 1(C,G) from [AH16, §4.4]. Using this local

model roof we can then define the Kottwitz-Rapoport stratification.
We denote by ∇Ẑv ,H

n
̃H 1(C,G) the stack fibered over (Fq)Ét whose S-valued points consists

of tuples (G, γ, (εv)v∈v), where (G, γ) ∈ ∇Ẑv ,H
n H 1(C,G)(S) and εv ∶ L+Gv,S

∼�→ Γv(σ⋆G) is a
trivialization of the L+Gv-torsor Γv(σ⋆G) over S. The map

∇Ẑv ,H
n

̃H 1(C,G) �→ ∇Ẑv ,H
n H 1(C,G) (G, γ, (εv)v∈v) ↦ (G, γ) (27)

is a ∏v∈v L
+Gv-torsor. Furthermore we fix for all v ∈ v a finite extension Rv of RẐv

with a
representative Ẑv,Rv ⊂ F̂ lGv ,Rv of Ẑv. Choosing for all vi ∈ v a uniformizer π′vi in Rvi we write κ′

for the compositum of all the residue fields Rvi/(πvi) and define Rv = κ′⟦π′v1 , . . . , π
′
vn⟧. Then we

denote by ∇Ẑv ,H
n

̃H 1(C,G)Rv
∶= ∇Ẑv ,H

n
̃H 1(C,G)×RẐv

Rv the base change to the ring Rv. There
is a smooth morphism

ψ̂ ∶ ∇Ẑv ,H
n

̃H 1(C,G)Rv
�→∏

v∈v

Ẑv,Rv (28)

defined as follows (compare [AH16]). Let (G, γ, (εv)v∈v) with G = (G, s1, . . . , sn, τG) be an S-

valued point in ∇Ẑv ,H
n

̃H 1(C,G)Rv
(S) and choose a trivialization αv ∶ Γv(G)S′ → L+Gv,S′ over
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4 STRATIFICATIONS

some étale covering S′ → S. The composition αv ○ Γv(τG) ○ εv ∶ LGv,S′ → LGv,S′ defines an
S′-valued point in F lGv which is independent of αv and hence descends to an S-valued point in
F lGv . The induced morphism S → F̂ lGv ,Rv factors by the boundedness condition through Ẑv,Rv .
This defines the map (28).

Definition 4.13. The product ∏v∈v Ẑv,Rv is called a local model for ∇Ẑv ,H
n H 1(C,G).

We recall the following theorem:

Theorem 4.14 ([AH16, Theorem 4.4.6]). Consider the local model roof

∇Ẑv ,H
n

̃H 1(C,G)Rv

��

ψ̂

��
∇Ẑv ,H

n H 1(C,G)Rv
∏
v∈v

Ẑv,Rv

induced from the ∏
v∈v

L+Gv-torsor in (27) and the smooth morphism ψ̂ in (28). Let y be a geometric

point of ∇Ẑv ,H
n H 1(C,G)Rv

. Then the ∏
v∈v

L+Gv-torsor

∇Ẑv ,H
n

̃H 1(C,G) → ∇Ẑv ,H
n H 1(C,G) (G, γ, (εv)v∈v) ↦ (G, γ)

admits locally over an étale neighboorhood of y a section s such that the composition with ψ̂ is
étale.

As we have already explained in § 2.7 the special fiber Ẑv,Rv ×Spf Rv κRv arises by Galois descent
from a unique closed subscheme Zv ⊂ F lGv ×Fv κẐv

which we called the special fiber of Ẑv. In

particular the morphism ψ̂ × idκ′ ∶ ∇
Ẑv ,H
n

̃H 1(C,G)κ′ �→ ∏
v∈v

Zv,κ′ induced by (28) arises from a

morphism ψ ∶ ∇Ẑv ,H
n

̃H 1(C,G)FR
�→ ∏

v∈v
Zv,FR

(that means ψ̂ ×Spf Rv idκ′ = ψ ×FR
idκ′). This

gives the local model roof in the special fiber:

∇Ẑv ,H
n

̃H 1(C,G)FR

��

ψ

��
∇Ẑv ,H

n H 1(C,G)FR
∏
v∈v

Zv,FR
.

(29)

Concerning the left ∏v∈v L
+Gv action on ∏

v∈v
Zv the morphism ψ is ∏

v∈v
L+Gv equivariant. The

diagram (29) induces by definition of the quotient stack a morphism

λG ∶ ∇
Ẑv ,H
n H 1(C,G)FR

→
⎡⎢⎢⎢⎢⎣
∏
v∈v

L+Gv/∏
v∈v

Zv,FR

⎤⎥⎥⎥⎥⎦
.

This morphism completes together with the projection ∏
v∈v

Zv,FR
→ [∏

v∈v
L+Gv/∏

v∈v
Zv,FR

] the dia-

gram (29) to a cartesian diagram. In particular λG is a smooth morphism.
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Now a morphism f ∶ G→ G′ of smooth affine group schemes that induces a morphism of shtuka
data (id, f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′

v) induces also a morphism of the local models. Later
we will need the following lemma.

Lemma 4.15. Let (id, f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v) be a morphism of shtuka data such

that f ∶ G → G′ is a morphism of parahoric Bruhat-Tits group schemes over C, such that f ∣C/v
is an isomorphism and such that Ẑv arises from base change of Ẑ ′

v. Then the induced morphism

pG,G′,v ∶ Zv → Z ′
v

of the special fibers of the local models is proper and surjective. We denote the induced morphism

pG,G′ ∶
⎡⎢⎢⎢⎢⎣
∏
v∈v

L+Gv/∏
v∈v

Zv,FR

⎤⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎣
∏
v∈v

L+G′
v/∏

v∈v

Z ′
v,FR

⎤⎥⎥⎥⎥⎦
by pG,G′ .

Proof: Since Zv and Z ′
v are both projective it is clear that the morphism is projective. The

surjectivity follows by the surjectivity of F lGv → F lG′v and the condition Zv = Z ′
v ×F l ′v

F lv. ◻

Now we use the constructed morphism λG to define the Kottwitz-Rapoport stratification of

∇Ẑn,H
n H 1(C,G)FR

. Before we do this we take a closer look to the stack [∏
v∈v

L+Gv/∏
v∈v

Zv,FR
].

Lemma 4.16. The topological space of the quotient stack [∏
v∈v

L+Gv/∏
v∈v

Z̆v] is given by the

set ∏
v∈v

Adm(Ẑv) endowed with the product topology, where each set Adm(Ẑv) carries the topol-

ogy induced by the partial order of WKv/W̃v/WKv . In particular each element ω = (ωv)v∈v in

∏
v∈v

Adm(Ẑv) (resp. ωv ∈ Adm(Ẑv)) defines a locally closed substack [∏
v∈v

L+Gv/∏
v∈v

Z̆v]
ω

(resp.

[∏
v∈v

L+Gv/∏
v∈v

Z̆v]
ωv

) of [∏
v∈v

L+Gv/∏
v∈v

Z̆v], which defines a stratification on it.

Proof: This follows by the stratification of Z̆v = ⋃
ω∈Adm(Ẑv)

Cω (see definition 4.10). An F
alg
q -valued

point of [∏
v∈v

L+Gv/∏
v∈v

Z̆v] is namely given by an ∏
v∈v

L+Gv-torsor (which is trivial over Falg
q ) and an

equivariant map to ∏
v∈v

Z̆v,FR
, which is given by an element in ∏

v∈v
L+Gv ⋅nωvL

+Gv/L+Gv for some

ωv ∈ Adm(Ẑv) and some representatives nωv of ωv. The isomorphy classes of Falg
q -valued points

are therefore given by ∏
v∈v

Adm(Ẑv). The claim on the topology and locally closed substacks

follows by the closure relations in proposition 4.9. ◻

Definition 4.17 (Kottwitz-Rapoport stratification). For every algebraically closed field k over
Fq we define

λG,k ∶ ∇Ẑv ,H
n H 1(C,G)

F
alg
q
(k) λG��→

kkkkkkkkkkkk

⎡⎢⎢⎢⎢⎣
∏
v∈v

L+Gv/∏
v∈v

Z̆v

⎤⎥⎥⎥⎥⎦

kkkkkkkkkkkk
= ∏

v∈v

Adm(Ẑv)

Furthermore we define for v ∈ v

λG,v,k ∶ ∇
Ẑv ,H
n H 1(C,G)

F
alg
q
(k) λG��→∏

ṽ∈v

Adm(Ẑṽ) �→ Adm(Ẑv)
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4 STRATIFICATIONS

Then λG = (λG,k)k and λG,v = (λG,v,k)k are stratification maps in the sense of definition 4.2
and for ω = (ωv)v ∈ ∏

v∈v
Adm(Ẑv) (resp. ωv ∈ Adm(Ẑv)) we denote by KRω (resp. KRωv) the

associated locally closed substack of ∇Ẑv ,H
n H1(C,G)

F
alg
q

and call it the Kottwitz-Rapoport stratum
associated with ω (resp. ωv). That means KRw(k) = λ−1G,k(k).

It is clear, that KRω is given as the pullback of [∏
v∈v

L+Gv/∏
v∈v

Z̆v]
ω

under the map λG.

4.5 σ-Straight Elements and Affine Deligne-Lusztig Varieties

As before we denote by σv the Fv-Frobenius that generates Gal(Q̆v/Qv). Since Nv and Tv,1 are
defined over Qv the definition 4.6 of the Iwahori-Weyl group shows directly that we have a natural
action of ⟨σv⟩ on W̃v. We call the group Gv residually split if this action of σv is trivial and we
note as in [HZ16, beginning of section 7] that split implies residually split, whereas residually
split implies quasi-split.
The above action gives us a semi-direct product W̃v ⋊ ⟨σv⟩ which allows us to write (ωσv)n =
ωσv(ω) . . . σn−1

v (ω)σn
v , where ω ∈ W̃v. We extend the length function on W̃v to W̃v ⋊ ⟨σv⟩ by

defining l(σv) = 0 and we recall the following definition.

Definition 4.18 (compare also [HN14, section 1.3] and [HR17, section 5.1]).
An element ω ∈ W̃v is called σv-straight if l((ωσv)m) =ml(ω) for all m ∈ N. Let B(W̃v) = W̃v/ ∼,

with ω1 ∼ ω2 if and only if ω1 = g−1ω2σv(g) for some g ∈ W̃v, denote the σv conjugacy classes of
W̃v. Then such a σv-conjugacy class [ω] ∈ B(W̃v) is called σv-straight if there is a representative
g−1ωσv(g) ∈ [ω] which is σv-straight. We denote the set of σv-straight conjugacy classes by
B(W̃v)σv−str. If ⟨σv⟩ operates trivially on W̃v, we only speak about straight elements and straight
conjugacy classes.

Remark 4.19. In [He14, section 2.4] He defines ω ∈ W̃v to be σv-straight if and only if l(ω) =
⟨νGv(ω),2ρ⟩ with the remark that this definition coincides with the previous one by [HN14,
Lemma 1.1]. Here we denote as usual by ρ the halfsum of all positive coroots.

We recall that we have W̃v = X⋆(T )Σ0 ⋊W0 and that we denoted its projection to π1(G)Σ0 in
section 4.2 by κGv . Its projection to π1(G)Σ is invariant under σv-conjugation and we denote
the resulting map still by

κGv ∶ B(W̃v) → π1(G)Σ

Furthermore we referred in equation (25) in section 4.3 to the Newton-map νGv . Viewing it as

a map Gv(Q̆v) → ((X⋆(Tv)Σ0
Q
)+)

⟨σv⟩
which is invariant under σv-conjugacy, we can describe its

restriction to Nv(Q̆v) as follows (compare also [He14, section 1.7] and [HR17, section 5.1]). For
ω̇ ∈ Nv(Q̆v) let ω be its image in W̃v = Nv(Q̆v)/Tv,1 = X⋆(Tv)Σ0 ⋊W0. Then there is a natural
number n such that (ωσv)n = λ ∈X⋆(Tv)Σ0 and σv

n acts trivially on W̃v. In particular, using the
bijection (24) in section 4.3, we get an element λ

n in (X⋆(Tv)Σ0
Q
)⟨σv⟩, which is independent of n.

The unique dominant element in its W0-orbit is then defined to be νGv(ω̇) ∈ ((X⋆(Tv)Σ0
Q
)
+
)
⟨σv⟩

.

Since the described map Nv(Q̆v) → W̃v → ((X⋆(Tv)Σ0
Q
)
+
)
⟨σv⟩

is invariant under σv it induces a
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4.5 σ-Straight Elements and Affine Deligne-Lusztig Varieties

map

B(W̃v) �→ ((X⋆(Tv)Σ0
Q
)
+
)
⟨σv⟩

, still denoted by νGv .

Writing �v ∶ B(W̃v) �→ ((X⋆(Tv)Σ0
Q
)
+
)
⟨σv⟩

× π1(Gv)Σ, [ω] ↦ (νGv([ω]), κGv([ω]))

we recall the following proposition. Note that in contrast to the map (26) in section 4.3 this map
�v is not injective.

Theorem 4.20 ([He14, Theorem 3.5]). Let ω ∈ W̃v be σ-straight, ω̇ ∈ Nv(Q̆v) a representative
and Iv the chosen Iwahori subgroup. Then the set IvωIv ⊂ Nv(Q̆v) is contained in a single
σ-conjugacy class of Gv(Q̆v).

Then He uses this theorem to prove:

Proposition 4.21 ([He14, Proposition 3.6]). Let [ω], [ω′] ∈ B(W̃v) such that ω ∈ W̃v and
ω′ ∈ W̃v are of minimal length in their σv-conjugacy classes [ω], [ω′]. Choose furthermore two
representatives ω̇, ω̇′ ∈ Nv(Q̆v) of ω and ω′ respectively. Then ω̇ and ω̇′ are in the same σv-
conjugacy class of G(Q̆v) if and only if �v([ω]) = �([ω′]).

In particular we have a well defined map:

B(W̃v) → B(Gv)

and the following theorem implies that it restricts to a bijection

Ψ ∶ B(W̃v)σ−str �→ B(Gv) (30)

Theorem 4.22 ([He14, Theorem 3.7]). For any σv-straight σv-conjugacy class x ∈ B(W̃v)σv−str

we choose a minimal length representativ ωx ∈ W̃v with some lift ω̇x then:

Gv(Q̆v) = ∐
x∈B(W̃v)σv−str

Gv(Q̆v) ⋅
σv

ω̇x

where g ⋅
σv

ω̇x ∶= g ⋅ ω̇x ⋅ σ⋆vg−1.

Affine Deligne-Lusztig varieties

Let K be any σv-invariant parahoric subgroup of Gv(Q̆v), for example the group Kv ∶= Gv(Ăv).
Recall from equation (22) on page 49 that choosing a representative ω̇ ∈ Nv(Q̆v) of ω ∈WK/W̃v/WK

gives
G(Q̆v) = ∐

ω∈WK/W̃v/WK

KωK

Definition 4.23. Let bv ∈ B(Gv) and ω ∈WK/W̃v/WK . Then the affine Deligne-Lusztig variety
associated with bv, ω, K is defined as

XK,ω(bv) = {gK ∈ LGv(Falg
q )/K ∣ g−1bvσ(g) ∈KωK}

For a subset C ⊂WK/W̃v/WK we set

XK,C(bv) = ⋃
ω∈C

XK,ω(bv).

If K equals the chosen Iwahori group Iv, we obmit it from the notation and write Xω(bv) (resp.
XC(bv)).
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4 STRATIFICATIONS

Note that XK,ω(b) are the Falg
q -valued points of a locally closed ind-subscheme of the partial affine

flag variety F lK , which is actually a scheme locally of finite type over Falg
q by the theorem [AH14,

Theorem 4.18]. If C ⊂WK/W̃v/WK is closed under the Bruhat order (for example C = Adm(Ẑv))
then XC,ω(b) are the F

alg
q -valued points of a closed subvariety of the partial affine flag variety

F lK . Its irreducible components are projective by [AH14, Corollary 4.26].
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5 Axioms on the Moduli Space ∇Ẑv,H
n H 1(C,G)

There is an analogous definition of the stratifications, which we introduced in the fourth chapter,
for the special fiber of Shimura varieties. In general one can ask a lot of interesting questions
about these stratifications: what is their dimension, are they equi-dimensional, are they smooth,
are they affine or quasi-affine, what is their relation, do they have the strong stratification
property, are they non-empty, ... A lot of work about these questions has been done in the case
of Shimura varieties, which is spread out in the literature.
In [HR17] Rapoport and He define five axioms on Shimura varieties. Once these axioms are
verified, one can conclude the definition and existence of these characteristic subsets as Newton
stratification, Kottwitz-Rapoport stratification and EKOR-stratification in a most general setup.
Moreover one can specify precisely their natural index set and draw some further conclusions.
In this chapter we firstly define and then verify five analogous axioms for the moduli space
∇Ẑv ,H

n H 1(C,G) of global G-shtukas. But before we start doing this, we give a comparison
of our setting to the analogous case of Shimura varieties. Here the setting is given as follows
(compare also [HR17, chapter 3]):

We start with a Shimura datum (G,{h}) and an open compact subgroup K = KpK of G(Af),
where Kp ⊂ G(Ap

f) and where K =Kp is a parahoric subgroup of G(Qp) for a fixed prime number
p. We set GQp ∶= G⊗Q Qp and denote by {μ} the conjugacy class of cocharacters of GQp corre-
sponding to {h}. The corresponding Shimura variety ShK = Sh(G,{h})K is a quasi-projective
variety defined over the refelex field E. Let E be the completion of E at a prime p over p and
OE be its ring of integers with residue field κE . Furthermore let SK be an integral model over
OE and ShK = SK ×Spec OE

κE its special fiber. Then the comparison to the analogous setting
of moduli spaces of global G-shtukas is given by the following table:

∇Ẑv ,H
n H 1(C,G) over RẐv

the integral model SK over OE

G ∶= G ×C Spec Q notice that G can vary in
the fibers

GQp

fixed characteristic places v = (v1, . . . , v2) fixed prime p

H ⊂ G(Av) =G(Av) an open compact subgroup Kp ⊂G(Ap
f)

(G(Av))v∈v ⊂ (G(Qv))v∈v = (GQ(Qv))v∈v K ⊂G(Qp) a parahoric subgroup
this subgroup is uniquely determined by G

morphism f ∶ G → G′ which is an isomorphism
over C/v

changing the subgroup K ⊂K ′ ⊂G(Qp)

the bound Ẑv the cocharacter {μ}
∏
v∈v

Adm(Ẑv) Adm({μ})

global G-shtukas abelian varieties
local Gv-shtukas p-divisible groups

Table 1: Comparision of the settings
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5 AXIOMS ON THE MODULI SPACE ∇ẐV ,H
N H 1(C,G)

5.1 The Axioms

The first axiom concerns a change of the parahoric structure at the characteristic places.

Axiom 1. Let (idC , f) ∶ (C,G, v, Ẑv,H) → (C,G′, v, Ẑ ′
v,H) be a morphism of Shtuka data,

such that f ∶ G → G′ is a morphism of parahoric Bruhat-Tits group schemes over C, such that
f ∣C/v is an isomorphism and such that Ẑv arises from basechange of Ẑ ′

v. Then there is a natural
morphism of stacks

πG,G′ ∶ ∇
Ẑv ,H
n H 1(C,G) → ∇Ẑ′v ,H

n H 1(C,G′)

which is projective and surjective.

The second axiom concerns the local model of the moduli space ∇Ẑv ,H
n H 1(C,G), which guaran-

tees the existence of the Kottwitz-Rapoport stratification.

Axiom 2 (Existence of the Kottwitz-Rapoport stratification). There is a smooth morphism of
algebraic stacks

λG ∶ ∇
H,Ẑv
n H 1(C,G)FR

�→
⎡⎢⎢⎢⎢⎣
∏
v∈v

L+Gv/∏
v∈v

Zv,FR

⎤⎥⎥⎥⎥⎦
.

This morphism is compatible with a change of the group scheme G as in axiom 1 and lemma
4.15, that means λG′ ○ πG,G′ = pG,G′ ○ λG.

The third axiom is about the existence of the Newton stratification and its closure relations.

Axiom 3 (Existence of the Newton stratification). There is a stratification map (see definition
4.2)

δG ∶ ∇
H,Ẑv
n H 1(C,G)FR

→∏
v∈v

B(Gv).

For b = (bv)v∈v ∈ ∏
v∈v

B(Gv) we denote by Nb the associated locally closed substack and call it the

Newton stratum associated with b. For a scheme S → ∇Ẑv ,H
n H 1(C,G)FR

we denote by Nb,S the
pullback of Nb to S. We require that the map δGv satisfies the following two conditions

(i) For every map πG,G′ as in Axiom 1 we have δG = δG′ ○ πG,G′ .

(ii) If there is a scheme S → ∇Ẑv ,H
n H 1(C,G)FR

and b, b′ ∈ ∏
v∈v

B(Gv) with Nb,S ∩Nb′,S ≠ ∅ then

we have b ⩽ b′ in the partial ordered set ∏
v∈v

B(Gvi).

Note that we do not require this stratification to have the strong stratification property. As long
as G is not hyperspecial this property may not be satisfied.
Our next axiom relates the two previous axioms about the Newton and the Kottwitz-Rapoport
stratification. To formulate it, we denote by L+Gv(Falg

q )σv ⊂ L+Gv(Falg
q )×L+Gv(Falg

q ) the graph
of the Frobenius. It operates on LGv(Falg

q ) by

L+Gv(Falg
q )σv ×LGv(Falg

q ) → LGv(Falg
q ) ((h,σv(h)), g) ↦ h−1gσv(h)

so that the set of L+Gv−σv-conjugacy classes is given by LGv(Falg
q )/L+Gv(Falg

q )σv = LGv(Falg
q )/ ∼

with g1 ∼ g2 if and only if there exists a h ∈ L+Gv(Falg
q ) with g1 = h−1g2σv(h). Note that we
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5.1 The Axioms

can similar denote by LGv(Falg
q )σv ⊂ LGv(Falg

q ) × LGv(Falg
q ) the graph of the Frobenius on

LGv(Falg
q ), which allows us to write B(Gv) = LGv(Falg

q )/LGv(Falg
q )σv . The reader should be

aware, that unlike for B(Gv) (see [RR96, Lemma 1.3]) this quotient changes if we replace F
alg
q

by some other algebraically closed field. Now we have the two embeddings L+Gv(Falg
q )σv ⊂

L+Gv(Falg
q ) × L+Gv(Falg

q ) and L+Gv(Falg
q )σv ⊂ LGv(Falg

q )σv which induce the two projection
maps

lG ∶ ∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv �→∏
v∈v

L+Gv(Falg
q )/LGv(Falg

q )/L+Gv(Falg
q )

and
dG ∶ ∏

v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv �→∏
v∈v

LGv(Falg
q )/LGv(Falg

q )σv =∏
v∈v

B(Gv)

We already mentioned on page 49 in (22) that we can identify L+Gv(Falg
q )/LGv(Falg

q )/L+Gv(Falg
q )

with the set WGv/W̃v/WGv . Note also that if f ∶ G → G′ is a morphism as in axiom 1,

which implies LGv = LG′
v, then the embedding L+Gv(Falg

q )σv ⊂ L+G′
v(F

alg
q )σv gives a projec-

tion LGv(Falg
q )/L+Gv(Falg

q )σv → LG′
v(F

alg
q )/L+G′

v(F
alg
q )σv compatible with dG and lG.

Now we can formulate the fourth axiom, which guarantees the existence of the so called central
leaves.

Axiom 4 (Central leaves).

(i) There exist a natural map

ΥG ∶ ∇
Ẑv ,H
n H 1(C,G)(Falg

q ) �→∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv

such that the following diagram commutes

∏
v∈v

L+Gv(Falg
q )/LGv(Falg

q )/L+Gv(Falg
q )

∇Ẑv ,H
n H 1(C,G)(Falg

q ) ΥG ��

λG ��

δG
��

∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv

lG

��

dG

��
∏
v∈v

B(Gv)

where λG and δG are the maps from the second and the third axiom. Furthermore we
require that for every morphism πG,G′ as in the first axiom the diagram

∇Ẑv ,H
n H 1(C,G)(Falg

q ) ΥG ��

πG,G′

��

∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv

��

∇Ẑv ,H
n H 1(C,G′)(Falg

q ) ΥG′ �� ∏
v∈v

LG′
v(F

alg
q )/L+G′

v(F
alg
q )σv

(31)

commutes as well.

59



5 AXIOMS ON THE MODULI SPACE ∇ẐV ,H
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(ii) ImΥG = l−1G (Im λG). Note that the inclusion ⊂ already follows from the definition.

(iii) Let f ∶ G → G′ as in the first axiom and y ∈ Im(ΥG). Denote by y′ the image under the
projection in the above diagram (31). Then we require that the restriction

πG,G′(Falg
q )∣

Υ−1
G
(y)
∶ Υ−1

G (y) �→ Υ−1
G′(y′)

is surjective with finite fibers.

Remark 5.1. The fibers of Υ are called central leaves, they give a partition of closed points,
but are not a stratification. Now for ω ∈ Im(λG) the set l−1G (ω) is the potential index set of the
central leaves, which lie in the KRω.

The fifth axiom is a weak non-emptiness statement for the Kottwitz-Rapoport stratification. We
recall that if Gv = Iv is an Iwahori group scheme of Gv, we have WGv = {id}. In particular
Adm(Ẑv) is a subset of W̃v =WGv/W̃v/WGv . Now the connected components of F lv are given by
π1(Gv)Σ0 = Ω (see [PR08]) and a schubert cell Cω lies in the connected component corresponding
to β ∈ Ω if and only if ω equals by (21) to (α,β) ∈Wv,af ⋊Ω for some α ∈Wv,af . Since Zv ⊂ F lv is
by definition of the boundednes conditions connected it follows by 4.9 there is a μv ∈ π1(Gv)Σ0 = Ω
such that all elements ω ∈ Adm(Ẑv) are of the form (α,μv) ∈Wv,af ⋊Ω. In particular there is a
unique element τv ∈ Adm(Ẑv) of length 0.

Axiom 5 (basic non-emptiness). Let G be a group scheme such that Gv is an Iwahori subgroup of
Gv for all v ∈ v. Let τv ∈ Adm(Ẑv) be the unique length 0 element and τ = (τv)v∈v ∈ ∏

v∈v
Adm(Ẑv).

• (weak version) Then KRτ is not empty.

• (strong version) The map KRτ → π0(∇
Zv ,H
n H 1(C,G)

F
alg
q
) is surjective.

Here we write π0(∇
Zv ,H
n H 1(C,G)

F
alg
q
) for the geometric connected components of the moduli

space ∇Ẑv ,H
n H 1(C,G)

F
alg
q

. So in other words the strong version expresses that the Kottwitz-

Rapoport stratum KRτ intersects all the geometric connected components of ∇Ẑv ,H
n H 1(C,G)

F
alg
q

.
In particular it implies the weak version. In analogy to Shimura varieties one should expect also
the strong version of this axiom to be true. However, proving such a result requires to have a
good understanding of the connected components of ∇Ẑv ,H

n H 1(C,G)
F
alg
q

, what we do not have
at the moment.

5.2 Verification of the Axioms

In this section we will verify some of the axioms. For the proof of first axiom, all the work is
done in the third chapter and we just give a reference to it. The second and the third axiom
follow mostly from our explanations and citations in the fourth chapter. Therefore most of the
work we do in this section concerns the fourth and fifth axiom. The proof of the fifth axiom is
not totally complete, but we sketch an idea how to prove it.
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(Axiom 1) The construction of the morphism is done in subsection 3.3. The fact that the mor-
phism πG,G′ is projective and surjective under the desired assumptions this is proved in theorem
3.20. Here the morphism was called f⋆.

(Axiom 2) The smooth morphism λG was constructed in section 4.4 and it was explained af-
terwards that it induces indeed a stratification map (compare definition 4.17). To prove the
compatibility with a change of the group, let f ∶ G → G′ be a morphism as in the first axiom
and (G, s1, . . . , sn, τG , γ) an k = kalg-valued point in ∇Ẑv ,H

n H 1(C,G). Choosing a trivializa-
tion Γv(G) ≃ (L+Gv, bv) we have Γv(πG,G′(G)) ≃ (L+G′

v, bv). Using the bijection in (22) from
section 4.2, let ωv and ω′

v be the projections of bv in WGv/W̃v/WGv and WG′v
/W̃v/WG′v

re-
spectively. This means λG,v,k(G) = ωv and λG′,v,k(πG,G′(G)) = ω′

v and shows the compatibility
λG′ ○ πG,G′ = pG,G′ ○ λG.

(Axiom 3) The map δG was described in definition 4.12. Right after this definition it was also
explained that δG is indeed a stratification map in the sense of definition 4.2. For the first con-
dition in the third axiom we need to show δG = δG′ ○ πG,G′ for all morphisms πG,G′ as in the first
axiom. So let f ∶ G → G′ be again a morphism as in the first axiom, let k be an algebraically
closed field and (G, γ) ∈ ∇Ẑv ,H

n H 1(C,G)(k). We choose a trivialization Γv(G) ≃ (L+Gv, bv) for
all v ∈ v so that δG(G, γ) = ([bv])v∈v ∈ ∏

v∈v
B(Gv). As before we have πG,G′(G, γ) = (f⋆G, γ) which

implies Γv(πG,G′(G)) ≃ (L+G′
v, bv). This means (δG′ ○πG,G′)(G, γ) = ([bv])v∈v and proves the first

condition. The second condition in the third axiom follows also from proposition 4.11, because
it tells us that ∐

c⩽b′
Nc,S is a closed subscheme of S containing Nb′,S and consequently also Nb′,S .

This means ∐
c⩽b′
Nc,S ⋂Nb,S ≠ ∅ which implies b ⩽ b′.

(Axiom 4) To verify (i) we describe ΥG as follows. Actually the set LGv(Falg
q )/L+Gv(Falg

q )σv

determines precisely the set of isomorphism classes of local Gv-shtukas over Falg
q . Note that this

is different from B(Gv) which determines the isogeny classes. Now the map ΥG sends a global
G-shtuka G = (G, s1, . . . , sn, τG) to the elemenents corresponding to the isomorphism class of the
associated local Gv-shtukas:

ΥG ∶ ∇
Ẑv ,H
n H 1(C,G) →∏

v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv

(G) ↦ (bv)v∈v with Γv(G) ≃ (L+Gv, bv).

It is clear by construction that λG and δG = lG ○ ΥG and δG = dG ○ ΥG. Let f ∶ G → G′ as in
the first axiom, G ∈ ∇Ẑv ,H

n H 1(C,G)(Falg
q ) and Γv(G) ≃ (L+G, bv). Then Γv(f⋆G) ≃ (L+G′

v, bv)
which implies the commutativity of diagram (31).

We don’t prove the (ii) condition, but we will see in lemma 6.5 that it suffices to check this
condition in the Iwahori case.

Now the statement of (iii) can actually be concluded from a detailed study of the proof of
theorem 3.20. The crucial point is that we had some freedom to choose the element b

(0)
w , but let

us explain the proof. We firstly show the surjectivity. We choose y′ ∈ Im(ΥG′) and a pre-image
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y = ([yv]) in ∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv under the natural projection, where yv ∈ LGv(Falg
q )

denotes a representative. Now let G′ = (G′, s1, . . . , sn, τG′) ∈ ∇nH 1(C,G′)(Falg
q ) with Υ(G′) = y′

which means Γv(G′) ≃ (L+G′
v, yv) for all v ∈ v. Let F be the compositum of all finite fields Fv for

v ∈ v and denote for all v ∈ v as in theorem 3.20 by v(0), . . . , v(deg v−1) the closed points in CF

lying above v. Here v(0) is the image of the characteristic morphism and the other points arise
from applying σ to the residue field. We set U ∶= (C/v)F as well as I ∶= {v(i) ∈ CF ∣ v(i)∣v } so
that following Beauville and Laszlo as in § 2.9, we can again write down the cartesian diagram

H 1(CF,G
′
F) ��

∏
v∈I

L+v

��

H 1
e (U,G′

F′)
∏
v∈I

Lv

��
∏
v∈I

H 1(F, L+G′
v) �� ∏

v∈I
H 1(F,G′

v) .

Using this we write as before G′ = (G′∣
U
, ∏
v(i)∈I

L+Gv(i) , (ε
(i)
v )v(i)∈I) where ε

(i)
v ∶ Lv(i)(G′) → LG′

v(i)

are trivializations coming from an isomorphism L+
v(i)
(G′) → L+G′

v(i)
of L+Gv-torsors. Then for

v ∈ v and i = 0, . . . , deg v−1 the element c(i)v ∈ LGv(i)(F
alg
q ) was defined as c(i)v ∶= ε(i)v ○Lv(i)(τG′)○

σ⋆(ε(i−1)v )−1. For i ⩾ 1 it is even an element in L+Gv(i)(F
alg
q ) and by definition of the global local

functor we have Γv(G′) ≃ (L+G′, c̃v) with c̃v ∶= c
(0)
v ⋅ σ⋆c(deg v−1)

v ⋅ σ2⋆c
(deg v−2)
v ⋅ ⋅ ⋅ ⋅ ⋅ σdeg v−1⋆c1.

In particular we find b
(0)
v ∈ L+G′

v(F
alg
q ) with b

(0)
v ⋅ c̃v ⋅ σdeg v⋆(b(0)v )−1 = yv. Using this element

b
(0)
v we set inductively b

(i)
v ∶= σ⋆b

(i−1)
v ⋅ (c(i)v )−1 for i = 1, . . . , deg v and all v ∈ v. Then (b(i)v ) ∈

∏
v(i)∈I

L+G′
v(i)
(Falg

q ) defines by 3.18 a G-torsor G = (G′∣
U
, ∏
v(i)∈I

L+G′
v(i)

, (b(i)v ○ε(i)v )v(i)∈I) and extends

similar as in theorem 3.20 to a G-shtuka G = (G, s1, . . . , sn, τG) with τG ∣U ∶= τG′ ∣U and f⋆G = G′.
That τG ∣U extends to τG is seen from the equation b

(i)
v ⋅c(i)v ⋅σ⋆(b(i−1)v )−1 = 1 for i ⩾ 1 coming from

Lv(i)(σ⋆G)
L
v(i)

(τG)

��

σ⋆ε
(i−1)
v �� LGv(i)

σ⋆b
(i−1)
v ��

c
(i)
v

��

LGv(i)

id

��
Lv(i)(G)

ε
(i)
v

�� LGv(i)
b
(i)
v

�� LGv(i) .

This equation together with the equation

b(0)v ⋅ c(0)v ⋅ σ⋆(b(deg v−1)
v )(−1) = b(0)v ⋅ c(0)v ⋅ σ⋆(σdeg v−1⋆b(0)v ⋅ σdeg v−2⋆(c(1)v )−1 ⋅ ⋅ ⋅ ⋅ ⋅ (c(deg v−1)

v )−1)−1

= b(0)v ⋅ c(0)v ⋅ σ⋆c(deg v−1)
v ⋅ ⋅ ⋅ ⋅ ⋅ σ(deg v−1)⋆c(1)v ⋅ σdeg v⋆(b(0)v )−1 = b(0)v ⋅ c̃v ⋅ σdeg a⋆(b(0)v )−1 = yv

and the definition of the global local functor implies Γv(G) ≃ (L+G, yv). This shows ΥG(G) = y

and hence the surjectivity of

πG,G′(Falg
q )∣

Υ−1
G
(y)
∶ Υ−1

G (y) �→ Υ−1
G′(y′).

It rests to prove that the fibers of this map are finite. Now for any other tuple (d(i)v )v(i)∈I in

∏
v∈v

deg v

∏
i=1

L+Gv(i) defining a G-torsor G̃ = (G′∣
U
, ∏
v(i)∈I

L+G′
v(i)

, (d(i)v ○ ε(i)v )v(i)∈I) which is part of a

G-shtuka G̃ with f⋆G̃ = G′ and ΥG(G̃) = y, we have d
(i)
v ⋅ c(i)v ⋅σ⋆(d(i−1)v )−1 ∈ L+Gv(i)(F

alg
q ) for i ⩾ 1

and d(0)v ⋅ c̃v ⋅ σd⋆(d(0)v )−1 = yv in LGv(Falg
q )/L+Gv(Falg

q )σv .
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By choosing some a
(0)
v ∈ L+Gv(Falg

q ) and defining

a(i)v ∶= σ⋆a(i−1)v ⋅ σ⋆d(i−1)v ⋅ (c(i)v )−1 ⋅ (d(i)v )−1 ∈ L+Gv(i)(Falg
q )

we can replace (d(i)v )v(i)∈I by (a(i)v ⋅ d(i)v )v(i)∈I which defines a G-torsor G̃2 isomorphic to G̃ with
f⋆G̃2

= G′ and ΥG(G̃2) = y. Since by definition

a(i)v ⋅ d(i)v ⋅ c(i)v ⋅ σ⋆(d(i−1)v )−1 ⋅ σ⋆(a(i−1)v )−1 = 1 for i ⩾ 1 and

a(0)v ⋅ d(0)v ⋅ c(0)v ⋅ σdeg v⋆(d(0)v )−1 ⋅ σdeg v⋆(a(0)v )−1 = yv in LGv(Falg
q )/L+Gv(Falg

q )σv ,

we can assume that the tuple (d(i)v )v(i)∈I satisfies d
(i)
v ⋅ c(i)v ⋅ σ⋆(d(i−1)v )−1 = 1 for i ⩾ 1. Therefore

the fibers of πG,G′(Falg
q )∣

Υ−1
G
(y)

are given by the product over v ∈ v of the sets

{hv ∈ L+G′
v(Falg

q )/L+Gv(Falg
q ) ∣ hv ⋅ yv ⋅ σ⋆vh−1 = yv} (32)

and we prove that this set is finite. Since Gv is connected, we find by [AH14, Remark 4.15]
an element f ∈ LGv(Falg

q ) defining a quasi-isogeny (L+Gv, y) → (L+Gv, f ⋅ y ⋅ σ⋆vf−1) such that
x ∶= f−1yvσvf is decent. That means that there exists a positive integer s > 0 with (xσ⋆v )s =
νx(zv)σ⋆sv , where νx = νGv(x) is the Newton point and zv the uniformizer in Av. Now for all
elements h in the above set (32) the element hf lies by [AH14, Remark 4.16] in LG(F′v), where
F′v denotes the finite field with [F′v ∶ Fv] = s. Moreover hf lies in the image of the morphism

L+G′
v �→ F lv b↦ bf.

Since F lv is ind-projective and since L+G′
v is affine and hence quasi-compact, this morphism

factors through a projective subscheme, [HV11, Lemma 5.4]. Therefore hf is an F′v-valued point
of an projective scheme. The set of these points is finite. ◻

Actually the proof even shows a stronger result as formulated in the fourth axiom:

Lemma 5.2. For every y′ ∈ Im(ΥG′) and every preimage y of y′ under the projection

∏
v∈v

LGv(Falg
q )/L+Gv(Falg

q )σv →∏
v∈v

LG′
v(Falg

q )/L+G′
v(Falg

q )σv , the map

πG,G′(Falg
q )∣

Υ−1
G
(y)
∶ Υ−1

G (y) �→ Υ−1
G′(y′) , is finite surjective.

In particular y is an element in Im(ΥG).

Proof: Follows from the previous discussion. ◻

(Axiom 5) We explain the idea of the proof of the weak version of this axiom and remark the
step that is missing. The strategy is as follows. We construct explicitly a G-shtuka G over F

alg
q

in ∇nH 1(C,G)v that lies in the basic locus corresponding to the unique basic element ([bv])v∈v
with κGv([bv]) = μv. Here μv was the element in π1(Gv)Σ corresponding to the connected com-
ponent of F lv containing Zv. That means that G should satisfy δG(G) = ([bv]). A priori G lies

only in ∇nH 1(C,G)v and not in ∇Ẑv
n H 1(C,G) since we can a priori not say if G is bounded
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by Ẑv. Then we will use a known result about Deligne-Lusztig varieties to transform our global
G-shtuka G to a global G-shtuka G′ over F

alg
q that lies in the KR-strata KRτ , where τv was the

unique length zero element in Adm(Ẑv) and τ = (τv)v∈v. This global G-shtuka G′ will then be
bounded by Ẑv. The explicit construction of G takes place in three steps. In the first step we
define two smooth affine group schemes T and T̃ over C, whose generic fiber is a maximal torus
of G with some well choosen properties. The group scheme T will be the Weil restriction of Gm,C̃

for some morphism of curves π̃ ∶ C̃ → C. In the second step, we need then to construct a global
Gm-shtuka L in ∇mH 1(C̃,Gm). Then we will apply the morphism π̃⋆ from 3.14 to L to get a
global T and then a global T̃-shtuka. Then we will apply the morphism in theorem 3.20. In the
third step we will then explain how we transform G to G′. So far about the strategy, now let us
start with the first step and construct explicitly this global G-shtuka G in ∇nH 1(C,G)v(Falg

q )
with δG(G) = ([bv])v∈v.

(Step 1) To begin with the first step we fix for all v ∈ v a maximal Qv-torus T ′
v in Gv such that T ′

v

modulo the center Z(Gv) is anisotropic. The existence of such a torus follows from the following
theorem.

Theorem 5.3 (compare [PR94, Theorem 6.21 page 326]).
Let G be a reductive group over a non-Archimedian local field K, then there exists always a
maximal torus T in G, which is modulo the center of G an anisotropic K-torus.

Proof: Actually the theorem in [PR94] differs in two points from this one. Firstly the cited book
only considers local fields of characteristic 0. But knowing that all maximal tori of G are split
and conjugated over an separabel closure Ksep (see [Con14, Corollary B.3.6]) the same proof
works in positive characteristic. Secondly the theorem is only formulated for semisimple groups
and states that there is a maximal K-torus, which is anisotropic over K.
Now once we know this, we write Z for the center and Gad for the adjoint group of G so that we
can consider the short exact sequence

0→ Z → G→ Gad → 0

and choose a maximal K-torus T ′ in the semisimple group Gad which is anisotropic. Since
G → Gad is an epimorphism of connected algebraic groups, there exists by [Con14, Corollary
3.3.5] (see also [Hum75, Section 21.3 Coroallary C]) a maximal torus T in G such that the image
of T equals T ′. Since the image of T is exaclty T /Z and since T ′ = T /Z was anisotropic, we see
that T satisfies the desired properties. ◻

We recall that we say that an algebraic variety X over Q satisfies the weak approximation
property if the embedding X(Q) → ∏

v∈S
X(Qv) is dense, where X(Qv) carries the topology induced

by the v-adic on Qv (see [Con12]) and S is any finite subset of ∣C ∣. This concept of weak
approximation exists also for number fields K and there is the following useful corollary of
the [PR94, Proposition 7.3 page 402] that states that an irreducible smooth K-rational variety
satisfies the weak approximation property.

Corollary 5.4 ([PR94, Section 7.1, Corollary 3, page 405]).
Let G be a reductive algebraic group over a number field K, and let T be the variety of its maximal
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tori. Then T has weak approximation. In particular, if S is a finite subset of places of K and,
for each v ∈ S, T (v) is a given maximal Kv-torus in G, then there exists a maximal K-torus T

of G which, for any v in S, is conjugated to T (v) via an element of G(Kv).

Although this corollary is only formulated for characteristic 0 it holds as well for our group G

over Q. The main ingrediant in the proof of the corollary is the rationality of the scheme of
maximal tori. So let T be the Q-scheme of maximal tori in G. Choosing some maximal torus in
G and writing N for its normalizer in G, the scheme T is represented by G/N and since G is
smooth, T is in particular a smooth homogenous space for G (see for example [Con14, Theorem
3.2.6]). The Q-rationality of T (including the positive characteristic case) is proven in [BS68,
Theorem 7.9], so that T satisfies the weak approximation property.
Now let xv ∈ T (Qv) be the point corresponding to the torus T ′

v with normalizer Nv in Gv and
let

Φv ∶Gv → Tv ∶= T ×Q Qv ≃Gv/Nv, g ↦ g ⋅ xv.

Since the differential map TvΦv ∶ TvGv → TvTv is surjective, we can apply the theorem in [Ser92,
chapter 3, §10, 2)]. The second part of this theorem tells us that every point in the set

Vv ∶= {g ⋅ xv ∣ g ∈Gv(Qv)} ⊂ T (Qv)

has an open neighborhood that lies in the image of the map G(Qv) → T (Qv) (i.e. completely
in Vv). In particular Vv is open in T (Qv). Now using the weak approximation property we
fix a maximal Q-torus T ⊂ G (corresponding to some x ∈ T (Q)) such that Tv ∶= T ×Q Qv is
Gv(Qv)-conjugated to the choosen torus T ′

v (i.e. Tv lies in Vv) for all v ∈ v. In particular Tv

modulo the center of Gv is an anisotropic torus. Let L be the splitting field of the maximal
torus T . It is a finite separable extension of Q. By [PR94, Proposition 2.2, page 55] T arises as

a quotient of T ∶=
l

∏
i=1

ResL/QGm,L, that means that we have an short exact sequence

0→ F → T→ T → 0

of Q-tori which split over L. Now the field extension L/Q corresponds to a curve C ′ over C

and we set C̃ ∶=
l

∐
i=1

C ′. We denote by π̃ ∶ C̃ → C and π ∶ C ′ → C the natural morphisms to C.

Further we set T ∶= ResC̃/CGm,C̃ = π̃⋆Gm,C̃ for the Weil restriction of Gm,C̃ to C. Since π̃ is
generically étale it is by § 2.17 a parahoric group scheme over C. Note that we always used bold
letters for the generic fiber of a group scheme over C. This concides with the previous notation,
since we have indeed T×C Spec Q = T and since we do not consider an integral model over C of
the Q-torus T , there is no confusion about this torus. Although we have the generic morphism
T → T → G we do not know if this extends to a morphism T → G. But we will now define a
smooth affine group scheme T̃ over C with two C-morphisms

T̃

u
��

f �� G

T
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and the property that the generic fiber of T̃ coincides with T. It is clear that there is a Zariski
open set U ⊂ C such that T →G extends to TU → GU . Therefore we only need to modify T at
finitely many places C/U to get the group scheme T̃.
Let w ∈ C/U and zw an uniformizer in Aw. Since G(Aw) is an open compact subgroup in G(Qw)
we can fix a natural number n such that the Aw-group scheme T̃w whose R-valued points are
given by

T̃w(R) = {x ∈ T(R) ∣ x ∈ ker(Tw(R) → T(R/znw)) }

maps into Gw. Here T̃w is indeed a subgroup scheme of Tw (although not parahoric any more)
since it can be written as ker(Tw → p⋆(Tw ×Spec Aw Spec Aw/znw)) where p ∶ Spec Aw/znw →
Spec Aw is the natural projection so that Tw → p⋆(Tw×Spec AwSpec Aw/znw) arises naturally from
the adjunction of the Weil restriction. Once we fix such a group scheme T̃w for all w ∈ C/U we can
use faithfully flat descent [BLR90, section 6.1, theorem 6] for the group scheme ( ∐

w∈C/U

Tw)∐TU

over ( ∐
w∈C/U

Spec Aw)∐U to glue these to a group scheme T̃ over C satisfying, which is of finite

type by[Gro65, Proposition 2.7.1], smooth by [Gro67, Proposition 17.7.1] and satisfies the desired
properties. We denote by u the morphism T̃→ T and by f the morphism T̃→ G.

(Step 2) Now we write w = (w1, . . . ,wm) for the set of all closed points in C̃ which lie in the
preimage of v under π̃ ∶ C̃ → C. Moreover let L ∶= (L, r1, . . . , rm, τL) be any global Gm-shtuka in
∇mH 1(C̃,Gm)w(Falg

q ). Then we have the morphism

π̃⋆ ∶ ∇mH 1(C̃,Gm)w �→ ∇nH (C,T)v

which is a product of morphisms as in proposition 3.12 from section 3.2. Under this morphism
L is send to a global T-shtuka π̃⋆L in ∇nH 1(C,T)v(Falg

q ). Due to the fact that u ∶ T̃ → T is
generically an isomorphism, the induced morphism

u⋆ ∶ ∇nH 1(C, T̃)v �→ ∇nH 1(C,T)v

is surjective by theorem 3.20. This is good for us, because it means that π̃⋆L is coming from a
global T̃-shtuka L̃ in ∇nH 1(C, T̃)v(Falg

q ). Afterwards we apply the morphism

f⋆ ∶ ∇nH 1(C, T̃)v �→ ∇nH 1(C,G)v

from theorem 3.26 to L̃ and call its image G. In particular for all v ∈ v the local Gv-shtuka Γv(G)
arise from the local T̃v-shtuka Γv(L̃) by applying fv⋆. Over F

alg
q the local T̃v-shtuka Γv(G)

is isomorphic to (L+T̃v, bv) for some bv ∈ LTv(Fq). Since Tv is anisotropic modulo its center,
the Newton point of bv, wich is a morphism form the pro-algebraic multiplicative group D (see
[Kot85]) to Tv, factors through the center of Tv. This means by definition that bv is a basic
element in B(Gv).
Note that we didn’t work with any boundedness conditions yet. For sure there exists appropriate
bounds Ẑ ′

v in F lGv such that G is even an element in ∇Ẑ′v
n H 1(C,G)v. If we denote by τ ′v the

unique length zero element in Adm(Ẑ ′
v) and τ ′v ∶= (τ ′v)v∈v, then the third step will show that G

can be modified to a global G-shtuka G′ that lies in the minimal Kottwitz-Rapoport stratum
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KRτ ′v of ∇Ẑ′vH 1(C,G)v. So if we are lucky then Ẑ ′
v equals Ẑv and we are done with the proof.

But in general we startet with an arbitrary bound Ẑv. Therefore the goal of the second step
is to construct for any bound Ẑv a global Gm-shtuka L over F

alg
q in ∇mH 1(C̃,Gm) such that

the global G-shtuka resulting as in the explanation above lies in ∇Ẑv
n H 1(C,G)(Falg

q ). Actually
the third step shows that it suffices that G is bounded by some larger bound lying in the same
connected component in F lGv as Ẑv. Or in other words that the Kottwitz point of bv equals to
μv, where Γv(G) ≃ (L+G, bv) and μv is the element in π1(Gv)Σ corresponding to the connected
component of Ẑv.

Now unfortunately we can not construct this L at the moment, but let us explain the idea how
the construction should work. There is a condition on the bound Ẑv or rather the elements

μv ∈ π1(Gv)Σ0 that has to be satisfied to guarantee that the space ∇Ẑv
n H 1(C,G) is non-empty.

Let us look at the example GLr and let G be a GLr-shtuka. In that case G and σ⋆G correspond
to vector bundles of the same degree. Since the number of zeros and poles of τG , counted with
multiplicity, add to zero, we see that the sum Σ

v∈v
μv should equal to 0 in π1(G)Σ0 = Z. Now it is

not really clear to us how to formulate the right condition for a general group G. This question
is maybe also related to the question of the connected components of ∇Ẑv ,H

n H 1(C,G).
Once we know this condition, it should give us in some way a divisor D on C̃ that defines the
desired global Gm-shtuka L in the following way:
First we note that the Picard variety Pic○

C̃/Fq
is an abelian variety with a surjective endomorphism

1 − Frobq ∶ Pic○
C̃/Fq

(Falg
q ) �→ Pic○

C̃/Fq
(Falg

q )

L "→ L⊗ σ⋆L−1

Therefore we find for every line bundle OC̃
F
alg
q

(D) a line bundle L with OC̃
F
alg
q

(D) ≃ L ⊗ σ⋆L−1

or equivalently L with σ⋆L⊗OC̃
F
alg
q

(D) ≃ L. The chosen divisor D should have support in w so

that σ⋆L⊗OC̃
F
alg
q

(D)∣
C̃

F
alg
q

= σ⋆L∣
C̃

F
alg
q

/⋃i Γri

. Then we can define

τL ∶ σ⋆L∣C̃
F
alg
q

/⋃i Γri

→ L∣
C̃

F
alg
q

/⋃i Γri

to be the above isomorphism, which gives us a global Gm-shtuka. Moreover the chosen divisor
D should also guarantee that the Kottwitz point of κGv(bv), arising from the afterwards con-
structed G, equals μv, so that L gives the desired global Gm-shtuka in ∇mH 1(C̃,Gm)w. Note
that it is not clear that this is possible under the restriction that D has degree zero on every
component of C̃.

(Step 3) We have constructed a global G-shtuka G over F
alg
q in ∇nH 1(C,G) lying in Nb, where

b = (bv)v∈v and bv is the chosen basic element from the beginning. We now show that it can be
modified to a global G-shtuka G′ which lies in KRτ , where τ = (τv)v∈v with τv the length zero
element in Adm(Ẑv).
For this purpose we need to know that the affine Deligne-Lusztig variety Xτv(bv) is non-empty
for all v ∈ v. This can be seen as follows: The length 0 element τv is by definition σv-straight and
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defines a σv-conjugacy class [τv] ∈ B(W̃v). We recall that we introduced the bijective map (30)

Ψ ∶ B(W̃v)σv−str �→ B(Gv).

We can equip B(W̃v)σv−str with a partial ordering by defining [ω] ⩽ [ω′] if and only if this is
the case for some σv-straight representatives in W̃v. Then by [He16, Theorem B] the map Ψ

respects this order on B(W̃v)σv−str and the order of B(Gv). In particular [τv] is send to bv,
since the basic element bv is minimal as well. Knowing that τv is σv-straight we can choose a
representative τ̇v in Nv(Q̆v), apply [He14, Theorem 4.5] and conclude

Iv ⋅ τ̇v ⋅ Iv ⊂ [τ̇v] = [bv] = {g ⋅ τ̇v ⋅ σ⋆vg−1} ∈ B(Gv).

This means in particular Xτv(bv) ≠ ∅. Following this we can choose an element gv ∈ Xτv(bv) for
all v ∈ v. This defines (up to isomorphism) a quasi-isogeny

gv ∶ (L+Gv, τv) �→ (L+Gv, bv) for all v ∈ v.

We recall that we have Γv(G) ≃ (L+Gv, bv) by construction, so that we can use [AH14, Proposition
5.7] to pull back G along the quasi-isogenies gv to a global G-shtuka G′ satisfying Γv(G′) ≃
(L+Gv, τv). In particular G′ is bounded by Ẑv and lies in KRτv .
Apart from the missing argument in step 2 this proves the weak version of the fifth axiom.
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6 Consequences of the Axioms

In this chapter we collect some consequences of the axioms on ∇Ẑv ,H
n H 1(C,G).

6.1 Kottwitz-Rapoport Stratification

The second axiom guarantees that we can define the Kottwitz-Rapoport stratification definition
as in definition 4.17. By this definition it is clear that for all ω ∈ ∏

v∈v
Adm(Ẑv) we have

KRω = ⋃
ω′≼ω

KRω′

so that the Kottwitz-Rapoport stratification satisfies the strong stratification property. Using
theorem 4.14 from the fourth chapter and the known results about affine flag varieties we can
prove the following proposition about the dimension and smoothness of KR-strata. As before
we denote by Kv the parahoric subgroup Gv(Ăv) in Gv(Q̆v). The question when a KR-Strata
is non-empty will be answered in theorem 6.2.

Proposition 6.1 (compare [HR17, remark 3.4]). Let ω = (ωv)v∈v with ωv ∈ WKv/W̃v/WKv . If
the Kottwitz-Rapoport stratum KRω is non-empty, then it is smooth of dimension ∑

v∈v
l(Kvω

Kv
v ),

where Kvω
Kv is the element in KvW

Kv
v corresponding to ω by (23).

Proof: The smoothness follows from the fact that λG is smooth by the second axiom. Now
let y ∈ KRω. Then by theorem 4.14 there is an étale neighboorhood U of y with a section to

∇Ẑv ,H
n

̃H 1(C,G) such that the composition with ψ̂ is étale. By definition of KRω the element y
lands in the product of the Schubert cells ∏

v∈v
Cv =∶ C. Then C ×F lv (KRω ∩U) → C is étale and

since C has dimension ∑
v∈v

l(Kvω
Kv
v ) by proposition 4.9 the proposition follows. ◻

By the definition of the Kottwitz-Rapoport stratification, the image of λG is contained in
∏n

v∈v Adm(Ẑv). Using the weak version of the fifth axiom we now prove that for every shtuka
datum (C,G, v, Ẑv,H) and every ω ∈ ∏

v∈v
Adm(Ẑv) the Kottwitz-Rapoport stratum KRω is non-

empty. In other words:

Theorem 6.2 (compare [HR17, theorem 4.1]). Assume that the weak version of the fifth axiom
holds true. Then we have

λG(∇
Ẑv ,H
n H 1(C,G)

F
alg
q
) =∏

v∈v

Adm(Ẑv).

Proof: We firstly prove the theorem in the case that (C,G, v, Ẑv,H) is a shtuka datum, where
Gv is an Iwahori group scheme for all characteristic points v ∈ v. By the second axiom λG is

smooth and hence open. Therefore the image Im(λG) is an open substack of [∏
v∈v

L+Gv/∏
v∈v

Z̆v].

Let M be the preimage of Im(λG) under the projection map ∏
v∈v

Z̆v → [∏
v∈v

L+Gv/∏
v∈v

Z̆v] defined
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as the cartesian product
M ��

��

∏
v∈v

Z̆v

��

Im(λG) �� [∏
v∈v

L+Gv/∏
v∈v

Z̆v] .

It is an open subscheme of ∏
v∈v

Z̆v invariant under the action of ∏
v∈v

L+Gv. Now ∣∏
v∈v

Z̆v ∣ is a disjoint

union of finitely many orbits Oω with ω in ∏
v∈v

Adm(Ẑv) by the second axiom and definition 4.10.

Assume that one of these orbits Oω does not lie in M . Since M is open this implies that also
the closure Oω does not lie in M . Since the element τ = (τv) from the fifth axiom is the unique
minimal element in ∏

v∈v
Adm(Ẑv) we conclude from the closure relations of the Kottwitz-Rapoport

stratification that Oτ ⊂ Oω and consequently Oτ ∩M ≠ ∅. Now this implies that τ does not
lie in the image of λG which is a contradiction to the weak version of the fifth axiom hence
λG(∇

Ẑv ,H
n H 1(C,G)

F
alg
q
) = ∏

v∈v
Adm(Ẑv).

Now let (C,G, v, Ẑ ′
v,H) be a general shtuka datum. Choosing for all v ∈ v an Iwahori subgroup

in G′
v, we find a morphism f ∶ G→ G′ of group schemes as in the first axiom such that Gv is the

chosen Iwahori subgroup for all v ∈ v. Defining Ẑv by base change from Ẑ ′
v as in the first axiom

we get by the second axiom the following commutative diagram

∇Ẑv ,H
n H 1(C,G)

F
alg
q

πG,G′

��

λG �� ∏
v∈v

Adm(Ẑv)

��
∇Ẑ′v ,H

n H 1(C,G′)
F
alg
q

λ′
G �� ∏

v∈v
Adm(Ẑ ′

v)

The vertical arrow on the right hand side is surjective by construction and we just proved that
λG is surjective. This implies the subjectivity of λG′ and finishes the proof. ◻

Remark 6.3. If we know the strong version of the fifth axiom to be true, this theorem would even
imply λG(XG) = ∏

v∈v
Adm(Ẑv) for every geometric connected component XG in∇Ẑv ,H

n H 1(C,G)
F
alg
q

.

6.2 Newton Stratification

We have the following results that connects certain Kottwitz-Rapoport strata with Newton strata
in the Iwahori case.

Proposition 6.4. Let (C,G, v, Ẑv,H) be a shtuka datum such that Gv is a Iwahori subgroup
for all v ∈ v and let ω = (ωv)v∈v ∈ ∏

v∈v
Adm(Ẑv) ⊂ ∏

v∈v
W̃v such that all ωv are σv-straight elements

in W̃v. Denote by [ωv] their σv-conjugacy class in B(W̃v)σv−str and by bv ∶= Ψ([ωv]) their image
in B(Gv) under the map Ψ in (30). Then we have KRω ⊂ Nb, where b ∶= (bv)v∈v.

Proof: The preimage of ω under the map lG in the fourth axiom is given by

L+Gv(Falg
q )ω̇vL

+Gv(Falg
q )/L+Gv(Falg

q )σv
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for some representative ω̇v ∈ Nv(Q̆v). By proposition [He14, Proposition 4.5] we know that
L+Gv(Falg

q )ω̇vL
+Gv(Falg

q ) is containted in the single σv-conjugacy class bv ∶= [ω̇v] ∈ B(Gv).
Therefore we have

dG
⎛
⎝∏v∈v

L+Gv(Falg
q )ω̇vL

+Gv(Falg
q )/L+Gv(Falg

q )σv

⎞
⎠
= ([ω̇v])v∈v = (bv)v∈v =∶ b ∈ ∏

v∈v

B(Gv).

In particular we can for all G ∈ ∇Ẑv ,H
n H 1(C,G)(Falg

q ) with λG(G) = ω conclude by the com-
mutativity of the diagram in the fourth axiom δG(G) = dG ○ ΥG(G) = (bv)v∈v. Hence we have
KRω(Falg

q ) ⊂ Nb(Falg
q ) and by lemma 4.5 this is enough to conclude KRω ⊂ Nb. ◻

6.3 Central Leaves

The central leaves of ∇Ẑv ,H
n H 1(C,G) are defined as the substacks whose closed points equal the

fibers of ΥG. Concerning the image of ΥG we start with the following lemma, which tells us in
combination with theorem 6.2 that it suffices to check condition (ii) in the fourth axiom only for
an Iwahori subgroup.

Lemma 6.5 (compare [HR17, Lemma 3.1]). Let f ∶ G → G′ induce a morphism of shtuka data
as in the first axiom. In particular Ẑv arises as a base change of Ẑ ′

v. Then we have:

Im(ΥG) = l−1G
⎛
⎝∏v∈v

Adm(Ẑv)
⎞
⎠

if and only if Im(ΥG′) = l−1G′
⎛
⎝∏v∈v

Adm(Ẑ ′
v)
⎞
⎠

Proof: Let us prove the first direction and assume Im(ΥG) = l−1G (∏
v∈v

Adm(Ẑv)) which means

that ΥG in the following diagram

∇Ẑv ,H
n H 1(C,G) ΥG �� ��

��

l−1G (∏
v∈v

Adm(Ẑv))

��

∇Ẑ′v ,H
n H 1(C,G′)

ΥG′

�� l−1G′ (∏
v∈v

Adm(Ẑ ′
v))

is surjective. Now by definition of λG′ we know Im(λG′) ⊂ ∏
v∈v

Adm(Ẑv) and due to λG = ΥG′ ○ lG′

we know Im(ΥG′) ⊂ l−1G′ (∏
v∈v

Adm(Ẑ ′
v)). Therefore to prove Im(ΥG′) = l−1G′ (∏

v∈v
Adm(Ẑv)) it

suffices to prove that the vertical morphism on the right hand side in the above diagram is
surjective. This follows directly from the definitions, because Ẑv arises from base change of Ẑ ′

v.
On the other hand, let us assume that ΥG′ in the above diagram is surjective. Then we take

an element y ∈ l−1G (∏
v∈v

Adm(Ẑv)) and denote by y′ ∈ l−1G′ (∏
v∈v

Adm(Ẑ ′
v)) its image under the

vertical map on the right hand side. In particular Υ−1
G′(y′) ≠ ∅. Moreover lemma 5.2 states

that πG,G′(Falg
q )∣

Υ−1
G
(y)
∶ Υ−1

G (y) �→ Υ−1
G′(y′) is finite surjective. Consequently Υ−1

G (y) ≠ ∅ which

implies that ΥG is surjective and hence the lemma. ◻
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7 Drinfeld’s Moduli Space with Iwahori Level

In this chapter we discuss Drinfeld´s moduli space as an example of the moduli stack ∇Ẑv
n H 1(C,G),

to see that our results also apply to this more classical object. To connect Drinfeld’s moduli
space to some ∇Ẑv

n H 1(C,G) we will choose G to be a group scheme over C such that Gv is an
Iwahori group scheme for some fixed point v ∈ C and such that G∣C/{v} equals GLr ×Fq C/{v}.
We will begin the first section with a precise definition for more general group schemes of this
kind, where we also allow other parahoric group schemes at several points. This is followed by a
useful description of the torsors for these group schemes in terms of elementary modifications of
vector bundles.

7.1 Torsors for Parahoric Bruhat-Tits Group Gchemes with Generic Fiber
GLr

We take some smooth projective geometrically irreducible curve over Fq and fix n closed points
c1, . . . , cn ∈ C. The diagonal torus in GLr determines a standard appartement in the Bruhat-
Tits building of GLr over Qci and the Borel subgroup of upper triangular matrices determines
a base alcove τ in this appartement (see appendix page 85). We define the standard Iwahori
subgroup I as the stabelizer of τ . It has also another description. Namely if we define Λ

(i)
j ⊂ Qr

ci

for j = 0, . . . , r as the free Aci-submodule with basis z−1i e1, . . . , zi
−1ej , ej+1, . . . , er, where zi is

some uniformizer in Aci , we have I = ⋂j StabGLn(Qci)
Λ
(i)
j . Now we choose for each of the

points ci a parahoric subgroup Pi in GLr(Aci) that contains the standard Iwahori subgroup.
Such a parahoric subgroup corresponds to a facet in τ and is determined by its type Ti ⊂ S

with s0 ∉ Ti, where (Waff ,S) is the affine Weyl group with the Coxeter generating system S

as described in the appendix on page 85. We will explain in remark 7.5 why it is not really
a restriction to allow only the parahoric subgroups with s0 ∉ Ti and containing I. We have
Pi = ⋂

k,sk∉Ti

StabGLr(Qci)
Λ
(i)
k . The construction of Bruhat and Tits (see [BT84, page 356] and

[Tit79, subsection 3.4.1]) gives us a unique smooth affine group scheme Pi over Spec Aci such
that the generic fiber Pi,Qci

= GLr,Qci
, such that Pi(Aci) = Pi ⊂ GLr(Qci) and such that the

special fiber is connected. We can describe this group scheme on R-valued points for every Aci-
algebra R quite explicitely as follows (compare also [Hai05, section 3.2]). For simplicity we will
write the complete flag of the type Ti with li ∶= #(Ti/S) − 1 now as {0 = k

(i)
0 ⩽ . . . ⩽ k

(i)
li
} by

identifying {0, . . . , r − 1} with {s0, . . . , sr−1} = S.
Then consider the lattice chain of n + 1 lattices

L(i)
● ∶= L(i)

0 → ⋅ ⋅ ⋅ → L(i)
r

where L
(i)
0 = ⋅ ⋅ ⋅ = L(i)

k
(i)
1 −1

= Λ(i)
0 , L

(i)

k
(i)
1

= ⋅ ⋅ ⋅ = L(i)

k
(i)
2 −1

= Λ(i)

k
(i)
1

, . . .

L
(i)

k
(i)
li

= ⋅ ⋅ ⋅ = L
(i)
r−1 = Λ

(i)

k
(i)
li

and L
(i)
r = zi

−1Λ
(i)
0 . By defining L

(i)
●,R ∶= L

(i)
● ⊗Aci

R we can describe the

R-valued points of Pi as an r-tuple (g0, . . . , gr−1) ∈ AutR(L(i)
0,R)× ⋅ ⋅ ⋅×AutR(L(i)

r−1,R) such that the
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7.1 Torsors for Parahoric Bruhat-Tits Group Gchemes with Generic Fiber GLr

diagram

L
(i)
0,R

��

g0
��

. . . �� L
(i)
r−1,R

��

gr−1
��

L
(i)
r,R

g0
��

L
(i)
0,R

�� . . . �� L
(i)
r−1,R

�� L
(i)
r,R

commutes. Of course an R-valued point is in fact given by a li-tuple, but the redundant lattices
in the chain are advantegous when we describe the global group scheme over C. The description
gives us in this way morphisms ρk ∶ Pi → GLr,Aci

, (g0, . . . , gr−1) ↦ gk.

Remark 7.1. There is exactly one parabolic subgroup Pi in GLr of type Ti containing the Borel
subgroup of upper triangular matrices . Now Pi equals the preimage of Pi(Aci/(zi)) under the
projection GLr(Aci) → GLr(Aci/(zi)). We can define the functor:

{flat Aci-algebras} →Groups R ↦ {g ∈ GLr(R) ∣ g mod zi ∈ Pi(R/(zi))}

By [Yu15] this functor is representable by Pi. One should be aware that this description of the
functor of points for Pi is only true for flat Aci-algebras.

Now we have the group scheme (∐i Pi)∐GLr×FqC/{c1, . . . , cn} → (∐i Spec Aci)∐C/{c1, . . . , cn}.
As described in § 2.17 we use faithfully flat descent along the map (∐i Spec Aci)∐C/{c1, . . . , cn} →
C with the descent datum ϕ = id to glue it to a group scheme G → C. Like in the local case we
would like to have a description of this group scheme as an automorphism group.
We will define a category pVec fibered over CÉt of certain chains of vector bundles. G will
then be the automorphism group of one of its objects. Let D be the divisor ∑n

i=1 ci on C. For
f ∶ S → C let Q be some locally free Of⋆D-module on the divisor f⋆D. Given a map V0

α�→ V1
of two vector bundles over S, we recall that we call V0 an elementary modification of V1 by Q if
there is a quotient map V1

ϕ�→Q → 0 such that V0
α�→ V1 is the kernel of ϕ.

We now define the category pVec as the category fibered over CÉt whose fiber category pVecS

for some scheme S with f ∶ S → C has the objects

{(V●, α●) = V0
α0�→ V1

α1�→ . . .
αr−1��→ Vr = V0(f⋆D)}

where Vj are vector bundles over S and αj are elementary modifications by some locally free
sheaf Qj on S ×C D, where Qj ∣ci×CS is locally free of rank d

(i)
j ∶= dim L

(i)
j+1/L

(i)
j . The category

pVec therefore depends on C, on r and the dimensions d(i)j , but we omit this in the notation. A
morphism from (V●, α●) to (V ′●, α′●) in pVecS is given by a tuple (g0, . . . , gr−1) where gj ∶ Vj → V ′j
is an isomorphism of vector bundles such that gi+1 ○αi = α′i ○gi. There is the following "standard"
object (V●, a●) in pVecC . Let Djl for j = 1, . . . , r − 1 and l = 1, . . . , r be the divisor on C defined
by Djl = ∑

k, sm∉Tk for some l⩽m⩽j

ck. In particular we have Djl = ∅ if j < l. Then we define

V● ∶= V0
a0�→ . . .

ar−1��→ Vr

as the chain of vector bundles with V0 = ⊕r
l=1OC ⋅el and Vj = ⊕r

l=1OC(Djl)el for j = 1, . . . , r−1 and
Vr = V0(D). Here the aj are given by the natural inclusion of the sheafs and aj is an elementary
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7 DRINFELD’S MODULI SPACE WITH IWAHORI LEVEL

modification by the locally free sheaf on D associated to the module⊕iL
(i)
j+1/L

(i)
j . Using this stan-

dard object we define the group scheme G̃→ C by G̃(R) = Aut(V●⊗CSpec R) for every Spec R →
C. The construction of V● shows that the pullback of V● to Spec Aci gives exactly the chain of
modules L(i)

● and the pullback to C/{c1, . . . , cn} gives the trivial modules Γ(OC , C/{c1, . . . , cn})r

with ai∣C/{c1,...,cn} = id. In particular this shows G̃ ×C Spec Aci = Pi and G̃ ×C (C/{c1, . . . , cn}) =
GLr ×Fq (C/{c1, . . . , cn}). So G̃ restricted to (∐i Spec Aci)∐(C/{c1, . . . , cn}) is isomorphic to
G with the same descent datum which shows G̃ ≃ G.
The following lemma is the crucial step to see afterwards that the category of G-torsors over CS

is equivalent to the fiber category pVecCS
. Actually pVec is not only a fibered category over

CÉt but also a stack, since objects can be constructed locally by gluing.
Therefore the following lemma tells us exactly that pVec is a gerb in the sense of definition
[Gir71, Def 2.1.1].

Lemma 7.2. Let S be a scheme over C. Then any two objects (V●, α●) and (V ′●, α′●) in pVecS

are Zariski locally isomorphic. That means there is a covering U → S such that (V●, α●) ×S U ≃
(V ′●, α′●) ×S U .

Proof: It is clearly enough to show that each object in pVec is locally isomorphic to (V●, a●)×CS.
So let (V●, α●) be any object over S → C. Since the question is local we can assume that S is
affine and consider the problem only for S ×C (C/{c2, . . . , cn}) =∶ SpecA. The argumentation
over the other opens of the form C/{⋃i≠j ci} is analogous. Let C/{c2, . . . , cn} =∶ SpecR and
let m1 ⊂ R be the maximal ideal corresponding to c1. Now (V●, α●) corresponds to a chain of
locally free A-modules M0

α0�→M1
α1�→ . . .

αr−1��→Mr such that αr−1 ○ ⋅ ⋅ ⋅ ○ α1 equals the inclusion
M0 = m1Mr ↪Mr and Mj+1/Mj is a locally free A/m1A module of rank dimFc1

L
(1)
j+1/L

(1)
j . Let P1

be the parabolic subgroup of GLr as in remark 7.1. It is the stabilizer of the flag 0 ⊂ L(1)
1 /L(1)

0 ⊂
⋅ ⋅ ⋅ ⊂ L

(1)
r /L(1)

0 . Let Mj ∶= Mj/M0 then 0 ↪ M1 ⋅ ⋅ ⋅ ↪ Mr gives us an A/m1-valued point in
the partial flag variety GLr/P1 =∶ Flag. This morphism has Zariski locally a section (compare
[Spr98, Theorem 8.5.2]). So after passing to a Zariski covering of Spec A the A/m1-valued point
of Flag comes from an element g ∈ GLr(A/m1) and we can identify 0 → M1 → ⋅ ⋅ ⋅ → M r with
0→ g(V1/V0⊗Fci

A/m1) → ⋅ ⋅ ⋅ → g(Vr/V0⊗Fci
A/m1), where Vj/V0⊗Fc1

A/m1 = Lj/L0⊗Fc1
A/m1 =

dimFc1
Vj/V0

⊕
i=1

A/m1 ⋅ ei. We define (v1, . . . , vr) ∶= (ge1, . . . , ger) as a basis of M r and choose lifts

v1, . . . , vr ∈ Mr with v
k
(1)
l−1

+1
, . . . , v

k
(1)
l

∈ Mkl for l = 1, . . . , l1 = #(S/T1) − 1. Now the Nakayama

lemma [Eis95, corollary 4.7] applied to M
k
(1)
l A ⋅ v

k
(1)
l−1

+1
+ ⋅ ⋅ ⋅ +A ⋅ v

k
(1)
l

shows that there is an

x ∈ m1A such that v
k
(1)
l−1

+1
, . . . , v

k
(1)
l

is a basis for M
k
(1)
l

on Spec A[ 1
1−x
] =∶ U . This means that

V0×CU → ⋅ ⋅ ⋅ → Vr×CU is isomorphic to V0∣U → ⋅ ⋅ ⋅ → Vr∣U . Now Spec A×C c1 = Spec A/m1A ⊂ U
and on Spec A/Spec A/m1A the object (V●, α●) is clearly locally isomorphic to (V●, a●) since all
the αj are isomorphisms. This proves the lemma. ◻
Once we know that pVec is a gerb and that G is the automorphism group of (V●, a●) it follows
by [Gir71, Corollaire 2.2.6] that pVec is equivalent to the gerb of G-torsors on CÉt, which means
in particular that for any Fq-scheme S the fiber category pVecS is equivalent to the category
H 1(C,G)(S) of G-torsors over CS . We describe this equivalence more explicitely, so let S be a
Fq-scheme.
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Proposition 7.3. We have a category equivalence

Φ ∶ pVecCS
→H 1(C,G)(S)

Proof: Let (V●, α●) in pVecCS
then the functor Φ sends (V●, α●) to Isom((V●, α●), (V●, a●) ⊗C

CS), where the latter sheaf becomes an Aut(V●, a●) = G torsor by composition on the right with
an element in G.
Now let U → CS be a covering with an isomorphism γ ∶ (V●, α●) ×CS

U → (V●, a●) ×C U as in
7.2 and set U ′′ ∶= U ×CS

U . Then (V●, α●) is isomorphic to the object coming from the descent
datum ((V● ×C U,a●), ϕ) with ϕ ∶= p⋆2γ ○ p⋆1γ−1 ∈ Aut(V●, a●)(U ′′). Now the same γ induces an
isomorphism

Isom((V●, α●) ×CS
U, (V●, a●) ×C U) → Isom((V●, a●) ×C U, (V●, a●) ×C U) = G ×C U.

Hence Isom((V●, α●), (V●, a●)) is isomorphic to the torsor coming from the descent datum (G×C
U,ϕ) and it follows that Φ is essentially surjectiv. Namelly if G is any G-torsor in H 1(C,G)(S)
isomorphic to the one coming from the descent datum (G ×C V,ψ) for some covering V → CS

and ψ ∈ G(U ′′), then let (V●, α●) be the object in pVecCS
coming from the descent datum

((V●, a●) ×C V,ψ). This means Ψ(V●, α●) ≃ G. Since the automorphisms of the descent data are
the same, the proposition follows. ◻

Remark 7.4. Actually the proof shows more generally that we also have a category equivalence
from pVecU to the category of G-torsors over U for all schemes U over C.

Remark 7.5. When we defined the group scheme G, we have choosen a parahoric subgroup for
every point ci and made some assumptions on these subgroups (s0 ∉ Ti and I ⊂ Pi). We would
like to explain why this does not cause any loss of generality. If we choose for every point ci some
arbitrary parahoric P̃ then the associated parahoric group scheme over Spec Aci can be realized
as the automorphisms of some other periodic lattice chain L̃(i) in Qr

ci .
We can use these lattice chains to glue them to a chain of vector bundles (Ṽ●, ã●) over C with

(Ṽ●, ã●) ×C Spec Aci = L̃
(i)
● and (Ṽ●, a●) ×C C/{c1, . . . , cn} = (Or

C/{c1...,cn}
, id●). Then we can as

before define a group scheme G̃ over C by G̃(S) = Aut((Ṽ●, ã●) ×C S). Since we can always

find a g ∈ GLr(Qci) that transforms L̃
(i)
● to some lattice chain L

(i)
● of the form described at the

beginning of this section, it follows that (Ṽ●, ã●) is locally isomorphic to (V●, a●) which implies
that G̃ is locally, but not necesarrily globally, isomorphic to G. Now the functor

pVecCS
→H 1(C, G̃)(S) (V●, α●) ↦ Isom((V●, α●), (Ṽ●, ã●))

gives a category equivalence as well. Nevertheless one should be aware that a G-torsor G is in
general not a G̃-torsor, since G̃ does not act in general on G.

Above we chose a g ∈ GLr(Qci) with gL̃
(i)
● = L(i)

● which implies gP̃ig
−1 = Pi. Parahoric subgroups

of the same type are always conjugate, but since the operation of Ω does not fix the type there
are further parahoric subgroups that are conjugate. In the case of GLr we can find for every
parahoric subgroup Pi with type T̃i a conjugated parahoric subgroup P of type T satisfying the
condition s0 ∉ T , since the operation of Ω translates the type. This parahoric subgroup P can
then be conjugated to the unique parahoric subgroup Pi of the same type Ti = T containing the
standard Iwahori subgroup I.

75
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7.2 Drinfeld’s Moduli Space with Iwahori Level Structure

In this section we will first of all fix a particular Shtuka data (C,G, v, Ẑv,H) in the sense of

definition 3.1 that defines a moduli space ∇Ẑv ,H
n H 1(C,G) of G-shtukas. We give a definition of

Drinfelds moduli space with Iwahori level structure and prove that this is isomorphic to a closed
substack of ∇Ẑv ,H

n H 1(C,G).
We fix a curve C with the two closed points v1 = ∞ and v2 with residue fields Fv1 and Fv2

lying in the opens U1 = Spec A and U2 of C. Let Iv2 be the Iwahori group scheme defined over
Spec Av2 , that corresponds to the standard Iwahori group of GLr. Its R-valued points Iv2(R)
for an Av2-algebra R are given as the automorphisms of the lattice chain Λ●,R as described at the
beginning of chapter 7.1. Then we use faithfully flat descent along the map U1∐Spec Av2 → C

to glue the group scheme GLr,U1∐ Iv2 → U1∐Spec Av2 to a Bruhat-Tits group scheme over
C. As explained in the chapter 7.1 it is also the automorphism group of some chain of vector
bundles.
Let Q be the function field of C and let G ∶= G ×C Spec Q = GLr be the generic fiber of G. For
the completions of the stalks at the points v1 and v2 we have Av1 = Fv1⟦z1⟧ and Av2 = Fv2⟦z2⟧
and its quotient fields are Qv1 = Fv1((z1)) and Qv2 = Fv2((z2)) respectively. By construction the
base changes of G to these rings are given as

Gv1 ∶= G ×P1
Fq

Spec Av1 = GLr,Av1
Gv1 = G ×C Spec Qv1 = GLr,Qv1

Gv2 ∶= G ×P1
Fq

Spec Av2 = Iv2 Gv2 = G ×C Spec Qv2 = GLr,Qv2

Now we define the bounds Ẑ1 and Ẑ2 as the scheme theoretic closure of the orbits

Ẑv1 = (L+Gv1 ×Fv1
Fv1⟦ζ1⟧)

⎛
⎜⎜
⎝

1 0

⋱
0 (z1 − ζ1)−1

⎞
⎟⎟
⎠
(L+Gv1 ×Fv1

Fv1⟦ζ1⟧)

(L+Gv1 ×Fv1
Fv1⟦ζ1⟧)

⊂ F̂ lGv1

and

Ẑv2 = ⋃
s∈W0

(L+Gv2 ×Fv2
Fv2⟦ζ2⟧)s

⎛
⎜⎜
⎝

z2 − ζ2 0

⋱
0 1

⎞
⎟⎟
⎠
s−1(L+Gv2 ×Fv2

Fv2⟦ζ2⟧)

(L+Gv2 ×Fv2
Fv2⟦ζ2⟧)

⊂ F̂ lGv2

where s denotes here the permutation matrix corresponding to s ∈W0. This definition has also
the advantage that Ẑ1 and Ẑ2 are reduced and irreducible and in particular flat [Har77, chapter

III proposition 9.7] so that ∇Ẑv

2 H 1(C,G) is flat. The reflex rings of these bounds are Av1 and

Av2 . Now (C,G, v, Ẑv) defines the moduli stack ∇Ẑv

2 H 1(C,G) over Spf Av ∶= Spf κ⟦z1, z2⟧,
where κ is the compositum of Fv1 and Fv2 . There is the covering ∇Ẑv

2
̃H 1(C,G) of this moduli

stack whose S-valued points are given by

∇Ẑv

2
̃H 1(C,G)(S) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(G, s1, s2, τG , ε1, ε2) ∣
G ∈ ∇Ẑv

2 H 1(C,G)(S)
and εi ∶ Γvi(σ⋆G) → L+Gvi,S

is a trivialization

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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Actually the map ∇Ẑv

2
̃H 1(C,G) �→ ∇Ẑv

2 H 1(C,G), (G, ε1, ε2) ↦ G is an L+Gv1 × L+Gv2-torsor.

Furthermore for a point (G, ε1, ε2) ∈ ∇
Ẑv

2
̃H 1(C,G)(S) and a trivialization αi ∶ Γvi(G) → L+Gvi,S

the composition
L(αi) ○ Γvi(τG) ○L(εi−1) ∶ LGvi,S → LGvi,S

corresponds to a morphism S → LGvi and induces therefore an S-valued point in F lvi that is
independent of αi. In particular it gives a morphism S → F̂ lvi which factors by the boundedness

condition through Ẑvi . This defines a morphism ∇Ẑv

2
̃H 1(C,G) → Ẑv1 ×̂Fq Ẑv2 that forms the local

model roof

∇Ẑv

2
̃H 1(C,G)

�� ��
∇Ẑv

2 H 1(C,G) Ẑv1 ×̂Fq Ẑv2

.

Let κ be the residue field of Spf Av. Since we are interested in the stratifications of the special

fiber ∇Ẑv

2 H 1(C,G)×κ its worth to describe the special fibers Zvi ∶= Ẑvi ×Spf Avi
κvi in terms of

Schubert varieties.
By the Bruhat decomposition X⋆(T ) = L+Gv1/LGv1/L+Gv1 and since μ1 = (0, . . . ,0,−1) is a
minimal element in X+(T ) the special fiber Zv1 is given by the Schubert variety S(zμ1).
For Gv2 we have the Cartan decomposition W̃ = X⋆(T ) ⋊W0 = L+Gv2/LGv2/L+Gv2 . We recall
that we can identify W̃ in this case with a subgroup of LGv2(Fq) by sending zμ ⋅ s ∈ W̃ with

μ = (u1, . . . , ur) to
⎛
⎜⎜
⎝

zu1
v2 0

⋱
0 zur

v2

⎞
⎟⎟
⎠
⋅ s where s ∈ W0 corresponds to some permutation matrix.

Furthermore we can write W̃ = Waff ⋊ Ω where Ω is the stabilizer of the base alcove and in
this case given by Ω = Z ⋅ β with β = z(0,...,0,1)sr−1, . . . , s1 (see appendix A). In particular β is

a length 0 element that corresponds to the matrix

⎛
⎜⎜⎜⎜⎜
⎝

0 1

⋱ ⋱
⋱ 1

zv2 0

⎞
⎟⎟⎟⎟⎟
⎠

and s1 . . . sr−1β corresponds

to
⎛
⎝

zv2
1

⋱
1
1

⎞
⎠
. Recall that s0 = z(−1,0,...,0,1)s1s2, . . . , sr−1 . . . , s2s1 corresponds to the matrix

⎛
⎜
⎝

0 z−1v2
1

⋱
1

zv2 0

⎞
⎟
⎠

so that one verifies z
(−1,0,...,0, 1

&
i

,0... )

= si . . . sr−1s0s1 . . . si−2sr−1 . . . s1 for i = 2, . . . , r.

Multiplying this element from the left to s1 . . . sr−1β = z(1,0,...,0) gives the identities

s1 . . . sr−1β = z(1,0,...,0), s2 . . . sr−1s1β = z(0,1,0,... ), . . . , s0 . . . sr−2β = z(0,...,0,1) (33)

The generic fiber Zv2 is therefore the union of the Schubert varieties ⋃s∈W0
S(z(s(μ2))) with

μ2 = (1,0, . . . ,0) and it contains the L+Gv2 orbits of all the elements ω ∈ W̃ with ω ⩽ zs(μ2) for
some s ∈W0. This is by definition the admissible subset

Adm(μ2) ∶= {ω ∈ W̃ ∣ ∃s ∈W0 with ω ⩽ zs(μ2) },

that can also be described as follows.
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Lemma 7.6. The set Adm(μ2) corresponds bijectively to the set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(aij) = A ∈ GLr(Fq(z)) ∣

A is monomial with exactly one entry equal to z

and r-1 entries equal to 1 satisfying
(aij) ≠ 1 for i > j and (aij) ≠ z for i < j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Proof: Let A be as in the set described above and akl = z with k > l. This implies aii = 1 for
all i > k and all i < l. Denote by (w1, . . . , wm) the set {j ∈ N ∣ l < j < k and ajj = 1}. Now
A in the above set is uniquely determined by these conditions (akl = z and awiwi = 1). The
element sk . . . sr−1s0s1 . . . sl−2β (if k = r let sk . . . sr−1 = id and if l = 1 let s0s1 . . . sl−2 = id) corre-
sponds to the monomial matrix with akl = z and aii = 1 if and only if i > k or i < l. It follows
ω = sw1 . . . swmsk . . . sr−1s0s1 . . . sl−2β corresponds to A. Now sw1 . . . swmsk . . . sr−1s0s1 . . . sl−2 is
obviously a subword of one of the elements in (33) so that ω lies in Adm(μ2). Furthermore it is
clear that all subwords of s(μ2) with s ∈W0 and therefore all elements in Adm(μ2) arises from
a matrix A as above. ◻

Let us further denote with b0 the basic Newton polygon (1r , . . . ,
1
r ) in B(Gv1). Let Nb0 be

the Newton stratum corresponding to b0. That means Nb0(S) corresponds of those points

G ∈ ∇Ẑv

2 H 1(C,G)κ such that for all geometric points s ∈ S the local shtuka Γv1(G)s is iso-
morpic to (L+Gv1,κ(s̄), b0).

The Drinfeld moduli space
We just recall the definition of the Drinfeld moduli varieties and then define the Drinfeld moduli
space with Iwahori level structure. Let d ∈ N and U1 = Spec A. The Drinfeld moduli space Dr

(without level structure) is defined as the category fibered over (Fq)Ét whose fiber category for
some scheme S is given by

Dr(S) =
⎧⎪⎪⎨⎪⎪⎩
(E,ϕ, γ)∣ where γ ∶ S → Spec A and (E,ϕ) is a

Drinfeld A-module of rank r over (S, γ)

⎫⎪⎪⎬⎪⎪⎭
.

We refer to the appendix B for the definition of Drinfeld modules. Morphisms from (E,ϕ, γ) to
(E′, ϕ′, γ′) in this fiber category only exist if γ = γ′ and are given by isomorphisms of Drinfeld
A-modules. Dr is a Deligne-Mumford stack of finite type over Fq. There is a map Dr → Spec A

sending (E,ϕ, γ) to γ and we can consider the base change Dr ×Spec A Spf Av2 =∶ Dr
Av2

as well
as its special fiber Dr ×Spec A Spec Fv2 =∶ Dr

v2 . The fibercategory Dr
Av2
(S) (resp. Dr

v2(S)) of this
stack consists only of Drinfeld A-modules whose characteristic γ factors through SpfAv2 (resp.
Spec Fv2). Now we define the Drinfeld moduli space with Iwahori level at v2 Dr

I,Av2
as the stack

fibered over (Fq)Ét whose fiber category Dr
I,Av2

(S) has the objects

{E0

α1←� E1

α2←� . . .
αr←� Er}

where Ei ∶= (Ei, ϕi) are Drinfeld A-modules in Dr
Av2
(S) and αi ∶ Ei → Ei−1 are isogenies of

order q, (i.e. ker(αi) is a finite group scheme of order #Fvi) and the composition αr ○ ⋅ ⋅ ⋅ ○ α1 ∶
underlineEr → E1 has kernel Er[v2].
A morphism in the fiber category from (E0

α1←� . . .
αr←� Er) to (E′

0

α′1←� . . .
α′r←� E′

r) is given by
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a tuple (δ0, . . . , δr) where δi ∶ Ei → E′
i is an isogeny with α′i ○ δi = δi−1 ○ αi for i = 1, . . . , r. We

denote by Dr
I,v2

the special fiber Dr
Av2

×Spf Av2
Fv2 . Now we have the following remark.

Remark 7.7. Using the category (anti) equivalence [Har17, Theorem 3.5] of Drinfeld A-modules
over R and effective Anderson A-motives (M,τM) of dimension 1 over R with the condition that
M is finitely generated as R{τ} module, we see that the category Dr

I,Av2
is equivalent to the

category whose objects are given as

{M1

β1�→ . . .
βr�→M r}

where M1, . . . ,Mr are pure Anderson A-Motives of rank r and dimension 1 over (S, γ ∶ S →
Spf Av2) and β1, . . . , βr are isogenies of degree 1.

Proposition 7.8. We have a faithful essentially surjective functor Ψ ∶ Nb0 → Dr
I,v2

.

Proof: Let S = Spec R be a scheme over Fq and G = (G, s1, s2, τ) ∈ Nb0(S). The equiva-
lence in 7.3 maps G and σ⋆G to a chain of vector bundles V0

α1�→ . . .Vr−1
αr�→ Vr and σ⋆V0

α1�→
. . . σ⋆Vr−1

σ⋆αr���→ σ⋆Vr, where all the arrows are elementary modifications by OS×v2 . Further-
more τ ∶ σ⋆G∣CS/(Γs1∪Γs2)

→ G∣CS/(Γs1∪Γs2)
induces by the same equivalence and remark 7.4 a

tuple (τ0, . . . , τr), where τi ∶ σ⋆Vi∣CS/(Γs1∪Γs2)
→ Vi∣CS/(Γs1∪Γs2)

satisfying τi ○ αi = σ⋆αi ○ τi−1
for i = 1, . . . , r. Let Mi be the locally free AR-module of rank r corresponding to Vi∣CS/Γs1

where CS/Γs1 = Spec AR. Then M i = (Mi, τMi) is an Anderson A-motive and we get a chain
(M0

α1�→ . . .
αr�→M r) of isogenies of degree 1 of Anderson A-motives that are isomorphisms out-

side Γs2 .
We want to prove that all the M i are effective of dimension 1 and pure. To prove the dimension
and the effectivity it suffices to prove it for the local shtuka M i ⊗AR

R⟦z2⟧ associated to M i.
Now we can choose a covering Spec R′ → Spec R and a trivialisation β′ ∶ L+

v2(G) ×R R′ ∼�→
L+Gv2,R′ and β ∶ σ⋆L+

v2(G)×RR′ ∼�→ L+Gv2,R′ . This corresponds by remark 7.4 to trivialisations
β′i ∶Mi ⊗AR

R′⟦z2⟧ → R′⟦z2⟧r and βi ∶ σ⋆Mi ⊗AR
R′⟦z2⟧ → R′⟦z2⟧r such that

R′⟦z2⟧r
( z2 1

⋱
)

��

β−10
��

R′⟦z2⟧r

β−11
��

(
1
z2

1
⋱

)
�� . . .

( z2 1
⋱
)

�� R′⟦z2⟧

β−1r

��
σ⋆M0 ⊗AR

R′⟦z2⟧
σ⋆α1×id��

τ0
��

σ⋆M1 ⊗AR
R′⟦z2⟧

σ⋆α2×id ��

τ1
��

. . .
σ⋆αr×id�� σ⋆Mr ⊗AR

R′⟦z2⟧
τr

��
M0 ⊗AR

R′⟦z2⟧
α1×id ��

β′0
��

M1 ⊗AR
R′⟦z2⟧

α2×id ��

β′1
��

. . .
αr×id �� Mr ⊗AR

R′⟦z2⟧

β′r
��

R′⟦z2⟧r
( z2 1

⋱
)

�� R′⟦z2⟧r
(
1
z2

1
⋱

)
�� . . .

( z2 1
⋱
)

�� R′⟦z2⟧

commutes. Since β′○τ ○β−1 factors through Zv2 we can choose the trivializations β′ and β in such
a way, that β′○τ ○β−1 is given by a matrix T as in lemma 7.6. Since β′0○τ0○β−10 arises as (ρ0)⋆(β′○
τ ○β−1) where ρ0 ∶ Iv2 → GLr,Av2

was the standard representation, it follows that also β′0○τ0○β−10 is
given by T . Since T ∈Matr(R⟦z2⟧) and β′0, β0 ∈ Iv2(R′⟦z2⟧) ⊂ GLr(R′⟦z2⟧) this implies τ0×idR′ ∈
Matr(R′⟦z2⟧). In addition coker(τ0 × idR′) is locally free of rank 1 over R′ and annihilated by
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(z2) since cokerT has this property. The fact that R′ is faithfully flat over R implies that the
same is true for τ0 which means that M0 is an effective Anderson A-motive of dimension 1. We
have β′i ○ τi ○β−1i = diag(z2, . . . , z2

JKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKQ
i

,0, . . . ,0)β0 ○ τ0 ○ β−1 + 0
JKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKQ

T

diag(z−12 , . . . , z−12
JKKKKKKKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKKKKKKKQ

i

,0, . . . ,0) and by the

conditions on T this gives again a monomial matrix lying in Matr(R⟦z2⟧) with determinant t.
Similar as above it follows that M i = (Mi, τi) is an effective Anderson motive of dimension 1.
Since G lies in the Newton stratum Nb0 the local shtuka Γv1(G)s is for every geometric point

s ∈ Spec R isomorphic to the iso-shtuka (κs⟦1t ⟧,(
0 z−12
1
⋱

1 0

)) Since Γv1(G) equals the local shtuka

of Mi at v1 for all i this means by definition that M i is pure. By proposition ?? in the appendix
M i is pure if and only if Mi is finitely generated as R{τ} module. Therefore the chain of
Anderson motives (M0

α1�→ . . .
αr�→ M r) defines by remark 7.7 an object in Dr

I,v2
(S) and it is

clear, gives a functor Ψ ∶ Nb0 → Dr
I,v2

.
Now let f1, f2 ∶ G → G′ be two morphisms in Nb0 with Ψ(f1) = Ψ(f2). The construction of the
functor and the equivalence 7.3 that this implies f1∣CS/Γs1

= f2∣CS/Γs1
. As before we deduce with

lemma 3.11 f1 = f2, which means that Ψ is faithful.
To see that the functor is essentially surjective, let (M0

α1�→ . . .
αr�→ M r) ∈ Dr

I,Fv2
(S). One

has to extend the locally free module M0 to a locally free module V0 of rank r over CS . This
determines then extensions Vi of Mi satisfying the condition that αi extends to Vi and that αi is
an isomorphism outside of Γs2 . Using proposition 7.3 this corresponds to an G-torsor G with an
Frobenius morphism τ ∶ σ⋆G∣CS/(Γs1∪Γs2)

→ G∣CS/(Γs1∪Γs2)
. The matrices T in lemma 7.6 are the

only ones that corresponds to an element ω ∈ W̃ and that satisfies the condition that det(T ) ∈
z2(Fv2[z2])⋆ and that T conjugated by diag(z2, . . . , z2,0, . . . ,0) liies again in Matr(R⟦z2⟧). This
implies that τ is bounded by Zv2 . Since all the M i are pure G = (G, s1, s2, τ) is an element in
Nb0(S) with Ψ(G) = (M0

α1�→ . . .
αr�→M r). ◻

Remark 7.9. If one choose the extension of M0 for all points in Dr
I,Fv2

in a compatible way one
gets a fully faithful functor Dr

I,Fv2
→Nb0 .
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A GLr over Local Fields

For the discussion about Dinfeld’s moduli space with Iwahori level structure a good knowledge of
the combinatorics of GLn over local fields is advantageous. We discuss the notions of root datum,
dominant coroots, positiv coroots, coroot basis, (affine, extended) Weyl group, fundamental
group, Bruhat order, the standard appartement and the Bruhat-Tits building.
As a scheme G = Gln is given by Spec A, with A ∶= Z[Xij , Y ]1⩽i,j⩽n

(Y det(Xij) − 1)
. The maps

m ∶ G ×G→ G m⋆ ∶ A→ A⊗A Xij ↦
n

∑
l=1

Xil ⊗Xlj

e ∶ Spec Z→ G e⋆ ∶ A→ Z Xij ↦ δij

i ∶ G→ G i⋆ ∶ A→ A Xij ↦ (−1)i+jY ⋅ (j, i −minor)

make Spec A into a group scheme.
We choose the subgroup of upper triangular matrices as a Borel subgroup B. For the maximal
Torus T we chose the diagonal matrices. Now the character group X⋆(T ) ∶= Hom(T,Gm) is
isomorphic to Zn. Let α ∈ Hom(T,Gm) given by α⋆ ∶ Z[z, z−1] → A, z ↦ ∏n

i=1 x
ri
ii with ri ∈ Z.

Then this α is mapped to (r1, . . . , rn). We denote by χi the corresponding basis in X⋆(T ).
The Cocharactergroup X⋆(T ) ∶=Hom(Gm, T ) is also isomorphic to Zn.

Zn →X⋆(T ) (r1, . . . , rn) ↦ γ with xii ↦ zri

We denote by ei ∈ X⋆(T ) the image of the standard basis vectors in Zn. (Note that in
[bruhat gorups] the negative of this basis is choosen.) Note that there is a natural pairing
X⋆(T ) ×X⋆(T ) �→ Z = End(Gm). Now we will consider Gln over some base field K. At the
moment this can be any field, later we will require K to be a non-archimedean local field.

The finite Weyl group and its longest element: Let N ∶= NG(K)(T (K)) be the normalizer of
T in G. It is given by the subgroup of the general permutation matrices, i.e. monomoial matrices
with entries in K. We define W0 ∶= N/T (K). Therefore W0 is given by the permutation matrices
with entries in {0,1} and we have a natural isomorphism W0 ≃ Sn. Sn is a Coxetergroup of type
An−1, the set of generators is given by si ∶= σi,i+1 for i = 1, . . . , n−1. W0 has a longest element ω0

which is given by (n,n−1, . . . ,1). One possible representation is s1s2 . . . sn−1s1 . . . sn−2 . . . s1s2s1.
The length of this element is n(n−1)

2 . The length equals always the cardinality of a positive system
(see [Hum75, section 1.8] ).
Now W0 acts on X⋆(T ) as well as on X⋆(T ). Namely let for ω ∈W0 cω ∶ T → T, t ↦ ωtω−1 be
the well defined conjugation, then we have

W0 ×X⋆(T ) →X⋆(T ) ∶ (ω,χ) ↦ χ ○ cω−1 W0 ×X⋆(T ) →X⋆(T ) ∶ (ω,λ) ↦ cω ○ λ

Using the identifications W0 ≃ Sn, X⋆(T ) ≃ Zn and X⋆(T ) ≃ Zn this operation is given by

Sn×Zn → Zn (σ, (x1, . . . , xn)) ↦ (xσ(1), . . . , xσ(n)) Sn×Zn → Zn (σ, (λ1, . . . , λn)) ↦ (λσ(1), . . . , λσ(n))

The adjoint representation: The Lie-algebra is gln = TeG = Derk(A,k) = ⟨∂ij⟩. Since TeG

is also given as the kernel of ker(G(k(ε)/(ε2)) → G(k)), we identify gln with Mn(k), where
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the Lie bracket is given by [X,Y ] = XY − Y X. For all g ∈ G(k) we note the conjugation by
cg ∶ G→ G,h↦ ghg−1, this corresponds to a morphism c⋆g ∶ A→ A.
Now G operates on gln by G × gln (g,χ) ↦ c⋆g ○ χ ∈ Derk(A,k). Identifying gln with Mn(k),
this operation is given by G ×Mn →Mn (g,M) ↦ gMg−1.
This gives a n2-dimensional representaion of G which is called adjoint representation. Now we
are interested in the operation of T on gln

T × gln → gln (x = (
x1

⋱
xn
) , (aij)) ↦ x(aij)x−1 =

⎛
⎜
⎝

x1
x1

a11 ...
x1
xn

a1n

⋮
xi
xj

aij ⋮

xn
x1

an1 ... xn
xn

ann

⎞
⎟
⎠

We denote by χi the character (0, . . . ,1, . . . ,0), so that T operates on the one dimensional sub-
vectorspace ⟨∂ij⟩ by the character αij ∶= χi − χj . In particular T operates trivially on the one
dimensional subvector spaces ∂ii for every i.

The root datum: We would like to describe the root datum (X,Φ, X̌, Φ̌) of G. Like always we
have X =X⋆(T ) and X̌ =X⋆(T ). The adjoint representation shows us Φ = {χi − χj ∣ i ≠ j} and
with the identification X⋆(T ) ≃ Zn we have Φ = {χi − χj ∣ i ≠ j}.
It rests to specify Φ̌. For α = χi − χj ∈ Φ we have Tα ∶= ker(α)○ = {(

x1
⋱

xn
) ∣ xi = xj} and

Gα ∶= CG(Tα) = (
⋆
⋆ ⋆
⋆

⋆ ⋆
⋆

) (with two stars in the i-th and j-th colum/row). Let Nα(T ) = {g ∈

Gα ∣gT = Tg} = (
⋆
0 ⋆
⋆

⋆ 0
⋆

) ∪ T . Then there is exactly one element id ≠ sα ∈ W0(Gα, T ) =

Nα(T )/T ⊂W0. This element is represented by nα ∶=
⎛
⎝

1
0 1
1

1 0
1

⎞
⎠
∈ CG(Tα). Now the coroot α̌ is

defined to be the unique element in X⋆(T ) such that

sα(x) = x − ⟨x, α̌⟩α ∀x ∈X⋆(T ).

Now if x = (x1, . . . , xn) ∈X⋆(T ) and α = χi − χj we have

sα(x) = (x1, . . . , xj
�
i

, . . . , xi�
j

. . . , xn) = x − ⟨x, ei − ej⟩(ei − ej)

Consequently we have α̌ = ei − ej and we set Φ̌ = {μ ∈ X⋆(T ) ∣μ = α̌ for some α ∈ Φ}. This
defines the root datum.

Positive roots: For each α ∈ Φ the root group Uα is the unique subgroup of G, that is isompor-
phic to the additive group Ga and satisfies tUα(x)t−1 = Uα(α(t)x) for all x in some ring R and
t ∈ T (R), here we write Uα(x) for the elment in Uα(R) = R corresponding to x. For α = χi−χj ∈ Φ

the subgroup Uα is given by
⎛
⎝

1
1 ⋆
1
1
1

⎞
⎠
, where the star is at position (i, j). Now a root is called

positiv if Uα ⊂ B ∩Gα. Therefore the set of positive roots is given by Φ+ = {χi −χj ∣i < j}. This
is a positive system in the sense of [Spr98, (7.46)]. Note that it depends on a choice of the Borel
subgroup. The bijection between Φ and Φ̌ gives us also a system of positive coroots given by
{ei − ej ∣ i < j}.
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The algebraic fundamental group of G: We define Q to be Z-submodul of X⋆(T ) gen-
erated by Φ and analogously Q̌ as the Z-submodul of X⋆(T ) generated by Φ̌. We have Q̌ =
{(μ1, . . . , μn)∣ ∑i μi = 0}. Then the algebraic fundamental group is given by

π1(G) ∶=X⋆(T )
Q̌
≃ Z (μ1, . . . , μn) ↦∑

i

μi

Simple roots and simple coroots: We set furthermore:

V ∶=X⋆(T ) ⊗Z R V̌ ∶=X⋆(T ) ⊗Z R VΦ ∶= Q⊗Z R V̌Φ̌ ∶= Q̌⊗Z R

Now a subset D ⊂ Φ is called basis of the root system if D is a vectorspace basis of VΦ and if we
can write all α ∈ Φ as α = ∑β∈D nββ, such that nβ are integers with the same sign. Now every pos-
itive system contains exactly one basis and conversely each basis of the root system is contained
in exactly one positive system. The root basis conatined in our positive system Φ+ is given by
the set D = {χi − χi+1∣ i = 1, . . . , n}. The elements α ∈ D (respectively α̌ ∈ Ď ∶= {α̌ ∣ α ∈ D}) are
called simple roots (resp. simple coroots).

The largest positive (co)root Now the set of positive (co)roots is partially ordered by α ⩾ β
if and only if α − β is a non-negative linear combination of simple (co)roots. There is a largest
root which is given by (1,0, . . . ,0,−1). Similary there is a largest positive coroot given by
(1,0, . . . ,0,−1).

Dominant characters and dominant cocharacters: A character x ∈ X⋆(T ) is called domi-
nant if ⟨x, β̌⟩ ⩾ 0 for all β ∈D. It is clear that (x1, . . . , xn) is dominant if and only if x1 ⩾ . . . ⩾ xn.
Analogously we define a cocharacter μ ∈ X⋆(T ) to be dominant if ⟨β,μ⟩ ⩾ 0 for all β ∈ D, which
means that a cocharacter μ = (μ1, . . . , μn) ∈X⋆(T ) is dominant if and only if μ1 ⩾ . . . ⩾ μn.

Fundamental weights and the halfsum of positive coroots: For each β ∈ D let ωβ ∈ V̌Φ

be the linear form defined by ωβ(α) = ⟨α,ωβ⟩ = δα,β for all α ∈ D. So the fundamental weight
attached to the simple root β = ei − ei+1 is given by (12 , . . . ,

1
2

JKKKKKKKKKKKPKKKKKKKKKKKQ
i

, −12 , . . . , −12
JKKKKKKKKKKKKKKKKKKKPKKKKKKKKKKKKKKKKKKKQ

n−i

). We denote by ρ̌ ∶=

1
2 ∑α∈Φ+ α̌ the halfsum of all positive coroots. There is a theorem [Bou68, Chapitre 6, §1, proposi-
tion 29] telling us that we have ρ̌ = ∑α∈D ωα. Hence we have ρ̌ = 1

2(n−1, n−3, n−5, . . . ,+3−n,1−n).

The center of G: The center of G is equal to the kernel of the adjoint representation and this
is easily seen to be the intersection ⋂α∈Φ ker(α). Therefore the center of G is seen to be Gm

diagonally embedded in G.

The derived group of G: It is equal to Sln.

The affine (co-)roots
The affine roots are by definition given as Φaff ∶= Φ × Z ⊂ X⋆(T ) × Z. Here we define Φ+

aff ∶=
Φ+ × {0} ∪Φ×Z>0 and Φ−

aff ∶= Φ− × {0} ∪Φ×Z<0 as the positive and negative affine roots. Note
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that every affine root a = (α, k) ∈ Φaff defines an affine function a ∶ V̌ → R, x↦ ⟨α,x⟩ − k. These
affine functions make our definition of affine roots equivalent to the one in [Tit79, Section 1.6]
and [Lan96, Defintion 7.1]. We call α the vector part of a.

From now on let K be a non archimedean local field. Let π be a uniformizer in K and ωK a
valuation with ωK(π) = 1.

The extended Weyl group: The centralizer Z(T ) of the maximal Torus T is T itself. Then the
morphism ν ∶ T (K) → V̌ ≃ Rn defined by ⟨ν(t), χ⟩ = −ωK(χ(t)) for all t ∈ T (K) and χ ∈ X⋆(T )
is given by ( t1

⋱
tn
) ↦ ( −ωK(t1)

...
−ωK(tn)

). We denote the kernel of ν by Zb, which is given by (
O⋆K

⋱
O⋆K

).
We define Λ ∶= T (K)/Zb ≃ Zn. We use the identification X⋆(T ) ∼�→ Λ, μ ↦ μ(π) ⋅ Zb. This
results also in the identification Zr → Λ, (r1, . . . , rn) ↦ ( πr1

...
πrn

).
The extended Weylgroup is defined by W̃ = N(K)/Zb. It projects to the finite Weyl group
W0 = N(K)/Z(K) and we have always a section W0 → W̃ , since we can identify W0 with
NG(OK)T (OK)/T (OK). Using the short exact sequence 0 → Λ → W̃ →W0 → 0 a version of the
splitting lemma implies that W̃ is a semidirect product Λ ⋊ϕ W0, where ϕ ∶ W0 → Aut(Λ) is
given by conjugation. In the case of Gln, W0 embedds in N(K) as the permutation matrices, so
W̃ = Zn ⋊ Sn. We write the elements in W̃ as tμω with μ ∈ Λ =X⋆(T ) and ω ∈W0.

The standard appartement attached to T : Note that there is the extended Bruhat-Tits
building and the reduced Bruhat-Tits building. Whereas [Tit79] uses the extended building,
[BT84] and [Lan96] deal with the reduced building. We follow [Tit79] for the construction (but
compare also Landvogt).
Furthermore we set V̌0 ∶= {v ∈ V̌ ∣ ⟨α, v⟩ = 0 ∀α ∈ Φ} = ( 1

⋱
1
) ⋅ R. Now the affine space of the

appartement in the extended building is V̌ . The affine space of the reduced appartement is given
by V̌Φ = V̌ /V̌0.

Now Λ acts on V̌ by (λ ⋅ v) = v + ν(λ) and W0 acts by conjugation on T and hence on V̌ . This
gives an action of W̃ on V̌ defined by W̃ × V̌ → V̌ , (tμω, v) ↦ ω(v)+ν(μ), where we abbreviate
ν(tμ) by ν(μ) (compare [Lan96, 1.5 and 1.6]). This action induces of course an action of N(K)
on V̌ . With the identification Λ ≃ X⋆(T ) ≃ Zn we have ν(μ) = −μ. We remark that there is a
choice of this action as one could also define (λ ⋅ v) = v − ν(λ). With this action the choice of the
base alcove would result in a different standard Iwahori subgroup.
So far we have an affine space with an action of N(K). Landvogt calls it the empty appartement,
since there is missing the structure of a polysimplex.

The half appartements and walls: For some affine root (α, k) ∈ Φaff the halfappartement
Aα,k is defined to be the subset {v ∈ V̌ ∣ ⟨α, v⟩−k ⩾ 0}. We call ∂Aα,k a wall of the appartement.
In the case of Gln the walls ∂Aα,k are hyperplanes defined by the equation vi − vj − k = 0. We
denote by sα,k the reflection at the wall ∂Aα,k for every affine root. We have sα,0(x) = x−⟨α,x⟩α̌.
Note that v ∈ ∂Aα,k implies v + (1, . . . ,1)R ∈ ∂Aα,k.
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We illustrate this in the case of Gl2 and Gl3.

Figure 1: Standard appartement of Gl2 and Gl3.

In the figure for GL2 the only simple root is marked by α1 = (1,−1). The lines show the walls
in the appartement. Let α1 = (1,−1,0) and α2 = (0,1,−1) be the simple roots for GL3. The
figure for GL3 only shows the plane V̌Φ in V̌ that is spanned by 0, α1, α2. So for V̌ there is the
additional axis V̌0 = (1,1,1) ⋅R coming vertically out of the paper. We mark the projections of
the standard basis in V̌Φ by ē1, ē2 and ē3. The lines show the intersection of the walls ∂Aα,k with
V̌Φ.

The facets and the alcoves: For x, y ∈ V̌ , we set x ∼ y ∶⇔ {(α, k) ∈ Φ ∣x ∈ Aα,k} = {(α, k) ∈
Φ ∣y ∈ Aα,k}. The equivalence classes of this relation are the facets in the appartement. The
facets of maximal dimension are called alcoves. The alcoves are also determined as the connected
components of V̌ /⋃(α,k)∈Φaff

∂Aα,k. There is exactly one alcove which lies in the B positive Weyl
chamber ⋃α∈Φ+ Aα,0 and whose closure contains the origin. We call it the base alcove and denote
it by τ . For GLn it is explicitely given as τ = {v ∈ V̌ ∣ 0 < ⟨α, v⟩ < 1 ∀α ∈ Φ+} = {v = (v1, . . . , vn) ∈
V̌ ∣ 0 < vi − vj < 1 for all 1 ⩽ i < j ⩽ n}. It depends on the choice of a Borel, since the Borel
subgroup determines a set of positive roots.
(Note that the negative choice of the basis ei of X⋆(T ) affects that the coefficients vi are ascend-
ing instead of descending.)

The affine Weyl group: The affine Weylgroup Waff is the subgroup of W̃ generated by the
reflections on the walls that are adjacent to τ . If we denote by αi = (0, . . . ,1,−1, . . . ,0) the i-th
simple root (1 ⩽ i ⩽ n− 1) and by si the reflection sαi at the wall ∂Aαi,0, then Waff is generated
by W0 =< s1, . . . , sn−1 > and the element s0 ∶= t(1,0,...,0,−1)s1s2 . . . sn−1 . . . s2s1. Here s0 is the
reflection at the additional wall ∂Aα,1 adjacent to τ , where α = ∑n−1

i=1 αi = (1,0 . . . ,−1) was the
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largest positive coroot. This is easily seen since ∂Aα,1 equals {v = (v1, . . . , vn) ∈ V̌ ∣ v1 − vn = 1}
which shows that the relfection s0 fixes ∂Aα,1.
We note that (Waff ,S) with S ∶= {s0, . . . , sn−1} is a Coxeter group. One checks also that
{s0, . . . , sn−1} generates exactly Q̌ ⋊W0 =Waff .

The type of a facet: There is a bijection of P(S)/S to the set of facets contained in τ̄ , where
P(S) denotes the power set of S. A subset T ⊂ S is send to the facet FT ∶= {a ∈ τ̄ ∣{s ∈ S ∣ a ∈
Ls} = T}, where Ls is the wall consisting of the fixpoints of s. Now for every facet F in the
appartment, there is exactly one element ω ∈Waff such that ω ⋅F is a facet in τ̄ . So ω ⋅F = FT for
some subset T ⊂ S and we call T the type of the facet. The facets of type ∅ are the alcoves. In
particular Waff acts simply transitiv on the set of alcoves, so that ω ↦ ωτ is a bijection of Waff

to the set of alcoves. In the figure for GL2 we marked the facets of type {s0} with green and
the facets of type {s1} with red. In the figure for GL3 the facets of type {s0, s1} (resp. {s0, s2},
{s1, s2}) are the blue (resp. red, green) points.

The group Ω: The group Ω is defined as the stabilizer of τ (not pointwise). Since Waff operates
simply transitiv on alcoves and Ω is the stabilizer of τ we see W̃ =Waff ⋊Ω, where Ω operates
by conjugation on Waff . The exact sequence 0 → Waff → W̃ → Ω → 0 shows Ω ≃ π1(G). Note
that in contrast to Waff the type of the facets in the appartement is not invariant under the
operation of Ω.
To be explicit in the case of GLn, we set β = t(0,...,0,1)sn−1 . . . s2s1, so that β ⋅ (v1, . . . , vn) =
(v2, v3 . . . , vn, v1 − 1) for (v1, . . . , vn) ∈ V̌ which shows that β stabilizes τ = {v = (v1, . . . , vn) ∈
V̌ ∣ 0 < vi − vj < 1 for all 1 ⩽ i < j ⩽ n}. Since Ω ≃ π1(GLn) is free of rank one, this implies
already Ω = Z ⋅ β, because if there were some other element β̃ = t(a1,...,an)ω with m ⋅ β̃ = β and
m > 1 this would imply m ⋅ ∑n

i=1 ai = 1 which is not possible.

B Drinfeld A-Modules and Anderson A-Motives

We recall the definition of a Drinfeld A-module and Anderson A-motive from [Har17]. Let C be
a smooth projective geometrically irreducible curve over Fq. We fix a closed point ∞ ∈ C and
set A = Γ(C ∖ ∞,OC)). Let R be a ring with an ring homomorphism γ ∶ A → R. We denote
with σ ∶= idA⊗Frobq,R the endomorphism of AR ∶= A×Fq R with (a⊗ b) ↦ (a⊗ bq) for a ∈ A and
b ∈ R. Furthermore we denote by J the ideal ker(γ ⊗ idR ∶ AR → R) = (a⊗ 1 − 1⊗ γ(a) ∶ a ∈ A)
and recall

Definition B.1 ([Har17, Definition 3.7]).
A Drinfeld A-module of rank r ∈ N over R is a pair E = (E,ϕ) consisting of a smooth affine
group scheme E over Spec R of relative dimension 1 and a ring homomorphism ϕ ∶ A →
EndR−groups(E), a↦ ϕa satisfying the following conditions:

1. Zariski-locally on Spec R there is an isomorphism α ∶ E ∼�→ Ga,R of Fq-module schemes
such that
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2. the coefficients of Φa ∶= α ○ ϕaα
−1 = ∑i⩾0 bi(a)τ i ∈ EndR−groups,Fq−lin(Ga,R) = R{τ} satisfy

b0(a) = γ(a), br(a) ∈ R⋆ and bi(a) is nilpotent for all i > r(a) ∶= −[F∞ ∶ Fq]ord∞(a).

If bi(a) = 0 for all i > r(a) we say that E is in standard form.

A morphism between two Drinfeld A-modules (E,ϕ) and (E′, ϕ′) is a morphism of group schemes
f ∶ E → E′ such that f ○ ϕa = ϕ′a ○ f∀a ∈ A. An isogeny from (E,ϕ) to (E′, ϕ′) is a morphism
that is finite and surjective. As described in [Har17] every Drinfeld A-module is isomorphic to
one in standard form. We note that Drinfeld A-modules generalize to Anderson A-modules (see
[Har17, Theorem 3.9]). We also recall the Definition of an effective Anderson A-motive. For an
AR-module M we set σ⋆M ∶=M ⊗AR,σ AR =M ⊗R,Frobq,R R.

Definition B.2 ([Har17, Definition 1.1]). An effective A-motive of rank r over an A-ring (R,γ) is
a pair M = (M,τM) consisting of a locally free AR-module M of rank r and an AR-homomorphism
τM ∶ σ⋆M → M whose cokernel is annihilated by J n for some positive integer n. We say that
M has dimension d if coker τM is a locally free R-module of rank d and annihilated by J d. We
write rkM = r and dimM = d for the rank and the dimension of M .
A morphism f ∶ (M,τM) → (N, τN) between effective A-motives is an AR-homomorphism f ∶
M → N which satisfies f ○ τM = τN ○ σ⋆f .
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