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Abstract

Modern model theory started after the proof of Morley’s famous categoricity theorem,
which led to the study of a fundamental class of first order theories: the class of strongly
minimal theories. In an attempt to classify the geometry of these strongly minimal theo-
ries, Zil’ber had conjectured that they split into three different types: trivial geometries,
geometries which are vector space like and those which are field like. Hrushovski later
refuted this conjecture by introducing a construction that had been modified and used
a lot ever since. His counterexample to Zil’ber’s conjecture provided a structure, which
was not one-based, so could not be of trivial or vector space type, but nevertheless it
forbade a certain point-line-plane configuration, which is always present in infinite fields.
Hrushovski called that property CM-triviality and later Pillay, with some corrections by
Evans, defined a whole hierarchy of new geometries. There, on the first two levels one
finds non-one-based and non-CM-trivial theories and on the very top theories which in-
terpret infinite fields. Recently, Baudisch, Pizarro and Ziegler and independently Tent
have provided examples proving that this ample hierarchy is strict. While their examples
are omega-stable of infinite rank, it remained open for over fifteen years if one can find
geometries of finite rank which are non-CM-trivial, but nevertheless do not interpret an
infinite field.
In this thesis under the supervision of Katrin Tent, we will introduce an almost strongly
minimal structure which is strictly non-CM-trivial, using a Hrushovski-like construction.
We furthermore show that there are no infinite groups definable in our theory and that
its automorphism group is simple.
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CHAPTER 1

INTRODUCTION

Model theory - that is algebraic geometry without fields. This is what Hodges writes in
the introduction to his textbook on model theory [Hod93]. And indeed, if we have a
look at the most relevant developments within model theory, from the early stages until
its very modern developments, we find much truth in his words. Several of the most
fundamental notions in model theory have their origin in algebraic geometry and are
abstractions of the notions appearing therein.
Originally, model theory means the study of models. In the beginning of the last century,
logic consisted of two a priori distinct parts: the study of mathematical structures, which
can be seen as the “model-side”, and the formal study of the syntax, the “theory-side”.
The field of model theory connects these two aspects. By choosing an appropriate
language in which a mathematical structure M should be considered, we can assign to
it its theory Th(M), i.e. the set of all formal statements which are true in M . On
the other hand, to any given theory T , we can assign the class of its models Mod(T ).
Thus, instead of saying that model theory is merely a branch of mathematical logic as
commonly phrased, it can rather be seen as the bridge connecting core mathematics
and logic, translating phenomena on the one side into abstract notions on the other and
obtaining new structural phenomena by reinterpreting the abstract notions in further
structures.
The main fact which motivates this interaction, grounds in Gödel’s famous completeness
theorem [Gö30]. Its appearance is considered the birth of model theory. Recall that
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1 Introduction

a theory is called inconsistent, if we can deduce some first-order statement and its
negation from it. Otherwise, it is called consistent.

Fact (Gödel’s Completeness Theorem, 1930) Any consistent set of first order sen-
tences has a model.

This theorem was fundamental for the development of model theory and a lot of work
appeared as a consequence in the time after. A very important parallel between model
theory and algebraic geometry results from famous theorems by Tarski and Chevalley.
Tarski, working on the logic side, proved that the theory of algebraically closed fields
ACF has elimination of quantifiers, i.e. any definable set is a boolean combination of
varieties. Furthermore, Chevalley showed that the projection of a constructible set is
again constructible. Thus, as a consequence we get the following fact:

Fact (The Constructibility Theorem) In an algebraically closed field, the definable
sets are exactly the constructible ones.

This fact states that the sets of interest for an algebraic geometer coincide with the
sets of interest for a model theorist. Thus, it became the starting point of a fruitful
interaction between algebraic geometry and model theory.
For some decades after Gödel’s completeness theorem, the area of model theory was
flourishing and much progress was made. But around 1960, “. . . a feeling of exhaustion
started pervading the whole theory. Daniel Lascar describes the situation as “un temps
d’arrêt, comme si la machinerie, prête à tourner, ne savait quelle direction prendre.” At
this point Michael Morley appeared in the scene, causing what can be called a second
birth of Model Theory.” (Casanovas [Cas00])
The theorem of Morley yet again underlines the close connection model theory has
to the theory of algebraically closed fields. Note that an algebraically closed field is
uniquely determined by the transcendence degree over its prime field, whence in some
fixed characteristic, for any uncountable cardinal κ, there is exactly one algebraically
closed field up to isomorphism of cardinality κ. Morley managed to transfer this fact
into the abstract setting of model theory. We say that some theory is κ-categorical for
some cardinal κ, if it has exactly one model of cardinality κ up to isomorphism.

Fact (Morley’s Categoricity Theorem, 1965) Let T be a theory in a countable lan-
guage. If T is κ-categorical for some uncountable cardinal κ, then it is categorical for
any uncountable cardinal.
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Within his proof, Morley introduced various tools that turned out essential for the further
developments in model theory, such as the Stone space of types and his notion of rank
known as the Morley rank. He found that a κ-categorical theory for some uncountable
cardinal κ is always ω-stable and he was able to discover analogous invariants in the
general setting to the transcendence degree in algebraically closed fields.
His considerations were developed further by Baldwin and Lachlan in [BL71], where
they described the structure of models of these uncountably categorical theories. They
discovered that any such theory is controlled by a strongly minimal set. As we remind in
Section 2.2, strongly minimal sets carry the notion of dimension arising as the cardinality
of a maximal independent set and thus yield the desired analog of transcendence degree
in algebraically closed fields. Baldwin and Lachlan showed that the dimension arising
therein determines the models of an uncountably categorical theory up to isomorphism.
It was in this context, that strongly minimal theories entered the attention of model
theorists and proved to be a rich object of research.
Building upon Morley’s Categoricity Theorem, Shelah started his famous and ample
classification program, aiming to separate the theories which allow a classification of
their models from those who do not. His fundamental work culminated in the book
Classification Theory [She78] and is the core literature for modern model theory. He
introduced various dividing lines in order to classify theories - the most important of
them being undoubtedly the class of stable theories. Stability is the most fundamental
dividing line, as any unstable theory possesses the maximal possible number of models in
any sufficiently large cardinal. There are several ways to define stable theories, one being
through the presence of a well-behaved independence notion which we call non-forking
independence. The study of the properties of stable theories dominated model theory
for many years.
In the end of the 1970’s, Zil’ber studied uncountably categorical theories and with that,
strongly minimal sets. An important feature of these strongly minimal sets is that
the algebraic closure satisfies the Steinitz exchange principle. As a consequence, the
algebraic closure induces a pregeometry on strongly minimal sets, which comes along
with a well-defined notion of dimension. In the three classical, well-known examples
of strongly minimal sets - pure sets without any structure, infinite dimensional vector
spaces over division rings and algebraically closed fields - this dimension induced by the
algebraic closure coincides with the natural notions of dimension we know within the
three examples: the cardinality in the pure set, the linear dimension in vector spaces
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and transcendence degree in algebraically closed fields. Let us emphasize that the three
arising geometries therein are essentially different:

• The geometry of the pure set is disintegrated, i.e. the algebraic closure of a set
is the union of the algebraic closures of its singletons.

• The geometry of infinite dimensional vector spaces is not disintegrated, but still
modular : for any sets A and B the linear dimension of their union coincides
with the sum of the linear dimensions of A and of B, after substracting the linear
dimension of the intersection of A and B.

• The geometry of an algebraically closed field is neither disintegrated, nor modular.

The famous Trichotomy Conjecture of Zil’ber now states that these three types of ge-
ometries already describe fully the landscape of geometries that can appear in strongly
minimal theories.

Conjecture (Zil’ber’s Trichotomy Conjecture, 1984) Let T be a strongly minimal
theory. Then the pregeometry induced by acl on the models of T falls into one of the
following three classes.

(1) It is “set-like”, i.e. disintegrated.

(2) It is “vectorspace-like”, i.e. it is not disintegrated, but modular for all sets A and
B with d(A ∩B) > 0. We then say the pregeometry is locally modular.

(3) It is “field-like” in a very strong sense: there is an algebraically closed field inter-
pretable in T.

We want to emphasize the strong consequences Zil’ber’s Conjecture would have in the
interaction between model theory and algebra: starting with an arbitrary strongly mini-
mal theory whose geometry is not locally modular, an actual infinite field is interpretable
in it and hence we can do algebraic geometry.
Even though Zil’ber’s conjecture had been refuted by Hrushovski [Hru93] soon after,
work around it continued and proved to be a rich source of research. This continuation
of research around Zil’ber’s Conjecture can be partitioned into two leading questions:

(1) What further conditions should be put in order to make the conjecture hold?

14



1 Introduction

(2) How far is the conjecture from being true? Can we fill the gap between vectorspace-
like geometries and algebraically closed fields?

A lot of progress was done in both directions. Considering the first question, it turns
out that there is a very natural setting in which Zil’ber’s Conjecture holds: the Zariski
geometries. The establishment of Zil’ber’s Conjecture in this setting had far reaching
consequences and allowed Hrushovski to give model theoretic proofs to profound number
theoretic conjectures.

Example (DCF and Mordell-Lang) Loosely speaking, the Mordell-Lang conjecture
states that given an abelian variety, the intersection of a proper subvariety with a sub-
group is a finite union of translates of subgroups. Although being allocated within the
area of number theory, it was Hrushovski who proved this famous conjecture in [Hru96],
using model theoretic tools. This work was a groundbreaking result, which increased
the interest of core mathematics into model theory significantly.
In order to assess the Mordell-Lang conjecture from a model theoretic angle, Hrushovski
used two different approaches, depending on the characteristic of the underlying field.
In characteristic zero, he studied the fields in the language of rings enlarged by a symbol
∂ for a difference function, which is additive and satisfies the condition ∂(xy) = x∂(y) +
y∂(x). This leads to the theory of differential fields. Its model companion is the theory
of differentially closed fieldsDCF . Now, Hrushovski proved that in a differentially closed
field, any type of rank one is either one-based, which is the analog of local modularity
for arbitrary simple theories, or it is non-orthogonal to the (algebraically closed) field
of constants, i.e. the field of all elements such that ∂(x) = 0 (conf. [HS]). Thus,
he established a version of Zil’ber’s Conjecture in the framework of differentially closed
fields. For the case of positive characteristic, Hrushovski once again managed to establish
the appropriate version of Zil’ber’s Trichotomy Conjecture, this time in the framework
of separably closed fields. This led him to give a proof of the famous Mordell-
Lang Conjecture in arbitrary characteristic in [Hru96] resulting in a fruitful interaction
between number theory and model theory.

Example (ACFA and Munin-Mumford) The Munin-Mumford conjecture, which
also has its origins in the area of number theory, can be seen as an analog of the Mordell-
Lang conjecture, where the subgroup considered in the statement is the group of torsion
elements of the abelian variety. It was first proven by Raynaud in [Ray83]. In 2001 how-
ever, Hrushovski in [Hru01] gave a completely new and independent proof using model
theory.
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In order to consider this conjecture from a model theoretic point of view, Chatzidakis
and Hrushovski [CH00] and later together with Peterzil [CHP02] studied the underlying
field in the language of rings enriched by one symbol σ for an automorphism. This
leads to the theory of difference fields. Its model companion is ACFA, the theory of
existentially closed difference fields. Here again, Zil’ber’s Conjecture was established, in
[CH00] for characteristic zero and in [CHP02] for positive characteristic. Chatzidakis,
Hrushovski and Peterzil proved that any type of rank 1 is either one-based or almost
internal to some field, which is either the field Fix(σ) or the field Fix(σn Frobmp ), for
positive characteristic, where Frobp is the Frobenius automorphism, sending an element
to its p-th power. This allowed Hrushovski to give an entire model theoretic proof of the
Munin-Mumford Conjecture [Hru01].

In this thesis, we are concerned with the second question on how to continue the work
around Zil’ber’s conjecture, i.e. how to fill the gap between non-locally modular struc-
tures and those which interpret an infinite field. In order to show that his new strongly
minimal set is indeed a counterexample to Zil’ber’s Conjecture, Hrushovski had to prove
that there is no infinite field interpretable in it. He did so, by sorting out a geometri-
cal property of his theory, the property of being CM-trivial, which can not be fulfilled
if there is an infinite field around. Some years later it was Pillay who noted that the
notions of not being one-based and not being CM-trivial are the first two steps of a
whole hierarchy of geometries that, if they exist, would each be essentially different and
not interpret an infinite field (conf. [Pil00]). After some corrections due to Evans, they
defined what is now known as the ample hierarchy.
Though the motivation for this new classification tool came from the framework of
strongly minimal theories, the notion of ampleness makes sense for arbitrary stable
structures. It can best be understood as a combinatorial measurement of how complex
the notion of forking independence is. If the theory is not ample at all, like in the case of
pure sets or infinite dimensional vector spaces, then forking can be completely described
in terms of algebraic closure. By definition, a theory is 1-ample if and only if it is not
one-based and it is 2-ample if and only if it is not CM-trivial. In the same paper [Pil00]
where the definition of ampleness first appeared, Pillay also proved that an infinite field
is n-ample for all n, whence their theory stands on the very top of this ample hierarchy.
Note that the counterexample constructed by Hrushovski is located at the second step
of the hierarchy: it is not one-based, whence it is 1-ample, but it is CM-trivial and thus
not 2-ample. A natural question arises, if there can be counterexamples to Zil’ber’s
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conjecture found in higher steps of the ample hierarchy. It has already been asked by
Pillay in [Pil00]. For almost fifteen years this question had remained open, even when
dropping the restriction on the theory to be strongly minimal. Only in 2014 Baudisch,
Martin-Pizarro and Ziegler [BMPZ14a] as well as Tent [Ten14] managed to provide ω-
stable examples of infinite Morley rank for any step of the ample hierarchy, which finally
proved that the hierarchy is indeed strict. Nevertheless, there was no hope of collapsing
the obtained examples to examples of finite rank, as each of them has trivial forking,
and a theory of finite Morley rank with trivial forking is necessarily one-based.
There always has been a point of view suggesting that the notion of ampleness is very
close to the notion of projective spaces. As projective spaces always rely on an underlying
field, they cannot immediately be used to construct strictly ample examples. Neverthe-
less, it was pointed out by Tent that there is a more general way of viewing these spaces:
they all relate to a wider class of geometrical objects, so-called Tits buildings.
Generally, buildings are combinatorial geometries associated to algebraic groups and
Lie groups, which encode their algebraic properties. The notion was introduced by
Jacques Tits and there are two different approaches to these geometrical objects: an early
definition from 1959 [Tit59] views buildings as simplicial complexes. The more modern
version [Tit74] however, defines them as chamber systems with a distance function that
has its values in an associated Coxeter group. Both definitions and their correspondence
are discussed in [Tit81]. The theory of buildings has profound applications within the
classification of algebraic groups and Lie groups. In 2008, Tits co-received the Abel prize
for his theory of buildings, which therein was described as a “central unifying principle
with an amazing range of applications...”.
It seems that looking at ampleness in connection with the theory of buildings is the
appropriate point of view. Tent in [Ten00b] already had constructed many new examples
of strictly 1-ample, almost strongly minimal theories which hence contradict Zil’ber’s
Conjecture and which are all (spherical) buildings. Furthermore, the first examples to
prove that the ample hierarchy is strict, constructed in [BMPZ14a] and [Ten14], are also
given by (right-angled) buildings.
In the present thesis under the supervision of Katrin Tent, who is the leading expert in
the model theory of buildings, we construct a new almost strongly minimal set, which
is strictly 2-ample. Although the arising structure cannot be a building, it relays on
the general geometric properties behind the (modern) definition of buildings: it is an
incidence geometry. We hope that this construction can be generalized to obtain coun-
terexamples to Zil’ber’s Conjecture for every step of the ample hierarchy.
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Structure of this thesis

This thesis aims to produce a new almost strongly minimal 2-ample set.

First, we are going to provide the reader with enough background to follow the arguments
appearing in this thesis. In particular, in Chapter 2, we introduce the necessary notions
and facts on model theory, Zil’ber’s Conjecture, Hrushovski Constructions and incidence
geometries.
Building upon the assumption that the reader has a basic knowledge of model theory,
we introduce any further results and notions from model theory used later in Section
2.1. We also introduce the construction technique of strong Fraïssé limits, which serves
as a base in order to understand Hrushovski Constructions discussed in Section 2.2. We
then revisit Zil’ber’s Conjecture and introduce the ample hierarchy as a consequence of
the research around it. We conclude the preliminary chapter with an introduction to
incidence geometries in Section 2.3. As our construction essentially builds on the notion
of incidence geometries, we try to provide several examples in order to enlighten these
objects. We also introduce the notion of buildings, which are not directly needed to
understand the geometry we construct, but as all intuition and notations origin in the
study of buildings, we nevertheless feel the need to include them. We furthermore ar-
gue that, although all previously constructed examples around the ample hierarchy are
indeed buildings, there is no hope of finding buildings as counterexamples to Zil’ber’s
conjecture of higher ampleness.

The core of this thesis is covered in Chapters 3, 5 and 6, where we execute the Hrushovski
method on a new class of tripartite graphs in order to obtain a new counterexample to
Zil’ber’s Trichotomy Conjecture. In Chapter 3 we already construct the ab initio coun-
terpart of our new almost strongly minimal 2-ample geometry. We start by introducing
the amalgamation class Cfin

0 and the predimension function which determines strong ex-
tensions. A large part of this chapter is devoted to come around the problem that our
predimension function is not submodular. After locating the scenarios where submod-
ularity fails, we are able to execute the amalgamation process and obtain the following
theorem:

Theorem 1 (conf. Theorem 3.6.3) The class Cfin
0 has the amalgamation property

with respect to strong embeddings. Moreover, if C0 ≤ C1 is a minimal extension and
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C0 ≤n−2 C2, then either C1 ⊗C0 C2 ∈ Cfin
0 or there is an isomorphic copy of C1 over C0

in C2.

The above theorem yields the existence of a strong limitM0 of the class Cfin
0 , which we

call the ab-initio structure. In Chapter 4, we investigate the structureM0 and its model
theoretic properties. That chapter is left independent from the rest of this thesis, as
our main interest lays in the geometric properties of the collapsed counterpart of M0.
Nevertheless, the considerations in Chapter 4 may facilitate the understanding of what
follows, as many observations are repeated in a similar way when it comes do study the
properties of the almost strongly minimal geometry in Chapters 5 and 6. We end that
chapter with the following theorem:

Theorem 2 (conf. Theorem 4.4.1) The theory Th(M0) is an ω-stable theory of in-
finite Morley rank ω · (3(n− 1)− 1). It is 2-ample, witnessed by any complete flag, but
not 3-ample.

In the following Chapter 5 we collapse the structure M0 obtained above to obtain an
almost strongly minimal geometry. On this account, one has to choose an appropriate,
“tame” subclass Cµ ⊆ C0 and to prove that this class again has the amalgamation
property. This is done in Section 5.1. As a corollary, we obtain again a strong Fraïssé
limit of this new class, which we denote byMµ. This provides the new almost strongly
minimal 2-ample geometry we were aiming for. We start our analysis ofMµ by showing
that it is indeed an incidence geometry of the desired type. Then, we prove that the
ω-saturated models of its theory are exactly the models which are Cfinµ -saturated. This
provides the following theorem:

Theorem 3 The class Cfinµ has the amalgamation property with respect to strong em-
beddings. Its strong Fraïssé limit Mµ is an incidence geometry of type •

n
− •

n
− •. Fur-

thermore, a model of its theory is ω-saturated if and only if it is Cfinµ -saturated, whence
in particular the structureMµ is ω-saturated.

These results can be found in Proposition 5.1.5, Lemma 5.2.2 and Lemma 5.3.5.

The next chapter, Chapter 6, is devoted to show that the theory Tµ of our new geometry
Mµ is actually almost strongly minimal and exactly 2-ample. After proving that it is
almost strongly minimal, applying a coordinatisation method used by Tent in [Ten00b],
we describe how forking looks in its theory. From there, we can calculate the exact
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Morley rank of our new geometry and show that Morley rank coincides with U -rank.
We also use the description of forking to show that any 2-ample tuple is in a certain
way witnessed by a complete flag. This yields on the one hand that the theory is indeed
2-ample, but also implies that it cannot be 3-ample. All together we obtain the following
theorem.

Theorem 4 The theory Tµ is almost strongly minimal of Morley rank 3(n− 1)− 1. It
is 2-ample, witnessed by any complete flag, but not 3-ample. In particular, the induced
theory on the strongly minimal set yields a new counterexample to Zil’ber’s Trichotomy
Conjecture of ampleness 2.

Chapter 6 concludes the construction part of our new geometry. The remaining part
of the thesis is devoted to study interesting questions that naturally come up around
the existence of such a new geometry. The first of them, treated in Chapter 7, concerns
the existence of interpretable groups in Tµ. That question is of particular interested in
connection with another famous Conjecture - the Alebraicity Conjecture, also known
by their authors, the Cherlin-Zil’ber Conjecture.

Conjecture (Algebraicity Conjecture, [Che79][Zil77]) Any infinite simple group
interpretable in a theory of finite Morley rank is an algebraic group over an algebraically
closed field, which itself is interpretable in the group structure.

This conjecture, even though being almost forty years old, is still unsolved and a whole
area of model theory has developed around the quest of answering it. Even more sur-
prisingly, there still is not a uniform line of thought on whether this conjecture should
be answered affirmatively or negatively. If the conjecture would fail, then a minimal
counterexample would be given by what is called a bad group. Until recently people
seemed to start believing in the existence of a bad group, but ever since Frecon proved
in [Fre16] that there are no bad groups of Morley rank 3, doubts on their existence
started increasing again.
If there were groups interpretable in our structure, they would be of very interesting
nature, as they could not interpret an infinite field and thus they could not be algebraic
groups. Nevertheless, it turns out that there are no infinite definable groups interpretable
in our new geometry.

Theorem 5 (conf. Proposition 7.4.1) There are no infinite groups interpretable in
the theory Tµ.
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A second question which naturally appears, concerns the existence of bounded auto-
morphisms. This notion goes back to Lascar, who proved in [Las92] that in strongly
minimal theories the group of strong automorphisms, i.e. of all automorphisms fixing
the algebraic closure of the empty set pointwise, is a simple group modulo the normal
subgroup of strong, bounded automorphisms. This result later has been generalized
by Macpherson and Tent in [MT11] and then by Tent and Ziegler in [TZ13]. As the
Hrushovski construction method can be used to produce novel exotic structures, assum-
ing we can show that there are no bounded automorphisms we are bent to construct new
exotic simple groups along with it for free. In this spirit, Ghadernezhad and Tent showed
that there are no bounded automorphisms for the almost strongly minimal n-gons con-
structed by Tent in [Ten00b] and thereby obtained the first examples of non-algebraic
simple groups with a BN-pair. In chapter 8, we adapt their arguments to obtain the
final theorem:

Theorem 6 (conf. Proposition 8.3.2) There are no bounded automorphisms inMµ,
nor inM0. Furthermore, any automorphism ofMµ is strong, whence the automorphism
group ofMµ is a simple group.

We conclude the thesis with a small epilogue on further interesting questions around the
ample hierarchy in Chapter 9.
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CHAPTER 2

PRELIMINARIES

In the following chapter, we provide the reader with a necessary background in model
theory, Hrushovski constructions and incidence geometries required to follow the argu-
ments in this thesis.

2.1 Some Model Theory

We expect the reader to be familiar with the basic notions of model theory, such as
complete first order theories, first order languages, definable sets and the compactness
theorem. A detailed presentation of the important notions and results in model theory,
including all proofs of the statements below, can be found in [TZ12]. We intend to
provide all definitions and theorems used later and which exceed the material of a basic
course in model theory. First we fix some notation.

Notation

We denote finite tuples by small letters a, b, . . . , x, y, . . . and finite sets by capital leters
A,B, . . . . Arbitrary sets are named X,Y, . . . . If X ⊆ Y is such that |Y \X| is finite, we
say that Y is finite over X, or that it is a finite extension of X. In this case, we may
also denote the infinite set Y by a capital letter A,B, . . . .
We denote languages by L. Theories are always be assumed to be consistent and be
named T and the letter M stands for a model. By M we denote the monster model,
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i.e. a very large, saturated model of some given theory. If M is some L-structure
and X ⊆ M some subset of M , we mean by (M,X) the structure in the language
L(X) := L∪{cx | x ∈ X} where each cx is a new constant symbol with the interpretation
cMx = x.
For some modelM and some subsets A ⊆M and X ⊆Mk we say that X isA-definable
in M , if X = ϕ(M,a) is the set of all realizations of some formula with parameters a in
A. We say that X is definable, if it is A-definable for some set A. Furthermore, if Y is
such that X ⊆ Y ⊆ M , we say that X is relatively definable in Y , if there is some
definable set X ′ ⊆M such that X = X ′ ∩ Y .
We usually denote types by p and q if they are complete and use π if we want to
emphasize that a type is partial. The quantifier free type of some tuple b over some set
A is denoted by tpqf (b/A). If we want to emphasize the model M in which the type is
considered, we write tpM (b/A).
By the natural numbers N we mean the set {0, 1, 2, . . . }. For an arbitrary set X we
denote by P(X) its power set, i.e. the collection of all its subsets. We often use the
abbreviation AB or Ab to express the union A ∪ B or A ∪ {b}. We call an element b
algebraic over A, if there is a formula ϕ(x, a) with only finitely many realizations, where
a is a tuple in A and such that ϕ(b, a) holds. The collection of all elements algebraic over
A is denoted by acl(A). We denote the group of all automorphisms of some structure
M fixing all elements of some set X pointwise by AutX(M).

Types and Saturation

In this section we introduce basic facts and tools used in model theory. One of the most
fundamental notions which is used throughout the entire thesis, is the notion of a type.
Let T be a theory and M |= T some model of T. We call a set of formulas p(x) :=
{ϕ(x, a) | a ∈ A ⊆M} in free variables x a type over A, if it is consistent, i.e. finitely
satisfiable in M . If we want to emphasize the length |x| = k of the tuple x, we also
say that p(x) is a k-type. Some type p(x) is called a complete type over A, if for
any tuple a ∈ A and any formula ϕ(x, a) in L(A) we have that either p(x) ` ϕ(x, a)
or p(x) ` ¬ϕ(x, a). Otherwise, it is called a partial type. We denote the set of all
complete n-types over some set A by Sn(A) and the set of all complete types over A by
S(A). If p is a type over the monster model M of some theory, we say that p is a global
type. For an arbitrary set A and some element b ∈M we call

tp(b/A) := {ϕ(x, a) | a ∈ A,M |= ϕ(b, a)}
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the type of b over A. We say that some type p is an algebraic type, if it contains an
algebraic formula.
One of the big advantages in model theory is that instead of working in one fixed structure
exclusively, we can work in richer elementary extensions and thus avoid to deal with
approximations. For example, in order to make a statement of arbitrary large natural
numbers, we can switch to a richer elementary extension in which an actual element
being larger than any number in N exists. These rich models are called saturated.

Definition 2.1.1 Let κ be an arbitrary cardinal and T some theory. We say that some
model M of T is κ-saturated, if for any set A ⊆ M of cardinality strictly less than κ,
any type in S(A) is realized in M . This has been shown to be equivalent to ask that
any 1-type over A is realized in M . We call M saturated, if it is |M |-saturated.

Probably the first question a model theorist should ask herself when given a consistent
theory, is, whether this theory is already complete. The following fact provides a very
useful tool to decide on this question.

Definition 2.1.2 Let T be a theory. We say that two models M1 and M2 possess the
back-and-forth property or that they are partially isomorphic, if we can extend
any partial isomorphism between finite sets. This means that for any two finite sets
Ai ⊆ Mi such that there is a partial isomorphism f : A1 → A2 and any two elements
bi ∈ Mi, there exist elements ci ∈ Mi such that both f ∪ {(b1, c2)} and f−1 ∪ {(c1, b2)}
are again partial isomorphisms.

Fact 2.1.3 (1) A countable theory T is complete if and only if any two of its ω-
saturated models possess the back-and-forth property.

(2) For two models M1 and M2 of the same complete theory with subsets Xi ⊆Mi, the
structures (M1, X1) and (M2, X2) are partially isomorphic if and only if the type
tpM1(X1) equals the type tpM2(X2).

(3) If M is an ω-saturated model of T, then two tuples b1 and b2 have the same type
over some set X ⊆M if and only if there is some automorphism of M which fixes
X pointwise and sends b1 to b2. In particular, some tuple b is algebraic over X if
and only if its orbit under AutX(M) is finite.

As outlined in the introduction, this thesis is motivated by the problem of understanding
strongly minimal theories. We now introduce this notion.
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Definition 2.1.4 LetM be a model of some theory T and ϕ(x) a formula in one variable
in T, possibly with parameters.

(1) We say that X := ϕ(M) is minimal, if it is infinite and any relatively definable
set in X is either finite or co-finite.

(2) We call ϕ(x) strongly minimal in T, if it defines a minimal set in any model of
the theory T. Furthermore, we call a type p(x) strongly minimal, if it contains a
strongly minimal formula.

(3) Finally, the theory T is called a strongly minimal theory if the formula x .= x

is a strongly minimal formula in T.

The new geometry we are going to construct, though not being exactly strongly minimal,
is still close enough, i.e. it is almost strongly minimal.

Definition 2.1.5 A theory T is called almost strongly minimal, if there exists some
finite set B ⊆ M and a strongly minimal formula ϕ(x,B) with parameters in B such
that for any model M of T and D := ϕ(M,B) we get M ⊆ acl(BD).

For an exposition on almost strongly minimal theories you may consult [Bal72]. The def-
inition of an almost strongly minimal theory states that any of its models is determined
by some strongly minimal formula. The next fact gives a criterion on how to determine
whether or not a type is strongly minimal.

Fact 2.1.6 Let p be some type over a set X. Then p is strongly minimal, if it is not
algebraic and for any superset X ⊆ Y , there is a unique non-algebraic extension of p to
Y .

Next we introduce the notion of imaginaries and the associated theory Teq. Let E(x, y)
be a ∅-definable k-ary equivalence relation in T. We call an equivalence class Mk/E an
imaginary element of T. Often it is necessary, or at least more convenient, to not
only include elements of the home sort M in our statements, but also the imaginary
elements of T. In the best case, these elements are already coded within the home sort,
whence we say that T eliminates them.

Definition 2.1.7 We say that a theory T eliminates imaginaries, if for any imagi-
nary a/E there exists some finite tuple d ∈ M such that an automorphism of M fixes d
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pointwise, if and only it fixes the class a/E as a set. We also say that d and the imagi-
nary a/E are interdefinable. We say that T has weak elimination of imaginaries,
if there exists a tuple d such that any automorphism which fixes d pointwise also fixes
the class a/E and d only has finitely many conjugates under any automorphism that
fixes the class a/E.

To any theory T in some language L we can naturally adjoin a theory Teq, which
eliminates imaginaries (conf. [TZ12, Section 8.4]). Any model M of T is in one-to-one
correspondence with some model M eq of Teq, which consists of the home sort M and for
any ∅-definable equivalence relation E one sort for M/E. This structure is considered
in an associated language Leq, which contains projections from the home sort to any of
the other sorts. Now, for some set X ⊆ M we denote by acleq(X) the algebraic closure
of X in the corresponding structure M eq in the Teq sense.
In the present thesis, imaginaries only appear indirectly. In fact, we show that the theory
we obtain, weakly eliminates imaginaries. This already follows from the fact that our
theory is almost strongly minimal. Nevertheless, we give a direct proof of this statement.
To this end, we need the definition of a canonical base.

Definition 2.1.8 Let p be a global type in some stable theory T. There exists some
definably closed set Cb(p) in Meq such that an automorphism of M fixes the type p if
and only if it fixes the set Cb(p) pointwise. We call Cb(p) the canonical base of p.

We can conclude weak elimination of imaginaries for our theory from the following fact:

Fact 2.1.9 Let T be an arbitrary theory. If any global type in T has a real canonical base,
i.e. a canonical base in the home sort M, then the theory weakly eliminates imaginaries.

Ranks and Stability

In this section we introduce two of the most important dividing lines developed by
Shelah in his Classification Theory [She78]: stable theories and their subclass of ω-
stable theories. We present the two principle notions of rank appearing in these two
classes, the Morley rank and the Lascar rank and collect some of their basic properties,
of which we make use later on.
As we already mentioned in the introduction, the most important dividing line intro-
duced by Shelah consists of the dividing line of stability. In a stable theory, there are
relatively few types over models, whereas any unstable theory has the maximal possible
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number of types and hence one cannot classify its models. The definition we want to give
here though, does not use the number of types, but another characterization of stable
theories: the presence of a well-behaved notion of independence.

Lemma and Definition 2.1.10 (conf. [TZ12], Theorem 8.5.10) Let T be a com-
plete theory. Assume there exists a ternary relation |̂ T between subsets of models of T
such that the following conditions are satisfied:

• (Invariance) The relation |̂ T is invariant under automorphisms of M;

• (Local Character) There exists some cardinal κ such that for all A ⊆M finite and
X ⊂M arbitrary, there is some C ⊆ X with |C| < κ and such that A |̂ T

C
X;

• (Transitivity) If A |̂ T
X
Y and A |̂ T

XY
Z then A |̂ T

X
Y Z;

• (Weak Monotonicity) If A |̂ T
X
Y Z, then A |̂ T

X
Y .

• (Weak Boundedness) For all A ⊂ M finite and X ⊆ M arbitrary, there is some
cardinal κ such that for all X ⊆ Y , there are at most κ many isomorphism types
of A′ ⊆M over Y with A′ ∼=X A and A′ |̂ T

X
Y .

• (Existence) For any A ⊂ M finite and X ⊆ Y ⊆ M arbitrary, there is some A′

such that tp(A/X) = tp(A′/X) and A′ |̂ T
X
Y .

Then T is stable and |̂ T = |̂ coincides with the notion of non-forking independence.

We omit the definition of non-forking independence at this point, as we are going to work
exclusively in ω-stable theories, where this relation is described by the Morley rank of
types.

Definition 2.1.11 Let T be a complete theory and ϕ(x) a formula in T, possibly with
parameters. We define the Morley rank of ϕ(x), denoted by MR, successively.

• MR(ϕ(x)) ≥ 0 if and only if ϕ(x) is consistent with T;

• For some ordinal α we set MR(ϕ(x)) ≥ α + 1 if and only if there exist an infi-
nite pairwise inconsistent family of formulas {ψi(x, ci) | i ∈ N and ci ∈ M} with
ψi(x)→ ϕ(x) and MR(ψi(x)) ≥ α.

• If α is some limit ordinal, then we set MR(ϕ(x)) ≥ α if and only if MR(ϕ(x)) ≥ β
for all β < α.
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Now we define

MR(ϕ(x)) = −∞ if and only if ϕ(x) is inconsistent with T;

MR(ϕ(x)) = ∞ if MR(ϕ(x)) ≥ α for any ordinal α and

MR(ϕ(x)) = α if MR(ϕ(x)) ≥ α and MR(ϕ(x)) 6≥ α+ 1.

For some type p(x) we set MR(p(x)) := inf{MR(ϕ(x)) | ϕ(x) ∈ p(x)}. If p(x) =
tp(a/X), we also write MR(a/X) instead of MR(tp(a/X)). Finally, for an arbitrary
theory T we define MR(T) := MR(x .= x), where x here denotes a singleton. A theory
T is called ω-stable, if and only if its Morely rank is bounded, i.e. MR(T) <∞.

With the notion of Morley rank at hand, we can define an independence relation in any
ω-stable theory. Thereby, we say that some set X is independent from some set Z over
Y if and only if for any finite A ⊆ X we have MR(A/Y ) = MR(A/Y Z). We denote
this by X |̂

Y
Z. It is not hard to see that this notion of independence satisfies all the

properties listed in Fact 2.1.10, whence any ω-stable theory is indeed stable and the
above defined notion of independence coincides with the non-forking independence |̂ .
Fact 2.1.10 states that there is a unique notion of independence within ω-stable theories.
The same does not hold for ranks. Indeed, there is another notion of rank on types in
ω-stable theories, which may be essentially different from the Morley rank - the Lascar
rank.

Definition 2.1.12 Let T be an ω-stable theory and p(x) some type over the set X.
Recall the definition of |̂ from above. We define the Lascar rank of p, denoted by
U(p) as follows:

• U(p) ≥ 0 for any type p.

• U(p) ≥ α + 1 if and only if there exists some forking extension of p of rank at
least α, i.e. there exists some Y ⊇ X and A |= p(x) such that A 6 |̂

X
Y and

U(A/Y ) ≥ α.

• If α is a limit ordinal, then U(p) ≥ α if and only if U(p) ≥ β for all β < α.

As for the Morley rank we set U(p) = α if α is the largest ordinal with U(p) ≥ α and
U(p) =∞, if there exists no such α.
If p is a global type, we set U(p) = U(p|M ) for some small model M . This notion is
well-defined as types are stationary over models in stable theories.
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Note that even though Morley rank and Lascar rank define the same notion of indepen-
dence, they differ in general. In particular, there are theories of finite Lascar rank with
unbounded Morley rank. We say that that a theory is superstable, if U(T ) < ∞. By
the definition of the two ranks, it is easy to see that for any type p we have

U(p) ≤ MR(p).

We mentioned before that the geometry we aim to construct is ω-stable, whence the
Morley rank is bounded. So why bother at all introducing the notion of a Lascar rank?
The reason is that this rank possesses a key property, which is not given for the Morley
rank and simplifies the analysis of ranks: it satisfies the so-called Lascar inequalities.

Fact 2.1.13 Let T be an ω-stable theory. Then the Lascar rank satisfies the Lascar
inequalities, i.e. for all finite sets a and b and arbitrary set X we have

U(a/bX) + U(b/X) ≤ U(ab/X) ≤ U(a/bX)⊕U(b/X).

Hereby the addition + on the left side denotes the ordinary ordinal sum and the one on
the right side ⊕ denotes the sum arising by adding the coefficients in the Cantor normal
form of the ordinal.

Note that if T is a theory of finite Morley rank, then it also is of finite Lascar rank and
the two notions of addition coincide, whence actually U(ab/X) = U(a/bX) + U(b/X).
Even though as mentioned above, Morley rank often does not satisfy the Lascar inequal-
ities, it obtains this desired property in almost strongly minimal theories. This follows
from the following fact in [TZ12, Proposition 6.4.9].

Fact 2.1.14 Let ϕ be a strongly minimal formula defined over C and a and b algebraic
over ϕ(M) ∪ C. Then

MR(ab/C) = MR(a/bC) + MR(b/C).

This yields the following corollary.

Corollary 2.1.15 If T is almost strongly minimal, then it is of finite Morley rank.
Furthermore, the Morley rank is additive, i.e. for all tuples a and b and for any set X
we have

MR(ab/X) = MR(a/bX) + MR(b/X).
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Proof Note that the Morley rank of some theory does not change by adding parameters.
Thus we may assume that there is a strongly minimal formula ϕ(x) such that for any
model M of T we have M = acl(ϕ(M)). Now, it is easy to see that T is of finite Morley
rank, as any element is in the algebraic closure of finitely many elements of Morley rank
one and the number of elements needed is uniformly bounded.
Assume ϕ is defined over C. Then all tuples a and b are algebraic over ϕ(M) ∪ C.
Note that we may take a, b and X to be independent from C, whence additivity directly
follows from Fact 2.1.14. �

We conclude this section on Ranks and Stability with a general remark on the extension
of types.

Lemma 2.1.16 If π(x) is a partial type over some set X of Morley rank α and Y a
superset of X, then there exists an extension of π(x) to a complete type q(x) over Y
such that MR(q) = α.

Strong Fraïssé Limits

In this section we get to know one of the most important and universal construction
methods of countable structures. It goes back to the article of Roland Fraïssé [Fra54],
published in 1954, in which he describes how one can view the dense linear order of the
rationals as some kind of limit structure of finite linear orderings. This construction
cannot only be applied for these linear orders, but also for an ample amount of further
classes, so called Fraïssé classes, which lead to a collection of new very exotic structures.
A modification of these Fraïssé constructions has been used by Hrushovski in [Hru93]
in order to refute Zil’ber’s Trichotomy Conjecture. We now give an introduction into
Fraïssé constructions. For a detailed exhibition see [TZ12, Section 4.4].

Definition 2.1.17 Assume L to be countable and C to be a class of finitely generated
L-structures which is countable up to isomorphism. Let furthermore F be a class of
embeddings between L-structures, which we call strong embeddings. We call C a
strong Fraïssé class, if the following conditions are satisfied:

(HP) (Strong Hereditary Property) If B is a structure in C and A is a finitely gen-
erated L-structure such that there exists a strong embedding f : A → B, then
A ∈ C.
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(JEP) (Strong Joint Embedding Property) For all structures B and C in C, there is
some structure D ∈ C and strong embeddings f : B → D and g : C → D.

(AP) (Strong Amalgamation Property) For all structures A,B and C in C and strong
embeddings f1 : A → B and f2 : A → C, there exists some D ∈ C together with
strong embeddings g1 : B → D and g2 : C → D such that the following diagram
commutes:

B � p

g1

  
A
/ �

f1

??

� o

f2
��

D.

C
. �

g2

>>

Let us furthermore say that some L-structure A is strong in some structure B, if A ⊆ B
and the inclusion map is a strong embedding. In this case, we write A ≤ B.
We see that these Fraïssé classes give rise to a limit structure, its so-called strong
Fraïssé limit. For a given L-structure M we denote by age(M) := {A ⊆ M |
A finitely generated} the set of all finitely generated substructures of M and call it
the age of M . The Fraïssé limits we obtain by some amalgamation method, are charac-
terized by the following condition.

Definition 2.1.18 Let C a class of finitely generated L-structures and F be a class
of strong embeddings between L-structures. Some L-structure M is called strongly
C-saturated, if

(1) we have age(M) = C and

(2) for all A ∈ C with a strongly embedding f : A → M and B ∈ C together with a
strong embedding g : A → B, there exists a strong embedding h : B → M such
that the following diagram commutes:

A � � f //� _

g

��

M.

B
. �

h

==
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Let M be some L-structure and F a class of strong embeddings between L-structures.
We callM ultrahomogeneous with respect to F , if any partial isomorphism between
two substructures A and A′ of M which are strongly embedded into M can be extended
to an automorphism of M . In particular, if M is ultrahomogeneous with respect to F ,
then two strongly embedded substructures A and A′ of M have the same type, if and
only if there is a partial isomorphism from A to A′.

Fact 2.1.19 Let M be some countable L-structure and F a class of strong embeddings
between L-structures. Then M is ultrahomogeneous with respect to F if and only if
it is strongly C-saturated. Furthermore, any two countable C-saturated structures are
isomorphic.

The following theorem now establishes the relation between Fraïssé classes and C-saturated
countable structures.

Fact 2.1.20 Let C be a countable class of finitely generated L-structures and F a class
of strong embeddings between L-structures. There is a strongly C-saturated countable
structureM if and only if C is a strong Fraïssé class with respect to the strong embeddings
in F . Furthermore, the limit M is unique up to isomorphism and ultrahomogenous with
respect to F . We then call M the strong Fraïssé limit of C.

Indeed, we even get a slightly stronger result, not only guaranteeing that any finitely
generated structure can be embedded into the limit, but also any countable one.

Fact 2.1.21 For some L structure let Cω denote the class of all countable substructures
of M . If F is a class of strong embeddings between L-structures and M is ultrahomoge-
nous with respect to F , then for any finite subset A together with a strong embedding
f : A → M and any X ∈ Cω with strong embedding g : A → X, there is some strong
embedding h : X →M such that g ◦ f = h.

2.2 Around Zil’ber’s Conjecture

The Trichotomy Conjecture of Boris Zil’ber, although refuted soon after its appearance
by Hrushovski, has influenced research in model theory during the last thirty years. In
the following section, we want to motivate and state the conjecture, present its coun-
terexample and have a look at the new classification tool - the ampleness of a structure
- that arose from Hrushovski’s new strongly minimal set.
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Zil’ber’s Conjecture

Inspired by Morleys Categoricity Theorem, there arose the question of classifying strongly
minimal sets, which control uncountably categorical theories in an essential way. Recall
that a theory is strongly minimal, if in all its models any definable set is either finite or
co-finite. There are three classical, well-known examples of strongly minimal theories:

Example 2.2.1 The following provide strongly minimal theories:

(1) The infinite pure set without any further structure;

(2) An infinite dimensional vector space over some countable division ring;

(3) An algebraically closed field.

Within a strongly minimal theory, the algebraic closure satisfies the exchange princi-
ple. This property has rich consequences, as it equips any strongly minimal theory with
the structure of a pregeometry.

Definition 2.2.2 Let M be some set and cl a function from P(M) → P(M) which
satisfies the following conditions for all A ⊆ B ⊆M :

• (Monotonicity) We have A ⊆ cl(A) ⊆ cl(B)

• (Idempotent) We have cl(cl(A)) = cl(A).

• (Finite Character) It holds cl(A) = ⋃
A0⊆A finite cl(A0).

• (Exchange Principle) For all elements b and c we have that if c ∈ acl(Ab) \A, then
b ∈ acl(Ac).

Then the pair (M, cl) is called a pregeometry. If furthermore cl({x}) = {x} for any
singleton x, we call (M, cl) a geometry.

The main consequence of the exchange property is that we can define a well behaved
notion of dimension in any pregeometry M . For a finite set A, we let d(A) denote the
largest cardinality of an independent set, i.e. a set A0 ⊆ A with a 6∈ cl(A0 \ {a}) for any
a ∈ A0. In fact, there is a one to one correspondence between dimension functions and
pregeometries.

34



2 Preliminaries 2.2. AROUND ZIL’BER’S CONJECTURE

Definition 2.2.3 A function d : Pfin(M) → N is called submodular , if for all finite
sets A and B we have

d(A ∪B) ≤ d(A) + d(B)− d(A ∩B).

A monotone and submodular function d is called a dimension function. If the in-
equality actually is an equality whenever d(A ∩ B) > 0, we call the dimension function
locally modular .

Now, we already mentioned that we can obtain a dimension function from any prege-
ometry. For the examples given above, this dimension has a very natural interpretation:
in a pure set, in coincides with the cardinality of a set, in a vector space it reflects the
linear dimension and in algebraically closed fields, it is witnessed by the transcendence
degree.
Reversely, from any dimension function d we can obtain a pregeometry by defining
b ∈ cl(X) if and only if there exists some finite A ⊆ X such that d(Ab) = d(A).
The Trichotomy Conjecture of Zil’ber aims to classify the pregeometries we obtain by
acl on any strongly minimal theory.

Conjecture 2.2.4 (Zil’ber’s Trichotomy Conjecture, 1984) Let T be a strongly
minimal theory. Then the pregeometry induced by acl on the models of T falls into
one of the following three classes.

(1) It is “set-like”, i.e. for any set A we have acl(A) = ⋃
a∈A acl(a). We call such a

geometry disintegrated.

(2) It is “vectorspace-like”, i.e. it is not disintegrated and the assigned dimension
function is locally modular.

(3) It is “field-like” in a very strong sense: there is an algebraically closed field inter-
pretable in T.

Note the strong implication Zil’ber’s Conjecture would have in the realm of the interac-
tion between model theory and algebra: if we start with an arbitrary strongly minimal
theory whose geometry is not locally modular, then an actual infinite field is interpretable
in it and hence we can do algebraic geometry. Nevertheless, the conjecture had been
refuted by Hrushovski [Hru93] soon after. We present his counterexample to Zil’ber’s
Conjecture in the next paragraph.
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Before coming to that, we want to point out that even though the Trichotomy Conjecture
had been refuted, work around it continued and proved to be a rich source of research.
The continuation of Zil’ber’s Conjecture can basically be partitioned into two streams:

(1) What further conditions should be put in order to make the conjecture hold?

(2) How far is the conjecture from being true? Can we fill the gap between vectorspace-
like geometries and algebraically closed fields?

We gave some results on the first question in the introduction, whence we now turn
towards the second question. We introduce Hrushovski’s counter example and outline
the new lines of classification obtained from it.

Hrushovski’s Ab Initio

This section is devoted to introduce the counterexample constructed by Hrushovski in
[Hru93] and outline in what sense it sits “between” the geometries named in Zil’ber’s
Conjecture. Finally, we see that there is a general description of the geometries that
possess a geometry of essential different type than vector spaces and fields, which leads
to the notion of the ample hierarchy.

Hrushovski’s construction consists of two parts. He first builds a strong Fraïssé limit,
where the notion of strongness is determined through a predimension function δ. This
way, he obtains a theory which is ω-stable of infinite Morley rank and known as the
ab initio structure. In order to decrease the rank and end up with a strongly minimal
theory, he introduced a new method which is by now known as the Hrushovski collapse,
by only allowing a bounded number of copies of certain small extensions during the
amalgamation process.
Recall that for a strong Fraïssé limit, we need a Fraïssé class which is to be amalga-
mated and a notion of strongness between its objects. The structures considered by
Hrushovski are graphs A with a ternary relation L = {K}. Consider first the class C of
all L-structures for which K is irreflexive and symmetric, i.e. a collection of 3-element
subsets. The ingenious idea now is that Hrushovski starts with a predimension function
δ which in the strongly minimal collapsed structure yields the dimension function in-
duced by acl, and defines the notion of strongness in dependence of this function. Recall
that there is a one-to-one correspondence between a pregeometry and the dimension
function. This way, he can determine the geometrical properties his structure is going
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to have, from the very beginning.

We assume that all appearing graphs are contained in some common supergraph. By a
subgraph we mean an induced subgraph and for two ternary graphs A and B we denote
by AB the induced subgraph on A ∪B.

Definition 2.2.5 For a finite ternary graph A we set δ(A) = |A| − |K(A)|, where K(A)
is the set of all relations in A. If B is another finite ternary graph, we set δ(B/A) =
δ(AB) − δ(A). Finally, we say that some finite graph A is δ-strong in an arbitrary
ternary graph X, write A ≤δ X, if δ(B/A) ≥ 0 for any finite B ⊆ X.

Note that the function defined above is submodular. We now consider the subclass C0

of all structures A in C with δ(A) ≥ 0. It is easy to see that this class has the strong
amalgamation property with respect to the notion of strongness defined above: the graph
theoretic amalgam always provides a new example within the class C0. Thus, there exists
a strong Fraïssé-limitM0, which we call Hrushovski’s ab-initio structure.
Now recall that in order for δ to actually be a dimension function, besides being sub-
modular it also has to be monotone. This is not yet the case.

Example 2.2.6 Consider some set A = {a0, a1, a2} consisting of three vertices without
any relations and let B be the extension of A by one new vertex b together with two
new relations K(a0, a1, b) and K(a0, a2, b). Then 3 = δ(A) > δ(B) = 2.

On the other hand, recall that the δ-value of any finite substructure in M0 is non-
negative. Thus, the value can only decrease finitely many times and any finite structure
has a finite strong superstructure inM0. The submodularity of δ implies easily that the
intersection of two strong sets is again strong, whence indeed for any finite set A ⊆M0

there is a smallest strong superset of A in M0, which we call the closure of A and
denote by cl(A). We now obtain a dimension function based on δ.

Fact 2.2.7 Let d : Pfin(M0)→ N be the function defined via A 7→ δ(cl(A)). Then d is
a dimension function and thus induces a pregeometry Cl onM0.

As Hrushovski started with a δ function of his choice, so to prevent the Fraïssé limit to
be locally modular, this is now witnessed through the dimension function d.
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Example 2.2.8 Consider the sets in Example 2.2.6. As B ∈ C0, we can embed B

strongly into M0. Clearly, the vertex b is in the closure Cl of A, as B ⊆ Cl(A). On
the other hand, it is not in the closure of any of the vertices ai, as each of them already
provides a closed set inM0. Thus the geometry (M0,Cl) is not disintegrated.
Furthermore note that

d({a0b} ∪ {a1b}) = 2 < d({a0b}) + d({a1b})− d({b}) = 3,

whence d is not locally modular onM0.

Thus, we already obtained a geometry which does not fall into the first two cases.
Before we consider the problem of interpretable fields, observe that we were aiming for
a strongly minimal structure. It is easy to see that the present structure is ω-stable of
infinite Morley rank. For a nice and detailed exposition on Hrushovski’s new strongly
minimal set, see also [Zie13].

The Collapse

In this paragraph we want to see how we can get from the infinite rank structureM0 to
a strongly minimal counterpart, without changing the key geometric properties. Recall
that we were aiming for a strongly minimal structure, in which the geometry is given
by the algebraic closure. We observe that this is not yet the case inM0 as for a triple
(a0, a1, b) with K(a0, a1, b), the vertex b is in the closure Cl of the set {a0, a1}, but not
algebraic over it.
The main idea behind the collapse is to force the condition

d(b/A) = 0 if and only if b ∈ acl(A).

In order to do so, we have to be more careful during the amalgamation process and only
allow a uniformly bounded number of copies of b over A, whenever d(b/A) = 0.

Definition 2.2.9 Let A ≤ B be a strong extension of structures in C0. We say that B
is a 0-minimal extension of A, if δ(B/A) = 0 and there is no proper strong subextension
A ≤ B′ ≤ B. We call B simple over A, or say that (A,B) is a simple pair , if B is
0-minimal over A and not over any proper subset of A.

These simple extensions form the building blocks of any strong extensions of dimension
0. It hence suffices to uniformly bound the number of copies of simple extensions. Thus,
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we fix a function µ from the set of all simple pairs inM0 into the natural numbers with
the following properties:

(i) The value µ(A,B) only depends on the isomorphism type of the pair (A,B);

(ii) The value µ(A,B) is at least δ(A).

Denote furthermore for a simple pair (A,B), with A being contained in some structure
D, by χD(A,B) the maximal number of disjoint copies of B over A in D. Now we define
the subclass

Cµ := {D ∈ C0 | χD(A,B) ≤ µ(A,B) for all simple pairs (A,B) with A ⊆ D}.

Then we get the following theorem which is proved in [Hru93].

Fact 2.2.10 The class Cµ has the amalgamation property with respect to strong embed-
dings. Its strong Fraïssé-limit Mµ is strongly minimal and the pregeometry induced by
acl coincides with the pregeometry induced by the dimension function d on Mµ. Fur-
thermore, the geometry is not locally modular and there is no infinite field interpretable
inMµ.

We do not give a complete proof of the above statement, but reason with some of its
parts.

Proof (Sketch) We skip the proof of the class having the amalgamation property.
Furthermore, the structure Mµ turns out to be ω-saturated, which we also assume.
Instead, we argue directly that algebraic closure and d-closure coincide. Assume A ≤Mµ

and there is some element b ∈ Mµ in the d-closure of A, i.e. d(b/A) = 0. Then we
can decompose the strong extension A ≤ cl(Ab) into a chain of 0-minimal extensions.
Clearly, by the property of the class, there are at most finitely many copies of each
of these extensions, whence there also are only finitely many copies of b over A and b

is algebraic over A. For the other direction, it follows from the amalgamation process
that if A ≤ B is a minimal extension with d(B/A) > 0, then there are infinitely many
copies of B over A in Mµ. Thus, for some element b we have b ∈ acl(A) if and only if
d(b/A) = 0. Hence the two pregeometries coming from acl and from d coincide.
In order to show that Mµ is strongly minimal, we have to show that over any set
A ≤ Mµ there is exactly one non-algebraic 1-type. Note that for any singleton b we
have δ(b/A) ≤ 1, whence also d(b/A) ≤ 1. If d(b/A) = 0, then b is algebraic over A
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by the considerations above. Otherwise d(b/A) = δ(b/A) = 1 and the set Ab ≤ Mµ is
strong inMµ. We saw in Section 2.1 that the type of b over A is completely determined
by the closure of Ab, whence this yields a unique non-algebraic type over A andMµ is
strongly minimal.
There are two ways to show that there is no infinite field interpretable inMµ. The first
one is to show that the obtained geometry is flat, a notion that is discussed in detail in
Section 7.3. As a consequence, there is not even an infinite group interpretable inMµ.
Another argument uses that the geometry is CM-trivial. We discuss this line of thought
in the following section. �

This concludes the overview of Hrushovski’s example. The general method of construct-
ing a strong Fraïssé limit with a notion of strongness given by some predimension function
and of collapsing the structure by limiting the number of small extensions that we allow,
has been used a lot in the following years to construct many interesting counterexamples
to different questions. It is now known as a Hrushovski construction.

The Ample Hierarchy

We already mentioned that the pregeometries appearing in Zil’ber’s Trichotomy Conjec-
ture are of essentially different type. Clearly, the three examples given in Example 2.2.1
fall exactly in the three corresponding types of geometries. While in disintegrated pre-
geometries any dependence between an element and a set already happens between the
element and a singleton in the set, this is no longer the case in a vector space. Just note
that for two base elements b1 and b2, its sum is algebraic over {b1, b2}, but not over any
of the two vectors alone. Nevertheless, understanding independence is rather simple, as
it is completely given by the algebraic closure: the dimension formula for vector spaces
yields that any two sets are independent over the intersection of their algebraic closure.
This property is known as being one-based. In algebraically closed fields the indepen-
dence is still harder to describe. It is easy to see, that the geometry in an algebraically
closed field is not locally modular. For example, consider an algebraically closed field of
characteristic 0 and choose an independent set of three elements, i.e. a set {a, b, c} such
that the transcendence degree of {a, b, c} over Q is 3. Set furthermore d := ac+ b. Then

acl(a, b) ∩ acl(c, d) = Qalg(a, b) ∩Qalg(c, d) = Q.

On the other hand, the tuple (a, b) is not independent from (c, d) over the empty set, as
otherwise also a, b |̂

c
d and thus d |̂

c
d, whence d ∈ acl(c), a contradiction.
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We mentioned that the geometry constructed by Hrushovski is flat and hence cannot
interpret an algebraically closed field, not even an infinite group. Besides this argument,
Hrushovski pointed out another, rather combinatorial property that his structure pos-
sesses and which never occurs if there is an infinite field around. He called this property
being CM-trivial. This property is a sharpening of the notion of one-basedness, which
we briefly introduced above, and recall here for the matter of reference.

Definition 2.2.11 Let T be a stable theory. We call T one-based, if for any sets A
and B we have

A |̂
acleq(A)∩acleq(B)

B.

We say that T is CM-trivial, if for all A,B and C with A |̂
C
B we have

A |̂
acleq(AB)∩acleq(C)

B.

As A |̂
C
B implies that acleq(A) ∩ acleq(B) ⊆ acleq(AB) ∩ acleq(C) and also acleq(A) ∩

acleq(B) ⊆ acleq(A), it immediately follows that any one-based theory also is CM-trivial.
On the other hand, if T interprets an infinite field, it cannot be CM-trivial. This proves
that there is no infinite field interpretable in the theory of Hrushovski’s new strongly
minimal set, whence his example is not a geometry of either of the types listed in Zil’ber’s
Trichotomy Conjecture.

Fact 2.2.12 (Proposition 3.2 in [Pil96b]) If there is an infinite field interpretable
in some stable theory T, then T is not CM-trivial.

The above fact has first been proven by Pillay. In a following paper [Pil00], he observed
that non-one-basedness and non-CM-triviality can be considered as the first two steps of
an entire hierarchy of geometries of essentially different nature, which all refine the gap
between vector spaces and algebraically closed fields. The following definition originates
from Pillay [Pil00], with some modifications suggested by Evans.

Definition 2.2.13 Let T be a stable theory and n ∈ N arbitrary. We say that T is n-
ample if, possibly after naming parameters, there are tuples a0, a1 . . . , an which satisfy
the following properties:

(i) We have acleq(a0) ∩ acleq(a1) = acleq(∅);
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(ii) For all 1 ≤ i < n it holds

acleq(a0, . . . , ai−1ai) ∩ acleq(a0, . . . , ai−1, ai+1) = acleq(a0, . . . , ai);

(iii) For all 1 ≤ i < n we have a0, . . . , ai−1 |̂ ai ai+1 and

(iv) It holds that a0 6 |̂ an.

One can understand the degree of ampleness of being a measure on how complicated the
forking relation within the given theory is. We already observed that in vector spaces
the independence is completely described by the algebraic closures. One can understand
the ampleness of a theory in a way of characterizing, how far this statement is from
being true.
The following remark is easy to see.

Remark 2.2.14 (1) The notions of ampleness form a hierarchy, i.e. any structure
which is n+ 1 ample, is also n ample.

(2) A stable theory T is 1-ample, if and only if it is not one-based.

(3) A stable theory T is 2-ample, if and only if it is not CM-trivial.

The above remark implies in particular that infinite dimensional vector spaces over
division rings are not 1-ample. Thus, they stand on the very bottom of the given
hierarchy. It also states that algebraically closed fields are at least 2-ample. In fact, the
theory of algebraically closed fields stands on the very top of the hierarchy.

Fact 2.2.15 (Proposition 3.13 in [Pil00]) If there is an infinite field interpretable
in some stable theory T, then T is n-ample for all n ∈ N.

Ever since the appearance of Hrushovski’s new strongly minimal set, the question re-
mained on whether there existed a counterexample to Zil’ber’s conjecture, which is not
CM-trivial. The introduction of the ample hierarchy now yields a vast range of possibil-
ities of how these geometries could look like. Whenever one could construct a strongly
minimal theory being strictly n-ample for some n ≥ 2, one would have the desired
counterexample. Nevertheless, this task turned out to be very challenging.
Anand Pillay discovered, that a stable theory is 1-ample if and only if there is a type-
definable pseudoplane in it: consider a type-definable set p(x, y), where we understand
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the tuple x as coding points and the tuple y as coding lines. If any point is contained
in infinitely many lines (i.e. x 6∈ acl(y)) and any line contains infinitely many points
and furthermore any two points intersect in only finitely many lines and any two lines
in finitely many points, then we call p(x, y) a type-definable pseudoplane. It is a free
pseudoplane if any two lines (resp. points) intersect in a unique point (resp. line). Note
that a free pseudoplane can be seen as the disjoint union of infinite-branching trees. It
is 1-ample, but still CM-trivial.
The first to make progress in the direction of constructing a non-CM-trivial counterex-
ample were Baudisch and Pillay in [BP00]. They produced a structure which is known
as the free pseudospace and which can roughly be considered as gluing to free pseu-
doplanes together in a suitable way. Although this theory is not of finite Morley rank, it
is at least ω-stable. Furthermore, it is shown to be not CM-trivial. The reason for both
the free pseudoplane and the free pseudospace to not be of finite Morley rank is due to
both structures having infinite diameter in the sense of graph distance.
It took some time for new examples to appear. Baudisch, Martin-Pizarro and Ziegler
managed in [BMPZ14a] to generalize the construction of the free pseudospace to arbi-
trary ampleness and Katrin Tent at the same time understood the notion of ampleness
to be a natural analog of right angled buildings and also provided examples in arbitrary
ampleness in [Ten14]. They proved:

Fact 2.2.16 ([BMPZ14a] and [Ten14]) The ample hierarchy is strict. For any n

there is an ω-stable structure of infinite Morley rank, which is n-ample, but not n + 1-
ample.

On the other hand, there was no hope of being able to collapse the structures obtained
above into examples of finite Morley rank so that they could refute Zil’ber’s Conjecture:
all the examples given have trivial forking and hence any finite rank collapse would be
one-based.
In this thesis under the supervision of Tent, we follow the line of thought of considering
incidence geometries as the natural examples for ample structures and use a Hrushovski
amalgamation method to obtain a counterexample to Zil’ber’s Conjecture, which is 2-
ample.
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2.3 Incidence Geometries

Buildings are the geometrical objects, introduced by Jaques Tits in [Tit59] and later
from another point of view in [Tit74], in order to study exceptional groups of Lie type.
They are combinatorial geometries, which naturally appear along with algebraic groups
and Lie groups and which reflect in a geometrical way the algebraic properties of these
groups.
In this section we introduce all objects necessary to define incidence geometries and
buildings, we view the known examples within the ample hierarchy as buildings and get
to know a new counterexample to Zil’ber’s Conjecture - The almost strongly minimal
generalized n-gons constructed by Tent in [Ten00b]. The new 2-ample geometries, which
to construct is the aim of this thesis, are roughly speaking two of these n-gons glued
over each other in an appropriate way. Finally, we see that any building of finite Morley
rank is either a generalized n-gon or interprets an algebraically closed field, whence the
notion of a building is too strict to yield counter examples to Zil’ber’s conjecture in
higher ampleness.

Generalized N-Gons

Recall that a k-partite graph is a graph Γ = (V,K) such that the set of vertices V
is partitioned into k-many disjoint sorts P1, . . . , Pk and there are no edges between two
vertices in the same sort. We consider all graphs equipped with the graph distance dist,
where dist(x, y) is the length of a shortest path in Γ from x to y, if such a path exists
and ∞ otherwise. Now, the diameter of Γ is the supremum of {dist(x, y) | x, y ∈ Γ} and
the girth of Γ is the length of a smallest simple cycle in Γ.

Definition 2.3.1 Fix some n ∈ N ∪ {∞}. A generalized n-gon is a bipartite graph
Γ of diameter n and girth 2n. Note that a simple 2n-cycle is a generalized n-gon. This
specific example is called an ordinary n-gon. We say that a generalized n-gon is thick,
if any vertex is incident with at least three other vertices.

This definition might not come intuitively to all of the readers, considered that we already
believe to know what an n-gon should be. We hope that the following example might
help to see the motivation for the given terminology.

Example 2.3.2 Consider an ordinary triangle, i.e. a simple 6-cycle. We can partition
its vertex set into two sorts, which we denote by points {p1, p2, p3} and lines {l1, l2, l3}
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such that the two neighbors of any vertex are in a different sort than the vertex itself.
If we interpret an edge between some point and some line as saying that the point
is contained in the line, then the picture below illustrates how the abstract ordinary
triangle relates to the usual triangle that we already know.

Note that thick generalized n-gons consist of unions of ordinary n-gons and thus locally
coincide with what we intuitively understand as being an n-gon. We hope that the reader
finds the following examples helpful in order to get used to the notion of a generalized
n-gon. When discussing n-gons, we from now on always consider the two sorts to stand
for points and lines.

Examples 2.3.3 • A generalized 2-gon is a complete bipartite graph: as the dis-
tance between any point and line is always odd and has to be at most 2, we see
that in fact, any point is connected to any line.

• A generalized 3-gon is a projective plane: the distance between two points or resp.
two lines is even and at most 3, whence any two points (or any two lines) meet in
a common line (or point resp.). Furthermore this line is unique, as there are no
cycles of length 4.

• A generalized ∞-gon is a disjoint union of arbitrarily many trees such that there
are at least two connected components if the graph is finite. This is immediate,
as there are no simple cycles whatsoever. In particular, the free pseudoplane is a
generalized ∞-gon.

These generalized n-gons are the building bricks for incidence geometries and buildings,
which we want to define later in this section. But before we come to that, we want to in-
troduce the almost strongly minimal generalized n-gons constructed by Tent in [Ten00b].
They are essential for the construction of the almost strongly minimal 2-ample geome-
tries, which we are going to construct in the main part of this thesis and which arise by
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gluing the n-gons of Tent together in an appropriate way.

Almost Strongly Minimal Generalized N-gons

In the following we want to explain the construction of Tent from [Ten00b].
In order to obtain almost strongly minimal generalized n-gons, she uses a Hrushovski
construction on a class of bipartite graphs, where we understand the two sorts as referring
to points and lines. We always assume that the graphs we talk about are contained in
some common supergraph. By a subgraph we mean an induced subgraph and for two
graphs A and B we write AB for the induced subgraph on A∪B. We denote the edges
of some graph A by K(A).
Recall that for a Hrushovski construction, we need a predimension function on finite
graphs, which determines strong embeddings and yields a dimension within the limit,
and a class of graphs which possesses the amalgamation property with respect to these
strong embeddings. For some finite graph A set

δ1(A) := (n− 1)|A| − (n− 2)|K(A)|.

This clearly yields a submodular predimension function. For a graph A which is δ1-
strong in B, we write A ≤1 B. Now consider the class C1 of finite bipartite graphs B
satisfying the following properties:

(C1) There are no ordinary m-gons in B for any m < 2n.

(C2) If A ⊆ B contains an ordinary m-gon for m > n, then δ1(A) ≥ 2n+ 2.

In [Ten00b] it is shown that the above class has the amalgamation property. As we are
interested in constructing examples of finite Morley rank, we have to amalgamate more
carefully so to bound the rank. We got to know this procedure as the collapse in Section
2.2. Recall that a simple extension A ≤ B is a strong extension with δ1(B/A) = 0 and
such that there is no proper strong subextension and furthermore B is not a 0-minimal
extension over any proper subset of A. We then also call (A,B) a simple pair.
Note that if within a graph A there are two vertices x and y such that dist(x, y) = n+1,
then the extension of A by a new path of length n−1 between x and y is a valid extension
in C1, which is simple over {x, y}. We call this extension a pure path extension of
length n−1. The existence of these extensions ensures that the limit structure obtained
by amalgamation is indeed of diameter n.
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We now introduce a function µ from the set of all simple pairs (A,B) into the natural
numbers with the following two properties:

(1) The value µ(A,B) does only depend on the isomorphism type of (A,B).

(2) If B is a pure path extension of two vertices in A, then µ(A,B) = 1. Otherwise
µ(A,B) ≥ max{δ(A), n}.

Now let Cµ1 be the subclass of C1 consisting of all the structures C ∈ C1 which satisfy that
for any simple pair (A,B) with A ⊆ C there are at most µ(A,B)-many disjoint copies
of B over A in C. Tent shows that this class again has the amalgamation property:

Fact 2.3.4 (Theorem 4.4 in [Ten00b]) The class (Cµ1 ,≤1) has the amalgamation prop-
erty. Its strong Fraïssé limit Γn is a Cµ1 -saturated generalized n-gon.

It is left to show that the limit structure Γn is almost strongly minimal, i.e. there exists
a finite set B and an almost strongly minimal set D such that Γn is in the algebraic
closure of BD. The strongly minimal set D is given by the set of all lines connected to
one fixed point (so-called line pencils) or the set of all points contained in one fixed line
(so-called point rows).

Fact 2.3.5 (Theorem 4.5 in [Ten00b]) Let D be a point row or a line pencil. Then
D is strongly minimal.

For odd n it is known that any generalized n-gon is in the definable closure of a point-row
and a finite set, due to certain definable bijections called projectivities. See [Ten00a] or
[KTvM99] for a nice exhibition on these objects. For even n, Tent used a more involved
geometric argument to prove the following fact:

Fact 2.3.6 (Theorem 4.6 in [Ten00b]) The generalized n-gon Γn is almost strongly
minimal. More precisely, if x1, x2 and x3 are three vertices with

dist(x1, x2) = dist(x2, x3) = n and dist(x1, x3) ∈ {n− 1, n},

depending on whether n is even or odd, and D is the set of all vertices connected to x1,
then Γn ⊆ dcl(D ∪ {x1, x2, x3}).
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Higher Rank Geometries and Buildings

We now introduce incidence geometries and buildings, which one can think of as higher
rank analogies of generalized n-gons.
Fix some finite index set I. By an incidence geometry Γ over I, we only mean an
|I|-partite graph. The cardinality of I is called the geometrical rank of Γ. A set of
vertices F ⊆ Γ is called a flag, if all the vertices in F are pairwise incident. Note that
this implies |F | ≤ |I|. If equality holds, we call F a complete flag. We also include the
empty set in the definition of a flag. For a given flag F we call

Res(F ) := {x ∈ Γ | F ∪ {x} is a flag} (2.1)

the residue of F . Note that the residue of any flag in the sorts J ⊆ I is again an
incidence geometry over I \ J . Now we have all the tools to define a geometry of a
certain type.

Definition 2.3.7 Let I be a finite set and M := (mij)i,j≤|I| be a symmetric matrix
with mii = 1 for all i, called a Coxeter matrix. We call an incidence geometry Γ over
I a geometry of type M , if for any flag F on vertices in the sorts I \ {i, j} for i 6= j,
the bipartite graph Res(F ) is a generalized mij-gon.

Often, the type of an incidence geometry is given by a Coxeter diagram, rather than
the Coxeter matrix M . The Coxeter diagram associated to the matrix M is a finite
graph with vertices s1, . . . , s|I| and an edge between si and sj for i 6= j labeled mij

whenever mij ≥ 3. We intuitively understand that if si and sj are not connected by an
edge, then mij = 2.

Examples 2.3.8 (i) A geometry of type • • is a complete bipartite graph.

(ii) A generalized n-gon is an incidence geometry of type •
n
−•. The n-gons constructed

by Tent in [Ten00b] are geometries of this type and yield examples which are 1-
ample of finite Morley rank.

(iii) The free pseudoplane is an incidence geometry of type •
∞
− •. Recall that it is

exactly 1-ample and ω-stable of infinite Morley rank.

(iv) A geometry of type •
n
−•

n
−• consists of three sorts, which we understand as points,

lines and planes. The residue of each line is a complete bipartite graph. In the
following chapters, we construct a geometry of this type, which is strictly 2-ample
and of finite Morley rank.
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(v) The free pseudo space as constructed by Baudisch and Pillay in [BP00] is a geom-
etry of type •

∞
− •

∞
− •. It is ω-stable of infinite Morley rank and strictly 2-ample.

(vi) The free k-pseudospaces as constructed in [BMPZ14a] and [Ten14] are geometries
of type •

∞
− •

∞
− • · · · •

∞
−• (k times). They provide examples of ω-stable theories of

infinite rank, which are strictly k-ample.

We see in the above list of examples within the ample hierarchy, that it seems to be the
natural guess to look for a geometry of type •

n
−• · · · •

n
−• (k times), when aiming to find

a counterexample to Zil’ber’s conjecture which is exactly k-ample.

Now we want to introduce the notion of a building. We can assign to each Coxeter
diagram a unique group, its Coxeter group. If the Coxeter diagram is over an index
set I with values (mij) for i, j ≤ |I|, then its associated Coxeter group is given through
the presentation

W := 〈s1, . . . , s|I| | (sisj)mij = 1〉.

Note that it is in general not possible to recover the generating set S := {s1, . . . , sn}
from the isomorphism type of W . Thus we often point out the generating set explicitly
and call the pair (W,S) a Coxeter System. Given a Coxeter system, we can assign
to any element w ∈ W its wordlength l(w), i.e. the smallest number k such that w can
be written as a word in k-many of the letters {s±1

1 , . . . , s±1
|I| }. We call a word reduced,

if there is no word of shorter length representing the same group element. Now we can
finally give the definition of a building.

Definition 2.3.9 (conf. Definition 5.1 in [AB08]) Let (W,S) be a Coxeter system.
A building ∆ of type (W,S) is a pair (C, δ) consisting of a nonempty set C, whose
elements are called chambers, together with a map δ : C × C → W , such that for all
c, d ∈ C the following three conditions hold:

(B1) The value δ(c, d) = 1 if and only if c = d.

(B2) If δ(c, d) = w and c′ ∈ C satisfies δ(c′, c) = s ∈ S, then δ(c′, d) ∈ {sw,w}. If in
addition l(sw) = l(w) + 1, then δ(c′, d) = sw.

(B3) If δ(c, d) = w, then for any s ∈ S, there is a chamber c′ ∈ C such that δ(c′, c) = s

and δ(c′, d) = sw.
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This definition might appear rather combinatorial at first sight. In order to connect it
to the definition of incidence geometries, we can think of the set C as the set of complete
flags in an incidence geometry with Coxeter diagram on the vertices S := {s1, . . . , s|I|}.
The function δ measures the distance between two flags within the geometry, where we
say for example that two complete flags F and F ′ are at distance si, if they coincide on
all their vertices but the one in the i-th sort. We can illustrate this by writing F si7→ F ′,
meaning that a change of some vertex in the i-th sort gets us from the complete flag F
to the complete flag F ′. That way, we can successively assign a distance value in the
group (W,S) between any two complete flags. An incidence geometry now is a building,
if the existing flag paths in it coincide with the group relations in W , i.e. any word
assigned to a shortest path in ∆ between two flags is a reduced word in W and there
are no cycles in ∆ which correspond to a nontrivial reduced word in W .
We call a building spherical, if its associated Coxeter group W is finite. Furthermore,
we say that a building is irreducible, if its Coxeter diagram is connected. Moreover, a
building is called a right angled building, if in the Coxeter Matrix all appearing entries
are either 2, in which case the according generators commute, or infinite.
Note that thick generalized n-gons are exactly the spherical buildings of geometrical
rank 2. We want to give the following example on how to view a generalized polygon as
a building.

Example 2.3.10 Let Γ be a thick generalized n-gon. The associated Coxeter group is
W := 〈s1, s2 | s2

1 = s2
2 = (s1s2)n = 1〉.

For two flags F = (a, b) and F ′ = (a′, b′) in Γ, let k be the shortest distance between one
vertex of F and one vertex of F ′. We consider the example where the shortest distance
is witnessed between the line b and the point a′, whence k is odd. Then there is a unique
ordinary 2n-gon (c0 = a, c1 = b, c2, c3, . . . , ck, ck+1 = a′, ck+2 = b′, . . . , c2n−1, c2n = c0) in
Γ containing both flags. If k < n− 1, this yields a unique shortest flag-path

F = (a, b) s17→ (c2, b)
s27→ (c2, c3) s17→ . . .

s27→ (ck−1, ck)
s17→ (a′, ck)

s27→ (a′, b′) = F ′

from F to F ′. Thus we can assign as the distance between F and F ′ the value δ(F, F ′) =
(s1s2) k+1

2 . If k = n− 1, then any shortest path between F and F ′ is of the form (s1s2)n2
or (s2s1)n2 . Note that these two words represent the same group element in W as

(s1s2)
n
2 =

(
(s1s2)

n
2
)−1

= (s2s1)
n
2 .

Note that all the examples given in 2.3.8 except our new geometry mentioned in (iv), are
in fact buildings. Thus, in order to construct counterexamples to Zil’ber’s Conjecture
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in higher ampleness, one might want to construct buildings of finite Morley rank which
are of type •

n
− • . . .

n
− •. Nevertheless, this turns out to be impossible.

This is due to the following observations: we can understand the graph distance as an
indication for forking and dimension, whence for a building to be of finite Morley rank,
it has to be of finite diameter. Otherwise there are vertices in the graph of arbitrary
large finite distance that fork with any vertex on the path between them and the Morley
rank of the theory it at least ω. It is known that a building is of finite diameter if and
only if it is of spherical type, whence any possible example had to be spherical.
On the other hand, Kramer, Tent and van Maldeghem proved the following fact:

Fact 2.3.11 (Theorem 5.1 in [KTvM99]) Let ∆ be an infinite irreducible spherical
building of geometrical rank at least three and of finite Morley rank. Then ∆ is the
building associated to a simple linear algebraic group over some algebraically closed field,
which is definable in ∆.

By the theorem of Pillay [Pil00], this implies that the theory of any infinite irreducible
building of finite Morley rank is n-ample for all n and cannot be properly contained in
the ample hierarchy.

Nevertheless, one should not be discouraged by this fact, as there is no structural reason
why we should require the incidence geometry to be a building. Hence in the following
chapters, we construct an incidence geometry of type •

n
− •

n
− • of finite Morley rank,

which is 2-ample, but not 3-ample.
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CHAPTER 3

THE CONSTRUCTION

3.1 Motivation and Notation

We saw in Section 2.2 that the natural examples of ω-stable geometries which are
properly contained in the ample hierarchy, are given by right-angled buildings of type
•
∞
− •

∞
− • · · · •

∞
−•. They are the natural higher rank generalizations of the free pseudo-

plane, which itself is a building of geometric rank 2 and type •
∞
− •. As is the latter,

these right-angled buildings are of infinite Morley rank, which originates in the fact that
all these incidence geometries have infinite diameter with respect to the graph distance.
In [Ten00b], Katrin Tent used a Hrushovski amalgamation method to construct gener-
alized polygons of finite Morley rank. Recall that a generalized polygon is an incidence
geometry of type •

n
− • for some n ∈ N and thus provides the natural finite diameter

analog of the free pseudoplane. As in the pseudoplane, her examples are 1-ample and
not 2-ample, witnessed by any complete flag.
In this dissertation under the supervision of Tent, we take these thoughts one step further
and construct a geometry of geometric rank 3 of finite diameter and type •

n
− •

n
− •

for arbitrary n ≥ 6. Hereby, we can think of the three different types of vertices as
corresponding to points P, lines L and planes E respectively. Note that in such a
geometry, the residue of any line is a generalized 2-gon, i.e. a complete bipartite graph
on points and planes. This motivates that we distinguish between two different sets
of edges: those that connect a line to either a point or plane, which we denote by K
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and those that connect points to planes, which we denote by K′. Furthermore, we are
interested in complete flags, which we denote by F . If we want to refer only to the points
(respectively edges et cetera) of some specific structure A, we also write PA (respectively
KA et cetera). By K(A,B) and K′(A,B) respectively, we denote the number of edges
connecting a vertex from A with some vertex from B and finally we use the notation
F(A,B) (respectively F(A,B,C)) for complete flags that contain at least one vertex
from A and one vertex from B (respectively one from A, one from B and one from C).
We obtain the geometry through a Hrushovski construction using a predimension func-
tion δ based on the ideas introduced in Section 2.2. Once again, a complete flag are a
witness for ampleness and we obtain a theory which is 2-ample, but not 3-ample. In
Chapter 5, we use general methods to collapse the ab initio structure and thus obtain a
strongly minimal geometry, which is 2-ample, but does not interpret an infinite field.
From now on for the rest of this thesis, we fix some n ≥ 6. We assume that all graphs
A,B, . . . that are considered in the following are contained in some common supergraph
and we denote by AB the induced subgraph on the set A∪B therein. We frequently use
suggestive expressions like “a line contains a point” or “two points intersect in a line“
for the fact a point is connected to a line (or two points are connected to the same line).
Usually, we use letters A,B etc. to denote finite structures, while X,Y and so on stand
for infinite ones. We say that an extension X ⊆ Y is finite or that Y is finite over X, if
Y \X is finite. We may sometimes use letters A,B, . . . instead of Y in this case.

3.2 The Predimension Function

As outlined in Section 2.2, the main ingredient that sets Hrushovski’s amalgamation
method apart from general Fraïssé constructions, is the presence of some predimension
function δ which assigns to any finite object in the amalgamation class some natural
number and determines strong extensions.

Definition 3.2.1 Assume A to be a finite, tripartite graph. We set

δ(A) := (3(n− 1)− 1)|LA|+ 2(n− 1)(|PA|+ |EA|)

−(2(n− 1)− 1)|KA| − (n− 1)(|K′A| − |FA|).

As usual, for two finite tripartite graphs A and B we set

δ(B/A) := δ(AB)− δ(A).
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Furthermore, if X is an arbitrary set, we define

δ(A/X) := min{δ(A/C) | C ⊆ X finite}.

We say that A is strong in B (write A ≤ B), if A is contained in B and we have
δ(B′/A) ≥ 0 for all finite B′ ⊆ B. Note that this is a priori not a first order property,
whence we also use the following notations, which are first-order expressible:
We say that A is k-strong in B (write A ≤k B) for some natural number k ≥ 0, if
A ≤ B′ for all B′ ⊆ B with |B′ \A| ≤ k. If δ(l/A) ≥ 0 for all lines l ∈ B, we say that A
is L-strong in B and write A ≤L B.

In the following, we want to motivate the above choice of the δ-function. First recall that
within a geometry of type •

n
−•

n
−•, the residue of any line is a complete bipartite graph,

implying that whenever a point p is contained in some line l, which itself is contained in
a plane e, then p must necessarily also be contained e. In that case, the vertices (p, l, e)
form a complete flag and we call the edge between p and e induced. Those induced
edges do not provide any additional information and should not be counted, whence we
oppose to the number of edges in K′ the number of flags. If an edge is not induced, we
also refer to it as an essential edge.
The next Lemma illustrates the inductive character of the above predimension function
in relation to the predimension function δ1 for the geometric rank 2 case, which was
introduced in Section 2.3.

Lemma 3.2.2 Let B be a tripartite graph and x ∈ P ∪ E a point or plane in B. Then
for any A ⊆ ResB(x) we have

δ(A/x) = δ1(A).

Proof Without loss of generalization we may assume that x is a point. Then

δ(A/x) = δ(A)− (2(n− 1)− 1)|K(x,A)| − (n− 1)(|K′(x,A)| − |F(x,A)|)

= δ(A)− (2(n− 1)− 1)|LA| − (n− 1)(|EA| − |KA|)

= (n− 1)(|LA|+ |EA|)− (n− 2)|KA|

= δ1(A).
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3.3 The Amalgamation Class

The two main ingredients for a Hrushovski amalgamation are the class of structures we
want to amalgamate and a predimension function which determines strong extensions.
We already defined the predimension above, whence we now need to introduce the ap-
propriate class of structures that have the amalgamation property and ensures that its
Hrushovski limit is a geometry of type •

n
− •

n
− •.

Definition 3.3.1 Let C0 be the class of tripartite graphs X which satisfy the following
conditions:

(C1) If the point p is contained in a line l and l is contained in some plane e, then p is
contained in e.

(C2) There are no cycles of length less than 2n in the residue of a point or plane
respectively.

(C3) If two different points intersect, i.e. there is a common vertex containing both the
points, then they intersect either in a unique plane (and no line) or in a unique line
and all the planes contained in that line. The dual holds for planes respectively.

(C4) Let A ⊆ X be a finite substructure of X which satisfies (C3).

(a) If |A| ≥ 3, then δ(A) ≥ 3(n− 1) + 1 and

(b) if x ∈ A is a point (or plane respectively) and ResA(x) contains a cycle of
length at least 2(n+ 1), then δ1(ResA(x)) ≥ 2(n+ 1).

Denote furthermore by Cfin
0 the subclass of all finite structures in C0.

While conditions (C1)−(C3) ensure that the limit structure is a geometry of the desired
type, we use condition (C4)(a) to guarantee that certain structures are always strongly
embedded and (C4)(b) to provide that the residue of any point or plane in the limit
structure is a generalized n-gon as constructed by Tent in [Ten00b].

Remark 3.3.2 We remark that the class C0 is not closed under substructures due to
condition (C3). To see that consider the tripartite graph A consisting of two points, one
line l and two planes such that any two vertices of different sorts are incident. Then
A ∈ C0. The substructure A′ := A \ {l} though violates condition (C3) and hence is no
element of the class. Nevertheless, this being the only obstacle for substructures, the
intersection of two structures in C0 is still a structure in C0.
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3.4 Around Submodularity

In contrast to the Hrushovski amalgamations known so far, the predimension function
given above lacks a major property: it is not submodular.

Example 3.4.1 Consider the tripartite graph consisting of one point p, one line l and
two planes e, e′ and set A := {l, e, e′} and B := {p, e, e′}. Note that A ≤ AB. Neverthe-
less, we calculate

δ(B/A) = 1 > 0 = δ(B/A ∩B),

contradicting submodularity.

The problem arising around submodularity is that, as outlined before, we have to count
flags positively to oppose induced edges and thus, more edges from B to A do not im-
mediately imply a decrease of the δ-value of B over A, as a single edge could induce
several flags. In this section, we want to characterize the situations in which submod-
ularity fails and so establish a slightly weaker version of it, which allows us to execute
the amalgamation nevertheless.

First, we see that the only strong extensions by a line are those which extend a flag.

Example 3.4.2 (Extension by one line) Assume that X ∈ C0 and B = X∪{l} ∈ C0

arises from X by adding a single new line l ∈ L and arbitrarily many edges from l into
X. First note that, if the residue of the new line Res(l) does not only consist of vertices
of one type (all planes or all points), then it is connected by condition (C1). Note further
that if there were at least two points and at least two planes in Res(l) ⊆ X, by (C3)
they must share a common line other then l in X. But then, the extension would not be
valid, as there would be a point-line cycle of length 4 < 2n in B in the residue of each of
the planes. Thus, we may assume that there are i-many planes for i = 0, 1 (or i-many
points respectively) and k-many points (or planes respectively) in Res(l). This yields

δ(l/Res(l)) = (3(n− 1)− 1)− (2(n− 1)− 1)(k + i) + ik(n− 1),
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which is non-negative if and only if k ≤ 1. Thus, the only one-line extensions with
non-negative delta are extensions of a partial flag (including the empty flag). As we use
this a lot in the upcoming, we remark that

δ(l/Res(l)) = 1 for i = k = 1,

δ(l/Res(l)) = n− 1 for i+ k = 1 and

δ(l/Res(l)) = (n− 1)− k(n− 2) if i = 1.

Furthermore, whenever X ∈ C0 and B is an extension of X by a line extending a partial
flag, then B ∈ C0.

Next we study strong one-point (respectively one-plane) extensions. As partial flags shall
have infinite residues, we certainly want the extension of a partial flag by a point to be
a strong extension. Furthermore, to obtain a structure of finite diameter in the limit,
we want to ensure that any two planes meet in a common point (and vice versa). We
see that these two types of extensions are indeed the only strong one-point extensions.

Lemma 3.4.3 Let y ∈ P∪E be a point or plane and X ∈ C0. If yX ∈ C0 and δ(y/X) ≥ 0
then y is either connected to exactly one line in X and all the planes (respectively points)
contained in that line, or it is connected to at most two planes (respectively points) and
no line.

Proof Without loss of generalization we may assume y to be a point. Consider some
finite subset A ⊆ X with ∅ 6= A ⊆ Res(y). First note that

δ(y/A) = 2(n− 1)− (2(n− 1)− 1)|LA| − (n− 1)(|EA| − |KA|). (3.1)

Clearly, if there is no line in A, then δ(y/A) ≥ 0 if and only if |EA| ≤ 2. Now assume
that A contains at least one line. We want to show that there cannot be any further
lines in A, if δ(y/A) ≥ 0.
By Remark 3.2.2 and condition (C4)(a), we know

δ1(A) := (n− 1)(|LA|+ |EA|)− (n− 2)|KA| ≥ n− 1. (3.2)

If δ(y/A) ≥ 0, then by Equation (3.1), we have

n− 1 ≥ (2(n− 1)− 1)|LA|+ (n− 1)|EA| − (n− 1)|KA| − (n− 1). (3.3)
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Multiplying (3.2) by (n− 1) and (3.3) by (n− 2), we get

(n− 1)2(|LA|+ |EA|) ≥ (n− 2)(2n− 3)|LA|+ (n− 2)(n− 1)|EA| − (n− 1)(n− 2)

⇒ (n− 1)|EA| ≥ (n2 − 5n+ 5)|LA| − (n2 − 3n+ 2).

Equation (3.1) shows that we may consider all the planes in A to have degree at least 2,
as otherwise we can take off those of less degree and still maintain the inequality. Thus
we have |KA| ≥ 2|EA|, and Equation (3.2) yields

(n− 1)(|LA|+ |EA|) ≥ (n− 2)|KA|+ (n− 1)

≥ 2(n− 2)|EA|+ (n− 1)

⇒ (n− 1)|LA| ≥ (n− 3)|EA|+ (n− 1).

Putting the above pieces together, we get

(n− 1)2|LA| ≥ (n− 3)(n− 1)|EA|+ (n− 1)2

≥ (n− 3)(n2 − 5n+ 5)|LA| − (n− 3)(n2 − 3n+ 2) + (n− 1)2,

which yields for n ≥ 6 that

n3 − 7n2 + 13n− 7
n3 − 9n2 + 22n− 16 ≥ |LA|.

One can easily check that for n ≥ 6, this is only possible if |LA| ≤ 4. Thus, there are
no cycles in A and moreover we may assume that A is a path consisting of k + 1 lines,
k planes and 2k edges. One calculates

δ(y/A) = 2(n− 1)− (2(n− 1)− 1)(k + 1)− (n− 1)(k − 2k),

which is only non-negative if k = 0 and there is exactly one line contained in A. Con-
sidering once more Equation 3.1, we see that if δ(y/A) ≥ 0 and A contains exactly one
line, then any plane in A has to be connected to that line. �

The following Lemma emphasizes the relation between the n-gons constructed by Tent
[Ten00b] and the geometry presented here.

Lemma 3.4.4 Assume A ≤ B and let x be a point or plane in A. Then ResA(x) is
δ1-strong in ResB(x).
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Proof We may assume x to be a plane. Let G ⊆ ResB(x) be a bipartite graph which
contains ResA(x) and set Ĝ := G \ ResA(x) and Â := A \ ResA(x). Note that

0 ≤ δ(G/A)

= δ1(G/G ∩A)−
(
(2(n− 1)− 1)|K(Ĝ, Â)|+ (n− 1)(|K′(Ĝ, Â)| − |F(Ĝ, Â)|

)
︸ ︷︷ ︸

=:(∗)

.

We show that (∗) ≥ 0. Let b ∈ Ĝ be arbitrary and consider

(∗)b := (2(n− 1)− 1)|K(b, Â)|+ (n− 1)(|K′(b, Â)| − |F(b, Â)|.

If b is a line, then (∗)b = 0 by Example 3.4.2, as any vertex in A connected to b also
has to be connected to x and thus is contained in ResA(x), whence (∗)b = 0. If b is a
point, then by Lemma 3.4.3 it is either connected to a unique plane different from x and
(∗)b = (n−1) > 0 or again every edge between some vertex in A connected to b is in one
to one correspondence with a complete flag, whence again (∗)b = 0. Thus, in particular
(∗) ≥ 0 and

0 ≤ δ(G/A) ≤ δ1(G/G ∩A) = δ1(G/A),

which proves the claim. �

Another important extension of C0-structures are path extensions within the residue of
a point or plane. The next example gives a description of strong extensions of this kind.

Example 3.4.5 (Extension by a path in a residue) We show that strong path ex-
tensions within a residue have to be of length at least n− 1 and any extension of length
exactly n− 1 is a pure path extension as defined below.
Consider a structure A ∈ Cfin

0 . Let p be some point in A and x0 and xk be two vertices
in the residue of p in A. Furthermore, let B := {x1, x2, . . . , xk−1} consist of k − 1 new
vertices, such that (x0, x1, . . . , xk) forms a path of length k in Res(p) with possibly more
edges into A than the ones given within the path. Assume AB ∈ C0 .
First we calculate that δ(B/p, x0, xk) = k − 1 − (n − 2): note that AB ∈ C0 implies
{p, x0, x1, . . . , xk} ≤1 A. If now A ≤ AB, we can apply Lemma 3.4.6 and obtain

0 ≤ δ(B/A) ≤ δ(B/p, x0, xk) = k − 1− (n− 2),

whence k ≥ n−1. Furthermore, for k = n−1 the extension is a 0-extension and uniquely
determined: there are no essential edges from some vertex of the path to A \ {p, x0, xk}.
Thus, two strong path extensions of length n−1 from x0 to xn−1 in Res(p) are isomorphic
over A. We call this a pure path extension of length n− 1.
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With the knowledge about these important extensions, we are now ready to present a
weaker form of submodularity which is satisfied in our setting and allows us to execute
the amalgamation procedure.

Lemma 3.4.6 (Submodularity Lemma) Consider two structures A′ and B′ in Cfin
0

such that A′ ≤1 A
′B′, B′ ≤3 A

′B′. Then, for any C ⊆ A′B′ with A := C ∩A′ ∈ Cfin
0 and

B := C ∩B′ ∈ Cfin
0 , we have

δ(AB) ≤ δ(A) + δ(B)− δ(A ∩B)− (n− 2)Kess(Â, B̂),

where Kess(Â, B̂) denotes the number of essential edges connecting a vertex in Â := A\B
to a vertex in B̂ := B \A.

Proof Observe that

δ(AB) = δ(A) + δ(B)− δ(A ∩B)

− (2(n− 1)− 1)K(Â, B̂)− (n− 1)(K ′(Â, B̂)− F (Â, B̂))︸ ︷︷ ︸
=:(∗)

.

We want to show that (∗) ≥ (n − 2)Kess(Â, B̂). Therefor, fix b ∈ B̂ and consider the
data (∗)b in (∗) that involves b, i.e.

(∗)b := −(2(n− 1)− 1)K(b, Â)− (n− 1)(K ′(b, Â)− F (b, Â)).
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If there is no edge between b and some a ∈ Â, then (∗)b = 0. Hence we now always
assume that there is an edge from b into Â.
First let b be a point. Consider the case that there is an edge from b to some line l ∈ Â.
Note that there can exist at most one such edge and any plane in Â which is connected
to b also has to be connected to l, as δ(b/A′) ≥ 0. Hence there is exactly one non-induced
edge between Â and B̂ involving b. Now we count the flags that involve b.

F1 Consider the flags that involve b, l and some plane in Â. Then any of these flags
is in one to one correspondence with an edge in K ′(b, Â), whence it does not add
anything to (∗)b.

F2 Consider the flags that involve b, l and some plane e ∈ B. As B′ ≤3 A
′B′, we know

that there can be at most one of these flags, as otherwise δ(l/B′) < 0. That flag
adds at most (n− 1) to (∗)b.

F3 Consider flags that use b, some plane e′ ∈ Â (which has to be connected to l, as
δ(b/A′) ≥ 0) and some line l′ ∈ B. Note that such a flag can only exist, if there is
no flag in F2, as otherwise the path (e, l, e′, l′) would be a path extension of B′ in
the residue of b of length 3, contradicting B′ ≤3 A

′B′. Furthermore, there can be
at most one of these flags in F3, as any other such flag has to use a different plane
e′′ ∈ Â, which is again connected to l and as two different planes cannot intersect
in two different lines, the second flag also has to use a different line l′′ ∈ B. Then
again, the path (l′e′le′′l′′) is a path extension of B′ in the residue of b of forbidden
length.

This shows that (n− 1)(K ′(b, Â)− F (b, Â)) = −(n− 1)(F2 + F3) ≥ −(n− 1), whence

(∗)b = (2(n− 1)− 1) + (n− 1)(K ′(b, Â)− F (b, Â)) ≥ (n− 2).

Now consider the case that there is an edge from b to some plane in Â (and not to any
line in Â). If this edge is part of a flag, then the flag is unique (containing that edge)
and uses a line in B. In that case, the edge is a non-essential one and nothing is added
to (∗)b. In addition to that there can be k edges between b and some planes in Â, which
are not part of any flag, whence they correspond to essential edges between Â and B̂.
Note that k can be arbitrarily large, as the edges between b and the planes in Â might
be induced through a line in A′ \A. Thus

(∗)b = (n− 1)(K ′(b, Â)− F (b, Â)) = k(n− 1) ≥ k(n− 2).
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Clearly, the same argument is valid for b being a plane, only that we do not have to
count those flags in (F2) any more, which use point and plane in B̂.
Now we consider the case that b is a line which is connected to a unique point p ∈ Â (or
plane respectively if there is no point). Note that any flag that involves p, b and some
plane e ∈ B̂ has already been counted in (∗)e. Thus, if there are no other edges from b

to A, then there is exactly one non-induced edge between Â and B̂ involving b and the
value added is (2(n − 1) − 1) > (n − 2). Otherwise, there is a plane e ∈ A such that
(p, b, e) is a complete flag. As δ(b/A′) ≥ 0, there can be at most one such flag. Thus,
the value added is k(2(n− 1)− 1)− (n− 1) ≥ k(n− 2), where k = 1 if e ∈ A ∩B (and
there is one non-induced edge between Â and B̂ involving b) and k = 2 if e ∈ Â (and
there are two non-induced edges between Â and B̂ involving b).
Finally, observe that the data above sums up to (∗). This concludes the proof. �

Remark 3.4.7 Note that in the conditions above it suffices to ask that B′ ≤L A′B′

and there exists some B̃ ⊆ B′ such that B′ \ A′ ⊆ B̃ ≤1 B̃ ∪ (A′ \B′), as the only time
B′ ≤1 A

′B′ is really needed, is in the very beginning of the proof, when we say that the
point a ∈ A \B can be connected to at most one line in B \A and if it is connected to
a such line l, then any plane in B \A which is connected to a, also is connected to l.

3.5 Dimension and Minimal Extensions

In the following section we want to study first properties of the dimension function
d arising from δ and introduce specific minimal extensions which are used frequently
afterwards.
For matter of reference we state the following properties of 0-extensions, which are direct
consequences of the Submodularity Lemma.

Remark 3.5.1 Assume A ⊆ B ⊆ C are C0-structures with A ≤ C and δ(B/A) = 0.
Then the following hold.

(i) If A is strong in C, then also AB is strong in C.

(ii) If C ′ ≤ C with B ⊆ BC ′ and B ∩ C ′ = A, then there is no non-induced edge
between B and C ′ \ A. In particular the quantifier free type of B over C ′ is
uniquely determined by its quantifier free type over A.

(iii) If B1 and B2 are two disjoint copies of B over A in C and A ≤|AB| C, then there
are no essential edges between B1 and B2. In particular δ(B1/AB2) = δ(B1/A).
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Submodularity also yields that being strong is a transitive relation, preserved under
intersections.

Lemma 3.5.2 For all finite graphs A,B and C we have

(1) If A and B are strong in C, then also their intersection A ∩B is strong in C.

(2) If A is strong in B and B is strong in C, then A is also strong in C.

Proof (1) Let A and B be strong in C. We first show that A∩B is strong in A. To
this end, consider A′ ⊆ A such that A ∩ B ⊆ A′. We may assume that A′ ≤L A,
whence A′ ≤1 A

′B. As furthermore B ≤ A′B, we can apply the Submodularity
Lemma 3.4.6 and get

0 ≤ δ(A′/B) ≤ δ(A′/A′ ∩B) = δ(A′/A ∩B),

as desired. Clearly, the symmetric argument shows A ∩B ≤ B.

Now, let A∩B ⊆ C ′ ⊆ C be a structure of minimal δ-value among those containing
A ∩ B. Note that C ′ ∈ C0 and strong in C. As furthermore B ≤ BC ′, the
Submodularity Lemma yields that 0 ≤ δ(C ′/B) ≤ δ(C ′/B ∩ C ′). Now, as we
already have that A ∩B is strong in B, we get

δ(A ∩B) ≤ δ(C ′ ∩B) ≤ δ(C ′).

Thus we see that δ(C ′) = δ(A ∩B), whence A ∩B ≤ C.

(2) Let A′ be the smallest C0-substructure of C that contains A and is strong in C. By
(1), we know that A′ is unique. Furthermore, again by (1) we know that A′ ∩ B
is strong in C and contains A, whence A′ = A′ ∩B and thus A′ ⊆ B. But A ≤ B,
whence δ(A′) ≥ δ(A) and thus A = A′ ≤ C. �

We saw that the intersection of two closed sets is again closed. This yields that for
any X ∈ C0 and any finite substructure A ⊆ X there is a unique smallest closed set
containing A. We call it the closure of A in X and denote it by clX(A). Furthermore,
for finite A we call d(A):= δ(clX(A)) the dimension of A in X. If the context is clear,
we omit the superscript X.
As usual, for an arbitrary subset X ∈ C0 and A ∈ Cfin

0 finite, we set

d(A/X) := min{d(A/C) | C ⊆ X finite}.
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We say that X is strong in Y (write X ≤ Y ), if and only if δ(A/X) ≥ 0 for all A ⊂ Y
finite and we set cl(X):= ∪{cl(C) | C ⊆ X finite}.
The following lemma assures us, that these notions transfer smoothly from finite sets to
infinite ones.

Lemma 3.5.3 Let X ⊆ Y be an arbitrary subset of Y ∈ C0 and B ⊂ Y finite. Then,
the following holds:

(i) If X = C is finite, then still d(B/C) = min{d(B/C0) | C0 ⊆ C finite}. In
particular, for all finite D containing C we get that d(B/D) ≤ d(B/C).

(ii) The set X is strong in Y if and only if clY (X) = X.

Proof (i) Let C0 ⊂ C be an arbitrary finite subset of C and set C ′0 := cl(C0B)∩cl(C).
Note that cl(C0B) = cl(C ′0B), whence

d(B/C ′0) = δ(cl(C ′0B))− δ(cl(C ′0))

= δ(cl(C0B))− δ(cl(C ′0))

≤ δ(cl(C0B))− δ(cl(C0))

= d(B/C0).

We also know that δ(cl(CB)) ≤ δ(cl(C ′0B) ∪ cl(C)) whence submodularity for the
sets C ′0 ≤ cl(C ′0B), cl(C) yields

d(B/C) = δ(cl(CB)/ cl(C)) ≤ δ(cl(C ′0B)/ cl(C ′0)) = d(B/C ′0) ≤ d(B/C0), �

as desired.

(ii) This is an implication of the following observation:

X ≤ Y ⇔ δ(B/X) ≥ 0 for all B ⊂ Y finite

⇔ δ(B/C) ≥ 0 for all B ⊂ Y,C ≤ X finite

⇔ C ≤ Y for all C ≤ X finite

⇔ X =
⋃
{cl(C) | C ⊆ X finite}.

Next we want to introduce minimal extensions, which form the building blocks of arbi-
trary strong extensions.
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Definition 3.5.4 (i) Let A ≤ B be a strong extension. We say that B is an i-
minimal extension of A, if δ(B/A) = i and there is no proper subset B′ ( B

with A ( B′ and B′ ≤ B. We say that B is a minimal extension of A, if it is
an i-minimal extension for some i.

(ii) Assume that B is a 0-minimal extension of A. We call the pair (A,B) simple, if
B is not a 0-minimal extension of any proper subset of A. We then also may say
that B is a simple extension of A.

Remark 3.5.5 Note that if the pair (A,B) is simple, then any a ∈ A is connected to
some b ∈ B \A by an essential edge.

On the way to understand minimal extensions, we first want to sort out few specific
0-minimal extensions, namely the only extensions which turn out to be in the definable
closure of the base set in the limit structures we aim to obtain.

Definition 3.5.6 Let X be some structure in the class C0 and X ≤ Y with Y ∈ C0 an
extension of X by either

(1) one point which is connected to exactly two planes in X;

(2) one plane which is connected to exactly two points in X or

(3) a pure path extension of length n − 1 in the residue of a point or plane in X as
constructed in Example 3.4.5.

Then we call Y a rigid extension of X.

To motivate this notation, note that if Y is a rigid extension of X, then it is unique in
the way that any structure in C0, which contains X strongly, contains at most one copy
of Y over X. In fact, in both the structures we obtain in the following chapters of this
thesis, the definable closure of any strong set X arises as a sequence of rigid extensions
as defined above.

Next we want to construct specific simple extensions. They were first introduced in
[GT14, Section 5] in order to study bounded automorphisms of the almost strongly
minimal generalized n-gons constructed by Tent in [Ten00b]. Apart from the study of
bounded automorphisms, we use these minimal extensions in order to determine the
rank of the structure we aim to construct.
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The following definition originates from [GT14, Definition 5.2] and was introduced for
generalized n-gons. We adapt it slightly to fit our setting, where the same n-gons appear
as residues of points or planes respectively.

Definition 3.5.7 Let x be some point or plane. We call a set A0 := {x, s0, . . . , s3} a
base configuration with respect to x, if the set {s0, . . . , s3} is contained in Res(x) and
the following conditions are satisfied:

• The graph distance in Res(x) between si and si+1 for i < 3, as well as the graph
distance between s0 and s3 is n;

• The graph distance in Res(x) between si and si+2 for i = 0, 1 is n or n − 1,
depending on whether n is even or odd.

Note that if n is even, then a base configuration with respect to some plane x consists
of x together with either four points or four lines in Res(x) of pairwise distance n. If n
is odd, then it contains x together with two points, say s0 and s2 and two lines s1 and
s3 such that the distance of two vertices of different sorts is n and between vertices of
the same sort it is n− 1.

Next, we see that there are infinitely many 0-minimal extensions in C0 of any structure
A ∈ C0 which contains a base configuration.

Fact 3.5.8 (Lemma 5.3 in [GT14]) Let X be a structure in C0 containing a base
configuration A0 = {x, s0, s1, s2, s3}. Then for any k ≥ 2 and any simple cycle Ck =
{c0, c1, . . . , c4k(n−2) = c0} in the residue of x and of length 4k(n − 2) with additional
edges between si and c(4l+i)(n−2) for any i ≤ 3 and l < k, the structure Ck := X ∪ Ck
satisfies the following properties:

(i) the structure Ck is again in C0;

(ii) the pair (A0,Ck) is a simple pair and

(iii) the extension X ≤ Ck is 0-minimal, but not rigid.

The above fact is not hard to verify. Recall that the δ-value of a simple cycle of length
4k(n− 2) in the residue of some point or plane x over x agrees with its δ1-value, which
is 4k(n− 2). We furthermore added 4k new essential edges from the cycle into A0 which
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Figure 3.1: Minimal extension Ck for n = 4 and k = 2

all produce a new flag, whence they add a value of −4k(n − 2) to the extension. Thus
X ≤ Ck is indeed a 0-extension.
Another way to picture the extension is to think of it as a pure path extension between
s0 and s1 of length n in the residue of x, followed by 4k − 2 many pure path extensions
of length n− 1 between different cli(n−2) and si+1 in the residue of x and concluded by
one pure path extension of length n− 2 between c4(k−1)(n−2) and c4k(n−2) = c0. In this
view, one can easily verify Fact 3.5.8. Confer also Figure 3.1.

As these extensions are used several times during the next chapters, we establish a
notation for them. For an easy reference we fix the following definition:

Definition 3.5.9 Let X be some structure in C0 which contains a base configuration
A0 := {x, s0, . . . , s3} with respect to some point or plane x ∈ X. Fix some natural
number k ≥ 2. Then we denote by Ck := X∪̇{c0, c1, . . . , c4k(n−2) = c0} the extension of
X by a simple cycle of length 4k(n− 2) in the residue of x together with an additional
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edge between si and c(4l+i)(n−2) for any i ≤ 3 and l < k. If we want to emphasize the
base set A0 over which the extension is simple, we may also write Ck(A0).

3.6 Amalgamation

In the following section we see that the class C0 has the amalgamation property with
respect to strong embeddings. To this end, let us first define an appropriate notion of a
free amalgam.

Definition 3.6.1 Let C0 be a common substructure of C1 and C2. We define the free
amalgam of C1 and C2 over C0 (write C1 ⊗C0 C2) as the structure consisting of the
disjoint union of C1 and C2 over C0 and all relations given within C1, C2 and through
condition (C1) from the Definition 3.3.1 of the class.

Lemma 3.6.2 Assume C0 ⊆ C1 and C0 ≤k C2 for tripartite graphs Ci and k ≥ 1. Then
C1 ≤k C1 ⊗C0 C2. Moreover, δ(D/C1) = δ(D/C0) for any D ⊆ C2 finite.

Proof ConsiderD ⊆ C1⊗C0C2 finite and non-empty with C1∩D = ∅. Set Ĉ1 := C1\C0.
Then

δ(D/C1) = δ(D/C0)− (2(n− 1)− 1)|K(D, Ĉ1)|

−(n− 1)(|K′(D, Ĉ1)| − |F(D, Ĉ1)|).

As by the definition of the free amalgam there are no essential edges between D and
Ĉ1, we get |K(D, Ĉ1)| = 0. Furthermore, any edge in K′(D, Ĉ1) has to be induced
through a line in C0 and thus yields a flag in F(D, Ĉ1). Note that this flag is unique, as
otherwise there was a vertex in D connected to two lines in C0, contradicting C0 ≤k C2.
Thus |K′(D, Ĉ1)| − |F(D, Ĉ1)| = 0 and δ(D/C1) = δ(D/C0), which is non-negative, if
|D| ≤ k. �

Theorem 3.6.3 The class Cfin
0 has the amalgamation property with respect to strong

embeddings. Moreover, if C0 ≤ C1 is a minimal extension and C0 ≤n−2 C2, then either
C1 ⊗C0 C2 ∈ Cfin

0 or C0 ≤ C1 is a rigid extension and there is an isomorphic copy of C1

over C0 in C2.

Proof Consider C0, C1 and C2 ∈ Cfin
0 such that C0 ≤ C1, C2 and denote Ĉi := Ci \ C0

for i = 1, 2. We may assume that the extension C0 ≤ C1 is minimal, as otherwise we
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can decompose C0 ≤ C1 into a finite chain of minimal extensions and amalgamate suc-
cessively. Set D := C1 ⊗C0 C2. If D ∈ Cfin

0 , then Lemma 3.6.2 yields that D already is
the desired amalgam.

Now we consider the case D 6∈ Cfin
0 , i.e. at least one of the conditions (C1)-(C4) is

violated. We show for each of the conditions that if it fails, then δ(C1/C0) = 0 with
C0 ≤ C1 being a rigid extension and there is a strong isomorphic copy of C1 over C0 in C2.

Case (C1): This condition is guaranteed to be true by definition of D.

Case (C2): Assume that there is a point-line cycle (x0, x1, . . . , xk−1, xk = x0) of length
less than 2n in the residue of some plane e in D. The cycle necessarily meets both Ĉ1

and Ĉ2. This immediately yields that e ∈ C0, as every vertex of the cycle is connected
to e and if e was for example in Ĉ2, there could be at most one vertex xi contained in
Ĉ1, which had to be a point, as there are no non-induced edges between Ĉ1 and Ĉ2,
and which furthermore had to be connected to two different lines xi−1 and xi+1 in C0,
contradicting that the extension C0 ≤ C1 is strong.
Hence, there exist path extensions of C0 in both C1 and C2 in the residue of e, which are
each of length at least n− 1 by Example 3.4.5. As we assumed the length of the whole
cycle to be less than 2n, it follows that both path extensions are of length exactly n− 1.
Furthermore, they are 0-extensions, whence minimality of C0 ≤ C1 implies that C1 is
a pure path extension of length n− 1 of C0, which is isomorphic to the according path
in C2 over C0 by Example 3.4.5. Note that C0 ≤ C1 thus is a rigid extension. Hence
we can amalgamate those two structures over C0 by identifying the amalgam with C2

and embedding C1 into C2 over C0. As δ(C1/C0) = 0, we furthermore get that the
embedding is strong.

Case (C3): Assume there are two points p1 and p2 inD that intersect. We check condition
(C3) through a case distinction.
Case (1): First we assume that pi ∈ Ĉi for i = 1, 2.

(1.1) Assume the pi intersect in a line l ∈ D. As there are no essential edges between Ĉ1

and Ĉ2, the line has to be contained in C0. Furthermore, because the extensions
C0 < Ci are strong, the points cannot intersect in any other line nor in a plane
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which does not contain l, by Lemma 3.4.3. Thus condition (C3) is valid in the
amalgam.

(1.2) Assume the pi intersect in two different planes e1 and e2 and no line.

First consider the case where both ei ∈ C0. If ResC0(pi) is exactly {e1, e2} for both
pi, then δ(pi/C0) = 0 and as C0 < C1 is a minimal extension, we know that C1

consists exactly of C0p1 and thus can be strongly embedded over C0 into C2 by
sending p1 to p2. Furthermore, in this case C0 ≤ C1 is a rigid extension. If one of
the residues contains also a line l, then l ∈ C0 has to be connected to the planes.
But then, considering the other point, say p2, we notice that in C2 the planes e1

and e2 both intersect in l and in p2, whence by condition (C3) the point p2 also
has to be contained in l, contradicting the assumptions.

Now let us assume that both ei are in C1, but not both in C0, say e1 ∈ Ĉ1. By
definition of the amalgam, the edge between p2 and e1 has to be induced through
some line l ∈ C0. As the residue of p2 in C1 has to be connected, we conclude
that also e2 has to contain l, and thus in C1 the planes e1 and e2 contain the line
l and the point p1, whence also p1 has to be connected to l, which contradicts the
assumptions.

Finally, assume the ei ∈ Ĉi. As all edges between Ĉ1 and Ĉ2 have to be induced,
there exist lines l1 and l2 in C0 such that (p1, l1, e2) and (p2, l2, e1) are complete
flags. By the study of one-point extensions, we know that δ(p1/C2) = 1 and
δ(e1/p1C2) = −(n− 2) if l1 6= l2 and δ(e1/p1C2) = 1, if l1 = l2. Because

0 ≤ δ(e1p1/C2) = δ(e1/p1C2) + δ(p1/C2),

the two lines have to coincide, whence once again p1 and p2 would intersect in one
line, contradicting the assumptions.

Case (2): Now we consider the case that both points are in the same Ci, say in C1.

(2.1) Assume the pi intersect in a line l1, which necessarily also lies in C1. If they
additionally intersect in a plane e that is not connected to l1, then e ∈ Ĉ2 as
condition (C3) holds in C1, and one of the points, say p1, has to be contained in
Ĉ1. As there are no non-induced edges between Ĉ1 and Ĉ2, there exists a line
l2 ∈ C0 such that (p1, l2, e) is a complete flag. As above, the residue of e in C1 has
to be connected, whence l also contains p2. But then, the points intersect in C1
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both in l1 and l2, whence l1 = l2 and the line contains the plane e, contradicting
the assumptions.

(2.2) Assume the two points intersect in two different planes e1 and e2 and no line. Then
either ei ∈ Ĉi for i = 1, 2 and we are in the symmetric case of Case (1.2), or both
planes lay in C2. In that case, one of the points, say p1, has to be contained in Ĉ1

and one of the planes, say e2, in Ĉ2. As there are no non-induced edges between
Ĉ1 and Ĉ2, there exists a line l ∈ C0 such that (p1, l, e2) is a complete flag. As the
residue of e2 in C1 is connected, also the point p2 has to be contained in l, whence
p1 and p2 intersect in l, contradicting the assumptions.

That proves that whenever condition (C3) is violated in D, then C0 ≤ C1 is a rigid
extension and there exists a strong isomorphic copy of C1 over C0 in C2.

Case (C4)(a): Consider D′ ⊆ D with |D′| ≥ 3. By possibly switching to its closure, we
may assume that D′ ≤ D. By Lemma 3.6.2 we get C2 ≤ D and C1 ≤n−2 D. Assume
|D′ ∩Ci| ≥ 3 for some i = 1, 2. If |D′ ∩C2| ≥ 3, then by Lemma 3.5.2, also D′ ∩C2 ≤ D
and δ(D′) ≥ δ(D′ ∩ C2) ≥ 3(n − 1) + 1, as desired. Otherwise |D′ ∩ C2| ≤ 2 < n − 2,
whence C1 ≤ C1D

′ and we can repeat the argument.
Now assume |D′ ∩ Ci| ≤ 2 for i = 1, 2, whence |D′| ≤ 4. Note that any graph A on two
vertices satisfies δ(A) ≥ 3(n− 1). One of the Ci, say C1 contains two vertices. Now, an
easy calculation shows that either δ(D′/D′ ∩ C1) = 0 and D′ consists of two points (or
planes respectively) in C1, whence δ(D′) = 4(n− 1), or δ(D′/D ∩ C1) > 0, whence

δ(D′) = δ(D′/D′ ∩ C1) + δ(D′ ∩ C1) ≥ 1 + δ(D′ ∩ C1) ≥ 3(n− 1) + 1. �

Case (C4)(b): Let x ∈ D be a point or plane in D and B ⊆ Res(x) containing a cycle
of length at least 2(n + 1). Denote by Bi := B ∩ Ci. By Lemma 3.4.4, we know that
B0 is δ1-strong in Bi. Note furthermore that B = B1 ⊗B0 B2, whence condition (C4)(b)
follows from the corresponding result in [Ten00b].

Theorem 3.6.3 implies the existence of a Cfin
0 -saturated structure M0, the ab-initio

structure corresponding to our given predimension and class. In the following chapter
we study the properties of the ab-initio, independently from the construction of the
collaps.
We want to conclude this section with a final remark on rigid structures and algebraic
closure inM0.

72



3 The Construction 3.6. AMALGAMATION

Remark 3.6.4 Theorem 3.6.3 states that for any structures C0, C1 and C2 in Cfin
0 ,

where C0 ≤ C2 is a minimal extension and C0 ≤ C1, we have that either C1 ⊗C0 C2 is
again a Cfin

0 -structure, or C2 is a rigid extension of C0. As the limit structure M0 is
Cfin

0 -saturated, this implies that there are infinitely many copies of C2 over C0 for any
minimal extension C2 which is not rigid. Thus, for A ≤ M0 and some tuple b, the
following three conditions are equivalent:

(i) b ∈ acl(A);

(ii) any decomposition of the strong extension A ≤ cl(Ab) into minimal extensions
consists of a sequence of rigid extensions;

(iii) b ∈ dcl(A).
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CHAPTER 4

THE AB-INITIO STRUCTURE

Before collapsing the structure in the sense of Hrushovski, we want to study the prop-
erties of the geometryM0. These results will not be used in the following chapters and
can thus be read independently from them. As a consequence, some of the proofs occur-
ring below are very similar to their counterpart for the strongly minimal case. Several
of the results obtained follow the very nice exposition by Martin Ziegler in [Zie13] of
the original ab-initio structure by Hrushovski. A main difference, which needs a new
approach, arises in the calculation of the rank of the theory.

4.1 Axiomatization

As it is standard in strong Fraïssé limits, we first note that the type of a finite tuple
depends only on its strong closure.

Lemma 4.1.1 Let M1 and M2 be Cfin
0 -saturated structures and ai ∈ Mi isomorphic

finite tuples. Then a1 and a2 have the same type if and only if the isomorphism a1 7→ a2

extends to an automorphism between their closures clM1(a1) 7→ clM2(a2).

Proof If a1 and a2 have the same type, they in particular have the same dimension in
M1 and M2 respectively. As the closure of ai can be characterized as the smallest Ai
containing ai and such that δ(Ai) = d(ai), clearly the closure is determined by the type
and a1 and a2 have isomorphic closures.
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4.1. AXIOMATIZATION 4 The ab-initio structure

Now, assume that there is an isomorphism from clM1(a1) to clM2(a2) extending the map
a1 7→ a2. We may assume that the Mi are ω-saturated. As furthermore both Mi are
Cfin

0 -saturated, the structures (M1, cl(a1)) and (M2, cl(a2)) and thus also (M1, a1) and
(M2, a2) are partially isomorphic. Thus, Lemma 2.1.3 implies that a1 and a2 have the
same type. �

Below, we give an axiomatization of the theory T0 := Th(M0), based on the axiomati-
zation in [MT17] introduced by Tent.

Proposition 4.1.2 Let the theory T0 consist of the axioms describing the following class
of models M :

(A1) Any model M is in C0.

(A2) Whenever A ≤k M for some k ≥ n−2 and A ≤ B is a minimal strong extension of
finite sets, then there exists some copy B′ of B over A such that B′ ≤k−(n−2) M .

Then T0 = Th(M0). Furthermore, a model M of T0 is ω-saturated if and only if it is
Cfin

0 -saturated.

Proof It is easy to see that the above is an infinite list of first order properties.
We first show thatM0 |= T0. Clearly, we have thatM0 is a C0-structure. Now consider
some finite A ≤k M0 with k ≥ n − 2. Then in particular, we have A ≤k cl(A) ≤ M0.
If cl(A)⊗A B is in C0, we can embed B strongly over cl(A) intoM0. By Lemma 3.6.2,
we further get that B ≤k M0. If cl(A)⊗A B is not in C0, then by Theorem 3.6.3 there
is a copy B′ of B over A within cl(A) and B is either the extension of A by one point
(respectively plane) which is connected to exactly two planes (respectively points) in A,
or it is a pure path extension of A in the residue of some point or plane in A of length
n − 1. In both cases we have that δ(B′/A) = 0 and |B′ \ A| ≤ n − 2, whence for any
C ⊆M0 of size at most k − (n− 2), we get

δ(C/B′) = δ(CB′/A)− δ(B′/A) = δ(CB′/A) ≥ 0,

as |CB′ \ A| ≤ k and A ≤k M0. This proves that B′ ≤k−(n−2) M0, whence M0 is a
model of T0.

Now let M |= T0 be an arbitrary ω-saturated model of T0. We show that M is Cfin
0 -

saturated, whence M is partially isomorphic to M0 and thus Th(M0) = Th(M) by
Lemma 2.1.3.
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AsM ∈ C0 and the empty set is strong in any C0-structure, it suffices to show that for any
A ≤ M finite and any strong extension A ≤ B with B ∈ Cfin

0 we can embed B strongly
inM over A. Inductively, we may assume that the extension A ≤ B is minimal. Now let
π(x) be the set of formulas over A saying that any realization B′ |= π(x) is isomorphic
to B over A and k-strong in M for any k ∈ N. By the family of axioms (A2), this is a
type over A. As M is ω-saturated, there exists some realization B′ |= π(x) in M , which
yields the desired strong embedding of B over A in M .
Thus M is C0-saturated and T0 = Th(M0). Furthermore, as any ω-saturated model of
T0 is partially isomorphic toM0, the ab-initio structureM0 is also ω-saturated. �

We gave a description of the theory T0. In the following we study forking within T0 and
calculate the rank of the theory.

4.2 Forking

In this section we want to describe the forking relation in T0. For the rest of this section,
we fix some big saturated model M |= T0 and without further notice assume that all sets
live within M.
First, we note the following auxiliary Lemma.

Lemma 4.2.1 Let A,X and Y be arbitrary sets such that A is finite over X with
d(A/X) = d(A/XY ). Then d(A ∩ Y/X) = 0.

Proof Recall that the dimension function is monotone in the sense that for any A, Y
and X we have d(A/X) ≥ d(A/XY ). This yields

d(A/X) = d(A/X(A ∩ Y )) + d(A ∩ Y/X)

≥ d(A/XY ) + d(A ∩ Y/X)

= d(A/X) + d(A ∩ Y/X),

whence d(A ∩ Y/X) = 0 as desired. �

We now want to describe forking. Note that a pure description of forking by an inde-
pendence witnessed through the dimension function is not possible, as by Remark 3.6.4,
there are many non-algebraic types tp(B/A) with d(B/A) = 0. Nevertheless, we define
a notion of independence in T0 using the dimension function in a straight forward way
and show that this notion indeed equals the non-forking independence.
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Definition 4.2.2 For sets A,X and Y , where A is finite, we set A |̂ 0
X
Y if and only

if d(A/X) = d(A/XY ) and cl(AX) ∩ cl(XY ) is algebraic over X.

In other words, a finite set A is independent from Y over some setX, if it is d-independent
and the extension cl(X) ≤ cl(AX) ∩ cl(XY ) can be obtained by finitely many rigid
extensions.
In order to show that the notion |̂ 0 coincides with non-forking independence, some
prior observations are useful.

Remark 4.2.3 Let A be finite and X and Y arbitrary with A |̂
X
Y . Then by sub-

modularity, we get

δ(cl(AX)/ cl(AX) ∩ cl(XY )) ≥ δ(cl(AX) ∪ cl(XY )/ cl(XY ))

≥ δ(cl(AXY )/ cl(XY )) = d(A/XY )

= d(A/X) = δ(cl(AX)/ cl(X))

≥ δ(cl(AX)/ cl(AX) ∩ cl(XY )).

Thus, all inequalities are equalities and in particular cl(AX) ∪ cl(Y X) ≤M.

Lemma 4.2.4 Assume A |̂ 0
X
Y . Then acl(AX) ∩ acl(XY ) ⊆ acl(X).

Proof This follows by a study of minimal and rigid extensions. For an ease of notation,
we may assume X,AX and XY to be closed. Let b ∈ acl(AX) ∩ acl(XY ). Then in
particular d(b/AX) = d(b/XY ) = 0.
Clearly, if b ∈ AX, then there are no essential edges from cl(bX) to Y \X, as otherwise
d(A/X) < d(A/XY ). Thus, in that case b ∈ acl(X). Generally, note that Lemma 4.2.1
implies that d(b/X) = 0. In particular, there is a decomposition of X ≤ cl(Xb) into a
finite chain

X ≤ XB1 ≤ · · · ≤ XBk := cl(Xb)

of 0-minimal extensions. Now, as b ∈ acl(AX), there also decomposition of AX ≤
cl(AXb) into a finite chain

AX ≤ AXD1 ≤ · · · ≤ AXDl := cl(AXb)

of rigid extensions. Set further B0 := D0 := ∅.
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Claim: The sets {Bi+1 \Bi | i < k} and {Di+1 \Di | i < l} coincide.

Proof of the claim: Let i and j be minimal such that Bi ∩Dj 6= ∅. Such i and j have to
exist, as b ∈ Bk ∩Dl. Then

AXBi−1Dj−1 ≤ AXBi−1Dj and AXBi−1Dj−1 ≤ AXBiDj−1

are both 0-minimal extensions of the same set and they intersect non-trivially, whence
Bi\Bi−1 = Di\Di−1. Now by submodularity, there are no essential edges from Bi\Bi−1

to ADi−1, as otherwise

δ(Bi/AXDi−1Bi−1) < δ(Bi/XBi−1) = 0.

Thus, we get that X ≤ X(Di \Di−1) is already a rigid extension and after resorting we
may assume that i = j = 1. Inductively, we may now conclude that {Bi+1 \ Bi | i <
k} = {Di+1 \Di | i < l}, proving the claim.
The claim implies in particular that all the extensions Bi ≤ Bi+1 are rigid, whence
b ∈ acl(X). �

Now, we want to show that the notion given in Definition 4.2.2 is indeed an independence
relation in T0 and hence has to coincide with the notion of non-forking independence,
which we denote as usual by |̂ .

Lemma 4.2.5 In T0 the notion |̂ 0 satisfies all properties of stable forking as presented
in [TZ12], i.e. it satisfies

• (Invariance) The relation |̂ 0 is invariant under automorphisms of M;

• (Local Character) For all A ⊆M finite and X ⊂M arbitrary, there exists C0 ≤ X
finite such that A |̂ 0

C0
X;

• (Transitivity) If A |̂ 0
X
Y and A |̂ 0

XY
Z then A |̂ 0

X
Y Z;

• (Weak Monotonicity) If A |̂ 0
X
Y Z, then A |̂ 0

X
Y .

• (Weak Boundedness) For all A ⊂ M finite and X ⊆ Y ⊂ M arbitrary, there
are only finitely many isomorphism types of A′ ⊆ M over Y with A′ ∼=X A and
A′ |̂ 0

X
Y .

• (Existence) For any A ⊂ M finite and X ⊆ Y ⊆ M arbitrary, there is some A′

such that tp(A/X) = tp(A′/X) and A′ |̂ 0
X
Y .
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Proof We show the validity of the different properties of stable forking successively.

• (Invariance) As δ is clearly invariant under automorphisms, so is d. As furthermore
closures are sent to closures, we get that |̂ 0 is invariant under automorphisms.

• (Local Character) For any C ⊆ X finite, we know that d(A/C) is a non-negative
integer and thus can decrease only finitely many times. Therefore, we find some
C0 ≤ X with d(A/C0) being minimal and such that cl(AC0)∩ cl(X) = cl(C0). By
Lemma 3.5.3.(i), the first property implies d(A/C0) = d(A/X) while the second
property clearly yields cl(AC0) ∩ cl(X) ⊆ acl(C0). Thus, we have A |̂ 0

C0
X.

• (Transitivity) The condition of transitivity on the dimension is clear, as the as-
sumptions say that d(A/X) = d(A/XY ) = d(A/XY Z). Furthermore, Lemma
4.2.4 yields that

cl(AX) ∩ cl(XY Z) ⊆ cl(AX) ∩ acl(XY ) ⊆ acl(X),

as desired.

• (Weak Monotonicity) Weak Monotonicity follows directly from the definition to-
gether with Lemma 3.5.3.(i), as

d(A/X) = d(A/XY Z) ≤ d(A/XY ) ≤ d(A/X),

whence d(A/X) = d(A/XY ) and the condition of the intersection of closures is
immediate.

• (Weak Boundedness) Recall that there is some C ⊆ X finite with A |̂ 0
C
X and

such that for any A′ ≡X A we have A′ |̂ 0
X
Y if and only if A′ |̂ 0

C
Y .

Claim: The type tp(A/C) is |̂ 0-stationary.

We show that for any finite, closed set D containing C, there is a unique |̂ 0-
independent extension of tp(A/C) to D. Consider two realizations A1 and A2 of
tp(A/C) independent from D. Note that A1 and A2 also have the same type over
acl(C) = dcl(C), whence we may assume C to be algebraically closed in AiD,
i.e. acl(C) ∩ AiD = C. By Remark 4.2.3 we get cl(AiD) = cl(AiC) ∪D, whence
by submodularity there are no non-induced edges between cl(AiC) \C and D \C.
Thus tpqf (cl(A1C)/D) = tpqf (cl(A2C)/D) and as cl(AiC)∪D is closed by Remark
4.2.3, we conclude by Lemma 4.1.1 that tp(A1/D) = tp(A2/D), as desired.

This proves that all types are stationary, whence in particular the forking notion
is weakly bounded.
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• (Existence) Consider an arbitrary type tp(A/X) for X ≤ M small and fix some
X ⊆ Y . Let C ≤ X be finite with A |̂ 0

C
X. Recall that as M is ω-saturated, it is

Cfin
0 -saturated. Now, for any D ≤ Y finite such that C ≤ D is a minimal extension,

Remark 3.6.4 yields that either A⊗C D ∈ Cfin
0 and there is a strong embedding of

A over D such that A |̂ 0
C
D, or D is a rigid extension of C, whence for any set A′

we have A′ |̂ 0
C
D. Thus, the set of formulas π(x̄) := tp(A/C) ∪ {x̄ |̂ 0

C
D | D ⊂

Y finite} is consistent. By saturation ofM, there exists some realization A′ of π(x).
By stationarity and the fact that A′ |̂ 0

C
X, we get that tp(A′/X) = tp(A/X). By

construction we also have A′ |̂
C
Y , whence A′ |̂

X
Y . �

4.3 Ranks

In this section we want to calculate the rank of types and show that T0 is ω-stable of
rank ω · (3(n− 1)− 1).

Lemma 4.3.1 The theory T0 is ω-stable.

Proof We show that there are only countably many 1-types over any countable set.
First note that there are at most countably many 1-types over any finite strong set C.
This follows from the fact that there are only finitely many pairwise different quantifier
free types over C and for any realization b of some quantifier free type over C, the type
tp(b/C) is uniquely determined by cl(Cb). As this closure is finite and for each k ∈ N
there are at most finitely many closures of size k, there are at most countably many
choices for the closure of Cb, whence there are only countably many diffierent types over
C.
Now consider again types over some countable subset X ⊆M. Note that we may assume
X to be closed in M. Then, for any type p(x) ∈ S1(X) and any realization b |= p(x),
there is some finite set C ≤ X such that b |̂ 0

C
X. By stationarity, any two elements

which have the same type over C and are independent from X over C, also have the
same type over X. As there are only countably many finite subsets of X and each type
is determined by its type over a finite subset, of which there are at most countably many,
we see that there are at most countably many types over X. Hence, the theory T0 is
ω-stable. �

In order to calculate the explicit Morley rank of T0, we first show that any 0-extension
is of finite Morley rank and conclude that T0 is of rank at least ω. This part follows the
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exposition on Hrushovski new strongly minimal set in [Zie13]. AsM0 is ω-saturated, it
suffices to work inM0 in order to calculate ranks.

Lemma 4.3.2 Let A ≤ M0 be a strong finite subset of M0 and B ≤ M0 a 0-minimal
extension of A, which is not rigid. Then tp(B/A) is isolated and strongly minimal.

Proof We show that for any strong C extending A, there is a unique non-algebraic
type over C which contains tp(B/A). Then, Lemma 2.1.6 implies that tp(B/A) is
strongly minimal. So let C be arbitrary, finite and p(x) some type over C containing
tp(B/A). Let B′ be an arbitrary realization of p(x). As B is a minimal extension of
A and A ≤ B′ ∩ C ≤ M0, we get that either B′ ⊆ C or B′ ∩ C = A. In the first
case p(x) is clearly an algebraic type. For the second case, note that as δ(B/A) = 0
and C ≤ M0, Lemma 3.4.6 yields that actually B′C ∼= B′ ⊗A C and δ(B′/C) = 0,
whence also B′C ≤ M0. As the extension C ≤ B′C is not rigid, we can amalgamate
arbitrarily many copies of B′ over C inM0 and by Lemma 4.1.1, all copies of B′ realise
p(x), whence p(x) is the unique non-algebraic extension of tp(B/A) to C. It clearly is
isolated, as

B′ |= p(x) if and only if tpqf (B′/A) = tpqf (B/A) ∧B′C ∼= B′ ⊗A C,

and the right hand side is easily seen to be expressible by a first order formula. �

Recall that strongly minimal types are of Morley rank and U-rank 1. In order to lift the
above Lemma to arbitrary 0-extensions, we need that a decomposition of any 0-extension
into minimal ones is always unique up to permutation.

Lemma 4.3.3 Let A ≤ B be a 0-extension and A := B0 ≤ B1 ≤ · · · ≤ Bk =: B
and A := B′0 ≤ B′1 ≤ · · · ≤ B′l =: B be two decompositions of A ≤ B into minimal
extensions. Denote by B̂i+1 the graph Bi+1 \Bi and similarly for B̂′i+1. Then k = l and
there is a permutation σ on {0, . . . , k} such that B̂σ(i) = B̂′i.

Proof We proceed by induction on k. If k = 1, then A ≤ B is a minimal extension,
whence clearly l = k = 1 and B̂1 = B \ A = B̂′1. Now assume we proved the statement
for all k′ < k.
As the extensions A ≤ B1 and A ≤ B′1 are minimal, we get that either B1 ∩ B′1 = A or
B1 = B′1. In the second case, the induction hypothesis concludes the proof. In the first
case, note that as δ(B1/A) = δ(B′1/A) = 0 and A ≤ B, we get that B1 is also a minimal
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strong extension of B′1, whence we can repeat the argument for the minimal extensions
B′1 ≤ B′1B1 and B′1 ≤ B′2.
As B1 ⊆ B := ∪i≤lB′i, the intersection cannot always be empty. Assume that for
i0 ≤ k we have that B1 = B′i0 . Then the sequences B1 ≤ B2 ≤ · · · ≤ Bk = B

and B1 ≤ B′1 ≤ · · · ≤ B′i0−1 ≤ B′i0+1 ≤ · · · ≤ Bl = B are two decompositions of
the 0-extension B1 ≤ B into minimal extensions of shorter length than k, whence by
induction hypothesis l − 1 = k − 1 and there is a bijection σ′ between {1, 2, . . . k} and
{0, 1, . . . , i0 − 1, i0 + 1, . . . , l} with B̂σ(i) = B̂′i. Now σ := σ′ ∪ {(0, i0)} yields the desired
permutation of {0, . . . , k}. �

Corollary 4.3.4 Let A be strong in M0 and B be some 0-extension of A. Then the
type tp(B/A) has finite Morley and U-rank which coincide. Moreover, if A := B0 ≤
B1 ≤ B2 · · · ≤ Bk = B is the decomposition of A ≤ B into minimal extensions, where
k′ of them are non-rigid, then MR(tp(B/A)) = U(tp(B/A)) = k′.

Proof By Lemma 4.3.3, we know that both k and k′ are independent from the choice
of the decomposition. Furthermore, Lemma 2.1.14 and Lemma 4.3.2 together imply that

MR(tp(B/A)) =
k∑
i=1

MR(tp(Bi/Bi−1)) =
k∑
i=1

U(tp(Bi/Bi−1)) = U(tp(B/A)).

If Bi−1 ≤ Bi is a rigid extension, the corresponding type is clearly of rank zero. By
Lemma 4.3.2 we further get that any other type has Morley rank and U-rank one, which
concludes the proof. �

The above lemma implies that T0 is of U -rank at least ω and the rank of a type does
not equal its dimension. Nevertheless, we see that the above observation of extensions
of dimension zero having arbitrarily large finite Morley rank is the only obstruction to
this.
The following Lemma is of auxiliary nature and it yields that for any X ⊆ Y and any
finite B with d(B/X) > d(B/Y ), we also have U(B/X) > U(B/Y ).

Lemma 4.3.5 Let X ≤ XB ≤M be a strong extension with d(B/X) > 0 and such that
there exists some vertex b ∈ B \X connected to some vertex x ∈ X. Then, for any k ∈ N
there exists some set Yk containing X with the following properties:

• Yk ≤M;

• Yk ∩XB = X;
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4.3. RANKS 4 The ab-initio structure

• d(B/Yk) = d(B/X)− 1 and

• there is a decomposition Yk := C0 ≤ C1 · · · ≤ Ck ≤ cl(BYk), such that Ci ≤ Ci+1

are 0-minimal, non-rigid extensions for all i < k.

Proof We may assume that x is a plane or a point, as otherwise, if b was only connected
to some line x ∈ X, we could add a point and plane to X in the residue of x independent
from B over X and follow the proof with the new set arising, while now b was connected
through some edge induced via x to a plane or point in X.
Recall the notion of a base configuration from Definition 3.5.7. Let the set
A0 := {x, s0, s1, s2, s3} be a base configuration with respect to x which contains at
least one vertex, say s0 of the same sort as b. As we can embed A0 strongly over x
independently from b into M, without changing the assumptions on X, we may as well
assume that X already strongly contains a base configuration A0 with b |̂ 0

x
A0.

Now, we successively construct 0-minimal extensions over X. By Fact 3.5.8, we can
embed a simple extension C2 := {c0, c1, . . . , c8(n−2)} of A0 as in Definition 3.5.9 over
BX. Let C ′1 be the union of X and the embedding of C2. Note that now the set
A1 := {x, s0, s1, ci, cj} for i = 2(n − 2) + 1 and j = 7(n − 2) − 1 forms again a base
configuration independent from b, whence we can again embed a 0-minimal extension of
BC ′1 into M, which is isomorphic to C2 over A1. Let C ′2 denote the union of C ′1 together
with this new extension (see Figure 4.1).
Continuing likewise, we construct a chain X := C ′0 ≤ C ′1 ≤ C ′2 ≤ · · · ≤ C ′k such that each
C ′i+1 is 0-minimal over C ′i, and simple over some set Ai ⊆ C ′i, which is not contained in
C ′j for j < i.
As before, we denote by Ak the base configuration in C ′k independent from b over x. Let
C ′k+1 be the 0-minimal extension of BCk arising by embedding a copy of C2 over Ak as
in the steps before and then replacing the edge (s0, c0) by the edge (b, c0). As b |̂ 0

x
Ak,

this is a valid extension in the class C0, whence such a C ′k+1 exists. Now let y be any
vertex in Ck+1 connected to s1 and set Yk := Xy and Ci := C ′iy for i ≤ k. We claim that
these sets satisfies our properties. It is not hard to see that Yk is strong in M and clearly
Yk ∩XB = X. Furthermore d(y/BX) = δ(C ′k+1/BX) = 0 and d(y/X) = 1, whence

d(B/X) = d(By/X) = d(B/Yk) + d(y/X) = d(B/Yk) + 1.

Thus, we have d(B/Yk) = d(X)−1, as desired. By construction, all the Ci are contained
in cl(BYk) and provide k-many 0-minimal extensions. �
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Figure 4.1: Minimal Extensions

In the following, we use these sets to inductively give a precise bound on the U-rank of
types.

Proposition 4.3.6 Let X be an arbitrary closed set in M0 and B a strong finite ex-
tension of X such that there is some edge between B \X and X. Furthermore, let k be
maximal such that there exists a partition X := B0 ≤ B1 ≤ · · · ≤ Bk ≤ Bk+1 ≤ · · · ≤
BK := BX into minimal extensions with d(Bi+1/Bi) = 0 for all i ≤ k and such that k′

of them are non-rigid extensions. Then U(B/X) = ω · d(B/X) + k′.

Proof We prove the proposition by induction on (d(B/X), k′), ordered lexicograph-
ically. If d(B/X) = 0, the statement holds for arbitrary k′ by Corollary 4.3.4. Now
assume we have established the lemma for all (B′, k) such that d(B′/X) ≤ m and k′ ∈ N
arbitrary. Consider B such that d(B/X) = m+ 1. We first show that for arbitrary l we
get U(B/X) ≥ ω ·m+ l.
By Lemma 4.3.5, for any l ∈ N there exists some Yl such that d(B/Yl) = m and the
extension Yl ≤ cl(BYl) can be decomposed into a chain of minimal extensions starting
with l-many non-rigid 0-minimal extensions. Thus, by induction hypothesis we have
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4.3. RANKS 4 The ab-initio structure

U(B/Yl) ≥ ω·m+l. Furthermore, note thatB 6 |̂
X
Yl, as d(B/Yl) < d(B/X). This shows

that U(B/X) ≥ ω·m+l for all l ∈ N, whence U(B/X) ≥ ω·(m+1). Now assume that the
extension X ≤ B can be decomposed as in the proposition. Then for each i < k where
Bi ≤ Bi+1 is not a rigid extension, we have that B 6 |̂

Bi
Bi+1, as cl(B)∩cl(Bi+1) = Bi+1

is not algebraic over Bi. Furthermore, we still have that d(B/Bi+1) = m + 1, whence
U(B/Bi+1) ≥ ω · (m+ 1). This proves that U(B/X) ≥ ω · (m+ 1) + k′.
Now we want to establish the upper bound, using induction on k′. If

U(B/X) ≥ ω · (m+ 1) + k′,

there exists some closed set Y containing X and such that U(B/Y ) = ω · (m+ 1) + k′.
By induction hypothesis we know that d(B/Y ) = m + 1, whence d(B ∩ Y/X) = 0. By
Lemma 4.3.3, there is some decomposition

X := C0 ≤ · · · ≤ Cl = B ∩ Y ≤ Cl+1 · · · ≤ Ck ≤ Ck+1 ≤ · · · ≤ CK := cl(BY )

such that all the extensions Ci ≤ Ci+1 for i < l are 0-minimal and l′ of them are not
rigid and furthermore all the extensions Ci ≤ Ci+1 for l ≤ i < k are 0-minimal and l′′

of them are not rigid. Note further that l′ + l′′ = k′ and B |̂
B∩Y Y . If l′ = 0, then

actually B ∩ Y ⊆ acl(X) and B |̂
X
Y , whence U(B/X) = U(B/Y ) = ω · (m+ 1) + k′,

as desired. Otherwise 0 ≤ l′′ < k′ and Lascar inequalities together with the induction
hypothesis yield that

U(B/X) ≤ U(B/B ∩ Y )⊕U(B ∩ Y/X) =
(
ω · (m+ 1) + l′′

)
⊕ l′ = ω · (m+ 1) + k′,

as desired. �

Corollary 4.3.7 Let X ≤ BX ≤ M be a finite extension of subsets of M. Then
U(B/X) = ω · d(B/X) + k′, where k′ is as in Proposition 4.3.6.

Proof The only case left over is the case that there are no edges between B and X.
Note that in this case k′ equals zero. We may assume that X contains both a point and
a plane. Note that for the U-ranks appearing as the rank of minimal extensions, the
two notions of ordinal sums + and ⊕ coincide, whence U is actually additive. Now, if
B contains a point or plane b, then there is a vertex x of the same sort in X. As XB is
strong, these two vertices intersect in a common plane resp. point c, which yields a rigid
extension XB ≤ XBc. Also, the maximal length of a chain of 0-minimal extensions in a
decomposition of X ≤ Xc as well as of Xc ≤ XBc equals still zero. Furthermore, there
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is an edge between B and Xc as well as between c and X, whence by Proposition 4.3.6
we get

U(B/X) = U(Bc/X)−U(c/BX)

= U(Bc/X) = U(B/cX) + U(c/X)

= ω · (d(B/cX) + d(c/X))

= ω · d(B/X),

as desired.
If B only contains lines, we can consider an arbitrary plane c′ in the residue of some line
in B independent from X over B. Then

U(B/X) = U(Bc′/X)−U(c′/BX)

= ω · (d(Bc′/X)− d(c′/BX))

= ω · d(B/X),

as desired. �

In the next Lemma, we use Corollary 4.3.7 in order to show that U-rank and Morley
rank coincide.

Lemma 4.3.8 Let X be an arbitrary closed set in M and B a finite strong extension of
X. Then MR(B/X) = U(B/X).

Proof Let X ≤ B be given as in the Lemma. We proceed by induction over U(B/X),
where the case U(B/X) < ω is covered by Lemma 4.3.4. Now assume that for all X and
B with d(B/X) ≤ m we have MR(B/X) = U(B/X) and consider X ≤ B ≤ M with
d(B/X) = m+1. Clearly, if U(B/X) = ω ·(m+1) is a limit ordinal, it coincides with the
Morley rank by induction hypothesis. Thus, assume now that U(B/X) = ω · (m+1)+k′

for some k′ > 0 and the two notions of rank coincide on all types of strictly smaller
U-rank. We generally have that

MR(B/X) ≥ U(B/X) = ω · d(B/X) + k′.

Consider some finite C ⊆ X with B |̂
C
X. If MR(B/X) > U(B/X), then by the

definition of Morley rank there exists some formula ϕ(x, a) consistent with tpqf (B/C)
and such that MR(tpqf (B/C)∪{ϕ(x, a)}) = ω ·d(B/X) +k′. By Lemma 2.1.16, we can
extend this set to a complete type q(x) over aC of Morley rank ω · d(B/X) + k′.
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4.4. AMPLENESS 4 The ab-initio structure

Now, pick an arbitrary realization B′ of q(x). If B′C 6≤ M0, then we would have
d(B′/C) < δ(B′/C) = d(B/C), whence by induction hypothesis

MR(q(x)) ≤ MR(B′/C) < ω · d(B/C),

a contradiction. Thus B′C ≤ M, whence in particular B ≡C B′ by Lemma 4.1.1. On
the other hand, the rank conditions imply that B′ 6 |̂

C
a, which provides U(B′/Ca) <

U(B′/C) and by induction hypothesis MR(B′/Ca) = U(B′/Ca). Furthermore, by con-
struction we have

MR(B′/Ca) = MR(q(x)) = U(B/C) = U(B′/C),

whence
MR(B′/Ca) = U(B′/Ca) < U(B′/C) = MR(B′/Ca),

a contradiction. �

Corollary 4.3.9 The theory T0 is ω-stable of Morley rank ω · (3(n− 1)− 1).

Proof Let b be a line. Then b is closed, whence MR(b) = ω · (3(n − 1) − 1) and
MR(T0) ≥ ω · (3(n− 1)− 1). On the other hand, let b and A be such that MR(b/A) is
maximal. Then clearly b is a line and d(b/A) = d(b) = 3(n− 1)− 1. Thus in particular
Ab is strong, whence A ≤ Ab is the only decomposition of cl(Ab) into minimal extensions
and k = 0. This concludes the proof. �

4.4 Ampleness

For the matter of completeness, we want to conclude the study of the ab-initio structure
by observing its ampleness. As the proofs follow very much the same lines as in the
collapsed case in Chapter 6.4, we do not give proofs here, but rather argue later, that
the results for the collapsed structure transfer to the uncollapsed case. This way we
obtain the following proposition.

Theorem 4.4.1 The theory T0 is an ω-stable theory of infinite Morley rank ω ·3(n−1)−
1, which is 2-ample, but not 3-ample. Any complete flag is a witness for 2-ampleness.
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CHAPTER 5

THE FINITE-RANK GEOMETRY

In the following chapter we collapse the structure M0 in order to obtain a geometry
of the same type of finite rank. Afterwards, we study the properties of this geometry
and see that forking and rank are given through the dimension function d and that the
associated theory is almost strongly minimal and 2-ample, but not 3-ample.

5.1 The Collapse

As outlined in Section 2.2, we lower the rank of the structureM0 obtained in Chapter 3
by bounding the number of 0-minimal extensions that we allow during the amalgamation
process.

Definition 5.1.1 We fix a µ-function from simple pairs (A,B) into the natural num-
bers satisfying the following three properties:

(1) The value µ(A,B) does only depend on the isomorphism type of (A,B);

(2) If A ≤ B is a rigid extension, then µ(A,B) = 1;

(3) If A ≤ B is not a rigid extension, we have µ(A,B) ≥ δ(A).

Given a simple pair (A,B) and some structure X ∈ C0 with A ⊆ X, we denote by
χX(A,B) the maximal number of pairwise disjoint graphs B′ in X, that are isomorphic
to B over A. Note that χM0(A,B) ≥ µ(A,B) for all simple pairs (A,B) with A ≤ B.
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5.1. THE COLLAPSE 5 The Finite-Rank Geometry

It is the goal of the collapse to construct a geometryMµ such that this inequality is an
equality. In particular, there shall be only finitely many copy of 0-minimal extensions,
and consequently of any extension of dimension 0.
Let now Cµ be the class of all the structures X ∈ C0 which satisfy χX(A,B) ≤ µ(A,B)
for any simple pair (A,B) with A ≤2|AB| X. Again we denote by Cfin

µ the subclass of Cµ
consisting of all finite structures in Cµ.

Remark 5.1.2 In the original construction as explained in Section 2.2, the class Cµ
was defined using the slightly stronger condition that asks for any A ⊆ X to satisfy
χX(A,B) ≤ µ(A,B). For our setting, this is too restrictive. To see that, consider the
structure X = {e1, e2, l, p1, p2} consisting of two plains ei, one line l and two points pi,
such that all points and planes are connected to the line l and thus to each other. Such
a structure has to exists in our class Cµ, as residues of partial flags have to be infinite in
the limit structure. Yet, the simple, rigid pair (A,B) with A = {e1, e2} and B := {p}
such that p is connected to both the planes in A, violates the condition on the class, as
A ⊆ X and χX(A,B) = 2 is larger than µ(A,B) = 1.

Lemma 5.1.3 Consider C0 ⊆ C1, C2 with Ci ∈ Cfinµ such that C1 is minimal over C0

and C0 ≤k C2 for k = |C1\C0|. Let (A,B) be a simple pair with A ≤2|AB| D := C1⊗C0C2

and assume χD(A,B) > µ(A,B). If either

• A ⊆ C2 or

• A ⊆ C1 and |B| ≤ |C1|,

then A ⊆ C0. Furthermore, the structure C1 is a 0-minimal extension of C0 and there
exists a strong copy of C1 over C0 in C2.

Proof We consider the case that A ⊆ C1 and |B| ≤ |C1|. The proof for the case A ⊆ C2

is essentially the same.
As C1 ∈ Cµ, there is some copy B′ of B over A, which intersects Ĉ2. By Lemma 3.6.2 we
have C1 ≤k D and as |B′ \ C2| ≤ k, we have C1 ≤ C1B

′. Furthermore, as A ≤2|AB| D,
also AB′1 ≤ D and the Submodularity Lemma yields 0 ≤ δ(B′/C1) ≤ δ(B′/C1 ∩ AB′).
Thus

0 = δ(B′/A) = δ(B′/C1 ∩AB′) + δ(B′ ∩ C1/A),

which is only possible, if B′ ⊆ Ĉ2, by the minimality of the extension A ≤ B. Then
δ(B′/C1) = δ(B′/A) = 0 by Lemma 3.5.1(ii). As any vertex of A is connected to some
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vertex in B′ by an essential edge in AB′ and there are no essential edges between B′

and C1 \ A, we conclude that A ⊆ C0 and δ(B/C0) = δ(B/A) = 0. Now A ⊆ C0 ⊆ C2,
so we can use a symmetric argument to obtain a copy B′′ of B in Ĉ1, and minimality of
the extension C0 ≤ C1 gives B′′ = Ĉ1. By Lemma 3.5.1(iii), the two copies B′ and B′′

are isomorphic over C0, whence we can embed C1 = B′C0 into C2 over C0 and C2 is a
valid amalgam in Cµ. �

Lemma 5.1.4 Consider C0 ⊆ C1, C2 with Ci ∈ Cfinµ such that C1 is minimal over C0

and C0 ≤k C2 for k = |C1\C0|. Let (A,B) be a simple pair with A ≤2|AB| D := C1 ⊗C0 C2.
If A is not fully contained in C2 and B1, . . . , Bl are disjoint copies of B in D which in-
tersect Ĉ1 := C1 \ C2, then

δ(
l⋃

i=1
Bi/C2A) ≤ −l.

Proof We first show that δ(Bi/C2A) < 0 for all i. Let B′i ⊆ Bi be the set consisting
of Bi ∩ C2 together with all lines x in Bi that satisfy δ(x/C2A) < 0. Note that now

AB′iC2 ≤L ABiC2,

(AB′iC2 \ABi) = C2 \ABi ⊆ C2 with C2 ≤1 C2ABi and

ABi ≤|AB| ABiC2,

with |AB| ≥ 3. Thus, by Remark 3.4.7 we can apply the Submodularity Lemma to
AB′iC2 and ABi, which yields

δ(Bi/AC2) ≤ δ(Bi/AB′i)−Kess(Bi \AB′i, C2 \AB′i) ≤ δ(Bi/AB′i) ≤ 0. (5.1)

If B′i is not empty, then δ(Bi/AB′i) < 0 and we get the desired. If B′i is empty, then
Bi ⊆ Ĉ1, whence |B| ≤ k. If A was contained in C1, then Lemma 5.1.3 would imply
that in fact A ⊆ C0, which yields a contradiction. So A intersects both Ĉ1 and Ĉ2. By
Remark 3.5.5, there is an edge between some a ∈ A ∩ Ĉ2 and b ∈ Bi ⊆ Ĉ1, which is
essential in ABi. As there are no essential edges between Ĉ1 and Ĉ2, this edge has to
be induced through some line in C0, whence there is an essential edge between Bi \ B′i
and C2 \ABi and the Inequality (5.1) is strict, proving the claim.
Lemma 3.5.1 now implies that for any i ≤ l we have

δ(Bi/C2AB1 . . . Bi−1) = δ(Bi/AC2)) < 0.
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This yields

δ(
l⋃

i=1
Bi/C2A) = δ(Bl/C2AB1 . . . Bl−1) + δ(

l−1⋃
i=1

Bi/C2A)

≤ −1 + δ(
l−1⋃
i=1

Bi/C2A) ≤ · · · ≤ −l,

as desired. �

Proposition 5.1.5 The class Cfinµ has the amalgamation property with respect to strong
embeddings. Moreover, if C0 ≤ C1 is a minimal extension and C0 ≤|C1\C0| C2, then
either C1 ⊗C0 C2 ∈ Cµ or δ(C1/C0) = 0 and there is an isomorphic copy of C1 over C0

in C2.

Proof Consider C0 ⊆ C1, C2 ∈ Cfinµ such that C0 ≤ C1 is a minimal extension and
C0 ≤|C1\C0| C2. Set Ĉ1 := C1 \ C2 and Ĉ2 := C2 \ C1. By Theorem 3.6.3, we may
assume that D := C1 ⊗C0 C2 ∈ C0. If D 6∈ Cµ, then there exists some simple pair (A,B)
with A ≤2|AB| D and χD(A,B) > µ(A,B). By Lemma 5.1.3, we may assume that A
intersects Ĉ1. Let B1, . . . , Bk, Bk+1, . . . , Bk+l be disjoint copies of B over A in D, such
that Bi ⊆ C2 for i ≤ k and Bi ∩ Ĉ1 6= ∅ for i = k + 1, . . . , k + l and k + l > µ(A,B).
Lemma 5.1.4 yields

δ(
l⋃

i=1
Bk+i/C2A) ≤ −l.

We now show that k ≤ 2 and δ(A/C2) ≤ δ(A)− k.
Consider a ∈ A\C2. By Remark 3.5.5, there is an edge from a to each Bi for i = 1, . . . , k
which is non-induced in ABi.
If the edges between a and the Bi for i ≤ k do become induced ones in AC2, they have
to be induced through a unique line l ∈ C2 \ ABi, as δ(a/C2) ≥ 0. On the other hand,
this line can induce only one edge from A to some Bj , as δ(l/ABiBj) ≥ 0. Thus, there
is at most one copy of B in C2.
If these edges do not become induced edges in AC2, then there are at most two copies
of B, as a is strong over C2. Now submodularity yields for both cases that

δ(A/C2) ≤ δ(A/A ∩ C2)− k ≤ δ(A)− k,

as desired.
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Finally, we have

0 ≤ δ(A ∪
k+l⋃

i=k+1
Bi/C2) ≤ δ(A/C2)− l ≤ δ(A)− (k + l).

This implies χD(A,B) = k+l ≤ δ(A) ≤ µ(A,B), which yields the desired contradiction.�

5.2 Geometrical Properties of Mµ

In the last section we saw that the class Cfinµ has the amalgamation property with respect
to strong embeddings. Now, the results from Section 2.2 imply that there is a unique
countable structureMµ, which is Cfinµ -saturated. Denote by Tµ:= Th(Mµ) its theory.
In this section we see thatMµ is indeed, as planned, a geometry of type •

n
− •

n
− •.

Lemma 5.2.1 Any flag is strongly contained inMµ and every partial flag has an infinite
residue.

Proof Clearly, complete flags are strong inMµ, due to condition (C4)(a) of the class.
Now consider a partial flag {xy} ⊆ Mµ of rank 2.If xy was not strong in Mµ, then
δ(cl({xy})) < 3(n − 1). Consider the extension cl({xy}) ≤ F kxy(cl({xy})) := cl({xy}) ∪
{z1, . . . , zk}, which arises from cl({xy}) by:

• adding k many new vertices z1, . . . , zk, each of which completes the flag xy and

• adding edges from the zi into cl({xy}), which are induced through xy by condition
(C1) of the class.

This is a valid, strong extension of cl({xy}) in Cµ. As remarked, the completion
F 1
xy(cl({xy})) of xy to a flag xyz is a strong extension of cl({xy}), whence we can

embed z strongly over cl({xy}) inMµ. This yields δ(cl({xy})z) ≤ 3(n− 1), contradict-
ing the condition (C4)(a) of the class. Now it easily follows that also flags of rank 1, i.e.
single vertices, are strong inMµ.
Furthermore, for any partial flag {xy} and any k ∈ N we can embed F kxy(xy) strongly
over {xy}, whence in Mµ the residue of xy is infinite. Thus, all partial flags of rank
2 have infinite residue. Observe, that we can complete any vertex to a complete flag,
whence flags of rank 1 also have infinite residues. �

Lemma 5.2.2 The structureMµ is an incidence geometry of type •
n
− •

n
− •.
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Proof We first show that the residue of each point (respectively plane) p in Mµ is
a generalized n-gon. Clearly, there is no ordinary m-gon in Res(p) for m < 2n, by
condition (C2). Consider x, y ∈ Res(p) arbitrary. We have to show that there is an
ordinary 2n-gon in Res(p) containing x and y. Let d ∈ N ∪∞ be the distance of x and
y in cl({pxy}) ∩ Res(p). We show that, if x and y are not yet contained in an ordinary
2n-gon in cl({pxy}), then a pure path extension of cl({pxy}) in Res(p) between x and
y of length k := max{2n − d, n} (respectively k := max{2n − d, n − 1} according to
the sort of x and y) is a valid extension of cl({pxy}) satisfying all conditions of Cµ. By
Example 3.4.5, it is furthermore a strong extension, whence it can be strongly embedded
over cl({pxy}) intoMµ. This yields (possibly after repeating the procedure once more)
an ordinary 2n-gon in Res(p) containing x and y.
Denote by C1 := cl({pxy})∪{z1, . . . , zk−1} the extension of cl({pxy}) by a pure path in
Res(p) between x and y of length k. Clearly, the structure C1 satisfies conditions (C1)
to (C3). Also, condition (C4) can be easily verified. It is left to show that C1 satisfies
the µ-condition. To this end, assume (A,B) to be a minimal pair with A ≤ C1 and at
least one copy B′ of B over A intersects Ĉ1.
First consider the case that A 6⊆ cl({pxy}) and take a ∈ A \ cl({pxy}). As any vertex
in A has an essential edge to some b ∈ B, we see that if a ∈ {z2, . . . , zk−2}, there can
be at most two disjoint copies of B over A, whence χC1(A,B) ≤ µ(A,B), as desired. If
a = z1 (or a = zk−1 respectively) is a plane, then there are edges to z2 and those points
in cl({pxy}), that are connected to the line x. If the non-induced edge from a = z1 into
B uses a line in B, there can be at most two disjoint copies of B over A. If it uses a
point in cl({pxy}), the line x cannot be contained in AB, as we required the edges to
be non-induced in AB. But then again, there can be at most one copy of B over A,
because if there were two disjoint copies B1 and B2 using an edge from a to some point
in cl({pxy}) induced through x, we would have δ(x/AB1B2) < 0, contradicting the fact
AB1B2 ≤ C1.
Hence we can assume that A ⊆ cl({pxy}). Now if B′ 6⊆ Ĉ1 := C1 \ cl({pxy}), then

0 > δ(B′/(AB′) ∩ cl({pxy})) ≥ 0,

a contradiction. Thus B′ ⊆ Ĉ1. As before we get 0 = δ(B′/A) = δ(B′/ cl({pxy})) ≥ 0,
which yields that B′ is a pure path extension of length n − 1 and A = {p, x, y}. Thus,
the path {z1, . . . , zk−1} is the only copy of B′ over A in C1. This concludes that C1

satisfies all conditions of Cµ and thus Res(p) is a generalized n-gon.
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5 The Finite-Rank Geometry 5.3. SATURATION

Clearly condition (C1) of the class ensures that the residue of any line is a generalized
2-gon. �

In the beginning of this chapter, we outlined that the main obstacle for the known ample
geometries to be of finite rank, is their infinite diameter. The following easy Lemma
states that in Mµ, the diameter is finite. In particular, any two points (respectively
planes) lay in a common residue.

Lemma 5.2.3 Any two points either intersect in a unique line (together with exactly
all the planes that contain the line) or in a unique plane. The dual version holds for the
intersection of two planes.

Proof If two points intersect in Mµ, then in the required way. This is assured by
condition (C3) of our class. Furthermore, it is easy to check that if two points would not
intersect, then the extension of their strong closure by one plane which is only connected
to the two points is a valid strong extension in Cµ and thus can be strongly embedded
inMµ. �

5.3 Saturation

In this Section we see that the geometry Mµ is ω-saturated. In [Her95] Herwig gives
a general criterion for an ab-initio structure to be ω-saturated. Although the general
criterion is not hit by our class, we can adapt the proof to our setting.
We fix the following notation: if f : A → B is an embedding of A into B such that
f(A) ≤k B, then we write f : A→k B. The following diamond lemma is essential.

Lemma 5.3.1 Consider m ∈ N arbitrary and A,B ∈ Cµ, together with a strong embed-
ding f1 : A→ B. Then there exists some k := k(A,B,m) ∈ N such that for any C ∈ Cµ
with f2 : A →k C, there is some D ∈ Cµ together with embeddings g1 : B →m D and
g2 : C ≤→ D such that the following diagram commutes:

B
m

g1 ''
A

≤
f1

77

k

f2

''

D.

C
≤

g2
77
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Proof Assume A ≤ B given and decompose the extension into a chain A = A0 ≤ A1 ≤
· · · ≤ Al := B of minimal extensions. We prove the claim by induction on the length l
of the chain.
If A ≤ B already is a minimal extension, then set k := k(A,B,m) := m+ |B \A|. Now
consider A →k C arbitrary. If D := B ⊗A C ∈ Cµ, then Lemma 3.6.2 yields that D is
the desired structure.
Now assume B ⊗A C 6∈ Cµ. By Lemma 5.1.5 we know that the extension A ≤ B is
0-minimal and we can embed B as B′ over A into C. Set D := C. Then clearly C ≤ D.
We have to show that B′ ≤m C. Take C ′ ⊆ C with B′ ⊆ C ′ and |C ′ \ B′| ≤ m. Then
|C ′ \A| ≤ m+ |B′ \A| = k. Hence,

δ(C ′/B′) = δ(C ′/A)− δ(B′/A) = δ(C ′/A) ≥ 0.

Thus, the Cµ-structure D = C is as desired.

Now consider l > 1. By induction hypothesis, for k1 := k(Ak−1, B,m) there is some
k0 := k(A,Ak−1, k1) such that for all C ∈ Cµ with A →k0 C there exists some D0 ∈ Cµ
such that Ak−1 →k1 D0 and C

≤→ D0. Now, as Ak−1 ≤ B is minimal, we can again
apply the induction hypothesis and obtain some D1 ∈ Cµ with B →m D1 and D0

≤→ D1:

B
m

((
Ak−1

k1

((

≤
66

D1.

A

≤ 77

k0 ((

D0
≤

77

C
≤

66

Note that C ≤ D0 ≤ D1 implies C ≤ D1, whence for k := k(A,B,m) := k0 we have that
whenever A→k C, then there is some D := D1 ∈ Cµ such that B →m D and C ≤→ D. �

Definition 5.3.2 Let k be a natural number and A ⊆ B with B ∈ Cµ. We write
A .k B, if A ≤ B′ for any B′ with A ⊆ B′ ≤1 B and |B′ \A| ≤ k.

Remark 5.3.3 For M |= Tµ and A ⊆ M arbitrary finite, we have that A ≤ M if
and only if A .k M for all k ∈ N: assume the second condition holds and consider
B ⊆M arbitrary finite containing A. Then the closure clM (B) of B is strong in M and
0 ≤ δ(cl(B)/A) ≤ δ(B/A), as A .k M for k = | cl(B) \A|.
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Lemma 5.3.4 Assume A .k B and B ≤ X. Then A .k X.

Proof Let A ⊆ D ≤1 X be arbitrary with |D \A| ≤ k. Then B ≤ BD and D ≤1 BD,
whence submodularity yields

0 ≤ δ(D/B) ≤ δ(D/D ∩B),

and thus
δ(D/A) = δ(D/D ∩B) + δ(D ∩B/A) ≥ 0,

as desired. �

Lemma 5.3.5 A model of Tµ is ω-saturated if and only if it is Cµ-saturated. In partic-
ular, the structureMµ is ω-saturated.

Proof Consider an arbitrary model M of Tµ. We first show that for all A ≤ B in Cµ
and m ∈ N, if A ≤k M for k = k(A,B,m) as in Lemma 5.3.1, then there exists a copy
B′ of B over A in M such that B′ .m M .
Note that for A,B and m fixed, the above is a first order sentence, whence it suffices to
prove the claim for M = Mµ. Now, if A ≤k Mµ, then also A ≤k clMµ(A). Note that
clMµ(A) ∈ Cµ, whence by Lemma 5.3.1, there exists someD ∈ Cµ such that clMµ(A) ≤ D
and B ≤m D. By Cµ-saturation ofMµ, we can embed D strongly intoMµ over clMµ(A).
Denote the thereby arising copy of B in Mµ by B′. As B ≤m D, Lemma 5.3.4 yields
B′ .m M , as desired.
Now, let N |= Tµ be an arbitrary ω-saturated and M |= Tµ an arbitrary Cµ-saturated
model of Tµ. We show that M and N possess the back and forth-property for finite
strong sets.
Let A′ ≤ N and A ≤M be arbitrary isomorphic finite structures with f : A′ ∼= A. First
consider b′ ∈ N . There is a closed set B′ := clN (Ab), as δ is non-negative. As Cµ is an
elementary class and N |= Tµ, note that B′ ∈ Cµ. Thus, we can embed B′ as B strongly
over A in M , extending f to B′ as desired.
Now consider b ∈ M and B := clM (Ab). Let π(x) be the pre-image under f of
tpqf (B/A) ∪ {Ax .k M | k ∈ N}. We need to show that π(x) is consistent, as by
ω-saturation of N and Remark 5.3.3, this yields a strong embedding of B over A′. As
A′ ≤ N , we saw above that for any k we can embed B as B′ over A′ such that B′ .k N ,
which proves that π(x) is consistent. �
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CHAPTER 6

RANK AND AMPLENESS

It is the goal of this chapter to study the first order properties of Tµ. In particular, we
show that Tµ is almost strongly minimal of finite Morley rank 3(n− 1)− 1 and 2-ample,
but not 3-ample.

6.1 Coordinatisation

In this section we want to prove that Tµ is almost strongly minimal.
First we establish the fact, that the type of a subset within a model of Tµ is uniquely
determined by the closure of the set.

Lemma 6.1.1 Let M1,M2 |= Tµ be two arbitrary models and ai ∈ Mi finite tuples of
the same length. Then the following are equivalent:

(i) tpM1(clM1(a1)) = tpM2(clM2(a2)).

(ii) tpM1(a1) = tpM2(a2);

(iii) The map f : a1 → a2 extends to an isomorphism from clM1(a1) to clM2(a2);

Proof As closures do not change in elementary extensions, we may assume the Mi to
be ω-saturated. Clearly, (i) implies (ii).
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6.1. COORDINATISATION 6 Rank and Ampleness

(ii)⇒ (iii) As tpM1(a1) = tpM2(a2), the set of formulas f(tp(clM1(a1)/a1)) forms a type
over a2 and is hence realized in M2. It is easy to see that its (unique) realization has to
coincide with clM2(a2), whence f extends as desired.
(iii)⇒ (i) The proof of Lemma 5.3.5 yields that any two ω-saturated models possess
the back-and-forth property, starting with two arbitrary closed finite subsets. Hence, if
clM1(a1) and clM2(a2) are isomorphic, they clearly have the same type. �

One main consequence of the collapse is that algebraic sets are characterized through
the dimension function.

Lemma 6.1.2 Let M be a model of Tµ and B ⊂ M a finite subset of M . Some tuple
a ∈M is algebraic over B if and only if d(a/B) = 0.

Proof We may assume that M is ω-saturated. Note that, as

d(a/B) = δ(cl(Ba))− δ(cl(B)) = d(a/ cl(B)),

we may consider B ≤M .
First, assume that d(a/B) = 0. Then δ(cl(aB)/B) = 0. We decompose B ≤ cl(aB) into
a finite chain of 0-minimal extensions B := B0 ≤ B1 ≤ · · · ≤ Bk = cl(aB). Then for any
i < k there is some B′i ⊆ Bi such that (B′i, Bi+1) is a simple pair. Note, that any two
different copies of Bi+1 over Bi must be disjoint, by minimality of the extension. Now, if
there were more than µ(B′i, Bi+1) disjoint copies of Bi+1 over Bi, we could realize their
type inMµ, contradicting the assumptions on µ. Hence, we get that Bi+1 ⊆ acl(Bi) for
any i, and thus a ∈ acl(B).
Now we see that a ∈ acl(B) implies d(a/B) = 0. Assume d(a/B) > 0 and let again
B = B0 ≤ B1 ≤ · · · ≤ Bk = cl(aB) be a decomposition of B ≤ cl(aB) into minimal
extensions. Pick i ≤ k minimal such that δ(Bi/Bi−1) > 0. By the first part of the proof
we know that Bi−1 ⊆ acl(B). Furthermore, Lemma 5.1.5 yields that for any l ∈ N the
structure

Bl
i := (. . . ((Bi ⊗Bi−1 Bi)⊗Bi−1 Bi) . . . )⊗Bi−1 Bi,

consisting of l copies of Bi freely amalgamated over Bi−1 is a structure in Cµ and Bi−1 ≤
Bl
i. As M is Cfin

0 -saturated and Bi−1 ≤ Bl
i ≤ M , we can embed Bi

l strongly into M
over Bi−1, providing l disjoint strong copies of Bi over Bi−1. By Lemma 6.1.1, all these
copies have the same type as Bi over Bi−1, whence Bi 6⊆ acl(Bi−1) and hence a 6∈ acl(B),
as desired. �

100



6 Rank and Ampleness 6.1. COORDINATISATION

Remark 6.1.3 We just saw that the algebraic closure of some subset of a model of Tµ

consists of all extensions of dimension zero over that set. This yields a huge difference to
the ab-initio case, where the algebraic closure coincides with the definable closure and
arises as the union of finite chains of rigid extensions. Note that here, we still have the
same description of the definable closure, as for any 0-minimal extension A ≤ B which
is not rigid, there are exactly µ(A,B) ≥ δ(A) > 1 many copies of B over A in any model
of Tµ.

The following example illustrates, that an arbitrary extension of dimension 1 does not
necessarily yield a strongly minimal type.

Example 6.1.4 Consider an extension A ≤ B0 ≤ B1, where A ≤ B0 is 0-algebraic, but
not rigid and the extension B0 ≤ B1 is 1-minimal with cl(A∪ (B1 \B0)) = B1. Let b be
an arbitrary vertex in B1 \B0. For another copy B′1 of B1 over A such that B1∩B′1 = A,
we denote the thereby arising copy of b by b′. Then the type tp(b/A) is not strongly
minimal, as there are two different extensions to a non-algebraic type over B0, the one
given by b and the one given by b′.
More concretely, let A be a base configuration and B0 be a simple extension of A as
constructed in 6.3.3. Furthermore, let B1 be the extension of B0 by one plane connected
to some line in B0 \ A. We can embed this structure strongly into Mµ and get the
desired counterexample.

Lemma 6.1.5 Let M be any model of Tµ and A ⊆ M . If for some b ∈ M we have
d(b/A) = 1 and A ≤ cl(Ab) is a minimal extension, then tp(b/A) is strongly minimal.

Proof We may assume that M is saturated. The type tp(b/A) is strongly minimal if
and only if it has a unique non-algebraic extension to any set C containing A. We may
further assume that both A and C are strong in M . Consider an arbitrary realization
b′ of tp(b/A) and set B′ := cl(Ab′). By minimality, we either have that d(b′/C) = 0,
whence b′ would be algebraic over C by Lemma 6.1.2, or d(b′/C) = 1 and B′ ∩ C = A.
Now submodularity yields

1 = d(b′/C) ≤ δ(B′/C) ≤ δ(B′/A) = 1,

whence δ(B′/C) = δ(B′/A) and all edges from B′ to C have to be induced via A.
Thus, the quantifier free type of B′ over C is uniquely determined by tpqf (B′/A) and
d(b′/C) = 1. As B′C is necessarily strong in M , by Lemma 6.1.1 we get that tp(b′/C)
is the unique non-algebraic extension of tp(b/A) to C. �
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Corollary 6.1.6 LetM be any model of Tµ and a, b ∈M such that (a, b) forms a partial
flag. Denote by

D(a,b) := Res(a, b)

the set of vertices which extend (a, b) to a complete flag. Then D(a,b) is a strongly
minimal set.

In [Ten00b] Tent constructs generalized n-gons which are almost strongly minimal, also
using a Hrushovski construction. As for a given plane e (respectively point p), our delta
function restricted to Res(e) coincides with the function used in [Ten00b], we obtain the
following fact:

Fact 6.1.7 ([Ten00b], Theorem 4.6) Let x ∈ Mµ be an arbitrary point or plane in
Mµ. Let x0, x1, x2 ∈ Res(x) such that the distance between each two of the xi in Res(x)
is maximal possible. Let further D := ResMµ(xx0) be the (strongly minimal) residue of
the flag (x, x0). Then ResMµ(x) ⊆ dcl(x0, x1, x2, D).

This is called the coordinatization of the n-gon ResMµ(x). We use that fact to provide
a coordinatization for the whole structureMµ.

Theorem 6.1.8 (Coordinatization) The theory Tµ is almost strongly minimal: there
is a strongly minimal set D ⊆ Mµ together with a finite set B ⊆ Mµ such that any
element ofMµ is definable over BD.

Proof We fix a finite parameter set

B0 = (p1, e1, p2, e2, p2, e3),

consisting of a 6-cycle of points pi and planes ei inMµ and pick x0 ∈ Res(p1) at maximal
distance from e1 and e3 and x1 ∈ Res(e1) at maximal distance from p1 and p2. Note
that B := B0 ∪{x0, x1} is a Cµ-structure and hence can be strongly embedded intoMµ,
whence from now on we assume B ≤Mµ. By Corollary 6.1.6, the residue D := D(p1,e1)

of the partial flag (p1, e1) is a strongly minimal set. We show thatMµ ⊆ dcl(BD).

Claim 1: The residues of p1 and e1 are contained in dcl(BD).
This follows immediately from Fact 6.1.7.

Claim 2: The residues of e2 and p2 are contained in dcl(BD).
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It suffices to show that any point in Res(e2) is contained in dcl(BD), as every line
is uniquely determined by any two points in that line. Thus, consider p ∈ Res(e2)
arbitrary. See Figure 6.1. If the points p and p1 are contained in a common line
l0 ∈ Res(p1) ⊆ dcl(BD), which is necessarily unique, then p is the unique point contained
in e2 and l0, as l0 is not contained in e2.
If p and p1 do not intersect in a common line, then there is some plane e4 ∈ Res(p1)
which contains the two points. Now, either e4 and e2 intersect exactly in p, whence
p ∈ dcl(BD), or they intersect in some line l1 which is uniquely determined by e4 and
e2 and thus in dcl(BD). Now consider another line l2 ∈ Res(e2) connected to p. If there
is a plane in Res(p1) connected to l2, then l2 ∈ dcl(BD), whence also p ∈ dcl(BD), as
it is uniquely determined by l1 and l2. Otherwise consider a new point p4 ∈ Res(e2)
connected to l2. If p4 and p1 intersect in a line, then as above, p4 ∈ dcl(BD), whence
also p ∈ dcl(BD), as it is uniquely determined by p4 and l1. If p4 and p1 intersect in a
plane e5, then either e5 and e2 intersect only in p4 and p4 ∈ dcl(BD), or they intersect
in a unique line l3 ∈ dcl(BD). Then p lays on the unique path of length 4 between l3
and l1 in Res(e2), whence p ∈ dcl(BD). Hence Res(e2) ⊆ dcl(BD), as desired.

Figure 6.1: Possible Situation in Claim 2

A symmetric argument shows that also Res(p2) ⊆ dcl(BD).
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Claim 3: If e7 ∈ Res(p1) and p8 ∈ Res(e1), then the residues of e7 and p8 are contained
in dcl(BD).
We show the statement for Res(e7), the argument for p8 is exactly the same. As before,
it suffices to show that any point in Res(e7) is contained in dcl(BD). Assume p to be an
arbitrary point in Res(e7). Once more, the points p and p2 either intersect in a unique
plane e or a unique line l, contained in Res(p2) ⊆ dcl(BD). Exactly as in Claim 2,
substituting e2 and p1 by e7 and p2, one can see that p ∈ dcl(BD).

Claim 4: The residues of p2 and e3 are contained in dcl(BD).
We show that all planes in Res(p2) are contained in dcl(BD). Let e be an arbitrary
plane in Res(p2). Then e and e7 intersect in a unique line l or a unique point p in
Res(e7) ⊆ dcl(BD). Exactly as before we show that e is contained in dcl(BD).

Claim 5: Any vertex ofMµ is contained in dcl(BD).
It suffices to show that an arbitrary point p is contained in dcl(BD). Clearly, for any
point p ∈ Res(ei) and for any plane e in Res(pi) for i = 0, . . . , 5 we have that Res(p)
and Res(e) are contained in dcl(BD) (the proof of Claim 3 applies). Hence, if the point
p intersects with any of the pi for i = 0, 2, 4 in a unique plane, it already is contained
in dcl(BD). On the other hand, if p intersects with each pi in a unique line li, then
we obtain a substructure that contradicts the fact that B is strongly embedded inMµ:
if li = lj for some i 6= j, then the extension of B by l = li is an extension of negative
delta. If all the li are distinct, then the extension of B by the li and p is an extension of
negative delta. Hence, any point p has to intersect in a unique plane with one of the pi
and is thus definable over BD. �

Corollary 6.1.9 The theory Tµ is almost strongly minimal. In particular, it is ℵ1-
categorical and ω-stable of finite Morley rank. Furthermore, the Morley rank is additive,
i.e. for any tuples a and b and any set X we have

MR(ab/X) = MR(a/bX) + MR(b/X).

In the following chapter we want to describe forking in Tµ and show that it is given
through the dimension function d. Based on these considerations, we show that the
Morley rank of a finite set coincides with the dimension of it given by d.
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6.2 Description of Forking

First, we want to relate the model theoretic independence of non-forking with the in-
dependence given by the dimension function d. Throughout this section, we work in a
very saturated model M |= Tµ.

Definition 6.2.1 We define the following relation of d-independence: let X,Y and
Z be subsets of some model M |= Tµ. Then we set

X
d
|̂
Y

Z⇔ d(A/Y ) = d(A/Y Z) for all A ⊆ X finite.

Lemma 6.2.2 If for two strong subsets A1, A2 ∈ Mµ the induced subgraph on their
union is not strong in Mµ, then in the strong closure cl(A1A2) there is a path from
some vertex of A1 to some vertex of A2 that does not enter or use an edge induced
through some line in acl(A1 ∩A2).

Proof Set C := acl(A1 ∩ A2) ∩ cl(A1A2). Note that C is a strong superset of A1 ∩ A2

and contained in acl(A1 ∩A2), whence δ(C/A1 ∩A2) = 0. Furthermore, the intersection
A1 ∩ A2 is strong, whence δ(A1 ∩ A2) ≤ δ(C ∩ Ai) for i = 1, 2 and thus submodularity
yields

0 ≤ δ(C/Ai) ≤ δ(C)− δ(C ∩Ai) ≤ δ(C)− δ(A1 ∩A2) = 0,

whence δ(C/Ai) = 0. If every path from A1 to A2 in cl(A1A2) enters or is induced by
acl(A1 ∩ A2) and thus by C eventually, then we can partition the closure of A1A2 into
cl(A1A2) = B1 ∪ B2 in such a way that AiC ⊆ Bi and there are no non-induced edges
between B1 \ C and B2 \ C. Then for any B′ ⊆ cl(A1A2) containing A2B1, we have

δ(B′/B1A2) = δ(B′/B1)− δ(A2/B1)

= δ(B′ ∩B2/C)− δ(A2/C)

= δ(B′ ∩B2/A2)− δ(C/A2)

= δ(B′ ∩B2/A2) ≥ 0,

as A2 ≤Mµ. Hence, the subgraph B1A2 is strong in cl(A1A2) and therefore also strong
in Mµ, which is only possible if cl(A1A2) = B1A2. A symmetric arguments gives that
actually cl(A1A2) = A1A2 ≤Mµ, contradicting the assumptions. �

The next lemma yields a more concrete description of the d-independence in models of
Tµ.
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Lemma 6.2.3 Let A be finite and X and Y arbitrary subsets of M. Then the following
two conditions are equivalent:

(i) The set A is d-independent from Y over X (i.e. A |̂ d
X
Y ).

(ii) The structure X ′ := cl(AX) ∩ cl(XY ) is algebraic over X and

cl(AXY ) ∼= cl(AX)⊗X′ cl(XY ).

In particular, cl(AX) cl(XY ) = cl(AXY ) is closed in M.

Proof We may assume X to be closed. Set as in the Lemma X ′ := cl(AX) ∩ cl(XY ).
We first show that (i) implies (ii).
Assume A |̂ d

X
Y . By Lemma 3.5.3 we have

d(A/X) ≤ d(A/X ′) ≤ d(A/XY ) = d(A/X), (6.1)

whence

d(A/X) = d(A/X ′) = d(AX ′/X)− d(X ′/X)

= d(X ′/AX) + d(A/X)− d(X ′/X)

= d(A/X)− d(X ′/X).

Thus d(X ′/X) = 0 and by Lemma 6.1.2 we have X ′ ⊆ acl(X). Note that there are no
essential edges between cl(AX)\X ′ and cl(XY )\X ′, as otherwise the inequality in (6.1)
was strict, yielding a contradiction. Furthermore

d(A/XY ) ≤ δ(cl(AX)/ cl(XY )) ≤ δ(cl(AX)/X ′) = d(A/X ′) = d(A/XY ),

whence the structure cl(AX) ∪ cl(XY ) = cl(AXY ) is strong in M.
Now we prove that (ii) implies (i).
Assume that X ′ ⊆ acl(X) and cl(AXY ) = cl(AX) ∪ cl(XY ), but A 6 |̂

X
Y . We show

that there are non-induced edges between cl(AX) \X ′ and cl(XY ) \X ′. First note that
X and X ′ are strong and as X ⊆ X ′ ⊆ acl(X), we have δ(X ′/X) = 0. Now we calculate

δ(cl(AX)/X ′) = d(A/X ′)

> d(A/XY )

= δ(cl(AXY )/ cl(XY ))

= δ(cl(AX)/ cl(XY )),
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whence δ(cl(AX)/X ′) > δ(cl(AX)/ cl(XY )). With the help of Lemma 3.4.6, this proves
that there are non-induced edges between cl(AX) \X ′ and cl(XY ) \X ′. �

Our next goal is to show that the notion of d-independence coincides with the notion of
forking independence. As we already saw that Tµ is ω-stable, we can use the classification
of forking in stable theories, see e.g. [TZ12], in order to show that the two independence
notions coincide.

Lemma 6.2.4 The relation |̂ d coincides with model theoretic non-forking, i.e. it sat-
isfies the properties of non-forking in stable theories:

• (Invariance) The relation |̂ d is invariant under automorphisms of M;

• (Local Character) For all A ⊆M finite and X ⊂M arbitrary, there exists C0 ≤ X
finite such that A |̂ d

C0
X;

• (Transitivity) If A |̂ d
X
Y and A |̂ d

XY
Z then A |̂ d

X
Y Z;

• (Weak Monotonicity) If A |̂ d
X
Y Z, then A |̂ d

X
Y .

• (Weak Boundedness) For all A ⊂ M finite and X ⊆ Y ⊂ M arbitrary, there
are only finitely many isomorphism types of A′ ⊆ M over Y with A′ ∼=X A and
A′ |̂

X
Y .

• (Existence) For any A ⊂ M finite and X ⊆ Y ⊆ M arbitrary, there is some A′

such that tp(A/X) = tp(A′/X) and A′ |̂ d
X
Y .

Proof We check the above listed properties.

• (Invariance) As δ is clearly invariant under automorphisms, so is d and thus also
|̂ d.

• (Local Character) For any C ⊆ X finite, we know that d(A/C) is a non-negative
integer and thus can decrease only finitely many times. Therefore, we find some
C0 ≤ X with d(A/C0) being minimal, whence by Lemma 3.5.3.(i) A |̂

C0
X.

• (Transitivity) Transitivity is clear, as the assumptions say that d(A/X) = d(A/XY ) =
d(A/XY Z).
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• (Weak Monotonicity) Weak Monotonicity follows directly from the definition to-
gether with Lemma 3.5.3.(i), as

d(A/X) = d(A/XY Z) ≤ d(A/XY ) ≤ d(A/X),

whence d(A/X) = d(A/XY ).

• (Weak Boundedness) Recall that there is some C ⊆ X finite with A |̂ d
C
X and

that for any A′ ≡X A we have A′ |̂ d
X
Y if and only if A′ |̂ d

C
Y . We consider

the set cl(AC) ∩ acl(C), which is algebraic over C, say by some formula ϕ(x,C).
Denote by D := cl(ϕ(M, C)) the finite closure of realizations of ϕ. Then, for any
A′ ≡X A we get that cl(A′C) ∩ acl(C) ⊆ D, by Lemma 6.1.1.

Claim 1: There are only finitely many d-independent extensions of tp(A/C) to D.

Note first that generally A |̂ d
C

acl(C), as for D′ ⊂ acl(C) finite we have d(D′/C) =
0, whence

d(A/CD′) = d(AD′/C)− d(D′/C) = d(D′/AC) + d(A/C) = d(A/C).

Thus, any extension of tp(A/C) to D is d-independent. Clearly, there are only
finitely many pairwise different extensions of tp(A/C) to a quantifier free type
over D. Consider A1 and A2 to be two realizations of p with tpqf (A1/D) =
tpqf (A2/D). As Lemma 6.1.1 yields that tp(A1/C) = tp(A2/C) if and only if
tp(cl(A1C)/C) = tp(cl(A2C)/C), we may assume that AiC ≤ M. Now, Lemma
6.2.3 implies

cl(A1D) = cl(A1C) ∪ cl(CD) = A1D ∼= A2D = cl(A2D).

Thus, again using Lemma 6.1.1, we see that any two realizations of p which have
the same quantifier free type over D, have the same full type over D. This proves
Claim 1.

Claim 2: For every realization A′ |= p of p, the type tp(A′/D) is d-stationary.

We show that for any finite, closed set D′ containing D, there is a unique d-
independent extension of tp(A′/D) to D′. Consider A′1, A′2 with tp(A′1/D) =
tp(A′2/D) = tp(A′/D) and A′i |̂

d
D
D′. Note that by transitivity we also have

A′i |̂
d
C
D′. Thus, Lemma 6.2.3 yields that there are no non-induced edges in

cl(A′iD′) between A′iC \ (A′iC ∩D′) and D′ \ (A′iC ∩D′). Note that A′iC ∩D′ ⊆
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A′iC ∩ acl(C) ⊆ D by our assumptions. Hence in particular there are no non-
induced edges between A′iC\D andD′\D, whence tpqf (A′1/D′) = tpqf (A′2/D′) and
as A′iD′ = A′iC ∪D′ = cl(A′iD′) is closed, we conclude as above that tp(A′1/D′) =
tp(A′2/D′), as desired.

This proves that there are only finitely many global d-independent extensions of p
to M.

• (Existence) Consider an arbitrary type tp(A/X) and let C and D be as in the proof
of weak boundedness. Assume as before that AC ≤M. Recall that p := tp(A/D)
is d-stationary and A |̂ d

D
X.

Now for any D′ ≤ Y finite such that D ≤ D′ is a minimal extension, Proposition
5.1.5 yields that either A ⊗D D′ ∈ Cµ and there is a strong embedding of A over
D′ such that A |̂ d

D
D′, or D′ is a 0-minimal extension of D, whence for any set A′

we have A′ |̂ d
D
D′. Thus, the set of formulas π(x̄) := tp(A/D)∪{x̄ |̂ d

D
D′ | D′ ⊂

Y finite} is consistent. By saturation ofM, there exists some realization A′ of π(x).
By stationarity and the fact that A′ |̂ d

D
X, we get that tp(A′/X) = tp(A/X). By

construction we also have A′ |̂
D
Y , whence A′ |̂

X
Y . �

Remark 6.2.5 Note the following consequence from the proof of weak monotonicity:
for any finite set A and any set X, there exists a finite subset D ⊆ X such that A |̂

D
X

and tp(A/D) is stationary.

6.3 The Rank

In this section we want to prove that the Morley rank coincides with the dimension on
finite sets. There is one direction, which we can see directly.

Lemma 6.3.1 Let M |= Tµ be a saturated model of Tµ. Then, for any finite set B ⊂M
and X ⊆M arbitrary, we have MR(B/X) ≤ d(B/X).

Proof We prove this by induction on d(B/X). For d(B/X) = 0, Lemma 6.1.2 yields
the desired statement. Now assume we have shown the inequality for all sets B and
X with d(B/X) ≤ k and consider the case that d(B/X) = k + 1. Let C ⊆ X be
finite with B |̂

C
X. We may assume that BC ≤ M . If the Morley rank of B over

C was strictly bigger than k + 1, there existed some tuple a ∈ M and some formula
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ϕ(x, y) such that ϕ(x, a) is consistent with the quantifier free type of B over C and
MR(tpqf (B/C)∪{ϕ(x, a)}) = k+1. We can extend tpqf (B/C)∪{ϕ(x, a)} to a complete
type p(x) of Morley rank k+1. Consider an arbitrary realization B′ |= p(x). If B′C 6≤M ,
then d(B′/C) < d(B/C), whence by induction hypothesis

k + 1 = MR(B′/Ca) ≤ MR(B′/C) ≤ d(B′/C) < d(B/C) = k + 1,

a contradiction. Otherwise, the structure B′C is strong in M , whence B ≡C B′ and
MR(B′/C) = MR(B/C) > k+ 1 = MR(B′/Ca) and consequently B′ 6 |̂

C
a. This yields

d(B′/Ca) ≤ k, whence

k + 1 = MR(B′/Ca) ≤ d(B′/Ca) ≤ k,

yet again a contradiction. �

The rest of this section is devoted to showing the counterpoint, i.e. thatMR ≥ d. Recall
from Lemma 2.1.15 that the Morley rank in almost strongly minimal theories is additive.
We show that d(b/A) = MR(b/A) through a case distinction. First we use induction to
establish the claim for any vertex b which is connected to some point or plane in the base
set A. From there we deduce the general statement taking into account the fact that
Mµ is of bounded diameter. We first establish an easy Corollary from Lemma 6.1.5,
which serves as the induction base.

Lemma 6.3.2 Let X be an arbitrary set and b some vertex in M such that d(b/X) = 1.
Then MR(b/X) = d(b/X) = 1.

Proof Let B := cl(bX). We may assume that X ≤ XB ≤ M is closed in M. We
decompose the extension X ≤ B into a finite chain of minimal extensions X := B0 ≤
B1 ≤ · · · ≤ Bk =: B. By the additivity of d we have for exactly one minimal exten-
sion, say Bi0 ≤ Bi0+1 that d(Bi0+1/Bi0) = 1 and for any other extension we get that
d(Bi+1/Bi) = 0. Now, Lemma 6.1.2 and Lemma 6.1.5 imply together with the additivity
of Morley rank that MR(B/X) = MR(b/X) = 1. �

In the following we want to show that for all non-zero extensions X ≤ B there is some
set Y containing X such that d(B/Y ) = d(B/X) − 1. This is what is needed in order
to show that Morley rank and dimension coincide. The following Lemma is the key tool
behind that proof and is originally stated for almost strongly minimal n-gons in [GT14]
as constructed by Tent in [Ten00b]. Recall that the same n-gons appear in the residues
of any point or plane in models of Tµ.
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Lemma 6.3.3 Let B ≤Mµ be a finite set, which contains a base configuration A0 ⊆ B
with respect to some plane e ∈ B and let p a point in Res(e) with p |̂

e
B. Then there

are infinitely many pairwise disjoint 0-algebraic extensions C of Bp in Res(e) such that
(A0p,C) is a simple pair with |K(p,C \B)| = 1.

Proof Let A0 := {e, s0, . . . , s3} be the base configuration in B with respect to some
plane e ∈ B and p a point in Res(e) with p |̂

e
B. By Fact 3.5.8, there are arbitrarily

many simple extensions over A0 in Mµ, whence in particular, there is some simple
extension C of A0 outside of B.

If p ∈ Res(e) with p |̂
e
B, we can transform the extension A0 ≤ C into a simple extension

A0p ≤ Cp by removing one edge from one of the points in {s0, . . . , s3} to C and adding an
edge from the same vertex in C to the point p. By the given independence, this is a valid
extension and it clearly is still simple over A0p. Furthermore, we have |K(p,C\B)| = 1.�

Lemma 6.3.4 If X is an arbitrary set and b some vertex in M, which is connected to
a vertex x ∈ X. Then d(b/X) = MR(b/X).
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Proof We execute the proof for the case that b is a point in the residue of some plane
x ∈ X. The cases for b being a line or plane are proved in exactly the same way. Without
loss we may assume that X ≤M.
Our plan is to establish the above statement by induction on d(b/X). The induction
base for all finite X and all b with d(b/X) ≤ 1 is already settled by Lemmata 6.1.2 and
6.3.2. Assume now that for any set X and any vertex b ∈ M which is connected to a
vertex x ∈ X and such that d(b/X) ≤ k, we already know that d(b/X) = MR(b/X).
Now consider extension X ≤ cl(Xb) for some vertex b in the residue of a plane x in X
with d(b/X) = k + 1. We want use additivity of Morley rank and dimension function
in order to calculate MR(b/X) successively. Then, the induction hypothesis yields the
desired statement.
Possibly by considering a strong extension Y ≤ M of X with b |̂

X
Y and such that Y

contains a base configuration A0 ≤ Y with respect to x, we may assume that such a
configuration already exists in X. By Fact 3.5.8, we can embed a 0-algebraic extension
C into M over cl(bX) in such a way that C ⊂ Res(x) is simple over bA0 and there is
exactly one edge from C to b.
Let c ∈ C be one vertex in C which is connected to x and one other vertex in A0. Then
δ(c/X) = 1. We claim that actually Xc ≤ M. Otherwise d(c/X) = 0, whence b |̂

X
c.

By Lemma 6.2.3, we get that cl(Xc) ∩ cl(Xb) is algebraic over X, whence cl(Xc) does
not contain b. As there are no non-induced edges between C and cl(bX) \ bX, one sees
that cl(Xc) ⊆ C. This now easily yields a contradiction, as C is a simple extension over
A0b. Thus we have Xc ≤M.
Now we can use that both d and MR are additive and the induction hypothesis yields
for d(c/X) = 1 ≤ k and d(b/Xc) = k that

d(b/X) = d(b/Xc) + d(c/X)

= MR(b/Xc) + MR(c/X)

= MR(b/X).

Thus we have d(b/X) = MR(b/X), as desired. �

Now, as any two points intersect in a common plane, we deduce the general case for
points and planes from the above lemma.

Lemma 6.3.5 If X is an arbitrary finite set and b is some point or plane inMµ, then
d(b/X) = MR(b/X).
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Proof Again, we stick to the case where b is a point. If b is connected to some plane
in X, we are done. Otherwise, let p be another point in M with p |̂ Xb. Then p and b
intersect in some plane e. Note that d(e/Xbp) = 0. Furthermore we have

d(b/X) = d(b/Xp)

= d(be/Xp)− d(e/Xbp)

= d(b/Xep) + d(e/Xp)
Lemma 6.3.4= MR(b/Xep) + MR(e/Xp)

= MR(be/Xp)

= MR(b/X).

This proves the lemma. �

Finally, we want to establish Lemma 6.3.5 for lines.

Lemma 6.3.6 If X is an arbitrary finite set and b is any vertex inMµ, then d(b/X) =
MR(b/X).

Proof We are only left to check the case where b is some line in Mµ. Again, if b is
already connected to some point or plane in X, we are done. Otherwise let b be a line
and p an arbitrary point contained in b. Then

d(b/X) = d(bp/X)− d(p/Xb)

= d(b/Xp) + d(p/X)− d(p/Xb)

= MR(b/Xp) + MR(p/X)−MR(p/Xb)

= MR(b/X),

as desired. �

Corollary 6.3.7 The theory Tµ is of Morley rank 3(n−1)−1. Furthermore, the Morley
rank of any type tp(B/X) equals its dimension d(B/X).

Proof This easily follows by a decomposition of X ≤ BX into minimal extensions
under the use of additivity of both Morley rank and the dimension function. �
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6.4 Ampleness

So far we have seen that the theory Tµ is almost strongly minimal and forking is given
by d-independence. In this last section, we prove that the theory is 2-ample, but not
3-ample. A witness for 2-ampleness is given by a complete flag.
One problem to overcome when discussing ampleness are imaginaries. In our case, it
follows from Lemma 6.1.8 together with the fact that acl(B) is infinite for B as in the
Coordinatisation Lemma, that the theory Tµ admits weak elimination of imaginaries.
Nevertheless, we want to include a direct proof of this fact using Fact 2.1.9.

Lemma 6.4.1 The theory Tµ has weak elimination of imaginaries.

Proof We show that every global type has a real canonical base. Let p(x) be a global
type which does not fork over some model M and let p(x) := p|M (x) be its restriction
to M . We may assume that for any realization A |= p we have AM ≤ M. Let B′ be
the set of all the vertices b in M for which there is a vertex a ∈ A \M with an edge
between a and b that is not induced through any other vertex in M . Set furthermore
B := B′ ∪ (A ∩M). We claim that B is a canonical base for p(x).

Let f ∈ Aut(M) be an automorphism which fixes p(x). If it does not fix B pointwise,
then clearly there is some b ∈ B′ that is moved by f . By definition of B′, there is an
a ∈ A \M which is connected to b and hence also to f(b) by a non-induced edge. Note
further that b and f(b) have the same type, whence a ∈ acl(b, f(b)). Now, we get that
f(b) can not lay inM , as models are algebraically closed and it can neither lay in M\M ,
as d is additive and d(a/M) > 0 = d(a/Mf(b)), contradicting that p is the non-forking
extension of p, preserved under f . Thus, f fixes B pointwise.

Now assume f ∈ Aut(M) fixes B pointwise. By Lemma 6.1.1, we know that f fixes
p(x)| cl(B). We want to show that f also fixes p(x). First note that for any realization A
of p(x)|M we have A |̂ cl(B)M . For any cl(B) ⊆ C ≤M there are no non-induced edges
between cl(AB) \ cl(B) and C \ cl(B). Furthermore cl(AC) ⊆ cl(AM) = AM , whence
AC is closed, as otherwise for D ⊆M with cl(AC) = AD we get a contradiction via

δ(AC) > δ(AD) = δ(A/D) + δ(D) = δ(A/C) + δ(D) ≥ δ(AC).

Now we easily see that f fixes the quantifier free part of p(x), and as the quantifier free
type of strong sets determines the full type, we get that f(p) = p. As p(x) is stationary
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overM and p(x) has a unique non-forking extension from cl(B) ⊆M toM , we conclude
that f fixes p(x).
This shows that any global type has a real canonical base, whence Tµ has weak elimi-
nation of imaginaries. �

Indeed, the Lemma above is the best we can do. If Tµ had full elimination of imaginaries,
then for any finite set A there was some real tuple a such that an automorphism fixes A
setwise, if and only if it fixes a pointwise. The following example yields that this is not
the case.

Example 6.4.2 Consider two arbitrary lines x1 and x2 such that A := {x1, x2} is
strongly embedded inMµ. IfA had a real canonical parameter a, then clearly a ∈ dcl(A).
On the other hand we saw that the definable closure of any set consists of rigid extensions
of its strong closure. Note that there are no rigid extensions of cl(A) = A = dcl(A),
whence a ⊆ A. Furthermore, by homogeneity there is an automorphism ofMµ switching
x1 and x2 and hence fixing A setwise, but not fixing any point in A. This yields that
a = ∅. Now, clearly there are automorphisms ofMµ which do not fix A, a contradiction.

Now, we are ready to prove that complete flags are witnesses for 2-ampleness.

Theorem 6.4.3 The theory Tµ is 2-ample and any complete flag is a witness for that.

Proof Assume {abc} to be a complete flag with b being the line.

(i) As for any nonempty set B ⊆ M and for any proper subset A ⊆ {abc} we have
δ(B/A) > 0 by condition (C4) of the class, Lemma 6.1.2 implies that all partial flags
are algebraically closed. In particular acleq(a)∩ acleq(b) = acleq(∅) and acleq(ab)∩
acleq(ac) = acleq(a).

(ii) We have a |̂
b
c, as flags are strongly embedded, whence d(a/b) = δ(a/b) =

δ(a/bc) = d(a/bc) and

(iii) Finally a 6 |̂ c, as d(a) = δ(a) > δ(a/c) = d(a/c).

This proves that any flag abc is a witness for 2-ampleness. �

Lemma 6.4.4 If a triple of strong finite sets ABC witnesses ampleness over an arbi-
trary parameter set X, then there exist vertices a ∈ cl(AX) \ acl(BX), b ∈ acl(BX) \
acl(X) and c ∈ cl(BCX) \ acl(BX) such that {abc} is a complete flag with b being the
line.
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Proof We choose D ⊆ X finite in a way that

AC |̂
D

X, A |̂
BD

C and A 6 |̂
D

C.

First consider the case where cl(AD)∪cl(CD) = cl(ACD) is already closed. As A 6 |̂
D
C,

Lemma 6.2.3 implies that there is some non-induced edge between a ∈ cl(AD) \ acl(D)
and c ∈ cl(CD)\acl(D). Note that neither a nor c are contained in acl(X), as AC |̂

D
X.

If a was in acl(BX), then a ∈ acl(AX) ∩ acl(BX) = acl(X), a contradiction. Similarly,
if c ∈ acl(BX), then

c ∈ acl(ABX) ∩ acl(ACX) ∩ acl(BX) = acl(AX) ∩ acl(BX) = acl(X),

yet again a contradiction. On the other hand, the independence A |̂
BD

C yields that
the edge between a and c has to be induced through some line b ∈ acl(BD) \ acl(X).
This finishes the proof for the case cl(ACD) = cl(AD) ∪ cl(CD).
Now assume that cl(AD) ∪ cl(CD) is not strong. By Lemma 6.2.2 there is a path from
cl(AD) to cl(CD) in cl(ACD) outside of acl(cl(AD)∩cl(CD)), hence in particular outside
of acl(D) and, as AC |̂

D
X, even outside of acl(X). Note that the path eventually has

to leave acl(AX), as otherwise the last vertex would be contained in acl(AX)∩acl(CX) ⊆
acl(AX)∩acl(BX) = acl(X), a contradiction. Hence, let a ∈ cl(ACD) be the last vertex
of that path that is still contained in acl(AX) and c ∈ cl(ACD) \ acl(AX) its neighbor.
Note that

a, c ∈ cl(ACD) ⊆ cl(ABCD) = cl(ABD) ∪ cl(BCD),

as A |̂
BD

C. If a was in acl(BCX), then by the same independence, a ∈ acl(BX) and
thus a ∈ acl(X), a contradiction. Thus, the vertex a ∈ cl(ABD) \ acl(BD). Similarly, if
c was in acl(ABX), then c ∈ acl(ABX)∩acl(ACX) = acl(AX), a contradiction. Hence,
c ∈ cl(BCD) \ acl(BD). On the other hand, there are no non-induced edges between
cl(ABD) \ acl(BD) and cl(BCD) \ acl(BD), whence the edge between a and c has to
be induced through some line b ∈ acl(BD) \ acl(X). This proves the lemma. �

Theorem 6.4.5 The theory Tµ is not 3-ample.

Proof As Tµ has weak elimination of imaginaries, it suffices to show that there are
no real sets A,B,C and D together with an arbitrary set X such that (A,B,C,D) is
3-ample over X.
Aiming for a contradiction, we assume A,B,C,D and X to be given as above. Note
that (A,C,D) is 2-ample over X. With Lemma 6.4.4 we know that there is a complete

116



6 Rank and Ampleness 6.5. A NEW COUNTEREXAMPLE

flag (a, c, d) with a ∈ cl(AX) \ acl(CX), the line c ∈ acl(CX) \ acl(X) and d ∈ cl(DX) \
acl(CX). Assume C ′ ⊇ C closed and finite such that C ′X ⊆ acl(CX) and c ∈ cl(C ′X).
Then, we have A |̂

BX
C ′ and by Lemma 6.2.3 one of the vertices a or c has to be

contained in acl(BX). This now yields the desired contradiction, as

acl(AX) ∩ acl(BX) = acl(CX) ∩ acl(BX) = acl(X),

and neither a nor c is contained in acl(X). �

6.5 A new Counterexample to the Trichotomy Conjecture

In this last section, we see that the induced theory TD on the strongly minimal set D
with fixed parameter set B as in 6.1.8, is still 2-ample and does not interpret an infinite
field. As a corollary, we obtain the following result:

Theorem 6.5.1 There is a new 2-ample counterexample to the Trichotomy Conjecture
of Zil’ber given by the strongly minimal theory TD which is 2-ample and does not interpret
an infinite field.

Pillay proved in [Pil00, Proposition 3.8] that a theory of finite Lascar rank is n-ample if
and only if all its types of rank 1 are. Here, we say that a type p(x) is n-ample, if there
is an n-ample tuple a0, . . . , an such that an |= p(x). It was pointed out in [PW13] that
Pillay’s proof implies that any type internal to a family of types which are non-n-ample,
is itself non-n-ample.

Definition 6.5.2 Let Σ(x) be ∅-invariant family of partial types and π(x) a partial type
over some parameter set A. We say that π(x) is Σ(x)-internal, if for any α |= π(x),
there is some set B |̂

A
α and realizations β0, . . . , βk of types in Σ(x) based on B such

that α ∈ dcl(Aβ0 . . . βk).

Note that ampleness of some theory is invariant under fixing parameters. Thus, from
now on we fix the parameter set B from Proposition 6.1.8, whence the strongly minimal
set D becomes ∅-definable. We denote by TD the theory induced by Tµ on D, i.e. the
theory of D together with the structure given by all intersections of ∅-definable subsets
of Mm with Dm.
The main tool we need, is the following:
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Lemma 6.5.3 For any type p(x) in Tµ of rank 1, there is some type q(x) in TD of the
same rank, such that q(x) is p(x)-internal. Furthermore, for any type q(x) in TD there
is some type p(x) in Tµ of the same rank such that p(x) is q(x)-internal.

Proof Let p(x) be a type over some parameter set A in Tµ and α |= p(x) arbitrary.
Let q(x) be the partial type saying x ∈ D. Then clearly, the rank of q(x) is 1. We have
seen in Proposition 6.1.8 that Tµ is almost strongly minimal over D in a strict sense, i.e.
(Mµ, B) = dcl(D). Thus, there are finitely many realizations d1, . . . , dk of q(x), such
that α ∈ dcl(d1, . . . , dk), whence p(x) is internal to q(x).
On the other hand, if q(x) is an arbitrary type in TD, then it can be viewed as a type
p(x) in the sense of Tµ. Clearly, then p(x) is internal to q(x). �

Lemma 6.5.4 The induced theory TD is 2-ample.

Proof Suppose not. Then, there is some type q(x) over some set A ⊆ D in TD of rank
1, such that q(x) is not 2-ample. By Lemma 6.5.3, there is some type p(x) also of rank
1, which is internal to q(x). By the remark above, this implies that also p(x) is not
2-ample, contradicting the fact that Tµ is 2-ample. �

Lemma 6.5.5 There is no infinite field interpretable in the theory TD.

Proof Any field interpretable in TD is also interpretable in Tµ. As Tµ is not 3-ample,
no such infinite field can exist. �

This concludes that the theory TD is indeed a strictly 2-ample strongly minimal theory
contradicting Zil’bers Trichotomy Conjecture.
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CHAPTER 7

GROUPS IN PREGEOMETRIES

It is of general interest to model theorists to study the interpretations of abstract model
theoretic notions in algebraic structures and see if they reflect known or new algebraic
phenomena. In this sense, model theory possesses a fruitful back and forth relation
with core mathematics, as on the one hand many of its notions are motivated by alge-
braic phenomena and on the other hand new objects can be discovered by studying the
meaning model theoretic notions have in concrete mathematical structures.
One interesting question relates to the notion of non-forking independence, which al-
ways exists in stable theories. In many of the classical mathematical structures, this
combinatorial notion, which relies on definable objects exclusively, has a very natural
interpretation. It coincides with algebraic independence in algebraically closed fields,
with linear independence in vector spaces and in the theory of the free group, which was
added rather surprisingly to the picture of stable theories by Zlil Sela [Sel14], it gives
back the fundamental notion of JSJ-decompositions. This las fact has been proven by
Perin and Sklinos in [PS16].

Another key question that is studied intensively concerns interpretable groups and their
relation to the algebraic structure of the models of the underlying theory. In this chapter,
we want to study the existence of groups interpretable in the theory Tµ. Recall that
Tµ has weak elimination of imaginaries, whence instead of interpretable groups, we may
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just consider definable, or more generally, type-definable ones. We start by recalling the
notion of a type-definable group.

Definition 7.0.1 For a given theory T, we say that (G, ·) is a type-definable group
in T, if G is a type-definable set in T and · is a relatively definable group operation on
G. It is an interpretable group, if it is type-definable in Teq.

The motivation for studying groups definable in a first order theory comes from the
strong connections the structure of a definable groups often has to the structure of the
underlying theory. In many cases it has been shown that the category of definable groups
in some theory T is exactly the category one would expect from a purely algebraic point of
view. As a starting point it was shown that any group definable in an algebraically closed
field is definably isomorphic to an algebraic group. This question had been posed by
Poizat and was first answered by van den Dries for characteristic zero and then extended
by Hrushovski for the general case. A presentation of the proof can be found in [Poi01,
Theorem 4.13]. Later, Anand Pillay proved in [Pil88] that any group definable in an
o-minimal expansion of the real field can be equipped with a smooth manifold structure
so that the group operations are smooth, and hence is a Lie group. He furthermore
showed in the same paper that any infinite field definable in an o-minimal structure is
either real closed or algebraically closed.
The probably most important open question in the model theory of groups is expressed
in the Algebraicity Conjecture of Cherlin and Zil’ber. It is closely related to the
Trichotomy Conjecture of Zil’ber and asks for a classification of groups of finite Morley
rank.

Conjecture 7.0.2 (Algebraicity Conjecture, [Che79][Zil77]) Any infinite simple
group interpretable in a theory of finite Morley rank is an algebraic group over an alge-
braically closed field, which itself is interpretable in the group structure.

Although a lot of work and progress circulates around the study of this conjecture, an
answer remains yet to be given. Note that for groups definable in a strongly minimal
theory, the Algebraicity Conjecture would follow from an affirmation of Zil’ber’s Tri-
chotomy conjecture. This is due to the fact by Hrushovski and Pillay in [HP87], which
states that one-based groups are abelian-by-finite. Clearly, any simple, abelian-by-finite
group is finite, whence the only infinite simple groups that could appear, would be those
in geometries where an infinite field is definable.
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On the other hand, if the Algebraicity Conjecture would fail, then a minimal coun-
terexample would be given by what is called a bad group - a simple group of finite
Morley rank which is non-solvable and such that all of its proper definable subgroups
are nilpotent. In [Pil96b] Pillay showed that if such a group existed, then its forking
complexity would be at least 2-ample. As the example introduced in this thesis is the
first structure of finite Morley rank not interpreting an infinite field and being 2-ample,
it is of special interest to ask if there are any groups definable in it. Nevertheless, we
see in the sequel that there are no infinite groups interpretable in our geometry, which
is mainly a consequence of its Hrushovski construction nature.

7.1 The Group Configuration Theorem

One of the cornerstones concerning the existence of groups in stable theories is the group
configuration theorem, which first appeared in Hrushovski’s PhD thesis [Hru86]. It states
that we can deduce the existence of an infinite, type-definable group in some theory T
from the presence of a certain diagram, the so-called group configuration.
By a group configuration over some setD, we mean a set {a1, a2, a3, x1, x2, x3} of possibly
infinite tuples ai and xi which can be aligned in a group configuration diagram

such that the following properties are satisfied:

• On each line in the diagram, any tuple is algebraic over the other two tuples in
the same line together with D;

• Any three non-collinear tuples are independent over D.

Note that whenever there is some group G type-definable over D in some theory T , then
we can find a group configuration. Just consider three generically independent elements
g1, g2 and g3 in G over D. Then the set {g1, g2, g1 · g2, g3, g1 · g3, g2 · g1 · g3} provides the
following group configuration:
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The fundamental theorem of Hrushovski now provides a counterpart to this phenomenon.
He showed that in the reverse, whenever we find a group configuration in a stable theory,
then there actually is some type-definable group present.

Fact 7.1.1 (Hrushovski, [Hru86]) If some stable structure contains a group confi-
guration {a1, a2, a3, x1, x2, x3} over D, then possibly after a base change there is some
type-definable group G which acts definably, faithfully and transitively on some type-
definable set equivalent to tp(x1).

In the view of the Algebraicity Conjecture, it is a particularly interesting question to
ask whether or not there are groups definable in a theory of finite rank. Excluding
the existence of a group configuration within his new strongly minimal set, Hrushovski
proved that there are no type-definable groups present. Even though our geometry
differs in certain aspects from the one obtained by Hrushovski in [Hru93], we see that
his arguments for the non-existence of interpretable groups can be transferred rather
immediately.

7.2 Trivial Forking

We have seen that the geometryMµ is an almost strongly minimal structure, which is
2-ample, but not 3-ample. It has been shown by Pillay [Pil00] that any stable theory
which interprets an infinite field is n-ample for all n, whence we immediately know that
there is no infinite field interpretable in Tµ. One way to show that no group can definably
appear in a theory, is to show that the theory has trivial forking. In this section we see
that, even though the geometry is not trivial, there is no infinite group interpretable in
Tµ.
We recall the notion of a stable theory having trivial forking.
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Definition 7.2.1 Let T be stable. We say that T has trivial forking, if for any set
D coming from an arbitrary model of T and for any three tuples of elements a, b and c
which are pairwise independent over D, we have that {a, b, c} is independent over D as
a set.

For an overview of trivial forking see for example [Goo91]. Note that, if T is a theory
with trivial forking, then so is Teq. Thus, there is no infinite group interpretable in a
theory with trivial forking, as otherwise for generically independent elements a and b

of the group, we would have that {a, b, a · b} is pairwise independent, but clearly not
independent, as a · b ∈ dcl(a, b).
An easy example shows that the theory Tµ does not have trivial forking.

Example 7.2.2 Consider three points a, b and c together with a plane e which contains
all the three points. This is a structure in Cµ and hence can be strongly embedded
intoMµ. By the characterization of forking, one easily checks that {a, b, c} is pairwise
independent and any two-element set is closed. Nevertheless, it is not independent as a
set, as the plane e is contained in the algebraic closure of ab and is clearly not independent
from c over the empty set.

Note that the above example also shows that the theory of the ab-initio T0 does not
have trivial forking. In the finite rank case, this fact already follows from a more general
correlation between the triviality of forking and the ampleness of the underlying theory.
We want to include that fact coming from [Goo91, Proposition 9], as it provides an
interesting relation between triviality and ampleness in the case of finite rank.

Fact 7.2.3 Let T be a theory of finite rank. If T has trivial forking, then it is one-
based. Furthermore, its forking is totally trivial, i.e. whenever a |̂

D
b and a |̂

D
c, then

a |̂
D
bc.

7.3 Flat Geometries

In the realm of Hrushovski constructions, or more generally, whenever there is a pre-
dimension present, there is another canonical method of excluding the existence of inter-
pretable infinite groups, introduced by Hrushovski in [Hru93], which consists in showing
that the induced geometry is flat.
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Definition 7.3.1 A geometry with respect to the dimension function d is called flat,
if for any finite family {Ei | i ∈ I} of finite-dimensional closed subsets we have∑

J⊆I
(−1)|J |d(EJ) ≤ 0,

where EJ is defined as ∩i∈JEi for J 6= ∅ and E∅ := ∪i∈IEi.

Lemma 7.3.2 (conf. Lemma 14 in [Hru93]) If the geometry (T, d) is flat, then there
are no infinite groups type-definable in it.

Proof Assume on the contrary that the geometry given by d is flat and nevertheless
there is a group G type-definable in it of Morley rank g. We saw in Section 7.1, that
we can obtain a group configuration (a1, a2, a3, x1, x2, x3) from it. For i ∈ {1, 2, 3, 4} let
Ei be the strong closure of one of the for lines in the group configuration. By the given
dependences within the configuration, we easily see that

d(E∅) = 3g; d(Ei) = 2g; d(Eij) = g and d(Eijk) = 0

for any pairwise distinct i, j, k ∈ {1, 2, 3, 4}. Now flatness yields that

0 ≥
∑
J⊆I

(−1)|J |d(EJ)

= 3g − 4(2g) + 6g

= g.

Thus g = 0 and as it coincides with the Morley rank of G, we see that G is a finite
group. �

Note that restricted to families of size two, the flatness condition coincides with the
submodularity condition on the dimension function. While as discussed in Section 3.4
the predimension function δ we use in our new almost strongly minimal geometries is
not submodular, its associated dimension function d is. This follows from the fact that
submodularity holds for closed sets, which are the object of interest for the dimension
function d. Nevertheless, the present geometry given by the dimension function is not
flat. This in particular shows that the notion of flatness is a strict generalization of the
notion of submodularity, i.e. any flat geometry is submodular, but the converse is not
true.

Lemma 7.3.3 The geometry of Tµ is not flat.
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Proof For some flag (a, b, c), consider the sets E1 := {ab}, E2 := {ac} and E3 := {bc}.
Then with the notation as introduced above we get∑

s⊆{1,2,3}
(−1)|s|d(Es) = 3(n− 1) + 1− 3 · 3(n− 1) + 2 · 2(n− 1) + 3(n− 1)− 1

= n− 1 > 0,

contradicting the definition of flatness. �

As in the case of triviality, there is yet again a more general principle contradicting the
flatness of Tµ, by using an interesting connection between the flatness of the geometry
and its ampleness. The following Lemma was mentioned in [Hru93].

Lemma 7.3.4 If (T, d) is a combinatorial geometry of finite Morley rank, which is flat,
then it is CM-trivial.

Proof Assume not. Then there is some 2-ample tuple (a, b, c) over some set D =
acl(a)∩acl(b)∩acl(c) of finite rank. Consider E1 := cl(ab), E2 := cl(ac) and E3 := cl(bc).
Note that d(abc) = d(ab) + d(bc) − d(b) and d(c/D) > d(c/a) by the definition of
independence. Then∑
J⊆{1,2,3}

(−1)|J |d(EJ) = d(abc)− d(ab)− d(ac)− d(bc) + d(a) + d(b) + d(c)− d(D)

= −d(ac) + d(a) + d(c)− d(D)

= d(c/D)− d(c/a) > 0,

contradicting flatness. �

7.4 Groups in Mµ

We saw that so far, the known methods of showing that there is no infinite group
definable in some theory, cannot be applied to our geometry. Nevertheless, there is
no type-definable group. Indeed, the sets considered in [Hru93] arising from a group
configuration yield a contradiction even in our case. The difference is that we have
to prove the contradiction directly, rather than being able to merely deduce it from
flatness. This suggests that the notion of flatness might be too strong in the question
around definable groups in combinatorial geometries. It would be an interesting question
to find a reformulation of this property which covers both the new strongly minimal set
and the geometry introduced in this work.
We now give the proof that there is no group configuration in models of Tµ.
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Proposition 7.4.1 There is no infinite group interpretable in Tµ.

Proof Let G be a group, interpretable in Mµ over some set D′ ⊆ Meq
µ and consider

generically independent elements a′, b′, x′ ∈ G and set c′ := b′ · a′, y′ := a′ · x′ and
z′ := c′ · x′ = b′ · y′. We show that G is finite.
As Tµ admits weak elimination of imaginaries, there exist real finite tuples a, b, c, x, y,
and z and a finite strong set D ≤ Mµ such that any primed set is interalgebraic with
the corresponding unprimed set. In particular, the sets A := cl(aD), B := cl(bD), C :=
cl(cD), X := cl(xD), Y := cl(yD) and Z := cl(zD) form a group configuration over D.
As in Lemma 7.3.2, we set I := {1, 2, 3, 4} and let the Ei be the four different closures
of collinear sets in the group configuration. Then as above, we see that∑

s⊆I
(−1)|s|d(Es) = d(A/D).

On the other hand, we can calculate the sum as follows:

• Vertices outside of D: any vertex which is not in D is counted with positive sign
exactly once in E∅ and once amongst the Es for |s| = 2 and with negative sign
twice amongst the Es for |s| = 1. This sums up to zero.

• Vertices in D: the vertices in D appear everywhere, namely for the positive oc-
currences once in E∅, six times in the Es for |s| = 2 and once in EI and for the
negative occurrences four times in the Es where |s| = 1 and four times for the case
where |s| = 3. This again sums up to zero.

• Edges: the edges within one of the sets A,B,C,X, Y or Z are exactly counted
as above and sum up to zero. Edges between two sets which are aligned in the
corresponding group configuration appear exactly once in E∅ and once in Es for
some s with |s| = 1, which again sums up to zero. Edges between two non-aligned
sets are only counted in E∅. Notice that any two sets are independent over D,
whence any such edge has to connect a point to a plane, induced via some line in
D.

• Flags: again, any flag using vertices from aligned sets sum up to zero. If a flag uses
at least two vertices from two non-aligned sets, then as above the independence of
the chosen sets over D imply, that the line of the flag is contained in D. Those
flags are counted exactly once in E∅.
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As D is a strong set, we get that for any edge between two non-aligned sets, there is
exactly one flag containing that edge, with the line in D. Thus these edges and flags
again sum up to zero.
Those two calculations together yield d(A/D) = 0, whence A is algebraic over D. On
the other hand, the set A is also interalgebraic over D with a generic element in G,
whence G is finite. �
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CHAPTER 8

BOUNDED AUTOMORPHISMS

We want to conclude the study of our new 2-ample geometry by investigating its auto-
morphism group. We can view any automorphism group of some structure as a topo-
logical group by equipping it with the topology of pointwise convergence. In the case
where the structure is countable, its automorphism group is a Polish group, i.e. a sep-
arable, completely metrizable group. When we deal with countable structures which
possess some homogeneity properties, the groups arising as their automorphism groups
are interesting both as permutation groups and as topological groups. The methods of
Fraïssé and Hrushovski amalgamation provide and abundance of new interesting groups
as automorphism groups of their homogeneous limits. In this chapter we prove that the
automorphism group of our new 2-ample geometry Aut(Mµ) is a simple group.

8.1 Lascar’s Result

By a famous result of Lascar in [Las92], we know that if M is an almost strongly
minimal set over some finite parameter set B, then the group of strong automorphisms
of (M,B) is simple modulo the normal subgroup of its bounded automorphisms. Recall
that an automorphism is called strong if it fixes any element of acleq(∅). It is easy to
check that the set of all strong automorphisms of some structure M forms a normal
subgroup which we denote by Autf (M). For a stable theory T, we get that the quotient
Aut(M)/Autf (M) is an invariant of T for sufficiently saturated models of T. This
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quotient is called the Galois Group of T. Once again, this terminology has its origin
in algebraic geometry, as the strong automorphisms of the algebraically closed field C
are exactly those fixing Qalg, whence the quotient Aut(C)/Autf (C) is isomorphic to the
absolute Galois group of Q.
In general, not much is known about the Galois group of a stable theory. On the other
hand, especially in the almost strongly minimal context, there are powerful tools to
study the normal subgroup of strong automorphisms, or more precisely, its quotient by
the subgroup of so-called bounded strong automorphisms.
Next we want to give the definition of a bounded automorphism.

Definition 8.1.1 LetM be some structure and Aut(M) its automorphism group. Then
we call an automorphism σ ∈ Aut(M) bounded, if there exists some finite set D such
that σ(x) ∈ acl(Dx) for any element x ∈M . We denote the set of all bounded automor-
phisms by Bdd(M). Furthermore, we denote the set of all bounded strong automor-
phisms by Bddf(M).

The definition of a bounded automorphism originally given by Lascar in [Las92] differs
from the one given above. It states that some automorphism σ is bounded, if there exists
some natural number n such that for any X ⊆M we have dim(σ(X)/X) ≤ n. The next
Lemma states that the two notions coincide for strongly minimal theories.

Lemma 8.1.2 If M is strongly minimal with dimension function dim, then an auto-
morphism σ ∈ Aut(M) is bounded if and only if there exists some natural number n such
that for any X ⊆M we have dim(σ(X)/X) ≤ n.

Proof Clearly, if σ is a bounded automorphism, then the conditions in the Lemma
are satisfied with respect to the natural number n := dim(A). Conversely, consider
an arbitrary automorphism σ such that dim(σ(X)/X)) is bounded by some natural
number. Let X be of finite dimension such that dim(σ(X)/X) is maximal. Note that
we can assume X to be finite. Then for any element b we have

dim(σ(Xb)/Xb)) = dim(σ(b)/Xσ(X)b) + dim(σ(X)/Xb) ≤ dim(σ(X)/X),

whence either σ(b) ∈ acl(Xσ(X)b) or σ(X) 6 |̂
X
b and then strong minimality implies

that b ∈ acl(Xσ(X)). Thus, if we set D := Xσ(X)σ2(X), then for any b we get
σ(b) ∈ acl(Db). This yields that σ is a bounded automorphism with respect to D. �
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Remark 8.1.3 Note that the group of bounded automorphisms forms a normal sub-
group. One easily checks for example that for some bounded automorphism σ and any
finite dimensional X we have

dim(σ−1(X)/X) = dim(σ−1(X)X)− dim(X)

= dim(Xσ(X))− dim(X)

= dim(σ(X)/X),

by invariance of dim under automorphisms. Now it is immediate from submodularity
that Bdd(M) forms a group. To see that it is normal, just note that for some bounded
automorphism σ with respect to the natural number n and an arbitrary automorphism
τ we have

dim(τ−1στ(X)/X) = dim(σ(τ(X))/τ(X)) ≤ n

for any set X.

We saw that Bddf (M) E Autf (M) E Aut(M). Now, the result of Lascar states that
in the case that M is almost strongly minimal, there are no proper normal subgroups
contained between Bddf (M) and Autf (M).

Fact 8.1.4 (Lascar, [Las92]) Let M be an almost strongly minimal structure over
some finite parameter set B. Then the group Autf (M,B)/Bddf (M,B) is a simple
group.

Let us exhibit what this result means for the three main examples of strongly minimal
structures. This is also well explained in [EGT16]. If M is just a countable set, then
any automorphism is strong, whence Autf is the whole symmetric group of M . Further-
more, the bounded automorphisms consist exactly of those having finite support. Thus,
Lascar’s result easily implies that the normal subgroup structure of Sym(M) consists of
the chain

{1} E {σ of finite support and even order } E {σ of finite support } E Sym(M).

This result had first been proven by Schreier and Ulam in [SU33].
For the case where M is a countably infinite dimensional vector space over some count-
able division ring F , again any automorphism is strong and Autf (M) = GL(ℵ0, F ).
Furthermore, the bounded automorphisms are exactly those with co-finite dimensional
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Eigenspaces. The fact that GL(ℵ0, F )/Bdd(M) is a simple group, had been first proven
by Rosenberg in [Ros58].
If M is an algebraically closed field, then we already mentioned that the strong au-
tomorphisms are exactly those fixing the algebraic closure of the prime field. If the
field is of characteristic 0, then there is no non-trivial bounded automorphism (conf.
[Las92]), whence the group of strong automorphisms is a simple group. In a private
correspondence with Lascar in 1991, Ziegler generalized this fact to fields in arbitrary
characteristic, showing that the only bounded automorphisms are powers of the Frobe-
nius map. A lot of work has been done around the study of bounded automorphisms in
fields with enlarged structure. So did for example Konnerth show in [Kon02] that there
are no non-trivial bounded automorphisms of differentially closed fields in characteristic
0 and Blossier, Hardouin and Martin-Pizarro in [BHMP16] give a full characterization of
the bounded automorphisms in fields considered in the ring language enlarged by sym-
bols for automorphisms, for various cases. Furthermore, the proof of Lascar has been
used in [GT14] to construct new simple groups with a BN -pair, which do not arise from
algebraic groups. The existence of such groups had been unknown until then.
In his proof of Fact 8.1.4, Lascar shows that if σ is an arbitrary automorphism which
is not bounded, then any strong automorphism is contained in the subgroup generated
by the conjugates of σ by strong automorphisms. His proof uses the fact that we can
view the automorphism group of a countable structure as a Polish group and can thus
apply Baires Categoricity Theorem. Recall that in strongly minimal theories T, the
algebraic closure possesses the exchange property and thus induces a pregeometry on
T which gives rise to a dimension function that reflects the independence given in all
stable theories.
Later on Macpherson and Tent in [MT11] and then Tent and Ziegler in [TZ13] further
developed and extended the result of Lascar. In [MT11] it was shown that whenever
M arises by free amalgamation and its automorphism group is a proper subgroup of
Sym(M) which acts transitively on M , then Aut(M) is a simple group. Here, the
independence given by the algebraic closure in the strongly minimal setting, is replaced
by an independence notion which relates to free amalgamation. In [TZ13], a broader
framework is introduced, to which Lascar’s result transfers. The authors introduce the
notion of a stationary independence relation, which extends the independence given by
free amalgamation. They furthermore replace the notion of an unbounded automorphism
by the notion of moving almost maximally, which coincides with boundedness in the
strongly minimal case. Their main result is that whenever M is a countable structure
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which carries a notion of stationary independence, then its automorphism group is simple
modulo the normal subgroup of automorphisms not moving almost maximally. As a
consequence they show that the isometry group of the Urysohn space, which is the
universal Polish group, is simple modulo the isometries with bounded displacement.

8.2 Bounded Automorphisms in Generalized N-Gons

Recently, the result of Lascar has been further generalized by Evans, Ghadernezhad and
Tent in [EGT16], where they are interested in Hrushovski limits. These always possess
a dimension function, which again gives rise to a notion of closure cld. Loosely speaken,
they prove that Lascar’s theorem is still valid, if one exchanges the algebraic closure in
the definition of a bounded automorphism, with the closure coming from the dimension
function. As in the strongly minimal case these two closures coincide, this extends Las-
car’s result directly to a broader context. In particular they show that the automorphism
groups of Hrushovski’s ab initio generic structures as constructed in [Hru93] and [Hru88]
are simple modulo the group of automorphisms which fix cld(∅) pointwise.

Note that in order to deduce the simplicity of an automorphism group, applying a
Lascar-like theorem is just one out of two steps. A second, equally important step con-
sists in the study of bounded automorphisms. For Hrushovski’s ab-initio and strongly
minimal structures, this has been done by Ghadernezhad in [Gha13]. Furthermore,
Ghadernezhad and Tent showed in [GT14] that there are no bounded automorphisms of
the almost strongly minimal n-gons as constructed by Tent in [Ten00b]. In order to show
that our new almost strongly minimal 2-ample geometries has a simple automorphism
group, we can transfer their proof into our setting. Thus, we now want to give a brief
overview of their proof from [GT14].

From now on let Γn denote the generalized n-gon as constructed in [Ten00b] and reviewed
in Section 2.3 and let σ be an arbitrary bounded automorphism of Γn with respect to
some finite set D ≤ Γn. We may assume that D contains a base configuration as already
introduced in Definition 3.5.7. We want to show that σ is trivial. As a first step in
[GT14], the authors prove that σ fixes any vertex b such that d1(b/Dσ−1(D)) = n − 1
and from there they deduce that σ fixes the entire n-gon. In the proof of this first step,
they use the following fact:
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Fact 8.2.1 (Corollary 5.4 in [GT14]) Let A0 be a base set if n is odd and the union
of two base sets of different type if n is even. Let b ∈ Γn be such that d1(A0b) =
d(A0) + n − 1. Then for any finite strong set B containing A0b, there is a set C not
contained in B which is 0-minimal over B and such that there is exactly one edge from
C to b.

Now we want to summarize the main idea of the proof. As σ is bounded with respect
to D, we may assume that σ(A0) ⊆ D. Note first that D ≤ Db ≤ Γn and set B :=
cl(Dbσ(b)). Consider a set C as in Fact 8.2.1 such that both C and σ(C) are disjoint
from B. Then clearly d1(b/CD) = δ1(b/CD) = 1.
Assume σ(b) 6= b. As b 6∈ σ−1(D), also σ(b) 6∈ D. Thus, there are at least two edges
from B \D to Cσ(C), one edge involving b and another one involving σ(b). Note that
DCσ(C) is closed. This follows as cl(DCσ(C)) ⊆ BCσ(C) and it cannot contain b or
σ(b). On the other hand, the set D is closed and there are no edges from Cσ(C) to B
other than those to Dbσ(b).
Thus we calculate

0 ≤ δ1(B/DCσ(C))

= δ1(B/D)− (n− 2)K(B \D,Cσ(C))

≤ d1(bσ(b)/D)− 2(n− 2)

= d1(b/D)− 2(n− 2)

= n− 1− 2(n− 2) < 0,

yielding the desired contradiction.
This concludes that all “generic” points over Dσ−1(D) are fixed by σ and it is not hard
to see that thus the whole n-gon Γn is fixed, whence σ is trivial and there are no non-
trivial bounded automorphisms of Γn.

Recall from Section 2.3 that Γn is almost strongly minimal with respect to the base
set A0 as parameter set. Together with Lascar’s result, the considerations above imply
that AutA0(Γn) is a simple group. The conclusion for the whole automorphism group
Aut(Γn) now follows from group theoretic arguments, see [GT14, Proposition 6.5].
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8.3 Bounded Automorphisms in the new 2-Ample Geometry

In this section we see that there are no non-trivial bounded automorphisms of the struc-
tures Mµ and M0 respectively. We adapt the proof of [GT14] for the almost strongly
minimal generalized n-gons constructed by Tent in [Ten00b] outlined above to our set-
ting of incidence geometries. Thus, we first show that any bounded automorphism fixes
any plane and we can then deduce that they have to fix the entire structureMµ. The
basic ideas and definitions for this part are coming from [GT14]. Using an embed-
ding of Mµ into M0, we finally deduce the same statement for M0. Afterwards, we
use the results from [EGT16] to conclude that the automorphism group ofMµ is simple.

Recall that by Lemma 6.3.3, for any finite strong set B ≤ Mµ, which contains a base
configuration A0 ⊆ B with respect to some plane e ∈ B and any point p in Res(e) with
p |̂

e
B, there are infinitely many pairwise disjoint 0-algebraic extensions C of Bp in

Res(e) such that (A0p, C) is a simple pair with |K(p, C \B)| = 1.
The next Lemma refers to Lemma 6.1 in [GT14].

Lemma 8.3.1 Let σ be a bounded automorphism of Mµ with respect to some finite
set D ≤ Mµ and e ∈ D some plane in D. Then σ fixes any point p ∈ Res(e) with
p |̂

e
Dσ−1(D).

Proof Let e and p be as in the statement of the lemma. We may assume thatD contains
some base configuration A0 ≤ D with respect to e. By boundedness of σ we may further
assume that σ(eA0) ⊆ D, without harming the independence p |̂

e
D. Aiming for a

contradiction, assume that p is not fixed under σ and set B := cl(Dpσ(p)). As p |̂
e
D,

we have d(pD) = δ(D) + n − 1. Further, the boundedness of σ implies d(B) = d(Dp),
whence

δ(B/D) = d(B/D)

= d(p/D)

= n− 1

= δ(B̂)−
(
(2(n− 1)− 1)|K(B̂,D)|+ (n− 1)(|K′(B̂,D)| − |F(B̂,D)|

)
︸ ︷︷ ︸

=:(∗)

,

with B̂ := B \D.
By Lemma 6.3.3 there is some 0-extension C of B disjoint from B which is simple over
A0p and such that there is exactly one edge from p to C. We may further assume that
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σ(C) is also disjoint from B, by choosing C large enough. Recall that the extension C
is simple over A0p ⊆ Dp, whence σ(C) is simple over σ(A0p). On the other hand, as
p |̂

e
σ−1(D) and σ(p) 6= p, we get that σ(p) 6∈ Dp. Thus σ cannot fix C as a set and

by minimality we get that C ∩ σ(C) = ∅.
Now we have DC ≤ DCp ≤ Mµ, whence d(p/DC) = δ(p/DC) = 1. Thus, the point p
is not algebraic over DC. On the other hand, note that the only edges from B̂ to Cσ(C)
which are not induced through some vertex in D are one edge from the point b to some
line in C in Res(e) and another such edge from σ(b) into σ(C). Note that as above, the
set DCσ(C) is closed. Thus we get

0 ≤ δ(B/DCσ(C))

= δ(B̂)− (∗)− 2(n− 2)

= n− 1− 2(n− 2)

< 0,

a contradiction. �

Proposition 8.3.2 There are no non-trivial bounded automorphisms ofMµ.

Proof Let σ be an arbitrary bounded automorphism ofMµ with respect to some closed
set D. We first show that σ fixes any plane inMµ. So consider an arbitrary plane e in
Mµ. Recall that σ is also bounded with respect to cl(eD). Now pick two points p1 and
p2 in the residue of e such that

p1 |̂
e

Dσ−1(D) and p2 |̂
e

p1Dσ
−1(D).

By Lemma 8.3.1, we know that σ fixes both p1 and p2. By the given independence,
these two point intersect in a unique plane, which is exactly e. Thus σ fixes e. Now it is
easy to see that any automorphism ofMµ which fixes all the planes has to fix the whole
structure and hence is trivial. �

From the above result we can directly deduce that there neither exist non-trivial bounded
automorphisms of the uncollapsed structureM0.

Proposition 8.3.3 Let M0 be the ab-initio structure obtained in section 3. Then the
group of bounded automorphisms ofM0 is trivial.
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Proof We already saw that there are no non-trivial bounded automorphisms of any
structure Mµ. We show that if there was some nontrivial bounded automorphism of
M0, then also ofMµ. So let σ be a bounded automorphism ofM0 with respect to some
finite closed set D ⊆M0. We may assume that σ acts non-trivially on D. Note that we
can choose the function µ in such a way that D ∈ Cµ. By Lemma 2.1.21, we can embed
Mµ inside M0 in such a way that D ≤ Mµ ≤ M0, where we denote the arising copy
again byMµ.
Now, recall from Remark 3.6.4 that the algebraic closure in the sense of M0 of any
set X ⊆M0 is exactly the closure of X under rigid extensions, which coincides with its
definable closure inMµ. Thus, the embeddingMµ is already algebraically closed inM0

and in particular, for any subset A ⊆Mµ we have that aclM0(A) ⊆Mµ. This directly
implies that σ fixesMµ setwise, as for any a ∈ Mµ we have that σ(a) ∈ aclM0(Da) ⊆
Mµ. As furthermore aclM0(A) ⊆ aclMµ(A) for any set A ⊆ Mµ, we obtain a bounded
automorphism σ|Mµ

ofMµ, contradicting Proposition 8.3.2. �

8.4 New Simple Groups

We now use the results from [EGT16, Section 3] in order to show that the automorphism
group Aut(Mµ) is a simple group. To this end, we need to introduce some further
definitions. First of all, we define the following family of sets:

X := {acl(A) | A ⊆Mµ finite }.

We first want to show that the relation of non-forking independence is a stationary
independence relation as defined in [EGT16, Definition 2.2]

Remark 8.4.1 The relation of non-forking independence |̂ in Mµ is a stationary
independence relation compatible with acl, i.e. it satisfies the following list of
properties for all A,B,C and D in X and finite tuples a and b:

(1) (Compatibility) We have a |̂
b
C if and only if a |̂ acl(b)C. Furthermore a |̂

B
C

if and only if e |̂
B
C for all e ∈ acl(a,B) if and only if acl(a,B) |̂

B
C.

(2) (Invariance) If σ is an automorphism of the structure, then A |̂
B
C if and only if

σ(A) |̂
σ(B) σ(C).

(3) (Monotonicity) If A |̂
B
CD, then A |̂

B
C and ABCD.
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(4) (Transitivity) If A |̂
B
C and A |̂ BCD, then also A |̂

B
CD.

(5) (Symmetry) If A |̂
B
C, then C |̂

B
A.

(6) (Existence) There is some automorphism σ fixing B such that σ(A) |̂
B
C.

(7) (Stationarity) Suppose A1, A2, B and C are in X with A1 ≡B A2 and Ai |̂ B C.
Then A1 ≡BC A2.

Proof The axioms follow clearly from the characterization of stable forking. �

We remark that Transitivity is already implied by the other axioms.
Now, we conclude that the automorphism groups ofMµ andM0 are simple, using the
following theorem from [EGT16].

Fact 8.4.2 ([EGT16], Theorem 3.2) Suppose |̂ is a stationary independence rela-
tion compatible with acl and B ∈ X is such that there is an AutB(Mµ)-invariant set
D, where the elements of D \ B have rank 1 over B and acl(D,B) = Mµ. Suppose
σ ∈ Aut(Mµ/ acl(∅)) is an unbounded automorphism of Mµ. Then every element of
Aut(Mµ/ acl(∅)) is a product of 96 conjugates of σ±1.

Corollary 8.4.3 The automorphism group ofMµ is simple.

Proof We already saw in Remark 8.4.1 that |̂ defines a stationary independence
relation compatible with acl. Recall also that acl(∅) = ∅. Now, choose B and D as
in the proof of Theorem 6.1.8. By substituting B with its algebraic closure, we obtain
the conditions of Fact 8.4.2. Thus, there is no proper normal subgroup of Aut(Mµ)
which contains an unbounded automorphism. On the other hand, we have seen in 8.3.2
that there are no bounded automorphisms of Mµ, whence conclusively, there are no
non-trivial normal subgroups in Aut(Mµ) and the group is simple. �

Remark 8.4.4 The notion of an unbounded automorphism used in Theorem 3.2. of
[EGT16] differs from the one given in Definition 8.1.1. Nevertheless, as Mµ is almost
strongly minimal, it is what is called monodimensional in [EGT16]. Thus by Proposition
3.11 of the same paper, the two notions of unbounded automorphisms coincide in our
context.
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CHAPTER 9

EPILOGUE

In this thesis we have seen that there are counter examples to the Trichotomy Conjecture
of Zil’ber of higher ampleness. This gives a partial answer to the conjecture of Pillay
from [Pil00], which had been open for over fifteen years. Moreover, we expect the full
conjecture to be answered affirmatively in the near future. By the inductive character of
the construction presented in this thesis, which lifts the ideas from Tent in [Ten00b] to a
higher dimension, there is hope that the methods can be further generalized to produce
higher ample examples.

Conjecture 9.0.1 There are almost strongly minimal incidence geometries of geomet-
rical rank k + 1 and of type •

n
− •

n
− • · · · •

n
−• which are k-ample, but not k + 1-ample.

We have already mentioned that the non-abelian free group was added to the picture of
stable theories by Sela. Its theory turns out to provide a very natural counterexample
to many phenomena stable groups usually show. For example, it is the first known
group which is n-ample for all n ([OHT12] and [Skl15]) in which there is no infinite field
definable ([BS15]). We can transfer this question to the strongly minimal case.

Question 9.0.2 Is there a strongly minimal theory, which is n-ample for all n, but does
still not interpret an infinite field?

Another aspect in which the free group falls out of the picture of other stable groups
is equationality. Equationality is an analogue of noetherianity for arbitrary first order
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theories and it implies stability. Although equational theories form a proper subclass
of stable theories, a natural example that witnesses that had long been missing. The
very first, and for a long time only, stable non-equational theory had been constructed
by Hrushovski and Srour in [HS89] and is a colored version of the free pseudospace
constructed by Baudisch and Pillay in [BP00], which we mentioned in 2.3.8. Much later,
Sela showed in [Sel12] that the theory of the free group is non-equational. This result
has then been generalized to arbitrary free products of stable groups (excluding Z2 ∗Z2)
in [MS17].
In [BMPZ14b], Baudisch, Pizarro and Ziegler show that the ω-stable buildings which
fill the ample hierarchy, are indeed equational. It would be interesting to answer this
question for the present theory. Note that there is no stable non-equational theory
known, which is of finite rank. Thus the following question should be answered:

Question 9.0.3 Is the theory Tµ equational?

Although the ample hierarchy now has been proven to be strict, there are few things
known about structures which are at least 2-ample and their properties. Note for example
that groups, which are not 1-ample are almost abelian and those of finite Morley rank
which are not 2-ample, are almost nilpotent. There might still a lot to be learned about
the structural consequences, which the bound on the ampleness has on a stable structure.
Moreover, Pillay has proved in [Pil96a, Section 4.1] that a stable theory is 1-ample if and
only if there is a type-definable pseudoplane in it. This raises the following question:

Question 9.0.4 Is there a good notion of a type-definable “k-pseudospace”, such that
some stable theory T is k-ample if and only if there is a type-definable “k-pseudospace”
in it?

We hope these questions to be motivating to see that the study of the ample hierarchy
provides an ample amount of open interesting questions, and its answers may help us
significantly to understand the geometrical properties of stable first order theories.

140



BIBLIOGRAPHY

[AB08] P. Abramenko and K. S. Brown. Buildings: Theory and Applications. Grad-
uate texts in mathematics. Springer, 248 edition, 2008.

[Bal72] J. T. Baldwin. Almost Strongly Minimal Theories. I. J. Symb. Logic,
37(3):487–493, 1972.

[BHMP16] T. Blossier, C. Hardouin, and A. Martin-Pizarro. Sur les automorphismes
bornés de corps munis d’opérateurs. to appear in Math. Research Letters,
2016.

[BL71] J. T. Baldwin and A. H. Lachlan. On Strongly Minimal Sets. J. Symb.
Logic, 36(1):79–96, 1971.

[BMPZ14a] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Ample Hierarchy. Fund.
Math., 224:97–153, 2014.

[BMPZ14b] A. Baudisch, A. Martín-Pizarro, and M. Ziegler. A model theoretic study
of right-angled buildings. to appear in J. Eur. Math. Soc., 2014.

[BP00] A. Baudisch and A. Pillay. A Free Pseudospace. J. Symb. Log., 65(1):443–
460, 2000.

[BS15] A. Byron and R. Sklinos. Fields definable in the free group. ArXiv e-prints,
2015. available at http://arxiv.org/abs/1512.07922.

[Cas00] E. Casanovas. The recent history of model theory. Seminar Notes, 2000.

141

http://arxiv.org/abs/1512.07922


Bibliography Bibliography

[CH00] Z. Chatzidakis and E. Hrushovski. Model theory of difference fields. AMS
Trans., 351(8):2997–3071, 2000.

[Che79] G. Cherlin. Groups of small Morley rank. Ann. Math. Logic, 17(1):1 – 28,
1979.

[CHP02] Z. Chatzidakis, E. Hrushovski, and Y. Peterzil. Model theory of difference
fields, ii. Proc. London Math. Soc., 85(2):257–311, 2002.

[EGT16] D. Evans, Z. Ghadernezhad, and K. Tent. Simplicity of the automorphism
groups of some Hrushovski constructions. Ann. Pure Appl. Logic, 167:22–48,
2016.

[Fra54] R. Fraïssé. Sur l’extension aux relations de quelques proprietes des ordres.
Ann. Sci. Ecole Norm. Sup., 71:363–388, 1954.

[Fre16] O. Frecon. Bad Groups in the sense of Cherlin. submitted, 2016.

[Gha13] Z. Ghadernezhad. Automorphism Groups of Generic Structures. Westfälis-
che Wilhelms-Universität Münster, PhD thesis, 2013.

[Goo91] J. B. Goode. Some Trivial Considerations. J. Symb. Log., 56(2):624 – 631,
June 1991.

[GT14] Z. Ghadernezhad and K. Tent. New simple groups with a BN-pair. J. Alg.,
(414):72–81, 2014.

[Gö30] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls.
Monatsh. Math., 37(1):349–360, 1930.

[Her95] B. Herwig. Weight omega in Stable Theories with Few Types. J. Symb.
Log., 60(2):353–373, June 1995.

[Hod93] W. Hodges. Model Theory. Encyclopedia of mathematics and its applica-
tions. Cambridge University Press, 42 edition, 1993.

[HP87] E. Hrushovski and A. Pillay. Weakly Normal Groups. Studies in Logic and
the Foundations of Mathematics, 122:233 – 244, 1987. Logic Colloquium
’85.

[Hru86] E. Hrushovski. Contributions to Stable Model Theory. University at Cali-
fornia at Berkeley, PhD thesis, 1986.

142



Bibliography Bibliography

[Hru88] E. Hrushovski. A stable ℵ0-categorical pseudoplane. Unpublished Notes,
1988.

[Hru93] E. Hrushovski. A new strongly minimal set. Ann. Pure Appl. Logic,
62(2):147–166, July 1993.

[Hru96] E. Hrushovski. The Mordell-Lang conjecture for function fields. J. Amer.
Math. Soc., 9:667 – 690, 1996.

[Hru01] Ehud Hrushovski. The manin–mumford conjecture and the model theory
of difference fields. Ann. Pure Appl. Logic, 112(1):43 – 115, 2001.

[HS] E. Hrushovski and Z. Sokolovic. Minimal subsets of differentially closed
fields. (unpublished manuscript).

[HS89] E. Hrushovski and G. Srour. Non-equational stable theories. unpublished
notes, 1989.

[Kon02] R. Konnerth. Automorphism groups of differentially closed fields. Ann.
Pure Appl. Logic, 118:1–60, 2002.

[KTvM99] L. Kramer, K. Tent, and H. van Maldeghem. Simple Groups of Finite
Morley Rank and Tits Buildings. Israel J. Math., 109:189–224, 1999.

[Las92] D. Lascar. Les Automorphismes D’un Ensemble Fortement Minimal. J.
Symb. Log., 57(1):238–251, 1992.

[MS17] I. Müller and R. Sklinos. Nonequational stable groups. ArXiv e-prints,
2017. available at http://arxiv.org/abs/1703.04169.

[MT11] D. Macpherson and K. Tent. Simplicity of some automorphism groups. J.
Algebra, 342:40–52, 2011.

[MT17] I. Müller and K. Tent. Building-like geometries of finite Morley Rank. to
appear in J. Eur. Math. Soc., 2017.

[OHT12] A. Ould Houcine and K. Tent. Ampleness in the free group. ArXiv e-prints,
2012. available at http://arxiv.org/abs/1205.0929.

[Pil88] A. Pillay. On groups and fields definable in o-minimal structures. J. Pure
Appl. Algebra, 53(3):239 – 255, 1988.

143

http://arxiv.org/abs/1703.04169
http://arxiv.org/abs/1205.0929


Bibliography Bibliography

[Pil96a] A. Pillay. Geometric Stability Theory. volume 32 of Oxford Logic Guides,
Oxford, 1996. Oxford University Press.

[Pil96b] A. Pillay. The Geometry of Forking and Groups of Finite Morley Rank. J.
Symb. Log., 60(4):1251–1259, Dec. 1996.

[Pil00] A. Pillay. A Note on CM-Triviality and the Geometry of Forking. J. Symb.
Log., 65(1):474–480, March 2000.

[Poi01] B. Poizat. Stable groups. Mathematical Surveys and Monographs 087.
American Mathematical Society, 2001.

[PS16] C. Perin and R. Sklinos. Forking and JSJ decompositions in the free group.
J. Eur. Math. Soc, 18(3):1983–2017, 2016.

[PW13] D. Palacín and F. Wagner. Ample Thoughts. J. Symb. Logic, 78(2):489–510,
2013.

[Ray83] M. Raynaud. Sous-variétés d’une variété abélienne et points de torsion.
Arithmetic and geometry, 1:327–352, 1983.

[Ros58] A. Rosenberg. The structure of the infinite general linear group. Annals of
Math., 68:278–294, 1958.

[Sel12] Z. Sela. Free and Hyperbolic groups are not Equational. available at http:

//arxiv.org/abs/1204.5075, 2012.

[Sel14] Z. Sela. Diophantine geometry over groups VIII: Stability. Ann. of Math.,
177(2):787–868, 2014.

[She78] S. Shelah. Classification Theory. Studies in Logic and Foundations in
Mathematics. Elsevier Science Publishers e.V., 92 edition, 1978.

[Skl15] R. Sklinos. Ampleness and pseudo-Anosov homeomorphisms in the free
group. Turkish J. Math., 39(1):63–80, 2015.

[SU33] J. Schreier and S. Ulam. Über die Permutationsgruppe der natürlichen
Zahlenfolge. Studia Math., 4:134–141, 1933.

[Ten00a] K. Tent. A Note on the Model Theory of Generalized Polygons. J. Symb.
Log., 65(2):692–702, 2000.

144

http://arxiv.org/abs/1204.5075
http://arxiv.org/abs/1204.5075


Bibliography Bibliography

[Ten00b] K. Tent. Very homogeneous generalized n-gons of finite Morley rank. J.
London Math. Soc., 62(2):1–15, 2000.

[Ten14] K. Tent. The free pseudospace is n-ample, but not (n+1)-ample. J. Symb.
Log., 79:410–428, 2014.

[Tit59] J. Tits. Groupes algébriques semi-simples et géométries associées. Proc.
Coll. Algebraical and Topological Foundations of Geometry, pages 175–192,
1959.

[Tit74] J. Tits. Buildings of Spherical Types and Finite BN-Paires. Lecture Notes
in Math., 386, 1974.

[Tit81] J. Tits. A local approach to buildings. In C. Davis, B. Grünbaum, and
F. A. Sherk, editors, The geometric vein, pages 519–547, New York, 1981.
Springer-Verlag.

[TZ12] K. Tent and M. Ziegler. A Course in Model Theory. Cambridge University
Press, 2012.

[TZ13] K. Tent and M. Ziegler. On the isometry group of the Urysohn space. J.
London Math. Soc., 87(2):289–303, 2013.

[Zie13] M. Ziegler. An Exposition of Hrushovskis New Strongly Minimal Set. Ann.
Pure Appl. Logic, 164(12):1507–1519, 2013.

[Zil77] B. I. Zil’ber. Groups and rings whose theory is categorical. Fund. Math.,
95(3):173–188, 1977.

145






	Introduction
	Preliminaries
	Some Model Theory
	Around Zil'ber's Conjecture
	Incidence Geometries

	The Construction
	Motivation and Notation
	The Predimension Function
	The Amalgamation Class
	Around Submodularity
	Dimension and Minimal Extensions
	Amalgamation

	The ab-initio structure
	Axiomatization
	Forking
	Ranks
	Ampleness

	The Finite-Rank Geometry
	The Collapse
	Geometrical Properties of M
	Saturation

	Rank and Ampleness
	Coordinatisation
	Description of Forking
	The Rank
	Ampleness
	A new Counterexample

	Groups in Pregeometries
	The Group Configuration Theorem
	Trivial Forking
	Flat Geometries
	Groups in M

	Bounded Automorphisms
	Lascar's Result
	In Generalized N-Gons
	In the 2-Ample Geometry
	New Simple Groups

	Epilogue

