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Abstract. We provide an elementary but explicit description of the non-embeddable thick
polar spaces introduced by Jacques Tits. These polar spaces are related to algebraic groups
of absolute type E7 and Tits index E28

7,3
. Our approach includes all polar spaces of rank 3

related to a quadratic alternative division algebra.

1. Introduction

In 1974, Jacques Tits [13] classified spherical buildings of rank at least 3,
thereby treating all polar spaces as introduced and studied by Veldkamp [16].
Veldkamp also classified large classes of polar spaces, in particular, he classi-
fied all polar spaces of rank at least 3 for which the planes are Desarguesian
and are constructed over a field of characteristic different from 2. In order
to treat the missing cases, Jacques Tits introduced pseudo-quadratic forms,
defined groups of mixed type, and proved the existence of the Tits index E

28

7,3

in algebraic groups of type E7 such that the field E of definition is included
in a Cayley–Dickson division algebra over a subfield K of E, and E is a qua-
dratic Galois extension of K. In the latter case, the associated polar space is
then constructed using the parabolic subgroups of the algebraic group in ques-
tion. This polar space cannot be embedded in a projective space, as its planes
are non-Desarguesian Moufang planes. For this reason, these polar spaces are
called non-embeddable polar spaces. There is also a class of non-embeddable
nonthick polar spaces in rank 3, but these are well understood and we will
not be concerned with these in the present paper (the nonthick polar spaces
of rank 3 are the line Grassmannians of projective spaces of rank 3).

In 1987, Ronan and Tits [9] presented a general construction of buildings
with no subdiagram of type H3, providing all spherical buildings. In particular,
this applies to the non-embeddable polar spaces (see Condition (b) of Section 5
of [9]). Some more details of this construction can be found in Chapter 40 of
Tits and Weiss [14], in particular Statements (40.54) and (40.55) treat the
case of non-embeddable polar spaces stated in (40.25)(iii). In 1990, Bernhard
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Mühlherr [8] constructed the thick non-embeddable polar spaces as fixed point
sets of involutions in buildings of type E7 (although this construction is also
apparent on page 89 of [12]). In the present paper, we will provide a coordinate
construction of the thick non-embeddable polar spaces, in the spirit of the
coordinatization of the non-Desarguesian Moufang planes. An advantage of
the latter over the former constructions is that it is the most explicit and
allows for some applications that were apparently out of reach before. We
mention two examples.

In [3], we explicitly construct an embedding of the corresponding dual polar
space in a projective space of dimension 55, and we show that this embedding
is the universal one. The universality of that embedding, which is the embed-
ding deduced from the highest weight module for groups of type E7, was an
open question since the early 90’s (see e.g. [11, p. 229]), and the introduced
coordinatization plays a crucial role in the proof. Another application is given
in [4], where the authors use the coordinates to show that the geometry in
a non-embeddable polar space opposite a chamber is simply connected. The
latter was open since 1996, see [1, p. 66].

We note that our approach allows to uniformly construct all polar spaces
related to a quadratic alternative division algebra. That is exactly the way
we will proceed. Note that, in [3], we also establish universality of a certain
explicitly defined embedding of the corresponding dual polar space for arbitrary
quadratic alternative division algebras.

The non-embeddable polar spaces are intimately related to the Cayley–
Dickson division algebras. Hence, we will need to recall some basic results
about such algebras. This will be done in Section 2 and in the beginning
of Section 4. In Section 3, we introduce coordinates for some classical polar
spaces, and we extend this coordinatization in Section 4 to obtain the non-
embeddable (or nonclassical) polar spaces of rank 3. Hence our approach is
rather indirect: we do not start from a known description (using algebraic
groups, for instance) and derive ours, but we simply construct from scratch a
geometry (by analogy with the other polar spaces in the family) and prove it is
a polar space either isomorphic to one of the classical examples of Section 3, or
with non-Desarguesian Moufang planes; it then follows from the classification
by Jacques Tits [13] that in the latter case the polar space in question is
the unique non-embeddable one related to the given Cayley–Dickson division
algebra.

Our treatment requires a lot of computations in Cayley–Dickson division
algebras. We have written down the most intricate cases, leaving the easier
ones to the interested reader. In fact, in most cases that we left out, the
nonassociativity is not a burden as it does not happen that one has to multiply
three general elements (e.g., in the definition of planes, only Type VIII contains
an expression which requires parentheses). Note that we did not perform any
computation on a computer; everything has been checked only by hand.
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2. Alternative division rings and Moufang planes

An alternative division ring is a set D of size at least 2 which is endowed
with two binary operations, an addition + and a multiplication ·, satisfying
the following properties:

• the structure (D,+) is a commutative group;
• the multiplication is left- and right-distributive with respect to the addi-

tion;
• there exists a (necessarily unique) neutral element 1 for the multiplication;
• if 0 denotes the neutral element for the addition, then for every a ∈ D\{0},

there exists a (necessarily unique) element a−1 ∈ D such that a−1 ·a = 1 =
a · a−1;

• for every a ∈ D\{0} and every b ∈ D, we have a−1 · (a ·b) = b = (b ·a) ·a−1.

It is a custom to denote the product a · b of two elements a, b ∈ D by ab. In the
literature, one can find alternative but equivalent definitions for the notion of
alternative division ring, see e.g. Tits and Weiss [14].

The alternative division rings with associative multiplication are precisely
the skew fields. An important class of (nonassociative) alternative division
rings are the so-called Cayley–Dickson division algebras. Explicit constructions
of such alternative division rings can be found in Jacobson [6, p. 426] (for
characteristic distinct from 2), Schafer [10, p. 5] (for characteristic distinct
from 2), Tits and Weiss [14, Sec. 9.8] and Van Maldeghem [15, Appendix B].
We describe the construction given in [15].

Suppose K is a field and l1, l2, l3 ∈ K such that the equation

X2
0 − l1X

2
1 +X0X1 − l2X

2
2 + l1l2X

2
4 − l2X2X4

− l3X
2
3 + l1l3X

2
7 − l3X3X7 + l2l3X

2
5 − l1l2l3X

2
6 + l2l3X5X6 = 0

has no solutions for (X0, X1, . . . , X7) ∈ K8 distinct from (0, 0, . . . , 0). Then let
O be an 8-dimensional vector space over K with basis {1, e1, e2, e3, e4, e5, e6, e7}
such that 1 ∈ K. Then O can be given the structure of an alternative division
ring if we define the multiplication in the following way:

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 l1 + e1 e2 − e4 e3 − e7 −l1e2 e6 l1e5 + e6 −l1e3

e2 e2 e4 l2 −e5 l2e1 −l2e3 −l2e7 −e6

e3 e3 e7 e5 l3 e6 l3e2 l3e4 l3e1

e4 e4 l1e2 + e4 l2 − l2e1 −e6 −l1l2 −l2e3 + l2e7 l1l2e3 −l1e5 − e6

e5 e5 e5 − e6 l2e3 −l3e2 l2e3 − l2e7 −l2l3 −l2l3 + l2l3e1 −l3e2 + l3e4

e6 e6 −l1e5 l2e7 −l3e4 −l1l2e3 −l2l3e1 l1l2l3 l1l3e2

e7 e7 l1e3 + e7 e6 l3 − l3e1 l1e5 + e6 l3e2 − l3e4 −l1l3e2 −l1l3

The Cayley–Dickson division algebras are precisely the alternative division
rings which can be obtained in the above-described way. The field K con-
sists of those elements of O which commute with every element of O. The
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Cayley–Dickson division algebra O has a so-called standard involution which
maps

X0 +X1e1 +X2e2 +X3e3 +X4e4 +X5e5 +X6e6 +X7e7

to

X0 +X1 −X1e1 −X2e2 −X3e3 −X4e4 −X5e5 −X6e6 −X7e7,

for (X0, X1, . . . , X7) ∈ K8.
The multiplication in a Cayley–Dickson division algebra is not associative.

In fact, it is a result due to Bruck and Kleinfeld [2] and Kleinfeld [7] that
the Cayley–Dickson division algebras are the only alternative division rings in
which the multiplication is not associative. A proof of that result can also be
found in Tits and Weiss [14, Chap. 20] and Van Maldeghem [15, Appendix B].
The proof given in [15] is attributed to Jacques Tits.

In this paper, we will also meet a class of alternative division rings in which
the multiplication is associative, but not commutative. Suppose K is a field
and l1, l2 ∈ K such that the equation

X2
0 − l1X

2
1 +X0X1 − l2X

2
2 + l1l2X

2
3 − l2X2X3 = 0

has no solutions for (X0, X1, X2, X3) ∈ K
4 distinct from (0, 0, 0, 0). Let H be

a four dimensional vector space over K with basis {1, i, j, k} such that 1 ∈ K.
Then H can be given the structure of a skew field if we define the multiplication
in the following way:

· 1 i j k

1 1 i j k
i i l2 k l2j
j j i− k l1 + j −l1i
k k l2 − l2j l1i+ k −l1l2

The quaternion division algebras are precisely the skew fields which can be
obtained in the above described way. The field K consists of those elements of
H which commute with every element of H. The quaternion division algebra
H has a unique involution which only fixes each element of K. The involution
is called the standard involution of H and maps

X0 +X1i+X2j +X3k to X0 +X2 −X1i−X2j −X3k,

for (X0, X1, X2, X3) ∈ K4. Every Cayley–Dickson division algebra has sub-
algebras that are quaternion division algebras. In fact, it can be seen that
the multiplication table above for the quaternion division algebras is a “sub-
table” of the multiplication table for the Cayley–Dickson division algebras by
identifying i with e2, j with e1 and k with e4.

With every alternative division ring D, we can associate a point-line geom-
etry πD in the following way. There are three types of points:

• a symbol (∞), where ∞ 6∈ D;
• symbols (s), where s ∈ D;
• symbols (a, b), where a, b ∈ D.
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There are also three types of lines:

• the set [∞] := {(∞)} ∪ {(λ) | λ ∈ D};
• the sets [k] := {(∞)} ∪ {(k, λ) | λ ∈ D};
• the sets [m, k] := {(m)} ∪ {(λ,mλ+ k) | λ ∈ D}.

It is well-known (and straightforward to verify) that πD is a projective plane.
In fact, πD is a Moufang plane which means that every line is a so-called trans-
lation line. It is also known that every Moufang plane can be coordinatized by
an alternative division ring in the above described way. More background in-
formation on the coordinatization of (Moufang) projective planes can be found
in the monograph [5] by Hughes and Piper.

3. A common coordinatization of some families of polar spaces

In this section, we present a common coordinatization of some families of
polar spaces of rank 3. In the following section, we will show that one other
class of polar spaces (namely the thick non-embeddable polar spaces of rank
3) can be coordinatized in a similar way. We need the description below in
order to identify the polar spaces we will construct merely using coordinates.

(i) Let O = K be a field and let σ be the identical map on the set O = K. Let
ζ be a symplectic polarity of PG(5,O) and let W (5,O) denote the symplectic

polar space associated with ζ. The points of W (5,O) are the points of PG(5,O)
and the singular subspaces of W (5,O) are those subspaces α of PG(5,O) for
which α ⊆ αζ . We can choose a reference system in PG(5,O) such that two
distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of PG(5,O) determine a
singular line of W (5,O) if and only if

X0Y5 +X1Y4 +X2Y3 −X3Y2 −X4Y1 −X5Y0

= Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

A point (X0, X1, . . . , X5) of PG(5,O) is a point of W (5,O) if and only if

Xσ
0 X5 +Xσ

1 X4 +Xσ
2 X3 ∈ K.

The last condition looks somewhat weird since it is always satisfied (also, every
point of PG(5,O) is also a point ofW (5,O)). It will however soon become clear
why we have introduced this “superfluous condition”.

(ii) Suppose O and K are two fields such that O is a quadratic separable
extension of K. Let σ denote the unique nontrivial automorphism of O fixing
each element of K. Let Ω be a nonsingular Hermitian variety of PG(5,O) whose
equation with respect to a suitable reference system is given by

Xσ
0 X5 −Xσ

5 X0 +Xσ
1 X4 −Xσ

4 X1 +Xσ
2 X3 −Xσ

3 X2 = 0.

This equation is equivalent with the following condition:

Xσ
0 X5 +Xσ

1 X4 +Xσ
2 X3 ∈ K.
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Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained
in a line of PG(5,O) which is completely contained in Ω if and only if

Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are contained in Ω define a Her-

mitian polar space PΩ.

(iii) Suppose O and K are two fields such that K ⊆ O, charK = charO = 2

and O2 := {λ2 | λ ∈ O} ⊆ K. Let σ be the identity map of O. Let Ω denote
the set of all points (X0, X1, . . . , X5) of PG(5,O) for which

X0X5 +X1X4 +X2X3 = Xσ
0 X5 +Xσ

1 X4 +Xσ
2 X3 ∈ K.

Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained
in a line of PG(5,O) which is completely contained in Ω if and only if

X0Y5 +X1Y4 +X2Y3 −X3Y2 −X4Y1 −X5Y0

= Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are contained in Ω define a polar
space PΩ. Observe that PΩ is a subspace of W (5,O). If K = O, then PΩ

∼=
W (5,O). If K = O2, then PΩ is isomorphic to the polar space Q(6,O) of
rank 3 associated to a nonsingular quadric of Witt index 3 of PG(6,O). If
K 6= O, then we call PΩ the polar space of rank 3 of mixed type associated with
(O,K). Polar spaces, and more generally, spherical buildings of mixed type
were introduced in Chapter 10 of [13] through the notion of “groups of mixed
type”.

(iv) Suppose that O is a quaternion division algebra, that K is the center
of O and that σ is the standard involution of O. Let U be a 6-dimensional
right vector space over O and let PG(5,O) denote the 5-dimensional projec-
tive space associated with U . Suppose we have fixed a basis of U . Then
the points of PG(5,O) can be represented by 6-tuples (X0, X1, . . . , X5), where
X0, X1, . . . , X5 ∈ O. Let Ω denote the set of all points (X0, X1, . . . , X5) of
PG(5,O) for which

Xσ
0 X5 +Xσ

1 X4 +Xσ
2 X3 ∈ K.

Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained
in a line of PG(5,O) which is completely contained in Ω if and only if

Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are completely contained in Ω
define a polar space PΩ which we call a quaternionic polar space. Observe also
that the map q from U to the quotient group O/K which maps the vector with
coordinates (X0, X1, . . . , X5) to (Xσ

0 X5 + Xσ
1 X4 + Xσ

2 X4) + K is a (σ,−1)-
pseudo-quadratic form and that PΩ is the polar space associated with this
pseudo-quadratic form.

Now, let (O,K, σ) be as in (i), (ii), (iii) or (iv) above, and let P be the
polar space of rank 3 associated with (O,K, σ). A point (X0, X1, . . . , X5) of
PG(5,O) is a point of P if and only if Xσ

0 X5 + Xσ
1 X4 + Xσ

2 X3 ∈ K. This
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condition allows us to give explicit coordinates to the points of P . We can
divide the points of P into the following six classes.

Type 0: The point (∞) := (0, 0, 0, 0, 0, 1).
Type 1: The points (x) := (0, 0, 0, 0, 1, x) where x ∈ O.
Type 2: The points (x1, x2) := (0, 0, 0, 1, x1, x2), where x1, x2 ∈ O.
Type 3: The points (x1, x2; k) := (0, 0, 1, k, x1, x2), where x1, x2 ∈ O and

k ∈ K.
Type 4: The points (x1, x2, x3; k) := (0, 1, x1, x2, k − xσ

1x2, x3), where
x1, x2, x3 ∈ O and k ∈ K.

Type 5: The points (x1, x2, x3, x4; k) := (1, x1, x2, x3, x4, k − xσ
1x4 − xσ

2x3),
where x1, x2, x3, x4 ∈ O and k ∈ K.

Two points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of P are collinear (as points
of P) if and only if

Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

This condition easily allows us to verify the following proposition.

Proposition 3.1. Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• The point (∞) is collinear with all points of Type 1, all points of Type 2,
all points of Type 3 and all points of Type 4. The point (∞) is collinear

with no point of Type 5.
• The point (x1) is collinear with all points of Type 1, all points of Type 2

and all points of Type 3. The point (x1) is collinear with no point of Type

4. The point (x1) is collinear with the point (y1, y2, y3, y4; l) of Type 5 if

and only if x1 + yσ1 = 0.
• The point (x1, x2) is collinear with all points of Type 2 and no point of Type

3. The point (x1, x2) is collinear with the point (y1, y2, y3; l) if and only if

x1 + yσ1 = 0. The point (x1, x2) is collinear with the point (y1, y2, y3, y4; l)
if and only if y2 + xσ

1y1 + xσ
2 = 0.

• The point (x1, x2; k) is collinear with the point (y1, y2; l) if and only if

k = l. The point (x1, x2; k) is collinear with the point (y1, y2, y3; l) if and

only if y2 − ky1 − xσ
1 = 0. The point (x1, x2; k) is collinear with the point

(y1, y2, y3, y4; l) if and only if y3 − ky2 − xσ
1y1 − xσ

2 = 0.
• The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3; l) if and only if

l−k = yσ1 y2+xσ
2y1−xσ

1y2−xσ
2x1. The point (x1, x2, x3; k) is collinear with

the point (y1, y2, y3, y4; l) if and only if y4+xσ
1y3−xσ

2y2−(k−xσ
2x1)y1−xσ

3 =
0.

• The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are collinear if and only

if l − k = yσ1 y4 + yσ2 y3 + xσ
3y2 + xσ

4y1 − xσ
1 y4 − xσ

2y3 − xσ
4x1 − xσ

3x2.

Since a polar space of finite rank is completely determined by its point set
and the collinearity relation defined on this point set, Proposition 3.1 can be
used to give explicit descriptions of the lines and planes of P . We have done
this and these explicit descriptions can be found in the next section.

The primary goal of this paper was to give a coordinatization of the nonclas-
sical polar spaces which are associated with Cayley–Dickson division algebras.
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We tried to achieve this goal by altering the above-alluded descriptions of the
lines and planes so that they also would give rise to a polar space in the case
that O is a Cayley–Dickson division algebra, K is the center of O and σ is the
standard involution of O. An important obstacle toward that goal was the fact
that the multiplication in a Cayley–Dickson division algebra is not commuta-
tive nor associative, implying that in the descriptions of the lines and planes,
the order in which the various multiplications should be carried out needs to
be explicitly indicated. We were successful in doing that. As we will see, with
the descriptions of the lines and planes given in the next section we also obtain
a polar space if one starts with a Cayley–Dickson division algebra.

In the following section, we will not repeat the explicit computations that
allowed us to obtain explicit expressions for the lines and planes. We will
rather follow another path.1 We will give the descriptions for the lines right
from the start. Then we will prove that this structure is a polar space, which
we will be able to identify in case our alternative division ring is associative.
If not, then we need to prove some extra properties such as the fact that the
planes are projective planes over our nonassociative alternative division ring.
There are several ways to do this, and here we choose not to do it in the most
economical way, but to present coordinates for all planes. The advantage of
this approach is that it provides an alternative way of defining the polar spaces
with coordinates, by giving only the coordinates of the points and the planes.
In fact, the lines can easily be deduced from the description of the planes.
Indeed, the parameters s, a and b that are mentioned in the description of
each plane also occur in the description of the Moufang plane at the end of
Section 2, and identifying the corresponding points (those having the same
values for s, a and b) in both descriptions gives rise to an explicit isomorphism
between the two planes (see proof of Proposition 4.15). The explicit description
of the planes shall also be used in the applications in [3] and [4].

4. A common construction of some families of polar spaces of
rank 3

Throughout this section, O is an alternative division ring. The center Z(O)
of O is defined to be the set of all a ∈ O such that ab = ba, a(bc) = (ab)c,
(ba)c = b(ac) and (bc)a = b(ca) for all b, c ∈ O. Clearly, Z(O) is a field and O

can be regarded as an algebra over Z(O).

4.1. Quadratic alternative division rings. Suppose F is a subfield of Z(O).
We say that O is quadratic over F if there exist (necessarily unique) functions
T : O → F and N : O → F such that:

• a2 − T (a)a+N(a) = 0 for any a ∈ O;
• T (a) = 2a and N(a) = a2 for any a ∈ F.

1It seems we have to follow this alternative path anyway in case we deal with a Cayley–
Dickson division algebra. In that case, the associated polar space is not embeddable in a
projective space and so there seems to be no natural way to attribute homogeneous coordi-
nates to its points as it was the case in each of the four above-discussed cases.
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The following proposition is precisely Theorem 20.3 of Tits and Weiss [14].

Proposition 4.1 ([14]). Suppose O is an alternative division ring which is

quadratic over some subfield K of its center Z(O). Let T : O → K and N :
O → K be the unique functions as defined above and put aσ := T (a)− a for all

a ∈ O. Then exactly one of the following holds:

(a) O = K is a field and σ = 1;
(b) O and K are fields, O is a separable quadratic extension of K and σ is the

nontrivial element of the Galois group Gal(O/K);
(c) O is a field of characteristic 2, σ = 1 and O2 ⊆ K 6= O;

(d) O is a quaternion division algebra, K = Z(O) and σ is the standard invo-

lution of O;

(e) O is a Cayley–Dickson division algebra over K = Z(O) and σ is the stan-

dard involution of O.

In each case, σ is an involution of O and N(a) = aσa ∈ K for all a ∈ O.

In the sequel of this section, we suppose that O is an alternative division ring
which is quadratic over some subfield K of its center Z(O). By Proposition 4.1,
there are five possibilities for the pair T := (O,K). Let σ be the involution
of O as defined in Proposition 4.1. For each a ∈ O, the elements a + aσ and
aσ+1 := aσa = aaσ belong to K. If a ∈ K, then aσ = a. If a 6= 0, then, since
aσ = aσ+1 · a−1 with aσ+1 ∈ K, we have (aσ)−1 = (a−1)σ = a

aσ+1 . We denote

(aσ)−1 = (a−1)σ also by a−σ.
We prove in this section that with the pair T there is associated a polar space

PT . We also determine which kind of polar space PT is. In several proofs, we
will invoke some properties of alternative division rings. In Propositions 4.2
and 4.3 below, we state some results which we will need later.

For all a, b, c ∈ O, we define the commutator [a, b] of a and b as the number
ab−ba and the associator [a, b, c] of a, b and c as the number (ab)c−a(bc). Since
O is an alternative division ring, we have [a, b] = 0 for all a, b ∈ O for which
{a, b} ∩ K 6= ∅, [a, b, c] = 0 for all a, b, c ∈ O for which {a, b, c} ∩ K 6= ∅ and
[a−1, a, b] = [b, a, a−1] = 0 for all a, b ∈ O for which a 6= 0. The commutator
can be regarded as a map from O2 to O and the associator can be regarded as
a map from O3 to O. These maps are K-linear in each of their components.

The following properties of alternative division rings are well-known, see
e.g. Bruck and Kleinfeld [2], Tits and Weiss [14, Chap. 9] and Van Maldeghem
[15, Appendix B].

Proposition 4.2.

(1) If a, b, c ∈ O, then [a, b, c] = 0 if a, b and c are not mutually distinct.2

(2) We have [b, a] = −[a, b] for all a, b ∈ O.

(3) If a1, a2, a3 ∈ O, then [aπ(1), aπ(2), aπ(3)] = sgn(π) · [a1, a2, a3] for any

permutation π of {1, 2, 3}.

2So, (ab)a = a(ba) for all a, b ∈ O. We denote this number also by aba.
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(4) The Moufang identities hold in O. This means that a(b(ac)) = (aba)c,
((ab)c)b = a(bcb) and (ac)(ba) = a(cb)a for all a, b, c ∈ O.

(5) For all a, b, c ∈ O, we have a · [a, b, c] = [a, ba, c] = [a, b, ca] and [a, b, c] ·a =
[a, ab, c] = [a, b, ac].

(6) The subring generated by two distinct elements of O is associative.

The following properties can be derived from Proposition 4.2.

Proposition 4.3.

(1) For all a, b, c ∈ O, we have aσ · [a, b, c] = [a, baσ, c] = [a, b, caσ] and [a, b, c] ·
aσ = [a, aσb, c] = [a, b, aσc].

(2) For all a, b, c ∈ O with a 6= 0, we have a−1 · [a, b, c] = [a, ba−1, c] =
[a, b, ca−1] and [a, b, c] · a−1 = [a, a−1b, c] = [a, b, a−1c].

(3) For all a, b, c ∈ O, we have [aσ, b] = [a, bσ] = −[a, b] and [aσ, b, c] =
[a, bσ, c] = [a, b, cσ] = −[a, b, c].

(4) For all a, b, c ∈ O, we have [a, b]σ = −[a, b] and [a, b, c]σ = −[a, b, c].
(5) For all a, b ∈ O, we have (ab)σ+1 = aσ+1bσ+1.

(6) Let a, b, c ∈ O. Then T (ab) = T (ba) and T ((ab)c) = T (a(bc)). Hence,

T (a(bc)) = T ((ab)c) = T (b(ca)) = T ((bc)a) = T (c(ab)) = T ((ca)b).
(7) For all a, b, c ∈ O, we have aσ+1(bσc + cσb) = (aσbσ)(ca) + (aσcσ)(ba) =

(bσaσ)(ac) + (cσaσ)(ab).
(8) For all a, b, c, d ∈ O, we have aσ((bc)d)+bσ((ac)d) = (c(daσ))b+(c(dbσ))a.

Proof. (1)+(2) Claim (2) follows from Proposition 4.2(5). Claim (1) follows
from (2) and the fact that aσ = aσ+1a−1 with aσ+1 ∈ K. Alternatively, Claim
(1) follows from Proposition 4.2(5) if one takes into account that aσ = T (a)−a

with T (a) ∈ K and Claim (2) follows from (1) and the fact that a−1 = aσ

aσ+1

with aσ+1 ∈ K.

(3) We have [aσ, b] = [T (a)−a, b] = [T (a), b]− [a, b] = −[a, b] and [aσ, b, c] =
[T (a)− a, b, c] = [T (a), b, c]− [a, b, c] = −[a, b, c]. The other claims are proved
in a similar way.

(4) We have [a, b]σ = (ab − ba)σ = −aσbσ + bσaσ = −[aσ, bσ] = −[a, b] and
[a, b, c]σ = ((ab)c−a(bc))σ = −(cσbσ)aσ + cσ(bσaσ) = −[cσ, bσ, aσ] = [c, b, a] =
−[a, b, c].

(5) This follows from Proposition 4.2(6).

(6) We have T (ab) = ab + bσaσ = ba + aσbσ + [a, b] + [bσ, aσ] = T (ba) +
[a, b] + [b, a] = T (ba) and T ((ab)c) = (ab)c + cσ(bσaσ) = a(bc) + (cσbσ)aσ +
[a, b, c]− [cσ, bσ, aσ] = T (a(bc)) + [a, b, c] + [c, b, a] = T (a(bc)).

(7) Using (6), we have (aσbσ)(ca) + (aσcσ)(ba) = T ((aσbσ)(ca)) =
T ((ca)(aσbσ)) = T (c(a(aσbσ))) = T (c(aσ+1bσ)) = aσ+1 · T (cbσ) = aσ+1 ·
T (bσc) = aσ+1(bσc + cσb) and (bσaσ)(ac) + (cσaσ)(ab) = T ((bσaσ)(ac)) =
T (bσ(aσ(ac))) = T (bσ(aσ+1c)) = aσ+1 · T (bσc) = aσ+1(bσc+ cσb).

(8) It suffices to show that aσ((ac)d) = (c(daσ))a, because then the result
will follow by substituting a+ b for a. Now we have aσ((ac)d) = aσ([a, c, d] +
a(cd)) = [a, caσ, d] + aσ+1(cd), where we have used (1). By (1) and (3),
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this equals [aσ, acσ, d] + (cd)aσ+1 = −[aσ, c, d]a + ((cd)aσ)a = (−[c, d, aσ] +
(cd)aσ)a = (c(daσ))a. �

4.2. A point-line approach. We are now ready to describe our polar space.
Let ∞ be a symbol not belonging to O and let Ω be the following set:

{(∞), (x1), (x1, x2), (x1, x2; k), (x1, x2, x3; k), (x1, x2, x3, x4; k) |

x1, x2, x3, x4 ∈ O, k ∈ K}.

We call the elements of Ω points. The point (∞) is called the point of Type 0.
If x1, x2, x3, x4 ∈ O and k ∈ K, then (x1) is called a point of Type 1, (x1, x2)
is called a point of Type 2, (x1, x2; k) is called a point of Type 3, (x1, x2, x3; k)
is called a point of Type 4 and (x1, x2, x3, x4; k) is called a point of Type 5. We
now define twelve families of subsets of Ω which we call lines.

(A) Let L1 be the following set of points:

{(∞)} ∪ {(λ) | λ ∈ O}.

We call L1 the line of Type A.

(B) For every x ∈ O, let L2(x) denote the following set of points:

{(∞)} ∪ {(x, λ) | λ ∈ O}.

We call L2(x) a line of Type B.

(C) For every x ∈ O and every k ∈ K, let L3(x, k) denote the following set of
points:

{(∞)} ∪ {(x, λ; k) | λ ∈ O}.

We call L3(x, k) a line of Type C.

(D) For all x, y ∈ O and every k ∈ K, let L4(x, y, k) denote the following set
of points:

{(∞)} ∪ {(x, y, λ; k) | λ ∈ O}.

We call L4(x, y, k) a line of Type D.

(E) For all x, y, z ∈ O, let L5(x, y, z) denote the following set of points:

{(x)} ∪ {(λ, z + x(λ − y)) | λ ∈ O}.

We call L5(x, y, z) a line of Type E. The set L5(x, y, z) contains the points (x)
and (y, z).

(F) For all x, y, z ∈ O and every k ∈ K, let L6(x, y, z, k) be the following set
of points:

{(x)} ∪ {(λ, z + x(λ − y); k) | λ ∈ O}.

We call L6(x, y, z, k) a line of Type F. The set L6(x, y, z, k) contains the points
(x) and (y, z; k).

(G) For all x, y, z, u ∈ O and every k ∈ K satisfying x = −yσ, let
L7(x, y, z, u, k) denote the following set of points:

{(x)} ∪ {(y, z, u, λ; k) | λ ∈ O}.

We call L7(x, y, z, u, k) a line of Type G.
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(H) For all x, y, u, v, w ∈ O and every k ∈ K satisfying u = −xσ, let
L8(x, y, u, v, w, k) be the following set of points:

{(x, y)} ∪ {(u, λ, w + y(λ− v); k) | λ ∈ O}.

We call L8(x, y, u, v, w, k) a line of Type H. The set L8(x, y, u, v, w, k) contains
the points (x, y) and (u, v, w; k).

(I) For all x, y, z, u, v, w ∈ O and every k ∈ K satisfying y = −uσ − zσx, let
L9(x, y, z, u, v, w, k) be the following set of points:

{(x, y)} ∪ {(z, u, λ, w + x(λ − v); k) | λ ∈ O}.

We call L9(x, y, z, u, v, w, k) a line of Type I. The set L9(x, y, z, u, v, w, k) con-
tains the points (x, y) and (z, u, v, w; k).

(J) For all k1, k2 ∈ K and all x, y, u, v, w ∈ O satisfying v = xσ + k1u, let
L10(x, y, u, v, w, k1, k2) be the following set of points:

{(x, y; k1)} ∪ {(λ, v + k1(λ− u), w + y(λ− u);

k2 + x(λ − u) + (λ− u)σxσ + k1(λ
σ+1 − uσ+1)) | λ ∈ O}

= {(x, y; k1)} ∪ {(λ, v + k1(λ− u), w + y(λ− u);

k2 + vσ(λ− u) + (λ − u)σv + k1(λ− u)σ+1) | λ ∈ O}.

We call L10(x, y, u, v, w, k1, k2) a line of Type J. The set L10(x, y, u, v, w, k1, k2)
contains the points (x, y; k1) and (u, v, w; k2).

(K) For all x, y, z, u, v, w ∈ O and all k1, k2 ∈ K satisfying v = xσz+ yσ+k1u,
let L11(x, y, z, u, v, w, k1, k2) be the following set of points:

{(x, y; k1)} ∪ {(z, λ, v + k1(λ− u), w + x(λ − u);

k2 + (y + zσx)(λ − u) + (λ− u)σ(yσ + xσz) + k1(λ
σ+1 − uσ+1)) | λ ∈ O}

= {(x, y; k1)} ∪ {(z, λ, v + k1(λ− u), w + x(λ − u);

k2 + vσ(λ− u) + (λ − u)σv + k1(λ− u)σ+1) | λ ∈ O}.

We call L11(x, y, z, u, v, w, k1, k2) a line of Type K. The set L11(x, y, z, u, v, w,
k1, k2) contains the points (x, y; k1) and (z, u, v, w; k2).

(L) For all x, y, z, u, v, w, r ∈ O and all k1, k2 ∈ K satisfying r = zσ − yσ(xu−
v) + k1u− xσw, let L12(x, y, z, u, v, w, r, k1, k2) be the following set of points:

{(x, y, z; k1)} ∪ {(λ, v+ x(λ− u), w+ y(λ− u), r+ k1(λ− u)− xσ(y(λ− u));

k2+(z−(xu−v)σy)(λ−u)+(λ−u)σ(zσ−yσ(xu−v))+k1(λ
σ+1−uσ+1)) | λ ∈ O}

= {(x, y, z; k1)}∪ {(λ, v+x(λ− u), w+ y(λ−u), r+ k1(λ− u)−xσ(y(λ−u));

k2 + (rσ + wσx)(λ − u) + (λ− u)σ(r + xσw) + k1(λ− u)σ+1) | λ ∈ O}.

We call L12(x, y, z, u, v, w, r, k1, k2) a line of Type L. The set L12(x, y, z,
u, v, w, r, k1, k2) contains the points (x, y, z; k1) and (u, v, w, r; k2).
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X iX jX X iX jX

A 0 1 G 1 5
B 0 2 H 2 4
C 0 3 I 2 5
D 0 4 J 3 4
E 1 2 K 3 5
F 1 3 L 4 5

Table 1. The parameters iX and jX .

Two (not necessarily distinct) points are said to be X-collinear, for X ∈
{A,B, . . . ,L}, if they are contained in some line of Type X . Two (not neces-
sarily distinct) points are said to be collinear if they are X-collinear for some
X ∈ {A,B, . . . ,L}. With each X ∈ {A,B, . . . ,L}, we associate the parameters
iX and jX as in Table 1.

Figure 1 pictures the incidence of the different types of points, lines and
also planes (to be defined in Subsection 4.3) on an octahedron, which is an
apartment in the corresponding building.

Figure 1. Incidence for types of points, lines and planes.

Proposition 4.4. Let X ∈ {A,B, . . . ,L}.

(1) Let L be a line of Type X. Then L contains a unique point of Type iX and

all the remaining points of L have Type jX > iX .

(2) If a point of Type iX and a point of Type jX are X-collinear, then they

are contained in a unique line of Type X.

(3) If p and p′ are two distinct points of Type jX which are contained in some

line L of Type X, then the unique point of Type iX of L is uniquely deter-

mined by p and p′. As a consequence, two distinct points of Type jX are

contained in at most one line of Type X.

Proof. Obviously, Claim (1) holds.
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As for Claim (2), we will only give a sketch in the case X = L. The
other cases are similar. Consider the line M = L12(x, y, z, u, v, w, r, k1, k2) as
described above. We can regard M as the line of Type L defined by a point
(x, y, z; k1) of Type 4 and a point (u, v, w, r; k2) of Type 5 which satisfy the
compatibility condition r = zσ−yσ(xu−v)+k1u−xσw. If (u′, v′, w′, r′; k′2) =
(λ, v + x(λ − u), w + y(λ − u), r + k1(λ − u) − xσ(y(λ − u)); k2 + (z − (xu −
v)σy)(λ− u) + (λ− u)σ(zσ − yσ(xu− v)) + k1(λ

σ+1 − uσ+1)) is another point
of Type 5 of M , then one can easily verify that also the points (x, y, z; k1)
and (u′, v′, w′, r′; k′2) satisfy the compatibility condition. Moreover, the line
of Type L defined by (x, y, z; k1) and (u′, v′, w′, r′; k′2) coincides with M . This
information is sufficient to conclude that a point of Type 4 and a point of Type
5 are contained in at most one line of Type L.

As for Claim (3), we only treat the case X = L. The other cases are similar
(and even easier). We must show that (x, y, z; k1) is uniquely determined by

(u1, v1, w1, r1; l1) =

(λ1, v + x(λ1 − u), w + y(λ1 − u), r + k1(λ1 − u)− xσ(y(λ1 − u));

k2 + (rσ + wσx)(λ1 − u) + (λ1 − u)σ(r + xσw) + k1(λ1 − u)σ+1)

and

(u2, v2, w2, r2; l2) =

(λ2, v + x(λ2 − u), w + y(λ2 − u), r + k1(λ2 − u)− xσ(y(λ2 − u));

k2 + (rσ + wσx)(λ2 − u) + (λ2 − u)σ(r + xσw) + k1(λ2 − u)σ+1).

Here, x, y, z, u, v, w, r, λ1, λ2 are elements of O and k1, k2 are elements of K
such that λ1 6= λ2 and r = zσ − yσ(xu − v) + k1u− xσw. We have

x = (v2 − v1)(u2 − u1)
−1,

y = (w2 − w1)(u2 − u1)
−1,

k1 = (r2 − r1 + xσ(w2 − w1))(u2 − u1)
−1,

r + xσw − k1u = r1 + xσw1 − k1u1,

xu− v = xu1 − v1,

z = (r + xσw − k1u+ yσ(xu− v))σ .

So, (x, y, z; k1) is indeed uniquely determined by (u1, v1, w1, r1; l1) and
(u2, v2, w2, r2; l2). �

The following proposition gives necessary and sufficient conditions for two dis-
tinct points to be X-collinear (X ∈ {A,B, . . . ,L}).

Proposition 4.5. Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• Let p be a point of Type i ∈ {0, 1, . . . , 5} and p′ 6= p a point of Type

i′ ∈ {0, 1, . . . , 5}. Let X ∈ {A,B, . . . ,L}. If (i, i′) 6∈ {(iX , jX), (jX , jX)},
then p and p′ are not X-collinear.
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• The point (∞) is A-collinear with all points of Type 1, B-collinear with all

points of Type 2, C-collinear with all points of Type 3 and D-collinear with

all points of Type 4.
• The point (x1) is A-collinear with all points of Type 1, E-collinear with all

points of Type 2 and F-collinear with all points of Type 3. The point (x1)
is G-collinear with the point (y1, y2, y3, y4; l) if and only if x1 + yσ1 = 0.

• The point (x1, x2) is B-collinear with the point (y1, y2) if and only if x1 =
y1. The point (x1, x2) is E-collinear with the point (y1, y2) 6= (x1, x2)
if and only if x1 6= y1. The point (x1, x2) is H-collinear with the point

(y1, y2, y3; l) if and only if x1 + yσ1 = 0. The point (x1, x2) is I-collinear
with the point (y1, y2, y3, y4; l) if and only if y2 + xσ

1y1 + xσ
2 = 0.

• The point (x1, x2; k) is C-collinear with the point (y1, y2; l) if and only

if (x1, k) = (y1, l). The point (x1, x2; k) is F-collinear with the point

(y1, y2; l) 6= (x1, x2; k) if and only if x1 6= y1 and k = l. The point

(x1, x2; k) is J-collinear with the point (y1, y2, y3; l) if and only if y2−ky1−
xσ
1 = 0. The point (x1, x2; k) is K-collinear with the point (y1, y2, y3, y4; l)

if and only if y3 − ky2 − xσ
1y1 − xσ

2 = 0.
• The point (x1, x2, x3; k) is D-collinear with the point (y1, y2, y3; l) if and

only if (x1, x2, k) = (y1, y2, l). The point (x1, x2, x3; k) is H-collinear with

the point (y1, y2, y3; l) 6= (x1, x2, x3; k) if and only if (x1, k) = (y1, l) and

x2 6= y2. The point (x1, x2, x3; k) is J-collinear with the point (y1, y2, y3; l) 6=
(x1, x2, x3; k) if and only if x1 6= y1 and l−k = yσ1 y2+xσ

2y1−xσ
1y2−xσ

2x1.

The point (x1, x2, x3; k) is L-collinear with the point (y1, y2, y3, y4; l) if and
only if y4 + xσ

1y3 − xσ
2y2 − ky1 + xσ

2 (x1y1)− xσ
3 = 0.

• Suppose (x1, x2, x3, x4; k) 6= (y1, y2, y3, y4; l). The points (x1, x2, x3, x4; k)
and (y1, y2, y3, y4; l) are G-collinear if and only if (x1, x2, x3, k)
= (y1, y2, y3, l). The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are I-
collinear if and only if (x1, x2, k) = (y1, y2, l) and x3 6= y3. The points

(x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are K-collinear if and only if x1 = y1,
x2 6= y2 and l−k = yσ2 y3+xσ

3y2−xσ
2y3−xσ

3x2. The points (x1, x2, x3, x4; k)
and (y1, y2, y3, y4; l) are L-collinear if and only if x1 6= y1 and l − k =
yσ1 y4 + yσ2 y3 + xσ

3y2 + xσ
4y1 − xσ

1 y4 − xσ
2 y3 − xσ

4x1 − xσ
3x2 − [y1 − x1, y2 −

x2, y3 − x3] · (y1 − x1)
−σ.

Proof. The verification of these conditions is straightforward, except (perhaps)
in the three cases discussed below.

(i) Two points (x1, x2, x3; k) and (y1, y2, y3; l) 6= (x1, x2, x3; k) are J-collinear
if and only if there exist x, y, u, v, w, λ ∈ O and k1, k2 ∈ K such that v = xσ +
k1u, (u, v, w; k2) = (x1, x2, x3; k) and (λ, v+k1(λ−u), w+y(λ−u); k2+vσ(λ−
u) + (λ − u)σv + k1(λ − u)σ+1) = (y1, y2, y3; l). The condition (y1, y2, y3; l) 6=
(x1, x2, x3; l) is equivalent with y1 6= x1. The above conditions yield u = x1,
v = x2, w = x3, k2 = k, λ = y1,

k1 = (y2 − x2)(y1 − x1)
−1,

y = (y3 − x3)(y1 − x1)
−1,
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x = (v − k1u)
σ = (x2 − ((y2 − x2)(y1 − x1)

−1)x1)
σ,

l − k = vσ(λ− u) + (λ− u)σv + k1(λ − u)σ+1

= xσ
2 (y1 − x1) + (y1 − x1)

σx2 + (y1 − x1)
σ+1(y2 − x2)(y1 − x1)

−1.

So, we see that the points (x1, x2, x3; k) and (y1, y2, y3; l) are distinct and
J-collinear if and only if y1 6= x1, (y2 − x2)(y1 − x1)

−1 ∈ K and l − k =
xσ
2 (y1 − x1) + (y1 − x1)

σx2 + (y1 − x1)
σ+1(y2 − x2)(y1 − x1)

−1.
Suppose that these three conditions hold. Then (y2 − x2)(y1 − x1)

−1 =
(y1 − x1)

−1(y2 − x2) and hence l − k = xσ
2 (y1 − x1) + (y1 − x1)

σx2 + (y1 −
x1)

σ(y2 − x2) = yσ1 y2 + xσ
2y1 − xσ

1y2 − xσ
2x1.

Conversely, suppose that l − k = yσ1 y2 + xσ
2y1 − xσ

1 y2 − xσ
2x1 and y1 6= x1.

Then (y1 − x1)
σ(y2 − x2) = yσ1 y2 + xσ

2y1 − xσ
1y2 − xσ

2x1 − (xσ
2 y1 + yσ1x2) +

(xσ
2x1 + xσ

1x2) = (l − k) − (xσ
2y1 + yσ1 x2) + (xσ

2x1 + xσ
1x2) ∈ K and hence

k1 = (y2 − x2)(y1 − x1)
−1 ∈ K.

We conclude that the points (x1, x2, x3; k) and (y1, y2, y3; l) are distinct and
J-collinear if and only if x1 6= y1 and l − k = yσ1 y2 + xσ

2 y1 − xσ
1y2 − xσ

2x1.

(ii) Two points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; k) are
K-collinear if and only if there exist x, y, z, u, v, w, λ ∈ O and k1, k2 ∈ K such
that v = xσz+yσ+k1u, (z, u, v, w; k2) = (x1, x2, x3, x4; k) and (z, λ, v+k1(λ−
u), w+ x(λ− u); k2+ vσ(λ− u)+ (λ− u)σv+ k1(λ− u)σ+1) = (y1, y2, y3, y4; l).
If this is the case, then x1 = z = y1 and so the fact that (y1, y2, y3, y4; l) 6=
(x1, x2, x3, x4; k) implies that x2 6= y2. The above conditions yield that z =
x1 = y1, u = x2, v = x3, w = x4, k2 = k, λ = y2,

k1 = (y3 − x3)(y2 − x2)
−1,

x = (y4 − x4)(y2 − x2)
−1,

y = (v − xσz − k1u)
σ,

l − k = vσ(λ− u) + (λ− u)σv + k1(λ − u)σ+1

= xσ
3 (y2 − x2) + (y2 − x2)

σx3 + (y2 − x2)
σ+1(y3 − x3)(y2 − x2)

−1.

So, we see that the points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are distinct
and K-collinear if and only if y1 = x1, y2 6= x2, (y3 − x3)(y2 − x2)

−1 ∈ K and
l− k = xσ

3 (y2 − x2) + (y2 − x2)
σx3 + (y2 − x2)

σ+1(y3 − x3)
σ(y2 − x2)

−1. With
a reasoning completely similar to the one of Case (I), we see that this is the
case precisely when y1 = x1, y2 6= x2 and l − k = yσ2 y3 + xσ

3y2 − xσ
2y3 − xσ

3x2.

(iii) Two points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; l)
are L-collinear if and only if there exist x, y, z, u, v, w, r, λ ∈ O and k1, k2 ∈ K

such that r = zσ − yσ(xu − v) + k1u− xσw, (u, v, w, r, k2) = (x1, x2, x3, x4; k)
and (λ, v + x(λ − u), w + y(λ − u), r + k1(λ − u) − xσ(y(λ − u)); k2 + (rσ +
wσx)(λ − u) + (λ − u)σ(r + xσw) + k1(λ − u)σ+1) = (y1, y2, y3, y4; l). The
condition (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; k) is equivalent with y1 6= x1. The
above conditions yield u = x1, v = x2, w = x3, r = x4, k2 = k, λ = y1,

x = (y2 − x2)(y1 − x1)
−1,
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y = (y3 − x3)(y1 − x1)
−1,

k1 =
(
(y4 − x4) + xσ(y(y1 − x1))

)
(y1 − x1)

−1,

z = (r + yσ(xu − v)− k1u+ xσw)σ,

l − k = (rσ + wσx)(λ − u) + (λ − u)σ(r + xσw) + k1(λ− u)σ+1.

So, we see that (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are distinct and L-collin-
ear if and only if y1 6= x1,

(
(y4 − x4) + xσ(y(y1 − x1))

)
(y1 − x1)

−1 ∈ K and

l − k = (rσ + wσx)(λ − u) + (λ − u)σ(r + xσw) + k1(λ− u)σ+1.

Suppose that these three conditions hold. Since k1 =
(
(y4−x4)+xσ(y(y1−

x1))
)
(y1−x1)

−1 ∈ K, we also have k1 = (y1−x1)
−1

(
(y4−x4)+xσ(y(y1−x1))

)

and hence k1(λ − u)σ+1 = k1(y1 − x1)
σ+1 = (y1 − x1)

σ(y4 − x4) + (y1 −
x1)

−1
(
((y1−x1)(y2−x2)

σ)(y(y1−x1))
)
= (y1−x1)

σ(y4−x4)+(y1−x1)
−1

(
(y1−

x1)((y2 − x2)
σy)(y1 − x1)

)
= (y1 − x1)

σ(y4 − x4) + ((y2 − x2)
σy)(y1 − x1) =

(y1 − x1)
σ(y4 − x4) +

(
(y2 − x2)

σ((y3 − x3)(y1 − x1)
−1)

)
(y1 − x1) = (y1 −

x1)
σ(y4 − x4) +

(
((y2 − x2)

σ(y3 − x3))(y1 − x1)
−1

)
(y1 − x1)− [(y2 − x2)

σ, y3 −

x3, (y1 − x1)
−1] · (y1 − x1) = (y1 − x1)

σ(y4 − x4) + (y2 − x2)
σ(y3 − x3)− [(y2 −

x2)
σ, y3 − x3, (y1 − x1)

σ] · (y1 − x1)
−σ = (y1 − x1)

σ(y4 − x4) + (y2 − x2)
σ(y3 −

x3)− [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)
−σ. We have

(wσx)(λ − u) =
(
xσ
3 ((y2 − x2)(y1 − x1)

−1)
)
(y1 − x1)

=
(
(xσ

3 (y2 − x2))(y1 − x1)
−1

− [xσ
3 , y2 − x2, (y1 − x1)

−1]
)
· (y1 − x1)

= xσ
3 (y2 − x2)− [xσ

3 , y2 − x2, (y1 − x1)
−1] · (y1 − x1)

= xσ
3 (y2 − x2)− [xσ

3 , y2 − x2, (y1 − x1)
σ] · (y1 − x1)

−σ

= xσ
3 (y2 − x2) + [y1 − x1, y2 − x2, x3] · (y1 − x1)

−σ.

Hence,

(λ− u)σ(xσw) = (y2 − x2)
σx3 − (y1 − x1)

−1 · [y1 − x1, y2 − x2, x3]

= (y2 − x2)
σx3 − [y1 − x1, (y2 − x2)(y1 − x1)

−1, x3]

= (y2 − x2)
σx3 + [y1 − x1, (y1 − x1)

−σ(y2 − x2)
σ, x3]

= (y2 − x2)
σx3 + [y1 − x1, (y2 − x2)

σ, x3] · (y1 − x1)
−σ

= (y2 − x2)
σx3 − [y1 − x1, y2 − x2, x3] · (y1 − x1)

−σ.

It follows that (wσx)(λ−u)+(λ−u)σ(xσw) = xσ
3 (y2−x2)+(y2−x2)

σx3. We
also have l−k = rσ(λ−u)+(λ−u)σr+(wσx)(λ−u)+(λ−u)σ(xσw)+k1(λ−
u)σ+1 = xσ

4 (y1−x1)+ (y1 −x1)
σx4+(y1 −x1)

σ(y4−x4)+xσ
3 (y2 −x2)+ (y2 −

x2)
σx3+(y2−x2)

σ(y3−x3)−[y1−x1, y2−x2, y3−x3]·(y1−x1)
−σ = yσ1 y4+yσ2 y3+

xσ
3y2+xσ

4y1−xσ
1y4−xσ

2y3−xσ
4x1−xσ

3x2− [y1−x1, y2−x2, y3−x3] ·(y1−x1)
−σ.

Conversely, suppose that y1 6= x1 and l− k = yσ1 y4 + yσ2 y3 + xσ
3y2 + xσ

4y1 −
xσ
1y4−xσ

2y3−xσ
4x1−xσ

3x2− [y1−x1, y2−x2, y3−x3] ·(y1−x1)
−σ. Then one has

that k′1(λ−u)σ+1 = l−k−rσ(λ−u)−(λ−u)σr−(wσx)(λ−u)−(λ−u)σ(xσw) ∈
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K, where λ = y1, u = x1, r = x4, w = x3, x = (y2 − x2)(y1 − x1)
−1, y = (y3 −

x3)(y1−x1)
−1 and k′1 = (y1−x1)

−1
(
(y4−x4)+xσ(y(y1−x1))

)
. It follows that

k′1 ∈ K and hence also that k1 =
(
(y4 − x4) + xσ(y(y1 − x1))

)
(y1 − x1)

−1 ∈ K.

We conclude that the points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are dis-
tinct and L-collinear if and only if y1 6= x1 and l − k = yσ1 y4 + yσ2 y3 + xσ

3y2 +
xσ
4y1−xσ

1y4−xσ
2y3−xσ

4x1 −xσ
3x2− [y1−x1, y2−x2, y3−x3] · (y1 −x1)

−σ. �

The following is a corollary of Proposition 4.4(2)+(3) and Proposition 4.5.

Corollary 4.6. If p and p′ are two distinct collinear points, then they are

X-collinear for a unique X ∈ {A,B, . . . ,L}. As a consequence, two distinct

collinear points are contained in a unique line.

The following corollary is also a consequence of Proposition 4.5. It gives
necessary and sufficient conditions for two (not necessarily distinct) points to
be collinear.

Corollary 4.7. Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• The point (∞) is collinear with all points of Type 1, all points of Type 2,
all points of Type 3 and all points of Type 4. The point (∞) is collinear

with no point of Type 5.
• The point (x1) is collinear with all points of Type 1, all points of Type 2

and all points of Type 3. The point (x1) is collinear with no point of Type

4. The point (x1) is collinear with the point (y1, y2, y3, y4; l) of Type 5 if

and only if x1 + yσ1 = 0.
• The point (x1, x2) is collinear with all points of Type 2 and no point of Type

3. The point (x1, x2) is collinear with the point (y1, y2, y3; l) if and only if

x1 + yσ1 = 0. The point (x1, x2) is collinear with the point (y1, y2, y3, y4; l)
if and only if y2 + xσ

1y1 + xσ
2 = 0.

• The point (x1, x2; k) is collinear with the point (y1, y2; l) if and only if

k = l. The point (x1, x2; k) is collinear with the point (y1, y2, y3; l) if and

only if y2 − ky1 − xσ
1 = 0. The point (x1, x2; k) is collinear with the point

(y1, y2, y3, y4; l) if and only if y3 − ky2 − xσ
1 y1 − xσ

2 = 0.
• The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3; l) if and only

if l− k = yσ1 y2 + xσ
2 y1 − xσ

1 y2 − xσ
2x1. The point (x1, x2, x3; k) is collinear

with the point (y1, y2, y3, y4; l) if and only if y4 + xσ
1y3 − xσ

2 y2 − ky1 +
xσ
2 (x1y1)− xσ

3 = 0.
• The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are collinear if and only

if either x1 = y1 and l − k = yσ2 y3 + xσ
3y2 − xσ

2y3 − xσ
3x2 or x1 6= y1 and

l − k = yσ1 y4 + yσ2 y3 + xσ
3y2 + xσ

4y1 − xσ
1y4 − xσ

2y3 − xσ
4x1 − xσ

3x2 − [y1 −
x1, y2 − x2, y3 − x3] · (y1 − x1)

−σ.

The above-defined points and lines define a point-line geometry which we
will denote by PT . By Corollary 4.6, PT is a so-called partial linear space.
Our next goal will be to show that PT is a polar space.

Proposition 4.8. For every point p of PT , there exists a point p′ of PT which

is not collinear with p.
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Proof. Let (i, i′) ∈ {(0, 5), (1, 4), (2, 3)}. Then, by Corollary 4.7, no point of
Type i is collinear with a point of Type i′. �

In the following five propositions, we list a number of automorphisms of the
point-line geometry PT . The proof that the stated permutations of Ω actually
define automorphisms is straightforward and involves no special difficulties. We
will therefore omit the proofs. Notice that each of the listed automorphism
preserves the types of the points and lines. All automorphisms we list are
so-called root-elations, in particular unipotent elements in the corresponding
algebraic group or group of mixed type. The set of all automorphisms defined
in each proposition is a root group. Together, the five groups generate the
unipotent radical of (∞).

Proposition 4.9. For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1 + η, x2, x3, x4; k),

(x1, x2, x3; k) 7→ (x1, x2, x3 − ησk + (ησxσ
1 )x2; k),

(x1, x2; k) 7→ (x1, x2 − ησx1; k),

(x1, x2) 7→ (x1, x2 − ησx1),

(x1) 7→ (x1 − ησ),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.10. For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2 + η, x3, x4; k),

(x1, x2, x3; k) 7→ (x1, x2, x3 − ησx2; k),

(x1, x2; k) 7→ (x1, x2 − kησ; k),

(x1, x2) 7→ (x1, x2 − ησ),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.11. For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3 + η, x4; k + ησx2 + xσ
2η),

(x1, x2, x3; k) 7→ (x1, x2, x3 + ησx1; k),

(x1, x2; k) 7→ (x1, x2 + ησ; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .
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Proposition 4.12. For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3, x4 + η; k + ησx1 + xσ
1η),

(x1, x2, x3; k) 7→ (x1, x2, x3 + ησ; k),

(x1, x2; k) 7→ (x1, x2; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.13. For every k∗ ∈ K, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3, x4; k + k∗),

(x1, x2, x3; k) 7→ (x1, x2, x3; k),

(x1, x2; k) 7→ (x1, x2; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

We are now ready to prove that PT is a polar space.

Proposition 4.14. For every point p and every line L, the point p is collinear

with one or all points of L.

Proof. There are 6 possible types for the point p and 12 possible types for the
line L. This leads to 72 cases which we need to consider. Corollary 4.7 can
be used to deal with each of these cases. Observe also that if p is a point of
Type 5, then by Propositions 4.9, 4.10, 4.11, 4.12 and 4.13, we may assume
that p = (0, 0, 0, 0; 0). This observation can simplify the verification in some
cases.

The verification of the proposition is straightforward (and often immediate)
in many of the 72 cases. In fact, there are only four cases where some difficulty
seems to occur. Before we discuss these four cases in detail, we treat a typical
example among the 68 other cases.

Consider the point (x1, x2, x3; k1) of Type 4 and the line L = L8(x, y, u, v,
w, k) of Type H. Here, x1, x2, x3, x, y, u, v, w ∈ O and k, k1 ∈ K such that
u = −xσ. The line L8(x, y, u, v, w, k) contains the points (x, y) and (u, λ, w +
y(λ− v); k), λ ∈ O. We have

(x1, x2, x3; k1) ∼ (x, y) ⇔ x+ xσ
1 = 0,

(x1, x2, x3; k1) ∼ (u, λ, w + y(λ− v); k) ⇔ k − k1 = uσλ+ xσ
2u− xσ

1λ− xσ
2x1

⇔ (x+ xσ
1 )λ = xσ

2u− xσ
2x1 − k + k1.

Münster Journal of Mathematics Vol. 7 (2014), 557–588



Non-embeddable polar spaces 577

If x+xσ
1 6= 0, then (x1, x2, x3; k1) is collinear with a unique point of L, namely

the point (u, λ, w + y(λ − v); k) where λ = (x + xσ
1 )

−1(xσ
2u − xσ

2x1 − k + k1).
If x+ xσ

1 = 0 = xσ
2u− xσ

2x1 − k + k1, then (x1, x2, x3; k1) is collinear with all
points of L. Finally, if x+ xσ

1 = 0 6= xσ
2u− xσ

2x1 − k + k1, then (x1, x2, x3; k1)
is collinear with a unique point of L, namely the point (x, y).

We now deal with the four cases where some difficulty is involved. With
“some difficulty” we mean that after writing down the conditions for collinear-
ity as given in Corollary 4.7, we still need to manipulate the obtained expres-
sions before we can make the necessary conclusions.

(i) Consider the point (x1, x2, x3; k) of Type 4 and the line L = L12(x, y, z,
u, v, w, r, k1, k2) of Type L. Here, x1, x2, x3, x, y, z, u, v, w, r ∈ O and k, k1, k2 ∈
K such that r = zσ−yσ(xu−v)+k1u−xσw. The line L12(x, y, z, u, v, w, r, k1,
k2) contains the points (x, y, z; k1) and p(λ) := (λ, v+x(λ−u), w+y(λ−u), r+
k1(λ−u)−xσ(y(λ−u)); k2+(rσ+wσx)(λ−u)+(λ−u)σ(r+xσw)+k1(λ−u)σ+1),
λ ∈ O. The points (x1, x2, x3; k) and (x, y, z; k1) are collinear if and only if

k1 − k = η := xσy + xσ
2x− xσ

1y − xσ
2x1.

The points (x1, x2, x3; k) and p(λ) are collinear if and only if r + k1(λ − u)−
xσ(y(λ− u)) + xσ

1 (w+ y(λ− u))− xσ
2 (v + x(λ− u))− kλ+ xσ

2 (x1λ)− xσ
3 = 0,

i.e. if and only if η′ := r− k1u+ xσ(yu) + xσ
1w− xσ

1 (yu)− xσ
2v + xσ

2 (xu)− xσ
3

is equal to

xσ(yλ)− xσ
1 (yλ) + xσ

2 (xλ) − xσ
2 (x1λ)− k1λ+ kλ.

If x = x1, then η = 0. In that case, the points (x1, x2, x3; k) and (x, y, z; k1)
are collinear if and only if k1 = k. Also, the points (x1, x2, x3; k) and p(λ) are
collinear if and only if (k − k1)λ = η′. It is now easy to see that (x1, x2, x3; k)
is collinear with one of all points of L.

In the sequel, we will suppose that x 6= x1. We then have that xσ(yλ) −
xσ
1 (yλ) + xσ

2 (xλ) − xσ
2 (x1λ) is equal to

(x − x1)
σ(yλ) + xσ

2 ((x− x1)λ)

= ((x − x1)
σy + xσ

2 (x− x1)) · λ− [(x− x1)
σ, y, λ]− [xσ

2 , x− x1, λ]

= ηλ+ [x− x1, y, λ]− [x− x1, x2, λ]

= ηλ+ [x− x1, y − x2, λ]

= ηλ+ [x− x1, (x− x1)
σ(y − x2), λ] · (x− x1)

−σ

= ηλ+
(
[x− x1, η, λ]− [x− x1, x

σ
2 (x− x1) + (x − x1)

σx2, λ]
)
· (x − x1)

−σ

= ηλ+ [x− x1, η, λ] · (x − x1)
−σ

= ηλ− [(x − x1)
σ, η, λ] · (x− x1)

−σ

= ηλ− [(x − x1)
σ, (x− x1)

−ση, λ]

= (x− x1)
σ(((x − x1)

−ση)λ).

So, the points (x1, x2, x3; k) and p(λ) are collinear if and only if

(x− x1)
σ(((x − x1)

−σ(η − k1 + k))λ) = η′.
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If η 6= k1 − k, then there is a unique solution for λ and hence the point
(x1, x2, x3; k) is collinear with a unique point of L. If η = k1 − k and η′ = 0,
then (x1, x2, x3; k) is collinear with all points of L. Finally, if η = k1 − k and
η′ 6= 0, then (x, y, z; k1) is the unique point of L collinear with (x1, x2, x3; k).

(ii) Consider the point (0, 0, 0, 0; 0) of Type 5 and the line L = L9(x, y, z,
u, v, w, k) of Type I. Here, x, y, z, u, v, w ∈ O and k ∈ K such that y = −uσ −
zσx. The line L9(x, y, z, u, v, w, k) contains the points (x, y) and (z, u, λ, w +
x(λ − v); k), λ ∈ O.

The points (0, 0, 0, 0; 0) and (x, y) are collinear if and only if y = 0. The
points (0, 0, 0, 0; 0) and (z, u, λ, w+x(λ−v); k) are collinear if and only if either
z = 0 and k = uσλ or z 6= 0 and k = zσ(w + x(λ − v)) + uσλ− [z, u, λ] · z−σ.

If z = 0, then y = −uσ and in that case it is easily seen that (0, 0, 0, 0; 0)
is collinear with one or all points of L. So, we may suppose that z 6= 0. The
condition k = zσ(w+ x(λ− v)) + uσλ− [z, u, λ] · z−σ can then be rewritten as

k = zσw − zσ(xv) + zσ(xλ) + uσλ− [zσ, uσ, λ] · z−σ

k = zσw − zσ(xv) + zσ(xλ) + uσλ− [zσ, z−σuσ, λ]

k = zσw − zσ(xv) + zσ((x+ z−σuσ)λ)

k = zσw − zσ(xv) − zσ((z−σy)λ).

So, depending on which of the values y and k − zσw + zσ(xv) are equal to 0,
the point (0, 0, 0, 0; 0) is collinear with one or all points of L.

(iii) Consider the point (0, 0, 0, 0; 0) of Type 5 and the line L = L11(x, y, z,
u, v, w, k1, k2) of Type K. Here, x, y, z, u, v, w ∈ O and k1, k2 ∈ K such that v =
xσz+yσ+k1u. The line L11(x, y, z, u, v, w, k1, k2) contains the points (x, y; k1)
and p(λ) := (z, λ, v+k1(λ−u), w+x(λ−u); k2+vσ(λ−u)+(λ−u)σv+k1(λ−
u)σ+1). The point (z, u, v, w; k2) on L can be chosen in such a way that u = 0.
Then v = xσz+yσ and p(λ) = (z, λ, v+k1λ,w+xλ; k2+vσλ+λσv+k1λ

σ+1).
The points (0, 0, 0, 0; 0) and (x, y; k1) are collinear if and only if y = 0.

The points (0, 0, 0, 0; 0) and p(λ) are collinear if and only if either z = 0 and
k2+vσλ+λσv+k1λ

σ+1 = λσ(v+k1λ) or z 6= 0 and k2+vσλ+λσv+k1λ
σ+1 =

zσ(w + xλ) + λσ(v + k1λ)− [z, λ, v + k1λ] · z
−σ.

Suppose z = 0. The condition k2 + vσλ+λσv+ k1λ
σ+1 = λσ(v+ k1λ) then

becomes k2 + vσλ = k2 + yλ = 0. So, depending on which of the values y and
k2 are equal to 0, the point (0, 0, 0, 0; 0) is collinear with one or all points of L.

Suppose z 6= 0. The condition k2 + vσλ + λσv + k1λ
σ+1 = zσ(w + xλ) +

λσ(v + k1λ)− [z, λ, v + k1λ] · z
−σ then becomes

k2 + vσλ = zσw + zσ(xλ) − [z, λ, v] · z−σ

k2 + vσλ = zσw + zσ(xλ) + [zσ, vσ, λ] · z−σ

k2 + vσλ = zσw + zσ(xλ) + [zσ, z−σvσ, λ]

k2 + vσλ = zσw + zσ(xλ) + vσλ− zσ((z−σvσ)λ)

k2 − zσw = zσ((x− z−σvσ)λ)
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k2 − zσw = −zσ((z−σy)λ).

So, depending on which of the values k2 − zσw and y are equal to 0, the point
(0, 0, 0, 0; 0) is collinear with one or all points of L.

(iv) Suppose p is a point of Type 5 and L = L12(x, y, z, u, v, w, r, k1, k2)
is a line of Type L. Here, x, y, z, u, v, w, r ∈ O and k1, k2 ∈ K such that r =
zσ−yσ(xu−v)+k1u−xσw. We can choose the point (u, v, w, r; k2) of L in such
a way that u is equal to the first coordinate of p. By Propositions 4.9, 4.10, 4.11,
4.12 and 4.13, we may suppose that p = (0, 0, x1, x2; 0) and (u, v, w, r; k2) =
(0, v, 0, 0; k2). We then have zσ + yσv = 0. The line L contains the points
(x, y, z; k1) and p(λ) := (λ, v + xλ, yλ, k1λ− xσ(yλ); k2 + k1λ

σ+1), λ ∈ O.
The point p = (0, 0, x1, x2; 0) is collinear with (x, y, z; k1) if and only if

x2 = zσ − xσx1.

The point (0, 0, x1, x2; 0) is collinear with the point p(0) = (0, v, 0, 0; k2) if
and only if

xσ
1 v = k2.

Suppose λ 6= 0. Then the point (0, 0, x1, x2; 0) is collinear with the point
p(λ) if and only if

[(v + xλ)σ(yλ) + λσ(k1λ− xσ(yλ)) + xσ
1 (v + xλ) + xσ

2λ

− [λ, v + xλ, yλ− x1] · λ
−σ = k2 + k1λ

σ+1.

This simplifies to

vσ(yλ) + (λσxσ)(yλ)− λσ(xσ(yλ)) + xσ
1v + xσ

1 (xλ) + xσ
2λ

− [λ, v + xλ, yλ− x1] · λ
−σ = k2.

This can be rewritten as

(vσy)λ+ (xσ
1x)λ+ xσ

2λ− [vσ, y, λ] + [λσ, xσ, yλ]− [xσ
1 , x, λ]

− [λ, v + xλ, yλ − x1] · λ
−σ = k2 − xσ

1v.

Now,

[λ, v + xλ, yλ − x1] = [λ, v, yλ] + [λ, xλ, yλ] − [λ, v, x1]− [λ, xλ, x1]

with

[λ, v, yλ] · λ−σ = −[λ, v, λσyσ] · λ−σ = −[λ, v, yσ] = −[vσ, y, λ],

[λ, xλ, yλ] · λ−σ = −[λ, λσxσ, yλ] · λ−σ = −[λ, xσ, yλ] = [λσ, xσ, yλ],

[λ, xλ, x1] · λ
−σ = −[λ, λσxσ, x1] · λ

−σ = −[λ, xσ, x1] = [xσ
1 , x, λ].

So, the point (0, 0, x1, x2; 0) is collinear with the point p(λ), λ 6= 0, if and only
if

(xσ
2 − z + xσ

1x)λ = k2 − xσ
1v − [λ, v, x1] · λ

−σ.
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• Suppose x1 = 0. Then the latter condition becomes (xσ
2 − z)λ = k2. So,

depending on which of the values xσ
2 − z and y are equal to 0, the point

(0, 0, x1, x2; 0) = (0, 0, 0, x2; 0) is collinear with one or all points of L.

• Suppose x1 6= 0 and put α := k2 − xσ
1 v. Then the above condition becomes

(xσ
2 − z + xσ

1x)λ = α− [λ, x−σ
1 (k2 − α), x1] · λ

−σ

(xσ
2 − z + xσ

1x)λ = α−
(
[λ, k2 − α, x1] · x

−σ
1

)
· λ−σ

(xσ
2 − z + xσ

1x)λ = α+
(
[λ, α, x1] · x

−σ
1

)
· λ−σ

(xσ
2 − z + xσ

1x)λ = α−
(
[α, λσ, xσ

1 ] · x
−σ
1

)
· λ−σ

(xσ
2 − z + xσ

1x)λ = α− α+ ((α(λσxσ
1 ))x

−σ
1 )λ−σ

(xσ
2 − z + xσ

1x)λ = ((α(λ−1xσ
1 ))x

−σ
1 )λ

xσ
2 − z + xσ

1x = (α(λ−1xσ
1 ))x

−σ
1 .

If xσ
2 − z + xσ

1x = 0 = α, then (0, 0, x1x2; 0) is collinear with all points of L.
If xσ

2 − z + xσ
1x = 0 6= α, then (x, y, z; k1) is the unique point of L which is

collinear with (0, 0, x1, x2; 0). If x
σ
2 − z+ xσ

1x 6= 0 = α, then p(0) is the unique
point of L collinear with (0, 0, x1, x2; 0). If x

σ
2 − z + xσ

1x 6= 0 6= α, then p(λ) is
the unique point of L collinear with (0, 0, x1, x2; 0), where λ ∈ O \ {0} is the
unique solution of the equation xσ

2 − z + xσ
1x = (α(λ−1xσ

1 ))x
−σ
1 . �

4.3. The explicit description of the planes. We define eight families of
subsets of Ω which we call planes.

(I) We denote by [∞] the set consisting of the points

p1(a, b) := (a, b),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [∞] the plane of Type I.

(II) For every k ∈ K, we denote by [k] the set consisting of the points

p1(a, b) := (a, b; k),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [k] a plane of Type II.

(III) For every x ∈ O and every k ∈ K, we denote by [x; k] the set consisting
of the points

p1(a, b) := (x, a, b; k),

p2(s) := (−xσ, s),

p∗3 := (∞),

where a, b, s ∈ O. We call [x; k] a plane of Type III.
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(IV) For every x ∈ O and all k, l ∈ K, we denote by [x; k, l] the set consisting
of the points

p1(a, b) := (a, x+ la, b; k + xσa+ aσx+ laσ+1),

p2(s) := (xσ, s; l),

p∗3 := (∞),

where a, b, s ∈ O. We call [x; k, l] a plane of Type IV.

(V) For all x1, x2 ∈ O and every k ∈ K, we denote by [x1, x2; k] the set
consisting of the points

p1(a, b) := (−xσ
2 ,−xσ

1 , a, b; k),

p2(s) := (s, x1 + x2s),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k] a plane of Type V.

(VI) For all x1, x2 ∈ O and all k, l ∈ K, we denote by [x1, x2; k, l] the set
consisting of the points

p1(a, b) := (−xσ
2 , a, x

σ
1 + ka, b; l+ x1a+ aσxσ

1 + kaσ+1),

p2(s) := (s, x1 + x2s; k),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k, l] a plane of Type VI.

(VII) For all x1, x2, x3 ∈ O and all k, l ∈ K, we denote by [x1, x2, x3; k, l] the
set consisting of the points

p1(a, b) := (a,−xσ
3 + x1a, b, x

σ
2 + ka− xσ

1 b; l+ x2a+ aσxσ
2 + kaσ+1),

p2(s) := (x1, s, x2 + x3s; k),

p∗3 := (−xσ
1 , x3),

where a, b, s ∈ O. We call [x1, x2, x3; k, l] a plane of Type VII.

(VIII) For all x1, x2, x3 ∈ O and all k, l,m ∈ K, we denote by [x1, x2, x3; k, l,
m] the set consisting of the points

p1(a, b) := (a, b, x3
σ + lb+ x1a, x2

σ + ka+ xσ
1 b;

m+ x2a+ aσxσ
2 + x3b + bσx3

σ + kaσ+1 + lbσ+1

+ (aσxσ
1 )b+ bσ(x1a)),

p2(s) := (s, x1 + ls, x2 + x3s; k + xσ
1 s+ sσx1 + lsσ+1),

p∗3 := (xσ
1 , x3; l),

where a, b, s ∈ O. We call [x1, x2, x3; k, l,m] a plane of Type VIII.
Recall that Figure 1 pictures the incidences between the different types of

points, lines ad planes.

Proposition 4.15. The following holds for a plane α.
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(1) If p and p′ are two distinct points contained in α, then p and p′ are collinear
and the unique line through them is contained in α.

(2) The points and lines contained in α define a point-line geometry α̃ which

is isomorphic to the Moufang projective plane PG(2,O).

Proof. We give a scheme that can be used to prove the proposition. After that
we will apply it to the most difficult case, namely the case where α is a plane
of Type VIII. The verification of the other cases is straightforward. In fact, in
the case that α is a plane of Type VIII, we need to rely on some properties
(of associators) mentioned in Propositions 4.2 and 4.3. This is not the case for
the other seven cases.

(1) Consider a plane (depending on some parameters) corresponding to one of
the eight types considered above.

(2) Consider the points p∗3 and p2(s) of that plane, where s is some arbitrary
element of O. Corollary 4.7 can be used to prove that these points are
collinear and Proposition 4.5 provides the unique value of X ∈ {A,B, . . . ,
L} such that p∗3 and p2(s) are X-collinear. An explicit description of the
unique line of Type X containing p∗3 and p2(s) easily follows from the
information provided when we defined the twelve types of lines. This
unique line of Type X is equal to {p∗3} ∪ {p2(λ) | λ ∈ O} and hence is
contained in α.

(3) Consider the points p∗3 and p1(a, b) where a and b are arbitrary elements
of O. With a similar method as in (2), one can verify that these points
are X-collinear for a unique X ∈ {A,B, . . . ,L}. Again, the unique line
of Type X through p∗3 and p1(a, b) can easily be determined. This line is
equal to {p∗3} ∪ {p1(a, λ) | λ ∈ O} and hence is completely contained in α.

(4) Consider the points p2(s) and p1(a, b), where a, b, s are arbitrary elements
of O. With a similar method as explained in (2), one can verify that these
points are X-collinear for a unique X ∈ {A,B, . . . ,L}. Again, the unique
line of Type X containing p2(s) and p1(a, b) can easily be determined.
This line is equal to {p2(s)} ∪ {p1(λ, b + s(λ − a)) | λ ∈ O} and hence is
completely contained in α.

(5) Consider the points p2(s) and p2(s
′) where s and s′ are two distinct ele-

ments of O. By (2), these points are contained in the line {p∗3} ∪ {p2(λ) |
λ ∈ O} which is completely contained in α.

(6) Consider the points p1(a, b) and p1(a, b
′) where a, b, b′ ∈ O with b 6= b′. By

(3), these points are contained in the unique line through the points p∗3
and p1(a, b). Hence, the points p1(a, b) and p1(a, b

′) are collinear and the
unique line through them is contained in α.

(7) Consider the points p1(a, b) and p1(a
′, b′) where a, b, a′, b′ ∈ O with a 6= a′.

By (4), these points are contained in the unique line through the points
p2((b

′ − b)(a′ − a)−1) and p1(a, b). Hence, the points p1(a, b) and p1(a
′, b′)

are collinear and the unique line through them is contained in α.
(8) By (2), (3), . . ., (7) above, we know that the lines contained in α are pre-

cisely the lines described in (2), (3) and (4) above. From these descriptions,
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it immediately follows that the map p1(a, b) 7→ (a, b), p2(s) 7→ (s), p∗3 7→
(∞) defines an isomorphism between α̃ and the projective plane PG(2,O)
which is coordinatized by the alternative division ring O as explained in
Section 2.

We will now apply the above scheme to the case where α is the plane [x1, x2, x3;
k, l,m] of Type VIII (x1, x2, x3 ∈ O and k, l,m ∈ K). We need to verify the
claims mentioned in the paragraphs (2), (3) and (4).

(i) Consider the points p∗3 = (xσ
1 , x3; l) and p2(s) = (s, x1 + ls, x2 + x3s; k+

xσ
1 s + sσx1 + lsσ+1). These points are J-collinear by Proposition 4.5. The

unique line through them contains the points p∗3 = (xσ
1 , x3; l) and

p(λ) := (λ, x1 + ls+ l(λ− s), x2 + x3s+ x3(λ− s);

k + xσ
1 s+ sσx1 + lsσ+1 + xσ

1 (λ− s)

+ (λ− s)σx1 + l(λσ+1 − sσ+1))

= (λ, x1 + lλ, x2 + x3λ, k + xσ
1λ+ λσx1 + lλσ+1)

= p2(λ)

for every λ ∈ O.

(ii) Consider the points p∗3 = (xσ
1 , x3; l) and

p1(a, b) = (a, b, xσ
3 + lb+ x1a, x

σ
2 + ka+ xσ

1 b;

m+ x2a+ aσxσ
2 + x3b+ bσxσ

3 + kaσ+1

+ lbσ+1 + (aσxσ
1 )b + bσ(x1a)).

These points are K-collinear by Proposition 4.5. The unique line through
them contains the points p∗3 = (xσ

1 , x3; l) and p′(λ), λ ∈ O, where p′(λ) is the
following point:

(a, λ, xσ
3 + lb+ x1a+ l(λ− b), xσ

2 + ka+ xσ
1 b+ xσ

1 (λ − b);

m+ x2a+ aσxσ
2 + x3b+ bσxσ

3 + kaσ+1 + lbσ+1

+ (aσxσ
1 )b+ bσ(x1a) + (x3 + aσxσ

1 )(λ − b)

+ (λ− b)σ(xσ
3 + x1a) + l(λσ+1 − bσ+1)).

We have

p′(λ) = (a, λ, xσ
3 + lλ+ x1a, x

σ
2 + ka+ xσ

1λ;

m+ x2a+ aσxσ
2 + x3λ+ λσxσ

3 + kaσ+1

+ lλσ+1 + (aσxσ
1 )λ+ λσ(x1a))

= p1(a, λ).

(iii) Consider the points p2(s) = (s, x1+ ls, x2+x3s; k+xσ
1 s+sσx1+ lsσ+1)

and p1(a, b) = (a, b, xσ
3 + lb + x1a, x

σ
2 + ka + xσ

1 b;m + x2a + aσxσ
2 + x3b +

bσxσ
3 + kaσ+1+ lbσ+1+(aσxσ

1 )b+ bσ(x1a)). Since x
σ
2 + ka+xσ

1b−xσ
2 − sσxσ

3 +
(xσ

1 + lsσ)(sa− b)− (k+ xσ
1 s+ sσx1 + lsσ+1)a+ sσ(xσ

3 + lb+ x1a) = xσ
1 (sa)−

Münster Journal of Mathematics Vol. 7 (2014), 557–588



584 Bart De Bruyn and Hendrik Van Maldeghem

(xσ
1 s)a− (sσx1)a+ sσ(x1a) = −[xσ

1 , s, a]− [sσ, x1, a] = [x1, s, a]+ [s, x1, a] = 0,
these points are L-collinear by Proposition 4.5. The unique line through them
contains the points p2(s) = (s, x1 + ls, x2 + x3s; k + xσ

1 s+ sσx1 + lsσ+1) and

p′′(λ) = (f1(λ), f2(λ), f3(λ), f4(λ); f5(λ)), λ ∈ O,

where

f1(λ) = λ,

f2(λ) = b+ s(λ− a),

f3(λ) = xσ
3 + lb+ x1a+ (x1 + ls)(λ− a)

= xσ
3 + l(b+ s(λ− a)) + x1λ,

f4(λ) = xσ
2 + ka+ xσ

1 b+ (k + xσ
1 s+ sσx1 + lsσ+1)(λ − a)

− sσ((x1 + ls)(λ− a))

= xσ
2 + kλ+ xσ

1 b+ (xσ
1 s+ sσx1)(λ− a)− sσ(x1(λ− a))

= xσ
2 + kλ+ xσ

1 b+ xσ
1 (s(λ− a)) + [xσ

1 , s, λ− a] + [sσ, x1, λ− a]

= xσ
2 + kλ+ xσ

1 (b+ s(λ− a))− [x1, s, λ− a]− [s, x1, λ− a]

= xσ
2 + kλ+ xσ

1 (b+ s(λ− a)),

f5(λ) = m+ x2a+ aσxσ
2 + x3b+ bσxσ

3

+ kaσ+1 + lbσ+1 + (aσxσ
1 )b + bσ(x1a)

+ (x2 + kaσ + bσx1 + x3s+ lbσs+ (aσxσ
1 )s)(λ − a)

+ (λ− a)σ(xσ
2 + ka+ xσ

1 b+ sσxσ
3 + lsσb+ sσ(x1a))

+ (k + xσ
1 s+ sσx1 + lsσ+1)(λ − a)σ+1.

In order to prove that p′′(λ) = p1(λ, b+s(λ−a)), it suffices to prove that f5(λ)
is equal to

m+ x2λ+ λσxσ
2 + x3(b+ s(λ− a)) + (bσ + (λ− a)σsσ)xσ

3 + kλσ+1

+ l(b+ s(λ− a))σ+1 + (λσxσ
1 )(b + s(λ− a)) + (bσ + (λ− a)σsσ)(x1λ),

i.e., equal to

m+x2a+x2(λ−a)+(λ−a)σxσ
2 +aσxσ

2 +x3(b+s(λ−a))+(bσ+(λ−a)σsσ)xσ
3

+ k(λ− a)σ+1 + kaσ+1 + kaσ(λ− a) + k(λ− a)σa+ lbσ+1

+ lbσ(s(λ − a)) + l((s(λ− a))σb) + l(λ− a)σ+1sσ+1

+ ((λ− a)σxσ
1 )(b + s(λ− a)) + (aσxσ

1 )(b + s(λ− a))

+ (bσ + (λ− a)σsσ)(x1(λ− a)) + (bσ + (λ − a)σsσ)(x1a).

If we subtract the latter expression from f5(λ) and cancel the equal terms, we
see that we need to prove that the following expression is equal to 0:

[bσ, x1, λ− a] + [x3, s, λ− a] + l · [bσ, s, λ− a] + [aσxσ
1 , s, λ− a]
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− [(λ − a)σ, xσ
1 , b]− [(λ− a)σ, sσ, xσ

3 ]− l · [(λ − a)σ, sσ, b]

− [(λ − a)σ, sσ, x1a] + (xσ
1 s+ sσx1)(λ − a)σ+1

− ((λ − a)σxσ
1 )(s(λ− a))− ((λ − a)σsσ)(x1(λ− a)).

Since

[bσ, x1, λ− a] = −[b, xσ
1 , (λ− a)σ] = [(λ− a)σ, xσ

1 , b],

[x3, s, λ− a] = −[xσ
3 , s

σ, (λ− a)σ] = [(λ− a)σ, sσ, xσ
3 ],

[bσ, s, λ− a] = −[b, sσ, (λ− a)σ] = [(λ − a)σ, sσ, b],

[aσxσ
1 , s, λ− a] = −[x1a, s

σ, (λ− a)σ] = [(λ − a)σ, sσ, x1a],

we need to prove that

((λ − a)σxσ
1 )(s(λ− a)) + ((λ − a)σsσ)(x1(λ − a)) = (xσ

1 s+ sσx1)(λ− a)σ+1.

Now,

((λ − a)σxσ
1 )(s(λ− a)) = (((λ− a)σxσ

1 )s)(λ − a)− [(λ− a)σxσ
1 , s, λ− a]

= ((λ− a)σ(xσ
1 s))(λ− a) + [(λ− a)σ, xσ

1 , s] · (λ− a)

− [xσ
1 , s, λ− a] · (λ− a)σ.

In a similar way, one proves that ((λ − a)σsσ)(x1(λ − a)) is equal to

((λ− a)σ(sσx1))(λ− a) + [(λ− a)σ, sσ, x1] · (λ− a)− [sσ, x1, λ− a] · (λ− a)σ.

Since

[(λ− a)σ, xσ
1 , s] = −[(λ− a)σ, x1, s] = [(λ − a)σ, s, x1] = −[(λ− a)σ, sσ, x1],

[xσ
1 , s, λ− a] = −[x1, s, λ− a] = [s, x1, λ− a] = −[sσ, x1, λ− a],

xσ
1 s+ sσx1 ∈ K,

we have

((λ − a)σxσ
1 )(s(λ− a)) + ((λ − a)σsσ)(x1(λ− a))

= ((λ− a)σ(xσ
1 s))(λ − a) + ((λ− a)σ(sσx1))(λ− a)

= ((λ− a)σ(xσ
1 s+ sσx1))(λ − a) = (xσ

1 s+ sσx1)(λ− a)σ+1,

and this is precisely what we needed to prove. �

In case O is nonassociative, this proposition implies that PT contains non-
Desarguesian planes and hence is a non-embeddable polar space. At this point,
we have already collected sufficient information to identify the constructed
polar spaces. However, we still want to show that we have all planes. This fact
is implied by the next proposition.

Proposition 4.16. Let p1, p2 and p3 be three mutually collinear points which

are not contained in a line. Then p1, p2 and p3 are contained in a unique

plane.

Münster Journal of Mathematics Vol. 7 (2014), 557–588



586 Bart De Bruyn and Hendrik Van Maldeghem

Proof. Let i1, i2 and i3 be the types of the respective points p1, p2 and p3.
Without loss of generality, we may suppose that i1 ≥ i2 ≥ i3.

(I) We prove that there exist three points p′1, p
′
2 and p′3 such that • p′1, p

′
2

and p′3 are mutually collinear; • the subspaces of PT containing {p′1, p
′
2, p

′
3} are

precisely the subspaces of PT containing {p1, p2, p3}; • the types of the points
p′1, p

′
2 and p′3 are mutually distinct.

(a) Suppose that i1 > i2 > i3. Then there is nothing to prove. Just take
p′1 := p1, p

′
2 := p2 and p′3 := p3.

(b) Suppose that i1 > i2 = i3. Let p′3 be the unique point of smallest
type on the line p2p3 and put p′1 := p1, p

′
2 := p2. Then {p′1, p

′
2, p

′
3} satisfies

the required conditions. Observe that p′1, p
′
2 and p′3 are mutually collinear by

Proposition 4.14.
(c) Suppose i1 = i2 > i3. Let p′′2 be the unique point of smallest type

contained in the line p1p2. Then p1, p
′′
2 and p3 are mutually collinear and the

subspaces of PT containing {p1, p2, p3} are precisely the subspaces of PT con-
taining {p1, p

′′
2 , p3}. Now, by either (a) or (b), there exist 3 mutually collinear

points p′1, p′2 and p′3 whose types are mutually distinct such that the sub-
spaces of PT containing {p′1, p

′
2, p

′
3} are precisely the subspaces of PT contain-

ing {p1, p
′′
2 , p3}, i.e. the subspaces of PT containing {p1, p2, p3}.

(d) Suppose i1 = i2 = i3. Let p′′3 be the unique point of smallest type
contained in the line p2p3. Then p1, p2 and p′′3 are mutually collinear and
the subspaces of PT containing {p1, p2, p

′′
3} are precisely the subspaces of PT

containing {p1, p2, p3}. Now, by (c), there exist three mutually collinear points
p′1, p

′
2 and p′3 whose types are mutually distinct such that the subspaces of PT

containing {p′1, p
′
2, p

′
3} are precisely the subspaces of PT containing {p1, p2, p

′′
3},

i.e. the subspaces of PT containing {p1, p2, p3}.

(II) By (I), we may suppose that i1 > i2 > i3. Since no point of Type
i ∈ {0, 1, 2} is collinear with a point of Type 5 − i, we have (i1, i2, i3) ∈
{(2, 1, 0), (3, 1, 0), (4, 2, 0), (4, 3, 0), (5, 2, 1), (5, 3, 1), (5, 4, 2), (5, 4, 3)}.

If (i1, i2, i3) = (3, 1, 0), then we put Y := II, x̄ = k and A := K.
If (i1, i2, i3) = (4, 2, 0), then we put Y := III, x̄ = (x, k) and A := O × K. If
(i1, i2, i3) = (4, 3, 0), then we put Y := IV , x̄ = (x, k, l) and A := O×K ×K.
If (i1, i2, i3) = (5, 2, 1), then we put Y := V , x̄ = (x1, x2, k) and A :=
O × O × K. If (i1, i2, i3) = (5, 3, 1), then we put Y := V I, x̄ = (x1, x2, k, l)
and A := O × O × K × K. If (i1, i2, i3) = (5, 4, 2), then we put Y := V II,
x̄ = (x1, x2, x3, k, l) and A := O×O×O×K×K. If (i1, i2, i3) = (5, 4, 3), then
we put Y := V III, x̄ = (x1, x2, x3, k, l,m) and A := O×O×O×K×K×K.

If (i1, i2, i3) = (2, 1, 0), then there exists a unique plane containing the points
p1, p2 and p3, namely the plane [∞].

If (i1, i2, i3) 6= (2, 1, 0), then every plane containing p1, p2 and p3 necessarily
has Type Y . Using Corollary 4.7, it is straightforward to verify that there exists
a unique x̄ ∈ A and a unique (a, b, s) ∈ O3 such that p1 = p1(a, b), p2 = p2(s)
and p3 = p∗3, where p1(a, b), p2(s) and p∗3 are the points which we defined when
we gave an explicit description of the plane of Type Y with parameters x̄. This
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shows that there exists a unique plane containing p1, p2 and p3, namely the
plane of Type Y with parameters x̄. �

The following theorem identifies the constructed polar spaces with known
ones.

Theorem 4.17.

(1) If O = K is a field, then PT is isomorphic to the symplectic polar space of

rank 3 defined over the field K.

(2) If O and K are fields such that O is a separable quadratic extension of K,

then PT is isomorphic to the Hermitian polar space of rank 3 associated

with (O,K).
(3) If O is a field of characteristic 2 and O

2 ⊆ K 6= O, then PT is isomorphic

to the polar space of rank 3 of mixed type associated with (O,K).
(4) If O is a quaternion division algebra and K = Z(O), then PT is isomorphic

to the quaternionic polar space of rank 3 associated with O.

(5) If O is a Cayley–Dickson division algebra and K = Z(O), then PT is

isomorphic to the nonclassical polar space of rank 3 associated with the

Cayley–Dickson division algebra O.

Proof. As PT contains planes, its rank r is at least 3. If r ≥ 4, then Proposi-
tion 4.4(1) would imply that each maximal singular subspace contains points
of (at least) four different types. But this is impossible. Indeed, we already
know that if (i, i′) ∈ {(0, 5), (1, 4), (2, 3)}, then no point of Type i is collinear
with a point of Type i′. So, r = 3.

Now, a polar space of rank 3 is completely determined by its point set and
the collinearity relation defined on this point set. So, Claims (1), (2), (3)
and (4) of the theorem are immediate consequences of Proposition 3.1 and
Corollary 4.7. As for Claim (5), this follows from Tits’ classification of polar
spaces [13] and the fact that PT is a polar space of rank 3 all whose planes
are isomorphic to the Moufang plane PG(2,O), where O is a Cayley–Dickson
division algebra. �
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