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Abstract

Background

There are various next-generation sequencing techniques, all of them striving to replace

Sanger sequencing as the gold standard. However, false positive calls of single nucleotide

variants and especially indels are a widely known problem of basically all sequencing

platforms.

Methods

We considered three common next-generation sequencers—Roche 454, Ion Torrent PGM

and Illumina NextSeq—and applied standard as well as optimized variant calling pipelines.

Optimization was achieved by combining information of 23 diverse parameters characteriz-

ing the reported variants and generating individually calibrated generalized linear models.

Models were calibrated using amplicon-based targeted sequencing data (19 genes, 28,775

bp) from seven to 12 myelodysplastic syndrome patients. Evaluation of the optimized pipe-

lines and platforms was performed using sequencing data from three additional myelodys-

plastic syndrome patients.

Results

Using standard analysis methods, true mutations were missed and the obtained results con-

tained many artifacts—no matter which platform was considered. Analysis of the parame-

ters characterizing the true and false positive calls revealed significant platform- and variant

specific differences. Application of optimized variant calling pipelines considerably improved

results. 76% of all false positive single nucleotide variants and 97% of all false positive indels

could be filtered out. Positive predictive values could be increased by factors of 1.07 to 1.27

in case of single nucleotide variant calling and by factors of 3.33 to 53.87 in case of indel call-

ing. Application of the optimized variant calling pipelines leads to comparable results for all

next-generation sequencing platforms analyzed. However, regarding clinical diagnostics it
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needs to be considered that even the optimized results still contained false positive as well

as false negative calls.

Introduction

Personalized medicine is a concept that exhibits great potential for many diseases. An impor-

tant aspect of this concept is the identification of genomic variants like single nucleotide vari-

ants (SNVs) and indels in patient samples that enable optimization of diagnosis, prognosis and

eventually therapy.

A few years ago when Sanger sequencing [1] was still the gold standard for genome

sequencing, turnaround time as well as cost of sequencing was high [2]. However, things have

changed since various next-generation sequencing (NGS) techniques have been launched in

recent years. Sequencing, especially targeted sequencing, can now be performed consuming a

fraction of time and costs [2–4].

However, NGS is not free from flaws. Sequencing errors, leading to false positive calls of

SNVs and particularly indels, are a widespread problem for basically all NGS platforms [5–9].

For establishing the use of NGS data in clinical routine, though, high sensitivity as well as a

low false positive rate are equally required.

It would therefore be useful to investigate every platforms’ possibilities on the basis of stan-

dard as well as individually optimized analysis approaches. Until now, many different filters

optimizing the output of a single sequencing platform have been reported [8–13]. These filters

usually include one or two parameters characterizing the called variants and a set of unchange-

able thresholds. However, these approaches do not account for differences in data generated

by the same sequencing platform due to specific sequencing set up (e.g. target enrichment,

library preparation or laboratory conditions). Furthermore, it often remains unclear why the

presented parameters and thresholds were chosen in a particular way. Although they fit the

analyzed training data set best, it remains to be seen whether this is also true for other data.

In the case study we present, we (1) compare the performance with respect to sensitivity

and positive predictive value (PPV) of three common NGS platforms—Roche 454 Genome

Sequencer FLX [2], Ion Torrent PGM [14] and Illumina NextSeq [15]. We consider both

SNVs and indels on the basis of a standard analysis pipeline using GATK [16] for variant call-

ing. Diagnostic material from 10 to 15 myelodysplastic syndrome (MDS) patients forms the

basis of the analysis. To investigate inter-platform variation, the same nine patients are

sequenced on every platform. To investigate intra-platform variation, five patients are

sequenced a second time on the same platform.

Subsequently, we (2) analyze a set of 23 diverse parameters characterizing the reported vari-

ants with respect to their importance on separating true from false positive calls. An individual

analysis is performed for the three platforms as well as for SNVs and indels. This approach

enables a detailed investigation of the different platforms’ characteristics.

Finally, we (3) develop and apply optimized variant calling approaches. Based on a training

data set, consisting of 12 to 17 datasets per platform, individually calibrated generalized linear

models (GLMs) are estimated. In general, GLMs are a frequently used tool in relation to medi-

cal as well as biological trials (e.g. [17] or [18]). In the context of our case study, the models

provide an advanced filtration strategy for the output generated by GATK, aiming at improv-

ing PPV and retaining sensitivity. A test dataset consisting of three additional, independent

datasets per platform is analyzed for model validation.

GLM-based optimization of NGS data analysis
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Materials and methods

Standard analysis pipeline without GLM

The analysis pipeline was basically the same for all platforms that were evaluated as well as for

the different variants that were called. Fig 1 (steps in continuous frames only) gives an over-

view of the standard analysis pipeline (training- and test data set).

Read alignment was performed using BWA [19]. In case of 454 and Illumina NextSeq

sequencing data the alignment algorithm was invoked using BWA mem. In case of Ion Tor-

rent sequencing data, TMAP [20] (http://github.com/iontorrent/tmap) was used. Variant call-

ing was performed using GATK [16]. SNPeff [21] was used for annotation. Unspecific

filtration of the called variants was performed. Intronic variants, silent variants, variants in the

3’-or 5’-UTR, variants with less than 20x coverage and known polymorphisms according to

dbSNP [22] were excluded.

The remaining calls were categorized as either true or false by two independent experts. A

selection of calls—assumed true and false, as well as SNVs and indels—was confirmed by

Sanger sequencing of the original patient material.

Parameters and their importance

For all variants passing the Unspecific Filtration, a set of parameters (see Table 1, see section S5

Appendix for details) was determined using R [23] (http://www.R-project.org).

Against the background of separating true positive calls from artifacts, the relative variable

importance (RVI) [24] of every parameter was calculated (see script S2 Script). GLMs contain-

ing correlated parameters (e.g. Q and QD) were not considered as this would bias Akaike’s

Information Criterion (AIC) and thus also the RVI. Furthermore, not converging models were

not considered either. However, excluding models from consideration also results in an imbal-

ance of the number of models that contain each variable. This imbalance directly influences

the RVI as well. Therefore, we perform a normalization of the results. The normalized RVI of a

parameter p gets calculated by RVIðpÞ ¼ RVIrawðpÞ � #modelsðpÞ=
Pn

i¼1
#modelsðiÞ with RVIr-

aw(p) being the raw RVI of p, #models(p) being the number of considered models containing p
and

Pn
i¼1

#modelsðiÞ being the total number of considered models.

Fig 1. Overview of the variant calling pipeline (steps marked by dashed frames are only performed in

case of the variant calling pipeline with GLM).

doi:10.1371/journal.pone.0171983.g001

GLM-based optimization of NGS data analysis
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Optimized analysis pipeline with GLM

In addition to the standard analysis pipeline, an optimized pipeline was applied (see Fig 1,

steps in continuous- and dashed frames). This pipeline combines standard variant calling with

the previously determined parameters.

The actual optimization of the variant calling pipeline was performed in the last step. The

determined parameters as well as the information from the validation were used to estimate

GLMs. We selected the model that was best in separating true variants from the false positives

that were called in the datasets. Parameter selection was performed using forward selection

and AIC (see section S7 Appendix and scripts S3 and S4 Scripts). Subsequently, a threshold

was estimated taking into account three conditions: (1) No true positive call is mistaken as

false positive, i.e. sensitivity is maintained. (2) As many false positive calls as possible are iden-

tified as such. (3) A threshold as low as possible, fulfilling conditions (1) and (2), is chosen.

The above described pipeline was used in case of the training dataset. A similar pipeline was

used for the analysis of the test dataset. The only difference was in the Specific Filtration. As the

GLMs and the thresholds had already been estimated on the basis of the training datasets,

these steps were not repeated. Instead, the estimated models and thresholds from the training

dataset were applied.

Table 1. Overview of the parameters investigated for the variant calling pipeline with GLM.

Category Parameter Origin SNVs Indels

Quality and depth Q vcf file (QUAL) x x

DP vcf file (DP) x x

QD vcf file (QD) x x

Coverage Cov_total calculated x x

Cov_ref calculated x x

Cov_vcf vcf file (AD: #ref+#alt) x x

Allele frequency AF_total calculated x x

AF_ref calculated x x

AF_vcf vcf file (AD: #alt/(#ref+#alt)) x x

Strand bias SB calculated x x

SB_vcf vcf file (FS) x x

SOR vcf file (SOR) x x

Variant position VP calculated x x

VP_vcf vcf file (ReadPosRankSum) x x

Base quality BQ calculated x

BQ_vcf vcf file (BaseQRankSum) x x

Mapping quality MQ vcf file (MQ) x x

MQRank vcf file (MQRankSum) x x

Homopolymer length HP calculated x

HP_AT calculated x

HP_CG calculated x

Indel width VARW calculated ([8]) x

DevGT calculated x

doi:10.1371/journal.pone.0171983.t001

GLM-based optimization of NGS data analysis
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Analyzed data

To evaluate the three NGS platforms, sequencing data from diagnostic material of patients

with MDS were investigated. The study was approved by MEC: Medisch Ethische Toetsings-

commissie (METc; Medical Ethical Committee) of the Vrije Universiteit Medisch Centrum

(VUmc; VU University Medical Center Amsterdam), contact person: C.M.M. Licht, PhD,

address: BS7, kamer H-565, PO Box 7057, 1007 MB Amsterdam, The Netherlands (EudraCT

nr.: 2008-002195-10). All participants provided written consent to participate in this study.

The ethics committee approved this consent procedure.

Bone marrow aspirates were taken from patients at diagnosis. The samples were taken by

research nurses. From one aliquot of each bone marrow sample, the mononuclear cells were

selected and DNA was extracted using NucleoSpin DNA isolation kits (Macherey-Nagel, Ger-

many) according to the instructions of the manufacturer. Details on how DNA was prepared

is described in section S1 Appendix.

An overview of the sequenced samples is given in Table 2. Amplicon-based targeted

sequencing of 19 genes (28,775 bp) known to be recurrently mutated in MDS was performed

on each subject and platform (see S1 Table). Sequencing was performed as described in section

S1 Appendix. Sequencing data is available at https://uni-muenster.sciebo.de/index.php/s/

GlTYWTt0Bcyqa8f.

To investigate inter-platform variation, a subset of nine samples (UPN001-UPN009) was

sequenced on every platform (= comparison subset; samples marked with a c in Table 2).

To investigate intra-platform variation, for each platform DNA from five subjects was

amplified and sequenced a second time, using exactly the same primers and conditions (= re-
sequencing subset; samples marked with an r in Table 2).

Training- and test subset

To derive an optimized analysis pipeline, data are randomly divided into two subsets: a train-

ing subset and a test subset. For 454, the training subset consists of samples UPN001-UPN007,

UPN009-UPN013 (1st set) and UPN009-UPN013 (2nd set). The test subset consists of samples

UPN008, UPN019 and UPN020. For Ion Torrent, the training subset consists of samples

UPN001-UPN007 (1st set) and UPN001-UPN005 (2nd set). The test subset consists of samples

UPN008, UPN009 and UPN20. Regarding Illumina the training subset consists of samples

UPN001-UPN007, UPN014-UPN018 (1st set) and UPN014-UPN018 (2nd set) The test subset

consists of samples UPN008, UPN009 and UPN019.

Results

Data quality

Data derived from NGS techniques can show a lot of variation. Differences can be due to the

principle sequencing chemistry and methods of different platforms, each with its distinct error

profile. The expected read length depends on the type of platform and the sequencing mode or

kit that is chosen. Different sets of primers were designed for each sequencing technology to

meet these requirements. There were slight differences in target regions.

An intersecting target region covering 28,775 bp could be defined that was common to the

datasets generated by the three sequencing platforms (see S2 Table). A fair comparison of the

different sequencing platforms is only possible if the intersecting target region is sufficiently

covered by all samples.

GLM-based optimization of NGS data analysis
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Regarding the comparison subset, in all but one case (Ion Torrent, UPN002) the rate of tar-

get bases covered at least once was higher than 95%. 23 out of 27 samples even feature 50x cov-

erage of more than 90% of the targeted bases (see S3–S5 Tables).

The coverage plot in Fig 2 shows the median coverage across the intersecting target region

for all sequencing platforms. The coverage of the targeted bases was very uneven—not only

when comparing different platforms, but also for different genes in the target region. For

example for TET2 a highly uneven coverage profile is observed. 454 data generally featured the

lowest coverage (median reads on target ~x454 ¼ 45; 335), while Illumina NextSeq data featured

the highest coverage (median reads on target ~xIllumina ¼ 3; 879; 811; ~xIonT ¼ 553; 816). How-

ever, the sequencing set up that was chosen and the number of samples analyzed in parallel

favours high coverage for Illumina samples.

S1 Fig shows that there are no bases completely uncovered in all samples, which is why a

general coverage problem in e.g. GC rich regions [25] was not expected to bias the variant call-

ing process. In case of Illumina NextSeq data, all bases in the intersecting target region are cov-

ered by all samples analyzed.

Analysis of the other samples’ coverages showed comparable results (see S3–S5 Tables).

Calling SNVs

Standard analysis pipeline without GLM. For the single nucleotide variants (SNVs), it is

essential to distinguish between true and false positive calls. Categorization, which includes

manual inspection of all 54 calls, was performed by two independent biological and bioinfor-

matical experts. Exemplary true as well as false positive calls were validated using Sanger

Table 2. Overview of the subjects sequenced on 454, Ion Torrent and Illumina NextSeq (comparison set marked with a c, re-sequencing set marked

with an r).

Sample 454 Ion Torrent Illumina

1st set 2nd set 1st set 2nd set 1st set 2nd set

UPN001 xc xc,r xr xc

UPN002 xc xc,r xr xc

UPN003 xc xc,r xr xc

UPN004 xc xc,r xr xc

UPN005 xc xc,r xr xc

UPN006 xc xc xc

UPN007 xc xc xc

UPN008 xc xc xc

UPN009 xc,r xr xc xc

UPN010 xr xr

UPN011 xr xr

UPN012 xr xr

UPN013 xr xr

UPN014 xr xr

UPN015 xr xr

UPN016 xr xr

UPN017 xr xr

UPN018 xr xr

UPN019 x x

UPN020 x x

doi:10.1371/journal.pone.0171983.t002

GLM-based optimization of NGS data analysis
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sequencing (45% of the true positives, 43% of the false positives; see S1 File for details). Table 3

sums up information on sensitivity and the PPV with respect to the comparison subset, the re-

sequencing subset and all data. Sensitivity should be regarded with restriction as data may con-

tain unknown false negative variants. However, as all samples were sequenced two to six times

and analyzed twice using different approaches (see section S8 Appendix), it seems apt to

assume that the vast majority of present mutations was indeed detected.

The SNV calling results—according to the standard analysis pipeline without GLM—indi-

cate that the three sequencing platforms perform almost equally well. The majority of variants

was detected. However, no platform succeeded in calling all variants (sens454 = 0.91, sensIonT =

0.91, sensIllumina = 0.88). A diverse set of variants was missing in case of each platform. Three

out of four mutations missed in the 454 sequencing data are present in the raw variant calling

results, but they are filtered out by GATK due to bad quality and low coverage. One out of four

mutations missed in the Illumina NextSeq is automatically filtered out by GATK. None of the

mutations missed in the Ion Torrent data are present in the raw variant calling results.

In addition to the false negative calls, all platforms report false positive calls. In case of both

454- and Illumina NextSeq sequencing data, 9% of the calls were false positives. 25% of all calls

reported for the Ion Torrent data were false positives, which suggested a slightly better perfor-

mance of 454 and Illumina NextSeq when using a standard analysis pipeline.

Fig 2. Median coverage of the genes in the intersecting target region in the case of 454 (black), Ion Torrent (red) and Illumina (green) considering

the comparison data set.

doi:10.1371/journal.pone.0171983.g002

GLM-based optimization of NGS data analysis
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Samples UPN001 to UPN009 were sequenced on every sequencing platform (comparison

subset) to allow for the investigation of inter-platform variation. Data indicates a slightly better

performance of Ion Torrent when considering sensitivity (sens454 = 0.84, sensIonT = 0.92,

sensIllumina = 0.84). However, with respect to PPV, Ion Torrent performs worst, while Illumina

NextSeq has the best results (PPV454 = 0.79, PPVIonT = 0.67 and PPVIllumina = 0.92).

A detailed analysis of the missed calls points out that the platforms usually differ in the calls

they miss (see S1 File). One SNV is missed by Ion Torrent and Illumina (UPN003:

chr21:36,206,893 G>A), while another SNV is missed by 454 and Illumina (UPN008:

chr4:106,197,302 G>A).

Altogether, analysis of the comparison subset indicates a slight advantage in favor of Illu-

mina NextSeq, when calling SNVs with a standard analysis pipeline.

Five samples were sequenced twice on 454, Ion Torrent and Illumina NextSeq (re-sequenc-

ing subset). Re-sequencing the same samples on the same platform points out the general vari-

ation in sensitivity and PPV. While Ion Torrent data shows the smallest variation with respect

to sensitivity (sensIonT = 0.80 for set1 and set2), it shows the greatest variation with respect to

PPV (set1: PPVIonT = 0.40; set2: PPVIonT = 0.80).

If the variant calling results of both sequencing sets are combined by looking at the overlap-

ping calls, the number of false positive calls is zero for all sequencing platforms. This observa-

tion indicates that the false positive calls resulted from random- and not systematic errors.

Parameters and their importance. For all parameters characterizing SNVs, their relative

variable importance with respect to separating true from false positive calls is determined. The

results are summed up in Table 4.

Differences in the RVI can be observed when comparing parameters as well as platforms.

Regarding 454 data, the base quality parameter reported in the vcf files, BQ_vcf, features the

greatest importance when separating true from false positive calls. It is interesting to observe

that BQ, which is a parameter characterizing base quality calculated by us, has a considerably

Table 3. True- and false positive SNV calls, sensitivity and PPV considering the comparison subset (n = 9), the re-sequencing subset (n = 5) and all

data (454 and Illumina: n = 15, Ion Torrent: n = 10), using the standard analysis pipleine (without GLM). Only those variants are considered that are

covered by at least 20 reads.

Dataset Platform SNVs False Positives Sensitivity PPV

Comparison 454 11 3 0.84 0.79

Ion Torrent 12 6 0.92 0.67

Illumina NextSeq 11 1 0.84 0.92

Re-sequencing 454 Set1 14 1 1.00 0.93

Set2 12 0 0.86 1.00

Overlap 12 0 0.86 1.00

Ion Torrent Set1 4 6 0.80 0.40

Set2 4 1 0.80 0.80

Overlap 4 0 0.80 0.80

Illumina NextSeq Set1 8 2 0.89 0.80

Set2 9 0 1.00 1.00

Overlap 8 0 0.89 1.00

Altogether 454 40 4 0.91 0.91

Ion Torrent 21 7 0.91 0.75

Illumina NextSeq 29 3 0.88 0.91

doi:10.1371/journal.pone.0171983.t003

GLM-based optimization of NGS data analysis
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lower relative variable importance (0.84). Further parameters of great importance are Q, QD
and MQ.

Thoroughly different results are obtained when analyzing Ion Torrent data. Although

BQ_vcf still features a high RVI (0.80), SOR, a parameter characterizing the strand bias, has the

greatest RVI (1.26). However, it seems unlikely that strand bias in general features a great

importance when separating true from false positive SNVs as both, SB and SB_vcf, show low

values of RVI (0.17 and 0.70). Apart from SOR, the parameters Cov_total and Cov_ref are of

great importance according to RVI.

Due to its low number of false positive calls, a majority of models estimated on the basis of

Illumina data, do not converge (for details see S6 Table). Any model containing one of the

parameters QD, AF_total, AF_ref or AF_vcf never converges. Therefore, the relative variable

importance of these parameters is zero. Q, the quality value determined by GATK, features the

greatest relative variable importance by far (4.12). Further parameters of great importance are

SB_vcf, MQ, Cov_total and Cov_ref.
Optimized analysis pipeline with GLM. In addition to the standard analysis pipeline, an

individual, optimized pipeline is investigated for every sequencing platform. The optimized

pipeline, including filtration of the results by the help of a GLM, is derived from the training

subset and validated using the test subset. The results for both subsets, comparing the standard

approach (without GLM) with the optimized approach (with GLM), are summed up in

Table 5.

Combining the information on the SNVs that were called in the training datasets, three

GLMs—one for each platform—were estimated returning a probability p̂i for an SNV being a

true positive. The linear predictors Ẑ i SNV 454, Ẑ i SNV IonT and Ẑ i SNV Illumina leading to the best

Table 4. Normalized relative variable importance for all parameters characterizing SNVs, considering

454, Ion Torrent and Illumina NextSeq sequencing data.

Parameter 454 Ion Torrent Illumina

Q 2.04 0.60 4.12

DP 0.58 0.61 0.29

QD 1.73 0.81 0

Cov_total 1.01 1.00 1.15

Cov_ref 1.01 1.00 1.14

Cov_vcf 0.81 0.55 0.32

AF_total 0.71 0.78 0

AF_ref 0.74 0.78 0

AF_vcf 1.00 0.69 0

SB 0.38 0.17 0.44

SB_vcf 0.85 0.70 2.12

SOR 0.80 1.26 0.56

VP 0.67 0.63 0.41

VP_vcf 0.93 0.83 0.73

BQ 0.84 0.73 0.66

BQ_vcf 2.91 0.80 1.08

MQ 1.07 0.76 1.20

MQRank 0.45 0.84 0.30

doi:10.1371/journal.pone.0171983.t004

GLM-based optimization of NGS data analysis
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results were defined as follows:

Ẑ i SNV 454 ¼ �7:08 þ 0:02 � xi Q þ 6:70 � xi VP vcf ð1Þ

Ẑ i SNV IonT ¼ �4:58 þ 20:62 � xi VP vcf ð2Þ

Ẑ i SNV Illumina ¼ 9:09 þ 0:01 � xi Q � 0:02 � xi Cov total ð3Þ

The previously performed RVI analysis already indicated a different error profile of the

three sequencing platforms compared. This thesis is further supported by the observation that

all models feature a different set of covariates (for detailed information on the covariates see S7

Table). The value of the AIC was comparable in case of all models (454: 10.75; Ion Torrent:

9.09; Illumina NextSeq: 12.01), indicating a similar performance.

Regarding the RVI, it can be observed that the applied forward selection led to the inclusion

of parameters with a high relative variable importance (see bold entries in Table 4). Comparing

the RVIs of the selected parameters, Q (quality) features a considerably greater relative variable

importance compared to VP_vcf (variant position) in case of Ẑ i SNV 454 (2.04 compared to

0.93). Q also features a greater relative variant importance compared to Cov_total (coverage)

in case of Ẑ i SNV Illumina (4.12 compared to 1.15).

S6 Fig shows that the GLMs successfully assigned a high probability to most of the true pos-

itive SNVs, while they assigned a low probability to the majority of the false positive SNVs.

Thresholds (pSNV_454 = 0.28, pSNV_IonT = 0.04 and pSNV_Illumina = 0.15) were chosen to retain

the original sensitivity and to reduce the number of false positive calls to a maximum extent.

The last column in Table 5 shows the change in PPV if filtration by the estimated GLMs is per-

formed. An improvement could be observed for all sequencing platforms. The improvement

was most considerable in case of the Ion Torrent sequencing data. Regarding the calling of

SNVs in the training dataset, the different sequencing platforms now performed equally well

considering sensitivity as well as the number of false positive calls.

To test the performance of the model approach on an independent dataset, the test subset

was analyzed. In case of the 454 sequencing data the application of the optimized analysis pipe-

line improved the results. Sensitivity was not harmed, while the false positive call was success-

fully filtered out. No change could be observed in case of Ion Torrent and Illumina NextSeq.

Data did not contain any false positive calls. The individually calibrated GLMs correctly identi-

fied all true positive SNVs.

On the basis of the test subset, Ion Torrent showed the highest sensitivity, both using a stan-

dard and an optimized analysis pipeline.

Table 5. True- and false positive SNV calls, sensitivity (sens) and PPV considering the training subset (454 and Illumina: n = 12, Ion Torrent: n = 7)

and the test subset (n = 3), comparing the standard analysis pipleine (without GLM) and the optimized analysis pipleine (with GLM). Only those

variants are considered that are covered by at least 20 reads.

Dataset Platform SNVs without GLM SNVs with GLM

SNVs False Positives Sens PPV SNVs False Positives Sens PPV

Training 454 36 3 0.92 0.92 36 1 0.92 0.97

Ion Torrent 15 7 0.88 0.68 15 1 0.88 0.94

Illumina NextSeq 27 3 0.90 0.90 27 1 0.90 0.96

Test 454 4 1 0.80 0.80 4 0 0.80 1.00

Ion Torrent 6 0 1.00 1.00 6 0 1.00 1.00

Illumina NextSeq 2 0 0.67 1.00 2 0 0.67 1.00

doi:10.1371/journal.pone.0171983.t005

GLM-based optimization of NGS data analysis
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Calling indels

Standard analysis pipeline without GLM. Analogous to the analysis of the SNVs, an

analysis of the called indels was performed. All 890 reported indels were categorized and man-

ually inspected by two independent biological and bioinformatical experts as either true or

false positive. Exemplary true as well as false positive calls were validated using Sanger

sequencing (8% of the true positives, 0.005% of the false positives; see S1 File for details).

Table 6 sums up information on sensitivity and the PPV with respect to the comparison subset,

the re-sequencing subset and all data (see supplement for details).

Considering all available data, it became obvious that all platforms again detected the

majority of true positive indels. Ion Torrent even succeeded in detecting all true positives.

However, the higher sensitivity of Ion Torrent was accompanied by an increased number of

false positive calls and thus the lowest PPV (PPVIonT = 0.01). The highest PPV could be

observed in case of Illumina NextSeq (PPVIllumina = 0.26).

An evaluation of inter-platform variation with respect to the platforms’ indel calling perfor-

mance was done using nine samples (UPN001 to UPN009) that were sequenced on every

sequencing platform. In the standard analysis pipeline Ion Torrent data featured greater sensi-

tivity compared to the 454- and Illumina NextSeq data, detecting five out of five indels, instead

of three. One indel is not called in both the 454- and Illumina NextSeq data (UPN007;

chr2:25,463,545 delG). Regarding the number of false positive calls, Illumina NextSeq showed

the best results by far (PPV454 = 0.04, PPVIonT = 0.01 and PPVIllumina = 0.15).

The fact that the comparison subset only contained five true positive indels makes it diffi-

cult to compare the performance. While Ion Torrent performed best with respect to sensitivity,

Illumina NextSeq performed best with respect to PPV. However, the observed low sensitivity

in case of Illumina (PPVIllumina = 0.60) could be a random observation. The 422 false positive

calls that were reported in case of Ion Torrent are on the contrary unlikely being a random

observation. Thus, data does once again indicate a slight advantage in favor of Illumina Next-

Seq, when calling indels with a standard analysis pipeline.

Table 6. True- and false positive indel calls, sensitivity and PPV considering the comparison subset (n = 9), the re-sequencing subset (n = 5) and

all data (454 and Illumina: n = 15, Ion Torrent: n = 10), using the standard analysis pipleine (without GLM). Only those variants are considered that

are covered by at least 20 reads.

Dataset Platform Indels False Positives Sensitivity PPV

Comparison 454 3 77 0.60 0.04

Ion Torrent 5 422 1.00 0.01

Illumina NextSeq 3 17 0.60 0.15

Re-sequencing 454 Set1 0 26 / /

Set2 0 75 / /

Overlap 0 17 / /

Ion Torrent Set1 2 235 1.00 0.01

Set2 2 297 1.00 0.01

Overlap 2 123 1.00 0.02

Illumina NextSeq Set1 4 6 0.67 0.40

Set2 5 11 1.00 0.31

Overlap 4 4 0.67 0.5

Altogether 454 6 186 0.75 0.03

Ion Torrent 8 800 1.00 0.01

Illumina NextSeq 13 37 0.76 0.26

doi:10.1371/journal.pone.0171983.t006

GLM-based optimization of NGS data analysis
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The 454 sequencing data of the re-sequencing subset did not contain any true indels. Thus,

neither sensitivity nor the PPV could be calculated.

Significant intra-platform specific variation was detected when comparing the number of

false positive calls detected in the first and second set (see S1 File for details). In the second 454

set, 2.88 times as many false positive indels were called compared to the first set—although the

same samples were analyzed. In the second Illumina NextSeq set, 1.83 times as many false pos-

itive indels were called compared to the first set. Regarding Ion Torrent data, an increase in

the number of false positive calls of 26% could be observed comparing the first and second set.

Considering only those variants that were called in both re-sequencing sets led to a reduced

number of false positive calls and a slightly decline in the number of true positives in case of

Illumina NextSeq data. However, the number of remaining false positive calls was still rela-

tively high for all sequencing platforms, indicating that a high percentage of sequencing errors

was not due to random-, but to systematic errors of the sequencing technique itself, e.g. arti-

facts in homopolymeric regions.

Parameters and their importance. For all 22 parameters characterizing indels, their rela-

tive variable importance with respect to separating true from false positive calls is determined.

The results are summed up in Table 7.

Similar to the RVI analysis in case of SNVs, differences in the RVI can be observed when

comparing parameters as well as platforms. QD, quality by depth, has the greatest relative vari-

able importance (5.68) considering 454 data. Furthermore, HP and AF_total feature high RVI

Table 7. Normalized relative variable importance for all parameters characterizing indels, considering

454, Ion Torrent and Illumina NextSeq sequencing data.

Parameter 454 Ion Torrent Illumina

Q 0.54 0.74 1.02

DP 0.28 0.46 2.00

QD 5.68 2.06 0.42

Cov_total 0.32 1.02 0.63

Cov_ref 0.35 0.99 0.49

Cov_vcf 0.44 0.61 1.39

AF_total 2.90 0.73 0.95

AF_ref 1.42 0.61 0.58

AF_vcf 0.22 1.70 0.24

SB 0.27 0.00 1.02

SB_vcf 0.12 0.02 0.79

SOR 0.63 4.42 0.58

VP 0.19 1.30 1.74

VP_vcf 0.36 0.49 0.34

BQ_vcf 0.26 0.41 0.44

MQ 0.35 1.65 0.61

MQRank 0.39 0.70 0.76

HP 3.16 2.59 1.24

HP_AT 0.10 0.24 0.76

HP_CG 0.69 0.90 0.74

VARW 0.35 0.81 0.60

DevGT 0.74 0.56 1.87

doi:10.1371/journal.pone.0171983.t007
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values, which indicates a great importance of these variables when separating true from false

positive indels.

Regarding Ion Torrent data, SOR features the greatest RVI (4.42). This observation is

remarkable as this parameter characterizing strand bias already featured the greatest impor-

tance when analyzing SNV calls. However, just like in case of the SNVs, SB and SB_vcf—both

characterizing strand bias as well –, feature no or hardly any variable importance (0 and 0.02).

Apart from SOR, HP, QD, AF_vcf and MQ feature great importance according to RVI.

Analysis of Illumina NextSeq data leads to considerably different results. Different from

454 or Ion Torrent data, the homopolymer length HP features a relatively low RVI (1.24). The

parameter with the greatest importance in separating true from false positive indels is DP—the

depth reported in the vcf file (2.00). Further important parameters are DevGT,VP and

Cov_vcf.
Optimized analysis pipeline with GLM. In addition to the standard analysis pipeline, an

individual, optimized pipeline is investigated for every NGS platform. Analogous to the SNVs,

the optimized pipeline is derived from the training subset and validated using the test subset.

Table 8 sums up the results for both subsets, comparing the standard analysis pipeline (without

GLM) with the optimized analysis pipeline (with GLM).

Using the information on the indels that were called in the training subsets in case of the

three different sequencing platforms, three GLMs could be estimated returning a probability

for an indel being a true positive. The linear predictors Ẑ i Indel 454, Ẑ i Indel IonT and Ẑ i Indel Illumina

leading to the best results were defined as follows:

Ẑ i Indel 454 ¼ 27:06 � 31:02 � xi HP þ 0:58 � xi QD þ 16:69 � xi BQ vcf ð4Þ

Ẑ i Indel IonT ¼ �64:76 � 4:02 � xi SOR � 2:93 � xi HP þ 0:81 � xi MQþ

0:01 � xi Cov total

ð5Þ

Ẑ i Indel Illumina ¼ �12:09 þ 0:11 � xi Cov vcf � 0:01 � xi Q þ 2:51 � xi HP AT ð6Þ

Similar to the GLMs in the case of the SNVs, all models feature a different set of covariates

(for detailed information on the covariates see S9 Table). However, it has to be noticed that the

length of a homopolymer (HP) in which an indel is detected, is part of Ẑ i Indel 454 as well as of

Ẑ i Indel IonT , and features a great relative variable importance (3.16 and 2.59). This observation is

in line with the knowledge that false positive indel calls are often located in homopolymeric

Table 8. True- and false positive indel calls, sensitivity (sens) and PPV considering the training subset (454 and Illumina: n = 12, Ion Torrent: n = 7)

and the test subset (n = 3), comparing the standard analysis pipleine (without GLM) and the optimized analysis pipleine (with GLM). Only those

variants are considered that are covered by at least 20 reads.

Dataset Platform Indels without GLM Indels with GLM

Indels False Positives Sens PPV Indels False Positives Sens PPV

Training 454 3 158 0.60 0.02 3 4 0.60 0.43

Ion Torrent 7 644 1.00 0.01 7 4 1.00 0.64

Illumina NextSeq 12 31 0.80 0.28 12 2 0.80 0.86

Test 454 3 28 1.00 0.10 1 1 0.33 0.50

Ion Torrent 1 156 1.00 0.01 1 3 1.00 0.25

Illumina NextSeq 1 6 0.50 0.14 1 0 0.50 1.00

doi:10.1371/journal.pone.0171983.t008

GLM-based optimization of NGS data analysis
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regions as for 454- and Ion Torrent data and to a far lesser extent to Illumina data. HP_AT,

which is part of the Illumina model, features a considerably smaller RVI (0.76). Furthermore,

it has to be noted that the regression parameter is positive in this case. The presence of an indel

call within a homopolymer of A’s or T’s thus increases the probability of being a true positive.

Comparing the parameters with the highest RVIs to those included in our models, shows,

that a majority of covariates indeed feature a high or even the highest RVI values (see bold

entries in Table 7). The only exception from this observation is BQ_vcf in case of Ẑ i SNV 454.

Comparing the RVIs of the selected parameters, QD (quality by depth) features the greatest

relative variable importance in case of Ẑ i SNV 454. Regarding Ẑ i SNV IonT HP has the greatest RVI

value. In case of Ẑ i SNV Illumina Cov_vcf has the greatest importance according to RVI.

Similar to the GLMs separating true from false positive SNVs, the values of the AIC were

also comparable when considering indels (454: 15.45; Ion Torrent: 21.95; Illumina NextSeq:

17.51), indicating a similar performance of all models.

S7 Fig shows that the models successfully assigned a high probability to the little number of

true positive indels, while they assigned a low probability to the majority of the false positive

indels. Thresholds (pIndel_454 = 0.08, pIndel_IonT = 0.07 and pIndel_Illumina = 0.10) were chosen to

retain the original sensitivity and to maximally reduce the number of false positive indels. The

last column in Table 8 show the change in PPV if the estimated GLMs are applied. For all plat-

forms PPV is considerably improved: PPV454 = 0.43, PPVIonT = 0.64 and PPVIllumina = 0.86.

Considering indel calling in the training subset after applying the estimated GLMs, Ion

Torrent performed equally well compared to 454 and Illumina NextSeq. Ion Torrent data

showed the highest sensitivity and a comparable number of false positive calls regarding the

other platforms.

To test our approach, the independent test subset was considered. Altogether, only one to

three indels were present in the data, which made analysis of sensitivity difficult. Notably, one

indel (UPN019: chr20:31,024,457 insA) was not called using the Illumina NextSeq data. In

contrast, the indel, resp. the indels were called analyzing the Ion Torrent- and 454 data.

Regarding PPV, Illumina NextSeq performed best, while Ion Torrent performed worst—with-

out applying our estimated GLMs.

On the basis of our optimized analysis pipeline (with GLM), Illumina NextSeq and 454 per-

formed best with respect to PPV and Ion Torrent performed worst. Yet, the difference was so

small that it seems likely to be due to random effects. An increase in PPV in case of Ion Torrent

data from 0.01 to 0.25 was observed. Furthermore, our optimized pipeline successfully identi-

fied the true positive indel in case of the Ion Torrent- and Illumina NextSeq data as such,

which is why sensitivity was not harmed. However, only one of the three true positive indels in

the 454 data was identified by our model approach.

For indel calling it seems that our optimized analysis pipeline leads to better results with

respect to PPV in case of Ion Torrent- and Illumina NextSeq data. However, as only one true

positive indel could be analyzed, this observation may be due to random effects.

Discussion

NGS techniques provide an attractive alternative compared to Sanger sequencing with regards

to turnaround time and cost of sequencing. However, false positive calls of SNVs and espe-

cially indels are a known problem, endangering the use of NGS in clinical routine. If any

approach would require confirmation of the many variants called in NGS data with the help of

Sanger sequencing, there remains little advantage of the new technology. Consequently, there

is a necessity for identifying the platform and analysis pipeline, that perform best in calling var-

iants with equally high sensitivity and precision.

GLM-based optimization of NGS data analysis

PLOS ONE | DOI:10.1371/journal.pone.0171983 February 21, 2017 14 / 24



To investigate different NGS platforms, we consider three common sequencers: Roche 454,

Ion Torrent PGM and Illumina NextSeq. To investigate different analysis pipelines, we apply a

standard pipeline using GATK for variant calling and an optimized, individually calibrated

pipeline for every platform and type of variant.

For investigating platform- and variant-specific characteristics, we consider a wide set of

different parameters characterizing both SNVs and indels. This set includes standard parame-

ters determined by GATK as well as additional parameters determined by us (see Table 1). We

assume that true mutations differ from false positive calls with respect to certain characteris-

tics. By automatically selecting and weighting those characteristics that show the greatest effect

in separating true from false positive calls, automatic distinction should be improved.

To optimize variant calling, we consider all parameters and search for those that have the

greatest effect on separating true from false positive calls when using a GLM. As our previously

performed analysis of the parameters indicated, not only SNVs and indels, but also different

NGS technologies are characterized by different flaws. A set of parameters that allow for a per-

fect distinction between true- and false positive calls in all analyzed scenarios cannot be

defined. Therefore, we chose to estimate one GLM per mutation type and per platform. As all

models differ considerably from each other (see Eqs (1)–(6)), this assumption appears to be

correct.

Instead of one threshold per parameter, only one threshold per model has to be defined.

The way a concrete threshold is defined does not only depend on the data, but also on the use

case in which the model approach will be applied. With respect to the cost-benefit ratio, we

consider it as more acceptable to deal with an additional false positive call—that could be fil-

tered by e.g. expert manual inspection –, than to accidentally exclude a true positive mutation.

Standard and optimized SNV calling

Taking the standard SNV calling results into account, the analyzed data of the three platforms

appear to be equally good regarding sensitivity (see Table 3), although no platform succeeds in

calling all SNVs present in the analyzed datasets. With respect to PPV, data indicates a minor

advantage in favor of 454 and Illumina NextSeq.

RVI analysis of the 18 parameters characterizing SNVs indicates that their ability to sepa-

rate true from false positive calls depends on the considered platform. In the context of 454

data, BQ_vcf (base quality) as well as Q (quality) appear to be especially important, while an

almost even distribution of variable importance can be observed in case of Ion Torrent data.

With respect to Illumina data, Q and SB_vcf (strand bias) feature the highest RIV values by far.

Thus, it seems necessary to determine individual optimization approaches for every sequenc-

ing platform.

Applying our optimized analysis pipeline leads to a general improvement in the variant call-

ing results (see Table 5). An increase in PPV is observed, while sensitivity is not harmed. The

individual GLMs successfully identify all true positive calls and a majority of false positive

calls. The results support our initial assumption that true mutations differ from false positive

calls in a way that GLMs improve automatic distinction. Based on the optimized results, all

sequencing platforms appear to perform equally well concerning sensitivity and PPV.

Analysis of the parameters included in the GLMs shows that Q is indeed part of the 454-

and the Illumina model. This observation is in line with its previously observed high RVI.

VP_vcf (variant position) is part of both the 454- and the Ion Torrent model. This parameter’s

great importance was not expected based on our RVI analysis. Neither parameters characteriz-

ing strand bias, nor base quality are part of any of the determined models. Against the back-

ground that GATK recommends platform-independent filtration of SNV calls by QD (quality

GLM-based optimization of NGS data analysis
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by depth)—which we disabled in favor of sensitivity—it appears especially striking that this

parameter is not part of any GLM either.

Standard and optimized indel calling

With regards to the calling of indels, the use of NGS platforms—especially 454 and Ion Tor-

rent—is regarded as problematic due to a high number of false positive calls, especially in the

context of homopolymers [5, 7–9, 26]. Therefore, poor results concerning the number of false

positive calls were expected in case of these two techniques. For Illumina the lowest number of

false positive indels was expected [3] as this sequencing technique relies on a basewise determi-

nation of the sequence and the four types of nucleotides are differently labeled.

Standard indel calling results (see Table 6) clearly show the same problem in the samples

we analyzed. Both 454 and Ion Torrent sequencing data feature a high number of false positive

calls, which is not acceptable in a clinical setting. The sensitivity in case of Ion Torrent

sequencing data is high. This is remarkable considering the—in general—lower coverages of

Ion Torrent compared to Illumina. Considerably less false positive calls are observed in Illu-

mina NextSeq data.

RVI analysis of the 22 parameters characterizing indels does not only show that their ability

to separate true from false positive calls is platform-dependent. The results furthermore reflect

considerable differences between SNV- and indel calling. QD (quality by depth) and HP
(homopolymer length) feature outstanding RVIs in case of 454 data. Regarding Ion Torrent

data, SOR (strand bias) and HP have the greatest RVI values. However, regarding Illumina

NextSeq data, DP (depth) and DevGT (indel width), a parameter we developed, showed the

greatest importance according to RVI. These results further underline the necessity for indi-

vidual optimization approaches—for different types of sequencing data as well as for different

types of variants.

The application of our optimized pipeline results in a marked decrease in the number of

false positive calls. The results support our assumption that true mutations feature different

characteristics compared to false positive calls, which is why our GLM approach is successful.

All sequencing platforms perform almost equally well when considering optimized indel call-

ing. Only two true positive indels are not identified by our estimated GLM, in case of 454 data.

One is a one base pair deletion, which is located in a homopolymer stretch of four T’s and may

therefore be difficult to identify by 454 sequencing.

Using the standard analysis pipeline, Ion Torrent appeared to be inferior to the other

sequencing techniques, due to the high number of false positive calls. However, using our opti-

mized pipeline, it may prove to be a viable alternative due to highest sensitivity and an

improved PPV.

Analysis of the parameters included in the GLMs is in line with the results of our RVI analy-

sis. A heterogeneous set of parameters contributes to separating true- and false positive indel

calls in case of the different platforms. As expected, QD and HP are part of the 454 GLM, while

SOR and HP are part of the Ion Torrent GLM. Interestingly, neither DP nor DevGT is part of

the Illumina model. Instead, HP_AT is included, but with a positive regression parameter. The

probability for an indel call being a true positive thus increases if it is located within an A- or T

homopolymer.

Different from the GLMs in case of the optimized SNV calling pipeline, no parameter char-

acterizing the variant position is part of any of the determined models. Furthermore, the intui-

tively important variance in indel width is not part of any model either. Although GATK

recommends filtration of the raw output on the basis of QD, it only proved to be relevant for

the 454 model.

GLM-based optimization of NGS data analysis
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Limitations and possible sources of bias

The models we present as a result of our case study are based on a relatively small dataset. We

focussed on mutations in a subset of 19 genes that are known to be recurrently mutated in

MDS. It would be interesting to explore, whether our approach also works on a thoroughly dif-

ferent, considerably bigger target region. We therefore analyzed sequencing data from three

freely available datasets: simulated tumor samples #1, #2 and #3 from the ICGC-TCGA

DREAM Mutation Calling challenge [27]. As these are simulated datasets, we can be sure

about biological truth. We selected a target region of 1 million base pairs (chr1:186,000,001-

187,000,000). Similar to our case study, we use a randomly selected subset of data to train our

GLM (samples #1 and #3) and test it on an independent dataset (sample #2). The results can

be found in S9 Appendix. Although data show considerable differences compared to our case

study, we observe that application of our GLM-based optimization pipeline is successful.

Regarding the training set, 154 out of 204 false positive SNV calls (75%) are identified by our

GLM. In case of the independent test set, 131 out of 182 false positive SNV calls (72%) are suc-

cessfully identified by our GLM, while no true positive call is mistaken for a false positive. We

therefore assume that the GLM-based optimization approach we present is not restricted to

the small target region we analyzed in case of our case study, but it also works on thoroughly

different data and a considerably bigger target region.

All calls regarding our case study were categorized as true or false positive by two indepen-

dent experts. Categorization of only a subset of calls was confirmed by Sanger sequencing.

Thus, it is possible that some calls were actually misclassified. However, we were facing a total

of 944 calls, i.e. on average more than 47 calls per patient. The high number of calls, but also

their low allelic frequency in many cases makes it impossible to validate every call by Sanger

sequencing. S8 Fig shows two examples of typical false positive calls that clearly differ from

true mutations. A high number of calls is similar to these two examples. Thus, it seems apt to

assume that a majority of false positive calls could be identified by manual inspection. For all

calls that could not clearly be identified, we considered re-sequencing data, as every sample

was sequenced at least twice on a different or the same platform. As we additionally performed

Sanger sequencing on a subset of calls, it seems apt to assume that a vast majority of true- and

false positive calls was classified correctly.

The fact that considerably shorter reads are analyzed in case of Illumina NextSeq data, may

bias variant calling. Shorter reads require a target design with more primers located within the

coding regions of larger exons, e.g. ASXL1, exon 13. We use the available primer sequences

(TruSight Myeloid Sequencing Panel, see S1 Appendix for details) to determine the primer

locations. Subsequently, we use Fisher’s Exact Test to investigate whether the location of an

SNV within a primer increases the probability of not detecting this variant in the Illumina

NextSeq data. We receive a p value of pSNV = 0.0029 (one sided test). We adjust α = 0.05 using

Bonferroni correction (α = 0.05/4 = 0.0125). Nevertheless, the result is significant. Thus, it is

likely that some of the SNV calls missed by Illumina NextSeq are due to their location within a

primer.

The 454 and Ion Torrent samples are completely bidirectionally sequenced, whereas

sequencing Illumina NextSeq is mainly unidirectional. Therefore, we also use Fisher’s Exact

Test to investigate whether the location of an SNV in an unidirectionally sequenced region

increases the probability of not detecting this variant. We receive a p value of pSNV = 0.9666

(one sided test). Considering the adjusted α = 0.0125, a significant result may not be obtained.

Thus, it is not likely that this characteristic of Illumina NextSeq data has a negative influence

on variant calling in case of SNVs.

GLM-based optimization of NGS data analysis
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Analogous to the calling of SNVs, it is investigated whether the indel calls missed in case of

Illumina NextSeq data, may be due to their location in regions where primers align to the cod-

ing region of genes. Fisher’s Exact Test leads to the p value pIndel = 0.1206. Thus, it is unlikely

that a dependency of the two variables exists in the case of indels. This means, that the location

of primers within coding regions of genes is not likely to prevent an indel from being called in

case of Illumina NextSeq data.

In addition, we also test whether the location of an indel in a unidirectionally sequenced

region may be responsible for not calling this variant. Fisher’s Exact Test leads to the p value

pIndel = 0.7920. Thus, it is unlikely that the location of an indel in a unidirectionally sequenced

region prevents it from being called in Illumina NextSeq data.

We had a detailed look at all mutations and polymorphisms that were present but not called

(false negatives). In all cases the variants were visible in the raw alignment data, although some

with frequencies as low as 0.03 –. To an on average lesser extent they were also visible in the

re-aligned data. Some missed calls were detected by a commercial second analysis approach

(see section S8 Appendix). However, they were never called by our analysis software GATK.

Analysis of the missed calls does not indicate existence of any platform specific bias (see

S1 File).

Comparison to other optimization approaches

To estimate our individually calibrated GLMs, we use forward selection based on AIC. It

appears striking that the application of this parameter selection method did not always lead to

the inclusion of those parameters that feature the greatest RVI values. It may thus be argued

that our models are not best in separating true from false positive calls. We investigated the

effect of an alternative parameter selection method by always including the parameter with the

highest RVI (see S10 Table) into our GLMs. However, in no case this method led to an

improvement of our models.

It may furthermore be argued that our optimized analysis pipeline using GLMs is a time-

consuming and expensive approach. It is not advisable to directly use any of our estimated

models for a different set of data generated on the same platforms. The models we estimated

are individually calibrated. Not only for the mutation type and the sequencing platform, but

also for the laboratory conditions, library preparation, sequencing and the way raw data are

generated.

Application of our GLM approach to new data will always require definition of a training

set and analysis of this subset according to the pipeline displayed in Fig 1. This also includes

validation—by additional experiments or expert-based review—of the variants that have origi-

nally been called. Due to the many false positives in the case of Ion Torrent data this step can

be problematic. However, only then it will be possible to estimate a GLM that is apt to success-

fully distinguish true from false positive calls in the given new data and all subsequent data

generated according to the same protocol and in the same lab.

It would of course be easier to identify one or two parameters, to set invariable thresholds

for these parameters and to filter the calls based on these thresholds. No time consuming vali-

dation of the variants would be necessary in this case. However, the laboratory conditions as

well as the analysis pipeline have a considerable effect on the results. [9] report an improved

straightforward approach for filtering false positive indels from Ion Torrent data when using

GATK for variant calling (QD = 2.5 and VARW = 0). We applied this approach to our Ion

Torrent training subset. Unfortunately, 71% of the true positives get filtered out. 57% of all

true positives feature a value of QD< 2.5. Furthermore, 14% of the true positives feature a

value of VARW 6¼ 0. Altogether, 26% of the indels called in the first place get reported as true

GLM-based optimization of NGS data analysis
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positives, although they are known to be false positive calls. This stresses the fact that individ-

ual models are necessary and a naive filtration on the basis of one or two parameters with

invariable thresholds is not advisable.

A thoroughly different approach would be to sequence samples twice—on the same plat-

form or on different platforms. Apart from increasing turnaround time and cost of sequenc-

ing, this approach is likely to lead to worse results compared to our model approach.

Sequencing platforms are characterized by systematic errors, especially in the case of indel call-

ing (see Table 6, re-sequencing subsets). Therefore, sequencing the same sample twice on the

same platform and combining the variant calling results by looking at the overlapping calls can

only improve PPV to a limited extent. Furthermore, we observe that true mutations are some-

times missed if a sample gets re-sequenced on the same platform. If applied to a huge dataset,

this approach is thus likely to lead to a decrease in sensitivity.

Sequencing the same sample twice on different platforms and considering the overlapping

calls is likely to lead to a considerable increase of the PPV (see S1 File). However, the analysis

of our comparison subset indicates that this approach is likely to lead to many false negatives

and thus to a decrease in sensitivity as well, which is not acceptable in a medical use case.

Optimizing the analysis of NGS data by estimating and applying individual GLMs thus

appears to be the most efficient and successful approach for excluding the majority of false pos-

itive calls in an automated pipeline. It provides a feasible approach for handling large datasets,

e.g. in a trial, for which it is impossible to check all variants manually when using standard

analysis.

Perspective

Despite all possible sources of bias, limitations and alternative filtering strategies, our results

appear to be relevant for use of NGS in clinical practice. By using a standard analysis pipeline,

none of the considered platforms is able to call all true positive SNVs and indels. For SNVs

sensitivity ranges between 0.88 (Illumina NextSeq) and 0.91 (454 and Ion Torrent), while PPV

ranges between 0.75 (Ion Torrent) and 0.91 (454 and Illumina NextSeq). For indel calling

results sensitivity ranges between 0.75 (454) and 1.00 (Ion Torrent), while PPV ranges between

0.01 (Ion Torrent) and 0.26 (Illumina NextSeq). Our optimized analysis pipeline is able to

increase PPV to a considerable extent. Nevertheless, even a sophisticated approach like our fil-

tration on the basis of individually calibrated GLMs is not able to identify all false positive calls

and some true positive calls are still missed. If more samples or larger target regions were ana-

lyzed, it may be possible to attain more generalizable GLMs and thus more generalizable opti-

mized pipelines.

Altogether, the results of any variant calling pipeline should always be viewed with criti-

cism. Even sophisticated analysis pipelines cannot guarantee that all true variants are called

and all false positives are filtered out. Human inspection of the called variants and hotspot

mutations that were not called remains necessary.

We suggest to use the optimized pipeline approach together with defining two thresholds

instead of one. A majority of false positive calls feature an estimated probability based on the

GLMs, which is close to zero. Therefore, a threshold close to zero should be chosen to exclude

false positive calls. As a majority of true positive calls feature an estimated probability close to

one, a second threshold close to one should be chosen to identify true positive calls. Everything

in between these two thresholds could be validated by Sanger sequencing or manual

inspection.

GLM-based optimization of NGS data analysis
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Conclusion

Different from standard analysis pipelines, we present a workflow that provides an effective

technique for separating most true from false positive SNVs and indels in the case of Roche

454, Ion Torrent PGM and Illumina NextSeq sequencing data. We thus describe an approach

that enables the user to handle even large NGS datasets. Furthermore, our approach is not lim-

ited to the three sequencing techniques we analyzed, as the same approach may easily be

applied to sequencing data resulting from other platforms. However, our findings also indicate

that individual calibration of our workflow is indispensable.

Supporting information

S1 Appendix. Sequencing information.

(PDF)

S2 Appendix. Read alignment information.

(PDF)

S3 Appendix. Variant calling and annotation.

(PDF)

S4 Appendix. Filtration information.

(PDF)

S5 Appendix. Parameter determination.

(PDF)

S6 Appendix. Validation information.

(PDF)

S7 Appendix. Generalized linear model and threshold.

(PDF)

S8 Appendix. Data analysis—second approach.

(PDF)

S9 Appendix. TCGA sample analysis.

(PDF)

S1 File. File providing detailed information on the called- and missed variants. Called

SNVs using a standard pipeline and the optimized pipeline, called indels using a standard

pipeline and the optimized pipeline, detailed analysis on variants in Illumina NextSeq data and

information on missed calls.

(XLS)

S2 File. File containing the called SNVs and information on their determined parameters

in the TCGA training subset. The file can directly be used as input for the R script determin-

ing the best GLM separating true from false positive SNV calls unsing forward selection based

on AIC.

(TXT)

S3 File. File containing the called SNVs and information on their determined parameters

in the TCGA test subset. The file can directly be used to test the GLM, which was estimated

on the basis of the training subset.

(TXT)
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S1 Script. R script determining the 18 parameters characterizing SNVs and 22 parameters

characterizing indels called by GATK.

(R)

S2 Script. R script calculating the relative variable importance (RVI) and determining

information for normalization.

(R)

S3 Script. R script determining the best GLM separating true from false positive SNV calls

using forward selection based on AIC.

(R)

S4 Script. R script determining the best GLM separating true from false positive indel calls

using forward selection based on AIC.

(R)

S1 Table. List of the genes, exons and their ENSEMBL transcript IDs that were targeted by

Roche 454, Ion Torrent PGM and Illumina NextSeq.

(PDF)

S2 Table. Base pairs (bp) in the target region, in exons in the target region and number of

genes covered by 454, Ion Torrent and Illumina.

(PDF)

S3 Table. Alignment statistics for the 454 data aligned with BWA mem.

(PDF)

S4 Table. Alignment statistics for the Ion Torrent data aligned with TMAP.

(PDF)

S5 Table. Alignment statistics for the Illumina NextSeq data aligned with BWA mem.

(PDF)

S6 Table. Number of models containing a parameter and normalized relative variable

importance (RVI) for all parameters characterizing SNVs, considering 454, Ion Torrent

and Illumina NextSeq sequencing data.

(PDF)

S7 Table. Akaike’s Information Criterion (AIC), estimates of the regression parameters

and their standard error for the linear predictors Ẑ i SNV 454, Ẑi SNV IonT and Ẑ i SNV Illumina.

(PDF)

S8 Table. Number of models containing a parameter and normalized relative variable

importance (RVI) for all parameters characterizing indels, considering 454, Ion Torrent

and Illumina NextSeq sequencing data.

(PDF)

S9 Table. Akaike’s Information Criterion (AIC), estimates of the regression parameters

and their standard error for the linear predictors Ẑi Indel 454, Ẑ i Indel IonT and Ẑ i Indel Illumina.

(PDF)

S10 Table. Development of the AIC in case of an alternative parameter selection method

based on RVI.

(PDF)
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S1 Fig. Number of samples in the comparison data set with 0x coverage of the genes in the

intersecting target region in the case of 454 (black), Ion Torrent (red) and Illumina

(green).

(TIF)

S2 Fig. Median coverage of the genes in the intersecting target region in the case of 454

(black), Ion Torrent (red) and Illumina (green) considering the re-sequencing data set.

(TIF)

S3 Fig. Number of samples in the re-sequencing data set with 0x coverage of the genes in

the intersecting target region in the case of 454 (black), Ion Torrent (red) and Illumina

(green).

(TIF)

S4 Fig. Median coverage of the bases of the intersecting target region in the case of 454

(black), Ion Torrent (red) and Illumina (green) considering the test data set.

(TIF)

S5 Fig. Number of samples in the test data set with 0x coverage of the genes in the inter-

secting target region in the case of 454 (black), Ion Torrent (red) and Illumina (green).

(TIF)

S6 Fig. Relation between the estimated probability p̂i and the actual probability pi for an

SNV being a true positive. (A) 454 (B) Ion Torrent (C) Illumina; Black circles: training data

set; grey diamonds: test data set. Thresholds are displayed as dashed lines (pSNV_454 = 0.28,

pSNV_IonT = 0.04 and pSNV_Illumina = 0.07).

(TIF)

S7 Fig. Relation between the estimated probability p̂i and the actual probability pi for an

SNV being a true positive. (A) 454 (B) Ion Torrent (C) Illumina; Black circles: training data

set; grey diamonds: test data set. Thresholds are displayed as dashed lines (pIndel_454 = 0.08, pIn-
del_IonT = 0.07 and pIndel_Illumina = 0.01).

(TIF)

S8 Fig. Typical false positive calls in NGS data. (A) False positive call chr7:148,543,693

TAAAA>T in sample UPN02, Ion Torrent, set2; observed variation in the call (insertion of

two A’s up to deletion of five A’s) is strong evidence for a false positive. (B) False positive call

chr20:31023122 TG>T in sample UPN007, Ion Torrent, set2; observed strand bias is strong

evidence for a false positive.

(TIF)
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