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Preface 

Most of the dynamic general equilibrium models in current macroeconomic theory 

assume the existence of a representative agent whose expectations are rational. While 

these assumptions facilitate the models’ technical tractability, it is clear that the 

behaviour they describe is to a great extent simplified and idealized. Currently in the 

scientific landscape considerable efforts are made to relax these assumptions. In 

particular the rational expectations assumptions has been the subject of critical review, 

which has led to the emergence of learning theory, among others. While learning is now 

being extensively applied in macroeconomics, usually in the form of adaptive learning, 

the models still often make use of a representative agent. However, it is a distinct 

possibility that this assumption is not a mere technicality but can have significant 

consequences to the outcome of the learning processes in a model.  

This work examines how the assumption of a representative agent can lead to spurious 

results in the context of adaptive learning and how adaptive learning can be applied 

when heterogeneous agents are used by the example of a basic consumption model with 

learning agents. It has been written at the Westfälische Wilhelms-Universität Münster, 

in part during my employment as a scientific assistant at the Institut für 

Industriewirtschaftliche Forschung, and has been accepted as a doctoral thesis in 2009. I 

would like to thank my thesis advisor Prof. Dr. Gustav Dieckheuer for his critical 

support, his patience and the scientific liberty which allowed me to accomplish this 

work. Just as well I want to thank my second advisor Prof. Dr. Wolfgang Ströbele for 

valuable hints and suggestions.  

A work like a doctoral thesis is virtually impossible without the understanding support 

of one’s friends and family. Among these I can only name but a few. First of all I am 

highly indebted to Dr. Marcel Mlakar for many valuable discussions, critical comments 

and his steady encouragement. In the same way I would like to thank my former 

colleagues at the Institut für Industriewirtschaftliche Forschung for their support, the 

inspiring collaboration and the good times we shared. Many thanks go to Nadine Piolot 

for meticulously proofreading the manuscript in spite of having already very much on 
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her plate, and to Dr. André Pohlkamp for our mutual motivation to compensate for the 

scientific work with sports and leisure once in a while. My mother and my sister 
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support over the years, which I would like to thank them for. But most of all I want to 

thank Kathrin Meier-Kolthoff for her unfailing motivation, for enduring occasional 

difficult times of misery and bad temper on my side, and for the way I could always rely 

on her understanding, sympathy and affection.  

 

Münster, April 2010 Philipp Gerlach 

 



 V

Contents 

Abbreviations ............................................................................................................... VI 

Symbols ........................................................................................................................VII 

1. Introduction.......................................................................................................1 

2. Rational Expectations, Bounded Rationality and Learning .........................6 
2.1. Historical Overview: The Way to Rational Expectations...................................6 
2.2. Basic Concept of Rational Expectations.............................................................8 
2.3. Multiple Equilibria in Rational Expectations Models ......................................12 
2.4. Learning ............................................................................................................17 
2.4.1. Learning as a Dynamic View of Expectations Formation ................................17 
2.4.2. Early Examples of Learning Algorithms and Eductive Learning.....................19 
2.4.3. Adaptive Learning and Recursive Least Squares .............................................23 
2.4.4. Stability under Learning and E-Stability ..........................................................26 
2.5. Constant Gain Learning, Misspecification, and Escape Dynamics ..................34 
2.5.1. Constant Gain Learning ....................................................................................34 
2.5.2. Self-Confirming Equilibria and Misspecification.............................................36 
2.5.3. Escape Dynamics ..............................................................................................38 
2.5.4. Plausibility and Empirical Support ...................................................................41 
2.6. Summary ...........................................................................................................44 

3. Learning in a Dynamic Optimization Model................................................46 
3.1. A Basic Consumption Model............................................................................46 
3.1.1. Dynamic Optimization......................................................................................46 
3.1.2. Steady State and Log-Linearization of the Model ............................................51 
3.1.3. The Canonical Solution: The Rational Expectations Equilibrium with a 

Representative Agent ........................................................................................55 
3.1.4. The Rational Expectations Solution with Individual Heterogeneous Agents...60 
3.2. Euler Equation Learning ...................................................................................67 
3.2.1. EE Learning with a Representative Agent........................................................68 
3.2.2. EE Learning with Individual Agents ................................................................70 
3.2.3. EE Learning with Individual Agents and Heterogeneous Income Shocks .......75 
3.2.4. Discussion of EE Learning ...............................................................................78 
3.3. Infinite Horizon Learning .................................................................................82 
3.4. Extended Euler Equation Learning...................................................................89 

4. Conclusions....................................................................................................102 

References ....................................................................................................................107 

Appendix ......................................................................................................................113 



 VI

Abbreviations 

ALM Actual law of motion 

AR(1) Auto-regressive of order 1 

EE learning Euler equation learning 

EEE learning Extended Euler equation learning 

IH learning Infinite horizon learning 

MSV Minimal state variable 

ODE Ordinary differential equation 

OLS Ordinary least squares 

PLM Perceived law of motion 

REE Rational expectations equilibrium 

RLS Recursive least squares 

RPE Restricted perceptions equilibrium 

SCE Self confirming equilibrium 

SRA Stochastic recursive algorithm 

VAR Vector auto-regressive 

 

 



 VII

Symbols  

Chapter 2 

tE x  expectation of x in period t 

( )T ⋅  mapping from PLM to ALM 
 
N  index of the period of time in which beliefs are held (in early approaches 

to adaptive learning) 
tR  moment matrix 

 
, ,a b d  parameters of the households’ PLM 

tc  aggregated private consumption  
i
tc  private consumption of household i 

tg  government expenditure  
n   number of households 
,s t  time index 

tu  disturbance within the AR(1) process for g 

tv  unrelated stochastic term (“sunspot”) 

ty  aggregated income / general endogenous variable 

tz  general vector of a constant and of determining variables 
 
φ  vector of estimated parameters of the PLM 
Ψ  vector of actual parameters of the ALM 

tΩ  information set available in period t 
 

,α δ  parameters of the households’ private consumption function 
β  parameter of the AR(1) process for g 
γ  gain 

tη  general disturbance 
τ  time variable for associated ODE 
ω  general vector of determining variables 



 VIII

Chapter 3 

X  upper case letters denote the absolute value of a variable 
x  lower case letters denote the natural logarithm of the deviation from the 

non-stochastic steady state  
X  upper case letters with an upper bar denotes the non-stochastic steady 

state 
ix  a superscripted index i indicates a variable of an individual agent i 

x�  a tilde over a variable denotes the average of an individual variable of all 
agents 

 
i
tÊ  expectation of agent i in period t (possibly non-rational) 

tE  rational expectation in period t 

( )T ⋅  mapping from PLM to ALM 

( )U ⋅  instantaneous utility function 
 
B  wealth 
C  consumption 
M  parameter of income process 
R  gross one-period rate of return 
Y  income 
 

, , , ,e k l m p  parameters of the PLM (beliefs) 
,i j  agent index 

n   number of households 
,s t  time index 

 
β  temporal discount factor 
ε  extraneous sunspot variable  
µ  parameter of sunspot process 
v  disturbance of income process 
π  disturbance of sunspot variable 
ρ  parameter of income process 
σ  intertemporal elasticity of substitution at the steady state 
τ  time variable for associated ODE 
υ  error term 

 

 



 1

1. Introduction 

Many macroeconomic models used today take the form of micro-founded dynamic 

general equilibrium models. Models of this class aim to derive relations between 

macroeconomic aggregate variables from the microeconomic behaviour of the model’s 

agents. Employing this micro-founded approach, such models contrast with models in 

the tradition of the Keynes-Hicks IS-LM framework, which largely posit functional 

relationships between aggregate variables directly.1 Among the plethora of 

macroeconomic models, purely macroeconomic IS-LM-style models on the one hand 

and micro-founded dynamic general equilibrium models on the other hand seem to 

constitute two important poles. But it is difficult to label those poles properly, since the 

taxonomy of macroeconomic models is far from being clear. For example, the attribute 

“general equilibrium” is often used to denote micro-founded models, while others argue 

that IS-LM-style models which cover all markets can also be of a “general equilibrium” 

kind in contrast to partial models.2 Here, I will use the terms “micro-founded” versus 

“purely macroeconomic” to designate the two approaches.3 

While the underlying concepts of the micro-founded general-equilibrium approach dates 

back to ideas which have been advanced prominently by Walras as well as Arrow and 

Debreu, models of the purely macroeconomic kind have dominated macroeconomics up 

to the end of the 1970s. Then, the micro-foundation approach became popular when it 

was employed in the real business cycle models of the 1980s,4 and today it is the 

foundation of many workhorse models in macroeconomics, such as the New-Keynesian 

general equilibrium models.5 It should be mentioned that the current predominance of 

                                                 
1  An overview of the IS-LM framework with various extensions can be found in Dieckheuer (2003). 
2  See De Vroey (2006). In this paper, the author instead proposes the main methodological distinction 

to be drawn between a Marshallian approach and a Walrasian approach. 
3  In theory, a micro-founded general equilibrium model does not have to be dynamic as well, but in 

practice it usually is. So when in the following the term “micro-founded” is used this may also imply 
that the model in question is a dynamic model. 

4  See, for example, Plosser (1989). 
5  For an overview of the history of macroeconomic models, see Blanchard (2000) and 

Woodford (1999). 
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micro-founded models is nevertheless still the subject of a controversial methodological 

discussion.6 

The distinctive feature of micro-founded models is the fact that the interrelations 

between aggregate macroeconomic variables do not have to be posited but can be traced 

back to the individuals’ behaviour which causes the interrelation in question. Still, this 

approach is not necessarily less dependent on assumptions than the purely 

macroeconomic models. Instead of assuming a functional form and parameters on a 

macroeconomic level it is now necessary to make assumptions about microeconomic 

functions and their parameters. Since virtually all features of micro-founded models are 

derived from these functions the model can be very sensitive to their specification. 

Moreover, the way how a derived macroeconomic interrelation depends on the 

specifications of the underlying functions can be much less obvious in such a model 

than in a purely macroeconomic model. For that reason it is important to exercise great 

care in defining the microeconomic foundation of a general equilibrium model. This 

includes not only the specification of the microeconomic functions but also the 

assumptions and restrictions which are made implicitly in the process of building and 

solving the model, for example by employing particular solving techniques. Among the 

decisions which must be taken when building a micro-founded dynamic general 

equilibrium model, two are of special interest in the context of learning: How to 

aggregate the individual agents’ decisions to macroeconomic variables and the 

specification of expectations.  

I will turn to expectations first. In a micro-founded model, the individual agent’s 

behaviour is described by a set of given microeconomic functions, which are typically 

the result of the agent solving a problem of dynamic optimization subject to constraints. 

Because of the dynamic nature of the optimization problem the microeconomic 

behavioural functions take into account not only the observable current state variables 

but also expectations of future state variables. Thus, expectations constitute a vital 

element in such models with dynamically optimizing agents. It is therefore not 

surprising that the rise of micro-founded models coincided with the “rational 

                                                 
6  See for example Blinder (1987), section VIII, Hoover (2008), Kirman (1992) or Wren-Lewis (2006). 
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expectations revolution”7, since the rational expectations hypothesis provides an elegant 

way to reduce and solve the agents’ dynamic optimization problems. The rational 

expectations hypothesis has consequently become the standard assumption in most 

dynamic general equilibrium models.  

Further, the very idea of using micro-foundations in a macroeconomic model implies 

the question of how to bridge the gap between the microeconomic and the 

macroeconomic level, or more precisely, how to derive the behaviour of aggregate 

variables from the decisions of individual agents. A straightforward way to deal with 

this problem is to assume the existence of a representative agent within each class of 

agents, for example a representative consumer or a representative firm, which embodies 

the “typical” or “average” behaviour of the whole class. The assumption here is that it is 

possible to specify an agent’s microeconomic behavioural functions in such a way that 

his choices will always coincide with the aggregate choices of the whole class of agents. 

If such an agent can be constructed, then it is possible to scale up the behaviour of this 

representative agent to the aggregate.  

While there are also models with heterogeneous agents, the great majority of micro-

founded models use the representative agent assumption. Due to its easy application, the 

technique has become the standard way to solve the aggregation problem, despite the 

fact that from a methodological point of view it can be problematic. Indeed, this 

assumption can be considered the single most controversial ingredient of micro-founded 

models and it fuels much of the debate about their legitimacy.8 Much of the debate 

focuses on the conditions under which a representative agent can be constructed at all. 

The details of this discussion are beyond the scope of this work and will be left aside 

here. But even if a representative agent could be constructed (or if it is simply assumed 

that this is the case), using him in the solution of a model can still be problematic. In 

particular, a result of a model may depend on the application of the representative agent 

assumption, or another element of the model or a solution method may be only 

applicable in conjunction with the assumption. This does not necessarily mean that the 

                                                 
7  For a historical overview, see section 2.1 
8  An overview of theoretical objections to the representative agent hypothesis is given in 

Kirman (1992). 
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application of the representative agent assumption is always inadequate per se. It is 

possible that in some models the assumption is a valid simplification which does not 

change any outcome of the model and that all other elements of the model are 

independent from it, but that cannot be simply taken for granted. Instead, when using 

the representative agent assumption, it should be verified that the model would also 

work without it and that it does not change any results. The representative agent 

assumption is nothing more than a tool to simplify a complex heterogeneous world, so 

the results of a model should be as independent from its application as possible. 

As a contribution to this field of research, this work will examine how the results of a 

basic dynamic optimization model change when rational expectations are replaced by 

learning and when the representative agent is replaced by individual agents which are 

heterogeneous to some degree. In order to keep the analysis from getting too complex, it 

is done here on a partial model which focuses on the consumers’ optimization problem, 

treating the consumers’ incomes as exogenous processes. Because of this restriction the 

model is rather a microeconomic one in contrast to a fully-fledged macroeconomic 

model, which would have to endogenize the income by including the production side of 

the economy. However, already the partial model used here highlights some effects 

which arise due to the introduction of learning and of heterogeneous agents. The 

question whether the results of this work hold in the same way for more complex 

macroeconomic models is left for future research. 

 I will argue that the introduction of learning makes most sense if individual agents are 

considered. When adaptive learning is included in a micro founded model with 

dynamically optimizing agents, there are two known ways which are usually called 

“Euler Equation Learning” versus “Infinite Horizon Learning”.9 The question of which 

of these methods is the adequate one is subject of an ongoing debate.10 I will 

demonstrate that the infinite horizon learning is more robust with respect to the 

heterogeneity of the agents. Moreover, I will argue that some of the confusions about 

the equivalence of the two methods are due to the fact that some solving techniques, 

which depend on the representative agent assumption and rational expectations, are no 

                                                 
9  These terms will be defined below in section 3.2 and 3.3. 
10  See Homkapohja, Mitra and Evans (2003) and Preston (2005), p. 94 ff. 
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longer suitable when learning is included.11 Yet these techniques have become so 

familiar that their application is rarely subjected to critical review. Finally, I suggest an 

extension of the Euler equation learning method and demonstrate that this extended 

method allows individual non-representative agents to learn the rational expectations 

solution under straightforward assumptions. 

In the next chapter, first of all the concept of rational expectations and its properties are 

shortly reviewed. Then learning is introduced as a dynamic form of expectation 

formation, with a special focus on recursive least squares learning as the most generic 

learning method. Constant gain learning will be shortly discussed as an interesting 

alternative. In chapter 3 a basic consumption model will be examined. It serves as a 

workhorse example by which first the usual solution technique will be demonstrated, 

which employs the representative agent assumption and the rational expectations 

assumption. This solution will subsequently be compared to the situation with 

heterogeneous agents. In section 3.2 Euler equation learning will be demonstrated and 

critically reviewed, with a special focus on the impact of the representative agent 

hypothesis. In this context it will be examined how the solution technique, which is 

made possible by the representative agent assumption, can be misleading when learning 

is introduced. Infinite horizon learning will be demonstrated in section 3.3 as a more 

robust alternative which does not rely on the representative agent assumption. In section 

3.4 I suggest an extension to Euler equation learning as a less demanding alternative to 

infinite horizon learning. Chapter 4 summarizes the discussion and considers some 

possible areas for future research. 

 

                                                 
11  This discussion is inspired by the work of Bruce Preston, who has proposed infinite horizon learning 

as an alternative method. While he puts forward some arguments in favour of infinite horizon 
learning, the methodological relationship to the representative agent assumption was not pointed out 
explicitly yet. See for example Preston (2005) or Preston (2005a).  
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2. Rational Expectations, Bounded Rationality and 
Learning 

2.1. Historical Overview: The Way to Rational Expectations 

In many cases an agent needs to consider his future situation and the future economic 

environment when making economic decisions. Expectations have therefore played a 

significant role in economic thinking from the very beginning.12 Yet, in static or 

comparative static models there is no need to form expectations, so instead of variables 

for expected values their actual outcomes are usually used. It was therefore not before 

the advent of dynamic economic models that expectations received more attention and 

were formally included in models.  

The easiest way to handle expectations is to consider them as static. In this case the 

value of a variable expected for the next period is the same as the actual value: 

(1) 1t t tE x x+ = . 

Static expectations can either be modelled explicitly as static using a formula like (1), or 

they are not mentioned at all, thereby often implicitly assumed as static. The dynamic 

version of the standard Keynes-Hicks IS-LM model, in which planned consumption is a 

function of the last period’s income or production depends on last period’s demand, is 

an example of the latter. 

An often used alternative to static expectations are adaptive expectations. These 

generally take the form of 

(2) ( )1 1 1t t t t t t tE x E x x E xλ+ − −= + −   with 10 << λ . 

Here, agents update their expectations with the expectation error from the last forecast 

they made, but only to a certain degree given by λ . The concept of adaptive 

expectations was first mentioned in Fisher (1930), but has become popular since Phillip 

                                                 
12  Evans and Honkappohja (2001) cite an anecdote from Aristotle dating back to about 600 B.C. See 

Evans and Hokapohja (2001), p. 6. 
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Cagan included it in his standard model of hyperinflation in 1956.13 With 1<λ  this 

approach smoothes expectations whenever actual values change, thereby contributing to 

the stability of a model. But adaptive expectations do not necessarily, as it is sometimes 

stated,14 represent a higher degree of learning by the economic agents than in the case of 

static expectations. In fact, the higher λ , the more an agent revises his former 

expectation in the light of new information. So one could argue that the highest degree 

of learning would occur with 1→λ , which is again the case of static expectations.15  

Although in both approaches presented above agents do learn from past expectational 

errors up to a certain degree, this learning algorithm is rather crude and can result in 

systematically wrong expectations in many situations. This is at odds with the notion of 

rational behaviour: A rational agent would recognize that he repeatedly formed wrong 

expectations and would try to adapt his algorithm accordingly. Moreover, when doing 

so he would try to use all information available, including knowledge about economic 

theory and statistics. This is the basic idea behind rational expectations, which is 

attributed to Muth (1961).16 However, the notion of agents using the relevant economic 

theory when making forecasts of uncertain variables has been mentioned before, one 

example is an article by Tinbergen from 1932.17 Nevertheless Tinbergen’s approach did 

not receive much attention at the time.  

While Muth’s paper was already widely admired at the time, the so called ‘rational 

expectations revolution’ arrived only in 1972, when Robert Lucas started applying 

Muth’s concept (which in its original form was a microeconomic one and restricted to a 
                                                 
13  Fisher used a distributed lag model to find a statistically significant relationship between past inflation 

and nominal interest rates, whereas he considered the latter closely related to expected inflation. 
Although he used linear decreasing instead of geometrically decreasing weights for past values, this 
approach closely resembles adaptive expectations. See Dimand (1999), p. 747, Fisher (1930), part IV, 
chapter XIX, §6 and Cagan (1956), p. 37. 

14  For example, see Felderer and Homburg (1993), p. 260. 
15  However, the question of which learning algorithm would yield more accurate expectations depends 

on the model considered and cannot be decided generally. 
16  See Muth (1961). 
17  See Tinbergen (1932), p. 1972. In his article Tinbergen explores the possibility of expectations being 

‘reasonable’ (‘vernünftig’ in the original German version of the text) and suggests replacing them by 
‘deductions according to economic theory’ (‘wirtschaftstheoretische Deduktion’), which captures the 
basic idea of rational expectations. For a detailed comparison between the model of his article and the 
one used by Muth (1961) see Keuzenkamp (1991). The term ‘rational expectations’ was also used by 
Hurwicz in 1946. See Sargent (1993), p. 6, note 1. 



 8

single market) to macroeconomics and the analysis of economic policy.18 With this he 

initiated a process of profound rethinking about the way macroeconomic models should 

be built. Today the great majority of macroeconomic models incorporate the rational 

expectations hypothesis or one of its descendants. 

2.2. Basic Concept of Rational Expectations 

The concept of rational expectations is based on the assumption that in the long run 

rational agents will not form expectations which are systematically wrong. 

“Systematically wrong” here means that expectation errors would be related in a 

systematic way to observable influences, such as exogenous variables, lagged 

endogenous variables or lagged error terms. The existence of rational expectations can 

be justified by the assumption that agents compete with each other. If expectations 

exhibit errors which could be explained by observable influences, some agents could 

use this information to improve their expectations and so achieve an advantage over 

their competitors. In the long run this process of selection would lead to the elimination 

of all inferior expectations, leaving only expectations as rational as possible.19  

In his seminal article, Muth describes his idea of rational expectations (by the example 

of the expectations of firms) as follows: 

“… expectations of firms (or, more generally, the subjective probability 

distribution of outcomes) tend to be distributed, for the same information 

set, about the prediction of the theory (or the “objective” probability 

distribution of outcomes).”20  

Muth stresses that this does neither necessarily mean that expectations must be identical 

for all firms, nor that the firms use the “true” or objective model when forming their 

expectations. However, for simplification, rational expectations are often modelled as 

homogeneous and based on the objective model. This has become standard practice up 
                                                 
18  For a short summary on Muth’s contribution see Brannon (2006). An overview of Lucas’ impact on 

macroeconomic research gives Sargent (1996). 
19  In that way competition can ensure that information is optimally used, as Muth demands: 

“Information is scarce, and the economic system generally does not waste it.” Muth (1961), p. 316.  
20  Muth (1961), p. 316. 
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to the point that today the term “Rational Expectations” usually means indeed that the 

agents’ expectations are based on the objective model. 

An alternative way of characterizing rational expectations is given by Sargent (1993).21 

In this view rational expectations are an equilibrium concept which is characterized by 

(a) a rational choice (i.e. maximizing an objective function) by agents subject to their 

perceived constraints, and (b) mutual consistency of all perceived constraints in the 

system. In other words, this characterization can be described as follows: (a) Every 

agent forms beliefs about the world he lives in, and then makes a rational decision based 

on these beliefs. (b) A rational expectations equilibrium is reached if all beliefs are 

mutually consistent, including beliefs about beliefs of others (higher order beliefs), so 

that the observable information generated by the model does not contradict the beliefs 

of the agents. 

I will now have a closer look at the role of rational expectations in a dynamic model in 

order to define a rational expectations equilibrium. Expectations in a dynamic model 

have an impact on the state of the modelled economy. If one defines expectations in a 

model as rational in the definition of Muth, one demands that expectations do not differ 

systematically from the resulting state of the economy, or more precisely: One demands 

that the agents do not perceive any contradiction between their expectations and the 

resulting states. So, the outcome under the impact of the agents’ expectations must 

“match” these very expectations. In this way expectations are part of a self-referential 

process.22 

One possible and straightforward way to satisfy the condition that agents perceive the 

resulting states of the economy as indistinguishable from their expectations is that 

agents form their expectations as conditional expectations based on the functions and 

parameters of the true model (including the functions governing expectation formation). 

This approach leads to an equilibrium in the above mentioned self-referential process 

which is called Rational Expectations Equilibrium (REE). Again, this approach is not 

the only way to satisfy the condition. It is also possible that agents employ a 

                                                 
21  See Sargent (1993), p. 6 ff. 
22  See Branch (2006), p. 135 f. 
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misspecified model to form their expectations, but nevertheless within their model they 

cannot detect any inconsistencies between the data generated by the true model and 

their misspecified model. This possibility will be examined in more detail in 

section 2.5.2.  

The concept of an REE described above will be demonstrated by means of an example: 

Consider an economy with n households and income y, consumption c and government 

expenditure g given by 

(3) ttt gcy +=  

(4) 
1

n
i

t t
i

c c
=

=∑  

(5) 1 1
1 ( ), 1i

t t t tc y E y
n
α δ δ− −= + ≠  

(6) 0)(,1, 11 =<+= −− ttttt uEugg ββ  

where u  is an i.i.d. disturbance with zero means. In (5) households smooth 

consumption over the last period’s income and the expected income for the current 

period. Government expenditure follows an AR(1) process. β  is bounded in order to 

rule out explosive time paths for g. For simplicity it is assumed that the parameter 

,α δ in (5) are the same for all households. Then the reduced form of this model is 

(7) 1 1 1t t t t t ty y g E y uα β δ− − −= + + + . 

Rational expectations are often denoted in a form like 

(8) 1 1( )t t t tE y E y+ += Ω  

with tΩ being the information set available at time t and )(⋅E being the mathematical 

expectation conditional on tΩ . This notation is rather general and does not yet explain 
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how the expectation is actually formed. For this it must be combined with the agent’s 

view about how ty  is determined in the model. 

Suppose the households believe that y can be described by the linear equation 

(9) tttt ugbyay ++= −− 11 . 

Suppose again that this belief is representative for all households. Such an equation, 

which characterizes the agents’ perception of the economy, is called the perceived law 

of motion (PLM).23 Then rational expectations imply  

(10)  1 1 1 1( )t t t t t tE y E y a y bg− − − −= Ω = + . 

Inserting (10) into (7) yields the actual law of motion (ALM), which describes how the 

economy evolves if forecasts are made according to the PLM: 

(11) 1 1( ) ( )t t t ty a y b g uα δ β δ− −= + + + + . 

The PLM (9) gives rational expectations only if its coefficients a, b match the respective 

coefficients of (11), which implies that in a REE 

(12) ,
1 1

a bα β
δ δ

= =
− −

. 

This approach for solving a rational expectations model is called method of 

undetermined coefficients. It consists of assuming a solution, inserting it into the 

reduced form of the model and then verifying it by matching the appropriate 

coefficients.24 For a slightly different, but related way of solving for the REE look again 

                                                 
23  See for example Sargent (1993) or Evans and Hokapohja (2001), passim. 
24  See for example Lucas (1975) p. 1118. Although it is often done for clarity, in general it is not 

necessary for this approach to specify the PLM and ALM explicitly. A very general exposition of the 
procedure which can be applied to most linear models is given by McCallum (1998). Aoki and 
Canzoneri mention that it can be difficult to guess the right solution beforehand and propose an 
alternative procedure. See Aoki and Canzoneri (1979), p. 64. Another well known algorithm for a 
common subclass of linear expectations models is given by Blanchard and Kahn (1980).  
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at the self-referential properties of the rational expectations model. The PLM with its 

coefficients a and b (the agents’ beliefs) determines the ALM of y (the outcome). Thus 

we get a mapping from the coefficients of the PLM to the coefficients of the ALM. This 

mapping is usually called a T-map which plays a crucial role in learning algorithms, as 

will be discussed in section 2.4.3. In the example it takes the form 

(13) 
a a

T
b b

α δ
β δ
+⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
. 

The REE is then given by a fixed point of T, which again leads to the values of (12). 

This approach underlines what Sargent calls “consistency of beliefs” in an REE: If 

every one of the n households believes that the income evolves according to the PLM 

with coefficients given by (12), then their aggregated consumption will be such that the 

resulting ALM of y confirms their beliefs. 

2.3. Multiple Equilibria in Rational Expectations Models 

Models with rational expectations can have multiple rational expectations equilibria. 

For linear rational expectation models this is possible if current values of the model are 

determined by expectations of future ones.25 For a demonstration I will change the 

model of the previous section by setting government expenditure as a constant plus a 

disturbance and letting consumption depend on the expected income of the current 

period and the period after:26 

(14) 1 1 1, 0, 1t t t t tc E y E yα δ δ δ α− − += + ≠ + ≠  

(15) 0)(, 1 =+= − tttt uEugg . 

                                                 
25  See Evans and Honkapohja (2001), p. 173. This dependence on expected future variables is called 

forward-looking. 
26  Consumption is here immediately given as aggregated. Setting g as constant simplifies the treatment. 

For a discussion of systems with an exogenous process like the one for g in the model before, see 
Evans and Honkapohja (2001), pp. 178 ff. 
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The reduced form of the model is27 

(16) 1 1 1t t t t t ty g E y E y uα δ− − += + + + . 

Under rational expectations this system has multiple solutions. Consider first the 

stochastic steady-state solution. Using the method of undetermined coefficients again, 

assume a solution of the form 

(17) tt uay += . 

Forming rational expectations and inserting these into (16) gives the appropriate term 

for a, so the REE is  

(18) 
1t t

gy u
α δ

= +
− −

. 

However, other solutions are possible. The agents’ PLM could include extraneous 

variables, namely the disturbance u in 1−t , or an additional unrelated stochastic term 

tv with 0)(1 =− tt vE , or both. Then the set of solutions is given by 

(19) 1 1 1
1 1

t t t t ty g y bu dv uα
δ δ − − −

−
= + + + +  

for any b and d.28  

The existence of multiple solutions to some rational expectations models (or even an 

infinity of solutions like in the model above) has been considered by some early authors 

as a weakness of the rational expectations hypothesis.29 But it can be shown that the 

                                                 
27  This system is similar to the one discussed in Evans and Honkapohja (2001), pp. 174 ff. For details 

about obtaining the different solutions and a proof of completeness, see there or Evans (1985), pp. 
1218 f. 

28  The process (19) is an ARMA (1,1) process which describes the full set of solutions, including the 
stochastic steady state for appropriate values of b, c and the starting condition y-1. See Evans and 
Honkapohja (2001), pp. 176 f. 

29  See Burmeister, Flood and Garber (1983) as well as McCallum (1983), pp. 139 f. 
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existence of multiple solutions is a common feature of dynamic models and not due to 

the application of rational expectations.30 In the face of multiple solutions the question 

arises which solution(s) economists should focus on, and if maybe some solutions can 

be ruled out on the grounds of further considerations. I will first look at the typology of 

possible solutions to rational expectations and then discuss different procedures to 

classify solutions. 

The standard classification distinguishes between a market fundamentals solution and a 

set of market fundamentals plus bubble solutions. It can be shown that other proposed 

types of solution are in fact included in these two basic types.31 The market 

fundamentals solution is defined as a solution which is based only on variables 

considered as market fundamentals. The set of market fundamentals is specific for each 

model, the intuition is that it consists of those variables which have a direct32 effect on 

the state of the model according to its reduced form. In the model above equation (18) 

represents the market fundamentals solution. In contrast, a bubble is an additional 

component to the market fundamentals solution which is part of the solution only 

because it is expected to be so. Thus bubbles represent a kind of self-fulfilling 

prophecy. These solutions are given above by (19). Note that bubble components do not 

need to be explosive. 

A subclass of bubble solutions are bubbles driven by variables which are otherwise 

completely unrelated to the rest of the system. In the example above these are given by 

(19) for 0d ≠ . Solutions of this type are called sunspot solutions. 33 The central idea is 

that although expectations in a model may be perfectly rational, it is still possible that 

                                                 
30  See McCallum (1983), p. 141. Moreover, he argues that multiple equilibria also exist in equilibrium 

models with maximizing agents (microfoundation). Under some conditions, explosive solutions can 
be ruled out in such models, but nevertheless multiple equilibria remain possible.  

31  Other types of solutions (which evolved partly due to specific solution algorithms) are the forward-
backward solution by Blanchard and the spurious indicator solution by Taylor (1977). See 
Burmeister, Flood and Garber (1983). 

32  As opposed to an indirect effect only via expectations. 
33  These possibilities were investigated initially by Cass and Shell. They used the term „sunspots“ as a 

synonym for events far away and without actual influence. The word was chosen as an allusion to the 
theories of the 19th century economist William Stanley Jevons, who claimed to have found a 
connection between business cycles and the occurrence of sunspots. See Cass and Shell (1983). For a 
survey of the existence and properties of sunspot equilibria in various types of models, see Chiappori 
and Guesnerie (1991). 
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some extraneous variable influences the dynamics of the model. If some agents in a 

model include this variable into their expectations and so let their decisions be 

influenced by this variable, then the variable has in fact an impact on the behaviour of 

the model. It can therefore be rational for each agent to include it in his expectations. In 

this way the extraneous variable serves as a common signal which causes and 

“coordinates” self-fulfilling expectations in the economy. 

Several criteria have been proposed to select economically relevant solutions from the 

set of possible solutions.34 The non-bubble-solution in particular is often of special 

interest. Taylor (1977) suggested focussing on the solution in which the variable of 

interest exhibits the lowest unconditional variance (minimum-variance criterion).35 But 

this criterion does not always point to a unique solution. It is for example possible that 

there are several variables of interest, each having their minimal variance in different 

solutions.36 Another criterion is the widely used stability criterion of Blanchard and 

Kahn (1980). Originally, the procedure described there was apparently not intended as a 

selection criterion among various solutions. Instead it is a solution algorithm for linear 

rational expectations models which also yields conditions for existence and uniqueness 

of the solution. In the construction of the algorithm it is required that expectations do 

not follow an explosive path, so one has to rule out explosive solutions before applying 

the algorithm to a model. However, in an economic analysis it is often the aim to 

determine under which conditions solutions become explosive. As a selection criterion 

the procedure is therefore not suitable. In addition, there are models with multiple 

solutions which are each stable, and in this case the criterion is not capable of selecting 

one. 

As an alternative McCallum proposes the minimal state variable (MSV) criterion.37 

This criterion closely mimics the intuition behind the market fundamentals solution and 

                                                 
34  The following is a summary of the discussion in McCallum (1999), pp. 625 ff.  
35  See Taylor (1977), pp. 1383 f. However, it is admitted in this article that this criterion might not be 

reasonable. 
36  McCallum adds that it is also not clear why an agent should choose that kind of solution rather than 

another. See McCallum (1999), p. 625. However, this argument is valid as well for Blanchard and 
Kahn’s stability criterion and for McCallum’s suggested MSV-criterion. 

37  The construction of the MSV-solution and the procedure to select it was first proposed in McCallum 
(1983) and further developed in McCallum (1999). 
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gives a formal procedure to identify it. It consists of several conditions. First, a MSV 

solution for a linear model is a linear function of no more than a minimal set of state 

variables, i.e. exogenous or predetermined variables which (directly) determine 

endogenous variables. “Minimal” here means that  

“... it is impossible to delete … any single variable, or a group of variables, 

while continuing to obtain a solution valid for all admissionable parameter 

values.”38 

There can still be more than one solution which satisfies this condition. To select among 

these, a second condition39 is that the MSV solution is still based on a minimal set of 

state variables for all special cases of the model’s parameter values. That means in 

particular that if a certain parameter value (e.g. zero) in the model has the effect that its 

associated state variable does not have an influence on the endogenous variables any 

more, then this state variable must also vanish from the MSV solution for this special 

parameter value. Thus, the second condition leaves a single solution, which by 

construction is the market fundamentals solution. This solution will be referred to as the 

MSV solution in the following. 

Because of its bubble-free nature the MSV solution is of special interest in an economic 

analysis. However, selecting this solution is just a deliberate choice made by the 

economist analysing a model. It is still not sure whether this is the solution which agents 

would choose in a dynamic model. Agents will agree on a particular solution if a 

process of coordination between agents exists with this solution as its limit point. 

Within this process one no longer regards the agents’ expectation formation algorithm 

itself as static. One rather allows expectation formation to change dynamically and one 

allows agents to adapt their expectation formation to their experience. In this way 

expectations evolve with the progression of the model. This dynamic view of 

expectations is the subject of learning theory. 

                                                 
38  McCallum (1983), p. 145. There may be several possibilities to define a minimal set of state variables, 

which nevertheless point to the same MSV solution. See McCallum (1999), p. 626. 
39  This condition is sometimes referred to as „subsidiary principle“. See Evans (1986), p. 147. 
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2.4. Learning 

2.4.1. Learning as a Dynamic View of Expectations Formation 

One important point of criticism concerning the assumption of rational expectations is 

that it implies that agents use the true model’s structure and parameters to form their 

expectations. It follows that the agents know a lot more about the economy they live in 

than the economist who constructed the model does. This does not seem to be a realistic 

description of how expectations are formed in the real world, and has consequently been 

criticised by many economists.40 In order to bring the agents in a model back on an 

equal footing with the modelling economist the idea of bounded rationality was 

introduced.41 This concept requires to add behavioural foundations of expectations in a 

model. This can be done by assuming that agents act like econometricians: They might 

not know the true model, but they can infer information about it from past experience. 

The uncertainty about the true model can be of different degree.42 Agents can be 

modelled as ‘classical econometricians’, who have a clear idea of the model’s structure 

in mind and try to estimate its parameters. Alternatively they can be modelled as 

‘Bayesian econometricians’, who are not sure about the model and the parameters, but 

can specify their uncertainty. Finally, they could even be unsure about whether they 

regard themselves as classical or Bayesian econometricians. Here I will limit the 

analysis to agents of the first kind. Note that the fact that agents are certain about the 

model’s structure does not guarantee that their perceived model structure is the same as 

that of the true model they live in: For example, in their perceived model they could 

employ functions which are based on a different set of variables, or they could base 

their model on wrong functional forms. 

If agents infer information about the model from past experiences, they will form 

expectations no longer based on the true model, but on their perceived model. These 

                                                 
40  An example is given by Paul de Grauwe, who stressed the need for a middle way between naïve or 

adaptive expectations on the one hand and rational expectations on the other hand. In a recent article 
he wrote: “There is a need to move away from extreme assumptions when modelling human 
behaviour. Human beings are neither the dumb automatons of the old models nor the supreme 
creatures of knowledge and understanding of the new models.” De Grauwe (2006). 

41  This idea goes back to the work of Simon (1957). It was applied to dynamic economic systems for 
example in Sargent (1993). 

42  The following designations are taken from Sargent (1993), p. 22. 
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expectations are only rational if the agents succeed to estimate the model’s parameters 

correctly. Otherwise expectations are no longer rational, but they can still be in 

accordance with the agents’ rationality in the sense that it may be impossible to form 

better expectations on the grounds of available information. A second feature of such 

agents is that they revise their inferences about the model when new information 

arrives, so they are in effect learning. It is important to note that this leads to an 

additional43 recursion in a dynamic model: The agents form expectations based on their 

perceived model, their expectations influence the outcomes of the model, which in turn 

are observed by the agents and are thus used to revise their perceptions of the model. In 

this way learning provides a way to model explicitly the above mentioned self-

referential process of which rational expectations are an equilibrium. With learning, 

expectation formation is no longer static but evolves according to a dynamic process 

which will only come to rest if expectations are confirmed by the outcomes, that is in an 

expectations equilibrium.  

Looking at it from a single agent’s point of view, it becomes clear that learning can also 

describe a way of how agents can coordinate their expectations. Every agent forms his 

expectations, all agents’ expectations are aggregated by the model and yield commonly 

observed outcomes, which again are used by every agent to update their views of the 

model. Consistency of individual beliefs, as required by Sargent in his description of 

rational expectations, is a possible limit point of such a process. The process also 

provides further insight into the question of which of the solutions to a rational 

expectations model are dynamically attainable, as outlined at the end of the previous 

section. 

The idea of updating agents’ expectations repeatedly with the advent of new 

information has of course already been employed in a very crude and basic way in 

adaptive expectations. But learning provides a much more general approach to 

adaptation, of which adaptive expectations are only one special case.44 Whereas the 

expectations of a variable themselves are updated according to new information when 

                                                 
43  Additional means here in addition to recursive functions which may be present in the model anyway. 
44  Adaptive expectations are equivalent to expecting a constant and estimating the constant with a 

constant gain learning rule. See appendix A.1 as well as Evans and Honkapohja (2001), p. 49. 
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adaptive expectations are used, in the case of learning the updating concerns the agents’ 

beliefs and in consequence their rules of expectations formation. Thus, in learning the 

adaptation takes place on a meta-level as compared to adaptive expectations.  

Learning agents can be modelled in a multitude of ways, including various methods of 

artificial intelligence such as neural networks, genetic algorithms, classifier systems and 

fuzzy logic.45 Here I will follow an established line of work which models learning as 

estimating unknown parameters by means of statistical methods. A recurrent question 

will be under which conditions expectations with learning will converge to an 

equilibrium, and whether this equilibrium can be considered as a rational expectations 

equilibrium. If convergence to an equilibrium occurs, this equilibrium is called 

learnable.  

In the following section so called iterative or eductive learning will be presented as first 

examples of learning algorithms. In 2.4.3 I will then turn to adaptive learning and 

describe the often used RLS algorithm as the main exponent of learning algorithms with 

decreasing gains. Convergence and stability issues will be treated in 2.4.4. In section 2.5 

constant gain learning will be discussed as an important alternative to decreasing gain 

learning. Section 2.6 summarizes the discussion. 

2.4.2. Early Examples of Learning Algorithms and Eductive Learning 

An early example of the learning approach as described in the previous section is stated 

in DeCanio (1979). In the article a cobweb model with an observable exogenous 

influence and an unobservable disturbance is used to investigate whether the rational 

expectations equilibrium of the model is learnable. The agents in the model try to 

forecast the current price level. Their information set consists of past values of the price 

level and produced quantities as well as of past and current values of the exogenous 

variable. The expectation is made by means of a linear function which calculates the 

expected price level from the elements of the agent’s information set and a set of weight 

parameters. This function can describe rational expectations for one specific set of 

parameters. 
                                                 
45  See Sargent (1993), Chapter 4. Some examples of recent economic applications are Kooths (1998), 

Ringhut (2002), and Mlakar (2006). 
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In this model, the agents start their expectation formation with an arbitrary set of 

parameters and use the associated expectation function to form their expectations for a 

number of periods. In the next step the outcomes from these periods in connection with 

the observable variables are used to calculate a new, improved estimation of the 

parameters. These are again used for a number of periods, and so on. Each set of 

parameters generates a new series of outcomes, which in turn is used to generate a new 

set of parameters. Note that it is precisely their expectations changed by learning which 

in every round invalidates the agents’ last estimations. Only if the expectations form an 

expectations equilibrium their expectations formation is correct in the sense that it is not 

contradicted by the agents’ observation.  

The process can be described as a sequence of parameter sets evolving according to a 

difference equation which links each new parameter set to its predecessor. It can be 

shown that this sequence of parameter sets converges to the parameter set describing 

rational expectations under certain conditions.46 A related model is investigated in 

Bray (1982).47 Note that in this process estimations are made only over distinct periods 

of time, each governed by constant expectations functions. All agents simultaneously 

update their expectations and then start collecting data again. More generally described, 

in this learning process the agents use a PLM with unknown parameters to calculate 

their expectations. That induces an ALM, whose parameters are estimated and used in 

the agents’ PLM in the next round.  

The following will give a first illustration of learning as it is modelled in the example 

above. For simplicity, I will again use the example of section 2.3, of which the main 

results are repeated here for convenience.48 The reduced form of the system is 

(20) 1 1 1t t t t t ty g E y E y uα δ− − += + + + . 

Let us focus on learning of the MSV solution 

                                                 
46  See DeCanio (1979), p. 53 f. 
47  In this article two different learning procedures are discussed. The procedure in Proposition 4 is the 

one which is similar to DeCanio (1979). See Bray (1982), p. 325. 
48  This is also equivalent to a simplified version of the system in Evans (1985). 
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(21) tt uay +=  

which will be considered as the agents’ PLM.49 Let N indicate the index of the period of 

time during which the agents use Na  as a parameter for their expectations. Agents start 

with a random value of 0a . During the period of time N, the agents’ expectations are 

(22) 1 1 1,t t N t t NE y a E y a− − += =  

so the corresponding ALM is 

(23) ( )t N ty g a uα δ= + + + . 

At the end of period N the agents re-estimate a for their expectations in the next period 

of time 1N + . Here, this amounts simply to the mean value of ty  during N, which 

results in the difference equation50 

(24) 1 ( )N Na g aα δ+ = + + . 

This describes the path how a is updated over time. If  

(25) 1α δ+ <  

then the difference equation (24) converges to 

(26) lim
1NN

ga
α δ→∞

=
− −

 

                                                 
49  Learning a constant is the simplest possibility and is used here only for expository purpose, but the 

approach works similar for other PLMs. It is interesting to note that in the case of a constant, learning 
algorithms and adaptive expectations work roughly similar, while of course this would not be true any 
more if agents tried to learn the parameters of more complicated PLMs. 

50  Note that (24) is equivalent to an iteration of a T-map from the PLM to the ALM as in (13) in 
section 2.2. However, in less simplistic models the estimation of the parameters from the ALM is 
more involved, so that this equivalence does not hold any more. Nevertheless, the case at hand 
illustrates the motivation for the concept of E-stability as discussed below. 
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which yields the MSV solution. So if the model’s parameter satisfy condition (25), the 

learning algorithm will ascertain that expectations converge to rational expectations in 

the limit. Moreover, this also shows that in this model the MSV solution is learnable for 

a suitable PLM and a certain set of parameter values. 

One weakness of this approach is that the learning behaviour of the agents is still 

somewhat artificial. Though it may be conceivable that agents do not update their 

expectations in every period t, for example if such updates are costly, it is not natural to 

assume that all agents update their expectations simultaneously. The answer to this 

criticism is to allow for an updating of expectation rules in each period. But that means 

for nearly all models51 that it is no longer possible to perform the estimation of 

parameters over a set of data which are the result of constant expectation rules like in 

the articles mentioned above. Instead the estimations are based on a set of data which 

stem from different expectation functions for each period. That requires a modified 

approach to learning, which will be discussed in the next section. 

A different interpretation of the learning scheme described above is the concept of 

eductive learning.52 In the models above learning takes place in real time: It takes the 

form of repeated updates each of them being performed when new data arrives. In 

contrast to that, eductive learning consists of a process of mental reasoning by the 

agents. Similar to related concepts in game theory,53 an agent repeatedly forms 

expectations with respect to the expectations of others. He starts by forming an 

expectation, then forms his expectations of the expectations of others and modifies his 

expectation to achieve a “best response” to the others’ expectations. But since that 

behaviour would be rational for all agents, he has again to consider similar 

modifications of expectations by the other agents and has to update his expectations 

again. This evolution of expectations (in “notional” time) can be described by difference 

equations like in the examples above. Although eductive learning constitutes an elegant 

                                                 
51  That is, for all models which require more than one data point for the estimation of the parameters. 
52  The idea behind eductive learning is mentioned for example in Evans (1985), p. 1222. A brief 

example is given in Evans and Hokapohja (2001), pp. 372 ff. 
53  The relations between stability criteria for equilibria of eductive learning (iterative E-Stability) and the 

corresponding concepts of game theory (rationalizable solutions) is examined in Evans and Guesnerie 
(1992). 
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way to model learning, it relies on the assumption that an agent knows enough about the 

model to calculate his “best response” in each round of reasoning. So in these models 

agents do know a lot more than the agents described above. The focus of the learning 

algorithm here is more on determining the stability conditions for a particular 

expectational equilibrium in a model with strategic agents than on the consequences of 

the fact that agents do not know the model and have to estimate its parameters.54 In the 

following this line of research will therefore be left aside. 

2.4.3. Adaptive Learning and Recursive Least Squares 

In contrast to the approach in section 2.4.2, in the models below learning will take place 

in each period. This requires that the learning process must be specified differently. An 

intuitive way of modelling learning, which corresponds well to the idea of modelling 

agents as econometricians, would be to assume that agents estimate the parameters of 

their expectations by running ordinary least squares (OLS) regressions of the history of 

the variables determined in their PLM on the history of the determining variables (and 

possibly an intercept, if present in the PLM). 

In this section the approach will be illustrated at the example of univariate linear 

models. Consider a general model of the following structure: Let y be a scalar and ω  be 

a vector of determining variables with constant second moments, and define the vector 

(27) 
1

t
t

z
ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

The vector tω  can include any variable which is part of the agents’ information set at 

time t, so it can include exogenous variables as well as lagged endogenous variables. 

Let ty  be a linear function of 1−tz  with unknown parameters plus a disturbance tη .55 

                                                 
54  It turns out that eductively stable equilibria are generally also stable under adaptive learning 

(described in the following section), but not vice versa. For a comparison between the two types of 
learning see Evans (2001). 

55  An OLS regression will yield unbiased estimates if the disturbance and the vector z of determining 
variables are uncorrelated, which we assume here. Otherwise it is possible to modify the approach by 
using instrumental variables. See for example Ljung and Söderström (1987), pp. 21 ff. 
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The agents believe that this function describes the actual dependence of ty  from 1−tz  

and try to estimate its parameters. The estimated parameters may be stacked in the 

vector φ . So the agents’ PLM can be written as 

(28) 1t t ty zφ η−′= + . 

The agents form their expectations on the basis of this PLM using the most recent 

values of the parameter φ  and of determining variables ω  that are available to them.  

However, like in the examples before, the actual value of ty  may depend not only on 

1−tz  but also linearly on the agents’ expectations of 1, ,t ty y + …  at time 1t −  and thus on 

the parameter values φ  they use to form them. The resulting actual relationship between 

ty  and 1−tz  (ALM) may therefore be different from the one the agents believe. Let the 

ALM be described by  

(29) 1t t ty z η−′= Ψ +  

with Ψ  being a vector of parameters (similar to φ  above). Then these parameter values 

include the indirect influence of 1−tz  on ty  via the agents’ expectations. Thus Ψ  

depends on the parameter values φ  the agents used to form their expectations. This 

dependence can be expressed as a mapping from the parameters of the PLM to the 

parameters of the ALM which is usually called a T-map:56 

(30) ( )T φΨ = . 

Thus the T-map represents the way how the agents’ parameter estimates change the 

relationship between ty  and 1−tz . The ALM can then be described alternatively by 

(31) 1( )t t ty T zφ η−′= + . 

                                                 
56  Such a T-map was already used in the example on p. 12, equation (13). 
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To estimate their parameters φ , the agents run an OLS regression of ty  on 1−tz . 

Generally, given only the PLM, such a regression could be written as  

(32) 
1

1 1
1 1 1

1 1

s s

s t t t t
t t

s z z s z yφ
−

− −
− − −

= =

⎛ ⎞ ⎛ ⎞′= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ . 

This yields the vector of estimated parameters in time s as an OLS estimation on data 

from 1 through s.57 But to capture the idea of updating parameters in each period, an 

OLS regression can alternatively be written in a recursive form (recursive least squares, 

RLS): 58 

(33) 
( )

( )

1 1
1 1 1 1

1
1 1 1 1

t t t t t t t

t t t t t

t R z y z

R R t z z R

φ φ φ− −
− − − −

−
− − − −

′= + −

′= + −
 

where tR  is the moment matrix of tz based on data through 1t − . With suitable starting 

values for tR  and tφ  this is equivalent to (32). Since estimation with this version of the 

algorithm is performed whenever new data arrive, RLS is sometimes called an on-line 

estimation as opposed to OLS as an off-line estimation.  

While I will not enter into a detailed analysis of this algorithm here, it is nevertheless 

useful to give an intuitive interpretation of it. In the upper equation of (33), the vector of 

estimations is updated in each period. The amount of updating which takes place is 

determined by four elements. Starting from right to left, the first element is the 

prediction error, that is the difference between actual outcome and prediction 

1 1( )t t ty z φ− −′− , which is due to the fact that the parameter estimation may be not correct 

as well as to the disturbance which influences ty . The prediction error is multiplied by 

                                                 
57  See for example Sargent (1993), p. 37. 
58  See Sargent (1993), p. 41 or Evans and Honkapohja (2001), p. 33. For a derivation of the RLS from 

the OLS see Ljung and Söderström (1987), pp. 17 ff. Because in eq. (33) a matrix inversion has to be 
performed in each period, it is not well suited for computation. Therefore an equivalent form of the 
RLS exists which circumvents this disadvantage by setting 11 −−= tt RtP and updating it directly via 
the matrix inversion lemma. For details see Ljung and Söderström (1987), p. 19 f. or Harvey (1995), 
p. 120 f. However, the form in eq. (33) allows for a better interpretation. 
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the vector of determining variables 1−tz . These two elements make sure that the 

estimations are updated in the right direction and that updating is stronger for large 

prediction errors. The latter characteristic is somewhat refined by the next element, a 

weighting matrix.59 Roughly speaking, since large prediction errors are not necessarily 

due to bad estimations but can also be the result of a high variance of z , the step of 

including the weighting matrix 1−
tR (i.e., the inverse of the estimated second moments 

matrix of z ) can compensate for this effect: The higher the (estimated) variance of a 

regressor is, the less information it transmits, and its influence is consequently given 

less weight.60  

Finally, each update of the estimations for each new observation is weighted with a gain 

factor61 before it is added to the previous estimation values. Over the course of time 

these factors form a sequence of gains which determines the behaviour of the learning 

algorithm in time with respect to new observations. A decreasing gain like above makes 

sure that the estimates stabilize and “settle down” in time. Here, the specific function 
1−t  guarantees that every observation has the same weight in the estimation, exactly like 

in an OLS regression. In contrast to that, there are also learning algorithms with a 

constant gain,62 in which recent observations have more weight than old ones. The 

lower equation of (33) can be seen as a simple updating of tR . 

2.4.4. Stability under Learning and E-Stability 

In this section I will examine under which conditions the adaptive learning approach 

can converge to an REE solution of the model in question, that is, whether an REE 

solution is learnable. After defining the general problem at the example of 

                                                 
59  If this weighting matrix would be left out, the resulting learning algorithm would be “stochastic 

gradient learning” instead of RLS learning. For details, see Evans, Hokapohja and Williams (2005).  
60  See Williams (2004), p. 6. 
61  The gain γ  is usually required to be a positive, nonstochastic and nonincreasing sequence. To ensure 

convergence to the equilibrium it is usually also demanded that it satisfies 
1 tt
γ∞

=
= ∞∑  and 

2
1 tt
γ∞

=
< ∞∑ . See Evans and Honkapohja (2001), pp. 36 and 123 f. 

62  The relevance of the sequence of gains and constant-gain learning will be examined in more detail in 
section 2.5.1. 



 27

RLS learning, I will characterize the dynamics which result from the application of RLS 

learning to the agents’ expectations. I will then define the criterion of E-stability as a 

simple way to determine convergence of the learning algorithm and discuss under 

which conditions this criterion can be applied. The relations between these elements of 

analysis will be summarized in Figure 2.1.  

As mentioned in the previous sections, running a regression over several periods of a 

self-referential economic model and updating the parameter estimates in each period 

means that such a regression is inherently faulty. By using a least squares regression it 

is assumed that there exists a constant set of parameters which relates the determined 

variable to the determining ones. However, the sample of data on which the regression 

is run is not the result of a constant relationship between the variables: For each data 

point the agents had a different parameter estimate, so for each data point a different 

ALM was in effect. As a straightforward remedy one could imagine to include forecasts 

made on the basis of the estimated parameters for each period into the set of regressors. 

But that is not possible because these forecasts are themselves dependent on z , which 

leads to difficulties with collinearity in the regression.63 

This feedback of the time-varying estimates on the system can be exemplified by 

replacing ty  by the ALM (31) in the RLS estimation (33): 

(34) 
( )

( )

1 1
1 1 1 1 1

1
1 1 1 1

( )

.
t t t t t t t t

t t t t t

t R z z T

R R t z z R

φ φ φ φ η− −
− − − − −

−
− − − −

′= + − +⎡ ⎤⎣ ⎦
′= + −

 

This is a stochastic recursive algorithm (SRA).  

Although a linear regression is thus no longer applicable to the system, it is nevertheless 

possible that such a learning algorithm converges to an equilibrium. Whether this is the 

case, and how the equilibrium thus reached can be characterized, can be determined by 

                                                 
63  See for example Bray and Savin (1986), p. 1133. In this article they also point out that agents in such 

a model are not fully rational and do not behave optimally, because they behave as if the ALM of the 
variables would be constant, while actually it is constantly changing due to their learning. It would 
only be constant in the REE when learning dynamics vanish. But since agents cannot know the REE, 
following such a learning rule is the most rational behaviour available to them. 
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use of stochastic approximation techniques applied to SRAs. The foundations of this 

approach are taken from Ljung and have been applied to economic learning mechanisms 

by Marcet and Sargent.64 Using this approach, an ordinary differential equation (ODE) 

is associated with the SRA in question. It can be shown that under some regularity 

conditions65 the convergence properties of the recursive stochastic algorithm can be 

determined by studying the stability properties of the ODE. Roughly speaking, the 

associated ODE is constructed by determining the average updating direction for a fixed 

vector of estimations (average in the sense of taking the expected value over the 

distribution of z  for the fixed vector of estimations).66 The ODE for the example above 

would be67 

(35) 
( )( )1( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

D D D D

D D

d R E zz T
d
d R E zz R
d

φ τ τ φ τ φ τ
τ

τ τ
τ

− ′= −

′= −
 

In Marcet and Sargent (1989) it was demonstrated that rather than analyzing the whole 

ODE, local convergence (and thus stability) of such a system can be analyzed by only 

considering the difference between the vector of estimations and its T-map, 

( )( ) ( )D DT φ τ φ τ− .68 This result can be illustrated by (35): Since )( zzE ′  is constant, the 

second equation is stable and DR  converges to this value in the limit. Then in the first 

                                                 
64  See for example Marcet and Sargent (1989) and the references cited therein. Various recursive 

stochastic algorithms are treated in Ljung and Söderström (1987). 
65  These concern the functions within the algorithm, the stochastic processes driving it, and – most 

important – the sequence of gains used. For details, see Ljung and Söderström (1987), chapter 4.3. 
66  For a heuristic discussion see Ljung and Söderström (1987), pp. 146 ff. A „receipe“ for the 

construction of the ODE is given on p. 151. 
67  The ODE can be used to analyse the convergence and stability of the underlying SRA, but it describes 

the actual development of the variables in the SRA only approximately. The variables in the ODE are 
therefore distinguished from their counterparts by the subscript D, and a different time scale τ is 
introduced. 

68  See Marcet and Sargent (1989), proposition 3 on p. 351. The result relies on some regularity 
assumptions and some restrictions on the sets of permissible values for z, R and φ . Global 
convergence is more difficult to determine. See proposition 1 in the same article. 
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equation, stability and convergence is determined only by the behaviour of 

( )( ) ( )D DT φ τ φ τ− .69  

This leads to the criterion of expectational stability or E-stability with the following 

definition: Consider an economic model, an REE solution to the model and a PLM 

which nests this solution. Thus the REE solution is characterized by a vector of 

parameters of the agents’ PLM, such as φ  in the example above. Assume that the agents 

try to learn the REE value of φ  from past experiences by an adaptive learning 

algorithm. As before the mapping from PLM to ALM may be denoted by )(⋅T . With 

this mapping the ODE 

(36) ( )( ) ( ) ( )d T
d

φ τ φ τ φ τ
τ

= −  

is constructed. It is clear that if (36) converges, it can only converge to REE values 

of φ , because ( )( ) ( )T φ τ φ τ=  only for an REE. An REE is then called expectationally 

stable or E-stable if the ODE (36) is locally asymptotically stable for the REE value 

of φ , i.e. if in the limit (36) converges to the REE value when starting from within a 

neighbourhood of it.70 The intuition behind that criterion is that an expectations 

equilibrium is expectationally stable if the following condition is fulfilled: If there is a 

(small) random deviation of the expectation function from the expectations equilibrium, 

then the process of expectations updating (or learning) returns the expectations towards 

the equilibrium.71 Thus the ODE can be interpreted as a “stylized learning process in 

notional time”72. For a given model structure and a PLM, the stability of (36) around the 

REE in question depends on the actual parameters of the model. Therefore, with the 

help of this ODE it is possible to determine conditions on the model’s parameters which 

ensure E-stability of the corresponding REE. 

                                                 
69  Provided RD is invertable along the trajectory. See Evans and Honkapohja (2001), p. 38. 
70  The concept of E-stability was introduced by Evans, first in an iterative form which corresponds to 

iterative learning mechanisms as described in the previous section, and later in the form given here 
suitable for adaptive learning. For the former see Evans (1985), the latter is discussed in detail in 
Evans and Hinkapohja (2001). For the following results, see there. 

71  See Evans (1985), p. 1221.  
72  Evans (1989), p. 299. 
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In many systems of a model and a learning algorithm there is an equivalence between 

E-stability of an REE and the stability of the REE under learning. Such an equivalence 

means that if the ODE (36) is stable for a set of model parameter values, then for the 

same set the REE is stable under learning. Moreover, by virtue of the learning process, 

the agents’ PLM will then converge to the REE solution almost surely, if the initial 

value of φ  is sufficiently close to the REE value (local convergence). In other words, 

the REE is learnable. For some models and REEs this convergence can also be shown to 

hold for arbitrary initial values of φ  (global convergence). Likewise the equivalence 

between E-stability and stability under learning implies: If (36) is unstable for a set of 

model parameter values, then for the same set the REE is unstable under learning and 

the agents’ PLM will converge on the REE solution with probability zero. Figure 2.1 

illustrates the E-stability approach and the relationships described above. 
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Figure 2.1: E-stability and stability under learning 
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This equivalence has been shown to obtain for a wide range of models with a learning 

algorithm,73 but for some cases it could not be proven generally so far, while in others it 

was shown that it does not hold. This depends  

- on the class of models which is examined, 

- on the PLM employed by the agents and 

- on the learning algorithm. 

To show the equivalence for a class of models with a suitable PLM and a learning 

algorithm, the conditions for convergence under learning are derived by stochastic 

approximation and are then compared with the conditions for E-stability. However, in 

some cases the conditions for the application of stochastic approximation are not 

fulfilled, so the technique cannot be used.74  

A crucial point is the type of learning algorithm. One main condition for the 

equivalence is that the gain of the learning algorithm has to be decreasing to zero in the 

limit. Otherwise the agents will forever continue to adapt the learned parameter values 

to random fluctuations of the observed data, and the system will never “settle down”.75 

Nevertheless there are some advantages of using a learning algorithm whose gain does 

not decrease to zero. This will be discussed below.76 A possibility that is often used are 

learning algorithms with a small but constant gain. But even among the learning 

algorithms with gains decreasing to zero there are examples for which the equivalence 

between E-stability and stability under learning is not guaranteed. While the 

equivalence holds for many models with RLS learning, it has been shown that for 

                                                 
73  Evans and Honkapohja (2001) examined the conditions for this in detail, especially for least squares 

learning. 
74  For example if the REE in question is an unbounded continuum of solutions rather then a single point. 

See Evans and Honkapohja (2001), p. 192. 
75  While the vector of parameter estimates will thus not converge to a point, it may still be possible that 

it converges to a limiting probability distribution. See Evans and Honkapohja (2001), p. 163. 
76  See the discussion of constant gain learning in section 2.5.1. 
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stochastic gradient learning77 a system can converge to solutions which are not E-stable, 

and that there are E-stable solutions which are not stable under learning.78  

In the literature a distinction is made between a weak and a strong form of E-stability.79 

In the description above it was tacitly assumed that not only the PLM nests the REE in 

question, but that it also does not contain additional variables which are not part of the 

REE solution (that it is not “overparameterized”). In this case E-stability is called weak. 

Additionally, if it is possible to find conditions on the model’s parameters which ensure 

E-stability for an overparameterized PLM as well, these are called strong E-stability 

conditions.80 Intuitively it is plausible that convergence of the resulting SRA to the REE 

gets more “difficult” if additional unnecessary variables are included in the PLM. 

Consequently, the conditions on the model’s parameters for E-stability tend to be more 

restrictive in this case. Under strong E-stability the estimated parameters for the 

superfluous variables in the PLM approach zero in the process of convergence. It is thus 

learned by the agents that – in contrast to their initial perceptions – these variables are 

actually not relevant.  

For different possible REE solutions (such as the MSV solution, explosive or non-

explosive bubble solutions) there can be different conditions on the model parameters 

which ensure E-stability of the respective REE. Some REE solutions turn out not to be 

E-stable at all, and if the equivalence between E-stability and stability under learning 

holds then these REEs are never learnable as well. In this case the REE in question will 

occur with probability zero. Even if the agent’s expectations formation coincides 

initially with such an REE, already minimal random deviations suffice to lead the 

system away from the REE. Economically, such REEs are therefore not relevant. The 

E-stability criterion can consequently be used to select economically meaningful REEs 

among the set of possible REEs if there are multiple equilibria as described in 

section 2.3. Since the MSV solution is of special interest in this context, it has been 
                                                 
77  Stochastic gradient (SG) learning (also called least mean squares learning) resembles RLS learning, 

but it does not use the matrix of second moments as a weighting matrix. For an analysis of SG 
learning and an extension of the algorithm, see Evans, Hokapohja and Williams (2005). 

78  See Heinemann (2000). 
79  See Evans and Honkapohja (2001), for example p. 140 f. 
80  Since there are several possibilities to overparameterize the PLM, strong E-stability conditions are 

usually specific to a class of PLM. See Evans and Honkapohja (2001), p. 141. 
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examined for some classes of linear models whether this solution is always E-stable. 

Although it can be shown that for some parameter values the MSV-solution is not 

E-stable,81 McCallum (2002) argues that these parameter values are economically not 

relevant.82 He demands that an economic model has to be “well formulated”83 in order 

to be economically plausible. According to the definition given in the paper, for a model 

to be well formulated there must be restrictions on the admissible parameter values 

which exclude infinite discontinuities, but still “admit a large open set of values” 

including zero. Although no comprehensive results exist so far, it has been shown that 

at least for a class of well formulated univariate linear models the MSV-solution is 

always E-stable and therefore learnable.84 

Let us get back to the initial question whether RLS and related learning algorithms can 

be used for continuous learning, although the ALM producing the data basis for it is 

changing from period to period. If the SRA (respectively the associated ODE) 

converges to stable values for φ  and R , then the learning algorithm allows the 

parameter estimates to converge to the REE values in the limit,85 even if the algorithm 

used for estimation (e.g. RLS) does not give unbiased estimates along the way. It 

depends on the model and on the model’s actual parameter values whether the system 

converges to a given REE solution and whether convergence is local or global. If the 

equivalence between E-stability and stability under learning holds for the system, then 

convergence can be determined more easily by examining under which conditions 

E-stability occurs. 

                                                 
81  See Evans and Honkapohja (2001), p. 183 ff and 198 ff. 
82  See McCallum (2002), p. 13 ff. 
83  The characteristic of being “well formulated” within the context of learning is introduced in 

McCallum (2002), p. 17. 
84  See McCallum (2002), p. 18 ff. 
85  Provided either the REE is not only locally but also globally stable, or that the algorithm starts within 

an appropriate neighbourhood of the REE. 
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2.5. Constant Gain Learning, Misspecification, and Escape 
Dynamics 

2.5.1. Constant Gain Learning 

The behaviour of a system which includes a learning algorithm depends to a 

considerable degree on the development of the updating of the learned parameters over 

time. This is controlled by the gain parameter of the learning algorithm86, often denoted 

by γ . In many learning algorithms the sequence of gains decreases to zero over time. 

Examples are the stochastic gradient algorithm or the RLS algorithm, in which the gain 

is given by 1−= ttγ . This sequence of gains ensures in the RLS algorithm that every 

observed data point and thus every observed forecasting error have the same weight in 

the calculation of the current estimates, similar to the ordinary least squares algorithm 

which also associates the same weight to every data point.87  

There are several consequences from such a decreasing gain: On the one hand, it allows 

the system to converge over time.88 While the gain decreases, the impact of new 

observations, which are still influenced by random disturbances, gets arbitrarily small. 

Hence it gets increasingly less likely that the learned parameters can be deviated from 

their optimal values by a disturbance, and in the limit the system will “settle down” to 

the optimum estimates. But on the other hand, this is only advantageous if the actual 

model parameters are constant. If for some reason the parameters vary over time, either 

continuously or intermittently, the influence of all former parameter values will forever 

be present in the calculation of the actual estimates. The current estimates will therefore 

always be biased with respect to the current parameter values. That means that the 

learning algorithm is not able to track parameter changes of the model it is supposed to 

estimate.  

An alternative is to use a constant gain learning algorithm. This means to use a (small) 

constant value as the gain parameter γγ =t . It is clear that with such a gain the agents’ 
                                                 
86 See the discussion of the learning algorithm on p. 26 above. 
87  This can be shown by simply transforming the OLS algorithm in recursive form. See Ljung and 

Söderström (1987), section 2.2.1. 
88  Provided the appropriate equilibrium is E-stable. See section 2.4.4 above for convergence properties 

of the SRA resulting from the learning algorithm. 
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observations are no longer equally weighted. Instead, the last observed values are given 

the greatest weight, and the weights of earlier observations decrease geometrically with 

their age.89 The influence of old data gets thus deliberately small over time. If a 

parameter of the actual model changes, the algorithm will ultimately “forget” the data 

generated by the former parameter value, and it will adapt to the new value by forming 

its estimations predominantly from recently generated data. This property of constant 

gain algorithms is called tracking. 

Moreover, a constant gain algorithm can be superior to a decreasing gain algorithm 

when it is used to learn the parameters of a misspecified model.90 Suppose the agents’ 

PLM is misspecified in the sense that an exogenous variable which is present in the 

ALM is omitted in the PLM. Then this variable may influence the outcomes on which 

the agents’ estimates are based without them recognising this influence.91 Depending on 

the evolution of this variable it can be advantageous to employ an algorithm which can 

adapt repeatedly to such unaccounted fluctuations to estimate the PLM’s parameters.  

Intuitively, both reasons to employ a constant gain algorithm are related. Within the 

class of models described by a misspecified PLM, the data generated by the ALM with 

the additional influencing variable can look like stemming from a model with constantly 

changing parameters. Therefore in some cases a tracking algorithm which can adapt to 

such changes may yield better forecasts than a decreasing gain algorithm. 

An important property of a tracking algorithm is that in a stochastic environment the 

algorithm will never converge to equilibrium estimates or to another point, not even in 

the limit, because new – randomly disturbed – data will always have a certain influence 

and will deviate the estimates away from their equilibrium values. That means that a 

model with a constant gain algorithm will exhibit “persistent learning dynamics”92, 

which represent a further source of dynamics in the model, in addition to the usual 

stochastic disturbances. The size and behaviour of this deviations depend, apart from 
                                                 
89  See Marcet and Nicolini (2003), p. 1484, or Carceles-Poveda and Giannitsarou (2007), p. 2680 f. for 

details. 
90  See Williams (2004), p. 6 as well as Evans and Honkapohja (2001), p. 332. 
91  This will be examined in more detail in section 2.5.2. 
92  In the words of Evans and Hokapohja (2001). 
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the model structure, mainly on the size of the constant gain parameter γ  and on the 

distribution of the disturbances. The lower the value of the gain, and the tighter the 

distribution of the disturbances, the smaller the deviations get and the more the learned 

estimations stay near their equilibrium values. For some models it has already been 

shown that with a small gain and a bounded support of the disturbances, in the limit the 

estimates are distributed stochastically in an unbiased and tight normal distribution 

around the equilibrium values,93 but more complicated dynamics are possible as well.94  

As a consequence of such learning dynamics, it is possible that agents are forced to 

coordinate on one learning algorithm: If some agents choose to use a constant gain 

learning algorithm (as opposed to decreasing gain learning), they can cause the system 

to exhibit additional dynamics, under which a constant gain algorithm is indeed the one 

who yields the best forecasts, so rational agents would choose this kind of learning 

algorithm. Along the lines of an analogous argument agents can also be forced to 

coordinate on the same optimal value for the constant gain parameter γ .95 The choice 

of constant gain algorithm for learning can thus be a kind of “self-fulfilling prophecy”.  

Above it was suggested that one possible motivation to use a constant gain learning 

algorithm is the possibility that agents use a misspecified model for their forecasts. The 

consequences of a misspecified PLM, especially in connection with a constant gain 

learning algorithm, will be described in the following two sections. 

2.5.2. Self-Confirming Equilibria and Misspecification 

In this section the type of equilibrium which can be reached with a misspecified PLM 

will be characterized. From the different possibilities for a misspecification, here and in 

the following the discussion will focus on the case that a variable which influences the 

outcomes in the ALM is omitted from the PLM. As described in section 2.2, the original 

                                                 
93  E-stability appears to be a necessary condition for this convergence to take place. In addition to that, 

some further assumptions and conditions are required for convergence to such a distribution. See 
Evans and Honkapohja (2001), p. 333 ff. 

94  See section 2.5.3 below. 
95  Evans and Honkapohja (2001), p. 346 ff. gives a short analysis of this line of thought. See also Evans 

(2001), section 4. 
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condition of Muth which should be satisfied by “rational”96 expectations was that the 

agents do not perceive any contradiction between their expectations and the observed 

data generated by the true model. But an REE is only one special possibility to satisfy 

this condition, namely the one requiring that agents base their expectations on beliefs 

about the true model which are complete and correct. This would be the case if the PLM 

were well specified (so it nests the REE) and all parameter estimates of the PLM were 

correct. But there may be other beliefs satisfying the condition as well although they are 

not correct. To satisfy the condition, it is only necessary that these beliefs cause the 

actual true model to generate data which are consistent with the beliefs. In other words, 

it is necessary that the agents cannot detect any correlations between the forecasting 

errors and the data used in their subjective model. Then the agents attribute the 

forecasting errors to noise and do not have any reason to change their beliefs. 

Subsequently they do not change their behaviour and the model continues to generate 

data which do not contradict their beliefs.  

So this condition describes an equilibrium in the self-referential process of expectation 

formation and data generation in a more general way than an REE. Such an equilibrium 

is called self confirming equilibrium (SCE).97 An REE is therefore the special case of a 

SCE in which all beliefs are correct. But apart from that, a SCE can also exist with 

incorrect, misspecified beliefs. It is sufficient that the agents’ beliefs (and their resulting 

expectations) are correct about events that are observed sufficiently often, and that they 

are incorrect only about events that are rarely observed.98  

If the agents’ PLM is misspecified, then it does not nest the REE. Therefore no matter 

how the learning of the PLM’s parameters takes place, it is impossible that the agents’ 

beliefs will ever be completely correct, and their expectations will never become 

rational expectations. Nevertheless it is still possible that by learning the system 

converges to a SCE. In the case of a misspecified PLM such a SCE is also called more 

specifically restricted perceptions equilibrium (RPE).99 As in every SCE, in an RPE 

                                                 
96  Here, the term “rational” is used in the broader sense, not in the specific meaning of RE.  
97  The term was first coined in game theory for an analogous situation. See Fuldenberg and Levine 

(1998). 
98  See Hansen and Sargent (2001), p. 532 ff., Williams (2004), p. 1., or Cho and Sargent (2006). 
99  See Evans and Hokapohja (2001), p. 57 and p. 317 ff. 
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agents also do not perceive any correlation between their forecasting errors and the 

observed data they use in their model.  

2.5.3. Escape Dynamics 

As suggested in the section 2.5.1, constant gain learning can lead to more complicated 

dynamics than estimates simply converging once and for all to a distribution around the 

equilibrium values. A description of the conditions for these dynamics and their 

properties will be given in this section.  

When agents learn, they estimate the parameters of their PLM on the basis of past 

observations. Since these observations are influenced by random shocks, the sequence 

of estimates which results from learning is not always moving smoothly in the direction 

of the equilibrium values. Instead the estimates can repeatedly be moved away from the 

equilibrium values if large values are observed for the disturbance variables in a model. 

With decreasing gain learning, the influence of newly observed data gets smaller as 

agents learn, so the probability and size of such movements away from the equilibrium 

decreases. In the limit the system settles down at the equilibrium values.  

In contrast, if agents use a constant gain learning algorithm, these deviations from the 

equilibrium will occur repeatedly forever, because past observations are discounted and 

newly observed data will always have a positive weight. The movement away from 

equilibrium can become considerable due to an accumulation of stochastic shocks. Such 

movements are called escapes.100 The particular path followed by the agents’ beliefs 

during an escape is the result of the interaction of two opposing dynamics.  

Consider first a system in which agents use a constant gain learning algorithm, but with 

an infinitesimal small gain. So the influence of a single random shock on the agents’ 

beliefs approaches zero, and escapes cannot occur. The remaining dynamics of the 

agents’ beliefs are described by the mathematical expectation of the learning dynamics. 

That is because, when agents are learning with an infinitesimal small gain, they average 

over an infinite number of observances, so deviations due to random shocks are 
                                                 
100  Escape dynamics in learning models have been analyzed formally in Williams (2004). The following 

results are taken from there, but are described here in a non-formal, intuitive way. 
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averaged out (law of large numbers). This expected evolution of the agents estimates is 

called mean dynamics.101 If the equilibrium is learnable, then the mean dynamics pull 

the agents’ estimates smoothly towards the equilibrium values.  

But with a positive constant gain, the evolution of agents’ beliefs consist of the mean 

dynamics superimposed with the influence of random shocks. This influence, separated 

from the mean dynamics, is called escape dynamics. Although the escape dynamics are 

caused by random shocks, it is possible to characterize the most likely path followed by 

the agents’ estimates in case of an escape, called the dominant escape path.102 The 

higher the value for the gain parameter, the more likely escapes can be observed for a 

given time interval. 

Depending on the model, an escape path can move the agents’ beliefs away from the 

equilibrium to a noticeable degree and for a comparatively long time, if the system 

exhibits features that reinforce the escape dynamics or dampen the mean dynamics 

along the escape path, at least temporarily. This phenomenon has been shown in 

different types of models. First, escapes can cause agents to switch between multiple 

equilibria. For example, in a model in Evans and Honkapohja (2001) there exist two 

stable equilibria. Large escapes can cause the agents to switch from the neighbourhood 

of one equilibrium, switch to the other and remain around there until another escape 

cause them to switch back.103 Such large escapes can occur in the model if the value of 

the gain parameter or the support of the disturbances are large enough. Once escaped 

from the first equilibrium, the agents estimates are moved further away and towards the 

second equilibrium by the mean dynamics due to which the second equilibrium is 

stable, and vice versa. 

A different but related situation is considered in an illustrative model in 

Williams (2004). Here, there is a unique equilibrium, but a second point describes 

                                                 
101  In the case of decreasing gain learning, the agents estimates follow similar dynamics in the limit. 

Recall that with the stochastic approximation technique we also used the mathematical expectation of 
the exogenous disturbances to construct the associated ODE which describes the evolution of the 
estimates. 

102  For details, see Williams (2004).  
103  See Evans and Honkapohja (2001), p. 337 ff. 
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“nearly” an equilibrium. That is, this point would be an equilibrium in a deterministic 

version of the model, and in the stochastic version the learning dynamics are 

nevertheless comparatively weak around it. Here the dominant escape path leads from 

the unique equilibrium towards this point. During an escape agents beliefs follow most 

likely this path away from the equilibrium and remains around the “near equilibrium” 

for some time because of the weak mean dynamics there, but eventually return to the 

equilibrium. 

A third mechanism which can reinforce the escape dynamics is a combination of 

misspecification and feedback of agents’ actions on the model dynamics. An example is 

the model used in Bullard and Cho (2005), which will be described here without going 

much into the details. The model consists of a central bank and private agents. The 

central bank uses a Taylor rule but adapts the inflation target of the rule to the target 

which is expected by the agents. The agents have misspecified perceptions of the central 

banks policy in the sense that they expect the inflation target to be independently set by 

the central bank but unknown to them. Instead, they infer this inflation target by trying 

to learn the parameters of the central bank’s Taylor rule with constant gain learning. 

The system is constructed to exhibit the following feedback: If one of the estimated 

parameters of the Taylor rule (as perceived by the private agents) escapes towards lower 

values, then the agents infer a lower target inflation rate. This in turn is incorporated 

into the central banks rule, which generates observations pushing said estimated 

parameter further down, until the system comes to a rest in a point with much lower 

inflation than in the equilibrium. However, this point is no equilibrium, and the system 

eventually returns to the equilibrium it started from.  

In the model, the escape dynamics are made possible by the constant gain learning 

algorithm and are reinforced by the combination of misspecification and feedback in the 

model. As a result, the agents beliefs escape repeatedly for longer periods towards the 

low inflation point. The authors emphasize that the escape dynamics are not generated 

by a change of central bank policy, and that the misspecification is quite subtle and not 

detectable by the agents in the SCE. The resulting escapes are nevertheless relatively 

huge and will come as a surprise for the agents as well as for the central bank, since 

from their point of view nothing special happened to trigger it.  
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This last point is true for escapes in general: They represent distinctive shifts in beliefs 

and consequently shifts in model outcomes. For the agents in the model these shifts 

seem to come “out of nothing”. In this respect escapes may help describe sudden 

changes within empirically observed time series that could not be explained by models 

up to now.  

2.5.4. Plausibility and Empirical Support  

While not many empirical studies have been conducted so far, constant gain learning 

and the resulting dynamics seem to be a more natural description of actual real-world 

learning behaviour than decreasing gain learning. Several theoretical arguments seem to 

support this view. First, agents cannot be sure that the environment is not changing. 

Therefore it may be rational to allow for a changing environment when choosing a 

learning algorithm. Likewise, agents cannot be sure to employ a correctly specified 

PLM. As explained in the previous sections, this could also be a motivation to use a 

constant gain algorithm. Both arguments are valid especially if agents are risk-averse. 

Confronted with an unknown environment, agents use a learning algorithm to derive 

information about it, but since “unknown environment” includes the fact that it is also 

unknown to them whether it is changing or not and whether they use a correctly 

specified model of the environment, it would be rational to allow for these uncertainties 

by using a constant gain algorithm, while accepting that the resulting estimates may not 

converge completely. That kind of reasoning could be well expressed by the old adage 

that “it is better to be approximately right than exactly wrong”.  

Apart from that and seen from a technical point of view, in a decreasing gain algorithm 

the starting point (the time of the first data point used for learning) of the algorithm has 

a significance it does not seem to deserve. While data from this point and all points later 

enter the algorithm with equal weight, all data before this point are discarded 

completely. So if an agent uses decreasing gain learning, he deliberately partitions data 

into one part to use and one part to ignore, which forms a sudden break in the treatment 

of the data generated by the economy.104 In contrast to that, constant gain learning 

admittedly also has a starting point, but nevertheless the first data included in the 
                                                 
104  The same argument applies if it is not the agent who decides on the starting point, but the fact that 

data are available only from a certain date on.  
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learning process always have the least weight, approaching zero in the limit. The 

transition between the treatment of data before and after the starting point is thus 

smoothed.  

Considering the level of single agents, a related conjecture can be made. Suppose that 

agents all use decreasing gain learning algorithms, but are heterogeneous in so far as 

they use data from different starting points on. Then the probability that a certain data 

point is used for an agent’s estimations decreases the older it is. It seems plausible that a 

lower weight for older observations can be the result of the aggregation of such agents. 

Even if the resulting distribution of weights may not be exactly described by the 

weights that result from constant gain learning, it can be conjectured that such a 

learning algorithm, applied to a (fictitious) representative agent, may mimic the 

heterogeneous agents’ behaviour better than decreasing gain learning. 

In the empirical studies conducted so far, constant gain learning appears to provide a 

reasonably accurate description of real-world behaviour. The consistency of the 

theoretical learning model with empirical results can be examined in two ways: Either 

directly by comparing survey results about subjective expectations of individuals with 

the results suggested by learning algorithms, or indirectly by comparing economic time 

series which may result from learning behaviour with a theoretical model with bounded 

rationality and learning. The latter approach can be implemented by fitting such a model 

to economic time series or by comparing the characteristics of numerical simulations of 

the model with the characteristics of the respective time series. 

Both approaches are used in Branch and Evans (2006). The authors use a simple VAR 

model with two alternative types of learning (decreasing and constant gain) to forecast 

inflation and output growth. They also compared the forecasts made by the model to the 

ones of professional forecasters collected in a survey. The model with constant gain 

learning performed significantly better in forecasting out of sample than the one with 

decreasing gain. Constant gain learning (albeit with slightly different values for the gain 

parameter) also provided the best fit with the professional forecasts. In a related study 

Weber (2007) used a similar model to examine how households and professional 

forecasters learn about inflation evolution in different countries of the European 
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Currency Union. Again, the forecasting both of households and of professionals can 

best be described by constant gain learning. The constant gain parameter was generally 

higher with professional forecasters than with households. This could suggest a greater 

awareness for a possibly changing environment on the side of the professionals.  

It is sometimes difficult to explain sudden shifts and changes in economic time series by 

macroeconomic models, if they occur seemingly without being triggered by detectable 

changes in behaviour or the environment. Especially since the application of rational 

expectations has become standard practice in macroeconomic models, it has been a 

common problem that those models often do not exhibit sufficient dynamics in 

comparison to the time series empirically observed. The persistent learning dynamics 

and the possibility of recurrent escapes in models with constant gain learning therefore 

represent an intriguing feature. In some studies it has been examined how simulated 

escapes can mimic the pattern and stylized facts of periods of high inflation, which 

sometimes seem to occur without a particular cause as well. 

In Albert and Nicolini (2003) the authors develop a model to emulate stylized facts of 

recurrent hyperinflations in South American countries. Those periods can occur without 

a change in fiscal or monetary policy and after a long period of low inflation. In the 

model it is possible that agents beliefs about expected inflation escape a low-inflation 

equilibrium so that the model enters an unstable area in which hyperinflations are likely 

to occur. In periods of hyperinflations the agents’ estimates are driven further away 

from the equilibrium by a positive feedback between actual and perceived inflation until 

the government forces inflation to stop by imposing an exchange rate rule. The agents in 

the model use two learning rules alternatively. They switch from RLS to constant gain 

learning when they detect a changing environment, that is, when their prediction error 

exceeds a threshold. In periods of hyperinflation this is the case, and the use of constant 

gain learning increases the probability that after a period of hyperinflation the system 

enters the unstable area again. Those escapes into hyperinflation are therefore caused at 

least in part by the persistent learning dynamics due to the constant gain algorithm. The 

authors show in the article that their model matches the stylized facts about those 

hyperinflations better than standard inflation models, and that their model differs from 

those only in the use of learning instead of rational expectations. 
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The study of Sargent, Williams and Zha (2006) extends the examination of South 

American inflation. The model used in this paper is in many points similar to the one of 

Marcet and Nicolini (2003). As in this model, escapes from the equilibrium are possible 

and can trigger a period of hyperinflation, which is eventually stopped by government 

reforms. A prominent difference is that agents in this model always use a constant gain 

learning algorithm. In contrast to most other studies concerning the empirical 

significance of learning algorithms, which compare only stylized facts or some 

characteristic figures of the model and the empirical data, the authors actually estimate 

their model for five countries and compare the fit of their model with the fit of a 

standard autoregressive model. Their finding is that their model fits the data very well, 

especially in the hyperinflation episodes, where it performs even better than alternative 

models.105  

Finally, the model in the already mentioned article by Bullard and Cho (2005) can 

mimic the evolution of inflation towards a low level, like for example in Japan during 

the 1990s. Although the authors stress that the article’s theme is a purely theoretical 

one, their model is motivated by the experiences of Japan. They do not apply it to 

empirical data, but the general framework of the model and the resulting evolution of 

inflation resemble the basic picture of the Japanese data. The sudden shift to low 

inflation rates and the seemingly unexplainable inefficiency of a previously well 

working central bank policy can be well described by a learning model featuring 

escapes. 

2.6. Summary  

In this chapter the basic concepts of adaptive learning have been described. Learning 

was introduced as a dynamic formation of expectations. It has been shown how rational 

expectations can be regarded as an equilibrium point of recursive least squares learning 

and how the dynamics and the stability properties of the learning process can often be 

captured by the E-stability concept. In the last section constant gain learning was 

discussed as an alternative to RLS learning. The studies cited in this section, as well as 

                                                 
105  See Sargent, Williams and Zha (2006), p. 27 ff. This is in particular rewarding because from a 

theoretical point of view a standard AR model may fit the data well, but does not explain the 
underlying mechanisms in a satisfying way, in contrast to a model like the one used there. 
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theoretical arguments, support the view that constant gain learning, also in combination 

with misspecification, can be a rewarding method to extend macroeconomic models: 

While being able to explain expectation formation in a more realistic way than standard 

rational expectations, these methods can also improve the empirical fit of 

macroeconomic models. However, constant gain learning can be seen as being based on 

RLS learning and as a refinement of it. As described above, models with constant gain 

learning exhibit additional dynamics with respect to RLS learning, because stochastic 

disturbances will continue to influence the agents’ learning forever due to the constant 

gain. This means that in general those models tend to be less stable than their 

counterparts which use RLS learning. Moreover, the dynamics of models with constant 

gain learning are more complicated to describe mathematically, so the basic 

consequences of the introduction of learning instead of rational expectations in a model 

can be shown less clearly.  

For these reasons RLS learning is still the method of choice in many of the more 

abstract models, albeit constant gain learning is employed more and more in empirical 

works. Roughly speaking, it is in general more convenient to use RLS learning in a 

basic, abstract model to examine its basic learning properties first in a straightforward 

way. Once it has been established that the model’s behaviour under RLS learning is 

unproblematic, constant gain learning can be used as a more refined variant to render 

the model more realistic. This work examines some basic consequences of the 

introduction of learning into a dynamic optimization model by the example of a basic 

and abstract consumption model. It is therefore reasonable to employ the recursive least 

squares learning method in order to concentrate on the main features of the model and 

to render the results as clear as possible.  
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3. Learning in a Dynamic Optimization Model 
3.1. A Basic Consumption Model 

3.1.1. Dynamic Optimization 

The RLS learning technique described in the previous chapter will now be applied to a 

basic consumption model with dynamically optimizing agents.106 The model is a very 

elementary and rudimentary example of a micro-founded dynamic general equilibrium 

model, but as the dynamic optimization approach to determine the level of consumption 

is one of the building blocks of many more comprehensive models, it is a useful object 

to demonstrate the impact of learning. The consumption model is used here as a 

concrete example, but the results of the discussion could be applied to other dynamic 

optimization problems with a similar structure. Although well known, the canonical 

solving technique of the model will be discussed in detail in order to emphasize some of 

its properties which will be important when introducing learning. While in its usual 

form the model uses a representative agent, I will allow for heterogeneity from the 

beginning. This will make it easier to examine the impact of the representative agent 

assumption later on. Throughout this work, heterogeneity should be understood as the 

possibility of heterogeneous values for the agent’s variables like income or consumption 

and also for his beliefs and expectations, but not for his fundamental parameters like his 

temporal discount factor or the shape of his utility function, which are still assumed to 

be the same for all agents.  

The model describes a closed economy which is inhabited by a number of (possibly 

heterogeneous107) infinitely-lived private consumers, indexed by i∈` . In this section, I 

will consider the individual consumer’s dynamic optimization problem, leaving the 

effects of aggregation aside for now. Each consumer tries to maximize his expected life-

time utility, subject to his budget constraints. The problem of consumer i is then given 

as 

                                                 
106  The model is close to those used in the related literature, like Honkapohja, Mitra and Evans (2003) or 

Preston (2005a). For methodological background, see for example Woodford (2003), chapter 2 or 
Obstfeld and Rogoff (1996), chapters 2 and 5. 

107  The extent to which the agents are allowed to be heterogeneous will be defined more precisely below. 
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The operator i
tÊ  describes consumer i’s expectation in period t, which is based on his 

subjective beliefs. The circumflex denotes that in this general notation the expectation 

may be not rational. β  denotes the temporal discount factor which is assumed to be 

identical for all agents and to satisfy 10 << β . )(⋅U  is the instantaneous utility 

function, assumed to be identical for all agents as well, to satisfy 0)( >⋅CU  and 

0)( <⋅CCU  and to have a constant intertemporal elasticity of substitution.108 i
tC , i

tY , and 

i
tB  designate the consumer’s consumption in period t, his income in t, which may be 

stochastic, and his net wealth in the form of bonds at the beginning of period t, 

respectively. Those bonds are riskless and the only available asset in the economy.109 

tR  is the gross one-period rate of return for this asset from period t to t+1 which is 

determined in period t by market clearing on the bonds market. The information set of 

the agents comprises information about past periods and the present one, but only 

expectations of future periods’ variables. 

                                                 
108  )(⋅CU  denotes the first derivative of U with respect to C, )(⋅CCU  the second derivative. 

109  Thus the model’s asset markets are incomplete and consumers cannot insure against individual risks.  
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Since the model describes a closed economy, the aggregated net wealth in each period 

must be zero: 

(40) 0
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i
tB . 

The flow budget constraint (38) must hold in all periods. Iterating it over the infinite 

horizon of the consumer and using the fact that in the optimum (39) holds as an equality 

gives the usual intertemporal budget constraint  
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In order to close the model it is necessary to specify the process driving the exogenous 

state variables, here the income i
tY . I will assume that each agent’s income follows the 

process 

(42) 1

i
tvi i i

t tY M Y eρ−=  

with 1<ρ , 0iM >  and where { }itv  is a bounded i.i.d. white noise process with zero 

mean which is similar for all agents.110 

The consumer’s problem can be solved by maximizing (37) subject to (38) and (39). 

This yields the stochastic Euler equation:111 
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This equation, albeit familiar, deserves some remarks. First, it is useful to clarify the 

interpretation of the expectations operator i
tÊ . As mentioned above, it denotes the 

agent’s expectation, based on his subjective beliefs. Optimally, these beliefs are based 
                                                 
110  A process like (42) is frequently used for convenience, because it results in a AR(1) process when log-

linearized. 
111  The derivation can be done by dynamic programming.  



 49

on the complete set of information available to him in period t. If the operator is applied 

to future variables within the agent’s influence like here to i
tC 1+ , this set of information 

comprises the knowledge about his own behaviour. Accordingly, the expectation should 

be interpreted as the value which the agent expects he will choose as the optimum in the 

respective future period, given the information available to him in period t.112 The fact 

that the variable is within his influence means that the agent knows according to what 

reasoning he will behave in period t+1, and he will use this knowledge to form his 

expectations in t as well as possible. It is not plausible if an agent has an expectation of 

his future consumption which is contradicted by the way how he actually determines his 

consumption in the current period. This is called “internally consistent” expectations by 

Preston.113  

Furthermore, it is important to note that the Euler equation (43) determines the optimal 

consumption in t only if it holds for all periods tT ≥ . This is crucial because i
tC , 

determined according to (43), is only optimal on the condition that the expected value 

for i
tC 1+  is indeed optimal as well, given the information in t. The expected optimal 

value for i
tC 1+ , in turn, can only be determined by the Euler equation if the expected 

value for i
tC 2+  is optimal, and so on. The Euler equation is constructed recursively, so it 

is actually an infinite set of conditions, each linking expected optimal consumption in 

one period to expected optimal consumption in the next one. This is an elegant way to 

express the optimality conditions despite the “infinite-horizon”-nature of the problem. 

However, when applying the Euler equation one should still bear in mind that each 

instance of (43) for a particular T is only part of solving the consumer’s problem 

simultaneously for the entire future consumption path. In the example above this means 

that for every period T the entire future optimal consumption path is reflected in the 

expected optimal value for i
TC 1+ .114 So, if an optimizing agent uses the Euler equation to 

determine his optimal consumption in t, this only makes sense if his expectation of his 

                                                 
112  This interpretation requires that the utility function is not subject to dynamic inconsistency, which is 

ensured by the utility function used in the example.  
113  See Preston (2005), p. 97. 
114  If one solves the dynamic optimization problem by dynamic programming, this property of the Euler 

equation becomes especially apparent in the use of the “value function”.  



 50

consumption in the next period is as good as possible, given his information set in t. The 

Euler equation as an optimality condition therefore implies that the expectations 

operator used in (43) is interpreted as being “internally consistent” as described in the 

paragraph above.115  

Moreover, the Euler equation is only a necessary condition which does not always 

ensure optimality on its own. It imposes an optimality condition on the consumption in 

one period relative to the values in other periods but not on the absolute level of the 

consumption. Consequently, with only the Euler equation as a condition, it may be 

possible for a consumer to spend more or less than his intertemporal budget allows. In 

order to guarantee optimality and especially feasibility of the consumption path, 

equation (43) must therefore be combined either with (38) and (39) or with (41). In 

other words, the Euler equation determines the shape of the consumption path, as 

expected in t, while the intertemporal budget constraint determines its level.  

The main result from the reasoning above is the following: An agent’s dynamic 

optimization problem similar to the one outlined here can generally be solved by 

making use of the intertemporal budget constraint (41) as well as the Euler equation 

(43) for all periods tT ≥ . That means that an agent can find the optimal current 

consumption if he employs all relevant state variables – their actual values or their 

expectations for future periods – which are used in this equations and which are beyond 

the agent’s influence. In the model above these comprise i
tB  as well as { }tTRY i

T
i

T ≥, .  

The considerations above describe how the optimal current consumption can be 

determined in a dynamic optimization environment in general without reference to a 

specific model, that is without regard to the concrete assumptions concerning the 

stochastic processes of the exogenous variables or the homogeneity or heterogeneity of 

the agents. However, that does not necessarily mean that an agent must always consider 

all of these equations and all of these variables explicitly in his decision. Depending on 

the actual model it may be possible to omit some of the equations or variables while still 

arriving at a REE solution. For example, if the expectations of i
TY  and i

TR  are related to 

                                                 
115  Again, barring the case of a dynamically inconsistent utility function. 
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the variables of the current period in some stable way, it may still be possible to capture 

their influence by considering the influence of the variables of the current period and 

thus to determine the optimal current consumption by using just the current state 

variables. Whether this is indeed possible and whether the resulting solution is stable 

under learning depends on the way the actual model is constructed. In other words, it 

depends on the modeller’s decisions about how to close the model in terms of 

expectations and additional assumptions, such as the way the agents form their 

expectations or the scope of the representative agent assumption. I will argue that in 

some model types, namely in rational expectations models with a representative agent, 

it is possible to use simplifying shortcuts when solving the dynamic optimization 

problem which cannot be used generally. As a consequence, some forms of learning 

will lead to rational expectations only when they are applied to those special kinds of 

models, while others can be used generally without restrictions. I will argue that this is 

at the heart of the debate about the differences between Euler equation learning and 

infinite horizon learning. 

3.1.2. Steady State and Log-Linearization of the Model 

A frequently used technique to solve a model like the one above is to transform it in a 

log-linear form. This makes it possible to use purely linear methods, and as a further 

benefit it allows a solution without having to specify the instantaneous utility function 

in detail. To arrive at the log-linear form, the model’s variables are first substituted 

using the logarithm of their deviation from their steady-state value. The model is then 

linearized around the non-stochastic steady state by way of a Taylor expansion. The log-

linear form is consequently an approximation to the original model, which can 

nevertheless be employed provided the model’s variables remain in a neighbourhood of 

their steady-state values.116 Throughout this work it will be assumed that the stochastic 

                                                 
116  However, it may be questioned what consequences a log-linearization has for the notion of an 

expectation. It may make a difference whether an agent forms an expectation of a future absolute 
value or whether he forms an expectation of a future logarithmic deviation from a steady state, which 
he may not know. But this question is left aside here.  
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disturbances, like { }itv  in the exogenous income process (42), are bounded in such a 

way that the system remains sufficiently near its steady state.117 

The non-stochastic steady state of the income and the rate of return as implied by (42) 

and (43) are 

(44) 
1

1i iY M ρ−= , 1−= βR  

where steady-state values are designated by an upper bar. The non-stochastic steady 

state of the consumer’s net wealth and consumption, as implied by (38) and (39), would 

in a general notation – without assuming a representative agent – be  
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Note that these steady state values depend on the agent’s wealth in the current period t. 

That means that if the agent’s wealth varies in some future period, the steady state, as 

seen from this future period, would be different. However, in order to make variables of 

different periods compatible, they all have to be log linearized around the same steady 

state. I define this “reference steady state” as the steady state of period t=0, so that 
ii BB 0=  and the correspondent steady states of consumption will be used as 

linearization points for all periods. 

The model will now be log-linearized at this steady state. In the following, lower case 

variables indicate the natural logarithm of the deviation from the steady state, for 

example ( )lni i i
t ty Y Y≡  and so on, with the exception of the agent’s wealth where the 

log deviation will be defined as ( )lni i i i i
t tb B B C C⎡ ⎤≡ − +⎣ ⎦ .118 The log-linearization of 

the income process (42) for the agent gives 

                                                 
117  For further discussion, see Woodford (2003), chapter 2 and in particular appendix A.3. 
118  This is done to avoid a technical problem. Were the log deviation of wealth taken as ( )lni i

t tb B B≡  it 

would not be defined for a zero steady state wealth. The definition used here circumvents this problem 
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(46) 1
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Using a first-order Taylor approximation,119 the stochastic Euler equation becomes 
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Here, σ  denotes the intertemporal elasticity of substitution at the steady state. Since the 

instantaneous utility function is assumed to exhibit a constant intertemporal elasticity of 

substitution, this value is independent from the agent’s steady state consumption and 

consequently the same for all agents. Finally, log-linearizing the flow budget constraint 

(38) yields 
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Log linearizing the model in this way gives rise to two technical difficulties. If 

individual agents are considered, it is frequently necessary to aggregate their individual 

variables over all agents within the economy. After the model has been log-linearized, 

each variable is expressed as a deviation from its steady state, which cannot be simply 

summed up over all agents. However, as it is shown in appendix A.2, the variables can 

nevertheless be aggregated by constructing the arithmetic mean of the individual log 

deviations, provided that the number of agents is sufficiently large and that the log 

                                                                                                                                               
while having the log deviation bt

i still centred around the steady state. For the special case of a 
representative agent wealth is always zero, so it could as well be omitted from all equations before the 
log linearization, but this is no longer possible when individual agents are considered. The definition 
used here is possible as long as i i i

tB B C> − . It is assumed that this condition is covered by the 
requirement mentioned above which demands that the system remains sufficiently close to its steady 
state. 

119  Because of Jensen’s inequality, it would be more adequate to use a second-order Taylor 
approximation when linearizing an equation which contains an expected value of a (possibly) non-
linear function like the Euler equation here. See for example Obstfeld and Rogoff (1996), p. 504. With 
a second-order approximation, equation (47) would be augmented by a constant term which depends 
on the variance of the random variables. This would result in a slightly different value for the 
equilibrium interest rate, but it would not qualitatively change the results this work focuses on. It is 
therefore neglected here. Another effect, that has been neglected here as well, can arise from the fact 
that both future consumption and future interest rates are random variables, so there can be a further 
influence from the covariance between those variables. See Mason and Wright (2001) for a detailed 
discussion. 



 54

deviation of the variable in question and its steady state are not correlated over the 

population of agents. Due to the definition of the log-linearized variables as percentage 

deviations from the respective steady state, and as long as the stochastic variables 

driving the model are distributed appropriately, this condition often holds.120 

Throughout this work it will be assumed that no log-linearized variable is correlated 

with the respective steady state value over the population of agents, so that the variables 

can be approximately aggregated by the average of their log deviations. Possible 

correlation between the log-linearized variables are, of course, not ruled out by this 

assumption. Similarly it is assumed that the initial beliefs of the agents are 

independently distributed over the population of agents and are not correlated with the 

log-linearized variables either. 

Because of the log-linearization as it is used in this work, it will sometimes also be 

necessary to calculate the average ratio of the steady state wealth and the steady state 

consumption ( )1
1

n i i
i

n B C−
=∑  in the course of an aggregation. The average of the 

steady state wealth over all agents in a closed economy must always be zero, but – 

depending on the distribution of wealth and consumption over the agents –  this cannot 

be taken for granted for the ratio. To simplify the calculation it will be assumed in the 

following that wealth and consumption are distributed in such a way that the average of 

their ratio can nevertheless be approximated by zero. The average ratio of steady state 

income to steady state consumption, which must sometimes be calculated as well, is 

then  
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Note that these difficulties could both be circumvented by defining the log deviations 

differently when linearizing the model. In some works121 the log-linearized variables of 

individual agents are defined as logarithmic deviation from the respective steady state 
                                                 
120  For example, in (47) the consumption’s deviation from the steady state is determined by the actual 

interest rate, which is common to all agents and can therefore not be a cause of correlation, and by the 
agent’s expectation of next period’s consumption log-deviation, which can normally be assumed to be 
not correlated to his steady state consumption level. For the agent’s income (46) it is immediately 
clear that correlation can be ruled out because it is driven by the independent white noise process tν . 

121  For example Preston (2005a). 
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values of the representative agent. Alternatively, sometimes even several different 

variables are all defined as logarithmic deviations from the representative agent’s steady 

state income. With these approaches the aggregation problems described above would 

not occur, but on the other hand it may be difficult to argue that the variables in 

question will always stay sufficiently close to the steady state value used as a 

linearization point, especially if the agents are heterogeneous. In contrast to that, the 

approach used here requires the additional assumptions concerning the distributions of 

the steady state variables over the population of agents as described above, thus 

rendering the results somewhat less general, but the advantage is that it can also be used 

if the individual agents’ steady state values are very different from each other.122 

3.1.3. The Canonical Solution: The Rational Expectations Equilibrium 
with a Representative Agent 

In this section the canonical solution will be discussed, which serves as a reference for 

the variations in the following sections. For this solution rational expectations and the 

existence of a representative agent are assumed, which are widespread assumptions 

when solving models like the one discussed here. A usual approach is to assume that the 

economy consists of only one representative agent. This is the limiting case of the 

slightly less restrictive assumption that the economy consists of a number of agents with 

identical characteristics, facing identical exogenous variables and, in particular, having 

identical starting conditions in t. As a result, all agents will exhibit identical behaviour. 

In models using this assumption the economy's aggregated variables are usually given 

as per capita values. The population of such an economy can then be normalized to one, 

yielding the "single representative agent" economy.  

Using a representative agent, the superscripted i can consequently be dropped from all 

variables in the model equations. Furthermore, in a closed economy with a 

                                                 
122  The approach used here can easily be transformed into one of the described alternatives. If the log-

linearized variables would be defined as log-deviations from the respective steady state values of a 
representative agent, then all superscripts of the steady state variables could simply be dropped, the 
steady state wealth would be zero and the steady state consumption would be equal to steady state 
income. That way the aggregates of the ratios mentioned in the text would always be zero respectively 
one. 
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representative agent, the agent can never possess any net wealth, so the steady state 

values in (45) simplify to123 

(50) 0=B , YC = . 

The representative agent versions of the log-linearized income process (46) and the 

Euler equation (47) are accordingly 

(51) ttt vyy += −1ρ , 

(52) tTrEcEcE TtTtTt ≥∀−= +
ˆˆˆ

1 σ . 

The last element necessary to solve the model is the market clearing condition 

tTyc TT ≥∀= , . The REE for the interest rate can now be obtained by taking the 

linearized Euler Equation for T=t and imposing the market clearing condition: 

(53) ttttt rcEcy σ−== +1
ˆ . 

Given the current income, the interest rate thus depends on next period’s expected 

consumption. The rational expectation for next period’s consumption is determined by 

the rational expectation for the income in t+1 as implied by the process (51) and again 

the market clearing condition: 124 

(54) ttttt yyEcE ρ== ++ 11 . 

It follows that the REE for the interest rate is 

(55) tt yr )1(1 ρσ −−= − . 

                                                 
123  Note that thus in the non-stochastic steady state market clearing is equivalent to the flow budget 

constraint in conjunction with the representative agent assumption. 
124  In order to indicate that these are rational expectations, here the expectations operator is written 

without a circumflex. 
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While the procedure outlined above may appear straightforward and innocuous, there 

are several points worth mentioning. First, note that the rational expectations for income 

and consumption only describe which possible expectations would be consistent with a 

REE. In this context, they do not yet imply whether and how these expectations can 

actually be attained by a dynamic process. Neither do they imply any reasoning by the 

agents or any process which could induce the agents to form these expectations. Apart 

from that, there are two possibilities of how the expectations of the representative agent 

can be interpreted. Taken literally, they can be thought to express the individual 

expectations of a single representative agent. However, since the representative agent is 

just a fiction to simplify the solution, what they actually describe are the aggregated 

expectations of the individual agents in the economy.  

This distinction has significant consequences for the application of the market clearing 

condition. It may seem trivial, but it is important to note that this condition must of 

course be fulfilled for the economy as a whole but, in general, not for an individual 

agent. This means that it can be applied without any problem for the actual consumption 

as in (53), because this is after all the aggregated consumption of the whole economy, 

no matter whether it is normalized to a population of one or not. But when expectations 

are concerned as in (54), one must be more careful. Generally, expectations do not need 

to fulfil any market clearing condition at all. For rational expectations this is different: 

Expectations can only be rational if every agent perceives the resulting states of the 

economy as indistinguishable from his expectations, and this implies that the agent’s 

aggregated expectations fulfil the appropriate market clearing condition. The market 

clearing condition therefore constitutes a necessary condition for expectations to be 

rational, although it must only be fulfilled on the aggregated, macroeconomic level. 

However, if the expectations are taken as the rational expectations of a representative 

agent, the market clearing condition must be satisfied by construction even on the 

individual agent’s level: If a market consists only of one or several representative 

agents, which by definition are all identical, the market clearing condition implies that 

in the equilibrium their individual excess demand (or excess supply) is zero.125 In the 

model above, for example, the market clearing condition implies that they are not able 

                                                 
125  This is the well known feature that many equilibria are “no-trade equilibria” when representative 

agents are considered.  
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to borrow or to lend, so none of them can possess any wealth. Consequently, even their 

individual expectation of next period’s consumption can only be rational if it is the 

same as the rational expectation of next period’s representative income.126  

However, this is true only for the special case of the representative agent. If the 

expectations are interpreted as the aggregation of individual expectations which are not 

necessarily representative, the market clearing condition only makes sense on the 

aggregated level. In the model discussed here, it merely requires that the aggregate of 

the expectations of next period’s consumption matches the aggregate of ρ  times this 

period’s income.127 But that does not mean that on the individual level an agent’s 

expectations satisfies a similar requirement. In fact, as it will be shown in sections 3.2.2 

and 3.2.3, there is a continuum of individual agents’ expectations, even including 

sunspot solutions, which all satisfy the requirement only on the aggregated level. The 

reasoning above can be summed up as follows: Expectations in general do not need to 

satisfy any market clearing condition. Rational expectations must satisfy an appropriate 

market clearing condition on the aggregate level as a necessary condition. On the 

individual agent’s level rational expectations must satisfy a market clearing condition 

only in the special case of a representative agent.  

Whether the market clearing condition can be used on an individual level has 

consequences for the solution of a model like the one discussed here. The reasoning 

above has shown that for the individual (not-representative) agent’s consumption 

expectations the market clearing condition is not binding. Being able to buy or sell 

bonds, he also does not have to match his expected (or actual) income with his expected 

(or actual) consumption in any period. But of course that does not mean that he can 

borrow and consume arbitrarily because he is still restricted by the intertemporal budget 

constraint (41). As it has been pointed out when the significance of the Euler equation 

was discussed in section 3.1.1, solving the individual agent’s dynamic optimization 

problem requires in general to employ the Euler equation for all periods tT ≥  as well as 

the intertemporal budget constraint, using all state variables in these equations. Yet, in 

                                                 
126  Of course it is still possible for a representative agent to have different consumption expectations, but 

these would not be rational.  
127  Otherwise, at least one of the underlying individual expectations cannot be rational. 
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contrast to this finding, in the rational expectations solution for the representative agent 

above, the intertemporal budget constraint was not used at all and the Euler equation 

was only used for the actual period. Omitting the intertemporal budget constraint from 

the solution and restricting the Euler equation to the actual period represent two 

shortcuts which simplify the solution considerably.128 The solution is nevertheless 

correct and can indeed be derived like shown above.  

The underlying reason why both simplifications are possible is that the representative 

agent assumption allows the market clearing condition to be applied to the individual 

agent’s rational expectations. Basically, each period’s Euler equation is linked to the 

next period’s one by the expectation of next period’s consumption. A rational 

expectation of next period’s consumption can only be formed when the next period’s 

Euler equation is taken into account, including the expectation for the following 

period’s consumption, and so on to infinity. The dynamic optimization problem must 

thus be solved simultaneously for all periods. But if a representative agent is considered, 

the market clearing condition provides an alternative way to determine next period’s 

expected consumption. The market clearing condition connects the consumption 

expectation to a state variable (i.e. the income) which is exogenous for the agent and 

beyond his influence. Since the expectation of such a state variable is independent from 

the agent’s future behaviour, a partial solution for a “single period” Euler equation 

becomes possible. In this way the market clearing condition effectively makes the link 

between the Euler equations redundant by providing a peg for the expectation of next 

period’s consumption. 

Concerning the intertemporal budget constraint, a similar argument can be made. In the 

general solution to the optimization problem, the intertemporal budget constraint must 

be used to determine the level of the future consumption path, because the infinite chain 

of Euler equations can only determine its shape. When the market clearing condition 

relates the expected consumption to the (exogenous) income, the level of consumption 

is immediately determined, and the intertemporal budget constraint is made redundant. 

Again, this can only be done for the representative agent. To put it more technically, the 

                                                 
128  When infinite horizon learning is demonstrated in section 3.3, it will also be shown how the REE 

solution can be derived without employing these simplification.  
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representative agent assumption together with the market clearing condition already 

imply that the flow budget constraint and the transversality condition are always 

respected (because a representative agent cannot borrow or lend), so the intertemporal 

budget constraint becomes redundant. 

The main point derived from these considerations is the following: The above 

mentioned shortcuts are possible if the market clearing condition can be applied to 

individual expectations. But this in turn hinges on two conditions: That representative 

agents are considered, and that the expectations in question are assumed be rational.  

3.1.4. The Rational Expectations Solution with Individual Heterogeneous 
Agents 

The reasoning in the preceding section has shown that the representative agent 

assumption allows a simplified solution method which may not be feasible if individual, 

possibly heterogeneous agents were considered.129 However, that does not necessarily 

mean that the solution for an aggregate variable (such as the interest rate) obtained by 

this method is not valid for the underlying problem with individual agents. In this 

section it will be considered in more detail how the solution of the model changes if the 

representative agent assumption is dropped. In particular, the differences between the 

consumption of a representative agent and the consumption which would be obtained 

for a population of individual agents are examined, and it will be discussed how the 

individual agent solution should be interpreted. 

In order to determine the significance of the representative agent assumption, one again 

has to distinguish between the aggregate, macroeconomic level and the individual, 

microeconomic level. It will turn out that on the aggregate level, at least for the present 

model, the representative agent solution is the same as the solution for a group of 

individual agents. This is not surprising because the representative agent, by definition, 

represents the aggregate behaviour of a whole class of agents. The representative agent 

is essentially a macroeconomic concept, even if his behaviour is described by 
                                                 
129  The term “heterogeneous” is meant here only in the limited sense that agents may exhibit differences 

in their state variables like income or wealth, but not in their parameters concerning the utility 
functions or their time preference. See also the description of the agents’ optimizing problem in 
section 3.1.1.  
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microeconomic functions. Applying the representative agent assumption to a model thus 

means that the individual, possibly heterogeneous agents’ behaviour is aggregated into 

one or several fictitious homogeneous representative agents, and it is plausible that in a 

linearized model this does not make any difference for the economy’s aggregate 

variables. Indeed, in the model discussed here the REE solution for the interest rate 

would be the same if individual agents would be considered instead of a representative 

agent. At the same time this aggregation means that the agents’ individual differences, 

like differences in initial wealth or in income, are ignored when the representative agent 

assumption is used. The consequence is that on the microeconomic, individual level the 

representative agent solution cannot be used to describe an individual agent’s 

consumption.  

These considerations will now be demonstrated formally by deriving the conditions for 

a REE solution without resorting directly to the representative agent assumption. In 

contrast to the previous section the Euler equation and the income process are now 

allowed to be heterogeneous  

(56) t
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ˆ , 

(57) i
t

i
t

i
i vyy += −1ρ . 

In order to determine the interest rate, equation (56) must be aggregated over all n 

agents in the economy. As pointed out in section 3.1.2, this is done by constructing the 

arithmetic mean of the individual log deviations. Thus, averaging over all n agents in 

the economy and applying the market clearing condition to the average consumption 

and average income gives 
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Now, if the expectations of next period’s consumption are rational for all agents, its sum 

must be equal to the sum of the rational expectation of next period’s individual income, 

which is i
t

i
t

i
t yyE ρ=+1 . This step is again nothing else but applying the market clearing 
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condition to expectations, which is unproblematic here, because it is done only on the 

aggregate level and because rational expectations are considered. Using the rational 

expectation of each agent’s income and aggregating over all agents we get the REE 

solution for the interest rate as 

(59) t

n

i

i
t

n

i

i
t

n

i

i
t

i
tt yy

n
y

n
yE

n
r ~)1(1)1(11 1

1

1

11
1

1 −=−=⎟
⎠

⎞
⎜
⎝

⎛
−= −

=

−

==
+

− ∑∑∑ ρσρσσ  

with ∑=
−≡

n

i
i
tt yny

1
1~  being the average income.  

If all agents had the same income, as it would be the case with a representative agent, 

then i
tt yy =~ , and then this solution is the same as (55). Inserting (59) into the individual 

agent’s linearized Euler equation yields the REE for the agent’s current consumption as 

(60) 1 (1 )i i i
t t t tc E c yρ+= + − � . 

If the economy consisted of representative agents one could use the market clearing 

condition on their individual expectations, so this would simply amount to i
t

i
t yc = , 

which for a representative agent would be required anyway by the market clearing 

condition. But if individual agents are considered, this is not possible. Instead, one has 

to use the Euler equation for all future periods, calculating the rational expectation for 

the income, interest rate and consumption in each future period up to infinity. Since 

1<ρ  this yields130 
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130  This requires that the law of iterated expectation holds, which for rational expectations must be the 

case. 
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The current consumption is thus determined by the average current income and the 

expectation of consumption in the infinite future. Note that, in general, this expectation 

does not need to be zero. Again, if the economy consisted of representative agents one 

could use the market clearing condition on this expectation, so it could be replaced by 

the rational expectation of income in the infinite future, which would indeed be zero. 

Since in this case all agents had the same income, this solution again amounts to 
i
t

i
t yc = , the same as for the representative agent.  

But with individual, not representative agents the situation is different. Current 

consumption is deviated from its steady state because of an income shock in the 

economy. If this income shock is of different magnitude for different agents, then they 

react by borrowing or lending to each other, accumulating individual wealth or debt. 

This immediately causes a shift in the individual consumption’s steady state, which in 

turn depends on an agent’s wealth,131 because in future the agent pays or receives 

interest on his debt or wealth. But since the system was log linearized with respect to a 

reference steady state in the past that means that in the infinite future, when the short 

term effects of the shock have died down and the new steady state is reached, this shift 

in the steady state is represented by a permanent log-deviation of consumption from the 

reference steady state. The term [ ]i
s

i
ts
cE 1lim +∞→

 is thus the rational expectation of the shift 

in the agent’s steady state. The amount of the shift depends on the rationally expected 

wealth or debt the agent accumulates over the future periods, and it depends therefore 

on the agent’s individual income and the average income. The shift would only be zero 

if the income shock would have been the same132 for every agent so that no lending 

would take place. 

To calculate a closed form solution for the current consumption it would be necessary to 

determine the effect on the steady state, which in turn would require to use the 

                                                 
131  As shown in equation (45) 
132  Note that we are considering log deviations, so that in absolute values the income shock would have 

to be proportional to each agent’s steady state. Strictly speaking, the log deviation would have to be 
the same for all agents only if in the period which serves as a reference for the log linearization no 
agent possesses any wealth and consumption is equal to income in the steady state. Otherwise, in 
order to prevent any lending, the income shock would have to be adapted for each agent to the 
difference between his income and his consumption which results from the accumulated wealth. 
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intertemporal budget constraint.133 As the solution will emerge anyway when infinite 

horizon learning is discussed in section 3.3, this calculation will not be derived here in 

detail but merely presented.134 The resulting solution under rational expectations for 

individual consumption is  

(62) ( ) ( )[ ] ( ) tt
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It is straightforward to show that if an agent’s consumption can be described by this 

equation, then it satisfies the Euler equation under rational expectations.135 The agent’s 

expectation is thus “internally consistent” in the sense that his expectation of his own 

behaviour is not contradicted by the decision rule he will actually use in the next period 

to determine his consumption.136 

Comparing equation (62) with (61) implies that the expected permanent shift in the 

steady state of consumption, expressed as log deviation from the current steady state, is 
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Equations (56) to (63) hold not only for period t but also for all later periods. Note that 

nevertheless all steady states and consequently all log linearized variables are defined 

with respect to the beginning of period 0t = . This is relevant because for an individual 

agent, in contrast to a representative agent, the steady state of wealth and consumption 

changes when an income shock occurs. To interpret equation (63) assume that a single 

income shock takes place in period t and that no additional shocks occur after that 

period. The permanent shift is expected immediately when the shock occurs, and under 
                                                 
133  This again underlines that for the solution to the individual agent’s dynamic optimization problem, it 

is indispensable to include information about all future periods as well as the intertemporal budget 
constraint, as pointed out in section 3.1.1. 

134  A detailed derivation can also be found in Appendix A.5.  
135  See appendix A.3.1.  
136  See the discussion in section 3.1.1, p. 49. 
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rational expectations it comprises all influences on the steady state of consumption 

which will accumulate over the future periods. Therefore it should not change while the 

shock settles down. Indeed, it can be shown that in the absence of further additional 

shocks (63) remains constant over time as individual and average income approach their 

steady state values again.137  

The term ( ) i
tbβ−1  represents the additional interest payments the agent receives (or 

must pay) for the wealth (debt) he has accumulated up to the current period while the 

income shock dies down. In the period of the shock it is zero because in this period the 

agent’s wealth has not yet changed with respect to the steady state. All other terms on 

the right hand side of (63) depend on individual or average income and represent the 

sum of expected additional interest payments in future periods. While the agent’s wealth 

or debt increases as he lends or borrows each period, these terms decrease from period 

to period with the rate ρ . The resulting change in the agent’s interest payments 

( ) i
tbβ−1  and the decrease in the expected interest payments (the income terms of (63)) 

thus cancel out each other.  

For an illustration, assume that the agent has no wealth at the beginning of period t, so 

that ii YC =  and 0=iB . Then the income terms of (62) simplify to a weighted average 

of the individual and the average income: 
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i
t yyybc ~~1 +−+−= λβ . 

The amount lent (or, if negative, borrowed) by the agent in one period is then 
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Inserting into (64) and recognizing that ( ) ( )( )1 11 1 1Rλ λ ρ− −− = − − yields 
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137  This is shown formally in appendix A.3.2.  
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Under rational expectations, the individual and the average income decrease over time 

with the rate ρ , which means that the value determined in (65), the amount lent (or 

borrowed) by the agent, decreases with this rate as well. Thus, for an arbitrary future 

period T we have 

(67) ( ){ } ( )( )i
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Hence equation (66) can alternatively be written as 

(68) 
( ) ( ) ( )( )

( ) ( ) ( ){ }

11 1 1
1

1 1 1 .

i i i i i
t t t t t t

i i i i
t t T T T t

T t

c b R y c b y

b R E y c b y

β β
ρ

β β
∞

=

= − + − − + − +
−

= − + − − + − +∑

�

�
 

From this notation it becomes apparent that the second term on the right hand side 

represents the sum of all expected interest payments which will eventually take place 

because of additional lending or borrowing in future periods. 

If the agent possesses some wealth or debt at the beginning of the period t, whose steady 

state serves as linearization point, then the solution is augmented by two additional 

effects, represented by the terms in square brackets on the right hand side of equation 

(62). The first effect is that with initial wealth steady state income is not equal to steady 

state consumption, therefore log deviations of consumption and income are expressions 

on different scales. The first term accounts for the necessary correction. The second 

term indicates how the temporary change of the interest rate, caused by the income 

shock, changes the interest payments which are received (or paid) by the agent on his 

initial wealth (debt). For a representative agent, however, it can immediately be seen 

from (62) that all described effects are cancelled out, because he cannot possess any 

wealth and his income is identical to average income.  

Summing up, it turns out that for the REE solution of the interest rate, this being a 

variable on the aggregate level, it is irrelevant whether one considers individual agents 

or a representative one. The underlying reason is that in a linear system like the one 

considered here a representative agent can be defined by simply taking the average of 
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the individual agents, so that it does not make any difference whether the individual 

agents’ equations are aggregated first and solved for the aggregate variable afterwards, 

or whether the system is solved for the representative agent from the beginning. 

However, being an aggregation, the representative agent assumption cannot be used in 

general if one intends to determine individual variables of an agent, like in this model 

his consumption, although the representative agent solution is still valid for individual 

agents in the special case that each agent has identical income and identical (zero) 

wealth.  

The solutions which have been discussed in this section are REE solutions, that is they 

are solutions which solve the agents’ optimization problems under rational expectations. 

But this means merely that the consumption rules and the resulting interest rate, 

together with their expectations, would be consistent with a REE. However, it gives no 

answer to the question whether and how these REE solutions could be the outcome of 

the agents’ behaviour. The basic concept of rational expectations, as it was initially 

formulated by Muth and others, was motivated by the idea that some dynamic process 

could lead to the elimination of irrational expectations, leaving only rational ones. In 

this view an REE is not just a theoretical construct but more of a natural equilibrium 

towards which an economy could be driven by the behaviour of its agents. Such a 

behaviour can be realized in the form of learning. It is therefore of interest whether an 

REE can only be posited as a possible equilibrium or whether it is also learnable by the 

agents. In the following sections this will be examined for different approaches of RLS 

learning, with a special focus on possible differences between the learning process of a 

representative agent and the learning processes of individual agents.  

3.2. Euler Equation Learning 

As described in chapter 2.4, adaptive learning is a possible way to explain how rational 

expectations could be attained. Learning describes the process of how expectations, 

being at first not rational, evolve over time, possibly converging towards the REE 

solution. When rational expectations are replaced by learning, the expectation in 

question is substituted by a function which derives the expectation from state variables 

within the bounded information set of the agent. The process of learning consists of 
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revising the parameters of this expectation function each period as additional 

information arrives. 

When learning is introduced in a dynamic optimization model, this is usually done in 

the form of “Euler equation learning” (EE learning in the following). An alternative 

method is “infinite horizon learning” (IH learning) which was established by Bruce 

Preston.138 Presently, the majority of articles and papers uses EE learning. In this 

section EE learning will be demonstrated for the case of a representative agent. Next, it 

will be shown how this method can lead to a continuum of non-rational solutions and in 

some cases can even lead to sunspot solutions when individual agents are considered. 

The results will then be discussed in section 3.2.4. 

3.2.1. EE Learning with a Representative Agent 

Consider again the case of a representative agent who is trying to find the optimal value 

for his current consumption. In section 3.1.3 the solution was determined for the case 

that the agent has rational expectations about the future. In this section the agent will 

instead use a PLM to form his expectations. By revising the parameters of the PLM he 

is trying to improve his expectations. The question is whether such a learning process 

will converge towards rational expectations or not.139  

The learning process used in this section is called “Euler equation learning” because the 

agent uses the Euler equation for the current period (53) as a basis to determine his 

optimal consumption, which is repeated here for convenience:  

(69) tttt rcEc σ−= +1
ˆ . 

The interest rate of the current period is determined by applying the market clearing 

condition tt cy = , so that it depends of the current income and of the expectation for 

next period’s consumption: 

                                                 
138  See for example Preston (2005) or Preston (2005a). The terms “Euler equation learning” and “infinite 

horizon learning” were coined in Honkapohja, Mitra and Evans (2003). 
139  A similar system was examined in Honkapohja, Mitra, and Evans (2003). 
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(70) ( )tttt ycEr −= +
−

1
1 ˆσ . 

The PLM which is examined here is linear and has the form  

(71)  tttt elymc υε +++= −− 11  

where m, l, e are the parameters which represent the agent’s beliefs about the world he 

lives in and tυ  is a zero mean error term. Besides nesting the REE solution (54) the 

PLM contains a constant and a extraneous sunspot variable tε  and is thereby 

overparameterized.140 This allows to test whether the learning system is strongly 

E-stable. To test for weak E-stability it suffices to fix m and e to zero, so that the 

resulting PLM contains no more variables than the REE solution. The sunspot variable 

is common knowledge to all agents and is assumed to follow the AR(1) process 

(72) ttt πεµε += −1  

where 1µ ≤  and { }tπ  is a bounded i.i.d. white noise process with zero mean. The 

agent’s expectations is formed according to this PLM 

(73) tttt elymcE ε++=+1
ˆ  

so that the resulting interest rate is 

(74)  ( )1 ( 1)t t tr m l y eσ ε−= + − + . 

Since we are considering a representative agent, this interest rate will always induce the 

agent to consume exactly his income (the market clearing condition is fulfilled on the 

individual level), so that the ALM is simply 

(75) tttt yyc νρ +== −1 . 

                                                 
140  For the definition of overparameterization, see p. 32. 
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The T-mapping from the PLM to the ALM is then 
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where the only fixed point at ρ=== lem ,0 is the REE solution. Convergence under 

adaptive learning can be shown by determining E-stability of the system, which is 

determined by the asymptotic stability of the ODE 
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The derivatives of the right hand side are all negative, so the equilibrium at the fixed 

point is globally asymptotically stable. The solution is therefore strongly E-stable. For 

this model class E-stability implies stability under learning.141 Thus, under learning the 

system converges globally towards the REE solution with probability 1, even if the 

PLM contains a sunspot variable.  

3.2.2. EE Learning with Individual Agents 

In order to find out whether the results of the previous section are dependent on the 

representative agent assumption, the same setting will now be examined for the case of 

individual agents. For simplification of the analysis, it is at first assumed that the 

income shocks are similar142 for all agents. Again each agent uses the Euler equation to 

determine the optimal current consumption, now having individual expectations. The 

derivation of the REE solution for individual agents in section 3.1.4 has shown that 

according to (58) the interest rate of the current period is 

                                                 
141  See Evans and Honkapohja (2001), section 8.3.2. 
142  “Similar” here should be understood in the sense that the shocks are proportional to each agent’s 

steady states before the log linearization, which means that they are identical for all agents after log 
linearization. 
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The parameters of the PLM can now be different for each agent:  

(79)  i
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i
t

iii
t eylmc υε +++= −− 11 . 

If each agent uses his PLM to form his expectations we get 
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t
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ˆ  

  

and the resulting interest rate is 

(81)  ( )1 ( 1)t t tr m l y eσ ε−= + − +�� �  

where parameters with a tilde (~) denote the average of the individual agent’s 

parameters. In contrast to the previous section, the market clearing condition does not 

hold any more on the individual level, and the ALM for an individual agent is now: 

(82) ( ) ( )( ) ( )( )tt
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The T-mapping from the PLM to the ALM is 
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and for the average parameters we have 
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the same as for the representative agent. There is now a continuum, indexed by mi and 

possibly ei, of fixed points which can be described by the conditions  

(85) 
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Accordingly a continuum of self confirming equilibria exists. Although every agent 

must learn the right value ρ  for the parameter li, it does not matter what parameter he 

learns for mi, as long as its average over all agents is zero. The same holds for ei, but 

only if the sunspot variable follows a unit root process ( 1=µ ), otherwise the agent must 

learn the correct value, zero. In the present model, a sunspot variable may therefore only 

be part of the PLM in an equilibrium if it follows a unit root process.  

To examine the E-stability of these equilibria it is convenient to split (83) into its three 

components. The dynamic of the system stems from the interaction between the 

individual agents and the average of all agents. E-stability is determined by the 

asymptotic stability of the ODEs for each parameter and its average143  
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The dynamic of the average parameters is independent from the individual ones. As in 

the case of the representative agent, all average parameters are globally asymptotically 

stable at their fixed points. Inserting their equilibrium values into the ODEs for the 

                                                 
143  Instead of looking at one agent and the average, an alternative way to examine the E-stability would 

be to determine the stability for n agents simultaneously. This approach is shown in appendix A.4. 
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individual parameters shows that the derivative of the ODE for li on the right hand side 

of (87) is negative, so the equilibrium value for this parameter is globally 

asymptotically stable as well. The same holds for ei as long as 1=µ . The derivative of 

the ODE for mi and for ei in the case of 1=µ  are zero. This means that the equilibrium 

is stable, but not attractive and therefore not asymptotically stable. If the parameters are 

at any point within the equilibrium continuum, then the dynamics of the ODE do not 

drive the parameters away from this point, but if they are pushed out if it by the learning 

algorithm, as a reaction to exogenous stochastic influences, they do not necessarily 

return to the same equilibrium values. Thus, they do not converge towards a particular 

equilibrium, but are moved around within the equilibrium continuum by the influence of 

the exogenous stochastic variables.144  

If the ALM (82) was averaged over all agents it would simply be tt yc =~ , as it must be 

the case because of market clearing. For the individual agent the ALM at an equilibrium 

point is  

(89) t
i

t
ii

t eymc ε++= . 

Compare this to the rational expectation solution, which can be obtained by 

adapting (62) to the case of common income shocks: 
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Consider first the case that in t=0 (the reference period for the log linearization) the 

agent has no wealth so that ii CY = . If we fix mi and ei to zero to rule out 

overparameterization, then the ALM is the same as the REE solution: The agent 

consumes always exactly his income and his wealth will always remain zero ( 0=i
tb ). 

But if we allow for overparameterization, then the values for mi (and possibly ei) can be 

                                                 
144  For an unbounded continuum of solutions, equivalence of E-stability and stability under least squares 

learning could not be shown so far because the SRA convergence theorems do not apply to such cases. 
However, simulations suggest that the equivalence holds nevertheless. See Evans and 
Honkapohja (2001), p. 192. 
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different from zero so that the agent may consume too much or too little. Further, if the 

agent already holds some wealth in t=0, then his consumption under learning is never 

optimal in any case, no matter if overparameterization is ruled out or not.145 In periods 

during the learning process (with or without overparameterization) where an 

equilibrium is not yet reached, the agents’ consumption will be determined according to 

the ALM (82). In those periods individual consumption is also too high or too low, so 

that the agents will accumulate wealth or debt, which again will lead to a non-optimal 

consumption even when the equilibrium is reached eventually. In any of these cases, the 

agents do not react to over- or underconsumption because they only consider their Euler 

equation, but not their intertemporal budget constraint. In an equilibrium, the Euler-

equation based PLM is confirmed by the ALM, even if it violates the intertemporal 

budget constraint and is therefore not optimal.  

However, if some equilibrium is reached by the learning process, then the resulting 

interest rate is nevertheless the same as under rational expectations, although the 

individual expectations lead the agents to choose not optimal values for their 

consumption. This can be seen by inserting the average equilibrium parameter values 

into (81). The reason is that the average parameters are still learned correctly and that 

the differences between the learned individual parameters and the “right” parameters 

cancel each other out in the aggregate.  

So, if individual agents with similar income shocks are considered, and if the PLM is 

not overparameterized and contains only the common income variable, then the learning 

process converges towards the global equilibrium with probability 1. But if a constant is 

included, the learning process converges not to a single point any more, but only 

ensures that the agent’s PLMs are such that they are rational in the average, while still 

allowing for individual non-rationality. The same result obtains if a sunspot variable 

following a unit root AR(1) process is part of the PLM. Thus, the solution is weakly 

E-stable, but not strongly any more. Moreover, the solution is different from the 

solution under rational expectations, except for the particular case in which the agent 

has no initial wealth, does not accumulate any wealth during the learning process and 

has a PLM which is not overparameterized. In all other cases the agent’s consumption 
                                                 
145  This case is discussed in Preston (2005a), section 2.3. 
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will be permanently too high or too low. Nevertheless, the interest rate follows the same 

law of motion as it does under rational expectations. 

3.2.3. EE Learning with Individual Agents and Heterogeneous Income 
Shocks 

The analysis of the previous section will now be repeated for the case that the income 

shocks are no longer common to all agents. Each agent’s income now varies 

independently from the other agents’ income, according to equation (57). The rational 

expectations solution for this situation was already discussed in section 3.1.4., where it 

was shown that interest rate of the current period is 
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The agent’s PLM is constructed analogous to the PLM of a representative agent, but 

focuses now on his individual income, just as his expectation:  
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and the ALM for an individual agent yields 
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The T-mapping from the PLM to the ALM is for each agent 
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Note that in this approach the agent can only use his own income to learn. Therefore, 

the influence of the other agents’ income on his consumption via the interest rate is just 

noise in his learning process. The T-map resembles the one of the previous section for 

common income shocks. Accordingly the continuum of equilibria, which is indexed by 

mi and ei and which occurs with an overparameterized PLM, is similar to the case of 

common income shocks and has the same stability properties. Only the equilibrium 

value for the parameter li is different. The fixed point for this parameter is 
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and E-stability is determined by the ODE 

(98) ( ) 11 1 −− +−−= nlnl
d
d ii ρρρ
τ

. 

This ODE is globally asymptotically stable at the fixed point, so E-stability obtains. 

Intuitively, this equilibrium value for the parameter li highlights the fact that with a 

PLM based merely on the Euler equation, an agent’s income determines his 

consumption only via the interest rate. The more agents exist in the economy, the less 

influence each agent’s individual income has on the interest rate, and the lower the 

equilibrium value for li which corresponds to this influence. In the limit with an infinite 

number of agents, each agent learns that his own income does not matter for the interest 

rate and, since his behaviour is based only on the Euler equation, it does not matter for 

his consumption either. He will therefore exclude it from his PLM, learn some 

equilibrium values for mi and ei instead and determine his consumption accordingly.  
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Inserting the equilibrium parameters into the ALM (95) yields the individual 

consumption in an economy with many agents as 

(99) t
i

t
ii

t eymc ε++= ~  

which is similar to the case with a common income shock which was examined in the 

previous section. Note that in such an equilibrium the interest rate is not the same as 

under rational expectations any more. Inserting the equilibrium values into (94) yields 
1

t tr yσ −= − �  for the interest rate. The reason is that in an equilibrium the average 

consumption expectation is zero, because all agents have eliminated the influence of 

their own income from their PLM. 

Fixing mi and ei to zero yields the ALM which would be learned if the PLM was not 

overparameterized. In this case each agent would simply consume the average income 

in each period. In contrast to that, the solution under rational expectations which was 

discussed in section 3.1.4 is 
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It is evident that this solution could not be learned with the PLM used in this section. 

Even if the influence of a constant and a sunspot variable on the agent’s expectations is 

ruled out and even if the agent has no initial wealth and does not accumulate any wealth 

during the learning process either, the resulting consumption is still different from the 

consumption under rational expectations. The agent is not able to learn the optimal 

solution under rational expectations, and in the equilibrium he disregards his individual 

income completely. As in the case of common income shocks with an 

overparameterized PLM in the previous section, the learning process does not detect 

any resulting over- or underconsumption of the agent and cannot react to it, because it is 

based only on the Euler equation. 
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3.2.4. Discussion of EE Learning 

In the preceding sections EE learning was examined for a representative agent as well as 

for individual agents. In the literature learning is usually modelled with a representative 

agent. However, while the representative agent assumption may be suitable to determine 

the REE solution for the aggregate variables, this is different if the expectations 

themselves and learning are considered. As it has been demonstrated in section 3.1.4, in 

a linear model like this the representative agent assumption does not change the REE 

solutions for the interest rate as an aggregate variable (even though the solutions for the 

individual variables are different), because it does not matter for the aggregate how 

diverse the individual agents are. If a representative agent is interpreted as the average 

of the underlying class of agents, then the consumption or the income of a 

representative agent can be reasonably interpreted as the average consumption or the 

average income of a population. But such an interpretation is not suitable any more if 

rational expectations and learning are considered. The idea behind rational expectations 

is that agents could not afford to form non-rational expectations in the long run. Yet, if 

the beliefs and the expectations of a representative agent are rational, this does only 

mean that the average of the individual agents’ beliefs and expectations is confirmed by 

the actual outcomes, while the individual ones could still be non-rational. This 

contradicts the actual idea of rational expectations. Similarly, the aim of the introduction 

of learning into a model is to find a possible explanation how a rational expectations 

equilibrium could be the result of optimizing behaviour by the agents. A learning 

process of a representative agent, which would drive his beliefs towards rational 

expectations, could be interpreted as the average of the individual agents’ beliefs and 

their evolution through learning. In this case it would be perfectly possible that the 

average learning process would converge towards rational expectations while allowing 

the individual beliefs to remain non-rational, as long as their irrationality cancels out in 

the average.  

An alternative interpretation of a learning representative agent would be to assume that 

all individual agents in the economy are alike, with the same income shocks and the 

same initial beliefs, thereby following the same learning path. But if one applies such a 

strong assumption to the initial beliefs of the agents, then this is hardly different from 
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the assumption that all agents have already rational beliefs from the beginning. It is just 

the interesting feature of learning that different agents may be able to coordinate their 

different beliefs and that these diverse beliefs can converge towards rational 

expectations.  

The aim of a micro-founded model with individual agents is to derive the behaviour of 

aggregate variables from individual behaviour. In order to ensure the micro-foundation 

of the model’s results, the individual agent’s behaviour, including his entire 

optimization problem and his individual reactions to shocks, must be described with 

respect to this agent’s information set and within the framework set by his 

microeconomic behavioural functions, regardless of whether his parameters coincide 

with those of a fictitious representative agent or not. Loosely speaking one could say 

that even if an individual agent is representative, he cannot know this fact and cannot 

use it to simplify his optimization problem.146 Consequently, individual behaviour must 

be described without resorting to the representative agent assumption and the 

simplifications this assumption makes possible. Thus, the application of the 

representative agent assumption is only suitable if it is just a technical simplification 

and does not change the underlying behaviour nor the results of such a model. This is 

usually true for the variables on the aggregated level. But as pointed out above, the 

learnability of an equilibrium is by definition a property of individual agents, so it can 

be misleading if the learnability of an equilibrium is determined by means of a 

representative agent.  

This was demonstrated in the sections above. The results are shown in comparison in 

table 3.1 on page 81. It turned out that the simple PLM which was perfectly learnable 

and strongly E-stable for the representative agent could not be learned any more by 

individual agents with heterogeneous income shocks, although in the REE their average 

consumption was still the same as the consumption of a representative agent. The 

reason why a representative agent is able to learn where individual agents are not, is that 

the market clearing condition can be applied to his behaviour, which cannot be done for 

                                                 
146  As an example of how these simplifications cannot be used by individual agents, note that a 

representative agent would not need to solve a dynamic optimization problem at all, because it is 
immediately clear from the market clearing condition that in each period he consumes exactly his 
income. 
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the individual agents.147 The market clearing condition forces his consumption to follow 

his income, so it allows the representative agent to learn the rational expectation for his 

future consumption as being the same as the rational expectation of his future income. 

For an individual agent this is different. In this case, the market clearing condition 

imposes merely restrictions on the average consumption, but not on the individual ones. 

Since thus a direct feedback is missing in the individual agent’s learning process, a 

permanent over- or underconsumption or the influence of a sunspot variable becomes 

possible, and the expectations become non-rational. Note that the consumption 

expectations in these cases can be reasonably labelled as non-rational, even if they are 

confirmed by the actual law of motion for the consumption, because they are not 

consistent with the “right” solution of the complete dynamic optimization problem. This 

confirmation takes place only because in such a non-rational equilibrium each actual 

realization of the consumption is itself again influenced by the same non-rational 

expectation. In other words, for an individual agent the Euler equation allows for a self-

fulfilling prophecy.  

Some of these problems have been discussed by Preston.148 In his articles he criticized 

the fact that Euler equation learning can lead to non-optimal consumption, because the 

individual agent’s wealth is not taken into account, while the additional problems which 

arise from heterogeneous income shocks and from overparameterized PLMs have not 

been examined there. As an alternative method Preston has proposed infinite horizon 

learning. This will be discussed in the following section. 

                                                 
147  See also the discussion in section 3.1.4 for the differences between the REE solution between a 

representative agent and individual agents. 
148  See Preston (2005, 2005a). 
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tative Agent 

Individual Agents with 
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Table 3.1: Results of Euler equation learning compared with the REE solution 
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3.3. Infinite Horizon Learning 

The infinite horizon learning method (IH learning) was introduced by Bruce Preston to 

meet some of the shortcomings of EE learning as described in the previous section. In 

contrast to the latter it is based very closely on the underlying dynamical optimization. 

With the Euler equation learning method an agent uses only his Euler equation to 

determine his optimal current consumption. To this end he has to learn how to predict 

his own consumption in the next period. In contrast to that, IH learning uses another 

approach to determine the optimal consumption in the current period. It is based 

primarily on the intertemporal budget constraint instead of the Euler equation, but uses 

the Euler equation as well to ensure an optimal consumption path.149 Here, the 

procedure will be shown immediately for the case of individual agents with 

heterogeneous income shocks, since the cases of representative agents or of individual 

agents with common income shocks can be derived easily from the results.150 

Log-linearizing the intertemporal budget constraint (41) of an individual agent yields 
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In order to determine the optimal current consumption the agent predicts his income and 

the interest rate for all future periods. He then uses the expected path of the interest rate 

to determine the shape of his future consumption path by using the Euler equation for 

                                                 
149  The procedure used here follows the IH learning method which is described for example in Preston 

(2005) or Preston (2005a). In contrast to these articles, I here apply it to agents with individual income 
shocks and allow for an overparameterized PLM with a sunspot variable. Moreover, the examination 
of E-stability is done here with a special focus on the learning process on the individual level to point 
out the interaction between the learning agents. 

150  A detailed derivation with intermediate steps can be found in appendix A.5.  
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all periods from now up to infinity. Given his beliefs about future interest rates, the 

resulting shape of the consumption path is thus optimal, and it is also beyond the 

influence of the agent, whereas the level of the consumption path can still be chosen by 

the agent. The optimal level is the one which is as high as possible without violating the 

intertemporal budget constraint, given the agent’s beliefs about future interest rates and 

his future income. The agent’s task is to find the single value for his current 

consumption which guarantees that the future consumption path is optimal and feasible. 

Accordingly, consumption in every future period is here expressed as a function of 

current consumption and the future path of the interest rate. Formally, the Euler 

equation (52) is iterated from t to T which yields 
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Inserting into (102) gives  
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Solving for the current consumption and simplifying yields the agent’s individual 

decision rule as 
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By this rule the agent’s optimal current consumption is determined as a function of his 

expectations for his future income and the future interest rate.  

When he is learning, the agent has non-rational future expectations, which are based on 

his PLM. His income is an exogenous variable, independent from his behaviour or the 

behaviour of other agents, and following an AR(1) process. Therefore its law of motion 

can be learned by the agent by a simple regression over its past evolution, and the 

learning process will converge to rational expectations with probability one. The 
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learning process for the interest rate, however, must be examined in more detail. The 

agent’s PLM for the interest rate is assumed to be 

(106) tTeylmr i
TT

i
T

ii
T >∀+++= υε~  

where mi, li, ei are the parameters representing the agents individual beliefs and i
Tυ  is an 

zero mean error term.151 Similar to the PLM used in EE learning, this PLM nests the 

REE solution (59), but at the same time contains a constant and a sunspot variable ε . It 

is therefore overparameterized and allows to test whether the learning system is strongly 

E-stable, while weak E-stability can also be tested if mi and ei are fixed to zero, so that 

the resulting PLM contains no more variables than the REE solution. Again, the sunspot 

variable is common knowledge to all agents and is assumed to follow the AR(1) process 

(107) ttt πεµε += −1  

where 1≤µ  and { }tπ  is a bounded i.i.d. white noise process with zero mean. To 

employ this PLM it must be assumed that the agent can observe the value of the average 

income ty~ . As in the case of his individual income, he can learn the laws of motion for 

the average income and the sunspot variable by a regression over their past values, 

because the income processes and the process of the sunspot variable are exogenous. He 

will thus learn the true laws of motion of these variables with probability one. In the 

following it will therefore be assumed that these learning processes of exogenous 

variables have already converged, so that for these variables rational expectations can 

be used. The expectations of the agent are then 
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151  Note that the agent can observe the current value of the interest rate, so he uses the PLM only for 

future periods T>t. 
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In the individual decision rule (105), the current value of the interest rate is separated, 

while the future values and the values for the individual income are replaced by the 

respective expectations. This is done because the current interest rate is observed, rather 

than expected, and the agents react immediately to it. After solving the infinitive sums, 

this procedure yields the current consumption of the individual agent 
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which is now aggregated152 over all agents. The average consumption is then 
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Applying the market clearing condition gives the equilibrium interest rate, or in other 

words, the ALM for the interest rate: 
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The T-mapping from the PLM to the ALM is consequently 
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and the T-mapping for the average parameters is the same. The only fixed point of the 

mapping is ( )( )′−− 0,1,0 1 ρσ  for the average parameters as well as for the individual 

ones. Only if every agent uses these values in his PLM and forms his expectations 

accordingly, then the resulting interest rate confirms their beliefs and that their 
                                                 
152  This is done by constructing the arithmetic mean of the individual log deviations. For the assumptions 

that are used to simplify the aggregation of the steady state values, see the discussion in section 3.1.2, 
especially p. 53, as well as appendix A.2.  
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expectations are rational. Indeed, the solution with these parameter values is the same as 

the REE for the interest rate in the canonical solution for a representative agent.  

The stability of the system under learning can be determined by examining the ODEs 

for the individual and for the average PLM parameters153 
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The derivatives of the right hand side are all negative, so the equilibrium is globally 

asymptotically stable and the solution is therefore strongly E-stable. Here again, 

E-stability implies stability under learning,154 thus under learning the system converges 

globally towards the REE solution with probability 1, even if the PLM contains a 

sunspot variable. 

The individual current consumption in the REE can be determined by inserting the 

learned equilibrium parameters values and the REE solution for the interest rate into the 

equation (110). This yields the solution 
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153  In the appendix stability is determined alternatively for n agents simultaneously by examining the 

ODEs for the whole economy rather than for one agent and the average. See appendix A.5.  
154  See Evans and Honkapohja (2001), section 8.6.1. 
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which was already discussed in section 3.1.4.155 This solution can easily be adapted to 

the case of common income shocks or to a representative agent, since the learning 

process concerns the interest rate, an aggregate variable, and does not rely on the 

individual properties of the agents. It suffices therefore to replace the individual income 

in the solution by a common income to arrive at the appropriate solution for common 

income shocks. Similarly, for a representative agent the solution would simply amount 

to t tc y=  since he does not possess any wealth and his steady state consumption is the 

same as his steady state income. 

This shows that the IH learning method is more robust than the basic EE learning 

method with respect to the representative agent assumption. It allows even individual 

agents with heterogeneous income shocks to learn the REE, because it explicitly 

employs not only the Euler equation but also the intertemporal budget constraint. It is 

thus independent from the “shortcuts” in the form of the simplified solution techniques 

discussed in sections 3.1.3 and 3.1.4, such as the application of the market clearing 

condition to individual behaviour, which can only be applied if a representative agent is 

used.  

Preston introduced the IH learning method as a remedy to the problem that EE learning 

does not take the agent’s individual wealth into account. In his article he underlines the 

fact that the Euler equation is only an optimal decision rule if the expectation therein is 

taken with respect to the correct probability distribution.156 He concludes that therefore 

any learning algorithm based on the Euler equation is inherently faulty, because during 

the learning process the expectations are non-rational. His main point is that with EE 

learning, an agent has to forecast his own behaviour, which means that he uses two 

different approaches towards consumption: On the one hand, he determines his current 

consumption via the Euler equation, while on the other hand he uses his PLM to form 

his expectation of consumption. During the learning process these two approaches lead 

to different results. In Preston’s view this violates the “internal consistency” 

                                                 
155  This equation could alternatively be calculated by replacing the expectations in (105) by the rational 

expectations for the income and the interest rate. Details can be found in the appendix A.5.  
156  See Preston (2005a), p. 11 ff. as well as Preston (2005), section 1.3, p. 94 ff. 
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requirement. In contrast to that, IH learning is based exclusively on expectations of 

exogenous variables, so the question of internal consistency does not impose itself. 

However, it can be argued that in this particular respect EE learning in general is 

nevertheless plausible.157 The Euler equation is a prerequisite of optimal consumption, 

so it is natural that an agent uses this comparatively simple relationship to determine his 

current consumption as well as possible, even if he cannot be sure about his expected 

consumption in the next period. At the beginning of the learning process, the agent 

believes that his consumption, as determined by the Euler equation, follows some law of 

motion.158 In a stochastic environment, an agent will always experience differences 

between his expectations and the realization which will actually take place in the future. 

A priori he cannot know whether such differences are due to stochastic disturbances or a 

symptom of systematic internal inconsistency. This will only become clear to him when 

he has learned the actual law of motion of his consumption, but at this point the internal 

inconsistency has disappeared. In other words, the agent will tolerate a transient internal 

inconsistency, because he is aware that he is learning and does not know the actual law 

of motion. 

In contrast to that, the critique that standard EE learning leads to non-optimal 

consumption rules is valid as soon as individual agents are considered. Preston mentions 

the absence of wealth in the learning process, but similar problems arise due to 

individual income shocks or the possibility of an overparameterized PLM, as shown 

above. The IH learning approach, which takes the intertemporal budget constraint 

explicitly into account, is immune against these problems. In their discussion about 

learning methods, Preston and Honkapohja/Mitra/Evans disagree about the significance 

of the market clearing constraint. The latter argue that the market clearing condition 

implies that the budget constraint of the learning agent is not violated.159 This is true for 

the representative agent but does not hold any more if individual agents are considered. 

On the other hand, Preston argues that the market clearing condition may be part of the 

equilibrium which agents are trying to learn, so that they cannot know about such 

                                                 
157  For a related argument see also Honkapohja, Mitra and Evans (2003), p. 5 f. 
158  Such a belief is perfectly reasonable since in an equilibrium this will indeed be the case. 
159  See Honkapohja, Mitra and Evans (2003), p. 6. 
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conditions during the learning process.160 But actually the knowledge of the market 

clearing condition only does not matter if all agents have a common income, if none of 

them has any wealth and if they know that, too. Only in this case they can apply the 

market clearing condition to their individual consumption. But this means that the 

agents would be similar to a representative agent. The fundamental difference between 

the learning approaches is not so much the assumed knowledge of the agents about the 

market clearing condition, but the fact that the representative agent assumption, which 

implies that the market clearing condition can be used on the agents behaviour, is 

necessary for the EE learning approach but not for IH learning.  

3.4. Extended Euler Equation Learning 

In the preceding sections it has been demonstrated that EE learning is a valid approach 

for an economy of representative agents, but that it has some drawbacks as soon as 

individual agents with non-representative beliefs are considered. As an alternative one 

could use the IH learning method. This approach allows even individual agents with 

heterogeneous income shocks to learn the REE of the economy. However, although this 

approach is valid also for individual heterogeneous agents, it was criticized because in 

this method an agent, using expectations up to the infinite future, is “assumed to be 

extremely far-sighted even though he is boundedly rational”.161 Moreover, the approach 

by which an agent determines his optimal current consumption is quite complicated in 

IH learning. While it seems plausible that in the Euler equation method a household 

tries to balance his current consumption with his consumption in the next period given 

the current interest rate, it seems less natural that the household calculates infinite sums 

up to the future when deciding how much to consume in the current period.  

It would be interesting to find a learning approach which is comparatively simple, uses 

only short term expectations but can nevertheless be applied to individual agents with 

non-representative beliefs, thus combining the desirable features of EE learning and IH 

learning. In this section I suggest such a learning approach which I will call “Extended 

Euler Equation Learning” (EEE learning). Like EE learning it is based on the Euler 

                                                 
160  See Preston (2005), p. 99 or Preston (2005a), p. 12. 
161  See Honkapohja, Mitra and Evans (2003), p. 7. 
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equation, but in contrast to the former it is augmented by additional variables which 

allow the agents to learn the REE solution even if they experience heterogeneous 

income shocks or if they accumulate wealth. 

Again, as in the case of EE learning, an agent uses the Euler equation for the current 

period (53) as a basis to determine his optimal consumption:  

(118) 1
ˆ i

t t t tc E c rσ+= − . 

However, in contrast to EE learning the PLM of his consumption is now extended and 

includes also his wealth and the average income:  
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As before, the PLM contains a sunspot variable162 and a constant as well, so it can be 

tested whether this overparameterized PLM is strongly E-stable under learning. The 

agent’s expectation of his consumption in the next period is then 

(120) 1
ˆ i i i i i i i i i

t t t t t tE c m l y k y p b e ε+ = + + + +�  

and the resulting individual decision rule for the current consumption is 

(121) i i i i i i i
t t t t t tc m l y k y p b e rε σ= + + + + −� . 

Note that in contrast to IH learning the agent does not take his budget constraint into 

account or predicts variables more than one period ahead if he uses EEE learning. He 

simply forecasts his consumption in the next period and derives his optimal current 

consumption accordingly, given the current interest rate. He will then learn by 

observing his consumption and the relevant state variables in previous periods and 

revising his parameter estimates of his PLM accordingly. The following paragraphs 

describe the way how the economic environment, that is the agent’s flow budget 

                                                 
162  The properties of this variable are the same as in the preceding sections. 
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constraint, the market and the other agents, determine the outcome of this learning 

process. The agent himself does not need to be aware of any of these relationships. 

Given the individual decision rules, the resulting equilibrium interest rate is determined 

by aggregating consumption over all agents and applying the market clearing condition, 

as it was done in section 3.2.3, so we have 
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Inserting the interest rate and the agent’s consumption expectation into (121) yields the 

ALM of the agent’s consumption 
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In order to determine the T-mapping from the PLM to the ALM, the variables within 

this equation which are part of the agent’s PLM have to be related to the period 1−t , 

since values from this period are used in the PLM. For the exogenous variables, namely 

the agent’s individual income, the average income and the sunspot variable, the 

necessary replacements can be derived from their respective stochastic processes as 
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For the agent’s individual wealth in the current period this is more complicated. At the 

beginning of period t it is predetermined by the flow budget constraint (38), which in 

log-linearized form is 
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This expression contains two variables, the interest rate and the consumption, which 

again depend on the agents’ PLMs in period 1−t . Because the behaviour of the system 

under learning shall be examined, this dependence must be made explicit, thus these 

variables have to be replaced by their respective actual laws of motion (122) and (123), 

which are moved backwards by one period. This yields for the current wealth 
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Inserting this expression and (124) into the ALM for the agent’s current consumption 

(123) finally results in the ALM as a function of the exogenous variables of the previous 

period:163 

                                                 
163  This expression is slightly simplified. In equation (126), the parameters of the PLMs which represent 

the agents’ beliefs are from period t-1 while the parameters in (123) are from period t. Under learning, 
the parameters evolve from period to period, so they should actually be noted in a dated form in (127) 
and should not be collected over different periods. However, when the SRA which represents the 
system under learning is analyzed and the associated ODE is constructed, the vector of parameters is 
fixed anyway at the equilibrium values so the different dates are not relevant for the analysis of the 
stability. See p. 28 as well as Evans and Honkapohja (2001), chapter 6. In order to facilitate the 
notation the parameters are therefore noted without a date and collected without regard to their period.  
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In order to simplify the notation, the individual agent’s contribution to the sums in the 

last two lines of this equation was not separated from the sums and collected with the 

corresponding terms in the second and fifth line.164 Provided the economy contains a 

sufficiently large number of agents, the individual agent’s influence on these sums is so 

small it will not be noticeable to the agent. Hence the value of these sums will appear to 

him as independent from his individual income or wealth and will not influence his 

learning of the associated parameters li and pi, while they can nevertheless be important 

for his learning of the parameter ki, which describes the influence of the average income 

(and possibly for the learning of the constant mi, although it will turn out that this is not 

the case). 

The T-mappings from the PLM to the ALM, their fixed points and the E-stability of the 

equilibrium will now be analyzed for each parameter. Again, E-stability implies 

stability under learning in such a model.165 The parameter pi which represents the 

perceived influence of the agent’s wealth in the previous period on his current 

consumption will be considered first, because this parameter evolves independently 

from the others while all other parameters depend on it. The T-map for this parameter is 

                                                 
164  The significance of the number of agents within the economy was shown in section 3.2.3, where in a 

similar equation the individual agent’s contribution to the aggregate was explicitly accounted for. See 
equation (95) on p. 75 and the following. That approach could be used here as well, without any 
difference for the results in an economy with many agents. 

165  See Evans and Honkapohja (2001), section 8.6, p. 198 ff. 
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(128) ( ) ( ) iii pppT 11 −−= β  

which has two fixed points, at 0=ip  and β−=1ip . The stability of these fixed points 

is determined by the ODE 
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with the derivation ip11 21 −− −− ββ  which is positive for 0=ip , implying instability, 

and negative for β−=1ip , implying stability for this fixed point. This means that a 

negative starting value for this parameter will be getting even more negative under 

learning, while a positive value will converge β−=1ip .  

The instability result is intuitively plausible: If an agent believed that his consumption 

in the next period depended negatively on his current wealth, then the more he was 

indebted (respectively wealthy), the more (less) he would consume, accumulating more 

and more debt (wealth) with an increasing growth rate, which would result in an 

explosive consumption path. It is a natural assumption to rule out such behaviour. Even 

if an agent is not sure about the parameter values of his PLM and is trying to learn them, 

it is plausible to assume that nevertheless he supposes that more wealth would allow 

him to consume more. Moreover, it is likely that an agent will notice if his consumption 

follows an explosive path and will question the parameters of his PLM.166 For the 

remaining of this section it will therefore be assumed that for every agent the value for 

pi is restricted to be always greater than zero. In this case the parameter will converge 

towards the solution β−=1ip  under learning with probability 1.  

For the parameter li, which describes the influence of the individual income, the T-map 

is 
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166  A similar argument was suggested in Honkapohja, Mitra and Evans (2003), p. 6 for the case of an 

explosive solution as a result of a wrong learning approach. 
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Since the evolution of pi is not dependent on any other parameter, it will converge to its 

equilibrium value independently from the way how li evolves under learning. Setting it 

to the equilibrium value yields as the only fixed point of the mapping 
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E-stability can be determined by examining the ODE 
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which is globally asymptotically stable because of the negative coefficient for li. So, 

provided that the initial value for pi is greater than zero, pi and li will converge to the 

REE values under learning almost surely, that is with probability one. 

In contrast to these parameters which could be learned independently by each agent, the 

learning process for the remaining parameters is characterized by an interdependence 

between all agents. To clarify the basis for this remaining learning process, equation 

(127) is repeated here, with pi and li replaced by their learned values. Note that as soon 

as the equilibrium value for pi is learned, this parameter can be factored out from the 

aggregates of the individual wealth in the last line of (127), because the equilibrium 

value for pi is the same for all agents. These aggregates can then be dropped because the 

average of the individual wealth is always zero in a closed economy. Similarly, when all 

agents have learned the equilibrium values for li, the aggregates in the last line but one 

of (127) can approximately be written in terms of average values.167 Put less technically, 

these sums represent the aggregated influences of all individual agents’ wealth and 

income on the interest rate and consequently on every agent’s consumption. As soon as 

all agents have learned the equilibrium values for these parameters, the influences of 

their individual wealth cancel out each other, while the combined influences of their 

individual incomes appear as the influence of the average income to an observing agent. 

This yields 

                                                 
167  Using the assumptions discussed in section 3.1.2. 
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On the basis of this revised ALM the learning process for the parameters mi, ki, and ei 

will be analyzed one by one. Using the definition for iκ , the learning process for the 

constant mi and its average over all agents is described by the T-maps168 
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Using the assumptions discussed in section 3.1.2, the aggregate of the steady state 

wealth terms in (135) can be approximated by zero.169 Then the fixed points for these 

parameters are 0m =�  for the average and consequently 0im = . E-stability of this 

equilibrium can be determined by examining the ODEs 
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(137) d m m
dτ

= −� �  

                                                 
168  For details and an alternative calculation which directly uses the equations for all agents in the 

economy simultaneously and does not employ the average parameter, see appendix A.6.2.  
169  See section 3.1.2, p. 53 ff. 
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where in the second equation the average of the steady state terms has already been 

approximated by zero as described above. The derivatives of both ODEs are negative, 

hence the equilibrium is globally asymptotically stable. Thus, under learning each 

agent’s parameter values will converge to zero with probability 1. 

Next, the T-maps for the parameter ei and its average over all agents are 

(138) ( ) ( ) 11 1 1
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i i
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has been approximated by zero as before. The fixed point of the average parameter is 

0e =� . Consequently the fixed point of the individual parameters is also 0ie = , except 

for the case that 1µ β −= . In this case there would be a continuum of values, indexed by 

ei, which would have to satisfy merely the requirement that their average would have to 

be zero in order to be a fixed point. However, since the sunspot variable ε  was defined 

as following a non-explosive AR(1)-process with 1µ ≤  this case is ruled out anyway. 

E-stability is determined by the ODEs 

(140) ( ) 11 1 1
i

i i
i

d Be e e
d C

βµ µ β σ
τ β β

−⎛ ⎞⎛ ⎞ −
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(141) d e e
dτ

= −� � . 

For 1µ ≤  the derivatives of both ODEs are negative and the equilibrium is globally 

asymptotically stable. Under learning each agent’s parameter values will converge to 

zero with probability 1, as before in the case of the constant mi. In other words, the 

agents are able to learn that neither a constant nor a sunspot variable are part of their 

initially overparameterized PLM. 
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Finally the evolution of the parameter ki which represents the influence of the average 

income is examined. This parameter and its average are described by the T-maps 
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where, with the approximation ( )1
1

0n i i
i

n B C−
=

≈∑  as before, the second equation 

simplifies to 

(144) ( )T k ρ λ= −� . 

The fixed points for these mappings are  
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E-stability is determined by the ODEs 

(147) ( ) ( )11 1 1 1
i

i i
i

d Bk k k
d C

βρ ρ β σ λ
τ β β

−⎛ ⎞⎛ ⎞ −
= − + − − − − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

� , 

(148) d k k
d

ρ λ
τ

= − −� � . 

The derivatives of both ODEs are negative, so the system is globally asymptotically 

stable. Under learning each agent’s parameter values will converge to the equilibrium 

values with probability 1.  

Summing up the results of the previous paragraphs, each agent will learn the 

equilibrium values 
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with probability 1, provided the parameter pi is required to be strictly positive as 

discussed above. To show that with these learned equilibrium values for the parameters 

of the PLM the agent has indeed rational expectations, the values are inserted into 

equations (122), (120) and (121) which describe the interest rate, the agent’s expectation 

and his current consumption. With the usual approximation for the aggregation, this 

yields for the interest rate the REE solution ( )1 1t tr yσ ρ−= − � . For the agent’s 

expectation one gets  
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If the agent uses this expectation in his Euler equation, then he can determine his current 

consumption as 

(151)  
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which is the REE solution as it was already derived by IH learning and discussed in 

section 3.1.4. 

Thus, if the EE learning method is extended by including additional variables in the way 

suggested in this section, then even individual agents with heterogeneous income 
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shocks are able to learn the REE.170 The solution for his consumption is the same as 

with the IH learning method, and in the equilibrium it is internally consistent. In the 

discussion of IH learning I have argued that internal inconsistency during the learning 

process is not relevant to the agent because he cannot detect it when he is still learning, 

as long as the expectation and the decision rule are internally consistent in the 

equilibrium. Thus EEE learning meets the critique which gave rise to the IH learning 

method. Moreover, EEE learning is much easier for an agent to apply and it is more 

plausible to argue that agents actually use a two period approach than an infinite horizon 

approach. 

On the face of it this result seems to contradict the requirement that to solve the 

dynamic optimization problem it is necessary to take into account information about all 

future periods as well as the budget constraint, but in fact it fits well with this 

requirement. In the discussed model it is sufficient that the agents consider only 

variables of the current period in their expectations, because it is assumed that the 

exogenous variables evolve according to an AR(1)-process. This means that the 

information about the rationally expected future path of these variables is contained in 

their present values.171 The agent does not explicitly considers this relationship, but it is 

implicitly present in the learning process and affects its outcome.  

Further, although in the EEE learning approach an agent uses only the Euler equation to 

determine his current consumption, his budget constraint is nevertheless part of the 

learning process. Since his wealth is included in his PLM and since his wealth forcibly 

evolves according to the flow budget constraint, the influence of this constraint is 

present in the learning process and will serve as a corrective against permanent over- or 

underconsumption. This requires that the agent learns the right parameter pi for the 

influence of wealth in his PLM. It must be admitted that in order to ensure that learning 

always converges to the REE in EEE learning and to rule out explosive solutions the 

parameter pi is required to be greater than zero. The reason is that this learning method 

                                                 
170  It should be mentioned again that, due to the aggregation of individual agents, the results are based on 

the assumptions made during the log-linearization concerning the distribution of the log-linearized 
variables and the steady states over the population of agents. For details, see section 3.1.2. 

171  Otherwise the agent would not be able to learn the optimal current consumption when using this 
learning method. 
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uses the flow budget constraint (albeit not known to the agent, instead he simply 

experiences its effects on his state variables and learns from them), but not the no-ponzi 

condition.172 However, as described above, it suffices to assume that the agent must 

know beforehand that a positive relation exists between his wealth and his consumption 

to rule out ponzi type solutions.  

It is interesting to note that the average of the learned parameters is not zero for the 

parameter pi, although for a representative agent the aggregated wealth, being always 

zero, does not play any role for his consumption. If a representative agent would 

directly use EEE learning, he would not be able to determine any influence from this 

zero wealth on his consumption. In contrast to that, if the representative agent is 

considered as the average of the individual agents which have learned their parameters 

individually, then his parameter would be the same as for every individual agent, 

namely 1p β= −� . This shows again that the learning process of a representative agent 

cannot generally be used to emulate the aggregate of the learning processes of 

individual agents.  

                                                 
172  In contrast to that, the no-ponzi condition is included in the IH learning approach because it is part of 

the intertemporal budget constraint. 
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4. Conclusions 

One of the basic building blocs of micro-founded economic models are dynamic 

optimization models. In such models agents try to maximize some target function over 

an infinite time horizon subject to a constraint. A common example is the consumption 

model in which agents maximize their discounted utility subject to their budget 

constraints. Those models are usually solved by assuming a representative agent and 

rational expectations. While the micro-founded models stand mainly in the tradition of 

neoclassical theory and are therefore already relatively abstract and idealized compared 

to purely macroeconomic models like the Keynes-Hicks IS-LM framework, these 

assumptions render the models even more academic. By replacing rational expectations 

by learning algorithms, learning theory tries to explain how rational expectations, which 

else are rather regarded as a hypothetical equilibrium, could be the outcome of 

optimizing behaviour. Moreover, even if in reality rational expectation could not be 

perfectly reached by a learning process, learning theory can give hints about how beliefs 

and expectations could evolve over time in response to the dynamics of a model. Thus 

learning can bring an abstract model again a little closer to reality.  

In this respect it is especially interesting whether a model is stable under learning and to 

what equilibrium expectations will converge. In this work this question has been studied 

by the example of a basic consumption model. To take the model a further step towards 

a more realistic situation it was in particular examined how the representative agent 

assumption affects the results of different recursive least squares learning approaches 

and how these results change when individual agents with individual beliefs and 

possibly heterogeneous income shocks are considered. The model was analyzed in a 

log-linearized form and the results are based on the assumptions which were made in 

the linearization process.   

First the REE solutions for a representative agent and for individual agents have been 

established as a point of reference and their respective derivation techniques have been 

compared. The discussion has stressed the fact that the representative agent assumption 

allows for a simplified solution of the underlying dynamic optimization problem which 

takes only the Euler equation into account. That is because for a representative agent the 
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market clearing condition can be applied to his behaviour, especially to his rational 

expectations. This is not possible for individual agents, and the solution for them must 

therefore take the complete dynamic optimization problem into account.  

When learning is introduced into a model it is done to explain how a dynamic 

optimizing process can lead to a (possibly rational) expectations equilibrium. However, 

this makes sense only if individual agents are considered. Learning as an evolution of 

beliefs in reaction to experiences is originally an individual concept. If a learning 

process allows the beliefs of a representative agent to converge to a rational 

expectations equilibrium this can nevertheless mean that the underlying individuals 

which are represented by the representative agent still have non-rational or even 

diverging beliefs. Moreover, if the micro-foundations of a model are such that the 

behaviour of an agent is influenced by his expectations, this relationship cannot always 

be aggregated: It cannot be taken for granted that the aggregate of the reaction to the 

individual expectations is the same as the reaction of a single representative agent to the 

aggregate expectations, especially not when a recursive process like learning is 

considered. This means that before a learning method is applied to a representative 

agent it must be made sure that it yields the same results with individual agents.  

This has been examined for the Euler equation learning method first. The method is the 

most usual way of how learning is included in a model, and it is usually applied to a 

model with a representative agent. While it is well known that this learning method 

leads to the rational expectations for a representative agent, this is not the case any more 

for individual agents, because their individual wealth is not included in the agents’ 

perceived law of motion. In this work it has additionally been shown that for individual 

agents this learning method allows for a continuum of solutions and also for the 

inclusion of a sunspot variable into the agents’ expectations if the PLM is 

overparameterized. The learning method leads the economy into this continuum of 

solutions but fails to converge to a particular point. The underlying reason is that the 

Euler equation which forms the basis for the learning method allows the agents to form 

self-fulfilling prophecies. Moreover, this work examines the case of heterogeneous 

individual incomes. If the Euler equation learning method focuses here on the individual 

income, then even the resulting interest rate, being an aggregate variable, fails to 
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converge to the rational expectations equilibrium. The reason why the method works 

well for a representative agent can again be found in the fact that for a representative 

agent the market clearing condition can be applied to his behaviour. This condition 

restricts the possible outcome for the representative agent in each period, while it is not 

applicable to individual agents, whose consumptions are therefore more free to be 

varied by their beliefs and expectations. The consequence is that it is misleading if Euler 

equation learning is applied to a representative agent to test the learnability of an 

equilibrium. 

The infinite horizon learning method yields the correct equilibria for both a 

representative agent and individual agents. This method was suggested by Preston as an 

alternative method which is based closely on the complete dynamic optimization 

problem. In this work the learning method was applied to the case of heterogeneous 

individual income in connection with an overparameterized PLM which allows for a 

constant as well as a sunspot variable. The result is strongly E-stable and the individual 

agents can learn the correct beliefs. The difference between this method and Euler 

equation learning lies in the way how the agents solve their optimization problem. In the 

EE learning approach they use the Euler equation to determine their consumption, so 

they have to predict their own behaviour. This can lead to self-fulfilling prophecies in 

the absence of a restriction as it would be the market clearing constraint for the 

representative agent. In contrast to that, the IH learning approach lets the agents solve 

their optimization problems in such a way that the necessary expectations, which they 

need to determine their optimal consumption, are all expectations of variables beyond 

their immediate influence. This is the reason why this method is valid for individual 

agents as well as for a representative one. It does not matter that one of the variables is 

the interest rate, which as an endogenous variable is influenced indirectly by the agents: 

Since this variable is per se an aggregate one, it makes again no difference if it is 

determined by an aggregate of individual agents or by a representative agent. 

However, the infinite horizon learning approach has been criticized for two main 

reasons. Since learning implies boundedly rational agents, it seems not natural to 

assume that they consider expectations over an infinite horizon to determine their 

current consumption. Moreover, while the Euler equation is a simple relationship which 
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could be interpreted as a “natural” desire to balance consumption over time, the 

calculations on which the consumption is based in the infinite horizon approach are 

more complicated. In this work an extension to the original Euler equation approach has 

been proposed as a more simple alternative. In this extended Euler equation approach 

the agents’ PLM also includes the average income and the individual wealth in addition 

to the individual income. It has been shown that for the model discussed here this 

learning approach converges to the rational expectations equilibrium for individual 

agents with heterogeneous income provided that the agents are aware of the fact that 

wealth and consumption are positively related and that they restrict the respective 

parameter in their PLMs appropriately. As a further evidence for the result that the 

representative agent assumption can be misleading when learning is considered, it has 

been shown that the average of the perceived influence of wealth on an agents 

consumption is a well defined positive value. A representative agent as the average of 

the underlying individual agents would have to exhibit this value, while a representative 

agent which would directly learn on the basis of his Euler equation would not be able to 

detect any influence of wealth on his consumption. It is interesting that in this learning 

approach it is not necessary that the agents consider their budget constraints explicitly. 

As long as they include their wealth in their PLMs appropriately, they get the necessary 

feedback from the budget constraint via this value. 

The comparison of these results demonstrate two main points: In order to explain how 

expectations are formed in a model it is not sufficient to replace simply rational 

expectations by a learning algorithm. When this is done it must also be ensured that the 

learning algorithm works well with individual agents and that the results are not 

changed by the representative agent assumption, as learning algorithms can be sensitive 

to this assumption. In addition to that it can be seen that Euler equation learning can still 

be a valid learning algorithm provided that it is applied to the appropriate perceived law 

of motion.  

In future research, the examination as it was done in this work could be extended in 

some aspects. First, the considered learning methods are all variants of recursive least 

squares, because this is the most generic and up to now also the most common learning 

algorithm, as well as yielding the clearest results. It would be interesting to conduct a 
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similar study for other learning algorithms like stochastic gradient learning or constant 

gain learning. Further, it could be tried to increase the degree of heterogeneity of the 

agents by including either individual temporal discount factors, individual coefficients 

for the autocorrelated income processes or different intertemporal elasticities of 

substitution for the utility function. Moreover, while there are already some 

experimental and empirical studies about individual learning behaviour, it would be 

desirable to establish further whether and how individual persons do learn in the real 

world. 

Finally, the results of this work have been demonstrated by the example of a basic 

dynamic optimization model. Because this model considers only the consumer’s 

problem, positing his income as an exogenous process, it is only a partial model of a 

microeconomic flavour. As a next step the results could be examined for more 

complicated models which build on such dynamic optimizations, such as fully-fledged 

micro-founded macroeconomic models. Because of the additional interdependencies in 

such models, it can of course not be taken for granted that the results of this work hold 

also for those more complex models. However, in future research it could be tried to 

apply the approach used in this work to such models, introducing learning as well as 

heterogeneous agents. In this respect the present work hopes to contribute to the task of 

rendering micro-founded models closer and closer to the economic reality.  
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A. Appendix 

A.1. Adaptive expectations as a special case of learning 

Without regard to a specific model, let an agent’s PLM be: 

(1) tttt uzcx +=+1  

with u being a disturbance with zero means. His expectation then takes the form 

(2) 1t t t tE x c z+ =  

Let the agent’s estimate of the parameter c be adjusted according to stochastic gradient 

learning:  

(3) )( 1111 −−−− −+= ttttttt zcxzcc γ  

Setting the exogenous variable z as constant 1 and inserting into (2) yields 

(4) 1 1 1( )t t t t t tE x c x cγ+ − −= + −  

and since from (2) 1 1t t tE x c− −= we arrive at 

(5) 1 1 1( )t t t t t t t tE x E x x E xγ+ − −= + −  

For a constant gain γ  this gives the familiar adaptive expectation. Note that while in 

most models (1) with 1=z  would be a misspecification, learning with a constant gain 

still allows the expectation to track real data. 
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A.2. Aggregation of log-linearized variables 

Consider an individual agent’s variable i
tX  which shall be aggregated over all n agents 

in the economy. The aggregate is here denoted by tX  and describes the arithmetic 

mean1 of all agents’ i
tX , so that we have 

(6) 
1

1 n
i

t t
i

X X
n =

≡ ∑  

Log-linearize both sides around each variables steady state X  resp. iX  to get 

(7) 
1 1

1 1n n
i i i

t t
i i

X X x X X x
n n= =

+ = +∑ ∑  

where lower case variables denote the log deviation from their respective steady states. 

The problem is now to find the mean of the product i
t

i xX  on the right hand side, which 

can be calculated as 

(8)  
1 1 1 1 1 1

1 1 1 1 1 1n n n n n n
i i i i i i i i

t t t t
i i i i i i

X x X x X X x x
n n n n n n= = = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ ∑ ∑  

Consider a variable of a single agent as a random variable with a certain distribution. If 

the number of agents within the economy is sufficiently large, the law of large numbers 

allows to approximate the average of the variable over all agents by the expected value 

of its distribution. The second term on the right hand side of (8) can then be 

approximated by the covariance between iX  and i
tx . Thus, if the distribution of i

tx  

over the agents in the economy is not correlated with the distribution of the steady states 
iX  and assuming that the number of agents in the economy is sufficiently large, this 

term is approximately zero and we can approximate the mean of the product by the 

product of the respective means: 

                                                 
1  The same method could as well be applied if the aggregate was defined as the sum instead of the 

arithmetic mean. The result would be the same. 
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(9) ∑∑∑
===

+=+
n
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i
t
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n
xXX

111

111  

 Recognizing that (6) holds for the steady states as well and simplifying, we get 

(10) ∑
=

=
n

i

i
tt x

n
x

1

1  

Thus, if in an economy with many agents the steady state of the agent’s variable in 

question is uncorrelated with the variable’s log deviation, the log-linearized variable can 

be aggregated by simply taking the mean of the log deviations. 

A.3. The REE solution for heterogeneous agents 

A.3.1. Optimal Consumption and the Euler Equation 

Consider the consumption model described in the text and a world of rational 

expectations. Suppose that the agent’s consumption is given by  

(11) ( ) ( )[ ] ( ) tt
i
tt

i
ti

ii
i
t

i
t yyyyy

C
CYbc ~~~11 1 +−+−+

−
+−= − λσλλβ  

To show that the agent’s consumption and his expectation of his own consumption 

satisfy the Euler equation under rational expectations, form the rational expectation of 

(11) for the next period which is 

(12) ( ) ( )1
1 1 1 11 1 1

i i i
i i i i i i i
t t t t t t t ti i

Y Y CE c E b E y E y
C C

β λ σ λ−
+ + + +

⎡ ⎤−
= − + + + −⎢ ⎥

⎣ ⎦
 

where i
tb  is predetermined by the variables from the current period according to the log-

linearized flow budget constraint 

(13) 1 1 1
1

i i
i i i i
t t t t ti i

B Yb r y b c
C C

β β β− − −
+ = + + −  
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Since we are considering a world of rational expectations, the current interest rate in this 

expression can be expressed by the REE solution ( )1 1t tr yσ ρ−= − . Inserting (13) and 

the rational expectations for the individual and the average income into (12) yields 

(14) 
( ) ( )

( )

1 1 1 1
1

1

1 1

1 1

i i
i i i i i
t t tt t t ti i

i i i
i
t ti i

B YE c y y b c
C C

Y Y Cy y
C C

β σ ρ β β β

λ ρ σ λ ρ

− − − −
+

−

⎛ ⎞
= − − + + −⎜ ⎟

⎝ ⎠
⎡ ⎤−

+ + + −⎢ ⎥
⎣ ⎦

 

According to the Euler equation this expectation can be used to determine the current 

consumption as 

(15) 1 (1 )i i i
t t t tc E c yρ+= + −  

where the current interest rate as again been replaced by the REE solution. Solving for 

the current consumption and recognizing that ( ) ( )1 i i iB Y Cβ− = − −  gives 

(16) ( ) ( ) ( ) ( )1 1 1
i i i

i i i
t t t t ti i

Y C Yc y y b y
C C

σ β λβρ β λ βρ β β λβρ−−
= − + − + + − + −  

Since λββρλ =−+1  and λβρλβ −=− 1  we have indeed 

(17) ( ) ( ) ( )1 1 1 1
i i i

i i i
t t t t ti i

Y C Yc y y b y
C C

σ λ λ β λ−−
= − + + − + −  

which is the same as (11). 

 

A.3.2. Permanent shift of the individual agent’s consumption steady state  

The optimal consumption of an individual agent in a world of rational expectations is 

given by  
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(18) ( ) ( )[ ] ( ) tt
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 with 
βρ
β

ρ
λ

−
−

=
−
−

=
1
11

R
R , 10 << λ  

where all terms on the right hand side except for the last one represent the expected 

permanent shift of the consumption steady state, caused by changes in the agent’s 

wealth which will accumulate while the income shock settles down: 

(19) 
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To show that this expression remains constant over time provided no additional shocks 

occur, determine next period’s wealth by log linearizing the flow budget constraint: 

(20) 1 1 1
1

i i
i i i i
t t t t ti i

B Yb r y b c
C C

β β β− − −
+ = + + −  

where consumption can be expressed as 

(21) 1limi i i
t t s t

s
c E c y+

→∞

⎡ ⎤= +⎣ ⎦  

Advancing (19) by one period and inserting (20) and (21) gives 

(22) 
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1 1
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1
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−
+ + − −

 

Because additional future shocks are ruled out here, we have 1
i i
t ty yρ+ =  and 1t ty yρ+ = , 

and since we are considering a world of rational expectations the interest rate in t is 



 118

( )1 1t tr yσ ρ−= − − . Inserting these terms into (22), recognizing that 

( ) ( )1 i i iB Y Cβ− = − −  and sorting then yields: 

(23) 
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Since λββρλ =−+1  and λβρλβ −=− 1  we have 

(24) 
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 

A.4. E-stability of EE Learning for Individual Agents 

Consider the learning model of section 3.2.2 with the mapping from the PLM to the 

ALM  
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In a world of n individual agents E-stability is determined by the stability of the ODEs 
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These ODEs are asymptotically stable if all eigenvalues of their Jacobian matrices have 

negative real parts. For (27) this condition holds, since the matrix term in square 

brackets has one distinct eigenvalue of 1−=λ  and an )1( −n -fold eigenvalue of 

01<−= ρλ .2 We get the same result for (28) if 1<µ . However, for (26) as well as for 

(28) in the case of 1=µ , the Jacobian has one distinct eigenvalue of 1−=λ  and an 

)1( −n -fold eigenvalue of 0=λ . The eigenvectors corresponding to this zero 

eigenvalue are the vectors that satisfy the condition that the sum of their elements is 

zero, hence the corresponding eigenspace has the dimension )1( −n . So, for this 

eigenvalue its algebraic multiplicity is the same as the geometric multiplicity, hence the 

ODEs are stable, but not attractive and therefore not asymptotically stable.3 With 

respect to learning this means that the ODE allows these parameters to stay at an 

equilibrium point, but if they are pushed out of it by exogenous stochastic influences, 

                                                 
2  For some rules on the calculation of these eigenvalues, see appendix A.6 
3  See Burg, Haf, and Wille (2002), Satz 1.1.4, p. 110. 
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they do not necessarily return to the same equilibrium point. Thus, they do not converge 

towards a particular equilibrium, but are moved around within the equilibrium 

continuum by the exogenous stochastic variables.  

A.5. Details for the Derivation of Infinite Horizon Learning 
and of the REE solution for Individual Agents 

Consider an economy of individual agents with heterogeneous income shocks which use 

the infinite horizon learning approach as described in section 3.3. The derivation starts 

with the intertemporal budget constraint for an individual agent 

 

(29) ∑∑
∞

=

−
∞

=

− +=
tT

i
TTt

i
t

i
t

tT

i
TTt

i
t YREBCRE 1

,
1

,
ˆˆ  

Log linearizing yields 
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1
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constraint as 
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To ensure optimality of the consumption in future periods, iterate the log linearized 

individual Euler equation to get 
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Inserting into (31) gives 
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Now solve for the current consumption. Rearranging we get 
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and solve for the current consumption 
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For IH learning, the expectations in (36) must be replaced by the rational expectations 

for the income (because this law of motion can be learned independently) and the non 

rational expectation for the interest rate. The latter are, based on the agent’s PLM: 
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and the expectations are accordingly 
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In the agent’s decision rule (36), the current value of the interest rate is separated 

because it is not expected, while the future values and the values for the individual 

income are replaced by the respective expectations: 
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We have 
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and solving the infinite sums yields 
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This expression is aggregated over all agents by building the arithmetic mean.4 

Recognizing that 0~
=tb  and that the mean of the steady state consumption is equal to 

the mean of steady state income, we get 

(43) 
2 2 21
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Solving for the interest rate and applying the market clearing condition yields the ALM 
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The T-mapping is constructed by comparing this equation to the PLM (37) 
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E-Stability for a single agent is determined by the ODEs 
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(48) ( ) ( )( )′−−−= − ii eee
d
d ~1 1βµβµ
τ

 

Here, stability will be determined simultaneously for all agents. In an economy with n 

individual agents E-stability is determined by the stability of the ODEs 

                                                 
4  See appendix A.2. It is assumed that the terms ii CY  and ( ) iii CCY −  are not correlated to the 

log deviation of the agent’s individual income or to his beliefs. 
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where I and J are defined as in appendix A.4. The ODEs are asymptotically stable if all 

eigenvalues of their Jacobian matrices have negative real parts. Here, the Jacobi 

matrices are simply the matrix expressions in the square brackets. The Jacobi matrix for 

the ODE (49) has one distinct eigenvalue of ( ) 01 1 <−−= −βλ  and an )1( −n -fold 

eigenvalue of 01<−=λ , that for the ODE (50) has one distinct eigenvalue of 

( ) 01 1 <−−= −βρλ  and an )1( −n -fold eigenvalue of 01<−=λ , and that for the 

ODE (51) has one distinct eigenvalue of ( ) 01 1 <−−= −βµλ  and an )1( −n -fold 

eigenvalue of 01<−=λ . Since all eigenvalues are negative, all ODEs are globally 

asymptotically stable and the system will converge under learning to the REE solution.  

Consumption in the REE can be determined by inserting the equilibrium parameter 

values and the REE solution for the interest rate ( )1 1t tr yσ ρ−= −  into equation (42). 

We get 
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Defining 
βρ
βλ

−
−

≡
1
1  so that ( )

βρ
ρβλ
−
−

−=−
1

11 , simplifying and rearranging yields the 

expression for the consumption in the REE solution used in the text 
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where λ  can alternatively be expressed as ( ) ( )ρλ
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R
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For an alternative way to determine consumption in the REE replace the expectations in 

(36) by the rational expectations  
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Using the definition forλ  as before and rearranging finally results again in (53). 

A.6. EEE Learning 

A.6.1. Detailed Derivation of the ALM 

When using EEE learning, an agent determines his optimal current consumption 

according to the Euler equation for the current period 
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(57) tttt rcEc σ−= +1
ˆ  

His PLM of his consumption is linear and contains in addition to the variables of the 

REE solution also a constant and a sunspot variable tε  
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so his expectation of next periods consumption is 
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Inserting into (57) yields 
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and aggregating over all agents and solving for the equilibrium interest rate gives 
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The ALM of the agent’s consumption can be calculated by inserting this interest rate 

into (60): 
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In this equation, the current wealth is predetermined by the log-linearized flow budget 

constraint 
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where interest rate and consumption are given by the respective ALMs (61) and (62), 

each moved backwards by one period. Inserting yields 
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or slightly rearranged 
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For the individual income, the average income and the sunspot variable we have 
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Inserting these expressions into (60) finally gives  
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or, rearranged, 

(68) 

( ) ( )

( )

( ) ( )( ) ( )
( ) ( ) ( )

( )

( )

1

1 1
1

1
1

1
1

1
1

1 1
1

1 1

1
1

1 1

1 1

1

i i i i i
t

i
i i i i i i

t ti

i i i i i
t t

i i i i i
t t

i i i
t

n n
i i j j j j

t t
j j

i i j
t

c p m p m

Yp l p y l
C

p k p k y k k

p e p e e e

p p b

p n l y n l

p n p b

β κ

ρ β β ν

ρ β ρ κ ν

µ β µ κ ε π

β

ρ κ ν

κ

−

− −
−

−
−

−
−

−
−

− −
−

= =

−
−

= − − −

⎡ ⎤
+ − + +⎢ ⎥
⎣ ⎦
⎡ ⎤+ − − − − + − +⎣ ⎦
⎡ ⎤+ − − − + −⎣ ⎦

+ −

− − −

+

∑ ∑

1

1 1

n n
j j j

t
j j

n p b−

= =

−∑ ∑

 

which describes the ALM for the current consumption as a function of exogenous 

variables from period 1−t .5 

A.6.2. Simultaneous Learning of the Interdependent Parameters 

In this section it will be demonstrated how the equilibria and the stability of the learning 

process can be determined for the parameters mi, ki, and ei. Since the learning process of 

                                                 
5  Note that the parameters of the PLMs are noted without a date and collected regardless of their date to 

simplify the notation. See footnote 160 on p. 91 in the text. 
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these parameters is characterized by an interdependence between the individual agents, 

it must be considered simultaneously for all agents. As an alternative to the approach 

used in the text, which considered the parameters of a single agent and their averages, 

one can simultaneously analyze the learning process for all agents.  

The T-map for the constant mi for an individual agent is 
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Aggregating over all agents yields  
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=∑  can be approximated by zero.6 So one gets as the fixed 
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n
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i
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6  See the assumptions of section 3.1.2 and the discussion in section A.2 of the appendix. 



 130

and by (71) 0im = . E-stability of the fixed point can be determined by considering the 

ODE 
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Stacking this ODE for all n agents in the economy yields the system 
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The Jacobi matrix for this ODE is the expression in square brackets. In the course of the 

calculation of its eigenvalues7 the sum ( )1

n i i
i
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=∑  has to be determined, which is 

approximated by zero as before. Then the Jacobi matrix has one distinct eigenvalue of 

01<−=λ  and an )1( −n -fold eigenvalue of ( )1 1 0λ β β−= − − < . Hence the system is 

globally asymptotically stable and the parameters converge to their equilibrium values 

under learning with probability 1.  

The T-map for the parameter ei which represents the influence of the sunspot variable 

for an individual agent is 
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with a fixed point determined by the condition 

                                                 
7  A useful rule for this kind of matrix is given in section A.7, paragraph c). 
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for 1µ β −≠ , which is assured by the condition 1µ ≤  for the process of the sunspot 

variable. Aggregating over all agents yields  
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Stacking this ODE for all n agents in the economy yields the system 
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The Jacobi matrix for this ODE is the expression in square brackets. With 

( )1
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≈∑  as before, the Jacobi matrix has one distinct eigenvalue of 01<−=λ  

and an )1( −n -fold eigenvalue of ( )1 1 0λ β βµ−= − − < . Hence the system is globally 

asymptotically stable and the parameters converge to their equilibrium values under 

learning with probability 1. 

The T-map for the parameter ki which represents the influence of the average income is 
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with a fixed point determined by the condition 
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1

1 1 1 1
i n

i i i
i

i

Bk k n k
C

β βρ ρ β σ λ
β β

− −

=

⎛ ⎞⎛ ⎞− − ⎛ ⎞
= − + − − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

or 

(85) ( ) 1 1

1

1 1 1
1 1

i n
i i

i
i

Bk n k
C

βρ β β β σ λ
βρ βρ

− −

=

⎛ ⎞− − ⎛ ⎞
= + − − +⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

∑  

Aggregating over all agents yields  

(86) ( ) 1 1 1

1 1

1 1 1
1 1

in n
i i

i
i i

Bk n n k
C

βρ β β β σ λ
βρ βρ

− − −

= =

⎛ ⎞− − ⎛ ⎞
= + − − +⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

∑ ∑  
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where the sum ( )1

n i i
i

B C
=∑  can again be approximated by zero. So one gets as the 

fixed point 

(87) ( )1

1

1 1
n

i

i
n k βρ β λ ρ λ

β
−

=

− −
= − + = −∑  

and by (85) for the individual parameter 

(88) 
( ) ( )

( )( )

1

1

1 1 1
1 1

1 1

i
i

i

i

i

Bk
C

B
C

βρ β β β σ ρ
βρ βρ

ρ λ λ β σ

−

−

⎛ ⎞− −
= + − −⎜ ⎟− −⎝ ⎠

= − − − −

 

E-stability of the fixed point can be determined by considering the ODE 

(89) ( ) ( )11 1 1 1
i

i i
i

d Bk k k
d C

βρ ρ β σ λ
τ β β

−⎛ ⎞⎛ ⎞ −
= − + − − − − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Stacking this ODE for all n agents in the economy yields the system 

(90) 

( )

( ) ( )

1 1 1

1 1 1
1 1

2 2 2
2 2

1 2 2 2

1

1 1 1 11

1 1 1

n n n n

n n
n n n

n n n

i

i

B B B
C C Ck k
B B Bk kd
C C Cd n n

k k
B B B
C C C

B
C

JI βρ ρ β σ
τ β β

βρ β σ λ
β

−

× ×

−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟= − + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞−
+ − − − −⎜ ⎟
⎝ ⎠ 1n

J
×

 

The Jacobi matrix for this ODE is the expression in square brackets. With 

( )1
0n i i

i
B C

=
≈∑  as before, the Jacobi matrix has one distinct eigenvalue of 01<−=λ  
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and an )1( −n -fold eigenvalue of ( )1 1 0λ β βρ−= − − < . Hence the system is globally 

asymptotically stable and the parameters converge to their equilibrium values under 

learning with probability 1. 

A.7. Helpful rules for the calculation of eigenvalues 

For the calculation of the eigenvalues the following rules are used.  

a) The nn×  matrix J 

(91) 

1 1 1
1 1 1

1 1 1
n n
J
×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

has one eigenvalue of n=λ  and 1−n  eigenvalues of 0=λ .  

b) Consider a matrix A with a set of eigenvalues { }iλ . If A is multiplied by a scalar a, 

then the eigenvalues of the resulting matrix are { }iaλ . The set of eigenvalues of a 

matrix B with 

(92) IaAB −=  

is { }1−iaλ . Thus, a matrix C with 

(93) bIJnaC −= −1  

has one eigenvalue of ba −  and 1−n  eigenvalues of b− .  

c) Consider a vector ( )1 2 nd d d d ′=  and a nn×  matrix D with 

(94) 
1 n

D d J
×

= ⋅  
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so that all columns of D are identical. Since D is of rank 1, there is exactly one 

eigenvalue λ  with 0λ ≠ . This eigenvalue must fulfil the requirement 

(95) D x xλ=  

for some eigenvector ( )1 2 nx x x x ′= . Thus, we have 

(96) 
1

n
i

i

x d xλ
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑  

which holds for 
1

n i
i

xλ
=

=∑  and d x= . The matrix D has therefore one distinct 

eigenvalue 
1

n i
i

dλ
=

=∑  with the eigenvector d, and an )1( −n -fold eigenvalue 0λ = . 

 

 



 

 

 


