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Abstract. Given a short exact sequence of locally compact abelian groups 0 → A → B →

C → 0 and a continuous C-valued 1-cocycle φ on a locally compact Hausdorff groupoid Γ
we construct a twist of Γ by A that is trivial if and only if φ lifts. The cocycle determines a
strongly continuous action of Ĉ into AutC∗(Γ) and we prove that the C∗-algebra of the twist
is isomorphic to the induced algebra of this action if Γ is amenable. We apply our results
to a groupoid determined by a locally finite cover of a space X and a cocycle provided by
a Čech 1-cocycle with coefficients in the sheaf of germs of continuous T-valued functions.
We prove that the C∗-algebra of the resulting twist is continuous trace and we compute its
Dixmier–Douady invariant.

1. Introduction

It is a well-known fact that given a 1-cocycle φ : Γ → T on an étale
groupoid Γ, there is an automorphism α ofC∗(Γ) such that α(f)(γ) = φ(γ)f(γ)
for all f ∈ Cc(Γ) (see [19, Prop. II.5.1]). If φ can be lifted to an R-valued 1-
cocycle φ̃, there is a strongly continuous 1-parameter group of automorphisms
α̃ : R → AutC∗(Γ) such that α = α̃1. But in general there is a cohomological
obstruction to lifting φ. There is a central groupoid extension Σφ of Γ by Z,
called a twist, which is trivial precisely when φ can be lifted. Our goal in
this paper is to describe the structure of C∗(Σφ) in terms of C∗(Γ) and the
automorphism α.

Our results will be proven in a somewhat more general form. Given a lo-
cally compact Hausdorff groupoid Γ, a short exact sequence of locally compact
abelian groups

0 → A
i
−→ B

p
−→ C → 0

and a continuous 1-cocycle φ : Γ → C we construct a twist Σφ of Γ by A which
is trivial if and only if the cocycle lifts. As above the cocycle φ determines
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a strongly continuous action αφ : Ĉ → AutC∗(Γ). We prove that C∗(Σφ) is
isomorphic to the induced algebra for this action if Γ is amenable (see Theo-
rem 4.3). So in particular, there is an action γ : B̂ → AutC∗(Σφ) such that
C∗(Σφ)⋊γ B̂ is strong Morita equivalent to C∗(Γ)⋊αφ Ĉ.

In Example 3.6 we consider a groupoid Γ determined by a locally finite open
cover U := {Ui}i∈I of a spaceX (see [17]) and take A := Z, B := R and C := T.
The 1-cocycle φ arises from a Čech 1-cocycle λ = {λij}i,j∈I with coefficients
in T , the sheaf of germs of continuous T-valued functions. If λ satisfies a certain
liftability hypothesis, the corresponding twist Σφ is then determined by a Čech
2-cocycle λ⋆ with coefficients in the constant sheaf with fiber Z (we denote the
sheaf by Z for the sake of simplicity) that measures the obstruction to lifting
λ to a Čech 1-cocycle with coefficients in the sheaf of germs of continuous R-
valued functions. Finally, we show in Example 4.6 that C∗(Σφ) is a continuous
trace algebra and compute its Dixmier–Douady invariant using the cohomology
class [λ] which is identified with [λ⋆] via the standard isomorphism of Čech
cohomology groups Ȟ1(X, T ) ∼= Ȟ2(X,Z). This example was a key motivation
for this project and it was suggested by results of [16] (see also [22]).

In this note we assume that all topological spaces and groupoids are second
countable locally compact and Hausdorff and all groups are second countable
abelian locally compact and Hausdorff. Hence all spaces are paracompact.
Moreover, we assume that all groupoids are endowed with a Haar system.

2. Preliminaries

In this section we present first a characterization of the induced algebra
from an action of a closed subgroup of a locally compact abelian group on a
C∗-algebra. Our characterization is essential in our proof of the main result,
Theorem 4.3. For a related characterization of the induced algebra see [6].
Second, we provide conditions that guarantee that the natural map j as defined
in equation (1) from the C∗-algebra of a subgroupoid into the multiplier algebra
of the C∗-algebra of the groupoid is faithful. Our results generalize well-known
facts about group C∗-algebras.

2.1. A characterization of the induced algebra. Let H be a closed sub-
group of a locally compact abelian group G, let D be a C∗-algebra and let
α : H → AutD be a strongly continuous action. If f : G → D is a con-
tinuous function such that f(x − h) = αh(f(x)) for all h ∈ H , x ∈ G then
x + H 7→ ‖f(x)‖ yields a well-defined continuous function. We define the
induced C∗-algebra (see [22, §3.6]) by

indGH(D,α) :=
{
f : G→ D continuous | f(x− h) = αh(f(x)), h ∈ H, x ∈ G

and x+H 7→ ‖f(x)‖ ∈ C0(H/G)
}
.

There is a canonical translation action β : G → Aut(indG
H(D,α)) given by

βg(f)(x) := f(x − g). By [16, Lem. 3.1] D ⋊α H is strong Morita equivalent

to indGH(D,α)⋊β G.
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Obstructions to lifting cocycles on groupoids 411

Point evaluation at 0 yields a surjective homomorphism π : indGH(D,α) → D
given by π(f) = f(0). There is a natural translation action

τ : G→ Aut(C0(G/H))

(where τg(k)(x +H) = k(x− g +H)) and a G-equivariant homomorphism

j : C0(G/H) →M(indGH(D,α))

determined by pointwise multiplication. It is easy to check that these maps
satisfy the following conditions for all f ∈ indG

H(A,α):

(i) For all k ∈ C0(G/H), π(j(k)f) = k(H)π(f);
(ii) for all h ∈ H , π(βh(f)) = αh(π(f));
(iii) if π(βg(f)) = 0 for all g ∈ G, then f = 0;
(iv) and

lim
x+H→∞

‖f(x)‖ = 0.

We show below that these conditions characterize the induced algebra. Note
that indG

H(D,α) may be identified with the section algebra of a continuous C∗-
bundle over G/H with fibers isomorphic to D and factor maps πx+H .

Theorem 2.2. Let H be a closed subgroup of a locally compact abelian group G.
Let D and E be C∗-algebras, α : H → AutD and γ : G→ Aut(E) strongly con-
tinuous actions, ρ : E → D a surjective homomorphism, and i : C0(G/H) →
Z(M(E)) a G-equivariant homomorphism. Suppose that

(i) for all k ∈ C0(G/H) and e ∈ E, ρ(i(k)e) = k(H)ρ(e);
(ii) for all h ∈ H and e ∈ E, ρ(γh(e)) = αh(ρ(e));
(iii) if ρ(γg(e)) = 0 for all g ∈ G, then e = 0;
(iv) for all e ∈ E,

lim
x+H→∞

‖ρ(γx(e))‖ = 0.

Then there is a (unique) G-equivariant isomorphism Ψ : E → indGH(D,α) such
that π ◦Ψ = ρ and j(k)Ψ(e) = Ψ(i(k)e) for all k ∈ C0(G/H) and e ∈ E.

Proof. For e ∈ E, we define a function Ψ(e) : G→ D by Ψ(e)(x) := ρ(γ−x(e)).
It is straight-forward to check that Ψ(e) is continuous and that Ψ(e) ∈

indGH(D,α). Indeed we have

Ψ(e)(x− h) = ρ(γh−x(e)) = ρ(γh(γ−x(e))) = αh(ρ(γ−x(e))) = αh(Ψ(e)(x)).

It is also routine to check that the map thus defined, Ψ : E → indGH(D,α),
is an equivariant ∗-homomorphism. Injectivity follows from (iii) above. Let
k ∈ C0(G/H) and e ∈ E. Then by (i) above and the G-equivariance of i it
follows that, for all x ∈ G,

Ψ(i(k)e)(x) = ρ(γ−x(i(k)e)) = ρ(i(τ−x(k))γ−x(e))

= τ−x(k)(H)ρ(γ−x(e))

= k(x+H)Ψ(e)(x) = (j(k)Ψ(e))(x),
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and hence j(k)Ψ(e) = Ψ(i(k)e). Thus Ψ is a map of C0(G/H)-algebras. Since
ρ(e) = Ψ(e)(0) for all e ∈ E we have π ◦Ψ = ρ.

Next we use [22, Prop. C.24] (see also [7, Prop. 14.1]), which states that
a submodule of continuous sections of an upper semicontinuous C∗-bundle
which is fiberwise dense must also be norm dense in the C∗-algebra of sections
vanishing at infinity, to prove that Ψ(E) is dense in indGH(D,α). This will
prove that Ψ is surjective and therefore an isomorphism. We check hypotheses
(a) and (b) of the proposition. Let f ∈ Ψ(E) and let k ∈ C0(G/H), then
f = Ψ(e) for some e ∈ E and so

j(k)f = j(k)Ψ(e) = Ψ(i(k)e) ∈ Ψ(E).

This proves condition (a). Now since each factor map is conjugate to π ◦ βx
for some x ∈ G, its restriction to Ψ(E) is surjective. Thus (b) holds and the
result follows. �

Remark 2.3. Let D1 and D2 be C∗-algebras. A homomorphism φ : D1 →
M(D2) is said to be nondegenerate if it extends uniquely to a unital map
φ :M(D1) →M(D2) or equivalently if {φ(eλ)}λ converges strictly to the unit
of M(D2) for every approximate identity {eλ}λ in D1. Property (iv) above is
equivalent to the requirement that i : C0(G/H) →M(E) be nondegenerate.

Remark 2.4. Note that since C0(G/H) ∼= C∗((G/H)̂), the map i is deter-
mined by a strictly continuous homomorphism u : (G/H)̂ → UM(E) where
UM(E) is the unitary group of the multiplier algebra M(E). The nondegen-
eracy of i is equivalent to the requirement that u0 = 1 and condition (i) above
is satisfied if and only if ρ(uχe) = ρ(e) for all χ ∈ (G/H)̂ and e ∈ E.

Remark 2.5. Our characterization of the induced algebra is provided to fa-
cilitate the proof of our main result, namely, that the C∗-algebra of a certain
groupoid extension regarded as an obstruction to lifting a cocycle is an induced
C∗-algebra. One could in principle use Echterhoff’s more general characteri-
zation (see the main theorem of [6]), but this would have required the iden-
tification of the C∗-algebra of the quotient groupoid with a certain quotient
of the putative induced algebra. The proof of this identification would use
similar techniques with those in our proof and it would not necessarily lead to
a simplification of our arguments.

2.6. Multiplier algebras of groupoid C
∗-algebras. Given a C∗-algebra

D let M(D) denote its multiplier algebra. We view M(D) as the C∗-algebra
L(DD) of adjointable maps on the Hilbert C∗-module DD (see, for example,
[18, §2.3] and [12]). Recall that DD is a full Hilbert C∗-module via d · e = de
and 〈d, e〉D = d∗e.

Assume that Σ is a closed subgroupoid of a locally compact Hausdorff
groupoid Γ such that Σ0 = Γ0. Assume that Σ is endowed with a Haar system
β = {βu}u∈Γ0 and that Γ is endowed with a Haar system λ = {λu}u∈Γ0 . Then
there is a ∗-homomorphism j : C∗(Σ) →M(C∗(Γ)) defined for a ∈ Cc(Σ) and

Münster Journal of Mathematics Vol. 10 (2017), 409–424



Obstructions to lifting cocycles on groupoids 413

f ∈ Cc(Γ) via

(1) (j(a)(f))(γ) =

∫

Σ

a(η)f(η−1γ) d βr(γ)(η)

such that j(a)∗ = j(a∗) (see [19, Prop. II.2.4]). It is known that if Σ and Γ
are locally compact groups then the map j fails to be faithful in general (see,
for example, [4]). However, if Σ is a clopen subgroup of Γ or Γ is an amenable
group then the map j is a faithful *-homomorphism of C∗(Σ) into C∗(Γ) (see
[21, Prop. 1.2], [4, Thm. 1.3], [3, Cor. 1.5]).

We prove next that the above mentioned results hold for groupoid C∗-
algebras as well: the map j is faithful if Σ is a clopen subgroupoid of Γ or if Γ
is an amenable groupoid.

Before proceeding further, we recall the definition of induced representations
from closed subgroupoids following [9, §2] (see also [19, §II.2]). Let ΣΓ :=
Γ ∗ Γ/Σ be the imprimitivity groupoid. Then Cc(Γ) is a pre-Cc(Σ

Γ)-Cc(Σ)-
imprimitivity bimodule with actions and inner products given by

F · φ(z) =

∫

Γ

F
(
[z, y]

)
φ(y) dλs(z)(y),

φ · g(z) =

∫

Σ

φ(zh)g(h−1) dβs(z)(h),

〈φ, ψ〉∗(h) =

∫

Γ

φ(y)ψ(yh) dλr(h)(y),

∗〈φ, ψ〉
(
[x, y]

)
=

∫

Σ

φ(xh)ψ(yh) dβs(x)(h).

If L is a representation of C∗(Σ) on B(HL) then the induced representation

IndΓΣ L acts on the completion HIndL of Cc(Γ) ⊙ HL with respect to the pre-
inner product given on elementary tensors by

(2) (φ⊗ h, ψ ⊗ k) = (L(〈ψ, φ〉∗)h, k).

If φ⊗Σ h denotes the class of φ⊗ h in HIndL, then the induced representation
is given by

(3) IndΓΣ L(f)(φ⊗Σ h) = f ∗ φ⊗Σ h

for f ∈ Cc(Γ), where

f ∗ φ(γ) =

∫

Γ

f(η)φ(η−1γ) dλr(γ)(η).

In the following we suppress Σ from φ⊗Σ h to simplify slightly the notation.

2.6.1. The clopen case. Assume first that Σ is a clopen subgroupoid of Γ. Then
the restriction of the Haar system λ = {λu}u∈Γ0 to Σ is a Haar system on Σ.
We assume in the following that Σ is endowed with this Haar system, that is,
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β = λ|Σ. Then the map iΣ : Cc(Σ) → Cc(Γ) defined via

iΣ(f)(γ) =

{
f(γ) if γ ∈ Σ,

0 otherwise

is a well-defined faithful ∗-homomorphism. We prove next that iΣ extends to
a faithful ∗-homomorphism of C∗(Σ) into C∗(Γ), generalizing [21, Prop. 1.2].

Proposition 2.7. With notation as above, iΣ extends to an embedding iΣ :
C∗(Σ) → C∗(Γ) and, therefore, C∗(Σ) can be viewed as a subalgebra of C∗(Γ).

Proof. We need to show that ‖iΣ(f)‖C∗(Γ) = ‖f‖C∗(Σ) for all f ∈ Cc(Σ). Let
L be a representation of C∗(Γ). Renault’s disintegration theorem (see [20,
Prop. 4.2] and also [13, §7]) implies that L is the integrated form of a unitary
representation (µ,Γ0 ∗ H, V ) of Γ. Since Σ is a clopen subgroupoid of Γ, any
unitary representation of Γ restricts to a unitary representation of Σ. Therefore
‖f‖C∗(Σ) ≥ ‖iΣ(f)‖C∗(Γ) for all f ∈ Cc(H).

For the converse inequality, let (L,HL) be a representation of C∗(Σ). Since
Σ is a closed subgroupoid of Γ, the representation L can be induced to a
representation IndΓΣ L of C∗(Γ) as in (3). Let Hres be the closed subspace of
HIndL obtained by completing Cc(Σ)⊙HL via the inner product in (2). Then
U : Hres → HL defined on elementary tensors via U(φ ⊗ h) = L(φ)h defines

a unitary that intertwines L with a subrepresentation of IndΓΣ L restricted to
C∗(Σ). It follows that ‖f‖C∗(Σ) ≤ ‖iΣ(f)‖C∗(Γ) for all f ∈ Cc(Σ). Therefore
‖iΣ(f)‖C∗(Γ) = ‖f‖C∗(Σ) for all f ∈ Cc(Σ) and one can view C∗(Σ) as a
subalgebra of C∗(Γ). �

2.7.1. The amenable case. We assume now that (Σ, β) is a closed subgroupoid
of (Γ, λ) and Γ is amenable in the sense of [2]. It follows that Σ is amenable
as well (see [2, Prop. 5.1.1]).

Proposition 2.8. Assume that (Σ, β) is a closed subgroupoid of an amenable
groupoid (Γ, λ) such that Σ0 = Γ0. Then the map j defined in (1) is faithful.

We recall first the definition of the left regular representation of C∗(Γ).
Let µ be a quasi-invariant measure on Γ0 with full support. The left regular
representation of C∗(Γ) is the representation LΓ := IndΓΓ0 µ induced from µ.
By using induction in stages (see [9, Thm. 4]), it follows that if Σ is a closed

subgroupoid of Γ such that Σ0 = Γ0 then LΓ is unitarily equivalent to IndΓΣ LΣ.

Proof of Proposition 2.8. The proof is virtually identical with the group case
(see, for example, the proof of [4, Thm. 1.3]): by the amenability of Σ, any
representation of C∗(Σ) is weakly contained in the left regular representation
of C∗(Σ), which is itself contained in the restriction to C∗(Σ) of the left regular
representation of C∗(Γ). �
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3. Twists and short exact sequences

Let Γ be a locally compact Hausdorff groupoid and let G be a locally com-
pact Hausdorff abelian group. The set of continuous 1-cocycles from Γ to G is
defined via

ZΓ(G) = Z1(Γ, G)

:=
{
φ : Γ → G | φ(γ1γ2) = φ(γ1) + φ(γ2) for all (γ1, γ2) ∈ Γ2

}
.

Then ZΓ(G) is an abelian group and the map G 7→ ZΓ(G) is a functor.

Definition 3.1. Let A be an abelian group and Γ a groupoid. A twist by A
over Γ is a central groupoid extension

Γ0 ×A
j
−→ Σ

π
−→ Γ,

where Σ0 = Γ0, j is injective, π is surjective, and j(r(σ), a)σ = σj(s(σ), a) for
all σ ∈ Σ and a ∈ A.

Example 3.2. The semi-direct product Γ×A of Γ and A is called the trivial
twist. Recall from [11] that (γ1, a1)(γ2, a2) = (γ1γ2, a1 + a2) provided that
s(γ1) = r(γ2), and (γ, a)−1 = (γ−1,−a). Then Γ × A is a twist by A via
j0(u, a) = (u, a) for (u, a) ∈ Γ0 ×A, and π0(γ, a) = γ for (γ, a) ∈ Γ×A.

Following [11, Def. 2.5], we say that two twists by A are properly isomorphic
if there is a twist morphism between them which preserves the inclusion of
Γ0 ×A. The following lemma is a generalization of [11, Prop. 2.2].

Lemma 3.3. A twist Σ by A is properly isomorphic to a trivial twist if and
only if there is a groupoid homomorphism τ : Γ → Σ such that πτ = idΓ.

Proof. If τ̃ : Γ× A → Σ is a twist isomorphism then we can define τ : Γ → Σ
via τ(γ) = τ̃ (γ, 0A), where 0A is the identity of A. It is easy to check that τ is
a groupoid homomorphism and that πτ = idΓ.

Assume now that there is a groupoid homomorphism τ : Γ → Σ such that
πτ = idΓ. Then we can define τ̃ : Γ×A→ Σ via τ̃ (γ, a) = τ(γ)j(s(γ), a). We
check next that τ̃ is a twist isomorphism. Let (u, a) ∈ Γ0 ×A. Then

τ̃ (j0(u, a)) = τ̃ (u, a) = τ(u)j(u, a)

= τ(u)τ(u)j(u, a) = τ(u)j(u, a)τ(u) = j(u, a).

If (γ, a) ∈ Γ×A then

π(τ̃ (γ, a)) = π(τ(γ)j(s(γ), a)) = γπ(j(s(γ), a)) = γ = π0(γ, a). �

Following [11], we write TΓ(A) for the collection of proper isomorphism
classes of twists by A and we write [Σ] ∈ TΓ(A). We endow TΓ(A) with the
operation [Σ] + [Σ′] := [∇A

∗ (Σ ∗Γ Σ′)], where ∇A ∈ HomΓ(A⊕A,A) is defined
via ∇A(a, a′) = a + a′ (see [11, Prop. 2.6]). Then TΓ(A) is an abelian group
with neutral element [Γ×A]. It can be shown that A 7→ TΓ(A) is a half-exact
functor.
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Suppose that B and C are locally compact abelian groups. If p : B → C is
a homomorphism and φ ∈ ZΓ(C), then the obstruction twist determined by φ
is defined via

(4) Σφ =
{
(γ, b) ∈ Γ×B | φ(γ) = p(b)

}
.

We establish that Σφ is indeed a twist in the following proposition and show
that it has a Haar system in the next section (see equation (5) in Section 4).

If Γ is an étale groupoid, it has a basis consisting of open bisections, that
is, open subsets to which the restrictions of both the range and source maps
are injective.

Proposition 3.4. Assume that p : B → C is a surjective homomorphism
of locally compact abelian groups and let φ ∈ ZΓ(C). Then Σφ is a closed
subgroupoid of Γ × B and it is a twist of Γ by A := ker p. Σφ is properly
isometric to the trivial twist if and only if there is φ̃ ∈ ZΓ(B) such that φ = p∗φ̃.
The projection π1 : Σφ → Γ is a surjective groupoid morphism. If Γ is étale
and A is discrete then Σφ is étale and π1 is a local homeomorphism.

Proof. Note that Σφ is a closed subgroupoid of Γ × B because φ and p are
continuous maps. Since p is surjective, it follows that Σφ is a twist by A via
j(u, a) = (u, a) and π(γ, b) = γ. We make the obvious identification

Σ0
φ = Γ0 × {0B} ≃ Γ0,

where 0B is the unit of B. If Σφ is properly isometric to the trivial twist then
Lemma 3.3 implies that there is a groupoid homomorphism τ : Γ → Σφ such
that π1τ = idΓ. Therefore there is φ̃ ∈ ZΓ(B) such that τ(γ) = (γ, φ̃(γ))
and, hence, φ = p∗φ̃. Conversely, if φ = p∗φ̃ for some φ̃ ∈ ZΓ(B), then define
τ : Γ → Σφ via τ(γ) = (γ, φ̃(γ)). It follows that π1τ = idΓ and Lemma 3.3
implies that Σφ is properly isometric to the trivial twist.

It is easy to check that π1 is a groupoid morphism. Moreover, π1 is surjective
since p is surjective.

Now suppose that Γ is étale and A is discrete. Since π1 : Σφ → Γ is open, in
order to prove that π1 is a local homeomorphism it suffices to show that it is
locally injective. Let (γ, b) ∈ Σφ. Then there are an open bisection U in Γ such
that γ ∈ U and a neighborhood V0 of 0B such that V0 ∩ ker p = {0B}. Let V
be an open neighborhood of b such that V −V ⊆ V0. Then W := (U ×V )∩Σφ

is an open neighborhood of (γ, b) in Σφ. Given (γ1, b1), (γ2, b2) ∈W such that
π1(γ1, b1) = π1(γ2, b2), then γ1 = γ2 and

p(b1 − b2) = p(b1)− p(b2) = φ(γ1)− φ(γ2) = 0.

Hence
b1 − b2 ∈ (V − V ) ∩ ker p ⊂ V0 ∩ ker p = {0B}

and so b1 = b2. Thus the restriction of π1 to W is injective and therefore a
local homeomorphism. It follows easily that Σφ is étale. �

The following result generalizes an initial segment of the exact sequence
given in [11, Prop. 3.3].
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Obstructions to lifting cocycles on groupoids 417

Proposition 3.5. Given a short exact sequence of locally compact abelian
groups

0 → A
i
−→ B

p
−→ C → 0,

there is an exact sequence

0 → ZΓ(A)
i∗−→ ZΓ(B)

p∗

−→ ZΓ(C)
δ
−→ TΓ(A),

where δ(φ) := [Σφ] for φ ∈ ZΓ(C).

Proof. Since ZΓ is left exact, we only need to show that Im p∗ = ker δ. We
have that φ ∈ ker δ if and only if Σφ is properly isometric to the trivial twist.
By Lemma 3.4, this happens if and only if φ = p∗φ̃ for some φ̃ ∈ ZΓ(B). �

In the following example we consider the case A = Z, B = R and C = T.
In a certain case where the groupoid Γ is equivalent to a space X , we indicate
how the construction of the groupoid Σφ is related to the boundary map of

Čech cohomology Ȟ1(X, T ) → Ȟ2(X,Z), where Ȟ1(X, T ) is the first Čech
cohomology of X with coefficients in T , the sheaf of germs of continuous T-
valued functions, and Ȟ2(X,Z) is the second Čech cohomology of X with
coefficients in the constant sheaf with fiber Z (see [18, §4.1] for background on
Čech cohomology). This example is inspired by results in [16].

Example 3.6. Let X be a Hausdorff second countable locally compact space;
thus X is also paracompact. Let U := {Ui}i∈I be a locally finite open cover
of X . Set Uij := Ui ∩ Uj for i, j ∈ I and similarly Uijk := Ui ∩ Uj ∩ Uk for
i, j, k ∈ I. We now construct an étale groupoid associated to U (see [17, §1,
Rem. 3] and [8, Ex. III.1.0]). Let

ΓU := {(x, i, j) | x ∈ Uij} and Γ0
U := {(x, i, i) | x ∈ Ui};

note that Γ0
U may be identified with the disjoint union

⊔
i∈I Ui and that ΓU

may be identified with the disjoint union
⊔

i,j∈I Uij . It is routine to check
that with the topology obtained from this identification and with the following
structure maps ΓU is an étale groupoid:

s(x, i, j) = (x, j, j),

r(x, i, j) = (x, i, i),

(x, i, j)−1 = (x, j, i),

(x, i, j)(x, j, k) = (x, i, k).

Note that ΓU may also be viewed as the natural groupoid associated to the
local homeomorphism

⊔
i∈I Ui → X (see [10]). Next suppose that we are given

a Čech 1-cocycle λ = {λij}i,j∈I with coefficients in T . So λij : Uij → T

is continuous for all i, j ∈ I and λik(x) = λij(x)λjk(x) for all i, j, k ∈ I
and x ∈ Uijk. It is routine to check that the map φ : ΓU → T given by
φ((x, i, j)) = λij(x) is a continuous groupoid 1-cocycle.

Now suppose that each λij lifts, that is, for each i, j ∈ I there is a continuous

function λ̃ij : Uij → R such that λij = e ◦ λ̃ij where e(t) = e2π
√
−1t for t ∈ R.
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We may assume that λ̃ii = 0 for all i ∈ I. We observe that for i, j, k ∈ I the
formula

(λ⋆)ijk(x) := λ̃ij(x) + λ̃jk(x)− λ̃ik(x)

for x ∈ Uijk defines a continuous integer-valued function. A routine computa-
tion shows that, for all i, j, k, ℓ ∈ I and x ∈ Uijkℓ,

(λ⋆)jkℓ(x) − (λ⋆)ikℓ(x) + (λ⋆)ijℓ(x) − (λ⋆)ijk(x) = 0,

that is, (λ⋆)ijk gives a Čech 2-cocycle with values in Z (i.e. the constant sheaf
with fiber Z). It is normalized in the sense that (λ⋆)ijk = 0 if j = i or j = k.
As in [17] we may construct a groupoid 2-cocycle φ⋆ by the formula

φ⋆((x, i, j), (x, j, k)) = (λ⋆)ijk(x)

for all x ∈ Uijk. We obtain a twist Σ by Z over ΓU determined by φ⋆ (see [19,
Prop. I.1.14]). Indeed, let

Σ :=
{
(n, (x, i, j)) | n ∈ Z, x ∈ Uij

}
.

We identify Γ0
U with Σ0 via the map (x, i, i) 7→ (0, (x, i, i)). The range and

source maps factor through those of ΓU . The remaining structure maps are
given by

(m, (x, i, j))(n, (x, j, k)) :=
(
m+ n+ (λ⋆)ijk(x), (x, i, k)

)
,

(n, (x, i, j))−1 :=
(
−n− (λ⋆)jij(x), (x, j, i)

)
.

We claim that Σ ∼= Σφ. Define ξ : Σ → ΓU × R by

ξ((n, (x, i, j))) =
(
(x, i, j), λ̃ij(x) + n

)
.

We first note that ξ induces an identification of the unit spaces. Given a pair
of composable elements (m, (x, i, j)), (n, (x, j, k)) ∈ Σ we have

ξ
(
(m, (x, i, j))(n, (x, j, k))

)
= ξ

(
(m+ n+ (λ⋆)ijk(x), (x, i, k))

)

=
(
(x, i, k), λ̃ik(x) +m+ n+ (λ⋆)ijk(x)

)

=
(
(x, i, k),m+ n+ λ̃ij(x) + λ̃jk(x)

)

=
(
(x, i, j), λ̃ij(x) +m

)(
(x, j, k), λ̃jk(x) + n

)

= ξ((m, (x, i, j)))ξ((n, (x, j, k))).

Hence, ξ is a groupoid homomorphism. Moreover, ξ is injective and its image
coincides with Σφ. It follows that the isomorphism class of Σ does not depend
on the specific choice of the λ̃ij .

Remark 3.7. With notation as in the above example any (normalized) Čech 2-
cocycle with values in the constant sheaf with fiber Z gives rise to a groupoid
as above which is isomorphic to a pullback. Let R be the sheaf of germs
of continuous R-valued functions on X . Since R is a fine sheaf, we have
Hn(X,R) = 0 for n ≥ 1. Moreover, since 0 → Z → R → T → 0 is exact, the
connecting map of the long exact sequence of cohomology ∂n : Ȟn(X, T ) →
Ȟn+1(X,Z) is an isomorphism for n > 0 (see [18, Thm. 4.37]). In Example 3.6
we have [λ⋆] = ∂1([λ]).
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Remark 3.8. Note that every Čech 2-cocycle with values in an arbitrary sheaf
of abelian groups is cohomologous to a normalized cocycle a = {aijk}ijk (that

is, aijk = 0 if j = i or j = k). Indeed given a Čech 2-cocycle c = {cijk}ijk
a routine calculation shows that ciij(x) = ciii(x) = cjii(x) for all i, j ∈ I and
x ∈ Uij . For i, j ∈ I, define a 1-cochain λ by λij = 0 if i 6= j and λii(x) = ciii(x)
for x ∈ Uii. Then a := c − d1λ is a normalized 2-cocycle cohomologous to c.
(Recall that (d1λ)ijk(x) := λjk(x) − λik(x) + λij(x) for x ∈ Uijk.)

4. The structure of the C∗-algebra C∗(Σφ)

Let Γ be a locally compact Hausdorff groupoid endowed with Haar system
{λu}u∈Γ0 and let

0 → A
i
−→ B

p
−→ C → 0

be a short exact sequence of locally compact abelian groups. In the sequel,
we identify A with its image i(A) in B. Let φ ∈ ZΓ(C) and let Σφ be the
obstruction twist as in (4). We prove below that

C∗(Σφ) ∼= indB̂
Ĉ
C∗(Γ)

if Γ is amenable (see Theorem 4.3). We begin by describing the action of Ĉ on
C∗(Γ). The following lemma follows immediately from [19, Prop. II.5.1 (iii)].

Lemma 4.1. Assume that C is a locally compact abelian group. Given φ ∈
ZΓ(C), the map

αφ
t (f)(γ) = 〈t, φ(γ)〉f(γ),

for f ∈ Cc(Γ), t ∈ Ĉ, and γ ∈ Γ, defines a strongly continuous action αφ :
Ĉ → AutC∗(Γ).

We define next a Haar system on Σφ. Choose Haar measures µA, µB, and
µC on A, B, and, respectively C such that∫

B

f(b) dµB(b) =

∫

C

∫

A

f(b+ a) dµA(a)dµC(p(b)).

One can always make such a choice since A, B, and C are locally compact
abelian groups (see, e.g., [5, p. 79]). Let π1 : Σφ → Γ be the projection map (see

Lemma 3.4). Note that π−1
1 (γ) = {γ}×Aγ where Aγ := {b ∈ B | φ(γ) = p(b)}

is a coset in B, since Aγ = bγ + A for some bγ ∈ B with φ(γ) = p(bγ). We
write µγ for the measure defined on Aγ via

∫

Aγ

f(γ, b) dµγ(b) :=

∫

A

f(γ, bγ + a) dµA(a).

The measure µγ is independent of the choice of bγ because µA is a Haar measure
on A. We define now a Haar system {νu}u∈Γ0 on Σφ via

(5)

∫

Σu
φ

f(γ, b) dνu(γ, b) =

∫

Γu

∫

Aγ

f(γ, b) dµγ(b)dλ
u(γ),

for all u ∈ Γ0. It is easy to check that (5) defines a Haar system on Σφ using
the fact that {λu} is a Haar system on Γ and µA is a Haar measure on A.
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The main goal of this section is to prove that C∗(Σφ) is isomorphic to the
induced algebra indB̂

Ĉ
(C∗(Γ), αφ) using Theorem 2.2. We begin by defining a

map

ρ : Cc(Σφ) → Cc(Γ)

via

(6) ρ(f)(γ) =

∫

Aγ

f(γ, b) dµγ(b).

Lemma 4.2. With notation as above, the map ρ defined in (6) extends to
a surjective ∗-homomorphism ρ : C∗(Σφ) → C∗(Γ) which factors through the
map ι : C∗(Σφ) → M(C∗(Γ × B)) given in Section 2.6. Moreover, if either Γ
is amenable or Σφ is a clopen subset of B × Γ, then ι is injective.

Proof. We prove first that ρ is a ∗-homomorphism. Let f and g in Cc(Σφ) and
let γ ∈ Γ. Then, using the fact that µA is a Haar measure on A, we obtain

ρ(f ∗ g)(γ) =

∫

Aγ

(f ∗ g)(γ, b) dµγ(b)

=

∫

Aγ

∫

Γr(γ)

∫

Aα

f(α, b′)g(α−1γ,−b′ + b) dµα(b
′)dλr(γ)(α)dµγ(b)

=

∫

Γr(γ)

∫

Aα

f(α, b′)

∫

Aγ

g(α−1γ,−b′ + b) dµγ(b)dµα(b
′)dλr(γ)(α)

=

∫

Γr(γ)

ρ(f)(α)ρ(g)(α−1γ) dλr(γ)(α)

=
(
ρ(f) ∗ ρ(g)

)
(γ).

It is easy to show that ρ(f∗) = ρ(f)∗ for all f ∈ Cc(Σφ).
Recall from Section 2.6 (see [19, Prop. II.2.4]) that there is a bounded

∗-homomorphism from C∗(Σφ) into M(C∗(Γ × B)). Since C∗(Γ × B) is ∗-
isomorphic to C∗(Γ) ⊗ C∗(B) and C∗(B) is isomorphic to C0(B̂), it follows
that M(C∗(Γ × B)) is ∗-isomorphic to Cb(B̂,M(C∗(Γ))) where M(C∗(Γ)) is
given the strict topology (see [1, Cor. 3.4]). Then ρ is just the composition of
the above bounded ∗-homomorphisms with evaluation at 0. Hence ρ extends
to a bounded ∗-homomorphism ρ : C∗(Σφ) → M(C∗(Γ)). However, since
ρ(Cc(Σφ)) ⊆ Cc(Γ), Cc(Σφ) is dense in C∗(Σφ), and Cc(Γ) is dense in C∗(Γ),
it follows that ρ is a bounded ∗-homomorphism from C∗(Σφ) into C

∗(Γ).
To prove that ρ is surjective let b be a Bruhat approximate cross-section for

B over A. Recall (see, for example, [18, Prop. C.1]) that b : B → [0,∞) is a
continuous function such that supp b ∩ (K +A) is compact for every compact
set K in B, and such that

∫
A
b(b+a)dµA(a) = 1 for all b ∈ B. Given g ∈ Cc(Γ)

define f ∈ Cc(Σφ) via f(γ, b) = g(γ)b(b). It follows immediately that ρ(f) = g
and, hence, ρ is surjective.

The final assertion follows from Proposition 2.7 if Σφ is a clopen subset of
Γ × B. If Γ is amenable, the assertion follows from Proposition 2.8 and the
fact that Γ×B is amenable (see [2, Prop. 5.1.2]). �
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We are now ready to state and prove the main result of the paper.

Theorem 4.3. Let Γ be a locally compact Hausdorff amenable groupoid en-
dowed with Haar system {λu}u∈Γ0 and let

0 → A
i
−→ B

p
−→ C → 0

be a short exact sequence of locally compact abelian groups. Let φ ∈ ZΓ(C) and
let Σφ be the obstruction twist as in (4) endowed with the Haar system defined
in (5). Then there are a surjective ∗-homomorphism ρ : C∗(Σφ) → C∗(Γ), a
strongly continuous action γ : B̂ → Aut(C∗(Σφ)) and a B̂-equivariant homo-
morphism i : C0(B̂/Ĉ) → Z(M(C∗(Σφ))) such that the four conditions of
Theorem 2.2 are satisfied. Therefore there is a unique B̂-equivariant isomor-
phism

Ψ : C∗(Σφ) → indB̂
Ĉ
C∗(Γ)

defined via

Ψ(f)(t) = γ−t(f)

for f ∈ Cc(Σφ) and t ∈ B̂.

Proof. The existence of the map ρ : C∗(Σφ) → C∗(Γ) is proved in Lemma 4.2.
The strongly continuous action γ : B̂ → Aut(C∗(Σφ)) is given by

γt(f)(σ, b) = 〈t, b〉f(σ, b).

In order to define the map i : C0(B̂/Ĉ) → Z(M(C∗(Σφ))) we identify B̂/Ĉ
with Â and we also identify C0(Â) with C∗(A) via the Fourier transform.
Recall that we view the multiplier algebra M(C∗(Σφ)) as the C∗-algebra of
the adjointable operators on the Hilbert C∗-module C∗(Σφ)C∗(Σφ). Then we
define i : C∗(A) → Z(M(C∗(Σφ))) via

(7) (i(h)f)(σ) =

∫

A

h(a)f((r(σ),−a)σ) dµA(a)

for all σ ∈ Σφ, h ∈ Cc(A) and f ∈ Cc(Σφ). A straight-forward but tedious
computation shows that i(h) is an adjointable operator on C∗(Σφ)C∗(Σφ): let
f and g be in Cc(A) and let σ = (γ, b) ∈ Σφ. Then

〈i(h)f, g〉(γ, b) = (i(h)f)∗ ∗ g(γ, b)

=

∫

Σ
r(γ)
φ

(i(h)f)∗(η, b′)g(η−1γ,−b′ + b) dνr(γ)(η, b′)

=

∫

Γr(γ)

∫

Aγ

i(h)f(η−1,−b′)g(η−1γ,−b′ + b) dµγ(b
′)dλr(γ)(η)

which, using (7), interchanging the integrals on A, using the fact that µA is a
Haar measure on A, and interchanging back the integrals, equals

∫

Γr(γ)

∫

Aγ

f(η−1,−b′)(i(h∗)g)(η−1γ,−b′ + b) dµγ(b
′)dλr(γ)(η)

= 〈f, i(h∗)(g)〉(γ, b).
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Hence i(h) is an adjointable operator on C∗(Σφ)C∗(Σφ). Moreover, i(h) be-
longs to Z(M(C∗(Σφ))) since Σφ is a twist. Note that as in Remark 2.4, i is
determined by the map u : A→ UM(C∗(Σφ)) given as the composition

A→M(C∗(A)⊗ C0(Γ
0)) →M(C∗(Σφ)).

Then condition (i) of Theorem 2.2 follows from the fact that ρ(uaf) = ρ(f) for
all a ∈ A and f ∈ Cc(Σφ). The nondegeneracy of i (see Remark 2.3) follows
from the fact that u0 = 1M(C∗(Σφ)). Hence condition (iv) of Theorem 2.2
holds. Condition (ii) follows by a straight-forward computation. Since B × Γ
is amenable, it follows by Lemma 4.2 that

ι : C∗(Σφ) →M(C∗(Γ×B)) ∼= Cb(B̂,M(C∗(Γ)))

is injective. Note that ι is B̂-equivariant with respect to natural actions. Hence,
if ρ(γχ(f)) = 0 for all χ ∈ B̂, we have f = 0 and so condition (iii) holds. �

Remark 4.4. As noted in the proof of the above theorem (see Remark 2.4)
one can replace conditions (i) and (iv) of Theorem 2.2 by the following two
conditions on the corresponding map u : A → UM(C∗(Σφ)): condition (i)
may be replaced by the requirement that ρ(uaf) = ρ(f) for all a ∈ A and
f ∈ C∗(Σφ) and condition (iv) may be replaced by the requirement that u0 =
1M(C∗(Σφ)).

Remark 4.5. Theorem 4.3 also holds if one replaces the requirement that Γ
be amenable by the requirement that Σφ be a clopen subset of Γ × B (see
Lemma 4.2).

Example 4.6. With notation as in Example 3.6, we first observe that C∗(ΓU )
is a continuous trace algebra with PrimC∗(ΓU ) = X and trivial Dixmier–
Douady invariant δ(C∗(Γ)) = 0, that is, it is strong Morita equivalent to
C0(X) (see [10]). Next we let α : Z → AutC∗(ΓU ) be the action determined
by the T-valued groupoid 1-cocycle φ defined by the Čech 1-cocycle λij (see
[19, Prop. II.5.1]); so

(αnf)(x, i, j) := λij(x)
nf(x, i, j)

for all f ∈ Cc(ΓU ), (x, i, j) ∈ ΓU and n ∈ Z. It is straight-forward to see that
α fixes every ideal in C∗(ΓU ).

For each i ∈ I the ideal Ji in C∗(ΓU ) corresponding to Ui ⊂ X may be
identified with C∗((ΓU )Vi

) where Vi := {(x, j, j) | x ∈ Uij} ⊂ Γ0
U (hence

Vi ∼=
⊔

j∈I Uij). Note that (ΓU )Vi
= {(x, j, k) | x ∈ Uijk}; let wi : (ΓU )Vi

→ R

be defined by

wi(x, j, k) :=

{
λji(x) if j = k,

0 otherwise.

Then wi may be identified with a multiplicative unitary for the ideal C∗((ΓU )Vi
)

and α1|Ji
= Adwi. Hence, α is locally unitary. A quick calculation shows that

λijwi(x, k, k) = wj(x, k, k) for all x ∈ Uijk. Therefore the Phillips–Raeburn

obstruction η(α) is the class [λ] ∈ Ȟ1(X, T ), the first Čech cohomology of X
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with coefficients in T , the sheaf of continuous T-valued functions on X (see
[14, §2.10]). Using the usual isomorphism Ȟ1(X, T ) ∼= Ȟ2(X,Z), we identify
η(α) with [λ⋆] ∈ Ȟ2(X,Z). Note that the element η(α) may also be identified
with the class of PrimC∗(ΓU )⋊α Z regarded as a circle bundle under the dual
action of T (see [15, p. 224]).

By Theorem 4.3, we have

C∗(Σφ) ∼= indR
Z
(C∗(Γ), α).

Next we observe that C∗(Σφ) is a continuous trace algebra (see the remark
preceding [16, Lem. 3.3]) and that PrimC∗(Σφ) ∼= T×X (see the proof of [16,
Prop. 3.4]). Since δ(C∗(Γ)) = 0, it follows by [16, Cor. 3.5] that

δ(C∗(Σφ)) = z × η(α) = z × [λ⋆] ∈ Ȟ3(T×X,Z),

where z is the standard generator of Ȟ1(T,Z).
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Theory 18 (1987), no. 1, 67–97. MR0912813

[21] M. A. Rieffel, Induced representations of C∗-algebras, Advances in Math. 13 (1974),
176–257. MR0353003

[22] D. P. Williams, Crossed products of C∗-algebras, Math. Surveys Monogr., 134, American
Mathematical Society, Providence, RI, 2007. MR2288954

Received December 12, 2016; accepted June 6, 2017

Marius Ionescu
Department of Mathematics,
United States Naval Academy,
Annapolis, MD, USA
E-mail: ionescu@usna.edu

Alex Kumjian
Department of Mathematics,
University of Nevada,
Reno, NV, USA
E-mail: alex@unr.edu

Münster Journal of Mathematics Vol. 10 (2017), 409–424


