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Abstract

Fundamental non-locality in quantum mechanical scattering processes is investigated by means of
Fermionic teleportation. Our scenario employs free massive particles, electrons and atoms, within a
twofold electron-exchange collision approach whereby, in the first collision, also generating the
necessary spin—spin entanglement between initially unpolarized electrons and atoms. It is shown that
in a second collision an arbitrary spin polarization state of a free electron can be teleported onto the
other electron which has never been in contact with the first one. The underlying scheme relies on and
is a direct consequence of the Pauli-principle and makes use of a high symmetry in spin space thereby
avoiding restoration of the teleported states. The scattering process (teleportation) is highly symmetric
allowing for interchanging the electronic and atomic constituents without loss of generality. Re-
interpretation of Li and Na data reveals the feasibility and capability of Fermionic teleportation
demonstrated by numerical and experimental data for the teleportation fidelity.

One of the most intriguing fundamentals of quantum mechanics is manifested in its non-locality. Criticized by
Einstein et al [1] as ‘spooky action at a distance’ it has become an active and manifold area of research in recent
years. A possible means in order to investigate such non-local phenomena has been provided by Bennett et al [2]
in terms of quantum teleportation. It relies on the existence of long-range correlations between Einstein—
Podolsky—Rosen (EPR) or Bell pairs and allows for a flawless transfer of quantum information between two
constituents without contradicting the no-cloning theorem [3]. Since the pioneering experiment [4]
applications in quantum communication and computing [5-9] have been pointed out illustrating the thriving
research in this field. Astounding ‘ground-to-satellite quantum teleportation’ has just been reported [10]. All
these approaches are either based on the direct use of photons or are mediated through light fields [11]. Beyond,
ithas been pointed out [12] that quantum mechanical methods and their alternatives can be tested for
increasingly macroscopic systems [ 13] using the EPR paradox.

Taking up the idea, entanglement and EPR-based investigations must be recognized as being of considerable
interest, particularly with massive particles. Caused by these demands, we enter new avenues and unveil a
completely different scenario where, employing the methods of scattering theory, teleportation is emerging
from a twofold elastic electron-exchange collision process with free, massive, Fermionic particles. As our
approach deals with light atoms (Li, Na), coupling between spatial and spin variables is entirely due to the Pauli-
principle, assisted by a high spin space symmetry, which is then responsible for the generation of correlations
between the atomic and electronic spins. Advantageously, our scattering approach implicitly circumnavigates
one of the drawbacks of photonic state-of-the-art quantum teleportation, i.e. its necessity to restore the
quantum state by unitary transformation after teleportation [2].

As a prerequisite quantum teleportation relies on a suitably prepared entangled state which, in the photonic
case, is provided via nonlinear parametric down conversion [14]. In our case, entanglement will be generated as a
consequence of the Pauli-principle. In a first collision, unpolarized electrons and unpolarized atoms are
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elastically scattered and their spins become entangled [15]. This entanglement can be found, and fixed in
advance, by choosing appropriate scattering angles and/or energies. By varying the scattering parameters, the
full range of spin—spin correlations can be generated, and in particular Bell-correlated spin pairs. Thus, the final
spin system represents a tunable EPR resource [ 15, 16]. This is in contrast to realized entanglement generation
between electrons as its creation is nonetheless photon-assisted [17]. Subsequently, a second electron with
arbitrary (unknown) spin polarization is scattered from the atom and it is shown that its polarization state is
non-locally teleported onto the first electron (still unpolarized after the first scattering). The experiment
represents a single-outcome Bell measurement. Hence, restoration of the teleported state by unitary
transformation [2], typical for the standard scheme, becomes obsolete in our approach.

The success of teleportation (fidelity) depends on the spin—spin correlations and again is directly related to
the Pauli-principle. Re-interpretation of existing experimental and numerical sodium and lithium data [18-21],
as well as recent calculations [22] underpins our results, revealing the feasibility and capability of such
experiments. As an essential role is played by the Pauli-principle, we will refer to our approach as Pauli-based
Fermionic teleportation (PBFT).

The paper is organized as follows. In the next section we will elucidate the underlying physics by considering
asimple example first, assuming a maximally entangled EPR resource prepared in the first collision. The basic
principles will be explained concentrating on pure states. In the following sections we will generalize the
discussion. Firstly, we will consider the case where the electrons to be teleported are in a mixed state but still
assuming the initially scattered particles to form the maximally entangled singlet state. Secondly, we will account
for the general case in terms of density matrix where also the entangled particles can be in arbitrary states. In the
last section we will introduce and adapt the concept of fidelity as a measure of success for teleportation and
compare our predictions with pre-existing experimental sodium and lithium data. It will be shown that less-
entangled mixed states can also be used as a resource for PBFT with fidelity beyond the boundary set by classical
physics. For illustrative purposes, we will also provide videos of the numerical and experimental data. Finally, in
the appendix we will present detailed derivations of the general formulas.

PBFT of a definite spin state

Quantum teleportation is a three-particle process where the quantum information of particle 1 is transferred
onto particle 3 with the assistance of particle 2 in the absence of any direct quantum communication channels
between them. In a first step two observers, ALICE and BOB, perform a specific elastic scattering process
between quasi one-electron atoms (Na, Li) (particles 2) and electrons (particles 3), both initially unpolarized.
Dealing with light atoms, all explicit spin-dependent interactions can be neglected in such an approach and,
besides the Coulomb potential, electron-exchange is taken into account, only [23]. After the first scattering Sy,
with energy E; and scattering angle 6, (see figure 1), the final spin state of particles 2 and 3 is generally described
by a spin-density matrix p,5 = T pi, T where T denotes the transition operator and p;, describes the two-
particle density matrix of the uncorrelated initial state. With the help of Clebsch—Gordan coefficients the T
matrix elements can be coupled to their total spin S and magnetic component M, which are both conserved
during the collision. The T'matrix does not depend on the magnetic components and hence, we are able to
express the density matrix p,3 in terms of scattering amplitudes f*', (S = 0, 1). The spin-density matrix p,3 can
be completely characterized in terms of two individually measured polarization vectors, referring to particles 2
and 3, and the nine direct product components ((* x 05-3)> of the spin—spin correlation tensor (i, j = x, y, 2). As
shown in our previous research [15, 16], the polarization vectors of both particles remain zero under such
conditions, as well as all non-diagonal components of the spin—spin correlation tensor, and the only non-
vanishing parameters are the spin—spin correlation parameters

IfOP = IfOP
BIFOP +1FOP

where f and f©’ denote the elastic triplet and singlet scattering amplitudes, respectively. Thus, the
entanglement generating collision is characterized in terms of the single parameter P,; = P,3(0;, E;) whichisa
function of scattering angle and energy. The correlation parameter can vary in the range —1 < P,3 < 1/3.The
spin—spin correlation parameter P,; is a direct measure of the entanglement properties of the final spin system
[15, 16]. The spin system is separable if | P3| < 1/3,and entangled in the region —1 < P,3 < —1/3 (see

figure 2). In particular, for —1 < Py3 < —1/+/2 the final spin states are Bell correlated, i.e. the CHSH-Bell
inequality [24] is violated. Variation of scattering angle and/or energy changes the nature of the combined spin
system from maximally entangled (P,3 = —1) to completely chaotic (P,3 = 0)and up to P,; = 1/3. It follows
that the degree of entanglement is tunable and the desired value of P, can be fixed in advance by choosing
appropriate pairs of E; and 6. Itis of central importance that for a large variety of combinations (6, E; ) the
triplet amplitude f" vanishes and therefore the final spins form a pure singlet state corresponding to P,3 = —1.

Py = (o x oY) =

i=x, 2 (1)
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Figure 1. Scheme of PBFT with massive free particles. ALICE wants to teleport a certain spin state |1); of her independently prepared
electron e}, onto BOB’s initially unpolarized electron e;. The degree of spin polarization PV of e, is unknown to both ALICE and
BOB. ALICE also has the use of atom A, at her disposal, which is part of the entangled atom-electron (A, + e;) state |00),3 prepared at
an earlier stage in the first elastic electron-exchange scattering, governed by the unitary S-matrix Sy, together with BOB’s electron e;.
Subsequently, ALICE performs a second elastic electron-exchange scattering (Sy) between her particles e; and A,. Thereby, the second
scattering, driven by the unitary S-matrix Sy, generates interference between ALICE electron ¢; and atom A, which allows for
teleporting the degree of spin polarization P(V of e, onto BOB’s electron e3 (spin polarization P®) which therefore emerges with the
original spin state |¢)); = [¢);; see (14) and main text. The coincidence measurement between electrons e; and e; ensures that only
those pairs out of the same sub-ensemble are counted. Eventually, to give proof of PBFT, the overlap between initial and final state,
commonly known as fidelity F, must be measured; see (16) and subsequent main text. We stress the point that, besides performing
PBFT via the path electron ¢, — atom A, — electron e;, we can, due to the underlying high symmetry in spin space, simply
interchange the phrases electron and atom in the figure in order to undertake the teleportation sequence

atom A; — electron e, — atom Aj instead (see text later on and figure 3).

entangled separable

-1 —1/V2 —-1/3 0 1/3 P
—
Bell correlated

Figure 2. Separable, entangled, and Bell correlated areas (see text).

Required combinations of energy and angle can be read from the published data [15, 16, 22]. Choosing
appropriate values of E; and 6, for ensuring "’ = 0 in the first scattering, the Pauli-principle requires particles 2
and 3 to be found in the maximally entangled singlet state

1
R — S 2
\/E(|T>z|l>3 [1)217)3) )

where |1)and || ) denote spin up and down, respectively, with respect to the laboratory z-axis. Equation (2)
describes the spin part of the total wave function of the two-electron system after the first elastic collision Sy,
where particles 2 refer to the bound valence shell s-electrons of the quasi one-electron atoms (Na, Li) while
particles 3 describe a free electron beam in the sense of scattering theory; e.g. see [25]. As we are dealing with
light atoms, spin—orbit coupling must not be accounted for. For a detailed proof and discussion we refer to the
book by Kessler [23, particularly see ch 4]. Thus, one obtains information on the joint spin state of the pair but
not on the individual spins. The described experiment must therefore be interpreted as a simple case of a Bell
measurement. It is important to note that choosing spatial observables (¢, E;) only, one can read off the spin—
spin correlation parameter without performing a spin measurement. Since all explicitly spin-dependent
interactions, and in particular spin—orbit coupling, can be neglected [ 15], the connection between the spatial and
spin variables is entirely due to the Pauli-principle. Changing energy E; and/or scattering angle 6, changes the
symmetry of the spatial wave function and the spin part must adapt accordingly leaving the total wave function
antisymmetric. It is because of the central role of the Pauli-principle why we call the experiment described below
as PBFT.

[00),3 =
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With the generated singlet state (2), PBFT can be performed (see figure 1). First, the entangled singlet pairs
|00),5 are shared between ALICE and BOB (atoms to ALICE, electrons to BOB). ALICE has another source of
electrons at her disposal (particles 1) prepared in a definite spin state

vy = a|T) + B11), with a, g e C. 3)

The normalization condition |a|* + |3[*> = 1applies while the amplitudes are unknown to both ALICE and
BOB. For instance, |); has been independently prepared in another laboratory. It is most convenient, using the
states|1,) and | |,,) as basis instead of | T) and | | ), and choose a as quantization axis such that the initial spin state
of ALICE’s electrons is represented by the state vector [); = |1,). The state |¢)); will be transferred to BOB via
PBFT. This can be achieved performing a second elastic electron-exchange scattering of ALICE’s electrons 1
from the atoms 2 in the same manner as discussed above. Applying an important property of the singlet state (2),
its rotational symmetry in spin space, we can write down immediately its expression in the new basis
(a-representation) as its representation remains invariant under rotations

%amzuux ERTRNTANY @)

Since ALICE’s electrons 1 do not participate in the first collision S; (see figure 1), the initial three-particle state
before the second scattering Sy; is given by the pure direct product state

[¥in) = [Tah ® [00)23, (©)

which contains no correlations between the free electrons 1 and the entangled bound-free pair 2-3. Hence,
substituting (4) into (5) yields the initial three-particle state |1;,) before the second collision as

i) = %uwmzum i)l ). ©)

We re-write the second term in (6) as the sum of the two Bell states |00);, and
10), = L( illa)2 + 1lahl1a)2) and express | T,)1] 1. )2 in the first term explicitly as the triplet state |11 );,.
NG P plicitly P
Equation (6) can then be written in the form

i) = %[mmum - %
where |11);, can also be expressed as the sum of two further Bell states.

Under the conditions stated above, the total spin S and component M; are conserved during the second
collision Sy and the scattering amplitudes are independent of M, which results in the simple transformation
|SM,) —s f©®|SM;). The crucial step is to choose E, and 6, such that the triplet amplitude f"(6,, E,) vanishes
for this combination of scattering angle and energy. In this case we end up with the simple result

IOO>23 =

(110)12 + [00)15) |Ta>3:|) 7

in) —5 [our) = —%f“” 10012 ® [1a)s, @®)

and after re-normalization

|w0ut> = |00>12 & |Ta>3
=100)12 ® (a [T)3 + B11)3) = [00)12 @ [1))3, 9

where the last row in (9) has been rotated back and refer to the laboratory z-axis again. The definite quantum
state (3) of ALICE has been teleported onto BOB’s state, that s [¢)); = |1);, and hence, PBFT succeeds. By
choosing appropriate pairs of scattering angle and energy in order to ensure f(6,, E,) = 0 one can perfectly
separate the |00);,-part from all other Bell states in (7). Thus, the described process represents a single-outcome
Bell measurement.

Initially, the electrons 1 have been in the definite (but unknown) state |¢);, independently prepared in
another lab in advance. After the first scattering Sy, particles 2 and 3 were prepared maximally entangled in the
singlet state and had no definite spin state of their own. After the second scattering Sy, particles 1 and 2 become
maximally entangled. ALICE’s electrons 1 have therefore completely lost their initial spin properties in
accordance with the no-cloning theorem [3, 26] and, their initial state has been completely transferred to
particles 3. BOB, receiving the classical information that ALICE obtained a count in her detector 1, while his
detector 3 registers coincidently, knows that his electron is in the state |¢/);. The coincidence measurement
between ALICE’s electrons e; and BOB’s e; ensures that only those pairs out of the same sub-ensemble are
counted. A scheme of the full PBFT is shown in figure 1. As can be seen from (9), based on the Pauli-principle
which overall governs the PBFT, and due to its high symmetry in spin space, no restoration of BOB’s state |1));
has become necessary. Particles 1 and 3 have never interacted directly during PBFT. It is important to note, that
no spin measurement is and must be performed during PBFT. Any spin analysis at this stage disrupts the
entanglement and PBFT cannot succeed. All that is known is that BOB’s sub-ensemble of electrons, selected by

4
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Figure 3. Alternative scheme of PBFT with massive free particles via the path A; — e, — A;. ALICE wants to teleport a certain spin
state |1); of her independently prepared atom A,, onto BOB’s initially unpolarized atom As. The degree of spin polarization PV of A,
is unknown to both ALICE and BOB. ALICE also has the electron e, at her disposal, which is part of the entangled electron-atom

(e; + As)state |00),3 prepared at an earlier stage in the first elastic electron-exchange scattering, governed by the unitary S-matrix Sy,
together with BOB’s atom Aj. Subsequently, ALICE performs a second elastic electron-exchange scattering (Sy;) between her particles,
Aj and e,. Thereby, the second scattering, driven by the unitary S-matrix Syj, generates interference between ALICE’s atom A; and
electron e, which allows for teleporting the degree of spin polarization P() of A; onto BOB’s atom Aj; (spin polarization P®) which
therefore emerges with the original spin state |1)); = |1))5; see (14) and main text. The coincidence measurement between atoms A,
and A; ensures that only those pairs out of the same sub-ensemble are counted. Eventually, to give proof of PBFT, the overlap between
initial and final states (fidelity F) must be measured; see (16) later on.
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the coincidence measurement, is in the same states as particles 1. BOB could use his beam for further
applications, e.g. asinput in a second PBFT or other teleportation experiment. In addition, as a side effect, the
initial entanglement has been completely transferred from the pair 23 to the pair 1-2. This is known as
entanglement-swapping [27, 28]. In this respect the elastic electron-exchange collision can be considered as a
unitary quantum gate.—Adapting the quantum marginal problem [29-31] to such a three-particle Fermionic
system might yield a generalized scheme of PBFT. However, this query is beyond the scope of the present

paper.—

Interchanging atoms and electrons

The discussed PBFT is highly symmetric. Particularly, the high symmetry in spin space enables us to simply
interchange the words electrons and atoms in figure 1. Thereby, instead of teleporting the electron spin, we are
able to teleport an unknown spin state of ALICE’s atom A; onto BOB’s atom A3 employing the entanglement of
ALICE’s electron e, and a classical channel (coincidence measurement). For convenience, the atom A;—
electron e,— atom A; PBFT isillustrated in figure 3. Both schemes have certain advantages in terms of fidelity
measurement (spin analysis) or separation of the elastically scattered sub-ensembles of electrons or atoms after
the first scattering process.

PBFT for mixed spin states

Itis interesting that the derived results still hold if ALICE’s electrons 1 are initially not in a definite but in an
arbitrary spin state described by a density matrix p;. In diagonal form we have

o1 = lalPTa) (Tal + 18P La) (Lalis (10)

where |a|? and | 3|? are the respective probabilities. Since the overlap of the two terms in (10) is incoherent we
can discuss them separately and add the results. As before, we assume particles 2 and 3 being in a singlet state,
and scattering angle and energy in the second scattering, again, are chosen such that the triplet amplitude
vanishes. Using (8) we obtain
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$
Pin = 1 ® 100)23 (00123 —> po = 00)12(00h2 @ ps, (11)
where the spin density matrix p; of BOB’s selected electrons is given by the expression
Py = lalla)s (Tals + 1B 1La)s (Lals- 12)

Asaresult, PBFT is faithful independently of the initial state of ALICE’s electrons, provided the triplet amplitude
vanishes in both scattering processes.

PBFT for the general case

We will now consider the general case where the correlation parameters P, and P,; of the first and second elastic
scattering processes can have arbitrary values within their allowed range [— 1, 1/3]. The derivation is
straightforward but tedious (see appendix for calculational details) and the final expression for the reduced
density matrix of BOB’s selected particles 3 is given by

1+ PPy pV PuPy(p” — iP;I))
P =

1
=— ) (13)
2| PPy (plV + IP;I)) 1 — PPy p

where pi(]), (i = x, y, z) denotes the Cartesian components of the spin polarization vector of ALICE’s initial
electron beam. The spin polarization vectors of ALICE’s beam 1 (P(") and BOB’s selected beam 3 (P®) are
therefore related by the simple expression (see appendix)

P® = p;, P, P, (14)

This results in the (unknown) polarization vector P®® being always parallel to P for P,P,; > 0and anti-
parallel for P;,P,; < 0.Comparing (9) and (14) it follows that the efficiency of the polarization teleportation is
reduced by the factor Py,P;3.

Success of PBFT and fidelity

In order to get some idea of how faithful PBFT might be, we assume ALICE’s original electron beam 1, which is
to be teleported, as being in the definite (but unknown) state | 1, ). In this case (13) reduces to (see appendix)

. l(l + P12Py3 0 )

= 15
Ps 2 0 1 — PioPys (15)

where we have again used the a-representation. The fidelity F, defined by the expression F = (1,|p;|1.), isa
common and frequently used measure of success of quantum teleportation and hence, of PBFT. It yields the
probability that a subset of BOB’s selected electrons p; would pass a test for being in the state |¢;). From (15) we
obtain

1
F= 5(1 -+ P12 P3). (16)

For the general case with | P(V| < 1, we refer to (A.37) and the related section in the appendix. Hence, the fidelity Fis
directly related to the product Py, P,3 and is shown for Na in figure 4 as a 3D-plot versus the scattering angles 6, and 6,
of the first and second scattering, respectively (also see supplementary video 1, available online at stacks.iop.org/
NJP/21/033025/mmedia). The scattering energies are fixed in both collisions to E; = E, = 10 eV. Here, we used and
re-interpreted existing experimental [ 18] and numerical [20] data (see figure A1 (in the appendix) and supplementary
video 3 for the latter, only). The Li experimental [ 19] and numerical data [21] are presented in figure 5 in the same
manner plotted versus the scattering energies E; and E, of the first and second scattering, respectively (also see
supplementary video 2). The scattering angles of both collision processes have been fixed to 6, = 6, = 107.5° (see
figure A2 (in the appendix) and supplementary video 4 for the numerical data, only). It is amazing that (13) and (14)
apply to the full range of allowed values for the correlation parameter products, well outside the Bell region and even
outside the entangled region; see figures 4 and 5 and figures A1 and A2 in the appendix (also see supplementary videos
1-4). Bennett et al[2] and Popescu [32] have already noted that teleportation could still be possible outside the Bell
region but only with reduced efficiency. For the process considered here even separable mixtures can contribute but
with even smaller efficiency.

Ifboth scattering processes are pure singlet collisions, thatis P, = P»3 = —1,wehave F = 1 indicatinga
faithful teleportation from electrons 1 to electrons 3. This is achieved in both cases, Li and Na, at the maxima of
the highest (blue) peaks; see figures 4 and 5 and supplementary videos 1 and 3. However, the overall structure of
the two cases is different. In the sodium case there are single isolated peaks, only one of them showing large
values of P}, P,; and, hence, F up to one. For lithium there is a broad (blue-coloured) plateau with values of

6
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Figure 4. Experimental and numerical fidelity F = F(6,, E}, 6, E,) of PBFT with Na as 3D-plot versus electron scattering angles #; and
0, of the first (S;) and second (Sy;) scattering process, respectively. The scattering energies are fixed at E; = E, = 10 eV. Horizontal
plane divides classical (F < 2/3, no teleportation) from the quantum mechanical (F > 2/3) correlated regions of PBFT. (@):
experimental data points [ 18] plotted on top the re-interpreted numerical data [20], both adapted to our present case of interest as
described in [15]. See [15, 16, 18] for details and information on the error bars. (Numerical data only are shown in figure A1; also see
supplementary videos 1and 3.)
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Figure 5. Experimental and numerical fidelity F = F(6;, E;, 0,, E,) of PBFT with Li as 3D-plot versus electron scattering energies E;
and E, of the first (Sy) and second (Sy) scattering process, respectively. The scattering angle is fixed at 6, = 6, = 107.5°. Horizontal
plane divides classical (F < 2/3, no teleportation) from the quantum mechanical (F > 2/3) correlated regions of PBFT. Distance of
lines of altitude is F = 0.025. (@): experimental data points [19] plotted on top the re-interpreted numerical data [21], both adapted
to our present case of interest as described in [15]. See [15, 16, 19] for details and information on the error bars. (Numerical data only
are shown in figure A2; also see supplementary videos 2 and 4.)

F > 0.9 having peaks atop where F = 1is clearly reached. F decreases steadily with decreasing values of P, and
P,; (also see the Li and Na supplementary videos).

Now, suppose that ALICE and BOB share no entangled state after the first scattering Sy but a separable
mixture. Its density matrix p,3 can always be written as a combination of direct product states. Physically, they
are equivalent to mixtures, generated classically by ALICE and BOB agreeing, e.g. over the phone, on the local
preparation of their respective states [16]. The electron pairs are still correlated but all correlations are of pure
classical nature [15, 16] and therefore useless for quantum teleportation [32]. In the sodium case, this occurs for
most of the angle combinations (0}, ,) of first and second scattering, respectively, as can be seen from the broad
yellow coloured plane around F ~ 1/2 displayed in figure 4 (also see figure A1 and supplementary videos 1
and 3).

The strongest correlation, obtainable for separable states, is | P3| = 1/3, which yields fidelity F = 2/3, (with
P, = —1,and P,; = —1/3 in our scheme), shown as a horizontal plane in figures 4 and 5 (also in figures A1 and
A2 and in the supplementary videos 1-4), representing the upper bound for classical transfer of information
[32,33]. In general, one says that any state is useful for teleportation if F > 2/3. In our scheme, this requires
P1,Py5 > 1/3. Assuming Py, = —1 it follows that any entangled state p,3, with P,; < —1/3, is useful for
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teleportation in the sense of outperforming classical strategies; see figures 4 and 5 (also see figures Al and A2, and
supplementary videos 1—4). In particular, this result holds for states p,3 with spin correlation parameters
—1/42 < P; < —1/3.Though entangled, these states do not violate the CHSH-Bell inequality [24].
Notwithstanding, they provide results F > 2/3 for the PBFT with fidelity up to F = 0.854 and hence, better than
could ever be obtained by classical correlations and local operations.
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Appendix: Numerical fidelity of PBFT for Na and Li

For convenience we also included figures and supplementary videos of the numerical fidelity, only. For the
sodium case in figure A1 (supplementary video 3) and for lithium in figure A2 (supplementary video 4),
respectively.

PBFT for the general case
We will now consider the general case in detail where the spin—spin correlation parameters P,3 = P,3(6;, E;) and
Py, = P1,(0,, E,) of the first and second scattering can take on any value inside the allowed range [—1, 1/3]
depending on scattering angle and energy.

In the first collision unpolarized atoms and unpolarized electrons are scattered. As we have shown [15, 16],
the final state after the first scattering is given by the density matrix

Py3 = i[(l + Py3)[T1)23(TTlas + (1 — P23)|T1)23(T1l2s

+ 2P [T1)23 (U Ths + 2P [1T)23 (Tl s
+ (1 = P3)[ I 1)as (LT + (1 + Pas)[L])2s (L L3l (A.D)

where particles 2 (ALICE’s atom) and 3 (BOB’s electron) are written in first and second position, respectively.
ALICE’s electrons (particles 1) are assumed to be in a definite spin state

[Yh = alTh + 81 with o, 3€C, (A.2)

with the normalization condition
la? + 161 =1, (A.3)

where the amplitudes are unknown to both, ALICE and BOB. Here, | 1) and | | ) describes states spin up and spin
down, respectively, with respect to the laboratory z-axis which may even be unknown to ALICE. The state (A.2)
describes a beam completely polarized with respect to a certain direction, say a. (That is, all electrons in |1)); have
spin up with respect to a.), and we can write

[Tah =alth + Bl (A4)

In the following, it is convenient to use 4 as quantization axis. It is essential in this respect that the matrix p,3
remains invariant under rotations in spin space, that is, p,3 keeps its form in any rectangular system, the laboratory
system x, y, zas in (A.1) or in the a-system with axes a, a’, a’’. Therefore, we can write the initial three-particle
system in the a-representation, simply by substituting | 1) — |1,)and|]) — |],)in p,s for particles 2 and 3,
respectively. Thus, we explicitly write the initial three particle state before the second scattering as

P = i{mamumahz © 1L+ P (Tl + (1 — P)[La)s {Lals]

+ |Tala>12<Tala|lZ & [(1 - P)lTa>3<Ta|3 + (1 + P)lla>3<la|3]
+ |TaTa>12<Tala|lz & 2p |la>3<Ta|3 + |Tala>12<TaTaI12 b2y 2p |Ta>3<la|3}) (A~5)
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Figure Al. Numerical fidelity F = F(6,, E;, 0,, E,) of PBFT with Na as 3D-plot versus electron scattering angles ¢, and 6, of the first
(Sp and second (Syy) scattering process, respectively. The scattering energies are fixed at E; = E, = 10 eV. Horizontal plane divides
classical (F < 2/3 ,no teleportation) from the quantum mechanical (F > 2/3) correlated regions of PBFT. Re-interpreted numerical
data [20] adapted to our present case of interest as described in [15].
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Figure A2. Numerical fidelity F = F(6,, E;, 05, E,) of PBFT with Li as 3D-plot versus electron scattering energies E; and E, of the first
(Sp) and second (Sy) scattering process, respectively. The scattering angles are fixed at 6, = 6, = 107.5°. Horizontal plane divides
classical (F < 2/3 ,no teleportation) from the quantum mechanical (F > 2/3) correlated regions of PBFT. Distance of lines of
altitude is AF = 0.025. Re-interpreted numerical data [21] adapted to our present case of interest as described in [15].

where ® denotes the direct product. Here and in the following, we abbreviate the correlation parameter of the
first scatteringas P = P,; if not causing ambiguities.

We will now consider the electron-exchange scattering between ALICE s electrons (particles 1) and the quasi
one-electron atoms (particles 2) described by the scattering matrix Sy;. The total spin S and its component M in
the direction of the quantization axis a remain constant, and the scattering amplitudes are independent of M,.
The collision between particles in the states | T, )1| 1, )2 and | [, 1| | )2 are therefore pure triplet transitions,

Sn

[TaTa2 —’f(l) [TaTah2s (A.6a)
and
Halahz =5 £O | L L)ia. (A.6b)

In contrast, the states |1, )1 |, )2 and | |, )1] 1, )2 can be written as a combination of the triplet | 10);, and singlet
state |00);,, respectively,

1

[Tala)z = —2(|10>1z + 100)12), (A.6¢)
and
Lalaz = %mom — 100)2). (A6d)




10P Publishing

NewJ. Phys. 21 (2019) 033025 B Lohmann and K Blum

Thus, we have the transitions

Malahz =2 %( FO 1100 + £O [00)5), (A.6e)
and
aluhz —2 %(f“) 110)12 — £© 00)1,). (A6f)

Equivalently, we introduce direct and exchange amplitudes [23], fand g, writing the following possibilities
with respect to the contributing electronic spins

dillads =5 f il Lad = g i)z, (A7a)
Ll Tads =5 FlLal )z = € ol L)z, (A.7b)
Tl Ta)s =5 (F = ©lTahl )z, (A70)
Hadilla)s =5 (F = @)Ll La)e. (A7d)

The term (f — g) is known as the interference amplitude. Note, that the minus sign is implicitly taking care of the
Pauli-principle. The amplitudes fand gare related to the triplet and singlet scattering amplitudes f’ and f© by
therelations, e.g. [23, 34, 35],

f= %( fO4f0),  and g= %( FO _ f), (A.8a)
and the inverse relations
fO=f—g, and fO =f4g. (A.8b)
From (A.8) we obtain the useful relations
1
IfI* + Igl* = E(If(l)l2 + 1fOP), (A9a)
and
1
£ +frg= E(If“” > = 1fOP. (A.9b)

Substituting the appropriate relations (6) and (7) into (A.5) and, with the help of relations (8), expressing all
interference amplitudes (f — g) in terms of triplet amplitudes, we obtain after some rearrangements the (un-
normalized) final state density matrix after the second collision as

Pt = i{(lf“) Ptz (Talahe) @ [+ P (s + (1 — P)]L)s (Lals]

+ (fPNalahz (Tadahz + 18P aTah2 (LaTah2)

@[ = P)[Ta)s(Tals + (A + P)|la)s(Lals]

— (fg* Malah2 (Jalalz + f*g 1 lala)iz (Talah2)

@ [(1 = P)Ta)s(Tals + (1 + P)[La)3(lals]

+ (FOF* Nalahz(Talahz = FP* MaTadiz (Lalahiz) @ 2P |]a)3(Tals

+ FYf bz (TaTalia = £ alahiz (TaTah2) © 2P [Ta)s (Lals }- (A.10)

Normalization and differential cross section
Building the trace, we sum over the diagonal elements of (A.10) which results in

Tr 0 = i{lﬂ”lz[(l +P)+ (1= P+ (IfP + [gP)[A — P) + (1 + P}

- §<|f<1>|2 IR+ IgP)- (A1)

Applying the identity (9), we remain with
Tt poue = i@ [fOP + 1fO) = on, (A.12)

where we introduce the differential cross section o1, of the second scattering process performed by ALICE alone.
Thus, we write the normalized density matrix as

10
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1
pgzl)t = —Pour (A.13)
012

BOB’s reduced density matrix

In order to compare the final state of BOB’s electron (after having selected the relevant sub-ensemble by
performing the coincidence experiment), we calculate the 2 x 2 reduced density matrix p;, defined by the
expression, see [36],

P3 = Tr1,2 pfjf,)t = ZM1M2<A/I]M2|p0ut|MM2>' (A.14)

Thus, we have to sum over the elements of (A.10), diagonal in M; and M, (particles 1 and 2 owned by ALICE)
and obtain the normalized reduced density matrix

Pgn) - L{lf(l)lz[(l + P)lTa>3<Ta|3 =+ (1 - P)lla>3<la|3]
401,

+ (P + 18I = P)Ta)s(Tals + (1 + P La)s (Lals]}- (A.15)
Expressing the direct and exchange amplitudes in terms of the singlet and triplet ones by using (A.9) and

applying (A.12), we obtain

p = L DRI + P s (als + (= P)La)s (Lals]
801,

+ AP + IfOPIA = P)Ta)s (Tals + A+ Pl La)s(Lals1}- (A.16)

As can be seen from (A.16) the density matrix pgn) is diagonal with respect to particle 3 (BOB’s electron). This is
due to our chosen coordinate frame within the a-representation.

. Calculating the matrix elements (M| pé") |M3) and explicitly re-expressing the correlation parameter P = P53
yields

(Talp®]1) = 8L[s DR + [fOR 4+ Pu(fOP — |fOP)]

012
|fOPR - If“’)lz)

1
=—|1+P A.17
2( 23 401, ( )

where we used (A.12) for the differential cross section o7, of the second scattering process. In full analogy to the
first collision process Sy, we introduce the correlation parameter

FOP — 1fOF
BT SIOP = 1O

which drives the second electron exchange-scattering Sy. Thus, we end up with the diagonal matrix elements

(A.18)

<Ta|p(3n)|Ta> = %(1 + P12Py3), (A.19q)

and due to symmetry requirements
Lalol1) = 301 = PraPas) (A.19b)

In explicit matrix form we write
ps = %(1 " zlzPZS L 212 Pz3)’ (A.20)

which refers to (15) in the main text. Here and in the following we suppress the upper index () if not causing
ambiguities. The matrix element (19) gives the possibility of finding an electron in state | 1, ); if a measurement is
performed. This matrix element, commonly called fidelity F, is often used as a measure of success for the

teleportation process [32]. If ALICE and BOB share a singlet state (P,5 = —1), and if the second collision is again
pure singlet scattering (P, = —1), we obtain from (A.20)
p3 = Ta)3 {Tals> (A.21)

indicating a faithful quantum teleportation. It should be noted that F captures only the mean value behaviour of
BOB’s output state. The use of the fidelity for characterizing quantum teleportation is therefore limited.

Let us now analyse whether other states besides the maximally entangled singlets can be used for quantum
teleportation. Any state with | P3| < 1/3is separable and can be written as a direct product of particles 2 and 3.
It can be prepared by ALICE and BOB in a classical way, that is, by agreeing over phone on the local preparation

11
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of their respective states. Hence, the spin correlations are classical, that is they can be considered as prearranged
by ALICE and BOB [15, 16].

Any direct product (entangled) state is useless for teleportation as for such states manipulation of particle 2
during the second scattering has no effect on what can be predicted on particle 3 . Whereas particles 1 and 2
become entangled, particles 3 are unaffected and keep their state obtained during the first collision. One can still
find a certain number of BOB’s particles in state | T, ); but this is a classical effect based on classical statistics. The
best result for these classical mixtures is obtained for P,3; = —1/3 and Py, = —1 giving fidelity F = 2/3 [32].

Finally, let us consider the spin polarization. Since ps is diagonal in the a-representation, the spin
polarization vector P® of BOB’s selected electrons is directed along a. Its magnitude is given by the difference of
the two diagonal elements of (A.20), that is

|[P®)| = Py P (A.22)

Since the spin polarization vector of ALICE’s initial electron beam is also oriented along a, we can write in vector
notation

P® = P, Py P, (A.23)

which gives (14) in the main text.

The spin polarization vector is necessarily parallel or anti-parallel to P! depending on the sign of the
product P1,P,3. For P;,P,3 = 1,we have P = P( indicating a faithful quantum teleportation. P;,P,; can also
be used as a measure of success.

We will now transform back to the xyz-coordinate frame (laboratory frame). Using (A.4)

[Yh = 1Ta) = @ |Th + Bl (A.24a)
and

[la) = B%I1Th — a* ), (A.24b)

where |1,) and | | ;) denote the spin states with respect to direction a, we write BOB’s density matrix in the form
1
p3 = E[(l + PiaPy3) [ Ta) (Tal + (1 — PioPas)|La) (Lal . (A.25)

Substituting the relations (24) into (A.25) and expressing the results in explicit matrix form, we obtain BOB’s
density matrix p, in the xyz—system

1(1 + PuPy(lal* — 16 2Py, Py3 2a3*

Py = — . (A.26)
2 2P, Py3 203 1 — PPy(lal* — |87
The amplitudes o and B3in (A.26) are related to the components of the spin polarization vector P(") of ALICE’s

electrons, defined by the relation

(Wlailny =pP,  i=xp2, (A.27)
where o; denote the relevant Pauli matrices. We obtain
p = af* + B, (A.28a)
p" = i(ap* — a*p), (A.28b)
and
P = laP — 18P (A.28¢)

Inserting (28) into (A.26) and parametrizing the density matrix p; in terms of the spin polarization vector
components 1’1‘(3)’ (i = x, y, z) of BOB’s sub-ensemble of electrons, selected in the coincidence experiment, we
obtain after some rearrangements

o 1A -y
=5 e _ .® 3
2\p, —ip” 1-p,

X
[ 14 PuPsp®  2PLPy(pY — iP}El))
2 2P12P23(P;1) - iP;D) 1 — Pi3Ps3 Pz(l)

(A.29)

Eventually, we derive expressions for the spin polarization vector P® of BOB’s sub-ensemble of electrons
selected by the coincidence measurement; see figure 1. Using the relation
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p? = Trps0; (A.30)
we obtain the general expression
P® = P}, Py3 PO, (A.31)

The result (A.31) shows that the spin polarization vectors of particles 3 (BOB’s electrons) and that of particles 1
(ALICE’s electrons) are always parallel or anti-parallel depending on the sign of P}, P,3. In the case where the
scattering angles and energies of both collisions, S; and Sy, are chosen in such a way that P, = Py3 = —1,1.e.
pure singlet scattering, we have

P® = pO, (A.32)
indicating a faithful quantum teleportation.
Fidelity
According to Popescu [32] the fidelity is defined as
F = (¢l pslt). (A.33)

Inserting BOB’s density matrix (A.29) and the initial state amplitudes (A.2) yields

1 + PyPpp Pz(l) P23P12(Pi1) - iPy(l)) a

1
F = —(a* /%) ] . (A34)
2 P23P12(Pi1) + lpy(l)) 1 — PPy, Pz(l) B
Performing matrix multiplication with its bra and ket vectors, we obtain
1 .
F=;WWU+HﬁBﬁ5+ﬁWM%@D—@W
+af*PiaPos(p” + ipl") + 18P — PiaPos pM)]. (A.35)

With the normalization condition (A.3) and using the parametrization (A.28) of the reduced density matrix in
terms of the spin polarization vector, we can write

1
F= 5[1 + (Jal = [BP)P1aPys p” + PpaPys pV (a¥B + af¥)
+ P12Py3 py(l)i(aﬁ* - a'B)]
= %[1 + PPy (p? + pM? + pM2)]. (A.36)

Thus, we obtain the fidelity as a function of the two correlation parameters P, and P,3, driving the firstand
second scattering processes, and the magnitude | PV | of the spin polarization vector of ALICE’s electrons,

F= (1 + PuPy PV, (437)
In the case of a pure state to be teleported we have |[P®| = 1and thus
F= (U4 PaP). (A39)
For maximally entanglement in both scattering processes, thatis P;, = P,3; = —1,weget F = 1 whichyieldsa

faithful teleportation. In the case where ALICE’s electrons are originally in a mixed state, we have |[P(V| < 1
which always results in a reduction of fidelity. Even for maximal entanglement in both scattering processes we
obtain

1
<F= E(1 +|POP) < 1. (A.39)

N | =
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