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Abstract
Fundamental non-locality in quantummechanical scattering processes is investigated bymeans of
Fermionic teleportation. Our scenario employs freemassive particles, electrons and atoms, within a
twofold electron-exchange collision approachwhereby, in thefirst collision, also generating the
necessary spin–spin entanglement between initially unpolarized electrons and atoms. It is shown that
in a second collision an arbitrary spin polarization state of a free electron can be teleported onto the
other electronwhich has never been in contact with the first one. The underlying scheme relies on and
is a direct consequence of the Pauli-principle andmakes use of a high symmetry in spin space thereby
avoiding restoration of the teleported states. The scattering process (teleportation) is highly symmetric
allowing for interchanging the electronic and atomic constituents without loss of generality. Re-
interpretation of Li andNa data reveals the feasibility and capability of Fermionic teleportation
demonstrated by numerical and experimental data for the teleportationfidelity.

One of themost intriguing fundamentals of quantummechanics ismanifested in its non-locality. Criticized by
Einstein et al [1] as ‘spooky action at a distance’ it has become an active andmanifold area of research in recent
years. A possiblemeans in order to investigate such non-local phenomena has been provided byBennett et al [2]
in terms of quantum teleportation. It relies on the existence of long-range correlations between Einstein–
Podolsky–Rosen (EPR) or Bell pairs and allows for aflawless transfer of quantum information between two
constituents without contradicting the no-cloning theorem [3]. Since the pioneering experiment [4]
applications in quantum communication and computing [5–9] have been pointed out illustrating the thriving
research in this field. Astounding ‘ground-to-satellite quantum teleportation’has just been reported [10]. All
these approaches are either based on the direct use of photons or aremediated through light fields [11]. Beyond,
it has been pointed out [12] that quantummechanicalmethods and their alternatives can be tested for
increasinglymacroscopic systems [13] using the EPRparadox.

Taking up the idea, entanglement and EPR-based investigationsmust be recognized as being of considerable
interest, particularly withmassive particles. Caused by these demands, we enter new avenues and unveil a
completely different scenariowhere, employing themethods of scattering theory, teleportation is emerging
froma twofold elastic electron-exchange collision process with free,massive, Fermionic particles. As our
approach deals with light atoms (Li, Na), coupling between spatial and spin variables is entirely due to the Pauli-
principle, assisted by a high spin space symmetry, which is then responsible for the generation of correlations
between the atomic and electronic spins. Advantageously, our scattering approach implicitly circumnavigates
one of the drawbacks of photonic state-of-the-art quantum teleportation, i.e. its necessity to restore the
quantum state by unitary transformation after teleportation [2].

As a prerequisite quantum teleportation relies on a suitably prepared entangled state which, in the photonic
case, is provided via nonlinear parametric down conversion [14]. In our case, entanglementwill be generated as a
consequence of the Pauli-principle. In afirst collision, unpolarized electrons and unpolarized atoms are
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elastically scattered and their spins become entangled [15]. This entanglement can be found, andfixed in
advance, by choosing appropriate scattering angles and/or energies. By varying the scattering parameters, the
full range of spin–spin correlations can be generated, and in particular Bell-correlated spin pairs. Thus, thefinal
spin system represents a tunable EPR resource [15, 16]. This is in contrast to realized entanglement generation
between electrons as its creation is nonetheless photon-assisted [17]. Subsequently, a second electronwith
arbitrary (unknown) spin polarization is scattered from the atom and it is shown that its polarization state is
non-locally teleported onto the first electron (still unpolarized after the first scattering). The experiment
represents a single-outcomeBellmeasurement. Hence, restoration of the teleported state by unitary
transformation [2], typical for the standard scheme, becomes obsolete in our approach.

The success of teleportation (fidelity) depends on the spin–spin correlations and again is directly related to
the Pauli-principle. Re-interpretation of existing experimental and numerical sodium and lithiumdata [18–21],
as well as recent calculations [22] underpins our results, revealing the feasibility and capability of such
experiments. As an essential role is played by the Pauli-principle, wewill refer to our approach as Pauli-based
Fermionic teleportation (PBFT).

The paper is organized as follows. In the next sectionwewill elucidate the underlying physics by considering
a simple example first, assuming amaximally entangled EPR resource prepared in thefirst collision. The basic
principles will be explained concentrating on pure states. In the following sections wewill generalize the
discussion. Firstly, wewill consider the case where the electrons to be teleported are in amixed state but still
assuming the initially scattered particles to form themaximally entangled singlet state. Secondly, wewill account
for the general case in terms of densitymatrix where also the entangled particles can be in arbitrary states. In the
last sectionwewill introduce and adapt the concept offidelity as ameasure of success for teleportation and
compare our predictions with pre-existing experimental sodium and lithiumdata. It will be shown that less-
entangledmixed states can also be used as a resource for PBFTwithfidelity beyond the boundary set by classical
physics. For illustrative purposes, wewill also provide videos of the numerical and experimental data. Finally, in
the appendixwewill present detailed derivations of the general formulas.

PBFTof a definite spin state

Quantum teleportation is a three-particle process where the quantum information of particle 1 is transferred
onto particle 3with the assistance of particle 2 in the absence of any direct quantum communication channels
between them. In afirst step two observers, ALICE andBOB, perform a specific elastic scattering process
between quasi one-electron atoms (Na, Li) (particles 2) and electrons (particles 3), both initially unpolarized.
Dealingwith light atoms, all explicit spin-dependent interactions can be neglected in such an approach and,
besides theCoulombpotential, electron-exchange is taken into account, only [23]. After thefirst scattering SI,
with energyE1 and scattering angle θ1 (see figure 1), thefinal spin state of particles 2 and 3 is generally described
by a spin-densitymatrix ρ23=T ρinT

+whereT denotes the transition operator and ρin describes the two-
particle densitymatrixof the uncorrelated initial state.With the help of Clebsch–Gordan coefficients theT
matrix elements can be coupled to their total spin S andmagnetic componentMswhich are both conserved
during the collision. TheTmatrix does not depend on themagnetic components and hence, we are able to
express the densitymatrix ρ23 in terms of scattering amplitudes f (S), (S=0, 1). The spin-densitymatrix ρ23 can
be completely characterized in terms of two individuallymeasured polarization vectors, referring to particles 2
and 3, and the nine direct product components s sá ´ ñ( ) ( )

i j
2 3 of the spin–spin correlation tensor (i, j=x, y, z). As

shown in our previous research [15, 16], the polarization vectors of both particles remain zero under such
conditions, as well as all non-diagonal components of the spin–spin correlation tensor, and the only non-
vanishing parameters are the spin–spin correlation parameters
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where f (1) and f (0) denote the elastic triplet and singlet scattering amplitudes, respectively. Thus, the
entanglement generating collision is characterized in terms of the single parameterP23= P23(θ1, E1)which is a
function of scattering angle and energy. The correlation parameter can vary in the range−1�P23�1/3. The
spin–spin correlation parameter P23 is a directmeasure of the entanglementproperties of the final spin system
[15, 16]. The spin system is separable if ∣ ∣P 1 323 , and entangled in the region−1�P23<−1/3 (see
figure 2). In particular, for  - -P1 1 223 thefinal spin states are Bell correlated, i.e. the CHSH-Bell
inequality [24] is violated. Variation of scattering angle and/or energy changes the nature of the combined spin
system frommaximally entangled (P23=−1) to completely chaotic (P23=0) and up toP23=1/3. It follows
that the degree of entanglement is tunable and the desired value ofP23 can befixed in advance by choosing
appropriate pairs ofE1 and θ1. It is of central importance that for a large variety of combinations (θ1, E1) the
triplet amplitude f (1) vanishes and therefore thefinal spins form a pure singlet state corresponding toP23=−1.
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Required combinations of energy and angle can be read from the published data [15, 16, 22]. Choosing
appropriate values ofE1 and θ1 for ensuring f

(1)=0 in thefirst scattering, the Pauli-principle requires particles 2
and 3 to be found in themaximally entangled singlet state

ñ = ñ ñ - ñ ñ∣ (∣ ∣ ∣ ∣ ) ( )00
1

2
, 223 2 3 2 3

where ñ∣ and ñ∣ denote spin up and down, respectively, with respect to the laboratory z-axis. Equation (2)
describes the spin part of the total wave function of the two-electron system after the first elastic collision SI,
where particles 2 refer to the bound valence shell s-electrons of the quasi one-electron atoms (Na, Li)while
particles 3 describe a free electron beam in the sense of scattering theory; e.g.see [25]. Aswe are dealingwith
light atoms, spin–orbit couplingmust not be accounted for. For a detailed proof and discussionwe refer to the
book byKessler [23, particularly see ch4]. Thus, one obtains information on the joint spin state of the pair but
not on the individual spins. The described experimentmust therefore be interpreted as a simple case of a Bell
measurement. It is important to note that choosing spatial observables (θ1,E1) only, one can read off the spin–
spin correlation parameter without performing a spinmeasurement. Since all explicitly spin-dependent
interactions, and in particular spin–orbit coupling, can be neglected [15], the connection between the spatial and
spin variables is entirely due to the Pauli-principle. Changing energy E1 and/or scattering angle θ1 changes the
symmetry of the spatial wave function and the spin partmust adapt accordingly leaving the total wave function
antisymmetric. It is because of the central role of the Pauli-principle whywe call the experiment described below
as PBFT.

Figure 1. Scheme of PBFTwithmassive free particles. ALICEwants to teleport a certain spin state yñ∣ 1 of her independently prepared
electron e1, onto BOBʼs initially unpolarized electron e3. The degree of spin polarization ( )P 1 of e1 is unknown to bothALICE and
BOB. ALICE also has the use of atomA2 at her disposal, which is part of the entangled atom-electron (A2+e3) state ñ∣00 23 prepared at
an earlier stage in thefirst elastic electron-exchange scattering, governed by the unitary S-matrix SI, together with BOBʼs electron e3.
Subsequently, ALICEperforms a second elastic electron-exchange scattering (SII) between her particles e1 andA2. Thereby, the second
scattering, driven by the unitary S-matrix SII, generates interference betweenALICE electron e1 and atomA2 which allows for
teleporting the degree of spin polarization ( )P 1 of e1 onto BOBʼs electron e3 (spin polarization ( )P 3 )which therefore emerges with the
original spin state y yñ = ñ∣ ∣ ;3 1 see (14) andmain text. The coincidencemeasurement between electrons e1 and e3 ensures that only
those pairs out of the same sub-ensemble are counted. Eventually, to give proof of PBFT, the overlap between initial and final state,
commonly known asfidelity F, must bemeasured; see (16) and subsequentmain text.We stress the point that, besides performing
PBFT via the path  e A eelectron atom electron1 2 3, we can, due to the underlying high symmetry in spin space, simply
interchange the phrases electron and atom in thefigure in order to undertake the teleportation sequence

 A e Aatom electron atom1 2 3 instead (see text later on and figure 3).

Figure 2. Separable, entangled, andBell correlated areas (see text).
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With the generated singlet state (2), PBFT can be performed (seefigure 1). First, the entangled singlet pairs
ñ∣00 23 are shared betweenALICE andBOB (atoms toALICE, electrons to BOB). ALICEhas another source of

electrons at her disposal (particles 1) prepared in a definite spin state

y a b a bñ = ñ + ñ Î∣ ∣ ∣ ( ), with , . 31

The normalization condition a b+ =∣ ∣ ∣ ∣ 12 2 applies while the amplitudes are unknown to bothALICE and
BOB. For instance, yñ∣ 1has been independently prepared in another laboratory. It ismost convenient, using the
states  ñ∣ a and  ñ∣ a as basis instead of ñ∣ and ñ∣ , and choose a as quantization axis such that the initial spin state
of ALICEʼs electrons is represented by the state vector yñ =  ñ∣ ∣ a1 . The state yñ∣ 1will be transferred to BOB via
PBFT. This can be achieved performing a second elastic electron-exchange scattering of ALICEʼs electrons 1
from the atoms 2 in the samemanner as discussed above. Applying an important property of the singlet state (2),
its rotational symmetry in spin space, we canwrite down immediately its expression in the newbasis
(a-representation) as its representation remains invariant under rotations

ñ =  ñ  ñ -  ñ  ñ∣ (∣ ∣ ∣ ∣ ) ( )00
1

2
. 4a a a a23 2 3 2 3

Since ALICEʼs electrons 1 do not participate in the first collision SI (see figure 1), the initial three-particle state
before the second scattering SII is given by the pure direct product state

y ñ =  ñ Ä ñ∣ ∣ ∣ ( )00 , 5ain 1 23

which contains no correlations between the free electrons 1 and the entangled bound-free pair 2–3.Hence,
substituting (4) into (5) yields the initial three-particle state y ñ∣ in before the second collision as

y ñ =  ñ  ñ  ñ -  ñ  ñ  ñ∣ (∣ ∣ ∣ ∣ ∣ ∣ ) ( )1

2
. 6a a a a a ain 1 2 3 1 2 3

We re-write the second term in (6) as the sumof the twoBell states ñ∣00 12 and

ñ =  ñ  ñ +  ñ  ñ∣ (∣ ∣ ∣ ∣ )10 a a a a12
1

2 1 2 1 2 and express  ñ  ñ∣ ∣a a1 2 in thefirst term explicitly as the triplet state ñ∣11 12.

Equation (6) can then bewritten in the form

y ñ = ñ  ñ - ñ + ñ  ñ
⎡
⎣⎢

⎤
⎦⎥∣ ∣ ∣ (∣ ∣ ) ∣ ( )1

2
11

1

2
10 00 , 7a ain 12 3 12 12 3

where ñ∣11 12 can also be expressed as the sumof two further Bell states.
Under the conditions stated above, the total spin S and componentMs are conserved during the second

collision SII and the scatteringamplitudes are independent ofMswhich results in the simple transformation
ñ ñ∣ ⟶ ∣( )SM f SMs

S
s . The crucial step is to chooseE2 and θ2 such that the triplet amplitudef (1)(θ2, E2) vanishes

for this combination of scattering angle and energy. In this case we end upwith the simple result

y yñ ñ = - ñ Ä  ñ∣ ⟶ ∣ ∣ ∣ ( )( )f
1

2
00 , 8

S
ain out

0
12 3

II

and after re-normalization

y
a b y

ñ = ñ Ä  ñ
= ñ Ä ñ + ñ = ñ Ä ñ

∣ ∣ ∣
∣ ( ∣ ∣ ) ∣ ∣ ( )
00

00 00 , 9
aout 12 3

12 3 3 12 3

where the last row in (9) has been rotated back and refer to the laboratory z-axis again. The definite quantum
state (3) of ALICE has been teleported onto BOBʼs state, that is y yñ = ñ∣ ∣3 1, and hence, PBFT succeeds. By
choosing appropriate pairs of scattering angle and energy in order to ensure f (1)(θ2,E2)=0 one can perfectly
separate the ñ∣00 12-part from all other Bell states in (7). Thus, the described process represents a single-outcome
Bellmeasurement.

Initially, the electrons 1 have been in the definite (but unknown) state yñ∣ 1, independently prepared in
another lab in advance. After thefirst scattering SI, particles 2 and 3were preparedmaximally entangledin the
singlet state and had no definite spin state of their own. After the second scattering SII, particles 1 and 2 become
maximally entangled. ALICEʼs electrons 1 have therefore completely lost their initial spin properties in
accordancewith the no-cloning theorem [3, 26] and, their initial state has been completely transferred to
particles 3. BOB, receiving the classical information that ALICE obtained a count in her detector 1, while his
detector 3 registers coincidently, knows that his electron is in the state yñ∣ 3. The coincidencemeasurement
betweenALICEʼs electrons e1 and BOBʼs e3 ensures that only those pairs out of the same sub-ensemble are
counted. A scheme of the full PBFT is shown infigure 1. As can be seen from (9), based on the Pauli-principle
which overall governs the PBFT, and due to its high symmetry in spin space, no restoration of BOBʼs state yñ∣ 3

has become necessary. Particles 1 and 3 have never interacted directly during PBFT. It is important to note, that
no spinmeasurement is andmust be performed during PBFT. Any spin analysis at this stage disrupts the
entanglement andPBFT cannot succeed. All that is known is that BOBʼs sub-ensemble of electrons, selected by
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the coincidencemeasurement, is in the same states as particles 1. BOB could use his beam for further
applications, e.g.as input in a second PBFTor other teleportation experiment. In addition, as a side effect, the
initial entanglement has been completely transferred from the pair 2–3 to the pair 1–2. This is known as
entanglement-swapping [27, 28]. In this respect the elastic electron-exchange collision can be considered as a
unitary quantum gate.—Adapting the quantummarginal problem [29–31] to such a three-particle Fermionic
systemmight yield a generalized scheme of PBFT.However, this query is beyond the scope of the present
paper.—

Interchanging atoms and electrons

The discussed PBFT is highly symmetric. Particularly, the high symmetry in spin space enables us to simply
interchange thewords electrons and atoms infigure 1. Thereby, instead of teleporting the electron spin, we are
able to teleport an unknown spin state of ALICEʼs atomA1 onto BOBʼs atomA3 employing the entanglement of
ALICEʼs electron e2 and a classical channel (coincidencemeasurement). For convenience, the atom A1
electron e2 atomA3 PBFT is illustrated infigure 3. Both schemes have certain advantages in terms offidelity
measurement (spin analysis) or separation of the elastically scattered sub-ensembles of electrons or atoms after
thefirst scattering process.

PBFT formixed spin states

It is interesting that the derived results still hold if ALICEʼs electrons 1 are initially not in a definite but in an
arbitrary spin state described by a densitymatrix ρ1. In diagonal formwe have

r a b=  ñ á +  ñ á∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ), 10a a a a1
2

1 1
2

1 1

where a∣ ∣2 and b∣ ∣2 are the respective probabilities. Since the overlap of the two terms in (10) is incoherent we
can discuss them separately and add the results. As before, we assume particles 2 and 3 being in a singlet state,
and scatteringangle and energy in the second scattering, again, are chosen such that the triplet amplitude f (1)

vanishes. Using (8)we obtain

Figure 3.Alternative scheme of PBFTwithmassive free particles via the path  A e A1 2 3. ALICEwants to teleport a certain spin
state yñ∣ 1 of her independently prepared atomA1, onto BOBʼs initially unpolarized atomA3. The degree of spin polarization ( )P 1 ofA1

is unknown to both ALICE andBOB. ALICE also has the electron e2 at her disposal, which is part of the entangled electron-atom
(e2+A3) state ñ∣00 23 prepared at an earlier stage in thefirst elastic electron-exchange scattering, governed by the unitary S-matrix SI,
together with BOBʼs atomA3. Subsequently, ALICE performs a second elastic electron-exchange scattering (SII) between her particles,
A1 and e2. Thereby, the second scattering, driven by the unitary S-matrix SII, generates interference betweenALICEʼs atomA1 and
electron e2 which allows for teleporting the degree of spin polarization ( )P 1 ofA1 onto BOBʼs atomA3 (spin polarization ( )P 3 )which
therefore emerges with the original spin state y yñ = ñ∣ ∣ ;1 3 see (14) andmain text. The coincidencemeasurement between atomsA1

andA3 ensures that only those pairs out of the same sub-ensemble are counted. Eventually, to give proof of PBFT, the overlap between
initial andfinal states (fidelity F)must bemeasured; see (16) later on.
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r r r r= Ä ñ á = ñ á Ä∣ ∣ ⟶ ∣ ∣ ( )00 00 00 00 , 11
S

in 1 23 23 out 12 12 3
II

where the spin densitymatrix ρ3 of BOBʼs selected electrons is given by the expression

r a b=  ñ á +  ñ á∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ). 12a a a a3
2

3 3
2

3 3

As a result, PBFT is faithful independently of the initial state of ALICEʼs electrons, provided the triplet amplitude
vanishes in both scattering processes.

PBFT for the general case

Wewill now consider the general case where the correlation parameters P12 andP23 of thefirst and second elastic
scattering processes can have arbitrary values within their allowed range -[ ]1, 1 3 . The derivation is
straightforward but tedious (see appendix for calculational details) and the final expression for the reduced
densitymatrix of BOBʼs selected particles 3 is given by

r =
+ -

+ -

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )

P P p P P p p

P P p p P P p

1

2

1 i

i 1
, 13

z x y

x y z

3

12 23
1

12 23
1 1

12 23
1 1

12 23
1

where =( )( )p i x y z, , ,i
1 denotes theCartesian components of the spin polarization vector of ALICEʼs initial

electron beam. The spin polarization vectors of ALICEʼs beam1 ( ( )P 1 ) andBOBʼs selected beam3 ( ( )P 3 ) are
therefore related by the simple expression (see appendix)

= ( )( ) ( )P P P P . 143
12 23

1

This results in the (unknown) polarization vector ( )P 3 being always parallel to ( )P 1 forP12P23>0 and anti-
parallel forP12P23<0. Comparing (9) and (14) it follows that the efficiency of the polarization teleportation is
reduced by the factor P12P23.

Success of PBFT andfidelity

In order to get some idea of how faithful PBFTmight be, we assumeALICEʼs original electron beam1,which is
to be teleported, as being in the definite (but unknown) state  ñ∣ a . In this case (13) reduces to (see appendix)

r =
+

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )P P

P P
1

2

1 0
0 1

, 153
12 23

12 23

wherewe have again used the a-representation. Thefidelity F, defined by the expression r= á  ñ∣ ∣F a a3 , is a
common and frequently usedmeasure of success of quantum teleportation and hence, of PBFT. It yields the
probability that a subset of BOBʼs selected electrons ρ3 would pass a test for being in the state y ñ∣ 1 . From (15)we
obtain

= +( ) ( )F P P
1

2
1 . 1612 23

For the general casewith <∣ ∣( )P 11 , we refer to (A.37) and the related section in the appendix.Hence, thefidelityF is
directly related to theproductP12P23 and is shown forNa infigure 4 as a 3D-plot versus the scattering anglesθ1 and θ2
of thefirst and second scattering, respectively (also see supplementary video1, available online at stacks.iop.org/
NJP/21/033025/mmedia). The scattering energies arefixed inboth collisions toE1= E2= 10 eV.Here,weused and
re-interpreted existing experimental [18] andnumerical [20]data (seefigureA1 (in the appendix) and supplementary
video3 for the latter, only). TheLi experimental [19] andnumerical data [21] arepresented infigure5 in the same
manner plotted versus the scattering energiesE1 andE2 of thefirst and second scattering, respectively (also see
supplementary video 2). The scattering angles of both collisionprocesses have beenfixed to θ1= θ2= 107.5° (see
figureA2 (in the appendix) and supplementary video4 for thenumerical data, only). It is amazing that (13) and (14)
apply to the full rangeof allowed values for the correlationparameter products,well outside theBell regionand even
outside the entangled region; seefigures 4 and5andfiguresA1 andA2 in the appendix (also see supplementary videos
1–4). Bennett et al [2] andPopescu [32]have alreadynoted that teleportation could still be possible outside theBell
regionbut onlywith reduced efficiency. For theprocess consideredhere even separablemixtures can contribute but
with even smaller efficiency.

If both scattering processes are pure singlet collisions, that is = = -P P 112 23 , we have F=1 indicating a
faithful teleportationfrom electrons 1 to electrons 3. This is achieved in both cases, Li andNa, at themaxima of
the highest (blue) peaks; see figures 4 and 5 and supplementary videos1 and 3.However, the overall structure of
the two cases is different. In the sodium case there are single isolated peaks, only one of them showing large
values ofP12P23 and, hence, F up to one. For lithium there is a broad (blue-coloured) plateauwith values of
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F>0.9 having peaks atopwhere F=1 is clearly reached. F decreases steadily with decreasing values ofP12 and
P23 (also see the Li andNa supplementary videos).

Now, suppose that ALICE andBOB share no entangled state after the first scattering SI but a separable
mixture. Its densitymatrix ρ23 can always bewritten as a combination of direct product states. Physically, they
are equivalent tomixtures, generated classically by ALICE andBOB agreeing, e.g. over the phone, on the local
preparation of their respective states [16]. The electron pairs are still correlated but all correlations are of pure
classical nature [15, 16] and therefore useless for quantum teleportation [32]. In the sodium case, this occurs for
most of the angle combinations (θ1, θ2) offirst and second scattering, respectively, as can be seen from the broad
yellow coloured plane around F;1/2 displayed infigure 4 (also see figure A1 and supplementary videos1
and 3).

The strongest correlation, obtainable for separable states, is =∣ ∣P 1 323 , which yields fidelity F=2/3, (with
P12=−1, and P23=−1/3 in our scheme), shown as a horizontal plane infigures 4 and 5 (also infigures A1 and
A2 and in the supplementary videos1–4), representing the upper bound for classical transfer of information
[32, 33]. In general, one says that any state is useful for teleportation if F>2/3. In our scheme, this requires
P12P23>1/3. Assuming P12=−1 it follows that any entangled state ρ23, with P23<−1/3, is useful for

Figure 4.Experimental and numerical fidelity F=F(θ1,E1, θ2,E2) of PBFTwithNa as 3D-plot versus electron scattering angles θ1 and
θ2 of thefirst (SI) and second (SII) scattering process, respectively. The scattering energies are fixed atE1 = E2 = 10 eV.Horizontal
plane divides classical (F<2/3, no teleportation) from the quantummechanical (F>2/3) correlated regions of PBFT. (●):
experimental data points [18] plotted on top the re-interpreted numerical data [20], both adapted to our present case of interest as
described in [15]. See [15, 16, 18] for details and information on the error bars. (Numerical data only are shown infigure A1; also see
supplementary videos1 and 3.)

Figure 5.Experimental and numerical fidelity F=F(θ1,E1, θ2,E2) of PBFTwith Li as 3D-plot versus electron scattering energies E1
andE2 of thefirst (SI) and second (SII) scattering process, respectively. The scattering angle isfixed at q q= = 107.5o1 2 . Horizontal
plane divides classical (F<2/3, no teleportation) from the quantummechanical (F>2/3) correlated regions of PBFT.Distance of
lines of altitude is F=0.025. (●): experimental data points [19] plotted on top the re-interpreted numerical data [21], both adapted
to our present case of interest as described in [15]. See [15, 16, 19] for details and information on the error bars. (Numerical data only
are shown infigure A2; also see supplementary videos2 and 4.)
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teleportation in the sense of outperforming classical strategies; seefigures 4 and 5 (also seefigures A1 andA2, and
supplementary videos1–4). In particular, this result holds for states ρ23 with spin correlation parameters
- < < -P1 2 1 323 . Though entangled, these states do not violate theCHSH-Bell inequality [24].
Notwithstanding, they provide results F>2/3 for the PBFTwithfidelity up to F=0.854 and hence, better than
could ever be obtained by classical correlations and local operations.
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Appendix: Numericalfidelity of PBFT forNa and Li

For convenience we also includedfigures and supplementary videos of the numerical fidelity, only. For the
sodium case infigure A1 (supplementary video3) and for lithium infigure A2 (supplementary video4),
respectively.

PBFT for the general case
Wewill now consider the general case in detail where the spin–spin correlation parameters P23=P23(θ1,E1) and
P12=P12(θ2,E2) of the first and second scattering can take on any value inside the allowed range [−1, 1/3]
depending on scattering angle and energy.

In thefirst collision unpolarized atoms and unpolarized electrons are scattered. Aswe have shown [15, 16],
thefinal state after thefirst scattering is given by the densitymatrix

r = + ñ á + - ñ á

+ ñ á + ñ á
+ - ñ á + + ñ á

[( )∣ ∣ ( )∣ ∣

∣ ∣ ∣ ∣
( )∣ ∣ ( )∣ ∣ ] ( )

P P

P P

P P

1

4
1 1

2 2

1 1 , A.1

23 23 23 23 23 23 23

23 23 23 23 23 23

23 23 23 23 23

where particles 2 (ALICEʼs atom) and 3 (BOBʼs electron) arewritten infirst and second position, respectively.
ALICEʼs electrons (particles 1) are assumed to be in a definite spin state

y a b a bñ = ñ + ñ Î∣ ∣ ∣ ( ), with , , A.21 1 1

with the normalization condition

a b+ =∣ ∣ ∣ ∣ ( )1, A.32 2

where the amplitudes are unknown to both, ALICE andBOB.Here, ñ∣ and ñ∣ describes states spin up and spin
down, respectively, with respect to the laboratory z-axis whichmay even be unknown toALICE. The state (A.2)
describes a beam completely polarizedwith respect to a certain direction, say a. (That is, all electrons in yñ∣ 1have
spin upwith respect to a.), andwe canwrite

a b =  + ∣ ⟩ ∣ ⟩ ∣ ⟩ ( ). A.4a 1 1 1

In the following, it is convenient to use a as quantization axis. It is essential in this respect that thematrixρ23
remains invariant under rotations in spin space, that is,ρ23 keeps its form inany rectangular system, the laboratory
system x, y, z as in (A.1)or in the a-systemwith axes ¢ ¢¢a a a, , . Therefore,wecanwrite the initial three-particle
system in the a-representation, simply by substituting ñ   ñ∣ ∣ a and ñ   ñ∣ ∣ a inρ23 for particles 2 and3,
respectively. Thus,we explicitlywrite the initial three particle state before the second scattering as

r =   ñ á  Ä +  ñ á + -  ñ á

+   ñ á  Ä -  ñ á + +  ñ á
+   ñ á  Ä  ñ á +   ñ á  Ä  ñ á

{∣ ∣ [( )∣ ∣ ( )∣ ∣ ]

∣ ∣ [( )∣ ∣ ( )∣ ∣ ]
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ } ( )

P P

P P

P P

1

4
1 1

1 1

2 2 , A.5

in a a a a a a a a

a a a a a a a a

a a a a a a a a a a a a

12 12 3 3 3 3

12 12 3 3 3 3

12 12 3 3 12 12 3 3
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where⊗denotes the direct product. Here and in the following, we abbreviate the correlation parameter of the
first scattering as P=P23 if not causing ambiguities.

Wewill now consider the electron-exchange scattering betweenALICEʼs electrons (particles 1) and the quasi
one-electron atoms (particles 2)described by the scatteringmatrix SII. The total spin S and its componentMs in
the direction of the quantization axis a remain constant, and the scattering amplitudes are independent ofMs.
The collision between particles in the states  ñ  ñ∣ ∣a a1 2 and  ñ  ñ∣ ∣a a1 2 are therefore pure triplet transitions,

  ñ   ñ∣ ⟶ ∣ ( )( )f a, A.6a a
S

a a12
1

12
II

and

  ñ   ñ∣ ⟶ ∣ ( )( )f b. A.6a a
S

a a12
1

12
II

In contrast, the states  ñ  ñ∣ ∣a a1 2 and  ñ  ñ∣ ∣a a1 2 can bewritten as a combination of the triplet ñ∣10 12 and singlet
state ñ∣00 12, respectively,

  ñ = ñ + ñ∣ (∣ ∣ ) ( )c1

2
10 00 , A.6a a 12 12 12

and

  ñ = ñ - ñ∣ (∣ ∣ ) ( )d1

2
10 00 . A.6a a 12 12 12

Figure A2.Numerical fidelity F=F(θ1,E1, θ2,E2) of PBFTwith Li as 3D-plot versus electron scattering energies E1 andE2 of the first
(SI) and second (SII) scattering process, respectively. The scattering angles arefixed at q q= = 107.5o1 2 . Horizontal plane divides
classical (F<2/3 , no teleportation) from the quantummechanical (F>2/3) correlated regions of PBFT.Distance of lines of
altitude isΔF=0.025. Re-interpreted numerical data [21] adapted to our present case of interest as described in [15].

Figure A1.Numerical fidelity F=F(θ1,E1, θ2,E2) of PBFTwithNa as 3D-plot versus electron scattering angles q1 and θ2 of thefirst
(SI) and second (SII) scattering process, respectively. The scattering energies arefixed at = =E E 10 eV1 2 . Horizontal plane divides
classical (F<2/3 , no teleportation) from the quantummechanical (F>2/3) correlated regions of PBFT. Re-interpreted numerical
data [20] adapted to our present case of interest as described in [15].
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Thus, we have the transitions

  ñ ñ + ñ∣ ⟶ ( ∣ ∣ ) ( )( ) ( )f f e
1

2
10 00 , A.6a a

S
12

1
12

0
12

II

and

  ñ ñ - ñ∣ ⟶ ( ∣ ∣ ) ( )( ) ( )f f f
1

2
10 00 . A.6a a

S
12

1
12

0
12

II

Equivalently, we introduce direct and exchange amplitudes [23], f and g, writing the following possibilities
with respect to the contributing electronic spins

 ñ  ñ  ñ  ñ -  ñ  ñ∣ ∣ ⟶ ∣ ∣ ∣ ∣ ( )f g a, A.7a a
S

a a a a1 2 1 2 1 2
II

 ñ  ñ  ñ  ñ -  ñ  ñ∣ ∣ ⟶ ∣ ∣ ∣ ∣ ( )f g b, A.7a a
S

a a a a1 2 1 2 1 2
II

 ñ  ñ -  ñ  ñ∣ ∣ ⟶ ( )∣ ∣ ( )f g c, A.7a a
S

a a1 2 1 2
II

  -  ∣ ⟩ ∣ ⟩ ⟶ ( )∣ ⟩ ∣ ⟩ ( )f g d. A.7a a
S

a a1 2 1 2
II

The term ( f−g) is known as the interference amplitude. Note, that theminus sign is implicitly taking care of the
Pauli-principle. The amplitudes f and g are related to the triplet and singlet scattering amplitudes f (1) and f (0) by
the relations, e.g. [23, 34, 35],

= + = -( ) ( ) ( )( ) ( ) ( ) ( )f f f g f f a
1

2
, and

1

2
, A.81 0 0 1

and the inverse relations

= - = + ( )( ) ( )f f g f f g b, and . A.81 0

From (A.8)we obtain the useful relations

+ = +∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ ) ( )( ) ( )f g f f a
1

2
, A.92 2 1 2 0 2

and

* *+ = -(∣ ∣ ∣ ∣ ) ( )( ) ( )fg f g f f b
1

2
. A.90 2 1 2

Substituting the appropriate relations (6) and (7) into (A.5) and, with the help of relations (8), expressing all
interference amplitudes ( f−g) in terms of triplet amplitudes, we obtain after some rearrangements the (un-
normalized)final state densitymatrix after the second collision as

* *

* *
* *

r =   ñ á  Ä +  ñ á + -  ñ á

+   ñ á  +   ñ á 
Ä -  ñ á + +  ñ á
-   ñ á  +   ñ á 
Ä -  ñ á + +  ñ á

+   ñ á  -   ñ á  Ä  ñ á

+   ñ á  -   ñ á  Ä  ñ á

{(∣ ∣ ∣ ∣ ) [( )∣ ∣ ( )∣ ∣ ]

( ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )
[( )∣ ∣ ( )∣ ∣ ]
( ∣ ∣ ∣ ∣ )
[( )∣ ∣ ( )∣ ∣ ]
( ∣ ∣ ∣ ∣ ) ∣ ∣
( ∣ ∣ ∣ ∣ ) ∣ ∣ } ( )

( )

( ) ( )

( ) ( )

f P P

f g

P P

fg f g

P P

f f f g P

f f f g P

1

4
1 1

1 1

1 1

2

2 . A.10

out a a a a a a a a

a a a a a a a a

a a a a

a a a a a a a a

a a a a

a a a a a a a a a a

a a a a a a a a a a

1 2
12 12 3 3 3 3

2
12 12

2
12 12

3 3 3 3

12 12 12 12

3 3 3 3

1
12 12

1
12 12 3 3

1
12 12

1
12 12 3 3

Normalization and differential cross section
Building the trace, we sumover the diagonal elements of (A.10)which results in

r = + + - + + - + +

= + +

{∣ ∣ [( ) ( )] ( ∣ ∣ ∣ ∣ )[( ) ( )]}

(∣ ∣ ∣ ∣ ∣ ∣ ) ( )

( )

( )

f P P f g P P

f f g

Tr
1

4
1 1 1 1

1

2
. A.11

out
1 2 2 2

1 2 2 2

Applying the identity (9), we remainwith

r s= + =( ∣ ∣ ∣ ∣ ) ( )( ) ( )f fTr
1

4
3 , A.12out

1 2 0 2
12

wherewe introduce the differential cross sectionσ12 of the second scattering process performed byALICE alone.
Thus, wewrite the normalized densitymatrix as
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r
s

r= ( )( ) 1
. A.13n

out
12

out

BOBʼs reduced densitymatrix
In order to compare thefinal state of BOBʼs electron (after having selected the relevant sub-ensemble by
performing the coincidence experiment), we calculate the 2×2 reduced densitymatrix ρ3, defined by the
expression, see[36],

år r r= = á ñ∣ ∣ ( )( ) M M M MTr . A.14n
M M3 1,2 out 1 2 out 1 2

1 2

Thus, we have to sumover the elements of (A.10), diagonal inM1 andM2 (particles 1 and 2 owned byALICE)
and obtain the normalized reduced densitymatrix

r
s

= +  ñ á + -  ñ á

+ + -  ñ á + +  ñ á

{∣ ∣ [( )∣ ∣ ( )∣ ∣ ]

( ∣ ∣ ∣ ∣ )[( )∣ ∣ ( )∣ ∣ ]} ( )

( ) ( )f P P

f g P P

1

4
1 1

1 1 . A.15

n
a a a a

a a a a

3
12

1 2
3 3 3 3

2 2
3 3 3 3

Expressing the direct and exchange amplitudes in terms of the singlet and triplet ones by using (A.9) and
applying (A.12), we obtain

r
s

= +  ñ á + -  ñ á

+ + -  ñ á + +  ñ á

{ ∣ ∣ [( )∣ ∣ ( )∣ ∣ ]

(∣ ∣ ∣ ∣ )[( )∣ ∣ ( )∣ ∣ ]} ( )

( ) ( )

( ) ( )

f P P

f f P P

1

8
2 1 1

1 1 . A.16

n
a a a a

a a a a

3
12

1 2
3 3 3 3

1 2 0 2
3 3 3 3

As can be seen from (A.16) the densitymatrix r( )n
3 is diagonal with respect to particle 3 (BOBʼs electron). This is

due to our chosen coordinate framewithin the a-representation.
Calculating thematrix elements rá ñ∣ ∣( )M Mn

3 3 3 and explicitly re-expressing the correlation parameter P=P23
yields

r
s

s

á  ñ= + + -

= +
-⎛

⎝⎜
⎞
⎠⎟

∣ ∣ [ ∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ )]

∣ ∣ ∣ ∣ ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

f f P f f

P
f f

1

8
3

1

2
1

4
, A.17

a
n

a3
12

1 2 0 2
23

1 2 0 2

23

1 2 0 2

12

wherewe used (A.12) for the differential cross sectionσ12 of the second scattering process. In full analogy to the
first collision process SI, we introduce the correlation parameter

=
-
+

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )
( ) ( )

( ) ( )P
f f

f f3
, A.1812

1 2 0 2

1 2 0 2

which drives the second electron exchange-scattering SII. Thus, we end upwith the diagonalmatrix elements

rá  ñ = +∣ ∣ ( ) ( )( ) P P a
1

2
1 , A.19a

n
a3 12 23

and due to symmetry requirements

rá  ñ = -∣ ∣ ( ) ( )( ) P P b
1

2
1 . A.19a

n
a3 12 23

In explicitmatrix formwewrite

r =
+

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )P P

P P
1

2

1 0
0 1

, A.203
12 23

12 23

which refers to (15) in themain text. Here and in the followingwe suppress the upper index (n) if not causing
ambiguities. Thematrix element (19) gives the possibility offinding an electron in state  ñ∣ a 3 if ameasurement is
performed. Thismatrix element, commonly calledfidelity F, is often used as ameasure of success for the
teleportation process [32]. If ALICE andBOB share a singlet state (P23=−1), and if the second collision is again
pure singlet scattering (P12=−1), we obtain from (A.20)

r =  ñ á∣ ∣ ( ), A.21a a3 3 3

indicating a faithful quantum teleportation. It should be noted that F captures only themean value behaviour of
BOBʼs output state. The use of the fidelity for characterizing quantum teleportation is therefore limited.

Let us now analyse whether other states besides themaximally entangled singlets can be used for quantum
teleportation. Any state with ∣ ∣P 1 323 is separable and can bewritten as a direct product of particles 2 and 3.
It can be prepared byALICE andBOB in a classical way, that is, by agreeing over phone on the local preparation
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of their respective states. Hence, the spin correlations are classical, that is they can be considered as prearranged
byALICE andBOB [15, 16].

Any direct product (entangled) state is useless for teleportation as for such statesmanipulation of particle 2
during the second scattering has no effect onwhat can be predicted on particle 3 .Whereas particles 1 and 2
become entangled, particles 3 are unaffected and keep their state obtained during thefirst collision. One can still
find a certain number of BOBʼs particles in state  ñ∣ a 3 but this is a classical effect based on classical statistics. The
best result for these classicalmixtures is obtained forP23=−1/3 and P12=−1 giving fidelity F=2/3 [32].

Finally, let us consider the spin polarization. Since ρ3 is diagonal in the a-representation, the spin
polarization vector ( )P 3 of BOBʼs selected electrons is directed along a. Itsmagnitude is given by the difference of
the two diagonal elements of (A.20), that is

=∣ ∣ ( )( )P P P . A.223
12 23

Since the spin polarization vector of ALICEʼs initial electron beam is also oriented along a, we canwrite in vector
notation

= ( )( ) ( )P P P P , A.233
12 23

1

which gives (14) in themain text.
The spin polarization vector is necessarily parallel or anti-parallel to ( )P 1 depending on the sign of the

productP12P23. ForP12P23=1, we have =( ) ( )P P3 1 indicating a faithful quantum teleportation.P12P23 can also
be used as ameasure of success.

Wewill now transformback to the xyz-coordinate frame (laboratory frame). Using (A.4)

y a bñ =  ñ = ñ + ñ∣ ∣ ∣ ∣ ( )a, A.24a1 1 1

and

* *b a ñ = ñ - ñ∣ ∣ ∣ ( )b, A.24a 1 1

where  ñ∣ a and  ñ∣ a denote the spin states with respect to direction a, wewrite BOBʼs densitymatrix in the form

r = +  ñá + -  ñá[( )∣ ∣ ( )∣ ∣] ( )P P P P
1

2
1 1 . A.25a a a a3 12 23 12 23

Substituting the relations (24) into (A.25) and expressing the results in explicitmatrix form,we obtain BOBʼs
densitymatrix r3 in the xyz–system

*
*

r
a b ab
a b a b

=
+ -

- -

⎛
⎝⎜

⎞
⎠⎟

(∣ ∣ ∣ ∣ )
(∣ ∣ ∣ ∣ )

( )P P P P

P P P P

1

2

1 2 2

2 2 1
. A.263

12 23
2 2

12 23

12 23 12 23
2 2

The amplitudesα andβ in (A.26) are related to the components of the spin polarization vector ( )P 1 of ALICEʼs
electrons, defined by the relation

y s yá ñ = =∣ ∣ ( )( )p i x y z, , , , A.27i i1 1
1

whereσi denote the relevant Paulimatrices.We obtain

* *ab a b= + ( )( )p a, A.28
x
1

* *ab a b= -( ) ( )( )p i b, A.28
y
1

and

a b= -∣ ∣ ∣ ∣ ( )( )p c. A.28
z
1 2 2

Inserting (28) into (A.26) and parametrizing the densitymatrix ρ3 in terms of the spin polarization vector
components =( )( )p i x y z, , ,i

3 of BOBʼs sub-ensemble of electrons, selected in the coincidence experiment, we
obtain after some rearrangements

r =
+ -

- -

=
+ -

- -

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( )

( ) ( ) (

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

p p ip

p ip p

P P p P P p ip

P P p ip P P p

1

2

1

1

1

2

1 2

2 1
. A.29

z x y

x y z

z x y

x y z

3

3 3 3

3 3 3

12 23
1

12 23
1 1

12 23
1 1

12 23
1

Eventually, we derive expressions for the spin polarization vector ( )P 3 of BOBʼs sub-ensemble of electrons
selected by the coincidencemeasurement; see figure 1.Using the relation
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r s= ( )( )p Tr , A.30
i i
3

3

we obtain the general expression

= ( )( ) ( )P P P P . A.313
12 23

1

The result (A.31) shows that the spin polarization vectors of particles 3 (BOBʼs electrons) and that of particles 1
(ALICEʼs electrons) are always parallel or anti-parallel depending on the sign ofP12P23. In the case where the
scattering angles and energies of both collisions, SI and SII, are chosen in such away that P12=P23=−1, i.e.
pure singlet scattering, we have

= ( )( ) ( )P P , A.323 1

indicating a faithful quantum teleportation.

Fidelity
According to Popescu [32] thefidelity is defined as

y r y= á ñ∣ ∣ ( )F . A.331 3 1

Inserting BOBʼs densitymatrix (A.29) and the initial state amplitudes (A.2) yields

* *a b
a
b=

+ -

+ -

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )( )

( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )F
P P p P P p p

P P p p P P p

1

2
,

1 i

i 1
. A.34

z x y

x y z

23 12
1

23 12
1 1

23 12
1 1

23 12
1

Performingmatrixmultiplicationwith its bra and ket vectors, we obtain

*

*

a a b

ab b

= + + -

+ + + -

[∣ ∣ ( ) ( )

( ) ∣ ∣ ( )] ( )

( ) ( ) ( )

( ) ( ) ( )

F P P p P P p p

P P p p P P p

1

2
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1
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1 1 2
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With the normalization condition (A.3) and using the parametrization (A.28) of the reduced densitymatrix in
terms of the spin polarization vector, we canwrite

* *

* *

a b a b ab

ab a b

= + - + +

+ -

= + + +

[ (∣ ∣ ∣ ∣ ) ( )

( )]

[ ( )] ( )

( ) ( )

( )

( ) ( ) ( )

F P P p P P p

P P p

P P p p p

1

2
1

i

1

2
1 . A.36

z x

y

z x y

2 2
12 23

1
12 23

1

12 23
1

12 23
1 2 1 2 1 2

Thus, we obtain thefidelity as a function of the two correlation parameters P12 andP23, driving thefirst and
second scattering processes, and themagnitude ∣ ∣( )P 1 of the spin polarization vector of ALICEʼs electrons,

= +( ∣ ∣ ) ( )( )F P P P
1

2
1 . A.3712 23

1 2

In the case of a pure state to be teleportedwe have =∣ ∣( )P 11 and thus

= +( ) ( )F P P
1

2
1 . A.3812 23

Formaximally entanglement in both scattering processes, that isP12=P23=−1, we get F=1which yields a
faithful teleportation. In the case where ALICEʼs electrons are originally in amixed state, we have <∣ ∣( )P 11

which always results in a reduction offidelity. Even formaximal entanglement in both scattering processes we
obtain

 = + <( ∣ ∣ ) ( )( )F P
1

2

1

2
1 1. A.391 2
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