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Abstract. Let A be a separable and exact C*-algebra which is a continuous field of C*-
algebras over a connected, compact metrizable space. If at least one of the fibers of A is
quasidiagonal, then so is A. As an application we show that if G is an amenable group
that is a central extension by a countable torsion-free group, then the C*-algebra of G is
quasidiagonal.

1. INTRODUCTION

Quasidiagonal C*-algebras have now been studied for almost forty years.
Quasidiagonality is a finite-dimensional approximation property. In fact, by
a theorem of Voiculescu, quasidiagonal C*-algebras are precisely those C*-
algebras which have good matrix models, in the sense that the relevant
C*-algebraic structure can be seen in a matrix. Some important open prob-
lems in C*-algebras are connected in some way to quasidiagonality or notions
around it. For example, the question of whether nuclearity and quasidiagonal-
ity are equivalent notions for reduced C*-algebras of countable discrete groups
is still open an question.

In [12], Voiculescu proved that quasidiagonality is a homotopy invariant.
His technique can be adapted to prove quasidiagonality for certain continuous
fields of C*-algebras.

Theorem 1.1. Let A be a separable exact C*-algebra. Suppose that A is a
continuous field of C*-algebras over a compact, connected metrizable space X .
If the fiber A(zo) of A is quasidiagonal for some xg € X, then A is also
quasidiagonal.

Following the approach taken by Dadarlat in [4], we use this theorem to
deduce the following result about the quasidiagonality of group C*-algebras:
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Theorem 1.2. Let1 - N — G — H — 1 be a central extension of amenable

second countable locally compact groups. Assume that N is torsion-free and
discrete. If C*(H) is quasidiagonal, then so is C*(Q).

2. QUASIDIAGONALITY AND HOMOTOPY INVARIANCE

Definition 2.1. Let H be a Hilbert space. A subset S C .Z(H) is called a
quasidiagonal set of operators if there is an increasing net (P,), of finite-
rank orthogonal projections on H, with P, — I strongly and such that
lim,, ||PoS — SP,|| = 0 for every S € S. A representation (7, H) of a C*-
algebra A is a called a quasidiagonal representation if w(A) is a quasidiagonal
set of operators. A C*-algebra is called quasidiagonal (QD) if it has a faithful
quasidiagonal representation.

The main characterization of quasidiagonality is contained in the following
theorem of Voiculescu (recall that a representation of a C*-algebra is called
essential if its image does not contain any nonzero compact operator).

Theorem 2.2 ([12, Thm. 1]). Let A be a separable C*-algebra. The following
statements are equivalent:
(i) A is QD.
(i1) Every faithful essential representation of A is quasidiagonal.
(iii) For every e > 0, and every finite subset F C A, there exist a representa-
tion (¢, H) of A and a finite-rank orthogonal projection P € £ (H) such
that, for a € F,

[Pe(a)Pl| = [lall e and |[[[P,p(a)]]] <e.

(iv) There is a sequence (¢n)n of contractive completely positive maps, ¢y, :
A = My, (C), such that, for a,b € A,

lim [|pn (a)|| = flal| and lim[[¢n(ad) = pn(a)pn(b)] = 0.
The following theorem is a confirmation of the topological nature of qua-
sidiagonality:

Theorem 2.3 ([12, Thm. 5]). If A homotopically dominates B, and A is @D,
then B is also QD. In particular, quasidiagonality is an invariant of homotopy
equivalence.

Since the cone CA := Cy([0,1)) ® A of any C*-algebra A is homotopic
equivalent to the zero C*-algebra (which is trivially a QD C*-algebra), the
next corollary follows immediately from Theorem 2.3.

Corollary 2.4. For any separable C*-algebra A, the cone CA of A is QD.

Note that in Corollary 2.4, the C*-algebra A could be quite far from be-
ing quasidiagonal. We can regard C'A as a continuous field of C*-algebras
over [0,1], with fiber A at each x € [0,1) and fiber 0 (a trivial quasidiagonal
C*-algebra) at 1. Since quasidiagonality is a topological notion, this suggests
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the possibility of generalization. Indeed, it turns out that if A is exact and
a continuous field of C*-algebras over a sufficiently nice space (a connected,
compact metrizable space), and at least one fiber of A is quasidiagonal, then
A is necessarily quasidiagonal. This is the result stated in Theorem 1.1.

3. QUASIDIAGONALITY OF CONTINUOUS FIELDS OF C*-ALGEBRAS

We shall make use of the following known characterization of connectedness
for compact metrizable spaces:

Proposition 3.1 ([8, Thm. 5.1]). Let (X,d) be a compact metric space. The
following statements are equivalent:

(i) X is connected.

(ii) For every € > 0 and every pair of points x,y € X there exist n € N and
a finite sequence xy,T1,To,...,T, of elements in X such that Ty = =,
Tn =y and d(xg—1,x) < € for each 1 <k <n.

Lemma 3.2. Let H be a separable Hilbert space and D C £ (H) a separable
C*-subalgebra. Let F C D be a finite subset and T € L (H) a finite-rank
operator such that 0 < T < 1 and ||[T,a]|| < ¢ for every a € F. If D is a
quasidiagonal set of operators, then there is a finite-rank orthogonal projection
P e ZL(H) such that T < P and ||[P,a]|| < ¢ for every a € F.

Proof. Let K denote the range of T. By (the proof of) [3, Prop. 7.2.2], there
is a finite-rank orthogonal projection P such that ||[P, a]|| < ¢ for every a € F
and P§ = ¢ for every £ € K (choose x to be a basis for K in that proof).
Note that PT = T. This implies that TP =T, and multiplying the inequality
0 <T <1 by P on both sides, it follows that T' < P, as desired. (I

Theorem 3.3. Let A and D be C*-subalgebras of £ (H), where H is a sep-
arable Hilbert space. Assume that A is separable, D is a quasidiagonal set of
operators. Let X be a compact connected metrizable space and ro € X. Put

B={feC(X,A): f(xo) € D}.
Then B is QD.

Proof. By Theorem 2.2, it suffices to show that for each finite subset 7 C B
and € > 0, there exist a representation ¢ : B — Z(H,) and a finite-rank
orthogonal projection P € Z(H,,) such that, for f € F,

1Pe(f)PIl = [[fll —e and [[[P, (]l <e.

Let d be a metric on X inducing the topology. Put M := max{||f| : f € F}.
By [1, p.332], there is § > 0, such that for every pair of elements Q,b €
Z(H) with 0 < Q < 1 and ||b]| £ M, the inequality [|[Q,b]]] < 40 implies
1[QY2,0]|| < £/10. We may assume that § < £/10. By uniform continuity,
there is r > 0 such that if d(z,y) < r then ||f(z) — f(y)|| < § for all f € F.
Write F = {fi, fa,..., fn}. For each 1 < j < n, there exists z;o € X such
that ||f;j(z;,0)]| = ||f;]|- By Proposition 3.1, we can find a positive integer m
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such that for each 1 < j < n there is a finite subset {z;0,2j1,...,2;m} C X
such that x;,, = zo and d(zjr—1,2;%) <7 for 1 <k <m.

Choose a finite-rank orthogonal projection Py € .Z(H) such that for every
1 <k <m we have

1Pof (zj6)Poll = |If (zj)ll — €
for f € Fand 1 < j <n. Let ¢; be the representation of B that is given by

i (f) = f(20) © f(2j1) @ @ f@jm):

By the general facts on quasi-central approximate units, for each 1 < j <n
there are positive finite-rank operators

Ph<X;0<X1 < <X, <1

such that X1 X6 = Xjp for 0 <k <m—1and ||[X; f(z;e)]l] <9
for f € F and 0 < k < m. In particular, ||[X;m, f(zo)]|| < ¢ for f € F. By
Lemma 3.2, we can choose each X ,,, to be a finite-rank orthogonal projection.
For each 1 < j < n define a bounded linear operator 7} : H — HmH1 by

T = X;7(J2 & (Xj1— X0 & (Xjm— Xjm—1)"%

Then T7T; = Xj,m, and hence T is a partial isometry (1 <j < n). Moreover,
for each f € F and any 0 < k < m — 1 we have

11X k1 = Xk £ (@5 k0 < X k15 @50+ + 11Xk f(@5,0)]]
+ 2|1 f (x5 511) — f(@s0)l
< 46,

hence,
(X1 — X502, f(@j040)]]| < €/10

for0<k<m-—1.

Fix j € {1,2,...,n} and let y; o := XJ%Q and yj k1 = (Xjrs1 — Xjp)/?
for 0 < k < m — 1. Note that P; := T;T; = (Y5 kY5,0)k,1 € B(’HmH) and that
yj kY = 0if [k —1| > 1, so that the projection P; is tridiagonal. Furthermore,
P; almost commutes with ¢;(F). Indeed, for any f € F we have

1125, @5 (O <3 sup (| f(z5k+1)Y5,6Y50 — YikYi0f (5041) ]

[k—1]<1
<6 sup |[[[f(zjr) yixlll +3 sup | f(zjr) — flzi)l
0<k<m [k—1|<1

< 6c/10+36 < e.

Put P:=P &P, & ---® P, and p := o1 & pa®--- D p,. Then for any
f € F we have

I[P, (Ol = Sup I1Pj, 05 (Il <e.
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Finally, if f = f; € F, then using the fact that X; 0 > Fy, we obtain
[Po(f)P|| = sup ||Peor(f)Pxll
1<k<n

> ([P (f5)F5ll
> || Po f(x5,0)Poll
= | f(zjoll —¢
= [Ifll —e O

Proof of Theorem 1.1. By [2, Thm. A.1], there is a C(X)-linear *-monomor-
phism A — C(X,02). Let Oy C Z(H) be a faithful separable representation.
Therefore A embeds in the C*-algebra

B= {f S C(X, Og) : f(xo) S A(xo)}
Since by the previous theorem B is quasidiagonal, so is A. O

Remark 3.4. The hypothesis of connectedness cannot be removed. An easy
example of this would be to consider a direct sum A; & Ao, where A; is
quasidiagonal and A is not. This is a continuous field over {1,2} with fiber
A(r) 2 Ay, x € {1,2}.

4. APPLICATIONS

As a corollary of Theorem 1.1, we have the following result about the quasi-
diagonality of crossed products by Z.

Theorem 4.1. Let A be a separable, exact C*-algebra. Suppose that A is a
continuous field of C*-algebras over a compact, connected metrizable space X .
If the fiber A(zo) of A is a simple unital AT-algebra for some xog € X, then
A Xo Z is quasidiagonal for every C(X)-linear automorphism a € Aut(A).

Proof. By [13, Cor. 8.6], A x4 Z is a continuous field of C*-algebras over X
with fiber at € X isomorphic to A(x) X4« Z, for some automorphism
a” € Aut(A(z)). By [7, Cor. 6.8] (see also [6, Thm. 2]) the fiber A(zg) Xqz0 Z
is AF-embeddable, hence quasidiagonal. The conclusion now follows from
Theorem 1.1. (]

By varying the hypothesis on the quasidiagonal fiber in the preceding theo-
rem, or by varying the group, several other results about the quasidiagonality
of crossed products could be deduced similarly.

In 1987 Jonathan Rosenberg proved the following result.

Theorem 4.2 ([11, Thm. Al]). Let G be a countable discrete group. If C*(G)
is quasidiagonal, then G is amenable.

It is an open problem to determine whether the converse is true, that is,
whether group C*-algebras of countable amenable groups are necessarily quasi-
diagonal. Not much is known about the class of countable (amenable) groups
that satisfy the converse of Rosenberg’s result. It is known, for example, that
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this class contains all amenable maximally almost periodic groups. Theo-
rem 1.1 allows us to deduce that this class is closed under the formation of
central extensions by torsion-free groups.

Proof of Theorem 1.2. Since N is a torsion-free, countable discrete abelian
group, N is a compact, connected metrizable space. By [5, Thm. 1.2] (see also

[10, Lem. 6.3]), C*(G) is a continuous field of C*-algebras over N. Moreover,
the fiber over the trivial character of N is isomorphic to C*(H ), which is quasi-
diagonal by hypothesis. The conclusion now follows from Theorem 1.1. |

Note added in proof. It was recently established by N. Ozawa, M. Rgrdam
and Y. Sato in [9], that the class of groups that satisfy the converse of Rosen-
berg’s theorem contains all elementary amenable groups.
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