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A B S T R A C T

In this dissertation, we explore the automorphism groups of the ab-initio
generic structures. We establish the simplicity of the automorphism groups of
the ab-initio generic structures which are obtained from a pre-dimension func-
tion with rational coefficients.

First we prove that there are no non-trivial bounded automorphisms in the
automorphism group of collapsed ab-initio generic structures. Using a result of
Lascar, we deduce the simplicity of a new strongly minimal set which was con-
structed in Hrushovski [17]. Then we prove that the automorphism group of an
uncollapsed ab-initio generic structure that fixes every dimension-zero set point-
wise is boundedly simple. In order to obtain the result we use a modification
by Evans of the machinery developed in Tent and Ziegler [39].

We also prove that the automorphism groups of the generalized n-gons con-
structed in Tent [36] are boundedly simple. The result is obtained by modifying
the proofs of Chapter 2. From this, it follows that there are simple groups with a
spherical BN-pair of rank 2 which are non-Moufang and hence not of algebraic
origin.

Finally, we make some observations about the small index property in auto-
morphism groups of ab-initio generic structures. We improve a result of Lascar
and conclude that the automorphism group of the almost strongly minimal gen-
eralized n-gons constructed in Tent [36] have the “almost small index property.”
We also present some questions that we feel are interesting in the subject.
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1
I N T R O D U C T I O N

The main motivation for studying automorphism groups of countable struc-
tures comes from the classical theorem of Engeler, Ryll-Nadrzewski, Svenonius
(see Thm. 2.3.2). In this theorem, with the same perspective as the Klein’s Er-
langer Programm, one can see a connection between a countable ℵ0-categorical
structure and its automorphism group; namely we obtain a full characterization
of a countable ℵ0-categorical structure in purely group-theoretical terms. Later
on, model theorists and group theorists studying permutation groups became
very interested in these implicit features of automorphism groups of structures
(for more information see e.g. [25, 7, 14, 21]).

One standard question that one can study is toward the simplicity structure
of the automorphism group of a countable structure. By the term “simplicity
structure” of an automorphism group, we simply mean to determine its normal
and maximal normal subgroups. One remarkable result in this direction is a
theorem by Lascar in [24] (see Thm.2.3.11). Lascar, first introduces bounded
automorphisms and then proves that if M is a countable saturated structure
which is in the algebraic closure of a ∅-definable strongly minimal set, then
its strong automorphism group modulo the bounded automorphism group is a
simple group. The proof of this result involves certain tools from descriptive set
theory; it is well-known that one can assign a pointwise convergence topology
to the automorphism group of a countable structure and obtain a Polish group
(see e.g., [7]). The Polish topology on the automorphism group allows us to
have access to topological tools and enables us to ask more structural questions
about the automorphism group.

Our main motivation to study automorphism groups was to understand the
simplicity structure of the automorphism group of some structures that were
built by model-theoretic methods.

One useful method in model theory to construct countable structures is via
the Fraïssé-construction method. In this method, one builds a countable homo-
geneous structure (we call it the Fraïssé universal object) from a countable class
of finite structures which has the “joint embedding property” and the “amalga-
mation property”. A countable class of finite structures has the amalgamation
property if for every elements A, B1, B2 of the class and embeddings fi : A → Bi

for i = 1, 2, there exists an element D in the class such that B1 and B2 embed
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2 introduction

in D and the diagram commutes. Fraïssé’s original example was to think of
the class of finite linear orders as a set of approximations to the ordering in
the rational numbers. One nice feature of the Fraïssé-method, in constructing a
countable structure, is that we start to build a structure from a countable class
of finite structures (with the amalgamation property), which is called a Fraïssé
class. This helps us to verify some basic properties of the universal object by un-
derstanding the elements of the class and the amalgamation property (see e.g.
[14]). Many interesting objects have been constructed or reconstructed using
this method. Examples include various kinds of universal graphs, the random
graph and more recently the rational Urysohn space (see e.g., [6]).

The automorphism groups of countable homogeneous structures have been
studied in recent years, and a lot of machinery has been developed in order
to determine their simplicity structure of them. Macpherson and Tent in [26],
proved that the automorphism group of the free-homogeneous structures (ho-
mogeneous structures with the free-amalgamation property), which is transitive
and not equal to the full-symmetric group is a simple group. Later, Tent and
Ziegler, introduced a combinatorial tool in [39] called stationary independence
to verify the simplicity of the automorphism group of some structures. For in-
stance, they proved that the isometry group of the Urysohn space is simple
modulo the normal subgroup of bounded isometries.

Smooth classes are a modified version of Fraïssé classes with a stronger prop-
erty between elements of the class which is called self-sufficiency or closedness
and denoted by “�” (see Def. 2.2.1). Every Fraïssé class is a smooth class when
we choose � as ⊆. Similar to the Fraïssé classes, the key point in a smooth
class is the amalgamation property (see Def. 2.2.3). Having the amalgamation
property for a smooth class (K,�) allows us to construct a countable universal
object called the(K,�)-generic structure (we sometimes denote it by �-generic
when K is clear from the context). Again, the (K,�)-generic structure is the
Fraïssé universal object when we choose � as ⊆. This method has been gen-
eralized to uncountable classes and later on and, Shelah generalized it to ar-
bitrary classes and introduced the notion of abstract elementary classes. Later
Hrushovski modified Fraïssé’s construction of a universal countable structure
in order to obtain stable structures with particular properties. In particular, he
constructed:

1. an ℵ0-categorical stable pseudo-plane;

2. a strongly minimal set with a new geometry which does not interpret any
infinite group;

3. the fusion of two strongly minimal sets in disjoint languages,
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thus obtaining counter-examples to conjectures by Lachlan and Zilber. Zilber
conjectured that every non-locally modular strongly minimal set interprets an
algebraically closed field. In [17], Hrushovski constructs a strongly minimal
set which is not locally modular and does not interpret a field. In this work,
he introduced the key notion of assigning a dimension function to the finite
structure and used it to define a smooth class with the amalgamation property.
His method was taken up by many model theorists to construct a variety of
strange objects.

Let K be the class of all finite L-structures for a finite relational language L.
We assign a pre-dimension function to each element of the class K (see Def.
2.2.11). The “uncollapsed” ab-initio �-generic structure is the �-generic struc-
ture that we build from the class K0 of all finite L-structures with non-negative
pre-dimension (for the precise definition see Def. 2.2.11). The self-sufficiency no-
tion “�” is also defined using the pre-dimension function. It is known that the
theory of an uncollapsed ab-initio �-generic structure is stable; more precisely
the theory of an ab-initio �-generic structure obtained from a pre-dimension
function with rational coefficients is ℵ0-stable and the theory of an uncollapsed
ab-initio �-generic structures obtained from a pre-dimension function with ir-
rational coefficients is stable but not ℵ0-stable (e.g., see [4, 42]).

In [17], Hrushovski, in order to obtain a new strongly minimal set, which we
denote it by Mμ, restricts the class of non-negative pre-dimension structures
to a subclass which is smooth and has the amalgamation property; using a
finite-to-one function on the 0-minimally algebraic sets (see Def. 2.2.29). Then
he proves that the �-generic structure obtained from this restricted class is a
strongly minimal structure. His method of collapsing the Morley rank in a �-
generic structure has been later used by many model-theorists. We refer to the
�-generic structure of the restricted class K

μ
0 of K0 as the “collapsed” ab-initio

�-generic structure.
In Chapter 2, first we present some general background in model theory. We

focus on smooth classes and the ab-initio generic structures. Then we list some
of their properties and some facts about them. Later, we give an overview of the
automorphism groups of countable structures and mention Lascar’s simplicity
result concerning the almost strongly minimal structures.

In Chapter 3, we investigate the simplicity of the automorphism group of
the collapsed and uncollapsed ab-initio generic structures. In the first section,
following Lascar’s approach, we investigate the key step of understanding the
bounded automorphism group in the automorphism group of the collapsed
ab-initio generic structures. We indicate that the collapsing method is not ap-
plicable to the ab-initio generic structures derived from pre-dimensions with
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irrational coefficients. Hence the pre-dimension function that we will consider
has rational coefficients. Let

(
K

μ
0 ,�

)
be the restricted class of (K0,�) using a

μ-function (see Def. 2.2.31). Suppose
(
K

μ
0 ,�

)
has the amalgamation property

and let M be the
(
K

μ
0 ,�

)
-generic structure. The main result in this section is

the following theorem.

Theorem. There is no non-trivial bounded automorphism in the automorphism group
of the

(
K

μ
0 ,�

)
-generic structure M.

We present the proof only for binary relational languages. The result can be
modified for any finite relational languages with n-ary relations with n ≥ 2.
We indicate that in the above theorem, the coefficients of the pre-dimension
function are important. For example in a binary relational language, when the
coefficients of the pre-dimension function are equal, it is known that the pre-
geometry (see Def. 2.1.23) that one obtains is locally modular. Locally-modular
strongly minimal structures always have non-trivial bounded automorphisms
(see Thm. 2.3.14). Hence there are collapsed ab-initio generic structures with
bounded automorphisms. We will discuss these cases in the section as well.

The proof of the theorem above is based on the combinatorial behavior of the
pre-dimension and the dimension functions in the

(
K

μ
0 ,�

)
-generic structure M.

Note that, in general, the collapsed ab-initio �-generic structures are not nec-
essarily strongly minimal, hence we can not apply Lascar’s simplicity theorem
(Thm. 2.3.11) directly. However, the collapsed �-generic structure constructed
in [17], is strongly minimal. Hence, from Lascar’s theorem (Thm. 2.3.11), we
deduce the following.

Corollary. The automorphism group of Mμ is a simple group.

As we mentioned before, the collapsed ab-initio �-generic structures are not
necessarily strongly minimal. Hence, we can not answer the simplicity struc-
ture of the collapsed ab-initio generic structures fully just by Lascar’s theorem.
However, we can apply the same method as described in Section 2 of Chapter
3, to answer the question in full generality.

In the second section of Chapter 3, we prove the following theorem.

Theorem. The automorphism group of uncollapsed ab-initio generic structures with
rational coefficients which fixes pointwise every dimension-zero set is boundedly simple.

As we mentioned before, Tent and Ziegler introduced stationary indepen-
dence in [39] in order to provide a combinatorial tool to prove the simplicity
of certain countable structures. In the uncollpased ab-initio generic structures it
was not possible to work in the same setting as they considered in [39]. To obtain
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the result, we follow a modification by Evans in [9] of the machinery developed
in [39]. First, we indicate an observation about the ab-initio generic structures.
Then, we define the notion of stationary independence relation for a countable
class of subsets of a structure, as Evans does (see Def. 3.2.9). From the pre-
dimension function we can define a dimension function d (−) (see Def. 2.2.18).
Then, we prove that the independence relation |�

d, which is derived from the
dimension function, is indeed a stationary independence on the countable class
Y := {gcl (A) : A ⊂ M, A is finite} where gcl (A) = {x ∈ M : d (xA) = d (A)}
for A ⊆ M (see Thm. 3.2.21). Then we modify the definition of bounded au-
tomorphisms to gcl-bounded automorphisms (see Def. 3.2.23). The main step
in this section is to prove that every non gcl-bounded automorphism moves
almost maximally for the |�

d-independence relation on the family Y (see Lem.
3.2.25 and Cor. 3.2.28). The observation that we noted before will be used in this
part. Then we prove that there is no non-trivial gcl-bounded automorphism in
the automorphism group of the uncollapsed generic structure. This proof is
a modification of the proof of the theorem which we already mentioned for
the bounded automophisms in the automorphism group of collapsed ab-initio
generic structures. Finally, using a theorem by Evans, we obtain the result that
the automorphism group of uncollapsed generic structures which fixes point-
wise every dimension-zero set is boundedly simple (see Cor. 3.2.32).

The initial and main motivation for this dissertation was to investigate the
simplicity of the automorphism group of the very homogeneous generalized n-
gons constructed in [36]. It was unknown whether there is a simple group with
a spherical BN-pair of rank 2 which is not of algebraic origin. The automor-
phism group of the very generalized n-gons constructed in [36] have a BN-pair
and they were good candidates to verify this question. Indeed, here, we show
that the automorphism group of the very generalized n-gons are simple groups.
In [2], Baldwin adapted Hrushovski’s generic structure to construct an almost
strongly minimal non-Desarguesian projective plane. Later in [8] Debonis and
Nesin, generalized Baldwin’s method to construct 2ℵ0 -many almost strongly
minimal generalized n-gons which do not interpret a group for odd n. In [36]
with a similar approach Tent constructed very homogeneous generalized n-gons
for all n with some stronger properties. She constructed generalized n-gons for
n ≥ 3 such that the automorphism group acts transitively on the set of ordered
ordinary (n + 1)-gons. The transitivity result implies that the automorphism
group has a BN-pair. As a result of using Hrushovski construction, no infi-
nite group is interpretable in this class of constructions (see Lemma 2.2.35 and
Lemma 2.1.42).
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In Chapter 4, first we give a brief background of the question in the context
of the theory of buildings and present some facts about generalized polygons
and BN-pairs. Then, we prove that in both cases of the very homogeneous gen-
eralized n-gons constructed in [36], the automorphism group is a simple group.
The proofs are similar to the proofs in Chapter 3. Although the combinatorial
behavior in the generic structure is very similar in both cases, the of full class
and the sub-class (with finite elements with non-negative pre-dimension), the
proofs needed to be modified.

In the second section of Chapter 4 we prove the simplicity of the automor-
phism group of the ℵ0-stable generalized n-gons constructed in [36]. To obtain
the result, we follow the same approach as we did in the proof of the simplicity
of the automorphism group of the uncollapsed generic structure. In the third
section of Chapter 4 we prove the simplicity of the automorphism group of the
almost strongly minimal generalized n-gons. As we mentioned before, to obtain
a finite Morley rank generic structure by the Hrushovski method, one needs to
consider a finite-to-one function μ for 0-minimally algebraic pairs in order to
restrict the class of finite structures. We give a more straightforward proof of
simplicity in this case which is more algebraic and which requires only little
background in model theory. The main result that we need is that there is no
non-trivial bounded automorphism in the automorphism group of the almost
strongly minimal generalized n-gons. Then, following Lascar’s approach and
applying Theorem 2.3.11, we obtain the simplicity result. This result will be
published in Journal of Algebra [11].

However, the conclusion that we get at the end is the following.

Corollary. There are simple groups with a spherical BN-pair of rank 2 which are non-
Moufang and hence not of algebraic origin.

In the last chapter we mention some results about the small index property
and also present some questions in the subject. As we mentioned before, the
automorphism group of a countable structure with the pointwise convergence
topology is a Polish group. One interesting aspect of the topological approach
is towards some theorems that are called “reconstruction theorems”. The main
idea is to reconstruct the structure from the information that one can obtain
from the group theoretical properties of the automorphism group (including
the properties that one obtains from the Polish topology). One key notion that
leads to a reconstruction theorem is the small index property. We present some
observations about the small index property and then slightly improve Lascar’s
result about the countable saturated almost strongly minimal structures. Then
we conclude that the almost strongly minimal very homogeneous generic struc-
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ture constructed in [36] has “almost” small index property. Overall, we inves-
tigated a very special case of smooth classes in this dissertation, namely those
that are obtained from a pre-dimension function. Finally, we ask some questions
about further possible generalizations of the simplicity results that we obtained
here.



2
P R E L I M I N A R I E S

2.1 background

2.1.1 Notation and preliminaries

We assume basic knowledge of model theory as we mainly follow [38, 27] and
basic knowledge of set theory that can be found in [20, 23]. We will use standard
notation of model theory that can be found in [38, 27].

Sets are denoted by capital letter mainly such as A, B, C, X, Y. Single elements
mainly by a, b, c, · · · , x, y, z. Models by M, N and types by p, q, · · · . Moreover
the set of natural numbers is N = {0, 1, 2, · · · }. For a set X, let P (X) denote
the power set of X. Tuples are always finite.

Let L be a countable possibly many-sorted language. T is always a com-
plete theory in L. A set X ⊆ Mn is definable over A (or A-definable) if X =

{x̄ ∈ Mn : M |= φ (x̄, ā)} for some φ ∈ L and ā ∈ A. We denote φ ∈ LA to in-
dicate that φ is a formula in language L with parameters from A. Let φ ∈ LM,
then denote by φ (M) the set of all realization of φ in M. We say that X is type-
definable over A if X is the intersection of an arbitrary family of A-definable set.
If M |= T, A ⊆ M and ā ∈ M let tp (ā/A) be the complete type of ā over A. A
type p (x̄) is isolated by a formula φ (x̄) ∈ LA if any realization of φ also realizes
p. We denote by Sn(M) the collection of all complete n-types.

We proceed to define Leq in the following way. Let EQM be the collection of
all L-equivalence formulas E (x̄1, x̄2) on Mn. For each formula E (x̄1, x̄2) ∈ EQM

there is a sort SE in Leq. In particular also a sort for S= in Leq. For E be an
L-equivalence relation as above, Leq also contains a new n-ary function symbol
fE whose domain sort is (S=)

n and whose image sort is SE. Note that Leq is also
countable (since L is countable). Now enlarge M to an Leq-structure; interpreta-
tion of the sort S= in Meq will be the set M itself, and relations and functions
symbols in Leq will be interpreted in the usual way in L. The interpretation of
sort SE in Meq will be the set {ā/E : ā ∈ Mn} and the interpretation of the func-
tion fE will be the function which takes ā to ā/E. More details about Leq can be
found in [38, 27, 30].

8



2.1 background 9

Suppose M is an L-structure. Let Aut (M) be the set of all automorphisms
of M. If A ⊆ M, one defines the subgroup of A-automorphisms of Aut (M) as
follows:

AutA(M) = { f ∈ Aut(M) : f (a) = a for all a ∈ A} .

Let M |= T and A ⊆ M. The definable closure of A, denoted by dcl (A), is the
set of all elements of M which are fixed under A-automorphisms of M. The
algebraic closure of A, denoted by acl (A) is the set of all elements of M which
have finite orbit under A-automorphisms of M. By acleq (−) and dcleq(−) we
mean algebraic closure and definable closure, respectively, in Meq.

Definition 2.1.1. Let T be a complete theory. We say T has weak elimination of
imaginaries if for every e ∈ Meq there is ā ∈ acleq (e) ∩ M such that e ∈ dcleq (ā).

Definition 2.1.2. Let ā, b̄ ∈ M be n-tuples in Mn. We say that ā and b̄ have the
same strong type over A, denoted by stp(ā/A) = stp(b̄/A), if for every finite
A-definable equivalence relation E on Mn, E

(
ā, b̄

)
holds.

We will use the following fact about strong types.

Lemma 2.1.3. ([30]) The following are equivalent:

1. stp(a/A) = stp(b/A).

2. tp(a/acleq (A)) = tp(b/acleq (A)).

Corollary 2.1.4. Suppose T admits weak elimination of imaginaries and M |= T.
Let A ⊂ M and ā ∈ M. Then tp (ā/acl (A)) = stp (ā/A).

Proof. By the definition of weak elimination of imaginaries if x ∈
acleq (A) \acl (A) then there is c̄ ∈ M such that x ∈ dcleq (c̄) and c̄ ∈ acleq (x).
Note that acl (A) = acleq (A) ∩ M so c̄ ∈ acl (A). Now the result follows from
x ∈ dcleq (c̄).

2.1.1.1 Saturated Models

Definition 2.1.5. Let κ be an infinite cardinal. We say M |= T is κ-saturated if
p ∈ SM

n (A) is realized in M for all A ⊆ M with |A| < κ. We say that M is
saturated if it is |M|-saturated.

Fact 2.1.6. ([27]) Countable saturated models are unique up to isomorphism.

Fact 2.1.7. ([27]) Let M be saturated. Let A ⊂ M with |A| < |M| and b ∈ M. The
following are equivalent:

1. b has finite orbit under automorphisms of M fixing A pointwise.
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2. tpM (b/A) has finitely many realizations (then we say tha type of b over A is
algebraic).

There are many different rank notions in model theory in order to study
the complexity of definable sets and types (e.g., see [32]). Here we are only
concerned with Morley rank which is defined as follows.

Definition 2.1.8. Let M be an L-structure and φ(x̄) is an LM-formula. We define
inductively the Morley rank of φ, RMM (φ (x̄)) in M as follows:

1. RMM (φ (x̄)) ≥ 0 if and only if φ (M) is nonempty,

2. if α is a limit ordinal, then RMM (φ (x̄)) ≥ α if and only if RMM (φ (x̄)) ≥
β for all β < α,

3. for any ordinal α, RMM (φ (x̄)) ≥ α + 1 if and only if there are LM-
formulas ψ1 (x̄) , ψ2 (x̄) , · · · such that ψ1 (M) , ψ2 (M) , · · · is an infinite
family of pairwise disjoint subsets of φ (M) and RMM (ψi) ≥ α for all
i ∈ ω.

If RMM (φ) ≥ α but RMM (ψi) � α + 1, then RMM (φ) = α. If RMM (ψi) ≥ α

for all ordinal α, then RMM (φ) = ∞. If RMM (φ) = α then Morley degree of φ,
denoted by dMM (φ) is the greatest k such that there are mutually contradictory
formulas φ1 (x̄) , · · · , φk (x̄) each implying φ (x̄) and each with Morley rank α. If
p ∈ Sn (A), then RMM (p) = inf

{
RMM (φ) : φ ∈ p

}
. If RMM (p) is an ordinal,

then
dMM (p) = inf

{
dMM (φ) : φ ∈ p, RMM (φ) = RMM (p)

}
.

Fact 2.1.9. Suppose M and N are ℵ0-saturated models of T and N is an elementary
extension of M. If φ ∈ LM, then RMM (φ) = RMN (φ).

Fact 2.1.9 allows us to define Morley rank of φ in such way that it does not
depend on which model contains the parameters occurring in φ.

Definition 2.1.10. A formula φ is strongly minimal if RM (φ) = dM (φ) = 1. We
say that a theory T is strongly minimal if the formula v = v is strongly minimal.

Example 2.1.11. Classical examples of strongly minimal theories are the theory
of algebraically closed fields of some fixed characteristic and the theory of a
vector space over some fixed skew field both when considered in suitable lan-
guages.
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2.1.1.2 Stable Theories

Stable theories were the first dividing line in the classification of first order the-
ories which was introduced by Shelah; he proved that unstable theories have
the largest possible number of non-isomorphic models in each uncountable car-
dinal (see e.g. [35]).

Definition 2.1.12. Let T be a complete theory in a countable language, and let
κ be an infinite cardinal. We say T is κ-stable if whenever M |= T and A ⊆ M
and |A| = κ, then

∣∣SM
n (A)

∣∣ = κ for all n. We say that T is stable if T is κ-stable
for some infinite cardinal κ.

Fact 2.1.13. ([38, 27])

• T is κ-stable if and only if
∣∣SM

1 (A)
∣∣ ≤ κ for all |A| ≤ κ.

• If T is ℵ0-stable, then T is κ-stable for all κ.

Fact 2.1.14. ([30]) Let T be a stable theory. Then either

1. T is superstable; or

2. for any κ ≥ ℵ0, T is κ-stable if and only if κ = κℵ0 .

Fact 2.1.15. Strongly minimal theories are ℵ0-stable.

One important notion in model theory that was introduced by Shelah is the
notion of dividing and forking (see [35]).

Definition 2.1.16. A formula φ
(

x̄, b̄
)

divides over A if there is some k < ω

and an infinite sequence
〈
b̄i : i < ω

〉
of realizations of tp (b/A) such that{

φ
(

x̄, b̄i
)

: i < ω
}

is k-inconsistent. A partial type p (x̄) divides over A if there
is a formula φ (x̄) implied by p (x̄) such that φ (x̄) divides over A. A par-
tial type p (x̄) forks over A if there are formulas φ1 (x̄) , · · · , φn (x̄) such that
p (x̄) |= φ1 (x̄) ∨ · · · ∨ φn (x̄) and each φi (x̄) divides over A.

Now we can define the following notion of independence

Definition 2.1.17. A set A is forking-independent from C over B, denoted by
A |�B

C, if tp (ā/B, C) does not fork over B for all ā ∈ A.

Theorem 2.1.18. ([27, 30])
Suppose T is stable. Then the forking-independence in T has the following properties.

1. Invariance: if A |�B
C and (A′, B′, C′) ≡ (A, B, C), then A′ |�B′ C′.
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2. Extension: for any a, A and B ⊇ A there is a′ such that tp (a/A) = tp (a′/A)

and a′ |�A
B.

3. Symmetry: if A |�B
C then C |�B

A.

4. Finite Character: A |�C
B if and only if A0 |�C

B for all A0 ⊂<ω A.

5. Local Character: for B and every finite A0 there is a subset A ⊂ B such that
|A| ≤ |T| and A0 |�A

B.

6. Transitivity: suppose D ⊆ C ⊆ B. Then B |�D
A if and only if B |�C

A and
C |�D

A.

7. Uniqueness: there is a unique non-forking extension over an algebraically closed
set.

Fact 2.1.19. The properties 1-7 in Theorem 2.1.18 characterize stable theories and fork-
ing with an abstract treatment (see [12]).

2.1.1.3 Morley categoricity theorem

Definition 2.1.20. Let κ be an infinite cardinal. A theory T is κ-categorical if any
two models of T of cardinality κ are isomorphic.

The following theorem of Morley is often considered the most inspiring theo-
rem in the modern model theory.

Theorem 2.1.21. (Morley [28]) Let T be a countable theory. If T is λ-categorical for
some uncountable cardinal λ then T is κ-categorical for all uncountable cardinal κ.

Fact 2.1.22. Strongly minimal theories are ℵ1-categorical.

2.1.2 Pre-geometries

The following notion of pre-geometries is motivated by combinatorial proper-
ties of the algebraic closure in strongly minimal theories. The same concept also
appears in the theory of matroids (see e.g. [43]).

Definition 2.1.23. Let X be a set and cl : P (X) → P (X) be an operator. We call
(X, cl) a pre-geometry if the following properties hold:

1. A ⊂ cl(A) and cl (cl (A)) = cl (A) for all A ⊆ X;

2. cl (A) ⊆ cl (B) for A ⊆ B ⊆ X;

3. (finite character) if x ∈ cl (A) then x ∈ cl (A0) for some finite A0 ⊆ A;
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4. (exchange property) if A ⊂ X and x, y ∈ X such that x ∈ cl (A ∪ {y}),
then x ∈ cl (A) or y ∈ cl (A ∪ {x}).

The pre-geometry (X, cl) is said to be geometry if cl (∅) = ∅ and cl ({x}) =
{x} for all x ∈ X. A subset A ⊆ X is called cl-closed if cl (A) = A.

Definition 2.1.24. 1. Suppose (X, cl) is a pre-geometry, we say A ⊆ X is
independent if a /∈ cl (A\ {a}) for all a ∈ A. If Y ⊆ X, we say that B is a
basis for Y if B ⊆ Y is independent and Y ⊆ cl (B).

2. ([27] Lemma 8.1.3) Let (X, cl) be a pre-geometry and Y ⊆ X. If B1, B2 ⊆ Y
are basis for Y then |B1| = |B2|. We call |Bi| the dimension of Y and denote
it by dimcl (Y).

3. (Localization) Suppose (X, cl) is a pre-geometry. If A ⊆ X we also consider
the localization of cl (−) at A which is defined as clA (B) = cl (A ∪ B) for
all B ⊆ X.

Remark 2.1.25. ([27] Lemma 8.1.3)

1. If (X, cl) is a pre-geometry, then (X, clA) is also a pre-geometry for all
A ⊆ X.

2. If (X, cl) is a pre-geometry, then we can associate a natural geometry to it.
Namely let X0 = X\cl (∅) and consider the equivalence relation ∼ on X0

given by a ∼ b if and only if cl ({a}) = cl ({b}). Let X̂ be X0/ ∼. Define
ĉl (A/ ∼) = {b/ ∼: b ∈ cl (A)}. Then

(
X̂, ĉl

)
is a geometry.

The following definition helps us to classify some combinatorial aspects of
pre-geometries in different structures.

Definition 2.1.26. Let (X, cl) be a pre-geometry.

• We say that (X, cl) is locally-finite if |cl (A)| < ω for all finite A ⊆ X.

• We say that (X, cl) is trivial (or degenerated) if cl (A) =
⋃

a∈A cl ({a}) for all
A ⊆ X.

• We say that (X, cl) is modular if for any finite-dimensional cl-closed sets
A, B ⊆ X, dimcl (A ∪ B) = dimcl (A) + dimcl (B)− dimcl (A ∩ B) holds.

• We say that (X, cl) is locally-modular if
(
X, cl{a}

)
is modular for some a ∈

X.

Remark 2.1.27. Trivial pre-geometries are modular.

The following lemma gives us a technical tool to work with in pre-geometries.
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Lemma 2.1.28. Let (X, cl) be a pre-geometry. Then the following are equivalent.

1. (X, cl) is modular.

2. If A ⊆ X is closed and nonempty, b ∈ X and x ∈ cl (A, b) then there is a ∈ A
such that x ∈ cl (a, b).

3. If A, B ⊆ X is closed and nonempty and x ∈ cl (A, B) then there is a ∈ A and
b ∈ B such that x ∈ cl (a, b).

4. If A, B, C ⊆ M are cl-closed sets and A ⊆ B, then cl (A ∪ C) ∩ B =

cl (A ∪ (B ∩ C)).

Proof. See Lemma 8.1.13 in [27] for the proof of the equivalence of (1), (2) and
(3). Here we first prove that (2) and (3) imply (4). Let x ∈ cl (A ∪ C) ∩ B, then,
by (2), x ∈ cl (a, C) for some a ∈ A and since A ⊆ B, x ∈ cl (a, B). Hence using
the exchange property x ∈ cl (a, B ∩ C) and x ∈ cl (A, B ∩ C). Now for the other
direction suppose that x ∈ cl (A, B ∩ C) then x ∈ cl (a, d) for some a ∈ A and
d ∈ B ∩ C. Since A ⊆ B, it follows that x ∈ B and x ∈ cl (A, C).

We claim that (4) implies (1). Suppose A, B ⊆ X are cl-closed sets. We use
induction on dimcl (A). If dimcl (A) = 0 then we are done. Suppose dimcl (A) =

dimcl (A0) + 1 and by induction
dimcl (A0 ∪ B) = dimcl (A0) + dimcl (B)− dimcl (A0 ∩ B).
By (4) we know that cl (A0 ∪ B) ∩ A = cl (A0 ∪ (B ∩ A)). If cl (A ∪ B) =

cl (A0 ∪ B) then we are done using the induction step. If cl (A ∪ B) �=
cl (A0 ∪ B), then dimcl (A ∪ B) = dimcl (A0 ∪ B) + 1. It follows dimcl (A ∪ B) =

dimcl (A0 ∪ B) + 1 = (dimcl (A0) + 1) + dimcl (B) − dimcl (A0 ∩ B). Using
cl (A0 ∪ B) ∩ A = cl (A0 ∪ (B ∩ A)) and the exchange property it follows
that dimcl (A0 ∩ B) = dimcl (A ∩ B). Hence dimcl (A ∪ B) = dimcl (A) + 1 +

dimcl (B)− dimcl (A ∩ B).

Example 2.1.29. Here are some standard examples of pre-geometries.

1. Pure sets.

2. acl(−) is a pre-geometry in strongly minimal structures.

a) As we mentioned in Example 2.1.11, algebraically closed fields and
vector spaces are classical examples of strongly minimal theories. In
both examples algebraic closure and linear closure (linear span) are
pre-geometries.

b) Algebraically closed fields are the only known naturally arising ex-
ample of non-locally modular ([27] 8.1.12) strongly minimal sets.
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Theorem 2.1.30. Suppose M is strongly minimal, non-trivial, locally modular, then
there is an infinite group definable in Meq.

Zilber conjectured that every non-locally modular strongly minimal set in-
terprets an algebraically closed field (this is called Zilber’s trichotomy conjec-
ture). This conjecture has been refuted by Hrushovski in [17]. He constructed a
new strongly minimal set with a new geometry which does not interpret any
infinite group (hence in particular no field). We will discuss this method in
Subsection 2.2.1.1. Later, Hrushovski and Zilber introduced a new framework
called Zarisiki geometries, in which the Zilber’s trichotomy conjecture holds
and which prevents Hrushovski’s combinatorial objects to be constructed (see
e.g., [18]).

Another combinatorial notion that helps us to understand the algebraic clo-
sure in a theory (or in a model) is the following notion of n-ampleness.

Definition 2.1.31. Let T be a complete stable theory. Then T is called n-ample
if, possibly after adding parameters, there exist tuples ā0, · · · , ān such that

1. acl (ā0, · · · , ār) ∩ acl (ā0, · · · , ār−1, ār+1) = acl (ā0, · · · , ār−1) where 0 ≤ r ≤
n − 1.

2. ār+1 |� ār
ā0, · · · , ār−1 where 0 ≤ r ≤ n − 1.

3. ā � |� ā0.

Fact 2.1.32. ([31]) If T is n-ample then T is m-ample for all m ≤ n.

Example 2.1.33.

1. Fields are n-ample for all n (see e.g., [31]).

2. Recently Ould-Houcine and Tent in [29] showed that free groups are n-
ample for all n. However, it is not known whether one can interpret a
field inside a free group.

Definition 2.1.34. Let T be a complete theory.

• T is CM-trivial if T is not 2-ample.

• T is one-based if T is not 1-ample.

Remark 2.1.35. If a theory T is one-based then by Fact 2.1.32, T is CM-trivial.

Fact 2.1.36. ([27] Thm. 8.2.14) Suppose M is strongly minimal. Then Th (M) is one-
based if and only if “acl” is locally modular.



16 preliminaries

Fact 2.1.37. (Lem. 13 in [17]) The structure Mμ constructed in [17] is CM-trivial but
not one-based.

Definition 2.1.38. Suppose (X, cl) is a pre-geometry and dimcl (−) is the dimen-
sion function that is derived from cl (−). Then, using dimcl (−), one can define
the following closure operator gcl (−) in X: suppose A ⊂ X then

gcl (A) := {x ∈ X : dimcl ({x} ∪ A) = dimcl (A)} .
For A, B ⊆ X, define dimcl (A/B) = dimcl (A ∪ B)− dimcl (B). For simplicity

we denote AB for A ∪ B.

Remark 2.1.39. The dimcl (−) is integer valued and dimcl (A) ≤ |A| for all A,
hence gcl (−) is a pre-geometry.

Proof. It is enough to check the exchange property. Suppose a ∈
gcl (bA) \gcl (A) then dimcl (a/Ab) = 0 and dimcl (a/A) = 1. Moreover,
by our assumptions dimcl (b/A) > 0. Then dimcl (bA) = dimcl (aA). Hence
dimcl (Aba) = dimcl (Aa) and dimcl (b/Aa) = 0. Hence b ∈ gcl (Aa).

Remark 2.1.40. Suppose d (−) is a dimension function such that the dimension
of single elements lie in {0, 1, e ∈ N\ {0, 1}}. Then gcld (−) is not necessarily a
pre-geometry. To see this, it is enough to find elements a, b and subset A ⊂ X
such that d (a/bA) = 0, d (a/A) = e and d (b/A) = 1.

Definition 2.1.41. Let (M, cl) be a pre-geometry and n ∈ N. We call M to
be n-flat if whenever E = {Ei : i ∈ P ({1, · · · , n})} is a family of finite di-
mensional closed subsets of M and s ranges over the subsets of E, then

∑s∈E (−1)|s| dimcl (Es) ≤ 0. We call M flat if it is n-flat for all n ∈ N.

Lemma 2.1.42. Let M be a saturated strongly minimal set whose geometry in 3-flat.
Then M does not interpret an infinite group.

Proof. The proof that we present here is the same proof as the proof of Lemma
14 in [17]. Suppose G is an infinite group in M of dimension g. Let a1, a2, a3

be generic elements (elements with the maximal dimension) in G. Let Ei =

cl
(
aj : j �= i

)
for i = 1, 2, 3, 4 and let E4 = cl

(
a−1

1 a2, a−1
1 a3

)
. Then dimcl (E∅) =

3g and dimcl (Ei) = 2g, dimcl
(
Eij

)
= g. Moreover E1 ∩ E2 ∩ E3 = cl (∅). Then

3-flatness implies that g = 0.

2.2 smooth classes

setting Let L = {Ri(x̄) : ln(x̄) = ri, i ≤ n, } be a finite relational language. Let
A be an L-structure. We denote Ri(A) for the set

{
ā : RA

i (ā)
}

. By notation
A ⊆<ω X we mean that A is a finite subset of X. We denote AB for A ∪ B.
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There is a very useful method to construct a countable homogeneous structure
from a countable class of finite structures, which is called Fraïssé construction
method. It is known that if the empty set is included in the Fraïssé class (a
countable class of finite structures with AP as it was described in the introduc-
tion) then there is a unique countable universal object which is called Fraïssé
universal object (see e.g., Thm. 1.5 in [14]). Smooth classes are a modified ver-
sion of Fraïssé classes with stronger notion of embedding between elements of
the class.

Definition 2.2.1. A class (K,�) of finite L-structures, together with a relation
� on K × K, is called smooth if:

1. � is reflexive;

2. � is transitive;

3. B � C implies B ⊆ C;

4. if A � C, B ⊆ C and A ⊂ B then A � B.

When A � B, then we say that A is �-closed (or self-sufficient) in B. Moreover
if M is an infinite L-structure, we define A � M if A � B for all finite subsets
A ⊆ B ⊂ M.

The following definition is a modified version of Fraïssé’s universal object for
a Fraïssé class.

Definition 2.2.2. Let (K,�) be a smooth class. A countable structure M is called
(K,�)-generic structure if the following condition holds.

1. If A′ � M and A′ � B ∈ K then there exists B′ � M such that B ∼=A′ B′

(this property is called �-richness)

2. M is a union of 〈Ai : i ∈ ω〉 such that Ai � Ai+1.

3. Suppose B and C are finite �-closed subset of M and let α be an isomor-
phism of B and C. Then α extends to an automorphism of M.

Definition 2.2.3. Suppose (K,�) is a smooth class and A, B, C ∈ K such that
A � B and A � C. The class (K,�) has the amalgamation property (AP) if there
exists D ∈ K such that B � D and C � D. The free-amalgam of B and C over
A is the structure with domain B ∪ C, whose only relations are those from B
and C. We denote it by B ⊗A C. For simplicity, we also denote B ⊗ C for B ⊗A C
when A = ∅. A smooth class (K,�) has the free-amalgamation property if for
A, B, C ∈ K if A � B and A � C implies B ⊗A C ∈ K. Moreover suppose
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A, B ∈ K. Then the class (K,�) has the joint embedding property (JEP) if there
exists C ∈ K such that A � C and B � C.

Theorem 2.2.4. (Fraïssé-Hrushovski[22, 17]) Suppose a smooth class (K,�) has AP
and JEP. Then there is a unique (K,�)-generic structure.

Remark 2.2.5. Note that if we consider � as ⊆, then (K,�) will be a Fraïssé class
(see e.g. [21]) and the (K,�)-generic structure is the Fraïssé’s universal object.

Remark 2.2.6. Unlike Fraïssé’s original construction, the theory of a (K,�)-
generic structure is not necessarily ℵ0-categorical.

Definition 2.2.7. Suppose M is a (K,�)-generic structure and A is a finite sub-
set of M. Let cl (A) be the smallest �-closed subset B of M that includes A. We
call cl (A), the �-closure of A. Note that it follows from Definition 2.2.1 part (4)
that the �-closure of a finite set is well-defined and finite.

Definition 2.2.8. A pair (A, B) of finite subsets of M is called a minimal pair if
A ⊂ B, A � B and A � B′ for all A ⊆ B′ ⊂ B.

Remark 2.2.9. We can extend the �-closedness notion to infinite subsets of M;
define X � M if for all minimal pairs (A, B), if A ⊂ X then B ⊂ X. Similarly,
we can extend the �-closure to an infinite subsets of M; for Y ⊂ M define
cl (Y) :=

⋂
Y⊂Y′�M Y′.

Remark 2.2.10. Kueker and Laskowski in [22], give a characterization of when
a generic structure is saturated (see Thm. 2.5 in and Cor. 2.6 [22]). They give
examples when the generic structure is not saturated.

2.2.1 Ab-initio structures

In [17], Hrushovski introduced the key notion of assigning a dimension function
to the finite structure and used it to defined a self-sufficiency “�”. Recall that
in our setting 2.2, the language L is a finite relational language.

Definition 2.2.11. Let K be the class of all finite L-structures up to isomorphism.
Let w̄ = 〈wi : i ≤ n〉 be a tuple of length n (where n is the number of relations in
L) such that wi ∈ R≥0 for i ≤ n. Then we can define the following pre-dimension
function associated with w̄ for elements of K:

δ (A) = |A| − ∑
i

wi |Ri(A)| .

For A, B ∈ K define δ (A/B) = δ (A ∪ B)− δ (B). We define the following self-
sufficiency notion for A, B ∈ K and A ⊆ B:

A �δ B if δ
(

B′/A
) ≥ 0 for all A ⊆ B′ ⊆ B.
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Then define Kδ,0 be a subclass of K such that Kδ,0 =

{A ∈ K : δ(A′) ≥ 0 for all A′ ⊆ A}.

Remark 2.2.12. If wi’s in the above definition are rational numbers then we can
find the smallest integers κ and λ̄ such λi

κ = wi for i ≤ n. Then define

δ′ (A) = κ |A| − ∑
i

λi |Ri(A)| .

It is easy to see that Kδ,0 = Kδ′,0 and A �δ B if and only if A �δ′ B.

notation For simplicity, since in each subsection we fix a δ (−) function, we
drop the subscripts δ and denote by K0 the class Kδ,0 and similarly denote
by “�” the “�δ”. When we intend to emphasize that the coefficients of the
pre-dimension function δ (−) are κ and λ̄ we denote it by δκ,λ̄ (−).

Now we can rephrase Definition 2.2.8 using the pre-dimension function as fol-
lows.

Definition 2.2.13. A pair (A, B) of finite subsets of M is called minimal-pair if
A ⊂ B, δ (B/A) < 0 and δ (B′/A) ≥ 0 for all A ⊆ B′ ⊂ B.

Remark 2.2.14. Similar to Remark 2.2.9, using Definition 2.2.13, we can extend
the notion of �-closedness to infinite subsets of M.

Theorem 2.2.15. ([4] Lemma 4.2) The class (K0,�) is a smooth class and has the
free-amalgamation property.

Then the following holds.

Corollary 2.2.16. There is up to isomorphism a unique countable (K0,�)-generic
structure .

Let (K0,�) be a smooth class as is defined in Definition 2.2.11 using a pre-
dimension function δ (−). In Theorem 2.2.15 and Corollary 2.2.16 we have seen
that the class (K0,�) is a smooth class with the amalgamation property and
that the �-generic structure exists. We call the class (K0,�) and the (K0,�)-
generic structure the uncollapsed ab-initio class and the uncollapsed ab-initio �-
generic structure, respectively.

Remark 2.2.17. The uncollapsed ab-initio �-generic structure obtained from a
pre-dimension function with different rational coefficients is saturated (see Prop.
2.5 [42] or Thm. 2.28 in [4]). In [19], Ikeda give an example of ab-initio �-generic
which is not saturated. Moreover, Baldwin and Shelah showed in [3] that the un-
collapsed ab-initio �-generic structure obtained from a pre-dimension function
with irrational coefficients is not saturated.
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Definition 2.2.18. Let δ (−) be a pre-dimension. Let M be the (K0,�)-generic
structure. Define the following dimension function:

dδ
M(A) := inf

{
δ(A′) : A ⊆ A′ ⊂<ω M

}
.

For simplicity we drop superscript and subscript when the context is clear. If the
weights of δ (i.e. the wi’s in Def. 2.2.11) are rational numbers, then we can use
“min” instead of “inf”. If X is an infinite subset of M, then we define d (X) =

sup {d (X0) : X0 ⊆<ω X}, where “sup” may also be replaced by “max” if the
weights are rational numbers. Denote d (A/B) for d (AB)−d (B) if A, B ⊂<ω M
and for infinite B let d (A/B) := inf {d (A/B′) : B′ ⊂<ω B}. Again, we may use
“min” in place of “inf” if the weights are rational numbers.

The following fact helps us to calculate d (−) of some finite set inside in the
�-generic structure just by calculating pre-dimensions in a finite �-closed set
that contains it.

Fact 2.2.19. Let A ⊆ B � M. Then
d (A) = min {δ (A′) : A ⊆ A′ ⊆ B} .

Proof. By the definition of a �-closed set, δ(C/B) ≥ 0 for all C ⊇ B. The result
follows from Definition 2.2.18.

Fact 2.2.20. The dimension function d (−) satisfies the following properties:

1. d (AB) + d (A ∩ B) ≤ d (A) + d (B) ;

2. if A ⊆ B ⊂ M, then d (A) ≤ d (B).

Proof. For (1), without loss of generality suppose A and B are �-closed. Then
A ∩ B is also �-closed and it is easy to see that δ (AB) � δ (A) + δ (B) −
δ (A ∩ B). The result follows from Definition 2.2.18. (2) is also immediate from
Definition 2.2.18.

Similar to Definition 2.1.38, we can define the following closure operator in
M,

Definition 2.2.21. Define a closure-operator derived from d (−) as follows: for a
finite set A, let gcl (A) := {x ∈ M : d (x/A) = 0}. We borrowed the notation
gcl (−) from [42] which stands for geometric closure.

Remark 2.2.22. It is easy to see that gcl (−) satisfies the following properties:

1. A ⊆ gcl (A), for A ⊂ M;

2. gcl (gcl (A)) = gcl (A);
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3. gcl (A) ⊆ gcl (B), for A ⊆ B.

Then the following holds.

Corollary 2.2.23. gcl (−) is a closure operator.

Fact 2.2.24. ([42]) For a finite set X ⊂ M;

d (gcl (X)) = d (X) = d (cl (X)) = δ(cl (X)).

Remark 2.2.25. By Remark 2.1.39, if d (A) < |A| for all A ⊂ M then the closure
operator gcl (−) is a pre-geometry. If it is not the case then it can be shown that
it won’t not be a pre-geometry.

Remark 2.2.26. Having the �-generic structure, as we have seen in Definition
2.2.7, we can consider the �-closure. It is easy to show that in the ab-initio �-
generic structures cl (−) ⊆ gcl (−). Moreover, in the ab-initio case cl (−) has
the finite closure property but gcl (−) is not necessarily finite.

Lemma 2.2.27. ([42]) Suppose M is the uncollapsed ab-initio �-generic structure then
for A ⊆ M

cl (A) = acl (A) .

Proof. It is easy to see that for any finite set X ⊂ M, if an automorphism fixes
X pointwise then it will fix cl (X) setwise. Let a ∈ M is an element not in cl (X)

using the �-richness and the free-amalgamation property one can find infinitely
many copies of the same type of a over cl (X). Hence a /∈ acl (X).

Remark 2.2.28. ([42] Lemma 3.2) For all finite A, A1, A2 ⊂ M and B ⊆ M:

1. d (A/B) ≥ 0;

2. B ⊆ B′ ⊆ M implies d (A/B) ≥ d (A/B′);

3. d (A/B)) = d (cl (A) /B) = d (A/cl (B)) = d (cl (A) /cl (B));

4. d (A1 A2/B) = d (A1/A2B) + d (A2/B).

2.2.1.1 Collapsed ab-initio generic structures

As we mentioned in the introduction, in order to obtain a strongly minimal
structure Hrushovski restricts the uncollapsed ab-initio class to a smaller class,
using a finite-to-one function over the following pairs of elements.



22 preliminaries

Definition 2.2.29. Let A and B be two disjoint finite sets. B is called 0-algebraic
over A if δ (B/A) = 0 and δ (B′/A) > 0 for all proper subset ∅ �= B′ ⊂ B. B is
called 0-minimally algebraic over A if there is no proper subset A′ of A such that
B is 0-algebraic over A′. A pair (A, B) is called 0-algebraic pair if B is a 0-algebraic
over A and we define a 0-minimally algebraic pair similarly.

Remark 2.2.30. ([17]) If B is 0-algebraic over A, then there is a unique A′

subset of A such that B is 0-minimally algebraic over A′. Namely, A′ =

{a ∈ A : |R(a, B)| ≥ 1}.

Definition 2.2.31. Consider Λ ⊂ K0 × K0 such that (A, B) ∈ Λ if B is 0-
algebraically minimal over A and A �= ∅. Define a function μ : Λ → N such
that:

1. μ is finite-to-one;

2. μ (A, B) ≥ δ(A).

Let K
μ
0 ⊂ K0 such that A ∈ K

μ
0 if for A′ ⊂ A and B′ 0-algebraically minimal

over A′, the number of isomorphic copies of B′ over A′ in A is less or equal to
μ (A′, B′).

Hrushovski, in order to construct Mμ considers a 3-ary relation with is sym-
metric. In section 3.1.3 we give more details about his construction. Then, he
proves the following in his setting.

Theorem 2.2.32. ([17]) The class
(
K

μ
0 ,�

)
has the amalgamation property and the

theory of the
(
K

μ
0 ,�

)
-generic structure is strongly minimal.

Theorem 2.2.33. ([17]) If the
(
K

μ
0 ,�

)
has the amalgamation property, then we can

construct the
(
K

μ
0 ,�

)
-generic structure. If the weights of the δ-function are rational

numbers, then the
(
K

μ
0 ,�

)
-generic structure has finite Morley rank. Further, the Mor-

ley rank of the
(
K

μ
0 ,�

)
-generic structure is the coefficient κ of the pre-dimension func-

tion δκ,λ̄.

Suppose that the class (K0,�) is an uncollapsed ab-initio class and assume
that μ is a finite-to-one function as defined in Definition 2.2.31. The restricted
class (K

μ
0 ,�) is called a collapsed ab-initio class. If

(
K

μ
0 ,�

)
has AP then the(

K
μ
0 ,�

)
-generic structure is called a collapsed ab-initio �-generic structure. As

we will see in Theorem 2.2.33, the �-generic structure has finite Morley rank.
This explains the terminology.

Remark 2.2.34. In Remark 2.2.17, we mentioned that the uncollapsed ab-initio
�-generic structure obtained from a pre-dimension function with rational coef-
ficients is saturated. The same result holds for the collapsed �-generic structure.
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Note that “collapsing” with the μ function is just applicable for an ab-initio �-
generic structure which is obtained from a pre-dimension function with rational
coefficients.

In his original construction Hrushovski proves the following lemma. This
implies that the

(
K

μ
0 ,�

)
-generic structure is not locally modular and no infinite

group is interpretable.

Lemma 2.2.35. ([17] Lemma 13 and Lemma 15) Let M be the
(
K

μ
0 ,�

)
-generic struc-

ture. Then:

1. the geometry of M is flat and

2. Th (M) is CM-trivial.

Theorem 2.2.36. Suppose
(
K

μ
0 ,�

)
has the amalgamation property. Then in the(

K
μ
0 ,�

)
-generic structure:

gcl (−) = acl (−)

holds.

Proof. Let A ⊆ M. First we want show that gcl (A) ⊆ acl(A). Let a ∈ gcl (A) \A
and A′ = cl (aA). It is clear that A � A′ and d (A′/A) = 0. Then there is
B ⊂ A′ such that a ∈ B and B is 0-minimally algebraic over A0 ⊂ A′. There are
two possibilities for A0: first assume A0 ⊂ A. Then, since we bound the number
of different copies of B over A0 by μ (B, A0), a ∈ acl(A). Else Ac

0 = A0\A
is nonempty but then one can see inductively that the elements of Ac

0 are 0-
minimally algebraic over some smaller sets. We conclude that Ac

0 ⊂ acl (A).
Hence gcl (A) ⊆ acl(A).

Now we want to show that acl(A) ⊆ gcl (A). If e /∈ gcl (A) then d (e/A) > 0.
Let E = cl (eA) and E′ = E ∩ gcl (A). It is clear that e ∈ E\E′ and e is not
0-minimally algebraic over any subset of E′ and gcl (A). Then, by the amalga-
mation property, there are infinitely many isomorphic copies of e over E′ and
hence e /∈ acl (A).

2.2.1.2 Weak elimination of imaginaries in the generic structures

In his paper, Hrushovski mentions that flatness can be defined in structures
with finite Morley rank and indicates that if a structure is flat then it essentially
admits elimination of imaginaries. The following theorem and corollary are a pre-
cise version of what we will use in our proofs.

Theorem 2.2.37. ([4] Prop. 5.3) If T is stable and for every M |= T, any elementary
extension of N of M, every n and every ā ∈ Nn, there is a unique minimal algebraically
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closed B ⊆ N such that an automorphism α of M preserves p = tp (ā/M) if and only
if α fixes B setwise, then T = Th (M) admits weak elimination of imaginaries.

Corollary 2.2.38. ([4] Prop. 5.4) Let T be the theory of the an ab-initio generic model.
Then for every N |= T and every n and every ā ∈ Nn, there is a unique minimal �-
closed B ⊂ N such that an automorphism α of N preserves p = tp (ā/N) if and only if
α fixes B setwise. Hence, by Theorem 2.2.37, T admits weak elimination of imaginaries.

2.3 the automorphism group of countable structures

One natural object that has been studied in the the recent years is the automor-
phism group of a countable structure. Automorphism groups of structures can
be studied from different perspectives (see e.g. [25]). One can study them in
the terms of general group theory and permutation group theory. Also, since
there is a natural topology on the automorphism group of a countable structure,
one can study them in topological group theory terms. One direction of studies
about the automorphism group of a countable structure is to understand how
much information about the model theory of the structure one can obtain from
knowing the group structure of the automorphism group. Many results have
been shown in recent years and a lot of machinery has been developed in de-
scriptive set theory and Ramsey theory in order to study such questions. Most
of these results are about countable homogeneous structures (see e.g., [21]).

The following theorem was the first theorem studying the automorphism
group of first-order structures. The interesting feature of this theorem is that
it uses a purely group theoretical language. It is remarkable that no topologi-
cal aspects of the structure is needed. In order to state the result we need the
following definition.

Definition 2.3.1. A permutation group G of an infinite set Ω is called oligomor-
phic if for every natural number n, G has only finitely many orbits on Ωn.

Theorem 2.3.2. (Ryll-Nardzeswki, Engeler, Svenonius see e.g. [7, 25]) Let M be a
countable infinite structure. Then the followings are equivalent:

1. a countable first order structure M is ℵ0-categorical;

2. Aut (M) acts oligomorphically (see Def. 2.3.1) on M;

3. the number of n-types are finite for all n ∈ N;

4. every n-type is isolated for for all n ∈ N.
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Example 2.3.3. The Fraïssé universal objects are homogeneous and ℵ0-
categorical. They are a large class of typical examples that fit in the above set-
ting.

2.3.1 The automorphism group of a countable structure as a Polish group

A separable completely metrizable topological space is called a Polish space. A
topological group for which the topology is Polish is called a Polish group. In this
section we mainly follow [7]. There is a natural topology defined on the sym-
metric group of a countable set Ω; namely the pointwise convergence topology.
This topology makes Sym (Ω) into a topological group. Basis of the open sets
are

{
g ∈ Sym (Ω) : g (ā) = b̄

}
where ā and b̄ are tuples of distinct elements of

the same length. In the similar way we can define a topology on the automor-
phism group of a countable L-structure M.

Corollary 2.3.4. Automorphism group of first order countable structures are Polish.

The following proposition is the main property that connects closed sub-
groups of Sym (Ω) and countable first order structures.

Proposition 2.3.5. Let Ω be a countable set. A subgroup of G of Sym(Ω) is closed if
and only if G = Aut (M) for some first order structure M on Ω.

2.3.2 Lascar’s simplicity result

Suppose M is an L-structure. For A ⊆ M, the subgroup of the A-strong auto-
morphisms is:

AutfA (M) = { f ∈ AutA (M) : stp (m̄/A) = stp ( f (m̄) /A) for all m̄ ∈ M} .
If A is the empty set, then Autf∅ (M) becomes the group of all strong auto-

morphisms of M, and we denote it simply by Autf (M). It is clear that if X ⊂ M
and X is algebraically closed in Meq, then AutfX (M) = AutX (M).

Fact 2.3.6. Autf(M) is a normal subgroup of Aut(M).

Definition 2.3.7. An automorphism β ∈ Aut (M) is called bounded if there exists
a finite set A ⊂ M such that β(m) ∈ acl (mA) for all m ∈ M. In this case we say
that β is bounded over A. Let Bdd (M) be the set of all bounded automorphisms
of M.

Remark 2.3.8. Note that if the automorphism β is bounded over a finite set A,
then it is bounded over all B ⊇ A. This simply follows from the definition of
bounded automorphisms.



26 preliminaries

Remark 2.3.9. In general Bdd (M) might not be a subgroup of Aut (M). If acl (−)

has the exchange property, then it is a pre-geometry. Then Bdd(M) is a normal
subgroup of Aut (M).

Example 2.3.10. There are non-trivial bounded automorphisms in locally-
modular strongly minimal theories (e.g. infinite dimensional vector spaces). See
Lemma 2.3.14.

To present Lascar’s simplicity result, suppose that M is a countable structure
in a countable language and there exists a strongly minimal formula D (v),
without parameters, such that M is in the algebraic closure of D (M).

Theorem 2.3.11. (Lascar [24]) The group Autf (M) / (Bdd (M) ∩ Autf (M)) is sim-
ple.

Remark 2.3.12. Suppose M is a strongly minimal structure. As we noted in Exam-
ple 2.1.29, acl (−) is a pre-geometry and there will be a notion of a dimension
derived from acl (−). Let Dim denotes the dimension in the strongly minimal
structures. Suppose β ∈ Aut (M) is a bounded automorphism then there exists
n ∈ N such that for any set X ⊆<ω M, Dim (g (X) /X) ≤ n. This property is
equivalent to Definition 2.3.7 in strongly minimal sets. Bounded automorphisms
were originally defined in this way [24].

Remark 2.3.13. Lascar also proves that there are no non-trivial bounded auto-
morphisms in the automorphism group of a saturated algebraically closed field
of characteristic zero ([24] Thm. 15).

Lemma 2.3.14. If M is locally modular, then there exist non-trivial automorphisms of
M which are strong and bounded.

Proof. This proof can be found in [24] and because of its frequent-use we recall
it here. Without loss of generality we can assume M is modular; we can name
non-algebraic points as the constants and add them to the language. Suppose B
is a base for M. One chooses a finite subset B0 of B with cardinality n. Let σ be
a non-trivial permutation of B0, and suppose B1 = B\B0. It is known that there
exists an α ∈ Autf (M) which it extends σ and fixes acl (B1). We claim that α is
a bounded automorphism. Suppose X is a algebraically closed subset of M. Let
Y = acl (B0 ∪ X) ∩ acl (B1). Then the equivalent definition of modularity (see
Definition 2.1.26), with A := acl (B0), B := acl (B0 ∪ X) and C := acl (B1) gives
us:

acl (B0 ∪ Y) = acl (B0 ∪ X) ∩ acl (B0 ∪ B1) .

However acl (B0 ∪ B1) = M, and thus acl (B0 ∪ Y) = acl (B0 ∪ X). As α fixes B0

(setwise) and Y (pointwise), acl (B0 ∪ Y) = acl (B0 ∪ X) = acl (B0 ∪ α (X)) holds.
This shows that Dim (α (X) /X) < Dim(B0) = n which completes the proof.
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In this chapter, we explore the simplicity structure of the automorphism group
of the ab-initio generic structures in both collapsed and uncollapsed cases. In
the first section, following Lascar’s approach, we investigate the key step of un-
derstanding the bounded automorphism group in the automorphism group of
the collapsed ab-initio generic structures. We conclude that the automorphism
group of Mμ constructed in [17] is a simple group. In the second section, we
prove that the automorphism groups of the uncollapsed ab-initio generic struc-
tures with rational coefficients which fix every dimension zero set pointwise are
boundedly simple.

3.1 automorphism group of the collapsed ab-initio generic
structures

In this section, we want to investigate the simplicity of the automorphism group
of the collapsed ab-initio generic structures (recall Def. 2.2.1.1). This leads us
to investigate the bounded automorphism group. In Theorem 2.3.11, we men-
tioned one simplicity result by Lascar for the automorphism group of the al-
most strongly minimal structures. Lascar, in order to obtain the result defines
bounded automorphisms (see Def. 2.3.7) and then he proves that the bounded
automorphism group intersected with the strong automorphism group is a
maximal normal subgroup of the automorphism group. Following Lascar’s ap-
proach, here first we investigate the bounded automorphisms and indeed we
prove that there is no non-trivial bounded automorphisms in the automorphism
group of the ab-initio collapsed �-generic structures (except some trivial cases
see e.g. Sec. 3.1.2). Note that the collapsed ab-initio �-generic structures are not
necessarily strongly minimal, hence we can not apply Theorem 2.3.11 directly.
However, the �-generic structure constructed in [17], is indeed strongly min-
imal. Hence by Theorem 2.3.11, we deduce that the automorphism group of
Mμ is a simple group. Finally, at the end of this section, we will investigate the
question of simplicity in the different cases of the collapsed ab-initio generics.

When the coefficients of the predimention function δ in Definition 2.2.11 are
irrational, then there will be no 0-algebraic pairs (see Def. 2.2.29). In this case,

27
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we are only able to approximate a 0-algebraic set over a finite set (for more in-
formation see [4]). Hence no collapsing, using a μ-function (see Def. 2.2.31), is
possible. Throughout this section, we investigate the collapsed ab-initio generic
structures with rational coefficients. Moreover, we mainly deal with binary rela-
tions and present the proofs for the binary case. The arguments can be modified
for n-ary relations. In Subsection 3.1.3, in order to show that there is not much
difference between binary and n-ary relations and also to show that the com-
binatorial structure of the proofs does not depend on the type of geometry
(see Def. 2.1.23), we consider the collapsed case of 3-ary relation that has been
studied in [17]. Recall that as we mentioned in Chapter 1, the structure in [17]
is an example of a CM-trivial but not one-based strongly minimal set (hence
non-locally modular) which does not interpret a group.

3.1.1 Bounded automorphisms in the binary case

We assume L consists of a binary relation R which is irreflexive and symmetric.
An L-structure can simply be considered as a graph without loops. The pre-
dimension function (see Def. 2.2.11) that we consider in this subsection for an
L-structure A, is of the following form:

δ(A) = κ|A| − λ|R (A) |,
where κ, λ ∈ N, gcd (κ, λ) = 1 and κ > λ > 0. For the case κ ≤ λ, there will be
non-trivial bounded automorphisms and we will discuss it in Subsection 3.1.2.
Let the class K0 = {finite L-structures A : δ(A′) ≥ 0 for all A′ ⊆ A}. Define the
self-sufficiency “�” as it is defined in Definition 2.2.11. Let μ be a finite-to-one
function over 0-minimally algebraic pairs as it is defined in Def. 2.2.31. Using the
μ-function, we consider the restricted class Kμ ⊂ K (see Def. 2.2.11). Suppose(
K

μ
0 ,�

)
has the amalgamation property and let M denote the

(
K

μ
0 ,�

)
-generic

structure. Here is the main theorem in this section

Theorem 3.1.1. There is no non-trivial bounded automorphism in the automorphism
group of the

(
K

μ
0 ,�

)
-generic structure M.

In order to prove the theorem above, we first present some definitions and
technical lemmas.

The following definition is a generalization of Definition 2.2.29.

Definition 3.1.2. Let A and B be two disjoint finite sets and ν ∈ N. B is called
ν-algebraic over A if δ (B/A) = ν and δ (B′/A) > ν for all proper non-empty
subsets B′ ⊂ B. B is called ν-minimally algebraic over A, if there is no proper
subset A′ of A such that B is ν-algebraic over A′.
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Lemma 3.1.3. The following holds.

1. δ(AB) ≤ δ(A) + δ(B)− δ(A ∩ B)− λ · |R (A\B; B\A)| .

2. Suppose A, B are disjoint then δ(A/B) = δ(A)− λ · |R(A; B)|.

3. Suppose (A; B) is a minimal pair (see Def. 2.2.8) then δ(B/A′) ≤ δ(B/A) < 0
for all A ⊆ A′ ⊂ B.

4. Suppose B is a ν-algebraic set over A, then B is a connected graph.

Proof. (1) and (2) follow from definition of δ (−). (3) follows immediately from
Definition 2.2.8. (4) also follows from Definition 3.1.2 and cases (1) and (2).

Lemma 3.1.4. Suppose A is a finite �-closed set and D is 0-minimally algebraic over
A0 ⊂ A. If D ∩ A �= ∅, then D ⊂ A.

Proof. Since D is 0-algebraic over A, δ(D′A) > δ(DA) = δ(A) for any proper
non-empty subset D′ of D. Then this implies

δ(DA)− δ(D′A) = δ(D/D′A) < 0.

Let D0 := D ∩ A. By our assumption D0 �= ∅ and if D0 �= D, then
δ((D\D0)/A) < 0 which contradicts the fact that A is �-closed. Hence D0 = D
and the result follows.

Lemma 3.1.5. Let A be a finite �-closed set and suppose D1, D2 are two distinct
ν-minimally algebraic sets over A such that AD1 or AD2 is a �-closed set. Then
D1 ∩ D2 = ∅.

Proof. From Lemma 3.1.3, for D1, D2 and A we have

δ (D1D2/A) ≤ δ (D1/A) + δ (D2/A)− δ ((D1 ∩ D2) /A) .

Without loss of generality suppose AD1 is a �-closed set, then δ (D1D2/A) ≥
δ (D1/A). Then by ν-minimality, we deduce that D1 ∩ D2 = ∅.

Lemma 3.1.6. Suppose A ⊂ M is a finite set such that |A| ≥ ⌊
κ
λ

⌋
. Then there are

infinitely many isomorphism types of 0-algebraic sets over A.

Proof. For any i > 2, let Ci = {c1, · · · , ci} be a cycle of length i (i.e. Ci |=∧
1≤j<i R

(
cj, cj+1

) ∧ R (ci, c1)). It is easy to see that δ (Ci) = i · (κ − λ). Let
A0 ⊆ A such that |A0| = s where s =

⌊
κ
λ

⌋
if

⌊
κ
λ

⌋ �= κ
λ ; otherwise

s =
⌊

κ
λ

⌋ − 1. Enumerate A0 = {a1, · · · , as}. Now let i = m · λ and consider
e := m · (κ − λ) where m · λ > 2. We claim that we can distribute e many edges
between elements of Ci and A0 such that e = |R (Ci; A0)| and A0 � Ci A0 and
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δ (Ci/A0) = 0 and for all proper subsets ∅ �= C ⊂ Ci, we have δ (C/A0) > 0

(i.e. A0Ci |=
[∧

1≤j≤i

[∧
j∗≤l≤(j+sj)

∗ R(cj, al)

]]
; where ν∗ ≡ ν (mod s) such that

ν∗ ∈ {1, · · · , s} and
⌊

κ−λ
λ

⌋ ≤ sj ≤
⌊

κ−λ
λ

⌋
+ 1 ≤ ⌊

κ
λ

⌋
). It is clear that Ci and Cj are

not isomorphic when i �= j. Hence Ci’s are infinitely many isomorphism types
of 0-minimally algebraic sets over A0 for i = m · λ > 2.

Corollary 3.1.7. Let A0 ⊂ A and A be a finite �-closed set in M. Suppose |A0| ≥
⌊

κ
λ

⌋
.

Then there is a 0-minimally algebraic set D ⊂ M over A0 such that D ∩ A = ∅ and
D ∪ A ∈ K

μ
0 .

Proof. Since by our assumption, A is a �-closed set, one can see cl (A0) ⊂ A.
By Lemma 3.1.6, there are infinitely many isomorphism types of 0-minimally
algebraic sets over A0. Set A is finite and �-closed. By Lemma 3.1.5 and Lemma
3.1.4, 0-algebraic sets have empty intersection and if a 0-algebraic set over A0

intersects with A, then it contained in A, so there is a 0-minimally algebraic set
D over A, which is not contained in A and D ∩ A = ∅ hence D ∪ A ∈ K

μ
0 .

Note that for the class K0, Corollary 3.1.7 is immediate (follows from the
free-amalgamation property see Thm. 2.2.15).

Now, we start proving that there is no non-trivial bounded automorphism in
M. Here are some lemmas that we need in the proof.

Lemma 3.1.8. Suppose β �= idM is a bounded automorphism and A is a �-closed
subset of M such that β (m) ∈ acl (mA) for all m ∈ M. Let b ∈ M such that A �
Ab � M and d (b/A) = κ, then b is a fixed-point of β.

Proof. Note that by Remark 3.2.24, we can assume |A| ≥ κ. Suppose b is not a
fixed-point. By Definition 2.3.7, β (b) ∈ acl (bA) and by Lemma 2.2.24

d (acl (β (b) bA)) = δ (cl (bA)) = δ(bA) = δ(A) + κ.

Let B := cl (Abβ (A) β (b)). Since by our assumption β is a bounded automor-
phism, d (Aβ (A)) = d (A) and δ(B) = d (B) = δ(A) + κ. Let B0 := B\A. Since
δ(B/A) = δ(B0/A) = δ(B0) − λ · |R(B0; A)| hence δ(B0) − λ · |R(B0; A)| = κ.
Now let C := B ∪ D ∈ K

μ
0 be an L-structure such that D ∩ B = ∅, D is a

0-minimally algebraic set over Ab and |R(b; D)| = 1; existence of such a D is
guaranteed by Corollary 3.1.7. Since B � C holds, by �-richness of M we can
find an isomorphic copy of C over B inside M which is �-closed. One can see
that:

• D ⊂ acl (B);

• D � cl (A), D � acl (A) since d (D/A) = δ (D/A) = λ;
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• b /∈ cl (DA) and d (D/A) = λ, so d (b/DA) = κ − λ.

Since β (b) �= b holds, by Lemma 3.1.4 β [D] ∩ D = ∅ and hence
δ (B0/Dβ [D] A) = δ(B0) − λ · |R (B0; Dβ [D] A)| = δ (B0) − λ · |R (B0; A)| −
λ · |R(B0; Dβ [D])| ≤ κ − 2λ. But this is a contradiction since d (β (D) DA) =

d (DA) = d (A) + λ and d (b/DA) = d (b/β (D) DA) = κ − λ. So b is a fixes
point of β.

Lemma 3.1.9. Let β and A be similar to the assumptions of Lemma 3.1.8. Suppose
c ∈ M such that d (c/A) ≥ λ. Then c is a fixed-point of β.

Proof. There are two possibilities for d (c/A):
Case 1: d (c/A) < κ. Let C := cl (cA). Consider D := C ∪ {b} ∈ K

μ
0 such

that b is a new element and R (c, b) holds in D. Then δ(A) < δ(C) < δ (D) =

δ (Cb). By the �-richness of M there is an isomorphic copy of D over C in M
which is �-closed. Then d (D/A) = d (bC/A) = κ − λ + d (C/A) ≥ κ and it
follows that d (b/A) = δ (b/A) = κ. By Lemma 3.1.8 we already know that
b is a fixed point of β. If c is not a fixed-point of β, then β (c) /∈ C and since
|R (b; cβ (c) A)| ≥ 2 so d (b/Cβ (c)) ≤ δ (b/Cβ (c)) ≤ κ − 2λ which contradicts
the fact that d (b/Cβ (c)) = d (b/C) = κ − λ. So c is a fixed point of β.

Case 2: d (c/A) = κ. Then Ac is �-closed and the result follows from Lemma
3.1.8.

Now we present the proof of Theorem 3.1.1.

Proof of Theorem. 3.1.1. Let β be a non-trivial bounded automorphism and let A
be a �-closed set such that β (m) ∈ acl (mA) for all m ∈ M.

Note that by Lemma 3.1.9, every b ∈ M with d (b/A) ≥ λ, is a fixed-point
of β. First we prove that acl (A) is fixed pointwise. Suppose d ∈ acl (A). Let
D := cl (dA) and s :=

⌊
λ

κ−λ

⌋
+ 1. Consider an L-structure E := D ∪ {e1, · · · , es}

such that the ei’s are new elements and

E |= ∧
1≤j<s

R
(
ej, ej+1

) ∧ R (d, e1) .

It is clear that E ∈ K
μ
0 and D � E . Moreover δ (e1/D) = δ

(
ej+1/DEj

)
=

κ − λ where Ej =
{

e1, · · · , ej
}

for 0 ≤ j ≤ s. By the �-richness of M, we
can find an isomorphic copy of E inside M over D which is �-closed. Since
d (es/D) = d (es/A) ≥ λ, by Lemma 3.1.9, es is a fixed-point of β. Similar
to the proof of Lemma 3.1.9, if es−1 �= β (es−1), then d (es/DEs−1β (es−1)) ≤
δ(es/DEs−1β (es−1)) < δ (es/DEs−1) which is a contradiction. So es−1 is a fixed
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point. Inductively we can prove that all elements of E\D are fixed pointwise by
β. A similar argument proves that β (d) = d. So every d ∈ acl (A) is a fixed-point
of β.

Now let c ∈ M such that d (c/A) > 0 and d (c/A) < λ. Similar to the
previous case let D = cl (cA). Consider E = D ∪ {e1, · · · , es} such that E |=∧

1≤j<s R
(
ej, ej+1

) ∧ R (d, e1) where s =
⌊

λ−d(cA)
κ−λ

⌋
+ 1. With the same argument

as above we can embed E over D such that δ (E) = d (E) and cl (Ac) � E � M.
Then d (es/A) ≥ λ and by Lemma 3.1.9, es is a fixed-point. Inductively, similar
to the previous case, we can prove that every element of E\D and also c is a
fixed point of β.

3.1.2 Simplicity in the binary case

As we have seen in the previous Chapter, understanding the bounded auto-
morphism group is a crucial part in understanding the simplicity structure of
the automorphism group. Here, we establish the simplicity structure of the col-
lapsed ab-initio structures using the results that we know about bounded auto-
morphisms.

Recall that L = {R} such that R (−,−) is a irreflexive symmetric binary rela-
tion. In Subsection 3.1.1, we have seen that if κ > λ then there is no non-trivial
bounded automorphism (see Thm. 3.1.1). The �-generic structure in this case is
not almost strongly minimal and we can not use Theorem 2.3.11 directly to an-
swer the question of simplicity. However, in this case the automorphism group
is indeed boundedly simple (see Def. 3.2.1) but to prove bounded simplicity we
need different machinery that we will develop in the next section.

Here, we consider all possible cases of coefficients κ and λ (integer valued) for
the pre-dimension function δ (−). Let K0 be the class that we defined in 2.2.11.
Similar to Definition 2.2.31, let K

μ
0 ⊆ K0 and assume

(
K

μ
0 ,�

)
is a smooth class

with AP.
Since by our assumptions, the coefficients κ and λ are natural numbers, hence

the induced dimension d (−) is also integer-valued. As we have seen in Remark
2.1.40, if the d (a) ∈ {0, 1} for all single elements a in M, then acl(−) is a pre-
geometry and otherwise it is not.

Case 1: κ = 1 , λ = 1. It is clear that ∅ ∈ K
μ
0 . The pre-dimension of any

cycle is zero. Hence acl(∅) contains all cycles of length n for all n ∈ N and
there are no cycles in M\acl(∅). The set M\acl(∅) contains countably many
disjoint connected countable trees with of finite valency; namely the valency in
each vertex is bounded by the μ-function. The automorphisms that move only
finitely many connected components are bounded automorphisms and hence
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Bdd (M) is a not-trivial normal subgroup. From Remark 2.1.40, acl(−) is a pre-
geometry. Hence 1 �=Bdd (M) � Aut (M). Since the

(
K

μ
0 ,�

)
-generic structure is

strongly minimal then by Theorem 2.3.11, Autf (M) / (Autf (M)∩Bdd (M)) is a
simple group.

Case 2: κ = 1 , λ > 1. By Remark 2.1.40 acl(−) is a pre-geometry. If
λ = 2 then acl(∅) is an infinite set and consists of infinitely many disjoint
sets of two elements which are connected by one edge. Moreover, since hav-
ing any relation (i.e. edge) between two elements makes the pre-dimension
zero, there will be no edges between points in M\acl(∅). If λ > 2, then
there will be no edges between any two points of the �-generic structure and
acl(∅) = ∅. Hence in both cases the geometries are disintegrated (see Def.
2.1.26 i.e. acl (a1, a2) = acl (a1) ∪ a2 = a1 ∪ acl (a2) for a1, a2 /∈ acl(∅)). Similar to
the previous case Bdd (M) is not trivial. Hence 1 �=Bdd (M) � Aut (M). Again
similar to Case 1, since the generic model is strongly minimal then by Theorem
2.3.11, Autf (M) / (Autf (M)∩Bdd (M)) is a simple group.

Case 3: κ > 1 , κ > λ ≥ 1. In this case, by Remark 2.1.40, acl(−) is not a pre-
geometry. Similar to Case (1), acl(∅) contains all A ∈ K

μ
0 such that δ(A) = 0.

For example in the case when κ = 2 and λ = 1, M\acl(∅) contains all Kn (i.e.
complete graph with n vertices) for n = 1, 2, 3, 4 but K5 is not in the class K

μ
0 .

Note that for any A ∈ K
μ
0 and a ∈ A, one can consider B := A ∪ {b} such

that b is a new element and R (b, a) holds. It is easy to check that A � B and
B ∈ K

μ
0 and δ (B/A) > 0 so by �-richness the valency of each vertex is infinite.

The
(
K

μ
0 ,�

)
-generic structure M is connected. Let Ia := {b ∈ M : M |= R (a, b)},

then d (Ia) is infinite. Moreover for each a /∈ acl(∅), acl (a) \acl(∅) is an infinite
set. In this case we have the following result which we deduce its from the
method that we will describe in next section: Autacl(∅) (M) is a non-tivial normal
subgroup of Aut (M) and it is boundedly simple.

Case 4: κ > 1 , λ > κ > 1. Similar to Case 2. Namely if
⌊

λ
κ

⌋
> 2 the �-generic

is just a disjoint union of single points.

3.1.3 The automorphism group of Mμ

Note that, as we mentioned in Chapter 1, the construction in [17] is a an example
of a CM-trivial strongly minimal set which does not interpret a group. Here,
first we want to prove that there is no non-trivial bounded automorphism in
the automorphism group of Mμ. Then since Mμ is almost strongly minimal, we
can apply Theorem 3.1.1 and conclude that its automorphism group is a simple
group (see Cor. 3.1.12).
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Following [17], let the language L consists of R (−,−,−) which is a 3-ary
symmetric irreflexive relation (i.e. if ā = (a1, a2, a3) and ai’s are distinct elements
and R (ā) holds then R (ā′) holds for any permutations of elements of ā). The
pre-dimension function that has been considered in [17] is

δ(A) = |A| − |R (A) |.
Similar to the binary case, let the class K0 =

{finite L-structures A : δ(A′) ≥ 0 for all A′ ⊆ A}. Define the self-sufficiency
“�” as it has been defined in Definition 2.2.11. To obtain a strongly minimal
structure, Hrushovski considers a μ-function, finite-to-one, for 0-minimally
algebraic pairs to restrict number of a 0-algebraic sets over a finite set. The
smooth class that he considers is

(
K

μ
0 ,�

)
and he proves that it has the

amalgamation property ([17] Lemma 4). Hence the
(
K

μ
0 ,�

)
-generic structure

exists and it is strongly minimal ([17] Corollary 8).
Here we modify the proof that there is no non-trivial bounded automorphism

group in the automorphism group of this structure.
Similar to Lemma 3.1.6, first we need the following lemma

Lemma 3.1.10. For a finite set A ⊂ M, there are infinitely many isomorphism types
of 0-minimally algebraic sets over A.

Theorem 3.1.11. There are no non-trivial bounded automorphisms in the automor-
phism group of Mμ.

Proof. Suppose β is a non-trivial bounded automorphism and A is a �-closed
set such that β (m) ∈ acl(mA) for all m ∈ M. Let a ∈ M be such that β (a) �= a.
Without loss of generality, we can assume that a ∈ A (see Rem. 2.3.8). Con-
sider b1, b2 /∈ acl(A) such that d (b1, b2/A) = 2. This implies that Ab1b2 is
a �-closed set. Since β is bounded then β (bi) ∈ acl(A, bi) for i = 1, 2. Let
E := cl (β (a) , b1, b2, β (b1) , β (b2) , A) and let D be 0-minimally algebraic over
{a, b1, b2} such that (D ∪ β (D))∩ E = ∅; since E is a finite set, by Lemma 3.1.10
one can always find such an Lstructure D. From β (a) �= a, we can conclude
that D ∩ β (D) = ∅ and no R (x, y, z) holds in M such that x ∈ D, y ∈ β (D)

and z ∈ E ∪ D ∪ β (D) (otherwise one can check that δ decreases since D and
β (D) are 0-minimally algebraic sets and it is impossible since E is �-closed).
Let d1 ∈ D. The set EDβ (D) is �-closed and then from Fact 2.2.19 it follows
that

d (d1A) = min
{

δ(A′) : d1 A ⊆ A′ ⊆ EDβ (D)
}

.

One can see that d (d1 A) = δ(d1 A) = δ(A) + 1. Also it follows, by the same
argument, that d (β (d1) A) = δ(A) + 1 and d (d1, β (d1) A) = δ(A) + 2 (Fact
2.2.19 needs to be used) which contradicts with the definition of bounded auto-
morphism.
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Now, Theorem 3.1.1 implies that Autf (M) has no non-trivial normal sub-
group and then the following holds.

Corollary 3.1.12. The strong automorphism group of Mμ is a simple group.

3.2 automorphism groups of the uncollapsed ab-initio generic
structures

In this section, we prove that the automorphism group of the uncollapsed
ab-initio generic structures with rational coefficients which fixes every dimen-
sion zero sets pointwise (i.e. Autgcl(∅) (M)) is boundedly simple (see Def. 3.2.1)
As we mentioned before, Tent and Ziegler in [39], introduced a combinatorial
tool called stationary independence. This machinery is helping to prove the
bounded simplicity of certain kind of homogeneous countable structures (see
e.g. [6]). However, it was not possible to work in the same setting in the un-
collpased ab-initio generic structures, as they have been considered in [39]. To
obtain the result, we follow a modification by Evans in [9] of the machinery
developed in [39].

First, we mention an observation about the ab-initio �-generic structures that
we use in the proof of Lemma 3.2.27. Then we define stationary independence for
a countable class of structures, as Evans does (see Def. 3.2.9). Afterwards, we
introduce an independence relation |�

d and prove that it is a stationary inde-
pendence relation for the countable class Y := {gcl (A) : A ⊂ M, A is finite }
(see Thm. 3.2.21). We introduce gcl-bounded automorphisms. The main step in
this section is to show that every non gcl-bounded automorphism moves almost
maximally for |�

d-independence relation on the family Y (see Lem. 3.2.27 and
Cor. 3.2.28). Then we prove that there is no non-trivial gcl-bounded automor-
phism in this case by modifying the proof of Theorem 3.1.1 (see Thm. 4.2.24).
We deduce the bounded simplicity of Autgcl(∅) (M) from Corollary 3.2.28, The-
orem 4.2.24 and a theorem by Evans (see Thm. 3.2.30).

Here is the definition of bounded simplicity which was appeared in the state-
ments.

Definition 3.2.1. Let G be a group and m ∈ N\ {0}. Then G is m-boundedly
simple if h is a product of ≤ m many conjugates of g±1 for all 1 �= g, h ∈ G.

More precisely G =
(

gG ∪ (
g−1)G

)≤m
. G is called boundedly simple if it is m-

boundedly simple for some m.

Remark 3.2.2. Note that bounded simplicity implies simplicity but the converse
is not necessarily true (e.g. infinite alternating groups). Moreover note that
bounded simplicity is a first order property.
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In this section similar to Section 3.1.1, we deal with L = {R (−,−)} where
R is binary irreflexive symmetric relation. The arguments can be modified for
n-ary relations. Moreover for simplicity1 we assume the following δ function on
an L-structure A:

δ(A) = κ|A| − |R (A) |
where κ ∈ N and κ > 1.

3.2.1 An observation in the ab-initio generic structures

In this subsection, two Lemmas 3.1.5 and 3.1.4 are used very often and their use
is sometimes implicit.

Definition 3.2.3. Let A and B be two subsets of M such that A � B. Then

cl0
B (A) :=

⋃{
A′ ⊆ B : A′ is 0-algebraic overA

} ∪ A.

Note that we do not necessarily have cl0
B
(
cl0

B (A)
)
= cl0

B (A).

Remark 3.2.4. If A � B, then cl0
B (A) \A is a disjoint union of 0-algebraic sets

over A.

Proof. Follows from Definition 3.2.3 and Lemma 3.1.5.

Lemma 3.2.5. Let A � B � M. Then there exists a chain of �-closed subsets

A = A0 � A1 � · · · � An = B

where δ(Ai/Ai−1) = 0 if i is odd and Ai\Ai−1 is di-minimal over Ai−1 if i is even.
Further, ∑i di = δ(An/A0).

Proof. Let A1
1 := cl0

B(A0) and define inductively A1
j := cl0

B(Aj−1) and Ai+1
j :=

cl0
B(Ai

j) for i > 0. Let m ∈ N be the smallest integer such that Am+1
1 = Am

1 ; it is
clear that such an m exists; since A and B are finite subsets of M. Then define
A1 := Am

1 . Similarly for j = 2k + 1, define Aj := Am′
j−1 when m′ is the smallest

integer such that Am′+1
j−1 = Am′

j−1 and Aj−1 is defined. Suppose Ai is defined for
i = 2k + 1. Let di := min {d (a/Ai) : a ∈ B\Ai} and consider

Cdi := {cl (aAi) : d (a/Ai) = di, a ∈ B\Ai} .

1 For a pre-dimension function δκ,λ (−) with κ, λ ∈ N, gcd (κ, λ) = 1 and κ > λ > 0, we need to
modify Lemmas 3.2.7 and 3.2.8 in observation 3.2.1 and Lemmas 3.2.27 and 3.2.25. In this section,
to present a clear proof, we skip the modifications for the general case. The modifications are
similar to the case in Section 4.2.3 in Chapter 4.
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Define C′
di

= {cl (aAi) ∈ Cd1 : |cl (aAi)| = mi} where mi =

min
{|cl (aAi)| : cl (aAi) ∈ Cdi

}
. Choose an element ai+1 ∈ B\Ai such that

cl (ai+1 Ai) ∈ C′
di

and define Ai+1 := cl (ai+1 Ai). If δ(ai+1/Ai) = d (ai+1/Ai)

since Ai+1 has a minimum size in Cdi , we conclude that Ai+1 = ai+1 Ai. If
δ(ai+1/Ai) > d (ai+1/Ai) then ai+1 Ai � Ai+1 and again, since Ai+1 has a
minimum size in Cdi , we conclude that δ(A′

i/Ai−1) > di for Ai−1 � A′
i � Ai.

So by definition, Ai+1\Ai is di-minimal over Ai. It is clear that Ai−1 � Ai holds
for 0 < i = 2k. Since A and B are finite subsets so this process should stop and
there is n (≤ 2 |B\A|+ 1) such that An = B.

Remark 3.2.6. Let A � B � M and consider a �-chain 〈Ai : i � n〉 obtained from
Lemma 3.2.5 and assume the notation in its proof. For i = 2k + 1 from Remark
3.2.4 it follows that A1

i \Ai−1 =
⋃

i Ei such that Ei ∩ Ej = ∅ for i �= j and Ei’s are
0-algebraic over Ai−1.

Lemma 3.2.7. Let A � B � M. Then there exists H ∈ K0 such that B � H,
δ (B/ ((H\B) A)) = 0 and (H\B) A � H.

Proof. By Lemma 3.2.5, there exists a chain of �-closed subsets

A = A0 � A1 � · · · � An = B

where δ(Ai/Ai−1) = 0 if i is odd and Ai\Ai−1 is di-minimal over Ai−1

if i is even. Let H′ be a set of (∑i di)-many new elements enumerated as{
hi

j : 0 < j ≤ di, i is even ≤ n
}

. For each even i, choose ai to be an element
in Ai\Ai−1. Let H be a disjoint union of B and H′ with additional edges:
H |= ∧

i,j R
(

ai, hi
j

)
. It is easy to see that δ (An/ ((H\An) A0)) = 0 and

(H\An) A0 � H.

Lemma 3.2.8. Let A � B � M. Let H � M and A = A0 � · · · � An = B be as
given by Lemma 3.2.7. Suppose H1 � M such that H0 := H ∩ H1 = (H\B) A and
let f ∈ AutA(M) be such that f (H\B) ∩ (H\B) = ∅. Then f (B\A) ∩ (B\A) ⊆
A1\A0. Moreover if we ask A1 = A0, then f (B\A) ∩ (B\A) = ∅.

Proof. Following the notation of the proof of Lemma 3.2.7, for even i let ai ∈
Ai\Ai−1 such that |R (ai, (H\H0))| = d (Ai/Ai−1) = di. It is clear that f (ai) �= ai

since by our assumption f (h) /∈ H0\A for all h ∈ H0\A; otherwise δ(Ai/H) < 0.
If the �-chain stops at A1 (i.e. n = 1) then there is nothing to prove. Suppose
n ≥ 2, since f (a2) �= a2 and A2\A1 is d2-minimal over A1, by Lemma 3.1.5,
f (A2\A1) ∩ (A2\A1) = ∅. Inductively, because of the construction of Ai’s, we
can prove that f (Ai\Ai−1) ∩ (Ai\Ai−1) = ∅ for i ≥ 2 and then f (B\A) ∩
(B\A) ⊆ A1\A0.
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3.2.2 Stationary independence on a countable family

Let M be a countable structure and X be a countable family of subsets of M.
Suppose |�

� is ternary relation on X3.

Definition 3.2.9. The ternary relation |�
� is a stationary independence relation for

elements of X if the following axioms are satisfied.

1. (Invariance) Suppose A, B, C ∈ X, A |�
�

C
B is invariant under automor-

phisms of M.

2. (Monotonicity) Suppose A, B, C, D ∈ X. Then A |�
�

B
CD implies A |�

�

B
C

and A |�
�

BC
D.

3. (Transitivity) Suppose A, B, C, D ∈ X. Then A |�
�

B
C and A |�

�

BC
D implies

A |�
�

B
D.

4. (Symmetry) For A, B, C ∈ X, A |�
�

C
B implies B |�

�

C
A.

5. (Existence) Suppose A, B, C ∈ X, then there is a g ∈ AutB (M) with
g (A) |�

�

B
C.

6. (Stationarity) Suppose A1, A2, B, C ∈ X with B ⊆ Ai and Ai |�
�

B
C. Sup-

pose h : A1 → A2 is an isomorphism which is the identity on B and
extends to an automorphism of M. Then there is some isomorphism k
which contains h ∪ idC and extends to an automorphism of M.

Definition 3.2.10. Suppose |�
� is an independence relation on the family X and

g ∈ Aut(M). Then g moves almost maximally if for all B ∈ X and a ∈ M, there is
a′ in the AutB-orbit of a such that a′ |�

�

B
g(a′).

The role of the stationary independence and Definition 3.2.10 can be seen in
Theorem 3.2.30.

3.2.3 Topology

This chapter is based on Chapter 3 of Lascar’s article [24]. Suppose M is a
countable L-structure and Y is a countable family of subset of M. Consider a
countable family of partial isomorphisms J which will satisfy conditions (1) -
(7) as follows.

1. If s ∈ J, s is an partial isomorphism from X to Y, both X and Y belong Y.

2. J contains all idX, for X ∈ Y.
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3. J is closed under inverse functions: if s : X → Y belongs to J then inverse
function s−1 also belongs to J.

4. J is closed under composition: if s : X → Y and t : Y → Z belong J. then
s ◦ t also belongs to J.

5. If s : X → Y belongs to J and Z ∈ Y and Z � X, then s � Z ∈ J.

6. If s : X → Y belongs to J and Z ∈ Y and X � Z, then there exists t ∈ J

which is defined on Z and extends s.

7. If s : X → Y belongs to J and Z ∈ Y and Y � Z, then there exists t ∈ J

whose image contains Z and extends s.

Given a family the J satisfying conditions (1) - (7), one defines

G(J) := { f ∈ Aut (M) : for all X ∈ Y, f � X ∈ J} .

Then it is easy to show that G(J) is a closed subgroup of Aut(M). If s ∈ J,
one will denote Gs(J) = { f ∈ G(J) : f extends s}. Then Gs(J) forms a basis of
open sets for G(J), and the properties (6) and (7) ensure that they are not empty.
For each X ∈ Y,

GX(J) = AutX(M) ∩ G(J)

and GX(J) forms a neighborhood basis of identity such that all the open sets
of the form Gs(J) are equal to f .GX(J), where f is any element of Gs(J): thus
G(J) is a Polish group.

3.2.4 Our setting

Let M be the ab-initio �-generic structure. Consider Y :=
{gcl (A) : A ⊂ M, A is finite } and let the sub-base of neighborhoods of
identity be

{AutX(M) : X ∈ Y} .

In Lemma 3.2.19, we will show that the class Y is not trivial and then
similar to what we have seen in Section 3.2.3, define a basis of open
sets: suppose s is an isomorphism s : X → Y, and X and Y belong
Y define Os = { f ∈ Aut(M) : f extends s}. Then the Os’s are open, and
{Os : s : X → Y, X, Y ∈ Y} form a basis of open sets.

The following two definitions of independence relations arise very naturally
if there is a good notion of dimension d (−). This has been studied in the ab-
initio generic structures (see e.g. [4, 42]).
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Definition 3.2.11. For elements A, B, C ∈ Y, define |�
d as follows:

A
d
|�
C

B if d (A/BC) = d (A/C) .

Remark 3.2.12. Note that we can extend the definition of |�
d to arbitrary subsets

of M by specifying that A |�
d
C

B if and only if gcl (A) |�
d
gcl(C)

gcl (B).

Definition 3.2.13. Suppose A, B and C are finite subsets of M. Define A |�B
C if

d (A/B) = d (A/BC) and cl (AB) ∩ cl (BC) = cl (B).

For further properties of |� look at [4, 42]. It has been known that this in-
dependence relation coincides with the forking-independence (see Def. 2.1.17)
in the uncollapsed ab-initio generic structures. This explains our notation |�.
Here we review some of properties of the |� independence which is defined as
above.

Remark 3.2.14. ([42] Proposition 4.8) Let A and B be �-closed subsets of M, then
the following are equivalent:

1. A |�A∩B
B,

2. AB = A ⊗A∩B B and AB is �-closed,

3. tp(A/B) does not fork over A ∩ B.

Remark 3.2.15. Note that |� is stronger that |�
d; let A, B, C be finite subsets of

M, then A |�C
B implies gcl (A) |�

d
gcl(C)

gcl (B) but the converse is not always
true.

The following lemma was known as folklore. Since the precise statement was
not stated anywhere we give the statement and the proof here.

Lemma 3.2.16. Suppose A, B, C ∈ Y. Then the following are equivalent:

1. A |�
d
C

B .

2. gcl (AC) ∪ gcl (BC) � M and gcl (AC) ∩ gcl (BC) = C.

Proof. (2) to (1) follows from Definition 3.2.11 and Fact 2.2.24. For (1) to (2) let
C0 ⊂<ω C and C0 ⊆ A0 ⊂<ω gcl (AC), C0 ⊆ B0 ⊂<ω gcl (BC) be such that
d (A0) = d (gcl (AC)), d (B0) = d (gcl (BC)) and d (C0) = d (C). We know that
and d (ABC) = d (gcl (AC) gcl (BC)). Let D ⊂<ω gcl (AC) gcl (BC) such that
d (D) = d (ABC) and A0, B0 ⊆ D. Moreover δ(cl (D)) = d (D) ≤ δ(D). By
definition δ(E) ≥ δ (cl (D)) for all D ⊆ E ⊂<ω M. Let E1 = cl (D) ∩ gcl (AC)
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and E2 = cl (D)∩gcl (BC). It is clear that A0 ⊂ E1 and B0 ⊂ E2 so δ(E1) ≥ δ(A0)

and δ(E2) ≥ δ(B0),

δ (E1E2) ≤ δ(E1) + δ(E2)− δ (E1 ∩ E2) ,

and since D ⊆ E1E2 so δ (E1E2) ≥ d (D). Thus E1E2 is �-closed. Suppose (E, F)
is a minimal pair such that E ⊂ gcl (AC) ∪ gcl (BC). If E ⊂ gcl (AC) or E ⊂
gcl (BC), then it is clear that F ⊂ gcl (AC) ∪ gcl (BC). Suppose E � gcl (AC)
and E � gcl (BC). Let E′

1 := E ∩ gcl (AC) and E′
2 := E ∩ gcl (BC). One can check

cl (E′
1E1) ⊂ gcl (AC), cl (E′

2E2) ⊂ gcl (BC), and moreover cl (E′
1E1) cl (E′

2E2) is
�-closed. Hence F ⊂ cl (E′

1E1) cl (E′
2E2) ⊂ gcl (AC) gcl (BC). For the second

part C ⊆ gcl (AC) gcl (BC) is clear. Let z ∈ gcl (AC) ∩ gcl (BC) and consider
Z1 := cl (zA0) and Z2 := cl (zB0). It is clear that δ(Z1/A0) = δ(Z2/B0) = 0 then

d (Z1Z2/C0) = δ (Z1Z2/C0) ≤ δ (Z1/C0) + δ (Z2/C0)− δ (Z1 ∩ Z2/C0) ,

thus δ (z/C0) = δ (Z1 ∩ Z2/C0) = 0. Hence z ∈ gcl (C0) = C and we obtain the
result.

Lemma 3.2.17. Let A ∈ Y and ā1 be a finite tuple in M. Then there is a finite subset
A0 of A, such that if ā2 and ā1 have the same type over A0 for some ā2 ∈ M, then they
have the same type over A or tp (ā1/A0) has a unique extension to A.

Proof. Let ā1 ∈ M and consider A′ be a finite �-closed subset of A such that
d (A′) = d (A). Consider A0 := cl (ā1 A′) ∩ A. We claim thast if ā1 and ā2 have
the same type over A0 then for any finite subset A1 of A, they have the same
type over A1. Since

δ (cl (āi A0)) ≤ δ (cl (A1 A0) cl (āi A0))

≤ δ (cl (A1 A0)) + δ (cl (āi A0))− δ (cl (A1 A0) ∩ cl (āi A0))

for i = 1, 2 and δ (cl (A1 A0)) = δ (cl (A1 A0) ∩ cl (āi A0)) = δ(A0), then
cl (A1 A0 āi) = cl (A1 A0) cl (A0 āi). The way that A0 is defined, we can
see that cl (A1A0) ∩ cl (A0 āi) = A0 and δ (cl (A0 āi)) = δ (cl (A1 A0 āi)).
Hence cl (A0 A1) |�A0

cl (A0 āi). Then by Remark 3.2.14, the set cl (A1 A0 āi) =

cl (A1 A0) ⊗A0 cl (A0 āi). By the �-richness there is an automorphism f ∈
Autcl(A1 A0)(M) such that f (cl (A1 ā1)) = cl (A1 ā2), thus ā1 ≡cl(A1 A0) ā2. So ā1

and ā2 have the same type for all finite A1 ⊂ A which includes A′. Hence the
result follows.

Corollary 3.2.18. Suppose A is a finite �-closed subset of M and ā1, ā2 ∈ M. Assume
A0 := cl (ā1 A) ∩ gcl (A) = cl (ā2 A) ∩ gcl (A), ā1 ā2 ∩ gcl (A) = ∅ and ā1 ≡A0 ā2.
Then ā1 and ā2 have the same type over gcl (A).
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Lemma 3.2.19. Suppose X ∈ Y and a1, a2 ∈ M have the same type over X ∈ Y, then
there is an automorphism f ∈ AutX (M) such that f (a1) = a2.

Proof. Let X0 be a finite �-closed subset of X such that d (X0) = d (X). Since
a1, a2 ∈ M have the same type over X so they have the same type over X0. Let
f0 be a partial elementary isomorphism fixing X0 such that f0 (a1) = a2. Using a
back and forth construction, we build partial isomorphisms f0 ⊂ f1 ⊂ f2 ⊂ . . .
and then fω :=

⋃
i<ω fi will be the desired automorphism of M.

We now show how to construct the chain of partial isomorphisms. Fix
〈Bi : i ∈ ω〉 to be a �-chain of finite �-closed subsets of M, sets such that
B0 = X0, B1 = cl (a1X0), and M =

⋃
i Bi. Let E0 := B1 ∩ X, it is clear that

E0 � B1. Let B′
1 be an isomorphic copy of B1 such that B1 ≡E0 B′

1, cl (a2E0) ⊆ B′
1

and E0 � B′
1 � M (actually cl (a2E0) = B′

1). Since B′
1 ∩ X = B1 ∩ X = E0 and

tp (B1/E0) = tp (B′
1/E0), we can extend f0 to a partial isomorphism f1 such that

f1 (B1) = B′
1 (so B1 is in the domain i.e. forth) and f1 fixes E0 pointwise.

Let Bk be the smallest �-closed element in the �-chain such that B′
1 � Bk.

Let E1 := Bk ∩ X then E1 � Bk. Now find D2 any isomorphic copy of Bk such
that B1 � D2 � M, D2 ∩ X = E1 and D2 ≡E1 Bk (by the free-amalgamation it is
always possible). Since tp(D2/E1) = tp(Bk/E1) and B1 ⊆ D2, one can extend f1

to a partial isomorphism f2 such that f2 (D2) = Bk and f2 fixes E1 pointwise (so
Bk is in the range i.e. back). Similarly this procedure can be continued and we
can construct f0 ⊂ f1 ⊂ f2 ⊂ ... by back and forth fixing elements of X. Since⋃

Bi =
⋃

Di =
⋃

B′
i = M, fω is an automorphism of M.

Corollary 3.2.20. AutX (M) is not trivial for all X ∈ Y.

Corollary 3.2.20 proves that our base of neighborhoods of identity
{AutX (M) : X ∈ Y} is not trivial. Now the next step will be the following.

Theorem 3.2.21. The |�
d is a stationary independence relation for elements of Y.

Proof. (i, iv) Invariance under automorphisms of M and symmetry are trivial
by the definition of |�

d.
(ii) For monotonicity, if d (A/B) = d (A/BCD), then using Remark 2.2.28:

d (A/B) ≥ d (A/BC) ≥ d (A/BCD) = d (A/B). Thus we are done.
(iii) For transitivity, if d (A/BC) = d (A/B) and d (A/BCD) = d (A/BC)

then d (A/B) = d (A/BCD). Moreover, we know that d (A/B) ≥ d (A/BD) ≥
d (A/BCD). So this implies d (A/B) = d (A/BD).

(v) Existence: suppose B0 ⊂ B, C0 ⊂ C and A0 ⊂ A such that d (A0) = d (A),
d (C0) = C and d (B0) = d (B). Using the free-amalgamation (see Thm. 2.2.15)
we can find A′

0 an isomorphic copy of cl (A0B0) over B′ := cl (A0C0B0)∩ B such
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A′
0 |�B′ C0 and A′

0 ≡B′ A0. Then by Lemma 3.2.19, there exists g ∈ AutB(M)

such that g (A0) ⊆ A′
0 and then by Remarks 3.2.15 and 3.2.12 g (A) |�

d
B

C.
(vi) Stationarity: follows from Lemma 3.2.22.

Lemma 3.2.22. Suppose A1, A2, B, C ∈ X with B ⊆ Ai and Ai |�B
C. Suppose h :

A1 → A2 is an isomorphism which is the identity on B and extends to an automorphism
of M. Then there is an automorphism of M which extends h ∪ idC.

Proof. Note that h ∪ idC is a partial isomorphism. We construct an automor-
phism f ∈ Aut(M) which extends h ∪ idC. By Lemma 3.2.16, gcl (AiB) ∩
gcl (CB) = B for i = 1, 2. Let B0 ⊂<ω B and C0 ⊂<ω gcl (CB) \B such
that δ (B0) = d (B0) = d (B) and δ (B0C0) = d (B0C0) = d (BC). Similarly
let A0

1 ⊂<ω A1 be such that B0 ⊂ A0
1 and δ

(
A0

1

)
= d

(
A0

1

)
= d (A1). Let

A0
2 := h

(
A0

1

)
and by our assumptions A0

1 and A0
2 have the same type over B.

Let f0 = idB0C0 be a partial isomorphism. Using a back and forth construction,
we build partial isomorphisms f0 ⊂ f1 ⊂ f2 ⊂ . . . so that f :=

⋃
i<ω fi will be

the desired automorphism of M.
Fix 〈Gi : i ∈ ω〉 to be a �-chain of finite �-closed subsets of M where G0 =

B0C0, G1 = cl
(
C0 A0

1

)
= C0A0

1 and M =
⋃

i Gi. Let G′
1 = C0 ∪ h

(
A0

1

)
. Since

G′
1 ∩ (BC) = G1 ∩ (BC) = B0C0 and tp (G1/B0C0) = tp (G′

1/B0C0), we can
extend f0 to a partial isomorphism f1 such that f1 (G1) = G′

1 (easy to check that
f1 is a partial isomorphism).

Let Gk be the smallest �-closed element in the �-chain such that G′
1 � Gk.

Let D1 := Gk ∩ (A2B) and D2 := Gk ∩ (A2BC) then D1 � D2 � Gk and G′
1 � D2.

Consider D′
1 = h−1 (D1) � D′

2 = D′
1 ∪ (D2\D1) � G′

k = D′
2 ∪ H′ where H′

over D′
2 is any isomorphic copy of Gk\D2 over D2 such that H′ ∩ (Gk\D2) = ∅.

2 Extend f1 to f ′2 such that f ′2 (D′
2) = D2 and f ′2 fixes D2\D1 pointwise (i.e.

f ′2 = h � D′
1 ∪ idD2\D1

). Similarly extend f ′2 to f2 such that f2 (Gk\D2) = H′.
This procedure can be continued and we can construct f0 ⊂ f1 ⊂ f2 ⊂ ... by
back and forth fixing elements of X. Since

⋃
Gi =

⋃
Di =

⋃
G′

i = M, f is an
automorphism of M.

3.2.5 gcl-bounded automorphisms and moving almost maximally

In Section 3.1.1, we showed that there is no non-trivial bounded automorphism
for uncollapsed ab-initio generic structures with rational coefficients. The same

2 I would like to thank David Evans for pointing out that the existence of H′ follows from the
algebraic amalgamation lemma ([17]Lemma 3) which implies that there are finitely many zero
algebraic sets over in A1BC. Then since we have the free-amalgamation property, existence of H′

is guaranteed.
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proof will work to prove that there is no non-trivial bounded automorphisms
in this case. But the normal definition of a bounded automorphism is not good
enough for our purpose. Roughly, in order to apply Theorem 3.2.30 we need to
move 0-minimal algebraic sets almost maximally, which is not possible in this
case (see Lemma 3.2.27).

Recall that for a finite set A we define gcl (A) := {x ∈ M : d (x/A) = 0}.
Here is the modified definition of Definition 2.3.7.

Definition 3.2.23. An automorphism β ∈ Aut(M) is called gcl-bounded if there
exists a finite set A ⊂ M such that β(m) ∈ gcl (mA) for all m ∈ M.

Remark 3.2.24. Since by Remark 2.2.25 cl (A) ⊆ gcl (A), in the definition of gcl-
bounded automorphism, we may assume that the set A is �-closed and |A| ≥ κ.

Lemma 3.2.25. Suppose g is not a gcl-bounded automorphism. Then for every n ∈ N,
there is X ⊆<ω M such that d (g (X) /X) ≥ n.

Proof. Suppose not. Let n0 ∈ N, be the smallest number such that
d (g (Y) /Y) ≤ n0 for all Y ⊂<ω M. Let Y0 ⊆<ω M be such that d (g (Y0) /Y0) =

n0; we assume Y0 is �-closed and |Y0| ≥ κ (if |Y0| < κ replace Y0 by Y′ ⊂ gcl (Y0)

such that |Y′| ≥ κ and Y0 ⊂ Y′). Let Y1 := cl (g (Y0)Y0).
Let b ∈ M be such that d (b/Y1) = i for some i > 0.
By properties of d (−) (see Rem. 2.2.28) we know

d (g(b)g (Y0) /bY0) = d (g(b)/g (Y0)Y0b) + d (g (Y0) /Y0b) ≤ n0.

Case (1) d (g (Y0) /Y0b) = d (g (Y0) /Y0) = n0. Then the inequality above im-
plies that d (g(b)/g (Y0)Y0b) = 0 and hence g(b) ∈ gcl (g (Y0)Y0b) = gcl (bY1).

Case (2) b � |�Y0
g (Y0) and let Y2 := cl (bY1g (Y1)). Note that |Y2| ≥ κ. Let

Y′ ⊂ Y2 be such that |Y′| = κ, b∈Y′ and Y′\ {b} ⊂ Y0. Enumerate Y′ as
{y1, · · · , yκ}. Consider Y3 ∈ K0 to be an L-structure such that Y3 := Y2 ∪ {b3}
with Y3 |= ∧

i R(b3, yi). It is clear that Y2 � Y3 and δ(Y3/Y2) = 0. By the �-
richness and the free-amalgamation, we can find an isomorphic copy of Y3 such
that b3 |�Y0

g (Y0). Then using Case (1) , g(b3) ∈ gcl (bY1). Since d (b3b/Y1) =

d (b3/bY1) + d (b/Y1) = i, one can see d (b/b3Y1) = d (b3/bY1) = 0, so
g(b) ∈ gcl (g(b3)g (Y1)). Then g(b) ∈ gcl (Y2) ; note that from d (b3/bY1) = 0
we can deduce b3 ∈ gcl (bY1).

As we saw from the cases above g(b) ∈ gcl (b ∪ Y1g (Y1)) for all elements
b ∈ M, so g is gcl-bounded which is a contradiction.

Corollary 3.2.26. Suppose g is not a gcl-bounded automorphism. Let X be a finite
�-closed set and n ∈ N. Then there exists a �-closed set Z containing X such that
d (g (Z) /Z) ≥ n.
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Proof. Let d (X) = n0. Note that d (Xg (X)) ≤ 2n0. By Lemma 3.2.25, for every
n ∈ N, there is a finite set Y such that d (g (Y) /Y) ≥ n. Then by Remark 2.2.28,

d (g (X) g (Y) /XY) = d (g (X) / (g (Y) XY)) + d (g (Y) /XY) ≥ d (g (Y) /XY) .

By Remark 2.2.28 also follows that d (g (Y) /XY) ≥ n − n0. Let Z = cl (XY)
then d (g (Z) /Z) ≥ n − n0 and since we can choose n and the corresponding Y
large enough, we are done.

Lemma 3.2.27. Suppose g is not a gcl-bounded automorphism. Let X, Y ∈ K0, X � M
and X � Y. Moreover, assume δ(Y0/X) > 0 for all X � Y0 ⊆ Y. Then there exists
Y′ ⊂ M such that tp(Y′/X) = tp(Y/X) and d (Y′/X) = d (Y′/Xg (Y′)).

Proof. Suppose δ (Y/X) = m. We find Y′ ⊂ M in three steps.
Step 1 By our assumptions m > 0. Since g is not gcl-bounded, using

Corollary 4.2.19, we can find a finite �-closed set Z ⊂ M which contains
X1 := cl (X ∪ g (X)) such that d (g (Z) /Z) ≥ m. Specify z′1, . . . , z′m ∈ Z\X1

such that g(z′i) �= z′i for all 0 < i ≤ m and

d

(( ⋃
1≤i≤m

z′i

)
/X1

)
≥ m.

Step 2 Using Lemma 3.2.5, there is a �-chain X = X0 � X1 . . . � Xn = Y such
that δ (Xi/Xi−1) = 0 if i is odd and Xi\Xi−1 is di-algebraic over Xi−1 if i is even,
where ∑i di = m. Note that by our assumptions X0 = X1. Then by Lemma 3.2.7,
there is H ∈ K0 such that Xn � H, δ (H/ ((H\Y) X0)) = 0 and (H\Y) X0 � H.
Enumerate H\Xn =

{
hi

j : 1 ≤ j ≤ di and i is even ≤ n
}

lexicographically with
respect to (i, j) as {hi : 1 ≤ i ≤ m} (in this case any enumeration works). Then
consider the L-structure A ∈ K0 obtained from H ⊗X Z by identifying each hi

with z′i for all 1 ≤ i ≤ m. More precisely

1. the domain of A is Y ∪ Z;

2. A |= R(y1, y2) if and only if Y |= R(y1, y2) for y1, y2 ∈ Y;

3. A |= R(x1, x2) if and only if Z |= R(x1, x2) for x1, x2 ∈ Z;

4. A |= ∧
i R(xi, z′i) if and only if H |= ∧

i R(xi, hi) for all xi ∈ Y and z′i ∈ Z\X.

Note that δ(A/Z) = 0, Y � A and Z � A.
Step 3 Let Z1 := cl (Z ∪ g (Z)). Since K0 has the free-amalgamation property,

then A ⊗Z Z1 ∈ K0. By �-richness of M, we can embed a �-closed copy of
A ⊗Z Z1 over Z1 in M , which we also denote by A, such that g (A\Z)∩ Z1 = ∅.
Then by Remark 3.2.14, A |�Z

Z1. Let Y′ ⊂ A be such that tp(Y′/X) = tp(Y/X).
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Claim. Y′ |�X
g (X).

Proof. Both sets X and Y′ are �-closed and Y′ and g (X) are free-amalgam over
X and cl (Y′X1) = Y′X1.

Claim. Y′ |�X∪g(X)
g (Y′).

Proof. Since g(zi) �= zi for the specified zi’s, one can see g (Y′) �= Y′. Moreover,
by the Lemma 3.2.8, g (Y′)∩Y′ = ∅. The sets Y′ and g (Y′) are the free-amalgam
over Z1 and hence over X1, if not it means |R(Y′\Z1; g (Y′) \Z1)| ≥ 1 which
implies δ(Y′g (Y′) /Z1) < 0 and this is impossible because of the fact that Z1 is
a �-closed set. Using the properties of step 2, it is easy to check that cl (Y′X1) =

Y′X1 and cl (g (Y′)]X) = g (Y′) X1. Then Y′ |�X∪g(X)
g (Y′).

The rest is done simply by transitivity of |�
d or more precisely

since Y′ |�X
g (X) and Y′ |�X∪g(X)

g (Y′), d (Y′/X)) = d (Y′/ (Xg (X)))

and d (Y′/ (Xg (X))) = d (Y′/ (Xg (X) g (Y′))) so d (Y′/X) =

d (Y′/ (Xg (X) g (Y′))) and then d (Y′/X) = d (Y′/Xg (Y′)) as we desired.

Corollary 3.2.28. Every non gcl-bounded automorphism of M moves almost maxi-
mally for the |�

d-independence relation on the family Y.

Proof. Suppose g is not a gcl-bounded automorphism. Let A ∈ Y and a ∈ M.
Consider A0 ⊂<ω A such that δ(A0) = d (A) = d (A). Then either

Case (1) a ∈ gcl (A0) = A. Then automatically a |�
d
A

g(a).
Case (2) a /∈ A. Consider A1 := cl (A0a) ∩ A. Now A1 � cl (A0a) and since

a /∈ A, it follows δ(b/A1) > 0 for all b ∈ cl (A0a) \A1. Then by Lemma 3.2.27
there is A′

1 |= tp(cl (A0a) /A1) such that d (A′
1/A1g (A′

1)) = d (A′
1/A1). Hence

gcl (A′
1) |�

d
A

gcl (g (A′
1)). Let a′ ∈ A′

1 such that a′ |= tp(a/A1) then by Lemma

3.2.18, a′ |= tp(a/A) and a′ |�
d
A

g(a′).

3.2.5.1 gcl-bounded automorphism

Recall our notation for δ, that for an L-structure A it is of the following form:

δ(A) = κ|A| − λ|R (A) |

where κ, λ ∈ N and κ > λ > 0. Note that, similar to the col-
lapsed case when κ ≤ λ there are non-trivial gcl-bounded automor-
phisms. We will discuss it in Subsection 3.2.7. Let the class K0 =

{finite L-structures A : δ(A′) ≥ 0 for all A′ ⊆ A} and let the self-sufficiency
“�” be as it is defined in Definition 2.2.11. Then
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Theorem 3.2.29. There is no non-trivial gcl-bounded automorphism in the (K0,�)-
generic structure M.

Proof. The proof for Theorem 4.2.24 is the same as the proof for Theorem 3.1.1.
The only difference in the proof is we need to substitute “acl (−)” with “gcl (−)”
and “bounded automorphism” with “gcl-bounded automorphisms”. Note that
this phenomena is not accidental. Roughly, the intuition behind this is that in
the collapsing structure gcl (−) and acl(−) coincide (see Thm. 2.2.36).

3.2.6 Bounded simplicity

In order to answer the simplicity question in the uncollapsed generic structures,
we need the following theorem of David Evans.

Theorem 3.2.30. ([9]) Suppose G fixes every element of gcl (∅). Suppose g ∈ Aut(M)

moves almost maximally. Then every element of G is product of a 16 conjugates of g.

Lemma 3.2.31. Autgcl(∅)(M) is a non-trivial normal subgroup of Aut(M).

Proof. Any automorphism of M fixes gcl (∅) setwise so Autgcl(∅)(M) is a nor-
mal subgroup. From Corollary 3.2.20 we also know that Autgcl(∅)(M) is not
trivial.

Corollary 3.2.32. Let M be the uncollapsed ab-initio �-generic structure. Then
Autgcl(∅) (M) is boundedly simple.

Proof. By Theorem 3.2.21, |�
d is a stationary independence for the countable

family Y. By Theorem 4.2.24 every non-trivial automorphism of M is not gcl-
bounded. Corollary 3.2.28 implies that all automorphisms of M move almost
maximally with respect to |�

d. Now from Theorem 3.2.30, we conclude that
Autgcl(∅) (M) is boundedly simple.

3.2.7 Further remarks

Here we give a short proof that there is no non-trivial, bounded automorphism
in the automorphism group of the uncollapsed �-generic structures which in-
cludes the case with irrational coefficients. It is known that the ab-initio �-
generic structures that are derived from a pre-dimension function with irra-
tional coefficients are stable but not ℵ0-stable (see e.g. [4]). In [3], Baldwin and
Shelah observed the connection between the theory of the ab-initio generic struc-
tures in this case and theory of random graphs with ‘edge probability’ nw. Note
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that in this case, the algebraic closure and the geometric closure are the same;
roughly because no 0-minimally algebraic pairs are possible.

Again, we assume L = {R (−,−)} where R is binary irreflexive symmetric
relation. Since we want to include irrational coefficients, we assume that δ for
an L-structure A is of the the following form:

δ(A) = |A| − w |R (A)| ,

where 0 < w ≤ 1. The smooth class (K0,�) is defined similarly to Definition
2.2.11. Let M be the (K0,�)-generic structure. Then

Theorem 3.2.33. There is no non-trivial bounded automorphism in the uncollapsed
ab-initio generic structures with coefficient 0 < w ≤ 1.

Proof. Let β be a bounded automorphism and A a �-closed set such that
β (m) ∈ acl (mA) for all m ∈ M. Recall that, in the uncollapsed case acl (A) =

cl (A) (see Lem. 2.2.27) and since A is a �-closed set then acl (A) = A. Then
from boundedness of β follows that A is fixed setwise. Similarly it is easy to see
that all �-closed sets B ⊇ A is also fixed setwise. Let c ∈ M such that β (c) �= c.
Consider C := cl (cA) and let D := C ∪ {d} such that d is a new element and
R (d, b) holds in D. It is easy to see that D ∈ K0 and C � D. By the �-richness
of M we can find an isomorphic copy D in M over C which is �-closed. But
then, as we pointed out before, both D and C will be fixed setwise. Hence d is
a fixed point. Then from C � D we conclude that c is also a fixed-point. Hence
β = idM.

3.2.7.1 Irrational coefficients

Theorem 3.2.33, shows that there is no non-trivial bounded and gcl-bounded
automorphisms in this case. But still we can not answer the question of simplic-
ity. One missing part in the machinery that we developed in this section is that
we can not show that every non-trivial automorphism moves almost maximally.
Again, since 0-minimally algebraic pairs do not exists in this case hence the
arguments, of Lemma 3.2.27 fail.

3.2.7.2 Rational coefficients

Again, since we study the �-generic structures in uncollapsed ab-initio case
that are obtained from a pre-dimension function with rational coefficients, let
the pre-dimension function over an L-structure A be of the following form:

δ(A) = κ|A| − λ|R (A) |;
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where κ, λ ∈ N, gcd (κ, λ) = 1. Let the class K0 =

{finite L-structures A : δ(A′) ≥ 0 for all A′ ⊆ A}.

case 1: κ = 1 , λ = 1.

As we mentioned in Lemma 2.2.27, “cl (−)” and “acl(−)” coincide in the uncol-
lapsed �-generic structures. It is easy to see that cl (−) is not a pre-geometry.
However, by Remark 2.1.40, gcl (−) is a pre-geometry and it is disintegrated.
Moreover, ∅ ∈ K0 and acl(∅) = ∅. However gcl (∅) contains countably many
disjoint cycles of length n for all n ∈ N, and finite structures that contain a
cycle. There will be no cycles in M\gcl (∅), therefore M\gcl (∅) contains count-
ably many disjoint connected countable trees of infinite valency at each ver-
tex. Infinite valency at each vertex follows from the free-amalgamation prop-
erty (see Thm. 2.2.15). By Theorem 3.2.33, in this case there will be no non-
trivial bounded automorphisms. However, there will be gcl-bounded automor-
phisms; the gcl-bounded automorphisms are those which fix every element ex-
cept finitely many connected components. Moreover the gcl-bounded automor-
phisms form a normal subgroup of Aut (M).

case 2: κ = 1 , λ > 1.

Similar to Case (1), cl (−) and acl(−) coincide and cl (−) is not a pre-geometry.
Therefore acl (−) is not a pre-geometry as well. If λ = 2 then gcl (∅) is an infi-
nite set: the union of countably many infinite sets of two elements with an edge.
Since having a relation between any two elements of the structure makes the pre-
dimension δ zero, so there will be no edges between elements of M\gcl (∅). By
Remark 2.1.40, gcl (−) is a pre-geometry and it is disintegrated. If λ > 2, then
there will be no more edges between points of �-generic structure and then
acl(∅) = ∅. In this case there will be no non-trivial bounded automorphisms
by Theorem 3.2.33. But there are gcl-bounded automorphisms: the gcl-bounded
automorphisms are those those which fix everything except finitely many ele-
ments. Moreover, the gcl-bounded automorphism group is a normal subgroup
of Aut (M).

case 3: κ > 1 , κ > λ ≥ 1.

Similar to Cases (1) and (2), cl (−) and acl(−) coincide. cl (−) is not a pre-
geometry and hence acl (−) is not a pre-geometry too. Moreover, by Remark
2.1.40, gcl (−) is not a pre-geometry. In this case gcl (∅) contains all A ∈ K0

with δ(A) = 0. Similar to Case (2) of Section 3.1.2 (i.e. the collapsed �-generic
structures) for κ = 2 and λ = 1, in M\gcl (∅) one can find all Kn for n = 1, 2, 3, 4
but there will be no K5 . Let every A ∈ K0 we may pick a ∈ A. Let B := A ∪ {b}
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such that b is a new element and R (b, a) holds. Then A � B and B ∈ K0. This
implies that the valency of each vertex is infinite. For any two distinct elements
a, b ∈ M let A = cl (ab). Let C = A ∪ {c} be an L-structure such that c is a new
element and R (a, c) and R (b, c) hold in C. It is clear that A � C and C ∈ K0.
This implies that the �-generic structure M is connected. Let a be an arbitrarily
element of M, let Ia := {b ∈ M : M |= R(a, b)}. Similar argument also implies
that d (Ia) is infinite. Moreover for each a /∈ gcl (∅), gcl (a) \gcl (∅) is an infinite
set.

case 4: κ > 1 , λ > κ > 1.

If λ
κ > 2, then a relation between any two elements makes the pre-dimension

δ negative. Hence the �-generic structure is a disjoint union of single points.
Then the generic structure is just a set. In Case (2) we already considered λ

κ = 2.



4
G E N E R A L I Z E D n - G O N S

4.1 basics of the theory of buildings and generalized n -gons

4.1.1 Introduction

Bruhat–Tits buildings are combinatorial and geometrical structures which gen-
eralize certain aspects of projective spaces. They were initially introduced by
Tits as a means to understand the structure of semisimple complex groups of
Lie type and later used to study semisimple algebraic groups over an arbitrary
field. Although the theory of semisimple algebraic groups was the initial mo-
tivation for the notion of a building, not all buildings arise from groups. In
particular, projective planes and generalized quadrangles form two classes of
graphs studied in incidence geometry which satisfy the axioms of a building
but may not be connected with any group. This phenomenon turns out to be
related to the low rank (more precisely rank two) of the corresponding Coxeter
system.

In [40], Tits gave a complete classification of thick, irreducible spherical build-
ings of rank greater than three. The result shows that except for some excep-
tional cases, such buildings correspond to a simple algebraic group over some
field. It is also shown that the buildings of that form come from groups with
a BN-pair. In contrast to spherical buildings of rank greater 3, the buildings of
rank less than 3 can not be classified so easily. Even in the finite case the projec-
tive planes are not classified: for example projective planes of order 11 are not
fully known.

Groups with a BN-pair, introduced in [40], do naturally appear in (semi-
)simple algebraic groups and Lie groups. It is known that the groups with a
BN-pair of rank one are 2-transitive on a suitable set, and hence they fall into
a wild class of structures for which the simplicity question might not be an
adequate question (see Example. 4.1.5). To each group with a BN-pair one can
associate a building. The buildings that one gets from the groups with a BN-pair
of rank 2 are generalized n-gons. Our main concern are groups with a BN-pair
of rank 2 which are more well-behaved. Standard examples of such groups are
given by semi-simple and almost simple algebraic groups of relative rank 2 (see
[40]). Here are some known facts about groups with a BN-pair:
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1. finite groups with a BN-pair of rank at least two are simple algebraic
groups;

2. infinite groups with a split BN-pair of rank at least two are essentially
algebraic.

One natural question is how much can one say about the infinite groups with a
non-split BN-pair. One can also reformulate the question as whether there are
simple infinite groups with a BN-pair which is not algebraic? In [36], Tent mod-
ified Hrushovski’s construction method from model theory to build a new class
of generalized n-gons which the automorphism group is transitive on ordinary
(n + 1)-gons. She also modified the construction to obtain almost strongly mini-
mal generalized n-gons with the same transitivity properties. These transitivity
properties shows that the automorphism group of the generalized n-gons have
a BN-pair; namely it was known that the automorphism group of a building
of rank 2 has a BN-pair if and only if it acts transitively on ordered n-gons.
In this chapter we show that the automorphism group of the almost strongly
minimal generalized n-gons and the ℵ0-stable generalized n-gons constructed
in [36] are indeed simple groups. Hence this implies that there exists a simple
non-algebraic group with a non-split BN-pair. For proving the simplicity in the
case of the ℵ0-stable n-gons, we modify our proof of the simplicity result of the
uncollapsed generic structures (see Section sec:unmpp), and in the case of the
almost strongly minimal generalized n-gons, we follow Lascar’ approach [24].

4.1.2 Basic definitions

Definition 4.1.1. A Coxeter group of rank n is a group with the following presen-
tation〈

r1, · · · , rn :
(
rirj

)mij = 1
〉

where mii = 1 and mij ≥ 2 for i �= j. The pair (W, S) where W is a Coxeter
group with generators S = {r1, · · · , rn} is called a Coxeter system. A Coxeter
system (W, S) is called spherical if W is a finite group.

A part of the data defining a building Δ is a Coxeter group W which deter-
mines a highly symmetric simplicial complex Σ = Σ(W, S), called the Coxeter
complex. We do not give here a precise definition of a building, but roughly,
a building Δ is glued together from multiple copies of Σ in a certain regular
fashion. When W is a finite Coxeter group, the Coxeter complex is a topological
sphere, and the corresponding building is said to be of the spherical type.

As we mentioned before, Tits [40] gave a complete classification of thick, irre-
ducible, spherical buildings of rank greater than 3. The buildings of rank 2 are
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called generalized n-gons or generalized polygons. Here, we work with the follow-
ing axiomatization of the generalized n-gons.

Definition 4.1.2. Let Γ = (P, L, I) be a triple where P and L are two sets whose
elements are called points and lines, respectively, and I ⊆ (P × L)∪ (L × P) is a
symmetric relation which is called the incidence relation. Γ can be considered as a
bipartite graph where incidence relation can be considered as the edge relation
between elements of P and L. We call Γ a generalized n-gon if:

1. the diameter of Γ is equal to n;

2. the girth of Γ (i.e. length of the shortest cycle) is equal to 2n.

We call a generalized n-gon thick if every element is incident with at least
three other elements. We denote by dΓ (x, y) the graph distance between x and
y in Γ.

Definition/Notation 4.1.3. Suppose Γ is a generalized n-gon.

1. For a ∈ Γ, define D(a) := {b ∈ Γ : (a, b) ∈ I}. If a is a line then D(a) is
called a point row and if a is a point then D(a) is called a line pencil.

2. A path in Γ is a sequence (x0, · · · , xk) of points and lines such that
(xi, xi+1) ∈ I for 0 ≤ i ≤ k − 1.

3. By an ordinary n-gon we mean a simple cycle of length 2n. If we fix labels
x0, x1, · · · , x2n = x0 and a point x0 for an ordinary n-gon, we call this
tuple an ordered ordinary n-gon. Note that a projective plane is nothing
but a generalized 3-gon.

4.1.2.1 BN-pairs

Definition 4.1.4. We say that a pair of subgroups B and N of a group G is a
BN-pair if:

1. 〈B, N〉 = G;

2. T := N ∩ B � N;

3. W := N/T is a Coxeter system with generators S;

4. for all s ∈ S and w ∈ W,

sBw ⊆ BswB ∪ BwB.

5. for all s ∈ S,
sBs−1 � B.
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The group W is called Weyl group associated to the BN-pair. Also (G, B, N, S)
is called a Tits System. A BN-pair splits if there is a normal nilpotent subgroup
U of B with B = U.T. Moreover, we call |S| the rank of a BN-pair.

Example 4.1.5. (see [1]) Here are some standard examples of groups with a
BN-pair.

1. Suppose G is any 2-transitive permutation group on a set X with more
than 2 elements. Let B be the subgroup of G fixing a point x, and let N be
the subgroup fixing or exchanging two points x and y. Then the subgroup
T is the set of elements fixing both x and y, and W has order 2 with its
nontrivial element represented by anything exchanging x and y.

2. Conversely, if G has a BN-pair of rank 1, then the action of G on the cosets
of B is 2-transitive. Hence BN-pairs of rank 1 are more or less the same as
2-transitive actions on sets with more than 2 elements.

3. The typical example of an algebraic group with a BN-pair is: suppose G
is the general linear group GLn (K) over a field K. Take B to be the upper
triangular matrices, T to be the diagonal matrices, and N to be matrices
with exactly one non-zero element in each row and column. There are
(n − 1) generators wi’s, represented by the matrices obtained by swapping
two adjacent rows of a diagonal matrix.

4. More generally, any group of Lie type has a BN-pair.

As we mentioned before, one can associate a building to each group with a
BN-pair (see e.g. [40] Thm. 3.2.6). Here, we focus on groups with a BN-pair of
rank 2. Note that the building that one gets from a group with a BN-pair of
rank 2 is a generalized n-gon.

The following proposition allows us to go from a BN-pair of rank 2 to a
transitive action on the n-gons of the associated generalized n-gon.

Proposition 4.1.6. ([40] Thm. 3.2.6 and Thm. 3.11) For a generalized n-gon, an au-
tomorphism group acts transitively on ordered ordinary n-gons if and only if the auto-
morphism group has a BN-pair.

4.1.2.2 Moufang condition

Definition 4.1.7. A generalized n-gon Γ = (P, L, I) satisfies the Moufang condi-
tion if for every path γ = (x0, · · · , xn) of length n, the pointwise stabilizer Gγ

of the set D (x1) ∪ · · · ∪ D (xn) acts transitively on the set of ordinary n-gons
containing γ.
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By the classification of Moufang polygons due to Tits and Weiss [41] any
Moufang polygon arises from the standard BN-pair of an essentially simple
algebraic group.

4.2 very homogeneous generalized n-gons

In [2], Baldwin adapted Hrushovski’s generic construction to build an almost
strongly minimal non-Desarguesian projective plane. Later, in [8] Debonis and
Nesin generalized Baldwin’s method to construct 2ℵ0 -many almost strongly
minimal generalized n-gons which do not interpret a group. However, their
method was only suitable to construct generalized n-gons for odd n. In [36]
Tent used a similar approach to construct very homogeneous generalized n-
gons for all n with some stronger properties. She constructed the generalized
n-gons for n ≥ 3 for which the automorphism group acts transitively on the
set of ordered ordinary (n + 1)-gons. As we mentioned in the introduction by
Proposition 4.1.6, this transitivity result implies that the automorphism group
has a BN-pair. By Lemma 2.2.35 and Lemma 2.1.42 no group is interpretable in
these class of generalized n-gons .

Here, we prove that in the both cases of the very homogeneous generalized n-
gons constructed in [36], the automorphism group is a simple group. In the pre-
vious chapter we investigated the automorphism group of the ab-initio generic
construction (the full class). Although there is very similar combinatorial behav-
ior in the generic structures arising from the full class and sub class, the proofs
should be modified.

4.2.1 Set-up

Let the first-order language L contain a binary irreflexive symmetric relation
R (− , −) and a predicate P(−). An L-structure can be considered as a graph,
bipartite with respect to P. The pre-dimension function δ (−) (see Def. 2.2.11)
considered in [36] to construct generalized n-gons for such L-structures A, is
of the following form:

δ(A) = (n − 1) · |A | − (n − 2) · |R(A) | .

Let K be the class of all finite graphs A, bipartite with respect to P, satisfying
the following two conditions:

1. A contains no 2m-cycle for m < n;

2. if B ⊆ A contains a 2m-cycle for m > n, then δ(B) ≥ 2n + 2.
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Recall that, using the pre-dimension function δ, one can define a self-sufficiency
“�” as follows (see Def. 2.2.11): for A , B ∈ K with A ⊆ B

A � B if and only if δ(B ′ ) ≥ δ(A)

for all A ⊆ B′ ⊆ B.

Theorem 4.2.1. ([36] Thm. 3.15) The class (K,�) is a smooth class and it has the
amalgamation property. Hence the (K,�)-generic structure exists and it is ℵ0-stable.

To obtain an almost strongly minimal generalized n-gons, one can use the col-
lapsing method. In [36], Tent considers the following restriction on the elements
of the class.

Consider a μ-function, finite-to-one, from the set of pairs (A, B) such that
B is 0-minimally algebraic over A to the natural numbers satisfying following
assumptions.

1. If (A, B) and (A′, B′) have the same isomorphism type, then μ (A, B) =

μ (A′, B′).

2. If A = {a0, an−1} and B = {a1, · · · , an−2} with AB having edges R (ai, ai+1)

for 0 ≤ i < n − 1, then μ (A, B) = 1; otherwise μ (A, B) ≥ max {δ (A) , n}.

Let Kμ ⊂ K, be the class of those elements of C ∈ K with the following property:
if B is a 0-minimally algebraic set over A and A, B ⊂ C, then the number of
copies of B over A inside C is less than or equal to μ (A, B). Then

Theorem 4.2.2. ([36] Thm. 4.4 and Thm. 4.6) The class (Kμ,�) is a smooth class and
it has the samalgamation property. Hence the (Kμ,�)-generic structure exists and it
is almost strongly minimal.

Before starting to modify the proofs that were given in the previous chapter,
we review some basic facts about the construction which will be used in the
proofs very often.

4.2.2 Remarks on the transitivity properties of the structures

Let Γ be either case of the very homogeneous generalized n-gons constructed
in [36].

Remark 4.2.3. The following holds

1. Suppose A ⊆ B, and B is �-closed in Γ and b ∈ B. Then

d (bA) = dB (bA) = min
{

δ
(

B′) : bA ⊆ B′ ⊆ B
}

.
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2. For every finite set B ⊂ Γ, cl (B) ⊂ acl (B) and d (B) = d (acl(B)).

3. Suppose a, b ∈ Γ and dΓ (a, b) < n. By the axioms for a generalized n-gon,
there is a unique shortest path from a to b, which we denote it by γa,b.

4. Let γm = (x0, x1 · · · , xm) be a path of length m in Γ. Then

δ (γm) = (n − 1) · (m + 1)− (n − 2) · m = n + m − 1.

Note that, this implies δ (γm) � 2n = δ (Z2n) for m ≤ n + 1 where Z2n is a
cycle of length 2n. Hence γm � Z2n.

5. By the �-richness of Γ and the axioms for a generalized n-gon,

a) for γn+1 there is a unique Z2n such that γn+1 � Z2n;

b) for γn+3 there is a unique Z2n+2 such that γn+3 � Z2n+2.

Corollary 4.2.4. Let γ′
m and γm be two distinct paths of length m in the structure Γ

such that m � n + 1. Then, there is an automorphism of Γ which maps γ′
m to γm.

Proof. By Remark 4.2.3, both γ′
m and γm are isomorphic and �-closed. Then,

by the �-genericity of Γ there exists an automorphism of Γ, which maps γ′
m to

γm.

Definition 4.2.5. Let {s0, s1, s2, s3} be a set of distinct elements (points and lines)
such that if n is even, dΓ

(
si, sj

)
= n for i �= j and if n is odd, then dΓ (s0, s3) =

dΓ (si, si+1) = n for i = 0, 1, 2 and dΓ (s0, s2) = dΓ (s1, s3) = n − 1. We say that
{s1, s2, s3, s4} forms a base configuration.

Remark 4.2.6. If S := {s0, s1, s2, s3} ⊂ Γ is a base configuration, then d (S) =

4 · (n − 1).

We present the following lemma for the class (Kμ,�). Note that Kμ⊂ K. Thus,
if we prove that some construction is in Kμ, then it is automatically in K.

Lemma 4.2.7. There are infinitely many isomorphic types of 0-minimally algebraic sets
over a base configuration.

Proof. For l ≥ 2, let Cl =
{

c1, · · · , c4l(n−2)

}
be a simple 4l · (n − 2)-cycle i.e. Cl |=[∧

1≤i<4l(n−2) R (ci, ci+1)
]
∧ R

(
c4l(n−2), c1

)
with the following configuration over

S:

SCl |=
∧

0≤i<4l

R
(

c1+i(n−2), si∗
)

;

where i∗ ≡ i (mod 4) with i∗ = {0, 1, 2, 3}. Then δ (Cl/S) = (n − 1) ·
(4l · (n − 2))− (n − 2) · (4l · (n − 2) + 4l) = 0.
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Claim. δ (D′/S) > 0 for any proper subsets D′ of Cl .

Proof ofthe claim. If D′ = Cl\
{

cj
}

, then δ(D′/S) > 0. Consider the sets:

Li,j
m :=

{
c1+i(n−2)+j, · · · , c1+i(n−2)+j+m

}
,

Ti :=
{

c1+i(n−2), · · · , c1+(i+1)(n−2)

}
,

Si,j,k :=
{

c1+i(n−2)−j, · · · , c1+i(n−2), · · · , c1+i(n−2)+k

}
,

where 1 ≤ j, k ≤ n − 3, 0 ≤ i < 4l and 0 ≤ m ≤ n − j − 2. If D′ = Cl\Li,j
m for

some i and j with m < n − 2, then as the valency of each point is at most two,
we find that

δ
(

D′/S
)
= 0 − m · (n − 1) + (n − 2) · (m + 1) = n − 2 + m.

The length of m-chains are less than n − 2; hence δ (D′/S) is at least 2. In the
general case every proper subset D′ of Cl is a disjoint union of its connected
components, so δ (D′/S) is the summation of the pre-dimension of its con-
nected components over S. We show that each connected component has the
pre-dimension greater than 0 over S which establishes the case. The simplest
connected components are of the form Li,j

m or Ti or Si,j,k for which

δ
(

Li,j
m /S

)
= n + m − 2;

δ
(

Ti/S
)
= (n − 1) · (n − 1)− (n − 2) · n = 1;

δ
(

Si,j,k/S
)
= (n − 1) · (j + k + 1)− (n − 2) · (j + k + 1) = j + k + 1.

Any connected component can be partitioned into finitely many simple con-
nected components which are connected by an edge (since we assume they are
disjoint and that the combination is connected so there is an edge which con-
nects the two connected components). It is enough to show that any disjoint
combination of Li,j

m , Ti and Si,j,k has pre-dimension greater than 0 over S. Be-
cause the configuration is symmetric, it is enough to check it for some fixed
i > 1. One can see that any possible combination of Li,−

m and Si,−,− are again of
the form Si,−,−. Any combination of Li,−

m and Ti+1 can be considered as a combi-
nation of Si,−,− and Si+1,−,−. Moreover, Ti and Ti+1 can never be connected by
an edge. Also, the possible combination of Si,−,− and Ti+1 can be considered as
a partition of Si,−,− and Si+1,−,−. Thus, it is enough to check the pre-dimension
of the combination of Si,−,− and Si+1,−,− over S which is the following:

δ
(

Si,j,− ∪ Si+1,−,k/S
)
= (n − 1) (j + k + n − 1)− (n − 2) (k + j + n) = k + j + 1.
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From above, we see that the pre-dimension of each connected component over
S is greater 0. Hence δ(D′/S) > 0. This implies that the Cl’s are 0-minimally
algebraic sets over S for all l > 1. One can easily check that there is no cycle of
length less than 2n in Cl for all l > 1 and that the properties of the class Kμ are
satisfied. Hence, each Cl ∪ S is an element of the class Kμ for l ≥ 2. Moreover, it
is clear that Cl and Cl′ are not isomorphic when l �= l′. Hence, there are infinitely
many isomorphic types of 0-minimally algebraic sets over a base configuration.

Corollary 4.2.8. Suppose A := {s0, s1, s2, s3} forms a base configuration and that
it is �-closed in Γ where Γ is either the (K,�)-generic structure or the (Kμ,�)-
generic structure. Suppose d (b/A) = n − 1 and dΓ (b, si) = n for some i = 0, 1, 2, 3.
Then, there exists infinitely many isomorphism types of 0-minimally algebraic sets over
{s0, s1, s2, s3, b}.

Proof. Since d (b/A) = n − 1, dΓ (b, a) ≥ n − 1 for all a ∈ A. Suppose n is odd.
By our assumption, there is at least one si with dΓ (b, si) = n. From the axioms
of a generalized n-gon, it follows that there is no cycle of odd length. Thus,
there are two possibilities: either

1. dΓ (b, si) = n for i = 0, 2 and d (b, si) = n − 1 for i = 1, 3, or

2. dΓ (b, si) = n for i = 1, 3 and d (b, si) = n − 1 for i = 0, 2.

Without loss of generality suppose (1) holds. For l ≥ 2, let Cl be the same
structure as it was considered in Lemma 4.2.7, a cycle of length 4l · (n − 2).
Moreover, assume Cl has the same configuration over {s0, · · · , s3}, except that
we replace R (s1, cn−1) with R (s1, b). Since the number of relations between Cl

and {s0, s1, s2, s3, b} is exactly the same number of relations between Cl and
{s0, s1, s2, s3} in Lemma 4.2.7, we find that δ (Cl/ {s0, s1, s2, s3, b}) = 0, and Cl is
0-minimally algebraic over {s0, s1, s2, s3, b}.

Suppose n is even. Again, by our assumption, there is at least one si with
dΓ (b, si) = n. Then, the only possibility is d (si, b) = n for all i = 0, 1, 2, 3. For
the case that n is odd, let Cl be a cycle of length 4l · (n − 2) and suppose it has the
same configuration as it is described in Lemma 4.2.7 over {s0, · · · , s3}, except
that this time we replace R (s0, c1) with R (s0, b). One can see Cl is 0-minimally
algebraic over {s0, s1, s2, s3, b}.

Corollary 4.2.9. Suppose that {s0, s1, s2, s3} ⊂ A forms a base configuration and A
is �-closed in Γ. Let b /∈ A, d (b/A) = n − 1, and dΓ (b, si) = n for some i =

0, 1, 2, 3. Then there is a set D, 0-minimally algebraic over {s0, s1, s2, s3, b}, such that
D ∩ cl (Ab) = ∅, |R (D, b)| = 1, and D ∪ cl (Ab) ∈ Kμ.
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Proof. Follows from Corollary 4.2.8 and Lemma 4.2.10.

Corollary 4.2.10. Let A := {s0, s1, s2, s3} be a set of distinct points or lines which form
a base configuration. Suppose A1 ⊇ A with A1 finite and �-closed in Γ. Then there is
a set D, 0-minimally algebraic over A, such that D ∩ A1 = ∅ and D ∪ A1 ∈ Kμ.

Proof. By Lemma 4.2.7, there are infinitely many isomorphism types of 0-
minimally algebraic sets over A. The set A1 is finite and �-closed. According to
Lemma 3.1.5, 0-algebraic sets have empty intersection and by Lemma 3.1.4, any
0-algebraic set over A which intersects with A1, is contained in A1. So there is
a 0-minimally algebraic set D over A, which is not contained in A1 and D ∪ A1

satisfies the axioms of Kμ. Hence D ∪ A1 ∈ Kμ and D ∩ A1 = ∅.

4.2.3 ℵ0-Stable n-gons

Here, we modify the proofs in Section 3.2 for the ℵ0-stable generalized n-gons
constructed in [36].

First, we present some remarks about the properties of ℵ0-stable generalized
n-gons. The class (K,�) in this section is the class that we defined in 4.2.1. Let
Γ be the (K,�)-generic structure.

Lemma 4.2.11. 1. For A, B ∈ K, the following holds,

δ(AB) = δ (A) + δ (B)− δ (A ∩ B)− (n − 2) · |R (A\B; B\A)| .

2. cl (A) � acl(A) � gcl (A) � Γ for A ⊆ Γ.

3. d (acl (A)) = d (A).

4. acl (cl (A)) = dcl (cl (A)).

5. If A, B are �-closed and d (AB) = d (A) + d (B), then gcl (A) ∩ gcl (B) = ∅.

6. acl(∅) = gcl (∅) = ∅.

Proof. (1) follows from Definition 2.2.11. (2) and (3) follow from Remark 2.2.25.
For (4) note that dcl (cl (A)) ⊆ acl (cl (A)) always hold. It remains to show that
acl (cl (A)) ⊆ dcl(cl (A)). Note that by (2), it follows that acl(cl (A)) ⊂ gcl (A).
Let B be a 0-minimally algebraic set over A0 ⊂ dcl (cl (A)). Then, the result
follows from the fact that the axioms for a generalized n-gon guarantees either
B is unique or there are infinitely many copies of B over A0. (5) follows from
(6). For (6) note that the pre-dimension of a single element is (n − 1) and every
single element is �-closed.
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4.2.3.1 Modification of the observation

Here, we modify observation 3.2.1 in Chapter 3.

Lemma 4.2.12. Suppose B is ν-minimally algebraic over A and AB ∈ K. Then, there
exists B1 � B2 ∈ K such that AB � B1 and δ (B1/ (B2\B1) A) = 0.

Proof. Let S1 :=
{

s1
0, · · · , s1

3
}

and S2 :=
{

s2
0, · · · , s2

3
}

be two disjoint sets such
that the elements of each set form a base configuration. Let b ∈ B and m :=
8 (n − 2). Similar to Lemma 4.2.7, let C2 := {b} ∪ {b′i : i < m} be a cycle of
length 8 · (n − 2) such that C2 is 0-minimally algebraic over S := S1 ⊗ S2 and
|R (b; S)| ≤ 1. It is easy to see that δ (C/b) ≥ 0 for all C ⊆ C2 (e.g. δ (C2/b) =
8 · (n − 2) − (n − 1) ≥ 0). Hence AB � AB ⊗{b} C2. One can easily check the
axioms and see that AB ⊗{b} C2 ∈ K. Let B1 := AB ⊗{b} C2. Let B2 be a new
structure on B1 ⊗ S with additional edges such that R (B1; S) = R (C2; S). Note
that |R (s; B1)| = 1 for s ∈ S. Hence B1 � B2 ∈ K and δ (B1/ (B2\B1) A) = 0.

Lemma 4.2.13. Let A � B � Γ. Then, there exists H1 � H2 ∈ K such that B � H1,
δ (H1/ ((H2\H1) A)) = 0 and (H2\H1) A � H2.

Proof. By Lemma 3.2.5, there exists a chain of �-closed subsets

A = A0 � A1 � · · · � An = B

where δ (Ai/Ai−1) = 0 if i is odd and Ai\Ai−1 is di-algebraic over Ai−1 if i is
even. For each even i, using Lemma 4.2.12, consider Bi

1 and Bi
2 such that

1. Bi
1 � Bi

2 ∈ K and Ai � Bi
1, and

2. δ
(

Bi
1/

(
Bi

2\Bi
1

)
Ai−1

)
= 0.

Moreover we ask Ei ∩ Ej = ∅ for i �= j where Ek := Bk
2\Ak. Let H1 :=⋃

i Bi
1 and H2 :=

⋃
i Bi

2. It is easy to see that δ (H1/ ((H2\H1) A0)) = 0 and
(H2\H1) A0 � H2.

Lemma 4.2.14. Let A � B � Γ. Let H1 � H2 � Γ and A = A0 � · · · � An = B be
as given by Lemma 4.2.13. Suppose H � Γ such that H0 := H ∩ H2 = (H2\H1) A and
let f ∈ AutA (Γ) be such that f (H2\H1)∩ (H2\H1) = ∅. Then f (B\A)∩ (B\A) ⊆
A1\A0. Moreover if we ask A1 = A0, then f (B\A) ∩ (B\A) = ∅.

Proof. This follows from f (H2\H1) ∩ (H2\H1) = ∅ and Lemmas 4.2.13 and
4.2.14.
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4.2.3.2 Stationary independence on a countable family

Recall that for A ⊂ Γ, we define gcl (A) := {x ∈ Γ : d (x/A) = 0}. Similar to
Section 3.2.4, let Y := {gcl (A) : A ⊂ Γ, A is finite } and let the bases of neigh-
borhoods of the identity be

{AutX (Γ) : X ∈ Y} .

Define |�
d as in Definition 3.2.11 define and |�

° as was defined |� in Definition
3.2.13. Note that unlike the uncollapsed ab-initio generic structures |�

° is not
the forking independence relation. Now, a theorem analogue to Theorem 3.2.21
holds in this setting.

Theorem 4.2.15. The relation |�
d is a stationary independence relation for elements of

Y.

4.2.3.3 gcl-bounded automorphisms

Recall that we say an automorphism β is gcl-bounded if there exists a finite set
A ⊂ Γ such that β(m) ∈ gcl (mA) for all m ∈ Γ.

Remark 4.2.16. Suppose β is a gcl-bounded automorphism and A ⊂<ω Γ such
that β (m) ∈ gcl (mA) for all m ∈ Γ. Then

1. we can assume A is �-closed since by Lemma 4.2.11, cl (A) ⊆ gcl (A);

2. we can assume d (A) > 4 · (n − 2); since gcl (mA) ⊆ gcl (mB) for B ⊇ A
and m ∈ Γ.

Hence, from the remark above we can make the following assumption for the
set A.

assumption If n is even we assume A contains {s0, s1, s2, s3} and {s′0, s′1, s′2, s′3}
as subsets such that each of them form a base configuration and P(s0) ⇔
¬P(s′0) (i.e. four points and four lines). If n is odd, A contains {s0, s1, s2, s3}
as a subset such that the si’s form a base configuration.

Lemma 4.2.17. Suppose A � Γ. Let a ∈ A and f ∈ Aut (Γ) be such that f (a) �= a
and f (a) ∈ A. Let l ∈ N such that 0 < l ≤ n − 2. Then f (x) �= x for all x ∈ Γ\A
with dΓ (x, a) = d (x/A) = l.

Proof. Let x ∈ Γ\A and dΓ (x, a) = d (x/A) = l ≤ n − 2. Let γx,a and
γ f (x), f (a) be the shortest path connecting x to a and f (x) to f (a), respectively.
If f (x) = x, then δ (x/A) = 2l − (n − 1) < l. This contradicts our assumption
that d (x/A) = l. Hence f (x) �= x.
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Lemma 4.2.18. Suppose A � Γ. Let a ∈ A and f ∈ Aut (Γ) such that f (a) �= a
and f (a) ∈ A. If l ∈ {n − 1, n}, then there exists x ∈ Γ such that dΓ (x, a) = l,
d (x/A) = n − 1 and f (x) �= x.

Proof. Let x0 ∈ Γ\A be such that d (x0/A) = dΓ (x0, a) = n − 2. By Lemma
4.2.17 f (x0) �= x0. Let A1 := cl (x0 f (x0) A). Pick x1 ∈ Γ such that d (x1/A1) =

dΓ (x1, x0) = 1. Then by Lemma 4.2.17 f (x1) �= x1 holds. This establishes the
case l = n − 1.

Let A2 := cl (A1x1 f (x1)) and pick x2 ∈ Γ such that d (x2/A2) = dΓ (x2, x1) =

1. Again, by Lemma 4.2.17 f (x2) �= x2 holds. It is easy to see that d (x2/A) =

n − 1. This establishes the case l = n. Note that for the case of n > 3, in the first
step, we could pick x1 ∈ Γ with d (x1/A) = dΓ (x1, x0) = 2.

Corollary 4.2.19. Suppose g ∈ Aut (Γ) and g �= idΓ. Let X be finite and �-closed,
and let k ∈ N. Then, there exists a �-closed set Z containing X such that Z contains
disjoint sets S1, · · · , Sk such that

1. Si form a base configuration for each i;

2. g(s) �= s for all s ∈ ⋃
i Si;

3. d (
⋃

i Si) = ∑i d (Si);

4. Sj � g (
⋃

i Si) for j ≤ k.

Proof. Let z1 ∈ Γ\X such that g (z1) �= z1; note that existence of such an ele-
ment follows from Lemma 4.2.17. Let Z1 := cl (z1g (z1) X). By applying Lemma
4.2.18, we may pick z2 ∈ Γ\Z1 such that dΓ (z2, Z) = n, d (z2/Z) = n − 1
and g (z2) �= z2. Let Z2 := cl (z2g (z2) Z1). Similarly we pick z3 ∈ Γ\Z2 and
z4 ∈ Γ\cl (Z2z3g (z3)) such that z3 and z4 satisfy the distance conditions of
the base configuration for {z1, z2, z3, z4} with g (z3) �= z3 and g (z4) �= z4. Let
S1 := {z1, z2, z3, z4}. Inductively, using Lemma 4.2.18, we can continue the pro-
cedure to find k-many disjoint sets Si with the base configuration as desired.

Lemma 4.2.20. Suppose g is not a gcl-bounded automorphism. Let X, Y ∈ K and
X � Y. Moreover assume δ(Y0/X) > 0 for all X � Y0 ⊆ Y. Then, there exists Y′ ⊂ Γ
such that tp(Y′/X) = tp(Y/X) and d (Y′/X) = d (Y′/Xg (Y′)).

Proof. We find Y′ ⊂ Γ in four steps.
Step 1 Using Lemma 3.2.5, there is a �-chain X = X0 � X1 . . . � Xn = Y

such that δ(Xi/Xi−1) = 0 if i is odd and Xi\Xi−1 is di-algebraic over Xi−1 if i
is even, where ∑i di = m. Note that X0 = X1 by our assumptions. By Lemma
4.2.13, there is H1 � H2 ∈ K such that Xn � H1, δ (H2/ ((H2\H1) X0)) = 0
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and (H2\Xn) X0 � H2. Suppose |H2\H1| = m and enumerate H2\H1 as
{hi : 1 ≤ i ≤ m}. Note that from the way that H2 and H1 are constructed in
Lemma 4.2.13, we have m

4 ∈ N.
Step 2 Since g is not gcl-bounded, using Corollary 4.2.19, we can find a fi-

nite �-closed set Z ⊂ Γ which contains X1 := cl (X ∪ g (X)) and Z contains
disjoint sets S1, · · · , S m

4
that they satisfy properties (1) to (4) of Corollary 4.2.19.

Enumerate the elements of
⋃

i Si as {z1, · · · , zm}. Note that g(zi) �= zi for all
0 < i ≤ m.

Step 3 One can check that H2 ⊗X Z ∈ K. Consider an L-structure A ∈ K
obtained from H2 ⊗X Z by identifying each hi with zi for all 1 ≤ i ≤ m. More
precisely the domain of A is H1 ∪ Z and, further we ask the following;

1. A |= R (y1, y2) if and only if H1 |= R (y1, y2) for y1, y2 ∈ H1;

2. A |= R (x1, x2) if and only if Z |= R (x1, x2) for x1, x2 ∈ Z;

3. A |= ∧
i R (xi, zi) if and only if H2 |= ∧

i R (xi, hi) for all xi ∈ H1 and
zi ∈ Z\X.

Note that δ (A/Z) = 0, Y � A and Z � A.
Step 4 Let Z1 := cl (Z ∪ g (Z)). One can check that A ⊗Z Z1 ∈ K. By the �-

richness of Γ, we can embed a �-closed copy of A ⊗Z Z1 over Z1 in Γ, which we
also denote by A, such that g (A\Z)∩ Z1 = ∅. Then A |�

°
Z

Z1 holds. Let Y′ ⊂ A
be such that tp(Y′/X) = tp(Y/X).

Claim. Y′ |�
°
X

g (X).

Proof. Both X and Y′ are �-closed subsets of Γ, further Y′ and g (X) are free-
amalgam over X, and cl (Y′X1) = Y′X1.

Claim. Y′ |�
°
X∪g(X)

g (Y′).

Proof. Since g (zi) �= zi holds for the specified zi’s, one can see g (Y′) �= Y′.
Moreover, by the Lemma 4.2.14 g (Y′) ∩ Y′ = ∅ holds. The sets Y′ and g (Y′)
are free-amalgam over Z1. Hence they are free-amalgam over X1; otherwise
it implies |R (Y′\Z1; g (Y′) \Z1) | ≥ 1 and then δ (Y′g (Y′) /Z1) < 0 which is
impossible because of the fact that Z1 is a �-closed set. Using the properties
of the construction in step 2, it is easy to check that cl (Y′X1) = Y′X1 and
cl (g (Y′) X1) = g (Y′) X1. Then Y′ |�

°
X∪g(X)

g (Y′) follows.

One can use the transitivity property of |�
d to establish the result, but we

prove the result without using that. Since Y′ |�
°
X

g (X), and Y′ |�
°
X∪g(X)

g (Y′),
d (Y′/X)) = d (Y′/ (Xg (X))) and d (Y′/ (Xg (X))) = d (Y′/ (Xg (X) g (Y′))).
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Thus d (Y′/X) = d (Y′/ (Xg (X) g (Y′))), so d (Y′/X) = d (Y′/Xg (Y′)) as
desired.

Now Lemma 4.2.20 implies the same corollary as Corollary 3.2.28.

Corollary 4.2.21. Every non gcl-bounded automorphism of Γ moves almost maximally
for the |�

d-independence relation on the family Y.

Proof. The proof is the same as for Corollary 3.2.28.

4.2.3.4 gcl-bounded automorphisms

Similar to the previous chapter, we want to prove that there is no non-trivial gcl-
bounded automorphism in the automorphism group of an ℵ0-stable generalized
n-gons. The proof that we present here is a modification of Theorem 3.1.1. Also
we have to modify Lemmas 3.1.8 and Lemma 3.1.9. Note that exactly the same
proof works for Theorem 4.2.28 which is given in Section 4.2.4.

Lemma 4.2.22. Suppose β is a non-trivial bounded automorphism over the set A. If
A � Ab � Γ and d (b/A) = n − 1, then b is fixed by β.

Proof. Note that from d (b/A) = n − 1 it follows that b /∈ gcl (A). Suppose
b �= β (b). Then by the definition of bounded automorphism β (b) ∈ gcl (bA)

and
d (bβ (b) A) = d (bA) = δ (cl (bA)) = δ (bA) = δ(A) + n − 1.

Let B := cl (Abβ (Ab)). Since d (Aβ (A)) = d (A), we have that d (B) = δ(B) =
δ(A) + n − 1. Let B0 := B\A. Then

δ(B/A) = δ(B0/A) = δ(B0)− (n − 2) · |R(B0; A)| = n − 1,

and hence
δ (B0)− (n − 2) · |R (B0; A)| = n − 1.

Since d (b/A) = n − 1, dΓ (b, a) ≥ n − 1 for all a ∈ A. By our assumption, A
contains enough elements for our purpose; namely A contains si for 0 ≤ i ≤ 3
which form a base configuration. Let C := B ∪ D such that D is 0-algebraic over
B and D is 0-minimally algebraic over {s0, s1, s2, s3, b}. Moreover we ask that
|R(b, D)| = 1 and β (D) ∩ B = ∅.
Since B is finite and contains finitely many 0-minimally algebraic sets over
{s0, s1, s2, s3, b}, by Corollary 4.2.7 there exist such D and C ∈ K. Since β (b) �= b
and β (D) is 0-algebraic over B, D �= β (D). By Lemma 3.1.5, D and β (D) are
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disjoint sets. It is clear that B � C, and by the �-richness of Γ, we can find an iso-
morphic copy of C over B in Γ which is �-closed. One can see that D ⊂ gcl (B)
since δ (D/B) = 0. Moreover, from the fact that DAb � Γ it follows that:

1. D � cl (A) and D � gcl (A) since d (D/A) = δ(D/A) = n − 2;

2. b /∈ cl (DA) and b /∈ gcl (DA) since d (b/DA) = δ(b/DA) = 1.

By Lemma 3.1.4, we have β (D) ∩ D = ∅, hence

δ (B0/Dβ (D) A) = δ (B0)− (n − 2) · |R (B0, Dβ (D) A)| .

Now by our assumption |R (B0, Dβ (D))| = 2, so δ (B0/Dβ (D) A) ≤ 0.
This means that B0 ⊂ gcl (Dβ (D) A) = gcl (DA). Thus b ∈ gcl (DA) and
d (b/DA) = 0, which contradicts (2). Hence b is a fixed point.

Lemma 4.2.23. Suppose A � Ab � Γ, d (b/A) = n − 1 and e ∈ Γ such that R (b, e)
holds. Then e is fixed by β.

Proof. Two cases could happen: either
Case one: d (e/A) = n − 1. Then Ae is �-closed, and the result holds from
Lemma 3.1.8.
Case two: d (e/A) < n − 1. Let E = cl (eA). Then

δ(A) < δ(E) = d (E) < δ(Eb) = d (bE) ,

so b /∈ gcl (e, A). If β (e) �= e, then |R (b; eβ (e) A) | = 2 and b ∈ gcl (eβ (e) A). It
follows that d (b/cl (eβ (e) A)) ≤ 0 and it is a contradiction. So e is a fixed point
of β.

Theorem 4.2.24. There is no non-trivial gcl-bounded automorphism in the (K,�)-
generic structure Γ.

Proof. Let β be a non-trivial bounded automorphism and A be a �-closed subset
of Γ such that β (m) ∈ gcl (mA) for all m ∈ Γ. Note that by Lemma 4.2.23, every
b ∈ Γ with d (b/A) = n − 1 is a fixed point of β. First we prove that gcl (A) is
fixed pointwise. Consider d ∈ gcl (A) and D := cl (dA). Let E ⊃ D be such that
E = D ∪ {e1, · · · , en−1} with

E |= R (d, e1) ∧
[ ∧

1<i≤n−1

R (ei−1, ei)

]
.

Note that |R (D; e)| = 1 and |R (D; {ei : 1 < i ≤ n − 1})| = 0. It is clear that
D � E and δ(e1/D) = δ

(
ei/

({
ej : 1 ≤ j < i

} ∪ D
))

= 1 for every 1 < i ≤ n − 1.
Using the �-richness of Γ, we can find an isomorphic copy of E in Γ over D
which is �-closed. Since d (en−1/D) = d (en−1/A) = n − 1, we find that en−1 is
a fixed point of β. Then by Lemma 4.2.23, en−2 is also a fixed point.
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Claim. All ei’s for i = 1, · · · , n − 3 are fixed points of β.

Proof of the claim. Suppose ei is a fixed point with the minimum index 1 ≤ i ≤
n − 2 such that for all j ≥ i, ej is a fixed point. If i = 1, then we are done.
Suppose i > 1 and ei−1 is not a fixed point then |R (ei; ei−1β (ei−1))| = 2 and
hence

δ (ei/ei−1β (ei−1) A) ≤ 0.

This implies that ei ∈ gcl (ei−1β (ei−1) A) and d (ei/ei−1 A) ≤
δ (ei/ei−1β (ei−1) A) < 1 which is a contradiction. Thus the claim follows.

If β (d) �= d, then |R (e1; Dβ (D))| = 2 and δ(e1/Dβ (D)) < 1, which is a
contradiction. This proves that every d ∈ gcl (A) is a fixed point of β.

Now let c ∈ Γ such that d (c/A) > 0 and d (c/A) = m �= n − 1. Similar to the
previous case, build a set E = cl (cA) ∪ {ei : 0 < i ≤ n − m − 1} such that

E |= R (c; e1) ∧
[ ∧

1<i≤n−m−1

R (ei−1; ei)

]
,

|R (cl (cA) ; e1)| = 1, and |R (cl(cA); {ei : 1 < i ≤ n − m − 1})| = 0. By the same
argument as above, E ∈ K, and we can find an isomorphic copy of E in Γ such
that cl (Ac) � E � Γ. Since d (en−m−1/A) = n − 1 then en−m−1 is a fixed point.
By Lemma 4.2.23, en−m−2 is also fixed by β. Similar to the proof of the claim, we
can show that c is a fixed point too.

4.2.3.5 Bounded simplicity of the ℵ0-stable n-gons

Corollary 4.2.25. Let Γ be the �-generic structure. Then Aut (Γ) is boundedly simple.

Proof. First of all Autf (Γ) = Aut (Γ) since Th (Γ) admits weak elimination of
imaginaries (see Cor. 2.1.4), gcl (∅) = ∅ and “dcl (−) = acl (−)” (by Lemma
4.2.11 part (4)). By Theorem 3.2.21, |�

d is a stationary independence relation for
the countable family Y. By Theorem 4.2.24 every non-trivial automorphism of
Γ is not gcl-bounded. Then, Corollary 4.2.21 implies that all automorphisms of
Γ move almost maximally with respect to |�

d. By Lemma 4.2.11, gcl (∅) = ∅.
Finally from Theorem 3.2.30, we conclude that Aut (Γ) is boundedly simple.

4.2.4 The almost strongly minimal generalized n-gons

In this section, we prove the simplicity of the automorphism group of the almost
strongly minimal generalized n-gons constructed in [36]. Recall that to obtain a
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finite Morley rank generalized n-gon by the Hrushovski method one needs to
consider a finite-to-one function for 0-minimally algebraic pairs in order to re-
strict the class of finite structures. Note that one can obtain bounded simplicity
in the collapsed case by having the result that there is no non-trivial bounded au-
tomorphism in this case and modifying the previous result of simplicity of the
automorphism group of the ℵ0-stable generalized n-gon. However, here we give
a more straightforward proof which is more algebraic and which requires only
little background in model theory to understand. The main result that we need
is that there is no non-trivial bounded automorphism in the automorphism
group of the (Kμ,�)-generic structure. Then, following Lascar’s approach and
applying Theorem 2.3.11, we obtain the simplicity of the automorphism group
of the (Kμ,�)-generic structures. This part is going to be published in Journal
of Algebra [11].

Again, we denote by Γ the (Kμ,�)-generic structure. First, we present a few
lemmas and remarks in this case. Recall that γm = (x0, x1 · · · , xm) denotes a
path of length m in Γ.

Lemma 4.2.26. Let Γ be the (Kμ,�)-generic structure. Then acl(γm) = cl (γm) for
m ≤ n.

Proof. From Remark 4.2.3
δ(γm) ≤ 2n − 1.

Hence, it is clear that cl (γm) = γm. We want to show that there is no 0-algebraic
set X over cl (γm). Suppose X is a set such that X ∩ cl (γm) = ∅ and X ∪ cl (γm)

contains a 2n-cycle. Then by the axioms of the construction, since 2n-cycles are
�-closed, δ(Xcl (γm)) is at least 2n. Then, δ (cl (γm)) < δ (Xcl (γm)) so X can
not be a 0-algebraic set over cl (γm). Now we claim that if X is a 0-minimally
algebraic over cl (γm), one can always find a 2n-cycle in X ∪ cl (γm) which is
a contradiction. To see that, first observe that |R (X; cl (γm))| > 1. Otherwise
δ(X)− (n − 2) · |R (X; cl (γm))| = δ (X/cl (γm)) = 0 implies that δ (X) = n − 2
which is impossible. Second, note that by Remark 3.1.3 part (4), X is connected
and therefore from |R (X; cl (γm))| > 1 it follows that X can not be 0-minimally
algebraic over a single element. If X is 0-minimally algebraic over at least two
distinct element of γm, X ∪ cl (γm) contains a cycle of length at least 2n, since
γm is connected. This establishes the result.

Remark 4.2.27. Suppose A is an ordinary n-gon (see Def. 4.1.3) and B := A∪ {b}
with δ(B/A) = 1. Then, B is a �-closed set.

Next theorem, is the main step in proving the simplicity of the automorphism
group of the almost strongly minimal generalized n-gons and it is similar to
Theorem 3.1.1 and Theorem 4.2.24.
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Theorem 4.2.28. Let Γ be the finite Morley rank (Kμ,�)-generic generalized n-gon
constructed in [36]. Then, there is no non-trivial bounded automorphism in Aut (Γ).

Proof. The proof is exactly the same as the proof of Theorem 4.2.24, if one substi-
tutes “gcl-bounded automorphisms” with “bounded automorphisms” and “gcl”
with “acl”. Note that these substitutions are not accidental. Roughly, the intu-
ition behind this is that in the collapsing procedure gcl (−) and acl(−) coincide
(see Thm. 2.2.36).

It is known that any generalized n-gon is in the definable closure of a point
row or a line pencil with finitely many elements (see e.g.[37]). Moreover a point
row or a line pencil in the very homogeneous generalized n-gons are strongly
minimal sets ( [36] Thm. 4.6). Hence the following theorem holds.

Theorem 4.2.29. ([36] Thm. 4.6) Let Γ be the (Kμ,�)-generic generalized n-gon. Then
Γ is almost strongly minimal.

Here, for our purpose we show the following.

Theorem 4.2.30. Let k, l1, l2, l3 ∈ Γ such that dΓ (k, l2) = dΓ (k, l3) = n and (l2, l1, l3)
is a path of length 2. Then, every m ∈ Γ is in the algebraic closure of D (k) and l1, l2, l3.

Proof. Let γk,l1 := (k = s0, s1, · · · , sn−2, sn−1 = l1) be the shortest path between k
and l1. First we claim that all elements m with dΓ (m, l2) = 1 or dΓ (m, l3) = 1 are
in the definable closure of D (k) and l1, l2, l3. Without loss of generality, suppose
dΓ (m, l2) = 1 and m �= l1. Then (k, s1, · · · , sn−2, l1, l2, m) is a path of length n + 1
and by the axioms of a generalized n-gon, there is a unique (n − 1)-path γm,k

between m and k. Let a ∈ D (k) ∩ γm,k. One can see that (a, k, s1, · · · , sn−2, l1, l2)
is path of length n + 1 and hence m ∈ dcl (a, l1, l2). This establishes the first case.

In the next step we claim that all elements m with dΓ (m, k) = 2 are in
the algebraic closure of D (k) and l1, l2, l3. There are two possibilities in this
case: either dΓ (m, s1) = 1 or dΓ (m, s1) = 3. Pick e2 ∈ D (l2) \ {l1}. First as-
sume dΓ (m, s1) = 3 and let γm,k = (m, a, k) be the shortest path between
m and k. Now (m, a, k, s1, · · · , sn−2, l1, l2, e2) is a (n + 3)-path, and by Remark
4.2.3, there is a unique (n − 1)-path γm,e2 := (m, x0, · · · , xn−3, e2) between m
and e2. Moreover (x0, m, a, k, s1, · · · , sn−2, l1, l3) is a (n + 3)-path, and again by
Remark 4.2.3, there is a unique (n − 1)-path γx0,l3 := (x0, y0, · · · , yn−3, l3) be-
tween x0 and l3. It is easy to check that dΓ (x0, e2) = dΓ (x0, yn−3) = n − 2
and dΓ (x0, a) = 2. Then B := {x0, · · · , xn−3, y0, · · · yn−4, m} is 0-minimally al-
gebraic over A := {e2, yn−3, a}. By the axioms of the class Kμ the number of
isomorphic copies of B over A is bounded by μ (A, B). Hence B is in the al-
gebraic closure of A. By the previous case we know e2 and yn−3 are in the
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definable closure of D (k) and l1, l2, l3. Hence B is in the algebraic closure of
D (k) and l1, l2, l3. Now suppose dΓ (m, s1) = 1. Then (m, s1, · · · , sn−2, l1, l2, e2) is
a (n + 1)-path. Let γm,e2 = (m, z0, · · · , zn−3, e2) be the shortest path between
m and e2. Moreover (z0, m, s1, · · · , sn−2, l1, l3) is a path of length n + 1. Let
γz0,l3 := (z0, u0, · · · , un−3, l3) be the shortest path between z0 and l3. Similar to
the previous case one can see that {z0, · · · , zn−3, u0, · · · , un−4, m} is 0-minimally
algebraic over {e2, un−3, s1}. Hence this establishes the case.

From the two previous cases by induction on the distance of an elements to
l2, l3 and then k we show that every element is in the algebraic closure of D (k)
and l1, l2, l3. Without loss of generality suppose m ∈ Γ with dΓ (m, l2) = 2 and
m �= sn−2. Then either that dΓ (m, l1) = 1 or dΓ (m, l1) = 3. Pick a ∈ D (k) \ {z0}.
First suppose dΓ (m, l1) = 1. It follows that (a, k, s1, · · · , sn−2, l1, m) is a path
of length n + 1. Again by Remark 4.2.3, there is a unique shortest path γa,m

between a, m. Let e ∈ D (a) ∩ γa,m. Then m is uniquely determined by e and l1.
It is clear that dΓ (e, k) = 2 and from the previous cases we know that e is in
the algebraic closure of D (k) and l1, l2, l3. Hence m is in the algebraic closure of
D (k) and l1, l2, l3. Suppose dΓ (m, l1) = 3 and let γl1,m := (l1, l2, x, m). It follows
that (a, k, s1, · · · , sn−2, l1, l2, x, m) is a path of length n+ 3. Again by Remark 4.2.3,
there is a unique shortest path γa,m between a, m. Let e ∈ D (a) ∩ γa,m. Then m
is uniquely determined by e and x. This establishes the case. Similarly we can
continue by induction on the distance to k, l2 and l3, and prove that all elements
are in the algebraic closure of D (k) and l1, l2, l3.

Lemma 4.2.31. Let k, l1, l2, l3 ∈ Γ be such that they satisfy the assumptions of
Theorem 4.2.30. We denote by γk,l1 := (k = s0, s1, · · · , sn−2, sn−1 = l1) the short-
est path between k and l1 in Γ. Then, cl (kl1l2l3) = dcl (kl1l2l3) = acl (kl1l2l3) = S
where S = {s0, s1, · · · , sn−1, sn = l2, sn+1 = l3}.

Proof. It is easy to see that δ (S) = 2n and δ (S′) ≤ 2n − 1 for all proper subsets
of S′ ⊂ S. By Lemma 4.2.26 follows that there is no 0-minimally algebraic over
S′ for all proper subsets of S′ ⊂ S. Then, it is enough to check that there is
no 0-minimally algebraic set over S. Suppose B is a 0-minimally algebraic set
over S. By Remark 3.1.3, B is connected. Similar to the arguments of Lemma
4.2.26, since B is 0-minimally algebraic over S, there is Δ1 ⊂ B ∪ S a 2n-cycle
that contains s0 and sn. Similarly let Δ2 ⊂ B ∪ S be a 2n-cycle that contains s0

and sn+1. There are two possibilities: either |Δ1 ∩ Δ2| = n or |Δ1 ∩ Δ2| = n − 1.
If |Δ1 ∩ Δ2| = n, then one can see that δ (Δ1 ∩ Δ2/S) = 1 and moreover Δ1 ∪ Δ2

is a �-closed set which implies that δ (BS) ≥ 2n + 1. If |Δ1 ∩ Δ2| = n − 1, then
one can find a (2n + 2)-cycle in Δ1 ∪ Δ2 which by the axioms is �-closed and
hence δ (BS) ≥ 2n + 2. So no 0-minimally algebraic set over S is possible.
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Expand the language L to LS = L∪S by adding constants S = {s0, · · · , sn+1}
with s0, sn−1, sn, sn+1 satisfying the assumptions of Theorem 4.2.30. By adding
these constants to the language L, the structure Γ in the new language is in
the algebraic closure of a strongly minimal ∅-definable set. By Remark 4.2.16
adding finite number of constants to L does not change the fact of that there
is no non-trivial bounded automorphisms; more precisely, a bounded automor-
phism over a finite set in the extended language LS is also a bounded auto-
morphism in L. Hence, Γ satisfies the assumptions of Theorem 2.3.11 in the
expanded language Ls.

Moreover, it is clear that AutLS (Γ) is a closed subgroup of AutfL (Γ) (in the
pointwise convergence topology). By Theorem 2.2.37, Th (Γ) admits weak elim-
ination of imaginaries. Then by Corollary 2.1.4, AutfS (Γ) = Autacl(s) (Γ). By

Lemma 4.2.31, acl (S) = S, and by Theorem 2.3.11, we conclude that AutLS (Γ),
which isomorphic to AutLS (Γ), is a simple group. Now we want to deduce the
simplicity of Aut (Γ) from the simplicity of AutS (Γ).

We fix the following notation: S0 = ∅ and Si := ∪0≤i {si} for 1 ≤ i ≤ n + 1.

Lemma 4.2.32. AutSi (Γ) is a maximal subgroup of AutSi−1 (Γ) for 1 ≤ i ≤ n + 1.

Proof. We are using the homogeneity properties of Γ, in order to prove this
lemma. Let

Ω = {x ∈ Γ : x |= tp (si/Si−1)} ,

and let g �= idΓ be an arbitrary automorphism in AutSi−1 (Γ) \AutSi (Γ). We
claim that 〈g, AutSi (Γ)〉 = AutSi−1 (Γ). Suppose b ∈ Ω such that g(si) = b and
let h ∈ AutSi−1 (Γ) \AutSi (Γ). Let a = h (si). Note that δ (Si) = (n − 1) + i for
1 ≤ i ≤ n + 1. By the similar arguments to Lemma 4.2.31, Si, aSi, and bSi are
�-closed. Consider c ∈ Ω be such that c is d-independent from a, b and si

over Si−1; note that it is always possible to find such c since d (si/Si−1) = 1.
From this it follows that cSi is also �-closed. Now let h1, h2 ∈ AutSi (Γ) such
that h1 (a) = h2 (b) = c. It is easy to check that g−1 ◦ h−1

2 ◦ h1 ◦ h fixes si, so
g−1 ◦ h−1

2 ◦ h1 ◦ h ∈ AutSi (Γ). This establishes the result.

Theorem 4.2.33. Let Γ be the almost strongly minimal generalized n-gon con-
structed in [36]. Then Aut (Γ) is a simple group.

Proof. We prove this theorem inductively. It is clear that

AutSn+1 (Γ) ≤ AutSn (Γ) ≤ · · · ≤ AutS1 (Γ) ≤ Aut (Γ) .

For the first step, we already know that AutSn+1 (Γ) is a simple group. Now
assume AutSi (Γ) is a simple group and we want to conclude that AutSi−1 (Γ) is
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also a simple group. Let N �= 1 be a normal subgroup of AutSi−1 (Γ). Then, either
AutSi (Γ) ≤ N or N ∩ AutSi (Γ) = 1. By Lemma 4.2.32, AutSi (Γ) is a maximal
subgroup of AutSi−1 (Γ). Moreover, it is clear that AutSi (Γ) is not normal in
AutSi−1 (Γ). To establish the result, it is enough to prove that N ∩ AutSi (Γ) �= 1.

Claim. Suppose N ∩ AutSi (Γ) = 1. Then N acts regularly on the realizations of
the type tp(si/Si−1).

Proof. Let a, b |= tp(si/Si−1) and a �= b and let g1, g2 ∈ N be such that g1 �= g2

and g1(a) = g2(a) = b. Then 1 �= g1g−1
2 ∈ N and g1g−1

2 fixes b. We know
that both Si and bSi−1 are �-closed and isomorphic. Now let h ∈ AutSi−1 (Γ)
such that h(si) = b. Then 1 �= h−1g1g−1

2 h ∈ AutSi (Γ) ∩ N holds which is a
contradiction.

Now we show that in our case N can not act regularly. Let k1, k2 be two
distinct elements of N and let a := k1 (si) and b := k2 (si). Let c be a
realization of tp (si/Si−1) which is d-independent from a, b and si over Si.
Consider h1, h2 ∈ AutSi (Γ) such that h1 (k1 (si)) = h2 (k2 (si)) = c. Now
h1k−1

1 h−1
1 (c) = h2k−1

2 h−1
2 (c) = si and h1k−1

1 h−1
1 �= h2k−1

2 h−1
2 . Since N is a normal

subgroup, h1k−1
1 h−1

1 , h2k−1
2 h−1

2 ∈ N, but this contradicts the regularity. Hence
N ∩ AutSi (Γ) �= 1, so N = AutSi (Γ). This implies that AutSi−1 (Γ) is a simple
group. Inductively we conclude Aut (Γ) is simple.

Corollary 4.2.34. There are simple groups with a spherical BN-pair of rank 2 which
are non-split and hence not of algebraic origin.

Proof. Let Γ be the almost strongly minimal generalized n-gon constructed in
[36]. By Theorem 4.2.33, Aut (Γ) is a simple group. As we have mentioned be-
fore, Aut (Γ) is acting transitively on ordered n-gons and hence it has a BN-pair.
That these BN-pairs are not of algebraic origin follows from the fact that the
classification of Moufang polygons by Tits and Weiss [41] implies that in the
algebraic case no point stabilizer Autx acts 6-transitively on D (x). See [11] for
more explanation.
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M I S C E L L A N E O U S

5.1 small index property

As we mentioned before, the automorphism group of a countable structure
with the pointwise convergence topology is a Polish group. In this section, we
present some observations about the small index property and then present
an improvement of Lascar’s result about countable saturated almost strongly
minimal structures. Finally we conclude that the automorphism group of the
almost strongly minimal generalized n-gons constructed in [36] has the “almost
small index property”. Here we mainly follow [5].

Here are some facts about Polish groups.

Fact 5.1.1. Suppose H is a subgroup of G and G is a Polish group. Then

1. The closure H̄ of H is a subgroup of G and H̄ is normal in G if and only if H is.

2. If H is open, then H is also closed.

3. If H is closed and of finite index, then H is open.

4. If K≤H for some open K, then H is open.

Moreover we have the following fact.

Fact 5.1.2. Suppose G is a Polish group, then every open subgroup H has small index
(i.e. |G : H| < 2ℵ0).

The above fact motivates the following definition.

Definition 5.1.3. A group G has the small index property (SIP) if every group of
small index (i.e. index less than 2ℵ0 ) is open.

Example 5.1.4. Here are some structures such that the automorphism group
has the small index property:

1. An infinite set without structure.

2. Then countable dense linear ordering (Q,<).

3. A vector space of dimension ω over a finite or countable division ring.

73
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4. Countable ℵ0-stable ℵ0-categorical structures.

5. The random graph.

We prove the following by assuming the Continuum Hypothesis (CH). Note
that CH implies that small index means ≤ ℵ0.

Theorem 5.1.5. (with CH) Suppose G is a Polish group and H is a closed subgroup of
G with a small index. Then if H has SIP in the induced topology, then G has SIP.

Theorem 5.1.6. Suppose that M is a countable saturated structure and it is almost
strongly minimal. Suppose G is a subgroup of a countable index in Aut (M). Then
there exists a finite set A in M such that AutfA (M) ⊆ G.

This implies the following.

Corollary 5.1.7. The automorphism group of the almost strongly minimal n-gon con-
structed in [36] has “almost SIP”.

By the term “almost SIP”, we mean the same kind of result as Lascar’s the-
orem 5.1.13 and Theorem 5.1.6. Namely for a subgroup H of a small index in
Aut (M), there is a finite set A ⊂ M such that AutfA (M) ⊆ H.

We use the following fact quite often.

Fact 5.1.8. Suppose H, K are subgroups of G. Then |H : H ∩ K| ≤ |G : K|.

Fact 5.1.9. 1. A subgroup H of a Polish group is Polish (in the induced topology) if
and only if H is Gδ if and only if H is closed.

2. If H is a closed subgroup of G, then index of H in G is either ≤ ℵ0 or 2ℵ0 .

3. For a closed subgroup H of G, |G : H| ≤ ℵ0 if and only if H is open.

Proof. The facts above can be found in any standard book of descriptive set
theory. For example see page 5 of [5].

Remark 5.1.10. The automorphism group of every countable structure is a closed
subgroup of the symmetric group of the underlying set. Conversely, one can
associate a first order structure to every closed subgroup of the symmetric group
of a countable set such that the automorphism group of the structure is exactly
the group that we started with.

Fact 5.1.11. Suppose G is a Polish group and H is a closed subgroup of small index in
G. Then if G has SIP then H has SIP, too (with the induced topology from G).
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Proof. It is clear that H is a Polish group (this follows from Fact. 5.1.9). Let K be
a subgroup of countable index in H. Then K has small index in G. Since G has
SIP, K is open in G. Then H ∩ K = K is open in H with respect to the induced
topology. Hence H has SIP.

Proof of Theorem. 5.1.5. Suppose K is a subgroup of small index in G. By Fact
5.1.8, the index |H : K ∩ H| is also small. Since H has SIP, one can see K ∩ H is
open in H. By Fact 5.1.9 part (4), H is open in G. Hence K ∩ H is open in G. Then
from Fact 5.1.1 part (4), it follows that K is open in G. So the result follows.

The following corollary is an easy consequence of Theorem 5.1.5 but irrele-
vant to our topic.

Corollary 5.1.12. Any small index closed subgroup of the automorphism group of the
random graph has SIP. In other words, any closed subgroup without SIP has index 2ℵ0 .

Here is Lascar’s result of “almost SIP” in [24].

Theorem 5.1.13. (Lascar [24]) Suppose M is a countable saturated structure and as-
sume D (v) is a strongly minimal formula (without parameters) such that M is in the
algebraic closure of D (M). Suppose G is a subgroup of a countable index in Aut (M).
Then there exists a finite set A in M such that AutfA (M) ⊆ G.

The proof that Lascar gives in [24] can be modified for the case that we prove
here, but the following proof is simple and it is an application of Corollary
5.1.12.

Proof of Theorem. 5.1.6. We claim that a similar result holds when we allow D (v)
to have parameters. Suppose D (v) have parameters {s1, · · · , sn}. Without loss
of generality we assume that D (v) has one parameter {s}. Let Ls = L∪ {s}. Let
M

s
be the structure M in Ls. Since M is saturated, M

s
is also saturated and M

s

is in the algebraic closure of D (v) which is without parameter in Ls.
Let G be a group of countable index in AutL (M). One can

see that
∣∣∣AutL (M) : AutLs (M)

∣∣∣ ≤ ℵ0 holds. Then by Fact 5.1.8,

|Auts (M) : G ∩ Auts (M)| ≤ ℵ0. By Theorem 5.1.13, AutL
s (

M
s)

has “almost
SIP”. Hence there exists a finite set A ⊂ M

s
such that AutfL

s

A
(

M
s) ⊂ G

s ∩
AutL

s (
M

s)
. Using that AutLs (M) is homeomorphic to AutL

s (
M

s)
we conclude

that that Autf{s}∪A ⊂ AutfA (M) ∩ Auts (M) and hence Autf{s}∪A ⊆ G. So the
“almost SIP” holds.
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5.1.0.1 Extension property

In [16], Hrushovski, proved that the class of all finite graphs has the extension
property. His result has been generalized by Herwig in [13] to a broader class
of structures. We can deduce the small index property of the automorphism
group of a saturated structure when there is an ample generic automorphism
in the automorphism group (for more details, see [25, 21]). The extension prop-
erty for different structures have been used to prove that the ample generic
automorphisms exist (see e.g.,[15]).

It has been asked if the uncollapsed/collapsed ab-initio class has EP. We give
a negative answer to this. Let the language L consists of a binary relation R
which is irreflexive and symmetric. Consider the following pre-dimension func-
tion for an L-structure A, is of the following form:

δ (A) = 2|A| − |R (A) |.

The extension property can be defined just in the terms of a class of structures
and one can easily check that K ∈ {

K0, K
μ
0

}
does not have EP. However, the

following definition seems to be the right notion of the extension property in
this setting, we later prove that K ∈ {

K0, K
μ
0

}
with this refinement still does

not hold EP.

Definition 5.1.14. Let (K,�) be a smooth class with AP. Let M be the (K,�)-
generic structure. The class (K,�) has the extension property (EP) if for all A ∈ K
and f1, · · · , fn arbitrary partial isomorphisms between �-closed subsets of A,
there is B ∈ K and θ1, · · · , θn ∈ Aut(B) such that A � B and θi’s are extending
the fi’s.

Here we claim that K ∈ {
K0, K

μ
0

}
do not have EP.

Let B := {b1, b2, b3, p1, p2} such that

B |= ∧
1≤i �=j≤3

R(bi, bj) ∧
∧

1≤i≤3

R(bi, p1) ∧ R(b1, p2) ∧ R(b2, p2).

From the structure of B, δ(B) = 2 and δ(p1) = δ(p2) = 2. Then pi � B for
i = 1, 2. Suppose f is a partial isomorphism which sends p1 to p2. We claim that
for any B ⊂ B′, and any extension f ′ of f to an automorphism of B′, we have
B � B′. Then either

• Case (1) f ′ is fixing b1, b2, b3. Then R(p1, b3) implies R ( f (p1) = p2, b3)

which is a contradiction; since B is �-closed and a new edge between
elements of B decreases the pre-dimension.
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• Case (2) f ′ is fixing bi, bj for some 1 ≤ i �= j ≤ 3. Enumerate the set of
bi’s as {bi1 , bi2 , bi3} such that the element bi1 be the one which is not fixed.
From the construction, we know that |R (bi1 ; p1bi2 bi3)| = 3 holds. Then
|R ( f ′ (bi1) ; p2bi2 bi3)| = 3 which implies that δ ( f ′ (bi1) /B) < 0. But this
contradicts the �-closedness of B.

• Case (3) f ′ is fixing only one of b1, b2, b3. Similar to Case (2) assume bi1 and
bi2 are not a fixed point. We know that δ (bi1 bi2) = 3 and |R (bi1 bi2 ; p1bi3)| =
4. Then δ ( f ′ (bi1) f ′ (bi2)) = 3 and |R ( f ′ (bi1) f ′ (bi2) ; p2bi3)| = 4. Note that
if f ′ (bi1) f ′ (bi2) ⊂ B, then we are in case (1). If | f ′ (bi1) f ′ (bi2) ∩ B| = 1
then we are in case (2). If | f ′ (bi1) f ′ (bi2) ∩ B| = ∅ then it is easy to see
that δ ( f ′ (bi1) f ′ (bi2) /B) < 0. Again, this contradicts the �-closedness of
B.

• Case (4) f ′ is not fixing any of the b1, b2, b3 and the orbit of p1 under f ′ is
finite. Suppose n ∈ N such that f ′n(p1) = p1 and write pi+1 = f ′i(p1) and
bi+1

j = f ′i(bj) for 1 ≤ i < n. Then δ
(⋃

i,j bi
j pi

)
≤ 1. This contradicts the

fact that δ(p1) = 2 and p1 is �-closed.

• Case (5) f ′ is not fixing any of the b1, b2, b3 and the orbit of p1 under f ′ is
infinite. Then we never end up with a finite set.

Hence EP fails. We have chosen the coefficients κ = 2 and λ = 1 for simplicity.
One can build similar constructions and use the same arguments for and κ >

λ > 0 and deduce the following.

Corollary 5.1.15. The ab-initio classes in the binary relational language in both, the
collapsed and the uncollapsed cases arising from a pre-dimension function δκ,λ with
coefficients κ > λ > 0 do not have EP.

Remark 5.1.16. From Corollary above we see that even with the refinement of
the definition the ab-initio classes do not have EP. This suggests that we might
choose a different class of to see EP.

Moreover, we claim that the “almost SIP” is the right way of looking at auto-
morphism groups of the ab-initio generic structures. Since the algebraic closure
of finite sets are finite in the uncollapsed generic structures, hence, with the
pointwise convergence topology, may be “SIP” is not very likely.

Question A: One reasonable question in this case is to see if the ab-initio
generic structures in the collapsed and uncollapsed case have “almost SIP”. Al-
most SIP in the uncollapsed case would mean the following: suppose G is a
subgroup of countable index in Aut (M). Then there exists a finite set A in M
such that Autgcl(A) (M) ⊆ G.
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5.2 further questions

Remark 5.2.1. We mentioned before that the notion of the pre-dimension and
dimension appear in the theory of Matroids. Here we especially mean to con-
sider infinite Matroids. One can use many of the techniques that we mentioned
and determine the automorphism group of some specific Matroids. However it
might be reasonable to answer the question of simplicity in the more general
setting of Matroids.

Question B. What can we say about the simplicity of an ab-initio generic
structure that is obtained from a pre-dimension function with irrational coeffi-
cients? As we have mentioned before this case has been studied in [3]. From
Theorem 3.2.33, we know that there are no non-trivial bounded automorphisms
in its automorphism group. One reasonable guess would be that the strong au-
tomorphism group of these structures are simple. However our machinery here
is not adequate to answer this question.
Question C. Except the trivial cases, as we have seen in Theorem 3.1.11
�-generic structures does not have any non-trivial bounded automorphism.
Moreover, the Hrushoski’s original example is CM-trivial without any non-
trivial bounded automorphism. We can ask if this is coincidental? Namely,
are there strongly minimal CM-trivial but not one-based structures with non-
trivial bounded automorphisms? Another variant of the question would be: is
the bounded automorphism group in the higher ampleness hierarchy trivial?
However, we know that non-trivial bounded automorphisms exists in the alge-
braically closed fields of characteristic p: namely the Frobenius automorphisms
are bounded. Moreover, it is not known if there are strongly minimal sets which
are (n − 1)-ample but not n-ample for n > 2. These two questions are phrased
in the strongly minimal sets and one can ask the same questions in a broader
setting.

Let (K,�) be a smooth class with AP and let M be the (K,�)-generic struc-
ture. The following definition helps us to define a property called algebraic clo-
sure property (AC) for a smooth class. In this dissertation, we only dealt with
smooth classes with AC.

Definition 5.2.2. Let M be an L-structure A ⊂ M and A ⊆ B ∈ K. Then

1. by a copy of B over A in M we mean the image of an embedding of B over
A into M.

2. χM (B; A) is the number of distinct copies of B over A in M.
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Definition 5.2.3. We say (K,�) has the algebraic closure property (AC) if there
is a function η : ω × ω → ω such that for any A � B and A ⊂ M, we have
χM (B; A) ≤ η (|A| , |B|).

Remark 5.2.4. It is clear that (K,�) has AC if and only if cl (A) ⊆ acl (A) for any
A ⊂ M.

Question D. As we have mentioned before, all the cases that we considered
in Chapter 3 and 4 have AC. One can define a different self-sufficiency notion
from a pre-dimension function with AC (see e.g., [10]). One reasonable ques-
tion would be to verify the bounded automorphism group in this case. How-
ever smooth classes without AC are also interesting to consider, for example the
smooth classes in [33, 34]. Their generic structure mainly lay in a broader frame-
work, namely in simple theories. Some examples of these classes are obtained
by using the pre-dimension function but with a different closedness relation.
One could ask if we can generalize the methods here and answer the simplicity
question in that setting, too. Of course with the same approach one would ask
about the bounded automorphisms and it remains open to verify them.



B I B L I O G R A P H Y

[1] Peter Abramenko and Kenneth S. Brown. Buildings, volume 248 of Gradu-
ate Texts in Mathematics. Springer, New York, 2008. ISBN 978-0-387-78834-
0. doi: 10.1007/978-0-387-78835-7. URL http://dx.doi.org/10.1007/

978-0-387-78835-7. Theory and applications. (Cited on page 54.)

[2] John T. Baldwin. An almost strongly minimal non-Desarguesian projective
plane. Trans. Amer. Math. Soc., 342(2):695–711, 1994. ISSN 0002-9947. doi:
10.2307/2154648. URL http://dx.doi.org/10.2307/2154648. (Cited on
pages 5 and 55.)

[3] John T. Baldwin and Saharon Shelah. Randomness and semigeneric-
ity. Trans. Amer. Math. Soc., 349(4):1359–1376, 1997. ISSN 0002-9947.
doi: 10.1090/S0002-9947-97-01869-2. URL http://dx.doi.org/10.1090/

S0002-9947-97-01869-2. (Cited on pages 19, 47, and 78.)

[4] John T. Baldwin and Niandong Shi. Stable generic structures. Ann. Pure
Appl. Logic, 79(1):1–35, 1996. ISSN 0168-0072. doi: 10.1016/0168-0072(95)
00027-5. URL http://dx.doi.org/10.1016/0168-0072(95)00027-5. (Cited
on pages 3, 19, 23, 24, 28, 39, 40, and 47.)

[5] Howard Becker and Alexander S. Kechris. The descriptive set theory of Pol-
ish group actions, volume 232 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 1996. ISBN 0-521-57605-
9. doi: 10.1017/CBO9780511735264. URL http://dx.doi.org/10.1017/

CBO9780511735264. (Cited on pages 73 and 74.)

[6] P. J. Cameron and A. M. Vershik. Some isometry groups of the Urysohn
space. Ann. Pure Appl. Logic, 143(1-3):70–78, 2006. ISSN 0168-0072.
doi: 10.1016/j.apal.2005.08.001. URL http://dx.doi.org/10.1016/j.apal.

2005.08.001. (Cited on pages 2 and 35.)

[7] Peter J. Cameron. Oligomorphic permutation groups, volume 152 of Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1990. ISBN 0-521-38836-8. doi: 10.1017/CBO9780511549809.
URL http://dx.doi.org/10.1017/CBO9780511549809. (Cited on pages 1,
24, and 25.)

80



bibliography 81

[8] Mark J. Debonis and Ali Nesin. There are 2ℵ0 many almost strongly mini-
mal generalized n-gons that do not interpret an infinite group. J. Symbolic
Logic, 63(2):485–508, 1998. ISSN 0022-4812. doi: 10.2307/2586845. URL
http://dx.doi.org/10.2307/2586845. (Cited on pages 5 and 55.)

[9] David Evans. Notes on the automorphism groups of some Hrushovski
constructions. Preprint. (Cited on pages 5, 35, and 47.)

[10] Zaniar Ghadernezhad and Massoud Pourmahdian. A new generic struc-
ture without the stable forking property. Preprint. (Cited on page 79.)

[11] Zaniar Ghadernezhad and Katrin Tent. New simple groups with a BN-pair.
To appear in J. Algebra. URL http://de.arxiv.org/abs/1306.0174. (Cited
on pages 6, 68, and 72.)

[12] Victor Harnik and Leo Harrington. Fundamentals of forking. Ann. Pure
Appl. Logic, 26(3):245–286, 1984. ISSN 0168-0072. doi: 10.1016/0168-0072(84)
90005-8. URL http://dx.doi.org/10.1016/0168-0072(84)90005-8. (Cited
on page 12.)

[13] Bernhard Herwig. Extending partial isomorphisms on finite struc-
tures. Combinatorica, 15(3):365–371, 1995. ISSN 0209-9683. doi: 10.1007/
BF01299742. URL http://dx.doi.org/10.1007/BF01299742. (Cited on
page 76.)

[14] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cam-
bridge, 1997. ISBN 0-521-58713-1. (Cited on pages 1, 2, and 17.)

[15] Wilfrid Hodges, Ian Hodkinson, Daniel Lascar, and Saharon Shelah. The
small index property for ω-stable ω-categorical structures and for the
random graph. J. London Math. Soc. (2), 48(2):204–218, 1993. ISSN 0024-
6107. doi: 10.1112/jlms/s2-48.2.204. URL http://dx.doi.org/10.1112/

jlms/s2-48.2.204. (Cited on page 76.)

[16] Ehud Hrushovski. Extending partial isomorphisms of graphs. Combinator-
ica, 12(4):411–416, 1992. ISSN 0209-9683. doi: 10.1007/BF01305233. URL
http://dx.doi.org/10.1007/BF01305233. (Cited on page 76.)

[17] Ehud Hrushovski. A new strongly minimal set. Ann. Pure Appl. Logic, 62
(2):147–166, 1993. ISSN 0168-0072. doi: 10.1016/0168-0072(93)90171-9. URL
http://dx.doi.org/10.1016/0168-0072(93)90171-9. Stability in model
theory, III (Trento, 1991). (Cited on pages i, 3, 4, 15, 16, 18, 22, 23, 27,
28, 33, 34, and 43.)



82 bibliography

[18] Ehud Hrushovski and Boris Zilber. Zariski geometries. J. Amer. Math. Soc.,
9(1):1–56, 1996. ISSN 0894-0347. doi: 10.1090/S0894-0347-96-00180-4. URL
http://dx.doi.org/10.1090/S0894-0347-96-00180-4. (Cited on page 15.)

[19] Koichiro Ikeda. Ab initio generic structures which are superstable
but not ω-stable. Arch. Math. Logic, 51(1-2):203–211, 2012. ISSN 0933-
5846. doi: 10.1007/s00153-011-0263-6. URL http://dx.doi.org/10.1007/

s00153-011-0263-6. (Cited on page 19.)

[20] Thomas Jech. Set theory. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, second edition, 1997. ISBN 3-540-63048-1. (Cited on page 8.)

[21] Alexander S. Kechris and Christian Rosendal. Turbulence, amalgamation,
and generic automorphisms of homogeneous structures. Proc. Lond. Math.
Soc. (3), 94(2):302–350, 2007. ISSN 0024-6115. doi: 10.1112/plms/pdl007.
URL http://dx.doi.org/10.1112/plms/pdl007. (Cited on pages 1, 18, 24,
and 76.)

[22] D. W. Kueker and M. C. Laskowski. On generic structures. Notre Dame
J. Formal Logic, 33(2):175–183, 1992. ISSN 0029-4527. doi: 10.1305/ndjfl/
1093636094. URL http://dx.doi.org/10.1305/ndjfl/1093636094. (Cited
on page 18.)

[23] Kenneth Kunen. Set theory, volume 34 of Studies in Logic (London). College
Publications, London, 2011. ISBN 978-1-84890-050-9. (Cited on page 8.)

[24] Daniel Lascar. Les automorphismes d’un ensemble fortement minimal. J.
Symbolic Logic, 57(1):238–251, 1992. ISSN 0022-4812. doi: 10.2307/2275188.
URL http://dx.doi.org/10.2307/2275188. (Cited on pages 1, 26, 38, 52,
and 75.)

[25] Dugald Macpherson. A survey of homogeneous structures. Discrete Math.,
311(15):1599–1634, 2011. ISSN 0012-365X. doi: 10.1016/j.disc.2011.01.024.
URL http://dx.doi.org/10.1016/j.disc.2011.01.024. (Cited on pages 1,
24, and 76.)

[26] Dugald Macpherson and Katrin Tent. Simplicity of some automorphism
groups. J. Algebra, 342:40–52, 2011. ISSN 0021-8693. doi: 10.1016/j.jalgebra.
2011.05.021. URL http://dx.doi.org/10.1016/j.jalgebra.2011.05.021.
(Cited on page 2.)

[27] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. ISBN 0-387-98760-6. An introduction.
(Cited on pages 8, 9, 11, 13, 14, and 15.)



bibliography 83

[28] Michael Morley. Categoricity in power. Trans. Amer. Math. Soc., 114:514–538,
1965. ISSN 0002-9947. (Cited on page 12.)

[29] A Ould Houcine and Katrin Tent. Ampleness in the free group. To appear,
pages http://wwwmath.uni–muenster.de/u/tent/amplefree23.pdf, 2012.
(Cited on page 15.)

[30] Anand Pillay. Geometric stability theory, volume 32 of Oxford Logic Guides.
The Clarendon Press Oxford University Press, New York, 1996. ISBN 0-19-
853437-X. Oxford Science Publications. (Cited on pages 8, 9, and 11.)

[31] Anand Pillay. A note on CM-triviality and the geometry of forking. J.
Symbolic Logic, 65(1):474–480, 2000. ISSN 0022-4812. doi: 10.2307/2586549.
URL http://dx.doi.org/10.2307/2586549. (Cited on page 15.)

[32] Bruno Poizat. A course in model theory. Universitext. Springer-Verlag, New
York, 2000. ISBN 0-387-98655-3. doi: 10.1007/978-1-4419-8622-1. URL
http://dx.doi.org/10.1007/978-1-4419-8622-1. An introduction to con-
temporary mathematical logic, Translated from the French by Moses Klein
and revised by the author. (Cited on page 10.)

[33] Massoud Pourmahdian. The stable forking conjecture and generic
structures. Arch. Math. Logic, 42(5):415–421, 2003. ISSN 0933-
5846. doi: 10.1007/s00153-002-0147-x. URL http://dx.doi.org/10.1007/

s00153-002-0147-x. (Cited on page 79.)

[34] Massoud Pourmahdian. The stable forking conjecture in homogeneous
model theory. Log. J. IGPL, 12(3):171–180, 2004. ISSN 1367-0751. doi: 10.
1093/jigpal/12.3.171. URL http://dx.doi.org/10.1093/jigpal/12.3.171.
(Cited on page 79.)

[35] Saharon Shelah. Classification theory and the number of nonisomorphic models,
volume 92 of Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Co., Amsterdam, 1978. ISBN 0-7204-0757-5. (Cited on
page 11.)

[36] K. Tent. Very homogeneous generalized n-gons of finite Morley
rank. J. London Math. Soc. (2), 62(1):1–15, 2000. ISSN 0024-6107.
doi: 10.1112/S0024610700001022. URL http://dx.doi.org/10.1112/

S0024610700001022. (Cited on pages i, 5, 6, 7, 52, 55, 56, 60, 67, 69, 71,
72, 73, and 74.)



84 bibliography

[37] Katrin Tent. A note on the model theory of generalized polygons. J. Sym-
bolic Logic, 65(2):692–702, 2000. ISSN 0022-4812. doi: 10.2307/2586562. URL
http://dx.doi.org/10.2307/2586562. (Cited on page 69.)

[38] Katrin Tent and Martin Ziegler. A course in model theory, volume 40 of
Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, CA, 2012.
ISBN 978-0-521-76324-0. (Cited on pages 8 and 11.)

[39] Katrin Tent and Martin Ziegler. On the isometry group of the Urysohn
space. J. Lond. Math. Soc. (2), 87(1):289–303, 2013. ISSN 0024-6107. doi: 10.
1112/jlms/jds027. URL http://dx.doi.org/10.1112/jlms/jds027. (Cited
on pages i, 2, 4, 5, and 35.)

[40] Jacques Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in
Mathematics, Vol. 386. Springer-Verlag, Berlin, 1974. (Cited on pages 51,
52, and 54.)

[41] Jacques Tits and Richard M. Weiss. Moufang polygons. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 2002. ISBN 3-540-43714-2.
(Cited on pages 55 and 72.)

[42] Frank O. Wagner. Relational structures and dimensions. In Automorphisms
of first-order structures, Oxford Sci. Publ., pages 153–180. Oxford Univ. Press,
New York, 1994. (Cited on pages 3, 19, 20, 21, 39, and 40.)

[43] D. J. A. Welsh. Matroid theory. Academic Press [Harcourt Brace Jovanovich
Publishers], London, 1976. L. M. S. Monographs, No. 8. (Cited on page 12.)




