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Abstract

Anomalous transport in magnetically confined fusion plasmas is one of the principal obstacles
on the way towards power plants based on fusion energy. It is induced by turbulence on scales
that are comparable to the gyroradius of the charged plasma particles, and leads to a degrada-
tion of confinement, which makes it very difficult to reach the conditions that are necessary for
a self-sustained fusion reaction in the plasma. An important goal of fusion research is there-
fore to identify and understand the processes that determine the level of anomalous transport,
allowing for a prediction or even reduction of this nonlinear effect.

In the present thesis, a numerical approach to plasma microturbulence is pursued. The
gyrokinetic equations, which describe magnetized plasmas at fusion relevant conditions, are
presented in a form that is suitable for a numerical treatment. The equations are formulated for
general magnetic geometries and include a linearized Landau-Boltzmann collision operator,
the influence of the pressure gradient, and other physical effects, extending and generalizing
previous presentations of this kind.

Some of the numerical issues concerning the implementation of these equations in the mas-
sively parallel plasma turbulence code GENE are discussed, focusing on the significant modi-
fications and improvements that were introduced as part of this PhD project. The modifications
include new time stepping schemes and other optimizations that allow for faster computations,
improvements of the parallelization that enables the efficient use of thousands of processors,
and anti-aliasing procedures that make the simulations more reliable and robust. An important
new feature that is also discussed is an interface to an iterative eigenvalue solver, which can be
used to efficiently access arbitrary parts of the eigenvalue spectrum of the linear gyrokinetic
operator.

This eigenvalue solver is used to study higher dimensional parameter dependencies of tran-
sitions between well known plasma microinstabilities, which leads to the discovery of non-
Hermitian degeneracies in linear gyrokinetics. The implications of this finding and analogies
to other fields like quantum mechanics are discussed.

Nonlinear investigations of pure trapped electron mode (TEM) driven turbulence show that
zonal flows, which are crucial for the saturation of the well studied ion temperature gradient
(ITG) mode driven turbulence, are often not essential in the TEM case. A detailed inves-
tigation of the statistical properties of the ~E× ~B nonlinearity suggests that the latter can be
approximated by a simple diffusion term, confirming numerically, for the first time, longstand-
ing predictions based on renormalized turbulence theories. These findings are used to justify
a quasilinear transport model that has been applied successfully to pure TEM turbulence in
previous works.

The transitions between TEM and ITG turbulence are studied systematically, revealing a
coexistence of the two kinds of turbulence for a wide range of parameters. Surprisingly, it is
found that a single wavenumber may be associated with different frequencies belonging to dif-
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ferent modes. Two different mechanisms that lead to the experimentally relevant condition of
zero particle transport are identified. A simple quasilinear model, which is shown to describe
some basic features of the transition, is presented. The model allows for high dimensional
parameter scans and can be used to understand the parameter dependencies of the experimen-
tally relevant hypersurface of zero particle transport. As an example, the dependence of the
TEM-ITG system on the collision frequency is studied.

Finally, some of the first simulations of ITG turbulence in the W7-X stellarator in realistic
geometry are presented, both in the adiabatic electron approximation and for fully gyroki-
netic electrons and ions, demonstrating the advances in computational gyrokinetics. Several
features like the gradient dependence of the ion heat transport are discussed, suggesting a sig-
nificant potential of non-axisymmetric devices for a systematic control of turbulent transport.
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Zusammenfassung

Der anomale Transport in magnetisch eingeschlossenen Hochtemperaturplasmen ist eines der
größten Hindernisse für die Verwirklichung von Fusionskraftwerken. Er wird durch Turbulenz
auf Skalen vergleichbar zum Gyroradius der geladenen Plasmateilchen verursacht und führt
zu einer Verschlechterung des Einschlussverhaltens, was das Erreichen der Zündbedingung,
die für eine selbsterhaltende thermonukleare Reaktion im Plasma notwendig ist, deutlich er-
schwert. Ein wichtiges Ziel der Fusionsforschung ist es daher, die physikalischen Prozesse, die
das Transportniveau bestimmen, zu identifizieren und zu verstehen und somit eine Vorhersage
oder sogar Beeinflussung anomalen Transports zu ermöglichen.

In der vorliegenden Arbeit wird hierzu ein numerischer Ansatz verfolgt. Die gyrokinetischen
Gleichungen, die magnetisierte Plasmen bei fusionsrelevanten Parametern beschreiben, wer-
den für die numerische Behandlung vorbereitet. In der hier gezeigten Form sind sie für allge-
meine magnetische Geometrien gültig und beinhalten einen linearisierten Landau-Boltzmann-
Stossoperator, den Einfluss des Druckgradienten und andere physikalische Effekte und erweit-
ern und verallgemeinern somit frühere Darstellungen.

Es werden einige Aspekte bezüglich der numerischen Implementierung dieser Gleichungen
in den massiv parallelen Plasmaturbulenz-Code GENE diskutiert, wobei der Schwerpunkt
auf den deutlichen Modifikationen und Verbesserungen liegt, die im Laufe dieser Doktor-
arbeit in den Code eingeflossen sind. Beispielsweise wurden die Recheneffizienz u.a. durch
neue Zeitschrittverfahren deutlich optimiert, die Parallelisierung verbessert und Antialiasing-
Verfahren eingeführt, die die Simulationen verlässlicher und robuster machen. Eine wichtige
Neuerung stellt auch die Schnittstelle zu einem iterativen Eigenwertlöser dar, der die Unter-
suchung beliebiger Bereiche des Eigenwertspektrums des linearen gyrokinetischen Operators
erlaubt.

Dieser Eigenwertlöser wird benutzt, um die Parameterabhängigkeit von Übergängen zwi-
schen den bekannten Mikroinstabilitäten zu untersuchen. Diese Untersuchung führt zur Ent-
deckung nichthermitescher Entartungen in der linearen Gyrokinetik; die daraus resultierenden
Implikationen und Analogien mit anderen Fachgebieten wie der Quantenmechanik werden
diskutiert.

Nichtlineare Untersuchungen reiner Trapped Electron Mode (TEM) Turbulenz zeigen, dass
zonale Strömungen, die für die Sättigung der gut untersuchten Ion Temperature Gradient
Mode (ITG) Turbulenz entscheidend sind, im TEM-Fall oft nicht wichtig sind. Eine genaue
Untersuchung der statistischen Eigenschaften der ~E× ~B -Nichtlinearität ergibt, dass diese
durch einen einfachen Diffusionsterm approximiert werden kann, was theoretische Vorher-
sagen im Rahmen von renormierten Turbulenztheorien zum ersten Mal numerisch bestätigt.
Dieses Ergebnis liefert nachträglich auch die Grundlage für ein quasilineares Transportmodell,
das in früheren Arbeiten bereits erfolgreich angewandt wurde.

Weiterhin werden die Übergänge zwischen TEM- und ITG-Turbulenz ausführlich unter-
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sucht. Über einen weiten Parameterbereich zeigt sich eine Koexistenz der beiden Turbulenz-
arten, in manchen Fällen erstaunlicherweise sogar bei der gleichen Wellenzahl. Zwei Mech-
anismen, die zur experimentell relevanten Bedingung von verschwindendem Teichentrans-
port führen, werden identifiziert. Ein einfaches quasilineares Modell wird vorgestellt, das
einige der grundlegenden Merkmale des Übergangs beschreiben kann. Das Modell erlaubt
hochdimensionale Untersuchungen des gyrokinetischen Parameterraums und kann für Unter-
suchungen der Parameterabhängigkeit der Hyperfläche mit verschwindendem Teilchenfluss
benutzt werden. Dies wird am Beispiel der Abhängigkeit des TEM-ITG-Systems von der
Stoßfrequenz demonstriert.

Zuletzt wird noch ITG-Turbulenz im Stellarator W7-X untersucht. Es werden sowohl Simu-
lationen in der Näherung adiabatischer Elektronen als auch mit einer vollen gyrokinetischen
Behandlung beider Spezies präsentiert, was die Fortschritte in der numerischen Beschreibung
von Plasmaturbulenz verdeutlicht. Es werden einige Aspekte der Turbulenz in W7-X wie z.B.
die Abhängigkeit des Ionen-Wärmetransports vom Temperaturgradienten diskutiert und das
Potential verschiedener nicht-axialsymmetrischen Magnetfeldkonfigurationen aufgezeigt.
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1. Introduction

In the past, economic growth and the associated increase of the standard of living have always
been linked to an increasing energy consumption. And although the governments of the devel-
oped countries are now trying to improve the energy efficiency and to decouple the economic
growth from the energy consumption, it is clear that the rapid development of big economies
in Asia and Latin America will lead to a massive increase of the world primary energy demand
in the next decades. Depending on the scenario, the International Energy Agency predicts a
growth of 1.2% to 1.6% per year until 2030 [1].

The biggest contribution to the world energy production is by far the burning of fossil fuels
like oil, coal, and gas. In 2005, 12.7% of the total primary energy used in the world [2]
came from renewable sources including hydropower and burning of combustible renewables
and waste, 6.3% came from nuclear fission, and the rest, i.e. more than 80%, came from the
burning of fossil fuels (the numbers for the developed OECD countries are 6.2% renewables,
11% fission and 82.8% fossil fuels). Despite the efforts to promote renewable energies in
recent years, the 2007 numbers for Germany are very similar to the numbers for the average
of the OECD countries stated above [3].

It is clear that the availability of fossil fuels is limited, so that they can not be part of a
sustainable energy supply and have to be replaced in the long term. Additionally, the burning
of fossil fuels constitutes the biggest source of anthropogenic green house gases, which cause
the global warming that is presently observed, as is now generally accepted [4]. Together
with geopolitical reasons, these points make clear that the use of fossil fuels has to be reduced
dramatically.

A widely used source of energy that does not produce green house gas emissions is nuclear
fission. There has been a renewed interest in this technology lately, but with the intrinsic pos-
sibility of catastrophic accidents, the potential misuse for nuclear weapon production, and the
unsolved question of how to ultimately dispose the long-lived nuclear waste that is created, fis-
sion has significant backdraws, which in several European countries have lead to the political
decision to abandon fission energy.

With the exceptions of geothermal and tidal power stations, which have no significant con-
tribution to the world energy production, the renewable energy sources used and promoted to-
day are different forms of solar energy, i.e. they result from nuclear fusion reactions in the sun.
The thermal energy that is created in the sun is radiated through space, transmitted through the
earth’s atmosphere, and then converted either directly in solarthermal or photovoltaic power
plants or used in indirect forms such as biomass or wind.

While the efficiency of the different technologies to exploit solar energy is currently im-
proved through many technical innovations and the different forms of solar power will cer-
tainly play an important role in the future energy supply, there has also been a constant effort
over the last decades to enable a direct use of fusion power in a power plant on earth. The
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1. Introduction

benefits of such an energy source would be manifold. As in conventional power plants using
fission or fossil fuels, the power output could be controlled directly and would not dependent
on atmospheric conditions (weather, concentration of aerosols etc.). In contrast to conven-
tional power plants, fusion power plants would not produce green house gases or big amounts
of long-lived radioactive waste; catastrophic runaway chain reactions or the use of the tech-
nology for weapon production would be ruled out. Furthermore, the fuel for the reaction is
readily available in all countries and in virtually unlimited quantities, so that nuclear fusion
would be a reliable, safe, and abundant source of energy.

The conditions that are necessary to sustain a fusion reaction are very difficult to achieve
on earth. Because of its favourable cross section [5], the fusion reaction that is intended for a
fusion power plant is

2H + 3H → 4He + n + 17.6 MeV ,

i.e. the fusion of tritium and deuterium, the heavy isotopes of hydrogen. Deuterium is widely
available from water, since it constitutes 0.015% of all hydrogen atoms. Tritium is radioactive
with a relatively short half-life of 12.3 years, so that its natural occurrence is negligible and it
has to be produced. Fortunately, the tritium-deuterium fusion reaction creates a neutron, which
can be used to breed new tritium out of lithium directly in the wall of the reaction vessel.

The most important parameters that control the fusion reaction rate are the density n and
the temperature T of the tritium-deuterium mixture, which is in the plasma state for fusion
relevant conditions. To achieve a self-sustained fusion reaction (”ignition”), furthermore a
sufficiently large energy confinement time τE is necessary.

The condition for an ignited tritium-deuterium plasma can be approximated in the experi-
mentally relevant parameter range by the condition

nTτE > 3 × 1021 keV s m−3 ,

which combines the above parameters [5]. In stars like the sun, which sustain a different fusion
reaction, plasma confinement is acheived through gravitation. The enourmous mass and extent
of the stars lead to a high plasma density and long energy confinement time in the core, so that
plasma temperatures can be moderate. These conditions are impossible to achieve on earth,
since gravitational effects are negligible in laboratory scale plasmas. The most promising
approach to obtain the confinement times that are necessary to sustain a controlled fusion re-
action at technically achievable densities and temperatures is magnetic confinement, which is
characterized by rather low densities (1019m−3 to 1020m−3), high temperatures (above 10 keV)
and confinement times of a few seconds.

In this approach, a strong magnetic field confines the motion of the plasma particles perpen-
dicular to the magnetic field lines to gyroorbits. Parallel to the field lines, the particles move
more or less freely (up to magnetic mirror effects); to avoid losses at the ends of the magnetic
field, the field lines are usually bent to a torus. As it turns out, plasmas in purely toridal mag-
netic fields are subject to drifts [5] that prevent a stable confinement. This problem is solved
by a twisting of the magnetic field lines, i.e. the creation of an additional poloidal component
of the magnetic field. The pitch of the field line, i.e. the ratio of toroidal and poloidal revolu-
tions of a field line, is given by the so-called safety factor q. If this q is not a rational number,

2



the field line covers a so-called flux surface; the field lines at different radial positions inside
the toroidal plasma vessel define nested flux surfaces.

The two most important concepts for magnetic confinement fusion essentially differ in the
way the twisting of the field lines is achieved. In a tokamak (left plot of Fig. 1.1), a set of exter-
nal field coils produces a purely toroidal magnetic field. Additionaly, a strong toroidal electric
current is induced in the plasma, which creates the necessary poloidal magnetic field compo-
nent. Most fusion experiments in the world, including the International Thermonuclear Exper-
imental Reactor (ITER), now under construction at Cadarache, France, follow this concept. In
a stellarator (right plot of Fig. 1.1), the twisted magnetic field that is needed for confinement
is completely generated by the external field coils, with no need for a plasma current.

Figure 1.1.: Left: Schematic view of the coil system and magnetic field of a tokamak. Right:
Field coils and a flux surface of the optimized stellarator W7-X. Source: IPP.

Due to the extreme conditions that are necessary to ignitite a fusion plasma, many engineer-
ing problems related to the construction of a fusion power plant have to be solved, e.g. con-
cerning corrosion and tritium inventory of wall materials, structural issues due to the high
magnetic fields, or the construction of superconducting field coils, the associated cooling sys-
tems and high power plasma heating systems. But also the fusion plasma itself poses many
challenges, e.g. macroscopic drifts or instabilities of the plasma column caused by the inter-
action of the plasma and self-generated electromagnetic fields, which have to be controlled in
order to avoid an unintentional termination of the plasma discharge.

Macroscopic plasma stability provided, the energy confinement time is set by the transport
processes in the plasma. While a single charged particle would remain close to a given flux
surface forever, collective effects in the plasma lead to a degradation of the confinement. There
are two such effects: The first are particle collisions, which lead to a repositioning of the parti-
cle orbits (the so-called neoclassical transport); the second are self-generated gyroradius-scale
electric and magnetic field fluctuations leading to a turbulent drift of the plasma (anomalous
transport). In tokamaks (and probably also in optimized stellarators), the core transport is
generally dominated by the latter, i.e. the anomalous contribution.

Because of its relevance for the energy confinement time, plasma microturbulence consti-
tutes one of the key open issues in magnetic confinement fusion research. The identification
and analysis of the processes that determine the anomalous transport will hopefully lead to a
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1. Introduction

level of understanding that allows for reliable predictions and, eventually, the control of this
phenomenon, which is one of the main obstacles on the way to a working fusion device.

Turbulence in general is considered to be one of the most important unsolved problems in
physics. The most common system to study turbulence is the dynamics of fluids as described
by the Navier-Stokes equation, which has been known since the first half of the 19th century.
Although it has been an important topic in physics and mathematics for a long time, only very
few theoretical approaches and results exist, demonstrating the complexity of the problem.
With this background, it is not surprising that the much newer field of plasma microturbulence,
which is described by considerably more complicated equations, has similar problems.

Despite significant progress in this area over the last years, fundamental questions remain,
e.g., concerning the properties of the linear plasma microinstabilities or their nonlinear sat-
uration mechanisms in some idealized limits, and even more so for realistic situations with
several coexisting microinstabilities or additional physical effects, where several phenomena
compete. Because of the complexity of the equations that descibe the plasma in reactor-
relevant geometries, even the linear instabilities can not be computed analytically. However,
the microinstabilities and also the turbulent system can be studied by means of numerical sim-
ulations, which make all plasma properties accessible with a spatial resolution that can never
be achieved in experiments. Furthermore, numerical simulations offer the possibility for para-
metric studies that would be very difficult or even impossible to do in an experimental setup.
Direct simulations of plasma turbulence are numerically very demanding and a lot of work has
to be invested in the development and the parallelization and optimization of such a simulation
code. Still, depending on the problem under consideration, a single simulation requires com-
putation times of thousands to several ten thousand CPU hours, so that these investigations
have only become feasible with the advent of big parallel supercomputers in the last years.

The present work is structured as follows. After a short introduction concerning the de-
scription of magnetized plasmas, the general gyrokinetic equations will be presented. These
equations will then be prepared for a numerical treatment by adapting them to the δf flux
tube approach and normalizing them in a very general fashion. In Chapter 3, the GENE code,
which solves the gyrokinetic equations numerically will be discussed, with a special empha-
sis on the aspects that have been added or improved considerably in the course of this PhD
project. The GENE code will be used for the investigations of all following chapters, starting
with investigations of linear phenomena in Chapter 4, where the nontrivial structure of the
eigenvalue surfaces in parameter space will be discussed.

The remaining chapters then deal with plasma microturbulence and the induced anomalous
transport. In Chapter 5, the saturation of pure trapped electron mode (TEM) turbulence will
be discussed, based on a study of the statistical properties of the ~E× ~B nonlinearity. In the
following chapter, the idealization of a vanishing ion temperature gradient will be dropped and
the coexistence of TEM and ion temperature gradient (ITG) mode turbulence will be studied,
merging the pure TEM turbulence of Chapter 5 and pure ITG turbulence often found in the
literature to a more complex but more realistic scenario. In Chapter 7, some of the first results
for ITG turbulence in the W7-X stellarator will be presented, first in the adiabatic electron
limit and then with a full gyrokinetic treatment of both electrons and ions, demonstrating
the progress in the description of systems with complicated realistic geometries. In the last
chapter, the key results of this thesis will be summarized and a short outlook will be given.
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2. Gyrokinetics

Plasmas in magnetic confinement fusion experiments are very hot and dilute. Collisions there-
fore only play a subdominant role. This implies that the usage of standard fluid descriptions
is not justified, and kinetic effects have to be taken into account. Although so-called gyrofluid
models, which try to incorporate kinetic effects in a fluid context, can be useful for some
applications, the most accurate and straightforward approach for the description of plasma
microturbulence, which is the subject of this thesis, is to retain the velocity space dependence
of the distribution function in the evolution equation of the plasma.

The core temperatures of fusion plasmas are of the order of 100 million Kelvin, correspond-
ing to a thermal energy of approximately 15 keV. This is still small compared to the rest mass
of the electrons of about 500 keV, so that relativistic effects can be safely neglected. Further-
more, the main constituents, deuterium, tritium and helium, and remaining impurities up to
the atomic number of argon are fully ionized at these temperatures, so that neutral particles
and the associated ionization/neutralization processes can be neglected as well.

Thus, in order to describe the processes occurring in the core region of a fusion experi-
ment, the classical, non-relativistic motion of electrons and (at least one) fully ionized ion
species in the presence of an external magnetic field has to be considered, the charge of the
plasma constituents leading to collective effects like the self-generation of additional elec-
tromagnetic fields or single-particle effects like scattering. The equations for the time evo-
lution of the six-dimensional particle distribution functions in space and velocity space and
Maxwell’s equations, which relate the velocity space moments of the distribution functions to
the (self-generated) electromagnetic fields, form a closed system of equations.

The computational effort to numerically solve this system of equations would still be totally
out of scope for present day supercomputers, since it describes phenomena covering a huge
range of spatial and temporal scales, from light waves to macroscopic plasma instabilities. It
is therefore essential to confine the equations to the space and time scales that are really of
interest for the microturbulence considered here.

The strong magnetic fields of approximately three to five Tesla used in magnetic confine-
ment fusion lead to a fast gyration of the charged particles around the magnetic field lines. This
fast gyromotion is of no practical interest, since only the comparatively slow drift of the gyro-
centers results in a net cross-field transport of particles or heat that deteriorates confinement.
In coordinates that are aligned with the magnetic field, this fast gyromotion can be removed
analytically from the (collisionless) Vlasov equation, which is then formulated in terms of the
distribution functions of the gyrocenters rather than the corresponding particles. The electro-
magnetic fields can be dealt with in two different ways. The simplest approximation is to use
the value at the position of the gyrocenter, which is known as the drift kinetic approach. A
more sophisticated approach is to average the fields over the gyroangle. The resulting equa-
tions are known as the gyrokinetic equations, which are today the standard paradigm for the

5



2. Gyrokinetics

description of plasma microturbulence. For an overview and a modern formulation of the
derivation, see [6].

Although they provide a significant reduction of the problem, the nonlinear gyrokinetic
equations are still challenging to solve numerically. To minimize the computational effort, the
distribution function is usually split into a static, Maxwellian background plus fluctuations.
This greatly improves the possibilities for a numerical solution of the equations, but separat-
ing the background distribution function from the fluctuations also removes important features
like the plasma current, so that the equations for the fluctuations do not describe the evolution
of e.g. the magnetic flux surfaces. This evolution is well described by MHD, and since the
time scales for the evolution of the equilibrium are much larger than the corresponding micro-
turbulent time scales, the MHD equilibrium is usually assumed to be static over the simulation
time. This leads to a hierarchy of models. First, an MHD equilibrium is reconstructed from
experimental data or projections, then the obtained data for temperature and density profiles,
equilibrium magnetic field B0, etc., are used as input for the gyrokinetic description.

2.1. Basic description of a plasma

A single particle of charge q and mass m moving in electric and magnetic fields is subject to
Coulomb and Lorentz forces. In Hamiltonian mechanics, the time evolution of the canonical
variables ~x and ~p (different from the kinetic momentum ~p− q ~A in the presence of a magnetic
vector potential) is given by the Poisson bracket ~̇x = {~x,H} and analogous for ~p, with the
Hamiltonian

H =
p2

2m
+ qφ(~x)

(φ is an external electrostatic potential).
A formal description of the whole plasma [7], which consists of a macroscopic number

N of particles obeying the equations of motion for the single particle, taking into account
the electromagnetic forces on each particle resulting from the distribution and motion of
all other particles, is given by the Liouville equation for the N-particle distribution function
ρ(~x1, ...~xN , ~p1, ...~pN , t) of the canonical variables ~x and ~p,

dρ

dt
=

(

∂

∂t
+
∑

j

{~qj, H} · ∂

∂~qj
+
∑

j

{~pj, H} · ∂

∂~pj

)

ρ = 0 , j = 1, ..., N

where {} is the Poisson bracket and the Hamiltonian is given by

H =
∑

j

[

p2
j

2mj
+ qjφ(~xj)

]

+
∑

i<j

qiqj
|~xi − ~xj|

. (2.1)

This equation is of course useless for practical purposes; it has to be reduced to an equation
for a one particle distribution function F (~x,~v, t). This leads to the BBGKY (Bogoliubov,
Born, Green, Kirkwood, Yvon) hierarchy, where the equation for the one-particle distribution
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2.1. Basic description of a plasma

function contains the two particle distribution function, the equation for the two-particle distri-
bution function contains the three-particle distribution function etc. Truncating the hierarchy
by neglecting all particle correlations leads to the Vlasov equation,

dF (~x,~v, t)

dt
=

(

∂

∂t
+ ~̇x · ∂

∂~x
+ ~̇v · ∂

∂~v

)

F (~x,~v, t) = 0 (2.2)

(with the appropriate expressions for ~̇x, ~̇v). In this case, the discreteness of the plasma is fully
neglected and the only remaining interaction of the plasma particles (stemming from the last
term of the Hamiltonian 2.1 and now hidden in ~̇x, ~̇v), is the interaction with the collectively
generated electric and magnetic fields, which are given by velocity space moments of the
(continous) distribution functions of the different species.

Closing the BBGKY hierarchy at higher order adds terms to the Vlasov equation which
describe collisions between the discrete constituents of the plasma. These contributions can
be considered subdominant for the very hot and dilute plasmas occuring in magnetic confine-
ment fusion and are therefore often neglected; however, they constitute an important element
in the context of comprehensive, predictive transport simulations. To obtain a manageable ex-
pression for the collision operator, three-particle and higher order correlations are neglected,
which is justified given the low densities. The approximation that will be used in the fol-
lowing is the Landau-Boltzmann operator, which is derived by neglecting the three particle
effects altogether and truncating the BBKGY hierarchy at the second order (see, e.g. [8]).
With this assumption of purely binary collisions, the full collision operator entering the time
evolution of species j (often called test particle species in this context) is given by the sum of
the contributions C(Fj, Fj′) arising from collisions with all species j ′ (field particles) in the
system:

Cj(F ) =
∑

j′

C(Fj, Fj′). (2.3)

Because the interaction between individual plasma particles is caused by long-range, plasma-
shielded Coulomb forces, the effect of these binary collisions are predominantly small-angle
(i.e. Fokker-Planck) deflections. In the derivation of an explicit form of the operator (also see
[8]), an integral over the Coulomb potential has to be evaluated

γjj′ = 2πq2
j q

2
j′

∫ ∞

0

dr
1

r
.

This integral suffers from logarithmic divergences at very large and very small separations.
The first occurs because shielding effects due to a third particle have been neglected, the
second because the assumption of weak coupling (i.e. small deflection angles) breaks down at
small separations, so that both divergences can be avoided by a physically motivated limitation
of the integral bounds. Because it is difficult to find an algebraic expression for this so-called
Coulomb logarithm ln Λc, usually approximate numerical values are used. These are tabulated
e.g. in [9], and the above expression becomes γjj′ = 2πq2

j q
2
j′ lnΛc.

7



2. Gyrokinetics

With this, the Landau-Boltzmann collision operator for the distribution function Fj of
species j scattering off Fj′ is [8, 10]

C(Fj, Fj′) =
∂

∂~v
· γjj′

mj

∫

d3 v′U ·
(

Fj′

mj

∂

∂~v
Fj −

Fj

m′
j

∂

∂~v′
Fj′

)

,

with the abbreviations

U =
u2 − ~u~u

u3
, ~u = ~v − ~v′.

Because C is written as the velocity space divergence of a velocity space flux, particle number
conservation is obvious, it also conserves energy and momentum. For an easier evaluation,
the contributions to the collision operator can also be written as

C(Fj, Fj′) =
∂

∂~v
· (D · ∂

∂~v
− ~R)Fj (2.4)

where the diffusion tensor D and the dynamical friction ~R are functions of the Rosenbluth
potentials G and H

D =
γjj′

m2
j

∂2Gj′

∂~v∂~v
~R =

2γjj′

mjmj′

∂Hj′

∂~v

Gj′(~v) =

∫

d3v′Fj′u Hj′(~v) =

∫

d3v′Fj′
1

u
. (2.5)

2.2. Geometry and coordinates
It is important to realize that the dynamics and the associated structures of magnetized plasmas
described by the gyrokinetic equations are strongly anisotropic. The Lorentz force does not
alter the particle dynamics parallel to the magnetic field, i.e. up to magnetic mirror forces,
the particles move freely with their thermal velocity. In contrast to that, the mobility of the
gyrocenters perpendicular to the magnetic field is strongly reduced; only the relatively slow
∇B, curvature, and ~E× ~B drifts remain. This leads to a strong anisotropy of the structures
occurring in a fusion plasma – the parallel correlation length (typically of several ten meters)
being much larger than the perpendicular one (typically of the order of a few centimeters).
As in many other physical systems, the choice of an appropriate coordinate system that takes
into account this anisotropy is crucial for an efficient description. In the present case, the
coordinate system should be aligned with the background magnetic field. By this means,
the anisotropy can be exploited to perform analytic approximations (like the gyroaveraging
that will be described below), but also simplifications concerning a numerical solution of the
resulting evolution equations. By choosing different numerical schemes and resolutions for
the physically different directions; the number of grid points in the parallel direction can be
reduced by 2-3 orders of magnitude and the constraints on the time step for explicit schemes
are relaxed significantly (see Sec. 3.4.2). The construction of these field aligned coordinate
systems can be quite involved, since the coordinate systems here have to be curvilinear with a
defining metric g that depends on the position in the torus. A good overview of field aligned
coordinate systems used in fusion research can be found in [11].
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2.2. Geometry and coordinates

2.2.1. Flux tube approximation

Even with field aligned coordinates, it is virtually impossible to perform a plasma micro-
turbulence simulation with the grid size required to resolve a full torus (a so-called global
simulation) on a present day supercomputer; systematic studies, which require the compar-
ison of several simulations, are therefore only possible if the simulation domain is reduced
significantly.

A concept that is widely used in this context is the flux tube approach [12, 13, 14]. In this
approximation, that will be used throughout this work, a magnetic field line is followed an
integer number of poloidal turns around the torus; for a tokamak with its axisymmetric and
therefore two-dimensional equilibrium, all variations on a flux surface are sampled after one
turn already. A curved and sheared box around this central field line is then taken as simulation
domain, and the equilibrium quantities are Taylor expanded to first order in the perpendicular
coordinates around the central field line. The values and first derivatives, together with the
metric coefficients that describe the shaping of the box, are then considered to be constant
over the perpendicular extent of the simulation domain; only parallel variations are taken into
account. This local approximation is justified if the radial extent of the box is small compared
to the machine size.

The temperature, density, and pressure of the equilibrium are constant on a flux surface,
their parallel dependence can therefore be neglected and they are completely determined by
two scalars in this approximation, namely their value on the field line and their radial gradient.

As mentioned above, the magnetic geometry is not calculated self-consistently with the
turbulent fluctuations, but taken as input from an analytical or numerical solution of the Grad-
Shafranov equation [15, 16, 5]. A description of the procedure to numerically extract the
relevant quantities from numerical MHD equilibria is given in [17]; this procedure is imple-
mented in the TRACER code, which interfaces with GENE and can be used to extract the
geometric information from MHD reconstructions of assumed or experimentally measured
profiles, from present and future experiments like ASDEX Upgrade, JET, NCSX, W7-X, or
NSTX. A widely used, although strictly speaking inconsistent analytical model is the s − α
equilibrium that will be discussed in detail in Sec. 2.9.1.

Since in the flux tube approximation, the simulation domain does not cover the full extent
of the system, its boundaries do not correspond to physical boundaries. It is therefore very
important to define suitable boundary conditions that keep the effects of this artificial reduction
as small as possible. To be able to write the radial gradients in a simple form and to easily
compute the important radial fluxes, the x direction is chosen to be a flux surface label, i.e. to
be perpendicular to the flux surface that contains the central field line. The z direction is the
parallel direction and y labels the field lines on a flux surface.

In the perpendicular x and y, i.e. radial and binormal directions, periodic boundary condi-
tions

F (x + Lx, y, z) = F (x, y, z), F (x, y + Ly, z) = F (x, y, z)

(and analogous for the electromagnetic fields) are assumed, Lx and Ly are the lengths of the
simulation domain in the corresponding directions. These boundary conditions are consis-
tent with the local approximation introduced above and automatically ensure that heat and
particles, which leave the simulation domain due to the various drifts, are replenished at the
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2. Gyrokinetics

opposite side of the simulation domain. Moreover, this assumption prevents the accumula-
tion of heat or particles at certain radial positions, so that the average radial gradients are not
changed in the simulation.

Note that the perpendicular box lengths Lx, Ly have to be big enough to accommodate
all structures created in the simulation. More specifically, the box lengths have to be bigger
than the correlation lengths of the turbulent fields in the corresponding directions, otherwise
the boundary condition can lead to unphysical effects like very high values of transport due
to end-to-end radial streamers of the electrostatic potential. With these periodic boundary
conditions, it is possible to choose a Fourier representation for the x and y directions, which
gives a relatively simple representation of the gyroaveraging procedure (see below).

To sample the whole flux surface of a two dimensional (tokamak) equilibrium, the simula-
tion domain follows the field line one poloidal turn around the torus, the poloidal angle can
therefore be used to parametrize the parallel direction z. Since the microinstabilities and the
associated turbulent fluctuations usually peak at the low field (outboard) side, the matching of
the two ends of the flux tube is normally done at the high field (i.e. inboard) side to reduce
numerical effects of the boundary condition. In general, the two ends of the simulation do-
main, which are at the same poloidal position do not coincide toroidally, but because of the
axisymmetry in the case of tokamaks or because of discrete toridal symmetries combined with
a suitable value of q0 and potentially more poloidal turns in the case of stellarators, (pseudo-)
periodic boundary conditions are assumed.

One important complication arises from the finite radial extent of the simulation domain
in the presence of finite magnetic shear ŝ = x0

q0

∂q0

∂x
(x0 is the radial coordinate of the central

flux surface): Starting at the outboard side (z = 0) with a rectangular perpendicular cross
section, the simulation domain gets distorted in opposite binormal directions for (z → −π)
and (z → π). The two perpendicular surfaces with z = ±π then have to be matched. From
symmetry considerations, there are the following constraints on the metric:

gxx(π) = gxx(−π) gyz(π) = gyz(−π) gzz(π) = gzz(−π) J(π) = J(−π).

The metric elements gxy and gyy do not have to be periodic, but because of the relation for J
(and gxz = 0 for tokamaks), the Jacobian of the (x, y) submatrix, gxxgyy − (gxy)2, has to be
periodic.

The shearing of the simulation domain corresponds to an x-dependent shift in the y direc-
tion. Differences of the metric elements at ends of the flux tube can therefore only occur
due to a coordinate transformation y ′ = y + S(x). The shift S(x) is (in line with the local
approximation defined above) Taylor expanded to first order, S(x) = S0 + η(x − x0), with
x ∈ [0, Lx]. Strictly speaking, the constant part of the shift, S0 which accounts for the fact that
the ends of the central field line of the flux tube are in general at different toroidal positions,
only disappears if S0 is a multiple of Ly and the periodicity is exploited, but for tokamaks
it can be neglected due to the axisymmetry and for stellarators if special conditions are met
(see Sec. 7.1), which is always assumed in the following. The remaining part of the shift,
which describes a linear radial shearing of the simulation domain, can not be neglected, the
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associated transformation can be expressed as a matrix in the (x, y, z) coordinates,

Ŝ =





1 −η 0
0 1 0
0 0 1



 . (2.6)

With the general form of the metric tensor,

g =





gxx gxy 0
gxy gyy gyz

0 gyz gzz



 , (2.7)

matching the ends of the flux tube means

g(−π)
!
= Ŝ(η)T · g(π) · Ŝ(η), (2.8)

which can be used to determine the relation between the shift parameter η and the elements of
the metric tensor. The condition for the (x, y) components reads

gxy(π) = gxy(−π) + ηgxx(−π) ,

so that

η =
gxy(π) − gxy(−π)

gxx(π)
.

With the above periodicity constraints, this simultaneously satisfies the (y, y) component of
the equation. Note that this shift parameter is the local shear integrated over one poloidal turn,
or 2π times the global shear [18].

With the definition

f(kx, ky) =
1

LxLy

∫ Lx

0

∫ Ly

0

dx dy e−i(kxx+kyy)f(x, y),

f(x, y) =
∑

kx,ky

ei(kxx+kyy)f(kx, ky),

the boundary condition in direct space can be transformed to Fourier space (the x-dependent,
because shifted y bounds of the simulation domain are y1 = −η(x−x0) and y2 = Ly − η(x−
x0))

F (x, y, π) = F (x, y − η(x− x0),−π)
∫ Lx

0

∫ Ly

0

F (x, y, π)e−ikxxe−ikyydx dy =

∫ Lx

0

∫ y2

y1

F (x, y − η(x− x0),−π)e−ikxxe−ikyydx dy

∫ Lx

0

∫ Ly

0

F (x, y, π)e−ikxxe−ikyydx dy =

∫ Lx

0

∫ Ly

0

F (x, y′,−π)e−i(kx+ηky)xe−ikyy′

eikyηx0dx dy′,

implying that the ky shift in direct space corresponds to a kx shift in Fourier space:

F (kx, ky, π) = F (kx + ηky, ky,−π)eikyηx0 . (2.9)
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The finiteness of the box in the x and y directions leads to a discretization of the wavevector,

kx = mkmin
x , ky = nkmin

y

with
kmin

x = 2π/Lx, kmin
y = 2π/Ly, m, n ∈ Z.

This constrains condition 2.9, since the combinationmkmin
x +ηnkmin

y also has to be a multiple
of kmin

x . This means that nηkmin
y /kmin

x must be integer for all y mode numbers n, so that the
condition

N =
ηkmin

y

kmin
x

=
ηLx

Ly
, N ∈ Z

has to be fulfilled. This also implies that the phase factor in Eq. (2.9) is

eikyηx0 = einNkmin
x Lx/2 = eiπnN = (−1)nN

which combined gives the final parallel boundary condition

F (kx, ky, π) = (−1)nNF (k′x, ky,−π), with k′x = (m + nN)kmin
x . (2.10)

This completes the definition of the local flux tube approximation, which will be used through-
out this work.

2.2.2. Guiding-center coordinates

In strongly magnetized plasmas, the dynamics perpendicular to the magnetic field is domi-
nated by a fast gyromotion. To separate this very fast gyration from the more relevant drifts,
the field-aligned guiding-center coordinates ~X and suitable velocity space coordinates are in-
troduced. The transformation between guiding center and particle coordinates involves the
vectorial gyroradius ~r,

~x = ~X + ~r(θ), (2.11)

which can be parametrized as

~r(θ) = (cos θ ~ex + sin θ ~ey)ρj

for perpendicular (x,y) coordinates, where

ρj =
v⊥
|Ωj|

=
c

|qj|

√

2mjµ

B0
and Ωj =

qjB0

mjc

are the gyroradius and Larmor frequency of species j. Since ~r is perpendicular to the magnetic
field, the parallel direction z is not transformed (z = Z).
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A natural choice for the velocity space coordinates is, besides the gyroangle θ, the velocity
v‖ parallel to the magnetic field and the magnetic moment

µ =
mjv

2
⊥

2B0

,

which turns out to be the first adiabatic invariant of the (collisionless) Vlasov equation. The
perpendicular velocity vector is given by

~v⊥(θ) = v⊥
∂

∂θ
(cos θ ~ex + sin θ ~ey) = v⊥(− sin θ ~ex + cos θ ~ey),

which completely defines the relation between the different velocity space coordinates,

v‖ = vz vx = −
√

2B0µ

mj

sin θ

µ =
mjv

2
⊥

2B0

=
mj(v

2
x + v2

y)

2B0

vy =

√

2B0µ

mj

cos θ

θ = arctan

(

−vx

vy

)

vz = v‖.

As is obvious from Eq. (2.11), the complete phase space transformation matrix for ~z =
(~x, vx, vy, vz) → ~Z = ( ~X, v‖, µ, θ) has nonvanishing (x, θ) and (y, θ) entries, which means
that the transformation mixes spatial and velocity space coordinates. However, the gyrocen-
ter transformation does not affect the parallel direction, so that the z, v‖ submatrix of the
transformation is the unit matrix. Dropping the trivial z direction, the Jacobi matrix for the
transformation reads

G =







∂X
∂vx

∂Y
∂vx

∂v‖
∂vx

∂µ
∂vx

∂θ
∂vx

∂X
∂vy

∂Y
∂vy

∂v‖
∂vy

∂µ
∂vy

∂θ
∂vy

∂X
∂vz

∂Y
∂vz

∂v‖
∂vz

∂µ
∂vz

∂θ
∂vz






=

1

v⊥





0 ρj 0 −2µ sin θ − cos θ
−ρj 0 0 2µ cos θ − sin θ
0 0 v⊥ 0 0



 . (2.12)

If the coordinates of the (x, y) plane are not orthogonal, this has to be taken into account
by applying an additional coordinate transformation related to the metric defined in the last
section. The velocity space Jacobian Jv = B0/mj , which appears in the new velocity space
integration element d3v → Jvdv‖ dµ dθ, is not affected by this additional transformation.

After the transformation to guiding-center coordinates, the gyromotion is separated from
the remaining dynamics and described the solely by the θ coordinate. Since this gyromotion,
as mentioned above, is not relevant for transport processes and other quantities of interest, it
can now be removed by an average over the θ coordinate.

2.3. General gyrokinetic equations
In the plasmas of magnetic confinement fusion experiments, the motion of the particles per-
pendicular to the strong background magnetic field can be viewed as a superposition of a fast
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gyration and a slow drift of the gyrocenters. In a Hamiltonian description of the single particle
motion, this splitting into gyration and drift can be achieved by a pseudocanonical coordinate
transformation, such that the gyroangle, which is one of the new, noncanonical variables, does
only appear in higher order corrections to the equations of motion of the other five variables,
if these are expanded in the gyrokinetic ordering parameter ε = ρref/Lref , which corresponds
to the (small) ratio of a typical gyroradius to a typical scale of the nonuniformities of the equi-
librium magnetic field. This leads to an (approximate) decoupling of the variables and the
very fast time evolution of the gyroangle, which is irrelevant for many questions concerning
cross-field transport in plasmas, can be neglected. The Lie perturbation methods that are used
in this procedure have been introduced to plasma physics by Littlejohn [19, 20, 21], and the
gyrokinetic equations in the present form have been derived in [22, 23, 24].

The derivation of the equations is not repeated here, instead, the collisionless gyrokinetic
equations in Gaussian cgs units are taken from [25], which is based on the references given
above. A modern and pedagogical introduction to gyrokinetics can be found in [6, 26]. The
equation for the gyrocenter distribution function Fj( ~X, v‖, µ) of a species j is

∂Fj

∂t
+

(

v‖~b0 +
B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc)

)

·
(

~∇Fj +
1

mjv‖

(

qj
~̄E1 − µ~∇

(

B0 + B̄1‖

)

) ∂Fj

∂v‖

)

= 〈Cj(F )〉, (2.13)

where bars denote gyroaveraging and the gyroaveraged collision operator 〈Cj(F )〉, that has
been added with respect to [25], is discussed below.

The expressions for the drifts are

~vE×B =
c

B0

~b0 × ~∇χj

~v∇B0
=

µ

mjΩj

~b0 × ~∇B0

~vc =
v2
‖

Ωj
(~∇×~b0)⊥ =

v2
‖

ΩjB0
(~b0 × ~∇B0) +

4πv2
‖

ΩjB2
0

(~b0 × ~∇p0)

=
v2
‖

ΩjB0

(

~b0 ×
(

~∇B0 +
4π

B0

~∇p0

))

(2.14)

with the abbreviations χj = φ̄− 1
c
v‖Ā1‖ + 1

qj
µB̄1‖ and B∗

0‖ = ~b0 · (~∇× ( ~A0 +
mjc

qj
v‖~b0)); note

that in the derivation of the expression for ~vc, the MHD equilibrium condition ~∇p = 1
c
~j⊥× ~B0

has been used.
The perturbed fields are given by the pre-Maxwell equations:

~∇ · ~E1 = −∇2φ = 4πρ ~∇× ~E1 = −1

c

∂

∂t
~B1

~∇× ~B1 =
4π

c
~j ~∇ · ~B1 = 0. (2.15)
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Note that the constant parallel current density of the equilibrium that was used to define the
geometry should not be contained in ~j.

This system of equations is closed by the expressions for the charge and current densities,

ρ(~x) =
∑

j

qj

∫

F ∗
j (~x,~v)d3v j‖(~x) =

∑

j

qj

∫

v‖F
∗
j (~x,~v)d3v

~j⊥(~x) =
∑

j

qj

∫

~v⊥F
∗
j (~x,~v)d3v,

where F ∗(~x,~v) is the distribution function at the particle position. These velocity space mo-
ments can be computed from the distribution function of the gyrocenters in the respective
coordinates, F (X, v‖, µ, θ), by applying the transformation

M(~x) =
∑

j

qj

∫

K(~v)F ∗
j (~x,~v)d3v

(

with K(~v) = (1, v‖, v⊥) for M = (ρ, j‖, j⊥)
)

→
∑

j

qj

∫

K(v‖, µ, θ)δ( ~X + ~r − ~x)T ∗Fj( ~X, v‖, µ, θ)d
3X Jvdv‖ dµ dθ, (2.16)

that involves the pull-back operator T ∗, which Lie-transforms the scalar fields back to particle
phase space.

The collision operatorCj(F ) given by Eqs. (2.3) and (2.4) was intended for non-magnetized
plasmas, but its application to magnetized plasmas is justified if the characteristic gyroradii
of the different species are larger than the Debye length [27], which is always given for the
high temperature fusion plasmas considered here. While the Lie transformation has been
used to remove the fast gyroangle dependence of the left hand side of the evolution equation
(2.13), the gyroangle dependence of the collision operator is retained and has to be removed
by gyroaveraging, denoted by the brackets. Because the approximations that will be applied
to the system in the next sections will simplify expression (2.4) for the collision operator
considerably, the transformation to gyrocenter variables and the gyroaveraging is postponed
to a later section of this chapter.

2.4. The δf splitting
In order to reduce the computational effort and to separate the macroscopic evolution of the
plasma from the microturbulence, the full distribution function of the gyrocenters is split into
a static background distribution function F0 (with the key properties of the MHD equilibrium)
plus a perturbation f (named δf in previous presentations; here, the δ is dropped for clar-
ity). Formally, the background distribution function is of order one, the perturbed distribution
function of order ε = ρref/Lref .

Note that in the definition of the field aligned coordinates, the equilibrium magnetic field
B0 has been used, which (at least in the case of tokamaks) is not identical to the field from the
external coils but has a significant contribution from the plasma current of the equilibrium. By
using field aligned coordinates, the equilibrium current has already been taken into account. It
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2. Gyrokinetics

therefore has to be removed from the distribution function to obtain a consistent description;
this is also achieved with the δf splitting.

The effect of the δf splitting on the equation for the distribution function, the field equations
and the collision operator will be discussed in the following subsections.

2.4.1. Equation for the distribution function
The splitting F = F0j + fj applied to Eq. (2.13) gives

〈Cj(F )〉 =
∂F0j

∂t
+
∂fj

∂t
+

(

v‖~b0 +
B0

B∗
0‖

(~v∇B0
+ ~vc) +

B0

B∗
0‖

~vE×B

)

·
(

~∇F0j −
µ

mjv‖

∂F0j

∂v‖
~∇B0 +

1

mjv‖

(

qj
~̄E1 − µ~∇B̄1‖

) ∂F0j

∂v‖

)

+

(

v‖~b0 +
B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc)

)

·
(

~∇fj +
1

mjv‖

(

qj
~̄E1 − µ~∇

(

B0 + B̄1‖

)

) ∂fj

∂v‖

)

.

Collecting the terms that are of zeroth order in ε gives

∂F0j

∂t
+ v‖~b0 ·

(

~∇F0j −
µ

mjv‖

∂F0j

∂v‖
~∇B0

)

= 〈Cj(F0)〉. (2.17)

Note that the B0

B∗
0‖

(~v∇B0
+ ~vc) ·

(

~∇F0j − µ
mjv‖

∂F0j

∂v‖
~∇B0

)

terms are of first order, even though

they do not contain fj . This is because the gradients of the equilibrium quantities F0j , B0 are
proportional to 1/Lref , the drift velocities to ρref , and the terms under consideration therefore
to ε = ρref/Lref . The equation for the perturbation, including these terms reads

〈Cj(f)〉 =
∂fj

∂t
+

B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc) ·

(

~∇F0j −
µ

mjv‖

∂F0j

∂v‖
~∇B0

)

+

(

v‖~b0 +
B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc)

)

·
(

1

mjv‖

(

qj
~̄E1 − µ~∇B̄1‖

) ∂F0j

∂v‖
+ ~∇fj +

1

mjv‖

(

qj
~̄E1 − µ~∇

(

B0 + B̄1‖

)

) ∂fj

∂v‖

)

=
∂gj

∂t
+

B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc) ·

(

~∇F0j −
µ

mjv‖

∂F0j

∂v‖
~∇B0

)

+ v‖~b0 · ~Γj +
B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc) · ~Γj −

µ

m
~b0 · ~∇B0

∂fj

∂v‖
. (2.18)

In the last step, trilinear terms in fj, which are of third order in ε, the subdominant v‖ non-
linearity (see [28, 29]) and the nonlinear part of the collision operator (see below) have been
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2.4. The δf splitting

neglected. With the same argument as above, the term ~vc · ~∇B0
∂fj

∂v‖
, although linear in fj , is

quadratic in ε and therefore also neglected. The only nonlinear (and second order) term that
is considered is the ~E× ~B nonlinearity, which is the dominant term of this kind. Furthermore,
the abbreviations

gj =fj −
qj
mjc

∂F0j

∂v‖
Ā1‖

~Γj =~∇fj −
1

mjv‖

∂F0j

∂v‖

(

qj ~∇Φ̄ + µ~∇B̄1‖

)

=~∇gj −
qj

mjv‖

∂F0j

∂v‖
~∇χj +

qj
mjc

Ā1‖
~∇∂F0j

∂v‖
,

have been introduced, both of them are linear in the distribution function fj.

2.4.2. Field equations

The equilibrium magnetic field ~B0, which was used to define the coordinate system, is not just
the field from the toroidal field coils, but already contains the poloidal contribution from the
(background) plasma current j0‖, which means that the δf splitting of the fields has already
been used implicitly to define the geometry. Maxwell’s equations (2.15) have been formu-
lated for the perturbed fields only. For the electric field, it is assumed that the equilibrium
contribution vanishes, in the equation for the perturbed magnetic field, ~j does not contain the
equilibrium current.

Besides this, the field equations are affected through the closing equations (2.16), where a
pull-back operator to first order in the gyrokinetic expansion

T ∗Fj = F0j + fj +
qj
mjc

Ã1‖
∂F0j

∂v‖
+

1

B0
(qjφ̃1 −

qjv‖
c
Ã1‖ − µB̄1‖)

∂F0

∂µ
(2.19)

(taken from [25]) can be used and higher order terms can be neglected.

2.4.3. Collision operator

It is easy to see that the δf -splitting F = F0 + δf divides the contributions (2.4) and therefore
the collision operator (2.3) into four different parts:

〈Cj(F )〉 =
∑

j′

〈C(F0j, F0j′)〉 +
∑

j′

〈C(fj, F0j′)〉 +
∑

j′

〈C(F0j, fj′)〉 +
∑

j′

〈C(fj, fj′)〉 .(2.20)

The first term (denoted 〈Cj(F0)〉 above) describes the collisional interactions between the
different background distribution functions. The second and third terms are the constituents
of the linearized collision operator for the perturbed distribution function,

〈Cj(f)〉 =
∑

j′

〈C(fj, F0j′)〉 +
∑

j′

〈C(F0j, fj′)〉.

17



2. Gyrokinetics

Its first term describes the effect of fj scattering off the background distribution function F0j′

and will be calculated in the following. The complementary second term, describing particles
of the background distribution function scattering off particles of the perturbed distribution
function, provides for conservation of energy and parallel momentum, which has to be obeyed
by any operator describing elastic collisions. The last term is quadratic in ε, it describes
scattering between two perturbed distribution functions and is neglected.

2.5. Choice of F0j

For the background distribution function, a local (and unshifted) Maxwell distribution is cho-
sen, i.e.

F0j =

(

mj

2πT0j

)
3

2

n0je
−

mjv2
‖

/2+µB0

T0j .

The derivatives of this background distribution can be computed analytically:

~∇F0j =

[

~∇
(

mj

2πT0j

)
3

2

]

n0je
−

mjv2
‖

/2+µB0

T0j +

(

mj

2πT0j

)
3

2 [

~∇n0j

]

e
−

mjv2
‖

/2+µB0

T0j

+

(

mj

2πT0j

)
3

2

n0je
−

mjv2
‖

/2+µB0

T0j

[

−~∇
mjv

2
‖/2 + µB0

T0j

]

= − 3

2T0j

F0j
~∇T0j +

1

n0j

F0j
~∇n0j + F0j

(

mjv
2
‖

2T 2
0j

~∇T0j −
µ

T0j

~∇B0 +
µB0

T 2
0j

~∇T0j

)

=F0j

(

1

n0j

~∇n0j + (
mjv

2
‖

2T0j

+
µB0

T0j

− 3

2
)

1

T0j

~∇T0j −
µ

T0j

~∇B0

)

∂v‖F0j = − mjv‖
T0j

F0j

∂µF0j = − B0

T0j
F0j .

This transforms the term
(

~∇F0j −
µ

mjv‖

∂F0j

∂v‖
~∇B0

)

= ~∇F0j +
µ

T0j
F0j

~∇B0

= F0j

(

1

n0j

~∇n0j + (
mjv

2
‖

2T0j
+
µB0

T0j
− 3

2
)

1

T0j

~∇T0j

)

, (2.21)

so that the zeroth order equation (2.17) now reads

∂F0j

∂t
+ v‖F0j

~b0 ·
(

1

n0j

~∇n0j + (
mjv

2
‖

2T0j
+
µB0

T0j
− 3

2
)

1

T0j

~∇T0j

)

= 〈Cj(F0)〉 . (2.22)
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2.5. Choice of F0j

The density and temperatures are constant on a flux surface, ~b0 · ~∇n0j = ~b0 · ~∇T0j = 0, and
the collisions between the background distribution functions can be neglected (see below) so
that all terms of Eq. (2.22) are zero and the equation is indeed fulfilled.

The integrals

∫

F0jd
3v =

∫
(

mj

2πT0j

)3/2

n0je
−

mjv2

2T0j d3v = n0j

∫

F0jdv‖ dµ =
n0jmj

2πB
(2.23)

will also be useful in the following.

2.5.1. Equation for the distribution function

This choice of F0 changes Eq. (2.18) for the distribution function through relation (2.21),

〈Cj(f)〉 =
∂gj

∂t
+
B0

B∗
0‖

F0j (~vE×B + ~v∇B0
+ ~vc) ·

(

1

n0j

~∇n0j + (
mjv

2
‖

2T0j

+
µB0

T0j

− 3

2
)

1

T0j

~∇T0j

)

+ v‖~b0 · ~Γj +
B0

B∗
0‖

(~vE×B + ~v∇B0
+ ~vc) · ~Γj −

µ

m
~b0 · ~∇B0

∂fj

∂v‖
,

and introduces the gradients of the background distribution function, which will later on con-
stitute the drive of the plasma microturbulence.

2.5.2. Field equations

With this choice for the background distribution function, the Ã1‖ terms in Eq. (2.19) cancel.
This gives the relation

T ∗Fj = F0j( ~X) + fj( ~X) +
µ

T0j

B̄1‖( ~X)F0j( ~X) − qj
T0j

(φ( ~X + ~r) − φ̄( ~X))F0j( ~X)

which can be used to calculate the moments (2.16):

M(~x) =
∑

j

qj

∫

K(v‖, µ, θ)δ( ~X + ~r − ~x)(F0j( ~X) + fj( ~X))d3X Jvdv‖ dµ dθ

−
∑

j

qj

∫

K(v‖, µ, θ)δ( ~X + ~r − ~x)
qj
T0j

φ( ~X + ~r)F0j( ~X)d3X Jvdv‖ dµ dθ

+
∑

j

qj

∫

K(v‖, µ, θ)δ( ~X + ~r − ~x)(
µ

T0j
B̄1‖ +

qj
T0j

φ̄( ~X))F0j( ~X)d3X Jvdv‖ dµ dθ
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2. Gyrokinetics

=
∑

j

(qj −
q2
j

T0j
φ(~x))

∫

2πJv〈K(v‖, µ, θ)〉F0jdv‖ dµ

+
∑

j

qj

∫

2πJv〈K(v‖, µ, θ)fj(~x− ~r)〉dv‖ dµ

+
∑

j

q2
j

T0j

∫

2πJv〈K(v‖, µ, θ)φ̄(~x− ~r)〉F0jdv‖ dµ

+
∑

j

qj
T0j

∫

2πJv〈K(v‖, µ, θ)µB̄1‖(~x− ~r)〉F0jdv‖ dµ .

The background distribution function only varies on macroscopic length scales which are
bigger than the gyroradii. As a constant, it can therefore be extracted from the gyroaveraging
bracket, 〈(...)F0j(~x− ~r)〉 = 〈(...)〉F0j .

The different contributions now have to be evaluated with the appropriateK for the different
moments. The details of the more involved calculations can be found in Appendix A.
The moments that are needed for the calculation of the density n are

∫

2πJvF0jdv‖ dµ = nj0

∫

2πJv〈fj(~x− ~r)〉dv‖ dµ =
2πB0

mj

∑

kx,ky

ei~k⊥·~x⊥

∫

J0(λj)fj(~k⊥)dv‖ dµ

∫

2πJv〈φ̄(~x− ~r)〉F0jdv‖ dµ = n0j

∑

kx,ky

ei~k⊥·~x⊥φ(kx, ky)Γ0(bj)

∫

2πJv〈µB̄1‖(~x− ~r)〉F0jdv‖ dµ =
T0j

B0

n0j

∑

kx,ky

ei~k⊥·~x⊥B1‖(kx, ky)∆(bj) .

In these expressions, ~x⊥ = (x, y) and the perpendicular wave vector k⊥ = (kx, ky) have been
introduced. The moments needed for the calculation of the parallel current density j‖ are

∫

2πJvv‖F0jdv‖ dµ = 0
∫

2πJvv‖〈fj(~x− ~r)〉dv‖ dµ =
2πB0

mj

∑

kx,ky

ei~k⊥·~x⊥

∫

v‖J0(λj)fj(~k)dv‖ dµ

∫

2πJvv‖〈φ̄(~x− ~r)〉F0jdv‖ dµ = 0
∫

2πJvv‖〈µB̄1‖(~x− ~r)〉F0jdv‖ dµ = 0 .

The major simplifications here are due to the fact that F0j is an even function of v‖ while the
electromagnetic fields and the gyroaveraging do not depend on v‖ at all, so that the integrals
of the form a(µ)

∫

v‖F0jdv‖ vanish.

20



2.5. Choice of F0j

The moments needed for the perpendicular current density ~j⊥ are
∫

2πJv〈~v⊥〉F0jdv‖ dµ = 0

∫

2πJv〈~v⊥fj(~x− ~r)〉dv‖ dµ =
π(2B0)

3/2

m3/2

∑

kx,ky

ei~k⊥·~x⊥i
ky ~ex − kx ~ey

k⊥

·
∫ √

µJ1(λj)fj(kx, ky)dv‖ dµ

∫

2πJv〈~v⊥φ̄(~x− ~r)〉F0jdv‖ dµ =
v2

Tjn0j

2Ωj

∑

kx,ky

ei~k⊥·~x⊥φ(kx, ky)i(ky ~ex − kx ~ey)∆(bj)

∫

2πJvµ〈~v⊥B̄1‖(~x− ~r)〉F0jdv‖ dµ =
v2

Tn0jT0j

B0Ω

∑

kx,ky

ei~k⊥·~x⊥B1‖(kx, ky)i(ky ~ex − kx ~ey)∆(bj).

The abbreviations that have been used in these expressions (also introduced in Appendix A)
are

∆(x) =
Î0(x) − Î1(x)

ex
λj =

√

2B0µ

mj

k⊥
Ωj

bj =
v2

Tjk
2
⊥

2Ω2
j

(Î0, Î1 are modified Bessel functions).
With these moments, it is now possible to give an explicit expression for the charge density

ρ(~x) =
∑

j

qjnj0 −
∑

j

q2
j

T0j
φ(~x)nj0 +

∑

kx,ky

ei~k⊥·~x⊥

[

∑

j

qj
2πB0

mj

∫

J0(λj)fj(~k⊥)dv‖ dµ

+
∑

j

q2
j

T0j
n0jφ(kx, ky)Γ0(bj) +

∑

j

qj
B0
n0jB1‖(kx, ky)∆(bj)

]

.

The charge density due to the equilibrium is assumed to be zero (quasineutrality), so that the
first term vanishes,

∑

j qjnj0 = 0. In the simpler Fourier space representation for the (x, y)
plane (the z direction remains in direct space), the charge density therefore reads

ρ(~k) =
∑

j

qj
2πB0

mj

∫

J0(λj)fj(kx, ky)dv‖ dµ+
∑

j

q2
j

T0j
n0j(Γ0(bj) − 1)φ(kx, ky)

+
∑

j

qj
B0

n0j∆(bj)B1‖(kx, ky) .

The parallel current density in Fourier space is

j‖(~k) =
∑

j

qj
2πB0

mj

∫

v‖J0(λj)fj(~k)dv‖ dµ ,
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the perpendicular current density is

~j⊥(~k) =i(ky ~ex − kx ~ey)

(

∑

j

πqj
k⊥

(

2B0

m

)3/2 ∫ √
µJ1(λj)fj(kx, ky)dv‖ dµ

+
∑

j

q2
jn0j

mjΩj
∆(bj)φ(kx, ky) +

∑

j

qjv
2
Tn0j

B0Ω
∆(bj)B1‖(kx, ky)

)

.

Since the Vlasov equation is formulated in terms of the modified distribution function g, the
charge and current densities are also rewritten as functions of g,

ρ(~k) =
∑

j

qj
2πB0

mj

∫

J0(λj)gj(kx, ky)dv‖ dµ+
∑

j

q2
j

T0j
n0j(Γ0(bj) − 1)φ(kx, ky)

+
∑

j

qj
B0
n0j∆(bj)B1‖(kx, ky)

j‖(~k) =
∑

j

qj
2πB0

mj

∫

v‖J0(λj)gj(~k)dv‖ dµ− A1‖(~k)
∑

j

q2
j

2πB0

mjcT0j

∫

v2
‖J

2
0 (λj)F0jdv‖ dµ

~j⊥(~k) =i(ky ~ex − kx ~ey)

(

∑

j

πqj
k⊥

(

2B0

m

)3/2 ∫ √
µJ1(λj)gj(kx, ky)dv‖ dµ

+
∑

j

q2
jn0j

mjΩj
∆(bj)φ(kx, ky) +

∑

j

qjv
2
Tn0j

B0Ω
∆(bj)B1‖(kx, ky)

)

. (2.24)

Because of the v‖ symmetry of F0, the additional terms in ρ and ~j⊥ vanish and only j‖ is mod-
ified. The remaining F0 integral could be solved analytically, but since the moment of g will
be computed numerically it is preferable treat this integral equivalently to ensure numerical
cancellation.

2.5.3. Collision operator

The above choice for F0 also leads to significant analytical simplifications of the collision
operator. The 〈Cj(F0)〉 term describes temperature equalization of the different background
distribution functions, its contributions 〈C(F0j, F0j′)〉 vanish identically for T0j = T0j′ . For
self-collisions, this is always fulfilled, but even for slightly different temperatures, this process
is slower than the microturbulence time scales of interest and 〈Cj(F0)〉 can be neglected.

The terms entering 〈C(fj, F0j′)〉 are simplified by analytically evaluating the Rosenbluth
potentials. This has been done e.g. in [10] and yields

Djj′ =
γjj′nj′Tj′

m2
jmj′

1

v3

[

1~vF1(x) + 3
~v~v

v2
F2(x)

]

~Rjj′ =
γjj′nj′

mjmj′

~v

v3
F3(x)
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for the collisional diffusion and dynamical friction terms of Eq. 2.5. The abbreviations

F1(x) = x
derf(x)

dx
+ (2x2 − 1)erf(x)

F2(x) = (1 − 2

3
x2)erf(x) − x

derf(x)

dx

F3(x) = F1(x) + 3F2(x) = 2erf(x) − 2x
derf(x)

dx
,

which contain the error function erf(x), the normalized velocity x = v/vTj′ , the prefactor
γjj′ = 2πq2

j q
2
j′ ln Λc in Gaussian units and the unit matrix in velocity space, 1~v have been

introduced. Together, this gives

〈C(fj, F0j′)〉 =
γjj′nj′

mjmj′

〈

∂

∂~v
·
(

Tj′

mj

1

v3

[

1~vF1(x) + 3
~v~v

v2
F2(x)

]

· ∂
∂~v

− ~v

v3
F3(x)

)

fj

〉

.(2.25)

The exact computation of the remaining 〈C(F0j, fj′)〉 contributions to the linearized collision
operator would be very expensive due to the ~v-space convolution, which cannot be performed
analytically in this case. Since the background distribution function is kept fixed in the δf
approach anyway, an exact computation of this term can be avoided and it can be replaced by
much simpler model terms

Aj′j = aj′jF0j′ + bj′jv‖F0j′ + cj′jv
2F0j′ .

These terms are added to the evolution equation for species j ′ and account for the transfer of
energy and momentum between species while observing particle conservation for each species
individually. The conditions for Aj′j to restore the conservation properties read

∫

d3v Aj′j =

∫

d3v 〈C(fj, F0j′)〉 = 0
∫

d3v mj′v‖Aj′j = −mjK
v‖
j′j = −

∫

d3v mjv‖〈C(fj, F0j′)〉
∫

d3v
mj′

2
v2Aj′j = −mj

2
KE

j′j = −
∫

d3v
mj

2
v2〈C(fj, F0j′)〉 . (2.26)

With the abbreviations

B1j′ =

∫

d3v F0j′ B2j′ =

∫

d3v v2F0j′ B3j′ =

∫

d3v v4F0j′ B4j′ =

∫

d3v v2
‖F0j′ ,

the model parameters of Aj′j can be determined,

aj′j =
mj

mj′

B2j′K
E
j′j

B1j′B3j′ −B2
2j′

bj′j = −mj

mj′

K
v‖
j′j

B4j′
cj′j = −mj

mj′

B1j′K
E
j′j

B1j′B3j′ −B2
2j′
.

Note that the energy contained in the electrostatic potential is conserved automatically if the
densities of the different species are conserved. However, since the currents are not conserved
by the collision operator (only the overall parallel momentum), the corresponding magnetic
field fluctuations for β 6= 0 are in general slightly modified.
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2. Gyrokinetics

2.6. Expansion of the vector expressions
In order to arrive at a form that is suitable for a numerical implementation, all vector expres-
sions that appear in the equations for the (scalar) distribution function and electromagnetic
fields, i.e. the dot and vector products, have to be expanded. The coordinates are field aligned,
and the covariant entries of ~B0 are chosen to be Bi

0 = Bφδi3 (see [17]).

2.6.1. Equation for the distribution function

The (scalar) vector expressions that appear in the gyrokinetic Vlasov equation can be ex-
pressed in terms of the components

(

~b0 × ~∇A
)

· ~C =Jεijkg
ljgkmbi0(∂lA)Cm

bi
0
∝δi3

= Jb3(g1ig2j − g2ig1j)(∂iA)Cj

=Jb3
(

γ1 ((∂1A)C2 − (∂2A)C1)

+ (γ2∂1A+ γ3∂2A)C3 − (∂3A)(γ2C1 + γ3C2)
)

~b0 · ~∇A =bi0∂iA = b3∂3A, (2.27)

where the abbreviations

γ1 = g11g22 − g21g12 γ2 = g11g23 − g21g13 γ3 = g12g23 − g22g13

for the geometric factors have been introduced. Since the parallel correlation lengths of the
fluctuations are much larger than the perpendicular ones in a strongly magnetized plasma, par-
allel derivatives of the perturbed quantities can be neglected over perpendicular ones. Further-
more, the perpendicular derivatives of the equilibrium quantities can be neglected compared
to the perpendicular derivatives of the fluctuating quantities. The vector expressions appearing
in the Vlasov equation can therefore be written as

~vE×B · ~∇{n, T} =Jb3
c

B0
(g1ig2j − g2ig1j)(∂iχ)(∂j{n, T})

= − Jb3
c

B0
γ1∂yχ∂x{n, T}

~vE×B · ~Γj =Jb3
c

B0

(g1ig2k − g2ig1k)(∂iχ)Γjk

=Jb3
c

B0

γ1 (∂xχΓjy − ∂yχΓjx)

(~v∇B0
+ ~vc) · ~Γj =Jb3(g1ig2k − g2ig1k)

((

µ

mjΩj
+

v2
‖

ΩjB0

)

∂iB0 +
4πv2

‖

ΩjB2
0

∂ip0

)

Γjk

=Jb3

(

µ

mjΩj
+

v2
‖

ΩjB0

)

(γ1((∂xB0)Γjy − (∂yB0)Γjx)

−∂zB0(γ2Γjx + γ3Γjy)) + Jb3γ1

4πv2
‖

ΩjB2
0

∂xp0Γjy
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2.6. Expansion of the vector expressions

(~vc + ~v∇B0
) · ~∇{n, T} =Jb3

(

v2
‖

ΩjB0
+

µ

mjΩj

)

(g1ig2j − g2ig1j)(∂iB0)∂j{n, T}

+ Jb3
4πv2

‖

ΩjB2
0

(g1ig2j − g2ig1j)∂ip0∂j{n, T}

= − Jb3

(

v2
‖

ΩjB0
+

µ

mjΩj

)

(γ1∂yB0 + γ2∂zB0)∂x{n, T}

~b0 · ~Γj =b3Γjz

~b0 · ~∇B0 =b3∂zB0 .

The gyrokinetic equation for the distribution function

〈Cj(f)〉 =
∂gj

∂t
− Jb3γ1

B0

B0

B∗
0‖

F0jc∂yχ

(

1

n0j
∂xn0j + (

mjv
2
‖

2T0j
+
µB0

T0j
− 3

2
)

1

T0j
∂xT0j

)

− Jb3γ1

B0

B0

B∗
0‖

F0j

(

v2
‖

Ωj
+

µB0

mjΩj

)

(

∂yB0 +
γ2

γ1
∂zB0

)

·
(

1

n0j
∂xn0j + (

mjv
2
‖

2T0j
+
µB0

T0j
− 3

2
)

1

T0j
∂xT0j

)

+ v‖b
3Γjz

+
Jb3γ1

B0

B0

B∗
0‖

c (∂xχΓjy − ∂yχΓjx) +
Jb3γ1

B0

B0

B∗
0‖

(

µB0

mjΩj
+
v2
‖

Ωj

)

·
((

∂xB0 −
γ3

γ1

∂zB0

)

Γjy −
(

∂yB0 +
γ2

γ1

∂zB0

)

Γjx

)

+
Jb3γ1

B0

B0

B∗
0‖

4πv2
‖

ΩjB0
∂xp0Γjy −

µ

m
b3∂zB0

∂fj

∂v‖

is now free of vector expressions.

2.6.2. Field equations

In the equation for the electrostatic potential, only the scalar product

k2
⊥ = ~k⊥ · ~k⊥ = gxxk2

x + 2gxykxky + gyyk2
y

has to be expanded. Gauss’ law from Eq. (2.15) with the corresponding expression for the
moment (2.24) gives

k2
⊥φ =4πρ =

∑

j

qj
8π2B0

mj

∫

J0(λj)fdv‖ dµ+
∑

j

4πq2
j

T0j
n0j(Γ0(bj) − 1)φ

+
∑

j

4πqj
B0

n0j∆(bj)B1‖ ,
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2. Gyrokinetics

which can be rearranged to
(

k2
⊥

4π
−
∑

j

q2
j

T0j

n0j(Γ0(bj) − 1)

)

φ−
(

∑

j

qj
B0

n0j∆(bj)

)

B1‖

=
∑

j

qj
2πB0

mj

∫

J0(λj)fdv‖ dµ , (2.28)

showing that the equation for the electrostatic potential is coupled to the equation for B1‖.
To obtain an equation for B1‖, Ampère’s law Eq. (2.15) has to be split into a parallel and
perpendicular component. Because parallel derivatives of fluctuation quantities are neglected,
the left hand side of its perpendicular part,

(~∇× ~B1)⊥ =
4π

c
~j⊥,

can be simplified to

(~∇× ~B1)⊥ =i[(kyB1‖ − kzB1x)~ex + (kzB1x − kxB1‖)~ey] = i[kyB1‖~ex − kxB1‖~ey]

in Fourier space. With this simplification and the moment from Eq. (2.24), the perpendicular
part of Ampère’s law is

i[ky~ex − kx~ey]B1‖ =
4π

c
i(ky ~ex − kx ~ey)

(

∑

j

πqj
k⊥

(

2B0

m

)3/2 ∫ √
µJ1(λj)fdv‖ dµ

+
∑

j

q2
jn0j

mjΩj
∆(bj)φ+

∑

j

qjv
2
Tn0j

B0Ω
∆(bj)B1‖

)

.

Further simplification gives
(

−
∑

j

qjn0j

B0
∆(bj)

)

φ+

(

1

4π
−
∑

j

v2
Tmjn0j

B2
0

∆(bj)

)

B1‖

=
∑

j

πqj(2B0)
3/2

cm3/2k⊥

∫ √
µJ1(λj)fdv‖ dµ , (2.29)

which together with Eq. (2.28) forms a solvable linear system of equations.
The parallel component of Ampères law in the Coulomb gauge (i.e. ~∇ · ~A1 = 0) can be

transformed into an equation for A1‖,

−∇2A1‖ = k2
⊥A1‖ =

4π

c
j‖ ,

which (with j‖ inserted) gives

A1‖ =

∑

j
8π2qjB0

cmj

∫

v‖J0(λj)gj(~k)dv‖ dµ

k2
⊥ +

∑

j

8π2q2
j B0

mjc2T0j

∫

v2
‖J

2
0 (λj)F0jdv‖ dµ

.
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2.6.3. Collision operator

In order to obtain an explicit expression for the gyroaveraged collision operator in the coordi-
nates used here, the derivatives occuring in expression (2.25) have to be transformed accord-
ing to the coordinate transformation (2.12). As described above, for the linearized Landau-
Boltzmann operator considered here, only the scattering of the perturbed distribution function
off the Maxwellian background distribution functions is considered. The F0j do not change
on gyroradius scales, so that it is plausible that it does not matter whether fj is evaluated at
the particle position (as it initially occurs in the collision operator) or the gyrocenter position
(which is much easier for calculations and will be used below). This turns out to be correct;
a more sophisticated derivation of the gyroaveraged Landau-Boltzmann operator using a non-
canonical Poisson bracket formalism and a subsequent expansion in εν = ρ/λν (the ratio the of
gyroradius and the collisional mean free path) gives the same result, if isotropic field particles
(i.e. background distribution function) are assumed and higher order corrections are neglected
(see [27]). The coordinate transformation of the derivatives involves the expressions

G
T · 1~v ·G =

1

v2
⊥













0 −ρj 0
ρj 0 0
0 0 v⊥

−2µ sin θ 2µ cos θ 0
− cos θ − sin θ 0













· 1~v ·





0 ρj 0 −2µ sin θ − cos θ
−ρj 0 0 2µ cos θ − sin θ
0 0 v⊥ 0 0





=
1

v2
⊥













ρ2
j 0 0 −2µρj cos θ ρj sin θ
0 ρ2

j 0 −2µρj sin θ −ρj cos θ
0 0 v2

⊥ 0 0
−2µρj cos θ −2µρj sin θ 0 4µ2 0
ρj sin θ −ρj cos θ 0 0 1













,

G
T · ~v~v · G = G

T ·







sin2 θ − sin θ cos θ − sin θ
v‖
v⊥

− sin θ cos θ cos2 θ cos θ
v‖
v⊥

− sin θ
v‖
v⊥

cos θ
v‖
v⊥

v2
‖

v2
⊥






· G

=













ρ2
j cos2 θ ρ2

j sin θ cos θ −ρj cos θv‖ −2ρjµ cos θ 0
ρ2

j sin θ cos θ ρ2
j sin2 θ −ρj sin θv‖ −2µρj sin θ 0

−ρj cos θv‖ −ρj sin θv‖ v2
‖ 2µv‖ 0

−2µρj cos θ −2µρj sin θ 2µv‖ 4µ2 0
0 0 0 0 0













and

G
T · ~v =













0 −ρj 0
ρj 0 0
0 0 v⊥

−2µ sin θ 2µ cos θ 0
− cos θ − sin θ 0













·





− sin θ
cos θ

v‖
v⊥



 =













−ρj cos θ
−ρj sin θ

v‖
2µ
0













.
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2. Gyrokinetics

As indicated above, the coordinate transformation has reintroduced the dependence on the
gyroangle θ, which has to be removed explicitly. Taking fj at the gyrocenter position and
therefore out of the gyroaveraging bracket, the gyroaveraging 〈〉 = 1

2π

∫ 2π

0
dθ gives

〈Djj′〉 =
γjj′nj′Tj′

m2
jmj′

1

v3

















F1

















1
Ω2

j
0 0 0 0

0 1
Ω2

j
0 0 0

0 0 1 0 0

0 0 0
2mj

B0
µ 0

0 0 0 0 1
v2
⊥

















+ 3
F2

v2















ρ2
j

2
0 0 0 0

0
ρ2

j

2
0 0 0

0 0 v2
‖ 2µv‖ 0

0 0 2µv‖ 4µ2 0
0 0 0 0 0































〈~Rjj′〉 =
γjj′nj′

mjmj′

1

v3
F3(x)













0
0
v‖
2µ
0













for the collisional diffusion and dynamical friction. As intended, all terms coupling the dy-
namics of the gyroangle to the rest of the dynamics cancel, so that the θ dimension can be
neglected from now on. Furthermore, spatial part of 〈 ~R〉 vanishes while the spatial part of
〈D〉 is completely decoupled from the velocity space and proportional to the unit matrix. This
contribution 〈C⊥

jj′〉 to the collision operator describes perpendicular spatial diffusion due to
the repositioning of the gyrocenter after a collision,

〈C⊥
jj′〉 =

γjj′nj′Tj′

m2
jmj′Ω

2
j

1

v5

(

v2F1 +
3B0µ

mj

F2

)

∇2
⊥fj,

and has also been described in [27, 30, 31]. The contribution in the ~V = (v‖, µ) direction is

〈C ~V
jj′〉 =

∂

∂~V
· γjj′nj′

mjmj′

(

Tj′

mjv5

[

2B0µ
mj

F1 + v2
‖F3 6µv‖F2

6µv‖F2
2mj

B0
v2
‖µF1 + 4µ2F3

]

· ∂

∂~V
− F3(x)

v3

[

v‖
2µ

]

)

fj.

The dot products in the last expression are not expanded, since this conservation form can be
used directly for the implementation of a finite volume scheme. As mentioned in Sec. 2.2.2,
the guiding center transformation used here is based on orthogonal x and y coordinates. In
general, an additional, purely spatial transformation in these coordinates is necessary, but
because of the simple form of the spatial part of the collision operator, this reduces to the
introduction of the metric in the computation of the perpendicular Laplacian.

2.7. Normalization

Finally, the equations have to be normalized. To this end, dimensional reference quantities
are extracted from all physical parameters, like for example the mass, mj = mrefm̂j, so that
m̂j = mj/mref is dimensionless. In order for the constant prefactors Jb3γ1

B0
= 1

JBφ to vanish,
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the magnetic field B0 is normalized to Bref = JBφ (see [17] on this issue). This implies that
in contrast to all other reference quantities, B0 cannot be chosen arbitrarily and leads to the
relations

Jb3γ1

B0
=

1

JBφ
=

1

Bref

b3 =
Bφ

B
=

Bφ

B̂0Bref

=
1

JB̂0

=
1

Lref ĴB̂0

. (2.30)

In the following, all dimensional quantities that appear in the equations of the last section are
normalized. The hats are dropped immediately; with the exception of the elementary charge e,
which is used to normalize qj, on the right hand side of the arrows only the reference quantities
are dimensional, all other quantities, in particular the coordinates and all quantities with a
species label, are then dimensionless. The external gradients and curvatures are normalized to
the macroscopic normalization length Lref .

x→ ρrefx y → ρrefy kx → 1

ρref

kx

ky → 1

ρref
ky J → LrefJ b3 → 1

LrefJB0

z → z γ1 → γ1 v‖ → crefvTjv‖

µ→ Tref

Bref
T0jµ B0 → BrefB0 t→ Lref

cref
t

mj → mrefmj T0j → TrefT0j n0j → nrefn0j

qj → eqj Ωj → ΩrefΩj γ2 →
1

Lref

γ2

γ3 →
1

Lref
γ3 B∗

0‖ → BrefB
∗
0‖ (2.31)

The normalization affects also composed quantities,

cref =
√

Tref/mref ρref = cref/Ωref Ωref =
eBref

mrefc

Ωj =
qjB0

mj

vTj =

√

2T0j

mj

. (2.32)

Note that this normalization is very general and allows for an arbitrary number of species.
If only one ion species plus electrons are considered, normalization quantities with index s
(ρs, cs) are often used in the literature, these are equal to ρref , cref for Tref = Te, mref = mi.

After this normalization of the basic parameters, the distribution functions and electromag-
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netic fields are normalized as well,

gj →
ρref

Lref

nref

c3ref

n0j

v3
Tj

gj F0j →
nref

c3ref

n0j

v3
Tj

F0

Φ → ρref

Lref

Tref

e
Φ A‖ →

ρref

Lref
BrefρrefA‖

(Γjx,Γjy,Γjz) →
nref

c3refLref

n0j

v3
Tj

(Γjx,Γjy, ρrefΓjz) B‖ →
ρref

Lref
BrefB‖. (2.33)

The dependent quantity fj is normalized as gj , χj as φ. Together, this implies that the collision
operator (and the conservation term Ajj′) is normalized as

〈C(f)〉 → ρref

L2
ref

nref

c2ref

n0j

v3
Tj

〈C(f)〉. (2.34)

and gives the normalized relations

F0j = F0 = π−3/2e−(v2
‖
+µB0) fj = gj −

2qj
mjvTj

v‖Ā1‖F0j

χj = φ̄j − vTjv‖Ā1‖j +
T0j

qj
µB̄1‖

~Γj = ~∇fj + F0j

[

σj
~∇φ̄j + µ~∇B̄1‖

]

Γx,y = ∂x,yg +
qj
T0j

F0∂x,yχ Γz = ∂zg +
qj
T0j

F0∂zχ +
vTjqj
T0j

v‖µF0A‖∂zB0

(O(ρref/Lref) corrections are neglected).

2.7.1. Equation for the distribution function

Applying the normalization (2.31) to the equation for the distribution function gives

〈Cj(f)〉 =
cref
Lref

∂gj

∂t
+

B0

B∗
0‖

e

mrefcrefLref

F0j∂yχ

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

− B0

B∗
0‖

crefρref

L2
ref

F0j

T0j(2v
2
‖ + µB0)

qjB0
Kx

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

+
cref
Lref

vTj

JB0
v‖Γjz +

B0

B∗
0‖

e

mrefcref
(∂xχΓjy − ∂yχΓjx)

+
B0

B∗
0‖

crefρref

Lref

T0j(2v
2
‖ + µB0)

qjB0
(KyΓjy +KxΓjx)

− B0

B∗
0‖

crefρref

Lref

8πnrefTref

B2
ref

T0j

qjB2
0

v2
‖ωpΓjy −

cref
Lref

vTj

2JB0
µ∂zB0

∂fj

∂v‖
,
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where the following abbreviations have been introduced,

ωn = −Lref

n0j

∂xn0j ωTj = −Lref

T0j

∂xT0j ωp = − Lref

nrefTref

∂xp0

Kx = −Lref

Bref

(∂yB0 +
γ2

γ1

∂zB0) Ky =
Lref

Bref

(∂xB0 −
γ3

γ1

∂zB0)

(x, y, γ2, γ3, B0 and p0 are dimensional in these definitions). This equation can be simplified
using relations (2.32),

Lref

cref
〈Cj(f)〉 =

∂gj

∂t
+

B0

B∗
0‖

e

Tref
F0j∂yχ− vTj

2JB0
µ∂zB0

∂fj

∂v‖

+
B0

B∗
0‖

eLref

Tref
(∂xχΓjy − ∂yχΓjx)

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

− B0

B∗
0‖

ρref

Lref
F0j

T0j(2v
2
‖ + µB0)

qjB0
Kx

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

+
vTj

JB0
v‖Γjz

+
B0

B∗
0‖

ρrefT0j(2v
2
‖ + µB0)

qjB0

(KyΓjy +KxΓjx) −
B0

B∗
0‖

ρrefβT0j

qjB
2
0

v2
‖ωpΓjy

where the important parameter β, which describes the ratio of kinetic to magnetic pressure,
has been introduced

β =
8πnrefTref

B2
ref

.

The B0/B
∗
0‖ prefactors can be simplified by observing that with

~b0 · (~∇× ~B0) = ~b0 · (~∇B0 ×~b0 +B0
~∇×~b0) = ~b0 ·B0

~∇×~b0

and Ampère’s law, the normalized expression for B∗
0‖ can be written as

B∗
0‖ = B0(1 + β

mjvTj

2qjB2
0

v‖j0‖)

with the equilibrium parallel current density j0‖, which has been normalized to ecrefnref . With
this normalization, j0‖ is of order unity for tokamak experiments (and close to zero for stel-
larators), so that for small β, the approximation B0/B

∗
0‖ ≈ 1 can be made. The additional

normalization of the fields and distribution functions according to Eqs. (2.33) and (2.34) gives

∂gj

∂t
= −

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

F0j∂yχ− vTj

JB0
v‖Γjz + (∂yχ∂xgj − ∂xχ∂ygj)

−
T0j(2v

2
‖ + µB0)

qjB0
(KyΓjy +KxΓjx) +

βT0j

qjB2
0

v2
‖ωpΓjy +

vTj

2JB0
µ∂zB0

∂fj

∂v‖

+
T0j(2v

2
‖ + µB0)

qjB0

Kx

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

F0j + 〈Cj(f)〉 ,
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where the nonlinearity has been simplified by inserting the expressions for Γjx,Γjy, and ob-
serving that the ∂xχ∂yχ terms drop out due to symmetry.

Since the field equations have been formulated in Fourier space because of the much sim-
pler gyroaveraging procedure, it is convenient to also transform the Vlasov equation in x and y
directions. For all linear terms, this is trivial because the prefactors contain no additional per-
pendicular dependence due to the local approximation, the only term which does not transform
trivially is the nonlinearity. The transformation gives

N(k) =
1

LxLy

∫ Lx,Ly

0

d2xe−i~k~x (∂yχ(x)∂xgj(x) − ∂xχ(x)∂ygj(x))

=
1

LxLy

∫ Lx,Ly

0

d2xe−i~x~k









∑

~k′

ei~x~k′

ik′yχ(k′)









∑

~k′′

ei~x~k′′

ik′′xgj(k
′′)





−





∑

~k′

ei~x~k′

ik′xχ(k′)









∑

~k′′

ei~x~k′′

ik′′ygj(k
′′)







 (2.35)

= − 1

LxLy

∫ Lx,Ly

0

d2x
∑

~k′

∑

~k′′

e−i~x(~k−~k′−~k′′)
(

k′yχ(k′)k′′xgj(k
′′) − k′xχ(k′)k′′ygj(k

′′)
)

= −
∑

~k′

∑

~k′′

δ~k−~k′−~k′′

(

k′yk
′′
x − k′xk

′′
y

)

χ(k′)gj(k
′′)

=
∑

~k′

(

k′xky − kxk
′
y

)

χ(k′)gj(k − k′),

so that the final equation in Fourier space (with the perpendicular derivatives in Γjx,Γjy re-
placed by ikx, iky) is

∂gj

∂t
= −

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

F0jikyχ+
vTj

2JB0
µ∂zB0

∂fj

∂v‖
+
βT0j

qjB2
0

v2
‖ωpΓjy

+
∑

~k′

(

k′xky − kxk
′
y

)

χ(k′)gj(k − k′) −
T0j(2v

2
‖ + µB0)

qjB0

(KyΓjy +KxΓjx)

− vTj

JB0
v‖Γjz +

T0j(2v
2
‖ + µB0)

qjB0
Kx

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

δkx,0 δky,0 F0j

+ 〈Cj(f)〉.
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2.7.2. Field equations

The normalization (2.31) turns the field equations into
(

k2
⊥

4πρ2
ref

−
∑

j

e2q2
j

TrefT0j

nrefn0j(Γ0(bj) − 1)

)

φ−
(

∑

j

eqj
BrefB0

nrefn0j∆(bj)

)

B1‖

=
∑

j

πeqjB0c
3
refv

3
Tj

∫

J0(λj)gjdv‖ dµ

(

−
∑

j

eqjnrefn0j

BrefB0
∆(bj)

)

φ+

(

1

4π
−
∑

j

c2refv
2
Tjmrefmjnrefn0j

B2
refB

2
0

∆(bj)

)

B1‖

=
∑

j

πeqjB
3/2
0 ρref

ck⊥
c4refv

4
Tj

∫ √
µJ1(λj)gjdv‖ dµ

A1‖ =

∑

j
e
c
4π2qjB0c

4
refv

4
Tj

∫

v‖J0(λj)gj(~k)dv‖ dµ

k2
⊥

ρ2
ref

+
∑

j

8π2e2q2
j B0

mrefmjc2
v3

Tjc
3
ref

∫

v2
‖J

2
0 (λj)F0jdv‖ dµ

,

with the (dimensionless) arguments of the Bessel functions now being

bj =
k2
⊥c

2
refv

2
Tj

ρ2
ref2Ω2

jΩ
2
ref

=
T0jmj

q2
jB

2
0

k2
⊥

λj =

√

2B0TrefT0jµ

mrefmj

k⊥
ρrefΩjΩref

=
vTj

Ωj
k⊥
√

B0µ.

The normalization of the fields and distribution functions gives
(

k2
⊥λ

2
D +

∑

j

q2
j

T0j
n0j(1 − Γ0(bj))

)

Φ −
(

∑

j

qjn0j

B0
∆(bj)

)

B1‖

=
∑

j

n0jπqjB0

∫

J0(λj)gjdv‖ dµ

(

−
∑

j

qjn0j

B0
∆(bj)

)

Φ +

(

2

β
−
∑

j

2T0jn0j

B2
0

∆(bj)

)

B1‖

=
∑

j

n0j
πvTjqjB

3/2
0

k⊥

∫ √
µJ1(λj)gjdv‖ dµ
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A1‖ =

∑

j
β
2
qjnj0vTjπB0

∫

v‖J0(λj)gj(~k)dv‖ dµ

k2
⊥ +

∑

j

βq2
j

mj
n0jπB0

∫

v2
‖J

2
0 (λj)F0jdv‖ dµ

with the Debye length

λD =

√

Tref

4πρ2
refe

2nref
=

√

B2
ref

4πc2nrefmref
.

In order to solve the system of equations for φ and B‖, the abbreviations

C1 =k2
⊥λ

2
D +

∑

j

q2
j

T0j
n0j(1 − Γ0(bj)) , C2 = −

∑

j

qjn0j

B0
∆(bj) ,

C3 =
2

β
−
∑

j

2T0jn0j

B2
0

∆(bj)

and

M00 =
∑

j

n0jπqjB0

∫

J0(λj)gjdv‖ dµ , M01 =
∑

j

n0j
πvTjqjB

3/2
0

k⊥

∫ √
µJ1(λj)gjdv‖ dµ

for the velocity space moments of the distribution function are introduced. With these, the
linear system of equations can be written as

[

C1 C2

C2 C3

]

·
[

φ
B‖

]

=

[

M00

M01

]

and solved explicitly,
[

φ
B‖

]

=
1

detC

[

C3 −C2

−C2 C1

]

·
[

M00

M01

]

=
1

C1C3 − C2
2

[

C3M00 − C2M01

C1M01 − C2M00

]

.

For β → 0, the determinant diverges because of C3 → ∞. In this limit,

φ =
C3M00 − C2M01

C1C3 − C2
2

→ M00

C1

B‖ =
C1M01 − C2M00

C1C3 − C2
2

→ 0 ,

which means that for small β, the B‖ contributions can be neglected compared to the contri-
butions of the electrostatic potential.

In this limit, the equation for φ reads

φ =

∑

j n0jπqjB0

∫

J0(λj)gjdv‖ dµ

k2
⊥λ

2
D +

∑

j

q2
j

T0j
n0j(1 − Γ0(bj))

,

which is the relation that will be used in the rest of this thesis.
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2.7.3. Collision operator

Normalization (2.31) of the collisional spatial diffusion term gives

〈C⊥
jj′〉 =

cref
Lref

πe4 ln ΛcnrefLrefnj′q
2
j′Tj′m

3/2
j√

2
3
T 2

refmj′B
2
0T

3/2
0j

1

v5

(

2v2F1 + 3B0µF2

)

∇2
⊥fj ,

the velocity space ~V = (v‖, µ) contribution is

〈C ~V
jj′〉 =

cref
Lref

∂

∂~V
·
2πq2

j q
2
j′e

4 ln ΛcnrefLrefnj′
√
mj√

2
3
T 2

refmj′T
3/2
0j

(

Tj′

2T0jv5

[

B0µF1 + v2
‖F3 6µv‖F2

6µv‖F2
4

B0
v2
‖µF1 + 4µ2F3

]

· ∂

∂~V
− F3

v3

[

v‖
2µ

])

fj .

The (dimensionless) arguments of the Fi are now Fi(
vTj

vTj′
v). Introducing the dimensionless

collision frequency

νc =
π ln Λce

4nrefLref√
2

3
T 2

ref

,

normalizing the distribution functions and taking into account the factors in (2.34), the nor-
malized collision operator is

〈C⊥
jj′〉 = −

νcnj′q
2
j′Tj′m

3/2
j

mj′B
2
0T

3/2
0j

1

v5

(

2v2F1 + 3B0µF2

)

k2
⊥fj

〈C ~V
jj′〉 =

∂

∂~V
·
νcq

2
j q

2
j′nj′

√
mj

mj′T
3/2
0j

(

Tj′

T0jv5

[

B0µF1 + v2
‖F3 6µv‖F2

6µv‖F2
4

B0
v2
‖µF1 + 4µ2F3

]

· ∂

∂~V
− 2F3

v3

[

v‖
2µ

])

fj .(2.36)

With the normalized abbreviations

B1j =

∫

dv‖ dµ F0j , B2j =

∫

dv‖ dµ v
2F0j ,

B3j =

∫

dv‖ dµ v
4F0j , B4j =

∫

dv‖ dµ v
2
‖F0j ,

the normalized conservation term that is added to the equation for species j reads

Ajj′ =
T0j′n0j′

T0jn0j

B2j − v2B1j

B1jB3j − (B2j)2

(
∫

dv‖ dµ v
2〈C(fj′, F0j)〉

)

F0j

− mj′vTj′n0j′

mjvTjn0j

1

B4j

(
∫

dv‖ dµ v‖〈C(fj′, F0j)〉
)

v‖F0j , (2.37)

completing the final expression for the collision operator.
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2.8. Summary of the equations being solved in GENE
The final equations can be summarized schematically as

∂g

∂t
= Z + L[g] + N [g] , (2.38)

where g is the combined modified distribution function of all species.
The constant part Z

Z =
T0j(2v

2
‖ + µB0)

qjB0

Kx

(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

δkx,0 δky,0 F0j

arises due to the fact that in the presence of curvature and density or temperature gradients, F0

(i.e., f = 0) is not a solution of the gyrokinetic equations. It only affects the k⊥ = 0 mode and
decouples linearly and nonlinearly from the rest of the system. The linear operator is given by

L[g] = −
(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

F0jikyχ+
βT0j

qjB2
0

v2
‖ωpΓjy −

vTj

JB0
v‖Γjz

−
T0j(2v

2
‖ + µB0)

qjB0
(KyΓjy +KxΓjx) +

vTj

2JB0
µ∂zB0

∂fj

∂v‖
+ 〈Cj(f)〉 , (2.39)

consisting of the drive term, the pressure term, a term describing the parallel dynamics, the
curvature terms, the trapping term and collisions. The auxiliary fields are

F0j = F0 = π−3/2e−(v2
‖
+µB0) fj = gj −

2qj
mjvTj

v‖Ā1‖F0j

χj = φ̄j − vTjv‖Ā1‖j Γx,y = ikx,yg +
qj
T0j

F0ikx,yχ

Γz = ∂zg +
qj
T0j

F0∂zχ+
vTjqj
T0j

v‖µF0A‖∂zB0,

and the electromagnetic fields, which are also linear in the distribution function are

φ =

∑

j n0jπqjB0

∫

J0(λj)gjdv‖ dµ

k2
⊥λ

2
D +

∑

j

q2
j

T0j
n0j(1 − Γ0(bj))

A1‖ =

∑

j
β
2
qjnj0vTjπB0

∫

v‖J0(λj)gj(~k)dv‖ dµ

k2
⊥ +

∑

j

βq2
j

mj
n0jπB0

∫

v2
‖J

2
0 (λj)F0jdv‖ dµ

.

The collision term is given by

〈Cj(f)〉 =
∑

j′

(

〈C⊥
jj′〉 + 〈C ~V

jj′〉 + Ajj′

)

,

where the expressions for 〈C⊥
jj′〉, 〈C

~V
jj′〉 and Ajj′ are given by Eqs. (2.36) and (2.37).
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The ~E× ~B nonlinearity in this representation is

N [g] =
∑

~k′
⊥

(

k′xky − kxk
′
y

)

χ(~k′⊥)gj(~k⊥ − ~k′⊥), (2.40)

although for the numerical treatment, the more complicated expression (2.35) will be used.
Besides the parallel B0 variation, the most important equilibrium quantities entering the

gyrokinetic equations are the gradients and curvature terms,

ωn = −Lref

n0j
∂xn0j ωTj = −Lref

T0j
∂xT0j ωp = − Lref

nrefTref
∂xp0

Kx = −Lref

Bref
(∂yB0 +

γ2

γ1
∂zB0) Ky =

Lref

Bref
(∂xB0 −

γ3

γ1
∂zB0)

(with dimensional x, y, γ2, γ3, p). The pressure gradient ωp can be extracted from an MHD
equilibrium or estimated from the gradients via

ωp = − Lref

nrefTref
∂xp =

∑

s

nsTs(ωn + ωTs).

In these normalized equations, the physical values of the equilibrium quantities do not en-
ter. However, in the normalization process, three dimensionless parameters relating different
normalization scales have been introduced,

β =
8πnrefTref

B2
ref

νc =
π lnΛce

4nrefLref√
2

3
T 2

ref

λD =

√

B2
ref

4πc2nrefmref
,

effectively reducing the number of freely scalable parameters.
The linearized gyrokinetic equation

∂g

∂t
= L[g] (2.41)

is used for investigations concerning linear stability and e.g. attempts to find quasilinear mod-
els of the turbulent behaviour in certain regimes.

2.9. Special simplifications

2.9.1. ŝ− α geometry

If the geometric coefficients are not extracted from a numerical MHD-equilibrium, a model
geometry can be used. The widely used ŝ − α model equilibrium [32] describes (Shafranov
shifted) circular flux surfaces and is a good approximation to a real solution of the MHD
equations close to the magnetic axis, i.e. for a inverse local aspect ratio εt = r/R → 0, with
R and r the major and minor radius of the central field line in torus coordinates.
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The Shafranov shift αMHD is given by

αMHD =
q2
0

R
βωp =

q2
0

R
β
∑

j

(ωTj + ωn)T0jn0j ,

where R (and r in the following expressions) are normalized to Lref .
In the ŝ−αmodel, the (normalized) metric and equilibrium magnetic field are approximated

by

gij =





1 ŝz − αMHD sin z 0
ŝz − αMHD sin z 1 + (ŝz − αMHD sin z)2 1/r

0 1/r 1/r2





B0 =
1

1 + εt cos z
∂zB0 = B2

0εt sin z J =
1

B0

and the curvature terms are assumed to be

Kx = −Lref

R
sin z Ky = −Lref

R
(cos z + sin z(ŝz − αMHD sin z)) .

These assumptions are strictly speaking inconsistent, the most obvious symptom of this is that
a computation of the Jacobian from the metric yields J = 0, which means that g as given
above is actually singular. Furthermore, the relations (2.30) for the geometric prefactors Jb3γ1

B0

and b3 are still used, although they are not consistent with the above assumptions. For a more
detailed discussion about the limitations of this approximation, see [33].

Interfaces between gyrokinetic codes and MHD codes have become popular only in the last
few years and are not available for all codes. Despite its inconsistencies, the ŝ − α model is
therefore still widely used for benchmarks between codes ([34, 35]) or fundamental investiga-
tions, where effects of the exact details of the magnetic equilibrium are not of interest.

2.9.2. Adiabatic electrons

Most results on ion-temperature gradient mode (ITG) turbulence documented in the literature
were obtained with the adiabatic electron approximation. In this approximation, the electron
distribution function is not advanced explicitly. The adiabaticity relation for the electrons on
a flux surface,

n1e

n0e
=

−qe(φ− 〈φ〉FS)

Te
,

relates the perturbed electron density to deviations of φ from the flux surface average 〈φ〉FS.
To calculate 〈φ〉FS , it is assumed that the electrons contribution vanishes, so that

〈φ〉FS =

∑

i πqin0iB0〈
∫

J0(λi)gidv‖ dµ〉FS

∑

i
q2
i n0i

Ti

[

1 − 〈Γ0(
Timik2

⊥

q2
i B2

0

)〉FS

]
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(with i only ion indices) can be calculated. Because of Γ0(be) ≈ 1 (which is consistent with
me/mi → 0), n1e is equal to the first velocity space moment of ge and the expression for the
electron charge density is

qen1e = qen0eπB0

∫

J0(λe)gedv‖ dµ =
q2
en0e〈φ〉FS

Te

− q2
en0eφ

Te

,

which is used to replace the electron contribution in the equation for φ,

φ =

∑

i πqin0iB0

∫

ḡidv‖ dµ+ q2
en0e

Te
〈φ〉

q2
en0e

Te
+
∑

i
q2
i n0i

Ti

[

1 − Γ0(
Timik2

⊥

q2
i B2

0

)
] .

The Debye length is neglected in this approximation.

2.9.3. Adiabatic ions

For basic investigations of electron temperature gradient (ETG) mode turbulence, a similar
assumption can be made for the ion distribution function.

n1i

n0i
=
πn0iB0

∫

J0(λi)gidv‖ dµ

n0i
− qi
Ti
φ(~x) (1 − Γ0(bi)) =

−qiφ
Ti

In electron units, bi is large and Γ0(bi) ≈ 0 can be assumed, leading to

πqin0iB0

∫

J0(λi)gidv‖ dµ = 0.

Inserting this result into the equation for φ, the approximation

φ =
πqen0eB0

∫

J0(λe)gedv‖ dµ

λ2
Dk

2
⊥ +

q2
i n0i

Ti
+ q2

en0e

Te
[1 − Γ0(

Temek2
⊥

q2
eB2

0

)]

is obtained.

2.9.4. Pitch-angle scattering

The Lorentz collision operator is obtained from Eq. (2.36) with s, j ′ = e, i in the limit vT i → 0.
In this approximation, the functions F of Eq. (2.25) entering the collision operator simplify,

F1(
vTs

vTj′
v) → 2(

vTs

vTj′
v)2

F2(
vTs

vTj′
v) → −2

3
(
vTs

vTj′
v)2

F3(
vTs

vTj′
v) → 0,
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and the collision operator for electrons scattering off ions can be written as

〈C⊥
ei〉 = −νcniq

2
im

1/2
e

B2
0T

1/2
e

1

v3

(

4v2 − 2B0µ
)

k2
⊥fe

〈C ~V
ei〉 =

∂

∂~V
· νcq

2
eq

2
i ni

√
meT

3/2
e

1

v3

[

2B0µ −4µv‖
−4µv‖

8
B0
v2
‖µ

]

· ∂

∂~V
fe. (2.42)

The 〈C⊥
ei〉 part is usually neglected. If the pitch angle ξ = v‖/v and kinetic energy E are

used as velocity space coordinates, the (E , E) and (ξ, E) entries of the matrix in the collision
operator vanish, because in the limit of infinitely heavy ions considered here, the energy trans-
fer of electron-ion collisions is exactly zero. The resulting operator therefore only describes
diffusion and advection in ξ and its affect on the distribution function is called pitch-angle
scattering.

Pitch-angle scattering is a good approximation for electron-ion collisions. Because of the
simplicity of the resulting operator in (ξ, E) coordinates, the energy and mixed contributions
to the electron-electron collisions, which are approximately as important as electron-ion col-
lisions, is also often neglected. However, this (and similar approximations on the ion-ion
collision operator) cannot be justified with physical arguments. In the (v‖, µ) coordinates used
here, the pitch-angle approximation brings no benefit concerning the simplicity of the collision
operator and is only used for benchmarks with other codes.

2.10. Observables
Since the time evolution of the five-dimensional distribution function gj(kx, ky, z, v‖, µ) is dif-
ficult to analyze and impossible to compare to experimental results, it is important to reduce
the amount of information to manageable levels. Of special relevance are the radial tempera-
ture and heat fluxes due to the microturbulence, i.e. the anomalous transport. These fluxes and
most other practical quantities in this context are spatial averages of products of two fields A
and B. In direct space, the spatial average of a product AB is

〈A( ~X)B( ~X)〉 =

∫ Lx

0

∫ Ly

0

∫ π

−π
JA( ~X)B( ~X)dx dy dz

∫ Lx

0

∫ Ly

0

∫ π

−π
Jdx dy dz

=

∫ Lx

0

∫ Ly

0

∫ π

−π
JA( ~X)B( ~X)dx dy dz

LxLy

∫ π

−π
Jdz

Expressing this with A and B in Fourier representation gives

〈A( ~X)B( ~X)〉 =

∫ Lx

0

∫ Ly

0

∫ π

−π
J
∑

~k,~k′ ei ~X·(~k+~k′)A(~k, z)B(~k′, z)dx dy dz

LxLy

∫ π

−π
Jdz

=

∫ π

−π
J
∑

~k,~k′ δ~k−~k′A(~k, z)B(~k′, z)dz
∫ π

−π
Jdz

=

∫ π

−π
J
∑

~k A(~k, z)B(−~k, z)dz
∫ π

−π
Jdz

=

∫ π

−π

∑

~k JA(~k, z)B∗(~k, z)dz
∫ π

−π
Jdz

,

40



2.10. Observables

where in the last step the condition B(−~k) = B∗(~k) has been used, which has to be fulfilled
if B is a real quantity in direct space. The products of interest are physical quantities and
therefore usually dimensional, for comparisons with experiments, the normalization of these
composed quantities has to be reconstructed carefully.

The dimensional radial ~E× ~B velocity, which enters the computation of the radial fluxes,
can be computed from Eqs. (2.14) and (2.27),

~vE×B · ~ex =
c

B0
(~b0 × ~∇χ)1 =

c

B0
g1kgjmε3jkJb

3∂mχ

= −cJb
3γ1

B0
ikyχ

where the parallel derivatives have again been neglected. The normalization according to
(2.31) and (2.33) gives

~vE×B · ~ex = −ρrefcref
Lref

ikyχ .

Without FLR corrections, the density and heat density fluctuations are given by

n1j =

∫

dv‖ dµ dθ Jvfj , p1j =

∫

dv‖ dµ dθ Jv
1

2
mjv

2fj .

The normalization gives

n1j =
ρrefnref

Lref
n0jπB0

∫

dv‖dµfj , p1j =
ρrefnrefTref

Lref
n0jT0jπB0

∫

dv‖dµv
2fj .

The spatially averaged radial particle transport Γ = 〈n1j~vE×B · ~ex〉 of species j in units of
nrefcrefρ

2
ref/L

2
ref is therefore

Γj = − n0j
∫ π

−π
Jdz

∫ π

−π

dz
∑

~k

Jikyχ(~k)

(

πB0

∫

dv‖dµfj(~k)

)∗

.

Similarly, the heat transport Qj = 〈p1j~vE×B · ~ex〉 in units of nrefTrefcrefρ
2
ref/L

2
ref is given by

Qj = − n0jT0j
∫ π

−π
Jdz

∫ π

−π

dz
∑

~k

Jikyχ(~k)

(

πB0

∫

dv‖dµv
2fj(~k)

)∗

.

The radial transport due to χ can be decomposed into a electrostatic (φ) and electromagnetic
(A‖) contribution which can be analyzed separately.

Sometimes, the heat diffusivity χj is considered instead of Qj . It is connected to the heat
flux via

Qj = njTjχjωTj

and has the dimension crefρ2
ref/Lref .
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2.11. Summary
In this chapter, a general form of the gyrokinetic equations has been taken from the literature
and modified according to the local δf approximation, which is suitable for the numerical
treatment of plasma microturbulence. Compared to previous presentations, several aspects
have been compiled into a single coherent set of equations (concerning, e.g., the choice of
velocity space coordinates and the normalization). The equations contain a linearized Landau-
Boltzmann collision operator, are formulated for general magnetic geometry and include addi-
tional physical effects like the dependence on the pressure gradient; furthermore, the normal-
ization is very general and allows for an arbitrary number of species. These equations will be
the basis for a computational approach to plasma turbulence; some aspects of their numerical
implementation into the GENE code will be discussed in the next chapter.
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The GENE (Gyrokinetic Electromagnetic Numerical Experiment) project was first started by
F. Jenko [36] and developed further by T. Dannert [37] in the following years. The core of
GENE is a massively parallel simulation code, written in Fortran 90/95, which numerically
solves Eq. (2.38) following a Eulerian approach, which means that the phase space is dis-
cretized using a fixed grid and the time evolution of the distribution function is then computed
on this grid.

The present version, GENE11, has seen major developments as part of this PhD thesis. To
take full advantage of the local approximation, which implies periodic boundary conditions
for the directions perpendicular to the magnetic field, both x and y directions are now treated
spectrally (as described in the previous chapter), in contrast to the direct space implementation
for the x direction that was used before. This approach allows for an easy computation of the
perpendicular derivatives and a careful anti-aliasing, which avoids numerical problems.

A collision operator has been implemented, further increasing the realism of the simula-
tions; furthermore, an interface to an external eigenvalue solver has been developed, enabling
the computation of arbitrary parts of the eigenvalue spectrum and making GENE the first gy-
rokinetic code to allow for a direct comparison between (linear) eigenvalue computations and
nonlinear turbulence simulations, excluding errors from using different numerical representa-
tions of the linear operator in separate codes and thus allowing for more systematic studies.
The normalization of the equations has been generalized, so that GENE can now handle an
arbitrary number of species. The information about the eigenvalue spectrum has also been
used to optimize the time stepping schemes, allowing for faster initial value computations;
furthermore, the parallelization of the code has been improved in collaboration with Rein-
hard Tisma from the Garching Computing Center to be able to efficiently use even the biggest
supercomputers. Optimizations like e.g. the option to use single or double precision for the
computations and advanced time stepping schemes have been implemented, which can be used
to save a lot of computation time.

Besides the performance, the portability has been improved, so that GENE is presently used
on many different architectures, has been tested on some of the biggest present supercomputers
(see, e.g. [38]) and has become a part of the DEISA benchmark suite. Together with a powerful
IDL postprocessing tool, a PERL script for parameter scans and a preprocessing tool to extract
the relevant geometric information from MHD equilibria, which all have been developed in
the GENE working group, it has also been made available to other researchers in the fusion
community.

In order to numerically solve the gyrokinetic equation (2.38) on a finite grid, all dimensions
of this partial integro-differential equation have to be discretized. Following the method of
lines, first the right hand side of Eq. (2.38) is discretized, i.e. the already discrete kx and
ky dimensions are truncated at some kmax

x and kmax
y , the remaining continuous dimensions
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z, v‖ and µ are replaced by discrete, finite grids, turning the modified distribution function
g into a finite dimensional state vector. The continuous operations contained in L and N ,
namely derivatives and integrations, are replaced by their discrete counterparts, turning the
partial integro-differential equation into a system of ordinary differential equations in t, which
can then be solved as initial value problem, or for linear computations also as an eigenvalue
problem.

3.1. Discretization of the operators

3.1.1. Perpendicular direction

The x and y directions are treated spectrally, and the finite extent of the simulation domain
already leads to a discretization in these directions. To treat the perpendicular dimensions
numerically, only a high k cutoff has to be defined. The derivatives in these directions are
represented by trivial multiplications with ikx and iky, the only difficulty concerning the per-
pendicular direction of Eq. (2.38) is the ~E× ~B nonlinearity, which in the Fourier space repre-
sentation (2.40) corresponds to a convolution.

A direct evaluation of this term would be computationally too expensive, ikx,yχ(~k) and
ikx,yg(~k) are therefore transformed to real space and multiplied. The product is then trans-
formed back to Fourier space, which corresponds to expression (2.35). This is still very costly,
and in a typical turbulence simulation, the evaluation of the nonlinearity can amount to up to
70% of the overall computation time, but because of the efficient implementations of the Fast
Fourier Transform (FFT) algorithm provided in numerical libraries like ESSL, MKL or FFTW,
this is still way more efficient than a convolution.

3.1.2. Parallel direction

The parallel direction is discretized using nz points with equidistant distribution in the poloidal
angle. For the numerical integration along the z direction, which is necessary for the compu-
tation of volume averages, the trapezoid rule is used; the derivatives are approximated with
finite differences, see Appendix B. Due to the parallel boundary condition (2.10), different
kx values are coupled via the parallel derivative, but if the shift is such that it connects to a
kx value which not included in the simulation, an artificial boundary condition has to be used.
Usually, GENE uses a centered 4th order scheme for the derivative, which (as discussed in
Appendix B) has a free parameter c for this external boundary condition. In contrast to e.g.
upwind schemes, the centered schemes are not dissipative, but the fact that they primarily
couple second neighbours and only loosely couple next neighbours can lead to a divergence
of the two strongly coupled subsets of grid points (i.e. even and odd indices) in the presence
of a strong parallel perturbation or discontinuity. Although the amplitudes at the external
boundaries are quite small due to the ballooning structure of the unstable modes, the boundary
condition represents such a discontinuity and can lead to zigzag perturbations, the amplitude
depending on the value of the constant c. The optimal value for c depends on the physical
parameters and resolution, an adaption to each individual situation is therefore impractical.
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Throughout this work, zero boundary conditions (c = 8) are used, and the zigzag is controlled
by adding (hyper-)diffusion terms, which remove these small scale artefacts and effectively
couple the two subsets. In GENE, adjustable forth derivative damping terms are implemented
to this end.

3.1.3. Velocity space

For the velocity space, the numerical integration schemes that are used to calculate moments
of the distribution function are a modified trapezoid rule in v‖ direction and Gauss-Legendre
integration in µ direction [39]. The parallel advection term is also represented with a finite
difference scheme, with the comments from the last subsection and Appendix B concerning
boundary conditions and hyperdiffusion also applying to the v‖ direction. Derivatives in the
µ direction are only needed for the collision operator (2.36), which is implemented using a
finite volume scheme, so that only derivatives at the midpoints between the actual gridpoints
are needed. In the µ direction, a second order derivative is used, which implies that one
additional boundary condition for the flux, namely that the flux over the boundary of the
simulation domain vanishes, is enough to define the scheme. The collision operator consists
of both advective and diffusive terms in velocity space, which avoids numerical problems both
for the finite volume scheme and for an alternative pure finite difference approach, since the
diffusive damping needed to avoid decoupling due to the first derivative is provided naturally
and no hyperdiffusion in µ direction is necessary. Collisions are a physical source of diffusion;
for large enough νc, the hyperdiffusion in the v‖ direction can therefore be switched off as
well. Collisions also improve the convergence properties in velocity space. In the (v‖, µ)

Figure 3.1.: Relative error of the growth rate for different numbers of v‖ points. Left plot:
solid, dotted, dash-dotted and dashed lines correspond to νc = 0.0, 5 · 10−5, 1 ·
10−4 and 2 · 10−4. Right plot: different curves correspond to different resolutions
in z and µ directions with all other parameters constant.

coordinates used in GENE, particle trapping in an inhomogeneous B0 field occurs due to an
advection in the v‖ direction which is caused by the magnetic mirror force. Although they are
represented by the same distribution function, there is no mixing between trapped and passing
particles in the absence of collisions. In cases where it is very important to have a good
representation of this discontinuity due to the trapped-passing boundary, the resolution in v‖
has to be sufficiently high. If collisions are included, passing particles can become trapped
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and vice versa, so that the trapped-passing boundary disintegrates with increasing collision
frequency. This effect allows for a reduction of nv‖ , the number of points used in the v‖
direction. This is shown in the left plot of Fig. 3.1, where the relative deviation of the linear
growth rate (γ − γc)/γc with respect to the converged (nv‖ → ∞) value γc(νc) is depicted as
a function of nv‖ for some sensitive TEM test case. The right plot illustrates that although the
value of the converged growth rate γc depends on the resolution in the z and µ directions, the
convergence properties in v‖ direction are relatively independent of these parameters.

3.2. Anti-aliasing
The numerical discretization of a physically continuous dimension inevitably defines a largest
scale, which is given by the extent of the simulation domain, and a smallest scale, which is
implied by the finiteness of the number of grid points in that simulation domain. This smallest
scale defines a lower limit on the structures that can be represented in the discretized sys-
tem. If the system now exhibits a spectral evolution to higher wavenumbers, i.e. physical
processes that create smaller and smaller structures, once the lower limit is reached the finite
resolution leads to the erroneous creation of again larger structures due to the sampling theo-
rem. While this effect is difficult to avoid in direct space and has to be reduced by artificial
(hyper-)diffusion, aliasing can be neatly controlled in Fourier space by setting all modes with
k > kmax to zero. In GENE11, there are two effects that lead to the creation of smaller scales
in the perpendicular direction. One is a linear effect that is only active in the kx direction,
namely the parallel boundary condition, and the second is the nonlinearity, which leads to a
spectral transfer in both kx and ky. For the parallel boundary condition, the connections of all
kx grid points that are considered in the simulation are done correctly according to Eq. (2.10);
for the connections to grid points with higher absolute values of kx than the chosen resolution,
the boundary condition is set to zero. This is a reasonable assumption because the ampli-
tudes of the unstable linear modes usually drop off at high kx (see left plot of Fig. 3.2). To

Figure 3.2.: Left: Typical ballooning structure of a linear mode with adiabatic electrons.
Right: Typical nonlinear spectrum.

avoid aliasing effects in the x and y directions due to the nonlinearity, the well established 3/2
rule is employed, i.e. the numerical grid in these directions is expanded by small scale modes
with amplitude zero before the Fourier transformation (this corresponds to a refinement of
the grid), then the two quantities are multiplied in direct space, the result is transformed back
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to Fourier space and the additional modes (which have been subject to aliasing effects) are
removed again. In this way, all modes that remain in the computation are ’clean’. The as-
sumption that all modes outside the simulation domain are zero is again justified by the fact
that nonlinear simulations (for a reasonable choice for the simulation domain) always peak at
a low k⊥ values, usually even lower than the linear spectra, and drop off to high k⊥ (see right
plot of Fig. 3.2). With these measures, all aliasing effects have been removed spectrally and
no numerical diffusion has to be added in the x and y directions, but as always, a negative
influence of the unphysical boundary conditions has to be excluded by convergence tests.

3.3. Eigenvalue solver

To be able to analyze the eigenvalue spectrum of the linear gyrokinetic operator (2.39), an
interface to the SLEPc extension [40, 41] of the PETSc package [42, 43, 44] has been devel-
oped. SLEPc is an iterative eigenvalue solver, which means that in contrast to direct methods,
it does not manipulate the operator matrix, but repeatedly applies matrix-vector multiplica-
tions representing the evaluation of the right-hand side of Eq. (2.41) to a set of test vectors.

With this approach, the matrix does not even have to be calculated in explicit form, which
would be very memory-intensive; a reasonably resolved state vector g necessary for a linear
mode computation has of the order of 100,000 entries, so that an explicit representation of the
linear operator matrix would have of the order of 1010 complex entries, corresponding to ap-
proximately 150 GB of storage. In addition, a direct solver would be extremely slow, since it
computes the full spectrum of the linear operator, which in general contains as many eigenval-
ues as the dimension of the state vector. Iterative methods are very effective compared to this
if not all eigenvalues are needed but only a (small) subset, which is the case for linear gyroki-
netics. Another advantage of the iterative matrix-free method is that the highly optimized and
parallelized GENE routines for the right-hand side calculation of Eq. (2.41) that are usually
used for initial value calculations (see next section) can be used without major modifications.
If the eigenvalue problem is solved, the time evolution equation (2.41) can be solved trivially.
The imaginary part of the eigenvalue then corresponds to the frequency of the mode, the real
part to the growth rate. Eigenmodes with positive real part of the eigenvalue are therefore
unstable and grow exponentially in time. Because of this equivalence, the terms growth rate
(frequency) and real (imaginary) part of the eigenvalue will be used interchangeably in this
thesis.

A typical eigenspectrum of the linear operator is shown in the left plot of Fig. 3.3, where for
once all eigenvalues of a small test problem have been computed, using the SLEPc interface
to the serial direct eigenvalue solver of the LAPACK package. There is only one eigenvalue
with positive real part, i.e. one unstable eigenmode in this example. All other modes have
eigenvalues with slightly negative real parts, i.e. are slightly damped due to hyperdiffusion in
parallel and v‖ directions (see discussion in Sec. 4.1). The extent of the spectrum along the
real and imaginary axes differs by almost two orders of magnitude, most modes being aligned
with the imaginary axis. While the microinstabilities, i.e. unstable modes at scales comparable
to the gyroradius that are considered in this work, typically have growth rates of 0 < γ . 1
in units of cs/R and frequencies of the same order, the maximum frequencies of the stable
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eigenmodes are in the hundreds. Since the most rapidly oscillating modes are very sensitive
to the parallel dynamics, the anisotropy of the spectrum increases with parallel resolution and
ion to electron mass ratio.
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Figure 3.3.: Left: Typical full eigenvalue spectrum of the linear gyrokinetic operator with one
unstable mode (Re>0). Right: Comparison of different iterative methods for the
computation of the two most unstable eigenmodes in a realistic test case. Different
points correspond to different shifts along the real axis, the values are between 10
and 250.

The standard algorithms available in SLEPc are most efficient in finding an arbitrary number
of eigenvalues with the largest magnitudes. This is very useful for determining the maximal
time step for an initial value computation (see Sec. 3.4.2 on explicit time stepping), but of
physical interest are usually interior eigenvalues, namely the most unstable modes. These
modes with positive real part turn out to have a very small imaginary part (frequency) com-
pared to the many (marginally) stable modes in the system and can therefore only be accessed
with the standard eigenvalue solvers after application of a so-called spectral transform. A
spectral transform is a transformation of the operator L → L̃ which changes the spectrum λi,
but leaves the corresponding eigenvectors intact. This implies that the transformation R nec-
essary to diagonalize the linear operator has to stay the same, i.e. if RLR−1 = diag(λi) then
RL̃R−1 = diag(λ̃i). A suitable transformation projects the eigenvalues of interest to large
amplitudes while keeping the unwanted part of the spectrum at low amplitudes, so that the
standard solvers can be applied. Once the desired eigenvectors are found, the spectrum can
easily be transformed back to obtain the correct values for the original problem. Examples of
spectral transforms are complex shifts (i.e. the addition of a complex number times the unit
matrix)

R(L + c1)R−1 = diag(λi) + c (3.1)
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and inversions of the operator. Of special relevance to the problems considered here is a
combination of the two: The multiplication of Eq. (3.1) with R[L + c1]−1R−1 gives

R[L + c1]−1R−1 = diag(λ̃i) =
1

diag(λi) + c

which, together with an algorithm for finding the largest absolute value can be used to find
eigenvalues close to −c in the complex plane. The inverted matrix is never computed explic-
itly, rather [L + c1]−1g, which has to be evaluated in each iteration of SLEPc and for all test
vectors, is computed with PETSc routines, which again employ matrix-free iterative methods
to solve the linear system of equations associated with the inversion. While these inversions
are very time-consuming, it is known that the efficiency of linear solvers can be increased dras-
tically with a suitable preconditioner, unfortunately the preconditioners already implemented
in PETSc are not suitable for the matrix-free integro-differential operator of GENE and the
development of a specially designed preconditioner is rather difficult.

A very promising recent development of the SLEPc programmers, that has been quickened
by a collaboration with the GENE group, are harmonic projection methods, which are able to
access interior parts of the eigenspectrum without the costly inversions. At the time of writing,
they were only available in a development version of SLEPc, but first tests showed a gain of a
factor of 5 in the computation time compared to spectral transforms relying on inversions (see
Fig. 3.3). Extensive tests of the different spectral transforms and their applicability to GENE
problems can be found in [45, 46].

3.4. Initial value solver
While arbitrary parts of the spectrum of the linear gyrokinetic operator are only accessible
with an eigenvalue solver, for some investigations it is only necessary to know the properties
of the most unstable mode. An alternative to the eigenvalue solver is in this case the discretiza-
tion of the time derivative of Eq. (2.41) and computation of the initial value problem, with a
superposition of all linear modes as initial condition g(t = 0). The evolution equation for the
different eigenmodes gi,

∂

∂t
gi = λigi

describes an oscillation superposed by exponential growth, which is determined by the real
part of the eigenvalue λi. After some time, the state vector g – which initially contained
all modes – is dominated by the most unstable mode and the corresponding growth rate and
frequency can be determined (see left plot of Fig. 3.4; the growth rate is proportional to the
slope in this logarithmic plot). With a suitable time stepping scheme, this procedure is usually
faster than the eigenvalue solver. For the case that all kx grid points are coupled via the parallel
boundary condition (2.10), a routine computing

λiv(ky) =

∑

kx,z w(kx, ky, z)λ(kx, ky, z)
∑

kx,z w(kx, ky, z)
with λ(kx, ky, z) = ln

(

φ(tn)

φ(tn−1)

)

/∆t (3.2)
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Figure 3.4.: Left: Linear initial value computation with competing eigenmodes for low t.
Right: Nonlinear initial value computation with transient (t . 100) and qua-
sistationary phase (t & 100).

directly in GENE was implemented. The result λiv = γiv + iωiv is the combined growth rate
and frequency of the mode as represented by the time stepping scheme; a criterion that the
computation is converged for a given ky is that the scatter of λ(kx, ky, z) is below a certain,
adjustable limit cp connected to the precision of the value for λ:

∑

kx,z |λ(kx, ky, z) − λiv(ky)|2w(kx, ky, z)
∑

kx,z w(kx, ky, z)
< cp (3.3)

(for a pure eigenmode, λ(kx, ky, z) = λiv(ky) for all kx, z). The weightw(kx, ky, z) = φ(tn−1)
proved to accelerate the computation. To reduce the computation time, the routine usually does
not use each available time step but larger time intervals of approximately 10/Deltat.

Note that the discretization of the time derivative introduces an additional error, so that in
general λiv obtained with an initial value computation is less accurate than the eigenvalue
of the most unstable mode calculated with the eigenvalue solver λev. For the implicit Euler
scheme described below, these errors can be substantial and are corrected in GENE (see next
section); for the higher-order explicit schemes with their limited time step, they can be ne-
glected for the microinstabilities considered here, so that the distinction between λiv and λev

is dropped from now on.
With the routines computing (3.2) and (3.3), it was possible to achieve the same level of

automatization for parameter scans with the initial value solver as with the eigenvalue solver.
However, these routines are based on the assumption that the distribution function is (after
some time) dominated by only one exponentially growing mode. If there is a second unstable
mode in the system with a very similar growth rate (but different frequency), the beat of the
two modes will avoid convergence until the two amplitudes are sufficiently different, so that
the computation time goes to infinity for γ2 → γ1. A case with two competing growth rates is
shown in the left plot of Fig. 3.4, the beat is observable for t . 30.

For linear investigations, the initial value solver can be used to speed up the computations
that could also be done with an eigenvalue solver, but way more important is that an efficient
discretization of the time derivative also allows for a numerical solution of the nonlinear gy-
rokinetic equation (2.38). The right plot of Fig. 3.4 shows the time trace of the heat transport
for some typical simulation, where after the initialization, a phase of linear growth is followed
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by an overshoot, before finally a quasistationary state is reached. The transient phase depends
on the initial conditions and is therefore not significant, of interest are only the statistical prop-
erties of the quasistationary phase (e.g. the average heat transport). With more effective time
stepping schemes, less computational effort is wasted on the transient initial phase and the
length and therefore the statistics of the quasistationary state can be improved.

3.4.1. Implicit time stepping scheme

A very simple discretization of the time derivative of Eq. (2.41) applicable to linear computa-
tions is the implicit Euler scheme,

g(tn+1) − g(tn)

∆t
= Lg(tn+1). (3.4)

As in all implicit schemes, the right hand side of Eq. (3.4) is evaluated with the state vector at
the incremented time index tn+1, making the scheme A-stable, which means that the numerical
representation of all modes with Re(λ) ≤ 0 is also stable, without any conditions on ∆t. The
drawback of implicit schemes is the matrix inversion, that is necessary to solve Eq. (3.4) for
g(tn+1):

gn+1 = [1 − ∆tL]−1gn. (3.5)

The right hand side of this equation can be computed with the iterative solvers provided by
PETSc, similar to the spectral transformations for the eigenvalue solver. As already men-
tioned, the implicit Euler scheme is numerically stable for all values of ∆t. For larger values
of ∆t, fewer time steps are needed to bridge the transient phase and reach convergence as
described by Eq. (3.3), but at the same time the off-diagonal elements of the operator to be
inverted grow, which slows down the PETSc routines, so that the minimum of the over all
computation time is at finite ∆t, actually at similar values than for the explicit schemes de-
scribed below. The comment concerning a suitable preconditioner in Sec. 3.3 also applies
here.

Another subtlety with this method is that it is only accurate to first order in ∆t, which
combined with the unconditional stability can lead to huge dissipation and dispersion errors.

However, if the growth rate and frequency have been determined according to Eq. (3.2)
without additional errors due to an insufficient sampling rate and the ordering of the eigenval-
ues according to their growth rates has been preserved, these errors can be corrected afterwards
with

λcorr =
1 − e−λiv∆t

∆t
,

so that this method is still suitable for linear initial value calculations.

3.4.2. Explicit time stepping schemes

Easier to evaluate are explicit time stepping schemes, since they do not involve matrix in-
versions. They are only conditionally stable, i.e. the numerical representation of the time
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Figure 3.5.: Eigenvalues (black) and contour plots of Re(λiv) (left) and Im(λiv) (right) as seen
by the implicit Euler scheme with ∆t = 0.01.

evolution of an eigenmode with Re(λ) is stable if and only if the time step width ∆t is below
a certain limit. At least the nonlinearity in Eq. (2.38) has to be treated with an explicit time
stepping scheme, since an inversion of the quadratic integro-differential operator representing
the ~E× ~B nonlinearity is not feasible; if the full system is treated with an explicit scheme,
this allows for an easy adaption of ∆t during the simulation, which is important for nonlinear
simulations (see next section). The shape of the stability region depends on the choice of the
time stepping scheme, its size can be increased by decreasing ∆t. The white lines in Fig. 3.6
encircle the stability region of the various Runge-Kutta schemes implemented in GENE, i.e.
they mark the values λ for which g in the test equation

∂

∂t
g = λg

is neutrally stable; ∆t has been adapted in each case to keep all eigenvalues (black) within the
stability region (white). The three explicit Runge-Kutta schemes are discussed in more detail
in Appendix C. Each stage of a Runge-Kutta scheme involves one computation of the right
hand side of Eq. (2.38), the numerical effort to advance the system by ∆t with the different
schemes is therefore proportional to the number of stages of the scheme.

The comparison of the three schemes presented here shows that while the number of stages
for the 3rd, 4th and modified 4th order scheme are 3:4:6, the maximal ∆t is 0.0071:0.0114:
0.0198, so that the normalized efficiencies of the schemes are approximately 1.0:1.2:1.4, a
ratio that is almost independent of the simulation parameters, since the shape of the eigen-
spectrum is always mostly hyperbolic. This means that after a given CPU time, the physical
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Figure 3.6.: Growth/damping rates (color) as seen by the time stepping scheme and stability
region (white) in the complex plane for RK3, RK4 and RK4M, with ∆t=0.0071,
0.0114 and 0.0198 respectively. The time step has been adapted to the eigenvalue
spectrum for each case

time covered by a simulation using the modified 4th order scheme is 1.4 times longer than
with the 3rd order scheme, which obviously speeds up convergence for linear runs, but also
reduces the CPU time spent in the transient start-up phase of a nonlinear simulation.

Figure 3.7.: The corresponding frequencies (color) as seen by the time stepping scheme and
stability region (white) in the complex plane for RK3, RK4 and RK4M.

The figures 3.6 and 3.7 can also be used to discuss the numerical errors associated with
the explicit time stepping schemes. The colour coding in Fig. 3.6 shows the growth rate as
seen with the RK4 scheme. The error in the growth rate largely depends on the position of
the eigenvalue in the complex plane. While a perfect representation of the time derivative
would have growth rate isolines that are exactly parallel to the imaginary axis with values
corresponding to the real axis, all numerical approximations show significant deviations from
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this, especially for the stable (left) half plane. Modes with eigenvalues outside the stability
region grow exponentially, which is correct for eigenvalues on the half plane with positive
real part but clearly unphysical for modes on the left half of the complex plane. It is therefore
essential to choose a ∆t that ensures that all stable eigenvalues actually lie within the stability
region. For the unstable half plane, the deviations decrease for lower imaginary parts, so
that the physically relevant unstable modes, which always have low frequencies, are well
represented. For all explicit schemes considered here, the purely oscillating modes on the
imaginary axis are stabilized, especially for bigger imaginary parts. The high frequency modes
close to the blue singularities (especially for RK4 and RK4M) are damped significantly by the
numerical scheme. However, this is not too worrying, since the (shear Alfvén) modes with the
highest frequencies have the lowest parallel wave lengths, so that the extent of the spectrum in
the imaginary direction is connected to the parallel resolution. A damping of these modes is
therefore equivalent to a slight reduction of the parallel resolution, which means that negative
effects on the simulation can be excluded by the usual convergence tests and no additional
constraint arises from using the faster RK4 or RK4M schemes.

Similar observations can be made for the dispersion errors shown in Fig. 3.7. A perfect
representation of the time derivative would have isolines of the frequency parallel to the real
axis with values corresponding to the imaginary axis. This is not given on the stable half
plane, but even on the unstable half plane sign reversals of the frequency can occur for large
imaginary parts. Again, the error decreases dramatically for lower imaginary parts and the
physically relevant modes are well represented by all schemes.

This shows that the numerical errors due to the discrete time stepping of both the growth
rate and the frequency are small in the region with low absolute growth rate and low frequency,
which contains the physically relevant modes, especially the unstable ones that constitute the
drive of the turbulent system.

3.5. Nonlinear simulations

Even if the linear time step has been computed correctly according to Sec. 3.4.2, the nonlin-
earity can lead to numerical instability in turbulence simulations. To avoid this, ∆t has to
be lowered if the time step limit due to the ~E× ~B advection becomes stricter than the linear
limit. To compute this additional limit at each time step tn of a simulation, the nonlinearity is
linearized by treating φ(tn) as a constant for the multiple stages of the time stepping scheme,
so that in principle the eigenvalue solver could be used to compute the new maximal ∆t. This
would, however, be very costly, the maximal time step is therefore approximated as

∆tmax = sc ∗ min(∆tlin,∆tNL),

where ∆tNL is calculated with the assumption that only the ~E× ~B advection (and no linear
physics) is present. The assumption of a simple superposition of linear and nonlinear effects is
of course only a crude approximation, for this reason the safety factor sc has to be introduced.
In addition it is known that simulations are less noisy if the time step is kept well below the
maximal stability limit, the safety factor is therefore usually put to ≈ 0.5.
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Figure 3.8.: Effect of the time step adaption on the nonlinear simulation. The left and right
sides show the temporal change of ∆t and the ion heat flux for two simulations
with the same parameters, but different prescriptions for the nonlinear time step
adaption.

If the ∆tmax defined above is determined by the nonlinearity, it changes with every time
step. Rapid and significant variations of ∆t can lead to numerical artefacts such as resonances
in the simulation (see Fig. 3.8), it is therefore better to define a target corridor for ∆t/∆tmax

and adapt ∆t only if necessary. In gene, ∆t is only adapted once it violates 0.8 ≤ ∆t/∆tmax ≤
1.2, which leads to much smoother simulations, as shown in Fig. 3.8.

3.6. Parallelization

For plasma turbulence simulations, the ability to use many processors in parallel is essential.
One reason are the memory requirements: A typical nonlinear ion scale tokamak simulation
needs around 128×64×24×48×8×2 points for the distribution function in kx, ky, z, v‖, µ and
species directions, this corresponds to a double complex array of 2.3 GB. To store auxiliary
fields, e.g. from the time stepping scheme, GENE uses 4 of these high dimensional arrays,
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some of which with additional ghost cells for boundary exchanges (see Appendix B), plus
many lower dimensional arrays, so that the total memory requirements for this example would
be around 12 GB; for simulations that include effects both on electron and ion gyroradius
scales, or consider stellarator geometry, this number can be much higher. While this already
shows that simulations of plasma turbulence would be impossible on a single processor, the
even more important issue is time. A simulation with the above resolution usually takes (de-
pending on the machine) of the order of 5,000 CPU hours, without massive parallelization,
detailed investigations would therefore be impossible.

GENE can be run both on distributed and shared memory architectures. For distributed
memory architectures, MPI parallelization and the so-called domain decomposition are of
great importance. To make the computation of big problems possible on many processors
with limited memory, the six dimensional modified distribution function g and all auxiliary
arrays like f , the k’s of the Runge-Kutta schemes (see Appendix C), the electromagnetic
fields and the multi-dimensional prefactors employed in the computation are cut into subarrays
and then distributed to different processors. Every processor then only computes a small
subvolume of the whole the problem, if information from neighbouring subvolumes of the
distribution function is needed, e.g. for the calculation of derivatives in the various directions,
this information has to be sent explicitly from one processor to the other. The finite difference
schemes employed in GENE are local, i.e. to approximate the value of the derivative at one
grid point, they only need the values of a limited number of neighbouring points. The usual
method to provide these values if the direction is distributed on several processors is by so-
called ghost cells, i.e. additional boundary cells where a copy of the corresponding values of
the neighbouring cells from the neighbouring processor are stored. These ghost cells have to
be updated prior to each evaluation of the derivative. Although this domain decomposition and
the associated MPI communication calls make the code rather complex, MPI parallelization
works both on shared and distributed memory architectures and is therefore more flexible than
OpenMP parallelization, in addition it is crucial to reach high processor numbers. Gene is
MPI-parallelized along the ky, z, v‖, µ and species directions. In contrast to the ky direction,
the MPI-communication in the latter four dimensions, that includes for example exchanges
of ghost cells for the finite difference schemes or global sums for the calculation of velocity
space moments, is in general straightforward to implement.

The parallelization of the ky direction is more complicated. For linear computations, it is
trivial, because Eq. (2.41) decouples completely in ky direction. For nonlinear computations
however, the arrays needed for the computation of the nonlinearity have to be Fourier trans-
formed in the kx and ky directions, but since the Fourier transform is a global operation, i.e.
needs the values at all grid points, simple ghost cells in ky direction are of no use. For the
ky Fourier transform, all data along the ky direction has to be on the same processor, prefer-
ably contiguous in memory. This is achieved by first performing the Fourier transform in
the (contiguous) x direction, e.g. A(kx, ky1 : ky2) → A(x, ky1 : ky2) (the interval ky1 : ky2

are the ky values stored on the given processor) and transposing the array on the processor
A(x, ky1 : ky2) → A(ky1 : ky2, x), then exchanging the content of the different MPI processes
along the ky direction using MPI_ALLTOALL communication to gather all ky grid points be-
longing to a given interval of x grid points on one processor, A(ky1 : ky2, x) → A(ky, x1 : x2).
Note that the array is now parallelized over the x direction instead of ky and the Fourier trans-
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form of the now contiguous ky direction, A(ky, x1 : x2) → A(y, x1 : x2), can be performed
easily. With the arrays in this representation, the nonlinearity is then calculated and the result
is transformed back performing the above steps in reversed order.

In addition to MPI, all numerically expensive loops are parallelized with OpenMP, so that on
shared memory systems, the code scales well even without the use of MPI. It is also possible
to use a hybrid MPI/OpenMP parallelization. Gene can run on many different architectures,

Figure 3.9.: Parallel efficiency (weak scaling) on BlueGene L of the IBM Watson Research
center.

from a laptop computer for simple linear runs to Linux clusters to big supercomputers like
IBM Power4/5/6, SGI Altix, Cray or IBM BlueGene systems. It has been tested extensively,
and as can be seen in Fig. 3.9 and in more detail in [38], it can be used efficiently on up to at
least 32768 processors.

3.7. Summary
In this chapter, the gyrokinetic plasma turbulence code GENE has been presented. The back-
ground of its implementation has been illustrated and some of the major advances have been
discussed in more detail. The extensions and generalizations of the equations, that have been
discussed in the previous chapter have been implemented in the code, including a transition
from a direct space to a Fourier space representation of the radial coordinate. Considerable
progress was achieved through improved numerical schemes, e.g. for the time stepping and
anti-aliasing procedures, leading to faster and more robust computations.

Furthermore, completely new features like an interface to an eigenvalue solver have been
implemented. Many of these developments, like the more sophisticated collision operator
or the eigenvalue solver, are in this form presently only available in GENE and allow for
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completely new numerical investigations of plasma microturbulence and the underlying mi-
croinstabilities. This will be exploited in the remainder of this thesis.
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4. Fundamental features of linear
gyrokinetics

The magnetized plasmas that occur in the context of magnetic confinement fusion exhibit a
large number of “microscopic” (i.e. gyroradius-scale) instabilities driven by the background
density and temperature gradients. These microinstabilities constitute the drive for the turbu-
lence that leads to the anomalous transport determining the energy confinement time. Before
addressing the physically and technically very important plasma turbulence problem, it is cru-
cial to understand the underlying linear physics.

The microinstabilities are usually classified according to some of their key characteristics
like e.g. their diamagnetic drift direction, and studied in some ideal limit. On electron gyro-
radius scales, the most important instability in the core plasma of tokamaks and stellarators
is the electron temperature gradient (ETG) mode. On ion gyroradius scales, the trapped elec-
tron mode (TEM) and/or the ion temperature gradient (ITG) mode are the most important
ones. Although it has been known for a long time that under certain conditions, different types
of modes can “mix” or “merge”, it was usually assumed that by continuously changing the
plasma parameters, it is possible to trace a mode back to some region of parameter space in
which its identity is clear without ambiguity.

After discussing some fundamental properties of the linear operator, it will be shown in this
chapter that this idea in general does not work, since due to the non-Hermiticity of the linear
gyrokinetic operator, non-Hermitian degeneracies occur that connect the different instabilities.
The results of this chapter, which have been obtained in collaboration with M. Kammerer, have
been published in [47].

4.1. Structure of the linear gyrokinetic equation
The linearized gyrokinetic equation,

∂g

∂t
= L[g] , (4.1)

describes the time evolution of the modified distribution function g by the complex integro-
differential operator L given by expression (2.39). Physically, g is a scalar field of the three
spatial, two velocity space and the species coordinates, mathematically, it can be viewed as the
complex state vector of the system. Discretization makes this state vector finite dimensional
and turns the operator L into a matrix. The properties of this matrix then fully define the
system.

Eq. (4.1) is very similar to the Schrödinger equation in quantum mechanics,

i~
∂

∂t
ψ = Ĥψ ,
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where the time evolution of the wave function ψ is governed by the Hamiltonian Ĥ. Because
of the significance of the Schrödinger equation in physics, it is well studied and many results
can be applied also to the linear gyrokinetic equation. Note however that due to the prefactor
i~ that only occurs in the Schrödinger equation, the equivalent of a Hermitian Hamiltonian is
an anti-Hermitian operator L.

A key result from quantum mechanics is that a Hermitian Hamiltonian leads to a unitary
time evolution operator, meaning that the norm of the state vector is invariant. This is a result
of the fact that the eigenspectrum of a Hermitian operator is purely real and the eigenvectors
belonging to different eigenvalues are orthogonal, which can be shown easily. Analogously, a
purely anti-Hermitian operator L would have a purely imaginary eigenvalue spectrum, i.e. all
eigenmodes would be neutrally stable, which is, given the omnipresence of unstable modes
in gyrokinetics, obviously not the case. Since it is the non-Hermiticity of L that leads to the
microinstabilities in the system, it is interesting to know the origin of this property.

The linear operator of Eq. (2.13) for the full distribution function F consists only of a z
dependent perpendicular advection due to the ~∇B and curvature drifts and a constant parallel
advection due to the parallel velocity and is therefore anti-Hermitian. (As has been mentioned
briefly in Appendix B, if the discretization schemes are chosen carefully, the Hermiticity prop-
erties of the underlying equations can be retained in the numerical representation. The first
derivatives occurring in the equations can be discretized spectrally or by centered difference
schemes with appropriate boundary conditions without loosing their anti-Hermiticity.)

The δf splitting described in Sec. 2.4 creates new linear terms out of the nonlinear terms of
the initial equation. In the collisionless, electrostatic limit, νc → 0, β → 0, the linear operator
(2.39) can be split into two parts

∂f

∂t
= L[f ] = Lf + Lφ

given by

Lf =

(

− vTj

JB0
v‖
∂

∂z
−
T0j(2v

2
‖ + µB0)

qjB0
(Kyiky +Kxikx) +

vTj

2JB0
µ∂zB0

∂

∂v‖

)

f

Lφ = −
(

ωn + (v2
‖ + µB0 −

3

2
)ωTj

)

F0jikyJ0φ− vTj

JB0
v‖
qj
T0j

F0
∂

∂z
J0φ

−
T0j(2v

2
‖ + µB0)

qjB0

(Kyiky +Kxikx)
qj
T0j

F0J0φ

φ =

∑

j n0jπqjB0

∫

J0(λj)fjdv‖ dµ

k2
⊥λ

2
D +

∑

j

q2
j

T0j
n0j(1 − Γ0(bj))

.

The Lf part is a differential operator acting on the distribution function. This operator is
block diagonal in the species label, i.e. it describes the motion of non-interacting particles in
the background magnetic field. If the prefactor 1

JB0
is independent of the parallel direction, as

e.g. in the widely used s− α geometry (see Sec. 2.9.1), Lf is anti-Hermitian; this part of L is
the equivalent of the the linear operator in the full-F equation.
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The field part Lφ is much more complicated. The field operator φ is a linear integral op-
erator. Its matrix representation is therefore dense in the velocity and species coordinates
(in contrast to the sparse matrix representation of the differential operators represented spec-
trally or with finite differences). Lφ can be expressed as a matrix multiplication of a differen-
tial operator (with similar properties as Lf ) with the field operator. This combination is not
(anti-)Hermitian, so that due to these terms, the eigenvalues of L are, in general, not purely
imaginary and the eigenvectors are not orthogonal. Lφ is thus the origin of the wealth of in-
teresting phenomena occurring in linear gyrokinetics, including Landau damping, the various
microinstabilities and the non-Hermitian degeneracies, that will be discussed in this chapter.

Note that Lφ couples f to the background distribution function F0 via the electrostatic field.
All of the respective terms originate from the nonlinear part of the Vlasov equation for the
full distribution function F , they have only become part of the linear operator because of the
δf splitting. Without this coupling (or alternatively without δf splitting), Lφ would be zero,
L anti-Hermitian and all linear modes would be neutrally stable. This is similar to many other
physical systems, where the basic physical processes are described by Hermitian Hamiltoni-
ans, but non-Hermiticity is introduced by boundary conditions or a simplified description of
interactions by dissipation. In some sense, fixing one part of the full distribution function F
to the stationary background distribution function F0, coupled to the perturbed distribution
function by Lφ, is also a kind of boundary condition.

For νc > 0, the linearized collision operator contributes to the non-Hermiticity of the linear
operator; like Lφ, it is only part of the linear operator because of the δf splitting. The same
comments apply to the electromagnetic contributions for β > 0.

Note that numerical damping (introduced explicitly as in GENE, or implicitly, e.g., via
upwind schemes) is another, artificial source of anti-Hermiticity. It has been checked however,
that the phenomena that will be described in this chapter persist in the limit of no damping,
even though the numerical values of growth rates and frequencies become less reliable in this
limit.

Presently, not very much is known about non-Hermitian operators. However, sparked by
a paper by Bender and Boettcher [48] in 1998, there has been an increasing activity in the
research for non-Hermitian operators with real spectra. The strong interest mainly stems from
the fact that they represent a completely new class of suitable candidates for quantum mechan-
ical Hamiltonians. It has been shown that PT symmetry in the context of quantum mechanics,
or more general pseudo-Hermiticity [49, 50] leads to real spectra, but a simple, testable prop-
erty of the operator matrix (such as the Hermiticity) that ensures that an arbitrary operator has
a real spectrum is not known, so that in general, only a computation of all eigenvalues of the
operator can tell if an operator is pseudo-Hermitian. For a recent review of the topic, see [51].

If the equilibrium density and temperature gradients are set to zero and the numerical damp-
ing is switched off, the eigenspectrum of L seems to be purely imaginary up to numerical
effects. These are expected to decrease with increasing resolution, but testing this is very
difficult, since the memory requirements and computation time for a full eigenvalue decom-
position increase dramatically with resolution (the iterative solvers described in 3.3 are not
applicable for this task) and the LAPACK routine that was used for this computation is not
parallelized. The conjecture that L without drive is pseudo-(anti)-Hermitian is supported by
a physical argument – microinstabilities ”feed” on the energy contained in the background
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gradients, without these gradients, perturbations around F0 should therefore not grow.

4.2. Settings for the numerical investigations

As described in Sec. 3.3, GENE has been coupled to the SLEPc [40, 41] library, a fully parallel
iterative solver for eigenvalue problems based on the PETSc package [42, 43, 44]. This allows
– in contrast to initial value simulations – not only to compute the dominant microinstability
for a given set of plasma parameters (i.e. the one with the largest growth rate), but also sub-
dominant microinstabilities at the same perpendicular wavenumber. While GENE was not the
first code able to perform gyrokinetic eigenvalue computations (compare, e.g., the FULL [52]
and GOBLIN [53] codes), the possibility of easily handling extensive parameter scans allows
for completely novel types of investigations.

Throughout this chapter, the ŝ-α model for the magnetic equilibrium (see Sec. 2.9.1) is
used for simplicity, with ŝ = 0.8, α = 0 and εt = r/R = 0.16. Two particle species,
electrons and (singly charged) ions are considered; the mass ratio is chosen to be me/mi =
5.45 · 10−5. Unless stated otherwise, the binormal wavenumber is set to kyρs = 0.2, which
is where nonlinear transport spectra typically tend to peak, and the radial box size is set to
Lx = 1/(kyρs ŝ) = 6.25 ρs; other nominal parameters are β ≡ 8πn0TrefB

−2
ref = 2 · 10−4,

q0 = 1.4, and a temperature ratio of unity, i.e. Te = Ti = Tref . The resulting eigenvalues –
whose real and imaginary parts correspond, respectively, to the linear growth rates and real
frequencies – are normalized with respect to cs/R.

4.3. Mode transitions

To demonstrate the existence of two different scenarios related to mode transitions, an ex-
ample with density gradients and both electron and ion temperature gradients switched on is
shown in Fig. 4.1. To assure convergence also of the subdominant modes, a (relatively high)
numerical resolution of 11 kx modes (corresponding to 11 poloidal turns), 20 parallel grid
points, and 64×12 points in v‖-µ (velocity) space has been used, the ion temperature gradient
is held fixed at R/LTi

= 6. The plots show the real and imaginary parts of the two unsta-
ble eigenvalues as a function of the electron temperature gradient for two different values of
R/Ln. For R/Ln = 4.4 (left plots), the most unstable mode for low values of R/LTe exhibits
a drift velocity which points in the ion diamagnetic direction. It may therefore be identified as
an ion temperature gradient (ITG) mode. Moreover, there exists a subdominant trapped elec-
tron mode (TEM) with its drift velocity pointing in the electron diamagnetic direction. Now,
if R/LTe is increased to a value of about R/LTe = 6.4, the TEM takes over the role of the
dominant mode, i.e., one finds a crossing of the linear growth rates. This is to be expected,
since ITG modes and TEMs are, respectively, stabilized and driven by the electron temperature
gradient, and mode crossings like this one have been observed frequently (see, e.g., Ref. [54]).
What is interesting, however, is that this picture changes qualitatively if the same scan is per-
formed for a slightly larger value of the density gradient R/Ln = 4.6 (right plots of Fig. 4.1).
Here, the two modes do not intersect in the whole R/LTe range, but it is hard to say from the
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Figure 4.1.: Linear growth rates γ and real frequencies ω (normalized with respect to cs/R) as
a function of R/LTe for R/Ln = 4.4 (left) and R/Ln = 4.6 (right).

frequencies whether they should be called ITG modes, TEM, "hybrid ITG/TEM modes" (see,
e.g., Ref. [54]) or “ubiquitous modes” (see Refs. [55, 56, 57]). Obviously, at some point in the
range 4.4 < R/Ln < 4.6, a transition takes place, which will be studied in more detail below.

4.4. Exceptional points

To reconcile the two scenarios described in the last section, the end points of the two scans
shown in Fig. 4.1 are connected by a parameter scan in R/Ln, yielding a closed trajectory
along a square in the R/LTe-R/Ln plane around the nominal values, R/LTe = 6.3 and
R/Ln = 4.5. The result is shown in Fig. 4.2: The upper left plot depicts the exact path of
the circular scan in parameter space, the lower plots show the linear growth rates and real fre-
quencies of the two unstable modes. After one turn, the curves connect, as has to be expected.
However, they connect in such a way that the roles of the dominant and subdominant mode
are interchanged. This implies that through a continuous variation of plasma parameters, de-
scribing a closed path in the R/LTe-R/Ln plane, one can transform an ITG mode into a TEM.
After one turn, the formerly dominant mode has become the subdominant one and vice versa,
and only after a second turn the curves “bite their own tails” again. This is also illustrated
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Figure 4.2.: Upper left: Picture of the closed path in the R/LTe and R/Ln parameter space
that is used for the scan. Other plots: Linear growth rates γ and real frequencies ω
(normalized with respect to cs/R) for two unstable modes along this closed path.
The big squares denote a corresponding eigenvalue in the two plots, the numbers
denote the linear parameter interval of the corresponding scan.

in a somewhat different way in the upper right plot of Fig. 4.2, where all eigenvalues of the
lower plot are depicted in the complex plane. Following the path in parameter space depicted
by the numbers, it becomes obvious that the dominant and subdominant modes describe only
half a circle in the complex plane respectively, and one full loop in the complex plane is only
completed after two turns in the parameter plane. This nontrivial topology of the eigenvalue
surface in the parameter space spanned by the density and electron temperature gradients is
due to a so-called exceptional point (EP) at the nominal values defined above, R/LTe = 6.3
and R/Ln = 4.5.

To illustrate the structure associated with such an EP, Fig. 4.3 shows the full surfaces de-
scribed by ω and γ in the R/LTe-R/Ln plane, clearly exhibiting an anomaly in the center. The
surfaces are topologically equivalent to the Riemann surface for the function f(z) =

√
z in

the complex plane. Locally, the eigenvalue surface looks like two distinct surfaces, belong-
ing to two different instabilities, the nontrivial structure (which is only observable globally)
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Figure 4.3.: Topological structure of the linear growth rates and real frequencies of two
(ITG/TEM-like) microinstabilities in R/LTe-R/Ln space, exhibiting an EP. Both
structures are identical to that of a Riemann surface for the complex function
f(z) =

√
z.

comes from the fact that the intersection line of the two presumed surfaces is not infinite but
ends in an EP. Note that these intersection lines are different for the real and imaginary parts
of the eigenvalues (i.e. the parameters where the two instabilities have equal growth rate or
equal frequency are different), except for the exceptional point, which is the only point where
both growth rates and frequencies of coincide. From this, it is obvious that the scenario dis-
played in Fig. 4.2 will be identical for any closed path around the EP in our two-dimensional
parameter space, while for closed paths which don’t contain an EP, the connection of the two
eigenvalues can not be observed and the two instabilities appear to be completely independent,
each having the same values after one turn in parameter space already.

As will be shown in the following, EPs do not only occur in the transition between ITG
modes and TEMs, but are a pretty ubiquitous phenomenon in linear gyrokinetics. An example
is the pure TEM system with the nominal gradients R/Ln = 3.1, R/LTe = 2 and R/LTi

= 0
(such that ITG modes are stable) and Te/Ti = 3 (similar to the parameters used in Ref. [37]).
The two instabilities, which both drift in the electron diamagnetic direction, are traditionally
considered to be of the (distinct) density gradient driven and temperature gradient driven TEM
variety. A parameter scan with the numerical resolution of 7 kx modes, 16 parallel grid points,
and 64× 16 points in v‖-µ (velocity) space reveals the same phenomenon as described above:
If one follows the two eigenvalues on a closed circle in the R/Ln-R/LTe plane around the
nominal gradients, the two modes transform into each other, making it impossible to distin-
guish the two instabilities globally (see the left plot of Fig. 4.4).

The same holds for the TEM-ETG system displayed in the right plot of Fig. 4.4, which has
been computed with 5× 16× 40× 16 points in kx, z, v‖ and µ directions at a slightly changed
safety factor q0 = 1.1 and R/LTe = 4.65, R/LTe = 0.

The last two examples that demonstrate the connection between seemingly different mi-
croinstabilities are systems of a so-called kinetic ballooning mode (KBM) on one hand and a
TEM or ITG mode on the other. For this purpose, the surrounding of the two points in param-
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Figure 4.4.: Left: Linear growth rates γ and real frequencies ω (normalized with respect to
cs/R) for two unstable TEM-like modes along a closed path in a two-dimensional
parameter space spanned by R/LTe and R/Ln. Right: The same for two TEM-
ETG-like modes in the ky − R/Ln plane.

eter space characterized by R/Ln = 6, R/LTi
= 0.5, R/LTe = 6, and β = 0.018 as well as

by R/Ln = 6, R/LTi
= 0, R/LTe = 5, and β = 0.022 are considered. In the first case, β

and R/LTi
are varied; in the second case, β and R/LTe . The numerical resolution for these

cases is 13 kx modes, 32 parallel grid points, and 48× 12 points in v‖-µ (velocity) space. The
results are shown in Fig. 4.5, exhibiting the same effects as in the cases presented above.
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Figure 4.5.: Linear growth rates γ and frequencies ω for two unstable ITG/KBM-like (left) and
TEM/KBM-like (right) modes along a closed path in a two-dimensional parameter
space spanned by β and R/LTi

and R/LTe respectively.
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4.5. Mode correlations

It is also interesting to investigate the behavior of the two eigenvectors in the surrounding
of the EP. Fig. 4.6 displays the (absolute value of the) standard scalar product p ≡ |~g∗1 · ~g2|
between the complex-valued normalized eigenvectors ~g1 and ~g2 (i.e. the modified distribution
functions of the two microinstabilities). This quantity can be considered as a measure of the
correlation between two modes. As it turns out, p is unity at the EP, i.e. the two eigenvectors
coincide in that point. Thus, at the EP, not only the two eigenvalues are identical, but the
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Figure 4.6.: Left: Dependence of the scalar product of two unstable TEM-like modes as a
function of R/LTe and R/Ln. At the EP, one obtains unity, indicating that both
modes coalesce. Right: Scalar product between an ITG-like mode and a KBM-
like mode as a function of the binormal wavenumber ky (normalized to ρ−1

s ).

eigenstates as well, which is fundamentally different from the more familiar degeneracies in
(Hermitian) quantum mechanics, where two different eigenstates happen to have the same
eigenvalues. As one moves away from the EP, p only falls off relatively slowly, demonstrating
that the two linear mode structures are still quite similar in the neighborhood of the EP. This
implies that computing p can be an efficient means to detect EPs, i.e., given a set of initial
parameters which lead to two instabilities, it is possible to compute the gradient of the scalar
product with respect to parameter variations and by iterative parameter changes find a setting
with p = 1. This technique has been used to find the parameter settings of the examples in the
last section.

Given that the linear mode structure often exhibits some persistence in nonlinear simula-
tions, another possible implication of the strong correlation between the two microinstabilities
in the neighbourhood of an exceptional point is that the character of the resulting turbulence in
the neighborhood of an EP might reflect its existence. Although first nonlinear investigations
did not show a dramatic influence, a more detailed study could reveal an effect of this correla-
tion, particularly for cases in which p remains close to unity over a relatively wide range in ky

space. One such example is shown in the right plot of Fig. 4.6.

67



4. Fundamental features of linear gyrokinetics

4.6. Theory and occurrence of non-Hermitian
degeneracies

Although a ”branch point” was mentioned (and again forgotten) in an early study of linear mi-
croinstabilities with simplified equations in [58], the results of this chapter (published in [47])
represent the first systematic study of the nontrivial structures occurring at mode transitions
in linear gyrokinetics. Through this study, it has been possible to identify these structures as
exceptional points, revealing a connection to a very active research field, with applications in
many different physical systems.

Exceptional points are, as the microinstabilities themselves, linked to the non-Hermiticity
of the linear operator. The concept and name was first introduced by Kato [59] in a book
from 1966 but gained considerable interest only in recent years (for an overview, see, e.g.
[60, 61]). Considering the matrix (in Jordan form) representing the non-Hermitian operator,
the appearance of an EP corresponds to the formation of a nontrivial Jordan block out of a
diagonal part. This means, that besides the degenerate eigenvalues, (at least) two eigenvectors
of the matrix become degenerate and form a Jordan chain. These degeneracies are of codi-
mension 2, i.e. only in a two-dimensional parameter space they appear as (zero-dimensional)
points, in general they form a hypersurface with two dimensions less than the parameter space
under consideration. For this reason, many authors prefer the expression ”non-Hermitian de-
generacy” instead of ”exceptional point”. This also explains why it was relatively simple to
find the numerous examples for exceptional points presented in Sec. 4.4; if the degeneracies
really were points in the multi-dimensional parameter space of gyrokinetics, a fine-tuning of
all plasma parameters and scan directions would be necessary and the probability of finding
such a point would be reduced dramatically. The dimensionality of the non-Hermitian de-
generacies in gyrokinetics has also been verified with GENE computations. By varying an
additional parameter with respect to the two-dimensional scans in Sec. 4.4, it was found that
the degeneracies form lines in three dimensions, as expected.

Since their two sets of parameters are very close, the multi-dimensionality of the non-
Hermitian degeneracy leads to the conjecture that at least the two EPs involving the kinetic
ballooning modes shown in Fig. 4.5 are connected; three computations at intermediate pa-
rameters also showed EPs with the same basic properties, supporting this conjecture. It could
actually be possible that all exceptional points studied above are part of a single multidimen-
sional structure, but a verification of this would require many more simulations and would
probably not provide any practical benefit.

While so far, only cases with two eigenvectors merging in an EP at a time have been found
with GENE, it is in principle possible to have n > 2 eigenvectors merge, which would increase
the number of orbits around the EP necessary to return to the initial mode to n. In this case,
for each turn, there would be a cyclic ’exchange’ of the eigenmodes.

It is interesting to note that degeneracies can also arise in the more familiar real symmetric or
complex Hermitian cases, but with different properties (see [60]). In the real symmetric case,
the degeneracies are also of codimension two, but the eigenvalue surfaces form a double cone
instead of the branch-point structure seen in Fig. 4.3 and are therefore also called “diabolical
points”. Degeneracies of complex Hermitian operators, on the other hand, have codimension
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three.
Non-Hermitian degeneracies are of interest for many areas of physics where correspond-

ing operators play a role; one of the areas which contributed most to this subject in recent
years being again quantum mechanics (for an overview, see [62] and references therein). Re-
searchers from a different area of plasma physics, namely MHD-based dynamo models, have
also reported non-Hermitian degeneracies [63].

The degeneracies described here are not only a theoretical concept, they have also been
observed experimentally in a growing number of different systems in the past few years, e.g.
in crystals of light [64], propagation of light in dissipative media [65], microwave billiards
[66, 67, 68], ionization of atoms by lasers [69], and electronic circuits [70].

4.7. Summary
It has been shown that due to the nontrivial topology of the eigenvalue surfaces in the prox-
imity of non-Hermitian degeneracies, different types of microinstabilities (like density and
temperature gradient driven TEMs, ETG and ITG modes, and kinetic ballooning modes) can
be transformed into each other via continuous variations of the plasma parameters. In the
parameter space of the gyrokinetic equation, these degeneracies, which are caused by the
non-Hermiticity of the linear operator resulting from the δf -splitting, form hypersurfaces of
codimension 2, which implies that the probability of finding such structures close to a given
set of parameters is quite substantial.

These findings explain why in some conventional parameter scans, i.e. one-dimensional
cuts through the high-dimensional parameter space, dominant and subdominant modes could
be distinguished clearly, while in others the two modes hybridized or important properties like
the drift direction changed. The finding of non-Hermitian degeneracies implies that while it is
surely still useful to label the modes in the usual way in parameter ranges that don’t include
an exceptional point, one has to be aware that a strict discrimination is not possible. This
becomes very obvious close to a non-Hermitian degeneracy, where even a slight change of the
direction of the scan axis can lead to a completely different picture, and sometimes even to a
reversal of the labelling. In these cases, trying to designate the modes in the usual sense might
be more confusing than helpful and should maybe be avoided altogether.
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5. Trapped electron mode turbulence

After the investigations of the microinstabilities related to the linearized system, which were
discussed in the previous chapter, in this and the following chapters the full, i.e. nonlinear
gyrokinetic equation will be considered.

So far, most theoretical and computational research on anomalous transport in the core of
fusion devices has focused on ion temperature gradient (ITG) turbulence in tokamaks [34],
adopting the adiabatic electron approximation (see Sec. 2.9.2). This development is, in part,
due to the relatively good tractability of this problem. Consequently, the findings from such
studies have become standard paradigms in the understanding of plasma microturbulence. The
most prominent example for this is the role of zonal flows. As has been discussed extensively
in the literature, adiabatic ITG turbulence generates ~E× ~B shear flows which are associated
with purely radial fluctuations of the electrostatic potential; these zonal flows in turn regulate
the turbulence via vortex shearing. This interplay constitutes the dominant saturation mech-
anism in these systems and therefore determines the level of anomalous transport (see, e.g.,
Refs. [71, 72, 73, 74]).

It is clear, however, that ITG modes are not the only relevant source of core turbulence.
In particular, many present-day (and future) fusion experiments rely on powerful electron
heating systems which can turn trapped electron mode (TEM) turbulence into an important, if
not dominant agent of cross-field transport.

In this chapter, some basic properties of fully developed, collisionless TEM turbulence
driven by electron temperature gradients will be discussed, followed by a more detailed study
of the relevant saturation mechanism. As it turns out, the results – which are first of all helpful
for a deeper understanding of anomalous transport in tokamak plasmas – can also be used to
justify a quasilinear transport model that has already been employed in previous works. The
results of this chapter have been published in [75].

5.1. Simulation parameters
All GENE simulations in this chapter are performed in ŝ-α geometry with α = 0 for simplicity.
The nominal plasma parameters, unless stated otherwise, areR/LTe = 6,R/LTi

= 0,R/Ln =
3, βe = 10−3, Te/Ti = 3, me/mi = 1/400, ŝ = 0.8, q0 = 1.4, and ε ≡ r/R = 0.16.
This parameter set was motivated by experimental studies of plasmas with dominant electron
heating [76] and has been used before in [37]. For these nominal parameters, only one mode
is linearly unstable at a given perpendicular wave number, corresponding to a pure, electron
temperature gradient driven TEM in the conventional nomenclature. Electron temperature
gradient (ETG) modes are linearly stable due to the relatively cold ions [77], and there is no
ITG drive. The perpendicular box size is given by Lx = 165ρs and Ly = 210ρs, and the
numerical resolution is 96 × 128 × 16 × 32 × 8 × 2 points in the radial, binormal, parallel,
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5. Trapped electron mode turbulence

Figure 5.1.: Time evolution (left plot) of the electron heat flux Qe (in units of ρ2
scspe0/L

2
n) for

the nominal parameters and dependence on R/LTe (right plot) for TEM simula-
tions with (solid line) and without (dashed line) zonal flows. The time is measured
in units of Ln/cs.

v‖, µ and species direction, respectively. For convergence studies concerning velocity space
resolution, see Ref. [37].

5.2. Zonal flows in TEM turbulence

As mentioned in the introduction of this chapter, it is still widely assumed that zonal flows
are the universal saturation mechanism for plasma microturbulence. To determine the role of
zonal flows in collisionless TEM turbulence, a set of ’normal’ TEM simulations is compared
to runs in which the zonal modes have been artificially zeroed out in each time step of the
simulation. The left plot of Fig. 5.1 shows the time traces of the electron heat flux for such
a pair of simulations for the nominal parameters defined above. Although differences in the
transport level are observable in the initial (transient) saturation phase, the physically relevant
quasistationary state remains the same if the zonal flows are suppressed. This behavior is very
different from the well studied (adiabatic) ITG case, where the suppression of zonal flows
typically leads to a significant increase of the heat flux [71, 72, 73], usually by an order of
magnitude or more. The result of this test is that zonal flows are not the dominant saturation
mechanism for TEM turbulence, at least for the parameters studied here.

The result of a nonlinear scan of the electron temperature gradient is shown in the right plot
of Fig. 5.1. Again, the electron heat flux resulting from ”normal” simulations is compared to
the result from simulations where the zonal flows have been artificially suppressed. As R/LTe

decreases from the nominal value to zero, the underlying TEM instability changes from an
electron temperature gradient driven type to a purely density gradient driven one. As can be
seen in the plot, this linear property translates into the absence of a critical electron temperature
gradient in the nonlinear runs, although the electron heat flux becomes comparatively small
for R/LTe → 0. More importantly in the present context, the artificial suppression of zonal
flows leads to a relative increase of the electron heat flux (although at a low level for the
parameters considered here) if the turbulence is sustained by density gradient driven TEMs,
in line with the results published in [78]. However, for reasonably large electron temperature
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gradients, characteristic of the majority of fusion plasmas, the influence of the zonal flows
seems to be irrelevant for the transport level. A detailed study of the parameter dependence
of the importance of zonal flows, that was inspired by the seemingly contradictory results for
the nominal parameters considered here and [37] and the results in [78] has been published
recently [79].

Although there are different regimes, for the plasma parameters considered in this chapter,
zonal flows have practically no impact on the saturated transport level, implying that the dom-
inant saturation mechanism must be of a different nature. The question what this mechanism
is and how it can be described it will be the subject of the remainder of this chapter.

5.3. Similarities between linear and nonlinear
simulations

Interestingly, the quasistationary state of a TEM turbulence simulation still exhibits many
properties of the linear system. As can be seen in Fig. 5.2, the amplitude spectrum of the elec-
trostatic potential φ shows the same features as the linear growth rate spectrum. As usual, the
nonlinear amplitude spectrum is shifted towards lower perpendicular wave lengths compared
to the linear growth rate spectrum, but the maximum remains at kx = 0 and finite ky, reflecting
a dominance of radially elongated streamers.

Figure 5.2.: Left plot: Linear growth rates for all modes in the (kx, ky) plane for the nomi-
nal parameter defined above. Right plot: The corresponding nonlinear amplitude
spectrum for the electrostatic potential.

Also, the phase relations between various pairs of fluctuating quantities [like (φ, n) or
(φ, T⊥)] are very close to the values obtained from linear computations, as can be seen in
the left plot of Fig. 5.3, where the values for kx = 0 are shown (the contributions of trapped
and passing particles have been considered separately). Note that for ky > 1.6, the linear
modes are stable (compare the left plot of Fig. 5.2). However, because an initial value solver
was used for the computation, it was still possible to compute the linear cross phases of the
dominant mode – only that this was the mode with the smallest damping rate in this case, i.e.
the mode in the initial condition which decayed the slowest. In the turbulence simulation, the
high ky contributions are excited nonlinearly, but also here the cross phases are well defined.
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Figure 5.3.: Left: Histograms of the phase angle α between different fluctuating quantities
for a nonlinear TEM simulation at the nominal parameters; the corresponding
linear values are given in magenta. Right: Real frequency (in units of cs/R) as a
function of ky (in units of 1/ρs) for the nonlinear (solid line) and linear (dashed
line) simulation.

Another similarity concerns the nonlinear frequency ωnl, which can be computed in nonlin-
ear simulations via

ωnl =

〈

Im
ln(φn/φn−1)

tn − tn−1

〉

(5.1)

(here, only the kx = 0 mode is considered, 〈〉 corresponds to an average over the available time
steps n and the parallel direction). The right plot of Fig. 5.3 shows that the nonlinear values
of the real frequency ωr exactly match the respective linear results in the low ky regime; it is
only for ky >∼ 0.6 that the results begin to differ. Here, the (time averaged) nonlinear frequency
tends to zero for increasing ky, whereas |ωr| of the linear modes increases further (the negative
sign indicates that the mode drifts in the electron diamagnetic direction).

In order to explain the findings of the last two sections, a nonlinear saturation mechanism is
required that leaves the various linear properties intact and is not related to zonal flow shearing.

5.4. Statistical properties of the nonlinearity

In an attempt to quantify the statistical properties of the ~E× ~B nonlinearity N [g], which is
responsible for saturating the linear unstable modes, the ansatz N [g] ∝ g is made. This
implies that the nonlinear gyrokinetic equation (2.38) can be rewritten as an effective linear
equation,

∂g

∂t
= Lg + X g , (5.2)

where a model constant ”X ≈ N [g]/g” with the dimension of a frequency has been intro-
duced. In the following, the properties of X will be explored by means of nonlinear gyroki-
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netic simulations. The model assumption above is only a statistical relation and the expression
for X stated above is not well defined, since the perturbed distribution function g can be zero.

In order to find a value for X , the squared error of the model, 〈|N [g]−X g|2〉, is minimized
by calculating the derivative with respect to the real and imaginary part of X and setting it to
zero. This yields

X =
〈g∗N [g]〉
〈|g|2〉 .

To reduce the amount of data and obtain a manageable model, X is considered to only depend
on the spatial coordinates and the species label; 〈〉 then denotes averaging over time and veloc-
ity space. To get a measure for the validity of Eq. (5.2), in a second simulation the normalized
error of the real part,

errRe =
〈|Re(N [g] − X g)|2〉1/2

〈|g|2〉1/2
,

and its counterpart errIm are computed.
The ky dependence of X for kx = 0 and z = 0 (low-field side) is displayed in Fig. 5.4.

Here, only the electron data is shown, but the ion results are very similar. The solid line depicts
the average value, while the bars indicate the model error as defined above. Clearly two ky

ranges with rather different properties can be distinguished. For |ky| >∼ 0.3, one finds a more
or less constant (and small) real part of X , an imaginary part which is roughly proportional
to ky, as well as large deviations from the model. For the much more important, transport
dominating scales with |ky| <∼ 0.3, completely different properties are observed, namely a
clearly discernible structure in the average values together with a very low fluctuation level.
Because of its practical importance for heat and particle transport, only the low ky regime is
considered in the following.

Figure 5.4.: Real and imaginary part of the quantity X in units of cs/R. The bars indicate the
model error as defined in the text.

The ky dependence of X for kx = 0, now averaged over the parallel direction z, is shown
(for a smaller region around ky = 0) in Fig. 5.5. The plots show that the imaginary part of
X is very close to zero for |ky| <∼ 0.3, meaning that g and N [g] are (almost) in phase. The
corresponding real part, in contrast, is not zero, and its ky dependence is well represented by
a parabola through the origin. Combining these results for the real and imaginary parts, the
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Figure 5.5.: The quantity X in units of cs/R in the transport dominating region. The real part
can be fitted by a parabola, the imaginary part by a constant (zero).

constant X can be written as

X ≈ −Dk2
y , (5.3)

implying that the overall effect of the ~E× ~B nonlinearity on the large, transport dominating
scales is well described by perpendicular particle diffusion.

This kind of behavior is in line with analytical results obtained, e.g., in the framework of
Dupree’s resonance broadening theory [80], and is qualitatively consistent with the nonlinear
damping expected in the long-wavelength limit of other renormalized turbulence theories [81].
Modern renormalized theories also include a nonlinear forcing term F (t),

∂g

∂t
= Lg + X g + F (t) ,

which is a noise term, that is related to the scatter represented by the bars in Fig. 5.4 and turns
the quasilinear ansatz into a stochastic differential equation (also see [81]). The behavior found
here is moreover consistent with the notion of dressed test modes in a bath of stochastic small-
scale fluctuations [82]. However, this is the first time that such phenomena have been observed
directly in gyrokinetic simulations of plasma microturbulence, demonstrating their relevance
for the nonlinear saturation of (electron temperature gradient driven) TEM turbulence.

It is worth pointing out that the result represented by Eq. (5.3) can nicely explain all the gen-
eral observations about the similarity of nonlinear and linear runs mentioned above. First, an
additional perpendicular diffusion term does not affect the eigenmodes of the linear operator
L in Eq. (5.2); since L is block diagonal in ky, the diffusivity only induces a spectral shift of
the eigenvalues. This means that although the effective growth rate of the quasilinear equation
can approach zero (the nonlinear damping rate is comparable to the linear growth rate for low
ky), the cross phases remain at the linear values, as observed in the simulations.

For higher values of ky, where the diffusion approximation breaks down, the positive value
of Re(X ) in Fig. 5.4 corresponds to a nonlinear destabilization, but as can be seen from the
error bars, effects that are neglected in Eq. (5.2) (in particular the nonlinear forcing term
mentioned above) do play an important role in this range. The same applies for the real
frequency: The mean value of the nonlinear frequency shift Im(X ) at larger values of ky helps
to explain the results in Fig. 5.3, but obviously the frequency spectrum of the nonlinear forcing
dominates.
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Figure 5.6.: Left: Comparison of the electron heat flux obtained directly from nonlinear sim-
ulations (solid line) and from Eq. (5.4) (dashed line) as a function of the electron
temperature gradient. Right: Parallel structure of the diffusivityD (solid line) and
of the linear squared amplitude |φky |2 (dashed line).

5.5. Quasilinear transport model for TEM turbulence
Another important result is related to the dashed curve in the left plot of Fig. 5.6. It shows an
estimate for the heat flux,

Qmodel
e = c0D(R/LTe) (R/LTe +R/Ln) , (5.4)

obtained from the diffusivity D, which has been determined from quadratic fits to the low ky

range of Re(X ) in various nonlinear simulations. The scalar fit parameter c0 has a value of
c0 = 0.3 in this case. The plot clearly exhibits a good quantitative correlation between the
heat transport calculated from the diffusivity D and the heat transport directly obtained from
the simulations.

These findings can be used to justify a refined quasilinear transport model which has been
described in Refs. [37, 83, 84] and used successfully to reproduce various nonlinear simulation
results which are difficult, if not impossible, to capture in more conventional models of this
type.

The parallel structure of the diffusivity D occurring in Eq. (5.3) is shown in the right plot
of Fig. 5.6. The diffusion term, corrected for the parallel change of k2

⊥ due to the met-
ric coefficients of the ŝ − α model, peaks on the low-field side and exhibits a ballooning
mode structure which is typical for curvature driven microinstabilities like TEMs. In the
model considered here, quasistationarity is reached when the effective growth rate of the
right hand side of Eq. (5.2) vanishes. This means that the linear growth rate γ from the
Lg term has to be balanced by the nonlinear contribution. With the averaging procedure
‖f(z)‖ ≡ L−1

s

∫ Ls/2

−Ls/2
f(z) dz over the parallel coordinate (usually Ls > 2π), the effective

growth rate for a given ky, which has to approach zero in the saturated state, can be approxi-
mated as

γeff ≡ γ(ky) − k2
y ‖D(z) (1 + ŝ2z2)‖

Given the fact that, according to the right plot of Fig. 5.6, the nonlinear D(z) can be approx-
imated reasonably well by the parallel structure of the linear (squared) electrostatic potential
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|φky |2(z), one finally obtains the model

Qe ∝ max
ky

[

γl(ky)

k2
y (1 + ŝ2‖z2‖)

](

R

LTe

+
R

Ln

)

(5.5)

for the full (advective and diffusive) electron heat flux Qe, where the parallel dependence is
now captured by the purely linear

‖z2‖ ≈
∫

z2 |φky|2(z) dz
∫

|φky|2(z) dz
.

This prescription helps to avoid a divergence as ky → 0 [37, 83]. The subdominant ion heat
and particles fluxes, Qi and Γ, can then be computed from the quasilinear ratios for the ky

which maximizes the right-hand side expression in Eq. (5.5). This model is able to capture
various key features of TEM turbulence as has been discussed in [37, 83].

5.6. Summary
In summary, it has been shown by a careful analysis of gyrokinetic turbulence simulations
that in the parameter regime explored here, the nonlinear saturation mechanism for electron
temperature gradient driven trapped electron modes is not zonal flow generation (in contrast to
the ITG case), but perpendicular particle diffusion. Statistically, the action of the ~E× ~B non-
linearity on the long-wavelength, transport dominating modes can be expressed by a simple
diffusion term, in line with the notion of dressed test modes in a bath of random small-scale
fluctuations. This finding is not only able to explain the observed resemblance between linear
and nonlinear modes, but can also help to develop and justify new, improved kinds of quasi-
linear transport models which are in very good agreement with fully nonlinear simulations.
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The investigations of plasma microturbulence available in the literature usually focus on study-
ing turbulence in an idealized limit, i.e. pure ion or electron temperature gradient (ITG/ETG)
mode driven turbulence or trapped electron mode (TEM) turbulence. For the gyrokinetic sim-
ulations of the former two cases (see, e.g., [34, 36]), often the adiabatic electron/ion approxi-
mation described in Sec. 2.9 has been used, which reduces the numerical effort considerably,
but eliminates several physical aspects. One very important effect that occurs only with a
gyrokinetic treatment of all species is the coupling of ITG/ETG turbulence with TEM turbu-
lence; the latter has been discussed in [37, 78, 79] or Chap. 5 with ωT i = 0, i.e. in an equally
idealized limit as the ITG and ETG investigations cited above.

While it was important to isolate and study the various effects occurring in these regimes
separately in a first step, eventually more realistic scenarios have to be considered, with gy-
rokinetic effects and gradients taken into account for both electrons and ions. As already
mentioned in the last chapter, usually ITG turbulence is considered to be the main cause of
anomalous transport in fusion experiments, and if the plasma conditions are chosen appropri-
ately, it is also possible to experimentally investigate "pure" TEM regimes [76]. But in more
conventional situations, the application of several heating methods (ECRH plus NBI) and/or
a sufficiently high collisionality leads to finite (and often similar) values for the temperature
gradients of all species, which usually means that several linear instabilities are present simul-
taneously.

There has been some work recently on the interplay between ETG and ITG turbulence,
which exist on different spatio-temporal scales [85, 86, 87]. However, even in parameter
ranges where ETG modes are stable, there is the possibility of a coexistence of different
modes, namely TEM and ITG instabilities, which have comparable spatial scales, compa-
rable linear growth rates but in general different real frequencies. The linear and nonlinear
coexistence of these different modes in the transition region between the "pure" TEM and ITG
regimes will be studied in this chapter. (It was shown in Chapter 4 that a strict classification
of the linear instabilities is not possible; however, the parameters used here are sufficiently far
from non-Hermitian degeneracies that the traditional naming can be applied.)

As will be shown, the interaction between the different unstable modes produces some new,
interesting phenomena, including a suppression mechanism for the particle flux. This is of im-
portance because the particle flux in gyrokinetic simulations using experimentally measured
gradients is often too high, which could be explained by a detuning of the suppression mech-
anism due to the substantial errors in the gradients. Some of these features can be understood
at least qualitatively by quasilinear investigations, which offer the possibility for extended
parameter scans. This will be exploited to examine the collisionality dependence of the TEM-
ITG transition.
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6.1. Setup for the simulations

As in the previous section, all simulations are performed in ŝ-α geometry with α = 0,
q0 = 1.4, ŝ = 0.8, and ε ≡ r/R = 0.16. Other plasma parameters are β = 10−3 and
Te/Ti = 2. Furthermore, again a reduced mass ratio of me/mi = 1/400 is used. Due to
the temperature ratio, which can be achieved experimentally with predominant electron heat-
ing, the ETG modes are suppressed in a wide region of the (ωTe, ωT i, ωn) parameter space,
so that the perpendicular resolution of the following nonlinear simulations can be limited to
ion scales. In the nonlinear simulations, collisions are neglected, the remaining instabilities
are thus collisionless TEMs (CTEMs) and ITG modes according to the traditional naming.
The perpendicular box size for the nonlinear simulations is Lx = 150ρs and Ly = 125ρs, the
numerical resolution is 128× 64× 24× 48× 8 points in the radial, binormal, parallel, v‖, and
µ direction, respectively, and both electrons and ions are treated gyrokinetically in all compu-
tations. For the linear computations, the perpendicular box sizes are adapted in order to obtain
the maximum number of poloidal connections, the radial mode number is reduced to five and
all other parameters are kept fixed at the values of the nonlinear simulations. As usual, the
normalization scales are chose to be Lref = R, Tref = Te, nref = ni = ne and mref = mi, so
that all growth rates and frequencies in this chapter are normalized to cs/R, the particle fluxes
to necs(ρs/R)2 and the heat fluxes to pecs(ρs/R)2.

6.2. Nonlinear results and comparison to linear
behaviour

To study the transition between the TEM and ITG turbulence regimes, first of all a scan of
the ion temperature gradient at a fixed and finite electron temperature gradient R/LTe = 4.5
and density gradient R/Ln = 3 is performed. Fig. 6.1 shows the particle and heat fluxes of
the nonlinear simulations, as well as the average squared fluctuation density as a measure of
the fluctuation level. While the end points of the scan match the expectations for the fluxes
(i.e. clear outward particle transport at both ends, TEM induced electron heat transport for low
R/LT i and an advective contribution at highR/LT i, very strong ion heat transport for the ITG
dominated end of the scan), the results exhibit a very clear and unexpected feature, namely a
significant minimum at R/LT i = 4.625. This is approximately the transition point between
TEM and ITG turbulence, which can be seen in Fig. 6.2, where the R/LT i dependence of
the two linear instabilities at a typical ky of 0.25 is depicted. This linear scan shows a critical
gradient for the ITG instability ofR/LT i ≈ 3.3 and a relatively slow decay of the TEM growth
rate with the ion temperature gradient, with TEM subdominantly unstable even for the highest
R/LT i. As already mentioned above, there is no ambiguity in the labelling of the modes
for all parameters used in this chapter, they can be clearly distinguished by their diamagnetic
drift direction (i.e. the sign of their frequency), see also Fig. 6.4 on this issue. The minimum
in the nonlinear R/LT i scan is also visible in the fluctuation amplitude, which can be partly
explained by the minimum of the growth rate at the transition point. This effect of course
contributes to the minimum in the fluxes but can not explain the drop of the particle flux to
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Figure 6.1.: Heat and particle fluxes and the fluctuation level as a function of the ion temper-
ature gradient. The red curve in the plot for the electron heat flux corresponds to
the TEM transport model described in the last chapter.

almost zero.
The fact that the TEM/ITG transition occurs very close to the minimum of the fluxes at

R/LT i ≈ 4.625 is also confirmed by a rather abrupt change in the relevance of zonal flows.
The left plot of Fig. 6.3 shows the shearing rate as a function of R/LT i, displaying a sudden
increase at R/LT i ≈ 4.25, i.e. slightly below the TEM/ITG transition, but well above the
linear critical gradient for ITG modes. The right plot of Fig. 6.3 shows this even clearer: As
already discussed in Chapter 5, zonal flows often don’t play a decisive role for the saturation
of pure TEM turbulence, the transport levels of the saturated phase stay almost constant even
when the zonal flows are artificially suppressed, as has been done for the red curve in the plot.
For low values of R/LT i, the curves with and without zonal flows are virtually identical, but
this changes drastically when the ITG modes start to become the dominant drive of the system
– then the zonal flow suppression leads to an increase of the electron heat transport of a factor
five or more, as reported in the literature for the pure ITG regime [71, 72, 73].

The transition in the zonal flow dependence coincides with the rise of the ion heat flux. In-
terestingly, it occurs at a value that is significantly higher than the linear critical R/LT i for the
onset of ITG instability. As can be observed by comparing the linear results in Fig. 6.2 with
the behaviour of the nonlinear fluxes and the zonal flows (Figs. 6.1 and 6.3), the nonlinear
critical gradient is shifted from its linear value of R/LT i ≈ 3.3 to R/LT i ≈ 4.5. This im-
plies that the saturation mechanism that stabilizes the TEM turbulence also works for weakly
unstable ITG modes. However, the decrease of the TEM activity with R/LT i due to smaller
growth rates, combined with a simultaneous increase of ITG growth rates, obviously leads to
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Figure 6.2.: The linear growth rates and frequencies of the TEM (red) and ITG mode (green)
for a ”characteristic” wave length of ky = 0.25. Since the all parameters used in
this section are far away from non-Hermitian degeneracies, the modes are clearly
distinguishable and the traditional nomenclature can be applied.

Figure 6.3.: Shearing rate (left) and electron heat flux (right) as a function ofR/LT i. The green
curve corresponds to a full nonlinear simulation, for the red curve, the zonal flows
have been artificially suppressed.

a situation where this TEM induced stabilization is not longer possible and the ITG generated
zonal flows take over that role.

While these global features of the fluxes demonstrate the presence of nontrivial effects at
the transition point between TEM and ITG turbulence, for a deeper understanding, the spectral
dependence has to be taken into account. In Fig. 6.4, the linear growth rates and frequencies
are shown as functions of the two dimensional parameter space (ky, R/LT i). The plot shows
that for a wide range of parameters, both instabilities are present simultaneously. Furthermore,
the intersection of the two planes describing the growth rates of the different modes is not
parallel to the ky axis (also see the right plot of Fig. 6.7). It rather describes a curved line,
with the R/LT i of the transition first increasing up to ky = 0.15 and then decreasing with ky,
implying that for some rather large range in R/LT i, the dominant microinstability is different
for different ky. This means that at least linearly, the TEM/ITG transition takes place gradually
and for a quite extended parameter range, a coexistence between TEM and ITG modes is to
be expected.

It is a priori not clear that a higher growth rate leads to a higher amplitude (i.e. dominance)
of the mode in the saturated turbulent regime, i.e. whether the linear findings are decisive for
the nonlinear simulations on that issue. If the nonlinear damping mechanism is different for
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Figure 6.4.: Linear growth rates and frequencies for the TEM (red) and ITG mode (green).
The last plot is a top view of the growth rate plot, showing the dominant mode in
the different regions of parameter space. The missing patches correspond to areas
where the modes are stable.

the two instabilities (as is strongly suggested by Fig. 6.3), it is well possible that a linearly
subdominant mode, although growing slower in the initial phase of the simulation, ends up at
a higher saturation level and thus dominates the system.

To determine the role of the different modes for the different perpendicular wavenumbers, a
new frequency diagnostic is used. The prescription (5.1) that was used in the last chapter is not
applicable here, since it implicitly assumes that only one frequency plus some noise is present.
To extract all frequencies in the nonlinear system, a windowed Fourier transform is applied
to the time traces of all components of the perturbed density field and the result is averaged
over the parallel direction. In plots showing the ky dependence of this frequency spectrum,
the amplitudes of the frequency components are normalized to the sum of amplitudes at each
ky, whose variation would otherwise obscure the frequency distribution of interest.

The left plot of Fig. 6.5 shows the ky dependence of the resulting distribution of the fre-
quency components for the R/LT i = 4.625 case. The nonlinear amplitudes are color coded,
the red and green lines indicate the frequencies of the linear TEM and ITG modes for com-
parison. The right plot shows the corresponding growth rates of the two microinstabilities.
The nonlinear result reveals that while the TEM contribution dominates for 0.1 < ky ≤ 0.2
and the ITG contribution dominates for ky ≥ 0.25 and ky = 0.05, TEM and ITG turbulence
can coexist not only at different ky in the same simulation but even at the same perpendicular
wave number, with the remnants of the two microinstabilities interpenetrating and drifting in
opposite directions, at a frequency that is practically unaltered with respect to the linear com-
putations. The linear ky values where the growth rates of the two instabilities intersect and the
nonlinear values where the dominant frequency changes sign are not distinguishable (ky ≈ 0.1
and ky ≈ 0.22 in both cases), implying that the properties of the turbulence are largely set by
the linear physics also on this issue. This interesting phenomenon has never been reported
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Figure 6.5.: Left: Normalized nonlinear frequency spectrum (color coded) as function of ky

for R/LT i = 4.625; the red and green lines are the linear frequencies for TEM
and ITG modes respectively. Right: The corresponding linear growth rates.

before and might also be accessible experimentally by means of Doppler reflectometry (see,
e.g. [88, 89]).

Note that the distribution function of the frequencies becomes broader with increasing ky

and the peaks at the linear eigenfrequencies become less pronounced, indicating that the linear
drive plays a less decisive role for ky & 0.5, but since TEM and ITG mode driven turbulence
does not produce much transport in this ky range, this effect is secondary.

It is also interesting to look at the relative change of the amplitudes of the TEM- and ITG-
like contributions for a specific ky as a function of R/LT i. Again, the ”representative” wave
number ky = 0.25 is used. Since for this case, the two contributions to the frequency dis-
tribution are well separated by a minimum at ω ≈ −0.1, all contributions with ω ≤ −0.1 /
ω > −0.1 are summed and attributed to the TEM / ITG mode respectively. This criterion is
of course not strict, since the tails of the frequency distributions of TEM and ITG turbulence
can leak into the other frequency range. The result (normalized to the overall amplitude) is
shown in Fig. 6.6. It shows a very clear transition between a regime with ≈ 90% TEM contri-
bution for R/LT i ≤ 3.5 and ≈ 85% ITG contribution for R/LT i ≥ 4.625. However, there is
a transition range where both instabilities act at the same perpendicular wavenumber; the two
contributions are equal for R/LT i ≈ 4.2.

Figure 6.6.: Normalized TEM (red) and ITG (green) contributions to the frequency distribu-
tion at ky = 0.25 as a function of R/LT i.
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Since the TEM-ITG transition is reasonably sharp, it is possible to get an indication of which
microinstability dominates the turbulence from the first moment of the frequency distribution.
Since the ITG and TEM peaks in the frequency distribution are not exactly symmetric with
respect to the origin, an expectation value of ω = 0 does not exactly correspond to equal
amplitudes of TEM and ITG contributions, but this criterion can nevertheless be used as a
reasonable identification mark for the transition. The result is shown in the left plot of Fig. 6.7,
where the average frequency is depicted as a function of (ky, R/LT i). The transition is quite
clearly visible in the color coding, additionally the ω = 0 contour line has been marked in
black. Due to the finiteness of the data set for the computation of the frequency distribution
and the crudeness of the ω = 0 criterion, the plot and the line are subject to noise, but the
comparison with the right plot of Fig. 6.7 again displays a remarkable similarity of the linear
and nonlinear behavior, clearly showing that the coexistence of TEM and ITG mode turbulence
at different ky is very common if electron and ion temperature gradients are in the same range.

Figure 6.7.: Left: First moment of the nonlinear frequency distribution (color coded), the ω =
0 contour line (black) may be used to mark the TEM-ITG transition. Right: The
areas where the dominant microinstability is TEM/ITG are coloured red/green.

After this discussion of the general features of the TEM-ITG transition, a detailed inves-
tigation of the most intriguing feature of Fig. 6.1, namely the clear minima in the transport
quantities at the TEM-ITG transition is in order. Of special interest in this context is the parti-
cle flux, as will be discussed in more detail in Sec. 6.4. To reveal the mechanism that creates
this minimum atR/LT i = 4.625, the spectral decomposition of the fluxes is shown in Fig. 6.8.
The TEM turbulence, which is predominant at 0.1 ≤ ky ≤ 0.2, leads to an outward transport,
this transport is balanced by the particle pinch of the ITG turbulence at 0.2 < ky < 0.4; the
contribution from even higher (or lower) ky can be neglected. The particle flux shows a zero
crossing very close to the ky values where the growth rates of the two underlying microinsta-
bilities intersect and the frequency distribution shows comparable TEM and ITG contributions,
implying that the same balancing of inward and outward flux can not only work globally for
the whole system, but even for one specific ky contribution. Together this implies that the
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phenomenon of approximately zero global particle flux observed in this nonlinear simulation
is the result of a fine tuning of the effects of the TEM and ITG contributions at different ky.

Figure 6.8.: Particle and heat transport and the ratio of the heat transport of the two species as
a function of ky for R/LT i = 4.625.

The other plots of Fig. 6.8 show that the spectral separation of dominant ITG and TEM
turbulence also causes a double peak in Qe and can be confirmed by other characteristic prop-
erties like the ratio of ion and electron heat flux, which has typical values for TEM turbulence
at ky ≈ 0.15 and typical ITG values at ky ≈ 0.3.

6.3. Construction of a quasilinear model for the flux
ratios

The quasilinear transport model described in Sec. 5.5 ignores subdominant contributions and
has been tested so far for pure TEM cases only. It is therefore not surprising that it does not
capture the effects of the TEM-ITG transition. This is demonstrated by the red line in Fig. 6.1,
which describes the nonlinear parameter dependencies of the electron heat flux to a good de-
gree for the pure TEM regime, but deviates from the nonlinear values when ITG contributions
start to appear. Nevertheless, it has been shown in the last section that the turbulence inherits
many features of the microinstabilities, even in the TEM-ITG transition region, it is therefore
conceivable that a quasilinear description is sufficient for some qualitative investigations. The
construction and test of such a model will be the topic of the remainder of this chapter.

For the almost electrostatic cases considered here, the heat and particle fluxes are deter-
mined by the amplitudes of the corresponding moment of the distribution function and of the

86



6.3. Construction of a quasilinear model for the flux ratios

electrostatic potential and the phase angle between these two quantities. While the satura-
tion amplitude and therefore the absolute value of the heat and particle fluxes can only be
determined by nonlinear simulations, an unambiguous value for the sign and the ratio of the
different fluxes, Qi/Qe, Γ/Qe, Γ/Qi, can be determined from linear computations already.

From the last section it is clear that estimating the amplitude ratio of the two coexisting
modes at a given ky is not completely straightforward, however it seems plausible to make
the ansatz that the amplitude of the two modes at a given ky is a monotonically increasing
function of the respective growth rate. This is of course not exactly true, as can be concluded
from the comparison of Figs. 6.2 and 6.6, but it may still serve as an approximation. Another
problem is the weighting of the different ky contributions in the system. As discussed in the
last section, the ratio of the amplitudes / growth rates of the two instabilities is very sensitive
to the ky value chosen. Since a nonlinear simulation contains many different ky contributions
with different amplitudes, it is difficult to find an appropriate prescription for the superposition
of different linear modes in a quasilinear model.

In order to arrive at a predictive quasilinear model that allows for extensive parameter scans,
the problem of the weighting of the different ky contributions is solved by using only one,
”characteristic” ky. This is of course a crude approximation, but as has been discussed in the
last section, the same coexistence of modes that influences e.g. the particle transport in the full
system also occurs at a single ky. If this value of ky is chosen carefully, the TEM and ITG
contributions at that ky value approximately represent the summed contributions from lower
and higher ky, so that this ”central” mode reflects the whole system. A suitable choice for
this mode is, as it turns out, again ky = 0.25. As mentioned above, a method to combine the
contributions from the two microinstabilities has to be prescribed; an obvious starting point
for the weighting factors to combine the flux ratios computed from TEM and ITG modes are
powers of the respective growth rates:

Rm =
γp

TEMRTEM + γp
ITGRITG

γp
TEM + γp

ITG

with R = (Qi/Qe,Γ/Qe,Γ/Qi) (6.1)

A suitable value for the exponent p has been determined by comparison of the resulting quasi-
linear flux ratios to the nonlinear values, the result for p = 10 is shown in Fig. 6.9.

Given the crude approximations, the agreement between the respective curves is quite good.
It is obvious that all basic features like the position of the minima, turning points and even the
approximate values of the curves are well described by the quasilinear approximation. The
most significant deviation is that the value of the minimum of the particle flux is underesti-
mated by the model, predicting a particle pinch instead of a small remaining outward transport.
Nevertheless, this quasilinear model seems to be able to describe the basic features correctly
and will therefore be used to try to understand some parameter dependencies by simple and
fast linear computations. Note that there have been quasilinear gyrokinetic investigations of
TEM/ITG turbulence before [90], but because an initial value solver was used for the com-
putations, the subdominant modes have not been accessible, resulting in a discontinuity of
the quasilinear predictions at the linear TEM-ITG transition – which is of course unphysical
and difficult to interpret. Furthermore, initial value computations become increasingly diffi-
cult close to mode transitions, as the amplitudes of the two exponentially growing modes take
longer and longer to separate. Since this separation of the amplitudes is the prerequisite for
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Figure 6.9.: Nonlinear flux ratios (top) vs. quasilinear flux ratios (bottom) as defined by
Eq. (6.1).

convergence of the initial value solver, the computation time diverges at the mode transition,
showing the superiority of eigenvalue computations for this kind of investigations.

6.4. Application and test of the quasilinear model

The model defined in the last section does not predict the values of the transport fluxes, but
only their ratios. This may seem not very useful at first glance, but has one very important
application, namely the prediction of the zero-crossing of the particle flux.

To realize the relevance of this, it is important to understand that in the local δf approx-
imation used in GENE and most other gyrokinetic codes, the average background gradients
(ωn, ωTe, ωT i) driving the turbulence are held constant throughout a simulation. They are, in
particular, independent of the transport fluxes (Γ, Qe, Qi), which constitute the main output of
such simulations. In contrast to that, the fluxes in a real fusion experiment are dictated by the
output of the heating and refueling systems; the values for the gradients, which adjust more
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or less freely to meet these constraints on the fluxes, are obtained experimentally from a com-
bination of direct experimental measurements and a MHD reconstruction of the equilibrium.
This procedure usually leads to quite substantial error bars (a couple of 10%) in the gradients,
while the values for the fluxes are much more accurate. There are of course also uncertainties
for other parameters like the β, ŝ, or the temperature ratio, but the simulated fluxes are, in
general, much less sensitive to changes of these parameters than of the gradients.

The combination of these two points implies that it can be difficult to directly compare
simulations and experiments, especially close to critical gradients, where small variations (or
inaccuracies) of the gradients can lead to big variations of the computed fluxes. If the three
fluxes in all points of the three dimensional parameter space of the gradients could be com-
puted, this information could be used to match the experimental fluxes and make a prediction
for the gradients, allowing for much more robust comparisons to experimental data. Since this
is out of scope for nonlinear simulations, it is important to find reliable quasilinear descriptions
that at least partially allow for the comparisons described above.

An especially interesting (and accessible) subject for this kind of investigations is the parti-
cle flux. While all fusion experiments have strong heating systems which deposit their energy
close to the magnetic axis and can therefore sustain significant radial heat fluxes, the possibil-
ities of refueling particles at the plasma center are limited. The pellet injection systems used
for that purpose are pulsed and are not able to change the quasi-stationary particle fluxes sig-
nificantly, and also the neutral beam injection (NBI) systems that are used for heating have no
significant impact, so that Γ ≈ 0 has to be fulfilled for all experimentally accessible situations
[90]. This has a very advantageous implication for quasilinear models. While it is difficult
to predict the absolute value of the transport, the prediction of the sign of the transport (or
transport ratio), and thus its zero-crossing in parameter space is no problem. This even holds
for simple models like the one presented in the last section.

If the fluxes vary smoothly with all parameters of the system (as is expected), the Γ ≈
0 condition defines a hypersurface with one dimension less than the parameter space under
consideration (i.e. it has codimension one). If the parameter space is restricted to the most
important parameters for the fluxes, namely the gradient triple (ωn, ωTe, ωT i), the Γ ≈ 0
condition is fulfilled on a two-dimensional surface in parameter space. In previous quasilinear
studies considering only dominant linear contributions [90], only low dimensional cuts of this
hypersurface have been shown, but with the model based on eigenvalue computations defined
in the last section and the possibility of easy parameter scans in GENE, it is now possible to
compute the hypersurface in higher dimensions.

To demonstrate this, a three dimensional linear scan of the gradients R/LTe, R/LT i, R/Ln

was used to compute the quasilinear Γ ≈ 0 surface shown in blue in Fig. 6.10. It shows that
the parameter dependencies are far from trivial; the blue surface, which separates the region
exhibiting a particle pinch from the region with outward particle transport, is not aligned with
any of the axes, so that for a minimization of the particle transport, the dependence on all
three gradients really has to be taken into account. The Γ ≈ 0 surface consists of two ”wings”.
The right one appears in the proximity of and more or less parallel to the yellow surface that
represents the linear TEM-ITG transition of the ky = 0.25 mode; it corresponds to the balance
of TEM induced outward and ITG induced inward particle transport that was discussed in
Sec. 6.2. For the left wing however, the TEM growth rate is too small to affect the system; the
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6. TEM/ITG turbulence in tokamaks

Figure 6.10.: The Γ ≈ 0 surface (blue) as predicted by the quasilinear model defined in
Sec. 6.3, and the ITG-TEM transition surface (yellow) for the ”typical” ky =
0.25 mode. The region with the particle pinch is ”behind” the blue surface in
this view.

zero particle flux in this case arises due to a change of sign of the ITG contribution itself.
The nonlinear scan presented in Sec. 6.2 corresponds to a line with R/LTe = 4.5 and

R/Ln = 3.0 in this three dimensional plot, slightly cutting through the blue surface very close
to the TEM-ITG transition. If this line is shifted to a slightly higher electron temperature
gradient or slightly lower density gradient, the quasilinear model predicts a particle pinch in a
range of R/LT i values.

To test this prediction and examine the nature of the second zero-crossing of the particle
flux, another nonlinear scan with again R/LTe = 4.5 but R/Ln = 2.5 has been performed.
The transport fluxes, which indeed confirm the existence of a particle pinch, are shown in
Fig. 6.11. The curves largely resemble the R/Ln = 3 case of Fig. 6.1, except that the electron

Figure 6.11.: The fluxes for the reduced density gradient R/Ln = 2.5, showing a particle
pinch.
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6.4. Application and test of the quasilinear model

heat flux on the TEM dominated low R/LTe side is significantly lower due to a decrease of
the TEM growth rates and the particle flux is generally reduced and shifted to negative values
by almost two units.

For a detailed analysis of the predictions of the quasilinear model, Fig. 6.12 shows the
nonlinear and quasilinear flux ratios for the R/Ln = 2.5 case (black curves). It is obvious that

Figure 6.12.: The black curves depict the nonlinear (top) and quasilinear (bottom) ratios of the
different fluxes for R/Ln = 2.5. The red and green curves correspond to the
values of the underlying TEM and ITG modes respectively.

the model describes the basic features also in this case, e.g. the position (and its shift in R/LT i

with respect to the R/Ln = 3 case) of the turning point of the Qi/Qe curve, which might be
used as a definition of the TEM/ITG transition, or the positions of the transport minima.

The red and green curves in the quasilinear plots show the values computed from the ”pure”
TEM and ITG modes respectively. The plots involving the particle flux confirm the above
statement on the causes for vanishing particle flux. While the first zero-crossing is caused
by the coexistence of TEM and ITG modes with opposite transport directions, the second is
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6. TEM/ITG turbulence in tokamaks

due to a change of the transport direction of the ITG contribution alone. To confirm this also
nonlinearly, the transport spectra for the R/Ln = 2.5, R/LT i = 6.0 case (i.e. slightly above
the zero-crossing) are shown in Fig. 6.13. The plots show no sign of a mode transition. All ky

Figure 6.13.: Spectra of the heat and particle fluxes and the ratio of the heat fluxes close to
the second zero-crossing of the particle flux (R/LT i = 6.0) for the R/Ln = 2.5
case.

contributions are ITG-like, as is especially obvious from the Qi/Qe curve, which is smooth
and way above TEM levels for all ky. However, the direction of the particle flux changes sign,
implying that the second zero-crossing of Γ – as the first – is due to a spectral balance between
inward (this time at low ky) and outward fluxes (at high ky), but this time these are both caused
by ITG turbulence. As has been shown, this effect is qualitatively captured by the quasilinear
model, which relies on only one ”representative” ky, and although the gradient value of this
second zero-crossing in the R/LT i scan is overestimated by almost 20%, it is obvious that the
quasilinear model can be used to (at least qualitatively) describe also this region of parameter
space.

With this example, the applicability of the quasilinear model of Sec. 6.3 for qualitative
investigations is demonstrated; as a further application, the influence of collisions on the TEM-
ITG transition will be addressed in the next section.

6.5. TEM-ITG transitions in the presence of collisions

Collisions are a very interesting topic in the context of TEM-ITG transitions, since they mainly
affect the growth rates of TEMs, while leaving the ITG growth rates almost unaltered. This
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6.5. TEM-ITG transitions in the presence of collisions

is shown in the left plot of Fig. 6.14. The increase of the collision frequency leads to the
disintegration of the trapped passing boundary and thus to a stabilization of the TEM, while
the growth rate of the ITG mode does not change very much. This stabilization mechanism is
well known and can even be used experimentally to provoke TEM/ITG transitions [89].

The decrease of the TEM growth rate at constant ITG growth rate leads to a shift of the
intersection between the two microinstabilities to lower ion temperature gradients (or higher
electron temperature gradients), which is shown in the right plot of Fig. 6.14. Since one of the

Figure 6.14.: Left: Growth rates of TEM (red) and ITG modes (green) . Right: Regions with
dominant TEM and ITG instabilities.

mechanisms that lead to zero particle flux relies on a balance of TEM and ITG contributions,
it is clear that this shift will also affect the Γ ≈ 0 surface. To check this explicitly, two scans
of the density and temperature gradients – equivalent to the one shown in Fig. 6.10 – have
been performed, using the linearized Landau-Boltzmann operator given in Sec. 2.8, with the
〈C⊥

jj′〉 contribution neglected since the most important effect of collisions in gyrokinetics is
detrapping and not spatial diffusion. The results for νc = 0.00025 and νc = 0.0005 are shown
in the first two plots of Fig. 6.15.

As expected, compared to the collisionless case of Fig. 6.10, the yellow surface that indi-
cates the linear TEM-ITG transition of the ky = 0.25 mode is gradually tilted towards higher
values of the electron temperature gradient, reflecting the fact that the TEM growth rate de-
creases and has to be compensated by a higher drive to equal the (almost unaltered) ITG
growth rate. Without collisions, the line of the TEM-ITG transition on a constant R/Ln sur-
face was roughly at R/LT i ≈ R/LTe; with collisions this angle is changed. In contrast to
the scan without collisions, parts of the front edge of the yellow surface now lie inside the
scanned parameter space, i.e. there are regions (low R/Ln, low R/LTe) where the TEMs are
completely stabilized, implying that ITG is always dominant in these regions, independent of
the ion temperature gradient.

The wing of the blue Γ ≈ 0 surface that is connected to the balance of TEM outward
transport and ITG pinch more or less follows the yellow surface and is therefore shifted and
tilted to larger values of R/LTe, as expected. What is more surprising is that the other wing,
which is solely determined by the ITG mode, also exhibits a shift to higher R/LTe due to
collisions. So although the ITG growth rate is almost unchanged, the collisions affect the
phase angle between the density and the potential such that the boundary between inward and
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6. TEM/ITG turbulence in tokamaks

Figure 6.15.: Top: The Γ ≈ 0 surface as predicted by the quasilinear model defined in Sec. 6.3,
for νc = 0.00025, 0.0005 of the Landau-Boltzmann collision operator (velocity
space part). Bottom: The corresponding simulation for pitch-angle scattering
with νc = 0.0005.

outward transport is shifted towards higher electron temperature gradients.
The last plot of Fig. 6.15 shows the result of a similar scan, using the the pitch-angle operator

(see Sec. 2.9.4) with νc = 0.0005. The pitch angle operator is widely used in gyrokinetics
because of its simplicity, and although some of the assumptions made in its derivation (see
discussion in Sec. 2.9.4) can in general not be justified, the discrepancies between the results
obtained with the linearized Landau-Boltzmann operator and the pitch-angle operator are very
small (at least in this case).

6.6. Summary

In this chapter, it has been shown that in situations where TEM and ITG instabilities coexist
linearly, features of both microinstabilities can also be found in nonlinear simulations. Due to
their ky dependence, different microinstabilities can be dominant at different ky in the same
nonlinear system, leading to a spectral coexistence of the TEM and ITG turbulence. At the
transition point, this coexistence can even be present at a single perpendicular wave number,
implying that two different frequencies (and even drift directions) are observed for the same
spectral mode.

94



6.6. Summary

Two mechanisms for the experimentally important condition of zero particle flux have been
identified in the TEM-ITG system: The first is a fine-tuned balance of the TEM-induced out-
ward transport and the ITG-induced particle pinch at different perpendicular wave numbers.
The second is the transition between pinch and outward transport within the ITG dominated
regime; this transition is also ky dependent and thus also allows for a balance between in- and
outward transport, similar to the previous case.

It has been shown that the basic phenomena in the nonlinear TEM-ITG system can be
described and understood at least qualitatively by a very simple quasilinear model, which
only uses the (dominant and subdominant) eigenvalues at a single, ”characteristic” ky. This
model can be used to compute higher dimensional cuts of the Γ ≈ 0 (or rather Γ/Qe/i ≈ 0)
hypersurface, allowing to study its parameter dependence. As an application, the dependence
on the collisionality and the details of the collision operator have been studied.

This quasilinear model is also of interest for attempts to compare gyrokinetic simulations to
experiments. Since it allows for extensive, multi-dimensional parameter scans, the quasilinear
model offers a possibility to tell whether a variation of the nominal experimental gradients
within their error bars will lead to an acceptable particle flux (or the experimental flux ratios),
and shows how the gradients for more detailed (nonlinear) investigations have to be adapted
to produce sensible results.
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7. ITG turbulence in stellarators

In all previous chapters, the analytic ŝ− α model describing a large aspect ratio tokamak has
been used for the magnetic equilibrium. While most present day fusion experiments are toka-
maks, there are also considerable advances in the field of stellarators, making these devices an
interesting topic for theoretical and numerical investigations, too [91].

The main advantage of stellarators is that the twisting of the magnetic field lines, which is
necessary to obtain stable plasma confinement, is achieved directly by external coils, without
the need for a large plasma current. The latter, which is a key feature of tokamaks, constitutes
a major source of free energy for macroscopic plasma instabilities like disruptions, which
can cause damage to the plasma vessel due to enormous heat loads. Although the planning
and construction of stellarators is much more complicated compared to tokamaks, they might
provide a way to obtain fusion plasmas that are much easier to control and retain (macroscop-
ically) stable up to relatively high values of β. Therefore, they are under investigation as an
alternative to the tokamak concept.

In stellarators, the axisymmetry, which is inherent to tokamaks, has to be abandoned. This
creates many new challenges for the construction and understanding of these devices. For
simplicity, stellarators are usually constructed with a discrete rotational symmetry, so that the
same magnetic field configuration is repeated several times before the torus closes (the LHD
experiment for example has ten identical field periods, W7-X has five). In the first ”naively”
constructed machines, the complicated orbits of the trapped particles, which are inevitable in a
stellarator, lead – in combination with collisions – to huge neoclassical transport. Historically,
the main goal of stellarator theory was therefore the understanding and reduction of these
neoclassical losses, and a lot of effort has been invested in the characterization and numerical
optimization of the possible magnetic equilibria.

There are still several stellarator concepts under investigation, the most important ones be-
ing the Heliotron, which is realized in the LHD experiment in Japan, and the Helias configu-
ration with the Wendelstein experiments at IPP.

As already mentioned, stellarator theory focused on neoclassical transport for a long time,
since the other transport channels were dwarfed by the neoclassical contribution. An example
of an up-to-date experiment is the Wendelstein 7-X (W7-X) stellarator, currently being built in
Greifswald, which was designed with high numerical effort to minimize neoclassical transport
[92]. With the reduction of the neoclassical contribution, the anomalous transport will become
increasingly important, and will have to be taken into account for an overall minimization of
heat and particle losses.

This insight and the new possibilities due to ever bigger supercomputers have sparked the
interest in gyrokinetic simulations for stellarators. There exist some results from fluid sim-
ulations of stellarator edge turbulence [93, 94, 95]. Gyrokinetic results that can be found in
the literature are usually limited to linear studies [53, 96, 97]; to date, only one other group is
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working on gyrokinetic stellarator turbulence, using the adiabatic electron approximation and
an analytic model equilibrium for LHD [98, 99].

After extensive preparatory work [17], the development of the TRACER code to extract the
relevant information out of magnetic equilibria, and linear investigations [100], all performed
by Pavlos Xanthopoulos, GENE was used to produce some of the first results for ITG tur-
bulence with realistic stellarator geometry for W7-X, published in [101]. These results were
obtained in the adiabatic electron approximation and will be discussed in this chapter, along
with equivalent results for a different W7-X equilibrium. Finally, the first two-species simu-
lations for ITG turbulence in stellarators will be presented, introducing a new level of realism
to the still very young field of gyrokinetic stellarator microturbulence.

7.1. Flux tube approximation for stellarators

Due to their truly three dimensional magnetic structure, stellarators are much more compli-
cated than tokamaks, with various levels of trapping between the different maxima of the
magnetic field and spatially separate populations of trapped particles in the different magnetic
wells along a field line. To resolve these structures, the parallel resolution typically has to
be increased drastically compared to tokamaks (approximately a factor of five in the case of
W7-X), increasing the numerical effort involved in stellarator simulations substantially, since
this fivefold increase of the resolution not only leads to five times the numerical effort to com-
pute one time step, but also decreases the maximum time step significantly and thus increases
the number of time steps that have to be computed to reach a saturated state and appropriate
statistics.

A weak point of the flux tube approach for stellarators that is absent in tokamaks is the fact
that different field lines on a given flux surface are not equivalent but give slightly different flux
tubes. To obtain a general result for the flux surface, in principle the results from several flux
tubes on that flux surface have to be averaged. However, given the enormous computational
effort that is needed to obtain results even in this local approximation, it is at present not
realistic to drop this simplification.

Another consequence of the absence of axisymmetry is that the magnetic field properties of
stellarators are not always periodic after one poloidal turn, a condition that is needed for the
parallel boundary condition (2.10). However, if an integer number of poloidal turns (in gen-
eral greater than one) is used, the discrete stellarator symmetry can be exploited to construct
a periodic flux tube for all rational q0 surfaces, i.e. arbitrarily close to any position inside the
separatrix. Although in principle, simulations can be performed for any rational q0, the com-
putational effort increases with the number of poloidal turns, so that for practical reasons, flux
surfaces with ”favourable” q0 values will be chosen.

Another complication that occurs when the circular concentric flux surfaces used in the
previous chapters are replaced by more complicated equilibria, is that it is not obvious that the
most unstable mode for a given ky is the one with kx = 0 (with the central point of the flux
tube in parallel direction, i.e. g12 = 0 at the outboard side). This is not stellarator specific,
it already arises in flux tubes of strongly shaped tokamak equilibria, e.g. close to the X-point
[102]. For large perpendicular box sizes (i.e. small minimum kx, ky) and a large number of
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radial modes, this does not pose a problem, but such resolutions are often not feasible. A
small perpendicular box size leads to a crude discretization in kx, and a small resolution to
a low maximum kx, which means that for practical resolutions, it is possible that the most
unstable mode lies somewhere between two kx retained in the simulation or even outside, so
that the maximum growth rate can not be determined. One way to handle this problem at least
for linear investigations are scans in kx; for the computation of the nonlinearity in turbulence
simulations however, Fourier transforms have to be performed so that this trick is not possible,
leaving an increase of the resolution as the only possibility to obtain correct results.

The TRACER code can read geometric information from all major stellarator (and tokamak)
experiments, but for this chapter, only W7-X equilibria are used. The W7-X stellarator is
still under construction and no experimental data concerning the achievable β values and the
related MHD equilibria are available, therefore only vacuum equilibria (i.e. β = 0) are used.

7.2. Adiabatic ITG turbulence in a standard
equilibrium

The first results were obtained with a flux tube of the equilibrium hs5v10u [103], relatively
close to the magnetic axis, with q0 = 1 and a global shear ŝ ≈ 0, which means that the
flux tube closes after one poloidal turn and is periodic. The details of the properties of this
magnetic equilibrium and the geometric and magnetic structure of the flux tube can be found
in [100].

For these first attempts to simulate stellarator microturbulence, the adiabatic electron ap-
proximation described in Sec. 2.9.2 was used, with the baseline parameters ωT i = 18, ωn = 0,
with Lref = R the major radius of the device. The temperatures were chosen to be Te = Ti =
Tref , the perpendicular box size Lx = Ly = 64ρref (with mref = mi). The numerical resolu-
tion was 48 × 32 × 96 points in direct space coordinates x, y and z, and 32 × 8 in v‖ and µ
direction.

As already indicated above, the linear physics of stellarators is much more complicated
compared to the tokamak equilibria considered so far, with several spatially separated trapped
fractions and various levels of trapping. This is reflected in a way more complicated parallel
mode structures of the linear modes [100], but also in the increased number of unstable modes
(for investigations in a drift wave model, see [104, 105]) and the related abundance of mode
transitions. Fig. 7.1 shows the ky spectrum of the growth rate and frequency of the most
unstable mode and the ion heat flux spectrum of the corresponding nonlinear simulation. As
observed in the tokamak cases considered previously, the maximum of the heat flux exhibits
a spectral downshift with respect to the growth rate maximum. Furthermore, the figure shows
a mode transition between different ion microinstabilities, which can be seen clearly in the
linear plot by the sudden jump of the frequency, but also appears in the nonlinear heat flux
spectrum in the form of a double peak, similar to the observations in the last chapter.

In the adiabatic electron approximation, the particle flux vanishes, leaving the (ion) heat
flux (or heat diffusivity) as the most important integral quantity that can be accessed with the
simulations. To explore its dependence on the temperature gradient, a nonlinear parameter
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Figure 7.1.: Left: Dominant linear mode as function of ky, showing a mode transition at 0.18.
Right: Flux spectrum of the nonlinear simulation showing a discontinuity at the
same position and indicating the position of the maximum growth rate.

scan has been performed; the thermal diffusivity is shown in left plot of Fig. 7.2 for a wide
range of ωT i. Given the threshold for linear instability, which is also marked in the plot, the
scan reveals a nonlinear upshift of the critical gradient of about 25%, which, together with the
observation of a significant zonal component in the electrostatic potential shown in the right
plot of Fig. 7.2, can be identified as the Dimits shift [34] already known from tokamaks. This
can be confirmed also by the zonal flow test, where the zonal flows are removed artificially,
resulting in an increase of the ion heat flux of an order of magnitude (see [101]). An interesting

0.0

0.5

1.0

1.5

 0  6  12  18  24  30  36

χ i
 [ρ

s2 c s
/R

]

R/LTi

Linear
threshold

Figure 7.2.: Left: Scan of the heat diffusivity over the ion temperature gradient. Right: Con-
tour plot of the electrostatic potential showing a significant zonal component.

difference with respect to equivalent tokamak simulations, which can be observed in Fig. 7.2
is that the heat diffusivity shows an offset-linear dependence on ωT i, in contrast to the ŝ − α
tokamak case considered in [34] where the heat transport is offset-linear. This difference
and the lack of experimental values for the achievable temperature gradients make a direct
comparison between this W7-X configuration and tokamaks and general comments on the
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anomalous transport in stellarators rather difficult. However, the parameters of the linear fit

χi ≈ C(ωT i − κc)
ρ2cs
R

, (7.1)

are κc ≈ 12 and C ≈ 0.08, implying that the transport level is well below typical tokamak
levels for a relatively wide range in ωT i.

The results of this section have been published in [101].

7.3. Adiabatic ITG turbulence in the high mirror
configuration

The W7-X design features additional field coils to allow for the testing of different magnetic
field configurations within the experimental constraints. Since the anomalous transport is
sensitive, e.g., to shifts of the location of trapped particles with respect to regions with bad
curvature, it is important to probe different magnetic configurations to understand the rele-
vance of anomalous transport in this device. For the remainder of this chapter, a flux tube
of the W7-X high mirror vacuum configuration with a mirror ratio of 10% will be used, i.e.
a different configuration than the one used in the last section. The safety factor q0 for this
configuration varies from q0 ≈ 1 close to the magnetic axis to q0 ≈ 1.2 close to last closed
flux surface. With its discrete fivefold toroidal symmetry, the quasiperiodic boundary condi-
tions in the parallel direction used in the flux tube approach would allow for treating just a
single poloidal turn for both limits. However, the most interesting region is between these two
values, at moderate values of the normalized minor radius, where the magnetic field structure
is more pronounced and trapping and transport is expected to be bigger than close to the axis,
but complications like magnetic islands and ergodic regions that occur close to the edge can be
safely avoided. To limit the number of poloidal turns needed to have periodicity in the mag-
netic field, a q0 = 1.1 flux tube is chosen. Details of the magnetic geometry and the position
of the flux tube are shown in Fig. 7.3, the geometric coefficients for the flux tube are shown in
Fig. 7.4.

As in the previous section, the density gradient is fixed to zero, and in a first step, the
electrons are again assumed to be adiabatic. The value of the magnetic shear ŝ = −0.11 is
prescribed by the W7-X high mirror equilibrium; the safety factor q0 = 1.1 together with
the fivefold symmetry of W7-X requires that the simulation domain covers two poloidal (i.e.
2.2 toroidal) turns before the parallel boundary condition (2.10) can be applied. The other
parameters that are used are Te = Ti = Tref , Lx = 184ρs, Ly = 125ρs (mref = mi). The
macroscopic normalization length Lref is now chosen to be a, the minor radius of the device.
For a comparison to the last section, factors of the aspect ratio R/a ≈ 12 have to be taken
into account. The numerical resolution used for the nonlinear simulations is 96 × 64 × 256
points in direct space x, y and z directions (note that two poloidal turns have to be resolved
in parallel direction), and 48 × 8 points in v‖ and µ directions, for linear runs the number of
kx can be reduced to three (corresponding to six poloidal turns) or even one (i.e. two poloidal
turns).
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Figure 7.3.: Cross sections of the magnetic flux surfaces of the W7-X high mirror equilibrium
for z = 0, π/4 and π/2. The blue line marks the flux surface under consideration,
the black dot denotes the position of the flux tube.

Figure 7.4.: Some geometric and magnetic characteristics for the flux tube of the high mirror
equilibrium.

A scan with the eigenvalue solver reveals that even in this adiabatic case, many modes are
destabilized simultaneously. The left plot of Fig. 7.5 shows a ky scan of the most unstable
modes for an example with temperature gradient ωT i = 3. In order to limit the computation
time to reasonable values, the eigenvalue solver was set to compute only the ten most unstable
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modes, but it is obvious that there are even more. Since a proper identification and tracking of
the different subdominant eigenmodes is very difficult and would provide probably only little
insight, the coloring of the eigenvalues only shows their ordering with respect to the growth
rate. The complexity of this spectrum is significantly higher than that of tokamaks, where (as
seen in Chap. 6) usually only one or two modes are unstable at a time.

Figure 7.5.: Growth rates and frequencies of the most unstable modes for ωT i = 3 and adia-
batic electrons. The ky scan is performed with kx = 0, the kx scan with ky = 0.5.

As mentioned above, given the freedom of choice for the parallel center of the flux tube
and the finite resolution, it is not clear that the most unstable mode has kx = 0. This has to
be tested explicitly, which has been done in the right plot of Fig. 7.5. The plot shows that
due to the symmetry of the geometric coefficients with respect to z = 0 (see Fig. 7.4), the
growth rate spectrum is symmetric with respect to kx = 0. Fortunately, the maximum is at
kx = 0, indicating an advantageous choice for the center of the flux tube. Since kx = 0
is established as the most unstable mode, the following linear investigations will focus on
that mode; this finding also implies that the maximum is always contained in the nonlinear
simulations, independent of Lx.

In order to understand how such a complicated spectrum evolves with increasing drive, the
same ky scan was performed for different values of ωT i. Fig. 7.6 shows the ky spectra of the
growth rates and frequencies of the ten most unstable modes for ion temperature gradients
ωT i = 1, 2, 3, 4. It is obvious that the total number of unstable modes increases with
increasing ωT i and becomes significantly larger than ten.

For ωT i = 1, the number of unstable modes is such that an identification of the modes by
their frequencies would still be possible. For larger gradients, however, more and more modes
(or better families of modes) appear, with different frequency ranges and ky dependencies in
the growth rate spectrum. For these cases, a labelling of the modes would be very difficult
or even impossible (see Chap.4), since it can be seen from the plot that in several cases the
growth rates and frequencies of pairs of eigenvalues come very close, possibly indicating the
presence of exceptional points in the (ky, ωT i) plane. Since a verification of the existence
non-Hermitian degeneracies in the parameter range considered here will probably not lead
to relevant insights, this conjecture is not pursued further – given the abundance of linear
microinstabilities, it is not expected that the merging of two (subdominant) modes would lead
to significant effects.

One peculiarity for the spectra with ωT i ≥ 2 is that below the dominant mode (red), the two
modes with the second and third biggest growth rates have almost identical properties, to the
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Figure 7.6.: Growth rates and corresponding frequencies of the most unstable modes for ωT i =
1, 2, 3, 4 (from top). The colors show the ordering with respect to the growth
rate.

extent that they can hardly be distinguished in Fig. 7.6. The parallel structure of the quasilinear
radial heat transport computed from the four most unstable modes for ωT i = 3 is shown in
Fig. 7.7. The most unstable mode has one clear peak at the outboard side; the second and
third most unstable modes, which both have two clear peaks close to the ends of the flux tube
(i.e. almost outboard side) again exhibit striking similarities, but are mirrored with respect to
z = 0. The fourth most unstable and even more subdominant modes have less pronounced
global structures, but show a multitude of peaks of almost equal height along the field line.
Although Fig. 7.7 only shows the values for ωT i = 3 and ky = 0.6, the parallel mode structures
of corresponding modes stay virtually the same also for other ky and ωT i; in cases where the
identification of ”corresponding” modes due to the eigenvalue becomes difficult (e.g. for low
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Figure 7.7.: Parallel mode structure of the four most unstable modes (decreasing growth rate
from left to right and top to bottom) for ωT i = 3 and ky = 0.6 (compare Fig. 7.6).

ky), the parallel mode structure can even be used to identify corresponding modes that belong
together.

A nonlinear scan of the ωT i values considered above is shown in the left plot of Fig. 7.8.
Again, the ion heat diffusivity scales approximately linear with the ion temperature gradient.
However, the values for the diffusivity are considerably higher than in the last section, the fit
parameters of the model (7.1) in the corresponding R normalization are κc = 12 ∗ 0.79 = 9.5
for the critical gradient and C = 1.87 for the slope. This shows that the profile stiffness
due to anomalous transport, which is related C, is quite sensitive to the specific magnetic
configuration and the exact position of the flux tube, making general statements about the
confinement properties W7-X stellarator difficult, but indicating that the level of anomalous
transport can be manipulated significantly by changing the magnetic configuration. The linear
scan of the growth rate at the approximate wavenumber of the maximum, ky = 0.6, is depicted
in the left plot of Fig. 7.8. The computation of the linear critical gradient of ωT i = 0.47
(compared to the nonlinear value of 0.79) reveals the presence of a nonlinear upshift, which
can be attributed to a zonal flow induced Dimits shift, as in the last section.
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7. ITG turbulence in stellarators

Figure 7.8.: Left: Ion heat diffusivity (in ρ2
scs/a) as a function of the ion temperature gradient.

Right: Linear growth rate for the dominant ky = 0.6 mode.

7.4. Stellarator turbulence with kinetic electrons

Finally, the adiabatic electron approximation is dropped and the first two species turbulence
simulations in a realistic stellarator geometry are presented. This new level of realism in-
creases the numerical effort significantly with respect to the adiabatic case, with each nonlin-
ear simulation presented in this section consuming about 70,000 CPU hours on a BlueGene/P.
The numerical parameters are the same as in the previous section, except that the electrons
are now treated gyrokinetically with vanishing temperature gradient, ωTe = 0, and a reduced
mass ratio mi = mref = 400me. Although a vacuum magnetic equilibrium is used, β is set to
a small but finite value of 0.1% to avoid (unphysical) electrostatic shear Alfvén waves, which
due to their high eigenfrequency would reduce the (already strict) linear time step limit even
further.

A ky spectrum of eigenvalues of the ten most unstable modes is shown in Fig. 7.9. As in
the adiabatic case, the number of unstable modes is very large, making the tracking of the
modes over the full ky range is very difficult. The maximum growth rates for the different
gradients and the range of frequencies is also quite similar compared to the one species case.
The most obvious change is that the spectrum of the dominant mode in the medium ky range
for ωT i ≥ 2, which can be identified with the equivalent mode of Fig. 7.9 by their parallel
structure, is compressed and the maximum is shifted to lower ky. For higher ion temperature
gradients, there seem to be two families of modes, one which is stabilized at ky ≈ 1, and a
second one extending (at low growth rates) up to the highest ky. All modes of Fig. 7.7 can also
be identified in the nonlinear spectra, the second and third most unstable mode with almost
equal growth rates reappearing for ωT i = 4.

The results of a nonlinear scan similar to the one in the last section are shown in Fig. 7.10.
The ion heat diffusivity is increased considerably by the full gyrokinetic treatment of the
electrons. The nonlinear critical gradient is in this case 0.63 (7.6) in a (R) units and the
slope in Eq. (7.1) is 3.44, predicting a significantly stiffer ion temperature profile than the
simulations with adiabatic electrons. Another important difference is the absence of a Dimits
shift. The linear results shown in the right plot of Fig. 7.10 indicate a linear critical gradient
of 0.64, almost identical to the nonlinear result.

The ratio of the electron and ion heat flux is shown in Fig. 7.11. As is expected because
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7.4. Stellarator turbulence with kinetic electrons

Figure 7.9.: Growth rates and corresponding frequencies of the most unstable modes for ωT i =
1.5, 2, 3, 4 (from top) for the two species case. Again, the colors show the
ordering with respect to the growth rate.

of the vanishing electron temperature gradient, the heat flux caused by the electrons is very
small compared to the ion contribution. The ratio is almost independent of the ion tempera-
ture gradient, with an average of 〈Qe/Qi〉 = 0.047. The particle flux shows a very similar
behaviour to the electron heat flux, the average ratio of patricle and ion heat transport being
〈Γ/Qi〉 = 0.041.

Finally, some of the features of the simulations with adiabatic and gyrokinetic electrons
at are compared, on the basis of the ωT i = 3 case. The parallel structure of the ion heat
flux of the two simulations is shown in the left plot of Fig. 7.12. The positions of the peaks
along the field line are the same for both cases, as was already indicated by the linear results.
The three peaks in the nonlinear simulations reflect in both cases the contributions from the
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7. ITG turbulence in stellarators

Figure 7.10.: Left: Ion heat diffusivity as a function of the ion temperature gradient. Right:
Linear growth rate for the ky = 0.6 mode.

Figure 7.11.: Ratio of the heat fluxes of the two species (left) and of the particle and ion heat
flux (right) as a function of the ion temperature gradient.

three most unstable modes displayed in Fig. 7.7. For the adiabatic case (red), the peaks are
very pronounced and the regions between the peaks have a very low value of transport. With
gyrokinetic electrons (green), the peaks are still clearly discernible but the area between the
peaks also contributes significantly, so that the overall transport is higher. The right plot of
Fig. 7.12 shows the ky spectra of the ion heat transport of the two simulations. As usual, the
maxima of the transport spectra are are at significantly lower ky than the maxima of the linear
growth rate spectra. Nevertheless, linear result that the spectrum of the adiabatic case peaks
at higher ky and is broader than the spectrum for the fully gyrokinetic case, also holds for the
nonlinear transport spectra.

Fig. 7.13 shows contour plots of the electrostatic potential and the perturbed density at
z = 0, i.e. the transport maximum. In line with the observations concerning the Dimits
shift, the simulation with adiabatic electrons shows a considerable zonal component in the
electrostatic potential, in contrast to the two species simulation. Furthermore, it is obvious that
the turbulent structures are significantly bigger in the simulation with gyrokinetic electrons,
confirming the results of the transport spectra.
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7.5. Summary

Figure 7.12.: Left: Parallel distribution of the ion heat flux for simulations with adiabatic (red)
and fully gyrokinetic (green) electrons at a/LT i = 3. Right: The corresponding
transport spectra.

Figure 7.13.: Left: Contour of the electrostatic potential and perturbed density at z = 0 and for
a/LT i = 3. Right: The corresponding plots for the simulation with gyrokinetic
electrons.

7.5. Summary

In this chapter, it has been demonstrated that with the interface to the TRACER code, the
improvements on the hardware side and the generalization and optimization efforts of the
last few years, GENE is now capable of performing gyrokinetic simulations of stellarator
microturbulence in realistic geometry, as one of very few codes in the world. With recent
improvements of the SLEPc library, it is possible to compute the numerous microinstabilities
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7. ITG turbulence in stellarators

that occur in a stellarator, improving the understanding of the linear physics of stellarators.
Simulations of stellarator microturbulence in the adiabatic electron approximation can now be
performed with reasonable effort, but even two species simulations are possible, as has been
shown in the last section.

The results for pure ITG turbulence in the W7-X stellarator showed that the more complex
geometry increases the number of microinstabilities and mode transitions compared to con-
ventional tokamak cases. As expected, the mode structure and also the parallel dependency
of the transport fluxes reflect the more complicated geometric properties of the correspond-
ing flux tube. The two different magnetic configurations of W7-X, that were analyzed in the
adiabatic electron approximation in this chapter, showed significant variations in the level of
anomalous heat transport, which implies that it might be possible to significantly influence the
anomalous transport by a variation of the magnetic configuration. The comparison of the one
and two species simulations for the high mirror configuration showed that while some linear
and nonlinear properties are well represented in the adiabatic electron approximation, zonal
flows are much more pronounced compared to the two species case and the profile stiffness is
underestimated significantly.
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8. Conclusions

In the course of this PhD project, the gyrokinetic plasma turbulence code GENE has been
extended by important physical and numerical features. A fundamental modification of the
representation together with significant optimization and parallelization efforts improved the
robustness and performance and helped to make GENE one of the most advanced codes in
this field worldwide. This enhanced simulation code was used for the numerical investiga-
tions of gyrokinetic microinstabilities and anomalous transport in fusion plasmas presented in
this work, contributing to an understanding of several aspects of this very important topic in
magnetic confinement fusion.

Below, only a short overview of the main results of this thesis is given – more detailed
summaries can be found at the ends of the respective chapters.

8.1. Summary
Code development

The gyrokinetic equations in the local δf approximation have been presented in a form that is
suitable for a numerical treatment. Compared to previous versions, the equations have been
extended by a linearized Landau-Boltzmann collision operator, are formulated in general ge-
ometry and include additional physical effects like the dependence on the pressure gradient,
compiling different aspects in a single coherent presentation. Furthermore, the normalization
has been generalized to allow for an arbitrary number of species. The extensions and gener-
alizations of the equations have been implemented in the GENE code, including a transition
from a direct space to a Fourier space representation of the radial coordinate. Together with
improved numerical schemes (e.g. for the time stepping), which allow for faster, more robust
computations, completely new features like an interface to an eigenvalue solver have been im-
plemented. Many of these developments, like the more sophisticated collision operator or the
eigenvalue solver, are in this form presently only available in GENE, allowing for completely
new numerical investigations of plasma microturbulence and the underlying microinstabilities.

Linear physics

The application of the newly implemented eigenvalue solver lead to the discovery of non-
Hermitian degeneracies in linear gyrokinetics. These degeneracies, which correspond to non-
trivial topological structures of the eigenvalue surfaces in parameter space, connect microin-
stabilities that were previously considered to be independent. This result explains the different
regimes that are found in the usual one dimensional parameter scans of linear mode transitions;
furthermore, it reveals fundamental shortcomings in the traditional nomenclature of microin-
stabilities, since pairs of all major types of microinstabilities have been found to be connected.
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The structure of the linear operator and the sources of non-Hemiticity have been discussed in
detail, and analogies to quantum mechanics and other fields, where non-Hermitian degenera-
cies occur, have been pointed out.

Plasma microturbulence in tokamaks

By means of nonlinear investigations of pure, i.e. idealized, TEM turbulence, it was shown
that zonal flows, which are crucial for the saturation of the well studied ITG turbulence, are
often not essential in the TEM case. Instead, a detailed and rather fundamental investigation of
the statistical properties of the ~E× ~B nonlinearity suggests that the latter can be approximated
by a simple diffusion term, which explains the resemblance of linear and nonlinear results and
numerically confirms, for the first time, longstanding predictions obtained in the context of
Dupree’s resonance broadening theory and renormalized turbulence theories. These results
were also used to justify a quasilinear transport model that has been applied successfully to
pure TEM turbulence in previous works.

In addition, the more realistic scenario of similar temperature gradients for electrons and
ions was considered. The transitions between TEM and ITG turbulence in a parameter range
where the two underlying microinstabilities are clearly distinguishable were studied in detail,
revealing that for a wide range of parameters, the two kinds of turbulence coexist on different
spatial scales and are in some cases even observable at the same wavenumber. The nonlinear
TEM-ITG transitions were shown to largely match the linear predictions about the dominant
mode, allowing for a simple quasilinear description based on eigenvalue computations with a
single, ”typical” ky. This description is (in contrast to previous models based on initial value
calculations) free of discontinuities and was shown to reliably describe the basic features of the
transition, in particular the mechanisms that lead to zero particle transport. Because the model
allows for high dimensional parameter scans, it offers a way to understand the parameter
dependencies of the experimentally relevant hypersurface of zero particle transport, which has
often been probed only pointwise in previous works. As an example, the dependence of the
TEM-ITG system on the collision frequency was studied.

Plasma microturbulence in the W7-X stellarator

The GENE code was used to perform some of the first simulations of ITG turbulence with
adiabatic electrons in the W7-X stellarator and the first simulations with a full gyrokinetic
treatment of electrons and ions for any stellarator, demonstrating the advances in compu-
tational gyrokinetics. For these simulations, realistic geometric information extracted from
MHD equilibria was used, in contrast to comparable studies for other stellarators based on
analytic model equilibria. Several results like the gradient dependence of the ion heat trans-
port have been discussed, suggesting a significant potential of non-axisymmetric devices for a
systematic control of turbulent transport.

All in all, the results demonstrate how – supported by the increasing computation power
available – extensions and improvements of the simulation code have been used to signifi-
cantly push the limits of numerical investigations of plasma turbulence, leading to progress
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8.2. Outlook

in the understanding of basic features, but also opening the possibilities for more realistic
simulations and comparisons to experiments.

8.2. Outlook
As more effects are included in the simulations and the understanding of the various effects
increases, it will become more and more feasible to not only explain the phenomena that
occur in plasma microturbulence, but to compute realistic experimental scenarios including
all relevant effects, thus turning to truly predictive simulations.

A major step to overcome the difficulties of comparing simulations and experiments that
have been discussed in Sec. 6.4 would be the transition from a gradient driven to a flux driven
simulation code. A first step in this direction is to drop the assumption of locality and to allow
for radial variations of the equilibrium quantities. With increasing computation power, it will
eventually even become possible to drop the locality assumption in the binormal direction,
which will remove the limitations of the flux tube approach for three dimensional equilibria,
facilitating predictions especially for stellarators.

At present, many different aspects of the fusion plasma are treated with different numerical
codes and descriptions. There are, e.g., MHD codes for the analysis of the macroscopic plasma
stability and the reconstruction of magnetic equilibria, gyrofluid codes to describe the plasma
edge, particle codes for the computation of neoclassical transport, and gyrokinetic codes for
core turbulence.

There are, however, physical phenomena that do not fit in these categories and are not
described by any of the models or codes described above. One such phenomenon is the ex-
perimentally observed transition between the low (L) and high confinement (H) regime, a
bifurcation related to the dynamics at the plasma edge. Despite its significance for confine-
ment, the L-H transition (or the generation of radial transport barriers in general) has not yet
been reproduced in simulations, and it is assumed that a more general description, e.g. tak-
ing into account the interaction between MHD and microturbulence, is necessary to achieve
this – and thus to provide a basis for detailed studies and eventually an understanding of this
important effect.

The long term goal of computational fusion research is a complete numerical description of
all relevant processes in a fusion device (i.e., a ”numerical tokamak” or a ”numerical stellara-
tor”), which allows for an optimization of all parameters – including the ones that are hard or
impossible to access experimentally, like the size and shape of the fusion device. To achieve
this kind of universality, it is necessary to combine the different aspects described above and
to extend, integrate or couple several of the existing developments.

With constant effort and progress on different levels, theoretical and computational plasma
physics will be able to make important contributions to design and finally build a working
fusion power plant, which could help to satisfy the energy requirements of the future.
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A. Integrals for the field equations

The gyroaverage of a scalar field can be written as

〈A(X)〉 =
1

2π

∫ 2π

0

A( ~X + ~r)dθ =
1

2π

∫ 2π

0

∑

kx,ky

A(kx, ky)e
i~k⊥·( ~X+~r)dθ

=
∑

kx,ky

A(kx, ky)e
i~k⊥· ~X 1

2π

∫ 2π

0

ei~k⊥·~rdθ .

With the expressions from Sec. 2.2.2, the scalar product of ~r and ~k is ~k⊥ ·~r = k⊥ρ cos(θ− θ0)

(with k⊥ =

√

~k⊥ · ~k⊥) where θ0 is the angle between ~k⊥ and ~r(θ = 0) = ~ex. Since the whole
(2π periodic) expression is integrated over one period, the integral boundaries can be shifted
and the integral transformed

1

2π

∫ 2π

0

~a(θ)ei~k⊥·~r(θ)dθ =
1

2π

∫ 2π

0

~a(θ + θ0)e
ik⊥ρ cos(θ′)dθ′ . (A.1)

For a(θ) = 1, this is simply

1

2π

∫ 2π

0

eik⊥ρ cos(θ′)dθ′ = J0(k⊥ρ) with Jn(z) =
i−n

π

∫ π

0

eiz cos θ cos(nθ)dθ

the definition for the Bessel functions and J0(−z) = J0(z). The gyroaverage can therefore be
written

Ā(X) =
∑

kx,ky

A(kx, ky)e
i~k⊥· ~XJ0(ρk⊥) ,

i.e. if the perpendicular directions are represented in Fourier space, the gyroaveraging is a
mere multiplication with the zeroth order Bessel function J0. Similarly

〈Ā(~x− ~r)〉 =
1

2π

∫ 2π

0

1

2π

∫ 2π

0

A(~x− ~r + ~r′)dθ dθ′

=
1

4π2

∫ 2π

0

∫ 2π

0

∑

kx,ky

A(kx, ky)e
i~k⊥·( ~X−~r+~r′)dθ dθ′

=
∑

kx,ky

A(kx, ky)e
i~k⊥· ~XJ2

0 (ρk⊥) .
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In the calculation of the integrals appearing in the charge density, the fields and J0 do not
depend on v‖, inserting
∫ ∞

−∞

F0jdv‖ =

(

mj

2πT0j

)
3

2

n0je
−

µB0
T0j

∫ ∞

−∞

e
−

mjv2
‖

2T0j dv‖ =

(

mj

2πT0j

)
3

2

n0je
−

µB0
T0j

√

2πT0j

mj

=
mj

2πT0j
n0je

−
µB0
T0j

and taking into account that the fields themselves (after the gyroaveraging has been expressed
by J0 factors) do not depend on the velocity space leaves

∫

2πJv〈φ̄(~x− ~r)〉F0dv‖ dµ =
B0

T0j

n0j

∑

kx,ky

ei~k⊥·~xφ(kx, ky)

∫ ∞

0

e
−

µB0
T0j J2

0 (ρk⊥)dµ

= n0j

∑

kx,ky

ei~k⊥·~xφ(kx, ky)

∫ ∞

0

e−µ′

J2
0 (λ)dµ′

∫

2πJvµ〈B̄1‖(~x− ~r)〉F0dv‖ dµ =
B0

T0j
n0j

∑

kx,ky

ei~k⊥·~xB1‖(kx, ky)

∫ ∞

0

e
−

µB0
T0j µI1(ρk⊥)J0(ρk⊥)dµ

=
T0j

B0

n0j

∑

kx,ky

ei~k⊥·~xB1‖(kx, ky)

∫ ∞

0

e−µ′

µ′I1(λ)J0(λ)dµ′

after the coordinate transformation µ′ = B0

T0
µ, implying λ = ρk⊥ = v⊥

Ω
k⊥ =

√

2B0µ
m

k⊥

Ω
=

k⊥
vT

Ω

√
µ′. The remaining integrals can be solved (e.g. with Mathematica):

∫ ∞

0

e−µ′

J2
0 (λ)dµ′ = Γ0(b)

∫ ∞

0

e−µ′ 2µ′

λ
J1(λ)J0(λ)dµ′ = ∆(b)

with Γn(x) = e−xÎn(x), ∆(x) = Γ0(x)−Γ1(x) = Î0(x)−Î1(x)
ex , În the modified Bessel functions

and b = k2
⊥

v2
T

2Ω2 .
For the integrals for ~j⊥, the relevant gyroaverages are of the form

〈~v⊥Ā(~x− ~r)〉 =
1

2π

∫ 2π

0

~v⊥Ā(~x− ~r)dθ =
∑

kx,ky

Ā(kx, ky)e
i~k⊥·~x 1

2π

∫ 2π

0

~v⊥e
−i~k⊥·~rdθ .

Equation A.1 with now ~a(θ) = ~v⊥ gives

1

2π

∫ 2π

0

v⊥(− sin(θ′ + θ0) ~ex + cos(θ′ + θ0) ~ey)e
ik⊥ρ cos θ′dθ′

= v⊥(− sin θ0 ~ex + cos θ0 ~ey)
1

2π

∫ 2π

0

cos θ′eik⊥ρ cos θ′dθ′

− v⊥(cos θ0 ~ex + sin θ0 ~ey)
1

2π

∫ 2π

0

sin θ′eik⊥ρ cos θ′dθ′ .
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The second term is ∝
[

eik⊥ρ cos θ′
]2π

0
= 0 and drops out, the first term gives

v⊥(− sin θ0 ~ex + cos θ0 ~ey)
1

2π

(
∫ π

0

cos θ′eik⊥ρ cos θ′dθ′ +

∫ π

0

cos(θ̂ + π)eik⊥ρ cos(θ̂+π)dθ̂

)

=v⊥(− sin θ0 ~ex + cos θ0 ~ey)
1

2π
(−iπJ1(k⊥ρ) + iπJ1(−k⊥ρ))

=iv⊥(sin θ0 ~ex − cos θ0 ~ey)J1(k⊥ρ) .

The angle between ~k and the x-axis is determined with sin θ0 = ky

k⊥
, cos θ0 = kx

k⊥
, which gives

〈~v⊥Ā(~x− ~r)〉 =
∑

kx,ky

Ā(kx, ky)e
i~k⊥·~xi

v⊥
k⊥

(ky ~ex − kx ~ey)J1(k⊥ρ)

with v⊥ =
√

2µB0

m
, the f -integral reads

∫

2πJv〈~v⊥f(~x− ~r)〉dv‖ dµ = π

(

2B0

m

)3/2
∑

kx,ky

ei~k⊥·~xi
ky ~ex − kx ~ey

k⊥

∫ √
µJ1(λ)f(kx, ky)dv‖ dµ .

The v‖ integration of the remaining integrals gives
∫

2πJv〈~v⊥φ̄(~x− ~r)〉F0dv‖ dµ (A.2)

=
B0

T0j

n0j

∑

kx,ky

ei~k⊥·~xφ(kx, ky)i
ky ~ex − kx ~ey

k⊥

∫

v⊥e
−

µB0
T0j J0(λ)J1(λ)dµ

= n0jvTj

∑

kx,ky

ei~k⊥·~xφ(kx, ky)i
ky ~ex − kx ~ey

k⊥

∫

√

µ′e−µ′

J0(λ)J1(λ)dµ′

∫

2πJvµ〈~v⊥B̄1‖(~x− ~r)〉F0dv‖ dµ (A.3)

=
B0

T0j
n0j

∑

kx,ky

ei~k⊥·~xB1‖(kx, ky)i
ky ~ex − kx ~ey

k⊥

∫

2v⊥µ

λ
e
−

µB0
T0j J1(λ)2dµ

=
2Ωjn0jT0j

B0

∑

kx,ky

ei~k⊥·~xB1‖(kx, ky)i
ky ~ex − kx ~ey

k2
⊥

∫

µ′e−µ′

J1(λ)2dµ′ ,

which can be simplified using
∫

√

µ′e−µ′

J0(λ)J1(λ)dµ′ =
k⊥vTj

2Ωj

∆0(bj)

∫

µ′e−µ′

J1(λ)2dµ′ = k2
⊥

v2
T

2Ω2
∆(bj) .
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B. Finite difference methods

Finite differences are methods to numerically approximate derivatives on a finite grid. They
are called finite because the computation of ∂n

∂xng
∣

∣

i
, where i denotes a (discrete) x position,

only involves a finite number of g values in the neighbourhood of gi, as opposed to global
schemes, which involve all values of g. The variable x in this section does not refer to the
radial direction but is a generic variable; in GENE, finite differences are used for the z, v‖ and
in simulations that include collisions, the µ direction.

All finite difference schemes can be written as a convolution with a finite stencil d:

∂n

∂xn
g

∣

∣

∣

∣

i

=

s2
∑

j=s1

djgi+j , (B.1)

a Taylor expansion of gi+j around the position gi gives

∂n

∂xn
g

∣

∣

∣

∣

i

=

s2
∑

j=s1

dj

(

gi + (xi − xi+j)
∂g

∂x

∣

∣

∣

∣

i

+
(xi − xi+j)

2

2

∂2g

∂x2

∣

∣

∣

∣

i

+
(xi − xi+j)

3

3!

∂3g

∂x3

∣

∣

∣

∣

i

+ . . .

)

= A0jgi + A1j
∂g

∂x

∣

∣

∣

∣

i

+ A2j
∂2g

∂x2

∣

∣

∣

∣

i

+ A3j
∂3g

∂x3

∣

∣

∣

∣

i

+ . . . (B.2)

with

Aki =

s2
∑

j=s1

dj
(xi − xi+j)

k

k!
.

The stencil d approximates ∂n

∂xng
∣

∣

i
to order m, if the condition Aki = δkn is fulfilled for all

i and k ≤ m. For an equidistant grid with xi − xi−1 = ∆x for all i, the i dependence drops
out and the condition reduces to

s2
∑

j=s1

dj
(j∆x)k

k!
= δkn .

Of special relevance for GENE are centered difference schemes with s = s2 = −s1. For
the parallel advection, trapping term, collision operator and the hyperdiffusion, the following
stencils, which fulfill the above criteria, are implemented (also see, e.g. [39]):

n s m d
1 1 2 1

2∆x
[−1 0 1]

2 1 3 1
∆x2 [1 − 2 1]

1 2 4 1
12∆x

[1 − 8 0 8 − 1]
2 2 5 1

12∆x2 [−1 16 − 30 16 − 1]
4 2 5 1

∆x4 [1 − 4 6 − 4 1]

(B.3)
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The locality of the finite difference schemes is an advantage for parallelization via domain
decomposition. If the state vector g is split along the x dimension and distributed to different
processors, on a given processor, only an interval gi1 . . . gi2 is available. To be able to compute
derivatives also at positions close to these artificial interval bounds, the locally stored interval
of g is extended by s so-called ghost cells at the upper and lower bounds. Before the evalua-
tion of the derivative, the ghost cells are filled with copies of the corresponding values from
neighbouring processors, so that now the values gi1−s . . . gi2+s are available, then the deriva-
tives g(n)

i1
. . . g

(n)
i2

can be computed easily with Eq. (B.1). Even without domain decomposition,
ghost cells can be useful to define the boundary conditions for the external bounds of the sim-
ulation domain, especially if they are more complicated like for the z direction (Sec. 2.2.1).

Applying the convolution (B.1) to every point of the discretized state vector g is equiva-
lent to multiplying g with a banded matrix. As an example, the spatial discretization of the
advection equation

∂

∂t
g = c

∂

∂x
g

(c a real velocity) can be written with the 3-point stencil taken from (B.3) as

∂

∂t
g =

c

2∆x















. . . . . . . . .
−1 0 1

−1 0 1
−1 0 1

. . . . . . . . .















g,

with all values outside the band equal zero. The advection equation is hyperbolic, i.e. the
operator c ∂

∂x
has purely imaginary eigenvalues. All centered difference schemes for the first

derivative are antisymmetric, which guarantees that this property is retained in the numeri-
cal representation. A difficulty arises at the boundaries of the simulation domain, where the
boundary conditions have to be chosen carefully not to destroy this antisymmetry, because
otherwise artificial unstable modes can be created. Numerical tests showed that the parallel
direction z is especially susceptible to perturbations of this kind.

For the three point scheme, the only two boundary conditions that do not break the anti-
symmetry of the operator matrix are zero boundary conditions, which corresponds to simply
cutting off the upper right -1 and lower left 1, or periodic boundary conditions, which have an
additonal -1 / 1 in the upper right / lower left corner of the matrix.

For schemes with bigger stencils, there is some freedom, since by manipulating the ghost
cells, the computation of the derivatives that include such cells can be changed arbitrarily,
which is equivalent to modifying the corresponding rows of the operator matrix. For a five
point scheme, the two upper and lower rows are concerned. Most of the entries are fixed by
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the condition of antisymmetry,


















0 c −1 0 · · ·
−c 0 8 −1 0 · · ·

1 −8 0 8 −1 0 · · ·
0 1 −8 0 8 −1 0 · · ·

· · · 0 1 −8 0 8 −1 0

· · · 0
. . . . . . . . . . . . . . .



















, (B.4)

but one arbitrary parameter c and an equivalent but in principle independent counterpart at the
lower right side of the matrix remain; for symmetry reasons, these two parameters are chosen
to be equal. Note that if g0 designates the first value of the simulation domain, this matrix
structure can be achieved by assigning the values

g−1 = (8 − c)g0, g−2 = (8 − c)(8g0 − g1)

to the left ghost cells (and similar for the right bound) and applying the same stencil to all gi.
Zero boundary conditions correspond in this notation to c=8.

If a coupling between the two ends of the simulation domain is permitted, there is more
freedom, namely an arbitrary (2×2) submatrix at the upper right and the negative transpose of
it at the lower left corner (together 4 real parameters), however there is no physical justification
for such a coupling and at least for the parallel direction numerical tests produced unphysical
results.

To preserve the properties of the eigenvalue spectrum, the antisymmetry condition could in
principle be extended to antihermiticy, extending the number of free parameters by imaginary
entries on the diagonal, but this possibility is dropped for physical reasons.
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C. Runge-Kutta methods

The Runge-Kutta schemes are a family of one step schemes to solve initial value problems,

∂

∂t
g = N(t, g) (C.1)

where N(t, g) is in general a time dependent and nonlinear operator acting on g. The time
advancement gn → gn+1 is computed with s intermediate stages. All Runge-Kutta schemes
are of the form

gn+1 = gn + ∆t
s
∑

i=1

biki (C.2)

ki = N

(

tn + ci∆t, gn + ∆t

s
∑

j=1

aijkj

)

(C.3)

ci =
s
∑

j=1

aij. (C.4)

The various schemes differ by their sets of coefficients aij, bi, ci with i, j ∈ [1, s]. To give
a full and simple definition of a scheme, its coefficients are usually arranged in a so-called
Butcher tableau,

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

...
cs as1 as2 . . . ass

b1 b2 ... bs

The implicit Euler scheme described in Sec. 3.4.1 can also be accommodated in this notation
and is therefore actually just a very simple Runge-Kutta scheme. With only one stage (s = 1),
it has the very simple Butcher tableau

1 1
1
.

Easier to compute, because independent of matrix inversions, are fully explicit schemes. For
a scheme to fit in this category, the array A of the elements aij must not have nonzero entries
on or above the diagonal, because only in this case the ki in Eq. (C.3) exclusively depend
on kj with 0 < j < i and the k can be computed successively without matrix inversions.
If in addition A only has entries in the first subdiagonal band, each vector ki only depends
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C. Runge-Kutta methods

on ki−1; this implies that after adding its contribution to (C.2) and calculating the second
argument of N in (C.3), ki−1 can be overwritten, so that this condition defines a low-memory
scheme. Due to the condition (C.4), these schemes are completely characterized by only two
sets of coefficients, b1, . . . , bs and c2, . . . , cs. All explicit time stepping schemes implemented
in GENE are of this form.

The order of the Runge-Kutta schemes is determined by comparison to the Taylor expansion

gn+1 = gn + ∆t
∂

∂t
g

∣

∣

∣

∣

tn

+
∆t2

2!

∂2

∂t2
g

∣

∣

∣

∣

tn

+
∆t3

3!

∂3

∂t3
g

∣

∣

∣

∣

tn

+
∆t4

4!

∂4

∂t4
g

∣

∣

∣

∣

tn

+ . . .

of the time evolution, taking into account Eq. (C.1). For an explicit scheme and linear N, it can
be seen that in a ∆t expansion of Eq. (C.2), taking into account Eq. (C.3), the highest power
of ∆t and therefore the maximum agreement with the Taylor expansion for a scheme with s
stages can only be s. The requirement that the coefficients of the ∆t expansion of (C.2) match
those of the Taylor expansion up to the desired order (≤ s) poses constraints on the entries of
the Butcher tableau.

Two maximum time order schemes are implemented in GENE, a three stages, third order
scheme (RK3) with and a four stages, forth order scheme (RK4) with

RK3: b =[1/4, 0, 3/4], c =[1/3, 2/3]

RK4: b =[1/6, 1/3, 1/3, 1/6], c =[1/2, 1/2, 1].

Since these two schemes have a time order equal to their number of stages, all coefficients
of their ∆t expansion are fixed to the Taylor values and their stability region is completely
determined by the number of stages.

If the number of stages is increased without improvements on the time order, the additional
degrees of freedom (i.e. the terms in the ∆t expansion with higher power than the time order)
can be used to change the shape of the stability region. While there is no limit on the extent of
the stability region along the negative real axis, there is a strict theoretical limit on the max-
imum extent along the imaginary axis [106]. Since the eigenspectrum of the linear operator
in GENE is mostly hyperbolic, i.e. located on or close to the imaginary axis, this constraint
is very significant for GENE. The stability region of any explicit Runge-Kutta scheme can at
most include the interval [−i(s − 1), i(s − 1)] of the imaginary axis (for ∆t = 1). Since the
numerical effort is proportional to the number of stages s, for optimal schemes, i.e. schemes
that (almost) achieve the theoretical limit, the performance scales with (s− 1)/s. This means
that incrementing s improves performance, but the gain for further increase goes down rapidly.
Since the expanding stability interval allows for a bigger ∆t, numerical errors can increase as
well, setting a practical limit on the number of stages. In GENE, the numerically optimized 6
stages, 4th order Runge-Kutta (RK4M) scheme with the coefficients

b = [ − 0.15108370762927, 0.75384683913851, −0.36016595357907, 0.52696773139913,

0.0, 0.23043509067071],

c = [0.16791846623918, 0.48298439719700, 0.70546072965982, 0.09295870406537,

0.76210081248836]

proposed in [107] has been implemented.
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