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Multiplier algebras of C0(X)-algebras

Robert J. Archbold and Douglas W.B. Somerset

(Communicated by Siegfried Echterhoff)

Abstract. If a C∗-algebra A is a C0(X)-algebra then the multiplier algebra M(A) is a
C(βX)-algebra in a canonical way. In the case where A is σ-unital, we give necessary and
sufficient conditions on A and X for M(A) to be a continuous C(βX)-algebra.

Introduction

Let A be a C∗-algebra which is a C0(X)-algebra over a locally compact
Hausdorff space X . Then the multiplier algebra M(A) may be regarded in a
natural way as a C(βX)-algebra over βX , the Stone-Čech compactification of
X . The purpose of this paper is to characterize, for A σ-unital, when M(A)
is a continuous C(βX)-algebra. An elementary necessary condition is that
the C0(X)-algebra A should be continuous. The additional conditions for the
characterization involve the interplay between the base map φ : Prim(A) → X
(where Prim(A) is the primitive ideal space of A with the hull-kernel topology),
the structure map µ : C0(X) → ZM(A) (where ZM(A) is the center ofM(A)),
and the topology of X (Theorem 3.8). In the special case where A is separable
and the base map φ is surjective it follows that M(A) is a continuous C(βX)-
algebra if and only if X is a disjoint union X = U ∪D where U := {x ∈ X |
µ(C0(X))∩A 6⊆ Jx} is clopen and D is a discrete set (see Corollary 3.9). The
maps φ and µ, and the ideals Jx of A, are described in the next section.

The structure of the paper is as follows. In the first section we collect
some general results about C0(X)-algebras. The second and third sections
work gradually towards the main result. The fourth section gives applications
to various classes of C0(X)-algebras. For example, it is shown that if A is a
stable, σ-unital C∗-algebra with Prim(A) Hausdorff thenM(A) is a continuous
C(βX)-algebra if and only if X = Prim(A) is basically disconnected.

We are grateful to the referee for helpful comments on an earlier version.
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1. Preliminaries on C0(X)-algebras

Let A be a C∗-algebra and X a locally compact Hausdorff space. Then A
is a C0(X)-algebra if there is a *-homomorphism µ : C0(X) → ZM(A) such
that µ(C0(X))A is norm-dense in A.

The map µ is called the structure map. If X is compact then µ is necessarily
unital, and in this case it is usual to speak of a “C(X)-algebra” rather than
a “C0(X)-algebra”. An equivalent definition is that A is a C0(X)-algebra if
there is a continuous map φ : Prim(A) → X [31, Prop. C.5], [3, Prop. 4.1].
The map φ is called the base map.

The maps µ and φ uniquely determine each other as follows. Let θA :
Cb(Prim(A)) → ZM(A) be the Dauns-Hofmann ∗-isomorphism. This has the
property that

(θA(f)a) + P = f(P )(a+ P ) (f ∈ Cb(Prim(A)), a ∈ A, P ∈ Prim(A))

or, equivalently, θA(f) − f(P )1 ∈ P̃ (where P̃ is the ideal of M(A) defined
prior to Proposition 1.1 below). Then µ and φ are related by the equation
µ(f) = θA(f ◦ φ) for all f ∈ C0(X) [31, Prop. C.5]. Strictly, a C0(X)-algebra
is a triple (A,X, µ) (or (A,X, φ)), but we generally find it less cumbersome,
and more in accord with common usage, to say that A is a C0(X)-algebra with
respect to µ or φ. Elementary examples show that it is not enough to state the
space X and that one must specify µ or φ as well; and furthermore we shall
see that the answer to our main question depends not only on X but also on
µ and φ.

The definition of a C0(X)-algebra was introduced by Kasparov [24] as the
culmination of work by Fell [18], Tomiyama [30], Dauns and Hofmann [11], Lee
[25], and others over the previous three decades. An account of the somewhat
tangled history can be found in [31]. Other useful references are [15], [16], [10],
[27], [17], [22], and [3].

For x ∈ X , let Jx = µ{f ∈ C0(X) | f(x) = 0}A, a norm-closed two-sided
ideal of A by the Cohen factorization theorem (see [14, Thm. 16.1]). For a ∈ A
and x ∈ X , we often write ax = a+ Jx ∈ A/Jx. Then

(µ(f)a)x = f(x)ax (a ∈ A, f ∈ C0(X), x ∈ X).

This observation will be strengthened in Proposition 1.2 below. For x ∈ X
and P ∈ Prim(A), Jx ⊆ P if and only if φ(P ) = x. Indeed, Jx ⊆ P if and only
if f(φ(P ))(a+P ) = (θA(f ◦φ)a)+P = 0 for all a ∈ A and all f ∈ C0(X) such
that f(x) = 0. The latter holds if and only if f(φ(P )) = 0 for all such f , that
is, if and only if φ(P ) = x. It follows that Jx = A if and only if x /∈ Im(φ).
Note, too, that

⋂
x∈X Jx ⊆

⋂
P∈Prim(A) P = {0}.

For each a ∈ A, the norm function x → ‖ax‖ (x ∈ X) is upper semi-
continuous [31, Prop. C.10]. The C0(X)-algebra A is said to be continuous if,
for all a ∈ A, the norm function x → ‖ax‖ (x ∈ X) is continuous. By Lee’s
theorem this happens if and only if the mapping φ : Prim(A) → X is open [31,
Prop. C.10 and Thm. C.26]. In particular, if A is a continuous C0(X)-algebra
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then Im(φ) is open in X , and if Prim(A) is also compact then Im(φ) is clopen
in X .

Note that the question of whether A is a continuous C0(X)-algebra depends
crucially on the base map φ. For example, let A be a continuous C0(X)-algebra
where X has a nonisolated point x0. Define a new map ψ : Prim(A) → X by
ψ(P ) = x0 (P ∈ Prim(A)). Then (A,X,ψ) is a noncontinuous C0(X)-algebra
because ψ is not open. On the other hand, if A is a noncontinuous C0(X)-
algebra where X has an isolated point x0 then, with ψ as above, (A,X,ψ) is
a continuous C0(X)-algebra.

Our next step is to show that if A is a C0(X)-algebra with structure map
µ then µ has a unique extension µ such that M(A) is a C(βX)-algebra with
structure map µ. First, however, it is convenient to collect some elementary
facts about the strict closure in M(A) of an ideal J in A.

Let J be a proper, closed, two-sided ideal of a C∗-algebra A. The quotient
map qJ : A → A/J has a canonical extension q̃J : M(A) → M(A/J) such
that, for all b ∈M(A) and a ∈ A,

q̃J(b)(a+ J) = ba+ J and (a+ J)q̃J(b) = ab+ J.

We define a proper, closed, two-sided ideal J̃ of M(A) by

J̃ = ker q̃J = {b ∈M(A) | ba, ab ∈ J for all a ∈ A}.

Proposition 1.1. Let J be a proper, closed, two-sided ideal of a C∗-algebra A.
Then

(i) J̃ is the strict closure of J in M(A);

(ii) J̃ ∩ A = J ;

(iii) if P ∈ Prim(A) then P̃ is primitive (and hence is the unique ideal in
Prim(M(A)) whose intersection with A is P );

(iv) J̃ =
⋂
{P̃ | P ∈ Prim(A) and P ⊇ J} and for all b ∈M(A)

‖b+ J̃‖ = sup{‖b+ P̃‖ | P ∈ Prim(A) and P ⊇ J};

(v) (A+ J̃)/J̃ is an essential ideal in M(A)/J̃ .

Proof. Let (uλ) be an approximate identity for A.

(i) Suppose that (bα) is a net in J which is strictly convergent to some
b ∈ M(A). Let a ∈ A. Then ba is the norm-limit of (bαa) and hence belongs

to J . Similarly, ab ∈ J and so b ∈ J̃ .
Conversely, suppose that b ∈ J̃ . Then buλ ∈ J for all λ. For a ∈ A, we have

‖buλa− ba‖ ≤ ‖b‖‖uλa− a‖ → 0

and ‖(ab)uλ − ab‖ → 0, and so buλ → b strictly.

(ii) Let b ∈ J̃ ∩ A. Then buλ ∈ J for all λ and so b ∈ J . Thus J̃ ∩ A ⊆ J
and the reverse inclusion is clear.

(iii) Let π : A → B(H) be an irreducible representation of A with kernel
P and let π̃ : M(A) → B(H) be the canonical extension to an irreducible

representation of M(A). It suffices to show that P̃ = ker π̃. Let b ∈ P̃ and
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a ∈ A. Then ba ∈ P and so 0 = π(ba) = π̃(b)π(a). Since π is nondegenerate,
π̃(b) = 0.

Conversely, suppose that b ∈ ker π̃ and a ∈ A. Then

π(ab) = π(a)π̃(b) = 0 = π(ba)

and so ab, ba ∈ kerπ = P . Hence b ∈ P̃ .

(iv) Let b ∈ M(A). Then b ∈ J̃ if and only if ab, ba ∈ P for all a ∈ A

and all primitive ideals P ⊇ J . The latter holds if and only if b ∈ P̃ for all
primitive ideals P ⊇ J . Since the canonical ∗-homomorphism ofM(A)/J̃x into

ΠP⊇Jx
M(A)/P̃ is injective, it is isometric.

(v) Let b ∈M(A) and suppose that b+J̃ is in the annihilator of (A+J̃)/J̃ in

M(A)/J̃ . For a ∈ A, we have ba, ab ∈ J̃ ∩A = J and so b ∈ J̃ as required. �

In the case when J = A we may define J̃ = M(A) and then we still have

that J̃ is the strict closure of J in M(A) and that J̃ ∩ A = A.
Recall that if X is a locally compact Hausdorff space, with Stone-Čech com-

pactification βX , then every f ∈ Cb(X) has a unique extension f ∈ C(βX).
If f ∈ C0(X) then f(y) = 0 for all y ∈ βX \X . In particular, it follows that
if x ∈ X and y ∈ βX with x 6= y then there exists f ∈ C0(X) such that
f(x) 6= f(y). We shall use this fact in a moment.

Proposition 1.2. Let A be a C0(X)-algebra with structure map µ. Then µ
has a unique extension to a ∗-homomorphism µ : C(βX) → ZM(A) such that

(1) µ(f) = µ(f) (f ∈ C0(X)).

Moreover µ(1) = 1M(A) and (µ(f)a)x = f(x)ax for all f ∈ C(βX), a ∈ A, x ∈
X.

Hence M(A) is a C(βX)-algebra with structure map µ, and the corre-

sponding base map φ : Prim(M(A)) → βX satisfies φ(P̃ ) = φ(P ) for all
P ∈ Prim(A).

Proof. Let φ : Prim(A) → X be the base map such that µ(f) = θA(f ◦ φ) for
all f ∈ C0(X). Define µ(f) = θA(f ◦ φ) for all f ∈ C(βX). Then (1) holds
and also µ(1) = θA(1) = 1M(A). Let f ∈ C(βX), a ∈ A and x ∈ X , and let
P ∈ Prim(A) with P ⊇ Jx. Recall that φ(P ) = x. Then

(µ(f)a) + P = (f ◦ φ)(P )(a + P ) = f(x)(a+ P )

and so µ(f)a− f(x)a ∈
⋂

P⊇Jx
P = Jx, as required.

Thus M(A) is a C(βX)-algebra with structure map µ. Let φ denote the
corresponding base map. Let P ∈ Prim(A), a ∈ A \ P and f ∈ C0(X). Then
θA(f ◦ φ) + P = f(φ(P ))(a + P ) and so

f(φ(P )))(a + P̃ ) = θA(f ◦ φ)a+ P̃ = θM(A)(f ◦ φ)a+ P̃ = f(φ(P̃ ))(a+ P̃ ).

So (f(φ(P )) − f(φ(P̃ )))a ∈ P̃ ∩ A = P . Hence f(φ(P )) = f(φ(P̃ )). Since

f was arbitrary, φ(P ) = φ(P̃ ) (by the remark immediately preceding this
proposition). Thus φ has the required property.
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Finally, suppose that ρ : C(βX) → ZM(A) is a ∗-homomorphism such that
ρ(f) = µ(f) for all f ∈ C0(X). Then ρ(C(βX))A is norm-dense in A and so
the central projection ρ(1) in ZM(A) must be 1M(A) because A is an essential
ideal of M(A). Hence M(A) is a C(βX)-algebra with structure map ρ. Let
σ : Prim(M(A)) → βX be the corresponding base map such that

ρ(g) = θM(A)(g ◦ σ) (g ∈ C(βX)).

Then the same argument given for φ applies to σ and so φ(P ) = σ(P̃ ) for all

P ∈ Prim(A). Hence φ = σ, since {P̃ | P ∈ Prim(A)} is dense in Prim(M(A)).
Thus ρ = µ. �

Thus in the language of Proposition 1.2, the main question of this paper is
as follows. Suppose that A is a C0(X)-algebra with base map φ. Under what
circumstances is φ open? Note that since the canonical embedding of Prim(A)
in Prim(M(A)) is an open map, the openness of φ is certainly a necessary
condition for the openness of φ.

Proposition 1.2 has a useful corollary.

Corollary 1.3. Let A be a C0(X)-algebra with structure map µ and base
map φ. The following are equivalent.

(i) the ∗-homomorphism µ : C0(X) → ZM(A) is injective;
(ii) the mapping φ : Prim(A) → X has dense range;
(iii) the mapping φ : Prim(M(A)) → βX is surjective;
(iv) the ∗-homomorphism µ : C(βX) → ZM(A) is injective.

Proof. (i) =⇒ (ii). If Im(φ) is not dense inX , there exists a nonzero f ∈ C0(X)
such that f ◦ φ = 0. Then µ(f) = θA(f ◦ φ) = 0.

(ii) =⇒ (iii). Since {P̃ | P ∈ Prim(A)} is dense in the compact space
Prim(M(A)), Im(φ) is the closure of Im(φ) in βX . So if Im(φ) is dense in X
then φ is surjective.

(iii) =⇒ (iv). Suppose that (iii) holds and that µ(g) = 0 for some g ∈
C(βX). Then θM(A)(g ◦ φ) = µ(g) = 0 and so g ◦ φ = 0 since θM(A) is

injective. Since φ is surjective, g = 0.

(iv) =⇒ (i). Suppose that (iv) holds and that µ(f) = 0 for some f ∈ C0(X).

Then µ(f) = µ(f) = 0. Hence f = 0 and so f = 0. �

Definition. Let A be a C0(X)-algebra with structure map µ and let µ :
C(βX) → ZM(A) be as in Proposition 1.2. For x ∈ βX , we define

Hx = µ{f ∈ C(βX) | f(x) = 0}M(A),

a closed two-sided ideal of M(A).
Note that Hx is defined in relation to (M(A), βX, µ) in the same way that

Jx (for x ∈ X) is defined in relation to (A,X, µ). It follows, in particular,
that for Q ∈ Prim(M(A)): Q ⊇ Hx if and only if φ(Q) = x. Also, for each
b ∈ M(A), the function x → ‖b + Hx‖ (x ∈ βX) is upper semi-continuous.
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Note, too, that if x ∈ βX , f ∈ C(βX) and g := f − f(x)1 then µ(g)1 ∈ Hx

and hence µ(f) +Hx = f(x)(1 +Hx).

Proposition 1.4. Let A be a C0(X)-algebra with structure map µ.

(i) For all x ∈ X, Jx = µ{f ∈ C(βX) | f(x) = 0}A.

(ii) For all x ∈ X, Jx ⊆ Hx ⊆ J̃x and Jx = Hx ∩A.
(iii) For all b ∈M(A),

‖b‖ = sup{‖b+ J̃x‖ | x ∈ X} = sup{‖b+Hx‖ | x ∈ X}.

Proof. (i) Let f ∈ C(βX) with f(x) = 0 and let a ∈ A. It suffices to show
that µ(f)a ∈ Jx. Let ǫ > 0. There is a compact subset K of Prim(A) such
that ‖(a+P )‖ < ǫ/(1+ ‖f‖) for all P ∈ Prim(A) \K. There exists g ∈ C0(X)
with 0 ≤ g ≤ 1 such that the restriction of g to the compact set φ(K) is 1.
Then h := (f |X)g ∈ C0(X) and h(x) = 0.

For P ∈ Prim(A),

µ(f)a+ P = θA(f ◦ φ)a + P = f(φ(P ))(a + P )

and µ(h)a+ P = f(φ(P ))g(φ(P ))(a + P ). So for P ∈ K, µ(f)a− µ(h)a ∈ P .
For P ∈ Prim(A) \K,

‖(µ(f)a− µ(h)a) + P‖ = |f(φ(P ))|(1 − g(φ(P )))‖a + P‖ < ǫ.

So ‖µ(f)a− µ(h)a‖ < ǫ. Hence µ(f)a ∈ Jx.
(ii) It follows from (i) and the definition of Hx that Jx ⊆ Hx. Let b ∈ Hx

and a ∈ A. Then ab, ba ∈ Jx by (i). Hence b ∈ J̃x. It now follows from
Proposition 1.2 (ii) that Hx ∩A = Jx.

(iii) Suppose that c ∈ J̃x for all x ∈ X and that a ∈ A. Then ac, ca ∈ Jx
for all x ∈ X and so ac = ca = 0. Hence c = 0. Thus the canonical ∗-
homomorphism from M(A) into Πx∈XM(A)/J̃x is injective and hence iso-
metric, establishing the first equality. The second follows from the fact that
‖b+ J̃x‖ ≤ ‖b+Hx‖ ≤ ‖b‖ (x ∈ X). �

The next lemma establishes a crucial link between the ideal Hx and the
ideals J̃y for y close to x.

Lemma 1.5. Let A be a C0(X)-algebra with structure map µ. Let x ∈ βX
and b ∈M(A).

(i) Let W be a neighborhood of x in βX. Then

‖b+Hx‖ ≤ sup{‖b+ J̃y‖ | y ∈ W ∩X}.

(ii) Taking the infimum over neighborhoods W of x in βX, we have

‖b+Hx‖ = inf
W

sup{‖b+ J̃y‖ | y ∈W ∩X}.

Proof. (i) Choose f ∈ C(βX) with 0 ≤ f ≤ 1 such that f(x) = 1 and f(y) = 0
for all y ∈ βX \W . Then µ(1− f)b ∈ Hx and so b− µ(f)b ∈ Hx. So

‖b+Hx‖ = ‖µ(f)b+Hx‖ ≤ ‖µ(f)b‖ ≤ sup{‖µ(f)b+ J̃y‖ | y ∈ X}

by Proposition 1.4 (iii).
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Suppose that y ∈ X \W and a ∈ A. Then

(µ(f)ba)y = f(y)(ba)y = 0

by Proposition 1.2. So µ(f)ba ∈ Jy and similarly aµ(f)b = µ(f)ab ∈ Jy. Hence

µ(f)b ∈ J̃y. It follows that

‖b+Hx‖ ≤ sup{‖µ(f)b+ J̃y‖ | y ∈W ∩X}

≤ sup{‖b+ J̃y‖ | y ∈W ∩X}.

(ii) By (i), the norm of b +Hx is majorized by the infimum. So let ǫ > 0.
By upper semi-continuity, there is a neighborhood W of x in βX such that,
for y ∈W ∩X ,

‖b+ J̃y‖ ≤ ‖b+Hy‖ ≤ ‖b+Hx‖+ ǫ.

Hence

inf
W

sup{‖b+ J̃y‖ | y ∈ W ∩X} ≤ ‖b+Hx‖+ ǫ.

Since ǫ was arbitrary, the result follows. �

2. Sufficient conditions for continuity

In this section we establish conditions which are sufficient for the continuity
of norm functions of elements of M(A) on βX (Theorem 2.9). In the next
section we shall show that these conditions are also necessary for continuity.

Let A be a C0(X)-algebra with structure map µ and define

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}.

Note that if x ∈ U then Jx 6= A and so x ∈ Im(φ). It will follow from
Lemma 2.1 (ii) that Im(φ) \ U is closed in Im(φ) and hence U is an open
subset of Im(φ). If A is a continuous C0(X)-algebra then Im(φ) is open, as we
noted in Section 1, and so in this case U is open in X .

There are three subsets of X which require separate consideration. The first
is the set U itself, which consists of the easiest points to deal with (Proposi-
tion 2.3). The next is the set X \ cl(U), where cl(U) is the closure of U in X .
These points, too, are fairly tractable (Proposition 2.4). The third, and the
most difficult to deal with, consists of those points which lie in the boundary
of U (Proposition 2.7).

To illustrate two elementary examples, first let A be the C∗-algebra of all
sequences x = (xn)n≥1 of 2× 2 complex matrices such that xn → diag(λ(x), 0)
as n → ∞. Set Pn = {x ∈ A | xn = 0} (n ≥ 1) and P∞ = kerλ. Then
Prim(A) = {Pn | n ≥ 1} ∪ {P∞} with the topology induced from the space
X = N∪{∞} (the 1-point compactification of N) by the map φ : Prim(A) → X
for which φ(Pn) = n and φ(P∞) = ∞. Then U = N and the point ∞ lies in
the boundary of U . Note that U is not C∗-embedded in X (see Lemma 2.6).

Next, let A = C[0, 1]⊗K(H), where K(H) is the algebra of compact linear
operators on an infinite-dimensional Hilbert space H . For x ∈ X = [0, 1], set
Px = {f ∈ A | f(x) = 0}. Then Prim(A) = {Px | x ∈ X} with the topology
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induced from X by the map φ : Prim(A) → X for which φ(Px) = x. In this
case the set U is empty because ZM(A) ∩ A (the center of A) is {0}.

We begin with a simple lemma.

Lemma 2.1. Let A be a C0(X)-algebra with structure map µ and base map φ
and let x ∈ Im(φ). The following are equivalent.

(i) µ(C0(X)) ∩ A ⊆ Jx;
(ii) {f ∈ C0(X) | µ(f) ∈ A} ⊆ {f ∈ C0(X) | f(x) = 0};
(iii) there exists R ∈ Prim(M(A)) such that R ⊇ A and φ(R) = x.

Proof. (i) =⇒ (ii). Assume (i) and let P ∈ Prim(A/Jx). Suppose that f ∈
C0(X) and that µ(f) ∈ A. Choose a ∈ A \ P . Then

0 = µ(f)a+ P = θA(f ◦ φ)a+ P = f(φ(P ))a + P = f(x)a+ P.

Hence f(x) = 0 as required.

(ii) =⇒ (i). Assuming (ii), we have

µ(C0(X)) ∩A = µ({f ∈ C0(X) | µ(f) ∈ A})

⊆ cl(µ({f ∈ C0(X) | µ(f) ∈ A})A) ⊆ Jx.

(iii) =⇒ (ii). Assume (iii) and let f ∈ C0(X) with µ(f) ∈ A. Then

0 = µ(f) +R = µ(f) +R = θM(A)(f ◦ φ) +R = f(φ(R)1 +R = f(x)1 +R

and so f(x) = 0 as required.

(ii) =⇒ (iii). Suppose that (iii) fails, so that x is not contained in the
compact subset φ({R ∈ Prim(M(A)) | R ⊇ A}) of βX . Then there exists
g ∈ C(βX) such that g(x) = 1 and g(φ(R)) = 0 for all R ∈ Prim(M(A)) such

that R ⊇ A. Then µ(g)+R = g(φ(R))1+R = 0 for all such R and so µ(g) ∈ A.
Choose f ∈ C0(X) such that f(x) = 1. Then f(g|X) ∈ C0(X) and takes the

value 1 at x. On the other hand, µ(f(g|X)) = µ(fg) = µ(f)µ(g) ∈ A. Thus
(ii) fails to hold. �

Proposition 2.2. Let A be a C0(X)-algebra with structure map µ and let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}.

Let x ∈ U . Then

(i) Hx = J̃x and Hx is strictly closed in M(A);
(ii) A/Jx is unital and µ(f) + Jx = f(x)1A/Jx

for all f ∈ C0(X) such that
µ(f) ∈ A;

(iii) A/Jx is canonically isomorphic toM(A)/Hx via the map a+Jx → a+Hx

(a ∈ A).

Proof. (i) Since Jx 6= A, it follows that J̃x is a proper ideal of M(A) and
hence so is Hx. Let R ∈ Prim(M(A)) and suppose that R ⊇ Hx (equivalently,

φ(R) = x). By Lemma 2.1, R does not contain A and so R = P̃ for some

P ∈ Prim(A). By Proposition 1.2, φ(P ) = φ(P̃ ) = x and so P ⊇ Jx. Hence
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R = P̃ ⊇ J̃x. It follows that Hx ⊇ J̃x and the reverse inclusion always holds
(Proposition 1.4 (ii)). So Hx is strictly closed in M(A) by Proposition 1.1 (i).

(ii) Suppose that f ∈ C0(X) satisfies µ(f) ∈ A. Note that, by hypothesis,
Jx 6= A. Let P ∈ Prim(A) with P ⊇ Jx. Then, for all a ∈ A,

µ(f)a+ P = aµ(f) + P = f(x)a+ P.

Hence µ(f)a − f(x)a, aµ(f) − f(x)a ∈ Jx. All that remains is to show that
A/Jx is unital. By Lemma 2.1, we may choose f such that f(x) = 1 and then
µ(f) + Jx is an identity element for A/Jx.

(iii) Since J̃x ∩ A = Jx, the map a + Jx → a + J̃x (a ∈ A) gives a ∗-

isomorphism of A/Jx onto (A + J̃x)/J̃x. By Proposition 1.1 (v), (A+ J̃x)/J̃x
is a unital, essential ideal of M(A)/J̃x and hence must equal M(A)/J̃x. Since

J̃x = Hx, the result follows. �

Proposition 2.3. Let A be a continuous C0(X)-algebra with structure map µ
and let U = {x ∈ X | µ(C0(X))∩A 6⊆ Jx}. Let x ∈ U . Then for all b ∈M(A),
the norm function y → ‖b+Hy‖ (y ∈ X) is continuous at x.

Proof. Since Jx 6= A, x ∈ Im(φ) and it follows from Lemma 2.1 that there
exists f ∈ C0(X) such that µ(f) ∈ A and f(x) = 1. Replacing f by |f |2,
we may assume that f ≥ 0. There is an open neighborhood V of x in X ,
contained in the open subset Im(φ) of X , such that f(y) ≥ 1

2 for all y ∈ V .
Let g : [0,∞) → [0, 1] be the continuous function defined by g(t) = 2t (0 ≤
t ≤ 1

2 ) and g(t) = 1 (t > 1
2 ). Applying functional calculus, we may form

h := g(f) = g ◦ f ∈ C0(X). Then µ(h) = g(µ(f)) ∈ A and h(y) = 1 for all
y ∈ V ⊆ Im(φ). For all y ∈ V , µ(C0(X)) ∩ A 6⊆ Jy by Lemma 2.1 and so
µ(h) +Hy is the identity of M(A)/Hy by Proposition 2.2.

Now let b ∈ M(A) and set a = µ(h)b ∈ A. By hypothesis, the function
y → ‖a+ Jy‖ is continuous on X . For y ∈ V , we have

‖a+ Jy‖ = ‖µ(h)b+Hy‖ = ‖b+Hy‖.

So the function y → ‖b + Hy‖ (y ∈ X) is continuous on V and in particular
at x. �

For the next class of points we need some definitions. Recall that a subset
U of a topological space X is a cozero set if there is a continuous real-valued
function f on X which vanishes precisely on the complement of U in X . Now
let X be a completely regular topological space. A point x ∈ X is a BD-point

(standing for basically disconnected) if whenever U is a cozero set in X and V
an open set in X such that x ∈ cl(U)∩ cl(V ) then x ∈ cl(U ∩V ). If each point
in X is a BD-point then X is basically disconnected.

Before establishing a connection between BD-points and continuity of norm
functions, we make an observation on open sets and cozero sets. Let A be a
continuous C0(X)-algebra and let b ∈ M(A). Then the set Y = {x ∈ X |

‖b+ J̃x‖ > 0} is open in X , being the image under the open mapping φ of the

open set {P ∈ Prim(A) | ‖b+ P̃‖ > 0} by Proposition 1.1 (iv). Now suppose
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furthermore that A is σ-unital with a strictly positive element u. Then bu ∈ A
and, for P ∈ Prim(A), b ∈ P̃ if and only if bu ∈ P̃ (to see this, use the notation
of the proof of Proposition 1.1 (iii) and note that if 0 = π̃(bu) = π̃(b)π(u) then

b ∈ ker π̃ = P̃ because the operator π(u) has dense range). Hence for x ∈ X ,

b ∈ J̃x if and only if bu ∈ J̃x. Thus, in this case, the set Y is the cozero set of
a continuous function on X , namely the function x→ ‖bu+ J̃x‖ (x ∈ X).

Up till now we have worked with general C∗-algebras A but for many of the
subsequent results we have to assume that A is σ-unital. When A is a σ-unital
C∗-algebra which is also a C0(X)-algebra we shall say that A is a σ-unital
C0(X)-algebra.

In the next proposition, we have chiefly in mind points x ∈ X \ cl(U) but
we do not require this restriction.

Proposition 2.4. Let A be a σ-unital continuous C0(X)-algebra and let x be
a BD-point in X. Then for all b ∈ M(A), the norm function y → ‖b + Hy‖
(y ∈ X) is continuous at x.

Proof. By the C∗-condition, it suffices to consider b ∈ M(A)+. Suppose that
there exists b ∈ M(A)+ such that the norm function of b is discontinuous at
x. Since the function y → ‖b + Hy‖ (y ∈ βX) is upper semi-continuous on
βX , its restriction to X must fail to be lower semi-continuous at x. Hence, by
scaling b, we may suppose that ‖b +Hx‖ = 1 and that there exists δ ∈ (0, 1)
such that x lies in the closure of the set V = {y ∈ X | ‖b + Hy‖ < δ}, a set
which is open in X by upper semi-continuity.

On the other hand, by Lemma 1.5 (i), x lies in the closure of the set W =

{y ∈ X | ‖b+ J̃y‖ >
1+δ
2 }. Let g : [0,∞) → [0,∞) be the continuous function

defined by g(t) = 0 for 0 ≤ t ≤ 1+δ
2 and g(t) = t − 1+δ

2 for t > 1+δ
2 . Then

W = {y ∈ X | ‖g(b)+ J̃y‖ > 0} and soW is a cozero set in X by the discussion
above. Evidently V and W are disjoint and x is in the closure of each of them,
contradicting the fact that x is a BD-point. �

The final set of points consists of those in the boundary of U . For these, we
need the following two lemmas.

Lemma 2.5. Let A be a σ-unital continuous C0(X)-algebra with structure
map µ and let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}.

Suppose that cl(U), the closure of U in X, is clopen in X and that x ∈ cl(U)\U .
Let b ∈M(A) and let V be any neighborhood of x in X. Then

‖b+Hx‖ ≤ sup{‖b+ J̃y‖ | y ∈ U ∩ V }.

Proof. Replacing V by its interior, we may assume that V is open. Since
cl(U) ∩ V is a neighborhood of x in X , there exists f ∈ C0(X) such that
0 ≤ f ≤ 1, f(x) = 1 and f(y) = 0 for all y ∈ X \ (cl(U) ∩ V ). Then

µ(f) +Hx = µ(f) +Hx = f(x)1 +Hx = 1 +Hx.
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On the other hand, if y ∈ X\(cl(U)∩V ) and a ∈ A then (µ(f)a)y = f(y)ay = 0

so that µ(f)a ∈ Jy and hence µ(f) ∈ J̃y. Since V is open, U ∩ V is dense in
cl(U)∩V , and since A is continuous it follows that

⋂
y∈U∩V Jy =

⋂
y∈cl(U)∩V Jy

and hence
⋂

y∈U∩V J̃y =
⋂

y∈cl(U)∩V J̃y. Using Proposition 1.4 (iii), we now

have

‖b+Hx‖ = ‖µ(f)b+Hx‖ ≤ ‖µ(f)b‖ = sup{‖µ(f)b+ J̃y‖ | y ∈ cl(U) ∩ V }

= sup{‖µ(f)b+ J̃y‖ | y ∈ U ∩ V }

≤ sup{‖b+ J̃y‖ | y ∈ U ∩ V }.

�

Lemma 2.6. Let V be a completely regular space and let W be a dense subset
of V . Then the following are equivalent:

(i) disjoint zero sets in W have disjoint closures in V ;
(ii) W is C∗-embedded in V ;
(iii) V is canonically homeomorphic (i.e. homeomorphic under a map which

extends the identity map on W ) to a subset of βW .

Proof. The equivalence of (i) and (ii) is established in [20, Thm. 6.4, (2)⇔(3)].
(ii)⇒ (iii) By [20, Thm. 6.4 (1)] the identity map on W extends to a con-

tinuous map Θ from V into βW . Suppose that g is a continuous bounded
function on V . Then, by continuity and by agreement on W , we have

(∗) g = (g|W ) ◦Θ.

Since V is completely regular, any two points of V can be separated by a
continuous bounded function g, so Θ is injective. Now let (vi) be a net in V
and suppose that Θ(vi) → Θ(v) for some v ∈ V . Then (∗) gives g(vi) → g(v)
for all continuous bounded functions g on V , and hence vi → v since V is
completely regular. Thus Θ is a homeomorphism.

(iii)⇒(i) Disjoint zero sets inW have disjoint closures in βW [20, Thm. 6.5],
and hence have disjoint closures in Θ(V ). �

Proposition 2.7. Let A be a σ-unital continuous C0(X)-algebra and let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}.

Suppose that cl(U), the closure of U in X, is clopen in X and that cl(U) is
canonically homeomorphic to a subset of βU . Then for each b ∈ M(A), the
norm function x→ ‖b+Hx‖ (x ∈ X) is continuous at each point of cl(U).

Proof. Let b ∈ M(A) and suppose that there exists y ∈ cl(U) such that the
function x → ‖b +Hx‖ (x ∈ X) is not continuous at y. Since the function is
continuous at all points of U (Proposition 2.3), it follows that y ∈ cl(U) \ U .
Furthermore, since the function is upper semi-continuous on X and cl(U) is
open in X , we may suppose by scaling b that ‖b+Hy‖ = 1 and that y lies in
the closure of the open set V = {x ∈ cl(U) | ‖b+Hx‖ < δ} for some δ ∈ (0, 1).
Since V is open in X , V ∩ U is dense in V and so y lies in the closure in X of
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the set Y = {x ∈ U | ‖b+Hx‖ ≤ δ}. Since the norm function of b is continuous
on U , Y is a zero set of U (for the function x→ max{‖b+Hx‖, δ} − δ).

On the other hand, it follows from Lemma 2.6 and Lemma 2.2 (i) that y
lies in the closure in X of the set Z = {x ∈ U | ‖b+Hx‖ ≥ 1+δ

2 }, which is also
a zero set of U . This contradicts the fact that the disjoint zero sets Y and Z
of U have disjoint closures in cl(U) (Lemma 2.6). �

Next we need to know that continuous norm-functions on X extend contin-
uously to βX .

Proposition 2.8. Let A be a C0(X)-algebra with structure map µ such that,
for each b ∈ M(A), the norm function x → ‖b +Hx‖ (x ∈ X) is continuous.
Then M(A) is a continuous C(βX)-algebra with structure map µ.

Proof. For each b ∈ M(A), let fb : X → [0,∞) be the bounded function
defined by fb(x) = ‖b+Hx‖ (x ∈ X). By hypothesis, fb is continuous and so
it suffices to show that fb(y) = ‖b+Hy‖ for all y ∈ βX \X and all b ∈M(A).

Let y ∈ βX \X and let F be a z-ultrafilter on X with limit y. If b ∈ Hy then

fb(y) = 0 by the upper semi-continuity of the norm function x → ‖b + Hx‖
(x ∈ βX). So we may now restrict to the case where Hy 6= M(A). Since

b → fb(y) = limF ‖b +Hx‖ defines a C∗-seminorm on M(A), it follows from
the uniqueness of the C∗-norm on M(A)/Hy that it suffices to show that if

fb(y) = 0 then b ∈ Hy.

Let b ∈ M(A) and suppose that fb(y) = 0. Let ǫ > 0. Then there exists
Z ∈ F such that ‖b +Hx‖ < ǫ/2 for all x ∈ Z. So Z is disjoint from the set
W = {x ∈ X | ‖b + Hx‖ ≥ ǫ}. Since W is the zero set for the continuous
function min{fb, ǫ} − ǫ, it follows from [20, 1.15] that there exists f ∈ Cb(X)
such that 0 ≤ f ≤ 1, f(Z) = {0} and f(W ) = {1}. Since Z ∈ F and
f(Z) = {0}, f(y) = 0. Thus µ(f)b ∈ Hy by definition of Hy. On the other
hand, it follows from Proposition 1.4 (iii) that

‖b− µ(f)b‖ = sup
x∈X

‖(b− µ(f)b) +Hx‖ = sup
x∈X

(1− f(x))‖b +Hx‖ ≤ ǫ.

Since ǫ was arbitrary, b ∈ Hy. �

Finally, we summarize the work of this section in the following theorem.

Theorem 2.9. Let A be a σ-unital continuous C0(X)-algebra with structure
map µ and base map φ, let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}

and let cl(U) and cl(Im(φ)) be the closures of U and Im(φ) in X. Then M(A)
is a continuous C(βX)-algebra with structure map µ if

(i) cl(U) is clopen in X;
(ii) cl(U) is canonically homeomorphic to a subset of βU ;
(iii) every point of cl(Im(φ)) \ cl(U) is a BD-point of X.
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Proof. By Proposition 2.8, it suffices to show that, for each b ∈ M(A), the
norm function x→ ‖b+Hx‖ (x ∈ X) is continuous at each point x ∈ X . This
continuity was established in Proposition 2.7 for x in cl(U) and in Proposi-
tion 2.4 for x in cl(Im(φ)) \ cl(U).

Finally, since {P̃ | P ∈ Prim(A)} is dense in the compact space Prim(M(A)),
Im(φ) is the closure of Im(φ) in βX . Hence Im(φ) ∩ X = cl(Im(φ)). If x be-

longs to the open set X \ cl(Im(φ)) then x /∈ Im(φ) and so ‖b+Hx‖ = 0. Thus
x is a point of continuity for the norm function. �

3. Necessary conditions of continuity and the main theorem

In this section we prove the converse of Theorem 2.9, thus establishing our
main result, Theorem 3.8, which characterizes, for A a σ-unital continuous
C0(X)-algebra, when M(A) is a continuous C(βX)-algebra. The main tech-
nical result along the way is Theorem 3.2 which constructs a useful multiplier
in M(A).

Proposition 3.1. Let A be a C0(X)-algebra and set B = Πx∈XM(A)/J̃x.

Define Φ : M(A) → B by Φ(b) = (b + J̃x)x and set ι = Φ|A : A→ B. Then Φ
is a ∗-isomorphism from M(A) onto Bid, the idealizer of ι(A) in B.

Proof. It is evident that Φ(M(A)) ⊆ Bid. Moreover, Φ is injective by Proposi-
tion 1.4 (iii). It follows from Proposition 1.1 (v) that ι(A) is an essential ideal
of Bid and so there exists an injective ∗-homomorphism θ : Bid → M(A) such
that θ(ι(a)) = a for all a ∈ A [28, 3.12.8].

Let b = (bx)x ∈ Bid. We claim that Φ(θ(b)) = b. To see this, first note that
for each a ∈ A, bι(a) = ι(c) for some c ∈ A. Hence for each x ∈ X ,

θ(b)a+ J̃x = θ(b)θ(ι(a)) + J̃x

= θ(bι(a)) + J̃x = θ(ι(c)) + J̃x

= c+ J̃x = bx(a+ J̃x),

the final equality holding because bx(a+ J̃x) is the x-component of ι(c). Sim-

ilarly, aθ(b) + J̃x = (a + J̃x)bx. Since a was arbitrary and (A + J̃x)/J̃x is

essential in M(A)/J̃x (Proposition 1.1 (v)), it follows that θ(b) + J̃x = bx.
Hence Φ(θ(b)) = b, as required. �

We now define a function g from the unit interval [0, 1] to the space C[0, 1] as
follows (where for r ∈ [0, 1], gr is the continuous function on [0, 1] corresponding
to r):

g0(x) = 1 for all x ∈ [0, 1];

for 0 < r ≤ 1/2, gr(x) =





0 (0 ≤ x ≤ r/2)

(2x/r) − 1 (r/2 ≤ x ≤ r)

1 (r ≤ x ≤ 1);

gr = g1/2 for r ≥ 1/2.
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For an element a in a C∗-algebra A, let sp(a) denote the spectrum of a. For
a ≥ 0 let min sp(a) be the smallest number in sp(a). Note that the arbitrary
cozero set U in the following theorem is not to be confused with the set U
defined at the start of Section 2. We will see in Lemma 3.3 (i) and (ii),
however, that the set U defined at the start of Section 2 is indeed a cozero set
in certain circumstances.

Theorem 3.2. Let A be a σ-unital C0(X)-algebra with base map φ and let u be
a strictly positive element in A with ‖u‖ = 1. Let f ∈ Cb(X) with 0 ≤ f ≤ 1,
let U be the cozero set of f and let V = {x ∈ U ∩ Im(φ) | 2min sp(ux) ≤ f(x)}.
Let U and V be the closures of U and V in βX, respectively. Then there exists
b ∈M(A) with 0 ≤ b ≤ 1 such that

(i) b+ J̃x = gf(x)(u+ J̃x) (x ∈ X);

(ii) b ∈ A+Hx ⊆ A+ J̃x for all x ∈ U ;

(iii) 1− b ∈ J̃x for all x ∈ X \ U and 1− b ∈ Hx for all x ∈ βX \ U ;

(iv) ‖(1− b) + J̃x‖ = 1 for all x ∈ V and ‖(1− b) +Hx‖ = 1 for all x ∈ V .

Furthermore,

(v) Hx is not strictly closed in M(A) for all x ∈ (V ∩X) \ U .

Proof. (i) Let B = Πx∈XM(A)/J̃x and define d ∈ B by

dx = gf(x)(u+ J̃x) (x ∈ X).

We wish to show that d ∈ Bid. Let a ∈ A with ‖a‖ = 1, and let ǫ > 0. We
first seek c ∈ A such that ‖dι(a)− ι(c)‖ ≤ ǫ.

Let Y = {P ∈ Prim(A) | ‖a+P‖ ≥ ǫ}, a compact subset of Prim(A). Then
Z := φ(Y ) is a compact subset of X and, for x ∈ X \ Z,

‖dx(a+ J̃x)‖ ≤ ‖a+ J̃x‖ = ‖ax‖ < ǫ

(for, if P ∈ Prim(A) and P ⊇ Jx then φ(P ) = x and so P /∈ Y ). For x ∈ X ,
set cx = a if f(x) = 0 and set cx = gf(x)(u)a ∈ A otherwise.

Case 1: x ∈ X with f(x) = 0. We claim that there exists δ > 0 such that
‖a − gr(u)a‖ < ǫ for all 0 < r < δ. For, if not, there exists a sequence (rk)
tending to zero such that ‖a−grk(u)a‖ ≥ ǫ for all k, contradicting the fact that
grk(u) is an approximate identity for A (see the proof of [28, 3.10.5]). Hence
the claim holds.

Set Nx = f−1([0, δ)), an open neighborhood of x in X . Then for all y ∈ Nx,

‖dy(a+ J̃y)− (cx + J̃y)‖ = ‖gf(y)(u+ J̃y)(a+ J̃y)− (a+ J̃y)‖

≤ ‖gf(y)(u)a− a‖ < ǫ

(note that if f(y) = 0 then gf(y)(u) = 1).

Case 2: x ∈ X with f(x) 6= 0. Set r = f(x) and let

Nx =

{
y ∈ X

∣∣∣∣ r/2 < f(y) < 2r and
2|f(y)− r|

r
< ǫ

}
,
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an open neighborhood of x in X . Then for all y ∈ Nx

‖dy(a+ J̃y)− (cx + J̃y)‖ = ‖gf(y)(u+ J̃y)(a+ J̃y)− gf(x)(u+ J̃y)(a+ J̃y)‖

≤ ‖gf(y) − gr‖∞ ≤
2|f(y)− r|

r
< ǫ.

Since Z is compact, there exist x1, . . . , xn ∈ Z such that the open sets
Nxi

(1 ≤ i ≤ n) cover Z. Since X is a locally compact Hausdorff space,
there exist hi ∈ C0(X)+ (1 ≤ i ≤ n), with each hi vanishing off Nxi

, such
that

∑
i hi(x) = 1 for all x ∈ Z and

∑
i hi(x) ≤ 1 for all x ∈ X \ Z. Let

c =
∑n

i=1 µ(hi)c
xi ∈ A.

For all x ∈ X , c + Jx =
∑

i hi(x)(c
xi + Jx) and so, since (A + J̃x)/J̃x is

canonically isomorphic to A/Jx, c+ J̃x =
∑

i hi(x)(c
xi + J̃x). For x ∈ Z,

‖dx(a+ J̃x)− (c+ J̃x)‖ = ‖

n∑

i=1

hi(x)(dx(a+ J̃x)− (cxi + J̃x))‖

≤

n∑

i=1

hi(x)‖(dx(a+ J̃x)− (cxi + J̃x))‖ ≤ ǫ,

and for x ∈ X \ Z,

‖dx(a+ J̃x)− (c+ J̃x)‖ = ‖dx(a+ J̃x)−
n∑

i=1

hi(x)(c
xi + J̃x)‖

≤ (1 −

n∑

i=1

hi(x))‖dx(a+ J̃x)‖+

n∑

i=1

hi(x)‖dx(a+ J̃x)− (cxi + J̃x)‖

≤ (1 −

n∑

i=1

hi(x))ǫ +

n∑

i=1

hi(x)ǫ = ǫ.

Hence
‖dι(a)− ι(c)‖ = sup

x∈X
‖dx(a+ J̃x)− (c+ J̃x)‖ ≤ ǫ.

Since ǫ was arbitrary and ι(A) is norm-closed in B, it follows that dι(a) ∈
ι(A). Similarly ι(a)d ∈ ι(A) and so d ∈ Bid. Let b = Φ−1(d) ∈ M(A) (where
Φ :M(A) → Bid is the ∗-isomorphism of Proposition 3.1). Then, for all x ∈ X ,

b+ J̃x = dx = gf(x)(u+ J̃x).

(ii) Let x ∈ U and set r = f(x) > 0 and a = gr(u) ∈ A. Let ǫ > 0. As in
Case 2 above, let

Nx =

{
y ∈ X

∣∣∣∣ r/2 < f(y) < 2r and
2|f(y)− r|

r
< ǫ

}
,

an open neighborhood of x in X . Then for all y ∈ Nx

‖(b− a) + J̃y‖ = ‖(gf(y)(u)− gf(x)(u)) + J̃y‖

≤ ‖gf(y) − gr‖∞ ≤
2|f(y)− r|

r
< ǫ.
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Hence ‖(b − a) + Hx‖ ≤ ǫ by Lemma 1.5 (i). Since ǫ was arbitrary, b − a ∈

Hx ⊆ J̃x.

(iii) Let x ∈ X \ U . Then f(x) = 0 and so b+ J̃x = 1 + J̃x.
Let x ∈ W := βX \ U . By Lemma 1.5 (i),

‖(1− b) +Hx‖ ≤ sup{‖(1− b) + J̃y‖ | y ∈W ∩X}.

Since W ∩X ⊆ X \ U , it follows that ‖(1− b) +Hx‖ = 0.

(iv) Let x ∈ V . Then min sp(u + J̃x) = min sp(u+ Jx) ≤ f(x)/2 and so

0 = gf(x)(min sp(u+ J̃x) ∈ sp(b + J̃x)

by the spectral mapping theorem. Hence

1 = ‖(1− b) + J̃x‖ ≤ ‖(1− b) +Hx‖ ≤ 1.

By upper semi-continuity, ‖(1− b) +Hx‖ = 1 for all x ∈ V .

(v) Let x ∈ (V ∩ X) \ U . Then 1 − b ∈ J̃x \ Hx by (iii) and (iv). Since

Jx ⊆ Hx ⊆ J̃x and J̃x is the strict closure of Jx inM(A), Hx cannot be strictly
closed in M(A). �

The next three results go towards establishing conditions (i) and (ii) of
Theorem 3.8 when M(A) is a continuous C(βX)-algebra.

Lemma 3.3. Let A be a σ-unital C0(X)-algebra with structure map µ and base
map φ and let u be a strictly positive element of A with ‖u‖ = 1. Suppose that

M(A) is a continuous C(βX)-algebra with base map φ. Define f : X → [0, 1]

by f(x) = (1 − ‖(1 − u) +Hx‖)
1

2 for x ∈ Im(φ) ∩ X and f(x) = 0 otherwise.
Then

(i) Im(φ) ∩X is clopen in X and f is continuous;
(ii) for x ∈ X, f(x) > 0 if and only if µ(C0(X)) ∩A 6⊆ Jx;
(iii) if x ∈ X and 0 < f(x) ≤ 1

2 then 2min sp(ux) ≤ f(x).

Proof. (i) Since Prim(M(A)) is compact, Im(φ) is compact and hence is the
closure of Im(φ) in βX . On the other hand,

Im(φ) = {x ∈ βX | Hx 6=M(A)},

which is the union (over b ∈ M(A)) of the cozero sets of the continuous func-
tions x→ ‖b+Hx‖ (x ∈ βX). Thus Im(φ) is clopen in βX and hence Im(φ)∩X
(which is the closure of Im(φ) in X) is clopen in X . Since x→ ‖(1− u)+Hx‖
is continuous on βX and hence on Im(φ) ∩X , it follows that f is continuous.

(ii) Let x ∈ X . Suppose that f(x) > 0. Then x ∈ Im(φ) and so Hx 6=M(A)
and u /∈ Hx. Hence Jx 6= A and x ∈ Im(φ). Since ‖(1− u) +Hx‖ < 1, u+Hx

is invertible in M(A)/Hx. So no primitive ideal of M(A) containing Hx can
contain A. It follows from Lemma 2.1 that µ(C0(X)) ∩ A 6⊆ Jx

Conversely, suppose that µ(C0(X)∩A 6⊆ Jx. Since u+Jx is strictly positive
in the unital algebra A/Jx, it is invertible. By Proposition 2.2 (iii), u+Hx is
invertible in M(A)/Hx and hence ‖(1− u) +Hx‖ < 1. Thus f(x) > 0.
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(iii) Let x ∈ X and suppose that 0 < f(x) ≤ 1
2 . Then

f(x) ≥ 2(f(x))2 = 2min sp(u+Hx).

But, since f(x) > 0, µ(C0(X))∩A 6⊆ Jx and so A/Jx is canonically isomorphic
to M(A)/Hx (Proposition 2.2 (iii)). Hence sp(u+Hx) = sp(ux). �

Proposition 3.4. Let A be a σ-unital C0(X)-algebra with structure map µ
and suppose that M(A) is a continuous C(βX)-algebra with structure map µ.
Let

U = {x ∈ X | µ(C0(X)) ∩A 6⊆ Jx}

and let U be the closure of U in βX. Then U ∩X, the closure cl(U) of U in
X, is open in X.

Proof. With u and f as in Lemma 3.3, U is the cozero set of f by Lemma 3.3
(ii). If U is closed in X then there is nothing to prove. So we may assume that
(U ∩ X) \ U is nonempty. Let b ∈ M(A) be constructed as in Theorem 3.2.
By Theorem 3.2 (iii), ‖(1− b) +Hx‖ = 0 for all x ∈ βX \ U and hence for all
x ∈ X \ (U ∩X).

Recalling that U ⊆ Im(φ)), let V = {x ∈ U | 2min sp(ux) ≤ f(x)} and let
V be the closure of V in βX . Then {x ∈ U | 0 < f(x) ≤ 1

2} ⊆ V by Lemma 3.3

(iii). Let x ∈ (U ∩ X) \ U and let (xα) be a net in U that is convergent to
x. Then f(xα) → f(x) = 0 and so xα ∈ V eventually, from which it follows
that x ∈ V . Thus ‖(1− b) +Hx‖ = 1 for all x ∈ (U ∩X) \ U by Theorem 3.2
(iv). The function x→ ‖(1− b) +Hx‖ is continuous on βX , and hence on X ,
and takes the value 1 on the nonempty set (U ∩ X) \ U and the value 0 on
X \ (U ∩ X). It follows that X \ (U ∩ X) is closed in X and hence U ∩X is
open in X . �

Proposition 3.5. Let A be a σ-unital C0(X)-algebra with structure map µ
and suppose that M(A) is a continuous C(βX)-algebra with structure map µ.
Let

U = {x ∈ X | µ(C0(X)) ∩A 6⊆ Jx}

and let U be the closure of U in βX. Then U ∩X, the closure cl(U) of U in
X, is canonically homeomorphic to a subset of βU .

Proof. Suppose that cl(U) is not canonically homeomorphic to a subset of βU .
Then by Lemma 2.5 there is a point y ∈ cl(U)\U and disjoint zero sets Y and
Z of U such that y lies in the closures of both Y and Z. With u and f as in
Lemma 3.3, let b ∈ M(A) be an element with the properties of Theorem 3.2.
Recalling that U ⊆ Im(φ), set V = {x ∈ U | 2min sp(ux) ≤ f(x)}. Then
{x ∈ U | 0 < f(x) ≤ 1

2} ⊆ V by Lemma 3.3 (iii) and ‖(1− b)+Hx‖ = 1 for all
x ∈ V by Theorem 3.2 (iv).

By [20, 1.15], there is a continuous function g on U with 0 ≤ g ≤ 1 such
that g(Y ) = {0} and g(Z) = {1}. Let Ib = norm-cl(A(1 − b)A), a closed two-
sided ideal of A. If P ∈ Prim(A) and Ib 6⊆ P then φ(P ) ∈ U by Theorem 3.2
(iii). It follows that g ◦ φ defines a continuous bounded function on Prim(Ib)
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and hence induces a unique central multiplier zg of Ib via the Dauns-Hofmann
isomorphism for ZM(Ib). Extending zg to be the zero multiplier on I⊥b , we
may regard zg as a central element ofM(Ib+ I

⊥
b ). Since Ib+ I

⊥
b is an essential

ideal of A, M(A) ⊆ M(Ib + I⊥b ). Hence zg(1 − b) = (1 − b)zg ∈ M(Ib + I⊥b ).
Using an approximate identity for A, we see that (1− b)a, a(1− b) ∈ Ib for all
a ∈ A, and hence that zg(1−b)a ∈ Ib ⊆ A and azg(1−b) = a(1−b)zg ∈ Ib ⊆ A.
So zg(1−b) is in the idealizer Aid of A inM(Ib+I

⊥
b ). Since Ib+I

⊥
b is essential

in its multiplier algebra, A is essential in Aid and so there is a ∗-isomorphism Φ
of Aid intoM(A) such that Φ(a) = a for all a ∈ A. It follows that if a ∈ Ib+I

⊥
b

then

(zg(1− b)− Φ(zg(1 − b)))a = 0 = a(zg(1 − b)− Φ(zg(1 − b)))

and so zg(1− b) = Φ(zg(1 − b)) ∈M(A).
Let x ∈ U , a ∈ A and P ∈ Prim(A) with P ⊇ Jx. If Ib 6⊆ P then

zg(1 − b)a+ (P ∩ Ib) = g(x)(1 − b)a+ (P ∩ Ib)

and so zg(1−b)a−g(x)(1−b)a ∈ P ∩Ib ⊆ P . On the other hand, if Ib ⊆ P then
zg(1−b)a−g(x)(1−b)a ∈ Ib ⊆ P . Thus in either case zg(1−b)a−g(x)(1−b)a ∈
P . Since this is true for all such P , (zg(1−b)−g(x)(1−b))a ∈ Jx and similarly
a(zg(1 − b) − g(x)(1 − b)) ∈ Jx. Hence, using Proposition 2.2 (i), we obtain
that

zg(1− b)− g(x)(1 − b) ∈ J̃x = Hx (x ∈ U).

It now follows that ‖zg(1 − b) + Hx‖ = ‖(1 − b) + Hx‖ for all x ∈ Z and
‖zg(1−b)+Hx‖ = 0 for all x ∈ Y . Since M(A) is a continuous C(βX)-algebra
and y is in the closure of Y , we obtain that ‖zg(1− b)+Hy‖ = 0. On the other
hand, let (xα) be a net in Z converging to y. Then f(xα) → f(y) = 0 and so
we may assume that f(xα) ≤

1
2 for all α. Then xα ∈ V and

‖zg(1− b) +Hxα
‖ = ‖(1− b) +Hxα

‖ = 1

for all α, by the first paragraph of the proof. Since xα → y, ‖zg(1−b)+Hy‖ =
1 by the (upper semi-)continuity of the norm function. This contradiction
establishes the result. �

The next two lemmas are needed in order to establish condition (iii) of
Theorem 3.8 when M(A) is a continuous C(βX)-algebra.

Lemma 3.6. Let A be a σ-unital continuous C0(X)-algebra with structure map
µ and base map φ and let V be a nonempty open subset of X such that A/Jx is
unital for each x ∈ V . Then there exists x ∈ V such that µ(C0(X)))∩A 6⊆ Jx.

Proof. For all x ∈ V , (A + J̃x)/J̃x is canonically isomorphic to A/Jx and

so, being a unital essential ideal, must equal M(A)/J̃x. Let u be a strictly
positive element of A with ‖u‖ = 1. Then, for all x ∈ V , ux is invertible and

so ‖(1− u) + J̃x‖ < 1. For every ǫ ≥ 0, the set {x ∈ X | ‖(1− u) + J̃x‖ > ǫ} is
open, being the image under the open map φ of the open set {P ∈ Prim(A) |

‖(1 − u) + P̃‖ > ǫ} by Proposition 1.1 (iv) (note that if ‖(1 − u) + J̃x‖ > 0

then Jx 6= A). Hence the function x → ‖(1 − u) + J̃x‖ (x ∈ X) is lower
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semi-continuous on X . Since V is open in X , V is a locally compact Hausdorf
space, hence a Baire space, and so any lower semi-continuous function on V
has a point of continuity [13, B18]. Thus there exists x ∈ V with an open

neighborhoodW ⊆ V and ǫ > 0 such that ‖(1−u)+ J̃y‖ < 1− ǫ for all y ∈W .

Hence min sp(u+ J̃y) > ǫ for all y ∈W .
Let g : [0,∞) → [0, 1] be a continuous function such that g(0) = 0 and

g(t) = 1 for all t ≥ ǫ. Let w = g(u) ∈ A and observe that w+Jy is the identity
of A/Jy for all y ∈ W . Choose f ∈ C0(X) such that f(x) = 1 and f(y) = 0
for all y ∈ X \W . For all a ∈ A and all y ∈ X ,

(µ(f)a− µ(f)wa)y = f(y)(ay − wyay) = 0.

Thus µ(f)a = µ(f)wa and similarly aµ(f) = aµ(f)w. Hence µ(f) = µ(f)w ∈
A. Since A/Jx is unital, Jx 6= A and so Lemma 2.1 ((i) implies (ii)) yields the
result. �

In the next lemma we do not require the C0(X)-algebra A to be continuous.

Lemma 3.7. Let A be a σ-unital C0(X)-algebra and let

Y = {x ∈ Im(φ) | A/Jx is nonunital}.

Suppose that z is a non-BD-point in X and that z has a neighborhood N in
X such that Y ∩N is dense in N . Then there exists c ∈ M(A) such that the
norm function x→ ‖c+Hx‖ (x ∈ X) is discontinuous at z.

Proof. Since z is not a BD-point in X , there exists a cozero set S and an open
set T such that z ∈ cl(S) ∩ cl(T ) but z /∈ cl(S ∩ T ). Replacing T by T \ cl(S),
we may assume that S ∩ T = ∅. Let u be a strictly positive element of A
with ‖u‖ = 1. Then for all x ∈ Y , min sp(ux) = 0 since A/Jx is nonunital.
Applying Theorem 3.2 to the cozero set S, we obtain b ∈M(A) with 0 ≤ b ≤ 1

such that 1− b ∈ J̃x for all x ∈ X \S and ‖(1− b)+Hx‖ = 1 for all x ∈ S ∩Y .
Let V be an arbitrary open neighborhood of z contained in N . Since z ∈

cl(S), V ∩ S is a nonempty open set contained in N and hence contains some
point y ∈ Y . Then y ∈ S ∩ Y and so ‖(1 − b) + Hy‖ = 1. Since y ∈ V
and V was arbitrary, it follows from the upper semi-continuity of the norm
function that ‖(1 − b) + Hz‖ = 1. On the other hand, applying Lemma 1.5
(i) to any open subset of βX whose intersection with X is T , we obtain that
‖(1 − b) +Hx‖ = 0 for all x ∈ T since T ⊆ X \ S. Since z ∈ cl(T ), it follows
that the norm function of 1− b is discontinuous at z. �

We are now in a position to obtain the main result of the paper which is
the converse of Theorem 2.9.

Theorem 3.8. Let A be a σ-unital continuous C0(X)-algebra with structure
map µ and base map φ, let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx},

and let cl(U) be the closure of U in X. Then M(A) is a continuous C(βX)-
algebra with structure map µ if and only if
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(i) cl(U) is clopen in X;
(ii) cl(U) is canonically homeomorphic to a subset of βU ;
(iii) every point of cl(Im(φ)) \ cl(U) is a BD-point of X.

Moreover, when these conditions hold, cl(Im(φ)) is clopen in X and cl(Im(φ))\
cl(U) is basically disconnected.

Proof. The “if” part of the result is Theorem 2.9. Conversely, suppose that
M(A) is a continuous C(βX)-algebra with structure map µ. Then cl(Im(φ))
is clopen in X (see the proof of Lemma 3.3 (i)). Also, Im(φ) is open in X since
A is a continuous C0(X)-algebra.

Conditions (i) and (ii) follow from Propositions 3.4 and 3.5 respectively.
For condition (iii), we may suppose that cl(Im(φ)) \ cl(U) is nonempty (for
otherwise there is nothing to prove). Let Y = {x ∈ Im(φ) | A/Jx is nonunital}.
If V is any nonempty open subset of the clopen set cl(Im(φ)) \ cl(U) then
V ∩ Im(φ) is also a nonempty open subset. Since it is disjoint from U , it must
contain an element of Y by Lemma 3.6. Thus Y ∩(cl(Im(φ))\cl(U)) is dense in
cl(Im(φ)) \ cl(U). Since M(A) is a continuous C(βX)-algebra, it follows from
Lemma 3.7 that every x ∈ cl(Im(φ)) \ cl(U) is a BD-point in X and hence is a
BD-point of the clopen set cl(Im(φ)) \ cl(U). �

If A is separable then we can extract some further information from Theo-
rem 3.8.

Corollary 3.9. Let A be a separable continuous C0(X)-algebra with structure
map µ and base map φ and let

U = {x ∈ X | µ(C0(X)) ∩ A 6⊆ Jx}.

If M(A) is a continuous C(βX)-algebra with structure map µ then

(i) U is clopen in Im(φ);
(ii) every point of Im(φ) \ U is an isolated point of X.

Conversely, if (i) and (ii) hold and X = Im(φ) then M(A) is a continuous
C(βX)-algebra with structure map µ.

Proof. Suppose first that M(A) is a continuous C(βX)-algebra with structure
map µ. Then A satisfies conditions (i), (ii), and (iii) of Theorem 3.8. Fur-
thermore, Im(φ) is second countable, being the image of the second countable
space Prim(A) [13, 3.3.4] under the continuous open map φ.

In particular, each point x ∈ cl(U) ∩ Im(φ) has a countable neighborhood
base in Im(φ), and hence in X since Im(φ) is open in X . Thus each x ∈
cl(U) ∩ Im(φ) has a countable neighborhood base in the subspace cl(U) of X .
But by condition (ii) of Theorem 3.8 we have the inclusions U ⊆ cl(U)∩Im(φ) ⊆
cl(U) ⊆ βU . It follows, since cl(U) is dense in the compact space βU , that
each x ∈ cl(U)∩ Im(φ) has a countable neighborhood base in βU , cp. [20, 9.7].
But no point of βU \U has a countable neighborhood base in βU [20, Cor. 9.6].
Hence cl(U) ∩ Im(φ) = U , so U is clopen in Im(φ), establishing (i).

Similarly, each point x ∈ Im(φ)\cl(U) = Im(φ)\U has a countable neighbor-
hood base in X , and hence in the basically disconnected space cl(Im(φ))\cl(U).
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But in a basically disconnected space, a point with a countable neighbor-
hood base is isolated [20, 14N]. Thus each x ∈ Im(φ) \ U is isolated in
cl(Im(φ)) \ cl(U), which is a clopen subset of X , and is therefore isolated
in X itself. This establishes (ii).

For the converse, suppose that (i) and (ii) hold and that X = Im(φ). Then
it is trivial that conditions (i), (ii), and (iii) of Theorem 3.8 hold. Hence M(A)
is a continuous C(βX)-algebra with structure map µ. �

4. Applications

In this section we give some applications of Theorem 3.8. Our first ap-
plication is to C∗-algebras A for which the locally compact space Prim(A) is
Hausdorff. It is well-known that A is then a continuous C0(Prim(A))-algebra
[13, 3.9.11]. We may take X = Prim(A) and φ = id, so that µ is the re-
striction to C0(Prim(A)) of the Dauns-Hofmann isomorphism θA. In this case,
JP = P for all P ∈ Prim(A) and the mapping φ : Prim(M(A)) → βX satisfies

φ(P̃ ) = φ(P ) = P (P ∈ Prim(A)). Since θ−1
A (Z(A)) ⊆ C0(Prim(A)), the set

U := {P ∈ X | µ(C0(X)) ∩ A 6⊆ JP }

takes the form U = {P ∈ Prim(A) | Z(A) 6⊆ P}, where Z(A) is the center
of A. With this notation, we immediately obtain the following corollary from
Theorem 3.8.

Theorem 4.1. Let A be a σ-unital C∗-algebra with Hausdorff primitive ideal
space X = Prim(A) and let U = {P ∈ Prim(A) | Z(A) 6⊆ P}. Then M(A) is a
continuous C(βX)-algebra with base map id : Prim(M(A)) → βX if and only
if

(i) cl(U) is clopen in Prim(A);
(ii) cl(U) is canonically homeomorphic to a subset of βU ;
(iii) every point of Prim(A) \ cl(U) is a BD-point of Prim(A).

The conditions in Theorem 4.1 simplify substantially in the case U = ∅,
which holds if and only if Z(A) = {0}. In particular this applies when A is a
stable C∗-algebra.

Corollary 4.2. Let A be a σ-unital C∗-algebra with Hausdorff primitive ideal
space X = Prim(A) and suppose that Z(A) = {0} (e.g. if A is stable). Then

M(A) is a continuous C(βX)-algebra with base map id : Prim(M(A)) → βX
if and only if Prim(A) is basically disconnected.

A second countable, basically disconnected space is discrete [20, 14.N], so
Corollary 4.2 implies the following.

Corollary 4.3. Let A be a stable separable C∗-algebra with Hausdorff primitive
ideal space X = Prim(A). Then M(A) is a continuous C(βX)-algebra with
base map id : Prim(M(A)) → βX if and only if Prim(A) is discrete.
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Theorem 4.1 raises the question of characterizing the space βX and inves-
tigating the nature of the ideals Hx of M(A). In fact, it is a consequence of
the Dauns-Hofmann theorem that βX in Theorem 4.1 is homeomorphic to the
maximal ideal space ∆ of ZM(A) which is in turn homeomorphic to the com-
plete regularization Glimm(M(A)) of Prim(M(A)). The ideals Hx of M(A)
(x ∈ βX) are the Glimm ideals of M(A) (generated by the ideals in ∆ [21]).

It is easy to see that the ideals Hx need not be maximal ideals in M(A)
even when Prim(A) is Hausdorff. For example, if A = LC(H), the algebra of
compact linear operators on an infinite-dimensional Hilbert space, then X (=
βX) is a singleton set containing the zero ideal {0}, and H{0} = {0} which is
a primitive but nonmaximal ideal of M(A) = B(H). This phenomenon occurs
whenever A has a nonunital primitive quotient.

Even when all the primitive quotients of A are unital and Prim(A) is Haus-
dorff, it is still possible for Prim(M(A)) to be non-Hausdorff.

Example 4.4. Let B = C∗
r (F2), where F2 is the free group on two genera-

tors, and let A = c0 ⊗ B. Then Prim(A) is homeomorphic to N and hence is
Hausdorff, and the set U of Theorem 4.1 is equal to Prim(A) so M(A) is a
continuous βN-algebra. For x ∈ βN \ N, the quotient M(A)/Hx is an ultra-
power of B, and hence is a primitive but nonsimple C∗-algebra [19, Thm. 5.4,
Cor. 5.5]. Thus Prim(M(A)) is non-Hausdorff.

Our next application is to quasi-standard C∗-algebras. These can be defined
in various equivalent ways but perhaps the easiest one for our present purposes
is that A is quasi-standard if A is a continuous C0(X)-algebra with X = Im(φ)
such that Jx is a primal ideal of A for each x ∈ Im(φ) [6, Thm. 3.4]. Recall that
a closed two-sided ideal J of a C∗-algebra A is primal if, whenever n ≥ 2 and
I1, . . . , In are closed two-sided ideals of A with product zero, then there exists
j ∈ {1, . . . , n} such that Ij ⊆ J [5]. Every primitive ideal is prime and hence
primal, so the algebra M(A) in Example 4.4 is quasi-standard. Similarly, if
Prim(A) is Hausdorff then A is quasi-standard. Von Neumann algebras are
quasi-standard and so too are many group C∗-algebras, for example those of
the discrete and continuous Heisenberg groups [21], [26], [1], [23].

The main reason for considering primal ideals in this context is that they
are the limits of nets of primitive ideals in an appropriate topology [4]. Thus,
if A is a continuous C0(X)-algebra and Jx is primitive for x in a dense subset
of X then Jx will be primal for all x ∈ X , and a converse statement holds
if A is separable [6, 3.4, 3.5]. Primal ideals have found a number of other
applications in the theory of C∗-algebras. It was shown in [5] that a state of
a C∗-algebra is a weak∗-limit of factorial states if and only if the kernel of the
GNS representation is a primal ideal. Primal ideals play a crucial role in the
solution of the isometry problem for the central Haagerup tensor product [9]
and in the study of norms of inner derivations [29], [7], [8].

Lemma 4.5. Let J be a proper, closed, two-sided ideal of a C∗-algebra A and
suppose that J is a primal ideal of A. Then J̃ is a primal ideal of M(A).

Münster Journal of Mathematics Vol. 4 (2011), 73–100



Multiplier algebras of C0(X)-algebras 95

Proof. Suppose that n ≥ 2 and I1, . . . , In are closed two-sided ideals of M(A)
such that I1I2 . . . In = {0}. Then

(I1 ∩A)(I2 ∩A) . . . (In ∩ A) = {0}

and so there exists j such that Ij ∩ A ⊆ J . For b ∈ Ij and a ∈ A, we have

ab, ba ∈ Ij ∩A ⊆ J and so b ∈ J̃ . Thus Ij ⊆ J̃ . �

Proposition 4.6. Let A be a continuous C0(X)-algebra with base map φ such
that Jx is a primal ideal of A for all x ∈ X. Let y ∈ βX and suppose that for
all b ∈ M(A) the function x → ‖b +Hx‖ (x ∈ βX) is continuous at y. Then
Hy is a primal ideal of M(A).

Proof. Suppose that n ≥ 2 and b1, . . . , bn ∈M(A) \Hy. There exists an open
neighborhood V of y in βX such that ‖bj + Hx‖ > 0 for 1 ≤ j ≤ n and all
x ∈ V . For 1 ≤ j ≤ n, let

Uj := {x ∈ X | ‖bj + J̃x‖ > 0} = φ({P ∈ Prim(A) | ‖bj + P̃‖ > 0}).

Since A is a continuous C0(X)-algebra, φ is open and so Uj is an open subset
of X . But since X is locally compact, it is open in βX [20, 3.15(d)] and so Uj

is open in βX .
Let W be a nonempty open subset of V and let x ∈W . By Lemma 1.5 (i),

0 < ‖bj +Hx‖ ≤ sup{‖bj + J̃t‖ | t ∈W ∩X}.

So Uj ∩ W is nonempty and hence Uj ∩ V is a dense open subset of V . It
follows that

⋂n
j=1 Uj is a nonempty subset of X . So there exists x ∈ X such

that, for 1 ≤ j ≤ n, bj /∈ J̃x.

By Lemma 4.5, J̃x is a primal ideal of M(A) and so

b1M(A)b2M(A) . . . bn−1M(A)bn 6= {0}.

It follows that Hy is a primal ideal of M(A). �

One important fact about a quasi-standard C∗-algebra A is that the space
X such that A is a continuous C0(X)-algebra with X = Im(φ) and Jx primal
for all x ∈ X is unique. Indeed X is the complete regularization of Prim(A)
[20, 3.9], [6, 3.3 and 3.4]. For a general C∗-algebra A, let φA : Prim(A) → X
denote the complete regularization map. If A is not quasi-standard then X
need not be locally compact. However, it is always possible to form Jx :=⋂
{P ∈ Prim(A) | φA(P ) = x} for each x ∈ X . The ideals Jx (x ∈ X) are

called the Glimm ideals of A and we set Glimm(A) = {Jx | x ∈ X}, with the
complete regularization topology.

If A is quasi-standard then Glimm(A) coincides with the space of minimal
primal ideals of A. For convenience, we take X = Glimm(A) in this case.
The corresponding structure map µ : C0(X) → ZM(A) is given by µ(f) =
θA(f ◦ φA) (f ∈ C0(X)). For each G ∈ X = Glimm(A),

JG =
⋂

{P ∈ Prim(A) | φA(P ) = G} =
⋂

{P ∈ Prim(A) | P ⊇ G} = G.
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Thus the set U of Section 2 is defined by

U = {G ∈ Glimm(A) | µ(C0(Glimm(A))) ∩A 6⊆ G}.

Clearly, µ(C0(Glimm(A))) ∩ A ⊆ ZM(A) ∩ A = Z(A). Conversely, suppose

that z ∈ Z(A) and let h = θ−1
A (z) ∈ Cb(Prim(A). Then h(P )1 + P̃ = z + P̃

for all P ∈ Prim(A). The function h induces f ∈ Cb(Glimm(A)) such that
h = f ◦ φA. Let ǫ > 0. Since z ∈ A, there exists a compact subset K of
Prim(A) such that

|h(P )| = ‖z + P̃‖ = ‖z + P‖ < ǫ (P ∈ Prim(A)).

Then φA(K) is a compact subset of Glimm(A) such that |f(G)| < ǫ for all
G ∈ Glimm(A) \ φA(K). Thus f ∈ C0(Glimm(A)) and

µ(f) = θA(f ◦ φA) = θ(h) = z.

It follows that
U = {G ∈ Glimm(A) | Z(A) 6⊆ G}.

The existence of a homeomorphism between βGlimm(A) and Glimm(M(A))
is well-known (see, for example, [2, p. 88]) but we provide some details in order
to establish equation (1) below.

Proposition 4.7. Let A be a C∗-algebra. Then there is a homeomorphism

ι : βGlimm(A) → Glimm(M(A))

such that

(1) ι(φA(P )) = φM(A)(P̃ ) (P ∈ Prim(A)).

Proof. Applying the Dauns-Hofmann theorem both to A and to M(A), we
obtain ∗-isomorphisms

Φ : C(βGlimm(A)) → ZM(A) and Ψ : C(Glimm(M(A))) → ZM(A)

such that Φ(f) = θA(f ◦ φA) and Ψ(g) = θM(A)(g ◦ φM(A)). By the Banach-
Stone theorem, there exist homeomorphisms

j : βGlimm(A) → ∆ := Max(ZM(A)) and k : ∆ → Glimm(M(A))

such that

Φ(f) +m = f(j−1(m))1 +m and Ψ(g) +m = g(k(m))1 +m

for all m ∈ ∆, f ∈ C(βGlimm(A)) and g ∈ C(Glimm(M(A))). We define
ι = k ◦ j.

Let P ∈ Prim(A) and set m = P̃ ∩ ZM(A) ∈ ∆. Let f ∈ C(βGlimm(A))
and write z = Φ(f). Since

z − f(φA(P ))1 ∈ P̃ ∩ ZM(A) = m

and z − f(j−1(m))1 ∈ m, we obtain f(φA(P )) = f(j−1(m)). Since f was
arbitrary, φA(P ) = j−1(m).

Now let g ∈ C(Glimm(M(A))) and write z = Ψ(g). Since

z − g(φM(A)(P̃ ))1 ∈ P̃ ∩ ZM(A) = m
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and z − g(k(m))1 ∈ m, we obtain g(φM(A)(P̃ )) = g(k(m)). Since g was

arbitrary, φM(A)(P̃ ) = k(m). Hence

ι(φA(P )) = (k ◦ j)(φA(P )) = k(m) = φM(A)(P̃ ).

�

Theorem 4.8. Let A be a σ-unital C∗-algebra and let

U = {G ∈ Glimm(A) | Z(A) 6⊆ G}.

Then M(A) is quasi-standard if and only if

(i) A is quasi-standard;
(ii) cl(U) is clopen in Glimm(A);
(iii) cl(U) is canonically homeomorphic to a subset of βU ;
(iv) Glimm(A) \ cl(U) is basically disconnected.

Proof. Suppose that conditions (i)-(iv) hold. By Theorem 3.8, M(A) is a
continuous C(βX)-algebra (with X = Glimm(A)) with respect to the sur-

jective mapping φA : Prim(M(A)) → βX . Since A is quasi-standard, every
G ∈ Glimm(A) is a primal ideal of A. By Proposition 4.6, Hx is a primal ideal

of M(A) for all x ∈ βX . Since φA is surjective, Hx 6= M(A) for all x ∈ βX
and so it follows from [6, Thm. 3.4] that M(A) is quasi-standard.

Conversely, suppose that M(A) is quasi-standard, and set Y = Glimm
(M(A)). Then M(A) is a continuous C(Y )-algebra with respect to the com-
plete regularization map φM(A) : Prim(M(A)) → Y . By Proposition 4.7,
there exists a homeomorphism ι : βGlimm(A) → Glimm(M(A)) such that

ι(φA(P )) = φM(A)(P̃ ) for all P ∈ Prim(A). Since {P̃ | P ∈ Prim(A)} is a

dense subset of Prim(M(A)), it follows by continuity that ι ◦ φA = φM(A).

Hence M(A) is a continuous C(βGlimm(A))-algebra with respect to φA. It
follows from Theorem 3.8 that conditions (ii)-(iv) hold. Finally, A is quasi-
standard because it is an ideal of M(A) (see [6, p. 356]). �

As with Theorem 4.1, the conditions in Theorem 4.8 simplify substantially
in the case U = ∅, which holds if and only if Z(A) = {0}.

Corollary 4.9. Let A be a σ-unital C∗-algebra with Z(A) = {0}. Then M(A)
is quasi-standard if and only if

(i) A is quasi-standard;
(ii) Glimm(A) is basically disconnected.

At the other extreme, recall that a C∗-algebra is quasi-central if Z(A) 6⊆ P
for all P ∈ Prim(A) [12]. It is easily seen that A is quasi-central if and only if
U = Glimm(A). In the following result, we do not need to assume that A is
σ-unital.

Corollary 4.10. Let A be a quasi-central C∗-algebra. Then M(A) is quasi-
standard if and only if A is quasi-standard.
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Proof. Suppose that A is quasi-standard. Since U = Glimm(A), it follows
from Propositions 2.3 and 2.8 thatM(A) is a continuous C(βX)-algebra (with

X = Glimm(A)) with respect to the surjective mapping φA : Prim(M(A)) →
βX . Hence, as in the proof of Theorem 4.8, M(A) is quasi-standard. �

In particular, if A is an n-homogeneous C∗-algebra then Prim(A) is Haus-
dorff and A is quasi-central so it follows from Corollary 4.10 that M(A) is
quasi-standard.

Now let A be a σ-unital subhomogeneous C∗-algebra. Since every nonzero
ideal in A is subhomogeneous, and therefore contains a nonzero homogeneous
ideal, it follows that the set {P ∈ Prim(A) | P 6⊇ Z(A)} is dense in Prim(A),
and hence that the set U of Theorem 4.8 is automatically dense in Glimm(A).
Thus conditions (ii) and (iv) are automatically trivially satisfied and we have
the following.

Corollary 4.11. Let A be a σ-unital subhomogeneous C∗-algebra and let U =
{G ∈ Glimm(A) | Z(A) 6⊆ G}. Then M(A) is quasi-standard if and only if

(i) A is quasi-standard;
(ii) Glimm(A) is canonically homeomorphic to a subset of βU .

If A in Corollary 4.11 is also separable and M(A) is quasi-standard then
it follows from condition (i) of Corollary 3.9 that the dense set U equals
Glimm(A), and hence that A is quasi-central. Thus we have that the multiplier
algebra of a separable, subhomogeneous, C∗-algebra A is quasi-standard if and
only if A is quasi-standard and quasi-central.
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[16] M. J. Dupré and R. M. Gillette, Banach bundles, Banach modules and automor-

phisms of C ∗-algebras, Research Notes in Mathematics, 92, Pitman, Boston, MA, 1983.
MR0721812 (85j:46127)

[17] S. Echterhoff and D. P. Williams, Locally inner actions on C0(X)-algebras, J. Operator
Theory 45 (2001), no. 1, 131–160. MR1823065 (2003j:46104)

[18] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961),
233–280. MR0164248 (29 #1547)

[19] L. Ge and D. Hadwin, Ultraproducts of C∗-algebras (English summary), Recent ad-
vances in operator theory and related topics (Szeged, 1999), 305–326, Oper. Theory
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