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Abstract. We prove a law of large numbers and a central and a noncentral limit theorem
for the Curie–Weiss model using the method of moments.

1. Introduction

In this paper, we consider one of the easiest models for magnetism, the
Curie–Weiss model. In this model, the elementary magnets can take values
+1 (spin up) and −1 (spin down). Each spin interacts with all the other spins
with the same strength. This interaction makes it more likely for two spins to
have the same value than to assume opposite values.

More precisely, the spinsX1, . . . , XN are {−1,+1}-valued random variables.
As typical in models of statistical mechanics, the (joint) probability distribu-
tion of the X1, X2, . . . , XN is defined via a function H : {−1,+1}N → R, called
the energy (or Hamiltonian), by the expression

P
(

X1 = x1, X2 = x2, . . . , XN = xN

)

= Z−1e−βH(x1,x2,...,xN ),

where Z is a normalization constant to make P a probability measure, i.e.,

Z =
∑

(x1,x2,...,xN )∈{−1,+1}N

e−βH(x1,x2,...,xN ).

The parameter β ≥ 0 plays the role of an inverse ‘temperature’ T , β = 1
T . If

β = 0, which means T = ∞, the random variables X1, X2, . . . , XN are actually
independent. If β > 0, those X1, X2, . . . , XN which minimize H have higher
probability. In other words, the system prefers states with low energy. This
preference is more and more enhanced if β grows.
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The details of the model under consideration are encoded in the energy
function H . As a rule, H is of the form

H(X1, X2, . . . , XN ) = −
N
∑

i,j=1

Ji,jXiXj.

If all Ji,j ≥ 0 (and not all = 0) the minimum of the energy is attained if the
Xi are ‘aligned’, i.e., all Xi = 1 or all Xi = −1. Thus, those ‘configurations’
with many Xi = 1 (or with many Xi = −1) are more likely than those with
almost equal number of +1 and −1. Such models are called paramagnetic.

Presumably, the most famous example is the energy function of the Ising
model. In this model the indices i of the random variables Xi come from a
finite subset I of the lattice Z

d, and the coupling constants Ji,j are given by

Ji,j =

{

1 if ‖i− j‖ = 1,

0 otherwise.

So, in the Ising model only spins which are nearest neighbors interact with
each other.

In this paper, we consider the easiest non trivial model of magnetisms, the
Curie–Weiss model. In this system every spin interacts with every other spin,
more precisely, the spin Xi interacts with the average of all spins, namely,

H(x1, x2, . . . , xN ) = −1

2

N
∑

i=1

xi ·
(

1

N

N
∑

j=1

xj

)

= − 1

2N

N
∑

i,j=1

xixj .

The Curie–Weiss model is interesting since it is accessible to mathematical
methods (even not too sophisticated ones) and yet has a number of interesting
properties physicists expect of a paramagnetic system, like a phase transition
from a purely paramagnetic phase to a ferromagnetic phase. We will explain
this in detail in the next section.

The results we describe and prove below are not new, but rather well-known
to the community. However, the proofs we present are certainly not standard,
and rather elementary. We use the moment method to prove both a ‘law of
large numbers’ as well as a ‘central limit theorem’ and a ‘non-central limit
theorem’.

We remark that Ellis and Newman [9] mention that the method of moments
can be used to prove such results. However, these authors do not carry out
these arguments.

The Curie–Weiss model goes back to Pierre Curie and Pierre Weiss. A
systematic mathematical treatment can be found in [19] and [7]. For the vast
literature on the model, see the references in [7]. We refer in particular to [8]
and [9].

Recently, there has been increasing interest in proving limit results for
Curie–Weiss models with two or more groups, see [2, 3, 4, 5, 14, 15, 16, 17].

Besides describing magnetic systems, the Curie–Weiss model is also used
to model voting behavior in various election models, where Xi = 1 (resp.
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Xi = −1) means the voter i votes ‘yes’ (resp. ‘no’). The basic idea is that
voters tend to vote in a similar way as the other voters in their constituency
(see [6, 11, 12, 13]).

2. Definitions and results

Definition 2.1. For N ∈ N and x1, x2, . . . , xN ∈ {−1,+1}, set

HN (x1, x2, . . . , xN ) = − 1

2N

( N
∑

i=1

xi

)2

.

The Curie–Weiss distribution CW (β,N) is the probability measure Pβ,N on
{−1,+1}N defined by

Pβ,N({(x1, x2, . . . , xN )}) = Z−1e−βHN (x1,x2,...,xN ) = Z−1e
β

2N (
∑N

i=1 xi)
2

.

Here, β ≥ 0 is called the inverse temperature and Z is a normalization constant
so that Pβ,N is a probability, i.e.,

Z =

N
∑

x1,x2,...,xN=1

e
β

2N (
∑

N
i=1 xi)

2

.

By Eβ,N , we denote the expectation with respect to the probability measure
Pβ,N .

We say that a sequence X1, X2, . . . , XN of {−1,+1}-valued random vari-
ables on a probability space (Ω,A,P) is Curie–Weiss distributed with inverse
temperature β = 1

T ≥ 0 (or CW (β,N)-distributed) if

P
(

X1 = x1, X2 = x2, . . . , XN = xN

)

= Z−1e
β

2N (
∑N

i=1 xi)
2

.

If X1, X2, . . . , XN are CW (β,N)-distributed, we call

SN :=
N
∑

i=1

Xi

the total magnetization of the X1, X2, . . . , XN .

Remark 2.2. Suppose X1, X2, . . . , XN are CW (β,N)-distributed random
variables. Since the function HN is invariant under permutation of its ar-
guments, the random variables X1, X2, . . . , XN are exchangeable. In partic-
ular, Eβ,N(XiXj) = Eβ,N(X1X2) for i 6= j. Moreover, Eβ,N (Xi) = 0, as
Pβ,N(Xi = ±1) = 1

2 and Eβ,N(X2
i ) = 1; in fact, X2

i = 1.

In the following we will be concerned with a scheme of random variables

X
(N)
i , with N = 1, 2 . . . and i = 1, 2, . . . , N,

such that the sequence X
(N)
1 , X

(N)
2 , . . . , X

(N)
N is CW (β,N)-distributed.

We will be interested in the behavior of S
(N)
N =

∑N
i=1 X

(N)
i .

Note, that the joint distributions of, say, X(N)
1 , X(N)

2 and of X(M)
1 , X

(M)
2

are different for N 6= M , since the distribution CW(β,N) depends explicitly
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on N . In fact, a priori, XN
1 and XM

1 are defined on different probability spaces,
so that it does not make sense to speak of quantities like E(X(N)

i X(M)
j ).

With this being said, from now on we drop the superscript (N) and (M)
and simply write

SN =

N
∑

i=1

Xi instead of S
(N)
N =

N
∑

i=1

X
(N)
i

whenever it is clear which N is meant. This is an abuse of notation, but a very
convenient one.

The first result is a kind of a ‘law of large numbers’.

Theorem 2.3. Suppose X1, X2, . . . , XN are CW(β,N)-distributed random

variables and set SN =
∑N

i=1 Xi.

(i) If β ≤ 1, then

1

N
SN =

1

N

N
∑

i=1

Xi
D
=⇒ δ0,

where
D
=⇒ denotes convergence in distribution and δa is the Dirac mea-

sure in a.
(ii) If β > 1, then

1

N
SN =

1

N

N
∑

i=1

Xi
D
=⇒ 1

2
(δ−m(β) + δ−m(β)),

where m(β) > 0 is the unique positive solution of the equation

x = tanh(βx).

Theorem 2.3 shows that there is a phase transition at inverse temperature
β = 1, in the sense that the Curie–Weiss system changes its behavior drastically
at β = 1. Up to this point, a ‘law of large numbers’ holds: The arithmetic
mean of the spins goes to zero (= the expectation value of Xi). Above β = 1,
the limiting distribution of the normalized sum of the spins has two peaks.

We remark that the convergence for β ≤ 1 can be strengthened to conver-
gence in probability if we realize all random variables of the same probability
space.

Given the law of large numbers in Theorem 2.3, one may hope that there is
a central limit theorem for β ≤ 1. This is indeed the case for β < 1.

Theorem 2.4. Suppose X1, X2, . . . , XN are CW(β,N)-distributed random
variables. If β < 1, then

1√
N

SN =
1√
N

N
∑

i=1

Xi
D
=⇒ N

(

0,
1

1− β

)

,

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.
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It follows, in particular, that

Eβ,N

((

1√
N

N
∑

i=1

Xi

)2)

→ 1

1− β
,

while Eβ,N (X2
i ) = 1.

The above result suggests that for β = 1, there is no ‘standard’ central limit
theorem. Indeed, we have:

Theorem 2.5. Suppose X1, X2, . . . , XN are CW (1, N)-distributed random
variables. Then

1

N3/4
SN =

1

N3/4

N
∑

i=1

Xi
D
=⇒ µ,

where µ is a measure with Lebesgue density ρ(x) = Ce−
1
12x

4

.

Since for β > 1 the expression 1
N SN converges to a distribution which is

not concentrated in one point, there is no central limit theorem in the usual
sense that for a suitable constant

1√
N

(SN − c)
D
=⇒ µ.

However, there is a ‘conditional’ version of the central limit theorem. For
details, we refer to [10].

3. Strategy of the proofs

To prove convergence in distribution, we use the method of moments.

Theorem 3.1 (Method of moments). Suppose µn and µ are Borel measures
on R such that all moments

mk(µn) :=

∫

xk dµn and mk(µ) :=

∫

xk dµ

are finite and such that

|mk(µ)| ≤ ACkk!.

If for all k, mk(µn) → mk(µ), then µn =⇒ µ.

For a proof, see, e.g., [1].
To employ Theorem 3.1 we got to estimate expressions of the form

Eβ,N

((

1

Nα

N
∑

i=1

Xi

)K)

,

with α ∈ { 1
2 ,

3
4 , 1}.

We have

(1) Eβ,N

(( N
∑

i=1

Xi

)K)

=

N
∑

x11 ,xi2 ,...,xiK
=1

Eβ,N (Xi1 ·Xi2 · · ·XiK ).
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Note that for pairwise distinct j1, . . . , jℓ

Eβ,N (Xj1 ·Xj2 · · ·Xjℓ) = Eβ,N (X1 ·X2 · · ·Xℓ),

since the measure Pβ,N is invariant under permutations of indices (exchange-
ability).

We observe that Xℓ
i = Xi for odd ℓ and Xℓ

i = 1 for even ℓ. Thus,

(2) Eβ,N (Xi1 ·Xi2 · · ·XiK ) = Eβ,N (X1 ·X2 · · ·Xℓ),

where ℓ ≤ K is the number of indices iν which occur an odd number of times
among i1, . . . , iK .

In the following section, we estimate expectations of the form (2). It turns
out that their behavior in N depends strongly on the parameter β. In Sec-
tions 5 to 7, we use this information to evaluate the moments (1), thus proving
Theorems 2.3, 2.4 and 2.5.

4. Correlations

In this section, we estimate correlations of the form

(3) Eβ,N(X1 ·X2 · · ·Xℓ).

To do so, it is convenient to write the probability distribution Pβ,N in a
form which is more suitable for sending N to infinity. The basic idea, known
in physics as the Hubbard–Stratonovich transform, is to use the equality

(4) ea
2/2 =

1√
2π

∫

R

e−
1
2x

2+ax dx,

which is nothing but 1√
2π

∫

e
1
2 (x−a)2 dx = 1.

This observation allows us to write the correlations (3) in the following form.

Proposition 4.1. Define Fβ(t) :=
1
2β t

2 − ln cosh(t) and set

ZN (ℓ) :=

∫ +∞

−∞
eNFβ(t) tanhℓ(t) dt.

Then, for ℓ ≤ N ,

Eβ,N(X1 ·X2 · · ·Xℓ) =
ZN (ℓ)

ZN (0)
.
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Proof. By (4), we have

TN (ℓ) :=
1

2N

∑

x1,x2,...,xN∈{−1,+1}
x1x2 · · ·xℓe

β

2N (
∑N

i=1 xi)
2

=
1

2N
√
2π

∑

x1,x2,...,xN∈{−1,+1}
x1x2 · · ·xℓ

∫ ∞

−∞
e
− 1

2 s
2+

√

β
√

N
(
∑

N
i=1 xi)s ds

=
1

2N
√
2π

∑

x1,x2,...,xN∈{−1,+1}
x1x2 · · ·xℓ

∫ ∞

−∞
e−N 1

β
t2 dt

=
1

2N
√
2π

∫ ∞

−∞

∑

x2,...,xN∈{−1,+1}

(

∑

x1∈{−1,+1}
x1e

x1t

)

x2 · · ·xℓ

× e−N 1
β
t2

N
∏

i=2

exit dt

=
1

2N−1
√
2π

∫ ∞

−∞

∑

x2,...,xN∈{−1,+1}
sinh(t)x2 · · ·xℓe

−N 1
β
t2

N
∏

i=2

exit dt

=
1

2N−ℓ
√
2π

∫ ∞

−∞

∑

xℓ+1,...,xN∈{−1,+1}
sinhℓ(t)e−N 1

β
t2

N
∏

i=ℓ+1

exit dt

=
1√
2π

∫ ∞

−∞
sinhℓ(s) coshN−ℓ(s)e−N 1

β
t2 dt

=

√
N√
2πβ

∫ ∞

−∞
e−N( t2

2β−ln cosh t) tanhℓ(t) dt.

Consequently,

Eβ,N (X1X2 · · ·Xℓ) =
TN (ℓ)

TN (0)
=

ZN (ℓ)

ZN (0)
. �

By symmetry, we see that ZN (ℓ) = 0 for odd ℓ. To estimate ZN (ℓ) for
even ℓ, we use Laplace’s method:

Theorem 4.2 (Laplace). Suppose the smooth function F : R → R has a unique
global minimum at t0 with F (m)(t0) > 0 for an even m and F (r)(t0) = 0 for
all 0 ≤ r < m, moreover, let ϕ be a bounded continuous function which is
continuous at t0 with ϕ(t0) 6= 0.

If
∫ +∞
−∞ e−NF (t)|tℓ| dt is finite for all ℓ and all N large enough, then

(5)

∫ +∞

−∞
e−NF (t)tℓϕ(t) dt ≈

N→∞

( 1

NF (m)(0)

)
ℓ+1
m

ϕ(0)

∫ +∞

−∞
e−

1
m! t

m

tℓ dt.

The Laplace theorem in the form we need it here can be deduced from [18].
For the reader’s convenience, we give a rough sketch of a proof in Appendix A.

Propositions 4.1 and 4.2 allow us to compute the asymptotic behavior of
the correlations (3).
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Theorem 4.3. Suppose X1, X2, . . . , Xℓ, Xℓ+1, . . . , XN are CW (β,N)-
distributed variables. If ℓ is even, then as N → ∞:

(i) If β < 1, then

(6) Eβ,N(X1 ·X2 · · ·Xℓ) ≈ (ℓ− 1)!!
( β

1− β

)
ℓ
2 1

N
ℓ
2

.

(ii) If β = 1, then

(7) E1,N (X1 ·X2 · · ·Xℓ) ≈
1

N
ℓ
4

∫

tℓe−
1
12 t

4

dt
∫

e−
1
12 t

4
dt

.

(iii) If β > 1, then

(8) Eβ,N (X1 ·X2 · · ·Xℓ) ≈ m(β)ℓ,

where t = m(β) is the strictly positive solution of tanhβt = t.

If ℓ is odd, then Eβ,N(X1 ·X2 · · ·Xℓ) = 0 for all β.

Remark 4.4. Up to the factor N−ℓ/2, (6) is the ℓth moment of the normal
distribution N (0, β

1−β ), (7) are the moments of a probability measure with

density proportional to e−
1
12 t

4

up to the factor N−ℓ/4, and (8) are the moments
of the measure 1

2 (δ−m(β) + δm(β)).

Proof. We compute:

F ′
β(t) =

1

β
t− tanh t, F ′′

β (t) =
1

β
− 1

cosh2 t
.

Thus, for β < 1, the function Fβ is strictly convex and has a local minimum at
t = 0. Consequently, this minimum is global and we can apply Proposition 4.2
to find

Eβ,N(X1 · · ·Xℓ) =
ZN (ℓ)

ZN (0)

=

∫ +∞

−∞
eNFβ(t) tanhℓ(t) dt

(

∫ +∞

−∞
eNFβ(t) dt

)−1

=

∫ +∞

−∞
eNFβ(t)tℓ

tanhℓ(t)

tℓ
dt
(

∫ +∞

−∞
eNFβ(t) dt

)−1

≈ 1

N ℓ/2

( β

1− β

)ℓ/2 1√
2π

∫

tℓe−t2/2 dt

= (ℓ− 1)!!
( β

1− β

)ℓ/2 1

N ℓ/2
.

For β = 1, we obtain t = 0 is still the unique solution of F ′
1(t) = 0, F (2)

1 (0) =
F (3)
1 (0) = 0 and F (4)

1 = 2. Thus, t = 0 is a global minimum of F1 and the
above reasoning gives (7).

For β > 1, we have F ′
β(0) = 0 and F ′′

β (0) = 1
β − 1 < 0, so 0 is a local

maximum.
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Since Fβ(t) = Fβ(−t), we have, for r even,

ZN (r) =

∫ 0

−∞
eNFβ(t) tanhr(t) dt+

∫ ∞

0

eNFβ(t) tanhr(t) dt

= 2

∫ ∞

0

eNFβ(t) tanhr(t) dt.(9)

Thus, it suffices to estimate the integrals (9) for r = ℓ and r = 0.
Set f(t) = 1

β t and g(t) = tanh(t), so F ′
β(t) = f(t)− g(t).

We have f(0) = g(0) and, due to β > 1, f ′(0) < g′(0), hence f(t) < g(t)
for small t > 0. Moreover, g is bounded and strictly concave (for t > 0).
Consequently, there is a unique t0 > 0 with F ′

β(t0) = f(t0) − g(t0) = 0. We

have g′(t0) < f ′(t0) due to the concavity of g, hence F ′′
β (t0) > 0.

By Proposition 4.2, we obtain

Eβ,N(X1 · · ·Xℓ) ≈
( t0
β

)ℓ

=: m(β)ℓ.

We have
tanh(βm(β)) = tanh(t0) = βt0 = m(β).

This proves (8). �

5. Proof of Theorem 2.3

We estimate

(10) Eβ,N

((

1

N

N
∑

i=1

)K)

=
1

NK
Eβ,N

( N
∑

i1,i2,...,iK=1

Xi1 ·Xi2 · · ·XiK

)

.

Evaluating these sums is a combination of bookkeeping and correlation esti-
mates as in Section 4. To do the bookkeeping, we define:

Definition 5.1. We set

WK,N := {i = (i1, i2, . . . , iK) | 1 ≤ ij ≤ N},
WK,N (r) := {i ∈ WK,N | exactly r different indices occur once in i}.

By wK,N and wK,N (r), we denote the number of multiindices in WK,N and
WK,N (r), respectively.

Lemma 5.2. We have

wK,N (r) ≤ K!N
K+r

2 ,(11)

wK,N (K) =
N !

(N −K)!
≈ NK .(12)

Proof. The multiindices in WK,N (r) contain at most r+ K−r
2 = K+r

2 different
indices. There are at most N

K+r
2 ways to choose them and at most K! ways

to order them.
For r = K, we have N !

(N−K)! ≈ NK possibilities to choose an orderedK-tuple
from N indices (without repetition). �
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We estimate

Eβ,N

((

1

N

N
∑

i=1

Xi

)K)

=
1

NK

K−1
∑

r=0

∑

i∈WK,N (r)

Eβ,N (Xi1 ·Xi2 · · ·XiK )

+
1

NK

∑

i∈WK,N (K)

Eβ,N(Xi1 ·Xi2 · · ·XiK )

≈ 1

NK
CNK− 1

2 + Eβ,N (X1 ·X2 · · ·XK)

≈ Eβ,N(X1 ·X2 · · ·XK).

The last expression goes to 0 for β ≤ 1, by Theorem 4.3. For β > 1, it
converges to m(β) for even K and to 0 for odd K.

Together with Theorem 3.1, this proves Theorem 2.3.

6. Proof of Theorem 2.4

In our proof of Theorem 2.3, we realized that only terms with K distinct
indices counted in the limit for (10). For the central limit theorem for inde-
pendent random variables, the only important terms are those with all indices
occurring exactly twice.

It will turn out that for the Curie–Weiss model with β < 1, both doubly
occurring indices and those that occur only once play a role in the limit.

To do the bookkeeping we got to refine our definitions in Definition 5.1.

Definition 6.1. We set

W 0
K,N (r) = {i ∈ WK,N (r) | no index occurs more than twice},

W+
K,N (r) = WK,N (r) \W 0

K,N (r).

and denote by w0
K,N (r) and the w+

K,N (r) the cardinality of W 0
K,N (r) and

W+
K,N (r), respectively.

Lemma 6.2. We have

w+
K,N (r) ≤ K!N

K+r
2 − 1

2 .

Proof. If the K-tuple i contains r indices with only one occurrence and at
least one index with three or more occurrences, there are at most r − 3 places
left for indices with (exactly) two occurrences. Therefore, a tuple in w+

K,N1
(r)

contains at most r + 1 + K−r−3
2 different indices. Consequently, there are at

most K!N
K+r

2 − 1
2

1 such tuples. �

Lemma 6.3. We have

w0
K,N (r) =











N !

(N − K+r
2 )!

K!

r!(K−r
2 )!2

K−r
2

if K − r is even,

0 otherwise.
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Proof. We choose an (ordered) r-tuple ρ of r indices to occur once and an
ordered (K − r)/2-tuple λ of indices to occur twice in i. We have

N !

(N − K+r
2 )!

ways to do so.
Then we choose the r positions for those indices which occur once. We can

do this in
(

K

r

)

=
K!

r!(K − r)!

ways. We fill these positions in i with ρ1, ρ2, . . . , ρr, starting with the left most
open position.

Finally, we distribute the indices λ1, . . . , λ(K−r)/2, twice each. The index
λ1 is put at the left most free place in i and in one of the remaining K − r− 1
positions, λ2 is put at the then first free place in i and in one of the K − r− 3
remaining free places, and so on.

This gives

(K − r − 1)!! =
(K − r)!

(K−r
2 )!2

K−r
2

possibilities. �

We are now in a position to complete the proof of Theorem 2.4.
We split the sum into two parts:

Eβ,N

((

1√
N

N
∑

i=1

)K)

=
1

NK/2
Eβ,N

( N
∑

i1,i2,...,iK=1

Xi1 ·Xi2 · · ·XiK

)

=
1

NK/2

K
∑

r=0

∑

i∈W 0
K,N

(r)

Eβ,N(Xi1 ·Xi2 · · ·XiK )

+
1

NK/2

K
∑

r=0

∑

i∈W+
K,N

(r)

Eβ,N (Xi1 ·Xi2 · · ·XiK ).(13)

We estimate the second term in (13) first. If i ∈ W+
K,N (r), then

(14) Eβ,N(Xi1 ·Xi2 · · ·XiK ) = Eβ,N (X1 ·X2 · · ·Xr · · ·Xr+s),

since Xℓ
i = 1 for even ℓ and Xℓ

i = Xi for odd ℓ. (In (14), s may be 0.)
Consequently, for i ∈ W+

K,N (r), Theorem 4.3 (iii) gives

Eβ,N (Xi1 ·Xi2 · · ·XiK ) ≤ C1N
−r/2.

By Lemma 6.2, we conclude that

1

NK/2

K
∑

r=0

∑

i∈W+
K,N

(r)

Eβ,N(Xi1 ·Xi2 · · ·XiK ) ≤ C2N
−1/2.
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The remaining, in fact leading, term is

1

NK/2

K
∑

r=0

∑

i∈W 0
K,N

(r)

Eβ,N (Xi1 ·Xi2 · · ·XiK )

=
1

NK/2

K
∑

r=0

∑

i∈W 0
K,N

(r)

Eβ,N(X1 ·X2 · · ·Xr).(15)

Since K is even and Eβ,N(X1 ·X2 · · ·Xr) = 0 for odd r, we may set K = 2L
and write (15) as

1

NL

L
∑

ℓ=0

∑

i∈W 0
2L,N

(2ℓ)

Eβ,N(X1 ·X2 · · ·X2ℓ)

≈ 1

NL

L
∑

ℓ=0

N !

(N − (L+ ℓ))!

(2L)!

(2ℓ)!(L− ℓ)!2L−ℓ
(2ℓ− 1)!!

( β

1− β

)ℓ

N−ℓ

≈
L
∑

ℓ=0

(2L)!

(2ℓ)!(L− ℓ)!2L−ℓ
(2ℓ− 1)!!

( β

1− β

)ℓ

=
(2L)!

L!2L

L
∑

ℓ=0

L!

(L− ℓ)!ℓ!

( β

1− β

)ℓ

= (2L− 1)!!
( 1

1− β

)L

= (K − 1)!!
( 1

1− β

)K/2

,

which are the moments mK(N (0, 1
1−β )) of a normal distribution with mean

zero and variance 1
1−β for even K.

7. Proof of Theorem 2.5

To prove Theorem 2.5, we have to estimate

1

N
3
4K

E1,N

(( N
∑

i=1

Xi

)K)

=
1

N
3
4K

K−1
∑

r=0

∑

i∈WK,N (r)

E1,N (Xi1 ·Xi2 · · ·XiK )

+
1

N
3
4K

∑

i∈WK,N (K)

E1,N (Xi1 ·Xi2 · · ·XiK ).(16)

Due to Theorem 4.3, equation (7) and estimate (11), the first term in (16)
goes to zero. The second term in (16) can be estimated by Theorem 4.3,
equation (7) and (12):

1

N
3
4K

∑

i∈WK,N (K)

E1,N (Xi1 ·Xi2 · · ·XiK ) ≈ 1

N
3
4K

NK 1

N
1
4

∫

tℓe−
1
12 t

4

dt
∫

e−
1
12 t

4
dt

.

This gives the result.
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Appendix A

In this appendix, we give a rough sketch of a proof of Theorem 4.2, details
to justify the approximations made below can be found in [18] or [10].

Without loss of generality, we may assume that t0 = 0. To approximate the
left-hand side of (5), we make a Taylor expansion F (t) ≈ 1

m!F
(m)(0)tm. We

obtain
∫ +∞

−∞
e−NF (t)tℓ ϕ(t) dt ≈

∫ +∞

−∞
e−N 1

m!F
(m)(0)tmtℓϕ(t) dt,

and by setting s = (NF (m)(0))1/mt, we get

≈ 1

(NF (m)(0))1/m

∫ +∞

−∞
e−

1
m! s

m
( 1

(NF (m)(0))1/m
s
)ℓ

ϕ
( 1

(NF (m)(0))1/m
s
)

ds

≈ 1

(NF (m)(0))(ℓ+1)/m
ϕ(0)

∫ +∞

−∞
e−

1
m! s

m

sℓ ds.
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