
Ingo Lepper

Simplification Orders

in Term Rewriting

Derivation Lengths,
Order Types, and

Computability

2001

Mathematische Logik

Simplification Orders
in Term Rewriting

Derivation Lengths,

Order Types, and

Computability

Inaugural-Dissertation
zur Erlangung des Doktorgrades der Naturwissenschaften

im Fachbereich Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Ingo Lepper

aus Münster

– 2001 –

Typeset with LATEX2ε using the document class KOMA-Script, the packages babel, AMS-LATEX, amsthm, hyperref, graphicx, url,
color, natbib, backref, booktabs, array, ragged2e, acronym, nomencl, thumbpdf, nicefrac, currvita, titletoc, epigraph, and paralist,
and the additional font packages amssymb, aeguill, stmaryrd, and pifont.

The home page of this text is http://wwwmath.uni-muenster.de/logik/publ/diss/9.html. If you want to contact the author, this is
possible by electronic mail via either lepper@math.uni-muenster.de (expiration date approx. 12/2004) or ingo.lepper@gmx.de.

Dekan: Prof. Dr. W. Lange
Erster Gutachter: Prof. Dr. A. Weiermann
Zweiter Gutachter: Prof. Dr. W. Pohlers

Tage der mündlichen Prüfungen:
❖ Mathematische Logik: 04.12.2001
❖ Reine Mathematik: 29.11.2001
❖ Angewandte Mathematik: 03.12.2001

Tag der Promotion: 04.12.2001

http://wwwmath.uni-muenster.de/logik/publ/diss/9.html
mailto:lepper@math.uni-muenster.de
mailto:ingo.lepper@gmx.de

Für Anke

und

meine Familie

❦

Foreword

Appreciate true friendship,
it is for free!

I would like to mention the persons who have significantly contributed to my
work. First of all I wish to express my sincere thanks to my thesis supervisor,
Prof. Andreas Weiermann, for invaluable help and encouragement. He arouse
my interest in term rewriting, he benevolently answered nearly all of my ques-
tions from various fields of mathematics, and in turn he asked questions which
led to new or improved results. Without his support, this text would not exist.

A further direct scientific contributor is Dieter Hofbauer. Besides cofounding
the research concerning derivation lengths, his constant interest has been a
main influence on my work. In various discussions he helped me gain insight
into Knuth–Bendix orders, and his comments on preliminary versions of some
of my results led to a much improved presentation. Everyone familiar with
the work of Hélène Touzet will recognize that I also owe a lot to her. Just in
time, Prof. Andrei Voronkov provided a Theorem which spared myself technical
trouble and caused significant improvements in both presentation and generality
of a part of this thesis. My results concerning computability via Knuth–Bendix
orders partially emerged from a discussion with Guillaume Bonfante.

The Institut für mathematische Logik und Grundlagenforschung has been
of fundamental importance to my work. Its directors Prof. Justus Diller and
Prof. Wolfram Pohlers provided one major part of my mathematical education.
Their kind guidance and the friendly atmosphere at the institute made my
work a pleasure. Considering the amount of time I have spent there, work may
have been even more pleasant than it ought to be. Related to this are also
many former and present members of the institute. I’d like to explicitely men-
tion my dear friend Benjamin Blankertz, who managed to combine hospitality
with a constant cheerful urge concerning the completion of my thesis, Arnold
Beckmann, Wolfgang Burr, and Michael Möllerfeld, whose knowledge appears
to have grown exponentially during the last years. Our secretaries Hildegard
Brunstering and Martina Pfeifer, who often succeeded in confronting us mathe-
maticians with the real life, constitute the secret heart of the institute. Looking

v

Foreword

at the students which are affiliated to the institute at the moment, I am con-
vinced it will remain as peaceful and open-minded a place as it has been for
the past decade.

On the private side, I have to commend my friends who managed, partially
against my reluctance, to distract me from my work. This always turned out to
be fruitful – apart from the headaches. The squirrels (sciurus vulgaris, the shy
red kind) from my balcony have been a second constant source of amusement. In
death-defying expeditions, which sometimes reached my desk, they discovered
vast deposits of nuts and managed to transport and hide away large amounts
of them.

I wish to express my wholehearted gratitude to all these people and animals.
Finally, there are the persons whose confidence and loving support have made

my work possible. I dedicate the thesis to my love Anke and to my family.

vi

Contents

1 Introduction 1

2 Preliminaries 13
2.1 Conventions . 13
2.2 Basic definitions . 14
2.3 Orders and Order types . 15
2.4 Subrecursive Hierarchies . 27
2.5 Complexity Classes . 38

3 Term Rewriting 41
3.1 Basic Definitions . 43
3.2 Abstract Orders on Terms . 48
3.3 Semantic Orders on Terms . 51
3.3.1 Interpretations. 52
3.3.2 Σ-algebras and the Termination Hierarchy 54
3.4 Syntactic Orders on Terms . 62
3.4.1 Multiset Path Orders . 62
3.4.2 Lexicographic Path Orders . 63
3.4.3 Knuth–Bendix Orders . 64
3.5 Functions Computable by a TRS 70

4 Order Types 73
4.1 Order Types of MPOs and LPOs 74
4.2 Order Types of KBOs . 75
4.3 Order Types of Simplification Orders. 78

5 Derivation Lengths 79
5.1 ω-termination . 82
5.2 Termination via KBO . 84
5.3 Simple Termination is Complex. 93
5.3.1 The Fixed Point Free Veblen Function 95
5.3.2 Fundamental Sequences and Hydrae below ∆k 97
5.3.3 Encoding all Hydrae below ∆k 99
5.3.4 Simulating all Hydra Battles below ∆k 102
5.3.5 Proof of Total Termination . 108

vii

Contents

5.4 A Digression: LPO-Controlled Derivations 113
5.5 Another Digression: Ground Termination 115

6 Computability 117
6.1 Computability via PT . 118
6.2 Computability via MPO and LPO 119
6.3 Computability via KBO . 120
6.3.1 List Operations Compatible with KBO 122
6.3.2 Simulating a Timebounded RM 123
6.3.3 Long Linear Derivations. 124
6.3.4 Hard Computation via KBO . 129
6.4 Computability via Simple Termination 132

7 Very Long Size-Controlled Derivations 135
7.1 Sequences of Iterated Logarithms. 139
7.2 Hydra Battles, Revisited . 144
7.3 Lengthened Derivations . 152

8 Conclusion 163

Bibliography 167

Glossary of Notation 177

Index 185

Curriculum Vitae 193

viii

1 Introduction

A happy surprise
is waiting for you.

Concerning the future of proof theory and complexity in the 21st century, the
following prediction has been made by Harvey Friedman (2000):

“. . . there has recently been considerable work on the connections be-
tween proof theory and term rewriting. This will also expand in the
coming century.”

This text is intended to be such a contribution. We approach complexity prob-
lems of term rewriting theory using results and techniques from proof theory.

The concept of term rewriting has been developed at the end of the 1960s.
A term rewriting system (TRS) is a finite set R of directed equations of terms
over some fixed signature Σ. The emerging rewrite relation →R is the closure
of R under substitutions and contexts. TRSs provide a valuable tool in auto-
mated deduction, and additionally they constitute an interesting paradigm for
nondeterministic computation, importing the term notion for free. It should be
mentioned that it is rather common to consider also infinite sets of rules, but
for our purposes this makes not much sense.

One major topic in term rewriting is termination. A TRS is said to terminate
if all derivations induced by its rewrite relation are finite, i.e. if the rewrite
relation does not admit infinite chains. Just as in computation theory, the
problem of establishing termination of a given TRS is highly nontrivial.

A vast variety of techniques for proving termination has evolved. Common
to these approaches is the association of some well-founded order to the rewrite
relation. Of particular importance in this field are the partial orders on terms
whose well-foundedness is a consequence of Kruskal’s famous Tree Theorem.
These orders are called simplification orders, and they are the key object of
our studies. Prominent examples of such orders are the multiset path order
(MPO) of Plaisted (1978), the lexicographic path order (LPO) of Kamin and
Lévy (1980), and the Knuth–Bendix order (KBO) of Knuth and Bendix (1970).

1

1 Introduction

A very convenient way of proving termination is by means of Σ-algebras. The
basis of a Σ-algebra is a partial order (P,≺). For any symbol of the signature,
there is also a function on P of the appropriate arity. Roughly speaking, this
corresponds to a Σ ∪ {<}-structure in first order logic. We call a Σ-algebra
monotone if its interpreting functions are monotone. Termination of a TRS fol-
lows from its compatibility with a monotone Σ-algebra whose underlying partial
order is well-founded. Any TRS compatible with a monotone Σ-algebra which
also satisfies the subterm property is called simply terminating. It turned out
that a TRS is simply terminating if and only if its rewrite relation is contained
in a simplification order. Thus simple termination implies termination.

Zantema (1993, 1994) speaks of total termination if the monotone Σ-algebra
is based on a well-order (being total by definition). This constitutes an im-
portant (proper) subclass of simple termination. As any well-order is order-
isomorphic to an ordinal, it is possible to classify totally terminating TRSs
according to the ordinals α carrying compatible Σ-algebras. This leads to the
notion of α-termination and unveils a rich structure of subhierarchies. Inside
the collection of ω-terminating TRSs we can further differentiate according to
the functions used for interpreting the function symbols of the Σ-algebra. If we
manage on linear functions, we speak of linear termination, and likewise poly-
nomial termination indicates that polynomial functions suffice. We can extend
this to faster growing functions, yielding exponential, elementary, primitive re-
cursive, and multiple recursive termination. The general approach is of course
a classification along various subrecursive hierarchies.

Suiting a question of Kreisel to the field of termination proofs in term rewrit-
ing theory, one may ask:

What more do we know about a term rewriting system, once its
simple (total, α-, . . .) termination is proved?

We investigate this question in two main directions: derivation lengths and
computability. Because order types of simplification orders are intertwined with
these topics, we study them as well.

Derivation Lengths
There are mainly two functions related to the lengths of derivations. The
(depth) complexity of a terminating TRS maps each natural number n to the
length of a longest possible derivation starting with a term of depth bounded
by n. By depth we denote the height of the tree representing the term. Closely
related but a little finer is the size complexity, which is defined similarly, just
replacing depth with size. The size emerges from counting the number of sym-
bols of the term. Both depth and size complexity provide natural measures of
the worst-case behavior of TRSs.

2

1 Introduction

During the last years, upper bounds on size complexities have been estab-
lished for TRSs terminating via the standard termination proof methods. Hof-
bauer (1991) observed that the interpreting functions occuring in a proof of
ω-termination can be incorporated to impose an upper size complexity bound.
In particular, primitive recursive termination implies primitive recursive bounds,
while multiple recursive termination goes with multiple recursive bounds.

Optimal results have also been obtained for a particularly important subclass
of TRSs. A string rewriting system (SRS) is a TRS over a signature consisting
of unary symbols and one constant, which does not occur in the rules. By
convention, variables are not displayed.

According to Hofbauer and Lautemann (1989), linear termination implies
an exponential bound, while Geupel (1988) and Lautemann (1988) indepen-
dently proved that polynomial termination yields double exponential bounds.
Hofbauer (1991, 1992) observed that if termination is provable via MPO, this
implies primitive recursive termination and hence primitive recursive bounds.
These are also optimal for SRSs terminating via MPO. For LPO, Weiermann
(1995) gave a proof of multiple recursive termination and thus imposed a mul-
tiple recursive bound. We do not need to separately consider LPO on strings,
as MPO and LPO coincide there. All these results are essentially optimal.

For SRSs, termination via KBO implies, according to Hofbauer and Laute-
mann (1989), an (optimal) exponential complexity bound. The authors also con-
structed a TRS terminating via KBO whose complexity behaves like Ack(n, 0),
with Ack denoting the (2-recursive) binary Ackermann function. For any a ∈ N,
a minor extension of this TRS leads to a TRS terminating via KBO whose com-
plexity grows slightly faster than Ack(an, 0). As a uniform upper bound Hof-
bauer (1991, 2000) established a 4-recursive function, and independently Touzet
(1997) proved a weaker result – multiple recursive termination. So far, optimal
bounds for termination via KBO have not been found. One reason for this
is that, in contrast to the other termination proof methods mentioned above,
termination via KBO does not imply ω-termination. In fact, Zantema (1992)
demonstrated the SRS fg → gff is ω2-terminating but not α-terminating for
α < ω2, and its termination via KBO is quickly shown. The lack of ω-termina-
tion makes it impossible to use one of the standard termination proof methods –
monotone interpretations into N.

A thorough analysis of KBO enables us to construct compatible nonmonotone
interpretations into N. These interpretations, which are based on fast growing
functions, suffice to show the lower bound is optimal.

Theorem. The complexities accompanying termination via KBO are members
of Ack(2O(n), 0), while Ack(O(n), 0) contains the corresponding size complexi-
ties. Both two bounds are essentially optimal.

3

1 Introduction

The proofs are extendible to more general definitions of KBO, and a slight
modification of the interpretation enables us to precisely locate termination via
KBO in the α-termination hierarchy.

Theorem. Termination via KBO implies ω2-termination.

As ω-termination implies ω2-termination, we see that termination via either
MPO, LPO, or KBO yields ω2-termination. Compare this with a result of Fer-
reira (1995) stating that, for each α 6 ω, there is a SRS which is ωα-terminating
but not β-terminating for β < ωα. The three standard classes of simplification
orders live at the very ground of the α-termination hierarchy.

Let us turn to general simple termination. Cichon and Tahhan Bittar (1998)
showed that the complexity of any simply terminating SRS is bounded by a
multiple recursive function, while on the other hand Touzet (1999) constructed,
for any given multiple recursive function f , a totally terminating SRS whose
complexity eventually dominates f . So the upper bound is essentially optimal.

By analyzing the proof-theoretic strength of Kruskal’s Tree Theorem, Weier-
mann (1994) (with the forerunner Rathjen and Weiermann (1993)) proved that,
for any simply terminating TRS R, there is a <ϑ(Ωω)-recursive function (i.e. a
function being α-recursive for some α < ϑ(Ωω)) which dominates the complex-
ity of R. The ordinal ϑ(Ωω) is called the small Veblen ordinal, and it is the first
infinite ordinal closed under all Veblen (1908) ϕ functions having finite arities.
To give but one example, α 7→ ϕ(1, α) enumerates the epsilon numbers, i.e. the
β with β = ωβ. The gigantic growth rates occuring within the <ϑ(Ωω)-recursive
functions are hard to grasp. Maybe it is helpful to mention that if an ordinal
λ looks like ωω · λ′ for some λ′ > 0, then there is a λ-recursive function which
eventually dominates all <λ-recursive functions. We should further mention
that the multiple recursive functions correspond to the <ω3-recursive functions,
with ω0 := 1 and ωn+1 := ωωn . The supremum of the ωn is ε0 = ϕ(1, 0), the first
epsilon number. Not only is ε0 far below ϑ(Ωω), but even ordinals like ϕ(ε0, ε0)
and its relatives are.

It had been conjectured for quite a while that the upper bound of Weier-
mann (1994) is far too large and that multiple recursive functions make up the
optimal bound. However, Touzet (1997, 1998b) constructed, for any n > 3, a
totally terminating TRS with proper ωn-recursive complexity, thus exhausting
the <ε0-recursive functions. Termination of these TRSs is still provable in first
order number theory, leaving a huge gap between all known examples of simply
terminating TRSs and the upper bound of Weiermann. We bridge the gap by
showing that the upper bound is essentially optimal. Thus simple termination
possesses a tremendous computational complexity.

Theorem. For any <ϑ(Ωω)-recursive function f there is a totally terminating
TRS whose complexity eventually dominates f .

4

1 Introduction

This closes the case for problem 81 in the RTA list of open problems described
by Dershowitz et al. (1995), whose revision by Dershowitz and Treinen (1998)
asks what maximal complexity is attainable by simply terminating TRSs.

According to Weiermann (1994), the bound cannot be reached by a single
simply terminating TRS. Thus we have to define a hierarchy of TRSs whose
increasing complexities approach the bound. Since all these TRSs are totally
terminating, concerning largest possible complexities total termination is as
powerful as simple termination.

The basic idea of the construction is taken from Touzet (1998b) and consists
in simulating the battle of Hercules and the Hydra from Kirby and Paris (1982)
with a totally terminating TRS. Since the Hydra battle, the Hardy hierarchy,
and the descent recursive functions are closely connected, we have to do so
for all ordinals below ϑ(Ωω). The ϑ function is very powerful and, due to its
definition involving lots of closure processes, not easy to handle by a TRS. For
our purposes it seems natural to use k-ary fixed point free Veblen ϕ functions ψ
instead of ϑ, since the absence of fixed points significantly simplifies calculations
and since ϑ(Ωω) can be approached by ψ. By ∆k we denote the first infinite
ordinal which is closed under ordinal addition and the k + 1-ary ψ, with k > 0.
This implies ∆k = ψ(1, 0, . . . , 0) for the k+ 2-ary ψ. By the way, ∆2 is just the
ordinal Γ0 celebrated by Gallier (1991). According to Schmidt (1979),

ϑ(Ωω) = sup {∆k : k > 0}

holds. In view of this, a canonical approach is the definition of TRSs Rk which
simulate Hydra battles for all ordinals below ∆k. Total termination of the Rk

is then established using a technically smooth characterization of total termina-
tion which stems from Touzet (1998b). The Rk are given in a uniform manner,
and for k > l we may regard Rk as a proper extension of Rl. Thus the (Rk)k∈N
form a hierarchy of totally terminating TRSs, and the complexity of any simply
terminating TRS is eventually dominated by the complexities of almost all Rk.

Order Types and the Hardy Function Principle
One way of measuring the strength of a simplification order is to calculate its
order type. For a well-founded partial order this is the minimal ordinal α such
that the order can be embedded into α. In general, the larger the order type the
more rewrite relations are contained in the order, that is, the more TRSs can
be shown to terminate via this order. Thus the strength of a termination proof
method consisting of a collection of simplification orders can be measured by
figuring out the supremum of the occuring order types. Generally speaking, the
larger the occuring ordinals are the longer derivations may occur. This measure
has to be taken with a grain of salt as, due to its finitary character, a TRS may
not be able to exhaust the full power of the termination proof method because

5

1 Introduction

most of the branches of the compatible order are too far apart for the locally
operating rewrite relation.

The order types of simplification orders get rather large, and maximal values
are attained by prominent representative. For MPOs the order types are already
cofinal in ϑ(Ω · ω), and the order types of LPOs exhaust ϑ(Ωω). According to
Schmidt (1979), any simplification order has an order type below ϑ(Ωω). This
second appearance of the small Veblen ordinal is no coincidence. We will come
back to it soon.

If we consider MPO (and hence LPO) on strings, much lower ordinals occur –
here ω3 is the optimal strict upper bound. A result of de Jongh and Parikh
(1977) tells us that the order types of all simplification orders on strings live
below ω3. So for strings the order types of LPOs are again maximal.

Not much has been known about the order types of KBOs. For strings, Touzet
(1997) showed that the maximal attained ordinal is ωω. A combination of results
of Hofbauer (1991) and Touzet (1997) can be used to establish ϑ(Ω3 · ω) as a
huge upper bound for KBOs on terms. We present a full classification of the
order types of KBOs and show that they have a very low bound.

Theorem. The maximal order type of a KBO is ωω – even if real-valued weight
functions are allowed.

Concerning order types, KBO on terms is just as strong as KBO on strings,
whereas, concerning complexities, they differ considerably.

There appears to be a subtle relation between the order type of a simpli-
fication order proving termination of a TRS and the complexity of the TRS.
Cichon (1992) implicitly proposed a connection via slow growing functions. It
was indicated that (under certain circumstances) the complexity of a simply
terminating TRS is bounded from above by a slow growing function with index
closely related to the order type of the simplification order used in the termi-
nation proof. We call this the slow growing principle. Though this principle is
valid for both MPO and LPO, it does not hold in general, as it imposes multiple
recursive complexity bounds on all simply terminating TRSs. As mentioned
above, these bounds have been refuted by Touzet. The principle is also not
(directly) valid for KBO, because the slow growing function with index ωω is
elementary and thus grows much slower than the Ackermann function.

Touzet (1999) adapted the slow growing principle to her results and replaced
the slow growing functions with Hardy functions. We call this the Hardy func-
tion principle. Buchholz et al. (1994) established that the upper bounds pro-
duced by a version of this principle are correct. Though little is known about
the tightness of these bounds, the respective results mentioned so far give strong
evidence of the importance of the principle. We collect them in Table 1.1 on the
facing page. Here SO is an abbreviation for the class of simplification orders,

6

1 Introduction

class bound in bound in
Drec(·)

order types

MPO(1) Prec <ωω <ω3

MPO Prec <ωω <ϑ(Ω · ω)
KBO(1) 2O(n) ω 6ωω

KBO Ack(O(n), 0) ωω 6ωω

LPO Mrec <ω3 <ϑ(Ωω)
SO(1) Mrec <ω3 <ω3

SO Drec(<ϑ(Ωω)) <ϑ(Ωω) <ϑ(Ωω)

Table 1.1: Essentially optimal bounds on size complexities and order types occuring within
standard classes of simplification orders and their restrictions to strings.

andM(1) indicates the members of the proof methodM living on strings. With
Prec the primitive recursive functions are indicated, while Mrec stands for
the multiple recursive functions. By Drec(α) we denote the set of α-recursive
functions, and the functions which are β-recursive for some β < α are collected
in Drec(<α). As all bounds are essentially optimal, we get a comprehensive
picture.

Computability and Shortest Derivation Lengths
Cichon and Lescanne (1992) considered a measure for the strength of a termina-
tion proof method which is sometimes finer than the classification of attainable
derivation lengths – the classification of the functions which are computable via
the method. A k-ary number-theoretic function f is computable by a terminat-
ing TRS, if there are a k-ary symbol F , unary (successor) symbols S and P ,
and constants 0 and 0′ such that, for all n1, . . . , nk, the unique normal form of
F (Sn10, . . . , Snk0) is P f(n1,...,nk)0′. We say f is computable via the termination
proof methodM if it is computable by a TRS terminating viaM.

The distinction between the input successor S and the output successor P
is important, for example when computing via polynomial termination (PT).
Cichon and Lescanne (1992) established polynomial bounds on the functions
computable via PT using only one successor symbol, whereas Bonfante et al.
(1999) demonstrated that with two distinct successors the computable functions
are exactly the functions computable (on a Turing machine) within double
exponential time.

Using the above mentioned size complexity bounds of Hofbauer (1991, 1992),
it is easy to see that the functions computable via MPO coincide with the
primitive recursive functions, and similarly the bounds of Weiermann (1995)
show computation via LPO corresponds to multiple recursion.

It has been open what functions are computable via KBO. Our result bound-
ing the size complexity of a TRS terminating via KBO in Ack(O(n), 0) can

7

1 Introduction

be incorporated to see that the strongest we can hope for are the functions
computable with timebound in Ack(O(n), 0), and indeed KBO possesses such
computational power.

Theorem. The functions computable via KBO and the functions computable
(on a Turing machine) with timebound in Ack(O(n), 0) coincide.

In analogy with PT, the choice of the two successor symbols is crucial. Com-
putations beyond primitive recursion are only possible if the output successor P
is the unique so-called special symbol whereas the input successor S is nonspe-
cial. If both successor symbols are special (hence equal), then the computable
functions are exactly the primitive recursive ones. Demanding both successors
to be nonspecial results in linear bounds on the computed functions, and, even
worse, if S is special but P is not, then there are constant bounds on the
computed functions.

For the proof we transform the two rules of a TRS Hofbauer (1991) used to
show the complexity of a TRS terminating via KBO may live outside of primitive
recursion into a related TRS containing fifteen rules. The trick is to cut down
the amount of terms a term may reduce to. For the original TRS there are
derivation strategies leading quickly to normal forms. Our TRS prevents this
and makes certain long derivations linear – each rewrite step is the only one
possible.

As a by-product we prove a result concerning the shortest size complexity,
a measure proposed by Hofbauer and Lautemann (1989). It maps a natural
number n to the maximum of the lengths of shortest derivations leading from
a term of size bounded by n to a normal form.

Theorem. Any function from Ack(O(n), 0) can be majorized by the shortest
size complexity of a TRS terminating via KBO.

Thus the optimal bounds for both size complexities coincide. The same
holds true for both MPO and LPO, while it is unknown for the general case
of simple termination. I strongly conjecture that the TRSs Rk simulating very
long Hydra battles can be linearized. Since this has not yet been shown, there
are also no optimal results concerning computability via simple termination.
However, the Rk can serve as the nondeterministic engine for the simulation of
a timebounded Turing machine. There are various ways to define the function
computed by a nondeterministic TRS. We use a standard definition of Krentel
(1988), which has later been taken up by Grädel and Gurevich (1995) and by
Bonfante et al. (2001). The computed value corresponds to the maximum of
those normal forms of the input term which denote numbers.

Theorem. The functions nondeterministically computable via simple termina-
tion are the <ϑ(Ωω)-recursive functions.

8

1 Introduction

Very Long Size-controlled Derivations
Inspired by results of Harvey Friedman (see Simpson (1985)), Loebl and Ma-
toušek (1987), and Weiermann (2000) concerning the lengths of size controlled
sequences of trees related to Kruskal’s Tree Theorem, we investigate a similar
notion for TRSs. Consider a noncycling TRS R. For each f : N × N+ → N we
denote by KR

f the function on N which maps n to the first N such that there is
no derivation s1 →R . . .→R sN with the sizes of the sm bounded by f(n,m).

We are interested in the control function n + r log2(m) for fixed r ∈ R. An
easy counting argument shows that if r is too small, then KR

f is bounded by an
exponential function. But if r is only a little larger, the enormous growth rates
we encountered before are in reach. By extending the TRSs Rk which simulate
long Hydra battles below ∆k we get the following result.

Theorem. Consider f(n,m) := n+ r log2(m).

i. If R is a noncycling TRS over a signature containing S symbols and if
r < logS+1(2), then KR

f is bounded by an exponential function.

ii. Let S > 12. If k satisfies 1 6 k 6 S − 12 and if r > logS−(10+k)(2), then
there exists a totally terminating TRS R over a signature containing S
symbols such that KR

f eventually dominates all <∆k-recursive functions.

A closer look shows that growth rates beyond <ε0-recursion are already pos-
sible with S > 9 symbols, provided that r > logS−8(2). These results are visu-
alized in Figure 7.1 on page 161. Even for quite low values of r, size-controlled
derivations of totally terminating TRSs get as long as uncontrolled derivations,
and with a growing amount of symbols the region between small and enormous
growth rates gets arbitrarily small.

Road Map
The text is largely selfcontained, only basic notions like “timebounded com-
putability by a Turing machine” are presupposed. Knowledge of ordinals, sub-
recursive hierarchies, term rewriting systems, and complexity classes will do no
harm. The text combines various fields of mathematics and computer science.
Many definitions and results which are usually left out in one field are written
down because members of other fields may not be familiar with them. The
informed reader is invited to skip freely over these passages, but a look at the
entry “convention” in the index may be indicated. Skipping a convention might
cause trouble. Unknown symbols or notations are listed (and explained) in the
glossary of notation.

In Chapter 2 we present basic definitions and results. After fixing conven-
tions and notations we consider orders, ordinals, and order types in Section 2.3.
Subrecursive hierarchies, ordinal notation systems and Bachmann systems are

9

1 Introduction

presented in Section 2.4, while Section 2.5 contains the introduction of com-
plexity classes and various concepts of computation. Everything here is fairly
standard.

Chapter 3 is devoted to term rewriting. We first present the basics, and
then we quickly treat abstract orders on terms, including Kruskal’s Tree The-
orem for terms and simplification orders in Section 3.2. This leads to a closer
look at semantic orders as induced by interpretations and Σ-algebras in Sec-
tion 3.3. A major part of the termination hierarchy of Zantema (1993, 1994,
1999, 2001) is presented, as well as an important Theorem of Touzet (1998b)
about connections between weak total termination and total termination. Sec-
tion 3.4 introduces the famous syntactic simplification orders MPO, LPO, and
KBO. We present a series of new results concerning KBO. They will be used
in the following chapters. In the final section of this chapter we are concerned
with computability via a TRS and computability via some termination proof
method. The former gets connected to computability on Turing machines, and
we mention a relation between the size complexity and the computed function.

Order types of simplification orders play the leading rôle in Chapter 4. The
well-known results concerning MPO, LPO, and the general case are joined by
our new characterization of the order types of KBOs.

Chapter 5 may be regarded as the heart of this text. It starts with a review
of complexity bounds occuring within ω-termination, including termination via
MPO and LPO. Section 5.2 is devoted to KBO, it contains our new interpreta-
tion of KBO into N, which is then used to show termination via KBO implies
ω2-termination. Simple termination in general is cared for in Section 5.3. Af-
ter reviewing some results, we turn to the construction of totally terminating
TRSs with longest possible derivations. This requires a lengthy and technical
proof. Once this is accomplished, we go on about various principles concerning
connections between order types, complexities, and subrecursive hierarchies. In
Section 5.4 we utilize our freshly constructed TRSs in the context of (gener-
alized) LPO-controlled derivations, a concept introduced by Harvey Friedman
(1999). The final section of this chapter is devoted to differences between closed
and open versions of syntactic simplification orders.

We treat computability via simple termination in Chapter 6. After shortly
reviewing the results dealing with PT, MPO, and LPO, we turn to computability
via KBO, present our new results, and say a little about shortest derivation
lengths. The final section of this chapter is concerned with nondeterministic
computability via simple termination.

Chapter 7 contains the construction of TRSs having very long size-controlled
derivations. This affords a closer look at results from Section 5.3. Finally, a
short summary is given in Chapter 8. It also contains open problems, conjec-
tures, and proposals to further research.

10

1 Introduction

Final Remarks
Before we start, a few more or less official remarks are in order.

Most of the new material is intended to also appear elsewhere. The results
of Section 5.3 treating the simulation of long Hydra battles by totally terminat-
ing TRSs are contained in Lepper (1999), while Lepper (2000b) presents the
complexity bounds for termination via KBO and the classification of the order
types of KBOs, thus most of Sections 5.2 and 4.2. Computability via KBO as
presented in Section 6.3 is the topic of Lepper (2000a). The work on the first
two papers was partially supported by grant WE 2178/2–1 of the Deutsche
Forschungsgemeinschaft (DFG).

Finally, the epigraphs are selected from fortune cookies∗ I encountered during
the preparation of this text.

∗ This is for the German speaking connoisseur: Die Originalübersetzungen der Sprüche lau-
ten in der Reihenfolge ihres Erscheinens:

❖ Schätze die wahre Freundschaft, denn sie ist kostenlos.
❖ Es wartet eine freudige Überraschung auf Sie.
❖ Das ganze Leben ist ein ewiges Wiederanfangen.
❖ Wer in seinen Beutel lügt, niemand als sich selbst betrügt.
❖ Bravo! Sie lösen im Nu Probleme.
❖ Du bist auf dem richtigen Weg, mach weiter!
❖ Ein Ding ist nicht bös, wenn man’s gut versteht.
❖ Es lohnt sich, einen flüchtigen Gedanken zu verfolgen.
❖ Ihre eigenen Anstrengungen versprechen viel Erfolg.

Leider habe ich keine Gelegenheit gefunden, meinen eigentlichen Favoriten unterzubringen.
Die deutsche Fassung von »Too many cooks will spoil the dinner« lautet »Zuviele Arbeiter
richten wenig aus«.

11

2 Preliminaries

The whole life is
a steady new beginning.

This chapter contains definitions and results which will serve as a basis for ev-
erything we will consider later. After settling a few conventions in Section 2.1,
we will encounter basic set theoretic definitions in Section 2.2. These are funda-
mental for the observations in Section 2.3, which will be concerned with partial
orders and well-orders, order types, ordinals, and partial well-orders. Section 2.4
treats various sets and hierarchies known from subrecursion theory, and finally
complexity classes are introduced in Section 2.5.

2.1 Conventions

Let us first settle a few conventions. Throughout this text, natural numbers are
denoted by lowercase Latin letters ranging from a to d and i to q. Sometimes
we also use uppercase versions of these letters, but these are usually reserved
for various kinds of sets. Ordinals are denoted by the Greek letters α, β, γ, δ, µ,
λ, and Λ. The common names of terms are s and t, but sometimes r and u
show up as well. For variables we use x, y, and z, while constants are called c
or e. Functions or function symbols are represented by f, g, and h.

In combination with the Knuth–Bendix order, parts of these conventions are
canceled. Instead we consider a special function symbol called i, and, though
very rarely, we also denote real numbers by α, β, and γ.

Finite sequences of similar objects are abbreviated using a bar, for example
s̄ is a shortcut for s1, . . . , sn, and 0̄ abbreviates 0, . . . , 0. The length of such a
sequence should always be clear from the context. Empty sequences are allowed
and will occur soon. If the length of a sequence is not that obvious, we indicate
it as a superscript. So nk sometimes represents k consecutive occurrences of n.
This will not be mixed with exponentiation.

We occasionally violate these conventions, provided that it seems appropriate
to do so.

13

2 Preliminaries

2.2 Basic definitions

We write A ⊆ B if A is a subset of B, while A (B indicates that A is a proper
subset of B. The set theoretic difference A \B of A and B is {x ∈ A : x /∈ B}.

Nonnegative integers are called natural numbers and get collected in N, while
the set of real numbers is R. The set N+ contains the positive natural numbers,
the positive reals make up R+, and R+

0 is the set of nonnegative reals. For
{n, n+ 1, . . . ,m} we also write [n,m].

By card(W) we denote the cardinality (number of elements) of a set W .
The (finite ordered) tuple of a1, . . . , an is (a1, . . . , an), its length |(a1, . . . , an)|

is n. If all ai are located in a set A, then (a1, . . . , an) is a tuple over A. The
Cartesian product of the sets A1, . . . , An is

A1 × · · · × An := {(a1, . . . , an) : (∀i∈ [1, n])(ai ∈ Ai)} .

If all the Ai coincide with A, then we write An for this product. Note that A0

contains the empty tuple (). The set A∗ :=
⋃

n∈NA
n contains the tuples over

A. We will extend this notion to infinite sequences in Definition 2.16.
The disjoint union of A1, . . . , An is⊎

16i6n

Ai := {(i, a) : 1 6 i 6 n ∧ a ∈ Ai} .

We assume the notions of (n-ary) relation (on some set A) and function (from A
to B) to be known. For n = 1, 2, 3, these are called unary, binary, and ternary.
If R is a binary relation, then we usually write a R b instead of R(a, b).

By f : X → Y we indicate that f is a function from X to Y . A function f is
number-theoretic if we have f : Nk → N for some k ∈ N. The set of functions
from X to Y is denoted by XY . If f : A→ B and g : B → C, then g ◦f denotes
the function from A to C which maps a to g(f(a)). For f : A → A, the nth

iteration fn : A→ A of f (applied to a) is given by

f 0(a) := a and fn+1(a) := f(fn(a)) . (2.1)

We will make heavy use of this notation for functions of higher arities where all
but one arguments are kept fixed. In these cases a“·” indicates the free position.
So, for example,

g(·, b)2(c) = g(g(·, b)1(c), b) = g(g(g(·, b)0(c), b), b) = g(g(c, b), b) .

The factorial function n! is as usual defined by

0! := 1 and (n+ 1)! := (n+ 1) · n! ,

14

2.3 Orders and Order types

while modified subtraction ·− is given by

n ·−m :=

{
n−m if n−m > 0 ,

0 otherwise.

For r ∈ R+
0 we denote the unique n ∈ N satisfying n 6 r < n+ 1 by brc, while

dre is the unique n ∈ N with n− 1 < r 6 n. The logarithm of r > 0 with base
p > 0 is denoted by logp(r), thus plogp(r) = r.

We are going to introduce multisets and the basic operations on them. A
multiset is quite like a finite set, but multiple appearances of its elements are
counted.

Definition 2.1. For a set A, a multiset over A is a function M : A → N with
finite {a ∈ A : M(a) 6= 0}. By mul(A) we denote the set of multisets over A. We
will sometimes use the notation H. . .I for multisets, so H0, 0, 1, 2, 2, 2I represents
the multiset M satisfying (∀n> 3)(M(n) = 0) and M(0) = 2, M(1) = 1,
M(2) = 3. The empty multiset is the function mapping each element of A
to 0, and it is ambiguously denoted by ∅. It should be always clear from the
surrounding symbols if the multiset ∅ is meant.

If a ∈ A and M is a multiset, then we use a ∈ M for M(a) > 0. The union
of the multisets M and N is denoted by M dN and satisfies

(∀a∈A)((M dN)(a) = M(a) +N(a)) ,

while the notion of subset is transferable via

M b N :⇐⇒ (∀a∈A)(M(a) 6 N(a)) .

By M
N we denote the difference of the multisets M and N , which is defined
by (M
N)(a) := M(a) ·−N(a).

2.3 Orders and Order types

We are now going to introduce partial orders, well-foundedness, well-orders, and
ordinals. Some basic facts and various connections between well-founded orders
and ordinals are collected. We further present the first version of Kruskal’s Tree
Theorem. The following definitions and results are mostly taken from Jech
(1978) and Pohlers (1989).

If R is a binary relation on a set P , then p0, . . . , pn R q0, . . . , qm abbreviates
(∀i6n)(∀j6m)(pi R qj). We extend this notion to quantification, hence, for
example, (∀p, q, r∈P)F (p, q, r) represents (∀p∈P)(∀q ∈P)(∀r∈P)F (p, q, r).

15

2 Preliminaries

Definition 2.2. A binary relation R on a set P is

❖ reflexive if (∀p∈P)(p R p),

❖ irreflexive if (∀p∈P)(¬p R p),

❖ transitive if (∀p, q, r∈P)((p R q ∧ q R r)⇒ p R r)),

❖ symmetrical if (∀p, q ∈P)(p R q ⇒ q R p),

❖ antisymmetrical if (∀p, q ∈P)((p 6= q ∧ p R q)⇒ ¬q R p),

❖ linear or total if (∀p, q ∈P)(p R q ∨ p = q ∨ q R p).

We call an ordered pair (P,4) where 4 is a binary reflexive and transitive
relation on P a preorder or quasiorder . The strict part of (P,4) is (P,≺) with

p ≺ q :⇐⇒ p 4 q ∧ q 64 p .

A partial order is an antisymmetrical preorder.

If (P,4) is a partial order, then we have

(∀p, q ∈P)(p 4 q ⇐⇒ p ≺ q ∨ p = q) .

Hence the strict part (P,≺) is irreflexive and transitive. On the other hand, if
(P,C) is irreflexive and transitive, then (P,P) with p P q :⇐⇒ p C q ∨ p = q
is a partial order. Therefore we will frequently introduce a partial order (P,4)
by displaying its irreflexive and transitive strict part (P,≺), and we will not
hesitate to call (P,≺) a partial order. It is common practice to write q � p for
p ≺ q.

Definition 2.3. Let (P,≺) be a partial order and n > 1. We say F : P n → P

❖ is monotone in the ith argument (with i ∈ [1, n]) if

F (p1, . . . , pn) � F (q1, . . . , qn)

holds for all p̄, q̄ ∈ P which satisfy pi � qi and pj = qj for j 6= i,

❖ is monotone if it is monotone in all arguments,

❖ is weakly monotone in the ith argument (with i ∈ [1, n]) if

F (p1, . . . , pn) < F (q1, . . . , qn)

holds for all p̄, q̄ ∈ P which satisfy pi < qi and pj = qj for j 6= i,

❖ is weakly monotone if it is weakly monotone in all arguments, and it

❖ has the (weak) subterm property if, for all p̄ ∈ P and all i ∈ [1, n] we have
F (p1, . . . , pn) � pi (respectively F (p1, . . . , pn) < pi).

It will become apparent later why we speak of the “subterm property”.

16

2.3 Orders and Order types

Definition 2.4. A mapping o : P → P ′ of the partial order (P,≺) into the
partial order (P ′,≺′) satisfying

(∀p, q ∈P)(p ≺ q =⇒ o(p) ≺′ o(q))

is called an embedding. If o even satisfies

(∀p, q ∈P)(p ≺ q ⇐⇒ o(p) ≺′ o(q)) ,

then it is order-preserving. Such a mapping is an order isomorphism if it is
bijective. Two partial orders are similar or order isomorphic if there exists an
order isomorphism between them.

Definition 2.5. Consider a partial order (P,≺) and X ⊆ P . We call p ∈ P
❖ a minimum of X if we have p ∈ X and (∀q ∈X)(q ⊀ p),

❖ an upper bound of X if we have (∀q ∈X)(q 4 p),

❖ the least element of X if we have p ∈ X and (∀q ∈X)(p 4 q), and

❖ the supremum of X if it is the least of the upper bounds of X.

The dual notions are maximum, lower bound, greatest element, and infimum.
Existence (and uniqueness) of either maximum, minimum, supremum, or infi-
mum of X provided, we abbreviate it by maxX, minX, supX, and infX.

We call Y ⊆ X cofinal (in X) if (∀p∈X)(∃q ∈Y)(p 4 q) holds.

If we consider subsets of N, we will sometimes use the convention max ∅ = 0.

Definition 2.6. A partial order (P,≺) is

❖ well-founded if every nonempty subset of P contains a minimum, and

❖ a well-order if it is well-founded and linear.

There is a very important collection of well-orders.

Definition 2.7. A set α is an ordinal if

❖ (α,∈) is a well-order and

❖ α is a transitive set, which means (∀β ∈α)(β ⊆ α) holds.

By common practice we usually identify α with (α,∈) and use lowercase Greek
letters α, β, γ, . . . to denote ordinals. The proper class∗ of ordinals is called On.
If α and β are ordinals, then we usually write α < β for α ∈ β. We extend the
convention max ∅ = 0 to sets of ordinals.

Ordinals are the canonical representatives of equivalence classes of well-orders
modulo similarity.

∗ This means On is too big to be a set.

17

2 Preliminaries

Theorem 2.8.

i. 0 := ∅ is an ordinal.

ii. If α is an ordinal and b ∈ α, then b is an ordinal.

iii. (On, <) is a linear order (using the obvious extension of “linear order” to
classes).

iv. For each α we have α = {β : β < α}.
v. If X is a set of ordinals, then

⋃
X is an ordinal. It coincides with supX.

vi. For every α, the set α ∪ {α} is an ordinal. It is equal to inf {β : β > α}.
vii. Every well-order is order-isomorphic to a unique ordinal.

There are three kinds of ordinals.

Definition 2.9. If α = β ∪{β} for some β, then α is called a successor ordinal
or successor, and we define β+1 := β∪{β}. Any ordinal which is not 0 and not
a successor is called a limit ordinal or simply a limit. The least limit ordinal is
called ω, and the proper class of all limit ordinals is denoted by Lim. Ordinals
below ω are called finite, the remaining are infinite. An ordinal is countable if
it can be mapped one-to-one into ω, and otherwise it is uncountable. The first
uncountable ordinal is denoted by Ω.

The ordinal ω is order-isomorphic to (N, <).

Lemma 2.10. We have α ∈ Lim if and only if α 6= 0 and (∀β <α)(β+1 < α).

Ordinals provide a tool for the classification of well-founded partial orders.

Theorem 2.11. For any well-founded partial order (P,≺) there exist a unique
ordinal otype(P,≺), called the order type of (P,≺), and a unique embedding
otypeP

≺ : P → otype(P,≺) satisfying

(∀p∈P)
(
otypeP

≺(p) = sup
{
otypeP

≺(q) + 1 : q ∈ P ∧ q ≺ p
})

and
otype(P,≺) = sup

{
otypeP

≺(p) + 1 : p ∈ P
}
.

If (P,≺) is a well-order, then otypeP
≺ is the order isomorphism of Theo-

rem 2.8.vii.

Definition 2.12. Let (P,≺) be a well-order. The inverse function of otypeP
≺ is

called the enumerating function of (P,≺) and is denoted by enumP
≺.

The notions of order type and enumerating function are transferable to classes
C ⊆ On, ordered of course by <. We have otype(C, <) = On if and only if C is
a proper class.

18

2.3 Orders and Order types

Lemma 2.13. If we can embed a partial oder (P,≺) into a well-founded partial
order (P ′,≺′), then (P,≺) is well-founded, and otype(P,≺) 6 otype(P ′,≺′)
holds.

Proof. Let o be the embedding. Since any nonempty subset of P without a
≺-minimal element could be transformed by o into a corresponding subset of
P ′, our (P,≺) has to be well-founded. An induction on otypeP

≺(p) immediately
yields otypeP

≺(p) 6 otypeP ′

≺′(o(p)). �

Definition 2.14. Let (P,≺) be a partial order and Q ⊆ P . By ≺�Q we denote
the restriction of ≺ to Q, which is defined by

p≺�Q q :⇐⇒ p, q ∈ Q ∧ p ≺ q .

Although this might be a bit misleading, we will sometimes write (Q,≺) instead
of (Q,≺�Q).

Lemma 2.15. Let (P,≺) be a partial order and Q ⊆ P .

i. (Q,≺) is a partial order.

ii. If (P,≺) is well-founded, then so is (Q,≺), and further otype(Q,≺) 6
otype(P,≺) holds.

Proof. While (i) amounts to a trivial calculation, (ii) follows from Lemma 2.13
and the fact that the identity function on Q embeds (Q,≺) into (P,≺). �

We are going to extend finite tuples to infinite sequences. This is achieved
by identifying the tuples over A we already know with functions from finite
ordinals into A.

Definition 2.16. A sequence (over a nonempty set A) is a function whose
domain is an ordinal α (and whose range is a subset of A). This α is called the
length of the sequence. Such a sequence is usually displayed as (aι)ι<α. The
sequence is finite if α is finite, and otherwise it is infinite. If β is an ordinal
and A is a nonempty set, then A<β denotes the set of sequences over A having
length below β.

There is an obvious isomorphism between A<ω and A∗.
Well-foundedness of a partial order is usually formulated in terms of infinite

descending chains.

Definition 2.17. Let (P,≺) be a partial order. A sequence p = (pi)i<ω over P
is an infinite chain in P if (∀i <ω)(pi ≺ pi+1), and it is an infinite descending
chain in P if (∀i <ω)(pi � pi+1).

19

2 Preliminaries

Using the axiom of choice for one direction we get the announced equivalence.

Lemma 2.18. A partial order is well-founded if and only if it does not admit
an infinite descending chain.

Corollary 2.19. Any partial order (P,≺) with finite P is well-founded.

Lemma 2.20. Let (P,≺) be a well-order. Any monotone F : P n → P has the
weak subterm property.

Proof. It suffices to consider the case n = 1. Suppose for a contradiction that
we can find a p satisfying p � F (p). An iterated application of the fact that F
is an embedding leads (relying on the linearity and transitivity of (P,≺)) to an
infinite descending chain p � F (p) � F (F (p)) � . . . , and this contradicts, via
Lemma 2.18, the well-foundedness of (P,≺). �

Similar to the way one recursively defines functions with domain N we can
define functions with domain On by transfinite recursion.

Theorem 2.21. If G is a (class) function whose domain contains all sequences,
then there is a unique function F with domain On such that, for all ordinals α,
F (α) = G((F (ι))ι<α) holds.

Definition 2.22. Let F : On→ On be given. We say

❖ F is continuous if it satisfies

(∀λ∈ Lim)(F (λ) = sup {F (α) : α < λ}) ,

❖ F is normal if it is a continuous embedding, and

❖ α is a fixed point of F if F (α) = α holds.

Lemma 2.23. A normal function has arbitrarily large fixed points.

Proof. Let F be a normal function and pick an arbitrary β. We recursively
define G : ω → On by G(0) := β and G(n + 1) := F (G(n)). Our intention is
to show α := sup {G(n) : n < ω} is a fixed point. From Lemma 2.20 we infer
G(n + 1) = F (G(n)) > G(n), and α > β follows. If there is an n satisfying
G(n+ 1) = G(n), then we get α = G(n) = F (G(n)), and otherwise α is a limit
ordinal and we have

F (α) = F (sup
n<ω

G(n)) = sup
n<ω

F (G(n)) = sup
n<ω

G(n+ 1) = α

since F is continuous. �

20

2.3 Orders and Order types

A very common way of defining ordinal functions is by distinguishing between
the three kinds of ordinals. This procedure is legalized by Theorem 2.21.

Proposition 2.24. For functions G : On→ On and H : On2 → On there exists
F : On2 → On satisfying

F (α, β) =


G(α) if β = 0 ,

H(F (α, β′), α) if β = β′ + 1 ,

sup {F (α, β′) : β′ < β} if β ∈ Lim .

Definition 2.25. The (binary) ordinal addition α+ β is defined by

α+ β :=


α if β = 0 ,

(α+ β′) + 1 if β = β′ + 1 ,

sup {α+ β′ : β′ < β} if β ∈ Lim .

Likewise, ordinal multiplication α · β is generated with

α · β :=


0 if β = 0 ,

(α · β′) + α if β = β′ + 1 ,

sup {α · β′ : β′ < β} if β ∈ Lim .

Finally, ordinal exponentiation αβ is given by

αβ :=


1 if β = 0 ,

αβ′ · α if β = β′ + 1 ,

sup {αβ′ : 0 < β′ < β} if β ∈ Lim .

It is easy to see that these functions extend the usual functions on natural
numbers to ordinals.

Lemma 2.26. Let α, β, γ be ordinals.

i. Ordinal addition is associative, but for α > ω we have 1+α = α < α+1.

ii. Ordinal multiplication is associative, but 2 · ω = ω < ω + ω = ω · 2.
iii. We have α · (β + γ) = α · β + α · γ, but (ω + 1) · 2 = ω · 2 + 1 < ω · 2 + 2.

iv. We have αβ · αγ = αβ+γ.

v. The ordinal functions δ 7→ α+δ (with arbitrary α), δ 7→ α ·δ (with α > 0),
and δ 7→ αδ (with α > 1) are normal.

By Lemma 2.26.v and Lemma 2.23, there are arbitrarily large ordinals λ sat-
isfying λ = ωλ. Similarly, there are arbitrarily large λ which are closed under
addition, i.e. they satisfy (∀α, β <λ)(α+ β < λ).

21

2 Preliminaries

Definition 2.27.

❖ Ordinals λ > 0 which are closed under addition are called principal ordi-
nals. They are collected in the proper class H.†

❖ Ordinals λ satisfying λ = ωλ are called epsilons and collected in the
proper class E. The αth epsilon number is called εα.

❖ We introduce ω-towers ωn by ω0 := 1 and ωn+1 := ωωn .

Lemma 2.28.

i. The enumerating function of H is α 7→ ωα.

ii. We have ε0 = sup {ωn : n ∈ ω}.

Proposition 2.29. For every ordinal α there are uniquely determined principal
ordinals α1 > . . . > αn such that α = α1 + · · · + αn holds. This is called the
additive normal form of α, and we sometimes write α =NF α1 + · · ·+ αn.

Note that the sum may be empty, yielding 0. We may combine the Proposi-
tion with Lemma 2.28.i.

Corollary 2.30. For every ordinal α there are uniquely determined ordinals
α1 > . . . > αn such that α = ωα1 + · · · + ωαn holds. This is called the Cantor
normal form of α, and we sometimes write α =CNF ω

α1 + · · ·+ ωαn.

Based on the additive normal form, it is possible to define an alternative
ordinal addition which is associative and commutative.

Definition 2.31. The natural sum α ⊕ β of two ordinals α =NF γ1 + · · · + γn

and β =NF γn+1 + · · ·+ γn+m is given by α⊕ β := γπ(1) + · · ·+ γπ(n+m), where
π is any permutation of [1, n+m] with (∀i∈ [1, n+m− 1])(γπ(i) > γπ(i+1)).

Lemma 2.32. The natural sum is commutative, associative, and monotone.

Definition 2.33. The operation ∗ concatenates two sequences a = (aι)ι<α and
b = (bι)ι<β. By a ∗ b we denote the sequence c = (cι)ι<α+β satisfying

cι =

{
aι if ι < α ,

bξ if ι = α+ ξ .

We say a′ = (a′ι)ι<α′ is an extension of a = (aι)ι<α, abbreviated by a 6ext a
′, if

α 6 α′ and (∀ι <α)(aι = a′ι).

Lemma 2.34. The class of sequences is partially ordered by 6ext. We have
a 6ext a

′ if and only if there is a sequence b with a′ = a ∗ b.

† H stems from the German translation Hauptzahlen.

22

2.3 Orders and Order types

Definition 2.35. The concatenation of partial orders (P1,≺1), . . . , (Pn,≺n) is
(
⊎

16i6n Pi,≺1,n) with

(i, p) ≺1,n (j, q) :⇐⇒ i < j ∨ (i = j ∧ p ≺i q) .

Lemma 2.36.

i. The concatenation of (linear) partial orders is a (linear) partial order.

ii. The concatenation of well-founded partial orders is a well-founded partial
order, and its order type is the sum of the order types of the basic orders.

iii. The concatenation of well-orders is a well-order.

Definition 2.37.

❖ The lexicographic product of the partial orders (P1,≺1), . . . , (Pn,≺n) is
(P1 × · · · × Pn,≺1,n

lex) where (p1, . . . , pn) ≺1,n
lex (q1, . . . , qn) holds if

(∃i∈ [1, n])(pi ≺i qi ∧ (∀j ∈ [1, i− 1])(pj = qj)) .

❖ If all (Pk,≺k) coincide with (P,≺), we write ≺n
lex for ≺1,n

lex and call the
resulting (P n,≺n

lex) the n-fold lexicographic product.

❖ The lexicographic order (P ∗,≺∗lex) based on a partial order (P,≺) is de-
fined by

p ≺∗lex q :⇐⇒ |p| < |q| ∨ (|p| = |q| ∧ p ≺|p|lex q) .

If two sequences of equal lengths are considered, we will often write <lex

instead of <n
lex or ≺∗lex.

Proposition 2.38.

i. The lexicographic product of (linear) partial orders is a (linear) partial
order.

ii. The lexicographic product of well-founded partial orders is a well-founded
partial order, and its order type is the reverse product of the order types
of the basic orders:

otype(P1 × · · · × Pn,≺1,n
lex) = otype(Pn,≺n) · · · · · otype(P1,≺1) .

iii. The lexicographic product of well-orders is a well-order.

iv. The lexicographic order based on a (linear) partial order is a (linear) par-
tial order.

v. The lexicographic order based on a well-founded partial order is a well-
founded partial order.

vi. The lexicographic order based on a well-order is a well-order.

23

2 Preliminaries

Lemma 2.39. If (P,≺) is a well-founded partial order and otype(P,≺) > ω,
then otype(P ∗,≺∗lex) = otype(P,≺)ω.

Proof. We put α := otype(P,≺) > ω. Because of Lemma 2.26 we have

αn + αn+1 = αn · 1 + αn · α = αn · (1 + α) = αn · α = αn+1

for all n, hence Proposition 2.38.ii implies otype(P n,≺n
lex) = αn. As (P ∗,≺∗lex)

corresponds to the infinite concatenation of the (P n,≺n
lex) = αn, we reach

otype(P ∗,≺∗lex) = sup
n<ω

(
otype(P 0,≺0

lex) + · · ·+ otype(P n,≺n
lex)
)

= sup
n<ω

(
α0 + · · ·+ αn

)
= sup

n<ω
αn = αω ,

using Lemma 2.36.ii and the definition of ordinal exponentiation. �

Corollary 2.40. We have otype(N∗, <∗
lex) = ωω.

Dershowitz and Manna (1979) transmogrified the properties of principal or-
dinals into a well-order which does not refer to ordinals.

Definition 2.41. The multiset extension of a given partial order (P,≺) is
(mul(P),≺mul) with

M ≺mul N :⇐⇒ (∃X, Y ∈mul(P))(∅ 6= X b N

∧M = (N
X) d Y

∧ (∀y ∈Y)(∃x∈X)(y ≺ x)) .

It is common practice to accompany this definition with a more perspicuous
equivalent formulation.

Lemma 2.42. If (mul(P),≺mul) is the multiset extension of (P,≺), then we
have, for all M,N ∈ mul(P),

M ≺mul N ⇐⇒ M 6= N ∧ (∀y ∈M
N)(∃x∈N
M)(y ≺ x) .

Proposition 2.43.

i. The multiset extension of a (linear) partial order is a (linear) partial
order.

ii. The multiset extension of a well-founded partial order is a well-founded
partial order.

iii. The multiset extension of a well-order is a well-order.

24

2.3 Orders and Order types

A proof of the following folklore Theorem can be extracted, for example, from
Weiermann (1992), or from Ferreira (1995, Remark 5.22).

Theorem 2.44. If (P,≺) is a well-founded partial order, then we have

otype(mul(P),≺mul) = ωotype(P,≺) .

We are going to introduce an ordinal notation system which is able to pin
down the small Veblen number. Our approach mimics Rathjen and Weiermann
(1993) and Weiermann (1994). For an explanation of the concepts behind
the following definitions the reader is invited to also consult Veblen (1908),
Bachmann (1950), Schütte (1977), or Pohlers (1989).

Definition 2.45. For any α < εΩ+1 we introduce the set EΩ(α) of countable
epsilon numbers which are needed to represent α by

EΩ(α) :=


∅ if α = 0 ∨ α = Ω ,

{α} if α ∈ E ,

EΩ(α1) ∪ . . . ∪ EΩ(αn) if α =NF α1 + · · ·+ αn > α1 ,

EΩ(α1) if α = ωα1 > α1 .

Additionally we put α? := maxEΩ(α) (and recall max ∅ = 0).

Definition 2.46. For α < εΩ+1 and β < Ω we define sets Cn(α, β) and C(α, β)
of ordinals and the ordinal ϑ(α) by main recursion on α and secondary recursion
on n < ω via

❖ {0,Ω} ∪ β ⊆ Cn(α, β) ,

❖ ξ, η ∈ Cn(α, β) =⇒ ωξ + η ∈ Cn+1(α, β) ,

❖ ξ ∈ Cn(α, β) ∩ α =⇒ ϑ(ξ) ∈ Cn+1(α, β) ,

❖ C(α, β) :=
⋃

n<ω Cn(α, β) ,

❖ ϑ(α) := min {ξ < Ω : C(α, ξ) ∩ Ω ⊆ ξ ∧ α ∈ C(α, ξ)} .

Theorem 2.47.

i. The function ϑ : εΩ+1 → E ∩ Ω is one-to-one.

ii. For α, β < εΩ+1 we have

ϑ(α) < ϑ(β) ⇐⇒ (α < β ∧ α? < ϑ(β)) ∨ (β < α ∧ ϑ(α) 6 β?) .

Definition 2.48. The ordinal ϑ(Ωω) is called the small Veblen number, while
ϑ(ΩΩ) runs as the big Veblen number.

25

2 Preliminaries

We will encounter the small Veblen number several times. This is due to the
fact that it is the proof-theoretic ordinal of Kruskal’s Tree Theorem (see Rathjen
and Weiermann (1993)) and hence the first ordinal which is not the order type
of a simplification order (see Definition 3.12). An alternative approach to ϑ(Ωω)
from below will be presented in Section 5.3.1.

For ordinals below ϑ(Ωω) there is an effective criterion for comparisons, which
is an immediate consequence of Theorem 2.47.ii.

Lemma 2.49. Let

α = ϑ(Ωn · α0 + · · ·+ Ω0 · αn) and β = ϑ(Ωm · β0 + · · ·+ Ω0 · βm)

with ᾱ, β̄ < ϑ(Ωω) and α0, β0 6= 0. We have α < β if and only if

❖ (∃i6m)(α 6 βi), or

❖ n < m and (∀i6n)(αi < β), or

❖ n = m; (α1, . . . , αn) <lex (β1, . . . , βn), and (∀i6n)(αi < β).

Definition 2.50. A partial order (P,≺) is a partial well-order (PWO) if any
partial order (P,≺′) satisfying ≺ ⊆ ≺′ is well-founded.

The concept of PWOs occurs in various fields of mathematics. Its importance
is witnessed by the fact that several people independently discovered it.

A trivial consequence of Corollary 2.19 is the following.

Lemma 2.51. Any partial order (P,≺) with finite P is a PWO.

Lemma 2.52. A partial order (P,≺) is a PWO if and only if, for every sequence
(pi)i<ω over P , there exist i < j such that pi 4 pj.

A proof can be found, for example, in Fräıssé (1986, 4.3.2), or in Middeldorp
and Zantema (1997).

Definition 2.53. Let A be a nonempty set. We call the elements of A labels.

❖ The set B(A) of (finite rooted labeled ordered) trees is the smallest set
closed under the condition that, if T1, . . . , Tn (with n > 0) are trees and
if a is a label, then (a, T1, . . . , Tn) is also a tree.

❖ The size |·| of such a tree is given by |(a, T1, . . . , Tn)| := 1+|T1|+· · ·+|Tn|.

Definition 2.54. Let (P,≺) be a partial order. By homeomorphic embedding
we denote the partial order (B(P),≺hemb), where T ≺hemb T

′ holds if and only
if T = (p, T1, . . . , Tn), T ′ = (q, T ′1, . . . , T

′
m), and

❖ T 4hemb T
′
k for some k, or

❖ p ≺ q and there are j1 < · · · < jn in [1,m] with (∀l∈ [1, n])(Tl 4hemb T
′
jl
).

26

2.4 Subrecursive Hierarchies

We are now prepared to state Kruskal’s famous Tree Theorem, which is quite
surprising in its generality. It is an extension of an earlier result of Higman
(1952), which is called Higman’s Lemma (and treats trees with bounded outde-
gree). The Tree Theorem is the backbone to a whole class of termination results
in term rewriting theory, see Definition 3.12. Its first proof was published by
Kruskal (1960), and later a rather short proof was given by Nash-Williams
(1963), see also Middeldorp and Zantema (1997).

Theorem 2.55 (Kruskal’s Tree Theorem). If (P,≺) is a PWO, then so is
(B(P),≺hemb).

We will sometimes need an alternative notion of trees which includes infinite
trees. This is achieved by considering as trees over A those nonempty sets of
finite sequences over A which are closed under initial sequences.

Definition 2.56. Let A be a nonempty set. A (rooted) tree over A is any
nonempty T ⊆ A<ω satisfying

(∀c∈T)(∀d∈A<ω)(d <ext c⇒ d ∈ T) .

Such a T contains an (infinite) branch if there is a sequence (ai)i<ω over A
satisfying (∀n)((ai)i<n ∈ T). We call T finitely branching if, for all c ∈ T , the
set {a ∈ A : c ∗ (a) ∈ T} of immediate T -successors of c is finite.

König (1927) stated an important property of finitely branching trees.

Lemma 2.57 (König’s Lemma). A finitely branching tree is infinite if and
only if it contains an infinite branch.

2.4 Subrecursive Hierarchies

During the efforts to fully classify the recursive functions (see page 38 for a
definition), people tried to approach large initial parts from below by defining
subrecursive hierarchies and by singling out various principles of constructing
new functions from known ones. The most prominent of these principles are
primitive and multiple recursion.

Definition 2.58. A function f : N→ N (eventually) dominates g : Nn → N if

g(m1, . . . ,mn) < f(m1 + · · ·+mn) (2.2)

holds for (almost) all m1, . . . ,mn, where “almost all” means “all but finitely
many”. We abbreviate domination of g by f as g <d f , while the more impor-
tant concept of eventual domination is abbreviated by g <ed f . The canonical
variant using 6 in (2.2) is called 6ed.

27

2 Preliminaries

We extend the notion to sets X and Y of number-theoretic functions, where
X 6ed Y means (∀g ∈X)(∃f ∈Y)(g 6ed f). If additionally Y 6ed X holds,
then we mark this by X ≈ed Y .

Domination of g by f is sometimes based on the sharper condition

g(m1, . . . ,mn) < f(max {m1, . . . ,mn}) .

This makes not much difference because

max {m1, . . . ,mn} 6 m1 + · · ·+mn 6 n ·max {m1, . . . ,mn} ,

but it is of course important if sets of very slow growing functions are considered.
The sets of functions we will encounter are not sensitive about this difference.

If g : Nm → N and hi : Nn → N for all i ∈ [1,m], then the function generated
by substitution (or composition) of the hi in g is Sub(g, h1, . . . , hm) : Nn → N,
defined via

Sub(g, h1, . . . , hm)(x̄) := g(h1(x̄), . . . , hm(x̄)) .

Definition 2.59 (Kalmár 1943). The set Elem of elementary functions is the
smallest set of number-theoretic functions which contains the zero function, the
successor, the projections, addition, multiplication, and modified subtraction ·−
and is closed under substitution and bounded sums and products.

If we have some property of number-theoretic functions like being elementary,
we can extend this property to sets (or relations) P ⊆ Nk by looking at the
characteristic function χP : Nk → {0, 1}, which is defined by

χP (m̄) :=

{
1 if P (m̄) ,

0 otherwise.

We say that P has the property if χP has.
Elementary functions have rather small growth rates. For n ∈ N we recur-

sively define 2n : N→ N by

20(m) := m and 2n+1(m) := 22n(m) .

The next result is folklore, cf., for example, Monk (1976, Lemma 2.44).

Lemma 2.60. If f is elementary, then there is n ∈ N such that f 6ed 2n.

Thus the function n 7→ 2n(n) is not elementary.

28

2.4 Subrecursive Hierarchies

Skolem (1923) explicitly introduced the scheme of primitive recursion. For
an n-ary g and an n+ 2-ary h we define the n+ 1-ary PRec(g, h) by

PRec(g, h)(0, x̄) := g(x̄) ,

PRec(g, h)(y + 1, x̄) := h(y, x̄,PRec(g, h)(y, x̄)) .

If f = PRec(g, h) also satisfies f(y, x̄) 6 j(y, x̄) then f is defined by limited
recursion based on g, h, and j.

Definition 2.61. The set Prec of primitive recursive functions is the smallest
set of number-theoretic functions which contains zero functions of arbitrary
arities, the successor, and the projections and is closed under substitution and
primitive recursion.

Ackermann (1928) presented a general construction of a functions leaving
a given countable set of functions, yielding the first example of a (recursive)
function which grows too fast to be primitive recursive. Recall from (2.1) that
Gn(m) denotes the n-fold application of G to m.

Definition 2.62 (Ritchie 1965). The (binary) Ackermann function Ack is
given by Ack(n,m) := Ackn(m), with its branches Ackn : N→ N generated via

Ack0(m) := m+ 1 and Ackn+1(m) := Ackm+1
n (1) .

Lemma 2.63.

i. Ack is the usual binary Ackermann function from Péter (1935):

Ack(0,m) = m+ 1 ,

Ack(n+ 1, 0) = Ack(n, 1) , and

Ack(n+ 1,m+ 1) = Ack(n,Ack(n+ 1,m)) .

ii. Ack is monotone in both arguments.

iii. The Ackn are primitive recursive.

iv. For any primitive recursive function f : Nk → N there is an n such that

f(m1, . . . ,mk) < Ackn(max {m1, . . . ,mk})

holds for all m̄ ∈ N. Hence f <d Ackn.

v. We have Prec ≈ed {Ackn : n ∈ N}.
vi. Ack is not primitive recursive.

vii. For all n we have Ack(n, n) 6 Ack(n+ 2, 0).

29

2 Preliminaries

Proof. Most of the results are well known, cf., for example, Péter (1936, 1951)
or Rose (1984). To see why (vii) holds, we note that monotonicity of Ack yields
n 6 Ackn+1(0). This implies

Ack(n, n) 6 Ack(n,Ack(n+ 1, 0)) = Ack(n+ 1, 1) = Ack(n+ 2, 0) . �

For k > 2, Péter (1936) introduced the concept of k-recursion, which yields a
strong scheme of nested recursions. Here a function F is generated from given
functions g and f i

j (with i ∈ [1, k] and j ∈ [1, k − 1]) of appropriate arities by

F (x, y1, . . . , yk) := 0 if y1 · y2 · . . . yk = 0 ,

F (x, y1 + 1, . . . , yk + 1) := g(x, y1, . . . , yk, F1, . . . , Fk) else,

where the Fi for i ∈ [1, k] are given by

Fi := F (x, y1 + 1, . . . , yi−1 + 1, yi, F
i
1, . . . , F

i
k−i)

using the abbreviation

F n
m := fn

m(x, y1, . . . , yk, F (x, y1 + 1, . . . , yk−1 + 1, yk)) .

Definition 2.64 (Péter 1936). A function is k-recursive (with k > 2) if it is
definable using elementary functions and finitely many k-recursions. We collect
the k-recursive functions inMk.

The set Mrec of multiple recursive functions is the smallest set of number-
theoretic functions which contains zero functions of arbitrary arities, the succes-
sor, and the projections and is closed under substitution and all k-recursions.

As an example of k-recursion we show one way of extending the binary Acker-
mann function to higher arities.

Definition 2.65. For k > 2 the k-ary Ackermann function is defined by

Ack(0̄,m) := m+ 1 ,

Ack(l̄, n+ 1, 0) := Ack(l̄, n, 1) ,

Ack(l̄, n+ 1,m+ 1) := Ack(l̄, n,Ack(l̄, n+ 1,m)) , and

Ack(l1, . . . , li−1, li + 1, 0, 0̄,m) := Ack(l̄, m, 0̄,m) .

Theorem 2.66 (Péter 1936).

i. For any k > l > 2, the k-ary Ackermann function is k-recursive but not
l-recursive.

ii. Any multiple recursive function is eventually dominated by almost all func-
tions n 7→ Ack(n, 0̄) where Ack is k-ary:

Mrec ≈ed {n 7→ Ack(n, 0k) : k > 2} .

30

2.4 Subrecursive Hierarchies

The following definition of the Grzegorczyk classes, which is a slight variation
on the original one, is taken from Rose (1984).

Definition 2.67 (Grzegorczyk 1953). The nth Grzegorczyk class En is the
smallest set of functions closed under substitution and limited recursion, con-
taining the zero function, the successor, the projections, and, provided that
n = m+ 1, the function Em, where Em is defined by

E0(x, y) := x+ y ,

E1(x) := x2 + 2 , and

Em+2(x) := Ex
m+1(2) .

For a proof of the following Theorem which is tailored for the above definition,
see Rose (1984, Section 2.2).

Theorem 2.68 (Grzegorczyk 1953).

i. Each function in E2 is eventually dominated by a polynomial.

ii. For each k-ary f ∈ En and each i ∈ [1, k], the k + 1-ary function

(y,m1, . . . ,mk) 7→ f(m1, . . . ,mi−1, ·,mi+1, . . . ,mk)
y(mi)

is in En+1.

iii. For all n we have En (En+1.

iv. We have Elem = E3 and Prec =
⋃

n∈N En.

Various convenient ways of introducing subrecursive hierarchies are based
on ordinals, more precisely on ordinal notation systems. The ordinals below
some countable (limit) ordinal Λ can be generated from below by the interplay
of finitely many closure processes. Thus they can be encoded as a subset of
N, together with appropriate relations and functions representing <, +, ·, ω·
and some further related functions. Friedman and Sheard (1995) gave a particu-
larly thorough definition which presumably covers all standard ordinal notation
systems considered so far.

Definition 2.69 (Friedman and Sheard 1995, 1.1). An elementary recur-
sive ordinal notation system (ERONS) is a tuple (A,<,+, ·, ω·) such that

❖ A ⊆ N is infinite and elementary,

❖ (A,<) is a linear order and < is elementary,

❖ +, · and ω· are elementary functions (of appropriate arities) on A, not
necessarily defined‡ everywhere,

‡ Although the functions are of course total, it may happen that (codes of) ordinals are not
mapped to ordinals.

31

2 Preliminaries

❖ “all the usual order and algebraic properties” of an initial segment of
ordinals are satisfied (see Friedman and Sheard (1995) for a detailed list
of seventeen properties),

❖ the function mapping n to the n-th element of the order A is elementary
in both directions,

❖ for every α (which is coded in A) there exists a unique expansion α =
ωα1 + · · · + ωαn with α1 > . . . > αn, and the correspondence between α
and (α1, . . . , αn) is elementary in both directions, and finally

❖ there are no infinite elementary <-descending sequences over A.

Technical reasons force us to add the following two conditions which are not
present in the original definition (with <N being the standard order on N):

❖ if α = ωβ1 + · · ·+ ωβn with β1 > . . . > βn, then n, ωβ1 , . . . , ωβn 6N α,

❖ for any m ∈ N, the code for m is smaller (with respect to <N) than the
code for ωm.

The last two conditions are introduced to meet the demands of Buchholz
et al. (1994, Theorem 2), which corresponds to Theorem 2.82. As the underlying
coding of sequences usually has the subterm property, it is not difficult to satisfy
these conditions.

For the remainder of this subsection we assume that the ordinals below some
limit ordinal Λ are given as an ERONS.

Definition 2.70. Let Λ > ε0 be a countable limit ordinal. For α < Λ and any
function h from N2 into the (codes of) ordinals below α, we introduce the count
function count-h : N→ N via

count-h(m) := min {n : h(m,n) 6 h(m,n+ 1)} .

Based on this we can define the scheme of descent recursion. For h as above
and any binary number-theoretic function g we introduce the unary function
DRec(g, h) by

DRec(g, h)(m) := g(m, count-h(m)) .

The α-recursive functions are all such functions DRec(g, h) with g and h be-
ing elementary. They are collected in the set Drec(α). A function which is
α-recursive for some α is called ordinal recursive or descent recursive. For con-
venience we call a function <α-recursive if it is β-recursive for some β < α.
The set of those functions is called Drec(<α).

It should be mentioned that our Drec(<α) coincides with the DR(α) of
Friedman and Sheard (1995), while our Drec(α) is their DR(α + 1). Our
ordinal recursive functions are not to be mixed up with those of Kreisel (1952).

32

2.4 Subrecursive Hierarchies

There is a slight danger of confusing α-recursion and k-recursion. But as
α-recursion is only interesting for α > ω, it should always be clear from the
context which kind of recursion is meant.

While (i) of the following Theorem is immediate, the remaining items can
also be found, for example, in Friedman and Sheard (1995).

Theorem 2.71 (Robbin 1965).

i. For β < α < Λ we have Drec(β) ⊆ Drec(<α) ⊆ Drec(α).

ii. Elem ≈ed Drec(ω) = Drec(<ω2)

iii. Prec ≈ed Drec(<ωω) (Drec(ωω)

iv. If α > ω2, then for every α-recursive function f there is an elementary h
mapping into α such that we have f(m) 6 count-h(m) for all m.

With the aim of classifying (a part of) the recursive functions, a variety
of number-theoretic hierarchies has been introduced. We present the most
prominent examples, which are defined in the same way. Starting at an initial
function (which gets the index 0), we define the function with index α+ 1 in a
uniform manner using the function with index α, and finally for limit ordinals λ
the function with index λ is constructed via diagonalization of its predecessors
along fundamental sequences.

Definition 2.72. Fix some countable limit ordinal Λ (as usual, represented by
an ERONS). An assignment of fundamental sequences for Λ is an elementary
function ·[·] : Λ× N→ Λ which satisfies, for all n ∈ N,

❖ 0[n] = 0,

❖ (α+ 1)[n] = α for all α < Λ,

❖ α[n] < α[n+ 1] < α for all limit ordinals α < Λ,

❖ (α+ β)[n] = α+ β[n] if α+ β = α⊕ β < Λ,

❖ ωα+1[n] = ωα · (n+ 1) if ωα+1 < Λ, and finally

❖ ωα[n] = ωα[n] if α < ωα < Λ.

If additionally the Bachmann property, demanding

(∀α, β <Λ)(α[n] < β < α =⇒ α[n] 6 β[0]) ,

holds, (Λ, ·[·]) is called a Bachmann system.

The second half of the six conditions above is usually not demanded explicitly,
but almost all assignments of fundamental sequences occurring in the literature
meet them. In Bachmann (1967) the Bachmann property appeared first.

Lemma 2.73. If (Λ, ·[·]) is a Bachmann system, then we have α = supn∈N α[n]
for all limit ordinals α < Λ.

33

2 Preliminaries

Proof. Assume for a contradiction that we have β = supn∈N α[n] for some β < α.
Take an arbitrary n. As α[n] < α[n+ 1] holds, we may conclude α[n] < β < α,
and see β[0] < β. Now the Bachmann property yields α[n] 6 β[0], hence we
arrive at the contradiction β = supn∈N α[n] 6 β[0] < β. �

Theorem 2.74 (Bachmann 1967, Schmidt 1976a). Let us drop for the
moment the restrictions concerning elementary functions in Definition 2.70 and
Definition 2.72. Under this provision we get:

i. Every countable ordinal carries a Bachmann system.

ii. The first uncountable ordinal does not carry a Bachmann system.

Proof. For proofs of (i) see Schmidt (1976a), Rose (1984, Theorem 3.2) or
the elegant Buchholz et al. (1994). We can find (ii) in Bachmann (1967) and
Schmidt (1976b). �

For the remainder of this subsection we fix a Bachmann system (Λ, ·[·]). This
will be the basis for the following definitions and observations.

Definition 2.75. Based (and depending) on our Bachmann system (Λ, ·[·]),
we recursively define four hierarchies of number-theoretic functions. Consider
α, λ < Λ with λ ∈ Lim.

The fast growing functions (Fγ)γ<Λ are based on iterations and defined by

F0(m) := 3m+1, Fα+1(m) := Fm+1
α (m), and Fλ(m) := Fλm .

Of slightly slower growth are the Hardy functions (Hγ)γ<Λ, introduced by

H0(m) := m, Hα+1(m) := Hα(m+ 1), and Hλ(m) := Hλ[m](m+ 1) ,

and the related counting functions (Lγ)γ<Λ, which are constructed via

L0(m) := 0, Lα+1(m) := Lα(m+ 1) + 1, and Lλ(m) := Lλ[m](m+ 1) + 1 .

Finally, the slow growing functions (Gγ)γ<Λ are given by

G0(m) := 0, Gα+1(m) := Gα(m) + 1, and Gλ(m) := Gλm .

Hardy (1904) used the Hγ to construct a set of real numbers of cardinality
ℵ1, and their first appearance in the field of subrecursive hierarchies is Wainer
(1972), with the slightly different choice Hλm for Hλ(m). This does not
affect growth rates, cf. Buchholz et al. (1994). Robbin (1965) investigated the
fast growing functions up to ωω as the canonical extension of (variants of) the
Grzegorczyk functions Em to the transfinite. Later this approach was extended
to ε0, see Löb and Wainer (1970), Schwichtenberg (1971), and Wainer (1970).

34

2.4 Subrecursive Hierarchies

Weiermann (1997b) observed that the choice of the underlying assignment of
fundamental sequences is vital to the slow growing hierarchy. In contrast to this,
the remaining three hierarchies are not that much affected by changes of the
assignment. The choice of the nonzero initial functions is not really important,
provided that they are honest. Just about any monotone elementary function
will do. We chose an exponential function as the initial fast growing function
in favor of the usual successor function because the slightly faster growth rates
it induces will be useful in Section 5.2. To give a taste of the easier proofs in
this field, we establish those properties of the Fn we will use later.

Lemma 2.76. Let natural numbers n,m, and a be given.

i. Each Fn is primitive recursive, monotone, and has the subterm property.

ii. Fn(0) = 3, Fn+1(m+ 1) > Fn(m+ 1), and Fa
n(m) > a.

iii. Fn(m+ 1) > Ackn(m) and Ackn+3(3m) > Fn(m).

iv. Fω eventually dominates all primitive recursive functions.

v. If a > 2, then Fa
n+1(m) > Fa2

n (m).

vi. Fa+1
n (m) > a · Fa

n(m)

vii. If a > 3, then Fa−1
n+1(m) > Fa+1

n (m).

Proof. The proofs for (i) and (ii) are standard and therefore left out. For m > 0
we show Fn(m) > Ackn(m) by induction on n. The interesting part here is the
induction step:

Fn+1(m) = Fm+1
n (m) > Fm+1

n (1) > Ackm+1
n (1) = Ackn+1(m) .

From this the first half of (iii) follows. By inductions we can show

Ack1(m) = m+ 2, Ack2(m) = 2m+ 3 ,

and
Ack3(m) > 2m+2 > 3m . (2.3)

Building on this, the second half of (iii) is shown by induction on n. To start
with, we see

Ack3(3m) > 23m+2 = 4 · 8m > 3 · 3m = F0(m) .

In the induction step we first treat the case m = 0. Here we have

Ackn+4(0) > Ack3(0) = 5 > 3 = Fn+1(0) .

For the case m > 0 we present two auxiliary results. A direct consequence of
monotonicity is the property Ackm−1

n+3 (1) > m. The induction hypothesis implies

Ack2
n+3(l) > Ackn+3(Ack3(l)) > Ackn+3(3l) > Fn(l)

35

2 Preliminaries

for l ∈ N, hence for all k > 0 we have Ack2k
n+3(l) > Fk

n(l). A combination of
these results yields

Ackn+4(3m) = Ack3m+1
n+3 (1) = Ack

2(m+1)
n+3 (Ackm−1

n+3 (1))

> Ack
2(m+1)
n+3 (m) > Fm+1

n (m) = Fn+1(m) .

Let us take care of (iv). By definition and by (ii), Fω eventually dominates
all Fn, hence, using (iii), it eventually dominates all Ackn. Now Lemma 2.63.v
implies all primitive recursive functions are eventually dominated by Fω.

We show (v) by induction on a > 2. If a = 2, then we may rely on (i) and
Fn+1(m) > 3, and for the induction step we have

Fa+1
n+1(m) > FFa2

n (m)+1
n (Fa2

n (m)) > F2a+1
n (Fa2

n (m))

by the induction hypothesis and by Fa2

n (m) > a2 > 2a. To prove (vi) we recall
3b > b2 holds for all b ∈ N. This yields

Fa+1
n (m) = Fn(Fa

n(m)) > 3Fa
n(m) > Fa

n(m) · Fa
n(m) > a · Fa

n(m) .

Finally, (vii) is established by

Fa−1
n+1(m) = F2

n+1(F
a−3
n+1(m)) > F4

n(Fa−3
n (m)) = Fa+1

n (m) ,

which follows from (v). �

Lemma 2.77. For any α < Λ and any m ∈ N we have

Hα(m) = HLα(m)(m) = m+ Lα(m) .

Proof. The second equation is easily established by noting that for finite n we
have Hn(m) = n+m. We prove the first equation by induction on α. The case
α = 0 follows from L0(n) = 0. For α 6= 0 we put γ := α[m] and gladly see

Hα(m) = Hγ(m+ 1) = HLγ(m+1)(m+ 1) = HLγ(m+1)+1(m) = HLα(m)(m)

suffices. �

The next result is standard. For a proof see, e.g., Buchholz et al. (1994).

Lemma 2.78. Let α, β < Λ be given.

i. Each Hα is strictly monotone.

ii. If α+ β = α⊕ β < Λ, then for each m we have Hα+β(m) = Hα(Hβ(m)).

iii. If β < α, then Hβ <ed Hα.

36

2.4 Subrecursive Hierarchies

In some sense, the Hardy function Hα is a paradigmatic α-recursive function.
According to, e.g., Friedman and Sheard (1995) we have the following result.

Proposition 2.79. For any α < Λ, the function Hα is α-recursive.

Corollary 2.80. {Hβ : β < α} ⊆ Drec(<α) and {Hβ : β 6 α} ⊆ Drec(α).

In order to reach the opposite direction of the above Corollary, a further
seemingly restrictive condition on the underlying Bachmann system has to be
imposed. Apparently all standard notation systems satisfy this.

Definition 2.81 (Zemke 1977; Friedman and Sheard 1995, 1.37). The
Bachmann system (Λ, ·[·]) is tame if there exists a unary elementary function g
satisfying

β < α < Λ =⇒ β 6 α[g(β)] .

A similar condition (demanding instead that g is primitive recursive) has
been thoroughly investigated by Buchholz et al. (1994).

Theorem 2.82. Let (Λ, ·[·]) be a tame Bachmann system. If there exists λ′ > 0
with λ = ωω · λ′ 6 Λ, then

Drec(<λ) ≈ed {Hα : α < λ} .

Proof. One inclusion is part of Corollary 2.80. For a proof of the opposite
inclusion see Friedman and Sheard (1995, 1.42) (where only ordinals below ε0

are explicitly treated), or Buchholz et al. (1994, Theorem 2) (which has to be
combined with Theorem 2.71.iv). �

We are now prepared to supplement Theorem 2.71.

Theorem 2.83. If (Λ, ·[·]) is a tame Bachmann system, then we have

Prec ≈ed {Fα : α < ω} ≈ed {Hα : α < ωω} ≈ed Drec(<ωω)

and
Mrec ≈ed {Fα : α < ωω} ≈ed {Hα : α < ω3} ≈ed Drec(<ω3) .

Proof. As the Fm with m ∈ N are just a version of Grzegorczyk’s Em, his Theo-
rem 2.68.iv establishes Prec ≈ed (Fα)α<ω. The connection between Mrec and
the fast growing hierarchy was established by Robbin (1965). He also showed
that the function Fωω is not multiple recursive, and proved the results concern-
ing descent recursion. Later Wainer (1972) used a connection between fast
growing and Hardy functions which suffices for our purposes (roughly speaking,
for α 6 ε0 the growth rates of Fα and Hωα are the same). �

Under certain additional assumptions concerning the underlying Bachmann
system, Girard (1981) (see also Cichon and Wainer (1983)) showed

Mrec ≈ed {Gα : α < ϑ(Ωω)} . (2.4)

37

2 Preliminaries

2.5 Complexity Classes

Originating with Turing (1936), a multitude of equivalent models of computa-
tion has been introduced. One such model, which is particularly well suited to
be simulated by TRSs, is the register machine, sometimes also called random
access machine.

Definition 2.84 (Shepherdson and Sturgis 1963). A (k-)register machine
(RM) consists of a counter (which is used to store the line number of a program
running on the machine) and k > 2 registers containing natural numbers. Such
a machine is equipped with a program, which is a sequence P = (a0, . . . , am)
of instructions. Each instruction ap is either of the form (j,+, q), (j,−, q), or
(j, q, r), with j ∈ [1, k] and q, r ∈ [0,m+ 1]. The configuration of a k-RM is
described by (p; b1, . . . , bk), where p ∈ [0,m+ 1] denotes the current instruction
number and the b̄ are the numbers stored in the registers.

To run the program P with input n1, . . . , nk, we start with the configuration
(0;n1, . . . , nk). The machine stops with output b̄ if it reaches the configuration
(m + 1; b̄). Otherwise, the current configuration is (p; b̄), and p corresponds to
an instruction ap. If this is of the form (j,+, q), then we make a transition to
the configuration (q; b1, . . . , bj + 1, . . . , bk). Similarly, with (j,−, q) we continue
at (q; b1, . . . , bj ·− 1, . . . , bk). The instruction (j, q, r) tests the content of the
register j. If bj = 0, then we continue at (q; b̄), and otherwise at (r; b̄).

Definition 2.85. Let k > l. A function f : Nl → N is computable on a k-RM
with (timebound g : N→ N and) program P if, for any n1, . . . , nl, the machine
with input n1, . . . , nl, 0

k−l outputs f(n1, . . . , nl), 0
k−1 (and if additionally the

function counting the number of program steps is dominated by g).

Our definition forces programs to be deterministic, indicating that the next
configuration is always uniquely determined. Sometimes it is advisable to con-
sider an alternative definition of program where, instead of one next program
line, a set of next lines is considered. The number of the next line is randomly
picked out of this set. Using this approach, the next configuration is no longer
uniquely determined. This provides good reason to call such a program nonde-
terministic. It is a matter of taste what is to be understood as the computed
function in this context. One possible choice is presented in Definition 6.22.

The Turing machine (TM), introduced by Turing (1936), is the mathematical
model of computation which occurs most frequently. For an explicit definition
of TMs and the concept of function computed by such a machine, the reader
may consult any standard text on computation, such as Davis (1958), to name
but one. The notions of program, instruction, configuration, and computable
function (with some timebound) are easily transferable to TMs. If a function is
computable by a TM, it is called recursive.

38

2.5 Complexity Classes

Alternatively, a computation with timebound g can be defined by allowing for
at most g(log(n + 1)) computation steps, see, e.g., Börger (1989). Our results
are not affected by this.

Various subclasses of the recursive functions have been studied over the last
decades. The most prominent ones are concerned with timebounds, measuring
the complexity of a function by counting the program steps needed to compute
it, and spacebounds, which are based on the number of band cells touched
during the computation. We will later encounter the computational classes
collecting the functions computable (on a TM) in polynomial, exponential, and
double exponential time. These are called Ptime, Etime, and E2time, while
Linspace denotes the functions computable under a linear spacebound.

The O-calculus provides an important tool for complexity characterizations.

Definition 2.86. For f : N→ N we say that a number-theoretic function g is
in O(f) if there are c, d ∈ N satisfying g 6ed cf + d.

We will frequently extend this notion to contexts. For example, Ack(O(n), 0)
contains the functions which are eventually dominated by n 7→ Ack(f(n), 0) for
some f in O(n).

Definition 2.87. In Atime we collect the functions computable (on a TM)
with timebound from Ack(O(n), 0).

Though the principle of eventual domination proves useful for many observa-
tions, it is not necessary for some prominent sets of functions.

Lemma 2.88. LetM be either Elem, Prec, Mrec, or Ack(O(n), 0). If f is
a number-theoretic function such that there is g ∈ M with f 6ed g, then there
is h ∈M with f <d h.

Proof. As there are only finitely many inputs where f may be larger than g,
there is a ∈ N such that f <d g + a. Now the result becomes obvious for
all classes but Ack(O(n), 0), as these are closed under addition with constants.
For Ack(O(n), 0) it suffices to note that, by monotonicity of Ack, we have
Ack(cn+ d, 0) + a 6 Ack(cn+ d+ a, 0). �

As models of computation, TMs and RMs are (mostly) equivalent. The fol-
lowing result is folklore.

Theorem 2.89. If f is computable by a TM (resp. RM) with timebound g, then
there is a unary exponential function p such that f is computable on a RM (resp.
TM) with timebound p ◦ g.

We introduce a property of sets of functions which reflects the above property.
This notion occurs, for example, in Handley and Wainer (1994, 4.16).

39

2 Preliminaries

Definition 2.90. A set M of number-theoretic functions accommodates expo-
nentiation if

❖ for any k-ary f inM, there is a unary g inM with f 6ed g, and

❖ for any unary f and g in M, there is a unary h in M which eventually
dominates n 7→ f(n)g(n).

Many well-known sets of functions accommodate exponentiation.

Lemma 2.91. The sets of functions Elem, Prec, Mrec, and Ack(O(n), 0)
accommodate exponentiation.

Proof. For the first three sets this is easily seen, as they contain addition and
exponentiation, and are closed under substitution.

The different structure of Ack(O(n), 0) deserves a closer look. We first note
that, for any n > 4, monotonicity of the Ackermann function and (2.3) yield

2Ackn(0) < Ack3(Ackn(0)) = Ack3(Ackn−1(1))

6 Ack2
n−1(1) = Ackn(1) = Ackn+1(0) .

It suffices to show that, for any c, d > 0 there is a′ such that, for almost all n,

Ack(cn, 0)Ack(dn,0) < Ack(a′n, 0)

holds. Given c and d, we put a := max {c, d}. As soon as an > 4, we get

Ack(cn, 0)Ack(dn,0) 6 Ack(an, 0)Ack(an,0) 6
(
2Ack(an,0)

)Ack(an,0)

= 2Ack(an,0)2 6 22Ack(an,0)

< Ack(an+ 2, 0) ,

using (∀m> 4)(m2 6 2m) and Ack(an, 0) > 4. �

The following result is an immediate consequence of Theorem 2.89.

Lemma 2.92. Let M ⊇ Elem accommodate exponentiation. A function is
computable on a TM with timebound fromM if and only if it is computable on
a RM with timebound from M.

A fundamental result of recursion theory is Kleene’s normal form theorem.

Theorem 2.93 (Kleene 1936). For any k > 0 there are primitive recursive
functions U : N→ N and C : Nk+2 → N such that for any f : Nk → N which is
computable on a TM with some timebound g, there is e ∈ N satisfying

(∀n̄)(f(n1, . . . , nk) = U(C(e, n1, . . . , nk, g(n1 + · · ·+ nk)))) .

The Theorem can be combined with the closure under substitutions of both
Prec and Mrec ⊇ Prec.

Corollary 2.94. If f is computable on a TM with timebound from Prec (resp.
Mrec), then f is in Prec (resp. Mrec).

40

3 Term Rewriting

A liar only fools himself.

The concept of term rewriting was developed at the end of the 1960s. An early
reference of its practical importance is Knuth and Bendix (1970). The basic idea
is to turn a set of term equations into directed equations, telling which side of
the equation is to be regarded as more complex. A term rewriting system (TRS)
is a finite∗ set of such equations. The emerging rewrite relation is the closure
of the TRS under substitutions and contexts. Provided that the TRS satisfies
some additional properties (it has to be confluent and terminating), the question
whether two terms are equal with respect to the given (undirected) equations
becomes decidable, as it amounts to iterated rewriting of both terms until no
further rules can be applied, followed by a comparison of the resulting terms.
This makes TRSs a valuable tool in automated deduction. Additionally term
rewriting constitutes an interesting paradigm for nondeterministic computation,
importing the term notion for free.

Termination is one major topic in computation. A TRS is said to terminate if
all derivations induced by its rewrite relation are finite. Just as in computation
theory, the problem of establishing termination of a given TRS is nontrivial.
Various approaches to it have been made. A common pattern is the association
of some well-founded order to the rewrite relation in order to establish well-
foundedness of the rewrite relation. The basic definitions and results dealing
with this will be the main topic of Section 3.2. Two main directions can be
distinguished: semantic and syntactic orders. For orders of the first kind, which
will be presented in Section 3.3, the main idea consists in mapping each term to
a member of a well-founded partial order ≺. If this can be done by embedding
the (transitive closure of the) rewrite relation into ≺, termination is achieved.
A very convenient way of doing so is by means of Σ-algebras. The basis of a Σ-
algebra is a partial order (P,≺). For any symbol of the signature, this is joined
to a function on P of the appropriate arity. Roughly speaking, this corresponds

∗ It is common to consider also infinite systems, but for our aims this makes no sense.

41

3 Term Rewriting

to a Σ ∪ {<}-structure in first order logic. If the partial order is well-founded
and if certain additional properties (like compatibility and monotonicity) are
established, termination is proven.

The main difficulty in showing termination by the semantical approach con-
sists in finding an appropriate well-founded order. As the general question of
termination of TRS is undecidable, this problem necessarily is hard.

It is fruitful to study certain subclasses of the orders which can be used to
establish termination. The most prominent such subclass consists of the simpli-
fication orders of Dershowitz (1979), which will be the key object of this text.
Well-foundedness of simplification orders is a consequence of their compatibility
with the homeomorphic embeddability relation used in Kruskal’s beautiful Tree
Theorem. Another consequence of this Theorem is that compatibility of a TRS
with a monotone Σ-algebra which also satisfies the subterm property implies
termination. Such a TRS is called simply terminating. Zantema (1993, 1994)
speaks of total termination if the Σ-algebra is based on a (total) well-order.
This constitutes an important proper subclass of simple termination.

As any well-order is order-isomorphic to an ordinal, it is possible to clas-
sify totally terminating TRSs according to the ordinals on which compatible
Σ-algebras live. This leads to a rich structure of subhierarchies. Inside the set
of TRSs whose termination is provable on the ordinal ω we can further differ-
entiate, depending on the functions used for interpreting the function symbols
of the Σ-algebra. The canonical approach here is a classification along various
subrecursive hierarchies, and it unveils a complex structure.

Neither simple nor total termination (nor even termination on ω) are decid-
able. Syntactic simplification orders, which will be introduced in Section 3.4,
provide a partial remedy to this. Depending on a precedence (a partial order on
the underlying signature), which is sometimes joined by additional structure,
one uniformly defines by recursion a simplification order on the terms. Instead
of searching within the infinitude of simplification orders one simply has to try
out the orders generated by the (finitely many) partial orders of the signature.
Termination via such an order is decidable, provided that the “additional struc-
ture” is also of finitary nature. Important examples of such syntactic orders
are the multiset path order (MPO) of Plaisted (1978), the lexicographic path
order (LPO) of Kamin and Lévy (1980), and the Knuth–Bendix order (KBO)
of Knuth and Bendix (1970). It will turn out that these orders cover but a very
small part of total termination.

In Section 3.5 we take a look at computability. TRSs provide a powerful
and natural model of nondeterministic computation, because the term concept,
which is ubiquitous in mathematics, is built in. It is fairly obvious that TMs
can simulate computation by TRSs. We will see that the simulation is possible
at a not too high expenditure.

42

3.1 Basic Definitions

3.1 Basic Definitions

The following definitions and results are variations on the texts of Baader
and Nipkow (1998), Dershowitz and Jouannaud (1990), Ferreira and Zantema
(1993), Ferreira (1995), Hofbauer (1991), and Touzet (1998b).

A signature is a finite set Σ equipped with a mapping #: Σ → N. The
elements of Σ are function symbols. For each f ∈ Σ, we call #(f) its (unique)
arity and equivalently speak of f as a #(f)-ary function symbol. Function
symbols of arities 1, 2, 3, resp., are unary, binary, and ternary. The set of
function symbols in Σ having arity n (> n, 6 n, resp.) is denoted by Σ(n)

(Σ(>n), Σ(6n), resp.).
In order to avoid unpleasant situations we demand ∅ 6= Σ(0) 6= Σ .
Members of Σ(0) are constants. The maximal arity of Σ, denoted by Ar(Σ),

is the largest n such that Σ(n) 6= ∅. For any set X which is disjoint from Σ, we
can consider the term algebra T (Σ,X) over Σ and X , which is the smallest set
T ⊇ X closed under the condition

n ∈ N ∧ f ∈ Σ(n) ∧ s1, . . . , sn ∈ T =⇒ f(s1, . . . , sn) ∈ T .

Note that n = 0 is allowed here. In this case, f() is simply f . Elements of
T (Σ,X) are called terms (over Σ and X). The variables V form a countably
infinite set which is disjoint from Σ. A symbol is a member of Σ ∪ V . We
usually consider terms which are members of T (Σ,V), for various signatures Σ.
The root symbol root(s) of a term s is defined by root(x) := x for x ∈ V and
root(f(. . .)) := f . Symbols occuring in a term s are collected in O(s), which
is defined by O(x) := {x} for x ∈ V and

O(f(s1, . . . , sn)) := {f} ∪ O(s1) ∪ . . . ∪ O(sn) .

The variables occurring in s are V(s) := O(s) ∩ V . Any term containing no
variables is closed or ground, and T (Σ) is the set of closed terms. Of course,
T (Σ) may be identified with T (Σ, ∅). The set of subterms of a term s is called
S(s) and defined by S(x) := {x} for x ∈ V and

S(f(s1, . . . , sn)) := {f(s1, . . . , sn)} ∪ S(s1) ∪ . . . ∪ S(sn) .

Any subterm t of s satisfying t 6= s is a proper subterm of s. Being a proper
subterm constitutes a partial order (T (Σ,V), <sub).

Before we can introduce the number of occurrences of a symbol in a term, for
u ∈ Σ ∪ V we denote by δu the function from Σ ∪ V to {0, 1} which is 1 only
if the input is u. We say u occurs |s|u times in the term s, where |x|u := δu(x)
for x ∈ V and

|f(s1, . . . , sn)|u = δu(f) + |s1|u + · · ·+ |sn|u .

43

3 Term Rewriting

Similarly |s|, the size or length of s, is defined. We put |x| := 1 for x ∈ V and

|f(s1, . . . , sn)| := 1 + |s1|+ · · ·+ |sn| .

Of course, |s| is the sum of the |s|u with u ∈ Σ ∪ V . By dp(s) we denote the
depth of s, defined by dp(x) := 1 for x ∈ V and

dp(f(s1, . . . , sn)) := 1 + max {dp(sj) : 1 6 j 6 n}.

For all terms s, size and depth are related via

dp(s) 6 |s| 6 (Ar(Σ) + 1)dp(s) . (3.1)

The following result remains valid even if we allowed for infinite signatures.

Lemma 3.1 (Raney 1960). Let Σ be a signature. For n ∈ N and s ∈ T (Σ),
let |s|n denote the sum of the |s|f with f ∈ Σ(n). We have

|s|0 = 1 +
∞∑
i=1

(i− 1)|s|i .

Proof. The proof is by induction on |s|. For s ∈ Σ(0), there is not much to do.
So consider s = f(s1, . . . , sn) with n > 1. The induction hypothesis yields

|f(s1, . . . , sn)|0 =
n∑

j=1

|sj|0

=
n∑

j=1

(
1 +

∞∑
i=1

(i− 1)|sj|i

)

= n+
n∑

j=1

∞∑
i=1

(i− 1)|sj|i

= 1 + (n− 1) +
∞∑
i=1

(i− 1)
n∑

j=1

|sj|i

= 1 +
∞∑
i=1

(i− 1)

(
δin +

n∑
j=1

|sj|i

)

= 1 +
∞∑
i=1

(i− 1)|f(s1, . . . , sn)|i ,

where δkl is Kronecker’s δ, which equals 1 if k = l and 0 otherwise. Since almost
all summands are 0, exchanging the summations is a legal action. �

44

3.1 Basic Definitions

Just as in (2.1), for a unary function symbol f and a term s, we adapt the
nth iteration fn(s), and we similarly extend this to function symbols of higher
arities, using “·” again to mark the position where the iterations happen.

A substitution is a mapping σ : V → T (Σ,V). It is ground if all variables
are mapped to ground terms. We can extend σ to a mapping from T (Σ,V) to
T (Σ,V) via

σ(f(s1, . . . , sn)) := f(σ(s1), . . . , σ(sn))

and abbreviate σ(s) by sσ. If σ and τ are substitutions, then so is τ ◦ σ. Note
that τ ◦ σ is ground if σ or τ is.

Lemma 3.2. For any term s and substitutions σ, τ we have (sσ)τ = s(τ ◦ σ).

Definition 3.3. Let R be a binary relation on T (Σ,X), with X = V or X = ∅.
We say that R is

i. closed under (ground) contexts if we have, for all n, for all f ∈ Σ(n+1),
and for all (ground) terms s, t, s̄,

s R t =⇒ f(s1, . . . , s, . . . , sn)R f(s1, . . . , t, . . . , sn) ,

ii. closed under (ground) substitutions if we have

s R t =⇒ sσ R tσ

for all terms s, t and all (ground) substitutions σ.

Of course, for X = ∅ there is no need to explicitly consider closed versions as
there are only closed terms.

Definition 3.4. For l, r ∈ T (Σ,V), the ordered pair (l, r) is a rewrite rule if
V(l) ⊇ V(r) and l /∈ V holds. A term rewriting system (TRS) (over T (Σ,V) or,
less precise, over Σ) is a finite set of rewrite rules. The rewrite relation induced
by a TRS R, denoted by →R, is the smallest binary relation on T (Σ,V) which
contains R and is closed under contexts and substitutions. By

+→R we denote
the transitive closure of →R, while the transitive and reflexive closure runs
under

∗→R. We write s
.·→R t if s→R t and t is the unique t′ satisfying s→R t′.

The transitive closure of
.·→R is

.→R.

It is not difficult to see that →R is the smallest binary relation on T (Σ,V)
which is closed under contexts and satisfies lσ →R rσ for all substitutions σ
and all (l, r) ∈ R.

When we focus on a TRS R, we will usually drop a subscript R. For example
we write→ instead of→R. If (A) is a (named) rule fromR, then→A indicates a
rewrite step due to this rule, i.e. a rewrite step in the TRS which solely contains
the rule (A).

45

3 Term Rewriting

Definition 3.5. Let R be a TRS over Σ.

❖ A term s is in normal form (with respect to R) if there is no term t
satisfying s →R t, and s is a normal form of s′ if s′

∗→R s and s is in
normal form.

❖ R is confluent for the term s if, for all terms s′ and s′′, we have

s
∗→R s′ ∧ s ∗→R s′′ =⇒ (∃t)(s′ ∗→R t ∧ s′′ ∗→R t) .

❖ R is confluent if it is confluent for all terms s.

Definition 3.6. A rewrite rule (l, r) over T (Σ,V) is called

❖ duplicating if there is a variable x with |l|x < |r|x,
❖ increasing if there is a substitution σ such that |lσ| < |rσ|,
❖ size-preserving if we have |lσ| = |rσ| for all substitutions σ, and

❖ embedding if we have l = f(x1, . . . , xn), with f ∈ Σ(>1) and pairwise
distinct variables x̄, and r = xi. The set Emb(Σ) contains a representative
of each embedding rule.

If all rules of a TRS R share one of the above properties, then R inherits the
property. So, if all rules in R are duplicating, then R is duplicating.

Definition 3.7. A signature Σ which solely consists of unary symbols and
exactly one constant is monadic.

We call a TRS over a monadic signature a string rewriting system (SRS) if
the only constant of the signature does not occur in the rules. Since in this
context terms may be identified with strings over the alphabet Σ(1), we will
display them as strings, hence we drop the parentheses, leave out the constant
resp. variable, and use ε for the empty string. In addition we will usually not
mention the constant when introducing a monadic signature.

AnR-derivation (or simply derivation, or reduction) is any sequence (si)16i<α

over T (Σ,V) satisfying 1 < α 6 ω and, for all i > 0 with i+ 1 < α, si →R si+1.
If α = ω, then we call the derivation infinite and say it has length ω, and
otherwise the derivation is finite and has length α− 1. If the above derivation
is finite, then it is a derivation from s1 to sα−1. Of course, s

∗→ t is equivalent
to the existence of a derivation from s to t, and if we add the condition α > 2,
then this is equivalent to s

+→ t.
A derivation (si)16i<α is bounded by n if we have |si| 6 n for all i satisfying

1 6 i < α. We write s
∗→> t if there is a derivation from s to t which is bounded

by |s|, we similarly use
∗→6 if a derivation is bounded by |t|, and by

∗→= we
indicate that all terms in a derivation have the same size. In the same sense

+→6,
→6 and their relatives are defined. We should note that

+→6 is not the transitive

46

3.1 Basic Definitions

closure of →6. The derivation is linear if we always have si
.·→R si+1, and it is

noncycling if 1 6 i < j < α implies si 6= sj. We call →R (and R) noncycling if
all derivations are noncycling, and→R is Noetherian if all derivations are finite.
In the latter case we say that R terminates or is terminating.

It is possible to transform any TM into an SRS in such a way that the TM
halts for all configurations if and only if the associated SRS terminates.

Theorem 3.8. Termination is an undecidable property of SRSs (and hence of
TRSs). The question remains undecidable even if only TRSs containing exactly
one rule are considered.

Proof. Huet and Lankford (1978) demonstrated how to transform a TMM into
an equivalent SRS RM as described above. The number of rules contained in
RM depends on the number of instructions ofM. Dershowitz (1987b) showed
that termination of TRSs containing only two rules is already undecidable, and
later Dauchet (1992) (see also Lescanne (1994)) found a way to transform TMs
into equivalent TRSs containing only one rule. �

The worst-case behavior of a terminating TRS is measured by the deriva-
tion length function or (depth) complexity DlR : N → N. First one defines
dlR : T (Σ)→ N (using the earlier introduced convention max ∅ = 0) by

dlR(s) := max {dlR(t) + 1 : s→R t}. (3.2)

So dlR(s) is the maximal length of a derivation from s. This is well-defined
since the finiteness of R implies →R is finitely branching. Now we put

DlR(n) := max {dlR(s) : s ∈ T (Σ) ∧ dp(s) 6 n}.

The condition dp(s) 6 n guarantees weak monotonicity of DlR. Note that it
suffices to consider only closed terms, as any derivation may be transformed,
under preservation of depths and sizes, to a derivation of equal length containing
only closed terms: simply apply a substitution which maps all variables to
constants.

One glance at Theorem 2.11 shows dlR corresponds to a certain order type.

Lemma 3.9. For any terminating TRS R we have otype(T (Σ),
+←R) 6 ω since

dlR(s) is just the order type of s in the partial order (T (Σ),
+←R).

An alternative (finer) measure is the size complexity DcR : N→ N, given by

DcR(n) := max {dlR(s) : s ∈ T (Σ) ∧ |s| 6 n}.

Following (3.1), for all n ∈ N we have

DcR(n) 6 DlR(n) 6 DcR((Ar(Σ) + 1)n) . (3.3)

47

3 Term Rewriting

If Σ = Σ(61), then dp(s) = |s| holds for all terms s, hence DlR and DcR coincide.
Hofbauer and Lautemann (1989) proposed a complementary measure:

“Particularly interesting would be the length of a shortest terminat-
ing derivation (in accordance with the usual complexity measure for
nondeterministic models).”

We take this up and define the shortest derivation length function or shortest
(depth) complexity SDlR and the shortest size complexity SDcR like DlR and
DcR, yet both times dlR is replaced with sdlR, which measures the length of a
shortest derivation to a normal form:

sdlR(s) := min {sdlR(t) + 1 : s→R t}.

In many cases upper bounds on SDlR are located far below DlR. Chapter 6
contains TRSs for whom these two complexity measures are located in the
same (rather high) complexity classes.

3.2 Abstract Orders on Terms

A general method to prove termination of a TRS is the construction of a well-
founded order on the terms which is compatible with the rewrite relation. Since
any infinite derivation corresponds to an infinite descending chain in the well-
founded order, we immediately get termination. It turns out that it suffices to
consider only those orders which are closed under contexts and substitutions.
For obvious reasons these are called rewrite orders, while reduction orders are
well-founded rewrite orders. A TRS terminates if and only if it is compatible
with some reduction order.

Dershowitz (1979) introduced simplification orders, which are rewrite orders
having the subterm property. They are the key object of this text. As a con-
sequence of Kruskal’s beautiful Tree Theorem, any such order is well-founded
and hence a reduction order. Unfortunately there are terminating TRSs which
are not compatible with any simplification order, as the SRS ff → fgf shows.
It terminates because each rewrite step decreases the number of occurrences of
ff , yet for any compatible simplification order ≺ we would get ff � fgf � ff .

Most of the following three sections is taken from Ferreira (1995), Hofbauer
(1991), Middeldorp and Zantema (1997), and Zantema (1999, 2001).

Definition 3.10. Let X be equal to V or ∅. A partial order (T (Σ,X),≺)

❖ is a rewrite order if it is closed under contexts and substitutions,

❖ is a reduction order if it is a well-founded rewrite order,

48

3.2 Abstract Orders on Terms

❖ is compatible with a TRS R if →R ⊆ �, that is, if s→R t implies s � t,

❖ normalizes a TRS R if lσ � rσ holds for all rules (l, r) ∈ R and all
substitutions σ, and it

❖ has the (weak) subterm property if s � t (respectively s < t) holds as
soon as t is a proper subterm of s.

By transitivity, (T (Σ,X),≺) has the subterm property if we have

f(s1, . . . , sn) � si

for all n > 1, for all f ∈ Σ(n), for all terms s̄, and for all i ∈ [1, n]. A similar
observation can be made for the weak subterm property.

The next Lemma contains some easy consequences of the above definitions.

Lemma 3.11. Let R be a TRS over Σ.

i. If R is noncycling, then (T (Σ,V),
+←R) is the least rewrite order living

on T (Σ,V) which is compatible with R.

ii. If R is terminating, then (T (Σ,V),
+←R) is the least reduction order on

T (Σ,V) compatible with R.

iii. If a well-founded partial order (T (Σ,V),≺) is compatible with R, then R
terminates.

iv. R terminates if and only if there is a reduction order (T (Σ,V),≺) which
is compatible with R.

v. A rewrite order (T (Σ,V),≺) is compatible with R if R ⊆ �, that is, if
we have l � r for all rules (l, r) of R.

Proof. For (i) transitivity of
+← is obvious, while its irreflexivity follows from

the fact that R is noncycling. Thus
+← is a partial order on T (Σ,V). Any

rewrite order compatible with R contains
+←. From this we can easily infer (ii),

as termination of R implies R is noncycling. It suffices for (iii) to note that any
infinite R-derivation is an infinite ≺-descending chain. One direction of (iv) is
contained in (ii), while the opposite direction is a direct consequence of (iii).
For (v) we just have to recall that, by definition, →R is the closure of R under
contexts and substitutions. �

Terms over a signature Σ can be considered as trees labeled with elements
from Σ. This observation leads to simplification orders, the most prominent
application of Kruskal’s Tree Theorem within term rewriting theory.

Definition 3.12 (Dershowitz 1979). A rewrite order (T (Σ,V),≺) having
the subterm property is a simplification order. We call a TRS simplifying if it
is compatible with a simplification order.

49

3 Term Rewriting

We should mention that Kaplan (1987) introduced the phrase “simplifying”.
Recall from Definition 3.6 that Emb(Σ) is the set of embedding rules.

Definition 3.13. We call (T (Σ,V),
∗←Emb(Σ)) embedding and write 6emb for

∗←Emb(Σ).

The set of closed terms over Σ can be identified with a subset of the finite
rooted trees with labels from Σ. If we order Σ by the empty binary relation
≺, thus making distinct symbols incomparable, and restrict the induced home-
omorphic embedding relation ≺hemb to the trees representing closed terms, we
end up with <emb.

Lemma 3.14. Let Σ be a signature.

i. A rewrite order (T (Σ,V),≺) has the subterm property if and only if it is
compatible with Emb(Σ), i.e. if Emb(Σ) ⊆ �.

ii. (T (Σ,V), <emb) is the smallest rewrite order on T (Σ,V) having the sub-
term property.

There are various incarnations of Kruskal’s Tree Theorem in term rewriting
theory. We present the most simple finite version. A thorough presentation of
more advanced (and stronger) versions is Middeldorp and Zantema (1997).

Theorem 3.15 (Kruskal’s Tree Theorem, finite version). For any se-
quence (si)i<ω over T (Σ) there exist i < j with si 6emb sj.

Proof. Following the remark below Definition 3.13, <emb can be seen as a restric-
tion of ≺hemb to T (Σ), where Σ is ordered by the empty binary relation ≺. As
Σ is finite, Lemma 2.51 ensures this partial order is a PWO. Theorem 2.55, the
general version of Kruskal’s Tree Theorem, implies the induced homeomorphic
embedding relation, whose restriction to T (Σ) coincides with 6emb, is a PWO.
Now Lemma 2.52 applies. �

Corollary 3.16. Simplification orders are well-founded.

From this and Lemma 3.11.iv we can infer the following fundamental result.

Theorem 3.17 (Dershowitz 1979). Any simplifying TRS is terminating.

Dershowitz (1982) considers more general simplification orders, which are
based on preorders. It should be obvious how to transfer the occuring notions
from partial orders to preorders. The following result shows that, in a term
rewriting setting, a transition to preorders has no effect.

Theorem 3.18 (Middeldorp and Zantema 1997). A TRS R over signature
Σ is simplifying if and only if there exists a preorder (T (Σ,V),≺) which is closed
under contexts, has the subterm property, and normalizes R.

50

3.3 Semantic Orders on Terms

An easy application of Lemma 3.14 yields the following very useful result.

Lemma 3.19. Let R be a TRS over Σ. R is simplifying if and only if the TRS
R∪ Emb(Σ) is terminating.

We can use this result to show not all terminating TRSs are simplifying.

Lemma 3.20. There is a terminating SRS which is not simplifying.

Proof. Consider the SRS R over signature {f, g} containing only ff → fgf . Its
termination is achieved by showing that every rewrite step decreases the number
of occurrences of the substring ff . However, if we add to R the embedding rule
g → ε, the cycling derivation ff → fgf → ff is possible. Lemma 3.19 shows R
is not simplifying. �

3.3 Semantic Orders on Terms

A common approach to the construction of compatible reduction orders is to
look at the semantics of the TRS. It is sometimes possible to give an interpreta-
tion into a well-known object which happens to be equipped with a well-founded
order. This order can be lifted to T (Σ,V), inducing a well-founded order on
T (Σ,V). The obvious aim is to find an interpretation such that the induced
order is a reduction order compatible with the TRS in consideration.

In a related approach one tries to provide a compatible Σ-algebra. Such an
object consists of a set P which is equipped with a partial order and with
interpreting functions [f] (of appropriate arities) living on P , for all f ∈ Σ.
This induces a canonical homomorphic interpretation. A Σ-algebra is called
monotone if all [f] are. It is a good idea to take a closer look at monotone Σ-
algebras, as here the induced order on T (Σ,V) is a rewrite order and the validity
of a termination proof solely relies on the well-foundedness of the underlying
partial order. This approach is general, i.e. a TRS is terminating if and only it
is compatible with a well-founded monotone Σ-algebra.

Depending on the Σ-algebras we can classify the terminating TRSs. Of special
importance are those compatible with monotone Σ-algebras having the subterm
property, as these are exactly the TRSs compatible with simplification orders.
Zantema (1993, 1994) introduced the important subclass of totally terminating
TRSs, collecting the TRSs compatible with a monotone Σ-algebra living on
some well-order. As well-orders are order-isomorphic to ordinals, there is always
some ordinal α which can serve as the universe of the Σ-algebra. Under these
circumstances we also speak of α-termination. The ordinals α can be used
to classify the totally terminating TRSs. Roughly speaking, the larger a limit
ordinal α is the more TRSs are α-terminating. The first nontrivial member of

51

3 Term Rewriting

the total termination hierarchy, the set of ω-terminating TRSs, already carries a
very rich structure. Since here the interpreting functions are number-theoretic,
we can make use of subrecursive hierarchies as a tool for classification.

3.3.1 Interpretations

Interpretations are a canonical means to prove termination.

Definition 3.21. Let (P,≺) be a partial order.

❖ A mapping I : T (Σ)→ P is an interpretation of T (Σ) in (P,≺).

❖ The interpretation I induces a binary relation ≺I on T (Σ) via

s ≺I t :⇐⇒ I(s) ≺ I(t) .

This can be lifted to a binary relation on T (Σ,V) via

s ≺I t :⇐⇒ I(sσ) ≺ I(tσ) for all ground substitutions σ

⇐⇒ sσ ≺I tσ for all ground substitutions σ .

Note that ≺I is not total on T (Σ,V) because distinct variables are always
incomparable. Even if (P,≺) is total, ≺I need not be total on T (Σ) since
distinct terms may be mapped to the same member of P .

Lemma 3.22. Let I be an interpretation of T (Σ) in the partial order (P,≺),
and let (T (Σ,V),≺I) be the induced relation.

i. I is an order preserving mapping from (T (Σ),≺I) to (P,≺).

ii. (T (Σ,V),≺I) is a partial order which is well-founded if (P,≺) is.

iii. (T (Σ,V),≺I) is closed under substitutions.

iv. If (T (Σ),≺I) is closed under (ground) contexts, then (T (Σ,V),≺I) is
closed under contexts.

v. If (T (Σ),≺I) has the subterm property, then so does (T (Σ,V),≺I).
vi. If (T (Σ),≺I) is well-founded, then so is (T (Σ,V),≺I).

Proof. For (i), everything immediately follows from the definition of ≺I , while
transitivity and irreflexivity needed in (ii) are inherited from (P,≺). Via I, any
infinite ≺I-descending chain corresponds to an infinite ≺-descending chain. In
order to treat (iii), we consider a substitution τ and s, t ∈ T (Σ,V) with s �I t.
Recall that σ ◦ τ is a ground substitution if σ is. By Lemma 3.2 we get

s �I t ⇐⇒ sσ �I tσ for all ground substitutions σ

=⇒ s(σ ◦ τ) �I t(σ ◦ τ) for all ground substitutions σ

⇐⇒ (sτ)σ �I (tτ)σ for all ground substitutions σ

⇐⇒ sτ �I tτ .

52

3.3 Semantic Orders on Terms

For (iv), let (T (Σ),≺I) be closed under ground contexts and take f ∈ Σ(n+1),
a ground substitution σ, and s, t, s̄ ∈ T (Σ,V) satisfying s �I t. Here we get

s �I t =⇒ sσ �I tσ
=⇒ f(s1σ, . . . , sσ, . . . , snσ) �I f(s1σ, . . . , tσ, . . . , snσ)

⇐⇒ f(s1, . . . , s, . . . , sn)σ �I f(s1, . . . , t, . . . , sn)σ ,

which, by arbitrarity of σ, implies f(s1, . . . , s, . . . , sn) �I f(s1, . . . , t, . . . , sn).
The proof of (v) should meanwhile be trivial. For (vi) we just have to incor-
porate (iii): the application of a ground substitution transforms any infinite
descending chain over T (Σ,V) into an infinite descending chain over T (Σ). �

Definition 3.23. Let I be an interpretation of T (Σ) in the partial order (P,≺).
We say that

❖ I is monotone if, for all n, all f ∈ Σ(n+1), and all s, t, s̄ ∈ T (Σ), we have

I(s) � I(t) =⇒ I(f(s1, . . . , s, . . . , sn)) � I(f(s1, . . . , t, . . . , sn)) ,

❖ I is weakly monotone if, for all n, f, s, t, s̄ as above, we get

I(s) < I(t) =⇒ I(f(s1, . . . , s, . . . , sn)) < I(f(s1, . . . , t, . . . , sn)) ,

❖ I has the subterm property if I(s) � I(t) holds as soon as s >sub t, and

❖ I is a normalization of a TRS R if, for all rules (l, r) in R and for all
ground substitutions σ, we have I(lσ) � I(rσ).

Again, I has the subterm property if and only if

I(f(s1, . . . , sn)) � I(si)

holds for all n > 1, all f ∈ Σ(n), all s̄ ∈ T (Σ), and all i ∈ [1, n].

Lemma 3.24. Let I be an interpretation of T (Σ) in the partial order (P,≺),
and let R be a TRS over Σ.

i. If I is monotone, then (T (Σ,V),≺I) is a rewrite order. Additional well-
foundedness of (P,≺) implies (T (Σ,V),≺I) is a reduction order.

ii. If I has the subterm property, then so does (T (Σ,V),≺I).
iii. I normalizes R if and only if R ⊆ �I.
iv. If I is a monotone normalization of R, then I embeds (T (Σ),

+←R) into
(P,≺), and R is compatible with (T (Σ,V),≺I). Additional well-founded-
ness of (P,≺) implies termination of R.

53

3 Term Rewriting

Proof. We start with (i). Lemma 3.22.ii shows (T (Σ,V),≺I) is a partial order,
and the monotonicity of I implies (T (Σ),≺I) is closed under (ground) contexts.
By Lemma 3.22.iv,iii, (T (Σ,V),≺I) is a rewrite order, and by Lemma 3.22.ii it
is even a reduction order, provided that (P,≺) is well-founded. In a similar
way (ii) follows from Lemma 3.22.v. As the definition of normalization is just
a copy of the definition of ≺I , (iii) is obvious. Finally, (iv) is established by (i),
(iii), Lemma 3.22.i and Lemma 3.11. �

Lemma 3.25. Let R be a terminating TRS over the signature Σ.

i. The function dlR is the minimal embedding of (T (Σ),
+←R) into (N, <):

for any such embedding I we have (∀s∈T (Σ))(I(s) > dlR(s)).

ii. The function dlR is minimal among the monotone interpretations of T (Σ)
in (N, <) which normalize R.

Proof. The function dlR : T (Σ)→ N from (3.2) is well-defined and satisfies

(∀s, t∈T (Σ))(s→R t =⇒ dlR(s) > dlR(t) + 1) .

Thus it is an embedding of (T (Σ),
+←R) into (N, <). The minimality follows by

induction on dlR(s). For (ii) we use Lemma 3.24.iv and (i). �

The Lemma shows it actually suffices to consider only monotone interpreta-
tions in the well-order (N, <). However, this often turns out to be much more
difficult than to construct an interpretation in some other well-founded order.

3.3.2 Σ-algebras and the Termination Hierarchy

A pleasant way of defining an interpretation is by Σ-algebras.

Definition 3.26 (Lankford 1975, Zantema 1994, 1999, 2001). Let Σ be
a signature. A Σ-algebra is a triple (A,≺,F) such that (A,≺) is a partial order
and F contains, for all f ∈ Σ(n), a function [f]A : An → A. The Σ-algebra

❖ is (weakly) monotone if all [f]A (with f ∈ Σ(>1)) are (weakly) monotone,

❖ is total if (A,≺) is total,

❖ is well-founded if (A,≺) is well-founded,

❖ has the (weak) subterm property if all [f]A (with f ∈ Σ(>1)) have it,

❖ is simple monotone if it is monotone and has the subterm property, and

❖ is weak monotone if it is weakly monotone and has the weak subterm
property.

In analogy with Definition 2.7, for ordinals α we abbreviate (α,<,F) by (α,F).

54

3.3 Semantic Orders on Terms

By convention, our signatures contain at least one constant. Thus the partial
order underlying the Σ-algebra is nonempty. Zantema (1999) calls monotone Σ-
algebras with the weak subterm property “simple monotone”. For our purposes,
both two approaches are equivalent, see Proposition 3.35.

A Σ-algebra is what is called a Σ∪{<}-structure in first order logic (with ≺
playing the rôle of <), and the operations of the algebra are called interpreta-
tions (of the function symbols of the underlying language) there. We are now
going to define appropriate restrictions of assignments and satisfaction �.

Definition 3.27. Let (A,≺,F) be a Σ-algebra. The function

[[·, ·]]A : T (Σ,V)× VA→ A

is defined via [[x, ρ]]A := ρ(x) and

[[f(s1, . . . , sn), ρ]]A := [f]A([[s1, ρ]]A, . . . , [[sn, ρ]]A) .

This induces a binary relation ≺A on T (Σ,V) by

s ≺A t :⇐⇒ (∀ρ∈ VA)([[s, ρ]]A ≺ [[t, ρ]]A) .

For s ∈ T (Σ), the value of [[s, ρ]]A does not depend on ρ. We call this value
[[s]]A and thus get an interpretation [[·]]A of T (Σ) in (A,≺).

Just as with interpretations, totality of (A,≺) does not imply ≺A is total on
T (Σ), as distinct terms may be mapped to the same member of A.

If it is clear from the context to which Σ-algebra we refer, we will usually
drop the subscript A in [[·]]A and [·]A.

Definition 3.28. A TRS R over Σ and a Σ-algebra (A,≺,F) are compatible
if we have R ⊆ �A, i.e. if l �A r holds for all rules (l, r) of R.

We will soon see that, for monotone Σ-algebras, it is legal to speak of “com-
patibility” here. In continuation of our digression to first order logic, (A,≺,F)
is compatible with R if and only if it is a model of the rules, that is, if we have
(A,≺,F) � l > r for all (l, r) ∈ R.

The following result establishes a connection between the interpretation [[·]]A
(in the sense of Definition 3.23) and the underlying Σ-algebra.

Lemma 3.29. Let (A,≺,F) be a Σ-algebra.

i. If (A,≺,F) is (weakly) monotone, then so is the interpretation [[·]]A.

ii. If (A,≺,F) has the (weak) subterm property, then so does [[·]]A.

iii. If a TRS R is compatible with (A,≺,F), then [[·]]A normalizes R.

55

3 Term Rewriting

We can now present a counterpart to Lemma 3.22 and Lemma 3.24, with
almost identical proofs.

Lemma 3.30. Let (A,≺,F) be a Σ-algebra, further let R be a TRS over Σ.

i. (T (Σ,V),≺A) is a partial order which is well-founded if (A,≺) is.

ii. (T (Σ,V),≺A) is closed under substitutions.

iii. If (A,≺,F) is monotone, then (T (Σ,V),≺A) is a rewrite order. It is a
reduction order if (A,≺) is also well-founded.

iv. If (A,≺,F) has the (weak) subterm property, then so does (T (Σ,V),≺A).

v. If (A,≺,F) is monotone and compatible with R, then (T (Σ,V),≺A) is
compatible with R.

At first sight, Σ-algebras may appear less powerful than arbitrary interpre-
tations, as [[s]]A = [[t]]A already implies [[f(. . . , s, . . .)]]A = [[f(. . . , t, . . .)]]A,
whereas interpretations are allowed to be less uniform. The following result
shows that, concerning termination, it suffices to consider only Σ-algebras.

Proposition 3.31. Let R be a TRS over Σ. R terminates if and only if it is
compatible with a well-founded monotone Σ-algebra.

Proof. First let R be compatible with a well-founded monotone Σ-algebra. By
Lemma 3.30.iii,v, this ensures R is compatible with a reduction order, and now
Lemma 3.11.iv tells us R terminates.

Let us turn to the opposite direction and consider a terminating R. By
Lemma 3.11.ii, (T (Σ,V),

+←R) is a reduction order on T (Σ,V) compatible with
R. Thus the Σ-algebra (T (Σ),

+←R,F) using the operations

[f](s1, . . . , sn) := f(s1, . . . , sn) (3.4)

is well-founded and monotone. We get compatibility of R with the Σ-algebra
because the mappings ρ from V to T (Σ) coincide with the ground substitutions
and because [[s, ρ]]A = sρ holds for all terms s. �

Zantema (1993, 1994, 1999, 2001) introduced and considered a whole hierar-
chy of termination proof methods. We present an extended selection of it.

Definition 3.32. Let R be a TRS over Σ. We call R
❖ simply terminating if it is compatible with a simple monotone Σ-algebra,

❖ (weakly) α-terminating for an ordinal α if it is compatible with a (weak)
monotone Σ-algebra (α,F), and

❖ (weakly) totally terminating if it is (weakly) α-terminating for some α.

56

3.3 Semantic Orders on Terms

In this context we will often speak of simple termination, (weak) total termina-
tion, and (weak) α-termination. Stimulated by Definition 2.70, a TRS is called
<α-terminating if it is β-terminating for some β < α.

Inside of ω-termination there is a further hierarchy (mainly due to Hofbauer
(1991)), focusing on the interpreting functions of the Σ-algebra. If they are lin-
ear we get linear termination (LT), and for polynomials we have polynomial ter-
mination (PT). This can be extended to exponential, elementary, En-, primitive
recursive,Mn-, multiple recursive, <α-recursive, and α-recursive termination.

We mentioned above that, by convention, our Σ-algebras are nonempty. Thus
for us there is no such thing as 0-termination. The phrase “simple termination”
was coined by Kurihara and Ohuchi (1990). Zantema (1993, 1994) introduced to-
tal termination as compatibility with a total well-founded monotone Σ-algebra.
By Theorem 2.8.vii, this is equivalent to our definition. Simple termination is
directly connected to simplification orders, hence termination is easily achieved.

Proposition 3.33. A TRS is simply terminating if and only if it is compatible
with a simplification order.

Proof. Let R be a TRS over Σ whose simple termination is witnessed by the
simple monotone Σ-algebra (A,≺,F). By Lemma 3.30.iii,iv, (T (Σ,V),≺A), is
a rewrite order which has the subterm property, hence a simplification order.
Lemma 3.30.v yields compatibility of R and (T (Σ,V),≺A).

Now let R be compatible with the simplification order (T (Σ,V),≺). It is
easy to see that the canonical Σ-algebra (T (Σ),≺,F) (where the Σ-operations
are defined as in (3.4)) is simple monotone and compatible with R. �

We can combine this result and Corollary 3.16.

Corollary 3.34. Simple termination implies termination.

It is possible to weaken the conditions we required for simple termination.

Proposition 3.35 (Zantema 1999). A TRS is simply terminating if and only
if it is compatible with a monotone Σ-algebra having the weak subterm property.

Simple and total termination may appear independent. This is deceiving.

Proposition 3.36 (Zantema 1994). Total termination implies simple termi-
nation.

Proof. Let R be a TRS over signature Σ whose total termination is witnessed
by (α,F). By P we denote the lexicographic product of α and (N, <). This is
turned into a Σ-algebra using the operations

[[f]]P((γ1,m1), . . . , (γn,mn)) := ([[f]]α(γ̄),m1 + · · ·+mn + 1) .

A moment’s reflection shows this Σ-algebra is simple monotone. �

57

3 Term Rewriting

On the other hand, simple and total termination do not coincide. The TRS
containing the two rules f(a)→ f(b) and g(b)→ g(a) is simply terminating but
not totally terminating (since a and b have to be incomparable in a compatible
monotone Σ-algebra).

In Theorem 3.8 we saw that termination is an undecidable property of TRSs.
There are further undecidability results which relate to some of the recently
introduced subclasses and, yet again, to TRSs containing only one rule.

Theorem 3.37.

i. Simple termination is undecidable, even for one-rule TRSs.

ii. Total termination is undecidable.

iii. ω-termination is undecidable, even within total termination.

Proof. Caron (1991) transfered Theorem 3.8 to the context of simple termina-
tion by reducing simple termination to the Correspondence Problem for linear
bounded automata posed by Post (1947). Middeldorp and Gramlich (1995)
refined the approach of Dauchet (1992) (see Theorem 3.8) to linear bounded
automata and simple termination of TRSs containing only one rule. Zantema
(1995) applied yet another transformation of Post’s Correspondence Problem
to prove undecidability of total termination. The (relative) undecidability of
ω-termination was established by Geser (1997). �

Lemma 3.38. Weak α-termination follows from α-termination. Hence total
termination implies weak total termination.

Proof. Following Zantema (1999), it suffices to show that any total well-founded
monotone Σ-algebra is already weak monotone. As monotonicity of a function
implies its weak monotonicity, it remains to establish its weak subterm property.
This is done by an invocation of Lemma 2.20. �

Proposition 3.31 shows total termination is an honest concept, as it implies
termination. Various natural questions arise:

❖ Depending on the signature, which α carry an α-terminating TRS?

❖ For which β does (weak) α-termination imply β-termination?

❖ Which α carry an α-terminating TRS which is not <α-terminating?

We will present a collection of partial answers to these question on the following
pages. They will later be joined by Corollary 4.11, which shows that the α of
the third question are to be found below ϑ(Ωω).

Lemma 3.39. If a TRS R over signature Σ is compatible with a simplification
order (T (Σ,V),≺) which is linear on ground terms, then R is otype(T (Σ),≺)-
terminating.

58

3.3 Semantic Orders on Terms

Proof. Consider the Σ-algebra (T (Σ),≺,F), where the [f] are defined canoni-
cally as in (3.4). It is easy to see this Σ-algebra is monotone, total (by premise),
and well-founded (by simplification). Its compatibility with R follows from the
compatibility of R with (T (Σ,V),≺). Indeed, by the latter we have lσ � rσ for
all ground substitutions σ. The same argumentation as in the proof of Propo-
sition 3.31 yields [[l, σ]] � [[r, σ]]. Thus we get otype(T (Σ),≺)-termination. �

Proposition 3.40 (Ferreira 1995, 5.33, 5.25). Let R be an α-terminating
TRS over signature Σ.

i. If R is a nonempty SRS, then α is a limit ordinal.

ii. If Σ(>2) 6= ∅, then α is a principal ordinal.

Recall from Lemma 2.28.i that the principal ordinals are just the ordinals of
the shape ωβ with β > 0. A direct consequence of the above Proposition is
that, as soon as a signature contains a function symbol of arity greater than 1,
any TRS over this signature is not α+α-terminating, as α+α is not principal.

Proposition 3.41 (Ferreira 1995, 5.34). For any α 6 ω, there is a SRS
which is ωα-terminating but not <ωα-terminating. Hence total termination
does not imply ω-termination.

Proof (sketch). The following examples can also be found in Ferreira and Zan-
tema (1996), and the case α = 2 was treated before by Zantema (1992, 1994).

For α = 0 the empty SRS suffices, while for α = 1 we just have to consider
the SRS {f → ε}. Let us turn to the case 1 < α < ω. Define, over the signature
Σα := {f1, . . . , fα}, the SRS Rα containing the rules fifi+1 → fi+1fifi for all i
with 1 6 i < α. Rα is ωα-terminating but not <ωα-terminating. Finally, the
SRS consisting of fg → gff and fh → hg suffices for the case α = ω. �

Proposition 3.42 (Zantema 1999). The SRS {fg → gff } is weakly ω-termi-
nating but not ω-terminating.

Proof. We know from Proposition 3.41 that the SRS is not ω-terminating. Its
weak ω-termination is established by putting [f](n) := 1 + 2bn/2c and [g](n) :=
2 + 2bn/2c. These functions are weakly monotone, have the weak subterm prop-
erty, and satisfy [f]([g](n)) = 3 + 2bn/2c > 2 + 2bn/2c = [g]([f]([f](n))). �

Though weak ω-termination is more general than ω-termination, it does not
cover the whole of ω2-termination.

Lemma 3.43. There is a SRS which is ω2-terminating but not weakly ω-termi-
nating (and not <ω2-terminating).

59

3 Term Rewriting

Proof. Consider the SRS over {f, g} containing Emb(Σ) and, yet again, the rule
fg → gff . Since the two embedding rules force the interpreting functions to be
monotone, weak α-termination and α-termination are equivalent in this case.
The result follows from Proposition 3.41. �

Theorem 3.44 (Ferreira 1995, 5.28, 5.29).

i. Let β > 0 and R be an α-terminating TRS over signature Σ. If Σ = Σ(61)

or β is principal, then R is β · α-terminating.

ii. α-termination implies ωα-termination.

One main obstacle to proving α-termination (and hence total termination) of
a given TRS is to exhibit a compatible Σ-algebra (α,F) which is strictly mono-
tone, whereas naturally arising candidates are often weakly monotone. The
following result of Touzet (1998b), which is of central importance for Theo-
rem 5.51, one of the main results of this text, shows that weak α-termination
implies total termination. Hence strict monotonicity can be dropped in favor
of the combination of weak monotonicity and the weak subterm property (on
a possibly larger ordinal).

Theorem 3.45 (Touzet 1998b). Weak α-termination implies ωα-termina-
tion. Hence weak total termination implies total termination.

Proof. Let R be a TRS over signature Σ whose weak α-termination is witnessed
by (α,F). By P we denote the partial order (mul(α) \ {∅}, <mul). An applica-
tion of Proposition 2.43.iii and Theorem 2.44 shows P is a well-order with order
type ωα (omitting the empty multiset does not hurt since ωα is infinite). As the
elements of P are nonempty multisets over α, each of them contains a unique
maximal ordinal. Thus the following definition of algebra operations is legal.
For f ∈ Σ(n) and members a1, . . . , an of P , we put

[f]P(a1, . . . , an) := H[f]α(max a1, . . . ,max an)I d a1 d . . . d an .

Any β ∈ ai satisfies β 6 max ai 6 [f]α(max a1, . . . ,max an) because of the weak
subterm property of [f]α, hence

[f]α(max a1, . . . ,max an) = max [f]P(a1, . . . , an) . (3.5)

Each ρ : V → P induces ρ′ : V → α by ρ′(x) := max ρ(x). We intend to show

(∀s∈T (Σ,V))(max [[s, ρ]]P = [[s, ρ′]]α) . (3.6)

This is done by induction on s. For variables

max [[x, ρ]]P = max ρ(x) = ρ′(x) = [[x, ρ′]]α

60

3.3 Semantic Orders on Terms

suffices. The remaining case is a bit more involved. Relying on (3.5) and the
induction hypothesis we get

max [[f(s1, . . . , sn), ρ]]P = max [f]P([[s1, ρ]]P , . . . , [[sn, ρ]]P)

= [f]α(max [[s1, ρ]]P , . . . ,max [[sn, ρ]]P)

= [f]α([[s1, ρ
′]]α, . . . , [[sn, ρ

′]]α)

= [[f(s1, . . . , sn), ρ′]]α .

Now we are prepared to showR is compatible with our new Σ-algebra. Consider
ρ as above and a rule (l, r) in R. As R is compatible with (α,F), we know
[[l, ρ′]]α > [[r, ρ′]]α. Using (3.6) twice we arrive at

max [[r, ρ]]P = [[r, ρ′]]α < [[l, ρ′]]α ∈ [[l, ρ]]P ,

and now a look at Lemma 2.42 yields [[r, ρ]]P <mul [[l, ρ]]P . As ρ was arbitrary,
we see R is compatible with our new Σ-algebra. It remains to show that the
[f]P with f ∈ Σ(>1) are monotone. Let a1, . . . , an, b be members of P such that
there is an i ∈ [1, n] satisfying ai >mul b. This implies max ai > max b, and
hence, by weak monotonicity of [f]α,

γ := [f]α(max ai, . . . ,max ai, . . . ,max an)

> [f]α(max ai, . . . ,max b, . . . ,max an) =: β

holds. Finally we arrive at

[f]P(a1, . . . , an) = HγI d a1 d . . . d ai d . . . d an

>mul HβI d a1 d . . . d ai d . . . d an

>mul HβI d a1 d . . . d b d . . . d an ,

using Definition 2.41. �

Touzet’s original version of the Theorem states that total termination of R
follows from the existence of a weakly monotone interpretation of T (Σ) in a
well-order (P,≺) such that I has the subterm property and normalizes R. The
extension to Σ-algebras is due to Zantema (1999, 2001). The latter text contains
a short alternative proof of the second half of the Theorem.

Even if we know a certain TRS over Σ is totally terminating, this does not
necessarily lead to an appropriate well-order of T (Σ), because two distinct terms
may have the same interpretation. Nevertheless there do exist satisfactory well-
orders on T (Σ).

Theorem 3.46 (Ferreira 1995, 5.40). A TRS R is totally terminating if and
only if there exists a well-order (T (Σ),≺) which is closed under contexts and
normalizes R.

61

3 Term Rewriting

We learnt that ω-termination, (weak) total termination, simple termination,
and termination constitute a proper hierarchy within the class of TRSs. There
are also proper hierarchies within ω-termination.

Proposition 3.47 (Zantema 1994). The SRS {fgh → gfhg} is ω-terminating
but not polynomially terminating.

In Section 5.1 we will encounter further separation results and see that En-
termination, En+1-termination, primitive recursive termination, Mk-termina-
tion (for k > 2), Mk+1-termination, and multiple termination constitute a
properly increasing hierarchy within ω-termination.

3.4 Syntactic Orders on Terms

An important group of termination proof methods are the syntactic orders on
terms. Before we present their most prominent examples, we introduce some
nomenclature which will later be useful.

Definition 3.48. LetM be a collection of reduction orders.

❖ ByM(1) we denote the collection of those members of M which live on
a signature Σ = Σ(61).

❖ A TRS is said to terminate via M if it is compatible with some ≺ ∈M.

By Lemma 3.11.v, a TRSR is compatible with a reduction order ≺ if and only
if R ⊆ � holds. Lemma 3.11.iv shows termination viaM implies termination.

Definition 3.49. Let Σ be a signature.

❖ A partial order on Σ is called a precedence.

❖ Consider a family of partial orders (T (Σ,V),CΣ,≺) in the (displayed) pa-
rameters Σ and ≺, the latter being a precedence on Σ. This family is
called incremental with respect to signatures if, for any signature Σ′ ⊇ Σ,
CΣ′,≺ is an extension of CΣ,≺ (with base T (Σ′,V)), and it is called incre-
mental with respect to precedences if ≺′ ⊇ ≺ (both being precedences on
Σ) implies CΣ,≺′ is an extension of CΣ,≺ (with base T (Σ,V)).

3.4.1 Multiset Path Orders

Plaisted (1978) introduced a syntactic order on terms which roughly consists
of comparing terms by first comparing their root symbols according to a given
precedence, and, in case of equality, by recursively comparing the multisets
of their immediate subterms. As these multisets ignore the positions of the
subterms, this order is not sensitive to permutations of subterms.

62

3.4 Syntactic Orders on Terms

Definition 3.50. We define a binary relation ∼ on T (Σ,V) by s ∼ t if s =
f(s1, . . . , sn), t = f(t1, . . . , tn), and there is a permutation π of [1, n] such that
(∀i∈ [1, n])(si ∼ tπ(i)). The relation is called permutative equivalence.

Definition 3.51 (Plaisted 1978, Dershowitz 1982). Let Σ be a signature
equipped with a precedence �. The multiset path order (MPO) �mpo (based on
Σ and �) of T (Σ,V) is defined by: s �mpo t if s = f(s1, . . . , sn) and

i. (∃i∈ [1, n])(si �mpo t ∨ si ∼ t), or

ii. t = g(t1, . . . , tm), f � g, and (∀i∈ [1,m])(s �mpo ti), or

iii. t = f(t1, . . . , tn) and Hs1, . . . , snI �mul
mpo Ht1, . . . , tnI.

Theorem 3.52.

i. MPOs are incremental with respect to both signature and precedence.

ii. Each MPO is a simplification order.

iii. Termination via MPO is decidable.

iv. Termination via MPO implies total termination.

Proof. While (i) can easily be read off the definition, (ii) is due to Dershowitz
(1982). As there are only finitely many precedences on Σ, decidability of termi-
nation via MPO is immediate. Ferreira (1995, 4.40) established (iv) (in a much
more general setting). �

Canonical TRSs terminating via MPO are those computing primitive recursive
functions, see Theorem 6.4. Theorem 5.6 will tell us that these are essentially
the most complex examples MPO can cope with.

3.4.2 Lexicographic Path Orders

The difference between lexicographic path orders and MPOs is a lexicographic
comparison of the subterms instead of using the multiset order. As we will see
later, this results in a considerable gain of complexity. Because we compare
lexicographically, we do not need permutative equivalence.

Definition 3.53 (Kamin and Lévy 1980). Let Σ be a signature equipped
with a precedence �. The lexicographic path order (LPO) �lpo (based on Σ and
�) of T (Σ,V) is defined by: s �lpo t if s = f(s1, . . . , sn) and

i. (∃i∈ [1, n])(si <lpo t), or

ii. t = g(t1, . . . , tm), f � g, and (∀i∈ [1,m])(s �lpo ti), or

iii. t = f(t1, . . . , tn), (s1, . . . , sn) �lex
lpo (t1, . . . , tn), and (∀i∈ [1, n])(s �lpo ti).

For the proof of the following result we can proceed literally as in the proof
of Theorem 3.52, though of course the real proofs differ.

63

3 Term Rewriting

Theorem 3.54.

i. LPOs are incremental with respect to both signature and precedence.

ii. Each LPO is a simplification order.

iii. Termination via LPO is decidable.

iv. Termination via LPO implies total termination.

If there are at most unary function symbols, multiset and lexicographic com-
parison of the direct subsets are identical, and permutative equivalence boils
down to equality.

Lemma 3.55. If Σ = Σ(61) and ≺ is a precedence on Σ, then ≺mpo and ≺lpo co-
incide. Hence MPO(1) and LPO(1) are identical, and termination via MPO(1)
is equivalent to termination via LPO(1).

Canonical examples of complex TRSs terminating via LPO are those com-
puting the k-ary Ackermann functions of Definition 2.65, see also Theorem 6.6.
Thus LPO allows for much longer derivations than MPO, but even termination
via LPO does not comprise PT, as the SRS {ff → g , g → f }, which is taken from
Middeldorp and Zantema (1997, p. 144), shows. It is polynomially terminating
(with [[f]](n) := n+2 and [[g]](n) := n+3), yet neither LPO nor MPO can show
its termination as we cannot have both f � g and g � f .

MPO is sometimes called recursive path order (RPO) or RPO with multiset
status, while LPO is referred to as RPO with lexicographic status. The latter
names indicate it is possible to combine MPO and LPO in a generalized order,
RPO with status. This was introduced by Kamin and Lévy (1980).

3.4.3 Knuth–Bendix Orders

We are going to define Knuth–Bendix orders, which were introduced by Knuth
and Bendix (1970) in a slightly restricted form. Our definition follows Baader
and Nipkow (1998). The signature is equipped with a precedence and a weight
function, which associates a nonnegative real number with each symbol. We
extend this function to a weight on terms by adding the weights of the symbols.
Very roughly speaking, terms are compared by first comparing their weights,
then their root symbols, and finally, by recursion, their subterms. Under certain
additional assumptions this results in a simplification order.

In the original definition weights had to be natural numbers. We will soon
see how the extension to reals results in new orders which are not equivalent
to any old order. However, concerning termination of TRSs nothing is gained.
According to a recent result of Korovin and Voronkov (2001), termination via
a new order implies termination via some old order.

64

3.4 Syntactic Orders on Terms

Definition 3.56. Let Σ be a signature equipped with a precedence �. We call
µ : Σ ∪ V → R+

0 compatible if there is γ ∈ R+ such that the following three
conditions are met:

❖ For all e ∈ Σ(0) we have µ(e) > γ.

❖ For all x ∈ V we have µ(x) = γ.

❖ If f ∈ Σ(1) and µ(f) = 0, then f � g holds for all g ∈ Σ \ {f}.
A (necessarily unique) unary symbol f satisfying µ(f) = 0 is called special,
and we will soon see it indeed deserves special treatment. We will stick to the
convention that, if there is a special symbol in Σ, then it is the symbol i. By
abuse of notation, a compatible µ generates a weight function µ : T (Σ,V)→ R+

via

µ(g(s1, . . . , sn)) := µ(g) +
n∑

k=1

µ(sk) .

An important property of the weight function is

µ(s) = γ ·
∑
x∈V

|s|x +
∑
g∈Σ

µ(g) · |s|g . (3.7)

More sophisticated weight functions have been considered. Lankford (1979)
introduced polynomials with natural number coefficients, and a very general
approach is from Dershowitz (1987b). Although some of the following results
can be extended to these weight functions, we will not treat them in any detail.

Definition 3.57. The Knuth–Bendix order (KBO) �kbo (based on Σ, �, and
compatible µ) of T (Σ,V) is defined by: s �kbo t if (∀x∈V)(|s|x > |t|x) and

i. µ(s) > µ(t) or

ii. µ(s) = µ(t) and

a) s = ia(x) with special i, t = x for some a > 0, and x ∈ V , or

b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g, or

c) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and (s1, . . . , sn) �lex
kbo (t1, . . . , tn).

Theorem 3.58.

i. KBOs are incremental with respect to both signature and precedence (under
the assumption of compatibility).

ii. If ≺ is total on Σ, then (T (Σ),≺kbo) is total.

iii. Each KBO is a simplification order.

iv. Termination via KBO implies total termination.

v. If a TRS terminates via KBO, then it is nonduplicating.

65

3 Term Rewriting

Proof. The proof of (iii) is lengthy and quite involved. An ambitious reader may
consult Baader and Nipkow (1998), whose presentation is based on work of Dick
et al. (1990). All remaining items are (more or less) immediate consequences
of the definition. �

It should be stressed that closure under substitutions is lost as soon as one
allowed for a constant c with µ(x) > µ(c), since this implied x �kbo c and,
substituting c for x, c �kbo c. Similarly, dropping the condition that a unary f
with weight 0 has to be ≺-maximal is lethal. Suppose there is some g of arity
n satisfying g � f . Put s := g(c, . . . , c) with c a constant. The sn := fn(s)
provide an infinite ≺kbo-descending sequence.

Knuth and Bendix introduced KBO in the context of group theory, and it
is indeed particularly well suited for TRSs occuring there. Consider, over the
signature containing e, −, and + of arities 0, 1, and 2, the TRS containing

x+ e→ x , x+ (−x)→ e , and − (−x)→ x .

It terminates via any KBO with special − and µ(e) = µ(x).

Definition 3.59. A KBO based on Σ, �, and µ is called

❖ an NKBO if µ takes only values in N, and it is

❖ a KBO− if there is no special symbol.

Any KBO whose weight takes only values in the rational numbers is an NKBO,
because for α ∈ R+ the KBO based on weight µ and the KBO based on weight
α · µ coincide.

Proposition 3.60. There are KBOs which are not equivalent to any NKBO.

Proof. Let Σ contain the constant c and the unary symbols f and g. For the
KBO �kbo based on the empty precedence, µ(c) := µ(f) := 1, and

µ(g) := 1.010010001000010000010 . . . 010 . . . 0︸ ︷︷ ︸
n

10 . . . 0︸ ︷︷ ︸
n+1

10 . . .

we get f 2(c) �kbo g
1(c) �kbo f

1(c), f 11(c) �kbo g
10(c) �kbo f

10(c), f 102(c) �kbo

g100(c) �kbo f
101(c), f 1011(c) �kbo g

1000(c) �kbo f
1010(c), and so on. Note that

we have inf {µ(s)− µ(t) > 0 : s, t ∈ T (Σ,V)} = 0. No NKBO is able to make
such fine distinctions. �

So there are more KBOs than NKBOs. Does this have an effect on the amount
of TRSs whose termination can be shown by KBO? The finite character of the
rewrite relation, which is due to the fact that (for us) a TRS is finite, prevents
us from making use of the full power of real-valued KBO.

66

3.4 Syntactic Orders on Terms

Theorem 3.61 (Korovin and Voronkov 2001). A TRS terminates via KBO
if and only if it terminates via NKBO.

In contrast to both MPO and LPO, decidability of termination via KBO is not
immediate, because one has to choose from infinitely many weight functions.
Using systems of homogeneous linear inequalities, this choice process can be
made effective.

Theorem 3.62 (Dick et al. 1990, Korovin and Voronkov 2001). It is
decidable (in polynomial time) whether a TRS terminates via KBO.

Proof. Decidability was shown by Dick et al. (1990), and Korovin and Voronkov
(2001) provided the timebound (in the more general setting of termination via
closed KBO, see Section 5.5). �

From now on, in connection with KBO signatures will be tacitly equipped
with precedence and (compatible) weight.

Termination via KBO is incomparable with both PT and termination via LPO.
The SRS {fg → ggf } (from Ferreira (1995, p. 114), see also Middeldorp and
Zantema (1997, p, 148)) is not terminating via KBO as weight considerations
imply g has to be special, whereas precedence considerations demand f � g.
In contrast to this, we get both termination via LPO (using f � g) and PT
(by putting [[f]](n) := 3n and [[g]](n) := n + 1). The following result prepares
complementary results in favor of KBO.

Lemma 3.63. There is an SRS terminating via KBO which is ω2-terminating
but not <ω2-terminating and not weakly ω-terminating.

Proof. In Lemma 3.43 we observed that the SRS containing fg → gff and
Emb({f, g}) is ω2-terminating but neither <ω2-terminating nor weakly ω-ter-
minating. Making f special, we easily establish termination via KBO. �

Thus termination via KBO does not imply PT. We will later (in Theorems 5.6
and 5.7) see that termination via either MPO or LPO does imply ω-termination.
Hence, in contrast to KBO, neither MPO nor LPO are able to cope with the
rule fg → gff . An essentially optimal connection between termination via KBO
and α-termination will be established in Theorem 5.17.

The rôle of the special symbol i in the above standard definition of KBO is
not that obvious. A KBO on T (Σ,V) with i ∈ Σ can be considered as an order
on the labeled members of T (Σ\{i},V). A term is labeled by adjoining natural
numbers to each of its symbols (including the variables). Two labeled terms
are compared by lexicographically comparing the weights, the labels of the root
symbols, the root symbols, and, recursively, the direct subterms. We want to
be more explicit here, because we believe this is an important observation.

67

3 Term Rewriting

There is good reason to refrain from formally introducing labeled terms, since
for them substitutions are a bit nonstandard (the labels of the variable and of
the root symbol of the substituted term have to be added . . .) Instead, we give
a reformulation of “s′ is labeled with a”.

Definition 3.64. For s, s′ ∈ T (Σ,V), a ∈ N, and the special symbol i we put

s ≡ ias′ :⇐⇒ s = ias′ ∧ root(s′) 6= i

and say that s is s′ labeled with a.

This will now be used for an equivalent reformulation of KBO. We define
(T (Σ,V),≺kbo2) like (T (Σ,V),≺kbo) in Definition 3.57, but replace (ii) with

(ii’) µ(s) = µ(t), s ≡ ias′, and t ≡ ibt′ with special i, and

❖ a > b or

❖ a = b, s′ = f(s1, . . . , sn), t′ = g(t1, . . . , tm), and

a) f � g, or

b) f = g and (s1, . . . , sn) �lex
kbo2 (t1, . . . , tn).

Note that the formulation is valid even if Σ contains no special symbol, since
then u ≡ i0u holds for all terms u.

Lemma 3.65. The orders (T (Σ,V),≺kbo) and (T (Σ,V),≺kbo2) coincide.

Proof. First of all, if i ∈ Σ, then for �kb equal to either �kbo or �kbo2,

(∀s, t∈T (Σ,V))
(
s �kb t⇔ i(s) �kb i(t)

)
(3.8)

holds. The equivalence of s �kbo t and s �kbo2 t is now shown by induction on
dp(s) + dp(t). In the interesting case we have µ(s) = µ(t). It is now easy to
see that s �kbo t implies s �kbo2 t, partly relying on (3.8). On the other hand,
s �kbo2 t yields s ≡ ias′, t ≡ ibt′ and a > b. If a = 0 or b > 0, then (3.8)
and the induction hypothesis imply s �kbo t. So it remains to treat the case
a > b = 0. If t′ = x ∈ V , then, due to the variable condition |s′|x > |t′|x and
weight considerations, we get s′ = x and may conclude s �kbo t. Otherwise, we
have root(s) = i � root(t). This too implies s �kbo t. �

We will tacitly use �kbo2 whenever comparing terms by KBO.
In order to approach KBOs with number-theoretic functions we have to re-

place the R+-valued weight function with an equivalent function into N+. This
takes some effort.

68

3.4 Syntactic Orders on Terms

Proposition 3.66. For each weight µ there is ν : T (Σ,V)→ N+ satisfying

(∀s, t∈T (Σ,V))(µ(s) > µ(t) ⇐⇒ ν(s) > ν(t)) .

We can choose ν such that there is an a ∈ N with (∀s∈T (Σ,V))(ν(s) < adp(s)).

Proof. Note that we may put ν := µ if µ takes only values in N. In this case,
for any a > Ar(Σ) satisfying (∀f ∈Σ)(a > µ(f)), we can show ν(s) < adp(s) by
induction on s ∈ T (Σ,V).

In the general case things are more involved. Our aim is to show

ν(s) := card({µ(t) : µ(t) < µ(s)}) + 1

is well-defined and has the desired properties. We may assume that the nonspe-
cial symbols of Σ are f1, . . . , fk. Each t ∈ T (Σ,V) is associated with a tuple
p(t) of length k + 1 via

p(t) := (|t|f1 , . . . , |t|fk
,
∑
x∈V

|t|x) .

From (3.7) we can infer that p(t) = p(t′) implies µ(t) = µ(t′). This observation
can be used to impose a limit on the weights of terms of bounded size. For
arbitrary m we introduce Tm := {µ(t) : |t| < m} and get

card(Tm) 6 card({p(t) : |t| < m}) 6 card({(a0, . . . , ak) : ā < m}) 6 mk+1 .

In a next step we put

W := {µ(u) > 0 : u ∈ Σ ∪ V}, w := minW, and w′ := maxW .

Let us fix some s ∈ T (Σ,V). A close look at (3.1) and (3.7) shows

µ(s) 6 w′ · |s| 6 w′ · bdp(s) (3.9)

for b := Ar(Σ) + 1. Assume we are given t ∈ T (Σ,V) satisfying µ(t) < µ(s).
As we are only interested in the weight of t, we may safely assume t contains
no special symbol. Hence t consists of elements of X := V ∪ (Σ(61) \ {i}) and
symbols from Σ(>2). Due to the weight conditions for KBOs, any occurrence of
an element of X in t contributes at least w to µ(t). By Lemma 3.1, symbols
from Σ(>2) have less occurrences in t than elements of X, so we get 1

2
w|t| 6 µ(t)

using (3.7). Hence (3.9) implies

|t| 6 2w−1µ(t) < 2w−1µ(s) 6 2w−1w′bdp(s) ,

and thus |t| < cdp(s) holds for any c > 2w−1w′b. This yields

card({µ(t) : µ(t) < µ(s)}) 6 card(Tcdp(s)) 6
(
cdp(s)

)k+1
=
(
ck+1

)dp(s)
,

so ν is well-defined and owns the announced growth bound.
Obviously µ(s) > µ(t) holds if and only if ν(s) > ν(t). �

69

3 Term Rewriting

3.5 Functions Computable by a TRS

Because the powerful concept of “term” is already present, TRSs provide a
strong and natural model of computation.

Definition 3.67. Let f : Nl → N be given.

❖ We say f is computable by the terminating TRS R if there are F ∈ Σ(l),
S, P ∈ Σ(1) (not necessarily distinct), and 0, 0′ ∈ Σ(0) (also not necessarily
distinct) such that, for all natural numbers n1, . . . , nl, the unique normal
form of F (Sn10, . . . , Snl0) is P f(n1,...,nl)0′. The symbol S is called the input
successor, while P is the output successor.

❖ IfM is a termination proof method, then we say that f is computable via
M if f is computable by a TRS terminating viaM.

❖ By Comp(M) we denote the set of functions computable via M, while
Comp1(M) collects the functions computable viaM using only one suc-
cessor symbol.

The input successor and the output successor do not have to be distinct.
However, Bonfante et al. (1999) observed that using only one successor symbol
may sometimes impose restrictions on the amount of functions computable via
M – see Sections 6.1 and 6.3.

Though in the above definition we demand confluence on the input terms,
the rewriting process is intrinsically nondeterministic. In Definition 6.22 the
notion of computability by a TRS will be extended to the nonconfluent case.

The concept of computation by a TRS is quite different from computation
by either a TM or a RM. There is a k depending on the TRS such that in
one rewrite step s → t the size of t may get k times larger than the size of s,
whereas for both RM and TM one step changes just one symbol. Forthermore
applicability of a rewrite rule is based on a rather complex definition. The
following Theorem shows that computation by a TRS can be simulated by both
TM and RM with the usual overhead.

Theorem 3.68. Let M⊇ Elem be a set of number-theoretic functions which
accommodates exponentiation. If f is computable by a TRS R such that dlR is
eventually dominated by a member ofM, then f is computable by both TM and
RM with timebound in M.

Proof. Handley and Wainer (1994, 7.11) investigate the simulation of a TRS by
a nondeterministic multi-tape TM with special focus on the time complexity
and show that the time taken by the TM to simulate a derivation is exponential
in the length of the derivation. As it is possible to turn a nondeterministic
multi-tape TM with timebound in M into a deterministic one-tape TM with

70

3.5 Functions Computable by a TRS

timebound inM (see Handley and Wainer (1994, 7.6 and 7.7)), we are through
with the TMs. The result for RMs follows from Lemma 2.92. �

We already mentioned (somewhere around Theorem 3.8) that Huet and Lank-
ford (1978) showed it is possible to transform a TM into a TRS, under preser-
vation of termination. Hence we can flank the above result by the following.

Corollary 3.69. The recursive functions are the functions computable by TRSs.

Under a certain assumption, we can directly employ the derivation length
function of R to construct a bound on the computed function.

Lemma 3.70. If f : Nl → N is computable by a nonduplicating TRS R (with
symbols as above), then there are a ∈ {0, 1} and b ∈ N satisfying

f(n1, . . . , nl) 6 1 + a · (n1 + · · ·+ nl) + b · dlR(F (Sn10, . . . , Snl0))

for all n1, . . . , nl. The use of two distinct successor symbols implies a = 0.

Proof. Let S and P be the input resp. output successor. We put

b := max {|r|P ·− |l|P : (l, r) ∈ R}.

Since R is nonduplicating, s→R t implies |t|P ·− |s|P 6 b. Hence for

sin := F (Sn10, . . . , Snl0) and sout := P f(n1,...,nl)0′

we get
f(n1, . . . , nl) = |sout|P 6 |sin|P + b · dlR(sin) .

If S and P differ, then F is the only possible occurrence of P in sin. �

A similar result holds for arbitrary R, however multiplication (with some b)
has to be replaced with exponentiation.

71

4 Order Types

You are on the right way.
Go on!

We have been told by Lemma 3.9 that, for any terminating TRS R, the order
type of (T (Σ),

+←R) cannot exceed ω. In contrast to this, the order types of
simplification orders which are compatible with R may get quite large. Accord-
ing to Schmidt (1979) their supremum is the small Veblen number ϑ(Ωω). By
a result of de Jongh and Parikh (1977), the supremum of the order types of
simplification orders over monadic signatures is the much smaller ordinal ω3.
The maximal order types of simplification orders over both terms and strings
are already attained by prominent representatives – by LPOs.

In general, the larger the order type of a simplification order the more TRSs
are compatible with it, hence the more TRSs can be shown to terminate via
this order. Thus the strength of a termination proof method consisting of a
collection of simplification orders (like one of the syntactic orders on terms
we encountered in Section 3.4) can be measured by figuring out the supremum
of the occuring order types. The larger the occuring ordinals are the longer
derivations may be expected. This measure has to be taken with a grain of
salt as, due to its finitary character, a TRS may not be able to exhaust the
full power of the termination proof method because distinct branches of the
compatible order are too far apart for the locally operating rewrite relation.
Later (in Chapter 5 and Chapter 6) we will see that, concerning complexities,
MPO is weaker than KBO, although the order types occuring within MPO are
much larger than ωω, which we will prove to be the maximal order type of a
KBO. This order type is already attainable by a KBO over a monadic signature,
provided there is a special symbol. If a KBO does not contain a special symbol,
then its order type is just ω.

So, as a rule of thumb, it is justified to regard the occuring order types as an
indicator for the strength of a termination proof method, but this tool has to
be used with care.

73

4 Order Types

4.1 Order Types of MPOs and LPOs

While the order types of MPOs are already rather large, the order types of LPOs
are enormous – they exhaust the small Veblen number ϑ(Ωω).

Theorem 4.1 (Dershowitz and Okada 1988). Let Σ be a signature equipped
with a precedence ≺.

i. For the induced MPO ≺mpo we have

otype(T (Σ),≺mpo) 6 ϑ(Ω · card(Σ)) < ϑ(Ω · ω) .

ii. For the induced LPO ≺lpo we have

otype(T (Σ),≺lpo) 6 ϑ(ΩAr(Σ) · card(Σ)) < ϑ(Ωω) .

Proof. Our presentation follows Weiermann (1992).
Associate to each symbol f a natural number af < card(Σ) such that f ≺ g

implies af < ag (the order type of f with respect to ≺ will do). For MPO we
define an embedding o : (T (Σ),≺mpo)→ ϑ(Ω · card(Σ)) via

o(f(s1, . . . , sn)) := ϑ(Ω · af + o(s1)⊕ · · · ⊕ o(sn))

where ⊕ is the natural sum of ordinals from Definition 2.31. An invocation of
Lemma 2.49 proves the claim.

The proof for LPO is similar. Here the the embedding o of (T (Σ),≺lpo) into
ϑ(ΩAr(Σ) · card(Σ)) is defined by

o(f(s1, . . . , sn)) := ϑ(ΩAr(Σ) · af + Ωn−1 · o(s1) + · · ·+ Ω0 · o(sn)) ,

and again Lemma 2.49 does the job. �

It is a folklore result (cf. Hasegawa (1994, p. 161)) that, on the other hand,
ϑ(Ω · ω) and ϑ(Ωω) are the respective suprema of the order types of MPOs and
LPOs.

If we restrict ourselves to monadic signatures, much lower bounds on the
order types occur. Recall from Lemma 3.55 that, for monadic signatures, MPO
and LPO coincide.

Theorem 4.2 (Sakai 1984, see also Hasegawa 1994). Let Σ be a monadic
signature which contains exactly n unary symbols and is equipped with a prece-
dence ≺. For both the induced MPO ≺mpo and the induced LPO ≺lpo we have

otype(T (Σ),≺mpo) = otype(T (Σ),≺lpo) 6 ωωn−1

.

If ≺ is total, then equality holds.

Theorem 4.9 will show this result already presents the maximal order types
for simplification orders over monadic signatures.

74

4.2 Order Types of KBOs

4.2 Order Types of KBOs

In this section we develop a complete classification of the order types of KBOs.
For various reasons, the literature concerned with order types of reduction or-
ders focuses on the order types of the orders restricted to closed terms. We will
join in, but since our classification is painlessly extendable to the unrestricted
orders, we will present this result as well as a digression to infinite signatures.
First of all, we exploit the literature.

Theorem 4.3. Let ≺kbo be an NKBO over the signature Σ.

i. If ≺Γ
kbo is the NKBO over the signature Γ containing i � ◦ � e of weights 0,

1, 1 and arities 1, 2, 0, then we can embed (T (Σ),≺kbo) into (T (Γ),≺Γ
kbo).

ii. If Σ = Σ(61) and Σ(1) contains a special symbol and at least one more
symbol, then otype(T (Σ),≺kbo) = ωω.

iii. We have otype(T (Σ),≺kbo) 6 ϑ(ΩAr(Σ)+1 · ω).

iv. We have otype(T (Σ),≺kbo) 6 ϑ(Ω3 · ω).

Proof. The result (i) is from Hofbauer (1991, 5.7) (or, equivalently, Hofbauer
(2000)), while (ii) is from Touzet (1997, 5.2.20). We can find (iii) in Touzet
(1997, 4.2.23), and (iv) is just a combination of (ii) and (iii). �

Lemma 4.4. If ≺kbo is a KBO over Σ and Σ(>1) contains a special symbol and
at least one more symbol, then otype(T (Σ),≺kbo) > ωω.

Proof. Let ≺Γ
kbo be the NKBO over the signature Γ consisting of i � g � e with

weights 0, 1, 1 and arities 1, 1, 0. Since we have otype(T (Γ),≺Γ
kbo) = ωω by

Theorem 4.3.ii, it suffices to construct an embedding o from (T (Γ),≺Γ
kbo) into

(T (Σ),≺kbo). By our convention, Σ contains a constant e′, and the premise
gives us a k + 1-ary symbol f 6= i. We put

o(e) := e′, o(i(s)) := i(o(s)), and o(g(s)) := f(o(s), e′, . . . , e′) .

An induction on s ∈ T (Γ) shows we have µΣ(o(s)) = α · (µΓ(s) − 1) + µΣ(e′),
with α := µΣ(f) + k · µΣ(e′). The weight conditions for KBO imply α > 0,
hence, concerning weights, o is order preserving. Next we observe that s ≡ ias′

leads to o(s) ≡ iao(s′). By induction on dp(s)+dp(t) we can now show s �Γ
kbo t

implies o(s) �kbo o(t). �

We know from Theorems 4.1 and 4.2 that the order types in reach of either
MPO or LPO over monadic signatures are located far below the bounds for
arbitrary signatures. Quite surprisingly, this is not the case with KBO. The
maximal order type is ωω, and it is already attainable over a monadic signature
with just two unary symbols.

75

4 Order Types

Theorem 4.5. If ≺kbo is a KBO over Σ, then otype(T (Σ),≺kbo) 6 ωω.

Proof. Because of otype(N∗, <∗
lex) = ωω (see Corollary 2.40) it suffices to find a

mapping o which embeds (T (Σ),≺kbo) into (N∗, <∗
lex). We may suppose

Σ = {f1, . . . , fm, i} and fm � · · · � f1 .

Take the function ν from Proposition 3.66 and put b := max {Ar(Σ), 3}+1. We
recursively define o for s = iafj(s1, . . . , sn) by

o(s) := (ν(s), a, j) ∗ o(s1) ∗ · · · ∗ o(sn) ∗ q

where q is a (nonempty) sequence of zeros of such a length that |o(s)| = bν(s)+1

holds. An induction on dp(s) shows o(s) is well-defined – for the unique p ∈ N∗

with o(s) = p ∗ q we get

|p| = 3 +
n∑

k=1

|o(sk)| = 3 +
n∑

k=1

bν(sk)+1 6 3 + n · bν(s) < bν(s)+1 .

Thus µ(s) > µ(t) yields o(s) >∗
lex o(t), while µ(s) = µ(t) implies |o(s)| = |o(t)|.

Before we can establish that o is an embedding we show(
s �kbo t ∧ |o(s) ∗ r| = |o(t) ∗ r′|

)
=⇒ o(s) ∗ r >∗

lex o(t) ∗ r′ (4.1)

for all r, r′ ∈ N∗ by induction on dp(s) + dp(t). Let s, t, r, r′ fulfill the premise.
If µ(s) > µ(t), then we have ν(s) > ν(t), which by definition of o implies (4.1),
and if µ(s) = µ(t), then the cases in which o(s) and o(t) differ in the second or
third component can be handled in the same way. It remains to treat the case
s = iafj(s1, . . . , sn) and t = iafj(t1, . . . , tn) with (s1, . . . , sn) �lex

kbo (t1, . . . , tn).
Let k be minimal such that sk �kbo tk. There are p, ps, pt ∈ N∗ such that o(s) =
p ∗ o(sk) ∗ ps and o(t) = p ∗ o(tk) ∗ pt. Putting q := ps ∗ r and q′ := pt ∗ r′ we get
|o(sk) ∗ q| = |o(tk) ∗ q′| since |o(s) ∗ r| = |o(t) ∗ r′|. The induction hypothesis
yields o(sk) ∗ q >∗

lex o(tk) ∗ q′, and this implies (4.1).
It remains to show that o is an embedding. If s �kbo t, then we either have

µ(s) > µ(t), which was already treated above, or µ(s) = µ(t), which implies
|o(s)| = |o(t)|. In this case (4.1) with r = r′ = () suffices. �

In a similar but a little more involved way it is possible to embed (T (Σ),≺kbo)
into (T (Γ),≺Γ

kbo) from Lemma 4.4.

Theorem 4.6. Let Σ be a signature whose special symbol, provided that it exists,
is i. For the KBO ≺kbo based on Σ we have

otype(T (Σ),≺kbo) =


ω if i /∈ Σ ,

ω · card({µ(e) : e ∈ Σ(0)}) if Σ = Σ(0) ∪ {i} ,

ωω otherwise.

76

4.2 Order Types of KBOs

Proof. In absence of a special symbol only finitely many closed terms share the
same weight. Since Σ(0) 6= Σ by convention, the set of possible weights is infinite.
According to Proposition 3.66 it is ordered like N. This yields an order type of
ω. Let us turn to the case Σ = Σ(0) ∪ {i}. If the weights of c1, . . . , cm ∈ Σ(0)

coincide, then we end up with a simple lexicographic comparison:

iacj ≺kbo i
bck ⇐⇒ a < b ∨ (a = b ∧ cj ≺ ck) .

By Proposition 2.38.ii this yields

otype(T ({i, c1, . . . , cm}),≺kbo) = otype({c1, . . . , cm},≺) · ω = ω .

Thus for this KBO we get an order type of ω ·n where n is the number of distinct
weights of the constants. In the remaining case, the order type is determined
by Lemma 4.4 and Theorem 4.5. �

Corollary 4.7.

i. Termination via KBO implies ωω-termination.

ii. Termination via KBO− implies ω-termination.

Proof. Let the TRS R be compatible with some KBO ≺kbo whose underlying
≺ is total. By Theorem 3.58.ii, ≺kbo is total on ground terms. Under these cir-
cumstances Lemma 3.39 applies and shows R is otype(T (Σ),≺kbo)-terminating.
Since we can safely add symbols, we are free to arrive at ωω-termination. �

This result will be improved later, see Theorem 5.17.
Even if we allow for variables, order types beyond ωω are not in reach. Any

KBO ≺kbo on Σ can be extended to a KBO on Γ := Σ ∪ {e} where e is a
fresh constant with µ(e) := µ(x) and f � e for all f ∈ Σ. The mapping from
T (Σ,V) into T (Γ) which simply replaces all variables in a term with e embeds
(T (Σ,V),≺kbo) into (T (Γ),≺Γ

kbo). Combining this with Theorem 4.6 we get

otype(T (Σ,V),≺kbo) =

{
ω · card({µ(u) : u ∈ Σ(0) ∪ V}) if Σ = Σ(0) ∪ {i} ,

otype(T (Σ),≺kbo) otherwise.

Though we did not introduce this, it is common practice in rewriting theory
to consider terms and orders over infinite signatures. Just as the embeddings
of Touzet we presented in Theorem 4.1 are extendible to infinite signatures
(as precedences get infinite the natural numbers af have to be replaced with
possibly infinite ordinals αf), our Theorem 4.5 can be extended to well-founded
KBOs over infinite signatures. Yet again we see that KBO is not able to generate
large order types.

Theorem 4.8. If ≺kbo is a well-founded KBO over the possibly infinite signature
Σ (based on the well-founded precedence ≺), then

otype(T (Σ),≺kbo) 6 max {ω, otype(Σ,≺)}ω .

77

4 Order Types

4.3 Order Types of Simplification Orders

The following two counterparts to Theorems 4.2 and 4.1 show that, concerning
order types, LPOs are essentially the most complex simplification orders.

Theorem 4.9 (de Jongh and Parikh 1977). If (T (Σ),≺) is a simplification
order over a monadic signature which contains exactly n unary symbols, then

otype(T (Σ),≺) 6 ωωn−1

< ω3 .

Theorem 4.10 (Schmidt 1979). If (T (Σ),≺) is a simplification order, then

otype(T (Σ),≺) < ϑ(Ωω) .

The Theorem is but a small part of a more general result of Schmidt (1979).

Corollary 4.11.

i. A TRS is totally terminating if and only if it is <ϑ(Ωω)-terminating.

ii. An SRS is totally terminating if and only if it is <ω3-terminating.

Proof. Let R be a totally terminating TRS over the signature Σ. The proof
of Proposition 3.36 shows R′ := R ∪ Emb(Σ) is also totally terminating. By
Theorem 3.46 there exists a well-order (T (Σ),≺) which is closed under contexts
and normalizes R′. Just as in (3.4) (see the proof of Proposition 3.31), we
can extend (T (Σ),≺) to a monotone Σ-algebra which is compatible with R′.
Because Emb(Σ) is contained in R′, the underlying order (T (Σ),≺) is a total
simplification order. Now we may invoke Theorem 4.10 and identify the closed
terms with ordinals below some α < ϑ(Ωω) (respectively Theorem 4.9 for (ii)
and ordinals below ω3). �

In this chapter we saw that the order types of simplification orders (on terms)
can get huge, and that LPO exhausts these order types, for terms as well as for
strings. In contrast to this, any KBO has a surprisingly tiny order type, while
MPO resides between the other two termination proof methods. The following
chapter contains a comparison of these three termination proof methods con-
cerning the maximal complexities TRSs terminating via one of them can attain.
As a main results we will see that KBO and MPO have to exchange positions.

Some of the results we presented in this chapter are collected, together with
complexity results, in Table 5.2 on page 112.

The reader interested in further results which also treat infinite signatures is
invited to consult Hasegawa (1994).

78

5 Derivation Lengths

Bravo! You solve problems
in a flash.

We know from Theorem 3.8 that any TM can be turned into an equivalent SRS,
under preservation of termination. The computation process is transferable into
a corresponding derivation with at least as many rewrite steps as computation
steps. Hence any recursive function is dominated by the derivation length
function of some terminating TRS. As the field of recursive functions is far too
wide, we restrict our attention to smaller collections of recursive functions.

It is a natural question to ask what complexity bound is imposed by a termi-
nation proof via some given collection of simplification orders. This question is
a difficult one, and only partial answers have been given.

There is a rich hierarchy of function classes which can be characterized by
corresponding termination proof methods. Most of the results about upper
bounds on derivation length functions we can find in the literature are con-
cerned with ω-termination. This is mainly due to the fact that a Σ-algebra
witnessing ω-termination can effectively be used to impose an upper bound
on the derivation length function of the TRS in question. Apart from obvious
members of ω-termination such as PT, we will also encounter termination via
MPO, and even termination via LPO. This is quite surprising if we take a look
at the huge order types of LPOs we met in Theorem 4.1.

One of the central results of this chapter states that MPO is much weaker
than LPO. According to Hofbauer (1991, 1992), termination via MPO implies
primitive recursive termination, which imposes primitive recursive bounds on
the derivation length functions. In contrast to this, Weiermann (1995) showed,
by means of the hierarchy of fast growing functions with indices below ωω, that
LPO corresponds to multiple recursive termination, ending up with multiple
recursive complexity bounds. Both two bounds are essentially optimal.

As usual, things are quite different with KBO. We know from Lemma 3.63
that, due to the flexibility supplied by the special symbol, KBO is able to prove
termination of TRSs which are not <ω2-terminating. This may be a reason

79

5 Derivation Lengths

why no optimal bounds on the complexities occuring within termination via
KBO have been obtained so far. Hofbauer and Lautemann (1989) constructed
a tricky TRS terminating via KBO whose complexity grows slightly faster than
(the diagonalization of) the binary Ackermann function, while Hofbauer (1991,
2000) described a 4-recursive function whose branches served as uniform upper
bounds on the complexities which occur within termination via KBO.

We will close the gap between these two bounds by showing that the size
complexity of a TRS terminating via KBO can always be bounded from above by
a member of Ack(O(n), 0), while Ack(2O(n), 0) suffices for the depth complexity.
Both two bounds are shown to be essentially optimal. In the proof some of
the techniques used by Weiermann (1995) in his treatment of LPO can be
incorporated. One central issue is the use of fast growing functions with indices
up to ω. Our approach is general enough to cover certain extensions of KBO
like KBO with polynomial weight functions. This may however lead to bounds
beyond Ack(2O(n), 0).

A slight transformation of the interpretation into N which is used in our
construction shows that termination via KBO implies ω2-termination. Hence
termination via either PT, MPO, LPO, or KBO is contained in ω2-termination.
Compare this with the rather simple SRSs Rα of Proposition 3.41 which are
ωα-terminating but not <ωα-terminating for any α 6 ω. Since all well-known
syntactic simplification orders live at the very beginning of the α-termination
hierarchy, there is some need for stronger simplification orders.

Let us now turn to simple termination in general. Cichon and Tahhan Bittar
(1998) showed that the complexity of any simply terminating SRS is bounded
by a multiple recursive function. The construction made heavy use of the
(somewhat extended) Hardy hierarchy up to ω3. At the same time, Weiermann
(1994) proved that for any simply terminating TRS there is α < ϑ(Ωω) such
that the complexity is dominated by the Hardy function Hα. Thus there are
always <ϑ(Ωω)-recursive complexity bounds.

For quite a while these upper bounds appeared to be far too high. Hof-
bauer’s SRSs computing branches of the Ackermann function (see Proposi-
tion 5.5) which terminated via MPO supplied the largest known complexities
of SRSs. They exhausted but remained inside the growth rates occuring in
Prec, the collection of primitive recursive functions, contrasting the multiple
recursive upper bounds mentioned above. The situation for terms was similar.
Here the largest known complexities accompanied TRSs terminating via LPO
which compute the k-ary Ackermann functions. As these functions are cofinal
(with respect to <ed) in the multiple recursive functions, they are <ω3-recursive.

Connections between these lower bounds, the order types of simplification
orders, and the slow growing functions are known from proof theory. This
led to the formulation of the slow growing principle, implicit in Cichon (1992),

80

5 Derivation Lengths

stating that the complexity of a TRS terminating via a simplification order of
order type α is eventually dominated by a slow growing function with index
closely related to α. The principle is valid for both MPO and LPO. If it was
also valid in general, then the multiple recursive lower bounds would be upper
bounds, too. Touzet constructed counterexamples for both SRSs and TRSs.

The TRS used by Hofbauer and Lautemann to prove that termination via
KBO allows for complexities similar to the Ackermann function was transformed
by Touzet (1997) into a simply (yet not totally) terminating SRS, showing that
SRSs with complexities beyond the primitive recursive functions exist. Touzet
(1999) improved this result later and proved that the upper bound of Cichon
and Tahhan Bittar is essentially optimal. The complexities of simply (and even
totally) terminating SRS are thus cofinal in the multiple recursive functions.

Turning to TRSs, Touzet (1998b) left multiple recursion by proving that,
for each n, there is a totally terminating TRS whose complexity is not <ωn-
recursive. The proofs of the latter two results rely on Hardy functions, just as
the proofs of the upper bounds do.

With the TRSs of Touzet one still had to live within <ε0-recursion. Touzet
(1999) conjectured it is possible to extend her approach to all ordinals below
the small Veblen number ϑ(Ωω), showing Weiermann’s huge upper bound is
essentially optimal. One of our chief results is the validation of this conjecture.
By a stepwise extension of Touzet’s approach to the Hardy hierarchy below
ϑ(Ωω) we prove that the complexities of simply (even totally) terminating TRSs
are cofinal in the <ϑ(Ωω)-recursive functions, showing that enormous growth
rates are possible here. These growth rates are by far not reached by standard
simplification orders like MPO, LPO, and KBO.

This closes the case for problem 81 in the RTA list of open problems, described
in Dershowitz et al. (1995), whose revision in Dershowitz and Treinen (1998)
asks what maximal complexity can be reached by simply terminating TRSs.
The original problem was posed by Weiermann.

After proving that the slow growing principle does not always hold, Touzet
(1999) proposed to replace the slow growing functions with Hardy functions,
arriving at the Hardy function principle. From Buchholz et al. (1994) we know
that the upper bounds described by a version of this principle are correct. Only
little is known about the tightness of these bounds. It appears to be wise not
to consider single TRSs but to focus on sets of TRSs terminating via certain
termination proof methods. For general simple termination we will soon confirm
the announced bounds are essentially optimal.

This optimality is (partially) lost if we consider the three standard exam-
ples of syntactic simplification orders. Although the order types of MPOs are
only bounded by ϑ(Ω · ω), MPO is far from being able to make use of the
full computational power of such large order types, as only primitive recursive

81

5 Derivation Lengths

complexities occur. This corresponds to <ωω-recursion. Likewise LPO, whose
order types are cofinal in the order types of simplification orders, gets stuck at
<ω3-recursion, far below <ϑ(Ωω)-recursion. At least KBO is able to exhaust its
tiny maximal order type ωω, as Hωω is a version of the Ackermann function.

Table 5.2 on page 112 collects the main results of this and the former chapter.

5.1 ω-termination

The most natural – though by far not trivial – termination proof methods are
contained in ω-termination. We will meet some old friends like polynomial
termination and multiple recursive termination, but surprisingly also termina-
tion via MPO and LPO appear. It is a very pleasant feature of ω-termination
that the witnessing Σ-algebra can immediately be used to find a bound on the
corresponding derivation length function.

Theorem 5.1 (Hofbauer 1991, 2.19). Let R be a TRS over signature Σ
whose ω-termination is witnessed by the Σ-algebra (ω,F). For any monotone
p : N→ N satisfying

p(m) > [f](m, . . . ,m)

for all f ∈ Σ and all m ∈ N we have

i. dlR(s) 6 pdp(s)(0) for all s ∈ T (Σ), and

ii. DcR(n) 6 DlR(n) 6 pn(0) for all n ∈ N.

Proof. By Lemma 3.29, [[·]] is a monotone interpretation of T (Σ) in (N, <) which
normalizes R. Thus we get, using Lemma 3.25.ii, dlR(s) 6 [[s]] for all closed
terms s. To reach (i) we show [[s]] 6 pdp(s)(0) by induction on s. Frequently rely-
ing on the weak subterm property of p, which is a consequence of Lemma 2.20,
for s = f(s1, . . . , sn) we get

[[f(s1, . . . , sn)]] = [f]([[s1]], . . . , [[sn]]) 6 [f](pdp(s1)(0), . . . , pdp(sn)(0))

6 [f](pdp(s)−1(0), . . . , pdp(s)−1(0)) 6 p(pdp(s)−1(0)) = pdp(s)(0) .

From (i) and (3.3) we directly infer (ii). �

If C is one of the function classes introduced in Section 2.4, it is now an
easy task to impose bounds on the derivation lengths which are possible within
C-termination. We just have to see where we can find the iteration of the
maximum function taken over finitely many elements of C.

Theorem 5.2 (Geupel 1988, Lautemann 1988). Polynomial termination

of a TRSR implies DcR and DlR are in 22O(n)
. This result is essentially optimal.

82

5.1 ω-termination

Theorem 5.3 (Hofbauer and Lautemann 1989). Linear termination of a
TRS R implies DcR and DlR are in 2O(n). This result is essentially optimal.

More generally, as a direct consequence of Theorem 5.1 and Theorem 2.68,
we get the following Theorem. Note that the upper bound parts of (i) and
Theorem 5.2 are just special cases of (ii).

Theorem 5.4 (Hofbauer 1991, 2.20, 2.21). Let R be a TRS.

i. Exponential or even elementary termination of R implies DcR and DlR
are in E4. This result is essentially optimal.

ii. For m > 2, Em-termination of R implies DcR and DlR are in Em+1.

iii. Primitive recursive termination of R implies DcR and DlR are in Prec.

iv. Multiple recursive termination of R implies DcR and DlR are in Mrec.

Within termination via MPO derivation lengths beyond any given primitive
recursive function are possible – even for SRSs.

Proposition 5.5 (Hofbauer 1991, 1992). For every f ∈ Prec there is an
SRS R terminating via MPO whose complexity eventually dominates f .

Proof. We present a variant from Touzet (1997, 4.2.15), which is directly linked
to the Ackermann function. Since there is, by Lemma 2.63.iv, a branch of the
Ackermann function which dominates f , it suffices to show we can simulate all
these branches by SRSs which terminate via MPO. For each n, consider the
SRS Rn over {0, s, A0, . . . , An} containing the rule A0 → s and, for all i 6 n,
the rules Ai+10→ Ais0 and Ai+1s→ AiAi+1. The SRS terminates via the MPO
based on An � · · · � A0 � s � 0. For all j 6 n and all m we can show

dlRn(Ajs
m0) > Ackj(m) and Ajs

m0
∗→R sAckj(m)0

by simultaneous induction on j (with secondary induction on m). �

Hofbauer (1991, 1992) showed even a bit more – any Grzegorczyk class En is
inhibited by the size complexity of an SRS terminating via MPO. The Propo-
sition will get its final form in Theorem 6.4, which states that all primitive
recursive functions are computable via MPO.

Theorem 5.6 (Hofbauer 1991, 1992). Termination via MPO implies primi-
tive recursive termination, hence there is always a primitive recursive bound on
the derivation length function. This result is essentially optimal.

We can combine Proposition 5.5 and Theorem 5.6 to see the Grzegorczyk
classes En can be used to measure derivational complexity: En-termination for
n ∈ N constitutes a proper hierarchy inside ω-termination. Termination via
LPO allows for much larger complexities.

83

5 Derivation Lengths

Theorem 5.7 (Weiermann 1995). Termination via LPO implies multiple
recursive termination, hence there is always a multiple recursive bound on the
derivation length function. This result is essentially optimal.

A very elegant alternative proof of Theorem 5.6 and Theorem 5.7, using tech-
niques from proof theory, is due to Buchholz (1995), and yet another nice proof
of the latter Theorem is from Arai (1998).

A further hierarchy within ω-termination is provided by Mk-termination
(which is based on k-recursive functions). As the primitive recursive functions
form a proper subset of the 2-recursive functions, this new hierarchy is located
much higher than En-termination.

It is unknown which α is minimal such that ω-termination implies <α-recur-
sive termination. From Theorems 5.7, 5.20, and 2.83 we know ω3 6 α 6 ϑ(Ωω).

5.2 Termination via KBO

We first present the best complexity bounds for TRSs terminating via KBO that
are known so far. Note that these results are concerned with the size complexity
function DcR whose relation to DlR is elucidated by (3.3).

Theorem 5.8. Let R be a TRS over some signature Σ.

i. There is a TRS terminating via KBO for whom no primitive recursive
upper bound on the size complexity exists.

ii. Let �kbo be an NKBO based on Σ. The function mapping n to the maximal
length of a sequence s1 →R . . .→R sm satisfying s1 �kbo . . . �kbo sm and
|s1| 6 n has a 4-recursive bound.

iii. If R terminates via KBO, then DcR has a 4-recursive bound.

iv. If R terminates via KBO− or, more general, via KBO with a special symbol
i such that for all (l, r) ∈ R we have |l|i > |r|i, then DcR is in 2O(n). This
bound is essentially optimal.

v. If R terminates via KBO(1), then DcR is in 2O(n). This bound is essen-
tially optimal.

Proof. The first proof of (i) is from Hofbauer and Lautemann (1989), a slightly
improved version of this is Hofbauer (1991, 5.9). For a detailed proof see The-
orem 6.13. Recall from Theorem 3.61 that termination via KBO is equivalent
to termination via NKBO. The result (iii) for termination via NKBO is an easy
consequence of (ii), which again was established by Hofbauer (1991, 5.20), see
also Hofbauer (2000) for an improved version. In Hofbauer (1991, 5.10, 5.14)
we can find (iv) and (v). For the latter it is shown that termination via KBO(1)
implies termination via LT, thus making Theorem 5.3 applicable. �

84

5.2 Termination via KBO

For (iii), Touzet (1997, 4.2.30) independently showed that there is always a
k-recursive bound for some k ∈ N which depends on the maximal arity of the
function symbols contained in Σ. Her approach remains valid even if polynomial
weight functions over N are considered.

Hofbauer (1991) remarks on Theorem 5.8.i,iii that

“the question if 2- or 3-recursive upper bounds (lower bounds resp.)
exist is still an open problem.”

We will establish fairly low 2-recursive upper bounds on the complexities of
TRSs terminating via KBO. Since we are interested in results on DlR, too, we
have to adapt Theorem 5.8.i to this setting.

Lemma 5.9. For any a ∈ N there is a TRS R terminating via KBO such that
we have DlR(n) > Ack(an, 0) for all n > 3.

For a better exposition the proof is deferred to Section 6.3.3, see page 125.
We are now going to construct 2-recursive complexity bounds for all TRSs

terminating via KBO. This construction is in the spirit of Weiermann (1995),
as it makes use of functions from the fast growing hierarchy. The letters A, D,
and K will be used for certain natural numbers that are kept fixed throughout
most of this section.

Let Σ be a signature equipped with weight µ and precedence �. Since,
by Theorem 3.58, KBOs are incremental with respect to both signature and
precedence, we may safely assume i ∈ Σ holds and � is linear:

Σ = {f1, . . . , fK , i} and i � fK � · · · � f1 . (5.1)

By ν we denote the function accompanying µ according to Proposition 3.66.
Theorem 3.61 shows termination via KBO coincides with termination via NKBO.
Hence, following the remark made at the top of the proof of Proposition 3.66,
there appears to be no need to consider ν instead of µ. We do so because this
way our proof can better be adapted to more sophisticated weight functions like
real-valued polynomial functions or those mentioned above Definition 3.57. For
KBOs based on these weights it appears to be unknown if it suffices to consider
only weight functions living on N. In order to impose an appropriate bound on
the size complexities we will later switch to µ, though.

Suppose for the moment that we have a TRS R over Σ terminating via KBO.
Our aim is to construct an embedding from (T (Σ),

+←R) into (N, <), under
guidance of the definition of ≺kbo. Just as with MPO and LPO, order type
considerations (cf. Lemma 2.13 and Theorem 4.6) show it is usually not possible
to embed (T (Σ),≺kbo) into (N, <). We saw in Lemma 3.63 that, in contrast to
the other two standard groups of syntactic simplification orders, termination

85

5 Derivation Lengths

via KBO does not imply ω-termination. Thus there is some R terminating via
KBO with no compatible Σ-algebra (ω,F). If we intend to construct bounds on
the derivation length function of R, we have to come up with a new approach
and can not fall back on Σ-algebras over some ordinal number, simply because
we can not expect to extract information about DlR from functions living on
some (limit) ordinal λ > ω.

For the construction of an embedding from (T (Σ),
+←R) into (N, <), the re-

sults of Section 4.2 suggest that a function is required which mostly behaves like
an embedding of the finite sequences over N with lengths bounded by some m
into the natural numbers. We construct such a function using the fast growing
functions Fn from Definition 2.75, but first we put

A := 2 · (Ar(Σ) + 1) > 4

and fix some D which satisfies

D > K and D > Ar(Σ) + 2 .

Definition 5.10. For 0 6 m < D such that n− 2m > 0 we recursively define

An((a1, . . . , am), c) :=

{
c if m = 0 ,

Fa1·D
n (An−2((a2, . . . , am), c)) otherwise.

We will use An(a, c) as an abbreviation of An((a), c).

A list of all properties of A we will need is given in the following Lemma.

Lemma 5.11. Consider m with 0 < m < D.

i. We have An((a1, . . . , am), c) > a1, . . . , am, c as soon as aj > 0 for some j.

ii. The function mapping n, ā, and c to An((a1, . . . , am), c) is monotone in c,
in each aj and, if c > 0, in n. For c = 0 weak monotonicity in n holds.

iii. If am > 0, then An((a1, . . . , am), c) > An((a1, . . . , am−1), c), and otherwise
we get An((a1, . . . , am), c) = An((a1, . . . , am−1), c).

iv. We have An(b,An((a1, . . . , am), c)) = An((b+ a1, a2, . . . , am), c).

v. If Al(b, c) > a1, . . . , am and b > 0, then Al+1(b, c) >
∑m

k=1 ak.

vi. If j 6 m; Al(b, c) > a1, . . . , aj; b > 0; Al+1(b, c) > c′, and n − 2j > l,
then An+1(b, c) > An((a1, . . . , aj), c

′).

vii. If n′ > n, then An′(a+ 1,An(b, c)) > An′(a,An(b+D, c)).

viii. An((a+ 1, b), c) > An((a, b+D), c) holds.

ix. If n > 4, then An(a+ b, c) > An((a, b), c).

86

5.2 Termination via KBO

Proof. The items (i) to (iii) are consequences of Lemma 2.76.i,ii, while (iv) is
obvious. Because of Lemma 2.76.vii,vi, D > 3, and D > m we can show (v):

Al+1(b, c) > FbD−1
l+1 (c) > FbD+1

l (c) > Al(b, c) ·D >
m∑

k=1

ak .

An induction on the j 6 m such that n− 2j > l yields (vi). For j = 0 there is
not much to do, and for j > 0 we see

An+1(b, c) = Fn+1(F
bD−1
n+1 (c)) > Fn+1(F

bD+1
n−1 (c))

> F
FbD+1

l (c)
n (FbD

n−1(c)) > F
FbD

l (c)·D
n (FbD

n−1(c))

= An(Al(b, c),An−1(b, c)) > An(a1,An−1(b, c))

> An(a1,An−2((a2, . . . , aj), c
′)) = An((a1, . . . , aj), c

′) ,

where we used Lemma 2.76.vii,vi and the induction hypothesis. Lemma 2.76.v
yields (vii), a special case of whom is (viii). Finally, (iv) and (ii) imply (ix). �

As we explained above, it is usually not possible to define a Σ-algebra (ω,F)
which is compatible with R. Thus we have to deviate from the approaches of
Theorems 5.6 and 5.7 and directly define an interpretation of T (Σ) in (N, <).

Definition 5.12. We define I : T (Σ)→ N for s = iafj(s1, . . . , sm) by

I(s) := AAν(s)((a+ 1, j, I(s1), . . . , I(sm−1)),
m∑

k=1

I(sk)) .

Note that I is well-defined by definition of A, since A − 2(m + 1) > 0 and
Aν(s) > A. We mention without proof that there usually are s, t ∈ T (Σ) with
I(s) > I(t) and I(f(. . . , s, . . .)) < I(f(. . . , t, . . .)) (since termination via KBO
does not imply ω-termination). This is only possible if µ(s) < µ(t).

Lemma 5.13. Let σ be a ground substitution and s, t ∈ T (Σ,V). We define
n := ν(sσ) and, for u ∈ T (Σ,V), S(u) :=

∑
x∈u I(xσ).

i. We have I((ias)σ) = AAn(a, I(sσ)).

ii. I has the subterm property and satisfies I(sσ) > 0.

iii. If I(sσ) > I(tσ); µ(sσ) > µ(tσ), and f ∈ Σ(>1), then

I(f(. . . , sσ, . . .)) > I(f(. . . , tσ, . . .)) .

iv. I(sσ) > S(s) holds.

v. If s = fj(s1, . . . , sm), then I(sσ) > AAn((1, j), S(s)) > AAn((1, 1), S(s)).

87

5 Derivation Lengths

vi. We have AAn(dp(s) + 1, S(s)) > I(sσ) > AAn((1, 1), 0).

vii. If s = fj(s1, . . . , sm) and dp(s) < D, then

AAn(2, S(s)) > AAn((1, j + 1), S(s)) > I(sσ) .

viii. If s = fj(s1, . . . , sm); dp(s) < D; 1 6 l < m, and n′ := An − 2(l + 1),
then

An′(I(slσ) + 1, S(s)) > An′((I(slσ), . . . , I(sm−1σ)),
m∑

k=1

I(skσ)) .

Proof. The point (i) follows from Lemma 5.11.iv, while (ii) is an implication of
Lemma 5.11.i, and (iii) is shown using (i) and Lemma 5.11.ii. By induction on
s we prove (iv). This is easy if s ∈ V or s = i(s′), and if s = fj(s1, . . . , sm),
then

c :=
m∑

k=1

I(skσ) >
m∑

k=1

S(sk) > S(s)

holds by the induction hypothesis, leading to

I(sσ) > AAn((1, j), c) > AAn((1, j), S(s)) > S(s)

via Lemma 5.11.iii,ii,i. We can utilize this to show (v) as well as the second half
of (vi), since sσ = iafj(. . .). The first half of (vi) deserves an induction on s.
If s ∈ V , then I(sσ) = S(s), and for s = i(s′) we get the statement by virtue
of (i), the induction hypothesis, and S(s′) = S(s). It remains to treat the case
s = fj(s1, . . . , sm). Because fj is not special, for 1 6 k 6 m the induction
hypothesis implies

AA(n−1)(dp(s), S(s)) > AAν(skσ)(dp(sk) + 1, S(sk)) > I(skσ) ,

hence by Lemma 5.11.v we get AA(n−1)+1(dp(s), S(s)) >
∑m

k=1 I(skσ). We use
this and Lemma 5.11.vi,ii,viii,ix to get through the following calculation:

I(sσ) = AAn((1, j),AAn−4((I(s1σ), . . . , I(sm−1σ)),
m∑

k=1

I(skσ)))

< AAn((1, j),AAn−3(dp(s), S(s))) (5.2)

6 AAn((1, D + dp(s)− 1), S(s))

< AAn((2, dp(s)− 1), S(s))

6 AAn(dp(s) + 1, S(s)) .

To prove (vii) we travel via (5.2) and see

I(sσ) < AAn((1, j),AAn−3(dp(s), S(s))) < AAn((1, j),AAn−3(D,S(s)))

< AAn((1, j + 1), S(s)) 6 AAn((1, D), S(s)) < AAn(2, S(s))

88

5.2 Termination via KBO

by Lemma 5.11.vii,viii, since dp(s), j+1 6 D. It remains to prove (viii). Similar
to the proof of (vi), for 1 6 k 6 m we have AA(n−1)(dp(s), S(s)) > I(skσ) and
AA(n−1)+1(dp(s), S(s)) >

∑m
k=1 I(skσ). Hence Lemma 5.11.vi implies

An′−1(dp(s), S(s)) > An′−2((I(sl+1σ), . . . , I(sm−1σ)),
m∑

k=1

I(skσ)) =: b .

Relying on this and D > dp(s),

An′(I(slσ) + 1, S(s)) > An′(I(slσ),An′−1(D,S(s))) > An′(I(slσ), b)

follows from Lemma 5.11.vii. �

Let B be the closure of {(s, t) : s �kbo t ∧ dp(t) < D} under ground substitu-
tions. The next Lemma shows I is able to embed (T (Σ),C) into (N, <). This
result is essentially optimal, since the whole of �kbo is not embeddable.

Lemma 5.14. Let σ be a ground substitution and s, t ∈ T (Σ,V) with dp(t) < D.
If s �kbo t, then I(sσ) > I(tσ).

Proof. The proof is by induction on dp(s) + dp(t). Let n and S be defined as
in Lemma 5.13, and put n′ := ν(tσ). Since s �kbo t we have s /∈ V , n > n′, and,
due to V(s) ⊇ V(t), S(s) > S(t). We first treat the case n > n′. Because of
s /∈ V we get I(sσ) > AAn(1, S(s)) by Lemma 5.13.i,iv,v, and

AAn(1, S(s)) > AAn−2(D,S(s)) > AAn′(D,S(t))

> AAn′(dp(t) + 1, S(t)) > I(tσ)

follows with the help of Lemma 5.11.viii,ii and Lemma 5.13.vi.
If n = n′, then we have s ≡ ias′ and t ≡ ibt′ with a > b. First we take care

of the case a > b. If s′ ∈ V , then weight considerations imply t′ ∈ V ∪ Σ(0).
For t′ ∈ V we can infer t′ = s′, which yields I(sσ) > I(tσ) since t is a proper
subterm of s. If t′ ∈ Σ(0), then we get S(t) = 0, and Lemma 5.13.i,vi,vii lead to

I(sσ) > AAn((a+ 1, 1), 0) > AAn(a+ 1, 0) > AAn(b+ 2, S(t))

= AAn(b,AAn(2, S(t′))) > AAn(b, I(t′σ)) = I(tσ) .
(5.3)

For s′ = fj(s1, . . . , sm) we get t′ = fj′(t1, . . . , tm′), since t′ ∈ V is impossible.
From observations very similar to the ones needed in (5.3) we infer

I(sσ) > AAn((a+ 1, 1), S(s)) > AAn(b+ 2, S(t)) > I(tσ) .

The case a = b is next. Yet again, s′ = fj(s1, . . . , sm) and t′ = fj′(t1, . . . , tm′)
with j > j′ appear. In view of Lemma 5.13.i it suffices to show I(s′σ) > I(t′σ).
If j > j′, then Lemma 5.13.v,vii yield

I(s′σ) > AAn((1, j), S(s′)) > AAn((1, j′ + 1), S(t′)) > I(t′σ) ,

89

5 Derivation Lengths

while j = j′ implies m = m′ as well as (s1, . . . , sm) �lex
kbo (t1, . . . , tm). Let l

be minimal such that sl �kbo tl. By the induction hypothesis I(slσ) > I(tlσ)
holds. If m = l, then Lemma 5.13.i easily gives I(s′σ) > I(t′σ), and otherwise
we have 1 6 l < m. We put n′′ := An− 2(l + 1) and get

An′′((I(slσ), . . . , I(sm−1σ)),
m∑

k=1

I(skσ))

> An′′(I(slσ), S(s))

> An′′(I(tlσ) + 1, S(t))

> An′′((I(tlσ), . . . , I(tm−1σ)),
m∑

k=1

I(tkσ))

by Lemma 5.13.iv,viii. This implies I(s′σ) > I(t′σ). �

Theorem 5.15. If a TRS R terminates via KBO, then its complexity DlR is a
member of Ack(2O(n), 0). This bound is essentially optimal.

Proof. We add D > max {dp(r) : (l, r) ∈ R} to our former conditions on D.
Lemma 5.14 shows that I normalizes R, hence Lemma 5.13.iii implies I is an
embedding of (T (Σ),

+←R) into (N, <). Lemma 3.25.i yields dlR(s) 6 I(s) for
all s ∈ T (Σ). We borrow an a ∈ N from Proposition 3.66. For all s ∈ T (Σ),
putting n := dp(s) > 1 we get

dlR(s) 6 I(s)
< AAν(s)(n+ 1, 0) by Lemma 5.13.vi

= F
D(n+1)
Aν(s) (0)

< FAν(s)+1(D(n+ 1))

< Ack(Aν(s) + 4, 3D(n+ 1)) by Lemma 2.76.iii (5.4)

< Ack(Aan + 4, 3D(n+ 1)) by Proposition 3.66.

As A > 4, any b > a, 2D fulfills Abn + 4 > 3D(n + 1). Assembling everything,
for c := Ab+ 6 we get

dlR(s) < Ack(Aan + 4, 3D(n+ 1))

< Ack(Abn + 4, Abn + 4) 6 Ack(Abn + 6, 0) 6 Ack(cn, 0)

using Lemma 2.63.vii. Lemma 5.9 shows this bound is essentially optimal. �

The methods presented so far suffice to treat more sophisticated weight func-
tions, provided that they have the subterm property for all symbols except
the special one, and provided further that the weight can be replaced with a

90

5.2 Termination via KBO

function into N like the ν of Proposition 3.66. Such a ν may however be lo-
cated in a higher complexity class, resulting in bounds different from the ones
of Theorem 5.15.

In order to impose optimal bounds on the size complexities occuring within
termination via KBO we have to be a bit more picky about the weight function,
simply because we have to rely on the equivalence of termination via KBO and
termination via NKBO. This equivalence is only known for the usual weight.

Theorem 5.16. If a TRS R terminates via KBO, then its size complexity DcR
is a member of Ack(O(n), 0). This bound is essentially optimal.

Proof. Theorem 3.61 tells us R terminates via NKBO. As we already remarked
at the top of the proof of Proposition 3.66, in case of an NKBO the weight µ
can play the part of the ν of this Proposition. By B we denote the maximum
of {µ(g) : g ∈ Σ}. For all s ∈ T (Σ) we get µ(s) 6 B · |s| by (3.7), while (3.1)
includes dp(s) 6 |s|. With A and D chosen as in the proof of Theorem 5.15,
for any C > AB, 3D we can bring the crops in and see

dlR(s) < Ack(Aµ(s) + 4, 3D(dp(s) + 1)) by (5.4)

6 Ack(AB(|s|+ 1), 3D(|s|+ 1))

6 Ack(C(|s|+ 1), C(|s|+ 1))

6 Ack(C|s|+ C + 2, 0) by Lemma 2.63.vii.

The optimality of this bound is established as in Lemma 5.9. �

Our next Theorem is the promised improvement of Corollary 4.7.

Theorem 5.17. Termination via KBO implies ω2-termination. If no special
symbol is involved, then we even get ω-termination.

Proof. Since the second half is a part of Corollary 4.7, it suffices to establish
ω2-termination. Let R be a TRS over a signature Σ which terminates via KBO.
By Theorem 3.61, R terminates via some NKBO ≺kbo with weight µ and (total)
precedence ≺. Because extending the signature does not hurt, we may again
suppose there is a special symbol i and Σ is as in (5.1). Furthermore we may
assume Σ(>1) contains a symbol which is not special. This is needed to get an
infinitude of distinct weights.

Let (P,C) be the restriction of the well-order (N× N, <lex) to

{(µ(s), I(s)) : s ∈ T (Σ)} ,

where I is the interpretation from Theorem 5.15. Recall from Proposition 3.66
that the ν used in Theorem 5.15 is just the weight µ, as we treat an NKBO. We

91

5 Derivation Lengths

have otype(P,C) = ω2 because there are infinitely many distinct weights and
because Lemma 5.13.i tells us that, for each term s ∈ T (Σ), the set

{(µ(ias), I(ias)) : a ∈ N} = {(µ(s), I(ias)) : a ∈ N}

is infinite. We are about to introduce the Σ-algebra (P ,C,F). For fj ∈ Σ(m)

and p1, . . . , pm ∈ P with pl = (bl, cl) we put b′ := µ(fj) + b1 + · · ·+ bm and

[fj](p̄) := (b′,AAb′((1, j, c1, . . . , cm−1),
m∑

k=1

ck)) .

The special symbol is handled by

[i]((b, c)) := (b,AAb(1, c)) .

This Σ-algebra is monotone. Indeed, if p B p′ because of the first component,
then monotonicity is obvious, and otherwise the monotonicity of A, which we
established in Lemma 5.11.ii, comes into play.

An induction on s ∈ T (Σ), which partially relies on Lemma 5.11.iv, shows
[[s]] = (µ(s), I(s)). This can be generalized. For any ρ : V → P there is, by
definition of P , a ground substitution σ satisfying ρ(x) = (µ(xσ), I(xσ)). An
induction on s ∈ T (Σ,V) establishes

[[s, ρ]] = (µ(sσ), I(sσ)) . (5.5)

We intend to show that R is compatible with the Σ-algebra. Pick (l, r) from
R and ρ : V → P with an associated σ as in (5.5). From l �kbo r we infer
µ(lσ) > µ(rσ) and, via Lemma 5.14, I(lσ) > I(rσ). Hence we get, by another
invocation of (5.5),

[[l, ρ]] = (µ(lσ), I(lσ)) >lex (µ(rσ), I(lσ)) >lex (µ(rσ), I(rσ)) = [[r, ρ]] ,

and thus [[l, ρ]] B [[r, ρ]]. We had to take a digression to (N× N, <lex) because
(µ(rσ), I(lσ)) may not be an element of P . �

Recall from Lemma 3.63 that the SRS containing fg → gff , f → ε, and
g → ε terminates via KBO, is ω2-terminating, not <ω2-terminating, and also
not weakly ω-terminating. In a certain sense this is a most complex example,
as termination via KBO implies ω2-termination.

Theorem 5.18. Termination via either MPO, LPO, or KBO implies ω2-termi-
nation but not <ω2-termination.

Proof. We just treated termination via KBO. Termination via either MPO or
LPO implies, by Theorems 5.6 and 5.7, ω-termination. Via Theorem 3.44.i and
ω · ω = ω2 this yields ω2-termination. �

92

5.3 Simple Termination is Complex

The last Theorem clarifies that the usual syntactic simplification orders are
located at the very beginning of the α-termination hierarchy. An obvious re-
search task is to find natural simplification orders which do not suffer from such
harsh limitations.

5.3 Simple Termination is Complex∗

We already mentioned that the complexities of terminating SRSs are cofinal
(with respect to <ed) in the recursive functions. Our main intention in this
section is to demonstrate that the complexities of simply terminating TRSs
are, though considerably lower, still inconceivably large. Most of the results
we will present rely on techniques developed in proof theory. For example,
the construction behind the following result is based on a generalized Hardy
hierarchy below ω3.

Theorem 5.19 (Cichon and Tahhan Bittar 1998). The complexity of any
simply terminating SRS is dominated by a multiple recursive function.

With the forerunner Rathjen and Weiermann (1993), the whole of simple
termination was covered by Weiermann. The following Theorem is only a part
of a more general result, see Theorem 5.54.

Theorem 5.20 (Weiermann 1994). The complexity of any simply terminat-
ing TRS is dominated by a <ϑ(Ωω)-recursive function.

For quite a while, Hofbauer’s SRSs which are related to branches of the
Ackermann function (see Proposition 5.5) and terminate via MPO supplied the
largest known complexities of simply terminating SRSs. Their complexities
exhaust but remain inside the primitive recursive functions.

The situation for terms was similar. Here the largest known complexities
were those of TRSs terminating via LPO which compute the k-ary Ackermann
functions. By Theorem 2.66.ii, these functions exhaust but remain inside the
multiple recursive functions. Now on the one hand ϑ(Ωω) is the supremum
of both the order types of simplification orders and the order types of LPOs
(see Theorem 4.10 and Theorem 4.1), and on the other hand we have (2.4)
on page 37 telling us that, under certain additional assumptions, Mrec ≈ed

(Gβ)β<ϑ(Ωω) holds with the Gβ being slow growing functions. This led to the
formulation of the slow growing principle, implicit in Cichon (1992), stating
that a termination proof by a simplification order of order type α imposes as
an upper complexity bound some Gβ with β < ϑ(Ωω) closely related to α. A

∗ This title is inspired by Middeldorp and Gramlich (1993).

93

5 Derivation Lengths

consequence of this is the existence of multiple recursive complexity bounds for
all simply terminating TRSs. It was further conjectured that the complexities
of all simply terminating SRSs have primitive recursive bounds. However, in
both cases Touzet constructed counterexamples.

Touzet (1997) transformed the TRS Hofbauer and Lautemann used to show
that termination via KBO leads to complexities beyond primitive recursion (see
Theorem 5.8.i and Theorem 6.13) into a simply terminating SRS.

Theorem 5.21 (Touzet 1997, 5.3, Touzet 1998a). There is a simply (yet
not totally) terminating SRS whose complexity is not primitive recursive.

This result has been improved later, see Theorem 5.23. Recall from Theo-
rem 2.83 that the multiple recursive functions and the <ω3-recursive functions
coincide. The conjectured multiple recursive complexity bounds linked with
simple termination were pulverized by Touzet.

Theorem 5.22 (Touzet 1998b). For any n ∈ N there is a totally terminating
TRS whose complexity is not <ωn-recursive.

The TRS used for n+1 can be identified with a proper extension (concerning
both symbols and rules) of the one used for n. As the TRSs have to be finite, it
is still not possible to leave the <ε0-recursive functions with this construction.
We will extend Touzet’s approach in the following subsections and show that
the bound of Theorem 5.20 is optimal.

Touzet established the optimality of the upper complexity bound for simply
terminating SRSs described in Theorem 5.19. This classifies the strength of
Higman’s Lemma.

Theorem 5.23 (Touzet 1999). For any multiple recursive function f there
is a totally terminating SRS whose complexity eventually dominates f .

The construction behind both Theorem 5.22 and Theorem 5.23 is twofold. In
a first step the ordinals below ε0 and ω3, resp., are encoded by terms. The
second step provides rewrite rules which simulate, for each encoded ordinal α,
a process called the battle of Hercules and the Hydra, which first appeared in
Kirby and Paris (1982). This corresponds to computing the Hardy functions†

Hα. It then suffices to give a proof of total termination in order to show com-
plexities similar to those of the corresponding Hardy functions are attainable.
For example, Theorem 5.23 is established by encoding (larger and larger subsets
of) the ordinals below ω3. By Theorem 2.83, the Hardy functions below ω3 and
the multiple recursive functions match up. Note that here ω3 necessarily has to

† More precisely, the closely related counting function Lα is mimicked.

94

5.3 Simple Termination is Complex

be approached from below by larger and larger subsets (and larger and larger
TRSs), because a simulation of the battle for all ordinals below ω3 at once leads
to a complexity similar to Hω3 . This function grows too fast to be multiple
recursive, see Lemma 2.78.iii.

For TRSs Touzet (1999) conjectured it is possible to extend this approach
to all ordinals below the small Veblen number ϑ(Ωω), showing Weiermann’s
huge upper bound of Theorem 5.20 is essentially optimal. The validation of
this conjecture will be our main concern in the next subsections.

We used the function ϑ of Definition 2.46 mainly to pin down ϑ(Ωω). Since
ϑ is very powerful and, due to its definition using involved closure processes,
not easy to handle by TRSs, it seems advisable for our purposes to use k-ary
Veblen functions ϕ and their fixed point free variants ψ instead of ϑ. The small
Veblen number ϑ(Ωω) is the limit (for k approaching ω) of the ordinals that can
be denoted by the k-ary ψ augmented by 0 and (binary) addition +. We prefer
ψ to ϕ since the absence of fixed points significantly simplifies calculations.

The canonical approach consists in defining TRSs Rk which simulate Hydra
battles for all ordinals below ψ(1, 0, . . . , 0) where ψ is k + 1-ary. This is done
in Section 5.3.4, where we use an encoding for the ordinals below ψ(1, 0, . . . , 0)
introduced in Section 5.3.3. Total termination of Rk is then established in
Section 5.3.5 using Touzet’s technically smooth characterization of total termi-
nation from Theorem 3.45. The Rk are given in a uniform manner, and for
k > l the TRS Rk can be regarded as a proper extension of Rl. Thus the Rk

constitute a hierarchy of totally terminating TRSs, and the complexity of any
simply terminating TRS is eventually dominated by the complexities of almost
all Rk. Just as for SRSs, this stepwise approach from below is inevitable as it
is not possible to define a simply terminating TRS which is able to simulate
Hydra battles for all ordinals below ϑ(Ωω).

5.3.1 The Fixed Point Free Veblen Function

We are going to introduce a part of the Veblen (1908) function ϕ and its fixed
point free variant ψ. This part suffices to reach ϑ(Ωω).

For α1, . . . , αk ∈ On with k > 0 we intend to recursively define the branch
ϕᾱ : On → On of the Veblen function. It is advisable to interchangeably use
ϕᾱ(β) and ϕ(ᾱ, β), thus regarding ϕ as a function from the ordinal sequences of
lengths larger than 1 into the ordinals. The principal ordinals H are enumerated
by ϕ0̄. If αk > 0, then ϕᾱ is the enumerating function of the proper class

{β : (∀γ <αk)(ϕ(α1, . . . , αk−1, γ, β) = β)},

and otherwise we have (α1, . . . , αk) = (α1, . . . , αi, 0̄, 0) with αi > 0. Here we let

95

5 Derivation Lengths

ϕᾱ be the enumerating function of the proper class

{β : (∀γ <αi)(ϕ(α1, . . . , αi−1, γ, β, 0̄, 0) = β)}.

Obviously ϕ0̄,ᾱ = ϕᾱ holds, and by definition ϕ0̄,1 enumerates the epsilons. The
ϕ function lacks the subterm property since it admits fixed points. Therefore
we concentrate on ψ, the fixed point free version of ϕ. We let ψ(α1, . . . , αk, β)
be ϕ(ᾱ, β+1) if β = β0 +n for some n ∈ N and β0 ∈ Lim∪{0} with ϕ(ᾱ, β0) ∈
{α1, . . . , αk, β0}, and otherwise ψ(ᾱ, β) is just ϕ(ᾱ, β).

For almost all of the remainder of this section we keep some k > 0 fixed and
focus on the k + 1-ary ψ.

By ∆k we denote the first infinite ordinal closed under + and the k+1-ary ψ:

∆k := ϕ(1, 0, . . . , 0︸ ︷︷ ︸
k+1 times

) . (5.6)

Thus ∆2 coincides with the ordinal Γ0 celebrated by Gallier (1991). The con-
nection between ψ and ϑ was illuminated by Schmidt (1979). All weed need to
know about this here is where we can find the small Veblen number.

Theorem 5.24 (Schmidt 1979). ϑ(Ωω) = sup {∆k : k ∈ N}.

By Proposition 2.29, for every ordinal α > 0 there are uniquely determined
principal ordinals α0 > . . . > αn such that α = α0 + · · ·+αn holds. In addition,
for every principal α < ∆k there are uniquely determined α1, . . . , αk+1 below α
satisfying α = ψ(ᾱ), cf. Buchholz (1993). So every α < ∆k can be associated
with a unique representation solely built up from 0, + and the k+1-ary ψ. We
call this the k-normal form of α.

The next Lemma lists some of the basic properties of ψ. Recall from Defini-
tion 2.37 that the lexicographic order of ordinal tuples having the same length
is denoted by <lex.

Lemma 5.25. Let α1, . . . , αk+1 and γ1, . . . , γk+1 be given.

i. Each ψ(ᾱ) is a principal ordinal and, except for ψ(0̄) = 1, a limit ordinal.

ii. The function ψ has the subterm property and is monotone.

iii. ψ(ᾱ) > ψ(γ̄) is equivalent to(
(ᾱ) >lex (γ̄) ∧ ψ(ᾱ) > γ1, . . . , γk+1

)
∨ (∃i∈ [1, k + 1])(αi > ψ(γ̄)) .

Recall from (2.1) the notion f(x̄, ·, ȳ)n(z) of the nth iteration of the unary
function v 7→ f(x̄, v, ȳ) on z. The following Lemma contains all properties of ψ
we will rely on later.

96

5.3 Simple Termination is Complex

Lemma 5.26. Let i ∈ [1, k]; m,n ∈ N, and ordinals α1, . . . , αk+1, γ1, . . . , γk+1,
δ, δ′ be given.

i. If n > m and αj 6= 0 for some j, then ψ(ᾱ) · n > ψ(ᾱ) ·m.

ii. If ψ(ᾱ) > ψ(γ̄), then ψ(ᾱ) > ψ(γ̄) · n+m.

iii. If n > m; δ > δ′, and at least one of the inequalities is proper, then

ψ(α1, . . . , αi, ·, αi+1, . . . , αk)
n(δ) > ψ(α1, . . . , αi, ·, αi+1, . . . , αk)

m(δ′) .

iv. If (γ1, . . . , γi) >lex (α1, . . . , αi) and ψ(γ̄) > α1, . . . , αk, δ, then

ψ(γ̄) > ψ(α1, . . . , αi, ·, αi+1, . . . , αk)
n(δ) .

Proof. The first point follows from ψ(ᾱ) > 1. Under the conditions of (ii), ψ(ᾱ)
is a principal limit ordinal. For (iii) we utilize the subterm property and the
monotonicity of ψ, respectively. Finally, (iv) is established by induction on n
using Lemma 5.25.iii. �

5.3.2 Fundamental Sequences and Hydrae below ∆k

Fundamental sequences and Bachmann systems have been introduced and stud-
ied in Section 2.4. We are going to introduce a Bachmann system for ∆k, but
before we can do so, we have to wade through some technical definitions.

Definition 5.27. Let α1, . . . , αk < ∆k. The set of fixed points of ϕᾱ is

Fix(ᾱ) := {ψ(γ̄, δ) : (γ̄) >lex (ᾱ) ∧ ψ(γ̄, δ) > α1, . . . , αk} .

For β < ∆k we need the auxiliary notation

ψ(ᾱ, β)∗ :=

{
ψ(ᾱ, β0) if β = β0 + 1 ,

β otherwise,

and for γ < ∆k in k-normal form we are going to define the set ISᾱ(γ) of (relative
to ᾱ) interesting subterms of γ by recursion. We start with ISᾱ(0) := {0} and
ISᾱ(γ1 + · · ·+ γm) :=

⋃
16i6m ISᾱ(γi) for m > 1. The nontrivial case is given by

ISᾱ(ψ(γ̄)) :=

{ψ(γ̄)} if (γ1, . . . , γk) >lex (α1, . . . , αk) ,⋃
16i6k+1

ISᾱ(γi) otherwise.

Now the (relative to ᾱ) maximal interesting subterm MSᾱ(δ̄) of a nonempty
sequence δ̄ is defined to be the maximum of the ordinals occurring in the ISᾱ(δi).

97

5 Derivation Lengths

The following definition corresponds to the assignment of fundamental se-
quences for ordinals below ∆k from Weiermann (1997a), which is based on
work of Buchholz (1980).

Definition 5.28. We define α[n] by recursion on α < ∆k in k-normal form:

0[n] := 0

(α1 + · · ·+ αm)[n] := α1 + · · ·+ αm−1 + αm[n] if m > 1

ψ(0̄)[n] := 0

ψ(ᾱ, λ)[n] := ψ(ᾱ, λ[n]) if λ ∈ Lim \ Fix(ᾱ)

ψ(0̄, β)[n] := α∗ · (n+ 1)

ψ(α1, . . . , αi + 1, 0̄, β)[n] := ψ(α1, . . . , αi, ·, 0̄)n+1(α∗)

ψ(α1, . . . , αi, 0̄, 0)[n] := ψ(α1, . . . , αi[n], 0̄,MSᾱ,0̄(ᾱ))

ψ(α1, . . . , αi, 0̄, β)[n] := ψ(α1, . . . , αi[n], 0̄, α∗) .

It should be clear that αi ∈ Lim is demanded in the last two lines. For m ∈ N
we further introduce

α[n,m] :=

{
α if n > m ,

(α[n,m− 1])[m] otherwise.
(5.7)

Thus α[n,m] = (. . . ((α[n])[n+ 1]) . . .)[m]. The main results concerning sub-
recursive hierarchies in Section 2.4 are related to the tame Bachmann systems of
Definition 2.81. We are pleased to see the assignment of fundamental sequences
defined above is tame. Of central importance is the use of MSᾱ,0̄(ᾱ) in the
penultimate line above. Replacing the ordinal with 0 would spoil convergence.
A proof of the following result can be extracted from Weiermann (1997a).

Theorem 5.29. (∆k, ·[·]) is a tame Bachmann system.

The battle of Hercules and the Hydra from Kirby and Paris (1982) is closely
connected to the Hardy functions. This is emphasized by the fact that Hardy
is an anagram for Hydra.

Definition 5.30. A Hydra is an ordinal below ∆k. For each Hydra α the
ordered pair c := (α, n) is called a configuration. The next configuration c+ for
c is (α[n], n + 1), and the Hydra battle for the configuration c is the sequence
(cm)m<ω of configurations with c0 = c and cm+1 = c+m. The minimal m such
that the Hydra in cm is 0 is called the length of the battle.

An immediate consequence of Theorem 5.29 is (∀α> 0)(∀n)(α > α[n]), thus
the length of the battle is well-defined for each configuration. The following
Lemma gathers a few basic facts about Hydra battles, and it links the length
of a battle to the counting functions Lα of Definition 2.75.

98

5.3 Simple Termination is Complex

Lemma 5.31. Let c := (α, n) be a configuration and consider its battle (cm)m∈N.

i. For all m we have cm = (α[n, n+m− 1], n+m).

ii. The length of the battle is the minimal m such that α[n, n+m− 1] = 0.

iii. The length of the battle is Lα(n).

Proof. We can show (i) by an induction on m, and (ii) is an easy consequence
of this. An induction on α establishes (iii). �

The counting functions are tailored exactly for the Hydra battle, and hence
the Hardy functions are also closely related to the battle.

Proposition 5.32. If there is an α0 such that α = ωω · α0 < ∆k, then the
function which maps n to the length of the battle for the configuration (α, n)
eventually dominates all <α-recursive functions.

Proof. We combine Lemma 2.77 and Lemma 5.31.iii to see that the length of the
battle for (α, n) is Hα(n)−n. By Theorem 5.29, we deal with a tame Bachmann
system, hence we may incorporate Theorem 2.82 to see that any <α-recursive
function is eventually dominated by some Hβ with β < α. Taking a look at
Lemma 2.78.iii we know that Hα eventually dominates Hβ. Thus the claim is
established. �

5.3.3 Encoding all Hydrae below ∆k

We intend to encode all Hydrae below ∆k by terms. For these terms formal
fundamental sequences will be defined.

Definition 5.33. The signature Σ0 consists of

❖ the constant 0,

❖ the unary (successor) S,

❖ the binary +, and

❖ the k + 1-ary P, which represents ψ.

Each s ∈ T (Σ0) has a value val(s) < ∆k, which is calculated by interpreting 0,
S, +, P with 0, the successor function, the ordinal sum, and ψ, respectively.

The symbol S is not really needed for encoding Hydrae since the terms Ss and
+(s,P(0̄)) have the same value. We use S as a syntactic indicator of successor
ordinals, and additionally its presence will simplify various calculations.

Obviously, each ordinal below ∆k can be denoted by terms of T (Σ0). To
mimic fundamental sequences on terms we introduce a set of standard terms.
Because our + has fixed arity and because we do not want to bother about
distinguishing between +(+(s, t), u) and +(s,+(t, u)), there will usually be

99

5 Derivation Lengths

distinct standard terms denoting the same ordinal. Furthermore, for γ < ∆k

denoted by the standard term s and for n > 0 we intend to denote γ+n by Sns,
thus using + only for certain additions of (standard terms for) limit ordinals.
This will be useful later when we treat derivations of standard terms.

Recall from Definition 2.31 that ⊕ denotes the natural sum of two ordinals.
A pair (λ, µ) of limit ordinals is called compatible if λ+ µ = λ⊕ µ holds.

Definition 5.34. The set D ⊆ T (Σ0) of standard terms is the smallest superset
of {0} which is closed under S and these rules:

❖ s̄ ∈ D and s̄ 6= 0̄ =⇒ P(s̄) ∈ D,

❖ s, t ∈ D and (val(s), val(t)) compatible =⇒ +(s, t) ∈ D.

By D(α) we denote the collection of standard terms with value α.

The following Lemma should be no surprise.

Lemma 5.35.

i. If s′ is a proper subterm of s ∈ D(α), then there is β < α with s′ ∈ D(β).

ii. For all α < ∆k we have D(α) 6= ∅.
iii. D is the union of the D(α) with α < ∆k.

Definition 5.36. A formal multiplication for a term s and n > 0 is defined by

s× n := +(·, s)n−1(s) .

It will be important that the recursion occurs in the first argument.
Our aim is now to mimic the definition of α[n] for the members of D. We

encounter some difficulties on the way. Though in Definition 5.28 the ordinals
on the left are supposed to be in k-normal form, the ordinals on the right
are not always in k-normal form. In the same way, a formal equivalent to
fundamental sequences for standard terms will not always produce standard
terms. For example, if we defined P(0̄, Ss)[n] to be P(0̄, s)× (n+ 1), this would
result in occurrences of the nonstandard term P(0̄) for s = 0. We overcome this
obstacle for d ∈ D(α) by simultaneously defining d〈n〉 and d[n], where d〈n〉 is a
formal equivalent to α[n] which need not be a standard term but has a uniform
definition, while d[n] is a refinement of d〈n〉 and an element of D(α[n]). Later
we will work in a TRS which is able to reduce d〈n〉 to d[n].

Definition 5.37. By D(Lim) we denote the set of standard terms whose values
are limit ordinals, while the analogies to Fix(ᾱ) and MSᾱ(β̄) on D are called
Fix(s̄) and MSs̄(t̄).

For the sake of transparency those cases of the definition of α[n] which involve
the notation α∗ are split up. They will be handled by distinct rewrite rules.

100

5.3 Simple Termination is Complex

Definition 5.38. For d ∈ D and n ∈ N we simultaneously define d〈n〉 and d[n],
both members of T (Σ0), by recursion on D:

0〈n〉 := 0 (5.8a)

Ss〈n〉 := s (5.8b)

+(s, t)〈n〉 := +(s, t[n]) (5.8c)

P(s̄, t)〈n〉 := P(s̄, t[n]) if t ∈ D(Lim) \ Fix(s̄) (5.8d)

P(0̄, St)〈n〉 := P(0̄, t)× (n+ 1) (5.8e)

P(0̄, t)〈n〉 := t× (n+ 1) (5.8f)

P(s1, . . . , Ssi, 0̄, St)〈n〉 := P(s̄, ·, 0̄)n+1(P(s1, . . . , Ssi, 0̄, t)) (5.8g)

P(s1, . . . , Ssi, 0̄, t)〈n〉 := P(s̄, ·, 0̄)n+1(t) (5.8h)

P(s1, . . . , si, 0̄, 0)〈n〉 := P(s1, . . . , si[n], 0̄,MSs̄,0̄(s̄)) (5.8i)

P(s1, . . . , si, 0̄, St)〈n〉 := P(s1, . . . , si[n], 0̄,P(s1, . . . , si, 0̄, t)) (5.8j)

P(s1, . . . , si, 0̄, t)〈n〉 := P(s1, . . . , si[n], 0̄, t) . (5.8k)

Similar to Definition 5.28, si 6= 0 is required for (5.8i)–(5.8k).
If d = +(s, t) and t[n] = Sit′ where i is as large as possible, we put

+(s, t)[n] :=

{
Sis if t′ = 0 ,

Si+(s, t′) otherwise.

Moreover, we demand P(0̄, S0)[n] := Sn+10 as well as

P(0, . . . , S0, 0̄, 0)[n] := P(0, . . . , 0, ·, 0̄)n(S0) ,

and in all remaining cases we put d[n] := d〈n〉. For m ∈ N we further introduce
d[n,m] in analogy with the α[n,m] of (5.7) in Definition 5.28.

We now show that this definition is correct and meets our requirements.

Lemma 5.39. Let α < ∆k and n ∈ N. For d ∈ D(α) we have val(d〈n〉) = α[n]
and d[n] ∈ D(α[n]).

Proof by induction on D. As the definition of d〈n〉 just copies Definition 5.28,
the first statement is immediate from the induction hypothesis. Because in the
above definition recursion is only used for standard terms s and t denoting limit
ordinals, we have s[n] 6= 0 and t[n] 6= 0 according to the induction hypothesis
and Theorem 5.29. Since MSs̄,0̄(s̄), being a subterm of some sj ∈ D, cannot be
P(0̄), the only possible occurrences of P(0̄) in d〈n〉 are the ones we gave special
treatment in the definition of d[n]. In both cases it is obvious that d〈n〉 and
d[n] have the same value and that d[n] is standard.

101

5 Derivation Lengths

Now let d = +(s, t) and let i, t′ be as in the definition of d[n]. Since d is
standard, we know the pair (τ, µ) with τ := val(s) and µ := val(t) is compatible.
The statement obviously holds if t′ = 0. So let t′ denote a limit ordinal, say
µ′. By Definition 5.34 we have to show (τ, µ′) is compatible. This is done by
proving µ′ 6 µ. The induction hypothesis yields t[n] is a standard term with
val(t[n]) = µ[n]. Because µ is a limit, Theorem 5.29 implies µ > µ[n], thus
µ′ 6 µ[n] < µ. So d[n] is standard and has the correct value. In the remaining
cases the statement easily follows from the induction hypothesis. �

5.3.4 Simulating all Hydra Battles below ∆k

We are now prepared to gradually define the TRS R, which is intended to
simulate all Hydra battles below ∆k. Therefore Σ0 has to be enlarged by new
symbols whose meaning will be elucidated in the following definitions.

Definition 5.40. The signature Σ consists of Σ0 enriched by

❖ the unary •, ◦, and 8,

❖ the k + 1-ary M,

❖ the i+ 1-ary Ji, for 1 6 i 6 k,

❖ the i+ 1-ary Qij, for 1 6 j 6 i 6 k, and

❖ the i+ 2-ary Ri, for 1 6 i 6 k.

It will sometimes be necessary to reduce a term to one of its subterms. Since
R is intended to be totally and thus simply terminating, we may introduce, for
all symbols f ∈ Σ(n) with n > 0 and for 1 6 i 6 n, embedding rules

(Sif) f(x1, . . . , xn)→ xi .

Because 0 is the only constant, the following result is blatantly trivial, even
though we did not yet define the whole of R.

Lemma 5.41. R is confluent, and each s ∈ T (Σ) reduces in less than dp(s)
steps to its unique normal form 0. If s′ is a subterm of s, then s

∗→ s′.

The promised rules which enable us to reduce d〈n〉 to d[n] are

(F1) P(0̄)→ S0 , (F2) +(x, Sy)→ S+(x, y) .

Lemma 5.42. For d ∈ D we have d〈n〉 ∗→ d[n].

Proof. The difference between d〈n〉 and d[n] for d = P(0̄, S0, 0̄, 0) consists of
one single P(0̄) which is replaced with S0. This can be handled by (F1). For
d = P(0̄, S0) and n > 0 we have to show P(0̄) × n

+→ Sn0, which is done by

102

5.3 Simple Termination is Complex

induction on n. The case n = 1 is again established by (F1), while the induction
hypothesis yields P(0̄)× (n+ 1)

+→ +(Sn0,P(0̄)). Now we get

+(Sn0,P(0̄))→F1 +(Sn0, S0)→F2 S+(Sn0, 0)→S1+ Sn+10 .

It suffices for the remaining case d = +(s, t) to note that

+(s, Sit′)
∗→F2 Si+(s, t′)→S1+ Sis

is possible for arbitrary i and t′. �

Following Touzet (1998b), R is to regard •8n+1d with d ∈ D as a term
which encodes the battle configuration (val(d), n). Since we want to simulate
Hydra battles at full length we intend, for d 6= 0, to make possible derivations
•8n+1d

+→ •8n+2d[n], which can then be iterated until •8n+m0 is reached.
For some calculations it will be necessary to facilitate •8n+1d

+→ 8n+1•n+1d,
so that •n+1 may be moved to the top of subterms of d as material which can
be deleted in subderivations. When we reach a point where d can safely be
modified into something close to d〈n〉, we do so and put a ◦ on top of the new
subterm. This ◦ will enable us to create •8 in front of 8n+1d[n], furthermore,
recursions like the one needed for (5.8c) can be simulated. The required rules
are variations on rules of Touzet (1998b):

(N1) •8x→ 8••x , (N2) 8◦x→ ◦88x ,

(N3) ◦x→ 8x , (N4) 8x→ •x .

Lemma 5.43. For n > 0 and s ∈ T (Σ) we have

i. 8ns
+→ •ns +→ s

ii. •8ns
+→ 8n•ns

iii. 8n◦s +→ •8n+1s.

Proof. For (i) we rely on (N4) and (S1•), while (ii) follows from (i) and •8ns
+→

8n•2n
s, which is shown by induction on n using

•m8s ∗→N1 8•2ms , (5.9)

which in turn is shown by induction on m > 0 using (N1). We get (iii) from

8n◦s +→N2 ◦82ns
∗→ ◦8n+1s→N3 88n+1s→N4 •8n+1s .

Its first step is won like (5.9), and the second one relies on 2n > n+1 and (i). �

To simulate cases like (5.8c) we have to import • and 8 into standard terms.
For f ∈ {S,+,P} with arity n and for 1 6 i 6 n we thus introduce the rule

(Dif) •f(x̄)→ f(x1, . . . , 8xi, . . . , xn) .

103

5 Derivation Lengths

Lemma 5.44. For s, t, s̄ ∈ T (Σ); n > 0, and 1 6 i 6 k + 1 we have

i. •n+1+(s, t)
+→ +(s, •n+1t)

ii. •n+1P(s̄)
∗→ •P(s1, . . . , •nsi, . . . , sk+1)

+→ P(s1, . . . , •n+1si, . . . , sk+1)

iii. •n+1P(s̄)
+→ P(s1, . . . , 8

n+1si, . . . , sk+1)

iv. •n+1P(s1, . . . , Ssi, . . . , sk+1)
+→ P(s1, . . . , S8n+1si, . . . , sk+1).

Proof. To settle (i), (D2+) is applied n + 1 times, and afterwards we rely on
Lemma 5.43.i. With little changes, using (DiP) and (D1S) instead of (D2+),
the remaining points follow. �

As mentioned earlier, importing •n or 8n shall enable us to locally reduce
until it is safe to create a ◦ on top of the subterm we treated. Sometimes such
a ◦ has to be exported. This is achieved by these rules:

(E2+) +(x, ◦y)→ ◦+(x, y)

(EiP) P(x1, . . . , ◦xi, . . . , xk+1)→ ◦P(x̄) for 1 6 i 6 k + 1 .

In order to simulate (5.8e)–(5.8h) we need rewrite rules for a special kind of
multiplication and for iterations of P. Since multiplication amounts to iterating
+, the rules are very similar:

(RM) M(x̄, 8y)→ +(M(x̄, y),P(x̄, y))

(RJi) Ji(x1, . . . , 8xi, y)→ P(x̄, Ji(x̄, y), 0̄) for 1 6 i 6 k .

Lemma 5.45. For s̄, t ∈ T (Σ); n > 0, and 1 6 i 6 k we have

i. M(s̄, 8nt)
+→ P(s̄, t)× n

ii. Ji(s1, . . . , 8
nsi, t)

+→ P(s1, . . . , si, ·, 0̄)n(t).

Proof. As both statements are treated similarly by induction on n, we only
prove (i) in detail. For the start we have

M(s̄, 8t)→RM +(M(s̄, t),P(s̄, t))→S2+ P(s̄, t) ,

and the induction step is

M(s̄, 8n+1t)→RM +(M(s̄, 8nt),P(s̄, 8nt))
+→ +(M(s̄, 8nt),P(s̄, t))
+→ +(P(s̄, t)× n,P(s̄, t)) ,

where we used Lemma 5.43.i and the induction hypothesis for the last two steps.
Statement (ii) relies on (RJi) and (Si+1Ji) instead of (RM) and (S2+). �

104

5.3 Simple Termination is Complex

We now present the rules intended to carry out the transformations pre-
scribed by Definition 5.38. Because it is not easy to distinguish between cases
like (5.8d) and (5.8k), Lemma 5.44 and the rules (EiP) facilitate both possible
transformations. Hence R is also able to simulate wrong battles, i.e. battles
based on assignments of fundamental sequences which differ from our assign-
ment. In the wrong cases the ordinals denoted are smaller, thus this shall pose
no problem to our intended Σ-algebra. Likewise, transformations as the one
needed in (5.8h) are made possible for arbitrary terms t, and the t in (5.8f)
is supposed to be an element of Fix(0̄) whereas the associated rule (H3) below
treats arbitrary terms beginning with P. The final rules are:

(H1) •Sx→ ◦x
(H2) P(0̄, Sy)→ ◦M(0̄, y)

(H3) P(0̄,P(x̄, y))→ ◦M(x̄, y)

(Hi4) P(x1, . . . , Sxi, 0̄, y)→ ◦Ji(x̄, y)

(Hi5) P(x1, . . . , Sxi, 0̄, Sy)→ ◦Ji(x̄,P(x1, . . . , Sxi, 0̄, y))

(Hij6) •P(x1, . . . , xi, 0̄, 0)→ Qij(x1, . . . , •xi, xj)

(RQij) Qij(x1, . . . , ◦xi, y)→ ◦P(x̄, 0̄, y)

(Hi7) •P(x1, . . . , xi, 0̄, Sy)→ Ri(x1, . . . , •xi, xi, y)

(RRi) Ri(x1, . . . , ◦xi, y, z)→ ◦P(x̄, 0̄,P(x1, . . . , xi−1, y, 0̄, z))

for i and j with 1 6 j 6 i 6 k.

Proposition 5.46. For d ∈ D with d 6= 0 and for n > 0 we have

•8n+1d
+→ 8n+1•n+1d

+→ 8n+1◦d[n]
+→

{
◦d[n]

•8n+2d[n] .

Before we prove this, we would like to point out its main implication. By
Lemma 5.39, R is able to simulate Hydra battles for all configurations (α, n)
with 0 < α < ∆k at full length:

•8n+1d
+→ •8n+2d[n]

+→ •8n+3d[n, n+ 1]
+→ . . .

+→ •8n+l0
+→ 0 .

It is obviously not wise to strive after a similar result for d = 0.

Proof by induction on D. As mentioned before, a close look at Definition 5.38
shows that whenever u[n] (with u being a subterm of d) is used to define d[n]
we have u 6= 0. This observation enables us to rely on the induction hypothesis
when required.

105

5 Derivation Lengths

A quick glance at Lemmata 5.42 and 5.43 assures us that it suffices to show

•n+1d
+→ ◦d〈n〉 .

For (5.8b) we employ Lemma 5.43.i to get •n+1Ss
∗→ •Ss →H1 ◦s = ◦d〈n〉,

while (5.8c) is handled by Lemma 5.44 and the induction hypothesis:

•n+1+(s, t)
+→ +(s, •n+1t)

+→ +(s, ◦t[n])→E2+ ◦+(s, t[n]) .

The treatment of (5.8d) and (5.8k) is very close to this, relying on (EiP) instead
of (E2+). For (5.8f) we note that d = P(0̄, u) with u ∈ Fix(0̄) holds. According
to Definition 5.27, u is some P(s̄, t). Applying Lemmata 5.44.ii,iii and 5.45.i,

•n+1P(0̄,P(s̄, t))
+→ P(0̄,P(s̄, 8n+1t))

→H3 ◦M(s̄, 8n+1t)
+→ ◦(P(s̄, t)× (n+ 1))

follows. The proof of (5.8e) is very similar (using (H2)) and therefore left out
here. For (5.8h) we need Lemmata 5.44.iv and 5.45.ii:

•n+1P(s1, . . . , Ssi, 0̄, t)
+→ P(s1, . . . , S8n+1si, 0̄, t)

→Hi4 ◦Ji(s1, . . . , 8
n+1si, t)

+→ ◦P(s1, . . . , si, ·, 0̄)n+1(t) ,

while we care for (5.8g) in much the same way, replacing (Hi4) by (Hi5). The
treatment of MSs̄,0̄(s̄) in (5.8i) requires a new idea, since R does not know
which of the sj has MSs̄,0̄(s̄) as a subterm. By virtue of Lemma 5.44.ii and the
induction hypothesis, for each j with 1 6 j 6 i and for si 6= 0, we can show

•n+1P(s1, . . . , si, 0̄, 0)
∗→ •P(s1, . . . , •nsi, 0̄, 0) (5.10a)
+→ Qij(s1, . . . , •n+1si, sj) (5.10b)
+→ Qij(s1, . . . , ◦si[n], sj)

→RQij
◦P(s1, . . . , si[n], 0̄, sj) . (5.10c)

To get from (5.10a) to (5.10b), we make use of (Hij6) and, in case of j = i,
Lemma 5.43.i. Now we may incorporate Lemma 5.41 to reduce the second sj

in (5.10c) to any of its subterms. Since MSs̄,0̄(s̄) is a subterm of some sj, we
reach our goal. When we use (Hi7) and (RRi) instead of (Hij6) and (RQij), the
result for (5.8j) is easily obtained. �

Corollary 5.47. If R terminates, then both DlR and DcR eventually dominate
all <∆k-recursive functions.

106

5.3 Simple Termination is Complex

Proof. As mentioned in (5.6), ∆k = ψ(1, 0̄) holds where 0̄ has length k + 1.
Proposition 5.32 tells us the function which maps n to the length of the Hydra
battle for cn := (∆k[n], n+1) eventually dominates all <∆k-recursive functions.
We take a short digression from our fixed k to k + 1, recall ψ0,ᾱ = ψᾱ, and see

∆k[n] = ψ(0, ·, 0̄)n+1(0) = ψ(·, 0̄)n+1(0)

holds where the first ψ is k + 2-ary and the second one is, as usual, k + 1-
ary. Since sn := •8n+2P(·, 0̄)n(S0) encodes cn, the length of the battle for cn is
majorized by dlR(sn). Because of dp(sn+1) = dp(sn) + 2, DlR grows too fast to
be <∆k-recursive. The calculation for DcR is similar. �

Since the complexity of a TRS terminating via either MPO, KBO, or LPO
is bounded by a multiple recursive function (see Theorems 5.6, 5.7, and 5.15),
termination of R cannot be established by one of these orders.

We want to demonstrate where LPO fails. R owes much of its strength to
the interplay between •, 8, and ◦ on the one hand and + and P on the other
hand. No LPO is able to prove termination of a TRS containing the rules (N3),
(N4), (D1P), and (E1P), since the first three rules require ◦ � 8 � • � P while
the fourth rule implies P � ◦.

Touzet (1999) conjectured the approach taken in the proof of Theorem 5.23
is transferable to TRSs. There an interpretation was defined by mapping a
term s to a pair (u, v) of terms, where u (mostly) contains the part of s which
corresponds to its denoted ordinal, while v contains the auxiliary symbols (like
• and 8) of s. Comparison of terms was achieved by the lexicographic product
of ≺mpo and an order ≺ tailored to meet the demands of the rules importing
resp. exporting auxiliary symbols. Such a lexicographic product is needed to
destroy the uniformity of termination via MPO, as, according to Theorem 5.6,
≺mpo alone is doomed to stick with primitive recursive complexity bounds. On
the other hand, it is reasonable to make MPOs a part of the termination proof,
as their order types exhaust the order types of simplification orders on strings
(see Theorems 4.2 and 4.9). For terms, the weapon of choice appears to be LPO.
The final remark of Touzet (1999) is

“We believe that this approach would apply to term rewriting sys-
tems, using the lexicographic path ordering on terms instead of the
recursive path ordering [i.e. MPO] on strings: the order type of the
lexicographic path ordering reaches the maximal order type of the
homeomorphic embedding of Kruskal’s theorem.”

In order to make this a bit more explicit we recall that ϑ(Ωω), the supremum of
the order types of simplification orders, is also the supremum of the order types

107

5 Derivation Lengths

of LPOs, see Theorems 4.1 and 4.10. Just as termination via MPO on strings
is too weak, a direct approach using LPO on terms is impossible since we run
aground at multiple recursive complexity bounds, see Theorem 5.7.

Though the approach of Touzet (1999) is promising, we will take a different
and more direct route, which is inspired by the earlier paper Touzet (1998b).

5.3.5 Proof of Total Termination

We order P := (∆k \ {0}) × ω × ω by ≺, which is the lexicographic product
of the usual < on these sets of ordinals. By Proposition 2.38.ii, (P ,≺) is a
well-order with (using Lemma 2.26 and the fact that ∆k is an epsilon)

otype(P ,≺) = ω · ω ·∆k = ω2 · ω∆k = ω2+∆k = ω∆k = ∆k .

We identify (α, 0, 0) ∈ P and α to avoid lengthy notations. Thus α > β implies
α � (β,m, n) < β. Our main intention is to define a weak monotone Σ-algebra
which is compatible with R.

Definition 5.48. The operations of the Σ-algebra (P ,≺,F) are defined as
follows. For arbitrary elements p = (α,m, n), pl = (αl,ml, nl) (with 1 6 l 6 k),
q = (β,m′, n′) and r = (γ,m′′, n′′) of P we put

[0] := 1

[S](p) := α+ 1

[+](p, q) := α⊕ β ⊕ β
[P](p̄, q) := ψ(ᾱ, β)

[•](p) := (α,m, n+ 1)

[8](p) := (α,m+ 1, 0)

[◦](p) := α+ 1

[M](p̄, q) := ψ(ᾱ, β) · (3m′ + 1)

[Ji](p1, . . . , pi, q) := ψ(α1, . . . , αi, ·, 1̄)2mi+1(β)

[Qij](p1, . . . , pi, q) := ψ(α1, . . . ,max {αj, β}, . . . , αi, 1̄)

[Ri](p1, . . . , pi, q, r) := ψ(α1, . . . ,max {αi, β}, 1̄, γ + 1) .

Note that some components of q, r and pl are never used. Furthermore the
[f] with f ∈ Σ0 intentionally forget the two trailing components of p, q and pl.
Hence, for ρ : V → P we have

[[S8x, ρ]] = [[Sx, ρ]] = [[◦x, ρ]] = [[◦8x, ρ]] ,

[[+(8x, y), ρ]] = [[+(x, 8y), ρ]] = [[+(x, y), ρ]] , and

[[P(x1, . . . , 8xi, . . . , xk+1), ρ]] = [[P(x̄), ρ]] .

(5.11)

108

5.3 Simple Termination is Complex

This remains true when 8 is replaced with •.
Both the use of m′ in [M] and the use of mi in [Ji] are based on [8], as m′ and

mi count the appearances of 8 at the positions important for (RM) and (RJi),
respectively. The definitions of [Qij] and [Ri] reflect the duplication of xj and
xi in (Hij6) and (Hi7), respectively. Here we profit from Theorem 3.45, since
taking the maximum violates monotonicity. Note that only [•] is monotone, as
the other functions ignore the third component of their first arguments.

Lemma 5.49. The Σ-algebra (P ,≺,F) is weakly monotone and has the sub-
term property, hence it is weak monotone.

Proof. We start with the subterm property and treat only the cases which are
not that obvious. The proof for [+] uses the fact that the first components
of elements of P are larger than 0, and the functions involving ψ rely on the
subterm property and the monotonicity of ψ, hence on Lemma 5.25.ii.

Weak monotonicity is obvious for all interpretations from [0] to [◦], and a
moment’s reflection establishes it for [Qij] and [Ri]. The result for [M] and [Ji]
relies on Lemma 5.26. �

For the reader’s convenience we collect the rules of R scattered over the last
pages in Table 5.1 on the following page.

Theorem 5.50. R is ∆k-terminating, thus totally terminating.

Proof. Our aim is to establish weak ∆k-termination of R. As soon as we reach
this, Theorem 3.45 yields ω∆k-termination. Because ∆k is an epsilon, this is
just what we are longing for.

By Lemma 5.49 it is sufficient to show R is compatible with (P ,≺,F). Let
ρ : V → P be given, and let the values under ρ of x, xi (with 1 6 i 6 k + 1),
y and z be (α,m, n), (αi,mi, ni), (β,m′, n′) and (γ,m′′, n′′). Our goal will be
established by showing

[[l, ρ]] � [[r, ρ]] for all (l, r) ∈ R .

For all rules (Sif) we can fall back upon the subterm property of the inter-
preting functions under consideration. The subterm properties of [•] and [◦],
sometimes in combination with (5.11), settle (N2), (N3), (Dif), (H1), (Hij6),
and (Hi7). For example, we can treat (N3) by

[[◦x, ρ]] = [[◦8x, ρ]] � [[8x, ρ]] ,

and for (Hi7)

[[•P(x1, . . . , xi, 0̄, Sy), ρ]] � [[P(x1, . . . , xi, 0̄, Sy), ρ]]

= [[P(x1, . . . , •xi, 0̄, Sy), ρ]]

= [[Ri(x1, . . . , •xi, xi, y), ρ]]

109

5 Derivation Lengths

(Sif) f(x1, . . . , xn)→ xi [f ∈ Σ]
(F1) P(0̄)→ S0

(F2) +(x,Sy)→ S+(x, y)
(N1) •8x→ 8••x
(N2) 8◦x→ ◦88x
(N3) ◦x→ 8x
(N4) 8x→ •x
(Dif) •f(x̄)→ f(x1, . . . , 8xi, . . . , xn) [f ∈ {S,+,P}]
(E2+) +(x, ◦y)→ ◦+(x, y)
(EiP) P(x1, . . . , ◦xi, . . . , xk+1)→ ◦P(x̄)
(RM) M(x̄, 8y)→ +(M(x̄, y),P(x̄, y))
(RJi) Ji(x1, . . . , 8xi, y)→ P(x̄, Ji(x̄, y), 0̄)
(H1) •Sx→ ◦x
(H2) P(0̄,Sy)→ ◦M(0̄, y)
(H3) P(0̄,P(x̄, y))→ ◦M(x̄, y)
(Hi4) P(x1, . . . ,Sxi, 0̄, y)→ ◦Ji(x̄, y)
(Hi5) P(x1, . . . ,Sxi, 0̄,Sy)→ ◦Ji(x̄,P(x1, . . . ,Sxi, 0̄, y))
(Hij6) •P(x1, . . . , xi, 0̄, 0)→ Qij(x1, . . . , •xi, xj)
(RQij) Qij(x1, . . . , ◦xi, y)→ ◦P(x̄, 0̄, y)
(Hi7) •P(x1, . . . , xi, 0̄,Sy)→ Ri(x1, . . . , •xi, xi, y)
(RRi) Ri(x1, . . . , ◦xi, y, z)→ ◦P(x̄, 0̄,P(x1, . . . , xi−1, y, 0̄, z))

Table 5.1: The rules of R (in order of their appearance)

suffices. In the same way we build on [[8x, ρ]] = [[8•x, ρ]] to treat (N1) and (N4),
while (F2) and (E2+) both rely on

α⊕ (β + 1)⊕ (β + 1) = α⊕ β ⊕ β + 2 > α⊕ β ⊕ β + 1 .

Since (F1), (EiP), and (H2) can be handled similarly, it suffices to show what
to do with the latter. By monotonicity of ψ we get

[[P(0̄, Sy), ρ]] = ψ(1̄, β + 1) � ψ(1̄, β) ,

and now Lemma 5.26.ii yields

ψ(1̄, β + 1) � ψ(1̄, β) · (3m′ + 1) + 1 = [[◦M(0̄, y), ρ]] .

We can handle (H3) in almost the same way, using the subterm property of ψ
instead of its monotonicity. The proof for (RM) boils down to establishing

ψ(ᾱ, β) · (3(m′ + 1) + 1) > ψ(ᾱ, β) · (3(m′ + 1)) ,

110

5.3 Simple Termination is Complex

which is shown via Lemma 5.26.i, and (RJi) is taken care of by Lemma 5.26.iii:

ψ(α1, . . . , αi, ·, 1̄)2(mi+1)+1(β) > ψ(α1, . . . , αi, ·, 1̄)2mi+2(β) .

To settle (Hi5) we use the subterm property and the monotonicity of ψ, and
see

ψ(α1, . . . , αi + 1, 1̄, β + 1) > ᾱ, 1, ψ(α1, . . . , αi + 1, 1̄, β) =: δ .

This is joined by Lemma 5.26.iv,ii to produce

ψ(α1, . . . , αi + 1, 1̄, β + 1) > ψ(α1, . . . , αi, ·, 1̄)2mi+1(δ) + 1 .

Along this line of reasoning we can get rid of (Hi4). The key observation is

ψ(α1, . . . , αi + 1, 1̄, β) > ψ(α1, . . . , αi, ·, 1̄)2mi+1(β) + 1 .

It remains to take care of (RQij) and (RRi). For the former we introduce p :=
[[Qij(x1, . . . , ◦xi, y), ρ]] and get p < ψ(α1, . . . , αi +1, 1̄) by weak monotonicity of
ψ, whereas the subterm property of ψ yields p � α1, . . . , αi, 1, β. Under these
conditions Lemma 5.25.iii implies

p � ψ(α1, . . . , αi, 1̄, β) + 1 = [[◦P(x̄, 0̄, y), ρ]] .

Via similar reasoning we can handle (RRi), getting

p := ψ(α1, . . . ,max {αi + 1, β}, 1̄, γ + 1) � ᾱ, 1, ψ(α1, . . . , αi−1, β, 1̄, γ) =: δ

first and p � ψ(ᾱ, 1̄, δ) + 1 afterwards, using Lemma 5.25.iii and, yet again,
Lemma 5.26.ii. �

Combining Corollary 5.47, Theorem 5.50, and Theorem 5.20 we arrive at an
essentially optimal result.

Theorem 5.51.

i. For every α < ϑ(Ωω) there exists a simply (and even totally) terminating
TRS whose complexity eventually dominates all α-recursive functions.

ii. For every simply terminating TRS R there exists a <ϑ(Ωω)-recursive func-
tion which dominates the complexity of R.

In conclusion we learn that simply terminating TRSs are blessed with an
enormous computational strength. This strength is by no means exhausted
by the common classes of simplification orders like MPO, LPO, or KBO. The
question arises whether there is a natural class of simplification orders whose
corresponding TRSs may attain complexities beyond multiple recursion.

111

5 Derivation Lengths

class bound in order types see Theorems

MPO(1) Prec <ω3 5.6/4.2
MPO Prec <ϑ(Ω · ω) 5.6/4.1
KBO− 2O(n) ω 5.8/4.6
KBO(1) 2O(n) 6ωω

KBO Ack(O(n), 0) 6ωω 5.16/4.6
LPO Mrec <ϑ(Ωω) 5.7/4.1
SO(1) Mrec <ω3 5.23/4.9
SO Drec(<ϑ(Ωω)) <ϑ(Ωω) 5.51/4.10

Table 5.2: Size complexity bounds and order types occuring within classes of simplification
orders.

Table 5.2 contains a collection of the most important results presented in this
and the previous chapter. We use the abbreviation SO for the class of simplifi-
cation orders. Recall from Definition 3.48 that C(1) contains the members of a
class C of simplification orders which live on a signature Σ satisfying Σ = Σ(61).
There is no need to list LPO(1) as, by Lemma 3.55, it coincides with MPO(1).

What is the reason for the frequent appearance of the Hardy functions in
this section? Recall the slow growing principle, which states that a termination
proof via a simplification order of order type α implies as an upper complexity
bound a slow growing function with index β < ϑ(Ωω), where β is related to α.
After the construction of first counterexamples to this principle, Touzet (1999)
adapted it to her results and proposed that

“the Hardy hierarchy is the right tool for connecting derivation length
and order type.”

We call this the Hardy function principle. From Buchholz et al. (1994, Theo-
rem 1) we can infer that a termination proof using a simplification order of order
type α implies the size complexity is dominated by some Hβ with β < α + ωω.
Thus there is a valid instance of this principle. We do however know far too
little about the tightness of the described bounds, even if we focus on sets of
TRSs terminating via certain termination proof methods instead of considering
single TRSs.

The results presented in this chapter give strong evidence of the importance
of the Hardy function principle. In the general case of a simply terminating
SRS, the order type is below ω3, and we can always find a β < ω3 such that Hβ

bounds the complexity of the SRS. For terms the situation is similar. The TRSs
Rk (depending on k > 0) simulating the Hydra battle below ∆k we considered
in this section are in some sense the most complex simply terminating TRSs,
and the size complexity of Rk is closely related to H∆k

.

112

5.4 A Digression: LPO-Controlled Derivations

A further outstanding example is KBO with a maximal order type of ωω and
size complexities cofinal in Ack(O(n), 0). The Hardy function Hωω is a version
of the (binary) Ackermann function Ack (cf. Theorem 2.83). Less convincing
examples are MPO and LPO, which are not able to make full use of the huge
order types of their members. For the size complexities occuring within termi-
nation via MPO, the Hα with α < ωω suffice, while those of termination via
LPO are controlled by the Hα with α < ω3.

The TRSs simulating the Hydra battle will show up again in Chapter 7, where
we ask what complexities are possible if further restrictions are imposed on the
sizes of the terms occurring in the derivations.

5.4 A Digression: LPO-Controlled Derivations

Harvey Friedman (1999) investigated a more general notion of derivation length
which is also applicable to nonterminating TRSs.

Definition 5.52. A well-founded ordered TRS is a triple (R,Σ,≺) such that
R is a TRS over the signature Σ and (T (Σ),≺) is a well-founded partial order.
The R-derivation (si)i<n is a ≺-derivation if we have si � si+1 for all i < n−1.

Note that, by the well-foundedness of ≺, it makes little sense to consider
infinite derivations as well. Because →R is finitely branching we can safely
transport the derivation length function to this new context.

Definition 5.53. Let (R,Σ,≺) be as above. By dl≺R(s) we denote the length
of a longest ≺-derivation starting with s ∈ T (Σ). Based on this we can define
Dl≺R almost as we defined DlR.

This notion extends the usual one since, for terminating R, dlR and dl≺R
with ≺ :=

+←R coincide. We may however also consider nonterminating TRSs.
Before we do so, we take a look at terminating TRSs and find out that the
behavior of Dl≺R is already known if ≺ is a simplification order.

Theorem 5.54 (Weiermann 1994). If (R,Σ,≺) is a well-founded ordered
TRS and (T (Σ),≺) is (the closed part of) a simplification order, then there
exists a <ϑ(Ωω)-recursive function which dominates Dl≺R.

A complementary result is the following consequence of Theorem 5.51.

Theorem 5.55. For every α < ϑ(Ωω) there exists a well-founded ordered TRS
(R,Σ,≺) such that (T (Σ),≺) is (the closed part of) a simplification order and
Dl≺R eventually dominates all α-recursive functions.

113

5 Derivation Lengths

We already pointed out why it is impossible for the R of the Theorem to
terminate via LPO, although the order types of LPOs are cofinal in the order
types of simplification orders. If we use well-founded ordered rewriting, LPO
becomes strong enough – presumably at the cost of termination.

Theorem 5.56 (Friedman 1999). For every α < ϑ(Ωω) there exists a (non-
terminating) well-founded ordered TRS (R,Σ,≺) such that ≺ is (the closed part
of) an LPO and Dl≺R eventually dominates all α-recursive functions.

Friedman showed that these growth rates are attained even if we restrict
ourselves to head derivations, i.e. those derivations s→ t for whom there exist
a rule (l, r) and a substitution σ satisfying s = lσ and t = rσ.

It is appealing to generalize the notion of well-founded ordered TRSs by
introducing a control function g : N2 → N (whose branches m 7→ g(n,m) are
called gn). A derivation (si)i<n is called a ≺,g-derivation if there is a monotone
function f 6d g|s0| such that sf(i) � sf(i+1) holds for all i with f(i+ 1) < n.

Obviously, for the g defined by g(n,m) := m the ≺-derivations and the ≺,g-
derivations coincide. It is of course not advisable to choose a g with g(n, 0) too
close to dlR(n), and additionally an elementary g should suffice.

Let us return to Section 5.3.4 and its TRS R which is able to simulate all
Hydra battles below ∆k for some fixed k. According to Proposition 5.46, for all
standard terms d ∈ D with d 6= 0 and all n > 0 we have

•8n+1d
+→ •8n+2d[n] .

The LPO �lpo based on P � + � S � 0 � • � 8 satisfies

•8n+1d �lpo •8n+2d[n] .

In the proof of Corollary 5.47 we used terms sn = •8n+2P(·, 0̄)n(S0) and found
out that the function mapping n to dlR(sn) is not <∆k-recursive. If we now
define g : N2 → N to be such that g|sn| enumerates the positions of (codes for)
battle configurations in a derivation of minimal length simulating the Hydra
battle starting with sn, then this derivation is ≺lpo,g-controlled. Hence the
function which maps n to the longest ≺lpo,g-controlled derivation starting with
a term of size n is not <∆k-recursive. Even the function which maps n to the
first m such that gn(m) exceeds the lengths of all ≺lpo,g-controlled derivations
starting with a term of size n is not <∆k-recursive.

In Chapter 7 we will take a closer look at a variant g′ of g (for a variant of
R) and see that there is an elementary upper bound on g′. Roughly speaking,
the length of the derivation from •8n+1d to •8n+2d[n] depends on n, dp(d) and
|d|. Proposition 7.25 shows |d[n]| < (|d| − 1)(dp(d) + n), while Proposition 7.28
yields dp(d[n]) 6 dp(d) + n+ 1. These results can be used to define an elemen-
tary function whose branches impose upper bounds on the minimal number of
rewrite steps between two encoded battle configurations.

114

5.5 Another Digression: Ground Termination

5.5 Another Digression: Ground Termination

There is a concept of proving termination using a syntactic simplification order
which is slightly broader than the usual one. We introduce it for KBO. If ≺kbo

is a KBO over a signature Σ, then we define ground KBO, ≺gkbo, on T (Σ,V) by

s ≺gkbo t :⇐⇒ sσ ≺kbo tσ for all ground substitutions σ .

Termination via KBO obviously implies termination via ground KBO.

Theorem 5.57 (Korovin and Voronkov 2001). Termination via ground
KBO is decidable in polynomial time.

Ground KBO is not incremental with respect to signatures, as the introduc-
tion of a new constant having weight less than all other constants may be lethal.
The latter concept is stronger than the former. Consider, over the signature Σ
containing the symbols e, f , and g of arity 0, 1, and 2, resp., the TRS consisting
solely of the rule

g(x, g(f(e), e))→ g(e, g(e, f 2(e))) . (5.12)

Although it does not terminate via KBO (because x and e are incomparable
and f must be special), it does terminate via ground KBO by making f special
and choosing legal weights for e and g. Korovin and Voronkov (2000) presented
the example

h(x, a, b)→ h(b, b, a) , (5.13)

which does not terminate via KBO but terminates via ground KBO if µ(a) >
µ(b) or µ(b) = µ(a) and a � b.

A certain drawback of both two examples is the fact that the rewrite relations
they induce correspond to rewrite relations of TRSs terminating via KBO. We
simply have to replace, for all function symbols f ′ of arity n, the occuring
variables with f ′(x1, . . . , xn) where x1, . . . , xn are new variables. For (5.13),
this leads to the TRS

h(h(x1, x2, x3), a, b)→ h(b, b, a)

h(a, a, b)→ h(b, b, a)

h(b, a, b)→ h(b, b, a) ,

which terminates via KBO with weight and precedence as above.
Such a transformation is successful if we have termination via a ground KBO

which contains no special symbol. Thus termination via ground KBO− and
termination via KBO− coincide. If a special symbol is required, it is not always
possible to replace a TRS terminating via ground KBO with an equivalent TRS

115

5 Derivation Lengths

terminating via KBO. Consider, over the signature Σ used in (5.12), the TRS
R solely consisting of the rule

g(f(g(e, e)), g(x, x))→ g(g(x, e), f2(g(e, e))) .

Weight considerations show f has to be special. For any valid choice of weight
and precedence, R terminates via ground KBO. Even a repeated application
of the above technique of closure under certain substitutions does not work
here because of the variable condition of KBO. In fact, for any j we have
f(g(e, e)) �kbo g(f j(x), e), because x does occur only in the term which is
supposed to be smaller. A moment’s reflection shows that, for every TRS ter-
minating via KBO, there is a j such that

g(f(g(e, e)), g(f j(e), f j(e))) 9 g(g(f j(e), e), f2(g(e, e)))

holds. Hence termination via ground KBO allows for rewrite relations which
are not possible within termination via KBO.

A sharp complexity bound for termination via ground KBO is unknown. The
lower bound from Theorem 5.8.i remains valid, and Hofbauer’s 4-recursive up-
per bound from Theorem 5.8.ii applies. I conjecture the upper bounds are the
same as those for the usual KBO and are always to be found in Ack(2O(n), 0).
The main construction of Korovin and Voronkov (2001) implicitly contains a
purely syntactic recursive definition of ≺gkbo similar to the one of ≺kbo in Defini-
tion 3.57, yet more involved. It should be possible to treat this definition with
an interpretation like the one introduced in Definition 5.12.

The example (5.13) of Korovin and Voronkov (2000) can also be used to
separate closed LPO from open LPO. It seems likely that the complexity bounds
for closed MPO resp. closed LPO coincide with those of the open versions. After
all, little is known about the closed versions of KBO, MPO, and LPO. They
should be investigated further.

Incidentally it makes no sense to try to separate ground simple termination
from simple termination, as these two notions coincide. Lemma 3.22 shows
that the closed version of a simplification order on T (Σ,V) (more generally, the
extension of any partial order on T (Σ) which has the subterm property and is
closed under ground contexts) is again a simplification order on T (Σ,V).

116

6 Computability

Follow a fleeting thought!

In the preceding chapter we focused on the derivation complexity as one way
to measure the strength of a termination proof method. Cichon and Lescanne
(1992) studied a different and sometimes finer measure, which goes back to
Huet and Oppen (1980) – the functions computable via a certain method. We
recall from Definition 3.67 that, roughly speaking (and leaving aside assump-
tions dealing with partial confluence and normal forms), a function f of arity
l is computable by a terminating TRS R if there are symbols F, S, P, 0, and 0′

of appropriate arities such that

F (Sn10, . . . , Snl0)
∗→R P f(n1,...,nl)0′

holds for all n1, . . . , nl. The distinction between the input successor S and
the output successor P is important, as sometimes more complex functions are
computable using two distinct successors. We recall further that, given a ter-
mination proof methodM, a function is computable viaM if it is computable
by some TRS which terminates viaM.

Many well known complexity classes coincide with the classes of functions
computable via (restrictions of) standard termination proof methods. Such
characterizations often impose lower bounds on the size complexity and even on
the best-case behavior of a termination proof method, which is measured by the
shortest size complexity. Because the size of an input term for input n1, . . . , nl

is linear in n1 + · · ·+nl, we focus on results concerning size complexities instead
of (depth) complexities. The latter concept allows for exponential sizes of the
input, blurring membership in the low computation classes.

Our definition of computation by TRSs implies that SRSs can only compute
unary functions. As we are interested in the characterization of complexity
classes containing functions of arbitrary arities, we will scarcely consider SRSs.

In Section 6.1 we will briefly enumerate the results concerning computation
via polynomial termination and some of its restrictions, producing complexity

117

6 Computability

classes between Ptime and E2time. With almost the same brevity both MPO
and LPO are considered in Section 6.2. Here the primitive respectively multiple
recursive functions appear. Section 6.3 is different, as we put much effort into
the treatment of KBO. A new result will be presented, telling that the functions
computable via KBO are those computable in time Ack(O(n), 0). Finally, a
quick glance at the general case is taken in Section 6.4.

6.1 Computability via PT

Cichon and Lescanne (1992) and Bonfante et al. (1999) observed that the com-
putational power of polynomial termination mainly depends on the way the
successor symbols are interpreted.

Definition 6.1 (Bonfante et al. 1999). Let Σ be a signature containing the
input successor S and the output successor P , further let R be a TRS over Σ.
We say R terminates via PT-L (PT-1) if it is polynomially terminating with
linear functions (having leading coefficient 1) interpreting S and P .

Computation via PT using only one successor symbol does not lead far,
and a nonlinear polynomial interpreting the successor symbol imposes an even
stronger bound on the computed function. Recall from Definition 3.67 that
Comp(M) denotes the set of functions computable via M, while Comp1(M)
collects the functions computable viaM using only one successor symbol.

Theorem 6.2 (Cichon and Lescanne 1992).

i. We have Comp1(PT-1) ⊆ Ptime .

ii. Each function in Comp1(PT \ PT-1) has a linear upper bound.

The use of two distinct successor symbols leads to much more adequate re-
sults. We know from Theorem 5.2 (resp. Theorem 5.3) that termination via PT
(resp. LT) imposes upper bounds from 22O(n)

(resp. 2O(n)) on the size complexity.
This is supplemented by the following Theorem.

Theorem 6.3 (Bonfante et al. 1999). We have

i. Comp(PT-1) = Ptime ,

ii. Comp(PT-L) = Etime , and

iii. Comp(PT) = E2time .

As indicated by its accompanying derivation lengths, computability via PT
gets stuck at rather low complexity classes. The derivation lengths we encoun-
tered when we investigated the usual syntactic simplification orders promise
much larger sets of computable functions.

118

6.2 Computability via MPO and LPO

6.2 Computability via MPO and LPO

In Proposition 5.5 we met SRSs terminating via MPO which are able to compute
(using a different definition of computability than our Definition 3.67) branches
Ackn of the Ackermann function. This can be considerably generalized.

Theorem 6.4 (Plaisted 1978 and Hofbauer 1991, 1992).

Comp(MPO) = Comp1(MPO) = Prec .

Proof. We know from Theorem 5.6 (of Hofbauer (1991, 1992)) that termination
via MPO leads to a primitive recursive bound on the size complexity. Theo-
rem 3.68 yields computability (on a TM) within primitive recursive time, and
according to Corollary 2.94 this implies membership in Prec. Hence we get
Comp(MPO) ⊆ Prec.

A first proof of the opposite direction is to be found in Plaisted (1978). We
consider an arbitrary primitive recursive function f : Nk → N. As the primitive
recursive functions are defined by a closure of certain basic functions under
substitution and primitive recursion, only finitely many basic functions, sub-
stitutions Sub(g, h1, . . . , hm) and primitive recursions PRec(g, h) occur in the
equations defining f . These equations can easily be oriented and turned into a
TRS Rf over a signature containing the constant 0, the successor S, symbols
for the occuring basic functions, and symbols like Subg,h1,...,hm and PRecg,h rep-
resenting the composed functions occurring in the definition of f . For example,
the n-ary zero function 0n (with n > 0) is simulated via 0n(x1, . . . , xn) → 0,
substitutions are managed by

Subg,h1,...,hm(x̄)→ g(h1(x̄), . . . , hm(x̄)) ,

and finally primitive recursion is handled by the two rules

PRecg,h(0, x̄)→ g(x̄) ,

PRecg,h(S(y), x̄)→ h(y, x̄,PRecg,h(y, x̄)) .

It is immediate that Rf computes f using only one successor symbol. Termi-
nation is provided by any MPO which is based on a precedence ≺ satisfying

0n � 0, Subg,h1,...,hm � g, h1, . . . , hm, and PRecg,h � g, h .

Note that these conditions can be regarded as a kind of subterm property. �

Corollary 6.5. If a TRS R terminates via MPO, then its shortest size complex-
ity SDcR has a primitive recursive bound. This result is essentially optimal.

119

6 Computability

Just as MPO is related to primitive recursion, LPO is connected to multiple
recursion. We omit the proof because it very much resembles the proof of
Theorem 6.4 (though it relies on Theorem 5.7). It is a nice exercise to check
that any k-ary Ackermann function (see Definition 2.65) can be transformed
into a TRS terminating via LPO.

Theorem 6.6 (Weiermann 1995). Comp(LPO) = Comp1(LPO) = Mrec.

Corollary 6.7. If a TRS R terminates via LPO, then its shortest size complex-
ity SDcR has a multiple recursive bound. This result is essentially optimal.

6.3 Computability via KBO

Recently the computational power of certain restrictions of KBO has been in-
vestigated. Aiming at small complexity classes, Bonfante (2000) considered
computation via KBO(1) and KBO− (which was introduced in Definition 3.59)
using a model of computation which significantly differs from ours. According
to Theorem 5.8.v,iv, the size complexity of a TRS terminating via either KBO(1)
or KBO− is in 2O(n). Bonfante (2000) showed that for his model of computa-
tion these two restrictions of KBO are separable. In fact, in this model the
functions computable under KBO(1) are just the members of Linspace, while
the collection of functions computable under KBO− coincides with Etime.

We intend to classify computation via (unrestricted) KBO. In analogy with
the observations made above concerning computation via PT, the need for two
distinct successor symbols figures prominently in the following result.

Proposition 6.8. Let f : Nl → N be a function which is computable (with input
successor S and output successor P) via KBO.

i. If S is special and P is not, then f is bounded by a constant function.

ii. If P is not special, then f is bounded by a linear function.

iii. If both S and P are special, then f has a primitive recursive bound.

iv. There is an upper bound on f in Ack(O(n), 0).

Proof. Let R be a TRS over signature Σ which computes f and terminates via
KBO (based on the weight µ). There is an F ∈ Σ(l) such that, for all n1, . . . , nl,

F (Sn10, . . . , Snl0)
∗→ P f(n1,...,nl)0′

holds. Weight considerations and (3.7) yield

(n1 + · · ·+ nl) · µ(S) + µ(F) + l · µ(0)− µ(0′) > f(n1, . . . , nl) · µ(P) .

120

6.3 Computability via KBO

If P is not special, then we have µ(P) > 0. This immediately imposes a linear
upper bound on f . We even end up with a constant bound on f if additionally
S is supposed to be special. These observations settle (i) and (ii).

Let us turn to a different approach. Define g : Nl → N by

g(n1, . . . , nl) := dlR(F (Sn10, . . . , Snl0)) .

According to Theorem 3.58.v R is nonduplicating, hence we can incorporate
Lemma 3.70 and find a ∈ {0, 1} and b ∈ N with

f(n1, . . . , nl) 6 1 + a · (n1 + · · ·+ nl) + b · g(n1, . . . , nl) ,

and, provided that S and P differ, a = 0. Theorem 5.16 establishes (iv), as
it gives us an upper bound on g which can be found in Ack(O(n), 0). For the
special S considered in (iii) we take a closer look and define h : Nl → N by

h(n1, . . . , nl) := I(F (Sn10, . . . , Snl0))

with I being the interpretation used in the proof of Theorem 5.15. Because all
terms Sn0 share the same weight, a close inspection of Definition 5.12 (where I
is introduced) shows the function n 7→ I(Sn0) is primitive recursive. This can
be used to show h is primitive recursive, too. As h is an upper bound on g, we
have a primitive recursive upper bound on f . �

Taking a less direct approach we get stronger results.

Proposition 6.9. We have

i. Comp(KBO) ⊆ Atime , and

ii. Comp1(KBO) ⊆ Prec .

Proof. We just mentioned that computability via KBO implies computability
by a TRS with timebound in Ack(O(n), 0). As Ack(O(n), 0) accommodates ex-
ponentiation (see Lemma 2.91), Theorem 3.68 yields computability with time-
bound in Ack(O(n), 0), hence membership in Atime.

If only one successor symbol is present, then we may proceed along the same
results to get computability with timebound in Prec. Corollary 2.94 says this
implies membership in Prec. �

As we intend to compute nonelementary functions and to even go beyond
primitive recursion, Proposition 6.8 tells us we have to focus on the case where
S is not special but P is, and a combination of Theorem 5.8.v and the fact
that any TRS terminating via KBO is nonduplicating forces us to work with a
signature containing at least one symbol with arity greater than 1, even if we
compute a unary function. Theorem 6.20 below shows this is the right choice,
but before we can present it, we have to establish various auxiliary results.

121

6 Computability

6.3.1 List Operations Compatible with KBO

The ability of KBO to encode certain operations on lists of natural numbers was
used by Hofbauer and Lautemann (1989) to show that the size complexity DcR
of a certain TRS R terminating via KBO cannot be bounded by a primitive
recursive function. We will treat a similar TRS in Section 6.3.3, but to do so
we have to introduce list operations which are compatible with KBO in a more
general setting.

We work with a signature Σ containing at least a binary symbol ◦ of weight
0 and a constant e of weight 1. For terms s0, . . . , sn ∈ T (Σ,V) we put

[] := e and [s0, . . . , sn] := s0 ◦ [s1, . . . , sn] . (6.1)

The length of the list [s1, . . . , sn] is n. By [s1, . . . , sn] ∗ t we denote the concate-
nation of the list [s1, . . . , sn] and the term t, which we get via

[] ∗ t := t and [s0, . . . , sn] ∗ t := s0 ◦ ([s1, . . . , sn] ∗ t) .

It is easy to see that, as soon as t is a list, concatenation produces a new list.
We introduce rules operating on these lists. For t0, . . . , tn ∈ T (Σ,V) we may

consider the rule [s0, . . . , sn] → [t0, . . . , tn]. This transforms a list into a list.
Due to the structure of (6.1), the rule is also applicable to longer lists. To
emphasize this we will introduce such a rule by

[. . . , s0, . . . , sn]→ [. . . , t0, . . . , tn] . (6.2)

Similarly, we can consider rules operating somewhere within the list like

[. . . , s0, . . . , sn, . . .]→ [. . . , t0, . . . , tn, . . .] (6.3)

by concatenating both [s0, . . . , sn] and [t0, . . . , tn] with a new variable. Com-
parable rules which operate solely at the top of lists are possible only if there
is a symbol above the list which is, unlike ◦ and e, not used to construct lists.
For example, with a binary symbol � at our disposal, the rule e � [s0, . . . , sn]→
e � [t0, . . . , tn] is not applicable at arbitrary positions within a list but only at
the top of the list, and additionally the list has to be of fixed length n+ 1. In
the same way, rules like e � [s0, . . . , sn, . . .]→ e � [t0, . . . , tn, . . .] are possible.

Definition 6.10. For a given KBO ≺kbo on T (Σ,V) a rule l→ r is lexicographic
if it is built like (6.2) or (6.3) and additionally satisfies these conditions:

❖ For all x ∈ V we have 1 > |l|x > |r|x.
❖ For all j, k ∈ [0, n], the weights µ(sj) and µ(tk) coincide.

❖ We have (s0, . . . , sn) �lex
kbo (t0, . . . , tn).

122

6.3 Computability via KBO

Under these conditions the weights of l and r are equal. An induction on the
n in (6.2) or (6.3) proves the following Lemma.

Lemma 6.11. If l→ r is lexicographic for ≺kbo, then we have l �kbo r.

From now on, we will restrict ourselves to two kinds of lists, for whom each
element has weight 1. Lists of the first kind are those containing only natural
numbers. Here we require the special symbol i to be an element of Σ, and the
list elements we consider are called number terms and are either of the kind iae,
encoding (and displayed as) a ∈ N, or iax with x ∈ V , which we will write as
x+ a. The comparison of number terms is completely described by

a �kbo b ⇐⇒ a > b ,

x+ a �kbo b ⇐⇒ a > b ,

x+ a �kbo y + b ⇐⇒ x = y ∧ a > b .

For example, the following rules, which will occur again later, are lexicographic:

[. . . , x+ 1, y, . . .]→ [. . . , x, y + 2, . . .]

[. . . , x+ 1, y, z, . . .]→ [. . . , x, z, y, . . .] .

Lists of the second kind are called attributed lists. Their definition is based on
a set A ⊆ Σ(0) \{e} of attributes, each attribute having weight 1. An attributed
list is of even length and contains an alternating sequence of number terms and
attributes, starting with a number term. Since attributes are constants, their
comparison is determined by the underlying precedence. For attributes p and
q we have

p �kbo q ⇐⇒ p � q .

By convention, attributes are written as upright subscripts to the number terms,
hence we write (x+ 1)p, or shorter x+ 1p, instead of x+ 1, p.

Here are two examples of rules with attributes p and q:

[. . . , x+ 4q, yq, . . .]→ [. . . , x+ 3p, y + 42p, . . .] ,

[. . . , x+ 1p, 0q, . . .]→ [. . . , x+ 1q, 17p, . . .] .

The first rule is lexicographic regardless of �, whereas the second rule is lexico-
graphic only if p � q. We mention without proof that it is possible to simulate
attributed lists by unattributed lists – at the cost of simplicity.

6.3.2 Simulating a Timebounded RM

In this and the following subsections we will often use sn as an abbreviation of
n subsequent occurrences of the (possibly attributed) number term s.

123

6 Computability

A program for a timebounded RM can easily be simulated by a TRS con-
sisting of lexicographic rules over lists of natural numbers. As the program is
deterministic, the simulating derivations can be arranged to be linear.

Lemma 6.12. If f : Nl → N is computable on a k-RM with timebound g and
program P = (a0, . . . , am), then there exists a TRS Rf over the signature Σ =
{i, ◦, e} such that Rf terminates via KBO and, for all n1, . . . , nl, we have

[g(n1 + · · ·+ nl), 0, n1, . . . , nl, 0
k−l]

.→ [0,m+ 1, f(n1, . . . , nl), 0
k−1] .

Proof. We show how to transform each instruction ap of the program into one
or two rules. If ap = (j,+, q), then we enrich Rf by the rule

[. . . , z + 1, p, x1, . . . , xj, . . . , xk]→ [. . . , z, q, x1, . . . , xj + 1, . . . , xk] .

To treat the case ap = (j,−, q) we add the rules

[. . . , z + 1, p, x1, . . . , xj + 1, . . . , xk]→ [. . . , z, q, x1, . . . , xj, . . . , xk] ,

[. . . , z + 1, p, x1, . . . , 0, . . . , xk]→ [. . . , z, q, x1, . . . , 0, . . . , xk]

to Rf , and if ap = (j, q, r) then Rf is extended by the rules

[. . . , z + 1, p, x1, . . . , xj + 1, . . . , xk]→ [. . . , z, r, x1, . . . , xj + 1, . . . , xk] ,

[. . . , z + 1, p, x1, . . . , 0, . . . , xk]→ [. . . , z, q, x1, . . . , 0, . . . , xk] .

We need one additional rule to simulate the halting condition:

[. . . , z + 1,m+ 1, x1, . . . , xk]→ [. . . , 0,m+ 1, x1, . . . , xk] .

All rules of Rf are lexicographic, hence, by Lemma 6.11, Rf terminates via
KBO. Each transition corresponds to exactly one rewrite step, and, as the
program is deterministic, the considered derivations are linear. �

This transformation is also applicable to nondeterministic programs, but of
course we can no longer guarantee that derivations are linear.

6.3.3 Long Linear Derivations

Hofbauer and Lautemann (1989) constructed a TRS terminating via KBO whose
size complexity is in Ack(O(n), 0) but has no primitive recursive bound. Later
Hofbauer (1991) introduced an improved version of this, which we call H. It
(mainly) contains the rules

(H1) [. . . , x+ 1, y, . . .]→ [. . . , x, y + 2, . . .]

(H2) [. . . , x+ 1, y, z, . . .]→ [. . . , x, z, y, . . .] ,

which are, as we already know, lexicographic.

124

6.3 Computability via KBO

Theorem 6.13 (Hofbauer 1991, 5.9). The TRS H terminates via KBO, and
there is no primitive recursive upper bound on DcH.

Proof. From Lemma 6.11 we learn termination via KBO. The shape of the rules
makes it possible to reduce in layers. If we have [a, 0n, 0]

∗→ [0, 0n, a′] then, using
the same rewrite rules at same positions, we also get [a + b, 0n, 0]

∗→ [b, 0n, a′].
We already mentioned that for lists s and t with t

∗→ t′ we have s ∗ t ∗→ s ∗ t′,
too. Both observations will be used below. Now we define h : N2 → N by

h(n,m) := max {k : [2(m+ 1), 0n+1]
∗→H [0n+1, k + 1]}

and intend to show

(∀n,m)(h(n,m) > Ack(n,m)) . (6.4)

Because of [2(m+1), 0]
∗→H1 [0, 4(m+1)] we have h(0,m) > m+1, and similarly

[2, 0n+2]
∗→H1 [0, 4, 0n+1] yields h(n+ 1, 0) > h(n, 1). The derivation

[2(m+ 2), 0n+2] = [2 + 2(m+ 1), 0n+2]
+→H [2, 0n+1, h(n+ 1,m) + 1]
∗→H1 [1n, 2, 0, h(n+ 1,m) + 1]

→H2 [1n+1, h(n+ 1,m) + 1, 0]
+→H1 [1n+1, 0, 2(h(n+ 1,m) + 1)]
+→H2 [0, 2(h(n+ 1,m) + 1), 0n+1]
+→H [0n+2, h(n, h(n+ 1,m)) + 1]

implies h(n+ 1,m+ 1) > h(n, h(n+ 1,m)), hence we established (6.4). A close
inspection of these derivations also shows

dlH([2(m+ 1), 0n+1]) > Ack(n,m) . (6.5)

From this, |[2(m+ 1), 0n+1]| = 2(n+ 2) + 1 + 2(m+ 1), and Lemma 2.63.iv one
easily infers DcH has no primitive recursive upper bound. �

The time has come to give the long deferred proof of Lemma 5.9. It states
that, for any a ∈ N, there is a TRS R terminating via KBO such that we have

(∀n> 3)(DlR(n) > Ack(an, 0)) .

Proof of Lemma 5.9. We may suppose a > 2. This time the signature Σ con-
tains the symbols used for building lists of number terms and also the a-ary f .
The TRS R consists of the two rules from H and the three rules

(H3) (x ◦ y) ◦ z → x ◦ (y ◦ z)
(H4) [. . . , x, y, z, . . .]→ [. . . , y + 2, z, . . .]

(H5) f(x1, . . . , xa)→ [0a2−a, x1, . . . , xa] ,

125

6 Computability

where (H4) includes a little abuse of notation. With (H3) we can reduce terms
over {◦, e} to lists of zeros, while (H4) will be used once to reduce [0n+2] to
[2, 0n]. Via (H5) the high arity of the symbol f allows for generating a list of
length larger than an out of a term of depth n.
R terminates via NKBO for special i, µ(e) := 1, µ(◦) := 0 and µ(f) := a2,

since for (H5) we may use µ([k1, . . . , kn]) = n+1. Thus dlR is well-defined, and
a quick glance at (6.5) shows

dlR([2(m+ 1), 0n+1]) > Ack(n,m) . (6.6)

For n > 0 we recursively define terms sn by s1 := e and sn+1 := f(sn, . . . , sn).
Obviously dp(sn) = n, and an induction on n > 2 shows |sn|f > an−2 + n − 2.
Using (H5) as often as possible we arrive at sn

∗→ tn for some tn ∈ T ({e, ◦}).
Since each application of (H5) introduces a2 occurrences of ◦, for n > 2 we get
|tn|◦ = |sn|f · a2 > an + a2(n − 2). Because the rule (H3) only rearranges the
symbols of a term, using it as often as possible transforms tn into a list of zeros
of length |tn|◦, thus tn

∗→ [0|tn|◦]. Applying (H4) once we arrive at [2, 0|tn|◦−2].
This yields

dlR(sn) > dlR [2, 0|tn|◦−2] > Ack(|tn|◦ − 3, 0)

by (6.6). Any n > 3 satisfies |tn|◦ − 3 > an. �

Although derivations in H may get very long, there are strategies leading
quickly to normal forms. If we start with some term s, then any strategy which
applies (H1) only if (H2) is not applicable arrives in less than |s| steps at a
normal form. Thus SDcH is bounded by a linear function. This prevents us
from using the output of H as a timebound for some sort of abstract machine.

Our aim is to transform H into a TRS A operating on attributed lists. Any
A-derivation starting from the term representing [2(m+ 1), 0n+1] is to be very
long and linear. This transformation is a bit involved. We use attributed lists
over the attribute set

A := {a, b, d, f, p, r, s,w} .

The attributes are abbreviations for“active”, “back”, “double”, “fetch”, “passive”,
“return”, “stop”, and “wait”. Since usually most of the elements of our lists are
passive, we will leave out the attribute p. The attributes p, s, and w are called
sleeping, while the other attributes are awake. A (possibly empty) list whose
numbers have only sleeping attributes is also called sleeping, and a list is good
if it contains exactly one number having an awake attribute.

We intend to work with good lists, using the only awake attribute to mark
the position of the only possible rewrite step. Under these circumstances, our
choice of the rewrite rules of A will force derivations to be linear. The rules of
A are displayed in Table 6.1 on the facing page. It is admittedly not that easy
to see the fifteen rules of A are closely related to the two rules of R.

126

6.3 Computability via KBO

(1) [. . . , 1a, y]→ [. . . , 0, y + 2a]

(2) [. . . , x+ 2a, y]→ [. . . , x+ 1a, y + 2]

(3) [. . . , 1d, y]→ [. . . , 0, y + 2d]

(4) [. . . , x+ 2d, y]→ [. . . , x+ 1d, y + 2]

(5) [. . . , x+ 1a]→ [. . . , x+ 1r]

(6) [. . . , 0, xr, . . .]→ [. . . , 0r, x, . . .]

(7) [. . . , x+ 2, 0r, y + 1]→ [. . . , x+ 1, y + 1d, 0]

(8) [. . . , x+ 1, 0, y + 1d]→ [. . . , x, y + 1a, 0]

(9) [. . . , x+ 2, 0r, 0, . . .]→ [. . . , x+ 1s, 2f , 0, . . .]

(10) [. . . , 2f , 0, 0, . . .]→ [. . . , 1w, 2f , 0, . . .]

(11) [. . . , 2f , 0, x+ 1]→ [. . . , 1w, x+ 1d, 0]

(12) [. . . , 1w, 0, x+ 1d]→ [. . . , 1w, 0, x+ 1b]

(13) [. . . , 1w,0, x+ 1b, . . .]→ [. . . , 0, x+ 1b, 0, . . .]

(14) [. . . , x+ 1s, 0, y + 1b, . . .]→ [. . . , x, y + 1a, 0, . . .]

(15) [. . . , x+ 2a, 0, 0, . . .]→ [. . . , x, 4a, 0, . . .] .

Table 6.1: The rules of A

Lemma 6.14. A terminates via KBO.

Proof. By Lemma 6.11 it suffices to find a precedence which makes all rules
lexicographic. Except for (5), (6), and (12), the rules are already lexicographic
regardless of the precedence. The three remaining rules are lexicographic for
any precedence ≺ satisfying a � r, p � r and d � b. �

Lemma 6.15. If s
+→ t and s is a good list, then t is a good list and s

.→ t
holds. For any sleeping list s′ we have s′ ∗ s .→ s′ ∗ t.

Proof. The rules of A do not modify the amount of awake attributes, so t is a
good list. All rules require the presence of an awake attribute, and a moment’s
reflection shows that for good lists the rules do not overlap. Hence derivations
of good lists are linear. Now the statement involving s′ easily follows, as the
rewrite relation is closed under contexts and as s′ ∗ s is a good list. �

Lemma 6.16. For b, c, k ∈ N we have

i. [ba, c]
+→ [0, c+ 2ba] if b > 0,

ii. [bd, c]
+→ [0, c+ 2bd] if b > 0,

iii. [0k+1, br]
+→ [0r, 0

k, b], and

iv. [b+ 2, 0k+1, ca]
+→ [b, 2ca, 0

k+1] if c > 0.

127

6 Computability

Proof. We establish (i) by induction on b > 0, starting with [1a, c]→1 [0, c+2a].
For b > 2 the induction hypothesis yields

[ba, c] = [(b− 2) + 2a, c]→2 [b− 1a, c+ 2]
+→ [0, c+ 2 + 2(b− 1)a] .

The point (ii) is shown in the same way (using (3) and (4)). An iterated
application of the rule (6) yields (iii). For (iv) we fall back on (iii) and see

[b+ 2, 0k+1, ca]→5 [b+ 2, 0k+1, cr]
+→ [b+ 2, 0r, 0

k, c] =: t .

If k = 0, then we may infer

t = [b+ 2, 0r, c]→7 [b+ 1, cd, 0]
+→ [b+ 1, 0, 2cd]→8 [b, 2ca, 0] ,

relying on (ii) (and Lemma 6.15), and otherwise we have k = l+1. Here we get

t = [b+ 2, 0r, 0
k, c] →9 [b+ 1s, 2f , 0

k, c]
∗→10 [b+ 1s, 1

l
w, 2f , 0, c]

→11 [b+ 1s, 1
k
w, cd, 0]

+→ [b+ 1s, 1
k
w, 0, 2cd] via (ii)

→12 [b+ 1s, 1
k
w, 0, 2cb]

+→13 [b+ 1s, 0, 2cb, 0
k] →14 [b, 2ca, 0

k+1] . �

Lemma 6.17. Let n,m, k ∈ N with n > 1.

i. There is p > Ack(0,m) such that [2(m+ 1)a, 0]
+→ [0, pa].

ii. There is p > Ack(n,m) with [k + 2(m+ 1)a, 0
n+1]

+→ [k, 0n, pa].

Proof. For (i) we rely on Lemma 6.16.i to get [2(m + 1)a, 0]
+→ [0, 4(m + 1)a]

and observe 4(m+ 1) > m+ 1 = Ack(0,m).
We establish (ii) by induction on n and secondary induction on m. If m = 0,

then there is some p > Ack(n− 1, 1) = Ack(n, 0) such that

[k + 2a, 0
n+1]→15 [k, 4a, 0

n] = [k, 0 + 2 · (1 + 1)a, 0
n]

+→ [k, 0n, pa]

holds. For n = 1 the last step is possible due to (i), while for n > 1 we may use
the induction hypothesis. In the case m = m′ + 1 we get

[k + 2(m+ 1)a, 0
n+1]

= [k + 2 + 2(m′ + 1)a, 0
n+1]

+→ [k + 2, 0n, qa] for some q > Ack(n,m′) by s.i.h.
+→ [k, 2qa, 0

n] by Lemma 6.16.iv

= [k, 0 + 2((q − 1) + 1)a, 0
n]

+→ [k, 0n, pa]

for some p > Ack(n− 1, q − 1) > Ack(n− 1,Ack(n,m′)) = Ack(n,m). Again,
the last rewrite step is legal by (i) and the induction hypothesis. �

128

6.3 Computability via KBO

Proposition 6.18. Given n and m, we have [2(m+1)a, 0
n+1]

.→A [0r, 0
n, p] for

some p > Ack(n,m).

Proof. By Lemma 6.17 there is a p > Ack(n,m) such that [2(m+ 1)a, 0
n+1]

+→
[0, 0n, pa]→5 [0, 0n, pr]

+→ [0r, 0
n, p] holds. Lemma 6.16.iii justifies the last step,

and Lemma 6.15 ensures the linearity of the derivation. �

We combine this with Theorem 5.16 and Lemma 6.14.

Theorem 6.19. If a TRS R terminates via KBO, then its shortest size com-
plexity SDcR is a member of Ack(O(n), 0). This result is essentially optimal.

Let us consider a terminating TRS R. We mentioned before that, in some
sense, DcR measures the worst-case behavior of R, whereas SDcR measures
its best-case behavior. Often SDcR is in a smaller complexity class than DcR.
However, if R is able to compute a function f in some fair way, then f may be
transformed into a lower bound for SDcR.

If we consider termination via either MPO or LPO, the tight lower bounds on
the size complexities established in Corollary 6.5 and Corollary 6.7 stem from
TRSs computing primitive resp. multiple recursive functions. The bound for
KBO we present in Theorem 6.19 is reached by a somewhat different approach.
We do not calculate the function behind the p of Proposition 6.18, instead,
knowing p exceeds Ack(n,m) suffices. We will soon establish a computability
result for KBO which is very similar to those dealing with MPO and LPO. The
tool behind this result is our TRS A which will serve as the engine of a RM.

6.3.4 Hard Computation via KBO

We are about to leave the realm of primitive recursion. Proposition 6.8 forces
us to focus on computation with a nonspecial input successor but a special
output successor. The following Theorem shows this is the right choice. If we
restrict ourselves to computation using only one successor symbol, then we still
get quite far, provided that the successor symbol is special.

Theorem 6.20. Let f : Nl → N.

i. If f is computable on a RM with timebound from Ack(O(n), 0), then f is
computable via KBO.

ii. If f is computable on a RM in primitive recursive time, then f is com-
putable via KBO using the special symbol as the only one successor.

Proof. For expository reasons we treat the case l = 1 in detail. Below we will
show how the approach can be extended to higher arities.

129

6 Computability

First we take care of (i), as (ii) is won by minor modifications of the TRS
considered there. The premise and Lemma 2.88 yield the existence of a program
P = (a0, . . . , am), of b and c > 0 such that, for all n, f(n) is computable by P
in less than Ack(bn+ c, 0) steps. The main task is the construction of a TRS
R based on Lemma 6.12 and Proposition 6.18.

We throw into Σ the symbols occuring there (assuming that the symbols ◦
used for the two kinds of lists are distinct), and add to R the corresponding
rewrite rules from Rf and A. The unary symbols S, F , and G and a binary
symbol � are also included in Σ. In order to do without too many parentheses
we abbreviate s�(s′�s′′) by s�s′�s′′. Our aim is to show (∀n)(F (Sne)

.→ if(n)e).
Keeping this in mind, we adjoin to R the six rules

(A) F (w)→ G
(
w � [0c+2

p] � [0k+1]
)

(B) G
(
S(w) � v � [0, x, . . .]

)
→ G

(
w � ([0b

p] ∗ v) � [0, x+ 1, . . .]
)

(C) G
(
e � [xp, . . .] � v

)
→ [x+ 2a, . . .] � v

(D) [0r, xp, . . .] � v → [xr, . . .] � v
(E) [x+ 1r] � v → [x+ 1] ∗ v
(F) [. . . , 0,m+ 1, x1, . . . , xk]→ x1 ,

where we violate our convention and display the occurrences of the otherwise
dropped attribute p. So, for example, the list on the right hand side of the rule
(E) is not attributed. We use ∗ here twice as an abbreviation of a certain term
and not as an operation which affords infinitely many rules. It is fairly easy to
see that all we need are just two terms containing the two incarnations of ◦.

The new rules do not affect our results about Rf and A, because, with the
exception of (F), they use the new symbol �, and the rule (F) can only be used
after the computation done by Rf halted.

Given n, put d := bn + c. By Proposition 6.18 there is a p > Ack(d, 0) such
that [2a, 0

d+1]
∗→ [0r, 0

d, p]. Now the following (linear) derivation is possible:

F (Sne)→A G
(
Sne � [0c+2] � [0k+1]

)
∗→B G

(
e � [0bn+c+2] � [0, n, 0k−1]

)
→C [2a, 0

d+1] � [0, n, 0k−1] (6.7a)
+→ [0r, 0

d, p] � [0, n, 0k−1] by Proposition 6.18
+→D [pr] � [0, n, 0k−1]

→E [p, 0, n, 0k−1] (6.7b)
+→ [0,m+ 1, f(n), 0k−1] by Lemma 6.12

→F if(n)e .

130

6.3 Computability via KBO

We should make a few remarks here. The rules from A are not applicable
until (6.7a) is reached, because before that the attributed lists are sleeping,
and similarly the rules from Rf are useless until we arrive at (6.7b) because
they operate on lists with at least k+2 elements. As the unattributed numbers
are shared by both kinds of lists, the use of (E) is legal. It is routine to check
that all presented derivations are linear and all terms iae are in normal form.

In order to show that R terminates via KBO it remains to orient the six new
rules, since the weights and precedences for Rf and A given in Lemmata 6.12
and 6.14 are compatible. The symbols � and G get the smallest possible weights,
0 and 1. Weight considerations imply the rules (C) to (F) are oriented correctly,
and for the remaining two rules we may safely choose sufficiently large weights
for F and S.

We turn to the treatment of (ii) and consider f computable on a k-RM in
primitive recursive time. By Lemma 2.63.iv, for any unary primitive recursive
timebound g there exists c > 0 such that g(n) 6 Ack(c, n) holds for all n.

Applying only two changes, we proceed along the lines of the previous proof.
Proposition 6.8.ii shows that there is little hope to compute f via KBO with a
nonspecial output successor. Therefore we have to replace S with i. The rule
(B), which eliminates one S and increases the list length, is only admissible if
the weight of S is positive. We replace this rule with a rule which eliminates
one i and increases the first number of the attributed list by 2. This rule is
oriented correctly by KBO, and using it we get

F (ine)
+→ [2(n+ 1)a, 0

c+1] � [0, n, 0k−1] =: t .

Proposition 6.18 yields a p > Ack(c, n) with [2(n+ 1)a, 0
c+1]

+→ [0r, 0
c, p]. Thus

we arrive at t
∗→ if(n)e. The linearity of these derivations is obvious.

It was promised to show how the above approach can be extend to higher
arities. We focus on (i), the proof of (ii) is again very close to this. The main
task here is to preserve the linearity of the derivations and to modify the rules
from (A) to (C) in such a way that, for d := b(n1 + · · · + nl) + c and some
p > Ack(d, 0), the derivation

F (Sn1e, . . . , Snle)
∗→ [0r, 0

d, p] � [0, n1, . . . , nl, 0
k−l]

is possible. Anything else remains unchanged. The replacement of (A) is

(A′) F (w1, . . . , wl)→ G
(
w1 � · · · � wl � [0c+2

p] � [0k+1]
)

,

while the rule (B) has to be split into l rules (Bj) which delete one S at the jth

position in G (with � separating these positions) and add list length and one
special symbol. The rule (Bj) has to take care that it can only be applied if all

131

6 Computability

rules (Bj′) with j′ < j are no longer applicable. This is achieved by deleting
the occurrences of S from left to right, preserving linearity of the derivation.
Hence the rule (Bj) simply reduces

G
(
e � . . . e � S(wj) � wj+1 � · · · � wl � v � [0, x1, . . . , xj, . . .]

)
(with j − 1 leading e) to

G
(
e � . . . e � wj � · · · � wl � ([0b

p] ∗ v) � [0, x1, . . . , xj−1, xj + 1, . . .]
)

.

Finally we have to modify (C) via

(C′) G
(
e � · · · � e � [xp, . . .] � v

)
→ [x+ 2a, . . .] � v ,

with l leading e on the left hand side of the rule. It is not difficult to see the new
rules act just as intended. Termination via KBO of the new rules is established
as before. �

Theorem 6.21. We have

i. Comp(KBO) = Atime , and

ii. Comp1(KBO) = Prec .

Proof. One direction is Proposition 6.9, and the opposite direction is just a
combination of Theorem 6.20, Lemmata 2.91 and 2.92, and Corollary 2.94. �

Functions computable by nondeterministic TRSs have been studied, for exam-
ple, by Bonfante et al. (2001) and Bonfante (2000), see also Definition 6.22. Our
results on KBO can easily be extended to this setting. This observation is only
for the record, since the distinction between deterministic and nondeterministic
programs is only important for the small complexity classes.

In term rewriting it is possible to take the alternative approach of computa-
tion on words or even terms instead of computation on numbers, as was done by
Bonfante et al. (1999) and Bonfante (2000). A computation on words amounts
to having many distinct input and output successor symbols. We know from
Proposition 6.8 and Theorem 6.21 how important it is to use the unique special
symbol as the output successor symbol when computing via KBO. Thus the
different approach does not fit well to computation via unrestricted KBO. How-
ever, if one is interested in small complexity classes only, this approach is quite
attractive, cf. Bonfante (2000).

6.4 Computability via Simple Termination

It is an open problem to characterize the functions computable via simple termi-
nation. Because our TRSs of Section 5.3.4 simulating the Hydra battle contain

132

6.4 Computability via Simple Termination

the embedding rules, it is not possible (well, at least not directly) to use them,
like A in Section 6.3, for the linear generation of a large amount of symbols
which serve as a counter for the number of program steps. This problem is
worse than having to compute nondeterministic programs since here a compu-
tation may even stop at a term which is not a number. It should however be
possible to reshape these TRSs, drop the embedding rules in favor of more com-
plicated rules, and add symbols and rules for an effective comparison of encoded
ordinals so that it is possible to compute a maximal subterm or to find out if a
term is a fixed point for the ψ-function based on other terms. For this reason I
conjecture that the functions computable via simple termination coincide with
the <ϑ(Ωω)-recursive functions.

It is of course also possible to consider nondeterministic computations. This
affords a viable concept of function computable by a TRS as one has to cope
with normal forms which do not look like Pm0′, and one has to decide which
of possibly many normal forms representing a number should be taken as the
output. The following definition is in the spirit of Krentel (1988), Grädel and
Gurevich (1995), and Bonfante et al. (2001).

Definition 6.22. We say f : Nl → N is nondeterministically computable by the
terminating TRSR if there are F ∈ Σ(l), unary symbols S and P , and constants
0 and 0′ such that, for all n1, . . . , nl, we have

f(n1, . . . , nl) = max {m : F (Sn10, . . . , Snl0)
∗→R Pm0′ in normal form}.

If f is nondeterministically computable by a TRS terminating via a termination
proof methodM, then f is nondeterministically computable via M.

For this approach Bonfante et al. (2001) established the nondeterministic
counterpart to Theorem 6.3: the functions nondeterministically computable via
either PT-1, PT-L, or PT coincide with the respective members of the nondeter-
ministic versions of Ptime, Etime, and E2time. Nondeterministic computa-
tion via simple termination corresponds to a set of functions we met before.

Theorem 6.23. The functions which are nondeterministically computable via
simple termination coincide with the <ϑ(Ωω)-recursive functions.

Proof (sketch). If a function is nondeterministically computable by the simply
terminating TRS R, then, according to Theorem 5.51, DcR is dominated by
a <ϑ(Ωω)-recursive function. Just as nondeterministic computation (on TMs)
can be transformed into (longer) deterministic computation, we can find another
<ϑ(Ωω)-recursive function which computes all possible derivations and outputs
the maximum of the well-formed results.

133

6 Computability

M Comp(M) established by see Theorem

PT-1 Ptime Bonfante et al. (1999) 6.3
PT-L Etime
PT E2time
KBO Atime Lepper 6.21
MPO Prec Hofbauer (1991, 1992) 6.4
LPO Mrec Weiermann (1995) 6.6

Table 6.2: Complexity classes characterized by the functions computable (using two
successor symbols) via the termination proof method M

Let us turn to the opposite direction and consider a <ϑ(Ωω)-recursive func-
tion f . This function is computable on some k-RM with a <ϑ(Ωω)-recursive
timebound g. From (the proof of) Corollary 5.47 and Theorem 5.50 we know
that there is a TRS R, simulating large enough Hydra battles, which is able to
reduce an input uniformly depending on n to Sh(n)0 for some h >d g. Thus we
are able to produce sufficiently many incarnations of S to control the simula-
tion of a k-RM computing f . We have to take care of two main differences to
Section 6.3.4.

First of all the program itself may be nondeterministic. We already mentioned
below Lemma 6.12 that this is no real problem, as our transformation of a
program into a TRS is easily extendible to the nondeterministic case.

The second difference is the nonlinearity of R. It may well happen that the
stock of symbols S runs empty before the simulation stops. This is taken care
of by a rule like the rule (F) of Theorem 6.20, hence something like

[. . . , 0,m+ 1, x1, . . . , xk]→ x1 .

We are not able to reduce to the contents of the output register unless the
program reaches the terminal state m + 1. Thus the output of the derivation
is not well-formed and is ignored in Definition 6.22. On the other hand, any
correct output of the program will be output by the computation. �

The results presented in this chapter show that function classes well known
from complexity theory occur as classes of functions computable via (restric-
tions of) the usual termination proof methods. We collect some of the results
presented in this chapter in Table 6.2.

134

7 Very Long Size-Controlled
Derivations

Truely understood,
nothing can be bad.

The size complexity maps n to the maximal length of a derivation starting with
a term whose size is bounded by n. Apart from this condition on the size of
the first term, there are no restrictions on the terms occuring in the derivation.
In this chapter we consider the lengths of certain special derivations. The sizes
of the terms occurring in these derivations are controlled by a given function.
Similar sequences have been studied in connection with the embedding of trees.
We state those results of this field which influenced our investigations.

To keep our notions short we denote by C the homeomorphic embedding
relation ≺hemb (as introduced in Definition 2.54) which is based on a label set
containing exactly one element. As the label is always the same, it is safe to
omit it. For every infinite sequence (Ti)i<ω of trees Kruskal’s Tree Theorem
implies there are i < j with Ti P Tj. Harvey Friedman (see Simpson (1985))
investigated how long a finite sequence of trees satisfying Ti R Tj for i < j can
get under the additional restriction of a function bounding the size of the trees.
It is not hard to see that without further restrictions the sequences may get
arbitrarily long.

Lemma 7.1. For each f : N × N+ → N and each n ∈ N there is N ∈ N such
that, for all sequences (T1, . . . , TN) of trees satisfying

(∀m∈ [1, N])(|Tm| 6 f(n,m)) ,

there exist i, j ∈ [1, N] with i < j and Ti P Tj.

Proof. Let Sn collect the (possibly empty) sequences (T1, . . . , Tk) of trees with

(∀m∈ [1, k])(|Tm| 6 f(n,m)) and (∀i, j ∈ [1, k])(i < j ⇒ Ti R Tj) .

135

7 Very Long Size-Controlled Derivations

We partially order Sn by the extension relation <ext (of Definition 2.33). As
there are only finitely many trees of bounded size, <ext is finitely branching.
There are no infinite descending <ext-chains in Sn because otherwise the “union”
of these sequences would violate Kruskal’s Tree Theorem. An application of
König’s Lemma shows Sn is finite, hence we can choose N to be any number
larger than the maximal length of the sequences occuring in Sn. �

Definition 7.2. With each f : N × N+ → N we associate KC
f : N → N by

making KC
f (n) be the first N such that, for all sequences (T1, . . . , TN) of trees

satisfying (∀m∈ [1, N])(|Tm| 6 f(n,m)), there exist i, j ∈ [1, N] with i < j and
Ti P Tj.

The items of the following Theorem are listed in chronological order.

Theorem 7.3. Put g(n,m) := n+m and, for r ∈ R, fr(n,m) := n+r log2(m).
By c we denote log2(a)

−1 where a = 2.9557652856 . . . is the tree constant of
Otter (1948).

i. KC
g is not <ε0-recursive.

ii. If r 6 1
2
, then KC

fr
is <ε0-recursive, but if r > 4, then KC

fr
is not.

iii. If r < c, then KC
fr

is <ε0-recursive, but if r > c, then KC
fr

is not.

Proof. Friedman (see Simpson (1985)) established (i), (ii) is due to Loebl and
Matoušek (1987), and (iii) is from Weiermann (2000). �

We try to achieve similar results for simply terminating TRSs R, replacing se-
quences of trees byR-derivations in T (Σ) which obey certain size bounds. Such
reductions are called size-controlled. The analogy to tree embedding is obvious
once one recalls that within simple termination s →R t implies s
emb t. In
contrast to tree embedding, the restriction to derivations has a certain construc-
tive aspect. We will encounter surprisingly long derivations almost immediately
after leaving the field of those size bounds which are trivially too tight. The
problem is vaguely related to term enumerating problems (for an overview see
Odlyzko (1995)), as it amounts to enumerating, without repetitions, sufficiently
many (though not all) terms of size bounded by n before stepping to terms of
size beyond n.

Definition 7.4. With each TRS R and to each f : N × N+ → N we associate
KR

f : N → N ∪ {∞} by making KR
f (n) be the first N such that there is no R-

derivation (si)16i6N in T (Σ) satisfying (∀m∈ [1, N])(|sm| 6 f(n,m)), if such
an N exists, and ∞ otherwise.

Lemma 7.5. If R is terminating, then KR
f is number-theoretic, and we have

(∀n)(KR
f (n) 6 DcR(f(n, 1)) + 1) .

136

7 Very Long Size-Controlled Derivations

Proof. Termination of R implies DcR is well-defined. As DcR(f(n, 1)) is the
maximal length of an R-derivation starting with a term of size bounded by
f(n, 1), we can easily impose a bound on KR

f (n). �

If f grows rather slow, a low upper bound onKR
f can be obtained by counting

terms having bounded size. In general, investigating the asymptotic behavior
of the function mapping n to the number of terms with size bounded by n
is a surprisingly hard problem (of analytical combinatorics). These functions
heavily depend on the underlying signature. It is good fortune that we do not
require optimal bounds – a rough upper bound suffices.

Lemma 7.6. For all n we have card({s ∈ T (Σ) : |s| 6 n}) < (card(Σ) + 1)n.

Proof. We can identify the closed terms over Σ with their representations as
strings over the alphabet Σ in, say, Polish notation. If we introduce a new sym-
bol ε̂ denoting an empty position, then the strings in Polish notation belonging
to the closed terms of size bounded by n form a proper subset of the set of
strings of length n over the alphabet Σ ∪ {ε̂}. �

For n > 0 the above result can easily be strengthened to

card({s ∈ T (Σ) : |s| 6 n}) < (card(Σ) + 1)n−1 · card(Σ(0)) ,

as the last symbol of any considered string is a constant. Similarly, for n > 1
the first symbol of any string is either ε̂ or a member of Σ(>1). Further slight
improvements are possible using Lemma 3.1, but these results are still far from
the real functions.

Lemma 7.7. For r ∈ R we put fr(n,m) := n+ r log2(m). Let Σ be a signature
with S := card(Σ) + 1 > 2. If r < logS(2) and R is a noncycling TRS over Σ,
then KR

fr
is bounded by an exponential function.

Proof. Pick a ∈ R with 0 < a < 2 such that r 6 logS(a). Put b := log2(a) < 1

and c := log2(S)
1−b

> 0. We have

rc 6
logS(a) · log2(S)

1− b
=

b

1− b
. (7.1)

Assume for a contradiction that there is an n such that 2cn < KR
fr

(n). Hence
we find s1, . . . , s2cn ∈ T (Σ) with s1 →R . . .→R s2cn and

(∀m∈ [1, 2cn])(|sm| 6 n+ r log2(m) 6 n+ rcn) .

Since R is noncycling, the sm are mutually distinct terms of size bounded by
n+ rcn. Under these circumstances Lemma 7.6 and (7.1) yield

2cn < Sn+rcn 6 S
1

1−b
n = 2cn ,

a contradiction. �

137

7 Very Long Size-Controlled Derivations

Theorem 7.35, the main result of this chapter, contains a complementary
result. We combine the TRSs of Section 5.3, which simulate the Hydra battle,
with certain SRSs containing sequences of p-adic representations of iterated
logarithms in order to slow down term growth under preservation of derivation
lengths. A careful calculation of the sizes of the terms occuring in the simulation
leads to this result:

For any p > 1 and k > 0 there is a totally terminating TRS R over a
signature Σ with card(Σ) = p+8+ 1

2
k(k+5) such that KR

fr
eventually

dominates all <∆k-recursive functions as soon as r > logp(2).

Later we will sketch how to boil down the signature to p+10+k symbols, and
we show how to get by with even less symbols if k = 1. There we arrive at a
signature with p + 9 symbols and a very close bound – at most exponential
growth for r < logp+10(2) in contrast to growth beyond <∆1-recursion for
r > logp(2). Those who are content with leaving <ε0-recursion get by with
p + 8 symbols. Though these bounds are rather tight, they are not optimal.
This leaves us with an open problem – the quest for optimal bounds.

It may be instructive to learn a bit more about the line of proof we will follow.
Recall from Section 5.3 that a Hydra battle configuration (α, n) is encoded by
the term •8n+1d with d ∈ D, the set of standard terms, and val(d) = α. Now,
for any such d 6= 0, our TRS R is able to reduce the configuration to the next
configuration: •8n+1d

+→ •8n+2d[n]. The main part of this derivation consists
in reducing •n+1d to ◦d[n]. We will see in Section 7.2 that, roughly speaking,
the sizes of all terms involved in a certain derivation from •n+1d to ◦d[n] can
be bounded by |d|(dp(d) + n). The Hydra battle requires an iteration of such
derivations, and iterating without protection obviously exceeds the size bounds
imposed by fr. We delay these derivations by doing other harmless things as
long as this is possible.

In the proof of Theorem 7.3.ii, Loebl and Matoušek considered the length of
iterated p-adic representations of n ∈ N. These are defined via

|n|(0)
p := n and |n|(i+1)

p := ||n|(i)p |p ,

where |m|p is the length of the p-adic representation of m. In Section 7.1 we
consider a monadic signature containing symbols for the digits below p and,
apart from other auxiliary symbols, the symbol M, and the constant N. By
codep(n) we denote the string which is the p-adic representation of n, and
further we put

logsp,i(n) := codep(|n|(i)p)M . . .M codep(|n|(0)p)N .

Based on these terms we define a totally terminating SRS Rp which (mostly
executes p-adic addition by 1 and) is able to reduce logsp,i(n) to logsp,i(n + 1),

138

7.1 Sequences of Iterated Logarithms

provided that |n|(i+1)
p = |n+ 1|(i+1)

p . This way we get quite long derivations
with rather few increases in size.

The main idea is carried out in Section 7.3. It consists in combining Rp with
the system R having a complexity beyond <∆k-recursion, producing a new
totally terminating TRS. Now we may reduce in Rp until it is safely possible
to step from one Hydra battle configuration to the next without violating the
size bounds imposed by fr. To be more explicit, in Proposition 7.32 we put

dm := ◦8n+m−1d[n, n+m− 2]

for n ∈ N; m > 0, and d ∈ D \ {0}. For i ∈ N we further introduce

um := ?(d|m|(i+1)
p

, logsp,i(m)) ,

where ? is a binary symbol. There is an L larger than the length of the battle
for the configuration (val(d), n) such that a certain derivation

u1
+→ u2

+→ . . .
+→ um

+→ um+1
+→ . . .

+→ uL

suffices rather strong size conditions related to fr. In fact, we simply reduce
logsp,i(m) to logsp,i(m + 1) using Rp as long as this is possible, requiring very
little space, and otherwise we step from one configuration to the next using R,
arranging things so that logsp,i(m+ 1) appears, too. For i large enough (i > 2
suffices), the latter case is so rare that its effects on size growth are harmless.

7.1 Sequences of Iterated Logarithms

In this section we keep p > 2 and a := p − 1 fixed. We are going to define
numbers, strings, and SRSs dealing with (codes of) iterated p-adic logarithms.

Definition 7.8. For n ∈ N we define |n|p, the p-adic length of n, by

|n|p := dlogp(n+ 1)e .

We iterate this for i ∈ N and put |n|(0)p := n and |n|(i+1)
p := ||n|(i)p |p.

Lemma 7.9. Let n, i ∈ N be given.

i. If n > 0, then |n|p 6 logp(n) + 1 holds.

ii. We have |n|p 6 |n+ 1|p 6 |n|p + 1, and |n|p < |n+ 1|p holds if and only
if n = pm − 1 for some m > 0.

iii. We have |n|(i+1)
p 6 |n|(i)p . If f(x) is a polynomial, then f(|n|(i+1)

p) < |n|(i)p

holds for almost all n.

139

7 Very Long Size-Controlled Derivations

Proof. For (i) fix the m ∈ N satisfying

m 6 logp(n) < m+ 1 . (7.2)

If logp(n + 1) < m + 1, then |n|p = m + 1 6 logp(n) + 1 holds, and otherwise
we have m+ 1 6 logp(n+ 1) and get

n = plogp(n) < pm+1 6 plogp(n+1) = n+ 1 .

Since pm+1 ∈ N this yields pm+1 = n+ 1, hence, recalling (7.2), we infer

|n|p = dm+ 1e = m+ 1 6 logp(n) + 1 .

The proof of (ii) is similar and therefore left out, while the first part of (iii)
is immediate and the second part relies on the well known fact that n 7→ an

(with a > 1) grows faster than any polynomial. �

Definition 7.10. We introduce the signature

Σp := {0, 1, . . . , a, 0,M,N}

where all symbols except for the constant N are unary.

We should briefly describe the intended meaning of these symbols. The digits
of the p-adic representation are 0, 1, . . . , a, while 0 represents a 0 carrying an
overflow of 1 which resulted from adding 1 to a. We use M to separate distinct
representations, and N is the necessary constant.

Definition 7.11. For n ∈ N we define codep(n) to be the (possibly empty)
string over {0, 1, . . . , a} which corresponds to the p-adic representation of n.
To be precise, we put codep(0) := ε; and if n = n′ · p+m > 0 with m < p, then
codep(n) := codep(n

′)m.

Lemma 7.12. For all n ∈ N we have |codep(n)N| = |n|p + 1.

We are now going to define terms logsp,i(n) containing the M-divided sequence

from codep(|n|(i)p) to codep(|n|(0)
p). Our intention is to provide an SRS Rp which

is able to reduce logsp,i(n) to logsp,i(n+1) if |n|(i+1)
p = |n+ 1|(i+1)

p . This will be

done by trying to add 1 to codep(|n|(0)
p). If there is no overflow, we succeed, and

otherwise we enlarge the representation by a leading 1 and add 1 to codep(|n|(1)p).
We iterate this and usually succeed. The only problem occurs if there is an
overflow in the leading position, i.e. if |n|(i+1)

p 6= |n+ 1|(i+1)
p , leaving us with

0 0k for k = |n|(i+1)
p −1 at the top of the term. In both cases, the term resulting

from adding 1 is called logs+
p,i(n).

140

7.1 Sequences of Iterated Logarithms

Definition 7.13. For i ∈ N and n > 0, we put codep,i(n) := codep(|n|(i)p) and

code+
p,i(n) :=

{
codep,i(n+ 1) if |n|(i+1)

p = |n+ 1|(i+1)
p ,

00|n|
(i+1)
p −1 otherwise.

We will frequently abbreviate code+
p,0(n) by code+

p (n). Building on these we
recursively define logsp,i(n) ∈ T (Σp) by

logsp,i(n) :=

{
codep,0(n)N if i = 0 ,

codep,i(n)M logsp,i′(n) if i = i′ + 1 ,

and finally we introduce logs+
p,i(n) ∈ T (Σp) by

logs+
p,i(n) :=

{
code+

p,0(n)N if i = 0 ,

code+
p,i(n)M logsp,i′(n+ 1) if i = i′ + 1 .

Note that in the last line we intentionally use logs and not logs+.

Lemma 7.14. Let n > 0.

i. If |n|(i+1)
p = |n+ 1|(i+1)

p then logs+
p,i(n) = logsp,i(n+ 1).

ii. We have |logsp,i(n)| = i+ 1 +
∑i+1

l=1|n|
(l)
p .

Proof. For (i) we just have to check that the condition implies code+
p,i(n) =

codep,i(n+ 1). We establish (ii) by induction on i, using Lemma 7.12. �

We are now going to define the TRS Rp which is able to reduce logsp,i(n) to
logs+

p,i(n). Everything it has to do is to simulate addition by 1 and to continue
at a higher iteration stage as long as there are overflows.

Definition 7.15. The TRS Rp over the signature Σp contains the rules

(Sa) aN→ 0N , (Ca) a0x→ 00x , (Oa) aM0x→ 0M1 0x

and, for each m < a and m′ := m+ 1, the rules

(Sm) mN→ m′N (Cm) m0x→ m′ 0x (Om) mM0x→ m′M1 0x .

Lemma 7.16. Rp is totally terminating.

Proof. Fix a well-order (P ,≺) with a mapping S : P → P which is weakly
monotone and has the subterm property. For example, any limit ordinal with
α 7→ α+ 1 playing the rôle of S will do. In Proposition 7.31 the well-order will
be the one used in Theorem 5.50.

141

7 Very Long Size-Controlled Derivations

Let ≺kbo be the KBO based on Σ−
p := Σp \ {M} with the (total) precedence

0 � 1 � · · · � a � 0 � N

and the weight function which assigns 1 to each symbol. Note that ≺kbo is
just the lexicographic comparison of strings based on ≺. Let (Q,C) be the
lexicographic product of (P ,≺) and (T (Σ−

p),≺kbo). Since (partially by Theo-
rem 3.58) these two orders are well-orders, so is (Q,C). Keeping Theorem 3.45
in mind, it suffices to find a weakly monotone Σp-algebra (Q,C,Fp) which has
the subterm property and is compatible with Rp.

Let q0 be ≺-minimal in P . We define the operations of the Σp-algebra by

[N] := (q0,N) ,

[f]((q, s)) := (q, fs) for f ∈ Σ−
p \ {N} ,

[M]((q, s)) := (S(q),N) .

Let us first establish the subterm property. For [f] as above this follows from
fs �kbo s, while for [M] the subterm property of S is vital.

Consider (q, s) Q (q′, s′) for weak monotonicity. With [f] as above we get the
desired (q, fs) Q (q′, fs ′) because any KBO is closed under contexts, while the
proof for [M] relies on the weak monotonicity of S.

It remains to treat compatibility. We grab ρ : V → Q with ρ(x) = (q, s). The
rule (Sa) is now handled by

[[aN, ρ]] = (q0, aN) B (q0, 0N) = [[0N, ρ]] ,

while the correct orientation of (Ca) is confirmed by

[[a0x, ρ]] = (q, a0s) B (q, 00s) = [[00x, ρ]] .

The most interesting rule is (Oa), which produces

[[aM0x, ρ]] = (S(q), aN) B (S(q), 0N) = [[0M1 0x, ρ]] .

Just as a � 0 lurked behind the preceding rules, the remaining rules (Cm),
(Om), and (Sm) with m < a are based on m � m+ 1. �

Lemma 7.17. For i ∈ N and n > 0 we have

logsp,i(n)
+→6

Rp
logs+

p,i(n)

Proof. It suffices to show logsp,i(n)
+→ logs+

p,i(n), since the rules of Rp are not
decreasing. First of all, by induction on n > 0, we show

codep(n)0x
+→ code+

p (n)0x . (7.3)

142

7.1 Sequences of Iterated Logarithms

There exist m < p and n′ ∈ N such that n = n′ · p+m. Hence we see

codep(n)0x = codep(n
′)m0x→Cm

{
codep(n

′)m+ 1 0x if m < a ,

codep(n
′)00x if m = a .

If m < a, then we get codep(n
′)m+ 1 = codep(n + 1) = code+

p (n), so the case
m = a is a bit more interesting. It remains to consider n′ > 0. The induction
hypothesis yields

codep(n
′)00x

+→ code+
p (n′)0 0x =

{
codep(n

′ + 1)0 0x if |n′|p = |n′ + 1|p ,

00|n
′|p−10 0x if |n′|p < |n′ + 1|p .

If |n′|p = |n′ + 1|p, then we have |n|p = |n+ 1|p and

codep(n
′ + 1)0y = codep((n

′ + 1) · p)y = codep(n+ 1)y = code+
p (n)y ,

while else we get |n|p = |n′|p + 1, so 00|n
′|p−10y = 00|n|p−1y = code+

p (n)y holds.
In a second step we intend to establish

codep(n)N
+→ code+

p (n)N (7.4)

and
codep(n)M0x

+→ code+
p (n)M1 0x . (7.5)

For n = n′ · p+m as above we see

codep(n)N = codep(n
′)mN→Sm

{
codep(n

′)m+ 1N if m < a ,

codep(n
′)0N if m = a .

If m < a, then we may proceed just as above, and otherwise we can show (7.4)
either by Definition 7.11 (if n′ = 0) or by (7.3). We prove (7.5) in a similar
manner, using (Om) instead of (Cm).

Now we are prepared to show logsp,i(n)
+→ logs+

p,i(n) by induction on i. The
case i = 0 is just (7.4), and if i = i′ + 1, then the induction hypothesis yields

logsp,i(n) = codep,i(n)M logsp,i′(n)
+→ codep,i(n)M logs+

p,i′(n) =: t .

If |n|(i
′+1)

p = |n+ 1|(i
′+1)

p , then codep,i(n) = codep,i(n + 1) = code+
p,i(n) and, by

Lemma 7.14.i, logs+
p,i(n) = logsp,i(n+ 1). Hence t = logs+

p,i(n). Things get a bit

more involved if |n+ 1|(i
′+1)

p = |n|(i
′+1)

p + 1. There exists a closed term s with

t = codep,i(n)M00|n|
(i′+1)
p −1s

+→ code+
p,i(n)M1 0 0|n|

(i′+1)
p −1s by (7.5)

= code+
p,i(n)M codep,i′(n+ 1)s =: t′ .

Depending on i we either have s = N or s = M logsp,i′−1(n + 1), and in both
cases t′ = logs+

p,i(n) is valid, just as expected. �

143

7 Very Long Size-Controlled Derivations

7.2 Hydra Battles, Revisited

We have to take a closer look at TRSs simulating Hydra battles. The focus is
on results concerning the sizes of the terms involved in a complete simulation
of such a battle. In order to get pleasing results, a few rules which prevent the
creation of too large intermediate terms are added.

Just as we did in Section 5.3 (on page 96), we fix some k > 0 and treat the
k+ 1-ary ψ. We even recycle the signature Σ of Definition 5.40 and the TRS R
(cf. Table 5.1 on page 110) which simulates all Hydra battles below ∆k.

Definition 7.18. The TRS R′ over the signature Σ consists of the rules from
R and these rules:

(N1′) •8x→ 8•x
(N2′) 8◦x→ ◦8x
(RM′) M(x̄, 8y)→ P(x̄, y)

(RJ′i) Ji(x1, . . . , 8xi, y)→ P(x̄, y, 0̄) for i ∈ [1, k] .

Proposition 7.19. R′ is totally terminating.

Proof. We intend to show that the Σ-algebra (P ,≺,FP) we used in Theo-
rem 5.50 (it was called (P ,≺,F) there) to show that R is totally terminating
remains valid for R′. As we have already shown there and in Lemma 5.49,
it is weakly monotone, has the subterm property, and is compatible with R.
Hence compatibility with the new rules remains to be established. This is eas-
ily achieved, since the new rules are just short cuts for special combinations of
two old rules. For example, (N1′) can be simulated by using (N1) and (S1•)
via •8x →N1 8••x →S1• 8•x. In the same manner we can treat (N2′) (as a
combination of (N2) and (S18)), (RM′) (as a combination of (RM) and (S2+)),
and (RJ′i) (as a combination of (RJi) and (Si+1Ji)). �

We are going to reprove certain results of Section 5.3.4 with the focus on the
sizes of the terms involved and begin with Lemmata 5.41 and 5.42. Recall from
page 46 that, for example, s

∗→6 t indicates that there is a derivation from s to
t such that the sizes of all occuring terms are bounded by |t|, and recall further
that

+→6 is not the transitive closure of →6.

Lemma 7.20. If s′ is a subterm of s ∈ T (Σ), then s
∗→> s′.

Proof. The embedding rules (Sif) are not increasing. �

Lemma 7.21. For d ∈ D we have d〈n〉 ∗→> d[n].

Proof. All rules used in the proof of Lemma 5.42 are not increasing. �

144

7.2 Hydra Battles, Revisited

The next result is an adaptation of Lemma 5.43 to our new setting.

Lemma 7.22. For n > 0 and s ∈ T (Σ) we have

i. 8ns
+→= •ns +→> s

ii. •8ns
+→6 8n•ns

iii. 8n◦s +→= ◦8ns.

Proof. As in Lemma 5.43.i we establish (i) using (N4) followed by (S1•). For (ii)
we recall that, according to the proof of Lemma 5.43.ii, we can apply (N1)
exactly 2n − 1 times to •8ns, reaching 8n•2n

s. We are a bit more modest here
and apply (N1) only n − 1 times, generating n occurrences of • somewhere in
front of s. These are moved to adequate positions by using (N1′) as often as
possible. An iterated application of (N2′) establishes (iii). �

Lemma 7.23. For s, t, s̄ ∈ T (Σ); n > 0, and i ∈ [1, k + 1] we have

i. •n+1+(s, t)
+→= +(s, •n+1t)

ii. •n+1P(s̄)
∗→= •P(s1, . . . , •nsi, . . . , sk+1)

+→= P(s1, . . . , •n+1si, . . . , sk+1)

iii. •n+1P(s̄)
+→= P(s1, . . . , 8

n+1si, . . . , sk+1)

iv. •n+1P(s1, . . . , Ssi, . . . , sk+1)
+→= P(s1, . . . , S8n+1si, . . . , sk+1).

Proof. A look at Lemma 5.44 suffices to see that everything can be based on
the harmless rules (Dif) and the first half of Lemma 7.22.i. �

Lemma 7.24. For s̄, t ∈ T (Σ); n > 0, and i ∈ [1, k] we have

i. M(s̄, 8nt)
+→ P(s̄, t)× n bounded by (|M(s̄, t)|+ 1) · n+ 1

ii. Ji(s1, . . . , 8
nsi, t)

+→ P(s1, . . . , si, ·, 0̄)n(t) bounded by

(2 + |s1|+ · · ·+ |si|+ |0̄|) · n+ |t| .

Proof. Let us first treat (i) by induction on n > 0. For n = 1 we see

M(s̄, 8t)→>

RM′ P(s̄, t) = P(s̄, t)× 1

and |M(s̄, 8t)| = |M(s̄, t)|+1. The step from n to n+1 is done as in Lemma 5.45:

M(s̄, 8n+1t)→6

RM +(M(s̄, 8nt),P(s̄, 8nt))
+→> +(M(s̄, 8nt),P(s̄, t))

+→ +(P(s̄, t)× n,P(s̄, t)) = P(s̄, t)× (n+ 1) ,

using Lemma 7.22.i. The first peak is estimated by

|+(M(s̄, 8nt),P(s̄, 8nt))| = 1 + |M(s̄, t)| · 2 + 2n

= (|M(s̄, t)|+ 1) · 2 + 2(n− 1) + 1

6 (|M(s̄, t)|+ 1) · 2 + (|M(s̄, t)|+ 1)(n− 1) + 1

= (|M(s̄, t)|+ 1)(n+ 1) + 1 ,

145

7 Very Long Size-Controlled Derivations

relying on n − 1 > 0 and |M(s̄, t)| > 3, and the the induction hypothesis tells
us the last rewrite step is bounded by

1 + (|M(s̄, t)|+ 1) · n+ 1 + |P(s̄, t)| = 1 + (|M(s̄, t)|+ 1)(n+ 1) .

In a similar way we show (ii) by induction on n > 0. For n = 1 we have

Ji(s1, . . . , 8si, t)→RJ′i
P(s1, . . . , si, t, 0̄) = P(s1, . . . , si, ·, 0̄)1(t) ,

and it is easily checked that the derivation has the announced bound. The step
from n to n+ 1 is achieved by Lemma 7.22.i and the induction hypothesis via

Ji(s1, . . . , 8
n+1si, t)→6

RJi
P(s1, . . . , 8

nsi, Ji(s1, . . . , 8
nsi, t), 0̄)

+→> P(s1, . . . , si, Ji(s1, . . . , 8
nsi, t), 0̄)

+→ P(s1, . . . , si,P(s1, . . . , si, ·, 0̄)n(t), 0̄)

= P(s1, . . . , si, ·, 0̄)n+1(t) ,

Obeying the latter, the last step is bounded by

1 +
i∑

j=1

|sj|+ |0̄|+ (2 +
i∑

j=1

|sj|+ |0̄|) · n+ |t| ,

which is within our bound, while the size of the second peak is

(1 + |s1|+ · · ·+ |si|) · 2 + 2n+ |t|+ |0̄|
6 (2 + |s1|+ · · ·+ |si|+ |0̄|) · 2 + 2(n− 1) + |t|
6 (2 + |s1|+ · · ·+ |si|+ |0̄|)(n− 1 + 2) + |t| ,

thus also controlled by our bound. �

Now we are prepared to prove the size controlled analog to Proposition 5.46.

Proposition 7.25. For d ∈ D \ {0} and n > 0 we have

•n+1d
+→ ◦d[n] bounded by |d|(dp(d) + n) .

Proof by induction on D. In accordance with the proof of Proposition 5.46 and
Lemma 7.21, it suffices to show

•n+1d
+→ ◦d〈n〉 bounded by |d|(dp(d) + n) ,

and again we are free to fall back on the induction hypothesis whenever u[n]
(with u being a subterm of d) is used to define d〈n〉, since in these cases we
have u 6= 0. Due to d 6= 0 we can freely rely on the important properties

dp(d) > 2 and |d| > 2 , (7.6)

146

7.2 Hydra Battles, Revisited

which immediately yield

|•n+1d| = |d|+ n+ 1 < |d|+ |d|n+ |d| 6 |d|(dp(d) + n) . (7.7)

We are going to treat the different shapes of d〈n〉 (mostly) in order of their ap-
pearance in Definition 5.38. The frequent use of Lemma 7.22.i and Lemma 7.23
will not be indicated. In (5.8b) we have d = Ss and get

•n+1Ss
∗→> •Ss→>

H1 ◦s ,

which is correctly bounded via (7.7). For (5.8c) we use the induction hypothesis
to see

•n+1+(s, t)
+→= +(s, •n+1t)

+→ +(s, ◦t[n])→=

E2+
◦+(s, t[n]) ,

and to confirm the bound

1 + |s|+ |t|(dp(t) + n) 6 (1 + |s|+ |t|)(dp(t) + n) < |d|(dp(d) + n)

on the second part of the derivation. The first part is again controlled by (7.7),
and since the use of this result is routine by now we will not always refer to it in
the remainder of this proof. As we can treat (5.8d) and (5.8k) in a manner very
similar to (5.8c), there is no urge to display them here. Let us turn to (5.8e)
and d = P(0̄, St). With the help of Lemma 7.24.i we reach

•n+1P(0̄, St)
+→= P(0̄, S8n+1t)→=

H2 ◦M(0̄, 8n+1t)
+→ ◦(P(0̄, t)× (n+ 1))

with the bound

(|P(0̄, t)|+ 1)(n+ 1) + 2 = |d|(n+ 1) + 2 6 |d|(dp(d) + n) .

In the similar case (5.8f) we recall from the proof of Proposition 5.46 that d =
P(0̄,P(s̄, t)) holds. We can again rely on Lemma 7.24.i, which reveals

•n+1P(0̄,P(s̄, t))
+→= P(0̄,P(s̄, 8n+1t))

→>

H3 ◦M(s̄, 8n+1t)
+→ ◦(P(s̄, t)× (n+ 1)) .

For anything not covered by (7.7), the induction hypothesis yields the bound

(|P(s̄, t)|+ 1)(n+ 1) + 2 < |d|(n+ 1) + 2 6 |d|(dp(d) + n) .

Before we take care of (5.8g) we have a look at the easier (5.8h). Here d =
P(s1, . . . , Ssi, 0̄, t) holds, and Lemma 7.24.ii yields

•n+1P(s1, . . . , Ssi, 0̄, t)
+→= P(s1, . . . , S8n+1si, 0̄, t)

→>

Hi4
◦Ji(s1, . . . , 8

n+1si, t)
+→ ◦P(s1, . . . , si, ·, 0̄)n+1(t) ,

147

7 Very Long Size-Controlled Derivations

while the bound for the interesting part is

(2 + |s1|+ · · ·+ |si|+ |0̄|)(n+ 1) + |t|+ 1 6 |d|(n+ 1) + 1

< |d|(dp(d) + n) .

For (5.8g) the shape of d is P(s1, . . . , Ssi, 0̄, St). With the help of Lemma 7.24.ii,

•n+1d
+→= P(s1, . . . , S8n+1si, 0̄, St)

→6

Hi5
◦Ji(s1, . . . , 8

n+1si,P(s1, . . . , S8n+1si, 0̄, t)) =: u
+→> ◦Ji(s1, . . . , 8

n+1si,P(s1, . . . , Ssi, 0̄, t))
+→ ◦P(s1, . . . , si, ·, 0̄)n+1(P(s1, . . . , Ssi, 0̄, t))

is possible. Thus we have to focus on two peaks. For the first one we get

|u| = (2 + |s1|+ · · ·+ |si|) · 2 + 2(n+ 1) + |0̄|+ |t|
< (3 + |s1|+ · · ·+ |si|+ |0̄|+ |t|) · 2 + 2n

= |d| · 2 + 2n < |d|(2 + n) < |d|(dp(d) + n) ,

while via Lemma 7.24.ii the second one is controlled by

(2 + |s1|+ · · ·+ |si|+ |0̄|)(n+ 1) + |P(s1, . . . , Ssi, 0̄, t)|+ 1

= (2 + |s1|+ · · ·+ |si|+ |0̄|)(n+ 2) + |t|+ 1

6 (2 + |s1|+ · · ·+ |si|+ |0̄|+ |t|)(n+ 2) < |d|(dp(d) + n) .

Turning to (5.8i) we get d = P(s1, . . . , si, 0̄, 0) with si 6= 0. As mentioned in the
proof of Proposition 5.46, there is j ∈ [1, i] such that MSs̄,0̄(s̄) is a subterm of
sj. The induction hypothesis and Lemma 7.20 yield

•n+1P(s1, . . . , si, 0̄, 0)
∗→= •P(s1, . . . , •nsi, 0̄, 0)

→Hij6

{
Qij(s1, . . . , •n+1si, sj) if j < i ,

Qij(s1, . . . , •n+1si, •nsj) if j = i
∗→> Qij(s1, . . . , •n+1si, sj) (7.8a)
+→ Qij(s1, . . . , ◦si[n], sj)

→6

RQij
◦P(s1, . . . , si[n], 0̄, sj) (7.8b)

∗→> ◦P(s1, . . . , si[n], 0̄,MSs̄,0̄(s̄)) .

First we consider, even for j 6= i,

|Qij(s1, . . . , •n+1si, •nsj)| = 1 + |s1|+ · · ·+ |si|+ 2n+ 1 + |sj|
6 (1 + |s1|+ · · ·+ |si|) · 2 + 2n

< |d| · 2 + 2n < |d|(dp(d) + n) ,

148

7.2 Hydra Battles, Revisited

while in a second step we care for the more difficult part from (7.8a) to (7.8b).
Trusting the induction hypothesis, everything there is bounded by

1 + |s1|+ · · ·+ |si−1|+ |si|(dp(si) + n) + |0̄|+ |sj|
6 (1 + |s1|+ · · ·+ |si−1|+ |0̄|) · 2 + |si|(dp(si) + n+ 1) < |d|(dp(d) + n) .

In a very similar way we can cover the remaining case (5.8j). There we have
d = P(s1, . . . , si, 0̄, St). The induction hypothesis yields

•n+1P(s1, . . . , si, 0̄, St)
∗→= •P(s1, . . . , •nsi, 0̄, St)

→Hi7 Ri(s1, . . . , •n+1si, •nsi, t)
∗→> Ri(s1, . . . , •n+1si, si, t)
+→ Ri(s1, . . . , ◦si[n], si, t)

→6

RRi
◦P(s1, . . . , si[n], 0̄,P(s1, . . . , si, 0̄, t)) ,

so again we have to check two peaks. For the first one we get

|Ri(s1, . . . , •n+1si, •nsi, t)| = 1 + |s1|+ · · ·+ |si|+ 2n+ 1 + |si|+ |t|
6 (1 + |s1|+ · · ·+ |si|+ |t|) · 2 + 2n

< |d|(dp(d) + n) ,

while the second one is bounded by

(1 + |s1|+ · · ·+ |si−1|+ |0̄|) · 2 + |si|(dp(si) + n) + |si|+ |t|
6 (1 + |s1|+ · · ·+ |si−1|+ |0̄|+ |t|) · 2 + |si|(dp(si) + n+ 1)

< |d|(dp(d) + n) . �

Recall from Definition 5.38 that

d[n,m] = (. . . ((d[n])[n+ 1]) . . .)[m] .

Corollary 7.26. For d ∈ D and n,m ∈ N we have

|d[n, n+m− 1]| 6 |d| ·
n+m−1∏

j=n

(dp(d[n, j − 1]) + j) .

Proof by induction on m. The case m = 0 is trivial as here d[n, n+m− 1] = d
holds. Let us turn to the step from m to m+ 1. Since

d[n, n+m] = (d[n, n+m− 1])[n+m] ,

149

7 Very Long Size-Controlled Derivations

this is only interesting if d[n, n+m− 1] 6= 0, and in this case Proposition 7.25
and the induction hypothesis yield

|d[n, n+m− 1][n+m]|
< |d[n, n+m− 1]|(dp(d[n, n+m− 1]) + n+m)

6

(
|d| ·

n+m−1∏
j=n

(dp(d[n, j − 1]) + j)

)
(dp(d[n, n+m− 1]) + n+m)

= |d| ·
n+m∏
j=n

(dp(d[n, j − 1]) + j) . �

Corollary 7.26 indicates a need to impose a bound on dp(d[n, n+ j]). This
gets a bit more involved than it should be, partially because of the way the set
D of terms in normal form is defined.

Lemma 7.27. For s, s̄, t ∈ D and n ∈ N we have

i. dp(s× (n+ 1)) = dp(s) + n

ii. dp(P(s̄, ·, 0̄)n+1(t)) = dp(P(s̄, t, 0̄)) + n.

Proof. As both items are shown by similar inductions on n, we focus on the
shorter (i). Here the case n = 0 is trivial since s × 1 = s holds, and for n > 0
Definition 5.36 and the induction hypothesis yield

dp(s× (n+ 1)) = dp(+(s× n, s))
= 1 + max {dp(s) + n− 1, dp(s)} = dp(s) + n . �

Proposition 7.28. Let d ∈ D and n ∈ N.

i. If d ∈ D(Lim) and d[n] = Sid′ where i is as large as possible, then either
i = 0 or i = n+ 1 holds.

ii. We have dp(d[n]) 6 dp(d) + n+ 1.

Proof. We show (i) by induction on D. Recall from Definition 5.37 that D(Lim)
contains those elements of D whose values are limit ordinals. Looking at Defini-
tion 5.38 we first note that d〈n〉 does not start with S, which leaves us with the
three cases where d〈n〉 6= d[n]. In the first one we have d = P(0̄, S0) and d[n] =
Sn+10, which is just as we promised. For the second case, d = P(0, . . . , S0, 0̄, 0)
and d[n] = P(0, . . . , 0, ·, 0̄)n(S0) hold. This is only of interest if n = 0. Since
this implies d[n] = S0 = Sn+10, everything is correct here. It remains to treat
the case d = +(s, t). According to Definition 5.34, both s and t are members
of D(Lim). From the induction hypothesis we know that if t[n] = Sjt′ holds
with j as large as possible, then either j = 0 or j = n + 1. Depending on t′,

150

7.2 Hydra Battles, Revisited

d[n] either equals Sjs or Sj+(s, t′). While the second term has the announced
shape, we have to check for the first term that s does not start with S. Since
s ∈ D(Lim) holds, we are safe.

We show (ii) by induction on D. If d = 0 or d = Ss, then dp(d[n]) 6 dp(d)
holds. Let us turn to the cases where d〈n〉 and d[n] may differ. We treat them
in the same order as in (i). For d = P(0̄, S0) it is not difficult to see

dp(d[n]) = dp(Sn+10) = 1 + n+ 1 < dp(d) + n+ 1 ,

while for d = P(0, . . . , S0, 0̄, 0) we rely on Lemma 7.27.ii and get

dp(d[n]) = dp(P(0̄, ·, 0̄)n(S0)) = dp(d) + n− 1 .

In the case d = +(s, t) the induction hypothesis yields dp(t[n]) 6 dp(t)+n+1.
If d[n] = +(s, t[n]), then the claim easily follows from

dp(+(s, t[n])) 6 1 + max {dp(s), dp(t) + n+ 1}
6 1 + max {dp(s), dp(t)}+ n+ 1 = dp(d) + n+ 1 ,

while otherwise (i) implies t[n] = Sn+1t′. This yields dp(t′) 6 dp(t) and either
d[n] = Sn+1s (iff t′ = 0) or d[n] = Sn+1+(s, t′). We arrive at

dp(d[n]) 6 dp(Sn+1+(s, t′)) 6 n+ 1 + dp(d) .

It remains to check the cases where d〈n〉 = d[n] holds directly by definition.
Since (5.8d) and (5.8k) are of similar shape, we only demonstrate how to treat
the former. Here we have d = P(s̄, t), and the induction hypothesis yields

dp(d[n]) = dp(P(s̄, t[n]))

6 1 + max {dp(s1), . . . , dp(sk), dp(t) + n+ 1}
6 1 + max {dp(s1), . . . , dp(sk), dp(t)}+ n+ 1 = dp(d) + n+ 1 .

For (5.8e) we have d = P(0̄, St) and get

dp(d[n]) = dp(P(0̄, t)× (n+ 1)) = dp(P(0̄, t)) + n < dp(d) + n ,

where we relied on Lemma 7.27.i. The treatment of (5.8f) is completely analo-
gous, so we omit it. In the case (5.8g) with d = P(s1, . . . , Ssi, 0̄, St) we have to
be more verbose. Using Lemma 7.27.ii we see

dp(d[n]) = dp(P(s̄, ·, 0̄)n+1(P(s1, . . . , Ssi, 0̄, t)))

= dp(P(s̄,P(s1, . . . , Ssi, 0̄, t), 0̄)) + n

= 1 + dp(P(s1, . . . , Ssi, 0̄, t)) + n 6 1 + dp(d) + n .

151

7 Very Long Size-Controlled Derivations

The proof for (5.8h) is immediate, hence we may turn to (5.8i) with d =
P(s1, . . . , si, 0̄, 0), invocate the induction hypothesis, and get

dp(d[n]) = dp(P(s1, . . . , si[n], 0̄,MSs̄,0̄(s̄)))

6 max {dp(d), 1 + dp(si[n])}
6 max {dp(d), 1 + dp(si) + n+ 1} 6 dp(d) + n+ 1 ,

since MSs̄,0̄ is a subterm of some sj. Finally, (5.8j) with d = P(s1, . . . , si, 0̄, St)
is handled once more by the induction hypothesis:

dp(d[n]) = dp(P(s1, . . . , si[n], 0̄,P(s1, . . . , si, 0̄, t)))

= 1 + max {dp(si[n]), dp(P(s1, . . . , si, 0̄, t))}
6 1 + max {dp(si) + n+ 1, dp(d)}
6 1 + max {dp(d) + n, dp(d)} = 1 + dp(d) + n . �

Corollary 7.29. For d ∈ D and n,m ∈ N we have

dp(d[n, n+m− 1]) 6 dp(d) +
n+m−1∑

j=n

(j + 1) .

Proof by induction on m. If m = 0, then d[n, n + m − 1] = d, hence there is
nothing to do. For the step from m to m+ 1 we see

dp(d[n, n+m]) = dp((d[n, n+m− 1])[n+m])

6 dp(d[n, n+m− 1]) + n+m+ 1

6 dp(d) +
n+m−1∑

j=n

(j + 1) + n+m+ 1 = dp(d) +
n+m∑
j=n

(j + 1) ,

relying on Proposition 7.28.ii and the induction hypothesis. �

7.3 Lengthened Derivations

We still keep the k > 0 of Section 7.2 fixed. Everything is prepared to combine
the signatures Σ and Σp (from Definitions 5.40 and 7.10) and to combine the
TRSsR′ andRp (from Definitions 7.18 and 7.15), generating totally terminating
TRSs with very long size-controlled derivations.

Definition 7.30. For p > 1 (and our fixed k) we introduce the signature
Σ′

p := Σ ∪ Σp. The TRS R′
p over Σ′

p comprises R′ and Rp, and the rule

(Z0) +(◦x, 0 y)→ +(•8x, 1 0 y) .

152

7.3 Lengthened Derivations

Proposition 7.31. For any p > 1, the TRS R′
p is totally terminating.

Proof. The main idea consists in combining the weak monotone algebras we
constructed for the separate TRSs as witnesses of weak total termination.

In Proposition 7.19 we used the Σ-algebra (P ,≺,FP) (which was introduced
in Theorem 5.50) to establish total termination of R′. Total termination of
Rp was demonstrated in Lemma 7.16 by constructing a weak monotone Σp-
algebra (Q,C,Fp), where (Q,C) was the lexicographic product of a suitable
well-order and a KBO (T (Σ−

p),≺kbo). An inspection of the proof of Lemma 7.16
shows the well-order (P ,≺) is suitable, with the canonical successor function
(α,m, n) 7→ (α,m, n+ 1), better known as [•]P , serving as the S needed there.
Of course, the ≺-minimal element of P is (1, 0, 0) = [[0]]P .

Let (Q,C) be the well-order which originates from using (P ,≺) in the proof
of Lemma 7.16. We have to provide a set F of Σ′

p-operations which make up
a Σ′

p-algebra compatible with R′
p. For the symbols in Σp this is a fairly easy

task, since for them we can simply take the members of Fp. In the proof
of Lemma 7.16 we showed they are weakly monotone and have the subterm
property, and moreover any Σ′

p-algebra which is based on these functions is
compatible with Rp.

It remains to treat the symbols of Σ. For any f ∈ Σ we put

[f]((q1, t1), . . . , (qn, tn)) := ([f]P(q̄),N) ,

thus we completely ignore the ti. A moment’s reflection shows [f] inherits weak
monotonicity and the subterm property from [f]P .

Fix ρ : V → Q and let ρ′ be the associated mapping from V to P satisfying

(∀x∈V)(∃t∈T (Σ−
p))(ρ(x) = (ρ′(x), t)) .

An induction on s ∈ T (Σ,V) shows that we can always find t ∈ T (Σ−
p) such

that

[[s, ρ]] =

{
([[s, ρ′]]P , t) if s ∈ V ,

([[s, ρ′]]P ,N) otherwise .
(7.10)

This is no surprise as, for f ∈ Σ, the [f]P ignore and delete the effects symbols
like 0 had on their input.

In Proposition 7.19 we showed that (P ,≺,FP) is compatible withR′, and this
means we have l �P r for all rules (l, r) ∈ R′. This implies [[l, ρ′]]P � [[r, ρ′]]P .
We can rely on this to establish compatibility of (Q,C,F) and R′, since for
(l, r) ∈ R′ we get, using (7.10), tl and tr ∈ T (Σ−

p) satisfying

[[l, ρ]] = ([[l, ρ′]]P , tl) B ([[r, ρ′]]P , tr) = [[r, ρ]] .

153

7 Very Long Size-Controlled Derivations

In a final effort we have to take care of (Z0). For ρ(x) = ((α,m, n), t) and
ρ(y) = ((α′,m′, n′), t′) we just calculate:

[[+(◦x, 0 y), ρ]] = [+](((α+ 1, 0, 0),N), ((α′,m′, n′), 0 t′))

= ([+]P((α+ 1, 0, 0), (α′,m′, n′)),N)

= (((α+ 1)⊕ α′ ⊕ α′, 0, 0),N)

B ((α⊕ α′ ⊕ α′, 0, 0),N)

= ([+]P((α, 1, 1), (α′,m′, n′)),N)

= [+](((α, 1, 1),N), ((α′,m′, n′), 1 0 t′))

= [[+(•8x, 1 0 y), ρ]] .

As usual, Theorem 3.45 implies R′
p is totally terminating. �

Recall from Lemma 5.31.ii and Lemma 5.39 that the length of the battle for
the configuration (val(d), n) is the minimal m which satisfies d[n, n+m−1] = 0.
We will construct very long derivations which are controlled in a special way by
some function B. Once we achieve this, the rest of the time is spent showing
that, for rather low r, the size bounding function fr is compatible with B.

Proposition 7.32. Let p > 1 and i, n ∈ N. For d ∈ D \{0} and m > 0 we put

dm := ◦8n+m−1d[n, n+m− 2] and um := +(d|m|(i+1)
p

, logsp,i(m)) .

Further let L be the length of the battle for the configuration (val(d), n), and let

L′ be minimal such that |L′|(i+1)
p = L+ 1. There exists a derivation

u1
+→ u2

+→ . . .
+→ um

+→ um+1
+→ . . .

+→ uL′

in R′
p such that, for all m ∈ [1, L′], the part u1

∗→ um is bounded by

B(m) := 1 + n+ |m|(i+1)
p + |logsp,i(m)|+ |d| ·

n+|m|(i+1)
p −2∏

j=n

(dp(d[n, j − 1]) + j) .

Proof. By induction on m ∈ [1, L′] we show that there is a derivation u1
∗→ um

which is bounded by B(m). The casem = 1 only affords an estimation. Because

of |1|(i+1)
p = 1 we get

|u1| = |+(◦8nd, logsp,i(1))| = 1 + 1 + n+ |d|+ |logsp,i(1)| = B(1) .

Let us turn to the step from m to m+ 1. By the induction hypothesis we have
a derivation u1

∗→ um which is bounded by B(m) 6 B(m+ 1), so it remains to

154

7.3 Lengthened Derivations

find a suitable derivation um
+→ um+1. In the easier case |m+ 1|(i+1)

p = |m|(i+1)
p

Lemma 7.14.i and Lemma 7.17 imply

logsp,i(m)
+→6 logs+

p,i(m) = logsp,i(m+ 1) ,

yielding

um = +(d|m|(i+1)
p

, logsp,i(m)) = +(d|m+1|(i+1)
p

, logsp,i(m))
+→6 +(d|m+1|(i+1)

p
, logsp,i(m+ 1)) = um+1 .

To confirm the bound we take a look at the function C which splits up B via

C(j) := B(j)− |logsp,i(j)| .

We already know |um| 6 B(m), and additionally the only difference between um

and um+1 is the part containing logsp,i. Thus |um+1| 6 C(m) + |logsp,i(m+ 1)|
holds. Because of C(m) = C(m+ 1) we find the derivation from um to um+1 is
bounded by B(m+ 1).

Let us now consider the remaining case |m+ 1|(i+1)
p = |m|(i+1)

p + 1. We put

l := |m|(i+1)
p . By Definition 7.13 and Lemma 7.17 there exists a term t such that

logsp,i(m)
+→6 logs+

p,i(m) = code+
p,i(m)t = 0 0l−1t (7.11a)

and
logsp,i(m+ 1) = 1 0lt . (7.11b)

Now we are ready to go:

um = +(◦8n+l−1d[n, n+ l − 2], logsp,i(m))
+→6 +(◦8n+l−1d[n, n+ l − 2], 0 0l−1t) by (7.11a)

→6

Z0 +(•8n+ld[n, n+ l − 2], 1 0lt)

= +(•8n+ld[n, n+ l − 2], logsp,i(m+ 1)) by (7.11b)
+→6 +(8n+l•n+ld[n, n+ l − 2], logsp,i(m+ 1)) by Lemma 7.22.ii
+→ +(8n+l◦d[n, n+ l − 1], logsp,i(m+ 1)) by Proposition 7.25
+→= +(◦8n+ld[n, n+ l − 1], logsp,i(m+ 1)) by Lemma 7.22.iii

= um+1 .

We want to take a closer look at why the use of Proposition 7.25 was legal.
Because of m < L′ and the minimality condition on L′ we have l < L + 1,
hence l − 2 < L − 1. Since L is minimal satisfying d[n, n + L − 1] = 0 we get

155

7 Very Long Size-Controlled Derivations

d[n, n + l − 2] 6= 0, which is exactly what we needed to safely apply Proposi-
tion 7.25. This Proposition is also useful for establishing the upper bound, since
according to it all terms in the above derivation are bounded by

C := 1 + n+ l + |logsp,i(m+ 1)|
+ |d[n, n+ l − 2]|(dp(d[n, n+ l − 2]) + n+ l − 1) .

By Corollary 7.26 we get

|d[n, n+ l − 2]|(dp(d[n, n+ l − 2]) + n+ l − 1)

6

(
|d| ·

n+l−2∏
j=n

(dp(d[n, j − 1]) + j)

)
(dp(d[n, n+ l − 2]) + n+ l − 1)

= |d| ·
n+l−1∏
j=n

(dp(d[n, j − 1]) + j) .

Since l = |m+ 1|(i+1)
p − 1, the above bound C is in turn bounded by

1 + n+ |m+ 1|(i+1)
p + |logsp,i(m+ 1)|+ |d| ·

n+|m+1|(i+1)
p −2∏

j=n

(dp(d[n, j − 1]) + j) ,

and this is exactly B(m+ 1). �

The next Lemma gathers various auxiliary results we will need as the proof
of Proposition 7.34 evolves.

Lemma 7.33. Let n,m ∈ N.

i. The equation
n∑

k=0

k = 1
2
n(n+ 1) is valid.

ii. We have n(n+ 1) 6 2n2.

iii. If n > 1, then n! 6 nn.

iv. If n > 2 and m > 4, then m2 6 nm.

v. For a, b ∈ R we have 2ab 6 a2 + b2.

vi. For almost all n we have (∀m> 1)((n+m)3 6 1
8
n4 + 82m4).

Proof. The well known (i) is shown by induction on n, while (ii) immediately
follows from n 6 n2. The proof of (iii) is immediate, whereas (iv) is treated by
induction on m. In the case m = 4 we should take 42 = 24 6 n4 for granted,
and the step from m to m+ 1 is achieved by

(m+ 1)2 = m2 + 2m+ 1 6 m2 + 4m 6 2m2 6 2nm 6 nnm = nm+1 .

156

7.3 Lengthened Derivations

For (v) we rely on 0 6 (a− b)2 = a2 + b2 − 2ab, and finally (vi) is won by

(n+m)3 = n3 + 3n2m+ 3nm2 +m3 6 n3 + 6n2m2 +m3

= n3 + 2(1
3
n2)(9m2) +m3 6 n3 + (1

3
n2)2 + (9m2)2 +m3

= n3 + 1
9
n4 + 81m4 +m3 6 1

8
n4 + 82m4 ,

where we used (v) and n > 72. �

Recall from Definition 7.4 that KR
f maps n to the first N for whom there is

no sequence s1 →R . . .→R sN satisfying (∀m∈ [1, N])(|sm| 6 f(n,m)). We are
going to show that such functions grow rather fast.

Proposition 7.34. Let p > 1. For real r > 1, put gr(n,m) := n+r logp(m) and

write Kr for K
R′p
gr . This Kr eventually dominates all <∆k-recursive functions.

Proof. Take r > 1 and fix i > 2. For n ∈ N we put tn := P(·, 0̄)n(S0). Since P
is k + 1-ary, a short induction and Lemma 7.27.ii show

|tn| = (k + 1) · n+ 2 and dp(tn) = n+ 2 . (7.12)

Let L be the function which maps n to the length of the battle for the config-
uration (val(tn), n + 1). In the proof of Corollary 5.47 we used the fact that L
eventually dominates all <∆k-recursive functions. Our aim is now to establish

Kr(p
n4

) > L(n) for almost all n . (7.13)

Since exponential functions are elementary, α-recursiveness is not affected by
substituting exponential functions. This immediately implies Kr eventually
dominates all <∆k-recursive functions.

Fix some n. By Proposition 7.32 (substituting d with tn and n with n + 1),
there exist L′ > L(n) and a derivation

u1
+→ u2

+→ . . .
+→ um

+→ um+1
+→ . . .

+→ uL′

in R′
p whose part u1

∗→ um is bounded by

Bn(m) := 2 + n+ |m|(i+1)
p + |logsp,i(m)|+ |tn| ·

n+|m|(i+1)
p −1∏

j=n+1

(dp(tn[n+ 1, j − 1]) + j) .

Since Bn(m) 6 Bn(m+ 1) holds if 1 6 m < L′, we may focus on the first L(n)
steps in this derivation. Thus we consider the derivation

u′1 → u′2 → . . .→ u′m → u′m+1 → . . .→ u′L(n)

157

7 Very Long Size-Controlled Derivations

where u′1
∗→ u′m is still bounded by Bn(m), so especially

(∀m∈ [1, L(n)])(|u′m| 6 Bn(m))

holds. If we succeed in proving

(for almost all n)(∀m∈ [1, L(n)])(Bn(m) 6 gr(p
n4

,m)) , (7.14)

we immediately get (7.13). This appears to be a good reason to show (7.14).
From now on, let n be large (what large means will become apparent as the

proof evolves), and fix m ∈ [1, L(n)]. As in the proof of Proposition 7.32 we put

l := |m|(i+1)
p , and additionally we set o := |logsp,i(m)|. Lemma 7.14.ii implies

o = i+ 1 +
i+1∑
j=1

|m|(j)p . (7.15)

By (7.12) and Corollary 7.29, any n satisfies

|tn| ·
n+l−1∏
j=n+1

(j + dp(tn[n+ 1, j − 1]))

6 ((k + 1) · n+ 2) ·
n+l−1∏
j=n+1

(j + n+ 2 +

j−1∑
j′=n+1

(j′ + 1))

= ((k + 1) · n+ 2) ·
n+l−1∏
j=n+1

j∑
j′=n

(j′ + 1) .

For large n this implies

Bn(m) 6 2 + n+ l + o+ ((k + 1) · n+ 2) ·
n+l−1∏
j=n+1

j∑
j′=n

(j′ + 1)

6 l + o+ ((k + 2) · n+ 4) ·
n+l−1∏
j=n+1

j∑
j′=n

(j′ + 1)

6 l + o+
n+l−1∏
j=n−1

j∑
j′=n−1

(j′ + 1) (7.16a)

6 l + o+
n+l−1∏
j=n−1

j∑
j′=1

(j′ + 1)

= l + o+
n+l−1∏
j=n−1

1
2
(j + 1)(j + 2) (7.16b)

< l + o+ (1
2
(n+ l)(n+ l + 1))! . (7.16c)

158

7.3 Lengthened Derivations

The step towards (7.16a) is justified because ((k+ 2) ·n+ 4) 6 n(2n+ 1) holds
if k + 2 6 n, while the step to (7.16b) is a consequence of Lemma 7.33.i. We
safely reach (7.16c), as the components of the product form a nonrepeating
and nonexhaustive sequence of numbers bounded by 1

2
(n + l)(n + l + 1). The

factorial in this bound is now replaced with something more pleasant:(
1
2
(n+ l)(n+ l + 1)

)
! 6

(
(n+ l)2

)
! by Lemma 7.33.ii

6
(
(n+ l)2

)(n+l)2
by Lemma 7.33.iii

6 p(n+l)3 by Lemma 7.33.iv

< p
1
8
n4+82l4 by Lemma 7.33.vi

< p
1
4
n4+ 1

2
(|m|(i)p −1) by Lemma 7.9.iii

= p
1
4
n4 · p

1
2
(|m|(i)p −1)

6
(
p

1
4
n4)2

+
(
p

1
2
(|m|(i)p −1)

)2
by Lemma 7.33.v

= p
1
2
n4

+ p|m|(i)p −1

6 p
1
2
n4

+ plogp(|m|(i−1)
p) by Lemma 7.9.i

= p
1
2
n4

+ |m|(i−1)
p .

Maybe the above use of Lemma 7.9.iii should be explained in more detail. By
the Lemma we have

82(|m|(i+1)
p)4 < 1

2
(|m|(i)p − 1) for almost all m ,

hence there exists N ∈ N with

(∀m)(82(|m|(i+1)
p)4 < 1

2
(|m|(i)p − 1) +N) .

Since n is large, we may safely assume N < 1
8
n4.

We combine the results presented so far to arrive at

Bn(m)

< l + o+ p
1
2
n4

+ |m|(i−1)
p by (7.16)

= p
1
2
n4

+ |m|(i+1)
p + |m|(i−1)

p + i+ 1 +
i+1∑
j=1

|m|(j)p by (7.15)

6 p
1
2
n4

+ (i+ 2)|m|(2)
p + i+ 1 + |m|p by Lemma 7.9.iii

6 p
1
2
n4

+ (i+ 2)(|m|(2)
p + 1) + logp(m) by Lemma 7.9.i

< pn4

+ r logp(m) by Lemma 7.9.iii

= gr(p
n4

,m) ,

159

7 Very Long Size-Controlled Derivations

and this is (7.14). The first use of Lemma 7.9.iii is justified by i > 2 because,

except for |m|(1)
p = |m|p, all occurrences of |m|(i

′)
p satisfy i′ > 2. In the second

use of this property, (i + 2)(|m|(2)p + 1) is compared to (r − 1) logp(m). For
almost all m we know that the former is smaller than the latter. The remaining
values of m are covered by the largeness of n and stepping from p

1
2
n4

to pn4
.

Note that this is the only time we use the premise r > 1. �

Finally, the time has come to bring in the crop.

Theorem 7.35. For r ∈ R we put fr(n,m) := n+ r log2(m).

i. Let Σ be a signature with S := card(Σ)+1 > 2. If r < logS(2) and R is a
noncycling TRS over Σ, then KR

fr
is bounded by an exponential function.

ii. For any p > 1 and k > 0 there exists a totally terminating TRS R over
a signature Σ with card(Σ) = p+ 8 + 1

2
k(k + 5) such that KR

fr
eventually

dominates all <∆k-recursive functions as soon as r > logp(2).

Proof. Lemma 7.7 and (i) coincide.
The R of (ii) is our R′

p associated with p > 1 and k > 0. From Propo-
sition 7.31 we know R is totally terminating, while Proposition 7.34 shows
KR

fr
eventually dominates all <∆k-recursive functions if r > logp(2) (this re-

lies on logp(m) = logp(2) · log2(m)). By Definition 7.30, the signature of
R is the union of the disjoint signatures Σ and Σp. According to Defini-
tion 7.10, we have card(Σp) = p + 2, and the Definitions 5.33 and 5.40 yield
card(Σ) = 8 + 2k+ 1

2
k(k+ 1). As the symbols S and ◦ have identical interpret-

ing functions, we can simply replace ◦ with S. The same is possible for 8 and
M, hence we arrive at a total of p+ 8 + 1

2
k(k + 5) symbols. �

With growing p and fixed k the bounds logS(2) and logp(2) of the two parts
of the Theorem get arbitrarily close. We wonder what happens for r between
the two bounds. Maybe there is, similar to the results of Weiermann (2000)
mentioned in Theorem 7.3, one distinct r that separates exponential growth
from enormous growth, maybe there is even an increasing sequence of such r,
each a border between two different rates of growth.

In (ii), for k = 1 the number of symbols in Σ can be lowered a bit. Since
the rules (Hij6) and (Hi7) introducing Qij and Ri need a P which is at least
ternary, these symbols can be dropped. This leads to a signature with p + 9
symbols and a very close bound: at most exponential growth for r < logp+10(2)
in contrast to growth beyond <∆1-recursion for r > logp(2).

The bounds can get even closer. All ordinals below ε0 are encoded by those
standard terms whose occurrences of P are all of the shape P(0, t), encoding
ωval(t). Thus we do not need Ji, leaving us with p + 8 symbols and a function
which grows too fast to be <ε0-recursive and hence is not provably total in

160

7.3 Lengthened Derivations

Here live giants . . .

52
Symbols

10 35 40

∆1-recursive

ε0-recursive

incognita

exponentially bounded

r

∆4-recursive
∆3-recursive
∆2-recursive

terra

2

1

0.5

0

1.5

15 20 25 30

Figure 7.1: Maximal known growth rates of KRf for f(m,n) = n+ r log2(m) depending on
the number of symbols in the signature and on r.

Peano arithmetic. It should also be possible here to combine the symbols +
and P into one binary symbol representing ωx + y.

Even for arbitrary k > 0 we can reach smaller signatures. Instead of consid-
ering k symbols Ri, we focus on one (2k + 1)-ary symbol R and rules like

•P(x1, . . . , xi, 0̄, Sy)→ R(x1, . . . , •xi, 0̄, x1, . . . , xi, 0̄, y)

and
R(x1, . . . , ◦xi, 0̄, y1, . . . , yi, 0̄, z)→ ◦P(x̄, 0̄,P(ȳ, 0̄, z)) .

The interpreting function is

[R](p̄, q̄, r) := ψ(max {α1, β1}, . . . ,max {αk, βk}, γ + 1)

with pi = (αi, . . .), qi = (βi, . . .), and r = (γ, . . .). In very much the same
way we can replace the 1

2
k(k + 1) many Qij with one Q. Unfortunately there

appears to be no way to get rid of the Ji, so we arrive at p+10+k symbols. Of
course, the new rules and symbols afford adapted versions of Proposition 7.28
and its relatives. We hope to prevent complete boredom by omitting these. In
Figure 7.1 we try to depict the different regions of growth we met depending
on the number of symbols and on r.

It may be instructive to sketch how similar results for SRSs can be achieved.
In Theorem 5.23 we presented a result of Touzet (1999), stating that there

161

7 Very Long Size-Controlled Derivations

is a hierarchy (Ak)k<ω of SRSs such that any multiple recursive function is
eventually dominated by the complexities of almost all Ak. Each Ak simulates
all Hydra battles below ωωk

. Since the transition to a new battle configuration
in Ak is done by a rewrite step at the root symbol, it is possible to combine
(adapted versions of) our SRSs Rp with the Ak. We do not go into more detail
here, because the whole proof of Theorem 5.23 had to be repeated.

162

8 Conclusion

Your own efforts promise
a lot of success.

The time has come to summarize the results presented in the preceding text and
to make some concluding remarks. Our main focus has been on complexities
and order types. We have filled some gaps that had been left open in the
big picture. The new picture of the world of simplification orders is presented
in Table 8.1 on the following page. As before, SO is an abbreviation for the
class of simplification orders. Since all bounds are essentially optimal, we get
a comprehensive picture. The upper complexity bound for KBO and the lower
one for SO are new results, just as the classification of the order types occuring
within KBO and its subsets. All results indicate the importance of the Hardy
function principle, introduced by Touzet (1999). It states that the complexity of
a TRS terminating via some simplification order is bounded by a Hardy function
with index closely related to the order type of the simplification order. We got
a valid instance of this principle from Buchholz et al. (1994). The announced
bounds are often not optimal, though. This leads us to the first problem.

Problem 1. Find and prove strong instances of the Hardy function principle.

The upper complexity bounds are, though essentially optimal, not that useful
in practice. Furthermore, we have only considered simple termination, although
many natural TRSs are not simplifying. Hofbauer (2001) has recently proposed
a promising new approach which sometimes directly yields optimal bounds and
which is even applicable to TRSs which are terminating but not simply termi-
nating.

Concerning the shortest complexity – the function measuring the best-case
behavior of a TRS – we have seen that for KBO, MPO, and LPO the usual
complexity bounds are transferable. The result concerning KBO is new. In
the general case, the situation is unclear. I strongly conjecture that here the
<ϑ(Ωω)-recursive bound is optimal, too.

Problem 2. What shortest complexities occur within simple termination?

163

8 Conclusion

class bound in bound in
Drec(·)

order types

MPO(1) Prec <ωω <ω3

MPO Prec <ωω <ϑ(Ω · ω)
KBO− 2O(n) ω ω

KBO(1) 2O(n) ω 6ωω

KBO Ack(O(n), 0) ωω 6ωω

LPO Mrec <ω3 <ϑ(Ωω)
SO(1) Mrec <ω3 <ω3

SO Drec(<ϑ(Ωω)) <ϑ(Ωω) <ϑ(Ωω)

Table 8.1: Essentially optimal bounds on size complexities and order types occuring within
classes of simplification orders and their restrictions to strings.

In Section 5.5 we touched upon ground versions of the three standard syntac-
tic simplification orders and met, as a new result, a TRS which terminates via
ground KBO and does not correspond to any TRS terminating via KBO. No
optimal complexity bounds are known for the ground versions. I conjecture the
bounds are just the same as those for the open versions.

Problem 3. What are the optimal complexity bounds for the ground versions
of KBO, MPO, and LPO?

Termination via either MPO or LPO implies ω-termination, whereas termina-
tion via KBO is not contained in <ω2-termination. One of our new results states
that termination via KBO is a part of ω2-termination. Thus the three standard
simplification orders are located at the very beginning of the α-termination
hierarchy, and this leaves us with the task of finding stronger orders.

Problem 4. Construct syntactic simplification orders which reach beyond ω2-
termination.

The next problem is also concerned with α-termination. It is the natural
extension of old questions to the termination hierarchy.

Problem 5. What complexity bounds are imposed by α-termination?

Questions like this have not yet been considered. We only know that the com-
plexities occuring within ω-termination exhaust the multiple recursive functions,
but it is already unknown if this result is optimal.

Let us turn to computability considerations. The central results here are col-
lected in Table 8.2 on the next page. Both two entries concerning KBO are new.
We see that it is usually a good idea to use two distinct successor symbols. For
the general case I conjecture the functions computable via simple termination

164

8 Conclusion

M Comp(M) Comp1(M)

PT E2time ⊆ (Ptime ∪O(n))
KBO Atime Prec
MPO Prec Prec
LPO Mrec Mrec

Table 8.2: The sets of functions computable via standard termination proof methods M
using two respectively one successor symbol(s).

coincide with the <ϑ(Ωω)-recursive functions, hence, as we have shown, with
the functions nondeterministically computable via simple termination.

Problem 6. What functions are computable via simple termination?

In Chapter 7 we considered the length of maximal fr-controlled derivations,
depending on r ∈ R and the size of the signature, with fr(n,m) = n+r log2(m).
We found out that if the signature contains S − 1 symbols and if r < logS(2),
then the lengths of fr-controlled derivations (as a function of n) are bounded by
exponential functions. On the other hand, if the signature contains p+ 10 + k
symbols (with p > 1) and if r > logp(2), then lengths of fr-controlled derivations
may leave the<∆k-recursive functions. I feel these things should be investigated
further, and maybe the amount of required rules should also be taken into
consideration.

Problem 7. Consider triples (n,m, r) ∈ N×N×R. Over signatures containing
n symbols, what maximal fr-controlled derivation lengths are possible for TRSs
containing m rules?

These open problems show there is still a lot to do . . .

165

Bibliography

Ackermann, W., 1928. Zum Hilbertschen Aufbau der reellen Zahlen. Mathe-
matische Annalen, 99:118–133. → 29

Arai, T., 1998. Some results on cut-elimination, provable well-orderings, in-
duction and reflection. Annals of Pure and Applied Logic, 95(1–3):93–184.
→ 84

Baader, F. and T. Nipkow, 1998. Term Rewriting and All That . Cambridge
University Press, Cambridge. → 43, 64, 66

Bachmann, H., 1950. Die Normalfunktionen und das Problem der ausgezeich-
neten Folgen von Ordnungszahlen. Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zürich, 95:115–147. → 25

——, 1967. Transfinite Zahlen. Springer-Verlag, Berlin. → 33, 34
Bonfante, G., 2000. Complexity characterisations of restrictions of KBO.

Preprint. → 120, 132
Bonfante, G., A. Cichon, J.-Y. Marion, and H. Touzet, 1999. Complex-

ity classes and rewrite systems with polynomial interpretation. In Computer
Science Logic, vol. 1584 of Lecture Notes in Computer Science, pp. 372–384.
Springer-Verlag, Berlin. → 7, 70, 118, 132, 134

——, 2001. Algorithms with polynomial interpretation termination proof. Jour-
nal of Functional Programming, 11(1):33–53. → 8, 132, 133

Börger, E., 1989. Computability, Complexity, Logic, vol. 128 of Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam.
→ 39

Buchholz, W., 1980. Fundamentalfolgen für θ̄(ν). Handwritten notes in
German. → 98

——, 1993. Kruskals Theorem impliziert WF(ϑ(Ωω). Notes in German. → 96
——, 1995. Proof-theoretic analysis of termination proofs. Annals of Pure and

Applied Logic, 75:57–65. → 84
Buchholz, W., E. A. Cichon, and A. Weiermann, 1994. A uniform ap-

proach to fundamental sequences and hierarchies. Mathematical Logic Quar-
terly, 40:273–286. → 6, 32, 34, 36, 37, 81, 112, 163

Caron, A.-C., 1991. Linear bounded automata and rewrite systems: Influ-
ence of initial configuration on decision properties. In Proceedings of the

167

Bibliography

Colloquium on Trees in Algebra and Programming, vol. 493 of Lecture Notes
in Computer Science, pp. 75–89. Springer-Verlag, Berlin. → 58

Cichon, E. A., 1992. Termination orderings and complexity characterisations.
In P. Aczel, H. Simmons, and S. S. Wainer, eds., Proof Theory, pp. 171–193.
Cambridge University Press, Cambridge. → 6, 80, 93

Cichon, E. A. and P. Lescanne, 1992. Polynomial interpretations and the
complexity of algorithms. In Automated Deduction—CADE-11, vol. 607 of
Lecture Notes in Artificial Intelligence, pp. 139–147. Springer-Verlag, Berlin.
→ 7, 117, 118

Cichon, E. A. and E. Tahhan Bittar, 1998. Ordinal recursive bounds for
Higman’s theorem. Theoretical Computer Science, 201(1–2):63–84. → 4, 80,
81, 93

Cichon, E. A. and S. S. Wainer, 1983. The slow-growing and the Grzegor-
czyk hierarchies. Journal of Symbolic Logic, 48(2):399–408. → 37

Dauchet, M., 1989. Simulation of Turing machines by a left-linear rewrite
rule. In Dershowitz (1989), pp. 109–120. → 168

——, 1992. Simulation of Turing machines by a regular rewrite rule. Theoret-
ical Computer Science, 103(2):409–420. A preliminary version appeared as
Dauchet (1989). → 47, 58

Davis, M., 1958. Computability and Unsolvability. McGraw Hill, New York.
→ 38

Dershowitz, N., 1979. A note on simplification orderings. Information Pro-
cessing Letters, 9(5):212–215. → 42, 48, 49, 50

——, 1982. Orderings for term-rewriting systems. Theoretical Computer Sci-
ence, 17:279–301. → 50, 63

——, 1987a. Corrigendum to termination of rewriting. Journal of Symbolic
Computation, 4:409–410. → 168

——, 1987b. Termination of rewriting. Journal of Symbolic Computation,
3(1–2):69–115. See also Dershowitz (1987a). → 47, 65

Dershowitz, N., ed., 1989. Rewriting Techniques and Applications , vol. 355
of Lecture Notes in Computer Science. Springer-Verlag, Berlin. → 168, 170

Dershowitz, N. and J.-P. Jouannaud, 1990. Rewrite systems. In J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, vol. B, pp. 243–320.
Elsevier. → 43

Dershowitz, N., J.-P. Jouannaud, and J. W. Klop, 1995. Problems
in rewriting III. In J. Hsiang, ed., Rewriting Techniques and Applications,
vol. 914 of Lecture Notes in Computer Science, pp. 457–471. Springer-Verlag,
Berlin. → 5, 81

Dershowitz, N. and Z. Manna, 1979. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476. → 24

Dershowitz, N. and M. Okada, 1988. Proof-theoretic techniques for term

168

Bibliography

rewriting theory. In Third Annual Symposium on Logic in Computer Science,
pp. 104–111. IEEE Computer Society. → 74

Dershowitz, N. and R. Treinen, 1998. An on-line problem database. In
T. Nipkow, ed., Rewriting Techniques and Applications, vol. 1379 of Lecture
Notes in Computer Science, pp. 332–342. Springer-Verlag, Berlin. The list is
available at http://www.lri.fr/˜rtaloop. → 5, 81

de Jongh, D. H. J. and R. J. Parikh, 1977. Well-partial orderings and
hierarchies. Indagationes Mathematicae, 39(3):195–206. → 6, 73, 78

Dick, J., J. Kalmus, and U. Martin, 1990. Automating the Knuth Bendix
ordering. Acta Informatica, 28(2):95–119. → 66, 67

Ferreira, M. d. C. F., 1995. Termination of term rewriting: Well-founded-
ness, totality and transformations . Ph.D. thesis, Universiteit Utrecht. http:

//www.library.uu.nl/digiarchief/dip/diss/01847318/inhoud.htm. → 4,
25, 43, 48, 59, 60, 61, 63, 67

Ferreira, M. d. C. F. and H. Zantema, 1993. Total termination of term
rewriting. In Kirchner (1993), pp. 213–227. → 43, 169

——, 1996. Total termination of term rewriting. Applicable Algebra in Engineer-
ing, Communication and Computing, 7(2):133–162. A preliminary version
appeared as Ferreira and Zantema (1993). → 59

Fräıssé, R., 1986. Theory of Relations , vol. 118 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam. → 26

Friedman, H., 1999. FOM: 55:Term rewriting/proof theory. http://www.

math.psu.edu/simpson/fom/postings/9908/msg00066.html. Mailing list
entry from August 27th. An improved and corrected version of this is the un-
published preprint “Term Rewriting and Computational Complexity”. → 10,
113, 114

——, 2000. FOM: Urbana thoughts. http://www.math.psu.edu/simpson/

fom/postings/0006/msg00041.html. Mailing list entry from June 10th.
→ 1

Friedman, H. and M. Sheard, 1995. Elementary descent recursion and proof
theory. Annals of Pure and Applied Logic, 71(1):1–45. → 31, 32, 33, 37

Gallier, J. H., 1991. What’s so special about Kruskal’s theorem and the
ordinal Γ0? A survey of some results in proof theory. Annals of Pure and
Applied Logic, 53(3):199–260. → 5, 96

Geser, A., 1997. Omega-termination is undecidable for totally terminating
term rewriting systems. Journal of Symbolic Computation, 23(4):399–411.
→ 58

Geupel, O., 1988. Terminationsbeweise bei Termersetzungssystemen. Diplom-
arbeit, Technische Universität Dresden. → 3, 82

Girard, J.-Y., 1981. Π1
2-logic I. Dilators. Annals of Mathematical Logic,

21:75–219. → 37

169

http://www.lri.fr/~rtaloop
http://www.library.uu.nl/digiarchief/dip/diss/01847318/inhoud.htm
http://www.library.uu.nl/digiarchief/dip/diss/01847318/inhoud.htm
http://www.math.psu.edu/simpson/fom/postings/9908/msg00066.html
http://www.math.psu.edu/simpson/fom/postings/9908/msg00066.html
http://www.math.psu.edu/simpson/fom/postings/0006/msg00041.html
http://www.math.psu.edu/simpson/fom/postings/0006/msg00041.html

Bibliography

Grädel, E. and Y. Gurevich, 1995. Tailoring recursion for complexity.
Journal of Symbolic Logic, 60(3):952–969. → 8, 133

Grzegorczyk, A., 1953. Some classes of recursive functions. Rozprawy
Matematyczne, 4. → 31, 37, 83

Handley, W. G. and S. S. Wainer, 1994. Equational derivation vs. compu-
tation. Annals of Pure and Applied Logic, 70(1):17–49. → 39, 70, 71

Hardy, G. H., 1904. A theorem concerning the infinite cardinal numbers.
Quarterly Journal of Mathematics, 35:87–94. → 34

Hasegawa, R., 1994. Well-ordering of algebras and Kruskal’s theorem. In
N. D. Jones, M. Hagiya, and M. Sato, eds., Logic, Language and Computation,
vol. 792 of Lecture Notes in Computer Science, pp. 133–172. Springer-Verlag,
Berlin. → 74, 78

Higman, G., 1952. Ordering by divisibility in abstract algebras. Proceedings
of the London Mathematical Society, 3rd series, 2:326–336. → 27

Hofbauer, D., 1991. Termination Proofs and Derivation Lengths in Term
Rewriting Systems . Ph.D. thesis, Technische Universität Berlin. → 3, 6, 7,
8, 43, 48, 57, 75, 79, 80, 82, 83, 84, 85, 93, 119, 124, 125, 134

——, 1992. Termination proofs by multiset path orderings imply primitive
recursive derivation lengths. Theoretical Computer Science, 105(1):129–140.
→ 3, 7, 79, 83, 119, 134

——, 2000. An Upper Bound on the Derivational Complexity of Knuth-Bendix
Orderings . Tech. Rep. 28/00, Mathematische Schriften Kassel, Fachbereich
Mathematik/Informatik, Universität Gesamthochschule Kassel. To appear
in “Information and Computation”. → 3, 75, 80, 84, 116

——, 2001. Termination proofs by context-dependent interpretations. In Mid-
deldorp (2001), pp. 108–121. → 163

Hofbauer, D. and C. Lautemann, 1989. Termination proofs and the length
of derivations. In Dershowitz (1989), pp. 167–177. → 3, 8, 48, 80, 81, 83,
84, 94, 122, 124

Huet, G. and D. S. Lankford, 1978. On the Uniform Halting Problem for
Term Rewriting Systems. Report 283, Institut de Recherche en Informatique
et en Automatique, Le Chesnay, France. → 47, 71

Huet, G. and D. C. Oppen, 1980. Equations and rewrite rules: A survey.
In R. Book, ed., Formal Language Theory: Perspectives and Open Problems,
pp. 349–405. Academic Press, New York. → 117

Jech, T. J., 1978. Set Theory . No. 79 in Pure and Applied Mathematics.
Academic Press, New York. → 15

Kalmár, L., 1943. Egyzzerü példa eldönthetetlen aritmetikai problémára.
Matematikai és Fizikai Lapok, 50:1–23. → 28

Kamin, S. and J.-J. Lévy, 1980. Attempts for generalizing the recursive path
orderings. Unpublished manuscript. → 1, 42, 63, 64

170

Bibliography

Kaplan, S., 1987. Simplifying conditional term rewriting systems: Unification,
termination and confluence. Journal of Symbolic Computation, 4(3):295–334.
→ 50

Kirby, L. and J. Paris, 1982. Accessible independence results for Peano
arithmetic. Bulletin of the London Mathematical Society, 14:285–293. → 5,
94, 98

Kirchner, C., ed., 1993. Rewriting Techniques and Applications , vol. 690 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin. → 169, 172

Kleene, S. C., 1936. General recursive functions of natural numbers. Mathe-
matische Annalen, 112:727–742. → 40

Knuth, D. E. and P. B. Bendix, 1970. Simple word problems in universal
algebras. In J. Leech, ed., Computational Problems in Abstract Algebra, pp.
263–297. Pergamon Press, Oxford. → 1, 41, 42, 64, 66

König, D., 1927. Über eine Schlussweise aus dem Endlichen ins Unendliche.
Acta litteraria Academiae Scientiarum Hungaricae, 3:121–130. → 27, 136

Korovin, K. and A. Voronkov, 2000. A decision procedure for the existen-
tial theory of term algebras with the Knuth-Bendix ordering. In Proceedings
of the 15th Annual IEEE Symposium on Logic in Computer Science, LICS’00,
pp. 291–304. IEEE Computer Society, Washington. → 115, 116

——, 2001. Verifying orientability of rewrite rules using the Knuth-Bendix
order. In Middeldorp (2001), pp. 137–153. → 64, 67, 115, 116

Kreisel, G., 1952. On the interpretation of non-finitist proofs. II. Interpre-
tation of number theory. Applications. Journal of Symbolic Logic, 17:43–58.
→ 32

Krentel, M. W., 1988. The complexity of optimization problems. Journal
of Computer and System Sciences, 36(3):490–509. → 8, 133

Kruskal, J. B., 1960. Well-quasi-orderings, the tree theorem, and Vázsonyi’s
conjecture. Transactions of the American Mathematical Society, 95:210–225.
→ 27, 42, 48, 49, 50, 135, 136

Kurihara, M. and A. Ohuchi, 1990. Modularity of simple termination of
term rewriting systems. Journal of Information Processing, 31(5):633–642.
→ 57

Lankford, D. S., 1975. Canonical Algebraic Simplification in Computational
Logic. Memo ATP-25, Automatic Theorem Proving Project, University of
Texas, Austin. → 54

——, 1979. On Proving Term Rewriting Systems are Noetherian. Memo MTP-3,
Mathematics Department, Louisiana Tech. University, Ruston, LA. Revised
October 1979. → 65

Lautemann, C., 1988. A note on polynomial interpretation. Bulletin of the
European Association for Theoretical Computer Science, 36:129–131. → 3,
82

171

Bibliography

Lepper, I., 1999. Simply terminating rewrite systems with long derivations.
Submitted to “Archive for Mathematical Logic”. → 11

——, 2000a. The computational strength of the Knuth–Bendix order. Prelim-
inary, available via http://wwwmath.uni-muenster.de/logik/publ/pre/7.

html. → 11
——, 2000b. Derivation lengths and order types of Knuth–Bendix orders.

To appear in “Theoretical Computer Science”, see also http://wwwmath.

uni-muenster.de/logik/publ/pre/5.html. → 11
Lescanne, P., 1994. On termination of one rule rewrite systems. Theoretical

Computer Science, 132(1–2):395–401. → 47
Löb, M. H. and S. S. Wainer, 1970. Hierarchies of number-theoretic func-

tions I. Archiv für Mathematische Logik, 13:39–51. → 34
Loebl, M. and J. Matoušek, 1987. On undecidability of the weakened

Kruskal theorem. In S. G. Simpson, ed., Logic and combinatorics, vol. 65
of Contemporary Mathematics, pp. 275–280. Transactions of the American
Mathematical Society, Providence, RI. → 9, 136, 138

Middeldorp, A., ed., 2001. Rewriting Techniques and Applications , vol. 2051
of Lecture Notes in Computer Science. Springer-Verlag, Berlin. → 170, 171

Middeldorp, A. and B. Gramlich, 1993. Simple termination is difficult. In
Kirchner (1993), pp. 228–242. → 93, 172

——, 1995. Simple termination is difficult. Applicable Algebra in Engineer-
ing, Communication and Computing, 6(2):115–128. A preliminary version
appeared as Middeldorp and Gramlich (1993). → 58

Middeldorp, A. and H. Zantema, 1997. Simple termination of rewrite
systems. Theoretical Computer Science, 175(1):127–158. → 26, 27, 48, 50,
64, 67

Monk, J. D., 1976. Mathematical Logic, vol. 37 of Graduate Texts in Mathe-
matics. Springer-Verlag, Berlin. → 28

Nash-Williams, C. S. J. A., 1963. On well-quasi-ordering finite trees. Pro-
ceedings of the Cambridge Philosophical Society, 59(4):833–835. → 27

Odlyzko, A. M., 1995. Asymptotic enumeration methods. In R. L. Graham,
M. Grötschel, and L. Lovász, eds., Handbook of Combinatorics, vol. 2, pp.
1063–1229. Elsevier, Amsterdam. → 136

Otter, R., 1948. The number of trees. Annals of Mathematics, 49:583–599.
→ 136

Péter, R., 1935. Konstruktion nichtrekursiver Funktionen. Mathematische
Annalen, 111:42–60. → 29

——, 1936. Über die mehrfache Rekursion. Mathematische Annalen, 113:489–
527. → 30

——, 1951. Rekursive Funktionen. Akadémiai Kiadó, Budapest. See also the
English translation Péter (1967). → 30

172

http://wwwmath.uni-muenster.de/logik/publ/pre/7.html
http://wwwmath.uni-muenster.de/logik/publ/pre/7.html
http://wwwmath.uni-muenster.de/logik/publ/pre/5.html
http://wwwmath.uni-muenster.de/logik/publ/pre/5.html

Bibliography

——, 1967. Recursive Functions . Academic Press, New York. → 172
Plaisted, D. A., 1978. A Recursively Defined Ordering for Proving Termina-

tion of Term Rewriting Systems. Report R-78-943, Department of Computer
Science, University of Illinois, Urbana, IL. → 1, 42, 62, 63, 119

Pohlers, W., 1989. Proof Theory . No. 1407 in Lecture Notes in Mathematics.
Springer-Verlag, Berlin. → 15, 25

Post, E. L., 1947. Recursive unsolvability of a problem by Thue. Journal of
Symbolic Logic, 12(1):1–11. → 58

Raney, G. N., 1960. Functional composition patterns and power series rever-
sion. Transactions of the American Mathematical Society, 94:441–451. → 44

Rathjen, M. and A. Weiermann, 1993. Proof-theoretic investigations on
Kruskal’s theorem. Annals of Pure and Applied Logic, 60(1):49–88. → 4, 25,
26, 93

Ritchie, R. W., 1965. Classes of recursive functions based on Ackermann’s
function. Pacific Journal of Mathematics, 15:1027–1044. → 29

Robbin, J. W., 1965. Subrecursive Hierarchies. Ph.D. thesis, Princeton Uni-
versity, Princeton. → 33, 34, 37

Rose, H. E., 1984. Subrecursion: Functions and Hierarchies . Clarendon Press,
Oxford. → 30, 31, 34

Sakai, K., 1984. Knuth-Bendix algorithm for Thue system based on Kachinuki
ordering. ICOT Technical Memorandum TM-0087, ICOT, Institute for New
Generation Computer Technology, Tokyo, Japan. → 74

Schmidt, D., 1976a. Built-up systems of fundamental sequences and hierar-
chies of number-theoretic functions. Archiv für Mathematische Logik, 18:47–
53. → 34

——, 1976b. Postscript to “Built-up systems of fundamental sequences and
hierarchies of number-theoretic functions”. Archiv für Mathematische Logik,
18:145–146. → 34

——, 1979. Well-Partial Orderings and their Maximal Order Types . Habilita-
tionsschrift, Fakultät für Mathematik der Ruprecht-Karl-Universität Heidel-
berg. → 5, 6, 73, 78, 96

Schütte, K., 1977. Proof Theory . Springer-Verlag, Berlin. → 25
Schwichtenberg, H., 1971. Eine Klassifikation der ε0-rekursiven Funktionen.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 17:61–
74. → 34

Shepherdson, J. C. and H. E. Sturgis, 1963. Computability of recursive
functions. Journal of the Association for Computing Machinery, 10:217–255.
→ 38

Simpson, S. G., 1985. Non-provability of certain combinatorial properties of
finite trees. In L. A. Harrington, M. D. Morley, A. Scedrov, and S. G. Simpson,
eds., Harvey Friedman’s Research on the Foundations of Mathematics, vol.

173

Bibliography

117 of Studies in Logic and the Foundations of Mathematics, pp. 87–117.
North-Holland, Amsterdam. → 9, 135, 136

Skolem, T. A., 1923. Begründung der elementaren Arithmetik durch die re-
kurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit un-
endlichem Ausdehnungsbereich. Videnskapsselskapets Skrifter, Matematisk-
Naturvidenskapelig Klasse, 6:1–38. English translation in van Heijenoort
(1967). → 28

Touzet, H., 1997. Propriétés combinatoires pour la terminaison de systèmes
de réécriture. Ph.D. thesis, Université Henri Poincaré, Nancy. http://www.

lifl.fr/˜touzet/Publications/publi.html. → 3, 4, 6, 75, 77, 81, 83, 85, 94
——, 1998a. A complex example of a simplifying rewrite system. Lecture Notes

in Computer Science, 1443:507–517. → 94
——, 1998b. Encoding the Hydra battle as a rewrite system. In L. Brim,

J. Gruska, and J. Zlatuška, eds., Mathematical Foundations of Computer Sci-
ence, vol. 1450 of Lecture Notes in Computer Science, pp. 267–276. Springer-
Verlag, Berlin. → 4, 5, 6, 10, 43, 60, 61, 81, 94, 95, 103, 108

——, 1999. A characterization of multiply recursive functions with Higman’s
lemma. In P. Narendran and M. Rusinowitch, eds., Rewriting Techniques and
Applications, vol. 1631 of Lecture Notes in Computer Science, pp. 163–174.
Springer-Verlag, Berlin. → 4, 6, 81, 94, 95, 107, 108, 112, 161, 163

Turing, A. M., 1936. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 2nd
series, 42:230–265. See also Turing (1937). → 38

——, 1937. On Computable Numbers, with an Application to the Entschei-
dungsproblem. A correction. Proceedings of the London Mathematical Society,
2nd series, 43:544–546. → 174

van Heijenoort, J., 1967. From Frege to Gödel . Harvard University Press,
Cambridge. → 174

Veblen, O., 1908. Continuous increasing functions of finite and transfinite or-
dinals. Transactions of the American Mathematical Society, 9:280–292. → 4,
25, 81, 95

Wainer, S. S., 1970. A classification of the ordinal recursive functions. Archiv
für Mathematische Logik, 13:136–153. → 34

——, 1972. Ordinal recursion, and a refinement of the extended Grzegorczyk
hierarchy. Journal of Symbolic Logic, 37(2):281–292. → 34, 37

Weiermann, A., 1992. Proving termination for term rewriting systems. In
E. Börger, G. Jäger, H. K. Büning, and M. M. Richter, eds., Computer Sci-
ence Logic. 5th Workshop, CSL’91, vol. 626 of Lecture Notes in Computer
Science, pp. 419–428. Springer-Verlag, Berlin. → 25, 74

——, 1994. Complexity bounds for some finite forms of Kruskal’s theorem.
Journal of Symbolic Computation, 18(5):463–488. → 4, 5, 25, 80, 81, 93, 95,

174

http://www.lifl.fr/~touzet/Publications/publi.html
http://www.lifl.fr/~touzet/Publications/publi.html

Bibliography

113
——, 1995. Termination proofs for term rewriting systems by lexicographic path

orderings imply multiply recursive derivation lengths. Theoretical Computer
Science, 139(1–2):355–362. → 3, 7, 79, 80, 84, 85, 120, 134

——, 1997a. Ordinalzahlbezeichnungssysteme und subrekursive Hierarchien.
Handwritten notes in German. → 98

——, 1997b. Sometimes slow growing is fast growing. Annals of Pure and
Applied Logic, 90(1–3):91–99. → 34

——, 2000. An application of graphical enumeration to PA. Submitted to
“Journal of Symbolic Logic”. → 9, 136, 160

Zantema, H., 1992. Termination of Term Rewriting by Interpretation. Tech.
Rep. RUU-CS-92-14, Department of Computer Science, Utrecht University.
→ 3, 59, 175

——, 1993. Termination of term rewriting by interpretation. In M. Rusinowitch
and J. Rémy, eds., Conditional Term Rewriting Systems, Third International
Workshop, CTRS-92, vol. 656 of Lecture Notes in Computer Science, pp. 155–
167. Springer-Verlag, Berlin. Full version appeared as Zantema (1992). → 2,
10, 42, 51, 56, 57

——, 1994. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17(1):23–50. → 2, 10, 42, 51, 54, 56, 57,
59, 62

——, 1995. Total termination of term rewriting is undecidable. Journal of
Symbolic Computation, 20(1):43–60. → 58

——, 1999. The Termination Hierarchy for Term Rewriting . Tech. Rep. UU-
CS-1999-22, Department of Computer Science, Utrecht University. http:

//www.cs.uu.nl/docs/research/publication/TechList2.html. Report ver-
sion of Zantema (2001). → 10, 48, 54, 55, 56, 57, 58, 59, 61

——, 2001. The termination hierarchy for term rewriting. Applicable Algebra
in Engineering, Communication and Computing, 12(1–2):3–19. → 10, 48,
54, 56, 61, 175

Zemke, F., 1977. P.R.-regulated systems of notation and the subrecursive
hierarchy equivalence property. Transactions of the American Mathematical
Society, 234:89–118. → 37

175

http://www.cs.uu.nl/docs/research/publication/TechList2.html
http://www.cs.uu.nl/docs/research/publication/TechList2.html

GlossaryofNotation

s̄ an abbreviation for s1, . . . , sn, 13

0̄ an abbreviation for 0, . . . , 0, 13

nk k consecutive occurrences of n, 13

A ⊆ B A is a subset of B, 14

A (B A is a subset of B 6= A, 14

A \B set theoretic difference: {x ∈ A : x /∈ B}, 14

N {0, 1, 2, . . . }, the nonnegative integers, 14

R the reals, 14

N+ {1, 2, . . . }, the positive integers, 14

R+ the positive reals, 14

R+
0 the nonnegative reals, 14

[n,m] the set {n, n+ 1, . . . ,m}, 14

card(W) the cardinality of W , 14

(a1, . . . , an) the (finite ordered) tuple of a1, . . . , an, 14

|·| the length of a tuple, 14

× the Cartesian product, 14

An the n-fold product of A, 14

A∗ the set of (finite) tuples over A, 14⊎
the disjoint union, 14

f : X → Y f is a function from X to Y , 14
XY the set of functions from X to Y , 14

g ◦ f the function which maps a to g(f(a)), 14

fn(a) the nth iteration of f , applied to a, 14

g(·, b)n(c) hn(c) for the function h mapping a to g(a, b), 14

n! the factorial function, 14

n ·−m max {n−m, 0}, 15

brc the unique n ∈ N with n 6 r < n+ 1, 15

dre the unique n ∈ N with n− 1 < r 6 n, 15

177

Glossary of Notation

logp(r) the logarithm of r with base p, 15

H. . .I a multiset, 15

M dN multiset union, 15

M b N multi-subset, 15

M
N multiset difference, 15

p̄ R q̄ pi R qj for all affected i and j, 15

(P,4) a reflexive pre- or partial order, 16

(P,≺) the strict part of a pre- or partial order, 16

maxX the maximum of X, with the convention max ∅ = 0, 17

minX the minimum of X, 17

supX the supremum of X, 17

infX the infimum of X, 17

On the proper class of ordinals, 17

β + 1 the ordinal successor of β, 18

ω the least limit ordinal, 18

Lim the class of limit ordinals, 18

Ω the first uncountable ordinal, 18

otype(P,≺) the order type of (P,≺), 18

otypeP
≺ the canonical embedding of a well-founded (P,≺) into otype(P,≺), 18

enumP
≺ the enumerating function of the well-order (P,≺), 18

≺�Q the restriction of ≺ to Q, 19

(aι)ι<α a sequence of length α, 19

A<β the sequences over A having length below β, 19

α+ β ordinal addition, 21

α · β ordinal multiplication, 21

αβ ordinal exponentiation, 21

H the class of principal ordinals, 22

E the epsilon numbers: λ with λ = ωλ, 22

εα the αth epsilon number, 22

ωn an ω-tower: ω0 = 1 and ωn+1 = ωωn , 22

=NF additive normal form, 22

=CNF Cantor normal form, 22

⊕ the natural sum of ordinals, 22

∗ the concatenation of sequences, 22

6ext if the sequence a′ extends a, then a 6ext a
′, 22

178

Glossary of Notation

≺1,n the concatenation of ≺1, . . . ,≺n, 23

≺1,n
lex the lexicographic product of ≺1, . . . ,≺n, 23

≺n
lex the n-fold lexicographic product of ≺, 23

≺∗lex the lexicographic order based on ≺, 23

<lex abbreviation for <n
lex (if n is obvious) and ≺∗lex, 23

≺mul the multiset extension of (P,≺), 24

EΩ(α) the countable epsilon numbers needed to represent α < εΩ+1, 25

α? maxEΩ(α), 25

ϑ a very pleasant unary one-to-one function from εΩ+1 to E ∩ Ω, 25

ϑ(Ωω) the small Veblen number, 25

B(A) the set of (finite rooted ordered) trees with labels from A, 26

|·| the size of a tree, 26

≺hemb homeomorphic embedding of labeled trees, 26

g <d f the function g is (everywhere) dominated by f , 27

g <ed f the function g is eventually dominated by f , 27

g 6ed f the variant of <ed using 6, 27

X 6ed Y any member of X is eventually dominated by a member of Y , 28

X ≈ed Y X 6ed Y and Y 6ed X, 28

Sub(g, h̄) substitution of the hi in g, 28

Elem the elementary functions, 28

χP characteristic function for the set P , 28

2n n times iterated exponentiation by 2, 28

PRec(g, h) primitive recursion based on g and h, 29

Prec the primitive recursive functions, 29

Ack the binary Ackermann function, 29

Mk the k-recursive functions, 30

Mrec the multiple recursive functions, 30

En the nth Grzegorczyk class, 31

Em the mth Grzegorczyk function, 31

Λ a countable limit ordinal, 31

count-h the count function for h, 32

DRec(g, h) the function defined from g and h via descent recursion, 32

Drec(α) the α-recursive functions, 32

Drec(<α) the <α-recursive functions, 32

α[n] the nth member of the fundamental sequence associated with α, 33

179

Glossary of Notation

(Λ, ·[·]) a Bachmann system, 33

Fα the αth fast growing function, 34

Hα the αth Hardy function, 34

Lα the αth counting function, 34

Gα the αth slow growing function, 34

P a program for a RM, 38

(j,+, q) an addition instruction for a RM, 38

(j,−, q) a subtraction instruction for a RM, 38

(j, q, r) a jump instruction for a RM, 38

(p; b̄) a configuration of a RM, 38

Ptime the functions computable in polynomial time, 39

Etime the functions computable in exponential time, 39

E2time the functions computable in double exponential time, 39

Linspace the functions computable using linear space, 39

O(f) the functions g with g 6ed cf + d for some c, d, 39

Atime the functions computable with timebound in Ack(O(n), 0), 39

Σ a signature, 43

#(f) the arity of f , 43

Σ(n) the members of Σ with arity n, 43

Σ(>n) the members of Σ with arity > n, 43

Σ(6n) the members of Σ with arity 6 n, 43

Ar(Σ) maximal arity of (the function symbols in) Σ, 43

T (Σ,X) the term algebra over Σ and X , 43

V the variables, 43

root(s) the root symbol of s, 43

O(s) the symbols occuring in s, 43

V(s) the variables occurring in s, 43

T (Σ) the closed terms over Σ, 43

S(s) the subterms of s, 43

<sub the (proper) subterm relation, 43

δu spits out 1 iff the input equals u, otherwise 0, 43

|s|u the number of occurrences of u in s, 43

|s| the size or length (number of symbols) of s, 44

dp(s) the depth of the term s, 44

δkl Kronecker’s δ: 1 if k = l, 0 else, 44

180

Glossary of Notation

fn(s) iteration of function symbols, 45

σ a substitution, 45

sσ abbreviation for σ(s), 45

(l, r) a rewrite rule, 45

R a term rewriting system, 45

→R the rewrite relation, 45
+→R the transitive closure of →R, 45
∗→R the transitive and reflexive closure of →R, 45
.·→R s

.·→R t iff s→R t and t is unique, 45
.→R the transitive closure of .·→R, 45

→A a rewrite step due to the rule (A), 45

Emb(Σ) the set of (representatives of) embedding rules, 46

ε the empty string, 46
∗→> s

∗→> t if s ∗→ t is bounded by |s|, 46
∗→6 s

∗→6 t if s ∗→ t is bounded by |t|, 46
∗→= s

∗→= t if there is a derivation from s to t where all terms have the same
size, 46

DlR the (depth) complexity of R, mapping n to the maximal dlR(s) with
dp(s) 6 n, 47

dlR dlR maps a closed term s to the maximal length of a derivation starting
with s, 47

DcR the size complexity of R, defined like DlR, but based on |s|, 47

SDlR the shortest (depth) complexity of R, 48

SDcR the shortest size complexity of R, 48

sdlR sdlR maps a closed term s to the minimal length of a derivation to
normal form starting with s, 48

6emb the embedding relation, 50

I an interpretation, mapping closed terms to a partial order, 52

≺I the partial order on T (Σ,V) induced by I, 52

(A,≺,F) a Σ-algebra over (A,≺), 54

[f]A a function from An to A, where n is the arity of f , interpreting f in a
Σ-algebra based on (A,≺), 54

(α,F) the Σ-algebra (α,<,F), 54

� satisfaction in first order logic, 55

[[·, ·]]A the pre-interpretation based on a Σ-algebra, 55

≺A the partial order on T (Σ,V) induced by the Σ-algebra (A,≺,F), 55

181

Glossary of Notation

[[·]]A the interpretation based on a Σ-algebra, 55
[[·]] [[·]]A, if (A,≺) is canonical, 55
[·] [·]A, if (A,≺) is canonical, 55
M a collection of reduction orders, 62
M(1) the members ofM with Σ = Σ(61), 62
∼ permutative equivalence on terms, 63
≺mpo MPO based on the precedence ≺, 63
≺lpo LPO based on the precedence ≺, 63
i the special symbol of a KBO, 65
µ the weight function of a KBO, 65
≺kbo a KBO based on the precedence ≺, 65
s ≡ ias′ s is s′ labeled with a ∈ N, 68
≺kbo2 an alternative (equivalent) definition of ≺kbo, 68
ν a companion to the weight function, but mapping into N+, 69
S the input successor, 70
P the output successor, 70
Comp(M) the functions computable by a TRS terminating viaM, 70
Comp1(M) the functions computable by a TRS terminating via M using only one

successor symbol, 70
fi in Section 5.2: a member of the fixed signature, 85
An a function used to encode tuples; based on fast growing functions, 86
An(a, c) an abbreviation of An((a), c), 86
I in Section 5.2: an interpretation based on A, 87
ϕᾱ a branch of the Veblen ϕ function, 95
ϕ the Veblen function, 95
ψ the fixed point free Veblen function, 96
k in Section 5.3, k > 0 is fixed and the k + 1-ary ψ is considered, 96
∆k the first infinite ordinal closed under + and the k + 1-ary ψ, 96
Fix(ᾱ) the fixed points of ϕᾱ, 97
ψ(ᾱ, β)∗ ψ(ᾱ, β0), if β = β0 + 1, and β otherwise, 97
ISᾱ(γ) the (relative to ᾱ) interesting subterms of γ, 97
MSᾱ(δ̄) the (relative to ᾱ) maximal interesting subterm of δ̄, 97
α[n] the nth member of the standard fundamental sequence for α < ∆k, 98
α[n,m] (. . . ((α[n])[n+ 1]) . . .)[m], 98
c+ the configuration next to c, 98
Σ0 the signature {0,S,+,P} used to denote ordinals below ∆k, 99

182

Glossary of Notation

0 represents the ordinal 0, 99
S represents the ordinal successor, 99
+ represents +, 99
P represents ψ, 99
val(s) the canonical value of a term in T (Σ0), 99
D the set of standard terms; subset of T (Σ0), 100
D(α) the collection of standard terms with value α, 100
s× n +(·, s)n−1(s), 100
D(Lim) the set of standard terms denoting limit ordinals, 100
Fix(s̄) the analog to Fix(ᾱ) on standard terms, 100
MSs̄(t̄) the analog to MSᾱ(β̄) on standard terms, 100
d〈n〉 the (possibly nonstandard) term equivalent to (val(d))[n], 101
d[n] the standard term equivalent to (val(d))[n], 101
R the TRS defined in Section 5.3.4; it simulates all Hydra battles below

∆k, 102
Σ in Section 5.3.4: the signature R is based on, 102
• a unary member of Σ, used to encode battle configurations, 102
◦ a unary member of Σ, used at the end of a battle step, 102
8 a unary member of Σ, used to encode battle configurations, 102
M a k + 1-ary member of Σ, used for multiplications, 102
Ji an i+ 1-ary member of Σ, used for iterations of P, 102
Qij an i+ 1-ary member of Σ, used for (5.8i), 102
Ri an i+ 2-ary member of Σ, used for (5.8j), 102
•8n+1d the term which encodes the battle configuration (val(d), n), 103
(P,≺) the lexicographic product of the usual < on ∆k \ {0}, ω and ω, 108
α in Section 5.3.5: an abbreviation for (α, 0, 0) ∈ P, 108
(P,≺,F) the Σ-algebra used to establish total termination of R, 108
(R,Σ,≺) a well-founded ordered TRS, 113
dl≺R(s) like dlR(s), yet considering only ≺-derivations, 113
Dl≺R like DlR, but based on dl≺R, 113
≺gkbo the ground version of ≺kbo, 115
[s1, . . . , sn] the term representing the list containing s1, . . . , sn, 122
s ∗ t concatenation of the list s with the term t, 122
p an attribute, 123
x+ 1p the list element x+ 1, attributed by p, 123
sn n occurrences of the (possibly attributed) number term s in a list, 123

183

Glossary of Notation

Rf a TRS terminating via KBO, simulating an RM-computation of f , 124
H Hofbauer’s TRS which terminates via KBO and has size complexity

beyond primitive recursion, 124
A the attribute set used by A, 126
A a TRS terminating via KBO whose shortest size complexity function

grows beyond primitive recursion, 126
C homeomorphic embedding with only one label, 135
KC

f the function mapping n to the first N such that, for every sequence of
trees Ti of length N , there are i < j with Ti P Tj , 136

fr a control function with r ∈ R; we have fr(n,m) = n+ r log2(m), 136
KR

f the function mapping n to the first N such that there is no R-derivation
of length N controlled by f , 136

p in Section 7.1 p-adic representations (with p > 2) are considered, 139
a in Section 7.1 we have a = p− 1, 139
|n|p the p-adic length of n, 139
i in Section 7.1 p-adic representations get iterated i times, 139

|n|(i)p the i times iterated p-adic length of n, 139
Σp a signature containing 0, 1, . . . , a, 0,M,N, 140
m the member of Σp representing the digit m ∈ [0, a], 140
0 the member of Σp representing the digit 0 carrying an overflow, 140
M the member of Σp used to separate two p-adic representations, 140
N the constant in Σp, 140
codep(n) the p-adic representation of n, 140

codep,i(n) codep(|n|(i)p), 141
code+

p,i(n) codep,i(n + 1), if it has the same size as codep,i(n), and otherwise

00|n|
(i+1)
p −1, 141

code+
p (n) abbreviation of code+

p,0(n), 141

logsp,i(n) the M-divided sequence from codep(|n|(i)p) to codep(|n|(0)p), 141

logs+p,i(n) code+
p,i(n), followed by M logsp,i−1(n+ 1) or N, 141

Rp a totally terminating TRS over Σp which reduces logsp,i(n) to logs+p,i(n),
if n > 0, 141

R′ a minor modification of the Hydra battle simulator R, 144
Σ′

p the union of the signatures Σ and Σp, 152
R′p a TRS over Σ′

p, slightly extending both R′ and Rp, 152

Kr an abbreviation of KR′p
gr , 157

184

Index

accommodation of exponentiation, 40,
70

Ackermann function, 29, 39–40, 79–83,
93, 113, 119, 124–132

k-ary, 30, 64, 80, 93, 120
additive normal form, 22
anagram, 98
arity, 43

maximal, 43
assignment, 55
Atime, 39, 121, 129, 132, 134
attribute, 123

awake, 126
sleeping, 126

Bachmann
property, 33
system, 33, 97–99

tame, 37
battle → Hydra, battle
behavior, 129
best-case, 129
branch

of a function, 29, 95
of a tree, 27

Cantor normal form, 22
cardinality, 14
Cartesian product, 14
chain, 19

descending, 19
class, 17
closed term, 43
compatible

pair of ordinals, 100

TRS
with a partial order, 49
with a Σ-algebra, 55

weight and signature, 65
complexity, 71, 79–114, 163–164

depth, 47
shortest

depth, 48
size, 48, 117, 119, 120, 129

size, 47
within ground KBO, 116
within KBO, 84–93
within LPO, 83–84
within LT, 83
within MPO, 83
within PT, 82
within simple termination, 93–113,

135–162
composition, 28
computability → computation
computation

by a TRS, 70–71, 117–134, 164
nondeterministic, 38, 41, 124,

132–134
on a RM, 38
on a TM, 38
spacebound, 39
timebound, 38–40

Ack(O(n), 0) → Atime

double exponential → E2time

exponential → Etime

polynomial → Ptime

via a method, 70
via KBO, 120–132

185

Index

via LPO, 119–120
via MPO, 119–120
via PT, 118
via simple termination, 132–134,

165
concatenation

list → list, concatenation
of partial orders, 23
of sequences, 22

configuration
Hydra → Hydra, configuration
RM → RM, configuration
TM → TM, configuration

conjecture, 116, 133, 163–165
constants, 43
convention, 13, 17, 43, 65, 123
Correspondence Problem, 58

decidable, 47, 58, 63, 64, 67, 115
depth of a term, 44
derivation → TRS, derivation

length function → complexity
disjoint union, 14
domination, 27

elementary
function, 28
recursive ordinal notation system
→ ERONS

relation, 28
embedding, 17, 50

homeomorphic, 26, 135
enumerating function, 18
epsilon, 96, 108, 109
equivalence, permutative, 63
ERONS, 31
Etime, 39, 118, 133, 134
E2time, 39, 118, 133, 134

factorial function, 14
first order logic, 55
fixed point, 20
function, 14

Ackermann → Ackermann, func-
tion

branch, 29, 95
characteristic, 28
computable → computation
continuous, 20
count, 32
counting, 34, 94, 98
derivation length → complexity
domination of a, 27
elementary, 28
enumerating, 18
eventual domination of a, 27
factorial, 14
fast growing, 34–37, 79, 85–91
fixed point of, 20
Hardy → Hardy function
iteration of, 14
monotone, 16

in, 16
nondeterministically computable
→ computation, nondeter-
ministic

normal, 20
number-theoretic, 14
order-preserving, 17
recursive, 38, 71
α, 32
descent, 32, 37, 80–82
k-, 30, 84
<α-, 32, 93–95, 99, 106, 111–

114, 133, 136, 157, 160–162,
165

multiple, 30, 40, 57, 80, 83, 84,
93, 94, 112, 120, 134, 162

ordinal, 32
primitive, 29, 31, 33, 35, 37,

40, 57, 79, 83, 84, 93, 112,
119–121, 125, 129, 132, 134

slow growing, 34, 37, 80, 93, 112
subterm property of a, 16
symbol, 43

binary, 43

186

Index

iteration of, 45
ternary, 43
unary, 43

Veblen → Veblen, function
weakly monotone, 16

in, 16
weight → weight function

fundamental sequence → sequence,
fundamental

ground
KBO, 115
substitution, 45
term, 43

Grzegorczyk class, 31, 83

Hardy function, 32–37, 80–82, 94,
98–99, 112–113

principle → principle, Hardy
function

Hercules → Hydra, battle
Higman’s Lemma, 27, 94
homeomorphic embedding → embed-

ding, homeomorphic
Hydra, 98–102

battle, 94–95, 98–99, 102–114,
132, 138–139, 144–162

length, 98
configuration, 98

next, 98

incremental
precedences, 62
signatures, 62

input successor → successor, input/
output

interpretation, 52–56, 82, 87, 91, 107,
116, 121

monotone, 53
subterm property of a, 53
weakly monotone, 53

iteration
of function symbols, 45
of functions, 14

König’s Lemma, 27
KBO, 64–69, 75–77, 79–80, 84–93,

111–113, 115–116, 120–132,
134

ground, 115, 164
KBO−, 66, 77, 84, 115, 120
Knuth–Bendix order → KBO
Kronecker’s δ, 44
Kruskal’s Tree Theorem

for PWOs, 26, 27, 135–136
for terms, 50

label
of a tree, 26
term, 67

length
of a derivation → complexity
of a Hydra battle, 98
of a sequence, 19
of a term, 44
of a tuple, 14
p-adic (of a number), 139

lexicographic
order, 23
path order → LPO
product, 23
rewrite rule, 122

limit, 18
limited recursion, 29
linear termination → LT
Linspace, 39
list, 122

attributed, 123
concatenation, 122
good, 126
length, 122
sleeping, 126

logarithm, 15, 136–143, 152–162
LPO, 63–64, 67, 74, 78–81, 83–84, 92,

107, 111–114, 116, 119–120,
129, 134

LT, 57, 83, 84

machine

187

Index

random access → RM
register → RM
Turing → TM

mapping → function
model, 55
modified subtraction, 15
MPO, 63, 67, 74, 79–81, 83, 92, 107,

111–113, 116, 119–120, 129,
134

multiple
recursion, 30
recursive function, 30

multiplication, 100
multiset, 15

difference, 15
extension, 24
order, 24
path order → MPO
union, 15

NKBO, 66–67, 75, 91
Noetherian, 47
normal form

ordinal → ordinal, normal form
term, 46
theorem, 40

normalization, 53
number

natural, 14
real, 14
Veblen → Veblen, number

number-theoretic function, 14

O-calculus, 39
occurrence, 43
order

isomorphic, 17
isomorphism, 17
Knuth–Bendix → KBO
lexicographic, 23

path → LPO
multiset path → MPO
partial, 15–27

chain, 19

cofinal set, 17
compatible with, 49
concatenation, 23
greatest element, 17
incremental, 62
infimum, 17
least element, 17
lexicographic product, 23
lower bound, 17
maximum, 17
minimum, 17
normalizing a TRS, 49
restriction, 19
similar, 17
subterm property of a, 49
supremum, 17
upper bound, 17
well-founded, 17

partial well- → PWO
pre-, 16
quasi-, 16
recursive path → RPO
reduction, 48
rewrite, 48
simplification, 42, 49
strict part, 16
type, 18–25, 73–82, 93–94, 107–

108, 111–113
well-, 17

ordinal, 17
addition, 21
compatible pair , 100
countable, 18
epsilon, 22
exponentiation, 21
finite, 18
infinite, 18
limit, 18
multiplication, 21
natural sum, 22, 74
normal form

additive, 22
Cantor, 22

188

Index

k-, 96
notation system, 31
principal, 22, 24
successor, 18
uncountable, 18

Otter’s tree constant, 136
output successor → successor, input/

output

partial
order → order, partial
well-order → PWO

permutative equivalence, 63
polynomial termination → PT
precedence, 42, 62
preorder, 16
primitive

recursion, 29
recursive function → function,

recursive, primitive
principle

Hardy function, 81, 112, 163
slow growing, 80, 81, 93, 112

product
Cartesian, 14
lexicographic, 23

program
deterministic, 38
nondeterministic, 38

property
Bachmann → Bachmann, prop-

erty
subterm, 16, 49, 53

PT, 57, 64, 67, 82–83, 118, 133, 134
PT-1, 118, 133, 134
PT-L, 118, 133, 134
Ptime, 39, 118, 133, 134
Ptime, 115
PWO, 26

quasiorder, 16

recursion
descent, 32

k-, 30
limited, 29
multiple, 30
primitive, 29
transfinite, 20

recursive
function → function, recursive
path order → RPO

reduction → TRS, derivation
register machine → RM
relation, 14, 28

antisymmetrical, 16
closed under

contexts, 45
substitutions, 45

elementary, 28
embedding → embedding, homeo-

morphic
irreflexive, 16
linear, 16
reflexive, 16
rewrite, 45
symmetrical, 16
total, 16
transitive, 16

representation, p-adic, 140
rewrite

relation, 45
rule, 45

duplicating, 46
embedding, 46
increasing, 46
lexicographic, 122
size-preserving, 46

system → TRS
RM, 38–40, 70, 123–124, 129–132

configuration, 38
input, 38
instruction, 38
output, 38
program, 38

root, 43
RPO, 64

189

Index

with lexicographic status, 64
with multiset status, 64
with status, 64

rule → rewrite, rule

satisfaction, 55
sequence, 19

concatenation, 22
extension, 22
finite, 19
fundamental, 33, 97–99
infinite, 19
length, 19

set
Cartesian product, 14
difference, 14
transitive, 17

Σ-algebra, 54–62, 108–111, 141–142,
153–154

compatible, 55
monotone, 54
simple monotone, 54
subterm property, 54
total, 54
weak monotone, 54
well-founded, 54

signature, 43
monadic, 46

similarity of partial orders, 17
simplification order → order, simplifi-

cation
size

of a term, 44
of a tree, 26

special symbol, 65–67, 75–77, 79, 84,
90–92, 116, 120, 121, 123, 129,
132

SRS, 46, 47, 59, 62, 64, 67, 78–81, 83,
93–95, 112, 161

string
empty, 46
rewriting system → SRS

structure, 55
subrecursion, 27–37

substitution, 28, 45
ground, 45

subterm, 43
interesting, 97

maximal, 97
proper, 43
property → property, subterm

subtraction, modified, 15
successor

input/output, 70, 118, 120–121,
129–132, 134, 165

ordinal, 18
symbol, 43

function → function, symbol
number of occurrences, 43
occurrence of, 43
root, 43
special → special symbol
successor → successor, input/

output
system

Bachmann → Bachmann, system
rewriting → TRS

term, 43
algebra, 43
closed, 43
depth of a, 44
embedding, 50
ground, 43
in normal form, 46
labeled, 67, 68
length of a, 44
normal form of a, 46
number, 123
rewriting system → TRS
size of a, 44
standard, 99, 100

termination → TRS, termination
TM, 38–40, 47, 70

configuration, 38
instruction, 38
program, 38

tower, 22

190

Index

tree
branch, 27
embedding → embedding, homeo-

morphic
finitely branching, 27
labeled, 26
over A, 27

TRS, 45
compatible

with a partial order, 49
with a Σ-algebra, 55

computation → computation, by
a TRS

confluent, 46
for a term, 46

derivation, 46
bounded, 46
finite, 46
from . . . to . . . , 46
infinite, 46
length, 46
length function → complexity
linear, 47, 124, 126–129, 133
noncycling, 47
≺-, 113
≺,g-, 114
R-, 46
size-controlled, 136, 152–162,

165
noncycling, 47, 137, 160
normalizing, 49
reduction → TRS, derivation
simplifying, 49
termination, 47
α-, 56–62, 67, 77, 78, 91–93, 164
α-recursive, 57
elementary, 57
En-, 57
exponential, 57
<α-, 57, 84
<α-recursive, 57
linear → LT
Mn-, 57

multiple recursive, 57, 83, 84
ω-, 56, 58–60, 62, 67, 79, 82–84,

86, 91, 92
polynomial → PT
primitive recursive, 57, 83
simple, 56–58, 78–82, 93–116,

132–134
total, 56–65, 78, 93–95, 108–111,

138, 141, 144, 153, 160
via, 62

well-founded ordered, 113
tuple, 14, 19

length, 14
over A, 14

Turing machine → TM

undecidable → decidable
union

disjoint, 14
multiset, 15

value, 99
variable, 43
Veblen

function, 95–97
fixed point free, 96

number
big, 25
small, 25–26, 73, 74, 81, 95–102,

111–114, 133–134

weight function, 64–66, 68, 90, 91, 115
compatible, 65

well-founded → order, partial, well-
founded

well-order, 17
partial → PWO

worst-case, 129

191

Curriculum Vitae

Ingo Lepper

geboren am 1. 10. 1969 in Münster,

ledig,

Vater Paul Lepper,
Mutter Maria Lepper, geb. Köper

Schulbildung

1976–1979 Grundschule in Everswinkel

1979–1988 Gymnasium in Warendorf

31. 5. 1988 Abitur in Warendorf

Studium

10/1988 Beginn des Studiums der Mathematik an der Westfälischen
Wilhelms-Universität Münster

7. 10. 1997 Diplom im Fach Mathematik

06/1998 Beginn der Dissertation am Institut für mathematische
Logik und Grundlagenforschung, betreut von Herrn
Prof. Dr.Andreas Weiermann

Tätigkeiten

05/1996–03/1997 studentische Hilfskraft am Institut für mathematische Logik
und Grundlagenforschung

01/1998–12/1999 Mitarbeit am DFG-Projekt »Beweistheorie und Rekursions-
theorie«

seit 01/2000 wissenschaftlicher Mitarbeiter am Institut für mathemati-
sche Logik und Grundlagenforschung

193

	1 Introduction
	2 Preliminaries
	2.1 Conventions
	2.2 Basic definitions
	2.3 Orders and Order types
	2.4 Subrecursive Hierarchies
	2.5 Complexity Classes

	3 Term Rewriting
	3.1 Basic Definitions
	3.2 Abstract Orders on Terms
	3.3 Semantic Orders on Terms
	3.3.1 Interpretations
	3.3.2 Sigma-algebras and the Termination Hierarchy

	3.4 Syntactic Orders on Terms
	3.4.1 Multiset Path Orders
	3.4.2 Lexicographic Path Orders
	3.4.3 Knuth-Bendix Orders

	3.5 Functions Computable by a TRS

	4 Order Types
	4.1 Order Types of MPOs and LPOs
	4.2 Order Types of KBOs
	4.3 Order Types of Simplification Orders

	5 Derivation Lengths
	5.1 omega-termination
	5.2 Termination via KBO
	5.3 Simple Termination is Complex
	5.3.1 The Fixed Point Free Veblen Function
	5.3.2 Fundamental Sequences and Hydrae below Delta_k
	5.3.3 Encoding all Hydrae below Delta_k
	5.3.4 Simulating all Hydra Battles below Delta_k
	5.3.5 Proof of Total Termination

	5.4 A Digression: LPO-Controlled Derivations
	5.5 Another Digression: Ground Termination

	6 Computability
	6.1 Computability via PT
	6.2 Computability via MPO and LPO
	6.3 Computability via KBO
	6.3.1 List Operations Compatible with KBO
	6.3.2 Simulating a Timebounded RM
	6.3.3 Long Linear Derivations
	6.3.4 Hard Computation via KBO

	6.4 Computability via Simple Termination

	7 Very Long Size-Controlled Derivations
	7.1 Sequences of Iterated Logarithms
	7.2 Hydra Battles, Revisited
	7.3 Lengthened Derivations

	8 Conclusion
	Bibliography
	Glossary of Notation
	Index
	Curriculum Vitae

