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Introduction

Algebraic topology is the study of topological spaces and continuous maps
with algebraic methods. One extracts information from the topological
world by translating it into the world of algebra. To topological spaces
and continuous maps, one assigns algebraic invariants. One of the most im-
portant invariants of a space X is the Euler characteristic x(X). The analog
when dealing with an endomorphism of a topological space is the Lefschetz
number. It is defined as follows:

Definition. Let X be a topological space with finite homology, i.e., such
that only finitely many homology groups are nontrivial and all of these have
finite rank, and let f: X — X be an endomorphism. Then the Lefschetz
number of f is defined to be

L(f) =Y (~1) tr(Hi(f): Hi(X;Z) — Hi(X;7Z)) € Z.
i>0

The Lefschetz number of the identity idx is the Euler characteristic of X .
We will work with CW-complexes in the sequel. For a finite CW-complex,
the Lefschetz number can alternatively be calculated using the cellular chain
complex. The reason that the Lefschetz number plays such an important
role lies in the celebrated Lefschetz fixed point theorem.

Theorem. Let X be a finite CW-complex. Then
L(f) # 0= f has a fized point.

The Lefschetz fixed point theorem was first announced in 1923 by Lef-
schetz (for a restricted class of polyhedra), and details were published three
years later [Lef26]. Extensions to larger classes of spaces appeared in the
sequel. Fixed points play a prominent role in many areas of mathematics,
in pure mathematics, but also in applied mathematics, for example in the
study of dynamical systems. So it is no big surprise that numerous gen-
eralizations of the Lefschetz number and the Lefschetz theorem have been
developed.

Generalizations include invariants which give more precise lower bounds
on the number of fixed points such as the generalized Lefschetz invari-
ant [Rei38, Wec4l]. If we suppose X connected for simplicity and ignore
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the basepoint, the generalized Lefschetz invariant A(f) is defined as follows:

M) =Y (=)'t (C(f)) € Zmi(X)/ ~,
i>0
where Cc(f) denotes the map induced by f on the cellular chain complex
of the universal covering space X and ~ is a certain equivalence relation
on 71 (X), see Section 7.1. Invariants which capture all iterates of f at the
same time are also studied, like the Lefschetz zeta function [FH93, FH94,
GN93, GN94|, which is defined to be
L{f™)
= t" t].
C(f) =), ——t" € QI

n>0

It is tempting to search for a universal generalization of the Lefschetz
number, i.e., an invariant which maps to all possible generalizations and still
has the characteristic properties of the Lefschetz number, homotopy invari-
ance and additivity. This has been successfully done by Liick [Liic99]. He
defines a universal functorial Lefschetz invariant (U, u) for endomorphisms of
finite CW-complexes. Here, U: End(CWy,) — Ab is a functor which assigns
an abelian group to each endomorphism f: X — X. The function u assigns
an element u(X, f) € U(X, f) to the endomorphism f. See Section 3.1 for
a description of this construction. Liick proves the following theorem:

Theorem. The pair (U,u) is the universal functorial Lefschetz invariant
for endomorphisms of finite CW-complezes.

The aim of this thesis is to generalize the construction of Lick to the
equivariant case. We will be dealing with discrete groups G and finite G-CW-
complexes. In many cases, group actions show up naturally. When there is
a group action on a space, this gives additional structure, and we want to
take this information into account in the construction of the invariant. The
fixed point sets X for subgroups H < G play a role. We need to use clever
ways of combining the information given at all fixed point sets.

Equivariant topology is an important area of topology. Many non-
equivariant constructions in algebraic topology can be generalized to the
equivariant case, for example the Euler characteristic. The Lefschetz num-
ber has also been generalized to the equivariant setting [LL89, LR03]. Some-
times group actions help to deal with spaces which cannot be approached
otherwise. For example, if we have an infinite discrete group G acting prop-
erly on a finite G-CW-complex X, the space X seen as a CW-complex is
infinite. If this space X is a manifold, we cannot apply the Lefschetz fixed
point theorem, but a G-equivariant analog [LR03, Theorem 0.2] can be ap-
plied.

One of the main results of this thesis lies in the definition of equivari-
ant invariants which generalize the existing non-equivariant invariants in the
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right way. We want to mention the universal functorial equivariant Lefschetz
invariant (U%(X 1), u%(X f )) defined in Chapters 2 and 3 and the general-
ized equivariant Lefschetz invariant (Ag(X, f), A¢(f)) defined in Chapter 7.
Some ideas going into these constructions are also interesting in their own
right, for example the definition of the trace map in Section 7.2.

Another highlight are the splitting theorems, Theorems 5.3.1 and 5.4.2.
They are obtained for all higher K-theory groups. It is likely that they
have far-reaching applications concerning the K-theory of endomorphism
categories.

Application of the splitting results to the geometric setting leads to a
good understanding of the universal functorial equivariant Lefschetz invari-
ant. Namely, it is given in terms of the maps Cc(f|§H(x), f|)~(>H(m)) on the

relative cellular chain complexes C© ()Z' H(g), X>H (z)), for subgroups H < @
and points x € X with isotropy group H.

This result is applied to geometric questions concerning fixed points.
The definition of G-equivariant Nielsen numbers in Chapter 9 is new for
the case of infinite discrete groups G, as well as the corresponding theorems
concerning their lower bound properties. The converse of the equivariant
Lefschetz fixed point theorem, Theorem 9.5.3, is proved, which did not exist
for infinite discrete groups G and was not formulated in the elegant approach
of Liick and Rosenberg [LRO3] before.

Mastering technical difficulties is one of the main ingredients of this
thesis, and those technical difficulties account for sometimes rather lengthy
proofs. We hope the reader will still enjoy the ideas that lie behind.

This thesis consists of three blocks, given by Chapters 2 to 4, Chapters 5
and 6, and Chapters 7 to 9 respectively. They are preceded by a brief
introduction of some concepts used in the sequel.

The first block of this thesis concerns the construction of the universal
functorial equivariant Lefschetz invariant. This is a generalization of the
universal functorial Lefschetz invariant constructed by Liick [Liic99, Chap-
ters 1-4]. The algebraic foundations of our work are laid in Chapter 2.
We construct an abelian group U(R,T,¢) for a commutative ring R, an
El-category I, i.e., a small category I" where all endomorphisms are isomor-
phisms, and an endofunctor ¢: I' — I'. The group U(R,T', ¢) is defined to
be

U(R,T, ¢) := Ko(¢-endgrr),

where ¢-endepr denotes the category of ¢-twisted endomorphisms of finite
free RI'-modules defined in Definition 2.1.2. We have a map u mapping a
finite free chain complex of ¢-twisted endomorphisms into U(R, T, ¢). We
show that U(R,T, ¢) is a functorial additive invariant, meaning that it is
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functorial in (T, ¢) and has an additive property with respect to short exact
sequences.

In Chapter 3, the geometric setting is described. Starting with a dis-
crete group G, a finite G-CW-complex X and a G-equivariant cellular en-
domorphism f: X — X, we introduce the cellular RII(G, X )-chain com-
plex C¢(X). This is the equivariant analog of the cellular R (X, z)-chain
complex C¢(X). The fundamental category II(G,X) defined in Defini-
tion 1.2.2 plays the role of the fundamental group. Using the algebraic
definitions from Chapter 2 and setting ¢ := II(G, f), we define

vi(X,f) = U(RTI(G,X),¢)
ug(X, f) = u(C(f)) € UE(X, f).

We show that the pair (Ug(X ), uB(X, f )) is a functorial equivariant Lef-
schetz invariant, i.e., that it is functorial, additive, G-homotopy invariant,
invariant under G-homotopy equivalence and that it has an induction struc-
ture in G.

The climax of the first block is reached in Chapter 4, where universal-
ity of the invariant (U(Z;(X f ),u%(X f )) among all functorial equivariant
Lefschetz invariants is proved.

Theorem. For discrete groups G, the pair (Ug,u%) is the universal func-
torial equivariant Lefschetz invariant for the category of endomorphisms of
finite proper G-CW-complezes.

The second block of this thesis concerns splitting results. The group
U(R,T,¢) = Ko(¢p-endsrpr) we are interested in is the Oth K-group of a
twisted endomorphism category. It is a rather complicated group, and we
want to split it up into simpler parts which are easier to handle. We obtain
splitting results for all K-groups of the category of ¢-twisted endomorphisms
of finite free RI’-modules, see Chapter 5 for notation.

Theorem. Let (T, ¢) be an El-category T' with order-respecting endofunctor
¢ such that every W; € I is the colimit of its finite height subgroupoids.
Then
K(qﬁ—endffRF) = @ (K(¢Ti—endffRTi) ® K(ff RQZ)) .
W;elp

These splitting results are of independent interest in the study of alge-
braic K-theory of endomorphism categories. One can formulate them in the
more general setting of K-theory of endomorphisms with coefficients in a
bimodule [Bru05]. Numerous applications are possible, but they are beyond
the scope of this thesis.

In Chapter 6, we describe the geometric meaning of the splitting results.
The fixed point sets corresponding to the different subgroups H < G come
into play. We also show how to get back from groupoids to groups, thereby
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obtaining a description of our invariant in terms of the fundamental groups
of the fixed point sets instead of their fundamental groupoids.

We obtain a statement expressing the universal functorial equivariant
Lefschetz invariant u4(X, f) = [C°(f)] € Ko(¢-endszma,x)) in terms of

the maps C(f] SH (m),f~| %> H(m)) on the relative cellular chain complexes

CC()?H(ZE),X>H(ZE)), for subgroups H < G and objects x € TI(G, X)) which
correspond to points with isotropy group H. One arrives at the slogan: The
G-equivariant information splits up into the relative information on the fixed
point sets.

The last block of this thesis leads towards geometric applications. Chap-
ters 7 and 8 are generalizations of results by Liick and Rosenberg [LRO03,
Sections 1-5]. In Chapter 7 we develop a generalized equivariant Lefschetz
invariant (Ag(X ) Aalf )) It is an equivariant analog of the generalized
Lefschetz invariant. A trace map trg(x, ) which maps the universal functo-
rial equivariant Lefschetz invariant (UZ(X, f),u%(X, f)) to the generalized
equivariant Lefschetz invariant (Ag(X ) Aa(f )) is constructed.

The trace map is derived from the trace map trrg defined in Section 7.2
as a trace map on the group ring RG, where G is a discrete group extension
with endomorphism as defined in Definition 7.2.1. The trace map trrqg
can be seen as a variation of a trace map trix_, ) between K-theory
and Hochschild homology with coefficients in a bimodule. The map trrqg
is a restriction of tr(x_, ) to the direct summand containing fixed point
information.

In Chapter 8, a generalized local equivariant Lefschetz class )\lé’c( f) is
defined in terms of fixed point data. We prove the refined equivariant Lef-
schetz fixed point theorem, Theorem 8.2.7, which shows that the generalized
equivariant Lefschetz invariant Aq(f) € Ag(X, f) can be given as a sum of
fixed point contributions.

Theorem. Let G be a discrete group, let M be a cocompact proper smooth
G-manifold and let f: M — M be a G-equivariant endomorphism such that
Fix(f) NOM = 0 and such that for every x € Fix(f) the determinant of the
map (idr, pr =T f) is different from zero. Then

Aa(f) = X&(f)-

Based on the generalized equivariant Lefschetz invariant A (f) developed
in Chapter 7, we introduce equivariant Nielsen invariants Ng(f) and N9(f)
in Chapter 9. They are equivariant analogs of the Nielsen number and give
lower bounds for the number of fixed point orbits in the G-homotopy class
of f. Under mild hypotheses, these lower bounds are sharp.

We use the equivariant Nielsen invariants to show that a G-equivariant
endomorphism f is G-homotopic to a fixed point free G-map if the general-
ized equivariant Lefschetz invariant Ag(f) is zero.
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Theorem. Let G be a discrete group. Let X be a cocompact proper smooth
G-manifold satisfying the standard gap hypotheses. Let f: X — X be a
G-equivariant endomorphism. Then the following holds:

If A\¢(f) =0, then f is G-homotopic to a fized point free G-map.

Finally, we prove a converse of the equivariant Lefschetz fixed point
theorem: If X is a G-Jiang space as defined in Definition 9.4.2, then Lg(f) =
0 implies that f is G-homotopic to a fixed point free map. Here, Lg(f) is the
equivariant Lefschetz class defined in Definition 7.6.1 [LR03, Definition 3.6],
the equivariant analog of the Lefschetz number.

I thank my advisor Prof. Wolfgang Liick for letting me be part of his
great algebraic topology group. I want to thank the members of this group
for their friendly welcome and continuous support, in particular Tilman
Bauer, Joachim Grunewald, Michael Joachim, Holger Reich, Juliane Sauer,
Roman Sauer, Marco Schmidt and Clara Strohm. Special thanks go to
Clara Strohm and Marco Varisco for their help with computer and ITEX
problems. Most of all, I want to thank Marco Schmidt for his friendship and
constant friendly smile, which was wonderful in difficult times.

I am thankful to Morten Brun for intense mathematical discussions, in
particular concerning the splitting result in Chapter 5. I also thank Dirk
Schiitz for numerous thorough discussions of the trace map and the fixed
point information in Chapters 7 and 9. It was a pleasure to find you two
interested in this thesis.

Deepest thanks go to my family for their love and support, as well as to
Elmar. Thank you for being there for me.



Chapter 1

Motivation and Basic
Concepts

In this chapter, we introduce the most important notions used in the sequel.
We start with the classical Lefschetz invariant and the well-known Lefschetz
fixed point theorem — after all, this is the basis of all research on Lefschetz
invariants. We also introduce the technical tools needed for our general-
ization of the classical concepts. This is on the one hand the language of
modules over categories, on the other hand that of K-theory.

1.1 The Lefschetz Number

The Lefschetz number is a very powerful invariant in algebraic topology, with
far-reaching applications in many areas of mathematics. It is associated to
an endomorphism of a topological space X.

Definition 1.1.1. Let X be a topological space with finite homology, i.e.,
such that only finitely many homology groups are nontrivial and all of these
have finite rank, and let f: X — X be an endomorphism. Then the Lefschetz
number of f is defined to be

L(f) =Y (1) tr(H(f): Hi(X;Z) —» H{(X; 7)) € Z.
i>0

The Lefschetz number incorporates the Euler characteristic of the space
X. Namely, in the particular case where f is the identity map of X we have

L(idx) = x(X).

If X is a finite CW-complex and f: X — X is a cellular endomorphism,
we can calculate the Lefschetz number by using the cellular chain complex
of X.
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Lemma 1.1.2. Let X be a finite CW-complex and let f: X — X be a
cellular endomorphism. Then

L(f) =Y (=)' tr(C{(f): CF(X;Z) — Cf(X; 7)) € Z.
i>0
This is the basis of the generalizations we have in mind. The relevance
of the Lefschetz number lies in the Lefschetz fixed point theorem:

Theorem 1.1.3. Let X be a finite CW-complex. Then
L(f) # 0= f has a fized point.

So the Lefschetz number gives a purely algebraic way of seeing whether
a map has a fixed point. This, in turn, is very important in many areas
of mathematics, but we will not go into the applications here. Instead, we
ask ourselves for refinements of the Lefschetz number. See [Bro71] for an
introduction to the Lefschetz number, the Lefschetz fixed point theorem and
related topics.

If we are given a discrete group G and a G-CW-complex X with an
equivariant endomorphism f: X — X, then we want to consider analogous
invariants which take the group action into account.

We will be concerned with spaces with an action of a discrete group G.
In this context, CW-complexes are replaced with G-CW-complexes, and we
give their definition here. See Liick [Liic89, Chapter 1] for more details on
G-CW-complexes and their properties.

Definition 1.1.4. Let G be a discrete group. A G-CW-complex X is defined
inductively: The 0-skeleton is defined by
Xo = H G/H()’j X D?
j€Jo
The i-skeleton X; of X is defined to be the pushout

Ujes, 4

[jes, G/Hijx S Xi1
l ) e, Q l
e, G/Hijx D* e > Xi.

Here the H; ; < G are subgroups of G. We define X := J,, X;. The G-CW-

complex X has a natural left G-action. The subset Q;(G /H; ;% D')C X is
called an i-cell of X. The G-CW-complex X is called finite when there are
only a finite number of cells. It is called proper when all subgroups H; ; < G
appearing are finite.

One has the notion of G-equivariant cellular maps, and one can also
define G-cellular approximations [tD87, I1.2]. We will work with G-CW-
complexes in the sequel whenever we are in the geometric setting.
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1.2 Modules over Categories

This section is designed to establish the language concerning modules over
categories we will need later on. All its contents are taken from [Liic89].
The reader is referred to [Liic89] for a more exhaustive presentation, and
to [DL98] for a nice introduction to this modern language. See [Bre72] and
[tD87] for basic facts concerning transformation groups.

We will work with El-categories throughout this thesis. So we start with
their definition:

Definition 1.2.1. A small category is a category I where the class ObT" of
objects is a set. An El-category is a small category such that any endomor-
phism f: z — z in I is an isomorphism.

Examples include groups considered as categories and groupoids. The
only morphisms appearing there are isomorphisms. Another example is the
orbit category of a discrete group G. For us, the most important example
of an El-category is the fundamental category of a topological space X with
an action of a discrete group G [Liic89, Definition 8.15].

Definition 1.2.2. Let G be a discrete group, and let X be a G-space. Then
the fundamental category 11(G, X) is the following category:

e The objects Ob(H(G,X)) are G-maps z: G/H — X, where the H <
G are subgroups. (We often abbreviate an object by z(H) or z.)

e The morphisms Mor(z(H),y(K)) are pairs (o, [w]), where

—oisaGmapo: G/H - G/K
— [w] is a homotopy class of G-maps w: G/H x I — X relative

G/H x 0I such that w; = z and wy = yoo. (We often abbreviate
a morphism by (o, w).)

Composition of the morphism (o, [w]): z(H) — y(K) and the mor-
phism (7, [v]): y(K) — 2(L) is given by (7, [v])o (0, [w]) = (100, [0* (v)*
w]), where 0*(v) = vo (o xid): G/H x I — X and * denotes the com-
position of paths.

The fundamental category is a combination of the orbit category of G
and the fundamental groupoid of X. If X is a point, then the fundamental
category is just the orbit category of GG, whereas when G is the trivial group,
the definition reduces to the definition of the fundamental groupoid of X.

The orbit category of a discrete group G is defined to be the cate-
gory with objects homogeneous spaces G/H and with morphisms G-maps
o: G/H — G/K. We know that G-maps 0: G/H — G/K are given by right
translations with elements g € G which have the property that gHg~' < K,
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namely R,: G/H — G/K,gH — ggK [tD87, Proposition 1.14]. One sees
that Ry, = R, for all k € K.

The Weil group WH := NgH/H of H is defined to be the normalizer
of H in G modulo H itself. There is an isomorphism between W H° and
Aut(G/H) given by WH? — Aut(G/H),gH +— Rg,-1. Here the upper
index op denotes the opposite group.

Very important to us will be the automorphism group Aut(z) of an
element (r: G/H — X) € II(G, X). It is a group extension [Liic89, 8.23]

1— 7I'1(XH(,’L‘),ZE) — Aut(z) - WHY? — 1.

Here the fixed point set X? := {z € X |h.z = xforallh € H} is the
set of points which are fixed under the action of the subgroup H < G and
X (z) denotes the connected component of X containing z(1H). We often
identify the object (z: G/H — X) € II(G, X) with the point z(1H) € X.
The group 7 (X" (z),z) is the fundamental group of X (x) with basepoint
z. The action of G on X induces an action of the Weil group W H on X,
The group W H, < W H denotes the subset of W H which fixes the connected
component X (z). We will mostly omit the index op in the sequel.

In the context of generalized Lefschetz invariants, the fundamental group
plays a prominent role, and this role is assumed by the fundamental category
in the G-equivariant setting.

When one works with a CW-complex X, the classical way to take the fun-
damental group action into account is to consider the cellular chain complex
of the universal covering space X. The covering space X carries a m (X, z)-
action (when z is a chosen basepoint), and this induces a Zm(X, z)-chain
complex structure on the cellular chain complex C¢(X, 7).

When there is a group G acting on X, then there is more information
given, encoded in the different fixed point sets X for subgroups H < G.
So we need to consider the fundamental groups of the fixed point sets, and
the group actions on them induced by G. How can we assemble all this
information?

The natural object combining the G-action information and the funda-
mental group information is the fundamental category. The notion of a
Zm (X, z)-module does not seem to leave room for a generalization from
T (X, z) to H(G,X)./Elt one can view a Zm (X, z)-module as a functor

from the category 71 (X, z) that has one object and all elements of 7 (X, x)
as morphisms to the category Ab of abelian groups. This is an equivalent
notion, and this can be generalized: We look at functors from II(G, X) to
abelian groups.

The above discussion motivates the following definition of a module over
a category, which lies at the heart of all further considerations [Liic89, 9.4]:
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Definition 1.2.3. Let R be a commutative ring, and let ' be a small
category. An RI'-module is a functor

M: T — R-Mod.

A homomorphism of RT'-modules is a natural transformation of functors.

From now on, R denotes a commutative ring. An RI-module corre-
sponds to a left module if the functor is covariant, to a right module if the
functor is contravariant.

Convention 1.2.4. All our modules are contravariant functors unless ex-
plicitly stated otherwise.

The category of RI'-modules is an abelian category, the structure is in-
herited from the category of R-modules. One defines injective and projective
modules as usual. Most constructions known for modules over (group) rings
can be generalized to modules over categories. We collect those that will
be most important to us. We will often need the tensor product of two
RI’-modules [Liic89, 9.13].

Definition 1.2.5. Let M be a contravariant functor I' — R-Mod and let
N be a covariant functor I' = R-Mod. Then their tensor product M Qgr N
is defined to be the R-module

M ®re N := @) M(z) @r N(@)/ ~,
zel

where the equivalence relation is generated by M (f)(m)®mn ~ m® N(f)(n)
for m € M(y),n € M(z), f € Morr(z,y) and z,y € T.

We will also work constantly with the two covariant functors induction
and restriction [Liic89, 9.15]:

Definition 1.2.6. Let F': 'y — 'y be a covariant functor. Denote by
RI'5(??,F (7)) the RI';-RI'>-bimodule (z1,z2) — RMorr, (z2, F(z1)). (An
RT'1-RTy-bimodule is a covariant functor M: I'y x 'y’ — R-Mod.) This
bimodule is used for defining induction with F'. Restriction with F' is defined
using RT2(F(?),77). We set

indp: RI''-Mod — RI'.>-Mod

M — M ®gr, RPQ(??,F(?))
resp: RI>-Mod — RI'{-Mod

M — M ®pgr, R, (F(?),??).

We often denote M ®@pr, RT's (F(?),??) by M o F. Induction and re-
striction are adjoint functors [Liic89, 9.22].
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Lemma 1.2.7. Given a covariant functor F: T'y — T, the functors indp
and resy are adjoint.

Another important notion is that of a free module over a category [Liic89,
Definition 9.17]:

Definition 1.2.8. Let a set B and a map : B — ObT be given. An RI-
module M with b € M(ﬁ(b)) for all b € B is free with base B if for any
RT-module N and any map f: B — N with f(b) € N(B(b)) for all b € B
there is exactly one RI'-homomorphism F': M — N extending f.

A model for the free R[-module with base B is

RT(B) = ) Rr (7, B(D)).
beB

We call a free module M with base B finite if the set B is finite.
In [Liic89, 9.24] we find the following statement:

Remark 1.2.9. The induction functor respects “direct sum”, “finitely gen-
erated”, “free” and “projective”.

We have several functors relating an RI-module M to modules over
the group rings R Aut(z). For brevity of notation, we often write R[z] for
R Aut(x), for z € T'. Since I is an El-category, there is a natural partial
ordering < on the set IsT" of isomorphism classes Z of objects in I" given by

T <7 < Morp(z,y) # 0.
We define the following functors [Liic89, 9.26-9.29]:

Definition 1.2.10. Let [' be an El-category, and let = be an object of I'. We
define the splitting functor Sy, the restriction functor RES,, the extension
functor E, and the inclusion functor I, by the following maps on modules
over a category.

Splitting functor Sy : RI'Mod — R[z]-Mod
Moo M@)/M(),,
Restriction functor RES, : RI'Mod — R[z]-Mod
M — M(x),
Eztension functor E; : R[r]-Mod — RI’-Mod
M +— M ®g[ RMorr(?, z),
Inclusion functor I, : R[r]-Mod — RI'-Mod
M — I,M.

Here M (z), is the singular R[z]-module at z defined by
M(z)s = <{Im(M(f) M(y) — M(a:)) ‘f z—y, | non—isom.}> C M(z)
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and the RI'-module I, M is defined by

M(z) ®gy) R Morr(y, z) =z

{0}

The functors S, and I, are adjoint to each other, as well as the functors
E, and RES, [Liic89, 9.31]. Note that the restriction functor RES, is just
the restriction with the inclusion i: Aut(z) — T, and that E, is induction
with 7. The splitting functor can be viewed as M — M ®pr B, where B is
defined to be the RI'-R|[z]-bimodule given by

ify
ImM(y) = { ity

RIS
5

RMorr(z,y) i
{0} i
Remark 1.2.11. The functors S, and FE, respect “direct sum”, “finitely

generated”, “free” and “projective”. We also know that S, o E; is naturally
equivalent to the identity and that S, o E, is zero for T # 7 [Liic89, 9.31].

I' - R[z]-Mod, y+~— {

1.3 Algebraic K-Theory

Another important concept used in this thesis is algebraic K-theory, and we
shall give a brief outline of some definitions and results used in the sequel.
For more complete accounts of K-theory, there are numerous references.
Classical references for algebraic K-theory are [Bas68] and [Mil71], others
include [Kar78] and [Ros94]. This thesis essentially only uses Ky of a suitable
category, but the results obtained in Chapters 5 and 6 work for all algebraic
K-groups. We are interested in K-theory of exact categories, and we proceed
to give the definition of an exact category.

Definition 1.3.1. A category C is called additive if it satisfies
e All finite coproducts exist in C.
e For all objects A, B € C the set Mor(A, B) is an abelian group.
e Composition of morphisms is a bilinear map.

e There is a distinguished zero object 0 such that Mor(A4,0) = 0 and
Mor(0, A) = 0 for each A € ObC.

e There is a binary operation @ which is both the categorical product
and the categorical coproduct.

Definition 1.3.2. An abelian category is an additive category in which every
morphism has a kernel and a cokernel, and in which every monomorphism
is a kernel and every epimorphism is a cokernel.
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An abelian category has a notion of exact sequences 0 — A LBh
C — 0. Loosely speaking, such a sequence is exact if the image of one arrow
is the kernel of the next. A good reference for abelian categories is [Mac71].

Definition 1.3.3. An ezxact category is a full additive subcatecory D of an
abelian category C which fulfills:

e The category D is closed under extensions, i.e., if
0—-Dy—D—Dy—0
is an exact sequence in C and Dy, Dy € ObD, then D € ObD.

e The category D has a small skeleton, i.e., D has a full subcategory Dy
which is small and for which the inclusion Dy — D is an equivalence.

The exact sequences in such a category are defined to be the exact sequences
in the ambient category C involving only objects (and morphisms) chosen
from D.

In contrast to the abelian case, the notion of exactness depends on the
embedding of D in C. In particular, an additive category may have more
than one structure as an exact category. One can always endow an additive
category with the exact structure given by split exact sequences [Swa9h,

Section 1]. A sequence 1 — D 5D Dy =0 splits if there exists a
morphism s: Dy — D such that ps = idp,.

One example of an exact category is the category of finitely generated
projective modules over a ring, one obtains algebraic K-theory of the ring
as the algebraic K-theory of this category. In our context, it is important
to keep the following example of an exact category in mind:

Example 1.3.4. Let " be an El-category. Then the category of finitely
generated free RI'-modules with the exact sequences given by split exact
sequences is an exact category [Liic89, p. 183].

We will mostly be concerned with Ky of exact categories, so we give the
explicit definition here.

Definition 1.3.5. Let D be an exact category with small skeleton Dy. We
define Ky(D) to be the free abelian group on Ob Dy modulo the relations

e [D] = [D'] if there is an isomorphism D = D' in D.
e [D] = [D1] + [Ds] if there is a short exact sequence
0—Dy—D—Dy—0 inD.

A good reference for Ky is [Swa95]. The Ki-groups can be defined in
terms of automorphisms. From then on one needs a general theory. Much
work has gone into the definition of higher K-groups of exact categories that
was completed by Quillen [Qui73]. We will not give the definition here, it
can be found in the references cited.



Chapter 2

The Algebraic Approach

We begin our work with purely algebraic considerations. Given a commu-
tative ring R, we define an abelian group U(R,T, ¢) for any El-category T’
with endofunctor ¢. It is defined as Kj of the category of ¢-twisted endo-
morphisms which will be defined in Definition 2.1.2.

One may already keep in mind that in the geometric context we are
given a discrete group G, a finite free G-CW-complex X and a G-equivariant
endomorphism f: X — X. Then the fundamental category II(G, X) plays
the role of I' and ¢ is induced by f.

We proceed to show functoriality of U(R,T', ¢) in (T, ¢). This is needed
to prove functoriality of the geometric invariant in (X, f) and to define an
induction structure in G.

We finally analyze properties of U(R, T, ¢), in particular we obtain the
statement that U(R,T, ¢) together with a certain function « is a universal
additive invariant in the sense of Definitions 2.3.1 and 2.3.2 on the category
of ¢-twisted endomorphisms.

2.1 The Construction of the Algebraic Invariant

Let T be an El-category as defined in Definition 1.2.1 and let ¢: ' — T’
be a functor. Remember from Definition 1.2.3 that an RI-module M is

a contravariant functor M: I' — R-Mod, where R is a commutative ring.
Then M o ¢: I' = R-Mod is also an RI'-module.

Definition 2.1.1. Let R be a commutative ring, let I' be an El-category
and let ¢: I' = I' be an endofunctor. We define a ¢-endomorphism g of an
RT-module M to be a natural transformation g: M — M o ¢.

We now look at the category ¢-endgerr of p-endomorphisms of finite free
RT'-modules.

Definition 2.1.2. Let R be a commutative ring, let I' be an El-category and
let ¢: I' = I' be an endofunctor. Then the category ¢-endeegr of ¢-twisted

9
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endomorphisms of finite free R[-modules is defined as follows: Objects are
natural transformations
g: M — M o ¢,

where M is a finite free RI'-module. Morphisms from g: M — M o ¢ to
h: N — Nog¢ are natural transformations 7: M — N such that the diagram

M———N

| b

Moqu )

commutes, i.e., such that for all z € ObT" the diagram

Tx

g:cl ha

M(¢(x)) =2 N($(x))

commutes and for all morphisms (w: z — y) in I" the diagram

M(y) — N(y)
M(w)l N(w)

commutes. We write 7: g — h.

The category ¢-endsspr is an exact category. This is true for the category
of finite free RI-modules, Example 1.3.4, and all necessary properties are
inherited by ¢-end¢pr. (Recall that morphisms are just a subset of the
morphisms of the category ff RT" of finite free RI'-modules, closed under
composition.) An exact sequence 0 — go — ¢ 2, g1 — 0 is given by a
commutative diagram with exact rows

0 My —— M M, 50

bl

0—— Myop-5 Mogp—22 M, op—0,

where My, M and M; are finite free RI'-modules.

The isomorphism classes of objects of ¢-end¢rpr form a set since every
finite free RI'-module M is isomorphic to one of the form &, 5 RT (?, I3 (b)),
where B is a finite set and §: B — ObTI' a map, see Definition 1.2.8. A ¢-
endomorphism ¢ of M induces a unique ¢-endomorphism of this module
and vice-versa. Thus every isomorphism class of objects of ¢-endsepp has a
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representative which can be written as a matrix, and all these matrices form
a set. (Note that Ob T is a set since I' is an El-category.) So one can apply
the functor Ky (see Definition 1.3.5) to the category ¢-endgegr.

Definition 2.1.3. Let R be a commutative ring, let ' be an El-category
and let ¢: I' = I" be an endofunctor. We define

U(R7 Fa ¢) = KO(qb'endffRF)-

This is an abelian group. Elements in U(R,T', ¢) are represented by ¢-
endomorphisms g: M — M o ¢, the element represented by ¢ is denoted by
[g]. One can also define chain complexes of ¢-endomorphisms of finite free
RT'-modules. These are given by ladder diagrams

dnt1 d
"'—>Mn+1 \Mn n Mn—1—>"'

lgn+l J/ n lgn 1
¢7* dn+1 (25 d

i My 0 s My o p— s My, o

with dj, o d,, 11 = 0 for all n (and where every square commutes).
One maps a finite free chain complex of ¢-endomorphisms into U (R, T, ¢)
by
Wi = g = guot = -} o S (=1)"gu] € U(R,T, ).
nez

Remark 2.1.4. One could also use the category ¢-endgrgr.cn of chain com-
plexes of ¢p-endomorphisms of finite free R['-modules in the definition of the
group U(R,T, ¢). The chain complex category is equivalent to the module
category [CP97], so the K-theory groups are the same. The category of
chain complexes has several technical advantages, for example the existence
of a cylinder functor.

Remark 2.1.5. Since ¢-endgspr is an exact category, we can define all
higher K-groups of this category. We will mostly be interested in Ky since
that is where our invariant lives. But when possible we will treat all higher
K-groups at once, for example in the splitting results in Chapters 5 and 6.

Remark 2.1.6. When T is a group G viewed as a category, then the cat-
egory ¢-endsrrr can be seen as the category of RG-endomorphisms with
coefficients in the bimodule M, = RG(¢(?),??). The K-theory of endo-
morphisms with coefficients in a bimodule is an object of active research.
There is work in progress by Brun and McCarthy stating that for a ring S
and a bimodule M the group K| (End(S s M )) is a dense subset in the ring
of twisted Witt vectors [Bru04]. This is a generalization of the fact that for
a commutative ring A the group Ko (End(A)) lies dense in the ring of Witt
vectors of A [Alm74].
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The results of Brun and McCarthy give a description of the abelian
group U(R,T',¢) when I is a group G viewed as a category, and thus of the
target group of the universal functorial Lefschetz invariant [Liic99]. Inter-
preting them in the setting of RI'-modules or using the splitting developed
in Chapter 5 one can describe the target group of the universal functorial
equivariant Lefschetz invariant which is constructed in this thesis. On the
contrary, the universal functorial (equivariant) Lefschetz invariant gives an
interesting element living in these groups. It is possible to extend results
here to the more general setting of categories of endomorphisms with co-
efficients in a general bimodule instead of just using the specific bimodule
given by restriction with ¢, for example the splitting results from Chap-
ter 5 [Bru05]. This could have very interesting applications, but these are
beyond the scope of this thesis.

2.2 Functoriality

If we have a covariant functor H: I'y — I's of El-categories with endofunc-
tors ¢ and 1) such that the diagram

Fl i)FQ

o |0

Iy i) Ty
commutes, do we obtain a group homomorphism U(R,H): U(R,T'1,¢) —
U(Ra F?a ¢) ?
The answer is yes, we construct such a group homomorphism using the
covariant functor “induction with H” defined in Definition 1.2.6 by

indg: R['1'-Mod — RI'9>-Mod
M — M ®pgr, RFQ(??,H(?)).

We first construct an exact functor H,: ¢-endgrrr, — 9-endgegr,, then we
take the induced map in Ky. Given a ¢-endomorphism g: M — M o ¢ of
a finite free RT'{-module M, we want to map M to indg M. Thus we need
to find a ¢-endomorphism H,(g): indg M — (indg M) o 1. The morphism
indg(g): indg M — indg (M o ¢) does not quite do the job since the RI's-
modules (indg M) o ¢ and indg (M o ¢) are in general not equal.

We proceed as follows: First note that indg and the restriction resg are
adjoint functors as stated in Lemma, 1.2.7, thus there are natural transfor-
mations

1 :Idrr,-Moda — resyindpg

and erindgresy — Idgr,-Mod,
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the unit (1) and counit (¢) of the adjunction [Mac71, Theorem IV.1.1]. We
know that these fulfill the A-equalities, i.e., that the compositions

Mres gy . resg €
resy —— resy indy resy —— resy

. indgn . . €indpg .
and indgy —— indyresyindy —— indgy

are the identities. We define H,: ¢-endepr, — 1-endgrpr, on objects of
¢-end¢rgr to be the composition

H, = (5res¢ indH)o(indH res¢(77))0indH: Ob(gb—endfprl) — Ob(’gb—endffRFQ),
ie., for (g: M — resy M) € ¢-endgspr, we set

indg M

liﬂdH(g)

indg (resy M)
lindH resg (Mar)

indpy resg resy indy M

H.(9)

indpy resg resy, indy M

lgresd) indg M

resy, indy M.

Note that H.(g) = indg(g) if ¢ = Idp, and ¢ = Idr,, by the A-equalities.
Furthermore, note that the unit and counit are concretely given by the maps

n = idas ® (H vpor(r,7)) 1 M ®pr, RU1(77,7) — M ®pr, RDy(H(?7), H(?))

=M =resy indg M

and

=indgy resg K
A

~

e =mult: (K ®gr, RU3(H(?),??)) ®gr, RU2(777,H(?)) — K
((k,f)9) — kfg.

The RI'9-module indy M is finite free since induction preserves this prop-
erty, as stated in Remark 1.2.9. Thus H,(g) represents an element in
U(R,Ts,1). We define H, on morphisms

(ML Mog)—» (N Nog)
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by setting
H,(7) :=indg 7.

Since indg is a functor, indg 7 is a morphism from indg M to indg N. The
diagram

indg 7

indH M 7 indH N
H. (g)l lH (9)
indg M o) O indr 7) indg N o

commutes since indg is a functor and 7, € are natural transformations.
Thus H,(7) = indg 7 is a morphism in 1-endggr,. The functorial identities
H.(Idg-endsrpr, ) = Idy-endiepr, and Hy(Tv) = H, (7)o H.(v) are fulfilled since
indg is a functor.

The induction functor indy preserves split exact sequences, so it pre-
serves exact sequences of finite free RI'-modules, so H, also preserves exact
sequences since H,(7) = indy 7 for all morphisms 7. We have shown that
H, is an exact functor from ¢-endgpr, to y-endsrpr, and induces a well-
defined group homomorphism Ky(H.,): Ko(¢-enderrr,) — Ko(p-endyrr, ).
We define

U(Ra H) = KO(H*) : U(Ra Iy, ¢) - U(Ra Lo, Q,b)
Note that H,(g) can be seen as the composition

indH M

indg (g)

L

indg (resg M) = M(?) ®gr, RT1(4(?7),?) ®pr, RT2(??77,H(??)) m®a®b

idyy @ HRY

~N-

M(?) ®r, RTo(H(@(?2)), H(?)) ®rr, R ($(222),%(H(??)))

id s ® mult

~

resy indg M = M @pp, RT5((?27), H(?)) m & H(a)(b).

This corresponds to [Liic99, Equation 1.3]. We will frequently use this way
to view H,(g), especially in the geometric context.

In order to have better notation at hand, we introduce the following
definition.

Definition 2.2.1. Let Endo(EI-Cat) denote the category of El-categories
with endofunctors. Objects are pairs (I', ¢), where I is an El-category and
¢: ' = T is an endofunctor. Morphisms F': (I'1,¢) — (T'2,)) are natural
transformations F': I'y — I'y such that ¢ F = F¢.
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We want to show that U(R,—) is a functor from Endo(EI-Cat) to .Ab.
We need the following lemma.

Lemma 2.2.2. If we have covariant functors G: (I'1,¢) — (T2,) and
H: (T'y,v) — (I's,¥) of El-categories with endofunctors ¢, 1 and 9, i.e.,
such that G = G¢ and 9YH = H1p, then H,G, = (HG),.

Proof. Let (9: M — M o ¢) € ¢-endssgr,. Abbreviating res by r and ind by
i for better readability, the following diagram commutes:

imicM ingM
im(icg) tHGY
~ ~
tgiareM tgGTeM
im(iaren$y)
ZHZGT¢TGZGM iHGT¢ﬂ]I\{4G
o H
. YHIGT$TGN; 0
i (e i) \
~ ~
tgrypiaM ; tHGToTHGIHGM
. i PHEr i g M
LHTY; o M
- \,. - HG
taTyTHiEtGM CrgimaM
E%iHiGM
~ ~
rotHigM rotgaM

The left vertical composition is H.(G.(g)), the right vertical composition
is (HG)«(g), so H,G, and (HG), are equal on objects. If 7: g — ¢' is a
morphism, then H,G,.(7) = indy indg(7) = indpa(7) = (HG).(7), so they
are also equal on morphisms. O

It is clear by definition that (Id(F’¢))* = Idg-endgspr» SO U(R, Id(p,¢)) =
Ko(Idg-endgerr) = Id(r,r,¢)- The above results imply the following proposi-
tion.

Proposition 2.2.3. The map U(R,—) defined above is a functor from
Endo(EI-Cat) to Ab.

Here Endo(EI-Cat) denotes the category of El-categories with endofunc-
tor defined in Definition 2.2.1 and .Ab denotes the category of abelian groups.
But we know even more.

Proposition 2.2.4. If H: 'y = T'y is an equivalence of categories with
endofunctors ¢ and 1, i.e., such that wH = H¢, then the natural transfor-
mation H,: ¢-endepr, — 1p-enderrr, is also an equivalence of categories.
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Proof. We construct an inverse H* of H, and show that there are natural

equivalences
e: H.H* —-1d and 7: Id - H*H,.

We use the restriction functor resy which is right adjoint to indy to define
H*. We define a functor

H*: ¢-enderr, —  ¢-endgepr,
(NL Noy) — (resy N B9, resy(N o)) = (resy N) o )

T +— TresgT

This is well-defined even though the natural transformation res;; in general
does not respect “finitely generated” and “free”. But if H is an equivalence
of categories it does: Let K € ff RT'>-Mod, i.e., K = @} | RT'2(?7?,b;). We
want to show that resy K € ff RI'1-Mod. Since resy is exact, we only need
to show that resy R[5(77,b) is finitely generated free for b € I's. We know
that there exists an @ € T'; and an isomorphism v: H(a) — b since H is
essentially surjective, i.e., every isomorphism class of objects in I's is hit by
H. Thus

resy RT2(?7,b) = RTy(H(?),b) = RTy(H(?), H(a))

Since H is fully faithful, i.e., H is bijective on morphism sets, we have
RT5(H(?),H(a)) = RT'(?,a), and this is finitely generated free by defini-
tion, so resg RI'2(77,b) = RI'1(?,a) also is.

We observe that the unit and counit of the adjunction between respy
and indyr, the natural transformations n and e, are invertible if H is an
equivalence of categories: H being an equivalence of categories implies that
H|M0r(??,?) is an isomorphism for all 77,7 € ObT';. Thus

nv =idy ®H: M = M ®pr, RT1(??,?) = M ®gr, RT2(H(??),H(?))
is also an isomorphism. Furthermore,

ex: indy (resy K) = (K ®gr, RT2(H(?7),7)) @grr, RT2(777, H(?7))
— K @RI, RFQ(???, ?) =K

is an isomorphism because {H(?)}7cr, hits all isomorphism classes of T's.
This implies that every morphism in RI's can be factored through an object
of the form H(x).

We want to show that there are natural equivalences ¢: H,H* — Id
and n: Id - H*H,. On the modules, we define these to be the original
adjunction morphisms between indy and resg.

1. There is a natural equivalence ¢: H,H* — Id. We know that the ob-
ject H . H* (M 9 M o¢) is the left vertical composition in the following
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commutative diagram, where we abbreviate res by r and ind by 7 for
better readability:

. eM
rgrgM - M
liHTH(g) ly
. 87‘¢M
ZHT’HT’¢M = > ’I“¢M
tgryTEM
. Id
Gy (e gy 1)
. g LHTyTHEM .
tgryrHtETHE M d)N tgryra M 1d
. ‘ THTHT$EM . ‘
THTHTLHTHM N¢ > igrHT oM
lgrqbiHrHM lgrng
. THEM
7"¢ZH7"HM ¢~ > ’I"d,M

The triangle commutes because of the triangle equalities. The right
vertical composition is M 9 Mo ¢, and the diagram shows that e,/ is
an isomorphism between H, H*(M % Mo ¢$) and Id(M % M o). We
know that ¢ is a natural transformation of functors H,.H* — Id since
on morphisms 7 we have H,H*(7) = indy resy(7), and ¢ is a natural
transformation of functors indg resy — Id. So ¢ is indeed a natural
equivalence from H,H* to Id.

. There is a natural equivalence n: Id — H*H,. We know that the ob-
ject H*H, (N EN o) is the left vertical composition in the following
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diagram, where we again abbreviate res by r and ind by #:

. N
rig N 4 — N
rHiH(g)J/ lg
3 nr,‘l)N
’f'HZH’I"wN < = ’I"wN
THinan Nl’"d)nN
. . r rgitg N B
THIHTYTHIHN < v — ryTHIEN
. ‘ . THr i N ‘ .
THZHTHT¢ZHN — THT¢ZHN 1d
THEr i N
¢ l /
raTetHN
‘ . Ty TIN
T¢THZHN < d)N ’I"wN

We see that the isomorphism 7y sends (N 2 N o) to H*H, (N %
N o1)). Since on morphisms h we have H*H,(h) = resy indg (h) and
7 is a natural transformation of functors Id — resy indg, we know
that 7 is a natural transformation from Id to H*H,. So the natural
transformation 7 is a natural equivalence. U

Remark 2.2.5. One could try to find a more direct proof using the fact that
for an equivalence of categories H: 'y — 'y there is a functor G: 'y — T’y
such that GH is naturally equivalent to Idr, and HG is naturally equivalent
to Idr,. But this is not as easy as it sounds because of the complicated
definition of H,. We decided to stick with this line of argument because
it fits in better with the rest of the work and because the construction of
the functor H*: ¢-endgpr, — ¢-endgepr, using the restriction functor resy
done in the proof is needed in Chapter 4, in the proof of Theorem 4.1.2.

2.3 Additive Properties

Now we are finally ready to analyze some of the properties of the abelian
group U(R, T, ¢). Tt is the Ky-group of a category, and one obtains a univer-
sal additive invariant for the objects of this category by taking their repre-
sentatives in U(R, T, ¢). We make precise what we mean by this statement.
This chapter is in analogy to [Liic99, Chapter 1].

Definition 2.3.1. Let R be a commutative ring with 1, let I' be an EI-
category and let ¢: I' = T" be an endofunctor. An additive invariant for the
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category of ¢-endomorphisms of finite free RI'-chain complexes ¢-end¢rgr.ch
is a pair (A,a), where A is an abelian group and a: Ob(¢-end¢rpr.cn) —
A,(g: C — Co¢) — a(g) is a function such that the following properties
are satisfied:

1. Additivity
For a short exact sequence 0 — f — g — h — 0, given by a commu-
tative diagram with exact rows

0 C D > B >0

bbb

0——Co¢p——Do¢ >»Eod¢ >0

where C, D and F are finite free R['-chain complexes, we have
alf) = alg) +a(h) = 0.

2. Homotopy invariance
Let f,g: C — C o ¢ be RI'-chain maps of finite free RI'-chain com-
plexes. If f and g are RI'-chain-homotopic (i.e., there is an h: C' —
C o ¢ of degree +1 such that doh+hod = f — g), then a(f) = a(g).

3. Elementary chain complexes
For a finite free RI'-module F' and n > 1 we have

a(0: el(F,n) — el(F,n) o ¢) =0,

where el(F,n) denotes the elementary chain complex which is concen-
trated in dimensions n and n — 1 and has n-th differential Id: F — F.

Definition 2.3.2. An additive invariant (U, u) for the category ¢-endssrr-cn
is called universal if and only if for all additive invariants (A,a) for the
category ¢-endsegr.ch there is exactly one group homomorphism ¢: U — A
such that £(u(g)) = a(g) for all g € ¢-endgerr-ch-

In Section 2.1, we defined the abelian group U(R, T, ¢) and the function

w: ¢-end¢tpren — U(R,T, @)
(9:C—=Cod) = > (=1)"[ga]-

nel

We now show that this pair is the universal additive invariant for the cate-
gory ¢-endgfrr-ch-

Theorem 2.3.3. The pair (U(R, T, ), u) 18 the universal additive invariant
for ¢-endgerr ch-
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Proof. Property 1, additivity, is clear by definition of Ky, thus of U(R, T, ¢).
Property 3 is also clear since
u(0: el(F,n) — el(F,n) o ¢)
(=) ([0n: F = F o] —[0p1: F — Fog])
= 0€U(R,T,¢).
The proof of property 2 uses the mapping cone and the suspension of C.

Let h: C' — C o ¢ be an RI'-chain homotopy from f to g. Let XC be the
suspension of C, the RI'-chain complex with differential

*dn—l

(Zc)n =0Up—1 — (Zc)nfl = Cn72a

and cone(C') := cone(id¢) the mapping cone of C' [Liic89, 11.14], i.e., the
RI'-chain complex with differential

( o don )

We obtain an RI'-chain map k: cone(C) — cone(C) o ¢ by setting

cone(C),, = Cp—1 ® Cy, Cr—2® Cp_1 = cone(C)p_1

ky, = ( Tt f(i ) Ch1®Cy = (Crm1®Cp) 00

such that we have a commutative diagram with exact rows

0 C d cone(C) P > 2O >0

fl kl EQJ
0—>CO¢L>cone(C) Ogb&)(EC) op———0.

We conclude from additivity that

u(f) —ulg) = u(f) + u(Xg) = u(k).

Note that cone(C) is a contractible RI'-chain complex [Liic89, 11.14]. Hence
the proof is finished if we can show that for contractible C' and for any
f:C — Co¢ we have

u(f: C = Cog¢)=0€U(R,T,¢).

We do this by induction on the dimension d of C. If d < 2, existence
of a chain contraction is equivalent to exactness, and the claim follows by
definition of v and U(R,T, ¢).

Induction step d(> 2) — d + 1: Let D be the RI-subchain complex
of C given by Dgy1 = Cqy1,Dq = ker(cq) and D, = 0 for p # d,d + 1.
Let E := coker(D % C). Since C is a finite free contractible RT-chain
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complex, we can assume without loss of generality that D and E are finite
free contractible RI'-chain complexes, otherwise add to C' the elementary
chain complex el(Cyy1,d). The RI-chain map f induces RI'-chain maps
g: D — ¢*D and h: E — ¢*E. Now from additivity one gets

u(g) — u(f) +u(h) = 0.

By the induction hypothesis, u(g) = 0 = u(h). Thus u(f) = 0.

The universal property of (U(R, T, ¢), u) remains to be shown. Let (4, a)
be another additive invariant. Define £: U(R,T', ¢) — A by setting £([g]) :=
a(g), where g: M — M o ¢ is a ¢-endomorphism of a finite free RI'-module
(which can be viewed as a chain complex concentrated in degree 0). By
additivity of (A, a), the fact that g = h implies a(g) = a(h), and exactness
of 0 - g = h — k — 0 implies a(g) —a(h) +a(k) = 0, thus £ is well-defined.
If f: C — Co¢isa ¢-endomorphism of a finite free chain complex C, then
Eoulf) = Soen (")) = Les(~1)"alfn). We need to show that
this equals a(f). This is again proved by induction on the dimension d of
C. If d = 0, then the claim is trivial. Let D be the RI'-chain complex
concentrated in dimension d + 1 satisfying Dg 1 = Cyq1. Let C|q be the
chain complex obtained by truncating C, i.e., equal to C' in dimensions < d
and 0 else. Let g: C|q — C|qo ¢ and h: D — D o ¢ be the RI'-chain maps
induced by f. From additivity and the exactness of 0 - C|q - C — D — 0
we conclude a(g) — a(f) + a(h) = 0. There is an exact sequence

0—— s 1p——el(Dgy1,d+ 1) D >0
Elhl hl hl
0—— Y 'Dog¢p——el(Dyi1,d+1)o¢ Do 50,

with & given by

>0 Cip1 —% Cgpt —— 0 — -+~
J/fdJrl J/fdJrl
>0 Cip1 —% Cap1 —— 0 — - --

An RT'-chain contraction of this complex is given by f;11 in degree d and by
0 in the other degrees. By additivity we have a(X~'h) —a(h)+a(h) = 0 and
by properties 2 and 3 we have a(h)= a(0: el(Cyr1,d+1) = el(Cyp1,d+1)o0
¢)= 0, thus a(h) = —a(X"'h). By the induction hypothesis, —a(3'h) =
(= 1)%a(fas1) and a(g) = $0_y(~1)"alf), thus a(f) = S (1)a(f,)
as was to be shown.

We have shown the existence of a map ¢: U(R,T",¢) — A with the
desired properties. Any other such map ¢ has to fulfill ¢(u(g)) = a(g) for
0-dimensional chain complexes, thus &'([g]) = a(g), and so & = &' since they
agree on generators. Uniqueness is proved, and we are finished. O
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From the proof of the theorem, we can conclude that also the following
lemma is true:

Lemma 2.3.4. Let

c—" —p

d |
resg h

Cop——>Doo

be a commutative diagram of finite free RI'-chain complexes. If h is a chain
homotopy equivalence, then u(f) = u(g) in U(R,T, ).

Proof. We have a commutative diagram with exact rows

[ p

0 s D > cone(h) »C > ()
R
0—>DO¢L>cone(h) o¢¢4*p>(20) o¢p——0,
where cone(h) is the chain complex with differential
—Cpn—1 0
( hn_1  dn )
cone(h), =Cph1 @D, ———5 Cpo ® Dy

and where k, = ( ;7' 2 ). We conclude from additivity that u(g) —
u(f) = u(k). We know that cone(h) is contractible if and only if 4 is a chain
homotopy equivalence [Liic89, 11.5]. In the proof of the theorem we have just

shown that the contractibility of cone(h) implies that u(k) =0 € U(R,T, ¢),
so u(g) = u(f). 0

If R is a commutative ring which is not the zero ring, R has the property
that R = R™ implies n = m, i.e., a finite free R-module has a well-
defined rank. One sees analogously to [Liic99, Chapter 1] that the invariant
(U(R,F,¢),U(R,F,¢)) incorporates the Euler characteristic. Recall that
the Euler characteristic of a finite free R-chain complex C' is defined by

X(C) = 3 (~1)" kg (Cp) € Z.

n>0

An analogous notion for finite free RI'-chain complexes can be defined. Let
U(T') be the free abelian group generated by the set Is(T") of isomorphism
classes of objects [Liic89, Definition 10.9],

Ur) =Pz

IsT
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Let ff RT" denote the category of finite free R['-modules, and let K({ (RT) :=
Ko(ff RT") [Liic89, Definition 10.7]. Then we have natural transformations
rk and j between the covariant functors K({ and U from EI-Cat to Ab,

rk:  KJ = U, [M]~ (tkp(SeM ®@ppy R)),oror

and j: U — K({, (nz)zelsT — Z nz - [RMor(7, z)].
zelsT

The natural transformations rk and j are natural equivalences inverse to
each other [Liic89, Propositions 10.42 and 10.44]. For all El-categories I we
have inverse isomorphisms of abelian groups

rkrr
I
—u(m).
JRT

K{(RT)

It is clear that we have a forgetful functor given by forget: ¢-endepr —
ffRT',[g: M — M o ¢] — [M] which only takes the modules and for-
gets the morphisms. In Ky, this functor induces a group homomorphism
pr,p) = Kolforget): U(R,T',¢) — K({(RI‘). Since in both categories,
¢-endgepr and ff R, the functoriality in ' is given on the modules M by
the induction functor, this functoriality is respected by the forgetful func-
tor. So the functor p: U(R,—) — K({(R—) is a natural transformation of
covariant functors from Endo(EI-Cat) to Ab. Composing it with the functor
rk: K({ (R—) — U(—) gives a natural transformation of covariant functors

rkop: U(R,—) = U(—)

from Endo(EI-Cat) to Ab.
This leads to a generalization of the Euler characteristic. For a finite
free RI'-chain complex C' we define

X(C) :=1kpr([C]) =) (—1)"1k([Cy]) € U(T)

nel

to be the Euler characteristic of C. We can combine this with the forgetful
functor and see that the Euler characteristic of C' can be read off from
u(f: C — C o ¢) for any ¢-endomorphism f of C:

x(C) = rk([C’]) = rkop([f: C—=Co ¢]) =rk op(u(f)).

One can always assign the ¢-endomorphism 0: C' — C o ¢ to an RI'-chain
complex C', we have a natural transformation ¢ given by ¢: K({ (RT') —
U(R,T,¢),[M] — [0: M — M o ¢]. This is a splitting of the forgetful func-
tor. Also, one can always assign the identity functor to a category I if there
is no other one around, this gives an inclusion EI-Cat — Endo(EI-Cat), so
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U(R,T,¢) is a generalization of K({ (RT). One obtains natural transforma-
tions s := 70 j and dim := rk op, given by
§:=1%04:
Ul) = U(R,T,¢)
(mf)fas(r) = Z sign(mz) - [03 |mz| - RU(?,2) — |mz] - RP(¢(?)7$)]
TEIs(T)
dim := rk op:
U(R,T,¢) = U(T)
lg: M — Mo ¢] = rkpr M = (tkp(SaM @ gz R))ergry-
We have
dimos = (rkop) o (i 0 j) = Idy(r)
because poi = Ing(F) and rk oj = Id () [Liic89, 10.42]. We also know that
jork = IdKf(R_), so the composition i op isiop =70 jorkop = sodim,
0
given by
s odim: UR,T,¢) — U(R,T,9)
[g: M - Mo¢] — [0: M — Modg).
We obtain the following lemma, which is analogous to [Liic99, Lemma 1.6].

Lemma 2.3.5. Letv: C — D and f: C — Co ¢ be RI'-chain maps, where
C and D are finite free RI'-chain complexes. Then

u(fov) +s(x(D)) =u(@d vo f)+s(x(C)).
Proof. We consider the commutative diagram

(% +5.)

Da&cC (D®C)od

DaC - (DoC)od¢
(5570

Since the vertical arrows are isomorphisms, we get from additivity
0 0 o $*vof 0
(5 5)) =u((7 )

Again from additivity we derive

u(fov)+u(0: D — ¢*D) :u<( 7o, ))

and

u(gb*UOf)—i—u(O:C—)(ﬁ*C):u(( #rvo s g)). O



Chapter 3

The Geometric Approach

In this chapter, we discuss the geometric setting. We explain how the alge-
braic definitions and results of Chapter 2 can be applied to the geometric
situation. We specify the geometric version of the abelian group U(R, T, ¢),
an abelian group called UZ(X, f). For the ring R = Z, the group UZ(X, f)
is the target group of the universal functorial equivariant Lefschetz invariant
which we are constructing.

We define an element u2(X, f) € UY(X, f), which for the ring R = Z
will turn out to be the universal functorial equivariant Lefschetz invariant.

We state which properties we expect of a functorial equivariant Lefschetz
invariant, for example functoriality in (X, f) and an induction structure in
G. We proceed to prove these properties for the pair (UZ(X, f), uf (X, f)).
The fact that (U%(X f ),u%(X f )) is the universal functorial equivariant
Lefschetz invariant will be shown in Chapter 4.

3.1 The Definition of the Geometric Invariant

Let G be a discrete group. Let G-CWjy, be the category of finite proper
G-CW-complexes, see Definition 1.1.4. Let End(G-CWrg,) be the category of
G-endomorphisms of finite proper G-CW-complexes.

Given a finite proper G-CW-complex X and a G-equivariant cellular en-
domorphism f: X — X, we want to introduce an abelian group UX(X, f)
and an invariant uZ(X, f) € UZ(X,f). (Note that we can drop the as-
sumption that f: X — X is cellular at the end of this chapter because of
homotopy invariance of our invariants.)

In the non-equivariant case [Liic99], the construction uses the universal
covering space X of the CW-complex X. Choosing a basepoint z, the funda-
mental group 7 (X, ) acts on X. One can lift f: X — X to a ¢-equivariant
morphism f: X — X, where ¢ := ¢, o mi(f,z): m(X,z) = m (X, z) for a
chosen path w from f(z) to z. We generalize this non-equivariant construc-
tion to G-CW-complexes.

25
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The natural generalization of the fundamental group is the fundamental
category II(G,X) (which is actually a generalization of the fundamental
groupoid). Recall from Definition 1.2.2 that objects in the fundamental
category II(G,X) are G-maps z: G/H — X for H < G, morphisms are
pairs (o, [w]): z(H) — y(K) consisting of a G-map o: G/H — G/K and a
homotopy class [w] relative G/H xdI of G-maps w: G/H xI — X withw; =
z and wy = y o o [Liic89, Definition 8.15]. This construction is functorial in
X (by composition of maps), in particular the G-equivariant endomorphism
f: X — X induces an endofunctor ¢ :=II(G, f): II(G, X) — II(G, X).

An advantage of using the fundamental category is that there are no
choices involved. We need not worry about them until Chapter 6, where we
try to get back from groupoids to groups.

There is the contravariant universal covering functor X: (G, X) — Top
at hand [Liic89, Definition 8.22], generalizing perfectly well the universal
covering space X of a topological space X. It is the contravariant func-

tor X: II(G, X) — Top mapping z € II(G, X) to XH(z) and (o, [w]) €
Mor(z(H),y(K)) to the map XX (y) — XH(z) induced by composition of
morphisms. Here X (z) denotes the connected component of the fixed
point set X containing the point z(1H), for an object z: G/H — X of
(G, X). If X is a proper G-CW-complex, X lands in the category CW
of CW-complexes with cellular maps as morphisms (here even: simply con-
nected) [Liic89, Proposition 8.33]. Composing the universal covering functor
X with the cellular chain complex functor C°: CW — R-Ch landing in the
category R-Ch of R-chain complexes one obtains the cellular RII(G, X)-
chain complex C°(X; R) as a contravariant functor [Liic89, Definition 8.37]

C°o X: (G, X) X cw <5 RCh.

We land in the category of finite R-chain complexes if X is a finite proper
G-CW-complex. The functor C¢o X is even a finite free RII(G, X )-chain
complex [Liic89, 9.18].

The map f: X — X induces a ¢-endomorphism Cc(f) of the cellular
RII(G, X)-chain complex C¢o X. We first define a ¢-endomorphism f of X
by setting for (z: G/H — X) € II(G, X)

—_~ —~—

F(@) = flxne: X1 (@) = X () = X 0 ¢l) = X7 (f o ).

The map f|xu g : XH(z) = XH(f(x)) is well-defined. It induces a unique

map f] XH (z) of the universal covering spaces if we require the canonical

basepoint [id;] of X/ (z) to be sent to the canonical basepoint [idf,] of

~——

XH(foz) since both of these spaces are simply connected.
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The map f is a natural transformation from X to X o ¢ since for all
((o,w): z(H) — y(K)) € Morpyg,x)(,y) the following diagram commutes:

—~——

—~— f|XK(y) P
XE(y) — P XE(f(y))
i(a,ml - l)?(ff,fow)w*(f(fnw))
TlxH 2

XH (g) ———— X1 (f(z)).

In principle this is clear by definition, but we can also calculate it explicitly:
The definition of the universal covering space [Liic89, 8.21]

X"(y) = {(oy,wy): y = 2|0y = idg/ic}

implies that for a point in XX (y) given by ((idg/[(, wy): y — z) we have

fE(\HTx) o )Z'(U,w)((idg/K,wy): y — z)
= f|XH(;p)((idG/Ha(wy°U)w): x—>zoa)
= (id(;/H,f o ((wy o O')’U))): f(x) = f(zoo0)

and that

X(o,fow)o Flxx gy ((dg/r,wy): y — 2)
= X(o.fow)((idg/k. fowy): f(y) = f(2))
(idg/us ((f owy) 0 0)(fow)): f(z) = f(2) 00
= (id(;/H,f o ((wy oa)w)): f(x) = f(zoo).

So the two ways around the diagram are equal.
If f: X — X is cellular, then f|yu, is cellular for all z € II(G, X), and

thus also all f] xH (y) are cellular. We apply the cellular chain complex func-

tor C° to this collection of maps. All the f(r) are morphisms in the category
of (simply connected) CW-complexes, thus all C°(f(z)) are morphisms in
the category of R-chain complexes:

C(f(z)): C°(X(2)) = C(X 0 d()) = (C°0 X) (¢()).
For all morphisms (o, w): z(H) — y(K) in II(G, X) the diagram

(e 0 X)) — L2 (e o X) (p(w)

(C’Co)f(v')(a,w)l J/(CCO)})(QU))
~ Ce(f(2)) =~
(CCoX)(z) — 7 (C0 X)(¢(z))



28 3 The Geometric Approach

commutes since we have shown such a commutativity for X and C° is a
functor:

Ce(f(x) o (CC o X)(oyw) = C(f(x) oXow>)

= CC(X (o, f ow) o f(y))

= C°(X( Ufow)oCc(f(y)
“C(X (o, w)) © O°(f(y))-

I
-

So the collection of the C* (f( )) for all z € II(G, X) is a natural transfor-

mation of functors C¢(f ) CcoX — C¢0X o¢. It defines a ¢-endomorphism
of the cellular RII(G, X)-chain complex C¢o X : TI(G, X) — R-Ch.

We are finally ready for the definition lying at the heart of all further
study.

Definition 3.1.1. Let R be a commutative ring with 1, let G be a discrete
group, let X be a finite proper G-CW-complex and let f: X — X be a
G-equivariant cellular endomorphism. We set

U&(X, f) = U(R, TG, X), $).
We define the element uZ(X, f) € UE(X, f) to be
u(C°(f)) € U(R,II(G, X),¢) = US(X, f).

Here (U(R,II(G,X), $),u) is the universal additive invariant for the cate-
gory ¢-endgrr(, x)-cn introduced in Chapter 2.

3.2 An Illustrative Example

It is time to illustrate the above discussion with a concrete example. We
have one in mind which is simple enough to be treated explicitly, while still
providing an illustration of the basic elements coming up, namely G = 7Z/2,
X =8 Let G=17/2= {1, T} act on St ={z € C||z| = 1} by reflection
on the real axis: 7(¢?) = e~". For d € N we define the 7Z/2-equivariant
morphism

f: 8 - st

z = 20
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iR
yp(1) =€
r1 = 1
K

The fundamental category I1(Z/2, S') is given by

e Objects:

1 :G/G — SY 1m1
r1:G/G — S' 1= -1
yo: G/{1} — SY, 1 e 1 e

e Morphisms:

Mor(z1,z1) = {(id,[csty,])} = {1}
Mor(z1,2_1) = 0
MOI‘(,’L‘I,y(p) = w
Mor(z_1,2z1) = 0
Mor(z_1,z_1) = {(id,[est, ,])} = {1}
Mor(z_1,y,) = 0
Mor(y,,z1) = {(pr,s" v, ‘nEZ}NZ
Mor (yp, z—1) = {(pr,vy ,s" v, ‘nEZ}NZ
Mot (yy,yp) = {(id,vys" v, ‘nEZ}U{ T, 7" (vyr)s" 1)‘nEZ}

Here s,v,,v; ,: G/{1} x I — S! are paths. Their value at 1 € G
is as follows: s denotes the path starting at 1 € S' and going once
around S* , Uy denotes the path starting at 1 € S and going to e’¥
and v,_, denotes the path starting at 1 € S and going to —1 € S,
all counterclockwise. Their value at 7 € G is the reflection of these
respective paths.
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On the objects of the category, ¢ :=II(G, f) is given by

1 = 1
z_y1 if dis odd
T-1 g
T if d is even
Yo — Yd--

On the morphisms, it is given by the identity on the morphisms originating
at 1 and z_1, and by multiplication with d (on the path factor) on the
morphisms originating at y,,.

A 7,/2-CW-structure on S is given by: Two 0-cells of type Z/2, namely
r1 and z_1, and one 1-cell of type {1}, namely a: Z/2 x I — S',(1,t)
e™t (1,t) = e,

An Aut(ys)-CW-structure on S'(yg) is given by: Two 0-cells of type
7. /2, namely

~——

21: 7 — Rnw—n

__ 1
r 17 — Rnw—n+ -,

2
and one 1-cell of type {1}, namely
a: Aut(y) x I — R
t
((lan)at) = n+§
t
((Tan)at) = (n + 1) - 5

We have S'(z1) = pt = S'(z_1). What is Cc(gi)?

CHE) (1) = {R =0

0 ifi#0
-~ R ifi=0
Ci(S")(z-1) = o
0 ifi#0
RZ® RZ ifi=0
Ci(SY)(y,) = < RAut(y,) ifi=1
0 ifi#0,1

When looking at C¢(f), we have to distinguish two cases, d even and d odd.
Assume that d is odd. Then

C(P)ar) = idp: O(S) (1) = C(5) (@)
C(Nl@—1) = idg: C(SN)(w-1) = O(SH)(a-1)
CPly) = G Cd)yidp-(d+ T30, d): O8N (wy) = O8N ),
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d: RAut(y,) — RAut(yg,)
d—1

(1,m) (1,dm)+(1,dm+1)+...+(1,dm+T)

—((T,dm) + (T,dm—i—l) +...+ (T,dm-i-?))
(r,m) (T,dm+%)+...+(7,dm+d—l)

—((1,dm+%)+...+(1,dm+d—1)>

If d is even, we obtain

C(f)(z1) = idg: C%(SY)(z1) = C*(S1)(x1)

C(f)(z_1) = idp: C(ST)(w_1) — C°(ST)(a1)

~ idp (- idp (- d —~ —~
C*(Flys) = (( A L) i (5”2)),d">:OC(SI><y¢>+OC(Sl><yd.@),

where

d": RAut(y,) — RAut(yay)
d—2
(1,m) (1,dm)+(1,dm—|—1)—|—...+(1,dm+—2 )

—((T,dm)—i- (r,dm+1) +...+ (T,dm—i-%))

(r,m) (T,dm+g)+...+(7,dm+d—1)

_<(1,dm+g) +...+ (l,dm—l—d—l))

We have
Uf/Q(SI, f) = Ko(¢-endgsrri(z,/2,51))

and ul(S', f) = [Cc(f)], so if d is odd, then

uf(S", f) = [({dr)z, ® (idr)o_, ® (idp -(-d) ®idp -(-d+ %»w] = [(d)y,],

if d is even, then

ide (- ide (- d
ul(S", 1) = [(idR)mea(idR)x_lea< e () ide (4+3) ) | = [@y,].
Yo

This example is continued in Section 6.3, where the splitting results of Chap-
ters 5 and 6 are taken into account.
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3.3 Functoriality

Let (X, f) and (Y, g) be finite proper G-CW-complexes with G-equivariant
cellular endomorphisms f and g. Let h: X — Y be a G-equivariant cellular
map such that gh = hf. Then composition with h induces a functor H :=
(G, h): TI(G, X) — TI(G,Y) between the fundamental categories. Setting
¢ :=1(G, f) and 1 := II(G, g), the diagram

(G, X) L5 1(G,Y)

o v

(G, X) L5 1(G,Y)

commutes. We are in the algebraic situation of Section 2.2 and obtain a
group homomorphism

Uei(h) := Ko(H.): UG (X, f) = U (Y. g).
Thus UZ is a functor from End(G-CWy,) to Ab. But we know even more:

Lemma 3.3.1. Ifh: (X, f) — (Y, g) is a G-equivariant cellular map between
finite proper G-CW-complexes with endomorphisms, i.e., such that gh = hf,
then we have a commutative diagram

~ ce(h) ~
II(G, h).C*(X) ce(Y)
H(G,h)*CC(f)l lCC@)

~_  resy C°(h) ~
resy, II(G, h),C(X) ——— resy, C°(Y).

Proof. The map h: X — Y yields a natural transformation h:X - Yo
II(G, h), thus also [Liic89, 13.4]

C(h): C°(X) — C°(Y o II(G, h)) = respap) C°(Y).

In accordance with our usual conventions, we set H := I1(G, h), ¢ := TI(G, f)
and ¢ := II(G,g). If h is a morphism such that gh = hf, we obtain a
commutative diagram of RII(G, X )-chain complexes

ce(h)

C(X) > resy C°(Y)

co(f; )J lreSH ce(9)

~ esy C¢(h) ~ ~
resy C°(X) i »resgresy C°(Y) = resy resy, C(Y).
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By adjunction, the above yields a commutative diagram

_ e ce(i)oindm C°(h) ~
indy C¢(X) > C°(Y)
indg Cc(f)l _ lCC( )
» gresd) Cc(;,)oindH(resd) ce(h)) »
indg resy, C°(X) resy, C(Y).

We remember that H, (C¢(f)) was not exactly indy C°(f). Abbreviating res
by r and ind by 7 for better readability, we use the commutative diagram

Eoe(v) oty C° (ﬁ)

H,CY(X) = igCe(X) Ce(Y)
iHCC(f) lC’C(hg')
Yoo iy Ce(h) Erp0e(¥)
iHT¢CC(X) e iH’f'¢7"H00( ) 4 ’I"wCC(
iHT‘d;nCc(j(’) ZHTd;ﬂTHCC(y)J/ ld
i A ~ ZH7'¢(7'H1,HCC(h)) ZH7'¢TH5(VC(Y)
ZHT’¢’I“HZHCC( ) S ZH’I“¢T’H7,H’I“HCC( ) 4>ZHT’¢THCC
CrypigCe(X) ErwiHrHCC(?)J/ erC(Y)
T roin Ce(h) ] Ty Eqe (¥
rytrC(X) — /7‘¢'LHTHCC( ) - /T¢CC
id
e - T‘d,(EOC(f,)OiHCC(h))
’I"wH*CC(X) /7‘¢CC

to establish

- ce(h) -
H.C(X) > C°(Y)
H*Cc(f)l lcc(zi)

~ resy, ce(h) ~
res,, H,C(X) >resy, C4(Y),

where we defined C¢(h) := Ece(i) © indg C¢(h). We denote both the map

H,C%(X) — C°(Y) and the map C%(X) — resy C%(Y) by C¢(h) since they
determine each other and no confusion can occur. O

Lemma 3.3.1 implies that C¢(h) is a map from II(G, h).C°(f) to C*(7).

3.4 The Induction Structure

Let X be an H-CW-complex with H-equivariant endomorphism f: X — X
and let «: H — G be a group homomorphism. Then ind, X := G xg X
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is a G-CW-complex. It is proper if X is proper. (If K < H is finite, then
for any group homomorphism «: H — G also «(K) is finite.) The map

ind,: X = Hxpg X oxid, o xg X = indy, X (which can also be seen as

X = 1 Xyer(a) X € G Xy X) induces a map Il(ind,) of the fundamental
categories:

[I(ind,):
M(H,X) — T(G,ind, X)
(@: HIK - X) — (indgz: G xpg (H/K) = G/a(K) 22105 G x pp X)
(o,w)

w)

where for (o,

(indy 0, indgy w),
€ Morq s, x)(z(K),y(L)) we set

indyo =idg xgo: G xg (H/K)=G/a(K) - G xg (H/L) =G/a(L),
indgw =idg xgw: G/a(K) x I =G xg (G/K xI) - G xg X.

We set ind,, f =idg Xgf: G xg X = G xg X. The diagram

indgy

X—GxpgX

fl lidc g f
inda

X—Gxpgp X

commutes since ind, is a functor and f is H-equivariant. Setting A :=
[I(ind,), ¢ :=I(H, f) and ¢ := II(G, ind, f), the diagram

A

TI(H, X) TG, G X X)
| A |
TI(H, X) TG, G X X)

also commutes, and we obtain a group homomorphism

= UR(a) := Ko(A,): UR(X, f) = UE(ind, X, ind, f).

3.5 Properties of the Geometric Invariant

We defined the invariant (UF(X, f),uZ(X, f)) because it has certain nice
properties. Namely, it is a functorial equivariant Lefschetz invariant, which
means that it satisfies additivity, G-homotopy invariance, invariance under
G-homotopy equivalence and is normalized. We define a functorial equi-
variant Lefschetz invariant in Definition 3.5.1, in analogy to [Liic99, 2.3],
where the non-equivariant case is treated, and to [LR03, Lemma 3.7], where
a coarser equivariant invariant is studied.
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Definition 3.5.1. A functorial equivariant Lefschetz invariant on the family
of categories G-CWry, of finite proper G-CW-complexes for discrete groups
G is a pair (0, 0) that consists of

e A family O of functors
O¢: End(G-CWy,) — Ab

which is compatible with the induction structure, i.e., for an inclu-
sion @: G — K there is a group homomorphism ©(«a): O¢(X, f) —
Ok (ind, X, ind, f) for every (X, f) € End(G-CWy,). We want the
equation ©(a)Og(h) = Ok(indy h)O(a) to hold for any morphism
h: (X, f) = (Y, 9).

e A family 6 of functions 0¢: (X, f) — 0c(X, f) € O¢(X, f).
such that the following holds:

1. Additivity
For a G-pushout with io a G-cofibration

(Xo, fo) — (X1, f1)
‘| \ b
(X2, f2) ——

we obtain in O¢(X, f) that

0c(X, f) = ©a(j1)0a(X1, f1) + Oa(j2)0c(X2, f2) — Oc(jo)ba(Xo, fo)-

2. G-Homotopy invariance
If ho,h1: (X, f) — (Y,g) are two G-maps that are G-homotopic in
End(G-CWry,), then

@G(ho) = eg(hl): eg(X,f) — eg(Y,g).

3. Invariance under G-homotopy equivalence
Ifh: (X, f) = (Y, g) is a morphism in End(G-CWf,) such that h: X —
Y is a G-homotopy equivalence, then

Oc(h): Oc(X,f) = Oa(Y.g)
OG(Xaf) = GG(Yag)'

4. Normalization: We have 0 (0,idg) = 0 € ©¢(0,idy).
5. If @: G — K is an inclusion of groups, then

a.0q(X, f) = 0k (ind, X,ind, f) € Ok (ind, X, ind, f).
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A natural transformation 7: (©,0) — (E,¢) of functorial equivariant Lef-
schetz invariants is a family of natural transformations 7¢: O¢ — Zg of
functors from End(G-CWry,) to Ab for discrete groups G that preserves all
structure.

In the non-equivariant case, a functorial Lefschetz invariant has to satisfy
additivity, homotopy invariance, invariance under homotopy equivalence and
normalization [Liic99, Chapter 2, Definition 2.3]. This is the natural equiva-
riant generalization. We write either (0,6), (¢, 0¢) or (0¢(X, f),0c(X, f))
for a functorial equivariant Lefschetz invariant.

We show that the invariant (UZ(X, f),uZ(X, f)) that was defined in
Definition 3.1.1 has these properties:

Proposition 3.5.2. The invariant (UE(X, f),uE(X, f)) is a functorial
equivariant Lefschetz invariant on the family of categories G-CWy, of finite
proper G-CW-complezes for discrete groups G.

Proof. We have an abelian group UZ(X, f) for all (X, f) and for all discrete
groups G. In Section 3.3 we defined UZ(h): UR(X, f) — UZ(Y, g) for a map
h: (X, f) = (Y,g). So U is a functor on End(G-CWrg,). In Section 3.4 we
defined U () for a group homomorphism a: G — K. We know that the
diagram

indg

X —ind, X

hl linda h

Y % ind, Y
commutes, so
U()Ug(h) = T(inda),II(G, h),

= II(K,ind, h).II(ind, )«
= Ugk(indy h)U ().

The function uZ is defined as uf: (X, f) — vBE(X, f) :== = w(C<(f)). We need
to show that (UZ,uZ) fulfills properties 1-5. We leave out the index R in
the sequel if no confusion can occur.

1. Additivity:
From [Liic89, Lemma 13.7] one knows that for a G-pushout

Xo L>X1

LN

X2—>X
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with i9 a G-cofibration we obtain a based exact sequence of RII(G, X)-
chain complexes

. C o j *CC Z:-V 69 *CC Z:-V . C o . C o
0 — jo, 0 (Xo) LS TE), 5 Ge (X)) @ 4o, C°(X)

C°(j1)—C°(j2)

C¢(X) =0,

where 7o, 71« and 72, denote induction with jp, 71 and j2 respectively.
Since by Lemma 3.3.1 every map h: (X, f) — (Y,g) between finite
proper G-CW-complexes with endomorphisms induces a commutative
diagram

- ce(h) -
H.C(X) ce(Y)
H. cc()l JCC@)
~ res, ce(h) ~
resy, H,C°(X) resy, C(Y)

and 41, 2, j1 and jo are such maps, we obtain a commutative diagram

0—> 50, C%(Xo) — j1.C¢(X1) @ jo. C°(Xg) —— C%(X) — 0
jo*CC(j%)l jl*CC(ﬁ)ijQ*CC(ﬁ)l CC(f)J
0 - resy j0,.C%(Xo) » resg j1:.C¢(X1) @ resg 2x C°(X5) + resg C°(X) 0,

thus a short exact sequence of ¢-endomorphisms of RII(G, X)-chain
complexes. From the additive properties of the algebraic invariant
(U,u) defined in Section 2.1 we conclude

w(C() = u(iC) +ul2.C(f2)) = u(io.C(fo))
= UQGu(C(f) + Ul2)u(C(f2)) = Uljo)u(C*(fo)),

SO

uc(X, f) = Ug(j1)uc(X1, f1) + Uc(j2)ua (X2, f2) — Ua(jo)uac(Xo, fo)-

. G-Homotopy invariance:

Let hg ~g h1: (X, f) — (Y,g), where the G-equivariant homotopy
between hg and hy is given by H: X x I — Y satisfying the equation
gH = H(f xids) on X x I, where I = [0, 1] denotes the unit inter-
val endowed with the trivial action of G and where X x [ is endowed
with the G-equivariant endomorphism f x id;. Then we have a com-
mutative diagram of natural transformations between categories with
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endofunctors

(G, X),
I1(G,pry) I(G,H)
%

(IN(G, X x I),®) (I(G,Y), )

(I(G, X), $) (Gpry) (G k1)

where ¢ = II(G, f), ® := II(G, f x id;) and ¢ = II(G,g). The
maps 7o and i; induce equivalences of categories I1(G,1y) and I1(G, 71)
from II(G, X) to II(G,X x I). Furthermore we have prjoiy = idx,
so II(G,pry) o II(G,ip) = I(G,idx). We know that II(G,idyx) =
idr (g, x) since II(G, —) is a functor. Analogously we obtain II(G, pr;)o
(G, i) = (G, idx) = idng.x)-

We want to show that Ug(hg) = Ug(hq), i.e., that we have the equation
Ko(IL(G, ho)«)(lg]) = Ko(I(G, h1).)([g]) for all g € ¢-endgirnc,x)-
We know that TI(G,hy) = (G, H) o TI(G,ig) and that TI(G,hy) =
II(G, H) o II(G,i1), so it suffices to prove that Ky (II(G,io):(g)) =
KO (H(G,Zl)*(g)) for all g € qﬁ—endffRH(G’X).

This is shown if for (g: M — Mo¢) € ¢-endgsry(a,x) We find a natural

equivalence
t: indrya,ip) — indpe,i)
such that
indr.i) M fur s indpy(g ) M
H(G,io)*(g)l lH(G,il)*(g)
resg indpy(,ip) M TSIV, resg indpyq,i) M

commutes. We define the map ¢ by
tar: indma i) M = M(?) @rne.x) RIG, X x I)(?2,11(G, ip)(?))
O M @) RING, X x 1)(72,T1(G,i1)(?)) = indrg,) M,
where for 7 = (z: G/H — X) € II(G, X) we have
(G, io)(z) =igoz: G/H % X ™% X x I
and  I(G,i1)(x) =iox: G/HS X 5% X x I,

and where t/,: RII(G, X x I)(??,ip o z) — RI(G,X x I)(??,i1 o x)
is given by composition with the morphism (idg/,v,) € RII(G, X x
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I)(ig o x,i1 o x) where v, is the path from i1 oz to ig o x given by the
map z X (1 —idy): G/H x I — X x I. By definition ¢ is a natural
transformation. An inverse to t, can be given by composition with
(idg/m,v; ). Sot = idy ®t' has the inverse idyy ®t' ! and is a natural
equivalence. The following diagram commutes by naturality:

. tar .
indpyg,ig) M ——————— indqi,) M
indn(g,io)(g)l lindn(c,il)(g)
tres M

indry(q i) resy M 42) indpy(q ;) resy M.

The precomposition with the morphism (idg/g,v;) gives us a map
sk RII(G, X xI)(TI(G, i1)(z),??7) — RII(G, X xI)(TI(G, ip)(x),?7), so
we have a natural transformation of functors idys ®s': resy(g,,) M —
resyy(a,i) M. The inverse of s, is precomposition with (idg/, v 1), so
s is also a natural equivalence.

One checks commutativity of the following diagram, where we call
II(G,i9) = Iy and TI(G,i1) = I for simplicity of notation, and where
we abbreviate res by r and ind by <.

tar=idy @t

i1, M — i, M
o (g)l lhl (9
. tres¢ m=idy ®id ®t’ i
i1 M — ir, T M
i1yTe (WM)J/ li,l 76 (nar)
. . idy ot ®s' " eid ot . .
(T0)«(9) LT ¢TIty M — > i Trn i M (I1)«(9)
. ) idy ot @id@s' et . .
1T I L1, M — i, roln, M

lgr(}i ‘M

rety =idy @t ®id .
Ak reir, M.

~

So t is a natural equivalence, t37: (Ip)«(g9) — (I1)+(g), which implies
[(Z0)+(9)] = [(11)«(g)]. For all [g] € Ua(X, f) we have

Ua(ho)(lg]) = Ko(II(G,ho)s)(l9]) = Ko(II(G, ko)« (9))
Ko (TG, h1)«(9)) = Ko(TI(G, b)) ([9])
= Uqg(h1)(lg]),

thus Ug(ho) = Ug(h1) as was to be shown.
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3. Invariance under G-homotopy equivalence:

If h: (X, f) — (Y,9) € End(G-CWy,) such that h: X — Y is a G-
homotopy equivalence, then TI(G,h) is an equivalence of categories,
which implies that II(G, h),: qb-endffRH(G’X) — '([)-endffRH(G’Y) is an
equivalence of categories by Proposition 2.2.4. Thus we know that
Ug(h) := Ko(II(G, b)) is a bijection. We need to show that ug (X, f)
maps to ug(Y, g) under this map.

By Lemma 3.3.1, we know that we have a commutative diagram of
finite free RII(G, X )-chain complexes

ce(h)

(G, h),C¢(X)

H(G,h)*Cc(f)l lCC(ﬁ)
~ resy, ce(h) ~

resy, II(G, h).C°(X) > resy C(Y).

ce(Y)

We know that the map h: X — Y is a G-homotopy equivalence, so
there exists a G-homotopy inverse [: Y — X, i.e., a G-equivariant
map [: Y — X such that [ o h ~¢ idy and h ol ~¢ idy. This
implies that for all K < G the restrictions to the fixed point sets
hE: XK — YK are homotopy equivalences with homotopy inverses
% and thus that for all K < G and z: G/K — X € ObII(G, X) the

—_~—

maps h& (z): XK (x) — YE(h(z)) are homotopy equivalences with ho-

—~—

motopy inverses (X (h(z)). Tt follows that C¢(hE(z)): C¢(X K (z)) —
CC(Y%))) is a chain homotopy equivalence for all K < G and
all z: G/K — X, with homotopy inverse CC(I/K\(JJ/)). So C¢(h) is an
RII(G, X)-chain homotopy equivalence. We use Lemma 2.3.4 to con-
clude that u(II(G, h).C°(f)) = u(C°(g)). We obtain

Ua(h) (uc(X, f)) = Ko(TI(G,h).)Ko(C°(f)) = Ko(TI(G, h).C*(f))

as was to be shown.

. Normalization: ug(0,idy) =0 € Ug(0,idy).

We will show that Ug(0,idy) = {0}. We defined the group Ug(0,idy)
to be Ug(0,1dy) := U(R,II(G, 0),idy). We know that II(G,0) = 0, the
empty category, since there exist no maps to (). There exists exactly
one map ) — R-Mod, and idg-morphisms of this functor are only
the identity. (Any possible morphism is an idg-morphism since any
morphism commutes with the identity idy, and here only the trivial
morphism is possible.) So idg-endgpy = {pt}, the one-point cate-
gory with only idp; as morphism. This implies that Ko(idg-end¢rgy) =

Ko({pt}) = {0}.
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5. Let a: G — K be an inclusion of groups. We want to show that
auaq(X, f) = ug(ind, X, ind, f).
We know that a,ug(X,f) = uw(A.C¢(f)), where A := II(ind,) :

II(G, X) — II(K, ind, X) was defined in Section 3.4, and we also know
that ug(indy X,ind, f) = u(C¢(ind, f)). So we need to show that

u(ALC(f)) = u(C(ind,, f)). We are finished if the diagram

—_~—

inds C¢(X) ——— C(ind, X)

A*Cc(f)l lCC(inda f)

resy ind4 C¢(X) — res,, C*(ind, X)

commutes. We start by showing that there is a natural equivalence
T: indy X — ind, X

of II( K, ind,, X )-spaces.

We remember that X(z) = XH(z) is an Aut(z)-module. When we
identify X (z) = {(id,v)|v; = =z}, then we can describe the action
by X (z) ® Aut(z) — X(z),(id,v) ® (0,t) — (id,oc*vt). This is not
quite composition of paths since the composition would be (o, 0*vt).
This is not an element in X (z), we have to identify it with (id, o*vt).

Geometrically, what we think of as a point in X (x) _is the endpoint
of the path, and that stays the same. Analogously, X is a II(G, X)-
module by composing paths and identifying the group elements with
id afterwards.

Let (y: K/L — ind, X) € II(K,ind, X). We define T, by

(ind, X) (y)
(id, o* (ind,, v)w).

Ty : X(?) ®rm(a.x) RIU(K, ind, X)(y, A(?))

N
(id,v) ® (o,w)

We define an inverse W, of T, by

Wy« (inde X)(y) = X(?) ®gie,x) RI(K, indq X) (y, A(?))
(id,s) +— (id,a* (0, ')*s) ® (o, csty),
where cst, denotes the constant path at y and we need to explain oy.
We choose k such that k.y € G xg X C K xg X. This is only well
defined up to an element in G, we could have chosen any «(b)k for

b € G. But the map W, will turn out to be independent of this choice.
We set

op = (Rp-1: K/L — K/kLk™ kL v kk~'(kLEY)).
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We have yoak_1 =ky € GxgX CK xgX. So k.y = ind,z for
a unique € X. If y € (indy X)F, then k.y € (indy X)**™" and
kLk=' < a(G). Setting H := o~ ' (kLk™') we have z € X . The path
(07 ')*s = k.s lies in G xg X 2 X, so its restriction a* (o} ')*s = k.s
lies in X.

The definition of the map W, does not depend on the choice of k

because of the tensor product relation. For an element b € G, we have
in X(?) ® (e, x) RI(K, ind, X)(y, A(?)) the equation

(id, & (05 (1) "5) ® (Tagoks csty)
(lda( o) (@ )75) ® (o), csty) (08, csty))
= (id, 050" (0,4,)) (05, 1)"s) ® (o csty)
(
(

id, a" oy (O'a( o, 1)*s) ® (o, csty)

id, a* (0, 1)*s) ® (0%, csty).

Compositions are the identity.

T,W,(id,s) = T,((id,a*(0,)*s) ® (o, csty))
= (id, o} inda(a* (0, 1)*s))
= (id, s).

Given (o,t) € RII(K,ind, X)(y,ind,(z)) for y € II(K,ind, X) and
z € TI(G,X) we know that t; = y and that ty = ind,(z) o o, so
yoo~! € G xg X and we have g}, = oopyo for an element b € G. We
calculate

W, Ty((id,v) ® (0,1)) = W, ((id a*(ind v)t))

(id, o” 0" (inda v)t)) ® (o, csty)
(id, a0 1)*(a (indy )t)) ® (o, csty)
( id, v) 1d o (o 1)”“t)) ® (o, csty)

= (id,v) ® (o,1).

Since the maps T and W, are essentially given by composition of
morphisms, functoriality is clear. So T and W are natural equivalences
of II(K,ind, X)-modules. We see that the diagram

~ T —~—
indg X ind, X
N fl T

res¢ —_—

resy, ind 4 X—— resy, ind, X
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commutes since for an element (id, v) ® (o, w) € ind4 X we have

(resy T) o (A f)((id,v) ® (o, w))
= (vesy T)((id, f(v)) ® (o, (indq f)(w)) ® (id, vy))
= (id, 0" (inda(f(v)))(indq f)(w)) @ (id, v,)
= (id, (ind, f)(c*(inds v)w)) ® (id, vy)

= im((id, o*(indg v)w))
= (indy f) o T((id,v) ® (o, w)).

where 1) is induced by ind, f and v, is a path from f(y) to y. So

T is a natural equivalence that maps A*f to ind, f. We can now
apply the cellular chain complex functor C to obtain a natural equiv-

alence C°(T): indy C¢(X) — Cc(ir?i\a_gQ which maps A,C¢(f) to
C¢(ind, f). So

[A.C°(f)] = [C*(inda £)] € Ko(-endstan(x,inda 1))
whence a,ug(X, f) = uk(ind, X, ind, f). O

Remark 3.5.3. Since (U%,ul) is G-homotopy invariant and invariant un-
der G-homotopy equivalence, we can define a group Ug(X , f) and an element
ul(X, f) € UE(X, f) for any continuous G-equivariant map f: X — X, we
need not restrict ourselves to cellular G-maps f: X — X.

We start with the definition of UZ(X, f). As in the case of a cellu-
lar map f, given a G-equivariant endomorphism f: X — X, we define
an abelian group UZ(X, f) := Ko(¢-endgepmi(a,x)), where ¢ = II(G, f).
For a G-equivariant morphism h: (X, f) — (Y,g), i.e., a continuous map
h: X — Y with gh = hf, we define a group homomorphism UZ(h) :=
Ko(II(G,h),) as in Section 3.3. For a group homomorphism a: G — K we
set UR(a) := Ky(TI(ind,)+) as in Section 3.4. We therefore have a family
of functors UZ not only on End(G-CWrg,), but on the category having all
continuous maps instead of only cellular maps. As in the proof of Propo-
sition 3.5.2, one checks G-homotopy invariance of the functor Ug and the
fact that a G-homotopy equivalence induces an isomorphism.

We now come to the definition of uZ(X, f). When the map f: X — X

is not cellular, it does not induce a map C¢(f): C%(X) — resg C¢(X) of
the cellular chain complex. We need to use an equivariant cellular ap-
proximation f': X — X of f. See Whitehead [Whi78, II1.4] for cellular
approximation in the non-equivariant case and tom Dieck [tD87, 11.2] for
the equivariant setting. There is a G-homotopy F’ between f’ and f, and
the G-homotopy equivalence ij: (X, f') — (X x I,(F’,id;)) induces an
isomorphism UZ(if)): UE(X, ') — UE(X x I,(F',idr)). Analogously, we
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obtain an isomorphism UZ(i}): UB(X, f) — UB(X x I,(F',idr)). We set
ul(X, f) = UG ()~ U () (ud(X, 1) € UE(X, f).

We need to check that the definition of uZ(X,f) is independent of
the choices of the cellular approximation f’ and of the G-homotopy F'.
The isomorphism UZ(i})~'UE(if): UE(X, f') — UZ(X, f) depends on the
choices of f' and of F'. Other choices f” and F” lead to another iso-
morphism UL (i) tUE(if)): UG(X " = UG(X f). These isomorphisms
differ by an isomorphism UZ(if)"'ULGE): UR(X, f") — UL(X, f") in-
duced by the G-homotopy K := F' Uy ( F") from f’ to f”, i.e, we have
UEGE)MUEGE) = (UEG) M UEG) " (UE @) UE ().

Take L: X x I — X to be a cellular approximation of K. Then K is
G-homotopic to the cellular G-map L relative X x 01, so there is a G-map
H: X xIxI — X with H|xyxsxq0y = K, H|xxrx{1y = L, H|xx{oyx{s} = f'
for all s € I and H|x,(1yx{s} = f" for all s € I. We have a commutative
diagram

U ( fll

UG ]1 0
z
UR 1nc10

UB(X x I, (K,pry)) —>UGX><I><I(HprIX]))

T/

UE(X, f),
whence US (1) T'UE(ig") = U (j1,0) 7' UE (Joo)- Analogously, we obtain

U ( fll
.
(i1
UR (incly)

UB(X x I,(L,pry)) %UG (X x I x1I,(H,prryg))

UR zéT
301

and thus UF(if) 'UE(i§) = UE(1,1) U (Go,1)-

We know that idx x{0} x id;: X x I — X x I x I gives a G-homotopy
between jo o and jo; as maps from (X, f') to (X x I x I, (H,pryy;)) since
H|XX{0}X{S} = f'for all s € I. Analogously, we have a G-homotopy between
J1,0 and 71 1 as maps from (X, /") to (X x I x I, (H,prr,;)). By G-homotopy
invariance we conclude that

UEG)T'UEGE) = UEG10) " UEGop) = UEG11) " U (o)
= UEGD) 'UEGE).
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Since invariance under G-homotopy equivalence is known for the cellu-
lar case, UL (il)"'UE(i{') maps the invariant vZ(X, ') to uZ(X, f"). So
UBE) UL E) = UBGE) U (if) also does, and we have

UG (i7) " U (ig) (ug (X, f"))
= UG (i)~ U (ig) (UG (i) T UG (i) (ud(X, 1))
:ngl U (i) (uGXf )
Hence the element uf(X, f) = UZ(i)) UE(}) (uE(X, f) € UE(X, [)

is independent of the choice of the cellular approximation f’ and the G-
homotopy F’.
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Chapter 4

Universality

In this chapter, we arrive at the first climax of this thesis. We show that the
invariant (Ug, u%) constructed in Chapter 3 has a universal initial property
among all functorial equivariant Lefschetz invariants. It will be called the
universal functorial equivariant Lefschetz invariant. This theorem, Theo-
rem 4.1.2, explains the theoretical importance of the invariant (UZ,u%) and
justifies our interest in it. This chapter is the equivariant generalization
of [Liic99, Chapter 4].

In the first section, we state the results and introduce the notation neces-
sary in the proof. We explain retractive G-spaces, generalizations of pointed
spaces. A G-space X plays the role of the basepoint. One can define cones
and suspensions. In Lemma 4.1.3 we prove the key ingredient of the proof of
Theorem 4.1.2, namely a way to get back from algebra to geometry. There
the retractive G-spaces come into play.

4.1 Notations and Results

We start by stating what we mean by a universal functorial Lefschetz invari-
ant. In Definition 3.5.1 we defined functorial equivariant Lefschetz invari-
ants, and we now state what it means to be universal among all of those.

Definition 4.1.1. A functorial equivariant Lefschetz invariant (Ug,uq) is
called universal if for any functorial equivariant Lefschetz invariant (O, 0¢)
there is precisely one family of natural transformations 7¢: Ug — ©¢ such
that 7¢(x,p): Uc(X, f) — Og(X, f) sends ug(X, f) to 0c(X, f) for any
object (X, f) in End(G-CWy,), for any discrete group G, and such that the
equality 7 o U(a) = ©(«) o 7¢ holds for inclusions a: G — K.

The goal of this chapter is to prove the following theorem.

Theorem 4.1.2. The pair (Ug,u%) s the universal functorial equivariant
Lefschetz invariant on the family of categories End(G-CWry,) for discrete
groups G.

47
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Before we start the proof, we introduce the necessary notation, general-
izing Liick [Liic99, Chapter 4]. We define retractive G-spaces over a given
G-space X, which for X the one-point space are just pointed G-spaces. Then
we define analogs of the cone and the suspension. We also define the analog
of pointed homotopy classes of maps, namely those that induce a given map
fon X.

Let X be a G-space. A retractive G-space Y over X is a triple Y =
(Y,i,7) which consists of a G-space Y, a G-cofibration i: X — Y and a
G-map r: Y — X satisfying r o ¢ = idx. We often identify X with 7(X).
Given a retractive G-space Y over X, define retractive G-spaces Y x x [0, 1]
and C'xY to be the pushouts

X x[0,1] —= 5 x

o]

Y x[0,1] — Y xx [0,1]

and
Y x {1} —— X

W

YXX[0,11—>C)(Y

respectively, where [0, 1] is endowed with the trivial G-action. The inclusions
of X into Y x x[0, 1] and into CxY" are the right vertical maps, the retractions
of Y xx [0,1] onto X and the retraction 7: CxY — X onto X are induced
by the retraction r: Y — X by the pushout property. Define the retractive
G-space L xY to be the pushout

Yy — L s OxY

I

CyY —— SyY,

where i: Y — CxVY is the inclusion induced by the inclusion ¥ x {0} —
Y x [0,1]. The retraction is induced by 7 by the pushout property. The
composition i0i: X = C 'xY is a G-homotopy equivalence relative X with
the retraction of C'xY onto X as G-homotopy inverse relative X.

Given two retractive spaces Y and Z over X and a G-endomorphism
f: X — X, define [(CxY,Y),(CxZ, Z)]? to be the set of G-homotopy
classes relative X of maps of pairs (g,¢): (CxY,Y) — (CxZ, Z) that induce
the given endomorphism f on X, i.e., such that goiy =iz o f. (Homotopy
class relative X means that the relevant homotopies are stationary on X.)

Let X be the universal covering space of X, a II(G, X)-space, and let Y
be the universal covering space of Y, a II(G,Y)-space. Then resyyq;,) Y is
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I1(G, X)-space. We define the ZII(G, X)-chain complex C¢(Y, X) by

Co(V, X) = coker (C°(X) D resyy gy ) CO(V)).
We call a retractive G-space Y over X a d-extension if Y is obtained from X
by attaching finitely many cells in dimension d. If Y is a d-extension of X
and d > 2, then we have the short exact sequence

0= (X)L, resy gy ) CV) = C4(V, X) = 0,

where C°(X) and TeSI(G,iy ) C<(Y) are finite free ZII(G, X )-chain complexes
equipped with the cellular equivalence class of bases [Liic89, Definition 13.3
and Example 9.18]. Since the above sequence is based split exact, C(Y, X)
is a chain complex concentrated in degree d, and CC(Y X) is a finite free
ZII(G, X)-module with an equivalence class of bases given by the cells of
Y\ X [Liic89, Example 9.18].

Note that if Y is a d-extension of X and d > 2, then the functor
II(G,iy): II(G, X) — II(G,Y) is an equivalence of categories with inverse
II(G,ry). This holds because the retraction ry: ¥ — X exists. In general,
if there is only an inclusion given, it is only true for d > 3. The fact that
II(G,iy) is an equivalence of categories implies that resryq ;) Ce(Y) is a
finite free ZII(G, X)-module, so resyyq i,y C°(9) € ¢-endgepzm(a, x)-

Remember that we have /a\%nonicalﬂitj: X > Xo pof f: X = X

given by the lifts f|yny: X7 (z) = XH(f(z)) with [id,] = [id,]. For
any map g: Y — Z of d-extensions of X, for d > 2, such that goiy =izo0 f
we obtain a lift g: resy(q iy Y - TesTI(@iy) Zo ¢ uniquely determined by
the fact that it induces fon X. The map § is a map of II(G, X)-spaces. If
we have a G-endomorphism f: X — X and a G-endomorphism g: Y = Y
extending f, then

X—sy
s P
X —=y
commutes, so
C v CC(;) C v
C (X) 7 I'eSH(Gﬂ;Y) C (Y)
c( ~)l J/resH(G,iy) Cce(9)
~ resy ce (i) > oS
CX)od¢ > (resti(a,iy) C°(Y)) 0 ¢ = resyq iy ) (C(Y) 0 9)

commutes as well, and we have an induced map between the cokernels of
the horizontal maps, C(g, f): C°(Y,X) — C°(Y, X) o ¢, which is a map of
II(G, X )-chain complexes.
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The next lemma contains the decisive bridge between geometry and al-
gebra, in analogy to Liick [Liic99, Lemma 4.2].

Lemma 4.1.3. Let Y and Z be d-extensions of the G-space X with d > 2.
Then the map

n: [(CxV,Y),(CxZ,2)]] = Morgne.x)(Ci(Y, X),C5(Z, X) 0 ¢)

[(@.9)] — Ci(g,f)
18 bijective.
Proof. Choose a G-pushout

[l;e; G/H; x S9! % X

b
Hie] Qz

[Le, G/Hi x D4 ——<"="

Define a G-map p;: G/H; x S — Y by setting pi|G/Hi><51 = Q; and
pi|G/Hi><Sd_ ;=10 ;. Then we can see CxY as the pushout

[Tic; G/Hi x S° %Y

| s
Hie[ i

P;
[I;c; G/H; x D' ———— CxY.

Hence a G-map (g,¢9): (CxY.Y) — (CxZ,Z) with g|x = f is uniquely
determined by its compositions (g, g) o (P, p;), and any collection of G-maps
(ki, kl) (G’/f[Z X Dd+1, G/I‘IZ X Sd) — (sz, Z) with ki|G/Hi><Sf = foro();

determines uniquely such a map (g, g) with (g,g) o (P;,p;) = (I;Z, k;). Hence
the map

p: [(CxY,Y),(Cx 7, Z)]?

~ [lle/H: x (D*,5%), (Cx 2, 2)]
iel

G
foroQ;: G/H;xS% —X

sending [(7, g)] to ([(g,9) o (Pi’pi)])iel is a bijection. The following forgetful
map is bijective for all 7 € I:

G
Vi [G/Hz X (Dd+1a‘9d)a (CxZ, Z)]foroQi: G/H;xS% X
= [G/H; x (DU, 84, 5), (Cx Z, Z, f(z:))]©

= ma (Ox 2)1(f (), 27 (f (20)), £ (),
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where s = (0,...,0,—1) € S 1 C D4~ 8¢ C §% s a fixed base point and
z; == qi(—,s): G/H; - X € II(G, X). Here f(x;) means either foz;(G/H;)
or f(z;(1H;)), depending on the context. The forgetful map v; forgets that
the map has to look like f o r o @Q; on G/H; x S and remembers only
that it is f o z; on G/H; x {s}. The map vj; is bijective since the inclusion
G/H; x {s} — G/H; x S is a G-homotopy equivalence and the inclusions
{s} = 8% — 8¢ — D! are cofibrations.

The inclusion X — C'x Z is a G-homotopy equivalence, so for all H; < G
the inclusion X i (f(z;)) = (CxZ)"i(f(z;)) is a G-homotopy equivalence.
Thus we know that 7.1 ((Cx Z)™i(f (2:)), X (f (1)), f (i) =2 0 and that
Ta((Cx Z)™i (f (i), X i (f(z:)), f(z;)) = 0, and the boundary map is an

isomorphism
0: war1 ((Cx 2)" (f (), 2™ (f (), f (2))
~ [G/H; x (Dd+1, S%8),(Cx 2, Z, f (2:))]©
= wa(Z17(f (), X (f (24)), f ()
~ [G/H; x (D, 8% ), (Z, X, f(2:))],
[(h,h)] = [ho (idg/m, X Prpi_yse),s o (idgym, X Prsii_y)].
So we have an isomorphism

(IT2) (IT»:)

cel el
[(CxY,Y),(CxZ,Z)|f = Hﬁd(ZHi(f(QUz'))aXHi(f(fEi))a f(z))
el
[(ﬁ,g)] = ([goQi(lHiv_)afOqi(lHiv_)])iej'
We know that
w(Z7(f (@), X T (f (22)), £ (@) <= wa (27 (f (i), X T (f (), (1))

—_~ —_~

M Hy(Z75(f (), X T (f (2))) = C§(Z7(f (23)), X T (f (1))
— (C5(Z,X) 0 §)(z1).

Here p = my(pr, f@;)), the map induced by the projections of the covering

spaces ZHi(f(z;)) and XHi(f(x;)) onto the respective space, is an isomor-
phism since the pair (Z%i(f(xz;)), X (f(x;))) is at least 2-connected. The
map h denotes the Hurewicz map, which is an isomorphism since it is in the
first non-vanishing degree of homotopy /homology.

We know that C§(Y", X) is a finite free ZII(G, X )-module with an equiv-
alence class of bases given by the cells of Y \ X, and that we can choose a
basis using the characteristic maps (Q;, ;) such that

Ci(Y,X) = P ZI(G, X)(?,4i(—, 5)).
el
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Once again we set x; := ¢;(—, s): G/H; — X € II(G, X). We obtain:

[(CxY,Y),(CxZ, Z)]G

f
= T ma(Z™(f@)), X (f (), f ()
i€l
=~ T[(C5(Z,X) 0 ¢)(x:)
el
> Morza.n (@) ZI(G. X) (2,2, C(Z.X) 0 )
i€l

= MOI’ZH(G,X)(Cg(?a)z)a CS5(Z,X) o p).
Under this isomorphism,
(7. 9)
( g © Qz lHZa )af o Qi(lHia _)])iGI
= (@ D(QOH, DN,GUHL[S)) = (CiG D),
= (X we Y@ D)
icl icl
= C4(9, f)-
Here a priori the choice of bases plays a role, but one can check that
with another choice of bases one obtains the same element C(g, f) in

Morz (. x) (Cg(?,)?), Cg(i,)?) o ¢). The isomorphism constructed above
is the desired isomorphism

mn: [(CXY7Y)7(CX27Z)]? l> MorZH(G,X)(Cg(?a‘%)aCg(,zvajz) qu)

(@91 ~ Ci(@, /) m
Remark 4.1.4. The isomorphism 7 is compatible with compositions. For
(3.9)] [(h, )] € [(CxY,Y),(Cx 2, 2)]] x [(Cx2,2),(CxW,W)]}, we
ave
n(((hg,hg))) = Cilhg, ')

= resy (C4(h, 1)) © C§(3, f)

= resyn((@,9)]) o n(((h, b)),
and this is the composition of n([(7, g)]) and n([(ﬁ, h)]).

Remark 4.1.5. The use of retractive spaces suggests connections to al-
gebraic K-theory of spaces developed by Waldhausen [Wal85]. It would
be interesting to try to generalize results about the Euler characteristic in
this setting to the Lefschetz number and to extend the parametrized family
approach [DWWO03].
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4.2 Proof of the Universal Property

Now we are ready for the proof of Theorem 4.1.2.

Proof (of Theorem 4.1.2). We have already shown that the pair (Ug,u%)
defined in Chapter 3 is a functorial equivariant Lefschetz invariant. It re-
mains to prove universality. For every functorial equivariant Lefschetz in-
variant (©¢,0g) we need to find a natural transformation 7¢4: Ug — O¢
such that uZ(X, f) maps to 0(X, f) for all (X, f) in End(G-CWy,), for
discrete groups G, and such that 7x o U(a) = ©(«) o 7 for inclusions
a: G —= K.

We define 7 by translating the algebraic data encoded by U% back into
geometric information using Lemma 4.1.3. We will omit the index G most
of the time if no confusion can occur. We proceed in eight steps.

We start by defining a map 7y : [(CxY,Y), (CXY,Y)]? — O(X, f) for
any d-extension Y of X, with d > 1. In the next step we define a map
740 UE(X, f) = Og(X, f) for d > 2. Then we check that 7,4 is well-defined
and that 74 is independent of the choice of the integer d > 2. Having defined
this map gy, p): UG(X, f) = Oa(X, f) for (X, f) in End(G-CWy,), for
discrete groups GG, we check that 7 is actually a natural transformation from
U% to ©¢. Next we show that the natural transformation 7: U(Z; — Og maps
ul(X, f) € UL(X, f) to 0c(X, f) € Og(X, f) for all (X, f) in End(G-CWy,),
for discrete groups G. Then we prove compatibility with the induction
structure. We finally prove uniqueness of the natural transformation 7.

Step 1: We define

Ty [(CXY,Y),(CXY,Y)]? — OX,f)

(@.9)] — @i~ ()

for any d-extension Y of X, with d > 1. Since we have a map g: CxY —
CxY extending g, the maps ¢ and 704 are indeed maps in our endomorphism
category: The diagrams

Y~ OyY

and

commute. Recall that i and 7 are inclusions and 01 is a G-homotopy equiv-

A~

alence, so O(i o 1) is bijective by invariance under G-homotopy equivalence.
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The maps ¢g and g are only defined up to G-homotopy (relative X), but
because of the G-homotopy invariance of (©,0) this does not play a role:
Let (G,G) be a G-homotopy relative X between (g, go) and (gi,g1). Let
lp and I; be the inclusions of X as X x {0} and X x {1} respectively into
X x I, and analogously for Y and CxY. Consider the commutative diagram

O(lo) ()

®(Xaf) G(XXIanIdI) G(Xaf)

@(z‘)l l@(ixid) l@(i)
O(lo) ()

O(Y, go) ~ »O(Y x I, (G, prp)) ¢ = (Y, g1)

@(i)l l@@xid) l@(?)

~ ©(lo) ~ O(l1) ~
O(CxY,gy) ——=——O(CxY x I,(G,pr;)) «——=——O(CxY, q1).

The horizontal maps are bijective because they are G-homotopy equiva-
lences, and they map 6(f) to 6(f x idy), both 6(go) and 0(g1) to O((G, pr;))
and both 0(gy) and (1) to 0((G, pr;)). We have O(ly) = O(11): O(X, f) —
O(X x I, f x idy) because of G-homotopy invariance of ©. Now

A~ A~

O(i oi)_l@(i)(ﬁ(gg )
= O(lo)'O(
= O(lp) 'O
= o) 'e(

= O(i0i)'0%)(0(1))-

o~
X
L
[o9
S—
~—
L
@
—~
-~
X
—
[o9
S—
@
—
o~
(=]
~
—~
>
—~
<
(=]
SN—
~—

Hence 7y is well-defined.
Step 2: In this step we define a map

Ta: US(X, f) = 0c(X, f)

for d > 2. Let [a: M — Mo ¢] € UL(X,f). Then M is a finite free
ZII(G, X )-module, so there is an isomorphism M = @, ; ZII(G, X)(?, z;)
with (z;: G/H; — X) € ObII(G,X) [Lic89, p. 167]. Set ¢; := z; o
pre/m,: G/Hi X S4=1 — X and define Y to be the pushout

[lic; G/Hi x 84 ety

b
Hie] Qz

[Le, G/H;: x D¢ ——<"=",y,

Then there is an isomorphism c: M = @,¢; ZI(G, X)(?,z;) = Og(?,)?).
(Remember that CJ(Y, X) is a free ZII(G, X )-module with equivalence class
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of bases given by the cells of Y \ X, and the cells of Y \ X are given by
the x; by construction [Liic89, Example 9.18].) Then we have resgco a o

1 C5(Y, X) = C5(Y,X)o¢. Let [(7,9)] be the preimage of resg coaoc™!
under the isomorphism

n: [(CxY,Y), (CxY, V)]

f 1> MorZH(G,X) (Cg(?a 55)7 Cg(?a X) ° ¢) .

Then resycoaoc” ( 9)]) = C5(3, f) So [a] = [resycoaoct] =
A6 = e 1), o

7a([a]) = (=) (rv ([@, 9)]) — 6(f))-
This definition is independent of the choices made: Let [a: M — M o ¢] =
[a': M'" — M'o ¢] with 7:a = o, M' = @, ZII(G,X)(?,2}) and
i M = C4(Y',X). Then ¢ or1oc': CYY,X) = C5(Y7, X), and
1 (doroc™!) = [(k, k)] € [(CxY,Y), (OXY,’YI)]EX is represented by a G-

homotopy equivalence k: Y = Y’ relative X. This G-homotopy equivalence
has a G-homotopy inverse given by a representative [ of ' (cor o _1) =

[(1,0)] € [(CxY",Y"), (CXY’Y)]EX' We have the commutative diagram

!

y sy sy Ly
Y’ g’ /Y/ [ Yy k Y’,

so by invariance under G-homotopy equivalence ©(k)0(Y,lg'k) = 6(Y', klg').
Using the compatibility of n with compositions established in Remark 4.1.4,
we see that

(g% 1g'R)] = [@.D] o [(g".g)] o (k. b)]
= n (¢*id*(er? ! ) o id*(resy c'a’c’ 1) o(dre ™))
= n (resgcresyT ta're )
= n (resycac ')
= [@ 9,
so 0(Y,lg'k) = 0(Y, g) by G-homotopy invariance of 6. Also [klg'] = [¢'] since

k and [ are G-homotopy inverse to each other, so 0(Y', klg') = 6(Y”, )
Thus O(k)0(Y,g) = 0(Y',¢'). We want to show that 1y ([a]) = 7y ([a']), i
that

— —~

O(iy oiy)'O(iy)0(g) = O(iyr oiy)~'O(iy:)0(g))

— —~

= O(iyr 0 iyr) 'O(iy)O(K)(g).
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We obtain a commutative diagram

®(idx)

0(X, f) 0(X, f)
@(iy)l l@(iy,)
o(k)
o(,g) ————— 0(Y',¢')
O(iy) ) l@(z?)

~ Ok —~
O(CxY,9) _°w O(CxY', ¢

and thus

—~

O(iy: 0iy) 'O(iy)O(k) = O(iyroiy) 'O(k)O(iy)
O(idx)O(iy oiy) 'O (iy)
= O(iy oiy) 'O (iy),

so we are finished.

Step 3: To see that 74 is well-defined, we must see that it is compatible
with the relation in U(Z;(X,f) = Ko(¢-endgsrm(g,x)) given by split short
exact sequences. For a split short exact sequence 0 — ay — a — a1 — 0 we
have [ag]+[a1] = [a], and so we need to check that 74([ao])+74([a1]) = Ta([a]).

As above we choose d-extensions Yy and Y7 and ZII(G, X)-isomorphisms
co: My = C¢ (Yg, ) and ¢;: My = C¢ (Yl,X). We put Y = YO Ux Y.
We have CxY = CxYy Uy CxYi, i@ = iy Ux 41 and z = zo Ux 21, where
00 X 5 Yy, i1 X 5 Y, it X = Y, ig: Yy = CxYy, i1: Y1 = CxY; and
Y = C 'vY are the canonical inclusions. Then the direct sum of ¢y and ¢;
yields a ZII(G, X)-isomorphism ¢: My & M; —» cg(?,)?) Let g: Y Y
and go: Yo — Yy be maps such that co(ag) = resy coaoco = Cd(gg, f) and
c(a) = resy cac™t = C5(g, f). Note that every ¢- morphism of CC(YO, X) and
Cg(?,)?) can be written as Cc(go,f) and C’C(g,f) respectively since 7 is
surjective, and that by using the isomorphism 7 we can find an extension g
of go. Denote by j:Y; — CxYy Ux Y7 the canonical inclusion and by
p: CxYyUx Yy — Y the canonical projection. Then ¢;([a1]) = [p o (go Ug,
g) o j]. We have the pushout diagram

idy, Ux1
(Y, 90) : (Yo Ux Y1,9)
iAol J/i/(\)UXile
N idCXYO Uxi1
(CxYo,40) » (Cx Yy Uy, (Yo Ux Y1), G0 Ugy 9),

thus by additivity

0(d Ug, 9) =O(ip Ux idy,)0(g) + O(idcy v, Uxin) (0(50))
— @((idCXYO Uxil) o 7,/(\]) (0(90))
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Applying ©(i o)L o O(ideoy vy U xi1) to this formula and invariance under
G-homotopy equivalence applied to ig: (X, f) = (CxYp, go) yields

Oi i) 0 O(idoyy, Uxin) (0(50 Ugo 9) (4.1)
= O(iod) 1o 0(1)(0(g)) +0(f) — Oligoio) " 0 O(in) (0(0))-

The canonical inclusion j: Y7 — Cx Yy Ux Y7 is a G-homotopy equivalence,
and since j o (po (go Uy, g) 0 5) = (j opo (go Ug, g)) © j we obtain ©(5)(0(p o
(GoUgy g)03)) =0(j0opo(go Uy, g)). The map jop is G-homotopic relative
X to the identity, so 8(j o po (go Uy, 9)) = (g0 Uy, g). We see that

A~

O(i 0 i)~ 0 O(ideyy, Uxin) (8(d Ugo 9))
i) 0 O((iday v, Uxin) 0 5)0(p o (90 Uy 9) 0 j)

o~

— G)(io
= 0@0i) " 00(HOMI(po (G Ug g) 0 )

= O(idx)O(i1 0 i1) ™ 0 O(i1)0(po (G Uy, 9) 0 4)-
Equation 4.1 now implies
(—1)* (O 0i1) 0 ©(i1)8(p o (0 Uge 9) 0 4) — O(f))
= (-1)*((6Go )" 0 OMO(9) — 0(f) = (Big o i0) " © O0)0(g0) — 0())) ),

so 14([a1]) = 14([a]) — 74([ag]) as was to be shown.

Step 4: Now we need to show that 74 is independent of the choice of
the integer d > 2. Let [a] € UL(X, f). It suffices to show that for d > 2 we
have 74([a]) = 7441([a]). Let (Y, g) be a d-extension of X, chosen as above
such that [a] = [C4(g, f)]-

We want to describe a suspension map

ZX:[(CXY,Y),(CXZ,Z)]? N [(CXZXY,ZXY),(CXEXZ,ZXZ)]J?
[(@.9)] = [(Sxg,Zx9)].

We set Yxg := g Uy g. The definition of 2/\)(9 is a little more complicated.
Since Cy itself is a pushout construction, it is compatible with pushouts,
and thus applying Cx to the pushout diagram

Y‘)ny

o

CxY — XxY

yields
C)(Y e C)(C)(Y

|

CXo)(Y — CXsz.
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We will dgfgle an endomorphism g: CxCxY — CxCxZ extending g and
then set Yxg := gU;g. For the definition of g it is convenient to rewrite
CxCxY as follows. Namely, there is a commutative diagram

Y x [0,1] x [0,1] — Y x [0,1] x [0, 1]

| |

CxY x [0,1] Uy o, Y — CxCxY,

where

(1 —1t)s ts

¥y, s,1) = (y, max{t,1 — ¢}’ max{t,1 — t})’
the vertical arrows are the obvious projections and the space in the lower
left corner is the pushout of CxV x [0,1] < Y x [0,1] 2 ¥ for j and pr
being the canonical inclusion and projection. One easily checks that ¢’ is
a homeomorphism. Conjugating the endomorphism g x id Ugyiqg with ¢
yields g.

If Y is a d-extension of X, then ¥xY is a (d + 1)-extension and there is
a bijective correspondence between the d-cells in Y\ X and the (d+ 1)-cells
in ©xY \ X. In particular, the suspension of C¢(Y, X) is CC(E/]—)\(?, X). The
following diagram commutes:

[(CxY,Y), (CxY.V)]§ 52X L [(CxExY,BxY), (Cx By, ExY)]

Nln ~ln

~ ~ ~ o~ 2 —_—— o~ —_—— o~
Mory (e, x)(C§(Y, X), C§(Y, X) 0 ¢) = Morzn(g,x)(C5, 1 (ExY, X),C5,  (ExY, X) 0 ¢).

G
f

In particular 3(C4(g, f)) = C’g_l_l(i)\(/g,f). Since ¥ is an isomorphism,

[C5(F, )] = [£(C5(7, £))]. We see that
[a] = [C5(3, F)] = [Z(C5(@, )] = [C541 (Exg. )],

maa) = (=D (mv (@ 9)]) — 6())
and  g0(fa)) = (1) (reev ((Sxg, Sxg)]) — 0(f))-

Let us look at the pushout diagram

(¥, 9) Z > (CxY,g)

/Z\J/ linidCX Y
idOXY Uyt
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Remember that ¥xg =g U, g. Additivity of © yields

0(Sxg) = O(ideyy Uyi)(0(9)) — O(i Uy ideyy)(0(9)) — ©(i Uy 1) (6(9)).

We obtain

——

Oinyy oisyy) " (ZEXY)(9(2X9))
= @(Z;X\Y oixyy)” (ZEXY o ldCXY Uyi) ) (6(2))
) (0(@)
—G(iEX\Y oixyy)” (ZEXY o (i Uy Z)) (6(9))
= 20(f) - 0(iy oiy) "' O(iv) (0(9))

by the same procedure as before (using appropriate commutative diagrams
and G-homotopy invariance of ©), so

oy ((Bxg,2x9)]) —0(f) = = (rv (@ 9))) — 6(/))

which implies 74([a]) = 74+1([a]). So 74 is independent of d > 2, and we can
define 7 := 74 for d > 2.

Step 5: We have defined a map 7g(x )" ULZ(X,f) — O¢(X,f) for
(X, f) in End(G-CWy,), for discrete groups G. We want to show that 7 is
actually a natural transformation from U(Z; to O, so we must check that for
a morphism in our category, i.e., a G-equivariant map h such that

+0(ixn, vy oln,y)” @(ZEXY o (i Uy idoyy
1
C)

X, — X,
W]
X, — X,
commutes, the diagram
UZ(X1, 1) EN L e6(X0 )
Ué(h)l JGG(h)
UZ(Xa, f2) TR 06(X, o)

commutes. Let [a] € US(X1, f1), and let Y] be a d-extension (d > 2) of X;
with endomorphism g; extending f1, i.e., g1|x, = f1, such that [C§(g1, f1)] =
[a]. Define (Y2, g2) as the pushout

(X1, f1) — (Xa, fo)

4|

(Y1,91) L>(1/2792)-
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We would like to use C(ga, f2) as a representative of UZ(h)(la]). By addi-
tivity of (U, u) applied to this diagram, we have
ug(g2) = UG(h)ug(91) + Uglin)ug (f2) — Ugliah)ug (f1), ie.,
[C(2)] = [H.C%G)] + [12.C°(f2)] = [l H.C(f1)] € UG(Ya, g2).

This implies
[resr, C°(g2)] = [resr, H.C®(g1)] + [rest, 2. C°(fo)] — [rest, o, H.C(J1)].

We now use the fact that I; = II(G,4;): I[I(G,X,) — II(G,Y1) and I, =
(G, i9): TI(G, X2) — TI(G,Y3) are equivalences of categories. By Proposi-
tion 2.2.4, this implies that

Iy s dr-endgeriia,x,) —  r-endgerne,v)
and Iy, po-enderii(a,x,) —  o-endeeri(a,vs)
are also equivalences of categories. It can be read off the proof of Proposi-

tion 2.2.4 that Iy, resy, [ = [ for alll € ¢1-endgrrm(q,y;) and that I, resy, I,k
I,k for all k € ¢o-endgipry(q, x,) which implies that [resy, I2,k] = [k] by

1%

injectivity of I, on isomorphism classes. So [ress, I, C¢(f2)] = [C°(f2)]
and [resy, I, H.C°(f1)] = [H«C(f1)]. Using Lemma 2.2.2 we see that
H.I,, = (F[l)* = (I3H), = I, H, and we obtain

[resy, H.C°(g1)] = [res, Hil1,res;, C°(g1)] = [res, o, H.res;, C°(g1)]
= [H.res, C°(q1)]-
We conclude that
[resy, C°(g2)] = [Haresr, C°(q1)] + [C°(f2)] — [H.C*(f1)]-

Using additivity applied to the short exact sequences defining the relative
maps and the fact that C(g, f) is concentrated in degree d, we see that

U&(h) ([C5(g1, 1)) = U&MR)([(-1)*C*(g1, f1)])
4([H, resy, C(g1)] — [H.C*(f1)])

Ci(g2, f2)]-

Since this is the case,

(Tei(xa ) © Ug(h)) ([a])
= (Ta(xa.p) © UG ([C4(G1, F1)])
= T6(x0.1) ((C(G2, 2)])
= (=1)*(Oq(iz 0 i2) ' Oc(i2)(0c(g2)) — bl f2)),
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whereas

(@G(h) © TG(Xl,fl)) ([a])
= (=) (Oc(M)Og(i1 0 i1) " Oc (1) (0 (91) — Oc(h) (B (f1)))-

Additivity applied to the commutative diagram

(X1, f1) =2 (X2, fo)

g

(Yi,91) L>(Y2,92)

yields 6 (g2) = @Q(h)ﬁg(gl) +0¢(i2)0c(f2) —Oa(i2h)c(f1), and we apply
Oc(iz 0ia) 'Og(iz) to get

B¢ (i 0i2) 'O (i2) (B (g2)) —
= 9G(22°Z2) 1@G( )( alg ) Oc(h)(0a(f1))
= Og(h)Og(i1 o) ! (?)(90(91)) Oc(h)(0c(f1)),

so indeed (Tg(X27f2) o UG )( ) ( °TG(X, f1)) ([ ])

aly
ish

Step 6: Next we need to show that the natural transformation 7: U(Z; —
O¢ maps w2 (X, f) € UL(X, f) to 0c(X,f) € Og(X, f) for all (X, f) in
End(G-CWy,), for discrete groups G. For a finite G-CW-complex X with
endomorphism f: X — X let Y}, be the pushout

Jn—1
Xn1—X

ln
X, —— Yy,

where all arrows are canonical inclusions. There is a canonical retraction
rn: Y, — X induced by the inclusions of X,,_1, X,, and X into X. Defining
fr: X — X} as the restriction of f to X, one obtains an endomorphism
Gn: Yn — Yy as go = fnUy,_, f. Additivity applied to the pushout diagram
yields

0(gn) = O(ln)0(fn) + O(in)0(f) — Ol 0 kn—1)0(fn)

and thus

@(Tn)g(gn) = @(Zn)o(fn) + H(f) (Zn 1) (fn 1)

Summing up, we obtain
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Analogously

dim(X)

> (Urn)u(gn) — uP(f)) = u"(f) € UX(X, f).

n=0
So we are finished if we can show that
76(x,1) (UP(rn)u"(gn) = u”(f)) = O(rn)b(gn) — 6(f) for 0 < n < dim(X).
If n > 2 (and thus I, :=II(G,i,) is an equivalence of categories), then

[C°(gn, )] [resr, C°(gn)] — [C(])]
[id. resr, C°(gn)] — [C°(f)]
[

[

Rn*I % €Sy, Cc( n)] [ ( )]
R C%(g2)] — [C°(])]
UZ(Tn)U ( n) - ( )

This implies that

TG(X.f) (UZ(Tn)UZ(gn) u®(f))

= 7aex.p ([C°(Gn, )

= TGXf ([( 1)d0¢§(9na )])

=~ 1) (O(hnin) " 0 O(0)0(gn) — O(/))
= o(r )( )— ()

The last equation follows because we have strict commutativity 7,9, = frn,
so we can define an endomorphism g¢,: CxY,, — CxY, extending g, as
gn X id[g,1) Uy, f, and for 7 : CxY, — X we also have 7,g, = fry,. Thus we
can use the commutative diagram of spaces with endomorphisms

(X, f) =2 (Yo, gn) —= (Cx Yn, Gn)

ol g |7

(X, f) == (X, [) (X, f)

to establish
O(inin) 'O(in) = O(id)O(inin) *O(in) = O(7)0(in) = O(ry).

If n € {0,1}, we can use the suspension X xY,, of ¥}, to obtain the desired
result. As already mentioned before, X xY,, is defined to be the pushout

Y, —— CxY,

Lo

CxY, —XxY,.
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We have an endomorphism ¢, : CxY,, — CxY,, so we also have an endo-
morphism ¥ xg, := gn U, gn of ExY,. Additivity, application of X xr, :=
Tn Ur, 7 and invariance under G-homotopy equivalence yield

O(Xx7n)0(Xx9n) 20(f) — ©(rn)0(gn)
and Ul(Sxr)ul(Exgn) = 2uZ(f) — UL(r,)u”(gn).

The retractive space X xY is an (n + 1)-extension of X, so applying ¥y once
or twice gets us into the range d > 2 where we can use the above results. So
we have shown

Tax.) (e (X, 1)) = (X, f). (4.2)

Step 7: We have to show that 7 o U(a) = ©(«) o 7¢ for any inclusion
a: G — K. By definition of the natural transformation 7 and of U(«) and
using the notation established above, this is equivalent to

(~1)%(©x (inda i 0 indy 1) 'O (ind i) (O (inda 9)) — O (inda f))
= 0(a) ((-1)"(0c(i0i)~'0a(i) (B (9)) — a(f)))-

We use the fact that the retractive space constructions commute with induc-
tion. For any G-equivariant map h: X — Y of G-CW-complexes we have a
commutative diagram

X—" sy

iIldaJ/ J/inda
indy h

indy X —=® 5 ind, Y.

Using the fact that © is a family of functors on End(G-CWy,) for discrete
groups G which is compatible with the induction structure, we obtain the
equation O(a)O¢q(h) = Ok (indy h)O(a). So we have

0(a)((-1)(0c(i 0 i) '0c(i) (0c(9)) — 0a(f)))
= (~1)Y(Ox (inda i 0 indy i) "' O (inda 1)0() (6c:(9)) — O()0(f))-

Since (0, #) is a functorial equivariant Lefschetz invariant, we have the equa-
tion ©()(fc(g)) = 0k (ind, g) and the analogous equation for f, so we are
finished.

Step 8: The natural transformation 7 is uniquely determined by equa-
tion 4.2. As we already saw, any element [a] in U%(X , f) can be realized by
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a d-extension Y for d > 2 as

[a] = [C4(9, /)]

= (=1)[C°@ )]

= (=1)!([res; C(§)] — [C°(f)])

= (- l)d([resIres IC N)] [C( f)])

= (=D)*([((I1).) “(IT), res f 00@1 C*(£)))
= (=D)*([((IT).) 'Lee( ~>] ce(f)))

= () (U&(ioi) " o UE() (u ()) ug(f)),

and then by equation 4.2 and functoriality it follows that

Tax,n ([a]) = (D) (06 (i 0 i) 0 06 () (06 (9) — b (f))-



Chapter 5

Splitting Results

The goal of this chapter is to obtain a direct sum decomposition of the
abelian group Kj(¢-endgrrr) making it more accessible to computations.
We obtain a splitting

Ko(¢-endsrr) = @D Ko(pw-endseryy)
Welr

@ (K0(¢Tw—endffRTW) D KU (ff RQ[/V))
Welr

12

The indexing set It is a set of equivalence classes of IsT. As usual, IsT’
denotes the set of isomorphism classes of I'. The equivalence relation in-
troduced on IsT" is described in Section 5.1, as well as the meaning of W,
Tw and Qw. Splitting functors which induce the above isomorphism are
defined in Section 5.2. The highlight of this chapter are the splitting theo-
rems, Theorem 5.3.1 and Theorem 5.4.2. Finally, we treat a small example
in Section 5.5.

5.1 An Equivalence Relation

We would like to split Ky (¢-endgrgr) up into a direct sum indexed by IsT' as
in [Liic89, Theorem 10.34]. But the endofunctor ¢: I' — I" does not always
respect this direct sum decomposition. It induces a map ¢: IsT' — IsT on
the isomorphism classes of I', and we look at the orbits of the isomorphism
classes T € IsI" under ¢. Putting all T that eventually have the same orbit
into an equivalence class, we obtain a partition Ir = {W;}w,er. of IsT.

Definition 5.1.1. Let ~4 be the equivalence relation on IsT" defined by

T ~¢ § & there exist n,m € N such that ¢"(z) = ¢™(y).

Then we define the set It to be Ir := IsT'/ ~4 . Equivalence classes con-
tained in this set It are called W; € Ip.

65
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There is a partial ordering on T' given by 2 <y < Morr(z,y) # 0. This
induces a partial ordering on IsT" given by T < 7 < Morp(z,y) # (. We call
the endofunctor ¢ order-respecting if it respects this partial ordering in the
following sense:

Definition 5.1.2. The endofunctor ¢: I' — I is called order-respecting if

1.

SN

m(z) <T or ¢M(z) >T = ¢™(x) =7, for all m € N.

2. T<y = ¢(x) < d(y).

The endofunctors ¢ defined by ¢ := II(G, f) arising from the geometric
applications as in Chapter 3 are order-respecting since they preserve orbit

types.
If ¢ is order-respecting, the partial ordering on IsT" induces a partial

ordering on the set of equivalence classes It = {W,}w,ery.

Definition 5.1.3. We write W; < W; if and only if there exist 7 € W; and
T € W; such that y < 7.

This relation “<” is well-defined, which we prove in the following lemma.
Lemma 5.1.4. The relation “<” of Definition 5.1.3 is well-defined.

Proof. For @ # j, let T € W; and ¥ € W; with j <. Assume that there
are ' € W; and ¢y € W; with 2/ < y'. Since T and 2’ are in W;, we have
n,n' € N such that ¢"(z) = ¢"'(z'), so ¢"(y) < ¢"(z) = ¢"' (2') < ¢ ().

Since ¢"(y) and ¢ (y') are in W;, there are m,m’ € N such that
¢t (y) = ¢v'+t™ (y'). This implies that we have the inequality ¢"t™' (y) <
G (z) = G () < N (y) = g (y).

Since ¢ is order-respecting, this has to be an equality, thus ¢+ (y) =
¢t (z) € Wi and ¢"+ (y) € W, a contradiction to i # j. O

We index the W; such that j < ¢ whenever W; < W;. We now want
to work from top to bottom in this partial ordering, splitting off one W;
at a time. Since we might not have a maximal element, we use a colimit
argument in Theorem 5.3.1. Note that W; = [[;cyy, I'[z] since whenever two
objects of W; are comparable, they have to be isomorphic.

Remark 5.1.5. We work with ¢-endomorphisms g: M — M o¢ of finite free
RI'-modules M, and we know that each finite free RI'-module is isomorphic
to one of the form @, 5 RT'(?, 3(b)) with B finite [Liic89, Definition 9.17],
so we can restrict our attention to ¢-endomorphisms of the form

@ Rr(7.5(5)) % € RT(4(7), A(b))

beB beB
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where B is finite. The inclusion of the category of these ¢-endomorphisms
into the category of all ¢-endomorphisms of finite free RI'-modules is an
equivalence of categories. So the K, -groups of these categories are isomor-
phic, for all n € Z.

We want to state two preliminary observations that will be important in
the sequel. The first one is the following lemma:

Lemma 5.1.6. Let B; := =Y (W;) for all W; € Ir. Then we have

g(€P rr(7,60))) < @ @ Er(#(2), 5(0)).

beB; Jj>i beB;

Proof. Let by € B;, and let v € R’ (?,B(bo)). Then the following diagram
commutes (because g is a natural transformation):

92| R (2,8(b9))

RT(?, B(bo)) Brep R (4(7), B(D))

v*T T¢*(v*)=(¢(v))*

RT(B(by), B(bo)) @epRT (H(B( (b))-

We know that R (¢(8(bo)), 3(b)) = 0 unless ¢(B(by)) < S But b() € B;
implies 3(by) € W; and thus also ¢(8(by)) € W;, so qﬁ(ﬁ(b )) is only
possible if 3(b) € W, for j > i. So RF(¢(ﬂ(b0)) B(b)) =0ifb g B for all
4 > 4. The map (qb(v))* respects the direct sum decomposition because it is
just precomposition with ¢(v), and thus g»(v) = (¢(v))*(gﬁ(b0 (idﬁ(bo))) is
nonzero only in components with b € B; for j > i. So g (RT 8?,5(60))) -
D> @bij RT(4(?), B(b)) for all by € B;, which implies the statement. [

98(50) |RD(B(b0).8(b0))

Corollary 5.1.7. If W; is the top class, then with B; := 3~ (W;) we have
(€ Br(C.00) € ) RO 0).
bEB; beB;

Lemma 5.1.6 implies that if I is finite, i.e., It = {Wy,..., W;} for some
I € N, we can totally order the W; and write g as a block triangular matrix:

Doep, RT(7,6(b)) ... @uen, BT(7,8(b))
®b€BlRF(¢(?)7B(b)) ke ok
: 0 x
Dren, RU(9(?), B(D)) 0 0 =

This already suggests certain split short exact sequences to us and a
splitting in K looking somewhat like

l

lg: M — Mo => [fit Ew,Sw,M = (Ew,Sw,M) o ¢],
=1
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where Eyy, is to be an “inclusion” of and Sy, a “projection” onto the relevant
component, but we will do all of this in detail in Sections 5.2 and 5.3.
The second preliminary observation is the following lemma:

Lemma 5.1.8. If h: M — M' is a natural transformation of finite free
RT'-modules, with M = @, RF(?,ﬁ(b)) and M' = @y cp RF(?,ﬁ’(b’)),
then with B; := 3~Y(W;) we have

h(@ RF(?,B(b))) c@ P rr(7.8W)).

beB; j>i VeB]

Proof. This is analogous to the proof of Lemma 5.1.6. Let by € B; and let
v € Rl (?, ﬁ(bo)). The following diagram commutes:

h2|Rr(2,8(bg))

RT (7, B(bo))

RT(B(bo), B(bo))

> @yep RT(2,5'(V))

&

hg(bg)| RL(B(50).B(b0))
IR @y e BT (B(bo), B ().

We again have RT'(B(bo), (b)) = 0 unless 3(by) < B'(b'). Since B(by) € Wi,
this implies RT(B(by), 8 (V') = 0 if B'(/) ¢ W; for all j > 4, which is
equivalent to b' ¢ B} for all j > i. Thus again hs(v) is nonzero only in
components for which o' € Bj, for some j > . O

Corollary 5.1.9. If h: M — M' is a natural transformation of finite free
RT-modules, with M = @,z RT(?,8(b)) and M' = @y R (7,8(1')),
if W; is the top class, B; := 3~'(W;) and B! := BH (W), then

(€ Er(7,50)) € @ Rr(7,8()).

bEB; b eB;

5.2 Definition of the Splitting Functors

Now we are ready to define the splitting functors. We define functors E
and S as variations of the restriction functor E and splitting functor S
defined in Definition 1.2.10. We denote by W; not only a subset of IsT,
but also the full subcategory of I' containing all z € I' with T € W;. We
obtain an endomorphism ¢; := ¢|w, : W; — W; by restricting ¢ to W;. The
inclusion map incl; : W; — I' is a map of categories with endofunctors,
¢ o incl; = incl; o¢;.

Definition 5.2.1. We define the eztension functor Eyw, by

Ey, = (incl;). : ¢i-endgerw, — ¢-endgrrr-
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The extension functor FE, preserves the property of a module to be
finitely generated free as stated in Remark 1.2.11, so Eyy, also does and is
well-defined. The functor E, also preserves split exact sequences and thus
exact sequences of finitely generated free modules, and so Eyy, preserves
exact sequences and induces a well-defined map in K-theory.

We also want to define a splitting functor

SWi: ¢-endegepr — ¢i-endffRWi,

but this is a little more complicated. On a module M € ff RT", the splitting
functor Sy, M should be W, SzM. We can equivalently define Sy, on
a module M € ff RI" by Sw,(M) := M ®gr B, where B is the RI'-RW;-
bimodule given by

{0} y & Wi,

where z € Ob W, and y € ObI". On morphisms, the definition is a little more
awkward; once again, we have to take into account the difference between
SWL(M ° ¢) and (SWzM) ° ¢z

We define Sy, (M 2 M o ¢) as the following composition:

Ble.y) = {RI‘(incli(x),y) yEW; CT,

RT(incl; (?7),7) if?2 € W;
0

M(?") @ rr RT(4(?),?") ®rr { it ¢ w;

M(?") ® rr {RT(4(incl; (7)), ?’)/maps which Xactorize over ¢(?),? & W;}

M(?") @ gr {RT'(incl; (??"),?")/maps which factorize over ¢(?),? € W; } @rw,; RW;(4:(?7), ??7")

g
Sw; (M= Mo¢) lid@pr@id

canpr

M(?") @ rr {RT(incl; (??"), ?")/maps which factorize over ?,9 ¢ W;} @ rw,; RW;(¢:(?7),??")

RT(incl; (27),?) if 2 £ W;

M(?") ®pr RI(?,7') ®pr ({0 e w,

) ®rw; RWi(6:(?7),77")

~ RT(incl; (??),?) if 2 € W;

(Sw; M)o s = (M(?) ®nr {0 g W,) ®rw, RW;(4:(77),77)).

Note that ? € W; implies ¢(?) € W;, so the projection pr is well-defined.
Note further that the projection pr is an isomorphism if ¢|yw,: W; — W; is
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surjective. (In the language of Section 5.3 this means Qy, = 0. So restricted
to Ty, the projection pr is an isomorphism.)

Example 5.2.2. If W; is the top class, no maps from incl;(??') can factor
over anything outside W;, so nothing is divided out and canpr is an isomor-
phism. (If W; is the top class, Sy, = resy,, and resy, and resy commute.)

Example 5.2.3. The map canpr is not always an isomorphism: Consider
the category I' with three objects {a,b, c} that has exactly one nontrivial
morphism, v: b — ¢. Take the endofunctor ¢: I' = I';a — b,b — b,c —
¢,v — v. Then T" splits up into two ¢-invariant subcategories, W; with the
objects a and b and W; with the object c. If we look at the RI-module
M: T — R-Mod which is R at every object and idgr at every morphism,
then
Si(M o ¢)(a) = resq(M o §) = M o ¢(a) = M(b) = R,

whereas

(SiM) o pi(a) = SiM (b) = M (b)/Tm M (v) = 0.

The construction of Sy, is functorial in maps h: (M % Mog) — (N L
N o ¢): Knowing that the diagram

M N

| )

M(?) ®@gr RT(4(2?),7) 224 N(?) @ gr RT(4(27),7)

commutes, we can apply Sw;, to this diagram and compose the vertical maps
with canpr. (S, on the morphisms is tensoring with idg, i.e., Sw;(h) ==
h ® idp. The map canpr does not touch the left hand factor and maps the
identity to the identity.) We obtain

Sw. (h)

Sw, M . Sw,N
J/SW SW J/
SWl(h®1d /
Sw, (M2 Mog) | Sw;, (M o ¢ > Sw, (N o ¢) Sw, (N5 Nog)
canprl lcanpr
7 (Sw; (h))
(Sw, M) o ¢; = (Sw:N) o ¢i.

So we can make the following definition.

Definition 5.2.4. We define the splitting functor Sw, to be

Sw, : ¢-endrrr —  Pi-endrrrwy,

(M Mog) — Sw, (ML Mo @) := canproSy,(g).
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The splitting functor S, sends finitely generated free modules to finitely
generated free modules and it also preserves split exact sequences, so exact
sequences of finitely generated free modules. So the splitting functor Sy, is
well defined and induces a splitting map on the level of K-theory. We are
mostly interested in K| since that is where our invariant lives. But as stated
in Remark 2.1.5, we can treat all higher K-groups since ¢-endgrr is an exact
category. So analogously to [Liic89] we let K stand for any K,,, n € Z, and
define the splitting functors for all algebraic K-groups simultaneously. We
obtain maps

K(Sw,): K(¢-endgirr) — K(¢i-endsrrwy; ).

Remember that we had obtained the category ¢-end¢gpr from the category
with endofunctor (I, ¢). We combined all categories with endofunctor in the
category Endo(EI-Cat) which was defined in Definition 2.2.1. We introduce
the full subcategory of Endo(EI-Cat) where the endofunctors are order-
respecting.

Definition 5.2.5. Let Endo(EI-Cat) 4 be the category of categories (I', ¢)
with order-respecting endofunctor ¢.

We can now ask ourselves whether the application

Split K : Ob(Endo(EI-Cat), ;) — Ab
T, ¢) = ®wernK(pi-endesrw,)

extends to a functor from Endo(EI-Cat) 4 to Ab.

Note that any functor of categories with endofunctors F': (T'y,¢) —
(Ty,4)), ie., F: 1 — T'y such that ) o F = F o ¢, preserves the decom-
position of I'; into {Wi}WiEI[‘l and of I'y into {Vj}y, er,: I, x' € W;, then
there are n, n' such that ¢™(z) = ¢ (2') € W;. Let j(i) be the index such
that F(¢"(z)) = F(¢™ (') € V). Then ¢"(F(z)) = F(¢"(z)) € V)
and " (F(z')) = F(¢" (') € V@), so F(z) and F(z') are both in Vj.
This way we can define a (well-defined) map j: Ir, — Ir,,i+ j(i). We can
define restricted functors Fyy,: W; — V), and we have incl;;) oFw, o ¢; =
(F o d)lw; = (¢ o F)lw, = inclj;)y oy o Fw,, so Fiy, is a functor between
categories with endofunctors (W;, ¢;) and (Vjy, %))

Given a functor F': (T'y, ¢) — (2, 1)) of categories with order-respecting
endofunctors, we define Split K(F') by

Split K (F) :=
@ inClqu(i) K(FWZ*) : @ K(¢i-endffRWi) — @ K(’(/)j—endffRVj ),

WiEIFl WieIFl V}‘EIFQ
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where inclus;(;): K (¢j-endgrry;) — ®‘/jell‘2 K (¢j-endgiry; ) is the inclusion
of the summand into the direct sum. The map Split K is indeed a functor
on Endo(EI-Cat)

ord"

Split K (Id(p 4)) = €P inclus; K (I, ,), )
WiEIF
- Id@p[/ie]F K(¢i-endgtrw, )
Split K (F) o SplitK (G)

:( EB inclusk(j)K(FV].*)) o( @ inclus; ;) K(GWZ-*)>

Vj€lp2 WiEIFI
= €D inclusiiy)  K(Fy0) o K(Gwi)
WiEIFI [\ —~ v

=Ky, oG, ) =K (FG)w.)

= @ inclusk(j(i)) K((FG)Wz*)
Wi€lr,

= Split K(F o G).
So the following definition makes sense:

Definition 5.2.6. We define the splitting functor Split K to be

Split K : Endo(EI-Cat) 4, — Ab

(Ty9) = ®w,erK(Pi-endegrw,)
F — Split K (F).

The functors Eyy, and Sy, induce maps

K(Ew,): K(¢i-endgery,;) — K(¢-endyrprr)
and K(SWI) : K(¢-endffRF) — K(¢i-endffRWi).

Taking the direct sum over the W; € I gives a group homomorphism

Bry:= P K(EBw,): P K(prendsrw,) — K($-endserr)
W;elr W;elr

for every (I', ¢) € Endo(EI-Cat) 4. Defining

K: Endo(EI-Cat), ., — Ab

(T,¢) = K(¢-endsrw)
F = K(F)

to have compatible notation, we indeed obtain a natural transformation

E: SplitK — K
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of functors from Endo(EI-Cat), 4 to Ab because if F': (I'1,¢) — (T'2,¢) is a
morphism we have a commutative diagram

B
Ow,err, K(¢pi-enderrw, ) e » K (¢-endgerr, )
®w;erp, inclus;(;) K(Fwi*)l JK(F*)
B
®v;err, K (¢j-endgsry;) 2 K (¢-endgepr,).

Commutativity is seen as follows: By definition of Fyy,, we have the equa-
tion incl;; oFw, = F oincl;, and so K(FEj(;)) o K(Fw,,) = K(incl;; ) o
K(Fw,,) = K(F) o K(incl;,) = K(F,) o K(Ew,) which implies

( ED K(EV])) o( EB inclusj(i)K(FWi*)>

V]‘GIF2 WiGIpl

= @ K(Ej@)) o K (Fw;,,)
WiEIFl

= P K(F)oK(Ew,)
Wielr,

- K(F*)o( P K(EWZ.)).

WiEIFl

Finite coproducts and finite products agree in the category of abelian groups,
so for any finite subset I|. C Ir we get a homomorphism

Sr,g,1 = H K(Sw,): K(¢-endytrr) — EB K (¢i-endrpwy,).
Wil Wiell,

We set
Srp = COlimjlgg]F SF,(b,If : K(¢-endgepr) — Split K (¢-endgegr).

This is our desired splitting morphism.
These splitting morphisms Sr 4 actually combine to form a natural trans-
formation
S: K — Split K

of functors from Endo(EI-Cat) 4 to Ab, but we can show this best using
the proof of the next theorem, Theorem 5.3.1. There we see that ES' is
naturally equivalent to Id and S'E is naturally equivalent to Id, thereby for
a functor F': (I'1, ¢) — (I'2, ) we obtain SF = SFES = SEFS =F'S.

We introduce the same notation for E. (Here it is of course not necessary
since F is defined on the direct sum already. But we want to use this notation
in the proof of Theorem 5.3.1.) For finite Ilﬁ C Ir let

Er 11 = @ K(Ew,): @ K (¢i-endsrrw;) —>K(¢I'F-endffRW,/F),
WiEI{‘ WiEIf‘
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where ¢p endffRW, is the full subcategory of ¢-end¢rrr with objects ¢p -
endomorphisms of ﬁmte free RWp -modules, where WI/ C I is the full

subcategory of I' with objects in leel’FW Then Er 4 = COhmI{,gp Er g 11.-
5.3 From Categories to Groupoids

Now we are ready to prove the splitting results. We state in analogy
to [Liic89, Theorem 10.34] that there is a natural equivalence between K
and Split K given by E and S.

Theorem 5.3.1. We have inverse pairs of natural equivalences E and S
between the functors

K and Split K : Endo(EI-Cat) 4 — Ab.
e., let (T',¢) be an El-category with order-respecting endofunctor ¢, then
K(¢—endffRF) = Split K(gb—endfpr),

where the isomorphism is given by St g with inverse Er 4 and is natural

in (D, ).
Proof. We see that

St o Ep g = colimpF SF,¢,I’F o colimpF EF,¢J’F = colimI/F(SF7¢7I/F o End),pF)
and

Erg4oSrgy = colimpF EF,(NIF o colimpF SF,¢,I’F = COhmI’F(EF,th’F o Snd),pF).

Hence it suffices to show for any finite I}, C It that Er 1.0 Srpn =1d
and SF,¢J{~ o EF,Q&,I% = Id hold.
1) We show that Sr 4 © Er 4 1 = Id.

(P K(sw))o (D K@)

St,11. © Er g1

wiell viert
- @ @ Ky
Wiell, Vel
= @ K(Sw;,Ew;)
WiGI{-.

since if 7 # j the corresponding modules are already 0 [Liic89, Lemma 9.31].
Thus we need to show that K(Sw;Ew;) = Idk (,-endgpw,) for all W; € .
We know that Sw,Ew,: ff RW; — {f RW; is naturally equivalent to the
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identity functor [Liic89, Lemma 9.31]. This natural equivalence is given
explicitly by

RT (incl;(?77),77) if 27 € W;

SWiEWiN; (N ®RWi RF(??,inCli(?))) QRr {
0 else

~

L

N ®pw, RT (incli(?77), incl;(?))

The first vertical map is an isomorphism since no morphism of objects in W;
can factor through an object outside W;, the second vertical map is an
isomorphism since W; C I' is a full subcategory. Thus on ¢;-end¢rryy, we
have

~ ) RT (incl; (777),77) if 72 € W; ™
Sw; Ew; N === (N(?) ®w, BT(?2,incl;(7))) ®nr {0 (neli(rrm, ) H7reWs Ny
(Sw; Ew;)(9) g®Td @ Td 14
<+
~ . RT (incl; (777),77) if 27 € W; Nedi
Sw, By, (N 0 ¢;) (N(?) ®rw,; RWi(6:(7),7)) ®rw; R (??,incl;(?)) @rr {0 (incl; (777), ?7) " Rl GV
EWi (9) g
Sw, | Ew; N————Ew, ,Nod | =Sy, Ew, (N->Nod;) 1d ® inel; (—)od(—)@Id
<+
~ ) RT(incl; (?72?),27) if 22 € W;
Sw; (Bw,; N 0 ) =———= N(?) ®rw; RI(6(??),incl;(?)) ®rr {0 (incl; (227), 27) lelse eEwW; 1d
canpre
~ v rrNn <+
(Sw; Byw; N) 0 ¢; =———o——— N(?) ® rw, RI(incl;(??),incl;(?)) @ rw; BW;(6:(?77),7?) ————— 3 N 0 ¢;.

The map canpr is an isomorphism since no maps in RI" (qb(incli(???)), incl; (7))
can factor over an element outside W;. The map incl; is an isomorphism
since W; is a full subcategory. So if ¢ is an isomorphism, the middle vertical
arrow is.

The functor 7 is a natural transformation between Sy, Ew, and Id since
the above map on objects commutes with morphisms: If we have a morphism

h: (N2 Nog;) — (N' I N'o ¢;), then in the above construction h only
touches the first factor, canpro(id ® incl;(—) o ¢(—) ®id) only the rest. So 7
is a natural equivalence between Sy, Fyy, and Id as functors on ¢;-endseryy,.
We conclude that

K(Sw,Ew,) = K(Id¢i-endffRWi) = IdK(dh“endffRWi) :



76 5 Splitting Results

2) We show that Ep g1 o Sp g 1 = Id.

The proof proceeds inductively over the cardinality of I{.. The beginning
It = () is trivial. In the induction step, choose W; maximal in {W;}y, e I
and write I]' = I{. \ {i}. (This is possible since I is finite.) We want to
show that we have a cofibration sequence of functors on gbpr—endffRWI,F

0 = Ew,Sw;, —1d = FG — 0,

where WI'F C I is the full subcategory of I' with objects in UWie I W; and F
and G remain to be explained. By Remark 5.1.5, we can restrict ourselves
to modules of the form

M =P RWy (7,8(b)).
beB
Then Sy, M = @cp RW;(?,6(b)) for all W; € Iy and BEw,Sw,M =
@beB]_ RWr, (7,B(b)) for all W; € I} [Liic89, Lemma 9.31]. Under the
above isomorphism, the element Sy, (M 9y Mo I'r) is nothing but the map
P, e, BWy (incl;(95(1),50)) °9l@ye 5, Ry (incl;(2),5(0)) and the element given
by B, Sw; (M % M o §r,) is D@y, , 7, (9,0 (1).50)) °9|@ren, 1V (750
We have a split short exact sequence
0— € RWy (7, 80)) = P RW (2,8(0)) = D RWy (7,8(h) = 0.
beB; beB bEB\Bi

By Corollary 5.1.7 we know that the diagram

Open, RWy (7, B(D)) i > DocsRWr (7, B(0))
pr@beBiRW]%(d)]f‘(7)s5(b))log|®bEBiRWI%(?,B(b)) lg
Sve; RWrr. (01.(7), (b)) indl > DoepRWrr (07.(7) B(b))
r r r r

commutes since W; is the top class. This is the specialty of the top class,
that is why we have to split off one W; at a time. We define functors

P rwr (2,80) —~ P BWn(??7.80))
beB beB\B;
h = DY@, g, B (72,60) O @By oy iy B (22,60)
P B (2,80) — P RWn(?7,8(0))
beB! be B

ho i 77 € Wiy
0 if?7?ew;
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by defining them on the equivalent subcategory of finite free RW, -modules
of this special form. We obtain a commutative diagram with exact rows

0 —— Ew,Sw,M > M FGM ——0
|

g9 g9 g9
Ew, sWi(M—>Mo¢I,F)l glld(M—>Mo¢I,F) J’FG(M—>M0¢I,F)

0 — (Bw,Sw; M) o ¢y, —— (M) o ¢, —— (FGM) o ¢, —— 0,

and we have an induced map on the cokernels which we denote by FG (M =N
M o ¢I'r)' Viewing it as a map of RWjs-modules (since F' is simply the
inclusion and ¢, can be restricted to Wf'r') gives G(M 4 Mo ¢]/F): GM —
(GM) o ¢pi. (One can also formulate this differently: GFG(M) = G(M),
so applying G yields GFG(M % Mo ¢p) = G(M % Mo ¢y).) The
functor F' on morphisms is simply the inclusion, i.e., viewing the morphisms
as morphisms of RW]rF—modules.

Given a morphism h: M — M', where M' = @y cp RW (7, B'(V)), by
Corollary 5.1.9 the left cube of the diagram

Ew, Sw; M S M FGM

~

~N
FG(h)
By, Sw; M’

> M’ > FGM'
ly J
’
g

(Ew,; Sw; M) o ¢ (M)o ¢ (FGM)o ¢y
r r r

o7 (h)
’ g ’ r
By, Sy, (M LM/ 06 )
¢% (Bw, Sy, (8 Wi oW Ip
r

(Bw,; Sw, M") °¢If~ - sy (M) °¢If~ - s (FGM") °¢If~

g
Ew, Sw, (M—)MD¢IIL)

~N
N

B ~N
o (PG

where the horizontal rows are short exact sequences also commutes. We ob-
tain induced maps F'G(h) and ¢}, FG(h) and a commutative diagram of the
r

cokernels. The map Ew,Sw,(h) is P, p, RWy (2,6(0)) Oh|®bEBi RWy (2,6(0))
Again, one can obtain G(h) by applying G to FG(h) and defining G(h) :=
GFG(h). Thus we have a short exact sequence of functors on ¢r.-endserw,,

r

0 — Ew,Sw, = 1d = FG — 0.

Since Eyw,Sw; is a functor, we have a natural transformation Id — Eyw, Sy,
given by (M 2 Mog¢r.) = Ew,Sw,(M 9y Mo ¢r.). This is a splitting map
since the composition
Bw,Sw,(M % Mod¢p) ~ Ew,Sw,(M % Mody)
— EWZSWZ (EWpS’WZ(M i) M o qé[f))
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is naturally equivalent to the identity: We have already shown that we
have a natural equivalence 7: Sw,Ew, — Id, so Ew,7g,, (-) is a natural
equivalence between the above composition and the identity on Eyy, Syy,. So
our sequence is split exact, i.e., a cofibration sequence.

By the Waldhausen additivity theorem, we obtain

K(Ew,)K (Sw,) + K(F)K(G) = 1d.

The following diagram commutes on the outside because of this equation
and on the top because of the induction hypothesis Er 4 i o St 4 v = Id.

K(d’Il’l -endgrw,,, ) ® K (¢i-endicrw, ) d N K(¢Ilu -endgrrw ) ® K(¢i-endesrw; )
& r
K(@DK (Sw;) EBW EI//K(¢] -endeerwy;)) ® K(di-enderrw; ) K(F)®K (Ew,)
K(¢I, endffRW N K(¢I’ e“dffRW )-

The right triangle commutes if (K (F) ® K (Ew,)) o (Er g, ®1d) = Ep 4 11,
ie., if

K(F)o (&w,cry K(Ew,)) ® K(Ew,) = ®w,c1. K (Ew,)-

This is obviously true: The Eyy; on the left land in ¢prr—endffRWI,,, and the
r
functor F' is exactly what we need to push them forward to gbpr—endffRWI,
r
where the Fyy, on the right hand side land.

The left triangle commutes if (S 4z ®1d)o (K(@)®K(Sw,;)) = ST 6,105
ie., if

H K(Swj OG)@K(SWZ-) = H K(SWZ)
WjEI{f WiEI{‘

This is easily seen to be true, too: For W; € I,
Sw, o G(M) = Sy, ( D RW(7.60) ) @D RW;(2,5(b)) = Sw; (M)
beB\B; beB;
and
Sw, 0 G(M < Mo ¢y
Sw; (Prea,,eB\Bi RW i (¢720(7),8(0)) °9 | @se 5, RWy (2,60))
= PI@, RW;(65(2),60) O @y, AW (2,0(0)
= Sw,(M 5 Mogp).



5.4 A Finer Splitting Result 79

So the left triangle also commutes. We conclude that the bottom triangle
commutes and thus that EF,¢J’F o SF,W’F = Id. Therefore Er 4 and Sr 4 are
inverse isomorphisms.

It remains to show naturality. Given a covariant functor F': (I'y,¢) —
(T9,1)), we have SE = Id and EF = FE, so SFE =2 SEF = F and the
following diagram commutes:

K(RT;) —X s K(RT,)
TE(RFl) lS(sz)
Split K (RT) —— Split K (RT5)

This also implies that SF =2 SFES = FS, and so S is a natural transfor-
mation. ]

From the proof we can deduce the following corollary.

Corollary 5.3.2. For any El-category I' with endofunctor ¢, we have a
natural splitting

K(Wdprg) = € K(Ew,Sw,): K(¢-endspr) — K (¢-endgsar).
WiEIF

In particular, in Ko(¢-end¢err) we have for (M 9 Mo @) € ¢p-endgrgr the
equality [g] = > yy.cr.l9il, where g := Ew, Sw, (M 2 Mo ¢).

5.4 A Finer Splitting Result

Now we will split up the K-theory of each (W;, ¢;) even further. The set
of objects of W; can be partitioned into two subsets, the objects of T; and
of Q;. We establish an isomorphism

K(¢i-endserwy,) = K (pr-endgepr,) @ K (ff RQ;).

Let W be a groupoid with endofunctor ¢. Since W is a groupoid, every
endofunctor is order-respecting.

Definition 5.4.1. Define T to be the full subcategory of W with objects

Ob(T) := {x € W | there is n € Nyo with ¢"(z) = T}.
Define the length of T to be
I(T) := min{n € Nyg | ¢"(z) = T for z € T}.
For y € Ob(W) define the height

ht(y) := min{n € N | ¢"(y) € Ob(T)} € NU {oo}.
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Define the height of W to be
he(W) = sup{hi(y) | y € Ob(W)}.

Define Q; for 5 > 1 to be the full subcategory of W with
Ob(Q;) = {y € Ob(W) | ht(y) = j}

and define L; for j > 0 to be the full subcategory of W with
Ob(L;) = {y € Ob(W) | ht(y) < j},

then L; =TUQ1 U...UQ;. Weset Q:= UM Q=w\T.

Note that the set of isomorphism classes of the groupoid T is always
finite, and nonempty if the set Is W is finite. The set of isomorphism classes
of the groupoid () can be finite or infinite.

We will split off the @); one at a time, starting from the top. We treat
groupoids W with finite height. We can also treat groupoids that are a
colimit of their finite height subgroupoids using a colimit argument. The
only case which is then not covered is when T' = () and all objects in W have
height oo.

We can restrict ¢ to T" and to each of the L; for j > 0. We call these
restricted endofunctors ¢r: T — T and ¢, : Lj — Lj. Note that ¢(L;) C
L; 1 for all j > 1. We define an abelian group

Finesplit K (¢-endserwy ) := K (¢pr-endserr) & K (ff RQ).
To stick with the notation used before, this can also be seen as
Finesplit K ((W, ¢)) := K(¢r-endgerr) @ K (ff RQ).

for a groupoid W with endofunctor ¢. It is clear that we have the equation
K(ffRQ) = @) K(ff RQ;). We define functors

A: ¢p-enderpr DT RQ  —  P-endprw
; ( (inCngOW)*(l) 8 )
(P4 Pogr,N) — (indrcw P@indgcw N )

(indpcw P @ indgcw N) o ¢)
(h1,h2) — (indpcw by @ indgcw ho)
and
B: ¢-endgspwy  —  ¢r-endgerr @ ff RQ

(M i) M o ¢T) — (I‘eSTgW M M) (I‘eSTgW M) o ¢T,

resQcw M)

h (I'eSTgW h, resQcw h)
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where respcyy (g) is defined to be the composition

resrcw (g): resrcw M M resycw (M o ¢) = (respcw M) o ¢

This map is known from Section 2.2. Here we use the notation resycy :=
reSinclpcyy and indpcw := indipelyy,,- Note that for groupoids res, = S,
since we do not have any morphisms that are not isomorphisms. So in this
case res, preserves “finitely generated free” since S, does. These functors
induce maps

K(A): Finesplit K(¢-endsrryy ) — K(¢p-endeepyy)
and K(B): K(¢-endssryy) — Finesplit K (¢-endgeryy ).

We will show that these are isomorphisms inverse to one another if W is a
groupoid that is a colimit of its finite height subgroupoids L; for j < oo.

Theorem 5.4.2. Let W be a groupoid with endofunctor ¢ that is a colimit
of its finite height subgroupoids. Then we have an isomorphism of abelian
groups

K (¢-endgtr) = K (¢r-endgerr) @ K (ff RQ)

which is given by K(B) with inverse K(A).

Proof. 1) K(B o A) = Ik (¢r-endsenr )oK (it RQ)
We show that B o A is naturally equivalent to Idg,-endyprott RQ- Let

(P4 Pogr, N) € ¢pr-enderr @ £ff RQ. Then

BoA(P L Pogr,N)

incl 1 0
reSTgW( (1nCT%W)*() 0 )

= (I‘eSTgw(indTgW Po 1nngW N)
(resTgW(indTgW P& inngW N)) o ¢r,
rengW(indTgW P& inngW N))

I‘eSTgW (incngW)* (l)

= (I‘eSTgW indTgW P (I‘eSTgW indTgW P) o ¢T,

resQcw 1nngW N)

~ (PLpodr,N).

Here resgcw (indrcw P) = 0 and respcw (indgcw N) = 0 since T and
@ are disjoint. Remember that W is a groupoid, so all morphisms are
isomorphisms, and res, = S;. The bottom isomorphism is given by the
natural transformations nrcw: P — resycw indrcw P and nogcw: N —
resgcw indgcw N which are isomorphisms since T C W and @Q C W are
inclusions of full subcategories. (This is analogous to Section 2.2, too.)
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Let (h1,h2) be a morphism, then

Bo A(hy, h)

(
(I‘eSTgW indTgW hl, resQcw inngW h2)
= (hy, ha).

I‘eSTgw(indTgW hi1 & inngW hg), I‘eSng(indTgW hi1 & inngW hg))

2) K(A o B) = Idk (g-endgpmw)

We have W = colimy Ly and ¢-endsrryy = colimg(¢r;-endgegy,;) by con-
struction. We have A o B = (colimy Ay) o (colimy By) = colimy(Ay o By),
where A, and Bj are the restrictions of A and B to Lj. Hence it suffices to
show that for any finite k£ we have K (A o By) = IdK(aﬁLk—endmek)'

We proceed by induction over k. If k = 0, then there is nothing to
prove. Assume that ht(W) = k and that we have K(Ax_; o By_1) =

IdK(¢Lk (-endserr, )" We have a short exact sequence

04>inde_1gWrest_lgWM S M inkogwrestgwM—>0

(imelp,  cw)« reSLklgW(g)l Jg lo

0 — (indp,;  cwresy, ,cw M)oé Mo ¢ 0 >0

It is split exact since
(inClLk,1§W)* oresr, ,Cw: Id — (inClLk,IQW)* oresy, ,Cw

is a functorial splitting. Let iom: ff RW — ¢-endgsryy denote the functor
inserting the 0-map. By the Waldhausen additivity theorem we obtain

K((incly, _,cw)«)K(resr, ,cw) + K(iomoindg, cw |mMod) K (resg,cw |Mod)
= Idk (p-endgipw) -

Thus the diagram

K(dp,_,-endetrr,, 1)®K(ffRQk)—)K(¢Lk p-endesrr, ) ® K(ff RQy)

K(¢r-endprr)) ® ®FZ1 K (ff RQ;) ® K (ff RQy,)

Id

K(¢-endgsryw ) > K(¢-enderrw)-

K((inclp,  cw)«)®
K(iomoindg, cw IMod)

K(resr, ,cw)
BK(resqg, cw IMod)

commutes on the outside. It is clear that reSQ; CLy_; |Mod © resr, cw =
resQ, cw IMod and that respcw = respcyr, , oresr, ,cw, so the left triangle
commutes. We also know that (incly, ,cw). o (inclycyr, )« = (inclpcw)«
and that iomoindg,cw |mMod = Akltr RQ,, SO the right triangle commutes.
The top triangle commutes by the induction hypothesis, so the bottom tri-
angle also commutes, and we are finished. O
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Remark 5.4.3. We think it probable that this splitting also works in the
case we have not treated yet, namely that T = () and W = Q. If all elements
in W have height infinity, we can index the connected subgroupoids of W
by j € Z such that ¢|g,: Q; — Q; 1. We know that ®j€ZK(ffRQj) =
colimy_, o @ ;- v K (ff RQ;). Using the argument from the proof of The-
orem 5.4.2, we have for any N € Z an isomorphism

K(¢—endffRF) = K(¢FN'endffRFN) D @ K(ff RQj)a
>N

where 'y is the full subgroupoid of W with objects in Q) for any k <
N. The inclusion maps of the direct system commute with the inclu-
sions P, y K (ff RQ;) — K(¢-endgrrr), so we have an induced inclusion
@D,z K(ff RQj) — K(¢-endsrrr). We need to show that it is surjective.

In Kjp, the argument goes as follows: We work with endomorphisms
of finite free modules, so for any module M there is an Nj; € Z such
that M = @;c/RT(?,m;) with m; € Qj, such that all j; > Nj;. Any
element in Kjy(¢-endserr) can be represented by some [g: M — M o ¢,
and this maps to 0 + [M] € Ko(¢ry, -enderry, ) © D)5y, Kol(ff RQ;)
under the above isomorphism, and thus it lies in the image of the map
@jeZ Kg(ff RQ]) — K0(¢-endffRF).

Combining Theorem 5.4.2 with Theorem 5.3.1, we obtain the following
corollary.

Corollary 5.4.4. Let (T, ¢) be an El-category T with order-respecting end-
ofunctor ¢ such that every W; € Ir is the colimit of its finite height sub-
groupoids. Then

K(¢-endgerr) = P (K (¢r;-endgerr;) © K (ff RQi))-
W;elpr

The isomorphism is given by ®WiEIF (K(STi) o) K(SQi|Mod)) with inverse
GBWZ‘EIF (K(ETz) @ K(EQl IOm)) i

Proof. From theorems 5.3.1 and 5.4.2 we know that the isomorphism is
given by (®w,cr- K (B;)) o Sr ¢ with inverse Er 4 o ®w,cr. K (A;). From the
definitions of Sr 4, Er g, A and B in Sections 5.2 and 5.4 we deduce the
above form. We use the fact that resy; Sw, = St since rest; resyy, = resr;
and W; is a groupoid, T; subgroupoid, so anything that is divided out has
to come from outside W;, and that analogously resg, Sw, = Sg,. 0

What about functoriality in (W, ¢) € Endo(EI-Cat) 4?7 Not all our con-
structions are compatible with a functor F: (W, ¢) — (W', ¢') of groupoids
with endofunctor, i.e., F: W — W' such that F o ¢ = ¢' o F. The inclusion
of (T, ¢r) into (W, ¢) is compatible with F', but the restriction from (W, ¢)
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to (T, ¢7) is not: Modules lying over ) would be forgotten by resrcw, but
they might be mapped to T' under F, so their images would be seen by
resp/cw. So Finesplit K is not a functor on the category of groupoids with
endofunctors.

Remark 5.4.5. These splitting results can be of independent interest in al-
gebraic K-theory. One can apply them to endomorphism categories of mod-
ules over complicated rings and split up the K-theory of these endomorphism
categories into simpler parts. This could have interesting applications.

5.5 A Small Example

In this section, we will briefly discuss an example which should help to
enlighten the statement of the splitting result. Let I be the category with
two objects a and b, with Aut(a) = H and Aut(b) = G, and with no
morphism between a and b.

gelG

hEHQa bﬂ
A A

An RT-module consists of a pair, an RH-module and an RG-module.
Let ¢: ' — T be the functor given by a — b, b — b, ¢|g: H — G any
group homomorphism and ¢|g = idg. Then, in the notation of this chapter,
W = {a,b}, T = {b} and Q = {a}. The splitting result yields

Ko(¢-endgepr) = Ko(id-endgepr) @ Ko(ff RQ)
Ko(End(ff RG)) ® Ko(ff RH).



Chapter 6

The Geometric Meaning of
the Splitting Results

In this chapter, we describe the geometric meaning of the splitting results
obtained in Chapter 5, in particular of Corollary 5.4.4. Here the fixed
point sets corresponding to the different subgroups H < G come into play.
We also show how to get back from groupoids to groups, thereby obtain-
ing a description of the universal functorial equivariant Lefschetz invariant
(U(Z;(X, 1), u%(X, f)) in terms of the fundamental groups of the fixed point
sets instead of their fundamental groupoids.

The result of Corollary 5.4.4 gives an expression of the universal functo-
rial equivariant Lefschetz invariant u%(X, f) = [C°(f)] € Ko(¢-endezia x))
in terms of the maps Cc(ﬂ)}H(x),ﬂ)}>H(m)) on the relative cellular chain

complexes CC()Z'H(x),XNq(m)), for subgroups H < G and objects = €
II(G, X) that correspond to points with isotropy group H.

6.1 Reduction to Groups instead of Groupoids

In this section, we will show how to replace the groupoids by groups [Liic89,
Remark 10.35]. This is rather technical, so it is helpful to have the geometric
picture in mind.

Given a topological space X with endomorphism f: X — X, one usu-
ally prefers working with the fundamental group (after the choice of a base-
point, which does not play a role if X is connected) instead of the fun-
damental groupoid. The transition from the fundamental groupoid to the
fundamental group is done as follows: Assuming X connected, we choose
a basepoint £ € X and look at the fundamental group with respect to
this basepoint. In order for the endomorphism f: X — X to induce an
endomorphism ¢: m (X, z) — m(X,z), we also need to choose a path v
from z to f(x). We define ¢ := ¢, o m(f), where ¢, is the conjugation

85
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map c,: m (X, f(z)) = m(X,z),7 — vyv '. Here composition is written

from left to right, as is usual for composition of paths, so vyv~! stands for
[v # v * v~ !]. Note that choosing a path v from z to f(x) corresponds to
choosing a morphism w = (o, [v]) € Mor(f(z), z).

Algebraically, we are interested in the categories ¢7;-endgpy; and ff RQ);.
We start with the easier task, namely the study of ff RQ;. The category Q;
is a disjoint union of connected groupoids @;;. A finitely generated free
RQ@Q;-module is a collection of finitely generated free RQ);;-modules. We can
choose an object z;; in every component @;;. We know that the inclu-
sion z;; C 7;; of an object into its isomorphism class induces an equivalence
of categories Amj) — I[zi;] = Qij, where AE(:E\U) is the group Aut(z;;)
viewed as a category (with one object). So by restricting with this equiva-
lence of categories we can view a finitely generated free RQ;j-module as a
finitely generated free RAE(ac\ij)—module. An RAE(Qc\ij)—module is canon-
ically an R Aut(z;;)-module and vice versa [Liic89], so a finitely generated
free RQ;j-module can be seen as a finitely generated free R Aut(z;;)-module.

In a precise technical formulation, we have a restriction functor

resHindmij ffRQ; — H ffRAut(l‘ij)

JE;
M ] resina,, M
]
JEJ;
h Hresindz__h.
ij
JEJ;

We also have an induction functor

inditin,,, : [T £ R Aut(zi;) — ffRQ;

JEJ;
H Nj — @ indinclmi]. Nj

Jj€J; Jj€J;
[Th = €D indina,, by
Jj€J; J€J;

These are equivalences of categories inverse to each other, as stated in Sec-
tion 2.2. The natlgl\transformations n and € are in this case natural equiv-
alences because Aut(z;;) — Q; is an equivalence of categories. So the group
homomorphism

K(resHindw) : K(ffRQZ) — K( H ffRAut(]?ij)) = @ K(ffRAut(]?ij))
jeJ; jeJ;

is an isomorphism, and we might feel more comfortable looking at the uni-

versal functorial equivariant Lefschetz invariant in ;. ;. Ko (ff R Aut(z;j))
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if we prefer working with groups instead of groupoids. The choice of the
objects z;; € Q;; does not play a role, we can use the isomorphisms

K(resﬂmd ) 1ndedm @ K(ffRAut(xij)) = @ K(ffRAut(xgj))
E JETi JETi

to identify the groups obtained from different choices. We define

Vo, = H K (ff R Aut(zj))/ ~
Tij €Qij

and
=DV,
JeT;
where for a € K (ff R Aut(z;;)) and o’ € K (R Aut(z;;)) we set

a~d & K(resHmd ) 1ndedz )(a) =d.
Tij
The abelian groups Vg, and Vg, are well-defined: Existence of the natural
equivalence n implies that K (resHindm indy incls,, ) = ldger Aut(zi;)), and

K(reSHmcl u lndﬂlncl / reSHmcl / lndeclx ) = K(FGSHmd u lndﬂlnclz ) is
true because we have K (indy mcl ’ IeS[lincl, , ) =1d K(Ff RQ;) by the ex1stence

of the natural equivalence e. We have obtamed a “basepoint free” description
in terms of groups instead of groupoids.

For any choice of elements z;;, the map IeSITincly,, induces the same
isomorphism

£o,: K(ff RQ;) = Vo,.

The case of the category ¢r;-endgery, is more difficult since there is the
endofunctor ¢z, involved. We write T instead of T; for simplicity of nota-
tion. Note that T is a disjoint union of connected groupoids. Choosing an
object y € T, we can write T as T = 511 ¢(y) II- - - I~ 1(y), with ¢l (y) = 7,
where as usual we identify y with the groupoid it generates by taking the
full subcategory of T" generated by the objects of 7, namely § = I'[y]. As
above, we want to replace these groupoids ¢(y) by the groups Aut(¢*(y)).

Having chosen y € 7, we have determined objects ¢(y),...,¢' 1(y) in
the other connected components of T'. We also need to choose a morphism w
from ¢'(y) to y. We can find such a w since ¢!(y) = 7. The morphism w is
invertible since I'[y] is a groupoid.

As above, we know that the inclusion ¢(y) C m induces an equiv-

alence of categories Au@y)) — T'[¢'(y)]. Again we can take the groups
Aut(y),...,Aut(¢'~!(y)) and group homomorphisms between them instead

of the categories Pzt(\y), ..., Aut(¢!~1(y)) and natural transformations be-
tween them since for any group G an RG-module is canonically an RG-
module and vice versa [Liic89].
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For v € Aut(¢!(y)) we set ¢y (7) := wyw™ ' € Aut(y). We obtain a group

Bl Awsol—
homomorphism ¢, ,,: Aut(¢'(y)) R CaCOIN Aut(¢'(y)) = Aut(y).
On the groupoid side, we can view ¢-endgspr as being made up of mod-
ules over the “circle” of groupoids and functors

Ply) 2 Tlp(y)] — - —— D¢ )]

w

Hlrpst-1(y)]

This is the notation which is well adapted to viewing the groups. When
we use this notation, we call the category of modules over this “circle”
category ffRI'[y]-Circles. This is the same as ¢-end¢rpy.

We also have a “circle” of groups and group homomorphisms

Aut(y) 2 Aut(p(y) — - —— Aut(¢ (1)),

\/

¢y,w1:Cw°¢|Aut(¢l—l(y))

In analogy to the groupoid case, we define a module over this to be a “circle”
of modules and morphisms

My 2 My R M 4,

~

91—1

where M; is an R Aut(¢'(y))-module and for 0 < i < [ — 1 the map g; is a
Pl Aut(¢i (y))-morphism, i.e., we have g;: M; — M; 10| aus(gi(y))- Fori=1-1
the map g;_1 is a ¢, ,-morphism, i.e., we have gi_i1: M;_1 — My o ¢y .
A finite free module is defined to be one where all modules My,..., M; 4
are finite and free. A morphism h: (M;)o<i<i—1 — (M])o<i<i—1 between
these modules is a set {ho,...,hj_1} of maps h;: M; — M, such that
all resulting diagrams commute. We call the category of these modules
ffRAut(y)-Circles.
We want to prove the following theorem.

Theorem 6.1.1. Let I' be an El-category, and let y € Ob(T) be an object
of T'. There is an equivalence of categories

ffRT[y]-Circles = ffRAut(y)-Circles.

It is given by the natural equivalence R, ., and has the natural equivalence
I, . as inverse, where R, and I, are defined in the proof using restriction
and induction.
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Remark 6.1.2. We easily see that we have an equivalence of categories

¢‘Aut TR
Aut( ) Site Aut (P(y)) — " — Aut (¢ 1(y))

L o l

Ply] 2, Ti(y)] Tlg (y)

given by the inclusions, but unfortunately, in the diagram

— ¢‘Aut =1y —_ Cw —
Aut(@1(y)) — " Aut(@l(y)) — > Aut(y)
lll Olrgi—1¢y)) ll l
rlgt(y) Tlg ()] Ilyl,

the right square does not commute. If it did, our assertion would be easy to
prove, but as it is, we have to work with the modules directly.

We will first prove the following proposition since it contains all the
necessary arguments. The general case needs more notation, but not more
ideas.

Proposition 6.1.3. Let an object y € T' with ¢(y) =y be given, i.e., the
corresponding T is T'[y], so T is a connected groupoid. Let w € RT'(p(y),y) =
RT(¢pr(y),y) be a morphism. Then there is an equivalence of categories

Ry,w: ¢pr-endgrpr — ¢y,w'endffRAut(y)
with inverse
Iy,w: qby’w'endffRAut(y) — ¢r-endgrgy.

If T is a groupoid with endofunctor ¢, in our new notation we write
¢-endsepr as ffRI-Circles. So this proposition follows as a corollary from
the theorem in the case where ¢(y) = 7.

Proof. Fist we need to define the functors R, ,, and I ,,. We will use induc-
tion and restriction with the equivalence of categories incl,: Aut(y) — T.

(We tacitly read Aut(y) to be A/utG)) For better readability, we write ind,
and res, instead of indjpel, and resiyy, from now on. We also write ¢ in-
stead of ¢ when no confusion can occur. We have a commutative diagram
of categories and functors

1nc1

— 7T

Aut(y
4 ld)Aut(y) l¢
Aut(y Aut —_—T.

1nc1¢( )
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For M € ff RT there is a canonical isomorphism of R Aut(y)-modules
canresiso: res. _, resg,y M = M(?) ®pr RT (incly(y) (cy-1(77)), ?)
= M(?) ®gr RT (c,,-1incly(?7),7)

~ i —)ow™!
W @ L 0 (2) @py RT (incly(77),7)

= resy, M.

The map idy; ®(—) o w™! is compatible with the tensor product relation
since (v(w ™ 'yw))w !t = (vw!)y. We define the functor

Ry.w: ¢-endeepr = by w-enderraut(y)
on objects (M 2 M o ¢) by the following composition:
res, M

lresy (9)

res, resg M

Ry,w(M-ZMog)

resg, ., '€Se _, Tesp() M
lresd)y,w (canresiso) s
resy, ., resy M
On morphisms, we define it by R, ,(h) := resy(h). The functor

Iy,w: Qby,w'endffRAut(y) — ¢'endffRT
is a little more difficult. We define it on objects by the following composition:

ind, N

indy(9)

~N-

indy resy, , N

indy resg, ., (M)

indy resg, , res, indy, N

Iy,w(Ni>No¢y,w) indy resy, ., (canresiso’l)indy N

~N-

indy resy, , resc _, resy,)indy N

ind, res, resg ind, N

lgres(ﬁ indy N

resg indy N
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and on morphisms by I, ., (k) := ind,(h). It is obvious that Ry, and I,
are functors since on morphisms they are res, and ind, respectively, which
are well-known to be functors.

We want to show that the functor R, is an equivalence of categories
with inverse Iy .

1. There is a natural equivalence e: Iy ,,0 Ry oy = Idig(g-endgpy)- We know

that I, ., o Ry.w(M 9y M o ¢) is the left vertical composition in the
following commutative diagram, where we abbreviate ind by 4 and res
by r:

) eM
by Ty M M

liyry(g) lg
87'¢,M

by TyT M roM

Ty ey To(y) M

iyT g, ., (canresiso) s
~-

zyr(by,wryM

. Id
Zyr¢y,w (nTyM)
A iyr¢y,wry5M

zyr(ﬁy,wryzyryM — TyT by ryM Id
YTy w (Ca‘nreSisoil)in‘yM liyrd)y,w (canresiso™1) s
. ~ . iyrqu,w?"cw,l To(y)EM , M
byT gy e, 1 To(y)byTy - > Uy, ey -1 To(y)
. . IyTyTHEM .
by TyT lyTy M — > Gy TyT o M
J/Erd)iyryM JET
. ToEM
TlyTy M ¢N reM

The right vertical composition is M 9 Mo ¢, and the diagram
shows that )7 is an isomorphism between I, R, ., (M 9 Mo ?)
and Id(M 9 Mo ¢). We know that ¢ is a natural transformation of
functors I, R, ., — Id since on morphisms h we have Iy, Ry ., (h) =
indy, resy,(h), and e is a natural transformation of functors ind, res, —
Id on ff RT. So ¢ is indeed a natural equivalence from I, ,, R, ., to Id
on ¢—endffRT.

2. There is a natural equivalence n: Ry, o I, — Id¢y,w‘endffRAut(y)' We

know that R, ., o Iy, (N I No ¢y.w) is the left vertical composition
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in the following diagram, where we again abbreviate ind by ¢ and res

by r:
. N
TylyN < — N
Tyiy(9) g
v nrd)y wN ™
Tylyr¢y,wN ~ r¢y,wN
Tyiy%y,w N ~
~ nr ryiyN e
. . by,w VY .
’f‘y’Ly’f'qu,w’l"yZyN N ~ ThywTyly
TyiyTey o | (canresiso™");, Téy,w | (canregiso™!);, v
~ Nr 7 r iy N e
. . dy,wCy—1"0(y)"Y .
TylyT by wTey—1 Toy) iy N = Ty wTe,—1 To(y) N
rynrd)ZyN
'ry yryr¢z ’f'y’f'¢'L Id
Tyard)ZyNJ/ /
TyTely N
’r¢y,wrcw—1 rd’(y)ZyN
r¢y,wl(canresiso)iy1v
Ty, wlN

7‘¢y,w7‘yzyN T¢y,wN

~

We see that the isomorphism ny sends (N % N o byw) t0 Ry o
Iyw(N % No ¢yw)- Since on morphisms h we have R, 1y, (h) =
res, ind, (h), and 7 is a natural transformation of functors res, ind,, —
Id on ff RT, we know that 7 is a natural transformation from Ry ., .,
to Id on ¢-endgrr. Since ny is an isomorphism for all N, the natural
transformation 7 is a natural equivalence. [

We have shown that R, ,, is an equivalence of categories with inverse I, .
This implies that K (Ry.w © Iyw) = Idg (g, ,endipan,,) 20d that K (L., o
Ry w) = Idg (pendsepr)- S0 K(Ryw) and K (Iy,,) are group homomorphisms
inverse to each other.

Instead of the category ¢-endsrrr, we want to use ¢y -endsrpayi(y) and
look at our invariant in Ko(dyw-enderauty)) by applying Ko(Ryw) to it.
In order to make the definition independent of the choice of y and w, we set

Vi = H K (¢y,w—endffRAut(y))/ ~

y€eT,
weRT (6(y),y)
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where we identify a € K (¢yw-endgrpau(y)) and o’ € K(¢y wr-endespaug(y))
if and only if K(Ry 4 o Iy)(a) = a'. This is well-defined since K (R, o
Iy,W) = IdK(¢y,w‘endffRAut(y)) and K(Ry”aw” °© Iy’,w’) °© K(Ry/,w/ °© IWU) -
K(Ryuywn) o K(Iy/’w/ o Ry/’w/) o K(Iy’w) = K(Ry//’w// o Iy,w)- So our defi-
nition is indeed independent of the choice of y € T' and of w € RT (¢(y), y).
For any choice of y and w, the map K (R, ,,) induces the same isomorphism

ér: K(¢r-endeepr) — Vi

Now we are ready for the general case, i.e., for the proof of Theorem 6.1.1.

Proof (of Theorem 6.1.1). We proceed in analogy to the special case. First
we have to define the functor R, ,,. Let

((Mi)()gigl—la (gi)ggigl_l) S ffRI‘[y]—Circles.

We map M, to reSyi(y) M; for 0 < i <[—1andg; to resgi(y) Ji for 0 <3 <[-2.
The maps {g,...,g—2} do not pose any problems since for 0 <i <[—2

TS i (y) TS lryiqy Mitl = TSl oinelyi, Mit1
TeSincl i1 () 0l aus(ei yy VLI

res¢‘Aut(¢i(y)) TeSyi+1(y) Miyq,

SO T€Syi(y) Jit TeSyi(y) M; — resyi(y) resmrw(y)] My = res¢‘Aut(¢i(y)) IeSi+1(y) M

has the desired form. We have to be careful with g; ; since resyi-1(y) (91-1)
does not map quite to the right module: We have

resd,z_l(y)(gl*l): resgi-1(y) Mi—1  — TeSyi-1(y) TeSg| M,

ol=1(y)]
= res‘z’\Aqu—l(y)) res¢z(y) M()

= resy, , resc _; resgiy) Mo.
We again use the canonical isomorphism
CANresiso: rese _; reSyi(,) My — resy My

and compose the above with res,, , (canresiso), i.e., we map g, 1: M; 1 —

TeSg| L imi) My to resy, , (canresiso) o resyi—1(,) (¢™1). So we have defined

R, ., by
Ry . ffRI'[y]-Circles — ffRAut(y)-Circles
(Mi)o<i<i—1, (9i)o<i<i—1) ((res¢i(y) M;)o<i<i-1,
(resgo(y)(90); - - - » TeSg1—2(y) (g1-2),

resg, ,, (canresiso) o resgi-1,) (gl,l))).
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As in the special case, the definition of I, ,, is a little more complicated. Let

((Ni)OgiSl—la (ki)()gigl—l) S ffRAut(y)—Circles.

We map N; to ind¢i(y) N; for 0 <7 <[ —1. We cannot map k; to ind¢i(y) k;
for 0 < ¢ <[ — 2 since this morphism does not land in the right module.
Instead, we have to compose it with the composition

((€i)res¢|r[¢i(y)] ind¢i+1(y) Ni+1) o (1nd¢l(y) res¢‘Aut(¢i(y)) (nz’—l—l)Ni_H) :

indgi(,) TES 6] x we(si () Niy1 — TeS 6| i) indgi+1(,) Nit1

to obtain the desired map given by (k;)« := ((€i)res,, . ind.. Niiy) ©
lrpgicyy ot T
(fndcbi(y) re.s¢|Aut(¢-i(y)) (Mit1) Niyy ) 0ind i ) (ki) T.hlS 1s- anfxlogous to -the defini-
tion of H, in Section 2.2. In order to treat k;_1, just like in the special case we
use (canresiso™!) and map k;_; to the composition ((el,l)re%‘ . ind, No)o©
Llot~*(y)]

(indgi—1(y) resy, (canr(?sisofl)indy n)o(indgi-1(y) resy, (1-70)N0)f3ind¢-171(y) (ki—1).
Here we used the notations €;, ;11 etc. to make clear which adjunction mor-
phisms we mean, but we will mostly omit the indices in the sequel.

We show that Ry, is an equivalence of categories with inverse I .

We will show that there is a natural equivalence between I, o R,
and Id given by a natural transformation €. This natural transformation ¢ is
defined to be the [-tuple (e, ...,£_1), where €; is the natural transformation
defined by the adjointness of indy;(,) and resg;,).

Let ((M;),(gj)) € ffRT-Circles. On the modules M;, for 0 < j <1 —1,
the image under I, ,,0 Ry ,, is given by ind; ) resyi () Mj, and this is mapped
to M; by €; as desired.

On the morphisms g;, for 0 < 57 <[ — 2, the image under I, ,, 0 Ry ,, is
given by the left vertical composition in the following commutative diagram,
from which we see that again ¢ gives a natural transformation to the identity.



6.1 Reduction to Groups instead of Groupoids 95

We again abbreviate ind by ¢ and res by r.

eM
P i (1) "9 () Mi M;

"¢i(y)%i(y)“’f)l lgi
€, . M.
Alpgiy o1

i¢j(y)T¢j(y)T¢|p[¢j(y)] Mij+1 = T¢|F[¢i(y)]M

i¢j(y)rd"Am(¢j ) Toiti(y) Mi+1

id’j(y)%Aut(¢j(y))nr¢j+1(y)Mj+1l~ \
63 (1)) Aws(ad () T T
,ﬁrlt(d’](y))

t97 () "¢l Aut(ed () ST T Epd 1 () T it () Mi T i (y) "¢l Aut(pd (v)) T

) ‘ i¢j(y)7‘¢j(y)7‘d"r[¢j(y)1EMJ'+1
E93 ()" 67 (1) "l pp () 6T () "I+ () M1

i+l

M1

> i¢j(y)T¢j(y)T¢|r[¢j(y)

€p . M -
Plrrgd (1)1 J+1l
"lrigd (p1 Mit1

Id . M
- Plrigd (v)1

€ : . - .

"lrigd ()] l¢]+1(y)r¢]+1(y)MJ+1l~
M;

J41

r‘i"r[dﬂ'(y)] i¢j+1(y)r¢j+1(y)Mj+1

Finally, we have to treat the case of g;_{. As in the special case, ¢ is again a

natural transformation from I, ,, o Ry, to Id, the appropriate diagram can
be found in Proposition 6.1.3, part 1. So we have seen that (g¢,...,&,_1) is
the desired natural equivalence from I, ,, o R, to Id.

There is a natural equivalence between Id and R, o I, given by a
natural transformation 7. This natural transformation 7 is defined to be
the I-tuple (1o, ...,m—1), where n; is the natural transformation defined by
the adjointness of indy;(,y and resy; (). Let ((N), (kj)) € ffRAut(y)-Circles.
On the modules Nj, for 0 < j <[ —1, the image under R, ,, o I, ,, is given
by resg;(,) indyi(,) Nj, and we know that n; is a natural equivalence from N
to resy;(y) indg; () Nj. On the morphisms kj, for 0 < j <[ — 2, the image
under R, ,, o I, is given by the left vertical composition in the following

Mjt1
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commutative diagram. We again abbreviate ind by ¢ and res by r.

N

T3 (y) i () N7 < N;

"o (y) i () Fi )\L k]l
Mr . N
Hlaueiy) 7T

"63 (1)'09 (1) i () I H - "0 w03 ()

rdﬁj(y)idﬂ'(y)r‘i"Aut(d,J‘(y))"Nj+1l~ 7‘¢|Aut(¢]‘(y))an+1l
o _ , '_'”"Aum,jgy) Toitl(y) teitl () Nitt _ o N
Tdﬂ(y)ltﬁj(y)rd"Am(d,j(y))r¢]+1(y)l¢]+1(y) I+ % Td"Am(d,j(y))r¢]+1(y)l¢]+1 )y i+l

o ‘ eI oI ) e ) Nt N
Tdﬂ(y)zd’](y)T¢](y)T¢|F[¢j(y)]Z¢J+1(y) it1 = T¢](y)r¢|r[¢j(y)]ld>3+1(y) it

T¢j(y)5r¢|r[¢j(y)1i¢j+1(y)Nj+1l~ /

Td’j(y)rd"r*[d,]'(y)] i¢j+1(y)Nj+1

j+1

r 3 NN -
?laut(ed (v)) " NIH1 . 5
~ ?laut(sd (1))

i+l

"l Aut(6d (1)) Tgit1(y) it (y) Vit

We see that n gives a natural transformation from Id to this composition.
Finally, for k;_1 we use the diagram from the special case Proposition 6.1.3,
part 2, to show that 7 is a natural transformation from Id to Ry, o Iy .
So we see that (ng,...,n_1) is the desired natural equivalence from Id to
Ry woly,,. O

As in the special case, we have shown that R, , is an equivalence of
categories with inverse I, and can conclude that K(R,.,) and K(Iy,)
are group homomorphisms inverse to each other. As before, instead of the
category ffRT-Circles, we want to use the category ffRAut(y)-Circles and
look at our invariant in Ko (ffRAut(y)-Circles) by applying Ko(Ry,») to it.
In order to make the definition independent of the choices, we set
Vi, = [I  K(fRAut(y)-Circles)/ ~,

1
yeTy,
weRT; (6 (y),9)

where for a € K (ffRAut(y)-Circles) and o’ € K (ffRAut(y’)-Circles) we have
a~da < K(Ry ol (a) =d.

This is well-defined since K (Ry,,y © Iy,w) = Idg (st r Aus(ay;)) DY the existence
of the natural equivalence n and K (R olyr o Ry yyroly ) = K(Ryr o
I ) because we have K (I, o Ry ,y) = Id by the existence of the natural
equivalence e. We have obtained a “basepoint free” description of our groups
in terms of groups and group homomorphisms instead of groupoids and
functors between them.
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As in the special case, for any choice of y and w the map K (R, ,,) induces
the same isomorphism

&t K (¢r-endgepr) — Vi

We set Ur := Vor = Ko(¢r-enderrr) and Ug := Voo = Ko(ff RQ). From
Corollary 5.4.4 we conclude the following corollary.

Corollary 6.1.4. We have an isomorphism

@ (§TiK(STi) @ gQiK(SQJMOd)) : K(¢'endffRF) = @ (VTi D VQi)
W;elr W;elr

with inverse @y c 1. K (B, Iu; ;) ® K (Eq, iom ®j¢y; indy,;) for any z; € Tj,
w € Mor(fb(z;), z;) and Yij € Qij-

This is a basepoint free description of the splitting result in terms of
groups instead of groupoids.

6.2 The Geometric Meaning of the Splitting Re-
sult

In the geometric setting, we are given a discrete group G, a finite proper
G-CW-complex X and a G-equivariant endomorphism f: X — X. In Chap-
ter 3 we introduced the universal functorial equivariant Lefschetz invariant

(Ug(X,f),U%(X,f))’ where

UG(X, f) :==U(Z,1(G, X),$) := Ko(¢-endsz 16, x))
ug(X, f) = u(C(f)) € UGX, ).

We now discuss what the splitting results mean for this geometric invariant.
As seen in Corollary 5.4.4, we have an algebraic splitting isomorphism. It is
given by

@ K(Sr,) 69Kv(SQi|Mod) :
Wi€lna,x)

K (¢-endggzm, x)) — @ (K (¢|r-endeszr) @ K (FfZQy)).
Wieln(a,x)

The set It (g, x) is the set of orbits in IsII(G, X) under ¢, where ¢ := II(G, f)
is induced by composition with f, as defined in Definition 5.1.1. We know
that IsII(G, X) = [T )cconsub G W H\mo(X ™), where consub G' denotes the
set of conjugacy classes of subgroups of GG. Since ¢ is induced by compo-
sition with f, it respects the decomposition indexed by (H) € consubG.
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If WH \ mo(X ™) is partitioned into n subsets {WiH}ie{l,___7nH} which are
¢-invariant, then we obtain

nm
Inee,x) = H HTZH Q.

(H)EconsubG =1

We choose elements yg € Q{]I-, g € TH and v’ € RTH (¢l (zF),zH),

where [; := [(T;) is the length of T; defined in Definition 5.4.1. Remember
that in the category II(G, X) a path has the form w = (o,[v]) € Mor(z,y),
where 0: G/H — G/K and v: G/H x I — X with vy =z and v9 = yoo.

By Section 6.1, the choice of elements does not play a role. We have
T =WH - X" (@) TWH - X7 (f(«f) 0 TWH - XT(ff(z]T)),
Qff = T[ wH - x" ().
jeJl

We state the geometric interpretation of the splitting results in the fol-
lowing theorem.

Theorem 6.2.1. Let G be a discrete group, let X be a finite proper G-
CW-complex and let f: X — X be a G-equivariant endomorphism. Let
(Ug(X, 1), u%(X, f)) be the universal functorial Lefschetz invariant of (X, f).

With the notation given above, choosing elements yg € Qg, xf{ € TZH and
wil € Mor(¢li (zH),zH), there is an isomorphism

ng
(= P EB(KU (Rpt i1 Srin) @ Ko(res,n S@IMod)) =
(H)€Econsub G i=1

ng
VAN S D B (Ko(trzAut(!)-Circes) & @) Ko(fZ Aut(y]])) ).
(H)€Econsub G =1 jeJi
Under this isomorphism,
ngy
TG AT DI S (710 S M ST e SO
(H)€consub G i=1 jeJH

where

u%(X, f):z:l = [(Cc(ﬂ)}H(I?)a ﬂ)}>H(IH))a LR

CC(Q&}fb’ZH(fli—l(Iff))a91;i1f|)Z>H(fli—1(z{’))))]’

The element gy, is determined by the morphism w!’ = (ol [vH]). One

chooses an element gy, € NgH such that off = Ry, :G/H — G/H,g'H —
/
9 guw; H.
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For better readability, we left out the modules in the equation describing
u%(X , [)z;- The element g, is only well-defined up to a factor in H, but
this does not affect the map defined on a subset of the fixed point set X%,

yi induce isomorphisms
ij

Proof. The restriction maps R, u ,,» and res
Ko(Ryr i) : Ko(o|r-endgzr,) = Ko(ffZAut(z]")-Circles)

Ko(res,n): Ko(ffZQg) = KO(ffZAUt(yg))'
ij

Combining these with the isomorphism given in Corollary 5.4.4, we obtain
an isomorphism

ng
@ @(K@ (Rmf,waTiH) @ Ky (resyg- SQ¢|M0d)> :
(H)Econsub G i=1

~

Ko(¢-endggzma,x)) —

D é(KU (EZAut(z!T)-Circles) & @ Ko(E£Z Aut(y/! ))).

(H)€Econsub G =1 jer
Under the above isomorphism, the invariant
ug (X, f) = [C°(]): C°(X) = C“(X) o ¢]
is mapped to
ng - _
> Y ([RaranSea (@] + 3 (S (X))
(H)EconsubG =1 jegt
There is a natural isomorphism of Z Aut(z)-chain complexes
S.(C°(X)) = (X (z), X1 (z))
where (z: G/H — X) € Ob(II(G, X)) [Liic89, Lemma 9.32]. So the Q;;-
part becomes

(5,1 (C(%))] = [0 (X7 (wl), X7 ()] € Ko (f£ 7 Aus(y]])).

What about the Tj-part? For ease of notation, we write z, w, T and [
instead of xf{ , wZH , TZH and [; since no confusion can occur. We know

that Rm,wST(CC(f)) is an element ((Mg,...,Ml_l),(go,...,gl_l)) in the
category ffZAut(z)-Circles. The modules are

M; = res ji(z) ST(C(X)) = 8}ign) (C4(X)) = C (X7 (f1(2)), X (fi(2))).
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For 0 < i < I — 2, the morphisms are g; = resyi(y) ST(CC(f)), where

Sr(C¢(f)) is the composition

Sr(C8(X)) === C¢(X"(2), X>"(2))
ST(CC(}V))\L
ST(OC(:XV—) o ¢) CC(-ﬂf{H(?);ﬂ)}>H(?))

canprlw

Sr(C(X)) 0 ¢

~

Co(XI(f(7), X1 (£(7))),
for 7 € T. So the morphisms g; are
9i = resgie) O (Flgm oy [l ) = C°Flgnpigayy Fl i)

The morphism g, is g1 = resy, , (canresiso) o res i1 (4 Sr(C(f)), and

1

we remember that canresiso was given by idST(CC( %)) ®(—) ow™" on the

RT-module S7(C%(X))(?) ®rr RT (¢ ind, (?7),7). So g1 is precom-
position with w=!. If w = (o,[v]) with o: G/H — G/H,g'H — ¢'g,H
(here g, € NgH, and g, is only well-defined up to a factor in H) and
v: G/H x I — X with v; = fl(:gv) and vg = z 00 = gu.x, then w ! =
(™" [(e7)*v™1]). A point z in X7 (f!(x)) is identified with a homotopy
class of paths [b,] starting at z and ending at f'(z), and precomposition
with w™! is (id,[b,]) o (¢~} [(e™)*v™ 1)) = (o7, [(071)*(b, * w)]). This
path (o~ 1)*(b, * w) starts at zo o ' = g, '.z and ends at . This is iden-
tified with the point g;'.z € X" (z). So geometrically, canresiso is the
isomorphism induced by multiplication with g,,*,

C(gu') : (X (! (2)), X1 (f(2))) = C°(X" (@), X" ().

This is what we expected: Since there is a path v from g,.z to f!(z), the
point f!(z) lies in g,,. X7 (), not in X (z) directly, and letting g,,' act gets
us back to X (z). So the map g;_ is

—~

g1-1 = C% (g F 3 o1y 900 Lo (1) H

The splitting result helps us analyze the information contained in the
universal functorial Lefschetz invariant.

The TZH -parts hold information about fixed points and periodic points.
If the length of T is I, then we know that X (z/) can only contain fixed
points of the maps f!, f%, f3! and so on, so if [ > 2 there are no fixed
points of f in X (z). For the study of fixed points pursued in the next
chapters, we will therefore restrict ourselves to the case [ = 1, and even more
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restrictively, to the case where X ¥ (f(x)) = X" (z). If I = 1, then it could
happen that f(z) € g,.X" (z) # X" (z), this is the case if g, € WH does
not lie in the subgroup W H,. Then fixed points cannot appear, but one
could have points with f(z) = g,x, which implies that f(Gz) = Gf(z), so
the orbit Gz would be fixed under f, but not pointwise fixed. We will not
study these orbits which do not contain fixed points.

The information contained in TZH with [ > 2 comes into play in the study
of the Lefschetz zeta function [FH93, FH94, GN93, GN94], which is defined
to be (e

=3 e o,
n>0
For example, one immediately reads off that L(f™) can only be non-zero if
there is an [T which divides n. It would be interesting to further explore
these connections.

In the cells corresponding to the @);;, no fixed points appear, but the ¢);;
are nevertheless included in the universal functorial equivariant Lefschetz
invariant, they are part of the equivariant Euler characteristic information
of the space X.

Now let us look at a special case more closely: Suppose that f(z) €
XH(z) and choose a path w = (id,[v]) € Mor(f(z),r). Then the map
flxma: XH(z) — XH(x) is a W Hy-equivariant endomorphism which in-
duces a ¢, ,,-twisted endomorphism of the universal covering space XH (x).
Remember that Aut(z) is a group extension 1 — my (X (z), z) — Aut(z) —
WH, — 1, where WH, < WH is the subgroup fixing the component
XH(z). We are in the situation of Chapter 3. The universal functorial equi-
variant Lefschetz invariant (U%,Hx (X (z), flxm @) u%VHx (X (z), flxm(z)))
of f|xn(y) is defined, where UVZVHE (XH(QI),f|XH(x)) = Ko(¢p-endegz pui())

and ufp (X7 (), flxu(z)) = [C(flxn(y)]- The group Ko(d-endeeaui(a))
is the group in which u%(X , [)z takes its value, but note that this value is

In general, we easily see that IsII(G, X) = [1cconsub ¢ I8 (W H, Xy,
and this implies that

UE(X. 1= @ UFuX", flxn).
(H)€econsub G

The element ug(X ,f) maps to the elements given by the relative maps
(flxr, flx>n).

Splitting the right hand side into finer parts can become complicated
if we are not in the special case considered above. We have to take the
union of all the relative spaces (X (fi(z)), X~ (f*(x))) with the different
subgroups W H i, acting on them, and we have to take into account the
elements gy, .
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Wrapping up all the considerations of this chapter, we arrive at the
slogan: The information given by the equivariant map f on X splits up as
a direct sum of the relative information on the fixed point sets.

6.3 The Illustrative Example, continued

In Section 3.2, we studied the case where G = Z/2 acts on S' by reflection
at the z-axis, and there was a 7Z/2-equivariant endomorphism of S* given
by f: S' — S',z+— s?. What is the meaning of the splitting result for this
example?

We need to distinguish two cases. If d is odd, we partition IsII(S?, f)
as Ty =71, To =7_1 and T3 = 7, if d is even, we have T} = 77, Q1 = T_1,
T, =7.

So if d is odd,

Ko(¢-endgerir(st )

Ko (¢21csta, “endetrAut(z1)) @ Ko(Po_icste_,-endetrAut(z_,))

DK (¢y,w-endffRAut(y))
~ K, (End(ff R)) ® K (End(ff R)) ® Ko(d-endrpaus(y))-

If d is even,

Ko(¢-endgepi(st f))
= KO((ﬁxl,cstxl'endffRAut(:vl)) ® Ko (ffRAUt(x—l))
© Ko (dyw-endrrraut(y))
= Ko(End(ff R)) ® Ko(ff R) ® Ko(d-endgegayg(y))-
We see that Ko(¢-endggr(st,py) splits up as

Ko(p-endgeppi(st,p))
Ko (End(ff R)) ® Ko (End(ff R)) @& Ko(d-endggpayg(y)) if d is odd
Ko (End(ff R)) & Ko(ff R) & Ko(d-endgeraut(y)) if d is even.

The element u§/2(51, f) is given by

lidg] & [idr] ® ([(-d)] ® [(-d + &2)] — [d']) if d is odd

ul ! =
Z/Q(S f) {[idR] & [R] @ ([(-d)] & [0] ® —[d”]) if d is even,

where d' and d” are defined in Section 3.2.



Chapter 7

The Generalized Equivariant
Lefschetz Invariant

In this chapter we develop a generalized equivariant Lefschetz invariant
(Ag(X ) Aa(f )) It is an equivariant analog of the generalized Lefschetz
invariant [Rei38, Wec41] and a refinement of the equivariant Lefschetz class
[LRO3, Definition 3.6]. A trace map trg(x, sy which maps the universal func-
torial equivariant Lefschetz invariant (Ug(X f ),u%(X f )) to the general-
ized equivariant Lefschetz invariant (Aq(X, f), A\ (f)) is constructed.

We start by defining the group Ag(X, f) in which the generalized equi-
variant Lefschetz invariant takes its values. We are looking for an invariant
giving fixed point information. So we are only interested in information ly-
ing in objects (z: G/H — X) € (G, X) with X (f(r)) = X (x). That
means there is a morphism w, = (id,[v;]) € Mor(f(z),z). Concentrat-
ing on z € II(G, X) with X (f(z)) = X (), the splitting of the target
group Ug(X , f) of the universal functorial equivariant Lefschetz invariant
uE(X, f) is

UEG(X, f) = @ UZ(X, f)z @ other terms,
Fels (G, X),
XH (f(z))=xH(z)

where for T € Is(G, X) with X% (f(z)) = X (x) we have

Ug(Xa f)T = H Ky (¢m,wz'endffZAut(m))/ ~
weeMor(F(2).2)
The target group Ag(X, f) is designed in the same way. For objects z €
ObII(G, X) with X#(f(z)) = X! (), we can always find morphisms w,, =
(id, [vz]) € Mor(f(z), ), and we restrict our attention to morphisms of that
form. We define a suitable group Zm (X" (z),z) 4 w, - Then we specify the
isomorphism arising when changing the morphism w, and the base point z,
therefore arriving at a definition independent of the choices of x and w,.

103
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In the next step, for all 2 € ObII(G, X) with X# (f(z)) = X (x) and
morphisms w, = (id, [v;]) € Mor(f(z), z), we define a trace map which is de-
fined on K (¢m,wm—endffZAut(x)) and lands in the group Zm (X (z), L) s -
We know that Aut(z) is a group extension

1—m (XH(x),w) — Aut(z) - WH; — 1.
We have a commutative diagram

1——m (X (2),2) — Aut(z) — WH, —— 1

wl(XH(:c),:c)J/ l‘ﬁz,wm lid

1——m (X7 (2),2) — Aut(z) — WH, —— 1.

¢iﬂ,w:c

The endomorphism ¢, 4, is induced by the endomorphism ¢y 4, |7r1( XH (2).2)
on the 71 (X (z), z)-part, the map ¢, ., becomes trivial once we divide out
the normal subgroup 71 (X (z),z) of Aut(z). This is the clue to what we
have in mind for the definition of the trace map trg(x s): We combine the
trace maps trrg: RG — R, ZgEG rq-g — r1 [LRO3, Equations 1.1 and 1.2],
applying trge to the WHy-part, and tr(zq ) Zm — Zg, ) ocnfy Y
> men My - [Liic99, 3.6], applying tr(z, ) to the 71 (X (1), z)-part. For
simplicity of notation, we write ¢ instead of ¢, ,,, in the sequel if no confusion
can occur.

7.1 The Target Group

The group Zm (X" (z),2) 4 ., 18 defined in analogy to Zri (X (%), %) gy 0,
[Liic99, 3.6]. We repeat the definition of Zmi (X (z), z),, . for convenience.

Definition 7.1.1. Let ¢y, 71 (X7 (z),2) — m (X" (x),z) be a group
endomorphism. We define

rm (XH(HI), :E) = 7m (XH(q;), :E) /¢x,wx ('Y)C“'Yil ~ Q,

bz, we
where a,y € m (X (z), ).
Generalizing, we obtain the following definition.

Definition 7.1.2. For z € ObII(G, X) with X" (f(z)) = X" (z) and a
morphism w, = (id, [v;]) € Mor(f(z), z), set

7 (XH(x),w) o T 7 (XH(x),w) [ bz.w. (fy)onf1 ~ a,

where a € m (X (2), ), v € Aut(z) and ¢y, (1) = waedp(y)w; ! € Aut(z).
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Note that Zm (X (z), )y, . 18 an abelian group with respect to addi-
tion. We identify the group 7 (X (z),z) with the subgroup {(id, [v]) | [v] €
(X7 (z),z)} < Aut(z). We have ¢y, (y)ay™' € m (X (z),z) for all
v € Aut(z) and « € 7 (X (z),z) because the map ¢, does not change
the W H,-part of the morphism v and (X (z),z) is normal: If v =
(0y,[v4]) € Aut(z) and o = (id,[a]) € Aut(z), then ¢y, (Yay ' =
(oyidor ! [vg, . (ows-1]) = (d, [0% (ve) f(vy)v; ' avy-1]) € m (X (2), z).
This is important, otherwise the definition would not make much sense.

The group Zm(XH(x),m)%,w is not the same as Zm (X" (z),2)g, . .
We divide out more, we allow v € Aut(x), not only v € m (X (z),z). It is
a trivial fact that there is a projection map

Zm (XH(:E),QU) - Zm (XH(:E),QU)

‘bwa’wz

Do yws

Remark 7.1.3. We have to use the group Zm (X" (z), )y, ., instead of

the group Zm (X" (z),z)s, ,, because we want the definition of the trace
map to be independent of the choices we make, and this can only be ensured
by dividing out more elements. More precisely, this is needed for example in
the proof of the first assertion of Lemma 7.2.2, the verification of the trace

property.

What happens if we change the morphism w,? Given another mor-
phism w!, = (id, [v}]) € Mor(f(z),z), there is a group isomorphism
d)w;,wx: ZWI(XH(x)vx)gb'ww 1> ZWI(XH($)733)¢' /

7, —1

I S

We can write either v or w since v is identified with w = (id, [v]) under the
inclusion 71 (X# (z),z) — Aut(z). The isomorphism ¢,y ., respects the
equivalence relation: We have

b, (VY™ = oy Mo (V) vg oy T = G (v ey T ~ vyt
So the map 9y, is well-defined. It is a homomorphism of abelian groups
with respect to addition. The inverse map is given by 8+ v, (v,)"!3. As
usual, we construct a group which does not depend on the choice of the
morphism.

Definition 7.1.4. We set

Zm (X" (2),2),, = I zm(&x"(),=) by P (@) ~
o1

The obvious inclusion induces an isomorphism

P, : Zm(XH(m),x)d);,wz = Zm(XH(x),x)%.
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In the end, we want a definition which does not depend on the basepoint = €
Ob(II(G, X)), so it is worth thinking about how the group changes when
we change the basepoint: For a morphism (o, [t]) € Morry g, x)(z(H), y(K)),
where X" (f(z)) = X" (z) and X¥(f(y)) = X*(y), we choose morphisms
wy = (id, [vy]) € Mor(f(z), ) and w, = (id, [v,]) € Mor(f(y),y) and set

(0, [ 0, ZWI(XK(y),y)%wy - Zm(X"(2),2),

a = vgf(t 1)0*(1} Ho*(a)t.
This is well-defined: For v € Aut(y) and o € Zm (X% (y),y), we have
Py, (Vay ™ Zvy¢( ) , oy
() o* (vy¢ vt
:Uggft1 ( 7))o tl oy et

( (
= v, f(YF (7)o" (v o ()
= v(7)vg va f (T 1) vy o (@)t
v f(t 1o (v, )" ()t
= (o, [t wy(a),
with 7 1=t to*(y)t € Aut(z).

If (0, [t]) € Morryq,x)(#(H), y(K)) and (7, [s]) € Mornq,x)(y(K), 2(L)),
where X" (f(x)) = X" (2), X*(f(y)) = X" (y) and X"(f(2)) = X
for a € Zm(XT(2))y ¢ . we have

(@5 [t 0, (75 [81) 0. (@)
= vt (v o (vy f (s T (07 )7 (@)s)t
= o f(t 0" (s 1))(m) (v 1) (10)* (@)™ (s)t
= (oot (), ()
= (D ), ().

The above map reduces to the following map if we choose w, = (id, [v;])
with v, =t~ 1o*(v,) f(2):

( [t])wmwy ZWI(XK(y)’y)dfy,wy — Z’]TI(XH

2

~

—~
N

~

o t_la*(vy ft)f(t_l)a*(v_

t
If (o,[t]) is an isomorphism, we have (o,t) !(id, a)(0,t) = (id,t 'o*(a)t),
so in this case (o,[t])y, w, for va = t='o*(vy) f(t) is just conjugation with
Aut

(o,[t]). We obtain as a special case for (id, [t]) € Aut(z) the map )y 4,
(id, [t s w, * Zm1 (X" (z),z) S Zm (XH(x),x)¢,
1

a — v f(t Do, at—vv a.
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It is very interesting that the map (o, [t]);,, ., does not depend on the choice
of (o, [t]) € Mor(z,y).

Lemma 7.1.5. For@ € Wl(XK(y),y)%,wy we have

(0,10, @) = (7, 1), @) € Zem1 (X (), ),
for all morphisms (o, [t]), (,[s]) € Mor(z,y).
Proof. For all v = (0,,[vy]) € Aut(z), we have

(0, [y 00 @ = vaf (V)07 (0, [, 0, (@)Y

= 005" fot=N)oy ot (vy oy ot (@)oy (o).

Setting 0, = 77 'o and v, = (17'0)*(s7")t, we obtain

(0, [y e @ = 02f (s~ )7 (v )7*(0)s
= (7 [sDwn,w, (@) O

*

We can formulate (o, [t])* in terms of the groups Zmi (X" (z),z)4 , in-
dependently of the morphisms w, and wy.

Definition 7.1.6. Let (o, [t]) € Mor(z,y). We define
(0, [)" = Yua (0 [N 0, Yo, + 21 (X (W), 0) g, = Zmi (X (2),2)

for any choice of morphisms w, = (id,[v;]) € Mor(f(z),z) and w, =
(lda [UZ/]) € MOI‘(f(y),y)

This definition does not depend on the choice of w, and w, since for any
other choices wj, and wj, we have

(ww; ,wz)_l (07 [t]);ku& W) (Q/)w; ,wy) = (07 [t]):;)x Wy

by the following calculation: For a € Zm (XX (y), y)% wy W€ have

(220 I N ) A C P D ()

Yy
= vg(v) o f(t o™ (vy) " o (vyu, )t
= (0, [D s w, ()-
In particular, for (id, [t]) € Aut(z) we have (id, [t])* = idan(XH(m)’I)d), .
We have defined an abelian group Zm (X" (z),z)y for all z € II(G, X)
with X (f(x)) = X () and have shown that the application mapping x
to Zmi (X" (z),x)s has the properties necessary for a contravariant func-
tor from TI(G, X) to Ab. We extend the application by 0 to all objects
of II(G, X) and make the following definition.
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Definition 7.1.7. We define the contravariant functor ZII(G, X )4 to be

ZN(G, X)y: TI(G, X) —  Ab
. {Zm(XH(x),x)(b,x it X7 (f(z)) = X" ()
0 else,

(o, [1)* if X (f(y) = X (y)
0 else.

CAL {

Here Zm (X (z),z)
in Definition 7.1.6.

¢ s defined in Definition 7.1.4 and (o,[t])* is defined

If there is a morphism (o, [t]) from z to y, then XX (f(y)) = XK(y)
implies that X7 (f(z)) = X (z), so this is well-defined. We set

ZI(G, X) gz = | [ ZI(G, X) g0/ ~,

TET

where (o, [t])*(a) ~ « for all (0,[t]): 2 = 2’. The obvious inclusion map
induces for z with X (f(x)) = X" (z) an isomorphism

Pp: Zm (X (3),7) , = ZI(G, X)p 7

@
Now we can define the group in which the generalized equivariant Lefschetz
invariant takes its values.

Definition 7.1.8. We define

Ac(X, f) == P zZneG x)ze b o

Zels (G, X), Zels (G, X),
XH(f(@))=xH () XH(f@)#XH (z)

7.2 A Convenient Trace Map

In this section, we develop the trace map applicable to our situation. For all
x € ObTI(G, X) with X (f(x)) = X (z) and morphisms w, = (id, [v,]) €
Mor(f(z),r), we construct a trace map trg sy () defined on the abelian
group Ko (dz,w,-endgpz aui(»)) and taking values in Zm (X H (), x)%,wz . Here
fp stands for finitely generated projective modules, these appear in Chap-
ter 8. We combine the trace maps trrg: RG — R, cTg g — 11 [LRO3,
Equations 1.1 and 1.2], applying this map trrg to the W Hy-part, and
()t LT = LTy D en oy =Y 7> Do My Y [Liic99, 3.6], applying this
map tr(z, 4) to the 71 (X (z),x)-part. We start by defining a map

try, Aut(z) - Ob((ﬁx,wx'endprAut(m)) — Zm (XH (1‘), ZE) Do
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We obtain the map trzayuz) in analogy to Liick and Rosenberg [LRO3,
Chapter 1] by defining a map
trz Aut(z) * Z Aut(z) — Zm (XH(x), w)

b we

and checking that its extension to matrices over Z Aut(z) induces a well-
defined map. We formulate the definition of the trace map trrg indepen-
dently of the concrete group Aut(z) which is given to us geometrically.

Definition 7.2.1. Let m and W be discrete groups, and let G be a group
extension 1 - 7 — G — W — 1. Let an endomorphism ¢: G — G be given
that restricts to an endomorphism ¢, : © — 7 and becomes trivial when the
normal subgroup 7 < G is divided out, i.e., lying in a commutative diagram

l—— 71— G5 W —— 1
e oo
| — 71— G — 5 W — 1,
Let R be a commutative associative ring with unit. Let
Rry = R/ ~,

where ¢(y)ay ~ a for « € m and v € G. Note that o € 7 implies that
$(y)ay~! € 7 since

pryy (¢(y)ey ™) = idw (pryy (7)) prow (@) priy:(Y™") = 1w

Let ¢-endfy,re denote the category of ¢-twisted endomorphisms of finitely
generated projective RG-modules. We define the trace map

trra: Ob(qb—endpr(;) — Rﬂ'qy

as follows: On RG, we set

trra : RG — R7T¢I
dorgrg = D e T
geqG ge™

where ~: m — 7wy, g + g denotes the projection. Given a ¢-twisted endo-
morphism u: P — resy P of a finitely generated projective RG-module,
we choose a finitely generated projective RG-module () and an isomor-
phism v: P® Q = @;c; RG for a finite indexing set I. Then we have
a ¢-twisted endomorphism

¢*(v)o (u®0)ov™': @RG — res¢<@RG>,
el el
to which a matrix A = (ai;)i jer is associated. We define

tng(u) = Ztng(aii) € R7T¢I.
el
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As usual, the definition is independent of the choices involved. The trace
map trre has the following properties corresponding to the trace map trpa
of Liick and Rosenberg [LR03, Lemma 1.3]:

Lemma 7.2.2. Let G be a discrete group extension with endomorphism
as in Definition 7.2.1, i.e., a group extension 1 — ©m — G — W — 1
with endomorphism ¢: G — G which restricts to m and such that ¢w =
idw: W — W, and let trrg be defined as in Definition 7.2.1.

1. Let u: P — @ and v: Q — resy P be RG-maps of finitely generated
projective RG-modules. Then

trra(v ou) = trge (ress(u) o v).

2. Let Py, P» be finitely generated projective RG-modules. Let

< v 12 > :P1®P2_>P1®P2
U21 U222

be a ¢-twisted endomorphism. Then

tng<( v e >) = trrg(ui1) + trre(ug).

Ug1 U222

3. Let ui,up: P — resy P be ¢p-twisted endomorphisms of a finitely gen-
erated projective RG-module P and let ri,79 € R. Then

trra(r - ur + ro - u2) = trea(ur) + ro trra(us).

4. Let a: G — K be a homomorphism of discrete group extensions with
endomorphisms as in Definition 7.2.1 with aw injective, lying in a
commutative diagram

1 7> T G %74 > 1
Jaﬂ— J/oz law
1 K K > Ko 1.

Let u: P — resy, P be a ¢pg-twisted endomorphism of a finitely gen-
erated projective RG-module P. Then induction with « yields a ¢ -
twisted endomorphism a,u of a finitely generated projective RK -module
and

trri (ayu) = o, trrg(u),

where o1 Ry — R(K1)y_ is induced by ar.
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5. Let a: H — G be an inclusion of discrete group extensions with endo-
morphisms as in Definition 7.2.1 with finite index [G : H], lying in a
commutative diagram

1 ™ H Hs 1
lid la JO‘J‘Q
1 T > G w 1.

Let u: P — resy, P be a ¢pg-twisted endomorphism of a finitely gen-
erated projective RG-module P. Then the restriction to RH with «
yields a ¢g-twisted endomorphism o*u of a finitely generated projec-
tive RH-module and

id, trrp (@*u) =[G : H| - trrg(u),
where id, : R7r¢rH — R7r¢/G denotes the projection.
6. Let the subgroup H < G be finite such that |H| is invertible in R. Let
u: R[G/H] — resy R[G/H] be a ¢-twisted endomorphism that sends

1H to ZgHeG/H remr - gH. Then R[G/H] is a finitely generated pro-
jective RG-module and

tng(u) = |f[|71 Z’I“gH ‘g € Rﬂ'qy.
ge™
In particular,

tI‘Rg(idR[G/H}) = |I’I|_1 . (Z 1 §> € Rrmy.
ge™

Proof. 1. Let A,, A, and A,., denote the matrices associated to u, v and
v o u respectively. We use the notation A;; = > ;(4i;)g -9 € RG
and calculate

trrg(vou) = ZtrRG((Avou)ii)
el
= Z trRG((Av)i,j(AU)j,i)
i,j€l
S YOS (), (), 77

i,j€l g,9'€G3g99'€U

= > > (i) ((An)ig), - #lg)g

i,J€I g,9'€G;9(g' )geU
= 3 trro($((Au)sa) (A)iy)
igel

= Z trra ((Ares¢ uov)j,j)

jel

= tI‘Rg(I'eS¢ U o U).
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We used the fact that for g,¢' € G we have

99' €U < ¢(g')g € U.

If g¢ € =, then ¢(y)gg'y~" € = for all ¥ € G, and this implies

#(g")gg'(¢") ' = ¢(¢')g € . Conversely, ¢(¢')g € 7 implies that
d(7)p(g)gy~" € 7 for all v € G, and for v = ¢’ ' this gives us

$lg' " )p(g)alg ™) =gg €.
Clear by definition.
Clear by definition.

We first check whether o, o trrg = trgpx oas: RG — R(K1)¢/K. It
suffices to check this on a basis. Let ¢ € G. We know that g & m if
and only if pry;(g) # lw, which by injectivity of ayy is equivalent to
1k, # aw(pry(9)) = prg, (e(g)), which is equivalent to a(g) ¢ Ki,
where pry,: G — W and prg,: K — K> denote the projection maps.
So for g € m we have o, trrg(g) = 0 = trrx (a(g)). For g € m we have
o) trra(g) = o4(7) = ax(9) = trri (alg)). Therefore o, o trpg =
trri oay on all elements of G, and by linearity we obtain the result
for all u € pg-endg,ra since Aq,y = i (Ay).

Let (Ay)i = EgeG Nig - g. We calculate

id, otrpy(a®u) = Z idsotrry (CV* (Z Nig - 9))

el gelG

- Zid*otrRH<[G : H] Z Mia(h) 'h>

el heH

= [G: H]Zid*an(h) -h

el hem

6. We are given

u: 1H — Z rom - gH = |H|71<ZT9H-Q>H.
gHeEG/H geG

This implies

trrg(u) = |H|71tI‘RG(ngH-g) = |H|’12rgg-§. O
9eG gem
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Remark 7.2.3. In the verification of the trace property given in part 1 of
Lemma 7.2.2, it is important that we work in Rmy and not in Rmy since the
¢’ appearing in the proof can lie in G, not only in .

By assertions 1 and 2 of Lemma 7.2.2, the trace map trgrg is compatible
with the relations defining Ko(¢-endgre). So we can use its value on any
representative and define

trpg: Ko(qb—endpr(;) — R7T¢I
[u] — trrg(u).

Remark 7.2.4. The trace map trrs can be seen as a variation of a trace
map between K-theory and Hochschild homology with coefficients in the bi-
module My = RG(¢(?),7?). Thereisa trace map tr(x_ gy K(RG; My) —
HH(RG;Myg). One can see that HH(RG; My) = RG,, where we define
RGg = RG/$(y)By~" ~ B for 7,8 € G. We have an inclusion Rm — RG
of group rings. This inclusion is respected by the G-action given by twisted
conjugation since 8 € m implies pryy (#(7)3y~!) = pryw (7) - 1-pryy(v71) = 1,
so ¢(y)By~! € w for all vy € G. It induces an inclusion Ry — RGy as a
direct summand. Denoting the restriction to this summand by r;, one can
check that trre = rr otr(x mm) 0 It would be worthwhile to develop these
ideas thoroughly; one can for example study geometric interpretations and
applications of the trace map tr(x_, ) on higher levels. But this is beyond
the scope of this thesis.

7.3 The Refined Equivariant Lefschetz Number

We are now ready to generalize the definition of the orbifold Lefschetz num-
ber [LRO3, Definition 1.4]. Let G be a discrete group extension with endo-
morphism ¢ as in definition 7.2.1, and let (X, A) be a finite proper relative
G-CW-complex. Let R be a commutative ring such that the order of the
isotropy group |G| is invertible in R for every x € X \ A. Then the cellu-
lar RG-chain-complex C¢(X, A) is finite projective. Let (f, fo): (X, A4) —
(X,A) be a ¢-twisted cellular endomorphism. This induces a ¢-twisted
endomorphism C°(f, fo): C°(X,A) — resy C°(X, A) of the cellular chain
complex.

Definition 7.3.1. With notation as above, we define the refined equivariant
Lefschetz number of (f, fo) to be

LEC(f, fo) = Y (=1) trra (C5(f, fo)) € R

p>0

Writing [C°(f, fo)] == 2,50(=1)P[Cy(f, fo)] € Ko(¢-endg,re), this is

LRG(f, fo) := tI‘Rg([CC(f, f())]) € Rmy .
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Using Lemma, 7.2.2, we can prove an analog to a lemma of Liick and
Rosenberg [LR03, Lemma 1.6]:

Lemma 7.3.2. Let G be a discrete group extension with endomorphism ¢
as in Definition 7.2.1. Let (f, fo): (X, A) — (X, A) be a ¢-twisted cellular
endomorphism of a finite proper relative G-CW-complex such that the order
of the isotropy group |G| is invertible in R for every x € X \ A. Then:

1. The refined equivariant Lefschetz number LEC(f, fo) depends only on
the G-homotopy class of (f, fo)-

2. Let (g,90): (X,A) — (Y,B) and (h,ho): (Y,B) — (X, A) be cellu-
lar maps of finite proper relative G-CW-complexes which induce G-
maps C%(g,q0): C(X,A) — C°(Y,B) and C°(h,hy): C°(Y,B) —
resy C°(X, A) and such that |G,|™' € R and |Gy|™' € R for every
zr€X\Aandy €Y\ B. Then

LBG (g o h,ggohg) = L (hog,hg o go).

3. Let a: G — K be a homomorphism of discrete group extensions with
endomorphisms as in Definition 7.2.1 such that ayw is injective, lying
in a commutative diagram

1 > T G w > 1
J/aw J/Oé laW
1 K K > Ko 1.

Then induction with « yields a cellular K-endomorphism a.(f, fo) of
a finite proper relative K-CW-complex, and

LR (. (f, fo)) = 4 LEC(f, fo).

4. Let a: H — G be an inclusion of discrete group extensions with endo-
morphisms as in Definition 7.2.1 with finite index [G : H] lying in a
commutative diagram

1 T H H, > 1
NG
1 s G w 1.

Then restriction with « yields a cellular endomorphism o*(f, fo) of a

finite proper relative H-CW-complex which induces a ¢p-twisted en-
domorphism o* (C(f, fo)): resq C¢(X, A) — resy, resq C°(X, A) and

id, L (o (f, f0)) =[G : H]- L®(£, fo),

where id, : R7T¢IH — Rmy denotes the projection.
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Proof. 1. Let (f', fy) : (X,A) — (X, A) be a ¢-twisted cellular endo-
morphism which is G-homotopic to (f, fo). We have [C°(f', f§)] =
[C<(f. fo)] € Ko(¢-enditre), and so

LEC(f', fo) = trra (IC°(f', o)1) = trra ([C°(F, fo)]) = LHE(, fo).
2. We apply assertion 1 of Lemma 7.2.2 to obtain

LRG(goh,gooho) = tng([C (goh, gooho)])
= trpg([ress C°(g,90)] 0 [C°(h, ho)])
= trre([C°(h, ho)] © [C%(g, 90)])
= trra([C°(h o g,ho 0 go)])

L7 (h o g,hg o go).-

3. We apply assertion 4 of Lemma 7.2.2 to obtain

LRK(a*(f,fg)) = trRK(Ol*[CC(fafo)])
= o, trra([C°(f, fo)])
= LT}, fo).

4. We apply assertion 5 of Lemma 7.2.2 to obtain

id. LRH (a*(fa fO)) = ids trrm (a*[oc(fa fO)])
= [G: H] trga([C(f, fo)])
= [G: H]-L"(f, fo). O

We have a refinement of the incidence number [LR03, Equation 1.8].

Definition 7.3.3. Let G be a discrete group extension with endomorphism
¢ as in Definition 7.2.1, let (X, A) be a finite proper relative G-CW-complex,
let e € I,(X, A) be a p-cell and let (f, fo): (X, A) — (X, A) be a ¢-twisted
cellular endomorphism. We define the refined incidence number incy(f,e) €
Zmy for a p-cell e € I,(X, A) to be the “degree” of the composition

efoe s\ F/oe I Xy X D Xy X S\ T/
'€l (X,A) e €I, (X,A)
PIr.g/0e

71"5/66 i)ﬂ'(zy E/ae

We have incy(f,e) = incy(f,ge) for all g € G, this is ensured by us-
ing Rmy. We have the equation

incy(f,e) = Zinc(oﬁlf, e) - a,
acT

where the incidence number [LR03, Equation 1.8] appears on the right hand
side.
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Remark 7.3.4. Let e € I,,(X, A) be a p-cell. Then C°(X, A), is the chain
complex concentrated in degree p with C7(X, A). = R[G/G.]. If

Co(f. fole= Y. rea.-9Ge: RIG/G.] — resy RIG/Gl,
9Ge€G/Ge
then incy(f,e) = deﬂ r9a. - g, and by assertion 5 of Lemma 7.2.2 we have
trra (C;(fa f0)|e) = |Ger1 Z T9G. - g= |Ger1 inc(b(fa 6)'
gET

The observation in Remark 7.3.4 helps us prove the following analog of
a result by Liick and Rosenberg [LR03, Lemma 1.9].

Lemma 7.3.5. Let G be a discrete group extension with endomorphism ¢
as in Definition 7.2.1. Let (X, A) be a finite proper relative G-CW-complez.
Let R be a commutative ring such that the order of the isotropy group |G|
is invertible in R for every z € X \ A. Let (f, fo): (X,A) — (X, A) be a
¢-twisted cellular endomorphism. Then

LRG(fa fO) = Z(_l)p Z |Ge|71 . inc¢(f, 6) € Rﬂ'qy.

p>0 G-e€G\IH(X,A)

Proof. We calculate

LEC(f, fo) = D (=1 trra(Cy(f, fo))

p>0
= > (=107 > trra(Co(f fo)le)
p>0 G'eeG\IP(X’A)
= 2 > G o)
p>0 GreeG\Iy(X,A) O

As already mentioned, we will apply the above definitions and results to
our geometrical considerations: For z € TI(G, X) with X" (f(z)) = X" (),
the group Aut(x) is of the type considered in Definition 7.2.1, it is a discrete
group extension 1 — 71 (X (z),z) — Aut(z) - WH, — 1 with endomor-
phism ¢ which restricts to 71 (X (z), z) as by (xXH (2),0) = Cw, omy (fH(z), )
and such that ¢w =idwg,: WHy; — WH,.

7.4 The Generalized Trace Map

In this section, we define a trace map trg(x, sy on the abelian group Ug(X, f),
for (X, f) € End(G-CWy,), for discrete groups G. So X is a finite proper
G-CW-complex and f: X — X is a G-equivariant endomorphism. The
trace map trg(x, r) maps U(Z;(X, f) to the abelian group Ag(X, f) defined in
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Definition 7.1.8. It will turn out to map the universal functorial equivariant
Lefschetz invariant (U(Z;(X ), u%(X f )) to the generalized equivariant Lef-
schetz invariant (A (X, f), A¢(f)) which will be defined in Definition 7.5.1.

By the splitting result from Section 6.2, the universal functorial equiva-
riant Lefschetz invariant (UZ(X, f),u%(X, f)) can be written as

Ug(X, f = @ U%(X, f)z @ other terms
FEIsII(G, X),
XH(f(x))=xH(z)
zZ (T
uc(X, f) = Z C (f|(XH(I),X>H(a:)))] + other terms,

Tels (G, X),
XH(f(x))=xH(z)

where

UG(X, fz = H Ko (¢ow,-endez aug(z)) / ~ -
wz€Mzo§(mz,,f(z))

Here the group elements gy, introduced in Section 6.2 need not appear in the
(7 . .
term [C (f|(XH(I),X>H(I)))] since we can choose a morphism w, of the form

wy = (id, [vg]). In Section 7.1, we defined the abelian group Ag(X, f). This
is the target of our trace map. We define trg(x y) as a group homomorphism
from U(Z;(X ,f) to Ag(X, f), or, more precisely, as a collection of group
homomorphisms, one for each Z € IsTI(G, X) with X7 (f(z)) = X (x). For
z € ObII(G, X) with X¥(f(z)) = X" (z) and a morphism w, = (id, [v,]) €
Mor(f(z),x), we set

tI'G’(X,f)x = tI'ZAut(x): KO(¢$,Wz_endffZAut($)) — Zm (XH(x)a x)(bgﬂ vy

We want this definition to be independent of the choice of the element x € T
and the morphism w,. We use the following lemma.

Lemma 7.4.1. Let (o,[t]) € Moryq,x)(7,y) be an isomorphism from z to
y, let wy = (id, [vs]) € Mor(f(z),z) and wy = (id,[vy]) € Mor(f(y),y).
Then the diagram

Uz Aut(y) H
Ko(¢y,w,-endsez Aui(y)) L Zm (X (x),m)% wy

J(m[tmm,wy l(a,m):;z,wy

tr u xr
Ko(haw,-endigz aug(n)) — s Z1 (X (), )

commutes.
Proof. The isomorphism (o, [t]) induces the isomorphism

(o, [t])x : Z Aut(y) = Z Aut(x)

We ,Wy

Yoongeg = > ng (0t 0, (9)

geAut(y) geAut(y)
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where for g = (7, [vg]) € Aut(y) we set
(0, (1), 0, (9) 7= waf (0, [8]) ") wy g (o [1]) € Aut(z).
This in turn induces the isomorphism
(0, [1]) 0, 0, * Ko (Py,w,-e0degzaut(y)) = Kol(ba,w,-endsez aut(a))

that was called Ko(Ryuw,Iyw,) in Section 6.1 (suppressing the choice of
(o,[t]), which by Lemma 7.1.5 does not play a role anyway).

The map (o, [t]);,, ., maps the subgroup Zri (X H (y),y) < Z Aut(y) iso-
morphically to Zm (X (x),z) < Z Aut(z). The restriction of (o, [t]) e 0y
to Zm (XA (y),y) is

(07 [t]):;)z,wy |Z7r1(XH(y),y) :
77y (XH(y),y) — 7Zm (XH(:E),QU)
Z ng-g + Z ng v f(t t)o* (v;l)a*(g)t.

gem (X (y),y) gem (X (y),y)

We obtain trz aug(z) (0 (1), w, = (05 [t])n, w, 117 Aut(y) on Z Aut(y) since
for 32 cqang - g € Z Aut(y) we have

(0, 1) a0y 02 Awt) D g " 9
geG

= (@ MDhw, Y, 197

gem (X (y),y)

= Z Ng - (Ua [t]);{uz,wy |7r1(XH(y),y) (g)
gem (X (y)y)

= trg Aut(z) (Ua [t]):;)x Wy Z Ng-g.

geG
This extends to [u] € Ko(¢y,w,-endezaut(y)) by linearity. O
In the definition of
UG(X, f)z = H Ko (o w.-endem,aue(z)) / ~

T€ET,
wg EMor(f(z),z)
we were allowed to choose any morphism w,, not just those of the special
form w, = (id, [vz]). We extend the definition of the trace map to the
group K (¢I,w—endffZAut(m)) for any morphism w = (o, [v]) € Mor(f(z),z)
by choosing a morphism (id, [s]) € Mor(z o 0, z) and composing w with the
morphism (07!, [071"s]) € Aut(z). We obtain w' = (67!, [07""5])(0, [v]) =
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(id, [sv]) € Mor(f(x),z). We define the trace map on K (¢x7w—endffZAut(x))
to be the composition

Ky (¢I,w'endffZAut(m)) = Ky (¢x,w"endffZAut(z))
t ut(x
S, 7 (X (2),2) |
1) Zﬁl(XH(ZE),(L‘)(%

This does not depend on the choice of the morphism s since for another
choice § € Mor(z o 0,7) we obtain w = (id, [sv]) = (id, [ss~!])w’, and we
know that (ld, [,Svsil])* = idZﬂl(XH(x),x)¢/ .

The map trgx, Na induces a well-defined map treg(x,f) on isomorphism
classes T because of Lemma, 7.4.1.

Definition 7.4.2. Let G be a discrete group, X a finite proper G-CW-
complex and f: X — X a G-equivariant endomorphism. We define

trG(X,f) = @ trg(X,f)TGB 0: Ug(X,f) — AG(X,f)

TEISTI(G,X),
XH(f(z))=xH(z)

We want the maps trg(x sy to form a natural transformation of families
of functors from the categories End(G-CWy,) of endomorphisms of finite
proper G-CW-complexes for discrete groups G to Ab. We need to endow A
with the structure of such a functor.

Lemma 7.4.3. The groups Aq(X, f) are naturally endowed with the struc-
ture of a family of functors Ag from End(G-CWry,) to Ab, for discrete groups
G, which is compatible with the induction structure.

Proof. Let a: (X,f) — (Y,g) be a G-equivariant map between G-CW-
complexes with endomorphisms. Then the map a induces a functor

A=1I(G,a): (G, X) — I(G,Y)

(z: G/H = X) +— (a(z):=aocz:G/H—>Y)
(o,t]): 2=y — (o,]aoct]): a(z) — a(y).
For any z € II(G, X), the functor A induces a group homomorphism «,, :=
Alput(z): Aut(z) — Aut(a(r)). The homomorphism a, can be restricted to
T (X (2),z) as ozx‘m (X7 (0)) = mi(alxm(z),z). The map mi(alxm s, 7)
induces a map (al).: R (X (z),z)y, — Rmi (Y (a(z)),a(z)) We
set

/ .
Pa(z)

— Rm (YH(a(x)), a(x))

’
a(z)

oo g = > rgemialx,3)(9).

a H a H
gem (X (2),z) 41, gem (X (z),z) 1
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Using Lemma, 7.4.1, we obtain independence of the choice of basepoint z
and morphism w, and therefore an induced map

A(a)s: ZING, X) gy z = ZI(G,Y)

a(z)’

Ag(a) := ( b AG(a)x> @ 0: Ag(X, f) = A(Y, g).

TEISTI(G,X),
XH(f(z))=xH(z)
It remains to show that A is compatible with the induction structure in G.
If we have an inclusion a: G — K, then the map O[|7T1(XH(:E)71.)¢, induces
G

a map o : Rwl(XH(w),x)d,/G — Rmy((ind, X)¥ (ind, z), ind, )y, - We set
A(a), = o, then these maps combine to form a group homomorphism
ay, = ANa): Ag(X, f) = Ag(ind, X, ind, f). O

The maps trg(x, ) actually form a natural transformation of families of
functors from the categories End(G-CWy,) of endomorphisms of finite proper
G-CW-complexes for discrete groups G to Ab.

Proposition 7.4.4. The collection of maps trg(x ) is a natural transfor-
mation of families of functors from End(G-CWry,) to Ab, for discrete groups
G.

Proof. Let a: (X,f) — (Y,g) be a G-equivariant map between G-CW-
complexes with endomorphisms. Then the map a induces a functor A =
II(G,a). The group homomorphism a; := Alpyy(z): Aut(z) — Aut(a(z))
lies in the commutative diagram

| ———m (XH(2), 1) —— Aut(z) ——— WH, — 1

J/ﬂ—l (a‘xH(m)’x) J/az locwincl

1——m (Y (a(z)),a(z)) — Aut(a(z)) —— WHye) — 1.

The map &y = incl: WH; — WHg,) is an inclusion since the elements
in WH which fix the connected component X (z) also fix the connected
component Y (a(z)), by equivariance and continuity of a. Therefore we
can apply Lemma 7.2.2, assertion 4 to obtain

£ Aut(a(e)) () s (1) = (%)« TR At (a) (1)

for all (¢x)zw,-twisted endomorphisms u of finite projective R Aut(x)-
modules. Here (a}).: Rm (X" (z),3)y — Rwl(YH(a(m)),a(x))¢/( : is in-
duced by 71 (a|x# g, 7), and these maps combine to form Ag(a) as seen in

the proof of Lemma 7.4.3.
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On the other hand, taking the induction maps Ko ((az)«): US(X, f)z —

ULy, ) all together gives K of the induction with A := II(G, a), namely
UZ(a) = (A ): ULZ(X, f) — UL(Y, g). Combining the above equation for
all 7 € IsII(G, X), we arrive at

TG (v,g) oUG (@) (u) = Ac(a) o trg(x, p) (1)

for all u € UZ(X, f). We have shown that the diagram

tr,
UL(X, f) —L s Mg (X, )
Ug(a)l l/\c(a)
tr
UL(Y,g) — 2 Ag(Y, g)

commutes, so the trace map trg(x y) is a natural transformation of functors
from End(G-CWyg,) to Ab.

It remains to show that trg(x, ) is compatible with the induction struc-
ture in G. If we have an inclusion a: G — K, then by Section 3.4 the
functor II(ind,): II(G, X) — II(K,ind, X) induces a group homomorphism
a.: UL(X, f) — UZ(ind, X,ind, f). Let 2: G/H — X be given with
XH(f(z)) = XH(x). We set WgH = NgH/H and WxH = NxH/H.
The map a: G — K is injective, and so WgH — WgH is injective.
If an element of W H fixes the component X (z), then its image fixes
(ind, X)# (ind, z). This implies that o|n.u : NoH — NiH is injective.
So the map II(inda)|aut(z): Aut(z) — Aut(ind, z) induces an injective
map (inde)|lwen, : WeHy — Wi Hing, (o). We can apply assertion 4 of
Lemma 7.2.2 to obtain trrx ayu = o, trrgu for u € ¢pg-endg,r, where
al: Rm(XH(:E),m)d)rG — Rmi((indy X)¥ (ind, 2), ind, )y, is induced by
CY|7|.1(XH(1.),$)¢IG. Since A(w), is defined to be o, these maps combine to
form a,: Ag(X, f) — Ag(ind, X,ind, f) such that the desired equation
T K (inda X,inda f) @ = Qs tTg(x, ) holds on UZ(X, f). O

7.5 The Generalized Equivariant Lefschetz Invari-
ant

In this section, we define the invariant which contains the fixed point infor-
mation we are interested in, an equivariant analog of the generalized Lef-
schetz invariant [Rei38, Wec41] and a refinement of the equivariant Lefschetz
class [LRO3, Definition 3.6]. It takes its values in the abelian group Ag(X, f),
which was defined in Definition 7.1.8.

Definition 7.5.1. Let G be a discrete group, let X be a finite proper G-
CW-complex, and let f: X — X be a G-equivariant cellular endomorphism.
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We define the generalized equivariant Lefschetz invariant of f,

Aa(f) € Aa(X, f),

0 else.

{LZAu‘u (fH( ), f>H(z)) i X7 (f(z)) = X ()

Here we consider L7ZAut(@ (fH( ), [7H(x)) € Zm (XM (2),2) g, as an
element in ZII(G, X )47 via the canonical isomorphism ;1 induced by
the inclusion. We can use Z in this definition because Aut(z) operates freely

—_~

on XH(z)\ X>H(z). For Ag(f) to be well- defined we need to show that

the element in ZII(G, X)s7 defined by LZAut@ (fH( ), fZH(z)) only de-
pends on the isomorphism class of z, i.e., that for any isomorphism (o, [t]) €
Mory(g, x)(, ') we have

(0, []) " (L2206 (FH (o), 21 (a?)) ) = L2 (£ (5), > ().

We first observe that

(0, (1), 0, (C(FH (), f>H (a"))) = (C(F 7 (@), f>H ().

We choose a p-cell e € (f ('), f>H(2')). The map Cp(f"(z'), f>1(2'))
maps 1 - e to } ;o nigi - eip with g; € Aut(z'). Cells in XH(z') are
given by morphisms from z’ to their centers, so cells in X (z) can be
given by the same morphisms composed with the morphism (o, [t]) from
z to z'. Writing out the map with respect to this new basis {e; ,}icr, gives

—_~

us Cp(f7(z), f>7(x))]e. One obtains 1€’ 37, ni(o, [t])*(g:) - €], and

Z,p’
this is indeed (o, [t]);, wl (CC(fH( N, f2H()]e).
Thus we deduce from Lemma 7.4.1 that

(o, [ LPAME (f FH (@), 2 (o ))
= (Uv [t] trZAu‘c z') ([CC fH >H(xl))])
= trzaut(e ([CC >H($'))])

=t Au(e) ([CC(fH( ), f>H( ))])

~——

_ LZAut(:L‘)( (33), >H($))
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What happens when we apply the trace map trg(x,s) to the universal func-
torial equivariant Lefschetz invariant u%(X, f) € UL(X, f)? We see that

traox,p (ue (X, )

= > e, ([CU,

zels II(G,X),
XH(f(2))=xH (2)

— Z L Aut(z (

ZelsTI(G,X),
XH(f(@))=xH ()

= Ag(f)

So we have a map trg(x f): (UZ(X, f),uZ(X, f)) = (Ac(X, f), Ac(f)). By
Proposition 7.4.4, we can state: The collection of the trg(x, ) is a natural
transformation from (U?,u”) to (A,\). The pair (U”,u”) is a functorial
equivariant Lefschetz invariant on the family of categories G-CWy, for dis-
crete groups G and thus satisfies the properties listed in Definition 3.5.1.
Since the collection of the trg(x, ) is a family of natural transformations of
functors from End(G-CWyg,) to Ab, for discrete groups G, the pair (A, A) in-
herits all structure from (U%, u”%): Tt is also a functorial equivariant Lefschetz
invariant on the family of categories G-CWy, for discrete groups G.

),X:;(;)))])

DT

Theorem 7.5.2. The pair (A, \) is a functorial equivariant Lefschetz in-
variant on the family of categories G-CWry, for discrete groups G. It consists
of a family A of functors Ag with

Ag: End(G-CWyg,) — Ab

that is compatible with the induction structure and a family A of functions
At (X, f) = Aa(f) € Aq(X, f) such that the following holds:

1. Additivity
For a G-pushout with is a G-cofibration

(Xo, fo) — (X1, /1)
!
(X2, f2) —— (X, f)
we obtain in Ac(X, f) that

A (f) = Aa(ii)Aa(f1) + Ac(j2) Aa(f2) — Ac(jo)Aa (fo)-

2. G-Homotopy invariance
If ho,hy: (X, f) — (Y,g) are two G-maps that are G-homotopic in
End(G-CWy,), then

Ag(ho) = Ag(hl): AG'(X,f) — Ag(Y,g).
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3. Invariance under G-homotopy equivalence
If h: (X, f) = (Y,9) € End(G-CW¥,) such that h: X =Y is a G-
homotopy equivalence, then

Ac(h): Aa(X,f) = Ac(Y.g)
Aa(f) =

4. Normalization: We have Mg (idg) = 0 € Ag(0,idp).
5. If a: G — K is an inclusion of groups, then

A (f) = Ak (indg f) € Ak (indg X, ind, f).

Proof. The natural transformation trg(x r): UZ(X,f) — Ag(X,f) maps
u%(X, f) to Ag(X, f). So (Ag(X, 1), Aa(X, f)) is a functorial equivariant
Lefschetz invariant, which by Definition 3.5.1 has all the properties stated.

O

Remark 7.5.3. Because of G-homotopy invariance and invariance under
G-homotopy equivalence, analogously to the universal functorial equivari-
ant Lefschetz invariant we can define Ag(X, f) and A\g(X, f) for any G-
equivariant continuous map f: X — X, we need not restrict ourselves to
cellular G-maps f: X — X. See Remark 3.5.3 for details concerning the
construction.

Remark 7.5.4. We could also have defined \g(f) by

() = > L (a7 | iy 5Ty @

aem (XH (I)’m)¢'x,ww
if X" (f(z)) = X" (z) and by 0 else. Here a € m(X"(z),z) and U, :=
{7y € Aut(z) | ¢y a1 () =7} Le., Uy is the subgroup of Aut(z) that fixes
@, while Aut(z) operates transitively on the o € @. For any two a € @, the
U,’s are conjugated. The map o~ 'f is a U,-equivariant morphism, whereas
as a morphism of Aut(z)-spaces, it is only ¢-twisted equivariant. The above
expression uses the definitions for non-twisted equivariant maps by Liick
and Rosenberg [LR03]. We know that [LR03, Lemma 1.9]

LWe (a_lﬂ(m),X>H(x))) = Z(_l)p Z ‘(Ua)e‘_l'inc(a_lfa e),

p>0 ace __
Ua\Tp (X H (2), x> H (2))

~——

where |(Uy).| = 1 since U, < Aut(z) and Aut(z) operates freely on X (z)\
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X>H(z), and thus we can use Z instead of Q and obtain

ZUo( 17 =
- 2 L2 (0 | i i) @
a€Zm(XH (2),x)4

= z:(—l)f’J Z Z inc(a ' f,e) - @

p>0 FEZm(XH (2)2) g1 Uace
Ua\Ip(X H (z),x>H (2))

= z:(—l)f’J Z inc(a ' f,e) @

p>0 Aut(z)-e€

—

Aut(@)\ (o, Ip (XH (2),X > H (2)))

= z:(—l)f’J Z inc¢(fv, e)

p>0 Aut(z)-e€

—

Aut(@\Ip(XH (2), x> H (2))

P

LI (£1 (), f>1 (2)).

So the two definitions coincide.

7.6 Relation to the Equivariant Lefschetz Class

The equivariant analog of the Lefschetz number is A“(f), the equivariant
Lefschetz class [LR03]. We call it Lg(f) here to avoid confusion with our
notation, and repeat its definition [LR03, Definition 3.6].

Definition 7.6.1. Let G be a discrete group, X a finite proper G-CW-
complex and f: X — X a G-equivariant endomorphism. The equivariant
Lefschetz class Lg(f) € U%(X) := Dzcis (e, x) Z is defined by

ZWHgy (£H H(, $XH(f(2) = XH (4
La(f)x:{L (1), £25()) i XE(f (2)) = X ()

0 else.

This is a functorial equivariant Lefschetz invariant [LR03, Lemma 3.7].
The natural transformation mapping the universal functorial equivariant
Lefschetz invariant (UZ(X, f),u4(X, f)) to the equivariant Lefschetz class
(U%(X), La(f)) is given by the trace map trg(x, ) followed by an augmen-
tation map sq(x, ) induced by the projection WI(XH(x),x)% — {1}, just
like in the non-equivariant case. Define for T € Is(G, X) with X (f(z)) =
X" (z) the augmentation map

sz Aa(X, flz = ZWI(XH(x),w)% - Z

Sonw o S
& @
and set

so = ( 57) ®0: Ag(X, f) = U(X).
7 with XH (f(z))=XH (z)
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This is a natural transformation of functors. Given a G-equivariant map
h: (X, f) = (Y, f"), for all T with X" (f(x)) = X" (x) and for all elements
Y ana-a € Ag(X, f)z we have

simAa(W)zd na-a@ = s na - mi(hxn ), 2)(a)
o o
- Sna
— US(R)zsz Y e

Ql

since U%(h)z is just the inclusion into the component UG(Y)W.
Considering the induction structure, given an inclusion a: G — K, both
A(a) and U(«) are the inclusions into the appropriate component, so

SMA(O‘)E = U(O{)ESE.
So the collection of the sg(x,f) is a family of natural transformations of

functors from the categories End(G-CWyg,) to Ab, for discrete groups G.

—_~—

We have sqix,p(Aa(f)) = La(f) since SE(LZA“t(""’)(f (z), f>H(2))) =
LZWH“”(fH(:E),f>H(x)). We see that sg(x, ) maps (A(;(X,f),)\(;(f)) to
(UY(X), L (f)). It follows that the natural transformation

Tax.f) = Sacxp) © e, UGX, f) = U%(X)

maps ug(X, f) to Lg(f).



Chapter 8

The Refined Equivariant
Lefschetz Fixed Point
Theorem

In this chapter, a generalized local equivariant Lefschetz class is defined,
in analogy to the local equivariant Lefschetz class [LR03, Definition 4.6].
This class is given for cocompact proper smooth G-manifolds M with G-
equivariant endomorphisms f: M — M such that Fix(f) N M = () and
such that for every =z € Fix(f) the determinant of the map (idr,pr —T%f)
is different from zero. It is defined in terms of local data around the fixed
points of M.

Using the generalized local equivariant Lefschetz class, we can prove
the refined equivariant Lefschetz fixed point theorem, Theorem 8.2.7, as
a generalization of the equivariant Lefschetz fixed point theorem [LRO03,
Theorem 0.2]. It states that the generalized equivariant Lefschetz invariant
and the generalized local equivariant Lefschetz class of such a cocompact
proper smooth G-manifold M coincide. This shows that the generalized
equivariant Lefschetz invariant Aq(f) € Aq(M, f) is given as a sum of fixed
point contributions.

8.1 The Refined Orbifold Lefschetz Fixed Point
Theorem

We need a refinement of the orbifold Lefschetz fixed point theorem [LRO03,
Theorem 2.1] to smooth manifolds with an action of a discrete group ex-
tension with endomorphism. We will apply this refinement to the universal
covering spaces appearing in the proof of the refined equivariant Lefschetz
fixed point theorem.

127
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Theorem 8.1.1. Let G be a discrete group extension 1 > -G — W —
1 with endomorphism ¢: G — G as in Definition 7.2.1 such that ¢w =
idy: W — W. Let M be a connected simply connected cocompact proper G-
manifold such that © operates freely on M, and let f: M — M be a smooth
p-twisted map. Denote by f: M — M the W-equivariant map induced
on the manifold M := w\ M by dividing out the m-action. Suppose that
Fix(f) N OM = 0 and that for every x € Fix(f) the determinant of the
map (id;, 37 —T,f) is different from zero. Then W \ Fix(f) is finite, and

L ()= > W™ deg((idy, 37 —T2f)°) - @
W-z€W\Fix(f)

Here (id, 57 —Tof)¢: (T M) — (TyM)® is an endomorphism of the one-
point compactification of Ty M.

Proof. The proof is analogous to the proof of the orbifold Lefschetz fixed
point theorem [LR03, Theorem 2.1]. We apply the construction from that
proof to the W-equivariant map f: M — M. We obtain a W-equivariant
map f' such that Fix(f) = Fix(f’), the map f’ is of the desired form around
the fixed points and agrees with f outside a neighborhood of the fixed points.
The desired form is that exp;’i1 of o exp, ., and ' agree on D.T,M for
some £ > 0 and for all z € Fix(f). Here exp,.: D.T,M = N, . denotes
the exponential map [LRO3, proof of Theorem 2.1].

We lift this construction to M and the ¢-twisted endomorphism f: M —
M by extending ¢-twisted G-equivariantly: Let z be a lift of a fixed point z,
then f(z) = a, - z with a, € 7, and we set f'|y. = a, - of'o~! on a
neighborhood of z that is isomorphic to a neighborhood of x via the iso-
morphism ¢: U, — U, coming from the covering map. Around another lift
Bz, weset f'ly,, == o(B) - f'v. -1 on a neighborhood of Bz. (Note that
agy = ¢(B) - a - B71.) We obtain a ¢-twisted map f': M — M such that
Fix(f) = Fix(f’), the map f’ is of the desired form around the orbits of the
fixed points, and it agrees with f outside a neighborhood of the orbits of
the fixed points.

Analogously, we lift all further constructions such as the W-equivariant
triangulations K'(M), K"(M) and the W-homotopy h from f to h;. The
construction of K”(M) can be done such that there is at most one fixed
point z of hy in each @ € K"(M). We denote h; again by f. Then

) {inc(?, €)-ay if there is a fixed point z € €
incy(f,e) =

0 else.

Here for a basepoint y of M, a path v, from y to f(y) and a morphism
(0,[t]): y = x from y to z we set &z := v, f(t~1)t. The direction of v, cor-

responds to our usual convention that w, = (id, [v,]) € Mor(f(y),y). Note
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that a; does not depend on the choice of (o, [t]) because of Lemma 7.1.5. We
see that |G| = |We| because 7 operates freely. So using the construction of
the proof of the orbifold Lefschetz fixed point theorem [LRO3] applied to the
W-equivariant map f, where {z1,...,z;} is a complete set of representatives
of W-orbits of fixed points of f, we obtain

LY (f) = L%(m)

= Z(—l)p Z |Ge|_1 inc¢(f,e)

p>0 G-ecG\Ip(K"(M))

= 2wy Wl ine(fe)
p>0 G-e€G\I(K" (M))

= 20 Y, Wl ine(f,®) @
p>0 WeeW\I,(K" (M))
k

= Z |W£Ei|_1 deg((id _Twif)c) " Qg
i=1

= S Wl ! deg((id-Tf)) - o,
W-z€W\Fix(f)

where the second to last equality uses the calculation done in the proof of
the orbifold Lefschetz fixed point theorem [LR03, proof of Theorem 2.1]. O

8.2 The Local Equivariant Lefschetz Class

In this section, we introduce the generalized local equivariant Lefschetz class
)\lc‘;’c( f) in terms of fixed point data. It is a slight refinement of the local equi-
variant Lefschetz class A (f) [LRO3, Definition 4.6]. We briefly assemble
the notation that we will need in the sequel [LR03, Chapter 4].

Let K be a finite group. The Burnside ring A(K) of K is defined to be
the Grothendieck ring of finite K-sets S with the additive structure induced
by disjoint union and the multiplicative structure induced by the Cartesian
product. Additively, A(K) = UK (%) := D (1) cconsub() Z> Where x denotes
the one-point space. Let Z be a finite K-CW-complex and let ¢: Z — Z be
a K-equivariant endomorphism. Then the equivariant Lefschetz class with
values in the Burnside ring of 1 is defined to be

Af) = D L@y [K/H] € A(K) = UR(%).
(H)€Econsub(K)

We call the injective ring homomorphism

Chg(: A(K) - @ 7,8 — {|SH|}(H)Econsub(K)
(H)€Econsub(K)
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the character map. The equivariant Lefschetz class is characterized by
[LL89, Theorem 2.19] [Liic88, Lemma 3]

Ché( (Ag((’l/))) = {LZ[{I}](QZ)H)}(H)econsub(K)'

The projection pr: Z — * induces a map U (pr): UK (Z) — U (%) which
sends the equivariant Lefschetz class Lg (1)) (see Definition 7.6.1) to AL (1).

Let V be a finite-dimensional K-representation and let ¢: V¢ — V¢
be a K-endomorphism of the one-point compactification V¢. Define the
equivariant degree of 1) to be

Deg' () == (Ag (1) — 1) (Ag (idve) — 1) € A(K) = U ().
We know that Degk (1) is uniquely characterized by the property that

Chg((Degé((Q/))) = {deg(wH)}(H)econsub(G)'

Definition 8.2.1. Let G be a discrete group, let M be a cocompact smooth
proper G-manifold and let f: M — M be a G-equivariant endomorphism
such that Fix(f) N OM = () and such that for every z € Fix(f) the deter-
minant of the map (idg, pr =T f) is different from zero. Then G \ Fix(f) is
finite. We define the generalized local equivariant Lefschetz class to be

XE(f) = Y Aglz, f)oindg,ca (Degon ((d, ar —Tmf)c)>
GreG\Fix(f)

S AG (M7 f) .
Here we have defined

Ag(, f): U(G/Gx) — Aa(M, [)
[T: G/L - G/Gy] — lgor-|xoT: G/L— M],

with 1,., € Z’]TI(ML(I oT),To0 7')¢,

rorT,cstyor

~

If we choose z = zo71: G/L — M as a fixed representative of the
isomorphism class, then the map Ag(zx, f) becomes

Ag(z, f): U%(G/Gy) — Ac(M,f)
[T: G/L - G/Gz] — agor - [2],

where @gor = (0, [t])5). cstoo, (Tzor) = Vo f (£ 1)0* (1gor)t = vg f (¢~ 1)t for an
isomorphism (o, [t]) € Mor(z,zo7) and a path w, = (id, [v,]) € Mor(f(z), ).
The difference to the local equivariant Lefschetz class AY (f) € U%(M)
defined by Liick and Rosenberg [LR03, Definition 4.6] is that Ag(M, f) is a
larger group than UY (M) which not only remembers the component of the
fixed point z, but also the appropriate @. We also need to generalize the

character map ch(X): U%(X) = @y q,x) Q [LRO3, Equation 5.1].
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Definition 8.2.2. We define the character map

cha(X,f): Aa(X,f) =» @ QUG X)sy,

YIS T(G,X)

where QII(G, X)45 = ZII(G, X )45 ®z Q, by
cha(X, f)( Zna a .—)7
= Z ‘(Aut(y))(g ) (o, [t])* (Z N *

Aut(y)-(o,[t]) €
Aut(y)\Mor(y,z)

Ql
~

Here it is important that we defined (o, [¢])* for all maps, not only for
isomorphisms. The character map ch®(X) is injective [LR03, Lemma 5.3],
and so is the character map chg (X, f):

Lemma 8.2.3. The character map chg (X, f) is injective.

Proof. Let u = Zle a; - T € Ag(X,f), where a; € Aq(X, f)z;, with
chg(X, f)(u) = 0. Let the x; be ordered in accordance with the partial
ordering on II(G, X) given by T <7 < Mor(z,y) # 0, so ; < z; = i < j.
Suppose without loss of generality that a; # 0. If chq(X, f)(Ti)z # O,
then Mor(zk,z;) # 0, which implies z;, < z; and thus z; = z;. Since
cha (X, f)(ay, - Tx)z = ax, we obtain 0 = ch(X, f)(u) = ax, a contradic-
tion. U

The character map chg (X, f) is G-homotopy invariant in the following
sense: If f ~¢ f', with a G-homotopy H: X x I — X such that Hy = f
and H; = f’, then by invariance under G- homotopy equivalence we have an
isomorphism A (i1) 'Ag(io): Ag(X, f) = Ag(X, f') which sends Ag(f) to
Ac(f'). Anisomorphism ig,: QI(G, X)gy — QI(G, X xT), Ok induced
by the inclusion 7y, and analogously 7; induces an 1somorphlsm We have
Chg(X, f’)Ag(il) lAg(Zo) (21*) lio* Chg(X,f).

We have now set the stage for the main part of this chapter. We calculate
the value of chg (X, f) on the generalized equivariant Lefschetz invariant
Ac(f) and on the generalized local Lefschetz class Al%(f). This is in analogy
to [LRO3, Lemma 5.4 and Lemma 5.9].

Lemma 8.2.4. Let f: X — X be a G-equivariant endomorphism of a fi-

nite proper G-CW-complex X. Let iy be an isomorphism class of objects
y: G/K — X in II(G, X). Then

che (X, ) (Aa(F), = LEAW) (7K (y)).
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Proof. We first consider the case XX (f(y)) = X% (y). We can write X, the
p-th skeleton of X, as a G-pushout

np .
;2 ap,i

| von

i G/H; x DP SERE X
Hl:l / 2 X [4 P

where n, > 0 and where the H; < G are finite subgroups. We set z,; :=
Qp.ilc/mxqoy: G/Hi — X for i € I.

The G-CW-structure on X induces an Aut(y)-CW-structure on XX (y).
We obtain a pushout diagram of Aut(y)-spaces

1132, Mor(y, 2p,0) x SP~! —— XK (y),_

| l

H?ﬁl Mor(yaxp,z) x DP ? XK

(If p— 1 < 1, then use the appropriate cover, the one corresponding to
71 (X% (y),y).) Then the p-cells of XX (y) are [[:2, Mor(y, z,;) X D’ we
call them e 1) i := (0, [t]) X D", where (o, [t]) € Mor(y,zp,;). The Aut(y)-
orbit of the cell e(4,) i corresponds to the Aut(y)-orbit of (o, [t]), so we
conclude from Lemma, 7.3.5 that

L@Aut(y)(ﬁ?@)
= S0P ST [Auty)e] - incy,, (FE(®)e)
p>0 Aut(y)-e€__
Aut(y)\lp(XK(y))
-1 . PR
= ) (-1 Z Yoo AW o] e, ., (FEW), et pa)-
p>0 Aut(y)-(o,[t]) €

Aut(y)\Mor(y VT, i)

Analogously, we have for any z: G/H — X a pushout diagram

e~

[Ti2) Mor (2, 2p,i) x SP~" —— XH(z),_; U X>H (z)

| |

[T:2) Mor (2, 2,;) x DP ——— XH(z), U X>H ().
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Lemma 7.3.5 yields

e~

LEAE(fH (), fH (2))
= Z(_l)p Z inc(ﬁx,wx (fH(H?), e(‘r,[s]),p,i)

p>0 Aut(z)-(7,[s])€
Aut(:c)\Mor(z,zp,i)

np

= Z(—l)p Z (7', [8])* inc‘m”p,i’csmp,i (fH(l‘p,i)a ep,i) .
p>0 x;:lzi

So Definition 7.5.1 of the generalized equivariant Lefschetz invariant Ag(f)
and the above formula yield, inserted into the formula for chg (X, f),

Chg(X, f) (Ag(f))y
= X > (Autm) ™ @ 1) (alf)a)

T,Mor(y,z)#£0 Aut(y)-(o,[t])e
) Aut(y)\Mor(y,z)

= > S (Aut®) el

T, Mor(y,z) A0 Aut(y)-(o,[t])€
T AT

(o [2])" (Z(—l)” Y. (ns)incy, o, (7 (2p), %))

p>0 Tpi=T,i=1
Tip
Y=Y (Aut(y)) ey
pZO i=1 Aut(y)-(o/,[t'])E
Aut(y)\Mor(y,xp,i)
(0", )" incg, i, (FH (2p.), Ep0),

where (o', [t']) = (7,][s]) o (o, [t]). If we can show that

—_~ —_~

(OJ7 [tl])* inc¢$p,i=05titp,i (fH(]:p’i)’ ep’i) = inc¢yswy (fK(y)’ 6(0',7[t’})7p77:)’

our lemma is proved. We will state and prove this separately in Lemma 8.2.5
immediately after finishing this proof.

Now we consider the case that X (f(y)) # X (y). By the observation
following Definition 7.1.7, this implies that X (f(z)) # X (z) for all T
with Mor(y,z) # 0, so Ag(f)z = 0 for all T with Mor(y,z) # (. This
implies that chq (X, f)(Aa(f))y = 0. O

Lemma 8.2.5. Let (o,[t]) € Moryq, x)(y, ), where y: G/K — X and
where ©: G/H — X is a fized point of f, i.e., f(x) = x. Then for the

cell e € I,(X M (z), X>H (z)) which contains z, we have

—_~—

(Uv [t])* inc¢m,cstz (fH(x)v e) = inc¢y,wy (fK(y)a e(a,[t])) :
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Proof. We know that (o, [t]) = (o, [csty]) o (id, [t]), where (id, [¢]) is an iso-
morphism. For these we know compatibility by Lemma 7.4.1, so it remains
to prove that

(Uv [CStCE])* inc@bz,cstm (fH(x)a 6) = incci?zoo,cstmg (fK(x o U)a e(tr,[cstz})) .

We have 0: G/K — G/H,g'K — ¢'g,H, so o(1K) = g,H. By replacing z
with g,7: G/H' — X, where H' = g,Hg, ', we can suppose without loss of
generality that o(1K) = (1H). We know that

— Zm(XK(zoo0),x00)y

zroo,cstroo

(o, [cstz])": Zry (X (), )y

x,csty

a — o)

corresponds to the morphism which is induced by the inclusion i: X (z) —
XK(zoo)on m (X (x),2).

Denoting by A the pullback of the diagram

A——— XK (z00)

| ]

XH(z) — X% (2 00),

i.e., the covering of X (z) corresponding to 7 (X* (x 0 0),z 0 0), we know
that

e~

A= 1T XH(z)/ ker(iy).

m1 (XK (zo0),x00) [ix (w1 (X H (z),x))

What is incg,,, ... (f5(z 0 0), €@ est,]))? It tells us to how many, and to
which, cells in the 7 (XX (2 0 0), 2 o 0)-orbit of €(g [est,]) the cell e est,))

goes (modulo the equivalence relation). We have chosen f/(z o o) such
that z o o goes to z o o, and since the cell e is connected and contains z, its
image is connected and contains x o 0. We also know that its image must
lie in A because the cell is fixed by H and by G-equivariance of f its image
must be fixed by H again. So its lift must lie over X (). Since this lift

is connected, it must already lie in one of the components X (z)/ ker(i.).

The cells in X (z)/ker(i,) to which e goes are those to which e goes in
XH(x), projected down. After going over to the equivalence relation, this is

nothing but incy, ., (f#(z),e), projected down by (o, [cst;])*. So we have

—_~—

(0-7 [CStl’])* inc¢z,cstx (fH($)7 6) = inc¢zoa,cstxog (fK(x ° U)? 6(0',[(35131})) ° D
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Lemma 8.2.6. Let G be a discrete group and let M be a cocompact smooth
proper G-manifold. Let f: M — M be a smooth G-equivariant map. Sup-
pose that Fix(f) N OM = () and that for any z € Fix(f) the determinant
det(idy, f =T, f) is different from zero. Then G \ Fix(f) is finite. Let
y: G/K — M be an object in II(G, M). Then WKy\FiX(f|MK(y)) is finite
and we get

cha(M, f)(NE (),
- Z KWKy)m'il deg<(idTwMK(y) _Tm(f|MK(y)))C) " O,

WEKy-z€
WKy\Fix(f\MK(y))

where o = vy f(t~1)t € T (X" (y),y)y for (o,[t]) € Mor(y,z) and wy =
(id, [vy]) € Mor(f(y),y)-

Proof. The set G\ Fix(f) is finite since M is cocompact and the fixed points
are isolated. Analogously, G\ GM*(y) = WK, \ M*(y) is compact with
isolated fixed points, so WK, \ Fix(f|psx(,)) is finite.

Let z: G/G, — M be a fixed point of f. We first show that for each
u € U% () we have

ChG’(Ma f)y o AG’(:E’ f) o indngG’(u)
= S Au@) | (0, [) e - b (), ),

Aut(y)-(o,[t]) €
Aut(y)\Mor(y,z)

where 1, € Zm (X% (z),%)g, ., . Here we have (K,) = (9,'Kg,) €
consub(Gy) for 0 : G/K — G /Gy, gK — g9oGy. Let u = [G,/L] € U% (x)
be a basis element and pr: G/L — G /G, the projection. We obtain

chG(M’ f)ﬂ o AG'(:E, f) o indgxgg([Gm/L])
= chg(M, f)z([zopr: G/L — M] - Toopr)
= S [Aut@) | (1) Toopr

Aut(y)-(r,[t]) €
Aut(y)\Mor(y,zopr)
where Tyopy € Zm(XE(z o pr),z o0 PI)gropresioope - WE define an Aut(y)-
equivariant map ¢: Mor(y,z o pr) — Mor(y,z), (7,[t]) — (pror,[t]) and
obtain

Mor(y,z opr) = H q (o, [t])
(o,[t]) €Mor (y,z)

= H Aut (y) XAUt(y)(a—,[t]) q_l(U? [t])

Aut(y)-(o,[t]) €
Aut(y)\Mor(y,z)
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The Aut(y)o,n)-set ¢ (o, [t]) is a finite disjoint union of orbits

Yot = JT Aut®) /A
i€l(o,[t])

thus we have a bijection of Aut(y)-sets

Mor(y, z o pr) = H H Aut(y)/A;

Aut(y) (o,lthe  i€I(o,[t])
Aut(y)\Mor(y,7)

We know for (7,[t]) € Mor(y,z o pr) that (7,[t])" lpepr = vy f(t71)t =
(pror,[t])*15. An orbit Aut(y)/A; corresponds to exactly one orbit Aut(y) -
(7, [t]), where i € I(pror,[t]), so | Aut(y)(rg)| = |4il, hence

Z \Aut(y)(T,[t])\_l (7, [t]) Lzopr

Aut(y)-(r,[t]) €
Aut(y)\Mor(y,zopr)

= > > AT (o )T,

Autly ()€ i€I(o,[1])
Aut(y)\Mor(y,z)

We have
lg (o, [H)| = [Aut(y) (o, - Z 14|

i€I(a)t])
So

cha(M, fg o Ac(z, f)olndG’xCG([ 2/ L))
= Yoo A g e HD)] - (0 ) T

Aut(y)-(o,[t]) €
Aut(y)\Mor(y,z)

The map ¢ does not change the [t]-part, so as in the proof of the corre-
sponding non-generalized result [LR03, Lemma 5.9, Equation 5.14] we have

g7 (0, )| = |G/ L7 K9] = b ([Ga/ L) .

We have the desired equation for all basis elements [G/L] € U% (), thus
for all u € U% (x). We know that [LR03, Equations 5.16 and 5.17]

chg”” (Dego @ ((idTwM —Txf)c)> K

o

- deg((idngzMK(y) _ng:r(f|MK(y)))C)'
We easily observe that

[T Aut(y) \ Mor(y,z) = WK, \ Fix(f|px(y))-
G\Fix(f)
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Under this bijection, Aut(y)- (o, [t]) = WK, -t(0), where t(0) = zoo(1K) =
2(95Gy) = gox(1Gy) = gox for 0: G/K — GGy, 9K — g9,G,. We see
that | Aut(y) 1) = [(WEKy)g,z|, so setting ' = g, we obtain

cha (M, f)(AE ()5

= > S Ay

G\Fi Aut(y)-(o,[t]) €
\ IX(f) Aut(yg\Mor(y,z)

deg((idg,, a7 ) ~Toma(FIarre) ) - (@ ) To
= Z ‘(WKZ/)Q;' - deg((ide,MK(y) _T:D’(f|MK(y)))c) - Qg

WEKy-z'e
WKy\Fix(f\MK(y))

where ;7 = v, f(t=1)t € m (X (y),y)y . where (o, [t]) € Mor(y, z), so t is a
path from g,z = ' to y. O

We have assembled all information necessary for the proof of the refined
equivariant Lefschetz fixed point theorem.

Theorem 8.2.7. Let G be a discrete group, let M be a cocompact proper
smooth G-manifold and let f: M — M be a G-equivariant endomorphism
such that Fix(f) NOM = () and such that for every x € Fix(f) the determi-
nant of the map (idp, pr =T f) is different from zero. Then

Aa(f) = MG (f)-

Proof. Using Lemma, 8.2.4, Theorem 8.1.1 and Lemma 8.2.6 we obtain

che (M, f) (Aa(f));
— [QAut(y) (jﬁ(\@)
- Z ‘(WK?J)ZBFI deg<(ideMK(y) _Tw(f|MK(y)))c> “ Ol

WKy -z€

W R \Fix(f]y g ()

= chg(M, /)(XE();

for all gy € IsII(G, X). By injectivity of chg(M, f), shown in Lemma 8.2.3,
we obtain the refined equivariant Lefschetz fixed point theorem. O

From the fact that the units of the Burnside ring A(K) are only {1, —1}
if K is a finite group of odd order [tD79, Proposition 1.5.1], we obtain in
analogy to [LR03, Example 4.7] the following example.

Example 8.2.8. Let G be a discrete group and let M be a cocompact proper
smooth G-manifold. Suppose that all isotropy groups G of points x € M
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are of odd order. Let f: M — M be a smooth G-equivariant map such that
Fix(f) NOM = () and such that for every z € Fix(f) the determinant of the
map (idg, apr =Ty f) is different from zero. Then

.az_

loc _ det(1 — Ty (f): To(M) — Ty(M))
AG(f) = GxeG%ix(f) \det(1 —Tp(f): Te(M) — Tm(M))\

€ AG’(Xaf)a

where for an isomorphism (o, [t]) € Mor(z,z) and a path w, = (id, [v,]) €
Mor(f(2), z) the element a; = v, f(t~1)t € Zmi (X% (z),2)y is the equiva-
lence class of the following path o € 71 (X% (2),2) in X% (2):

Uz

z

Note that 2 o0 = g,z = g, f () = f(z o o) by G-equivariance of f, i.e., the
whole orbit of a fixed point consists of fixed points.

Remark 8.2.9. We can also prove an equivariant analog of Theorem 1.1.3:
If X s a finite proper G-CW-complex and f: X — X is a G-equivariant
endomorphism, then La(f) # 0 implies that f has an orbit of fized points.
Namely, if Lg(f) # 0, we conclude from injectivity of the character map
ch%(X): U%(X) — D1, x) Q [LRO3, Equation 5.1 and Lemma 5.3] and
the fact that [LR0O3, Lemma 5.4]

LK (flxry) i XE(f(y) = X5 (y)
ch%(X)(La(f)). = XEWw)

(X G(f))y {0 otherwise

that there is a g € IsTI(G, X) such that LOVEv(f[yx () # 0. If WK, | <
00, then LOVEy (flxx)) = ‘W—IIQ/'L(f|XK(y)) [LRO3, Remark 1.7], where
L(f[xx(y)) denotes the Lefschetz number. So by the Lefschetz fixed point
Theorem 1.1.3 we conclude that f|yxx(, has a fixed point. If [WK,| =
oo, then we can use a W K -equivariant triangulation of X (y) and apply
barycentric subdivision as in the proof of the Lefschetz fixed point theorem
to arrive at the same result. We see that f has a fixed point, and by G-
equivariance of f, the whole orbit of this fixed point consists of fixed points.
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8.3 The Illustrative Example, yet continued

In Section 3.2, we introduced as an example the group Z/2, acting on S’
by reflection at the z-axis, with the equivariant endomorphism f: S' —
Stz — 2% for d € N. What do the results of this chapter mean in this
concrete case?

The most interesting information is given at the “points” y,: Z/2 —
S',1 — €%, 7 = e, Here we obtain ZII(Z/2,5")4,, = Zm(S")/ ~,
where the equivalence relation is given by ¢, oWy (Yay ! ~ a, for a €
m1(S') 2 Z and v € Aut(y,), a group extension 1 — Z — Aut(y,) —
Z/2 — 1. The map by, wy, 18 given by multiplication with d on the path
factor Z, see Section 3.2. So for v = (1, m) and 8 = (1,n) with m,n € Z we
have

qﬁw,ww(l,TrL)(l,n)(l,m)*1 ~ (1,n)
& (IL,dm+n—m) ~ (1,n),
which implies that (d — 1)m ~ 0 for all m € Z. This is the relation also
appearing in the non-equivariant case [Liic99, Chapter 3]. For v = (7,m)
we obtain
gbywww(T,m)(l,n)(T,m)*l ~ (1,n)

& qﬁywww (T, m)(T—l

& (IL,dn—n—m) ~ (1,n).

a_n_m) ~ (lan

There is a new relation implied by this, namely
—n ~mn foralln e Z.
We obtain
Z|7] a-1] if d # 1 is odd

2
Agyo(XH, [y, = ZIZ/2,5N) g, = { ZIN ifd=1
ZZ)S2 @ Z/2 ifd is even.
Applying the trace map trz aug(y,) t0 ug/Z(Sl, f)y,, we obtain for odd d
Azja(f) =tz ausy,) (uZ2(S" )
d—1

= tI'ZAut(y&(,) (idR (d) +idg (d + T)) - trZAu‘c(yw)(d,)
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for even d > 2 we have

Azja(f) =tz ausy,) (uZ2(S" )
=tz Aut(y,) (Idr - (-d)) — trz Aug(y,)(d")

= 1- (T+§+...+§)+(é>

~ G+ D (9

and for d = 0 we see that

Azja(f) =tz Ay, (uZ2(S" )
= trzau(y,) (idr -(-d)) — trz au(y,)(d")

-0 ()

= 0.

Here the maps d’ and d” appear which were defined in Section 3.2. Note that
in the non-equivariant case we have A(S', f) = Z[Z/(d — 1)], and \(f) =
—(14+24...4d=1)ford>2, X\(f)=1ifd=0,and A\(f) =0 ifd = 1.
How do these compare to the equivariant case? In the equivariant case, the
classes always appear in pairs, there is the reflection of the z-axis acting. So
we only need half as many classes. The fixed points at 1 and —1 account for
the other differences. In the light of Chapter 9, the non-vanishing classes
correspond to essential fixed points in S'\ {1, —1}. The class at T can always

be moved to 1, so it is non-essential. In case d is odd, the class at % can be
moved to —1 and is thus non-essential. If d is even, the point —1 seems to
account for the summand 7Z /2 because it is the cokernel of the map induced

by the inclusion —1 — S*.



Chapter 9

Equivariant Nielsen
Invariants

Based on the generalized equivariant Lefschetz invariant Ag(f) € Ag(X, f)
developed in Chapter 7, we now introduce equivariant Nielsen invariants
called Ng(f) and NY(f), which are equivariant analogs of the Nielsen num-
ber.

We proceed to show that these Nielsen invariants give minimal bounds for
the number of orbits of fixed points in the G-homotopy class of f. One even
obtains results concerning the type and “location” (connected component
of the relevant fixed point set) of these fixed point orbits.

There are results on equivariant Nielsen numbers when G is a compact
Lie group, for example by Wong [Won93]. One difference between our work
and Wong [Won93] is that we also treat infinite discrete groups, another is
that our approach is more structural. We introduced the generalized equiva-
riant Lefschetz invariant A\g(f) € Ag(X, f), and we read off the equivariant
Nielsen invariants from there instead of defining them ad hoc.

Finally, we prove a converse of the equivariant Lefschetz fixed point
theorem: If X is a G-Jiang space as defined in Definition 9.4.2, then Lg(f) =
0 implies that f is G-homotopic to a fixed point free map. Here L (f) is the
equivariant Lefschetz class defined in Definition 7.6.1 [LR03, Definition 3.6].

9.1 The Nielsen Number

Classically, the Nielsen number is defined geometrically by counting essential
fixed point classes [Jia83, Definition [.4.1]. Alternatively one defines it using
the generalized Lefschetz invariant.

Definition 9.1.1. Let X be a finite CW-complex with basepoint z, let

141



142 9 Equivariant Nielsen Invariants

f: X — X be an endomorphism, and let

Af)= > ng-acZm(X,z)y
aem (X,x)e

be the generalized Lefschetz invariant associated to f. Then the Nielsen
number of f is defined by

N(f):= #{E ‘ na;«é()}.

So the Nielsen number is the number of classes in 7 (X, )4 with non-zero
coefficients. A class « with non-zero coefficient corresponds to an essential
fixed point class in the geometric sense.

9.2 Equivariant Nielsen Invariants

In this section, we define equivariant Nielsen invariants. Given the group
Zmi(X"(z),z)y defined in Definition 7.1.4 and an element Y . nz @ €
Zmi(XH(z), 1)y, we call a class @ € m (X (z),2)y essential if the coeffi-
cient ng is non-zero.

We would like to derive equivariant Nielsen invariants from the general-
ized Lefschetz invariant Ag(f) by counting classes with non-zero coefficients.
We consider the equation obtained in the refined equivariant Lefschetz fixed
point theorem, Theorem 8.2.7. Here G is a discrete group, M is a cocom-
pact proper smooth G-manifold and f: M — M is a smooth G-equivariant
map such that Fix(f) N dM = 0 and such that for every z € Fix(f) the
determinant of the map (idyp, as —T% f) is different from zero. We have

Aa(f)=XE() = > Agla,f)oindg,caDegf ((drm =T f)°)).
GreG\Fix(f)

We know that Deg§™ ((idr,a =T f)¢) € U% (x) = A(Gy) is a unit of the
Burnside ring since (DegOGQ” ((id7, ar —T,Ef)c))2 = 1 [LR03, Example 4.7]. We
also know that in general a unit of the Burnside ring A(G;) may consist of
more than one summand [tD79]. The summand [G,/G,] is always included
with a coefficient +1 or —1, but there might be summands [G,/L] for L < G,
appearing. So one fixed point might give more than one class with non-zero
coefficients. If we want each fixed point to lead to exactly one summand, we
have to divide out the rest, and keep only what corresponds to the summand
1[G, /Gal.
Note that if [G,/L] € U% (x), we have

Ag(z, f) o inde,cq([Ga/L]) = (pr, [cstz])* (Ac(z, f) o inda, ca([Gr/Gal)),

where pr: G, /L — G;/G, denotes the projection. This is the clue to what
we have in mind now: We divide out the images of non-isomorphisms. This is
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exactly what the restriction functor S, does, see Definition 1.2.10. We define
areduced variant v(f) of the generalized equivariant Lefschetz invariant A(f)
to be the image under this quotient map.

Definition 9.2.1. We define the equivariant Nielsen class ve(f) by setting

Vg(f)x = Ag(f)m € SIZH(G,X)(Zg

for + € II(G,X). Here ZII(G,X)y is the ZII(G, X)-module defined in
Definition 7.1.7 that maps z: G/H — X with X7 (f(z)) = X () to
Zm (X" (z),2)y. We set Zm (X (z), )y 1= S;ZII(G, X))y, for every ele-
ment 7 € IsTI(G, X) with X# (f(z)) = X (x).

Let G be a discrete group and let M be a cocompact proper smooth
G-manifold. Let f: M — M be a smooth G-equivariant map such that
Fix(f) NOM = () and such that for every = € Fix(f) the determinant of the
map (idp, pr =Ty f) is different from zero. Then from Theorem 8.2.7 and the
definition of the equivariant Nielsen class v (f) we derive the equation

B det (1 — Ty (f): Tp(M) — Ty(M))

valf) = |
: GmEG%‘ix(f) ‘det(l —To(f): To(M) — Tm(M))‘

.

We will now define equivariant Nielsen invariants by counting the es-
sential classes @ of v (f); in Zmi (X" (2), )y and of cha (X, f)(Aa(f))z in
Qi (XH(z),7)y, for T € IsII(G, X).

Remember from the definition of the fundamental category II(G, X),
Definition 1.2.2, that its objects are G-equivariant maps z: G/H — X for
subgroups H < G, and that we often view = as the point z(1H) € X*. We
call X (z) the connected component of X containing z(1H). In order to
simplify notation, we will use f¥(z) to denote flx# gy from now on, and we
will use fu(z) instead of f| xm () x>#(z))-

Definition 9.2.2. Let G be a discrete group, let X be a finite proper G-
CW-complex, and let f: X — X be a G-equivariant map.
We define equivariant Nielsen invariants of f to be the elements

Ne(f),N°(N)e D z

TEell(G,X)
defined by
NG(f)E = #{essential classes of UG’(f)E}

NYf). = min{#C

CC U (X" (y),y)y such that for all Z > 7
y>z

we have {essential classes @ of chg(X, f)()\(;(f))z}

c{em@|Bec @me Mor(z,yﬁ>}}
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for 7 € IsII(G, X) with X# (f(z)) = X" (z), and by 0 for T € IsTI(G, X)
with X7 (f(z)) # X ().

Note that Ng(f); = Ne(fu(r)) and NY(f)
notation of Wong [Won93].

An essential class @ of Chg(X,f)(Ag(f))T = LQAW@)(fH (z)) corre-
sponds to an essential fixed point class of f¥(x), a W Hg-orbit of fixed
points which one cannot get rid of under any G-homotopy, compare the re-
fined orbifold Lefschetz fixed point theorem, Theorem 8.1.1. An essential
class @ of vg(f)z corresponds to an essential fixed point class of fy(x), an
orbit of fixed points on X (z)\ X># (z) that cannot be moved into X># (z).
Counting the essential classes will give us information on the number of fixed
points and fixed point orbits.

The equivariant Nielsen invariants are G-homotopy invariant since they
are derived from A (f), which is itself G-homotopy invariant:

= NOg(f"(x)) in the

T

Proposition 9.2.3. Given a G-homotopy f ~¢q f', we have

Na(f) = Nea(f)
NO(f) = NO(f).
Proof. If f ~g f', with a homotopy H: X x I — X such that Hy = f
and H; = f’, then by invariance under homotopy equivalence we have an
isomorphism Ag(i1) 'Ag(ig): Ag(X, f) = Ag(X, f') which sends Ag(f) to
Ac(f"). The isomorphisms Ag(i1) and Ag(ig) are given by composition of
maps, so they do not change the number of essential classes. They also do
not change the property of a class to lie in the image of a non-isomorphism.
So we have Ng(f) = Na(f').
An isomorphism ig,: QII(G, X )y — QII(G, X x D‘E@ is induced
by the inclusion %y, and analogously ¢; induces an isomorphism. These
isomorphisms do not change the number of essential classes. We have

cha(X, f)(Aa(f)) = (io.) i« cha (X, f)(Ac(f)), so NO(f) = N9(f"). O

9.3 Lower Bound Property

The equivariant Nielsen invariants give a lower bound for the number of
fixed point orbits on the fixed point sets Xz (x) and X (z), for maps lying
in the G-homotopy class of f, and under mild hypotheses this is even a sharp
lower bound.

Definition 9.3.1. Let G be a discrete group, let X be a finite proper G-
CW-complex, and let f: X — X be a G-equivariant map. For every T €
IsII(G, X), with z: G/H — X, we set

Ma(f)z = min{# fixed point orbits of ¢ (x) ‘ 0 ~G f},

MY (g = min{# fixed point orbits of ¢ (z) ‘ o ~a [}
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When speaking of fixed point orbits of f¥(z), we can either look at the
W H,-orbits WH, - z C X" (z) or at the G-orbits G - z C X(F)(z), for a
fixed point z in X (). These two notions are of course equivalent.

We now proceed to show the first important property of the equivariant
Nielsen invariants, the lower bound property.

Proposition 9.3.2. For every T € IsII(G, X) we have

Mca(f)
ME(f)

IN N
8|

8|

Proof. 1) If @ € m (X (z),2)4 is an essential class of vg(f)z, then there
has to be at least one fixed point orbit in X (z)\ X>#(z) that corresponds
to @ and that cannot be moved into X~ (z). So, for any ¢ ~¢ f, the
restriction g must have at least Ng(f). fixed point orbits in X (z) \
X>H(z). We arrive at Ng(f); < {#fixed point orbits of ¢y} for all ¢ ~¢
1, 50 Na(f)s < Mg(f)s.

2) Let T € IsII(G,X). Suppose that ¢ ~g f such that ¢ (z) has
MOY(f)z fixed point orbits in X (z). Let C C Uz<y m (XK (y),y)y such
that NOY(p)z = NO%(f)z = #C. If there were less than #C fixed point
orbits in X (), there would be less that #C essential classes and we could
have chosen a smaller C. So there are at least #C essential classes, and thus
oM (x) has at least #C fixed point orbits. O

To prove the sharpness of this lower bound, we need certain hypotheses,
which are usually introduced when dealing with these problems. Other
authors treat slightly weakened assumptions [Fer99, Fer03, Jez95, Wil84].
We do not weaken the standard gap hypotheses in the context of functorial
equivariant Lefschetz invariants since the standard gap hypotheses are not
homotopy invariant. So an analog of Theorem 9.5.3 would not hold.

Definition 9.3.3. Let G be a discrete group and let X be a cocompact
smooth G-manifold. We say that X satisfies the standard gap hypotheses if
for each T € IsTI(G, X ), with z: G/H — X, the inequalities dim X (z) > 3
and dim X (z) — dim X># (x) > 2 hold.

Under these hypotheses, we can use an equivariant analog of the classical
Wecken method [Wec41] to coalesce fixed points.

Lemma 9.3.4. Let G be a discrete group and let X be a cocompact proper
smooth G-manifold satisfying the standard gap hypotheses. Let f: X — X
be a G-equivariant map. Let O1 = Gz and Oy = Gzy be two distinct
isolated G-fized point orbits, where x1 : G/H — X and zo : G/ K — X
with x1 < x9. Suppose that there are paths (o1,[t1]) € Mor(z,z1) and
(09, [ta]) € Mor(z, z2) for an T € 1I(G, X), with z: G/H — X, such that
(01, [t1]) 1, = @ = (09, [t2])*14,, i.e., that the fized point orbits induce the
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same @ € m (X (z),2)y. Then there exists a G-homotopy {f} relative to
X>U) such that fo = f and Fix f; = Fix fo — GO;.

Proof. Suppose first that Z1 < Tz. Then Mor(z1,z2) # (. By replacing z;
and xo with other points in the orbit if necessary, we can suppose that there
exists a morphism (7, [v]) € Mor(x1,z2), where v is a path in X (z) with
vi =z and vg = 2907 and 7: G/H — G/K is a projection. We know
that v ~ f7 o (relative endpoints). (This is an equivalent characterization
of z1 and z2 belonging to the same fixed point class [Jia83, I.1.10].) Since
r1 € XH(2)\ X>H (z) and 29 € X>H (z) and dim X (z) —dim X>H (z) > 2,
we may assume that v can be chosen such that v((0,1]) € X (z)\ X>¥ (z).
We coalesce 21 and z3 along v as in [Won91b, 1.1], [Sch86, 6.1]. We can do
this by only changing f in a (cone-shaped) neighborhood U (v) of v. Because
of the proper action of G on X and the free action of WH on X7 \ x>
this neighborhood U (v) can be chosen such that in X# \ X># it does not
intersect its g-translates for ¢ ¢ H < G. Taking the G-translates of U(v),
we move O to Oy along the paths Gv in GU (v), not changing the map f
outside GU (v).

Now suppose 1 = Z3. In this case, the result follows from the result
of Wong [Won91a, 5.4] since X (z)\ X>H () is a free and proper W H,-
space, where again the proper action of G on X ensures that we can find a
neighborhood of a path from z; to z5 such that the G/H-translates do not
intersect. U

From Lemma 9.3.4, we can conclude the sharpness of the lower bound
given by the equivariant Nielsen invariants.

Theorem 9.3.5. Let G be a discrete group. Let X be a cocompact proper
smooth G-manifold satisfying the standard gap hypotheses. Let f: X — X
be a G-equivariant endomorphism. Then

for all T € IsII(G, X).

Proof. 1) Since X is a cocompact smooth G-manifold, there is a G-map f'
which is G-homotopic to f and which has only finitely many fixed point or-
bits. We apply Lemma 9.3.4 to f to coalesce fixed point orbits in X (z) \
X>H(z) with others of the same class @ € Zm (X" (z),z)y. We move
them into X~ (z) whenever possible. (We might need to create a fixed
point orbit in the inessential fixed point class before [Won91b, 1.1].) We
remove the inessential fixed point orbits. We arrive at a map h ~¢ f such
that N¢(f); = #{fixed point orbits of hi(z)} > Mg(f)z Using Proposi-
tion 9.3.2, we obtain equality.
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2) Since X is a cocompact smooth G-manifold, there is a map f’ which
is G-homotopic to f and which only has finitely many fixed point orbits.
We have a partial ordering on the § > T given by 7 > Z < Mor(z,y) # 0.
We apply Lemma 9.3.4 to f' to coalesce fixed point orbits of the same class,
starting from the top. Note that when we remove fixed point orbits, we can
only move them up in this partial ordering. That is why the definition has
to be so complicated. We remove the inessential fixed point orbits. We are
left with one fixed point orbit for every essential class.

We now look at a class C such that NOY(f)z = #C, and we coalesce
the essential fixed point orbits with the corresponding classes appearing in
C. (If the corresponding class in C is inessential, we might need to create a
fixed point orbit in this inessential fixed point class before [Won91b, 1.1].)
We obtain a map h ~¢ f which has exactly #C fixed point orbits. Hence
NOY(f)z = #{fixed point orbits of h(z)} > MOY(f)z. Using proposi-
tion 9.3.2, we obtain equality. O

In general, it is not possible to find a map h ~¢ f realizing all minima,
simultaneously. As an example, one can take G = Z/2 acting on X = S*
as an involution so that X%/2 = §3. One obtains Mg (idgs)z = 0 for all T €
IsTI(Z/2,5%), but the minimal number of fixed points in the G-homotopy
class of the identity idgs is equal to 1 [Won93, Remark 3.4]. In this example,
the standard gap hypotheses are not satisfied.

9.4 The G-Jiang Condition

In the non-equivariant case, we know that the generalized Lefschetz invariant
is the right element when looking for a precise count of fixed points. We
read off the Nielsen numbers from this invariant. In general, the Lefschetz
number contains too little information. But under certain conditions, we
can conclude facts about the Nielsen numbers from the Lefschetz numbers
directly, and thus obtain a converse of the Lefschetz fixed point theorem.

These conditions are called Jiang conditions. See Jiang [Jia83, Defini-
tion I1.4.1], where one can find a thorough treatment, and Brown [Bro71,
Chapter VII]. The Jiang group is a subgroup of 7 (X, f(z)) [Jia83, Defini-
tion I1.3.5]. We generalize its definition to the equivariant case.

Definition 9.4.1. Let G be a discrete group, let X be a finite proper G-
CW-complex, and let f: X — X be a G-equivariant endomorphism. Then
a G-equivariant self-homotopy h: f ~¢ f of f determines a path h(z,—) €
71 (X (z), f(z)) for every T € IsII(G, X), with z: G/H — X. Define the
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G-Jiang group of (X, f) to be

Ja(X, f) = { Z [h(m, —)] ‘h: f ~a [ G-equivariant self—homotopy}
TEll(G,X)

< @ WI(XH(ZE),f(fL')),

Zell(G,X)

and define the G-Jiang group of X to be

Ja(X) := { Z [h(z,—)] ‘h: id ~¢ id G-equivariant self—homotopy}
zell(G,X)

< @ 7I'1(XH((L‘),ZE).

Zell(G,X)

In the non-equivariant case, we know that the Jiang group J(X, f,z)
is a subgroup of the centralizer of m(f,z)(m (X,z)) in m (X, f(z)). In
particular, J(X) < Z(m(X,z)), where Z(m(X,z)) denotes the center
of m(X,z) [Jia83, Lemma II.3.7]. Furthermore, the isomorphism (f o
W)y 7T1(X,f($1)) — 7T1(X,f(330)) induced by a path w from zy to z;
induces an isomorphism (f o w),: J(X, f,x1) — J(X, f,z9) which does
not depend on the choice of w. So the definition does not depend on
the choice of the basepoint [Jia83, Lemma II.3.9]. It is also known that
J(X) < J(X,f) < m(X) for all f [Jia83, Lemma I1.3.8]. This leads to
the consideration of spaces with J(X) = m;(X) in the definition of a Jiang
space. All these lemmata also make sense in the equivariant case. Thus we
make the following definition.

Definition 9.4.2. Let G be a discrete group and let X be a cocompact
G-CW-complex. Then X is called a G-Jiang space if for all T € IsII(G, X)
we have

Jo(X)y = m (X (2),2).

The group Jo (X, f) acts on Ag(X, f) as follows: If X (f(z)) = X" (x)
and X% (f(z)) = X" (z), then Je(X, f) acts on Zm (X" (z),z). The el-
ement v = [h(z, —)] € Je(X, f); acts as composition with [v,vv; '], where
wy = (id, [vz]) € Mor(f(x),z). Since Jg(X, f)z is contained in the central-
izer of Wl(fH(m),x)( 1(X"(z),z)) in (X7 (z), f(z)), this action induces
an action on Zm (X" (z),z)4, , by composition, whence on Ag(X, f)z.
Thus Jg (X, f) acts on Ag(X, f), and by invariance of Ag(f) under homo-
topy equivalence, we see that

Aa(f) € (Aa(X, )¢,

Examples for G-Jiang spaces can be obtained from Jiang spaces. It is
known [Jia83, Theorem I1.3.11] that the class of Jiang spaces is closed under
homotopy equivalence and the topological product operation and contains
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e simply connected spaces

generalized lens spaces
e H-spaces

e homogeneous spaces of the form A/A, where A is a topological group
and Ay is a subgroup which is a connected compact Lie group.

Hence we obtain many examples of G-Jiang spaces using the following
proposition, analogous to Wong [Won93, Proposition 4.9].

Proposition 9.4.3. Let G be a discrete group, and let X be a free cocompact
connected proper G-space. If X/G is a Jiang space, then X is a G-Jiang
space.

Proof. Since X is connected and free, the set Is(G, X) consists of one ele-
ment. Let z be a basepoint of X. We need to check that Jg(X)- = 7 (X, z).
Let X & X/G be the projection. The Jiang subgroup of X/G is given by

J(X/G) = {[h(p(x),—)] ‘h: idy/q ~idx/q self—homotopy}
< m(X/G,p(2)).

Let o € m (X, z). Since X % X /G is a discrete cover, X = X/G. There is a
surjective map py: 7 (X,z) — m (X/G,p(x)). Since X/G is a Jiang space,
J(X/G) = m(X/G,p(z)), so there is a homotopy h: idyx/q =~ idx/g such
that pu(a) = [h(p(z), —)]. Because of the free and proper action of G on X,
this homotopy A can be lifted to a G-equivariant homotopy A': idy ~¢ idx
such that o = [A'(z, —)]. Thereby « € Jg(X). O

9.5 The Converse of the Equivariant Lefschetz Fixed
Point Theorem

One can derive equivariant analogs of statements about Nielsen numbers
found in Jiang [Jia83], generalizing results of Wong [Won93] to infinite dis-
crete groups. In particular, if X is a G-Jiang space, the converse of the
equivariant Lefschetz fixed point theorem holds. We have the following the-
orem, compare Jiang [Jia83, Theorem I1.4.1].

Theorem 9.5.1. Let G be a discrete group, and let X be a finite proper
G-CW-complex which is o G-Jiang space. Then for any G-map f: X — X
and T € IsIl(G, X) with z: G/H — X we have:

Lo(f)lz=0 = Aa(f)z =0 and Ng(f)z =0,

La(f)z 720 = Xa(f)z # 0 and No(f)z = #{m (X" (z),2) 4 }.

Here La(f) is the equivariant Lefschetz class defined in Definition 7.6.1
[LR0O3, Definition 3.6/, the equivariant analog of the Lefschetz number.
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Proof. Since X is a G-Jiang space, the G-Jiang group Jg(X) acts transi-
tively on 7 (X (), z) for all T € Is(G, X). This implies that

)\G(f)T:Zna'a:n'Za

for some n € Z. This leads to La(f); = n - #{m (X (z),2)s} by the
augmentation map introduced in Section 7.6. We see that

La(f)z=0 = n=0
= Ag(f)z=0
= va(f)z=0
= NG(f TZO,
La(f)z #0 = n#0
= A¢(flza #0 for all @ € Z(m (X (z),z))y
—  ve(f)za #0 for all @ € Z(m (X7 (2),2)) g
= Na(f)z = #{m (X" (2),2)4}. O

The proof of Theorem 9.5.1 already works if Jg(X, f) acts transitively
on every summand of Ag(X, f). We could have called X a G-Jiang space if
the condition that Jg (X, f) acts transitively on every summand of Ag (X, f)
is satisfied. But this condition is less tractable. It is implied by Jg(X, f); =
71 (X (z), f(z)) for all Z, which is implied by Jg(X), = 7 (X (z), ) for
all z.

We now show that f is G-homotopic to a fixed point free G-map if the
generalized equivariant Lefschetz invariant Ag(f) is zero.

Theorem 9.5.2. Let G be a discrete group. Let X be a cocompact proper
smooth G-manifold satisfying the standard gap hypotheses. Let f: X — X
be a G-equivariant endomorphism. Then the following holds:

If \¢(f) =0, then f is G-homotopic to a fized point free G-map.

Proof. If Aq(f) = 0, then chg(X, f)(Aq(f)) = 0, and therefore we have
NE(f)z = 0 for all T € Is(G,X). We know from Theorem 9.3.5 that
NY(f)z = MY%(f)z = min{# fixed point orbits of o (z)|¢ ~¢ f}. In
particular, for z: G/{1} — X we obtain a map ¢ such that ¢{"}(z) is fixed
point free and ¢ ~¢ f. Thus we obtain our result on every connected com-
ponent of X, and combining these we arrive at a map h ~¢ f which is fixed
point free. U

These two theorems, Theorem 9.5.1 and Theorem 9.5.2, combine to give
the main theorem of this chapter, the converse of the equivariant Lefschetz
fixed point theorem.
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Theorem 9.5.3. Let G be a discrete group. Let X be a cocompact proper
smooth G-manifold satisfying the standard gap hypotheses which is a G-
Jiang space. Let f: X — X be a G-equivariant endomorphism. Then the
following holds:

If Lg(f) =0, then f is G-homotopic to a fized point free G-map.

Proof. We know that Lg(f) = 0 means that Lg(f); = 0forallz € Is(G, X).
Since X is a G-Jiang space, by Theorem 9.5.1 this implies Ag(f)z = 0 for
all T € Is(G, X), so we have A\g(f) = 0. We apply Theorem 9.5.2 to arrive
at the desired result. O

Remark 9.5.4. As another corollary of Theorem 9.5.2, we obtain: If G is a
discrete group and X is a cocompact proper smooth G-manifold satisfying
the standard gap hypotheses, then x“(X) = 0 implies that the identity idx
is G-homotopic to a fixed point free G-map. This was already stated by
Liick and Rosenberg [LR03, Remark 6.8]. Here x“(X) € U%(X) is the
universal equivariant Euler characteristic of X [LR03, Definition 6.1] defined
by X%(X)z = x(WH, \ X" (2), WH, \ X" (z)) € Z, we have x“(X) =
L (idx). We calculate that

Aolidy)s = ) (=1)P > inc¢(idm),e)
p>0 Aut(z)-e€
Aut(@\Tp(X H (2),x>H (2))

= x(WH,\ X" (z),WH, \ X" (2)) - T€ ZWI(XH(x),x)¢,.
So we have x“(X) = 0 if and only if Ag(idx) = 0, and with Theorem 9.5.2
we conclude that there is an endomorphism G-homotopic to the identity
which is fixed point free.
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