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Abstract

Coherent phonons can greatly vary light-matter interaction in semiconductor nanostructures placed
inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as
active laser medium, phonons are able to induce a large enhancement or attenuation of the emission
intensity, as has been recently demonstrated. The physics of this coupled phonon—exciton-light
system consists of various effects, which in the experiment typically cannot be clearly separated, in
particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD
ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by
phonon pulses of various shapes as well as by ensembles with different spectral distributions of the
QD:s. This gives insight into the fundamental interaction dynamics of the coupled phonon—exciton—
light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic
shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission
controlled by phonons.

1. Introduction

Atthe heart of the growing field of phononics lies the active use of lattice vibrations in micro- or nanoscale solid
state materials. Many applications, ranging from the excitation of confined phonon modes in optomechanical
systems [1-3] to the control of confined few-level systems by traveling surface acoustic waves [4-8], prove that
phonons have a great potential to drive and control various solid state systems. A key optical application of solid
state structures is the semiconductor laser. Here semiconductor quantum dots (QDs) play an increasing role as
active laser medium and, in the extreme limit, even a single QD has been shown to give rise to lasing [9—11].
While carrier—phonon interaction is an important ingredient for energy relaxation, e.g., when bringing carriers
from the wetting layer into the laser-active QDs, for the laser process itself the coupling to phonons often does
not play a crucial role. Only recently, the two fields—phononics and semiconductor laser physics—have been
combined by using traveling coherent phonon wave packets to control the laser output [12—14]. We want to
briefly recap these findings: in such an experiment, which is schematically shown in figure 1(a), a layer of QDs,
surrounded by two distributed Bragg reflectors (DBRs), is used as the active laser medium, which can be pumped
optically [12, 13] or electrically [ 14]. By rapidly heating an aluminum film a coherent phonon wave packet is
created, which travels through the structure. Due to nonlinear propagation in the material and the transit
through the Bragg mirror the strain profile arriving at the QD layer, shown in figure 1(b), is rather complex.
When the phonons impinge on the QDs the strain shifts the frequency of the optical transition in the QDs. Asa
result, the laser output can be greatly enhanced, but also quenching can be induced. This is demonstrated in
figure 1(c), where an example of the measured laser intensity I normalized to the stationary state intensity I, is
shown. A detailed interpretation of the coupled phonon—exciton—light system is rather sophisticated because
depending on the spectral properties of the QD ensemble and the time scale associated with the phonon
dynamics different phenomena contribute to the observed modulation of the laser output.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic picture of the experiment. (b) Simulated strain field in the experiment. (c) Measured laser intensity normalized
to the stationary state intensity. (d) Simulated laser intensity corresponding to (c).
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Figure 2. Sketch of the theoretical model.

We here develop and investigate a semiclassical laser model, as depicted in figure 2, to describe the dynamics
of the coupled system consisting of coherent phonon wave packets, QD excitons and laser light. Our model has
already been shown to well reproduce the experimentally observed laser outputs [15]. In this paper we now use
the model to gain a deeper understanding of the coupled phonon—exciton-light system by systematically
studying different ensemble and strain scenarios. Due to the complex strain pulses present in the experiment, a
clear interpretation and in particular a separation between different phenomena is still challenging. Two effects
turned out to be important, when controlling the laser output: on the one hand the adiabatic shift of the
ensemble, which dynamically changes the number of QDs in resonance with the laser cavity. On the other hand
the shaking effect of the ensemble, which rapidly brings initially detuned and therefore highly occupied QD
excitons into resonance with the cavity. In this paper, we are going to use this model to systematically study the
influence of the phonons on the lasing activity and to discriminate between the phenomena of shifting and
shaking. For this purpose, we will use idealized ensemble shapes (e.g., a flat distribution of QD transition
energies) and idealized strain pulses (e.g., bipolar or monopolar pulses or monochromatic phonons) which will
allow us to separate the shaking effect from the adiabatic shift in an intuitive way.

By providing a thorough understanding of the coupled phonon—exciton-light system, we are not only able
to understand the complex laser emission seen in the experiment, but we also lay the foundation to optimize the
system, which will then stimulate further studies on phonon control of solid state lasers and pave the way for
designing applications.
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The paper is structured as follows: in section 2 the basics of the semiclassical laser model are summarized.
The results are given in section 3, first for a rectangular QD distribution in section 3.1 and second for a Gaussian
ensemble in section 3.2. In section 4 we come back to the experimental results in figure 1 and provide a detailed
interpretation on the basis of the results for the idealized cases. The paper closes with some concluding remarks
in section 5.

2. Theoretical model

To model the QD laser system we employ a semiclassical laser model in the usual dipole, rotating wave and
slowly varying amplitude approximation [16]. The QDs are taken to be in the strong confinement limit, such
that for the coupling to the laser mode and the coherent phonons they can be reduced to two-level systems
consisting of ground state |g); and exciton state |x); with transition frequencies w;, i € {1, 2, ..., Ngp} labelling
the individual QD and Nqp being the number of QDs in the ensemble. The QD is coupled via the dipole matrix
element M; to the light field, treated as a classical field with positive (negative) frequency component E (E*) as
well as to the acoustic phonons, described by the phonon creation (annihilation) operators b; (by)> q denoting
the phonon wave vector. The Hamiltonian of the QD ensemble then reads

Nop

H = Zhb (1[1)
i=1
with

hi = Zw; |x)i (x| — (M; - E |x); (gl + M{ - E¥[g)i (x[5)
+ > 7ig (b + bY) Ix)i (x> (1b)
q

and the exciton—phonon coupling matrix element g . From the Hamiltonian and Heisenberg’s equation of
motion we obtain the equation of motion for the microscopic polarization p, = (|g); (x|;) as wellas the
occupations x; = (|x); (x|;)and g = (|g); (¢li)- After truncating the electron—phonon correlation expansion on
the mean field level, which is appropriate for the description of the coupling to an external coherent phonon
wave packet, we get

d . i

Epi = llwi + Zqugq Re(<bq>):|l7i + EMi - E(g — %), (2a)
d d i
Sxi=—Sg =L B — M-Ep*). 2b
- R /7( ; p) (2b)

The dominant exciton—phonon coupling in typical InGaAs-based QDs is provided by the deformation potential
coupling. For this mechanism the mean field contribution can be written as [17]

23" g Re((by) = D div((u(r;, 1)) = D(), ©)
q

with (u(r;, 1)) being the expectation value of the lattice displacement at the position r; of the QD and

n(t) = div({u(r;, t)))is the corresponding strain. D = D, — Dy, is the deformation potential constant of the
exciton with D, (Dy,) being the deformation potential constant for electrons (holes). From equation (2a) we can
therefore conclude that the transition energy of each QD is shifted from the unstrained value /; to a time-
dependent value /vy, the shift being proportional to the strain value 7 (¢) at time ¢, according to

Ty (t) = Jw;i + D (). 4

By taking the strain field at the position of the QD we have implicitly assumed that the wavelength of the phonons
contributing to the phonon wave packet is much larger than the size of the QDs, such that the strain value does
not vary over the size of the QD. Typical values for the deformation potential constant are in the range of
D = —10 eV [18]. Together with the strain amplitudes in the experiment (see figure 1(a)) energy shifts of a few
meV are reached. In the following we will directly treat the product Dn as a strain mediated energy shift. In the
current form of the strain control it is a good assumption to treat the phonons as plane waves hitting the QD
layer perpendicularly, such that at a given time tall QDs in the ensemble experience the same shift. One could
also think of phonon wave packets that arrive at a certain angle at the QD layer or that travel in-plane through the
QD ensemble, where QDs at different positions would interact with different parts of the strain wave. For the
description of such a scenario a spatio-temporal extension of the QD laser model would be needed [19-22].
Because the exciton transition energies in the QD ensemble are closely spaced, we introduce the spectral
distribution of the ensemble
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Nop
n(w) =Y 6w — wy), (5)
i=1
and move to a continuous description labeling the QDs by their transition frequencies, i.e., Zw; — /i,
(p;> &> X)) — (P> §,» Xw)sand - — fn (w)dw. The dynamics of the cavity field E is driven by the
macroscopic polarization of the whole ensemble

P= Z M;p, = an(w)pw dw, (6)

where we have assumed that the variation of the dipole matrix elements over the QD ensemble is negligible. By
separating the electric field E(r, t) into the normalized mode function of the microcavity U(r) and a time-
dependent amplitude E(f) according to E(r, t) = E(¢) U(r) and introducing the dimensionless cavity field
amplitude E(¢) with E(t) = i/ /. /(2¢y) E(t) we can write

M-B) _ ge, )

G=i|2<M- U®. 8
12550 (r;) ()

Here, w, denotes the cavity frequency, ¢ is the vacuum permittivity and we have assumed that the coupling
constant has approximately the same value at all QDs of the ensemble, which is reasonable since all QDs arein a
thin layer in the center of the cavity.

To simulate the pumping process we include the occupation of an additional level y = (|y)., (y|.), which
can be thought of as wetting layer state and is phenomenologically coupled to the other levels via constant rates.
With this we finally arrive at the following closed set of equations [16]:

with the coupling constant

%5 =-—m& - iG*fn(w)pw, dw, (9a)
Qo Lty t2mp, + %+ iGER, — g) (9b)

dtpwv 5 Y Tp Y pw 7 Pw w 8.)
g =~ + ux — I(GE, — GED), %)
dixw = —Yaxe + %y, + i(G*E¥p, — GEpj), (9d)

t
i = - + (%e)
dty“) ryl’)/w ’ng,w,y

where 0, (t) = /7w, — /iy (t) is the detuning between the cavity mode and the considered exciton transition.
Note that the equations are given in a frame which rotates with the frequency of the cavity mode. To simulate the
vacuum fluctuations and start the lasing process we add a white noise source to the field amplitude £ in every time
step. The rates ~; in the equations include the pump rate 7, from | 2). t0 |y).» the relaxation rate +, from [y),, to

| )., and the spontaneous decay rate -, from |x),, to |¢)., as shown in figure 2. Additionally -, describes the cavity
loss rate and y a pure dephasing rate, which onlyacts on the polarization p,,.. Following the results in [15] we choose
the same parameters for the laser system, i.e., 7, = 0.4 ps ', ;= 0.03 ps 9 =05ps !,y =1ps ',and
G=2.8ps . Alreadyin [15] it was shown that the strongest laser response on the strain field happens for pump
rates that are slightly above the threshold pump rate, which for our system parameters is approximately the
spontaneous decay rate ;. Thus we define a shifted pump rate as

=% — (10)

3. Results

The main goal for the paper is to separate various effects which contribute to the modulation of the laser output,
in particular the shaking and the adiabatic shift. To eliminate the latter one, we first consider a QD ensemble in
which the number of dots in resonance with the cavity mode remains constant when the exciton energy varies.
The Gaussian ensemble, will be discussed in section 3.2.

The central quantity to illustrate the dynamics of the QD ensemble is the inversion density

dw) = (x, — g )n(w), (11)

which indicates how many QDs with a given transition frequency ware in the excited state. It further reflects the
spectral shape of the ensemble.
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Figure 3. Pulsed modulation of a rectangular ensemble. The strain pulse is bipolar with a duration of 7; = 1 ps. (a) Normalized
intensity I /I as a function of time. The inset shows a schematic picture of the ensemble shape. (b), (c) Inversion density d as a
function of time and energy with fixed cavity resonance in (b) and fixed ensemble position in (c).

3.1. Ensemble with rectangular QD distribution
To analyze the shaking effect we choose an idealized ensemble shape being rectangular with the spectral QD
density given by
/Nao
n(w) =4 A
0  otherwise,

Agp Aqp
for - < fw — ﬂdo < ) (12)

where Nop = 5 x 10*is the total number of QDs and Ay is the width around the center /i, of the ensemble.
By this choice the number of QDs in resonance with the laser cavity is always the same, as long as the cavity
resonance stays in the range of the ensemble. A schematic picture of the ensemble is shown in the inset in

figure 3(a). The cavity resonance is supposed to be initially in the center of the ensemble. Since the pumping is
taken to be the same for the whole ensemble, an energetic shift of the ensemble will bring highly occupied QD
excitons into resonance with the cavity and therefore influence the output of the laser. This process is called
shaking of the ensemble.

3.1.1. Single strain pulse
We start our investigation with a single bipolar strain pulse leading to the energy shift

2
Dn(t) = _770D %exp %[1 — (%) ] , (13)

where the pulse is centred around ¢t = 0 and has a width of 27, between minimum and maximum. In the
following, the maximum amplitude of the energetic shift n([)) will for brevity be referred to as strain amplitude,
but note that this always represents the product D). The negative sign in equation (13) reflects the negative sign
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of the deformation potential D and has been introduced such that a positive strain corresponds also to a positive
value of nOD. The strain dynamics in equation (13) corresponds to a Gaussian phonon wave packet in the lattice
displacement, which is for example generated initially in the experiment [23] or by an ultrafast optical excitation
ofasingle QD [24].

Figure 3 summarizes the response of the QD laser system on the interaction with a strain pulse given by
equation (13) with a duration of 7; = 1psand a strain amplitude of 77 = 10 meV, the width of the QD
ensembleis Aqgp = 100 meV. The strain pulse arrives, when the laser has reached its stationary state. We choose
the pumprateto [, = 20 ys~ . The laser intensity I normalized to the intensity without any strain I is plotted in
figure 3(a) as a function of time . The laser output is dominated by two enhancement peaks that reach values of
about I /I = 10. The maxima are at the positions of the extrema of the strain pulse, marked by red arrows. After
the pulse the intensity shows a period of attenuation around # = 10 ps and eventually goes back to 1.

To get a better insight into the origin of the variation of the laser output figures 3(b) and (c) show the
inversion density d as a function of time ¢ and exciton energy /w. Because in the equation of motion for the
microscopic polarization p,, (equation (9b)) only the detuning between the cavity mode and the considered QD
energy 6, enters, it is not important for the simulation if the QD transition energies are shifted by the strain
according to equation (4) or if all QD transitions stay at the same energies and the cavity resonance is shifted by
the same amount but in the opposite energetic direction. Thus it is possible to present the dynamics of the
inversion density of the QD ensemble either with a fixed cavity resonance energy and a strain affected QD
ensemble (i.e., as a function of /aw, — /ww.) or with a fixed ensemble distribution (/av — 7xvg) and a cavity
resonance that is shifted by the strain dynamics. The former is realized in figure 3(b) and the latter in (c). Both
representations are shown here because in either case different aspects of the inversion dynamics can be
explained more easily. Before the strain pulse, i.e., at t < —4 psboth inversion density representations look the
same. The region between —50 and 50 meV depicts the spectrum of the QD ensemble, for larger energies there
are no QDs which results in a vanishing density (black). At the edges of the ensemble the QDs are highly
occupied, which is seen by the bright color, but in the center, at the position of the cavity mode, an energy range
with reduced inversion densities appears. This depression of the exciton occupation represents the QDs that
contribute to the laser process and is called spectral hole. During the interaction with the strain pulse, i.e., for
—4 ps < t < 4ps, the actual influence of the strain can be seen. Let us first focus on the representation in (b).
The energetic position of the ensemble is shifted proportional to the strain amplitude, therefore the complete
colored area shifts to larger energies, reaches a maximum shift of 77, = 10 meV at —1 ps (left red arrow). It is
then shifted toward smaller energies, reaching again the maximum shift at 1 ps (right red arrow) and goes back to
its initial position. During the whole process the cavity resonance stays at /vy — /7w, = 0.In contrast, the
spectral hole does not stay at the energy of the cavity, it rather follows the strain shift of the ensemble toward
positive energies. While this happens the shape of the spectral hole is strongly modified. After the strain pulse at
t > 4 ps the final spectral hole consists of multiple minima distributed symmetrically around the cavity at 0
meV. For increasing times the outer inversion minima decay and only the original spectral hole remains when
the laser comes back to its steady state.

We now come back to the laser output in (a) and directly compare the enhancement and attenuation features
with the inversion density. The red arrows mark both the maxima of the laser intensity and the extrema of the
strain shift. At the arrowheads two dark spots appear in (b), which represent very small or even negative values of
d. Note that due to clarity the color scale in figures 3(b) and (¢) starts at d = 0, although negative values may
appear when stimulated emission de-occupies a QD exciton. The origin of these strong spectral holes can best be
explained in the picture of a fixed ensemble and a strain shifted cavity resonance in (c). The fact that the edges of
the colored area are fixed shows that the QD energies are unaffected by the strain. Due to the strain shift of the
cavity resonance it first moves to smaller energies and reaches /v — /iy = —10meV att = —1 ps, whichis
marked by the left red arrow. We see that at this time the strong deepening of the spectral hole happens. The
reason is, that the cavity moves toward highly occupied QDs faster than they can fully react on the presence of the
cavity mode. When the cavity shift reaches its maximum at —1 ps, the shift is sufficiently slow for the QDs that
are in resonance with the cavity during that time window to emit stimulatedly into the laser mode. Due to this
switch-on process of QDs that were previously not in resonance with the laser mode, the output increases
drastically resulting in the first peak in (a). The same happens for the second turning point of the strain shift at
t =1 ps. After the strain has shifted the cavity out of resonance again the QDs in these two strong spectral holes
are significantly detuned from the laser mode and can not contribute to the laser output any more. The re-
occupation of the dots appears as decay of the spectral holes. The last feature of the laser intensity in (a) is the
attenuation between t = 7 and 16 ps. After the strain pulse, the cavity resonance is again at the center of the
ensemble and the QDs in the region of the additional outer spectral holes do not contribute to the laser process
any longer. This means that only the QDs within the spectral hole at t < —4 ps, i.e., before the strain pulse, are
important for the intensity. A close look at the shape of the central spectral hole reveals that it is less deep than
before the strain pulse. During the pulse the QD excitons within the spectral hole were detuned from the cavity
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Figure 4. Harmonic modulation of a rectangular ensemble. Top row: normalized intensity I /I, as a function of time. Bottom row:
inversion density d as a function of time and energy with fixed ensemble position. (a), (b) Strain frequency w; = 1 ps’l; (c), (d)
wy = 10ps™(e), () w, = 50 ps~ .

resonance and are therefore higher occupied directly after the pulse. They need a while to reach the stationary
laser state, which has smaller inversions, i.e., a deeper spectral hole. This also results in the reduced intensity. The
original stationary laser state recovers completely at t ~ 20 ps.

Asa side remark, we note that for strain pulses that are significantly longer in time (7; 2 30 ps) the spectral

hole can adiabatically follow the shift of the ensemble, such that always the same amount of QDs takes part in the
laser process and the intensity stays constant (not shown).

3.1.2. Harmonic modulation

We have seen that a shift of the QD ensemble on the picosecond time scale brings the laser system out of
equilibrium and results in variations of the output intensity on the order of tenfold enhancements. In the second
example we tackle the question, under which conditions a laser system driven by a harmonic strain perturbation
reaches a new stationary state.

Besides the fundamental interest, such a study is well connected to recent research. Monochromatic
coherent phonons can be optically created in semiconductor superlattices. A recent experiment demonstrates
narrow band phonon generation with frequencies of more than 2 THz [25, 26], which is comparable to the
values studied in the following. To make maximum use of these vibrations, one can tailor a phononic cavity for
the desired phonon frequency and embed it into the optical resonator—in this way the generated phonons
become confined in the same place as the active medium [27]. In passive optomechanical resonators the
localization of phonons and photons results in an enhanced coupling strength [28], while in alaser device the
resonant strain field leads to a harmonic modulation of the lasing emission [13]. We model the harmonic strain

field by:

0 t< —7,/4

Dn(t) = *7710) cos? (wst) for —71/4<t<0
cos (wst) 0<t
with Te = 27/ W, (14)

i.e., the harmonic strain oscillation is smoothly switched on between t = —7; /4 and t = 0, where 7; is the period
of the strain frequency wj. The laser has reached its stationary output long before the strain oscillation is switched
on.

In figure 4 three different strain frequencies are shown for a pump rate of I}, = 20 ps~ . In the left column
[(@), (b)]wehave w, = 1 psfl, in the middle [(¢), (d)] ws = 10 p571 and on the right [(e), (f)] ws = 50 psfl. The
upper row presents the normalized laser intensity I /1, as a function of time ¢ and the bottom row the inversion
density for a fixed ensemble as a function of time and exciton energy /v — /. Note that in this representation
the energy of the cavity resonance is shifted by the strain.

We start the discussion of the harmonically driven laser system with w, = 1 ps~"in (a) and (b). In the
normalized laser output in (a) two features can be distinguished: on the one hand two strong enhancement peaks

7
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Figure 5. Final mean enhancement for harmonic modulations of a flat ensemble as a function of the strain frequency w. Different
pump rates and strain amplitudes are given. The crosses mark the positions of the maxima.

between t = —1and 4 ps and on the other hand an oscillation around I /I = 2 for t > 4 ps. The double peak
structure at the beginning looks very much like the dynamics in figure 3(a) and also the behavior of the inversion
density in (b) shows the above explained appearance of additional spectral holes at higher energies. Thus we
conclude that the features are due to the switch on of the strain oscillation. The new feature is the oscillatory part
for t > 4 ps, which has a period of half the strain period 7, /2 = 7/w; ~ 3.14 ps. The two red arrows mark
maxima of the intensity, which directly correspond to extrema of the strain oscillation. The movement of the
cavity resonance can be seen in (b) as oscillating dark line around 0 meV. At every antinode of the strain shift the
cavity moves slower and the QDs have time to contribute to the laser process more efficiently, which leads to the
maxima in the intensity. Around the nodes the QD emission can not follow properly and the intensity drops
again. In contrast to the pulsed excitation in figure 3(a) the intensity does not go back to I /I, = 1. This can easily
be understood from the dynamics of the outer spectral holes in figure 4(b). Like in the pulsed case they decay
after the cavity has moved out of resonance with the respective QDs but gets back into resonance before the
excitons are fully re-occupied. Overall we find a broadening of the spectral hole for all times after the strain field
is switched on. This broadening spreads over the full energy range that is covered by the strain shift of the cavity
resonance (or of the ensemble).

The situation shows some decisive differences when increasing the strain frequency to wy, = 10 ps~ ' in
figures 4(c) and (d). The normalized intensity in (c) is still dominated by a pronounced maximum lasting from
t=0to about 7 ps, which arises from the switch-on process of the strain oscillation. At 15 ps the output has
almost reached a stationary value of about I /I, = 2.5. Still the whole curve is covered with an oscillation with
half the strain period 7, /2 = 7/w; ~ 0.31 ps, but with very small amplitudes compared to the previous
example. Also a very different picture is found for the inversion density in (d). The oscillation of the cavity
resonance in form of a dominating spectral hole is no longer resolved. Within the first 5 ps multiple clearly
separated spectral holes appear symmetrically around 7w — /7w, = 0. Apparently now a wide range of exciton
energies contribute to the laser process and lead to the significantly increased, almost constant, laser intensity. A
surprising feature is the appearance of spectral holes at energies larger than the strain shift of n(l)) = 10 meV.The
four outer most lines in the plotare clearly above | /i — /ivg| = 10 meV. We will come back to this point in
more detail below.

The appearance of spectral holes at large energies becomes even more striking when increasing the strain
frequency further to w;, = 50 ps~ " in figure 4(f). After the strain field is switched on the inversion density reaches
astationary state after approximately 25 ps. Three well separated spectral holes show up. While the one in the
middle does not change significantly from the unstrained case two additional ones appear at approximately
£30 meV. For the laser intensity in (e) this enlarged number of QDs contributing to the laser outputleadsto a
slight increase. Obviously the final intensity enhancement is smaller than in the case in (c). Thus it can be
expected that the strain frequency follows some sort of resonance condition.

Before coming back to the shape of the spectral hole under the strain influence, we want to embark on the
dependence of the enhancement on the strain frequency. Figure 5 shows the normalized mean final intensity
I /1 as a function of the strain frequency wj for different strain amplitudes 770D and pump rates I}, as listed in the
picture. Every curve shows a more or less pronounced maximum supporting the prediction, that the strain
induced enhancement works most efficiently for a characteristic frequency. For very small strain frequencies the
laser system can follow adiabatically and for very fast oscillations the laser system is too inert and the response
reduces again. We also see that for higher strain amplitudes the enhancement factors increase. This is intuitive
because the strain-induced shift reaches a larger amount of QDs if the amplitude of the shift is larger. With a
close look at the positions of the maxima (marked by the crosses in figure 5) we find that the peak frequency
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Figure 6. Final spectral hole for harmonic modulations of a rectangular ensemble. (a) Final inversion density for the parameters in
figure 4 as a function of frequency w (bottom axis) and energy /i (top axis). The dotted blue lines show the spectral hole without
strain. (b), (¢) Inversion density as a function of energy /w and strain energy /v, (left axis) or strain frequency w; (right axis). (c)
Zoom-in to the marked area in (b). The dotted black lines mark the position of the higher harmonics following equation (15) as listed

on the rightin (b).

shifts to larger values for increasing pump rates. Thus the characteristic frequency of the laser system becomes
larger for growing pump rates. This growth of the characteristic frequency can also be connected to the
relaxation oscillations during the switch-on of the laser. An example of the relaxation oscillations in our system
can be seen in figure 7(c). It is well known that also the frequency of the relaxation oscillations grows with
increasing pump power [29].

The next focus is on the shape of the spectral hole and its dependence on the strain frequency, which was
already mentioned when discussing figure 4. We have found that multiple depressions appear in the inversion
density. While for small strain frequencies these are restricted to the strain shift amplitude, for increasing
frequencies the additional spectral holes also appeared at larger energies. To get a more quantitative picture
figure 6(a) shows the inversion density at the end of the time windows shown in figures 4(b), (d) and (f) from top
to bottom, respectively. As a reference the spectral hole without any strain is always plotted as dotted blue line.
Note that the bottom x-axis shows the exciton frequency w — wj, while the top one gives the energy /i — /ivy.
For the case of w; = 1ps ™" (top, dark red) the spectral hole is very broad with a rather flat base line, which has a
slight negative tilt. That the slope of the tilt oscillates with the strain frequency is confirmed by the bright red
curve, which shows the same inversion density but half a strain period later. The complete hole spreads over the
energy range, which is covered by the strain shift (n(])D = 10 meV) as can be seen from the two vertical lines. The
middle panel presents the w, = 10 ps~ ' case. Here we want to focus on the frequency axis at the bottom. As
marked by the vertical lines, the well separated minima in the inversion density are exactly at multiples of the
strain frequency, i.e.,at w — wy = +10,+20and +30ps~ . This is further confirmed in the bottom panel for
ws = 50 ps~'. Here the additional spectral holes lie at =50 ps . The second one would appear at 100 ps ™',

which is already outside of the ensemble.
We can conclude that additional spectral holes appear at energies with

(/Z*‘J - ﬁwo)sh = inﬁww nec NO; (15)

i.e., at higher harmonics of the strain frequency.

To develop a complete picture of the strain frequency dependence of the spectral hole figures 6(b) and (¢)
show the inversion density of the QD ensemble at a fixed time long after the switch-on process of the strain field
as a function of the exciton energy /av — /av, and the strain energy according to its frequency /. Panel (c) is a
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Figure 7. Pulsed modulation of a Gaussian ensemble. The strain pulse is Gaussian with a energy shift of 7){ = 10 meV and duration
7, = 5 ps. Top row: normalized intensity I /I, as a function of time. The dashed violet curve shows the dynamics of the strain pulse.
Bottom row: inversion density d as a function of time and energy for a fixed cavity resonance. (a), (b) Initial detuning Ay = 05 (c), (d)
Ay = 10meV;(e), (f) Ay = —10 meV. (g) Schematic picture of the ensemble and the cavity mode.

zoom-in on the dashed area in (b). Focussing first on the large energy range in (b) we see that the central spectral
hole at the initial position of the cavity is almost unperturbed by the strain field. For large strain energies the
additional spectral holes show up as diagonal lines that decay for increasing energies. The dotted black lines
follow equation (15) together with the number of the higher harmonics # given on the right. Within the Floquet
theory it is shown that a harmonically driven two-level system with the energy splitting 7 (2 has multiple
additional so called Floquet states at energies /2 €2 £+ n/avy, where wy is the driving frequency. Therefore QDs that
are detuned from the cavity mode by multiples of the strain frequency gain new transitions that are in resonance
with the cavity. By this they can contribute to the laser process. A more intuitive interpretation of the addition
transitions is as follows: because the QD ensemble is interacting with a phonon system with a discrete spectrum,
single or multiple absorptions and emissions of phonons are possible to overcome the detuning to the cavity
mode. Accordingly, the outer spectral holes arise from excitons, which contribute to the laser process via
phonon assisted transitions. Focussing on the region of small energies in (c) we find a transition area from the
adiabatic situation (/ws ~ 0 meV), where the spectral hole at the position of the cavity mode can immediately
follow the shift of the ensemble, toward the formation of the additional higher harmonic spectral holes for strain
energies /aw > 2.5 meV. Below this energy the widening of the spectral hole is restricted to the range of energies
thatis covered by the strain amplitude 7]([)), i.e., £10 meV. Below 72w = 12.5 meV also the central spectral hole is
not well developed and vanishes within the whole broadening.

3.2. Gaussian ensemble
In the second example, we now want to focus on the adiabatic shift. For this purpose we choose a QD ensemble
shape with a Gaussian distribution given by

2
IN( — Jx
n(w) = &exp N R ) , (16)
NN Aop

which is the same as in [ 15]. Any energetic shift of the ensemble leads to a variation of the number of QDs in
resonance with the cavity mode, therefore the adiabatic shift of the ensemble does inevitable play an important
role. On the other hand the shaking effect cannot be suppressed by a specific choice of the ensemble and will
always contribute. A schematic picture of the ensemble is given in figure 7(g), which also shows the initial
detuning

Aoy = Fwe — Fwg, (17)

between the cavity mode and the ensemble center. The total number of QDs is again Nop = 5 x 10%.

3.2.1. Single strain pulse

As astarting point we choose a monopolar strain pulse to interact with the system. Such pulses have also an
experimental counterpart, namely acoustic solitons, which develop during the nonlinear propagation of the
phonons. They are of special interest, since they combine high frequency phonons with a very small spatial
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Figure 8. Harmonic modulation of a Gaussian ensemble. (a) Schematic picture of the QD density of a Gaussian ensemble with
harmonic strain driving. Phonon assisted satellite peaks are given as dashed line. (b) Laser intensity I as a function of time and initial
detuning A normalized to the strain energy /Ziv;.

extension of only a few nanometers. The dynamics is given by a single Gaussian of the form

2
Dn(t) = —1710) expl—(L) ] (18)
Ts

The amplitude of the strain shift is 770D and the width is given by 7. This strain dynamics is a good approximation
for soliton pulses, which develop during the nonlinear propagation of acoustic pulses [30] (see figure 1(a)). This
choice of the strain pulse is even simpler than the bipolar pulse in equation (13), in order to demonstrate the
effect of the adiabatic ensemble shift more transparently. Figure 8 shows the results for an ensemble width of
Aqgp = 10 meV,apumprateof I, = 10 ps~ ', astrain amplitude of n([)) = 10 meV and a pulse duration of

Ts = 5ps.

We start the discussion with the special case of vanishing initial detuning A, = 0. Due to the symmetry of
the system the reaction on the strain pulse does not depend on the sign of the shift. The results for the normalized
laser intensity are shown in figure 7(a) (solid blue) together with the strain pulse (dotted violet). We see that the
laser output is first increased, then decreased and increased another time during the time of the strain pulse. We
directly compare these dynamics with the behavior of the inversion density in (b), which is here shown for a fixed
cavity resonance, i.e., against the energy 7w, — /aw.. Thus in the figure the ensemble is shifted by the strain field.
Before the strain pulse we clearly see the spectral hole in the center of the Gaussian QD distribution, during the
pulse the ensemble shifts to smaller energies and therefore out of resonance with the cavity. Without the shaking
effect, we would expect a drop of the laser intensity, because the number of QDs in resonance with the laser
mode is reduced during the first half of the strain pulse. However, we contrary first observe an increase of the
intensity in (a), which proves that the shaking effect outweighs the adiabatic response due to the reduced number
of resonant QDs. Likewise the attenuation of the output can be understood because it happens at the maximum
of the strain shift, which happens much slower and the adiabatic shift becomes more important. During the
second half of the strain pulse the ensemble is brought back into resonance with the cavity, such that the shaking
effect and the adiabatic shift work in the same direction and result in a slightly stronger enhancement in (a). As
can be seen in (b) around t = 0 the inversion density increases while the ensemble is out of resonance with the
cavity. When these re-occupied dots get back into the cavity mode they can emit and contribute to the laser
process.

In the other two examples the initial detuning is chosen in the same order as the strain amplitude. In (c) and
(d) the initial detuningis Ay = 10 meV, but the strain shifts the ensemble further away from cavity. For the laser
intensity in (c) this means a complete quenching at t = 0. During the second half of the strain pulse the laser is
switched on again exhibiting the characteristic relaxation oscillations before reaching its original intensity. In the
inversion density in (d) we see that the spectral hole is now at the edge of the ensemble. During the strain pulse
the ensemble shifts to even smaller energies and the spectral hole in the cavity resonance vanishes, leaving an
almost completely occupied Gaussian ensemble. When the ensemble moves back into resonance with the cavity
also the dynamics of the spectral hole reveal the relaxation oscillations. To conclude, the strain leads to a switch-
off of the laser due to the adiabatic reduction of resonant QDs. The pronounced enhancement of the output
happens due to the switch-on process of the laser and is part of the characteristic relaxation oscillations.
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In figures 7(e) and (f) the situation is inverted, the initial detuning is chosen to Ay = —10 meV and the
strain pulse shifts ensemble and cavity into resonance at its maximum. In the intensity in (e) this leads to a strong
enhancement peak. At the end of the pulse around ¢ = 10 ps we also find a significant reduction of the output.
Looking at the inversion density in (f) we see that initially the main part of the ensemble is on the other side of the
cavity. The strain pulse then reduces the detuning. It is clearly visible that most of the QDs become de-occupied
around ¢ = 0. When this large number of QDs emits stimulatedly into the cavity mode, the large enhancement in
(e) is observed. Also while the ensemble is shifted back to the original detuning situation at t = 10 ps, the laser
field is still enhanced. On the other hand due to the previous stimulated emissions there is a reduced number of
occupied excitons, which are not capable of feeding the laser process. Therefore the intensity drops below I,
while enough dots recover their occupation. The system reaches its initial stationary value after t & 25 ps.

3.2.2. Harmonic modulation

In this part we come back to the switched on harmonic strain oscillation from equation (14) and applyittoa
Gaussian ensemble. We choose a small ensemble width of Agp, = 2 meV, astrain frequency of w, = 30 ps™ '
and a strain amplitude of 770D = 25 meV. Note that these parameters were chosen to optimize the visibility of the
effect. Figure 8(a) shows a schematic picture of the QD ensemble (solid orange) together with the cavity mode
(blue). Following the arguments of the Floquet theory in section 3.1 the interaction with the single frequency
phonons of the strain field will lead to additional satellite replicas of the ensemble shifted by multiples of the
strain energy /v, which are indicated by the dotted orange curve. This effect has been seen in
photoluminescence spectra of single QDs that were driven by surface acoustic waves [5].

In figure 8(b) we see the laser intensity as a function of time #and detuning A normalized with respect to the
strain energy /iv;. Before the switch-on of the strain oscillation, i.e., for t < 0 ps, we find an approximately
Gaussian profile of the emission intensity, which directly resembles the ensemble shape because the laser
intensity increases with the number of resonant QDs. When the strain field is switched on additional yellow lines
appear at multiples of the strain energy. This shows that the laser system also works in a completely phonon
assisted situation. A close look at the intensity amplitudes of the assisted lines shows that they are less strong than
the central resonant one. When the strain field is switched on at ¢ = 0 also the central line is significantly
narrowed due to the interaction with the phonons, but recovers almost completely after 150 ps. The lines at
A/ 7wy = £2 appear later, because it takes more time for the system to start and reach the final output. Here it
is more clearly visible that their intensity is less strong, reaching only half the resonant amplitude.

4. Comparison to experiment

With our newly gained knowledge we close the discussion by briefly revisiting the experimental results in

figure 1. Let us first comment on the complex strain pulse, which is obtained in the experiment. Its dynamics
arises from the propagation of the phonons through the sample before reaching the active medium. The
injection of the acoustic pulse happens via an intense picosecond laser pulse that rapidly heats an aluminum film
as shown on the left side of figure 1(a). The heating is associated with an expansion of the film, which launches a
phonon wave packet with an approximately Gaussian lattice displacement into the substrate material. This
lattice displacement corresponds to a bipolar strain pulse of about 20 ps. Due to the large strain amplitudes on
the order of ) &~ 107> nonlinear effects have to be taken into account in the phonon propagation through the
substrate [23, 30]. During this propagation solitons form and the strain pulse gets stretched over a few tens of
picoseconds. Before reaching the QD layer of the sample the strain pulse is additionally modified by passing
through the bottom DBR (left one in figure 1(a)). Multiple transmission and reflection processes in the DBR
then lead to the final dynamics in figure 1(b) that lasts several hundreds of picoseconds.

In the laser output (figure 1(c)) we find first a strong enhancement peak followed by 100 ps of almost
complete quenching. After 200 ps the output is dominated by a harmonic oscillation, reproduced well by the
simulation (figure 1(d)). In the presented example the cavity mode is positively detuned from the QD ensemble,
such that negative strain values reduce the detuning and positive ones increase it. Due to our previous analysis we
are now able to attribute these variations to the two effects: through the first negative solitonic strain pulses both
—shaking and shifting—lead to an increase of the laser output as it was found in figure 7(e). The following
attenuation then has two reasons. On the one hand many QDs were de-occupied during the first intensity peak
and the initial intensity cannot be preserved any longer. On the other hand the mean strain value is positive,
which reduced the laser output naturally through the adiabatic shift. The harmonic oscillation in the last part in
figure 1(b) arises from the adiabatic shift due to the slow harmonic oscillation of the strain field.
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5. Conclusion

In summary we have presented a systematic study of the QD laser emission properties driven by coherent
phonons. By choosing a rectangular ensemble the adiabatic shift of the ensemble could be suppressed and the
shaking effect was analyzed separately. We have shown that the intensity enhancement depends strongly on the
time scale of the phonon field. For harmonic strain oscillations phonon assisted transitions contribute to the
laser output. For a realistic Gaussian ensemble both effects take part in the process. We have found that
depending on the initial detuning, the intensity could either be significantly enhanced or switched-off on an
ultra fast time scale.

The detailed study of the different effects allowed us to obtain a deep understanding of the details of the
measured intensity modulations. With this, it will be possible to tailor the nanostructure as well as the phonon
pulses to reach a desired control of the laser output, may it be a long lasting amplification or a brief enhancement
with a strong amplitude. Hence, our work paves the way for further research both on the theoretical side, e.g. for
further optimization, and on the experimental side, e.g. to fabricate and measure different structures and
phonon pulses.

The demonstrated control of light-matter interaction by acouctic waves may be extended also into the
quantum regime, for example for the deterministic generation of single or entangled photons from a quantum
dot in an optical microresonator. This can be achieved by shifting the exciton transition dynamically to the
optical cavity mode so that a single photon is emitted in resonance condition. Similarly the two transitions in the
bixeciton radiative decade maybe sequentially shifted into cavity resonance. Thereby not only true exciton—
photon control may be obtained but also the temporal jittering of the photon emission times may be reduced.
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