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Abstract
Coherent phonons can greatly vary light–matter interaction in semiconductor nanostructures placed
inside an optical resonator on a picosecond time scale. For an ensemble of quantumdots (QDs) as
active lasermedium, phonons are able to induce a large enhancement or attenuation of the emission
intensity, as has been recently demonstrated. The physics of this coupled phonon–exciton–light
system consists of various effects, which in the experiment typically cannot be clearly separated, in
particular, due to the complicated sample structure a rather complex strain pulse impinges on theQD
ensemble. Herewe present a comprehensive theoretical study how the laser emission is affected by
phonon pulses of various shapes as well as by ensembles with different spectral distributions of the
QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon–exciton–
light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic
shifting of the ensemble and the shaking effect. This paves theway to a tailored laser emission
controlled by phonons.

1. Introduction

At the heart of the growing field of phononics lies the active use of lattice vibrations inmicro- or nanoscale solid
statematerials.Many applications, ranging from the excitation of confined phononmodes in optomechanical
systems [1–3] to the control of confined few-level systems by traveling surface acoustic waves [4–8], prove that
phonons have a great potential to drive and control various solid state systems. A key optical application of solid
state structures is the semiconductor laser. Here semiconductor quantumdots (QDs) play an increasing role as
active lasermedium and, in the extreme limit, even a singleQDhas been shown to give rise to lasing [9–11].
While carrier–phonon interaction is an important ingredient for energy relaxation, e.g., when bringing carriers
from thewetting layer into the laser-activeQDs, for the laser process itself the coupling to phonons often does
not play a crucial role. Only recently, the twofields—phononics and semiconductor laser physics—have been
combined by using traveling coherent phononwave packets to control the laser output [12–14].Wewant to
briefly recap thesefindings: in such an experiment, which is schematically shown in figure 1(a), a layer ofQDs,
surrounded by two distributed Bragg reflectors (DBRs), is used as the active lasermedium,which can be pumped
optically [12, 13] or electrically [14]. By rapidly heating an aluminum film a coherent phononwave packet is
created, which travels through the structure. Due to nonlinear propagation in thematerial and the transit
through the Braggmirror the strain profile arriving at theQD layer, shown infigure 1(b), is rather complex.
When the phonons impinge on theQDs the strain shifts the frequency of the optical transition in theQDs. As a
result, the laser output can be greatly enhanced, but also quenching can be induced. This is demonstrated in
figure 1(c), where an example of themeasured laser intensity Inormalized to the stationary state intensity I0 is
shown. A detailed interpretation of the coupled phonon–exciton–light system is rather sophisticated because
depending on the spectral properties of theQD ensemble and the time scale associatedwith the phonon
dynamics different phenomena contribute to the observedmodulation of the laser output.
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Wehere develop and investigate a semiclassical lasermodel, as depicted infigure 2, to describe the dynamics
of the coupled system consisting of coherent phononwave packets, QD excitons and laser light. Ourmodel has
already been shown towell reproduce the experimentally observed laser outputs [15]. In this paperwe nowuse
themodel to gain a deeper understanding of the coupled phonon–exciton–light systemby systematically
studying different ensemble and strain scenarios. Due to the complex strain pulses present in the experiment, a
clear interpretation and in particular a separation between different phenomena is still challenging. Two effects
turned out to be important, when controlling the laser output: on the one hand the adiabatic shift of the
ensemble, which dynamically changes the number ofQDs in resonancewith the laser cavity. On the other hand
the shaking effect of the ensemble, which rapidly brings initially detuned and therefore highly occupiedQD
excitons into resonance with the cavity. In this paper, we are going to use thismodel to systematically study the
influence of the phonons on the lasing activity and to discriminate between the phenomena of shifting and
shaking. For this purpose, wewill use idealized ensemble shapes (e.g., aflat distribution ofQD transition
energies) and idealized strain pulses (e.g., bipolar ormonopolar pulses ormonochromatic phonons)whichwill
allowus to separate the shaking effect from the adiabatic shift in an intuitive way.

By providing a thorough understanding of the coupled phonon–exciton–light system, we are not only able
to understand the complex laser emission seen in the experiment, but we also lay the foundation to optimize the
system,whichwill then stimulate further studies on phonon control of solid state lasers and pave theway for
designing applications.

Figure 1. (a) Schematic picture of the experiment. (b) Simulated strain field in the experiment. (c)Measured laser intensity normalized
to the stationary state intensity. (d) Simulated laser intensity corresponding to (c).

Figure 2. Sketch of the theoreticalmodel.
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The paper is structured as follows: in section 2 the basics of the semiclassical lasermodel are summarized.
The results are given in section 3,first for a rectangularQDdistribution in section 3.1 and second for aGaussian
ensemble in section 3.2. In section 4we come back to the experimental results infigure 1 and provide a detailed
interpretation on the basis of the results for the idealized cases. The paper closes with some concluding remarks
in section 5.

2. Theoreticalmodel

Tomodel theQD laser systemwe employ a semiclassical lasermodel in the usual dipole, rotatingwave and
slowly varying amplitude approximation [16]. TheQDs are taken to be in the strong confinement limit, such
that for the coupling to the lasermode and the coherent phonons they can be reduced to two-level systems
consisting of ground state g i∣ and exciton state x i∣ with transition frequencies i, Ni 1, 2, ..., QD{ } labelling
the individualQD and NQD being the number ofQDs in the ensemble. TheQD is coupled via the dipolematrix
element Mi to the lightfield, treated as a classical fieldwith positive (negative) frequency component E (E*) as
well as to the acoustic phonons, described by the phonon creation (annihilation) operators bq

† (bq), q denoting
the phononwave vector. TheHamiltonian of theQD ensemble then reads

H h a, 1
N

i 1
i

QD

( )

with

h x x x g g x

g b b x x b

M E M E

, 1

i

q
q q q

i i i i i i i i i

i i

* *∣ ∣ ( · ∣ ∣ · ∣ ∣ )
( ) ∣ ∣ ( )†

and the exciton–phonon couplingmatrix element gq. From theHamiltonian andHeisenberg’s equation of

motionwe obtain the equation ofmotion for themicroscopic polarization p g xi i i∣ ∣ aswell as the
occupations x x xi i i∣ ∣ and g g gi i i∣ ∣ . After truncating the electron–phonon correlation expansion on
themeanfield level, which is appropriate for the description of the coupling to an external coherent phonon
wave packet, we get
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The dominant exciton–phonon coupling in typical InGaAs-basedQDs is provided by the deformation potential
coupling. For thismechanism themeanfield contribution can bewritten as [17]

g b D t D tu r2 Re div , , 3
q

q q i( ) ( ( ) ) ( ) ( )

with tu r ,i( ) being the expectation value of the lattice displacement at the position ri of theQDand
t tu rdiv ,i( ) ( ( ) ) is the corresponding strain. D D De h is the deformation potential constant of the

excitonwith De (Dh) being the deformation potential constant for electrons (holes). From equation (2a)we can
therefore conclude that the transition energy of eachQD is shifted from the unstrained value i to a time-
dependent value x, the shift being proportional to the strain value t( ) at time t, according to

t D t . 4x i( ) ( ) ( )
By taking the strainfield at the position of theQDwehave implicitly assumed that thewavelength of the phonons
contributing to the phononwave packet ismuch larger than the size of theQDs, such that the strain value does
not vary over the size of theQD. Typical values for the deformation potential constant are in the range of
D 10 eV [18]. Togetherwith the strain amplitudes in the experiment (see figure 1(a)) energy shifts of a few
meV are reached. In the followingwewill directly treat the product D as a strainmediated energy shift. In the
current formof the strain control it is a good assumption to treat the phonons as planewaves hitting theQD
layer perpendicularly, such that at a given time t all QDs in the ensemble experience the same shift. One could
also think of phononwave packets that arrive at a certain angle at theQD layer or that travel in-plane through the
QDensemble, whereQDs at different positions would interact with different parts of the strainwave. For the
description of such a scenario a spatio-temporal extension of theQD lasermodel would be needed [19–22].

Because the exciton transition energies in theQDensemble are closely spaced, we introduce the spectral
distribution of the ensemble
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n , 5
N

i 1
i

QD
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andmove to a continuous description labeling theQDs by their transition frequencies, i.e., i ,
p g x p g x, , , ,i i i( ) ( ), and n di ( ) . The dynamics of the cavity field E is driven by the
macroscopic polarization of thewhole ensemble

p n pP M M d , 6
i

i i ( ) ( )

wherewe have assumed that the variation of the dipolematrix elements over theQDensemble is negligible. By
separating the electricfield tE r,( ) into the normalizedmode function of themicrocavity U r( ) and a time-
dependent amplitude E(t) according to t E tE r U r,( ) ( ) ( ) and introducing the dimensionless cavity field
amplitude t( )with E t i t2c 0( ) ( ) ( )we canwrite

G
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with the coupling constant
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0
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Here, c denotes the cavity frequency, 0 is the vacuumpermittivity andwe have assumed that the coupling
constant has approximately the same value at all QDs of the ensemble, which is reasonable since all QDs are in a
thin layer in the center of the cavity.

To simulate the pumping process we include the occupation of an additional level y y y∣ ∣ , which
can be thought of as wetting layer state and is phenomenologically coupled to the other levels via constant rates.
With this we finally arrive at the following closed set of equations [16]:
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where t tc x( ) ( ) is thedetuning between the cavitymode and the considered exciton transition.
Note that the equations are given in a framewhich rotateswith the frequency of the cavitymode. To simulate the
vacuumfluctuations and start the lasing processwe add awhite noise source to thefield amplitude in every time
step.The rates i in the equations include the pumprate p from g∣ to y∣ , the relaxation rate r from y∣ to

x∣ and the spontaneous decay rate d from x∣ to g∣ as shown infigure 2. Additionally l describes the cavity
loss rate andγ a pure dephasing rate, which only acts on the polarizationpω. Following the results in [15]wechoose
the sameparameters for the laser system, i.e., 0.4l ps−1, 0.03d ps−1, 0.5r ps−1, 1ps−1, and
G= 2.8 ps−1. Already in [15] itwas shown that the strongest laser response on the strainfield happens for pump
rates that are slightly above the thresholdpump rate, which for our systemparameters is approximately the
spontaneous decay rate d. Thuswedefine a shifted pump rate as

. 10p p d ( )

3. Results

Themain goal for the paper is to separate various effects which contribute to themodulation of the laser output,
in particular the shaking and the adiabatic shift. To eliminate the latter one, wefirst consider aQDensemble in
which the number of dots in resonance with the cavitymode remains constant when the exciton energy varies.
TheGaussian ensemble, will be discussed in section 3.2.

The central quantity to illustrate the dynamics of theQD ensemble is the inversion density

d x g n , 11( ) ( ) ( ) ( )
which indicates howmanyQDswith a given transition frequencyω are in the excited state. It further reflects the
spectral shape of the ensemble.
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3.1. Ensemblewith rectangularQDdistribution
To analyze the shaking effect we choose an idealized ensemble shape being rectangular with the spectral QD
density given by

n
for

0 otherwise,
12

N

2 0 2
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QD

QD QD⎪
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⎧
⎨
⎩

( ) ( )

where N 5 10QD
4 is the total number ofQDs and QD is thewidth around the center 0 of the ensemble.

By this choice the number ofQDs in resonancewith the laser cavity is always the same, as long as the cavity
resonance stays in the range of the ensemble. A schematic picture of the ensemble is shown in the inset in
figure 3(a). The cavity resonance is supposed to be initially in the center of the ensemble. Since the pumping is
taken to be the same for thewhole ensemble, an energetic shift of the ensemblewill bring highly occupiedQD
excitons into resonance with the cavity and therefore influence the output of the laser. This process is called
shaking of the ensemble.

3.1.1. Single strain pulse
We start our investigationwith a single bipolar strain pulse leading to the energy shift
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where the pulse is centred around t= 0 and has awidth of 2 s betweenminimumandmaximum. In the
following, themaximumamplitude of the energetic shift 0

D will for brevity be referred to as strain amplitude,
but note that this always represents the product D . The negative sign in equation (13) reflects the negative sign

Figure 3.Pulsedmodulation of a rectangular ensemble. The strain pulse is bipolar with a duration of 1s ps. (a)Normalized
intensity I I0 as a function of time. The inset shows a schematic picture of the ensemble shape. (b), (c) Inversion density d as a
function of time and energy withfixed cavity resonance in (b) andfixed ensemble position in (c).
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of the deformation potentialD and has been introduced such that a positive strain corresponds also to a positive
value of 0

D. The strain dynamics in equation (13) corresponds to aGaussian phononwave packet in the lattice
displacement, which is for example generated initially in the experiment [23] or by an ultrafast optical excitation
of a singleQD [24].

Figure 3 summarizes the response of theQD laser systemon the interactionwith a strain pulse given by
equation (13)with a duration of 1s ps and a strain amplitude of 100

D meV, thewidth of theQD
ensemble is 100QD meV. The strain pulse arrives, when the laser has reached its stationary state.We choose
the pump rate to 20p μs−1. The laser intensity Inormalized to the intensity without any strain I0 is plotted in
figure 3(a) as a function of time t. The laser output is dominated by two enhancement peaks that reach values of
about I I 100 . Themaxima are at the positions of the extrema of the strain pulse,marked by red arrows. After
the pulse the intensity shows a period of attenuation around t= 10 ps and eventually goes back to 1.

To get a better insight into the origin of the variation of the laser outputfigures 3(b) and (c) show the
inversion density d as a function of time t and exciton energy . Because in the equation ofmotion for the
microscopic polarization pω (equation (9b)) only the detuning between the cavitymode and the consideredQD
energy enters, it is not important for the simulation if theQD transition energies are shifted by the strain
according to equation (4) or if all QD transitions stay at the same energies and the cavity resonance is shifted by
the same amount but in the opposite energetic direction. Thus it is possible to present the dynamics of the
inversion density of theQDensemble either with a fixed cavity resonance energy and a strain affectedQD
ensemble (i.e., as a function of x c) orwith afixed ensemble distribution ( 0) and a cavity
resonance that is shifted by the strain dynamics. The former is realized infigure 3(b) and the latter in (c). Both
representations are shown here because in either case different aspects of the inversion dynamics can be
explainedmore easily. Before the strain pulse, i.e., at t 4 ps both inversion density representations look the
same. The region between−50 and 50meVdepicts the spectrumof theQDensemble, for larger energies there
are noQDswhich results in a vanishing density (black). At the edges of the ensemble theQDs are highly
occupied, which is seen by the bright color, but in the center, at the position of the cavitymode, an energy range
with reduced inversion densities appears. This depression of the exciton occupation represents theQDs that
contribute to the laser process and is called spectral hole. During the interactionwith the strain pulse, i.e., for

t4 ps 4 ps, the actual influence of the strain can be seen. Let usfirst focus on the representation in (b).
The energetic position of the ensemble is shifted proportional to the strain amplitude, therefore the complete
colored area shifts to larger energies, reaches amaximum shift of 100

D meV at−1 ps (left red arrow). It is
then shifted toward smaller energies, reaching again themaximum shift at 1 ps (right red arrow) and goes back to
its initial position. During thewhole process the cavity resonance stays at 0x c . In contrast, the
spectral hole does not stay at the energy of the cavity, it rather follows the strain shift of the ensemble toward
positive energies.While this happens the shape of the spectral hole is stronglymodified. After the strain pulse at
t 4 ps thefinal spectral hole consists ofmultipleminima distributed symmetrically around the cavity at 0
meV. For increasing times the outer inversionminima decay and only the original spectral hole remainswhen
the laser comes back to its steady state.

We now come back to the laser output in (a) and directly compare the enhancement and attenuation features
with the inversion density. The red arrowsmark both themaxima of the laser intensity and the extrema of the
strain shift. At the arrowheads two dark spots appear in (b), which represent very small or even negative values of
d. Note that due to clarity the color scale infigures 3(b) and (c) starts at d= 0, although negative valuesmay
appearwhen stimulated emission de-occupies aQD exciton. The origin of these strong spectral holes can best be
explained in the picture of afixed ensemble and a strain shifted cavity resonance in (c). The fact that the edges of
the colored area are fixed shows that theQD energies are unaffected by the strain. Due to the strain shift of the
cavity resonance itfirstmoves to smaller energies and reaches 100 meV at t 1ps, which is
marked by the left red arrow.We see that at this time the strong deepening of the spectral hole happens. The
reason is, that the cavitymoves toward highly occupiedQDs faster than they can fully react on the presence of the
cavitymode.When the cavity shift reaches itsmaximumat−1 ps, the shift is sufficiently slow for theQDs that
are in resonancewith the cavity during that timewindow to emit stimulatedly into the lasermode. Due to this
switch-on process ofQDs that were previously not in resonance with the lasermode, the output increases
drastically resulting in the first peak in (a). The same happens for the second turning point of the strain shift at
t= 1 ps. After the strain has shifted the cavity out of resonance again theQDs in these two strong spectral holes
are significantly detuned from the lasermode and can not contribute to the laser output anymore. The re-
occupation of the dots appears as decay of the spectral holes. The last feature of the laser intensity in (a) is the
attenuation between t= 7 and 16 ps. After the strain pulse, the cavity resonance is again at the center of the
ensemble and theQDs in the region of the additional outer spectral holes do not contribute to the laser process
any longer. Thismeans that only theQDswithin the spectral hole at t 4 ps, i.e., before the strain pulse, are
important for the intensity. A close look at the shape of the central spectral hole reveals that it is less deep than
before the strain pulse. During the pulse theQD excitons within the spectral holewere detuned from the cavity
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resonance and are therefore higher occupied directly after the pulse. They need awhile to reach the stationary
laser state, which has smaller inversions, i.e., a deeper spectral hole. This also results in the reduced intensity. The
original stationary laser state recovers completely at t 20 ps.

As a side remark, we note that for strain pulses that are significantly longer in time ( 30s ps) the spectral
hole can adiabatically follow the shift of the ensemble, such that always the same amount ofQDs takes part in the
laser process and the intensity stays constant (not shown).

3.1.2. Harmonicmodulation
Wehave seen that a shift of theQDensemble on the picosecond time scale brings the laser systemout of
equilibrium and results in variations of the output intensity on the order of tenfold enhancements. In the second
examplewe tackle the question, underwhich conditions a laser systemdriven by a harmonic strain perturbation
reaches a new stationary state.

Besides the fundamental interest, such a study is well connected to recent research.Monochromatic
coherent phonons can be optically created in semiconductor superlattices. A recent experiment demonstrates
narrow band phonon generationwith frequencies ofmore than 2THz [25, 26], which is comparable to the
values studied in the following. Tomakemaximumuse of these vibrations, one can tailor a phononic cavity for
the desired phonon frequency and embed it into the optical resonator—in this way the generated phonons
become confined in the same place as the activemedium [27]. In passive optomechanical resonators the
localization of phonons and photons results in an enhanced coupling strength [28], while in a laser device the
resonant strainfield leads to a harmonicmodulation of the lasing emission [13].Wemodel the harmonic strain
field by:

D t

t

t t
t t

0 4

cos for 4 0
cos 0

with 2 , 14

0
D

s

2
s s

s

s s

⎧
⎨⎪
⎩⎪

( ) ( )
( )

( )
i.e., the harmonic strain oscillation is smoothly switched on between t 4s and t= 0, where s is the period
of the strain frequency s. The laser has reached its stationary output long before the strain oscillation is switched
on.

Infigure 4 three different strain frequencies are shown for a pump rate of 20p μs−1. In the left column
[(a), (b)]we have 1s ps−1, in themiddle [(c), (d)] 10s ps−1 and on the right [(e), (f)] 50s ps−1. The
upper rowpresents the normalized laser intensity I I0 as a function of time t and the bottom row the inversion
density for afixed ensemble as a function of time and exciton energy 0. Note that in this representation
the energy of the cavity resonance is shifted by the strain.

We start the discussion of the harmonically driven laser systemwith 1s ps−1 in (a) and (b). In the
normalized laser output in (a) two features can be distinguished: on the one hand two strong enhancement peaks

Figure 4.Harmonicmodulation of a rectangular ensemble. Top row: normalized intensity I I0 as a function of time. Bottom row:
inversion density d as a function of time and energywith fixed ensemble position. (a), (b) Strain frequency 1s ps−1; (c), (d)

10s ps−1; (e), (f) 50s ps−1.
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between t 1 and 4 ps and on the other hand an oscillation around I I 20 for t 4 ps. The double peak
structure at the beginning looks verymuch like the dynamics infigure 3(a) and also the behavior of the inversion
density in (b) shows the above explained appearance of additional spectral holes at higher energies. Thuswe
conclude that the features are due to the switch on of the strain oscillation. The new feature is the oscillatory part
for t 4 ps, which has a period of half the strain period 2 3.14s s ps. The two red arrowsmark
maxima of the intensity, which directly correspond to extrema of the strain oscillation. Themovement of the
cavity resonance can be seen in (b) as oscillating dark line around 0meV. At every antinode of the strain shift the
cavitymoves slower and theQDs have time to contribute to the laser processmore efficiently, which leads to the
maxima in the intensity. Around the nodes theQDemission can not followproperly and the intensity drops
again. In contrast to the pulsed excitation in figure 3(a) the intensity does not go back to I I 10 . This can easily
be understood from the dynamics of the outer spectral holes infigure 4(b). Like in the pulsed case they decay
after the cavity hasmoved out of resonancewith the respectiveQDs but gets back into resonance before the
excitons are fully re-occupied. Overall wefind a broadening of the spectral hole for all times after the strainfield
is switched on. This broadening spreads over the full energy range that is covered by the strain shift of the cavity
resonance (or of the ensemble).

The situation shows some decisive differences when increasing the strain frequency to 10s ps−1 in
figures 4(c) and (d). The normalized intensity in (c) is still dominated by a pronouncedmaximum lasting from
t= 0 to about 7 ps, which arises from the switch-on process of the strain oscillation. At 15 ps the output has
almost reached a stationary value of about I I 2.50 . Still thewhole curve is coveredwith an oscillationwith
half the strain period 2 0.31s s ps, butwith very small amplitudes compared to the previous
example. Also a very different picture is found for the inversion density in (d). The oscillation of the cavity
resonance in formof a dominating spectral hole is no longer resolved.Within the first 5 psmultiple clearly
separated spectral holes appear symmetrically around 00 . Apparently now awide range of exciton
energies contribute to the laser process and lead to the significantly increased, almost constant, laser intensity. A
surprising feature is the appearance of spectral holes at energies larger than the strain shift of 100

D meV. The
four outermost lines in the plot are clearly above 100∣ ∣ meV.Wewill come back to this point in
more detail below.

The appearance of spectral holes at large energies becomes evenmore strikingwhen increasing the strain
frequency further to 50s ps−1 infigure 4(f). After the strain field is switched on the inversion density reaches
a stationary state after approximately 25 ps. Threewell separated spectral holes showup.While the one in the
middle does not change significantly from the unstrained case two additional ones appear at approximately
±30 meV. For the laser intensity in (e) this enlarged number ofQDs contributing to the laser output leads to a
slight increase. Obviously the final intensity enhancement is smaller than in the case in (c). Thus it can be
expected that the strain frequency follows some sort of resonance condition.

Before coming back to the shape of the spectral hole under the strain influence, wewant to embark on the
dependence of the enhancement on the strain frequency. Figure 5 shows the normalizedmeanfinal intensity
I I0 as a function of the strain frequency s for different strain amplitudes 0

D and pump rates p as listed in the
picture. Every curve shows amore or less pronouncedmaximum supporting the prediction, that the strain
induced enhancementworksmost efficiently for a characteristic frequency. For very small strain frequencies the
laser system can follow adiabatically and for very fast oscillations the laser system is too inert and the response
reduces again.We also see that for higher strain amplitudes the enhancement factors increase. This is intuitive
because the strain-induced shift reaches a larger amount ofQDs if the amplitude of the shift is larger.With a
close look at the positions of themaxima (marked by the crosses infigure 5)wefind that the peak frequency

Figure 5. Finalmean enhancement for harmonicmodulations of a flat ensemble as a function of the strain frequency s. Different
pump rates and strain amplitudes are given. The crossesmark the positions of themaxima.

8

New J. Phys. 19 (2017) 073001 DWigger et al



shifts to larger values for increasing pump rates. Thus the characteristic frequency of the laser systembecomes
larger for growing pump rates. This growth of the characteristic frequency can also be connected to the
relaxation oscillations during the switch-on of the laser. An example of the relaxation oscillations in our system
can be seen infigure 7(c). It is well known that also the frequency of the relaxation oscillations growswith
increasing pumppower [29].

The next focus is on the shape of the spectral hole and its dependence on the strain frequency, whichwas
alreadymentionedwhen discussing figure 4.We have found thatmultiple depressions appear in the inversion
density.While for small strain frequencies these are restricted to the strain shift amplitude, for increasing
frequencies the additional spectral holes also appeared at larger energies. To get amore quantitative picture
figure 6(a) shows the inversion density at the end of the timewindows shown infigures 4(b), (d) and (f) from top
to bottom, respectively. As a reference the spectral hole without any strain is always plotted as dotted blue line.
Note that the bottom x-axis shows the exciton frequency 0, while the top one gives the energy 0.
For the case of 1s ps−1 (top, dark red) the spectral hole is very broadwith a rather flat base line, which has a
slight negative tilt. That the slope of the tilt oscillates with the strain frequency is confirmed by the bright red
curve, which shows the same inversion density but half a strain period later. The complete hole spreads over the
energy range, which is covered by the strain shift ( 100

D meV) as can be seen from the two vertical lines. The
middle panel presents the 10s ps−1 case. Herewewant to focus on the frequency axis at the bottom. As
marked by the vertical lines, thewell separatedminima in the inversion density are exactly atmultiples of the
strain frequency, i.e., at 100 ,±20 and±30 ps−1. This is further confirmed in the bottompanel for

50s ps−1. Here the additional spectral holes lie at±50 ps−1. The second onewould appear at±100 ps−1,
which is already outside of the ensemble.

We can conclude that additional spectral holes appear at energies with

n n, , 150 sh s 0( ) ( )

i.e., at higher harmonics of the strain frequency.
To develop a complete picture of the strain frequency dependence of the spectral hole figures 6(b) and (c)

show the inversion density of theQDensemble at afixed time long after the switch-on process of the strain field
as a function of the exciton energy 0 and the strain energy according to its frequency s. Panel (c) is a

Figure 6. Final spectral hole for harmonicmodulations of a rectangular ensemble. (a) Final inversion density for the parameters in
figure 4 as a function of frequencyω (bottom axis) and energy (top axis). The dotted blue lines show the spectral hole without
strain. (b), (c) Inversion density as a function of energy and strain energy s (left axis) or strain frequency s (right axis). (c)
Zoom-in to themarked area in (b). The dotted black linesmark the position of the higher harmonics following equation (15) as listed
on the right in (b).
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zoom-in on the dashed area in (b). Focussing first on the large energy range in (b)we see that the central spectral
hole at the initial position of the cavity is almost unperturbed by the strain field. For large strain energies the
additional spectral holes showup as diagonal lines that decay for increasing energies. The dotted black lines
follow equation (15) togetherwith the number of the higher harmonics n given on the right.Within the Floquet
theory it is shown that a harmonically driven two-level systemwith the energy splitting hasmultiple
additional so called Floquet states at energies n d, where d is the driving frequency. ThereforeQDs that
are detuned from the cavitymode bymultiples of the strain frequency gain new transitions that are in resonance
with the cavity. By this they can contribute to the laser process. Amore intuitive interpretation of the addition
transitions is as follows: because theQDensemble is interactingwith a phonon systemwith a discrete spectrum,
single ormultiple absorptions and emissions of phonons are possible to overcome the detuning to the cavity
mode. Accordingly, the outer spectral holes arise from excitons, which contribute to the laser process via
phonon assisted transitions. Focussing on the region of small energies in (c)wefind a transition area from the
adiabatic situation ( 0s meV), where the spectral hole at the position of the cavitymode can immediately
follow the shift of the ensemble, toward the formation of the additional higher harmonic spectral holes for strain
energies 2.5meV. Below this energy thewidening of the spectral hole is restricted to the range of energies
that is covered by the strain amplitude 0

D, i.e.,±10meV. Below 12.5 meV also the central spectral hole is
not well developed and vanisheswithin thewhole broadening.

3.2. Gaussian ensemble
In the second example, we nowwant to focus on the adiabatic shift. For this purpose we choose aQD ensemble
shapewith aGaussian distribution given by

n
N

exp , 16QD

QD

0

QD

2⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )

which is the same as in [15]. Any energetic shift of the ensemble leads to a variation of the number ofQDs in
resonancewith the cavitymode, therefore the adiabatic shift of the ensemble does inevitable play an important
role. On the other hand the shaking effect cannot be suppressed by a specific choice of the ensemble andwill
always contribute. A schematic picture of the ensemble is given infigure 7(g), which also shows the initial
detuning

, 170 c 0 ( )

between the cavitymode and the ensemble center. The total number ofQDs is again N 5 10QD
4.

3.2.1. Single strain pulse
As a starting point we choose amonopolar strain pulse to interact with the system. Such pulses have also an
experimental counterpart, namely acoustic solitons, which develop during the nonlinear propagation of the
phonons. They are of special interest, since they combine high frequency phononswith a very small spatial

Figure 7.Pulsedmodulation of aGaussian ensemble. The strain pulse is Gaussianwith a energy shift of 100
D meVand duration

5s ps. Top row: normalized intensity I I0 as a function of time. The dashed violet curve shows the dynamics of the strain pulse.
Bottom row: inversion density d as a function of time and energy for afixed cavity resonance. (a), (b) Initial detuning 0;0 (c), (d)

100 meV; (e), (f) 100 meV. (g) Schematic picture of the ensemble and the cavitymode.

10

New J. Phys. 19 (2017) 073001 DWigger et al



extension of only a fewnanometers. The dynamics is given by a single Gaussian of the form

D t
t

exp . 180
D

s

2⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )

The amplitude of the strain shift is 0
D and thewidth is given by s. This strain dynamics is a good approximation

for soliton pulses, which develop during the nonlinear propagation of acoustic pulses [30] (seefigure 1(a)). This
choice of the strain pulse is even simpler than the bipolar pulse in equation (13), in order to demonstrate the
effect of the adiabatic ensemble shiftmore transparently. Figure 8 shows the results for an ensemble width of

10QD meV, a pump rate of 10p ps−1, a strain amplitude of 100
D meV and a pulse duration of

5s ps.
We start the discussionwith the special case of vanishing initial detuning 00 . Due to the symmetry of

the system the reaction on the strain pulse does not depend on the sign of the shift. The results for the normalized
laser intensity are shown infigure 7(a) (solid blue) together with the strain pulse (dotted violet).We see that the
laser output isfirst increased, then decreased and increased another time during the time of the strain pulse.We
directly compare these dynamics with the behavior of the inversion density in (b), which is here shown for afixed
cavity resonance, i.e., against the energy x c. Thus in thefigure the ensemble is shifted by the strain field.
Before the strain pulsewe clearly see the spectral hole in the center of theGaussianQDdistribution, during the
pulse the ensemble shifts to smaller energies and therefore out of resonancewith the cavity.Without the shaking
effect, wewould expect a drop of the laser intensity, because the number ofQDs in resonancewith the laser
mode is reduced during the first half of the strain pulse.However, we contraryfirst observe an increase of the
intensity in (a), which proves that the shaking effect outweighs the adiabatic response due to the reduced number
of resonantQDs. Likewise the attenuation of the output can be understood because it happens at themaximum
of the strain shift, which happensmuch slower and the adiabatic shift becomesmore important. During the
second half of the strain pulse the ensemble is brought back into resonancewith the cavity, such that the shaking
effect and the adiabatic shift work in the same direction and result in a slightly stronger enhancement in (a). As
can be seen in (b) around t= 0 the inversion density increases while the ensemble is out of resonancewith the
cavity.When these re-occupied dots get back into the cavitymode they can emit and contribute to the laser
process.

In the other two examples the initial detuning is chosen in the same order as the strain amplitude. In (c) and
(d) the initial detuning is 100 meV, but the strain shifts the ensemble further away from cavity. For the laser
intensity in (c) thismeans a complete quenching at t= 0.During the second half of the strain pulse the laser is
switched on again exhibiting the characteristic relaxation oscillations before reaching its original intensity. In the
inversion density in (d)we see that the spectral hole is now at the edge of the ensemble. During the strain pulse
the ensemble shifts to even smaller energies and the spectral hole in the cavity resonance vanishes, leaving an
almost completely occupiedGaussian ensemble.When the ensemblemoves back into resonancewith the cavity
also the dynamics of the spectral hole reveal the relaxation oscillations. To conclude, the strain leads to a switch-
off of the laser due to the adiabatic reduction of resonantQDs. The pronounced enhancement of the output
happens due to the switch-on process of the laser and is part of the characteristic relaxation oscillations.

Figure 8.Harmonicmodulation of aGaussian ensemble. (a) Schematic picture of theQDdensity of aGaussian ensemble with
harmonic strain driving. Phonon assisted satellite peaks are given as dashed line. (b) Laser intensity I as a function of time and initial
detuning 0 normalized to the strain energy s.
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Infigures 7(e) and (f) the situation is inverted, the initial detuning is chosen to 100 meV and the
strain pulse shifts ensemble and cavity into resonance at itsmaximum. In the intensity in (e) this leads to a strong
enhancement peak. At the end of the pulse around t= 10 pswe alsofind a significant reduction of the output.
Looking at the inversion density in (f)we see that initially themain part of the ensemble is on the other side of the
cavity. The strain pulse then reduces the detuning. It is clearly visible thatmost of theQDs become de-occupied
around t= 0.When this large number ofQDs emits stimulatedly into the cavitymode, the large enhancement in
(e) is observed. Alsowhile the ensemble is shifted back to the original detuning situation at t= 10 ps, the laser
field is still enhanced.On the other hand due to the previous stimulated emissions there is a reduced number of
occupied excitons, which are not capable of feeding the laser process. Therefore the intensity drops below I0,
while enough dots recover their occupation. The system reaches its initial stationary value after t 25 ps.

3.2.2. Harmonicmodulation
In this part we come back to the switched on harmonic strain oscillation from equation (14) and apply it to a
Gaussian ensemble.We choose a small ensemblewidth of 2QD meV, a strain frequency of 30s ps−1

and a strain amplitude of 250
D meV.Note that these parameters were chosen to optimize the visibility of the

effect. Figure 8(a) shows a schematic picture of theQDensemble (solid orange) together with the cavitymode
(blue). Following the arguments of the Floquet theory in section 3.1 the interactionwith the single frequency
phonons of the strainfieldwill lead to additional satellite replicas of the ensemble shifted bymultiples of the
strain energy s, which are indicated by the dotted orange curve. This effect has been seen in
photoluminescence spectra of singleQDs that were driven by surface acoustic waves [5].

Infigure 8(b)we see the laser intensity as a function of time t and detuning 0 normalizedwith respect to the
strain energy s. Before the switch-on of the strain oscillation, i.e., for t 0 ps, we find an approximately
Gaussian profile of the emission intensity, which directly resembles the ensemble shape because the laser
intensity increases with the number of resonantQDs.When the strainfield is switched on additional yellow lines
appear atmultiples of the strain energy. This shows that the laser system alsoworks in a completely phonon
assisted situation. A close look at the intensity amplitudes of the assisted lines shows that they are less strong than
the central resonant one.When the strainfield is switched on at t= 0 also the central line is significantly
narrowed due to the interactionwith the phonons, but recovers almost completely after 150 ps. The lines at

20 s appear later, because it takesmore time for the system to start and reach the final output.Here it
ismore clearly visible that their intensity is less strong, reaching only half the resonant amplitude.

4. Comparison to experiment

With our newly gained knowledgewe close the discussion by briefly revisiting the experimental results in
figure 1. Let usfirst comment on the complex strain pulse, which is obtained in the experiment. Its dynamics
arises from the propagation of the phonons through the sample before reaching the activemedium. The
injection of the acoustic pulse happens via an intense picosecond laser pulse that rapidly heats an aluminum film
as shown on the left side offigure 1(a). The heating is associatedwith an expansion of the film, which launches a
phononwave packet with an approximately Gaussian lattice displacement into the substratematerial. This
lattice displacement corresponds to a bipolar strain pulse of about 20 ps. Due to the large strain amplitudes on
the order of 10 3 nonlinear effects have to be taken into account in the phonon propagation through the
substrate [23, 30]. During this propagation solitons form and the strain pulse gets stretched over a few tens of
picoseconds. Before reaching theQD layer of the sample the strain pulse is additionallymodified by passing
through the bottomDBR (left one infigure 1(a)).Multiple transmission and reflection processes in theDBR
then lead to the final dynamics infigure 1(b) that lasts several hundreds of picoseconds.

In the laser output (figure 1(c))wefind first a strong enhancement peak followed by 100 ps of almost
complete quenching. After 200 ps the output is dominated by a harmonic oscillation, reproducedwell by the
simulation (figure 1(d)). In the presented example the cavitymode is positively detuned from theQDensemble,
such that negative strain values reduce the detuning and positive ones increase it. Due to our previous analysis we
are now able to attribute these variations to the two effects: through thefirst negative solitonic strain pulses both
—shaking and shifting—lead to an increase of the laser output as it was found infigure 7(e). The following
attenuation then has two reasons. On the one handmanyQDswere de-occupied during the first intensity peak
and the initial intensity cannot be preserved any longer. On the other hand themean strain value is positive,
which reduced the laser output naturally through the adiabatic shift. The harmonic oscillation in the last part in
figure 1(b) arises from the adiabatic shift due to the slowharmonic oscillation of the strainfield.
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5. Conclusion

In summarywe have presented a systematic study of theQD laser emission properties driven by coherent
phonons. By choosing a rectangular ensemble the adiabatic shift of the ensemble could be suppressed and the
shaking effect was analyzed separately.We have shown that the intensity enhancement depends strongly on the
time scale of the phonon field. For harmonic strain oscillations phonon assisted transitions contribute to the
laser output. For a realistic Gaussian ensemble both effects take part in the process.We have found that
depending on the initial detuning, the intensity could either be significantly enhanced or switched-off on an
ultra fast time scale.

The detailed study of the different effects allowed us to obtain a deep understanding of the details of the
measured intensitymodulations.With this, it will be possible to tailor the nanostructure as well as the phonon
pulses to reach a desired control of the laser output,may it be a long lasting amplification or a brief enhancement
with a strong amplitude. Hence, our work paves theway for further research both on the theoretical side, e.g. for
further optimization, and on the experimental side, e.g. to fabricate andmeasure different structures and
phonon pulses.

The demonstrated control of light–matter interaction by acouctic wavesmay be extended also into the
quantum regime, for example for the deterministic generation of single or entangled photons from a quantum
dot in an opticalmicroresonator. This can be achieved by shifting the exciton transition dynamically to the
optical cavitymode so that a single photon is emitted in resonance condition. Similarly the two transitions in the
bixeciton radiative decademaybe sequentially shifted into cavity resonance. Thereby not only true exciton–
photon controlmay be obtained but also the temporal jittering of the photon emission timesmay be reduced.
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