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Abstract

This thesis details findings related to the effects of magnetic field fluctuations on

the properties of microturbulent transport in fusion plasmas. To this end, direct

numerical analyses and supporting analytical investigations are performed.

Primarily, the gyrokinetic turbulence code Gene is employed to obtain the re-

sults presented here – the derivation of its basic equations is outlined, along with

its most important numerical features. Examples for contributions to its devel-

opment are given in a detailed study of the effects of multiple (hyper-)diffusion

terms on Gene simulations, as well as in an overview of data visualization tools.

The rest of the thesis is focussed on physical scenarios.

Advances are presented in electromagnetic simulations with so-called Cyclone

Base Case parameters: Linearly, the subdominant and stable behavior of Kinetic

Ballooning Modes (KBMs) is studied, along with mode interactions and trans-

formations. The nonlinearly accessible range of the plasma pressure is extended

significantly, showing for the first time examples of KBM turbulence. Multiple

analyses concerning the transport levels at high pressure are performed, including

quasilinear models and zonal flow studies. To augment these results, a second

operation point is chosen in the Trapped Electron Mode regime which displays

different physical behavior in multiple aspects.

The aforementioned simulations are analyzed to solidify a test particle based

model for the magnetic transport, to study the nature of changes to the magnetic

geometry due to fluctuations of the magnetic field, and to investigate the behavior

of fast ions as they are subjected to electromagnetic fields. Additionally, effects

of realistic geometry on simulations at finite plasma pressure are discussed.

Finally, two astrophysical scenarios are analyzed in the context of microturbulent

heat transport levels. In the case of evaporating cold gas clouds immersed in much

hotter material, such transport may have a significant impact on the standard

model for these objects.



Zusammenfassung

In der vorliegenden Arbeit werden Untersuchungen zu den Auswirkungen von

Magnetfeldfluktuationen auf die Eigenschaften turbulenten Transports in Fu-

sionsplasmen dargelegt. Hierzu werden direkte numerische Analysen wie auch

analytische Modellrechnungen eingesetzt.

Primär wird der gyrokinetische Turbulenzcode Gene für die Berechnung der

hier dargestellten Ergebnisse verwendet – die Herleitung seiner Grundgleichungen

wie auch die wichtigsten seiner numerischen Fähigkeiten werden beschrieben.

Beispiele von Beiträgen zu seiner Entwicklung beinhalten eine ausführliche Studie

der Effekte verschiedener (Hyper-)Diffusionsterme auf Gene-Simulationen, aber

auch einen Überblick über Programme zur Datenvisualisierung. Der übrige Teil

dieser Arbeit behandelt physikalische Szenarien.

Fortschritte bei elektromagnetischen Simulationen mit sogenannten Cyclone-Base-

Case-Parametern sind aufgeführt: Im Falle linearer Rechnungen werden das sub-

dominante und stabile Verhalten von Kinetischen Ballooning-Moden (KBM) un-

tersucht; auch Wechselwirkung und Transformation von Moden wird behandelt.

Nichtlinear wird der zugängliche Wertebereich des Plasmadrucks stark erweitert,

und erstmalig werden Fälle von KBM-Turbulenz präsentiert. Verschiedene Trans-

portanalysen werden eingesetzt, unter anderem quasilineare Modelle und Unter-

suchungen von sogenannten Zonal Flows. Zur Erweiterung dieser Studie wird ein

zweiter Parametersatz hinzugezogen, bei welchem Turbulenz von Gefangenen-

Elektronen-Moden zu einem qualitativ abweichenden physikalischen Verhalten

führt.

Die oben erwähnten Simulationen werden zusätzlichen Analysen unterworfen zu

Untersuchungen eines Modells für den magnetischen Transport, des Einflusses

von Magnetfeldfluktuationen auf die Magnetfeldstruktur sowie des Verhaltens

schneller Ionen in elektromagnetischen Feldern. Zusätzlich werden Effekte real-

istischer Geometrien auf Simulationen mit endlichem Plasmadruck besprochen.

Zuletzt werden zwei astrophysikalische Szenarien untersucht; hierbei steht der

Einfluß mikroturbulenten Transports im Vordergrund. Im Fall verdampfender

kalter Gaswolken in einem deutlich heißeren Medium besteht die Möglichkeit,

daß anomaler Transport einen signifikanten Einfluß auf das Standardmodell für

solche Objekte hat.
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Chapter 1

Introduction – Nuclear Fusion

By the time our young children reach middle age, fusion may begin

to deliver energy independence and energy abundance to all nations

rich and poor. Fusion is a promise for the future we must not

ignore.

Spencer Abraham

Even if it succeeds, [ITER] will be just a proof of concept, with

commercial fusion power still decades away. But if we don’t reach

for such lofty goals, we may eventually find ourselves moving past

denial into the next stage: depression.

Corey S. Powell

Imitating nature has provided mankind with some great advancements even in

the most complex technological fields – looking to the gecko for surface adhesion,

constructing a robotic water strider, or analyzing lotus leaves in order to under-

stand their self-cleaning property. One of the most critical resources, energy, is

provided to this planet by the Sun via nuclear fusion. However, humanity is still

dependent on energy sources that are becoming increasingly scarce. At the same

time, the corresponding production processes are highly problematic, be it due

to the carbon emissions caused by burning fossil fuels or the fact that permanent

nuclear waste storage is still an unsolved problem. Creating a small star on Earth

would be but another step in following nature’s teachings.

11
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Figure 1.1: Chart of the binding energies of selected atomic nuclei. The elements

to the left of iron – the stablest nucleus – can be combined in fusion processes,

while the elements to the right may be split; in both cases energy is released.

The maximal energy gain is achieved by fusing the lightest of elements, utilizing

the large slope of this graph at the lowest mass numbers. Source: [1]

In fusion processes, light nuclei are combined into heavier ones, releasing energy

corresponding to the mass difference of the output and input nuclei; much in

analogy to nuclear fission, where very heavy elements are split into lighter ones.

A significant difference, however, lies in the potential energy gain per elementary

process which for fusion exceeds the fission gain by an order of magnitude (see

Fig. 1.1).

During the fusion process, two (positively charged) nuclei approach one another

closely enough for the strong nuclear force to overcome the electrostatic repulsion

and thus combine them into a single nucleus. For typical reactions, the energy

yield is ∼ 10 MeV – roughly six orders of magnitude larger than the ionization

energy of hydrogen which can be used as an upper boundary estimate for chemical

reaction energies. Therefore, relying on fusion reactions for power generation

would require substantially less fueling material compared to chemical reactions,

e.g.: burning of coal.
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Overcoming the Coulomb barrier requires large particle energies. If one was to

consider only classical particles, the resulting necessary temperature would be

enormous – the Sun could not be powered by fusion processes. However, as a

consequence of the uncertainty principle for position and momentum, the wave

functions of the nuclei may overlap before they have penetrated their respective

Coulomb barriers, making a fusion reaction possible via tunneling at much lower

energy than the classical prediction.

1.1 Fusion Reactions

The universe owes the existence of heavier elements to supernova explosions where

for a very short time, thermodynamic conditions allow for the creation of a wide

range of nuclei. However, in most other cases – be it the nucleosynthesis in the

early universe, a main branch star, or a fusion reactor – very light elements are

fusing to form only slightly heavier ones.

1.1.1 Astrophysical Fusion Processes

Within the first half hour after the Big Bang, roughly one quarter of the baryonic

mass was converted to helium by fusing protons and neutrons (free neutrons

were highly abundant at that point); however, due to the rapid expansion of the

universe, temperature and pressure soon dropped below the required levels and

thus halted nuclear fusion reactions. Only later, after the formation of the first

stars, did fusion-relevant conditions occur again.

Proton-Proton Chain

Most stars, the Sun with a central temperature of abount 107K being one of them,

mainly rely on the proton-proton chain to produce energy. In this sequence of

reactions, four protons are converted to an alpha particle,

4 1
1H + 2e− −→ 4

2He + 2νe + 26.7MeV .

There are multiple different ways in which the last step – the creation of the

helium nucleus – may be realized. This has an impact on the reaction rate and

the energies of the neutrinos produced in the reactions, but not on the reaction

equation.
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CNO Cycle

Heavier stars can use carbon as a catalyst to burn hydrogen with higher efficiency.

In the standard version of the so-called CNO (carbon-nitrogen-oxygen) cycle, a

carbon nucleus fuses with a proton to produce nitrogen, β+-decays back into

carbon, picks up two more protons to form oxygen, followed by another β+ decay.

During the last step, the oxygen fuses with another proton into a metastable

nucleus that decays into carbon and helium, again creating the previously used

catalyst. Together, these steps yield the same result as the proton-proton cycle,

only at somewhat different reaction rates. More specifically, for the CNO cycle

to be more efficient than the proton-proton chain, slightly higher temperatures

than those in the Sun are required.

Triple-Alpha Process

Another very important fusion process that occurs in older stars is the triple-

alpha process. Here, three helium nuclei are combined into a carbon nucleus,

3 4
2He −→ 12

6C + 7.4MeV .

The triple-alpha process is the link between the production of helium and that of

heavier elements. The first generation of stars after the Big Bang had no initial

helium abundance; thus, heavier elements could be bred only after those stars

had undergone their triple-alpha phase.

1.1.2 Power Plants: Deuterium and Tritium

On Earth, it is significantly more difficult to create an environment in which

controlled fusion reactions happen at a reasonably high rate. Stars are held

together by their own gravity and mostly do not fuse their nuclear material

very efficiently; this fact is illustrated by their long lifetime. Terrestrial fusion,

however, needs to be implemented on much smaller spatial scales and at the

highest possible efficiency. The latter can be achieved by selecting the reaction

with the largest cross-section while optimizing temperature and pressure.

Fig. 1.2 shows how the cross-sections of different fusion reactions depend on the

temperature. Clearly, D-T fusion is the most efficient reaction unless one plans on

venturing into temperature ranges which are extremely difficult to access. From

the reaction equation,

2
1D + 3

1T −→ 4
2He + 1

0n + 17.6MeV ,
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Figure 1.2: Cross sections of fusion reactions involving light elements as a function

of the energy of one participant in the rest frame of the second participant. D-T

fusion is the most efficient reaction in this energy range. Source: [2]
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one can infer that no weak interaction processes occur which would strongly

reduce the reaction rate. Another useful feature of D-T fusion is that the reaction

produces a fast neutron, carrying 14.1MeV, or four fifths, of the total kinetic

energy. This provides the means to extract energy from the reactor by making

use of the heat created by those same neutrons when they collide with the reactor

walls.

One can use the Lawson criterion to estimate the required conditions for a burning

plasma; in this state, the energy losses to the environment are (over-)compensated

by the energy released in the fusion reactions. For a D-T plasma, the criterion

reads

neTτE ≥ 1021 keV s/m3 . (1.1)

Thus, for given temperature T and density ne, one has to maximize the energy

confinement time τE (which is the duration over which the plasma energy, mea-

sured at one point of time, remains in the system) to maximize the efficiency of

a fusion reactor.

Going from stellar to terrestial scales is more difficult, for gravity can no longer

hold the plasma together; confinement of the fusion material is still the subject of

ongoing research. The most promising approach is to confine a hot plasma by the

use of magnetic fields to insulate it from the reactor walls. An alternative concept

is to create fusion conditions only for a very short time – maximizing efficiency

instead by increasing the other quantities in the Lawson criterion, density and

temperature – in a non-equilibrium fashion. This is achieved by heating a D-T

pellet with strong lasers, with the material fusing until the density is becoming

too low due to the resulting expansion. The focus of this thesis, however, lies on

magnetic confinement.

1.2 Magnetic Confinement Research

Generally, there are two concepts of confining a plasma in a magnetic field: one

can either construct a magnetic mirror, or one needs to create a toroidal field

structure. The Earth’s atmosphere is an example of the former, shielding the

planet from energetic particles. However, using that principle to build a fusion

reactor has failed mostly due to the problem that it is not possible to maintain an

anisotropic velocity distribution sufficiently long which is required for the mirror

effect to confine the plasma.
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1.2.1 Tokamak and Stellarator

Turning to toroidal configurations, one finds that simply bending a homogeneous

cylindrical magnetic field to a torus leads to drift effects due to the ∇B and

curvature drifts; the resulting drift velocities for a particle of mass m and charge

q, moving in a magnetic field B with velocity components v‖ parallel and v⊥

perpendicular to the field, read

v∇B =
mcv2

⊥

2qB

B×∇B
B2

, (1.2)

vc =
mcv2

‖

qB

B×∇B
B2

, (1.3)

where c denotes the speed of light. Due to the charge dependency, these drifts

separate particles of opposite electrical charge, resulting in electric fields perpen-

dicular to the magnetic field. This induces an E×B drift,

vE = c
E×B

B2
. (1.4)

These drifts usually destroy the confinement within a fraction of a second. To

cancel this effect, two concepts have been developed, the tokamak and the stel-

larator.

In a tokamak, an induced toroidal electric current – i.e., a current along the

magnetic axis – creates an additional magnetic field in the poloidal direction (see

Fig. 1.3), with the resulting combined field canceling the drift. The advantage to

this concept is that only planar magnetic coils are required. For power plants,

superconducting magnets are a necessity to provide reasonable efficiency, and

non-planar coils are very challenging to manufacture. However, since the current

required to produce the poloidal field is being induced via a transformer coil, the

current in said coil has to be constantly increased, putting a severe constraint on

the operation time. Methods to circumvent this constraint are being developed,

generating internal transport barriers in the plasma which in turn cause a so-

called bootstrap current. This toroidal current reduces the required externally

induced current, prolonging the maximal operation time.

Alternatively, one can avoid the necessity for inducing a current by constructing

a complex external magnetic field; this concept is called stellarator (see Fig. 1.4).

The advantage of continuous operation is achieved at the expense of using mag-

netic field coils of non-trivial shape.

At present, the tokamak concept is developed much further than the stellarator;

however, knowledge gained from stellarator experiments will likely be an impor-

tant factor in operating tokamaks continuously, i.e., without externally induced

current.
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Figure 1.3: Basic concept of a tokamak fusion device. A toroidal magnetic field

created by external field coils is combined with a poloidal field. The latter is due

to a current which is induced in the plasma via a central transformer coil. The

net ∇B drift for a particle in such a configuration is zero. Source: [3]

Figure 1.4: Shapes of the magnetic field coils and a magnetic flux surface for the

Wendelstein 7-X stellarator. While here, no induced toroidal current is required,

the complex shape of the coils makes the stellarator a challenging concept from

an engineering point of view. Source: [4]
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1.2.2 Fusion Experiments

The first fusion experiments were built in the late forties and early fifties of

the twentieth century, with research mostly being classified. Initially, mainly

pinch devices were investigated, but they were abandoned later when it became

apparent that they were intrinsically unstable. A decade after it was decided

that fusion research was safe to be declassified, the Russian T-3 machine – one of

the first tokamaks – was put into operation in 1958, starting a concept line that

now is the most progressed in the field. Current examples include the European

cooperation JET, based in the United Kingdom, ASDEX Upgrade in Germany,

DIII-D in the U.S., and JT-60 in Japan. The international project ITER [5] is

presently under construction; it will be the largest fusion experiment on Earth

and is expected to produce more energy in fusion reactions than is required to

power its heating systems, achieving a fusion energy gain factor of

Q =
Pfusion

Pheating
∼ 10 . (1.5)

With ITER, the community hopes to advance knowledge in the areas of reactor

engineering, steady state operation, and Edge Localized Mode control (for reviews

on ELMs, see Refs. [6] and [7]), as well as showcase safety and environmental

properties. In a next step, a demonstration reactor, DEMO, is planned in order

to prove that fusion reactors are economically viable.

The stellarator line goes back to a concept by Lyman Spitzer, with the first

device built in 1951. However, the complex shape required for the magnetic coils

slowed down progress in this area. The Wendelstein 7-X machine is currently

under construction in Germany; its size is similar to tokamaks that were built

more than a decade ago, and the stellarator line is not expected to catch up with

tokamak experiments in the near or intermediate future. However, if Wendelstein

7-X is successful, it will significantly increase the chances of future stellarator-

based commercial reactors, as well as give strong support to the tokamak line via

the cross-concept application of experimental results.

1.3 The Need for an Emission-Free Energy Source

1.3.1 The Global Energy Situation

One of the primary reasons why fusion research is being conducted is the pressing

problem to satisfy the growing energy needs of humanity while reducing carbon

emissions drastically to avoid severe effects due to climate change. Currently,
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Figure 1.5: Global energy source composition. The vast majority is provided

by burning fossil fuels (oil, coal, gas), a process that produces significant car-

bon emissions. Biomass, despite its technical carbon-neutrality, also adds to the

emitted carbon. Of the remaining sources, only nuclear and hydro energy play a

significant role. Source: [8]

more than four fifths of the world-wide energy consumption are fueled by re-

sources that are both limited and carbon-emitting. While the amount of total

consumed energy is strongly increasing, it has been estimated that emissions have

to be cut by at least fifty percent in the next four decades (see, e.g., the findings

of the Intergovernmental Panel on Climate Change [9]) to stabilize the planet’s

climate.

Possible routes to achieving this goal are connected to a strong reliance on non-

fossil energy sources. Wind, solar heat, or photovoltaic power, however, can

not be used to supply the world’s base load without significant power storage

capacities, and even then they are limited in scope. Fusion power, while not

expected to be able to contribute significantly until the second half of the century,

would provide humanity with a sustainable and risk-free energy source.
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1.3.2 Environmental and Safety Aspects of Fusion

Environmental Impact

Fusion is inherently emission-free – only very small quantities of the inert helium

are produced in the reactions, and the materials to fuel the reactor are obtainable

without significant environmental impact: deuterium can be extracted from sea-

water via electrolysis, and tritium is bred from lithium inside the reactor building

using the neutrons from the fusion reactions. Lithium is found both in the Earth’s

crust and in seawater. Taking all available Deuterium and Lithium sources, and

considering 5000 power plants providing a global energy solution (each producing

1GW while using 110 kg of Deuterium and 380 kg of Lithium per year at perfect

efficiency), D-T fusion could be employed for 50 million years (for more details,

see Ref. [10]).

The only concern stems from the reactor walls which – due to the high neutron

fluxes – experience alterations in their nuclear structure over time, resulting in

radiological activity. However, this effect is in no way comparable with the cor-

responding activity in fission plants. Fig. 1.6 shows the decay of radioactivity for

fusion and fission plants, compared with the natural activity of coal ash. While

fission plant components must be stored for millennia before the material can be

reused, the storage period for fusion plant components can be estimated to be

around fifty to a hundred years. After only five hundred years, their levels have

dropped to those of coal ash, making the radiotoxicity of fusion-related waste a

very benign problem, though not completely negligible.

Safety and Worst-Case Scenario

The 1986 accident at the Chernobyl nuclear power plant has since become a sym-

bol of the dangers related to fission power. Due to failing control mechanisms, a

runaway reaction occurred, resulting in immediate vaporization of the pressurized

coolant, thus compromising the integrity of the reactor building. In this context,

it becomes clear that prior to building fusion reactors, the possible consequences

of mishandling such a device need to be investigated.

Such research has been undertaken, with rather clear results. Bartels et al. [11]

studied 25 reference accidents with respect to their potential release of radioactive

material. Those scenarios can roughly be divided up into the following categories:

plasma events (which have no environmental release risk), loss of power (with

no external effects even if backup generators fail), leaks in the coolant cycle

(where in the worst conceivable case, release of tritiated water (HTO) is limited

to an acceptable level of ∼ 5 grams), loss of vacuum (with even lower release),
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Figure 1.6: Decrease of the radiotoxicity (in arbitrary units) of reactor material

over time for different reactor types. Shown are a fission reactor (based on the

concept of water pressurization which is the most common nuclear power plant

type) in addition to three different fusion reactor types, distinguishable by the

steel used for the reactor vessel; also, the natural level of coal ash is included for

comparison. Source: IPP
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maintenance accidents (which, in terms of potential release, constitute a risk

similar to that connected with the loss of vacuum), and magnet malfunction (no

release risk). Similarly, advanced tokamak scenarios (see Ref. [12]) are designed to

operate at risk levels where evacuation plans are obsolete. For more information

on reactor safety, see Ref. [10] and references therein.

Clearly, magnetic confinement fusion technology will not be able to cause any

damage that could in the least be compared with the Chernobyl catastrophe.

1.4 Simulation of Fusion Plasmas

In the field of fusion research, an increasing interaction between experiment and

theory can be observed. Numerical and analytical investigations are required to

improve the understanding of observed phenomena, as well as to help optimize

concepts for future devices. Following Tang and Chan [13], a brief overview of

aspects of research in the two most prominent theoretical frameworks, magneto-

hydrodynamic (MHD) and kinetic theory, is given.

Macroscopic physics of fusion reactors are described well in the context of MHD,

using hydrodynamic quantities – density, pressure, and velocity field – in conjunc-

tion with Maxwell’s equations. This excludes effects connected to non-Maxwellian

distribution functions. Large-scale disruptions (e.g., ELMs) can be understood

that way, enabling theorists to look for ways to avoid such instabilities. The non-

linear evolution of magnetic islands (see Ch. 7 for more information on islands

and references), which enhance radial transport, is usually studied using MHD

models. And magnetic reconnection may also be explored in this fashion.

Often, neoclassical theory (see, e.g., Wang et al. [14]) is used to augment MHD by

describing collisional heat transport. Specifically, particles on so-called banana

orbits contribute to such transport; these particles are reflected by the higher

magnetic field on the inside of the torus, and are thus caught on orbits which

resemble those of cosmic particles in the Earth’s atmosphere.

However, even when a magnetic confinement configuration is stable according

to the predictions made by MHD, transport levels are observed which exceed

neoclassical expectations significantly. This effect is a result of microturbulent

phenomena in the plasma, causing anomalous transport. In order to study the

underlying physics, kinetic models must be employed which take into account

non-Maxwellian velocity space properties. Generally, kinetic simulations fall into

two categories: Particle-in-Cell and Vlasov. The latter does not compute single

particle orbits but instead operates on the particle distribution functions directly

by solving the Vlasov equation. Both types may be simplified by averaging over
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the fast gyromotion of particles about magnetic field lines, an approximation

which retains all physically relevant scales but reduces the computational effort

that is required. Since most of the work presented in this thesis relies on such

gyrokinetic Vlasov simulations, a brief derivation of the corresponding equations

may be found in Ch. 2.

Additionally, fusion theory covers the investigation of phenomena in the plasma

edge, where the magnetic field structure becomes more problematic and the

plasma may interact with the reactor wall (see, e.g., Neu et al. [15] for details on

plasma-wall interaction). In this case, the inclusion of additional physical models

ranging from surface to molecular physics can become necessary.

More details on the diverse aspects of fusion plasma simulations are available in

publications by Dinklage et al. [16] and by Batchelor et al. [17].

1.5 Thesis Outline

The remainder of this thesis is structured as follows. First, a brief derivation of

gyrokinetic theory is given, starting from the equations of motion for charged

particles in electromagnetic fields, and – via gyroaveraging – arriving at the

gyrokinetic Vlasov equation, along with the corresponding field equations. A

description of the Gene (Gyrokinetic Electromagnetic Numerical Experiment)

code follows, a numerical solver of the gyrokinetic equations; most of the work

presented in this thesis is based on results obtained with the Gene code. The vi-

sualization of simulation data is detailed in a separate chapter, with a description

of the Gene Diagnostics Tool and available diagnostics, as well as another vi-

sualization program, the RZG VisualKit. Next, numerical diffusion is discussed,

with an emphasis on parallel (hyper-)diffusion terms used to suppress the un-

physical effect of high-k‖ structures. Similarly, parallel velocity space diffusion is

investigated with the intent of avoiding numerical recurrence. Then, simulation

results are presented from electromagnetic Gene runs, covering two distinct pa-

rameter sets, with an in-depth analysis of physical and numerical effects; linearly,

special focus is put on the onset of kinetic ballooning modes, while nonlinearly,

investigations into turbulent transport levels are performed. This is followed by

additional studies of the properties of electromagnetic plasma turbulence. Be-

fore concluding, two applications to astrophysics are discussed briefly, where the

Gene code can be used to describe cross-field transport in galactic cooling flows

and evaporating clouds.



Chapter 2

Gyrokinetics and the GENE

Code

Before giving a description of the Gene code – which was used to obtain most

of the results reported in this thesis – a brief derivation of the gyrokinetic frame-

work is presented: after a coordinate transform using the Lie formalism, the fast

gyromotion of particles in magnetic fields is integrated out, reducing the dimen-

sionality of the system by one. The Vlasov equation is given in its general form,

as well as normalized and in flux tube geometry to allow for numerical treatment.

2.1 Gyrokinetic Theory

The basic idea of gyrokinetics is to assume that the gyromotion of a particle

about a magnetic field line sets the fastest time scale in the system, and tur-

bulent frequencies are much lower. In this case, one may describe the particle

by substituting a charged ring with the same radius as the gyromotion, mov-

ing along the field line (see Fig. 2.1) and being subjected to drift effects. For

some applications, it is sufficient to turn to a drift-kinetic approach, where only

the motion of the gyrocenter is considered, corresponding to the long-wavelength

limit of gyrokinetics.

Gyrokinetic theory was originally derived in the 1980s. Lie transformations (as

detailed in Refs. [18–21]) are used to isolate and remove any dependence on the

gyroangle θ and thus reduce the number of dimensions by one. The original work

can be found in Refs. [22–24], with a more recent review available by Brizard

and Hahm [25]. Following Dannert [26] and Pueschel [27], a summary of the

derivation is given below.

25
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Figure 2.1: Basic idea of the gyrokinetic approximation: instead of following

particles on their spiral-shaped trajectory about magnetic field lines, the fast

orbital motion is averaged over, retaining all frequencies that are small compared

to the gyrofrequency. In other words, instead of orbiting particles, one follows

charged circles which move along the magnetic field lines.

2.1.1 Lagrangian and One-Form

In order to separate physical scales that are connected to different aspects of a

particle’s motion, one must choose a coordinate system that reflects the scale

separation. For a particle moving in a magnetic field, the most obvious choice

is to go to field aligned coordinates. Here, a local Cartesian coordinate system

(e1, e2,b) is used with b = B/B pointing in the direction of the magnetic field B.

Thus, the position vector of a gyrating particle points in the direction of a(θ) =

e1 cos θ−e2 sin θ, and its gyration velocity is parallel to c(θ) = −e1 sin θ−e2 cos θ,

with θ denoting the gyroangle.

The Langrangian of a particle – with mass m, charge q, spatial position x, and

velocity v – in an electromagnetic field can be written as

L(x,v) =

(

mv +
q

c
A(x)

)

· ẋ−H(x,v) , (2.1)

with the Hamiltonian

H(x,v) =
mv2

2
+ qΦ(x) . (2.2)

Here, A(x) and Φ(x) correspond to the magnetic and electrostatic potential,

respectively. It proves advantageous to switch to a one-form formulation,
∫

L(x,v)dt =

∫

γ . (2.3)

The one-form γ = γ(x,v) can be transformed to the so-called gyrocenter co-

ordinates (X, v‖, µ, θ), where X denotes the gyrocenter position, v‖ its velocity
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component along b(x), and µ = mv2
⊥/(2B) the magnetic moment. v⊥ is the

perpendicular velocity component. It is assumed that the electromagnetic fields

vary on a scale much larger than the gyroradius ρ = vtΩ
−1, where vt = (T/m)1/2

is the thermal velocity at temperature T and Ω = qB/(mc) is the gyrofrequency.

Consequently, Φ(x) ≈ Φ(X), with the same being valid for A.

In terms of these new coordinates, the old coordinates can be written as

x = X + ρ(X)a(θ) , (2.4)

v = v‖b(X) + v⊥(X, µ)c(θ) . (2.5)

With the indices i and j going over the three spatial and three velocity coordi-

nates, as well as the time coordinate t, the transformation becomes

Γ =
∑

j

Γj =
∑

j

∑

i

γi
dxj

dXi
. (2.6)

These derivatives can be calculated in a straightforward fashion using the above

relations. After averaging over the gyromotion – i.e., performing integrals of the

form

Γi →
1

2π

2π
∫

0

Γidθ , (2.7)

which cancels all terms proportional to either a(θ) or c(θ) due to the θ-periodic

function contained therein – the following expression remains:

Γ = −
(

mv2
‖

2
+ µB(X) + qΦ(X)

)

dt+

+

(

mv‖b(X) +
q

c
A(X)

)

dX +
µB(X)

Ω(X)
dθ . (2.8)

This calculation can be performed analogously using a perturbed initial one-form,

with perturbed fields

Φ(x) → Φ0(x) + Φ1(x) , A(x) → A0(x) + A1(x) . (2.9)

Equilibrium electric fields – which do not occur in the physical scenarios under

consideration – are removed by setting Φ0(x) = 0. According to the gyrokinetic

ordering, the above perturbations are assumed to be small compared with the

equilibrium fields,
qΦ1

T0
∼ ‖A1‖

ρB0
∼ ǫ≪ 1 . (2.10)

However, this assumption does not apply to the perpendicular gradients of the

equilibrium and the perturbed parts, which is why the perturbed fields have to
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be taken at the precise particle position (i.e., Φ1(x) 6= Φ1(X) in general, with the

same applying to the perturbation of the magnetic potential).

Naturally, applying the assumption in Eq. (2.9) to the one-form and performing

the same transformation as before, the resulting equilibrium one-form Γ0 is iden-

tical to the original result as given in Eq. (2.8). Defining r = ρa(θ) to be the

particle position relative to the gyrocenter, the perturbed part reads

Γ1 =
q

c
A1(X + r)dX +

a(θ) ·A1(X + r)

v⊥(X, µ)
dµ+

+
mv⊥(X, µ)

B0(X)
A1(X + r) · c(θ)dθ − qΦ1(X + r)dt . (2.11)

Unlike Γ0, the above Γ1 still contains θ-dependent terms which cannot be inte-

grated out by performing the simple average as above. In order to dispose of

these terms, one can employ a Lie transform with a suitable gauge function, as

is demonstrated below. Note that in this work, only perturbations of order ǫ are

considered, while higher orders are neglected.

2.1.2 Lie Transform

A Lie transform constitutes a near-identity coordinate transform and is defined

as follows, along with its effect on one-forms:

T = eǫG , Γ̄ = T ∗−1Γ + dS , (2.12)

with ǫ≪ 1, a generator G, and a scalar gauge function dS. From this, a tangent

map and its pullback operator are obtained, respectively:

T∗ = e−ǫLG , T ∗ = eǫLG , (2.13)

with the Lie derivative LG acting on the one-form (in a system with coordinates

Xi) according to

(LGΓ)i =
∑

j

Gj
(

∂Γi

∂Xj
− ∂Γj

∂Xi

)

. (2.14)

Expanding both one-forms and dS into an equilibrium and a perturbation part,

and ordering the resulting terms (keeping only those up to O(ǫ)), one gets

Γ̄0 = Γ0 + dS0 , (2.15)

Γ̄1 = Γ1 − L1Γ0 + dS1 . (2.16)

This formalism is now applied to the original Γ0 and Γ1 (as given in Eq. (2.11));

it follows immediately that dS0 = 0, while for the first order,

Γ̄1i = Γ1i −
∑

j

Gj
(

∂Γi

∂Xj
− ∂Γj

∂Xi

)

, Xi,Xj ∈ {X, v‖, µ, θ} . (2.17)
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Since the time t remains unchanged, it is not included in the Xi. Performing all

the derivatives, and introducing

A∗
0 = A0 +

mc

q
v‖b0 , B∗

0 = ∇×A∗
0 , (2.18)

one arrives at

Γ̄1t = −qΦ1(X + r) + ∇(µB0) ·GX +mv‖G
v‖ +B0(X)Gµ +

∂S1

∂t
(2.19)

Γ̄1X =
q

c

(

A1(X + r) − B∗
0×GX(X + r)

)

−mb0(X)Gv‖ + ∇S1 (2.20)

Γ̄1v‖ = mb0(X) ·GX +
∂S1

∂v‖
(2.21)

Γ̄1µ =
a(θ) · A1(X + r)

v⊥(X, µ)
+
mc

q
Gθ +

∂S1

∂µ
(2.22)

Γ̄1θ =
mv⊥(X, µ)

B0(X)
c(θ) ·A1(X + r) − mc

q
Gµ +

∂S1

∂θ
(2.23)

This resulting one-form Γ̄1 now needs to be made independent of the gyroangle θ

through corresponding choice of the generator and the gauge function. Additional

freedom is used to obtain a comparatively simple one-form is by requiring Γ̄1v‖ =

Γ̄1µ = Γ̄1θ = 0. These conditions lead to equations for GX, Gθ, and Gµ which

– together – contain all velocity space derivatives of S1 and are subsequently

inserted into the equations for the remaining components of Γ̄1. Keeping in mind

the purpose of employing the Lie transform, another requirement is added,

Γ̄1X =
q

2πc

2π
∫

0

A1(X + r)dθ , (2.24)

which imposes conditions on Gv‖ and GX. Lastly, the time component is con-

sidered. Looking at the order of the different terms containing derivatives of the

gauge function, one can see that the θ derivative is larger than the other terms

by a factor of ǫ; thus, the other terms are dropped, resulting in

Γ̄1t = −qΦ1(X + r) −

− 1

B∗
0‖

∇(µB0) ·


b0(X)×


A1(X + r) − 1

2π

2π
∫

0

A1(X + r)dθ







+

+
qv‖
c

B∗
0‖

B∗
0‖

·


A1(X + r) − 1

2π

2π
∫

0

A1(X + r)dθ



+

+
qv⊥
c

c(θ) · A1(X + r) + Ω
∂S1

∂θ
. (2.25)
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Requiring that all terms containing a difference between a field and its gyroaver-

age must vanish, a final condition for ∂S1/∂θ is obtained. The gyroaverages are

performed for the field terms,

1

2π

2π
∫

0

Φ1(X + r)dθ = J0(λ)Φ1(X) (2.26)

1

2π

2π
∫

0

A1(X + r)dθ = J0(λ)A1(X) (2.27)

qv⊥
2πc

2π
∫

0

(A1(X + r) · c(θ)) dθ = −µI1(λ)B1‖(X) = µ
2iI1(iλ)

λ
B1‖(X) (2.28)

with the Bessel functions J0(λ) and I1(iλ), as well as λ = iρ∇⊥. Here, the

function I1(λ) is defined implicitly in relation to I1(iλ). One thus arrives at the

final, gyrokinetic one-form:

Γ =

(

mv‖b0(X) +
q

c
A0(X) +

q

c
J0(λ)A1‖(X)b0(X)

)

· dX +
mc

q
µdθ −

−
(

mv2
‖

2
+ µB0(X) + qJ0(λ)Φ1(X) + µI1(λ)B1‖(X)

)

dt . (2.29)

This result gives a modified Lagrangian,

L =
q

c
(A∗

0 + J0(λ)A1‖b0) · Ẋ +
mc

q
µθ̇ − (2.30)

−
(

mv2
‖

2
+ qJ0(λ)Φ1 + µB0 + µI1(λ)B1‖

)

, (2.31)

where the variable dependencies have been dropped, since all fields are now to

be taken at the gyrocenter position X. Note that henceforth, a bar over a per-

turbed field quantity denotes gyroaveraging, i.e.: multiplication by the appropri-

ate Bessel function.

2.1.3 The Gyrokinetic Vlasov Equation

In conjunction with the Euler-Lagrange equation, the Lagrangian provides equa-

tions for the time derivatives of all phase space coordinates. These derivatives

appear in the Vlasov equation, which in the absence of collisions can be written

as
df

dt
=
∂f

∂t
+ Ẋ · ∇f + v̇‖

∂f

∂v‖
+ µ̇

∂f

∂µ
= 0 . (2.32)
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It states that the phase space volume of a particle distribution function f =

f(X, v‖, µ) is conserved. Using the definitions of the drift velocities,

vχ = − c

B2
0

∇χ1×B0 (2.33)

v∇B =
µ

mΩ
b0×∇B0 (2.34)

vc =
v2
‖

Ω
(∇×b0)⊥ (2.35)

along with the modified potential

χ1 = Φ̄1 −
v‖

c
Ā1‖ +

1

q
µB̄1‖ , (2.36)

and assuming that the perturbed field varies on much smaller scales than the

equilibrium field,

Ā1‖∇×b0 ≪ (∇Ā1‖)×b0 , (2.37)

one arrives at the three equations

Ẋ = v‖b0 +
B0

B∗
0‖

(vχ + v∇B + vc) (2.38)

v̇‖ =

(

b0

m
+

B0

mv‖B
∗
0‖

(vχ + v∇B + vc)

)

·

·
(

−q∇Φ̄1 −
q

c
b0

˙̄A1‖ − µ∇(B0 + B̄1‖)

)

(2.39)

µ̇ = 0 (2.40)

Inserting these into Eq. (2.32) leads to the standard formulation of the gyrokinetic

Vlasov equation, written here for a particle species j:

∂fj

∂t
+

(

v‖b0 +
B0

B∗
0‖

(vχ + v∇B + vc)

)

·

·
(

∇fj +
1

mjv‖

(

−qj∇Φ̄1 −
qj
c
b0

˙̄A1‖ − µ∇(B0 + B̄1‖)

)

∂fj

∂v‖

)

= 0 . (2.41)

While some numerical codes solve a normalized version of this equation, it is ad-

vantageous to go one step further and split off a Vlasov equation for the perturbed

part of the distribution function: fj → fj0+fj1, with fj1/fj0 ∼ ǫ, while assuming

that the unperturbed part is stationary. Introducing the modified distribution

function

gj1 = fj1 −
qj
mjc

Ā1‖
∂fj0

∂v‖
, (2.42)
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and the derived quantity

Gj1 = gj1 −
qj

mjv‖
χ1
∂fj0

∂v‖
, (2.43)

the perturbed Vlasov equation reads

∂gj1

∂t
+

B0

B∗
0‖

vχ ·
(

∇fj0 −
1

mjv‖
µ∇B0

∂fj0

∂v‖

)

+

+
B0

B∗
0‖

(vχ + v∇B + vc) · ∇Gj1 + v‖b0 · ∇Gj1 −

−
(

1

mj
b1 +

B0

mjv‖B
∗
0‖

vc

)

·

·
(

qj∇Φ̄1 +
qj
c
b0

˙̄A1‖ + µ∇(B0 + B̄1‖)

)

∂fj1

∂v‖
= 0 . (2.44)

In the presence of collisions, the right hand side has to be substituted with the

corresponding collision operator. For convenience, the perturbed parts are sub-

scripted only with the species index j from here on, while continuing to distinguish

the equilibrium parts by adding a zero to the subscript.

2.1.4 The Gyrokinetic Field Equations

In a similar fashion as above, one can derive the gyrokinetic field equations from

Maxwell’s equations, using the same Lie generators as for the Vlasov equation,

to form a complete and self-consistent set of equations. Since frequencies compa-

rable and faster than the plasma frequency are removed, quasineutrality can be

assumed, i.e., ion and electron charge densities must be identical, qini = ene, in

the case of a two-species plasma.

Maxwell’s equation and quasineutrality contain densities and currents which are

defined as moments of the distribution function. By use of the Lie transform

T ∗ = 1 + ǫLG, the distribution function can be shifted from the particle position

to the gyrocenter. The transformation reads

T ∗(fj0 + fj) = (fj0 + fj) +
qj
mjc

(A‖(X + r) − Ā‖)
∂Fj0

∂v‖
+

+
1

B0

(

qj(Φ(X + r) − Φ̄) − qjv‖
c

(A‖(X + r) − Ā‖) − µB̄‖

)

∂Fj0

∂µ
. (2.45)

Now the equilibrium distribution is assumed to be of Maxwellian type,

fj0(v‖, µ) =

(

mj

2πTj

)3/2

n0e
−

mjv2
‖

/2+µB0

Tj , (2.46)
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with the species temperature Tj . The velocity derivatives of fj0 can be calcu-

lated in a straightforward manner. Note that this choice is not a solution of the

stationarity assumption about the equilibrium part of Eq. (2.41).

One is then left with the integrals of the distribution function and the fields.

Carrying out these integrals while making use of the definition

Γi(bj) = Ii(bj)e
−bj , i = 0, 1 , bj = − Tj

mjΩ2
j

∇2
⊥ , (2.47)

with the modified Bessel functions I0 and I1, the field equations can be evaluated,

giving

∑

j

qj(1 − Γ0(bj))
qjΦ

Tj0
=

=
∑

j

qj

(

(Γ0(bj) − Γ1(bj))
B‖

B0
+

2πB0

mjnj0

∫

J0(λj)fjdv‖dµ

)

(2.48)



1 +
∑

j

4bjβj(Γ0(bj) − Γ1(bj))





B‖

B0
=

= −
∑

j

2βj

(

B0

nj0Tj0

∫

µI1(λj)fjd
3v +

qjΦ

Tj0
(Γ0(bj) − Γ1(bj))

)

(2.49)

∇2
⊥A‖ = −8π2B0

c

∑

j

qj
mj

∫

v‖J0(λj)fjdv‖dµ (2.50)

Note that the field equations for Φ andB‖ are coupled. For small βj ≡ 8πpj/B
2 ≪

1, the parallel magnetic fluctuations are negligible. However, for the higher β val-

ues achieved in stellarators or spherical tokamaks, they might have a significant

influence, and for some astrophysical scenarios where β > 1, they are indispens-

able. First benchmarking exercises have been performed that include B‖, but for

the results presented in this thesis, B‖ fluctuations are neglected.

Together with the Vlasov equation (2.44), the field equations constitute a com-

plete set of equations that can be used to self-consistently advance the distribu-

tion functions in time and thereby provide a complete physical description of the

evolution of the plasma.

2.2 Flux Tube Geometry

A magnetic equilibrium geometry has to be specified for Eqs. (2.44) and (2.48) to

(2.50) before they can be solved numerically. While in principle, one can model a

full tokamak geometry, this approach requires an enormous computational effort.
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For the work presented here, the described plasma volume is reduced to a flux

tube: a spatial domain around a magnetic field line with a parallel extent of 2π

or multiples thereof poloidally. While this limits the gyrokinetic framework to

local investigations, it retains most of the physical effects. More details on flux

tubes can be found in Beer [28], Merz [29], and references therein. Only a few

important features shall be mentioned here.

Since a flux tube is confined to the neighborhood of a field line, it is radially local

in that it is confined to a small range of flux surfaces. If its radial size is small

compared to the major radius R0 at the magnetic axis, the equilibrium quantities

(as well as their gradients) may be assumed to be constant, i.e., the temperature

and density profiles can be expressed by scalars. Consequently, it is intuitive to

use periodic boundary conditions for the radial coordinate; the same is done for

the binormal coordinate, reflecting the toroidal symmetry of fusion reactors.

However, for general values of the safety factor q, the parallel ends of a flux

tube do not connect. As a consequence, quasiperiodic boundary conditions are

chosen. For representation of the perpendicular coordinates in Fourier space, the

conditions read

g(kx, ky, π) = (−1)NkyLy/(2π)g(kx + NkyLy/Lx, ky,−π) (2.51)

for a quantity g in a flux tube of parallel size 2π and perpendicular size Lx× Ly

(see Ref. [29] and references therein). Here, x denotes the radial, y the binormal

(also: toroidal), and z the parallel coordinate. N corresponds to the number of

identical flux tubes which may be used to cover the entire torus, a property which

will be discussed in further detail in Ch. 3.

2.2.1 General Geometry

The magnetic geometry is described by the metric which follows from the well-

known Grad-Shafranov equation. In the present work, use is made of both nu-

merical solutions of that equation – modeling specific reactor geometries – and

a simplified model discussed below. One efficient way to obtain the required ge-

ometry coefficients is to employ the Tracer code which follows the procedure

detailed by Xanthopoulos and Jenko [30]. Its output can be read directly by the

Gene code which will be described later.
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Figure 2.2: ŝ-α geometry flux tube with turbulent Gene data, as visualized with

the RZG VisualKit (see Ch. 3). The scale separation between the parallel and

perpendicular coordinates becomes evident in this figure.

2.2.2 ŝ-α Flux Tubes

In many cases, however, it is sufficient to use a simplified geometry that uses only

a constant magnetic shear,

ŝ =
r0
q0

dq(x)

dx
, (2.52)

to describe the (linear) q(x) profile near a flux surface located at a distance r0

from the magnetic axis. At finite plasma β, an additional parameter

αMHD =
q20
R0
β
∑

j

(ωn + ωT j)nj0Tj0 (2.53)

is used to describe the Shafranov shift that the flux surfaces are subjected to.

Here, the normalized density and temperature gradients are introduced:

ωn = −Lref

nj0

∂nj0

∂x
, ωTj = −Lref

Tj0

∂Tj0

∂x
, (2.54)

with the macroscopic length scale Lref , and nj0 and Tj0 are normalized according

to the rules detailed below. This so-called ŝ-α model has been described in detail

by Connor et al. [31]. A visualization of an ŝ-α flux tube is shown in Fig. 2.2.

Here, nonlinear simulation data is shown point-wise in global Cartesian space.

The center of the flux tube (which is on the far right side in the figure) corresponds

the the outboard midplane, i.e., the point farthest away from the reactor center,

where the magnetic field strength is at its lowest and thus, turbulence is strongest.
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The metric tensor for this case reads

gij =









1 ŝz − αMHD sin z 0

ŝz − αMHD sin z 1 + (ŝz − αMHD sin z)2 1/r

0 1/r 1/r2









(2.55)

while the magnetic field strength is expressed as a function of the parallel coor-

dinate,

B0 =
1

1 + ǫt cos z
, (2.56)

with the inverse aspect ratio ǫt = r0/R0. The parallel boundary condition,

Eq. (2.51) requires

N = 2πŝ
Lx

Ly
. (2.57)

ŝ-α geometry is not strictly self-consistent (see, e.g., Merz [29], as well as Lapil-

lonne et al. [32], for more details on limitations of the model). However, it is

commonly used as a standard case, and many ŝ-α results are available in the

literature, making it an excellent operation point for cross-code comparisons.

2.3 The GENE Code

For most numerical simulations performed in the context of this thesis, the Gene

code (see, e.g., Refs. [33] and [34], as well as Ref. [29] for details on the most recent

Gene version) was used. It is an electromagnetic gyrokinetic turbulence code

that solves the normalized Vlasov and field equations as given below, making

use of large parallel computing devices. In addition to an initial value solver,

there exists an eigenvalue solver which provides access to subdominant and stable

modes. Gene may be coupled with the aforementioned Tracer code for general

geometry investigations, and for postprocessing, the Gene Diagnostics Tool is

available which is described in more detail in Ch. 3. Below, the normalized

equations are given that Gene is based on, as well as details on the numerical

methods which are employed; as only collisionless plasmas are investigated in this

thesis, Ref. [29] is referred to for a discussion of the implementation of collisions

in Gene.

2.3.1 Normalization of the Equations

Since computer-based calculations have to operate on dimensionless equations, a

suitable normalization is used, i.e., one that takes into account the physical scales.

However, if one aims to study physical scenarios with widely varying scales, it is
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useful to retain some freedom in the normalization; more specifically, reference

scales can be chosen according to the specific requirements of a simulation. The

normalization rules for the basic variables are



















{x, y} → ρref{x, y} z → z

v‖ → crefvTjv‖ µ → Tref
Bref

Tj0µ

t → Lref
cref

t B0 → BrefB0

qj → eqj mj → mrefmj

nj0 → nrefnj0 Tj0 → TrefTj0



















(2.58)

Here, e denotes the elementary charge, and the following relations are used:

cref =

(

Tref

mref

)1/2

, ρref =
mrefcrefc

eBref
, vTj =

(

2Tj0

mj

)1/2

. (2.59)

The distribution functions and fields are normalized as follows:





{fj, gj} → ρref
Lref

nrefnj0

c3
ref

v3
Tj

{fj, gj} Fj0 → nrefnj0

c3
ref

v3
Tj
Fj0

{Φ, χ} → ρref
Lref

Tref
e {Φ, χ} {A‖, B‖} → ρref

Lref
Bref{ρrefA‖, B‖}



 (2.60)

The general normalized form of the plasma pressure is

β =
8πnrefTref

B2
ref

, (2.61)

and the new form of Gj reads

Gj = gj +
qj
Tj0

Fj0χ . (2.62)

At this point, it shall be noted that for small β, one may neglect the B‖ fluc-

tuations (as B⊥ and βB‖ are of similar magnitude), as well as take B∗
0‖ ≈ B0,

dropping a term of order O(β).

The curvature terms are defined as follows,

Kx = −Lref

Bref

(

∂B0

∂y
+
gxxgyz − gyxgxz

gxxgyy − gyxgxy

∂B0

∂z

)

(2.63)

→ −Lref

R0
sin z

Ky =
Lref

Bref

(

∂B0

∂x
+
gxygyz − gyygxz

gxxgyy − gyxgxy

∂B0

∂z

)

(2.64)

→ −Lref

R0
(cos z + sin z(ŝz − αMHD sin z))
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with the relevant z components of the metric gij normalized to L−1
ref ; the reduction

of the terms in ŝ-α geometry is specified after the respective definitions. As a

result, the normalized Vlasov equation, as solved by the Gene code, reads

∂gj

∂t
+
B0

B∗
0‖

[

ωn + ωTj

(

v2
‖ + µB0 −

3

2

)]

Fj0
∂χ

∂y
+

+
B0

B∗
0‖

(

∂χ

∂y

∂gj

∂x
+
∂χ

∂x

∂gj

∂y

)

+
B0

B∗
0‖

Tj0(2v
2
‖ + µB0)

qjB0
·

·
[

Kx
∂Gj

∂x
+ Ky

∂Gj

∂y
−KxFj0

(

ωn + ωTj

(

v2
‖ + µB0 −

3

2

))]

−

− B0

B∗
0‖

Tj0v
2
‖

qjB2
0

β





∑

j

nj0Tj0(ωn + ωTj)





∂Gj

∂y
−

− vTjv‖
JB0

∂Gj

∂z
+
vTjµ

2JB0

∂B0

∂z

∂fj

∂v‖
= 0 (2.65)

with the Jacobian J = Bφ/Bref . The terms can be identified with, in order: the

time evolution of the distribution, the driving term, the E×B nonlinearity, the

curvature term, the pressure term, the parallel advection term, and the mirror

term.

The Vlasov equation is complemented by the normalized field equations,





B2
ref

4πc2mrefnref
k2
⊥ +

∑

j

q2jnj0

Tj0
(1 − Γ0(bj))



Φ −

−




∑

j

qjnj0

B0
(Γ0(bj) − Γ1(bj))



B‖ =

=
∑

j

πqjnj0B0

∫

J0(λj)gjdv‖dµ (2.66)





∑

j

qjnj0

B0
(Γ0(bj) − Γ1(bj))



Φ +

+



− 2

β
+
∑

j

2nj0Tj0

B2
0

(Γ0(bj) − Γ1(bj))



B‖ =

= −
∑

j

πqjvTjB
3/2
0 nj0

k⊥

∫

µ1/2J1(λj)gjdv‖dµ (2.67)

A‖ =





∑

j

π

2
qjvTjnj0B0β

∫

v‖J0(λj)gjdv‖dµ



 ·
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·


k2
⊥ +

∑

j

q2j
mj

πnj0B0β

∫

v2
‖J0(λj)

2Fj0dv‖dµ





−1

(2.68)

with the square of the perpendicular wavenumber defined as

k2
⊥ = gxxk2

x + 2gxykxky + gyyk2
y (2.69)

in Fourier representation. Note that Eqs. (2.66) and (2.67) constitute a system

of two coupled equations which may be solved in a straightforward manner.

Since for many applications, it is unnecessary to resolve the full dynamics of

both ion and electron species, one may, performing small and large mass limits,

respectively, make use of adiabatic responses, which are given by

nad
e1

ne0
= − qe

Te0
(Φ − 〈Φ〉flux surface) (2.70)

nad
i1

ni0
= − qi

Ti0
Φ (2.71)

Technically, knowledge of the distribution functions simultaneously means knowl-

edge of the complete physical state of a system. However, there is no experimental

access to the distribution function, and it can be difficult to interpret its physical

meaning directly. At the same time, the distribution function data is a seven-

dimensional field, with five phase space, one time, and one species dimension,

making it a very cumbersome quantity for any analysis. Instead, one usually

diagnoses simulations by looking at moments of the distribution or radial flux

quantities; prominent examples of the latter are the particle and the heat flux,

which one arrives at by multiplying the radial component of the E×B velocity

with the perturbed part of the density or pressure, respectively. After performing

a spatial average, the results of this prescription read

Γj = −nj0

(∫

Jdz

)−1




∫

∑

kx,ky

ikyJχ

(

πB0

∫

fjdv‖dµ

)∗


 (2.72)

Qj = −nj0Tj0

(∫

Jdz

)−1




∫

∑

kx,ky

ikyJχ

(

πB0

∫

v2fjdv‖dµ

)∗


 (2.73)

in normalized units of crefnrefρ
2
ref/L

2
ref and crefnrefTrefρ

2
ref/L

2
ref , respectively. Note

that since in both fluxes, the combined potential χ appears, it is possible to split

both expressions into three parts, corresponding to the transport caused by the

electrostatic potential (the Φ component), as well as the perpendicular (the A‖

component) and parallel (the B‖ component) magnetic field fluctuations. The
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first is then referred to as electrostatic transport, while the sum of the second

two is called (electro-)magnetic transport.

Instead of the particle and heat flux, one may equivalently consider the particle

and heat diffusivity, Dj and χj, respectively. Their relations to the fluxes are

Dj =
Γj

nj0ωn
, χj =

Qj

nj0Tj0ωTj
. (2.74)

In the following, a brief discussion of the numerical implementation of the above

Vlasov and field equations is given.

2.3.2 Time Stepping Schemes

To describe the time evolution of the distribution function, the time derivative

in Eq. (2.65) is resolved either by one of three explicit schemes or one implicit

time stepping scheme. The former are Runge-Kutta schemes; for third order and

a Vlasov equation of the general form

∂g(t)

∂t
= V(g(t)) , (2.75)

the scheme can be written as

g(t+ ∆t) = g(t) +

+
∆t

4

[

V(g(t)) + 3V
(

g(t) +
2∆t

3
V
(

g(t) +
∆t

3
V(g(t))

))]

. (2.76)

Additionally, a fourth order and a modified fourth order Runge-Kutta scheme

are available. Unlike implicit time stepping, their time step ∆t is limited by

their respective stability regions in the complex plane, along with the shape of

the eigenvalue cloud of the simulation (one aspect of this stability constraint is

discussed in Ch. 4). Gene allows for automatic adjustment of the time step, either

continuously (for nonlinear simulations) or at the beginning of the simulation by

calculation of the eigenvalue most critical for the stability (for linear simulations).

The time evolution of linear simulations is characterized by exponential growth

(or decay); thus, after the growth rate γ is converged, the simulation s stopped.

In typical nonlinear cases, however, a saturated phase is reached eventually, and

in order to optimize the statistics, a simulation may be continued at liberty. Not

to be limited by machine restrictions on the simulation time, the distribution

functions are written into a checkpoint file (for more on Gene output files, see

Ch. 3) at the end of a run; the simulation may be resumed from that point by

choosing these distributions as the initial condition for the next run. Apart from

this, initial conditions for multiple scenarios are available; most prominently, all
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physical modes may be initialized with identical amplitudes for linear simulations,

and spectral power laws may be used to reach the saturation phase more quickly

in nonlinear scenarios.

2.3.3 Coordinates and Parallelization

Since the perpendicular coordinates are represented in Fourier space, calculating

derivatives is reduced to performing multiplications by the respective wavenum-

bers; however, since computation of the nonlinearity in Fourier space is very inef-

ficient, the respective quantities (or, more precisely: their derivatives) are trans-

formed into real space via inverse Fourier transforms, multiplied, and transformed

back into Fourier space. This transformation is accompanied by Fourier-based

interpolation (i.e., adding of zeroed modes) to reduce effects due to aliasing [29].

As a consequence of the above measures, nonlinear simulations are significantly

more expensive than linear simulations with identical grid resolutions.

The parallel direction, however, has to be represented in real space due to its

nonlocal character and its (generally) quasiperiodic boundary conditions. Since

Eq. (2.65) involves parallel derivatives, stencil-based finite difference schemes have

to be employed; details on the properties of those schemes and resulting problems

can be found in Ch. 4.

For the parallel velocity coordinate, an equidistant grid is used, while the µ

coordinate is defined on a grid based on Gauss-Legendre polynomials. Similarly

to the parallel coordinate, the parallel velocity coordinate employs finite difference

schemes for the derivative in the mirror term of the Vlasov equation.

The use of Gene on (massively) parallel computers is implemented both via

MPI and via OpenMP directives, splitting the calculation for different grid points

between multiple cores. The dimensions over which parallelization is possible are:

species, y, z, v‖, and µ. Since exchange of data between cores is the main problem

where parallel computing efficiency is concerned, the species and µ parallelization

are the primary choices, as they require very little communication. Between eight

and 4000 cores were used to obtain the results presented in this thesis, and the

code has been tested and shown to perform with excellent scaling on up to 32000

cores.

2.3.4 The Eigenvalue Solver

Alternatively to the initial value solver mentioned above, linear problems may

be investigated by use of direct solution of the eigenvalue equation of the matrix

that a numerical implementation of the Vlasov and field equations constitutes.
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As part of the Gene code, an eigenvalue solver (see Kammerer [35] and Roman

et al. [36]) is available that is based on the SLEPc library [37, 38]. However,

instead of solving for a complete set of eigenvalues (which would be enormous in

size and contain many physically irrelevant data points), only the most unstable

eigenmodes are retrieved by use of test vectors. More details on the physics of

subdominant and stable modes can be found in Ch. 5.

2.4 Chapter Summary

The gyrokinetic Vlasov equation was derived in this chapter by Lie transforming

a one-form to gyrocenter coordinates, deriving the equations of motion from the

Lagrangian, and subsequently inserting them into the Vlasov equation. Hereafter,

an overview of the Gene code – which solves said equation – was given. The

following chapter focusses on the visualization of results obtained with this code.



Chapter 3

Visualization of Simulation

Results

With a gyrokinetic simulation operating on a time-dependent five dimensional

distribution function, it becomes virtually impossible to display the entire infor-

mation in a way that promotes understanding of the underlying physics. Thus,

it is imperative that one condenses the available data and then chooses appro-

priate ways to visualize it. The condensation can be achieved most easily by

either selecting only one point along one or more of the six available dimensions,

or by averaging over one or more dimensions. The resulting reduced Fourier or

real-space data can then be displayed either as a single numerical value, a line,

contour, or surface plot. Additionally, when using real-space data, one can choose

the coordinate system to either follow the local grid, or one can transform the

simulation points into a toroidal system which gives an accurate picture of the

physical locations of all points in the simulation grid.

In the following, detailed descriptions of two tools will be given that, together,

produce a variety of analyses and visualizations of Gene output data.

3.1 The GENE Diagnostics Tool

Being part of the official Gene distribution, the Gene Diagnostics Tool is de-

signed to provide easy access to post-processing of simulation data. Written in

IDL language, it runs on a variety of systems and can also be used without an

IDL license in its IDL Virtual Machine version.

43



44 CHAPTER 3. VISUALIZATION OF SIMULATION RESULTS

Figure 3.1: Graphical user interface of the Gene Diagnostic Tool. The white

empty region to the upper left is used for interactive display of data; to the

right from this area, general settings pertaining the runs to be analyzed can be

adjusted, while some basic information about those runs may be requested. The

table below contains the available diagnostics – diagnostic-specific parameters

may be entered here. To the lower right, there are buttons to start the diagnostics

loop, handle the state of the user interface, and open postscript output files.
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3.1.1 Structure of the Diagnostics Tool

The graphical user interface (see Fig. 3.1) of the Diagnostics Tool enables the

user to specify the following parameters: which simulations are to be analyzed in

what time range; which species are to be considered; which normalization should

be used; what format should the output be saved in; and which diagnostics are

to be run with what diagnostics-specific settings. For convenience, functions

are included such as displaying time traces of the nrg file or listing the most

important simulation parameters.

When starting the analysis, the state of the graphical user interface is saved, and

all settings are passed on to the diagnostics. The latter consist of four parts:

info, init, loop, and output. The info section contains the name, description, and

parameters specific to the corresponding diagnostic. In the init section, one may

access those user-set parameters, define diagnostic-specific internal variables, and

generally prepare the diagnostic for handling time-resolved data. This data, along

with Fourier transforms, has to be requested in the init section so unnecessary

load is avoided.

Hereafter comes the loop section which will be called as many times as time steps

exist in the specified time range. Depending on the loop type – loops exist for

handling Gene output in field, mom, and checkpoint files, as well as scan output

produced by the Gene scan script – different normalized (and possibly Fourier

transformed) data for every time step is passed on to the diagnostic which can

then be manipulated and stored. For storing, one may use internal variables or

one of two pre-defined functions, time avg and store step. The former performs

time averaging with effects due to adaptive Gene time steps included, while the

latter simply stores a variable for every time step in pointer lists so that all time

steps may be made use of separately in the output section.

After looping over all time steps in the time range, the output section is called,

where data may be processed additionally (e.g., renormalization to previously

unknown global extrema) and then plotted. Here, the IDL output device is

selected by calling the set output procedure to allow for postscript, image, or

data file output. Rudimentary movie encoding is available in IDL, but writing

image files and then encoding separately is recommended for higher image quality.

Unless the IDL Virtual Machine is used, one can add diagnostics to the Diagnos-

tics Tool by placing a file containing the required procedures in either the prog

or the custom subdirectory. The latter will cause recompilation of the procedures

upon starting the analysis, while to achieve this for the former, one has to restart

the Diagnostics Tool.
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A range of diagnostics are part of the official Gene distribution. Those, along

with some additional diagnostics, are presented below.

3.1.2 Built-in Diagnostics

In the following, the term variable refers to a field in the field or mom file.

Time Traces

A very intuitive way of looking at simulation data is to simply select a mode

in the perpendicular plane by specifying a pair of kx and ky, either at a single

parallel point or averaged over the parallel direction, and then look at the time

evolution of a variable at that grid point. This functionality is provided by the

timetrace diagnostic which plots this data and additionally allows for smoothing

the output curves.

Amplitude Spectra and Parallel Profiles

The spectra diagnostic plots kx and ky spectra of the amplitudes of the selected

variable logarithmically; by default, the data for the spectra is averaged over the

respective other perpendicular coordinate, but selecting single modes is possible,

as well. Since the slopes with which the spectra fall off for higher k are of relevance

for the physics involved, power laws are fit to the data if the user specifies the

relevant k ranges.

This leaves the parallel coordinate, the amplitudes for which can be viewed for the

standard −π . . . π range using the zprofile diagnostic. Like with the spectra,

the perpendicular directions can be treated by either averaging or selecting single

modes. A modified version that plots parallel pseudospectra – which is especially

useful for diagnosing slab simulations – also exists.

Additionally, modified versions exist for both diagnostics that include the respec-

tive plots of the vorticity for cases with adiabatic electrons.

Flux Spectra and Parallel Profiles

For viewing spectra and parallel structures of nonlinear fluxes, separate diag-

nostics are required, fluxspectra and fluxzprofiles, respectively. Here, no

variables have to be specified; heat and particle fluxes – if available, both the

electrostatic and the electromagnetic component – are plotted. In the case of the

fluxspectra diagnostic, plots of the fluxes multiplied by kx,y may be added; a



3.1. THE GENE DIAGNOSTICS TOOL 47

modified version that can analyze linear simulations exists, as well, in case one

aims to conduct quasilinear investigations.

Ballooning Representation

The ballooning representation is a useful choice to view mode structures that

extend beyond the standard 2π parallel range. Modes usually center on the

kx = 0 mode, and get shifted to higher kx values as they reach the parallel

end of the box. Making use of the parallel boundary condition, the full mode

can be reconstructed, which is done by the ball diagnostic. One may select a

variable and a ky for plotting. Additionally, a zoom range can be specified if one

is interested in the fine structure of strongly extended modes.

Contour Plots

Plotting contours of the perpendicular plane, be it in Fourier, mixed, or real

space, is done via the cont diagnostic. After choosing a single point along the

parallel coordinate, it plots contours of selected variables. An IDL direct movie

function is implemented; however, for high quality movies, use of a slightly mod-

ified diagnostic is encouraged.

Toroidal Geometry: Constant φ Surfaces

The torslice diagnostic takes ŝ-α flux tube data for a selected variable, trans-

forms that data into toroidal geometry, and plots contours of a constant φ slice.

This works similarly to the procedure used to create Gene data sets for the

RZG VisualKit (which is described below), with linear interpolation along the y

coordinate. Direct movie output as well as high quality image output is available.

Correlation Functions

To compute real space correlation functions in the x-y plane, one may use the

corr diagnostic. It accepts two variables and calculates their correlation at a

single parallel point. To study correlations between variables of different particle

species, one has to use a separate, modified diagnostic.

Probability Distribution Functions

The pdf1d and pdf2d diagnostics count the occurrence of function values of

specified variables among all real space points on the simulation grid. The former
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does so for a single variable, the second counts using a two-dimensional bin array;

consequently, 1-D or 2-D histograms are plotted, respectively.

Growth Rates and Frequencies

Linear growth rate and frequency analysis is one of the standard instruments in

numerical plasma physics; the gamom diagnostic can handle both linear and non-

linear simulations. Separated into ky modes, it takes the electrostatic potential

– averaged or for selected kx modes, and similarly: averaged or for a selected

parallel point – and computes complex frequencies based on the time dependence

of the complex phase. These frequencies may be weighted with the amplitude

of the electrostatic potential at that point; for typical extended mode structures,

this tends to reduce the influence of high-kx modes.

While generally, this works for nonlinear frequencies, as well, a second diagnostic,

timefft, is also available for that case. It takes data for a specified variable at

specified coordinates and Fourier transforms the time coordinate of that data;

the raw signal, as well as spline-interpolated and windowed data is plotted. Note

that it can be useful to run both diagnostics presented here if one aims to study

nonlinear frequencies, since both versions have advantages and drawbacks; e.g.,

the former, while providing fast and unambiguous spectra, may give polluted

results as soon as a second mode starts to compete with the dominant mode;

the latter may resolve multiple (sub-)dominant frequencies simultaneously, but

one can encounter statistical issues, and operation is more difficult due to the

required settings for the windowed Fourier transform.

Phase Relations

The phases diagnostic computes phase relations by evaluating complex phases

of (multiple) pairs of variables, with the possibility of averaging over x and z

direction. The result is shown as a contour plot that includes the ky dependence

– this makes it a useful tool for investigating linear effects in nonlinear simulations.

Amplitude weighting along the ky direction is available to single out dominant

contributions. For this diagnostic, a modified version exists that allows separation

of composed mom variables (e.g., separation of q‖ + 1.5pj0u‖ into q‖ and u‖).

Zonal Flows and Zonal Fields

Zonal flows and zonal fields can influence the properties of plasma microturbu-

lence significantly. In order to estimate their quantitative impact, one may use

the zonal diagnostic which computes the shearing rate due to zonal flow activity,
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as well as the shear fluctuations due to magnetic perturbations. This is done for

all nonzero or only selected kx modes. Similarly to the timefft diagnostic, a

windowed Fourier transform of the zonal potential is possible. Additionally, a

correction functionality is available if a decorrelation time is specified. See Ch. 5

for more details on zonal flows and finite frequency corrections.

Velocity Space Diagnostic

For the analysis of the velocity space data from the vsp file, the vsp1 diagnostic

should be employed. It plots the time-resolved heat or particle fluxes, or the dis-

tribution function, for specified parallel points, averaged over the perpendicular

spatial coordinates.

3.1.3 Additional Diagnostics

Perpendicular Magnetic Field Fluctuations

The bperp diagnostic plots time traces of the spatial root mean square of the ra-

dial and toroidal magnetic field fluctuations, Bx and By, respectively. It requires

nonlinear electromagnetic simulations.

Magnetic Field Lines

Integrative field line reconstruction based on perpendicular magnetic field fluc-

tuations is done by the magfline diagnostic. Since it was used to produce the

Poincaré sections presented in Ch. 7, it is explained in more detail here than the

other diagnostics.

First, the perpendicular magnetic field fluctuations, Bx and By, are calculated in

Fourier space, and then transformed into real space at high resolution; possibly

missing Fourier modes are set to zero. This way, a smooth field can be guaranteed.

Additionally, Bx and By are interpolated in the parallel direction by a very large

factor, with the standard resulting Nz being 3000. Into this field, a set of field

lines (whose size can be specified freely) is inserted with initial positions at a

toroidal angle φ = 0 and with equidistant spread in both the radial and the

poloidal coordinate.

Then, those field lines are successively integrated, proceeding one (interpolated)

∆z at a time while using the following prescription: the perpendicular shift per

parallel step is calculated at the current z position; from there, the field line

position at z+ ∆z/2 is calculated, and the shift extracted there; this new shift is

then applied at the original z position, this time proceeding to the next point at
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z + ∆z. This method helps avoid curvature-caused errors which otherwise may

add up quickly [39].

Every time a field line passes the φ = 0 plane, its position is stored; after a

specified number of toroidal cycles, the integration loop exits. The thus obtained

Poincaré data is then plotted both point-wise and as a histogram which allows

for distinguishing locations where multiple field line passings have occurred.

In addition, the perpendicular field fluctuations at the outboard midplane (i.e.,

the central parallel point) can be plotted as contours in the perpendicular plane.

Besides those fluctuations being of possible interest by themselves, this allows

the user to make sure that the magnetic structure is physical, sufficiently re-

solved, and smooth enough with the current resolutions specified for the Fourier

transforms.

Benchmarking of the results of this diagnostic against the Gourdon code [40] is

planned for the future.

Magnetic Transport Model

A model for the magnetic transport which will be explained in detail in Ch. 7

can be applied with the chi e em diagnostic. It uses the A‖ field data to predict

the (time-resolved) electron magnetic heat transport and then multiplies it by a

scalar factor in order for its temporal average to match that of the actual heat

flux (as given by the nrg data). Together with the thus obtained curve, the nrg

heat flux may be plotted for direct comparison.

Toroidal Representation

The torus3d diagnostic produces output much like that of the RZG VisualKit

Gene data set production tool described below: local ŝ-α flux tube data is trans-

formed into toroidal geometry, with the original flux tube being duplicated to fill

the entire flux tube. Two output variants are available: either the data can be

used as textures for a 3-D torus model, yielding surface contours of a φ0 . . . φ1

angular section of the torus including the cut surfaces; or the data can be plotted

into four separate image files: two constant φ cut surfaces, and the inner and

outermost flux surfaces. This second functionality is intended to be used with

the external rendering tool POV-Ray [41, 42] which allows for more advanced

visualization than IDL.

It is to be noted that the torus3d diagnostic is designed for high quality image

output to allow for subsequent movie encoding.
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Velocity Space Diffusivity

Another diagnostic to operate on velocity space data is vsp2. Here, either for a

single µ value or the entire range, the particle diffusivity is calculated, allowing

for zooming in on the high-T tails of the Maxwellian. An application of this

diagnostic is shown in Ch. 7.

3.2 The RZG VisualKit

Interactive display of non-interpolated flux tube data is still possible using IDL

technology; however, to get a visually meaningful result, one has to compensate

for the large ratio of the parallel to the perpendicular length scale with significant

interpolation of the parallel coordinate (one to two orders of magnitude; see

below). Additionally, it can be useful to make use of the toroidal boundary

condition to expand the data to a hollow torus, increasing the amount of data

to be displayed by another order of magnitude. As shown above, the Gene

Diagnostics Tool can still cope with this data, but interactive manipulation is no

longer possible. If one requires such interactivity, use can be made of the RZG

VisualKit instead which will be presented here.

3.2.1 Technology

The RZG VisualKit was developed by Ralph Bruckschen and José Mejia to be

used with Gene data sets, while employing visualization techniques similar to

those described in Refs. [43] and [44]. As it is Java-based – using the Java OpenGL

2.0 wrapper library [45] for OpenGL [46], it can be run on almost all operating

systems; however, there is a hardware limitation that will be discussed further

down.

The tool is able to read the position of any number of data points in Cartesian

coordinates, along with (time dependent) data values for each point, as long as

the graphics adapter has sufficient memory available. It provides a graphical

user interface which can be used to rotate or translate the point cloud, allows for

zooming, adjusting of the point size and brightness, and lets the user select data

sets and color tables. Additionally, clipping planes can be activated and manipu-

lated to get more specific visual access; time steps can be displayed continuously,

which, along with the integrated screen shot function, allows for simple creation

of encoding-ready image sequences. Moreover, using specifically prepared color

tables, one can use the RZG VisualKit to investigate isosurfaces.

As input data, it accepts point clouds on a short integer normalized Cartesian
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grid, along with values corresponding to those points which are also normalized

to the short integer range to optimize memory throughput and save disk space –

this theoretically limits both the spatial and the color resolution, but not enough

to have any significant impact on typical visualizations of Gene data, even at

maximum zoom rate. The data is then, one time step at a time, copied to the

memory of the graphics adapter. This puts a constraint on the RZG VisualKit

in that it requires access to computers with modern graphics adapters (more

specifically, Shader Model 3 or higher is required). For fully toroidal data sets,

at least 256MB of dedicated GPU memory are recommended.

The graphics adapter renders the 3-D point cloud via direct point splatting. For

every point, its data set value is retrieved via a 3-D texture lookup of its relative

position within the data set. This value is then transformed into an RGB color

value via a 1-D color table lookup. These lookups are implemented in a combined

fashion as a fragment shader on the GPU. The points are rendered as anti-aliased

flat round disks with a normal vector parallel to the line of sight.

If correctly sorted, use can be made of an additional feature. The RZG Visu-

alKit is able to connect the points corresponding to a flux surface, – i.e., points

with constant local x coordinate – by covering the surface with quad strips. Lo-

cally neighboring points are connected so that physical structures are highlighted.

However, those quads are opaque, and while two such surfaces may be used simul-

taneously, the inner one will be visible only if one uses the feature in conjunction

with clipping planes.

3.2.2 GENE Data Sets

Routines for creating RZG VisualKit data sets from Gene output data exist

for both ŝ-α geometry (so far, effects due to finite α are neglected) and general

geometry (via the Tracer output file). Since all three-dimensional Gene output is

provided in local (x, y, z) coordinates, one has to transform this data into global

Cartesian (X,Y,Z) coordinates. If Gene is run in ŝ-α flux tube geometry, use

of the following transformations can be made:

r = r0 +

(

x− Nx

2
∆x

)

(3.1)

θ =
2π

Nz
z − π (3.2)

φ = −q0
r0

(

y − Ny

2
∆y

)

+ q0

[

1 +
ŝ

r0

(

x− Nx

2
∆x

)]

θ (3.3)
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Figure 3.2: Tokamak flux tubes spanning a hollow torus; Gene data for the

parameter set described in Ch. 6 is visualized using the RZG VisualKit. M = 10

identical flux tubes are shown here. With the parallel coordinate interpolated

from 48 to 800 points, a total of 73.7 million points are included in the data set,

half of which are shown here after clipping φ values from π to 2π for illustrative

purposes.

This set of torus coordinates can easily be further transformed to a global Carte-

sian grid:

X = r cosφ cos θ (3.4)

Y = r sinφ cos θ (3.5)

Z = r sin θ (3.6)

These rules are applied to every single data point; considering the different length

scales in gyrokinetic flux tubes, namely a parallel direction much more elongated

when compared to its perpendicular counterparts, it is necessary to interpolate

said parallel direction. To allow for a more regular (X,Y,Z) structure, the point

density in all original coordinate directions has to be of the same order. Con-

sequently, interpolations of the parallel direction by factors of ∼ 50 are typical,

depending on the choices for the major radius R0 and the gyroradius ρs. Exem-

plary ŝ-α visualizations are shown in Figs. 3.2 and 3.3 for point splatting and

quad surfaces, respectively. Here, M = 10 flux tubes were used to fill the flux

surfaces.

Mapping dimensionless local coordinates onto a real-space Cartesian grid requires

settings for the normalization lengths; in the new reference frame, two free scal-

ing parameters remain, one of which is chosen to be the major radius R0 of the

magnetic axis. Fixing R0 simultaneously sets the parallel length scale since the

parallel coordinate is defined as z = 2πẑq0R0/Nz (here, ẑ denotes the nondi-

mensional value). As a result, without loss of generality – at least as far as the
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Figure 3.3: Shown here is the same data set as in Fig. 3.2; while before, all points

were splatted, now only the outermost and innermost flux surfaces are visualized

by connecting points with quad strips. From this figure, it becomes apparent

that the turbulence amplitudes are highest on the outside of the torus where the

magnetic field is weakest.

visualization is concerned – the major radius can be set to R0 = 1.

For the perpendicular coordinates, the scaling length is the gyro radius. Any

choice of ρs (in units of R0) needs to be consistent with the boundary conditions,

however, at least if one aims to cover the entire (hollow) torus with M multiple

identical flux tubes. Parallel structures need to be closed after a full poloidal

turn. Thus, the position of the field line at θ = 2π needs to coincide toroidally

either with itself or with one of its Lφ-shifted copies, as is illustrated in Fig. 3.4.

Given that MLφ = 2π, and that the field line has to end at the toroidal position

φ = M̄Lφ , M̄ ∈ {0, . . . ,M− 1} , (3.7)

one finds the boundary condition to be

(2πq0) mod (2π) = M̄Lφ (3.8)

⇔ (Mq0) mod 1 = 0 . (3.9)

Even for rational values of q0, this can require extremely large values of M,

resulting not only in more data being produced, but also in structures being too

small to provide a meaningful visualization. Therefore, it is sometimes useful to

slightly alter the original value of q0, for instance by allowing only one digit after

the decimal point.

With a choice of M being made, one may use the torus covering condition MLφ =

2π to arrive at the required gyroradius:

ρs =
2πr0

Mq0L̂y

, (3.10)
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Figure 3.4: Field lines on a fully covered flux surface. In the absence of magnetic

fluctuations, field lines are represented by lines with slope q(r)−1 in the φ-θ plane.

Here, an example is given with q = 1.6, where the surface is covered by M = 5

flux tubes; the first field line of the original flux tube is shown as a bold black

line, those of the copies as red lines. As the primary field line reaches θ = 2π, its

toroidal position matches that of the third copy (M̄ = 3), thus complying with

the condition imposed by Eq. (3.8).

with L̂y denoting the box size in the y direction in units of the gyroradius.

Alternatively, general geometry data sets can be created. In general, such ge-

ometry does not allow for periodic use of the flux tube; thus, only one flux tube

is visualized, leaving the user with a free choice of both R0 and ρs. Apart from

that, the procedure is similar to its ŝ-α counterpart, with a new set of coordinate

transformations:

X =

[

r̄(φ) +

(

x− Nx

2
∆x

)

P(∇x,∇r̄(φ))

]

cosφ (3.11)

Y =

[

r̄(φ) +

(

x− Nx

2
∆x

)

P(∇x,∇r̄(φ))

]

sinφ (3.12)

Z =

[

z̄(φ) +

(

x− Nx

2
∆x

)

P(∇x,∇z̄(φ))

]

(3.13)

which are completed by the previous definition of φ (see Eq. (3.3)). Here, P(i, j)

represents a projection of i on j, and the quantities r̄(φ) and z̄(φ) are given by

the Tracer code, just like the employed projections.
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Figure 3.5: RZG VisualKit visualization of a Wendelstein 7-X flux tube. The

physical data was calculated by P. Xanthopoulos using the Gene code, with the

geometry stemming from the Tracer code. In the case depicted here, the flux

tube seems to loop onto itself after one toroidal cycle, but this effect is purely

coincidental.

An example for RZG VisualKit output based on a Gene data set in stellarator

geometry – more specifically, Wendelstein 7-X geometry – is given in Fig. 3.5.

Here, only one flux tube is shown which happens to nearly close in itself after

one toroidal turn. Generally, one can only achieve closure in general geometry if

one has data for all flux tubes that span a flux surface.

3.2.3 Limitations and Further Requirements

While being a powerful instrument which can handle large amounts of data, the

RZG VisualKit is suffering from some limitations. It is to be noted that high

resolution Gene data sets can have very large file sizes (∼ 100MB per time

step) and require high-end graphics hardware for interactive manipulation. Con-

sidering that this constraint comes practically solely from the excessive parallel

interpolation, it would be useful to adjust interpolation in the RZG VisualKit

itself, depending on the zoom factor and the area being displayed. At the same

time, handling the data in local coordinates internally in the RZG VisualKit
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would lift some load off the data set preparation process which can take multiple

hours. In addition, one would be able to select points on a local (i.e., physical)

basis rather than via clipping planes. And lastly, this way not only flux surfaces

could be spanned by quads, but any shapes, being it slices of constant φ, single

flux tubes, or isosurfaces.

3.3 Chapter Summary

In this chapter, tools of simulation data analysis were presented which allow for

versatile visualization of Gene simulation output. The Gene Diagnostics Tool

– which was redesigned and extended in the context of this thesis – bundles a

wide range of diagnostic programs and provides a graphical user interface for

convenient use; it can be augmented by adding arbitrary numbers of new pro-

grams. Official and additional such programs are described, some of which were

fundamental for the investigations performed in this thesis. Additionally, the

RZG VisualKit was introduced which relies on dedicated graphics hardware to

handle vastly larger amounts of data interactively than would be possible within

the IDL framework. Advantages and limitations are discussed, and examples of

visualizations are given for both ŝ-α and general (here: stellarator) geometry,

making use of an IDL-based program which creates Gene data sets for the RZG

VisualKit.
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Chapter 4

Numerical Diffusion in GENE

In this chapter, the versatile uses of (hyper-)diffusion terms in the Vlasov equa-

tion are discussed, presenting ways to minimize unphysical effects due to the

occurrence of numerical modes. An emphasis is put on numerical dissipation in

the parallel dynamics; parallel velocity space and radial diffusion are investigated,

as well. The chapter mainly follows Pueschel et al. [47].

4.1 Finite Difference Schemes

While in Fourier space, derivatives are calculated through multiplication by pow-

ers of the corresponding wave number, k, real space numerical derivatives require

knowledge of function values at neighboring points on the discretization grid.

For instance, the simplest way of calculating a first derivative of a function f(x)

which is discretized on a grid with spacing ∆x using this principle is

[

∂f

∂x

]

(x) =
f(x) − f(x− ∆x)

∆x
. (4.1)

In the shorthand notation used in this chapter, this scheme reads

[−1 1 0 ] . (4.2)

By definition, the center value is the coefficient for the function value at x, to

the left are the coefficients for function values at positions < x, and to the right

those for function values at positions > x.

4.1.1 Centered and Upwind First Derivatives

Centered stencils are defined as those with entries antisymmetric about the cen-

ter (i.e., ai = −a−i, a0 = 0), while upwind schemes are asymmetric, with the

59
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O type stencil

1 u ξ−1 [−1 1 0 ]

2 c (2ξ)−1 [−1 0 1 ]

3 u (6ξ)−1 [ 1 − 6 3 2 0 ]

4 c (12ξ)−1 [ 1 − 8 0 8 − 1 ]

5 u (60ξ)−1 [−2 15 − 60 20 30 − 3 0 ]

6 c (60ξ)−1 [−1 9 − 45 0 45 − 9 1 ]

7 u (420ξ)−1 [ 3 − 28 126 − 420 105 252 − 42 4 0 ]

8 c (840ξ)−1 [ 3 − 32 168 − 672 0 672 − 168 32 − 3 ]

Table 4.1: First derivative stencils; the first column specifies the stencil order,

the second column the type, with u and c denoting upwind and centered schemes,

respectively. The centered stencils shown here have maximal order for their size,

while the upwind stencils have order one less than the centered stencils of the

same width.

last stencil coefficient being zero. Unlike centered stencils, upwind stencils are

diffusive in nature, a property described in more detail later. It shall be noted

at this point, however, that in order to exploit the stabilizing nature of upwind

stencils, one has to take into account the total sign of the derivative term: in

case it changes (which may happen, e.g., when the parallel velocity sign changes

in the parallel term of Eq. 2.65), the upwind stecil has to be inverted to avoid

destabilization of the simulation.

A prescription of how to construct a centered first derivative stencil is detailed

below. Starting with the Taylor expansion of a function f(x), one may calculate

its values at the neighboring points on a grid of spacing ξ. On thus obtains

f(x± ξ) = f(x) ± ξ f ′(x)
1! + ξ2 f ′′(x)

2! ± . . . =
∞
∑

k=0
ξk f(k)(x)

k!

f(x± 2ξ) = f(x) ± 2ξ f ′(x)
1! + 4ξ2 f ′′(x)

2! ± . . . =
∞
∑

k=0
(2ξ)k f(k)(x)

k!

...
...

f(x± lξ) = f(x) ± lξ f ′(x)
1! + l2ξ2 f ′′(x)

2! ± . . . =
∞
∑

k=0
(lξ)k f(k)(x)

k!

(4.3)

with l ∈ N and f (n)(x) ≡ ∂n
xf(x). These terms can now be combined to an

arbitrary stencil – which, in general, has neither a physical meaning nor an effect

that is numerically desirable – of width l with coefficients ai:

a−lf(x− lξ) + . . .+ a−1f(x− ξ) + a0f(x) +
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+ a1f(x+ ξ) + . . . + alf(x+ lξ) =̂ (4.4)

=̂ [ a−l . . . a−1 a0 a1 . . . al ] .

To give meaning to this stencil while imposing conditions on its entries, it may

be equated to the first derivative of f(x). Hence, one arrives at a linear system

of equations with the variables ai, i = −l . . . l. This system is homogeneous save

for the entry resulting from the term ∂xf(x):































a−l a−2 a−1 a0 a1 a2 al ξ−1

1 · · · 1 1 1 1 1 · · · 1 0

−l −2 −1 0 1 2 l 1

l2 4 1 0 1 4 l2 0

−l3 −8 −1 0 1 8 l3 0
...

...
...

...

(−l)n · · · (−2)n (−1)n 0 1 2n · · · ln 0































(4.5)

Here, the j-th line corresponds to the equation for the j-th derivative, ∂j
xf(x),

j = 0 . . . n. In the column marked ξ−1, the right hand side inhomogeneity due to

the original derivative term is found (which the stencil is equated to), while the

other columns contain the left hand side coefficients ai of the stencil entries.

Generally, there is some freedom as to how to choose the dimension parameters of

this system, l and n. However, it is intuitive to comply with the rule 2l+1 = n+1

in order not to have an under- or overdetermined system. n determines the

order of the stencil; e.g., for a first derivative, considering n + 1 equations leads

to an n-th order stencil. A centered stencil of maximal order thus always has

even order. Alternatively, one may impose conditions on the entries, with each

condition – generally – reducing the order by one. To calculate upwind stencils,

al must be set to zero. Results obtained using the above prescriptions can be

found in Tab. 4.1. If one aims to construct stencils with additional properties

(e.g., certain symmetries), one may substitute the corresponding conditions for

an equal number of lines in the above system, starting with the last and working

one’s way up.

Note that with increasing order, the minimal stencil width grows, making a com-

putation more precise yet more expensive at the same time: large stencils make

parallel computations rather inefficient due to the increased communication be-

tween cores, while very small stencils require larger grid resolutions; in practice,

a good compromise is usually achieved with stencils comprised of 5 or 7 entries,

corresponding to 4-th or 6-th order centered first derivatives, respectively.
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n stencil

2 ξ−2 [ 1 − 2 1 ]

4 ξ−4 [ 1 − 4 6 − 4 1 ]

6 ξ−6 [ 1 − 6 15 − 20 15 − 6 1 ]

8 ξ−8 [ 1 − 8 28 − 56 70 − 56 28 − 8 1 ]

Table 4.2: Higher derivatives as required for (hyper-)diffusion terms; the deriva-

tive ∂n
x is specified in the first column. All stencils shown here are of second

order.

4.1.2 Higher Derivatives

Going to higher derivatives, one must simply place the inhomogeneity in Eq. (4.5)

in another line; for the n-th derivative, it has to be in the (n + 1)-th line, with

an adjusted exponent of ξ−n. For diffusion and hyperdiffusion terms – which are

investigated in this work – derivatives ∂n
x with even n are required. Stencils for

some common choices of n are found in Tab. 4.2.

Henceforth, hyperdiffusion (n ≥ 4) and diffusion (n = 2) are both referred to as

simply diffusion. While generally, this term may also be used for physical pro-

cesses in fusion plasmas (see, e.g., Ch. 7), here it means inclusion of a numerically

dissipative term in the Vlasov equation that involves an n-th derivative of the

(possibly modified) distribution function.

4.2 Parallel Dissipation

4.2.1 A Simplified Model

The Adiabatic Slab Case

In order to gain a deeper understanding of the dynamics parallel to the magnetic

field lines, a simplified model is used; it is derived from the full gyrokinetic frame-

work (see Eqs. (2.65) and (2.66) to (2.68)), making the following assumptions:

• the magnetic field is homogeneous and static,

• the (singly charged) ions may be treated in a drift-kinetic fashion,

• the electrons behave adiabatically, and

• the nonlinearity is dropped.
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The first of these assumptions implies that B0 = 1, Kx = Ky = 0, ǫt = 0,

and β = 0. Additionally, in the drift-kinetic limit – corresponding to the long-

wavelength regime – bi, λi ≪ 1, which leads to J0(λi) ≈ 1 and Γ0(bi) ≈ 1. Note

that unlike in the general case, the parallel direction is now periodic, allowing for

Fourier representation of the parallel coordinate. The velocity space coordinate

µ may be integrated out (as shown by Jenko and Scott [48]), and one is left with

two coupled equations,

∂F1

∂t
+

[

ωn + ωT i

(

v2
‖ −

1

2

)]

ikyΦF0 + αiv‖
∂F1

∂z
+ τeαiv‖

∂Φ

∂z
F0 = 0 (4.6)

and

Φ =

∫

F1dv‖ , (4.7)

for the complex quantities F1(z, v‖, t) and Φ(z, t). Here, the distribution func-

tions’ species subscript i was dropped, and the parameter τe = Te0/Ti0 was intro-

duced. The equilibrium distribution function becomes

F0(v‖) =
1√
π

e
−v2

‖ . (4.8)

The binormal y direction is represented in Fourier space, and the radial x direc-

tion is averaged over (corresponding to kx = 0). For Eqs. (4.6) and (4.7), the

dispersion relation can be written as

1 + τe + (τe̟ +̟ni)Z(̟) +̟T iY (̟) = 0 , (4.9)

with the plasma dispersion function Z(x) [49] and the derived function Y (x) =

x+ (x2 − 1/2)Z(x). The other quantities are ̟ ≡ ω/(αik‖), ̟ni ≡ ωniky/(αik‖),

and ̟T i ≡ ωT iky/(αik‖). For certain parameters, this dispersion relation has

one solution with a positive imaginary part, corresponding to a slab ITG mode.

Eq. (4.9) can be evaluated numerically in a straightforward fashion, allowing for

comparisons with direct numerical solutions of Eqs. (4.6) and (4.7). This is useful

when investigating the role of numerical dissipation in the parallel dynamics, as

is done below.

Numerical Approach

For the numerical solution of Eqs. (4.6) and (4.7), a simple (1 + 1)-dimensional

Vlasov code was used, which amounts to a reduced version of the Gene code. The

spatial parallel z coordinate is defined on the range −π . . . π, while the parallel

velocity coordinate ranges from v‖ = −4 to 4 in the same normalized units that

are described in Ch. 2. Real space and velocity space are discretized by employing
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Nz and Nv equally spaced grid points, respectively. In slab geometry, the spatial

boundary conditions are taken to be periodic, and for the integration procedure in

velocity space, a simple trapezoidal rule is used. A standard third-order explicit

Runge-Kutta scheme is employed for the time stepping. Unless stated otherwise,

the physical and numerical parameters are chosen as follows: τe = ωn = 1,

ωTTi = 10, αi = 0.34, and ky = 0.3 – this corresponds to rather typical parameters

of gyrokinetic simulations, where growth rates tend to peak around this value of

ky. For the basic scenario, the phase space grid is characterized by Nz = 16 and

Nv = 32, and the time step is always chosen to be well below the Courant limit.

Usually, the total run time is about 100cs/Lref , with the initial transients typically

dying off after only a few time units. In order to compute a linear growth rate, the

spatial average of the absolute of the (complex) electric potential perturbation is

evaluated. Then, a straight line is fitted to the logarithmic plot of that average,

excluding effects from the initial transient time range.

4.2.2 Occurrence of High-k‖ Modes

When discretizing Eqs. (4.6) and (4.7) on the aforementioned phase space grid –

including the time domain – one encounters the following problem: Naturally,

every finite difference representation of the spatial derivative ∂z can only be

an approximation to the exact expression. For example, using a second-order

centered stencil (as provided in Tab. 4.1),

∂Φ

∂z
→ Φ(z + ∆z) − Φ(z − ∆z)

2∆z
, (4.10)

on an equidistant z grid with grid spacing ∆z, and assuming a disturbance of the

form Φ(z) ∝ exp(ik‖z), one obtains

ik‖Φ → sin(k‖∆z)

k‖∆z
ik‖Φ ≡ h(k‖)ik‖Φ . (4.11)

The same applies to ∂zF1. This means that the physical value of k‖ in Eq. (4.9)

is replaced by an effective value keff
‖ = h(k‖)k‖. In the case of Eq. (4.11), h(k‖)

is symmetric about k‖∆z = π/2; in particular, keff
‖ → 0 as k‖ → π/∆z. This

latter property is shared by higher-order centered schemes as well as other non-

dissipative schemes.

It is well-known that the growth rates of linear ITG modes in unsheared slab

geometry fall off with increasing k‖ and even become negative, provided k‖ is

sufficiently large (see Goldston and Rutherford [50]). At the same time, centered

finite difference representations of Eqs. (4.6) and (4.7) will yield modes with
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Figure 4.1: Linear growth rates of slab ITG modes as functions of the parallel

wavenumber, k‖, for different parallel discretization schemes. The curve labeled

exact was obtained by numerically solving the dispersion relation, Eq. (4.9), while

the other curves show the impact of centered schemes of different order and their

respective values of keff
‖ . The corresponding data points have been obtained using

the initial value code described in the text. Note that here, k‖ is given in units

of 2π/Nz .

high k‖ that are linearly unstable. This effect is clearly unphysical and may

pollute gyrokinetic simulations of plasma turbulence. In a saturated quasi-steady

state, such numerically destabilized modes may contain a significant amount of

energy which is transferred to them via nonlinear processes. The profiles of Φ or

other fluctuating quantities in z space may then exhibit a sawtooth-like structure.

Although in a more realistic case that includes magnetic curvature, this problem

tends to be reduced, slab-like modes can be important even then (see Ref. [51]),

making it necessary to deal with the issue of high-k‖ perturbations in order to

retain physicality of simulation results. An intuitive approach to deal with this

problem is to introduce numerical dissipation. In the following, this method is

discussed in more detail.

In Fig. 4.1, the linear growth rates γ(k‖) of slab ITG modes are shown for cases

where low-order centered discretization schemes (as listed in Tab. 4.1) were used

for the parallel coordinate; the solutions of the dispersion relation, Eq. (4.9), using

the exact and the modified effective values for k‖, are displayed for comparison.
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For the lowest k‖ mode (k‖ = 1 in the figure), the exact solution of the dispersion

relation and the Vlasov code show very good agreement, independently of the

employed parallel scheme. As k‖ is increased, however, significant deviations

are observed – in particular, the numerical growth rates do not follow the exact

solution into the range of negative values for high k‖. Instead, they increase again

and reach values comparable to the growth rate of the k‖ = 1 mode.

This behavior can be understood in terms of the fact that keff
‖ → 0 for k‖ → π,

as has been discussed above. In the case of the second-order scheme, specifically,

γ(k‖) is symmetric about k‖ = π/2, which is reflected by Eq. (4.11). While higher

order centered schemes perform slightly better (due to the fact that the symme-

try is broken), they ultimately encounter the same problem for sufficiently high

k‖. Two possible solutions – using upwind differencing schemes and introducing

diffusion terms to stabilize high-k‖ modes – will be discussed next.

4.2.3 The Impact of Upwind Schemes and Diffusion Terms

Upwind Schemes

Unlike their centered counterparts, upwind-type schemes (see Tab. 4.1) are known

to be numerically dissipative. In the present context, this feature is important in

that it has a stabilizing effect on the high-k‖ modes which otherwise are desta-

bilized numerically. The disadvantage of upwind differencing is two-fold: Firstly,

upwind schemes are of lower order than centered schemes for a given stencil

width; for the same number of allocation points, the maximum order of the up-

wind scheme is one less than that of the corresponding centered scheme. Secondly,

the dissipative effect of the scheme cannot be controlled, possibly resulting in an

unphysical influence on the simulation or causing inapplicability in different areas

where significant numerical dissipation may be required.

It is important to note that upwind differencing in Eq. (4.6) should not be applied

to the potential Φ. This would lead to severe time step restrictions, as has been

shown by Dannert and Jenko [52]. For this reason, only the term ∂zF1 may be

treated by upwind schemes, while the term ∂zΦ is always discretized by means

of a centered scheme with a stencil width identical to that of the upwind scheme

for ∂zF1. More specifically, for a given upwind scheme in Tab. 4.1, the centered

scheme in the line directly below it is used.

Upwind schemes exhibit some similarities to diffusion terms, as will be shown

below. In particular, high-k‖ modes are stabilized – as they should be, physically,

according to the solutions of the dispersion relation, Eq. (4.9). Thus, upwinding

is one way to solve the issue of numerical high-k‖ instability.
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Numerical Diffusion

High-k‖ modes can also be damped by introducing an additional diffusive term

DnF1 on the right-hand side of the Vlasov equation (4.6) which contains an n-th

spatial derivative of the distribution function (with an even number n). The

resulting new Vlasov equation reads

∂F1

∂t
+

[

ωn + ωi

(

v2
‖ −

1

2

)]

ikyΦF0+αiv‖∇‖F1+τeαiv‖∇‖ΦF0 = DnF1 , (4.12)

where n is an even and positive integer number, ∇‖ ≡ ∂z, and Dn is defined as

Dn ≡ −inηn∇n
‖ . (4.13)

The inclusion of −in requires the factor ηn to be positive in order to obtain

a stabilizing effect, and is motivated by the ansatz F1 ∝ exp(ik‖z). ηn can

be used to regulate the strength of the diffusion, as well as include additional

dependencies, as desired.

Using a stencil with n+ 1 points and centered finite difference schemes for both

∇‖ (n-th order) and ∇n
‖ (second order), the addition of the diffusive term to the

Vlasov equation can be interpreted as a mere modification of the finite difference

scheme for ∇‖F1. For instance, in the n = 2 case, the second order centered

schemes for ∇‖ and ∇2
‖ read

∇{2}
‖ =

1

2∆z
[−1 0 1 ] ,

(

∇{2}
‖

)2
=

1

(∆z)2
[ 1 − 2 1 ] , (4.14)

where the number in curly brackets denotes the order of the scheme. On the other

hand, the first order scheme for ∇‖ is given by the one parameter (c2) family

∇{1}
‖ = ∇{2}

‖ + c2∆z
(

∇{2}
‖

)2
. (4.15)

For arbitrary scheme orders, this relation becomes

∇{n−1}
‖ = ∇{n}

‖ + cn∆zn−1
(

∇{2}
‖

)n
, (4.16)

such that, for the present case,

∂F1

∂t
+ αiv‖∇{n}

‖ F1 + inηn

(

∇{2}
‖

)n
F1 = . . . (4.17)

can be replaced by
∂F1

∂t
+ αiv‖∇{n−1}

‖ F1 = . . . , (4.18)

assuming that ηn ∝ (∆z)n−1, and splitting off the prefactor αiv‖ from ηn. If one

chooses ηn ∝ (∆z)m, with m < n, the combined scheme is of m-th order, while
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Figure 4.2: Growth of the k‖ = 7 mode for a spatial resolution of Nz = 16,

depending on ǫ for second (solid), fourth (dotted), and sixth order (dashed)

diffusion term. At ǫ = ǫc ≈ 0.25, the curves cross the abscissa, marginally

stabilizing the seventh mode at this point. Here, k‖ is specified in units of 2π/Nz.

for m ≥ n, it is of n-th order, just as the original scheme. This will prove to be

relevant later on, when the scaling ηn ∝ (∆z)n is chosen in order to make the

diffusion coefficient ǫ – to be defined below in Eq. (4.22) – independent of the

spatial resolution.

In the following, a critical diffusion coefficient ηcrit
n shall be presented for which

all physically stable modes of the curve in Fig. 4.1 representing the solution of the

dispersion relation are also numerically stable. The value of ηcrit
n depends on the

order of the scheme, as well as on the spatial resolution and the set of physical

parameters. For the dispersion relation, Eq. (4.9), the fastest growing mode is

usually characterized by k‖ = 1 (in units of 2π/Nz). However, the mode with the

highest k‖, here: (Nz/2 − 1), will have a similar growth rate due to keff
‖ → 0 for

k‖ → Nz/2. To identify the value and functional dependencies of ηcrit
n , one thus

has to find the value of ηn for which the k‖ = (Nz/2 − 1) mode is marginally

stable.

The diffusion-extended Vlasov equation (see Eq. (4.12)), leads to a modified

dispersion relation,

1 + τe + (τeψ̄ +̟ni)Z(ψ̄) +̟T iY (ψ̄) = 0 , (4.19)
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where ψ̄ ≡ ̟ + ikn−1
‖ ηn/αi. Note that Eq. (4.12) is valid only if Dn (and thus

ηn) is independent of v‖. The new dispersion relation has the same form as the

original one (and therefore the same solution, only now for ψ̄ instead of ̟),

Eq. (4.9); thus, an imaginary number ikn−1
‖ ηn/αi is subtracted when comparing

the original ̟ with the new one. The corresponding numerical damping rate is

proportional to kn
‖ (since ω = k‖̟) which is consistent with the goal to stabilize

high-k‖ modes while influencing low-k‖ modes at little as possible. The impact

on the growth rate can thus be written as

∆γ ≡ γdiff − γ = −ηn(kdiff
‖ )n , (4.20)

where γdiff is the growth rate of a mode as given by the diffusive Vlasov equation,

Eq. (4.12), and kdiff
‖ is the effective wave number for the diffusion term. It is

defined similarly to keff
‖ , only for a second order n-th derivative. For n = 2, its

high-k‖ limit is given by

lim
k‖∆z→π

kdiff
‖ = lim

k‖∆z→π

(

2 − 2 cos(k‖∆z)

(∆z)2

)1/2

=
2

∆z
. (4.21)

In this particular limit, one always obtains the same result, independently of n.

Demanding that ηn ∝ (kdiff
‖ )−n – which is suggested by Eq. (4.20) – one can

rewrite the diffusion coefficient,

ηn = ǫ

(

∆z

2

)n

, (4.22)

which yields a new diffusion coefficient ǫ that is independent of both ∆z and n.

This leads to a new form for the diffusion term:

Dn = −inη(crit)
n ∇n

‖ = −inǫ(c)
(

∆z

2

)n

∇n
‖ . (4.23)

Using this expression, numerical simulations confirm that the critical value ǫc

is independent of the resolution ∆z and the order n of the scheme. Even for

low resolutions, only small deviations were found. As is illustrated in Fig. 4.2,

ǫc ≈ 0.25 for the present choice of physical parameters. Also note that, as

mentioned before, the combination of centered scheme and n-th derivative is

of order n, due to ηcrit
n ∝ (∆z)n.

The range of allowed values for the diffusion coefficient is limited on the lower end

by the appearance of high-k‖ modes, motivating a lower boundary ǫmin ≈ ǫc, and

by numerical stability issues on the higher end. For a given time step, ǫ cannot be

increased indefinitely – at a certain value, the diffusion term will become unstable,

losing its previous damping effect; this is illustrated in Fig. 4.3.
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Figure 4.3: Stability regions (contours) of the third order Runge-Kutta explicit

time stepping scheme, along with the eigenvalue cloud (circles) of a fourth order

spatially differenced Vlasov system (Nz = 16) with a diffusion term as described

in the text. While the spatial resolution is responsible for stretching the cloud

along the imaginary axis, increasing the diffusion coefficient will elongate the

cloud along the negative real axis. Once an eigenvalue lies outside the stability

region, the simulation will become unstable. The time resolutions shown here

are ∆t = 0.12 (outer contour) and ∆t = 0.13 (inner contour). Note that an

unrealistically high diffusion coefficient ǫ = 20 has been chosen here to show its

time step limiting property.
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Analogously to the Courant limit, there exists a maximum ǫ above which the

simulation becomes numerically unstable. In reality, however, this value lies far

beyond the order of magnitude investigated here. The Courant limit remains

the most restrictive factor in determining the time step. Note that while in the

case of multi-species, finite-β simulations at non-zero ŝ, much higher values of ǫ

are common, the time step also is much smaller to allow for the inclusion of the

electron dynamics. Such cases are discussed in Chs. 5 and 6.

For a third order Runge-Kutta time scheme, the maximum value for ǫ is deter-

mined to be

ǫRK3
max =

(4 +
√

17)1/3 − (4 +
√

17)−1/3 + 1

∆t
≈ 2.5127

∆t
. (4.24)

This relation can be obtained by equating the diffusion coefficient ǫ (which, for

even Nz, corresponds to the location of the eigenvalue with the most negative

real part) to the leftmost zero point of the time stepping stability regime (which

is calculated by Taylor-expanding a complex exponential function) and is inde-

pendent of the spatial resolution if the time step is assumed to be limited by the

diffusion term alone, i.e., not by the Courant limit. For practical purposes, one

can simply write

ǫ ≤ 2.5

∆t
. (4.25)

Note that this value is much larger than the above ǫc = 0.25 for any realistic time

step. For a typical ∆t = 0.1 (which is rather large compared to common values

in Gene simulations), ǫmax exceeds ǫc by two orders of magnitude.

In terms of the scaling factor ǫ of the diffusion term, one can recalculate the

results for the centered schemes displayed in Fig. 4.1, using values ≈ ǫc; those

new results are shown in Fig. 4.4. Thus, it is demonstrated that the problem

caused by the high-k‖ modes has been resolved without significantly affecting the

physical modes of the system.

By changing the set of physical parameters of the problem, a different choice of

ǫc may become necessary. In principle, one would have to make a readjustment

after every change of a physical quantity. In practice, however, there is some

freedom as to what value ǫc can be set to. This is illustrated by the influence

of the diffusion term on the low-k‖ modes: A relative deviation of 6×10−5 from

the diffusion-less result is found for k‖ = 2π/Nz at sixth order with ǫc = 0.25,

making the result mostly independent of the precise value. For the next higher

k‖, the deviation is 3×10−3, which is still reasonably small.

However, if the changes to the physical parameters become significant, one has

to identify the new value of ǫc. Generally, this is done by determining the ap-
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Figure 4.4: Linear growth rates of slab ITG modes for different parallel discretiza-

tion schemes of constant fourth order for a range of ǫ values (upper graph), and

constant diffusion ǫ = 0.3 for a range of scheme orders (lower graph).
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proximate linear growth rate of the lowest k‖ mode and setting ǫ to that value:

ǫc(PP) = γ(kmin
‖ ,PP) , (4.26)

where PP symbolizes a set of physical input parameters. This prescription seizes

to work when the dispersion relation changes in a way that the intermediate

range (here, this would correspond to a value of k‖ ≈ 8π/Nz) is contributing

significantly to the physics. However, in such a case, the physics would likely not

be resolved sufficiently anyway, requiring a higher parallel resolution; then, the

above ǫc will again be sufficient to dampen unwanted high-k‖ modes.

One can show that the aforementioned upwinding is simply a special case of

diffusion: working with a 2n+ 1 point stencil, employing an n-th order centered

scheme for ∇‖ as well as a second order centered scheme for ∇n
‖ , and using the

respective choice of the following ηn:

ηupw
2 = αi‖v‖‖

∆z

2
(4.27)

ηupw
4 = αi‖v‖‖

(∆z)3

12
(4.28)

ηupw
6 = αi‖v‖‖

(∆z)5

60
(4.29)

one obtains the (n− 1)-th order upwind stencil.

However, diffusion is the more desirable choice compared to upwind differencing

for two reasons: firstly, its order is n, compared to n − 1 for upwinding, where

n is the order of the employed centered scheme; secondly, it can be fine tuned,

allowing for more precise regulation of the impact on both the physical and the

numerical modes. At the same time, using a diffusion term requires only slightly

more effort – to find the value of ǫc, one only needs an estimate of the growth

rate. Therefore, introducing a diffusion term – or, more correctly for most cases,

a hyperdiffusion term – is the preferable choice.

Since for this research, a strongly simplified model was used, it is important

to note how directly and with what impact the thus obtained results can be

applied to more general cases, i.e.: kinetic electrons, more complex geometry,

and magnetic fluctuations, described no longer in a drift-kinetic but a gyrokinetic

fashion. Performing simulations with the Gene code, one finds that for most

cases, the above prescription (as given in Eq. (4.26)) holds true; one of these

scenarios, involving simulations of ETG turbulence, is described in more detail

further down in this chapter. However, finite magnetic shear, in conjunction

with finite plasma β, will cause zigzag-like structures in the magnetic potential

A‖ which then are transfered onto other quantities. The reason for this lies in the
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properties of A‖, along with the parallel boundary conditions at finite ŝ and finite

radial resolution; however, since the mechanism causing this numerical feature

is not identical to the one discussed above, the aforementioned prescription fails

if applied without modification. In fact, one can either choose very high radial

resolutions, or increase the diffusion coefficient to values of ǫ ∼ 10. The latter

is computationally much less expensive and thus the preferred solution. Cases

where this prescription is applicable are discussed in Chs. 5 and 6. If gyrokinetic

simulations are performed in the electrostatic limit or in unsheared geometry,

however, the method of determining the diffusion coefficient ǫ as detailed above

can be expected to hold.

4.3 Recurrence Phenomena

4.3.1 Decaying Zonal Flows

Zonal flows (see, e.g., Hasegawa and Wakatani [53], or Ch. 5) are modes with a

purely radial structure that can be excited nonlinearly by turbulent processes.

In a linear, collisionless model, they are damped, typically within a few ten to a

hundred time units. In order to investigate zonal flows linearly, one can initialize

a kx mode that is constant in both toroidal and poloidal direction, and subject

this mode to time evolution via the Vlasov equation. However, this setup is

susceptible to so-called recurrence phenomena in a finite resolution code, i.e.: the

initial amplitude of the zonal mode is remembered by the code and reproduced

after half the recurrence time trec = 2π/(αi∆v‖). Again, this recurrence problem

can be solved by the use of numerical diffusion. Since the (1 + 1)-dimensional

slab model described above cannot capture the physics involved here, the Gene

code was used for the numerical simulations detailed below.

As can be seen in Fig. 4.5, a damped mode recurs after a certain time for no

physical reason. This behavior may pollute linear as well as nonlinear simulations.

While the theoretically predicted residual level (see Rosenbluth and Hinton [54]

for more details) of the mode,

AR =
1

1 + 1.6q20/
√
ǫt

, (4.30)

is reproduced correctly (again, q0 is the safety factor and ǫt the inverse aspect

ratio), energy is reinserted numerically into the system at multiples of the recur-

rence time trec after the initial occurrence of the mode. For these simulations,

the following set of physical parameters was used: the driving gradients were set

to zero in order to isolate the effect of recurrence and a more complex magnetic
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Figure 4.5: Velocity space resolution dependence of linear simulations of zonal

modes; the displayed quantity is the normalized electrostatic potential Φ. From

the upper left to the lower right graph, the parallel velocity space resolution Nv‖

is increased successively by factors of 2 from 32 to 256 points. Note that the

recurrence time trec = 2π/(αi∆v‖) doubles for each such step, an effect which is

reflected by the results. The dashed line corresponds to the (physical) residual

level AR of the modes, as given in the text.
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geometry was introduced to allow for the formation of zonal flows, with q0 = 2,

ŝ = 0.8, and ǫt = 0.16. Linear results (with adiabatic electrons) for ky = 0.02

were obtained with resolutions of Nx = 16, Nz = 16, Nµ = 8, and Nv‖ = 64

unless specified otherwise. Note that for a stable mode (γ ≤ 0), following the

prescription for parallel dissipation as given before yields ǫ = 0.

4.3.2 Velocity Space Diffusion

The Impact of Resolution

The problem can be partially mitigated by increasing the velocity space resolu-

tion: as a consequence, the recurrence time increases as well, while the strength

of the re-emerging oscillations decreases, as illustrated in Fig. 4.5. This method,

however, is expensive in that rather high v‖ resolutions are required, making it

impractical. Instead, one can either include a physical collision term or utilize a

diffusion term to solve the problem. The latter approach – while being numerical

in nature in contrast with the physical basis for collisions – constitutes the less

expensive solution. It will be described in more detail below.

Numerical Diffusion

Parallel (spatial) diffusion as discussed above helps to reduce the amplitude of

the oscillations, but cannot be used at liberty, for it would influence other results

(e.g., the growth rate) too strongly, especially when a physically stable system

is being considered, as is the case with linearly decaying zonal flows. Also, par-

allel diffusion has an impact on the residual level AR, since over time, energy

is removed from the system numerically. This is illustrated in the upper half

of Fig. 4.6, where significant parallel diffusion has to be employed in order for

the recurrence to vanish. The required values exceed those for damping high-k‖
modes that have been discussed before.

Alternatively, or additionally, a similar diffusion term can be introduced which

acts on the parallel velocity space:

D
(v‖)
4 = −ǫv‖

(∆v‖)
4

16
∂4

v‖ . (4.31)

This term is inserted into the gyrokinetic Vlasov equation (see Eq. (2.65)) to

modify the v‖ derivative.

Here, a fourth derivative is chosen for the diffusion term to be used with the

first derivative of fourth order in the magnetic mirror term (which contains the

v‖ derivative). It solves the issue efficiently, as becomes evident from the lower
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Figure 4.6: Numerical damping of zonal modes; the two upper graphs show the

effect of parallel diffusion, whereas in the lower graphs, velocity space diffusion

is employed. For the former, the value of ǫ is increased from 0.2 to 0.4, while for

the latter, the results shown here are for values ǫv‖ = 0.01 and 0.05, respectively.

Again, AR is the residual level.

graphs in Fig. 4.6; compared with the spatial parallel diffusion approach, only

very little velocity diffusion is necessary to avoid practically all recurrence.

While clearly, the point where recurrence vanishes is not well-defined and the

necessary damping depends on the resolution, the value ǫv‖ = 0.05 makes for

a good starting point for the most efficient solution to the recurrence problem,

velocity space damping. Since the value is rather low and changes the (negative)

growth rate only by a factor of 10−4, there is some freedom to adjust the velocity

space diffusion to higher values, if necessary. In practice, neither recurrence nor

alteration of physical effects have been observed for ǫv‖ = 0.2 for a wide range of

physical scenarios.
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4.4 Treatment of Parallelly Extended Modes

4.4.1 The Extended Ballooning Representation

By using a Fourier-like ballooning transformation (see, e.g., Candy et al. [55]),

modes that extend beyond the standard parallel 2π range can be investigated.

Linear modes tend to have their maximum at kx = 0 and thus peak in the parallel

range of θ = −π . . . π, while falling off further out on both sides (at nonzero kx

values). Viewing the parallel mode structure by obtaining x averaged data hides

this feature; instead, one has to take kx resolved data and apply the ballooning

transformation, shown here for the electrostatic potential Φ:

ΦB(ky, θp) = Φ(kx(p), ky , θ) , (4.32)

where θp = θ + 2πp, p ∈ Z is the extended ballooning angle, and kx(p) connects

the j-th kx mode with the (j±N )-th mode. This prescription extends the entire

mode parallelly by use of the boundary condition (see Eq. (2.51)), i.e., increasing

values of ‖kx‖ are considered as one moves away from the central 2π range.

Note that for nonlinear simulations, the parallel boundary condition causes the

number of relevant kx modes to drop as ky increases. Thus, extended ballooning

structures are usually only resolved for the lowest ky values, partially reducing

the applicability of the findings reported here to nonlinear cases.

Due to finite resolution, the mode eventually enters the 2π range corresponding

to the last connected kx, and after this, is set to zero (which corresponds to

f(‖ikx‖ > Nkx) = 0 if the modes are numbered −Nkx . . . Nkx). Therefore, if the

mode has not dropped to sufficiently small amplitudes at this point, it will make

a sudden jump to zero; this behavior successively acts back on the other parallel

points and kx modes via the parallel derivative in the Vlasov equation and the

boundary condition – because centered stencils tend to couple points which are

2∆z apart, zigzag-like features can appear in the parallel structure.

Since that effect is clearly unphysical, one has to compensate either by increas-

ing the radial resolution (i.e., adding more kx modes), by adjusting the parallel

diffusion coefficient ǫ, or by introducing a radial diffusion term. While the first

solution is expensive, the latter two force one to make sure that the resulting

growth rates do not change significantly.

In order to investigate the issue, a standard case is used, taking Cyclone Base

Case parameters (see Dimits et al. [56] or Ch. 5 for more details) with adiabatic

electrons and performing linear Gene simulations (at ky = 0.2) on a phase space

grid with Nz = 16, Nv‖ = 32, and Nµ = 8. The velocity space diffusion coefficient

is set according to the above result, ǫv‖ = 0.05, and parallel diffusion is turned
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Figure 4.7: Modes in the extended ballooning representation. Turning on radial

diffusion damps the ballooning mode more strongly as one connects to higher

radial modes, i.e. with increasing ‖θp‖. The values shown here for the radial

diffusion coefficient are ǫx ∈ {0, 1, 2, 3, 4, 5}, corresponding to the colors red,

green, blue, yellow, magenta, and cyan, respectively. Note that in the center, all

curves overlap perfectly.

off. High-k‖ modes do not contribute significantly here, but it nonetheless serves

for a good description of parallelly extended modes.

4.4.2 Radial Diffusion Term

A radial diffusion term is inserted in the Vlasov equation; since the radial co-

ordinate is represented in Fourier space, no stencils have to be employed, and

instead, multiplications by (even) powers of kx make up the derivatives – a term

∝ k4
x is chosen as the default value. However, to be consistent, the radial diffu-

sion coefficient ǫx is defined similarly to ǫ, with the radial diffusion term defined

corresponding to its parallel counterpart in Eq. (4.23).

Naturally, the impact of the radial diffusion is effectively zero in the central 2π

range (where kx = 0). The further the mode stretches out from that point,

however, the more the mode can be damped, as becomes evident from Fig. 4.7.

The required strength of the damping varies with the motivation for using the

diffusion term; however, if one encounters zigzag-like structures that come from

the parallel boundary condition in conjunction with the finite radial resolution,
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one may dampen the outer wings of the mode in the extended ballooning repre-

sentation to reduce the effect. This can be done without altering the central –

i.e., the physically dominant – mode structure significantly.

Unlike the other types of diffusion discussed in this chapter, the use of radial

diffusion is less universal. Only certain simulation scenarios may benefit from the

inclusion of a radial diffusion term, and in some of those cases, it can be avoided

by adjusting the parallel diffusion.

4.5 An Application: the ETG Benchmark

4.5.1 Benchmark Parameters

Recently, an effort has been undertaken to construct a standard set of param-

eters for electron temperature gradient (ETG) driven turbulence; details were

published by Nevins et al. [57], as well as by Dimits et al. [58]. It is meant to

serve as a benchmark case similar to the Cyclone Base Case – their physical in-

put parameters are mostly identical, with the exception of the magnetic shear,

where smaller values are required to achieve saturation, the basic setting being

ŝ = 0.1. Unlike in the Cyclone Base Case, however, the electrons are the primary

species, with the ions being treated adiabatically. Using this benchmark case, the

influence of parallel diffusion on the nonlinearly saturated heat flux level is in-

vestigated, demonstrating the applicability of the results presented above. Also,

convergence studies are performed.

The resulting heat flux levels of the (nonlinear) benchmark depend on the number

of ky modes that are being considered. Separate levels are reported in Ref. [57]

for Nky = 8 and Nky = 16, namely χe ≈ 3 and χe ≈ 5, respectively. The

work presented here focusses on the latter case with higher resolution. The other

resolutions are chosen as Nx = 128 (for a perpendicular box with Lx×Ly =

100×62.8), Nz = 16, Nv‖ = 32, and Nµ = 8.

4.5.2 Impact of the Parallel Diffusion Term

Setting the radial and parallel velocity space diffusion coefficients to low but finite

values of ǫx = 0.1 and ǫv‖ = 0.05, respectively, the parallel diffusion coefficient is

increased. The results are shown in Fig. 4.8; clearly, the ǫ = 0 result of χe = 1.2

deviates significantly from the other values, while for higher values, a plateau at

χe ≈ 5 is reached for Nky = 16; the corresponding result for Nky = 8 is χe ≈ 3,

which agrees well with the other codes in Ref. [57], as can be seen in Fig. 4.9.
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Figure 4.8: Thermal diffusivities for increasing parallel diffusion ǫ and Nz = 16

(upper graph) in the ETG benchmark case. While for ǫ = 0, the value is far too

low, increasing diffusion creates a stable plateau over most of the range displayed

(where small deviations from the plateau are due to the burst-prone nature of

the operation point); for higher parallel resolution, the results are practically

identical. The picture is corroborated by the time traces of the heat flux, as shown

in the lower graph, where the diffusion-less case (red curve) exhibits qualitatively

very different behavior from the ǫ = 0.3 case (black curve).
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Figure 4.9: Agreement of multiple gyrokinetic codes (both Vlasov and Particle In

Cell) at ETG benchmark parameters. The case presented here uses 8 modes to

resolve the y direction, resulting in a lower saturation value of χe ≈ 3 compared

with the Nky = 16 case. Source: [57]

Figure 4.10: Parallel structure of the root mean square of the electrostatic po-

tential for ǫ = 0 (red squares) and ǫ = 0.3 (black triangles). High-k‖ modes

resulting from the parallel derivative in the Vlasov equation are suppressed at

ǫ = 0.3, retaining physicality of the simulation results. Note that for purposes of

comparison, the ǫ = 0 results were rescaled by a factor of 1.8.
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Fig. 4.10 contains the parallel mode profiles for ǫ = 0 and 0.3. In the diffusion-less

case, zigzag-like structures appear which are clearly unphysical. This problem is

taken care of by increasing the diffusion coefficient, which is precisely what was

aimed for by introducing the diffusion term in Eq. (4.12).

The impact of parallel diffusion also becomes visible in the turbulent field contours

in the x-y plane, as shown in Fig. 4.11: zonal flows – which should not dominate in

ETG turbulence – are observed if no diffusion is used, while turning on numerical

diffusion makes it possible for streamers to take over which corresponds to the

physical expectations (see, e.g., Refs. [59] and [60]). Since sometimes, these

streamers cover the entire box, it might be necessary to adjust the standard box

of the benchmark if one looks to obtain more physical results.

4.6 Chapter Summary

This chapter aimed to solve the issue of numerically excited high-k‖ modes, with

two approaches being investigated: upwind differencing and diffusion terms. It is

found that the most efficient and flexible solution is using a diffusion term Dnf

with a diffusion operator of the form

Dn = −inǫc
(

∆z

2

)n

∇n
‖ (4.33)

with a critical diffusion coefficient ǫc set to a value roughly equal to the linear

growth rate γ. Other possibilities of using numerical diffusion terms are discussed,

with parallel velocity space diffusion combating numerical recurrence phenomena,

and radial diffusion altering the structure of extended ballooning modes to avoid

unphysical effects due to the parallel boundary condition. Lastly, it is shown

in the context of an ETG benchmark that those results apply for a standard

physical scenario.
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Figure 4.11: Contours of the electrostatic potential in the x-y plane. In the

upper graph (ǫ = 0), there are no streamers present, while instead, a tendency

to form zonal flows can be observed. Below, diffusion (ǫ = 0.3) can be seen to

suppress any occurrence of zonal flows, while streamers are significant part of the

turbulence, matching the physical expectations.



Chapter 5

Electromagnetic

Cyclone Base Case

Electromagnetic effects – which occur when, due to finite plasma pressure, the

magnetic field experiences fluctuations which then act back on the plasma –

can modify the strength and even type of plasma microturbulence significantly.

Following a brief motivation which includes a discussion of experimental results,

such effects are studied by examining the Cyclone Base Case parameter set. In

part, this chapter follows Pueschel et al. [61].

5.1 The Normalized Plasma Pressure β

5.1.1 Definition and Significance

The normalized plasma pressure β is one of the most essential dimensionless

parameters characterizing a fusion plasma. Reiterating the definition in Ch. 2, it

is taken to be

β ≡ βe =
8πneTref

B2
ref

, (5.1)

in words: the ratio of the kinetic to the magnetic pressure, for the present work.

Multiple important effects depend on this quantity. Firstly, the bootstrap fraction

fBS is proportional to β. This fraction describes how much of the plasma current

that drives the poloidal magnetic field is generated from within the plasma as

opposed to being induced by the transformer coil. Generally, the diamagnetic

nature of finite orbit radii of charged particles lead to net currents in the presence

of density gradients. In a tokamak configuration, trapped particles – which are

reflected by the higher magnetic field on the inboard side of the torus – cause a

current in the toroidal direction; the resulting net momentum is then transferred

85
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to passing particles via collisions, causing a toroidal current (see, e.g., Refs. [62]

and [63]). In recent experiments, fBS values of 100% have been achieved (see,

e.g., Ushigome et al. [64]). Even values fBS > 1 are feasible, leading – in principle

– to the possibility of using bootstrap current overdrive to extract energy from

the plasma via the transformer coil.

Providing a second positive effect, fusion reaction rates are proportional to β2:

in a finite volume, the number of particles are proportional to β, and assuming a

given (temperature-dependent) cross-section, the rates of two-particle reactions

must be ∝ β2.

As a consequence, it is desirable to operate a tokamak at the highest β possible

without destroying the confinement. Unfortunately, large-scale – magnetohydro-

dynamic (MHD) – instabilities of various types are known to impose an upper

β limit, most prominently the MHD ballooning mode which sets in at a critical

value βMHD
crit ; additionally, neoclassical tearing modes (NTMs) appear at a cer-

tain β value, altering the magnetic field structure by creating magnetic islands

which reduce the confinement; and even below these thresholds, the confinement

may be influenced unfavorably by β (although experimental evidence is still in-

conclusive, as will be discussed below). Similarly, small-scale – gyrokinetic –

instabilities driving turbulent fluctuations may affect the plasma performance in

the high β regime. The latter can happen in basically two ways. First, electro-

static microinstabilities like ITG or trapped electron modes (TEMs), along with

the respective kinds of turbulence, are altered in the presence of magnetic field

fluctuations which are caused by finite plasma pressure (those fluctuations will

be discussed in more detail further down). The anomalous transport properties

may thus be changed significantly with respect to the electrostatic limit, affecting

the plasma confinement. Second, in the framework of a gyrokinetic description,

kinetic ballooning modes (KBMs) are potentially prone to be destabilized be-

low the MHD ballooning limit, causing large heat and particle transport and

effectively reducing the achievable plasma β. Therefore, in order not to operate

reactors at less-than-optimal efficiency, it is important to fully understand the

properties of KBM onset β
(kinetic)
crit , its relation to βMHD

crit , as well as the behavior

of the transport close to that operational point.

5.1.2 Experimental Findings

Experimental β Scalings

Tokamak experiments have yielded widely differing results for the scaling of the

energy confinement time τE with β (at fixed toroidal field Bt), as is illustrated
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Figure 5.1: Scaling of the normalized confinement time τE with βth
N ∝ β for a

number of tokamak experiments. The exponent αβ is defined by the relation

ΩiτE ∝ β−αβ ; more recent JET data (see Ref. [65]) with αβ = 1.4 is not included

in this figure. From this graph, it becomes clear that experiments produce widely

differing results concerning the scaling of the confinement time with β. Source:

[66]
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in Fig. 5.1 where exponents αβ of the relation ΩiτE ∝ β−αβ are shown. For

some, very little or no dependence was reported, e.g., for DIII-D and earlier

JET discharges (see Refs. [67] and [68], respectively). On the other hand, the

predictions for the ITER reactor (as given by the IPB98(y, 2) ITER scaling [69])

have αβ = 0.9, resulting in a strongly unfavorable scaling, a finding that is

corroborated by other experiments: Urano et al. [70] find αβ = 0.6 at JT-60U,

Vermare et al. [71] find αβ = 0.9, and more recent JET experiments have αβ =

1.4, as reported by McDonald et al. [65].

Possible Causes for Discrepancies

Clearly, one cannot derive a general scaling from these results which apply only

to their respective scenarios. On one hand, fixing all other plasma parameters to

perform a pure β scan constitutes a significant experimental challenge; however,

if, e.g., the gradients are varied only by a small factor while changing β, con-

finement may be affected more by the former than by the latter, rendering the

interpretation of a β scan questionable. Another problem connected to this fact

lies in the large error bars of many measurements.

On the other hand, even if a range of experiments were measured, analyzed,

and interpreted flawlessly, they might be operated in parameter regimes that are

dominated by different physical effects; for instance, experiments with dominant

ITG turbulence would be expected to show a different β scaling than experiments

with dominant TEM turbulence, leading to apparently inconsistent results. For

more discussion on parameter differences of the scaling experiments, see Vermare

et al. [71]. Additionally, it needs to be taken into consideration that plasma edge

processes can strongly affect confinement. Lastly, there is a possibility that some

of the results suffer from a too small β scanning range [72].

All these factors show that it is highly desirable to gain a more solid understanding

of the underlying physical processes. Theoretical advances in this field might

help understand where the disagreement in experimental findings may have had

its origin.

5.2 The Cyclone Base Case

The so-called Cyclone Base Case (henceforth: CBC) refers to a discharge at the

DIII-D tokamak; experimental details concerning that discharge were published

by Greenfield et al. [73]. It exhibits typical tokamak core turbulence and has

since been established as a standard scenario for numerical simulations, most
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ωTi 6.89

ωTe 6.89

ωn 2.22

ŝ 0.786

q0 1.4

ǫt 0.18

Tref = Ti = Te

Table 5.1: The Cyclone Base Case parameter set used in the present work. A

more detailed description is available in Dimits et al. [56].

prominently described by Dimits et al. [56]. However, most past work has been

focused on electrostatic simulations, and until recently, gyrokinetic turbulence

simulations have been limited to β levels significantly lower than the ballooning

threshold.

5.2.1 Physical Parameter Set

The CBC physical parameter set is often adjusted for specific investigations; for

instance, one might use adiabatic electrons, or, in the case of kinetic electrons,

choose a realistic or a reduced mass ratio. The parameters used in this work are

listed in Tab. 5.1.

In the electrostatic limit, this parameter set corresponds to a physical regime

that is dominated by ITG modes, both linearly and nonlinearly. However, as β is

increased, other instabilities eventually surpass the ITG modes, as will be shown

below.

Note that while technically, one has to adjust the geometry parameter responsible

for the Shafranov Shift, αMHD(β) = βq20(2ωn +ωT i+ωT e), consistently with the β

value, ŝ-α geometry is used here with αMHD set to zero unless specified otherwise.

This is done to allow for easier comparison with previous work which was using

the same setting. However, as will be demonstrated, finite αMHD values have only

a very small effect if investigations are confined to β values not too far above the

ballooning threshold.

Before listing simulation details and discussing physical effects, some past results

of CBC simulations are presented to provide a foundation for this investigation.
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Figure 5.2: Ion heat diffusivities as functions of the ion temperature gradient,

ωT i, from the ITM benchmark. The solid black curve represents the Dimits fit

as specified in the text; Gene, GKW, and GEM results are shown as red stars,

blue diamonds, and pink triangles, respectively. At ωT i, ITG modes become

stable nonlinearly, a result that is reproduced well by all codes. a denotes the

minor radius of the last closed flux surface.

5.2.2 The ITM Benchmark Effort

A benchmark at CBC parameters is used to outline a few more (electrostatic)

properties of this physical scenario here while demonstrating good agreement

between codes. First results from the international Integrated Tokamak Modeling

effort were published by Falchetto et al. [74], some of which are quoted here.

Dimits et al. [56] specifies a fit curve for the ion thermal diffusivity as a function

of the ion temperature gradient; it can be written as

χes
i

a

ρ2
scs

= 12.3

(

1.0 − 6.0
LT i

R0

)

. (5.2)

As becomes evident from Fig. 5.2, there is excellent agreement of Gene data with

this fit curve; also, reasonably good agreement with GEM (gyrofluid – effects due

to magnetic trapping are neglected here; see Ref. [75]) and GKW (gyrokinetic,

see Refs. [76] and [77]) is observed. Precise measurement of this dependency is

important if one aims to calculate the Dimits shift which predicts a nonlinear

upwards shift of the critical gradient for the onset of ITG turbulence compared

with the stability threshold of linear ITG modes.
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Figure 5.3: ky spectra of the ion heat flux, from the ITM benchmark. Gene,

GKW, and GEM results are shown as red stars, blue diamonds, and pink tri-

angles, respectively. While Gene and GKW agree very well – especially in the

larger vicinity of the peak – GEM shows slightly different behavior quantitatively,

which is consistent with the results displayed in Fig. 5.2.

Similarly good agreement among codes is found for toroidal flux spectra (as shown

in Fig. 5.3). While the moderate differences between Gene and GEM are likely

connected to the similarly moderate differences in the transport levels, there is

remarkably good agreement between Gene and GKW over a wide range of wave

numbers, lending credibility to the physical relevance of the results within the

gyrokinetic framework.

5.2.3 Previous Electromagnetic Work

Multiple gyrofluid and gyrokinetic simulations with finite β have been performed

over the last few years. On the gyrofluid side, Snyder and Hammett [78] use

somewhat different physical parameters than those of the CBC to find a stabi-

lizing effect of β on both the linear growth rate and nonlinear transport levels.

These results agree qualitatively with CBC simulations by Scott [79] where ITG

transport eventually drops to zero, shortly before saturation can no longer be

achieved at higher β.

Gyrokinetic investigations include Jenko and Dorland [59] who found excellent

agreement between the onset points of MHD and kinetic ballooning modes (at
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CBC parameters), as well as strongly declining transport with increasing β for

ETG turbulence. Chen et al. [80] use a modified version of the CBC with ωT e = 0,

linearly reproducing the stabilizing effect due to increasing β, as well as doing so

schematically for the nonlinear case at low β values. Parker et al. [81] also have

slightly decreasing transport, as does Candy [82]. However, with the exception

of Candy [82], no in-depth analyses of the electromagnetic CBC are presented,

and even here, β still remains far below the KBM threshold.

5.2.4 Code-Code Comparisons

Growth rates and low-to-moderate β transport levels as computed with Gene,

GS2 (for details on the code, see Kotschenreuther et al. [83]), and Gyro (the

results for which were reported in Ref. [82]) are presented to provide a good

physical basis for further simulations. The physical parameters that these results

were obtained for are identical for all three codes and correspond directly to the

CBC parameter set.

Fig. 5.4 shows linear growth rates, as computed by these three codes; while

there is good qualitative agreement, some quantitative differences are found for

higher β values (near the ballooning threshold) where Gyro results deviate from

their Gene and GS2 counterparts. So far, the reasons for this discrepancy are

unknown, as the Gene and GS2 values were checked thoroughly for convergence,

while lack of access to the Gyro code prevented additional probing. Still, β values

safely below the threshold show good quantitative agreement of all codes, and

Gene and GS2 agree very well over the entire range.

As becomes evident in Fig. 5.5, there is significant overlap of nonlinear Gyro and

Gene results in all transport channels. Slight resolution issues are highlighted;

however, they do not change the qualitative picture. In Ref. [81], findings for the

same scenario are reported where the decrease of the ion transport with increasing

β is smaller, but the absolute levels are similar.

An electromagnetic benchmark effort by Nevins (for a previous effort by the same

author on ETG turbulence, see Nevins et al. [57] or Ch. 4) has been embarked

on recently which is supposed to shed more light on physical as well as numerical

properties of microturbulence as β is increased.

Having ascertained that Gene produces robust and inter-code compatible results

both linearly and in the nonlinear β range available for comparison, investiga-

tions of linear as well as nonlinear properties of electromagnetic effects shall be

presented.
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Figure 5.4: Linear growth rate (upper) and frequency (lower) dependence on β

as computed with the Gene (black triangles), GS2 (red squares), and Gyro

(as reported in Ref. [82]; blue diamonds) codes. While the former two agree

remarkably well over the entire range, Gyro results seem to be stretched along

the β axis. As of now, the reason for this discrepancy remains unclear.
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Figure 5.5: Comparison of nonlinear Gene and Gyro (as reported in Ref. [82];

dotted lines) transport levels: black triangles represent the ion electrostatic heat

flux, blue stars the electron electrostatic heat flux, and pink squares the electron

electromagnetic heat flux). For Gene, both the reference values (solid lines) and

additional simulation results (dashed lines; with lower resolution, more compara-

ble to the Gyro results taken from Ref. [82]) are shown.

5.3 Linear Results

5.3.1 Numerical Settings

For most simulations performed here, the following set of numerical parameters is

used: The electrons are treated kinetically with a mass of me/mi = 5.669×10−4,

corresponding to a hydrogen plasma. For the simulation box,

Ly =
2π

ky
, Lx =

1

ŝky
, Lz = 2πq0R0 (5.3)

are chosen, with Lx,y in units of ρs (and wave numbers in units of ρ−1
s ). Through-

out this chapter, Lv‖ = vmax
‖ = 3 (in units of the thermal velocity vTj) and

Lµ = µmax = 9 (in units of v2
Tj). As to the diffusion coefficients,

Dx = 0.2 , Dz = 4 , Dv‖ = 0.2 , (5.4)

which are motivated by the results for electromagnetic simulations presented

in Ch. 4. The grid resolutions are Nx = 24 (12 modes per sign), Nz = 24,



5.3. LINEAR RESULTS 95

Nv‖ = 96 (required for TEMs), and Nµ = 16, based on convergence studies in

every instability regime, to achieve convergence throughout the entire β range.

5.3.2 A Linear β Scan

To get an idea what kind of microinstabilities are likely to be responsible for

driving the turbulence for the nominal parameters in various β regimes, linear

gyrokinetic simulations are performed first, which allow for covering a much larger

parameter range due to being computationally significantly less expensive. ky is

chosen to be 0.2 unless specified otherwise, which corresponds roughly to the

position of the maximum of the nonlinear transport spectrum, as will be shown

later.

In Fig. 5.6, the behavior of the linear growth rate and the frequency with varying

β is presented. It is found that at low β values, the dominant microinstability

is an ITG mode, as expected. With increasing β, the growth rate of this mode

is diminished, however, until a TEM takes over. As eigenvalue calculations with

Gene show, the latter mode is unstable across the entire β range, and its linear

growth rate is practically not influenced by changes in β, in contrast to the ITG

mode. It shall be pointed out for future reference that the TEM growth rate is

roughly half that of the ITG mode in the electrostatic limit. As is apparent in

Fig. 5.6, at still higher β values, a KBM starts to dominate. Its linear growth

rate increases quite rapidly once the respective β threshold has been crossed.

The real frequency exhibits a positive sign, which, in the convention used in

this work, corresponds to a drift in the ion diamagnetic direction; moreover, the

amplitude of this frequency clearly exceeds the ITG frequency, an effect which is

discussed, e.g., in Ref. [84]. Within any single regime, only small modifications of

the frequencies are observed. Linearly, one thus has two critical β values (which

depend on the toroidal wave number and are presented here for the standard

case, ky = 0.2): at β = 0.95%, a transition from ITG modes to TEMs takes

place, and at β = 1.27%, KBMs become dominant. The entire next section is

devoted to the properties of this latter critical value, possible modifications, and

its deviation from the MHD prediction.

5.3.3 Properties of the Kinetic Ballooning Mode

It is well known that MHD ballooning modes only become linearly unstable when

β exceeds a certain (plasma parameter dependent) threshold. The same is true

for their gyrokinetic counterpart, the KBMs. These thresholds need not coincide,

however. Using a simplified analytical model, Chu et al. [85] estimate the kinetic
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Figure 5.6: Dependence of the growth rate γ (a) and the real frequency ω (b)

on β for ky = 0.2. Gene results are shown as black triangles, GS2 results as

red squares. Clearly, three instability regimes can be discerned: ITG, TEM, and

KBM, with regime changes marked by clear jumps in the frequency.
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Figure 5.7: Growth rates of the kinetic ballooning mode in the subdominant

range where the TEM is dominant. At β = 1.14%, the mode becomes linearly

unstable. No marginal stability is observed below this value.

value to be reduced compared to the MHD prediction:

βcrit ≡ βkinetic
crit =

βMHD
crit

1 + ǫt
. (5.5)

Similarly, Cheng [86] finds a small but nonzero reduction using numerical meth-

ods, but still neglecting some fundamental kinetic effects. Later, Zonca et al.

[87], as well as Dong et al. [88], reported that the KBM onset can go significantly

below the respective MHD value under certain conditions, with reductions by

up to about 50%, a claim that was disputed later by Zhao and Chen [89]. This

short summary of previous findings pertains to radially local investigations. For

nonlocal results, see, e.g., Falchetto et al. [90]. At present, it is not clear if those

numbers can be confirmed in the context of a reasonably comprehensive gyroki-

netic approach. The work presented here is supposed to shed some light on this

issue.

Since the KBM onset can be obscured in the presence of other microinstabilities

like ITG modes or TEMs (as is the case in Fig. 5.6) if growth rates γ(β) are

calculated via an initial value solver, one may use Gene in its eigenvalue solver

mode to study the properties of the KBM onset. The (subdominant) behavior of

the KBMs obtained this way is shown in Fig. 5.7. Clearly, the respective linear

growth rate crosses into the negative range at βcrit = 1.14%; however, two addi-
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tional aspects are noteworthy about this finding: Firstly, these particular KBMs

(at ky = 0.2) are subject to substantial linear damping below the β threshold

(i.e., no marginally stable behavior is observed for β < βcrit), rendering it less

likely that they play a role in respective nonlinear simulations. Secondly, the

inferred value for βcrit is about 14% below the MHD ballooning limit; the latter

can be estimated as

βMHD
crit =

0.6ŝ

q20(2ωn + ωT i + ωT e)
, (5.6)

which, for CBC parameters, yields βMHD
crit = 1.32%. Note that this reduction

agrees very well with the above formula by Chu et al. [85] (see Eq. (5.5)) which,

for this case, predicts a value of ∆βcrit/βcrit = 15%. Neither this quantitative nor

this qualitative behavior is universal, however. Below, cases with very different

reduction fractions (as well as cases with βcrit > βMHD
crit ) are presented, as well

as scenarios with marginal stability and mode transformations which can occur

for different sets of physical parameters. Therefore, Eq. (5.5) is not universally

applicable.

Determining the KBM stability threshold by following the mode through the sub-

dominant range until arriving at negative growth rates requires significantly more

computational effort than finding the growth rates of dominant modes. If one

aims to extract the β values of KBM thresholds for many different sets of physi-

cal parameters, this method might thus be somewhat cumbersome. Therefore, it

shall be demonstrated how to arrive at a good estimate for βcrit by interpolating

the dominant growth rate branches of two modes, as well as extrapolating the

dominant KBM branch, both of which do not require the less accessible growth

rates of subdominant or even stable modes.

The growth rates for the TEM and KBM regime can be fitted well by linear

and quadratic functions, respectively. By taking the intersection of these fit

functions, the value βdom
crit can be determined at which γKBM becomes larger than

γTEM; analogously, βextrapol
crit is defined as the value for which the KBM fit function

crosses the zero line. Using these prescriptions, one obtains βdom
crit = 1.26% and

βextrapol
crit = 1.21% for ky = 0.2 in the present case. The corresponding results for

other values of ky are shown in Fig. 5.8, with βMHD
crit included for comparison. It

is to be noted that for both the dominant and the extrapolated critical β, the

minima lie at ky = 0.2 which is very convenient if one aims to connect linear and

nonlinear results – if the minimum had been at very large ky, it would likely be

much more difficult to understand the nonlinear impact of KBMs, as well as their

onset.

At this point, it is worthwhile to make a brief remark concerning the effect of
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Figure 5.8: Critical values of β for the onset of KBMs and their dominance over

TEMs, respectively, for a range of toroidal mode numbers ky. Black triangles

mark the values where the KBMs become dominant, whereas the extrapolated

critical β for (subdominant) instability of the KBMs is marked by red diamonds.

For comparison, the MHD prediction is shown as a blue dashed line. The min-

imum lies at ky = 0.2 which roughly corresponds to the nonlinear transport

maximum.

setting αMHD to zero. While this was done in the simulations presented here for

comparability purposes, one can easily use values consistent with the respective

β without any additional computational effort. Little alteration of the growth

rates is observed – the critical β values one obtains that way for ky = 0.2 are

βdom
crit = 1.26% and βextrapol

crit = 1.22%, in excellent agreement with the respective

αMHD = 0 results. It is concluded that as long as one does not exceed the

KBM threshold by a significant factor, αMHD effects are small for the present

parameter set. However, it is well-known that for very large β, those effects

have to be considered, most prominently for their impact on the so-called second

stability regime (see, e.g., Wesson [63]).

Another aspect of interest is how the KBM threshold depends on the density and

temperature gradients. Therefore, each gradient is scanned over a certain range,

keeping the respective other gradients fixed to their CBC values. Since βMHD
crit is

a function of those gradients, it is instructive to look at αcrit, as well, for which

MHD predicts a near-constant value ≈ 0.6ŝ. The results of this investigation are
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Figure 5.9: Dependence of critical β (a) and α (b) values for the onset of KBMs

on the gradients on the density gradient (black squares), the ion temperature

gradient (red triangles), and the electron temperature gradient (pink diamonds),

at ky = 0.2. For comparison, the MHD predictions are shown in blue. For (b),

the βMHD
crit (ωn) line denotes the case where ωT i and ωT e are fixed to 6.89, whereas

the βMHD
crit (ωT i,T e) line corresponds to a constant value ωn = 2.22.
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shown in Fig. 5.9. Note that here, only values for ky = 0.2 are included. Obvi-

ously, most values of αextrap
crit deviate only mildly from αMHD

crit = 0.472, especially as

far as changes in ωT e and ωn are concerned. However, for large values of ωT i, the

resulting αcrit is up to about 15% lower than αMHD
crit . This leads to the conclusion

that while, in principle, all profile gradients play a role in determining βcrit, the

biggest effect comes from the ion temperature gradient. This is consistent with

previous studies [86, 87] and shows that in a fundamental way, the kinetic bal-

looning mode is different from its MHD counterpart which relies on the interplay

of unfavorable curvature and the density gradient.

As expected, in almost all cases, αextrap
crit lies below αMHD

crit ; however, as ωT i is

decreased, the KBM stability threshold eventually extends beyond the MHD

prediction. While in this regime, no marginally stable low-β behavior was found

for ky = 0.2, the ky = 0.1 counterpart shows indeed such a marginally stable tail

(marginally stable KBMs are discussed below). Here, βcrit = 1.87% (correspond-

ing to αcrit = 0.526) which is again closer to the MHD value. This is consistent

with the requirement that as ky → 0, gyrokinetic results approach MHD theory,

in this case: βcrit → βMHD
crit .

5.3.4 Mode Transformations and Exceptional Points

As mentioned before, other sets of physical parameters may lead to different sce-

narios. For example, the KBM may become marginally stable below the thresh-

old. Such a case, using the aforementioned CBC parameters except for ωn = 3,

ωT i = 4, and ωT e = 6, can be found in Fig. 5.10. Similarly, an example for the

interchange of a KBM with a mode that is stable over the entire β range, leading

to marginal stability, is given in Ref. [86]. While an interesting effect in itself,

it is more than doubtful, however, that such marginally stable modes can play a

significant role in nonlinear simulations.

At least for the present case (as will be shown later), KBMs do not become

nonlinearly dominant as long as γTEM > γKBM; therefore, nonlinear effects do

not cause a linearly subdominant more to govern nonlinear transport, at least for

the current physical scenario. However, nonlinear interactions of linear modes

are possible, making subdominant KBMs more than the subject of academic

discussion.

Depending on the physical parameters, the picture can change even more dras-

tically. Generally, one can find so-called exceptional points (see, e.g., Kato [91])

in parameter space; when adjusting parameters continuously to move on a closed

loop around such an exceptional point, a mode is transformed into another mode,
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Figure 5.10: Subdominant growth rates of the kinetic ballooning mode for a set

of physical parameters differing from the standard set used in this work (as given

in the text). Here, one observes a knee below the zero line. For smaller β values,

the mode remains marginally stable.

and vice versa. In Fig. 5.11, an example is shown where by adjusting density and

temperature gradients, an ITG mode and a TEM are transformed into one an-

other. Similar transformations may occur between all modes that occur in the

present case (see Refs. [92] and [29]).

Since following subdominant or even stable modes over a range of parameters

can be computationally expensive, it is useful to have a measure of how close

a choice of parameters is to an exceptional point. To this end, one can use

Gene in the eigenvalue solver mode and then take the eigenvectors of the two

modes of interest – which in the context of Vlasov simulations correspond to their

respective distribution functions g1 and g2; they are available in the checkpoint

files – and compute their (normalized) scalar product,

p =
‖g1 · g2‖
‖g1‖‖g2‖

. (5.7)

If p is found to be close to one, it indicates near-identicalness of the modes, and

thus proximity to an exceptional point, making mode transformations possible.

In Fig. 5.12, an example (with ǫt = 0.16 and ωn = 6) is shown where the KBM is

continually transformed into a TEM-like instability. While one may use various

methods to determine a critical β value for such a case (e.g., by taking the
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Figure 5.11: Closed parameter space path around an exceptional point (upper

graph) and resulting linear growth rates and frequencies (lower graphs). After

one cycle, the modes have switched their identity. Source: [29]
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Figure 5.12: Transformation of a KBM into a TEM-like mode. As β is decreased,

the KBM frequency ω0 (red squares) continuously drops to negative levels. Cor-

respondingly, the growth rate γ0 (black diamonds) stops its descent and becomes

constant. This behavior can be understood by taking another mode into ac-

count, characterized by γ1 (blue triangles) and ω1 (pink stars): originally (i.e.,

for a smaller density gradient ωn), the left branch of γ0 was connected to the

right branch of γ1, and conversely, the KBM-like right branch of γ0 used to be

connected to the left branch of γ1. The frequencies behave accordingly.

value where the frequency ω = 0), it is obvious that a precise definition of the

KBM threshold is not possible. A detailed investigation into the effect of such

properties on nonlinear transport and KBM onset would be of interest; however,

before embarking on such an endeavor, deepening the general understanding of

the nonlinear KBM onset is required. For a more in-depth discussion of mode

transformations and exceptional points, Ref. [92] should be consulted.

To summarize the linear investigations, one finds that – at least for physical

parameters which are relatively close to the Cyclone Base Case set – the reduction

of the linear KBM threshold relative to its MHD counterpart tends to remain

below about 20%. Generally, the disappearance of the KBM at lower β can

occur in (at least) three different ways: it can turn into a damped mode; it can

become marginally stable; or it can transition directly into a different mode (like

a TEM or an ITG mode). While these investigations can confine the region of

influence of KBMs in linear simulations, they can merely be used as estimates
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Figure 5.13: Heat and particle transport as a function of β. The values for the

ion electromagnetic heat flux and the electromagnetic particle flux are very small

in comparison and thus were not included in this figure. The ion electrostatic

heat flux partly reflects the behavior of the linear growth rates. However, while

a KBM dominant regime can be distinguished, a pure TEM regime is not found.

when going on to turbulent systems. In order to assess the role of KBMs in such

environments, nonlinear simulations are called for.

5.4 Nonlinear β Scan

The most important difference between linear and nonlinear resolution require-

ments is caused by the magnetic field line flutter. The electrons are prone to

react violently to perpendicular disturbances of the magnetic field, and there-

fore, a higher parallel resolution is required for somewhat higher β. In conse-

quence, all nonlinear simulations at β ≥ 0.7% that are shown here were done

with Nz = 48. The perpendicular grid is Nx = 192 (positive and negative modes

each 96) and Nky = 24, with the perpendicular box characterized by Ly = 125.66

and Lx = 101.78. The parallel diffusion coefficient is modified due to the en-

hanced requirements of magnetic flutter, and set to Dz = 8. Convergence was

tested in the ITG dominant regime at β = 0.8%.
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Figure 5.14: Changes of cross-phase relations with increasing β. Solid black

lines represent the dominant phases between the electrostatic potential Φ and

the parallel ion temperature Ti‖, whereas dotted red lines represent the dominant

phases between Φ and the perpendicular ion temperature Ti⊥. Within every

regime, phases change only very moderately and continuously (diamonds and

triangles), but at two of the characteristic β values, a phase coexistence occurs

(stars).

5.4.1 Turbulence Regimes

The nonlinear transport levels over an extended β range are shown in Fig. 5.13.

The behavior can be described as follows: first, there is a significant decrease,

followed by a flat region, and then a sudden and steep increase. As becomes

apparent, even from this plot, there exist at least two distinct turbulence regimes.

One is in the low and moderate β range which is dominated by ITG modes

or TEMs or both; the second is dominated by KBMs. They are separated by

a transitional point at about β = 1.26%. Additionally, one finds qualitative

changes at β = 0.8% and β = 1.1% – while the electron heat transport (both the

electrostatic and the electromagnetic channel), as well as the electrostatic particle

flux, are increasing for lower β, they now start to decrease. It shall be noted that

the critical KBM value is actually very close to the linearly determined value

βdom
crit (for ky = 0.2) at which the KBM growth rate starts to exceed that of the

TEM.

Interpreting the other two thresholds represents a greater difficulty. Looking at
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Figure 5.15: Changes in the electrostatic electron transport spectra with increas-

ing β; the ion counterpart shows a very similar behavior. At β = 1.25%, the

peak shifts slightly to lower ky while retaining strong transport contributions at

ky = 0.2.

the phase relations shown in Fig. 5.14, it can be inferred that at a value of β that

roughly corresponds to the linear regime transitions from ITG to TEM and from

TEM to KBM, respectively, the nonlinear physics exhibit similar features. Both

points are highlighted by changes in the transport spectra, as well – in Fig. 5.15,

such spectra are shown for three β values corresponding to the three different

linear regimes; one can discern qualitative differences for each of these spectra.

One might thus be led to believe that the nonlinear behavior follows the linear

one, including an ITG-TEM transition at roughly the same β. While this picture

is also supported by a phase-based frequency analysis that includes all radial con-

nections of the extended ballooning structure (without weighting by amplitude),

using Fourier transforms (including only the first radial connections) to determine

the nonlinear frequencies yields different results. As can be seen in Fig. 5.16, no

negative frequencies occur over the entire β range; there is a frequency shift at

β = 0.8%, and another at β = 1.2%. The second value corresponds to the linear

onset of KBMs which dominate the frequency signature while not dominating

the transport for β ≤ βdom
crit . The intermediate frequency level at ω ≈ 1.5 cannot

be motivated by the linear physics, however; additionally, ion electrostatic heat

transport exceeds its electron counterpart throughout the β range corresponding
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Figure 5.16: Nonlinear frequencies at ky = 0.2 (solid black curves), extracted

via (windowed) Fourier transform of the electrostatic potential Φ. The linear

frequencies are included for comparison (dotted red curves). Note that the KBM

frequencies take over before β reaches the value where the transport is dominated

by these modes. Nonlinearly, there is a frequency regime between the ITG and

the KBM level (stars) which exists roughly but not exactly at β values that

correspond to the TEMs linearly (triangles).

to TEMs linearly, whereas looking at the ratio of the ion to the electron transport

in linear simulations, one would expect a much higher electron contribution; this

indicates that there is an ion-related process involved in the intermediate regime.

As will be discussed further below, the intermediate range might be caused by

nonlinear interactions of the ITG modes with the TEMs; and possibly, magnetic

flutter contributes to the change, as well. Consequently, the regime at smaller

and moderate β is labeled an ITG-TEM regime. Note that for β < 0.8%, one

finds pure ITG turbulence. In contrast, all available diagnostics agree very well

on the nonlinear KBM onset; its properties can apparently be explained very well

by the linear physics – with the exception of the low transport levels at the KBM

onset. Those, however, are likely to be attributed the intermediate range and

cannot be motivated by the nature of nonlinear KBMs.

In this context, it should be noted that for a few β values in this scan, the simu-

lations are quite numerically challenging. While all simulations find saturation,

the ones for β = 1.0% and 1.1% (in the ITG-TEM coexistence regime) and for
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β = 1.3% and 1.325% (in the KBM regime) display – for the numerical parame-

ters used here – what appears to be a numerical instability in the long-time limit.

In these cases, the transport levels would first saturate, and then take off to much

larger (by multiple orders of magnitude) values after roughly (200 − 300)R0/cs,

measured from the beginning of the saturation phase. On the other hand, other

β values do not seem to be affected. E.g., the β = 1.25% simulation shows no

sign of a numerical instability during its full duration of > 500R0/cs. These dif-

ficulties might be related, respectively, to the nonlinear interplay of ITG modes

and TEMs (see the discussion below) and to the linear low-ky behavior of KBMs,

but a more detailed analysis (which turns out to be quite involved and is done in

the context of the aforementioned electromagnetic benchmark effort) is underway

and will be published elsewhere.

As mentioned above, the β value for which the turbulence acquires a clear KBM

character is very close to the linear quantity βdom
crit (taking its value at ky = 0.2

which represents both its minimum and the nonlinear transport maximum, and

can thus be expected to be the most relevant one compared with those at other

ky) that describes the point at which the KBM growth rate exceeds that of the

TEM. In other words, while KBMs already contribute within part of the ITG-

TEM regime (where they are already linearly unstable but still subdominant),

they only become dominant nonlinearly once the linear KBM dominance thresh-

old is crossed. This means that the exact onset point for linear KBMs seems

to be of limited practical relevance if other modes are clearly dominant there.

Although deviations from this rule of thumb can be envisioned for different phys-

ical scenarios, one is led to think that KBMs are likely to dominate nonlinearly

wherever they dominate linearly (in the low-ky part of the spectrum where the

transport usually peaks), and vice versa. This finding further narrows the window

of KBM activity; not only do (marginally) stable KBMs not contribute, but even

subdominant KBMs seem to have very limited effect on the turbulence. In the

present case, the effective onset point is decreased only by less than 5% compared

with the MHD threshold. How generic this finding is remains to be investigated,

but the basic trend (a very moderate linear reduction which is not extended by

nonlinear effects) may be expected to hold.

After this discussion of regime transitions, possible explanations for the low trans-

port at moderate and high β will be presented.
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5.4.2 Transport Levels

It is known that nonlinear transport levels often tend to follow the respective

linear growth rates. While here, such a model would correctly predict some

general tendencies (declining ITG transport, constant intermediate range, KBM

threshold), it can not explain some of the other features in Fig. 5.13. Most

prominently, the high-β end of the TEM-ITG regime shows saturation levels that

are lower than the electrostatic ITG level by a factor of about 20, which exceeds

the respective decrease of the linear growth rate by an order of magnitude; and

the previously mentioned knee in the electron and particle fluxes at β = 0.8% is

not mirrored in any form by the linear simulations, either, which might be due

to the same cause. In the following, possible explanations for the low transport

levels are provided.

TEM Transport Model

In a first step, the regime around β ∼ 1.2% is focused on in which TEMs dominate

linearly. TEM-induced transport has been estimated successfully before by means

of a transport model which is described in detail in Refs. [93, 94]. Here, a mixing

length estimate is used for the thermal diffusivity,

χmodel
e ∼ max

ky

(

γ

〈k2
⊥〉

)

, (5.8)

with k2
⊥ = k2

y(1 + ŝ2θ2) for kx = 0 which is the case for typical TEM streamers.

Here, 〈. . .〉 denotes averaging according to the prescription

〈f(θ)〉 ≡
∫ ‖Φ‖2f(θ)dθ
∫ ‖Φ‖2dθ

(5.9)

for a θ-dependent function f(θ); note that the electrostatic potential Φ is used

to model the parallel structure and needs to be taken at the ky mode under

consideration. The resulting heat flux estimate reads

Qmodel
e = CωT e max

ky

(

γ

〈k2
⊥〉

)

, (5.10)

where C is a dimensionless scaling parameter that can be gauged via a single

nonlinear reference value for Qe. To arrive at estimates for the other transport

channels (e.g., Qi), one can make use of quasilinear ratios of those quantities to

Qe at the ky corresponding to the maximum calculated according to Eq. (5.10).

While in the present case, a nonlinear reference value is not available, one may

infer many interesting transport properties from linear simulations alone.
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Figure 5.17: Quasilinear TEM transport model. Shown is the predicted scaling

of the thermal diffusivity χestimate = (γ/〈k2
⊥〉)max with the electron temperature

gradient. γ0.2 – which is the linear growth rate at ky = 0.2, rescaled to arbitrary

units – is included for comparison. At ωT e = 8.0 (black dotted line), a knee in

the predicted transport is observed where the scaling changes; at this point, the

ratio χestimate/γ0.2 is especially small. The value ωT e = 6.89 (red dashed line)

used in the nonlinear simulations lies close to that knee.

In Fig. 5.17, an ωT e scan is presented which is based on this transport model,

along with the linear growth rate γ0.2 for ky = 0.2. One can distinguish two

regions, one with slowly and one with more strongly increasing transport, which

are separated by a knee at ωe = 8. Consequently, the values at and just below

the knee have the lowest ratio of γ0.2/χ
model
e . This means that at these gradients,

one is most likely to overestimate transport levels by drawing direct conclusions

from the linear growth rate with respect to nonlinear transport levels.

Clearly, the value used for the simulations shown in Fig. 5.13 is in the low trans-

port region just below the knee. While due to the lack of a reference value, there

is no absolute meaning to χmodel
e , it serves as an indication that one might in-

deed find a lower saturation level at β ∼ 1.2% than one would expect from the

behavior of γ (as shown in Fig. 5.6). However, while this effect might contribute

to lowering the transport levels, there is no indication that it would do so by an

order of magnitude; in the following, more processes are investigated that might

be of importance here.
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Figure 5.18: Contours of the electrostatic potential Φ in the perpendicular plane.

Both a zonal flow structure and an overlaying ky ≈ 0.15 pattern are clearly visible.

The β value for this data is 0.6%.

Zonal Flows

Zonal flows can play a significant role in suppressing heat and particle transport

(see Diamond et al. [95] for a review on zonal flows). In fact, zonal flows are

known to be an important saturation mechanism for plasma microturbulence;

however, one cannot deduce only from the presence of these flows that they have

a strong impact on the transport, as is shown, e.g., in Ref. [29].

For the entire β range, an inspection of contour plots shows that zonal flows are

strongly excited (see Fig. 5.18 for an example), becoming even more pronounced

as β is increased. A quantitative measure of the impact of zonal flows is the
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Figure 5.19: Comparison of the shearing rate ωs (red squares; rescaled) and

the linear growth rate γ (black stars). The requirement for zonal flow based

transport suppression, ωs ≫ γ, is fulfilled marginally at every point in the ITG-

TEM regime. At β = 1.0%, the ratio ωs/γ peaks, indicating maximal influence

of zonal flows at that point.

shearing rate,

ωs =
d2Φzon

dx2
, (5.11)

where Φzon is the zonal component of the electrostatic potential. Due to finite-

frequency corrections [96], the shearing rate needs to be much larger than the

linear growth rate, ωs ≫ γ, for zonal flows to be able to act as the dominant

nonlinear saturation mechanism, controlling the transport levels. As can be seen

in Fig. 5.19, this necessary condition seems to be (marginally) fulfilled across

the entire β range, with ωs/γ ∼ 10. Moreover, for β ≤ 1.0%, ωs/γ is steadily

increasing. This finding suggests that zonal flows may contribute to the strong

decrease of the transport level with increasing β. It shall be noted that here, the

finite frequency corrections as described in Ref. [96] are not applied, and instead

a simplified order-of-magnitude rule is used, motivated by results published in

Ref. [97].

In order to test this hypothesis, some simulations were repeated, removing the

zonal component of the electrostatic potential and looking at the impact of this

modification on the transport levels. The such altered simulations at β = 0.1%

and β = 0.6% yielded no significant increase in the electrostatic heat flux (while



114 CHAPTER 5. ELECTROMAGNETIC CYCLONE BASE CASE

effectively suppressing the electromagnetic contribution), indicating that for the

lower-β range of the ITG-TEM regime, zonal flows contribute little to the drop in

the turbulent transport with increasing β. However, at β = 1.25%, removing the

zonal potential results in an increase especially of the ion but also the electron

electrostatic transport levels by factors of ∼ 3 and ∼ 2, respectively. The electron

electromagnetic level drops to very low levels, much like in the low β cases. This

indicates that at higher β in the ITG-TEM regime, zonal flows become a major

contributor in suppressing turbulent transport. However, the caveat remains

that removing the zonal component of the potential is a severe and unphysical

modification, and results produced that way should be interpreted with great

care. For instance, the above factors of ∼ 3 and ∼ 2 likely cannot be understood

as a direct quantitative measurement of the zonal flow suppression effect; this

is corroborated by the fact that transport levels drop off continuously and not

suddenly over the β range described here.

As a result, the low levels of high-β ITG-TEM transport may in part be ex-

plained by the effect of zonal flows; however, the latter cannot account for the

full magnitude of the reduction.

Zonal Fields

Analogously, one can measure the effective shear due to magnetic field fluctua-

tions (see, e.g., Holland and Diamond [60]). Following Jenko and Kendl [98], the

magnetic shear fluctuation due to zonal fields is computed,

s̃ = q0
R0

Bref

dBy

dx
. (5.12)

The results can be found in Fig. 5.20. Note that this effect relies on finite kx

modes of the y component of the magnetic field fluctuations; in Fig. 5.21, this

component is shown for β = 0.6%, where clearly, vertically elongated structures

are visible, corresponding to contributions of values of kx 6= 0.

At β = 0.8%, corresponding to its maximum, s̃/ŝ ≈ 15%, making s̃ a non-

negligible quantity. Since this maximum coincides with a qualitative change in

the nonlinear transport, it might follow that the nonlinear frequency shift at that

value is in part due to the magnetic shear fluctuations. To investigate how the

shear fluctuations due to zonal fields may act back on the linear physics, linear

simulations (with ky = 0.2) were performed with a modified shear ŝ = 0.786±0.15.

However, the results show only small frequency modifications: ω = 0.627 for

ŝ = 0.636 and ω = 0.694 for ŝ = 0.936, compared with ω = 0.656 for the

original case with ŝ = 0.786. Therefore, this effect cannot cause the frequencies



5.4. NONLINEAR β SCAN 115

Figure 5.20: Shear fluctuations caused by perturbations of the magnetic field

as a function of β. Note that while s̃ always remains much smaller than the

global shear ŝ = 0.786, it still makes for a significant modification. However, as

is explained in the text, the influence of these fluctuations on the transport levels

is doubtful.

in the nonlinear ITG-TEM regime. Also, these simulations indicate that in the

present case, zonal fields may be relatively strong, but still too weak to act as

the dominant saturation mechanism.

Nonlinear Mode Interactions

The mechanisms portrayed above may all contribute to the nonlinear reduction

of transport as β approaches the ballooning threshold. However, even taken

together, they are not sufficient to explain the magnitude of the reduction. One

more effect that has the ability to bridge this gap between the linear and the

nonlinear results are nonlinear mode interactions of the TEMs with ITG modes,

and possibly KBMs, which will be discussed here.

Linear modes can compete nonlinearly and thus cancel each other out to a signif-

icant degree, reducing the turbulent transport levels. In Fig. 5.14, coexistence of

phase relations at the regime transitions was found; and in Fig. 5.15, the regime

signature transport peaks become vague at β values close to the linear ITG-TEM

transition. This coexistence implies interaction and possibly competition.

Merz [29] finds that interaction of TEM with ITG turbulence (in the context of a
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Figure 5.21: By fluctuations at β = 0.6%. One can distinguish structures which

are elongated in the y direction, a requirement for magnetic shear fluctuations to

play a strong role in nonlinear simulations.
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Figure 5.22: β dependence of the ratio of the electrostatic particle transport to

the ion electrostatic heat transport, as predicted by the model (black diamonds)

and as measured in the nonlinear simulations (red crosses). For low β values,

quasilinear and nonlinear results agree, but as the TEMs take over linearly, the

corresponding jump in the quasilinear curve is not found in the nonlinear data.

scan over the ion temperature gradient) leads to a reduction of the electron heat

flux by a factor ∼ 5, while the particle flux vanishes nearly completely. The same

model for TEM transport which was described above was applied, and similarly to

the present case, it was unable to explain the magnitude of the reduction. Another

quasilinear model was then constructed which predicts nonlinear ratios of pairs

of transport quantities from linear results. To test the validity of this model for

the present case, one can look at the ratio of the electrostatic components of the

particle and the ion heat transport, RΓ,Qi = Γes/Qes
i . According to the model,

(RΓ,Qi
interact)model =

γ10
ITGR

Γ,Qi
ITG,lin + γ10

TEMR
Γ,Qi
TEM,lin

γ10
ITG + γ10

TEM

. (5.13)

A comparison of the model with the nonlinear results yields good agreement up to

β ∼ 0.8%, where the system is still clearly dominated by ITG turbulence. How-

ever, a strong jump of (RΓ,Qi
interact)model where TEMs become dominant linearly is

not found in the respective nonlinear curve, as can be seen in Fig. 5.22. There-

fore, the model appears to overestimate the impact of the TEMs for β > 0.8%:

even while some of the aforementioned features point at a TEM contribution to

the turbulence, these modes cannot account for the observed behavior, neither
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when looked at separately or in the context of this transport model; it would thus

be desirable to turn to a more refined model at a later point.

It remains to be seen to what extent nonlinear mode interactions can be employed

to improve confinement in fusion experiments; however, their potential to reduce

both heat and particle transport levels makes them an interesting candidate for

advanced confinement scenarios.

5.5 Chapter Summary

In the present chapter, finite-β effects on linear modes and nonlinear turbulence

have been presented in the context of CBC parameters. Linearly, depending on

the β value, ITG modes, TEMs, or KBMs dominate; particular focus is put on

the KBM threshold – besides the KBM onset and its parameter dependence, the

β threshold for KBM dominance over TEMs is discussed. Nonlinearly, transport

levels are presented for a significantly larger range than what was achieved in

previous work. Moreover, as β approaches the linear KBM threshold, transport

levels are reduced strongly compared to simple linearly motivated expectations.

Multiple contributing factors for this effect are discussed, with the quantitatively

most important being nonlinear mode interactions.



Chapter 6

Electromagnetic

TEM Turbulence

Following the CBC investigation of the previous chapter, a different parameter

set is presented, corresponding to density gradient driven TEMs. Similar analyses

are performed: linearly, the KBM onset shows somewhat different behavior than

in the CBC, and nonlinearly, zonal flows are found to explain the development

of the transport with increasing β over a wide range.

6.1 The Parameter Set

Starting from CBC parameters, the density and temperature gradients are modi-

fied to move into a TEM dominated regime. Most prominently, the ion tempera-

ture gradient is set below the ITG threshold. In order to retain the temperature

ratio Te/Ti = 1 without exciting ETG modes throughout a significant ky range

in the process, the electron temperature gradient has to be lowered, as well. The

resulting gradients are

ωT i = 2 , ωT e = 4 , ωn = 3 . (6.1)

All other physical parameters are chosen as in the aforementioned CBC.

The physical scales of TEM turbulence are similar to those of ITG turbulence,

with linear growth rates peaking near ky = 0.4. This is connected to the fact

that the general mechanism of ITG modes and TEMs is the same; only for the

latter, electrons on banana orbits take the role that the ions had for the former.

In TEM simulations, the passing electrons tend to behave more or less adiabat-

ically. However, while zonal flows are the main saturation mechanism for ITG

turbulence, this does not necessarily apply to TEM turbulence which is often

119
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characterized by radial streamer structures. Further details on nonlinear TEM

saturation have been published by Merz and Jenko [99].

In terms of the numerical settings, the parallel diffusion parameter ǫ was increased

compared with the CBC to a value of 12. For the linear simulations, resolutions

similar to those mentioned in Ch. 5 were used.

6.2 Linear Behavior

6.2.1 Linear β Scan

Consistently with the observations reported in Ch. 5, TEM growth rates undergo

very little change as β is increased (with slowly declining values of γ; the fre-

quencies experience even less change), as is shown in Fig. 6.1. This is due to

the importance of the trapped particles, which do not lead to large magnetic

field fluctuations. However, as the KBM limit is crossed, the ballooning modes

grow quickly, as is to be expected. Clearly, the KBMs appear first at lower ky

before they reach higher values. Below, an investigation into the KBM onset is

performed.

6.2.2 The KBM Threshold

While the general picture of the KBM onset – and their growth rates exceeding

those of the TEMs – in Fig. 6.1 shows little variation compared to what was ob-

served for the CBC, there is one fundamental difference: ITG modes and KBMs

tend to have their maximal growth rate at more or less the same ky, but the

corresponding TEM value is measurably higher. This means that – due to the

absence of ITG modes in the present case – unlike in the CBC, KBMs may dom-

inate at lower ky long before they overtake the TEMs in the value range where

the nonlinear transport peaks. In fact, this is exactly what is observed when the

ky dependence of the KBM onset is plotted (see Fig. 6.2). Moreover, it is to be

expected from these results that, as the MHD limit βMHD
crit = 2.03% is approached

with ky → 0, the KBM threshold reaches its lowest value. Consequently, KBMs

may play a prominent role nonlinearly slightly above βcrit since nonlinear trans-

port usually dominates at ky values smaller than those where the linear growth

rate reaches its maximum.

The above finding is consistent with that of the previous chapter which shows a

strong ion temperature gradient dependence of the KBM threshold – in Fig. 5.9,

lowering ωT i is found to shift βcrit to higher values. The onset value for the
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Figure 6.1: Linear growth rate (upper graph) and frequency (lower graph) depen-

dencies on β for density gradient driven TEMs at ky values of 0.2 (black squares),

0.4 (red diamonds), and 0.6 (blue crosses). As expected, the ky = 0.2 case is the

first where KBMs become dominant.
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Figure 6.2: Values of the critical β for the onset of KBMs (red diamonds) and

their dominance over TEMs (black triangles), respectively, for a range of ky.

The MHD prediction is shown for comparison (blue dashed line). Note that

no extrapolation was used for the onset values, and instead, subdominant mode

analysis was performed. Slight deviations from Fig. 6.1 are due to the higher

resolution used here.

present case, ωT i = 2, is consistent both qualitatively and quantitatively with

this result.

6.3 Nonlinear Results

Nonlinearly, convergence tests were performed, and as a consequence, the res-

olutions were chosen identical to those for the CBC with the exception of two

settings: Nz was set to 48 even for low β values, and a box with increased

Ly = 251.3 (corresponding to a smallest resolved ky of 0.025) was used to reduce

unphysical finite box influences on the simulations – nonlinear fluxes were found

to peak at relatively low ky, substantiating this choice.

6.3.1 Nonlinear β Scan

Nonlinear transport levels are reported in Fig. 6.3; the electromagnetic particle

and ion heat fluxes are not included because of their small relative contribution.

Much like in the linear case, the electrostatic flux levels do not react very strongly
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Figure 6.3: β dependence of heat and particle transport levels. For a large range

of values, the transport is TEM dominated; at β = 2.1%, the picture is less clear,

however, as is explained in the text.

to variations of β for the largest part of the scan. However, instead of the slight

decrease in the linear growth rates γ, as shown above, an increase can be seen in

the nonlinear levels. Possible causes are discussed below.

At values above β = 2.1%, saturation could not be achieved. Whether this is

due to KBM activity is speculative; the issue is being investigated, and possibly,

findings from the aforementioned electromagnetic benchmark exercise concerning

stability issues may also apply here.

6.3.2 Transport Levels

Similarly to Ch. 5, a discussion of the transport levels is presented. In the present

case of TEM turbulence, the picture is less complicated, however. Frequency

analyses agree for a wide range of β values, and the results are very similar to the

respective linear values at the ky corresponding the turbulent transport peaks.

Only at β = 2.1% does the picture change: in addition to the (dominant) TEM

frequencies, small contributions at KBM frequencies arise; this coincides with a

qualitative change in the transport levels. However, this change does not come

with a reversal of the dominant species: the electron transport still exceeds the

ion transport. The fact that these features occur at values measurably below

most of the linear βdom
crit values shown in Fig. 6.2, as well as just barely above
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Figure 6.4: Zonal flow and zonal field activity in nonlinear TEM simulations.

The shearing rate (rescaled; red triangles) exceeds the linear growth rate (at

ky = 0.4, black curve) by more than a factor of 10 in the beginning; this value

drops to less than 5 for β = 2.0%, signaling decreasing influence on zonal flows.

For completeness, the shear fluctuations are included (blue crosses), but their

magnitude is too small to constitute a significant effect.

the MHD limit, is not necessarily a sign that the prescription for nonlinear KBM

dominance (i.e., KBMs dominate nonlinearly where they dominate linearly; as

derived for the CBC) does not hold. For the TEM scenario, the altered spectral

structure presented in Fig. 6.2 has to be considered – KBMs may start to influence

the transport at the lowest ky, which is where their threshold is at its lowest.

The increase of transport for values below that point can be explained well by

zonal flow activity. Fig. 6.4 shows the (rescaled) shearing rate ωs in comparison

with the linear growth rate for ky = 0.4 which corresponds to a typical TEM value.

Recalling that the condition for significant nonlinear zonal flow contributions is

ωs ∼ 10γ (see Ch. 5), this illustrates that zonal flows might contribute strongly

at low β, with their influence being diminished as β is increased, with little

importance at high β values.

This picture is corroborated by x-y contours of the electrostatic potential, which

are shown in Fig. 6.5. While for β = 0.01%, a zonal flow can be recognized

to be competing with radially elongated structures, streamers dominate in the

β = 1.75% case.
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Figure 6.5: Contours of the electrostatic potential Φ in the perpendicular plane.

Above, a typical β = 0.01% case is shown, where radial structures are influenced

by zonal flow activity. The plot below is taken from a simulation with β = 1.75%;

clearly, the zonal flow activity has decreased, resulting in stronger streamer-like

structures.
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Recent studies of TEM turbulence by Lang et al. [100] are in good agreement

with the above findings; they show that – in the electrostatic limit – for low ωT e

and Ti ∼ Te, significant influence of zonal flows is to be expected, suppressing the

transport by a factor > 2. The present results add another dimension to their

parameter space, with β suppressing zonal flow activity. It is to be expected,

however, that this finding is specific to TEM turbulence, as an opposite effect

was found for the ITG turbulence investigated in Ch. 5.

6.4 Chapter Summary

In this chapter, electromagnetic aspects of density gradient driven TEM turbu-

lence were studied. The linear KBM onset shows different behavior – which is

likely due to the low ion temperature gradient – in that the MHD limit is exceeded

by the kinetic threshold throughout the entire ky range. This seems to have an

effect on the nonlinear transport levels, where a KBM contribution is found just

above the MHD threshold. The β scaling of the electrostatic transport levels is

characterized by only mild changes. However, unlike the slowly declining linear

growth rate, one observes increasing transport nonlinearly. This is explained by

a decreasing shearing rate, reducing the influence of zonal flows with growing β.



Chapter 7

Properties of Magnetic

Turbulence

After the studies on electromagnetic simulations presented in the last two chap-

ters, additional properties of those simulations are discussed. First, a test particle

based model to describe the magnetic transport is given, and its applicability to

the simulations is tested. Then, additional properties of the electromagnetic fields

are investigated, namely the altered magnetic field structure and fast ion diffu-

sivity in those fields. Last, the effects of realistic geometry on finite-β simulations

are examined briefly.

7.1 A Model for the Magnetic Transport

One important question in the context of electromagnetic turbulence simulations

is the role of magnetic transport. By this expression, one refers to the con-

tributions to the overall cross-field transport induced by (radial) magnetic field

fluctuations. As is well known, the transport channel which is most affected by

this process is the electron heat flux Qe. Its electromagnetic component Qem
e , due

to efficient parallel heat conduction along radially perturbed field lines, is plotted

for the ITG regime of the CBC parameter set studied in Ch. 5 – as a function of

β – in Fig. 7.1. Both the actual values from nonlinear simulations and quasilinear

estimates are shown, normalized to the electrostatic electron heat flux Qes
e .

Surprisingly, the linear and nonlinear curves deviate substantially from one an-

other. To good approximation, they scale like Qem
e ∝ β and Qem

e ∝ β2, respec-

tively, assuming Qes
e has no significant β dependence. This assumption can be

validated by looking at Fig. 5.13. The same findings apply to the transport val-

ues reported by Candy [82] which are shown in Fig. 5.5. It is thus desirable to
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Figure 7.1: Linear and nonlinear scaling of the CBC electron magnetic transport

with β: the linear values (black triangles) can be fitted excellently by a straight

line, the nonlinear values (red diamonds) by a quadratic function, as shown here.

This behavior is reproduced by the transport model.

achieve some theoretical understanding as to why linear estimates and nonlinear

results differ this significantly.

7.1.1 The Rechester-Rosenbluth Model

In order to understand these results, use is made of a simple model describing test

particle transport along perturbed field lines. Formulated in the present form by

Jenko and Dorland [59], it goes back to work done by Rechester and Rosenbluth

[101]. The model is based on the ansatz

Qem
e =

〈q̃e‖B̃x〉
Bref

, (7.1)

with the parallel electron conductivity

q̃e‖ = −ne0χe‖b̃ · ∇Te‖ . (7.2)

The gradient can be expanded, yielding

q̃e‖ = −ne0χe‖

(

dT̃e‖

dz
+

B̃x

Bref

dT̃e‖

dx
+

B̃x

Bref

dTe0

dx

)

. (7.3)
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Here, B̃x is the radial component of the magnetic field fluctuations, while T̃e‖

corresponds to parallel electron temperature fluctuations. For convenience, fluc-

tuating quantities are marked with a tilde. The three terms in the brackets

describe, collectively, the parallel temperature gradient along perturbed mag-

netic field lines. For the following discussion, they are labeled T1, T2, and T3,

respectively.

This leaves one to determine the parallel diffusivity, χe‖. For a sheared slab

magnetic field geometry, this quantity was calculated (see Chang and Callen

[102]) to be

χe‖ ≈
1

k‖

(

Te

me

)1/2

∼ q0R0

(

Te

me

)1/2

(7.4)

in the adiabatic limit. While technically, there is no quantity k‖ for radially

extended modes in a sheared magnetic field (due to the quasi-periodic boundary

conditions), one can still use this expression as an approximation. Additionally,

this result emphasizes that the electromagnetic ion heat flux must be very small,

as illustrated by the mass in the denominator.

7.1.2 Phase Relations and β Scaling

One can interpret the findings shown in Fig. 7.1 by analyzing the CBC Gene data

with respect to phase relations between pairs of fluctuating quantities entering

in the above model.

For linear simulations (see Fig. 7.2), the nonlinear term T2 vanishes. At the same

time, T̃e‖ and q̃e‖ have a phase relation of ∼ −π/4, whereas B̃x and q̃e‖ are out

of phase. Consequently, T1 ≫ T3. With B̃x/Bref ∝ β, one thus obtains the

prediction
Qem

e

Qes
i

∝ β , (7.5)

which is in line with the linear result shown in Fig. 7.1.

Nonlinearly, however, one empirically finds

Qem
e

Qes
i

∝ β2 , (7.6)

as shown in Fig. 7.1. This change can also be explained by the model. Fig. 7.3

illustrates that due to random phases between T̃e‖ and q̃e‖, T1 is small. The same

applies to T2, since B̃x and T̃e‖ have a phase of ∼ 0. Moreover, B̃x and q̃e‖ have

a phase of ∼ −π/4, resulting in T3 ∝ β2 becoming the dominant term, yielding

the overall quadratic scaling. Consequently, for the magnetic component of the
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Figure 7.2: Linear cross phases for the Rechester-Rosenbluth model, as obtained

from the CBC simulations. From left to right, the phases of A‖×T‖, A‖×q‖, and

T‖×q‖ are shown; in the linear case, comparing the second and third (correspond-

ing to terms T3 and T1 in the text, respectively) shows that T1 dominates, while

the leftmost graph is included only for comparison with the nonlinear results (see

Fig. 7.3). Note that the phase between A‖ and B̃x is π/2.

(nonlinear) electron thermal diffusivity, the equation

χem
e ≈ χe‖

〈B̃2
x〉

B2
ref

(7.7)

may be used. Together with Eq. (7.4), one arrives at

χem
e ≈ q0R0

(

Te

me

)1/2 〈B̃2
x〉

B2
ref

. (7.8)

After showing qualitative agreement between the model and linear as well as non-

linear simulations via transport scaling, the quantitative validity of this relation

is demonstrated below.

7.1.3 Application to CBC Simulations

In Fig. 7.4, the predictions due to the transport model are compared with the

simulation results. Very good agreement between the model and the real magnetic
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Figure 7.3: Nonlinear cross phases for the Rechester-Rosenbluth model, as ob-

tained from the CBC simulations. The phases shown here correspond to the

terms T1 (T‖×q‖, right), T2 (A‖×T‖, left), and T3 (A‖×q‖, center), as described

in the text. In this case, T3 dominates.

Figure 7.4: Electron magnetic transport as observed in the simulation (red curve)

and as calculated by the transport model from the magnetic field fluctuations

(black curve), for CBC parameters. Using a scalar gauge factor of order unity,

one finds very good agreement of the two curves.
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Figure 7.5: Nonlinear cross phases for the Rechester-Rosenbluth model, as ob-

tained from the TEM simulations. The term correspondence of the phases is

given in the caption of Fig. 7.3. Unlike in the CBC, the T2 contributors are not

out of phase anymore, with a phase angle similar to those of T3.

transport is obtained when multiplying χe‖ by a scalar quantity η of order unity,

χem
e = ηq0R0

(

Te

me

)1/2 〈B̃2
x〉

B2
ref

. (7.9)

η depends on the shape of the extended ballooning mode structure and will

therefore not necessarily be identical for different turbulence regimes. In fact, it

is found that ηITG = 0.625 ± 0.026 in the range from β = 0.3% to β = 1.0%

(as expected, the model breaks down as β → 0); for the high-β end of the

ITG-TEM regime, as well as the KBM regime, there is little statistics – the

corresponding values are ηITG−TEM = 0.37 and ηKBM = 0.46. It is to be noted

that all these values are rather similar and that within any single regime, there

is no significant β dependence of η. Also note that this transport model seems to

distinguish nonlinear regimes along the lines of the linear regimes, not changing

η at β = 0.8%.

7.1.4 Modeling Magnetic TEM Transport

When the above formalism is applied to the TEM turbulence simulations pre-

sented in Ch. 6, one observes changes in the phase structure which for the CBC
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Figure 7.6: Nonlinear scaling of the TEM electron magnetic transport (normal-

ized to the electrostatic component) with β (diamonds). As the data points are

fitted well by a quadratic function (solid curve), the transport model seems to be

unaffected by the altered cross-phase scenario of the TEM case (as presented in

Fig. 7.5).

balances the terms in favor of the Rechester-Rosenbluth model. For the den-

sity gradient driven TEMs, the nonlinear phases are different, as can be seen in

Fig. 7.5. More specifically, T3 – which needs to dominate in order for the model

to be applicable – now has rather unfavorable phases. However, as the relative

magnitudes of the terms are governed not only by their respective cross phases,

but also by the amplitudes of their constituents, this seems to have little impact

on the scaling of the magnetic transport levels which still grow quadratically

with β (see Fig. 7.6). This scaling suggests that the model might indeed be valid,

despite the phase relations.

Applying the model to the nonlinear TEM simulation data, one arrives at a

picture which is consistent with the β2 proportionality of the transport – the

model matches the measured magnetic heat diffusivity well, with the scaling

factor η from Eq. (7.9) being confined to the range of ηTEM ∈ [0.49, 0.70] for β

values from 1.0% to 1.75%. Again, β values with very low transport are excluded

to avoid statistical errors, and values near the KBM onset are neglected in order

not to be affected by mode interactions. It shall be noted, however, that for the

CBC, η was found to be more stable within one turbulence regime.



134 CHAPTER 7. PROPERTIES OF MAGNETIC TURBULENCE

Figure 7.7: Cross-section of the torus with constant toroidal angle φ. Poincaré

histograms of unperturbed (left) and perturbed (right) magnetic field lines are

shown, with the latter obtained from magnetic field data at β = 0.6% for a single

time step in the saturated range. As a seed field, three radial positions were used,

which were then followed for Ntor = 500 toroidal cycles. In the unperturbed case,

resonances at all radial positions can be seen, whereas in the perturbed case,

only one resonance appears which does not coincide with any of the initial radial

positions (see the text for details).

These findings support the transport model and its robustness with respect to

non-ideal cross phases. Since the scenarios for which it was tested in the present

work cover a wide range of turbulence types, it is inferred that its nature is

fairly general, with a wide range of applicability when using a (regime-dependent)

scaling factor η.

7.2 Field Line Fluctuations

While magnetic field fluctuations influence the trajectories of charged particles,

especially those of the light electrons, finite plasma pressure results in the particles

acting back and distorting magnetic field lines; thus, magnetic field fluctuations

are both cause and effect in self-consistent simulations.

Using the previously described Gene diagnostic for field line integration (see

Ch. 3), the electromagnetic CBC simulations from Ch. 5 are analyzed in order to

understand the properties of the altered magnetic field structure. It is to be noted
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that in the electrostatic limit (i.e., in the absence of magnetic field fluctuations),

every field line that lies on a flux surface with rational safety factor

q =
m

n
, m,n ∈ N , (7.10)

will produce m points in a Poincaré section of constant φ before closing back

in itself. In the ŝ-α geometry employed here, the radial dependence of q can be

written as

q(r) = q0

(

1 + ŝ
r − r0
r0

)

. (7.11)

At finite β however, results can be harder to interpret. For instance, very

small fluctuations in the q(r) profile will create and destroy such resonances

very quickly, increasing the likelihood that these resonances have little chance of

influencing the passing particles – more specifically, in order for a particle to feel

the effect of such a resonance, it would have to travel ≥ m times around the torus

toroidally before the resonance disappears; as their observed lifetime usually is

only a few to a few ten time steps, hardly any particles fall into this category,

especially if there is a typical cutoff in parallel velocity space around Lv‖ = 3. A

typical case with β = 0.6% is shown in Fig. 7.7, in comparison with the electro-

static limit, both consisting of three seed lines. In the absence of fluctuations,

resonances occur corresponding to the (rational) q values at the seed line posi-

tions; here, a central field line (r = r0 and q(r) = q0 = 1.4) is accompanied by two

lines at r = r0±Lx/3, with q = 1.533 (outer line) and q = 1.267 (inner line). The

resulting resonances thus have m/n ratios of 7/5, 23/15 and 19/15, respectively,

which agrees with number of observed points in the graph. In the case with

finite β, only one resonance is detected, with three poloidal points. Measuring

the radial position of these points, an unperturbed safety factor qequil(r) = 1.48

is obtained. This is very close to the value q(r) = 1.5 which corresponds to a 3/2

resonance. Fluctuations of the magnetic shear (and thus the q(r) profile) cause

this increase. Quantitatively, this requires an increase of ŝ by ∆ŝ = 0.197, a value

only moderately larger than the (time-averaged) shear fluctuation due to zonal

fields for this simulation, s̃ ≈ 0.11, as given in Ch. 5.

Additionally, magnetic islands may form (see, e.g., Fitzpatrick [103]). Such is-

lands are known to enhance the transport significantly, as particles (and thus

energy) caught in island structures can move significant radial distances without

crossing field lines. Islands of finite width are not found in the present simula-

tions, however.

Instead of looking for island formation, it is also possible to measure the typical

radial dislocation ∆r of a field line for a given number of toroidal cycles. The
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Figure 7.8: Radial dislocation of a central field line after 20 toroidal cycles as

a function of β. These values were obtained by evaluating the maximum of the

dislocation for every time step in a time interval of 30cs/R0 and then performing

a time average. The results may be interpreted as a general scaling estimation,

since the low statistics resulting from this generally rather expensive procedure

make precise quantitative assessments difficult.

result for the central (i.e., r = r0) field line is shown as a function of β in

Fig. 7.8. Here, a single field line was followed for Ntor = 20 toroidal cycles at

a reduced resolution of Nz = 1000 (which is sufficient here since Ntor is rather

small). Its maximal radial deviation from the original position was evaluated,

and the procedure was repeated for multiple time steps, spanning a time range

of 30cs/R0 in the saturated phase. Due to the low number of toroidal cycles, as

well as the limited time average corresponding to only a fraction of the saturated

phase, the interpretation of the results is difficult; however, a linear β scaling is

observed – this is in line with B̃x/B0 ∝ β, as found for the CBC simulations

and noted in the next section. Radial dislocation of a field line may serve as

a measure for how strongly heat and particle transport may be influenced by

magnetic field fluctuations. For a precise quantitative model based on the above

analysis method, significantly better statistics are required; obtaining these is

aimed at in future investigations.

To demonstrate that the diagnostic delivers converged and physical results, while

at the same time investigating additional physics, the diffusivity of magnetic field
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Figure 7.9: Square of the radial dislocation of a central field line as a function

of the number of toroidal cycles (black diamonds). The results were obtained

at a β value of 0.6%, averaging over a time range of 100cs/R0 in the saturated

regime. A straight line (red) is fitted to the data; clearly, a direct proportionality

is found, highlighting the diffusive nature of the system.

lines was evaluated. Nz was set to the standard value of 3000, and a single field

line (initially positioned at r = r0) was followed for Ntor = 500; this was repeated

for many time steps, covering a range of 100cs/R0. For each step, the square of

the radial displacement was measured, with the result shown in Fig. 7.9, where

only the values for Ntor ≤ 250 were included. Clearly, the points lie on a straight

line, corresponding to
(

∆r

r0

)2

= 1.3×10−5Ntor . (7.12)

Using this result, one may evaluate the corresponding diffusion coefficient:

Dr =
〈∆r2〉cs

4πq0R0Ntor
= 1.3×10−5 ǫ2t

4πq0
csR0 = 2.4×10−8csR0 , (7.13)

where a general form Dr = 〈∆r2〉/(2t) was assumed, and t = 2πq0R0/cs was

inserted. Note that for larger Ntor than those shown in Fig. 7.9, the curve slowly

starts to flatten; the explanation for this effect is that in those cases, some of the

field lines have already reached the end of the radial box. Due to the periodic

boundary conditions, the resulting displacement is thus caused to be lower than

the physical value.
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In order to allow for quantitative assessment of this result, one may obtain an

estimate by performing a comparison with electrostatic particle diffusivities. As

shown in Ref. [104], the Kubo number K = vEτc/λc is a measure for how strongly

particles are bound to structures in the turbulent field. Here, vE is the E×B

velocity, τc the correlation time, and λc the correlation length. For magnetic

fluctuations, the expression becomes K = vBτ‖/λ⊥. From Ref. [105], it follows

that

K =
B̃x

B0

v‖τ‖
λ⊥

=
B̃x

B0

λ‖
λ⊥

≈ 0.16 , (7.14)

taking the β = 0.6% case and inserting typical dimensions of turbulent structures

(5ρs for the perpendicular and πq0R0/2 for the parallel coordinate), as found in

the simulations, for the respective correlation lengths. In the K < 1 regime, a

simple random walk behavior is to be expected, and one may therefore write

Dr = v2
B τ̄‖ =

(

0.36
ρs

R0

)2 π

6
csR0 = 2.8×10−8csR0 . (7.15)

Here, use was made of an adjusted correlation time τ̄‖ = τ‖/3 (see Ref. [105]);

for ρs/R0, a value of 6.4×10−4 was used, identical to the choice for the magnetic

field line integration. Clearly, the results in Eqs. (7.13) and (7.15) agree very

well, considering only a simple model was used. A different approach to exploring

diffusivities in turbulent electromagnetic fields is detailed in the next section.

Many other investigations into the magnetic structure of gyrokinetic simulations

are possible. The results obtained here with the field line diagnostic represent

mostly proof of concept studies. In a next step, it is planned to apply the di-

agnostic to simulations of neoclassical tearing modes which are known to create

magnetic island structures.

7.3 Fast Ions in Turbulent Electromagnetic Fields

Following Hauff et al. [105], the behavior of fast passive ions in the turbulent

fields of the CBC simulations discussed in Ch. 5 is investigated. Simulations

were performed with identical parameters as in that chapter for the active (ion

and electron) species, with additional passive ion species at high temperatures.

7.3.1 Background

In fusion plasmas, fast ions occur, e.g., as a result of heating via Neutral Beam In-

jection or in the form of helium nuclei bred in fusion reactions (see, e.g., Ref. [5]).
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Since they carry significant energy, it is important to understand how these par-

ticles behave in turbulent fields, and to investigate the diffusive behavior of such

particles quantitatively. It shall be noted that fast particle physics also has various

applications in astrophysical scenarios; an example may be found in Ref. [106].

Experimentally, multiple fast particle studies have been performed (see, e.g.,

Refs. [107] and [108]). Previous theoretical investigations (see, e.g., Refs. [109]

and [110]), however, have mostly relied on the use of orbit-averaged fields [63],

thus making an assumption which is not necessarily valid. In fact, if the particle

drifts by more than the correlation length of the potential during one banana

orbit, this type of averaging cannot be used. Typically, that is the case when the

energies E of the fast ions exceed E > 3Te.

Due to this reason, a different approach to the problem is taken. By performing

gyrokinetic simulations of electromagnetic turbulence, finite orbit radii effects

are retained. The results of these simulations are then compared to the scalings

obtained by simple orbit analyses (see Ref. [105]), which read

Des
fi,p(E) ≈ v2

Eλc

6η2

(

E

Te

)−1

(7.16)

Des
fi,t(E) ≈ v2

Eλ
2
cǫ

1/2
t

12(πη2(1 − η2))1/2

(

E

Te

)−3/2

(7.17)

Dem
fi,p(E) ≈

(

R0B̃x

ρsB0

)2
λc

6η2
(7.18)

Dem
fi,t(E) ∝

(

E

Te

)−1/2

(7.19)

where η = v‖/v is the pitch angle, λc is the (perpendicular) correlation length of

the corresponding field (electrostatic for es and magnetic for em), and the indices

p and t denote passing (η → 1) and trapped (η → 0) particles, respectively. The

quantity R0B̃x/(ρsB0) is estimated from the β scan in Ch. 5 to be 60β. Note

that for the TEM case in Ch. 6, it is smaller by roughly a factor of five.

7.3.2 Passive Fast Ion Simulations

Gene simulations with CBC parameters are performed, using the same numerical

parameters as in Ch. 5 (with the exception of an increased resolution in the µ

direction, Nµ = 16) in the β = 0.6% case, but adding singly charged passive

ion species (denoted by the index fi) with ωnfi = ωni = 2.22 and ωTfi = 0 with

hydrogen mass. Such species are investigated with temperatures of 30, 50, and

100 in units of Ti = Te. These simulations were then analyzed with respect to the

structure of the radial particle diffusivity Dfi(v‖, µ) in velocity space. As shown
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Figure 7.10: Scaling of the particle diffusivities of passive fast ions with the

particle energy; power law scalings are provided for comparison (blue dotted

lines). For moderate and high energies, the electrostatic component (solid lines)

shows scaling powers of −1.5 and −1 in the η → 0 (red) and η → 1 (black) limits,

respectively; for the electromagnetic component (dashed lines), those values are

−0.5 for η → 0 and zero (constant diffusivity) for η → 1.

in Fig. 7.10, the simulation results are in good agreement with the analytical

predictions shown in Eqs. (7.16) to (7.19).

7.4 Effects of Realistic Geometry

Considering that one of the main motivations for performing electromagnetic

simulations and studying effects therein lies in the attempt to understand ex-

perimental β scalings, it is insightful to perform simulations not only in ŝ-α but

also in realistic geometry. The former constitutes a strong approximation of real

tokamak equilibria, especially in high β, shaped plasmas; studying the β depen-

dence of turbulence in a realistic geometry instead is expected to yield additional

understanding of the connection between simulations and the experiment. The

computational results presented in this section were obtained in collaboration

with L. Laborde and were published by Pueschel et al. [111]. Recently, Chen

and Parker [112] have published first simulation results on the effects of realistic

geometry on gyrokinetic simulations at finite β, focussing on numerical aspects.
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It may be expected that in the near future, more elaborate studies of the matter

will be performed.

7.4.1 Modeling a JET Discharge

The recent dedicated JET β scaling experiment (discharge #68595) reported in

Ref. [65] offers a good basis for numerical simulations. The normalized parameters

taken at mid-radius are ωn = 1.4, ωT e = 4.8, ωT i = 5.8, q0 = 1.6, ŝ = 1.1, and

Ti/Te = 0.86. Fig. 7.11 shows the geometry of the magnetic surfaces identified

by the EFIT code constrained by Motional Stark Effect data. The triangularity

is relatively high (δ = 0.4), as well as the Shafranov shift which compresses the

magnetic surfaces on the low field side. The Tracer code (see Ch. 2) was used

to reconstruct the geometry of a flux tube for the Gene code according to this

equilibrium.

7.4.2 Transport Levels

Nonlinear simulations were performed in this configuration for four different β

values covering the experimental range: β = 0.85, 1.05, 1.12, and 1.2% (note that

for all of these β values, the linearly dominant instability is a TEM). The results

are shown in Fig. 7.12. Over this range of β, one observes hardly any changes

of the ion and electron heat fluxes. This clearly contrasts with the experimental

observation of a strong degradation of confinement time with increasing β – as

mentioned before, ΩiτE ∝ β−1.4 –, but agrees with a fluid modeling which suggests

that this experimental degradation is due to a mismatch in the dimensionless

parameters (see Ref. [65]). It is also worth mentioning that the electromagnetic

contribution is negligible compared to the electrostatic fluxes. These findings are

agreeing only partially with the ŝ-α simulations presented before; while the TEM

case shows little influence of β on the fluxes over a wide range of values, and

its electromagnetic component of the electron heat flux is reduced in comparison

with the CBC results, the magnetic transport is still much higher than that which

is found here. Whether or not this is a general effect that is to be expected in

realistic geometry remains to be seen. A more likely explanation, however, is

that it is just a property of this specific parameter set; additional investigations

into the issue are planned for the future.

Turning to an issue for which comparisons with previous work are more readily

available, the nonlinear upshift of critical driving gradients is discussed below.
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Figure 7.11: JET plasma equilibrium used in the β scaling experiment (pulse

#68595); the flux surface considered here (at r0 = 0.5a) is represented by a bold

red line. The main difference of this geometry from the ŝ-α model used before

lies in the strong elongation.
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Figure 7.12: Electrostatic (ES) ion (Qi; upper red curves) and electron (Qe;

lower blue curves) heat fluxes as a function of β, after full saturation of non-

linear simulations. The (negligible) electromagnetic (EM) components are also

included (dashed lines). The linearly dominant instability at these parameters

is a TEM; nonlinearly however, ion fluxes exceeding their electron counterparts

hint at different processes dominating the turbulence.

7.4.3 Dimits Shift

Linear and nonlinear scans over the ion temperature gradient ωT i were also per-

formed around the experimental value ωT i = 5.8 in order to identify a threshold

ωT i,crit from which on ITG modes drive the turbulence. Fig. 7.13 shows, as a

function of ωT i, the growth rate of the most unstable mode from the linear scan,

as well as the ion and electron electrostatic heat fluxes from three nonlinear runs.

The linear scan displays a knee around ωT i = 5, making the identification of a

critical value slightly more difficult; still, ωlin
T i,crit ≈ 3.6 serves as a realistic esti-

mate. Even if one allows for some uncertainty, the corresponding value for the

nonlinear simulations, ωnonlin
T i,crit ≈ 4.7, is still larger than the linear threshold. This

property is the so-called Dimits shift first reported by Dimits et al. [56], and

the above findings agree very well with similar research published recently by

Mikkelsen and Dorland [113].
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Figure 7.13: Linear and nonlinear scans of the normalized ion temperature gradi-

ent: the linear growth rates indicate a threshold R/LT i = ωlin
T i,crit ≈ 3.6 whereas

the fit from nonlinear heat fluxes suggests ωnonlin
T i,crit ≈ 4.7. This is due to the Dimits

shift described in the text.

At the same time, the Dimits shift highlights a property that may contribute

to the differences between the experimental scaling and that observed in the

simulations: in the parameter regime investigated here, small changes – e.g., of

the ion temperature gradient – can lead to significant deviations in the heat flux,

as becomes apparent in Fig. 7.13. Thus, if one aims to reproduce experimental

heat flux measurements, one has to perform simulations not only at that specific

parameter set, but additionally take the error bars of all parameters into account.

Since those error bars can be significant, and since turbulent flux levels may

depend strongly on many parameters, matching simulation and experimental

data directly can be a difficult undertaking. Still, it is important to pursue this

line of investigation to understand the impact of geometry on β scaling more

thoroughly.

7.5 Chapter Summary

In this chapter, various analyses of electromagnetic turbulence were performed.

A magnetic transport model was investigated in detail, and its applicability was

demonstrated for a wide range of turbulent regimes both qualitatively and quan-
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titatively. Then, field line integration was used to obtain information about the

altered magnetic field structure in the presence of magnetic field fluctuations –

specifically, diffusive behavior was observed which was explained well by a simple

model. The properties of fast ion diffusivities was studied next, and good agree-

ment was found with analytical scalings as reported by Hauff et al. [105]. Finally,

a first investigation into the effects of realistic geometry on finite-β turbulence

was presented.
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Chapter 8

Application to Astrophysical

Scenarios

The applicability of the gyrokinetic framework and, more specifically, the Gene

code to astrophysical scenarios is discussed – it is possible to take results obtained

from fusion plasma simulations (as reported in the previous chapters) and insert

cosmic scales into the normalizations. Two examples are given: Cooling flows are

observed in some galaxy clusters, yet no cold matter seems to be present; heat

transport is believed to be the process causing this effect. On the other hand,

evaporating clouds are cold and dense objects in a much hotter medium. It is

generally believed that they are kept together by magnetic fields.

8.1 Gyrokinetics on Astrophysical Scales

In the derivation of gyrokinetic theory in Ch. 2, two characteristic length scales

were introduced: a macroscopic scale describing the change of the equilibrium

quantities and the magnetic geometry, as well as the microscopic scale of the

turbulent processes perpendicular to the magnetic field. While this picture, with

ρ ≪ Lref , was designed to match the physical conditions in toroidal fusion de-

vices, its validity extends beyond this range of applications. More specifically,

some astrophysical systems exhibit features which may be described using the

gyrokinetic framework as implemented in the Gene code.

Astrophysical magnetic field strengths span an enormous range, with more than

18 orders of magnitude lying between parts of the intracluster medium (ICM)

and the surface of magnetars; the gyroradii of charged particles vary accordingly.

Interestingly, the fields used in terrestrial fusion – which correspond to the upper

limit of technologically achievable fields – lie in the very middle of this scale.

147
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However, for the cases investigated here, magnetic fields Bastro ≪ Bfusion are

typical, which result in gyroradii of order ρ ∼ O(m− 103 km) at temperatures of

∼ 107 K. However, the gyrokinetic ordering is still fulfilled, with Lref ≫ ρ.

For fusion plasmas, error bars of experimental measurements constitute a dif-

ficulty for the application of simulations. This is even more problematic for

astrophysical scenarios where some quantities are not even certain within an or-

der of magnitude. Keeping this in mind, the results reported here should be seen

as estimates and not as precise measures.

Many astrophysical plasmas have a complex abundance of many different ele-

ments, and a lot of those particles are only partially ionized. While technically,

Gene is able to include any number of elements, covering thousands of particle

species with their respective physical time scales poses a computational limit.

Therefore, only fully ionized hydrogen plasmas are considered in the following,

and effects due to other species are only mentioned in a qualitative way. Addi-

tionally, the normalization length is taken to be Lref = LT – defining a major

radius R proves to be difficult since in most cases, very little is known about the

fine structure of the magnetic field geometry.

8.2 Galactic Cooling Flows

8.2.1 Motivation and Previous Investigations

Cooling flows (see Fig. 8.1) constitute a common process for the formation of

compact objects in the universe. To describe this phenomenon in an idealized

fashion, a gas cloud (note that throughout this chapter, the category of gases

is understood to include plasmas) of uniform density is considered. Assuming a

low initial temperature (and thus, low pressure), the cloud will start to collapse,

with the outer shells falling towards the inner shells due to their weight. This

causes both the density and the temperature to rise, the latter as a result of

the conversion of potential into kinetic and thus thermal energy. As soon as the

pressure – which rises rapidly – is large enough to balance the gravitational force,

the collapse is halted; the system is now in hydrostatic equilibrium. However,

since the temperature is large, so are radiative losses, e.g., via bremsstrahlung.

The current state is therefore not stable, and temperature losses are compensated

by further inflow of matter. Generally, the picture is more complex, and the

presence of magnetic fields, external heat sources, or inhomogeneities of the flow

may have to be considered.

While the formation, e.g., of smaller, single galaxies from cooling gas is fairly
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Figure 8.1: Abell 1795 cluster. In the center of this cluster, a cooling flow can be

observed in the form of a bright filament. It consists of gas at lower temperatures

than its surrounding. Source: [114]

well understood, open questions remain about gas clouds in the central regions of

galaxy clusters. Since these clouds are radiating in the X-ray band, cooling flows

towards the centers of these objects are to be expected. At first, it was believed

that cooling flows were operating fairly unhinderedly in the clusters and that the

resulting cold gas in the center was dropping out and becoming unobservable (see

Fabian [115] for an earlier review). For this to happen, radial heat transfer from

the hot outer shells to the cooler inner shells has to be suppressed.

The standard picture, however, has since changed (see, e.g., Voigt et al. [116], as

well as Voigt and Fabian [117]). In many ICM observations with X-ray emitting

gas, no sufficiently large quantities of cold matter were observed at the centers of

these objects where the gas should have ended up after completing the cooling

process. It is more than unlikely that many initial stages of ICM cooling are

observed but none where the process has been at least partially completed. Since

the typical cooling times tcool of these objects are smaller than the Hubble time

tH = H−1
0 = 1.38×1010 yrs (8.1)

(which is an estimate for the age of the universe), with the Hubble constant
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H0 = 71km/(s Mpc), examples of later stages of ICM matter inflow should have

been found. Consequently, processes have to exist that offset the cooling.

It has been proposed that external heat sources may balance the radiative losses

mentioned above (see, e.g., Churazov et al. [118]); there also exist theories which

would allow for cold matter to drop out, involving, e.g., differential absorption

[119] or inhomogeneous distribution of metallicity throughout the gas [120]. Most

of these explanations, however, do not apply to the majority of clusters or con-

stitute only very small contributions.

Instead, the most likely theory is that cooling flows are offset by conduction

(note that in the context of cooling flows, conduction does not necessarily refer

to classical heat conduction; turbulent phenomena are also included): The inner

radial shells receive thermal energy from the warmer outer shells. This way,

effective cooling of those shells is suppressed, and the matter inflow halted.

Classical thermal conduction (as described by Spitzer [121]) results in the Spitzer

conductivity

κS =
1.84×10−5T 5/2

37.8 + ln

[

(

T
108 K

) (

ne
10−3 cm−3

)−1/2
] erg s−1 cm−1 K−1 . (8.2)

In the case of functional cooling flows, it has been argued that conduction must

be suppressed, κ = fκS with f < 1, an effect caused by magnetic fields; as to

the magnitude of the suppression, while Churazov et al. [118] find f ∼ 0.01, work

by Narayan and Medvedev [122] suggests f ∼ 0.3, requiring tangled field lines.

However, as discussed in Ref. [117], it has been estimated that heat transfer must

be larger in order for the cooling to be compensated, with required conductivities

of κ > κS at the center of the objects – more specifically, f ≥ 2.

Turbulent transport is able to exceed classical heat conduction significantly. Cho

et al. [123] performed simple hydrodynamic and MHD simulations; their results

were then applied more comprehensively by Voigt and Fabian [117]. The conduc-

tivity is found to be of the order of the unhindered Spitzer value, f ∼ 1, where a

simple ansatz

κturb ≈ vturblinject (8.3)

is used. Here, vturb is a characteristic turbulent velocity, and linject corresponds

to a typical turbulent length scale. However, Fabian et al. [124] present argu-

ments against turbulence being a dominant process, based on observations of

quasi-linear filaments in the Perseus cluster; this reasoning does not apply to

microturbulence, though. In the following, the applicability of Gene simulation

results to the scenario described above is discussed. Unlike previous work (see,
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e.g., Pistinner and Eichler [125]) employing kinetic theory which sought to find

processes that suppress heat transport to comply with the physical interpreta-

tion by Fabian [115], the considerations presented here aim to assess the maximal

influence of microturbulent phenomena on increasing the heat transport.

8.2.2 Applying GENE Results to Cooling Flows

Using the normalizations and definitions in Ch. 2, one can split the heat flux into

a nondimensional quantity Q̂ (which corresponds directly to the Gene output

Q) and a component QD absorbing the dimensions:

Q = Q̂QD = Q̂
nrefT

3/2
ref ρ

2
ref

m
1/2
ref L

2
ref

. (8.4)

Assuming a typical value of Q̂ ∼ 10 (which may vary, depending on the physi-

cal parameters, by more than an order of magnitude), one may thus infer typical

physical transport levels by inserting density, temperature (recalling the inclusion

of the Boltzmann constant in the definition used here), gyroradius, and typical

length scale describing the system. This latter variable poses something of a

problem, as does the density. For instance, Godon et al. [126], investigating dy-

namo activity in rotating cooling flows, find magnetic loops with a characteristic

length scale of ∼ 1 kpc in the center of the objects. Densities of cooling flows are

usually specified for the outermost radius Rcool of the flow (where tcool = tH),

with a typical of n(Rcool) ∼ 3×10−3 cm−3. However, the central densities of these

objects are much larger; using mass distributions from Soker and Sarazin [127],

one may expect values n(R = 1kpc) ∼ 103 cm−3, assuming a simplified model

with pure hydrogen plasma.

To avoid the difficulty of fixing R, the reference length is taken to be Lref = LT ∼
0.1 kpc, corresponding to the largest gradients which are likely to occur in the

context of a simple model. Additionally, high densities are considered, assuming

n ∼ 104 cm−3, so as to maximize Q. Taking ρref ∼ 104 km, Tref/k ∼ 108 K, and

mref = mH, one thus arrives at

Q = Q̂QD ∼ 8×10−19 erg

s cm2
. (8.5)

This result constitutes an extremely low heat flux; in fact, to obtain a dominant

contribution to the cooling flow scenario, at least 17 orders of magnitude would

have to be bridged.

There are, however, considerations which suggest a more favorable picture for

microturbulence. Firstly, MHD turbulence may be present in the central area of
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cooling flows, even if it is not strong enough to dominate the picture; this would

create small structures (i.e., lower ρ/LT significantly) which, in turn, would be

prone to microinstabilities. Since Q is proportional to the square of ρ/LT , a very

large impact on the heat flux would have to be expected. Such smaller scales are

in line with the general assumption that cooling flows are of multi-phase nature.

Secondly, for the value Q̂ ∼ 10 used here, a typical result with β ≪ 1 was taken.

In the present physical scenario, however, β ∼ 1, which means that, in principle,

much higher transport levels are possible. Thirdly, as mentioned before, a pure

hydrogen plasma was considered; heavier and more strongly charged species are

likely to cause transport levels to change, while at the same time constituting

a (possibly significant) impact on the ratio ρ2/m1/2 which enters into Eq. (8.4).

Also note that above, a static equilibrium field was assumed, and only heat

flux perpendicular to the field lines was evaluated. Postulating a parallel heat

diffusivity like the one used in Eq. (7.4), one obtains Q ∼ 1 erg/(s cm2); this value

is indeed in the expected range.

It remains to be investigated whether these adjustments are sufficient to raise

perpendicular transport due to plasma microturbulence to the point where it is

able to contribute significantly to the overall heat flux in galactic cooling flow

scenarios. Deeper insight must first be gained into the relevant geometry, and

increasing β to realistic values requires inclusion of B‖ fluctuations; a benchmark

for the physics connected to higher β values is currently underway.

8.3 Evaporating Clouds

8.3.1 General Picture and Previous Work

A different scenario in which microturbulent transport may have an impact on

the interpretation of the physical model are cold clouds near the centers of active

galactic nuclei (AGNs). As described in Rees [129], a range of objects – quasars,

radio and Seyfert galaxies (see Fig. 8.2) – exhibits features that may be explained

by the existence of numerous dense and cold clouds which are immersed in the

hot environment of the inner AGN region. Sivron and Tsuruta [130] show that

such clouds explain the observed spectra well.

In a simplified model, these clouds should evaporate very quickly; therefore, mag-

netic fields are used to account for their existence – the internal kinetic pressure

is thought to be balanced by equal magnetic pressure, β ∼ 1, which holds the

cloud together. To allow for the validity of this model, one has to constrain the

parameter space in which clouds may live; investigations in this direction were
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Figure 8.2: NGC 6814 galaxy. Its nucleus is believed to be harboring cold clouds

which balance kinetic and magnetic pressure as described in the text. Source:

[128]

performed by Kuncic et al. [131]. Typical parameters are taken here, with the

cloud temperature Tcl ∼ 105 K (and the surrounding medium at Tsm ∼ 109 K),

the density ncl ∼ 1017 cm−3, and the cloud radius Rcl = LT ∼ 106 cm. As mo-

tivated in Ref. [129], the magnetic field is assumed to be B ∼ 10−4 T, and the

proton gyroradius thus becomes ρ ∼ 500 cm.

8.3.2 Application of GENE Data

Unlike in the above cooling flow case, the context in which Gene data is applied

to evaporating clouds is the attempt to understand whether microinstabilities

might destroy the clouds by causing evaporation as described above. To this end,

the heat flux in the border between cloud and surrounding medium is examined.

It is to be expected that due to the high β ∼ 1, this border is parallel to the

magnetic field, reducing the relevant heat flux to its parallel component.

Inserting the above parameters into Eq. (8.4) and again taking Q̂ ∼ 10, one

obtains a heat flux of Q ∼ 106 erg/(s cm2). Note that the choice of LT = Rcl

constitutes an upper limit – in reality, somewhat larger gradients may be ex-
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pected, yielding higher transport. Assuming a constant heating rate, deliver-

ing energy homogeneously across the entire surface, the heating power becomes

P ∼ 1019 erg/s. A heating process of this magnitude, however, would cause the

cloud to evaporate after

tGK
evap ∼ (109 − 1010) s . (8.6)

This value can be compared to the time scale for unhindered evaporation as given

by Rees [129]:

tunhind
evap ∼ (106 − 107) s . (8.7)

The latter is significantly lower than the former, but only roughly three orders of

magnitude lie between both results (and the difference becomes smaller if larger

gradients are considered). Therefore, if the above estimates are to hold even

within a large tolerance, the general picture of evaporating clouds may have to

be revisited. A more in-depth analysis will be undertaken in the near future to

determine the answer to this question.

8.4 Chapter Summary

In the present chapter, typical Gene results have been used as order-of-magnitude

estimates for heat transport levels in astrophysical plasmas. For galactic cooling

flows – where a process is required that enhances heat transfer beyond the Spitzer

rate – the applicability seems doubtful unless the gyrokinetic framework is used in

conjunction with non-trivial geometry resulting from MHD activity. Evaporating

clouds, on the other hand, may be affected by plasma microturbulence, with the

latter becoming a relevant factor in determining the lifetime of cold, dense gas

clouds near the center of AGNs. Since all the results presented in this chapter

are of a very preliminary nature, more research will be undertaken to assess their

validity; also, additional insight is expected to be gained by considering β values

much higher than those investigated in this thesis.



Chapter 9

Conclusions

The findings of this thesis are reviewed briefly, highlighting novel results. Here-

after, an outlook is given with areas marked for future research.

9.1 Summary

Gyrokinetics and the GENE Code

A brief derivation of the gyrokinetic framework was presented; the functionalities

of the Gene code – which operates on this framework – was detailed. This code

was the basis for most results obtained in the context of this thesis.

Visualization

Since in typical simulations, enormous amounts of data are produced, mechanisms

to visualize this data in a physically meaningful way were discussed. The Gene

Diagnostics Tool – which was redesigned and extended to allow for more versatile

application – was introduced, along with most of its standard diagnostics, as well

as additional diagnostics, many of which were conceived during the course of the

physical investigations of this work. Similarly, the RZG VisualKit, along with a

program to create Gene data sets, was presented.

Numerical Diffusion

In order to avoid numerically induced effects which may pollute or even dominate

the physics one seeks to describe, unphysical high-k modes have to be removed

from the simulations. To this aim, a numerical (hyper-)diffusion term was intro-

duced in the Vlasov equation; a widely applicable rule for the diffusion coefficient

was derived, where the critical value was equal to the linear growth rate of the
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system. Moreover, velocity space diffusion was employed to suppress numerical

recurrence phenomena, and radial diffusion was investigated as a method to alter

the extended mode structure and dampen the outmost radial modes which might

otherwise cause an unphysical influence.

These findings were then applied to the ETG benchmark scenario where the direct

applicability of the prescriptions concerning parallel, as well as parallel velocity,

diffusion was demonstrated.

Electromagnetic Effects

The main focus of this thesis lies on the study of the impact of the normalized

plasma pressure β. Two parameter sets were investigated: the Cyclone Base Case

and density gradient driven trapped electron modes (TEMs). Linear studies of

the onset of kinetic ballooning modes (KBMs) were undertaken, furthering the

understanding of the threshold properties and the relevance of different thresh-

olds. In this context, mode interactions – and even more so, mode transformations

– are found to make the definition of the onset point problematic.

For the first time, nonlinear KBM turbulence simulations were reported, extend-

ing the range of accessible β values significantly. In this regime, multiple mech-

anisms may contribute to the very low transport levels which were observed.

Quasilinear transport models were used in this context, and analyses of the zonal

flow and zonal field structure were performed, detailing their influence on the

saturation. The major contributor to the reduction of transport, however, was

found to be nonlinear mode interactions. In the case of TEM turbulence, zonal

flows were shown to explain the nonlinear behavior.

Making use of the simulations described above, the magnetic transport was in-

vestigated; it scaled as β2 and was described very well by a test-particle model.

Moreover, magnetic fluctuations affect the field line structure and its resonances.

Application of a simple diffusion model yielded good agreement with the data.

Apart from magnetic field line diffusion, the diffusivity of fast passive ions was ex-

plained by analytical models both for electrostatic and magnetic turbulent fields.

Lastly, realistic tokamak geometry was found to have different properties in the

context of magnetic transport than the standard but rather simple ŝ-α geometry

employed in most of the simulations reported here.

Astrophysical Applications

A direct transfer of typical Gene transport levels to a simple model for galactic

cooling flows results in a significant gap between obtained and required fluxes.
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While potentially, plasma microinstabilities do not play a role in the stability

of these objects, there is a range of possibilities how the gap may ultimately

be bridged. In the case of cold gas clouds, which, in a simple model, should

evaporate quickly, a similar transfer was performed. Microturbulent transport

was found to be very efficient here, and the results allow for the destruction of

such clouds on time scales only moderately larger than unhindered evaporation.

This may suggest the need for refinement of the standard cloud model.

9.2 Future Investigations

Electromagnetic Fusion Plasmas

The current research is intended to be expanded by performing studies in ad-

ditional parameter regimes, e.g., in order to isolate KBM turbulence and study

its properties in more detail. Realistic geometry provides an opportunity to re-

fine the simulations and ideally allow for quantitative comparisons with fusion

experiments.

In the light of increasingly successful descriptions of stellarators (which operate

at much larger β than tokamaks), as well as requirements for many astrophysical

scenarios, investigations with B‖ fluctuations at higher β values will be performed,

comparing Gene results with other codes as well as analytic models.

Astrophysical Plasmas

Both cooling flows and evaporating clouds are to be studied in more detail in the

future, along with the applicability of gyrokinetic simulations. Using more com-

plex models for the geometry, and allowing for realistic β values, it is expected

that some quantitative answers are found to issues only debated in a qualita-

tive fashion in the present work. More specifically, a thorough analysis of the

evaporating cloud problem is to be undertaken in order to assess the influence of

plasma microturbulence by employing observational data for specific clouds. It is

also planned to extend investigations to a larger range of astrophysical objects.
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ion-temperature-gradient modes in tokamak plasma, Phys. Plasmas 9, 861

(2002).

[90] G. L. Falchetto, J. Vaclavik, and L. Villard, Global-gyrokinetic study of fi-

nite beta effects on linear microinstabilities, Phys. Plasmas 10, 1424 (2003).

[91] T. Kato, Perturbation theory of linear operators (Springer, Berlin, 1966).

[92] M. Kammerer, F. Merz, and F. Jenko, Exceptional points in linear gyroki-

netics, Phys. Plasmas 15, 052102 (2008).

[93] F. Jenko, T. Dannert, and C. Angioni, Heat and particle transport in a

tokamak: advances in nonlinear gyrokinetics, Plasma Phys. Control. Fusion

47, B195 (2005).

[94] M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hammett, Quan-

titative predictions of tokamak energy confinement from first-principles sim-

ulations with kinetic effects, Phys. Plasmas 2, 2381 (1995).

[95] P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Zonal flows in plasma

– a review, Plasma Phys. Control. Fusion 47, R35 (2005).

[96] T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M.

Tang, Shearing rate of time-dependent E x B flow, Phys. Plasmas 6, 922

(1999).

[97] P. Xanthopoulos, F. Merz, T. Görler, and F. Jenko, Nonlinear gyrokinetic

simulations of ion-temperature-gradient turbulence for the optimized Wen-

delstein 7-X stellarator, Phys. Rev. Lett. 99, 035002 (2007).

[98] F. Jenko and A. Kendl, Radial and zonal modes in hyperfine-scale stellarator

turbulence, Phys. Plasmas 9, 4103 (2002).

[99] F. Merz and F. Jenko, Nonlinear saturation of trapped electron modes via

perpendicular particle diffusion, Phys. Rev. Lett. 100, 035005 (2008).

[100] J. Lang, S. E. Parker, and Y. Chen, Nonlinear saturation of collisionless

trapped electron mode turbulence: zonal flows and zonal density, Phys. Plas-

mas 15, 055907 (2008).

[101] A. B. Rechester and M. N. Rosenbluth, Electron heat transport in a tokamak

with destroyed magnetic surfaces, Phys. Rev. Lett. 40, 38 (1978).



BIBLIOGRAPHY 169

[102] Z. Chang and J. D. Callen, Unified fluid/kinetic description of plasma mi-

croinstabilities. part i: Basic equations in a sheared slab geometry, Phys.

Fluids B 4, 1167 (1992).

[103] R. Fitzpatrick, Helical temperature perturbations associated with tearing

modes in tokamak plasmas, Phys. Plasmas 2, 825 (1995).

[104] T. Hauff and F. Jenko, E x B advection of trace ions in tokamak microtur-

bulence, Phys. Plasmas 14, 092301 (2007).

[105] T. Hauff, M. J. Pueschel, T. Dannert, and F. Jenko, Electrostatic and

magnetic transport of energetic ions in turbulent plasmas, Phys. Rev. Lett.

102, 075004 (2009).

[106] G. M. Webb, G. P. Zank, E. K. Kaghashvili, and J. A. le Roux, Compound

and perpendicular diffusion of cosmic rays and random walk of the field

lines, Astrophys. J. 651, 211 (2006).

[107] W. W. Heidbrink, C. W. Barnes, G. W. Hammett, Y. Kusama, S. D. Scott,

M. C. Zarnstorff, L. C. Johnson, D. McCune, S. S. Medley, H. K. Park,

et al., The diffusion of fast ions in Ohmic TFTR discharges, Phys. Fluids

B 3, 3167 (1991).

[108] W. W. Heidbrink and G. J. Sadler, The behaviour of fast ions in tokamak

experiments, Nucl. Fusion 34, 535 (1994).

[109] H. E. Mynick and J. A. Krommes, Particle diffusion by magnetic perturba-

tions of axisymmetric geometries, Phys. Rev. Lett. 43, 1506 (1979).

[110] J. R. Myra and P. J. Catto, Effect of drifts on the diffusion of runaway elec-

trons in tokamak stochastic magnetic fields, Phys. Fluids B 4, 176 (1992).

[111] M. J. Pueschel, L. Laborde, F. Jenko, and JET EFDA contributors, 35th

EPS Conference on Plasma Physics, Herniossos, Greece (EPS, 2008).

[112] Y. Chen and S. E. Parker, Electromagnetic gyrokinetic δf particle-in-cell

turbulence simulation with realistic equilibrium profiles and geometry, J.

Comput. Phys. 220, 839 (2007).

[113] D. R. Mikkelsen and W. Dorland, Dimits shift in realistic gyrokinetic

plasma-turbulence simulations, Phys. Rev. Lett. 101, 135003 (2008).

[114] http://chandra.harvard.edu/photo/2000/0163/

0163_xray_fullfield.jpg (2009).

http://chandra.harvard.edu/photo/2000/0163/0163_xray_fullfield.jpg
http://chandra.harvard.edu/photo/2000/0163/0163_xray_fullfield.jpg


170 BIBLIOGRAPHY

[115] A. C. Fabian, Cooling flows in clusters of galaxies, Annu. Rev. Astron.

Astrophys. 32, 277 (1994).

[116] L. M. Voigt, R. W. Schmidt, A. C. Fabian, S. W. Allen, and R. M. John-

stone, Conduction and cooling flows, Mon. Not. R. Astron. Soc. 335, L7

(2002).

[117] L. M. Voigt and A. C. Fabian, Thermal conduction and reduced cooling

flows in galaxy clusters, Mon. Not. R. Astron. Soc. 347, 1130 (2004).
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