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ZUSAMMENFASSUNG 
 

Interactions between HDL and NAD(P)H oxidase 
 

Alicja Pawlak 
 
 

Voraussetzungen und Ziel der Arbeit: Die Arteriosklerose gehört zu den 
häufigsten Krankheiten in den Industriestaaten. Die unkontrollierte Produktion von 
Sauerstoffradikalen (Reactive Oxygen Species-ROS), denen die Hyperaktivierung 
der NAD(P)H Oxidase zugrunde liegt, spielt in der Entwicklung und Progrendienz 
der Arteriosklerose eine entscheidende Rolle. Sie ist u. a. für die Sekretion oder die 
Aktivierung von pro-atherogenen Faktoren wie MCP-1 (monocyte chemoattractant 
protein-1), MMP (matrix metalloproteinases) und p38MAPK (p38 mitogen-activated 
protein kinase) verantwortlich. HDL (high density lipoprotein) erfüllt verschiedene 
potentielle anti-atherogene Funktionen. Mehrere dieser Funktionen sind durch die 
Präsenz von Lysosphingolipiden wie Sphingosylphosphorylcholin (SPC) und 
Sphingosin-1-phosphat (S1P) in HDL-Partikeln, bedingt. Die Wechselwirkungen 
zwischen der durch die NAD(P)H Oxidase vermittelten ROS Generierung und HDL 
wurden bisher nur unzureichend untersucht. Es war daher Ziel dieser Arbeit, den 
Einfluss von HDL und HDL-Lysopshingolipiden auf die Aktivierung der NAD(P)H 
Oxidase, die davon abhängige Produktion von ROS, die Synthese von MCP-1 und 
die Aktivierung von MMP`s und von p38MAPK zu untersuchen. 
Methodik: Alle Experimente wurden an kultivierten glatten Muskelzellen der Ratte 
durchgeführt. Die Entstehung von ROS wurde mittels Fluoreszensspektrometrie 
untersucht. Die Konzentration von MCP-1 und der Aktivierungsgrad von p38MAPK 
wurden mit Hilfe von geeigneten ELISA`s untersucht. Die Expression von mcp-1 
auf der Ebene der Transkription wurde mit Hilfe der RT-PCR untersucht. Die 
Aktivität der MMP`s wurde unter Verwendung der Gelatine-Zymographie bestimmt. 
Zur Aktivitätsbestimmung der NAD(P)H Oxidase wurde ein spektrophotometrischer 
Assay verwendet. 
Ergebnisse: Es konnte gezeigt werden, dass die Thrombin-induzierte Aktivierung 
der NAD(P)H Oxidase und die Generierung von ROS in glatten Muskelzellen in 
Anwesenheit von HDL und HDL-Lysosphingolipiden gehemmt  wird. Folglich wurde 
die Thrombin-induzierte Aktivierung von p38MAPK und die davon abhängige 
Produktion von MCP-1 durch HDL und HDL-Lysosphingolipiden inhibiert. Es konnte 
dagegen keine hemmende Wirkung von HDL und HDL-Lysosphingolipiden auf die 
Aktivierung von MMP`s beobachtet werden. 
Schlussfolgerung: Die in der vorliegenden Arbeit erzielten Ergebnisse zeigen 
erstmalig, dass HDL und HDL-Lysosphingolipide die Aktivierung der           
NAD(P)H Oxidase und die davon abhängigen pro-atherogenen Prozesse hemmen. 
Diese Wirkung von HDL kann substantiell zu anti-atherogenen Effekten beitragen, 
die diesen Lipoproteinen zugeordnet werden. 
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SUMMARY 
 
 

Interactions between HDL and NAD(P)H oxidase 
 
 

Alicja Pawlak 
 
 

Working hypothesis: Atherosclerosis is one of the most common causes of death 
in industrial societies. The NAD(P)H oxidase-dependent generation of reactive 
oxygen species (ROS) plays an important role in development and progression of 
atherosclerosis. It induces the synthesis and/or activation of several pro-
atherogenic factors such as monocyte chemoattractant protein-1 (MCP-1),          
p38 mitogen-activated protein kinase (p38MAPK) or matrix metalloproteinases 
(MMPs). High density lipoprotein (HDL) has been demonstrated to exert several 
potentially anti-atherogenic effects, which are partially mimicked by 
lysosphingolipids associated with these lipoproteins, namely 
sphingosylphosphorylcholine (SPC) and sphingosine 1-phosphate (S1P). Little 
effort has been devoted to date to characterize the interaction between HDL and 
NAD(P)H oxidase. Therefore, it was the aim of the present study to investigate the 
effects of HDL on the agonist-triggered induction of NAD(P)H oxidase and related 
pro-atherogenic processes. 
Methods: All experiments were performed on cultivated rat vascular smooth 
muscle cells (VSMCs). The ROS generation was determined by fluorescence 
spectroscopy. Quantitative determination of MCP-1 concentration and p38MAPK 
activity was accomplished using ELISA. The mcp-1 gene expression was 
determined with a help of RT-PCR. The MMPs activity was detected by substrate 
gel zymography. The activity of NAD(P)H oxidase was measured with a help of 
spectrophotometric kinetics assay. 
Results: The present results demonstrate, that the thrombin-induced         
NAD(P)H oxidase activation and ROS generation were inhibited in rat VSMCs in 
the presence of HDL or HDL-lysosphinolipids. Moreover, HDL and                    
HDL-lysosphingolipids inhibited the thrombin-induced p38MAPK activation and   
MCP-1 production. By contrast, no effect of HDL on the thrombin-induced MMPs 
activation could be observed. 
Conclusions: This work for the first time demonstrates, that HDL exerts inhibitory 
effects on the NAD(P)H oxidase and related pro-atherogenic processes. These 
effects may essentially contribute to anti-atherogenic properties attributed to this 
class of lipoproteins. 
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1. Abbreviations 
 
A-II     angiotensin-II  

AA     arachidonic acid 

ABCA1 adenosine triphosphate-binding cassette 

protein A1 

ACE     angiotensin II-converting enzyme 

ACh     acetylcholine 

ADP     adenosine diphosphate 

AGEs     advanced glycation end-products 

Akt      serine-threonine kinase   

apo     apolipoprotein 

AT1     angiotensin II type 1 receptor 

ATP     adenosine triphosphate 

BAD     Bcl-2 associated death promoter 

cAMP     cyclic adenosine monophosphate 

CCR2     chemokine receptor 2 

cDNA     complementary DNA 

CETP     cholesterol ester transfer protein   

cGMP     cyclic guanosine monophosphate 

CHD     coronary heart disease 

CMV     cytomegalovirus 

CNP     C-type natriuretic peptid 

COX-2    cyclooxygenase-2 

CRP     C-reactive protein 

DDR1     discoidin domain receptor 1 

DHE     dihydroethidium 

DNA     deoxyribonucleic acid 

DPI     diphenylene iodinium  

e.g.     exempli gratia = for instance 

EDG     endothelial differentiation genes 

EL     endothelial lipase 
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ELISA     Enzyme-Linked Immunosorbent Assay  

ERK1/2    extracellular signal-regulated kinase 1/2  

ET     endothelin  

et al.     et alii = and others 

FGF     fibroblast growth factor  

GAPDH    glyceraldehyde 3-phosphate dehydrogenase 

GTP     guanosine triphosphate 

h     hour / hours 

HB-EGF    heparin-binding epidermal growth factor 

HDL     high density lipoprotein 

HDL-C    HDL-cholesterol 

HL     hepatic lipase 

HMG Co    3-hydroxy-3-methylglutaryl coenzyme 

H2O2     hydrogen peroxide  

HUVECs    human umbilical vein endothelial cells 

ICAM-1    intercellular adhesion molecule-1  

IDL     intermediate density lipoprotein 

IFN-γ     interferon γ 

IGF-1     insulin growth factor-1  

IκB     NF-κB inhibitor 

IKK     NF-κB inducing kinase 

IL-1     interleukin-1  

JNK      c-Jun N-terminal kinase   

L     Liter 

LCAT     lecithin-cholesterol acyltransferase 

LDL     low density lipoprotein 

Lp (a)     lipoprotein (a) 

LPC     lysophosphatidylcholine 

LPS     bacterial lypopolysaccharide 

LSF     lysosulfatide 

m     mili 
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MAPK     mitogen-activated protein kinase  

MCP-1    monocyte chemoattractant protein-1 

M-CSF    monocyte-colony stimulating factor  

min     minute / minutes 

MMPs     matrix metalloproteinases 

mRNA    messenger RNA 

µ     mikro 

NADH nicotamide adenine dinucleotide 

NADPH nicotamide adenine dinucleotide phosphate 

NAD(P)H oxidase nicotamide adenine dinucleotide phosphate 

oxidase 

NF-κB     nuclear factor-κB  

NO     nitric oxide  

NOS     nitric oxide synthase 

NOX      non-phagocytic NAD(P)H oxidase proteins 

O2
*     superoxide radical 

OH*     hydroxyl radical  

OONO*    peroxynitrite  

oxLDL     oxidized low density lipoprotein 

p38MAPK    p38 mitogen-activated protein kinase 

PAF     platelet-activating factor 

PAF-AH    platelet-activating factor-acetylhydrolase 

PAI-1     inhibitor plasminogen activator inhibitor-1 

PARs     protease-activated receptors 

PDGF     platelet derived growth factor  

PECAM    platelet-endothelial cell-adhesion molecule  

PGE2     prostaglandin E2 

PGI2     prostacyclin 2 

PhD     Philosophiae Doctor 

PI3K     phosphatidylinositol 3-kinase 

PI-PLC    phosphatidylinositol-specific phospholipase C 

PKA     protein kinase A 
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PKC     protein kinase C 

PKD     protein kinase D 

PLTP     phospholipid transfer protein 

PMA     phorbol 12-myristate 13-acetate 

PON paraoxonase 

RANTES regulated on activation, normal T-cell 

expressed and secreted chemokine 

RAS     renin-angiotensin system 

RCT     reverse cholesterol transport 

RNA     ribonucleic acid 

RNS     reactive nitrogen species 

ROS     reactive oxygen species 

RT-PCR reverse transcriptase-polymerase chain 

reaction analysis  

SOD     superoxide dismutase  

S1P     sphingosine 1-phosphate 

SPC     sphingosylphosphorylcholine 

SR-B 1    scavenger receptor B 1 

src     tyrosine kinase 

TF     tissue factor 

TGF-β     transforming growth factor β  

Thr     thrombin 

TIMPs     tissue inhibitors of metalloproteinases 

TNF-α     tumor necrosis factor α 

tPA     tissue plasminogen activator 

U     Units 

w/v     weight per volume 

VCAM-1    vascular adhesion molecule-1  

VEGF     vascular endothelial growth factor 

VLDL     very low density lipoprotein 

VSMCs    vascular smooth muscle cells 

v/v     volume per volume 
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2. Introduction 
 
2.1. Atherosclerosis: definition and pathogenesis 
The earliest lesion of atherosclerosis is thought to be the fatty streak, which has 

its origin in an injury to the endothelium (response to injury hypothesis) [122]. 

Such an injury may be mechanical in nature (e.g. as a result of turbulent blood 

flow or high blood pressure), it may be caused by various chemicals such as 

those present in cigarette smoke [121]. Cells of the circulating blood, in 

particular T cells and monocytes adhere to the area of endothelial injury and 

then migrate through the endothelium into the sub-endothelial space [28]. 

There, they interact with the cells of arterial wall, in particular the smooth 

muscle cells, which undergo proliferation. Once the sub-intimal space, the 

monocytes mature to macrophages, which begin to ingest lipids and lipoprotein 

particle strapped in this location. In this process, the macrophages become 

foam cells and the fatty streak forms [41, 94]. At a later stage, platelets also 

adhere to the site of the incipient atherosclerotic plaque. The changes are 

shown schematically in Fig. 1 [149]. 

The processes described above are regulated by complex network of cytokines 

and growth factors [125]. Thus, atherosclerosis can be envisioned as a chronic 

inflammatory fibroproliferative process, which has become excessive [125].  
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      “INJURY” 

            (mechanical, oxLDL) 
 

 
 

Figure 1. The response – to - injury hypothesis of atherosclerosis. 
Several sources of injury to the endothelium can lead to endothelial dysfunction. 
Adherence of monocytes/macrophages is increased (I). These cells may migrate to 
subendothelial location (II). The macrophages become large foam cells because of lipid 
accumulation (III), and together with T cells and smooth muscle cells, form fatty streak 
(IV). The fatty streaks can progress to fibrofatty plaques and ultimately to fibrous 
plaques. Macrophages may lose their endothelial cover and platelet attachment may 
occur (III). At each step of lesion formation, growth factors and cytokines are released 
form macrophages and endothelial cells. Cells have been colour coded as follows: 
smooth muscle cells-blue; endothelium-red; macrophages-violet; platelet-green. 
 

2.2. Role of cells in pathogenesis of atherosclerosis 
2.2.1. Endothelial cells  
Endothelial cells maintain the vascular tone by release of vasodilators such as 

nitric oxide (NO) and prostacyclin (PGI2), and vasoconstrictors such an 

endothelin (ET) and angiotensin-II (A-II) [40]. The endothelium also regulates 

the clothing status of the blood by producing anti-coagulants (heparin sulfate, 
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PGI2, NO, and ectoADPase) and pro-coagulants (plasminogen activator, 

urokinase) [88]. The endothelium also forms a series of adhesive glycoproteins 

including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion 

molecule-1 (VCAM-1) and platelet-endothelial cell-adhesion molecule 

(PECAM), which are responsible for adhesion of leukocytes and platelets [135]. 

Finally, the endothelium is the source of a number of growth-regulatory 

molecules and cytokines including platelet derived growth factor (PDGF), 

fibroblast growth factor (FGF), transforming growth factor β (TGF-β), insulin 

growth factor-1 (IGF-1), and interleukin-1 (IL-1), which provide paracrine 

stimulation for neighboring smooth muscle cells and monocyte-derived 

macrophages [123].  

 
2.2.2. Vascular smooth muscle cells  
Vascular smooth muscle cells (VSMCs) have been found in most types of 

atherosclerotic lesions [124]. A number of chemotactic factors and mitogens 

released from neighboring cells and from VSMCs themselves can alter both the 

phenotype of the VSCMs, and determine migration, proliferation and synthesis 

of the extracellular matrix and be a source of a series of growth factors and 

cytokines such as PDGF, FGF, IGF-1, monocyte-colony stimulating factor (M-

CSF), TGF-β, heparin-binding epidermal growth factor (HB-EGF), IL-1 and 

tumor necrosis factor α (TNF-α) [8, 118]. Both macrophages and VSMCs are 

capable of modifying lipoproteins to form oxidized low density lipoprotein 

(oxLDL) [139, 150]. The VSMCs are also responsible for the synthesis of 

several components of the extracellular matrix such as collagen (type I, II, IV, V) 

and proteoglycans [118].  

 

2.2.3. Monocyte-derived macrophages and T lymphocytes 
Monocyte-derived macrophages and T lymphocytes are a potential source of 

biologically active factors, including cytokines, growth and angiogenesis factors, 

hydrolytic enzymes, reactive oxygen species (ROS), and bioactive lipids [57, 

147]. The macrophage can produce agents that induce monocyte, smooth 

muscle cell, and endothelial cell proliferation. It also produces growth inhibitors 
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such as interferon γ (IFN-γ), IL-1 and TGFβ [56]. Activated macrophages also 

secrete a series of chemotactic molecules for other monocytes and for smooth 

muscle cells [123]. Macrophages can oxidize LDL through the action of 

lipoxygenase, myeloperoxidase and nitric oxide synthase (NOS) [110]. The 

observation that monocyte derived macrophages express monocyte 

chemoattractant protein-1 (MCP-1), in addition to their known ability to secrete 

IL-1, TNF-α, and generate ROS, which can modify LDL, suggest a central role 

of these cells in regulating the inflammatory component of atherosclerosis [147] 

[Fig.2].  

 

   
 

Figure 2. Cellular interactions in the initiation of atherosclerosis: monocyte-
endothelial cell interactions. Blood monocytes (a) roll along the vessel wall until they 
encounter an adhesion molecule such as VCAM-1, and then (b) arrest and become 
firmly attached to the endothelium. The monocytes then (c) spread out and (d) move into 
the sub-endothelial space (diapedesis), where they differentiate and take up lipids to 
become foam cells. Both macrophages and foam cells secrete growth factors and 
cytokines, such as MCP-1 and another chemokines, which might serve to set up a 
positive feedback loop. oxLDL, oxidized LDL; SMC, smooth muscle cells; 
 

2.3. Secretory components in pathogenesis of atherosclerosis 
2.3.1. Oxidized low density lipoprotein 
Oxidized LDL is produced by chemical modification of low density lipoprotein, 

probably within the sub-endothelial space [111]. LDL contains a central core 

with cholesterol esters and triglycerides molecules, which is surrounded by a 

monolayer of phospholipid molecules and unestriefied cholesterol. Embedded in 
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the outer layer is one apolipoprotein-B-100 (apoB-100) molecule. The oxidation 

of LDL may be carried out by endothelial cells, smooth muscle cells, monocytes 

and macrophages [62]. LDL can be oxidized by metal ions, lipooxygenases, 

myeloperoxidases and reactive nitrogen species (RNS) [18, 92].  

High concentrations of LDL has been shown to lead to the activation of 

nicotamide adenine dinucleotide phosphate (NAD(P)H) oxidase and the 

subsequent generation of superoxide radical (O2
*). Interaction of LDL with its 

cognate receptor may lead to the activation of a signal transduction pathway 

responsible for the direct activation of NAD(P)H oxidase. This pathway is 

believed to be dependent on the activity of phospholipase A2 and the release of 

arachidonic acid (AA), a direct activator of NAD(P)H oxidase [93].  

The sub-endothelial accumulation of foam cells is an important indicator of the 

initiation of atherosclerosis. These foam cells are derived from the unchecked 

uptake of LDL by monocytes and macrophages, which readily take up 

chemically modified or oxidized LDL through a scavenger pathway that can not 

be down-regulated [93].  

Oxidatively modified LDL contributes to the inflammatory response [125, 127]. 

OxLDL is a chemotactic agent for monocytes and for T cells, and cytotoxic is for 

endothelial cells [137, 138]. The oxLDL induces an expression of the adhesion 

molecules as well as migration and proliferation of smooth muscle cells and the 

secretion of MCP-1 by endothelium. By including platelet adhesion and 

aggregation, decreasing production of NO, and releasing tissue factor (TF), 

oxLDL enhances the procoagulant activity of the endothelium [92]. OxLDL 

affects vasoreactivity by inducing vasoconstriction through inhibition of NO 

production [72], and stimulation of the expression of ET.  

Apoptosis is characteristic for the more advanced atheroslerotic lesions and 

likely contributes to plaque rupture [75, 76, 141]. OxLDL induces the activation 

of a large array of signaling pathways leading to apoptosis of endothelial and 

smooth muscle cells [91, 127]. OxLDL also induces cellular oxidative stress by 

increasing of generation of ROS in different vascular cell types [127]. Finally 

oxLDL is able to trigger the expression of a variety of genes, such as adhesion 

proteins, scavenger receptors, oxidant and antioxidant enzymes, heat shock 
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proteins, growth factors, cytokines, chemokines and vasoactive mediators, 

matrix metalloproteinases (MMPs), collagen and hemostasis proteins [152].  

 
2.3.2. Nitric oxide  
Nitric oxide (NO) is an inorganic molecule with an unpaired electron (a free 

radical) that readily diffuses across cellular membranes to interact directly with 

its targets [72]. NO is produced by vascular endothelial cells and several other 

cell types, including phagocytes [54]. NO production from endothelial cells is 

stimulated by mechanical forces such as shear stress [77], and humoral factors 

including acetylcholine (Ach), vascular endothelial growth factor (VEGF), 

bradykinin, estrogen, and sphingosine 1-phosphate (S1P), which is present in 

large amount in high density lipoprotein (HDL). NO plays critical role in normal 

vascular biology and pathophysiology [11, 126]. NO derived from endothelium 

causes relaxation of smooth muscle cells through activation of the cyclic 

guanosine monophosphate (cGMP) - dependent protein kinase [97].  
NO causes vasodilalation by suppression both of the synthesis of angiotensin II-

converting enzyme (ACE) in the endothelium, and of A-II type 1 receptor (AT1) 

in smooth muscle cells [145]. NO is a potent inhibitor of platelet aggregation and 

adhesion, proliferation of VSMCs, and leukocyte adhesion [123]. Chronic 

exposure to NO down-regulates the expression of MCP-1 and adhesion 

molecules (such as VCAM-1) that are involved in in monocyte adhesion and 

infiltration [144]. NO may also influence plaque stability by its anti-apoptotic 

behaviour [24, 61]. Finally, NO may directly suppress the generation of oxygen-

derived free radicals by nitrosating, and thereby inactivating oxidative enzymes 

such as NAD(P)H-oxidase [90, 126].  

 

2.3.3. Monocyte chemoattractant protein-1 
Monocyte chemoattractant protein-1 (MCP-1) is a monomeric polypeptide with a 

molecular weight of 9,000 to 15,000 Da. It is the prototype of the C-C 

chemokine β subfamily that exhibits its most potent activity toward monocytes 

[68]. MCP-1 is highly expressed in the initial stages of plaque formation and is 

postulated to play a central role in the monocyte recruitment into the arterial wall 
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[119]. MCP-1 mediates its chemotactic effect on peripheral blood monocytes 

through specific cell surface high-affinity-chemokine receptors (CCR) [114]. 

MCP-1 is produced by various cell types within the arterial wall, including 

endothelial cells, smooth muscle cells, and macrophages. [68]. Pro-atherogenic 

stimuli such as cytokines, oxLDL, A-II, thrombin (Thr), homocysteine, and 

activated platelets induce MCP-1 expression [12, 66]. While MCP-1 induction in 

vascular smooth muscle cells by A-II is dependent on the activation of NAD(P)H 

oxidase and the generation of ROS [149].  

MCP-1 plays a crucial role in the early and intermediate stages of 

atherosclerosis. The primary effect of MCP-1 in atherogenic appears to be the 

recruitment of monocyte-macrophages into the atherosclerotic lesion [147]. 

Early expression of MCP-1 by endothelial cells in response to 

hypercholesterolemia or to the vessel wall is responsible for the initial influx of 

monocytes. Infiltrated monocytes/macrophages themselves express MCP-1, 

resulting in the continued influx of monocytes into the plaque as a part of a 

positive feed back loop [68]. In addition to a being potent monocyte 

chemoattractant, MCP-1 has also chemoattractant activity on activated T cells 

and basophils [119].  

 
2.3.4. Angiotensin II  
Angiotensin II is the effector peptide of the renin-angiotensin system (RAS), 

which has been implicated in the pathogenesis of atherosclerosis on various 

levels [132]. The classic source of angiotensin II is circulating angiotensin II 

[36]. However, the bulk of angiotensin II may be produced locally within the 

vascular wall [149].  

The pro-atherogenic properties of angiotensin II include effects on endothelial 

function, the activation and binding of monocytes, the proliferation and migration 

of VSMCs and the promotion of the oxidation of LDL [36,145]. Angiotensin II 

may also increase the expression of adhesion molecules such as VCAM-1, 

ICAM-1 and E-selectin, which promote adherence, migration and accumulation 

of monocytes and T lymphocytes in early atherosclerotic lesions [132]. In 
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addition, angiotensin II induces monocyte chemotaxis through upregulation of 

MCP-1. 

Recent studies stress the importance of angiotensin in the production of 

reactive oxygen species during atherogenesis. Angiotensin II has been shown 

to stimulate the activity of membrane-bound NAD(P)H oxidase in VSMCs and 

endothelial cells [13, 149]. In macrophages, angiotensin II induces oxidative 

stress which also appears to be dependent on increases in NAD(P)H oxidase 

activity [36]. In addition, angiotensin II activates endothelial nitric oxide synthase 

(eNOS) to release NO*. Superoxide and NO* rapidly inactivate each other by 

forming the very reactive radical peroxynitrite (OONO*) which avidly modifies 

LDL [50]. 

Consequently, angiotensin II stimulates deposition of oxidized LDL within the 

vascular wall [37]. Angiotensin II participates, via induction of ROS, in 

transcriptional down-regulation of several genes involved in suppression of 

apoptosis. Angiotensin II increases expression of TF in endothelial cells, and in 

this way participates in thrombotic events by activation of the coagulation 

cascade [132]. Angiotensin II may also alter the extracellular matrix remodeling 

via activation of metalloproteinases (MMP-2, MMP-9) and thereby contribute to 

destabilization of fibrous plaques [149, 132]. Thus, angiotensin II appears to 

represent a critical, causal link in the pathogenesis of human atherosclerosis 

[149].  

 
2.3.5. Matrix metalloproteinases 
Clinical complications of atherosclerosis are often triggered by the rupture of 

unstable plaques, while thinning of the atherosclerotic vessel wall (owing to 

elastin and collagen degradation and media necrosis) may result in aneurysm 

formation and bleeding [87]. Matrix metalloproteinases (MMPs) are a family of 

enzymes that selectively digest individual components of the extracellular 

matrix. MMPs may contribute to the development of de novo atherosclerotic 

plaques by allowing smooth muscle cells to migrate from the vascular media to 

the intima. MMPs may also contribute to the rupture of athrosclerotic plaques by 

degrading the fibrous cap of the plaque [19]. Matrix metalloproteinases belong 
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to a group of zinc and calcium dependent proteases and are divided into four 

subclasses according to their substrate specificity, namely gelatinases (MMP-2 

and MMP-9), collagenases (MMP-1,-8,-13, and -18), stromelysins (MMP-3,-10, 

and -11) and others MMPs [33]. Metalloproteinases are expressed in human 

atherosclerotic plaques by both VSMCs and foam cells. The activity of these 

enzymes is kept under tight control, which operates at three levels: 

transcription, activation of latent proenzymes, and inhibition of proteolytic 

activity. A number of cytokines and growth factors have been shown to induce 

or stimulate the synthesis of MMPs, including IL-1, PDGF, TNF-α, and Thr, 

whereas others, such as TGF-β, heparin, and corticosteroides, have an 

inhibitory effect. MMPs are also inhibited by a family of naturally occurring 

specific inhibitors known a tissue inhibitors of metalloproteinases (TIMPs) [85], 

and less specifically by α2-macroglobulin [33]. Thrombin has been shown to 

activate purified pro-MMP-2 by proteolysis. Thus, in complicated atherosclerotic 

plaques, Thr may promote plaque instability by increasing the local matrix-

degrading activity of MMPs. Focal degradation of collagen in the fibrous cap by 

MMPs produced by foam cell macrophages was demonstrated ex vivo in 

human atheroma and was associated with in vivo rupture of an experimental 

model of atherosclerotic lesions developed in the rabbit [42]. 

 

2.3.6. Thrombin 
Thrombin is a multifunctional serine protease generated at sites of vascular 

injury, which elicits a host of cellular responses [131]. Thrombin is a pivotal 

component of the coagulation cascade [125, 142]. It is not only responsible for 

the cleavage of fibrinogen to fibrin, but is also the most powerful known platelet 

agonist, and is believed to play a critical role in the growth of platelet 

aggregates [143]. The local release of thrombin plays a significant role in the 

formation of proliferative vascular lesions [6]. Thrombin may also be involved in 

the inflammatory response in atherosclerosis [125]. It activates a variety of 

vascular and inflammatory cell types by interacting with so-called protease-

activated receptors (PARs) [6]. At least three PARs are expressed in human 

cells, and have been linked to several physiological effects [143] such as the 
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�pro-coagulant� initiation of platelet aggregation, the stimulation of monocyte 

and neutrophil chemotaxis by induction of MCP-1 expression in VSMCs, the 

stimulation of endothelial cells to express cell adhesion molecules such as      

P-selectin, and the mitogenesis of both lymphocytes and VSMCs. [6, 66].  

Induction of MMP-2 and MMP-9 expression by thrombin in macrophages and 

other cells suggests that this protease promotes basement membrane 

degradation and smooth muscle migration [66]. Treatment of aortic smooth 

muscle cells with thrombin results in increased generation of O2
* and hydrogen 

peroxide (H2O2) and in increased consumption of nicotamide adenine 

dinucleotide/nicotamide adenine dinucleotide phosphate NADH/NADPH [115]. 

 

2.3.7. Reactive oxygen species 
Reactive oxygen species (ROS) are oxygen-derived molecules that have 

undergone univalent reduction, so that they readily react with other biological 

products [50].  Vascular tissues are a rich source of ROS, including superoxide 

(O2
*), hydrogen peroxide (H2O2), and hydroxyl radical (OH*). Virtually every cell 

type in the vascular wall has been shown to produce and be regulated by ROS 

[49]. In order for ROS to serve as a second messenger, both the production and 

inactivation of ROS must be tightly regulated. The half life of O2
* is rather short 

(seconds) both because of its inherent instability and the efficient antioxidant 

defenses of the cell. Dismutation of O2
* by superoxide dismutase (SOD) serves 

not only to scavenge O2
*, but also to produce the more stable ROS, namely 

H2O2. Catalase and glutathione peroxidase are two of the most important 

scavengers of hydrogen peroxide, in both cases converting it into water [50]. 

ROS play an important role in many cardiovascular pathologies involving 

inflammatory processes. Several pathogenic effects of increased ROS 

production have been identified [96]. These include the oxidation of core lipids 

of lipoproteins and cell membranes, which then modify apolipoproteins and 

other proteins, leading to their recognition by scavenger receptors. It is also 

increasingly recognized that many cellular signaling pathways are oxidation-

sensitive, and that ROS may provide a common link between pathways such as 

apoptosis or inflammation [30, 113]. A corollary of this is that pathogenic 
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processes that influence ROS generation affect cell proliferation, differentation, 

activity, and death by the balance of multiple effects on gene expression in 

individual cell types. Molecular targets of ROS include cell growth (hypertrophy 

and proliferation), apoptosis, and cell survival as well as cell migration. These 

processes are regulated by numerous proteins and enzymes for which ROS act 

as upstream regulatory factors. These include p38 mitogen-activated protein 

kinase (p38MAPK), extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-

terminal kinases (JNKs=SAPKs), serine-threonine kinase (Akt),                 

nuclear factor κB (NFκB) and caspases [50, 71] [Fig.3]. 

 
     
 

 

             

ROS 
     

 
 

 
 

 

 

 
Cell growth       Cell survival  Apoptosis        Cell migration 

(hypertrophy, proliferation)        
 

Figure 3. Schema illustrating the potential source, molecular targets, and signalling 
pathways mediated by ROS. Enzymes that may generate ROS include components of 
the mitochondrial electron transport chain, NAD(P)H oxidase, cytochrom P-450, 
xanthine oxidase. ROS are also produced during arachidonate metabolism. Ultimately, 
ROS act on cell activities such a cell growth and survival, cell migration and apoptosis. 
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2.4. Vascular NAD(P)H oxidase 
2.4.1. Structure and function of NAD(P)H oxidase 
ROS may be generated by various cellular sources [110]. Cellular enzymes, 

that are potential source of ROS, include microsomal cytochrome P-450, 

xanthine oxidase, the mitochondrial electron transport chain, and          

NAD(P)H oxidase [39, 71]. 
Although each of the above-mentioned enzymes can produce ROS in vascular 

cells, it is generally recognized that the NAD(P)H oxidase is the predominant 

sources of ROS in the vasculature [17, 22]. The activation of these enzymes 

leads to a variety of intracellular signaling events that ultimately cause 

dysfunction of the endothelium, proliferation of VSMCs, expression of pro-

inflammatory genes and reconstruction of the extracellular matrix [17]. NAD(P)H 

oxidase appears to be a particulary important source of ROS production in 

blood vessels, where it produce relatively low levels of ROS under basal 

conditions, but generates higher levels in response to pro-atherogenic stimuli 

such as oxLDL, angiotensin II, thrombin, and others [21].  

The NAD(P)H oxidases of the cardiovascular system are membrane-associated 

enzymes that catalyze the one electron reduction of oxygen using NADH or 

NADPH as electron donor [60]. 

 

NAD(P)H + 2O2       NAD(P)+ + H+ + 2O2
*- 

 

The structure and function of NAD(P)H oxidase was characterized initially in 

neutrophils where it plays an important role in bacterial killing [93, 17]. Two 

membrane components, p22phox and gp91phox, comprise the cytochrome b558. 

Other important components include the cytoplasmic subunits p47phox, p67phox 

and the small guanosine triphosphate (GTP)-binding protein Rac [17, 133]. 

Vascular NAD(P)H oxidases differ from neutrophil NAD(P)H oxidase in several 

important respects. Neutrophil oxidase releases large amounts of O2
* in bursts 

into the intracellular milieu, whereas vascular NAD(P)H oxidases continuously 

produce low levels of O2
*, which play a role in intracellular cell signaling [17]. 

Messenger RNA for gp91phox, p22phox, p47phox, p67phox has been found in 
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endothelial cells and adventitial cells. Vascular smooth muscle cells and 

mesangial cells appear to express p22phox, p47phox, and Rac1, but not gp91phox 

[49]. In the past few years, a family of gp91phox-like proteins, termed non-

phagocytic NAD(P)H oxidase (NOX) proteins, has been discovered [17]. Based 

on homologies with each other and their apparent evolution from ancestral 

NOX, these were named NOX1, NOX2 (also known as gp91phox), NOX3, NOX4 

and NOX5. Endothelial cells contain NOX1, NOX2, NOX4 and NOX5, whereas 

vascular smooth muscle cells express NOX1, NOX4 and NOX5 [17] [Fig.4]. 

 

   
 

Figure 4. Structure of the NAD(P)H oxidases. Left, structure of neutrophil NAD(P)H 
oxidase. gp91phox and p22phox form the electron transfer component of the oxidase, and 
p47phox and p67phox are cytosolic components that interact with these 2 proteins to 
modulate its activity. The low molecular weight G protein rac also serves a regulatory 
function. Right, components of the neutrophil oxidase that have been indentified in 
VSMCs. The functional interaction among these subunits remains to be determined. 
NOX is for NAD(P)H oxidase. 
 

2.4.2. Regulation of NAD(P)H oxidase 
Cmpounds with signaling properties, such as ROS, must be rapidly synthesized 

and degraded. Therefore, expression of vascular oxidases is expected to be 

tightly regulated [82]. One of the most important attributes of the cardiovascular 

oxidase is its responsiveness to hormones, hemodynamic forces, and local 

metabolic changes. It has been demonstrated that the activity of the the 

vascular oxidase is increased by several pro-atherogenic agents. For instance, 

angiotensin II increases NADH- and NADPH-driven O2
* production in cultured 
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SMCs and aortic adventitial fibroblasts, and increases diphenylene iodinium 

(DPI) - inhibitable ROS production in mesangial cells [49]. PDGF, and TNF-α 

stimulate NAD(P)H oxiadase-dependent superoxide production in SMCs. IL-1, 

TNF-α, and platelet-activating factor (PAF) increase NAD(P)H-dependent 

superoxide production in fibroblasts. Treatment of human aortic smooth muscle 

cells with thrombin is accompanied by increased O2
* and H2O2 generation and 

NADH/NADPH consumption [115]. Mechanical forces such as shear stress, 

stimulate NAD(P)H oxidase activity in endothelial cells [32]. Regulation of 

NAD(P)H oxidase activity in cardiovascular cells occurs at least at 2 levels. 

First, activation of the oxdiase can be mediated by intracellular second 

messengers, including calcium. Phorbol 12-myristate 13-acetate (PMA), a 

protein kinase C (PKC) activator increases NAD(P)H oxidase in VSMCs. It has 

recently been shown that lipoxygenase metabolites of AA mediate A-II and Thr 

stimulation of the NAD(P)H oxidase in VSMCs. Second, NAD(P)H oxidase 

activity can also be modulated by upregulation of the component messenger 

RNA (mRNA). For example, TNF-α increases NAD(P)H oxidase activity in 

SMCs via increased transcription of p22phox [49].  

NAD(P)H oxidase is thus regardered as a potential therapeutic target. DPI, a 

flavoprotein inhibitor, has been shown to inhibit NAD(P)H oxidase in non-

specific fashion. Furthermore, several pharmaceutical compounds with anti-

atherogenic activity have shown to inhibit NAD(P)H oxidase for instance statins 

and angiotensin receptor antagonists lower NAD(P)H oxidase activity.  

Several studies have recently documented a direct link between           

NAD(P)H oxidase and atherosclerosis. Immunohistochemical studies have 

demonstrated the presence of a p22phox-based oxidase in human coronary 

arteries in all cell types that are present in advanced atherosclerotic plaques 

[149]. The indentification of the NAD(P)H oxidase system as the principal 

source of O2
* production in human saphenous veins from patients with 

atherosclerotic risk factors futher highlights the potential importance of this 

oxidase in human atherosclerosis [52]. Various studies demonstrated a 

relationship between NAD(P)H oxidase and atherosclerosis, for instance by 

showing that increased atherosclerotic risk factor profile (hypertension, diabetes 
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mellitus, smoking and hypercholesterolemia) and endothelial dysfunction are 

associated with increased NAD(P)H oxidase enzyme activity [52]. NAD(P)H 

oxidase is activated and O2
* production is increased in vessels of rabbits with 

experimental atherosclerosis. In crosses between apolipoproten E (apoE)-

deficient mice and p47phox-/- mice, atherosclerosis in the descenting aorta was 

diminished compared to apoE-/- mice. Disruption of the p47phox gene also 

resulted in decreased superoxide production in vessels and inhibition of 

proliferation in VSMCs. These experiments clearly establish the important role 

of the NAD(P)H oxidase and its components in the development of vascular 

lesions in atherosclerosis [82]. 

 

2.5. High density lipoprotein 
2.5.1. Structure of HDL 
High density lipoprotein (HDL) is a fraction of serum lipoproteins characterized 

by similar molecule density (1.063 < d < 1.21 g/ml) and size (5-17 nm in 

diameter) [103]. HDL contains approximately 50 % protein, 25 % phospholipid, 

20 % cholesterol (mainly esterified), and 5 % triglyceride by weight [4]. The 

most frequently used method of lipoprotein isolation-isopycnic 

ultracentrifugation-separates two major HDL fractions-HDL2 (d=1.025-1.063 

g/ml) and HDL3 (d=1.125-1.250 g/ml). Most of the HDL particles have a globular 

shape. Unesterified cholesterol is distributed between the surface and the core 

of HDL particle. Charged lipids, phospholipids, and proteins are found primarily 

in outer parts of lipoprotein. The most abundant protein of HDL is apolipoprotein 

A-I (apo A-I). Apo A-II, apo A-IV, apo C, apo E, and apo J are found in lower 

amounts. Some protein assiociated with HDL have enzymatic activity.  The 

best-known are lecithin-cholesterol acyltransferase (LCAT), cholesterol ester 

transfer protein (CETP), phospholipid transfer protein (PLTP), platelet activating 

factor-acetylhydrolase (PAF-AH), and paraoxonase (PON). Nonpolar elements 

of HDL such as triglycerides and esterified cholesterol are localized in the 

center of the lipoprotein molecule. Globular HDL3 and HDL2 paricles migrate on 

agarose gel electrophoresis in a fraction with α-electrophoretic mobility 

designated α-LpA-I. This fraction contains cholesterol quantified as HDL-C as 



Introduction                                                                                                                                 22 
 

 

well as the majority of apo A-I. The rest of apo A-I is found either lipid-free or in 

association with a few molecules of sphingomyelin and phosphatidylcholine in a 

HDL fraction with electrophoretic pre-β mobility. Similar lipid-poor particles 

containing apo E (γ-LpE) or apo A-IV (LpA-IV) have been also identified [34]. 

 
2.5.2. Metabolism of HDL 

Lipid-poor HDL particles with pre-β mobility are produced by hepatocytes and 

enterocytes, or dissociate from chylomicrons and very low density lipoproteins 

during lipolysis, or are generated from α-HDL by CETP, PLTP or hepatic lipase 

(HL). Lipid-free apolipoproteins were shown to release phospholipids and 

unesterified cholesterol from cells or apo B-containing lipoproteins [34].  

HDL has the ability to remove cholesterol from peripheral cells for delivery to 

the liver and excretion into the bile. This process is termed reverse cholesterol 

transport (RCT) [34]. In the final step of RCT, HDL is removed from the 

circulation by the scavenger receptor B1 (SR-B1), apo E receptors [38], or 

indirectly by the action of CETP and endothelial lipase. SR-BI binds HDL and 

mediates the selective uptake of cholesteryl esters into hepatocytes without 

internalizing HDL. Hepatic lipase appears to serve as a coreceptor for SR-B1. 

Apo E-containing HDL is internalized by hepatic apo E receptors. Cholesteryl 

ester transfer protein exchanges cholesteryl esters of α-HDL with triglycerides 

of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and 

LDL, which are then removed via the LDL-receptor pathway. Endothelial lipase 

(EL) hydrolyzes phospholipids and generates free fatty acids taken up by 

endothelial cells [34] [Fig.5]. 
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Figure 5. Pathways involved in the generation and conversion of HDL. 
Mature HDL3 and HDL2 are generated from lipid-free apoA-I or lipo- poor pre-β1-HDL 
as the precursors. These precursors are produced as nascent HDL by the liver or 
intestine or are released from lipolysed VLDL and chylomicrons or by interconversion 
of HDL3 and HDL2. Adenosine triphosphate-binding cassette protein A1 (ABCA)1-
mediated lipid efflux from cells is important for initial lipidation; LCAT-mediated 
esterification of cholesterol generates spherical particles that continue to grow on 
ongoing cholesterol esterification and PLTP-mediated particle fusion and remnant 
transfer. Larger HDL2 particles are converted into smaller HDL3 particles on CETP-
mediated export of cholesteryl esters from HDL onto apo B-containing lipoproteins, on 
SR-BI-mediated selective uptake of cholesteryl esters into liver and steroidogenic 
organs, and on hepatic lipase (HL) - and enothelial lipase (EL) -mediated hydrolysis of 
phospholipids. HDL lipids are catabolized either separately from HDL proteins (ie, by 
selective uptake or via CETP transfer) or together with HDL proteins (ie, via uptake 
through as-yet-unknown HDL receptors or apo E receptors). The coversion of HDL2 
into HDL3 and the PLTP-mediated conversion of HDL3 into HDL2 liberated lipid-free 
or poorly lapidated apo A-I. A part of lipid-free apo A-I undergoes glomerular filtration 
in the kidney and tubular readsorption through the activation of cubilin. 
Grey arrows represent lipid transfer processes, black arrows represent protein transfer 
processes.  TGRL-triglyceride-rich lipoproteins; 
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2.5.3. Anti-atherogenic activities of HDL 
Numerous clinical and epidemiological studies have demonstrated an inverse 

and independent association between HDL-cholesterol and the risk of coronary 

heart disease (CHD) [35]. This correlation is often explained by the involvement 

of HDL in reverse cholesterol transport (RTC). Distortion of RCT may favor 

deposition of cholesterol in arterial wall and thereby contribute to the 

development of arteriosclerosis. In addition to RTC several other potentially 

anti-atherogenic activities are exerted by HDL [103] [Fig.6]. 

 

 

Figure 6. Pleiotropic effects of HDL in the vessel wall.  
Several pleiotropic effects of HDL in the vasculature may underlie its anti-
atherogenicity. These include: 1. inhibition of chemotaxis of monocytes; 2. inhibition of 
monocyte adhesion to endothelial cells; 3. inhibition of LDL oxidation; 4. inhibition of 
ox-LDL-induced endothelial dysfunction and apoptosis; 5. stimulation of endothelial 
cell proliferation 6. stimulation of endothelial synthesis of prostacyclin, endothelin and 
c-type natriuretic peptid (CNP); 7. stimulation of cholesterol efflux from macrophages 
and foam cells; 8. stimulation of smooth muscle cells (SMC) proliferation 9. inhibition 
of platelet activation; 10. inhibition of factor X activation and stimulation of activated 
protein C; 

 

A central role of endothelial cells in pathogenesis of atherosclerosis has been 

described earlier.  Substantially decreased concentration of HDL in plasma has 
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been reported to be related to endothelial cell dysfunction, which is one of the 

first hallmarks of atherosclerosis [103]. HDL prevents oxLDL-mediated 

endothelial dysfunction, reduces the chemotactic activity of LDL [92], 

antagonizes the inhibitory effect on vasodilatation exerted by 

lysophosphatidylocholine (LPC)-one of the major products of LDL oxidation, 

restores NO production decreased by oxLDL, diminishes the induction of cell 

death by oxLDL, and weakens the cytotoxic effect of oxLDL [103]. HDL may 

also attenuate endothelial dysfunction brought about by the complement 

activation. HDL also inhibits complement-mediated cell lysis [103], and protects 

against endothelial apoptosis induced by TNF-α [108]. Finally HDL promotes 

endothelial cell survival by preserving mitochondrial integrity and thus inhibiting 

release of cytochrom c and subsequent activation of the caspase cascade 

[105].  

HDL affects several secretory functions of endothelial cells, stimulating 

production of PGI2 and prostaglandin E2 (PGE2). HDL supplies endothelial cells 

in arachidonic acid, induces the expression of cyclooxygenase-2 (COX-2), and 

decreases ET production [103]. 

The regulatory effects of HDL on coagulation and fibrinolysis depend on 

inhibition of tissue factor synthesis. In addition, HDL antagonizes the activation 

of factor X induced by extrinsic tenase. HDL reverses the effect of LDL on 

tissue plasminogen activator (tPA) and its inhibitor plasminogen activator 

inhibitor-1 (PAI-1) and restores normal release of these two factors from 

ednothelial cells [108]. HDL is also an independent predictor of acute platelet-

dependent thrombus formation. In vitro, HDL inhibits thrombin-, collagen-, ADP- 

and adrenalin- induced platelet agrregation [103].  

Paraoxonase, a HDL-associated enzyme, prevents LDL oxidation by 

hydrolyzing lipid peroxides, cholesterol linoleate hydroperoxides, and hydrogen 

peroxide [92]. HDL is an important antioxidant and may decrease the formation 

of O2
* of which main source is NAD(P)H oxidase [108].  

Apolipoprotein A-I, a major apolipoprotein of HDL, accounts for a various anti-

atherogenic effects attributed to these molecules [103]. Apo A-I has been 
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demonstrated to induce cholesterol efflux from cells [3, 78, 100,116] and to 

mimic some but not all of the functions exerted by native HDL. For instance, in 

contrast to HDL, apo A-I does not inhibit apoptosis of endothelial cells [105], 

stimulate proliferation of smooth muscle cells [104] and fibroblasts [100], inhibit 

platelet aggregation and production of PGE2 [103] or induce NO-dependent 

vasorelaxation [95, 102]. Clearly, other active components must be present in 

HDL particles, which explain the astonishing variety of functions exerted by 

these lipoproteins.  

 
2.5.4. Intracellular effects of HDL and its components 
Three lysosphingolipids have been identified in the particle of HDL, namely 

sphingosylphosphorylcholine (SPC), lysosulfatide (LSF) and sphingosine-1-

phosphate (S1P) [63]. Lysosphingolipids are known to interact with �endothelial 

differentation genes� (EDG), a family of heptahelical receptors coupled to 

several trimeric G proteins [1]. In this way lysosphingolipids generate a variety 

of intracellular signals. Several features of SPC, S1P and LSF are close to 

those seen in HDL. They exert strong mitogenic activities and induce growth-

associated metabolic events such as activation of phosphatidylinositol-specific 

phospholipase C (PI-PLC), and liberation of intracellular calcium [103]. They 

have been also shown to activate mitogen activated protein kinases such as 

p42/44MAPK1/2, and PKC [100, 101]. Strong mitogenic effects have been 

observed in endothelial cells, vascular smooth muscle cells, fibroblasts and 

keratinocytes [63, 134]. Similar to HDL, S1P and SPC are also the effective 

stimuli of endothelial cells migration and mediators of angiogenesis [63]. SPC 

and LSF are agonists responsible for the survival activity of HDL. They inhibit 

activation of caspases and biochemical features of apoptosis in endothelial cells 

[105]. In addition, SPC and LSF potently stimulate Akt, an ubiquitous transducer 

of anti-apoptotic signals [105]. Akt was also shown to restrict several signaling 

pathways such as intracellular generetion of ROS [101]. Concordant with the 

inhibitory function of HDL on endothelial adhesion (inhibition of expression of 

VCAM-1 and ICAM-1), exogenous lysosphingolipids inhibit expression of         

E-selectin in endothelial cells and thereby potentially limit transmigration of 
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leukocytes into arterial wall [101, 108]. Similar to HDL, SPC, LSF and S1P have 

been demonstrated to regulate vascular tone via EDG-3-mediated NO release. 

These three lysophospholipids induce intracellular Ca2+ mobilization and Akt-

mediated eNOS phosphorylation, which result in NO release and vasodilation 

[102]. All these findings strongly suggest that lysosphingolipids in HDL account 

for some anti-atherogenic activities exerted by these lipoproteins [100, 101]. 

 

2.6. Working hypothesis 

Atherosclerosis with its progression to heart disease, stroke, and peripheral 

vascular disease continues to be the leading cause of death in all Western 

civilizations /2.1/. An increasing body of evidence indicates that ROS generation 

plays a critical pro-atherogenic role. The NAD(P)H oxidase are a predominant 

source of ROS, and activation of these enzymes leads to a variety of 

intracellular events that ultimately cause specific response of cells and 

components involved in atherogenesis /2.3.7, 2.3.8/. Numerous epidemiological 

studies revealed an association between HDL cholesterol levels and the risk of 

development and progression of atherosclerosis. In addition to reverse 

cholesterol transport, several other potentially anti-atherogenic activities are 

exerted by HDL /2.3.9.3/. HDL has been shown to stimulate multiple cellular 

signaling pathways /2.3.9.4/. It is still unclear which components and 

mechanisms of activation of HDL are responsible for these activities of HDL. 

The subject of this work was to attempt to answer the following questions: 

 

1) Does the anti-atherogenic HDL acts on pro-atherogenic NAD(P)H 

oxidase activity and ROS generation? 

2) If so, which components of the HDL particle and which mechanisms of 

HDL-induced signal transduction are responsible for this interaction? 

3) Which inflammatory components of atherogenesis are involved in the 

effects exerted by NAD(P)H oxidase and HDL ? 
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3. Materials and Methods 
 
3.1. Materials 
3.1.1. Equipment 
AlphaEase FC Imaging System  Alpha Innotech, USA 

AlphaEase FC software    Alpha Innotech, USA 

Autoclave HV-50L     Hirayama, Japan 

Bio Photometer     Eppendorf, Germany 

Cell culture plates:  6 and12 wells  TPP, Switzerland 

Centrifuges:   Megafuge 1,0 R  Hareus,Germany 

   5417 R   Eppendorf, Germany 

   5415 D   Eppendorf, Germany 

Ultracentrifuge ZU L8-70 Beckman, Germany 

Centrifuge tubes Quick-Seal 25 x 89mm Beckman, USA 

CO2, humidified incubator type B 5042 E Hareus, Germany 

Culture flasks 25 and 75 cm²   TPP, Switzerland 

Culture microscope CK-40    Olympus, Japan 

Easy Software     SLT,Austria 

Filter Millex-GS (0,22 µm and 0,45 µm)  Millipore, USA 

Fluorescence cell standard 1000 µL  Hellma, Germany 

Fluorescence spectrophotometer F-2000 Hitachi, Japan 

Gene Amp PCR System 9700   Perkin Elmer, USA 

IScript cDNA synthesis kit    Bio-Rad, USA 

Laser scanning microscope, LSM 510  Zeiss, Jena 

Liquid nitrogen equipment    Westfalengas, Germany 

LKB power supply 2197    LKB, Sweden 

Lyophillisator DALTA 1-20 KD   Christ, Osterode 

MCP-1, Elisa Immunoassay Kit   Biosource, USA 

Minicon B15 concentrator    Amicon, USA 

Mini Protean II, electrophoresis apparatus Bio Rad, USA 

p38MAPK, Elisa Assay Kit    Biosource, USA 

Pipette’s tips 1-5000 µL    Eppendorf, Germany 
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pH-meter 766     Knick, Germany 

Photometer SPECTRA    SLT,Austria 

Power PAC 300     Bio Rad, USA 

Protein assay kit     Pierce, USA 

RNase free, DNase set    Qiagen, USA 

RNeasy mini kit     Qiagen, USA 

Serological pipettes: 5, 10, 25 mL  TPP, Switzerland 

Servapor dialysis tubing (pores 16 mm)  Serva, Germany 

Spectrophotometer Uvikon 922   Kontron, Italy 

Sterile-bench UVF 6.12.8 with laminar flow BDK, Germany 

TINA 2,0 software system    Raytest, Germany 

Tissue culture dishes 100 x 20mm  Starstedt, USA 

Tube sealer      Beckman, USA 

Tubes 15, 50 mL     TPP, Switzerland 

Tubes 1,5 and 2 mL    Eppendorf, Germany 

Tubes 1,8 mL     Nunc, Denmark 

Washer Columbus plus    Tecan,Austria 

Wistar Kyoto rats     Harlan, USA 

 
3.1.2. Reagents  
Temed      Applichem, Germany 

Coomasie Brillant Blue; Polyacrylamid  Bio-Rad, USA 

Dulbeco’s Modified Eagle’s Medium; Dulbecco’s Phosphate Buffered Salines 

with and without Ca / Mg    BioWhittaker, Belgium 

Agarose       Biozym, Germany 

Bovine serum albumin, fatty acids free, fraction V; PMSF; Trolox  

       Calbiochem,Germany 

Colagenase type I; RNA ladder   GibcoBRL, USA 

Sodium docedyl sulfate (SDS); Tris  ICN, USA 

dNTP mix      Invitrogen, USA 

Acetic acid; CaCl2; chloroform; glycerol; formaldehyde sol.; formamide; KBr; 

KCl; KH2PO4; Triton X-100   Merck, Germany; 
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H2DCFDA      Molecular Probes, USA 

MCP-1 primer pair: FW and RW   MWG Biotech, Germany 

Trypsin-EDTA (10x) 1:250; Antibiotic-Antimycotic Solution; Foetal Calf Serum

       PAA, Austria  

HotStarTaq DNA Polymerase, PCR Buffer Qiagen, USA 

rat/mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) PCR primers 

pair       R&D Systems, USA 

protease inhibitor coctail    Roche, Germany  

ethanol; NaCl     Roth, Germany 

OTC Tissue Tek     Sakura Finetek, Netherlands 

gelatine  Serva, Germany 

β-Glycerophosphate; deoxycholate; diethyl pyrocarbonate; dihydroethidium 

(DHE); DMSO; EDTA; EGTA; elastase type I; ethidium bromide; Hank’s 

Balanced Salt Solution (HBSS); 2-mercaptoethanol; MOPS; β-NADPH; L-α-

phosphatidylcholine; L-α-phosphatidylinositol; L-α-phosphatidyl-L-serine; LSF; 

α-NADPH; Na3VO4; Na4P2O4;  sodium acetate; sodium fluoride; sodium 

phosphate; S1P; SPC; Tiron   Sigma; Germany 

Gases and liguid nitrogen    Westfalengas, Germany 

Human fresh plasma was provided from Institute of Transfusion Medicine at the 

Westphalen University of Münster.  

 

3.1.3. Solutions and mediums 
Antibiotic Antimycotic Solution 100x:  penicillin                        10.000 U 

           streptomycin sulphate  10 mg/mL 

           amphotericin B              25 µg/mL 

BCA protein assay kit: 

BCA reagent A:  sodium carbonate, sodium 

bicarbonate, bicinchoninic acid, 

sodium tartrate in 0,2 N sodium 

hydroxide 

BCA reagent B:    4 % cupric sulfate 
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albumin standard: 2,0 mg/mL of bovine serum 

albumin in 0,9 % saline and 

0,05% sodium azide  

Cell extraction buffer (p-38): 

Tris-HCl     10 mmol/L 

       NaCl     100 mmol/L 

       EDTA         1 mmol/L 

       EGTA         1 mmol/L 

       NaF         1 mmol/L 

       Na4P2O7       20 mmol/L 

       Na3VO4        2 mmol/L 

       Triton X-100         1 % (v/v) 

       glycerol       10 % (v/v) 

       SDS      0,1 % (w/v) 

       deoxycholate     0,5 % (w/v) 

       PMSF         1 mmol/L 

       protease inhibitor mix    1 mmol/L 

       pH 7,4 

DHE solution              10 µmol/L 

Dulbecco’s Modified Eagle Medium:      

   *inorganic salts:  CaCl2       0,2 mg/mL 

       Fe(NO3)3 x 9H2O      0,1 µg/mL 

       KCl       0,4 mg/mL 

       MgSO4 x H2O     0,2 mg/mL 

       NaCl       6,4 mg/mL 

       NaHCO3      3,7 mg/mL 

       NaH2PO4 x H2O 0,125 mg/mL 

  *other components:   glucose      4,5 mg/mL 

       phenol red x Na 0,015 mg/mL 

       sodium pyruvate   0,11 mg/mL 

  *amino acids:   L-arginine x HCl 0,084 mg/mL 

       L-cystine  0,048 mg/mL 
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       L-glutamine  0,584 mg/mL 

       glycine    0,03 mg/mL 

       L-histidine x HCl  0,042 mg/mL 

       L-isoleucine  0,104 mg/mL 

       L-leucine  0,104 mg/mL 

       L-lysine x HCl 0,146 mg/mL 

       L-methionine    0,03 mg/mL 

       L-phenyalanine 0,066 mg/mL 

       L-serine  0,042 mg/mL 

       L-threonine  0,095 mg/mL 

       L-tryptophan  0,016 mg/mL 

       L-tyrosine  0.072 mg/mL 

       L-valine  0,093 mg/mL 

Dulbecco’s Phosphate Buffered Salines:     

       NaCl          8 mg/mL 

       KCl       0,2 mg/mL 

       KH2PO4        0,2 mg/mL 

       Na2HPO4 x 7H2O   2,16 mg/mL 

   

*{with Ca/Mg}   CaCl2 x 2H2O   0,13 mg/mL 

       MgCl2 x 6H2O     0,1 mg/mL 

Foetal Calf Serum „Gold“:    Albumin         1,8 - 2,45 g/dL 

Hank’s Balanced Salt Solution (HBSS):    

CaCl2x2H2O  0,185 mg/mL 

       MgSO4  0,097 mg/mL 

       KCl       0,4 mg/mL 

       KH2PO4    0,06 mg/mL 

       NaHCO3    0,35 mg/mL 

       NaCl       8,0 mg/mL 

       Na2HPO4  0,047 mg/mL 

       D-glucose      1,0 mg/mL 

       phenol red Na 0,011 mg/mL 
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H2DCFDA stock solution:           10 mmol/L 

Non-reducing loading-gel buffer:    

Tris pH 6,8      50 mmol/L 

       SDS         2 % (w/v) 

       glycerol       10 % (v/v) 

       bromophenol blue     0,1 % (v/v) 

PBS buffer:       

NaCl     140 mmol/L 

       KCl      2,7 mmol/L 

       KH2PO4     1,5 mmol/L 

       Na2HPO4 x 2 H2O    8,1 mmol/L 

       pH 7,4 

Resolving gel (zymography):    

Tris pH 8,8     1,5 mmol/L 

Polyacrylamide      40 % (v/v) 

gelatin e        1 % (w/v) 

APS         10 % (v/v) 

SDS        10 % (v/v) 

Temed         1 % (v/v) 

Smooth muscle cells – complete medium: 

       DMEM           500 mL 

       FCS        10 % (v/v) 

       Antibiotic-Antimycotic solution  

       2 % (v/v) 

Smooth muscle cells – serum-free medium: 

       DMEM           500 mL 

       Antibiotic-Antimycotic solution 

       2 % (v/v) 

Stacking gel (zymography):    

Tris pH 6,8        0,5 mol/L 

       Polyacrylamide      40 % (v/v) 

       SDS       10 % (w/v) 
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       APS        10 % (v/v) 

       Temed         2 % (v/v) 

Trypsin-EDTA (1:250) – 10x (PAA):                  5 g/L 

 
3.2. Methods 
3.2.1. Culture isolation and primary culture of rat VSMCs 
Cells were maintaned in a humidified atmosphere containing 5 % CO2 at 37 °C 

under sterile conditions. 
Cultured vascular smooth muscle cells (VSMCs) were prepared from aortas of 

adult rats [58]. Animals were sacrificed by cervical dislocation and the thoracic 

aorta was removed and placed in DMEM with penicillin (100 U/mL) and 

streptomycin (0,1 mg/mL) [83]. Each aorta was opened longitudinally, and the 

endothelium was scraped away with a teflon spatula [46]. The aortic segments 

were than placed in mixture of 0,1 % collagenase and 0,05 % elastase in 

Hank’s Balanced Salt Solution (HBSS) for 1 h at 37 °C. The supernatant was 

discarded thereafter and the tissue fragments were rinsed with 0,05 %-0,1 % 

Trypsin-EDTA in HBSS without Ca/Mg using wide-mouth pipette to aid the 

tissue dissociation. After adequate dispersion, trypsin was inactivated by adding 

fetal calf serum (20 % v/v). The cells were centrifuged (200 x g for 7 minutes) 

[46,20].The trypsin-serum supernatant was discared and the cells were 

resuspended in 2 ml of the complete DMEM medium to a concentration of about 

105 per 35 mm dish. Cells were initially cultured on the 35 mm dish and than 

transferred into the 75 cm2 flasks. 

Cells were cultivated in 10-12 mL of DMEM supplemented with 10 % (v/v) of 

FCS and Antibiotic-Antimycotic sol. 2 % (v/v) [26]. Every second day cells were 

washed with 5-10 mL of DPBS and the medium was changed. All media, 

buffers and reagents were warmed to 37 °C before use. 

 

3.2.2. Cultivation of rat VSMCs 
Stock cells at subconfluence were washed with DPBS without Ca/Mg 

(BioWhittaker) and subcultured by trypsinization with 0,5 g/L (v/v) of Trypsin-

EDTA (1:250 (PAA)) for 1 minute at 37 °C. After trypsinization cells were 
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suspended in 8 mL of complete medium and centrifuged for 10 min at 250 x g, 

to remove trypsin. Then cell pellet was suspended in the fresh complete 

medium and dispensed in bottles, dishes or plates. All experiments were 

performed on monolayer cultures grown to 70 – 90 % confluence. Passages 5 

to 17 were used [14, 84].  
Seeding densities of monolayer cultured smooth muscle cells on surface areas 

were: 
• Flask 75 cm2 : 2,1 x 106 

• 6 wells plate : 0,3 x 106 

• 12 wells plate : 0,1 x 106 

• 100 mm dish: 2,2 x 10 6 

 

3.2.3. Cells preparation for the experiments 
Before each experiment cells were made quiescent by incubation in serum-free 

DMEM for 24 and 48 h at 37 °C. 

 
3.2.4. Isolation of HDL 
HDL3 fraction was isolated from human plasma by discountinous centrifugation 

on KBr gradients [59, 106]. The fresh human serum from unknown donnors was 

obtained from Institute of Transfusion Medicine at the Westfalian University of 

Münster.  

The density of serum or infranates was adjusted to a desired density by the 

addition of KBr according to a formula: 

 

    MKBr = Vplasma x K-factor 

 

where  K-factor was calculated as follows: 

     initial density – desired density 

  K-factor = 

          1- (0,312 x desired density) 
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The density of plasma (1,006 g/mL) was adjusted to 1,125 g/mL for isolation of 

VLDL, IDL, LDL, and HDL2. The density of the infranate from first centrifugation 

was adjusted to 1,210 g/mL for isolation of HDL3. The ultra-centrifugation was 

carried out in 25 x 89 mm centrifugation tubes (Beckman), using the 70 Ti-rotor 

(Beckman) and ultra-centrifuge ZU L8-70 (Beckman). The first centrifugation 

was performed at 226000 x g for 48 h at 4 °C. The supernate containing VLDL, 

IDL, LDL and HDL2 was removed and the infranate was adjusted to a desired 

density with KBr and the centifugation was repeated. After second 

centrifugation, supernatant containing HDL3 was collected, transferred to 

dialysis tubes (Serva) and dialyzed against 0,3 mmol/L Tris-HCl / 0,14mol/L 

NaCl, pH 7,2 for at least 24 h at 4 °C. When necessary HDL was concentrated 

using Minicon B15 concentrator (Amicon) [106]. HDL solution was then 

sterilized using Millex filter (Millipore), with 0,22 µm pores. The protein 

concentration was determined and lipoproteins were stored at 4 °C.  

 

3.2.5. Protein quantification  
The protein quantification was performed using commercially available protein 

assay kit (Pierce) [7]. The method combines reduction of Cu+2 to Cu+1 in 

alkaline medium with chelation of molecules of bicinchoninic acid by the 

cuprous cation: 

         OH - 

  Protein + Cu+2         tetradentate-Cu+1 complex 

 

 Cu+1  + 2 Bicinchonic Acid (BCA)   BCA-Cu+1 complex 

 

The water-soluble complex exhibits absorbance at 562 nm. 

The protein assay kit contains: 

• BCA reagent A: sodium carbonate, sodium bicarbonate, bicinchoninic 

acid, sodium tetrate in 0,2 N sodium hydroxide 

• BCA reagent B: 4 % cupric sulfate 

• Bovine serum albumin (BSA) as a standard: 2 mg/mL in 0,9 % saline and 

0,05 % sodium azide 
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To prepare working reagent 50 parts of reagent A was mixed with one part of 

reagent B. Than 2 µL of each albumin standard dilution or unknown protein 

sample were added. After incubation for 30 min at 37 °C, absorbance at 562 nm 

was read. 

 
3.2.6. Total RNA isolation from rat VSMCs and cDNA synthesis 
Quiescent rVSMCs were pre-incubated with various agonists for 30 min, and 

than stimulated with thrombin for 6 h at 37 °C.  
After stimulation the cells were washed twice with DPBS and treated with       

0,5 g/L (v/v) of Trypsin-EDTA (1:250) (PAA) for 3 min at 37 °C. The cell 

suspension was centrifuged at 250 x g for 10 min and the cell pellet was 

collected. Total RNA isolation was performed using RNeasy Mini Kit (Qiagen), 

according to the manufacturer’s instructions. The cells were lysed in 600 µL of 

lysis buffer supplied with β-mercaptoethanol. The lysates were carefully mixed 

by triturating to homogenize the sample, transferred onto QIAshredder spin 

column placed in a collection tube, and centrifuged for 2 min at 8000 x g. Next, 

600 µl of 70 % ethanol was added to the lysate and mixed well by pipetting. The 

sample (700 µL) was applied to a RNeasy column placed in a collection tube to 

bind total RNA to the column-membrane, and centrifuged for 15 s at 8000 x g. 

Then, DNase solution (80 µL) was applied and incubated for 15 min at room 

temperature. Three washing steps, one with 350 µL of washing buffer and two 

with 500 µL of buffer containing ethanol were performed to remove 

contaminants from RNA sample. Finally, to elute RNA, RNeasy column was 

transferred to a new collection tube and 40 µL of RNase-free water was pipetted 

onto the column. The column was centrifuged for 1 min at >8000 x g, and the 

eluate was collected. To verify RNA integrity, 5 µL of eluate was heated for       

4 min at 65°C and run on the 1 % agarose (Biozym) gel containing 0,5 µg/mL of 

ethidium bromide (Sigma), using 18 S + 28 S ribosomal RNA ladder (Gibco) as 

a positive control. The quantity of the extracted RNA was determined by 

spectrophotometry (BioPhotometer, Eppendorf) [148].  

First-strand cDNA was synthesized from 1 µg of total RNA with the use of 1 µL 

of iScript Reverse Transcriptase, 4 µL of 5x iScript Reaction Mix containing 
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oligo (dT) and random hexamer primers (iScript cDNA Synthesis Kit, Bio-Rad) 

in a total volume of 20 µL water [128]. The incubation protocol using a PCR 

cycler (Perkin Elmer) comprised time of denaturation at 25°C for 5 min, 

elongation at 42 °C for 90 min, and the inactivation of reverse transcriptase at 

85 °C for 5 min. 

 
3.2.7. Determination of MCP-1 gene expression with RT-PCR 
The resulting cDNA was subjected to reverse transcriptase-polymerase chain 

reaction (RT-PCR) with gene specific primers for rat MCP-1 gene and 

mouse/rat glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (R&D 

Systems) [74]. The primers used were as follows: 5’ – CTC TTC CTC CAC CAC 

TAT GC – 3’ (sense) and 5’ – GGC ATC ACA TTC CAA ATC ACA C-3’ 

(antisense) for MCP-1, and 5’ – CCC TTC ATT GAC CTC AAC TAC AAT GGT 

–3’ (sense), and 5’ – GAG GGG CCA TCC ACA GTC TTC TG –3’ (antisense) 

for GAPDH. 2 µL of cDNA sample or positive control (R&D Systems) were 

amplified with 2,5 U of HotStarTaq DNA Polymerase (Qiagen) in a 50 µL 

reaction mixture containing 1,5 mmol MgCl2, 0,2 mmol dTNP mix, and each of 

the Primers Pair (R&D Systems) at 7,5 µmol [129].  The amplification protocol 

comprised 25 cycles of denaturation at 95°C for 1 min, annealing at 55 °C for    

1 min, extension at 72 °C for 1 min, and a final extension at 72 °C for 10 min. 

The PCR for gapdh was performed to rule out the possibility of RNA 

degradation and was used to control the variation of mRNA concentration in the 

RT-PCR reaction. PCR products were visualized by electrophoresis on a 1% 

agarose gel containing 0,5 µg/mL of ethidium bromide, electrophoresis. Gel was 

photographed and scanned, and the PCR products were quantified using the 

AlphaEase FC software system (Alpha Innotech, USA) and were standardized 

against the level of their respective gapdh control [74].  

 
3.2.8. Quantitative determination of rat MCP-1 
The rat MCP-1 Immunoassay Kit (Biosource) was applied for the quantitative 

detection of MCP-1 protein in culture media. The principle of the method is a 

solid phase sandwich Enzyme-Linked Immunosorbent Assay (ELISA).  
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Quiescent rat VSMCs were incubated in serum-free medium with agonists for 

indicated time. The supernatants were then centrifuged at 10.000 x g for 3 min 

to remove remaining cells and immediately used or frozen at -75 °C for further 

experiments.  

Samples and control specimens were pipetted (50 µL) into wells coated with 

anti-MCP-1 antibody (capture antibody), followed by the addition of a 

biotinylated secondary antibody (50 µL). The plates were incubated for 90 min 

at room temperature. After removal of secondary antibody excess by washing 4 

times with a supplied buffer, 100 µL of straptavidin-peroxidase enzyme was 

added. After a second, incubation (30 min) at room temperature and washing to 

remove the unbound enzyme, the 100 µL of substrate solution was added. The 

third incubation (30 min) was performed in the dark at room temperature and 

the reaction was stopped thereafter by adding 100 µL of stop solution. The 

absorbance (optical density) of the solution was then read at 450 nm using a 

photometer SPECTRA (SLT). The results are shown as a ratio of the optical 

density of the sample to the absorbance of the control sample (supernatant 

from non-stimulated cells). 

 

3.2.9. Fluorescent detection of intracellular ROS generation in rat VSMCs 
Intracellular ROS levels were measured using the fluorescence dye 2’7’-

dichlorodihydrofluorescein diacetate (H2DCFDA) (Molecular Probes) in the 

concentration of 10 µmol/L, which is a non-polar compound converted into 

nonfluorescent polar derivative (H2DCF) by cellular esterases after 

incorporation into cells. H2DCF is rapidly oxidized to the highly fluorescent 2’7’-

dichlorofluorescein (DCF) in the presence of intracellular ROS [130].  

Quiescent rVSMCs on 100 mm dishes were washed two times with DPBS 

buffer with Ca/Mg and treated with 0.05 % Trypsin-EDTA (PAA). After 5 min of 

incubation at 37 °C, 5 mL of 0,1 % Bovine serum albumin (Calbiochem) was 

added. The cell suspension was transferred to 50 mL tubes and centrifuged 

twice at 250 x g for 10 min with 20 mL of DPBS. The 2 mL of DPBS was added 

to the cell pelet and gently mixed. The cells were incubated at 37 °C for 30 min 

with 10 µmol/L H2DCFDA. The rat VSMCs were then centrifuged at 250 x g for 
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10 min to remove the extraneous dye. Cells were resuspended in fresh DPBS 

and a baseline fluorescence reading was taken prior treatment [44]. 

Fluorescence was measured at excitation and emission wavelengths of 488 nm 

and 534 nm, respectively. Measurements were taken 0 min, 15 min, 30 min,   

60 min, 120 min after the treatment using a Fluorescence spectrophotometer       

F-2000 (Hitachi). 

Results were shown as a percent change from the baseline: 

   [Ftexp / Ftbase ] x 100% 

where: Ftexp = fluorescence at any given time during the experiment in sample 

and  

Ftbase = baseline fluorescence of the same sample [15]. 

 
3.2.10. Detection of ROS production in aortas wall using DHE 
fluorescence  
In situ O2

* levels were assessed by the fluorescence probe dihydroethidium 

(DHE) (Sigma) [9]. Aortae were harvested from Wistar Kyoto rats (Harlan) and 

cut into 1 cm rings. The aortae were stimulated with thrombin (4 U/mL) for 6 h at 

37 °C and incubated for 1 h with either HDL (0,5 mg/mL), S1P (10 µmol/L), SPC             

(10 µmol/L) or saline. The aorate were embedded in OTC Tissue Tek (Sakura 

Finetek Europe, Zoeterwonde) and frozen using liquid nitrogen-cooled 

isopantane. Cryosections (20 µm thick) of the rings were then placed on a 

glass, slide and DHE (10 µmol/L) were applied topically to each slide and 

incubated for 30 min, during which hydroethidine was oxidized to the fluophore 

ethidium, at 37 °C. Subsequently, the sections were washed, coverslipped and 

fluorescence images were obtained (λ Ex: 520 nm, Em: 605 nm) using a laser 

scanning microscope (Model LSM 510, Zeiss, Jena). To exclude an influence of 

the embedding procedure on fluorescence, all samples from treatment groups 

(Control, HDL, S1P, SPC) were embedded in the same block analyse 

simultaneously. 
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3.2.11. Measurement of NAD(P)H oxidase activity 
Quiescent rVSMCs were incubated for 30 min with various agonists and 

stimulated with 2 U/mL thrombin for 10 min at 37 °C. Cells were than washed 

with DPBS and 350 µL of HBSS was added to each dish. Cells were scrapped 

and cell-extracts were prepared by three freeze-thaw cycles. Cells were 

centrifuged for 2 min at 250 x g. The protein concentration of each supernatant 

sample was determinated as described above. NADPH  (Sigma) was added to 

the concentration of 1 mmol. DPI, a specific inhibitor of the NAD(P)H oxidase - 

was added immediately before assaying at the concentration of 10 µmol. The 

assay sample contained 500 µL of HBSS, NAD(P)H and 50 µg of homogenate. 

The absorbance of NAD(P)H at 340 nm was recorded continuously during      

60 min. The changes in the absorbance obtained after 60 min in the presence 

of agonist or DPI were compared with changes obtained under control 

conditions. Use of DPI, a specific flavoprotein inhibitor, confirmed that under 

these experimental conditions the decrease of NAD(P)H absorbance was the 

result of the NAD(P)H oxidase activity [45].  

 
3.2.12. Quantitative detection of p38MAPK 

The p38MAPK [pTpY180/182] Immunoassay Kit was used to estimate the 

quantity of phosphorylated isoform of p38MAPK protein in smooth muscle cells. 

The principle of the method is a solid phase sandwich Enzyme-Linked 

Immunosorbent Assay (ELISA).  

The quiescent rat VSMCs were stimulated with agonists for indicated times. 

Cells were washed twice with cold DPBS and collected by scraping. Samples 

were centrifuged at 250 x g for 10 minutes and pellets were suspended in 1 mL 

of cell extraction buffer (p38). The cells were lysed for 30 min on ice with 

vortexing in 10 min intervals. The cell extract was centrifuged at 10.000 x g for 

10 min at 4 °C. The clear lysates were aliquoted and used immediately or 

frozen at –75 °C for longer storage.  

The samples were diluted 1:10 with standard diluent buffer to reduce the matrix 

effect of the cell lysis buffer. Diluted samples (100 µL) and controls specimens 

were pipetted into wells coated with a capture antibody against p38MAPK and 



Materials and Methods                                                                                                               42 

 

incubated at room temperature for 2 h. After washing 4 times with the washing 

buffer, the antibody specific for p38MAPK phosphorylated at threonine 180 and 

182 (detection antibody) was added for 1 h. After removal of the excess of 

detection antibody, 100 µL of horseradish peroxidase-labeled anti-rabbit IgG 

(anti-IgG-HRP) was added for 30 min and after washing, 100 µL of the 

substrate solution was added and incubated at room temperature for 30 min at 

dark. To stop the reaction, 100 µL of stop solution was added and the 

absorbance was read at 450 nm using photometer SPECTRA (SLT). The 

results are shown as ratio of the absorbance of the sample to the absorbance of 

the control specimen. 

 

3.2.13. Gelatine zymography 
MMP activity in the conditioned medium of rVSMCs was analysed by substrate-

gel electrophoresis (zymography). To visualize the lysis of the substrate, the 

discontinous 10 % SDS - polyacrylamide gel containing 1 mg/mL gelatine 

(Serva) was used. The quiescent rVSMCs were incubated in serum-free 

medium with agonists for 24 h. Supernatants were then centrifuged at 10.000 x 

g for 3 min to remove remaining cells and used immediately or stored in –75 °C 

for further experiments. The amount of protein in samples was estimated as 

described above. 20 µg of each sample was mixed with 2 % (v/v) SDS - sample 

buffer containing 0,1 % bromophenol blue and loaded on to the gel (resolving 

gel: 80 mm x 50 mm x 0,5 mm). Gels were run using Mini Protean II 

electrophoresis apparatus (BioRad) at 24mA until the Bromophenol Blue dye 

run out of the gel. The gels were then  washed in a buffer containing 2,5 % 

Triton X-100 at room temperature for 30 min. Gels were developed in a solution 

containing 50mmol Tris (pH 7,8) / 10mmol CaCl2 for 18 h at 37 °C, stained with 

1 % coomassie blue and destained in 5 % acetic acid / 10 % ethanol. Migration 

of proteins was compared with that of prestained low-MW range markers     

(Bio-Rad). Gelatinolytic activity appears as a clear band on a blue background. 

To compare intensity of lytic bands within a stained gel, gel was photographed 

using AlphaEase FC imaging system (Alpha Innotech) and analyzed with 

appropriate software [43, 81]. 
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4. Results 
 
4.1. Effects of HDL and its correlated lysosphingolipids on the induction 
of rat MCP-1 
An increasing body of evidence unequivocally suggests that the monocyte 

chemoattractant protein-1 (MCP-1) plays a central role in the pathogenesis of 

atherosclerosis [55]. Thrombin, a coagulation factor inherently involved in the 

formation of atherosclerotic lesions, is one of the strongest stimuli for MCP-1 

production [64, 66]. Thus, as a first step the effect of native HDL and 

lysosphingolipids associated with HDL on the thrombin-induced accumulation of 

MCP-1 in rat VSCMs was investigated. The production of MCP-1 was examined 

both at the gene expression and protein level. The abundance of MCP-1 mRNA 

was determined by reverse transcriptase-polymerase chain reaction analysis 

(RT-PCR) using mRNA isolated from rat VSMCs as a template and MCP-1 

specific primers. As shown in Fig.7 thrombin added to rVSMCs at a 

concentration of 2 U/ml induced MCP-1 gene expression in a time dependent 

fashion. The maximal response to thrombin was observed after 6 h and 

remained stable afterwards. Therefore, incubation of rat VSMCs with thrombin 

for 6 h has been used in ensuing experiments.  
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To assess the effect of HDL on thrombin-induced the mcp-1 expression,         

rat VSMCs were incubated with 1mg/mL HDL for 30 min prior to the treatment 

with 2 U/mL thrombin for 6 h. A total RNA isolation and cDNA synthesis were 

performed as described in the ‘Materials and Methods’ section. The resulting 

cDNAs were subjected to RT-PCR with primers specific for rat mcp-1 and 

mouse/rat glyceraldehyde 3-phosphate dehydrogenase (gapdh) as a control. 

The reaction products were electrophoresed on a 1% agarose gel and stained 

with ethidium bromide. As shown in Fig.8 HDL markedly attenuated thrombin-

induced expression of mcp-1. Subsequent quantification of the results of 

electrophoresis using densitometric analysis revealed that in three independent 

experiments HDL reduced thrombin stimulated mcp-1 expression by 54,3 % ± 

16,02 %.  
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Next, the effect of lysosphingolipids associated with HDL particles on the mcp-1 

expression in rVSMCs has been examined. To this purpose, quiescent            

rat VSMCs were treated with 5 µmol/L of S1P for 30 min prior to stimulation with 

2 U/mL of thrombin for 6 h. As shown in Fig.9, exposure of cells to S1P led to a 

marked reduction of MCP-1 mRNA levels induced by treatment with thrombin. 

In three independent experiments, S1P reduced MCP-1 expression by 36,8 % ± 

26,7 %, respectively. 
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in Fig.10, exposure of cells to SPC reduced a MCP-1 mRNA levels induced by 

treatment with thrombin. In three independent experiments, SPC reduced   

mcp-1 expression by 17,2 % ± 9,8 %, respectively. 
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In the next series of experiments the effects of HDL and HDL-associated 

lysosphingolipids on thrombin-induced production of MCP-1 protein were 

examined. As MCP-1 is secreted by smooth muscle cells, the MCP-1 

concentration was determined in the cell culture medium instead of cell extracts. 

Commercially available Enzyme-Linked Immunosorbent Assay (ELISA) specific 

for MCP-1 has been used to estimate the protein concentration. Initially, the 

kinetic of MCP-1 secretion under influence of thrombin was determined. As 

shown in Fig.11, stimulation of cells with 2 U/mL of thrombin led to progressive 

accumulation of MCP-1 in the culture medium. After 6 and 24 h the 

concentrations of accumulated MCP-1 were 0,04 ± 0,014 O. D. and 0,161 ± 

0,034 O. D. respectively. Thus, in the subsequent experiments the effect of HDL 

and lysosphingolipids on the thrombin-induced MCP-1 expression were 

determined after 6 and 24 h of incubation with the agonist. 
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Figure 11. Effect of thrombin on MCP-1 concentration. Rat VSMCs were incubated 
for indicated times with 2 U/mL of thrombin. The medium was collected and MCP-1 
concentration was determined using ELISA as described under ’Materials and 
Methods’ section. Results show means ± SD from three independent experiments. 
 
Next, the effect of HDL and lysosphingolipids on the MCP-1 secretion was 

investigated. rVSMCs were exposed to 1 mg/mL HDL, 10 µmol/L S1P,            
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20 µmol/L of SPC and 500 µmol of Trolox for 30 min at 37°C before addition of 

2 U/mL of thrombin for 6 and 24 h. Trolox, a vitamin E derivative is known to 

suppress agonist-induced MCP-1 production and was used as a control in these 

experiments. The absorbance in cell supernatants was taken to estimate the 

MCP-1 concentration [Fig.12]. Under control condition, thrombin (2 U/mL) 

significantly stimulated the MCP-1 accumulation from 0,105 ± 0,04 O.D. to 

0,707 ± 0,15 O.D. within 6 h after treatment, and from 0,130 ± 0,05 O.D. to   

1,83 ± 0,2  O.D. within 24 h after treatment. Exposure of the cells to HDL or 

HDL-lysosphingolipids prior to stimuli did not affect the concentrations of MCP-1 

in cell supernatants. By contrast, all tested compound severely suppressed 

thrombin-induced MCP-1 secretion in rat VSMCs. In cells pre-incubated for 30 

min with 1mg/mL of HDL, the thrombin-induced MCP-1 concentration was 

significantly decreased to 0,381 ± 04 O.D. after 6 h and to 0,897 ± 0,12 O.D. 

after 24 h of incubation with the agonist. Furthermore, MCP-1 concentrations 

were significantly diminished to 0,367 ± 0,07 O.D. after 6 h, and to 0,962 ± 0,32 

O.D. after 24 h of incubation with 10 µmol/L S1P and to 0,325 ± 0,06 O.D. after 

6 h, and to 0,842 ± 0,16 O.D. after 24 h incubation with 10 µmol/L SPC. As 

expected, Trolox effectively reduced MCP-1 secretion by thrombin-stimulated 

rat VSMCs. The concentrations of MCP-1 in cell supernatants decreased to 

0,304 ± 0,05 O.D. after 6 h, and to 0,453±0,03 O.D. after 24 h of thrombin 

treatment in the presence of this compound. 
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Figure 12. Accumulation of thrombin-induced MCP-1 after HDL, S1P, SPC, and 
Trolox treatment. Quiescent rat VSMCs were pre-incubated with 1 mg/mL of HDL,    
10 µmol/L of S1P, 10 µmol/L of SPC and 500µmol of Trolox for 30 min and then 
stimulated with 2 U/mL of thrombin for 6h (upper panel) and 24h (lower panel). The 
concentration of MCP-1 was determined in cell supernatants using MCP-1 specific 
ELISA as described under ‘Material and Methods’ section. The optical density at 450 
nm was used to measure .for relative MCP-1 concentration. The results show means ± 
SD from four to six independent experiments. 
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The lysosphingolipids are present in HDL in concentrations lower than these 

used in the described experiments. To examine, whether S1P or SPC affect 

MCP-1 production in concentrations close to physiological ones, the 

concentration-dependent inhibition of thrombin-induced MCP-1 secretion by 

each compound was examined. To this purpose, rat smooth muscle cells were 

pre-treated with either S1P or SPC in increasing concentrations for 30 min prior 

to addition of 2 U/mL thrombin. Fig.13 demonstrates the effects of S1P and 

SPC on MCP-1 concentrations in supernatants from thrombin-treated              

rat VSMCs. The MCP-1 concentration in cells stimulated with thrombin for 24 h 

was set as 100%. It is evident that the inhibitory effects of S1P and SPC were 

already observed at agonist concentrations as low as 0,5 µmol/L. These 

concentrations of sphingolipids are likely to be achieved in the circulating HDL 

fraction. 
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Figure 13. Effects of S1P and SPC on the MCP-1 concentration. Quiescent              
rat VSMCs were exposed for 30 min to increasing concentrations of S1P (-●-) or     
SPC (-■-) prior to treatment with 2U/mL of thrombin. The concentration of MCP-1 was 
determined in cell supernatants using MCP-1 specific ELISA as described under 
‘Materials and Methods’ section. The optical density at 450 nm was used to measure for 
relative MCP-1 concentration. The results shown means ±  SD from three independent 
experiments. 
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4.2. Effects of HDL, SPC, and S1P on ROS formation in rat VSMCs 
A large body of evidence accumulated over recent years present that 

production of MCP-1 in smooth muscle cells and other cell lines is under tight 

control of NAD(P)H-oxidase-generated reactive oxygen species (ROS), which 

act as an intracellular messenger [12,48]. HDL was previously shown to 

scavenge oxygen free radicals by increasing intracellular content of 

antioxidants. There is also some evidence that HDL counteracts intracellular 

generation of ROS induced by oxidized LDL [120,136]. It was thus of great 

interest to investigate whether HDL exerts the inhibitory effects on thrombin-

induced MCP-1 synthesis via modulation of NAD(P)H-oxidase activity and 

intracellular generation of ROS. To test this hypothesis, the level of intracellular 

ROS production was monitored fluorometrically in rVSMCs loaded with 

H2DCFDA (10 µmol/L)-a ROS-sensitive dye. As shown in Fig.14, H2DCFDA-

associated fluorescence increased gradually in rat VSMCs over a period of       

120 min indicating a – steady - state generation of ROS in culture cells. Addition 

of thrombin in a concentration of 2 U/mL enhanced intracellular ROS 

production. In the presence of this agonist, the H2DCFDA - associated 

fluorescence increased by 18,8 % and 12,5 % after 60 min and 120 min, 

respectively. Addition of HDL completely inhibited the thrombin-induced 

enhancement in ROS production. Under these experimental conditions, the 

increase of H2DCFDA fluorescence remained slightly under the control levels in 

rat VSMCs exposed to HDL regardless of stimulation with thrombin [Fig.14]. 

This experiment provides thus the evidence that HDL inhibits intracellular ROS 

generation in rat VSMCs. 
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Figure 14. Effect of HDL on thrombin-induced ROS generation in rat VSMCs. The 
graph represents percentage increase of fluorescence in cells loaded with the redox-
sensitive dye H2DCFDA (10 µmol/L), which is converted to the highly fluorescent 
oxidation product DCF. In the presence of ROS the changes in fluorescence were 
recorded after 15, 30, 60, and 120 min in rat VSMCs in the absence (-●-) or in  the 
presence of 1 mg/mL HDL (-▼-), 2 U/mL  thrombin (-■-), and thrombin and            
HDL (-▲-). The results shown means ± SD from three to six independent experiments. 
 

Next, the effects of HDL on thrombin-induced ROS generation were compared 

with the effects of the HDL-associated lysosphingolipids, S1P and SPC. To this 

end rat VSMCs were loaded with the ROS-sensitive fluorescent dye H2DCFDA 

as described in the ‘Materials and Methods’ section. Thereafter, cells were 

incubated for 30 min with 1mg/mL HDL, 10 µmol/L S1P, or 10 µmol/L SPC and 

ROS generation was triggered by adding 2 U/mL of thrombin. The 

measurements of fluorescence were taken after 30 and 60 min. The results are 

shown in Fig. 15, where the fluorescence corresponding to ROS generation in 

the presence of thrombin was set as 100 %. As expected, the pre-treatment the 

cells with HDL for 30 and 60 min reduced thrombin-induced ROS generation to 

49,8 ± 7,6 % and to 48,4 ± 6,8 % respectively. Likewise, in the presence of 

S1P, the thrombin induced ROS generation was decreased to 77,7 ± 4,1 % and 

72,2 ± 2,6 % after 30 and 60 min of stimulation, respectively. The pre-incubation 

of rat VSMCs with SPC also suppressed the production of ROS, which under 
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these experimental conditions amounted to 71,8 ± 5,4 % and 66,9 ±3,1 % after 

30 and 60 min, respectively. 

Collectively, these data clearly demonstrate that HDL and HDL-associated 

lysosphingolipids exert inhibitory effects on thrombin-induced ROS generation 

in rat VSMCs. 
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Figure 15. Effects of HDL, S1P and SPC on the thrombin-induced ROS generation 
in rat VSMCs. The rat VSMCs were loaded with 10 µmol/L of H2DCFDA for 30 min as 
described in the ‘Materials and Methods’ section. Thereafter, cells were incubated with 
1 mg/mL HDL, 10 µmol/L S1P or 10 µmol/L SPC, and ROS production was triggered 
by addition of 2 U/mL thrombin.  Shown is a change in DCF fluorescence seen after   
30 and 60 min of stimulation. The DCF fluorescence associated with the ROS 
generation induced by 2 U/mL thrombin was set as 100 %. 
 

To confirm the effect of HDL and HDL-associated lysopshingolipids on ROS 

production, the dihydroethidium (DHE) fluorescent microscopy in situ was 

performed. The aortas were prepared as described in the ‘Materials and 

Methods’ section. The sections of aortas were treated then for 30 min with 

1mg/mL HDL, 10 µmol/L S1P or 10 µmol/L SPC before incubation with 2 U/mL 

thrombin for 10 min. After addition of the ROS-sensitive fluorescence dye, 

DHE(10 µmol/L) for 30 min, the sections were washed and the overlays of 

fluorescence were obtained. As shown in Fig. 16, thrombin markedly enhanced 
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DHE fluorescent intensity compared to control (A and B). The increase in 

fluorescence was profoundly reduced by HDL and by HDL-associated 

lysosphingolipids S1P and SPC (images from C to E).   

 

  
 

Figure 16. ROS formation in aortas wall after HDL, SPC and S1P treatment prior to 
thrombin stimulation. In situ ROS generation was determined using fluorescence 
microscopy of aortas incubated with ROS-sensitive dye, DHE (10 µmol/L). (A) Weak 
ROS signals were detected in the control aorta. (B) Intense production of ROS was 
observed in thrombin (2 U/mL) treated aorta. (C,D,E) Compared to thrombin-treated 
aorta, the ROS production was markedly inhibited by addition of HDL (1 mg/mL),    
S1P (10 µmol/L), and SPC (10 µmol/L) respectively. Shown is a representative 
fluorescence image from three independent aortas sections. 
 
4.3. Effects of HDL and HDL–associated lysosphingolipids on the activity 
of NAD(P)H oxidase 
The inhibitory effect of HDL and HDL-associated lysosphingolipids on the 

thrombin-triggered ROS generation could be explained by their direct effect on 

the activity of NAD(P)H-oxidase, which is the major source of ROS in VSMCs. 

However, HDL could also affect ROS generation indirectly, for instance, by 
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supplying the cells with antioxidants such as α-tocopherol. It was, therefore, 

next sought to determine the effects of HDL and HDL-associated 

lysosphingolipids on the activity of NAD(P)H-oxidase. To this end, the turnover 

rate of NADPH was determined photometrically in rat VSMCs homogenates and 

used as a raw estimation of NAD(P)H-oxidase activity. As shown in Fig.17, 

incubation of rat VSMCs homogenates with NADPH led to the continuous 

consumption of NADPH as indicated by the decrease of the absorbance at the 

NADPH-characteristic wavelength of 340 nm. The substantial increase in 

NADPH consumption indicating stimulation of NAD(P)H-oxidase activity could 

be observed in homogenates of rat VSMCs pre-treated with 2 U/mL of thrombin. 

Pre-treatment of VSMCs with HDL did not change the consumption of NADPH. 

By contrast, the thrombin-induced increase in the NADPH turnover rate was 

much decreased in homogenates pre-incubated with HDL prior to the addition 

of the agonist.  
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Figure 17. Effect of HDL on the NAD(P)H-oxidase activity in rVSMCs.  The           
rat VSMCs were pre-treated with 1 mg/mL of HDL for 30 min, prior to the addition of  
2 U/mL thrombin. Cell homogenates were collected and incubated with 1 mmol of 
NADPH. Absorbance was monitored continuously measured at 340 nm over 60 min. 
Shown are original tracing from three to five independent experiments. Tracings were 
superimposed for comparison. 
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To express the NAD(P)H-oxidase activity in quantitative terms, NADPH 

consumption rates were calculated as described in the ‘Material and Methods’ 

section. In un-stimulated cells, the basal NAD(P)H-oxidase activity amounted to 

3,3 ±1,4 O.D. Units/min. In thrombin-stimulated cells, the NADPH consumption 

rate increased to 8,8 ± 2,0 O.D. Units/min. By contrast the pre-treatment of cells 

with HDL prior to addition of thrombin reduced the NADPH consumption rate to 

4,6 ± 1,3 O.D. U/min [Fig.18]. Similar effects could be observed in rVSMCs pre-

incubated with 10 µmol/L of S1P or 10 µmol/L of SPC. Whereas these 

lysosphingolipids alone did not affect the NAD(P)H turnover under basal 

conditions, they reduced the thrombin-induced NAD(P)H consumption rate to 

3,9 ± 0,7 O.D. U/min and 5,0 ± 1,1 O.D. U/min, respectively. To demonstrate, 

that the recorded changes in the NAD(P)H consumption were indeed related to 

NAD(P)H-oxidase activity, the effect of its specific inhibitor- diphenylene 

iodinium (DPI) has been additional examined. As shown in Fig. 18, the pre-

treatment of rVSMCs with 10 µmol/L of DPI almost completely abolished 

changes of the absorbance at 340 nm. These results strongly support the 

motion that the changes in the NADPH consumption observed in this study are 

attributable to actual changes of NAD(P)H-oxdiase activity. 
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Figure 18. Effects of HDL and HDL- associated lysosphingolipids on NAD(P)H 
oxidase activity. Bar graph shows effects of HDL, S1P, SPC and DPI on the thrombin-
induced NADPH consumption which is a raw estimate of the NAD(P)H oxidase activity. 
The rVSMCs were pre-incubated with 1 mg/mL HDL, 10 µmol/L of S1P or 10 µmol/L of 
SPC and then stimulated with 2 U/mL of thrombin. The absorbance changes at 340 nm 
associated with the consumption of NADPH were monitored photometrically. The 
NADPH consumption rate was calculated as described in the ‘Materials and Methods’ 
section. Shown are means ± SD from three to five independent experiments. 
 

4.4. Effects of HDL, S1P, and SPC on the thrombin-induced activation of 
the p38MAPK

Several studies demonstrated that the p38MAPK activity is directly regulated by 

NAD(P)H-oxidase in smooth muscle cells [12, 48]. It was, therefore, logical to 

assume that the inhibitory effects of HDL and HDL-associated phospholipids 

exerted on the NAD(P)H–oxidase activity should be reflected by changes in the 

p38MAPK activity in thrombin-stimulated rat VMSCs. 

To investigate the effect of HDL and HDL-associated phospholipids on p38MAPK 

activation, antibodies specifically reacting with phosphorylated epitopes of 

p38MAPK were used. This approach takes advantage of the fact that the 

phosphorylation of these epitopes by upstream-located kinases is associated 

with activation of p38MAPK in rat VSMCs. Intracellular levels of the 

phosphorylated isoform of p38MAPK were determined using specific ELISA as 

described in the ‘Material and Methods’  section, and were directly proportional 
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to the level of activation of this kinase. As shown in Fig.19, addition of    

thrombin (2 U/mL) to rat VSMCs led to a substantial increase in the active form 

of p38MAPK within 1 min after stimulation. The levels of active p38MAPK remained 

elevated 5 and 10 min after stimulation. Pre-treatment of rVSMCs with 1 mg/mL 

of HDL much reduced the levels of active p38MAPK at all time-points examined. 
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Figure 19. Effects of HDL on the thrombin-induced phosphorylation of the p38MAPK.  
The rat VSMCs were pre-incubated with 1 mg/ml of HDL prior to stimulation with        
2 U/ml of thrombin. The absorbance at 450 nm reflecting the level of active p38MAPK 
was measured using ELISA with antibody specific for phosphorylated p38MAPK as 
described in the ‘Material and Methods’ section. Line graph shows phosphorylation of 
p38MAPK after pretreatment with 1 mg/mL of HDL prior to stimulation with 2 U/mL of 
thrombin for 1, 5 and 10 min. Shown are means ± SD from three to five independent 
experiments. 
 

To assess whether S1P and SPC contribute to inhibitory effects of HDL on the 

thrombin-induced activation of p38MAPK, the experiment described above was 

performed using these two agents. Rat VSMCs were treated with                       

1 mg/mL of HDL, 10µmol/L of S1P, and 10 µmol/L of SPC for 30 min prior to 

stimulation with 2 U/mL of thrombin for 10 min. As shown in Fig. 20, both S1P 

and SPC markedly reduced p38MAPK activation in smooth muscle cells. Under 

these conditions the p38MAPK phosphorylation was reduced by 44,6 % and 46,7 

%, respectively.  
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Figure 20. Effects of HDL, S1P, and SPC on thrombin-induced p38MAPK 
phosphorylation. The rat VSMCs were treated with 1 mg/mL of HDL, 10 µmol/L of 
S1P, and 10µmol/L of SPC prior to stimulation with 2 U/mL of thrombin. Bar graph 
shows the absorbance at 450 nm of an activated p38MAPK in cells extracts measured 
using the p38MAPK ELISA kit. The absorbance is directly related to the activation of 
p38MAPK.   The results shown means ± SD from three to six independent experiments. 
 
 

4.5. Effects of HDL on thrombin-induced MMP-2 expression by rat VSMCs  

MMPs are involved in the degradation of the extracellular matrix during 

atherogenesis and intracellular signaling via ROS is potentially involved in this 

process [51, 69]. Therefore, it was next sought to determine whether HDL or 

HDL-associated lysopshingolipids are able to inhibit metalloproteinase secretion 

via their inhibitory effect on NAD(P)H-oxidase activity and ROS generation.     

As smooth muscle cells are potentially able to secrete MMPs in response to the 

thrombin, it was used as agonist in this series of experiments [33]. Gelatine 

zymography was performed to evaluate MMP-2 activities in the conditioned 

media obtained from rat vascular smooth muscle cells stimulated for various 

time intervals. As shown in Figure 21, the most pronounced MMP-2 activation 

could be observed after 24 h exposure of rVSMCs to 2 U/mL of thrombin. 

Therefore, in subsequent experiments the effect of HDL on the thrombin-
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induced MMP-2 activation was investigated after 24 h stimulation with the 

agonist. 
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5. Discussion 
 
The results of the present work unequivocally demonstrate that: 

 

1) HDL exerts a profound inhibitory effect on the thrombin-induced MCP-1 

synthesis. 

2) The inhibitory effect of HDL is associated with the suppression of the 

NAD(P)H oxidase - dependent ROS generation. 

3) The inhibitory effects of HDL on MCP-1 production and NAD(P)H oxidase -  

dependent ROS generation depends on the presence of biologically active 

lysophospholipids such as S1P and SPC in these lipoproteins. 

 

A large body of evidence accumulated over recent years showing that 

monocyte chemoattractant protein-1 (MCP-1) exerts strong pro-atherogenic 

effects [23]. Mice that had a deletion in the MCP-1 gene and therefore 

expressed no mcp-1, had a reduced susceptibility to atherosclerosis. Consistent 

with this, significantly smaller lesions were observed in mice apo E-/- mice 

lacking chemokine receptor CCR2, which is a receptor for MCP-1 [114]. 

Conversely, overexpression of MCP-1 reversed this effect in apo E-/- mice and 

accelerated progression of atherosclerosis [119]. Genetic studies in human 

populations revealed several polymorphisms both in MCP-1 and CCR2 

associated with premature atherosclerosis or severity of coronary heart disease. 

Some of these polymorphisms were associated with increased levels of MCP-1 

in plasma and/or elevated levels of lipoprotein (a) (Lp(a)), which is a well-known 

risk factor for coronary heart disease (CHD) [23 ,114, 119]. Investigations in 

vitro demonstrated that the production of MCP-1 is induced in response to many 

established pro-atherogenic factors such as minimally modified LDL, oxidized 

LDL [138], thrombin [12, 66], angiotensin II, IL-1β, IL-4, TNF-α, IFN-γ           

[114, 119, 147], and PDGF [89]. In addition, increased MCP-1 levels were 

observed in patients with metabolic syndrome and/or diabetes, which are known 

to precede development of manifest atherosclerosis. Accordingly, high glucose 

[53] or leptin [153], increased concentrations of which are typically encountered 
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in diabetes, were identified as MCP-1 inducing factors in vitro. In contrast to 

pro-atherogenic factors, which almost uniformly stimulate MCP1-synthesis, little 

is known about the influence of anti-atherogenic factors on MCP-1 production. 

Few reports demonstrated suppressing effects of such anti-atherogenic factors 

as prostaglandin E1 and E2 [68], nitric oxide [151], insulin [27] and estrogen [80], 

on MCP-1 production in vitro. Although HDL is widely recognized as a potent 

anti-atherogenic factor and hypo-alphalipoproteinemia is a dyslipidemia most 

frequently encountered among patients with premature CHD, little effort has 

been devoted towards investigating the direct influence of HDL on the MCP-1 

production or degradation. There is, however, some circumstantial evidence 

that processes driven by the excessive MCP-1 release are influenced by HDL. 

For instance, HDL was shown to counteract the LDL-induced monocyte 

transmigration, which is contingent on stimulation of MCP-1 synthesis [98]. 

Moreover, HDL reverts the effects of LDL on the expression of MCP-1 receptors 

in monocytes isolated from hypercholesterolemic patients [55]. The present 

results provide for the first time unequivocal evidence that MCP-1 synthesis in 

vascular smooth muscle cells is directly inhibited by HDL. This has been shown 

both at the transcription (mRNA) and translation (protein) levels. As the HDL-

mediated inhibition of MCP-1 secretion was seen in the physiological HDL 

concentration range, it seems reasonable to argue that this process may be 

pertinent to the situation under in vivo conditions.  

The enhanced MCP-1 production is an integral part of a larger response, by 

which human organism reacts to various pathological situations. Concerted 

liberation of other inflammatory mediators such as interleukines 1, 2, 6, and 8, 

interferons β and γ, chemokines such as regulated on activation, normal T-cell 

expressed and secreted chemokine (RANTES) and fraktalkin, as well as 

increased expression of adhesive proteins such as E-selectin, ICAM-1 and 

VCAM-1 represent other atherosclerosis-relevant components of this response 

[16, 85, 119]. Interestingly, HDL was previously shown to inhibit various aspects 

of pro-inflammatory processes. Several lines of evidence point to the in vivo 

relevance of HDL as an anti-inflammatory agent. First, infusion of reconstituted 

HDL was found to correct endothelial dysfunction in patients with either familial 
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hyper-cholesterolemia or hypo-alphalipoproteinemia due to heterozygosity for 

Tangier disease [3]. Second, in animal studies, infusion of HDL reduced organ 

damage and mortality in response to endotoxic or hemorrhagic shock [25]. 

Third, in isolated heart and kidney models application of HDL reduced ischemia-

reperfusion injury, which is also considered as a model of inflammation [25]. 

Fourth, the combined knock-out of apoA-I and the LDL-receptor led to the 

occurrence of fatal systemic inflammation in some mice with adrenal cholesterol 

depletion in the adrenals and leukocyte accumulation in the liver [154]. Finally, 

patients with familial hypo-alphalipoproteinemia were found to have higher 

serum levels of C-reactive protein (CRP) than normo-alphalipoproteinemic 

controls [117]. Investigations in vitro shown that HDL inhibits expression of 

adhesive molecules such as VCAM-1 and E-selectin in endothelial cells and 

thereby limits penetration of leukocytes into the arterial wall [85, 101]. The 

adhesion of polymorphonuclear leukocytes to endothelial cells induced by 

bacterial lipopolysaccharide (LPS) was likewise inhibited in the presence of 

HDL [67]. The present work extends these observations showing that another 

important pro-inflammatory pathway � stimulation of MCP-1 production - is 

inhibited by HDL. It may be thus speculated that HDL not only restricts adhesion 

of leukocytes to the endothelial lining but also reduce the chemoattractant 

stimulus and thereby the transmigration of leukocytes into the arterial wall. In 

this way HDL may further contribute to the restriction of local inflammation in the 

arterial wall and eventually to the inhibition of the progression of 

atherosclerosis.

As yet it is not possible to define the chronological or hierarchical order of the 

pro-inflammatory effects of cytokines, chemokines and adhesion molecules as 

well as the anti-inflammatory effects of HDL. Cytokines and chemokines were 

found to stimulate the expression of selectins and adhesion molecules [85]. 

These may in turn initiate extravasation of leukocytes, which then produce 

cytokines and chemokines thus accelerating the vicious cycle of inflammation. 

The observation, however, that HDL effectively interrupts this circle at several 

points to the presence of a common mechanism that underlies the inhibitory 

effects of that lipoprotein. Activation of nuclear factor (NF-κB), an ubiquitously 
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expressed transcription factor, may represent an important link between 

inflammation and atherosclerosis and thus a potential target of HDL action. 

Multiple genes whose products are putatively involved in the atherosclerotic 

process are regulated by NF-κB [120]. These include leukocyte adhesion 

molecules, chemokines such as MCP-1 and IL-8, tissue factor (TF) that tip the 

pro/anti-coagulant balance on the endothelial cell surface towards coagulation 

and cyclin D1, that may induce cell proliferation at the sites of lesion formation 

[27]. Collectively, the coordinate induction of NF-κB – dependent genes may 

exert a substantial atherogenic effect on the vessel wall and several pro-

atherogenic factors (e.g. LDL, oxLDL, angiotensin II, hyperglycemia and 

advanced glycosylation end products (AGEs) [53], infectious agents such as 

Cytomegalovirus (CMV) and Chlamydia pneumonie, and anti-atherogenic 

factors (e.g. polyunsaturated fatty acids, antioxidants) were shown to activate or 

inhibit NF-κB activity, respectively [103]. However, available evidence cast 

doubts about the direct effect of HDL on NF-κB function. Neither NF-κB binding 

to its responsive DNA element nor NF-κB translocation to the nucleus were 

found to be affected in the presence of HDL [105]. Furthermore, HDL exerted 

no effects on the activity of IKK (NF-κB inducing kinase), which is the upstream 

kinase obligatorily regulating NF-κB function. It is of interest, however, that NF-

κB is one of the transcription factors that may be controlled by the redox status 

of the cell. Indeed, generation of reactive oxygen species (ROS) may be a 

common step in all of the signaling pathways that lead to IKK-mediated IκB  

(NF-κB inhibitor) phosphorylation and NF-κB nuclear accumulation. Support for 

this concept comes from a variety of studies showing that the diverse agents 

that can activate NF-κB also elevate levels of ROS and that chemically distinct 

antioxidants as well as overexpression of antioxidant enzymes can inhibit NF-κB 

activation [140]. It appears, therefore that whereas HDL does not affect NF-κB 

directly it might exert indirect inhibitory effect on the activity of this transcription 

factor via modulation of intracellular ROS generation and the redox status of the 

cell. Recent observations give some credence to this notion. For instance, 

Robbesyn et al. shown that the following sequence of signaling events triggered 

by oxLDL: intracellular ROS generation, proteasome activation, NF-κB inhibitor 
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degradation, and subsequent NF-κB activation is antagonized by HDL [120]. 

Other authors described the modulatory effect of HDL on the oxidative 

metabolism and bactericidal activity of polymorphonuclear leukocytes [2]. 

However, direct effects of HDL on intracellular ROS generation were not 

investigated to date. The present work for the first time demonstrates that HDL 

suppresses agonist-induced ROS production at the cellular level. This has been 

demonstrated both in vitro in a culture cell mode and in situ in isolated aortas. 

As modulation of the redox status of the cell is considered to be an integral 

element of signal transduction processes, inhibition of ROS generation by HDL 

may represent a novel mechanism by which this lipoprotein influences 

intracellular signaling pathways. 

The present results shed some light on the molecular mechanisms underlying 

the inhibitory effect of HDL on intracellular ROS generation. The 'antioxidant' 

mechanisms of HDL result (in part) from the associated antioxidant enzymes, 

namely platelet activating factor - acetylhydrolase (PAF-AH) and paraoxonases 

(PON). HDL-associated PAF-AH is able to reduce oxidative stress and 

subsequent macrophage  homing  to  endothelium [86] and PON may  play  a  

role  in  the  antioxidant and  cytoprotective  effects  of  HDL [5]. Another       

HDL-associated enzyme LCAT prevents the accumulation of oxidized lipids in 

LDL [92]. An anti-oxidative activity of HDL also includes non-enzymatic 

mechanisms such as removing of lipids peroxidation products by apoA-I and 

apoJ present in HDL [73, 92, 99]. HDL  are  also  able  to  catalyze  the  non-

enzymatic conversion  of hydroperoxides  into  hydroxides [5]. All these 

antioxidant effects of HDL, however, occur in the extracellular space and are 

unlikely to affect generation of ROS within the cell. As HDL is known to carry 

large amounts of α-tocopherol, which is a major lipophilic antioxidant in plasma, 

the supplementation of cells with this compound could account for the inhibitory 

effect of HDL on the ROS generation. Actually, several mechanisms were 

proposed, which could specifically facilitate transfer of α-tocopherol between 

HDL and cell interior. For instance, plasma-borne enzyme phospholipid transfer 

protein (PLTP) was demonstrated to transfer α-tocopherol from HDL to 

endothelial cells [29, 67, 79, 92]. ATP-binding cassette protein A1 (ABCA1) 
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transporter, which serves as apo A-I receptor, was shown to mediate trans-

plasma membrane movement of α-tocopherol [109]. Both enzymes could co-

operate to enrich cell with HDL-derived α-tocopherol. However, the present data 

and those by Robbesyn et al. argue strongly against the contention that HDL 

acts by supplying cells with vitamin E. First, in both experimental settings the 

inhibitory effect of HDL on ROS generation and NF-κB activation was seen 

within minutes after treatment. By contrast, the inhibitory effects of α-tocopherol 

on membrane lipid peroxidation are usually evident after few hours of 

incubation. Second, α-tocopherol - depleted HDL was still able to influence the 

redox status of the cell, whereas pure α-tocopherol, even when applied in large 

concentration, failed to attenuate ROS generation. Third, purified lipid 

components of HDL (S1P, SPC) without antioxidative properties mimicked HDL 

in its ability to reduce intracellular ROS generation. Robbesyn et al. in addition 

demonstrated that oxLDL-induced ROS generation is effectively prevented by 

several hydrophilic antioxidants. This suggests that ROS implicated in NF-κB 

activation are probably not generated in the membrane proximity, where vitamin 

E is  located, and are  independent of lipid  peroxidation (which is inhibited  by  

vitamin E). ROS are rather generated and activated in the cytosol, where 

hydrophilic antioxidants operate more effectivelly than the hydrophobic vitamin 

E. This also suggests that the 'antioxidant' effect of HDL is not mediated by its 

content in vitamin E.  

Several enzymatic systems may account for cytosolic production of ROS. 

These include NAD(P)H oxidase, xanthine oxidase, glutathion peroxidase, 

lipooxygenases and myeloperoxidase. Evidence accumulated over recent years 

unequivocally shows that NAD(P)H oxidase is a major source of intracellular 

ROS in biological systems [71]. Moreover, this enzyme was implicated in the 

development of several pathologies including atherosclerosis, diabetes mellitus, 

hypertension, inflammation and neurodegenarative syndromes to name a few 

[32, 70]. The present study demonstrates that HDL directly suppresses NADPH 

consumption attributable to flavin-dependent enzymes, to which            

NAD(P)H oxidase counts. Moreover, HDL inhibits agonist-induced stimulation of 

p38MAPK, the activity of which – as it has been shown by several laboratories – 
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is directly controlled by NAD(P)H oxidase [12, 48, 146]. Thus, it seems 

reasonable to assume that HDL exerts its antioxidative effects by directly 

influencing NAD(P)H oxidase activity. Basing on the present results no firm 

conclusion can be drawn as to which mechanism underlies this inhibitory effect. 

However, it may be of interest to note that HDL stimulates serine/threonine 

kinase (Akt), which phosphorylates Rac1, a small G protein and an activating 

component of NAD(P)H oxidase complex [10]. Recent study demonstrated that 

Akt-mediated phosphorylation of Rac1 prevents agonist-induced activation of 

NAD(P)H oxidase and generation of ROS [48]. It would be thus tempting to 

speculate that the inhibitory properties of HDL on NAD(P)H oxidase activity is 

mediated by activation of Akt. As activation of Akt accounts for several anti-

atherogenic effects of HDL such as inhibition of endothelial apoptosis [24], and 

induction of NO-dependent vasorelaxation [11], inhibition of NAD(P)H oxidase 

by this kinase would further underscore the pivotal role of Akt for the anti-

atherogenic effects of HDL.  

The direct inhibitory effect of HDL on the agonist-induced intracellular ROS 

generation and NAD(P)H oxidase activation for the first time demonstrated in 

the present study is of immense importance for understanding the role played 

by this lipoprotein in the prevention of atherosclerosis. Uncontrolled ROS 

generation is believed to be a distinguished feature of a virtually every pro-

atherogenic process [22]. One way that ROS are presumed to participate in 

atherogenesis is through the formation of oxidized lipids, particularly oxLDL 

[54]. Among the pro-atherogenic properties of oxLDL is the characteristic 

unregulated uptake of this modified lipoprotein by macrophages that thereby 

contributes to the formation of foam cells. Numerous other pro-atherogenic 

biologic activities have been attributed to oxLDL. It is a chemotactic factor for 

monocytes and a cytotoxic agent for various vascular cells. It can also induce 

endothelial cells to express pro-atherogenic MCP-1 or adhesion molecules, 

inhibits endothelium-dependent relaxation [111, 152], and promotes in plaque 

instability via regulation of matrix metalloproteinases (MMPs) production         

[2, 107]. ROS, in addition to mediating LDL oxidation, may contribute to the 

pathogenesis of atherosclerosis in a variety of other ways [32]. Among them, 
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the production of ROS induces stress responses that alter cell function, 

including adhesion, proliferation, and motility. ROS are also very effective 

scavengers of nitric oxide (NO) and can thereby not only regulate endothelial 

relaxation but also generate highly reactive peroxynitrite (OONO*) [50]. 

Increased ROS production was demonstrated in atherosclerotically changed 

human arteries and appears to be a marker of unstable plaques [21]. However, 

ROS production may play more direct roles in modulating plaque stability. 

Superoxide (O2
*), and OONO* formed by the interaction between O2

* and nitric 

oxide, are proinflammatory radicals, leading to activation of redox-sensitive 

transcription factors such as NF-κB and activating protein-1 in endothelial and 

VSMCs, and in macrophages [113]. O2
* induces expression of matrix-degrading 

proteases, including MMP-2 and MMP-9 in foam cells that directly contribute to 

plaque instability [48]. The role of ROS and NAD(P)H oxidase has been directly 

assessed for its contributions to the development of atherosclerosis in mice. In 

one study, in which total aortic lesions were evaluated, dramatic decrease in 

lesion extent was observed in animals deficient in the cytoplasmic subunit 

p47phox � of the NAD(P)H oxidase [82]. The observations in human and in 

animal models of atherosclerosis collectively point up the role of NAD(P)H 

oxidase - mediated ROS generation for the development and progression of 

atherosclerosis. Inhibition of NAD(P)H oxidase activity by HDL may thus 

constitute an important mechanism by which that lipoprotein exert its potent 

anti-atherogenic effect.  

As pointed above, decrease plaque stability is accompanied by both increased 

activation of matrix metalloproteinases and uncontrolled generation of ROS 

mediated by activation of NAD(P)H oxidase. Recently, the causal relationship 

between MMPs and NAD(P)H oxidase activity and expression has been 

convincingly demonstrated in vascular smooth muscle cells (VSMCs) [51]. 

Thus, the inhibition of NAD(P)H oxidase - dependent ROS formation by HDL 

should predictably result in a reduced expression and, consequently, activity of 

matrix metalloproteinases.  However, no effect of HDL on the activity of MMP-2 

could be observed in this study. Several explanations may account for this 

astonishing observation. First, the cellular signaling events located upstream to 
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MMP-2 expression are complex and include several mutually redundant 

pathways. Thus, in addition to the cellular redox balance, matrix 

metalloproteinase expression appears to be under the control of                 

cAMP - protein kinase A (PKA) pathway as well as several kinases such as Akt, 

extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase C zeta     

(PKC zeta), c-Jun N-terminal kinase (JNK), and discoidin domain receptor 1 

(DDR-1) tyrosin kinase. The exact contribution of each of these pathways to the 

expression of MMP-2 is unknown and may vary contingent upon conditions 

such as cell type, agonist, etc. It cannot, therefore, be excluded, that in the 

experimental setting applied in the present study the contribution of NAD(P)H 

oxidase to regulation of MMP-2 expression is minor. Second, matrix 

metalloproteinases are regulated at several levels, which in addition to 

expression include intra- and extracellular processing as well as secretion into 

the extracellular space. It cannot be, thus, entirely excluded that the decreased 

expression of MMP-2 in thrombin-stimulated VSMCs was compensated by the 

increased processing and/or secretion rate at another regulatory level. 

HDL is a complex molecule with various lipid and protein components, which 

potentially contribute to the wide anti-atherogenic spectrum of activities 

attributed to this lipoprotein [136]. Different entities of HDL are potentially 

involved in triggering a multitude of intracellular signals and conceivably interact 

with functionally different receptors [38]. Previous results from several 

laboratories demonstrated that HDL serves as a carrier of several bioactive 

lipids such as sphingosine 1-phosphate (S1P), sphingosylphosphorylcholine 

(SPC), and lysosulfatide (LSF) [47]. The identification of SPC, S1P and LSF in 

HDL suggests that these entities may account for at least some of its biological 

effects. Actually, all three compounds were previously demonstrated to emulate 

HDL with respect to several pleiotropic anti-atherogenic effects exerted by this 

lipoprotein. For instance, S1P, SPC and LSF were shown to protect human 

umbilical vein endothelial cells (HUVECs) from apoptosis induced by serum or 

growth factor deprivation by suppressing apoptotic markers like cytochrome c 

release or caspase-3 activation [65, 105]. Both HDL- and lysophospholipid-

mediated cell survival occurred through activation of the protein kinase Akt and 
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phosphorylation of the mitochondrial protein Bcl-2 - associated death promoter 

(BAD), a major Akt substrate [105]. Other report demonstrated that similarly to 

HDL, all three lysophospholipids induced phosphatidylinositol (PI3) kinase/Akt-

dependent phosphorylation of Akt at Ser473 and endothelial nitric oxide synthase 

(eNOS) at Ser1177, respectively, in cultured endothelial cells and, consequently, 

promoted vasorelaxation in isolated rat arteries [102]. Finally, both HDL and 

lysophospholipids were shown to inhibit TNF-α-induced expression of E-selectin 

on the surface of endothelial cells in Akt-dependent manner [101]. Current 

findings extend these previous observations by showing that similarly to native 

HDL lysophospholipids inhibit thrombin-induced MCP-1 expression in VSMCs. 

Furthermore, the suppression of ROS generation and NADPH-oxidase 

activation underlying the inhibitory effects of HDL on MCP-1 production were 

reduced in the presence of both S1P and SPC. Thus, the present study 

demonstrates that yet another important anti-atherogenic function of HDL can 

be attributed to the presence of biologically active lysophospholipids in this 

lipoprotein. Recently, it has been demonstrated that the lysophospholipid-

dependent effects of HDL on NO generation and NO-dependent vasorelaxation 

are critically dependent on the interaction of HDL with two receptors � 

scavenger receptor B1 (SR-B1) and endothelial differentiation gene 3 (EDG 3) 

receptor [102]. Future work will help to clarify whether the inhibitory effects of 

HDL on ROS-dependent production of MCP-1 are also dependent on the 

interaction of HDL with these receptors. 

In conclusion, the present study delineates the previously unknown 

mechanisms by which HDL exerts its potent anti-atherogenic effects. In this 

way, it brings an important contribution to our understanding of the 

pathophysiology of this fascinating class of lipoproteins. 
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