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Free products of sofic groups with

amalgamation over monotileably

amenable groups
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(Communicated by Joachim Cuntz)

Abstract. We show that free products of sofic groups with amalgamation over monotileably
amenable subgroups are sofic. Consequently, so are HNN extensions of sofic groups relative
to homomorphisms of monotileably amenable subgroups. We also show that families of
independent uniformly distributed permutation matrices and certain families of nonrandom
permutation matrices (essentially, those coming from quasi-actions of a sofic group) are
asymptotically ∗-free as the matrix size grows without bound.

1. Introduction

Sofic groups were introduced by M. Gromov [9] and named by B. Weiss [20].
In short, a group is sofic if it can be approximated (in a certain weak sense)
by permutations. All amenable and residually amenable groups are sofic. Due
in large part to work of Elek and Szabó [6], the class of sofic groups is known
to be closed under taking direct products, subgroups, inverse limits, direct
limits, free products, and extensions by amenable groups. See also [18] and [3]
for recent interesting examples. It is unknown whether all groups are sofic,
though Gromov’s famous paradoxical dictum (“any statement about all count-
able groups is either trivial or false”) would argue against it.

Several results illustrate the utility of knowing that a given group is sofic.
Gromov [9] proved that Gottschalk’s Surjunctivity Conjecture holds for the
groups now called sofic. Elek and Szabó [4] proved that Kaplansky’s Direct
Finiteness Conjecture holds for sofic groups. In [5] they gave a description of
sofic groups in terms of ultrapowers and proved that sofic groups are hyperlin-
ear, which entails that their group von Neumann algebras embed in Rω; thus,
the topic of sofic groups makes contact with Connes’ Embedding Problem,
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which is a fundamental open problem in the theory of von Neumann algebras.
See the survey articles [15] and [16] for more on hyperlinear and sofic groups.
A. Thom [17] proved some interesting results about the group rings of sofic
groups. L. Bowen [1] classified the Bernoulli shifts of a sofic group, provided
that the group is also Ornstein (e.g., if it contains an infinite amenable group
as a subgroup).

Now we recall a few basic notions and give a definition of sofic groups.
(See [4] for a proof that the definition in [20], which was for finitely generated
groups, agrees with the one found below if the group is finitely generated.)
The normalized Hamming distance dist(σ, τ) between two permutations σ and
τ , both elements of the symmetric group Sn, is defined to be the number of
points not fixed by σ−1τ , divided by n. Note that if we consider Sn as acting
on an n-dimensional complex vector space as permutation matrices then this
normalized Hamming distance is equal to 1− trn(σ

−1τ), where trn is the trace
on Mn(C) normalized so that the identity has trace 1.

A group Γ is sofic if for every finite subset F of Γ and every ǫ > 0, there
exist an integer n ≥ 1 and a map φ : Γ → Sn such that

(i) for every g ∈ F \{e}, dist(φ(g), id) > 1−ǫ, where e is the identity element
of Γ,

(ii) for all g1, g2 ∈ F , dist(φ(g−1
1 g2), φ(g1)

−1φ(g2)) < ǫ.

We will call a map φ satisfying these properties an (F, ǫ)-quasi-action of Γ.
Since a group is sofic if and only if all of its finitely generated subgroups

are sofic, it will suffice to consider countable groups, and it will be convenient
to have the elementary reformulation of soficity contained in the following
proposition, whose proof is an easy exercise. Given positive integers n(k), we
let
⊕∞

k=1(Sn(k), dist) denote the normal subgroup of
∏∞

k=1 Sn(k) consisting of
all sequences (σk)

∞
k=1 such that limk→∞ dist(σk, idn(k)) = 0, where idn(k) is the

identity element of the permutation group Sn(k).

Proposition 1.1. Let Γ be a countable group. Then Γ is sofic if and only if
for some sequence of positive integers n(k), there is a group homomorphism

ψ : Γ →

(
∞∏

k=1

Sn(k)

)/(
∞⊕

k=1

(Sn(k), dist)

)
,

given by ψ(g) = [(ψk(g))
∞
k=1] for some maps ψk : Γ → Sn(k) so that

lim
k→∞

dist(ψk(g), idn(k)) = 1

for all nontrivial elements g of Γ.

In this paper, we prove that the class of sofic groups is closed under taking
free products with amalgamation over monotileably amenable subgroups. Re-
call that a group G is amenable if and only if for every finite set K and every
ǫ > 0, there is a (K, ǫ)-invariant set, namely, a finite set F ⊆ G such that
|KF \ F | < ǫ|F |. A tile (or monotile) for a group G is a finite set T ⊆ G such
that G is a disjoint union of right translates of T . We may choose a set C ⊆ G
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of centers, so that the map T ×C → G given by multiplication (t, c) 7→ tc is a
bijection. Clearly, a translate of a tile is a tile, so we may assume e ∈ T . We
will say a group G is monotileably amenable if for every finite set K ⊆ G and
every ǫ > 0, there is a tile T for G that is (K, ǫ)-invariant. This notion was
introduced (though not named with quite the same words we use here) by B.
Weiss in his paper [21], where he proved that every residually finite amenable
group and every solvable group is monotileably amenable. This class of groups
includes, in addition to the solvable groups, all linear amenable groups and
Grigorchuk’s groups [8] of intermediate growth. It is an open problem whether
all amenable groups are monotileably amenable, and this is not even known
for the elementary amenable groups. However, as shown by Ornstein and
Weiss [13], all amenable groups do admit quasitilings, involving finite sets of
quasitiles and approximations, and this circle of ideas, as further developed by
Kerr and Li [10], plays an important role in our proof.

All sofic groups are hyperlinear. An application of results of [2] is that the
class of hyperlinear groups is closed under taking free products with amalgama-
tion over amenable subgroups, and this result inspired our effort in this paper.
The techniques of [2] do not appear adapted to prove that a group is sofic.
The proof in [2] relied on approximation of group von Neumann algebras of
amenable groups by finite dimensional algebras, which is not helpful in the con-
text of this paper. However, one aspect of the proof found here is reminiscent
of the proof in [2]: the use of independent random unitaries to model freeness
with amalgamation. In [2], the random unitaries were distributed according
to Haar measure in the group of unitary matrices that commute with a cer-
tain finite dimensional subalgebra, whereas here we use uniformly distributed
random permutation matrices. See Remark 3.5 for more about this.

To be more precise, our construction of quasi-actions of amalgamated free
product groups Γ1 ∗H Γ2 where H is monotileably amenable goes by prov-
ing asymptotic vanishing of certain moments involving random permutation
matrices.

Asymptotic freeness of independent matrices (of various sorts) as the matrix
size grows without bound is one of the mainstays of free probability theory,
going back to seminal work [19] of Voiculescu, and has been a key element
in applications of free probability theory to operator algebras and elsewhere.
Asymptotic freeness of independent random permutation matrices was proved
by A. Nica [12]. By combining Nica’s result with our vanishing of moments
result, we are able to extend Nica’s asymptotic freeness result to the case
of independent random permutation matrices and certain sequences of non-
random permutation matrices; these are essentially sequences that arise from
quasi-actions of sofic groups.

The organization of the rest of this paper is as follows: in Section 2, we
prove our main technical result on asymptotic vanishing of certain moments in
random permutation matrices and certain nonrandom matrices; in Section 3,
we apply this asymptotic vanishing theorem to prove our main result, that the
class of sofic groups is closed under taking free products with amalgamation
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over monotileably amenable subgroups; in Section 4, we combine the result of
Section 2 with Nica’s asymptotic freeness result and extend Nica’s result to
handle certain nonrandom permutation matrices too.

2. Asymptotic vanishing of certain moments

The main result of this section (Theorem 2.1) is an asymptotic vanishing of
moments result involving uniformly distributed random permutation matrices
and (sequences of) nonrandom permutation matrices whose traces approach
zero as matrix size increases. Actually, a broader class than permutation ma-
trices is considered here, which is needed for applications. The theorem is used
in the next section to prove the main result of the paper.

We begin by fixing some notation and definitions. If Z is a finite set then a
partition of Z is a set p = {X1, . . . , Xn} of pairwise disjoint, nonempty subsets
Xj of Z whose union is all of Z. These sets Xj are called the blocks of the
partition, and the number of blocks of p is denoted simply |p|. We then have

the equivalence relation
p
∼ on Z defined by z1

p
∼ z2 if and only if z1 and z2

belong to the same block of p.
If Y ⊂ Z is a nonempty subset then we let p↾Y denote the restriction of p

to Y, namely

p↾Y = {X ∩ Y | X ∈ p, X ∩ Y 6= ∅}.

We let P(n) denote the set of all partitions of {1, . . . , n} and let ≤ be the
usual ordering of P(n) given by r ≤ s if and only if every block of r is contained
in some block of s. This makes P(n) into a lattice, and we use ∨ and ∧ for the
join and meet operations in this lattice.

If i = (i1, . . . , in) be a multi index with values in {1, . . . , d} and p ∈ P(n)
then we define

(1) δi,p =

{
1, if k

p
∼ ℓ implies ik = iℓ,

0, otherwise.

Let U be a random d× d permutation matrix that is uniformly distributed
and let us write U = (ui1,i2)1≤i1,i2≤d, keeping in mind the dependence of every-
thing on d. We let Tr denote the usual trace on complex matrix algebras (nor-
malized so that projections of rank 1 have trace 1) and trd = 1

d
Tr : Md(C) → C.

Suppose for every j, d ∈ N, B
(d)
j is a d × d matrix, all of whose entries

are 0 and 1, with each row and each column having at most one nonzero

entry. For example, B
(d)
j could be permutation matrices. We will write B

(d)
j =

(b
(j,d)
i1,i2

)1≤i1,i2≤d and often simply B
(d)
j = Bj = (b

(j)
i1,i2

)1≤i1,i2≤d, keeping in mind
the dependence on d.

Theorem 2.1. With B1, . . . , B2n and U as above, there are constants Cn and
Dn depending only on n such that, letting

(2) f(d) = max
1≤j≤2n

trd(Bj),
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we have

(3)

∫ (
trd
(
B1(UB2U

∗)B3(UB4U
∗) · · ·B2n−1(UB2nU

∗)
))

dU

≤ Cnf(d) +Dnd
−1.

Thus, if limd→∞ trd(B
(d)
j ) = 0 for all j then we have

lim
d→∞

∫ (
trd
(
B1(UB2U

∗)B3(UB4U
∗) · · ·B2n−1(UB2nU

∗)
))

dU = 0.

Proof. We have

∫ (
trd
(
B1(UB2U

∗)B3(UB4U
∗) · · ·B2n−1(UB2nU

∗)
))

dU

=
1

d

∑

1≤i1,...,i4n≤d

b
(1)
i1,i2

b
(2)
i3,i4

· · · b
(2n)
i4n−1,i4n

·

∫
ui2,i3ui5,i4ui6,i7ui9,i8 · · ·ui4n−2,i4n−1

ui1,i4n dU.

Moreover, as is easily verified, for k1, . . . , km, ℓ1, . . . , ℓm ∈ {1, . . . , d}, we have

∫
uk1,ℓ1uk2,ℓ2 · · ·ukm,ℓm dU =

{
(d−|r|)!

d! , r = s,

0, r 6= s,

where r and s are the partitions of {1, . . . ,m} defined by i
r
∼ j if and only if

ki = kj and i
s
∼ j if and only if ℓi = ℓj. Therefore, we have

(4)

∣∣∣∣
∫ (

trd
(
B1(UB2U

∗)B3(UB4U
∗) · · ·B2n−1(UB2nU

∗)
))

dU

∣∣∣∣

≤
1

d

∑

r∈P(2n)

(d− |r|)!

d!

∑

i∈I(r)

b
(1)
i1,i2

b
(2)
i3,i4

· · · b
(2n)
i4n−1,i4n

,

where I(r) = I(r, d) is the set of all i = (i1, . . . , i4n) ∈ {1, . . . , d}4n such that

ia = ib whenever a
p
∼ b, where p = p(r) ∈ P(4n) is the partition that is

the union of f applied to r and g applied to r, where f, g : {1, . . . , 2n} →
{1, . . . , 4n} are given by

f(j) =






2j, j odd,

2j + 1, j even and j < 2n,

1, j = 2n,

g(j) =

{
2j + 1, j odd,

2j, j even.

These functions are presented in Table 1.
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Table 1. The functions f and g, used to form the partition
p from r.

f maps 2n 1 2 3 4 5 · · ·
g maps 1 2 3 4 5 6 · · ·

to 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

f maps · · · 2n− 2 2n− 1
g maps · · · 2n− 1 2n

to · · · 4n− 3 4n− 2 4n− 1 4n

An upper bound for the right-hand side of (4) when d ≥ 4n is

(5) 22n
∑

r∈P(2n)

d−|r|−1
∑

1≤i1,...,i4n≤d

δi,p(r)b
(1)
i1,i2

b
(2)
i3,i4

· · · b
(2n)
i4n−1,i4n

,

where δi,p(r) is as defined in (1).
We will need the following result, which is purely about partitions:

Lemma 2.2. Let n ≥ 1 and suppose r ∈ P(2n) satisfies 2j − 1
r

6∼ 2j for
all j ∈ {1, . . . , n}. Let η = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}} ∈ P(2n). Then
|r ∨ η| ≤ |r|/2.

Proof. Each block X of r ∨ η contains at least two blocks of r, because if X
were equal to a block of r then it would also be a union of blocks of η, which is
impossible by the hypothesis on r. This finishes the proof of Lemma 2.2. �

The following lemma will be used to handle the right-most sum in (5).

Lemma 2.3. Let n ∈ N and let p be a partition of {1, 2, . . . , 2n}. Consider
(0, 1)-matrices Bj having at most one nonzero entry per row and column, (as
in Theorem 2.1). Let

(6) S(p, d) = S(B1, . . . , Bn; p, d) :=
∑

1≤i1,...,i2n≤d

δi,p b
(1)
i1,i2

b
(2)
i3,i4

· · · b
(n)
i2n−1,i2n

.

Consider p ∨ η where η = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}} ∈ P(2n). Then
S(p, d) ≤ d|p∨η|. Moreover, if

(7) 2j − 1
p
∼ 2j for some j ∈ {1, . . . , n},

then letting f(d) = max1≤j≤n trd(Bj), we have S(p, d) ≤ f(d)d|p∨η|.

Proof. Writing p ∨ η = {X1, . . . , Xm}, we have that p is the disjoint union
p1 ∪ · · · ∪ pm, where pk is a partition of Xk. Then

S(B1, . . . , Bn; p, d) =

m∏

k=1

S(Bi(k,1), Bi(k,2), . . . , Bi(k,ℓk); p̃k, d),

where Xk = {i(k, 1), . . . , i(k, ℓk)} for i(k, 1) < i(k, 2) < · · · < i(k, ℓk) and
where p̃k is the appropriate renumbering of pk. Since the condition (7) holds
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for p if and only if it holds for some pk, and since f(d) ≤ 1 for all d, it will
suffice to prove the lemma in the case that p ∨ η has only one block.

Suppose p ∨ η has only one block. Fix i1, . . . , i2n ∈ {1, . . . , d} and suppose
we have

(8) δi,p b
(1)
i1,i2

b
(2)
i3,i4

· · · b
(n)
i2n−1,i2n

6= 0.

Since each row and column of each Bj has at most one nonzero entry, for any
given k ∈ {1, . . . , d} there is at most one value of k′ ∈ {1, . . . , d} such that

b
(j)
k,k′ 6= 0. Since p∨ η has only one block, for any given i1 ∈ {1, . . . , d} there is

at most one choice of i2, . . . , i2n such that (8) holds. This implies S(p, d) ≤ d,
as required.

Now suppose p ∨ η (still) has only one block and 2j − 1
p
∼ 2j for some

j ∈ {1, . . . , n}. For any choice of i2j ∈ {1, . . . , d}, there is at most one choice
of i1, . . . , i2j−1, i2j+1, . . . , i2n such that (8) holds; in this choice, we must have
i2j−1 = i2j, because δi,p 6= 0. Therefore,

0 ≤ S(p, d) ≤

d∑

i2j=1

b
(j)
i2j ,i2j

= Tr(Bj) = trd(Bj)d ≤ f(d)d

This finishes the proof of Lemma 2.3. �

Completion of the proof of Theorem 2.1. Consider p ∨ γ, where

γ = {{1, 2}, {3, 4}, . . . , {4n− 1, 4n}} ∈ P(4n).

Then |p ∨ γ| = |r ∨ η| + |r ∨ η′|, where η = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}}
and η′ = {{2n, 1}, {2, 3}, {4, 5}, . . . , {2n − 2, 2n − 1}} are from P(2n). By
Lemma 2.3, we have

S(B1, . . . , B2n; p, d) ≤ d|r∨η|+|r∨η′|.

Furthermore, if 2j − 1
p
∼ 2j for some j ∈ {1, . . . , 2n} then we have

S(B1, . . . , B2n; p, d) ≤ f(d) d|r∨η|+|r∨η′|,

where f(d) as in (2).
Therefore, using the upper bound (5) for the integral in (4), in order to

finish the proof of (3), it will suffice to prove: for any r ∈ P(2n), we have

(9) |r ∨ η′|+ |r ∨ η| ≤ |r|+ 1

while if, furthermore,

(10) j − 1
r

6∼ j (j ∈ {1, . . . , 2n− 1}) and 1
r

6∼ 2n,

then we have

(11) |r ∨ η′|+ |r ∨ η| ≤ |r|.

Let us first show that (9) holds for all r ∈ P(2n). We write r = {X1 . . . , Xm}
for some nonempty sets Xj and m ≥ 1. If m = 1, (9) holds because we have
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108 Benôıt Collins and Kenneth J. Dykema

|r ∨ η′| ≤ |r| and |s ∨ η| ≤ |s|. Suppose m ≥ 2. We claim that there are
a1, . . . , am−1, b1, . . . , bm−1 ∈ {1, . . . ,m} with

bi 6∈ {a1} ∪ {b1, . . . , bi−1} (1 ≤ i ≤ m− 1)

ai ∈ {a1} ∪ {b1, . . . , bi−1} (2 ≤ i ≤ m− 1)

and with some ji ∈ Xai
, ki ∈ Xbi such that either ji

η
∼ ki or ji

η′

∼ ki, (i.e., such
that ji and ki are distance 1 apart, modulo 2n). Indeed if Y is any proper,
nonempty subset of {1, . . . , 2n} then the complement of Y must contain some
element that is distance 1 from some element of Y . So to prove the claim about
the ai and bi, we start with a1 = 1; taking Y = Xa1

, what we just showed

implies that there is b1 6= 1 and j1 ∈ Xa1
, k1 ∈ Xb1 so that either j1

η
∼ k1 or

j1
η′

∼ k1. Ifm = 2 then we are done. Otherwise, letting Y = Xa1
∪Xb1 , what we

showed implies that there are a2 ∈ {a1, b1} and b2 ∈ {1, . . . ,m} \ {a1, b1} with

j2 ∈ Xa2
and k2 ∈ Xb2 such that either j1

η
∼ k1 or j1

η′

∼ k1. If m = 3 then we
are done. Otherwise, we continue in this manner, letting Y = Xa1

∪Xb1 ∪Xb2

and finding a3 ∈ {a1, b1, b2} and b3 6∈ {a1, b1, b2} and j3 ∈ Xa3
, k3 ∈ Xb3 as

required. We continue until we have selected m − 1 such pairs. This proves
the claim.

We may form each of r ∨ η and r ∨ η′ from r by performing identifications
one at a time. Thus, we construct successively a sequence r = r0 ≤ r1 ≤ · · · ≤
rℓ = r ∨ η such that |ri| = |ri−1| − 1 and ri is obtained from ri−1 by merging

two distinct blocks of ri−1 that contain, respectively, j and k with j
η
∼ k, and

we similarly construct a sequence r = r′0 ≤ r′1 ≤ · · · ≤ r′ℓ′ = r ∨ η′ from r

to r ∨ η′, by performing identifications implied by
η′

∼. The choice of ji ∈ Xai

and ki ∈ Xbi with bi 6∈ {a1}∪ {b1, . . . , bi−1} found in the previous claim shows
that, by choosing the identifications accordingly, when forming r∨η and r∨η′

from r, an aggregate of at least m− 1 such identifications is made. Therefore,
we have 2|r|− |r∨ η|− |r∨ η′| ≥ m− 1. But we have |r| = m, which yields (9).

Now we prove the inequality (11) under the additional hypothesis (10).
By applying Lemma 2.2 to r and to a rotation of r, we get |r ∨ η| ≤ |r|/2
and |r ∨ η′| ≤ |r|/2. This gives immediately (11), and finishes the proof of
Theorem 2.1. �

3. Sofic groups

In this section, we apply Theorem 2.1 to prove our main result.

Lemma 3.1. Let T be a tile for a countable amenable group G, with e ∈ T ,
and let C be a set of centers. Let K ⊆ G be a finite subset and ǫ > 0. Then
there is a (K, ǫ)-invariant set F of the form F = TD for D ⊆ C.

Proof. We may choose a finite subset E ⊆ G that is (T T−1, ǫ
2|K| )-invariant

and also (K, ǫ2 )-invariant. Let D = (T−1E) ∩ C and let F = TD. Then
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E ⊆ F ⊆ T T−1E, and

KF \ F ⊆ (KF \KE) ∪ (KE \ E) ⊆ K(F \ E) ∪ (KE \ E).

Therefore,

|KF \ F |

|F |
≤

|K||F \ E|+ |KE \ E|

|E|
≤

|K| |T T−1E \ E|+ |KE \ E|

|E|
< ǫ.

�

For a set X , by Sym(X) we denote the set of all permutations of X . Thus,
we have Sd = Sym({1, . . . , d}). For maps φ : G→ Sym(X), when G is a group,
we will frequently write φg instead of φ(g).

Remark 3.2. Let 0 < δ < 1 and let X and X ′ be nonempty finite sets.
If Y ⊆ X and Y ′ ⊆ X ′ are finite subsets satisfying |Y | > (1 − δ)|X | and
|Y ′| > (1 − δ)|X ′| and if α : Y → Y ′ is a bijection, then for G any group
and φ : G → Sym(X) any map, we can define φ′ : G → Sym(X ′) by letting
φ′g ◦ α(x) = α ◦ φg(x) whenever x ∈ Y ∩ φ−1

g (Y ), which defines φ′g on all but

at most δ(|X ′| + |X |) ≤ 2 δ
1−δ

|X ′| of the points of X ′, and by choosing some

values for φ′g on the other points in order to make it a permutation. If F is a
finite subset of G and if φ is an (F, ǫ)-quasi-action then it follows that φ′ is an
(F, η)-quasi-action of G on X ′, where η = ǫ+ 6δ/(1− δ).

Lemma 4.5 of [10] could be described as yielding quasitilings for quasi-
actions of amenable groups. The following is an application of it in the case
that the group has a tile. In effect, we tile each of the quasitiles with our fixed
monotile.

Lemma 3.3. Let G be an amenable group and suppose T is a tile of G, with
e ∈ T . Then for every δ > 0, there is δ′ > 0 and a finite set F ⊆ G, with
TT−1 ⊆ F , such that if φ : G → Sym(X) is an (F, δ′)-quasi-action of G
then there is a set Z and there are subsets Y ⊆ X and Y ′ ⊆ T × Z with
|Y | > (1− δ)|X | and |Y ′| > (1− δ)|T ×Z| and there is a bijection α : Y → Y ′

such that

α ◦ φg ◦ α
−1(t, z) = (gt, z)

whenever (t, z) ∈ Y ′, g ∈ G, gt ∈ T and φg ◦ α
−1(t, z) ∈ Y .

Proof. Let C ⊆ G be a set of centers for the tile T . Using Lemma 3.1, for
any ℓ ∈ N and η′ > 0 we can find sets F1 ⊆ F2 ⊆ · · · ⊆ Fℓ of the form
Fk = TDk for some nonempty subsets Dk ⊆ C, and with T T−1 ⊆ F1 and
|F−1

k−1Fk \ Fk| < η′|Fk| for k ∈ {2, 3, . . . , ℓ}.
We now apply Lemma 4.5 of [10] with τ = 0 and with some η > 0 to be

specified later. This lemma and its proof imply that there exist ℓ ∈ N and
η′, η′′ > 0 such that whenever F1 ⊆ F2 ⊆ · · · ⊆ Fℓ are chosen as above then
for the finite set F = Fℓ ∪F

−1
ℓ ⊆ G, if X is a finite set and if φ : G→ Sym(X)

is a map and if B ⊆ X satisfies

(i’) |B| ≥ (1− η′′)|X |
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(ii’) φst(a) = φsφt(a), φs(a) 6= φs′ (a) and φe(a) = a for all a ∈ B and all
s, s′, t ∈ F with s 6= s′,

then there exist sets C1, . . . , Cℓ ⊆ X such that

(i) for all k ∈ {1, . . . , ℓ} the map Fk ∋ s 7→ φs(c) is injective
(ii) the sets φ(F1)C1, . . . , φ(Fℓ)Cℓ are pairwise disjoint and the sets

(φ(Fk)c)1≤k≤ℓ, c∈Ck

are η-disjoint and (1− η)-cover X .

We will choose δ′ so small that φ : G → Sym(X) being an (F, δ′)-quasi-
action will ensure the existence of B such that the hypotheses (i’) and (ii’)

hold. Then we let X ′ be the disjoint union
∐ℓ

k=1 Fk×Ck. We can find subsets
Y ′ ⊆ X ′ and Y ⊆ X such that |Y ′| ≥ (1 − η)|X ′| and |Y | ≥ (1 − 2η)|X | and
a bijection α : Y → Y ′ such that whenever s ∈ F , (t, c) ∈ Y ′ ∩ (Fk × Ck) and
st ∈ Fk, we have α◦φs ◦α

−1(t, c) = (st, c). Since Fk = TDk, we have a natural

identification of X ′ with T × Z, where Z is the disjoint union
∐ℓ

k=1Dk × Ck.
Since T ⊆ F1 and TT−1 ⊆ F , by choosing η = δ/2, we are done. �

Theorem 3.4. Let Γ = Γ1 ∗H Γ2 be a free product of groups with amalga-
mation over a subgroup H. Assume that Γ1 and Γ2 are sofic and that H is a
monotileably amenable group. Then Γ is sofic.

Proof. We may without loss of generality assume that Γ1 and Γ2 are countable.
Let Ri,1 ⊆ Ri,2 ⊆ · · · be finite subsets of Γi whose union is all of Γi. Let
Kp = (R1,p ∪R2,p) ∩H and let Tp be a tile for H such that

(12) |(KpTp) \ Tp| <
1

p
|Tp|.

Fix a map ρp : Kp → Sym(Tp) so that (ρp)h(t) = ht whenever t ∈ Tp, h ∈ Kp

and ht ∈ Tp.
We fix some sequence δp tending to 0, to be specified later. Now applying

Lemma 3.3 in the case of Tp ⊆ H and δp, we find finite sets Fp ⊆ H with
TpT

−1
p ⊆ Fp and we find δ′p > 0 as described there. We assume (without loss

of generality) δ′p < δp. In particular, letting φi,p : Γi → Sym(Xi,p) be an
(Fp ∪Ri,p, δ

′
p)-quasi-action of Γi, we find sets Zi,p and subsets Yi,p ⊆ Xi,p and

Y ′
i,p ⊆ Tp ×Zi,p with |Yi,p| > (1− δp)|Xi,p| and |Y ′

i,p| > (1− δp)|Tp ×Zi,p| and

bijections αi,p : Yi,p → Y ′
i,p such that

αi,p ◦ (φi,p)h ◦ α−1
i,p (t, z) = (ht, z)

whenever (t, z) ∈ Y ′
i,p, h ∈ H , ht ∈ T and (φi,p)h ◦ α−1

i,p (t, z) ∈ Yi,p. As

described in Remark 3.2, we thus obtain (Fp ∪ Ri,p, ηp)-quasi-actions φi,p :
Γi → Sym(Tp × Zi,p) such that

(13) (φ′i,p)h(t, z) = (ht, z)

whenever z ∈ Zi,p, h ∈ H and ht ∈ Tp, where ηp = δ′p + 6δp/(1 − δp). By
amplification, if necessary, we may without loss of generality assume Z1,p =
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Z2,p, and we denote this set by Zp. We may further amplify, if necessary, in
order to make the cardinality of Zp as large as desired.

Thinking of elements of Sym(Tp×Zp) as permutation matrices and elements
of M|Tp| |Zp|(C), making the obvious identification of this matrix algebra with
M|Tp|(C) ⊗ M|Zp|(C) and letting (et,t′)t,t′∈Tp

be the usual system of matrix
units for M|Tp|(C), we have for each g ∈ Γi

(14) (φ′i,p)g =
∑

t,t′∈Tp

et,t′ ⊗B
(i)
g,t,t′ ∈M|Tp|(C)⊗M|Zp|(C),

where each B
(i)
g,t,t′ is a (0, 1)-matrix having at most one 1 in each row and

column. Fixing any t, t′ ∈ Tp and letting h = t(t′)−1, from (13) we see that

B
(i)
h,t,t′ is the identity matrix. Using that φ′i,p is an (Fp ∪Ri,p, ηp)-quasi-action

and that TpT
−1
p ⊆ Fp, we see that for every g ∈ Ri,p \ H , the permutation

(φ′i,p)g(φ
′
i,p)

−1
t(t′)−1 has at most 2ηp|Tp×Zp| fixed points; this implies that B

(i)
g,t,t′

has at most 2ηp|Tp × Zp| diagonal entries that are equal to 1. In other words,
for g ∈ Ri,p \H and all t, t′ ∈ Tp, we have

(15) tr|Zp|(B
(i)
g,t,t′) ≤ 2ηp|Tp|.

Let Up be a uniformly distributed random |Zp| × |Zp| permutation matrix,
and let Vp = 1 ⊗ Up, taking values in M|Tp|(C) ⊗M|Zp|(C). Take n ∈ N and
take

gj ∈

{
R1,p \H, j odd,

R2,p \H, j even,

and consider the moment

(16) tr|Tp×Zp|

(
φ′1,p(g1)

(
Vpφ

′
2,p(g2)V

∗
p

)
· · ·φ′1,p(g2n−1)

(
Vpφ

′
2,p(g2n)V

∗
p

) )
,

thought of as a random variable. Writing out Vp = 1⊗ Up and using (14), we
find that the moment (16) equals the sum

1

|Tp|

∑

t1,t2,...,t2n∈Tp

tr|Zp|

(
B

(1)
g1,t1,t2

(
UpB

(2)
g2,t2,t3

U∗
p

)
· · ·

B
(1)
g2n−1,t2n−1,t2n

(
UpB

(2)
g2n,t2n,t1

U∗
p

))
.

Using Theorem 2.1 and (15), we find an upper bound for the expectation of
the above sum to be

(17) |Tp|
2n−1

(
Cn(2ηp|Tp|) +

Dn

|Zp|

)
,

where Cn and Dn are the constants from Theorem 2.1. Since ηp ≤ δp+6δp/(1−
δp) can be made arbitrarily small by choosing δp small enough, and since |Zp|
can be made as large as needed, we choose δp and |Zp| so that for every n, the
upper bound (17) tends to zero as p→ ∞.
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Now we modify φ′i,p on Kp so that they agree for i = 1, 2. By the esti-
mate (12) and the formula (13), letting

(φ′′i,p)g =

{
(ρp)g × idZp

, g ∈ Kp,

(φ′i,p(g))g , otherwise,

we see that φ′′i,p is an (Ri,p ∪ Fp, ηp + 6
p
)-quasi-action of Γi. Moreover, since

(φ′′i,p)g agrees with (φ′i,p)g if g /∈ H , the moment (16) still tends to zero as
p → ∞ when φ′′i,p replaces φ′i,p. Note that Vp commutes with φ′′i,p(h) for all
h ∈ Kp.

Now we will change our random permutation matrix Vp to a nonrandom
permutation matrix, at the cost of increasing the matrix size. Indeed, Vp
takes on |Zp|! different values in M|Tp| |Zp|(C), each with equal probability. So

define φ̃i,p : Γi → M|Tp| |Zp|(|Zp|!)(C) by letting φ̃i,p(g) be the block diagonal
permutation matrix consisting of |Zp|! copies of φ

′′
i,p(g) down the diagonal, and

let Ṽp be the block diagonal permutation matrix consisting of the |Zp|! different
values taken by Vp repeated one after the other down the diagonal. Now it is
clear that the expectation of the trace tr|Tp| |Zp| applied to a word with letters
taken from φ′′1,p(Γ1), φ

′′
2,p(Γ2) and {Vp, V

∗
p } equals the trace tr|Tp| |Zp|(|Zp|!)

applied to the corresponding word of letters taken from φ̃1,p(Γ1), φ̃2,p(Γ2) and

{Ṽp, Ṽ
∗
p }. Upon identifying permutation matrices with permutations, we have

that φ̃i,p is an (Ri,p∪Kp, ηp+
6
p
)-quasi-action of Γi on the set Tp×Zp×Sym(Zp)

and that (φ̃i,p)h = (ρp)h × idZp
× idSym(Zp) is independent of i ∈ {1, 2} and

commutes with Ṽp for every h ∈ Kp.
Let n(p) = |Tp| |Zp|(|Zp|!). For i ∈ {1, 2} we define the maps

ψi : Γi →

(
∞∏

p=1

Sn(p)

)/(
∞⊕

p=1

(Sn(p), dist)

)

by

ψ1(g) =
[
(φ̃1,p(g))

∞
p=1

]

ψ2(g) =
[
(Ṽpφ̃2,p(g)Ṽ

∗
p )

∞
p=1

]
.

Since the Ri,p are increasing in p and exhaust Γi, and since the Kp are increas-
ing in p and exhaust H , it follows that ψ1 and ψ2 are group homomorphisms
that agree on H . The universal property for amalgamated free products yields
a group homomorphism

ψ : Γ →

(
∞∏

p=1

Sn(p)

)/(
∞⊕

p=1

(Sn(p), dist)

)

that extends ψ1 and ψ2. To be able to apply Proposition 1.1 to conclude that
Γ is sofic, it remains to see that for every g ∈ Γ \ {e}, there are ψp(g) ∈ Sn(p)
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such that ψ(g) = [(ψp(g))
∞
p=1] and

(18) lim
p→∞

dist(ψp(g), idn(p)) = 1.

For g ∈ Γ a nontrivial group element, either g ∈ H or we may write g as
a reduced word g = g1g2 · · · gn with gj ∈ Γij \ H and i1 6= i2, i2 6= i3, . . . ,
in−1 6= in.

(a) If g ∈ H or if n = 1 and i1 = 1 then we may take ψp(g) = φ̃1,p(g1) and we

get (18) by the corresponding property for the φ̃1,p.

(b) If n = 1 and i1 = 2 then we may take ψp(g) = Ṽpφ̃2,p(g1)Ṽ
∗
p and we get (18)

by the corresponding property for the φ̃2,p, because dist is invariant under
left and right multiplication.

(c) If n is even and i1 = 1 then we may take

ψp(g) =

φ̃1,p(g1)Ṽpφ̃2,p(g2)Ṽ
∗
p φ̃1,p(g3)Ṽpφ̃2,p(g4)Ṽ

∗
p · · · φ̃1,p(g2n−1)Ṽpφ̃2,p(g2n)Ṽ

∗
p

and the asymptotic vanishing of the moment (16) as p → ∞ implies
that (18) holds.

(d) In all other cases, the nontrivial element g is conjugate in Γ to an element
g′ of the sort considered in parts (a), (b) or (c); say g = fg′f−1 for f ∈ Γ.
Letting fp ∈ Sn(p) be any elements so that ψ(f) = [(fp)

∞
p=1], we may

take ψp(g) = fpψp(g
′)f−1

p . Since dist is invariant under left and right
multiplication in symmetric groups, we get (18) from the same property
for the lift (ψp(g

′))∞p=1 of g′.

�

Remark 3.5. Consider the proof of Theorem 3.4 in the case of H a finite
group. Here, with a bit of tweaking, we may arrange that Tp = H and that
(ρp)h ∈ Sym(H) is left multiplication by h, for all p. Now this proof is anal-
ogous in spirit to the construction found in [2] of matricial microstates in a
tracial free product A ∗DB of von Neumann algebras with amalgamation over
a finite dimensional subalgebra D: one starts with microstates for generators
of A and of B, one arranges that these microstates agree on generators of D,
and then one conjugates with a random unitary that is Haar distributed in the
group of all unitaries in the commutant of D. Where the analogy breaks down,
however is that in the proof of Theorem 3.4, although we do conjugate with a
random permutation that commutes with the action of H , we do not require it
to take all values in the commutant of H . Thus, we construct the quasi-actions
of Γ1 ∗H Γ2 more cheaply than we would have expected by analogy with the
proof found in [2].

From Theorem 3.4, using a well known picture of the HNN extension (which,
for convenience, we sketch) and a result of Elek and Szabó about amenable
extensions of sofic groups, we obtain the following result for HNN extensions
of sofic groups.
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Corollary 3.6. If Γ = G∗θ is an HNN extension of a sofic group G relative
to an injective group homomorphism θ : H → G where H is a monotileably
amenable subgroup of G then Γ is sofic.

Proof. The group Γ is generated by G and an extra generator t with the added
relations t−1ht = θ(h) for all h ∈ H . As is well known, and as can be proved
using Britton’s Lemma and the normal form for HNN extensions (see [11]), the
group Γ is isomorphic to the crossed product group K ⋊α Z, where K is the
subgroup of Γ generated by

⋃
k∈Z

t−kGtk, by the automorphism α : x 7→ t−1xt
of K. Moreover,K is a direct limit of groups that are obtained as free products
with amalgamation over H . For integers p and q, let K[p,q] be the subgroup of

Γ generated by
⋃

p≤k≤q t
−kGtk. If p ≤ k ≤ q, let λk : G → K[p,q] denote the

injective ∗-homomorphism g 7→ t−kgtk. Then we have

K[p,q+1]
∼= K[p,q] ∗H G,

where the amalgamation is with respect to the maps λq ◦ θ : H → K[p,q] and
the inclusion map H → G, whereas

K[p−1,q]
∼= G ∗H K[p,q],

where the amalgamation is with respect to the maps λq↾H : H → K[p,q] and
θ : H → G. By repeated application of Theorem 3.4, each K[p,q] is sofic, so
their direct limit K is sofic. Since K is a normal subgroup of Γ with infinite
cyclic quotient, by Theorem 1 of [6], Γ is sofic. �

4. Asymptotic freeness

In [12], A. Nica proved asymptotic ∗-freeness for independent random per-
mutation matrices. Let I be a set and for each d ∈ N, let (Ui)i∈I be an
independent family of permutation matrix valued random variables, where
each Ui = Ui,d is a uniformly distributed random d × d permutation ma-
trix. Let E denote the expectation of the underlying probability space. Let
FI = 〈xi | i ∈ I〉 be the free group with free generators (xi)i∈I and if w ∈ FI ,
let w(U) denote the d × d permutation matrix obtained by replacing each xi
in w with Ui and each x−1

i with U∗
i . (Of course, if w is the identity element of

FI then w(U) denotes the d × d identity matrix.) Nica’s asymptotic freeness
result is that for every nontrivial w ∈ FI , we have limd→∞ E(trd(w(U))) = 0.

The asymptotic vanishing of moments result, Theorem 2.1, is redolent of as-
ymptotic ∗-freeness. We will combine it with Nica’s asymptotic freeness result
to obtain actual asymptotic ∗-freeness of independent random permutation
matrices and certain families of nonrandom permutation matrices. Though,
for convenience, our statements are in terms of sequences of d×d permutation
matrices for all natural numbers d, of course the analogous statements hold
for dk × dk matrices, so long as dk → ∞ as k → ∞.

We consider certain families of sequences of nonrandom permutation ma-
trices; for example, these can be taken from quasi-actions of a group that are
sufficient to demonstrate that the group is sofic. Let J be a set and suppose
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for each j ∈ J and d ∈ D, Bj = Bj,d is a d × d (nonrandom) permutation
matrix. Suppose

∀j ∈ J lim
d→∞

trd(Bj,d) = 0

and

∀j1, j2 ∈ J either lim
d→∞

dist(Bj1Bj2 , idd) = 0(19)

or ∃j3 ∈ J dist(Bj1Bj2 , Bj3) = 0,(20)

where we are identifying permutation matrices with their corresponding per-
mutations in Sd.

Theorem 4.1. Let (Ui)i∈I and (Bj)j∈J be as described above. Then the family
(
{Ui, U

∗
i }
)
i∈I
, {Bj | j ∈ J}

is asymptotically free as d→ ∞, meaning, that we have

(21) lim
d→∞

E
(
trd
(
w0(U)Bj1w1(U)Bj2 · · ·wn−1(U)Bjnwn(U)

))
= 0

whenever n ≥ 0, j1, . . . , jn ∈ J , w0, w1, . . . , wn ∈ FI , w1, . . . , wn−1 are non-
trivial words and if n = 0 then w0 is nontrivial.

Proof. Using the properties of the trace and the property (19)–(20) of the
family of the Bj , we may cyclically reduce any expression of the form appearing
on the left-hand side of (21) and we see that it equals an expression in one of
the three forms

lim
d→∞

E(trd(w1(U)))(22)

lim
d→∞

E(trd(Bj1))(23)

lim
d→∞

E
(
trd
(
Bj1w1(U)Bj2 · · ·wn−1(U)Bjnwn(U)

))
(24)

where j1, . . . , jn ∈ J and w1 . . . , wn are nontrivial elements of FI . Here we use
that if Cd and Dd are permutation matrices and if limd→∞ dist(Cd, Dd) = 0,
then for any permutation matrix V , we have limd→∞ trd(V Cd − V Dd) = 0.

The limit in (22) vanishes by Nica’s asymptotic freeness result. The limit
in (23) vanishes by hypothesis. For the limit in (24), we will use Nica’s as-
ymptotic freeness result and Theorem 2.1. Let V be a uniformly distributed
random permutation matrix that is independent from all the Ui. Since the
distribution of the family (V UiV

∗)i∈I is the same as for (Ui)i∈I , it will suffice
to show

(25) lim
d→∞

E
(
trd
(
Bj1V w1(U)V ∗Bj2 · · ·V wn−1(U)V ∗BjnV wn(U)V ∗

))
= 0.

From Nica’s asymptotic freeness result, we get for every ǫ > 0

lim
d→∞

P
(

max
1≤j≤n

trd(wj(U)) ≥ ǫ
)
= 0,
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where P means the probability of the event. Therefore, we can find a sequence
ǫd ց 0 such that limd→∞P(Fd) = 0, where Fd is the event

max
1≤j≤n

trd(wj(U)) ≥ ǫd.

Since V and (Ui)i∈I are independent, we can evaluate the expectation in (25)
by first, for each fixed choice of values for (Ui)i∈I , integrating with respect to
V , and then integrating with respect to the (Ui)i∈I . For any choice of (Ui)i∈I ,
we have by a trivial bound

∫
trd
(
Bj1V w1(U)V ∗Bj2 · · ·V wn−1(U)V ∗BjnV wn(U)V ∗

)
dV ≤ 1.

If we choose values of (Ui)i∈I that lie in the complement of the event Fd then
by Theorem 2.1, letting f(d) = max(trd(Bj1), trd(Bj2), . . . , trd(Bjn)), we have
∫

trd
(
Bj1V w1(U)V ∗Bj2 · · ·V wn−1(U)V ∗BjnV wn(U)V ∗

)
dV

≤ Cn max(f(d), ǫd) +Dnd
−1,

where Cn and Dn are the constants from Theorem 2.1. So we get the upper
bound

E
(
trd
(
Bj1V w1(U)V ∗Bj2 · · ·V wn−1(U)V ∗BjnV wn(U)V ∗

))

≤ Cn max(f(d), ǫd) +Dnd
−1 +P(Fd),

which tends to 0 as d→ ∞. �

Note added in proof: After this paper was accepted for publication, indepen-
dent papers by Paunescu [14] and Elek and Szabó [7] appeared, proving that
soficity of groups is preserved under taking free products with amalgamation
over arbitrary amenable groups. Also (in March, 2011), equation (4) and sur-
rounding description were corrected.
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[6] G. Elek and E. Szabó, On sofic groups, J. Group Theory 9 (2006), no. 2, 161–171.

MR2220572 (2007a:20037)
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