— —— WWu

MUNSTER

EfficientVariational Graph Methods in
Imagingand 3D Data

PhD Thesis

Fjedor Gaede
- 2020 -

WWU

MUNSTER

Fach: Mathematik

Efficient Variational Graph Methods in
Imaging and 3D Data

Inaugural Dissertation
zur Erlangung des Doktorgrades der Naturwissenschaften

— Dr. rer. nat. —

im Fachbereich Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultat
der Westfalischen Wilhelms-Universitat Miinster

eingereicht von

Fjedor Gaede

Miinster
— 2020 —

Dekan:

Erster Gutachter:

Zweiter Gutachter:

Tag der miindlichen Priifung;:

Tag der Promotion:

Prof. Dr. Xiaoyi Jiang
Westfalische Wilhelms-Universitat Miinster
Miinster, DE

Prof. Dr. Martin Burger
Friedrich-Alexander-Universitdt Erlangen-Nirnberg
Erlangen, DE

Prof. Dr. Xiaoyi Jiang
Westfilische Wilhelms-Universitdt Miinster
Miinster, DE

04.08.2020

04.08.2020

Abstract

In this thesis we derive, study and apply efficient graph methods for a variety of variational
problems in imaging and data processing. The proposed algorithms are based on the recently
developed Cut-Pursuit algorithm that can efficiently solve a class of variational problems on
graphs. The goal of this work is to expand the Cut-Pursuit algorithm to multi-dimensional
isotropic total variation regularizations and to apply it to image data and large 3D point
clouds. Furthermore, we investigate the application of the Cut-Pursuit algorithm to TV-
regularized Positron Emission Tomography (PET) reconstruction and substantially decrease
the number of required full PET operator evaluations during the reconstruction process,
replacing them with smaller sparse matrix representations of the full operator. In addition,
we extend the so-called Fully4D algorithm to reconstruct spatio-temporal PET data under the
influence of dynamics by adding a total variation regularization and deriving an optimization
strategy. This work is divided into three parts.

In the first part, we introduce the general graph setting and the mathematical foundation
of variational methods and solve these with graph variants of a well-known first-order primal-
dual algorithm. Afterwards, we derive an expansion of the Cut-Pursuit algorithm to a multi-
dimensional version that is isotropic in the dimensions of the data. Additionally, we develop
a modified Cut-Pursuit algorithm for solving minimal partition problems and discuss the
oversegmentation properties of this method. We show the efficient optimization of image and
point cloud data experimentally and, moreover, recover a recent debiasing strategy to reduce
the bias of the total variation, e.g., the loss of contrast in the imaging setting.

In the second part, we introduce the basics of PET and additional TV regularization. We
discuss the temporal dependence of the measured PET data and the influence of motion and
dynamics on the corresponding reconstructions. In order to reconstruct a time-dependent
image and the associated dynamics we extend the Fully4D algorithm by adding TV regular-
ization. We develop a corresponding optimization algorithm and show numerically that the
TV regularization yields more satisfying results than the unregularized method.

In the last part, we tailor the Cut-Pursuit algorithm to TV-regularized PET reconstruc-
tion and investigate the gain in efficiency originating from the reduction of the complexity
of the PET operator. This is achieved through the construction of a reduced sparse matrix
representative of the full operator using a graph discretization provided by Cut-Pursuit. We
show numerically that Cut-Pursuit does not only require far fewer expensive full PET op-
erator evaluations than classical methods, but also reaches comparable results in only a few

iterations.

Acknowledgements

The last three years might be the hardest but most memorable years of my life. I am very
glad that I had the opportunity to be part of the infamous “Dénerbude” until the very end.
As now this thesis comes to an end it is time to thank the people that I met in the last years
who made this journey so memorable. Let us hope that this gets not to cheesy. I would like
to thank:

e my supervisor Martin Burger for giving me my first ever student job in his work group
during my Bachelor and introducing me to the fascinating field of applied mathematics and
numerics. Thank you for giving me the opportunity and freedom to work on the projects
that I found most interesting and for always providing good advice. It was a real pity that
you left Miinster and you will be missed, but I wish you all the best for the upcoming years
in Erlangen.

e Julian Rasch for answering all my questions multiple times, listening to hundreds of des-
perate and weird voice messages filled with nonsense and pseudo-math, and taking long
walks discussing about my problems. Thank you for proofreading this thesis, revealing all
my flaws and telling me to be less negative. Ok, let me say this as it is: Couldn’t have
done this without you, dude! Looking forward to make music and eating Doéner with you
again.

o Jonas Geiping for taking the first steps with me together and now being the greatest help in
reviewing this work that I could imagine. Thanks for our endless hours at the work stations
in the way too airless computer lab fighting for Matlab licenses on our first project. Thanks
for not losing touch when you moved to Siegen and still working with me on interesting
topics. It was nice to read your even more elaborated criticism of my english scribble after
you lived in the US for half a year and I will miss to read “meh” as a remark on my writing
skills.

e FEva-Maria Brinkmann for recruiting Jonas and me on our first skiing seminar with your
pure kindness. In retrospective, I think without this conversation I would not be here
writing this thesis right now. Thank you for proofreading this work in great detail and
being so helpful all the time during the last three years. I really miss seeing you in the
institute every day, but I am glad that we are still in contact.

e Daniel Tenbrinck for introducing me to graph methods, being a great supervisor for my
master thesis and always having a good time. I really appreciate all the opportunities you
gave me during the last years and the time we spend together in Miinster, Erlangen and
on the conferences. I wish you and your family all the best in Erlangen and I hope we will
meet again very soon. But please no liquor from a spoon and no “car boms” next time.

o Meike Kinzel for being a great co-worker and for having so many laughs that I really needed
during the hard times in the last three years. Thank you for staying with me in Miinster
and get through this together. I guess, I will never again dance in a farewell video, or

swear in one. Thank you for pushing me to be part of this. Also, for making the office
feel like christmas all year long. I am really grateful for the last spend years. *astronaut
emoji(U+1F468)*

Ramona Sasse for taking too long coffee breaks with me, talking about your pony, having
the greatest MS Paint skills and being the only person that is really honest about what it
is like to be a PhD student. Thank you for letting us show you the nice and fabulous road
of being sarcastic.

Frank Wiibbeling for interesting discussions about PET and answering all my questions.
Thank you for still hosting the skiing seminar and still being one of the best Looping Louie
players in the world. I really enjoyed all of our non-mathematical chats and that you are
always in for a good laugh. I really appreciate all the times you helped me out and it meant
a lot to me.

Ulrich Bdtcher for being a great office mate in the last few weeks and helping me so much
with my implementation problems. Without our pair-programming sessions I would still
be searching for that C++ bug and having a broken table of content. Thank you for all the
nice lunchtimes at the Mensa and the after-work beer in the Finne.

Janic Feocke for providing me with this template, for helping me fix my problems and
making me buy a Switch. Your Matlab framework still serves me very well and was a real
time saver in the end. Thank you for making the conference in Berlin bearable and for
catching some fresh air. Well, and thank you for being so tall. I guess we would have never
found the key out of the bunker.

Caro Dirks for being always so positive and supportive. I really liked the discussions about
the definitions of cake and pie. Talking about food, your christmas tiramisu is the best!
Ina Humpert for watering the plants that I did not know that they were part of our office.
Thank you for keeping the skiing seminar alive even though I could not take part this
time and for always bringing people together. Thank you for all of the great drawings, the
cartoons of us and for tracking our state of physical and mental condition on the Sims-esque
mood board.

Loic Landrieu for coming to Erlangen to talk with me about Cut-Pursuit and introducing
this interesting topic. It was nice to meet you and to watch you experience the greatness
of Feuerzangenbowle.

to everyone in the Mensa Whatsapp group for the unspoken agreement to only communi-
cating using emojis.

to each and everyone I got to meet and had a great time with at and after work. Espe-
cially, Hendrik Dirks, Lena Frerking, Stefan Wierling, Manni, Bernhard Schmitzer, Lynn
Frohwein, Leonard Kreutz, Camille Sutour, Tim Keil, Martin Benning and Claudia Gies-
bert.

meiner Mutter Barbara Langhorst ohne die ich es nicht bis hierhin geschafft hitte. Du
warst immer da fiir mich und hast mir unfassbar viel Unterstiitzung in den letzten zehn
Jahren zukommen lassen. Ich danke dir fiir alles.

my brothers Lars and Ole Gaede for just being the greatest brothers I could imagine.
thank you to all of my friends that always could distract me from the cold and harsh world
of mathematics.

e Marie & Toulouse for being the best and most fluffy isolation buddies I can think of. You
have shown me that a day is only an accumulation of multiple naps in different places. Yes,
this is for my cats.

o And last and most importantly Dana Hetland for doing everything you could to keep me
sane in the last 8 weeks of this work. You took so much load of my back that I cannot
thank you enough for. You are the best social isolation I could think of.

This work was supported by the Bundesministerium fiir Bildung und Forschung under the
project id 05M16PMB (MED4D) and the European Union’s Horizon 2020 research and in-
novation programme under the Marie Sktodowska-Curie grant agreement No. 777826
(NoMADS).

Contents

Contents i
1. Introduction 1
2. Mathematical Preliminaries 5
2.1. Mathematical Statements and Notations 5
2.2. Analysis of Different Data-Terms 8
2.2.1. The Lo-Data-Term e 8

2.2.2. The Weighted Lo-Data-Term 10

2.2.3. Kullback-Leibler Data-Term 11

I. Graph Cut-Pursuit 15
3. Introduction to Graph Processing 17
3.1. Finite Weighted Graphs L L o 17
3.1.1. Basic Graph Terminology 17

3.1.2. Vertex and Edge Functions 19

3.1.3. First-Order Partial Difference Operators on Graphs 21

3.1.4. Total Variation Regularization on Graphs 22

3.2. Graph p-g-Laplace Operator 25
3.3. Optimization Problems on Graphs 26
3.3.1. ROF on Graphs 29

3.3.2. Weighted ROF on Graphs 30

3.4. Graph Cuts for Energy Minimization 31
Appendix 33
3.A. Reformulating p-¢g-Laplace Operator 33
3.B. Derivative of the p-¢-TV Regularizer 33
3.C. Proximity Operator of the p-¢-TV Regularizer 38

4. Cut-Pursuit 41
4.1. Introduction to Partitioning and Reduced Problems 44
4.2. Finer Partitioning via Graph Cuts 49
4.2.1. Refining the Partition 0o, 49

4.2.2. Solving the Partition Problem 53

4.2.3. Direction for Isotropic Cut-Pursuit 56

4.3. Cut-Pursuit Algorithm 58

ii

4.4. Cut-Pursuit Algorithm for ROF Problems
4.4.1. Reduced ROF Problem
4.4.2. Partition Problem of the ROF Problem
4.4.3. Directions for the ROF Partition Problem

Appendix
4.A. General Regularizer for ROF 0oL
4.B. Reduced Terms oL o e e e
4.B.1. Reduced (Weighted) Lo-Data-Term
4.B.2. Reduced p-¢-TV Regularizer

4.C. Derivation of Partition Problem

5. Cut-Pursuit for Minimal Partition Problems
5.1. Minimal Partition Cut-Pursuit Algorithm
5.1.1. Solving the Partition Problems
5.1.2. Solving the Reduced Minimal Partition Problem
5.2. Cut-Pursuit for Lo-ROF oo
5.2.1. Solving the Partition Problems
5.2.2. Solving the Reduced Minimal Partition Problem

Appendix
5.A. Proof: Merging Values

6. Numerics: Cut-Pursuit for TV Problems
6.1. Tterative Behavior of the Cut-Pursuit Algorithm
6.2. Cut-Pursuit Convergence and Runtime
6.3. Isotropic Cut-Pursuit and Choosing Directions
6.4. Debiasing e e

7. Numerics: Minimal Partition Problem
7.1. Comparing Different Constant Step Sizes
7.2. Different Partition Optimization Strategies
7.3. Comparison to Other Algorithms
7.4. Discretization via Minimal Partitions 000
7.4.1. Related Superpixel Methods
7.4.2. Minimal Partition as a Superpixel Method
7.4.3. Compare Superpixel Methods,
7.4.4. Solving Problems on Discretization

7.4.5. Denoising Minimal Partitions

8. Numerics: Point Cloud Sparsification via Cut-Pursuit
8.1. Anisotropic L1-TV Regularization
8.2. Comparison of Anisotropic L1-TV and Lo-TV Regularization
8.3. Visual Comparison of Different TV Regularizations

71
71
71
71
73
75

81
84
90
92
96
97
100

105
105

109
112
115
116
121

125
125
128
131
132
134
136
138
142
147

CONTENTS

iii

Il. Dynamic PET Image Reconstruction

9. Introduction to PET Reconstruction
9.1. Positron Emission Tomography,

9.2. Expectation Maximization Reconstruction

10. Total Variation Regularization on Reconstruction
10.1. First-Order Primal-Dual for PET-TV
10.2. Forward-Backward EM-TV

11.Dynamic PET Reconstruction
11.1. Listmode PET Data and EM Reconstruction
11.2. Fully4D Reconstruction L oo
11.2.1. Update for the Spatial Weights
11.2.2. Update for the Basis Functions
11.2.3. Fully4D Algorithm and Implementation Details
11.3. Regularized FullydD e

12.Numerics: Dynamic PET Reconstruction
12.1. Dynamic Data without Motion
12.2. Dynamic Data with Motiono

I1l. Cut-Pursuit Based Reconstruction

13. Cut-Pursuit on PET Reconstruction
13.1. Graph Setting for Reconstructions 0.
13.2. Cut-Pursuit for Regularized PET Reconstruction
13.3. Efficient Reduced Operator Computation
13.4. Solving the Reduced Problem
13.4.1. Primal-Dual for Reduced Problem
13.4.2. FB-EM-TV for Reduced Problem

14.Numerics
14.1. Implementation Details
14.2. Solving the Reduced Problem
14.3. Full Operator Evaluations
14.4. Numerical Comparisono i i e

14.5. Comparison of Cut-Pursuit with Direct Algorithms

15.Summary and Conclusion
15.1. Efficient Cut-Pursuit Algorithm L.
15.2. Dynamic PET and Regularized Fully4dD

15.3. Cut-Pursuit Based Reconstruction

List of Figures

159

161
161
162

169
170
172

175
176
181
182
183
185
188

191
192
195

201

203
203
204
207
208
209
210

213
213
214
216
217
221

223
223
225
225

227

iv

Bibliography

233

Introduction

The focus of this work is to discuss and apply efficient graph methods for a family of
variational problems in the context of images, 3D point cloud data and medical imaging. For

this purpose we introduce finite weighted graphs that are defined as
G = (‘/7 E7 w)v

where V is a finite set of vertices and F is the set of weighted edges connecting these vertices.
With this graph structure we can describe any kind of data by assigning a vertex to every data
point and connecting related points using some measure of relation. An image, for example,
can be given a graph structure by assigning a vertex to each pixel and then connecting the
respective vertex to the vertices of its four direct neighbors.

We introduce how to state variational problems on finite weighted graphs describing some
given data, and show that it is straightforward to solve them with common optimization
strategies, e.g., first-order primal-dual algorithms [17]. Primarily, we work on denoising
problems that are regularized by the total variation (TV) [72, 14] and in particular, by the
total variation on graphs [27, 28]. Using the graph structure, denoising methods can be
applied to any data type described by a graph. For example, a central topic of this work
is to use TV regularization to denoise point cloud data that can be described by a spatial
neighborhood graph, i.e., a k-NN-graph [9, 23].

Working on graphs opens the doors for the application of well-known graph optimization
methods such as graph cut methods solving maximum flow problems (cf. [10]). A recently
proposed efficient algorithm to solve total variation-regularized problems was proposed by
Landrieu et. al. in [46, 47]: The Cut-Pursuit algorithm. Essentially, the algorithm can be
described as a coarse-to-fine strategy that starts with a coarse representation of the graph and
gets finer in each iteration. This is done by successively computing graph cuts refining the
discretization and solving a reduced version of the variational problem on these refinements.
The efficiency of this algorithm arises from the low complexity of the problem on the coarse
discretization. Even complex problems can be solved efficiently. Therefore, this algorithm
creates new application opportunities for variational methods that are otherwise too complex
to apply to real-world problems. In this work our focus is to expand the field of applications
of the Cut-Pursuit algorithm and apply it to complex problems, i.e., large point cloud data

denoising and sparsification on graphs and TV-regularized PET reconstruction. This work
is divided into three parts.

In the first part, we introduce the general graph setting, define mathematical operators
on graphs and line out how to state variational problems on graphs. We then apply the
well-known first-order primal-dual algorithm from [17] to graphs and, moreover, show how to
solve binary partition problems on graphs using a graph cut (cf. [10]). Then we derive the
Cut-Pursuit algorithm, discuss different variants and its convergence. The main contribution
of this part is the extension of the anisotropic Cut-Pursuit algorithm to a channel-isotropic
version and the analysis of its properties. In the numerical section, we apply the Cut-Pursuit
algorithm to grayscale and color images as well as to 3D point cloud data. We show that this
method is very efficient in contrast to a traditional primal-dual algorithm that uses the full
graph structure directly. An outstanding property of the Cut-Pursuit algorithm is that we do
not only receive the solution of the problem, but additionally, also a coarse representation of
the solution. This enables us to directly apply a debiasing method (cf. [12]) to the solution,
which is a beneficial and powerful property.

We also introduce a Cut-Pursuit strategy to optimize minimal partition problems such
as the piecewise constant Mumford-Shah functional [19, 57], which can be defined in the
discrete setting on a graph as an Ly-TV regularization problem. This problem is highly non-
convex and we contribute different strategies to tackle this. In the corresponding numerical
experiments, we discuss different aspects of this algorithm in detail. We investigate the energy
minimization properties of different strategies and show that all yield satisfying results, both
visually and in terms of energy minimization.

Afterwards, we re-interpret the solution of the Cut-Pursuit algorithm for minimal parti-
tions as a coarse discretization of the graph, and argue that this reveals its potential as a
superpixel method. To this end, we compare the method to the popular superpixel method
SLIC [1]. We will see that the Cut-Pursuit outperforms the SLIC method in terms of bound-
ary exactness and adaptivity to local details. In addition, we will furthermore see that it is
robust in presence of high noise in the data.

In the next part, we introduce the inverse problem of Positron Emission Tomography
(PET) and how to reconstruct images from PET data. Mathematically, it can be described
by the forward model

Ku=g

where u is the image that we seek, g is the given PET data and K the forward PET operator,
that can be essentially understood as a Radon transform for a certain set of lines. The
PET operator K, in fact, computes line integrals through the image u. The goal of the
reconstruction is then to receive the image u from the given data g, which can be done by
solving a corresponding variational problem. In this work, we focus on the reconstruction
of PET data with incorporated TV regularization and we introduce a primal-dual algorithm
and the forward-backward EM-TV algorithm [74] to optimize this problem.

We also discuss the time dependency of the gathered information and that these are
distorted by dynamics and motion. To alleviate the negative influence of the dynamics the
Fully4D algorithm was introduced in [70]. This method divides the reconstruction into multi-

1 Introduction 3

ple time dependent basis functions that describe the dynamics in the data, and corresponding
spatial weights to describe the spatial influence of these dynamics. We derive this method
in detail in this work. The contribution of this part is that we add a TV regularization to
the spatial weights and a Tikhonov regularization [86] to the basis functions and present
a corresponding optimization algorithm. We show numerically that applying the Fully4D
algorithm with incorporated TV regularization yields satisfying and better results than the
original Fully4D algorithm. Additionally, we also show the influence of additional motion in
the data.

In the last part of this work, we combine the ideas from the former parts by applying
the Cut-Pursuit algorithm to TV-regularized PET reconstruction. The main problem when
applying TV regularization to the PET reconstruction arises in the optimization process,
where we have to evaluate the full PET operator K multiple times per iteration, which is
very costly. We present a hybrid-gradient primal-dual algorithm and the forward-backward
EM-TV [74] algorithm to optimize this problem on graphs. For a more efficient method,
we apply the optimization strategy of Cut-Pursuit to the TV-regularized PET problem. We
learn that for the reduced problem we only need a reduced operator based on K. This reduced
operator can be stored as a sparse matrix and be computed from the full operator X with
only one evaluation, and can then be used to optimize the reduced problems efficiently. The
main contribution of this part is to show how to efficiently construct the reduced operator,
the convergence is still guaranteed based on the results from [46]. In the numerical section,
we will see that the Cut-Pursuit algorithm only requires a few full operator evaluations to
yield equivalently solutions as the direct methods yield for several thousands of full operator
evaluations. This is especially relevant in problems with high resolution, and therefore, very
costly PET operators K.

Mathematical Preliminaries

In this chapter, we shortly state different mathematical foundations and notations that
we use throughout this work. As they do not build on each other we write them in key notes
and refer to them when we use them. Afterwards, we define the weighted and unweighted
Lo-data-terms and the Kullback-Leibler data-term and analyse their derivative and derive
the corresponding proximity operator. For the Kullback-Leibler data-term we also state the
convex conjugate. For more insights we refer to [11, 14, 6, 71].

2.1 Mathematical Statements and Notations

e Convex Conjugate
Let X be a Hilbert space and X* its dual space. For a function f: X — RU {—o0, +oo}
the convex conjugated f*: X* — R U {—o0, 400} is given by

fr(@%)=sup {(z%, z) — f(x)}. (2.1)
reX
e Proximity Operator:
Let X be a Hilbert space and F : X — RU {400} a proper, lower-semicontinuous, convex

function. Let 7 > 0 be some constant. Then the prozimity operator is given as

. 1
prox, (y) = argmin { F(z)+ 5[z -y} }. (2:2)
zeX T
e Directional Derivative:
Let J : H(V) — R be a functional. Then the directional derivative at a point f € H(V) in
direction d € H (V) is defined as

P =y DI

(2.3)

if the limit exists.

o (Absolutely) Homogeneous Functions:
Let ®: X — Y be a mapping between two vector spaces and ¢t € R some scalar. The

function @ is called p-homogeneous with p > 0 if the following holds:

O(tz) = tPd(x). (2.4)
Moreover, the function ® is called absolutely p-homogeneous if the following holds:

O(tz) = [t|PP(z). (2.5)

Karush-Kuhn-Tucker (KKT) Conditions:
Taken from [15, 39] we state the following modified Karush-Kuhn-Tucker (KKT) conditions.

Proposition 2.1. (Karush-Kuhn-Tucker (KKT) conditions)
Let F : H(V) — R be a continuous differentiable functional that embeds a function x €

H(V) into R. Assume we want to optimize the constraint problem given as

argmin F'(z)
zeH(V) (26)

hi(z) <0, forl<i<lI

with h; continuous differentiable functions. Then there exist a set of Lagrange multiplier
{1, ..., N} with \; > 0 such that the stationary points of (2.6) satisfy the following con-
ditions

0e aF(l‘) + i)\Zahz(:E), (27)
=1

Diagonal Matrix:
Let D € R™ " be a diagonal matrix with diagonal elements D;; = d; and D;; = 0 for i # j.
Then we denote this by

D = diag(di)ie[l,n] = diag(di)n.

(Diagonal) Weighted Scalar Product:
Let f,g € RY be some vector and W € RN*N be a diagonal weight matrix. Then the
weighted scalar product denoted by (-, -)w is given as

(Diagonal) Weighted Lo-Norm:
Let f € RN be some vector and W € R¥*N be a diagonal weight matrix. Then the
weighted Lo-norm denoted by || - ||y is given as

1 fllzav = /(U Pow = /(W £, 1. (2.10)

2.1 Mathematical Statements and Notations 7

e The p-Laplace Operator:
Let f be twice-differentiable real-valued function, V f the gradient of f and V- the diver-
gence operator. Then the continuous Laplace operator is defined as

Af=V-Vf.

This is a second-order differential operator.
hallo (2.40) The p-Laplace operator is a non-linear generalization of the Laplace operator
with 1 < p < oco. It is defined as

Apu:=V - (|Vulb*Vu). (2.11)

¢ Disjoint Union:
Let I C N. The set X is a disjoint union of a family of disjoint (X;);er of subsets X; C X

for 4 € I. Then we can write
X = ieIXi' (2.12)

Note that the X; N X; = () pair-wise for i # j.

o Partitions:
We will call a disjoint decomposition of some vertex set V into a finite number of segments
A; a partition II. It is defined as

0= {AcV]iel={1,...m}, AinA;=0fori#j V=ULA} (213)

¢ Number of Elements in Set
Let A be a finite set with IV entries. Then we denote the number of elements in A by

|A| = #{i € A} = N. (2.14)

e Vectors:
In this work we denote (vertical) arrays or vectors by

v= ()X, e RV (2.15)

with entries v; € R. We use this also for stacking vectors.
Let vy, ...,vap € RY be a sequence of vectors of arbitrary length N. Then we write

(o), e RVM (2.16)

as the vector of the stacked vectors v;.
Additionally, we also use this for matrices A; € RM*L of the same size and denote this
stacked matrices as

(A;); € RVMXE, (2.17)

e Characteristic function:
Let X be some space and €2 C X a given subset. Then the characteristic function is defined
as 0 everywhere inside of {2 and as co every where else. This is defined by the following

function:

. { 0, ifzeQ 2.15)

oo, else.

e Indicator Function:
Let X be some space and 2 C X a given subset. Then the indicator function is defined
as 1 everywhere inside of) and as 0 every where else. This is defined by the following

function:

(1a)i = {1’ ried (2.19)

0, else.

¢ Vector of Ones:
Let N € N be some value. Then we denote a vector that is of the size N and filled with
only 1 as

1y = (DL (2.20)

e Kronecker Product:
The Kronecker product ® can be applied to matrices A € R™*™ and B € R** which yields

AR B = (aijB)i,j € RNk (2.21)

¢ Rows and Columns of Matrices:
Let A € R™*™ be a matrix. Then we denote with

the 7’th row and with

the j’th columns fo A.

2.2 Analysis of Different Data-Terms

In this work we feature different data-terms that we analyse in this section. For that
reason, we show some properties of the terms, derive their derivatives and the corresponding
proximity operator as defined in (2.2).

2.2.1 The Lo-Data-Term

One of the most common terms to use as a data-term in image processing is the Lo-data-
term, which is the data term in the well-known ROF problem [72].

2.2 Analysis of Different Data-Terms 9

Definition 2.2 (Ly-Data-Term).
Let X be a Hilbert space and g € X be some given data. Then the Lo-data-term D(-,g) :
H(V) — R is a functional defined as

D(f.9) = 3lf — g3 =5 > ()~ g(w))? (222)

ueV

forany f € X.
This data-term is also separable over the index set V.

Proposition 2.3 (Separable Lo-Data-Term).
Let X be a Hilbert space, g € X be some measured data and D an Lo-data-term defined in
Definition 2.2. Then D is separable over the index set V', i.e., D(f,q) = > ,ev Du(fus Gu)-

Proof. Let Dy(fu,gu) = 5(f(u) — g(u))? then the following holds

D(f.9) = 3If ~ g3 =5 3 (F(w) ~ g(u))?

ueV

= Z Du(fus gu)-

ueV

Also we want to state the derivative of the Lo-data-term for later purposes.
Proposition 2.4 (Derivative of the Lo-Data-Term).
Let X be a Hilbert space and D an La-data-term defined in Definition 2.2. Then the derivative

of D is given as

VD(f,g9) = 8D(§?g) =f-g (2.23)

The proximity operator defined in (2.2) is given as follows.

Proposition 2.5 (Proximity Operator of Lo-Data-Term).
Let everything be defined as in Definition 2.2 and T > 0 some scalar. Then the proximity
operator of the Lo-data-term D is given as

prox. p(h) = (I + 7)Y (h + 7g). (2.24)
Proof.
The proximity operator defined in (2.2) of D is given as
prox, () = argmin { 37 ~ gl + -1 ~ bl | 225
XT = a - P - . .
H ferwv) L 2 2o 2 (2.25)

Taking the derivative from Proposition 2.4 and isolating f in the optimality condition yields
f=U+7) " (h+7g) (2.26)

from which follows the given proximity operator. O

10

2.2.2 The Weighted L, Data-Term

The (diagonal) weighted Lo-data-term is defined as the Lo-data-term in Definition 2.2,
but instead of a common Le-norm one applies a weighted Lo-norm with a diagonal weighting
matrix W as defined in (2.10). Then the data-term is given as follows.

Definition 2.6 (Diagonal Weighted Lo-Data-Term).
Let f,g € RN and W € RJEVOXN a diagonal weighting matriz. Then the diagonal weighted

Lo-data-term is given as

Dw(f,g9) = %Hf —gll3w = %(W(f -9).f—9). (2.27)

The derivative for this data-term is given as follows.

Proposition 2.7 (Derivative of Diagonal Weighted Lo-Data-Term).
Let f,g € RN and W € RVXN g diagonal weighting matriz. Let Dy be defined as in (2.27).
Then the derivative is given as:

VDw(f,9) = oy W(f—g). (2.28)
Proof.
By standard differentiation rules, abbreviating % = Oy and using the linearity of dy we can
reformulate
—a; Wl 9).f-9)
1
=5 OW(f =), f = 9) +(W(f ~9),07f = 9) (2.29)
1
=5 W(f=9)+W(f~g)
=W(f-g).
O

Next we state and derive the proximity operator as defined in (2.2) for the weighted
Lo-data-term.

Proposition 2.8 (Proximity Operator of Diagonal Weighted Ls-Data-Term).
Let everything be defined as in Definition 2.6 and a given 7 > 0. Then the proximity operator
of the diagonal weighted Lo-data-term Dy is given as

prox, p,, (h) = (I + W) ' (h+ TWg). (2.30)
Proof.
The corresponding proximity operator by
ProX,py, (h) = argmin ¢ —[|f = hllz + Sllf = gllow ¢- (2.31)
fGRN T 2

2.2 Analysis of Different Data-Terms 11

Taking the derivative of Dy from (2.29) reformulating the optimality condition of (2.30)

yields
1
=_(f-)+Wf-Wy
O=f—-—h+TW[f—-7Wyg
(I+TW)f =h+1Wyg
f=I4+7W)Yh+1Wg)
which is the stated proximity operator.]

Note that the proximity operator can be computed directly since I + 7W is a diagonal
matrix, and thus, the inverse is just the inverse of every entry on the diagonal.

2.2.3 Kullback-Leibler Data-Term

In this section, we investigate the basic properties of the Kullback-Leibler data-term. To
that end, we take the Kullback-Leibler divergence [45] that measures the directed divergence
between two discrete probability distributions P and @ as

L
Z log< J) (2.32)

The Kullback-Leibler (KL) data-term then given by the following definition.

Definition 2.9 (Kullback-Leibler Data-Term).
Let f e RY, g € RM and a matriz K € RM*N with Kf > 0 everywhere. Then the Kullback-
Leibler data-term is defined as

M

Dkr(Kf,9) Z i = 95— 9; log (K [);) (2.33)
Jj=
=(Kf—g—g log(Kf), 1) (2.34)

with 1p; = ()M, as defined in (2.20).
The derivative of the KL data-term is given as follows.

Proposition 2.10 (Derivative of Kullback-Leibler Data-Term).
All assumptions of Definition 2.9 are valid. Then for anyi € {1,..., N} we can compute the

pointwise derivative of Dir, as:

6DKLf 9Dk (1,9 gi
’ ZKw St (2.35)
= JiJe

The gradient of Dy, is then defined as

VDy = K1y — K* gf

12

Proof.
We compute the derivative pointwise for every j € {1,..., M} with the abbreviation 8%_ =
0y,. Let us state two derivatives we make use of in the following deduction

N
05, (Kf)j =05, Y Kjfr = Kji, (2.36)
k=1
9y, log((K f);) = (Klf)j (D) = Iff})j (2.37)

Then we can compute

aF. =0, ’_I(Kf)j—afigj log (K f);)
M
K..

— K —g; J?

]; YD), (2.38)
_M .._M 9
_]ZlKﬂ ZKJ, iwh
_ * * g

With this we directly deduce the given gradient stated above by writing it in a vectorized
form. O

In this work we use the proximity operator of the convex conjugate of the KL data-term
which is given as follows.

Proposition 2.11 (Convex Conjugate of the KL data-term).
The convex conjugate as defined in (2.1) of the Kullback-Leibler data-term is given for some
given data g € NM by

M
Dy (@ Z (log(g;) — log(1 — z;) — 1) (2.39)

with x; <1 for1 <j <M.

Proof.

To compute the convex conjugate that is defined in (2.1) of Dk we have to solve

Dycr(z%)= sup {(z",2) — Dxr(x,9)}

x€RM
Z zj—gj — g; log (x]):| } (2.40)

= sup | (z*,x)
z€RM

= sup {(w*,x)+Zgj—xj+gj log(a:j)}.
j=1

z€RM

Computing the pointwise derivative of the term in (2.40) and reformulating the optimality

2.2 Analysis of Different Data-Terms 13

condition yields
(2.41)

for z; # 1. This is vectorized just

=2 (2.42)

with 27 # 1 for all 1 < j < M. To insert z* into the term (2.40) we have to also assume that
z; < 1 everywhere, since g; > 0 and log is not defined for values smaller than 0. Hence, we
assume z7 < 1 for all 1 < j < M and plug it into (2.40) which yields

M
D = - - 1
xo(@") <$71_x*>+j§:1 9j 1_1,;4'9] 09<1_$;>

g; 9
_ 1
1— 2o l—x}’f—'_g]()g(l—a:;f)

Il
S
B

<
Il
—
<

o . (2.43)
-y g,< o1 —i—log(9j))
= j
= 1—af 1-—ua; 1 —aj
M
=" g (log(g;) — log(1 —2}) — 1)
j=1
where we used that the following holds
x¥ 1 ¥ —1 1—a
j _ _ i _1 ‘
-2} 1-2; 1-—uaj 1—aj (2.44)
O

With this one can compute the proximity operator for the convex conjugate of the KL

data-term.

Proposition 2.12 (Proximity Operator of the Convex Conjugate).
Let the conditions of Proposition 2.11 hold, let g € RM be a given data set and T > 0 a scalar.
Then the proximity operator of D.; can be derived as

1
prox,p« (x) = 3 (w +1—\/(x—1)"+ 4Tg> . (2.45)

Proof.
This is a special case of the proximity operator stated in [66, Appendix A.2].]

Part |
Graph Cut-Pursuit

Introduction to Graph Processing

Graph data structures play an important role in many different fields of research today, e.g.,
image processing [27, 33], machine learning [95, 4, 13], or network analysis [49, 58, 77]. Their
key advantage is that they allow to model and process discrete data of arbitrary topology.
Recently, there has been a strong effort to translate well-studied tools from applied mathe-
matics to finite weighted graphs, e.g., variational methods and partial differential equations
(e.g. [27, 28, 51]). This enables one to apply common tools to many new application areas
that cannot be tackled directly by traditional data modeling techniques, i.e., grids and finite
elements. One example we investigate in this work is unstructured point cloud data which can
be handled by the use of graphs. Furthermore, graphs allow to exploit repetitive patterns or
self-similarity in the data by building connections between related data points. Hence, they
can be used to process both local as well as non-local problems in the same unified framework.
Due to the abstract nature of the graph structure one may build hierarchical graphs to rep-
resent whole sets of entities by a single vertex, e.g., image regions consisting of neighboring
pixels [55]. These coarse data representations allow for very efficient optimization techniques
as we discuss in Chapter 4 later in this work.

In this chapter, we introduce finite weighted graphs. In particular, we explain how to
describe them mathematically, translate them into the setting of variational methods and

use them to solve optimization problems.
3.1 Finite Weighted Graphs

The mathematical foundations for finite weighted graphs have been introduced in [27, 32, 33].
In these works the authors developed a common consent on basic concepts and definitions
to build a general graph framework and the corresponding discrete mathematics. In the
following, we recall these basic concepts and the respective mathematical notation, which we
need throughout this work.

3.1.1 Basic Graph Terminology

We start with the definition of a finite weighted graph.

18

Figure 3.1.: An example of an undirected finite weighted graph G = (V, E, w) with
the vertex set V = {1,2,...,9}, an edge set £ = {(1,2),(1,4),(2,6),...} and some
weighting function w.

Definition 3.1 (Finite Weighted Graph).
A finite weighted graph G is defined as a triple G = (V, E,w), where

o V={1,....N}, N € N, is a finite set of N (consecutive) indices that we denote as the
vertex set,

o £ECV xV isa finite set of (directed) edges connecting vertices in V', and

o w: F — R is a non-negative weight function defined on the edges in E.

A simple finite weighted example graph can be seen in Figure 3.1. For given application data
each verter u € V typically models an entity in the data structure, e.g., an element of a
finite set, a pixel in an image, or a node in a network. It is important to distinguish between
abstract data entities modeled by graph vertices and attributes associated with them. The
latter can be modeled by introducing vertex functions as defined in Definition 3.3 later on.
An edge (u,v) € E between an origin node v € V and an end node v € V models a
relationship between two entities, e.g., geometric adjacency, entity interactions, or similarity
depending on the associated attributes. In our case, we consider graphs with undirected edges

Definition 3.2 (Undirected Finite Weighted Graph).
Let G = (V, E,w) be a finite weighted graph. The graph G - and thus the edge set E - are
called undirected if

(u,v) € E< (v,u) € E, V(u,v) € E. (3.1)

Additionally, for every edge (u,v) € E we have that the weights are symmetric, i.e., w(u,v) =

w(v,u).

Let us introduce some further designations and notations. Let us denote a directed edge
set for £ as Eg = {(u,v) € E|u <v}. A node v €V is called a neighbor of the node u € V

3.1 Finite Weighted Graphs 19

if there exists an edge (u,v) € E. For this relationship we use the abbreviation v ~ u, which
reads as “v is a neighbor of u”. If on the other hand v is not a neighbor of u, we use v # u.
We define the neighborhood N (u) of a vertex u € V as N(u) .= {v € V: v ~ u}. The degree
of a vertex u € V is defined as the total number of its neighbors deg(u) = [N (u)].

3.1.2 Vertex and Edge Functions

Let us introduce graph functions to relate the abstract structure of a finite graph to some
given data. More precisely, we introduce vertex and edge functions. A wertex function is

defined as follows.

Definition 3.3 (Vertex Function).
Let G = (V, E,w) be a finite weighted graph. Then a vertex function is defined as a function

f:V o R? (3:2)

that maps every vertex u € V to a d-dimensional vector f(u) € R? for d € N.

Moreover, let H(V;RY) = {f : V — R} be the space of these vector-valued vertex
functions. We know that the vertices V' are in fact a consecutive set of indices from 1 to IV,
and thus, we can represent a vertex function f € H(V;R%) by a vector (or matrix) f € RN*4,

As a consequence, we can endow H(V;R?) with the following inner product

(fs D nvray = D (f(w), g(u))pa- (3-3)

ueV

Then H(V;RY) is a Hilbert space. For the sake of simplicity we denote H(V;R?) as H(V) in
the following.

Remark 3.4. Note that we use a vertex function f € H(V;R?) and its alternative represen-
tation as a matriz fe RN %4 jnterchangeably in this work and denote both as f.

With the definition of the Hilbert space H (V') and the associated inner product (3.3) we
can define the well-known concepts of LP- and L>-norm for functions f € H(V).

Definition 3.5 (LP-Norm of Vertex Functions).
Let G be a finite weighted graph as in Definition 3.1 and f € H(V) be a vertex function as
in Definition 3.3. Then the LP-norms on graphs are defined as

1/
1l = (S If@Ir) ™, fori<p<oo,
ueV (34)

£l = max(If@l). forp=oo.

Similar to vertex functions we also define vector-valued edge functions.

Definition 3.6 (Edge Functions).
Let G be a graph as in Definition 3.1 and E its corresponding edge set. Then an edge function

20

s defined as
F:E—R™ (3.5)

that maps each edge (u,v) € E to an m-dimensional vector F(u,v) € R™ with m € N.

Note that the dimensions d and m of the image spaces of the vertex functions and the edge
functions, respectively, can be chosen arbitrarily as any positive integer. This solely depends
on the application. However, as before, we set H(E;R™) as the space of edge functions and
abbreviate H(E;R™) by H(E). The space H(E) is a Hilbert space endowed with the inner
product

(F, Gy = 3 ((F (), G,)y, (3.6)
(u,v)EE
for any F,G € H(F). Analogously to the definition of the LP-norm for vertex functions in
Definition 3.5, we can define the LP-norm for edge functions.

Definition 3.7 (LP-Norm for Edge Functions).
Let G = (V,E,w) be a finite weighted graph and F € H(E) be an edge function as in
Definition 3.6. Then the LP-norms on edges are defined as

1/p
1, = (X IF@o)) ", for1<p<oo,
(u,v)EE (37)

F =00
(£§gE(II (u, 0)]]), for p = oo

1l oo

To finish this introduction, let us take a look a the weights w in Definition 3.1. The
weights w model the significance of a relationship between two connected vertices (u,v) € E
with respect to an application dependent criterion. For this reason, one introduces a weight
function w € H(E;R,). Often, the weight function is chosen as a similarity function based
on the attributes of the modeled entities, i.e., by the evaluation of associated vertex functions.
In real-world applications, the weighting function w is chosen such that it takes high values
if it corresponds to important edges, i.e., high similarity of the involved vertices, and low
values for less important ones. In many applications, one normalizes the values of the weight
function such that w: E — [0, 1].

Remark 3.8. Note that a natural extension of the weight function to the full set V x V 1is
given by defining w(u,v) =0, if v £ u or u = v for any u,v € V.. Then the edge set of the
graph can simply be characterized as E = {(u,v) € V x V | w(u,v) > 0}.

In this work, we only consider undirected finite weighted graphs as in Definition 3.2. Thus,
we only use symmetric weighting functions, i.e., weighting functions that satisfy w(u,v) =
w(v,u), for all (u,v) € E. Further, we exclude self-loops in the graph, i.e., u ot u for allu € V.
Let us introduce some discrete mathematics in the following subsection.

3.1 Finite Weighted Graphs 21

3.1.3 First-Order Partial Difference Operators on Graphs

Using the basic concepts from the previous subsections, we are able to introduce the
needed mathematical tools to translate standard differential operators from the continuous
setting to finite weighted graphs. The fundamental elements for this translation are first-
order partial difference operators on graphs, which have been initially proposed in [27, 33].
In the following, we assume that the considered graphs are connected and undirected with
neither self-loops nor multiple edges between vertices. We define a discrete derivative on a
graph as follows:

Definition 3.9 (Weighted Partial Difference).

Let G = (V, E,w) be an undirected finite weighted graph as defined in Definition 5.2 and let
f € H(V) be a vertex function. Then we define the weighted partial difference of f at a
vertex u € V along the edge (u,v) € E as:

O f(u) = yJw(u,v)(f(v) = f(u)) . (3-8)

We denote these weighted partial differences also as finite differences.

Remark 3.10.
Analogous to the continuous definition of directional derivatives the graph derivatives have

the following properties

Of(u) = =0y f(v), V(u,v)€E
fu) = fv) = 0yf(u) =0.

Based on the definition of weighted partial differences in Definition 3.9 one can straight-
forwardly introduce the weighted gradient operator on graphs.
Definition 3.11 (Weighted Gradient Operator).
Let G be a graph as in Definition 3.9. Then we call the operator
Vo :HV)—= H(E), (3.9)

the linear weighted gradient operator on the graph G. It is defined as the vector of weighted
finite difference on each edge (u,v) € E given as

(Vuf)(u,v) = 0pf(u), ¥Y(u,v)€ E. (3.10)

We call V. f the weighted gradient of f on G.

22

In this work, we want to apply the concept of variational methods to the finite weighted
graph setting. In this context, adjoint operators are of importance. For any linear operator
A :H(V) = H(E) on a finite weighted graph, its adjoint operator A* : H(E) — H(V) is
characterized by

Then the adjoint of the weighted gradient operator V,, : H(V) — H(E) is given as
Vi H(E) — H(V) which is a linear operator for which holds

(Vuf, ey = ([VG nuwy VEEH(V),G e H(E).

The adjoint gradient operator can be deduced as in [27] and is computed as follows:

Definition 3.12 (Adjoint Gradient Operator).
For an undirected graph G given as in Definition 3.2, the weighted adjoint operator V7,
applied to an edge function G € H(E) evaluated at some vertex uw € V is given as

(Vi,G)(u) = Z Vw(u,v)(G(v,u) — G(u,v)). (3.11)

With these definitions at hand, it is easy to derive the weighted divergence operator on a

graph via the adjoint operator as div,, := —V,. Thus, we define:

Definition 3.13 (Weighted Divergence).
For an undirected graph G given as in Definition 3.2, the weighted divergence operator applied
to an edge function G € H(E) at a vertex u € V is given as

(divy G)(u) = Z \w(u, v)(G(u,v) — G(v,u)). (3.12)
v~y
The weighted divergence on a graph measures the net outflow of an edge function in each
vertex of the graph.

3.1.4 Total Variation Regularization on Graphs

In the following, we want to introduce a discrete generalization of the well-known Total
Variation (TV) regularization. We do not offer any further introduction to this topic and
refer to the introductory chapter A guide to the TV zoo in [14] by Martin Burger and Stanley
Osher.

In the course of this work, we make use of the generalized TV regularization that we denote
as p-g-TV regularization. To introduce this, we first define a family of discrete p-g-norms .

3.1 Finite Weighted Graphs 23

Definition 3.14 (Discrete p-g-Norm of Edge Functions).
Let G be an undirected graph as in Definition 3.2, p,q > 1, and F € H(E;R™) an edge
function. Then the p-qg-norm of the edge function F is defined as

1Fllpg = | D2 IF @)l | - (3.13)

(u,v)EE

Before introducing the p-¢g-TV regularization on graphs, let us address this subject by
investigating the TV regularization in the context of images and then moving over to the
setting of graphs. In most imaging applications using the TV regularization, one distinguishes
between anisotropic and isotropic TV regularization. Let us assume that we use forward
differences for the discretization of the gradient. Then, for a given m X n image u, the

anisotropic TV regularization is given as

m n
IVullhia=>">" \/(um‘+1 —uij)* + \/(uz'+1,j — ui)?

i=1j=1

and the isotropic TV regularization as

m n
IVl =" \/(Uz@jﬂ — Ui j)? + (i1 — uig)>

i=1j=1

The isotropic regularization is defined as a term that penalizes the length of the gradient
in each pixel, while the anisotropic case is decoupled for every finite forward difference.
Hence, when we transfer this to the graph setting, this yields for a given finite weighted
graph G = (V, E,w) and a 1-dimensional vertex function f € H(V;R) that the anisotropic

TV regularization is defined as

IVFl =3 3 Vwlu o)/ (f(v) - f(w)?

ueV v~u

and the isotropic case as

IVfllhz =Y > w(uv)(f(v) - f(u)?.

ueV | v~u

Since we have already introduced d-dimensional vertex functions, it is of interest to also
define TV regularization terms for these functions. As we have said before, we call the
TV regularization isotropic if we penalize not a single partial derivative over one edge, but
multiple edges at once. With this idea in mind, we introduce four different variants of TV

regularization on graphs in the following.

24

Definition 3.15 (Different TV Regularization Terms on Graphs).
Let G = (V,E,w) be a finite weighted graph and f € H(V;R?) some d-dimensional vertex

function. Then we can define the following TV regqularization terms:

Anisotropic TV Regularization:

d
IVufl =3 3 3 wlu,v)2|f(v); — f(u)] (3.14)
7=1

ucV v~u g

Spatially-Isotropic TV Regularization:

[NIE

d
IVuwfll =32 > (3 wu,v)(f(v); — f(u);)?)

weV j=1 v~u

(3.15)

Channel-Spatially-Isotropic TV Regularization:

N

d
IVufll= D2 (32 D wlu,v)(f(v); — f(u);)?)

weV v~uj=1

(3.16)

Channel-Isotropic TV Regularization:

o=

d
IVufll=>" > (wlu,0) D (F(v); — f(u);)?)

ueV v~u 7j=1

=33 wlu,0)? || f(v) — fu)]2

ueV v~u

(3.17)

Note that we call the isotropy over the dimensions channel-isotropy since in the context
of images the term dimensions refers to the image space and not to the value space. In fact,
a 1D signal, a grayscale image and a 3D volume image are all 1-dimensional vertex functions
on a graph that encodes the multi-dimensional structures of the respective data accordingly.
On the other hand, in the graph setting, an RGB image is given as a 3-dimensional vertex
function f € H(V;Ri) on a grid graph describing the image. The dimensions are denoted
as red-channel, green-channel and blue-channel. In reminiscence to this notation, we call
dimensions of the vertex function also channels from now on, and hence, the isotropic TV
terms over the channels channel-isotropic TV regularization. We call the isotropy over the
edges in this work spatial-isotropy since in the image context it covers the derivatives in the
spatial directions.

Remark 3.16.

Both isotropic regularizer defined in (3.16) and (3.17) are important for denoising images,
but not further comsidered in this work for the following reasons: In the mext chapter, we
introduce the Cut-Pursuit algorithm where we use graph cuts that minimize energies that
incorporate TV-type regularizers. It is not easy - or maybe even not possible - to build a
graph cut algorithm to solve a spatial isotropic reqularization problem. Thus, we cannot

derive a Cut-Pursuit algorithm for such reqularizers.

3.2 Graph p-¢-Laplace Operator 25

Now let us finally introduce the p-¢g-TV regularization based on p-g-norms defined in
Definition 3.14 and the weighted gradient operator V,, for p,q > 1.

Definition 3.17 (Discrete p-¢-TV Regularization).
Let G be an undirected graph as in Definition 3.2, p,q > 1, and f € H(V;R?Y) a vertex
function. Then the p-¢g-TV regularization is defined as

=

||vwf||p;q = Z HV?Uf(u”U))Hg]

| (uv)eE

LA

= ZZ u,v)3 | f(v) = (U)Ilé’] (3.18)

L ueV v~u

P
q

hSAC

= %gw(5(Z|f |)

The advantage of using the general p-¢-TV (3.18) is that this term captures different
regularization terms as the anisotropic TV regularization (p = ¢ = 1) we state in (3.14),
the channel-isotropic TV (p = 1,¢ = 2) from (3.17) and the classical Tikhonov regularization
(p = q = 2). These regularization terms are widely used for denoising monochromatic and also
vector-valued signals, see e.g. [27, 56, 11] and references therein. It is also used to combining
image reconstruction with denoising as we do in Chapter 10 for reconstructing data from
Positron Emission Tomography (PET). Depending on the choice of the parameters p,q > 1,
the introduced regularization has different properties that we will analyse later on.

3.2 Graph p-qg-Laplace Operator

In the following, we provide a small course about the topic of p-¢-Laplace operators. The
continuous p-Laplace operator in (2.11) is an example of a second-order differential operator
for which we can define a discrete counterpart on finite weighted graphs. It allows for the
translation of various partial differential equations to the graph setting and it has been used
for many image processing applications(cf. [27, 33, 52, 51]). For a detailed discussion of the
graph p-Laplacian and its variants we refer, to [28].

Based on the first-order partial differential operators introduced in (3.10) and (3.12), we
are able to formally derive a family of graph p-g-Laplace operators Ay, po: H(V) — H(V) b
computing the derivative of the p-¢-TV regularizer as defined in (3.18) in its differentiable
parts. In the following, we derive a multi-dimensional version of the p-Laplacian introduced
in [27] and extend it to a p-¢ Laplace operator. For the sake of simplicity, we assume that we
work on an undirected finite weighted graph G = (V, E, w) as defined in Definition 3.2. Note
that this implies that the weight function w € H(E) is symmetric, i.e., w(u,v) = w(v,u).

26

Definition 3.18 (The p-g-Laplace Operator).

Let G be an undirected graph as in Definition 3.2 and f € H(V') a vertex function. Moreover,
let |V f(u,v)| denote the pointwise absolute value in the gradient V. f(u,v) and - be a
pointwise product between vectors. Then the weighted p-q-Laplace operator is defined as

L. _ _
Aupaf = 5 dive (IVul 15 Vuf - [Vufl*) (3.19)

In Appendix 3.A, we show that one can reformulate the p-g-Laplace operator in the
following way for every u € V and 1 < j <d

(Bupaf) ()
= 3w, 0) | fv) — F) [P F(0); = F) "2 (F); — flu),).

v~u

(3.20)

In Appendix 3.B, we derive that the p-g-Laplace operator is equivalent to the derivative of
the differentiable parts of the p-¢-TV regularizer. We consider two special cases that we
face several times in this work. The first special case with p = ¢ is the multi-dimensional

anisotropic p-Laplacian given as

AL () = > w(u,)2V f (u,0) - [V f(u,0) P72, (3.21)

vNU

The second case for ¢ = 2 is given as the multi-dimensional (channel)-isotropic p-Laplacian

ALy fw) = 3w,)} [£0) - F@5 2 Vauf(u,0) (3.22)
v~Yu
For p = ¢ = 2 we obtain a notion of a classical linear operator known as the un-normalized

graph Laplacian, now in multiple dimensions, as

Aupflu) = Y wlu,v) (f(v) = f(u)).
v~

Remark 3.19.

Note that in the terminology of [28] both variants of the p-Laplacian would be called anisotropic
since the authors discussed only the one-dimensional case of vertex and edge functions. In
our more general case we relate the term isotropic to the coupling of coordinates along all
dimensions, which we call channel-isotropy as we have already pointed out in Definition 5.15
and the following. Also note that in the anisotropic case the inner terms decouple and allow

for an pairwise independent computation.
3.3 Optimization Problems on Graphs

Thus far, we have created the basis for transferring common mathematical formulations
and operations into a unified graph setting. In this section, we consider and solve variational
problems on graphs. An exhaustive introduction into variational problems can be found in
[11, Chapter 4.2]. As a case study for algorithms that can solve variational problems on

graphs we use the very common primal-dual algorithm introduced first in the work of Pock,

3.3 Optimization Problems on Graphs 27

Bischof, Cremers and Chambolle [63] for minimizing a convex relaxation of the Mumford-
Shah functional and then followed up in a more general framework by Chambolle and Pock

[17]. The primal-dual algorithm solves problems given as

argmin F(Kf) + H(f) (3.23)
fex

with X, Y two real finite-dimensional vector spaces, a continuous linear operator K: X — Y,
and two proper, convex and lower-semicontinuous functionals ' and H. To translate problems
of this kind onto a finite weighted graph G = (V, E,w) as defined in Definition 3.1 we first
set X = H(V) - as defined in Section 3.1.2. We do not specify Y here, since it depends on
the setting we are dealing with. However, let us mention that in most cases in this work Y is
equal to the Hilbert space of edge functions H(F). The continuous linear operator K is then
given as K: H(V) — Y. Thus, the corresponding saddle-point problem is given as

min min (K f,y) + H(f) — F* 3.24

jin, min (Kfy) + H(f) = F*(y) (3.24)

where F*: Y — R, denotes the convex conjugate functional of F, as defined in (2.1), which

maps edge functions to a positive real value. Consequently, we can directly obtain the fol-
lowing graph version of the primal-dual hybrid gradient algorithm in [17].

Algorithm 3.20 (Primal-Dual Hybrid Gradient Algorithm on Graphs).

Let G be an undirected finite weighted graph as in Definition 3.2. Choose step sizes T, o >
0,0 € [0,1]. Initialize f* € H(V) and y° € Y. Set fO = fO. Then the primal-dual algorithm
on the graph G to solve (3.23) is given as

Y"1 = prox, g« (y" + JKf”)
fn—l—l — prOXTH(f” _ TK*yn—H) (3.25)
f_'n+1 — fn+1 + 9(fn+1 o fn)

with the prozimity operators prox as defined in (2.2).

In this work, we denote the primal-dual hybrid gradient algorithm as primal-dual algo-
rithm for simplicity. With this primal-dual algorithm we can solve any multi-dimensional
variational problem of the form (3.23) on a given graph G. All of the proofs and methods
to determine or update the step sizes 7 and ¢ are analog in the graph setting. Nevertheless,
choosing the step sizes as constant values can be tricky in a graph setting. According to [17],
the step sizes 7,0 > 0 should be chosen such that

ro||K|)? < 1. (3.26)

If we assume that the graph G has a fixed structure, e.g., a grid graph representing an image,
and Y is somehow related to H(FE), then we map into a set of edge functions that are always
structured the same for different instances of data. Thus, the operator norm ||K|| has always
the same value since it only depends on the structure of G and not on the data. Accordingly,
the value for ||K|| only has to be computed once and can be used for every subsequent

28

application. On the other hand, if we have some unstructured data, e.g., point clouds or
some graph built from pixel or patch similarities, the resulting graphs vary depending on the
data and the chosen method to build the graphs. Consequently, the edge set E and the space
of edge functions H(F) differ extremely for every graph. Thus, the condition number || K|| of
the operator is different for every graph, and one has to compute it for every application on
new data. There exist good methods to approximate the condition like the power iteration,
but this entails some extra computational costs one would like to prevent. Additionally, a
constant step size might also be an inefficient choice if some vertices have only a few neighbors
and some have many. We see this later on in the numerics section when we use the gradient
operator, i.e., Y = H(F),K = V,, and solve an ROF problem on graphs as we state in
Section 3.3.1. To prevent these inefficient constant step sizes, it is a straightforward idea to
compute an adaptive step size for every node in V' and every edge in E such that it better
reflects the given graph structure. A method to do this was introduced in [62] called diagonal
preconditioning, where the condition of every node and every edge is incorporated in the step
sizes. This method can be directly applied to the primal-dual algorithm on graphs as defined
in Algorithm 3.20. As we have pointed out in Section 3.1.2, we can represent any vertex
function f € H(V) as a vector f € RV*4 with N as the number of vertices. Moreover, we let
Y = RM which corresponds to the case of Y = H(E) with M denoting the number of edges.
Thus, we can describe any continuous linear operator K : H(V) — Y as a matrix K € RM*N

and define a diagonal preconditioning as follows.

Definition 3.21 (Diagonal Preconditioning). Let T = diag(t) € RY*N with T = (11,--- ,7n)
and ¥ = diag(o) € RY*M with o = (01,--+ ,00). Then analogously to [62] the individual

step-sizes are given as

1 1

— 0= ————, (3.27)
ij‘il | Kyl 2 Zf’il | K|

T =

with a € [0,2].

Note that in this work we denote R4 = R>p. For more insights into convergence and
rationale for this appraoch please consult [62]. For a better understanding, let us apply this
to the case where Y = H(E), M the number of edges in G and K = V,,. The operator K can
be interpreted as a weighted differential operator matrix D € RM*N representing the graph
operator V,,, which means that Df = V,,f. Since F is finite, we can find a corresponding
edge e; = (u;,v;) € E for every i € {1,..., M} and define D as follows

Dia= < —vwv,u;), a=uv;, (3.28)

As we can see, the number of entries in a column for a given vertex u € V depends on
the number of neighbors. Thus, for graphs with a rather inhomogeneous structure, e.g., a
symmetrized k-nearest neighbors graph (cf. e.g. [9, 23]) on unstructured point cloud data, the
norm of the operator might not be a good choice for the step sizes 7 and o in (3.20) as it might
be too conservative for most vertices. Applying preconditioning often is a good measure to

3.3 Optimization Problems on Graphs 29

enhance the convergence speed of the algorithm. In order to apply the preconditioning scheme
from Definition 3.21, we have to compute the row and column sums of the absolute values in
D. Assuming that w(u,v) = w(v,u) for all (u,v) € E the component-wise preconditioners
for D are then given by

1 1
Ty = i 2 = o YueV
Zi:l |D7«,U| e vau QU(’U,, U)T
1 1 (3.29)
o; = = =, viel{l,....M
’ douev 1 Diul® 2w(u, V)2 { !
for any a € [0,2]. This leads to the diagonal preconditioners
T = diag (11,...,T
g(m N) (3.30)

E:diag<01,...,0'M>.

As we can see, the preconditioning for the primal update T takes the number of edges
and their weights directly into account, and thus, improves the condition number of very
inhomogeneous graph problems significantly.

This gives us all the tools we need to solve a multi-dimensional variational problem given
as in (3.23) with a primal-dual algorithm on any finite weighted graph G.

3.3.1 ROF on Graphs

In this subsection, we introduce the well-known Rudin-Osher-Fatemi (ROF) denoising
problem from [72] on graphs. It is a variational problem with an Lo-data-term and a TV
regularization. In this section, we have already derived all tools needed to state the mini-
mization problem on a graph. Let G = (V, E, w) be an undirected finite weighted graph as in
Definition 3.2 and g € H(V;R?) some given d-dimensional noisy data. Let the regularizer be
the general p-¢-TV regularizer from (3.17). Then the general p-¢g-ROF problem on the graph
G to denoise g is given as

1 9 «
argmin —||f —gll5+ —||Vu flP.,, 3.31
wgmin JI1£ — ol + 501901, (3.31)

where the regularization parameter o > 0. Note that « is divided by 2 since we are working
on undirected graphs for which every edge is summed up twice, once for each direction. This
is necessary to compare the results of (3.31) with the results of the classical ROF problem
applied to an image where the gradient is defined by finite differences, which is in fact like a
directed graph. To put this problem into relation with the general problem in (3.23) we set
Y =H(E), K=V, H=3|-—g||}and F = 35|l [[psq- To state the primal-dual algorithm on
graphs for problem (3.31), we have to compute the proximity operators for F* and H. Since
H is a squared Lo-norm, we can compute the proximity operator easily as we have shown in
Section 2.2.1 in Proposition 2.5. For the functional F' = §||-||5,4, we have derived the different
proximity operators for different combinations of p and ¢ in Appendix 3.C. To be more general,
we state the primal-dual algorithm with PYOX g (211" (y) as a representation for the different
proximity operators and point to the corresponding definition in Appendix 3.C.

30

At this point, we can state the primal-dual algorithm to solve the general ROF optimiza-
tion problem in (3.31) on graphs and also incorporate the diagonal preconditioning stated in
(3.30).

Algorithm 3.22 (ROF Primal-Dual Algorithm on Graphs).

Let G be an undirected finite weighted graph as in Definition 3.2. Choose 6 € [0,1] and
compute diagonal preconditioners T,% as in (3.30). Initialize f© € H(V) and y° € H(E).
Set fO = fO. Then the primal-dual algorithm on the graph G to solve the ROF denoising
problem in (3.22) is given as:
Y = proxsg - (0" + ZVwf")

=+ T) "+ T(div(y™) + 9)) (3.32)
JFn-i—l — fn+1 + 9(fn+1 . fn)

with the proxzimity operators PrOXs (2 [l,.)* 45 defined in Appendiz 3.C' for selected p and q.
=+l

Remark 3.23.
Note that in Algorithm 3.22 one could still try to solve the problem with fized step sizes T

and o if the graph structure is in some sense significantly homogeneous.

3.3.2 Weighted ROF on Graphs

In this work we will discuss several problems where a weighted Lo-data-term is incor-
porated, e.g., the reduced problem of the Cut-Pursuit algorithm we introduce in the next
chapter and the TV-step in the forward-backward EM-TV algorithm to reconstruct TV reg-
ularized PET data in Section 10.2. Hence, we want to discuss the weighted Ls-data-term
in this section and derive a primal-dual algorithm to solve a weighted ROF problem. The
weighted Lo-data-term including a diagonal weight matrix W € RV*Y is given as

SI7 = glBw = SOW(F). f). (33

Before we conclude this chapter, we want to state the primal-dual algorithm for the weighted
ROF problem on graphs

1 9 o
argmin || f — glls w + - [IVw f5; (3.34)
fenw) 2 2W T gy b

RNXN

for a given diagonal matrix W € and some data ¢ € RY. From Proposition 2.8 we

know that the proximity operator of the weighted Lo-data-term is given as
prox, p,, (f) = (I +7W) 7 (f +7Wg) (3.35)

for some g € H(V). Thus, we can replace the primal proximity operator in Algorithm 3.22
by (3.35) and get the following primal-dual algorithm:

3.4 Graph Cuts for Energy Minimization 31

Algorithm 3.24 (Weighted ROF Primal-Dual Algorithm on Graphs).
Let every assumption be as in Algorithm 5.22 and in addition let W € RN*N be o diagonal

matriz. Then the primal-dual algorithm to solve (3.34) is given as

Y™ = proxgia - (8" + 2V f)
= (T TW) (" + TW (diva (™) + g)) (3.36)
fn—f—l —_ fn+1 + 9(fn+1 _ fn)

with the proximity operators ProXg(a |2)+ @S defined in Appendiz 3.C' for selected p and q.
o - ll;

3.4 Graph Cuts for Energy Minimization

In this section, we want to introduce the ideas that Kolmogorov et. al. discuss in [43] to
minimize an energy functional on a graph G for a labeling function 15 € {0,1}V! given as

J(1) =Y Du(pu)+ > Ruu(1s(u),15(v)) (3.37)

ueV (u,w)EE,

with the directed edge set Eq = {(u,v) € E | u < v}. The data-term D, is the cost of
assigning a label to v € V and R,, measures the cost of u,v € V to have the same or
different labeling. Optimizing this for 15 would generate a binary splitting of the vertices in
V into two sets B C V and B¢ C V. In [43] they suggest to do so using a minimum s-t-cut,
which is a minimum graph cut between two terminals s and ¢ in a directed graph. They state
that if an energy J is graph-representable (cf. [43, Lemma 3.2]) one can compute the exact
minimum of J in polynomial time by computing the s-t-cut. In [43, Theorem 4.1] they state
that for a binary problems as in (3.37) the energy J is graph-representable if, and only if,
the following holds

Ruw(0,0) + Rup(1,1) < Ruy(0,1) + Ryo(1,0). (3.38)

If this inequality holds J is called regular. To build the graph Gt - which we denote here
flow graph, because we solve it by computing the maximum flow - that represents the energy
J one first introduces two terminals to V, i.e., s as the source and t as the sink, and store

them in a new vertex set
Vflow =Vu {8, t}. (3.39)

To compute the new edge set Eyo,, we follow the instructions in [43, Section 4.1]. For every
vertex u € V' they propose to add an edge (s,u) from the source s to a node u with capacity

c(s,u) = Du(1) = Du(0)
if D,,(0) < Dy (1) or an edge (u,t) from a node u to the sink ¢ with the capacity

c(u,t) = Dy (0) — Dy(1)

32

if Dy(1) < Dy (0). Every edge (u,v) € E is assigned with the weight
c(u,v) = Rywp(0,1) + Ryw(1,0) — Ryu(0,0) — Ryp(1,1). (3.40)
Hence, we get the following edge set for the flow graph
Efiow = EU{(s,u) | Du(0) < Du(1)} U{(u, 1) | Du(1) < Du(0)} (3.41)

and the weights of the flow graph that we call capacities from now on are given as

¢(s,u) = Dy(1) — Dy (0), it D, (0) < Dyu(1),
C(uvt) = Du(o) - Du(1)7 if Du(l) < Du(o)v (3.42>
c(u,v) = Ryp(0,1) + Rywu(1,0

— Ruw(0,0) = Ryou(1,1), V (u,v) € E

The flow graph G fiow = (Viiows Efiow, ¢) is the graph representation of the energy functional
J in (3.37). Thus, by the statement from above computing a minimum s-t-cut or a maximum
flow from s to t gets the optimum of the energy J. Since the solution 1} assigns to every
vertex u € V a1l if u € B and a 0 if u € B® we can find a binary partition of the vertex set
V by B. Note that B does not have to be connected and can consist of multiple connected

components.

Appendix

3.A Reformulating p-g-Laplace Operator

In this section, we derive the weighted graph p-g-Laplace operator defined as in (3.18).
All computations done below are based on the definition of the divergence in Definition 3.13
and the weighted gradient operator V,, in Definition 3.11. Additionally, it is assumed that we
have an undirected graph as in Definition 3.2 with symmetric weights, i.e., w(u,v) = w(v,u),
and thus 9, f(v) = =0, f(u) as described in Section 3.1.2. Then the p-g-Laplace operator can
be reformulated as follows:

Ay pgf(u) = %divw (vafHZ*q (waj‘vwfj’qi2)j:1>

31 1 P
L N s L

v~YuU d
(wa(v, u)j |wa(v7 u)j|q_2 - VWf(uv U)j |wa(uv U)j|q_2>
j=1
d
= 3 a9l (Fufti s st
v~ J=1
= > Vwlwo)l|w(u,v)(f() =)]}
d
(w(u, V)2 (f(v); = f(u)y)|w(u, v)2(f(v); - f(u)j)|q_2>
j=1

d
= > wluv)? | fv) = fl)]) <|f(v)j — Flu) " (F(v); — f(um) :

v 7j=1

Hence, for every uw € V and j € {1,...,d} we can obtain the following pointwise formula-

tion
Awpaf @)y =3 wlu,0)%||f(0) = F@)[2 1 f(0); = Fu)s|* > (F(0); = f(w);). (3.43)

v~u

3.B Derivative of the p-q-TV Regularizer

In this appendix section, we want to show that the derivative of the differentiable parts of
the p-¢-TV regularization in Definition 3.17 is equivalent to the p-¢-Laplace operator from
Definition 3.18. Note that for different selections of p and ¢ the differentiability differs. Since

34

we have that

p

B wluo)t (30170 — Falt|
oG, e = Bty 2 o (3.44)

Sy 1) = fullg

we see that we can compute the derivative for each edge (u,v) € E and 1 < j < d combination
individually and that the differentiability is also pointwise. Thus, we can split the sum up
into differentiable and non-differentiable parts. It is important to note that if we compute the
derivative as in (3.44) for every edge (u,v) € E there also exists the opposite edge (v,u) € E
with w(u,v) = w(v,u). Thus, we have to compute the derivative of 9y, || f(u) — f(v)||} and
Aty I1f(v) = f(u)llg- We define the set of directed edges as

Ei={(u,v) € E|u<wv}.

Note that as V' = {1,..., N} is a index set we can compare the index associated with the
vertices u,v € V. Let us assume that the term || f(v) — f(u)[|? is differentiable for a selected

edge (u,v) € E4. Then the derivative along the edge (u,v) can be computed as follows:

O 1) - 1@l = =2 (31, - Fwyl %
af(u)] 7 8f(u)] j=1 ’ ’

P (< | p Ty | » (3.45)
= 5 (;z:; |f(v); — f(u);l) af(u)j‘f(U)J — f(u);l

P ., 0
=< |f() = fu)|P~? fw); — f(u);]?
. 1f(v) = fw)llg af(u)j’ (v)j — f(u);
where we used that £ — 1 = 29 For the derivative of the right term, we assume for now

q q
that f(v); # f(u);, which implies differentiability at this point. Then applying the chain
rule multiple times yields

3.B Derivative of the p-¢g-TV Regularizer 35

9 q
7 0 =
= 0 () = " 0 =)
O~ f@; 0 (346)

=q |f(v); = flu);|*"!

|f(v); — flu);] Of (u);
=q |f(v); — fw);]|?(f(v); — f(u);)(-1)
= q |f(v); = fw);]|"?(f(u); — f(v);).

Thus, we can show that if f(v) # f(u) and f(v); # f(u); for some 1 < j < d, the derivative

is given as

9 p

=p lIf () = F@)F1F (0); = f();1772(F(w); = f(v)))-

For every edge (v,u) € E that is the opposite edge (u,v) € E; we can compute the derivative
easily and see that

Oy, 1 () = F)IG = Oy, [(v) = ()G (3.48)

Thus, for each two-sided edge we have the same result and can compute the final derivative
of the differentiable parts of R given as

— f(v);
SO R

(VRS)s=2 3 wlu,0)}|f(w); - fu) 2 —I %
(u,w)EEy 1f(v)

The 2 here comes from the two-sided edges and that we have the same derivative in both
directions. As stated above, if f(v) = f(u), we would divide by zero if p < g orif f(v); = f(u);
for some 1 < j < d, we divide by zero for ¢ < 2. Thus, we have to investigate these settings
individually.

36

Let f(v) = f(u) and p < g then we can use the directional differentiability and compute
the directional derivative at f(u) — f(v) = 0 for any direction v € R? as

1/ () = f(w) + el — £ (v) — Fw)llg

lim
e—0 £
e~ |IP 2P|~ ||P
el el
e—0 £ e—0 e
0, ifp>1
= lim &' |y||7 = e
=0 5, ifp=1

Hence, we can deduce that as long as 1 < p < ¢ the term in (3.44) is differentiable in
f(v) — f(u) = 0 with the derivative equals 0, since it is a continuous function. If p =1 < ¢
it is non-differentiable for f(u) = f(v).

The second setting is if f(v); = f(u); for some 1 < j < d and ¢ < 2. Then the derivative
%U)Jf(v) — f(u)]? cannot be computed as in (3.46), since we would divide by zero. We
again have to compute the directional derivatives and check if they are all equal to 0. Let

~v € R be some value, then we compute

) = S + el 1))~ F)]

e—0)

0, ifg>1,
= lim 7 |y|? = 4
e=0 ly|? if g=1.

From this we can deduce that for ¢ > 1 the term in (3.44) is differentiable in f(v);— f(u); =0
and has the derivative 0. For ¢ = 1, which implies that p = 1 as we only look at 1 < p < ¢,
it is non-differentiable if f(v); = f(u);.

With these different settings in mind we can compute the differentiable parts of the p-¢-TV
regularization in the following and state the corresponding Laplace operators.

Let p=q=1:

This is the anisotropic TV regularization that is non-differentiable for edges (u,v) € E and
1 < j < dsuch that f(v); = f(u);. Let S{q = {(u,v) € Eqx {1,....d} | f(v); # f(u);}
be the set where R is differentiable for p = ¢ = 1. We deduce from (3.49) that this setting
yields foru € V and 1 <5 <d

(VRs)uj =2 3, w(wo) E;E:;j - ;Ezij\)

(u,v)ES’i1 J

3.B Derivative of the p-¢g-TV Regularizer 37

Then we get the following Laplace operator as defined in Appendix 3.A for p=¢=1

(D11)uj = (VRs> wi= Y yJwlu,v) sign(f(u); — f(v);)- (3.50)

(u, v)ES1 1

Note that we drop the non-differentiable parts here.

Letp=1<q<2:

This regularizer is non-differentiable at the edges (u,v) € E for which f(v); = f(u); with
1 < j < d. Thus, we can define the set where the p-g-TV term is differentiable as Si,4; =
{(u,v) € Eq | f(u)j # f(v);}. For the differentiable part S, ;, we thus obtain the following
derivative by plugging into (3.49)

(VR =2 Y Julwo)lf); - fayle2— L0 =IWi
(u,v)ES1,q,5 Hf(’U) - f(U)Hg

Taking into account Appendix 3.A for p = 1 < ¢ < 2 the Laplace operator is equal to the

derivative of the differentiable parts Si., given as

1
Aurgf = 5VRs,,. (3.52)

Letp=1,q > 2:

As long as p = 1 this regularizer is non-differentiable at the edges (u,v) € E for which
f(v) = f(u). Thus, we can define the set where the p-¢-TV term is differentiable as Si,; =
{(u,v) € Eq | f(u) # f(v)}. For the differentiable part Si,;, we thus obtain the following
derivative by plugging into (3.49) as

- (u, v q—2 f(u)j—f(v)j ‘
(VRs)u,j =2 Vw(u,v)[f(v)| 17(0) — F) [(3.53)

(u, U)ESl .

Taking into account Appendix 3.A for p = 1,q > 2 the Laplace operator is equal to the
derivative of the differentiable parts Si., given as

1
Apigf = QVRSM;' (3.54)

Let1<p,q>2 p<q:

In this case the p-¢-TV regularizer R is differentiable for every edge (u,v) € E and every
1 < j < d. Then the derivative is given by (3.49) if f(u); # f(v); and equal to zero if
f(v); = f(u); for some edge (u,v) € E and dimension 1 < j < d. Thus, we can introduce
the set of M; = {(u,v) € Eq | f(u); # f(v);} which are the edges where it is not 0. This
yields

f(w); = f(),
slgr B

q

(VRs)uj = (VR)u; =2 > wlu,v)|f(v); — flu);|?
(u,v)EM; Hf(v) -

38

for which we can again see that
1
Avwpaf = §VR

The special case for p = g = 2 is the well-known standard Laplace operator that is given as

Apfu)= > wu,v)(f(u) - f(v)). (3.56)

(u,v)eE

Everything combined, we can finally deduce using the computations of Appendix 3.A and
(3.49) that

1
(Aw,p,qf)u,j = §(VRS)u,j‘ (3'57)

This means that the weighted p-g-Laplace is exactly the same as % times the derivative of
the differentiable parts of the weighted p-¢-TV regularizer.

3.C Proximity Operator of the p-q-TV Regularizer

In this appendix section, we aim to compute the convex conjugate F* = (5| - [|p;q)*. As
shown in [81], the dual norm of the norm || - ||, is given by || - ||p,q= with % + }% =1,
% + q% =1, and p,q > 1. Hence, it follows that

Bl - ||p;q)*(y) = 5Bp*;q*(ﬂ) =

oo, else

{o, lyllpq < B

with y € H(E).
We recall that the proximity operator of the characteristic function d¢ over a convex set
C C X is a projection, which is given as

. 1
proxs.(2) = argmin { 5_[lo — 2[}} + 8o (e)
zeX T (3.58)
(1 . '
= argmm{QHx—zH§} = projc(z).
zeC T

Consequently, the proximity operator for C' = Bp«,+(8) is the projection of an element
z € H(F) onto the p*, ¢*-ball of radius . Thus, we get

prox, p- () = projp . (5)(2) (3.59)

In the following we see that for different combinations of p and ¢ we get different proximity
operators. We distinguish between three cases.

3.C Proximity Operator of the p-¢g-TV Regularizer 39

Case l: ¢>1,p=1
For the special case p = 1 we get p* = 0o, and thus the dual norm becomes ||y||oo ¢+ =

max(yep {[[y(u,v)],.}- Then

B = { 4 € X" | Iylloor <o } = { w € X | ly(u,0)llg < 0, ¥(u,0) € B }

The proximity operator for p = 1, ¢ > 1 and every (u,v) € E is just a projection of every
y(u,v) onto the ball By« ().
In conclusion we get the proximity operator of F™* as

1 .
prox, . (2) = argmin { 31y — 213 + F*(s)}
yeX* T

=DProjg_ .(a)(?)
B (a z(u,v))
max(a, [|z(u, v)llg<)/ (wv)eE

Case2: g=1,p=1
When ¢ =1 and p = 1, then ¢* = co and p* = co. Then the ball becomes

Booioo(@) = {y € H(E) | |ly(u,v)lleo < @, ¥(u,v) € E}
= {y € H(E) ‘ ’y(uﬂ))j’ < a,V(u,v) SIRYS [Ld]}?

from which it follows that the proximity operator becomes

proX.p«(2) = Projp_ __(a)(?)

_ (a z(u,v);

max(a, [2(u, v);

D > (u,v,j)EEX[1,d]

Case 3: ¢ > 1,1 <p<

In this special case, one has to compute the projection onto the p*, ¢*-ball numerically
as there does not exist any known closed-form solution, except for the case of p = 2. Since
the constraints are smooth one is able to use a standard Newton method for computing this
projection. Note that usually this case is not relevant in most applications from imaging or

machine learning in contrast to cases 1 and 2 above.

Case 4: ¢g>1,p=
In this case one has to project onto 1, ¢*-balls. To compute these projections there exist

efficient numerical algorithms, see, e.g., [24, 80].

Cut-Pursuit

In the former chapters we have introduced variational problems on graphs and a graph
variant of the well-known primal-dual algorithm in Algorithm 3.20 to solve convex optimiza-
tion problems on graphs, e.g. ROF in Algorithm 3.22, weighted ROF Algorithm 3.24. This
enables us to solve convex problems for any given data structure which can be represented
by a finite weighted graph. This opens up the application of convex problems in many fields
like e.g. (unorganized) point clouds, networks, non-local data using a unified framework.
The downside of using graphs for processing data is that the efficiency of graph algorithms is
highly dependent on the number of vertices and the number of edges. This means that if we
have a huge set of data points and a densely connected graph iterative graph algorithms tend
to scale in complexity proportional to the complexity of the graph. Hence, using primal-dual
on graphs to solve convex problems tend to be inefficient for complex graphs as we show
in numerical experiments in Section 6.2. On the implementation side it is additionally not
trivial to store and compute the graph gradient efficiently, since some data points might be
connected with other points that are not in the same memory location such that look up is
inefficient. Consequently, when we compare the computational times of the implementations
of a primal-dual algorithm on images with finite differences versus the primal-dual on graphs
for the same image, the finite difference primal-dual is more effective in most cases due to
these problems. To tackle these inefficiencies Landrieu et. al. introduce the Cut-Pursuit algo-
rithm in [46] to solve variational problems on graphs efficiently. More details on Cut-Pursuit
can be found in [47]. In this chapter, we derive and understand Cut-Pursuit by extending
the family of solvable problems to multi-dimensional, channel-isotropic regularizers. We in-
troduce a generic Cut-Pursuit algorithm and derive the special case of the p-¢-TV regularizer
for different choices of p, q.

Throughout this chapter we work on undirected finite weighted graphs G = (V, E,w)
as defined in Definition 3.2. The general variational problem that we want to solve is to

minimize the energy functional

argmin { J() = D(f.9) + S R() | (1)

FEH(V)

on the set H(V) for which a > 0 is a fixed regularization parameter The functional D is a

42

differentiable, convex data fidelity term with the original data given as g. We study a more
general problem then the authors in [46] by introducing multiple dimensions and also give
the possibility to have (channel-)isotropic regularizers (cf. Section 3.1.4). We discuss two

types of regularization namely anisotropic and (channel-)isotropic regularization.

Definition 4.1 (Generic Anisotorpic Regularizer).
Let G = (V,E,w) be a finite weighted graph and f € H(V) a vertex function. Than the

anisotropic regularizer is defined as

Ro(f)= Y. @a(w(u,v),f(v)— f(u)

(u,v)EE

d
= 3 Y), fv); - fw))

(u,v)eE j=1

(4.2)

with ®J (x,y) a absolutely \-homogenous function in the first and absolutely p-homogenous
functional in the second argument, i.e., ®I(kx,ty) = |k t|P®I(x,y), with ®I(z,0) = 0
and which is non-differentiable for y = 0, but directional differentiable everywhere. Here
D, = Y0, .

Definition 4.2 (Generic Channel-Isotorpic Regularizer).
Let G = (V,E,w) be a finite weighted graph and f € H(V) a vertex function. Than the
channel-isotropic regularizer is defined as

Rl(f) = Z CDi(w(ua U)7 f(v) - f(u)) (43)

(u,w)EE

with ®;(x,y) a absolutely \-homogenous function in the first and absolutely p-homogenous
functional in the second argument, i.c., ®;(kx,ty) = |k|MtP®;(x,y), with ®;(z,0) = 0 and

which is non-differentiable for y = 0, but directional differentiable everywhere.

We subsume both regularizers under the notation R and specify when needed. Note that
for the special case for d = 1 and setting ®(w(u,v), f(v) — f(u)) = w(u,v)d(f(v) — f(u)) we
have the same conditions as given in [46]. Thus, we have not only extended the problem with a
multi-dimensional isotropic regularizer, but also have more suitable functions ®; and ®, that
fulfill these conditions. Additionally, note that both regularizers discriminate discontinuities
in an anisotropic and isotropic fashion respectively. For p > 1 they are also differentiable in

y everywhere.

4 Cut-Pursuit 43

Lemma 4.3 (p-homogenous ® with p > 1).
Let ®(x) be an absolutely p-homogenous function as defined in (2.5) with p > 1. Then ® is

differentiable in 0, and thus, differentiable everywhere.

Proof.
Let v € R? be any direction. Then every directional derivative is computed as
_ p
lim ®(0+ ev) — @(0) — lim O (ev) i € d(v)
e—0 IS e—0 IS e—0 £
= lim " '®(v) = 0.

e—0

Since every direction yields the directional derivative as 0 and & is continuous it is differen-
tiable in 0 and ®'(0) = 0. O

This lemma is directly applicable to the definition of ®; and ®, that are p-homogeneous
in the second argument. Before continuing we state that the anisotropic problem can be
decoupled over the d channel dimensions while preserving the solution.

Lemma 4.4 (Decoupeling of Anisotropic Problem).

Solving the anisotropic problem

d

* . a i
fr= argmin 3 Di(f)+5 > @(w(u,v), f(v); - f(w);) (4.4)
FEH(VIRY) j=1 (uw)EE
s equivalent to solving the problem for each dimension j separately as
* . « i
fi = argmin D;(f)+ 5 Z O (w(u,v), f(v); — f(u);). (4.5)
fiEH(V;R) (u,v)EE

Then the solution of the overall problem can be computed as f* = (f;)?:y

Remark 4.5.

In one dimension for d = 1 the isotropic problem is equivalent to the anisotropic problem. By
Lemma 4.4 we see that we can solve the overall anisotropic problem by computing it for each
dimension separately. Thus, if we derive the Cut-Pursuit algorithm for the multi-dimensional
isotropic case we can directly deduce the Cut-Pursuit algorithm for the multi-dimensional
anisotropic case.

To this end, we state the necessary ideas and derive the formulations for the multi-
dimensional isotropic case in the following sections and in the end show the anisotropic case
as a special case. We show in Appendix 4.A that the p-¢-TV regularizer is a special case of
the general regularizer Definition 4.1 and Definition 4.2, and hence, the former lemmas hold
for these.

In the following sections we give an exhaustive derivation of the Cut-Pursuit algorithm
for the general minimization problem (4.1). We show the key idea of exploiting the piecewise
constant structure of the solutions of (4.1) and derive an efficient alternating algorithm to
solve these. We also show how this more general Cut-Pursuit can be applied to ROF problems

with a p-¢-TV regularization.

44

4.1 Introduction to Partitioning and Reduced Problems

As we have already discussed in former sections, especially in Section 3.3,applying a
direct method on complex graph structures can lead to inefficient implementations and long
computational run times. The main idea of [46] comes from the fact that the solution of
an ROF denoising problem tends to be piecewise constant. Let us assume we have some
given undirected graph G = (V, E,w) as was defined in Definition 3.2 and some given vertex
function f € H (V') that is piecewise constant on n segments A; C V. We assume to know
the segments A; here beforehand. Let IT = {4; € V | V = J;—_, A;} be a partition of V and
the segments A;, A; € II pairwise disjoint, i.e., A; N A; = 0. Defining the set Vi1 = {1,...,n}
as the numeration of the segments in II we can define reduced (vertex) functions ¢ € H(Vi).
Then we can find for every reduced function ¢ € H(Vi1) a function f. € H(V') such that

fw)=c(A)=ca, Yue A VAecIl (4.6)

Note that ¢ = (c4)aerr € RYI with Nip = n = |TI| as the number of segments. We define the
set of piecewise constant functions in H (V') that are constant on segments in IT as

Sui= {feeH(V) | Fee H(Vn) s.t. f(u) =ca, Vue A, VA € I1}. (4.7)

Thus, we for every function that is piecewise constant on the segments of Il we can find a
reduced function in H (Vi) and vice versa, i.e.,

Sn = H(Vn). (4.8)

We denote a piecewise constant vertex function on V' that is related to a function ¢ € H (Vi)
as f. € H(V). Note that partition IT and Vi are actually isomorphic since every segment A;
is unique in II, and thus corresponds to a unique vertex i € Vi7. So we just refer to II from
now on.

Let f. € Sip and its related reduced function ¢ € H(II). Let 14 € {0,1}V a vector as
defined in (2.19) which is 1 where the index is in A and 0 else. Then the following identity
holds

fe= Z 14cy. (4.9)

Acll

This sum can be realized using a matrix-vector multiplication of the matrix
P=(1a,...,14,) € {0,1}*Nn (4.10)
and with ¢ - which is actually a vector in RV - yields

Pc=)" 1lcq €S (4.11)
Aell

We call this matrix operator P the expansion operator that maps - or expands - functions
living in H(II) to their related piecewise constant functions in the parent set #(V'). This

4.1 Introduction to Partitioning and Reduced Problems 45

notation enables us to use the following properties of P.

Lemma 4.6 (Properties of the Expansion Operator P).
LetTL = {A; c V|V = U_, A} be a partition of V as defined above and let the expansion
operator P be defined as in (4.10). Then the following properties hold:

Pce H(V), (i)

P*P = diag(|Ail, ..., |Ang]), (ii)

P*v = (VE)AEH for any v € RV*? with v = > v(u) € R% (iii)
u€A

We call Pc an expansion of reduced functions from #(IT) to a piecewise constant function
fe € H(V), and P*f a reduction of f € H(V') to the reduced space H(II) that sums up the
values in every segment. Note that for applying the reduction P* to a function f € H(V)
it does not have to be piecewise constant. We can plug these piecewise constant functions
in Sy into the general data-term of the (4.1) and reformulate them to only depend on the
reduced function.

To see this on a simple example let us apply this on our special case with the Ls-data-
term from Definition 2.2 and plug in piecewise constant function f. € Sp. We show the
result by computing it for the more general case of a weighed Lo-data-term as introduced in
Definition 2.6 in Appendix 4.B.1 which is given as

1
S = §HC — grll3.w, = Dp=wp(c, gr) (4.12)

Dw(fer9) = 3 llfe— g

with g, = (P*WP)"'P*Wg and Wp = P*WP. For the unweighted Ls-data-term D with
W = I the reduced data is given as the mean over the data in each segment:

g = (W)AGH. (4.13)

The question that arises here is if we could also build a reduced graph G, = (II, E,, w,)
on the partition II that corresponds to the original graph G and the full given problem.
Indeed, the construction of the reduced graph G, depends on the regularizer R of the general
minimization problem from (4.1). To find the correct reduced graph corresponding to the
problem let us plug in a piecewise constant function Pc = f. € Sy into R which yields the
following.

46

Lemma 4.7.
Let G = (V,E,w) be a finite weighted graph and II a partition. Moreover, we have the
expansion operator P given as in (4.10). Then for any piecewise constant function f. € Si

on IT with Pc = f. the regularizer R(f.) is given as

R(Pe)=) @(w(u,v),(Pec)(v) - (Pc)(u))

(u,v)EE

- Z Z q)(w(u’ U),CB —CA)_ (414)

(A,B)elIXII (u,v)eE
ANB=() u€cAveB
Proof.
Let us consider this for every edge (u,v) € E separately. First let us assume that we have
(u,v) € E with u,v € A for some A € II. Then we have with II(w(u,v),0) = 0 that we define
in Definition 4.1 and Definition 4.2 that

O (w(u,v), (Pc)(v) — (Pe)(u)) = ®(w(u,v),ca — ca) = H(w(u,v),0) = 0.

Hence, we can drop every edge (u,v) € E that is inside of a segment, i.e., (u,v) € AX ANE
for all A € II. Hence, we only sum over edges between segments which is formally given as
(u,v) € (A x B)N FE for any tuple (A, B) € II x IT with A # B. O

We see that this regularizer only depends on the reduced function ¢ € H(II) and also
sums up over all edges between two segments A, B € II with AN B = (). To this end, let us
define the set of edges Eap between segments A and B as

Esp ={(u,v) € E|ue Av e B}. (4.15)

Consequently, we do not lose the connections between the segments and also not the weight
information of edges in E4p as we see in (4.14). Additionally, we can deduce from (4.14)
that all edges in a segment A € II have no influence on the solution, since their values are 0,
and thus, dropped out from the summation. Only the edges F4p between different segments
A, B € 1I are relevant. By these observations we can deduce that the reduced graph G, has
the reduced edge set E, that is given as

E,={(A,B)elIxII| (Ax B)NE # (}. (4.16)

The reduced edge set defines an edge for every pair of different segments that have at least one
edge between them. Rewriting (4.14) with E, and E4p we can define the reduced regularizer
R, : H(II) — R for R as

R.(c) = R(Pc) = Z Z O (w(u,v),cp —ca). (4.17)

(A’B) SO (U,U)GEAB

4.1 Introduction to Partitioning and Reduced Problems 47

The last and final step to get a reduced graph and the reduced problem is to define a
reduced weight w, that fits to the reduced regularizer. By definition ® is A-homogenous in
the first and p-homogenous in the second argument, thus we can reformulate the reduced

regularizer as follows

R.(c) = Z Z w(u, v) (1, e — ca)

(AvB)eE’f (U,U)EEAB

= Y o (Y wwu))i(es—ca))

(AvB)EE’I‘ (uvv)EEAB (418)
= Z ®(1,w, (A, B)(cg —ca))

(A,B)€E;,
= ®,(Vy,c)

for the reduced weighting function w, defined as

B =

w(A,B)=[> wuv)]r. (4.19)

(A,B)€EE,

With these information we can write the reduced graph (for ®; that is A-homogenous in

the first argument) as
G, = (H, E,, wr)a

E,={(A,B)ell x| (Ax B)NE # 0},

(4.20)
we(A,B)=1[Y w(u,v))‘]%.
(u,v)EEAB
We have shown that the reduced energy is given as
Jr(c) = Dy(c) + %Rr(c) (4.21)

on the reduced graph G,, and is equal to the full energy J of the function f. = Pc for every
fc E SH? i'e'7

Jr(c) = J(fe)- (4.22)

Hence, we have deduced how to derive the reduced graph G, and the corresponding reduced
energy J, for any partition II on a graph G. In the following proposition we gather all of
these information, and furthermore state that solving the minimization problem over the set
of piecewise constant functions on II in Sy is equivalent to solve the reduce problem with the

reduced energy J,.

48

Proposition 4.8 (From Piecewise Constant Functons to the Reduced Setting).

Let G = (V, E,w) be an undirected graph as in Definition 3.2 and II some partition of the
vertez set V. and define the corresponding reduced graph G, = (II, E,, w,) as in (4.20) with
a reduced edge set E, and a reduced weighting w,. For any piecewise constant function
fe € S exists a reduced function ¢ € H(II) living on the reduced graph G,. Then for any
fe = Pc € Syy the reduced (4.21) and full energy (4.1) are equal, i.e.

J(fc) = Jr(c)' (4'23)

Additionally, the minimization over all piecewise constant functions in Sty over 11 is equivalent
to the minimization over the reduced functions in H(II), i.e.

freargmin J(f.) < ¢" € argmin J,(c) (4.24)
fc€Sn ceH(II)

with ¥ = Pc*.

In Section 4.4.1 we apply the results from above onto a weighted p-¢g-ROF problem on
graphs.

The method of splitting the original vertex set V into some partition and defining a
reduced setting for a given problem enables us to make certain assumptions about solutions
of the general problems on graphs (4.1), and the p-¢g-ROF problems in particular. Let us
assume for now that we know the solution f* the general problem (4.1) for some given data
g and a selected regularization parameter a > 0. Then we know that f* can be assumed to
be piecewise constant, and thus, we can find a partition II and a function ¢* € H(II) such
that Pc* = f*. With Proposition 4.8 we can directly deduce that if we minimize the reduced
energy J, from (4.21) for functions in H(II) we get the reduced solution ¢* by minimization,

i.e.

¢* = argmin J,(c) (4.25)
cEH(IT)

with f* = Pc*. Thus, if we know the partition II corresponding to a piecewise constant
solution the problem, we can solve the reduced problem instead of the full problem and get
the full solution by applying the expansion operator P. Since II has equal or less segments
than V has vertices, it is more efficient to solve the reduced problem and to compute the same
solution than solving on the vertex set V. However, in practice it is impossible to compute
the correct partition II for a given « before solving the problem. Hence, it would be desirable
to have an optimization algorithm that generates partitions automatically.

Let us again assume that we have some given partition II of V' and the corresponding
reduced graph G, to a full graph G. Solving the reduced problem (4.25) on G, yields a
solution ¢* € H(II). Let f* € H(V) be the solution to the corresponding full ROF problem
(4.1) on G. If the selected partition IT does not describe all of the piecewise constant segments
in f* we cannot find a function ¢ € H(II) such that Pc = f*. Thus, the energy of the full
problem is lower than the energy of the reduced problem, because otherwise Pc would be a

4.2 Finer Partitioning via Graph Cuts 49

better solution than the real solution f*, which is not possible. Hence, we can deduce that
for any II and corresponding reduced graph G, holds

J(f) < Jo(c). (4.26)

If J(f*) = Jr(c*), we can build a solution with P, otherwise we cannot. Thus, if II is not
selected correctly we see that

J(F*) < Ju(c"). (4.27)

Hence, the solution on II cannot improve the original energy functional J any further. The
idea to get closer to the real optimum would be to split IT up into more segments, such that
the energy can be decreased even more. As we are already working on graphs we use graph
cut methods, i.e., maxflow algorithms as introduced in Section 3.4.

4.2 Finer Partitioning via Graph Cuts

The aim of the following subsection is to state an energy functional that can be represented
by a flow graph as we described in Section 3.4 and decreases the energy J,(c*) given by the
reduced result ¢* by applying a graph cut. This then leads to a binary partitioning B C V'
that we can use to refine the current partition II.

4.2.1 Refining the Partition

In Section 3.4 we have recapped the ideas of [43] to build a flow graph to represent a binary
labeling energy and minimize it using graph cuts. Assuming we have found the correct binary
energy problem for a given partition Il and have computed a binary partitioning B C V we
could go ahead and build a new partition Il,., by splitting the segments A € II via B by
AN B, AN B¢ and taking the connected components as new segments in II,.,. Then we
build a new reduced graph as we did in the former section and compute a reduced solution
to the problem which will give us a better energy than of the former solution on II did which
is the aim of this subsection.

Starting with a current partition IT and a solution to the problem (4.1) fi; we aim to find
an energy functional that decreases the energy J(fi1) by a binary split B € V. As above let
us assume we have given an undirected graph G = (V| E,w). Then we can solve the reduced
problem (4.25) by minimizing J, from (4.67) over H(II) and find a solution ¢* € H(II), i.e.,

c* € argmin J,(c). (4.28)
ceH(II)

Let fi1 = Pc* be the piecewise representation of the reduced solution ¢* in H(V'). Then we
already know that

Jr(c") = J(fn)- (4.29)

Let f* € H(V) the real solution of the general problem (4.1) and assume that J(f*) < J(f).

50

This means that the solution ¢* of the reduced problem (4.25) is not the optimal solution,
and thus, the partition II does not represent the solution f* of the general problem. To get a
finer and better partition, we want to find a binary splitting B C V which is represented by
15 as defined in (2.19) such that the energy decreases. The easiest way to compute the new
partition Il from B would be to take the intersections AN B and AN B¢ as new segments
for every A € II. Then we define the new partition as

Myew ={ANB,ANB°| A €11}. (4.30)
The functions that are piecewise constant on Il are defined as

f8 =" (Lanpdans + Lanpedanpe) € Su,.., (4.31)
Acli

with any values dang, danpe € R? as constants, and the corresponding function d € H(Ieq).
Plugging these functions into the energy functional J yields

J(fB) = D(> (Lanpdans + 1anpedanse) ,g)
Acll

n %R(> (Lanpdans + 1AnBchnBc))-
Acln

(4.32)

Finding an optimal partitioning described by B C V such that the energy of J(fB) decreases
the most compared to the current energy J(fi1) can be done by finding an optimal B C V
that minimizes

argmin J(fp) — J(fn)
BeP(V)

& argmin D(fp,9) = D(fn.9) + 5 (R(fz) = R(fn))
BeP(V)

(4.33)

with some dynp and d4npge that we assume to be fix for now. The problem that we face
in this work later on is that we actually do not know the values of dgnp and danpe and
we would have to optimize these values in (4.33) to assure that the energy decreases, i.e.,
J(fB) < J(fmr). We show in Appendix 4.C in detail how to select danp, danpe such that we
can assure the decrease.

For the sake of clarity let us start by selecting one segment A € II and studying the
one-dimensional case for d = 1. Then danp,danpe € R for all AN B, AN B¢ € Il,,c,. As we
are in the one-dimensional case here we know that the new values in AN B and AN B¢ can
be described by a deviation from the former solution c4. Also it can be assumed that if we
induce a split the one part will increase the current value while the other one decreases. Let
us assume that the distance of deviation in both parts is the same and given by € > 0. Then

we can define the new values as

danB =ca+e, danpe =caq—c¢ (4.34)

4.2 Finer Partitioning via Graph Cuts 51

for every A € II and one € > 0. Then we can rewrite fg as

5= (lans(ca+e)+ lanpe(ca —¢)). (4.35)
Aett

This would split the segment into two new sets of vertices. The one set is where increasing
the current value cy by € yields a lower energy and the other set is where decreasing the
value lowers the energy. Even a very small € > 0 can show the trend of the vertices in A to
prefer deviating in the positive or negative direction from c4. Hence, we can compute the
split that yields B even for very small € > 0 correctly. Then we can build the partition Il
from B and II and the corresponding reduced graph G,.. On this reduced graph we can solve
a reduced ROF problem which would give a solution that has a better energy than f.

For multi-dimensional data with d > 1 this problem is not as easy as for d = 1. Note that
this case is only interesting for the (channel)-isotropic case of the regularizer Definition 4.2
since for the anisotropic regularizer Definition 4.1 we know from Lemma 4.4 that we can solve
it by applying the ideas for the case d = 1 for every dimension. Thus, we will focus only on
the isotropic regularizer R; in Definition 4.2 from now on. As before, we want to deviate from
the former solution fr; on II, but in higher dimensions we do have to choose a direction in
which the deviation happens. In fact, we have infinity directions to choose from. We assume
for now that we can choose such a direction for d > 1. Let € > 0 and two directions for every
segment A € 11 as ﬁg, ﬁgc € R? with the property

175 + e llq = 1. (4.36)
Let us combine ¢ and the directions for simpler notation as
’Yé =57B> VBe = §’YBC (4.37)
Then we define the function fg as follows

fp= Z (Lanp(ca +78) + Lange(ca — V8e)). (4.38)
A€ll

Note, that in the one-dimensional case obviously ﬁg = ﬁgc = %, such that H7y§ + ﬁféc”q =
15+ 3l =1 ~

In Appendix 4.C we reformulate the energy functional J(fg) and see that solving (4.33)
is the same as minimizing the directional derivative of J into the direction p. We also have

derived the following about the directional derivative of the regularizer.

Lemma 4.9 (Partition Problem 1-homogenous ®;).
When ®; is 1-homogenous in the second argument we have seen in Appendixz 4.C that the
directional derivative is given as

Rse(fi;vB) = Y_ > 11ans(v) — Lang ()| @ (w(u,v), (5 +75¢)). (4.39)
A€l (u,v)€(Ax A)NSe

Let us state the results of Appendix 4.C in the following proposition.

52

Proposition 4.10 (Partition Problem).

Let 11 be the current partition of V. and ¢ € H(II) a vertex function on the reduced graph
G, = (I, By, w,). Let fi1 € Sy be a vertex function that is piecewise constant on the segments
in II and is given as fi1 = Pc. Let g € H(V') be a vertex function representing the given data.
Also let ’_ng,'_ygc € Ri two descent directions for each segment A € 11 with length 1. Let Rg
be the differentiable and Rge be the non-differentiable parts of R. Then a subset B* € P(V)
that minimizes (4.33) can be found by solving

* . « _ « _
B* € argmin { (VD(fu,9) + =VRs(fn), ¥B) + = R (fi: 7B) } . (4.40)
BeP(V) 2 2
with
5= lanp(7h + V).
Acll
Proof. See Appendix 4.C for in-depth details. O

Once again we want to apply these general results to the p-¢-TV regularizer from Def-
inition 3.17 with 1 < p < q. As we know from Appendix 3.B the p-¢-TV is differentiable
everywhere if 1 < p < ¢, and thus, VRg = VR. As the p—q—TV term is also absolutely p-
homogeneous we can take the directional derivative from Lemma 4.9. The non-differentiable
part for the isotropic case, i.e., p =1, ¢ > 1 is given as S¢ = {(u,v) € Eg | f(u) = f(v)} =
{(u,v) € EgqnN (A x A) | A € I} which yields

Roe(fmAm) =2 > \Jwwo)|vg+v5ell,[Lans(v) - Lanp:(u)|

A€l (u,v)e(AxA)NSe

=2 Z Vw(u,v)|1ans(v) — Lanpe(u)|.

(u,v)eS*

(4.41)

Note that the term ||v4 +vac||; = 1 due to the assumptions in (4.36). Again the directional
derivative is equal for both directions of the edges, and thus, we add the 2. The gradient of
the differentiable part of R we computed in Appendix 3.B in (3.53) for p =1, ¢ > 1 is given
as

Flu)s — £(0);
VR =2 U, v 9—2 J J
sth=2 2yl = Fes =

As we will investigate the channel-isotropic case for p = 1, ¢ = 2 has the gradient

f(u) = fv))
1 () = f(u)l2

(VRs(u=(> ywluwv)

(uv 65'1 2

we have the partition problem given as

argmin Y > ((VD(fu) + VRs(fH))u,’YB—FVBc)RdlB()

BEP(V) Aclluea
+o > Jw(u,)lp) — 1(u).

(u,v)€S°

(4.42)

4.2 Finer Partitioning via Graph Cuts 53

For the anisotropic case we have

argmin Z Z Z VD(fr)+ VRS(fH))u,le(U)
BeP(V) j=1 AcllucA (4.43)

+a Z Vw(u,v)[1p(v) — 1p(u)]

(u,v)e8€

which follows that we can again solve the problem for each dimension j separately as stated

in Lemma 4.4.

Having derived the partition problem (4.40) to refine the partition IT accordingly to the
given energy J we still have to find a solution somehow. This is where the minimal graph
cut comes in that we introduced in Section 3.4, where we explained how one can compute

the solution for certain binary minimization problems via graph cuts.

4.2.2 Solving the Partition Problem

In this subsection we translate the general partition problem from (4.40) such that it
corresponds to the binary partitioning energy (3.37) from Section 3.4. Then we can find a
graph representation for the energy and solve it via a minimal cut algorithm.

We start by stating the partition energy from (4.40)
« _ o) _
T(15) = (VD) + SRS (). 75) + & R 7m) (149

For computations let us denote Jg = D + §Rg. Starting with the scalar product we see that

(VD(fn) + VRS (fm)7B) = D> > (VIs(f)u, 1a(w) (Ve + Ve))pa
AcllueA

= Z Z <VJS(fH)ua:Y§c +’7§C>Rd13(u)

A€llueA

which can be interpreted as the data-term in (3.37) that is pointwise decomposable for every
u € V and depends on the labeling 15(u), i.e., Du(15(w)) = (VJs(fi1)u, Vac + Vac)rd 15 (u).

Lemma 4.11 (Capacities for Vertical Edges).

Note that by the above definition D, (0) = 0 for every setting. Consequently, to compute the
flow graph capacities as in (3.42) we only have to check if Dy(1) = (VJs(fi1)u, ¥B(0)) is
positive or negative.

Additionally, note that if ®; is absolutely p-homogeneous with p > 1 then it is already
differentiable everywhere and VRg = VR. Thus, we will assume p = 1 in the following.

For the non-differentiable part Rge of the absolutely p-homogeneous regularizer with p = 1
we derived in Appendix 4.C that the directional derivative is given as

Roe(f;AB) = Y. [1ans(v) — Lans(w)|®i(w(u,v), (75 + V5e))
(u,w)eSe

54

which is decoupled pointwise for every edge (u,v) € S¢. Thus, we can set

> Ruo(Lp(u). 15(v) = 5 R (fr: 75)
(u,w)eSe

where we define for all edges (u,v) € S¢
Ruw(15(1),15(v)) = [1anp(v) — Lans(u)|®;(w(u, v), (75 + ¥5:))- (4.45)

and for all (u,v) € S we set
Ruwn(1p(u),1p(v)) = 0.

Hence, we have found a binary label energy functional [7(1p) such that we can represent it by
a graph from Section 3.4. To do so, we have to state the flow graph G fio0, = (Vfiow, Efiow,)
with terminals s and ¢, and the capacities as defined as in (3.42). We state the three general
flow graphs in the following for anisotropic and isotropic non-differentiable cases and the
differentiable case.

Let p = 1 and anisotropic <I>J;\:

By former computation we know that this is the anisotropic non-differentiable TV regulariza-
tion with S; = {(u,v) € E'| f(v); # f(u);}. From Lemma 4.4 we know that we can decouple
the anisotropic problems over the dimensions and also for the anisotropic partition problem
(4.43). So we can state and solve a flow graph for each dimension j separately. Additionally,
we know that 'yg + ’y§c = 1 in the one-dimensional case. Thus, we compute a flow graph for

every dimension as

Gflow,j = (Vflowa Eflowa Cj)'

As stated in Lemma 4.11 for the vertical edges in the flow graph we have to investigate if
(VJs(f11)))u,; is positive or negative. For the horizontal edges we have to compute (3.40)
with (4.45) which is then given for (u,v) € S§ as

¢j(u,v) = Rup(0,1) + Ryuwp(1,0) — Ry pv(0,0) — Ry p(1, 1)
= 5 (@) (w(u,0),1) + @) (w(w, v), 1) =0 - 0) (4.46)

= adg(w(u,v),1)
and for (u,v) € S; as
¢j(u,v) = 0.

Then we can define the edge set of horizontal edges as (S{;l)c and the horizontal edges

capacities as in (4.46). Then the capacities are given as

cj(s,u) = Vs(fi)uj, if VJs(fi)u,; =0,
ci(u,t) = =VJs(fi)ugs if VIs(fi)uy <O, (4.47)
cj(u,v) = a®)(w(u,v),1), ¥ (u,v) € S5.

4.2 Finer Partitioning via Graph Cuts 55

The flow graph then is given by the edge set
Efiow; = {(u,v) € S;U{s} x VUV x {t} | c(u,v) > 0}.

Then we have the flow graph G 0., that represents the energy for the anisotropic problem.
The optimization can be done by computing a s-t cut between source s and sink £.

Let p = 1 and isotropic ®;:

This is the non-differentiable isotropic case where the set of the differentiable part is given as
S ={(u,v) € E| f(u) # f(v)}. In this case the dimensions are coupled, and thus, we only
have to compute one flow graph for this setting. For the vertical edges to the terminals we
have to check if Dy (1) = (VJs(fi1), 7 + Vac)ra is positive or negative for u € A for every
A € II. The horizontal edges are given by S° and the capacity is analogously to (4.46) given
as

c(u,v) = a®;(w(u,v),1). (4.48)

Then the capacities of the flow graph are given as

C(Svu> - < (fH)u77B + VBC>Rd7 if <VJS(fH)u,'_Y§ + f_y§c>Rd > 0,
c(u, t) = —(VIs(fr)u: 78 + Vie)rar i (VIs(fi)u, Vit + Ve)ra < 0, (4.49)
c(u,v) = a®;(w(u,v), 1), V (u,v) € S€.

The flow edge set is given as
Etiow = {(u,v) € S°U{s} x VUV x {t} | c(u,v) > 0}.

Then we have a flow graph Gfiow = (Viiow, Efiowsc) given that represents the isotropic
partition problem for p =1 < gq.

Letp>1:

Let us investigate the anisotropic and isotropic case at once. As we know when p > 1 then
the regularizer R is differentiable everywhere for the anisotropic and isotropic case. Thus, we
do have VJg = VJ and Ry, = 0 for all (u,v) € E. With this and the former results we can
directly see that we only have to investigate in the isotropic case if (V.J(fi1)),, is positive or
negative for every u € V. Thus, the isotropic flow graph capacities are given as

c(s,u) = (VIs(fi)u 75 + Vi)ras i (VIs(fi)us V5 + e)ra > 0,
c(u,t) = —(VIs(fr1)u: 75 + Ve)ras i (VIs(fi)us V5t + e)pa > 0, (4.50)

Thus, the flow edge set is just given as

Etiow = {(u,v) € {s} x VUV x {t} | c(u,v) > 0}.

56

In the anisotropic case we get the analog one-dimensional flow graph capacities as in
(4.50) with ¥4 + 74, = 1 and for every dimension 1 < j < d separately. The flow graph
G flow,j is then given for every 1 < j < d as

c¢j(s,u) = VJs(fi)uj, if VJIg(fi)u,; =0,
) = _VJS(fH)u,ja if VJS(fH)u,j >0, (4'51)
) = 0.

£

—

S
o~

&

—~
S
<

Thus, the flow edge set is just given as

Efiow,; = {(u,v) € {s} x VUV x {t} | ¢(u,v) > 0}.

Finally, we have found a way to solve the partition problem from (4.40) via a very efficient
graph cut algorithm for the general regularizer R. With all of the derivations from above we
can also compute the corresponding flow graphs for the p-¢-TV regularizer in Section 4.4.2.
Computing a subset B and split the former partition II into new segments with B enables
us to compute a new reduced solution on the new set Il,,.,,. Now we know how to solve the
partition problem with a given direction for every segment in the former partition II. In the

next subsection we investigate the importance of choosing the direction correctly

4.2.3 Direction for Isotropic Cut-Pursuit

Let us assume that we use some arbitrary method that computes the directions 7y§, Wéc
for every segment A € II. The question that arises here is what we can conclude if the
solution B* of the partition problem Proposition 4.10 is B* = () or B* = V for the given
directions ’_yé, ’_yéc. In the one-dimensional channel-anisotropic case we reached the optimum
since we cannot decrease the energy by the graph cut anymore (cf. [46]). In the multi-
dimensional channel-isotropic case this can also mean that for this particular direction we
cannot find a non-trivial cut, but that there still might exist other directions that would
yield a finer partition. Hence, we have to check for all directions and extend the statement
from [46, Proposition 3| for the optimum in the anisotropic case to the multi-dimensional

channel-isotropic case in the following.

Proposition 4.12.
Let G be a finite weighted graph and J: H(V') — R be proper and convex. Then we can follow
that

f* €argmin J(f) if and only if min J'(f*75) =0, Vy4 € RY A eIl
FEMH(V) BeP(V)

with ¥ = AZH 140872,
e *

Proof. The proof can be done analogously to the proof in [46, Proposition 3]. As we are

considering convex functionals in this work one can also use the statement in [6, Proposi-

4.2 Finer Partitioning via Graph Cuts 57

tion 17.3] for further insight of the relation of optimal solution and the directional derivative
being 0 in all directions. O

Hence, we know that we found the optimum of the problem if for every direction no cut
can be computed by solving the partition problem. This also means that if we only consider
a fixed direction and the partition problem does yield a trivial cut, i.e., B = (), B = V,
we cannot deduce that this is the optimum. Hence, we face the problem that we have to
optimize over the directions or to have sound heuristics for selecting the directions with some
rationale.

In fact, the condition in the isotropic case that the algorithm reached the optimal partition
is that it cannot compute a new partition in any direction in R¢. When computing the
partition problem before we used the trick that

14nB7H — LansYhe = Lans(Vh +) — Lavhe, (4.52)

and hence, we could drop the term 1 Aﬁgc from the optimization, since it is independent on
B. As we now optimize over ﬁgc we cannot drop it from the overall minimization problem,

and consequently, have to solve

. _ _ « _
argmin (VJs(fn.9). Y lans¥s — Lansse) + 5 Rie(fin:) (4.53)
BeP(V)vBvhe Aell

with VJs(fir,9) = VD(fi,9) + $VRs(fn) and B = ¥ aen Lan(75 + 7#:)- We only
provide a simple alternating algorithm here and postpone this problem to a future work. Let
us simplify here by setting ¥4 = ¥4 + ¥4. and also ||7all2 = 1. The alternating algorithm
is then given by fixing B and optimize for 74 for every A € II and fix the directions 74
and optimize for B via a graph cut. When updating for B we can again use the trick from
(4.52) and solve the equivalent partition problem (4.42) with the updated directions. When
updating for the direction 74 we can drop the regularization since it is independent on the
directions. Then the alternating algorithm reads

BnJrl = argmin <VJS(fH7 g)a ZAGH 1AﬂB:)/54L>

BeP(V)
+a Z(u,v)ESC \/m ‘]'B(U) -]‘B(u)| (454)

W= wEmin 0TI (150~ L)), YA STL
Fall2=

The partition problem once again can be solved by stating the flow graph as in a former
section and then solve via a graph cut. The constraint minimization problem below can
be solved via a Lagrange multiplier method [7]. We postpone the exact computation to
(4.81) where we solve this problem for a weighted p-¢-ROF problem. However, for the first
computation of B we have to select an initial direction ﬁg for every segment. This can be
done by selecting some direction or just using a random direction.

In Section 6.3, we compare different approaches for different data sets with heuristically

58

computed directions and optimized directions like above. In the next section we finally state
the Cut-Pursuit algorithm that solves the problem (4.1).

4.3 Cut-Pursuit Algorithm

In the former sections we learn how to solve a problem as (4.1) on a partition IT of V|
that the reduced solutions are equal to the real solutions if the II is chosen correctly, and
how to split the II into a new partition using a graph cut and the energy of the last solution.
We also know that we have to compute directions for every segment A € II if we are working
with isotropic regularizer in multi-dimensional spaces.

Let G = (V, E,w) be an undirected finite weighted graph as in Definition 3.2, g € H(V;R%)
some d-dimensional data. A general minimization problem is given as in (4.1) with the energy
functions J that consist of a differentiable data-term D and a directional differentiable regu-
larizer R as defined in Definition 4.1 for the anisotropic and in Definition 4.2 for the isotropic
regularization. In the following, we show an alternating algorithm that in each iteration splits
the current partition into a finer partition depending on the former solution and solves the
reduced problem (4.1) on the corresponding reduced graph. Note that we assume the direc-
tions, in which the partition is refined by the partition problem, is chosen optimal. These
alternating steps are done until convergence, which means that the energy of the reduced
problem cannot be improved using a graph cut in any direction. This is what we state in
Proposition 4.12 where we show that we reached the optimum if mingepyy J'(f;95) = 0
for every direction.

We initialize the first partition with one segment that holds all nodes, i.e., I = {V},
which implies that the initial reduced graph GO has one node representing {V'} and no edges.
Thus, the initial solution ¢ € H(II") is the result on one node. Since there are no edges
in the graph the solution is in fact computed by minimizing the data-term D on a constant
function, i.e.,

® = argmin D(Pc).

c€R®

Note that this means that every node in V has the same value for initilaization, i.e., f0 = P%.
Computing this can be minimized due to the differentiability of D and that we have to solve
it on one solely vertex. In terms of an Lo-data-term this is just given as the mean value over
the image.

Let us assume we are in the k’th alternating step and a partition II¥, a reduced solution
¢ and corresponding f* = P¥cF are given. Then we start by computing the directions '_y]]?l
and ﬁg’;l for every segment A € ITI¥. These are then stored in 4g**! and used to compute

the new split B¥*! by solving

BY*! € argmin (VD(fi) + 5V Rs (fire), 78) + 5 Rse (frsi).
BeP(V)
As we have shown in Section 4.2.2, we can solve this for the different anisotropic and isotropic
regularizations of the general problem (4.1) using an s-t graph cut applied to the flow graphs
we state in (4.47), (4.49), (4.50), (4.51) representing the different energies. With the set B*+!
we can move on and build the new partition P**!. There exist different methods to do so.

4.3 Cut-Pursuit Algorithm 59

(a) Initial partition IT = {A;, A;, A3, A4} (b) Steepest binary partition where

Be P(V) is visualized by the white dashed
set.

(c) Resulting partition (d) Resulting partition

ew = {4;|i € [1,10]} generated by the yew = {Ai]i € [1,8]} generated by the
steepest binary cut and selecting connected steepest binary cut and selecting the new
components as the new partitions A;. partition as I, = (IIN B) U (IT N B°).

Figure 4.1.: Ilustration of two different methods to generate a new partition Il
from a given partition IT and the set B€ P(V)

In this work we use the connected components of AN B and A N B¢ for all A € TI*. Thus,
the new partition is given as

1" = {connComp(A N B), connComp(AN B) | A € T1¥}. (4.55)

Actually, this is a valid idea since we compute a split that can decrease the energy on the
a new partition with segments as AN B and A N B¢ for all A € II. Hence, the energy
on a finer partition consisting of all connected component can only be less or equal to the
one on the coarser partition. Nevertheless, one can also decide to set the new partition as
{ANB,ANB°| A € TI*}. In Figure 4.1 we see the difference between using connected

60

components or just using the plain splits as a new partition. The expansion operator for
[+ is given by

Pk-‘rl — (]—A)Aen)

With these we construct the new reduced graph G¥! as in (4.20) and solve the reduced
problem (4.25) that is given as

A = argmin D(P*le) + gR(Pk“c) (4.56)
cEH(ITF+1) 2
via a primal-dual algorithm on graphs as we derived in Algorithm 3.20. Then we can compute
fre+1 = PFHLEFHL and start from the top. We summarize this algorithm in for the isotropic
case in Algorithm 1.

Let us take a quick look on how to use Cut-Pursuit for the anisotropic problems with ®J
as in Definition 4.1. As in Lemma 4.4, we can decouple the problem for multi-dimensional
anisotropic functionals for each dimension j. Thus, we can apply the Cut-Pursuit algorithm
from Algorithm 1 for each dimension, since it in one dimension channel-isotropy and channel-
anisotropy are obviously equivalent. For each evaluation of the Cut-Pursuit we get a one-
dimensional result fj’-k and a partition H;f representing the piecewise constant parts. The
partitions H; = {A] | 1 < i < N;} of every dimension 1 < j < d cannot be assumed to be
equivalent, since the solution f;‘ is computed decoupled from the other channels, and thus,
the piecewise constant segments differ between dimensions. The partition II* to represent
f* then is the set of all possible intersections of combinations of segments in the different
partitions II7. To be more precise let us assume that we have a two-dimensional data given
and therefore computed two solutions f}" and f5 with their representing partitions II] and
IT5. We assume that there exists at least on combination of segments such that A; € I and
A; € IT5 are not equal, i.e., 4;NA; # A; and A; N Aj # Aj, and that A; N Aj # 0. Let us
consider a node u € A; N A;. For this node we know that f;(v) = f;(u) for every v € A;
for j € {1,2}. But we also know that for example j = 1 we have that f{(u) # f{(v) for
v e Aj\ A; N Aj, due to the definition of the partitions. The same holds for j = 2 where
f5(u) # f5(v) for v € A; \ A; N Aj. Since f*(u) = (ff(u), f5(u)) we can deduce from the
pointwise observations that f*(u) = f*(v) for u,v € A;NA; and f*(u) # f*(v) for u € A;NA;
and v e A; \ A;NAjorve A;\ A;NA;. Thus, we see that f* is piecewise constant on the
intersection of the segments A; € II7 and A; € II5. This can be now done for every u € V
and also extended to more dimensions. Let H;lzl II¥ = IIf x ...1;. Then the anisotropic
solution yields the partition II* as

d
HZ = { m;!:l A] ’ (Al) . '7Ad) € H H; } (4.57)
j=1

In the following section we apply the Cut-Pursuit algorithm on the (weighted) ROF
problem (3.34) and derive the Cut-Pursuit algorithm for the different settings.

4.3 Cut-Pursuit Algorithm

Algorithm 1: Isotropic Cut-Pursuit Algorithm.

Input:

G = (V, E,w) < Undirected finite weighted graph

g < Some given d-dimensional data in H(V;RR?)

Initialization:

0 < {V}

& « argmin,cpa D(P%)

Method:

while J'(fix) < 0 do

"1 < compute a direction for every A € II heuristically or by solving (4.53)
(e.g. algorithm (4.54)).

G flow < buildFlowGraph(G, fix AB"*1,g,a) for given methods, (4.49), (4.50)

B!« computeMaxFlow (G flow) via maxflow algorithm, that solves (4.40) (cf.
[10], Section 3.4).

IT*+1 + {connComp(A N B), connComp(A N B) | A € T1}.

PMY e (14) gepen

G, = (V, Er,w,) < with V, = II* B, w, as in (4.20).

gr < reduced data according to data-term, e.g. (4.12).

k= argmin cq (k1) J(P**'¢c, g,) < reduced problem as in (4.21). Solve with

| method, e.g. the primal-dual algorithm on graphs as stated in Algorithm 3.20.

Result: The solution f* for (4.1) and the corresponding partition II* representing

the piecewise constant parts of f*.

Algorithm 2: Anisotropic Cut-Pursuit Algorithm.

Input:
G = (V, E,w) < Undirected finite weighted graph
g < Some given d-dimensional data in H(V;R?)
Initialization:
0 « {V}
® « argmin,cpa D(P%c)
Method:
for j €{1,...,d} do
[; < Use the one-dimensional form of Algorithm 1 on each dimension j
separately.
IT* <~ Compute as in (4.57)
Result: The solution f* for the anisotropic (4.1) and the corresponding partition
IT*representing the piecewise constant segments of f*.

62

4.4 Cut-Pursuit Algorithm for ROF Problems

In this section, we want to apply the derived Cut-Pursuit algorithm from the former
section onto the (weighted) ROF problem in (3.34). In the numerics in Chapter 6 we show the
application of Cut-Pursuit to different data and investigate the run time and other properties.

Again we work with an undirected finite weighted graph and some given d-dimensional
data g € H(V;R?%). In this section, we are interested in solving the family of weighted
p-¢-ROF problems on graph given as

1 «
argmin {J(f) = =|f — gll3w + — |V S|P 4.58
xgmin {J(f) = 51f — gl + 5 IVl (4.58)

where p,g > 1 and W € R\ZVOIXIVI is some diagonal weighting matrix. We investigate these
since they are a simple generalization of the common ROF problem where the data-term is
an Lo-data-term which is equivalent as the weighting W = I.

To apply the Cut-Pursuit algorithm to this problem we have to deduce the reduced graph
and the reduced problem for any given partition II and solve it with the primal-dual algorithm
on graphs we introduce in Algorithm 3.24 for weighted ROF problems. Afterwards, we state
the partition problem for (4.58) and give the flow graphs for different settings of p and g.

But first let us show that the p-¢-TV regularization is actually a special case of the general
anisotropic and channel-isotropic regularizer in Definition 4.1 and Definition 4.2 respectively.
It also follows that the statements of Lemma 4.3 and Lemma 4.4 hold. As we have seen in
Section 3.3.1, the p-¢-TV term is anisotropic and channel-isotropic for different p,q combi-
nations. The p-¢-TV regularizer can be rewritten as

p

d q
R(f) =]19 S S w(u,v)k (Z F@); - f(u)j!q)

eV v~u

— Z O (w(u,v), f(v) — f(u))

(u,v)EE

(4.59)

with

P

d q
®(w(u, v), f(v) = fu)) = ;w(u,v)g (Z [f(v); = f(u)j|q) - (4.60)
j=1

Note that ® is £-homogenous in the first argument and p-homogenous in the second argument.
We already introduced a primal-dual algorithm on graphs in Algorithm 3.22 to solve the graph
problem (4.58) using the proximity operators we state in Appendix 3.C.

4.4.1 Reduced ROF Problem
As we have derived the reduced graph setting for the general problem in Section 4.1 let

us apply it to the ROF problem (4.58) where R is the p-¢-TV regularizer as in (4.59). We
see in (4.59) that ® is §-homogenous in the first and p-homogenous in the second argument,

4.4 Cut-Pursuit Algorithm for ROF Problems 63

and thus, we can deduce directly from (4.19) the reduced weighting w,: E, — Ry given as

G

w(A,B) =] Y wuwv)t]r, V(A B)€E,. (4.61)

(’u,,’l))GEAB

The reduced regularizer for p-g-TV is then computed by applying (4.18) to the ® from (4.59)

as
Rr(c) = Z q)(l)wr(Av B)(CB _CA))
(A,B)EE,
1
== Y w(AB)|cs—call! (4.62)
p (A,B)€EE,
= (I)T(VWTC) = varcug;q
with the reduced function ®,(x) = [|z|b,. With these deductions we can define the reduced

energy J, corresponding to the full energy J from (4.58) using the reduced form of the
(weighted) Lo-data-term in (4.12) and the reduced p-¢-TV term in (4.66) which yields

1 o
Jr(e) = 5lle = grllzwe + %HVWCH%Q, = J(fe) (4.63)

with Wp = P*W P. In conclusion we found the reduced graph G, and the reduced problem
J, for any partition II describing all functions in Sy that are piecewise constant on II. We

sum this results up in the following proposition.

Proposition 4.13 (Reduced p-¢-TV Regularizer).
Let G = (V, E,w) be a finite weighted graph. Define a reduced graph as G, = (I, E,, w,) for
the partition 11 of V' with the reduced edge set E, defined as

E,={(A,B)ellxIl | (Ax B)NE # 0} (4.64)
and the defined reduced weighting as w,: E, — Ry as

we(AB) =(Y wv)b)r, V(A B) €E,. (4.65)

(u,v)EEAB

Let f. € Sp with fo = > qenncala and ¢ = (ca)aen € H(II). Then the following identity
holds

||wa||p;q = ||VwTC||p;q- (4.66)

The reduced energy functional for (4.58) on G, is then given as

1 o'
Jr(e) = Slle = grllawe + %Ilvwrcllz;q (4.67)

with Wp = P*WP and g, = (P*WP)~"'P*Wg.

In order to solve the reduced problem (4.67) on G, we use the primal-dual algorithm
on graphs we introduce in Algorithm 4.14 for weighted ROF problems. As we see here, the

64

reduced weighted Lo-data-term is in fact a differently weighted Lo-data-term with the weight
Wp. For the unweighted Lo-data-term with W = I this leads to the diagonal weighting
Wp = diag(|A|) acrr which is a weighting by the sizes of the segments in II. The primal-dual
algorithm Algorithm 3.24 for weighted ROF problems yields the primal dual step for with
the weighting matrix Wp as

= (I+ T,Wp) (" + T Wp(divy, (") + g,) (4.68)
& =T+ TWp) (" + T(Wp div, (™) + P*Wyg)). (4.69)

The diagonal matrix T, is the diagonal preconditioning matrix from (3.30) for the reduced
weighting w,. Note that this preconditioning is even more effective on reduced graphs as on
normal graph structures. The reduced graph also suffers from a very inhomogeneous structure
since every segment can have arbitrary numbers of neighboring segments. Moreover, the
reduced weights are the sum over the weights between these neighboring segments in the
original graph. Thus, the weighting is also very inhomogeneous, e.g. in the case of images
it is the length of the boundary between segments. This leads to a very slow convergence of
the reduced problems when applying a global constant step size, since for some partitions the
step is too large while for others it is too small. This makes the convergence very inconsistent.
The diagonal preconditioning alleviates these problems. In the numerics section we will also
use a adaptive diagonal preconditioning introduced in [34] that we will not go into detail
here. Additionally, to this let us emphasize that the primal-dual algorithm does not only
reduce the number of primal parameters we have to optimize, but furthermore also reduces
the number of parameters of the dual, since y € H(F,). Hence, the updates for primal and
dual are both more efficient on the reduced graph than on the original full graph. Finally,
the primal-dual algorithm for a reduced ROF problem is stated in the following.

Algorithm 4.14 (Reduced Weighted ROF Primal-Dual).
Let G = (V,E,w) be an undirected finite weighted graph and G, = (II, E,,w,) be a reduced
graph as defined in Proposition 4.16 for some partition Il of V.. Let W € R]ZVOXN

matriz and Wp = P*W P its reduced relative. Let T,., %, be the reduced diagonal precondition

be a diagonal

matrices defined in (3.30) for the reduced weighting w,. Then the primal-dual algorithm to
solve the minimization of the function in (4.67) is given as

yn+1

= (I TW,) (" + To(Wp diva, (y") + WP*g)) (4.70)

"+ 1 ="+ (et — ")

= pI'OXET(%H.”g;q)* (yn + erwrcn)

with the proxzimity operators PIOX (2.2)« S defined in Appendiz 3.C' for selected p and q.
o llp;

With the ability to solve the reduced problems let us deduce the partition problem and
corresponding flow graphs for the weighted ROF problem in (4.58).

4.4 Cut-Pursuit Algorithm for ROF Problems 65

4.4.2 Partition Problem of the ROF Problem

To compute the flow graph for the partition problem we have to investigate the differ-
entiable (weighted) Lo-data-term and the differentiable and non-differentiable parts of the
p-¢-TV regularization term that we already computed in Appendix 3.B. The derivative of the
weighted Lo-data-term is given in Proposition 2.7 as

VD(f,g9) =W(f —g).

For the p-¢g-TV regularization term we state in (4.66) that it is absolutely £-homogeneous
in the first and p-homogeneous in the second argument. In Appendix 3.B we derive the
differentiable and non-differentiable parts of different settings of p and ¢. Since, p < ¢ in
this work and p-homogeneous function are differentiable for p > 1 as we state in Lemma 4.3
we see that for 1 < p < g the p-¢-TV term is differentiable everywhere. For p = q = 1 we
have a non-differentiable anisotropic setting and for p = 1 < ¢ we have a non-differentiable
isotropic setting. Note that for this particular p-¢-TV term we can only have anisotropy
for p = ¢ = 1. Hence, we can directly apply the already derived flow graphs in (4.47) for
p=gq=1,in (4.49) for p =1 < g and in (4.50) for 1 < p < q. Let us state the flow graphs
for the different settings explicitly. More detailed information about the derivatives can be
found in Appendix 3.B.

Let p=q=1:
Since this is the non-differentiable anisotropic case we state the flow graph for every 1 < j <d
individually. The gradient of the data-term is given as

VD(f,9); =W(f;j — g))-

As we state in Appendix 3.B the non-differentiable part of the anisotropic regularizer is
if f(v); = f(u); for some (u,v) € E. Thus, S; = {(u,v) € Eq | f(u); # f(v);} where
E; = {(u,v) € E | u < v} is the set of directed edges and we give the derivative in (3.50) as

VRs,(Huj=2 Y \Jwl(uv)sign(f(u); — f(v);).

(u,v)€S;

Since, the anisotropic regularizer is defined in (4.59) for p = ¢ = 1 as &/ (w(u,v),y) =
w(u,v)|y| we can deduce from (4.47) we set c(u,v) = ®J (w(u,v),1) = Jw(u,v) for every
(u,v) € S5. Thus, with

VIs(fit)ug = Wau(fu(w); — gug) + > yJw(u,v)sign(fu(u); — fu(v);)
(u,v)€S;

66

the capacity c¢; of the flow graph Gy ; is given as

cj(s,u) = VJs(fH)u,j, if VJS(fH)u’j Z 0,
Cj(u7t) = _VJS(fH)u,ja if VJS(fl_I)u,j <0, (471)
cj(u,v) = ay/w(u,v), Vv (u,v) € S5.

Letp=1<q:

For ¢ > 1 we consider channel-isotropic regularization which is non-differentiable for p =
1 < g when f(u) = f(v) for some (u,v) € E. The set where it is differentiable is given as
S = {(u,v) € Eq | f(u) # f(v)}. In the isotropic setting we have to choose some directions
ﬁéﬂéc e R? with ||ﬁ§ + 7y§c||q = 1 for every segment A € II. Let us only focus on ¢ = 2
here since it is the case that we will investigate in this work. The gradient of the data-term
is again given as above. The gradient of the differentiable part of the p-¢-TV regularizer we

compute in Appendix 3.B is stated in (3.53) and is given for ¢ = 2 as

Then we deduce that
~A | =A _ flu) = fv) _a, _a
(VIs(fr1)us V7B R = (VW (f (1) —g(u))+ (u%:es w(%”)m,’m‘i"mcmd

The directional derivative of the non-differentiable parts is given as

Re(f =2) @ =2 Y w)2|15(v) — 1p(w)] (4.73)

(u,v)ese (u,v)eSe

which leads to c(u,v) = ay/w(u,v). The capacities for the flow graph are then given as

c(s,u) = (VIs(fi)u 75 + Vhe)mas i (VIs(fi)u, V5 + e)ra > 0,

c(u,t) = —(VJs(fin)us 75 + Vpe)ras 1 (VIs(f)us 75 + The)ma <0, (4.74)
c(u,v) = ay/w(u,v), V (u,v) € S°.
Let 1 <p<q:

In this case we have an regularizer that is differentiable everywhere, i.e., VRg = VR. Hence,
the derivative is given as in (3.55) and is equal 0 when f(u) = f(v). It is anisotropic for p = q
and isotropic for p < ¢q. Let us state the flow graph for the well-known case of p = ¢ = 2.
Then the derivative is given as

(VRu=2 Y wu,v)(f(u)— f(v)). (4.75)

(u,v)EE,

4.4 Cut-Pursuit Algorithm for ROF Problems 67

Then we can deduce that we have for u € A

(VI(F)us 78+ 8e) = Wau(f(u) —g(u) +a > w(u,0)(f(u) — f(v), 75 + T5e)-
(u,w)EE,

In the flow graph we do not have any horizontal edges between nodes in the graph, since there
is no non-differentiable part. Thus, the flow graph only has connections to the terminals.
The capacities are given as

C(Sv ’LL) = <VJS(fH)u7 ’_Yg + ’_)/gC)R‘% if <VJS(fH)u7 ’_Yg + ’7§C>Rd Z O)
C(U, t) = _<VJS(fH)u7 ’_}’g + ’_Y§0>Rd7 if <VJS(fH)u7 ﬁé + ’7§6>Rd < O) (476)
c(u,v) =0, V (u,v) € E.

For this case one does not have to compute a graph cut since there are no edges between nodes
to cut. In fact, it is just a segmentation of the nodes by checking if (VJs(fi1)u, V4 + Ve) rd

is positive or negative.

4.4.3 Directions for the ROF Partition Problem

In order to compute a splitting B by minimizing of the partition problem, we have to select
feasible directions. In numerical experiments in Section 6.3 we show the influence of different
heuristically selected directions. Nevertheless, we also provide an algorithm to optimize over
the directions. The optimization problem is again given as

. _ _ (64 _
argmin (VJs(fm1,9), Z 1anB7H — LanBevae) + ER,Sc(fH;’YB) : (4.77)
BEP(V)Ahvhe Aell

with VJs(fir,9) = W(fi — 9) + $VRs(fu) and 7B = X,ca 1ans(75 + 7). Let 34 =
Y4 + ¥4, and hence, ||74ll2 = 1. Then we can deduce that the partition problem of the
alternating algorithm in (4.54) is the same as in the former section for the different settings
of p and q. Note that the directional derivative of the non-differentiable part of the regularizer
in (4.73) can be dropped for optimization since it does not depend on directions and only on

B. The constraint problem to update the direction 74 € R for every A € II is then given as

Vit = argmin > (Wanlca — g(w)) + %VRs(fn)u, (1p(u) — 1pe(u))7a) (4.78)
YAll2=1 yeA

This can be solved by applying the Lagrange multiplier method. Let us set

I/f = Z Wayu(ca — g(u)) + %VRs(fn)u(lB(u) — 1pe(u))
u€A

= <VJS(fH79)7 1AﬂB -]-AﬁBC>

then we have to minimize

N -
argmin (y4,v7%)
[7ll2

68

for which the Lagrangian function minimization is given as
argmin { £(74,\) = (74,v5) + A((74,74) = 1) } (4.79)
ya.vg
Which can be solved by computing the optimality condition for both arguments which follows
that
vy

_ (4.80)
1512

Ya =%

With |14np(u) — Lanp(u)| = 1 for every u € A and |1anp(u) — 1anp(u)| = 0 for every
u €V '\ A we can deduce that

1Bl = (3 Vs(fin9)2)® = [VJs(fi,9) - Lalls = |V Is(fr 9) -
uceA

Then we can write down the alternating algorithm to solve the partition problem as

B"™ = argmin (VJs(fi,9), > aerr 1anB7%)
BeP(V)
+a Z(u,v)ese Vw(u,v) |1p(v) — 1g(u)] (4.81)
1 (VJs(fi1,9), 1anB — LanBpe)
Y = , VAell
4 IV Ts(fi1,)14 l12

Note that we dropped the + because in the partition problem to compute B we get the same
solution for using the positive or negative direction.

Finally, we have derived how to construct the flow graphs and how to solve the reduced
problems for the weighted p-g-ROF problem (4.58). Hence, we can apply the Cut-Pursuit
algorithm Algorithm 1 to solve (4.58) for any given graph G and corresponding d-dimensional
data set g which we state explicitly in Algorithm 3. We show in the numerical experiments
presented in Chapter 6 different results by applying the Cut-Pursuit algorithm for solving
ROF problems to grayscale and RGB images, and to 2D and 3D point cloud data. In the next
chapter we introduce a different Cut-Pursuit algorithm that uses the same idea but solves
optimization problems with an Ly-TV regularization.

4.4 Cut-Pursuit Algorithm for ROF Problems 69

Algorithm 3: Isotropic Cut-Pursuit Algorithm for (weighted) ROF Problems.
Input:
G = (V,E,w) + Undirected finite weighted graph
g < Some given d-dimensional data in H(V;R%)
Initialization:
° « {v}
® « argmin,cga D(P%)
Method:
while J'(fix) < 0 do

AB**! < compute a direction for every A € II heuristically or by solving (4.77)
(e.g. algorithm (4.81)).

G flow < buildFlowGraph(G, fix AB"*1.g,a, p, q) depending on p, ¢ with (4.71),
(4.74) or (4.76)

B+ computeMaxFlow(G fi0,) via maxflow algorithm, that solve (4.40) (cf.
[10], Section 3.4).

[T+ +— {connComp(A N B), connComp(A N B) | A € T1}.

PhHL (1A)A6Hk+1

G, = (Vy, B, w,) < with V, = II**! B, w, as in Proposition 4.16.

gr < reduced data according to data-term, e.g. (4.12).

k= ArgMIn cpy (k1) J(P**'¢c, g,) < reduced problem as in (4.63). Solve with
method, e.g. the primal-dual algorithm on graphs as stated in Algorithm 4.14.

Result: The solution f* for (4.58) and the corresponding partition IT* representing
the piecewise constant parts of f*.

Appendix

4.A General Regularizer for ROF

In this appendix section, we show that the p-g-TV regularization is a special case of the
Definition 4.1 and Definition 4.2 such that the statements of Lemma 4.3 and Lemma 4.4 hold.
In particular, we focus on optimizing the following family of variational denoising problems

for a fixed regularization parameter a > 0

. 1 2 «
argmin 2| — gll3 + =V L (4.82)

fenw) 2 2p R
for ¢, p > 1 using the notation introduced in Section 3.1.2. As we have seen in Section 3.3.1
the p-¢-TV term is channel-anisotropic and -isotropic for different p,q combinations. The
p-¢-TV regularizer can be rewritten as

ueV v~u

= > ®(w(u,v), f(v) — f(u))

(u,v)EE

. :
R(P) = % 3 wlu,o)t (Z F)s - f<u>j|q)
]:

(4.83)

with

p

q

d
(w(u,v), f(v) — f(u) = ;w(u,v)g (Z [f(v); = f(U)jlq) : (4.84)
j=1

Note that ® is £-homogenous in the first argument and p-homogenous in the second argument.
We already introduced a primal-dual algorithm on graphs in Algorithm 3.22 to solve the

problem (4.82) using the proximity operators in Appendix 3.C.
4.B Reduced Terms

In this appendix we derive different reduced terms that we use in the context of Cut-
Pursuit algorithms, i.e. the (weighted) Lo-data-term and the p-¢-TV regularizer.

4.B.1 Reduced (Weighted) L.-Data-Term

In this subsection we state how the weighted Ls-data-term on an undirected graph G =
(V,E,w) as defined in Definition 3.2 is reduced on some given partition II for V in the

following proposition.

Proposition 4.15 (Piecewise Constant of (Weighted) Lo-Data-Term).

72

Let g € H(V') be some given data and D(-, g) be a weighted La-data-term as in Definition 2.6
with a diagonal weighting matriz W € RN*N - Plugging in any piecewise constant function
fe = Pc € Sy yields that minimizing Dy (fc, g) is equivalent to minimizing Dp=wp(c,gr)
with g, = (P*WP)"1P*Wg.

For W = I we get the La-data-term and the equivalence of minimizing D(f.,g) and

Z’U,EA g(u)

for every A € 11.
Al

DP*P(Ca g'r) with (g'r)A =

Proof.
We start by write out the following

1
Dw (fe,9) = inc -9 %,W

- %(W(Pc —g),Pc—g)
= %(W(Pc —g),Pc—g) (483)
= 1((WPc, Pc)— (WPc,g)— (Pce,Wg) +(Wg,g)).

————

2
(1) (2) (3)

We will look at each of the 3 terms separately and try to reformulate them in some smart

way. Note that the last term does not depend on ¢, and thus can be exchanged as we want
to when minimizing since it is a constant value.

Reformulating (1):
(WPc, Pc) = (P*W Pc,c). (4.86)

Reformulating (2):
For this computation we use that P*WP = diag(}> ;c4 wi)aen is a diagonal matrix. Then
trying to reformulate such that it fits to (4.86)

(Whe,g) = (¢, P"Wg)

=

= ((P*"WP)" (P*"W P)c, P*"Wg) (4.87)
= (P*WPc, (P*WP) "' P*Wg)

-

P*W Pc, g,)

We denote g, = (P*WP)"'P*Wg = LicA Wili . Subtracting the reformulations of
2ieaWi) yep
(2) in (4.87) from (1) in (4.86) we get
(P*W Pc,g) — (P*W Pc, g;) = (P*W Pc,c — gy). (4.88)

This looks very similar to the definition of a weighted Lo-data-term as defined in Definition 2.6

and can be realized by subtracting

(P*WPg,,c— gr) = (P*WPg,,c) — (P*WPg,, gr).

4.B Reduced Terms 73

The right term can be just added since it is only dependent on g,, and hence a constant.
Consequently, we have to reformulate (3) from (4.85) to (P*W Pg,, c) as we do in the follow-
ing.

Reformulating (3):
(P*W Pg,,c) = (P*WP)(P*WP) ' P*Wg,c) = (P*Wg,c) = (Pc, Wg). (4.89)

Finally, when we combine the reformulations in (4.86), (4.87) and (4.89) and add (P*W Pg,, g,)
we get the following

.
Dpswp(c,gr) = §<P WP(c—gr),c—gr)
1) .) . (4.90)
= §(<P W Pc,c) — (P*W Pe, g,) — (P*WPg,,c) + (P*WPg,, g)).

This concludes the general proof. Let us study the special case of W = I. Then the

reduced data g, becomes

[Xuea 9(w) _ (2uea g(u)
g’"‘(uea L >A€n (Al)AEH (4.91)

which is the mean value of the data g on every segment A € II. As we know from Lemma 4.6
P*P = diag(|A|) aep a diagonal matrix. Minimizing the Lo-data-term given as

1
D(Pe,g) = 5|Pec - gll3 (4.92)
is then equivalent to minimizing

Dp-p(e,gr) = 3 (P*P(c — gr), — gr) = ¢ (ding(|Al) aenc — g2, ¢ — g1)
(4.93)

1
= 5 lle = grllaiag(a.2-

4.B.2 Reduced p-q-TV Regularizer

In this subsection we will show the reduced p-¢g-TV regularizer for a given graph G =
(V, E,w) and partition IT of V. Before let us define

Eap={(u,v) € E|ue Ave B} (4.94)

as the edges in F that are between two segments A and B. The following proposition yields

how we can compute the p—q—TV regularizer in a reduced setting.

Proposition 4.16 (Reduced p-¢-TV Regularizer).
Let G = (V, E,w) be a finite weighted graph. Define a reduced graph as G, = (I, E,, w,) for

74

the partition I1 of V with the reduced edge set E, defined as
={(4,B)ellxll| (AxB)NE #0} (4.95)

and the defined reduced weighting as w,: E, — R, as

wy(A,B) = Z w(u,v)g,

(uw,w)EEAB

V(A, B) € E,. (4.96)

Let f. € Su with fo = > 4encala and ¢ = (ca)aen € H(II). Then the following identity
holds

IVwfllpe = ||Vwrc”p;q- (4.97)

Proof.
Let f. € Sn as defined in (4.7) and ¢ € H(II) such that f. = Pc =3 4c;p 1aca. Then the
p-¢-TV regularizer applied to f. can be reformulated as follows:

Qs
3 =

IV fllpg = Z wa(% <Z|fc Je(u);]4)

ucV v~u

- (4.98)

=1 > X Y wluw 5(Z\fc m)g

A€ll u€eA (u)eE

Sl

The value of the term

P

w(u,v)’ (Z [folv)j = felu);°) (4.99)

for some vertex u € A and segment A € II is different if v € A or if v € B € II with B # A.
For v € A we know that f(v) = f(u) = c4. Plugging this into the term (4.99) yields

P

d q
w(u,v)? (Z lcaj — cAj\q) =0. (4.100)

j=1

On the other hand let u € A and v € B with A,B € IT and A # B then f(u) = c4 and
f(v) = cp. The term in (4.99) becomes for this choice

Q3

d
UJ(U, U)g (Z ‘CBj _ CAj|q) . (4101)
j=1

Using these definitions of E4p in (4.15) and of the reduced edge set E, in (4.95) to reformulate

4.C Derivation of Partition Problem 75

(4.98) into the following:

d
IV fllpg = Z Z w(u,v)g (Z les; — cAj|q>
J

(A,B)EE, (u,v)EEA B =1

Qs
I
3=

d ‘
| 5 (Sener) 5w)
(u,v |

3=

(A,B)eE, \Jj=1 VEEA B
_ 1
p
P
= Yo lez—calt D wlu,v)2]
L (A,B)EET (u,v)EEAB

By using the definition of the reduced weighting as defined in (4.103) given as

w(A,B)= 3 wluw)i, Y(AB)€E, (4.103)
(u,v)EEARB
we can finally deduce

1

P
IVewfllpg = Z wy (A, B)llep — CA”{;) = [V, Cllpg- (4.104)

(A,B)EE,

Note that the reduced weighting w, depends on the selected p. O

4.C Derivation of Partition Problem

In this appendix we reformulate the minimization problem in (4.33). To do so, we start
by stating the same initial situation as in Section 4.2.1.We have a current partition II of V'
and aim to find a set B C V to refine II by computing AN B and AN B¢ for every A € 11
and define a new partition

Myew ={ANB,ANB°| A € 1II}. (4.105)

Let ¢ € H(II) be a solution of the former reduced ROF problem on II and fij = Pc =
> aer Laca be the corresponding piecewise constant function in Sp. Assume now we have
some binary splitting of the partition Il described by B € V and a corresponding piecewise
constant function in H(I,ew) given as

f8 =" (lLanpdans + lanpedanse) (4.106)
Acll

with some vectors dang, dange € R? for any combination of A € Il and B C V. Note that
this function is piecewise constant on AN B C A and AN B¢ C A for every A € II, and thus

76

fB € Sm,.,,. The energy functional becomes

J(fB) = D(> (1andans + lanedanpe) ,g)
Aent

+ %R(> (1anBdans + lanedanpe))
Aell

We now want to find a partitioning described by B C V such that the energy of J(fB)
decreases the most compared to the current energy J(f). Thus, we optimize to find the set
B C V that minimizes

argmin D(fp,9) = Dfn.g) + 5 (B(Fs) = R(fw) (4.107)

with fixed vectors for danp and danpe as we already stated in (4.33). If we argue in Sec-
tion 4.2.1 we use for every segment A € II two directions ¥4,7g. with |y4ll2 = 1 and
|78]l2 = 1 and a small perturbation & > 0. Then we define for every A € II

VB =EVB: VBe = EVhe. (4.108)
Then we set
danB = ca+75, danse = ca —Vpe (4.109)
for every A € II. Then the function (4.106) becomes

f5=">_ (Lansdans + lanpedanpe)

Aeln

_ A A

=> (1AﬂB(CA +7B) + Lanpe(ca — VBc)> (4.110)
Aell

=3 (IACA +1anB75s — 1Ach7§c)
Aeln

We can simplify (4.110) even more and make it only depending on 1p using the equivalence
1y =1p+1p & lge=1y — 15
This implies that for every A € II we can deduce
14 =140 + 1anpe & lanpe =14 — lans.
Then we can rewrite for every A € 11 that

1anBvA — 1anseyae = Lanpva — (14 — 15)7vae
= 1anp(V8 + 7)) — Lavpe
B A, A A
=e(1anB(Y5 +7Be) — 1aVBe)

4.C Derivation of Partition Problem 77

and define the directions

EY=¢€ Z S/A
Aell

Consequently, these rewriting follows that we actually are investigating the problem

argmin J(f +e5) — J(f). (4.111)
BeP(V)

Dividing a functional by some scalar does not change the solution, thus we can state the

following identity:

argmin J(f + &%) — J(f) = argmin I +ey) = J(f) (4.112)
BeP(V) BeP(V) €

We know that J(f) = D(f) + §R(f) is directional differentiable due to the differentiable
term D and the directional differentiable term R. Hence, taking the limit with ¢ — 0 the
minimization functional yields the directional derivative as defined in (2.3) as

e—0 15

The solution of the minimization in (4.112) is equal to the minimizer in the limit with ¢ — 0.

Thus, we can deduce that

argmin J(f +¢e5) — J(f) = argmin lim J(f +e7) = J(f)
BeP(V) Bep(v) €0 £

= argmin J'(f;7).
BeP(V)
As a result we have derived that we have to minimize the directional derivative of the energy
J into a direction certain 4 that depends on B and is provided with two a-priori selected
direction 73,74 for every segment A € II to find a set B € P(V) that splits up the current
partition II correctly. To wrap this derivation up let us reformulate the directional derivative

in even more detail. In the following we will define

Y=+
- A -A
B = Z Lans(Y5 +VBe)
Acll (4.113)
F=—> 1a7p
Aell

Let us first take a look at the differentiable data-term D. Since it is differentiable the

directional derivative is directly given as

D'(fm;7) = (VD(fn),) = (VD(fn), ¥B) + (VD(fu), 7).

where 4p is depending on B, while 7 is the rest that is not depending on B. Since T is a
constant we can drop it for the minimization with respect to B. For the data-term we then

78

would just minimize
D'(f;7B)-

We compute the directional derivative for the different isotropic regularizer ®; since - as we
pointed out before - the anisotropic regularizer can be treated as a special case. Due to the
definition of R; as sums over the functions ®; in Definition 4.2 the regularizer can be separated
into differentiable and non-differentiable parts. In fact, the differentiability depends directly
on the choice of &, and ®;. As we only inspect the isotropic regularizer we set R = R;. Let
S ={(u,v) € E| f(u) # f(v)} be the where R is differentiable by definition in Definition 4.2.
Hence, R is non-differentiable in S¢. We can split the directional derivative of R up into

R'(fi;¥) = (VRs(fu),¥) + Rse(fu; 7) (4.114)

with Rg the differentiable and Rgc the non-differentiable part. Note that the gradient of Rg
is pointwise for every v € V, and thus VRg(f) € RY. With the same argument as in (4.114)
we can exchange the direction for the differentiable part Rg with p, i.e.,

(VRs(fn),¥B)-

To reformulate the non-differentiable part we have to check for the different anisotropic R,
and isotropic R; definitions of R in Definition 4.1 and Definition 4.2 respectively. We assume
that f(u) = f(v) if, and only if, u,v € A for some A € II. Then we can deduce the following:

YB(v) = 1anB(0) (V5 + 75),
VB (u) = Lanp(uw) (V5 + V5¢)
vB(v) —vB(U) = (1AmB(v) — 1ans(u) (75 + Vi)
7(v) — 7(u) = 8 —vae = 0.

Then for with ®;(w(u,v),0) =0 we can compute

Roe(fy) = lm 3 @ (w(u,v),e(YB(v) = ¥YB(u) +7(v) — 7(u)))

15
(u,v)€Se
- D (w(u,v),e(1ans(v) — Lans(w) (35 +75.))
e—0 g
(u,w)eSe
g Y SR(0), (Lans(v) =~ Lans(w) (75 + 7))
e—0 e
(u,v)€S°
=lim & 37 Pi(w(u,v), (Lans(v) = Lans(w) (35 + T5e))-
(u,v)eSe

Since the rest ¥ dropped in the computation this is equivalent for the direction vp, i.e.,
Rle(fi1; %) = R (fi; ¥B). We set p > 1 by definition. Thus, we see that for p > 1 we get

4.C Derivation of Partition Problem 79

R.(fr;7) = 0, which is analog to what we see in Appendix 3.B. For p = 1 we deduce

Ree(fAB) = Y. [1anp(v) — Lans(w)|®;(w(u,v), (5 + Ti-)) (4.115)
(u,w)eSe

since ®; is 1-homogeneous in the second argument.
Finally, we have rewritten the former partition problem (4.107) into the following new

partition problem

argmin { (VD(fun) + § VRs(fn), 38) + Rse(fr: 75) } . (4.116)
BeP(V)

Cut-Pursuit for Minimal Partition Problems

In this chapter, we want to introduce a family of (general) minimal partition problems and
present multiple Cut-Pursuit algorithms to find solutions of these problems. This family of
problems is related to the piecewise constant Mumford-Shah [19, 57] minimization problem
that is given on a finite weighted graph G = (V, E,w) as

argmin Z (f(u) — g(u)? + a|C] (5.1)
CeP(E),feH(V) yev
where |C| is the length of all boundaries in f € H(V) over the edge set E and a > 0 is
a regularization parameter. The length of all boundaries is equivalent to the total number
jumps in f over edges the edges E. We denote every edge (u,v) € E as a jump if f(v) # f(u).
The jump set J of f € H(V) is then the set of all edges where a jump is, i.e.,

T ={(u,v) € E| f(v) # f(u)}-

In Figure 5.1 we can see the jump set of a TV solution as every green peak that corresponds
to the absolute value of each jump in the solution. Hence, we can deduce that |C| = |7J|. Let

us introduce the following measure.

Definition 5.1 (Lp-“norm”).
The Lg-“norm” for some x € R"*% qgs

" 1) , 7 07
lzflo = { ¥ il > (5.2)

i—1 |0, else.

In Figure 5.2 we visualize this norm in 1D, i.e., x € R. Note that this function is highly
non-convex and not continuous. With this measure we can tell if a vertex function f € H(V)
has a jump over an edge (u,v) € E when ||f(v) — f(u)|[o = 1 and no jump when it is equal
to 0. Then we can reformulate the regularization term of the Mumford-Shah problem as

ICl=1T1= > f@)—f@wlo

(u,v)eEE

82

12 Noisy Signal
1k M. N L-TV solution
A A .
Ly-TV solution
0.8
06
04
0.2
0 |-
1 1 1 1
0 20 40 60 80 100 120 140 160
1L
>
H
L o5
~
Ok |
0 20 40 60 80 100 120 140 160
s
>
H
Los5f
&
ok
0 20 40 60 80 100 120 140 160

Figure 5.1.: Illustration of a noisy 1D signal denoised with Lg-TV and L;-TV and
their corresponding jump sets and costs per jump.

Since we are working on finite weighted graphs we also want to incorporate a weighting
function to this regularization and define the following.

Definition 5.2 (Isotropic Weighted Lo-TV).
Let G = (V,E,w) be a finite weighted graph and f € H(V). Then the isotropic Lo-TV

reqularizer is defined as
= > Juwo)lfv u)fo- (5.3)

(u,v)eE

We denote this as the (channel-)isotropic weighted Lo-TV due to its relation to the
weighted channel-isotropic TV regularization on graphs in (3.17). To distinguish between
Lo-TV and that TV regularizer we denote it as L1-TV regularization. We can define such a
regularization also in an anisotropic form as in (3.14).

Definition 5.3 (Anisotropic Weighted Lo-TV).
Let G = (V,E,w) be a finite weighted graph and f € H(V). Then the anisotropic Lo-TV

reqularizer is defined as

= > Z yw(u,v)][f(v) willo- (5.4)

(u,w)eE j=1

As the anisotropic case is again a special variant of the isotropic case as we discuss in

5 Cut-Pursuit for Minimal Partition Problems 83

Figure 5.2.: The 1D L function defined in (5.1).

Lemma 4.4 we only consider the isotropic case here. Then we can state the weighted variant
of the problem (5.1) with the definitions from above on the graph G as

argmm *Ilf gHer* > ywlw)llf(u)llo- (5:5)

(u,v)EE

We denote this as the Lo-ROF problem. To make this more general we replace the Lo-data-
term with a continuously differentiable data-term D and then get

argmin D(f, g) Z Vw(u,)| f(v u)llo- (5.6)

fer(v) (u,v)EE

We call this the (general) minimal partition problem in this work due to its relation to the
minimal partition problem in (5.1).

Let us compare this problem to the L;-TV-regularized problem we introduce in (3.14)
and (3.17). In Figure 5.1 we plot the Lp-TV (red line) and L;-TV solution (green line) to
the noisy input signal (blue line). Additionally, we illustrate the jump sets of both solutions
in the two bottom plots with the height of the peaks as the cost of the jumps. In the L1-TV
regularization a jump costs the height of the jump while in the Lg-Regularizer every jump
independently of its height costs the weight of the edge. Extending this considerations to an
image the weighted L1-TV measures the weighted height of the jumps for each boundary in
the image and the weighted Lg-TV measures the weighted length of the boundary. Hence,
regularizing with these terms yields to different penalizations. The L;-TV term penalizes a
jump by its weighted height, and hence, it is as costly to have successive small jumps in the
solutions as one large jump. This is what we can see in the L;-TV plot in Figure 5.1 on the
right side where the smooth - but noisy - part of the data is described with multiple small
jumps. On the other side the Ly-TV regularization penalizes any jump, and hence, tries to
suppress as many jumps as possible to describe the data. This is the reason for only 4 jumps
to describe this part. Another artifact that appears in L1-TV solutions is the loss of contrast
as we can see in Figure 5.1 where the height of the piecewise constant solutions does not fit
to the data. This emerges from the penalization of the height of the jump which dominates
over the data-term here, and hence, reduces the height of the jump between the piecewise
constant functions. The Lp-TV-regularized solution on the other hand does only care about
the presence of a jump which lets the data-term take over of the actual value of the segment.

84

This leads to no loss of contrast. Note that we show in Section 6.4 that Cut-Pursuit to solve
L1-TV problems yields the possibility to apply debiasing to the solution. These observations
and considerations can be directly applied to images and point clouds as we see in Section 6.4.

We now understand what to expect from this regularization and have to face the problem
that this is a highly non-convex optimization problem. Consequently, applying the primal-
dual algorithm from Algorithm 3.20 that is designed for convex problems would not hold.
Hence, let us point out just a few methods that tackle this problem with different approaches.

One approach to tackle this problem is to solve it with some graph cut approaches.
This is for example done in [92] and [5] for piecewise constant Mumford-Shah problems. In
[35] Grady et. al. introduce a method to even solve the piecewise-smooth Mumford-Shah
problem. Even though it is a non-convex problem, and thus the primal-dual algorithm cannot
be applied directly onto this problem, there exist work to solve this problem with a modified
primal-dual algorithm. In [64] Pock et. al. introduce a convex relaxation to the unweighted
Lo-TV regularization and apply the primal-dual algorithm for optimization. Strekalovskiy
and Cremers introduce in [83] a primal-dual algorithm to solve the problem by rewriting
the proximity operator of the convex conjugate of the Lyp-norm by the Moreau’s identity (cf.
[71]). In both works they are investigating a piecewise-smooth Mumford-Shah problem which
can be reformulated into a piecewise constant one. Landrieu et. al. also introduce a Cut-
Pursuit related algorithm to solve the non-convex minimal partition problem with a Lg-TV
regularization in [46]. As the idea is still inspired and created using the ideas of the Cut-
Pursuit algorithm for (isotropic) TV problems it is in fact much harder to solve due to the high
non-convexity. Thus, they introduce a different algorithm to find the best binary splitting
with an alternating algorithm. It consists of a graph cut step to solve a given partition
problem and then updates the values in the newly introduced segments. Then it uses these
updated values to compute new graph cuts until a optimal cut was found for the partition
problem. Additionally, it is hard to find a global optimum of the problem such that they also
introduce different merging and splitting methods to get a better solution. Note that the data-
term D for their problem has to be separable over the nodes, i.e., D(f) = >,y Du(f(u)).
In the following section we introduce the generic Cut-Pursuit algorithm we use in this work.

5.1 Minimal Partition Cut-Pursuit Algorithm

In this section, we want to introduce a generic Cut-Pursuit method to solve the general
minimal partition problem (5.6) that is closely related to the method in [46]. We call this
algorithm Ly-Cut-Pursuit in this work. Again we extend their method to an isotropic setting
and also state different optimization strategies.

Let us again solely consider the isotropic case since the isotropic case is a special case of

the anisotropic case. The minimization problem we are interested in to solve here is given as

argmin D(f,g) Z \w(u,v)|| f(v u)llo (5.7)

fer(v) (u v)EE

where D is continuously differentiable. We call this problem the minimal partition problem
from now on. To derive the Lg-Cut-Pursuit algorithm we want to apply the same procedure

5.1 Minimal Partition Cut-Pursuit Algorithm 85

as in Section 4.2.1 by assuming that we have given some data g on a finite weighted graph
G, are in the k’th iteration of the algorithm where we have given a partition IT* of V with a
corresponding reduced graph G¥. We have also given the solution fir = Pyic® of the reduced
problem. Let us introduce the family of functions depending on some splitting B € P(V)
and some values dang, danpe € R? with danp # danpe as

fB=">_ lanpdanp + lanpedanse.
Aetl

The aim is again to find a B such that the energy J(fg) < J(frx). Additionally, we assume
that for any (Ai,Aj) € E, we have that dAmB #* dAij, dAmB #* dAijc, dAch #* dAij
and da;npe # da;npe. The partition problem to find a split B € P(V) is then given as

argmin D(fp,0)+5 Y \fw(w,v) () = 500 (5:)

BeP(V) (u,0)EE

We again aim to solve this problem using an efficient graph cut and start by computing the
Lo-TV regularization applied to a piecewise constant function in H (IT¥).

Lemma 5.4.
Let G = (V,E,w) be a finite weighted graph and Il a given partition and fp as above.
Moreover, let S¢ = {(u,v) € E| fu(u) = fu(v)}. Then we can rewrite the Ly-TV reqularizer

10 fB —2 Z \/w ('LL 1)) ’]-B —1B)‘ (59)

(u,v)eSe

Proof.
Let us investigate the Lo-TV regularizer R; o by plugging in fp. From (5.3) we first get the
following

Rio(fe)= > ywuv) | fsv (w)llo

(u,v)EE
=2 Y Juw(u)fs (u)lfo
(u,v)€E,

where E; = {(u,v) € E' | u < v} is the directed edge set. We also denote the set of edges
Egia, ={(u,v) € E,u € A;,v € A;} as the set of directed edges in E that are between the
segments A; and A; in II*. Let us consider the two cases where u,v € A with A € II¥ and
ue Aj,veAjfor Ay # A; € 1L

Let us start with u,v € A for some A € II. Then we see that

[B(v) = fB(u) = (1anB(v) — Lanp(w))dans + (Lanpe(v) — Lanpe(u))danpe.

86

Further, we can deduce that

1, ifue BCveB,
14nB(v) = 1anp(u) = { -1, ifu € B,v € B°,
0, ifu,ve Boru,ve B (5.10)

—(Lange(v) — 1anpe(u))

which then yields
fe(v) — fB(u) = (Lanp(v) — Lanp(u))(dans — danpe).
Additionally, we see that we can deduce from (5.10) that

1, ifue B,ve B°oru€ B%vEB,

0, ifu,v€ Boru,veE B

1LanB(v) = 1anB(u)llo = {
(5.11)

= 1405 (v) — 1anp(u)]

Plugging this into the Ly-norm and using the fact that ||danp — danpe|lo = 1 since danp —
dange # 0 we get

| fB(v) = fB(v)llo = [(Lans(v) — Lans(u))(dans — danse)llo
= [14nB(v) — Lanpe(u)| |[dans — dansello (5.12)

= [1anB(v) — Lanpe(u)|

for u,v € A for some A € II*.
Let us observe edges (u,v) € E with u € A;,v € A; for A;, A; € I¥ with A; # A;. Then

the difference from above is given as
fB(v) = fB(u) = 14,nB(v)da,nB — 1a,nB(u)da,nB + 1a;nBe(v)da;ne — 1a;nBe(u)da;nBe.

It is easy to see with the assumptions from above that this is always non-zero, and thus
|fB(v) — fB(u)|lo = 1 in this case. Since this is a constant we can drop this for minimization.
With these considerations we can deduce with S = {(u,v) € Eq | fu(u) # fu(v)} = {(u,v) €
Eq|ue Ajve Aj A € II,A; # A;} and with its complement S¢ = {(u,v) € Eq | u,v €
A, A € TI*} that the regularizer is given as

Rio(fe)=2 Y yJw(u,v) [1p(v) — 1p5(u)] (5.13)

(u,v)eSe

which is exactly the term as for the non-differentiable part of the regularizer in the partition
problem (4.39) of the Cut-Pursuit algorithm for L1-TV regularization.

5.1 Minimal Partition Cut-Pursuit Algorithm 87

Using the result of this lemma we can rewrite the partition problem from (5.8) as the

argmin D(f5,g) + Vw(u,v) 1) — 1p(u)|. (5.14)

BeP(V) (u U)GSL

partition problem

The regularization term in this problem is submodular as in the partition problem of the
Cut-Pursuit algorithm to solve L1-TV problems, and hence, can be solved using a graph cut
algorithm. The question is now how we can reformulate the data-term in some manner to
apply a graph cut to solve the whole problem. Let us try to apply the same ideas as in
Chapter 4 to find a directional derivative. To this end, we assumed in Section 4.2.1 that
we can rewrite dang = ca + Eﬁg and dgnge = ¢4 — 57y§c for every segment A € 1" for
cA = f{f[(u), u € A and some £ > 0. For simplicity we only use one direction for each
segment, i.e., ¥4 = 74 = 4. with ||34||2 = 1. Then we see that the split functions are given
as

fB=Y lanplca+ey?) + 1anpe(ca —ey?)
Aellk

=fli+e Y. (Lanp — lanpe)¥" (5.15)
A€TIk

= fk 4+ 9B
for any ¢ > 0. As in Section 4.2.1 we could subtract D(fE) from (5.14) and divide by & > 0
without changing the solution. In this case doing so leads to

argmin 2T 78:9) = D(fii0) | o S w(u,)[1s(v) — 1p(u)]. (5.16)

BEP(V) € € (uw)ese

As we see here we cannot pull the € out of the regularizer R; o(f +c7B), since it is a positive
constant, and thus, the Lg-norm of it is equal 1. The regularizer would tend to infinity
for € to zero and cannot deduce the directional derivative of the data-term D as we did in
Section 4.2.1. Consequently, the optimization does not only depend on the choice of B but
also on the choice of ¢ > 0. To tackle this problem we optimize over ¢ > 0 and B. The
general partition problem (5.14) than has to optimize over the values danp,danpe € RY for
each segment A € II and over B € P(V). This optimization problem is then given with

k
dB = (dAﬂBydAﬁBC)Aer S R'H |xd as

argmin D(Y 1anpdans + Lanpedans:,)
dp€eRIM*IXd BEP(V) ActIk

+a Y yJw(uv) 1) - 15(u)|.

(u,w)eSe

(5.17)

This problem is much more complex cannot be solved via a single graph cut, since it is no
binary partition problem anymore. Thus, we propose the most straightforward way to solve
this problem by alternating between fixing B and solving for danp, danpe for all A € IT* and
fixing these values and solving for B € P(V). This alternating optimization is given by the

88

following algorithm
Bn"rl — argmin D(ZAEHk lAdeZmBn + lAmBCdZﬂ(B")C’ g)

BeP(V)
+a X mese Vlu,) [1p(v) = 1p(u)| (5.18)

dn+1 = a;‘gmln D(ZAEH}C 1Ar~|Bn+1 dAmBn+1 + 1Am(Bn+l)chm(Bn+1)c7 g)
Bn+1

Since we assume that D is a continuously differentiable data-term the minimization of solely
the data-term yields a solution by applying gradient descent strategies. The question is if
the minimization over B has a solution. To compute this with a graph cut the partition
problem has to be submodular as stated in [46]. The regularizer is submodular, and thus,
we have to assume that the data-term is also submodular. In [46] the authors restrict the
data-term to be separable over the nodes, since then this problem is always submodular. An
example for such a data-term is the (weighted) Lo-data-term. In fact, it is not necessary
for the data-term to be submodular using a linearization of the data-term D. Since D is

continuously differentiable we can compute the linearization as

D(fl_[k +5:7ng) - D(fH’“?Q) ~ <VD(fHkag)7€:YB>'

Then we can replace the data-term in (5.16) by this linearization and get the following
partition problem

a
argmin (VD(fmk,9),¥B) + — w(u,v)|1p(v) — 1p(u)|.
e>0,BeP(V) (VDUn) £ (U%;SC ()) (5.19)

This problem then is separable over the vertices which follows submodularity, and hence, we
can solve this problem with a graph cut. This opens up the application of this algorithm to
a whole family of data-terms, e.g., the Kullback-Leibler data-term Definition 2.9 that is not
separable, but continuously differentiable. We can state a similar alternating algorithm as in
(5.18) for non-separable continuously differentiable data-terms using the linearization.

Using the alternating algorithm (5.18) is, due to the multiple applications of the graph cut
to find a certain B, more costly then solving the problem via a single graph cut. Nevertheless,
we already face this problem in (4.54) to solve the partition problem for the isotropic case
where we have to optimize over directions and the cut. Note that decreasing the energy the
most by a cut does not imply that the solution in the end is the best possible solution due
to the high non-convexity. We see this also in the numerics in Chapter 7 where choosing
a direction that is more conservative, but fits the given data, yields better results than
minimizing the partition problem as much as possible in every alternating update.

As we have derived a method to solve the partition problem, let us derive the reduced
problem for (5.6). Let us assume in the following that we have computed B**! as the solution
of (5.17). Then we can state the new partition IT**! as the connected components of ANB*+!
and AN (B¥1)¢ for every A € TI* as we did in (4.55). This is reasonable since it enables the
reduced problem to find a better solution on the finer partition. The reduced regularization

term is given in the following statement.

5.1 Minimal Partition Cut-Pursuit Algorithm 89

Proposition 5.5 (Reduced Lo-TV Regularizer).
Let G = (V, E,w) be a finite weighted graph. Then the reduced Lo-TV regularizer R{, for
c € H(II) with fri = Prc is given as

Ry(e)=Ro(f) = D we(Ai4) (5.20)

(A;,Aj)EE:
with the reduced graph defined as
GT = (H’ Erawr)7
By = (A Ag) € B | (A x A 0B 0, 45 A, € T,
wr(Ai, Aj) = Y w(u,v), V(A A;)

(U,U)EEAIAQ

(5.21)

Proof.

Before computing the regularizer let us take a closer look at piecewise constant function
fe = > aem Laca. We can deduce two cases from this for the regularizer. First let u,v € A
for some A € II. Then ||f.(v) — fe(u)|lo = ||ca — callo = 0. The second case is if u € A; and
v € Aj with (u,v) € E. Then | fe(v) — fe(u)llo = [|ca; — ca,llo = 1 since ca; # ca,. Then we
can deduce that the regularizer can be computed as

= >) [f(v) = fe(w)llo

(uv)eE
= > we(A A4))llea, — callo (5.22)
= > wi(AiA)) = Ry(o)

O

Then the reduced formulation of the minimal partition problem (5.6) on the reduced

GI;—H

graph is given as

argmin D(Pprs1c,9) + % Z wr(As, Aj). (5.23)
cERITFHLxd (Ai,A;)EE,

Solving this reduced non-convex problem is still a hard task, but on this low dimensional
level it is much more efficient. As we have pointed out in Section 4.3 we can use any method
that can solve the problem on the full graph G also directly on the reduced graph G, using
the reformulated problem (5.23). In this work we compare different methods to solve the
reduced problem. With these considerations we can state a Ly-Cut-Pursuit algorithm in
Algorithm 4 for the (isotropic) minimal partition problem (5.6) that is related to the Cut-
Pursuit algorithm in Section 4.3.

The minimal partition problem is highly non-convex which implies that there exists an
unknown amount of local minima and that the convergence to a global optimum is not clear.

It is not possible to prove the convergence to a global optimum of any of the proposed

90

Algorithm 4: Generic Isotropic Lg-Cut-Pursuit Algorithm.

Input:

G = (V, E,w) « Undirected finite weighted graph

g < Some given d-dimensional data in H(V;R%)

n <— Number of inner iterations

Initialization:

0 « {v}

® + argmin,cpa D(P%)

Method:

while IT*! £ TT¥ do

Bl « Apply the alternating algorithm (5.18) for n iterations. Solve partition
problem with graph cuts (cf. [10], Section 3.4).

IM*+1 < {connComp(A N B), connComp(A N B) | A € TI*}.

PE+L (1A)AEH

Gkl = (V. Brywy) - with V, =11, E,,w, as in (5.21).

&+ = argmin,cqyqr J(P"'e, g) + reduced problem as in (5.23).

Result: The local optimum f* for (5.6) and the corresponding partition IT*
representing the piecewise constant parts of f*.

algorithm in [46], [83] or Algorithm 4. In [46, Appendix E, E.1.3] the authors prove that
their algorithm converges to a local optimum. The same results hold for this algorithm, if
we can find a B as a minimizer of the partition problem and also find a minimizer for the
reduced problem. We see in the following that not every proposed optimization strategy can
guarantee the convergence to a local minimizer. Nevertheless, we will see in the numerics
in Chapter 7 that the algorithm decreases the energy efficiently and yields visually desired
results. Note that the only quality measure we have at hand in this case is the energy value
provided by a solution.

In the following sections we propose different methods to solve the partition problem in
(5.17) and how to solve the reduced problem (5.23). Afterwards we apply considerations of
the special case with an Ls-data-term. In the numerics section Chapter 7 we will show the
results of the different methods.

5.1.1 Solving the Partition Problems

In the former section we have introduced a partition problem in (5.17) to split a given
partition II into a finer set by finding a function

fB=">_ lanpdanp + Lanpedanpe
Aell

where dang,danpe € R? for A € II. We discussed that to solve the partition (5.17) we
have to optimize over a cut B and the corresponding values danp, danpe what can be done
applying an alternating algorithm as (5.18). We have already talked about that we can also
approximate the values dgnp and dgnpe by rewriting them as in (5.15) by a given direction
~v4 and a step size €. Then the partition problem (5.17) is optimizing over ¢ and B. We
can also give every segment A € II its own step size €4 such that the optimization in (5.17)

5.1 Minimal Partition Cut-Pursuit Algorithm 91

is over B and each of the €4. In the following paragraphs we want to state the alternating
algorithms explicitly for clarification as we apply them in the numerics in Chapter 7 and
investigate their different behaviors.

1. Optimizing the Values:

The first and most straightforward way is to solve the partition problem (5.17) is the already
introduced alternating algorithm (5.18). Optimization over the data-term can be done ana-
lytically or via first-order methods due to the continuous differentiability. The optimization
over the data-term is solved on 2|II| variables. We again state this algorithm here

Brtl — argmin D(ZAEH’“ 1AﬁBdZﬂB” + 1Achdzm(Bn)c’ g)

BeP(V)
+a Z(u,v)esc \/W [15(v) — 15(u)] (5.24)

dn+1 — a;rgmin D(ZAer lAﬂB"‘H dAﬂB"+1 + 1Aﬂ(Bn+1)chm(Bn+1)c, g).
pn+l

If we apply this algorithm we will always find a new partition as long as a cut can decrease the
energy. Hence, with this strategy to solve the minimal partition problem we can guarantee
the convergence as long as we find a minimizer for the reduced problem.

2. Optimizing Step Size:
The second and third strategies both originate from the ideas of approximating the values
on the new segments by

A _A
danB = ca+¢e7y",danpe = ca — €7

for every segment A € II. We only focus on one direction per segment A € II instead of two
for practical reasons. The directions ¥4 are computed or selected in some manner for each
partition and have length 1, i.e., ||34||2 = 1. This algorithmic strategy aims to find a scalar
€ > 0 that optimizes the data-term when plugging in

fe=Ff+e> (Lanp —lanp)y"* = f +e¥B.
A€ll

Hence, the algorithm from (5.24) for this optimization strategy becomes

B™! =argmin D(f +e"3p,9) +a X Vw(u,v) [15(v) - 1p(u)]
BeP(V) (uv)ese (5.25)

argmin D(f + eygn+1,9).
e>0

En+1 —

The update of € > 0 can be solved efficiently since it only has to be solved for one variable.

Note, that it is also possible to not optimize over £ > 0 at all and just select some
appropriate value. Then one also only has to compute the graph cut once. We show in
the numerics in Chapter 7 that it is possible to argue that it is not necessary in practice to
optimize this to achieve desirable results.

92

For this strategy - and also for the next - we cannot guarantee the convergence since it
could provide a trivial cut, i.e., B = (), B = V, even though the energy is not minimized.
This is the same problem as in Section 4.2.3 where we show that one has to show for all
directions that the cut is trivial and not only for the chosen direction. This would imply to
also optimize over the directions which would be in fact just strategy 1. Hence, we just use
this method since it is more efficient to use this strategy than the strategy in 1. Also we see
in Chapter 7 that this strategy and the next strategy still can decrease the energy and yield
visually good results.

3. Updating the Step Sizes for each Segment:
The last method is to not only use one € > 0, but find a scalar €4 > 0 for every segment
A € II. Then we optimize over the following family of functions

fB=Ff+> (Lanp — Lanpe)ear™)
Aell

where we again have to pre-compute the directions 44, but now have to update €4 for every

segment A € II. Then the alternating algorithm to solve the partition problem becomes

Bt =argmin D(f + Y. (Lans — Lanpe)e%7, 9)
BeP(V) AeTt
+a X Vw(u,v) [15(v) — 15(u)|
(u,v)€S° (526)

(e")aen = argmin D(f + X (lans — lanpe)eav™t, g).
ea>0 Aell
Aell

This algorithm is more complex than optimizing only over one ¢ in (5.25), but might yield

better solutions due to the higher flexibility.

Note that we can use the algorithms (5.25) and (5.26) to optimize the partition problem
of the linearized data-term in (5.21).

As we can see in all of these optimization strategies the problems do not incorporate any
edges between the segments, i.e., edges in S(frr). Hence, the splitting is completely decoupled
from the other sets and the optimization can be done for every segment individually. This also
sets up the possibility for efficient parallelized implementation strategies, since the graph cut
algorithms cannot be parallelized efficiently without loss. We postpone this implementation
problem to the future.

We show the influence of the proposed methods on the quality of the solutions in Chap-
ter 7. In the following section we take a closer look at how to find solutions for the reduced
problem (5.23).

5.1.2 Solving the Reduced Minimal Partition Problem
In this section, we want to find a solution to the reduced minimal partition problem given

in (5.23). We present three different strategies in this section. The first one is to compute the
solution of the reduced problem by applying the primal-dual method from [83]. The second

5.1 Minimal Partition Cut-Pursuit Algorithm 93

method is a merging strategy that merges the segments of the partitions as long as the energy
decreases. The third one is to assume that on the reduced problem the regularizer does not

have so much influence on the solution and can be dropped for minimization.

1. Solve with Fast MS:

In the first setting we assume that it might happen that the solution ¢* of (5.23) has the
same value in neighboring segments, i.e., ¢ = cj;j for some (A;, A;) € E,. Then we have
to solve the problem for which we use the fast Mumford-Shah minimization from [83] where
they use the Moreau’s identity

pros,, - (y) = y — o prox 4 (y/o)

to state the proximity operator as

y, if [yl < V2a0
prox, e (y) = (5.27)
" 0, else.

We can exchange the dual proximity operator in (3.20) with this one to get a primal-dual
algorithm to solve (5.23). We only consider the special case with an Lo-data-term here for
which the primal-dual algorithm on graphs to solve the reduced minimal partition problem

is given as follows.

Algorithm 5.6 (Fast Mumford-Shah Primal-Dual Algorithm on Graphs).
Let the assumptions be the same as in Algorithm 3.22. Then the primal-dual algorithm to

solve (5.17) with an La-data-term is given as

=y + oV "

w1 _) Gty i G < V2a0,) € B
0, else, ’ (5.28)

[Pt =T+ 7)) (" + 7(dive(y™) + 9))

JFn+1 — fn+1 4 0(fn+1 _ fn)

Yuw

We denote this algorithm as the Fast Mumford-Shah (MS) algorithm in this work. With
this algorithm it is possible to solve (5.17) on the full graph G and problem (5.23) on the
reduced graph G,. In [83] they could not give any convergence results, but show experi-
mentally that it decreases the energy and yields visually good results. Hence, when using
this algorithm to compute a solution for the reduced problem we can also not guarantee any
convergence to a local optimum. In the numerics in Chapter 7 we show comparisons of using
Fast MS on the full graph G and our proposed method. Additionally, we show the results
when using this primal-dual algorithm as a solver for the reduced problem. Also note that we
apply a simple merge step after the computation of the reduced solution where we merge all
the segments that are connected and have the same values. This does not change the energy
at all, but decreases the number of segments and enables the partition problem to form a
better splitting.

94

2. Merging Strategy:

The key idea is that we want to merge two given sets A;, A; € II if the energy of the reduced
problem (5.23) is smaller for the union of these sets A; U A;. For the merging strategy we
have to assume that the data-term is pointwise separable which implies that Dg = 3" ,c4 Dy
for A € II. Thus, for each edge (A;, A;) € E, the reduced graph G, we have to check if

Dy, (ca;,9) + Da,(ca;, 9) + awy(Ai, Aj) > Da,ua,(caua;, 9) (5.29)

where c4,u4; is the solution on the union set of A; and A;. If it holds the two sets are merged.
When D is pointwise separable this can be computed easily by solving

ca,ua; = argmin D, (¢, g) + Da, (c, g). (5.30)
C

If the inequality holds we merge A; and A; and remove them from the partition II and add
A; U Aj, i.e.

Additionally, we have to reconnect the reduced graph G, since A; U A; is now a single node
and is connected to every segment A; and A; were connected to, i.e.

b, = {(B,C) € k. | B,C ¢ {AZ,A]}}

(5.32)
U {(B,AZ U Aj), (A; U Aj,B) | (B,A;) € E,V (B,Aj) € ET}
The reduced weight is then just computed by setting
wr(B,AZ'UAj) :wr(B,Ai)—er(B,Aj). (533)

After merging two segments into one segment we also have to check the condition in (5.29)
for the newly produced edges and merge again if it makes sense in terms of the energy. In
practice it is favorable to compute the values c4,u4; for every segment pair in the reduced
edge set E, and the merge value we define for each connected segments (A;, A;) € E, as

Ma, 4, = Da,(ca;,9) +Da,(ca;, g) + awr(Ai, Aj) — Da,ua,(caua,, g) > 0. (5.34)
J J J J J

The higher the merge value My, 4; is, the more the energy decreases when we merge these
segments. Consequently, in practice we compute this value for every edge (A4;, 4;) € E, and
sort them from the highest to the lowest in an array. Then we would start by merging the
segments with the highest merge value, e.g. merging A;, A; to the segment A; U A; and
updating IT and G,. After merging we have to compute the merge values of the new edges in
E,. and sort them into the array of sorted merge values. Then we again select the segment pair
with the highest value, merge them, compute the new merge values and sort them into the
array. This can be done until there is nothing left to merge, a certain improvement threshold
is reached or a certain number of merges have been done. If we apply the merging until there
are no segments with a merge value greater than 0 we actual reached a local optimum of the

5.1 Minimal Partition Cut-Pursuit Algorithm 95

reduced problem on the current reduced graph. We summarize this method in Algorithm 5.

Algorithm 5: Merging.

Input:

IT + some given partition of a vertex set V

G, = (II, E;,w,) < Reduced finite weighted graph for partition IT

g < Some given d-dimensional data in H(V;RR?)

Ethresh < threshold for minimal merge value

maxNumMerges < maximum set numbers of merges

Initialization:

ca,p + compute the solution for the merged segments for every (A, B) € E, as in

(5.30)
M4, p < compute the merge value for every (A, B) € E, as in (5.34) with ¢4 p
v < sort the values of M4 p for every edge (A, B) € E, from high to low and store
them with their edge (A, B)

Method:

while i < marNumMerges A max(v) > €yresp, dO
Merge the first segments pair (A*, B*) in v
IT +— update as in (5.31) for segment pair (A*, B*)
G, < update the edge set as in (5.32) and the weights as in (5.33) for (A*, B*)
M« ¢, Mp+ ¢ < compute the merge values for the new edges in F, as in (5.30)
v < update v by removing the merge values of removed edges and sorting the

new merge values into the array
L i+—1+1
Result: (II, G, ¢) < the merged partition IT and reduced graph G, and reduced
solution c.

3. Data-Term Minimization:

Let us assume that in practice the partition problem only induces new boundaries such that
the energy decreases so that we can assume that there exists no edge (A;, A;) € E, such that
ca; = ca;. Then it follows that the regularizer is given as

Ri,() = Z wT(AZ-, Aj) (5.35)
(As,Aj)€E:

which does not depend on ¢, and thus, can be dropped for minimization. Then we would

only minimize the reduced data-term

argmin D(Pyc, g) (5.36)
cER‘Hle
which is in most applications rather easy to solve. However, if we assume that this solution
is not optimal on the reduced graph we can decrease the energy by applying the merging
strategy from before in Algorithm 5.
Before closing this section let us state the proposed Lg-Cut-Pursuit algorithm to minimize
the partition problem (5.17) in Algorithm 6 which is a more specific version of Algorithm 4.

96

Algorithm 6: Proposed Isotropic Lg-Cut-Pursuit Algorithm.

Input:
G = (V, E,w) « Undirected finite weighted graph
g < Some given d-dimensional data in H(V;R%)
n <— Number of inner iterations
useMerging < boolean to activate a merging step
resultMerging < boolean to apply merging onto the result
Initialization:
0 « {v}
® + argmin,cpa D(P%)
Method:
while IT**! £ T1¥ do
B! « Apply one of the alternating algorithms in (5.24), (5.25) or (5.26) for n
iterations. Solve partition problem with graph cuts (cf. [10], Section 3.4).
[T*+1 < {connComp(A N B), connComp(A N B) | A € TT*}.
PE+L (1 A)Aer[
Gl = (V,, E,,w,) + with V, = II, E,,w, as in (5.21).
k+1 <+ solve reduced problem as by applying the primal-dual proposed in (5.28)
or by minimizing the data-term as in (5.36)
if useMerging = true then
L (ITk+1, GE+L ck+1) « apply merging from Algorithm 5
FhHl o phl et

if resultMerging = true then
| (IT*, G}, f*) < apply merging from Algorithm 5 onto II*, G} and f*
Result: A solution f* for (5.6) and the corresponding partition IT* representing the
piecewise constant parts of f*.

As we see in the numerics in Chapter 7 for the different proposed optimization strategies
the algorithm stops after decreasing the energy. We show that in terms of energy and visual
results the solutions of these optimization strategies are comparable to [46] and [83].

In the following section we apply this algorithm directly onto an Lo-data-term.

5.2 Cut-Pursuit for Lo-ROF

In this section, we want to apply the formerly proposed minimization strategies to the
Lo-ROF problem which is given with an Lo-data-term and an Lg-TV regularization as in
(5.7) on a given graph G and for some given data g € RV*?. This problem is formally given
as

argmin *Hf 9H2+* > Ywlw)lfv)]lo- (5.37)

fGH(VRd (up)eE

For this we want to derive the algorithms for the partition problem in (5.24), (5.25) and
(5.26). Afterwards we state how to compute the reduced problems as we do in Section 5.1.2.
We use the same structure as in the former section and specify the results for the given

optimization problem.

5.2 Cut-Pursuit for Ly-ROF 97

5.2.1 Solving the Partition Problems

We want to derive the algorithms in (5.24), (5.25) and (5.26) for problem (5.37). To do
so, we start with the most generic one and derive the others as special cases.

1. Optimizing the Values:

We again assume that we have given some partition IT and corresponding reduced graph G, for
a given graph G. To derive the partition problem in (5.24) we fix some values danp, danpe €
R? for every segment A € II and investigate the data-term D for

fB=Y_ 1landans + Lanpedanse = Y, 1anp(dans — danpe) + 1adanpe. (5.38)
A€ll Aell

Plugging this function into the data-term yields for every v € A and A € I1

1

Dy(fp(u),g) = 5(1AOB(U)(dAnB — dange) + danpe — g(u))?

1
= §1AmB(U)(dAmB —danpe)? (5.39)

+ 1anB(u)(danB — danpe, danpe — g(u))

+ 5 (danpe — g(w))”

For minimization purposes we can drop the third term since it is not dependent on B and

can reformulate the data-term for u € A to

ﬁu(fB(u ag)

d% o n — d> —(danpg —d danp — d 1 (5.40)
(dang — danpe) — (danB — danBe)g(u), dan — danpe)1ans(u).

Thus, we can replace the data-term in (5.24) with this data-term and compute a new partition
via a graph cut. The binary split B computed by the cut is then used to compute the values
for dang, danpe € R4 for every segment A € II. In this case we can compute them analytically
without any iterative method. Let us derive the value danp for a fixed B and any segment
A € II by minimizing the data-term for danp. For that reason, we have to derive the
optimality condition and solve for danpg.

0 0 1
D(fB) (1ans(w)dans + Lanpe(u)danpe — g(u))?
0danB

adAnB 2 u€A

=Y 1anp(u) (Lan(w)dans + Lanpe(u)danpe — g(u))

ucA

= Y dans—g(u) (5.41)
ucANB

=danp|ANB| — Z g(u) =0

u€ANB

98

Since this computation can be done analogously for d 4npe we can directly deduce that the

update is given as

/ ZueA B g(u) l ZU,EA Be g(u) 5.42
-_—— c - - . .4
ANB ’ lmB’ 9 ANB ’ A ch| ()

In fact, we have to compute the mean value of g over the newly introduced segments A N B

and AN B¢. The alternating algorithm to find an optimal cut corresponding to (5.24) is then

given as
B =argmin Y 4cn Yuea (5(d%np — dinpe)
BeP(V)
—(danB — danBe)g(u),danp — danpe)1anp(u)

+a Y uwyese V() [1p(v) - 1p(u)| (5.43)

1 > ucans 9(u) 1 > ucanpe 9(u)
dZFB = uTA% B| ’ Z—r’%BC = UTA% Bc| ’ VA € IL

Due, to the chosen Lo-data-term the only computational cost of this alternating algorithm

is to compute the graph cut to compute the B multiple times.

2. Updating the Step Sizes for each Segment:

Let us deduce the algorithms for searching the step size €4 > 0 in the directions 32 for
every segment A € II. As we state in the former section we set danp = ca + ¢ A'_yA and
danpe = ca — 47 and the corresponding family of functions depending on B and ¢ is given
as

fB=fu+ > (Lanp — Lanpe)eay™.
Aell

We deduce the partition problem by computing the following identities

danp — danpe = 247"
g = &+ 2ealca, 7 + 43,51

dAnge = A — 2e4(ca, 7)) + 4 (34,74 (5.44)

1 _
§(d2AmB — d%npe) = 2ea(ca, 7).

and plugging these into the splitting problem to solve B in (5.43) yields the update we state
in (5.46). Again we can explicitly compute the update of €4 for each segment A € II by

5.2 Cut-Pursuit for Ly-ROF 99

computing the optimality condition of the data-term for a fixed B as follows

1o} N 01 _A 2
@D(fB) = 9.2 EU;A (ca+ (Lanp(u) — Lange(u))eay” — g(u))
= > (' eateart —gu)
uceANB
- Y (3t ea—eart —g(uw))
uc ANB¢
=|Alea(3*, 7" + (JANB| — |AN B°|)ca (5.45)
- > g+ > gu)=0
u€EANB ucANB¢
o oeg= (|JANB|—|AN B)ca + %X’eAch g(u) = > eans 9(u)
_(ANBI=1) Y ueanp9w) — (AN B = 1) ¥ yeanpe 9(u)
| Al '

Then we can deduce the following algorithm to alternatingly find an optimal partition with

% = Y aen Lanpeay” as

B"l = argmin (f;; — g, 2'_yf;> + X (uw)ese Vw(u,v) [1p(v) — 1p(u)]
BeP(V)
N (AN B = 1) Xyeanpn+r g(u) = (|AN (B = 1) Xyean(pneye 9(u)
A Al
35" = aen Lanprre A4,

(5.46)

This algorithm requires given directions for each segment that have to be picked rationally
for the given data. Computing these directions can be rather costly in some applications.
Computing the step sizes on the other hand is very easy again as we can compute them

analytically.

3. Optimizing the Step Size:
Finally, we deduce the algorithm for one constant ¢ > 0 that is the same for all segments.
For this setting we have given

fe=fu+ed. (Lanp — lanpe)y"
Aell

where we have set

danp = ca+e7?, danpe =ca — ey, VAEIL

100

Then again we can find identities

dang — danpe = 2677
1) (5.47)
i(dsz - d,%ch) = 2€<CA7 ’YA>-

to deduce the partition problem by plugging it into (5.24) and additionally can compute the
update for € explicitly by the optimality condition

SED(f5)
= LS (ea+ e(ann(u) — Lanme(w) — g(u))?
AcllueA

=" (Lans(w) — Lanpe(u)){ca + e(Lanp(u) — Lanpe(u)) — g(u), 57
A€llueA

=3[> (eate—guw), ¥ = Y (ca—e—gu),¥"] (5.48)
A€ll ueANB uceANBe

= Z |A|5[Z <CA - g(u)aﬁ/A> - Z <CA - g(”)?ﬁA”
A€ell ucANB uce ANBe¢

= VY[Y (ea—gw), ¥ — > (ca—gw), 7] =0

A€ll ueANB ue ANBe¢
o = 2 AcTl [ZueAmB (ca —g(u), ”_YA> — Dueanpe (€A — 9(“)77A>]
B V| '

=

Plugging these observations into (5.43) with 4B = 3 47 1an 574 yields the following algo-

rithm

Bl = argnr(lir)l (f1 = 9:26"¥B) + a Xy pyese Vw(u,v) [1p(v) — 1p(u)l
BeP(V

4 4 (5.49)

n+l _ ZAEH [ZueAﬂB"+1 <CA - g(u)’ Y > - ZuEAﬁ(B”JFl)C <CA - g(u)v v ﬂ

9
V]

As we have now computed the algorithms for the three partition strategies stated in
Section 5.1.1 we head over to investigate how to compute the reduced problem with the

different strategies we present in Section 5.1.2.

5.2.2 Solving the Reduced Minimal Partition Problem

In this section, we look at the three strategies to tackle the reduced problem. We structure
this section analogously to Section 5.1.2.

1. Solve with Fast MS:
Let us assume that we have computed a B € P(V) and the corresponding new partition
IT¥+1 for the former ITF. Let the reduced graph be given as G, = (II**! E,. w,). The

5.2 Cut-Pursuit for Ly-ROF 101

reduced problem of (5.37) is stated as

. 1
argmin 5”0 — grllowp +a Z Vwr(A,B) |leg — callo (5.50)

ceRIF+1|xd (A,B)EE,

with Wp = P*P = diag(|A|) ger+1 and g, = (W}Aemﬂ as in (4.67). The primal-
dual approach we state in (5.28) can be applied by replacing the primal proximity operator
with the proximity operator of (2.30).

Algorithm 5.7 (Fast MS Primal-Dual Algorithm on Reduced Graphs).

Let the assumptions be the same as in Algorithm 5.22. Let 11 be a partition and G, =
(11, B, w,.) the corresponding reduced graph to G. Let T,Y be diagonal preconditioners as
stated in Definition 3.21. Then the primal-dual algorithm to solve (5.23) with an La-data-
term s given as

gt =y + SV, 1

gt if lgntt] < V2ao,
’I’L+1 — yu,’u f |yu,v | — v(u’ 'U) 6 Er

0’ else? (5-51)

frit = (I + T diag(|A]) acr) ™ (f" + T(diva, (y") + diag(|A) acnig))
frtl = ol g frtt —)

Yu,v

Next let us investigate how the merging from the former section works here.

2. Merging Strategy:

As in the former section let us check out how we are able to merge certain partitions in
IT¥+1, In (5.29) we state a general merging condition to determine if the energy does decrease
by merging two segments A;, A; € IT*+1. For that reason, we have to compute the solution
of the merged segment A; U A; as

caua, =argmin D (c,g) + Daj(c,9) = > (c—g(u))?
cER? u€A;UA;

(5.52)
Yueaua, 9(w)

R4 . L=
AL T T4 4]

and plug this into the merge condition in (5.29). Reformulating this yields in the end the
merge condition stated in the following lemma.

Lemma 5.8. Let G = (V, E,w) be a finite weighted graph and g € H(V;R%) be some data.
Let 11 be some partition and G, the corresponding reduced graph to G. Let a > 0 be the
reqularization parameter. Then the merging condition for (5.37) for a given edge (A;, Aj) €
E,. is given as

aw,(Ai, Aj) > |Ail(2ca,Ga, — ¢4,) + 145](2c4,a; — ¢h,) — [AiUAjlch 0, (5.53)

102

Proof. See Appendix 5.A. O

When we assume that the former values c4, and c4; on the former segments A;, A; € II by
computing the mean value we can also deduce the following even more compact formulation.

Lemma 5.9. Let all conditions of Lemma 5.8 hold and assume additionally that we computed
the former values ca,,ca; as the mean values over the data in A; and Aj; respectively. Then

the merging condition from Lemma 5.8 condenses to

| Ail 45| 2
awy (A, Aj) > —————(ca, —ca.)”. (5.54)
7T Al + 14 ’
Proof. See Appendix 5.A. O

This formulation is more compact and we do not have to compute the value of ca,u4;
explicitly which saves these computations. We apply this condition in Algorithm 6 and use

it as the merging strategy.
3. Data-Term Minimization:

If we drop the regularizer as we did in the former section and compute the solution by

minimizing the reduced data-term as in (5.36) we have to solve

1 2
argmin ¢ — g:|2.w,

ccRII|xd

where the minimizer is given as ¢ = g,. Thus, solving the reduced problem by only considering
the data-term yields

o ZueA g(u)

cpA = |A| , VA € e+t
(5.55)
u
fae = Y laca= Y 1AZ“629()
Agllk+1 A€TIIk+1 | |

which is the mean value of the given data over all segments in II**1. In Algorithm 7 we state

the complete algorithm to find a local minimum of (5.37).

5.2 Cut-Pursuit for Ly-ROF 103

Algorithm 7: Proposed Isotropic Lo-Cut-Pursuit Algorithm to solve (5.37).

Input:
G = (V, E,w) < Undirected finite weighted graph
g < Some given d-dimensional data in H(V;R?)
n < Number of inner iterations
useMerging < boolean to activate a merging step
result Merging < boolean to apply merging onto the result
Initialization:
° « {v}
@ « argmin,cpa D(P%)
Method:
while IT**! £ I1* do
B! « Apply one of the alternating algorithms in (5.43), (5.46) or (5.49) for n
iterations. Solve partition problem with graph cuts (cf. [10], Section 3.4).
[T*+1 < {connComp(A N B), connComp(A N B) | A € TI*}.
PE e (14) pen
Gl = (V,, Br,wy) < with V, =11, E,,w, as in (5.21).
c**1 « solve reduced problem as by applying the primal-dual proposed in (5.28)
with the proximity operator (2.30) or using the minimum of the data-term given
as in (5.55)
if useMerging = true then
L (ITF+1 GE+1 ck+1) «— apply merging from Algorithm 5 with merge condition
(5.54)
fk+1 — Pk+1ck+1

if resultMerging = true then
| (IT*, Gy, f*) < apply merging from Algorithm 5 onto II*, G} and f*
Result: A local minimum f* for (5.6) and the corresponding partition IT*
representing the piecewise constant parts of f*.

This concludes this section. For a discussion and outlook we refer to Section 15.1.
In the following section we compare the different formularized minimization strategies
from this chapter visually and based on their energy levels. We also propose an easy, very

efficient variant that is reasonable in most cases.

Appendix

5.A Proof: Merging Values

In this appendix section we prove the merge conditions stated in Lemma 5.8 and Lemma 5.9.
We have the same conditions and assumptions as in these Lemmas. Let II be the partition
we are looking at and G, the corresponding reduced graph. Let us consider some edge

(A;, Aj) € E, for which we compute the merge value for the merged segment A; U A; as

CAUA; = argmin DAi (Ca g) + DAj <C7 g) - E : (C - g(’LL))Q
cER4 u€A;UA;
(5.56)

AT A Ay

Plugging this into the merge condition in (5.29) we can do the following reformulations

> (ea, —g(w)*+ > (ca, — g(w)? + aw, (4, Aj)
u€A; u€A;
(5.57)

— > (eaua, —g(w)* > 0.

uEAiUAj

By computing the binomial formulas we deduce that

o9+ Y gw)?— Y gw)?=0

ueAi UGA]' 'LLGAiUAj

and reformulate (5.57) as

|Ailé, + 1Aj]ch, — 14 U Ajlch,ua,

—2ca; Y g(u) —2ca; Y g(u) (5.58)

uEA; UEA]'

+ 24,04, Z g(u) + aw,(A;, Aj) > 0.
uEAiUAj

By defining g4 = W as the mean of the data over a segment A, and thus, ca,u4; =

ga,ua,; we can reformulate the former equation with

UEA»L'UA]'

106

into the formulation that is stated in Lemma 5.8 given as

awr (A A7) = JAil(2eaga, —) + [41(2ea 54, —) — A U Al 4 -

Louea, 9 Luea, 90

When we assume that the values c4;, = B W and ¢ A =]
1 J
of the data g over the segments A;, A; € II can deduce compact formulation as we present in

as the mean value

Lemma 5.9. To do so we compute that
|Al(2caga — ¢4) = [A|(2ch — ca) = |Alch,
and hence, we have
awy(Ai, Aj) > Al +1Ajlch, — [Ai U Ajlc4,a, -

We can also see that

C _ ZUEAZ g(u) + ZUEA]' g(u)
Aids Ai + | 4]

| Ailea, +[Ajlca,
| Ail + | 4]

and also compute the squared value as

(|Aslea, + |Ajlea,)?
|Ai U Ajlc,ua, = [Ai U Ay S

(A T4, 560,
_ ‘Ai|2c,241- + 2|Ai|’Aj’CAiCAj + ‘Aj‘20124j
Al + | 4;|
Then we can use the expansion of a fraction by |A4;| + |A;| like
A; A A;l + A,
e, — IO 1)
Al + 4]
LA+ AIA)
| Ail + |4
and the same for c4,. Subtracting (5.60) from these terms yields
‘AZHAJ’(CzA + 0124_ — QCA.CA.)
NP 1e2 A e _ i iCA;
’Az’CAi + ‘AJ|CAJ- ’Az U AJ‘CAZ-UAJ- - ’Az’ + ’54]’
| Adl[A 2
= Ay, —)
|[Ai] + | 4] ’
which finally leads to the condition that we merge the segments A; and A; if
Ail|A;
aw,(A;, Aj) > Al 4| (ca, — cAj)Q. (5.61)

|Ail + 141

5.A Proof: Merging Values 107

Numerics: Cut-Pursuit for TV Problems

In this chapter we apply the Cut-Pursuit algorithm from Algorithm 3 to solve ROF prob-
lems on graphs to 1D signals, different images and to 3D point cloud data. We start by
taking an insight into the iterations steps of Cut-Pursuit and observe the evolution of the
solution. Then we compare run time and convergence for different data types and investigate
the convergence of the isotropic Cut-Pursuit algorithm for different direction strategies. Ad-
ditionally, we want to show the remarkable and useful by-product of a simple debiasing step
after the solution was computed using Cut-Pursuit .

The primal-dual algorithm from Algorithm 3.20 and the Cut-Pursuit algorithm from Al-
gorithm 3 are implemented in an object-oriented fashion in MATLAB. It was implemented
modular such that, e.g., the implementation of the primal-dual algorithm on graphs is used
not only for solving the problems on the full graph, but also for the computation of the
reduced solutions in the Cut-Pursuit algorithm. This makes the efficiency of the code com-
parable for all algorithms. In addition, the different directions for the isotropic Cut-Pursuit
implementation share the same code basis and are just exchanged for different settings. To
cut the flow graphs in the partition problem step of the Cut-Pursuit algorithm we use the
MATLAB internal mazflow implementation which is a wrapper for efficient code written in C.
Note that this implementation is only working on one CPU kernel, and hence, has certain
drawbacks when the graph structure becomes very complex. We also want to point out that
the implementation of algorithms on graphs is not easy due to the non-local connection of
vertices. This can lead to very inefficient look-ups of variables in the memory. Additionally,
one cannot use the very efficient vectorized computations that MATLAB provides as one can
use, e.g., for finite differences, which leads to run time drawbacks.

We apply the algorithms on 1D signals, images and point cloud data. The 1D signal is
described by a simple undirected graph that connects direct neighbors with each other. The
weight is set to 1 for all edges. Note that one could also incorporate non-local edges or more

neighbors in the graph.

110

(a) Cameraman (b) Grid graph (c) Star-shaped graph

Figure 6.1.: Graph structure to represent an image.

The graph structure to describe an m X n image is given by a vertex set with N = nm
vertices where each vertex is assigned to one pixel, e.g., by assigning the linear index of the
pixel to the vertex. To mimic discretization of gradients as finite differences we connect each
vertex with the vertices of the 4 neighboring pixels of its assigned pixel. Then we have a
grid graph as can be seen in the middle of Figure 6.1. We denote this as the (grid) image
graph. Without prior knowledge of any underlying structure we set the weight for every edge
to 1. As we pointed out in Section 3.1.4, we can only compute spatially-anisotropic solutions
with Cut-Pursuit on the graphs. To tackle this problem and also get solutions with more
isotropic appearance we can also use a more complex graph structure on images. For that
structure we also incorporate the diagonal neighbors of each pixel into account as we show
in the right figure in Figure 6.1. We denote this graph as the 8-neighbor image graph which
then incorporates more spatially-isotropic information, and hence, the solution of a spatially-
anisotropic problem has a more isotropic appearance. We show results in the next section
even though we do not use this to greater extend in this work. The difference of grayscale
and RGB images is the dimension of the vertex functions. For grayscale images we have
f:V — R and for RGB we have f: V — R3. In Figure 6.2 we show the images that we use
in this work in their original resolution. As we investigate the application of Cut-Pursuit
on point cloud data later in Chapter 8 we only investigate the Bunny point cloud data - we
visualize in Figure 6.3 - here. For point clouds we always compute a k-nearest neighbor graph
(k-NN graph) (cf. [9], [23]) and set the weight of an edge (u,v) € E to

_)~ S,

w(u,v) = exp (5

This weighting incorporates that points that are far away have only little to no influence on
each other while close points get assigned a high weight. Furthermore, this weight caps at 1
since all values are positive, which consequently means that all weights are between 0 and 1.
The vertex functions are defined as for RGB images to be functions f: V — R3 € H(V;R%).

'Matlab built-in images
Zhttp://rOk.us/graphics/kodak/

http://r0k.us/graphics/kodak/

6 Numerics: Cut-Pursuit for TV Problems 111

(b) Peppers*
384 x 512 px

(a) Cameraman'!
256 x 256 px

(d) Piano [75] (e) Plane [54] (f) Parrots?
1920 x 2820 px 321 x 481 px 512 x 768 px

Figure 6.2.: Images used in this numerical experiments.

Figure 6.3.: Bunny (35,947 points), Happy (543,652) and Dragon (437,645) point
cloud from [82].

112

p——— :'\—.1
| . e
1 1 | ; e
| | |
08 08 R 08 TR 08
|
v LA Lo L i L.
nal
i it pecosts
M. : M.,
iy s
12 12 W 12 = . 12 [}
! "
0s 08 | PR o [INTERRN| 08
| Lt _ I _
. . - - "
(a) Noisy signal (top) (b) Iteration: 1 (c) Iteration: 2 (d) Iteration: 5
and TV solution Number of sets: 5 Number of sets: 9 Number of sets: 19

(bottom).

Figure 6.4.: Denoising of a noisy 1D signal via Cut-Pursuit. Top row shows the solution
and the reduced graph at a certain iteration and the bottom row the corresponding sets
labeled by color.

6.1 Iterative Behavior of the Cut-Pursuit Algorithm

In this section, we want to give an insight into the actual iterative steps of the Cut-Pursuit
algorithm to get an intuition of how Cut-Pursuit processes data and what we can expect as a
result. For this reason, we investigate two Cut-Pursuit applications to two toy examples. In
the first one we denoise the 1D signal we present in Figure 6.4 and in the second we denoise an
RGB image on a grid image graph Figure 6.5 and on an 8-neighbor image graph Figure 6.6.

First let us take a look at the 1D example in Figure 6.4. The graph of this 1D data is
built by just connecting each vertex with its two neighbors and weight each edge with 1. On
the left side of Figure 6.4 we see the noisy input signal and the denoised TV solution. In the
following three columns we illustrate the current state of the solution in different iteration
steps. In the top row we visualize the current solution and color-code the segments. We also
show the reduced graph and its current values. Note that the segments in the upper and
lower plots are color-coded equally. The light gray signal in the background is the noisy input
data. In the bottom row we just color-code the noisy input data by their current set. This
sequence illustrates that the path the solution takes is by first cutting the data into rough
parts that approximate certain levels of the data. Then as the algorithm proceeds it refines
these segments in each iteration, but only if it is necessary for the solution. This can be seen
by looking at the larger plateaus in the converged solution that are described by only one
vertex, while the parts with more details - as on the right hand side - are described by more
vertices. In the end the solution can be described by 19 vertices instead of 1,000 points.

As we have now seen the path the solution takes let us take a look at an noisy RGB image
in Figure 6.5. That image consists of some colorized objects with simple shapes. In the first
column we start in the top row with the initial result which is solving the reduced problem on
only one vertex. If we have an Lo-data-term this is the mean value of the input image. Then
a cut is computed via the partition problem. To each of the disjoint segments a vertex gets

6.1 Iterative Behavior of the Cut-Pursuit Algorithm 113

(a) Noisy RGB (b) Iteration 1 (c) Tteration 2 (d) Iteration 3

"o B B =

C O O

&

Figure 6.5.: Denoising of a noisy RGB image via isotropic Cut-Pursuit on an image
graph.

assigned, and the reduced graph is built as in Proposition 4.16 where the reduced vertices
are connected if the segments have boundaries in common and weighted by the length of
the boundary between them. On this reduced graph we can then solve the reduced ROF
problem (4.63) via Algorithm 4.14 and get the result in the third column. Then we again
compute a cut which introduces the missing smaller objects and also parts of the corners of
the purple rhombus. Here we can see that we only work on a spatially-anisotropic grid since
the corners of the rhombus are not aligned with the axis, and hence, are not represented
well by the regularization. Consequently, the rhombus is now described by multiple vertices
in the reduced graph setup. On the other hand the green and the red square are both
perfectly aligned with the axis which leads to no further cut in these objects. Each of them is
still represented by only a single vertex in the reduced graph. In the last column we see the
resulting reduced graph and solution which suffers a lot from the TV induced loss of contrast.
This is a problem we face in Section 6.4.

Let us also look at Figure 6.6 where we have the exact same image as before, but in this
case we use a 8-neighbor image graph to induce implicit spatial-isotropy. We see the same
process as before and now have an intuition of how the algorithm works. The main difference
we can observe in the intermediate results is that the rhombus objects are now described in
the reduced graph by a single vertex while the squares seem to have problems at the corners.
This is what we would expect from this discretization of the graph and is a visual proof of

114

(a) Noisy RGB (b) Tteration 1 (c) Tteration 2 (d) Tteration 3

N H B
O L 2

O<> 00. OO.
On em @

gkl ol ol
Sy oy €

Figure 6.6.: Denoising of a noisy RGB image via Cut-Pursuit on the 8-neighbor image
graph.

concept that we can produce isotropic-like results by choosing an 8-neighbor image graph and
solve and spatially-anisotropic ROF problem on it. Note, that one could also increase the
number of neighbors to an even higher number, e.g., such as 16 or 32. This would increase
the complexity of the graph, and thus, the computational cost of the maxflow algorithm, but
also induce an even more isotropic-like appearance to the solution.

Finally, let us take a look at a real-world example in Figure 6.7, where we denoised a
noisy version of the piano RGB image. We can see that the reduced graph again has a high
density in regions with more details and less density in large piecewise constant areas as we
would expect from the simpler examples.

As we now built up an intuition of how the Cut-Pursuit algorithm processes the given
input data and how the reduced graphs look like let us proceed and investigate the numerical
convergence of the Cut-Pursuit algorithm compared to the primal-dual algorithm on graphs
we defined in Algorithm 3.20 applied to the same problems.

6.2 Cut-Pursuit Convergence and Runtime 115

Figure 6.7.: Reduced graph (left) with 11,291 vertices corresponding to the TV full
solution on 196, 608 pixels (right).

6.2 Cut-Pursuit Convergence and Runtime

In this section, we study the convergence of the Cut-Pursuit algorithm on three different
data sets: the grayscale image cameraman, the RGB image parrot and the 3D point cloud
bunny. For the images we want to compare the direct primal-dual implementation using
finite differences, the corresponding graph implementation and the Cut-Pursuit algorithm.
For the Cut-Pursuit algorithm we use two different variants: The first variant stops when
no new cut can be found in the partition problem. The second one stops if the number of
segments did not increase by more than 5% between iterations. As we have seen in the former
section, this stopping condition can be reasonable since the Cut-Pursuit algorithm first cuts
out the coarser details and then becomes finer in every iterations. Hence, one can expect the
algorithm to make many small cuts in the iterations before convergence where the energy
does not decrease much anymore. Then it would be appropriate to stop the algorithm and
use that solution. This method saves some iterations, and consequently, multiple graph cuts
and computations of the reduced solution. Additionally, as the reduced graph is finer in later
iteration steps solving the reduced problem is more costly than in the former iterations. This
can slow down the algorithm in later iteration steps even though the gain of a better energy
value is negligible and also visually the difference is insignificant.

In Figure 6.8 we illustrate energy and run time plots of the different algorithms for multiple
regularization parameter settings. The first notable observation is that we see that the primal-
dual algorithm on graphs to solve the ROF problem always has the worst run times. As we
stated before the implementation of primal-dual algorithm on graphs is not efficient. The
location of values in memory can be far away from each other. The bottlenecks are the
computation of the gradient and the divergence on graphs.

For the primal-dual algorithm on images we use constant initial step sizes that get updated
in every iteration as defined in [17]. The step size for primal-dual algorithm on graphs is
given by the diagonal preconditioning in (3.21). Here we did not use any acceleration step
size updates as we also use for the reduced problem of the Cut-Pursuit algorithm. The
crosses mark the parameter where the primal-dual algorithms did not converge within 8,000

iterations, i.e., the current iterate did not have a primal-dual-gap (cf. [17]) smaller that

116

2000 15000

1800 Energy 5%-CP
== Energy CP
=—Time PD

Energy Graph PD

1600

1400 -

1200 —

)
—d =
1000 / g

i

-
800 —
-

600 5000 -

Energy 5%-CP /4 Energy 5%-CP 1000 -
400 = Energy CP — Energy CP A
200 = Energy PD = Energy PD 500 P

Energy Graph PD Energy Graph PD ~

0 1 2 3 4 H 0 05 1 15 2 25 z 0 001 0.02 0.03 0.04 0.05

Energy

30 Time 5%-CP Time 5%-CP 150 -y Time 5%-CP

o = Time CP @ = Time CP @ — Time CP
E® —_fimerD E o0 _fimerD /’_’_‘_'_‘ E \ _TimerD
20 Time Graph PD Time Graph PD 100 \ Time Graph PD
15 400 \
10 200 0 A
5~ N ~ — —
N e o wm = == —— AT o e e e = ~
0 - o e =
0 1 2 3 4 0 05 1 15 2 25 0 0.01 0.02 0.03 0.04 0.05
« « o
(a) Grayscale Image: (b) RGB Image: Parrot (¢) Point Cloud: Bunny
Cameraman

Figure 6.8.: Energy and runtime plots to show the exactness of the results and the
runtime. We compare primal-dual on the images, on the graphs and a converged Cut-
Pursuit algorithm and one that stops when it has not change in the number of segments
over 5%. The crosses mark primal-dual algorithms that did not converge (gap < 107°)
within 8,000 iterations.

10~°. Applying Cut-Pursuit on the grayscale image does not yield any sufficient speed up,
but, however, has a lower energy than the result computed by primal-dual algorithm. The
primal-dual algorithm on graphs did not even converge within the 8,000 iterations. For the
RGB images we can see a massive speed up of the Cut-Pursuit algorithm compared to the
primal-dual algorithms. Additionally, it also converged to a much better energy value.

In the point cloud setting where we denoise the bunny point cloud we can only use the
primal-dual algorithm on graphs. The graph was computed as a k-NN graph with k£ = 7 and
the weights were set as above. We see that the primal-dual algorithm does not converge and
always takes around 200 seconds for 8,000 iterations. For smaller regularization parameters
the energies are close, but as the regularization parameter increases the primal-dual algorithm
on graphs cannot reach the energy in this number of iterations. Here the superior efficiency
of the Cut-Pursuit algorithm can be seen. In Chapter 8 we investigate the sparsification

properties of the Cut-Pursuit algorithm and apply it to multiple point cloud data sets and
study different settings.

6.3 Isotropic Cut-Pursuit and Choosing Directions

As we have discussed in Section 4.4.3, it is crucial to have a good rationale for the decision
of the directions assigned to each segment to solve the partition problem. The algorithm stops
if the new computed partition is the same as the former one, which means that the partition
problem has a trivial solution where B = () or B = V. However, this does not mean that we
reached the optimum since we would have to check if the solution for all directions yields no

cut. To tackle this problem we show two choices of directions and also show the influence

6.3 Isotropic Cut-Pursuit and Choosing Directions 117

40% r

= CP Random Direction without Update

1240 = CP Random Direction with Update 35%
CP PC1 Direction without Update
1230 CP PC1 Direction with Update 30% |-

Energy of Solution

1220

N
3]
3

1210

20% r
1200 \ 15% |
1190 ¢ 10% = CP Rand. Dir. w/o Update

\ / = CP Rand. Dir. with Update
1180 | . \ 5% // CP PC1 Dir. w/o Update
\
-/
1

Energy
Reduction in %

— CP PC1 Dir. with Update

1170 E

. 0% ,
8 10 12 14 16 18 "0 0 20 30 40 50
Cut-Pursuit Iteration Cut-Pursuit Iteration

Figure 6.9.: Denoising of a noisy RGB image via isotropic Cut-Pursuit with o = 0.01.
Left: Energy plots for the different direction methods compared to the solution of the

; . : : number of sets
problem. Right: Corresponding reduction rate 52 pixels

of updating the cut and the direction in the partition problem as we do in the alternating
algorithm in (4.81).

The first most straightforward idea would be to just compute a random direction for
every segment in the partition and compute a cut for that. This can be expected to converge
very close to the exact solution of the ROF problem since the probability that all segments
have selected a random direction that does not induce a new cut is rather low. Even when
this happens this can be expected to be very close to the optimal solution. However, the
randomness might also lead to not optimal directions that yield a long iteration and also
many cuts that are not needed which provides a too fine final partition to represent the
solution.

As a second idea, we propose to use the principal component analysis (PCA) [41] [79] to
compute the first principal component. This direction can be understood as the best fitting
line through the data that minimizes the squared distance of all points to the line. This
line points into the direction with the most variance in the data which makes it a reasonable
choice for a direction. Hence, we compute the first principal component for all the data points
in every segment. This direction can be expected to be a good choice in the beginning but
might yield a solution that is not optimal in terms of the energy. We denote this direction
as the PC1 direction in the following.

Let us take a look at the provided experiments where we apply Cut-Pursuit to the parrot
RGB image and the bunny point cloud data. We use both methods to generate directions
and also show results with and without updating the directions as in (4.81). The number of
inner iterations is set to 5 since in most cases this is enough. We also state which direction
type we use for the initial direction for the update routine. In Figure 6.9 and Figure 6.10 we
illustrate the energy plots for the four different selections on the left side and the rational
of number of sets to the total number of vertices in the original data. For the RGB image
we can see that using PC1 without updates yields a solution that does not converge to the
optimal energy level. The random and PC1 directions with update steps on the other hand
have a fast decrease in energy, where the PC1 direction at first has a better energy value
but then gets overtaken by the random direction. Additionally, we can see that the random

direction with updates seem to converge to a better energy value that is very close to the

118

optimum. Moreover, the random direction without updates has by far the worst decrease in
energy but even outperforms the PC1 with updates in the end. In the right plot in Figure 6.9
we see that the random selection leads to a much finer partition in the end. This can be
interpreted as a reason for the energy decrease as the partition is much finer, and hence, the
reduced problem can yield a solution with a low energy value. In Figure 6.11 we see the
given results that correspond to the plots in Figure 6.9. Visually the results look very similar
and well denoised. The difference of the converged (primal-dual-gap < 10~%) primal-dual
solution and the Cut-Pursuit results can be only seen in small details. As we see in the boxes
in the right corner, the primal-dual solution has a smoother solution in smoother regions
than Cut-Pursuit can provide for any method. However, if we evaluate the denoising visually
it is not possible to tell which denoising is the best without direct and detailed comparison.
Consequently, the choice of algorithm is then dependent on the application and whether the
optimal solution of the ROF problem is the preferred one or if the solution only has to be
visually satisfying.

For the second experiment we see in Figure 6.10 that the denoised solution of the input
point cloud data seems to be independent of the choice of directions if we use them as
initialization of the updates. Also PC1 without using the update algorithm yields the same
decrease in energy and a comparable optimal energy value. On the other hand the random
directions without updates seem to converge worse than the PC1 directions but catch up later
and only need a few more iterations to converge to the same level of energy. As expected
the PC1 direction yields a coarser solution, which, in this context, means less segments. In
Figure 6.12 we see the visual results to the plots in Figure 6.10. As we see, they are visually
not distinguishable and all seem to yield the same results. However, we see in Figure 6.10 that
the PC1 direction without updates yields the coarsest solution and takes the least iterations.
Hence, this will be the Cut-Pursuit algorithm of choice in Chapter 8.

220 70%
== CP Random Direction without Update
200 === CP Random Direction with Update 60% |
CP PC1 Direction without Update °
180 | CP PC1 Direction with Update
Energy of Solution 50%
X
£ 40%
c
kel
S 30% f
°
2
20% -
=== CP Rand. Dir. w/o Update
== CP Rand. Dir. with Update
10% r CP PC1 Dir. w/o Update
J CP PC1 Dir. with Update
60 h . | i i n 0% Lo f
8 10 12 14 16 18 0 10 20 30 40 50
Cut-Pursuit Iteration Cut-Pursuit Iteration

Figure 6.10.: Denoising of a noisy Bunny point cloud via isotropic Cut-Pursuit with
a = 0.1. Left: Energy plots for the different direction methods compared to the solution

: . : : number of sets
of the problem. Right: Corresponding reduction rate fumber of pommts°

6.3 Isotropic Cut-Pursuit and Choosing Directions 119

-
(a) Noisy Image (b) Primal-Dual Solution

&
(c) Principal Comp. (d) Principal Comp.
without Updates with Updates

(e) Random Dirs. (f) Random Dirs.
without Updates with Updates

Figure 6.11.: Denoising of a noisy RGB image via Cut-Pursuit. The graph was built
as a grid graph.

120

(b) Primal-Dual
Solution

(c) Principal Comp. (d) Principal Comp.
without updates with updates

(e) Random Dirs. (f) Random Dirs.
without updates with updates

Figure 6.12.: Denoising of a noisy Bunny point cloud via isotropic Cut-Pursuit. The
graph was built via kNN-graph generation with k£ = 7.

6.4 Debiasing 121

6.4 Debiasing

In this section, we want to take a look at how to apply a bias reduction to a TV solution
computed with Cut-Pursuit like Brinkmann et. al. introduce in [12]. In their work they
propose a two-step debasing method that is applicable to variational regularization problems.
The first step is to compute the solution f} of a variational problem with a regularization
parameter « and then minimize only the data-term on the so-called model manifold which
is the space of functions sharing the same regularity, i.e., jump set, as f*. In case of a TV-
regularized problem, the model manifold consists of all functions sharing the same jump set
as fx.

In fact, if we compute a solution f; with Cut-Pursuit , it is piecewise constant on the
segments in partition II*. Sometimes if neighboring segments have the same value - which can
happen since the Cut-Pursuit is not optimized to yield the perfect partition for a solution - we
have to apply a merge step that combines these segments. The resulting partition II* can be
interpreted as the analog to the discrete model manifold presented in [12], which essentially
captures the jump set between the piecewise constant segments in II*. With this model
manifold at hand, we can minimize the data-term on each segment and get the debiased
solution.

In the context of ROF problems the solution of the Ls-data-term is the mean value of the
data in each segment in II*. Hence, we see that Cut-Pursuit yields the possibility to apply
debiasing to the T'V-regularized solution without any further optimization strategies. How-
ever, we keep in mind that the channel-isotropic Cut-Pursuit algorithm does not always yield
a minimizer as we discussed in Section 4.2.3 and in the numerics in Section 6.3. Nevertheless,

we can still perform debiasing procedure over the partition the algorithm yields.

Let us start with the application of the Cut-Pursuit algorithm on a one-dimensional signal
in Figure 6.13 where we see the original noisy signal as the blue line and the corresponding
TV solution as the red line. We see that the solution suffers from contrast loss. As we
have seen in Figure 6.4, the piecewise constant parts of the solution are each represented by
one vertex. Hence, we can compute the mean value on each of these segments and get the

——Noisy Data
AN 4 ——TV Solution
‘wﬂ\\ Debiased
‘ \
\‘ \
\‘ “ AV“AV/\\,..)\
|
\
\

A=
VI

Figure 6.13.: Debiased solution of a noisy 1D signal by applying Cut-Pursuit and
solving data-term on partition.

122

Figure 6.14.: Debiased solution of a noisy RGB image by applying Cut-Pursuit and
solving data-term on partition.

debiased solution that is plotted as the green line. This recovers the results presented in [12]
and [65].

Turning to channel-isotropic TV regularization problems we show in Figure 6.14 that the
TV solution suffers from blurriness due to contrast loss. Computing the mean RGB value
over each segment in the solution yields a nicely denoised and debiased result on the right
side.

Finally, we apply the debiasing method to the bunny point cloud data. Again we solve
the problem using the channel-isotropic Cut-Pursuit algorithm. Note that we have seen in
the former section that in the setting of the point clouds it is reasonable to just use the PC1
direction as they all converge to the solution. As we see in Figure 6.15, the TV solution
compresses the point cloud. Applying the debiasing reinflates the point cloud to the original
size of the bunny, but in a more sparse variant. Note that we used a noise-free point cloud

due to visualization purposes. This works also on noisy data.

Figure 6.15.: Debiased solution of the bunny point cloud by applying Cut-Pursuit and
solving data-term on partition.

6.4 Debiasing 123

To summarize this we can conclude that the Cut-Pursuit algorithm gives us the ability to
reduce the contrast loss of any solution by minimizing the data-term over the reduced graph.
This is also possible for more complicated data-terms, e.g. the Kullback-Leibler data-term
from Definition 2.9. In the case of an ROF problem it is given by the computation of mean

value of the given data over each segment.

Numerics: Minimal Partition Problem

In this section, we apply the algorithms proposed in Chapter 5 to different data setups.
Throughout this section we consider the Lyp-ROF problem as stated in (5.37). We start off
by looking at the problem of choosing a fixed ¢ > 0 without optimizing its value. Then we
study the convergence of the different strategies numerically and also compare them with the
provided implementations of Fast MS [83] and Cut-Pursuit [46].

7.1 Comparing Different Constant Step Sizes

In this section, we investigate the difference in the results by solving the partition problem
in (5.17) with an Le-data-term by the proposed strategies from Section 5.1.1 and Section 5.1.2.
We denote this problem as the Ly-ROF problem in this section.

To show the importance of the choice of ¢ > 0 we first take a look at the energy of
solutions provided by Lo-Cut-Pursuit from Algorithm 6 for different values of fixed €. The
reduced problem is solved by minimizing the reduced data-term which is just the mean value
over each segment as derived in (5.55). The plot we depict in Figure 7.2a shows the energy of
the solution of Lg-Cut-Pursuit applied to the grayscale cameraman image for different € and
a fixed regularizer o = 0.01. As we see in Figure 7.2a, setting € = 1 leads to a non-optimal
resulting energy, while setting € &~ 0.026 yields a near optimal energy value.

Looking at Figure 7.3a we see that for many choices of € the energy does not monotonically
decrease, but rather starts increasing after hitting a certain iteration. This might be inter-
preted as a too large step size for a descent step on the partitioning problem. Additionally,
we see that for €* ~ 0.026 the energy decreases monotonically and has the lowest resulting
energy. To explain this behavior let us take a look at the partition problem in (5.49). There
we see that this problem equivalent to the problem divide by € > 0, and thus, can deduce
that the step size € does influence the regularity of the problem directly antiproportional.
In fact, we divide the regularization parameter o by & which implies that the regularization
changes for the partition problem with the choice of the step size. If we additionally drop
the regularizer in the reduced problem, as we state in Section 5.1.2, this term is the only
regularization in the algorithm. Thus, selecting a too large € leads to a smaller regularization
parameter which then yields a partition that is finer than a lower ¢ would have generated.
Thus, we can expect that a in some sense too large selected ¢ follows a higher energy value

126

(a) e =0.012, (b) &* =0.26, (c) € =0.054, (d) e =0.088,
Energy= 185 Energy= 144 Energy = 162 Energy= 208

(e) e =0.012, (f) e* =0.26, (g) € =0.054, (h) £ =10.088,
Energy= 185 Energy= 138 Energy = 127 Energy= 138

Figure 7.1.: Different results for a = 0.01 with different fixed ¢ > 0. In (a)-(d) the
mean value is computed on each segment in every iteration. In (f)-(h) use merging for
reduced problem.

as for a smaller step size. This is what we can observe in the upper row of Figure 7.1 where
we show different results for different selected step sizes. The fineness of the regularization
of the solution is antiproportional to the selected . From Figure 7.2a and the upper row in
Figure 7.1 we can deduce that for this data set and regularization parameter a the choice of
€ = 0.026 would give a good result.

However, if we extend this strategy and solve the reduced problem using the merging
strategy described in Lemma 5.9, we see in Figure 7.2b that choosing different € seems to
yield more consistent results according to the resulting energy. This consistency in results
can be confirmed visually in the bottom row in Figure 7.1 where we show the resulting images
for the same selected € as in the upper row. Visually, these images are very similar and even
the energy is comparable as we specify underneath the figures. Additionally, we see that
the overall energy of the solutions with applied merging is much lower in Figure 7.2b as in
Figure 7.2a.

Actually, this is what we expect since merging not only yields a solution with a better
energy to the reduced problem, but also shrinks the number of segments again, and thus, can
keep the partition from becoming too fine which would lead to higher regularity. This results
in a lower overall energy and also a better total energy for every . Note that the selection of
¢ > 0 depends on many facts like regularization parameter, data sets and the corresponding
structure of the graph and value intervals of the data. This makes the choice of ¢ hard, and
hence, we show how to optimize the step sizes in the next subsection.

Before closing this subsection we want to emphasize an interesting property we take
advantage of in Section 7.4. As state in a former part of this section, the partition problem
of (5.49) can be divided by € > 0 which yields a different regularization of the partition

7.1 Comparing Different Constant Step Sizes 127

230 T T T T 210
220 200
210 | 190
200 180

§ 190 5 170

2 2

i 180] 160
170 150
160 140
150 130
140 ‘ ‘ ‘ ‘ 120 ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 0.02 0.04 0.06 0.08 0.1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Selected e Selected e
(a) Solving reduced problem by computing (b) Solving reduced problem by mean

mean value. value and merging.

Figure 7.2.: Energy values of solutions computed by Lo-Cut-Pursuit in Algorithm 7
with different fixed ¢ > 0 and @ = 0.01. In (a) we only compute the mean value over
each segment A € II and drop the regularization term. In (b) we see the same as in (a)
where we just apply the merging step as in (5.54) after each mean value computation.

problem. We see in Figure 7.2a and Figure 7.3a for a regularization parameter o = 0.01 that
the optimal selected step size is €* = 0.026154. Hence, this is effectively the same result as
(63

what we get when applying the Lg-Cut-Pursuit algorithm to solve for & = & = 0.38 and the

p~
step size € = 1. The other way around if we compute the solution of a problem with «a and a
fixed € = 1 we assume that there exists some regularization & which yields with its optimal
selected € that a = % This it what we use in Section 7.4 to compute a feature dependent
discretization of a given data set. We also show that the ideas from above can be applied
and the intuition of decreasing the regularization parameter to get a finer discretization and

increasing it to get a coarser one holds.

400 400
e* =0.026154 e =0.026154
350 | —_—c =0.04 350 |- ——c* =0.026154 4 merge
e= 0.01 e =14 merge
“ Update € + merge
300 800 - - - -Update €4 + merge
\
§ §250 \ Update values + merge
2 250 L%’
200
200
150 +
150
:] : : : ! 100 : : : : :]
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Iteration Number of Iteration
(a) Solving with fixed e. (b) Lo-Cut-Pursuit strategies.

Figure 7.3.: Energy plots. In (a) we see energy plots for a = 0.01 for different choices
of € with three highlighted plots. The red line is the optimal selected £*. In (b) we see
different energy plots for different methods.

128

7.2 Different Partition Optimization Strategies

Selecting the value of € by hand or heuristically might not yield satisfying results and would
have to be selected once again for every data set and graph. It also is not very practical to test
multiple such step sizes. To tackle this we introduce three different alternating optimization

strategies to solve the problem of selecting the feasible step size € in Section 5.1.1.

The first strategy is to optimize over the values danp,danpe directly for each segment
A € II as in (5.43), the second strategy is to compute a direction '?A for every segment
A € I optimize for a corresponding step size €4 as in (5.46) and the third one is to optimize
one fixed ¢ > 0 for every segment A and the corresponding directions 5 all together as
in (5.49). Each of these strategies is an alternating algorithm to find optimal values for a
corresponding cut and an optimal cut for the corresponding values. In Figure 7.3b we plot the
energy for regularization parameter o = 0.01 in each iteration for the different strategies. We
compare them to the manual choices of ¢ = 1 with merge and € = 0.026 as we have deduced
from Figure 7.2 as a convincing manual value with and without merging. We, additionally,
show the energy plots of the three described strategies with a merging strategy to solve the
reduced problem. From this figure we can deduce that the near optimal constant &*, as
we have derived before, yields a convincing, monotonic decreasing energy plot, but cannot
compete against applying the merging strategies. Nevertheless, we see that even selecting
€ = 1 and merging yields an energy even better than £* with merging. This is also what we
see in Figure 7.2b where we plot results for fixed epsilons and merging on the reduced graph.
The three strategies from Section 5.1.1 yield better solutions analogously to their degree of
freedom. This means that the updating multiple step sizes is better than optimizing over
one and computing a value for each new set is better than multiple step sizes. Another
interesting observation is that, if we alternatingly try to find the best partition we need less
steps in the outer iteration until convergence compared to the other methods. In practice
computing a solution by optimizing the values as in (5.43) and merging afterwards yields the
best solutions.

Even though these observations suggest applying the more elaborated strategies, we can
see in Table 7.1 for the cameraman image and Table 7.2 for the RGB image peppers that
the strategies with inner updates are in most cases significantly more costly. This comes
from the multiple graph cuts that have to be computed for every inner iteration step. The
computational time depends on the structure of the problem and of the graph. Still, these
minimization strategies are convincing algorithms of choice to find a solution with low energy.
If one is only interested in a good approximation of the underlying data by piecewise constant
parts it might be sufficient to use one of the more simple strategies, due to their faster runtime.
This is what we investigate in Section 7.4 where we show how to use the most simple strategy
of the former ones to compute a coarse representation of the data set and work on the with
this induced discretization.

Finally let us compare the energy curves of all of the different strategies we have proposed
above. In Figure 7.4 we see the four plots of the three proposed strategies for solving the
reduced problem (5.23) plus solving the reduced problem with our fast MS implementation on

graphs from (5.6) applying a merging afterwards. Merging is applied as given in Algorithm 5.

7.2 Different Partition Optimization Strategies 129

Minimize Reduced Data Term Minimize Reduced Data Term + Merge

350

350
300 300 \
250 | 250 |
\ — —
§ 200 | ‘ Computing & § 200 | Computing ¢
2 | Computing €4 2 Computing €4
w Solving values dang, danBe w Solving values dang, danpe
150 ¥ 1 150 \
N—
Y
121.97 R 121.97
0 5 10 15 0 5 10 15
Cut-Pursuit Iterations Cut-Pursuit Iterations
(a) Mean Value (b) Mean Value + Merge
Fast MS Fast MS + Merge
350 T 350 T :
300 300 \
250 | 250 |
\ — —o1
> . > .
2 200 \ Computing & D 500 | Computing €
2 | Computing €4 2 Computing €4
w Solving values danp,dnpe w Solving values dsnp, danpe
150 ¥ 150 \
N
_
121.97 1 121.97
0 5 10 15 0 5 10 15
Cut-Pursuit Iterations Cut-Pursuit Iterations
(c) Fast MS (d) Fast MS + Merge

Figure 7.4.: Comparing energy curves of different reduced problem solving methods
and the corresponding used partition problem method. The dashed line is the lowest
energy found by these methods. These plots correspond to the cameraman grayscale
image for a regularization parameter o = 0.01.

From top-left to bottom-right it is solving the reduced problem by minimization of the reduced
data-term as in (5.55), merging after minimization, computing the reduced problem more
accurately by using the fast MS primal-dual algorithm proposed in [83] which graph version
we state in (5.28), and last by merging after applying fast MS. Note that we do a simple
merge step after computing the solution of fast MS that just merges segments that have the
same value. This does not change the energy of the problem and just gives the partition
problem the chance to find a cut that yields a better energy decrease.

For each of these methods we plot the energy curves for solving the partition problem. We
see that without merging we have to solve the partition problem more accurately. If we merge
after solving the reduced problem the energy always decreases and we have a convergence
to a local optimum, since the algorithm stops if it cannot find a new cut. Nevertheless,
minimizing over the values danp, danpge in the partition problem yields the best results for
grayscale images. Combined with merging, this is the best algorithm depending on the energy
value. In practice we see similar behaviors for different data sets and data sets types. Merging

is always the best practice.

130

Minimize Reduced Data Term
7 ,

— =]

Minimize Reduced Data Term + Merge

4500

4500

—_—=1
Computing &
Computing €4
Solving values dang, danpe| |

4000 r

Computing &
Computing €4
Solving values dang, danpe| |

4000 r

3500 3500

3000 r 3000 r

Energy
Energy

2500 2500

2043.16

0 5 10 15 0 5 10 15
Cut-Pursuit Iterations Cut-Pursuit Iterations

(a) Mean Value (b) Mean Value + Merge

2043.16

Figure 7.5.: Comparing energy plots of computing the mean value as the solution of
the reduced problem with and without merging and the corresponding used partition
problem method. The dashed line is the energy of the best solution in terms of energy
value provided by the different methods. These plots correspond to the peppers RGB
image for a regularization parameter o = 0.1. The direction used where given by the
first principal component of the data in each segment.

Mean Value Fast MS

Mean Value 1 Merge Fast MS 1 Merge

Fixe=1 2.37s 13.41 49.87s 107.70s
Optimizing € 7.42s 7.74s 12.29s 13.15s
Optimizing €4 13.03s 28.24s 38.18s 31.35s
Optimizing danp, dAnBe 5.47s 6.93s 21.76s 46.69s

Table 7.1.: Run time comparison of the different algorithms presented in Figure 7.4
for the same cameraman image.

However, for RGB data sets for example we can sometimes see that minimizing the values
in the partition problem instead of using a pre-selected direction can lead to worse energies.
Looking at Figure 7.5 we can see the same plots as before, but in this case for the RGB image
peppers. For this we use the isotropic Lo-Cut-Pursuit where we always use the first principal
component of a PCA as a direction for the partition problem as we did in Section 6.3. We
can observe that in this case solving the values without predefined directions in the partition
problem and merging afterwards does not lead to the best energy. This might come from
the high non-convexity of the problem we are trying to solve here. Decreasing the energy by
solving the partition problem as much as possible does not necessary lead to the best local
optimum in the end. Hence, selecting a direction for the partition problem that it chosen
with some rationale to fit to the data sometimes yields better results in terms of energy. This
highly depends on application purposes. However, in this case wee see that still computing
the values instead of searching step sizes for the PC1 directions wins when we are not using

merging.

7.3 Comparison to Other Algorithms

131

Mean Value Fast MS

Mean Value + Merge Fast MS + Merge
Fixe=1 20.80s 23.56 18.06s 14.83s
Optimizing ¢ 7.42s 7.74s 12.29s 13.15s
Optimizing €4 84.77s 65.90s 111.82s 85.69s
Optimizing danp, dAnBe 32.75s 21.49s 34.40s 30.98s

Table 7.2.: Run time comparison of the different algorithms presented in Figure 7.5
for the same peppers image.

7.3 Comparison to Other Algorithms

To have a better intuition of how well this algorithm competes against the Cut-Pursuit
algorithm proposed by Landrieu et. al. in [47, 46] and the fast Mumford-Shah (MS) algorithm
from [83] we aim to compare the energy values, total run time and sparseness for multiple
regularization parameters. For these experiments we used the open source code provided
from the authors of [47] and [83]. The algorithm from [47] that also performs a Cut-Pursuit
algorithm is implemented in C++ and provided with a MATLAB wrapper. Hence, in general
it might be faster than our implementation in MATLAB. Their implementation gives access
to different variants of how to solve the minimal partition problem. We choose the slowest
but most accurate strategy. For the algorithm [83] they also used a C++ implementation
with a provided MATLAB wrapper. We set the number of iteration to a maximum of 20, 000
iterations. The algorithm stops if the total change in every pixel is smaller than 107°. We
applied the algorithms on the noise-free cameraman grayscale image and on the noise-free
peppers RGB image.

In Table 7.3 and Table 7.4 we compare the three algorithms for four different regular-
ization parameters and present the final energy value of the results, the total amount of
runtime, and the number of segments for both Cut-Pursuit algorithms. According to the
plots in Figure 7.4b and Figure 7.5b, we use Algorithm 7 by solving the partition problem
by alternatingly computing a cut and optimizing the values danp,danpe as they yield the

o 0.001 | 0.01 0.1 0.5
. 32.31 | 124.78 | 436.38 | 921.54 Energy
Lo-Cut-Pursuit | = o5 5 55 | 403 1.79 Runtime (in s)
Algorithm 7
) 5,158 ot 34 5 Number Of Segments
Cut-Pursuit by 34.02 | 135.54 | 487.19 | 1,070.01 E.nergy
g 6.59 5.68 3.92 2.48 Runtime (in s)
Landrieu [46, 47]
2,374 202 11 3 Number Of Segments
42.84 | 170.28 | 523.88 | 1,003.1 Energy
Faf§31]\4s 2.67 | 578 | 10.84 | 9.65 Runtime (in s)
- - - - Number Of Segments

Table 7.3.: Energy and run time comparison of the proposed Lg-Cut-Pursuit algorithm
in Algorithm 7, the Cut-Pursuit proposed by [47] and the fast Mumford-Shah primal-
dual algorithm proposed by [83] for different regularization strengths. This was applied
to the grayscale cameraman image.

132

«@ 0.001 0.01 0.1 0.5
. 331.20 | 1,450.00 | 4,340.5 | 8,800.7 Energy
Ly-Cut-Pursuit ’ ! ! . .
Algorithm 7 34.87 37.76 34.05 37.81 Runtime (in s)
60, 201 5,911 268 34 Number Of Segments
. 348.20 | 1,512.6 | 4,640.1 9,381.8 Energy
Cut-P tb) ’ ’
WS DY 1 4517 | 3578 | 4207 | 38.35 Runtime (in s)
Landrieu [46, 47]
26,712 1,571 101 10 Number Of Segments
Fast MS 433.85 | 2,094.5 | 5,370.2 | 10,650.12 Energy
23] 13.47 57.48 84.52 166.48 Runtime (in s)
- - - - Number Of Segments

Table 7.4.: Energy and run time comparison of the proposed Lg-Cut-Pursuit algorithm
in Algorithm 7, the Cut-Pursuit proposed by [47] and the fast Mumford-Shah primal-
dual algorithm proposed by [83] for different regularization strengths. This was applied
to the RGB image peppers.

solution with the energy value. For the grayscale image we solve the reduced problem with
merging while in the cases of the RGB image we solve by mean value without merging. As
we can see in both tables our proposed method can keep up in run time with the Cut-Pursuit
by Landrieu et. al.. The energy is better in most cases, but interestingly we produce more
segments in the end. This might come from the multiple stages of merging and splitting
in the Cut-Pursuit algorithm from [47] and that they try to keep the number of segments
sufficient small. Both Cut-Pursuit algorithms surpass the Fast MS algorithm in terms of
final energy values. This might come from the fact that the Cut-Pursuit algorithms start
with coarse approximation and become finer with every iteration, and thus - also due to the
merging steps - tend to stop in a very coarse local minimum which has a tendency for a lower
energy. A direct method like Fast MS comes from the pixel space and might tend to converge
into a local minimum with more piecewise constant segments, and thus, worse energy.

Obviously, comparing these algorithms by run time is not very meaningful, since they have
completely different implementations and will run differently on different hardware setups.
Nevertheless, we can get a better intuition on how well which algorithm performs and that
Cut-Pursuit in general is a good idea to tackle such problems to find a solution with a good
energy value.

In the next section we also show that the simplest Lo-Cut-Pursuit algorithm yields a

satisfying oversegmentation, and hence, a discretization of a given data set.

7.4 Discretization via Minimal Partitions

In this section, we want to emphasize the capability of the Lg-Cut-Pursuit algorithm to
find a coarse representation for any given d-dimensional data and the corresponding graph
structure. This property of the Lo-Cut-Pursuit algorithm is already pointed out and used in
the work of Landrieu et. al. in [48]. Lo-Cut-Pursuit does not only provide a solution to an
optimization problem it also has the corresponding partition and reduced graph representing
the solution as a by-product. In [48] they make usage of this property by applying Lo-
Cut-Pursuit as a preprocessing step and then apply their semantic point cloud segmentation

7.4 Discretization via Minimal Partitions 133

Figure 7.6.: SLIC result for 400 superpixels. This is only 0.26% of the pixels.

algorithms on the reduced so called superpoint graph. This is in fact a coarse discretization -
or sampling - of the original vertex space and graph corresponding to the structural features
of the given data. This discretization also is called oversegmentation and the segments are

called superpixels.

In this section, we denote the Lo-Cut-Pursuit by Cut-Pursuit when not stated otherwise
and use the term L;-Cut-Pursuit for the Cut-Pursuit algorithm solving ROF problems. In
the following, we want to investigate the usefulness of the proposed Lg-Cut-Pursuit algorithm
in Algorithm 6 as a tool for discretization in its simplest variant where we set the step size
constant as € = 1. This is the most efficient strategy, since it does not need any inner
iterations to optimize the produced partitions and does not solve the reduced problem with
any complex algorithm. The only strategy we apply in some experiments - since it is very
fast in most cases - is to merging strategy when solving the reduced problem. Note that this
section is in fact an extensive numerical analysis of the ideas in [31]. Hence, from now on
we only use the Cut-Pursuit as an oversegmentation method in its simplest variant. Note
that most experiments and claims in the following subsections can be directly applied to
other Lg-Cut-Pursuit strategies. But we only focus on the simplest one, as it is the fastest
method, and, additionally, shows that this method is a sufficient choice for oversegmentation.
In addition, note that we always use the first principal component (PC1) for the directions
in the isotropic cases when not stated otherwise.

First we want to introduce two well-known sampling methods which we compare to the
proposed approach namely the Simple Linear Iterative Clustering (SLIC) superpixel method
[1] and a trivial sampling into squares. Then we analyse numerically by considering exper-
iments if and how the Cut-Pursuit method in its simplest variant can be interpreted as a
superpixel method like SLIC. Thereafter we compare the three methods amongst themselves
for different properties. Then we show that SLIC does yield unsatisfying results on noisy im-
ages and that Cut-Pursuit still produces sufficient discretizations. And finally we investigate
how we can suppress artifacts in the superpixel results of Cut-Pursuit using the provided
reduced graph of the solution and an ROF problem.

134

—— | <l
=

!
v/
74

I
I
i
&
|
=

Figure 7.7.: Sampling result with 400 superpixels.

7.4.1 Related Superpixel Methods

In this subsection, we very shortly and superficially introduce the superpixel method
SLIC [1] that is a well-known and widely used fast oversegmentation method. It is mostly
used to reduce complexity of data to speed up analysis and methods while keeping as much
information as needed. This method takes in a certain grayscale or RGB image and a desired
number of clusters and outputs the partition of the image into these clusters. In Figure 7.6 we
can see the SLIC method applied to the florence cathedral image where the outlines describe
the superpixels boundaries. With this information we can directly build the reduced graph
corresponding to this oversegmentation we also visualize in that figure. This is done by
gathering the edges that are on the boundaries between the sets and sum up the weights
there, which is in this case the boundary length between two segments. The reduced data is
the mean value of the data over each superpixel. Then we can apply any reduced variational
problem on graphs on this reduced setup. In this work we use the built-in MATLAB function
superpizels. This function provides a local “compactness” variable that balances between the
resulting superpixels being regular - which means very square - or the superpixels adhere to
the boundaries in the image. We chose this variable as the default one in all our experiments
which is just in the middle of the range of possible values. Looking at Figure 7.6, we can
see that the superpixels can describe the overall structure of the image very well and we can
still perceive the depicted cathedral. However, this method seems to fail at boundaries. In
some cases the superpixels overlap boundaries in the image and in some cases the boundaries
are not very exact and have a frayed structure. Additionally, SLIC samples the image very
homogenously in some sense, and thus, samples independently on the underlying details.
This means that where many fine details are it samples the superpixels just as in region
with less detail. This can be seen in Figure 7.6 where the sky with less details is nearly as
homogenously sampled as the finer structures on the cathedral. These problems are a huge
drawback since boundaries and structural details in the image are an important information
for all kinds of method, e.g. semantics, segmentation and denoising. Consequently, the user

7.4 Discretization via Minimal Partitions 135

always has to make a decision to have less superixels and therewith less fine information from
the image or more finer structures, and hence, more superpixels.

Additionally to this method we want to use the most trivial discretization method that
one can also understand as a superpixel method. This method divides the pixel space into
square segments and is directly related to downsampling the data. In Figure 7.7 we show a
downsampling of the cathedral of florence image and the corresponding reduced grid graph.

Both methods give us a coarse representation of the original image and graph which we
interpret as a discretization of the original graph. In the next subsection we state why the
Lo-Cut-Pursuit algorithm from Algorithm 6 in its simplest version is also a superpixel method
and show the advantages of this method afterwards. Then we also compare all three methods.

136

90% £ , T
50% * -

25%
10%
5%

1%

0.1%

=== Gray Image Discretization
== RGB Discretization
Point Cloud Discretization

1 1

0.01 0.1 1 10
Regularization Parameter o

Figure 7.8.: Ly-Cut-Pursuit for three different data types as a grayscale image,
a RGB image and a 3D point cloud. The regularization parameters are plotted
against the discretization percentage. The y-axis is a logarithmic axis.

7.4.2 Minimal Partition as a Superpixel Method

In this subsection, we want to show that the Lo-Cut-Pursuit algorithm we state in Algo-
rithm 6 in its easiest variant - where we do not update the partition problem, set ¢ = 1 and
compute the mean value on the reduced graph - also yields a superpixel representation for a
given graph G and some data g. In the beginning of Section 7.4 we argue that we actually can
solve for a fixed € = 1 and some regularization «, since the € only scales the regularization in
this easy case. We assume that we do not solve the problem for the given «, but rather for
a different problem. This implies that we still have coarser results for higher regularization
and finer results for lower regularization which is exactly the intuition as before. To prove
this numerically we did the test for a grayscale image, an RGB image and a 3D point cloud
for hundreds of different regularization parameters. Then we plot the parameter against the
resulting discretization percentage which is the number of segments divided by the number of
nodes in the vertex set. We present these results in Figure 7.8 where we see that the intuition
of the regularization parameter holds. Hence, we have a heuristic for applying this simple
Cut-Pursuit algorithm and use the provided reduced graphs as a discretization.

As we now have got an intuition for the regularization parameter, let us investigate the
results on a certain example image. In Figure 7.9 we see the result for the regularization
parameter o = 0.25 which yields a reduced result with only 2, 311 superpixels which are only
about 1.5% of the original pixels. We can see that the structural information of the image
are preserved and the finer detailed regions like for example the walls of the cathedral have
a detailed sampling and the sky for example is sampled with only a few segments describing
the color gradient. This becomes even clearer when looking at the right image of Figure 7.9
where we see the reduced graph that has a accumulation of many nodes in the regions with

7.4 Discretization via Minimal Partitions 137

Figure 7.9.: Ly-Cut-Pursuit result with @ = 0.25. The image consists of 2,311 super-
pixels. This is only 1.5% of the total pixels. Discretization on the left, outlined segments
in the middle and reduced graph on the right.

more details and and is very sparse in less details regions. As we have said before, we can also
apply the merging step from Algorithm 5 to solve the reduced problem. In Figure 7.10 we
see the solution of the Ly-Cut-Pursuit algorithm with a merging step for solving the reduced
problem. Due to the merging we have even less nodes in the reduced graph and the segments
are even larger. Nevertheless, it still preserves the fine details in the cathedral wall and even
the details on the roof. In summary, we can say that this method is a oversegmentation
method that has the ability to preserve fine and coarse structural details in the image while
reducing the amount of nodes in the corresponding graph significantly. The only downside of
this algorithm is that it tend to have spatially-anisotropic solutions, since we can only cover
spatially-anisotropic regularization. Still, the results seem to not suffer too much visually from

Figure 7.10.: Ly-Cut-Pursuit with merging result with a« = 0.04. The image consists
of 1,045 superpixels. This is only 0.67% of all pixels. Discretization on the left, outlined
segments in the middle and reduced graph on the right.

138

(a) Cut-Pursuit (b) SLIC (c) Sampling

Figure 7.11.: Comparing the reduced graphs. Cut-Pursuit solution was computed with
a = 0.2 which yields 2, 724. Then we used this number of segments to compute the over-
segmentations by SLIC and a uniform sampling. In the top row are the oversegmented
results and in the bottom row the corresponding reduced graphs.

this problem. In the next subsection we compare this method with SLIC and a downsampling
method.

7.4.3 Compare Superpixel Methods

In this subsection, we compare discretization results using Lg-Cut-Pursuit , SLIC and
downsampling. As we show in the two former subsections, using Lg-Cut-Pursuit does pro-
vide us with a very detail and structure sensitive oversegmentation while SLIC is more and
can overlap over boundaries in the image. Hence, we would assume that the Cut-Pursuit
algorithm does a better job in preserving the overall structure of the image, while keeping
the number of segments low. To validate this assumptions, we show visual comparisons and
also three different measures. The first one is the Structural Similarity (SSIM) index that
tries to measure the difference between some image and a reference image as a perception
based difference (cf. [88, 40]). We apply this to the RGB images using the built-in MATLAB
rgb2gray function that generate grayscale images from an RGB image. The second one is the
Peak Signal To Noise Ratio (PSNR) which is the ratio between the maximum pixel value in
the reference image and the mean squared error of the reference image and the comparison
image (cf. [40]). Additionally to these image quality indices, we also want to analyse the
capability of the discretization to yield correct results when applying some algorithm to the
reduced graph. To check this we want to solve a reduced ROF problem for some regularizer

7.4 Discretization via Minimal Partitions 139

1200 = Cut-Pursuit
——SLIC
Sampling
True Energy s .
5 3
(2]
5 1100
c
L
0.6 = Cut-Pursuit
——SLIC
Sampling
0.5 : : !
1007 0% 5% 10% 15%
0% 5% 10% 15% Level of Discretization
Level of Discretization (b) SSIM
(a) Energy
45

= Cut-Pursuit

40 L|==SLIC
Sampling

35
<
& 30
o
25
20
15 L L L
0% 5% 10% 15%
Level of Discretization
(c) PSNR

Figure 7.12.: Different discretization levels and corresponding measures for Cut-
Pursuit, SLIC and sampling discretization. The discretization level is the ratio between
the current number of sets and total amount of pixels in the image. Energy corresponds
to an ROF problem applied to the corresponding reduced graph and data set with regu-
larization parameter o = 0.3. The dashed line in the upper left plot is the correct energy
by solving it with primal-dual on the original graph.

«. The closer the energy of the solution on the reduced graph is to the solution on the original
graph the better the discretization does preserve the important structural information.

To compare the three methods we run an experiment where we apply Cut-Pursuit to
the image of a plane in Figure 7.14a for a sequence of regularization parameters. For every
regularization parameter we get a reduced graph and a certain oversegmentation of the im-
age. Then we compute for every regularization parameter a SLIC oversegmentation and a
downsampling with the total number of segments provided by the solution of the Cut-Pursuit
algorithm. Furthermore, we compute the corresponding reduced graphs for SLIC and down-
sampling. Then for each regularization parameter we computed the SSIM and PSNR indices
for each of the three solutions. This is what we plot in Figure 7.12b for the SSIM index
and in Figure 7.12c for the PSNR index. Also we compute the solution of a reduced ROF
problem (4.67) for a given regularization parameter o« = 0.3 for every reduced graph and plot

140

(a) Original (b) Cut-Pursuit

Figure 7.13.: Compare Cut-Pursuit discretization with o = 0.2 to SLIC oversegmenta-
tion with the same amount of superpixels. The number of superpixels is 3,726 (2.41%).
In the top row we visualize the corresponding reduced graphs.

the energies of the results in Figure 7.12a. As the x-axis we use the level of discretization,
which is the ratio between number of segments and the total amount of pixels in the original
image. We can deduce two important properties from these plots. First, we see that for every
level of discretization the Cut-Pursuit algorithm dominates both methods. Unsurprisingly,
the Cut-Pursuit especially is better in the resulting energy of the reduced ROF problem.
This is somehow obvious, but important to notice, since Lo-TV does emphasize structural
boundaries in the image and so does TV. But this also once again shows that SLIC super-
pixels tend to distort the boundaries. We can even deduce by the volatile plot of the SLIC
algorithm in Figure 7.12a that one cannot expect to track more structural information with
SLIC by just increasing the number of desired superpixels. This can be also seen in Fig-
ure 7.12b and Figure 7.12c. This brings us also to our second interesting observation that the
number of superpixels provided by Cut-Pursuit increases monotonically and smooth along
with the level of discretization. This makes handling the algorithm very intuitive and easy
since one can expect the resulting discretization to become finer, and as well, increase the
amount of structural information using a smaller parameter a. On the other hand, increas-
ing the parameter « yields a coarser discretization which drops unimportant fine information
first before dropping larger segments. This also dominates SLIC that does rather aimlessly
decrease the number of superpixels.

After reviewing the results in terms of mathematical measures, let us take a look at visual
results. In Figure 7.11 we visualize the results of the Cut-Pursuit algorithm, SLIC and the
sampling with the same amount of superpixels applied to an RGB image. We also provide the

7.4 Discretization via Minimal Partitions 141

(a) Original (b) Cut-Pursuit (c) SLIC

Figure 7.14.: Compare Cut-Pursuit discretization with o = 0.2 to SLIC oversegmenta-
tion with the same amount of superpixels. The number of superpixels is 1,394 (0.9%).
In the top row we visualize the corresponding reduced graphs.

reduced graphs in the bottom row. Obviously, we get the worst results for just downsampling
the given image as one loses many structural details. On first sight, the Cut-Pursuit and
SLIC oversegmentation yield good approximations of the overall structure of the image.
Nevertheless, when we compare the reduced graphs we see as expected that the reduced
graph of the SLIC oversegmentation is homogenously sampled all over the image compared
to the Cut-Pursuit superpixels that have different sizes depending on the underlying level of
detail. To see this, we provide two zooms in the upper row of the keyboard of the piano and
the head of the guitar. As we see, the general structure is preserved, but in the Cut-Pursuit
results we can see the keys of the piano in clearer detail and even see that there is text on
the music sheet which nearly completely vanishes in the SLIC result. In the magnification
image of the guitar head we see that the spaces in the head are more perceptible in the Cut-
Pursuit then in the SLIC result where it is very blurry and the details are not distinguishable.
Additionally, we can see that in the Cut-Pursuit result the color gradient generated by the
light of the lamp is segmented in vertical, successive, elongated superpixels which depict the
gradient in a sparse sense. The SLIC again samples this area with much more superpixels
and produces this honeycomb-like structure. Last we also want to point to the carpet where
the Cut-Pursuit again samples the irregular structure of the carpet very well.

In Figure 7.13 and Figure 7.14 we again depict the results for Cut-Pursuit compared to
SLIC but this time on the RGB image of a plane. The interesting property of this data is
that it has many large same-colored segments like the gras or the shadow and also important
details like the number or the symbol on the wings of the plane. Hence, a good approximation

142

of this data would be to somehow sample the patches of grass and the shadows very coarse
while preserving enough details on the symbols. We applied the Cut-Pursuit algorithm with a
parameter o = 0.2 which yields a solution with 3, 726 superpixels which is about 2.41% of the
original data size. When we compare the magnified images in Figure 7.13b and Figure 7.13c
we can see that the number on the wing is preserved nearly perfect in the Cut-Pursuit result
where in the SLIC result the number is not distinguishable anymore. We also observe this
when we examine the other symbols and logos. Additionally, we see that the boundaries
between the grass patches are preserved very well while they are blurred out in the SLIC
result. The last but very satisfying observation is that the illumination of the person in the
right corner is preserved very well whereas on the SLIC result the person seems to blend with
the grass.

As a last experiment, we want to show the result of Cut-Pursuit if we also enable a
merging to solve the reduced problem. This can be seen in Figure 7.14, where we computed
the discretization for the parameter o = 0.2 which yields 1,394 superpixels which is a ratio
of 0.9% of the original number of pixels. Hence, this is even a smaller amount of superpixels
than in Figure 7.13. As we can see in Figure 7.14b, the logo and the number are still visible on
the plane and the grass patches are preserved very well. In the reduced graph we can see that
only smaller structures like the boundaries of the grass patches or parts of the person in the
corner are sampled in detail. Nevertheless, the image has a rather unnatural look for humans,
but using this as the reduced graph for any computer vision method, e.g., semantics or image
recognition, should yield a sufficient discretization. Since this solution yields an smaller
amount of superpixels, the SLIC algorithm cannot track the logos and numbers anymore and
even loses the 0 of the number on the wing. Hence, the Cut-Pursuit algorithm is in terms of
discretization superior.

As we have seen in this subsection Cut-Pursuit has satisfying discretization properties as
it preservers fine details and accumulates areas with less detail. It also provides an intuitive
parameter handling to dial in satisfying results, and thus, is a powerful superpixels method

to generate a structural meaningful discretization.

7.4.4 Solving Problems on Discretization

In this subsection we want to investigate how noise does corrupt the discretization by the
former proposed methods. We compare the SLIC and the Cut-Pursuit superpixel results for
noisy images and their corresponding graph structures. Then we take these graphs and solve
an ROF problem on it. To this end, we compare the energy of the solution computed on the
discretized graphs with the energy of the solution computed on the original graph. Finally,
we investigate if computing a discretization with Cut-Pursuit and then applying the reduced
ROF is computational more efficient as applying the solving the ROF problem on the full
graph.

Let us start with a noisy grayscale image of the cameraman Figure 7.17a and a noisy RGB
image of the plane Figure 7.18a and show in Figure 7.15 the discretization by Cut-Pursuit
and SLIC. As we see, the Cut-Pursuit can handle the noise pretty well and has a denoising
effect. On the other hand, the SLIC oversegmentation really struggles with the noise. It
does not only have the problems of overlapping boundaries in the image and representing

7.4 Discretization via Minimal Partitions 143

(a) Cut-Pursuit (b) SLIC
1,629 superpixel 1, 629 superpixel

(c) Cut-Pursuit (d) SLIC
1,501 superpixel 1,501 superpixel

Figure 7.15.: Discretization via Cut-Pursuit and SLIC with the same number of sets
for a noisy input image.

the boundaries rather inexact, but also generates totally fuzzy and jagged boundaries of the
superpixels. This makes the SLIC method very unreliable in this setup and not feasible for
using the reduced graph provided by the oversegmentation in a noisy setting. Hence, we
focus on Cut-Pursuit as our discretization method of choice.

From now on we use the Cut-Pursuit algorithm to produce discretizations for the images.
As we point out in the former subsection, one can apply any image problem on the reduced
graph and solve this on the very sparse discretization of the full graph. This yields a faster
computational time on the reduced graph which can be very efficient as was shown in [31]
where where they solve very inefficient lifting problems very efficiently on discretizations of
this kind. We show this by solving an ROF problem on the reduced graph and compare it to
the full graph solution. For that reason, we use the Cut-Pursuit algorithm from Section 4.3
to solve TV denoising problems to denoise the images in Figure 7.17a and Figure 7.18a for a
given regularization parameter. Then we use Cut-Pursuit for a discretization of the image for
some parameter and get a reduced graph and reduced data. We then apply the primal-dual
algorithm from Algorithm 3.24 for reduced graphs to the discretized graph to solve a reduced
ROF problem - as stated in (4.67) - for the same regularization parameter «. In Figure 7.16a
and Figure 7.16b we visualize these experiments where we evaluated Cut-Pursuit for different
parameters to get different levels of discretizations and plot the corresponding energy for a
given regularization parameter o = 0.1. The dashed blue line is the energy level of the true

144

330 16 1200
180
320 15 meo |\ L
n 160 @
183 1160 183
g B 5
5 g 1140 | lao 8
£ 5 £
Q1120 o
777777777777777777777777777 = e — 120 i
280 11 1100 ;7/" ““““““
270 : : 0 1080 : ! —o
0% 25% 50% 0% 25% 50% 75%
Level of Discretization Level of Discretization
(a) Gray-value Image Cameraman (b) RGB Image Plane

Figure 7.16.: The plots show the energy the results of the reduced ROF on the dis-
cretizations provided by Cut-Pursuit. The red lines show the time for running Cut-
Pursuit plus solving the reduced problem afterwards The red dashed line is the run
time of a L;-Cut-Pursuit on the full graph and the blue dashed line the corresponding
energy.

solution. We additionally took the time for computing the solution on the full graph with
L1-Cut-Pursuit which is visualized by the dashed red line and the time for discretization and
solving on the reduced graph plotted as the red line. It also shows the discretization level of
the L1-Cut-Pursuit result by the green vertical line.

The energy plots show us what we already expected: as finer the discretization gets the
better the energy of the reduced problem becomes and closer it gets to the energy for the
solution of the full problem. For the grayscale image we see that the timing to compute
the full problem and to compute discretization and reduced problem are nearly equivalent
to some extent. For the RGB image the reduced approach surpasses the run time of the
L1-Cut-Pursuit algorithm. As we discuss in Chapter 4, the channel-isotropic setting is not
too easy to solve for Cut-Pursuit , since we have to check for sufficient directions which costs
multiple graph cuts for one outer iteration. This makes this algorithm on the discretization
much more efficient.

We also provide the noisy images, the correct TV denoised solution and two approxima-
tions via discretization for the cameraman image in Figure 7.17 and for the RGB plane image
in Figure 7.18. We see that even though the energies might not be exactly equivalent to the
energy of the solution of the full problem, but these solutions are visually very close. It is
hard to find an obvious visual difference and without comparing it directly to the solution.
Hence, it ultimately does fulfill a denoising purpose.

To conclude this section, we want to talk about how good Ly-Cut-Pursuit can handle high
noise levels, what kind of artifacts we expect and how we can handle these.

7.4 Discretization via Minimal Partitions 145

(a) Noisy image (b) TV solution on the full image
65,536 pixels Energy: 283.55.

(c) Discretization: (d) TV solution reduced graph
649 superpixel (0.99%). Energy: 297.84

(e) Discretization: 3,450 (f) TV solution reduced graph
segments (5.26%). segments. Energy: 287.55

Figure 7.17.: The discretization properties of the Lg-Cut-Pursuit approximation. It is
tested on the an grayscale image of the cameraman with 65,536 pixels and denoised by
TV regularization with o« = 0.1. Note the discretization in (e) and (f) corresponds to the
discretization level of the optimal solution marked with the yellow line in Figure 7.16a.

146

(a) Noisy image (b) TV solution on the full image
154,401 pixels Energy: 1,102.9

(c) Discretization: (d) TV solution reduced graph
1,751 superpixel (1.13%). Energy: 1147.29

(e) Discretization: 14,166 (f) TV solution reduced graph
segments (9.17%). segments. Energy: 1,113

Figure 7.18.: The discretization properties of the Lg-Cut-Pursuit approximation. It
is tested on the an RGB image of the plane with 154,401 pixels and denoised by TV
regularization with & = 0.1. Note the discretization in (e) and (f) corresponds to the
discretization level of the optimal solution marked with the yellow line in Figure 7.16b.

7.4 Discretization via Minimal Partitions 147

7.4.5 Denoising Minimal Partitions

In this subsection, we want to investigate how the Lg-Cut-Pursuit discretization reacts to
high levels of noise. With respect to the former subsection we also give a nice and easy way
to handle occurring artifacts.

Let us first talk about what we would expect from a Lo-Cut-Pursuit oversegmentation
in the presence of high levels of noise. To this end, we give a visualization of two different
levels of noise in Figure 7.19. In the first row we see the noisy RGB images of a parrot.
The second row visualizes Lo-Cut-Pursuit results for some regularization parameter. As we
can see, the solution in face of the high noise value suffers from single, pointy noise pixels
that are somehow cut from the piecewise constant segments. For the low level noise the
oversegmentation gives good results without these outliers. These artifacts come from the
property of the regularizer that any jump in the image or graph is equally penalized and thus
the boundary length of the segments is measured. Hence, it might happen that it is much
more expensive for the data-term to have a pixel in a certain segment if its value differs too
much from the other pixels in that segment. Then the conserved energy of the regularization
by not cutting it from the segment is less than the emitted energy of the data-term. Then the
partition problem would prefer to cut the pixel out of the segment. Since we only compute
the mean values of the segments in the reduced problem, this pixel would just get its original
value assigned which is some by noise distorted value. Hence, these pointy artifacts occur in
the oversegmentation results.

As we discussed about the artifacts, let us talk about their alleviation. As we learn in
the former subsections, we can apply any method to the reduced graph that works on the
full graph. Hence, we can use a denoising method as in the former section where we solve
an ROF problem on the reduced graph. Since the TV regularizer does penalize the height of
jumps it should penalize these outliers very harshly since they are far off from the neighboring
segments. These results can be seen in Figure 7.19¢ and Figure 7.19f where we applied a L1-
Cut-Pursuit algorithm to solve the ROF problem for some sufficient regularization parameter.
We see that the pointy artifacts are completely suppressed, and since, we used Li-Cut-Pursuit
the number of segments can only be smaller or equal as before in the reduced graph. Hence,
the segments in the L;-Cut-Pursuit solution gather multiple segments from the former Lo-
Cut-Pursuit solution. Nevertheless, the new result suffers from a loss of contrast that might
be visually undesirable or even a problem for later applied methods. As we show in Section 6.4
we can directly apply a debiasing step solving the data-term on each segment which is just
the mean value in this case. Hence, we can see in Figure 7.19h a contrast enhanced image
with suppressed pointy artifacts. Additionally, in Figure 7.19¢ we show the proof of concept
where we see the debiased low noise solution that is exactly the same as in Figure 7.19c.
Consequently, we have a sufficient method for discretization even for noisy images using a
Lop-Cut-Pursuit algorithm.

148

(a) Parrot with low noise. (b) Parrot with high noise.

(¢) Lo-Cut-Pursuit: (d) Lo-Cut-Pursuit:
Optimizing the values. Optimizing the values.

(e) Cut-Pursuit for ROF on (f) Cut-Pursuit for ROF on
the reduced graph. the reduced graph.

(g) Debiasing (e). (h) Debiasing (f).

Figure 7.19.: Solutions of Lg-Cut-Pursuit on the parrot RGB image with a low noise
level (left) and a high noise level (right).

Numerics: Point Cloud Sparsification via
Cut-Pursuit

In this section, we want to investigate the sparsification properties of the proposed Lg-
and Li-Cut-Pursuit algorithms in Algorithm 7 and Algorithm 3. These results have been
published in [85]. We again compute the graph for the point cloud data with a k-NN graph
with k£ = 7 and set the weighting to

NEORNOILN

w(u,v) = exp (5

In the following sections we compare the results of point cloud sparsification on three
different 3D point clouds via the proposed Cut-Pursuit algorithm and a direct minimization
of the energy functional (4.58) via the primal-dual algorithm on graphs we introduce in
Algorithm 3.20. The point cloud data that is not corrupted with any additional geometric
noise as we visualize them in Figure 6.3. We perform primal-dual algorithm for the full graph
until a relative change AJ,.; of the energy functional between two subsequent iterations is
below 10~°. The resulting point clouds show many clusters of points that have been attracted
to common coordinates. We apply a filtering step on these resulting clusters that removes all
but one point in a neighborhood of radius ¢ = 1073 relative to the size of the data domain.
This approach can be seen as fine-to-coarse sparsification and has been used before, e.g., in
[52, 51]. On the other hand the proposed Cut-Pursuit algorithm is clearly a coarse-to-fine
sparsification strategy. For the Lg-Cut-Pursuit algorithm we again use the easiest strategy
as in Section 7.4 where we only perform one graph cut for the partition problem and then
compute the mean value of the given data over the finer segments. For the application of
Cut-Pursuit to channel-isotropic regularizations we always use the first principal component
(PC1) as the direction of choice without any additional updates.

8.1 Anisotropic L;-TV Regularization

To analyze the run times of these approaches, we compare the three data sets, namely
Bunny, Happy and Dragon, from the Stanford 3D Scanning Repository [82], we present in
Figure 6.3, for anisotropic L1 regularization and two different regularization parameters. Ad-

150

. Direct optimiz. Cut-Pursuit Cut-Pursuit
Data set / Regularization parameter via PPD with PD with PPD
Bunny (35,947 points):
a = 0.001 50s 413s 23s
a=0.01 119s 145s 6s
Dragon (435, 545 points):
a = 0.005 5, 636s 1,097s 117,4s
a = 0.002 6,314s 591s 62, 5s
Happy (543,524 points):
a = 0.0002 1,568s 2,400s 222, 2s
a = 0.001 3,407s 1,186s 93.2s

Table 8.1.: Comparison of overall runtime in seconds between a direct optimization
via primal-dual optimization (PD) and Cut-Pursuit where the reduced problem was
solved with a primal-dual and with a diagonal preconditioned primal-dual (PPD) algo-
rithm on different point cloud data for anisotropic L; regularization and two different
regularization parameters a.

ditionally, we compare the run times of the L;-Cut-Pursuit algorithm where the reduced
problem is solved using a primal-dual (PD) algorithm with updated step sizes as in [17] and
using a primal-dual algorithm with diagonal preconditioning (PPD) as we introduce in Defi-
nition 3.21. These compete against the primal-dual algorithm with diagonal preconditioning
(PPD) on the full graph describing the point cloud. The diagonal preconditioning is essential
here as otherwise the optimization would be slower by orders of magnitude. Additionally,
one would have to compute the step size by using the norm of the gradient which is hard to
compute for huge graphs. This problem also arises when using a step size update acceleration
as described in [17].

In the following we compare the run time results of our numerical experiments gathered
in Table 8.1 for two different regularization parameters for each data set. As the results of
both optimization strategies are identical to some extend and cannot be seen visually on the
resulting sparsified point clouds, we refrain from showing any point cloud visualization here.
However, the results of point cloud sparsification using anisotropic L1-TV regularization can
be seen in Figure 8.1 below.

The first and most obvious observation is that the direct optimization approach, i.e., the
primal-dual algorithm on the full graph, performs only well for small point clouds as in the
Bunny data set. For the Happy and Dragon data set the measured run time is not reasonable
for any real application. Additionally, one can see that the direct optimization approach
takes increasingly longer for higher regularization parameters «. This means that for an
increasingly sparse results one has to take a longer computation time into account.

While comparing the two variants of the Cut-Pursuit algorithms with only using primal-
dual optimization (PD) and the diagonally preconditioned primal-dual algorithm (PDD) we
observed that the latter one is always faster than the simple version. This is due to the reasons
we pointed out earlier in Definition 3.21, i.e., bad conditioning due to different amount of
vertices gathered in each subset of the partition and highly varying values of the accumulated
weights between these subsets. Notably, in all tested experiments except the Bunny data set
the Li-Cut-Pursuit algorithm without preconditioning is significantly faster than the fine-to-

8.2 Comparison of Anisotropic L1-TV and Lg-TV Regularization 151

Data set Direct optimization via PPD Weighted Lo Cut-Pursuit
_ 126s 2.3s
Bunny: 35,947 points 8,034 points left

(22.35%) 8,065 points left (22.42%)

3,305s 175
29,168 points left .

(5.37%) 28,484 points left (5.24%)

8,239s 9895

16,438 points left '
(3.77%) 16,405 points left (3.77%)

Happy: 543,524 points

Dragon: 435,545 points

Table 8.2.: Comparison of overall runtime in seconds between a direct optimization
via preconditioned primal-dual optimization (PPD) and the simplest Lg-Cut-Pursuit
algorithm for point cloud sparsification tested on the three different data sets presented
in Figure 8.1, Figure 8.3 and Figure 8.2.

coarse strategy with preconditioned primal-dual minimization.

One interesting observation is that the Cut-Pursuit algorithm is not necessarily getting
faster for an increasingly higher regularization as one might expect. This can be seen for the
Happy data set. The reason for this is that there are two opposite effects competing. With
increasingly higher regularization parameter o one can expect the total number of graph
cuts to decrease, which leads to less iterations in Algorithm 2. However, at the same time
the costs of computing the maximum flow within the finite weighted graph may increase
due to the increased flow graph edge capacities. Thus, in some cases the computational
costs of minimum graph cuts outweighs the benefit of computing less graph cuts for higher
regularization parameters. In case of the preconditioned primal-dual algorithm the overall
run times are less affected by the choice of the regularization parameters compared to the
standard primal-dual variant.

In summary we observe that for large point clouds a Cut-Pursuit approach with a diagonal
preconditioned primal-dual optimization to solve the reduced problem is significantly faster
than a diagonal preconditioned primal-dual algorithm on the full graph.

8.2 Comparison of Anisotropic L;-TV and Ly-TV Regularization

In Figure 8.1, Figure 8.2 and Figure 8.3 we compare the sparsification results of the
anisotropic L1-TV and the weighted Lo-TV regularization (5.14) on the three data sets used
before. We choose the regularization parameters for both methods in such a way that they
yield roughly the same number of points in the resulting sparse point clouds. As one can
see, the resulting point cloud of the L; regularization for different data sets always induces
a very strong block structure to the data. This is clear as we have chosen an anisotropic TV
regularization for this experiment. In addition to this structural bias one can also observe
a volume shrinkage in the resulting point cloud. This is comparable to the typical contrast
loss when using channel-anisotropic TV regularization for denoising on images, e.g., cf. [12]
and Section 6.4. On the other hand we see that the proposed Lg regularization yields a much
more detailed and bias-free result.

152

(a) Result of anisotropic L; regularization with (b) Result of proposed Lg regularization with
a = 0.5. Time needed: 126 seconds. Points left: a = 5. Time needed: 3.7 seconds. Points left:
7,794 (21.68%) 8,034 (22.35%)

Figure 8.1.: Results on the Bunny data set.

L L L L
0.1 008 -0.06 004 002 0 0.02 0.04 0.06 0.08

(a) Result of anisotropic Ly regularization (b) Result of proposed Lg regularization
with e = 0.5. Time needed: 8,239 seconds. with e = 6.5. Time needed: 70.6 seconds.
Points left: 16,438 (3.77%) Points left: 16,138 (3.71%)

Figure 8.2.: Results on the Dragon data set.

As we would like to highlight by this experiment, the striking argument for using the
simplest Lg-Cut-Pursuit algorithm is the significant efficiency gain for point cloud sparsifi-
cation, which can be seen by comparing the computational times in Table 8.2. Comparing
the fine-to-coarse strategy proposed in [52, 51] there is a speed-up by a factor of between
60 to 290 depending on the number of points in the original data set. This speed up of two
orders of magnitude (without exploiting any parallelization techniques) renders the proposed
method valuable for applications in which point cloud data has to be processed and analyzed
in near-realtime conditions.

To summarize our observations above, we can state that when noise-free data is given,
point cloud sparsification can best be performed using the Lg-Cut-Pursuit algorithm as in
Algorithm 6 where we solve the partition problem by using the PC1 direction and no updates

8.2 Comparison of Anisotropic L1-TV and Lo-TV Regularization

153

(a) Result of
anisotropic Ly
regularization with
a = 0.5. Time
needed: 3,305
seconds. Points left:
26,247 (4.83%)

(b) Result of
proposed L
regularization with

a = 4. Time needed:

94 seconds. Points
left: 29168 (5.37%)

(¢) Result of
anisotropic Ly
regularization with
a = 0.5. Time
needed: 3,305
seconds. Points left:
26,247 (4.83%)

Figure 8.3.: Results on the Happy data set.

(d) Result of
proposed L
regularization with
a = 4. Time needed:
94 seconds. Points
left: 29,168 (5.37%)

and solving the reduced problem by computing the mean value of the data over the segments

as described.

154

8.3 Visual Comparison of Different TV Regularizations

In the following we compare the qualitative difference of point cloud sparsification between
the channel-anisotropic and the channel-isotropic L;-TV-regularized reduced problem (4.67)
forp=g=1and p =1, ¢ = 2, respectively. In the channel-isotropic case we again use the
first principal component as a direction. Additionally, we visually compare the results of the
L1-TV-regularized point cloud sparsification with the results of the simple weighted isotropic
Lop-Cut-Pursuit algorithm.

As point cloud data we chose the Fandisk model (cf. [30]), which consists of a combination
of roundish and flat surfaces as well as sharp edges. This data set is often used to evaluate
the effectiveness of point cloud denoising methods in the literature, e.g., see [30, 94, 84]. For
this experiment we constructed a symmetrized k-nearest neighbor graph for kK = 7 and set
the regularization parameter « such that all resulting point clouds have roughly the same
compression rate of 17%. The regularization parameters used for each regularization term
are indicated in Figure 8.4.

In Figure 8.4 the results of point cloud sparsification with the three described regular-
ization terms are displayed. The left column shows a mesh triangulation of the data, while
we present a corresponding surface rendering with MATLAB built-in Phong lighting [61] in
the right column. The first row in Figure 8.4a and Figure 8.4b shows the original Fandisk
data set, which consists of 11,949 3D points. In the second and third row we present the
results of anisotropic and isotropic L1-TV regularization, respectively. As can be seen the
anisotropic Li-TV regularization induces flat surface regions that coincide with the planes
that are spanned between the coordinate axes of the data set. This is not surprising as
the anisotropic L1-TV regularization decouples the 3D point coordinates and only enforces
regularity within each dimension. This leads to typical staircase artifacts in Figure 8.4c¢ and
Figure 8.4d as it is well-known for total variation regularization in imaging applications. On
the other hand, using the isotropic L regularization term for ¢ = 2 couples the coordinates
of each 3D point and hence does not lead to any staircase artifacts as can be seen in Fig-
ure 8.4e and Figure 8.4f. The resulting surfaces appear much smoother compared to the
previously discussed anisotropic L1-TV regularization. While the round and flat parts of the
data set are well-preserved by this regularization term the sharp edges are lost as can been
observed. The last row shows the results of our proposed weighted Lg-TV regularization.
As we demonstrate in Figure 8.4g and Figure 8.4h the mesh triangulation of the sparsified
point cloud is much more regular compared to our experiments with the L;-TV regularization
terms. Additionally, the sharp edge features of the Fandisk data set are significantly better
preserved.

To wrap this section up we want to shortly investigate the discretization property of the
isotropic Lo-Cut-Pursuit algorithm on point cloud data as we have investigated on images
in Section 7.4. There we showed experimental that the regularization parameter « can be
interpreted as a control parameter for the expected level-of-detail, and thus, of the resulting
number of points as we demonstrate in Figure 8.5 and Table 8.3. Due to the fact that this
approach leads to a sparsification result that is close to the original point cloud, there is

no volume shrinkage effect and hence no need for an explicit debiasing step as discussed in

8.3 Visual Comparison of Different TV Regularizations 155
Data Set a=0.1 a=0.5 a=1 a=5
Bunny 35947 (100%) | 22651 (63%) 8034 (22.3%) 1473 (4%)
Happy | 543524 (100%) | 213901 (39.4%)| 85719 (15.8%)| 24555 (4.5%)
Dragon | 435545 (100%) | 177448 (40.7%)| 71040 (16.3%)| 19844 (4.5%)

Table 8.3.: Comparison of sparsification rates of different regularization parameter
selection for the Ly-Cut-Pursuit algorithm. It shows the number of leftover points and
the overall percentage.

Section 6.4.

With these observations we wrap up this part and refer to Section 15.1 for a conclusion

and a small outlook on future work.

156

(b) Surface rendering of the full point

(a) Mesh triangulation of the full point
cloud of the Fandisk data set

cloud of the Fandisk data set

(d) Surface rendering of results for

(c) Mesh triangulation of results for
anisotropic L1-TV with a = 0.15

anisotropic L1-TV with a = 0.15

\VAY;
h;‘wu
= AVl

AR
KA
XN/
{ 35‘

&

RS

N
;‘4)
V

N

0
\

(f) Surface rendering of results for

(e) Mesh triangulation of results for
isotropic L;-TV with a = 0.065

isotropic L1-TV with a = 0.065

TAVAVAVAVA S

2 vy

A
2307
K)

o

¥
A

SR

5L
5
L

X252
s

>,

TATAV
K
A,

R

"VA

(h) Surface rendering of results for

(g) Mesh triangulation of results for
isotropic Lo-TV with a = 0.05

isotropic Lo-TV with a = 0.05
Figure 8.4.: Comparison of point cloud sparsification results of the Fandisk model

for anisotropic/isotropic L1-TV and the proposed isotropic Lo-TV regularization. The
regularization parameter « is chosen such that all compressed point clouds consist only

of 17% of the original point cloud.

8.3 Visual Comparison of Different TV Regularizations 157

(a) Full point cloud data of the Bunny model (b) Triangulation of full point cloud data of the
(35,947 points) Bunny model

(c) Point cloud sparsification for oz = 0.3 (d) Triangulation of sparsified point cloud data
(12,105 points) for « =0.3

(e) Point cloud sparsification for o =1 (f) Triangulation of sparsified point cloud data
(1,912 points)

(g) Point cloud sparsification for o = 3.5 (h) Triangulation of sparsified point cloud data
(498 points) for « = 3.5

Figure 8.5.: Comparison of point cloud sparsification results using the proposed
weighted Lo-TV regularization with different values of o

Part |l
Dynamic PET Image Reconstruction

Introduction to PET Reconstruction

In this section, we introduce the theoretical foundations of Positron Emission Tomography
(PET). To do so, we introduce how PET data is measured in practice, how we can build
a mathematical model for it and how to reconstruct the spatial distribution of the tracer
inside a given image domain. After developing the foundations we add regularization to the
reconstruction method which, in particular, is the well-known Total Variation (TV) as we
introduce in Section 3.1.4. To solve such problems we introduce two different methods to
reconstruct regularized images. We start by describing PET and how data is measured and
stored. We keep this short in the following and refer to [89, 59, 73] for deeper and more
detailed insights.

9.1 Positron Emission Tomography

In short, Positron Emission Tomography (PET) is an imaging method where a certain
amount of radioactive tracer is injected into a patient or subject. This tracer, e.g. 18F-FDG
(Fludeoxyglucose F 18), tends to be retained by tissues and organs with a high metabolic
activity and emits positrons over time. These positrons then hit free electrons that annihilate
with each other and emit two ~-photons that are cast away from this position in an angle
of about 180 degree. We call the process of annihilation an event in the following. These
~v-photons then hit photo-sensitive detectors that pass the measured impact to the software
that stores the ID of the detector that was hit and the time of the impact. The goal is
now to find the detector pairs that where hit by the photons generated by the same event
in the image domain, which is equivalent to finding a coincidence line that passes through
the position of the event. Afterwards, one can gather all these lines and count the number
of events that where tracked on them. Then we reconstruct the distribution of the tracer
with well-known methods that use lines to reconstruct images like in CT or with the EM
reconstruction method we will explain later on. To combine the measured impacts to the
correct event is a difficult task due to scattering effects, attenuation by tissue and bones [42,
8], random measurements that generate a line for two independent events [3, 91] and dead
crystals, to just name a few (cf. [89]). These problems were tackled successfully over the last
decades and can be overcome by preprocessing methods. Note that a PET scanner is built
of a finite number of detectors (e.g. [21]). Thus, there is only a finite number of possible

162

Figure 9.1.: Visualization of an event emitting two «-photons which hit a detector pair

(i,)-

lines that can technically be considered to store events. Additionally, in order to store less
lines and make reconstruction faster multiple lines of neighboring detectors with the same
directions are gathered in bins.

First, we aim to reconstruct a static, time-independent image or distribution map from
the given PET data. Thus, every data point is a unique line coupled with the total amount
of tracked events on this line. There are two possible ideas of how this data can be described.
As lines can be represented by an angle of the line to one axis of the domain and an offset of
the line to some origin of the axis, one can visualize this as a so called sinogram (cf. [59]).

Another method is just to list the possible lines and store the counts of events in a vector
where the index corresponds to the number of the line. In this work we only consider the
second type of data description since it fits the best to the models we will use throughout
this work.

Since the measuring of events on coincidence lines is time dependent and only a very
small number of events happen in a time period we assume Poisson noise in the data as
mentioned in [59]. Thus, it is not rational to reconstruct the image by the same methods as
used in Computed Tomography (CT) since these only model Gaussian noise. To challenge
this problem the Expectation Mazimization (EM) method is used for reconstruction [59]. In
the following section we derive the EM algorithm for given static PET data.

9.2 Expectation Maximization Reconstruction

In this section, we introduce how to reconstruct a positive image v > 0 that represents
the spatial tracer distribution in the image domain) from a given data set g. As we measure
the number of emitted photons the distribution u of the tracer can only be positive. Let us
assume that we are given a PET scanner that has L lines and a discrete 2D image domain

Q) of the size m x n. Note that this can be done analogously for 3D image domains. Let

9.2 Expectation Maximization Reconstruction 163

1 [=@@y)
(Ku);=0.44-0.2 + 0.11-0.2

0.5 4 0.35-1 -+ 0.28-

0.2 + 0.17-0.5+ 0.45-
= 1.215

Y

Figure 9.2.: Example of an 4 x 4 image u and a line [between two detectors z and y.
The image consists of three different values. The value (Ku); is the “line integral” over
the line [over the image which sums up the length of intersections of the line with a
pixel multiplied with its value.

us denote N as the total number of pixels, i.e., N = m - n. In this work we only consider
discrete image domains () with N pixels. Then we can write each image in a vectorized form
as u € Rf , where we stack the n columns of the image on top of each other. In this work we
denote Ry = R>p. Additionally, we introduce the line projection operator or PET operator
K:]Rﬂf — NL for a given scanner with a set of L lines which maps an image from the image
domain € to the data space. Thus, for given data g € N and PET operator K the PET

reconstruction problem is to find an image u €]Rﬂy such that
Ku=g.

Note that the operator X does preserve positivity, i.e., Ku > 0 as u > 0. Additionally, we
can assume background noise on practice such that the underlying distribution map u > 0,

and since, K preserves the positivity also the data g > 0.

Before we take a deeper look at the data and the corresponding model we want to dis-
mantle the PET operator K. A very easy example describing the following can be seen in
Figure 9.2. The operator K works by taking every line of the scanner and casting it through
the image domain €2, which is in fact a line integral operator [59]. For each line it measures
the length of the intersection with every pixel in its path and multiplies it by the value of
the respective pixel. Then it sums up these values for the line. Thus, it generates a vector
of length L for the image u where each index corresponds to the same line as in the data
g. Then we can compare the values generated by Ku with the data g. Now we understand
how we can map any image u € Rﬂ\: into the data space with X'. We want to point out two
features we will use in this work and that might also reinforce the understanding of the PET

operator K.

First let us note that computing the line integrals is a process with huge computational

costs. As we have seen above one has to compute the line, find the intersections of the line

164

xZ
u Va
©
R K;7; =017
1 5 9l(/ 13
Q> [\
2 6 o 14 Kj10=0.35
! R ﬂcﬁb K; 11 =0.28
. Q ’
sl >e/m V1] 15
] Kl,lg = 0.46
W
/S AEETIEET K14 =0.11

Y

Figure 9.3.: Example of an 4 x 4 image domain and a given line [. The image is
provided with a linear indexing (or could be thought of as a vectorized image). On
the right hand side we can see the lengths of intersection of the line [with the pixels ¢
gathered in the entries K ;.

with the pixels in u, measure the length, multiply with the value and sum everything up.
This is a redundant task since one would generate the line and the intersections every time
the operator K is applied. Luckily, as long as the number of pixels and lines is not too big
one can build a sparse matrix to represent the mapping functionality of the operator K. We
present an easy example of how to generate a matrix from a given set of lines and an discrete
image domain in Figure 9.3. For the projection of a line [we always need the length of the
intersection I; of line [with a pixel ¢ in the image. We could store these intersection lengths
in a vector of length NV with [; as the i’th entry. Then, computing the scalar product of this
vector with the (vectorized) image yields the value of (Ku);. This can be done for every line
[in the PET scanner and stored in a (sparse) matrix K € RI;XN as the rows. Then we have
a matrix representation Ku = Ku for every u € Rf . The computation of the projection
with K is much faster and also highly optimized in practice since it only uses matrix vector
multiplication. Nevertheless, when we think about real applications with a high amount of
pixels and millions of lines - and maybe even 3D - it would be hard to store K in memory
since it would have - even though it is very sparse - a huge amount of non-zero entries. In
this case one has to apply K again.

Now that we have investigated the operator we want to focus on the measured data
g € Rﬁ. As mentioned before, the data ¢ is distorted by Poisson noise. Thus, to compare
the closeness of the data g to the reconstruction u we take the Kullback-Leibler divergence
[45] that measures the directed divergence between two discrete probability distributions P

and @ on the same probability space X as

L .
KL(P,Q)=>_ Pjlog <SJ> (9.1)
j=1 J

This divergence tends to zero for distributions that are very close. Hence, using this di-

9.2 Expectation Maximization Reconstruction 165

vergence as KL(g, KCu) would give the closeness of the data to the projection of the current
distribution u, which would imply that u is close to the distribution that generated g. As de-
rived in detail in [73, Section 4.2] using a maximum a-posteriori estimator, the corresponding
variational problem to find a positive spatial distribution u € Rf for given Poisson distributed
PET data g is given as

L
aigggn jZ::l(lCu)j —gj +g;log ((/Cgljt)J> (9.2)
which is equivalent to
. L gj
argmin jZ::l(’Cu)j — gj + gjlog ((,Cu)j> + 0 (u;) (9.3)
where
5u(z) = 0, ifxz; >0, (9.4)
oo, else.

In Section 2.2.3 we introduce the Kullback-Leibler data-term in Definition 2.9 and we denote

it by the functional

L

Dkr(Ku,g) =Y (Ku); — g; + KL(g,Ku)

)
—_

f (Ku);

(Ku)
L i
> (Ku)j — g; + gjlog (’) :
J
Note that we assume here that g > 0 and that u > 0 as we always assume background noise
and that every line has measured a photon at least once. Otherwise the logarithm cannot be

evaluated. This is the same assumption as in [73].

In addition to the chosen data-term we want to make an assumption that the reconstructed
image cannot have any negative values since a negative amount of tracer cannot exist. Hence,
we will apply a positivity constraint to enforce the reconstruction u to be positive everywhere.

Thus, to reconstruct the image from a given PET data set g we optimize the problem

There are many different approaches to derive the classical algorithm to optimize this
problem. We will follow the ideas of [15]. Hence, we use the Karush-Kuhn-Tucker (KKT)
conditions defined in Proposition 2.1 with the constraint h(x) < 0 and the first order op-
timality of the terms in (9.3). Looking at Proposition 2.1 and the positivity constraint as
u; > 0 we need to set h(z) = —z to meet the condition that h(u) < 0. Now we easily see
that Oh(u) = —1. We already computed the derivative of the KL data-term VD, in (2.10).
Thus, we can state the KKT that assures the existence of a Lagrange multiplier A > 0 for

166

which the stationary points of (9.2) satisfy the conditions

Ku
0=)\u (9.7)

0=K*1—K* (g)) (9.6)

where K* is the adjoint operator of K. This exists since we are operating in Hilbert spaces.
Note that we use element-wise multiplication and division when handling vectors in the
following. Scalar products of vectors will be denoted explicitly. Now we can multiply (9.6)

by w which leads to

0=K"1u — uk” (/Cg) —Au (9.8)

u

where we can drop Au since it is zero by (9.7). Then we can reformulate (9.8) into the
following fixed-point equation

K lu = uk* (&)

_ w9
e =gt (ICu)

This then leads to the algorithm that is well-known in the literature as the EM-algorithm:

(9.9)

Algorithm 9.1. (EM-algorithm)

Let Q be an image space with N pizels and assume a scanner with L lines. The operator K
is a projection operator for projecting the lines through the N pizels. Let g € N* a measured
data set. Then an underlying spatial distribution that generated g can be recovered by the
following fixed-point iterations scheme

n ut (9
u" = ek (mn) (9.10)

Another way to derive this via stochastic processes and methods can be found in [59].

Let us make a small remark on the adjoint operator £*. As the (forward) PET operator
K computes the sum over intersection lengths and pixels values the adjoint operator takes a
value v; and passes it through the image u over the line [. It takes the intersection length
l; of the line [with a pixel i and adds the value v - [; to the current value in the i’th pixel.
Thus, we can understand K* as an operator that distributes the values in a vector of length
L over the lines onto the image domain.

The EM algorithm (9.10) enables us to reconstruct a given data set g for a predefined
scanner and the corresponding projection operator K. In practice, even when we assume that
the lines and data are corrected for the problems like scattering, attenuation and random
measures etc., we still face the problem of reconstructed distribution maps with a high amount
of noise. For sure, one could reconstruct the image and afterwards use a denoising method
like solving the ROF problem on the reconstructed image as shown in Algorithm 3.20. But
this leads to the problem, that the process of reconstruction and denoising are completely

9.2 Expectation Maximization Reconstruction 167

decoupled and could lead to undesirable results. Thus, it is advisable to couple these two
steps of reconstruction and denoising during the reconstruction. This can be done by adding
a TV regularization term to (9.2) as we will do in the following section.

Total Variation Regularization on
Reconstruction

In this section, we introduce the well-known total variation (TV) regularization to the
PET reconstruction to handle noise that is present in the reconstructed image. We already
discussed the total variation in Section 3.1.4. Since we want to reconstruct and denoise
the reconstruction at the same time we add a total variation regularization term to the
minimization problem (9.2) that yields

M
. 9j
argmin Ku); — g; + g;log + 04 (u) + of|ul|ry. 10.1
wsmin (k) ~ 5+ <<;<u>j> + () +alful (10,1

Here a > 0 is a regularization parameter that handles the balance between denoising and
pure reconstruction. The term ||u|Ty is called the TV regularizer and can be defined in an
(spatial-)anisotropic or (spatial-)isotropic sense depending on the definition of the inner norm
as we described in Section 3.1.4. In particular it depends on the norm used for the gradient
V: Rf — R" where

IV

2,1

is the isotropic TV regularization term and

[IVu

1,1

is the anisotropic TV regularization term. For the sake of simplicity we do not go into detail
here and denote the semi-norm used as

[ullrv = [|Vull

from now on. For more information we refer to Section 3.1.4 and the references therein.

In this thesis we introduce two different methods to compute the solution for this min-
imization problem. The first one is a direct approach by deriving a first-order primal-dual
scheme as we already presented in Algorithm 3.20 on graphs. We will learn that this is a

170

very inefficient and costly method to solve this problem. The second method is a splitting
algorithm to tackle these inefficiencies by the name Forward-Backward EM-TV introduced
in [74] which splits the evaluation of the operator K from a modified ROF problem.

10.1 First-Order Primal-Dual for PET-TV

We start by deriving the first-order primal-dual scheme for problem (10.1). The key
difference to the ROF problem we studied before in Algorithm 3.22 is that we have a positivity
constraint and a data-term that depends on a huge operator K. Since in the ROF problem
we dualized the TV term to get rid of the term with the gradient operator, we will dualize the
Kullback-Leibler data-term and the TV regularization term at once to somehow substitute
both operators. Then the positivity constraint is the only primal part. We first reformulate
(10.1) into a form that was introduced in [17] and is given in this special case by

argmin F(Vu) + F»(Ku) + G(u), (10.2)
u€EH(Q)
where
Fi(v) = afvlh,
M g
Fy(w) =Y wj — gj +gjlog <3> :
=1 Wi
G(u) = 04+ (u).

When we now substitute

p=Vuand g =Ku

we get the following minimization problem

argmin Fi(p) + F»(q) + G(u), s.t. p=Vu, ¢ = Ku. (10.3)
u7 p7 q

For this minimization problem we can formulate a saddle-point problem by computing the
Lagrange multipliers y € R, z € RY and use the definition of a convex conjugate (c.f. (2.1))
as we did for deriving the first-order primal-dual in Algorithm 3.20. Then we have to solve
the following saddle-point problem

minmax (y, Vu) - F} (y) + (= Ku) - F5 (2) + G(u). (10.4)
From Algorithm 3.22 and in particular from Appendix 3.C we can take the convex conjugate
of the TV regularizer as

Fr(y) = (-)7 (y) = 0p(a) (y)-

This is a characteristic function that vanishes inside the oo-ball B («) of size . The convex

conjugate of the Kullback-Leibler data-term can be taken from Proposition 2.11 and is given

10.1 First-Order Primal-Dual for PET-TV 171

as

M
F3(z) = Dip(2) = g;(log(g;) —log(1 — z;) — 1), z < L.
j=1

To build the primal-dual algorithm from (3.25) we have to compute the prozimity operators
of each term in (10.4). For the conjugate of TV and the KL data-term these can be found in
Appendix 3.C and Proposition 2.12 respectively. To recapitulate they are given for Dj; as

1
prox, g, (6) = 5 (9 1 (0~ 1)+ doug) (10.5)
with some step size o, > 0 and for || - ||} as
pProx,, .= (¢) = Projpe(a) (¢) (10.6)

for a step size oy > 0. To finish up the derivation of the algorithmic scheme we have to
compute the proximity operator of the primal positivity constraint d,. It can easily be seen

that the proximity operator is just a projection given by

ProX.;, (¢) = projso(¢) = max (¢, 0) (10.7)

where max is evaluated pointwise. Finally, we can write done the whole iterative first-order
primal-dual scheme to solve the problem (10.1) as follows:

Algorithm 10.1. (First-Order Primal-Dual PET-TV)
Let 0 =1 and 1,04,0, > 0 adequately chosen step sizes and initialize with u® > 0. Then the

first-order primal-dual algorithm to solve (10.1) is given by:

Yy = projp(a) (v + 0y Vu")

o (Zn + oK + 1=/ (20 + 0. Kur — 1) + 4“Zg) (10.8)
unJrl — max (un _ (Ic*szrl + V*ynJrl) ,0)

ytl = gntl + 0 (Un+1 - un) .

The mentioned step sizes 7, o, and o, have to be chosen wisely. There exist several
methods to handle these by approximating them [17], updating them adaptively with some
kind of rule [17] in each step or computing fixed [62] or adaptive diagonal preconditioning
[34].

To understand the motivation for the Forward-Backward EM-TV algorithm proposed
in [74] - and explained in the following section - we have to get an understanding of the
complexity of the computation of the algorithm presented in Algorithm 10.1. We have two
problems that make the usage of a primal-dual algorithm critical in this application. The
first one is that in most cases primal-dual has to do many iteration steps to converge close
enough to a solution. Thus, in practice, we can expect to iterate for several thousand of steps.
The second problem is the operator K which is very expensive. Its complexity scales with
the number of pixels N in the image domain and the number of lines L. When we assume for
example a 3D image domain of the size nq X ng X ng we can deduce directly that a line can hit

172

a maximum of [, = n1 + ng + ng — 1 pixels in the domain since this would be the longest
path through the domain. This implies that the matrix K can have a maximum of l,;,q, - L
non-zero elements, which is much less than the total number of entries N - L, and typically
about 2-5% of the number of elements in K. Thus, this matrix is always highly sparse. Still,
in practice it is hard to store the matrix operator in memory since we have several millions
of lines and a high resolution of the image domain. As a result, reconstructions have to be
carried out by the usage of the continuous PET operator K instead of the matrix operator
K. Even if the evaluation of the PET operator can be highly parallelized it is a huge effort
to compute a full projection. In practice it is favorable to apply the operator as little as
possible especially when reconstructing high resolution images. The combination of many
iteration steps with a huge complex operator makes the application of the primal-dual in
Algorithm 10.1 for solving the problem (10.1) very inefficient if not impractical. This is
where the next method comes into play which is a rather straightforward idea.

The aim is to decouple the application of the operator K and the primal-dual algorithm
by splitting both steps. This is the key for the Forward-Backward EM-TV method that we

will cover in the next section.

10.2 Forward-Backward EM-TV

As we have motivated before it is desireable to split the application of the operator K and
the primal-dual algorithm to exclude the computational heavy evaluation of the operator from
the long iterations of the primal-dual algorithm. This is what will be done in the following
by a forward-backward splitting method, introduced in [74]. We recapitulate the main steps
to derive the algorithm as we will need some of the ideas later on. See [74] for deeper insights

and details we do not cover here.

As we know, the TV regularizer is non-differentiable, but we can provide the subdifferential
(cf. [11, 73, 65]). If we take (10.1) and compute the KKT as in (9.6) and (9.7) we get to the

following conditions for the stationary points of (10.1):

0e 8DKL(U) + a@HVqu - A (109)
0= \u. (10.10)

Since D is differentiable we can compute the gradient for the data-term as derived in
Proposition 2.10. The TV regularizer is - as mentioned before - not differentiable. Neverthe-
less, we know that there exists a subgradient p € 9||Vu||; such that it satisfies (10.9). Then
we can state

0=K*1-K* (ICgu> +ap— A, ped|Vul;. (10.11)

By pointwise multiplying (10.11) with u and applying Au = 0 from (10.10) we get the

10.2 Forward-Backward EM-TV 173

formulation
0= K 1u — K* (’C9u> u+ apu — M, p € 9| Vul: (10.12)
- Y ()
= u_/cq'C (;CU) X b p € 9||Vulf. (10.13)

From this one can construct a semi-implicit iterative scheme that is given as

n+1 u % g u’ n+1 n+1 n+1
u' =g e) T @ P € alIVeT (10.14)

This iteration can be realized by introducing a intermediate step an first update the left term
and then take the update and update with the right term. This gives a two step alternating

algorithm
Wt — /g*nl KC* (Kgn) (EM-step)
u
o (10.15)
u =yt — alC*lan’ Pt e || Vum ;. (TV-step)

Looking at (9.10) in Algorithm 9.1 we see that the first step is actually one EM iteration
step. By reformulation the TV-step in (10.15) to

’C*l(un+1 _ un-‘r%)

u?’L

0 +ap™™, p"t e 9| vu"y (10.16)

we can directly see that this is just the optimality condition of the following minimization
problem

*1
u" T = argmin (—(u— unJr%),U —u3) + o Vullx (10.17)
ueH(Q) 2u

for which u"*! is a solution. The data-term is in fact a weighted Lo-data-term as defined in
Definition 2.6 with the weighting w™ = diag(%). Then the minimization problem is given
as a weighted ROF problem

u" = argmin lHu—u”Jr%H%wn + o||Vullr. (10.18)
ueH(Q) 2 ’
One can easily derive a similar first-order primal-dual algorithm to solve this problem as we
have done in Algorithm 3.24 on graphs. As mentioned in [74] the two-step algorithm (10.15)
is a modified version of a forward-backward splitting method, and thus, is named Forward-
Backward EM-TV (FB-EM-TV).

Let us summarize the iterative scheme in the following:

174

Algorithm 10.2. (Forward-Backward EM-TV)
Let K be a PET operator and g the PET data as before. The forward-backward splitting
algorithm to solve (10.1) is given by

n
u'ts — ,g*llC* (Ki”) (EM-step)
1
umt = argﬂn(lgilr)l iHu s H%W + af|Vul|;. (TV-step) (10.19)
ue
K*1
n+l __
w - ount1

According to the authors of [74] the algorithm preserve the positivity when the initializa-
tion is positive and the operator is positive. For more insight into the convergence and how
to compute stopping criteria we refer to [74].

Remark 10.3.

We want to note that the TV-step in Algorithm 10.2 can be solved by a standard primal-
dual algorithm for weighted ROF problems as we state in Algorithm 3.24 or by applying the
Cut-Pursuit algorithm that we derived in Section 4.4.

As we can see in Algorithm 10.2 the TV-step does not incorporate any evaluation of the
PET operator I anymore. We already pointed out that the TV-step in fact is an ROF
problem with a weighted Lo-data-term and that we can solve this problem with the primal-
dual algorithm stated in Algorithm 3.24. This algorithm only works on the image, and
consequently, is as efficient as a primal-dual algorithm to solve a weighted ROF problem
on an image. On the other hand, the EM-step only evaluates the operator once for each
outer iteration. Hence, we have split the operator evaluation from the most costly part of
Algorithm 10.1. Nevertheless, EM-TV trades the operator evaluation in every primal-dual
step against solving the primal-dual algorithm multiple times. Still, for huge operators with
a very costly evaluation this method is favorable.

This concludes the chapter where we introduced PET data, described how to reconstruct
distributions from measurements and gave insight in TV regularization methods that we need
later on. In the next chapter we will introduce non-static i.e., time-dependent PET data and
how to reconstruct time-dependent image sequences. We also will introduce regularization
that is close to the ideas of the EM-TV method.

Dynamic PET Reconstruction

In practice a PET scan takes a certain amount of time, which can take up to 30 minutes
in many clinical cases. For a static PET reconstruction - as we have investigated in the
former chapters - one accumulates all tracked events for each detector pair over the whole
time period of the scan and stores these counts for each line in the PET data. Then one
can use any reconstruction method from the former chapters to reconstruct a static image
which is time independent. The problem that arises in practice is that any living subject,
e.g. a patient or a mouse, has vital functions as the heart beat or breathing. These functions
change the spatial position of organs and tissue in the body, and consequently, the position of
the induced tracer. This means, if we reconstruct a static image from a breathing person, we
actually reconstruct the organs in different positions into one image, which yields blurry edges
of the organs. This can be interpreted like the exposure time in photography where for longer
exposure time any motion results in blurry images, e.g., Figure 12.5a. Thus, if one just takes
the accumulated static data from the scanner and reconstructs the distribution of tracers, one
will be provided with a blurry reconstruction due to the motion of the subject. This makes
it especially very hard to distinguish sharp boundaries of organs in the reconstructions and
to make well-founded diagnoses. In this work we denote by motion every actual movement
in the subject, e.g. heart beat, respiration.

On top of the motion blur we also face the problem of dynamics. Different organs and
tissues have a different amount of tracer activity at different time points. This origins from
different effects, e.g. tracer distribution in the body after injection, uptake rates of different
organs and decay of the tracer over time. This time dependent tracer activity is called
dynamics and can be modeled by a function that outputs the total tracer activity at any given
time point. We denote these functions as Time Activity Curves (TACs) or basis functions.
These functions are linked to the spatial positions of the corresponding tissues and organs.
We provided an artificial example of these functions in Figure 11.1.

To reconstruct motion in given data sets there exist many different variational methods
for joint motion estimation during the reconstruction of the image (e.g. [22] and references
therein). However, in this work we only consider methods to reconstruct dynamics and
images. Additionally, we take a look at the influence of motion onto the reconstructed basis

functions.

176

1p
09 f n —— Basis Function for k =1
— Basis Function for k = 2

0.8
Basis Function for k = 3

07}
06 |
05
04}
03}
0.2

0.1 \

200 400 600 800 1000

Figure 11.1.: Visualization of N, = 3 artificial time activity curves (TACs) for 1,000
time points representing three different dynamics.

In the following we will first introduce time dependent PET data that is called listmode
data and show how to reconstruct these to a static image. Then we will introduce a method
called Fully4D reconstruction first presented in [70]. Afterwards we will analyse the properties
of these reconstructions on some artificial data and show real reconstructions and TACs of a
human body PET scan.

11.1 Listmode PET Data and EM Reconstruction

As we have pointed out before we now focus on time-dependent PET data. To this
end, one does not store how many events where measured by detector pairs over the whole
experiment time, but gather the time points - also called time tags - when an event was
tracked by a detector pair represented by a line. Assuming a continuous measurement, the
PET data is not represented as a discrete vector with the length of the numbers of considered
lines anymore. It is rather a continuous function over time that tracks if there was an event
on a line [at time ¢ or not. For now, we assume that it is possible in practice to have a
infinite time resolution. Let L be the number of lines and L. = {1,..., L} the set of lines of
the scanner. Let T' be the experiment time. Then this data function is defined as

p:Lx[0,T] = {0,1}, (11.1)

such that p(l,t) equals 1 if there was an event measured on line [at time point ¢ and 0 else.
In addition, the time-dependent data we also reconstruct a time dependent “image”

w:Qx[0,T] = Ry, (11.2)

11.1 Listmode PET Data and EM Reconstruction 177

where Q C R? a continuous image space for now. We also call these spatio-temporal images
from now on. This implies that we also need to have a time-dependent continuous operator

K:Qx[0,T] =L x[0,T] (11.3)

that maps any event at any time point to the corresponding line. Since the PET data is still
distorted by Poisson noise we reconstruct the image by minimizing a continuous Kullback-
Leibler data-term - analog to the discrete version in (2.9) - that is given as

D(KCu, p)ics = /OT/]L ((Klu)(l,t) — oL, t) + p(i,t) log (%)) dldt. (11.4)

In practice, measuring continuously over time is not possible and one can only measure a
finite number of events over a finite, sampled period of time. This comes from the technical
limitations of the detectors and the hardware in a real scanner that can only have a discrete
time resolution. Let T" the number of possible time points that can be measured. Then we can
denote every time point successive by an index in T = {1,...,T'}. Note that in practice most
PET scanners have a temporal resolution of about 1 millisecond. As before the reconstruction
image domain (2 is in fact a discrete space for m x n images with N equidistantly distributed
pixels or voxel. We denote Qn = {1,..., N} as the index set of the pixel in 2.

These considerations lead to a discrete reconstruction setting for PET data on a time-
dependent (discrete) image domain © x T and the time-dependent data space T x L. The
so called listmode data is an array of time tags coupled with a line ID which implies that
every data point is a single event that was tracked at a certain time point on a certain line.
The listmode data thus consists of a finite amount M of events that where tracked over the
measuring time. Any event m in M = {1,..., M} can be coupled with a certain line | € L
and a discrete time point ¢t € T. For this triple we define the set of all events m that were

measured on a line [at a time point ¢ as
I'={(m,t,l)eMxTxL }.

Further we also define I; = { (m,l) | (m,t,l) € I } as the set of events and line (m,1)
combinations at time point ¢ and Iy = {m | (m,t,1) € I} as the events that were tracked
on a certain line [at a certain time point ¢. Additionally, we see that the total amount
of measured event is M = |I|, and hence define M; = |I;| and My = |Iy|. The discrete
corresponding data to p form above then is given as a vector

g e NTL

which can be written element-wise as g = (g4)teT,1c1, Wwhere each element is defined as

My, if Iy #0
g1 = (11.5)
0, else.

This means that the number of measured events on a line [at ¢ are tracked in g. Furthermore,
one can easily see that this ¢ is highly sparse in a case of a high temporal resolution and with

178

a huge set of lines. This will be important later on. The discrete time-dependent image is
defined by
u € RfT.

Following these definitions the continuous operator K becomes a discrete time-dependent

matrix operator
TLxNT
Ke R,

that maps from a time-dependent image u to a given the (listmode) data domain.

Before we talk about how K works let us first introduce some notation. As we have
everything in a vector-wise notation we will always arrange the vectors u and g as a stack of
time-independent parts us = (uit)icy € Rf and g; = (gu)ie, € N*. Then the vectors are
defined as stacked vectors

u = (ut)ser, g = (9t)ter- (11.6)

Thus, to map all the pixels in u; for a certain ¢ to the data g; at the same time point ¢ we can
use the formerly introduced static matrix operator K from Section 9.2. With this in mind
we would like to solve “Kuy; = ¢g;” for every ¢t € T. To do this for any time point in T and
write it as one huge system we consider

K = diag(K),cr = It © K, (11.7)

where I7 is a T’ x T unity matrix, and thus, want to solve “Ku = ¢”. Note, that again K is
not a diagonal matrix but the static operator matrices K are distributed as asymmetrically
blocks on a diagonal.

Having derived the discrete setting with all of the notations and formulations from above
for time-dependent listmode data, we are able to reformulate the continuous KL data-term
(11.4) into a discrete spatio-temporal form:

gil
Dkr(Ku,g) = E E (Kuw) — gu + gulog . (11.8)
teT el (<K“)“)

To once again underline the simple construction of K we can rewrite (11.8) as

gtl
Dk (Ku,g) = (Kut)1 — gu + gu log : (11.9)
grleZ]L t t t ((K’th)l)

The listmode PET reconstruction problem then becomes

. gu
argmin (Kug); — gu + g log (11.10)
ueRNT %‘lezl ((Kut)l)

with a positivity constraint. Then the EM algorithm as in (9.10) can be stated as

unt = Ié‘*lK* (Kgun> (11.11)

where 1 = 17 is a vector of ones. This algorithm can be reformulated into a formulation

11.1 Listmode PET Data and EM Reconstruction 179

for every time point ¢t € T as

ut = K< It) (11.12)
t K*1 Ku}

with 1 = 1. This is just a static EM reconstruction for every time point ¢. As mentioned
before, in practice g is a very sparse vector since the time resolution is very high, and thus,
only a few detector pairs have the chance to track events at a time point ¢. Hence, when im-
plementing the algorithm from (11.11) we would compute the complete Ku even though most
of the entries would be multiplied by 0 from g which would just vanish from the computation.
These are computation costs that one would like to avoid. To this end, we reformulate the
part by changing the appearance of K. To do so we use the notation of I, I; and My from
above and additionally define I; = { I € L | My # 0 }. Computing the right fraction of the
EM algorithm in (11.12) for a fixed time point ¢ € T and fixed pixel i € Qy leads to

(e (&), S St

lell
M,
=> Kyt
leL (Kuy),
Y (11.13)
=2 Ktz
lel; el
1y,
- (% (7))
(K Kyuy i
with a different operator matrix K; that is defined as
Ky = (Kj,9)er,- (11.14)

This is a matrix storing the rows [€ I; of the system matrix K where g; respectively M, is
non-zero. We can apply the same change to K by defining

K'ﬂ‘ = diag(Kt)teT. (1115)

Defining g; = (My);cf, and g = (g¢): as corrected data with no zero entry we can state the

following two equalities

* gt _ * gt
K (Kut) = R (Ktut) (1L16)

« (9 « (9
Ki(=—) = Ky |=—=—]. 11.17
' (Ku) ' (Kw) (L-17)
With these two different derivations we can state the EM algorithm to solve a time-
dependent listmode PET problem with data-term (11.8) as the following scheme:

Algorithm 11.1. (Listmode-EM-Algorithm)
Let Q be an image space with N pizels and a discrete time domain T = {1,...,T} with T

timetags. Assume a measured data set given as g € NIT with M tracked events - which

180

implies M non-zero entries in g. Let K be as defined in (11.7). Then the corresponding

listmode EM reconstruction algorithm is given as:

AR “nK*(g) 11.1
u G Ko |- (11.18)

As derived above this can be reformulated to a more efficient algorithm using the definition

of Kt as in (11.15) and g as above as follows:

n

R e 11.1
“ K*1 T(Kwn>' (11.19)

Now that we have derived a listmode EM algorithm in Algorithm 11.1 we can start
reconstructing listmode data by defining a discretization T of the time defined by the scanner,
gathering the amount of measured events on every line [over a time interval represented by
t € T and reconstruct a sequence u of images that describe the tracer distribution over time.
Then we would get a reconstruction of the distribution u for every pixel in every time point.
One problem is that, the finer the temporal resolution gets, the less events occur in every
time interval. Thus, the amount of information in every time interval is antiproportional
to the level of temporal resolution. This leads to very noisy and distorted reconstructions.
Consequently, this method would not be a good approach in practice especially if one would
favour to inject as little tracers as possible into the patient.

In the following we look at a very straightforward approach to tackle these problems. The
approach we will cover here is called binning. For this method one tries to gather time points
with similar information in so called bins and reconstruct the data from each bin separately.
Note that the time points can be taken from all over the temporal space T and do not have
to be in successive temporal order, but should be taken in some rational fashion. There exist
multiple methods to do so.

As we have pointed out before reconstructing a static image from data of a living subject
that is breathing, whose heart is beating and might also move a little every now and then
will result in blurry images by motion. When we are using binning to reconstruct multiple
static images one has to select them such that the reconstructed images are as good, sharp
and noiseless as possible. The position of organs in the body - and therefore the blurriness
in the static reconstruction - is highly influenced by the volume state of the lung. Thus, in
most cases it is important to take the information of lung volume into account when binning
the data. The easiest way is to track the respiration signal during the acquisition. This can
then be divided into reasonable parts that represent certain states of the lung and gather
the time points accordingly into bins. Reconstructing the images for these bins will result in
reconstructions with an overall good signal-to-noise ratio and less blurriness.

There exist many different methods to track the respirational signal with different hardware-
driven [60, 38, 50, 29] and data-driven methods (e.g. [16, 37]). If one would like to have a
good temporal reconstruction of the heart one can track the heart beat and apply the same
ideas as above.

This method is a very straightforward and heuristic method that is very easy to apply to
given temporal data and can be directly reconstructed by the EM algortihm (11.18). But it

11.2 Fully4D Reconstruction 181

still is hard to reconstruct one static image from this sequence of reconstructions without the
motion blur we talked about before, but with the information of all time points. There exist
multiple variational methods that work on this sequence of images or take in the temporal
data and reconstruct the static image and a flow field (e.g. [22]). Also there were proposed
methods that work on data taken from a PET-CT or PET-MR that takes PET and CT
or MRI data simultaneously (e.g. [65, 69, 67, 53, 36]). These methods incorporate high
resolution reconstructions of MRI and CT and try to generate better PET reconstructions

by joining these data sets. Going more into detail here is beyond the scope of this work.

All of these mentioned methods now track motion in and of the body. But they all do
not incorporate dynamics that we have introduced at the beginning of the chapter. Thus,
the temporal reconstructions still are influenced by these dynamics. Furthermore, as we
have selected bins that gather time points from all over the time period the image sequence
is not successive and it is not possible to decouple events from e.g. the beginning of the
measurement and some later point in time. In the following section we introduce a 4D
reconstruction method called Fully4D that reconstructs static images and the corresponding
temporal TACs accordingly. This is not only a good splitting of the dynamics from the
data, it also enables the possibility to compute a time-dependent distribution v where we
get a reconstruction for every time point ¢. This image sequence is then an actual successive
reconstruction of the events in the listmode data. Afterwards we investigate some properties
of this reconstruction methods especially facing the challenge of additional motion.

11.2 FullydD Reconstruction

In this section, we will investigate the Fully4D PET reconstruction method formerly
introduced in [70] by Andrew Reader et. al. This method attempts to split the spatio-
temporal image u into N, TACs or - as we call them in this context - (time-dependent) basis
functions by, €]Rz and corresponding spatial weight matrices wy € Rf that are defined as
the static images from above. Then one can write the spatio-temporal image u pixel-wise as

Ny
uit =Y (wi)i(bp)e, Vi€ QteT. (11.20)
k=1

For simplification we denote wy; = (wy); and (bg): = bxr. Note that we always denote a time
step t € T, a pixel i € , a basis function k € {1,..., N} for simplification. The image
sequence u is once again arranged as a stack of static images u; such that u = (u;);. The
static images are defined as

w =Y wpby €RY, VteT. (11.21)
k

Note that we denote (-;)T = (¢)ter from now on. With these properties and the definition of
the Kronecker product in (2.21) we can rewrite u as follows

u=(u)r = (O wibre)r =Y (wrbp)T =Y b @ wy. (11.22)
P

k k

182

Applying the (time-dependent) operator matrix K defined in (11.7) onto u yields

Ku=K> bow, =Y Kby@wy) =Y K(wpby)r. (11.23)
k k k

This can be written even more simple. As we know that K is a diagonal block matrix where
the static operator matrix K is distributed as a block for every time point ¢ we can write

Ku=> K(wpby)r =Y (Kwgbg). (11.24)
k k

We use the former simplifications and observations to find an algorithm to reconstruct not
only an image sequence u but rather the dynamics by and the weights w;, simultaneously from
listmode PET data. To do so we minimize the following problem that is derived by plugging
Ku from (11.24) into the problem (11.10) and minimizing over wy, and by for all &:

argmin Z Z Z (Kwibkt); — gu + gu log (¢) (11.25)

wieRY beRT T >k (Kwibge)

The most straightforward approach is to construct an alternating algorithm that fixes by
in one step and updates w; and fixes w; and updates b in the other step. We do so by
computing an EM step for both updates depending on w; and by using the KKT conditions
for both updates as when deriving (9.10).

11.2.1 Update for the Spatial Weights

Let us start by deriving an update for wj for any k. To this end, we fix the b;’s and
compute an EM step for w by the use of the KKT conditions. Let us recall the formulation
from above that

K> (bp ® wy) = (Kbggwy)7- (11.26)
k
Note that we do this in detail now and it will lead to a simple EM update step for every
wg. As in the derivation of the EM algorithm in 9.10 we will use the KKT condition again.
To this end, we will compute the derivative of the terms in (11.25) with respect to wy by
computing it for the left and right term separately. let us denote o, =}, by;. The derivative
of the left part can be calculated as follows

Oy, (ZZZ(Kwkbkt)l> = Ou, (ZZZKZiwkibkt>
t 1k vl

= o, (Z Kli)z‘eQN
!

= oy, K"1.

11.2 Fully4D Reconstruction 183

The right part of the functional can be differentiated as follows

gt B gu
oo (S () - S S (s i)
1
- Zl: zt:gtl(- M)(Klibkt)ieﬂjv

=-> > (I?Z)lbkt(Kli>i€QN (11.28)
1t t

With these derivatives we have the full derivative of the functional in (11.25) and can state
the following KKT condition with a Lagrange multiplier A > 0:

brt gt
0=o0y K*1 - K*)\
' Et: (Ku) (11.29)

0 = \wy,

Again we multiply the upper equation pointwise by wj and can deduce with Awy = 0 that

b
0= aka*lwk - K* Z I?gt Wi
t (u)t
w bisg (11.30)
k * ktdt
& = K .
W op, K*1 zt: (Ku),
Let u™ =, by ® wy, then this yields the fixed-point iteration update step
bl WE g Okt 11.31
T oK (Zt: (Kum),) 3y

This update is directly related to the EM update of a static image as we stated in (9.10).

Now as we have derived the update for wZH for a fixed b} we want to derive the update
for the basis functions in the following.

11.2.2 Update for the Basis Functions

As in the former subsection we will see that the update step for a basis function by is also
a modified EM step. Again we will derive the derivative of the functional of (11.25) for every
by, state the KKT condition and finally derive the update steps. As we have seen before we
can reformulate Ku as follows

Ku = ZKbk X wg = Z (Kwkbkt)'ﬂ‘ = Zbk ® Kwy. (11.32)
k k k

184

Thus, we compute the derivative of the left and right part of (11.25) separately again starting
with the left one. With (11.32) in mind we can compute the following

O, <Z Z(Ku)tl> = (Kwy)i05, (Y bre)
It l t
=33 Kjywgi(1)ter (11.33)
[
= (wg, K*1)1p.
Note that we used the following identity

DY Kjywpi =Y wk y K =Y wpi(K*1); = (wy, K*1).
L i I i

The next step is to compute the derivative of the right term in (11.25) which we will do

pointwise for every t separately:

gl _ w gl
i (zz: Zt:gtl log(ZE(Kwk)lbkt)> - ;(K k>l(2k(sz;>lb;;t)
=- zl: Xl: Kiwgg (ﬁ)
= - XZ: Wi zz: Ki; ((ng)tl)

- —<wk,K*<(Kg;)t)>

(11.34)

By defining a matrix Wy, = (wg)r € RY* we can write the derivative from above as

gt ——
19) E E 1 =-W,K"—. 11.35
Let us introduce the following notation

Kuwy, = K, € RE (11.36)
(Kuw,)T = Ky, € RLE (11.37)

for a more compact way to write the algorithms and to distinguish between applying the
operator K on wy, and using the precomputed vector K, . This is essential for an efficient
implementation with as little as possible operator evaluations as we will discuss later on and
also state in Algorithm 11.2. Then we can deduce for (11.33) that

(wg, K*1) = (K, ,1) € R, (11.38)

which is a scalar and additionally we can write (11.35) as

. 9 . 9
Wy = K 2 11.

11.2 Fully4D Reconstruction 185

Combining this with (11.33) and (11.34) we get the following KKT condition

0= (K1) — K;k% — (11.40)

0 = Abg. (11.41)

By multiplying again pointwise with b; we can deduce the following update for any b

by, g
bl = — & Kg*, ., —2 11.42
g <Kw2+1’ 1) wit! Ku"Jr% ()

where u"t2 = S bF @ witt. Note that we assumed here that wy, was updated before the

update of by as wZH.

This concludes the derivation of the updates for by and wg. In the following subsec-
tion we will state the complete iterative Fully4dD scheme and provide an efficient numerical
implementation.

11.2.3 FullydD Algorithm and Implementation Details

In the former subsections we have derived the update steps for the basis functions by
in (11.42) and spatial weightings wy, in (11.31). These updates can directly be applied to
multiple by and wy to reconstruct an spatio-temporal image v =), by ® wg. Combining
these we can state the following alternating Full4dD update scheme:

Algorithm 11.2. (Fully4D algorithm)

Let g € RiT be time-dependent listmode data and K € RiXN the static matrixz operator
defined for a given PET scanner definition with L lines and an image domain with N pizels.
Let K = diag(K); and K, = (Ky)r € RNT as defined before. Let us consider Ny basis
functions and the scalar oy, = Y ; by Also we denote u™ =3, b} @wi and uts = Db ®
wZJrl. Then an algorithm to solve the problem stated in (11.10) with images u = Zgil b @wy,

s given as the following fixed-point iteration:

(11.43)

= T v ntl T 1
k <sz+171> Y Ky"ta

So we have derived a fixed-point algorithm to calculate a dynamic image over time that
depends on the dynamics provided by the basis functions. The most interesting part about
this is that we can reconstruct basis functions from the data without any prior knowledge
about them. Still, when we have prior knowledge or we just assume to know some of the basis
functions we could just fix the by and just update the wy. In the following we will talk about
how to construct a numerical algorithm that efficiently computes these updates. In the next

section we will provide different numerical results and discuss the influence of motion onto

186

this reconstruction.

As we have pointed out multiple times before, we cannot assume that we are able to
compute the operator matrix K in practice due to memory limitations. This leads to the
problem that we have to compute a line integral over each line in IL in every iteration of
(11.43) and also for every basis function. Further, in the update for by we use K which would
imply that we have to apply the operator T times. A direct naive implementation of the
updates in (11.43) would then be computational very heavy if not impossible. To tackle this
problem we first want to point out that in fact we only have to compute the line operator
once every time we update wg. Let us assume we just updated wZH for every k. Then we
apply the operator for every k only once and get the vectors as defined in (11.36) as

Kuwy™ = K o € RY
which are much smaller, and thus, easily to store. As we can see in the update step for b}
in (11.43) we always use this vector in a scalar product with the fraction that has the size of
the data. Thus, we do not need to apply the operator again for this update and exchange
it with a very cheap scalar product for every time point. Then the operator only has to be
applied N, times in each iteration.

Another obvious problem is that we cannot - or at least should not, even if we can - store
the resulting u € RfT since this is not sparse at all and it can be expected to have only a few

zero entries. So we once again use simple tricks to deal with this. When computing Ku"ts

for the update of bZH we can again use the fact that

Ku'ts = (K e)
k

and that we already computed KwZH before. The same applies for the update of wZH. The
divisor Ku € RiT can be computed without computing w explicitly.

Still, if we work with a scanner with millions of lines L and have a high temporal resolution
T, even Ku would be hard to store and process. That is where the next observation comes in
that Ku is in both updates only present in the divisor of the fractian and g is the dividend.
Thus, if g is zero at (¢,1) it is irrelevant which value we compute for Ku at that point. This
leads to the possibility to compute Ku only at the points where g is non-zero. Then Ku is a
sparse array with only M entries at most and we can compute it as

>k (K)ibre, if gy #0

0, else.

(Ku)y = (11.44)

Thus, we also only have to compute as many divisions as non-zero entries in g. With these
considerations it is now possible to compute the updates with as less evaluations of the line
operator and without storing huge matrices. These observations are gathered and summarized
in Algorithm 8.

We will see in Chapter 12 the application of Algorithm 8 on artificial data and discuss
advantages and problems of this approach. Additionally, we will provide examples where we

11.2 Fully4D Reconstruction 187

Algorithm 8: Fully4D algorithm for Algorithm 11.2.
Input:
g < Time-dependent listmode PET data stored in sparse array
Ny < Number of basis functions to reconstruct from data
N < Number of pixels
L + Number of lines
T <+ Number of time steps
K « Operator matrix for given scanner with L lines
nlter < number if iteration
Initialization:
wg — 1y
bg — 17
n <0
Method:
while n < nlter do
for k€ {1,...,Ny} do
L wi < update as in (11.31) with b7

K n+1 < apply K on wz”rl.

W
Ku""3 « as a sparse vector as described in (11.44) with w}™ and 7.
for k€ {1,...,N,} do
t bt < update as in (11.42) with w}*! and szﬂ.

Ku"! « as a sparse vector as described in (11.44) with w}™' and b}
L n+<n+1
Result: The N, weighting matrices wy and corresponding basis functions by.

combine motion and dynamics and show how the motion influences the reconstruction of the
dynamics.

In the next section we will talk about how to regularize the method by applying a TV
regularization onto the weighting matrices and a Tikhonov regularization onto the basis

functions.

188

11.3 Regularized Fully4dD

In this section, we want to show how one can regularize the spatial weightings and the
basis functions. We know from results in Chapter 12 that reconstructions of static images
tend to be very noisy. To tackle this, we introduced the TV regularization in Chapter 10 to the
minimization problem (10.1) and derived different methods to solve this problem. As we have
introduced in Section 10.2 the EM-TV algorithm is a relatively simple and straightforward
method to construct an algorithm to solve this problem. In this section, we will provide every
weighting function wj, with a TV regularization. Furthermore, the basis functions tend to be
noisy as well, but since these functions are assumed to be smooth we want to regularize them
with the Lo norm of the gradient. This is called Tikhonov regularization [86, 65]. With these

considerations, the minimization problem with the regularization parameters aw,,ap > 0 is

given by
argmin = > Y > (Kwgbge)i — gu + gulog (¢>
weeRY, 7T T % >k (Kwibge)i
breRY (11.45)

o
+ aw Y [Vl + 5 > Vb3
k k

First take a look at the regularization of wy. When we derive the KKT conditions for
a weighting wy, by combining the ideas of the KKT conditions from the Fully4D derivation
(11.29) and the one from the EM-TV derivation (10.11), we get the following conditions

brtg:
0=o0p K*1 — K* +awp — A, p €| Vw1,
g ; (Ku)t (11.46)

0 = dwg.

Analogously to the derivation for the TV step in (10.15) we derive a weighted ROF problem
as an update given as

o K*1 1 1 1
witt € argmin (———(w —wz+2),w —wZ+2)+ ay HVwZJrQHr (11.47)
wERf 2wk

This step can be added to Algorithm 11.2 by denoting the update from the EM-step by

1

wZ+2 and adding the TV-step (11.47) to it. This problem is exactly the same update rule as
for the static EM-TV from (10.19) except for the scalar opr. This can also be moved from
the left term to the right term without changing the solution by dividing by apn. This leads
to exactly the same update rule as in (10.19) and just the regularization parameter «,, is
scaled differently. These new two steps update can be seen in Algorithm 11.3.

The regularization for the basis functions b is differentiable since it is a squared Lo
norm. Nevertheless, we want to use the KKT conditions again to be consistent with the

former derivations in this work. The derivative of the regularizer for any basis function by is

11.3 Regularized Fully4D 189

given as
1 *
abk§||vz)k|y§ = V*Vby, = Aby (11.48)

where A is the well-known Laplace operator that we also introduced on graphs in Ap-
pendix 3.B. The KKT condition for any by is then given as a combination of (11.40) and
(11.48):

0= <sz+1, 1) K* n+1 K + apAby, — A (11.49)

0 = Abg. (11.50)

As before we multiply the upper term pointwise by b; and then spht it up into two different

steps where the first one is the EM step as in (11.42) updating b 3 and a second step that

is glVen as
bl = e <KO‘71> by AbpH (11.51)
n+1
n+s
(K 1, 1)U — b, 2)
& 0 =" b: +ap ABPHL (11.52)
k

Note that this is the optimality condition of the minimization problem

n+2
- (K e, 1) (b = by *)?
k

= argmin —
beRT % 205

Qp 2

?HVbHT (11.53)
The update of bZH can be computed by reformulating (11.52) by multiplying with (Kwy, 1)b}
and rewriting it as a linear system with b:“ on the left side as follows:

Qap

n+2
<K n+1 1> ’

(I+ Ly A) bt = b, (11.54)
The diagonal matrix Ir = diag(by) is defined with the values of by distributed over the
diagonal. The Laplace operator A can be written as a matrix, and consequently this is a
linear system that can be solved with standard methods. Hence, the update bzﬂ is the

solution of this linear system that we will denote as

1)
bt — (I+K HlIbnA> pte (11.55)

In practice it is not that easy to choose a good «; since its regularization influence highly
depends on the scalar Ky, 1 and the values in bg. The magnitude of these are not easy to
anticipate before running the algorithm, because it depends on many aspects. Hence, it is
also possible to use a more heuristic approach that leads to similar results by just applying a
gaussian filter to the bk . This methods works pretty well in practice even though it does
not incorporate the former result b}.

190

With these derivations we can define the overall regularized Fully4D alternating algorithm
with the following 4 steps alternating iterative scheme:

Algorithm 11.3. (Regularized Fully/D algorithm)
Let every condition be as in Algorithm 11.2. Let au,, ap > 0 be regqularization parameters for
the TV regularization of the spatial weightings wy and of the basis functions by respectively.

Then an algorithm to approximate a solution for problem stated in (11.45) is given as follows:

n+% wZ % gt
w, 2=—2=r K
k oy K*1 (; Ku?)

o K*1 1 1 1
wiptt € argmin $(—E——(w—wy) w—w P) + ay ||V 2,
wERf ka
. (11.56)
I S S .

KZJZH 1 % Ku”+’

K1 n+11 ok

Now we are not only abele to reconstruct the dynamics from the listmode PET data and get
a real sequence of images over time, but furthermore also to denoise the spatial weighting
with a TV and the basis functions with a Tikhonov regularization. We will conclude this

chapter by showing numerical results and point out some interesting observations.

Numerics: Dynamic PET Reconstruction

In this chapter we apply the formerly derived Fully4D in Algorithm 8 and its regularized
variant in (11.56) to artificial listmode data corresponding to 2D temporal PET data. We
also investigate the provided spatial weights and basis functions for moving objects to get an
intuition of how the dynamics are influenced by motion.

The artificial listmode data is generated with a custom implemented listmode data sim-
ulation tool. We can predefine an artificial scanner with a certain number of detectors and
possible detector pairs. We use various types of ellipses as phantoms, with predefined basis
functions that are linked to the phantoms. Then we generate randomly distributed time tags
over a certain time period and produce an event for every time tag. The position of the
event is computed by randomly selecting an object with a probability that is proportional to
the size of the phantom, some predefined intensity value and the current value of the linked
basis function at that time point. After selecting the object a random position inside of it
is selected; this is where the event should occur. Then we compute a random angle, cast a
line with that angle through the position and compute the two target detectors and store
the detector pair ID. With this process we can store artificial listmode data and use this
for the algorithms. Note that these computations are done in double-precision, and hence,
the computed position is not dependent on any preselected discretization of the image space.
This gives us the possibility to reconstruct in any image resolution as long as the detectors
can cover it. We see an example of three different objects in Figure 12.1b and the three
linked basis functions in Figure 12.1a. The colors in both figures indicate the link between
an object and its corresponding basis function.

Note that we do not provide any run time comparison since the goal of this chapter is to
present a proof of concept of the proposed algorithms. Nevertheless, it is easy to see that
the run time scales with the number of expected basis functions. For example, let us assume
that we expect IV basis functions and we want to iterate for 100 iterations. For each spatial
weight we have to compute one EM-step in every iteration, and therefore, we have in fact a
full EM reconstruction with 100 iterations for every spatial weight matrix. Consequently, this
algorithm is as costly as IV, times 100 EM iterations. In addition we have the rather cheap
computations of the basis functions. The application of the TV-regularized Fully4D is even
worse as we also have to solve the weighted ROF problem in each iteration for every spatial

192

;
09 | n — bf#1
— bf #2

bf #3

0.8

0.7
0.6
05
04
0.3 [
0.2

0.1

0 -

200 400 600 800 1000

(a) 3 Basisfunctions (b) Groundtruth (c) Static EM

Figure 12.1.: Artificial data set of three basis functions and three objects. The colors
indicate the influence of basis function to object. On the right we see an EM reconstruc-
tion from the static data provided by the simulation.

weighting using a primal-dual algorithm. In combination this algorithm is very expensive so
that we only provide examples on rather small image discretizations as a proof of concept.

We start by a simple reconstruction of the three objects and basis functions from above.
12.1 Dynamic Data without Motion

In this section, we investigate data that was generated for 1,000 time tags with approx-
imately one million generated events for the objects in Figure 12.1b linked with the three
basis functions in Figure 12.1a. Every object is only influenced by one basis function. We
reconstruct this problem at a resolution of 128 x 128 pixels. After the generation of the
listmode data we can build a static data set from the listmode data - as we have described in
the former chapter - by counting the events that were tracked by every detector pair. This
static data then can be reconstructed by the EM algorithm we presented in (9.10). The
resulting reconstruction can be seen in Figure 12.1c where we observe that the lower object is
barely visible. This comes from the pointy basis function that is linked to that object and is
indicated by the blue line in Figure 12.1a. The object is only active for a very short amount
of time and inactive afterwards. Hence, when reconstructing the static data set this object
has barely visible intensities.

As we are given three basis functions as a ground truth, let us investigate the results for
applying the algorithm with an expected number of three basis functions, i.e., N, = 3. In
an optimal case, it would reconstruct the three objects and three basis functions perfectly.
The result of the algorithm for 100 iterations can be seen in Figure 12.2. We normalize every
spatial weight matrix by dividing it by its maximum value and multiplying the corresponding
basis function with this value. With this method we have a more consistent appearance of
the reconstructions. Note, that in the end one would compute the spatio-temporal solution
u at a time point ¢ by summing up the weight matrices multiplied by the current value in
the basis function, i.e., u(x,t) = foil wg ()b (t). Hence, when we have basis functions that
are both active in one time point we have to combine these for our analysis.

We see in Figure 12.2a that the algorithm reconstructed three basis functions that describe
the overall dynamics in the data well, but which are not capable of separating the objects

12.1 Dynamic Data without Motion 193

0.8 -

06 r

0.4 r

0.2

%1078

AN

40 cis FEi 800 1000
(a) 3 Basis Functions

0 200

— bf#1

N

. _ _ 400 600 800 1000
%b) 3 Basis Functions with TV

k=3

Figure 12.2.: Comparison of Fully4D reconstruction to reconstruct N, = 3 basis func-
tions and weights with and without TV regularization.

correctly. As we see, the red line for £ = 1 actually describes the lower right object and the
upper left object as it combines the ground truth basis functions for £ = 1 and k = 3 from
Figure 12.1a. On the other hand combining the reconstructed basis functions & = 2 and
k = 3 results in the original basis function k& = 2. Hence, the upper right object is described
twice in the reconstruction. Additionally, we see that the basis functions are pretty noisy.
Now let us apply the TV regularization to the spatial weights and the Tikhonov regu-
larization to the basis functions as we introduce in Section 11.3 and state in (11.3) on this
data set. For this problem we set the regularization parameter for the TV regularization as
ap = 0.225 and the parameter for the Tikhonov regularization to o = 10°. Note that the
oy, always has to be set to a high value as it is scaled with (K., 1)~! as we see in (11.3).

We ran this algorithm for 30 iteration and solved the TV-step with a primal-dual algorithm
for spatially-isotropic TV regularization - we defined it in Definition 3.15 - until convergence

194

6 x10°

— bf#1
— bf#2
bf #3
bf #4
— bf#5

0 200 800 1000

400 . 600 .
(a) 5 Basis Functions

.]
800 1000

260 460 660
(b) 5 Basis Functions with TV

k=4 k=5

Figure 12.3.: Comparison of Fully4D reconstruction to reconstruct N, = 5 basis func-
tions and weights with and without TV regularization.

(primal-dual-gap lower than 107° cf. [17]). The result can be seen in Figure 12.2 in the
bottom figure where we see perfectly separated basis functions and corresponding objects in
the weighting matrices. Hence, the Fully4D algorithm incorporated with TV regularization
of the spatial weighting and Tikhonov regularized basis functions yields a major improvement
in the separation of objects with different dynamics and in the tracking of the underlying

dynamics.

Let us investigate the results of another experiment where we do not change the input
data, but increase the number of basis functions that we expect to N, = 5. We hope for
a better separation of the basis functions and the spatial weights such that in no weighting
matrix appears more than one object. Again we run the Fully4D algorithm with 100 iteration
and the regularized Fully4D algorithm with 30 iterations and a converged TV-step. The
regularization parameters have been set to o, = 20 and a; = 10° again. As we can see in
Figure 12.3, it actually yields a better reconstruction as the red line and the blue line are now
separated and not combined in a single line as in Figure 12.2a. The basis functions for k = 4

and k = 5 represent the upper right object as in the former experiment. The problematic

12.2 Dynamic Data with Motion 195

result is the green basis function for k£ = 3 as it seems to be somewhere between the upper
right and the left object as we also see in the weighting matrix for £ = 3. Moving over to the
regularized Fully4D solutions we can see that the result does not only perfectly separate the
different basis functions and reconstruct their actual shape, but also only finds three active
basis functions and two inactive zero basis functions. Looking at the ground truth basis
functions in Figure 12.1 we see that this is an almost perfect reconstruction. Consequently,
the regularized version of the Fully4D algorithm does not only provide a better separation of
the basis functions - if we know the exact number of them - it also does suppresses additional
basis functions which do not provide any new information. Hence, we do not need to somehow
recombine basis functions in a post-processing step to get only one basis function for each
object.

In fact, these results can be expected from the regularization with TV. If one sets a
high regularization parameter, it is very costly for the TV term to have the same object in
two weighting matrices without providing any further dynamic information. Consequently,
the TV regularizer tries to suppress any additional object in the results, and thus, also any
additional basis function.

Let us now introduce additional motion into the data and investigate the basis functions
provided then.

12.2 Dynamic Data with Motion

In this section, we want to investigate how the Fully4D algorithm can handle dynamic
data with additional motion of the objects. To this end, we start with a very simple example
where we have one object that moves from the middle to the left, then to the right and to
the middle again with no dynamics at all. As we see in Figure 12.4a, the EM reconstruction
of a moving objects results in a blurry moving object. As we have discussed in the previous
chapter, an easy way to reconstruct a sequence of images describing the movement of the
object is by gathering data from certain time points into multiple bins and reconstruct the
data in these bins separately. For this example we divided the time line of the experiment into
six equidistant parts and reconstructed the data therein. The resulting sequence of images
can be seen in Figure 12.4d which describes the movement of the object as expected. Now
the question arises what happens when we apply the Fully4D algorithm and expect Ny = 6
basis functions. As we know, we have not added any dynamics to the data, and hence, as we
see in Figure 12.4b the basis functions have similar maximum height and seem to take turns
in being active and inactive. Looking at the weight functions in Figure 12.4e we can observe
that each weight corresponds to one position of the object in its movement. Note that these
images are not ordered as the bins are. In fact, the basis functions tell in which time interval
which spatial weight matrix describes the current state of the object. Hence, one can interpret
each basis function as one disjoint bin as for example the orange, yellow and purple lines have
multiple peaks, and hence, activate their corresponding spatial weight multiple times. This
makes sense as the object passes some positions multiple times in its movement. In addition,
we see that the basis functions overlap at many points which implies that the spatio-temporal
solution u blends the corresponding scaled spatial weight matrices, and therefore, provides a
more smooth sequence as the binning does. In this case the regularized Fully4D algorithm

196

—bf —— bf#

e — bf —— bf#2
il bf O bf #3
— bf — bf#4
12 1 bf 2t bf #5
bf bf #6
Al w
15
08 é
06 4L
04 |
0.5
02
0 I . A A /| 0 { MNN A T NA
0 200 400 600 800 0 200 400 600 800 1000
(a) EM reconstructior. (b) Fully4D without TV (c) Fully4D with TV

(d) Binned Reconstruction

Bin 1 Bin 2 Bin 3 Bin 4 Bin 6

(e) Fully4D without TV

(f) Fully4dD with TV

k=1 k=2 k=3 k=4 k=5

k=6

Figure 12.4.: Object moving from the left to the right. Binned reconstruction with six
equidistantly selected bins and Fully4D reconstruction in without and with TV regular-
ization for N, = 6 expected basis functions.

outputs a very similar solution, but does not have the strange solution for £ = 5 as in the
not regularized algorithm.

So as we have seen, the Fully4D solution is influenced by motion in the data. This
problem arises from the fact that dynamics are a change in activity over time in a certain
region. Hence, a moving object that passes a certain region multiple times also induces
trackable dynamics for this region. Hence, moving objects do induce multiple basis functions
even though they could be represented by one basis function and some motion field. This
implies that applying Fully4D to not motion corrected data might have the side effect that
one has to tell the algorithm to look for more basis functions than actually needed which

makes the algorithm much more expensive.

12.2 Dynamic Data with Motion 197

[— — bf#1
f —— bf#2

bf #3

bf #4

i
)
] fﬂlH‘ UAMA\‘LFN._

i
800 0 200 40

/A |
Lt
600 800 1000

(a) EM reconstructior. (b) Fully4D without TV (c) Fully4D with TV

(d) Binned Reconstruction

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

(e) Fully4D without TV

k=2 k=3 k=4

(f) Fully4D with TV

k=2 k=3 k=4

Figure 12.5.: Object moving from the left to the right and additional objects. Data is
provided with dynamics from Figure 12.1a. Binned reconstruction with six equidistantly
selected bins and Fully4D reconstruction in without and with TV regularization for
Np = 6 basis functions.

k=1

k=5

In the following example, we want to look on multiple still objects and one moving object
all provided with a basis function. We want to investigate if the algorithms can reconstruct
the actual dynamics in the data and the motion induced dynamics. The example consists of
a total of five objects which are linked with the basis functions in Figure 12.1a. One object
moves from the left to the right multiple times during measurement and is linked with the

green line in Figure 12.1a. A second object on the left is linked with the pointy blue function.

198

In addition, we also provide three small objects in the lower right with the red function in
Figure 12.1a.

Hence, we face the problem of a moving object distorting the basis functions and actual
underlying dynamics. We want to investigate in Figure 12.5 how this influences the results.
In these examples we reconstruct 64 x 64 images. We can see a static EM reconstruction in
Figure 12.5a where the upper object is distorted by motion blur and the other objects have
different intensities due to the dynamics. In Figure 12.5d we can see that the left object is
in fact only active at the beginning and the triplet comes in at a later time point. We again
apply the Fully4D algorithm and run it for 100 iterations with N, = 5 basis functions. We
can see in Figure 12.5b, that the first basis function for k£ = 1 seems to be a combination of
the pointy function and the dynamics of the moving object as we can see in the corresponding
weighting matrix in Figure 12.5¢ for k = 1. Hence, the motion is not represented in the basis
functions which yields to a blurry reconstruction in the spatial weight matrix for £k = 1. The
rest of the basis functions and weights describe the triplet in the lower right. Note that the
high values in the blue line for £ = 2 only look so out of place because the green, orange and
purple describe the same time interval, and hence, their heights have to be added up.

Now let us look at the results for the application of the regularized Fully4dD. We again
ran the algorithm for 30 iterations. For the TV regularization of the weight matrices we
selected a,, = 7 and for the Tikhonov regularization of the basis functions again a; = 10°.
We can see in Figure 12.5¢ that the dynamics are separated well and also the dynamics are
represented nicely. The moving object is described by two basis functions and weighting
matrices. In fact, the basis functions again represent different spatial positions of the object
and alternate between each other. In addition the dynamics of the object is tracked very well
when we combine the reconstructed basis functions for £ = 2 and £ = 3 compared to the
ground truth in Figure 12.1a. Nevertheless, for some reason the total variation seems to force
one weighting matrix to be constant 1 and the basis functions to be constant zero. Still, the
results are much better than the results of the unregularized Fully4D algorithm.

Finally, let us investigate the same problem as above, but now try to achieve that the
Fully4D actually separates the moving object from the left object and also depicts the motion
with basis functions better. To this end, we have set the expected number of basis functions
to N = 8. We present these results in Figure 12.6 where we see that this time the basis
functions actually separate the movement of the object into three parts. Also the dynamics
are tracked very well when combining these basis functions. However, it still cannot separate
the moving object from the left object. In addition to that it also describes the triplet in the
lower right by five basis functions and weighting matrices. When comparing this result to the
TV-regularized result in Figure 12.5¢ for expected 5 basis functions we can deduce that the
TV-regularized Fully4D algorithm has a better representation of the dynamic and movement
for less expected basis functions.

Let us now take a look at the T'V-regularized results for N, = 8 expected basis functions
and regularization parameter o, = 8. First, we see that for £ = 1 and k£ = 6 the basis
functions are actually zero everywhere, and hence, we can drop the weight matrices. Again
this solution does separate the dynamic perfectly, even though in this case it uses two functions
and weighting matrices to describe the triple. In the weights for k = 3, k =4 and k = 5

12.2 Dynamic Data with Motion 199

1 S N
AL L I

0 200 400 600 800 0 200 400 600 800 1000

(a) EM reconstructior (b) Fully4D without TV (¢) Fully4D with TV

(d) Fully4D without TV

k=2 k=3
k=6

k=17

(e) Fully4D with TV

k=2 k=3
k=6 k=17
Figure 12.6.: Object moving from the left to the right and additional objects. Data is

provided with dynamics from Figure 12.1a. Reconstruction for NV, = 8 basis functions
with Fully4D reconstruction in without and with TV regularization.

k=1

k=5 k=28

we see that the motion is depicted by three different positions and that in this case they are
completely separated from other objects in the data. Hence, again the regularized Fully4D
does yield more satisfying results.

The conclusion of this part can be found in Section 15.2.

Part |1l
Cut-Pursuit Based Reconstruction

Cut-Pursuit on PET Reconstruction

In this chapter we introduce a Cut-Pursuit algorithm for PET reconstruction with added
TV regularization as we already introduced in (10.1) in Chapter 10. As we know from Chap-
ter 4, the Cut-Pursuit algorithm can be applied to regularization problems with differentiable
data-terms and non-differentiable but directional differentiable regularizers. In Section 9.2 we
already discussed how the PET operator I works and that its evaluation can be problematic
in high resolution settings. In Chapter 4 we have seen that Cut-Pursuit is not only a very
efficient denoising method, but also splits the image space into segments such that iterative
algorithms work much faster on the resulting coarser discretizations. The aim of this chapter
is to derive a Cut-Pursuit algorithm that solves problem (10.1) more efficiently than direct
iterative approaches and that uses reduced PET operators that only live on coarse partitions
of the image space. We start by translating the former reconstruction setting into a graph
setting and derive the corresponding minimization problem on graphs.

13.1 Graph Setting for Reconstructions

Before constructing a corresponding graph setting to deal with reconstruction problems
let us start by recalling the ideas and definitions of Chapter 9. In Chapter 9 we introduced
a discrete reconstruction setting with a scanner definition that is defined by L lines in L. =
{1,..., L} and a reconstruction image space {2 of m x n, or in 3D of m x n x d, with a total of
N pixels. We denote by Qny = {1,..., N} as the index space for the pixels in Q2. We defined
the PET operator K : 2 —]Ri and also stated its matrix representation K €]RJLFXN . For all
of the following assumptions and definitions it does not matter if we investigate a 2D or 3D
setting since the math is the same, but only the construction of the graph is different. For
simplification we will from now on always say pizel. To translate this setting into a graph
setting we first point out that every pixel in the image domain 2 is tagged with an unique
number ¢ € Q. Thus, can directly state that V = Q.

The only difference between the image space {2 and V is that the image space € knows the
location of every pixel 7 in the m X n image or m X n X d image. To represent this information
one defines an edge set E that connects neighboring pixels as we already described in detail
Chapter 6 and show a visualization of such a graph in Figure 6.1. In 2D we connect every
vertex with the vertices representing the four direct neighbors of the corresponding pixel.

204

On the other hand to represent the 3D volume image we connect the six neighboring voxel
of every voxel. Equivalently to the definition of finite differences as the derivatives in the
common image setting we will set the weights w : F — R, to 1 for every edge in E. Note,
that in practice it might be interesting to modify the weight with some prior knowledge
about the structure of the reconstruction or even change the construction of the edge set.
For example, one could think of taking an MRI reconstruction from the same object and
setting the weights according to properties of edges in the MRI image. This might be related
to some kind of joint reconstruction as introduced in e.g. [65, 67, 25].

Finally, we want to mention that extending the connection of the graph by adding edges to
diagonal neighbors, and weight them correctly, might give more isotropic results in an spatial
image sense. This happens even when we solve with a spatially-anisotropic TV regularization
which we talk about in Section 3.1.4. For more insight we refer to Chapter 6 where we discuss
these results in detail.

As a result, we are now able to define an undirected finite weighted graph G = (V, E, w)
to represent the images in the image domain 2. The PET operator K is directly translated to
the graph setting as £ : V —]Ri since it only operates on the vertex set V. Since we use the
PET operator K only in a discrete setting from now on we represent it by the corresponding -
very sparse - matrix K € RiXN as we discuss in Chapter 9. As we have pointed out before in
Section 9.2 using the matrix might be easier for the understanding of derivation, but one can
still interchange both interpretations. With theses definitions any method that we introduce
in Chapter 10 to solve (10.1) can be also used to solve the problem in the graph setting
represented by G - as we will define in (13.1) - and to compute the same solution. This
lays the foundation for solving regularized reconstruction problems on graphs by applying
Cut-Pursuit algorithm.

13.2 Cut-Pursuit for Regularized PET Reconstruction

In this section, we translate the problem (10.1) into a graph problem and apply the Cut-
Pursuit algorithm to solve it. The undirected finite weighted graph is defined in the former
section, i.e., a image grid or volume graph, and given as G = (V, E,w) and g € Ri is the
(static) PET data. In this section, we denote the functions in the image space as f instead
of u to be consistent with the formulations in Chapter 4 where we derived the Cut-Pursuit
algorithm. The optimization problem (10.1) in on a graph G is given as

L

argmin Y (K f)i — gilog(K)i+ 5 [V flly +5+(f). (13.1)
ferY =1

Remark 13.1. The edges in E are always directed in both directions with the same weight
as we already pointed out in Chapter 3. Thus, computing the TV seminorm of the gradient
Vuf is always two times the result when using finite differences where only one direction is
incorporated. Consequently, we have to divide the reqularization parameter o by 2 to get the
same results as we also discuss in Section 3.5.1.

Let us start by analyzing the terms of (13.1) separately and see how they can be translated
to the partition problem of (4.10). As we know, this problem is 1D on the graph, i.e., the

13.2 Cut-Pursuit for Regularized PET Reconstruction 205

vertex function f maps to Ry. Hence, we are in the channel-anisotropic setting and do
not have to compute any directions. Additionally, we know that the Cut-Pursuit algorithm
converges to the optimum of (13.1) (cf. [46]).

The (discrete) Kullback-Leibler data-term defined on G is the same as on the image since
it lives on the pixels and is given as

_ _ '
DKL(f)—Zl:(Kf)z gz+gzlg((Kf)l)- (13.2)

This term is differentiable with respect to f as we have shown in (13.3) where we already
computed the analytic derivative as

VDir(f) = K*1 — K*Kif. (13.3)
The second term is the total variation on graph G which is the same regularization as in
the ROF problem for which we already introduced the Cut-Pursuit algorithm explicitly in
Chapter 4 and which is given in Algorithm 2. So the remaining question is how to handle
the positivity constraint. As we know from Proposition 4.10 we plug the former solution
of the reduced problem fr» into the partition problem to compute the (n + 1)’th partition
II"*1. Since the reduced problem is provided with a positivity constraint the solution of the
n’th reduced problem fr» has to be positive everywhere. Thus, the term 0 (frn) is only
evaluated at positive points, and consequently 0.

We have gathered all the information that is necessary to construct the Cut-Pursuit
algorithm to solve (10.1). Let us assume that we are in the (n + 1)’th iteration of the
Cut-Pursuit algorithm. Then we are given the former partition II" and the solution of
the n’th reduced problem fr» €]Rf - that is piece-wise constant on II". Let G"'! =
(IIn+L) Entt 4w tl) be the reduced graph corresponding to I, Recalling the definition of
P, in (4.10) we can find a vector ¢" € Rfﬂn with N» such that

fan =D 1aci =P €RY (13.4)
AelIn

with ¢® = (¢"}) aen. The reduced problem defined on the reduced graph G?*! is then given

as
L (6%
cn+1 — arg‘;niﬂl Z(Kpn-i-lc)l — g 10g(KPn+1C)l + §||Vw:z+1c||1. (13.5)
CGR+" I=1

Given the solution of the n’th reduced problem ¢™ and fi» = P,c¢" the partition problem to
compute II"*! would be then given as

B" ! ¢ argmin (K*1y — K* J
BeP(V) K frr

+aVRs(fun), 1) + gRéc(fnn; 1p). (13.6)

This can again be computed by a graph cut, as we describe in Section 4.2.2. The partition
1"+ is constructed as in (4.55) by taking the connected components of all intersections
AN B AN (B¢ for all A € TI". In both updates (13.5) and (13.6) we apply the

206

operator K to a function f. that is constant on the segments of the corresponding partition.
For this reason, let us take a closer look into applying K to a function f. = Pric = 4c1 1aca
for some partition II. We assume K € RiXN to be a matrix, and let us define

Ka=Kly=Y K. eRk, Acll (13.7)
icA

as the sum of the columns in K corresponding to a segment A. In addition, we define

K= (Ka) gopy € REM (13.8)
as the matrix concatenating the summed up columns K,. We call Ky the reduced PET
operator on II. Note that the following holds

Kmn = KP, (13.9)

since one can write P, = (14)aenn» as concatenated vectors 14 for every segment in II"
which yields (13.9) by matrix multiplication. With these definitions and ¢ = (c4)aem1 We can
compute that

Kf.=K Z 1acq = Z K1cyq = Z Kycq = Kpe.
A€ll A€ll A€ell

Plugging this into the reduced problem (13.5) defined on the reduced graph G**! and refor-
mulating yields

"= argmin Y (Kpn+ic); — gilog(Kpnsic) + %HVMHCH;{ (13.10)

CGRE[nle | I

with fini1 = Pnr1c™!. Then the update given in (13.10) is a reduced optimization problem
that only has to be solved on the reduced graph G"*!, and thus, is efficient. Additionally, we
see that the reduced operator matrix Ky for some partition IT has only |II| columns which
makes it much smaller than the original one. In practice it also preserves the sparsity of
the original operator and can then be stored in memory even for huge systems. We analyse
these result with numerical experiments in Chapter 14. In the next section we also show how
to compute the reduced operator Ky for some given partition II efficiently from the PET
operator K without the need of a matrix representation.

With the ideas from above we can formulate the Cut-Pursuit algorithm to solve the
problem (10.1):

Algorithm 13.2. (Cut-Pursuit for Regularized PET)

Let g € RE be some measured data and K € RN o forward operator that projects some
distribution image f € RY into the data space as described before. Additionally, let us define
K4 as in (13.7) for a segment A C Q and the reduced operator matriz Ky € REXM g5 in
(13.8) for some partition I1. With these definitions the Cut-Pursuit algorithm that solves the

13.3 Efficient Reduced Operator Computation 207

minimization problem (10.1) is given as follows:

B"*! ¢ argmin (K*1y — K* g
BeP(V) KHnCn

"+ = {connComp(A N B),connComp(AN B) | A € TI"}

+ VRs(f™),15) + %R’sc(f”; 1p)

nil & a (13.11)
c = argmin Z (Kpn+1¢); — g1 log(KHn+1c)l + *va(wlCHl
ceRT =1 2 '
+
=Y 1t

Aellnt+l

Since, the data-term is differentiable we can directly state that Algorithm 13.2 converges
to the optimum of (10.1) in a finite number of steps as was proved in [47]. We refer to
Section 4.3 for more details.

The bottleneck of this approach is that we still have to solve the reduced minimization
problem for which we can use a graph version of the primal-dual algorithm given in Sec-
tion 10.1, the FB-EM-TV as in Section 10.2 or any other preferred method. But since the
reduced operator Ky on a partition IT has only |II| many columns in each iteration it reduces
to a much easier task, as we see in Chapter 14. Nevertheless, we still have to compute the
reduced forward operator matrix Ky from K and II somehow efficiently. This is what we are

doing in the next section.

13.3 Efficient Reduced Operator Computation

In this section, we assume that we have a given PET operator K : Q —]Ri for L lines
in L and N pixels in the image domain 2, and its discrete sparse matrix representation
K € RN Note again, that for high resolution image spaces, especially 3D images, the
computation of matrix operator K from K is a computational expensive task. Additionally,
for a huge amount of measurements and a high resolution - maybe even 3-dimensional -
image this matrix has a high memory cost. We tackle this challenge in the second part of
this section. First we want to recall how to compute a discrete operator matrix K from the
continuous operator .

As already explained in Section 9.2 and in Figure 9.3, the matrix operator K to a given
operator K can be computed row-wise. To do so, one casts a line [through the given image
domain 2 and fills up the array v; € R_]X by assigning to every entry ¢ the lengths of intersection
of the line [with the pixel i. If the pixel was not hit a 0 is stored. Then we stack the arrays
UZT for every [€ L and store them in K as follows:

K = (v})eL. (13.12)

Hence, when we apply this matrix to f € Rf we see by the definition of I that K f = Kf.
In the former section, we have defined the reduced operator K for some partition I of 2 in
(13.8) by concatenating the vectors K4 as defined in (13.7) for every segment A € II. The
column K4 in Kiy is defined as the sum of the columns K. ,; that corresponds to the pixel

208

&
N
9

A KZA1 = 0.46 4 0.11 4 0.35 = 0.92

Ay Kja,= 0.28 4 0.17 + 0.43 = 0.88

iS5

Y

Figure 13.1.: Visualization of how to compute the entries in the reduced operator Ky
for a 4 x 4 example image and a partition II of 2 with two sets A; and As. The entries
in K;4, and K4, are given as the total intersection length of the line [from x to y with
the segments A; and A,.

u € A. Thus, for every line [€ I. we can see that
(Ka) = (v, 1a). (13.13)

This is exactly equal to the sum over all the intersection lengths of the line [with the pixels in
A, which is the total length of the intersection of line [with segment A. Consequently, when
computing the reduced operator K11 one has to compute the intersection length of every line
[with every segment A € II and store it in (K1);4 = (v, 14). In Figure 13.1 we visualized a
simple example one line, a 4 x 4 image and a partition with two segments.

With this method it is possible to compute the reduced matrix operator with applying &
just once. Hence, computing the reduced operator matrix Ky is as costly as computing the
full operator matrix K. Yet, the number of sets is much smaller than the number of pixels
and - if the number of segments is not too small - the matrix Ky is still as sparse as K.
Nevertheless, the reduced operator matrix Ky has less non-zero entries in total, which makes
it possible to store it in memory even in a high-resolution setting. In Chapter 14 we show

these theoretical considerations and properties for artificial examples.

Now we know how to construct a Cut-Pursuit algorithm as formulated in Algorithm 13.2
to solve (10.1) by only using reduced matrix operators Ky for every iteration. Furthermore,
we have shown how to construct these reduced matrix operator with a single evaluation of
the PET operator K in every Cut-Pursuit iteration. The last open question is how to solve

the reduced problem in (13.11). This is covered in the next section.
13.4 Solving the Reduced Problem

In this section, we introduce two variants of formerly introduced algorithms to solve the
reduced problem in (13.11) namely with primal-dual presented in Section 10.1 and FB-EM-
TV as in Section 10.2. Deriving the algorithms is straightforward, since the only thing one

has to change to state the algorithms is the used matrix operator Ky. Still, we want to

13.4 Solving the Reduced Problem 209

state the algorithms explicitly for clarification and talk about how the algorithms get more
efficient. We start by observing this for the primal-dual algorithm.

13.4.1 Primal-Dual for Reduced Problem

The primal-dual algorithm to solve (10.1) was derived in Algorithm 10.1. Let us assume
we are in some iteration of the Cut-Pursuit algorithm in (13.11) and have computed some
particular partition II. Let Ky be the corresponding reduced operator matrix and c € R'fl
a function living on the reduced graph G, = (II, E,, w,). Then the primal-dual updates are

given by

n—+1

y — pTOJBOO(a) (yn + O'qu)Tcn)

ol =1 (Z” + o Knc" +1 — \/<2n +o:Kuet —1)°+ 40zg) (13.14)
Al — max (Cn -7 (Kﬁszrl + v*yn+1) 70)

Cn+1 _ cn+1 10 (cn+1 _ Cn) .

As discussed in Section 3.3 and Section 4.4.1, the diagonal preconditioning is crucial for graph
applications and especially on reduced graphs increases the convergence significantly. Hence,
we want to derive the diagonal preconditioning as defined in Definition 3.21. Let us define the
weighted differential operator D such that Df = V,, f as in (3.28). As we have two operators
in this cases namely V,, and the PET operator K we have to compute the column and row

(3)-0)

Let M be the number of edges and assign to each edge e; = (uj,v;) € E a index j €

sums of the following operator

{1,...,M}. Then we can deduce the following component-wise preconditioner for A as
1
Tu = 7 2—a VU E V
Zl:l ’Kl,u‘Q_a + Zv~u w(u? U) 2
1 1
Oy i = - - Vie{l,....M 13.15
YyJ Y uer \Di,u\a 2w(u, v)3 jed } ()
1
Oz1 = AL vie{l,...,L
AT S K ot

for any o € [0,2]. This leads to the diagonal preconditioners

T = diag (11,...,7N)
¥, = diag (oy,1,...,0y M) (13.16)

Zz = diag(az’l,...,azyL).

Then we can replace 7, o, and o, in (13.14) with these diagonal preconditioners.

As we see, the dual variable y is of the size of the reduced gradient V,,, c and the primal
variable c¢ is reduced to the size of the partition II. These updates are both much more

210

efficient compared to Algorithm 10.1, especially, due to the usage of the reduced operator
and the use of a matrix multiplication instead of computing millions of line integrals all the
time. Nevertheless, the reduced operator still maps into the full L-dimensional data space.
Thus, the dual variable z is still of the size L and does not reduce at all. This is a bottleneck
in later numerical computations. We analyse the numerical realization of this method in
Chapter 14. This concludes this subsection and we go on by deriving a reduced EM-TV
algorithm in the next subsection.

13.4.2 FB-EM-TV for Reduced Problem

We have already derived the Forward-Backward EM-TV (EM-TV) algorithm in Algo-
rithm 10.2 to solve problem (10.1). The translation into a graph setting is again straight-
forward. The EM-step in (10.19) is pointwise on every vertex, and hence equivalent. The
graph variant of the TV-step in (10.19) is actually a weighted ROF problem on the reduced
graph G, and can be directly solved with the primal-dual algorithm in Algorithm 4.14. The
EM-TV algorithm on a graph then is given as

f”+% _ f" ic* (}Ci“n) (EM-step)

£*1
feRf_’ 2fm

(13.17)

(f =778, = 72)+ 5lIVuf . (TV-step)

As we want to derive the reduced version of this algorithm to solve the reduced problem
in (13.11), we exchange K by Ky and f by Prc for some partition II. Since computing the
KKT condition and drawing the subsequent deductions for the reduced problem in (13.11)
is analog to the deductions in Section 10.2 we can directly write EM-TV on a reduced graph
G, as

ntl C"K*(9> (EM-step)
I = -ste
K1 T\ Kygen P
13.18)
Kjl (
" ¢ argmin (2Hn (c— cn+%),c— a4 %varcHl. (TV-step)
c

Note that 1 = 17. The reduced sensitivity map Kjj1 € R‘E‘ can be computed easily by

(KiDa =303 Ki = Y (K*1). (13.19)

i€A 1 icA

Thus, when applying Cut-Pursuit the computation of the sensitivity map K*1 € Rf has only
to be done once at the beginning. To compute the reduced sensitivity map K1 afterwards
it is sufficient to sum up the entries in Kj;1 corresponding to a segment A € II.

Remark 13.3. Looking at the reduced EM-TV algorithm in (13.18) we see that by dropping
the TV-step we already have a working EM algorithm in the reduced graph setting. This
will compute a reconstruction that can be interpreted as a reconstruction in non-uniformly

discretization of the image space by I1. Thus, when going back into the full image space the

13.4 Solving the Reduced Problem 211

result will be a piece-wise constant reconstruction.

As we have translated the primal-dual algorithm from Section 10.1 and the EM-TV algo-
rithm from Section 10.2 into the reduced graph setting we head to the numerical experiments
in the next chapter. There we evaluate if and in which situations the use of Cut-Pursuit is a
good method to solve the problem. We also face some challenges that have to be tackled in
the future.

Numerics

In this chapter, we present the application of the Cut-Pursuit algorithm for solving a
PET reconstruction problem with an incorporated TV regularization as stated in (10.1).
In the previous chapter, we derived the Cut-Pursuit algorithm for TV-regularized PET re-
construction and stated it in Algorithm 13.2. In addition, we presented two algorithms to
solve the reduced problem in Algorithm 13.2, via a primal-dual algorithm in (13.14) or an
EM-TV algorithm on graphs in (10.2). We start by discussing the implementation details
of the algorithms. Then we analyse how the Cut-Pursuit algorithm works on PET data and
what challenges it faces. Afterwards, we compare the results of the different reduced solvers
to investigate, which of these algorithms is preferable, both visually and in terms of energy

values.
14.1 Implementation Details

The Cut-Pursuit and primal-dual algorithms were implemented in MATLAB in a modular,
object-oriented framework that we already discussed in Chapter 6. The graph cut is computed
by the built-in MATLAB function mazflow. For the TV-step of the EM-TV algorithm that
we stated in (10.2) we again use the implementation for the algorithm in Algorithm 3.24 to
solve weighted ROF problems.

To simulate the PET line operator X, which we introduced in Chapter 9, we use the
implementation of the Siddon-algorithm [78] of the EM reconstruction framework EMRECON
developed in [44]. This is a parallelized implementation in C that computes the line integrals
through an image by a predefined given scanner. For more information on the framework
we refer to [44]. In addition, this framework also provides the implementation of the adjoint
PET operator K*. For our applications in this work we only need to know that we can define
a scanner with a certain set of possible lines and then apply it to some defined image space.
By using this implementation we have the possibility to use real scanner definitions, e.g., [21],
or even build an artificial scanner with artificial line definitions. We are therefore able to
reconstruct real and artificial data sets. In this numerics section we only use artificial data
that we generated by applying the operator K to an image and adding poisson noise to it.
Note that we use the MEX interface of MATLAB to call the C code.

In addition to the full line operator K we also use the reduced operator matrices Ky that

214

we have defined in (13.8) for a given partition II. As we state in Section 13.3, we can compute
the reduced operator matrix by only one application of the full operator IC. This is done by
computing the lengths of the intersections of each line with every segment in the partition
II. To do so, we use a modified implementation of the operator from EMRECON where we
only measure the lengths of intersections of the line with the segments instead of computing
the line integral. On top of this we have implemented a pipeline in the MEX framework
to directly provide us with a sparse representation of the reduced matrix. In addition, the
application of the sparse matrix in MATLAB is very efficient.

To guarantee convergence of the Cut-Pursuit algorithm it is crucial to find an optimal
solution of the reduced problem. To achieve this, we have to establish solvers that can ac-
curately optimize the reduced problem and converge closely to its optimum. For example,
in order to solve ROF problems on graphs using the Cut-Pursuit algorithm stated in Algo-
rithm 3, we have discussed in Section 4.4.1 that it is crucial to use a diagonal preconditioning
for solving the reduced problem (4.63) with a primal-dual algorithm, since otherwise the
algorithm converges very slowly due to the bad condition of the gradient operator. If we do
not apply this step size method, we cannot guarantee the algorithm for the reduced problem
to converge in any reasonable number of iteration steps in practice.

This is a special case of the more general class of nested algorithms, where one has to
use inexact solvers to update the iterates of an optimization algorithm. However, these
procedures are known to diverge when the subproblems are not optimized to the necessary
precision. This problem is discussed, e.g., in [2, 68, 76, 87] where they analyse how an error in
the computation of an inner optimization problem, e.g. in the computation of the proximal
point, induces erroneous iterates to the overall optimization, and therefore, yields incorrect
results. This is similar to what happens here since we also have a nested algorithm with
two optimization problems, namely the partition problem and the reduced problem. Both
problems have to be solved well enough to yield an optimal result in the end. For more details
on these inexact optimizations see [2, 68, 76, 87] and the references therein.

In this work we have stated two optimization strategies to solve TV-regularized PET
reconstruction problems. One is a first-order primal-dual algorithm we state in (13.14) and
the other one is an EM-TV algorithm we state in (13.18). As a third algorithm we will apply
a stochastic variant of the primal-dual algorithm that we discuss later on. Before we show
any experiments and plots let us discuss the advantages and drawbacks of each algorithm.

14.2 Solving the Reduced Problem

In this section, we discuss three different solvers that we use for solving the reduced
problem of the Cut-Pursuit algorithm in Algorithm 13.2. Let us start with the primal-dual
algorithm. In (13.16) we have already stated the diagonal preconditioning for this problem
that can be directly applied to the reduced graph with w, as the weighting and Ky as the
reduced PET operator matrix. This alleviates the bad condition of the gradient operator as
before.

However, there remain two drawbacks. The first drawback is that the reduced problem
only reduces the number of pixels and not the number of lines. As we know, the reduced

operator matrix K also only reduces in number of columns and not in number of rows.

14.2 Solving the Reduced Problem 215

Hence, we can see in Algorithm 13.2 that the update of the dual of the Kullback-Leibler
data-term in (13.14) is still of the same size as in the original problem, corresponding to the
number of considered lines. This makes this dual update as expensive as in the primal-dual
algorithm for the full problem. Additionally, there has to be computed a square-root for every
entry in the array of length of the number of lines, which is very costly as it is computed and
leads to a bottleneck in run time.

Furthermore, in practice it is not trivial to find a sufficient stopping rule that indicates
the convergence of the algorithm, e.g., a primal-dual gap [17] or a primal-dual residual [34].
This comes from the fact that one has to scale the involved quantities properly for each level
of partitioning in the Cut-Pursuit algorithm to set a certain threshold for every level that
stops the algorithm. Hence, we decided to use a combination of both primal-dual gap and
primal-dual residual as well as the maximal relative change in the solution. As we have to
ensure that the algorithm optimizes the reduced problem well enough, we also set a minimum
number of iterations that the algorithm has to run before it stops. In this numerical section
we always set the minimal number of iterations to 1, 000.

To alleviate the drawbacks of the primal-dual algorithm in (13.14), in particular the ex-
pensive full amount of lines, we also implemented the stochastic primal-dual hybrid gradient
algorithm introduced in [18] and applied to PET reconstruction in [26] with a diagonal pre-
conditioning on graphs. Using this algorithm one has to divide the set of lines into different
subsets. Then, when running the dual updates, the algorithm randomly selects a subset of
lines to update the dual iterate only for this selection. The convergence of this algorithm
is much faster while reducing the number of applications of the full PET operator. For the
reduced problem this means that we divide the reduced matrix Ky by stacking the corre-
sponding rows for every subset and compute a new reduced matrix for every subset. Note
that we now get the best of both worlds: reduced pixels (columns) via partitioning in image
space, and reduced lines (rows) by random sampling in data space. As this algorithm is not
part of this work and the graph version is straight forward, we do not go into detail and refer
to [26].

The third algorithm is the forward-backward EM-TV algorithm we presented in Algo-
rithm 10.2 and its corresponding graph variant in (13.18). Applied on the reduced graph we
use the reduced operator matrix Kty for the EM-step and solve the TV-step - which is in this
case defined on the reduced graph - with a primal-dual algorithm. We again use the diagonal
preconditioning for reduced primal-dual algorithms as in (3.21).

Note that we have to distinguish between the different reduced solvers for the Cut-Pursuit
algorithm. To this end, we use the abbreviations CP-PD, CP-ST-PD and CP-EM-TV for the
Cut-Pursuit algorithm with the primal-dual algorithm, the stochastic primal-dual algorithm
and the EM-TV algorithm as a reduced solver, respectively.

216

14.3 Full Operator Evaluations

In this section, we compare the Cut-Pursuit algorithm with different reduced solvers to
the solutions of applying the same algorithms to the full problem. To do so, we investigate
the number of applied full PET operator projections for the different algorithms, since this is
the main drawback of the TV-regularized PET reconstruction in high resolution 2D and 3D
applications. In these cases the full PET operator matrix cannot be stored in memory and
the computation of the full PET operator is very costly for each application.

Taking a look at the reduced primal-dual algorithm in (13.14), we see that the operator
matrix is used once in the update of the dual variable corresponding to the Kullback-Leibler
data-term and once in the update of the primal variable as a backward projection. The
differences in cost of applying the forward or backward projection is negligible, and there-
fore, we can tell that one iteration of the primal-dual algorithm requires two full operator
applications.

For the stochastic primal-dual algorithm this is a little bit more complicated, since the
lines are divided into subsets and selected randomly. Here, one iteration requires just a
fraction of the whole operator. Hence, in [26] they use the term epoch “to denote the number
of iterations of a randomized algorithm which are in expectation computationally equivalent
to one iteration of the deterministic algorithm that uses all data for each iteration”, which
in fact means in this case approximately one operator evaluation. For example, we always
divide the set of lines into ten subsets and give each a probability of p = 0.1 to be chosen.
Then we can assume that ten iterations of the primal-dual algorithm require the full operator
to be evaluated two times in total, one time forward and one time backward. Hence, we also
refer to the term epoch when we talk about stochastic primal-dual which costs two operator
applications.

The EM-TV algorithm in (13.17) uses one forward and one backward projection of the
PET operator. The K*1 in fact has to be pre-computed once before running the algorithm.
Hence, in every iteration we also have to apply two full PET projections.

Finally, let us discuss the Cut-Pursuit algorithm we state in Algorithm 13.2. As we see for
the partition problem to compute a new cut B"*! we have to compute the full PET operator
once in its adjoint variant. For the forward operator we can again use the reduced operator.
Additionally, we have to apply the full operator once, as we have discussed at the beginning
of this chapter, to compute the reduced matrix Ky for a corresponding partition II. Hence,
in each Cut-Pursuit iteration we have to evaluate two full PET projections.

Consequently, we can see that for every algorithm the number of applied full PET opera-
tors in every iteration is two, and therefore, we can directly compare the number of iterations
to reach a certain energy value as a measure for complexity in the following section.

14.4 Numerical Comparison 217

(a) Ground Truth (b) Noisy (c) Denoised Reconstruction
272 x 272 EM Reconstruction (a=4)

Figure 14.1.: Ground truth image taken from BrainWeb|[20] and reconstruction via the
EM algorithm and via a primal-dual algorithm for a TV-regularized PET problem with
a=4

14.4 Numerical Comparison

In this section, we want to compare the application of the different variants of the Cut-
Pursuit algorithms proposed before on a noisy data generated by an artificial PET scanner
definition with L = 83,950 lines and an image resolution of 272 x 272. In Figure 14.1a
we can see the 272 x 272 ground truth image taken from [20] and in Figure 14.1b the EM
reconstruction of the noisy data that we generated with the implementation of the forward
PET operator. We also provide a denoised reconstruction that was computed by using the
full version of the primal-dual algorithm from (13.14) for a regularization parameter of o = 4.

For the primal-dual algorithm we set the minimal number of iterations to 1,000 and
the maximal number of iterations to 10,000. As discussed before, we use a combination
of primal-dual gap, primal-dual residual and maximum relative change in the solution as
a stopping criteria. As the stochastic primal-dual algorithm converges faster it only needs
less total iterations. Hence, we set the maximum of iteration to only 1,000 and apply the
same stopping rules as for the primal-dual algorithm. For the EM-TV algorithm there does
not exist any sufficient stopping rule. Hence, we use a maximum of 600 iterations and the
maximum relative change in the solution as a stopping rule, to ensure the convergence of the
reduced problem. The Cut-Pursuit algorithm has a maximum of 50 iterations and stops if
no new cut can be computed.

Let us start by investigating the evolution of their energy in Figure 14.2 for two regu-
larization parameters, i.e., « = 4 and o = 50. We also plot the energy levels of using the
primal-dual algorithm for 10,000 and stochastic primal-dual for 1,000 iterations with the
equivalent stopping rules as for the reduced problems. As we can directly observe, the Cut-
Pursuit algorithm with EM-TV as the reduced solver stops very early, and not at an optimal
energy level. The visual results can be seen in Figure 14.4 where we also plot the difference
images compared to the solution of applying the stochastic primal-dual algorithm. We as-
sume that the problem here is that the EM-TV algorithm on its own is a forward-backward
splitting method where we also have to solve an inner problem with primal-dual. If for some

218

x10° <105
375 F I
—— CP-PD o8 —— CP-PD
37t CP-ST-PD CP-ST-PD
CP-EM-TV 96 | CP-EM-TV
365 1 Energy Full PD Energy Full PD
- - = = Energy Full ST-PD - - - - Energy Full ST-PD
g 361 o4l
2 2
T 3.55 0
9.2
3.5
345 | B ey
34t :)
10 20 30 40 50 10 20 30 40 50
Iterations Iterations
(a) Energy for a = 4 (b) Energy for o = 50

Figure 14.2.: Energy plots of different reduced solvers. The dashed lines indicate the
energy levels of the converged primal-dual and stochastic primal-dual algorithms.

reason we produce errors in that inner optimization, it might lead to erroneous solutions in
the outer problem (cf. [68]). Hence, EM-TV does not seem to be a good reduced solver for
this kind of problem. Using the primal-dual (PD) algorithm as a reduced solver leads to a
good energy minimization, but does not eventually reach the energy level achieved by the
full optimization. Nevertheless, it converges very close to the optimum. On the other hand,
using the stochastic primal-dual (ST-PD) algorithm even yields a slightly better optimum
than applying the stochastic primal-dual algorithm on the full problem for 1,000 iteration.
For higher regularization, e.g., & = 50, we see in Figure 14.2b that all algorithms dominate
the algorithms on the full problems. Still, in terms of energy using the stochastic primal-dual
on the reduced problem yields the best results.

When working with the Cut-Pursuit algorithm it is not only important to compute the
correct solution for a minimization problem, but also to provide a good discretization of the
underlying image. In Figure 14.3 we can see a comparison of the ratio of the number of
segments in the partition and the original number of pixels, the density and the number of

)
S
=)
~

14% 8107
= R
12% & <
S 10 g —— CP-PD x 10'
c 10% N CP-ST-PD £ — CP-PD
5 8% S CP-EM-TV = CP-ST-PD
5 2 106 Full Op. S \ CP-EM-TV
3 6% 5 o Full Op.
& ‘ 5] 5 10°
>
4% — CP-PD E =
CP-ST-PD 3 c
z [
2% CP-EM-TV Q
0% L 0 10 20 30 40 50 4o
0 10 20 30 40 50 60 Iteration 0 10 20 30 40 50
Iteration Iteration
(b) Number of Non-Zero

(a) Reduction (c) Density

Entries
Figure 14.3.: Comparison of the number of non-zero entries and the density of the
reduced operator matrices. The reduction is the ratio of number of segments to number
of pixels given in %.

14.4 Numerical Comparison

219

Stochastic Cut-Pursuit with
Primal-Dual EM-TV

Difterence Image

Stochastic Cut-Pursuit with
Primal-Dual Primal-Dual

Difterence Image

Stochastic Cut-Pursuit with Stochastic
Primal-Dual Primal-Dual

Figure 14.4.: Visual comparison of solutions for «

Difterence Image

4 computed with stochastic

primal-dual on the full problem and Cut-Pursuit algorithms with different reduced
solvers. On the right we see difference images. The CP-PD algorithm yields visu-
ally very close result with only a few incorrect segments in the difference image. The

difference for the direct method and the CP-ST-PD algorithm is not visible.

non-zero entries in the sparse, reduced operator for the three variants in every iteration. As

we can see in Figure 14.3b, in each iteration the number of non-zero elements in the reduced

operator matrix is always very small and also smaller than for the full matrix operator that

is shown by the dashed line. Note that in this small problem the number of non-zero entries

in the full operator is still pretty small. In a more complex 3D setting this value would not

even be any close to the number of non-zeros in the reduced matrix. In Figure 14.3c we can

also see that the density of the reduced matrix is always under 10% in iterations after the

220

Iteration 1 Iteration 2 Iteration 3

Iteration 1 Iteration 2 Iteration 3 Iteration 10

Figure 14.5.: Cut-Pursuit iteration. Top row shows the solution in a certain iteration
and the bottom row the cut computed in that iteration.

first iteration. The first iteration has such a high density as it only consists of two segments,
and therefore, the reduced matrix only consists of two columns storing all of the information
of the full operator. However, for this small operator it does not matter if it is sparse or
not. In Figure 14.3a we show a plot of the reduction of the current Cut-Pursuit iteration.
We see that the CP-EM-TV algorithm stops after 18 iteration since it does not incorporate
any new segments into the partition. However, the CP-PD algorithm seems to cut further.
Especially for the CP-ST-PD algorithm this is surprising, since it already is at the optimal
energy after only 9 to 10 iterations as we see in Figure 14.2. Still, the algorithm computes a
cut and splits the partition in every iteration. This can be interpreted as the problem we face
for channel-isotropic Cut-Pursuit algorithms in Algorithm 1 as we discuss in the numerics in
Section 6.3 where we see that the Cut-Pursuit struggles to find cuts to describe smooth parts
of the solution. In this case this can come from the fact that the partition problem never
knows the exact position of the edges in the image as it always compares the reconstruction
that was generated with cuts with the data. Hence, it seems to have problems to find the
exact pixel where to cut at the boundaries in the image. This leads to further cutting even
though the energy is nearly optimal. We can see this problem in Figure 14.5 where we show
the solutions in some iterations and the cuts that the partition problem yields. We see that
it struggles to find sufficient edges in the solutions as it does not know the underlying ground
truth image. We postpone this problem for the outlook where we also discuss a strategy that
can alleviate this problem.

In summary, we see that the CP-ST-PD algorithm as the reduced solver yields the most
satisfying results. In the following we want to also compare the Cut-Pursuit methods to the
application of the primal-dual, stochastic primal-dual and the EM-TV algorithm on the full
problem where we also use the full PET operator.

14.5 Comparison of Cut-Pursuit with Direct Algorithms 221

104¢ 103

=)
w
\‘\‘
N
=)
~

c —— PDvs. CP-PD c —— EM-TV vs. CP-PD

_g 102} PD vs. CP-ST-PD _g EM-TV vs. CP-ST-PD

g / PD vs. CP-EM-TV g /’ EM-TV vs. CP-EM-TV

=] Converged PD = / Maxlter EM-TV

|
101 | /’
10"
0 10 20 30 40 50 0 10 20 30 40 50
Cut-Pursuit Iteration Cut-Pursuit Iteration
(a) Primal-Dual (b)Y EM-TV

103

——— ST-PD vs. CP-PD

§ 4 ST-PD vs. CP-ST-PD
a [ST-PD vs. CP-EM-TV
w { Maxter ST-PD
10" ¢ [
10 0 / L L L L .
0 10 20 30 40 50

Cut-Pursuit lteration

(c) Stochastic Primal-Dual

Figure 14.6.: Compares the energy in different iterations of the Cut-Pursuit algorithm
for different reduced solvers with the energy of the full algorithms. It illustrates for every
Cut-Pursuit iteration in which iteration of the compared full algorithm it outperforms
the energy.

14.5 Comparison of Cut-Pursuit with Direct Algorithms

In this section, we want to compare the different Cut-Pursuit strategies to the application
of the three algorithms applied to the full problem. We first compare the number of full PET
operator applications and then also have a visual comparison of the solutions.

As we have discussed in Section 14.3, in each iteration of the algorithms the full PET
operator is applied twice. Hence, we can compare the energy value in each iteration of the
algorithms and deduce how many full PET operator evaluations were required to get to
this point. To this end, we take the energy value of the Cut-Pursuit algorithm in every
iteration and search for the number of the first iteration where the direct algorithm achieves
a lower energy value. Then we plot the Cut-Pursuit iteration against this iteration number.
The comparison of all three Cut-Pursuit strategies can be found in Figure 14.6. Let us
start with the comparison of the primal-dual algorithm on the full problem with the Cut-
Pursuit algorithms in Figure 14.6a. The dashed line in this plot marks the iteration where
the primal-dual algorithm converges. This is somewhere between 6,000 to 7,000 iterations,
and therefore, we know that it required 12,000 to 14,000 full PET operators evaluations.
To understand this plot properly, let us interpret the orange line and its behavior which
corresponds to the CP-EM-TV algorithm. We see by the orange line that this algorithm has

222

a better energy value after three iterations as the primal-dual algorithm after 50 iterations.
But then it flattens at around eight Cut-Pursuit iterations corresponding to around 250
primal-dual iterations. This means that applying CP-EM-TYV is not able to yield a better
energy value than applying the primal-dual algorithm for 250 iterations. Nevertheless, in this
case we can get a energy value with only 16 full operator compared to around 500 and more
in the primal-dual algorithm. The same behavior of the curve can be seen for the CP-PD
algorithm, where the energy value of the primal-dual algorithm after over 1,000 iterations is
better. Again, the Cut-Pursuit only needs around ten iterations to get to this energy value.
Now let us take a look at the CP-ST-PD algorithm. As we know from Figure 14.2a, this
algorithm yields a nearly optimal energy value. This behavior can also be seen in this plot,
where it dominates all other strategies and even the primal-dual algorithm after only eight
Cut-Pursuit iterations. In fact, the Cut-Pursuit algorithm only needs around 20 full operator
evaluations to get to the energy level of the converged primal-dual algorithm that had to
apply around 12,000 to 14,000 full operators.

Moving on to the next figure where we compare the Cut-Pursuit algorithms to the EM-TV
algorithm on the full problem we see the exact same behavior of the algorithms. The EM-
TV algorithm was run for 600 iterations, and therefore, had to evaluate 1,200 full operator
projections. The CP-ST-PD algorithm again dominates these algorithms and overcomes the
EM-TV after 9 iterations. Consequently, even though we use a method that was designed
to decouple the operator evaluation, it cannot cope with the efficiency of the Cut-Pursuit
algorithm.

Last we want to compare the Cut-Pursuit algorithms to the direct optimization of the
problem using the stochastic primal-dual algorithm. This algorithm was run for 1,000 epochs
which is approximately 2, 000 full operator evaluations. The CP-ST-PD algorithm again wins
over this algorithm, but this time it takes with 15 iterations longer than in the other cases.
Nevertheless, the Cut-Pursuit algorithm is superior in terms of full operator evaluations.

With these observations and analysis we want to close this section and refer to the con-

clusion in Section 15.3 where we also discuss future work.

15

Summary and Conclusion

In this work we have introduced a wider spectrum of the application of the Cut-Pursuit
algorithm presented in [46]. We used Cut-Pursuit as a denoising method to solve ROF prob-
lems on grayscale and RGB images and large point cloud data, and have shown numerically its
superior efficiency over classical methods on graphs, e.g., a first-order primal-dual algorithm.
We have seen that the Cut-Pursuit algorithm can also provide solutions and approximations
of minimal partition problems. As a by-product, the Cut-Pursuit algorithm yields a reduced
graph structure for the corresponding computed result that can be used as a coarse repre-
sentation of the underlying graph. On this reduced graph one can solve complex problems
efficiently due to the comparatively small number of segments. With these outcomes in mind,
we applied the Cut-Pursuit algorithm also to a TV-regularized PET reconstruction; a prob-
lem of high complexity due to the PET operator. We demonstrated that the Cut-Pursuit
algorithm requires far fewer full PET operator evaluations than classical methods, while com-
puting the correct solution using only reduced sparse matrix representations of the full PET
operator.

In this chapter, we review the results of this thesis and give an outlook for future work.

15.1 Efficient Cut-Pursuit Algorithm

In the first part of this work, we introduced the Cut-Pursuit algorithm for variational
problems with a channel-isotropic regularization in general and for a (weighted) channel-
isotropic ROF problem in particular. We discussed the importance of a suitable selection of
directions to guarantee convergence of the optimization. We have seen that the Cut-Pursuit
algorithm adept at optimizing ROF-type problems on images and is superior to the direct
primal-dual algorithm optimizing point cloud data. We have discussed different aspects of the
solution as it does not only yield the denoised solution, but also the underlying discretization.
One can use this discretization to easily apply a debiasing step to the solution on the given
discretization (cf. [12]), but also to simply represent the solution by the corresponding reduced
graph with only a small fraction of the original number of data points.

Furthermore, we introduced the Lg-Cut-Pursuit algorithm to tackle minimal partition
problems and have shown that we can solve the problem with different strategies. We com-

pared runtime, visual appearance and energy of the these with well-known established meth-

224

ods and have seen that our proposed strategies perform equally well or even outperform them.
We have also discussed that the Lg-Cut-Pursuit algorithm has superpixel properties superior
to the popular SLIC method [1], and can even handle noisy data very well.

We still face challenges and questions that we did not answer in this work. The main
question about the channel-isotropic Cut-Pursuit algorithm in Algorithm 1 is if one can solve
the partition problem without selecting a predefined direction or trying to find an optimal one
by alternatingly computing a direction for a given cut and computing a cut for the computed
direction as we did in (4.54). As we have seen, the Cut-Pursuit algorithm can suffer from bad
convergence at a later stage of the algorithm and does not converge in a reasonable number
of iterations in practice. Additionally, we have to compute multiple cuts for the alternating
algorithm to solve one partition problem, which is very costly. Hence, a more sophisticated
optimization strategy to optimize this problem has to be found.

Talking about the partition problem, the computational efficiency of computing a graph
cut for complex graph problems suffers from the implementation of the mazflow algorithm
which only works on a single CPU-kernel and cannot be parallelized. Hence, on large problems
the graph cut can become a problematic bottleneck. Nevertheless, one can again use a first-
order primal-dual algorithm to solve the partition problem, which can be parallelized on
CPU and GPU. This was shown in, e.g., [62] where they also state that their GPU version
is faster than a mazflow implementation. Replacing the maxflow implementation with the
primal-dual approach can potentially alleviate this bottleneck.

The most interesting part about the Ly-Cut-Pursuit algorithm is the property that it does
provide a reduced graph representation of the computed solution. This can be interpreted as
a coarse discretization of a given data set and its corresponding graph. We have seen that
this discretization is adaptive on the level of detail of the given data set, i.e. it is very coarse
where the data has many redundant information and fine where the data has high density
of local information. This makes the discretization very meaningful, and paves the way for
applying complex problems on this reduced discretization, which can then be solved efficiently
and yield similar results to the results on the original discretization. This was already done
in [31] where the Lg-Cut-Pursuit algorithm was used to discretize RGB images and compute
the corresponding reduced graphs. Then costly lifting methods for segmentation and stereo
images were applied to this reduced graph which then could be solved efficiently due to the
low complexity of the reduced graph. Therefore, this method can potentially be used in
many applications as a preprocessing step to simplify complex problems, while preserving
the important, non-redundant information of the underlying problem.

As we have introduced the Cut-Pursuit algorithm on point cloud data and have seen the
efficient optimization on point clouds, we still face the problem that the sparsification of the
point clouds is not depending on the structural information of the point cloud. The reason is
the application of an Ls-data-term that penalizes the euclidean distance between the points
of the solution and their original position in the given data. Hence, it does not incorporate
any further information about the structure of the surface of the point cloud. To do so, one
can incorporate the normals of the point cloud as they describe the curvature of the surface
of the object. Normals point in the same direction on flat surfaces and in different directions

on parts with more details and edges. Hence, applying Cut-Pursuit while incorporating these

15.3 Cut-Pursuit Based Reconstruction 225

information yields to a sparsification of the normal field, which means that the normals on
plane surfaces are represented by a few normals, while the normals on more detailed parts
are represented by a bigger set of normals. Similar ideas of using normals for denoising point
clouds were also presented in the literature, e.g., in [84, 90, 93].

15.2 Dynamic PET and Regularized Fully4dD

In the second part of this work, we have introduced the basics of PET imaging and how
to reconstruct given PET data. We also added a TV regularization to the problem to apply
denoising in the reconstruction process and stated a primal-dual and the forward-backward
EM-TV [74] algorithm to solve this problem. Then we discussed that the measured PET data
is actually time-dependent, and thus, suffers from motion and dynamics in the data. To face
the problem of dynamics in the data, we modified the Fully4D method from [70] and added a
TV regularization to the spatial weights and a Tikhonov regularization to the basis functions.
We also deduced an algorithm to solve this problem with incorporated regularization.

In the numerical experiments, we have gained an intuition of what kind of results one
can expect from applying Fully4D to listmode data and what the advantage of using TV
regularization is. We have also seen that motion has a high influence on the reconstructed
basis functions as it is interpreted as some combinations of dynamics. On the one hand, this
enables the algorithm to gather time points where the object has a certain spatial position,
and therefore, reconstruct the path of the object. But on the other hand, one has to allow
the Fully4D algorithm to look for many more basis functions as one would expect from the
dynamics in the data to depict the motion, which makes the algorithm very costly. The TV
regularization of the problem is much more costly since we need to solve a weighted ROF
problem in each iteration. Nevertheless, in most cases the results are better after fewer outer
iterations as for the unregularized Fully4D algorithm and also seem to depict motion better
with less basis functions.

For applications in practice with real data we suggest to correct the data for motion
beforehand, such that the basis functions are not influenced by moving organs or tissues. On
the other hand, one can try to build a joint model that combines spatial reconstruction with
motion and dynamics reconstruction, see, e.g., [22] and the references therein.

15.3 Cut-Pursuit Based Reconstruction

In the last part, we have deduced how we can apply the Cut-Pursuit algorithm to TV-
regularized PET reconstructions via reduced matrix representations of the full PET operator
K corresponding to the reduced graphs generated by the algorithm. We deduced that the
Cut-Pursuit algorithm is superior in terms of the number of evaluations of the full operator
as Cut-Pursuit only evaluates it twice in each iteration, while the direct methods apply it
several thousand times. Furthermore, we can represent the reduced operator by a sparse
matrix, which makes computation fast and storage efficient. We have investigated that the
stochastic primal-dual algorithm proposed in [18] and applied to PET reconstructions in [26]
is a sufficiently fast and accurate solver for the reduced problem. We have seen that the
Cut-Pursuit algorithm yields a solution that is as good as the direct method with just a

226

small fraction of full operator evaluations.

The only downside of this algorithm that we face is that it does not necessarily stop when
it is close to the optimal energy. This comes from the fact that this problem is a truly ill-posed
problem, as we do not know anything about the underlying ground truth image. Hence, the
partition problem has no boundaries to orientate on when computing the cuts, especially
when computing the first few cuts. Hence, the boundaries are very inexact mid-iteration. To
tackle this problem one can use, e.g., structural MRI priors (cf. [25, 69, 67]) and use the edge
information of the MRI image to weight the graph. One can for example assign edges that
correspond to spatial boundaries in the MRI image a smaller weight than edges in constant
regions. Then the partition problem would produce a solution that cuts these edges with
a higher probability and the first iterations of the Cut-Pursuit algorithm would have better
results.

The next step in terms of applications would be to apply this algorithm to more complex
data and find sufficient stopping rules for the reduced problem solver. This method has the
potential to outperform the stochastic primal-dual algorithm for faster PET reconstruction.

List of Figures

3.1.

4.1.

5.1.

5.2.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

An example of an undirected finite weighted graph G = (V, E,w) with the
vertex set V' = {1,2,...,9}, an edge set £ = {(1,2),(1,4),(2,6),...} and
some weighting function w. o0 oL 18

Illustration of two different methods to generate a new partition IL,,¢,, from a
given partition II and the set Be P(V)) 59

Illustration of a noisy 1D signal denoised with Lg-TV and L;-TV and their

corresponding jump sets and costs per jump. 82
The 1D Ly function defined in (5.1). 83
Graph structure to represent an image. 0oL 110
Images used in this numerical experiments. 111
Bunny (35,947 points), Happy (543,652) and Dragon (437,645) point cloud

from [82].o 111

Denoising of a noisy 1D signal via Cut-Pursuit. Top row shows the solution and
the reduced graph at a certain iteration and the bottom row the corresponding
sets labeled by color. 112
Denoising of a noisy RGB image via isotropic Cut-Pursuit on an image graph. 113
Denoising of a noisy RGB image via Cut-Pursuit on the 8-neighbor image graph.114
Reduced graph (left) with 11,291 vertices corresponding to the TV full solution
on 196,608 pixels (right). 115
Energy and runtime plots to show the exactness of the results and the runtime.
We compare primal-dual on the images, on the graphs and a converged Cut-
Pursuit algorithm and one that stops when it has not change in the number
of segments over 5%. The crosses mark primal-dual algorithms that did not
converge (gap < 107°) within 8,000 iterations. 116
Denoising of a noisy RGB image via isotropic Cut-Pursuit with o = 0.01. Left:

Energy plots for the different direction methods compared to the solution of

number of sets
number of pixels® * * ° ° * 17

Denoising of a noisy Bunny point cloud via isotropic Cut-Pursuit with a = 0.1.

the problem. Right: Corresponding reduction rate

Left: Energy plots for the different direction methods compared to the solution

number of sets
number of points® * * * ° ° 118

of the problem. Right: Corresponding reduction rate
Denoising of a noisy RGB image via Cut-Pursuit. The graph was built as a
grid graph. oL oL e e 119

Denoising of a noisy Bunny point cloud via isotropic Cut-Pursuit. The graph
was built via kNN-graph generation with k =7. 120

228

6.13.

6.14.

6.15.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.
7.7.
7.8.

7.9.

7.10.

7.11.

Debiased solution of a noisy 1D signal by applying Cut-Pursuit and solving
data-term on partition. L
Debiased solution of a noisy RGB image by applying Cut-Pursuit and solving
data-term on partition. L e
Debiased solution of the bunny point cloud by applying Cut-Pursuit and solv-
ing data-term on partition. Lo Lo

Different results for & = 0.01 with different fixed ¢ > 0. In (a)-(d) the mean
value is computed on each segment in every iteration. In (f)-(h) use merging
for reduced problem. L
Energy values of solutions computed by Lg-Cut-Pursuit in Algorithm 7 with
different fixed ¢ > 0 and o = 0.01. In (a) we only compute the mean value
over each segment A € II and drop the regularization term. In (b) we see the
same as in (a) where we just apply the merging step as in (5.54) after each
mean value computation. L o
Energy plots. In (a) we see energy plots for a = 0.01 for different choices of
e with three highlighted plots. The red line is the optimal selected *. In (b)
we see different energy plots for different methods.
Comparing energy curves of different reduced problem solving methods and the
corresponding used partition problem method. The dashed line is the lowest
energy found by these methods. These plots correspond to the cameraman
grayscale image for a regularization parameter « = 0.01.
Comparing energy plots of computing the mean value as the solution of the re-
duced problem with and without merging and the corresponding used partition
problem method. The dashed line is the energy of the best solution in terms
of energy value provided by the different methods. These plots correspond to
the peppers RGB image for a regularization parameter v = 0.1. The direction

121

122

122

126

127

127

129

used where given by the first principal component of the data in each segment. 130

SLIC result for 400 superpixels. This is only 0.26% of the pixels.
Sampling result with 400 superpixels.
Lo-Cut-Pursuit for three different data types as a grayscale image, a RGB
image and a 3D point cloud. The regularization parameters are plotted against
the discretization percentage. The y-axis is a logarithmic axis.
Lo-Cut-Pursuit result with a = 0.25. The image consists of 2,311 superpix-
els. This is only 1.5% of the total pixels. Discretization on the left, outlined
segments in the middle and reduced graph on the right.
Lo-Cut-Pursuit with merging result with o = 0.04. The image consists of
1,045 superpixels. This is only 0.67% of all pixels. Discretization on the left,
outlined segments in the middle and reduced graph on the right.
Comparing the reduced graphs. Cut-Pursuit solution was computed with o =
0.2 which yields 2,724. Then we used this number of segments to compute the
oversegmentations by SLIC and a uniform sampling. In the top row are the

133

136

137

137

oversegmented results and in the bottom row the corresponding reduced graphs.138

LIST OF FIGURES

229

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

8.1.
8.2.
8.3.
8.4.

8.5.

Different discretization levels and corresponding measures for Cut-Pursuit,
SLIC and sampling discretization. The discretization level is the ratio be-
tween the current number of sets and total amount of pixels in the image.
Energy corresponds to an ROF problem applied to the corresponding reduced
graph and data set with regularization parameter a = 0.3. The dashed line in
the upper left plot is the correct energy by solving it with primal-dual on the
original graph. L

Compare Cut-Pursuit discretization with a = 0.2 to SLIC oversegmenta-
tion with the same amount of superpixels. The number of superpixels is

3,726 (2.41%). In the top row we visualize the corresponding reduced graphs.

Compare Cut-Pursuit discretization with o = 0.2 to SLIC oversegmenta-
tion with the same amount of superpixels. The number of superpixels is
1,394 (0.9%). In the top row we visualize the corresponding reduced graphs.

Discretization via Cut-Pursuit and SLIC with the same number of sets for a
noisy input image.o e e

The plots show the energy the results of the reduced ROF on the discretizations
provided by Cut-Pursuit. The red lines show the time for running Cut-Pursuit
plus solving the reduced problem afterwards The red dashed line is the run
time of a L1-Cut-Pursuit on the full graph and the blue dashed line the corre-

Sponding €nergy.o e e e e e e e e e e e

The discretization properties of the Lo-Cut-Pursuit approximation. It is tested
on the an grayscale image of the cameraman with 65, 536 pixels and denoised
by TV regularization with @ = 0.1. Note the discretization in (e) and (f)
corresponds to the discretization level of the optimal solution marked with the
yellow line in Figure 7.16a.
The discretization properties of the Lo-Cut-Pursuit approximation. It is tested
on the an RGB image of the plane with 154,401 pixels and denoised by TV
regularization with o = 0.1. Note the discretization in (e) and (f) corresponds
to the discretization level of the optimal solution marked with the yellow line
in Figure 7.16b. L
Solutions of Ly-Cut-Pursuit on the parrot RGB image with a low noise level
(left) and a high noise level (right).

Results on the Bunny dataset.
Results on the Dragon data set. L.
Results on the Happy dataset.

Comparison of point cloud sparsification results of the Fandisk model for
anisotropic/isotropic L1-TV and the proposed isotropic Lo-TV regularization.
The regularization parameter « is chosen such that all compressed point clouds
consist only of 17% of the original point cloud.

Comparison of point cloud sparsification results using the proposed weighted
Lo-TV regularization with different valuesof oo .

140

230

9.1.

9.2.

9.3.

11.1

12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

13.1.

14.1.

14.2.

14.3.

Visualization of an event emitting two ~-photons which hit a detector pair
(1,0)- o
FExample of an 4 x 4 image u and a line | between two detectors x and y. The
image consists of three different values. The value (Ku); is the “line integral”
over the line [over the image which sums up the length of intersections of the
line with a pixel multiplied with its value.
Example of an 4 x 4 image domain and a given line [. The image is provided
with a linear indexing (or could be thought of as a vectorized image). On the
right hand side we can see the lengths of intersection of the line [with the
pixels ¢ gathered in the entries K;;.

. Visualization of N, = 3 artificial time activity curves (TACs) for 1,000 time

points representing three different dynamics.

Artificial data set of three basis functions and three objects. The colors in-
dicate the influence of basis function to object. On the right we see an EM
reconstruction from the static data provided by the simulation.
Comparison of Fully4D reconstruction to reconstruct N, = 3 basis functions
and weights with and without TV regularization.
Comparison of Fully4D reconstruction to reconstruct N, = 5 basis functions
and weights with and without TV regularization.
Object moving from the left to the right. Binned reconstruction with six
equidistantly selected bins and Fully4D reconstruction in without and with
TV regularization for N, = 6 expected basis functions.
Object moving from the left to the right and additional objects. Data is
provided with dynamics from Figure 12.1a. Binned reconstruction with six
equidistantly selected bins and Fully4D reconstruction in without and with
TV regularization for Ny = 6 basis functions.
Object moving from the left to the right and additional objects. Data is
provided with dynamics from Figure 12.1a. Reconstruction for N, = 8 basis

functions with Fully4D reconstruction in without and with TV regularization.

Visualization of how to compute the entries in the reduced operator Kij for a
4 x 4 example image and a partition II of 2 with two sets A; and As. The
entries in Kj4, and Kj4, are given as the total intersection length of the line
[from x to y with the segments A; and As. L.

Ground truth image taken from BrainWeb|[20] and reconstruction via the EM
algorithm and via a primal-dual algorithm for a TV-regularized PET problem
with ao=4. e e
Energy plots of different reduced solvers. The dashed lines indicate the energy
levels of the converged primal-dual and stochastic primal-dual algorithms.

Comparison of the number of non-zero entries and the density of the reduced
operator matrices. The reduction is the ratio of number of segments to number

of pixels given in %.

193

194

199

LIST OF FIGURES 231

14.4. Visual comparison of solutions for a = 4 computed with stochastic primal-dual

14.5.

14.6.

on the full problem and Cut-Pursuit algorithms with different reduced solvers.
On the right we see difference images. The CP-PD algorithm yields visually
very close result with only a few incorrect segments in the difference image.
The difference for the direct method and the CP-ST-PD algorithm is not visible.219
Cut-Pursuit iteration. Top row shows the solution in a certain iteration and
the bottom row the cut computed in that iteration. 220
Compares the energy in different iterations of the Cut-Pursuit algorithm for
different reduced solvers with the energy of the full algorithms. It illustrates for
every Cut-Pursuit iteration in which iteration of the compared full algorithm
it outperforms the energy. L 221

Bibliography

[10]

[11]

[12]

Radhakrishna Achanta et al. “SLIC Superpixels Compared to State-of-the-Art Super-
pixel Methods”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
34.11 (Nov. 2012), pp. 2274-2282 (cit. on pp. 2, 133, 134, 224).

J.-F. Aujol and Ch. Dossal. “Stability of over-relaxations for the forward-backward algo-
rithm, application to FISTA”. In: SIAM Journal on Optimization 25.4 (2015), pp. 2408—
2433. eprint: http://dx.doi.org/10.1137/140994964. URL: http://dx.doi.org/
10.1137/140994964 (cit. on p. 214).

Ramsey D Badawi et al. “Randoms variance reduction in 3D PET”. In: Physics in
Medicine & Biology 44.4 (1999), p. 941 (cit. on p. 161).

Egil Bae and Ekaterina Merkurjev. “Convex variational methods for multiclass data
segmentation on graphs”. In: arXiv Preprint # 1605.01443 (2016) (cit. on p. 17).

Egil Bae and Xue-Cheng Tai. “Graph Cut Optimization for the Piecewise Constant
Level Set Method Applied to Multiphase Image Segmentation”. In: Scale Space and
Variational Methods in Computer Vision. Ed. by Xue-Cheng Tai et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 1-13 (cit. on p. 84).

Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces. Vol. 408. Springer, 2011 (cit. on pp. 5, 56).

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014 (cit. on p. 57).

Ilja Bezrukov et al. “MR-based PET attenuation correction for PET /MR imaging”. In:
Seminars in nuclear medicine. Vol. 43. 1. Elsevier. 2013, pp. 4559 (cit. on p. 161).

Oren Boiman, Eli Shechtman, and Michal Irani. “In defense of nearest-neighbor based
image classification”. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2008, pp. 1-8 (cit. on pp. 1, 28, 110).

Yuri Boykov and Vladimir Kolmogorov. “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision”. In: IEEE transactions on pattern
analysis and machine intelligence 26.9 (2004), pp. 1124-1137 (cit. on pp. 1, 2, 61, 69,
90, 96, 103).

Eva-Maria Brinkmann. “Novel Aspects of Total Variation-Type Regularization in Imag-

ing”. PhD thesis. WWU Miinster, 2019 (cit. on pp. 5, 25, 26, 172).

Eva-Maria Brinkmann et al. “Bias reduction in variational regularization”. In: Journal
of Mathematical Imaging and Vision 59.3 (2017), pp. 534-566 (cit. on pp. 2, 121, 122,
151, 223).

http://dx.doi.org/10.1137/140994964
http://dx.doi.org/10.1137/140994964
http://dx.doi.org/10.1137/140994964

234

[13]

[14]

[15]

[22]

23]

Thomas Biihler and Matthias Hein. “Spectral clustering based on the graph p-Laplacian”.
In: Proceedings of the 26th Annual International Conference on Machine Learning.
ACM. 2009, pp. 81-88 (cit. on p. 17).

Martin Burger and Stanley Osher. “A guide to the TV zoo”. In: Level Set and PDE-
based Reconstruction Methods. Ed. by Osher Stanley Burger Martin. Lecture Notes in
Mathematics. WWU::96089. 2013, pp. 1-70 (cit. on pp. 1, 5, 22).

Martin Burger et al. Level Set and PDE Based Reconstruction Methods in Imaging:
Cetraro, Italy 2008, Editors: Martin Burger, Stanley Osher. Vol. 2090. Springer, 2013
(cit. on pp. 6, 165).

Florian Biither et al. “Impact of data-driven respiratory gating in clinical PET”. In:
Radiology 281.1 (2016), pp. 229-238 (cit. on p. 180).

Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for convex
problems with applications to imaging”. In: Journal of mathematical imaging and vision
40.1 (2011), pp. 120-145 (cit. on pp. 1, 2, 27, 115, 150, 170, 171, 194, 215).

Antonin Chambolle et al. “Stochastic primal-dual hybrid gradient algorithm with ar-
bitrary sampling and imaging applications”. In: SIAM Journal on Optimization 28.4
(2018), pp. 27832808 (cit. on pp. 215, 225).

Tony F Chan and Luminita A Vese. “Image segmentation using level sets and the
piecewise-constant Mumford-Shah model”. In: Tech. Rep. 0014, Computational Applied
Math Group. Citeseer. 2000 (cit. on pp. 2, 81).

Chris A Cocosco et al. “Brainweb: Online interface to a 3D MRI simulated brain
database”. In: NeuroImage. Citeseer. 1997 (cit. on p. 217).

Gaspar Delso et al. “Performance measurements of the Siemens mMR integrated whole-
body PET /MR scanner”. In: Journal of nuclear medicine 52.12 (2011), pp. 1914-1922
(cit. on pp. 161, 213).

Hendrik Meinert Dirks. “Variational Methods for Joint Motion Estimation and Image
Reconstruction”. PhD thesis. WWU Miinster, 2015 (cit. on pp. 175, 181, 225).

Wei Dong, Charikar Moses, and Kai Li. “Efficient k-nearest neighbor graph construction
for generic similarity measures”. In: Proceedings of the 20th international conference on
World wide web. 2011, pp. 577-586 (cit. on pp. 1, 28, 110).

John Duchi et al. “Efficient projections onto the 1 1-ball for learning in high dimensions”.
In: Proceedings of the 25th international conference on Machine learning. ACM. 2008,
pp. 272-279 (cit. on p. 39).

Matthias J Ehrhardt and Marta M Betcke. “Multicontrast MRI reconstruction with

structure-guided total variation”. In: SIAM Journal on Imaging Sciences 9.3 (2016),
pp. 1084-1106 (cit. on pp. 204, 226).

Matthias J Ehrhardt et al. “Faster PET reconstruction with a stochastic primal-dual
hybrid gradient method”. In: Wavelets and Sparsity XVII. Vol. 10394. International
Society for Optics and Photonics. 2017, 1039410 (cit. on pp. 215, 216, 225).

Bibliography 235

[27]

[28]

[29]

[30]

[31]

[39]

[40]

[41]

Abderrahim Elmoataz, Olivier Lezoray, and Sebastien Bougleux. “Nonlocal discrete
regularization on weighted graphs: a framework for image and manifold processing”.
In: IEEE Trans. Image Processing 17.7 (2008), pp. 1047-1060 (cit. on pp. 1, 17, 21, 22,
25).

Abderrahim Elmoataz, Matthieu Toutain, and Daniel Tenbrinck. “On the p-Laplacian
and oo-Laplacian on Graphs with Applications in Image and Data Processing”. In:
SIAM Journal on Imaging Sciences 8 (4 2015), pp. 2412-2451 (cit. on pp. 1, 17, 25,
26).

Thomas Ersepke et al. “A contactless approach for respiratory gating in PET using
continuous-wave radar”. In: Medical physics 42.8 (2015), pp. 4911-4919 (cit. on p. 180).

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. “Bilateral mesh denoising”. In:
22.3 (2003), pp. 950-953 (cit. on p. 154).

Jonas Geiping et al. “Fast Convex Relaxations using Graph Discretizations”. In: (2020).
arXiv: 2004.11075 [cs.CV] (cit. on pp. 133, 143, 224).

Yves van Gennip et al. “Mean curvature, threshold dynamics, and phase field theory
on finite graphs”. In: Milan Journal of Mathematics 82 (2014), pp. 3-65 (cit. on p. 17).

Guy Gilboa and Stanley Osher. “Nonlocal operators with applications to image process-
ing”. In: Multiscale Modeling & Simulation 7.3 (2008), pp. 1005-1028 (cit. on pp. 17,
21, 25).

Tom Goldstein et al. “Adaptive primal-dual hybrid gradient methods for saddle-point
problems”. In: arXiv preprint arXiv:1305.0546 (2013) (cit. on pp. 64, 171, 215).

L. Grady and C. V. Alvino. “The Piecewise Smooth Mumford—Shah Functional on an
Arbitrary Graph”. In: IEEFE Transactions on Image Processing 18.11 (2009), pp. 2547—
2561 (cit. on p. 84).

Eldad Haber and Michal Holtzman Gazit. “Model fusion and joint inversion”. In: Sur-
veys in Geophysics 34.5 (2013), pp. 675-695 (cit. on p. 181).

Mirco Hef3, Florian Biither, and Klaus P Schafers. “Data-driven methods for the deter-
mination of anterior-posterior motion in pet”. In: IEFFE transactions on medical imaging
36.2 (2016), pp. 422-432 (cit. on p. 180).

Mirco Hef3 et al. “A dual-Kinect approach to determine torso surface motion for res-
piratory motion correction in PET”. In: Medical physics 42.5 (2015), pp. 2276-2286
(cit. on p. 180).

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convezr analysis and minimiza-

tion algorithms I: Fundamentals. Vol. 305. Springer science & business media, 2013
(cit. on p. 6).

A. Horé and D. Ziou. “Image Quality Metrics: PSNR vs. SSIM”. In: 2010 20th Inter-
national Conference on Pattern Recognition. 2010, pp. 23662369 (cit. on p. 138).

IT Jolliffe. “Principal component analysis”. In: Technometrics 45.3 (2003), p. 276 (cit.
on p. 117).

http://arxiv.org/abs/2004.11075

236

[42]

[43]

[44]

[52]

[53]

[54]

Paul E Kinahan et al. “Attenuation correction for a combined 3D PET/CT scanner”.
In: Medical physics 25.10 (1998), pp. 20462053 (cit. on p. 161).

Vladimir Kolmogorov and Ramin Zabih. “What energy functions can be minimized
via graph cuts?” In: IEEFE Transactions on Pattern Analysis €& Machine Intelligence 2
(2004), pp. 147-159 (cit. on pp. 31, 49).

Thomas Kosters, Klaus P Schéfers, and Frank Wiibbeling. “EMRECON: An expec-
tation maximization based image reconstruction framework for emission tomography
data”. In: 2011 IEEE Nuclear Science Symposium Conference Record. IEEE. 2011,
pp. 4365-4368 (cit. on p. 213).

Solomon Kullback. Information theory and statistics. Courier Corporation, 1997 (cit.
on pp. 11, 164).

L. Landrieu and G. Obozinski. “Cut-Pursuit: Fast Algorithms to Learn Piecewise Con-
stant Functions on General Weighted Graphs”. In: SIAM Journal on Imaging Sciences
10.4 (2017), pp. 1724-1766. URL: https://doi.org/10.1137/17M1113436 (cit. on
pp. 1, 3, 41, 42, 44, 56, 84, 88, 90, 96, 125, 131, 132, 205, 223).

Loic Landrieu. “Learning structured models on weighted graphs, with applications to
spatial data analysis”. PhD thesis. PSL Research University, 2016 (cit. on pp. 1, 41,
131, 132, 207).

Loic Landrieu and Martin Simonovsky. “Large-scale point cloud semantic segmentation
with superpoint graphs”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 4558-4567 (cit. on p. 132).

Young-Su Lee and Soon-Yeong Chung. “Extinction and positivity of solutions of the
p-Laplacian evolution equation on networks”. In: Journal of Mathematical Analysis and
Applications 386 (2012), pp. 581-592 (cit. on p. 17).

Lefteris Livieratos et al. “Respiratory gating of cardiac PET data in list-mode acqui-
sition”. In: European Journal of Nuclear Medicine and Molecular Imaging 33.5 (2006),
pp. 584-588 (cit. on p. 180).

F. Lozes, A. Elmoataz, and O. Lezoray. “Partial Difference Operators on Weighted
Graphs for Image Processing on Surfaces and Point Clouds”. In: Image Processing,
IEEE Transactions on 23.9 (Sept. 2014), pp. 3896-3909 (cit. on pp. 17, 25, 149, 152).

Francois Lozes. “Traitments d’images sur surfaces et variétés avec mise en application
au patrimoine culturel 3D”. PhD thesis. Université Caen Normandie, 2006 (cit. on
pp. 25, 149, 152).

Richard Manber et al. “Joint PET-MR respiratory motion models for clinical PET
motion correction”. In: Physics in Medicine & Biology 61.17 (2016), p. 6515 (cit. on
p. 181).

D. Martin et al. “A Database of Human Segmented Natural Images and its Application
to Evaluating Segmentation Algorithms and Measuring Ecological Statistics”. In: Proc.
8th Int’l Conf. Computer Vision. Vol. 2. July 2001, pp. 416-423 (cit. on p. 111).

https://doi.org/10.1137/17M1113436

Bibliography 237

[55]

Cyril Meurie et al. “Morphological hierarchical segmentation and color spaces”. In:
International Journal of Imaging Systems and Technology 20.2 (2010), pp. 167-178
(cit. on p. 17).

Michael Moeller et al. “Color Bregman TV”. In: SIAM Journal on Imaging Sciences
7.4 (2014), pp. 2771-2806 (cit. on p. 25)

Jean Michel Morel and Sergio Solimini. “The Piecewise Constant Mumford and Shah
Model: Mathematical Analysis”. In: Variational Methods in Image Segmentation: with
seven image processing experiments. Boston, MA: Birkh&user Boston, 1995, pp. 46—62.
URL: https://doi.org/10.1007/978-1-4684-0567-5_5 (cit. on pp. 2, 81).

Delio Mugnolo. Semigroup Methods for Evolution Equations on Networks. Springer New
York, 2014 (cit. on p. 17).

Frank Natterer and Frank Wiibbeling. Mathematical methods in image reconstruction.
Vol. 5. Siam, 2001 (cit. on pp. 161-163, 166).

Philip J Noonan et al. “Accurate markerless respiratory tracking for gated whole body
PET using the Microsoft Kinect”. In: 2012 IEEE Nuclear Science Symposium and
Medical Imaging Conference Record (NSS/MIC). IEEE. 2012, pp. 3973-3974 (cit. on
p. 180).

Bui Tuong Phong. “Illumination for computer generated pictures”. In: Communications

of the ACM 18.6 (1975), pp. 311-317 (cit. on p. 154).

Thomas Pock and Antonin Chambolle. “Diagonal preconditioning for first order primal-
dual algorithms in convex optimization”. In: (2011), pp. 1762-1769 (cit. on pp. 28, 171,
224).

Thomas Pock et al. “An algorithm for minimizing the Mumford-Shah functional”. In:
2009 IEEFE 12th International Conference on Computer Vision. IEEE. 2009, pp. 1133—
1140 (cit. on p. 27).

Thomas Pock et al. “An algorithm for minimizing the Mumford-Shah functional”. In:
2009 IEEE 12th International Conference on Computer Vision. IEEE. 2009, pp. 1133—
1140 (cit. on p. 84).

Julian Rasch. “Advanced Convex Analysis for Improved Variational Image Reconstruc-
tion”. PhD thesis. WWU Miinster, 2018 (cit. on pp. 122, 172, 181, 188, 204).

Julian Rasch, Eva-Maria Brinkmann, and Martin Burger. “Joint reconstruction via cou-
pled Bregman iterations with applications to PET-MR imaging”. In: Inverse Problems
34.1 (Dec. 2017), p. 014001. URL: https://doi.org/10.1088%2F1361-6420%2Faa9425
(cit. on p. 13).

Julian Rasch, Eva-Maria Brinkmann, and Martin Burger. “Joint reconstruction via cou-
pled Bregman iterations with applications to PET-MR imaging”. In: Inverse Problems
34.1 (2017), p. 014001 (cit. on pp. 181, 204, 226).

Julian Rasch and Antonin Chambolle. “Inexact first-order primal-dual algorithms”. In:
Computational Optimization and Applications (Mar. 2020). URL: https://doi.org/
10.1007/s10589-020-00186-y (cit. on pp. 214, 218).

https://doi.org/10.1007/978-1-4684-0567-5_5
https://doi.org/10.1088%2F1361-6420%2Faa9425
https://doi.org/10.1007/s10589-020-00186-y
https://doi.org/10.1007/s10589-020-00186-y

238

[69]

[70]

[75]

[76]

Julian Rasch et al. “Dynamic MRI reconstruction from undersampled data with an
anatomical prescan”. In: Inverse problems 34.7 (2018), p. 074001 (cit. on pp. 181, 226).

Andrew J Reader et al. “Joint estimation of dynamic PET images and temporal basis
functions using fully 4D ML-EM”. In: Physics in Medicine and Biology 51.21 (Oct.
2006), pp. 5455-5474. URL: https://doi.org/10.1088%2F0031-9155%2F51%2F21%
2F005 (cit. on pp. 2, 176, 181, 225).

R Tyrrell Rockafellar. Convexr analysis. 28. Princeton university press, 1970 (cit. on
pp. 5, 84).
Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total variation based

noise removal algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992), pp. 259—
268 (cit. on pp. 1, 8, 29).

Alex Sawatzky. “(Nonlocal) Total Variation in Medical Imaging”. PhD thesis. WWU
Miinster, 2011 (cit. on pp. 161, 165, 172).

Alex Sawatzky et al. “EM-TV methods for inverse problems with Poisson noise”. In:
Level Set and PDE Based Reconstruction Methods in Imaging. Springer, 2013, pp. 71—
142 (cit. on pp. 2, 3, 170-174, 225).

Daniel Scharstein et al. “High-resolution stereo datasets with subpixel-accurate ground
truth”. In: German conference on pattern recognition. Springer. 2014, pp. 31-42 (cit. on
p. 111).

Mark Schmidt, Nicolas L. Roux, and Francis R. Bach. “Convergence Rates of Inexact
Proximal-Gradient Methods for Convex Optimization”. In: Advances in Neural Infor-
mation Processing Systems 24. Ed. by J. Shawe-Taylor et al. Curran Associates, Inc.,
2011, pp. 1458-1466. URL: http://papers.nips . cc/paper /4452~ convergence -
rates-of-inexact-proximal-gradient-methods-for-convex-optimization.pdf
(cit. on p. 214).

David I. Shuman et al. “The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains”. In: IFEFE
Signal Processing Magazine 30 (2013), pp. 83-98 (cit. on p. 17).

Robert L Siddon. “Fast calculation of the exact radiological path for a three-dimensional
CT array”. In: Medical physics 12.2 (1985), pp. 252255 (cit. on p. 213).

Lindsay I Smith. A tutorial on principal components analysis. Tech. rep. 2002 (cit. on
p. 117).

Suvrit Sra. “Fast projections onto | 1, g-norm balls for grouped feature selection”. In:
Joint Furopean Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2011, pp. 305-317 (cit. on p. 39).

Suvrit Sra. “Fast projections onto mixed-norm balls with applications”. In: Data Mining
and Knowledge Discovery 25.2 (2012), pp. 358-377 (cit. on p. 38).

Stanford University. The Stanford 3D Scanning Repository. URL: https://graphics.
stanford.edu/data/3Dscanrep/ (cit. on pp. 111, 149).

https://doi.org/10.1088%2F0031-9155%2F51%2F21%2F005
https://doi.org/10.1088%2F0031-9155%2F51%2F21%2F005
http://papers.nips.cc/paper/4452-convergence-rates-of-inexact-proximal-gradient-methods-for-convex-optimization.pdf
http://papers.nips.cc/paper/4452-convergence-rates-of-inexact-proximal-gradient-methods-for-convex-optimization.pdf
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/

Bibliography 239

[83] Evgeny Strekalovskiy and Daniel Cremers. “Real-time minimization of the piecewise
smooth Mumford-Shah functional”. In: Furopean conference on computer vision. Springer.
2014, pp. 127-141 (cit. on pp. 84, 90, 92, 93, 96, 125, 129, 131, 132).

[84] Yujing Sun, Scott Schaefer, and Wenping Wang. “Denoising point sets via L0 mini-
mization”. In: Computer Aided Geometric Design 35 (2015), pp. 2-15 (cit. on pp. 154,
295).

[85] Daniel Tenbrinck, Fjedor Gaede, and Martin Burger. “Variational Graph Methods for
Efficient Point Cloud Sparsification”. In: (Mar. 7, 2019). arXiv: 1903 . 02858 [cs,
math]. URL: http://arxiv.org/abs/1903.02858 (visited on 04/17/2019) (cit. on
p. 149).

[86] A.N. Tikhonov and V.I.A. Arsenin. “Solutions of ill-posed problems”. In: Scripta series
in mathematics (1977) (cit. on pp. 3, 188).

[87] Silvia Villa et al. “Accelerated and inexact forward-backward algorithms”. In: SIAM
Journal on Optimization 23.3 (2013), pp. 1607-1633 (cit. on p. 214).

[88] Zhou Wang et al. “Image quality assessment: from error visibility to structural sim-
ilarity”. In: IEEFE transactions on image processing 13.4 (2004), pp. 600-612 (cit. on
p. 138).

[89] Miles N Wernick and John N Aarsvold. Emission tomography: the fundamentals of PET
and SPECT. Elsevier, 2004 (cit. on p. 161).

[90] Sunil Kumar Yadav, Ulrich Reitebuch, and Konrad Polthier. “Mesh denoising based on
normal voting tensor and binary optimization”. In: IEEFE transactions on visualization
and computer graphics 24.8 (2018), pp. 23662379 (cit. on p. 225).

[91] Mehmet Yavuz and Jeffrey A Fessler. “Statistical image reconstruction methods for
randoms-precorrected PET scans”. In: Medical Image Analysis 2.4 (1998), pp. 369-378
(cit. on p. 161).

[92] Xiang Zeng, Wei Chen, and Qunsheng Peng. “Efficiently solving the piecewise constant
mumford-shah model using graph cuts”. In: Technical report, Technical report, Dept.
of Computer Science. Citeseer, 2006 (cit. on p. 84).

[93] Yong Zhao et al. “Robust and effective mesh denoising using L0 sparse regularization”.
In: Computer-Aided Design 101 (2018), pp. 82-97 (cit. on p. 225).

[94] Youyi Zheng et al. “Bilateral normal filtering for mesh denoising”. In: IEEE Trans-
actions on Visualization and Computer Graphics 17.10 (2011), pp. 1521-1530 (cit. on
p. 154).

[95] Xueyuan Zhou and Mikhail Belkin. “Semi-supervised learning by higher order regular-
ization”. In: AISTATS. 2011, pp. 892-900 (cit. on p. 17).

http://arxiv.org/abs/1903.02858
http://arxiv.org/abs/1903.02858
http://arxiv.org/abs/1903.02858

	Contents
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Mathematical Statements and Notations
	2.2 Analysis of Different Data-Terms
	2.2.1 The L2-Data-Term
	2.2.2 The Weighted L2-Data-Term
	2.2.3 Kullback-Leibler Data-Term

	I Graph Cut-Pursuit
	3 Introduction to Graph Processing
	3.1 Finite Weighted Graphs
	3.1.1 Basic Graph Terminology
	3.1.2 Vertex and Edge Functions
	3.1.3 First-Order Partial Difference Operators on Graphs
	3.1.4 Total Variation Regularization on Graphs

	3.2 Graph p-q-Laplace Operator
	3.3 Optimization Problems on Graphs
	3.3.1 ROF on Graphs
	3.3.2 Weighted ROF on Graphs

	3.4 Graph Cuts for Energy Minimization

	Appendix
	3.A Reformulating p-q-Laplace Operator
	3.B Derivative of the p-q-TV Regularizer
	3.C Proximity Operator of the p-q-TV Regularizer

	4 Cut-Pursuit
	4.1 Introduction to Partitioning and Reduced Problems
	4.2 Finer Partitioning via Graph Cuts
	4.2.1 Refining the Partition
	4.2.2 Solving the Partition Problem
	4.2.3 Direction for Isotropic Cut-Pursuit

	4.3 Cut-Pursuit Algorithm
	4.4 Cut-Pursuit Algorithm for ROF Problems
	4.4.1 Reduced ROF Problem
	4.4.2 Partition Problem of the ROF Problem
	4.4.3 Directions for the ROF Partition Problem

	Appendix
	4.A General Regularizer for ROF
	4.B Reduced Terms
	4.B.1 Reduced (Weighted) L2-Data-Term
	4.B.2 Reduced p-q-TV Regularizer

	4.C Derivation of Partition Problem

	5 Cut-Pursuit for Minimal Partition Problems
	5.1 Minimal Partition Cut-Pursuit Algorithm
	5.1.1 Solving the Partition Problems
	5.1.2 Solving the Reduced Minimal Partition Problem

	5.2 Cut-Pursuit for L0-ROF
	5.2.1 Solving the Partition Problems
	5.2.2 Solving the Reduced Minimal Partition Problem

	Appendix
	5.A Proof: Merging Values

	6 Numerics: Cut-Pursuit for TV Problems
	6.1 Iterative Behavior of the Cut-Pursuit Algorithm
	6.2 Cut-Pursuit Convergence and Runtime
	6.3 Isotropic Cut-Pursuit and Choosing Directions
	6.4 Debiasing

	7 Numerics: Minimal Partition Problem
	7.1 Comparing Different Constant Step Sizes
	7.2 Different Partition Optimization Strategies
	7.3 Comparison to Other Algorithms
	7.4 Discretization via Minimal Partitions
	7.4.1 Related Superpixel Methods
	7.4.2 Minimal Partition as a Superpixel Method
	7.4.3 Compare Superpixel Methods
	7.4.4 Solving Problems on Discretization
	7.4.5 Denoising Minimal Partitions

	8 Numerics: Point Cloud Sparsification via Cut-Pursuit
	8.1 Anisotropic L1-TV Regularization
	8.2 Comparison of Anisotropic L1-TV and L0-TV Regularization
	8.3 Visual Comparison of Different TV Regularizations

	II Dynamic PET Image Reconstruction
	9 Introduction to PET Reconstruction
	9.1 Positron Emission Tomography
	9.2 Expectation Maximization Reconstruction

	10 Total Variation Regularization on Reconstruction
	10.1 First-Order Primal-Dual for PET-TV
	10.2 Forward-Backward EM-TV

	11 Dynamic PET Reconstruction
	11.1 Listmode PET Data and EM Reconstruction
	11.2 Fully4D Reconstruction
	11.2.1 Update for the Spatial Weights
	11.2.2 Update for the Basis Functions
	11.2.3 Fully4D Algorithm and Implementation Details

	11.3 Regularized Fully4D

	12 Numerics: Dynamic PET Reconstruction
	12.1 Dynamic Data without Motion
	12.2 Dynamic Data with Motion

	III Cut-Pursuit Based Reconstruction
	13 Cut-Pursuit on PET Reconstruction
	13.1 Graph Setting for Reconstructions
	13.2 Cut-Pursuit for Regularized PET Reconstruction
	13.3 Efficient Reduced Operator Computation
	13.4 Solving the Reduced Problem
	13.4.1 Primal-Dual for Reduced Problem
	13.4.2 FB-EM-TV for Reduced Problem

	14 Numerics
	14.1 Implementation Details
	14.2 Solving the Reduced Problem
	14.3 Full Operator Evaluations
	14.4 Numerical Comparison
	14.5 Comparison of Cut-Pursuit with Direct Algorithms

	15 Summary and Conclusion
	15.1 Efficient Cut-Pursuit Algorithm
	15.2 Dynamic PET and Regularized Fully4D
	15.3 Cut-Pursuit Based Reconstruction

	List of Figures
	Bibliography

	Leere Seite

