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To Peter Schneider on the occasion of his 60th birthday

Abstract. The aim of this note is to prove certain compatibilities of determinant functors
with spectral sequences and (co)homology thereby extending results of [3] and refining a
description in [9]. It turns out that the determinant behaves as well as one would have
expected in this regard, only that we were not able to find references for it in the literature.
The results are crucial for descent calculations in the context of Iwasawa theory [12] or
Equivariant Tamagawa Number Conjectures [4, 5, 6].

1. Introduction

As a generalization or rather refinement of Euler–Poincare characteristics
determinant functors have been first studied by Knudsen and Mumford [10] in
the context of perfect complexes of OX -modules on a scheme X . The theory
has been generalized by Deligne [7] and Knudsen [9] to determinants on exact
categories with values in commutative Picard categories. Apart from applica-
tions in algebraic geometry determinant functors are a fundamental technical
tool in Burns and Flach’s formulation of Equivariant Tamagawa Number Con-
jectures [4, 5, 6], they have been used in Iwasawa theory by Kato, Perrin–Riou
and Fontaine, Huber and Kings. In particular, for an associative ring R with
unit, Fukaya and Kato present an ad-hoc construction of determinant functors
on perfect complexes of R-modules in [8]. Witte used yet another approach
in his thesis [14], see also the nice survey article [11]. Determinant functors
on triangulated categories have been constructed by Breuning [2], while the
present note is strongly based on [3], see also [1].

This note studies the interaction of determinant functors and spectral se-
quences extending the work of Knudsen [9]. This is applied to get a compati-
bility of the determinant of a derived tensor product Y ⊗LA, computed either
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directly or after filtering either the module (or complex) A, or filtering the pro-
jective resolution responsible for L, or both. On a filtered bounded complex,
we introduce a number of increasingly fine filtrations and exploit many times
the fact that the determinant of a complex can be obtained by multiplying the
determinants of the graded pieces of the filtration, in a way that is compatible
with refining the filtration.

Our motivation for this note stems from descent calculations in Iwasawa
theory involving determinant functors. While from the theoretical point of
view it is quite elegant to work with complexes, e.g. representing Galois co-
homology like RΓ(G,T) where G is the absolute Galois cohomology say of a
global or local field and T denotes a big Galois representation, i.e., a module
over some Iwasawa algebra with an additional compatible action by G, it of-
ten turns out in praxis that explicit descent calculations involve cohomology
groups Hi(G,T) instead. Thus it seems crucial to the author to clarify how to
compare the descent, i.e., the application of some derived or hyper Tor-functor
to the complex and cohomology groups, respectively. From the technical point
of view it concerns the question how the corresponding Tor-spectral sequence
(33) behaves with respect to determinants and to the functor H which asso-
ciates to a complex its (co)homology. To this end let R,R′ be two regular
rings and Y a (R,R′)-bimodule, which is finitely generated and projective as
R′-module. Then, as a consequence of our main result Theorem 3.2 we obtain
the commutativity of the following diagram (34)

(1) dR′(Y ⊗L A)

∼=

��

∼= // ∏
i dR′(Y ⊗L Hi(A))

(−1)i

∼=

��
∏

j dR′(TorRj (Y,A))
(−1)j

∏

i,j dR′(TorRj (Y,Hi(A))
(−1)i+j )

∼=
oo

where the bottom row is induced by the spectral sequence (33), the vertical
isomorphisms are induced by the functor H while the upper line is explained
in Subsection 3.3. A typical example in Iwasawa theory arises as follows: R is
the Iwasawa algebra Λ(G) of a compact p-adic Lie group quotient G of G, T is
a G-stable lattice in some p-adic representation V of G, T := Λ(G)♯ ⊗Zp T is

the Iwasawa deformation of T , on which G acts as g · (λ⊗ t) := λḡ−1⊗g · t, if ḡ
denotes the image of g in G, R = Y is Zp and A := RΓ(G,T) (considered as a
chain complex by the usual renumbering) with H−i(A) ∼= Hi(G,T) isomorphic
to Iwasawa cohomology HiIw(T ) with respect to G. Then, by [8, Prop. 1.6.5]
using Zp ⊗Λ(G) T

∼= T we have

Y ⊗L A = Zp ⊗Λ(G) RΓ(G,T) ∼= RΓ(G, T )

with TorR−j(Y,A)
∼= Hj(G, T ) while TorRj (Y,H−i(A)) equals the group homol-

ogy Hj(G,H
i
Iw(T )) of the Iwasawa cohomology with respect to G.

In order to obtain Theorem 3.2 in Section 3 we first recall and develop a
general description for determinants in spectral sequences in Section 2.
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2. Determinants and spectral sequences

2.1. Spectral sequences. Let C = (Cn, ∂n)n∈Z be a filtered cochain complex
with values in some abelian category E , i.e., an object in the category of cochain
complexes together with a decreasing filtration

F : . . . ⊆ F i+1(C) ⊆ F i(C) ⊆ . . .

within this category. We shall assume henceforth that the filtration is bounded,
i.e., F t(C) = C and F s(C) = 0 for some s, t ∈ Z, as well as that the complex C
itself is bounded—then we shall say for simplicity that C is a bounded filtered
complex. We will now recall some basic facts and notation concerning the
associated convergent (weakly convergent, biregular) cohomological spectral
sequence

E·,·
r = (Epqr )pq ⇒ Hp+q(C), r ≥ 0,

with a specific viewpoint from the perspective of determinants. In particular
it is often useful to consider a spectral sequence as a complex with respect to
its total degree

E·
r = (Enr , ∂

n), Enr :=
⊕

p

Ep,n−pr , ∂nr :=
⊕

∂p,n−pr .

Recall that we have the canonical identification

Epq0 = F pCp+q/F p+1Cp+q, En0 =
⊕

p

F pCn/F p+1Cn

and that the differentials ∂pqr are induced from ∂n of C. In the sequel we shall
need a couple of different filtrations. To this end we define

Apqr := ker(F pCp+q → Cp+q+1/F p+rCp+q+1) = F pCp+q ∩ ∂−1(F p+rCp+q+1),

Bpqr := ∂Ap−r+1,q+r−2
r−1

and identify

(2) Epqr = (Apqr + F p+1Cp+q)/(Bpqr + F p+1Cp+q) ∼= Apqr /(B
pq
r +Ap+1

r−1).

The differentials of C induce differentials on Ar and Er of degree r such that
the following diagram is commutative

Cp+q
∂ // Cp+q+1

Apqr

����

?�

OO

∂ // Ap+r,q−r+1
r

����

?�

OO

Epqr
∂ // Ep+r,q−r+1

r .

Consider also the cycle complex Z = Z(C) and boundary complex B =
B(C) with their induced filtration from C as well as the cohomology complex
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H = H(C) (all with trivial differentials) with induced filtration via the first of
the two canonical complexes

(3) 0 // B // Z // H // 0

and

(4) 0 // Z // C // B[1] // 0 .

Here, if C is a (cochain) complex, then C[1] denotes the shifted one, i.e.,
C[1]i = Ci+1 with differential ∂C[1] = −∂C . In other words

F pHn(C) = F pZ +Bn/Bn ∼= F pZn/F pBn

and

(5) grpHn = F pHn/F p+1Hn ∼= F pZn+Bn/F p+1Zn+Bn ∼= Epq∞ , p+q = n.

As suggested by Knudsen in [9, §3] the derived filtrations F ir(C) = DF ir =
DF ir(C), r ≥ 0, associated to F (C) are probably the most appropriate ones in
the context of determinants and spectral sequences. They are given as follows

∂ // F ir(C
n) := Ap,qr

∂ // F ir(C
n+1) = Ap+r,q−r+1

r
∂ //

where the indices transform always as

p = i+ nr, q = n(1− r)− i, n = p+ q.

Note that F0(C) = F (C). We write grir(C) := griFr (C) for the associated
graded complexes

∂ // grir(C
n) := F ir(C

n)/F i+1
r (Cn)

∂ // grir(C
n+1) = F ir(C

n+1)/F i+1
r (Cn+1)

∂ //

and set

grr(C) :=
⊕

i

grir(C).

Then according to [9, Prop. 3.5] it is easily checked that there is a canonical
quasi-isomorphism

qr : grr(C) → E·
r

of complexes which is induced by the natural projections

Ap,n−pr /Ap+1,n−p−1
r ։ Ap,n−pr /(Bp,n−pr +Ap+1,n−p−1

r−1 )

of the summands of the individual objects. In particular, there is a canonical
isomorphism

H(qr) : H(grr(C)) ∼= (E·
r+1, 0)

where both complexes are endowed with trivial differentials.
For later purposes we calculate the kernel of qr or rather its ith component

Ki
r := ker

(

grir(C) → Ei+·r,·(1−r)−i
r

)
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such that ker(qr) =
⊕

iK
i
r. Then K

i
r is acyclic and looks like

(6) (Bp−rr +Ap−r+1
r−1 )/Ap−r+1

r
∂ // (Bpr +Ap+1

r−1)/A
p+1
r

∂ // (Bp+rr +Ap+r+1
r−1 )/Ap+r+1

r

where the middle term is put in degree n and where we omit now and sometimes
later the second superscripts (= n minus the first one) for better readability.
We obtain canonical isomorphisms
(7)

Ap+1
r−1/A

p+1
r = Ki,n

r /Z(Ki,n
r )

∂
∼=

// B(Ki,n+1
r ) = (Bp+rr +Ap+r+1

r )/Ap+r+1
r ,

and—on the level of complexes—

(8) Ki
r/Z(K

i
r)

∂
∼=

// B(Ki
r)[1].

2.2. Determinants. Recall that a (commutative) Picard category is a groupo-
id P with a product ⊗ : P × P → P which satisfies compatible associativity,
commutatitivity and unit constraints, and for which every object in P is invert-
ible, see [9, Appendix A] for more details. In this note we will in general not
explicitly mention the associativity and commutativity isomorphisms; by the
coherence theorem for AC tensor categories this will not cause any confusion.
We fix a unit object 1 = 1P which is unique up to unique isomorphism. Now
we choose a determinant functor [9, 2] d : Eiso → P on E with values in some
(commutative) Picard category and extend it [9, Thm. 2.3] to the category of
bounded cochain complexes Cb(E)qis of objects in E where we write “qis” for the
quasi-isomorphisms in Cb(E). While the definition of d for quasi-isomorphisms
is rather lengthy (loc.cit., Def. 2.24), on the objects, i.e., complexes C, we thus
have by definition

d(C) =
∏

i

d(Ci)(−1)i ,

whence we obtain a canonical map

e0 : d(C)
d(F•)
∼=

∏

p

d(F pC/F p+1C) = d(E·
0, ∂0)

induced from the filtration F • on C. Following [3, Prop. 3.1] there is a canonical
isomorphism

ηC : d(C) → d(H(C))

for each C ∈ Cb(E) which is induced by the sequences (3), (4) as well as by the
canonical identification µB : d(B)d(B[1]) ∼= 1 as described in [3, Lemma 2.3].
Thus we obtain canonical isomorphisms

ηr : d(E·
r, ∂)

ηEr // d(H(E·
r))

∼= d(E·
r+1, 0)=d(E·

r+1, ∂r)

for all r ≥ 0.
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On the other hand, associated with the derived filtration F irC of C we have
canonical maps (for each r ≥ 0) which identify the determinant of C with the
product over the determinants of all subquotients grir(C) of FrC. They induce
isomorphisms

er : d(C)
∼= // ∏

i d(gr
i
r(C))

∼= // d(grr(C))
d(qr) // d((E·

r , ∂r))

and a diagram

(9) d(C)

er %%❏❏
❏

❏

❏

❏

❏

❏

❏

❏

∼= // d(grr(C))

d(qr)

��

ηgrr(C)// d(H(grr(C)))

d(H(qr))

��
d(E·

r)
ηr // d(E·

r+1)

which is commutative by [3, Prop. 3.1].

Lemma 2.3. For all r ≥ 0 we have

er = ηr−1 ◦ . . . ◦ η0 ◦ e0

upon identifying d((Er, ∂r)) = d((Er , 0)).

We postpone the proof of the Lemma and consider first the case r = ∞: We
set e∞ := er for r big enough such that ∂r = 0, whence E·

∞ = E·
r. Similarly

we shall set η∞ = ηr for the same (fixed such) r.
Although the derived filtration will not stabilize for big r in the literal sense,

it stabilizes if we consider it up to reindexing and up to omitting or inserting
trivial filtration steps. The resulting filtration class is denoted by F∞, for which
a representing filtration can be described as follows. First consider generalized
good truncations

τ j≤n : · · ·
∂ // Cn−2 ∂ // ∂−1(F j(Cn))

∂ // F jZn
∂ // 0

∂ // · · ·

for t ≤ j ≤ s and m0 := min{n|Cn 6= 0} ≤ n ≤ n0 := max{n|Cn 6= 0} with
associated graded complexes

gr(j,n) : · · ·
∂ // 0

∂ // ∂−1(F j(Cn))/∂−1(F j+1(Cn))

∂ // F jZn/F j+1Zn
∂ // 0 .

Then it is easy to check that F∞ can be represented by

F∞ : 0 = τs≤m0
⊆ · · · ⊆ τ j≤n ⊆ · · ·

· · · ⊆ τ t≤n0−1 = τs≤n0
⊆ · · · ⊆ τ j≤n0

⊆ · · · ⊆ C = τ t≤n0
.

Refining the latter by the filtration

(10) 0 ⊆ B ⊆ Z ⊆ C,

or by the slightly finer one

(11) 0 ⊆ B ⊆ . . . ⊆ B + F pZ ⊆ . . . ⊆ Z ⊆ C,
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we obtain—up to reindexing and up to omitting or inserting trivial filtration
steps—the filtration

G : . . . ⊆ τ j+1
≤n ⊆ B(τ j≤n) ⊆ Z(τ j≤n) ⊆ τ j≤n ⊆ . . .

with the property that

(12) Z(τ j≤n)/τ
j+1
≤n = Z(gr(j,n))

and

(13) B(τ j≤n)/τ
j+1
≤n = B(gr(j,n))

as can be easily checked. More precisely, Z(τ j≤n) and B(τ j≤n), which are dif-

ferent from the earlier defined Z(τ j≤n) and B(τ j≤n), are given as follows:

Z(τ j≤n) : · · ·
∂ // Cn−2 ∂ // ∂−1(F j+1(Cn))

∂ // F jZn
∂ // 0

∂ // · · ·

and

B(τ j≤n) : · · ·
∂ // Cn−2 ∂ // ∂−1(F j+1(Cn))

∂ // F jBn + F j+1Zn

∂ // 0
∂ // · · ·

Then the associated graded complexes grG(C) are given as follows

(14) τ j≤n/Z(τ j≤n) = ∂−1(F j(Cn))/∂−1(F j+1(Cn))[−(n− 1)],

Z(τ j≤n)/B(τ
j
≤n) = F jZn/(F jBn + F j+1Zn)[−n]

∼= Ej,n−j∞ [−n] ∼= grjHn(C)[−n]

and

(15) B(τ j≤n)/τ
j+1
≤n = (F jBn + F j+1Zn)/F j+1Zn[−n] ∼= F jBn/F j+1Bn[−n],

where for an object M ∈ E we write M [−n] for the obvious complex concen-
trated in degree n (this convention is compatible with shifting in the following
sense (M [0])[n] =M [n]). On the other hand the refinement1 R of the filtration

(11) by F∞ = (τ j≤n) looks like

0 ⊆ B ∩ τs−1
≤m0

⊆ . . . ⊆ B ∩ τ j≤n ⊆ . . . B ⊆ . . . ⊆ B + F p+1Z ⊆

B + F p+1Z + (B + F pZ) ∩ τp≤m0
⊆ B + F p+1Z + (B + F pZ) ∩ τp≤m0+1 ⊆ . . .

B + F p+1Z + (B + F pZ) ∩ τp≤n ⊆ B + F p+1Z + (B + F pZ) ∩ τp≤n ⊆ . . .

. . . ⊆ B + F pZ ⊆ . . .

Z ⊆ Z + τs−1
≤m0+1 ⊆ . . . ⊆ Z + τ j≤n ⊆ . . . ⊆ C

1Given two decreasing filtrations F,G the refinement of F by G is given as follows

. . . ⊆ F j ⊆ . . . ⊆ F j + (F j−1 ∩Gi) ⊆ F j + (F j−1 ∩Gi−1) ⊆ . . . ⊆ F j−1 ⊆ . . .
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with associated graded complexes gr?R(C)

F jBn/F j+1Bn[−n], . . . , grpHn(C)[−n], . . .

. . . , ∂−1(F jCn)/∂−1(F j+1Cn)[−(n− 1)].

Now we are ready to prove the following

Proposition 2.4. For each bounded filtered complex C there is a canonical
commutative diagram

(16) d(C)

ηC

��

e∞ // d(E·
∞)

d(ψ)

��
d(H(C))

d(F•H)// ∏
p d(gr

pH(C))

where ψ : E·
∞

∼=
⊕

p gr
pH(C) is the canonical isomorphism being part of the

convergent spectral sequence associated to C and induced by (5).

Proof. Recall first that ηC is induced by the filtration (10) above using the
exact sequences (4) and (3). Recall that

d(grR(C)) =
∏

n,j

d(∂−1(F jCn)/∂−1(F j+1Cn)[−n− 1])·

·
∏

p,n

d(grpHn(C)[−n])
∏

n,j

d(F jBn/F j+1Bn[−n])

∼=
∏

j

d(∂−1(F jC)/∂−1(F j+1C))
∏

p

d(grpH(C))
∏

j

d(F jB/F j+1B)

and set abbreviating grF∞
by gr∞

R := d(gr∞/Z(gr∞))d(H(gr∞))d(B(gr∞))

∼= d(B(gr∞)[1])d(H(gr∞))d(B(gr∞)).
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By the refinement principle [9, Prop. 1.9] applied to the filtrations F∞ and
(11) we obtain the following diagram

d(C)

can

��

d(F∞) //
d(gr∞(C))

��

ηgr∞(C) //
d(H(gr∞(C))) //

d(E∞)

d(ψ)

��

d(grG(C)) //

��

R

µB(gr∞)

OO

d(grR(C))

d(C/Z)d(Z/B)d(B)

��

//
d(C/Z)d(gr·H(C))d(B)

��

OO

(?)

d(B[1])d(H)d(B)

µB

��

//
d(B[1])d(gr·H(C))d(B)

µB

��
d(H)

can //
d(gr·H) d(gr·H)

in which all interior rectangles clearly commute except possibly (?). Here we
write gr·H for the complex

⊕

p gr
pH (with trivial differentials). Note that the

left vertical map is just ηC while the upper horizontal map is e∞ by diagram (9),
because η∞ is the identity. After canceling gr·H(C) and the part corresponding
to the middle part ofR between B and Z, respectively, and taking into account
the identification

∂−1(F j(Cn))/∂−1(F j+1(Cn)) ∼= F jBn/F j+1Bn

the commutativity of (?) boils down to the commutativity of the following
diagram (which is upside down in comparison with the previous diagram!)

d(B[1])d(B)

��

µB // 1

∏
i,n d(F iBn/F i+1Bn[−n+1])

·
∏
i,n d(F iBn/F i+1Bn [−n])

��

∏
µ
FiBn/Fi+1Bn // 1

d(B(gr∞)[1])d(B(gr∞))
µB(gr∞) // 1

which follows immediately from [3, Lemma 2.3]. Here the upper square uses
(part of) R, while the lower one uses the identifications (13) and (15), i.e.,

B(gr∞) ∼=
⊕

i,n

F iBn/F i+1Bn[−n]. �
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Remark 2.5. By similar, but simpler considerations regarding the filtration
(10) and the (usual) good truncation filtration τ≤n(= τ t≤n) one sees that ηC
can also be described using the canonical filtration

. . . ⊆ τ≤n−1 ⊆ B(τ≤n) ⊆ Z(τ≤n) ⊆ τ≤n ⊆ . . .

with

Z(τ≤n) : · · ·
∂ // Cn−2 ∂ // Zn−1 ∂ // Zn

∂ // 0 // · · ·

and

B(τ≤n) : · · ·
∂ // Cn−2 ∂ // Zn−1 ∂ // Bn

∂ // 0 // · · ·

together with the identifications Cn−1/Zn−1 ∼= Bn induced by ∂.

Now we come back to the

Proof (of Lemma 2.3). Denote by R0 the refinement of the filtration Fr(C)
such that its graded pieces correspond to

grir/Z(gr
i
r) : A

p−r
r /Ap−rr+1

// Apr/A
p+1
r+1

// Ap+rr /Ap+rr+1 ,

H(grir) : E
p−r
r+1

0 // Epr+1
0 // Ep+rr+1 ,

and

B(grir) : (Bp−rr+1 +Ap−r+1
r )/Ap−r+1

r
// (Bpr+1 +Ap+1

r )/Ap+1
r

// (Bp+rr+1 +Ap+r+1
r )/Ap+r+1

r .

We write R1 for the refinement of Fr+1(C) by R0. Then, by the refinement
principle applied to Fr+1(C) and R0 the left upper square in the following
diagram is commutative:

d(C)

��

// d(grr(C)) // d(grR0(C))

��

a // d(H(grr(C)))

��
d(grr+1(C)) // d(grR1(C))

b // d((E·
r+1, 0))

d(grr+1(C))
d(qr) // d((E·

r+1, ∂r+1)).

Note that the composite from the left upper corner to the right lower corner
via the left lower corner is just er+1. The upper horizontal line here is defined
such that it coincides with the upper line of the diagram (9), in particular, by
the definition of ηgrr the map a is induced by the identifications
(17)

Apr/A
p+1
r+1

∂ // (Bpr+1 +Ap+1
r )/Ap+1

r , i.e., grir/Z(gr
i
r)

∂ // B(grir)[1]
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plus µB(grir)
as above. The map b makes by definition the lower rectangle

commutative, i.e., it is induced by the identifications of the canonical map
d(ker(qr)) → d(H(ker(qr))) = 1 as the involved complex is acyclic. Thus b
corresponds to the identifications given by (7) or (8), which are the same as
in (17) for a whence the whole diagram is commutative and combined with
diagram (9) the lemma is proved. Indeed, upon identifying d((Er , ∂r)) =
d((Er , 0)) the composite from the left upper corner to the right lower corner
via the right upper corner is nothing else than ηr ◦ er. �

Lemma 2.6. Let ∆ : 0 // A // B // C // 0 be a strictly exact
sequence of bounded filtered complexes, i.e.,

0 // F pA // F pB // F pC // 0 is exact for all p. Then the
sequence of complexes

E0(∆) : 0 // E·
0(A) // E·

0(C) // E·
0(C) // 0

is also exact and gives rise to the bottom line in the following commutative
diagrams

d(B)

ei(B)

��

d(∆) // d(A)d(C)

ei(A)ei(C)

��
d(Ei(B))

d(Ei(∆))// d(Ei(A))d(Ei(C))

for i = 0, 1 with d(E1(∆)) = d(H(E0(∆))).

Proof. The exactness for the E0-terms follows immediately from the strict
exactness while the commutative diagram for i = 0 is another easy consequence
of the refinement principle [9, Prop. 1.9] applied to the filtrations

0 ⊆ A ⊆ B

and

F •B,

the details of which we leave to the reader. For i = 1 simply apply the functori-
ality [3, Thm. 3.3] of η with respect to short exact sequences (see also diagram
(23)). �

Our treatment of determinants of spectral sequences should be compared
to that in [9, §3] where apart from the derived also the spectral filtration of
C is used. As in loc.cit. our description also generalizes immediately to exact
categories if the admissibility (loc.cit., Def. 1.6) and compatibility (loc.cit.,
Def. 1.8) of all involved filtrations is granted. Also note that analogous results
hold for homological spectral sequences, of course.
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3. (Co)homology and spectral sequences

Let F : E → D be a right exact, additive functor between two abelian
categories with finite homological dimension assuming that E has sufficiently
many projectives. In the following we will not distinguish between chain and
cochain complexes as they can be identified using the usual renumeration. We
write Db(E) for the triangulated derived category of bounded complexes in E .
Assume that dE : Db(E)qis → PE and dD : Db(D)qis → PD are F -compatible
determinant functors (for determinant functors of triangulated categories we
refer the reader to [2]), i.e., such that there exists a commutative diagram of
functors (modulo a natural isomorphism q)

Db(E)qis

LF

��

dE // PE

ψE

D

��
Db(D)qis

dD // PD

in which ψE
D is a AC-tensor functor in the language of [9, Appendix A] (I.e. we

have a isomorphism of determinants

(ψE
D ◦ dE) → (dD ◦ LF )

in the sense of (loc.cit., Def. 1.11) or [2, Def. 3.2]).
Here the derived functor LF has to be calculated by a finite resolution of

F -acyclic objects, if necessary. For simplicity we assume henceforth that E has
finite projective dimension.

Now let

(18) ∆ : 0 // A // B // C // 0

be an exact sequence in E (or more generally in Cb(E) using hyper-derived
functors LF below). Applying LF gives a distinguished triangle

(19) LF (∆) : LF (A) // LF (B) // LF (C) // LF (A)[1]

which in turn induces the long exact LF -sequence

LiF (A) // LiF (B) // LiF (C)
δ //(20)

· · · // F (A) // F (B) // F (C) // 0,

in which LiF (A) = LiF (B) = LiF (C) = 0 for large i by assumption. Then
the additivity relation

(21) dE(∆) : dE(B) ∼= dE(A)dE(C)

induces via ψE
D the additivity relation

(22) dD(LF (∆)) : dD(LF (B)) ∼= dD(LF (A))dD(LF (C))

corresponding to (19) by the F -compatibility.
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Lemma 3.1. There is a commutative diagram

dD(LF (B))

ηLF (B)

��

dD(LF (∆)) // dD(LF (A))dD(LF (C))

ηLF (A)ηLF (C)

��
∏

i dD(LiF (B))(−1)i dD(H(LF (∆))) // ∏
i dD(LiF (A))(−1)i∏

i dD(LiF (C))(−1)i

where the bottom line is induced by the long exact sequence (20).

Proof. [3, Thm. 3.3]. �

On the other hand the same reference applied to (18) (for complexes) leads
to a commutative diagram

(23) dE(B)

ηB

��

dE(∆) // dE(A)dE (C)

ηAηC

��
dE(HB)

dE(H(∆)) // dE(HA)dE(HC)

where again the bottom line is induced by the long exact homology sequence
attached to (18). Now we may apply LF to each homology complex like HA
which boils down to form LiF (HjA) for all i, j. Recall that for a bounded
complex A there is a convergent (homological) spectral sequence

(24) E2
pq = LpF (Hq(A)) ⇒ LFp+q(A)

More precisely, consider a Cartan–Eilenberg resolution of A, i.e., double
complexes DA, DZ , DB and DH consisting of projective objects together with

• short exact sequences of double complexes

0 // DB
// DZ

// DH
// 0(25)

0 // DZ
// DA

∂ // DB[1]h // 0(26)

where [1]h means shift in the horizontal direction, i.e., in the direction
parallel to B.

• augmentation maps DA → A, DZ → Z etcetera such that tot(DA) →
A etcetera are quasi-isomorphisms. Moreover, in the vertical direction
one has

Hvi (DA) =

{

A, i = 0,

0, otherwise,

and similarly for B,Z and H = H(A).

We assume that all the above double complexes D∗ are bounded and set

A = totF (DA) = LF (A), Z = totF (DZ),(27)

B = totF (DB), H = totF (DH) = LF (H) =
⊕

j

LF (Hj [−j]),(28)
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and recall that

Hi(A) = LiF (A), Hi(H) = LiF (H) =
⊕

j

Li−jF (Hi))

as the differentials of H and hence the horizontal differentials ∂h of DH are
all trivial. Note also that (24) is just the spectral sequences associated to the
double complex F (DA) using the filtration by rows [13, Def. 5.6.2]. With (25)
also

0 // totDB
// totDZ

// totDH
// 0

is exact and consists of projectives, whence

(29) 0 // B // Z // H // 0

and similarly

(30) 0 // Z // A // B[1] // 0

is also exact. The latter two sequences give rise to an isomorphism

(31) ϑ : dD(A) ∼= dD(H).

By the compatibility (compare 3.1) of η with respect to short exact sequences
we obtain the canonical commutative diagram

(32) dD(A)

ηA

��

ϑ // dD(H)

ηH

��
dD(HA)

Hϑ // dD(HH)

where Hϑ is the canonical isomorphism induced by the long exact sequences
associated to the short exact sequences (29) and (30).

Now we will use the homological versions of the results of Section 2.1.

Theorem 3.2. The following diagram commutes

dD(LF (A))

e∞≈η

��

ϑ // dD(H) =
∏

i dD(LF (Hi(A)))(−1)i

∏
ηe2(H)=e∞(H)≈ηH≈

��
dD(E∞(A))≈

∏
j dD(LjF (A))(−1)i

dD(E2(A))≈
∏

i,j dD(LjF (Hi(A)))(−1)i

e2∞
oo

where the top line is induced by (31) and (28), while the lower line e2∞ :=
ηr−1 ◦ . . . ◦ η2 is induced from the spectral sequence (24) using the notation
from Section 2.1 and assuming Er = E∞. Moreover the diagram is compatible
with (32) and the diagrams arising from Proposition 2.4.

Proof. First note that (E1
· (H), ∂) ∼= (E1

· (A), ∂) as complexes (with E1
pq =

DHqp) and E2
pq(H) ∼= E2

pq(A) ∼= LFp(Hq) on objects (but in general not as
complexes!). Applying Lemma 2.6 to the exact sequences (29), (30) (taking
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into account that F applied to the sequences (25) again gives exact sequences
which grant the hypothesis of the lemma) leads to the commutative diagram

d(A)

e1

��

ϑ // d(H)

e1

��
d(E1(A))

η

��

E1
ϑ

≈
// d(E1(H))

η

��
d(E2(A))

e2∞

��

H
E1
ϑ

≈
// d(E2(H))

d(E∞(A))

d(F•H)inverse◦d(ψ) ≈

��

d(E∞(H))

d(F•H)inverse◦d(ψ)≈

��
dD(HA)

Hϑ // dD(HH)

where according to the above calculation the isomorphisms E1
ϑ and hence HE1

ϑ

may be considered as a natural identification (≈)(only this identification de-
fines the latter isomorphism). Note that the outer diagram is just diagram
(32). Taking all these identifications into account the result follows. �

3.3. Application to the Tor-Functor. Let R,R′ be two regular rings and
Y a (R,R′)-bimodule, which is finitely generated and projective as R′-module.
Taking for E and D the category of finitely generated R- and R′-modules,
respectively, for dR : Db(E)qis → PR and dR′ : Db(D)qis → PR′ the deter-
minant functor of Fukaya and Kato [8, §1] (where PR is denoted CR) setting
L(−) = Y ⊗R − and letting ψRR′ := ψE

D : PR → PR′ be the canonical functor
induced by L we are in the situation of the previous subsection. In particular
there is a convergent (homological) spectral sequence

(33) E2
pq = TorRp (Y,Hq(A)) ⇒ TorRp+q(Y,A)

and the canonical identification

dR(A) ∼= dR(HA) ∼=
∏

i

dR(H
i(A))(−1)i

induces by (21), (22) and Theorem 3.2 the first line of the following commu-
tative diagram

(34) dR′(Y ⊗L A)

��

// ∏
i dR′(Y ⊗L Hi(A))

(−1)i

��
∏

j dR′(TorRj (Y,A))
(−1)j

∏

i,j dR′(TorRj (Y,Hi(A))
(−1)i+j )oo

where the bottom row is induced by the spectral sequence (33).
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Remark 3.4. Strictly speaking Fukaya and Kato’s determinant functor goes
from Cb(Pmod(R))qis to PR where Pmod(R) denotes the exact category of
finitely generated projective (say left) R-modules and satisfies multiplicativity
with respect to short (strictly) exact sequences of complexes. They show that
the functor factorizes over the homotopy category Kb(Pmod(R))qis (but with-
out changing or extending the multiplicativity property). Due to our regularity
assumption on R we may choose finite projective resolutions for each finitely
generated R-module and consider the functor E → Kb(Pmod(R))qis → PR
which then extends also to give a determinant on Cb(E)qis; here E denotes the
category of finitely generated R-modules. Note also that by [10, Cor. 2 of Thm.
2] in this situation we have canonical multiplicativity-isomorphisms for all dis-
tinguished triangles (instead of short exact sequences of complexes) whence we
obtain the desired determinant functor from Db(E)qis to PR. This should also
be compared with [2, Cor. 5.3] applied to the triangulated derived category
Db(E) of bounded complexes in E . In this way further natural examples arise
where the results of this section apply.

3.5. Compatibility of the Snake lemma and Spectral sequences. Fi-
nally we just state a result concerning the comparison of spectral sequences
versus long exact sequences: Consider a short exact sequence

(35) 0 // A
f // B

g // C // 0

of bounded cochain complexes concentrated in degree greater or equal to 0.
Setting

D0• := A•, d0•v : = d•A,

D1• := B•, d1•v : = −d•B,

D2• := C•, d2•v : = d•C ,

Di• := 0 otherwise,

we obtain a (cochain) double complex D with horizontal differentials

d0•h = f•, d1•h = g• and 0 otherwise.

Lemma 3.6. In the above situation the total complex tot(D) is acyclic and
the isomorphism e1∞ := ηr−1 ◦ . . . ◦ η1
(36)

∏

i

d(Hi(A))(−1)i
∏

i

d(Hi(B))(−1)i+1 ∏

i

d(Hi(C))(−1)i ∼= d(tot(D)) ∼= 1

arising from the spectral sequence

Epq1 = Hqv(Dp•) ⇒ Hp+q(tot(D)) = 0

coincides with the isomorphism arising form the long exact cohomology se-
quence associated with (35).

The easy proof is left to the reader. In particular, identifications via the
Snake Lemma are compatible with spectral sequences.
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Remark 3.7. If one shifts the double complex to different degrees, the differ-
entials may change their signs, but these changes are compatible with usual
sign conventions for shifting and for the relation between double complexes
and cochain complexes over the category of cochain complexes [13, Sign trick
1.2.5].
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