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Abstract

We give a shorter proof of the fact that the Jiang-Su algebra

is strongly self-absorbing. This is achieved by introducing

and studying so-called unitarily suspended endomorphisms of

generalized dimension drop algebras. Along the way we prove

uniqueness and existence results for maps between dimen-

sion drop algebras and UHF-algebras, using both elementary

methods and more advanced tools like the Cuntz semigroup

and uniqueness of the hyperfinite II1-factor.

Zusammenfassung

In dieser Arbeit präsentieren wir einen kürzeren Beweis

dafür, dass die Jiang-Su Algebra stark selbst-absorbierend

ist. Als fundamentales Werkzeug definieren wir sogenannte

unitär eingehängte Endomorphismen, dessen Existenz aus der

Klassifizierung von Abbildungen zwischen Dimension-Drop-

Algebren und UHF-Algebren folgt. Diese Klassifikation be-

weisen wir mit elementaren Mitteln, jedoch werden auch al-

ternative Zugänge mithilfe der Cuntz Halbgruppe oder auch

der Eindeutigkeit des hyperendlichen II1-Faktors dargelegt.
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Introduction

In Elliott’s classification program for nuclear C∗-algebras, a particularly promi-

nent role is played by strongly self-absorbing C∗-algebras (see [Rør02] and

[Win14]). A separable and unital C∗-algebra D � C is called strongly self-

absorbing if there exists a ∗-isomorphism D → D ⊗ D, which is approxi-

mately unitarily equivalent to the first factor embedding idD⊗1D ([TW07]).

Strongly self-absorbing C∗-algebras have approximately inner flip and hence

are simple and nuclear ([ER78]). The list of known strongly self-absorbing

C∗-algebras is quite short and consists of the Cuntz algebras O2,O∞, UHF-

algebras of infinite type, tensor products of UHF-algebras of infinite type

with O∞ and the Jiang-Su algebra Z.

The Jiang-Su algebra Z has been introduced by Jiang and Su in their

remarkable paper [JS99]. For reasons we explain below, it is today one of

the most natural and important objects in the classification theory of C∗-

algebras. Inspired by the work of Connes on the uniqueness of the hyperfinite

II1-factor R, Jiang and Su already observed that Z is strongly self-absorbing

([JS99, Proposition 8.3, Corollary 8.8]). Before we discuss their proof of this

fact in more detail, let us briefly put Z into more context.

For the classification of C∗-algebras, by what is today known as the Elliott

invariant, Z-stability is of fundamental importance. The Elliott invariant of

a unital C∗-algebra A is given by the six-tupel

(K0(A),K0(A)+, [1A]0,K1(A), T (A), rA).

The map rA is a natural pairing between K-theory and the trace simplex

T (A). Since Z has a unique trace and is KK-equivalent to the complex

numbers C, in fact it has the same Elliott invariant as C, one might think

of Z as an infinite dimensional version of the complex numbers. Under a

natural restriction on the K-groups of a simple C∗-algebra A, the Elliott

invariant of A and A⊗Z are isomorphic. This suggests that classification is

in general only possible up to Z-stability (cf. [Win14, Definition 2.6]).

Intimately related is the Toms-Winter conjecture (cf. [WZ10, Conjecture

9.3]), which predicts that the following regularity conditions for a (unital)

separable, simple, nuclear and infinite dimensional C∗-algebra A are equiva-

lent:
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(i) A has finite nuclear dimension,

(ii) A is Z-stable (i.e. A ∼= A⊗Z),

(iii) A has strict comparison.

The implication (ii) ⇒ (iii) is proven in [Rør04, Corollary 4.6], where the

strong self-absorption of Z is used in an essential way. Just recently, in

[CET+19], the nuclear dimension of a C∗-algebra like A has been computed

to be zero or one in the Z-stable case and infinite otherwise. Together with a

result by Winter ([Win12, Corollary 6.3]) this proves the equivalence between

(ii) and (i). By previous results of many hands and decades of work, one of

the most outstanding results in the classification of C∗-algebras follows: uni-

tal, separable, simple, nuclear and Z-stable C∗-algebras satisfying the UCT

are classified by the Elliott invariant ([CET+19, Corollary D]). In particu-

lar unital, separable, simple and nuclear C∗-algebras satisfying the UCT are

classified up to Z-stability. The UCT is Rosenberg and Schochet’s universal

coefficient theorem ([RS87]), which roughly says that the KK-theory can be

computed in terms of K-theory. A C∗-algebra satisfies the UCT precisely if

it is KK-equivalent to a commutative C∗-algebra.

Getting back to the strong self-absorption of Z, let us discuss the proof

of Jiang and Su. In [JS99, Section 2] the algebra Z is constructed as an

inductive limit of dimension drop algebras Zpn,qn with pn, qn coprime and

tending to infinity, where Zp,q is the C∗-algebra of continuous functions

f : [0, 1] → Mp ⊗Mq such that f(0) ∈ Mp ⊗ 1q and f(1) ∈ 1p ⊗Mq. Fun-

damental to their proof that Z is strongly self-absorbing is a classification

machinery for ∗-homomorphisms between dimension drop algebras ([JS99,

Corollary 5.6, Theorem 6.2]). These results rely on a careful analysis of

maps between K-homology induced by morphisms between dimension drop

algebras.

Although the notion of a strongly self-absorbing C∗-algebra was first in-

troduced in [TW07], Jiang and Su already proved two abstract properties of

Z, showing that Z is strongly self-absorbing:

1. Z has approximately inner half flip, i.e. the first and the second factor

embedding of Z into Z ⊗ Z are approximately unitarily equivalent,

2. there exists a ∗-homomorphism ϕ : Z⊗Z → Z such that ϕ◦ (idZ ⊗1Z)

is approximately inner.
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The first property is proven in [JS99, Proposition 8.3], only using basic prop-

erties of the construction of Z. The second property is proven in [JS99,

Proposition 8.5] and relies heavily on the classification machinery just men-

tioned. Jiang and Su first show that there exists a ∗-homomorphism ψ from

Z ⊗ Z to B, where B is a simple and unital inductive limit of dimension

drop algebras having the same Elliott invariant as Z. Now their existence

result ([JS99, Theorem 6.2]) provides a unital ∗-homomorphism B → Z. By

composing with ψ one gets the desired map ϕ. Using that any unital ∗-

endomorphism of Z is approximately inner ([JS99, Theorem 7.6]), it follows

that ϕ ◦ (idZ ⊗1Z) is approximately inner. Here the uniqueness result for

maps between dimension drop algebras is used once more.

The goal of this thesis is to prove that the Jiang-Su algebra is strongly

self-absorbing in an as self-contained and elementary as possible way. To do

so, we use a different picture of Z. Today, there are many descriptions and

characterizations of Z, for example as universal C∗-algebra ([JW14]) or as the

initial object in the category of strongly self-absorbing C∗-algebras ([Win11]).

For us however, a construction of Z as an inductive limit of generalized

dimension drop algebras will be most suitable. A generalized dimension drop

algebra Zp,q is defined just as before, but now with Mp and Mq replaced by

UHF-algebras Mp respectively Mq, associated to supernatural numbers p and

q. More precisely, Rørdam and Winter show in [RW10, Theorem 3.4] that

for all coprime supernatural numbers of infinite type p and q, there exists

a trace collapsing1 ∗-homomorphism µ : Zp,q → Zp,q and that the stationary

inductive limit of Zp,q along µ is isomorphic to Z, i.e.

Zp,q
µ

// Zp,q
µ

// Zp,q
µ

// · · · // Z .

For classification, this picture of Z has already been proven to be very useful,

most notably in [Win14]. Also the main theorem of [GLN14, Theorem 29.5]

relies on this picture of Z. However, showing that the limit of Zp,q along µ is

strongly self-absorbing still requires comparing it to the original construction

of Jiang and Su.

Using the picture of Rørdam and Winter and ideas of Winter (cf. [Win14,

Section 4, Definition 4.2]), we introduce so-called unitarily suspended ∗-

endomorphisms of generalized dimension drop algebras (Definition IV.2.5).

Built into the definition is a unitary path, which in some sense untwists

1Trace collapsing means that τ ◦ µ = τ ′ ◦ µ, for all tracial states τ and τ ′ on Zp,q.
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the trace collapsing ∗-endomorphism. From the definition of a unitarily su-

spended ∗-endomorphism, it is then possible to prove that the stationary

inductive limit along such a map is strongly self-absorbing. We thus arrive

at the following theorem (Theorem IV.2.6, Theorem VI.2.2):

Main Theorem: Let p and q be coprime supernatural numbers of infinite

type. Then,

(i) there exists a unitarily suspended ∗-endomorphism ρ : Zpq → Zp,q,

(ii) for any unitarily suspended ∗-endomorphism σ of Zp,q, the stationary

inductive limit

−−→
Zσ

p,q := lim−→(Zp,q
σ // Zp,q

σ // Zp,q
σ // · · · )

is strongly self-absorbing.

We will also prove that
−−→
Zρ

p,q enjoys all classification relevant properties

which Z has (Theorem VI.2.9) without comparing it to Z. For example,
−−→
Zρ

p,q

is the initial object in the category of strongly self-absorbing C∗-algebras

(hence the limit is independent of ρ and the pair p, q).

This also confirms that the difficulty of showing that Z is strongly self-

absorbing lies between that for UHF-algebras of infinite type and O2 or O∞
(cf. [JW14, 5.2]). Let us also mention that very recently yet another proof of

the strong self-absorption of Z has been found in [Gha19], using the theory

of Fräıssé limits. This supports the previous statement.

Finally, I want to highlight that in Theorem VI.2.2 no classification the-

ory beyond the classification of UHF-algebras is used. In particular, we do

not rely on the classification of morphisms between dimension drop algebras

or K-homological results. This is possible by proving existence and unique-

ness results for the very specific class of maps between generalized prime

dimension drop algebras and certain UHF-algebras.
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Chapter I

Preliminaries

I.1 Notation

We denote by N the set of natural numbers, by Z the set of integers and

by C the set of complex numbers. A C∗-algebra A is a complex Banach
∗-algebra together with an antilinear involution such that ‖a∗a‖ = ‖a‖2, i.e.

the C∗-identity holds. Usually, C∗-algebras will be denoted by the letters

A,B,C, · · · . If A is a C∗-algebra, we will denote by A+ the set of positive

elements in A, by A≤1 the closed unit ball of A, by A+ the forced unitization

of A and by M(A) the multiplier algebra of A. A tracial state τ on A is a

positive linear functional of norm one such that τ(ab) = τ(ba), for all a, b ∈ A.

The set of tracial states on A is denoted by T (A). If φ : A→ B is a ∗-homo-

morphism, we denote by φ∗ : T (B)→ T (A) the induced map on trace spaces.

By Mn we denote the C∗-algebra of n × n-matrices. For ε > 0 and a, b ∈ A
we denote a ≈ε b if and only if ‖a− b‖ < ε. If ϕ, ψ : A → B are maps and

F ⊆ A is a finite subset, we write ϕ ≈(F ,ε) ψ if and only if ‖ϕ(a)− ψ(a)‖ < ε,

for all a ∈ F . If S, T ⊆ A, we denote [S, T ] = {st− ts : s ∈ S, t ∈ T}. If not

specified otherwise we will denote by ι the canonical generator of C0(0, 1],

i.e. ι(t) = t, for t ∈ (0, 1].

I.2 Order zero maps

In this section we recall some basic facts about order zero maps, which have

been defined and studied in [WZ09].

I.2.1 Definition. Let φ : A→ B be a linear map. We say that φ is completely
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positive (c.p.) if

φ⊗ idMn : A⊗Mn → B ⊗Mn

is positive, for all n ∈ N. After identifying A⊗Mn with Mn(A), we see that

φ is c.p. if and only if for each n ∈ N the following holds:

Mn(A) 3 (aij)
n
i,j=1 ≥ 0 ⇒ Mn(B) 3 (φ(aij))

n
i,j=1 ≥ 0.

If in addition ‖φ‖ ≤ 1, we say that φ is completely positive contractive (c.p.c.).

I.2.2 Definition. Let φ : A → B be a c.p. map. We say that φ has order

zero if φ preserves orthogonality, i.e. φ(xy) = 0, for all x, y ∈ A such that

xy = 0.

The following is a version of Stinespring’s dilation theorem for order zero

maps.

I.2.3 Theorem. Let φ : A → B be a c.p. order zero map and define C :=

C∗(φ(A)) ⊆ B. Then, there exists a positive element hφ ∈ C∗∗, with ‖hφ‖ =

‖φ‖, and a ∗-homomorphism

πφ : A→ C∗∗ ∩ {hφ}′,

such that

φ(x) = πφ(x)hφ = hφπφ(x) (x ∈ A).

If A is unital, then hφ = φ(1A).

I.2.4 Remark. Let φ : A→ B be a c.p. order zero map. Using the structure

theorem one may define an order zero functional calculus via

f(φ) := f(hφ)πφ (f ∈ C0(0, ‖φ‖]+).

If φ is c.p.c. and ‖f‖ ≤ 1, then f(φ) is again a c.p.c. order zero map.

I.2.5 Lemma. There exists a bijection between the set of c.p.c. order zero

maps from A to B and the set of ∗-homomorphisms from C0(0, 1]⊗A to B.

More precisely, let φ : A → B be a c.p.c. order zero map. Then, the

associated ∗-homomorphism φ : C0(0, 1]⊗ A→ B is given by

φ(f ⊗ a) = f(hφ)πφ(a) (f ∈ C0(0, 1], a ∈ A).

where hφ and πφ are as in Theorem I.2.3. Conversely, if ϕ : C0(0, 1]⊗A→ B

is a ∗-homomorphism, then the associated c.p.c. order zero map ϕ is given

by

ϕ(a) = ϕ(ι⊗ a) (a ∈ A).
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I.2.6 Remark. Let φ : A → B be a c.p.c. order zero map. It follows im-

mediately from Lemma I.2.5, that the order zero functional calculus for φ is

given by

f(φ)(a) = φ(f ⊗ a) (a ∈ A, f ∈ C0(0, 1]+).

I.2.7 Lemma. Let φ : A → B be a c.p.c. order zero map, τ ∈ T (B) and

f ∈ C0(0, 1]+. Then τ ◦ f(φ) is a bounded trace on A, i.e. a positive linear

functional satisfying the trace property.

The following definitions will be at the heart of our theory.

I.2.8 Definition. Let h ∈ A be a positive contraction and assume T (A) 6= ∅.
Then h is called a Lebesgue contraction if

τ(f(h)) = τLeb(f)
def
=

∫ 1

0

f(t) dt (f ∈ C0(0, 1], τ ∈ T (A)).

We also say that h has Lebesgue spectral measure, which refers to the fact

that the measure corresponding to the functional f 7→ τ(f) is the Lebesgue

measure.

I.2.9 Definition. Let A be a C∗-algebra such that T (A) 6= ∅. A ∗-homo-

morphism ϕ : C0(0, 1]→ A is called standard if

τ ◦ ϕ = τLeb (τ ∈ T (A)).

Equivalently, Im
(
ϕ∗ : T (A)→ T (C0(0, 1])

)
= {τLeb}.

I.2.10 Lemma. Let A be a unital C∗-algebra and let φ : A → B be a c.p.c.

order zero map. Then hφ = φ(1A) is a Lebesgue contraction if and only if φ

is standard when restricted1 to C0(0, 1].

I.3 Generalized dimension drop algebras

A supernatural number p is a formal product

p =
∏

p prime

pνp(p), (I.3.1)

where νp(p) ∈ N ∪ {∞}. Note that every natural number is also a su-

pernatural number. There is an obvious way to define the product of two

1The restriction map is given by idC0(0,1]⊗1A : C0(0, 1]→ C0(0, 1]⊗A.
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supernatural numbers and we say that p is of infinite type if p2 = p and

p 6= 1. This happens precisely when p 6= 1 and νp(p) ∈ {0,∞}, for all primes

p. If (Pn)∞n=1 is a sequence of natural numbers such that Pn divides Pn+1,

for every n ∈ N, we say that the sequence (Pn)∞n=1 converges to p if for every

prime number p the following holds:

sup{ν ∈ N : pν divides Pn, for some n ∈ N} = νp(p).

We then define the UHF-algebra Mp by

Mp := lim−→(MPn , in),

where in(x) is the block diagonal matrix in MPn+1 with Pn+1

Pn
copies of x on

the diagonal. It is a basic result in the classification of UHF-algebras that

the limit does not depend on the sequence (Pn)∞n=1 and the unital maps in,

see for example [RLL00, Section 7.4] and Example II.2.1. Furthermore, we

say that p and q are coprime if

min(νp(p), νp(q)) = 0,

for all primes p.

I.3.1 Definition. ([Win14, Definition 3.1]) Let p and q be supernatural

numbers. We then define

Zp,q :=

{
f ∈ C([0, 1],Mp ⊗Mq) :

f(0) ∈Mp ⊗ 1q,

f(1) ∈ 1p ⊗Mq

}
.

We call Zp,q a generalized dimension drop algebra. If p and q are coprime,

we say that Zp,q is a prime dimension drop algebra.

I.3.2 Remark. The center of Zp,q is given by C([0, 1]), where we identify

i : C([0, 1]) ↪→ Zp,q : f 7→
(
t 7→ f(t) · 1p ⊗ 1q

)
.

Furthermore, this inclusion induces an isomorphism of tracial state spaces

(cf. [JS99, Lemma 2.4]):

i∗ : T (Zp,q)
∼=→ T (C([0, 1])).

For convenience of the reader, let us also compute the K-theory of prime

dimension drop algebras. By K∗(A) we denote the group K0(A) ⊕ K1(A).

Furthermore, we denote V (A) → K0(A) : [p] 7→ [p]0, where V (A) is the

Murray-von Neumann semigroup.
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I.3.3 Lemma. Let p, q ∈ N be coprime. Then K∗(Zp,q) ∼= K∗(C) ∼= (Z, 0).

Furthermore, this isomorphism is unital, i.e. [1Zp,q ]0 corresponds to 1 ∈ Z.

Proof. Let us write Zp,q as a pullback:

Zp,q

π2
��

π1 // Mp ⊕Mq

φ0⊕φ1
��

C([0, 1],Mpq) ∂0⊕∂1
// Mpq ⊕Mpq

The maps ∂i denote the evaluations at the endpoints. The maps φi are

given by φ0(x) = x ⊗ 1q and φ1(y) = 1p ⊗ y. Now, we get a six-term exact

Mayer-Vietoris sequence ([Bla98, Theorem 21.2.2]):

K0(Mp ⊕Mq)

⊕K0(C([0, 1],Mpq))

 K0(φ0 ⊕ φ1)

−K0(∂0 ⊕ ∂1)


// K0(Mpq ⊕Mpq)

γ

��

K0(Zp,q)

K0(π1)⊕K0(π2)

OO

K1(Zp,q)

��

K1(Mpq ⊕Mpq)

γ

OO

K1(Mp ⊕Mq)

⊕K1(C([0, 1],Mpq))
oo

After identifications, this reduces to

0 // K0(Zp,q) // Z3

q 0 −1

0 p −1


// // Z2 γ

// K1(Zp,q) // 0 .

Let us denote the map from Z3 to Z2 by A. Then A is surjective, because p

and q are coprime. Indeed, we may write 1 = αp+βq for some α, β ∈ Z. Then

A(β,−α,−αp) = (1, 0) and A(0, 0,−1) = (1, 1). By exactness, it follows

immediately that γ = 0 and hence K1(Zp,q) = 0. Next, K0(Zp,q) ∼= Ker(A) ∼=
Z, with generator (p, q, pq). Finally, [1Zp,q ]0 ∈ K0(Zp,q) corresponds to the

generator (p, q, pq) of Ker(A), showing that our isomorphism is unital.

I.3.4 Lemma. Let p and q be coprime supernatural numbers. Then, there

is a unital isomorphism

K∗(Zp,q) ∼= K∗(C)

and Zp,q is KK-equivalent to C.
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Proof. As in Convention IV.2.3, write Zp,q as an inductive limit of prime

dimension drop algebras. Then, continuity of K∗ and Lemma I.3.3 show that

there is a unital isomorphism K∗(Zp,q) ∼= K∗(C). Furthermore, note that Zp,q

satisfies the UCT. Indeed, there is an obvious short exact sequence

0→ C0(0, 1)→ Zp,q →Mp ⊕Mq → 0.

Since C0(0, 1) and Mp ⊕ Mq satisfy the UCT, a two-out-of-three type of

argument ([Rør02, Theorem 2.4.7 (i)]) shows that Zp,q satisfies the UCT,

too. The statement about KK-equivalence then follows from the fact that

the inclusion C ↪→ Zp,q defines a KK-equivalence in KK(C, Zp,q), cf. [Rør02,

Theorem 2.4.6 (ii)].

The following definition is a generalization of the one given in [Rør04,

Section 2].

I.3.5 Definition. Let p and q be supernatural numbers and let ϕ : Zp,q → A

be a unital ∗-homomorphism, where A is a unital C∗-algebra with T (A) 6= ∅.
We say that ϕ is standard if

(τ ◦ ϕ)(f) =

∫ 1

0

τMp⊗Mq(f(t)) dt (τ ∈ T (A), f ∈ Zp,q).

In other words ϕ is standard if

τ ◦ ϕ = i∗(τLeb) (τ ∈ T (A)),

where we recall that i : C([0, 1])→ Zp,q is the canonical inclusion.

I.3.6 Definition. Let Zp,q be a generalized dimension drop algebra. We

then identify C0[0, 1)⊗Mp and C0(0, 1]⊗Mq with subalgebras of Zp,q via the

inclusions

ı̀ : C0[0, 1)⊗Mp ↪→ Zp,q; ı̀(f ⊗ x)(t) = f(t)(x⊗ 1q),

ı́ : C0(0, 1]⊗Mq ↪→ Zp,q; ı́(g ⊗ y)(t) = g(t)(1p ⊗ y).

Whenever ϕ : Zp,q → A is a ∗-homomorphism, we denote

ϕ̀ = ϕ ◦ ı̀ : C0[0, 1)⊗Mp → A,

ϕ́ = ϕ ◦ ı́ : C0(0, 1]⊗Mq → A.
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Remember, that these maps correspond uniquely to c.p.c. order zero maps

(ϕ̀)′ : Mp → A,

ϕ́ : Mq → A,

where (·)′ means that we have reversed the orientation of the interval. More

precisely,

(ϕ̀)′ : C0(0, 1]⊗Mp → A : f ⊗ x 7→ ϕ̀(f̌ ⊗ x),

where f̌(x) := f(1− x).

I.3.7 Remark. Note that a ∗-homomorphism ϕ : Zp,q → A is standard if

and only if ϕ ◦ i : C([0, 1]) → A is standard. This follows immediately from

the fact that i∗ is an isomorphism (see Remark I.3.2).

I.3.8 Lemma. Let ı́ and ı̀ be as in Definition I.3.6. Then the images of ı̀

and ı́ commute and

C∗
(
Im(̀ı), Im(́ı)

)
= Zp,q,

i.e. Zp,q is canonically generated by two commuting cones over Mp resp. Mq.

Proof. This follows easily by an approximation argument.

The following theorem by Rørdam and Winter ([RW10, Theorem 2.5])

shows that any prime dimension drop algebra Zp,q can be seen as the universal

C∗-algebra generated by two c.p.c. order zero maps on Mp resp. Mq, which

have commuting ranges and are ”large”.

I.3.9 Theorem. Let A be a unital C∗-algebra and let p, q ∈ N be coprime.

If α : Mp → A and β : Mq → A are c.p.c. order zero maps such that

[α(Mp), β(Mq)] = {0}, α(1p) + β(1q) = 1A,

then there exists a (unique) unital ∗-homomorphism

ϕ : Zp,q → A,

such that the following diagram commutes:

Zp,q

ϕ

��

C0[0, 1)⊗Mp

ı̀

88

(α)′
&&

C0(0, 1]⊗Mq

ı́

ff

βxx
A
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The map (α)′ is obtained by reversing the orientation of the unit interval.

Furthermore, ϕ is standard if and only if hα and2 hβ are Lebesgue contrac-

tions.

Proof. It remains to prove the last statement. Assume hβ is a Lebesgue

contraction. To show that ϕ is standard, it is enough to show that ϕ is

standard on C([0, 1]), as already observed earlier. Since C([0, 1]) is the uni-

tization of C0(0, 1], it is enough to check that ϕ is standard on C0(0, 1]. So

let f ∈ C0(0, 1] and τ ∈ T (A). Then

τ(ϕ(f)) = τ(ϕ́(f)) = τ
(
β(f)

)
= τLeb(f).

Note that we use Lemma I.2.10 to show that β is standard, when restricted

to C0(0, 1].

Conversely, if ϕ is standard it is easy to check that hα and hβ are Lebesgue

contractions.

I.4 Ultrapowers

In this thesis we will stick to ultrapowers instead of sequence algebras. The

main reason for this is the existence of induced traces on ultrapowers.

I.4.1 Definition. For a fixed free ultrafilter ω on N, we denote the uniform

ultrapower of A by

Aω := `∞(A)/
{

(xn)∞n=1 : lim
n→ω
‖xn‖ = 0

}
.

The equivalence class of a sequence (xn)∞n=1 ∈ `∞(A) will be denoted by[
(xn)∞n=1

]
∈ Aω. The diagonal inclusion of A into Aω is denoted by ιω. It

will be often convenient to identify A in this way with a subalgebra of Aω.

If τ ∈ T (A), we get a trace τω ∈ T (Aω) by

τω([(xn)∞n=1]) := lim
ω
τ(xn).

The limit exists because every bounded sequence of real numbers converges

along an ultrafilter. The set of induced traces will be denoted by

T (A)ω := {τω : τ ∈ T (A)} ⊆ T (Aω).

2It is enough to require that hβ is a Lebesgue contraction, since hα = 1− hβ is then a

Lebesgue contraction, too.

19



I.5 Some equivalence relations

I.5.1 Definition. Let A and B be C∗-algebras with A separable and B uni-

tal. For ∗-homomorphisms ϕ, ψ : A→ B we define the following equivalence

relations:

(i) Unitary equivalence ∼u : There exists a unitary u ∈ B with

uϕ(a)u∗ = ψ(a) (a ∈ A).

(ii) Approximate unitary equivalence ≈u : There exists a sequence (un)∞n=1

of unitaries in B with

lim
n→∞

‖unϕ(a)u∗n − ψ(a)‖ = 0 (a ∈ A).

(iii) Strong asymptotic unitary equivalence ∼asu : There exists a unitary

path (ut)t∈[0,1) in B such that u0 = 1B and

lim
t→1
‖utϕ(a)u∗t − ψ(a)‖ = 0 (a ∈ A).

(iv) Murray-von Neumann equivalence ∼ : There exists a contraction v ∈ B
with

vϕ(a)v∗ = ψ(a), v∗ψ(a)v = ϕ(a) (a ∈ A).

(v) Approximate Murray-von Neumann equivalence ≈ : There exists a se-

quence (vn)∞n=1 of contractions in B with

lim
n→∞

‖vnϕ(a)v∗n − ψ(a)‖ = 0 (a ∈ A),

lim
n→∞

‖v∗nψ(a)vn − ϕ(a)‖ = 0 (a ∈ A).

These equivalence relations also make sense for c.p.c. order zero maps, as

they are identified with ∗-homomorphisms on the corresponding cone (see

Lemma I.2.5). The same applies to positive contractions, which correspond

to c.p.c. order zero maps on C.

Let us also note that our definition of Murray-von Neumann equivalence

generalizes the more common Murray-von Neumann equivalence of projec-

tions.
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I.5.2 Remark. ([Rør02, Lemma 6.2.5]) Let A and B be C∗-algebras with A

separable and B unital. For ∗-homomorphisms ϕ, ψ : A→ B we have

ϕ ≈u ψ ⇐⇒ ιω ◦ ϕ ∼u ιω ◦ ψ ⇐⇒ ιω ◦ ϕ ≈u ιω ◦ ψ.

Furthermore, if ρ, σ : A→ Bω are ∗-homomorphisms, a reindexing argument

shows that

ρ ≈u σ ⇐⇒ ρ ∼u σ.
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Chapter II

Strongly self-absorbing

C∗-algebras

In this chapter we recall the concept of a strongly self-absorbing C∗-algebra,

which was formally introduced and studied by Toms and Winter in [TW07].

Furthermore, we look at the methods used so far to show that O2,O∞ and

Z are strongly self-absorbing.

II.1 Generalities

II.1.1 Definition. LetD be a unital and separable C∗-algebra such thatD �
C. Then D is called strongly self-absorbing if there exists an isomorphism

ϕ : D → D ⊗ D such that ϕ ≈u idD⊗1D, i.e. there exists a sequence of

unitaries (un)∞n=1 in D ⊗D such that

lim
n→∞

‖unϕ(x)u∗n − x⊗ 1D‖ = 0 (x ∈ D).

II.1.2 Definition. Let D be a unital and separable C∗-algebra. We say that

D has approximately inner half flip if idD⊗1D ≈u 1D ⊗ idD, i.e. there exists

a sequence of unitaries (un)∞n=1 in D ⊗D such that

lim
n→∞

‖un(x⊗ 1D)u∗n − 1D ⊗ x‖ = 0.

Similarly, D has approximately inner flip if the flip map

σD,D : D ⊗D → D ⊗D : x⊗ y 7→ y ⊗ x

is approximately inner, i.e. σD,D ≈u idD⊗D.
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Let us remark on the difference between approximately inner half flip and

approximately inner flip.

II.1.3 Remark. It is clear that approximately inner flip implies approxi-

mately inner half flip. The converse however is not true. Examples of C∗-

algebras having approximately inner half flip but not approximately inner

flip are Mn+1(On) for 2 < n <∞, see [FHRT17, Example 3.6].

Another example is the following. Let us look at the unital UCT Kirch-

berg algebra1 O∞, determined by

K∗(O∞) = (0,Z).

By the Künneth formula, we know that

K∗(O∞ ⊗O∞) = (Z, 0)

and the class of the unit is zero, i.e. O∞ ⊗ O∞ ∼= Ost
∞, where st indicates

that O∞ is in standard form2. By the classification of Kirchberg algebras,

it follows that the half flip of O∞ is approximately inner, see also [FHRT17,

Lemma 3.4] . However, the flip of O∞ is not approximately inner.

To see this, I refer to an argument3 due to Aaron Tikuisis, Dominic

Enders and myself: The following diagram commutes, where A and B are

arbitrary C∗-algebras and α is the natural K-theory product as appearing in

the Künneth formula ([Bla98, Theorem 23.1.3]).

K1(A)⊗K1(B)
αA,B

//

−σK1(A),K1(B)

��

K0(A⊗ B)

K0(σA,B)

��

K1(B)⊗K1(A)
αB,A

// K0(B ⊗ A)

By naturality of α and a diagram chasing argument, the general case can be

reduced to A = B = C(T). Let z ∈ C(T) be the canonical generator, so that

[z]1 is a generator of K1(C(T)) ∼= Z. We identify C(T) ⊗ C(T) with C(T2),

and under this identification, the flip map σC(T),C(T) corresponds to swapping

coordinates:

(σC(T),C(T)(f))(w, z) = f(z, w).

1A Kirchberg algebra is a separable, simple, nuclear and purely infinite C∗-algebra.
2A unital Kirchberg algebra A is said to be in standard form if [1A]0 = 0. Equivalently,

there exists a unital embedding O2 → A.
3This argument is part of future work and in particular it is a correction of [Tik16,

Lemma 4.1].
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We have K0(C(T2)) ∼= Z2, generated by [1C(T2)]0 and the Bott element b.

Note that K0(σC(T),C(T))(b) = −b4 and αC(T),C(T)([z]1 ⊗ [z]1) = b. Thus,

αC(T),C(T)(σK1(C(T)),K1(C(T))([z]1 ⊗ [z]1)) = αC(T),C(T)([z]1 ⊗ [z]1)

= b,

and

K0(σC(T),C(T))(αC(T),C(T)([z]1 ⊗ [z]1)) = K0(σC(T),C(T))(b)

= −b

In particular, the following diagram commutes:

K1(O∞)⊗K1(O∞)
∼= //

−σK1(O∞),K1(O∞)

��

K0(O∞ ⊗O∞)

K0(σO∞,O∞ )

��

K1(O∞)⊗K1(O∞)
∼= // K0(O∞ ⊗O∞)

Note that the horizontal map αO∞,O∞ is an isomorphism, by the Künneth

formula. After identifying K1(O∞)⊗K1(O∞) with Z, we see that

K0(σO∞,O∞) = − id,

proving that σO∞,O∞ cannot be approximately inner.

Let us recall some standard results about strongly self-absorbing C∗-

algebras.

II.1.4 Lemma. Let D be a unital and separable C∗-algebra. Then the fol-

lowing holds:

(i) if D has approximately inner half flip, then D is simple and nuclear,

(ii) if D is strongly self-absorbing, then D has approximately inner flip and

D is either purely infinite or stably finite with a unique trace,

(iii) if D and E are strongly self-absorbing, then D ⊗ E is strongly self-

absorbing.

4Since the Bott element in K0(C0((0, 1)2)) arises from a clutching construction, any

reflection on (0, 1)2, and in particular the coordinate swap, i.e., the flip map, sends this

Bott element to its inverse. Using the canonical embedding C0((0, 1)2)→ C(T2), it follows

that the same is true for the flip map and the Bott element for C(T2).
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Proof. The proofs of (ii) and (iii) are in [TW07, Section 1]. The proof of

(i) is a slight modification of [ER78, Proposition 2.7], where the statement

is proven for approximately inner flip. Following their argument, let us just

prove that approximately inner half flip implies nuclearity. Given F ⊆ D

finite and ε > 0 let u ∈ D ⊗D be a unitary such that

‖u(x⊗ 1D)u∗ − 1D ⊗ x‖ < ε (x ∈ F).

Then, find a contraction v in the algebraic tensor product D �D such that

‖u− v‖ < ε
2
. Let ϕ ∈ S(D) be any state on D and consider the slice map5

ηϕ : D ⊗D → D : d⊗ d′ 7→ ϕ(d)d′.

Then ηϕ is a c.p.c. map and we get a factorization of idD on F up to ε as

follows:

D
idD //

id⊗1
��

D

D ⊗D
v(·)v∗

// D ⊗D

ηϕ

OO

Note that the composition is a finite rank operator.6 It follows that D is

nuclear.

The following is [Rør02, Proposition 7.2.1].

II.1.5 Proposition. Let A and B be separable C∗-algebras and assume

ϕ : A→ B is an injective ∗-homomorphism. Assume that there are unitaries

(un)∞n=1 in M(B)ω ∩ ϕ(A)′ such that

lim
n→∞

dist(unbu
∗
n, ϕ(A)ω) = 0 (b ∈ B).

Then, there is an isomorphism ψ : A→ B, such that ψ ≈u ϕ.

The next theorem is [Rør02, Theorem 7.2.2] and is sometimes referred to

as ultrapower intertwining.

II.1.6 Theorem. Let A and B be separable and unital C∗-algebras. Assume

B has approximately inner half flip and embeds unitally into Aω ∩A′. Then,

there exists an isomorphism ϕ : A → A ⊗ B such that ϕ ≈u idA⊗1B. In

particular, if A � C and A = B, then A is strongly self-absorbing.
5The existence of ηϕ follows for example from [BO08, Theorem 3.5.3], since ηϕ =

ϕ⊗ idD.
6If v =

∑n
i=1 xi ⊗ yi, then the image is contained in spanC{xiy∗j : i, j = 1, 2, · · · , n}.
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Proof. We show that the embedding idA⊗1B : A → A ⊗ B satisfies the hy-

pothesis of Proposition II.1.5. By assumption there exists a unital ∗-homo-

morphism B → Aω ∩ A′ and hence also

α : B → (A⊗ 1B)ω ∩ (A⊗ 1B)′ ⊆ (A⊗ B)ω ∩ (A⊗ 1B)′.

Denote

β : B → (A⊗ B)ω ∩ (A⊗ 1B)′ : b 7→ 1A ⊗ b.

Note that α and β are unital and injective ∗-homomorphisms with commuting

ranges, each of which is isomorphic to B. Injectivity of α follows from the

fact that B is simple (see Lemma II.1.4 (i)). Hence

C∗(α(B), β(B)) ∼= B ⊗ B.

Since B has approximately inner half flip, it follows that there are unitaries

un ∈ (A⊗ B)ω ∩ (A⊗ 1B)′ such that

unα(b)u∗n → β(b) (b ∈ B).

Let a ∈ A and b ∈ B. Then

u∗n(a⊗ b)un = u∗n(a⊗ 1B)β(b)un

= (a⊗ 1B)u∗nβ(b)un → (a⊗ 1B)α(b) ∈ (A⊗ 1B)ω.

Hence

dist(u∗nxun, (A⊗ 1B)ω)→ 0 (x ∈ A⊗ B).

By Proposition II.1.5, there exists an isomorphism ϕ : A→ A⊗B such that

ϕ ≈u idA⊗1B. The last statement follows from the definition of strongly

self-absorbing C∗-algebras.

The next theorem is [TW07, Proposition 1.10] and provides an abstract

way to show that a given C∗-algebra is strongly self-absorbing.

II.1.7 Theorem. Let D be a separable and unital C∗-algebra such that D �
C. Then the following are equivalent:

(i) D is strongly self-absorbing,

(ii) D has approximately inner half flip and there exists a unital ∗-homo-

morphism ψ : D ⊗D → D such that ψ ◦ (idD⊗1D) ≈u idD.
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Proof. (ii) ⇒ (i): Let (un)∞n=1 be a sequence of unitaries in D⊗D such that

‖unψ(d⊗ 1D)u∗n − d‖ → 0 (d ∈ D).

Define

φn : D → D : d 7→ unψ(1D ⊗ d)u∗n.

Using that ψ◦(idD⊗1D) and ψ◦(1D⊗idD) have commuting ranges, it follows

that

‖φn(d)d′ − d′φn(d)‖ → 0 (d, d′ ∈ D),

i.e. D admits an approximately central sequence of unital ∗-homomorphisms.

In particular, there exists a unital ∗-homomorphism

D → Dω ∩D′ : d 7→ [(φn(d))∞n=1].

Since D has approximately inner half flip, Theorem II.1.6 shows that D is

strongly self-absorbing.

(i) ⇒ (ii): By assumption, there exists an isomorphism ϕ : D → D ⊗D
such that ϕ ≈u idD⊗1D. So let (un)∞n=1 be a sequence of unitaries in D⊗D
such that

unϕ(d)u∗n → d⊗ 1D (d ∈ D).

Define wn := ϕ−1(un) and ψ := ϕ−1. Then

w∗nψ(d⊗ 1D)wn → d (d ∈ D),

showing that ψ◦(idD⊗1D) ≈u idD. Furthermore, D has approximately inner

half flip by Lemma II.1.4 (ii).

II.1.8 Remark. Assuming (ii) in Theorem II.1.7, it is also possible to prove

that D is strongly self-absorbing without knowing about ultrapowers or cen-

tral sequence algebras. Indeed, one can perform an ordinary approximate

intertwining, by showing that

(idD⊗1D) ◦ ψ ≈u idD⊗D .

The approximate intertwining will then look as follows:

D ⊗D
ψ

��

D ⊗D
ψ

��

D ⊗D
ψ

��

· · · D ⊗D

D

id⊗1

99

D

id⊗1

99

D · · · D

ϕ∼=

OO
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Once this is established, it is entailed in the approximate intertwining that

the isomorphism ϕ : D → D ⊗ D is approximately unitarily equivalent to

idD⊗1D (see [Rør02, Corollary 2.3.4]).

Let us denote the factor embeddings by ı[i] : D → D⊗D, for i = 1, 2 (cf.

Notation VI.1.1). Using that D has approximately inner half flip, let (ūn)∞n=1

be a sequence of unitaries in D ⊗D such that

(ūn)∗(1D ⊗ y)ūn → y ⊗ 1D (y ∈ D).

Define an endomorphism θ of D⊗D by θ = (ψ◦ı[2])⊗idD and let un := θ(ūn).

One then has

u∗n(1D ⊗ y)un = u∗nθ(1D ⊗ y)un

→ θ(y ⊗ 1D)

= ψ(1D ⊗ y)⊗ 1D,

for all y ∈ D. Next, by assumption ψ ◦ ı[1] ≈u idD. Let (vn)∞n=1 be a sequence

of unitaries in D such that

v∗nxvn → ψ(x⊗ 1D) (x ∈ D).

Define wn := (vn ⊗ 1D)un ∈ D ⊗ D. Let ε > 0 and x ∈ D. Then, for large

n ∈ N we get:

w∗n(x⊗ 1D)wn = u∗n(v∗n ⊗ 1D)(x⊗ 1D)(vn ⊗ 1D)un

≈ε u∗n(ψ(x⊗ 1D)⊗ 1D)un

= ψ(x⊗ 1D)⊗ 1D.

The last equality follows because the images of (ψ ◦ ı[1]) ⊗ 1D and θ = (ψ ◦
ι[2])⊗ idD commute. On the other hand, for every y ∈ D, we have:

w∗n(1D ⊗ y)wn = u∗n(v∗n ⊗ 1D)(1D ⊗ y)(vn ⊗ 1D)un

= u∗n(1D ⊗ y)un

→ ψ(1D ⊗ y)⊗ 1D.

It follows that

w∗n(x⊗ y)wn → ψ(x⊗ y)⊗ 1D (x, y ∈ D).

This completes the proof.
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II.2 Examples

In this section we will look at the known examples of strongly self-absorbing

C∗-algebras and how one proves that these are strongly self-absorbing. In

fact, by [TW07, Corollary 5.3], the list of strongly self-absorbing C∗-algebras

satisfying the UCT consists of the Jiang-Su algebra Z, the Cuntz algebras

O2,O∞, UHF-algebras of infinite type, denoted by UHF∞, and tensor prod-

ucts of these. Let us denote the universal UHF-algebra by Q, i.e. Q is the

unique UHF-algebra such that (K∗(Q), [1Q]0) ∼= (Q, 0, 1). These examples

follow a certain hierarchy as depicted in the diagram below, where an arrow

indicates a unital inclusion:

O2

Q //

77

Q⊗O∞

OO

UHF∞ //

OO

UHF∞ ⊗O∞

OO

Z //

OO

O∞

OO

As we do not know any nuclear C∗-algebra outside the UCT-class, this list

contains all known strongly self-absorbing C∗-algebras.

Until now it is only the case of UHF-algebras, where an inductive limit

structure is used explicitly to prove strong self-absorption. For all other

examples one has to establish some kind of elaborate classification to access

the abstract characterization of strongly self-absorbing C∗-algebras (Theorem

II.1.7). At this point I would like to note that the main theorem of this thesis

(Theorem VI.2.2) provides a new strategy to show that the Jiang-Su algebra

Z is strongly self-absorbing by actually using an inductive limit structure.

II.2.1 Example. Let U be a UHF-algebra of infinite type. Then U is

strongly self-absorbing. Let us do this for the CAR-algebra

M2∞ = lim−→(M2n , γn) with γn(x) =

(
x 0

0 x

)
.
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We can perform an approximate intertwining

M2 ⊗M2

γ⊗2
1 //

∼=

''

M4 ⊗M4

γ⊗2
2 //

∼=

''

M8 ⊗M8

γ⊗2
3 // · · · // M2∞ ⊗M2∞

M2

id⊗1

OO

γ1
// M4

id⊗1

OO

γ2
// M8

id⊗1

OO

γ3
// · · · // M2∞

ϕ ∼=

OO

Indeed, it is easy to see that two unital ∗-homomorphisms from Mn to Mm

must be unitarily equivalent. By [Rør02, Corollary 2.3.3] it then follows that

there is an isomorphism ϕ : M2∞ → M2∞ ⊗ M2∞ and unitaries (un)∞n=1 in

M2∞ ⊗M2∞ such that

unϕ(x)u∗n → x⊗ 1M2∞ (x ∈M2∞).

Let us check the statement about maps between matrix algebras, since we

will come back to it later (in Lemma III.2.1). If ϕ : Mn → Mm is a unital
∗-homomorphism, then n | m and the projections ϕ(eii) all have the same

rank m
n

. In particular, if ψ : Mn → Mm is another unital ∗-homomorphism,

then ϕ(e11) and ψ(e11) are Murray-von Neumann equivalent, i.e. there exists

a partial isometry v ∈Mm such that ϕ(e11) = vv∗ and ψ(e11) = v∗v. Define

u :=
n∑
i=1

ϕ(ei1)vψ(e1i).

Then

uu∗ =
n∑

i,j=1

ϕ(ei1)vψ(e1i)ψ(ej1)v∗ϕ(e1j) =
n∑
i=1

ϕ(ei1)vv∗vv∗ϕ(e1i)

=
n∑
i=1

ϕ(ei1)vv∗ϕ(e1i) =
n∑
i=1

ϕ(eii) = 1Mm

Similarly, one computes that uu∗ = 1Mm and hence u is a unitary. Fur-

thermore, it is easy to check that

uψ(eij)u
∗ = ϕ(eij) (i, j = 1, 2, · · · , n).

It follows that ϕ ∼u ψ.

II.2.2 Example. For the purely infinite examples, let us start with the

Cuntz algebra O2
∼= C∗(s1, s2 : s∗i si = 1, s1s

∗
1 + s2s

∗
2 = 1). See [Rør02,

Chapter 4] for the details. The main tool to study uniqueness is stability of

unital ∗-endomorphisms of purely infinite simple C∗-algebras, which is the

next technical lemma ([Rør02, Lemma 5.1.4]).
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II.2.3 Lemma. Let A be a unital, purely infinite, simple C∗-algebra and

let t1, t2 be isometries in A satisfying t1t
∗
1 + t2t

∗
2 = 1A.7 Let γ be the unital

∗-endomorphism of A given by γ(a) = t1at
∗
1 + t2at

∗
2. Then, for each unitary

u ∈ A and for each ε > 0, there is a unitary v ∈ A such that

‖vγ(v)∗ − u‖ < ε.

As a consequence we get the following uniqueness result for O2:

II.2.4 Theorem. Let A be a unital, purely infinite, simple C∗-algebra and

let ϕ, ψ : O2 → A be unital ∗-homomorphisms. Then ϕ ≈u ψ.

Proof. Let ti := ϕ(si), where s1, s2 denote the canonical generators of O2.

Define a unitary

u := ψ(s1)ϕ(s1)∗ + ψ(s2)ϕ(s2)∗.

By Lemma II.2.3, there exists a sequence (vn)∞n=1 of unitaries in A such that

vnγ(vn)∗ → u, where γ(a) = t1at
∗
1 + t2at

∗
2. Then, for i ∈ Z/2Z, the following

holds:

vnϕ(si)v
∗
n = vntiv

∗
n = vn(tiv

∗
nt
∗
i )ti

= vn(tiv
∗
nt
∗
i + ti−1v

∗
nt
∗
i−1)ti = vnγ(vn)∗ti

→ uti = ψ(si).

It follows that vnϕ(x)v∗n → ψ(x), for all x ∈ O2.

II.2.5 Lemma. The Cuntz algebra O2 has approximately inner half flip and

admits an asymptotically central sequence of unital ∗-endomorphisms. In

particular, O2 embeds unitally into its central sequence algebra (O2)ω∩ (O2)′.

Proof. Since O2 ⊗ O2 is purely infinite and simple (cf. [Rør02, Theorem

4.1.10]), it follows from Theorem II.2.4 that O2 has approximately inner

half flip. For the second statement, note that a sequence (xn)∞n=1 in O2

is approximately central if and only if ‖λ(xn)− xn‖ → 0, where λ(x) =

s1xs
∗
1 + s2xs

∗
2. Indeed, assume that ‖λ(xn)− xn‖ → 0. Let ε > 0. For

i = 0, 1 and large n ∈ N we get:

xnsi ≈ε λ(xn)si = (s1xns
∗
1 + s2xns

∗
2)si = sixn.

7Which implies that O2 embeds unitally into A.
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It follows that (xn)∞n=1 is approximately central. On the other hand, assume

(xn)∞n=1 is approximately central and let ε > 0. Then, for large n ∈ N, we

get

λ(xn) =
2∑
i=1

sixns
∗
i ≈ε xn

2∑
i=1

sis
∗
i = xn.

Now, let u ∈ O2 be a unitary such that λ = λu, where λu is determined by8

λu(si) = usi. Actually,

u =
2∑
i=1

λ(si)s
∗
i .

By Lemma II.2.3 we again find unitaries (vn)∞n=1 in O2 such that vnλ(vn)∗ →
u. Define ρn := λvn . We claim that the ρn are approximately central. Indeed,

‖λ(ρn(si))− ρn(si)‖ = ‖λ(vnsi)− vnsi‖ = ‖λ(si)− λ(vn)∗vnsi‖
= ‖usi − λ(vn)∗vnsi‖
→ ‖usi − usi‖ = 0.

By our previous observation, it follows that (ρn(x))∞n=1 is approximately cen-

tral, for every x ∈ O2. Furthermore, the ρn induce a unital ∗-homomorphism

O2 → (O2)ω ∩ (O2)′ : x 7→ [(ρn(x))∞n=1].

By Theorem II.1.6 it now follows that O2 is strongly self-absorbing.

II.2.6 Example. The next purely infinite example is

O∞ = C∗
(
(si)

∞
i=1 : s∗i sj = δij · 1

)
,

which behaves quite differently from O2. Let us briefly recall the two main

ingredients for this case. As for O2, there is a uniqueness result for O∞
([Rør02, Proposition 7.2.5]), showing that O∞ has approximately inner half

flip. The other main ingredient is that the central sequence algebra of a unital

Kirchberg algebra is unital, simple and purely infinite ([Rør02, Proposition

7.1.1]). The proof relies on a detailed study of nuclear maps between purely

infinite C∗-algebras.

8The map λu exists by the universal property of O2.
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II.2.7 Theorem. Let A be a unital Kirchberg algebra. Then Aω ∩ A′ is a

unital, purely infinite and simple C∗-algebra.

Applying this theorem to O∞, we see that the unit of the central se-

quence algebra of O∞ is properly infinite, showing that there exists a unital

embedding O∞ → (O∞)ω ∩ (O∞)′, see [Rør02, Proposition 1.1.2]. Again, by

Theorem II.1.6, it follows that O∞ is strongly self-absorbing.

II.2.8 Example. Our final example will be the Jiang-Su algebra Z. In

[JS99], Z is constructed as an inductive limit

Z = (Zpn,qn , φn),

where pn, qn ∈ N are coprime, finite and pn, qn → ∞. The connecting maps

φm,n have a particularly explicit form and look like

φm,n(f) = u diag(f ◦ ξ1, f ◦ ξ2, · · · , f ◦ ξk) u∗ (m < n),

where u is a unitary path in Mpnqn and each ξi : [0, 1]→ [0, 1] is a continuous

function looking almost constant for larger n, more precisely:

sup
x,y∈[0,1]

|ξi(x)− ξi(y)| ≤ 1

2n−m
(i = 1, 2, · · · , k).

In this picture, one can prove that Z is strongly self-absorbing by using

Theorem II.1.7. This uses the full power of classification (existence and

uniqueness) for unital and simple inductive limits of dimension drop algebras.

Let us start with the following existence theorem ([JS99, Theorem 6.2]):

II.2.9 Theorem. Let A and B be unital, infinite dimensional and simple

inductive limits of finite direct sums of dimension drop algebras9. If there

exists a unital morphism

α : Ell(A)→ Ell(B),

then there exists a unital ∗-homomorphism ϕ : A → B, such that ϕ induces

α.

Recall that Ell(A) = (K0(A),K0(A)+, [1A]0,K1(A), T (A)). A unital mor-

phism α : Ell(A) → Ell(B) then consists of a triple (α0, α1, ν), where α0, α1

9Here, a dimension drop algebra is an algebra of the form Zp,q with p, q ∈ N.
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are homomorphisms on the respective K-groups, with α0 positive and unital,

and with ν : Aff(T (A)) → Aff(T (B)) a unital, positive and affine map. Fur-

thermore, there should be a compatibility between K-theory and traces, in

the sense that the following diagram commutes:

K0(A)
α0 //

ρA
��

K0(B)

ρB
��

Aff(T (A)) ν
// Aff(T (B))

The map ρA is given by ρA([p]0)(τ) = (τ ⊗ Tr)(p), where Tr is the standard

trace on K, such that Tr(e11) = 1.

The above existence result will be used for the next theorem ([JS99,

Proposition 8.5]).

II.2.10 Theorem. There exists a unital ∗-homomorphism Z ⊗ Z → Z.

Proof. We only recall the main steps of the construction of Jiang and Su

(without proof). Let us denote by An the building blocks of Z, i.e. An =

Zpn,qn as described earlier. Let Bn denote the diagonal of An⊗An, where we

identify An⊗An with continuous functions on [0, 1]2 satisfying certain bound-

ary conditions. Let us denote the restriction to the diagonal by ρn : An ⊗
An → Bn. The goal is then to construct unital ∗-homomorphisms ϕn : Bn →
Bn+1, such that the following diagram is a (one-sided) approximate inter-

twining, where B := lim−→(Bn, ϕn):

A1 ⊗ A1

ρ1
��

φ⊗2
1 // A2 ⊗ A2

ρ2
��

φ⊗2
2 // · · · //// Z ⊗ Z

ϕ

��

B1
ϕ1

// B2
ϕ2

// · · · // B

Let us remark that the ϕn are constructed by hand, without using a unique-

ness result. Once this is established, we still need a unital ∗-homomorphism

B → Z. This is done by invoking Theorem II.2.9. Since each Bn is a prime

dimension drop algebra, it follows that (K0(B),K1(B), [1B]0) ∼= (Z, 0, 1) and

one can show that the limit B is simple and has a unique trace. By writing

down a map on the level of the Elliott invariant Ell, we then find a unital
∗-homomorphism σ : B → Z. Now, the composition σ ◦ ϕ : Z ⊗ Z → Z is

the required unital ∗-homomorphism.
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We can now use Theorem II.1.7 to show that Z is strongly self-absorbing.

In [JS99, Proposition 8.3] it is proven that Z has approximately inner half

flip. Let us mention that the proof of this fact, different from the purely

infinite cases, does not rely on any classification machinery. Indeed, the

unitaries implementing the approximate inner half flip come from the unitary

paths used in the construction of Z. Then, fix a unital ∗-homomorphism

ψ : Z ⊗ Z → Z . The uniqueness theorem for maps between dimension drop

algebras ([JS99, Theorem 7.6, Corollary 5.6]) shows that

ψ ◦ (idZ ⊗1Z) ≈u idZ .

Therefore, all assumptions in Theorem II.1.7 are satisfied and it follows that

Z is strongly self-absorbing.

We see that Jiang and Su need the full force of classification to show

that Z is strongly self-absorbing. This is because it seems difficult to write

down an approximate intertwining between Z ⊗ Z and Z, only using the

construction of Z by Jiang and Su. In this thesis we will circumvent this

problem by using a different picture, due to Rørdam and Winter.
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Chapter III

Uniqueness

The aim of this chapter is to prove uniqueness results for standard ∗-homo-

morphisms on Zp,q. Using a so-called Basic Homotopy Lemma (Lemma

III.4.9), we can prove an asymptotic uniqueness result for standard ∗-homo-

morphisms Zp,q →Mp ⊗Mq and an approximate uniqueness result for stan-

dard ∗-endomorphisms Zp,q → Zp,q, see Theorem III.5.4 respectively Theorem

III.6.1.

III.1 Classification of Lebesgue contractions

This section relies on spectral theory and basic properties of UHF-algebras.

Even though the main result of this section (Theorem III.1.5) is well-known,

I want to provide an elementary proof, as for example described in [Sko16].

III.1.1 Definition. Let A be a unital C∗-algebra and τ ∈ T (A). We then

define the dimension function dτ : A+ → [0,∞) associated to τ by

dτ (a) := lim
n→∞

τ(a
1
n ) (a ∈ A+).

Note that the limit exists since the sequence (τ(a
1
n ))∞n=1 is increasing and

bounded by ‖a‖.

Dimension functions play an important role in the classification of C∗-

algebras and are closely related to the Cuntz semigroup, as we will see in

Chapter V.
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III.1.2 Definition. Let A be a unital C∗-algebra and τ ∈ T (A). Let a ∈ A
be a self-adjoint element. We then define the eigenvalue function λaτ : [0, 1)→
[0,∞) of a with respect to τ by

λaτ (s) = inf{t ∈ R : dτ
(
(a− t)+

)
≤ s}.

Here (a− t)+ denotes the positive part of a− t1A.

The next lemma justifies the name eigenvalue function.

III.1.3 Lemma. Let A be a unital C∗-algebra and τ ∈ T (A). Let {pi}ni=1 be

a family of pairwise orthogonal projections in A such that
∑n

i=1 pi = 1A. Let

λ1 ≥ λ2 ≥ · · · ≥ λn be real numbers and define

a :=
n∑
i=1

λipi.

Then, for k = 1, 2, · · · , n,

λaτ (s) = λk (s ∈ [sk−1, sk)),

where sk =
∑k

i=1 τ(pi).

Proof. One should think of a as a diagonal operator, with respect to the

projections pi, having the λi as diagonal entries. For t ∈ R, we get

(a− t)+ =
n∑
i=1

(λi − t)+pi.

It is clear that (λi − t)+ = 0 if t ≥ λi. It follows that

dτ
(
(a− t)+

)
=

∑
{i:t<λi}

τ(pi) = sk′ ,

where k′ is the largest integer such that t < λk′ . We see that for s ∈ [sk−1, sk)

we have

dτ
(
(a− t)+

)
≤ s ⇐⇒ t ≥ λk.

Hence λaτ (s) = λk.

III.1.4 Example. Let A be a unital C∗-algebra and assume h ∈ A+ is a

Lebesgue contraction (see Definition I.2.8). Then, the eigenvalue function of
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a with respect to any tracial state τ ∈ T (A) can be computed very explicitly

(where µ is the Lebesgue measure):

λhτ (s) = inf{t ∈ R : dτ
(
(h− t)+

)
≤ s}

= inf{t ∈ R : µ(supp((ι− t)+)) ≤ s}
= inf{t ∈ R : 1− t ≤ s}
= 1− s.

In particular, any two Lebesgue contractions have the same eigenvalue func-

tion.

Using the same idea, the following theorem ([Sko16, Theorem 5.1]) is true

in a slightly more general setting. In fact, the proof only requires that the C∗-

algebra in question has real rank zero and strong comparison of projections

w.r.t. a faithful tracial state. Relying on more sophisticated methods, we

will also show that U can be replaced by a more complicated C∗-algebra, for

example the ultrapower Uω of U , cf. Lemma V.2.7.

III.1.5 Theorem. Let U be a UHF-algebra and assume that h, k ∈ U are

two Lebesgue contractions1. Then h ≈u k.

Proof. Let ε > 0. Since U has real rank zero, there exist positive contractions

h′, k′ ∈ U with finite spectrum such that ‖h− h′‖ < ε
4

and ‖k − k′‖ <
ε
4
. Using an iterative argument ([Sko16, Lemma 4.2]) one can show that

there exist pairwise orthogonal families of projections {pi}ni=1, {qi}ni=1, each

of which adds up to the identity, and decreasing scalars {αi}ni=1, {βi}ni=1 such

that

τU(pi) = τU(qi) (i = 1, 2, · · · , n) (III.1.1)

and

h′ =
n∑
i=1

αipi, k′ =
n∑
i=1

βiqi.

Since τU(pi) = τU(qi) it follows that pi ∼u qi, say uipiu
∗
i = qi. Define

u :=
n∑
i=1

qiuipi.

1The same proof works if we assume that h and k have the same eigenvalue function.

38



Then u is a unitary in U and upiu
∗ = qi, for all i (see also Lemma III.4.5).

From Lemma III.1.3 and (III.1.1), we know that

αi = λτUh′ (si), βi = λτUk′ (si), (III.1.2)

for some si ∈ [0, 1). Furthermore, by [Pet85, Proposition 2 (ii)], it follows

that

|λτUh′ (s)− λ
τU
h (s)| ≤ ‖h′ − h‖ < ε

4
(s ∈ [0, 1)).

The same holds for k′ and k, too. Now, we have:

‖uhu∗ − k‖ ≤ ε

2
+ ‖uh′u∗ − k′‖

=
ε

2
+

∥∥∥∥∥
n∑
i=1

(αi − βi)qi

∥∥∥∥∥
=
ε

2
+ max

i
|αi − βi|

=
ε

2
+ max

i
{|λτUh′ (si)− λ

τU
k′ (si)|

≤ ε+ max
i
{|λτUh (si)− λτUk (si)|

= ε.

In the last line we have an equality, because the eigenvalue function of h

and k are equal, as shown in Example III.1.4. It follows that there exists a

sequence of unitaries (un)∞n=1 in U with unhu
∗
n → k, as desired.

III.2 Uniqueness for order zero maps

The next lemma provides a uniqueness result for c.p.c. order zero maps de-

fined on matrix algebras. Since c.p.c. order zero maps are certain com-

pressions of ∗-homomorphisms, we will use ideas from the classification of
∗-homomorphisms, cf. Example II.2.1.

III.2.1 Lemma. Let A be a unital C∗-algebra, p ∈ N and assume that

ϕ, ψ : Mp → A are c.p.c. order zero maps, such that ϕ(e11) ≈ ψ(e11). Then

ϕ ≈ ψ. If in addition A has stable rank one, i.e. the set of invertible elements

is dense in A, then ϕ ≈u ψ.

Proof. Assume ϕ(e11) ≈ ψ(e11). By a standard argument, there exists a

contraction v ∈ Aω with

vϕ(e11)v∗ = ψ(e11), v∗ψ(e11)v = ϕ(e11).
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Consider the elements eϕ :=
[
(h

1
n
ϕ )∞n=1

]
and eψ :=

[
(h

1
n
ψ )∞n=1

]
in Aω, where hϕ

and hψ are as in Theorem I.2.3. The elements eϕ and eψ act as unit on the

image of ϕ respectively ψ. Considering Aω ⊆ (A∗∗)ω, we furthermore have

that eϕπϕ(x) and eψπψ(x) are elements in Aω, for every x ∈ Mp. One then

defines

u :=

p∑
i=1

πψ(ei1)eψveϕπϕ(e1i) ∈ Aω

and computes that

uϕ(eij)u
∗ = ψ(eij), u∗ψ(eij)u = ϕ(eij) (i, j = 1, 2, · · · , p).

This shows that ϕ ≈ ψ. If A has stable rank one, we have a polar decompo-

sition in Aω (see the proof of Lemma V.2.5). We thus may write u = v |u|,
for some unitary v ∈ Aω. This unitary will then implement the unitary

equivalence of ϕ and ψ in Aω (cf. [Gab18, Proposition 3.13]). It follows that

ϕ ≈u ψ.

III.2.2 Remark. Let us recall two standard facts about functional calculus.

If x and y are two positive and orthogonal contractions in a C∗-algebra, then

f(x+ y) = f(x) + f(y) (f ∈ C0(0, 1]).

It is enough to check this on polynomials of the form z 7→ zn:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k = xn + yn.

Furthermore, if x and y are equivalent, in the sense that x = a∗a and y = aa∗,

then

τ(f(x)) = τ(f(y)) (f ∈ C0(0, 1]),

where τ is a tracial state. Again, since τ is continuous and linear, it is enough

to check this on polynomials of the form z 7→ zn. Using that τ is tracial, we

see that

τ(xn) = τ((a∗a)n) = τ(a∗a · a∗a · · · a∗a)

= τ(aa∗ · aa∗ · · · aa∗) = τ((aa∗)n) = τ(yn).

III.2.3 Lemma. Let p be a supernatural number and let ϕ, ψ : Mp → U be

two c.p.c. order zero maps, where U is a UHF-algebra. Assume that hϕ and

hψ are both Lebesgue contractions. Then ϕ ≈u ψ.
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Proof. By an easy approximation argument one may assume that ϕ and ψ are

defined on Mp, where p ∈ N. Note that the positive contractions {ϕ(eii)}pi=1

are mutually orthogonal and equivalent positive elements, in the sense that

there exist xi ∈ U with ϕ(e11) = x∗ixi and xix
∗
i = ϕ(eii). Using that the

ϕ(eii) are mutually equivalent, it follows that τU(f(ϕ(e11))) = τU(f(ϕ(eii))),

for i = 1, 2, · · · , p and f ∈ C0(0, 1]. Using that hϕ = ϕ(1p) is a Lebesgue

contraction, it follows that

1

p

∫ 1

0

f(t) dt =
1

p
τU(f(ϕ(1p))) =

1

p

p∑
i=1

τU(f(ϕ(eii)))

=
1

p

p∑
i=1

τU(f(ϕ(e11))) = τU(f(ϕ(e11))),

for all f ∈ C0(0, 1]. The same computation works for ψ and we see that both

ϕ(e11) and ψ(e11) have 1
p

Lebesgue spectral measure. In particular they have

the same eigenvalue function, see Definition III.1.2 and [Sko16, Definition

2.6]. It follows by Theorem III.1.5 that ϕ(e11) ≈u ψ(e11) and in particular

ϕ(e11) ≈ ψ(e11). Since U has stable rank one, Lemma III.2.1 shows that

ϕ ≈u ψ.

III.3 Uniqueness for maps on dimension drop

algebras

In this section we prove approximate uniqueness results for standard ∗-homo-

morphisms Zp,q → Mp ⊗Mq. This is done by reducing the problem to the

commuting cones generating the dimension drop algebra and using the fol-

lowing rotation trick.

III.3.1 Rotation trick. The following provides a method that allows to

reduce many arguments about maps on Zp,q to maps on C([0, 1]). This

ingredient is essential for the proofs of Lemma III.3.2 and Lemma III.4.9.

Let ϕ : Zp,q → U be a unital ∗-homomorphism, where U is some C∗-

algebra (in the following a UHF-algebra or an ultrapower of such). Let p and

q be supernatural numbers of infinite type. By [DW09, Theorem 2.2], the

flip map on Mp⊗Mp and Mq⊗Mq is strongly asymptotically inner, witnessed

by say unitary paths Sp : [0, 1) → Mp ⊗Mp and Sq : [0, 1) → Mq ⊗Mq. For
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t ∈ [0, 1), we define a continuous function

ξt : [0, 1]→ [0, 1) : s 7→


t if s ∈ [0, t],

linear if s ∈ [t, 1],

0 if s = 1

and unitary paths

Ẃt : [0, 1]→Mq ⊗Mq : s 7→ Sq(ξt(1− s)),
Ẁt : [0, 1]→Mp ⊗Mp : s 7→ Sp(ξt(s)).

(III.3.1)

t

t

t′

1

Figure III.1: The function ξt and ξt′ for t′ slightly larger than t.

The path Ẃt, for example, is designed in such a way that it takes most of

the time, namely on [1−t, 1], the value Sq(t), which implements the flip better

and better. Furthermore Ẃt(0) = 1q⊗1q, showing that Ẃt defines an element

of the unitization (C0(0, 1]⊗Mq⊗Mq)
+ and Ẃt−1 ∈ C0(0, 1]⊗Mq⊗Mq, where

1 denotes the adjoined unit. Note that we freely identify C0(0, 1]⊗Mq⊗Mq

with {f ∈ C([0, 1],Mq ⊗Mq) : f(0) = 0} and its unitization is then given by

{f ∈ C([0, 1],Mq ⊗Mq) : f(0) ∈ C}. Similarly, Ẁt ∈ (C0[0, 1)⊗Mp ⊗Mp)
+

with scalar part 1. One then easily checks that

lim
t→1

Ẃt(g ⊗ r ⊗ s)(Ẃt)
∗ = g ⊗ s⊗ r,

lim
t→1

Ẁt(f ⊗ x⊗ y)(Ẁt)
∗ = f ⊗ y ⊗ x,

(III.3.2)

for g ∈ C0(0, 1], r, s ∈ Mq and f ∈ C0[0, 1), x, y ∈ Mp. Since the paths

Ẃt and Ẁt depend continuously on the parameter t, we get unitary paths
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(Ùϕ
t )t∈[0,1) and (Úϕ

t )t∈[0,1) defined by

Ùϕ
t := (ϕ̀⊗ idMp)

+(Ẁt) ∈ U ⊗Mp,

Úϕ
t := (ϕ́⊗ idMq)

+(Ẃt) ∈ U ⊗Mq.
(III.3.3)

See I.3.6 for the definition of ϕ́ and ϕ̀. From (III.3.2), it follows that we may

twist the non-central part of each cone separately into an extra tensor factor

(as done in Lemma III.3.2):

lim
t→1

Úϕ
t (ϕ́(g ⊗ r)⊗ 1q)(Ú

ϕ
t )∗ = ϕ́(g ⊗ 1q)⊗ r = ϕ(g)⊗ r,

lim
t→1

Ùϕ
t (ϕ̀(f ⊗ x)⊗ 1p)(Ù

ϕ
t )∗ = ϕ̀(f ⊗ 1p)⊗ x = ϕ(f)⊗ x.

(III.3.4)

If we use U ⊗Mp ⊗Mq as codomain, as in Lemma III.4.9, we instead define

Ùϕ
t := (ϕ̀⊗ ı[1]

(p,q))
+(Ẁt) ∈ U ⊗Mp ⊗Mq,

Úϕ
t := (ϕ́⊗ ı[2]

(p,q))
+(Ẃt) ∈ U ⊗Mp ⊗Mq,

(III.3.5)

where ı
[1]
(p,q) and ı

[2]
(p,q) denote the obvious embeddings of Mp resp. Mq into the

first resp. second tensor factor of Mp ⊗Mq (see Notation VI.1.1). In that

case

[Ùϕ
t , Ú

ϕ
t ] = 0 (t ∈ [0, 1)). (III.3.6)

Then, the obvious adjustment of (III.3.4) holds:

lim
t→1

Úϕ
t (ϕ́(g ⊗ r)⊗ 1pq)(Ú

ϕ
t )∗ = ϕ́(g ⊗ 1q)⊗ 1p ⊗ r = ϕ(g)⊗ 1p ⊗ r,

lim
t→1

Ùϕ
t (ϕ̀(f ⊗ x)⊗ 1pq)(Ù

ϕ
t )∗ = ϕ̀(f ⊗ 1p)⊗ x⊗ 1q = ϕ(f)⊗ x⊗ 1q,

where 1pq := 1p ⊗ 1q. Most importantly, in this situation we may twist the

non-central part of both cones simultaneously into commuting subalgebras

of U ⊗Mp ⊗Mq:

lim
t→1

Ùϕ
t Ú

ϕ
t (ϕ̀(f ⊗ x)⊗ 1pq)(Ú

ϕ
t )∗(Ùϕ

t )∗ = ϕ(f)⊗ x⊗ 1q,

lim
t→1

Ùϕ
t Ú

ϕ
t (ϕ́(g ⊗ y)⊗ 1pq)(Ú

ϕ
t )∗(Ùϕ

t )∗ = ϕ(g)⊗ 1p ⊗ y,
(III.3.7)

for all f ∈ C0[0, 1), x ∈ Mp and g ∈ C0(0, 1], y ∈ Mq. Note that (III.3.7)

follows directly from (III.3.4) and (III.3.6).

III.3.2 Lemma. Let p and q be supernatural numbers and let U be a UHF-

algebra of infinite type, which tensorially absorbs Mp or Mq. Assume that

β0, β1 : Zp,q → U are standard ∗-homomorphisms. Then β0 ≈u β1.
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Proof. Let us assume that U tensorially absorbs Mp. The other case is then

obtained by reversing the orientation of the unit interval. By assumption,

h
β́0

= β́0(ι⊗ 1q) and h
β́1

= β́1(ι⊗ 1q)

are both Lebesgue contractions and by Lemma III.2.3 we see that β́0 ≈u β́1.

By Remark I.5.2, there exists a unitary u ∈ Uω, such that ad(u) ◦ β́0 = β́1,

when β́0 and β́1 are considered as maps taking values in Uω. Let us define

γi : Zp,q → Uω by

γ0 := ad(u) ◦ β0, γ1 := β1.

Then γ́0 = γ́1 and one easily checks that

γ0(f) = γ1(f) (f ∈ C([0, 1])). (III.3.8)

For t ∈ [0, 1), we define Vt := (Ùγ1
t )∗Ùγ0

t ∈ Uω ⊗Mp ⊆ (U ⊗Mp)ω, with Ùγi
t

as in (III.3.3). Let f ∈ C0[0, 1), x ∈ Mp and ε > 0. Using (III.3.4), choose

t0 ∈ [0, 1) such that

Ùγi
t (γ̀i(f ⊗ x)⊗ 1p)(Ù

γi
t )∗ ≈ ε

2
γi(f)⊗ x (i = 0, 1, t ≥ t0). (III.3.9)

For t ≥ t0, we then get

Vt(γ̀0(f ⊗ x)⊗ 1p)V
∗
t = (Ùγ1

t )∗Ùγ0
t (γ̀0(f ⊗ x)⊗ 1p)(Ù

γ0
t )∗Ùγ1

t

(III.3.9)
≈ ε

2
(Ùγ1

t )∗(γ0(f)⊗ x)Ùγ1
t

(III.3.8)
= (Ùγ1

t )∗(γ1(f)⊗ x)Ùγ1
t

(III.3.9)
≈ ε

2
γ̀1(f ⊗ x)⊗ 1p.

Furthermore, Vt commutes with γ́0 ⊗ 1p = γ́1 ⊗ 1p. It follows that

lim
n→∞

∥∥∥V1− 1
n
(γ0(g)⊗ 1p)V

∗
1− 1

n
− γ1(g)⊗ 1p

∥∥∥ = 0 (g ∈ Zp,q),

and hence γ0 ⊗ 1p ≈u γ1 ⊗ 1p. By Remark I.5.2, we have γ0 ⊗ 1p ∼u γ1 ⊗ 1p.

Let u′ ∈ (U ⊗Mp)ω, such that

ad(u′) ◦ (γ0 ⊗ 1p) = γ1 ⊗ 1p.

Putting u′′ := u′(u⊗1p) ∈ (U⊗Mp)ω, we thus have ad(u′′)◦(β0⊗1p) = β1⊗1p.

By [TW07, Theorem 2.3] and the assumption that U ∼= U ⊗Mp, there exists
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a ∗-homomorphism ϕ : U ⊗Mp → Uω with ϕ(x ⊗ 1p) = x, for x ∈ U . This

induces a map

ϕω : (U ⊗Mp)ω → (Uω)ω.

Let w := ϕω(u′′) ∈ (Uω)ω. Then

wβ0(x)w∗ = ϕω(u′′)ϕω(β0(x)⊗ 1p)ϕω((u′′)∗) = ϕω(β1(x)⊗ 1p) = β1(x).

It follows that β0 ∼u β1 in (Uω)ω. By Remark I.5.2 again, β0 ≈u β1 as maps

into U .

III.4 Basic Homotopy Lemmas

In this section we prove a so-called Basic Homotopy Lemma for maps Zp,q →
Mp ⊗Mq. Roughly, it says that a unitary in Mp ⊗Mq, which approximately

commutes with the image of such a map, may be connected to the identity

by a unitary path, which pointwise approximately commutes with the image

very well, too.

Combining this with our approximate uniqueness result (Lemma III.3.2),

we arrive at an asymptotic uniqueness result for standard ∗-homomorphisms

Zp,q → Mp ⊗ Mq and an approximate uniqueness result for standard ∗-

endomorphisms Zp,q → Zp,q (Theorem III.5.3 respectively Theorem III.6.1).

Let us first collect some basic facts about projections and spectral theory,

cf. [BEEK98, Section 2].

III.4.1 Lemma. Let A be a C∗-algebra and let p, q be projections in A with

‖p− q‖ < 1. Then, there exists a partial isometry v ∈ A with vv∗ = p, v∗v =

q and ‖v − q‖ < 2 ‖p− q‖.

III.4.2 Lemma. Let ε > 0 and g ∈ C([0, 1]). Then, there exists δ > 0 such

that the following holds: Whenever h, k are positive contractions in some

C∗-algebra A and ‖h− k‖ < δ, then ‖g(h)− g(k)‖ < ε.

III.4.3 Lemma. Let ε > 0 and assume that I, J ⊆ [0, 1] are two intervals

such that I is contained in the interior of J . Then, there exists δ0 > 0 such

that the following holds: Whenever h and k are positive contractions with

‖h− k‖ < δ < δ0, then

‖pq − q‖ < ε,

where q = χI(k) and p = χJ(h) denote the respective spectral projections.
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The next lemma is maybe less known and contained in [BEEK98, Lemma

2.4].

III.4.4 Lemma. Let p, q, e be projections in some unital C∗-algebra A with

e ≤ p and

‖pq − q‖ ≤ ε <
1

6
.

Then, there exists a unitary u in A with

e ≤ uqu∗ ≤ p

and ‖uqu∗ − q‖ ≤ 10ε.

III.4.5 Lemma. Let (pi)
N
i=0 and (qi)

N
i=0 be two families of projections in

a unital C∗-algebra A, each of which sums up to the identity. If for all

i = 0, 1, 2, · · · , N , we have ‖pi − qi‖ < ε ≤ 1, then there exists a unitary

u ∈ A with upiu
∗ = qi, for i = 1, 2, · · · , N , and ‖u− 1A‖ ≤ 2(N + 1)ε.

Proof. Since ‖pi − qi‖ < 1, it follows from Lemma III.4.1 that there exist

partial isometries vi ∈ A such that viv
∗
i = pi and v∗i vi = qi. Furthermore,

‖vi − pi‖ ≤ 2 ‖qi − pi‖ < 2ε. Note that vi = pivi = viqi = piviqi. Hence

viv
∗
j = viqiqjv

∗
j = δi,jviv

∗
j = δi,jpi. Similarly v∗i vj = δi,jqi. Define

u :=
N∑
i=0

vi.

Then u is a unitary in A, since

uu∗ =
N∑

i,j=0

viv
∗
j =

N∑
i,j=0

δi,jpi =
N∑
i=0

pi = 1A.

Similarly, we get u∗u = 1A and it is clear that upiu
∗ = qi, for all i. Finally,

we have

‖u− 1A‖ =

∥∥∥∥∥
N∑
i=0

vi − pi

∥∥∥∥∥ < 2(N + 1)ε.

The following lemma is a reformulation of [BEEK98, Lemma 5.1], which

is therein referred to as Isospectral Homotopy Lemma in Case of a Large

Spectral Gap. In modern work this type of lemma is often called a Basic Ho-

motopy Lemma and due to its importance to the classification of C∗-algebras
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great effort has been made to generalize the theory of such (cf. [Lin17]). For

our purpose however, this elementary result is sufficient.

III.4.6 Lemma. For every ε > 0 there exists δ > 0 such that the following

holds: Whenever h is a positive contraction with full spectrum and u is a

unitary in some UHF-algebra U such that

‖uhu∗ − h‖ < δ,

then there exists a positive contraction h′ ∈ U with finite spectrum such that

‖h− h′‖ < ε and there exists a unitary path (wt)t∈[0,1] in U such that w0 = 1U
and

(i) ‖wth′w∗t − h′‖ < ε, for all t ∈ [0, 1],

(ii) w1h
′w∗1 = uh′u∗.

Proof. (I) Let ε > 0. Choose N ∈ N even with 1
N
< ε

10
and let η := ε

1000(N+1)
.

Having N , we may define intervals

Ik :=

[
N − k + 1

N
, 1

] (
k = 1,

3

2
, 2,

5

2
, · · · , N + 1

)
,

so that {1} = I1 ⊆ I 3
2
⊆ I2 ⊆ · · · ⊆ IN+1 = [0, 1]. By Lemma III.4.3, there

exists 0 < δ < ε
10

such that whenever h and k are positive contractions with

‖h− k‖ < δ, then for k = 1, 3
2
, 2, · · · , N + 1:∥∥∥pkqk− 1

2
− qk− 1

2

∥∥∥ < η,
∥∥∥qkpk− 1

2
− pk− 1

2

∥∥∥ < η, (III.4.1)

where pk = χIk(h) and qk = χIk(k).

(II) We now show that δ
3

does the job. To this end, let h be a positive

contraction with full spectrum in some UHF-algebra U and let u ∈ U be a

unitary with

‖uhu∗ − h‖ < δ

3
.

Find a positive contraction h0 ∈ U with finite spectrum such that h0 has no

spectral gaps of length greater or equal to 1
2N

and such that ‖h− h0‖ < δ
3
.

Such h0 can be found easily since h has full spectrum and U has real rank

zero. Then

‖uh0u
∗ − h0‖ < δ.
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Let us look at

h′ :=
1

N

N∑
k=1

pk ∈ U,

where pk := χIk(h0). Then, by functional calculus, ‖h0 − h′‖ ≤ 1
N

and hence

‖h− h′‖ < 1
N

+ δ
3
< ε. Let us define

k′ := uh′u∗ =
1

N

N∑
k=1

upku
∗ =

1

N

N∑
k=1

qk,

where qk := upku
∗ = χIk(uh0u

∗). Since ‖uh0u
∗ − h0‖ < δ, it follows that

(III.4.1) holds for the spectral projections pk, qk associated to h0 resp. uh0u
∗

and we may apply Lemma III.4.4 to get unitaries (uk)
N
k=1 and (vk)

N
k=1 such

that

pk−1 < pk− 1
2
≤ ukqku

∗
k ≤ pk+ 1

2
< pk+1, (III.4.2)

qk−1 < qk− 1
2
≤ vkpkv

∗
k ≤ qk+ 1

2
< qk+1 (III.4.3)

and, with q′k := ukqku
∗
k resp. p′k := vkpkv

∗
k, we have

‖q′k − qk‖ ≤ 10η, ‖p′k − pk‖ ≤ 10η. (III.4.4)

After having done this setup, we are now able to find the desired unitary

path (wt)t∈[0,1]. We will construct this path in three steps.

(III) Let us first show how to connect

h′ =
1

N
(p1 + p2 + p3 + p4 + · · ·+ pN−1 + pN)

to

h′′ :=
1

N
(p1 + q′2 + p3 + q′4 + · · ·+ pN−1 + q′N).

Note that (III.4.2) entails that for k = 1, 2, · · · , N
2

:

p2k − p2k−1 ∼u q
′
2k − p2k−1 in (p2k+1 − p2k−1)U(p2k+1 − p2k−1).

Since this corner is again a UHF-algebra it follows that there exist unitary

paths (u2k,t)t∈[0, 1
3

] inside (p2k+1−p2k−1)U(p2k+1−p2k−1) connecting p2k−p2k−1

and q′2k − p2k−1. One now checks that

wt := p1 + u2,t + u4,t + · · ·+ uN,t (t ∈ [0, 1/3])
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defines a unitary path in U and connects h′ to h′′, i.e. w0 = 1U and w 1
3
h′w∗1

3

=

h′′. Furthermore, it is easy to check that ‖wth′w∗t − h′‖ ≤ 2
N
< ε

5
< ε, for

t ∈ [0, 1/3].

(IV) In the second step we connect h′′ to

k′′ :=
1

N
(p′1 + q2 + p′3 + q4 + · · ·+ p′N−1 + qN).

Since

1U = p1 + (q′2 − p1) + (p3 − q′2) + · · ·+ (q′N − pN−1) + (1U − q′N)

= p′1 + (q2 − p′1) + (p′3 − q2) + · · ·+ (qN − p′N−1) + (1U − qN)

and, by (III.4.4), ∥∥(q′k − pk−1)− (qk − p′k−1)
∥∥ < 2 · 10η,∥∥(pk − q′k−1)− (p′k − qk−1)
∥∥ < 2 · 10η,

it follows together with Lemma III.4.5 that there exists a unitary z ∈ U which

conjugates the q′2k − p2k−1 into q2k − p′2k−1 and p2k+1 − q′2k into p′2k+1 − q2k,

such that

‖z − 1U‖ ≤ 2(N + 1) · 20η = 40(N + 1)η ≤ ε

20
.

Clearly zh′′z∗ = k′′. Since −1 /∈ σ(z), we may write z = eiπa for some

self-adjoint element a ∈ U with ‖a‖ < 1 and one checks that

zt = ei3(t−1/3)πa (t ∈ [1/3, 2/3])

connects 1U to z such that ‖zt − 1U‖ ≤ ε
20

. Define

wt := ztw 1
3

(t ∈ [1/3, 2/3]).

For t ∈ [1/3, 2/3] we then get

‖wth′w∗t − h′‖ = ‖zth′′z∗t − h′‖ ≤ ‖zth′′z∗t − h′′‖+ ‖h′′ − h′‖

≤ 2 · ε
20

+
∥∥∥w 1

3
h′w∗1

3
− h′

∥∥∥ < ε

10
+
ε

5
< ε.

(V) In the last step we connect k′′ = w 2
3
h′w∗2

3

to k′ = uh′u∗ similarly as we

connected h′ to h′′, producing a unitary path (yt)t∈[2/3,1]. We finally define

wt := ytw 2
3

(t ∈ [2/3, 1]).

49



Since ‖h′ − k′‖ ≤ ‖h′ − h0‖+‖h0 − uh0u
∗‖+‖uh0u

∗ − uh′u∗‖ ≤ 1
N

+δ+ 1
N

=
2
N

+ δ, it follows that for t ∈ [2/3, 1], we also have

‖wth′w∗t − h′‖ = ‖ytk′′y∗t − h′‖ ≤ ‖ytk′′y∗t − k′‖+ ‖k′ − h′‖

≤ 2

N
+

2

N
+ δ <

2ε

5
+
ε

3
< ε.

We are now done, since the path (wt)t∈[0,1] satisfies w0 = 1U , w1h
′w∗1 = k′ =

uh′u∗ and ‖wth′w∗t − h′‖ < ε, for t ∈ [0, 1].

III.4.7 Corollary. For every ε > 0 there exists δ > 0 such that the following

holds: Whenever h is a positive contraction with full spectrum in a UHF-

algebra U and u ∈ U is a unitary such that

‖uhu∗ − h‖ < δ,

then there exists a unitary path (ut)t∈[0,1] in U such that u0 = 1U , u1 = u

and

‖uthu∗t − h‖ < ε (t ∈ [0, 1]).

Proof. Let ε > 0. Choose 0 < δ < ε such that the conclusion of Lemma

III.4.6 holds for ε replaced by ε
3
. We show that δ

3
does the job. To this end

let h be a positive contraction in some UHF-algebra U and let u be a unitary

in U with

‖uhu∗ − h‖ < δ

3
.

By the choice of δ, there exists a positive contraction h′ ∈ U with finite

spectrum such that ‖h− h′‖ < ε
3

and there exists a unitary path (zt)t∈[0,1] in

U such that z0 = 1U , z1h
′z∗1 = uh′u∗ and

‖zth′z∗t − h′‖ <
ε

3
(t ∈ [0, 1]).

Let w := z∗1u. Then, the unitary path (vt)t∈[0,1], given by vt := z∗t u, connects

u with w and one easily checks that

‖vthv∗t − h‖ < ε (t ∈ [0, 1]).

Using that z1h
′z∗1 = uh′u∗, it follows that w actually commutes with h′. Since

h′ has finite spectrum, we can connect w to 1U via a unitary path (wt)t∈[0,1]

such that wt commutes with h′, for every t ∈ [0, 1]. Then,

‖wthw∗t − h‖ < ε (t ∈ [0, 1]).
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The desired path (ut)t∈[0,1] is now given by

ut =

{
v2t if t ∈ [0, 1/2],

w2t−1 if t ∈ [1/2, 1].

As an easy consequence we get the following Basic Homotopy Lemma for

maps on C([0, 1]):

III.4.8 Lemma. For every ε > 0 and F ⊆ C([0, 1]) finite there exists δ > 0

such that the following holds: Whenever ϕ : C([0, 1]) → U is a unital injec-

tive2 ∗-homomorphism, where U is a UHF-algebra, and u ∈ U is a unitary

such that

‖uϕ(ι)u∗ − ϕ(ι)‖ < δ,

then there exists a unitary path (ut)t∈[0,1] in U such that u0 = 1U , u1 = u

and

‖utϕ(f)u∗t − ϕ(f)‖ < ε (f ∈ F , t ∈ [0, 1]).

Proof. Let ε > 0 and F ⊆ C([0, 1]) be finite. By Lemma III.4.2 there

exists η > 0 such that the following holds: Whenever h and k are positive

contractions in a C∗-algebra with ‖h− k‖ < η, then ‖f(h)− f(k)‖ < ε,

for all f ∈ F . Now Corollary III.4.7 produces some δ > 0 such that the

conclusion of the corollary holds for ε replaced by η. We claim that this δ

works.

So let ϕ : C([0, 1]) → U and u ∈ U be given, where U is some UHF-

algebra, such that

‖uϕ(ι)u∗ − ϕ(ι)‖ < δ.

By the choice of δ we can connect u to the identity by a unitary path (ut)t∈[0,1]

such that for all t ∈ [0, 1]:

‖utϕ(ι)u∗t − ϕ(ι)‖ < η. (III.4.5)

But then, for f ∈ F and t ∈ [0, 1] we get:

‖utϕ(f)u∗t − ϕ(f)‖ = ‖utf(ϕ(ι))u∗t − f(ϕ(ι))‖
= ‖f(utϕ(ι)u∗t )− f(ϕ(ι))‖
< ε.

2This assumption ensures that ϕ(ι) has full spectrum, as needed for Lemma III.4.6.

However, one can work around this and remove the assumption of full spectrum so that

this lemma also works for ϕ not necessarily injective. See [BEEK98].
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The last inequality follows from the choice of η and (III.4.5).

Using our rotation trick and the previous lemma, we are now able to

prove a Basic Homotopy Lemma for maps on dimension drop algebras.

III.4.9 Lemma. For every ε > 0 and F ⊆ Zp,q finite, where p and q are

supernatural numbers of infinite type, there exists δ > 0 and G ⊆ Zp,q finite

such that the following holds: Whenever ϕ : Zp,q → U is a unital ∗-homo-

morphism, where U is a UHF-algebra of infinite type that absorbs Mp and

Mq tensorially, and u ∈ U is a unitary such that

‖uϕ(g)u∗ − ϕ(g)‖ < δ (g ∈ G),

then, there exists a unitary path (ut)t∈[0,1] in U with u0 = 1U , u1 = u and

‖utϕ(f)u∗t − ϕ(f)‖ < ε (f ∈ F , t ∈ [0, 1]).

Proof. Let ε > 0 and F ⊆ Zp,q be finite. We may assume that

F = F́ ∪ F̀ ,

where F́ = {gk⊗yk}Nk=1 ⊆ C0(0, 1]⊗Mq and F̀ = {fk⊗xk}Nk=1 ⊆ C0[0, 1)⊗Mp.

The two cones are identified with subalgebras of Zp,q as explained in I.3.6.

With (III.3.2), we choose t0 ∈ [0, 1) such that for k = 1, 2, · · · , N :

Ẃt0(gk ⊗ yk ⊗ 1q)(Ẃt0)
∗ ≈ ε

10
gk ⊗ 1q ⊗ yk

Ẁt0(fk ⊗ xk ⊗ 1p)(Ẁt0)
∗ ≈ ε

10
fk ⊗ 1p ⊗ xk.

(III.4.6)

The unitaries Ẃt0 and Ẁt0 are defined in (III.3.1). As observed in (III.3.1)

the scalar part of Ẃt0 and Ẁt0 is 1, so that Ẃt0 − 1 ∈ C0(0, 1] ⊗Mq ⊗Mq

and Ẁt0 − 1 ∈ C0[0, 1)⊗Mp ⊗Mp. We thus may approximate

Ẁt0 − 1 ≈ ε
100

K∑
i=1

hi ⊗ ai ⊗ bi,

Ẃt0 − 1 ≈ ε
100

K∑
i=1

ki ⊗ ci ⊗ di,

(III.4.7)

where hi ∈ C0[0, 1), ai, bi ∈ Mp and ki ∈ C0(0, 1], ci, di ∈ Mq. Furthermore,

we clearly may assume that the elements ai, bi, ci, di are normalized. We then

define

G := {hi ⊗ ai}Ki=1 ∪ {ki ⊗ ci}Ki=1 ∪ {ι} ⊆ Zp,q,
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where ι is the canonical generator of C0(0, 1]. Let 0 < δ < ε
100K

be as in

Lemma III.4.8, with ε replaced by ε
100

and F replaced by {fk}Nk=1 ∪ {gk}Nk=1.

Let us check that this choice of G and δ works.

To this end assume that ϕ : Zp,q → U is a unital ∗-homomorphism, where

U ∼= U ⊗Mp ⊗Mq, and u ∈ U is a unitary such that

‖uϕ(g)u∗ − ϕ(g)‖ < δ (g ∈ G). (III.4.8)

Since ι ∈ G, it follows from the choice of δ, that there exists a unitary path

(ut)t∈[0,1] in U , such that u0 = 1U , u1 = u and

‖utϕ(f)u∗t − ϕ(f)‖ < ε

100
(f ∈ {fk}Nk=1 ∪ {gk}Nk=1). (III.4.9)

Let us define a unitary path

Zt := (Úϕ
t0)
∗(Ùϕ

t0)
∗(ut ⊗ 1pq)Ú

ϕ
t0Ù

ϕ
t0 , (t ∈ [0, 1]),

with Ùϕ
t0 and Úϕ

t0 as in (III.3.5). We show that Zt commutes sufficiently well

with ϕ(F). Let us check this for F́ . The computation for F̀ is analogous.

For t ∈ [0, 1] and k = 1, 2, · · · , N we get:

ad(Zt) ◦ (ϕ́(gk ⊗ yk)⊗ 1pq)

= (Úϕ
t0)
∗(Ùϕ

t0)
∗(ut ⊗ 1pq)Ú

ϕ
t0Ù

ϕ
t0 (ϕ́(gk ⊗ yk)⊗ 1pq)·

(Ùϕ
t0)
∗(Úϕ

t0)
∗(u∗t ⊗ 1pq)Ù

ϕ
t0Ú

ϕ
t0

(III.3.7),(III.4.6)
≈ ε

100
(Úϕ

t0)
∗(Ùϕ

t0)
∗(ut ⊗ 1pq)(ϕ(gk)⊗ 1p ⊗ yk)(u∗t ⊗ 1pq)Ù

ϕ
t0Ú

ϕ
t0

(III.4.9)
≈ ε

100
(Úϕ

t0)
∗(Ùϕ

t0)
∗(ϕ(gk)⊗ 1p ⊗ yk)Ùϕ

t0Ú
ϕ
t0

(III.3.7),(III.4.6)
≈ ε

100
ϕ́(gk ⊗ yk)⊗ 1pq.

It follows that

‖Ztϕ(f)Z∗t − ϕ(f)‖ < ε

30
(f ∈ F , t ∈ [0, 1]). (III.4.10)

Next, we show that Z1 is close to u⊗ 1pq. To this end, observe that∥∥∥(Ùϕ
t0)
∗(u⊗ 1pq)Ù

ϕ
t0 − u⊗ 1pq

∥∥∥ < ε

30
,∥∥∥(Úϕ

t0)
∗(u⊗ 1pq)Ú

ϕ
t0 − u⊗ 1pq

∥∥∥ < ε

30
.

(III.4.11)
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Let us prove that (III.4.11) holds for Ùϕ
t0 . The computation for Úϕ

t0 is similar.

Since the image of the scalar part is central it suffices to show that (recall

the definition of Ùϕ
t0 from (III.3.5)):

(u⊗ 1pq) · (ϕ̀⊗ ı[1]
(p,q))

+(Ẁt0 − 1) ≈ ε
30

(ϕ̀⊗ ı[1]
(p,q))

+(Ẁt0 − 1) · (u⊗ 1pq).

The following calculation shows that this is indeed true:

(u⊗ 1pq) · (ϕ̀⊗ ı[1]
(p,q))

+(Ẁt0 − 1)

(III.4.7)
≈ ε

100
(u⊗ 1pq) · (ϕ̀⊗ ı[1]

(p,q))
+

(
K∑
i=1

hi ⊗ ai ⊗ bi

)

=
K∑
i=1

uϕ̀(hi ⊗ ai)⊗ bi ⊗ 1q

(III.4.8)
≈Kδ

K∑
i=1

ϕ̀(hi ⊗ ai)u⊗ bi ⊗ 1q

= (ϕ̀⊗ ı[1]
(p,q))

+

(
K∑
i=1

hi ⊗ ai ⊗ bi

)
· (u⊗ 1pq)

(III.4.7)
≈ ε

100
(ϕ̀⊗ ı[1]

(p,q))
+(Ẁt0 − 1) · (u⊗ 1pq).

Since Kδ < ε
100

, the claim follows. We are now ready to construct the desired

unitary path in U . By [TW07, Remark 2.7], there exists a unital ∗-homo-

morphism θ : U ⊗Mp ⊗Mq → U such that

θ(x⊗ 1pq) ≈ ε
10
x (x ∈ ϕ(F) ∪ {u}).

Let (Wt)t∈[0,1] be given by Wt := θ(Zt). Then,

Wtϕ(f)W ∗
t ≈ ε

10
θ(Zt(ϕ(f)⊗ 1pq)Z

∗
t )

≈ ε
30
θ(ϕ(f)⊗ 1pq)

≈ ε
10
ϕ(f),

for all f ∈ F and t ∈ [0, 1]. Next, by (III.4.11), it follows that ‖Z1 − u⊗ 1pq‖ <
ε
15

, so that W1 = θ(Z1) ≈ ε
15
θ(u⊗ 1pq) ≈ ε

10
u. By a standard functional cal-

culus argument, we may extend (Wt)t∈[0,1] to a unitary path (Wt)t∈[0,2] such

that W2 = u and ‖Wt −W1‖ < ε
6
, for t ∈ [1, 2]. Then

‖Wtϕ(f)W ∗
t − ϕ(f)‖ < ε (t ∈ [0, 2], f ∈ F).

This finishes the proof.
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III.5 Asymptotic uniqueness

III.5.1 Definition. Assume A is a unital C∗-algebra and let C be a class

of unital C∗-algebras. We say that A satisfies the Basic Homotopy Property

for C if the following holds:

For every ε > 0 and F ⊆ A finite there exists δ > 0 and G ⊆ A finite

such that: If ϕ : A → C ∈ C is a unital ∗-homomorphism and u ∈ C is a

unitary such that

‖uϕ(g)u∗ − ϕ(g)‖ < δ (g ∈ G),

then there exists a unitary path (ut)t∈[0,1] in C such that u0 = 1C , u1 = u

and

‖utϕ(f)u∗t − ϕ(f)‖ < ε (f ∈ F , t ∈ [0, 1]).

We will abbreviate this and say that A satisfies the (BHP) for C .

III.5.2 Example. It follows from Lemma III.4.8 that C([0, 1]) satisfies the

(BHP) for UHF-algebras. By Lemma III.4.9, any generalized dimension drop

algebra Zp,q, with p and q of infinite type, satisfies the (BHP) for the class

UHF∞ ⊗Mp ⊗Mq,

consisting of Mp⊗Mq-stable UHF-algebras of infinite type. Furthermore, by

[DW09, Lemma 2.1], we have that any strongly self-absorbing C∗-algebra D

satisfies the (BHP) for

{A⊗D : A is a unital C∗-algebra}.

The next lemma is a standard tool which combines the Basic Homotopy

Property and approximate uniqueness to get an asymptotic uniqueness result

(cf. [DW09, Theorem 2.2]).

III.5.3 Lemma. Let A be a unital and separable C∗-algebra and assume A

satisfies the (BHP) for C . Then the following is true: If ϕ, ψ : A → C ∈ C

are unital ∗-homomorphisms and ϕ ≈u ψ, then ϕ and ψ are asymptotically

unitarily equivalent. If furthermore the unitary group of C is connected, we

get strong asymptotic unitary equivalence, i.e. ϕ ∼asu ψ.

Proof. Let ϕ, ψ : A→ C ∈ C be unital ∗-homomorphisms such that ϕ ≈u ψ.

Let (Fn)∞n=1 be an increasing sequence of finite subsets of A such that their
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union is dense. Let us also fix a decreasing sequence εn > 0 such that εn → 0.

Using the Basic Homotopy Property, let Gn ⊆ A be finite and δn > 0 such

that the following holds:

Whenever u ∈ C is a unitary such that

‖u∗ψ(g)u− ψ(g)‖ < δn (g ∈ Gn),

then u is connected to 1C via a unitary path that commutes pointwise with

ψ(Fn) up to εn.

Since ϕ and ψ are are approximately unitarily equivalent, we may choose

unitaries (un)∞n=1 in C, such that

‖u∗nϕ(g)un − ψ(g)‖ < δn
2

(g ∈ Gn, n ∈ N).

We may furthermore assume that

Fn ⊆ Fn+1 ⊆ Gn+1 and δn+1 < δn < εn (n ∈ N).

Define

wn := u∗n+1un (n ∈ N).

One then checks that

‖w∗nψ(g)wn − ψ(g)‖ < δn (g ∈ Gn).

By the choice of Gn and δn, there exists a path (wn,t)t∈[0,1] of unitaries in C

such that wn,0 = wn, wn,1 = 1C and∥∥w∗n,tψ(f)wn,t − ψ(f)
∥∥ < εn (f ∈ Fn, t ∈ [0, 1]).

Let us now define a unitary path (vt)t∈[0,∞) in C by

vt = un+1wn,t−n (t ∈ [n, n+ 1)).

One checks that v is continuous and that

‖vtψ(f)v∗t − ϕ(f)‖ < 2εn (f ∈ Fn, t ≥ n).

By density, it follows that

lim
t→∞
‖vtψ(f)v∗t − ϕ(f)‖ = 0 (f ∈ A).
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By defining

v′t = vtan(πt/2) (t ∈ [0, 1)),

we see that ϕ and ψ are asymptotically unitarily equivalent. Furthermore, if

the unitary group of C is connected, we can clearly assume that the unitary

path starts at the identity. Hence ϕ ∼asu ψ.

III.5.4 Theorem. Let p and q be supernatural numbers of infinite type.

Assume ϕ, ψ : Zp,q → U are standard ∗-homomorphisms, where U is a UHF-

algebra of infinite type that absorbs Mp and Mq tensorially. Then ϕ ∼asu ψ.

Proof. We know that ϕ ≈u ψ by Lemma III.3.2 and we saw in Example III.5.2

that Zp,q satisfies the (BHP) for U . By Lemma III.5.3 we get ϕ ∼asu ψ.

III.6 Uniqueness for endomorphisms of di-

mension drop algebras

The next theorem shows how the Basic Homotopy Lemma for maps Zp,q →
Mp ⊗ Mq can be lifted to an approximate uniqueness result for standard
∗-endomorphisms of Zp,q.

III.6.1 Theorem. Let p and q be supernatural numbers of infinite type.

Assume that ϕ, ψ : Zp,q → Zp,q are standard ∗-homomorphisms. Then ϕ ≈u

ψ.

Proof. Let F ⊆ Zp,q be finite and ε > 0. Let G ⊆ Zp,q be finite and 0 < δ < ε,

such that the conclusion of Lemma III.4.9 holds for F and ε replaced by ε
10

.

Let N ∈ N such that

|s− t| ≤ 1

N
⇒ ‖γs(f)− γt(f)‖ < δ

10
(f ∈ F ∪ G, γ ∈ {ϕ, ψ}).

Since ϕs, ψs : Zp,q →Mp ⊗Mq are standard for each s ∈ [0, 1], we know from

Lemma III.3.2 that

ϕ i
N
≈u ψ i

N
(i = 0, 1, 2, · · · , N − 1, N).

It follows that there exist unitaries u0, u1, · · · , uN−1, uN ∈ Mp ⊗ Mq, such

that ∥∥∥uiϕ i
N

(g)u∗i − ψ i
N

(g)
∥∥∥ < δ

5
(g ∈ G).
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We may assume that u0 ∈Mp⊗ 1q and uN ∈ 1p⊗Mq. Now, observe that for

i = 0, 1, 2, · · · , N − 1, we have∥∥∥u∗i+1uiϕ i
N

(g)u∗iui+1 − ϕ i
N

(g)
∥∥∥ < δ (g ∈ G).

By the choice of G and δ, it follows that there exist unitary paths (ui,t)t∈[0,1]

for i = 0, 1, · · · , N − 1, with ui,0 = 1pq, ui,1 = u∗i+1ui and such that:∥∥∥ui,tϕ i
N

(f)u∗i,t − ϕ i
N

(f)
∥∥∥ < ε

10
(t ∈ [0, 1], f ∈ F).

This defines a unitary u in Zp,q by

ut := uiu
∗
i,Nt−i for t ∈

[
i

N
,
i+ 1

N

]
.

For f ∈ F and t ∈ [i/N, (i+ 1)/N ], we get

utϕt(f)u∗t ≈ δ
10
utϕ i

N
(f)u∗t = uiu

∗
i,Nt−iϕ i

N
(f)ui,Nt−iu

∗
i

≈ ε
10
uiϕ i

N
(f)u∗i ≈ δ

5
ψ i
N

(f)

≈ δ
10
ψt(f).

As this holds on every interval [i/N, (i+ 1)/N ], it follows that

‖uϕ(f)u∗ − ψ(f)‖ < ε (f ∈ F).

This proves that ϕ ≈u ψ.
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Chapter IV

Existence

In this chapter we establish existence results for standard c.p.c. order zero

maps and standard ∗-homomorphisms from generalized prime dimension drop

algebras into certain UHF-algebras. At the end of this section we con-

struct so-called unitarily suspended ∗-endomorphisms of generalized prime

dimension drop algebras. These are particular instances of trace collapsing
∗-endomorphisms, which will allow us to show that any stationary inductive

limit along a fixed generalized prime dimension drop algebra together with

such a unitarily suspended ∗-endomorphism is strongly self-absorbing.

IV.1 Order zero maps

IV.1.1 Convention. Let x ∈ Mn and y ∈ Mm. Whenever we identify

Mn ⊗Mm with Mnm, we do this via

x⊗ y = (x · yij)mi,j=1.

For p ∈ N, define the UHF-algebra Mp∞ to be the limit of

Mpn →Mpn+1 : x 7→ 1p ⊗ x.

IV.1.2 Lemma. Let A be a unital C∗-algebra. Assume 0 ≤ α < β ≤ 1. If

h ∈ A is a Lebesgue contraction, then the element

h(α, β) := α1A + (β − α)h

has spectrum [α, β] and

τ(f(h(α, β))) =
1

β − α

∫ β

α

f(t) dt
(
f ∈ C0(0, 1], τ ∈ T (A)

)
.
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Proof. It is clear that σ(h(α, β)) = [α, β], since σ(h) = [0, 1]. For the re-

maining statement consider the function

g : [0, 1]→ [0, 1] : t 7→ (β − α)t+ α.

For f ∈ C0(0, 1] we then get by a change of variables:

τ(f(h(α, β))) = τ((f ◦ g)(h)) =

∫ 1

0

f(g(t)) dt =
1

β − α

∫ β

α

f(t) dt.

IV.1.3 Remark. ([Win09, 1.2.3]) Let p ≥ 2 be a natural number. For

i, j = 2, · · · , p we consider the relations

‖xi‖ ≤ 1, xixj = 0 (i 6= j), x∗ixj = δi,j · x∗2x2. (Rp)

Then

C0(0, 1]⊗Mp
∼= C∗(x2, x3, · · · , xp | Rp).

In particular, if x2, x3, · · · , xp are elements in some C∗-algebra A satisfying

(Rp), then the assignment

ϕ(eij) = xix
∗
j (i, j = 2, 3, · · · , p)

defines1 a c.p.c. order zero map ϕ : Mp → A. Note that

ϕ(e11) = ϕ(e∗i1ei1) = x∗ixi = x∗2x2 (i = 2, 3, · · · , p).

IV.1.4 Lemma. Let p, q ≥ 2 be natural numbers. Then Mq∞ contains el-

ements x2, x3, · · · , xp satisfying (Rp) such that x∗2x2 has 1
p

Lebesgue spectral

measure, i.e. such that

τMq∞ (f(x∗2x2)) =
1

p

∫ 1

0

f(t) dt (f ∈ C0(0, 1]).

Proof. Let us recursively define two sequences of non-negative integers (αi)
∞
i=1

and (βi)
∞
i=0. Set β0 := 1 and define αi and βi for i ≥ 1 by

qβi−1 = pαi + βi, (IV.1.1)

1More precisely: The elements {ι 12 ⊗ei1 : i = 2, 3, · · · , p} satisfy (Rp) and hence induce

a ∗-homomorphism C0(0, 1] ⊗Mp → A, which in turn corresponds to a c.p.c. order zero

map ϕ : Mp → A satisfying ϕ(eij) = xix
∗
j .
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where βi ∈ {0, 1, 2, · · · , p − 1}. A short computation using (IV.1.1) shows

that the coefficients (αi)
∞
i=1 are chosen such that

∞∑
i=1

pαi
qi

= 1. (IV.1.2)

For further reference, we denote the partial sums by SN . We define recur-

sively another sequence (δi)
∞
i=0 by δ0 = 0 and for i ≥ 1 we let

δi := q(δi−1 + pαi). (IV.1.3)

Using (IV.1.3) one easily checks that

qi+1 = qβi + δi (i ≥ 0). (IV.1.4)

In particular (IV.1.4) implies that

δi−1 + pαi + βi = qi (i ≥ 1). (IV.1.5)

All this is made in such a way that we can subdivide the matrix algebra Mqi

into three orthogonal parts, as indicated in Figure IV.1. Let h ∈ Mq∞ be a

0

0

δi−1

pαi

βi

p

Mαi(Mq∞)

qi
h̃i

Figure IV.1: Subdivision of Mqi and the element h̄i.

Lebesgue contraction, for example

h :=
∞∑
i=1

(
q−1∑
k=1

k

qi
1⊗(i−1)
q ⊗ e(q)

kk ⊗ 1⊗∞q

)
.

For i ∈ N and r ∈ {1, 2, · · · , αi} we set (as in Lemma IV.1.2)

h̃i,r := h

(
1− Si−1 −

rp

qi
, 1− Si−1 −

(r − 1)p

qi

)
∈Mq∞
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and

h̃i := diag(h̃i,1, h̃i,2, · · · , h̃i,αi) ∈Mαi(Mq∞).

By Lemma IV.1.2, we know

τMq∞ (f(h̃i,r)) =
qi

p

∫ 1−Si−1− (r−1)p

qi

1−Si−1− rp
qi

f(t) dt (f ∈ C0(0, 1], 1 ≤ r ≤ αi)

and hence

(τMq∞ ◦ Trαi)(f(h̃i)) =
qi

p

∫ 1−Si−1

1−Si
f(t) dt (f ∈ C0(0, 1]), (IV.1.6)

where Trαi denotes the sum over the diagonal in Mαi(Mq∞). Next, put h̃i
into the upper left corner of Mp(Mαi(Mq∞)), which we denote by

e
(p)
11 ⊗ h̃i,

and set

h̄i := 0δi−1
⊕ (e

(p)
11 ⊗ h̃i)⊕ 0βi ∈Mqi(Mq∞) ∼= Mqi ⊗Mq∞ .

The element h̄i is as depicted in Figure IV.1. Note that by (IV.1.5), the

element h̄i lives in Mqi(Mq∞). Next, we consider the elements h̄i in

Mq∞ ⊗Mq∞ = lim−→ (Mqi ⊗Mq∞ , 1q ⊗ idMqi
⊗ idMq∞ ).

By construction, the h̄i are mutually orthogonal positive contractions, which

are summable in Mq∞ ⊗Mq∞ . We therefore may define

h̄ :=
∞∑
i=1

h̄i ∈Mq∞ ⊗Mq∞ .

We can now check that h̄ has 1
p

Lebesgue spectral measure. Denote TN :=∑N
i=1 h̄i. For f ∈ C0(0, 1] and N ∈ N we get:

τMq∞⊗Mq∞ (f(TN)) =
N∑
i=1

(τMqi
⊗ τMq∞ )(f(h̄i)) =

N∑
i=1

1

qi
(τMq∞ ◦ Trαi)(f(h̃i))

(IV.1.6)
=

N∑
i=1

1

qi
qi

p

∫ 1−Si−1

1−Si
f(t) dt =

1

p

∫ 1

1−SN
f(t) dt.

62



By (IV.1.2) the result follows, if we let N tend to infinity.

In order to finish the proof, instead of h̄i, we look, for j = 2, 3, · · · , p, at

the elements

x̄j,i := 0δi−1
⊕ (e

(p)
j1 ⊗ (h̃i)

1
2 )⊕ 0βi ∈Mqi(Mq∞) ∼= Mqi ⊗Mq∞

and define

xj :=
∞∑
i=1

x̄j,i (j = 2, 3, · · · , p).

The elements {xj}pj=2 then satisfy (Rp) and x∗2x2 = h̄, which has 1
p

Lebesgue

spectral measure.

The reader is invited to run this construction for p = 2 and q = 3, in

which case αi = βi = 1, for all i ∈ N.

IV.1.5 Lemma. Let p, q ≥ 2 be natural numbers. Then, there exists a c.p.c.

order zero map

ϕ : Mp →Mq∞

such that hϕ is a Lebesgue contraction.

Proof. The elements x2, x3, · · · , xp produced in Lemma IV.1.4 satisfy (Rp)

and hence define, as described in Remark IV.1.3, a c.p.c. order zero map

ϕ : Mp →Mq∞ such that ϕ(eij) = xix
∗
j , for i, j = 2, 3, · · · , p. Using that x∗2x2

has 1
p

Lebesgue spectral measure, it is now easy to see that hϕ is a Lebesgue

contraction.

IV.2 Unitarily suspended endomorphisms

IV.2.1 Lemma. Let p, q ≥ 2 be natural numbers. Then, for r ∈ {p, q}, there

exist c.p.c. order zero maps α : Mp →Mr∞ and β : Mq →Mr∞ such that

α(1p) + β(1q) = 1, [α(Mp), β(Mq)] = {0}

and such that hα, hβ are Lebesgue contractions.

Proof. Let us do the case r = q. By Lemma IV.1.5, there exists a c.p.c. order

zero map φ : Mp → Mq∞ such that hφ is a Lebesgue contraction. We then

define c.p.c. order zero maps

α : Mp →Mq∞ ⊗Mq : x 7→ φ(x)⊗ 1q,

β : Mq →Mq∞ ⊗Mq : y 7→ (1− hφ)⊗ y.
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Since hφ commutes with the image of φ, we see that the images of α and β

commute. Furthermore, by definition α(1p) + β(1q) = 1 and it is clear that

hα and hβ are Lebesgue contractions.

IV.2.2 Corollary. Let p, q ≥ 2 be coprime natural numbers. Then, for

r ∈ {p, q}, there exists a standard ∗-homomorphism

ϕ : Zp,q →Mr∞ .

Proof. Let r ∈ {p, q} and let α : Mp → Mr∞ and β : Mq → Mr∞ be as in

Lemma IV.2.1. By Theorem I.3.9 these maps induce a standard ∗-homo-

morphism ϕ : Zp,q → Mr∞ such that ϕ̀ = (α)′ and ϕ́ = β, where (·)′ means

that we have reversed the orientation of the unit interval.

IV.2.3 Convention. Let p and q be supernatural numbers. We then write

Zp,q as an inductive limit as follows: Fix sequences (Pn)∞n=1, (Qn)∞n=1 con-

verging (see Section I.3) to p respectively q such that Pn divides Pn+1 and Qn

divides Qn+1. This defines unital inclusions MPn ⊆ MPn+1 , MQn ⊆ MQn+1

and γn,n+1 : ZPn,Qn → ZPn+1,Qn+1 such that

Zp,q = lim−→(ZPn,Qn , γn,n+1).

Let us denote the limit maps by γn : ZPn,Qn → Zp,q. Furthermore, we denote

by

κn : Zp,q → ZPn,Qn

the induced conditional expectations.

IV.2.4 Lemma. Le p and q be coprime supernatural numbers. Then, for

r ∈ {p, q}, there exists a standard ∗-homomorphism

ϕ : Zp,q →Mr.

Proof. Let (Fn)∞n=1 be an increasing sequence of finite subsets of Zp,q with

dense union, such that Fn ⊆ ZPn,Qn and γn,n+1(Fn) ⊆ Fn+1. Furthermore,

let εn > 0 with
∑
εn <∞. By Corollary IV.2.2, for each n ∈ N, there exists

a standard ∗-homomorphism ϕn : ZPn,Qn → Mr. Note that ϕn+1 ◦ γn,n+1 is

also standard. Hence, by Lemma III.3.2, there exists a unitary un+1 ∈ Mr

such that ∥∥ϕn(x)− un+1ϕn+1(γn,n+1(x))u∗n+1

∥∥ < εn (x ∈ Fn).
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Define ϕ̃1 := ϕ1 and for n ≥ 2 we let

ϕ̃n : ZPn,Qn →Mr : x 7→ u2u3 · · · unϕn(x)u∗n · · · u∗3u∗2.

One then checks that for each x ∈ ZPn,Qn the sequence (ϕ̃k(γn,k(x)))∞k=n is

Cauchy and we may define

ϕ(x) := lim
k→∞

ϕ̃k(γn,k(x)) (x ∈ ZPn,Qn).

This extends to a ∗-homomorphism ϕ : Zp,q →Mr, which is easily seen to be

standard.

IV.2.5 Definition. Let p and q be supernatural numbers of infinite type.

We say that a ∗-homomorphism µ : Zp,q → Zp,q is unitarily suspended if

µt =

{
ad(ut) ◦ (α0 ⊗ 1q) if t ∈ [0, 1),

1p ⊗ α1 if t = 1,

where α0 : Zp,q → Mp and α1 : Zp,q → Mq are unital ∗-homomorphisms and

(ut)t∈[0,1) is a unitary path in Mp ⊗Mq starting at the identity.

IV.2.6 Theorem. Let p and q be coprime supernatural numbers of infinite

type. Then, there exists a unitarily suspended standard ∗-homomorphism

µ : Zp,q → Zp,q.

Proof. By Lemma IV.2.4, there exist standard ∗-homomorphisms α0 : Zp,q →
Mp and α1 : Zp,q → Mq. By Theorem III.5.4, we have α0 ⊗ 1q ∼asu 1p ⊗ α1,

witnessed by a unitary path (ut)t∈[0,1) starting at the identity. Define a ∗-

homomorphism µ : Zp,q → Zp,q by µt := ad(ut) ◦ (α0 ⊗ 1p) for t ∈ [0, 1) and

µ1 := 1p ⊗ α1. Then µ is standard and unitarily suspended in the sense of

Definition IV.2.5.
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Chapter V

Alternative approaches to

classification

This chapter explains alternative routes leading to classification, as estab-

lished in Chapter III and Chapter IV. More precisely, we will reprove Lemma

IV.1.5 and Lemma III.2.3, i.e.

(i) there exists a c.p.c. order zero map ϕ : Mp → U such that hϕ is a

Lebesgue contraction,

(ii) any two c.p.c. order zero maps as in (i) are approximately unitarily

equivalent,

where U is a UHF-algebra of infinite type.1 Once these results are established,

one proceeds as before to get uniqueness and existence results for maps on

generalized dimension drop algebras.

To get (i) and (ii) in a more general and quick fashion, we rely on classi-

fication of ∗-homomorphisms from C0(0, 1] into stable rank one C∗-algebras

by means of the Cuntz semigroup ([CE08]). Furthermore, we provide a proof

for (ii) using (i) and the uniqueness of the hyperfinite II1-factor. These von

Neumann algebraic methods are inspired by recent methods in classifcation,

e.g. [Sch18].

In the last section we show how classification by the Cuntz semigroup,

as in [Rob12], can be used to circumvent all of these methods and how to

recover Lemmas IV.2.4 and III.3.2:

1We also prove (i) and (ii) for more complicated codomains, e.g. ultrapowers of UHF-

algebras.
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(iii) there exists a standard ∗-homomorphism Zp,q → U ,

(iv) any two standard ∗-homomorphisms Zp,q → U are approximately uni-

tarily equivalent.

However, note that the results of Section III.4 and in particular the asymp-

totic uniqueness result (Theorem III.5.4) cannot be proved by the methods

used in this chapter.

V.1 The Cuntz semigroup

Let us briefly recall the Cuntz semigroup of a C∗-algebra and the category

Cu, which has been introduced in [CEI08]. See also [APT11] for an excellent

survey and connections to classification.

V.1.1 Definition. Let A be a C∗-algebra and a, b ∈ A+. We say that a is

Cuntz below b if and only if there exists a sequence (xn)∞n=1 in A such that

lim
n→∞

‖x∗nbxn − a‖ = 0.

We denote this relation by a 4 b. We say that a is Cuntz equivalent to b if

and only if a 4 b and b 4 a. This is denoted by a ∼Cu b and we note that

∼Cu is an equivalence relation.

V.1.2 The Cuntz semigroup of a C∗-algebra. Let A be a C∗-algebra.

We define

Cu(A) := (A⊗K)+/ ∼Cu,

where K denotes the compact operators on `2(N). The class of an element

a ∈ (A ⊗ K)+ is denoted by [a]. Then Cu(A) becomes a positively ordered

abelian monoid, with [0] as neutral element and where

[a] ≤ [b]
def⇐⇒ a 4 b (a, b ∈ (A⊗K)+).

Addition is defined by

[a] + [b] := [ϕ(a⊕ b)],

where a ⊕ b ∈ M2(A ⊗ K) denotes the diagonal sum and ϕ : M2(A ⊗ K) →
A⊗K is any ∗-isomorphism induced by a ∗-isomorphism K⊗M2 → K. This

addition does not depend on the choice of isomorphism, since any two such
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isomorphisms are unitarily equivalent.2 Then, Cu(A) is a positively ordered

abelian monoid, called the Cuntz semigroup of A.3 For a ∗-homomorphism

φ : A→ B we define

Cu(φ) : Cu(A)→ Cu(B) : [a] 7→ [φ(a)],

where φ is understood to be φ⊗ idK. This makes Cu into a functor from the

category of C∗-algebras into a certain category Cu, which is explained below

and was identified in [CEI08].

V.1.3 The category Cu. Let S be a positively ordered abelian monoid.

For x, y ∈ S we say that x is way below y if and only if the following holds:

Whenever (yn)∞n=1 is an increasing sequence in S such that supn yn exists and

y ≤ supn yn, then there exists some m ∈ N such that x ≤ ym. This will be

denoted by x� y. We say that a sequence (xn)∞n=1 in S is rapidly increasing

if xn � xn+1, for all n ∈ N.

The objects of Cu are positively ordered abelian monoids S such that the

following four axioms are satisfied:

(O1) Any increasing sequence in S has a supremum in S,

(O2) every element in S is the supremum of a rapidly increasing se-

quence in S,

(O3) if x1, x2, y1, y2 ∈ S and xi � yi, for i = 1, 2, then x1+x2 � y1+y2,

(O4) if (xn)∞n=1 and (yn)∞n=1 are increasing sequences in S, then

sup
n

(xn + yn) = sup
n
xn + sup

n
yn.

A morphism in Cu is a map α : S → T , such that

(M1) α is additive and preserves 0,

(M2) α is order preserving,

2By a unitary in M(A⊗K).
3There is also a more classical version called the Cuntz semigroup, usually denoted

by W (A), which is given by those equivalence classes in Cu(A) that are represented by

an element in Mn(A)+, for some n ∈ N. It is true that W (A) is dense in Cu(A) and

W (A⊗K) ∼= Cu(A). See [APT11, Theorem 4.33]
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(M3) α preserves suprema of increasing sequences,

(M4) α preserves the way below relation.

If α only satisfies (M1),(M2) and (M3), we say that α is a generalized Cu-

morphism.

V.1.4 Example. The Cuntz semigroup of K = K(`2(N)) is isomorphic to

N = N∪{∞}. The semigroup structure on N is the obvious one. Furthermore,

the isomorphism is given by

Cu(K)→ N : [a] 7→ rank(a),

where rank(a) := dim(Im(a)).

V.1.5 Definition. Let S be a Cu-semigroup and note that [0,∞] is in a

natural way a Cu-semigroup. Then, a functional on S is a generalized Cu-

morphism λ : S → [0,∞], i.e. λ is additive and preserves the zero element,

order, addition and suprema of increasing sequences. The set of functionals

on S will be denoted by F(S).

The next theorem shows that functionals on Cu(A) can be described very

nicely.

V.1.6 Theorem. There is a bijection

QT2(A)→ F(Cu(A)) : τ 7→ dτ

between the set of lower semicontinuous 2-quasitraces on A and functionals

on Cu(A). The functional4 dτ is given by

dτ ([a]) = lim
n→∞

(τ ⊗ TrK)(a
1
n ) (a ∈ (A⊗K)+).

If A is exact, then

T(A) ∼= F(Cu(A)),

where T(A)5 denotes the non-cancellative cone of lower semicontinuous traces6

on A. If in addition A is simple, then

Td(A) ∪ {τ∞} = T(A) ∼= F(Cu(A)),

4Note that one of the main parts of the proof consists of showing that dτ is indeed a

functional.
5Note the subtle difference between the set of tracial states T (A) and the set of lower

semicontinuous traces T(A).
6Trace here means a homogeneous map τ : A+ → [0,∞] such that τ(x∗x) = τ(xx∗),

for all x ∈ A.
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where Td(A) ⊆ T(A) denotes the set of densely defined lower semicontinuous

traces. Moreover, if A is unital we may identify Td(A) ∼= T (A).

Proof. The bijective correspondence is proven in [ERS11, Proposition 4.2].

The statement about exactness follows from [ERS11, Remark 4.5] and essen-

tially relies on a result by Haagerup that 2-quasitraces on exact C∗-algebras

are traces. For the remaining statement, let us show that if A is simple and

τ(a) <∞, for some a ∈ A+, then τ is densely defined. We still assume that

τ is a lower semicontinuous trace in the sense of [ERS11, Definition 3.1]. Let

x ∈ A+ and ε > 0. Since A is assumed to be simple, a is full and we know

that there exist x1, · · · , xn ∈ A with

x ≈ε
n∑
i=1

x∗i axi.

Using [APT11, Theorem 2.13], we may assume that

(x− ε)+ =
n∑
i=1

x∗i axi.

Now

τ
(
(x− ε)+

)
=

n∑
i=1

τ
(
a

1
2 (x∗ixi)a

1
2

)
≤

n∑
i=1

‖xi‖2 τ(a) <∞.

This proves the claim that τ is densely defined and it immediately follows

that

T(A) = Td(A) ∪ {τ∞},

where

τ∞(x) =

{
0 if x = 0,

∞ otherwise.

If A is unital then Td(A) ∼= T (A), because densely defined traces are finite

on 1A and hence must be bounded traces. The isomorphism is then given by

τ 7→ τ
‖τ‖ .

V.1.7 Definition. Let A be a C∗-algebra. We then denote

Cu(A)+ := {[a] ∈ Cu(A) : [a] is not represented by a projection in A⊗K}.
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V.1.8 Remark. Let A be a C∗-algebra of stable rank one. Then V (A),

the Murray-von Neumann semigroup of A, sits canonically inside Cu(A) (see

[APT11, Lemma 2.20]). Furthermore, by [APT11, Corollary 2.24], Cu(A)+

is an absorbing subsemigroup of Cu(A) and it follows that

Cu(A) = V (A) t Cu(A)+,

where t means disjoint union. Absorbing means that V (A) + Cu(A)+ ⊆
Cu(A)+.

The next lemma will be used to show that on Cu(A)+ certain functionals

behave like a Cu-morphism.

V.1.9 Lemma. Let A be a C∗-algebra and let x ∈ Cu(A) and y ∈ Cu(A)+

such that x� y. Then, there exists z ∈ Cu(A) such that z 6= 0 and

x+ z ≤ y.

Proof. Write x = [a] and y = [b], where a, b ∈ (A⊗K)+. We may assume that

‖a‖ = ‖b‖ = 1. Since x � y, there exists ε > 0 such that [a] ≤ [(b − ε)+].7

Let cε ∈ C0(0, 1] be such that ‖cε‖ = 1 and cε(t) = 0 for t ∈ [ε, 1]. Since

0 is not an isolated point in the spectrum of b, it follows that cε(b) 6= 0.8

Furthermore cε(b) is orthogonal to (b− ε)+. We see that

[a] + [cε(b)] ≤ [(b− ε)+] + [cε(b)] = [(b− ε)+ + cε(b)] ≤ [b].

Let z := [cε(b)]. Then z 6= 0 and by the above calculation x+ z ≤ y.

V.1.10 Definition. Let A be a unital C∗-algebra. By LAff++(T (A)) we de-

note the semigroup of lower semicontinuous affine real-valued (not necessarily

finite) strictly positive functions on T (A). Addition and order is pointwise.

Then, there is a map of semigroups

Cu(A)→ LAff++(T (A)) : [a] 7→ [̂a],

where

[̂a](τ) := dτ ([a]).

7This is because [b] = supn∈N[(b− 1/n)+].
8If 0 is isolated in σ(b), we easily see that b is represented by a projection, which

contradicts the assumption that y = [b] ∈ Cu(A)+.

71



Let us define another semigroup (cf. [APT11, Definition 5.4]). The underly-

ing set is

W̃ (A) := V (A) t LAff++(T (A)).

We extend the addition of V (A) and LAff++(T (A)) by setting

[p] + f := [̂p] + f ∈ LAff++(T (A)),

where [p] ∈ V (A) and f ∈ LAff++(T (A)). The order is extended by

• f ≤ [p] if and only if f(τ) ≤ τ(p), for all τ ∈ T (A) and

• [p] ≤ f if and only if τ(p) < f(τ), for all τ ∈ T (A).

V.1.11 Example. Let Mp be an infinite dimensional UHF-algebra and de-

note K0(Mp) ∼= Q(p) ⊆ Q.9 Then

W̃ (Mp) ∼= Q(p)+ t (0,∞],

by identifying f ∈ LAff++(T (Mp)) with f(τMp) ∈ (0,∞] and [p] ∈ V (Mp)

with (τMp ⊗ TrK)(p), where τMp is the unique trace on Mp. In order to

distinguish elements in Q(p)+ and (0,∞], it is convenient to denote elements

in (0,∞) ⊆ W̃ (Mp) by α′, where α ∈ (0,∞). Then the order is given by

the usual order on the two distinguished subsets and for α ∈ (0,∞) and

β ∈ Q(p)+, we have

• α′ ≤ β if and only if α ≤R β and

• β ≤ α′ if and only if β <R α.

The next lemma gives a more explicit description of the Cuntz semigroup

of certain C∗-algebras, cf. [APT11, Proposition 5.26].

V.1.12 Lemma. Let A be a simple, unital, exact C∗-algebra with stable

rank one and strict comparison (see Definition V.2.1 for strict comparison).

Then, the map10

Γ: Cu(A)→ V (A) t LAff++(T (A)) (= W̃ (A))

9Recall that Q(p) =
{

k∏
p∈F pκp : k ∈ Z, F ⊆ P finite, κp <∞, κp ≤ νp(p)

}
, where P

denotes the set of prime numbers.
10To define Γ we use that Cu(A) = V (A) t Cu(A)+.
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given by

Γ([a]) =

{
[a] if [a] ∈ V (A),

[̂a] if [a] ∈ Cu(A)+

is an order embedding.

V.1.13 Corollary. Let U be a UHF-algebra of infinite type. Then

Cu(U) ∼= V (U) t (0,∞] = W̃ (U).

The isomorphism is the map Γ from Lemma V.1.12.

Proof. It is a standard result that UHF-algebras have strict comparison, cf.

[Rør92]. By Lemma V.1.12, we know that Γ is an order embedding, so it

suffices to show that Γ is surjective. As before, we identify LAff++(T (U))

with (0,∞], by identifying f with f(τU), where τU is the unique trace on U .

To show that Γ is surjective, it remains to show that the map

κ : Cu(U)+ → (0,∞] : [x] 7→ dτU ([x])

is surjective. To see this let h ∈ U be a Lebesgue contraction11 and α ∈ (0, 1].

Let f ∈ C0(0, 1]+ be such that ‖f‖ = 1 and µ(supp(f)) = α, where µ is the

Lebesgue measure on (0, 1]. Then

dτU (f(h)) = lim
n→∞

τU(f(h)
1
n ) = lim

n→∞

∫ 1

0

f
1
n (t) dt = µ(supp(f)) = α.

Note that 0 is not an isolated point in σ(f(h)), because σ(f(h)) = f(σ(h)) =

f([0, 1]) = [0, 1]. By [APT11, Proposition 2.23] we have [f(h)] ∈ Cu(U)+ and

it follows that α ∈ Im(κ). If now β ∈ (0,∞), let n ∈ N with β
n
∈ (0, 1]. Let

x ∈ Cu(U)+ with κ(x) = β
n
. Then nx ∈ Cu(U)+ and κ(nx) = nκ(x) = β.

The element ∞ ∈ W̃ (U) is given by κ([1U ⊗ k]), where k is the compact

diagonal operator with diagonal ( 1
n
)∞n=1. This finishes the proof.

The next theorem is due to Ciuperca and Elliott ([CE08]) and is proven

to hold for a more general class of target algebras in [RS10, Theorem 2].

V.1.14 Theorem. Assume A is a C∗-algebra that has stable rank one. Then,

for any Cu-morphism

α : Cu(C0(0, 1])→ Cu(A),

11See the proof of Lemma IV.1.4 for an explicit formula for such a Lebesgue contraction.
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such that α([ι]) ≤ [hA], where hA ∈ A is strictly positive, there exists a ∗-

homomorphism ϕ : C0(0, 1] → A such that Cu(ϕ) = α. Furthermore, α is

unique up to approximate unitary equivalence by unitaries in (A⊗K)+.12

Building on this Robert proved the following13 in [Rob12]:

V.1.15 Theorem. Let A be a unital one dimensional non-commutative CW

complex with trivial K1-group or a unital sequential inductive limit of such.

Let B be a unital stable rank one C∗-algebra. Then, for every Cu-morphism

α : Cu(A)→ Cu(B)

such that α([1A]) = [1B], there exists a unital ∗-homomorphism ϕ : A → B

such that Cu(ϕ) = α. Furthermore, ϕ is unique up to approximate unitary

equivalence.

V.1.16 Remark. By definition a one dimensional non-commutative CW

complex A is given by a pullback

A
π1 //

π2
��

E

φ

��

C([0, 1], F )
∂0⊕∂1

// F ⊕ F

where E and F are finite dimensional C∗-algebras and φ : E → F ⊕ F is a
∗-homomorphism. The maps ∂i are the evaluations at the endpoints. We

already saw in Lemma I.3.3 that Zp,q is such a pullback, for p, q ∈ N. Hence

Theorem V.1.15 also applies to generalized dimension drop algebras.

V.2 Uniqueness for order zero maps

V.2.1 Definition. Let A be a unital C∗-algebra. We say that A has strict

comparison of positive elements by bounded traces if for all a, b ∈ Mn(A)+,

we have

dτ (a) < dτ (b) (τ ∈ T (A)),

12If A is unital, we may assume that the unitaries implementing the approximate unitary

equivalence live in A.
13He actually proved a more general result for possibly non-unital C∗-algebras. However,

we will not need this version and hence omit it.
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implies that a 4 b in Mn(A). Recall that the functional dτ is given by

dτ (x) = lim
n→∞

(τ ⊗ Trn)(x
1
n ) (x ∈Mn(A)+),

where Trn is the sum over the diagonal on Mn.

The following is [TWW17, Lemma 2.1 (ii)].

V.2.2 Lemma. Let A be a unital C∗-algebra that has strict comparison of

positive elements by bounded traces. If h, k ∈ A are two Lebesgue contrac-

tions, then

Cu(φh) = Cu(φk),

where

φh, φk : C0(0, 1]→ A

are the ∗-homomorphisms induced by the given contractions.

Proof. It suffices to show that f(h) ∼Cu f(k), for every non-zero f ∈ C0(0, 1]+.

Let ε > 0. Then, there exists a small open interval, say I = (a, b) ∩ (0, 1]

such that f(t) ∈ (0, ε), for t ∈ I. In particular (f − ε)+ vanishes on I. Let

cI ∈ C0(0, 1]+ be of norm one such that cI(t) = 0 for t /∈ I, see Figure V.1.

Then

dτ (cI(h)) > 0 (τ ∈ T (A)) (V.2.1)

Furthermore, by the choice of I we have that

(f − ε)+ + cI 4 f. (V.2.2)

This is because in commutative C∗-algebras, Cuntz subequivalence is deter-

mined by the support of functions (cf. [APT11, Proposition 2.5]). Using that

0 1

1

a b

Figure V.1: The function cI .
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cI(h) and (f(h)− ε)+ are orthogonal, we get for every τ ∈ T (A):

dτ
(
(f(h)− ε)+

) (V.2.1)
< dτ

(
(f(h)− ε)+

)
+ dτ

(
cI(h)

)
= dτ

(
(f(h)− ε)+ + cI(h)

)
(V.2.2)

≤ dτ (f(h))

= dτ (f(k)).

The last equality follows, because h and k are both Lebesgue contractions.

Now, by strict comparison, it follows that

(f(h)− ε)+ 4 f(k)

and hence

[f(h)] = sup
n

[(
f(h)− 1

n

)
+

]
≤ [f(k)].

Reversing the roles of h and k, we see that [f(k)] ≤ [f(h)] and thus f(h) ∼Cu

f(k).

V.2.3 Definition. Let us denote by A the class of unital C∗-algebras that

have stable rank one and strict comparison of positive elements by bounded

traces.

V.2.4 Example. The easiest and for us most interesting class of C∗-algebras

that belong to A is the class of UHF-algebras. The stable rank one property

is easy to check. Strict comparison is proven in [Rør92] and relies on the fact

that matrix algebras enjoy this property.

V.2.5 Lemma. Let A ∈ A and assume T (Aω) = T (A)ω, where we recall

that T (A)ω denotes the set of limit traces, i.e. those of the form

τω([(xn)∞n=1]) = lim
ω
τ(xn) (τ ∈ T (A)).

Then Aω ∈ A .

Proof. Using that T (Aω) = T (A)ω and [BBS+19, Lemma 1.23], it follows

that Aω has strict comparison. To see that Aω has stable rank one, let

x ∈ Aω, say x = [(xn)∞n=1]. Since A has stable rank one, we find gn ∈ A such

that ‖xn − gn‖ < 1
n

and gn is invertible. Look at the polar decomposition

gn = un |gn|. Let u = [(un)∞n=1] and g = [(gn)∞n=1]. Then

x = [(xn)∞n=1] = [(gn)∞n=1] = u |g| ,
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where u ∈ Aω is a unitary and |g| ∈ Aω is positive. Then

x ≈ε u(|g|+ ε)

and u(|g|+ ε) is invertible.

V.2.6 Remark. To get examples of C∗-algebras to which Lemma V.2.5

applies, let us briefly recall a result on limit traces established by Ozawa. In

[Oza13, Theorem 8] he shows (in a more general fashion) that

T (A)ω
weak∗

= T (Aω)

if A has commutator bounds (m,C) for some m ∈ N and C > 0 in the sense

of [NR16, Remark 2.2]:

For every h ∈ A+ and ε > 0, there exist x1, y1, · · · , xm, ym ∈ A such that∥∥∥∥∥h−
m∑
i=1

[xi, yi]

∥∥∥∥∥ ≤ sup
τ∈T (A)

τ(h) + ε

and
m∑
i=1

‖xi‖ ‖yi‖ ≤ C ‖h‖ .

Using [NR16, Proposition 2.4] we know that commutator bounds pass to in-

ductive limits. Since matrix algebras have commutator bounds (1, 2) ([Fac82,

Lemma 3.5]) it follows that any UHF-algebra has commutator bounds (1, 2)

and we see that

T (U)ω = T (Uω),

where U is a UHF-algebra. In particular, it follows that Uω ∈ A .

V.2.7 Lemma. (cf. Theorem III.1.5) Let A ∈ A . If h and k are Lebesgue

contractions in A, then h ≈u k.

Proof. By Lemma V.2.2 we see that Cu(φh) = Cu(φk), where φh, φk : C0(0, 1]→
A denote the ∗-homomorphisms corresponding to h resp. k. Furthermore,

Cu(φh)([ι]) = [h] ≤ [1A] and similarly Cu(φk)([ι]) ≤ [1A]. By Theorem

V.1.14 it follows that φh ≈u φk and hence h ≈u k.

V.2.8 Lemma. (cf. Lemma III.2.3) Let p be a supernatural number and

let ϕ, ψ : Mp → A be two c.p.c. order zero maps such that hϕ and hψ are

Lebesgue contractions. Assume also that A ∈ A . Then ϕ ≈u ψ.
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Proof. We may assume that p is finite, say equal to p ∈ N. We saw in the

proof of Lemma III.2.3 that ϕ(e11) and ψ(e11) both have 1
p

Lebesgue spectral

measure. By Lemma V.2.7 it follows that ϕ(e11) ≈ ψ(e11). By Lemma III.2.1

and the fact that A has stable rank one it now follows that ϕ ≈u ψ.

V.2.9 Definition. Let p ∈ N. Fix ε > 0 and F ⊆ C0(0, 1] ⊗Mp finite. A

c.p.c. map ϕ : C0(0, 1]⊗Mp → A is called

• (F , ε)-multiplicative if

‖ϕ(xy)− ϕ(x)ϕ(y)‖ < ε (x, y ∈ F),

• (F , ε)-standard if

|(τ ◦ ϕ)(x)− τLeb(x)| < ε (x ∈ F , τ ∈ T (A)).

The following lemma is inspired by [Sch18, Lemma 5.2].

V.2.10 Lemma. Let p ∈ N and assume U is a UHF-algebra. Then, for every

finite set F ⊆ C0(0, 1]⊗Mp and ε > 0, there exists a finite set G ⊆ C0(0, 1]⊗
Mp and δ > 0 such that the following holds: Whenever ϕ, ψ : C0(0, 1]⊗Mp →
U are (G, δ)-multiplicative and (G, δ)-standard c.p.c. maps, there exists a

unitary u ∈ U such that

‖uϕ(f)u∗ − ψ(f)‖ < ε (f ∈ F).

Proof. Assume the result is false. Then, there exist F ⊆ C0(0, 1]⊗Mp finite

and ε > 0 and c.p.c. maps ϕn, ψn : C0(0, 1] ⊗Mp → U which are (Gn, δn)-

multiplicative and (Gn, δn)-standard, where Gn is an increasing sequence of

finite subsets of C0(0, 1]⊗Mp with dense union and δn ↓ 0, but such that for

every unitary u ∈ U we have

‖uϕn(f)u∗ − ψn(f)‖ ≥ ε,

for some f ∈ F . By assumption, the ϕn and ψn induce standard ∗-homo-

morphisms ϕ, ψ : C0(0, 1] ⊗Mp → Uω. By Lemma V.2.8 and the fact that

Uω ∈ A , there exists a unitary u ∈ Uω with ad(u) ◦ ϕ = ψ14. We can write

14As Uω is an ultrapower, a reindexing argument can be used to turn ≈u into ∼u, see

Remark I.5.2.
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u = [(un)∞n=1] for a sequence of unitaries un ∈ U .15 As

lim
n→ω
‖unϕn(f)u∗n − ψn(f)‖ = 0 (f ∈ F),

there exists for every f ∈ F a set Xf ∈ ω with ‖unϕn(f)u∗n − ψn(f)‖ < ε,

for n ∈ Xf . Now, any n ∈
⋂
f∈F Xf ∈ ω satisfies

‖unϕn(f)u∗n − ψn(f)‖ < ε (f ∈ F),

contradicting our assumption.

V.3 Existence of order zero maps

V.3.1 Lemma. Let p ∈ N and assume U is a UHF-algebra of infinite type.

Then, for every finite set F ⊆ C0(0, 1]⊗Mp and ε > 0, there exists a (F , ε)-

multiplicative and (F , ε)-standard c.p.c. map φ : C0(0, 1]⊗Mp → U .

Proof. Let h ∈ Q be a Lebesgue contraction, where Q is the universal UHF-

algebra. See the proof of Lemma IV.1.4 for the construction of such a

Lebesgue contraction. Since Q is strongly self-absorbing, we may fix an

isomorphism ϕ : Q⊗Q→ Q. After identifying Mp with a unital subalgebra

of Q, we consider ψ : Mp → Q : x 7→ ϕ(h ⊗ x), which is a c.p.c. order zero

map such that hψ = ϕ(h ⊗ 1p) is a Lebesgue contraction. Next, we look at

the following diagram:

Uω

����

C0(0, 1]⊗Mp

φ

88

ψ

//Rω

By viewing U as a weak∗-dense subalgebra of R, the unique separably acting

hyperfinite II1-factor, the inclusion U ↪→ R induces a trace preserving sur-

jection Uω � Rω, by [KR14, Theorem 3.3]. To get a ∗-homomorphic lift φ

of ψ,16 we use that the cone over Mp is projective. Next, by the Choi-Effros

15Look at any lift (xn)∞n=1 of u in `∞(U). Then the xn are approximately unitary and

in particular eventually invertible. By replacing xn with un := xn |xn|−1 we get a unitary

lift.
16Since Q has weak closure R (in its GNS-representation), we regard ψ as a map taking

values in R, which then sits canonically inside Rω. Recall also that Rω is the tracial

ultrapower of R, given by `∞(R) modulo sequences (xn)∞n=1 such that limω τR(x∗nxn) = 0.

79



lifting theorem, there are c.p.c. maps φn : C0(0, 1]⊗Mp → U such that

φ(x) = [(φn(x))∞n=1] (x ∈ C0(0, 1]⊗Mp).

Then, the φn are approximately multiplicative and approximately standard,

since the lift φ is a standard ∗-homomorphism. The result follows.

We can now present two alternative proofs of Lemma IV.1.5.

V.3.2 Lemma. (cf. Lemma IV.1.5) Let p ∈ N and let U be a UHF-algebra

of infinite type. Then, there exists a c.p.c. order zero map ψ : Mp → U such

that hψ is a Lebesgue contraction.

Proof using Lemma V.3.1. Let (Fn)∞n=1 be an increasing sequence of finite

subsets of C0(0, 1]⊗Mp with dense union and let εn > 0 such that
∑
εn <∞.

Find finite subsets Gn ⊆ C0(0, 1] ⊗Mp and δn > 0 accordingly to Lemma

V.2.10. We may assume that δn ↓ 0 and (Gn)∞n=1 is increasing with dense

union. By Lemma V.3.1, for each n ∈ N, there exists a (Gn, δn)-multiplicative

and (Gn, δn)-standard c.p.c. map φn : C0(0, 1]⊗Mp → U . By Lemma V.2.10,

for each n ≥ 1, there exists a unitary un+1 ∈ U such that∥∥φn(x)− un+1φn+1(x)u∗n+1

∥∥ < εn (x ∈ Fn).

Define ψ1 := φ1 and

ψn := u2u3 · · · unφn(·)u∗n · · · u∗3u∗2 (n ≥ 2).

Then it is easy to see that (ψn(x))∞n=1 is Cauchy for all x ∈
⋃∞
n=1Fn and

hence for all x ∈ C0(0, 1]⊗Mp. Finally, define

ψ : C0(0, 1]⊗Mp → U : x 7→ lim
n→∞

ψn(x).

Then ψ is a standard ∗-homomorphism, which is the same as a c.p.c. order

zero map ψ : Mp → U such that hψ is a Lebesgue contraction.

Proof using Theorem V.1.14. Let Γ: Cu(U)→ V (U)t (0,∞] be the isomor-

phism from Corollary V.1.13. We claim that the functional

dτLeb
: Cu(C0(0, 1]⊗Mp)→ [0,∞]

is actually a Cu-morphism. To this end it suffices to show that it preserves

the way below relation. Since C0(0, 1] is stably projectionless, we see that

Cu(C0(0, 1]⊗Mp) = {0} t Cu(C0(0, 1]⊗Mp)+. (V.3.1)
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Let x, y ∈ Cu(C0(0, 1]⊗Mp) such that x� y. We may assume that x, y 6= 0

(because 0 � 0 in [0,∞]). Furthermore, we note that dτLeb
(x) < ∞.17 By

(V.3.1) and Lemma V.1.9 it follows that there exists 0 6= z ∈ Cu(C0(0, 1] ⊗
Mp) such that x + z ≤ y. Since τLeb is faithful we see that dτLeb

(z) > 0 and

hence

dτLeb
(x) < dτLeb

(x) + dτLeb
(z) = dτLeb

(x+ z) ≤ dτLeb
(y).

The calculation makes sense, because dτLeb
(x) <∞.

Let now α : Cu(C0(0, 1] ⊗Mp) → Cu(U) be such that the following dia-

gram commutes:

Cu(C0(0, 1]⊗Mp)

dτLeb

��

α // Cu(U)

Γ∼=
��

[0,∞] � �

j
// V (U) t (0,∞]

Note that α([ι ⊗ 1p]) = Γ−1(1′) ≤ Γ−1([1U ]) = [1U ], where 1′ denotes the

element 1 considered in (0,∞], cf. Example V.1.11. Now Theorem V.1.14

shows that the Cu-morphism α lifts to a ∗-homomorphism ϕ : C0(0, 1]⊗Mp →
U . Let us show that ϕ is standard. Indeed, denote

τ := τU ◦ ϕ.

Then τ is a trace on C0(0, 1] ⊗ Mp and by Theorem V.1.6 it follows that

τ = τLeb if dτ = dτLeb
. Let us check this:

j ◦ dτ = j ◦ dτU◦ϕ = j ◦ dτU ◦ α = Γ ◦ α = j ◦ dτLeb
.

It follows that dτ = dτLeb
, because j is injective.

V.4 Existence and uniqueness of maps on di-

mension drop algebras

Using Robert’s classification theorem, we can prove Lemma IV.2.4 immedi-

ately, without having to establish existence results for standard c.p.c. order

zero maps first.

17We already noted that g = supn gn, where each gn lives in some matrix algebra over

C0(0, 1], see also [APT11, Lemma 5.23]. But then, since f � g, we have f ≤ gn for some

n ∈ N and the claim follows, because dτLeb
(gn) <∞.
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V.4.1 Lemma. (cf. Lemma IV.2.4) Let p and q be coprime supernatural

numbers of infinite type and let U be a UHF-algebra of infinite type. Then,

there exists a standard ∗-homomorphism

ϕ : Zp,q → U,

which is unique up to approximate unitary equivalence.

Proof. Since Zp,q has stable rank one (see [GLN14, Proposition 3.3]), we have,

by Remark V.1.8, that

Cu(Zp,q) = V (Zp,q) t Cu(Zp,q)+
∼= N t Cu(Zp,q)+.

See Lemma I.3.3 for the computation of V (Zp,q). Let us define a map

α : N t Cu(Zp,q)+ → N t (0,∞]

by

α(x) :=

{
x if x ∈ N,
dτLeb

(x) if x ∈ Cu(Zp,q)+.

The set N t (0,∞] has the structure of a Cu-semigroup as explained in Ex-

ample V.1.11. Let us check that α is a Cu-morphism.

(M1): Clearly α is additive on each component and preserves the zero

element. If n ∈ N and x ∈ Cu(Zp,q)+, then n+x ∈ Cu(Zp,q)+ (since Cu(Zp,q)+

is absorbing) and we get

α(n+ x) = dτLeb
(n+ x) = ndτLeb

(1) + dτLeb
(x) = n+ dτLeb

(x)

= α(n) + α(x).

Recall that we identify N ∼= {n[1Zp,q ] : n ∈ N} ⊆ Cu(Zp,q).

(M2): Clearly, α is order preserving on each component. Assume n ∈ N
and [f ] ∈ Cu(Zp,q)+. If n ≤ [f ], we have to show that α(n) ≤ α([f ]). By

definition of α and the order on N t (0,∞], this is true if n <R dτLeb
([f ]).

However, since n is compact18, we see that n � [f ]. Then Lemma V.1.9

shows that there exists 0 6= z ∈ Cu(Zp,q) such that n + z ≤ [f ]. It follows

that

n = dτLeb
(n) < dτLeb

(n) + dτLeb
(z) ≤ dτLeb

([f ]).

18An element x ∈ Cu(A) is called compact if x� x.
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If [f ] ≤ n it is clear that α([f ]) ≤ α(n).

(M3): This follows from the fact that α preserves suprema of increasing

sequences on each component.

(M4) It remains to prove that α preserves the way below relation. It is

enough to check this on Cu(Zp,q)+. Again, this follows from Lemma V.1.9.

We see that α is Cu-morphism. Using Lemma V.1.13 and composing α

with the inclusion

N t (0,∞]→ V (U) t (0,∞] ∼= Cu(U),

it follows by Theorem V.1.15 that α lifts to a unital ∗-homomorphism ϕ : Zp,q →
U .19 Furthermore, it is again easy to check that dτU◦ϕ = dτLeb

, showing that

τU ◦ ϕ = τLeb, as desired.

The uniqueness statement is also contained in Theorem V.1.15.

19Note the α([1Zp,q
]) = [1U ].

83



Chapter VI

Strongly self-absorbing

stationary inductive limits

In this chapter we show that the stationary inductive limit associated to

a unitarily suspended ∗-homomorphism is strongly self-absorbing (Theorem

VI.2.2). We end with some general observations, for example that these lim-

its are all isomorphic and define the initial object in the category of strongly

self-absorbing C∗-algebras.

VI.1 An approximate intertwining

VI.1.1 Notation. Let n ∈ N and p1, p2, · · · , pn be supernatural numbers.

Let us define

M(p1,··· ,pn) := Mp1 ⊗Mp2 ⊗ · · · ⊗Mpn .

If i1, i2, · · · , ik are k distinct integers, not necessarily in increasing order, with

ik ∈ {1, 2, · · · , n}, then there is an obvious inclusion

ı
[i1,i2,··· ,ik]
(p1,··· ,pn) : M(pi1 ,pi2 ,··· ,pik ) →M(p1,··· ,pn).

Let us furthermore denote

M
[i1,i2,··· ,ik]
(p1,··· ,pn)

:= Im
(
ı
[i1,i2,··· ,ik]
(p1,··· ,pn)

)
.

If the n-tupel (p1, · · · , pn) in question is clear, we will omit the subscripts

and simply write ı[i1,··· ,ik] and M [i1,··· ,ik].

84



VI.1.2 Example. The map ı
[1]
(p,q) : Mp → Mp ⊗Mq for example is the first

factor embedding, whereas ı
[2]
(p,q) : Mq → Mp ⊗Mq denotes the second factor

embedding. Another example is the flip map Mp⊗Mp →Mp⊗Mp, which is

ı
[2,1]
(p,p) in our notation.

VI.1.3 Definition. Let p1, · · · , pn and q1, · · · , qm be supernatural numbers.

Let r := (p1, p2, · · · , pn) and s := (q1, q2, · · · , qm). We then define

Zr,s =

{
f ∈ C([0, 1],Mr ⊗Ms) :

f(0) ∈Mr ⊗ 1s,

f(1) ∈ 1r ⊗Ms

}
.

VI.1.4 Convention. Let p and q be supernatural numbers. To simplify

notation a bit, let us define p2 := (p, p), q2 := (q, q) and r := (p2, q2, p2, q2).

We then identify Zp2,q2 ⊗Zp2,q2 with a C∗-subalgebra of C([0, 1]2,Mr), where

f ⊗ g ∈ Zp2,q2 ⊗Zp2,q2 gets identified with the function (f ⊗ g)(s, t) := f(s)⊗
g(t). Under this identification, one can check that an element h ∈ Zp2,q2 ⊗
Zp2,q2 must satisfy:

• h(0, 0) ∈M [1,2,5,6]
r ,

• h(s, 0) ∈M [1,2,3,4,5,6]
r , for s ∈ (0, 1) and

• h(1, 0) ∈M [3,4,5,6]
r .

Similar boundary conditions must be fulfilled on the remaining sides of the

square.

VI.1.5 Notation. Let µ : Zp,q → Zp,q be a unital ∗-homomorphism. For

(i, j) ∈ {(1, 3), (2, 4)} we define

µ[i,j] : Zp,q → Zp2,q2 ; µ
[i,j]
t := ı

[i,j]

(p2,q2) ◦ µt.

Furthermore, we define the following ∗-homomorphism:

≈
µ : Zp,q ⊗ Zp,q → Zp2,q2 ;

≈
µs(f ⊗ g) := µ[1,3]

s (f)µ[2,4]
s (g).

Note that µ
[1,3]
s and µ

[2,4]
s are commuting ∗-homomorphisms.

VI.1.6 Proposition. Let p and q be coprime supernatural numbers of infi-

nite type and assume µ : Zp,q → Zp,q is unitarily suspended. Then

(idZp2,q2
⊗1Zp2,q2

) ◦ ≈µ ≈u µ
[1,3] ⊗ µ[1,3].
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That is, we can make the following diagram commute arbitrary well up to

conjugating by a unitary.

Zp,q ⊗ Zp,q
µ[1,3]⊗µ[1,3]

//

≈
µ %%

Zp2,q2 ⊗ Zp2,q2

Zp2,q2

id⊗1

88

(VI.1.1)

Proof. (I) Let us first do some setup. Recall from Definition IV.2.5 that

µ : Zp,q → Zp,q is given by

µt =

{
ad(vt) ◦ (α0 ⊗ 1q) if t ∈ [0, 1),

1p ⊗ α1 if t = 1,
(VI.1.2)

where (vt)t∈[0,1) is a unitary path in Mp⊗Mq starting at the identity and where

α0 : Zp,q → Mp and α1 : Zp,q → Mq are unital ∗-homomorphisms. During

the proof we identify the codomain of µ[1,3] ⊗ µ[1,3] with functions on the

square, accordingly to Convention VI.1.4. Under this identification, the map

µ[1,3] ⊗ µ[1,3] becomes:

(µ[1,3] ⊗ µ[1,3])(f ⊗ g)(s, t) = ı[1,3]
r (µs(f)) · ı[5,7]

r (µt(g)), (VI.1.3)

where r = (p2, q2, p2, q2) is as in Convention VI.1.4. Finally, we will need to

write Zp,q as an inductive limit lim−→(ZPn,Qn , γn,n+1), as explained in Convention

IV.2.3.

(II) Let us fix a normalized and finite set F ⊆ Zp,q and let ε > 0. The goal is

to find a unitary W ∈ Zp2,q2 ⊗ Zp2,q2 making the diagram (VI.1.1) commute

up to ε on F⊗F := {f⊗g : f, g ∈ F}. For convenience we may assume that

the unitary path (vt)t∈[0,1) is constant in a small open neighborhood of zero,

i.e. we may assume there exists 0 < η < 1 such that vt = 1pq, for t ∈ [0, η].

Let us fix some 0 < δ < η, such that

|s− s′| ≤ δ ⇒ ‖µs(f)− µs′(f)‖ ≤ ε

10
(f ∈ F) (VI.1.4)

and let n ∈ N such that

‖κn(µ(f))− µ(f)‖ ≤ ε

10
(f ∈ F), (VI.1.5)

where κn is the conditional expectation as defined in Convention IV.2.3. By

possibly enlarging n we can ensure the existence1 of a unitary path (v̄t)t∈[0,1]

1This is done by approximating the unitary (vt)t∈[0,1−δ] ∈ C([0, 1− δ],Mp ⊗Mq) by a

unitary in C([0, 1− δ],MPn ⊗MQn).
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such that  v̄t = 1Pn ⊗ 1Qn if t ∈ [0, δ],

‖v̄t − vt‖ ≤ ε
10

if t ∈ [δ, 1− δ],
v̄t = v̄1−δ if t ∈ [1− δ, 1].

(VI.1.6)

Let us denote p := Pn, q := Qn and r := (p, p, q, q, p, p, q, q). We then identify

Mr ⊆Mr as unital subalgebra, via our fixed inclusions2. Next, let

Sp ∈Mp ⊗Mp and Sq ∈Mq ⊗Mq

denote the self-adjoint flip unitaries. This means Sp(x⊗ y)S∗p = y⊗x, for all

x, y ∈Mp and similarly for Mq. Then define S̃p := ı
[2,5]
r (Sp),

S̃q := ı
[4,7]
r (Sq),

S̃ := S̃pS̃q = S̃qS̃p ∈M [2,4,5,7]
r

(VI.1.7)

and for t ∈ [0, 1] we let

ut := ı
[2,4]
r (vmin(t,1−δ)),

ūt := ı
[2,4]
r (v̄t).

(VI.1.8)

By (VI.1.6) we see that ‖ut − ūt‖ ≤ ε
10

, for all t ∈ [0, 1]. We are now ready

to define a first approximation to the desired unitary W :

U : [0, 1]2 →Mr : (s, t) 7→ S̃ūtū
∗
s. (VI.1.9)

Note that U does not yet define an element of Zp2,q2 ⊗ Zp2,q2 . However, let

us show that the unitary U makes diagram (VI.1.1) commute approximately,

i.e.

U(
≈
µ(f ⊗ g)⊗ 1Zp2,q2

)U∗ ≈ ε
2
µ[1,3](f)⊗ µ[1,3](g) (f, g ∈ F). (VI.1.10)

First, observe the following identities:

(a) ad(S̃p) ◦ ı[2,4]
r = ı

[5,4]
r ,

(b) ad(S̃q) ◦ ı[5,4]
r = ı

[5,7]
r ,

(c) ad(S̃q) ◦ ı[2,4]
r = ı

[2,7]
r ,

2Remember that Mr and Mr are a tensor product of eight matrix respectively UHF-

algebras, see Notation VI.1.1.
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(d) ad(S̃) ◦ ı[2,4]
r = ı

[5,7]
r ,

(e) utu
∗
sµ

[2,4]
s (g)usu

∗
t = µ

[2,4]
t (g), for any g ∈ Zp,q and s, t ∈ [0, 1− δ].

The identities (a)-(d) are easily proven by looking at elementary tensors,

whereas (e) follows from the definition of µ. We are now able to prove

(VI.1.10). Let f, g ∈ F and (s, t) ∈ [0, 1]2. Filling in the definitions gives

Us,t(
≈
µ(f ⊗ g)⊗ 1Zp2,q2

)(s, t)U∗s,t

= S̃ūtū
∗
sı

[1,3]
r (µs(f))ı[2,4]

r (µs(g))ūsū
∗
t S̃
∗.

(VI.1.11)

Note that ūt and S̃ commute with M
[1,3]
r . For (s, t) ∈ [0, 1− δ]2, for example,

one checks that (VI.1.11) becomes

ı[1,3]
r (µs(f))S̃ūtū

∗
sı

[2,4]
r (µs(g))ūsū

∗
t S̃
∗

(VI.1.6)
≈ 2ε

10
ı[1,3]
r (µs(f))S̃utu

∗
sı

[2,4]
r (µs(g))usu

∗
t S̃
∗

(e)
= ı[1,3]

r (µs(f))S̃ı[2,4]
r (µt(g))S̃∗

(d),(VI.1.5)
≈ 2ε

10
ı[1,3]
r (µs(f))ı[5,7]

r (µt(g))

(VI.1.3)
= (µ[1,3](f)⊗ µ[1,3](g))(s, t).

For (s, t) ∈ ([1−δ, 1]×[0, 1−δ])∪([0, 1−δ]×[1−δ, 1])∪[1−δ, 1]2 one proceeds

similarly and uses in particular (VI.1.4). This proves the claim (VI.1.10).

(III) The next step is to perturb U on the boundary. Since Sp and Sq are

connected to the identity in Mp ⊗Mp respectively Mq ⊗Mq we can find a

unitary path (νt)t∈[0,1] inside Mr such that the following holds:
ν0 = S̃q,

νt ∈ C∗(S̃q) ⊆M
[4,7]
r if t ∈ [0, δ],

νt = 1r if t ∈ [δ, 1− δ],
νt ∈ C∗(S̃p) ⊆M

[2,5]
r if t ∈ [1− δ, 1],

ν1 = S̃p.

(VI.1.12)

Observe that

(f) [S̃, νt] = 0, for every t ∈ [0, 1],

(g) [νs, ı
[i,j]
r (µs(f))] ≈ ε

10
0, for all s ∈ [0, 1], (i, j) ∈ {(2, 4), (5, 7)} and

f ∈ F .
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For (f), let t ∈ [0, δ]. Then, νt ∈ M
[4,7]
r . Since S̃p ∈ M

[2,5]
r we see that

S̃νtS̃
∗ = S̃qνtS̃

∗
q . Note that S̃q commutes with νt for t ∈ [0, δ], since the

C∗-algebra generated by S̃q is commutative. For t ∈ [δ, 1 − δ] nothing is to

check and for t ∈ [1− δ, 1] we argue similarly as before. Let us check (g) for

(i, j) = (2, 4) and s ∈ [0, δ]:

νsı
[2,4]
r (µs(f))ν∗s

(VI.1.4)
≈ ε

10
νsı

[2,4]
r (µ0(f))ν∗s = ı[2,4]

r (µ0(f)).

The last equality follows from the fact that µ0(f) = α0(f) ⊗ 1q ∈ Mp ⊗ 1q

so that ı
[2,4]
r (µ0(f)) ∈ M

[2]
r , whereas νs ∈ M

[4,7]
r for s ∈ [0, δ]. A similar

observation applies to the case s ∈ [1− δ, 1]. We can now define the desired

unitary W by

Ws,t :=


νmin(s,t)Us,t if (s, t) ∈ [0, δ]2,

νmax(s,t)Us,t if (s, t) ∈ [1− δ, 1]2,

νtUs,tνs else.

This should be compared to the construction of Jiang and Su in [JS99, Propo-

sition 8.3]. Now, we have to check the following:

(i) W is continuous,

(ii) W ∈ Zp2,q2 ⊗ Zp2,q2 ,

(iii) ad(W ) ◦ (
≈
µ⊗ 1Zp2,q2

) ≈(F⊗F ,ε) µ
[1,3] ⊗ µ[1,3].

Without reference, we will use that

Us,t = S̃ ((s, t) ∈ [0, δ]2 ∪ [1− δ, 1]2).

We note that (i) follows easily from (f). In order to show (ii), we have to

verify that W satisfies all boundary conditions, as explained in Convention

VI.1.4. The computation is not difficult but tedious, so as an example we

show how to handle the case t = 0, which splits up into the following three

cases:

• s ∈ [0, δ] : Ws,t = νmin(s,t)Us,t = ν0S̃ = S̃qS̃ = S̃p ∈M [2,5]
r ,

• s ∈ [δ, 1] : Ws,t = νtUs,tνs = ν0Us,0νs = S̃q(S̃ū
∗
s)νs = S̃pū

∗
sνs, which

lives in M
[2,5]
r M

[2,4]
r M

[2,5]
r ⊆M

[2,4,5]
r ,
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• s = 1 : Ws,t = S̃pū
∗
sνs = S̃pū

∗
1−δS̃p ∈ S̃pM

[2,4]
r S̃p ⊆

(a)
M

[4,5]
r .

It follows that W is a unitary in Zp2,q2 ⊗ Zp2,q2 and it remains to prove (iii).

For (s, t) ∈ [0, δ]2 and f, g ∈ F we compute

Ws,t(
≈
µ(f ⊗ g)⊗ 1Zp2,q2

)(s, t)W ∗
s,t

= νmin(s,t)S̃ı
[1,3]
r (µs(f))ı[2,4]

r (µs(g))ν∗min(s,t)S̃
∗

(f),(VI.1.12)
= S̃ı[1,3]

r (µs(f))νmin(s,t)ı
[2,4]
r (µs(g))ν∗min(s,t)S̃

∗

(g)
≈ ε

10
S̃ı[1,3]

r (µs(f))ı[2,4]
r (µs(g))S̃∗

= Us,t(
≈
µ(f ⊗ g)⊗ 1Zp2,q2

)(s, t)U∗s,t
(VI.1.10)
≈ ε

2
(µ[1,3](f)⊗ µ[1,3](g))(s, t).

The computation for (s, t) ∈ [1− δ, 1]2 is similar. For the remaining part, we

get

Ws,t(
≈
µ(f ⊗ g)⊗ 1Zp2,q2

)(s, t)W ∗
s,t

= νtUs,tνsı
[1,3]
r (µs(f))ı[2,4]

r (µs(g))ν∗sU
∗
s,tν
∗
t

(g)
≈ 2ε

10
νtUs,tı

[1,3]
r (µs(f))ı[2,4]

r (µs(g))U∗s,tν
∗
t

(VI.1.10)
≈ ε

2
νtı

[1,3]
r (µs(f))ı[5,7]

r (µt(g))ν∗t
(g)
≈ 2ε

10
ı[1,3]
r (µs(f))ı[5,7]

r (µt(g))

(VI.1.3)
= (µ[1,3](f)⊗ µ[1,3](g))(s, t).

This finishes the proof.

VI.2 Proof of the main theorem

VI.2.1 Definition. Let p and q be coprime supernatural numbers of infinite

type. By Theorem IV.2.6, there exists a unitarily suspended standard ∗-

homomorphism µ : Zp,q → Zp,q, which we fix for the rest of this section.

Define

µ̄ : Zp,q → Zp,q; µ̄ := Φ ◦ µ[1,3],

where Φ: Zp2,q2 → Zp,q is the canonical isomorphism, induced fiberwise by

isomorphisms Mp2 →Mp and Mq2 →Mq. We then define

−−→
Zµ

p,q := lim−→(Zp,q, µ̄).
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That is,
−−→
Zµ

p,q is the stationary inductive limit of Zp,q along µ̄.

VI.2.2 Theorem. The C∗-algebra
−−→
Zµ

p,q is strongly self-absorbing. Further-

more, for any sequence (ϕn)∞n=1 of standard ∗-endomorphisms of Zp,q we have

−−→
Zµ

p,q
∼= lim−→(Zp,q, ϕn).

Proof. Let us consider the following diagram, where A := lim−→(Zp,q, ϕn):

(I)

Zp,q ⊗ Zp,q
(µ̄)⊗2

//

Φ◦≈µ
��

Zp,q ⊗ Zp,q

Φ◦≈µ
��

(µ̄)⊗2

// Zp,q ⊗ Zp,q

Φ◦≈µ
��

// · · · //
−−→
Zµ

p,q ⊗
−−→
Zµ

p,q

(II)

Zp,q

id⊗1

88

µ̄ // Zp,q

id⊗1

88

µ̄ // Zp,q
// · · · //

−−→
Zµ

p,q

ϕ∼=

OO

Zp,q

ϕ1

88

ϕ1

// Zp,q

ϕ2

88

ϕ2

// Zp,q
// · · · // A

∼=

OO

Let us first have a look at row (I). By Proposition VI.1.6, we have (id⊗1) ◦
≈
µ ≈u µ

[1,3] ⊗ µ[1,3]. By composing with Φ⊗ Φ it follows that

(id⊗1) ◦ (Φ ◦ ≈µ) ≈u µ̄⊗ µ̄.

Furthermore, one easily computes that

(Φ ◦ ≈µ) ◦ (id⊗1) = Φ ◦ µ[1,3] = µ̄.

This shows that each triangle in (I) commutes approximately up to conju-

gating by a unitary. By [Rør02, Corollary 2.3.3] it follows that there exist

unitaries (un)∞n=1 in Zp,q⊗Zp,q such that if id⊗1 is replaced by ad(un)◦(id⊗1),

then the above diagram is an approximate intertwining (in the sense of

[Rør02, Definition 2.3.1]). By the same corollary the induced isomorphism

ϕ :
−−→
Zµ

p,q →
−−→
Zµ

p,q ⊗
−−→
Zµ

p,q satisfies

ϕ(x) = lim
n→∞

un(x⊗ 1)u∗n (x ∈
−−→
Zµ

p,q),

where now each un is considered as an element of
−−→
Zµ

p,q ⊗
−−→
Zµ

p,q. By definition,

it follows that
−−→
Zµ

p,q is strongly self-absorbing.

Next, we look at row (II). Clearly, all lower triangles commute and by

Theorem III.6.1 we have that ϕn ≈u µ̄, for each n ∈ N3. Again, by an

approximate intertwining argument, it follows that A ∼=
−−→
Zµ

p,q.
3Note that µ̄ is still standard.
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VI.2.3 Remark. The previous theorem picks up the spirit of [RW10, Theo-

rem 3.4] and shows that any stationary inductive limit with a standard (hence

trace collapsing) ∗-endomorphism is strongly self-absorbing. In our approach

however, we do not have to compare the limit to the Jiang-Su algebra Z.

VI.2.4 Lemma. Let n ∈ N. Then, there exists k ∈ N and a unital ∗-homo-

morphism Zn,n+1 → Z2k,2k+1.

Proof. Choose k ∈ N such that 2k ≥ n(n + 1) and write 2k = nd + r, where

r ∈ {0, 1, · · · , n−1}. Then clearly d ≥ n+1 > r+1. By [Sat10, Proposition

2.1], there exist elements s, c1, c2, · · · , c2k in Z2k,2k+1 such that

c1 ≥ 0, cic
∗
j = δi,jc

2
1, s∗s+

2k∑
j=1

c∗jcj = 1 and c1s = s.

For i = 1, 2, · · · , n define

xi :=
i·d∑

j=(i−1)·d+1

cj and bi := x∗ixi =
i·d∑

j=(i−1)·d+1

c∗jcj.

Note that the bi are mutually equivalent orthogonal positive elements. By

the relations on the cj and s it is easy to see that

(a) 1 = b1 + b2 + · · ·+ bn + (c∗nd+1cnd+1 + · · ·+ c∗nd+rcnd+r) + s∗s,

(b) [s∗s] ≤ [c1] and [c1] = [c2
1] = [c∗1c1],

(c) d[c1] = [b1].

Here [a] denotes the class of an element a in W (Z2k,2k+1), the Cuntz semi-

group of Z2k,2k+1. Now we have

[1− (b1 + · · ·+ bn)]
(a)
= [(c∗nd+1cnd+1 + · · ·+ c∗nd+rcnd+r) + s∗s]

≤ [c∗nd+1cnd+1] + · · ·+ [c∗nd+rcnd+r] + [s∗s]

= r[c∗1c1] + [s∗s]
(b)

≤ r[c∗1c1] + [c1] = (r + 1)[c1]

� d[c1]
(c)
= [b1].

The last line follows since r + 1 < d. Hence, there exists ε > 0 such that

1− (b1 + · · ·+ bn) . (b1 − ε)+.

By [RW10, Proposition 5.1 (ii)], it follows that Zn,n+1 embeds unitally into

Z2k,2k+1.
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VI.2.5 Proposition. Let p, q ∈ N be coprime. Then Zp,q maps unitally into

any strongly self-absorbing C∗-algebra.

Proof. Let p, q ∈ N be coprime. We can find k, l ∈ N such that lq − kp = 1

and 2l > p, 2k > q. With n := kp, there exists by [JS99, Proposition

2.5] a unital ∗-homomorphism Zp,q → Zkp,lq = Zn,n+1. By Lemma VI.2.4,

Zn,n+1 embeds unitally into Z2k,2k+1, for some large enough k. Finally, by

[Win11, Theorem 3.1], Z2k,2k+1 maps unitally into any strongly self-absorbing

C∗-algebra.

VI.2.6 Lemma. Let A be a strongly self-absorbing C∗-algebra that is locally

approximated4 by prime dimension drop algebras. Then A embeds unitally

into any strongly self-absorbing C∗-algebra.

Proof. Let D be a strongly self-absorbing C∗-algebra. Since A is locally

approximated by prime dimension drop algebras Zp,q with p, q ∈ N, it follows

by [Lor93, Theorem 3.8] that A is an inductive limit of such dimension drop

algebras. By Proposition VI.2.5, each of these embed unitally into D and

hence into the central sequence algebra Dω ∩D′, see [TW07, Theorem 2.2].

By [TW08, Proposition 2.2]5 we see that D ∼= A ⊗ D and hence A embeds

unitally into D.

For the next theorem we first recall Kirchberg’s definition of a central

sequence algebra (cf. [Kir06, Definition 1.1]).

VI.2.7 Definition. Let A be a C∗-algebra. We then define

F (A) :=
Aω ∩ A′

Ann(A,Aω)
,

where Ann(A,Aω) := {x ∈ Aω : xA = Ax = {0}}.

VI.2.8 Remark. If A is σ-unital and (hn)∞n=1 is an approximate unit for A,

then F (A) is unital with unit [(hn)∞n=1] + Ann(A,Aω).

VI.2.9 Theorem. Let p and q be coprime supernatural numbers of infinite

type and let (ϕn)∞n=1 be a sequence of standard ∗-endomorphisms of Zp,q. Let

us denote

A := lim−→(Zp,q, ϕn).

4By definition, this means that there exists a sequence An ⊆ A of prime dimension

drop algebras, such that for any finite set F ⊆ A and ε > 0, there exists some n ∈ N such

that F ⊆ε An, i.e. for every x ∈ F there exists y ∈ An such that ‖x− y‖ < ε.
5In this proposition, the assumption of K1-injectivity is superfluous.
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Then the following holds:

(i) A is the initial object in the category6 of strongly self-absorbing C∗-

algebras,

(ii) If B is any separable C∗-algebra such that there exists a unital ∗-homo-

morphism Z2,3 → F (B), then B ∼= B ⊗ A,

(iii) If B is any separable C∗-algebra and Z2,3 maps unitally into M(B)ω∩B′,
then B ∼= B ⊗ A.

Proof. (i) By Theorem VI.2.2 it follows that A is strongly self-absorbing.

Then Lemma VI.2.6 implies that A is the initial object in the category

of strongly self-absorbing C∗-algebras.

(ii) By [Kir06, Corollary 1.13], there is a unital ∗-homomorphism Z⊗∞2,3 →
F (B) and hence any dimension drop algebra Z2n,3n ⊆ Z⊗n2,3 maps uni-

tally into F (B). Let (r, s) := (2∞, 3∞). By a similar argument as

in [TW08, Proposition 2.2], it follows that
−→
Zµ

r,s (see Definition VI.2.1)

maps unitally into F (B). By [Jia97], the algebra
−→
Zµ

r,s is K1-injective7.

Then the same proof as in [Naw13, Proposition 5.1] applies to show

that B ∼= B ⊗
−→
Zµ

r,s. See also [Kir06, Proposition 4.11 (1)]. By (i) we

know that A ∼=
−→
Zµ

r,s and hence B ∼= B ⊗ A.

(iii) Note that there is a unital ∗-homomorphism

M(B)ω ∩ B′ → F (B) : [(xn)∞n=1] 7→ [(xnhn)∞n=1] + Ann(B,Bω),

where (hn)∞n=1 is an approximate unit for B. It follows that Z2,3 maps

unitally into F (B) and (ii) applies.

VI.2.10 Remark. It is now particularly easy to see that any prime dimen-

sion drop algebra Zp,q embeds unitally into any A, where A is as in Theorem

VI.2.9. Furthermore, it is encoded in the construction, that these embeddings

are standard.

6The morphisms in this category are approximate unitary equivalence classes of ∗-

homomorphisms. This ensures that the initial object is unique, cf. [TW07, Proposition

5.12].
7The result there is stated for the Jiang-Su algebra Z, however it only uses that Z is

a simple inductive limit of prime dimension drop algebras.
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List of Symbols

A,B,C, · · · C∗-algebras

Mn complex n× n matrices

1n unit of Mn

Trn the unnormalized trace on Mn

Mp UHF-algebra associated to p

1p unit of Mp

τMp the unique tracial state on Mp

C0(X) cts. functions on X that vanish at infinity

A+ positive elements

A+ forced unitization

T (A) tracial state space

ϕ∗ induced map on the tracial state spaces

∼u unitary equivalence

≈u approximate unitary equivalence

∼ Murray-von Neumann equivalence

≈ Approximate Murray-von Neumann equivalence

∼asu strong asymptotic unitary equivalence

4 Cuntz below

∼Cu Cuntz equivalent

x ≈ε y ‖x− y‖ < ε

[x, y] the commutator xy − yx
ad ad(u)(x) = uxu∗

ı̀, ı́, ϕ̀, ϕ́ Definition I.3.6

σ(x) spectrum of an element x
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